

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 728 128

51 Int. Cl.:

A61M 5/315 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 23.01.2015 PCT/US2015/012570

(87) Fecha y número de publicación internacional: 06.08.2015 WO15116482

(96) Fecha de presentación y número de la solicitud europea: 23.01.2015 E 15703185 (7)

(97) Fecha y número de publicación de la concesión europea: 06.03.2019 EP 3099354

(54) Título: Conjunto de émbolo que incluye una barra de émbolo para hacer avanzar un tapón a través de una jeringuilla

(30) Prioridad:

29.01.2014 US 201461933058 P 22.01.2015 US 201514602789

Fecha de publicación y mención en BOPI de la traducción de la patente: 22.10.2019

(73) Titular/es:

BECTON, DICKINSON AND COMPANY (100.0%) 1 Becton Drive Franklin Lakes, NJ 07417-1880, US

(72) Inventor/es:

TITUS, NOEL; YEVMENENKO, YAN y HILLIARD, CHRISTOPHER, TODD

74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Conjunto de émbolo que incluye una barra de émbolo para hacer avanzar un tapón a través de una jeringuilla

5 ANTECEDENTES DE LA INVENCIÓN

Campo de la Invención

10

15

20

25

30

45

50

55

60

La presente invención se refiere generalmente a un conjunto de émbolo para utilizar en una jeringuilla adaptada para el suministro de un fluido. Más concretamente, la presente invención se refiere a un conjunto de émbolo para conectar una barra de émbolo a un tapón o un émbolo que puede ser montado en el punto de utilización.

Descripción de la técnica relacionada

Los conjuntos de jeringuilla, y en particular las jeringuillas hipodérmicas, son bien conocidos en el campo médico para la administración de fluidos, tales como medicamentos. Una jeringuilla convencional típicamente incluye un tubo de jeringuilla con una abertura un extremo y un mecanismo de émbolo dispuesto a través del extremo opuesto. El mecanismo de émbolo típicamente incluye una barra de émbolo que se extiende a través del tubo, con una cabeza de émbolo o tapón dispuesta en el extremo de la barra de émbolo dentro del tubo de jeringuilla, y con una lengüeta para los dedos en el otro extremo de la barra de émbolo que se extiende fuera del tubo de jeringuilla. En uso, la barra de émbolo es retraída a través del tubo de jeringuilla para aspirar o llenar el tubo de jeringuilla con un fluido, tal como un medicamento, con la barra de émbolo extendiéndose fuera del extremo posterior del tubo de jeringuilla. Para el suministro de un medicamento al paciente, la abertura del tubo de jeringuilla está adaptada para la comunicación de fluido con un paciente, tal como a través de una aguja hipodérmica encajada en el extremo delantero del tubo de jeringuilla o a través de un acople de tipo luer que se extiende desde el tubo de jeringuilla para la unión con una línea de fluido de un paciente. Cuando el usuario aplica una fuerza para presionar la barra de émbolo y el tapón a través del tubo de jeringuilla hacia el extremo delantero del tubo de jeringuilla, los contenidos de la jeringuilla son forzados a salir del tubo de jeringuilla a través de la abertura en el extremo delantero para ser suministrados al paciente. Tal operación es bien conocida en el campo médico, y los médicos se han acostumbrado al uso de tales procesos de administración de fluido a través de jeringuillas estándar.

Las jeringuillas convencionales son bien conocidas en el campo técnico para ser utilizadas en combinación con una vía de un medicamento, en donde el usuario recoge o introduce el fluido al interior de la jeringuilla inmediatamente antes de la inyección y de la administración de fluido al paciente. Normalmente, las jeringuillas hipodérmicas pueden estar envasadas como dispositivos "prellenados", en donde la jeringuilla se ha llenado previamente con un medicamento antes de ser envasada y suministrada al paciente. De esta manera, se elimina la necesidad por parte del usuario de llenar el dispositivo antes de la inyección, con lo que se ahorra tiempo y se mantienen volúmenes constantes de administración.

Sin embargo, el envasado que tales jeringuillas llenadas previamente puede ser difícil, dado que la barra de émbolo se extiende más allá del extremo proximal del tubo de jeringuilla requiriendo espacio adicional en las cabinas de almacenamiento o en las cabinas de dispensación. Por tanto, existe una necesidad de un conjunto de émbolo que pueda ser montado en el punto de utilización, de manera que el volumen de almacenamiento de la jeringuilla llenada previamente envasada es reducido de forma efectiva. Específicamente, el usuario debería ser capaz de conectar la barra de émbolo a una parte que la jeringuilla justo antes de realizar una inyección de fluido. Por consiguiente, el volumen de almacenamiento de la jeringuilla como un todo tiene un volumen y una relación de aspecto sustancialmente idénticos al tubo de jeringuilla. En una posición de almacenamiento, no hay barra de émbolo que se extienda más allá del extremo proximal del tubo de jeringuilla. Tal conjunto de émbolo que incluye una barra de émbolo que puede ser unida a la jeringuilla en el punto de uso se conoce, por ejemplo, a partir de los documentos US 2013/0012888, US 2012/0136298, y US 2008/0300550, y se describe más en profundidad en la presente memoria.

COMPENDIO DE LA INVENCIÓN

De acuerdo con un aspecto de la invención, se proporciona en la presente memoria un conjunto de émbolo de acuerdo con la reivindicación 1. El conjunto de émbolo incluye un adaptador de tapón que define una abertura en el mismo. El adaptador de tapón incluye un primer miembro de restricción adyacente a la abertura. El conjunto de émbolo incluye también una barra de émbolo que tiene un primer extremo, un segundo extremo, y una cabeza de barra de émbolo dispuesta adyacente al primer extremo de la barra de émbolo. La cabeza de barra de émbolo incluye un segundo miembro de restricción que se puede acoplar con el primer miembro de restricción del adaptador de tapón. El conjunto de émbolo está configurado de manera que la cabeza de barra de émbolo se mueve axialmente dentro de la abertura del adaptador de tapón, el primer miembro de restricción del adaptador de tapón se acopla con el segundo miembro de restricción de la cabeza de barra de émbolo para asegurar la cabeza de barra de émbolo dentro de la abertura.

En otra realización, un conjunto de émbolo incluye un adaptador de tapón que define una abertura en el mismo. El adaptador de tapón incluye un miembro adyacente a la abertura y una barra de émbolo que tiene un primer extremo, un segundo extremo, y una cabeza de barra de émbolo dispuesta adyacente al primer extremo de la barra de émbolo. La cabeza de barra de émbolo incluye un miembro de restricción deformable que se puede mover entre una posición deformada y una posición no deformada. El conjunto de émbolo está configurado de manera que la cabeza de barra de émbolo es movida axialmente dentro de la abertura del adaptador de tapón, el miembro sobresaliente del adaptador de tapón deforma el miembro de restricción de la cabeza de barra de émbolo. Una vez que la cabeza de barra de émbolo es hecha avanzar más allá del miembro sobresaliente del adaptador de tapón, el miembro de restricción puede volver a su posición no deformada para asegurar la cabeza de barra de émbolo dentro de la abertura.

65

BREVE DESCRIPCIÓN DE LOS DIBUJOS

Lo mencionado anteriormente y otras características y ventajas de esta invención, y la manera de obtenerlas, se harán más evidentes, y la propia descripción se entenderá mejor, con referencia a las siguientes descripciones de realizaciones de la invención tomadas en combinación con los dibujos adjuntos, en los que:

5

25

30

35

40

45

50

- La Figura 1A es una vista frontal despiezada de una jeringuilla que incluye un conjunto de émbolo, de acuerdo con una realización de la presente invención.
- La Figura 1B es una vista en sección trasversal de una parte de la jerinquilla de la Figura 1A.
- La Figura 2 es una vista lateral de una barra de émbolo del conjunto de émbolo de la Figura 1A.
- 10 La Figura 3 es una vista en sección transversal del conjunto de émbolo de la Figura 2.
 - La Figura 4 es una vista lateral de una barra émbolo del conjunto de émbolo de la Figura 1A.
 - La Figura 4A es una vista lateral alternativa de una barra de émbolo del conjunto de émbolo que tiene un miembro de restricción deformable e incluye una disposición diferente de dedos elásticos.
 - La Figura 5 es una vista lateral de un adaptador de jeringuilla del conjunto de émbolo de la Figura 1A.
- 15 La Figura 6 es una vista en sección transversal del adaptador de jeringuilla de la Figura 5.
 - La Figura 7 es una vista lateral de una parte de una barra de émbolo, de acuerdo con una realización adicional de la invención.
 - La Figura 8 es una vista lateral de un conjunto de émbolo, de acuerdo con una realización más de la invención.
 - La Figura 9 es una vista en sección transversal del conjunto de émbolo de la Figura 8.
- 20 La Figura 10 es una vista lateral de la barra de émbolo del conjunto de émbolo de la Figura 8.
 - La Figura 11 es una vista lateral del adaptador de jeringuilla del conjunto de émbolo de la Figura 8.
 - La Figura 12 es una vista en sección transversal del adaptador de jeringuilla de la Figura 11.
 - La Figura 13 es una vista lateral de un conjunto de émbolo, de acuerdo con una realización más de la invención.
 - La Figura 14 es una vista en sección transversal del conjunto de émbolo de la Figura 13.
 - La Figura 15 es una vista en perspectiva del adaptador de tapón y del tapón del conjunto de émbolo de la Figura 14.
 - La Figura 16 es una vista en sección transversal del adaptador de tapón y del tapón de la Figura 15.

DESCRIPCIÓN DETALLADA

Para los fines de la descripción que sigue, los términos "superior", "inferior", "derecho", "izquierdo", "vertical", "horizontal", "lateral", "longitudinal" y los derivados de los mismos se han de referir a la invención como está orientada en las figuras de dibujos. Sin embargo, se ha de entender que la invención puede adoptar diversas variaciones alternativas, excepto cuando se especifique expresamente lo contrario. Se ha de entender que los dispositivos específicos ilustrados en los dibujos adjuntos, y descritos que en la siguiente memoria, son simplemente realizaciones a modo de ejemplo de la invención. Por lo tanto, las dimensiones específicas y otras características físicas relacionadas con las reivindicaciones descritas en la presente memoria no se pueden considerar como limitativas.

En la siguiente descripción, "distal" se refiere a una dirección generalmente hacia un extremo de un conjunto de jeringuilla adaptado para entrar en contacto con un paciente y/o en acoplamiento con un dispositivo separado tal como un conjunto de aguja o un conjunto de conexión IV, y "proximal" se refiere a una dirección opuesta a distal, es decir, alejándose del extremo de un conjunto de jeringuilla adaptado para el acoplamiento con el dispositivo separado. Para los fines de esta invención, las referencias anteriormente mencionadas son utilizadas en la descripción de los componentes de un conjunto de jeringuilla de acuerdo con la presente invención.

Las figuras ilustran realizaciones a modo de ejemplo de un conjunto de émbolo para utilizar con una jeringuilla, tal como una jeringuilla llenada previamente que contiene un fluido F. Haciendo referencia las Figuras 1A y 1B, se ilustra una jeringuilla 10 que incluye un tubo de jeringuilla 12. El tubo de jeringuilla 12 generalmente incluye una pared lateral 14 que se extiende entre en un primer extremo o distal 16 y un segundo extremo o proximal 18. La pared lateral 14 define una abertura alargada o cámara interior 20 del tubo de jeringuilla 12. En una realización, la cámara interior 20 abarca la extensión del tubo de jeringuilla 12 de manera que el tubo de jeringuilla 12 está formando una cánula a lo largo de toda su longitud. El tubo de jeringuilla 12 puede tener la forma general de un tubo cilíndrico alargado como se conoce en la técnica con la forma general de una jeringuilla hipodérmica. En realizaciones alternativas, el tubo de jeringuilla 12 puede tener otras formas para contener un fluido para administrar, tal como, por ejemplo, forma de un tubo rectangular alargado. El tubo de jeringuilla 12 puede estar hecho de cristal, o puede ser moldeado por inyección a partir de material termoplástico tal como polipropileno y polietileno de acuerdo con las técnicas conocidas por los expertos en la técnica, aunque se apreciará que el tubo de jeringuilla 12 puede estar hecho que otros materiales adecuados y de acuerdo con otras técnicas aplicables también.

55

60

65

Como se conoce la técnica, el extremo distal 16 del tubo de jeringuilla 12 puede incluir una abertura de salida 22, que está en comunicación de fluido con una cámara 20. La abertura de salida 22 puede estar dimensionada y adaptada para el acoplamiento con un dispositivo separado, tal como un conjunto de aguja o conjunto de conexión IV y, por tanto, puede incluir un mecanismo para tal acoplamiento, como se conoce convencionalmente. Por ejemplo, el extremo distal 16 puede incluir una punta luer, generalmente ahusada, de tal dispositivo separado para la unión con el mismo (no mostrada).

El extremo proximal 18 del tubo de jeringuilla 12 está generalmente abierto en el extremo, pero está destinado a estar cerrado al ambiente exterior. El tubo de jeringuilla 12 también puede incluir marcas, tales como graduaciones situadas en la pared exterior 14, para proporcionar una indicación del nivel o la cantidad de fluido F contenida dentro de la cámara interior 20 del tubo de jeringuilla 12. Tales marcas pueden estar dispuestas en una superficie exterior de la pared lateral 14, una superficie interior de la pared lateral 14, o estar formadas integralmente o de otro modo dentro de la pared lateral 14 del tubo de jeringuilla 12. En otras realizaciones,

alternativamente, o además de, las marcas también pueden proporcionar una descripción de los contenidos de la jeringuilla u otra información de identificación como puede ser conocido en la técnica, tales como líneas de llenado máximo y/o mínimo.

El tubo de jeringuilla 12 puede ser útil como una jeringuilla llenada previamente, y, por tanto, puede estar dispuesto para el uso final con un volumen predeterminado de fluido F, tal como un medicamento o fármaco, contenido dentro de la cámara interior 20 del tubo de jeringuilla 12, llenado previamente por el fabricante. De esta manera, el tubo de jeringuilla 12 puede ser fabricado, llenado previamente con un medicamento, esterilizado, y envasado en un envase apropiado para su suministro, almacenamiento, y uso por el usuario final, sin necesidad de que el usuario final llene la jeringuilla con medicamento procedente de un vial separado antes de su utilización. En tal realización, el tubo de jeringuilla 12 puede incluir una tapa de punta (no mostrada) para obturar un fluido F dentro de la cámara interior 20 del tubo de jeringuilla 12.

Siguiendo con la referencia a la Figura 1A, un tapón 24 se puede mover o estar dispuesto de manera deslizable dentro de la cámara interior 20 del tubo de jeringuilla 12 y en contacto de obturación con la superficie interna de la pared lateral 14 del tubo de jeringuilla 12. El tapón 24 está dimensionado con relación al tubo de jeringuilla 12 para proporcionar acoplamiento de obturación con la superficie interior de la pared lateral 14 del tubo de jeringuilla 12. Adicionalmente, el tapón 24 puede incluir uno o más nervios anulares 26 que se extienden alrededor de la periferia del tapón 24 para incrementar el acoplamiento de obturación entre el tapón 24 y la superficie interior de la pared lateral 14. En realizaciones alternativas, un anillo de obturación único o una pluralidad de anillos de obturación pueden estar dispuestos circunferencialmente alrededor del tapón 24 para incrementar el acoplamiento de obturación con la superficie interior de la pared lateral 14 del tubo de jeringuilla 12.

Haciendo referencia las Figuras 1A y 1B, en una realización, el tapón 24 incluye un primer extremo o distal 28 y un segundo extremo o proximal 30. El extremo proximal 30 define una abertura de recepción de adaptador de tapón 32 formada en el mismo que tiene una parte roscada 34 para asegurar el tapón 24 a una parte correspondiente de un adaptador de tapón 36. Como se describirá con más detalle a continuación, el adaptador de tapón 36 conecta una barra de émbolo 38 al tapón 24. Más concretamente, el adaptador de tapón 36 es conectado al tapón 24 insertando una parte del adaptador 36 en la abertura de recepción de adaptador 32 del tapón 24. El usuario mueve entonces la barra de émbolo 38 en una dirección distal señalada mediante la flecha B en la Figura 1A, haciendo que el extremo distal 40 de la barra de émbolo 38 entre en contacto y forme un acoplamiento retirable o no retirable entre la barra de émbolo 38 y el adaptador de tapón 36. Dado que el adaptador de tapón 36 está conectado con del tapón 24, el movimiento continuo de la barra de émbolo 38 en la dirección distal hace avanzar el tapón 24 a través del tubo de jeringuilla 12, para expulsar el fluido F del mismo. Para una mayor comodidad, la barra de émbolo 38 y el adaptador de tapón 36 están referidos colectivamente en lo que sigue como un conjunto de émbolo 42.

Teniendo el conjunto de émbolo 42 separado y unido del tapón 24 y del tubo de jeringuilla 12, el conjunto de émbolo 42 puede estar situado separadamente en el envase de producto, almacenado, y enviado, incluso cuando el tubo de jeringuilla 12 haya sido llenado previamente con un fluido F (como se muestra la Figura 1A). Por el contrario, una jeringuilla convencional llenada previamente está típicamente envasada con una barra de émbolo retraída fuera de un extremo posterior o proximal del tubo de jeringuilla. Por consiguiente, el envase de tales jeringuillas llenadas previamente es voluminoso y difícil de transportar y almacenar. Por ejemplo, la longitud total que va a ser envasada de una jeringuilla convencional llenada previamente es igual a la longitud del tubo de jeringuilla y la longitud que la barra de émbolo que sobresale hacia fuera del tubo de jeringuilla. Por consiguiente, una jeringuilla de acuerdo con la presente invención permite que una barra de émbolo 38 y un tubo de jeringuilla 12 sean envasados de manera que se permite un espacio de almacenamiento reducido. De manera ventajosa, una jeringuilla llenada previamente, transportada sin una barra de émbolo unida, encaja fácilmente en una cabina de dispensación automática. Por consiguiente, la jeringuilla 10 descrita en la presente memoria se puede utilizar fácilmente en farmacias modernas e instalaciones médicas con requisitos de espacio específicos. Adicionalmente, la jeringuilla 10 descrita en la presente memoria está configurada de manera que después de la retirada de la barra de émbolo 38 y el tubo de jeringuilla 12 de una instalación de almacenamiento, de la cabina de dispensación automática, y/o de los elementos de envasado del producto, la barra de émbolo 38 puede ser asegurada rápida y fácilmente al tubo de jeringuilla 12 para recoger un fluido y/o enviar un fluido.

Habiendo descrito generalmente la jeringuilla 10 y el tapón 24, la estructura de varias realizaciones del conjunto de émbolo 42 se describirá ahora con detalle. Haciendo referencia las Figuras 1B-6, se ilustra una realización no limitativa del conjunto de émbolo 42. El conjunto de émbolo 42 incluye un adaptador de tapón 36 y la barra de émbolo 38. Un extremo distal 44 del adaptador de tapón 36 incluye una parte roscada 46 configurada para la inserción en la abertura de recepción de adaptador 32 del tapón 24 y para la conexión a la parte roscada 34 del tapón 24 como se muestra, por ejemplo, en las Figuras 1A y 1B. En otras realizaciones, el adaptador de tapón 36 está asegurado al tapón 24 utilizando un retén de bola, lengüetas de bloqueo, un mecanismo de bloqueo cargado por muelle, un pestillo, un adhesivo, u otro mecanismo similar. El adaptador de tapón 36 está bloqueado, asegurado o acoplado a un tapón 24, es decir, se evita el movimiento relativo significativo entre el adaptador de tapón 36 y el tapón 24. En otras realizaciones alternativas, el adaptador de tapón 36 y el tapón 24 pueden estar formados integralmente. En una realización alternativa adicional, el adaptador 36 y el tapón 24 pueden estar formados conjuntamente tal como mediante, extrusión conjunta o moldeo en dos fases. En una realización alternativa adicional, el adaptador de tapón 24 pueden estar formados integralmente juntos para formar un único conjunto de tapón.

Siguiendo con la referencia a las Figuras 1B-6, un segundo extremo o proximal 48 del adaptador de tapón 36 incluye una abertura de recepción de émbolo 50 formada en el mismo. La abertura 50 es adyacente a una cavidad 52 que se extiende en el interior del adaptador 36. En ciertas realizaciones, la cavidad 52 es una cavidad sustancialmente cónica que incluye una pared lateral inclinada que forma una superficie de acoplamiento cónica 54. Una característica de aseguramiento o parte de acoplamiento, y referida en lo que sigue como un primer miembro de restricción 56, se extiende en una parte de la cavidad 52 para asegurar la barra de émbolo 38

al adaptador de tapón 36. En una realización, el primer miembro de restricción 56 incluye un anillo angular sobresaliente 58 que tiene una parte ahusada y un extremo de bloqueo 62. El anillo angular sobresaliente 58 puede estar formado de un material rígido, no deformable.

La barra de émbolo 38 del conjunto de émbolo 42 está adaptada para hacer avanzar el tapón 24 a través del tubo de jeringuilla (mostrado en las Figuras 1A y 1B). De este modo, continuando con la referencia las Figuras 1B-6, la barra de émbolo 38 puede estar dimensionada para el movimiento dentro de la cámara interior 20 del tubo de jeringuilla 12, y generalmente incluye un primer extremo o distal 64, un segundo extremo o proximal 66, y una pestaña 68 dispuesta adyacente al extremo proximal 66. La pestaña 68 está adaptada para la presión con el pulgar, de manera que el usuario puede presionar contra la pestaña 68 con su dedo pulgar. Por consiguiente, la pestaña 68 puede incluir una depresión con forma de pulgar (no mostrada), así como varias partes con textura para evitar que el pulgar se resbale de la lengüeta 68. La barra de émbolo 38 incluye además una característica de aseguramiento o parte de acoplamiento 70 para asegurar la barra de émbolo 38 al adaptador 36. En una realización, una cabeza de barra de émbolo 72 tiene un miembro de restricción deformable 74, tal como dedos elásticos 76 y un cuello 78 dispuesto adyacente a la cabeza de barra de émbolo 72. Los dedos 76 están separados por una ranura 80 que se extiende desde el cuello 78 hasta el extremo distal 40 de la barra de émbolo 38. La cabeza de barra de émbolo 72 incluye también una ranura anular 82 situada entre los dedos elásticos 76 y el cuello 78. Los dedos elásticos 76 incluyen cada uno una parte ahusada 84 y un extremo de bloqueo 86.

Haciendo referencia las Figuras 4 y 4A específicamente, se observa que el miembro de restricción deformable 74 puede incluir una pluralidad del dedos elásticos 76 dispuestos alrededor de la cabeza de barra de émbolo 72. Por ejemplo, como se muestra en la Figura 4, cuatro dedos elásticos 76 pueden estar separados uniformemente alrededor de la barra de émbolo 38. En esta configuración, la ranura 80 puede bisectar dos de los dedos elásticos opuestos 76, de manera que se creará una apariencia de seis dedos elásticos. Alternativamente, como se muestra en la Figura 4A, dos dedos elásticos 76 pueden estar dispuestos uniformemente alrededor de la barra de émbolo 38. En esta configuración, la ranura 80 puede bisectar dos de los dedos elásticos opuestos, de manera que se crea la apariencia de cuatro dedos elásticos. También se contempla en la presente memoria que otras configuraciones de dedos elásticos 76 pueden estar dispuestas alrededor de la barra de émbolo 38, con tal de que más de un dedo elástico 76 está incorporado en la barra de émbolo 38. Por ejemplo, tres o seis dedos elásticos también pueden estar dispuestos en una posición uniformemente distribuida alrededor de la barra de émbolo 38 con tal de que realicen la funcionalidad como se describe en la presente memoria.

Haciendo referencia la Figura 7, en ciertas realizaciones, la barra de émbolo 38 incluye características anti-entrada 88 para evitar que dos barras de émbolo se peguen juntas o se unan entre sí durante transporte, o el envasado del conjunto de émbolo 42. Por ejemplo, uno o más nervios anti-entrada 88 se pueden extender desde una superficie interior de dedos elásticos 76 en la ranura 80 de la cabeza de barra de émbolo 72. Los nervios anti-entrada 88 evitan que un dedo elástico de otra barra de émbolo ser enrede o se inserte en la hendidura de la barra de émbolo. De este modo, es menos probable que la barra de émbolo o los dedos elásticos se rompan durante el transporte.

Haciendo referencia las Figuras 1B-7, la cabeza de barra de émbolo 72 incluye también características para mejorar la estabilidad de la barra de émbolo 38 con relación al adaptador de tapón 36, cuando está asegurado la misma. Por ejemplo, en una realización preferida y no limitativa, la cabeza de barra de émbolo 72 incluye una pestaña 90 que tiene un cubo biselado 92 dimensionado y adaptado para entrar en contacto con una parte de la superficie de acoplamiento cónica 54 de la cavidad 52. Cuando la barra de émbolo 38 está asegurada al adaptador 36, el cubo biselado 96 restringe el movimiento radial de la barra de émbolo 38, mejorando con ello la estabilidad de la conexión entre el adaptador 36 y la barra 38. La cabeza de barra de émbolo 72 puede incluir también uno o más nervios en ángulo 94 que se extienden desde el cubo biselado 92 hacia el extremo distal 40 de la barra de émbolo 38. Los nervios en ángulo 94 generalmente tienen una inclinación que se corresponde con la inclinación de la superficie de acoplamiento cónica 54 del adaptador 36. Cuando la cabeza de barra de émbolo 72 está asegurada al adaptador 36, los nervios en ángulo 94 entran en contacto con la superficie de acoplamiento cónica 54 para restringir el movimiento radial de la barra de émbolo 38.

40

45

50

55

60

65

Además de mejorar la estabilidad de la conexión entre la barra de émbolo 38 y el adaptador 36, la combinación de la cavidad cónica 52 y la cabeza de barra de émbolo 72 sirve también como una guía visual que ayuda al usuario a insertar la barra de émbolo 38 en el adaptador 36 en la orientación axial y radial correctas. Específicamente, la forma cónica de la cavidad 52 ayuda al usuario a visibilizar la correcta colocación del émbolo dentro de la cavidad, proporcionando un objetivo, formado por el extremo distal de la cavidad cónica 52. El usuario sólo necesita colocar la cabeza de barra de émbolo 72 en el centro de la cavidad 52 para asegurar una buena alineación entre la barra de émbolo 38 y el adaptador 36. Una vez que la barra de émbolo 72 está en la cavidad 52, el cubo biselado 92 y los nervios en ángulo 94 proporcionan la ayuda y el soporte adicional para la alineación correcta de la barra de émbolo 38 con el adaptador 36.

Continuando con la referencia a las Figuras 1B-7, a continuación se describirá un método para asegurar una barra de émbolo 38 al adaptador de tapón 36 y para hacer avanzar el adaptador de tapón 36 y el tapón 24 a través del tubo de jeringuilla 12. Específicamente, con la cabeza de barra de émbolo 72 de la barra de émbolo 38 situada adyacente a la abertura de recepción de émbolo 50 del adaptador de tapón 36, la barra de émbolo 38 es insertada o movida axialmente en la abertura de recepción de émbolo 50 en una dirección generalmente a lo largo de la flecha B mostrada en la Figura 1A, de manera que los dedos elásticos 76 de la cabeza de barra de émbolo 72 están dispuestos dentro de la abertura de recepción de émbolo 50 del adaptador de tapón 36.

Cuando una fuerza adicional es ejercida sobre la barra de émbolo 38 para mover axialmente la cabeza de barra de émbolo 72 en una dirección generalmente a lo largo de la flecha B, los dedos elásticos 76 cooperan con la parte ahusada 84 del anillo anular sobresaliente 58 y el anillo anular sobresaliente 58 empuja o comprime los dedos elásticos 76 en una dirección generalmente a lo

largo de la flecha C (Figura 4) hasta que los dedos elásticos 76 de la cabeza de barra de émbolo 72 se deslizan sobre y pasan la parte ahusada 84 del anillo anular sobresaliente 58 y bloquean la cabeza de barra de émbolo con el adaptador de tapón 36. Una vez que los dedos elásticos 76 se deslizan sobre y pasada a una parte ahusada del anillo anular sobresaliente 58, los dedos elásticos 76 vuelven a su posición original como se muestra en la Figura 3. En esta posición, haciendo referencia a la Figura 3, el extremo de bloqueo 62 del anillo anular sobresaliente 58 apoya, entra en contacto, o acopla el extremo de bloqueo 86 de los dedos elásticos 76 con el anillo anular sobresaliente 58 dispuesto adyacente a la ranura angular 82 de la cabeza de barra de émbolo 72 y bloquea o asegura la barra de émbolo 38 con el adaptador que tapón 36. Esta configuración asegura que con los dedos elásticos 76 bloqueados mecánicamente sobre el anillo anular sobresaliente 58, la barra de émbolo 38 es asegurada al adaptador de tapón 36, de manera que se evita el movimiento significativo relativo entre la barra de émbolo 38 y el adaptador de tapón 36. De esta manera, la barra de émbolo 38 está adaptada para hacer avanzar el tapón 24 dentro del tubo de jeringuilla 12 (mostrado en la Figura 1A).

10

15

20

25

30

35

40

45

Con referencia la Figura 1A, una vez que la barra de émbolo 38 está asegurada al tapón 24, un usuario puede retirar un miembro de tapa de obturación (no mostrado) del extremo distal 16 del tubo de jeringuilla 12 y puede unir el extremo distal 16 a un conjunto de aguja separado o conjunto de conexión IV de una manera conocida. Antes de dispensar cualquier medicamento, cualquier aire atrapado dentro de la cámara 20 del tubo de jeringuilla 12 puede ser expulsado de una manera conocida.

Cuando se desee expulsar o enviar el medicamento contenido dentro del tubo de jeringuilla 12, la jeringuilla es agarrada con el pulgar del usuario sobre la pestaña 68 de la barra de émbolo 38 y con los dedos del usuario agarrando y extendiéndose alrededor de una pestaña 23 del tubo de jeringuilla 12. De esta manera, la jeringuilla 10 es agarrada por un usuario de manera bien conocida y bien reconocida, similar al funcionamiento de una jeringuilla hipodérmica convencional. A continuación el usuario efectúa un movimiento de apriete entre el pulgar sobre la pestaña 68 y los dedos sobre la pestaña de apriete 23 del tubo de jeringuilla 12, haciendo con ello que la pestaña 68 de la barra de émbolo 38 se mueva en una dirección distal hacia el extremo proximal 18 del tubo de jeringuilla 12. De esta manera, el movimiento del tapón 24 en la dirección distal fuerza al fluido F contenido dentro de la cámara 20 del tubo de jeringuilla 12 para ser forzado fuera de la abertura de salida 22 del tubo de jeringuilla 12 para suministrar el fluido F al paciente.

Habiendo descrito una realización preferida y no limitativa de un conjunto de émbolo y de un método para utilizar el mismo, a continuación se describirán con detalle realizaciones alternativas preferidas y no limitativas de conjuntos de émbolo.

Haciendo referencia a las Figuras 8-12, en una realización adicional preferida y no limitativa, un conjunto de émbolo 142 incluye una barra de émbolo 138 y un adaptador de tapón 136. Como en la realización descrita anteriormente, el adaptador 136 incluye un extremo distal 144 que tiene una parte roscada 146 configurada para la inserción en una abertura de recepción de adaptador (mostrada en la Figura 1A) de un tapón y para la conexión a una parte roscada del tapón. En otras realizaciones, el adaptador de tapón 136 está asegurado al tapón utilizando un retén de bola, lengüetas de bloqueo, un mecanismo de bloqueo cargado por muelle, un pestillo, un adhesivo, u otro mecanismo similar. El adaptador de tapón 136 está bloqueado, asegurado o acoplado con el tapón, es decir se evita el movimiento relativo significativo entre el adaptador de tapón 136 y el tapón.

Continuando con la referencia a las Figuras 8-12, un segundo extremo o proximal 148 del adaptador de tapón 136 incluye una abertura de recepción de émbolo 150 formada en el mismo. La apertura 150 es adyacente a una cavidad 152 del adaptador 136. La característica de aseguramiento o parte de acoplamiento, referida en lo que sigue como primer miembro de restricción 156, se extiende en una parte de la cavidad 152 para asegurar la barra de émbolo 138 al adaptador de tapón 136. Al contrario que en las realizaciones descritas anteriormente, el primer miembro de restricción 156 del conjunto de émbolo 142 ilustrado en las Figuras 5 y 6 tiene una estructura deformable, tal como uno o más dedos elásticos 176 que se extienden en la cavidad 152. Los dedos elásticos 176 pueden estar situados en una orientación cónica, como se muestra en la Figura 8. Específicamente, los dedos elásticos 176 se pueden extender desde el extremo proximal 148 del adaptador 136, adyacentes a la abertura de recepción de émbolo 150, hacia el interior de la cavidad 152. En esta disposición, los extremos distales 177 de los dedos 176 están generalmente más cerca que los extremos proximales de los dedos 176, formando con ello la disposición cónica. La aplicación de fuerza contra los dedos 176 hace que los dedos 176 se compriman, de manera que los extremos distales 177 de los dedos 176 se mueven radialmente hacia fuera desde el centro de la cavidad 152.

Como en las realizaciones anteriormente descritas, la barra de émbolo 138 del conjunto de émbolo 142 está adaptada para hacer avanzar el tapón 24 a través del tubo de jeringuilla 12 (mostrado en las Figuras 1A y 1B). La barra de émbolo 138 incluye una característica de aseguramiento o parte de acoplamiento, referida en lo que sigue como un miembro de restricción, para asegurar la barra de émbolo 138 al adaptador 136. En una realización, el miembro de restricción incluye una cabeza de barra de émbolo 172 y un cuello 178 dispuesto adyacente a la cabeza de barra de émbolo 172. La cabeza de barra de émbolo 172 incluye una superficie inclinada 196 que corresponde con el ángulo de los dedos elásticos 176 del adaptador de tapón 136. La cabeza 172 también incluye un extremo de bloqueo 186 o repisa en un extremo proximal de la misma para entrar en contacto con los extremos distales 177 de los dedos elásticos 176 del adaptador 136.

Continuando con la referencia a las Figuras 8-12, las etapas para asegurar la barra de émbolo 138 al adaptador de tapón 136 se describen a continuación. Específicamente, con la cabeza de barra de émbolo 172 de la barra de émbolo 138 situada adyacente a la abertura de recepción de émbolo 150 del adaptador de tapón 136, la barra de émbolo 138 es insertada o movida axialmente en la abertura de recepción de émbolo 150, de manera que la cabeza es dispuesta dentro de la abertura de recepción de émbolo 150 del adaptador 136. La superficie inclinada 196 de la cabeza 172 es adyacente a los dedos elásticos 176 del adaptador 136. Cuando una fuerza adicional es ejercida sobre la barra de émbolo 138 para mover axialmente la cabeza del barra de émbolo 172 dentro de la abertura de recepción de émbolo 150, la superficie inclinada 196 presiona contra los dedos elásticos 176 comprimiendo los dedos elásticos 176 y haciendo que los dedos 176 se muevan radialmente hacia fuera desde el centro de la cavidad 152. Una vez que la

cabeza 172 pasa el extremo distal 177 de los dedos elásticos 176, los dedos 176 vuelven a su posición original dentro de la cavidad 152 del adaptador 136. En esta posición, los extremos distales 177 de los dedos 176 entran en contacto con el extremo de bloqueo 186 de la cabeza 172 manteniendo de forma efectiva la cabeza 172 dentro de la cavidad 152 y evitando el movimiento de la barra de émbolo 138 en la dirección proximal.

Haciendo referencia las Figuras 13-16, se ilustra una realización adicional preferida y no limitativa de un conjunto de émbolo 242. El conjunto de émbolo 242 incluye un tapón 224 con un adaptador de tapón integral 236 y una barra de émbolo separada 238. El tapón 224 está formado a partir de un material elastomérico flexible adecuado, tal como un polímero sintético o caucho natural. El tapón 224 incluye un extremo distal cónico 228 para entrar en contacto con el fluido contenido dentro del tubo de jeringuilla, teniendo un extremo proximal 230 una abertura de recepción de émbolo 250 formada en el mismo, y una pared lateral sustancialmente cilíndrica 225 que se extiende entre los mismos. La pared lateral 225 puede incluir uno o más nervios 226 que se extienden desde la misma. Los nervios 22 tienen un diámetro que se corresponde con o es ligeramente mayor que el diámetro del tubo de jeringuilla (mostrado en la Figura 1A), de manera que se forma un acoplamiento de obturación entre los nervios 226 y la superficie interior del tubo de jeringuilla cuando el tapón 224 es insertado en el tubo de jeringuilla.

Continuando con la referencia a las Figuras 13-16, una cavidad cónica 252 (mostrada en las Figuras 14-16) está formada dentro del interior del tapón 224 adyacente a la abertura de recepción de émbolo 250. En la realización de las Figuras 13-16, el adaptador de tapón 236 está situado dentro de la cavidad 252. Haciendo referencia las Figuras 14-16, el adaptador 236 incluye una característica de aseguramiento o parte de acoplamiento, referida en lo que sigue como primer miembro de restricción 256, que se extiende en una parte de la cavidad 252 para asegurar la barra de émbolo 238 al adaptador de tapón 236. El primer miembro de restricción 256 tiene una estructura deformable, tal como uno o más dedos elásticos 276 que se extienden en la cavidad 252. Los dedos elásticos 276 pueden estar situados en una orientación cónica, como se muestra en la Figura 14 y en la Figura 15. Específicamente, los dedos elásticos 276 se pueden extender desde el extremo proximal 230 del tapón 224, adyacentes a la abertura de recepción de émbolo 250, hacia el interior de la cavidad 252. Los extremos distales 277 de los dedos 276 pueden estar más cerca juntos que los extremos proximales de los dedos 276 para formar la disposición cónica. La aplicación de fuerza contra los dedos 276 hace que el extremo distal 277 de los dedos 276, así como el propio tapón 224, se compriman radialmente hacia fuera desde el centro de la cavidad 252. Como resultará evidente para un experto en la técnica, el tapón 224 y el adaptador 236 pueden estar formados separadamente y conectados juntos utilizando cualesquiera medios de sujeción o de adhesivo conocidos. Alternativamente, el tapón 224 y el adaptador 236 se pueden formar conjuntamente al mismo tiempo, tal como mediante un proceso de moldeado de dos fases que incorpora el tapón 224 en el adaptador 236.

La barra de émbolo 238 del conjunto de émbolo 242 es idéntica a la barra de émbolo 138 mostrada en las Figuras 8-12 descritas anteriormente. Específicamente, la barra de émbolo 238 incluye una característica de aseguramiento o parte de acoplamiento, referida en lo que sigue como segundo miembro de restricción 274, para asegurar la barra de émbolo 238 al adaptador 236. En una realización, el segundo miembro de restricción 274 incluye una cabeza de barra de émbolo 272 y un cuello 278 dispuesto adyacente a la cabeza de barra de émbolo 272. La cabeza de barra de émbolo 272 incluye una superficie inclinada 296 que se corresponde con el ángulo de los dedos elásticos 276 del adaptador de tapón 236. La cabeza 272 incluye también un extremo de bloqueo 286 o repisa en un extremo proximal de la misma para entrar en contacto con los extremos distales 277 de los dedos elásticos 276 del adaptador 236.

Continuando con la referencia las Figuras 13-16, se describen las etapas para asegurar la barra de émbolo 238 al adaptador de tapón 236. Específicamente, con la cabeza de barra de émbolo 272 de la barra de émbolo 238 situada adyacente a la abertura de recepción de émbolo 250 del adaptador de tapón 236, la barra de émbolo 238 es insertada o movida axialmente dentro de la abertura de recepción de émbolo 250, de manera que la cabeza 272 se dispone dentro de la abertura de recepción de émbolo 250 del adaptador 236. En esta posición, la superficie inclinada 296 de la cabeza 272 es adyacente a los dedos elásticos 276 del adaptador 236. Cuando se ejerce una fuerza adicional sobre la barra de émbolo 238, la superficie inclinada 296 presiona contra los dedos elásticos 276 comprimiendo los dedos elásticos 276 y haciendo que se muevan radialmente hacia fuera desde el centro de la cavidad 252. Los dedos 276 son adyacentes a la superficie interior de la cavidad 252 del tapón 224. De este modo, presionando contra los dedos 276 también se consigue que el tapón 224 se deforme, aumentando con ello el tamaño de la cavidad 252 permite que la cabeza de émbolo 272 avance a través de la cavidad 252 hasta y más allá de los extremos distales 277 de los dedos 276, los dedos 276 y el tapón 224 vuelven a sus posiciones originales. En esta posición, los extremos distales 277 de los dedos 276 entran en contacto con el extremo de bloqueo de la cabeza 272 manteniendo de forma efectiva la cabeza 272 dentro de la cavidad y evitando el movimiento de la barra de émbolo 238 en la dirección proximal.

Aunque esta invención ha sido descrita con diseños a modo de ejemplo, la presente invención puede ser modificada más dentro del campo de esta invención. Esta aplicación está por tanto destinada a cubrir cualesquiera variaciones, usos, o adaptaciones de la invención utilizando sus principios generales. Además, esta aplicación está destinada a cubrir tales variaciones de la presente invención que entran dentro de la práctica conocida o habitual de la técnica a la que pertenece la invención y que entran dentro de los límites de las reivindicaciones adjuntas.

REIVINDICACIONES

- 1. Un conjunto de émbolo (42, 142, 242) que comprende:
- 5 un adaptador de tapón (36, 136, 236) que comprende una pared lateral inclinada, que define una abertura (50, 150, 250) y una cavidad cónica (52,152, 252) y un primer miembro de restricción (56, 156, 256) que se extiende en la cavidad cónica (52, 152, 252); y
 - una barra de émbolo (38, 138, 238) que comprende:
 - un primer extremo (64),
- 10 un segundo extremo (66), y

20

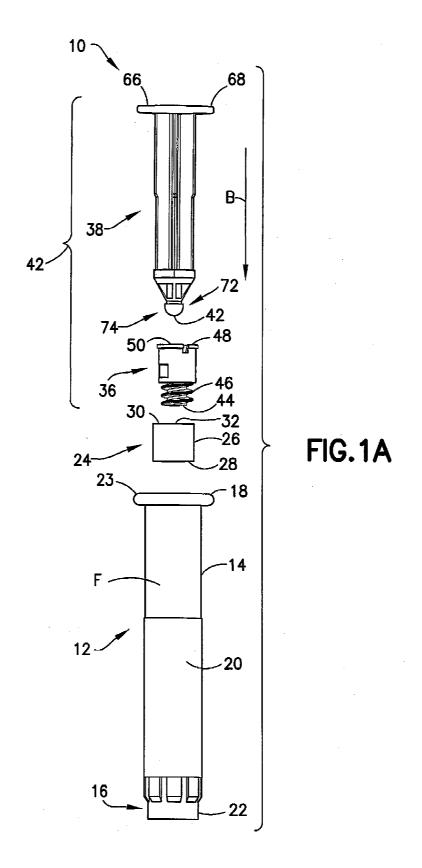
30

40

45

- una cabeza de barra de émbolo (72, 172, 272) dispuesta adyacente al primer extremo (64) de la barra de émbolo (38, 138, 238), comprendiendo la cabeza de barra de émbolo (72, 172, 272) un segundo miembro de restricción (74, 274) acoplable con el primer miembro de restricción (56, 156, 256) del adaptador de tapón (36, 136, 236),
- en donde la cabeza de barra de émbolo (72, 172, 272) es movida axialmente dentro de la cavidad cónica (52, 152, 252) del adaptador de tapón (36, 136, 236), el primer miembro de restricción (56, 156, 256) del adaptador de tapón (36, 136, 236) se acopla con el segundo miembro de restricción (74, 274) de la cabeza de barra de émbolo (72, 172, 272) para asegurar la cabeza de barra de émbolo (72, 172, 272) dentro de la cavidad cónica (52, 152, 252).

caracterizado por que

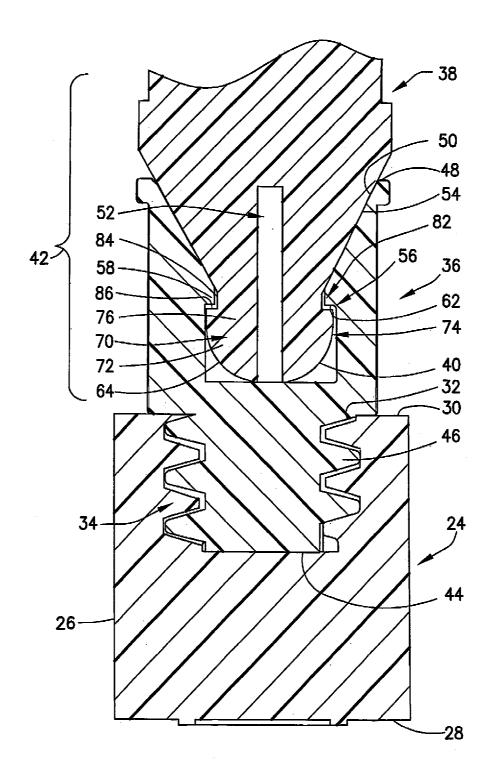
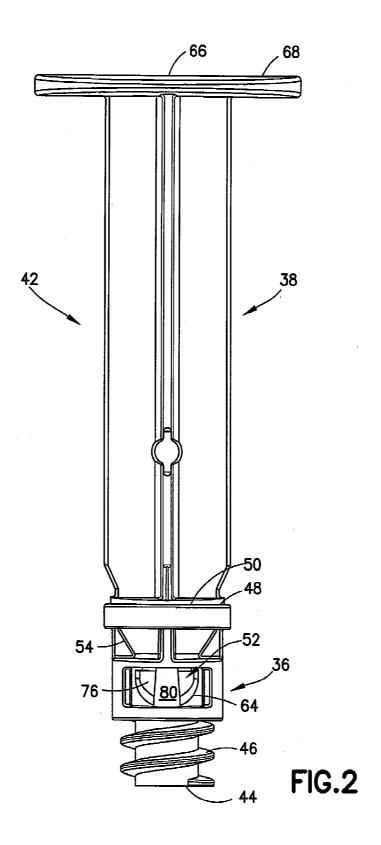
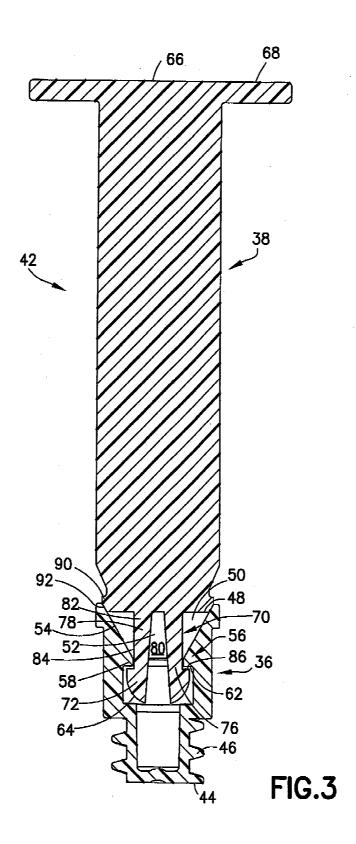
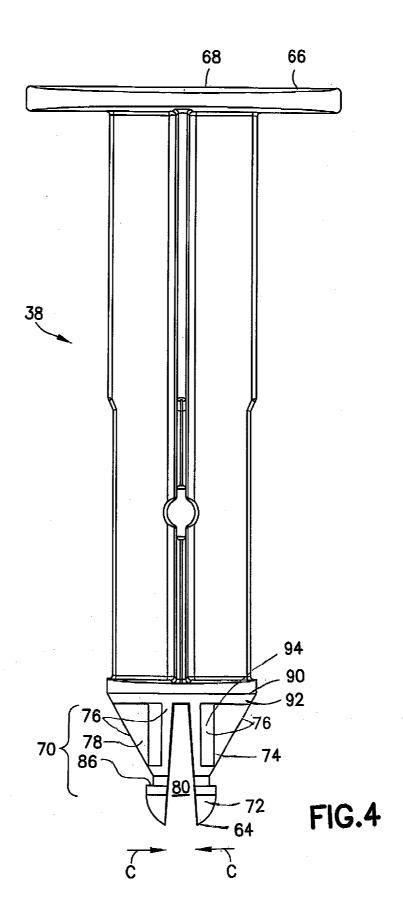
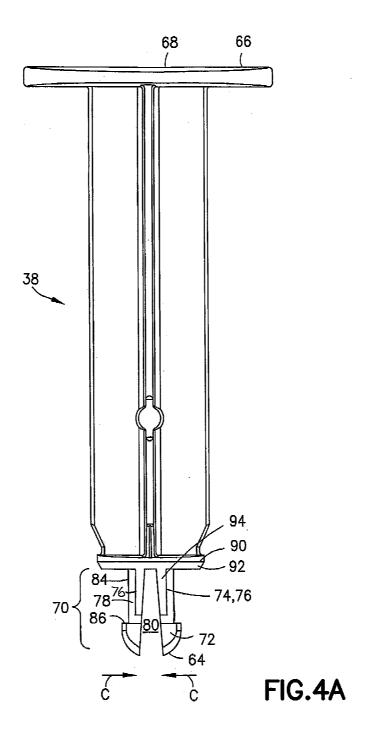

- la cavidad cónica (52, 152, 252) tiene una superficie de acoplamiento cónica (54); y la cabeza de barra de émbolo (72, 172, 272) comprende una pestaña anular (90) proximal al segundo miembro de restricción (74, 274) que tiene una superficie exterior radial está dimensionada y adaptada para conectar una parte de la superficie de acoplamiento cónica (54) del adaptador de tapón (36, 136, 236) para restringir el movimiento radial de la barra de émbolo (38, 138, 238) con relación al adaptador de tapón (36, 136, 236) cuando la cabeza de barra de émbolo (72, 172, 272) está asegurada dentro de la abertura (50, 150, 250),
- en donde la pestaña anular (90) comprende un cubo biselado (92) a lo largo de al menos una parte de la circunferencia de la misma, teniendo el cubo (92) un ángulo para coincidir con una pendiente de la superficie de acoplamiento cónica (54).
 - 2. El conjunto de émbolo de la reivindicación 1, en donde la cabeza de barra de émbolo (72) comprende además al menos un miembro de soporte (94) que se extiende radialmente desde una parte de la cabeza de barra de émbolo (72), y en donde una superficie del al menos un miembro de soporte (94) está dimensionada y adaptada para entrar en contacto con al menos una parte de la superficie cónica (54) del adaptador de tapón (36) para restringir el movimiento radial de la barra de émbolo (38) con relación al adaptador de tapón (36).
- 3. El conjunto de émbolo de la reivindicación 2, en donde el al menos un miembro de soporte es un nervio en ángulo (94) que 35 tiene un ángulo que se corresponde con la inclinación de la cavidad cónica (52).
 - 4. El conjunto de émbolo de la reivindicación 1, en donde, cuando la cabeza de barra de émbolo (72) es movida axialmente dentro de la cavidad cónica (52) del adaptador de tapón (36), el primer miembro de restricción (56) del adaptador de tapón (36) deforma el segundo miembro de restricción (74) de la cabeza de barra de émbolo (72), y una vez que la cabeza de barra de émbolo (72) avanza más allá del primer miembro de restricción (56) del adaptador de tapón (36), el segundo miembro de restricción (74) vuelve a una posición no deformada para asegurar la cabeza de barra de émbolo (72) dentro de la abertura (50).
 - 5. El conjunto de émbolo de la reivindicación 1, en donde el segundo miembro de restricción (74) de la cabeza de barra de émbolo (72) es un miembro de restricción deformable que puede pasar de una posición deformada a una posición no deformada.
 - 6. El conjunto de émbolo de la reivindicación 5, en donde el segundo miembro de restricción (74) comprende al menos dos dedos deformables (76) dispuestos alrededor de un perímetro de la barra de émbolo (38).
- 7. El conjunto de émbolo de la reivindicación 6, en donde al menos uno de los dedos deformables (76) incluye un nervio anti-50 entrada (88) que se extiende hacia dentro desde una superficie interior de la pluralidad de dedos deformables (76) para evitar que la cabeza de barra de émbolo (72) se introduzca dentro de otra cabeza de barra de émbolo.
- El conjunto de émbolo de la reivindicación 6, en donde, cuando la cabeza de barra de émbolo (72) es movida axialmente dentro de la cavidad cónica (52) del adaptador de tapón (36), el primer miembro de restricción (56) del adaptador de tapón (36) comprime los al menos dos dedos deformables (76) del segundo miembro de restricción (74), y una vez que la cabeza de barra de émbolo (72) es movida sobre y pasado el primer miembro la restricción (56) del adaptador de tapón (36), los al menos dos dedos deformables (76) del segundo miembro de restricción (74) vuelven a una posición no deformada, de manera que el primer miembro de restricción (56) del adaptador de tapón (36) se acopla con los al menos dos dedos deformables (76) del segundo miembro de restricción (74), asegurando con ello la barra de émbolo (38) al adaptador de tapón (36).
 - 9. El conjunto de émbolo de la reivindicación 1, en donde el primer miembro de restricción (156, 256) del adaptador de tapón (136, 236) comprende una pluralidad de dedos deformables (176, 276) que se extienden en la cavidad cónica (152, 252) del adaptador de tapón (136, 236) adyacente a la abertura (150, 250).
- 65 10. El conjunto de émbolo de la reivindicación 1, en donde el segundo miembro de restricción (274) de la cabeza de barra de émbolo (172, 272) es sustancialmente rígido.

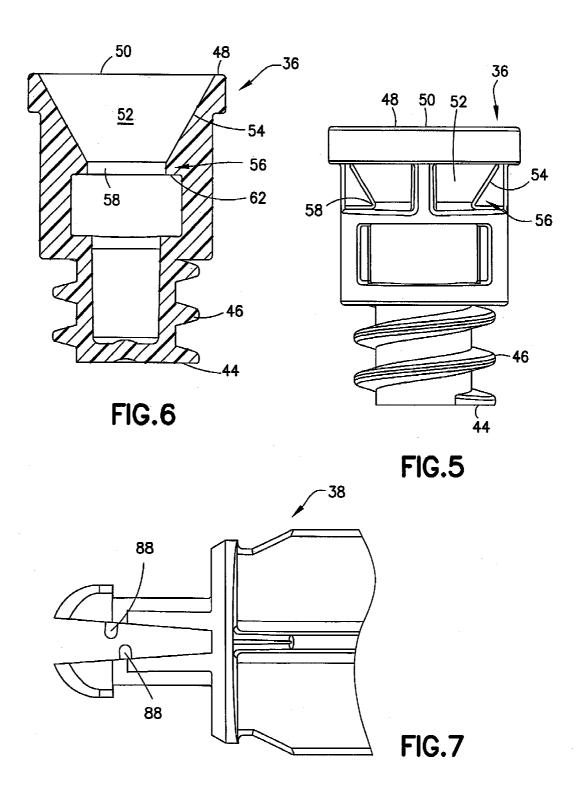
11. El conjunto de émbolo de la reivindicación 9, en donde, cuando la cabeza de barra de émbolo (172, 272) es movida axialmente dentro de la abertura (150, 250) del adaptador de tapón (136, 236), el segundo miembro de restricción (274) de la cabeza de barra de émbolo (172, 272) deforma la pluralidad de los dedos deformables (176, 276) del primer miembro de restricción (156, 256) del adaptador de tapón (136, 236), y una vez que la cabeza de barra de émbolo (172, 272) es movida sobre y pasado el primer miembro de restricción (156, 256) del adaptador de tapón (136, 236), la pluralidad de dedos deformables (176, 276) del primer miembro de restricción (156, 256) vuelve a una posición no deformada de manera que la pluralidad de dedos deformables (176, 276) del primer miembro de restricción (156, 256) se acopla con el segundo miembro de restricción (274) asegurando con ello la barra de émbolo (138, 238) al adaptador de tapón (136, 236).

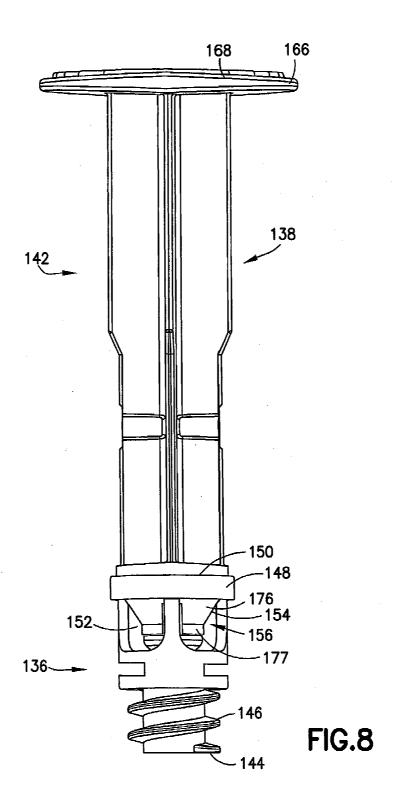
5

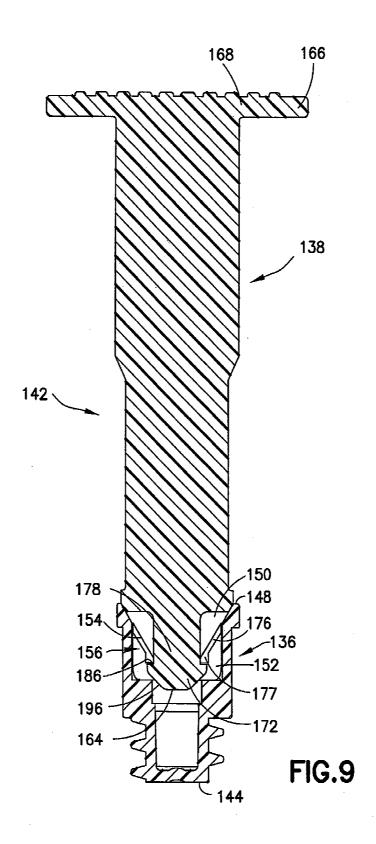
10

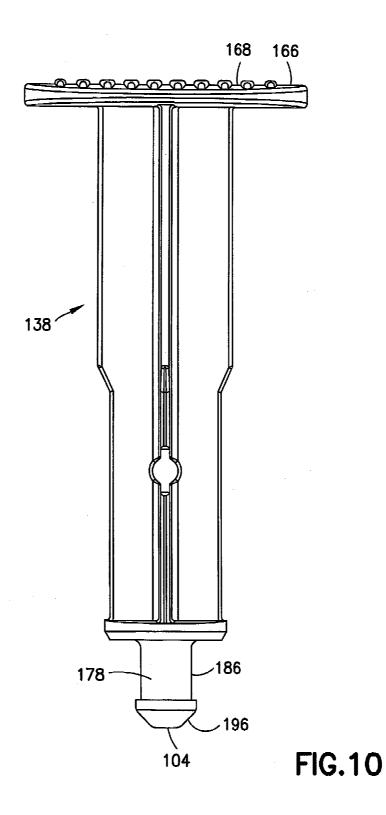
- 12. El conjunto de émbolo de la reivindicación 1, en donde el adaptador de tapón (36, 136) está formado integralmente con un tapón (24, 224) que está adaptado para deslizar a través de un tubo (12) de una jeringuilla (10).
- 13. El conjunto de émbolo de la reivindicación 12, en donde el tapón (224) incluye una cavidad cónica (252) accesible a través de una abertura del tapón (224), en donde el adaptador de tapón (236) está situado totalmente dentro de la cavidad cónica (252), y en donde el tapón (224) y el adaptador de tapón (236) están preferiblemente formados mediante un proceso de moldeo de dos fases.
- 14. El conjunto de émbolo de la reivindicación 1, en donde el adaptador de tapón (36, 136) comprende un miembro de conexión roscado (46, 146) que se extiende desde un extremo distal (44, 144) el mismo, y en donde el miembro de conexión roscado (46) está dimensionado y adaptado para la inserción en una cavidad roscada (34) de un tapón (24), estando el tapón (24) adaptado para avanzar a través de un tubo de jeringuilla (12).

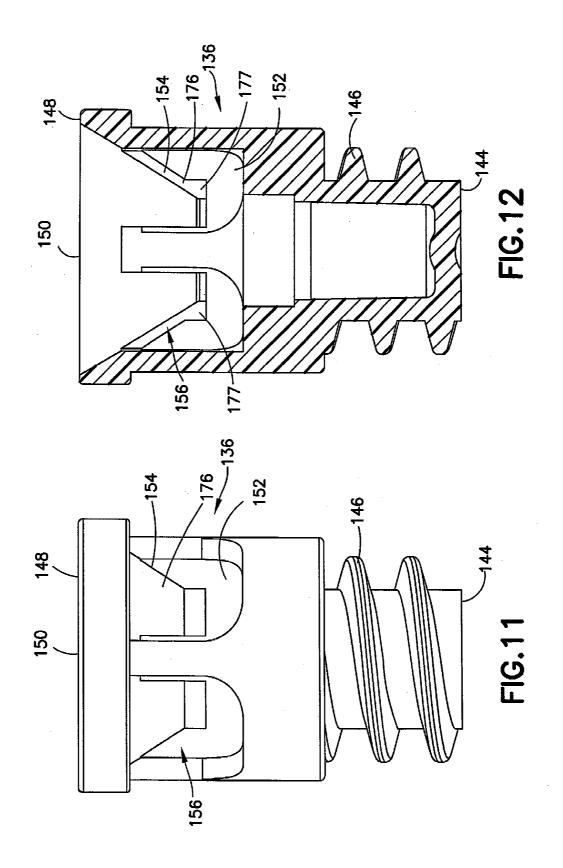






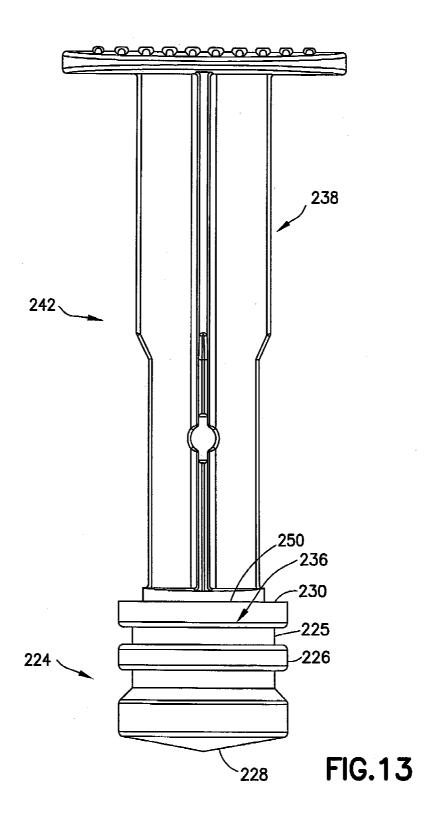

FIG.1B











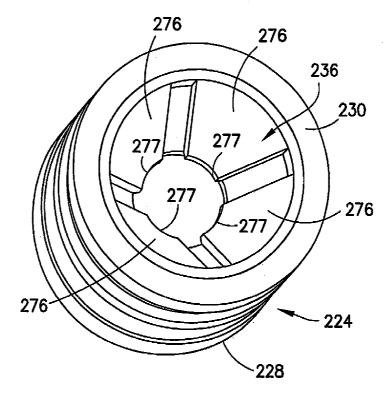


FIG.15

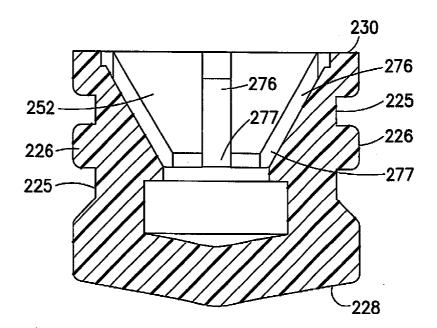


FIG.16