

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 724 298

51 Int. Cl.:

C12N 7/01 (2006.01) A61P 31/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 26.02.2014 PCT/KR2014/001592

(87) Fecha y número de publicación internacional: 04.09.2014 WO14133323

(96) Fecha de presentación y número de la solicitud europea: 26.02.2014 E 14757580 (7)

(97) Fecha y número de publicación de la concesión europea: 10.04.2019 EP 2961835

(54) Título: Nuevo bacteriófago y composición antibacteriana que lo comprende

(30) Prioridad:

27.02.2013 KR 20130021499

Fecha de publicación y mención en BOPI de la traducción de la patente: 10.09.2019

(73) Titular/es:

CJ CHEILJEDANG CORPORATION (100.0%) CJ Cheiljedang Center, 330 Dongho-ro, Jung-gu Seoul 100-400, KR

(72) Inventor/es:

SON, BO KYUNG; BAE, GI DUK y KIM, JAE WON

(74) Agente/Representante:

UNGRÍA LÓPEZ, Javier

DESCRIPCIÓN

Nuevo bacteriófago y composición antibacteriana que lo comprende

5 Campo técnico

10

La presente invención se refiere a un nuevo bacteriófago que tiene una actividad bactericida específica contra *Clostridium perfringens* patógena y a una composición antibacteriana que comprende el mismo. Además, la presente invención se refiere a la composición antibacteriana o al nuevo bacteriófago para su uso en la prevención o en el tratamiento de enfermedades infecciosas causadas por *Clostridium perfringens*.

Técnica anterior

- Clostridium perfringens (CP), que es un bacilo anaerobio obligatorio gram-positivo de gran tamaño, se conoce como una bacteria que carece de flagelo y forma una espora. Clostridium perfringens, que es una bacteria causante de diarrea o similar, en particular, en animales domésticos tales como los pollos, cerdos, etc. y similares, ha sido reconocida como una de las bacterias patógenas importantes y letales en la industria ganadera, al igual que la Salmonella causante de la fiebre tifoidea aviar.
- Actualmente, una de las enfermedades generadas con frecuencia en las industrias aviar y porcina es la enteritis necrótica producida por *Clostridium perfringens*. Se sabe que la enteritis necrótica se genera con frecuencia por la infección simultánea de *Clostridium perfringens* y *Coccidium*, y como síntoma principal de la enteritis necrótica, se encuentra la diarrea con sangre debida a lesiones necróticas graves en la parte inferior del intestino delgado de los pollos, cerdos o similares.
 - Esta enteritis necrótica genera síntomas de deshidratación, diarrea periódica y similares, en un animal infectado según la gravedad de la enfermedad, debilita gradualmente el cuerpo del animal, y causa retraso del crecimiento y similares, de manera que la enteritis necrótica se ha convertido en un problema importante para la industria ganadera. Además, dado que *Clostridium perfringens* se propaga fácilmente a través de las heces de los animales, puede generarse fácilmente la transmisión entre animales en un espacio de reproducción común por infección oral a través del suelo o el pienso contaminados, o similares. De forma particular, la incidencia en animales jóvenes es alta, por lo que *Clostridium perfringens* se ha convertido en un problema.
- Al mismo tiempo, el bacteriófago es un tipo de virus especializado que infecta y destruye únicamente bacterias, y puede autorreplicarse únicamente dentro de las bacterias hospedadoras. El bacteriófago tiene una fuerte especificidad hospedadora en comparación con los antibióticos, y recientemente, el problema de la aparición de cepas resistentes a los antibióticos se ha vuelto grave, de manera que se ha aumentado el interés en el uso práctico del bacteriófago (Documentos de no patente 1 y 2).
- 40 Por lo tanto, en diversos países del mundo, se ha realizado activamente una investigación con respecto al bacteriófago, y, además de una solicitud de patente para el bacteriófago, han aumentado gradualmente los intentos por obtener la aprobación de la Administración de Medicamentos y Alimentos (FDA) para una composición que contenga el bacteriófago.
- Como los documentos de la técnica anterior relativos al bacteriófago, un bacteriófago que tiene una actividad bactericida específica contra *Clostridium perfringens* se ha divulgado en el Documento de patente 1, y un bacteriófago que tiene una actividad bactericida específica contra *Staphylococcus aureus* se ha divulgado en el Documento de Patente 2. Además, en el Documento de patente 3, se ha divulgado la proteína lítica derivada de un bacteriófago que destruye específicamente la estructura de peptidoglicano de la membrana celular bacteriana, y lisados bacterianos por la proteína lítica.
 - Sin embargo, a pesar de la presencia de las siguientes técnicas anteriores, sigue siendo insuficiente la tecnología asociada con el bacteriófago para prevenir y/o tratar enfermedades infecciosas, en particular, la enteritis necrótica producida por *Clostridium perfringens*, que es un problema todavía importante en la industria ganadera, incluyendo las industrias aviar y porcina, por lo que se debe desarrollar un bacteriófago y una tecnología asociada con el bacteriófago.

Documentos de la técnica anterior:

60 Documento de patente:

(Documento de patente 1) Publicación de patente de Corea abierta a inspección pública n.º 10-2012-0076710 A

(Documento de patente 2) Patente de Corea con n.º de registro 10-0910961 B1

(Documento de patente 3) Publicación de patente de Corea abierta a inspección pública n.º 10-2009-0021475 A

65

55

Documento de no patente

(Documento de no patente 1) Cislo M, *et al.*, *Arch. Immunol. Ther. Exp.* 2:175-183, 1987 (Documento de no patente 2) Sung Hoon Kim *et al*, "Bacteriophage, novel alternative antibiotics", BioWave Vol. 7 n.º 15, 2005, BRIC.

Problema técnico

5

25

45

55

- Los presentes inventores realizaron estudios con el fin de resolver problemas tales como las bacterias resistentes que aparecen tras el uso de antibióticos, restos de antibióticos de la carne y similares, y prevenir y tratar eficazmente enfermedades infecciosas producidas por *Clostridium perfringens*, y como resultado de ello, los presentes inventores aislaron de la naturaleza un nuevo bacteriófago ФСJ21 (KCCM11363P), que tiene una actividad bactericida específica contra *Clostridium perfringens*.
- Además, los presentes inventores identificaron características morfológicas, bioquímicas y genéticas del nuevo bacteriófago, y confirmaron que el bacteriófago tenía excelente resistencia al ácido, resistencia al calor, resistencia a la sequía y similares, desarrollando así un antibiótico, un desinfectante, un aditivo para pienso y otras composiciones usando el nuevo bacteriófago. Además, los presentes inventores desarrollaron una composición para prevenir o tratar enfermedades infecciosas producidas por *Clostridium perfringens*, y un método para prevenir o tratar la enfermedad usando la composición.
 - La presente invención pretende proporcionar un bacteriófago ΦCJ21 (KCCM11363P) que tiene una actividad bactericida específica contra *Clostridium perfringens*, donde la secuencia de ácido nucleico de dicho bacteriófago ΦCJ21 es SEQ ID NO: 1.
 - Además, la presente invención pretende proporcionar una composición que comprenda el bacteriófago ΦCJ21 (KCCM11363P) de la invención como principio activo.
- Además, la presente invención pretende proporcionar un aditivo para piensos, un aditivo para agua potable, un desinfectante o un limpiador que contengan el bacteriófago ΦCJ21 (KCCM1136 3P) de la invención como principio activo.
- Además, la presente invención pretende proporcionar la composición de la invención o el bacteriófago ΦCJ21 (KCCM11363P) de la invención para su uso en la prevención y/o el tratamiento de enfermedades infecciosas producidas por *Clostridium perfringens* en los animales, excepto para los seres humanos.

Solución técnica

- De acuerdo con una realización ilustrativa de la presente invención, se proporciona un bacteriófago ΦCJ21 (KCCM11363P) que tiene una actividad bactericida específica contra *Clostridium perfringens*, donde la secuencia de ácido nucleico de dicho bacteriófago ΦCJ21 es SEQ ID NO: 1.
 - De acuerdo con otra realización ilustrativa de la presente invención, se proporciona una composición que comprende el bacteriófago ΦCJ21 (KCCM1136 3P) como se ha descrito anteriormente como principio activo.
 - De acuerdo con otra realización ilustrativa de la presente invención, se proporciona un aditivo para piensos, un aditivo para agua potable, un desinfectante o un limpiador que contienen el bacteriófago ΦCJ21 (KCCM1 1363P) como se ha descrito anteriormente como principio activo.
- 50 De acuerdo con otra realización ilustrativa de la presente invención, se proporciona la composición de la invención o el bacteriófago ΦCJ21 (KCCM11363P) de la invención para su uso en la prevención o el tratamiento de una enfermedad infecciosa causada por *Clostridium perfringens*.

Efectos ventajosos

- El bacteriófago ΦCJ21 (KCCM11363P) de acuerdo con la presente invención tiene el efecto de destruir específicamente a *Clostridium perfringens*.
- Además, el bacteriófago ΦCJ21 (KCCM11363P) de acuerdo con la presente invención tiene excelentes resistencia a los ácidos, resistencia al calor y resistencia a la sequía, de manera que el bacteriófago ΦCJ21 (KCCM11363P) se puede usar como un material para prevenir o tratar enfermedades infecciosas producidas por *Clostridium perfringens* en varios intervalos de temperatura o de pH, condiciones de humedad y similares, y se utiliza como un antibiótico, un aditivo para pienso, un aditivo para agua potable, un desinfectante, un limpiador o similares.
- 65 Además, de acuerdo con la presente invención, el bacteriófago ФСJ21 (KCCM11363P) o una composición que contiene el mismo (KCCM11363P) como principio activo pueden usarse en la prevención o el tratamiento de

enfermedades infecciosas causadas por Clostridium perfringens.

Descripción de los dibujos

10

30

50

- 5 La FIG. 1 es una fotografía de microscopio electrónico de un nuevo bacteriófago ΦCJ21 (KCCM11363P, que en lo sucesivo, en el presente documento, se denominará "ΦCJ21").
 - La FIG. 2 muestra el resultado de una electroforesis en gel de campo pulsante (PFGE) del nuevo bacteriófago ΦCJ21.
 - La FIG. 3 muestra el resultado de una electroforesis en gel de poliacrilamida con dodecilsulfato sódico (SDS-PAGE) del nuevo bacteriófago ΦCJ21.
 - La FIG. 4 es un gráfico que muestra el resultado de un ensayo de resistencia al ácido del nuevo bacteriófago ΦCJ21.
 - La FIG. 5 es un gráfico que muestra el resultado de un ensayo de resistencia al calor del nuevo bacteriófago ΦCJ21.
- La FIG. 6 es un gráfico que muestra el resultado de un ensayo de resistencia a la sequía del nuevo bacteriófago ΦCJ21.

Mejor forma de realización

- 20 En lo sucesivo, en el presente documento, se describirá detalladamente la presente invención. Dado que los contenidos que no se describen en la presente memoria descriptiva pueden ser suficientemente reconocidos o inferidos por los expertos en la materia o en una materia similar, se omitirá una descripción de los mismos.
- En una realización, la presente invención proporciona un bacteriófago ΦCJ21 (KCCM11363P) que tiene una actividad bactericida específica contra *Clostridium perfringens* (CP), donde la secuencia de ácido nucleico de dicho bacteriófago ΦCJ21 es SEQ ID NO: 1.
 - Se sabe que *Clostridium perfringens*, que es un bacilo anaerobio obligatorio gram-positivo de gran tamaño, carece de flagelo y forma una espora. *Clostridium perfringens*, que es una bacteria causante de diarrea o similar, en animales, en particular, en animales domésticos tales como aves de corral, cerdos y similares, ha sido reconocida como una de las bacterias patógenas peligrosas y letales en la industria ganadera tal como la *Salmonella* causante de la fiebre tifoidea aviar.
- Un bacteriófago es un virus específico de bacterias que infecta bacterias específicas para suprimir e inhibir el crecimiento de las bacterias, y significa un virus que incluye ácido desoxirribonucleico (ADN) o ácido ribonucleico (ARN), monocatenario o bicatenario, como material genético.
- Un bacteriófago ΦCJ21 de la presente invención, que es un bacteriófago que tiene especificidad de especie para infectar selectivamente *Clostridium perfringens*, tiene una cápside isométrica y una cola no contráctil, y pertenece morfológicamente a *Siphoviridae* (FIG. 1). Los datos del análisis de homología de las secuencias de ácido nucleico entre el bacteriófago ΦCJ21 y otros bacteriófagos se muestran en la Tabla 1. La actividad del bacteriófago ΦCJ21 fue estable en el intervalo de pH 4 a pH 9,8 (resistencia a los ácidos, véase la FIG. 4). ΦCJ21 mantuvo su actividad durante 2 horas al exponerse a 60 °C (resistencia al calor, véase la FIG. 5), y su título se redujo aproximadamente 1/10 tras el secado (véase la FIG. 6). La secuencia de ácido nucleico del bacteriófago ΦCJ21 es la misma que la SEQ ID NO: 1.
 - El bacteriófago ΦCJ21, que era un bacteriófago recién aislado por los presentes inventores, se depositó en el Centro Coreano de Cultivos de Microorganismos (361-221, Hongjedong, Seodaemun-gu, Seúl, Corea) con el número de depósito KCCM11363P el 30 de enero de 2013.
 - En otra realización, la presente invención proporciona una composición que contiene el bacteriófago ΦCJ21 como principio activo. Como ejemplo de la composición, la presente descripción proporciona un antibiótico.
- Dado que el bacteriófago ФCJ21 tiene una actividad antibacteriana capaz de matar específicamente a *Clostridium* perfringens, el bacteriófago ФCJ21 se puede usar para prevenir o tratar enfermedades generadas por la infección de *Clostridium perfringens*. Como un ejemplo adecuado de la enfermedad infecciosa causada por *Clostridium* perfringens que puede tratarse usando el bacteriófago ФCJ21, está la enteritis necrótica, pero la presente invención no se limita a la misma.
- La enteritis necrótica, que es una de las principales enfermedades infecciosas causadas por *Clostridium perfringens*, corresponde a una enfermedad bacteriana que se genera con mayor frecuencia en los animales domésticos, en particular, en las aves de corral, y causa un daño significativo. La enfermedad se puede generar en aves de corral, especialmente en pollos, esencialmente en todas las edades, pero se genera principalmente en pollos (de 2 a 5 semanas de vida) criados en el suelo, y también se genera con frecuencia en pollos (de 12 a 16 semanas de vida) criados en una jaula.

Como *Clostridium perfringens* prolifera excesivamente en el intestino delgado, se generan los síntomas de la enteritis necrótica, y se produce la necrosis de la mucosa gastrointestinal, diarrea repentina, y similares. Por ejemplo, en los cerdos, en el caso de la enteritis necrótica muy aguda, después de 1 a 2 días de su aparición, se genera la mortalidad de los cerdos, y en el caso de la enteritis necrótica aguda, después de 2 a 3 días de diarrea con sangre, se genera la mortalidad del cerdo. Además, en el caso de la enteritis necrótica subaguda, se desarrolla diarrea (no hay heces con sangre) durante 5 a 7 días, y luego se producen la debilidad y la deshidratación, y en el caso de la enteritis necrótica crónica, se produce diarrea intermitente, y se puede generar trastorno de crecimiento.

El término "prevención", como se usa en el presente documento, se refiere a todas las acciones para proporcionar el bacteriófago ΦCJ21 y/o la composición que contiene el mismo como principio activo a animales, excepto a seres humanos, para suprimir la enfermedad correspondiente o retrasar la aparición de la enfermedad.

15

20

30

35

40

45

50

55

65

El término "tratamiento", como se usa en el presente documento, se refiere a todas las acciones para proporcionar el bacteriófago ФСJ21 y/o la composición que contiene el mismo como principio activo a animales, excepto a seres humanos, para permitir de esta manera que se mejore o alivie el síntoma de la enfermedad correspondiente provocada por la infección.

Como un ejemplo de la enfermedad infecciosa causada por *Clostridium perfringens* en la que el bacteriófago ΦCJ21 y/o la composición que contiene el mismo como principio activo se puede aplicar, está la enteritis necrótica, pero la presente invención no se limita a la misma.

La composición de acuerdo con la presente invención puede contener el bacteriófago Φ CJ21 en una cantidad preferentemente de 5 x 10^6 a 5 x 10^{12} ufp/m ℓ , más preferentemente, de 1 x 10^6 a 1 x 10^{10} ufp/m ℓ .

La composición de acuerdo con la presente invención puede contener además un vehículo farmacéuticamente aceptable, y se formula junto con el vehículo para proporcionarse de esta manera como un alimento, un fármaco, un aditivo para pienso, un aditivo para agua potable y similares. La expresión "vehículo farmacéuticamente aceptable" como se usa en el presente documento significa un vehículo o un diluyente que no estimula al organismo vivo ni inhibe la actividad biológica ni las propiedades de un compuesto que se administre.

Un tipo de vehículo que se puede usar en la presente invención no se limita a uno en particular, y se puede usar cualquier vehículo siempre y cuando se use en general en la técnica y que sea farmacéuticamente aceptable. Un ejemplo no restrictivo de vehículo, es solución salina, agua estéril, solución de Ringer, solución salina tamponada, solución de inyección de albúmina, solución de dextrosa, solución de maltodextrina, glicerol, etanol y similares. Estos se pueden usar solos o en una mezcla de al menos dos de ellos.

Además, si fuera necesario, otro aditivo general, tal como un antioxidante, un tampón y/o un agente bacteriostático, etc., se puede añadir y usar adicionalmente, y la composición se puede formular en una formulación para inyección tal como una solución acuosa, suspensión, emulsión, o similar, píldoras, cápsulas, gránulos, comprimidos, o similares, añadiendo de forma adicional un diluyente, un dispersante, un tensioactivo, un aglutinante y/o un lubricante, etc., y después usarse.

El método de administración de la composición no se limita a uno en particular, sino que se puede usar cualquier método usado en la técnica en general. Como ejemplo no restrictivo del método de administración, la composición se puede administrar por vía oral o parenteral.

Un ejemplo no restrictivo de la formulación para la administración oral, son trociscos, pastillas para chupar, comprimidos, suspensiones acuosas, suspensiones oleaginosas, polvos preparados, gránulos, emulsiones, cápsulas duras, cápsulas blandas, jarabes, elixires o similares.

Para formular la composición de acuerdo con la presente invención en una formulación tal como un comprimido, una cápsula o similar, la formulación puede contener además un aglutinante tal como lactosa, sacarosa, sorbitol, manitol, almidón, amilopectina, celulosa, gelatina; un excipiente, tal como fosfato dicálcico, o similar; un agente disgregante tal como almidón de maíz, almidón de batata, o similares; un lubricante, tal como estearato de magnesio, estearato de calcio, estearilfumarato de sodio, cera de polietilenglicol, o similar. En el caso de la formulación en cápsulas, la formulación puede contener además un vehículo líquido, tal como aceite graso, además de los materiales anteriormente mencionados.

Como método de administración parenteral, se puede usar un método de administración intravenosa, un método de administración intraperitoneal, un método de administración intramuscular, un método de administración subcutánea o un método de administración local, etc. Además, también se puede usar un método de aplicación o pulverización de la composición sobre un lugar enfermo, pero la presente invención no se limita al mismo.

Un ejemplo de la formulación para la administración parenteral puede incluir las formulaciones para inyección por inyección subcutánea, inyección intravenosa, inyección intramuscular o similares; formulaciones para supositorios; formulaciones de pulverización tales como formulaciones en aerosol que pueden inhalarse a través del sistema

respiratorio o similares, pero la presente invención no se limita a las mismas. Para formular la composición en la formulación para inyección, la composición de acuerdo con la presente invención puede mezclarse en agua con un estabilizador o un tampón para preparar de este modo una solución o suspensión, y después, la solución o suspensión preparada se puede formular en una dosis unitaria en forma de ampolla o vial. En el caso de formular la composición en la formulación de pulverización, tal como la formulación en aerosol, o similar, se puede mezclar un propulsor, o similar, junto con un aditivo para que se disperse un condensado dispersado en agua o polvo húmedo.

Una aplicación adecuada, pulverización o dosis de administración de la composición se pueden determinar de diferentes maneras dependiendo de factores tales como la edad, el peso, el sexo, el grado de síntoma de la enfermedad, el tipo de alimento, la velocidad de excreción de los animales que reciben la administración, o similares, así como del método de formulación de la composición, del método de administración, del tiempo y/o de la vía de administración. En general, un veterinario con experiencia normal en la técnica puede determinar y recetar fácilmente una dosis eficaz para el tratamiento deseado.

15 La presente descripción puede proporcionar un antibiótico que contenga el bacteriófago ΦCJ21 como principio activo.

El término "antibiótico", como se usa en el presente documento, significa un agente capaz de proporcionarse a animales, incluyendo seres humanos, en forma de fármaco para destruir bacterias de esta manera, y se corresponde con un concepto que indica colectivamente un conservante, un desinfectante y un agente antibacteriano.

El antibiótico que contiene el bacteriófago ΦCJ21 de acuerdo con la presente invención como principio activo puede tener una alta especificidad hacia la *Clostridium perfringens* en comparación con un antibiótico de acuerdo con la técnica anterior para que, de esta manera, no destruya bacterias beneficiosas, sino que destruya bacterias patógenas específicas, y no induzca resistencia farmacológica, de manera que el antibiótico de acuerdo con la presente invención puede proporcionarse como un nuevo antibiótico que tiene un mayor período de vida en comparación con el antibiótico de acuerdo con la técnica anterior.

En otra realización, la presente invención puede proporcionar un aditivo para pienso o un aditivo para el agua 30 potable que contenga el bacteriófago ΦCJ21 como principio activo.

El aditivo para pienso y el aditivo para agua potable de acuerdo con la presente invención pueden usarse de una manera en la que el bacteriófago ΦCJ21 o la composición que lo contiene se preparen individualmente en forma de un aditivo para pienso o aditivo para agua potable, y después se mezclen con un pienso o con agua potable, o de una manera en la que el bacteriófago ΦCJ21 o la composición que lo contiene se añadan directamente durante la preparación del pienso o del agua potable.

El bacteriófago ФCJ21 o la composición que contiene el mismo usados como el aditivo para pienso o el aditivo para agua potable de acuerdo con la presente invención pueden estar en estado líquido o en estado seco, y preferentemente, en forma de polvo seco.

El método de secado para la preparación del aditivo para pienso y del aditivo para agua potable de acuerdo con la presente invención en forma de polvo seco no se limita a uno en particular, sino que se puede usar un método usado de forma general en la técnica. Como ejemplo no restrictivo del método de secado, se encuentra un método de secado al aire, un método de secado natural, un método de secado por pulverización, un método de liofilización o métodos similares. Se pueden usar uno solo de estos métodos o al menos dos métodos juntos.

Se puede añadir otro microbio no patógeno además al aditivo para pienso o aditivo para el agua potable. Los ejemplos no restrictivos del microbio capaz de añadirse se puede seleccionar de entre un grupo que consiste en Bacillus sp. capaz de producir proteasa, lipasa y/o enzima conversora del azúcar, tal como Bacillus subtilis, o similar; Lactobacillus sp.,que tienen actividad fisiológica y actividad de degradación de un material orgánico en condiciones anaeróbicas talles como las del estómago de las vacas; hongos del moho que tienen los efectos de aumentar el peso del animal doméstico, la producción de leche y la digestibilidad del pienso, tal como Aspergillus oryzae, o similares; y levaduras, tales como Saccharomyces cerevisiae, o similares. Estos se pueden usar solos o en una mezcla de al menos dos de ellos.

El aditivo para pienso o el aditivo para agua potable que, como principio activo, contiene el bacteriófago Φ CJ21 de acuerdo con la presente invención, puede contener además otros aditivos, según se necesite. Son ejemplos no restrictivos de aditivos utilizables, un aglutinante, un emulsionante, un conservante y similares, que se añaden para evitar que la calidad del pienso o del agua potable se deteriore; aminoácidos, vitaminas, enzimas, probióticos, agentes aromatizantes, compuestos nitrogenados no proteicos, silicatos, tampones, agentes colorantes, extractantes, oligosacáridos y similares, que se añaden para aumentar la utilidad del pienso o del agua potable. Por otra parte, el aditivo puede incluir además un agente de mezcla de pienso o similares. Estos se pueden usar solos o en una mezcla de al menos dos de ellos.

El aditivo para pienso puede estar contenido en una cantidad de 0,05 a 10, más preferentemente, de 0,1 a 2 partes

6

65

10

20

25

35

40

45

50

55

60

en peso basado en 100 partes en peso de pienso. El aditivo para agua potable puede estar contenido en una cantidad de 0,0001 a 0,01, más preferentemente de 0,001 a 0,005 partes en peso basado en 100 partes en peso de agua potable. La actividad del bacteriófago ΦCJ21 contra *Clostridium perfringens* puede presentarse suficientemente en el intervalo mencionado anteriormente.

En otra realización, la presente invención proporciona un pienso o agua potable que se preparan añadiendo un aditivo para pienso o un aditivo para el agua potable que contiene el mismo como principio activo o se añade directamente el bacteriófago ΦCJ21.

El pienso usado en la presente invención no se limita a uno en particular, sino que se puede usar cualquier pienso usado en la técnica en general. Un ejemplo no restrictivo del pienso puede incluir piensos vegetales tales como granos, raíces y frutos, subproductos de procesamiento de productos alimentarios, algas, fibra, subproductos farmacéuticos, grasas, almidones, cucurbitáceas o subproductos del grano; y piensos para animales tales como proteínas, materiales inorgánicos, grasas, minerales, proteínas unicelulares, plancton animal o productos alimentarios. Estos se pueden usar solos o en una mezcla de al menos dos de ellos.

El agua potable usada en la presente invención no se limita a una en particular, sino que se puede usar cualquier agua potable usada en general en la presente invención.

20 En otra realización, la presente invención puede proporcionar un desinfectante o un limpiador que contenga como principio activo el bacteriófago ФСJ21. La formulación del desinfectante o limpiador no se limita a una en particular, sino que el desinfectante o limpiador se puede formular en cualquier formulación conocida en la técnica.

El desinfectante puede pulverizarse para eliminar la *Clostridium perfringens* en una región donde vivan los animales, en un matadero, un área de generación de mortalidad, en un lugar donde se cocine o en los utensilios para cocinar, o en lugares similares, pero la presente invención no se limita a los mismos.

El limpiador se puede usar para lavar superficies cutáneas o cada uno de los sitios del cuerpo de los animales, en particular, aves de corral o cerdos, expuestos o que se vayan a exponer a *Clostridium perfringens*, pero la presente invención no se limita a los mismos.

30

35

45

50

65

En otra realización, la presente invención proporciona la composición de la invención o el bacteriófago ΦCJ21 (KCCM11363P) de la invención para su uso en la prevención o el tratamiento de una enfermedad infecciosa causada por *Clostridium perfringens*. La enfermedad infecciosa puede ser preferentemente enteritis necrótica, pero la presente invención no se limita a la misma. La diana de prevención o tratamiento de la enfermedad infecciosa causada por *Clostridium perfringens* puede ser un ave de corral o un cerdo, pero la presente invención no se limita a los mismos.

De forma detallada, la composición de la invención o el bacteriófago ΦCJ21 (KCCM11363P) de la invención para su uso en la prevención o en el tratamiento de una enfermedad infecciosa de acuerdo con la presente invención se puede administrar a dianas infectadas por *Clostridium perfringens* o que están en riesgo de infección por *Clostridium perfringens*, excepto en seres humanos, a una dosis farmacéuticamente eficaz. Será obvio para los expertos en la materia, que cuando la composición farmacéutica se administra a un paciente, la dosis diaria total adecuada puede determinarla un médico o un veterinario tratante, dentro del alcance de su buen criterio médico.

Se puede determinar una dosis específica farmacéuticamente eficaz del bacteriófago Φ CJ21 o de la composición que contiene el mismo como principio activo para un animal específico considerando un momento de administración y una vía de administración del bacteriófago Φ CJ21 o de la composición que contiene el mismo, una velocidad de secreción de la composición, un período de duración de la terapia o similares, además de un tipo y grado de la respuesta deseada, de la edad, del peso, de un estado de salud general, del sexo o de la dieta del individuo correspondiente. Además, la dosis farmacéuticamente eficaz puede cambiarse de diversas maneras según varios factores, tales como los ingredientes de los fármacos u otras composiciones usados simultáneamente o por separado, y factores similares bien conocidos en un campo médico.

El bacteriófago ΦCJ21 de acuerdo con la presente invención, o la composición que contiene el mismo, como principio activo, puede administrarse a los animales como una forma farmacéutica (pulverizado nasal) o puede administrarse en un método directamente añadido a un pienso o al agua potable de los animales y después suministrarse el pienso o el agua potable. Además, el bacteriófago ΦCJ21 o la composición que contiene el mismo pueden mezclarse en un pienso o agua potable en forma de aditivo para pienso o aditivo para agua potable y después administrarse.

La vía de administración y el método de administración del bacteriófago ΦCJ21 de acuerdo con la presente invención, o la composición que contiene el mismo, como principio activo, no están limitados de forma particular, sino que se puede usar cualquier vía de administración y método de administración siempre que el bacteriófago ΦCJ21 o la composición que contiene el mismo puedan llegar al tejido diana correspondiente. Es decir, el bacteriófago ΦCJ21 o la composición que contiene el mismo como principio activo pueden administrarse a través de

varias vías orales o parenterales. Como ejemplo no restrictivo de la vía de administración, se pueden realizar la vía oral, rectal, local, intravenosa, intraperitoneal, intramuscular, intraarterial, subcutánea y nasal, por inhalación, o similares, etc.

En lo sucesivo, en el presente documento, la presente invención se describirá en detalle mediante los ejemplos. Sin embargo, estos ejemplos tienen como fin ilustrar únicamente la presente invención, y un alcance de la presente invención no está limitado en estos ejemplos.

Ejemplo 1: Aislamiento del bacteriófago que infecta a Clostridium perfringens

Ejemplos 1-1. Detección del bacteriófago y aislamiento de un solo bacteriófago

10

15

20

25

30

35

50

Tras aislar 50 m² de una muestra de heces de Samwhaw Gps. Breeding Agri. Inc., que es una granja de pollos y cerdos de la provincia meridional de Chungchong, se movieron a un bote de centrifugación y se centrifugaron a 4.000 rpm durante 10 minutos, el sobrenadante se filtró con un filtro de 0,45 mm para preparar una solución de muestra, y después se realizó un método de recubrimiento con agar blando usando la solución de la muestra preparada. El método de recubrimiento con agar blando es un método de observación de una acción lítica de bacteriófago en el que se usan células hospedadoras que crecen en la parte superior del agar (unido a un medio sólido usando agar al 0,7 %).

De forma detallada, se mezclaron 18 m ℓ de filtrados de la muestra con 150 $\pi\ell$ de una solución de cultivo agitada (DO $_{600}$ = 2) de *Clostridium perfringens*, (CP, BCCP 17-1) aislada del Organismo de cuarentena de animales y plantas, y 2 m ℓ de infusión de cerebro y corazón x10 (de aquí en adelante, medio "BHI") (compuesto para tener un volumen final de 1 l) y se cultivaron a 37 °C durante 18 horas. Después, se centrifugó la solución de cultivo a 4.000 rpm durante 10 minutos, y se filtró el sobrenadante usando el filtro de 0,45 μ m. Posteriormente, se vertió una mezcla de 5 m ℓ de agar al 0,7 % (p/v) y 150 μ l de la solución de cultivo de agitación (DO $_{600}$ = 2) de *Clostridium perfringens* (BCCP 17-1) y se endureció en una placa de BHI (BHI + sangre de oveja al 0,2 %), se depositaron encima 10 μ l de la solución de filtrado del cultivo de muestra, seguido del cultivo a 30 °C durante 18 horas. Después, se confirmó que se había formado una placa.

Luego, se diluyó apropiadamente la solución de filtrado de cultivo de muestra donde se generó la lisis, y se mezcló con 150 μ l de la solución de cultivo de agitación (DO₆₀₀ = 2) de *Clostridium perfringens* (BCCP 17-1), se realizó el método de recubrimiento con agar blando, obteniendo así una sola placa. Dado que se considera que una sola placa está formada por un solo bacteriófago, para purificar y aislar el único bacteriófago, se seleccionó una sola placa, se dispuso en 400 μ l de una solución de SM (NaCl a 5,8 g/l; MgSO₄7H₂O a 2 g/l; Tris-Cl 1 M (pH 7,5), 50 m ℓ ; H₂O, compuesta para tener un volumen final de 1 l), y se dejó a temperatura ambiente durante 4 horas, purificando y aislando así el bacteriófago individual.

Para garantizar una gran cantidad del bacteriófago aislado, se seleccionaron 100 µl de un sobrenadante de una solución de bacteriófago individual, y se mezclaron con 12 m² de agar al 0,7 % y 500 µl de la solución de cultivo agitada de *Clostridium perfringens* (BCCP 17-1), seguido de la realización del método de recubrimiento con agar blando en un medio LB con un diámetro de 150 mm. Tras verter 15 m² de la solución de SM en una placa donde se generó completamente la lisis, la placa se agitó suavemente a temperatura ambiente durante 4 horas, descargando así el bacteriófago en el agar superior. Se recuperó la solución de SM donde se descargó el bacteriófago y se le añadió cloroformo en una cantidad del 1 % del volumen final y se mezcló adecuadamente durante 10 minutos, seguido de centrifugación a 4.000 rpm durante 10 minutos. El sobrenadante obtenido como se ha descrito anteriormente se filtró con un filtro de 0,45 µm y se almacenó a una temperatura fría.

Ejemplos 1-2. Cultivo a gran escala y purificación del bacteriófago

El bacteriófago seleccionado se cultivó a gran escala usando *Clostridium perfringens* (BCCP 17-1), y luego se purificó el bacteriófago del mismo.

De forma detallada, se inoculó el 1 % de la solución de cultivo agitada de *Clostridium perfringens* (BCCP 17-1) en un medio de cultivo líquido para la producción en masa, y al mismo tiempo, se introdujo el bacteriófago en su interior a una multiplicidad de infección (MdI) de 0,1, simultáneamente a la inoculación de *Clostridium perfringens* (BCCP 17-1), realizándose así una infección conjunta. Después, se realizó un cultivo estático a 30 °C en condiciones anaeróbicas.

- 60 Posteriormente, se realizó la centrifugación a 4 °C y 12.000 rpm durante 20 minutos, y luego se filtró el sobrenadante con un filtro de 0,45 μm. Luego, se añadieron NaCl y polietilenglicol (PEG) al sobrenadante filtrado para obtener unas concentraciones finales de 1 M y 10 % (p/v), respectivamente, y se mezclaron entre sí, la mezcla se dejó a 4 °C durante 8 horas o más.
- A continuación, luego se realizó la centrifugación a 4 °C y 12.000 rpm durante 20 minutos, después, se eliminó el sobrenadante y se obtuvieron los precipitados.

Se volvió a suspender el precipitado obtenido usando 5 m² de la solución de SM y se dejó a temperatura ambiente durante 20 minutos. Posteriormente, se filtró el sobrenadante con un filtro de 0,45 μm y se realizó una ultracentrifugación (35.000 rpm, 1 hora, 4 °C) usando un método de gradiente de densidad de glicerol (densidad: 40 %, glicerol al 5 %), purificando así el bacteriófago ΦCJ21. Tras volverse a suspender el ΦCJ21 purificado usando 500 μl de la solución de SM, se midió un título.

El presente inventor llamó al bacteriófago obtenido mediante la extracción de la muestra de las heces y que tenía la actividad bactericida específica contra *Clostridium perfringens* "bacteriófago ΦCJ21" y depositó el bacteriófago en el Centro Coreano de Cultivo de Microorganismos (361-221, Hongjedong, Seodaemun-gu, Seúl, Corea) con el número de depósito KCCM11363P el 30 de enero de 2013.

Ejemplo 2: Observación de la morfología de ΦCJ21

10

25

30

35

40

45

50

65

*99 Se diluyó el bacteriófago purificado ΦCJ21 en solución de gelatina al 0,01 % y luego se fijó con solución de glutaraldehído al 2,5 %. Se vertió el bacteriófago fijado en una placa de mica recubierta con carbono (aprox. 2,5 mm x 2,5 mm), adaptada al mismo durante 10 minutos, y se lavó con agua destilada estéril. En una rejilla de cobre, se montó una película de carbono, teñida con acetato de uranilo al 4 % durante 30 a 60 segundos, se secó y se estudió usando un microscopio electrónico de transmisión (JEM-1011, 80 kV, aumento: x120.000 a x200.000) (FIG. 1).

20 La FIG. 1 muestra una fotografía de microscopio electrónico del bacteriófago ΦCJ21, y se puede apreciar que, dado que el bacteriófago carece de cápside isométrica y de cola contráctil, el bacteriófago pertenece morfológicamente a Siphoviridae.

Ejemplo 3: Análisis del tamaño del ADN genómico de ΦCJ21

Se extrajo ADN genómico del bacteriófago ФCJ21 purificada mediante la ultracentrifugación. De forma detallada, se añadieron ácido etilendiaminotetraacético (EDTA, pH 8,0), proteinasa K y dodecilsulfato de sodio (SDS) a una solución de cultivo del bacteriófago ФCJ21 purificado para tener concentraciones finales de 20 mM, 50 µg/m² y 0,5 % (p/v), respectivamente, y luego, permanecieron en un estado estacionario a 50 °C durante 1 hora. Posteriormente, se añadió y se agitó un volumen equivalente de fenol (pH 8,0), seguido de centrifugación a temperatura ambiente y a 12.000 rpm durante 10 minutos, obteniéndose de esta manera un sobrenadante.

El sobrenadante se mezcló con un volumen equivalente de PC (fenol:cloroformo = 1:1) y se centrifugó a temperatura ambiente y a 12.000 rpm durante 10 minutos, obteniéndose de esta manera un sobrenadante. El sobrenadante se mezcló con un volumen equivalente de cloroformo y se centrifugó a temperatura ambiente y a 12.000 rpm durante 10 minutos, obteniéndose de esta manera un sobrenadante. El sobrenadante obtenido se mezcló secuencialmente con 10 % (v/v) de acetato de sodio 3 M y un volumen doble de etanol al 95 % frío, basado en el volumen total, y se dejó a -20 °C durante 1 hora. Posteriormente, se realizó la centrifugación a 0 °C y a 12.000 rpm durante 10 minutos, y se obtuvo el precipitado eliminando el sobrenadante. Después, se añadieron 50 µl de tampón Tris-EDTA (TE) (pH 8,0) para disolver así el precipitado obtenido. El ADN extraído se diluyó 10 veces, y se midió una concentración midiendo la absorbancia a DO₂₆₀.

A continuación, se cargó $1 \mu g$ de ADN en gel de agarosa al 1 % para electroforesis en gel de campo pulsante (PFGE) y se realizó la electroforesis a temperatura ambiente durante 20 horas usando un programa de sistema BIORAD PFGE 7 (intervalo de tamaño: 25-100 kb; rampa de tiempo de conmutación: 0,4-2,0 segundos, forma lineal; voltaje directo: 180 V; voltaje inverso: 120 V) (FIG. 2).

La FIG. 2 es una fotografía de una electroforesis en gel de campo pulsante (PFGE) del ADN genómico del bacteriófago ΦCJ21, y se puede confirmar que el ADN genómico del bacteriófago ΦCJ21 tiene un tamaño de aproximadamente 56 kb.

Ejemplo 4: Análisis del patrón de proteínas de ΦCJ21

Se mezclaron 15 µl de solución purificada de bacteriófago ФСJ21 (título de 10¹⁰ ufp/ml con 3 µl de una solución de muestra de SDS x5, y se calentó durante 5 minutos. Posteriormente, se expandió la proteína total del bacteriófago ФСJ21 en gel de SDS-PAGE al 15 %, y luego se tiñó el gel a temperatura ambiente durante 1 hora usando una solución de colorante azul de Coomassie (FIG. 3).

La FIG. 3 es una fotografía de una electroforesis que muestra un resultado de SDS-PAGE realizado en el bacteriófago ФCJ21, y se observaron proteínas principales que tenían un tamaño de aproximadamente 40 kDa, 51 kDa, 53 kDa y 70 kDa. En la FIG. 3, M es una proteína que se convierte en un patrón para medir un peso molecular.

Ejemplo 5: Análisis de secuencia génica de ΦCJ21

Con el fin de confirmar las características genéticas del bacteriófago ФСJ21 purificado, se analizó el ADN del

bacteriófago ΦCJ21 usando un secuenciador de titanio FLX (Roche), que es un aparato de análisis genético. Los genes se ensamblaron en Macrogen INC, usando GS y el programa informático ensamblador de novo (Roche). El análisis de secuencias de un marco abierto de lectura se realizó usando los programas informáticos GeneMArk.hmm, Glimmer v3.02 y FGENESB. La identificación del marco abierto de lectura se realizó usando BLASTP y el programa InterProScan.

La secuencia del genoma del bacteriófago tuvo varias similitudes con la del bacteriófago existente descrito, pero se confirmó que no existía un bacteriófago en el que todas las fracciones eran completamente (100 %) iguales a las del bacteriófago de la presente invención. Por lo tanto, se puede confirmar que el bacteriófago era un bacteriófago recién aislado.

Los datos del análisis de homología de la secuencia de ácido nucleico entre el bacteriófago ΦCJ21 y otros bacteriófagos se muestran en la Tabla 1.

15 **Tabla 1**

10

(Consulta			Sujeto		Identidad	es
Nombre	Longitud	Inicio	Final	Descripción	Valor E	Coincidencia /Total	Pct. (%)
contig00001_crf0000	543	70	537	proteína hipotética conservada [<i>Clostridium</i> <i>botulinum</i> BKT015925]	3E-05	42/161	26
contig00001_orf0001	207	1	204	proteína hipotética phi340_gp33 [fago phICP34O de <i>Clostridium</i>]	2E-12	32/68	47
contig00001_orf0001	543	19	486	proteína hipotética CbC4_4068 [Clostridium botulinum BKT015975]	5E-17	63/180	35
contig00001_orf0001	588	7	570	timidina quinasa [<i>Clostridium butyricum</i> E4 cepa BoNT E BL5282]	2E-55	109/190	57
contig00001_orf0000 9	363	34	294	supuesta proteína relacionada con fagos [Selenomonas ruminantium subesp. lactilytica TAM6421]	6E-09	34/87	39
contig00001_orf0001 7	528	247	360	proteína hipotética [<i>Pelotomaculum</i> thermopropionicum SI]	0,0003	17/38	44
contig00001_orf0001 6	1974	133	1566	primasa [fago GTE2 de Gordonia]	3E-36	137/494	27
contig00001_orf0003	930	7	888	proteína hipotética [fago GTE2 de <i>Gordonia</i>]	5E-1 3	80/324	24
contig00001_orf0003	2442	226	2388	ADN polimerasa I [fago GTE2 de <i>Gordonia</i>]	2E-97	265/756	35
contig00001_orf0002 4	762	358	756	timidilato sintasa [Clostridium acetobutylicum DSM 1731]	8E-16	45/134	33
contig00001_orf0003	513	1	273	proteína hipotética CbC4_7040 [Clostridium botulinum BKT015925]	9E-1 8	48/91	52
contig00001_orf0003 2	884	46	702	gp089 [fago KSY1 de Lactococcus]	2E-06	57/220	25

Consulta			Sujeto	Identidades			
Nombre	Longitud	Inicio	Final	Descripción	Valor E	Coincidencia /Total	Pct. (%)
contig00001_orf0003	1452	64	1437	dominio proteico, familia SNF2 [<i>Bryantella</i> <i>formatexigens</i> DSM 14469]	4E-56	150/475	31
contig00001_orf0002 6	183	16	180	proteína hipotética AC5_1713 [<i>Clostridium</i> <i>perfringens</i> CPE cepa F4969]	8E-08	30/70	42
contig00001_orf0003 8	441	31	384	supuesta proteína [Aqulfex aeolicus VF5]	1E-10	54/152	35
contig00001_orf0004 4	1359	583	753	proteína hipotética PCC7424_5514 [Cyanothece sp. PCC 7424]	1E-05	31/57	54
contig00001_orf0004 6	1246	7	1239	enclolisina [<i>Clostridium</i> perfringens E cepa JGS1987]	3E- 168	295/415	71
contig00001_orf0005	2913	2455	2904	proteína hipotética AC3_2545 [Clostridium perfringens E cepa JGS1987]	6E-58	107/150	71
contig00001_orf0005 2	1059	2B	1047	supuesta proteína de ensamblaje de placa base: supuesta proteína PBSX profágica [<i>Bacillus</i> subtilis subesp. subtilis cepa 168]	4E-52	119/341	34
contig00001_orf0005	588	28	573	proteína hipotética HMPREF9630_00205 [Eubacteriaceae bacterium CM2]	3E-16	55/184	29
contig00001_orf0004 8	150	1	135	proteína hipotética CLJ_ 62512 [<i>Clostridium</i> botulinum Ba4 cepa 657]	9E-12	33/45	73
contig00001_orf0004	213	1	207	Homólogo de bacteriocina uvIB [Clostridium perfringens C cepa JGS1495]	3E-22	47/69	68
contig00001_orf0004	594	1	585	proteína hipotética conservada [<i>Clostridium</i> <i>perfringens</i> E cepa JGS1987]	1E-25	73/198	36
contig00001_orf0005	714	19	429	ZkdP [<i>Bacillus</i> sp. JS]	9E-19	53/139	38
contig00001_orf0005	987	1	960	Fago de proteína 2016_scaffold57_00038]	1E-41	110/328	33
contig00001_orf0005	408	1	381	proteína hipotética PlarIB_ 05085 [<i>Paenibacillus</i> subesp. <i>larvae</i> B-3650]	3E-14	47/131	35
contig00001_orf0005 7	2562	25	1239	proteína de la medida de la cinta de la cola del fago, familia TP901 [Herpetosiphon	1E-88	194/410	47

	Consulta			Sujeto		Identidades	
Nombre	Longitud	Inicio	Final	Descripción	Valor E	Coincidencia /Total	Pct. (%)
				aurantiacus DSM 785]			
contig00001_orf0005	420	88	417	proteína hipotética BSSC8_30350 [Bacillus subtilis subesp. subtilis cepa SC-8]	3E-13	40/111	36
contig00001_orf0006	435	1	339	proteína hipotética: supuesta PBSX [Bacillus amyloliquefaciens XH7]	1E-07	37/116	31
contig00001_orf0006 4	534	43	522	proteína hipotética B1NLA3EDRAFT_3746 [<i>Bacillus</i> sp. 1NLA3E]	1E-45	89/170	52
contig00001_orf0006 5	363	13	336	proteína hipotética B1NLA3EDRAFT 3747 [<i>Bacillus</i> sp. 1NL43E]	8E-13	45/108	41
contig00001_orf0006	432	10	420	proteína hipotética RUMOBE _01063 [Ruminococcus obeum ATCC 29174]	8E-16	47/139	33
contig00001_orf0006	1260	1	1089	proteína hipotética RUMOBE_01052 [Ruminococcus obeum ATCC 291741	2E-62	153/390	39
contig00001_orf0006	921	10	882	proteína hipotética conservada [<i>Bacillus</i> <i>cereus</i> 03BB108]	4E-86	165/291	56
contig00001_orf0006 6	405	16	402	proteína hipotética RUMOBE_ 01056 [Ruminococcus obeum ATCC 29174]	5E-10	44/130	33
contig00001_orf0007	885	19	879	proteína de morfogénesis de la cabeza SPP1 gp7 [<i>Bacillus</i> sp. 1NLA3E]	7E-50	118/300	39
contig00001_orf0006	1332	1	1329	proteína de la envoltura de la cola del fago [Desulfosporosinus youngiae DSM 17734]	1E-63	169/449	37
contig00001_orf0007	396	1	372	proteína hipotética 2016_scaffold57_00101 [fago no identificado]	4E-11	59/135	43
contig00001_orf0007	1467	46	1449	proteína hipotética RUMOBE_01050 [<i>Ruminococcus obeum</i> ATCC 29174]	5E- 108	215/479	44
contig00002_orf0000 2	837	259	678	fago terminasa, subunidad pequeña, familia PBSX [Clostridium botulinum Ba4 cepa 657]	2E-26	66/164	40
contig00004_orf0000 1	408	1	357	Proteína de unión al cinc de CMP/dCMP desaminasa [<i>Methanohalobium</i>] evestigatum Z-7303]	2E-23	56/131	42

	Consulta			Sujeto Identidades			es
Nombre	Longitud	Inicio	Final	Descripción	Valor E	Coincidencia /Total	Pct. (%)
contig00003_orf0000 4	420	1	417	gp317 [Fago G de Bacillus]	5E-24	67/154	43

Una secuencia parcial del genoma del bacteriófago ФCJ21 preparado en lo anterior es igual a SEQ ID NO: 1. La secuencia del genoma se determinó mediante el analizador genético.

5 Ejemplo 6: Ensayo de estabilidad de ΦCJ21 dependiendo del pH

Con el fin de confirmar la estabilidad del bacteriófago ΦCJ21 en un ambiente a pH bajo, se realizó un ensayo de estabilidad en un amplio intervalo de pH (pH 4,0, 5,5, 6,4, 6,9, 7,4, 8,2, 9,0, γ 9,8).

- Para el ensayo, se prepararon varias soluciones de pH (tampón de acetato de sodio (pH 4,0, pH 5,5 y pH 6,4), tampón de fosfato de sodio (pH 6,9 y pH 7,4) y solución de Tris-HCl (pH 8,2, pH 9,0 y pH 9.8)) a una concentración de 0,2 M, respectivamente.
- Después, se mezclaron 90 µl de cada una de las soluciones de pH con 10 µl de solución de bacteriófago que tenía un título de 1,0 x 10⁹ ufp/m² para que una concentración de cada una de las soluciones de pH se volviera 1 M, se dejó cada una de las soluciones de pH a temperatura ambiente durante 30 minutos, 1 hora y 2 horas. Después, se diluyó la solución de reacción etapa a etapa, se vertieron 10 µl de la solución diluida en cada etapa y se cultivaron a 30 °C durante 18 horas por un método de recubrimiento con agar blando, y se midió el título a través de la presencia o ausencia de lisis (FIG. 4).
 - La FIG. 4 muestra un resultado del ensayo de la resistencia al ácido del bacteriófago ΦCJ21. Tal como se muestra en la FIG. 4, se puede confirmar que el bacteriófago ΦCJ21 no perdió su actividad y se mantuvo significativamente estable en un intervalo de pH de 4,0 a 9,8 durante hasta 2 horas.

25 Ejemplo 7: Ensayo de estabilidad de ΦCJ21 dependiendo de la temperatura

Se realizó un ensayo para confirmar la estabilidad frente al calor generado durante un proceso de formulación del bacteriófago en el caso de usar el bacteriófago como una formulación de aditivo para pienso entre las formulaciones del bacteriófago.

De forma detallada, se dejaron 200 μ l de la solución de bacteriófago Φ CJ21 que tenía un título de 1,0 x 10⁸ ufp/m² a 60 °C durante 0, 10, 30, 60 y 120 minutos. Después, se diluyeron las soluciones anteriores etapa a etapa, se vertieron 10 μ l de cada una de las soluciones diluidas, y se cultivaron a 30 °C durante 18 horas mediante un método de recubrimiento con agar blando, y se midió el título a través de la presencia o ausencia de lisis (FIG. 5).

La FIG. 5 muestra un resultado del ensayo de resistencia al calor del bacteriófago ΦCJ21. Tal como se muestra en la FIG. 5, se puede apreciar que la actividad no disminuyó significativamente hasta que el bacteriófago ΦCJ21 se expuso a 60 °C durante 2 horas.

40 Ejemplo 8: Ensayo de estabilidad de ΦCJ21 contra el secado

30

35

45

50

Se realizó un ensayo para confirmar la estabilidad frente a condiciones de secado generadas durante un proceso de formulación del bacteriófago en el caso de usar el bacteriófago como una formulación de aditivo para pienso entre las formulaciones del bacteriófago.

- De forma detallada, se secaron 100 μl de solución del bacteriófago ΦCJ21 que tenía un título de 1,0 x 10⁸ ufp/m² a 60 °C durante 120 minutos usando un vacío de velocidad (Concentrador de vacío de velocidad 5301, Eppendorf). Se dispuso y se volvió a suspender el sedimento obtenido después del secado en una solución de SM en una cantidad igual a la de una solución inicial a 4 °C durante un día.
- Después, se diluyeron las soluciones anteriores etapa a etapa, se vertieron 10 µl de la solución diluida en cada etapa y se cultivaron a 30 °C durante 18 horas por un método de recubrimiento con agar blando, y se midió el título a través de la presencia o ausencia de lisis (FIG. 6).
- 55 La FIG. 6 muestra un resultado de un ensayo de resistencia a la sequía del bacteriófago ΦCJ21. Tal como se muestra en la FIG. 6, se puede apreciar que el título del bacteriófago ΦCJ21 después del secado se redujo a aproximadamente 1/10 del título antes del secado.

Ejemplo 9: Ensayo del espectro de infección de ΦCJ21 con respecto a cepas de tipo silvestre de *Clostridium* perfringens

Se ensayó si el bacteriófago ФCJ21 tenía o no una actividad lítica en 45 cepas de tipo silvestre de *Clostridium* perfringens aisladas por el Organismo de cuarentena de animales y plantas, y la Universidad de Kunkuk distintas de *Clostridium* perfringens (BCCP 17-1) usadas en el experimento.

De forma detallada, se vertieron 10 µl de solución de bacteriófago ΦCJ21 que tenía un título de 1,0 x 10¹⁰ ufp/m² y se mezclaron con 150 µl de una solución de cultivo agitada (DO₆₀₀=2) de cada una de las cepas y se cultivaron a 30 °C durante 18 horas mediante un método de recubrimiento con agar blando. Después, se observó si se formaba o no una placa.

Como resultado del experimento, de entre 45 cepas de tipo silvestre de *Clostridium perfringens*, se infectaron 44 cepas, de manera que una proporción de la infección fue del aproximadamente 97,7 % y una proporción de la lisis fue del aproximadamente 97,7 %. Los resultados se muestran en las Tablas 2 y 3.

15

	Tabla 2						
Origen de la CP	Cepa de CP	Infectividad					
Universidad de Kunkuk	HLYS-1	+					
Universidad de Kunkuk	HLYS-3	+++					
rankak	JSH-1	+++					
	KCCM 40947	+++					
	KJW-2	++					
	OYS-2	+++					
	KCCM 12098	+++					

Tabla 3

Origen de la CP	Cepa de CP	Infectividad	Cepa de CP	Infectividad
Organismo de cuarentena de animales y plantas	CP-KJW-1	+++	BCCP43-1	+/-
Organismo de cuarentena de animales y plantas	CP-JSH-1	+++	BCCP44-3	+/-
allillates y platitas	CP-OYS-2	+++	BCCP47-2	+++
	CP-BC-1	+++	BCCP48-3	+++
	CP-BSW-4	+++	BCCP50-1-3	+
	CP-HBM-2	+++	BCCP50-1-8	++
	CP-HL	+++	BCCP51-1-1	+++
	CP-KW-1	+++	BCCP51-1-5	+++
	CP-BS-1	-	BCCP52-2-8	+++
	CP-HL-1	+++	BCCP53-2-3	+++
	CP-LJN-1	+++	BCCP54-3-8	+++
	BCCP17-1	+++	BCCP55-3-1	+++
	BCCP23-4	+++	SBCCP429-2	+++
	BCCP37-2	+++(T)	SBCCP321	+++
	BCCP38-1	+++	SBCCP343	+
	BCCP39-1	+++	SBCCP361	+++
	BCCP40-1	+	ELCCP Suksan Kim	+++
	BCCP41-3	+++	Intestinos de ELCCP6-1	+++

Origen de la CP	Cepa de CP	Infectividad	Cepa de CP	Infectividad
	BCCP42-2	+++	apéndice	++

LISTA DE SECUENCIAS

<110> CJ CheilJedang Corporation

<120> Nuevo bacteriófago y composición antibacteriana que lo comprende

5 <130> P13-5114

<150> KR 13/021499

<151> 27/02/2013

10

<160> 1

<170> KopatentIn 2.0

15 <210> 1

<211> 47438

<212> ADN

<213> una parte de ADN del nuevo bacteriófago CJ21

20 <400> 1

ttttaaagag	actgcaatag	gttttctaaa	aataagggag	ggattaaccc	tcctttttat	60
aattttttga	gttctggaaa	aatccttaat	tagttcaagt	ttcgtgaagt	tctcttgatc	120
ttctccattc	tcttcttaac	ttggatagct	tcttcttcgc	aatgagcatg	gccatccagg	180
aattggtgcc	atcttctttc	aagttctctg	tattcagatt	gaagttctat	aacctcaagt	240
gaatggttgt	ccatagtatc	acctccttaa	cactattata	agtgatactg	tcatattctg	300
tcaaataaaa	aagagaggta	atatatacct	cccacattat	cttattgagt	atacacagat	360
atattcttct	tcaagagttt	ggttaataag	tgattgagca	tatttgtata	gatctttagg	420
ttgtgtatct	cttatatctt	gtattacttc	ttcatgttct	cttcttaata	atttatatcc	480
aaagcataat	gggttctcct	caagttcaaa	taatatttcc	cagttagtca	ttttattata	540
attcatattt	aacatctcct	tcagtttgtt	tatgctttaa	ttataagaga	gagtccagag	600
agtgtcaata	gaaatcccga	aagaaaagag	agaatgttat	tctccccatc	ttaatatttt	660
tattgttgct	ccatcaactc	ccttgccatc	cacatcatgg	acatacttat	caagtctcat	720
tgttgagtcc	tgtataactc	ttttgtcttc	tctatcaaaa	accttaatga	catcagggtt	780
acccctgtca	atgatgtaag	caatctcttg	agttccatct	gcatatgtta	cttgaagtaa	840
tgagtgtaga	ggtataaagt	ctggagctgc	ccagtcacca	accttaagat	ctcctcctat	900
actattcttg	gtctcatatc	ctgccacatc	tgtaggttca	tctgatgaat	aataagtaac	960
ttcaactttg	aactccattc	ctttaaatga	atttatcatc	tcaattagat	tttgtttatc	1020
agttctcagt	ttatcattct	gatactttaa	tccttctaca	ttatccatca	gtatttcagt	1080
ctgctcagtt	aattgtttat	ttgactcaat	gtattcttgg	acagcattcc	cccaatgatt	1140
gtttaggctc	tgtatggtta	acagtagccc	tcctatcaca	attattgtta	ataatgacat	1200
aattctttta	atcattctct	tttaactcct	ttatttttaa	tttgaatttc	tcaattccag	1260
atttatattt	acccacagta	ttaaaagtat	cagttagtat	tocatagott	tcctcatcag	1320

aattaaatct	gaagcttcct	ctcttgatat	cacctagctt	attaaaggtc	ttaccctcct	1380
tgtccagata	tcctttatag	tccatatagc	acagacaagc	agtaataaat	tcctgtttag	1440
ttctgaagtg	atgagatata	cccatacctt	ctacccattt	acttaataca	aataggctct	1500
cattatcctt	tggctttatc	aattcaatcc	atacaaactc	attagcttgc	tttagattag	1560
taaacttttt	agccttgaac	ttcttactac	tctggatctt	atccttatag	tcatggaata	1620
cttcaggcca	aaattcctgt	aaatacatat	ataaagagaa	ctcatctacc	ttagctttag	1680
gatctttaaa	gttaattaat	gggtatccag	acactgctct	tatctggttc	tttagcatat	1740
tattctcatt	ttttagttga	gaaacaatga	aagagagatg	agtaacagct	ctggtaagct	1800
catgctcatt	taaagatcta	ccttctctat	tctggattag	cttccttaat	tctccccagt	1860
tatctatcat	ttatagcacc	tcctatgctt	acattataca	tatataagat	aaatatgtca	1920
aagtccacat	aggcatatca	gtatcatttt	ttctgatatg	ggtagcatat	cagcatagtt	1980
acacctgata	tcacatatag	agtttacaat	ttttgtaatc	aaatttgttg	gtatcactag	2040
cgtagaggga	tatcagaaat	accccatatt	attacaatat	atactatata	taaataatta	2100
tatattatta	tatatagtat	atagccaagg	gctatatata	actatgtttt	attgattaca	2160
taattggcag	gctattgcct	tgccttcgtt	tacactacgg	caggcatatc	catgcaggac	2220
ttctcttccg	agcttttgcc	ctatatagaa	aaacccagac	ggtcagcgat	cgagctcttg	2280
attttgtttg	gttggaaaga	aagagagagt	tagggggaaa	gagagtaaga	gagaacagta	2340
gttgagagag	agttctcccg	aacgttgaca	gttgtactta	cttctcttat	aatgacagta	2400
aaggagggat	aaccattatg	aaagttatat	tatctaatga	aaaagaaatt	atcattgaaa	2460
acaaggactt	cttcataata	atggaagagg	acagatttat	tctatctaga	gcaatagata	2520
agaattgcgg	agaattagta	tctcaagtac	ctaagtactg	tattcttata	tatgaggata	2580
aatccatacc	aagatactta	tataaggata	atactcattt	atatgaggtt	attggcaata	2640
gagctatcat	aagatacagt	atataagagc	ccacaatcaa	ttctaaggcc	ttttagatat	2700
gtggtaatgt	gattttactt	ataatgtggt	agagacacct	tacaggagct	gctagaggcc	2760
tttaaaggag	gtatatcatg	tatttatgta	atggtaaaat	agtcaagaat	aaaaatgact	2820
taaaagataa	gtttggtggt	aaatcagtag	tattcatcga	tggggatgta	gccacagtaa	2880
tggactttag	tgacagaaag	ccaaagataa	caaaatatct	tattagggag	gtatcacatg	2940
ataaacacat	cattattgaa	gagactggaa	gggatagagg	aaaagcataa	gcaaaatact	3000
gatgagataa	gaaagaacct	aaactatgcc	agatatttga	ttgagaaaca	gtattgtcat	3060
ttaacaaagg	agcagaagat	aaaattggga	cagttcttag	gattgactga	gaagaagtta	3120
aaagaaatac	aagagataaa	taatcagtta	ataaatttga	gagtggggct	aagttatgaa	3180

gtcgtatgta	ataaccagaa	aaaatagtgg	ggtatcttta	gcagatacag	acatgggaca	3240
agtattagct	aagatactat	gtaagcatgg	gggaacactt	accattgagg	aaattgaacc	3300
agaacatatt	ggtcaaactt	tttctattgt	agaaggtaaa	agaatatggt	ataatagaaa	3360
aggaggtgat	aatattgggg	agaagaagtg	ctatgttaat	tctcaagtat	gactgcgaag	3420
aaactccaga	aagaattgaa	ttacgaaaga	agtggttaca	ggtttgtctt	cattcaataa	3480
tatattatag	atatgacaac	aatatctgga	cagaccaaca	atgggatgag	actgccagag	3540
aggtagttaa	acttaagaat	gagaatccag	gcttagtaaa	cagtatgcca	tttaggaatg	3600
accttaaaat	ctttgatgga	tccactggct	ttaatctttc	atgtatgcaa	gatattaaga	3660
tgctaaggtg	ggctcaaaat	ttactcgact	ttcatgttaa	acgaggactt	gatggaaaga	3720
gtaagaaaaa	gaagaaaagg	aggagaaagg	aatgaaccta	cttgagcact	atataaaaaa	3780
ggtacacagt	gtaagagagt	accatgaatt	cgataatgaa	ccttgggcta	aaggtaaaca	3840
atatgtagaa	gtagaccttg	attatctttg	ttactctaac	ataccacaaa	gaactaaatt	3900
agtatttact	gttgatgagt	gggagaaaat	aaaatataga	ggctactaca	tgggataggg	3960
ggaatagtta	tgataagaga	aatgggcatg	agaatgctaa	taccagaaat	acatgatata	4020
aaagataggg	atatacaaaa	ttttgtaaga	aaggccctaa	atgagctagt	tgatgaaaag	4080
ttctttataa	tacctgcaag	tagtactggg	aaatatcatc	caacttatag	tgcaggggta	4140
ggaggtttgc	taagacatac	taaagctgct	tgttatatag	gtaaagcatt	atgcgaagct	4200
gagatgatat	gtcaagaaga	taaggatctg	atacaggctg	ctctgatatt	acatgatatt	4260
aataaacctg	ctaaggagca	tccatatatg	gttagagaga	cactatcccc	attaaaggaa	4320
gagtttccat	caacctatga	aaaggtaata	gaactaattg	agtctcatca	tggtcaatgg	4380
ggagagtacc	caattaatac	ttatcaaaag	aggatagtac	acttagctga	ttatatcagt	4440
tcacaaaaag	gattaatatt	ctcatatgac	caaggaactg	attattctga	cttgttatgg	4500
gaggagaagt	aaatggtgct	aggggtaata	accctagtat	caatatttt	actaggagtg	4560
tttataggtt	ttgaggtgaa	gaaatggagc	taggttttgc	aatattagct	atagtagtat	4620
caatattttt	agaaactaaa	tatataaagg	agtagattat	tatgtcaaga	gcaagagctg	4680
caagaagaag	agctgaaagg	gagaacaaaa	atcttaatgt	tcttaaagct	gtggacatca	4740
tgttagcctt	atcatgctat	acattaaaga	aggaaggtta	tggtaagact	agaatgacta	4800
ggtttgtgga	agagatgagt	aaacacacag	aggaaattga	aaagggaaca	cttaactatg	4860
aaaccataat	gggagagatt	aaggatttag	taccaccagg	tatatttgat	ttagaggagg	4920
agtcaaagga	gtgataatct	tggaataatt	attatgggca	tttagaatat	taggcatact	4980
tgtaatagta	tggtgtatat	tggaggcgat	cagttgtgag	caataaatta	tattttaggt	5040
atagtgctat	gaactctgga	aagactactc	agttaatcca	ggtagcacat	aactatgaag	5100

aaaggggaat	gaagccctta	gtagttaagc	caggaattga	cactaaaggt	ggaccatgta	5160
taatcagtag	aataggggta	gcaagaaagg	tggatgttct	tctacctcct	agggttaaat	5220
tatcaaaaat	actttctgac	tttgaggcta	attactgggc	agtagatgtt	atattaattg	5280
atgaggtaca	attcttatcc	agagaacagg	ttgatgatct	gttaaattta	tcattacatt	5340
atcctatcat	atgttatgga	ttgagaactg	attttaaaag	agaaggattt	gaaggaagta	5400
cccgattatt	acaagtggcc	cataacattg	aagaattgaa	gaacatttgt	caatgcggta	5460
aaaaagccac	attctcaata	ttgaaatatc	aaggtaaata	tactgaccag	ggtaaccaga	5520
tacaaattga	taaccagcca	gaaagtgttg	aatatgaagc	cgtttgtaat	gaatgttata	5580
ataaattaat	tttttctaaa	taactcgttg	acaggctata	taggatatga	tattatagta	5640
ttgtaatcaa	attacaaaca	ccaaccaaaa	ctttataatt	agttaatttc	aaactatact	5700
aaatttgtta	tttaaaaatt	aaaaatatgg	aggaatgatt	attatggcaa	aaggaaaagc	5760
aaaatggtta	gaggaagcaa	ataataagga	gttaattgta	atagtacaat	ctgctttaaa	5820
ttctggagat	gagaaagaag	ttaaaaaggc	tttaaaagct	attgtggaat	tagatgaaag	5880
aactcctgac	acagatggac	aaataactgt	agaggaagca	ttagaatcat	tagaaatggc	5940
tgtaggaact	gtaaaggctg	cataccaagc	agaaatagat	gctgtggaag	atgaagatgc	6000
agtagatgct	gacttcgaag	aagttgatga	agacgaagca	gaagaagatg	aaaatgattt	6060
agaatcatta	tctaaaaaag	aattagctgc	tatggctaaa	gacttaggta	tcaaaggagc	6120
taagaaaaaa	gataaagatg	agttaatcgc	tttaatcaaa	gaagctcaag	gtgaagaaga	6180
agacgaagag	gaagaagaag	aggatgaaac	tcctgactac	tctgaaatga	ctaagaaaga	6240
cttaattgct	cttgctaaag	aaagaggaat	aaaagttaat	aagaaaatga	aaccagctga	6300
gataattgaa	ttattagaag	ctgatgatga	agaataattc	tcatcaaatt	ataaggggag	6360
caaacttgct	cctcaaattt	tttacttatt	ttagaaacag	atgttagagg	gggatgtata	6420
aatggcaaga	ggtggaaatt	caacttatac	taaagcagta	tattgttaca	acaataatag	6480
ggagtataga	tccttcagat	atgcagctaa	acaattagga	gtatcggctg	ttagtataat	6540
gagagtagtt	aacgggacta	aaccacatat	agggggatta	gtattcgctg	agatagagga	6600
aggcactaga	aaattaaagc	caagaggaga	agtagttcca	tacttgaaag	aattaggttg	6660
ggataatata	gacttataat	agggggtata	atatatggac	ataaagttct	tgaaggatat	6720
attctctaaa	caatgtgaaa	atggagatta	cattatccta	gcagctagaa	aaggtaaaga	6780
atggaaagat	ttaccaatta	aatataataa	gaataacatt	gacaaaaaac	taaaggactt	6840
tgaacaacag	tataagggtt	atgatttata	ttggagccca	atgccttata	gtaatcctca	6900
aagaaggata	gttaacttca	tagagactaa	atacttaata	caagatatag	atgagcatac	6960

tgacccattg gggattaaac	ctaaaccaag	ttatctgtgg	gaaagttctc	ctggaaaata	7020
tcaggggcta tgggaaatgg	ataggtatat	agaggctaat	caatatgacg	aaataaatcc	7080
agcattagct aaacatatag	gctgtgactc	ctgctttgat	gttactcatg	tatatagaat	7140
accaggaact attaactaca	aatacaagaa	taaaccaaaa	gtaaaaagac	ctatacacac	7200
taaggagata tataagccta	aggtgatcgc	taaggctgtt	aaggctgtaa	gtaaatctaa	7260
tgatagtgtt aaggtcaata	taggaggatc	tgaggcctca	caatctgaaa	gaaagatata	7320
tgctaaatat aatataccaa	agaaggttag	agacttactg	gctttagatg	atattacttc	7380
tttagataga agttctacta	tatggtatat	tgagaataag	ttacatgaaa	taggactaga	7440
gcctaatgag attatattat	tagttaaggg	ctcagctttt	aataaatata	agggaagaaa	7500
agatgaagaa acaagattaa	gaaaagaatt	ggataaaatc	ataggaggag	aaatagaggc	7560
tgatattgaa aaggctgaaa	gtactaaact	gagaatagat	agttatcagg	atgttatggg	7620
taataatgga gccttcccgg	gttggttagt	acaaggtttc	tggggtagaa	gatctcatgg	7680
aattgtggct ggacaaccaa	aggtatttaa	atccacattt	acacaggact	tagctatatc	7740
agttgctagt ggaagaccat	tcctaggtca	atatcctgtt	ctagaaccag	gcccagtaat	7800
tgtagttcaa aatgagaatg	ctgactggat	tatgagggat	agaactgaaa	agataattag	7860
ccacagagga gtagttggta	atgtggatat	aaaaggtaag	agaagactta	aagttaggtt	7920
tgctccagat cttcctatca	cttttattaa	tcaacaggga	tttatgttag	atgaagaatc	7980
ccatagaaaa cagatagaag	aattaattga	tgagataaaa	cctgtactag	taatattcga	8040
cccattatat cttatgttta	gtggagatct	taataatgca	gctgatctta	atcctgtact	8100
acaatggtgt cttaaactta	agaatgagaa	gcatacagga	gttatgttaa	tacaccacta	8160
taataaaggt ggaaatgcca	ctcaaaccag	aggtggtcaa	aagatggctg	gttcattcat	8220
attacatggt tgggtagaat	cagcactata	tttaaaaaga	cctgatgact	tagaaggtga	8280
cgatgaggag atcgaggtag	atatagataa	ccttgataaa	caaagccatt	taccaagtaa	8340
aatcattatg gatagagagt	tccgtcttgc	aggacaattc	cctcaaattg	aattaaattt	8400
atcaatggga gaatttggag	atccctatta	tcatgtagaa	gtagcaatac	ccggaaaaga	8460
agtaattgtg aaacctgagg	acaaagccaa	agttatagag	gctgtaaaat	caggagctca	8520
taccaaggag gagatagtat	caatatcagg	attaaattca	cagaaggtta	atctagttct	8580
agatacttta aaagatacta	ttgtatattc	tccggataaa	ggttataata	taagtaagaa	8640
actaaatatt gggaggaaaa	aggcatgata	ataaagtgta	agaggccagc	aggtcataat	8700
catataaagg cctttgtagt	agtaattatt	gctaggggta	agaagaataa	aatcacttat	8760
cattcaggat tgaaatattt	ctatacctat	aaatcagcta	aattatttat	agacaaagtt	8820
atggaagaat gtccctgggc	tgaattttat	tgggtggatg	tccatgaagc	tcataagatc	8880

8940	aactattcaa	catattgtca	atgtggtgtc	caaaaagaag	aagaaatacc	cctgaaggcg
9000	aagtgaccaa	tctgtggtat	aattgcccta	aggttacaag	gaagccaagg	gaatttaaga
9060	tgcgaagaag	ctaaggctaa	tatagggagg	gaatataaag	taaaatgtat	gacttttatg
9120	taatgctaac	tcaatgggga	gatatcattg	taattctagg	gaagtagtac	aaacttgaag
9180	agttagtaga	agtcaagaaa	ccaaagaaaa	aaagtcatca	aaactaatag	tcagggggca
9240	gactagatgg	tctccatctg	tattgagact	actataatgt	aatgctttag	aaagcttcat
9300	ctaacaactt	gaccttaccc	tagtcctaag	taaatcttaa	accatcaaac	ggaggatctt
9360	atactatact	gctcagaatt	taacttagga	ttatggtcaa	gctaatgagg	atctaagtta
9420	ctaaaaattc	atagatatac	tctggctgtt	cagaaaatct	agtaatagac	tgtttatgat
9480	aaggaggaga	aaaaatgtag	atggtaatat	taaattaatt	tttgacataa	taaaataacc
9540	aaaccccaac	taatgatgac	tgaaagacct	tattacatct	caataaaaag	atttaatggt
9600	gttagtgtga	agcattagga	agatagcagg	actgctacta	aagtttaacc	tatggaaggg
9660	gagcatacac	aaggtacaat	gatttgccag	gtaagaaagg	taggtattta	taaaactaaa
9720	ccaagtaagt	ttatgtaact	aacttggtta	cttgctaaag	agacccaatc	ttgaaataat
9780	ctaaacttaa	acaatatata	ataaaggagt	gaatataatg	tcctttattt	cccttataaa
9840	gaatggataa	atcattttag	tttaatgatt	ggaggagagc	tctaaagaat	tagtagaaga
9900	aatatatcca	agaggaggag	aactaaacac	ctaagaacct	accacaacag	ctcaggtaag
9960	aaattgtgag	gtattaactc	aagagaatgg	atgaagaaca	cctggttctt	atcaatggga
10020	tggtgtatgg	tttgaagaaa	atttacttgc	tacatgatag	agggaagcta	aaaaggtgaa
10080	agatcttaaa	aaggagctaa	ccttgacagt	gtaatttcaa	agagataata	acctatcatc
10140	tcttcaattt	agggaagtga	tagaccacct	ttgtatatgc	aagccaacta	acatctatgt
10200	tagctagata	gaacatctac	tgaaagagct	caggagtaat	gaacagatgc	tggtgataga
10260	atgattatac	gtactggtat	tggatggaat	tattctgtga	atatggaaat	tgatgaactg
10320	aagaagctat	tcaagtgcta	aatagatgac	tatcccaatt	gtggagaagc	tacttccaat
10380	aaaccatgca	ttatgaatat	ggagagattg	caagataaga	ataaatatat	aaaccaattt
10440	aaaggaattg	ttaatagaca	caagctatct	agatagatta	aaatagaagg	gtagaagaaa
10500	agactgtcca	gccaaactga	tcaggattat	agaggctaga	atcatcatat	atggagaaat
10560	gagaatgact	attttgcttg	agacttaaag	gggtcaagct	atgataaaag	gttaacttaa
10620	agaagaattg	accattacca	aaccatgaag	agatgcttat	gagaagcatt	gaagaagtag
10680	ttataatact	ctggtaagga	acaatcctag	aactgaattt	tacacttctt	attgatggat
10740	ggctactaca	tatatcataa	ctagagaact	agttgatagc	atgctatact	atagatgata

tcaccagaat ttcct	tgaaat gttagtagaa	gaagctgtaa	ctgacctggt	aagagaaatg	10800
ggtatgtgct gtaat	ttgcct taagaataaa	ccttggaaac	aaacttcaat	gctaacagat	10860
gtaaatgctt ttaac	ccaaag actatttaat	gtatgggtat	gttatattaa	attattagct	10920
gtatctggct tagaç	ggtaga tgacatagta	aatatatacc	ttaagaaatc	acaggtaaat	10980
aaattccgcc aaaga	atctaa ttactaaaat	aaatacttag	gagaaggtaa	tatgctaata	11040
agagactata atgat	ttttga tgacttatto	: ttaaatctta	atagggaaat	gattaccaat	11100
ccagaagaaa ctato	gatgta tactcagaat	atacagggct	ttcaggagga	cttagttctc	11160
tcctgtaagt cccat	taaatg tactttaaat	ctaggggact	ttggatataa	agaaggtaag	11220
tggggacacc tatta	aagatc atacattgat	tatccacaat	taattgaatt	tagagaaaag	11280
cttaccaaga taagt	tggtat gagctatact	tattatttca	acaggaaaaa	agctactaat	11340
ggttcttgct tgata	agctgc agtagtaact	agaccaaaaa	gaaaaggacc	ttggaaacac	11400
ttaaaaatta tgtat	tagagt atgtgaatta	caaaagaaat	tcgcagctga	cctagtatta	11460
ataaacaggt tcatt	tgaaga actacctcaa	gaagtatgtg	agatagataa	tattactttt	11520
catatgtctc aagct	ttattt gtcaggaato	tttataaatg	gatacttcaa	ttattttaag	11580
gtaccaagaa agagt	tattgc taatagcaaa	catccttggc	ataaatcctt	gaatagtaac	11640
tataacaggt tcttt	taaatc agaggaccaq	atacactctt	acaaagctct	ccagaagatg	11700
cagttattac atttt	tggtct ggagaaattt	ccaaagatag	atatcaataa	attatctatt	11760
gacaagtact ttaat	taagta gtataattaa	cttaacaaaa	ttaaataaat	ggaggaatta	11820
aactatgaga attta	atatta atgctcaaga	agcatttgaa	gaagtaaaaa	gagatttatg	11880
tgaaatgggg attga	aggtaa gacccaaaac	: tatgcaagat	aaagttatag	aaggtaatcc	11940
agattatttc acaaa	aggagt tacaaaacta	tagttacaca	attctagaaa	gtaaacctga	12000
agaagttcca ggtgt	tatete aacettggge	: agatgctgaa	tttagagaaa	ggatctacga	12060
tccacaaggt gtcat	tcaatc aatactctct	tgaagaaaga	gaagaattat	ttggtataca	12120
tccacatcat actac	gggggg ctttcataaa	tcccggtaaa	gcttatcaat	taagacctga	12180
ggtatggaat gaata	atctaa gagatggaaa	atttggatat	tcttacaatg	aaagaatttg	12240
gcaatacaga caaat	ttgagg atatcatcas	tagaattaaa	gaagatccag	gctcaagaca	12300
attatggtta tctct	tgtgga atccagctat	tgatccattc	aatataggag	gagtaactag	12360
agtaccatgt tcatt	taggat ataacttcca	agtaagggaa	ggtaaattaa	atattcatta	12420
tgttatgaga agcto	ctgact ttgctactca	ctttgctaat	gatgtttatc	ttgctatgaa	12480
actattacat tgggt	tagetg aacaaactgo	ctatgaacca	ggaagtttct	ctcatacaat	12540
tttctctctt catgt	tttaca acaaagatat	. taagggggta	ttctaataaa	tgagttacat	12600
gagaaaagaa agata	ataagc attctgatct	taataataaa	gttaacaaga	aagaaaccct	12660

aaagcaattt	attaggaata	ctgaaaagga	atttgattta	gaaccagcta	accttgggga	12720
tatgactaga	aatgaactta	ataactatat	aaattatatg	gatgaactgt	ggagtaagta	12780
atatgtataa	ttatagtgat	gataacagac	ctaagaataa	taacaatggc	tgtcttggtt	12840
gtttaattat	aatcttagca	gctataggat	tatgggtaat	aatttttgat	attgccaata	12900
taatatatca	tatgatattc	taatttaaag	ggggctatcc	taatgaaaaa	tataatttgt	12960
cctatgtgta	aaaactcagt	aacattaaaa	agaaaatatg	gagctatgtt	ttggatcatg	13020
attttcttaa	ctggaggcct	atgggtagta	accataccct	tcaaaaaaca	taaggtctgt	13080
ccagtatgta	attcaatcat	aaaataaaga	taagggcctt	taggggtcct	ttctatttag	13140
gaggtaatat	tttaaatgag	atgtaacaac	tgtaacctat	atacccactc	agctccctca	13200
tgtatagaag	gaacttgtgt	aggaaagaaa	aagaagccaa	gaataatggt	cataaatagt	13260
ttagctaatg	atagggatga	ggccaataga	atagctactc	ctgataaatc	attacttgat	13320
aaaatggaag	gtctagactt	ttattatacc	aatgctatta	agtgtagaac	tcctaagggt	13380
actaaaatca	aagtatcaga	gattaagaaa	tgccaagaac	atttacttaa	ggaaattgaa	13440
aagtataaac	ctgagtatgt	tatgatctta	ggatctcaag	cactaaagat	gctaagtaat	13500
gaaggtataa	cctcaatatg	tggagtacct	aaaaaacatg	agaaatatgg	ctttaagttt	13560
attgccagct	attcaccagg	tgtagttgca	tatgacccaa	ctaaagcaca	atttgtagat	13620
caggccttta	ataactttaa	agccatggta	aaaggtaaag	agcatgaatt	accagagett	13680
aacataaaac	ttattaccag	tatgaaagag	ttaaaccagg	ctttcaaata	tttaagagag	13740
gaaggttata	atagagtatc	atatgatata	gaaactagag	gcttagatag	gtttaataat	13800
gacattactc	tatttggttt	tggtaatact	caagtacaat	atatactgcc	tttagaagtc	13860
aaatatagcc	cattaagggg	taagcccata	gcacaaagaa	gattagctaa	atccttgatt	13920
aaaagactta	attcggagat	gaaggaaaga	atagcccaga	atggtaagtt	tgatgataat	13980
ttcttaaagg	agaaatatgg	tattaagcca	atcataacct	ttgatacttt	actagcctca	14040
cattgtttag	atgagaatac	tcctaatggt	cttaaggaga	atgctttatt	acattgtaat	14100
gctaaagact	gggatataaa	taagaaatta	aagaccggaa	atgtggagac	taaatcagac	14160
tttgaggatt	atgttaggta	tctggggtat	gatatatact	atacatttgc	tctatataaa	14220
atatttaata	aaagacttaa	aagggatgag	agcttatata	aactattcca	ccacttatac	14280
atcccagcta	gtaaagctta	tgaggatgtt	cagttcaagg	gtatatatgt	aaatcaggag	14340
aaattcaaag	aggttgaaaa	atacttaaga	tctgaactag	ataagattga	gactggactt	14400
aagaagtata	ctaatggcca	ggatattaac	tggagctcac	ctaaacaggt	tggggaattt	14460
ttatatgata	cccttggtct	tcctgtgatt	gaggttactg	actctggagc	accagctact	14520

ggagaaagtg tattatta	ag actaagagat	aaacatccag	cagtagaact	actattacag	14580
cataggggag ttcatata	ca aatttctcac	tttatagatg	gttggctaaa	taggatgcac	14640
aatcatagat tatatcca	aa ctttaaactt	catggaactg	taacaggaag	aacctcaagt	14700
aataatccta atctacag	ca agttcctaga	gataagaaaa	tcaggagttt	attaggacca	14760
tctcctggaa gagtattc	at tgaagccgat	ctatcccagg	ccgaacttag	aatagctgct	14820
atgatggccg atgaggat	aa tatgaaattt	atttaccaga	ctggtggaga	tatacatgac	14880
tccacatata atattata	tc tggggaagat	atcaatgatg	agaaagatcc	agcagttaag	14940
aaggagaaaa ggaaaaag	gc taaggctgta	aactttggtt	tcttatatgg	tatgcaatgg	15000
aaaaaattca aggattat	gg aagagacaac	: tatggtctta	aattaacaga	tgaggaagcc	15060
aaaacatata gaaggaac	tt ctttaataaa	tatcctaaac	tattaacatg	gcatgataaa	15120
caaagaaaga ttgttaaa	gc caatggtgaa	gtaagatctc	caataggaag	aattagaaga	15180
ttaccagata tatattca	tc tgatagatct	aaagctgctg	aagccgaaag	acaatgtatt	15240
aactcaccag ttcaaggt	tt tggttcagat	atcactttat	taggcctatg	tgagattaca	15300
ggctatgcta aatatgtt	aa tootgaatat	gtattagata	agtctaagtt	tgatgtatta	15360
ggctcagtac atgactca	at attatttgaa	gtagataaag	actatgtgga	agaattagct	15420
tggaaagtaa aatcaata	gt tgaaaataat	aaagtattaa	agaaagtatt	taaatttacc	15480
ccaacagtcc caataatc	at ggatatatca	gttggttatt	cttggggagg	atgtgttgaa	15540
ctggatttta aaggtgat	tg gaaaagccag	ataagaaaag	tgttgacaga	tgaataatta	15600
tctgataata taaatatt	gt aatgaaaagg	aggtataagg	atgttaaaaa	taagtaattc	15660
cagaattaac aaattctt	gt cttgtcctta	tgcccattat	gttaaatact	atgaaggtct	15720
ggtacctaaa agaagtgg	ag ctgccttaca	aaggggctct	gctatccacc	aggctataga	15780
agactaccat aatgggaa	ga gttggaaaaa	atctgttgat	aaattttcca	aagagtttta	15840
caaaaataca tttaaaga	ag agateettga	atttggagat	attccaaaaa	tggtttattc	15900
tttatgtgat aactattt	cc actattatga	tgaaaaagaa	gataatgtaa	cctatgtgga	15960
aaatgaacat cacttcga	at taaaactatg	taagggtgta	actctagaag	gctatattga	16020
tagtgtctta gatgtgga	tg gaaagatatg	ggctaaggaa	actaaaacct	ataaaaagat	16080
gcctgataga aatttcct	ga tcttcaatag	acaatctgct	atatatacct	gggctcttct	16140
acatgaatac ccaaaagt	aa gtggtactat	atgggatata	atattagctc	agcaaccagg	16200
tagaccagaa ttaactca	aa aaggggtatt	atctcaaaag	aggattaaat	ccacaccttt	16260
agagttagaa agaggaat	aa gagaattagg	attagatcct	aaagattatg	agtcttatat	16320
taattctgct agatggga	ag acttctttgt	aagacaccca	ataatattat	caaagagtat	16380
acttaacagt gtaatgga	tg atactattga	gatagctaaa	cttattagag	atgagggtca	16440

caaaagaaag	gaaaagaacc	ttggaaaagg	ttgctctttc	tgtgaatata	agtctttatg	16500
tcaagctgaa	cttttaaatc	ttgataaaga	atttattatt	aaggctgact	acaaacaaag	16560
ggaggaaagt	gacaatggca	aaaaagcaaa	aatcaaaatc	aaatagtttt	gaggacagat	16620
tagtggatct	atatgatata	gatgagccca	caatattaac	actttatgga	agatctggtt	16680
caggtaaaac	tactatctca	ggaacactac	ccaaaccaat	attctttatt	gatgtaaagg	16740
acaaaggtac	tctatcagct	agaaacaagc	ttagagttaa	aagaggagat	atacaagtat	16800
ttagtctaaa	gagttttgat	gacatatacg	aggcttatga	ttacctatca	gaaaacactg	16860
ataaatttaa	aacagtagtt	atagaccatt	taactgcttt	acaagaatta	ggtaatgaaa	16920
aggtcaaagc	tgaagaaggt	aaggaccaga	tgagccaaag	aatgtttgga	aatgtggcta	16980
attatatgaa	agaggttata	aacctttata	aagaattaaa	tgaggaaggt	atactaccat	17040
gctttatagt	acaagatagg	ttagaatctg	gtgatggtga	aggagaagac	caattaatgc	17100
ctgaggtagg	accaggatta	atgccatctg	tatctaaata	tttatgtgct	gtatcaagag	17160
taataggtca	tacttattta	tatgaacact	cagaaaaaga	gggtatgaag	gttaggaaag	17220
aaatccagta	tagactaaga	ctaggaccta	acccttatta	tattactaaa	tttactagac	17280
ctcaaggatc	tgaatgtcca	gcttatctgg	tacatgattt	aaaatcacca	acaactatct	17340
gggaggatat	tgaaactatt	ctggctggtg	aatggaataa	taagccagct	aaatctggta	17400
aaaaaaccag	taagaaatct	ggtaaaaaga	aaaaataaaa	attttctaaa	aatacctttg	17460
acaaccaatt	aaaaatctga	taatataaac	ttgtaaacaa	agaggtacaa	tatcttgaca	17520
aatatttatc	tcataatgat	attttaaaat	ttaaggagga	caataacatg	gctaaaaaga	17580
ctactaagag	aggtaacaaa	aacaaaggag	gattaaagat	tgatctttca	aacgttgaaa	17640
cttcagttac	tatcccagaa	ggaaattaca	ttgtggaagt	agaagatgta	gaggttaagg	17700
tttctgaaaa	tagtggaagc	aattatttat	catttacttt	tgtaatagca	gaaggaaaga	17760
tgaaaggaca	aaagttatac	cacatttgct	cacttcaacc	acaagcttta	tttaacttaa	17820
aaggtgtgtt	agttgcttta	ggatttgata	tccctgatga	ggagttcgaa	ttagatacag	17880
aagctctagt	tggtttacaa	tgtggggtag	aagtatcaca	tgaaatatat	gaaggtaaga	17940
agaaatcaag	aataactgat	tttataaacc	ttgacgaagc	tgactctgat	gatgacgaag	18000
atgaggatga	tgactcagat	gacgaagaag	atgatgaaga	cgatgagtct	gaagttgatc	18060
ttgaagaatt	agacaaggat	gagctaaaag	aattagctaa	ggctttaaaa	atcccagcta	18120
agaaaatcaa	gaaggctaaa	actgaagaag	atctaattga	tctaattgaa	gaagaagctg	18180
acgaagaaga	aatagctgaa	caatataatg	acctattcgg	agactctgat	gaagatgacg	18240
aagaagatga	ggatgaagaa	gaggaagatg	aagaagaaaa	tgactatgag	tcaatgactt	18300

taaaagaact	taaagctgaa	gctaaggaca	gaggcttaaa	ggttaaaaaa	ggaatgtcta	18360
aggatgacat	catagaaatg	ctagaagaag	atgatgaaga	ataaaattta	attattaaaa	18420
tatgagggcc	tttaaggtcc	tcctttattt	acccttggag	gctactatta	tgcttgaaag	18480
agatgtggtt	aaatccataa	tgaatatgct	taaaaaagaa	tacccaggtt	tttggtttaa	18540
aactcatggg	ggaccatttc	aaatagctgg	cttacctgat	atactaggtt	gccacaaagg	18600
taagtttatt	ggtattgaag	ttaaacttcc	tggaaaagaa	aagaacctaa	ctcaaaaaca	18660
aaaagacatt	ataaataaaa	taaatctagc	aggaggaata	gcttttatgg	ctacctcagc	18720
tgaatataca	aggaggagat	tacatgaaaa	atttagaaag	acaccaacaa	ttcctaggag	18780
aactaggaga	tctgtatgaa	ttaaagaata	atctatatgg	ggataatttc	cacaagacct	18840
atcttgaata	tggaaaccct	gtcctatgta	taagacttga	agataagcta	ggaagagcta	18900
aaagtttatt	actaggagat	caagatgact	tcccttcata	tgctgctcaa	aaagaatctg	18960
tggttgatac	tttactagac	ttagctaact	atgctattat	ggctgctatg	gaattaacta	19020
gtgatgataa	ctcagaaata	catgatctta	gtaaagaaga	atatgatgaa	gaagacatag	19080
atgataatga	cgatgaggac	ttagatgatg	atgatgacaa	tgtttacgac	gaagaagaat	19140
tagattttga	tagtatgaat	aaagaatcct	taaagcaata	tctaaaagat	aatggggtta	19200
aattccatag	taaggcctca	agagatgaac	ttgtaaaact	ggctaaggag	gtataaggag	19260
gaggctttaa	tgcctcttct	tttttagtat	gaagagaaaa	ttatttaaac	atcagaaaga	19320
agcattacaa	ctatttttaa	gtaaagaaaa	gtttgcccta	tttatggaca	tgggtacggg	19380
taagacctta	gttcctattg	tggcccttga	gaaacttgaa	ggtttagata	ctgtactaat	19440
attctcacct	aaatctattg	tatttaactg	ggagtctgag	atccataaat	ttactaaact	19500
taaggaatat	aaaatattta	aattacaagg	tagtaaaacc	aaggttatgg	aaacctatag	19560
ggctataaaa	tcatactcag	gattaaagat	tattattgcc	aattttgaga	aggctaggtt	19620
gatggataaa	taccttatga	acttaaagcc	acagtttatt	gttgttgatg	aatcccataa	19680
ggtaaagaat	agaaatgccc	agatatctaa	ggctctatat	aaaattgcta	ctaaatgtaa	19740
atatagattg	ataatgacag	ggactcctac	tcctaatggt	tatgaagatt	tatttatgca	19800
gtataaaatt	atgaactcaa	atattctagg	agttaactgg	aaacagtttg	aggatgactt	19860
tataatcaag	ggaggttata	tgaactatga	aattgtgggg	tataagaatg	aggaaatatt	19920
aaagaacctt	atgcaccaga	attgctatat	agtaagaata	gaagattgta	ttgatttacc	19980
agaacaactt	cctgatctgt	atttaacctg	tgaactaaat	agtaaagcta	gaaaggccta	20040
caatgacctt	agaaaggaaa	tgatagcaca	actagatata	gtacaggaaa	acattcctag	20100
gaagcaatta	aaggccttat	taaggtctaa	tggtatacct	tatgagggta	atgagccata	20160
tgaggattta	ttcttaagag	ctaatatgtt	tatcaatcaa	ttaacagctg	atcttaccat	20220

tacccaatat	ttaaggctac	agcagatctc	aggaggattt	attacaaaca	atgtaggaaa	20280
tagtattaat	attgataaag	gcaaattagg	cttattacag	gactatctag	aaggatataa	20340
aaagcctgtt	gttgtaatat	gtaattttct	tgaggaaata	aaacttatac	atgatacttt	20400
taaaaagacc	cacagagtag	aatgcttaac	aggatctact	aagaatagag	ctgagatcaa	20460
taaggatttt	caggagggta	agattgatat	attaatacta	caaataagtt	caggtagtgt	20520
tggtctaaac	ctcttcaggg	cctcaaggtt	aatattctat	agttggaact	ataaatatga	20580
tgattatgtg	caagctattg	ccagaattaa	aagaaatggt	caaaaggagc	cttggcaaat	20640
aatacactta	ataactgaga	atactattga	tgagaaaata	ttaaaatcaa	tacagcttaa	20700
aagagataga	gcagaaaaac	tgttgactac	tgataagtaa	tgtggtaata	tagaattgag	20760
gtgataaata	atgagaaaag	aacaacctag	aataagtaat	catactgaaa	tagctaaagc	20820
tttgattgaa	gctgggaaaa	ctattaaggc	cctaaccaag	attaaagtca	aggaggaaaa	20880
gaaaaaacaa	aaaggccttg	aaaggctaag	acttctaaat	gaggaaaaga	agaaggagag	20940
agaattaatg	aaagaattta	atcctaatga	gcctaagaag	tcaagaaaga	aaaaggacaa	21000
acctataaag	agggttgatc	tgaataaagt	tgaggctaag	ggaacttacc	ctacaccttc	21060
tggaggtaat	gcacctactg	gaacagttga	cttaaaaact	ttatgtgagt	cattaggatt	21120
agatccaagt	aaagccaggg	ccaagctaag	aaagcaaggt	gtaaacaaac	catataaatg	21180
gtcaggatct	gaacttgagg	atattaagaa	aatgttaaaa	taaggggagg	tttaaaaacc	21240
tcttctttt	cgttgacaat	atccacagta	tatggtaata	taaatattgt	aatcaaacaa	21300
aaaggagaga	actgaatatg	aaagatcttg	aaaaacttac	aagggaagaa	ttgattgagc	21360
ttgtaaagga	gttatctatt	gattggacag	gagcctataa	tagaaactat	aagattgacc	21420
ttgaggagta	tgagattgta	tatattgatc	ttaatgatct	gaaagagttc	aatgataagt	21480
taggtcatct	agaaggagat	gtgtatatac	aatacactgt	aaatcttatc	aaggcccatt	21540
tacatcctga	gaaggatata	ttgattaggt	ggggtggtga	tgagtttgta	gttatcagtg	21600
atatagctta	taatctatgc	aataccttga	atatataccc	tgagttatca	tgtggctatg	21660
gtaaaggtaa	acctattgaa	gaagctatag	tacaggccga	ctcaatgatg	tataagaata	21720
aaaaatctaa	gaagttaaga	tactcaaagg	aggattaatt	actatgaggt	tattatggtt	21780
aaaagaatat	ttggatatat	gcaatatctt	gggtattgag	cccacaatgg	aagcttgtgc	21840
taggtgggga	aagaataaaa	aactatcagg	gttttcatta	acccccgtag	gagcaactaa	21900
atagttgctt	ctttttaaag	cgatccgata	cctagcaact	ttcatgccaa	aaagaaattc	21960
ggggttttct	ttgacataga	ctccagactc	tggtataata	atcttgtaaa	caaaattaat	22020
tcaaaggagt	tgttaattat	gaataacaaa	aaatttcaag	aaactttaga	acaattagag	22080

gaggaactag	aaatacaagg	ggtagaattt	aatgatgaga	atgacttaat	agctgctgtt	22140
gaatacatca	tagaatatga	ttaccaccca	gaacaatatg	tggaagatac	tttatgtaac	22200
taccctgaaa	tgttcaagga	tctataaaac	taaggaggtg	taaaaacctc	ctttttattt	22260
ttcgaaaaaa	tctggatttt	tccattgaca	tattctggag	tatctagtat	aataaaaatg	22320
taatcaatat	taattaaata	aaggagatgt	taaacatggg	ttataacatg	aatgaaagta	22380
ttgctaaaaa	tgtaattgaa	ggaacactaa	aaagaaaagg	attaagatta	aaaactgaat	22440
acttagaaat	ggtggttaat	caaattaagg	atcttaaagg	aactgctaaa	agggataagg	22500
tacttgaact	attaaagcaa	aatcctgaaa	tagcaaaacc	tttaataaaa	cctgtaccag	22560
gtggttatat	aatggactaa	gaattaggtg	ggatctccca	cctttttta	tttttctaaa	22620
aatctggatt	taatcgttga	catagtctgg	gccctctggt	ataataatat	tgtaatcaaa	22680
attaattaat	tcttaggagg	aatgaagaat	gactaaatta	gaaatgttaa	atgagataga	22740
aaaaataaat	aaggtggttt	ttgaaaagaa	cttccaaaaa	caattcttag	ataagaagat	22800
agaactatta	caacaaatgg	gagtaactaa	atattatata	tgtaaacatc	ataaaaaagc	22860
tgagattgaa	aaatatcttg	aggcttgcat	ctgtgcaata	tatgatatag	gaagaagaga	22920
tgatctagga	tggtaaaccc	catcctttt	ttcttcgaag	tttttcgttg	acagatccag	22980
agttctctct	tataattaaa	tcataaatta	actattggag	gtaaacaaaa	tgagagatat	23040
gatagaaaat	caattagctg	aatatgaagt	aaaggaatta	tacaatgagg	ccacaatgat	23100
cttaggaaaa	gcatttggtg	taagtgctgt	tgatctttat	atagaatctg	atgtggatgc	23160
caattattat	ggtctatgcc	atagatcagg	taataaattt	actgggatta	caattaacct	23220
tttccctttc	aggtttgcac	aggaaggaga	aaaagcttat	gacaaaatca	aaaaatttgg	23280
ttgggatatc	aaggactgtg	ttcttgaaac	tatatgccat	gaattagctc	acttaactta	23340
ttggtcacat	agtcctttac	ataaaaaatt	aactagcctt	tattacaaca	aagtgcaaca	23400
ggctagaaaa	ggtgaaaact	cagctgtagc	acaaactaga	agtgatatat	acactttaaa	23460
agatttatgt	gaattgatag	aactagatcc	aagaaaggca	agaagcatat	taagaaagaa	23520
taacattgag	aaaccaggta	aacaatggga	gtgggagcaa	ggtatgccta	aagatatata	23580
tgatctatta	atcaacttaa	aggttagggg	gagaaggtaa	aacttcttct	cttttttcgt	23640
tgacatatct	cgagagtgct	ggtataatta	tattaacaaa	taacttagga	ggtaaatcac	23700
atgatagata	tatattatag	tattcaagta	gaagctgaaa	acttctttgg	ttgccaaaaa	23760
gaagatggaa	gctgggtagc	aacaggagca	tttagtatac	ctgttaatag	cataactttt	23820
gaagaggctg	ataaattatc	caatgaggcc	atagatggat	ggttaaagga	gtatgaggtt	23880
						23940
actaaggtaa	taagtaggag	atcacataca	caagttaaat	tggattggta	taatagttat	20010

aaagctaaaa	tcaaatatgg	ctttggtaag	atatgggcta	gcactatgtc	aaaggttgct	24060
aagaaaggtt	tacttaaaac	ttgccctaga	tgtgggggca	ctggccatta	ctcaagaacc	24120
tcagatggta	acactacttg	ctttaaatgt	aacggcttta	aatatgtgat	accaactaag	24180
atctcaaaga	aattttataa	atctgtggag	aaaacctttg	acatctctgg	caataactct	24240
tataataaac	ttgtaaacaa	aaacaaagag	gagatgttaa	atatgaactt	aactgcaatg	24300
gaaataaaga	tattaaatgc	tatgagaaag	aatgaatttg	atgatggact	agatgttgac	24360
tgtgtatggg	tattctcagt	aatagaaaac	tcaggtatag	aaggaactaa	ggctagaggt	24420
gtgatctcat	cacttgttaa	aaaaggttta	gtatttgctg	atggagaggt	aataggttac	24480
acagaagaag	gaagaaaggt	ctttgataat	gctgatggag	aagaatgtaa	ctggggaggt	24540
ccaaaattat	taaaagaaat	ccctgacaaa	ccagaggaaa	tctcttataa	tgaaaatgta	24600
gataaaacaa	ataagaaaga	agagataaat	gatatgaaag	atttaaatac	tatgaaagct	24660
gttgaaatta	aagaattagc	aaaggaatta	aaagttaaaa	actggtggac	tatgaaaaag	24720
gctgacctaa	tagctgctat	ccaacaaatc	caacaaccac	aagaagaaaa	ggttgaagag	24780
gtacaacaac	cagctgaacc	tgaagaaaag	gctgaacaaa	ctaaaattac	tcttgatcta	24840
acagatgtta	aggaaccaga	gaaaaaggat	gaaccaaaag	ctgaaccaaa	aactaaggaa	24900
ggtaagttca	ccttaaagat	gatacttgaa	gaattaaata	tgaatggtaa	aaaggcaaga	24960
agaatcttaa	gaaacaaaga	agttgtaaaa	ccaggaaagc	aatgggaatg	ggataatgaa	25020
gaagaattta	aaaaggttaa	ggacctactt	tctaaataaa	gtaggcccaa	cctctatccc	25080
ctattgattt	acaggaggat	ctgattttct	cttacccatt	aactgcttcc	atacttgatt	25140
accaaaggaa	gctacagctg	cacatattaa	accttgtata	aagccattca	aaaaggtctt	25200
agctgtaaaa	cctagttcca	attgaattgc	catatataag	attgacaatg	atatactgaa	25260
taccaaaagt	attaatggta	tagaccaatc	cggtatataa	ggcttagcct	tgataaacag	25320
acctaaacag	taacatgata	ctatgattat	taaaagctgt	ggatcaatgt	aattgaatat	25380
taaatttact	aaattttctt	ccatgataaa	taccccctaa	attatctcta	catattttga	25440
acttacataa	ccttgcttct	taccatggct	agtattatat	tctatatgat	accaaccatt	25500
cttacttcct	aatatagtaa	ctctctcatt	attaaatact	gagcctatta	tattaccatt	25560
cacatcatct	ctcacattaa	gggaagtgtt	aaccttaact	attccttgtt	taatatcctc	25620
atagaacttc	tggctttgtt	caccctcgta	acgaacgtat	ccatcagatg	gagtaccatc	25680
ctttctataa	aatgttattc	ttaaccagcc	attagttcta	tacattggac	tagccttttg	25740
accgggttgt	aaagtctcat	cacagtcagt	tacattcaca	ttctttggat	cccaccacac	25800
ataagttact	ccattgtcat	tttgatactt	catgtggtag	tcaaaactta	atctgctgta	25860

atgttttatg	tcaatataag	catggtactt	cttattcttt	ccaggatata	caacttctat	25920
gaaatttcta	gaaggatata	ttccaaggac	aaataaatta	tctaggctat	caataaatct	25980
accagggact	ggcttacaat	cctcatctag	aacttctatt	gaaccttccc	ccactaaagt	26040
agcattagtt	cttgtctcat	tagactcata	gaatccttta	ggattattat	ctgctggaat	26100
gcttggagta	ctacctccac	tgatctcctt	attacaaata	ccccagcta	ttaattcacc	26160
aataagttta	gggcctttag	ccttatagat	acttacatca	gtggttgctt	cacagaagca	26220
tacttccact	atgacagctg	gcatagtagt	ctttcttagc	tcatataatt	tagcattaca	26280
tttaactcct	ctattcttta	atcctgtacc	tttggcaaca	gcattaacta	ttcttgtggc	26340
atatacttct	gcttctcctc	cagtgccata	tatccaagtt	cctgtaccta	aagcaccttc	26400
atacatatcg	taagccttgt	caaaatgaat	actaataaat	aagtcagctc	cccaggcctc	26460
agccttatta	accccatatg	ctaagtcagt	gttaacatca	caatttccag	gagtgacatc	26520
tagaacacta	tggccttcat	ttcttaaagc	cagtatcaca	gagtctttta	cttttctatc	26580
ctcagtagtt	tcatcaatta	aaccataagc	acctttagct	tgaaagttat	gtccacctct	26640
tactgctatc	ttcataataa	acatctcctt	taaatattat	agtgttttat	tgggcctgag	26700
aggctcgcta	cagcatttta	accacctcct	taatatattt	tcttatataa	aacctaacag	26760
gccttaaatg	acctgctagg	cttataagtt	aacctttgtt	actaaatagg	tgatctttta	26820
tagtatctac	atcctctttg	atatcctcaa	ctacattgaa	tttatcaact	agcttatcta	26880
tcacttgatt	taatttattc	tctctttctc	tagcctcttt	tctagtgtca	tataatagcc	26940
atacaaatag	actacaaaag	ataccttggc	taagaacttg	agttagtagt	tctttttcca	27000
tagattacac	cctttcatta	aagtcttcac	cacatattct	tttatagtcc	tctggtgtaa	27060
tttctccttc	tggattagaa	gagcatttta	ctgcctgatg	taatttgtcc	ttacctattg	27120
ctccaattct	ataagccatt	tcccagaaat	tcataatctc	tacctcctta	tttattcatc	27180
aatttaattt	ttatatcagc	tagttcttgt	gttaatactt	tcattatggc	cttagtttgc	27240
attagctcta	atttggtatc	agcaagagcc	tgagcttgat	agccaactac	tttattaata	27300
tctagaggat	taggatctat	agcctcatat	gaagtaaata	ggtccttatc	tttgatactg	27360
tatagatctg	atctctttt	actaatatca	aatttagttg	ggccactctt	tatgtggtca	27420
aatagactta	cagtcatttg	tataacagga	agattgtcta	gatcaataac	ctcagtgtta	27480
tccacaaagg	ctaaatgccc	ttgtgaatta	tgaggtatat	ggagacatat	aatatcttct	27540
atattattta	atatttcact	atcttcccta	tagtatagag	gttcaggcct	attaattagg	27600
tctaatatcc	tagtaacttc	ttcatggtct	ttatctataa	atgattttac	atcctctgag	27660
tcttctgcct	gatttatcag	cctttcttt	tcatcatcat	agaatataag	gtctataacc	27720
ttattagttt	ccacagaata	attaaatcct	actattctca	tgttttatca	actcccttac	27780

tcagtagcta	aataggttag	tattatttga	gttggcttac	cagctaccat	ttgataacat	27840
ccaccattta	aatatgagtt	agtccaatgg	tcaatagtac	aataaccaga	ggtattatta	27900
gaagcgtcat	tatagttatg	tgatactaga	gatataggta	atacccaatt	ccaatcctta	27960
ggaaaatgta	tagtataact	tacacctccc	cctgagttag	cataacctgt	cttaactatt	28020
tgacggacta	atcttagtcc	tcctcccaga	ctaactactc	tggtattatc	ccctacatcc	28080
caatagtctc	ctttagccac	aggactatct	tttacataga	ggttttccac	attttcagta	28140
tataatcctt	ttccatcttg	tttatagtag	aatctgccat	cttcagatcc	accataccag	28200
tcatttattc	tcatatattt	tctggcccat	aagttttcag	ctgagaaatc	ttgccagcat	28260
tttagagctc	cactaataga	ctctaatcta	gtattaaagt	ctttatttgt	cccaggttca	28320
tggaagtcaa	tcattctacc	tacttccata	acaccgtcat	gaggtatgaa	aggaatgcca	28380
ataaagttag	tattgccttc	agctaactcc	caattcttaa	atttattact	attagcagct	28440
gtaccatttt	tacctaggta	agcactatca	tggttgtggt	tcgaatctgc	agctcctatc	28500
tcagagggtc	taggtttgtt	gatactacca	tataatttat	tccactcagt	ccaatatccc	28560
tgattattgt	agaacctagc	atatactaag	ccagcactat	taataaataa	ttggttatat	28620
tctccaccct	ccttactcat	tgatagaaga	gttccatata	tacttccagt	gtgaggggcg	28680
ttgggtatat	catttccccc	tactataaag	gttcctggag	atttaatatc	attaaaatct	28740
aaaaccttcc	ccttaatact	ttgtagatat	ctatcatcat	gggtatggtt	agttggggat	28800
gcccccacat	ctgctgctgt	tggtttatta	tcctcatgat	agatcttctt	attgttctta	28860
ttaacaatat	ctaaagagtc	tatctttaca	ggccttccag	cataccctat	atggactttg	28920
ttatctgcat	ctatatacat	cacatagtca	tcactaccct	ctttagtcct	acagctaaat	28980
ccataattgt	gggccccgat	aaatttctga	cctggtctca	taattaagtg	gcctgataat	29040
tctccaccag	tagtaggtaa	ggcaccaatg	tcttggggag	taggtttgtt	ttgtttacta	29100
tatatttcag	cccaagtcgt	ccatccagta	ccctccatgt	ttgtagctgt	tctagtaaaa	29160
actcttccac	catctgcaaa	gaacatttga	gaagcccagt	gtcctgtatt	ccaggataag	29220
acaatcaatc	tcccatctgc	taggattggg	gcatttttat	cgacagaatt	tctaactgta	29280
gaataaatac	cccctccgt	aatggtgttt	agatctacac	cctctagtct	tttggctgtt	29340
ttatcccagg	caccaatgtc	ttggggagta	ggtttagccc	cagagttata	atcctttctc	29400
caagggaacc	aatccgtatt	atttacttta	tatctccaat	acttattacc	attggtatca	29460
taatactctt	gccatatcca	gttattagta	ttattatgct	tagtctctgt	actaacatat	29520
actatcagta	taccatattt	tgtacccgtt	agtggggcat	taggtaactc	acctgagatc	29580
agatattgcc	cctcagttaa	agctgtatta	aaatcagtta	tggcgtcctt	aggaatggga	29640

taagccccta	tttcttgagg	tgtaggctta	ttagcctcat	cataaacctt	ataccactta	29700
ctccaagaat	tatttcctga	tgtgtagttt	ctaacatatc	tagttatttt	attggttgga	29760
tataggttaa	taaactcctg	ttggaatccc	ctctcacccg	tatttctaac	tataaaaacc	29820
ctattactca	tatgggctaa	ggttccctcg	ggggtatttt	taaagtcacc	tgttcctgta	29880
tcaaagtaga	agaaggcatt	cgcttgttta	aaggaattac	aatctctatc	taagggagca	29940
ctaaccttaa	taagtgcttg	atcttgatta	gcctttcggt	ctatttgatt	ttgtaaacta	30000
gtgtctttct	caaatagtag	gtctaatctt	tttagcacat	cctcaggggc	tagattatag	30060
tcaggtacta	cattacctct	agctagtaat	aggtttagta	cctttaatga	tgtgcttgaa	30120
gttgcacctt	gtaccacaaa	ctgtattttg	gtatcagtag	ctccggaagg	aatactaaac	30180
ttatgagttt	ttgatttgta	cccattactc	tgtggtgtac	taccttgctt	tataatactc	30240
ttatattgtt	gacctccact	agtgtaagcc	agtttaattt	catagctagt	aaaactacct	30300
tcaatatctt	ctaagaaggc	taatacataa	tcactatttg	gttctatagg	cagagtttta	30360
atctcaagag	tttgtggacc	tgttgacata	ccagaccatt	taaaacctcg	tctcttggtt	30420
ggagcatctg	ttatgggtgt	gatattacca	ggaccagtat	aagactcaga	gttgtaccac	30480
tcaagcctat	taatagtacc	aaccctcaaa	gcatccagtc	tatcctcatt	agatttagac	30540
ttcttttcta	cctcagtcat	tttctgttta	tgttcggtag	caaagttctc	aatgttttca	30600
ttatccttat	taaaatcagc	catttttggc	ttatctgtta	actcccactt	atttaaacct	30660
aaagtaggag	ttttaccagt	acttggcatt	ttgcatacct	cctttattca	gttatagcat	30720
attcttccca	tttttcccag	gtaaggtcta	gactgtccca	cttgctccac	atataatcat	30780
atctatcgaa	catctcccaa	gtaatataaa	gtaatataat	ttgatatatt	aaatgagcag	30840
gcattctttc	cctgaatact	ctttctagag	cctttaggtt	aggtggtacc	cccggtaggt	30900
cagtaaagct	aattttgatc	ttactctctt	cagctatgaa	ctctaccttt	acctttccac	30960
ctgtgtaggc	cttagtaaga	tttttgatag	atgtactatt	aaacttttc	caagcagata	31020
gaactactgt	aataatagct	ctttctctt	ggtcagaggg	tgggtaatca	aagtatttat	31080
ataactcaag	atcagtgaaa	aatctttcta	gaccttcctt	aggagtggtc	ttgggatcca	31140
catagtcttg	taattcctgt	cccttagtat	atagtttctg	aagttcagta	gccataatag	31200
tgtttactaa	gttatcagcc	tcttttatat	tatcataaaa	ttcaggaaca	tacaatagta	31260
attctttttg	aacctgttct	agactataca	taagttacca	ccacctcagt	aatggttggt	31320
atttgattag	caggaatagt	taaagattga	ctacttccat	taagtgtaat	ggttgtataa	31380
tcttctactc	cctcaatatt	taaaagcata	gcccctattc	tatttataga	taggctagta	31440
attttaaata	cttgactgct	tagaaactct	tctagttctt	tcttgaagtt	taattttatt	31500
tgttcttctg	taactgaact	caatttctta	acctgagctc	ttacagtgat	attaaaggtt	31560

tgggctgact	caacagtaaa	aacacatcct	ataggagctt	taccctcacc	taaacctttc	31620
ttgcctggat	ccatgtattc	ttgaacttta	ttaactagtt	caggattggc	aggcttattc	31680
tcaactgtgg	ttataatacc	cttagcagta	tttatcccat	tccaacaggg	aagaaccaca	31740
gctttaccta	ctccagctac	acttttacac	caatctgtta	actgttggac	atttccatct	31800
ccagatggtt	gtatagtggc	tttagtagct	ctctctctta	actcatcatc	tgtctcttga	31860
tctctaccaa	taacaaggat	atctcccata	gtagcactct	taagttctgc	tatagcattg	31920
atgggaatta	gatgtgtacc	tgttgatact	ttattaggtc	ctgaacctaa	agtctcacat	31980
tcaataatat	tgggctctat	cacttgccag	aaataatctc	ctccttggaa	tcttgaacca	32040
acatcgggtt	catagccaac	aaacttagct	gaccttctac	acttagttgg	aattattctg	32100
gatatcccta	cattggcagc	tctctcatct	aagaacttac	ctgtagcagt	acttagaaat	32160
actgagtcta	atatttgatt	aacattaaca	gcataaaact	cagctagctt	aacagcaaaa	32220
accatagcca	tatcataggt	gaaacttcca	gttctagtgt	caatatcatc	gggggatagg	32280
cctatcatct	cttctaataa	ttctttatgt	gttcgggaga	ataaatcttc	agaaaatccc	32340
attatatcac	cccttccagt	tttgtatctc	catatatggt	atttatccat	acttcaatat	32400
atacattctt	gccttgcaca	ttatacttta	gatcagttac	tttagtcact	ctatcgtctt	32460
ctaagagaca	ttcagggata	gccctattaa	tctccatttc	aagaagttca	ggagttacta	32520
gagagtcatt	aatcaaagct	ctaatatcac	aaccataaga	agtatcttga	taaatcatat	32580
aggcattttt	aggagttatt	aatcttttat	ataaagattg	ttttaaggcc	tcaagaccat	32640
ccacattatc	ataaattcta	ttaagattta	gatctagttt	ataggtcttg	gtattctcca	32700
ttgttttctc	atcaactata	agggtatctt	taaagccatt	aggtagcatt	atatcaacct	32760
cctaagatcc	ctaacataaa	atatctttgt	ccatcatcat	agggcataag	atatacagta	32820
tcgccctcac	taatagactc	aatatgtttt	ggaacatcta	taatatttcc	agatagtact	32880
aattttctat	tgtgaagaca	ctcacatttt	aaagggctag	tactaagtac	cttagctcta	32940
taaatattta	gaggggtgga	catattacta	tatacttgtt	ttacacagtc	taataaatta	33000
ttagccatta	aatatcaccc	tcctcagtac	atttaagttt	taaattcatg	gtatagtcag	33060
tatcaaattt	atgggtatca	gactcaatat	agaaagcctt	attaatttt	aaatggggta	33120
tactaaccac	aatggctttg	ccactaatac	agtcaggtac	acctataaca	gttatagaga	33180
tatcagtttt	aggtctctta	cctgtttcta	gctttattct	agccttctca	tttaattggg	33240
cttggtttag	ttcatcactg	atagtatcgt	ataattgaaa	tacaccatat	ttcttttggc	33300
tgctatcatc	tttagcagag	gcaaataaag	taatctcggg	atcatcttta	cccttaccct	33360
gtttatattt	acatactagc	tttacctggt	tgacaatact	atcaaagttt	ctacttcttg	33420

aaaaagttcc aatattttta ccatattcg	a atttccacaa	ttcgttattg	gttcttcggt	33480
ttataaaatc aaacttacct gtaatagaa	t tatagtaaat	ataaaactgt	tctccagttt	33540
gttcataaac ctcttttatt accttcttc	a taatatcata	gggagtttgt	ttctcacata	33600
ctaaactaga gaaagtatat ccagtttta	g ctactactcc	aggggtaacc	ccaaaggctt	33660
tacataatga ctcaaatata gcttcgcca	g tttggttttc	gaatacaaag	ctatctttat	33720
tattagccca ataaatcata gggtcataa	g ctttaacctt	aagtaaatgc	tttttctcat	33780
tatctgagat attcataata ataccatta	a agatattctt	accctcatgg	actagtacta	33840
cctgatctcc atcataaatt ggatgtata	t cttgagcatt	atattggaat	gatagggtac	33900
gaggggcaga tgaagaagac cctgcccaa	c tcttaccact	ggaggtattt	gtaatatcaa	33960
aggatttatc tccttgtacc acaattaat	t gcatattata	acctccttat	ataatcacca	34020
gaactccaac cttctttata tcctgaacc	a ttatctaatt	tatactttac	ataatgccat	34080
ccattttgag actttaatac tgtaaagtg	t tcattaggcc	atatcttacc	cttggtagga	34140
ttattgatac caggtccagt tcttaccca	t agccatgagt	aaacattagt	agtagtagct	34200
gcccaaggtt gagtacctcc agaagaact	a ccacctgtat	taccactata	ggctagttta	34260
ggttttggaa ttgtgaaact aactgattt	a acctcaggct	tcttatactc	agttagtttt	34320
atttttactt gaagagtacc aatatctcc	a cctttctcag	tatatgagat	attatcaata	34380
gtaactaata aattaatatc agtactagt	a atagtaaacc	ttactggatc	tttacccatt	34440
tcaataagtt tagcataact tactcgggg	g tctgcaatat	cagtatactc	acatccatcg	34500
tagtatgagc ttggtaactc aaaattaaa	a gaaaaagatt	ttagcttagg	gtctcctatg	34560
aaagagagtt cccctaagcc ttcaatgga	a actgtactat	tatctctact	atcagagata	34620
tttatatcag tgggatttac tggtaacct	a aacctagtat	ctccctgtat	taaccagaat	34680
tgatatttac tatgcaaggt ccagttcac	c tecetegaac	atttcctgat	ttaacatttc	34740
cacaataaat ctgtatactc tcattaatt	c actttctgag	attgttccat	cttcagcctg	34800
tactgtgaaa ttaaatgagt tgttaatgt	t cataacttta	gatccatcat	cacttcctgc	34860
tccagattgt cttagtaaat cctgagttt	t atctgcaggt	aatacttgag	agcctctagg	34920
catttttgag aatgtaggac ccataacta	a ttcggggcca	gcttcaccaa	ccatggcagc	34980
tttatcagtg aagaaatcag taccttcag	c aagcattggt	atctgtggaa	tattgatacc	35040
tttacctcct atgattggaa cccagtctg	g tatcttaata	gtattaagag	caccaattaa	35100
tccattgatt aaactgatta ttccattta	t aggtccttta	gcaagagcta	gcataccatt	35160
gaatactcca ccaaatatat tcttaactc	c ctcccaagct	ttagaccagt	tacctgtaaa	35220
taccccagct ataaatgcaa ttataccac	t tagagtttgc	attaaagctt	gaagaatatt	35280
tgagatattt tgtacggctc catttacag	c cgcagcaatc	attggccaaa	cagcattaaa	35340

tactgctcct aaagcataaa	gtataggagt	taacatatcc	acaagtcctt	ggaatatcat	35400
accaaaactt tctatagcag	attgtatatg	gggaactaca	ctctcagcaa	agcttaagaa	35460
cattggtaat agtgtattat	tccaccaatc	agctaatcct	tgtaagattg	gcattaagat	35520
gttacctatt acttccacaa	cttgagaaat	tgcaggagct	atataagtag	caaaggcctc	35580
agctaaagaa gtagcaattg	gcatgaaaac	attagttatc	aattctccaa	gagctgtaaa	35640
agtagcagag aacatagaac	ctaatacttc	taatatagga	cctaacactt	ccaatacagt	35700
ttgccatact tgagtaaatc	cttgaacata	aagaactact	aagtctatgg	ctggaattag	35760
gttattcata aatatagaag	ctaaagttcc	aaacatatca	agaagtactt	gacctatagg	35820
agctaatact cccatgatag	gctcagctaa	accactaaag	gcttcttgta	tattattgtt	35880
agcctctgat aaataatctg	gtagacctac	taagatetet	ccaaaattat	tatatatgtc	35940
ttctccaaga ctccatatct	tctcattaat	ttgatctgcc	acatcatcag	gtaagaactt	36000
atataatata tcattggtta	gatctataaa	gggttgcata	gcatccccaa	actcccaacc	36060
attcatgatg taatatatag	tctctcctaa	accttggaaa	gcagaaacaa	ccattgagaa	36120
tatgggtcct agcttttcaa	agccctcttg	tataaatgtg	ataccattta	gaacagcatt	36180
agctataacc tcaacggcag	gggctagggc	atctcccaca	tctaacataa	ctacagcagc	36240
tttggatttt attctctcca	tggttctatt	aaagccctta	tccatttttt	cataggcagc	36300
ttcagtggcc ccagcactat	tcttcatctc	attaagagca	ttagtaaagg	cctcagtacc	36360
ttcaccagtc aaggctagtg	cagctgaacc	agcttctaca	gaaccaaaga	ggtcattgat	36420
acccagatta cttttctggg	cgtgttttc	taacatctga	agggcctctt	gtatattacc	36480
tccaccttta atgaagtctt	tgaaaccctt	accagctatt	tcccggaaga	ccttatcagt	36540
cttggttccc gatttagata	gctcatctat	agcagctctt	atcttagtag	tagctacaga	36600
tgttggaacc ccctgagctg	ttaatgcagc	tatagaggca	gatacttctt	caaaagatac	36660
cccagcagct gaggctgaag	gtagcacatt	gaatagggat	tgtgatagtt	gctcaaagtt	36720
agtcttacca agtcttactg	tagtaaacat	aaggtctgag	gccctttgaa	catccatatt	36780
cttagctcca tatgagttaa	taacagtagt	tagtccatca	accgcagttt	ctattgaggt	36840
gatacctcct atagaagctt	taccagctgt	ttctaagaaa	ctaaaaacgt	tatcctctgg	36900
aactgatgag gatatggctt	gataaagagc	aggtactact	ttatcaggca	atatccctat	36960
atcagaactt aacttttta	cctggccgga	catcttatca	aaggtctctt	gagtagagtt	37020
gggtaataga gtcataacct	catttaaacc	ttgctcaaaa	tccccaaagg	ctttaacact	37080
gtccttagta aaatcccaga	cagccttagc	tgagaatact	ccagcagcta	ctccaccaat	37140
tttggcaaga gtacccatga	aggaattacc	actatcagcc	atctggttaa	atgcaccaga	37200

gatcttatct	tgggcagaga	atatggcagt	aaatgcagct	tgacttgcca	ttatatccct	37260
cctttatgat	taagagcctt	tctttaactt	atccctagct	tttttatctt	cttctaaagc	37320
cagttcacat	gaagctataa	gaaaggcttt	cctattggga	gatagtttat	caaattccca	37380
gggtagtata	ttatgcttct	ggaataacac	atgagcccaa	aatgcactag	tgtcggcctt	37440
tattagtttt	ttgcttcttt	gattagatca	tccttattat	cgcctaatcc	atttatgtcc	37500
ataacctcac	tagttatcct	agtgaaatct	cctggtaagc	ttagtacatc	cataagtaaa	37560
tctactggat	ccacaaactt	agtagactct	aaccattttg	gatctttaaa	gtcagggaat	37620
actatggttt	ctagtatcat	ttccctagta	gctcttcttt	ggtctgttat	tgagttagtt	37680
atacctttgt	ttctagtaat	tactgtattt	ctcttttgga	tatcttccat	ttgcttagta	37740
gtgattggct	ttaatatcca	aggtataggt	tggcccgcta	attcatgacc	ctcagggaaa	37800
ctaaatctag	ctaccccttc	aacttcaatt	tcgggtgatt	gtttaccctt	atcattttcc	37860
atgaaaaatt	ccatactaaa	ttttgacata	ataatctacc	tccacaatat	tcttaatctt	37920
ttataaatat	cttacttctg	aagctgagaa	tgatatttct	tcttgaattt	cttctccctc	37980
agcatctagt	ccaattagtg	gtaaatctcc	ttctaattgt	actcctagta	attgtactct	38040
gtcctcacca	taattcttaa	catagtcaga	atctggatca	tcacatacag	cttgtatatc	38100
catcttaggg	aatataccag	tttttaagta	ttctttaata	gcttctctta	tcattggagt	38160
agctttgaat	tgagttatag	ttccagttat	atcataacct	ataacctttg	aggttaatcc	38220
tttctgaccc	ataactcttt	tcttagtcac	ctcaggagta	aatagagctt	ctagttttat	38280
taagctagtt	acttgcttac	ctgatacaaa	agctctaccc	tctctagcag	acattctatt	38340
aacttcactc	atgggctata	cctccttaat	tattcttaac	agttacaaag	tatttcttga	38400
aagttcttac	aggttgtgta	agtatagtag	catacatagt	ctttccttta	ctagcttctt	38460
catccaccac	tacatcagag	tcagggtcca	cattctttaa	tgctccttga	gcttgtagtg	38520
tagttaataa	acttattagt	ctatcctgag	ctagttttat	accatctttg	tggttaggga	38580
aaacattagg	aactaagatc	tgagatccta	gatctataac	agcatccaat	acagccacaa	38640
ctttattatc	tgtaaagctt	tcatcccatt	cttctgtaaa	agtatggtgt	gtatttatat	38700
cttcctcaac	tactaccttt	actctttcag	aatttgagtc	agtttgagtt	gagaatataa	38760
attgacctgt	ttttaatcca	tcaactattt	gagagtgttt	tagtcttgga	ttagcatcta	38820
ctgctccagg	atatgcttta	taagtaaggt	cttcagtata	tccagctgca	gctctagcac	38880
cagctaccca	tgcagttgct	tgagaagctg	ttaacttagt	gcctccatcc	agtacaaccc	38940
catttttaac	attgatgata	tatgggtaat	cacaagtagc	aaagtcagaa	gtaactgcca	39000
caatgttctt	accaacctca	tctctgaagt	atttaagttt	tgataataga	gcagtgtgta	39060
attcactctc	agtaaatggg	aaggccatag	ttttaaagtt	gtataactca	cagttatcta	39120

agaagttaat	aacatcagag	ttattcatct	gagtagaagt	accggtacta	aactcagtct	39180
tagcagtctc	atctatagaa	ccacttccac	ttactgtaaa	ccattgagac	ttaactgttg	39240
atatttcagt	tactcctgta	gcctcaaaga	ttttagatcc	ttcaagatat	aataatatat	39300
cctttcctcc	aagaggattg	gtcttaatag	ttagagataa	tttattaccc	ctttctccag	39360
ctttagtagc	tgtaaatgtt	agagacccta	ctacagcttt	ggctttagtt	ccacctgtta	39420
agttatatac	taaaacagtt	gcagcttctt	ttaaagcctc	tttaactagt	aatacagtag	39480
ggtgagttat	atcataccca	agttgatata	atgcttctag	gccaccttca	ttggttacct	39540
tgataacatc	tccagcatta	ccccacttaa	gttgtaatgg	taagatcata	actcctagat	39600
tattaagctt	aggctcatta	agtccaccac	ttacaaatct	agtatacata	ccaggtctta	39660
ctttattttg	tcctggaata	aaagttcctc	ctgccatcta	ttttacctcc	ttctttagcc	39720
agtcttttat	aatctgacta	gtttgtttta	ttgttaactc	ttcatcaggt	ggaagggatt	39780
gaactgcagc	gttgaagaca	aactcctcaa	cctggaaaag	ttgttgacaa	tgggctctta	39840
attgaggtat	ggaaaatttt	tgtactttca	ctattttacc	ccctttgtta	tctcaaagtt	39900
ttcgaagtaa	gttggatctt	tataaagact	aaccacaata	tcatagttta	tctctacctg	39960
agaatcttct	tcagtttcac	cttcaaatac	ttccacattc	tttattttga	gatttttgtt	40020
ggtcttacta	ccatccctat	taagtatagg	aatttttcta	tttctcaagt	atatagcatt	40080
agctatattc	tgagcaattt	caagagagtc	tttaggttca	aataccttaa	ctcttaaggt	40140
attctcagtt	ctataactac	aaagagtatc	attctgagga	ttaaatacct	tcttgaaata	40200
taatgaggga	tacttgaact	tttcaggtat	tcgctcaaaa	tagagggtag	taattccagt	40260
tagatcagat	atgaatttag	caatactccc	tatatctgct	gtcattaata	actaccccct	40320
aaaacttcgg	ctaaccaatc	ttctagtttt	ctttggaaag	cctgttcaaa	tatttttca	40380
tatattttta	ctgcattgtc	ccaataaggt	ttaccaggta	ctttcttttg	tcttagtacc	40440
ataccagtct	tagctcctgg	ttgataaata	aatttatctc	ctgaccatat	gccaggaacg	40500
aatctaaatg	attgtccttg	tggattagta	tagtgaccat	cgtttaccca	cttagcatat	40560
tttaggttag	taccaacttc	taaggttagt	cctccatcac	tacttaccca	tataccattc	40620
ttaccccctt	tttgaaagga	gttaagtaat	aatctagtgt	ctactacttg	tagtctaatt	40680
atttcatctt	gaaccacatc	aaggaagtct	atccctgcag	cttcaaacca	tactgctaat	40740
tgctttttga	aatcactatt	agcggcatct	cttagcttct	ttataaacct	ttctatttgt	40800
ttagcatcta	tttctatgcc	tccagaattt	gaagccataa	ctatctaaaa	tccttagcct	40860
ctataccaac	cttaattttt	agacctctta	tatccctagg	agctttagct	atatatgtga	40920
taccagtctc	aaggtccaca	attttatcat	tttgtctaac	atcagttcca	atagcaaaat	40980

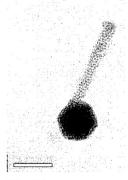
ctactgagta	ctcctgggta	atcttaaacc	taggttcttt	gtactcaagt	ttttctagag	41040
ttcctgactt	aaaatgacag	ggtacctcag	ttatgtctgg	ctcatcagga	taactaaagc	41100
taggggtatg	ggctagccca	tatccgggat	cttcaggatc	ttctaatagg	tggtatatat	41160
tacatctatg	atttaagagc	ttgttatatg	aatttctaat	catattacag	tacccttaat	41220
ctcatagtag	ttgttctgat	agatggacta	tcatcttcta	agaaaggttt	aatcagaggc	4 1280
ataatatcag	gctctataac	agccttatca	gttcttcttg	tatatgagta	gtcatcatag	41340
gtctcggatt	gaatatcagc	cttgctaatg	accaaggatt	gtagtccata	atactcagca	41400
tacagtatat	gggctaacct	taattcttta	ctattgggat	ttttctccac	aatagtatca	41460
tagtctttac	ttgaattttt	aaaaattcct	gagatcttgg	ctttagctct	taatatatcc	41520
atctcaatat	ttttggggtc	tcttttccta	atctcaggat	tacttgagaa	gtcaattatt	41580
tcatccggag	taatattcat	atgagccacc	cctatctgtt	tcttttattc	ttgtttgtaa	41640
atcttctagc	aggttcttct	ttattgtcat	ctgtagaagg	tacttcttct	tcagtaaaat	41700
cttctagagg	ttcatcctca	acaggttcat	ctatgacaat	cacatcatag	ttctgtttta	4 1760
aataatttac	tagactatct	ttaacttctt	ctacatggtc	ttgggtaatc	ctatgaccct	41820
taataaccag	agtttgtaat	ttaccctttg	ctaatttgac	cttagccata	atatctctcc	41880
tttctaatga	aaaagagccc	acatttaaag	tgggccttca	tgattaagct	tttactttaa	41940
ctatcttagc	agcagcttta	ggatcttcaa	acttaacatc	catcttaaga	gttaaaacta	42000
cataagtaga	tctttctcta	ggagctcttt	ccaactctat	tctgatatct	cttgagatac	42060
ctataactat	attcttaggg	tgagttaaga	ttatgtctga	tacttgagta	gaagagtcgt	42120
cataatcttg	tagcatagct	atacctttaa	caggtactcc	ataagcagat	ttaacagtac	42180
catttataaa	tgagtcatcc	ccattagcag	ttaatctttc	tcctactaag	tctacccaat	4 22 4 0
cagtttctaa	accatttgag	cagtagaatc	tccattcacc	tgggtttctt	aaatacttag	42300
ctggtacagc	tttcttagct	tgttttaata	ggtctttact	taaagcagct	ttgttagcat	42360
ctactacatg	agcagttaat	tgttttctaa	ccccatctaa	ttgttgtaag	aaagtatcgc	42420
tactatgtcc	agtatcacca	tttacaatta	tttcttccat	gtcaagagca	actctctcag	42480
ctaataattg	cattacagtg	gcttctattg	attttccttc	tatatttgtt	tctatagtat	42540
catcagttaa	cttaaccaca	gctataaact	ctttagcttg	taaagtaact	gttccagtag	4 2600
ttggagctga	atatttagat	tgtcctggat	ctgttccttc	agctgcagga	tttaatactc	42660
tttgaccaaa	tcctattgac	tcaatctttt	tagagtctcc	tttcattggt	acagttctag	4 2720
cctcttttaa	tattgttggc	tcatcaatta	tcattttaat	aaaagcgtta	gcttgttctg	4 2780
gatttaattt	acctccacca	tttaatacgg	cagcgttaaa	tacagcttta	tttacttttg	42840
acataacttt	ccctcctaat	tgttattatt	cttggtttcc	accaaataat	ccattaaata	42900

ctgatttttg	aacttcttgt	ccttcttctc	cgtttttagc	aatttgttta	cttcctacat	42960
atggagccat	ggctttagct	actgcctcag	ctatttttc	ttcctcagtt	ttttcttctt	43020
gtttctggat	taagccagcc	tctaacatag	ctttttccac	agccttagca	actatatctt	43080
cagtagtagc	tggttgacct	tcattcttat	taacttcacc	ctcaacaggt	ttagttccat	43140
ctaatgcctt	tttgatagct	tcgtctatca	ttttttgtac	ttgagtttca	ttcatctctt	43200
cttccccctc	cactgagtct	aataattcat	taatagcact	ttgtgctgtt	tttaactttt	43260
ccacatttt	tgaagatatt	ttcttacctg	ccttattgac	tggtaactca	aaagatttag	43320
ctacttcttc	tggagttcct	aataatattc	cctccatagt	ttcagaaaat	tcttgaagag	43380
cctcctttat	cttatctaca	tcactttcaa	aagatctagt	gtaatcccaa	ctagaatatg	43440
gatatagaat	atcttctaag	gtactaactg	cattccagaa	attatttctt	tttgcagtct	43500
ctttatattt	ttcagagtat	gcacctttct	gtatatgctt	tggagttaac	cctagggcct	43560
ttccaatttt	atcaagtata	gattgaccta	tagacttctc	aatctcatca	atatctacat	43620
cttgtgtaga	atatttacca	gtaccaccca	tagaccatcc	agtaatttcg	cctttctcaa	43680
tcttgctcca	tagatcatca	tcgataatct	cagctttagc	taaccaagtt	ccagctttaa	43740
ctactgtacc	ttctattgtg	gtatcttcct	cagttaccca	tgattttaca	atcttgacac	43800
cctcaagagt	gttctcattg	tgttgtaaat	cactaccaag	gccattttca	ttaaaccact	43860
cacaagcttt	tttgatctct	tcctcagtca	taaaattatc	atggtagtca	gcagtcattg	43920
gctcatatac	tacaccgata	acaaaatgat	tatctccttc	agactcagac	tttaagattg	43980
gcttatcata	tctaaatcta	ttaggagctc	caagttcttt	agccacaatc	cattgccatt	44040
tattagctgc	tttatcaact	aatgaaaggt	aatcaatttt	agcatctgag	atctcaatag	44100
ctttcttaac	tgattttact	ggcatttact	ctccctcctt	tacaaattat	attctgctat	44160
cacttgatct	ctgatagctt	ctttttcttc	tttagataat	cctagtatat	ccttatcaat	44220
tacaggccca	tgagtacaat	gacaattcac	agtctcagaa	gctggtaagt	tgatatccct	44280
aggaaatcta	gcttcataaa	ttcctacagt	gaagtactca	cctttattaa	tgacagtacc	44340
atccagatcg	acatggtgtt	gccttgggtg	aatacccctt	ccccctgagt	gtttccactg	44400
tattcctgtt	actgcggggc	attgattaaa	agcctcatcc	ttagcatatg	agtgggctct	44460
taacatttca	gtaatagcag	tagctctagc	tctagttcta	ctaaagccat	aagtctcaga	44520
taatttacca	actacatctt	ctacagactc	tccatcttca	agagccttat	ccagaatatt	44580
ctgtagtttt	tcatgggaag	ttaatttcat	catttcccca	agtttagaag	accactcatc	44640
tataaaggta	gtagtatatg	gagaaaagac	tttggttagg	gataagtcct	tatcaatacc	44700
ttgtaaataa	gtatctccta	aattttctat	agcttcttga	taacaactct	taagagtttc	44760

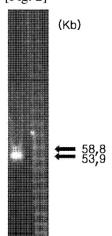
tgctaaagaa	gtatcgatat	tatctgtacc	tatttgagac	tccacatatt	ctataaattc	44820
ttcaatggtt	tcaaagtctc	catcttttat	aagatgtttt	aattcttctg	taaggagatc	44880
agaaatagtg	tcttctaatt	cagagatctt	ttctattgta	taatcaatct	cctcatagcc	44940
agcttctttc	aattctttct	taaggctatt	atcttcattc	tttaagatct	tatcaatttt	45000
agcgatcaac	tcatcagtac	ccactattac	ttacctcctt	ttaattgata	gtttaataac	45060
tgtttcttag	cctctttaag	tacagctatc	acctcatcac	tcccattaga	gttttgagcc	45120
ttctcaatta	tacttgttaa	gttattactc	atagaagagg	caactgagta	agtagggata	45180
tttgcccatt	cttcatcaat	aggagtatag	tccttattga	ttgatgaata	atactcctca	45240
ttaatctgat	taggagtcat	agctctagag	gctatagcaa	acattccttt	ctgataatca	45300
gagttctcaa	tattaggact	cttaaagtaa	gcttccacat	atttaaaacc	atagccagat	45360
agaataacat	tatttagtat	ccatgttagg	ttttctcttt	caggaacaaa	tacttgctct	45420
tcagtttttc	ttgtagcctc	tctggctgta	gccacattat	aatcttggga	gtaccctaca	45480
tatatatctg	gtagtaagaa	agaagattgt	atcttttcc	tagtattatc	catgtagtct	45540
tggaataact	catccttctg	taatatttca	gataggggct	tgacctcaac	agtaactggc	45600
ttagagtcat	caatggcagt	gtctttctct	gcagcttcag	tttctagtac	taagaaacca	45660
tgctgggaat	tttcaccttt	tacactattc	atgtactcag	ttaactcatt	ccaagattta	45720
tcattaagag	taccaccttg	aattagtaac	attaatggag	tatgtttacc	attagtaaaa	45780
tatctccagt	ttaataattc	ggcctttctt	gaaccttgag	cggctaacat	aggaccttcc	45840
catcttggtg	taccatagac	accataacct	gttttaaaat	gaagtatact	gttagctcga	45900
tctttaagag	gtatctctcc	cttttcataa	tactttccag	tattcatatc	tagatctcta	45960
ggatctcccc	attccttaaa	gaagattgat	tgattattta	cagtctgctt	aaatcttctg	46020
aacctttttc	ttctagtgta	ctgtttacca	tatcgggtta	cagtgtactc	tgtactctca	46080
tcatctagct	taagaatttt	aattgtctta	gggtcttcaa	tttcttttat	ctcttttacg	46140
agagctgagt	ctttaggatc	ttctacgatc	tctaaaaaag	aatacccaag	tccttctctc	46200
caatcaacta	tctcttcaaa	gacattcttg	gttggtttat	caaaagacag	ggtatcaatt	46260
aattcttcca	gctgtttata	ttcagctttc	atttctggag	taggttcatc	taccttctca	46320
atatacctaa	tacctattcc	gaatccagca	atattatttc	ggtaggcctt	tttgcattgg	46380
ggtattattg	tagactccct	tataatcact	tctaatagtt	gggggtcata	ttcaggagat	46440
atctcatcaa	cttcaattcc	aagtacactg	gtttgttgat	tagatttatc	cactggatcc	46500
aaagactttt	ggatagggtc	tccacatata	cttctggcgg	atatctttt	caaagttact	46560
ttacctcctt	tcttacatta	tatatcaaat	tataaaatcc	agatggcctc	atatttcagg	46620
gaggattaca	tcaactccac	atatagtgtc	aaatacggcc	attcacatga	tttaaaaata	46680

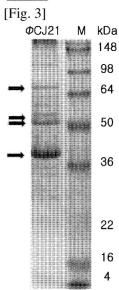
actataatt	t gatacgttta	ttataacata	attcacaaaa	ttttgtcaac	gttttatttt	46740
tacattatt	t tccggaagat	tttccgcata	tactccccat	ataaaattat	ataattatta	46800
atgtatact	a tattactata	ttaatttatg	aaataaatta	tatagtatat	agtatactta	46860
tattacata	at atataagggt	ggtaactctg	atatgccttc	tatatcacat	tattactaat	46920
atagagcct	a gtcaatttca	aaactgatat	ctcacatatc	agaataaaaa	agtattggct	46980
ttaataggo	ca tatcagttac	tagatttttc	ttaatttaga	tccaacagga	aggcaagcta	47040
agaatagaq	ga gtctgctaag	tctggagaat	gtagtcctct	tttcttcatt	tcatccttac	47100
tctccagct	t tatttgacct	ttggagttga	atactttaaa	ctttctggta	gtcaattctc	47160
ccacaagat	c tgtattatcc	ggtagtctta	actcatcatc	ctccagtaat	tccttaacta	47220
cagaggcta	at atatgtggtt	gtatcataat	aaaaggcata	agcctgggac	cccctcttta	47280
gtggcatao	cc aaacttacat	ggtactacct	tcaaccagtc	cagtttttct	tcaagtttta	47340
tctctttt	aa tctatcagtt	actcccccac	ctacaccagt	gtcgtctatt	ttcacaacta	47400
agaat satt	+ 2000220+02	agatat agaa	atttaggg			17139

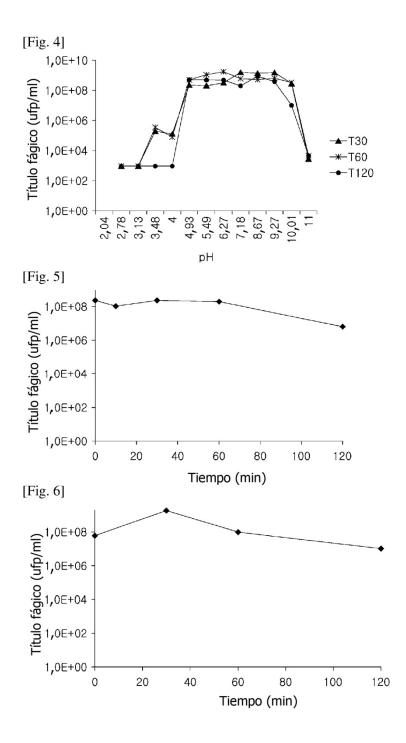
REIVINDICACIONES


- 1. Un bacteriófago ΦCJ21 (KCCM11363P) que tiene una actividad bactericida específica contra *Clostridium* perfringens, donde la secuencia de ácido nucleico de dicho bacteriófago ΦCJ21 es SEQ ID NO: 1.
- 2. Una composición que comprende el bacteriófago ΦCJ21 (KCCM11363P) de la reivindicación 1 como principio activo.
- 3. La composición de acuerdo con la reivindicación 2, para su uso en la prevención o el tratamiento de una enfermedad infecciosa causada por *Clostridium perfringens*.
 - 4. La composición para el uso de acuerdo con la reivindicación 3, donde la enfermedad infecciosa es enteritis necrótica.
- 15 5. El bacteriófago ΦCJ21 (KCCM11363P) de la reivindicación 1 como principio activo para su uso como antibiótico.
 - 6. Un aditivo para pienso o aditivo para agua potable que comprende el bacteriófago ΦCJ21 (KCCM11363P) de la reivindicación 1 como principio activo.
- 7. Un desinfectante o limpiador que comprende, como principio activo, el bacteriófago ΦCJ21 (KCCM11363P) de la reivindicación 1.
 - 8. El bacteriófago ΦCJ21 (KCCM11363P) de acuerdo con la reivindicación 1, para su uso en la prevención o el tratamiento de una enfermedad infecciosa causada por *Clostridium perfringens*.
 - El bacteriófago para el uso de acuerdo con la reivindicación 8, donde la enfermedad infecciosa es enteritis necrótica.

42


5


25


[Fig. 1]

[Fig. 2]

