

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 728 167

(51) Int. Cl.:

A01N 43/56 (2006.01) A01N 37/50 (2006.01) A01N 43/36 (2006.01) A01N 43/40 (2006.01) A01N 43/54 A01N 43/653 A01N 45/02 A01N 47/24 (2006.01) A01P 3/00 (2006.01)

(12) TRADUCCIÓN DE PATENTE EUROPEA

T3

23.07.2013 PCT/EP2013/065480 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 30.01.2014 WO14016279

(96) Fecha de presentación y número de la solicitud europea: 23.07.2013 E 13744472 (5)

06.03.2019 (97) Fecha y número de publicación de la concesión europea: EP 2877025

(54) Título: Composiciones fungicidas

(30) Prioridad:

26.07.2012 EP 12177995

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 22.10.2019

(73) Titular/es:

SYNGENTA PARTICIPATIONS AG (100.0%) Rosentalstrasse 67 4058 Basel, CH

(72) Inventor/es:

SWART, GINA MERCIA; HAAS, ULRICH JOHANNES; **OOSTENDORP, MICHAEL y WOLF, HANNO, CHRISTIAN**

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Composiciones fungicidas

- 5 La presente invención se refiere a composiciones fungicidas novedosas para el tratamiento de enfermedades fitopatógenas de plantas útiles, especialmente hongos fitopatógenos, y a un método de control de enfermedades fitopatógenas en plantas útiles.
- Se sabe por los documentos WO 2008/148570, WO 2010/063700, WO 2010/084078 y WO 2008/151828 que determinados derivados de pirazolil-carboxamida tienen actividad biológica contra hongos fitopatógenos. Por otro lado, diversos compuestos fungicidas de diferentes clases químicas son ampliamente conocidos como fungicidas de plantas para su aplicación en diversos cultivos de plantas cultivadas. Sin embargo, la tolerancia del cultivo y la actividad contra el hongo fitopatógeno de plantas no siempre satisfacen las necesidades de la práctica agrícola en muchos acontecimientos y aspectos. Para superar este problema, se han proporcionado mezclas binarias de pirazolil-carboxamidas con determinados fungicidas en el documento WO 2012/041874.

Ahora se ha descubierto que la adición de un fungicida adicional específico a composiciones que comprenden las mezclas binarias divulgadas en el documento WO 2012/041874 da lugar a composiciones fungicidas ternarias novedosas con propiedades ventajosas.

- Por lo tanto, se ha propuesto, de acuerdo con la invención, una composición novedosa adecuada para el control de enfermedades causadas por fitopatógenos, que comprende como componente (A) 3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida; y como componente (B) un compuesto seleccionado del grupo que consiste en:
- el compuesto de fórmula VII

20

25

30

35

50

оп_з (VII), isopirazam, difenoconazol, azoxistrobina, protioconazol, tebuconazol, piraclostrobina, trifloxistrobina, fludioxonil y ciprodinil;

- y como componente (C) un compuesto seleccionado del grupo que consiste en:
- isopirazam, difenoconazol, azoxistrobina, protioconazol, tebuconazol, piraclostrobina, trifloxistrobina, fludioxonil y ciprodinil; con la condición de que en cada composición el componente (B) es diferente del componente (C).
- El componente (A) puede existir en dos formas enantioméricas, fórmula la y lb:

- 40 La invención abarca el uso de ambas formas enantioméricas. El componente (A) y su preparación se describen en los documentos WO 2010/063700, WO 2010/084078 y WO 2008/151828.
- Se ha descubierto que el uso de los componentes (B) y (C) en combinación con el componente (A) puede potenciar sorprendente y sustancialmente la eficacia del último contra hongos y viceversa. Además, el método de la invención es eficaz contra un espectro más amplio de dichos hongos, que pueden combatirse con los ingredientes activos de este método, cuando se usan en solitario.
 - En general, la relación ponderal del componente (A) a la mezcla de componentes (B) y (C) es de 1000:1 a 1:1000, especialmente de 50:1 a 1:50, más especialmente en una relación de 20:1 a 1:20, incluso más especialmente de 10:1 a 1:10, muy especialmente de 5:1 y 1:5, dando especial preferencia a una relación de 2:1 a 1:2, y siendo

asimismo preferida una relación de 4:1 a 2:1, por encima de todo en una relación de 1:1, o 5:1, o 5:2, o 5:3, o 5:4, o 4:1, o 4:2, o 4:3, o 3:1, o 3:2, o 2:1, o 1:5, o 2:5, o 3:5, o 4:5, o 1:4, o 2:4, o 3:4, o 1:3, o 2:3, o 1:2, o 1:600, o 1:300, o 1:150, o 1:35, o 2:35, o 4:35, o 1:75, o 2:75, o 4:75, o 1:6000, o 1:3000, o 1:1500, o 1:350, o 2:350, o 4:350, o 1:750, o 2:750, o 4:750. Se entiende que esas relaciones de mezcla incluyen, por un lado, relaciones ponderales y, también, por otro lado, relaciones molares.

En una realización preferida de la invención, las relaciones ponderales de componente (A) a la mezcla de componentes (B) y (C) son de 4:1 a 1:4.

10 En una realización preferida de la invención, las relaciones ponderales de componente (B) a componente (C) son de 2: 1 a 1: 6.

Se ha descubierto, sorprendentemente, que determinadas relaciones ponderales de componente (A) a la mezcla de componente (B) y (C) pueden dar lugar a actividad sinérgica. Por lo tanto, en este documento se describen composiciones, en las que el componente (A) y la mezcla de componente (B) y (C) están presentes en la composición en cantidades que producen un efecto sinérgico. Esta actividad sinérgica es evidente por el hecho de que la actividad fungicida de la composición que comprende componente (A) y la mezcla de componente (B) y (C) es mayor que la suma de las actividades fungicidas de componente (A) y de la mezcla de componente (B) y (C). Esta actividad sinérgica amplía el intervalo de acción del componente (A) y la mezcla de componente (B) y (C) de dos maneras. En primer lugar, las tasas de aplicación del componente (A) y la mezcla de componente (B) y (C) se reducen mientras la acción permanece igual de buena, lo que significa que la mezcla de ingredientes activos aún consigue un alto grado de control de fitopatógenos incluso cuando los dos componentes individuales han llegado a ser totalmente ineficaces en dicho bajo intervalo de tasa de aplicación. En segundo lugar, hay una ampliación sustancial del espectro de fitopatógenos que pueden controlarse.

Existe un efecto sinérgico siempre que la acción de una combinación de ingredientes activos sea superior a la suma de las acciones de los componentes individuales. La acción esperada E para una combinación determinada de ingredientes activos sigue la denominada fórmula de COLBY y se puede calcular de la siguiente manera (COLBY, S.R. "Calculating synergistic and antagonistic responses of herbicide combination". Weeds, Vol. 15, páginas 20-22; 1967):

ppm = miligramos de ingrediente activo (= i.a.) por litro de mezcla de pulverización

X = % de acción por ingrediente activo (A) usando p ppm de ingrediente activo

Y = % de acción por ingredientes activos (B+C) usando q ppm de ingrediente activo.

O:

5

15

20

25

30

35

45

55

60

40 X = % de acción por ingredientes activos (A+B) usando p ppm de ingrediente activo

Y = % de acción por ingrediente activo (C) usando q ppm de ingrediente activo.

O:

X = % de acción por ingredientes activos (A+C) usando p ppm de ingrediente activo

Y = % de acción por ingrediente activo (B) usando q ppm de ingrediente activo.

De acuerdo con COLBY, la acción esperada (aditiva) de los ingredientes activos (A) + (B+C) o (A+B) + (C) o (A+C) +

$$E = X + Y - \frac{X \cdot Y}{100}$$

(B) usando p+q ppm de ingrediente activo es

Si la acción observada en la práctica (O) es superior a la acción esperada (E), entonces la acción de la combinación será superaditiva, es decir, existe un efecto sinérgico. En términos matemáticos, la sinergia corresponde a un valor positivo para la diferencia de (O-E). En el caso de adición puramente complementaria de actividades (actividad esperada), dicha diferencia (O-E) es cero. Un valor negativo de dicha diferencia (O-E) indica una pérdida de actividad en comparación con la actividad esperada.

La sinergia también puede calcularse usando la siguiente fórmula:

E (valor esperado) = X + Y + Z - [(X Y) + (X Z) + (Y Z)/100] + [X Y Z/10000]

X, Y, Z = % de acción por ingrediente activo (A), (B) y (C) en solitario usando p ppm de ingrediente activo.

Sin embargo, además de la acción sinérgica real con respecto a la actividad fungicida, las composiciones de acuerdo con la invención también pueden tener propiedades ventajosas sorprendentes adicionales. Ejemplos de dichas propiedades ventajosas que pueden mencionarse son: capacidad de degradación más ventajosa; comportamiento toxicológico y/o ecotoxicológico mejorado; o características mejoradas de las plantas útiles, incluyendo: brote, rendimiento del cultivo, sistema de raíces más desarrollado, mayor ahijamiento, aumento de la altura de la planta, mayor limbo, menos hojas muertas en la base, vástagos más resistentes, color de las hojas más verde, menor necesidad de fertilizantes, menor necesidad de semillas, vástagos más productivos, floración más temprana, madurez del grano temprana, menor vuelco de la planta (encamado), mayor crecimiento de los brotes, mayor resistencia de la planta y germinación temprana.

10

Algunas composiciones de acuerdo con la invención tienen una acción sistémica y pueden

usarse como fungicidas de tratamiento en las hojas, la tierra y las semillas.

15 Con las composiciones de acuerdo con la invención es posible inhibir o destruir los microorganismos fitopatógenos que existen en plantas o en partes de las plantas (frutos, flores, hojas, tallos, tubérculos, raíces) en diferentes plantas útiles, mientras que al mismo tiempo, las partes de las plantas que crecen después también están protegidas del ataque por microorganismos fitopatógenos.

Las composiciones de acuerdo con la invención pueden aplicarse a los microorganismos fitopatógenos, las plantas útiles, el emplazamiento de las mismas, el material de propagación de las mismas, productos almacenados o materiales técnicos amenazados por el ataque de microorganismos.

Las composiciones de acuerdo con la invención pueden aplicarse antes o después de la infección de las plantas útiles, el material de propagación de las mismas, los productos de almacenamiento o las materiales técnicos por los microorganismos.

Un aspecto adicional de la presente invención es un método de control de enfermedades en plantas útiles o en material de propagación de las mismas, causadas por fitopatógenos, que comprende aplicar a las plantas útiles, el emplazamiento de las mismas o el material de propagación de las mismas, una composición de acuerdo con la invención. Se prefiere un método que comprende aplicar a las plantas útiles o al emplazamiento de las mismas una composición de acuerdo con la invención, más preferiblemente a las plantas útiles. Se prefiere además un método que comprende aplicar al material de propagación de las plantas útiles una composición de acuerdo con la invención.

35

40

45

65

30

25

Los componentes (B) y (C) son conocidos. Donde los componentes (B) y (C) están incluidos en "El Manual de Plaguicidas" [The Pesticide Manual - A World Compendium; decimotercera edición; Editor: C. D. S. Tomlin; Consejo Británico de Protección de Cultivos], se describen en el mismo con el número de referencia dado en paréntesis anteriormente en este documento para el componente (B) y (C) particular; por ejemplo, el compuesto "abamectina" se describe con el número de referencia (1). La mayoría de los componentes (B) y (C) se mencionan anteriormente en este documento por el llamado "nombre común", el "nombre ISO común" pertinente u otro "nombre común" que se use en casos individuales. Si la denominación no es un "nombre común", la naturaleza de la denominación usada en su lugar se da en paréntesis para el componente (B) y (C) particular respectivamente; en ese caso, se usa el nombre IUPAC, el nombre IUPAC/Compendio de Químicos, un "nombre químico", un "nombre tradicional", un "nombre de compuesto" o un "código de desarrollo" o, si no se usa una de esas denominaciones ni un "nombre común", se emplea un "nombre alternativo".

El isopirazam (3-(difluorometil)-1-metil-*N*-[1,2,3,4-tetrahidro-9-(1-metiletil)-1,4-metanonaftalen-5-il]-1*H*-pirazol-4-carboxamida) se describe en el documento WO 2004/035589, en el documento WO 2006/037632 y en el documento EP 1556385 y está registrado con el CAS-Reg. 881685-58-1. El compuesto de fórmula (VII) (solatenol, (9-diclorometileno-1,2,3,4-tetrahidro-1,4-metano-naftalen-5-il)-amida del ácido 3-difluorometil-1-metil-1H-pirazol-4-carboxílico) se describe en el documento WO 2007/048556.

En todo este documento, la expresión "composición" significa las diversas mezclas o combinaciones de componentes (A) y la mezcla de (B) y (C), por ejemplo, en una única forma "de mezcla preparada", en una mezcla de pulverización combinada compuesta de formulaciones diferentes de los componentes de ingredientes activos individuales, tal como una "mezcla en depósito", y en un uso combinado de los ingredientes activos individuales cuando se aplican de una manera secuencial, es decir, uno detrás del otro con un periodo razonablemente corto, tal como unas pocas horas o días. El orden de aplicación de los componentes (A) y (B) y (C) no es esencial para que funcione la presente invención.

Las combinaciones de ingredientes activos (A) + (B) + (C) pueden contener adicionalmente ácido fosforoso (nombre IUPAC ácido fosfónico) y sales de ácido fosforoso, particularmente la sal de sodio, potasio y amonio. El ácido fosforoso y sales de ácido fosforoso, particularmente la sal de sodio, potasio y amonio también pueden mezclarse con componentes (A) + (B) y (A) + (C).

```
El componente (A) es el compuesto n.º 1.001 (3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-
       triclorofenil)etil]pirazol-4-carboxamida). Las premezclas preferidas que comprenden componente (A) y componente
       (B) listas para mezclarse con componente (C) se seleccionan del grupo que consiste en
 5
       el compuesto n.º 1.001 + el compuesto de fórmula VII
       el compuesto n.º 1.001 + isopirazam
       el compuesto n.º 1.001 + difenoconazol
       el compuesto n.º 1.001 + azoxistrobina
       el compuesto n.º 1.001 + protioconazol
       el compuesto n.º 1.001 + tebuconazol
10
       el compuesto n.º 1.001 + piraclostrobina
       el compuesto n.º 1.001 + trifloxistrobina
       el compuesto n.º 1.001 + fludioxonil y
       el compuesto n.º 1.001 + ciprodinil.
15
       Los componentes (C) especialmente preferidos para la mezcla con premezclas de componentes (A) y (B)
       mencionadas anteriormente se seleccionan del grupo que consiste en isopirazam, difenoconazol, azoxistrobina,
       protioconazol, tebuconazol, piraclostrobina, trifloxistrobina, fludioxonil, ciprodinil y fluazinam, con la condición de que
       en cada composición el componente (B) sea diferente del componente (C).
20
       Las realizaciones especialmente preferidas de la presente invención se seleccionan de las siguientes mezclas de
       ingredientes activos:
       el compuesto n.º 1.001 + el compuesto de fórmula VII + isopirazam;
25
       el compuesto n.º 1.001 + el compuesto de fórmula VII + difenoconazol;
       el compuesto n.º 1.001 + el compuesto de fórmula VII + azoxistrobina;
       el compuesto n.º 1.001 + el compuesto de fórmula VII + protioconazol;
       el compuesto n.º 1.001 + el compuesto de fórmula VII + tebuconazol;
       el compuesto n.º 1.001 + el compuesto de fórmula VII + piraclostrobina;
30
       el compuesto n.º 1.001 + el compuesto de fórmula VII + trifloxistrobina;
       el compuesto n.º 1.001 + el compuesto de fórmula VII + fludioxonil;
       el compuesto n.º 1.001 + el compuesto de fórmula VII + ciprodinil;
       el compuesto n.º 1.001 + isopirazam + difenoconazol;
       el compuesto n.º 1.001 + isopirazam + azoxistrobina;
       el compuesto n.º 1.001 + isopirazam + protioconazol;
35
       el compuesto n.º 1.001 + isopirazam + tebuconazol;
       el compuesto n.º 1.001 + isopirazam + piraclostrobina;
       el compuesto n.º 1.001 + isopirazam + trifloxistrobina;
       el compuesto n.º 1.001 + isopirazam + fludioxonil;
40
       el compuesto n.º 1.001 + isopirazam + ciprodinil;
       el compuesto n.º 1.001 + difenoconazol + azoxistrobina;
       el compuesto n.º 1.001 + difenoconazol + protioconazol;
       el compuesto n.º 1.001 + difenoconazol + tebuconazol;
       el compuesto n.º 1.001 + difenoconazol + piraclostrobina;
       el compuesto n.º 1.001 + difenoconazol + trifloxistrobina;
45
       el compuesto n.º 1.001 + difenoconazol + fludioxonil;
       el compuesto n.º 1.001 + difenoconazol + ciprodinil;
       el compuesto n.º 1.001 + azoxistrobina + protioconazol;
       el compuesto n.º 1.001 + azoxistrobina + tebuconazol;
50
       el compuesto n.º 1.001 + azoxistrobina + piraclostrobina;
       el compuesto n.º 1.001 + azoxistrobina + trifloxistrobina;
       el compuesto n.º 1.001 + azoxistrobina + fludioxonil;
       el compuesto n.º 1.001 + azoxistrobina + ciprodinil;
       el compuesto n.º 1.001 + protioconazol + tebuconazol;
55
       el compuesto n.º 1.001 + protioconazol + piraclostrobina;
       el compuesto n.º 1.001 + protioconazol + trifloxistrobina;
       el compuesto n.º 1.001 + protioconazol + fludioxonil;
       el compuesto n.º 1.001 + protioconazol + ciprodinil;
       el compuesto n.º 1.001 + tebuconazol + piraclostrobina;
       el compuesto n.º 1.001 + tebuconazol + trifloxistrobina;
60
       el compuesto n.º 1.001 + tebuconazol + fludioxonil;
       el compuesto n.º 1.001 + tebuconazol + ciprodinil;
```

el compuesto n.º 1.001 + piraclostrobina + trifloxistrobina; el compuesto n.º 1.001 + piraclostrobina + fludioxonil; el compuesto n.º 1.001 + piraclostrobina + ciprodinil;

el compuesto n.º 1.001 + trifloxistrobina + fludioxonil;

65

```
el compuesto n.º 1.001 + trifloxistrobina + ciprodinil;
el compuesto n.º 1.001 + trifloxistrobina + fluazinam; y
el compuesto n.º 1.001 + fludioxonil + ciprodinil.
```

5 Las combinaciones de ingredientes activos son eficaces contra microorganismos dañinos, tales como microorganismos que causan enfermedades fitopatógenas, en particular contra bacterias y hongos fitopatógenos.

Las combinaciones de ingredientes activos son eficaces especialmente contra hongos fitopatógenos que pertenecen a las siguientes clases: ascomicetos (por ejemplo, *Venturia*, *Podosphaera*, *Erysiphe*, *Monilinia*, *Mycosphaerella*, *Uncinula*); basidiomicetos (por ejemplo, el género *Hemileia*, *Rhizoctonia*, *Phakopsora*, *Puccinia*, *Ustilago*, *Tilletia*); hongos imperfectos (también conocidos como deuteromicetos; por ejemplo, *Botrytis*, *Helminthosporium*, *Rhynchosporium*, *Fusarium*, *Septoria*, *Cercospora*, *Alternaria*, *Pyricularia* y *Pseudocercosporella*); oomicetos (por ejemplo, *Phytophthora*, *Peronospora*, *Pseudoperonospora*, *Albugo*, *Bremia*, *Pythium*, *Pseudosclerospora*, *Plasmopara*).

15

20

25

45

50

55

10

De acuerdo con la invención, las "plantas útiles" suelen comprender las siguientes especies de plantas: vides; cereales tales como trigo, cebada, centeno o avena; remolacha tal como la remolacha azucarera o remolacha forrajera; frutas tales como pomos, drupas o frutas del bosque, por ejemplo, manzanas, peras, ciruelas, melocotones, almendras, cerezas, fresas, frambuesas o moras; plantas leguminosas tales como alubias, lentejas, guisantes o soja; plantas oleosas tales como colza, mostaza, amapola, aceitunas, girasoles, coco, plantas de aceite de ricino, granos de cacao o cacahuetes; plantas cucurbitáceas tales como calabazas, pepinos o melones; plantas que producen fibras tales como algodón, lino, cáñamo o yute; frutas cítricas tales como naranjas, limones, pomelos o mandarinas; hortalizas tales como espinacas, lechuga, espárragos, coles, zanahorias, cebollas, tomates, patatas, cucurbitáceas o pimientos; lauráceas tales como aguacates, canela o alcanfor; maíz; tabaco; frutos secos; café; caña de azúcar; té; vides; lúpulos; durián; bananas; plantas de goma natural; pasto o plantas ornamentales tales como flores, arbustos, árboles latifolios o perennifolios, por ejemplo, coníferas. Esta lista no representa ninguna limitación

Debe entenderse que la expresión "plantas útiles" también incluye plantas útiles que se han modificado para que sean tolerantes a herbicidas, tales como bromoxinil, o a clases de herbicidas (tales como, por ejemplo, inhibidores de HPPD, inhibidores de ALS, por ejemplo, primisulfurón, prosulfurón y trifloxisulfurón, inhibidores de EPSPS (5-enolpirovil-shiquimato-3-fosfato-sintasa), inhibidores de GS (glutamina-sintetasa), como resultado de métodos convencionales de cultivo selectivo o de ingeniería genética. Un ejemplo de un cultivo que se ha modificado para que sea tolerante a imidazolinonas, por ejemplo, imazamox, mediante métodos convencionales de cultivo selectivo (mutagénesis) es la colza de verano Clearfield® (canola). Los ejemplos de cultivos que se han modificado para que sean tolerantes a herbicidas o clases de herbicidas mediante métodos de ingeniería genética incluyen las variedades de maíz resistentes a glifosato y glufosinato comercializadas con los nombres comerciales RoundupReady®, Herculex I® y LibertyLink®.

Debe entenderse que la expresión "plantas útiles" incluye también plantas útiles que se han transformado mediante el uso de técnicas de ADN recombinante, que pueden sintetizar una o más toxinas de acción selectiva, tales como las conocidas, por ejemplo, a partir de bacterias productoras de toxinas, especialmente las del género *Bacillus*.

Las toxinas que pueden expresarse por estas plantas transgénicas incluyen, por ejemplo, proteínas insecticidas, por ejemplo, proteínas insecticidas de *Bacillus cereus* o *Bacillus popilliae*; o proteínas insecticidas de *Bacillus thuringiensis* tales como δ-endotoxinas, por ejemplo, CrylA(b), CrylA(c), CrylF, CrylF(a2), CrylIA(b), CrylIIA, CrylIIB(b1) o Cry9c, o proteínas insecticidas vegetativas (VIP), por ejemplo, VIP1, VIP2, VIP3 o VIP3A; o proteínas insecticidas de nematodos que colonizan bacterias, por ejemplo, *Photorhabdus* spp. o *Xenorhabdus* spp., tales como *Photorhabdus luminescens, Xenorhabdus nematophilus*; toxinas producidas por animales tales como toxinas de escorpiones, toxinas de arácnidos, toxinas de avispas y otras neurotoxinas específicas de insectos; toxinas producidas por hongos tales como toxinas de *Streptomycetes*, lectinas de plantas tales como lectinas de guisante, lectinas de cebada o lectinas de la campanilla de invierno; aglutininas; inhibidores de proteinasas tales como inhibidores de tripsina, inhibidores de serina proteasa, inhibidores de patatina, cistatina, papaína; proteínas que desactivan ribosomas (RIP) tales como ricina, RIP del maíz, abrina, lufina, saporina o briodina; enzimas que participan en el metabolismo de esteroides tales como 3-hidroxiesteroide-oxidasa, ecdiesteroide-UDP-glucosil-transferasa, colesterol-oxidasas, inhibidores de ecdisona, HMG-COA-reductasa, bloqueadores de canales iónicos tales como bloqueadores de canales de sodio o calcio, esterasa de la hormona juvenil, receptores de hormonas diuréticas, estilbeno-sintasa, bibencil-sintasa, quitinasas y glucanasas.

En el contexto de la presente invención, por δ-endotoxinas debe entenderse, por ejemplo, CrylA(b), CrylA(c), CrylF, CrylF(a2), CrylIA(b), CrylIIA, CrylIIB(b1) o Cry9c, o proteínas insecticidas vegetativas (VIP), por ejemplo VIP1, VIP2, VIP3 o VIP3A, expresamente también toxinas híbridas, toxinas truncadas y toxinas modificadas. Las toxinas híbridas se producen de manera recombinante mediante una nueva combinación de diferentes dominios de estas proteínas (véase, por ejemplo, el documento WO 02/15701). Un ejemplo de una toxina truncada es una CrylA(b) truncada, que
 se expresa en el maíz Bt11 de Syngenta Seed SAS, como se describe a continuación. En el caso de las toxinas

modificadas, se remplazan uno o más aminoácidos de la toxina de origen natural. En dichos remplazados de aminoácidos, se insertan preferiblemente secuencias de reconocimiento de proteasa presentes de forma no natural en la toxina, tal como, por ejemplo, en el caso de CrylllA055, se inserta una secuencia de reconocimiento de catepsina-D en una toxina CrylllA (véase el documento WO 03/018810)

Ejemplos de dichas toxinas o plantas transgénicas que pueden sintetizar dichas toxinas se describen, por ejemplo, en los documentos EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 y WO 03/052073.

Los procesos para la preparación de estas plantas transgénicas son en general conocidos por los expertos en la materia y se describen, por ejemplo, en las publicaciones mencionadas anteriormente. Los ácidos desoxirribonucleicos de tipo Cryl y su preparación son conocidos, por ejemplo, por los documentos WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 y WO 90/13651.

La toxina contenida en las plantas transgénicas confiere a las plantas tolerancia a insectos dañinos. Dichos insectos pueden pertenecer a cualquier grupo taxonómico de insectos, pero de forma habitual pertenecen especialmente al grupo de los escarabajos (coleópteros), insectos con dos alas (dípteros) y mariposas (lepidópteros).

Existe constancia de plantas transgénicas que contienen uno o más genes que codifican resistencia a insecticidas y expresan una o más toxinas, y algunas de ellas se pueden adquirir de proveedores comerciales. Algunos ejemplos de estas plantas son: YieldGard® (variedad de maíz que expresa una toxina CryIA(b)); YieldGard Rootworm® (variedad de maíz que expresa una toxina CryIB(b1)); YieldGard Plus® (variedad de maíz que expresa una toxina CryIB(b1)); Starlink® (variedad de maíz que expresa una toxina Cry9(c)); Herculex I® (variedad de maíz que expresa una toxina Cry9(c)); Herculex I® (variedad de maíz que expresa una toxina Cry9(c)); Herculex I® (variedad de maíz que expresa una toxina Cry9(c)); Herculex I® (variedad de maíz que expresa una toxina Cry9(c)); Herculex I® (variedad de maíz que expresa una toxina Cry9(c)); Bollgard I® (variedad de algodón que expresa una toxina Cry1A(c)); Bollgard II® (variedad de algodón que expresa una toxina Cry1A(c)); NewLeaf® (variedad de patata que expresa una toxina CryIIA); NatureGard® y Protecta®.

Ejemplos adicionales de dichos cultivos transgénicos son:

5

20

25

30

35

40

55

60

- 1. **Maíz Bt11** de Syngenta Seeds SAS, Chemin de l'Hobit 27, F-31 790 St. Sauveur, Francia, número de registro C/FR/96/05/10. *Zea mays* modificada genéticamente para que sea resistente al ataque del gusano barrenador del maíz europeo (*Ostrinia nubilalis* y *Sesamia nonagrioides*) mediante la expresión transgénica de una toxina CryIA(b) truncada. El maíz Bt11 también expresa transgénicamente la enzima PAT para lograr tolerancia al herbicida glufosinato de amonio.
- 2. **Maíz Bt176** de Syngenta Seeds SAS, Chemin de l'Hobit 27, F-31 790 St. Sauveur, Francia, número de registro C/FR/96/05/10. *Zea mays* modificada genéticamente para que sea resistente al ataque del gusano barrenador del maíz europeo (*Ostrinia nubilalis* y *Sesamia nonagrioides*) mediante la expresión transgénica de una toxina CrylA(b). El maíz Bt176 también expresa transgénicamente la enzima PAT para lograr tolerancia al herbicida glufosinato de amonio.
- Maíz MIR604 de Syngenta Seeds SAS, Chemin de l'Hobit 27, F-31 790 St. Sauveur, Francia, número de registro C/FR/96/05/10. Maíz que se ha hecho resistente a insectos mediante la expresión transgénica de una toxina CryIIIA modificada. Esta toxina es Cry3A055 modificada mediante la inserción de una secuencia de reconocimiento de la proteasa catepsina D. La preparación de dichas plantas de maíz transgénico se describe en el documento WO 03/018810.
- 4. **Maíz MON 863** de Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Bruselas, Bélgica, número de registro C/DE/02/9. MON *863* expresa una toxina CryllIB(b1) y tiene resistencia a determinados insectos coleópteros.
 - 5. **Algodón IPC 531** de Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Bruselas, Bélgica, número de registro C/ES/96/02.
 - 6. **Maíz 1507** de Pioneer Overseas Corporation, Avenue Tedesco, 7 B-1160 Bruselas, Bélgica, número de registro C/NL/00/10. Maíz modificado genéticamente para que exprese la proteína Cry1F, para conseguir resistencia a determinados insectos lepidópteros, y para que exprese la proteína PAT, para conseguir tolerancia al herbicida glufosinato de amonio.
 - 7. **Maíz NK603 x MON 810** de Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Bruselas, Bélgica, número de registro C/GB/02/M3/03. Consiste en variedades de maíz híbridas cultivadas de forma convencional mediante el cruce de las variedades modificadas genéticamente NK603 y MON 810. El maíz NK603 x MON 810 expresa de forma transgénica la proteína CP4 EPSPS, obtenida de *Agrobacterium sp.* cepa CP4, que confiere

7

tolerancia al herbicida Roundup® (contiene glifosato), y también una toxina CryIA(b) obtenida de *Bacillus thuringiensis subesp. kurstaki* que consigue tolerancia a determinados lepidópteros, incluyendo el barrenador del maíz europeo.

5 Cultivos transgénicos de plantas resistentes a los insectos se describen también en BATS (Centro para la Bioseguridad y Sustentabilidad, Centro de BATS, Clarastrasse 13, 4058 Basilea, Suiza) Informe 2003, (http://bats.ch)

Debe entenderse que la expresión "plantas útiles" incluye también plantas útiles que se han transformado por el uso de técnicas de ADN recombinante de manera que pueden sintetizar sustancias antipatógenas que tienen acción selectiva, tales como, por ejemplo, las llamadas "proteínas relacionadas con patogenia" (PRP, véase, por ejemplo, el documento EP-A-0 392 225). Ejemplos de dichas sustancias antipatógenas y plantas transgénicas que pueden sintetizar dichas sustancias antipatógenas son conocidos, por ejemplo, por los documentos EP-A-0 392 225, WO 95/33818 y EP-A-0 353 191. Los expertos en la materia en general conocen los métodos para producir dichas plantas transgénicas y estos se describen, por ejemplo, en las publicaciones mencionadas anteriormente.

Las sustancias antipatógenas que se pueden expresar por dichas plantas transgénicas incluyen, por ejemplo, bloqueadores de canales de iones, tales como bloqueadores de canales de sodio y calcio, por ejemplo, las toxinas víricas KP1, KP4 o KP6; estilbeno-sintasas; bibencil-sintasas; quitinasas; glucanasas; las denominadas "proteínas relacionadas con la patogénesis" (PRP; véase, por ejemplo, el documento EP-A-0 392 225); sustancias antipatógenas producidas por microorganismos, por ejemplo, antibióticos peptídicos o antibióticos heterocíclicos (véase, por ejemplo, el documento WO 95/33818) o factores proteínicos o polipeptídicos implicados en la defensa de la planta contra patógenos (los denominados "genes de resistencia a enfermedades de plantas", como se describe en el documento WO 03/000906).

20

25

45

50

55

60

Plantas útiles de elevado interés en relación con la presente invención son cereales; soja; arroz; colza; frutas de pepita; frutas con hueso; cacahuetes; café; té; fresas; césped; vides y hortalizas, tales como tomates, patatas, cucurbitáceas y lechuga.

30 El término "emplazamiento" de una planta útil, como se usa en este documento, pretende abarcar el lugar en el que crecen las plantas útiles, en el que se siembran los materiales de propagación de las plantas útiles o en el que se colocarán los materiales de propagación de las plantas útiles en el suelo. Un ejemplo para dicho emplazamiento es un campo en el que crecen las plantas de cultivo.

Se entiende que la expresión "material de propagación vegetal" indica partes generativas de una planta, tales como semillas, que pueden usarse para la multiplicación de esta última, y material vegetativo, tal como esquejes o tubérculos, por ejemplo, patatas. Se pueden mencionar, por ejemplo, semillas (en el sentido estricto), raíces, frutos, tubérculos, bulbos, rizomas y partes de plantas. También se pueden mencionar plantas germinadas y plantas jóvenes que se van a trasplantar después de que germinen o después de que emerjan del suelo. Estas plantas jóvenes se pueden proteger antes de trasplantarlas mediante un tratamiento total o parcial de inmersión. Preferiblemente, se entiende que el "material de propagación vegetal" indica semillas.

Un aspecto adicional de la presente invención es un método para proteger sustancias naturales de origen vegetal y/o animal, que se han apartado de su ciclo de vida natural, y/o sus formas procesadas contra el ataque de hongos, que comprende aplicar a dichas sustancias naturales de origen vegetal y/o animal o sus formas procesadas, una combinación de componentes (A) y (B) y (C) como se define en la reivindicación 1.

De acuerdo con la presente invención, la expresión "sustancias naturales de origen vegetal, que se han apartado del ciclo de vida natural" indica plantas o partes de las mismas que se han cosechado del ciclo de vida natural y que están en la forma recién recolectada. Ejemplos de dichas sustancias naturales de origen vegetal son tallos, hojas, tubérculos, semillas, frutos o granos. De acuerdo con la presente invención, se entiende que la expresión "forma procesada de una sustancia natural de origen vegetal" indica una forma de sustancia natural que es el resultado de un proceso de modificación. Dichos procesos de modificación pueden usarse para transformar la sustancia natural de origen vegetal en una forma de almacenamiento más estable de dicha sustancia (un producto de almacenamiento). Ejemplos de dichos procesos de modificación son secado previo, humectación, machacamiento, trituración, molienda, compresión o tostado. También está dentro de la definición de una forma procesada de una sustancia natural de origen vegetal la madera, ya sea en forma de madera en bruto tal como madera de construcción, postes de electricidad y barreras, o en forma de artículos terminados tales como muebles u objetos hechos de madera.

De acuerdo con la presente invención, se entiende que la expresión "sustancias naturales de origen animal, que se han apartado del ciclo de vida natural y/o sus formas procesadas" indica material de origen animal tal como piel, pellejos, cuero, pelajes, pelos.

65 Las combinaciones de acuerdo con la presente invención pueden prevenir los efectos desfavorables tales como descomposición, decoloración o moho.

Una realización preferida es un método no terapéutico para proteger sustancias naturales de origen vegetal, que se han apartado del ciclo de vida natural, y/o sus formas procesadas contra el ataque de hongos, que comprende aplicar a dichas sustancias naturales de origen vegetal y/o animal o sus formas procesadas, una combinación de componentes (A) y (B) y (C) en una cantidad sinérgicamente eficaz.

5

10

15

20

25

40

45

50

Una realización preferida adicional es un método de protección de frutas, preferiblemente pomos, drupas, bayas y cítricos, que se han apartado del ciclo de vida natural, y/o sus formas procesadas, que comprende aplicar a dichas frutas y/o sus formas procesadas, una combinación de componentes (A) y (B) y (C) en una cantidad sinérgicamente eficaz.

Las combinaciones de la presente invención también pueden usarse en el campo de la protección de material industrial contra el ataque de hongos. De acuerdo con la presente invención, la expresión "material industrial" se refiere a material no vivo que se ha preparado para su uso en industria. Por ejemplo, materiales industriales que se pretenden proteger contra el ataque de hongos pueden ser pegamentos, calibres, papel, cartón, textiles, alfombras, cuero, madera, construcciones, pinturas, artículos de plástico, lubricantes de refrigeración, líquidos hidráulicos acuosos y otros materiales que pueden infestarse con, o descomponerse por, microorganismos. Los sistemas de refrigeración y calefacción, sistemas de ventilación y aire acondicionado y partes de plantas de producción, por ejemplo, circuitos de agua de refrigeración, que puede verse alterados por la multiplicación de microorganismos también pueden mencionarse entre los materiales a proteger. Las combinaciones de acuerdo con la presente invención pueden prevenir los efectos desfavorables tales como descomposición, decoloración o moho.

Las combinaciones de la presente invención también pueden usarse en el campo de la protección de material técnico contra el ataque de hongos. De acuerdo con la presente invención, la expresión "material técnico" incluye papel; alfombras; construcciones; sistemas de refrigeración y calefacción; sistemas de ventilación y aire acondicionado y similares. Las combinaciones de acuerdo con la presente invención pueden prevenir los efectos desfavorables tales como descomposición, decoloración o moho.

Las combinaciones de acuerdo con la presente invención son particularmente eficaces contra el oídio; la roya; especies de manchas foliares; tizón y moho tempranos; especialmente contra *Septoria, Puccinia, Erysiphe, Pyrenophora* y *Tapesia* en cereales; *Phakopsora* en soja; *Hemileia* en café; *Phragmidium* en rosas; *Alternaria* en patatas, tomates y cucurbitáceas; *Sclerotinia* en césped, hortalizas, girasol y colza; descomposición negra, enrojecimiento, oídio, moho gris y enfermedad de ramas muertas en la vid; *Botrytis cinerea* en frutas; *Monilinia spp.* en frutas y *Penicillium spp.* en frutas.

Las combinaciones de acuerdo con la presente invención son además particularmente eficaces contra enfermedades transmitidas en las semillas y en la tierra, tales como *Alternaria spp.*, *Ascochyta spp.*, *Botrytis cinerea*, *Cercospora spp.*, *Claviceps purpurea*, *Cochliobolus sativus*, *Colletotrichum spp.*, *Epicoccum spp.*, *Fusarium graminearum*, *Fusarium moniliforme*, *Fusarium oxysporum*, *Fusarium proliferatum*, *Fusarium solani*, *Fusarium subglutinans*, *Gäumannomyces graminis*, *Helminthosporium spp.*, *Microdochium nivale*, *Phoma spp.*, *Pyrenophora graminea*, *Pyricularia oryzae*, *Rhizoctonia solani*, *Rhizoctonia cerealis*, *Sclerotinia spp.*, *Septoria spp.*, *Sphacelotheca reilliana*, *Tilletia spp.*, *Typhula incarnata*, *Urocystis occulta*, *Ustilago spp.* o *Verticillium spp.*; en particular contra patógenos de cereales, tales como trigo, cebada, centeno o avena; maíz; arroz; algodón; soja; césped; remolacha azucarera; colza; patatas; legumbres, tales como guisantes, lentejas o garbanzos; y girasol.

Las combinaciones de acuerdo con la presente invención son además particularmente eficaces contra enfermedades después de la recolección, tales como *Botrytis cinerea*, *Colletotrichum musae*, *Curvularia lunata*, *Fusarium semitecum*, *Geotrichum candidum*, *Monilinia fructicola*, *Monilinia fructigena*, *Monilinia laxa*, *Mucor piriformis*, *Penicilium italicum*, *Penicilium solitum*, *Penicillium digitatum* o *Penicillium expansum*, en particular contra patógenos de frutas, tales como pomos, por ejemplo, manzanas y peras, drupas, por ejemplo, melocotones y ciruelas, cítricos, melones, papaya, kiwi, mango, bayas, por ejemplo, fresas, aguacates, granadas y bananas, y frutos secos.

La cantidad de una combinación de la invención a aplicar dependerá de diversos factores, tales como los compuestos empleados; el objeto de tratamiento, tal como, por ejemplo, plantas, tierra o semillas; el tipo de tratamiento, tal como, por ejemplo pulverización, espolvoreo o recubrimiento de semillas; el propósito del tratamiento, tal como, por ejemplo, profiláctico o terapéutico; el tipo de hongos a controlar o el tiempo de aplicación.

Se ha descubierto que el uso de los componentes (B) y (C) en combinación con el componente (A) potencia sorprendente y sustancialmente la eficacia del último contra hongos y viceversa. Además, el método de la invención es eficaz contra un espectro más amplio de dichos hongos, que pueden combatirse con los ingredientes activos de este método, cuando se usan en solitario.

La mezcla de ingredientes activos de componente (A) con ingredientes activos (B+C) descrita anteriormente comprende componente (A) y una combinación de ingredientes activos como se describe anteriormente preferiblemente en una relación de mezcla de 1000:1 a 1:1000, especialmente de 50:1 a 1:50, más especialmente

en una relación de 20:1 a 1:20, incluso más especialmente de 10:1 a 1:10, muy especialmente de 5:1 y 1:5, dando especial preferencia a una relación de 2:1 a 1:2, y siendo asimismo preferida una relación de 4:1 a 2:1, por encima de todo en una relación de 1:1, o 5:1, o 5:2, o 5:3, o 5:4, o 4:1, o 4:2, o 4:3, o 3:1, o 3:2, o 2:1, o 1:5, o 2:5, o 3:5, o 4:5, o 1:4, o 2:4, o 3:4, o 1:3, o 2:3, o 1:2, o 1:600, o 1:300, o 1:150, o 1:35, o 2:35, o 4:75, o 1:6000, o 1:3000, o 1:1500, o 1:350, o 2:350, o 4:350, o 1:750, o 2:750, o 4:750. Se entiende que esas relaciones de mezcla incluyen, por un lado, relaciones ponderales y, también, por otro lado, relaciones molares.

En una realización preferida de la invención, las relaciones ponderales de componente (A) a la mezcla de componentes (B) y (C) son de 4:1 a 1:4.

En una realización preferida de la invención, las relaciones ponderales de componente (B) a componente (C) son de 2: 1 a 1: 6.

Las mezclas que comprenden un compuesto de fórmula I, por ejemplo, seleccionado de la tablas 1 y 2, y uno o más ingredientes activos como se describe anteriormente pueden aplicarse, por ejemplo, en una única forma "de mezcla preparada", en una mezcla de pulverización combinada compuesta de formulaciones diferentes de los componentes de ingrediente activo individuales, tal como una "mezcla en depósito", y en un uso combinado de los ingredientes activos individuales cuando se aplican de una manera secuencial, es decir, uno detrás del otro con un periodo razonablemente corto, tal como unas pocas horas o días. El orden de aplicación de los compuestos de fórmula I seleccionados de las tablas 1 y los ingredientes activos como se describe anteriormente no es esencial para que funcione la presente invención.

La actividad sinérgica de la combinación es evidente por el hecho de que la actividad fungicida de la composición de (A) + (B) + (C) es mayor de la suma de las actividades fungicidas de (la mezcla de A+B) y (C), o (la mezcla de A+C) y (B) o (A) y (B) y (C).

El método de la invención comprende aplicar a las plantas útiles, el emplazamiento de las mismas o el material de propagación de las mismas, en mezcla o por separado, una cantidad de agregado sinérgicamente eficaz de componente (A) y un componente (B) y un componente (C).

Algunas de dichas combinaciones de acuerdo con la invención presentan una acción sistémica y pueden

usarse como fungicidas en las hojas, la tierra y las semillas.

- 35 Con las combinaciones de acuerdo con la invención es posible inhibir o destruir los microorganismos fitopatógenos que existen en plantas o en partes de las plantas (frutos, flores, hojas, tallos, tubérculos, raíces) en diferentes plantas útiles, mientras que al mismo tiempo, las partes de las plantas que crecen después también están protegidas del ataque por microorganismos fitopatógenos.
- Las combinaciones de la presente invención son de particular interés para controlar una gran cantidad de hongos en diversas plantas útiles o sus semillas, especialmente en cultivos de campo tales como patatas, tabaco y remolachas azucareras, y trigo, centeno, cebada, avena, arroz, maíz, césped, algodón, soja, colza, legumbres, girasol, café, caña de azúcar, frutos y plantas ornamentales en horticultura y viticultura, en hortalizas tales como pepinos, alubias y cucurbitáceas.

Las combinaciones de acuerdo con la invención se aplican por tratamiento de los hongos, las plantas útiles, el emplazamiento de las mismas, el material de propagación de las mismas, las sustancias naturales de origen vegetal y/o animal, que se han apartado del ciclo de vida natural, y/o sus formas procesadas, o los materiales industriales amenazados por el ataque de hongos, con una combinación de componentes (A) y (B) y (C), preferiblemente en una cantidad sinérgicamente eficaz.

Las combinaciones de acuerdo con la invención pueden aplicarse antes o después de la infección de las plantas útiles, el material de propagación de las mismas, las sustancias naturales de origen vegetal y/o animal, que se han apartado del ciclo de vida natural, y/o sus formas procesadas, o los materiales industriales, por los hongos.

Las combinaciones de acuerdo con la invención son particularmente útiles para controlar las siguientes enfermedades de plantas:

especies de Alternaria en frutas y hortalizas,

60 especies de Ascochyta en legumbres,

5

10

25

30

50

55

Botrytis cinerea en fresas, tomates, girasol, legumbres, hortalizas y uvas,

Cercospora arachidicola en cacahuetes,

Cochliobolus sativus en cereales,

especies de Colletotrichum en legumbres,

65 especies de *Erysiphe* en cereales,

Erysiphe cichoracearum y Sphaerotheca fuliginea en cucurbitáceas,

especies de Fusarium en cereales y maíz,

Gäumannomyces graminis en cereales y céspedes,

especies de Helminthosporium en maíz, arroz y patatas,

Hemileia vastatrix en café,

5 especies de *Microdochium* en trigo y centeno,

especies de Phakopsora en soja,

especies de Puccinia en cereales, cultivos latifolios y plantas perennes,

especies de Pseudocercosporella en cereales,

Phragmidium mucronatum en rosas,

10 especies de *Podosphaera* en frutas,

especies de Pyrenophora en cebada,

Pyricularia oryzae en arroz,

Ramularia collo-cygni en cebada,

especies de Rhizoctonia en algodón, soja, cereales, maíz, patatas, arroz y céspedes,

15 Rhynchosporium secalis en cebada y centeno,

especies de Sclerotinia en céspedes, lechuga, hortalizas y colza,

especies de Septoria en cereales, soja y hortalizas,

Sphacelotheca reilliana en maíz,

especies de Tilletia en cereales,

20 Uncinula necator, Guignardia bidwellii y Phomopsis viticola en vides,

Urocystis occulta en centeno,

especies de Ustilago en cereales y maíz,

especies de Venturia en frutas,

especies de Monilinia en frutas,

25 especies de *Penicillium* en cítricos y manzanas.

Las combinaciones descritas en este documento son ingredientes activos valiosos desde el punto de vista preventivo y/o curativo en el campo del control de plagas, incluso a tasas bajas de aplicación, que tienen un espectro biocida muy favorable y se toleran bien por especies de sangre caliente, peces y plantas. Los ingredientes activos de acuerdo con la invención que son parcialmente conocidos por su acción insecticida actúan contra fases de desarrollo individuales o contra todas las fases de desarrollo de plagas de animales normalmente sensibles, pero también resistentes, tales como insectos o representantes del orden *Acarina*. La actividad insecticida o acaricida de las combinaciones de acuerdo con la invención puede manifestarse directamente, es decir, en la destrucción de las plagas, que tiene lugar inmediatamente o solo después de que haya transcurrido un tiempo, por ejemplo durante la ecdisis, o indirectamente, por ejemplo, en una tasa de oviposición y/o incubación reducida, correspondiendo una buena actividad a una tasa de destrucción (mortalidad) de al menos un 50 a un 60 %.

Ejemplos de las plagas animales mencionadas anteriormente son:

40 del orden Acarina, por ejemplo,

Acarus siro, Aceria sheldoni, Aculus schlechtendali, Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., Bryobia praetiosa, Calipitrimerus spp., Chorioptes spp., Dermanyssus gallinae, Eotetranychus carpini, Eriophyes spp., Hyalomma spp., Ixodes spp., Olygonychus pratensis, Ornithodoros spp., Panonychus spp., Phyllocoptruta oleivora, Polyphagotarsonemus latus, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Tarsonemus spp. y Tetranychus spp.;

del orden Anoplura, por ejemplo,

50 Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. y Phylloxera spp.;

del orden Coleoptera, por ejemplo,

Agriotes spp., Anthonomus spp., Atomaria linearis, Chaetocnema tibialis, Cosmopolites spp., Curculio spp.,

Dermestes spp., Diabrotica spp., Epilachna spp., Eremnus spp., Leptinotarsa decemlineata, Lissorhoptrus spp.,

Melolontha spp., Orycaephilus spp., Otiorhynchus spp., Phlyctinus spp., Popillia spp., Psylliodes spp., Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Tenebrio spp., Tribolium spp. y Trogoderma spp.;

del orden Diptera, por ejemplo,

60

30

35

45

Aedes spp., Antherigona soccata, Bibio hortulanus, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Drosophila melanogaster, Fannia spp., Gastrophilus spp., Glossina spp., Hypoderma spp., Hypoderma spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis pomonella, Sciara spp., Stomoxys spp.,

65 Tabanus spp., Tannia spp. y Tipula spp.;

del orden Heteroptera, por ejemplo,

Cimex spp., Distantiella theobroma, Dysdercus spp., Euchistus spp., Eurygaster spp., Leptocorisa spp., Nezara spp., Piesma spp., Rhodnius spp., Sahlbergella singularis, Scotinophara spp. y Triatoma spp.;

del orden Homoptera, por ejemplo,

5

20

40

55

65

Aleurothrixus floccosus, Aleyrodes brassicae, Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Bemisia tabaci, Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Coccus hesperidum, Empoasca spp., Eriosoma larigerum, Erythroneura spp., Gascardia spp., Laodelphax spp., Lecanium corni, Lepidosaphes spp., Macrosiphus spp., Myzus spp., Nephotettix spp., Nilaparvata spp., Parlatoria spp., Pemphigus spp., Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., Psylla spp., Pulvinaria aethiopica, Quadraspidiotus spp., Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis spp., Sitobion spp., Trialeurodes vaporariorum, Trioza erytreae y Unaspis citri;

del orden Hymenoptera, por ejemplo,

Acromyrmex, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplocampa spp., Lasius spp., Monomorium pharaonis, Neodiprion spp., Solenopsis spp. y Vespa spp.;

del orden Isoptera, por ejemplo,

Reticulitermes spp.;

25 del orden *Lepidoptera*, por ejemplo,

Acleris spp., Adoxophyes spp., Aegeria spp., Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyrotaenia spp., Autographa spp., Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Crocidolomia binotalis, Cryptophlebia leucotreta, Cydia spp., Diatraea spp., Diparopsis castanea, Earias spp., Ephestia spp., Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Grapholita spp., Hedya nubiferana, Heliothis spp., Hellula undalis, Hyphantria cunea, Keiferia lycopersicella, Leucoptera scitella, Lithocollethis spp., Lobesia botrana, Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Operophtera spp., Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Pectinophora gossypiela, Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodoptera spp., Synanthedon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni y Yponomeuta spp.:

del orden de los malófagos, por ejemplo,

Damalinea spp. y Trichodectes spp.;

del orden Orthoptera, por ejemplo,

45 Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Periplaneta spp. y Schistocerca spp.;

del orden Psocoptera, por ejemplo,

50 Liposcelis spp.;

del orden Siphonaptera, por ejemplo,

Ceratophyllus spp., Ctenocephalides spp. y Xenopsylla cheopis;

del orden Thysanoptera, por ejemplo,

Frankliniella spp., Hercinothrips spp., Scirtothrips aurantii, Taeniothrips spp., Thrips palmi y Thrips tabaci;

60 del orden Thysanura, por ejemplo,

Lepisma saccharina;

nematodos, por ejemplo, nematodos noduladores de la raíz, anguílulas de los tallos y nematodos foliares;

especialmente Heterodera spp., por ejemplo, Heterodera schachtii, Heterodora avenae y Heterodora trifolii;

12

Globodera spp., por ejemplo, Globodera rostochiensis; Meloidogyne spp., por ejemplo, Meloidogyne incoginita y Meloidogyne javanica; Radopholus spp., por ejemplo, Radopholus similis; Pratylenchus, por ejemplo, Pratylenchus neglectans y Pratylenchus penetrans; Tylenchulus, por ejemplo, Tylenchulus semipenetrans; Longidorus, Trichodorus, Xiphinema, Ditylenchus, Aphelenchoides y Anguina;

pulguillas de crucíferas (Phyllotreta spp.);

larvas de las raíces (Delia spp.) y

5

15

20

25

30

35

40

45

50

55

60

65

10 gorgojo de las vainas de semillas de la col (*Ceutorhynchus spp.*).

Las combinaciones descritas en este documento pueden usarse para controlar, es decir, contener o destruir, plagas animales del tipo mencionado anteriormente que se producen en plantas útiles en agricultura, en horticultura y en bosques, o en órganos de plantas útiles, tales como frutos, flores, follaje, tallos, tubérculos o raíces, y en algunos casos incluso en órganos de plantas útiles que se forman en un punto posterior en el tiempo quedan protegidos contra estas plagas animales.

Cuando se aplica a las plantas útiles, el componente (A) se aplica a una tasa de 5 a 2000 g de i.a./ha, particularmente de 10 a 1000 g de i.a./ha, por ejemplo, 50, 75, 100 o 200 g de i.a./ha, en asociación con 1 a 5000 g de i.a./ha, particularmente de 2 a 2000 g de i.a./ha, por ejemplo, 100, 250, 500, 800, 1000, 1500 g de i.a./ha de componente (B) y (C), dependiendo de la clase de agente químico empleado como componente (B) y (C).

En la práctica agrícola, las tasas de aplicación de la combinación de acuerdo con la invención dependen del tipo de efecto deseado, y típicamente varían de 20 a 4000 g de combinación total por hectárea.

Cuando las combinaciones de la presente invención se emplean para el tratamiento de semillas, en general son suficientes tasas de 0,001 a 50 g de componente (A) por kg de semillas, preferiblemente de 0,01 a 10 g por kg de semillas, y de 0,001 a 50 g de un compuesto de componente B por kg de semillas, preferiblemente de 0,01 a 10 g por kg de semillas.

También se describen en este documento composiciones fungicidas que comprenden una combinación de componentes (A) y (B) y (C) como se menciona anteriormente en una cantidad sinérgicamente eficaz, junto con un vehículo aceptable en agricultura y opcionalmente un tensioactivo. En dichas composiciones, la relación ponderal de (A) a (B+C) es preferiblemente entre 1000: 1 y 1: 1000 En una realización preferida de la invención, las relaciones ponderales en dichas composiciones de componente (A) a la mezcla de componentes (B) y (C) son de 4:1 a 1: 4. En una realización preferida de la invención, las relaciones ponderales de componente (B) a componente (C) en dichas composiciones son de 2: 1 a 1: 6.

Las composiciones de la invención se pueden emplear en cualquier forma convencional, por ejemplo, en forma de un paquete doble, un polvo para el tratamiento de semillas en seco (SS), una emulsión para el tratamiento de semillas (ES), un concentrado fluido para el tratamiento de semillas (CF), una solución para el tratamiento de semillas (LS), un polvo dispersable en agua para el tratamiento de semillas (DS), una suspensión de cápsulas para el tratamiento de semillas (GS), un concentrado emulsionable (CE), un concentrado en suspensión (CS), una suspoemulsión (SE), una suspensión de cápsulas (SC), un gránulo dispersable en agua (GD), un gránulo emulsionable (GE), una emulsión de agua en aceite (EAc), una emulsión de aceite en agua (EAg), una microemulsión (ME), una dispersión oleosa (DO), un fluido miscible en aceite (FAc), un líquido miscible en aceite (LAc), un concentrado soluble (SL), una suspensión de volumen ultrabajo (SU), un líquido de volumen ultrabajo (LU), un concentrado técnico (CT), un concentrado dispersable (CD), un polvo humectable (PH) o cualquier formulación técnicamente factible combinada con adyuvantes aceptables en agricultura.

Estas composiciones se pueden producir empleando métodos convencionales, por ejemplo, mezclando los ingredientes activos con materiales inertes de formulación adecuados (diluyentes, disolventes, rellenos y opcionalmente otros ingredientes de formulación tales como tensioactivos, biocidas, anticongelantes, adherentes, espesantes y compuestos que proporcionen efectos adyuvantes). Cuando se desee obtener una eficacia de duración prolongada, también se pueden emplear formulaciones de liberación lenta convencionales. En particular, las formulaciones que se van a aplicar en formas de pulverización, tales como los concentrados dispersables en agua (por ejemplo, CE, CS, CD, DO, SE, EAg, EAc y similares), polvos humectables y gránulos, pueden contener tensioactivos tales como agentes humectantes y dispersantes y otros compuestos que proporcionen efectos adyuvantes, por ejemplo, el producto de condensación del formaldehído con sulfonato de naftaleno, un sulfonato de alquilarilo, un sulfonato de lignina, un sulfato de alquilo de ácidos grasos, alquilfenol etoxilado y un alcohol graso etoxilado.

Una formulación para el revestimiento de semillas se aplica con métodos conocidos por sí mismos a las semillas, empleando la combinación de la invención y un diluyente en una forma de formulación para el revestimiento de semillas adecuada, por ejemplo, como una suspensión acuosa o en una forma de polvo seco que tenga una adherencia satisfactoria a las semillas. Dichas formulaciones para el revestimiento de semillas son conocidas en la

técnica. Las formulaciones para el revestimiento de semillas pueden contener los ingredientes activos individuales o la combinación de ingredientes activos en forma encapsulada, por ejemplo, como microcápsulas o cápsulas de liberación lenta.

- En general, las formulaciones incluyen de un 0,01 a un 90 % en peso de agente activo, de un 0 a un 20 % de tensioactivo aceptable en agricultura y de un 10 a un 99,99 % de material o materiales inertes y adyuvantes de formulación sólidos o líquidos, estando constituido el agente activo por al menos el compuesto de fórmula I junto con el componente (B) y (C), y opcionalmente otros agentes activos, particularmente microbicidas, conservantes o similares. Las formas concentradas de las composiciones contienen en general entre aproximadamente un 2 y un 80 %, preferiblemente entre aproximadamente un 5 y un 70 % en peso de agente activo. Las formas de aplicación de la formulación pueden contener, por ejemplo, de un 0,01 a un 20 % en peso, preferiblemente de un 0,01 a un 5 % en peso de agente activo. Aunque los productos comerciales se formularán preferiblemente como concentrados, el usuario final normalmente empleará formulaciones diluidas.
- Los siguientes ejemplos sirven para ilustrar la invención, indicando "ingrediente activo" una mezcla de componente (A) y compuestos de componente (B+C) en una relación de mezcla específica.

Ejemplos de formulaciones

Polvos humectables	a)	b)	c)
ingrediente activo [(A): comp. (B+C) = 1:3(a), 1:2(b), 1:1(c)]	25 %	50 %	75 %
lignosulfonato de sodio	5 %	5 %	-
laurilsulfato de sodio	3 %	-	5 %
diisobutilnaftalenosulfonato de sodio	-	6 %	10 %
éter fenólico de polietilenglicol	-	2 %	-
(7-8 mol de óxido de etileno)			
ácido silícico muy dispersado	5 %	10 %	10 %
caolín	62 %	27 %	-

20

El ingrediente activo se mezcla completamente con los adyuvantes y la mezcla se muele completamente en un molino adecuado para obtener polvos humectables que se pueden diluir con agua para obtener suspensiones de la concentración deseada.

Polvos para el tratamiento de semillas en seco	a)	b)	c)
ingrediente activo [(A) : comp. (B) = 1:3(a), 1:2(b), 1:1(c)]	25 %	50 %	75 %
aceite de vaselina fluido	5 %	5 %	5 %
ácido silícico muy dispersado	5 %	5 %	-
caolín	65 %	40 %	-
talco	-		20

25

El ingrediente activo se mezcla completamente con los adyuvantes y la mezcla se muele completamente en un molino adecuado para obtener polvos que se pueden usar directamente para el tratamiento de semillas.

Concentrado emulsionable	
ingrediente activo [(A) : comp. (B+C) = 1:6]	10 %
éter octilfenólico de polietilenglicol	3 %
(4-5 mol de óxido de etileno)	
dodecilbencenosulfonato de calcio	3 %
éter poliglicólico de aceite de ricino (35 mol de óxido de etileno)	4 %
ciclohexanona	30 %
mezcla de xilenos	50 %

30 Se pueden obtener emulsiones con cualquier dilución requerida, que se pueden usar para proteger plantas, a partir de este concentrado diluyendo con agua.

Polvos finos	a)	b)	c)
ingrediente activo [(A): comp. (B+C) = 1:6(a), 1:2(b), 1:10(c)]	5 %	6 %	4 %
talco	95 %	-	-
caolín	-	94 %	-
relleno mineral	-	-	96 %

Los polvos finos listos para usar se obtienen mezclando el ingrediente activo con el vehículo y moliendo la mezcla en un molino adecuado. Dichos polvos también se pueden usar para revestimientos en seco de las semillas.

35

Gránulos de extrusión	
ingrediente activo [(A) : comp. (B+C) = 2:1]	15 %
lignosulfonato de sodio	2 %
carboximetilcelulosa	1 %
caolín	82 %

El ingrediente activo se mezcla y muele con los adyuvantes, y la mezcla se humedece con agua. La mezcla se extruye y después se seca en una corriente de aire.

Gránulos recubiertos	
ingrediente activo [(A) :comp. (B+C) = 1:10]	8 %
polietilenglicol (peso molecular 200)	3 %
caolín	89 %

5

El ingrediente activo finamente molido se aplica uniformemente, en una mezcladora, sobre el caolín humedecido con polietilenglicol. De esta forma se obtienen gránulos recubiertos que no generan polvo.

Concentrado en suspensión

10

15

ingrediente activo [(A) : comp. (B+C) = 1:8]	40 %
propilenglicol	10 %
éter nonilfenólico de polietilenglicol (15 mol de óxido de etileno)	6 %
lignosulfonato de sodio	10 %
carboximetilcelulosa	1 %
aceite de silicona (en forma de una emulsión al 75% en agua)	1 %
agua	32 %

El ingrediente activo finamente molido se mezcla íntimamente con los adyuvantes para obtener un concentrado en suspensión a partir del que se pueden obtener suspensiones de cualquier dilución deseada diluyendo con agua. Utilizando tales diluciones se pueden tratar y proteger contra la infestación por parte de microorganismos tanto plantas vivas como el material de propagación vegetal mediante pulverización, vertido o inmersión.

Concentrado fluido para el tratamiento de semillas

ingrediente activo [(A) : comp. (B+C) = 1:8]	40 %
propilenglicol	5 %
copolímero de butanol OP/OE	2 %
triestirenofenol con 10-20 moles de OE	2 %
1,2-bencisotiazolin-3-ona (en forma de una disolución al 20% en agua)	0,5 %
sal cálcica de pigmento monoazo	5 %
aceite de silicona (en forma de una emulsión al 75% en agua)	0,2 %
agua	45,3 %

El ingrediente activo finamente molido se mezcla íntimamente con los adyuvantes para obtener un concentrado en suspensión a partir del que se pueden obtener suspensiones de cualquier dilución deseada diluyendo con agua. Usando dichas diluciones se pueden tratar y proteger contra la infestación por parte de microorganismos tanto plantas vivas como el material de propagación vegetal mediante pulverización, vertido o inmersión.

25 Suspensión de cápsulas de liberación lenta

Se mezclan 28 partes de una combinación de componente (A) y componentes (B+C), o de cada uno de estos compuestos por separado, con 2 partes de un disolvente aromático y 7 partes de mezcla diisocianato de tolueno/polimetileno-polifenilisocianato (8:1). Se emulsiona esta mezcla en una mezcla de 1,2 partes de alcohol polivinílico, 0,05 partes de un desespumante y 51,6 partes de agua, hasta que se consigue el tamaño de partícula deseado. Se añade a esta emulsión una mezcla de 2,8 partes de 1,6-diaminohexano en 5,3 partes de agua. Se agita la mezcla hasta que finaliza la reacción de polimerización.

La suspensión de cápsulas obtenida se estabiliza añadiendo 0,25 partes de un espesante y 3 partes de un agente dispersante. La formulación de la suspensión de cápsulas contiene un 28 % de los ingredientes activos. El diámetro medio de las cápsulas es de 8-15 micrómetros.

La formulación resultante se aplica a las semillas como una suspensión acuosa en un equipo adecuado para dicho fin.

40

30

Ejemplos biológicos

Ensayos de cultivo líquido en placas de pocillos:

Fragmentos de micelios o suspensiones de conidios de un hongo, preparado recientemente de cultivos líquidos del hongo o de almacenamiento criogénico, se mezclaron directamente en caldo nutriente. Se diluyeron soluciones de DMSO del compuesto de ensayo (máx. 10 mg/ml) se diluyen con Tween20 al 0,025 % en un factor 50 y se pipetearon 10 μl de esta solución en una placa de microvaloración (formato de 96 pocillos). El caldo nutriente que contenía las esporas/fragmentos de micelios fúngicos se añadió entonces para dar una concentración final del compuesto ensayado. Las placas de ensayo se incubaron en la oscuridad a 24 °C y 96 % de hr. La inhibición del crecimiento fúngico se determinó de forma fotoquímica y visualmente después de 2 a 4 días, dependiendo del patosistema, y se calculó el porcentaje de actividad antifúngica relativa al control sin tratar.

Alternaria solani / cultivo líquido:

15

20

30

35

50

60

65

Los conidios del hongo de almacenamiento criogénico se mezclaron directamente en caldo nutriente (caldo de dextrosa de patata PDB). Después de colocar una solución (DMSO) de compuesto de ensayo en una placa de microvaloración (formato de 96 pocillos), se añadió el caldo nutriente que contenía las esporas fúngicas. Las placas de ensayo se incubaron a 24 °C y se determinó la inhibición del crecimiento de forma fotométrica y visualmente 2-3 días después de la aplicación.

Botryotinia fuckeliana (Botrytis cinerea) / cultivo líquido:

Los conidios del hongo de almacenamiento criogénico se mezclaron directamente en caldo nutriente (caldo Vogels).

Después de colocar una solución (DMSO) de compuesto de ensayo en una placa de microvaloración (formato de 96 pocillos), se añadió el caldo nutriente que contenía las esporas fúngicas. Las placas de ensayo se incubaron a 24 °C y se determinó la inhibición del crecimiento de forma fotométrica y visualmente 3 días después de la aplicación.

Fusarium culmorum / cultivo líquido:

Los conidios del hongo de almacenamiento criogénico se mezclaron directamente en caldo nutriente (caldo de dextrosa de patata PDB). Después de colocar una solución (DMSO) de compuesto de ensayo en una placa de microvaloración (formato de 96 pocillos), se añadió el caldo nutriente que contenía las esporas fúngicas. Las placas de ensayo se incubaron a 24 °C y se determinó la inhibición del crecimiento de forma fotométrica y visualmente 3 días después de la aplicación.

Gaeumannomyces graminis / cultivo líquido:

Los fragmentos de micelios del hongo de almacenamiento criogénico se mezclaron directamente en caldo nutriente (caldo de dextrosa de patata PDB). Después de colocar una solución (DMSO) de compuesto de ensayo en una placa de microvaloración (formato de 96 pocillos), se añadió el caldo nutriente que contenía las esporas fúngicas. Las placas de ensayo se incubaron a 24 °C y se determinó la inhibición del crecimiento de forma fotométrica y visualmente 3-4 días después de la aplicación.

45 Monographella nivalis (Microdochium nivale) / cultivo líquido :

Los conidios del hongo de almacenamiento criogénico se mezclaron directamente en caldo nutriente (caldo de dextrosa de patata PDB). Después de colocar una solución (DMSO) de compuesto de ensayo en una placa de microvaloración (formato de 96 pocillos), se añadió el caldo nutriente que contenía las esporas fúngicas. Las placas de ensayo se incubaron a 24 °C y se determinó la inhibición del crecimiento de forma fotométrica y visualmente 3-4 días después de la aplicación.

Mycosphaerella graminicola (Septoria tritici) / cultivo líquido:

Los conidios del hongo de almacenamiento criogénico se mezclaron directamente en caldo nutriente (caldo de dextrosa de patata PDB). Después de colocar una solución (DMSO) de compuesto de ensayo en una placa de microvaloración (formato de 96 pocillos), se añadió el caldo nutriente que contenía las esporas fúngicas. Las placas de ensayo se incubaron a 24 °C y se determinó la inhibición del crecimiento de forma fotométrica y visualmente 4 días después de la aplicación.

Thanatephorus cucumeris (Rhizoctonia solani) / cultivo líquido:

Los fragmentos de micelios de un cultivo líquido recién cultivado del hongo se mezclaron directamente en caldo nutriente (caldo de dextrosa de patata PDB). Después de colocar una solución (DMSO) de los compuestos de ensayo en una placa de microvaloración (formato de 96 pocillos), se añadió el caldo nutriente que contenía el material fúngico. Las placas de ensayo se incubaron a 24 °C y se determinó la inhibición del crecimiento de forma

fotométrica y visualmente 3-4 días después de la aplicación.

Los resultados se muestran en las siguientes tablas:

5 <u>Tabla B1:</u>

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

10

STL = compuesto de fórmula VII

IZM = isopirazam

15 B1.1: Gaeumannomyces graminis:

Calvaián da 1 001	Solución de STL + IZM			
Solución de 1.001	(1:2)		observado % de	esp.
ppm	ppm	ppm	actividad	(colby)
0,2000			7	
	0,0165	0,0335	73	
0,2000	0,0165	0,0335	100	75
B1.2: Alternaria solani:				
Solución de 1.001	Solución de STL + IZM (1:2)		observado	esp.
ppm	ppm		% de actividad	acción (colby)
0,0008			4	
0,0016			32	
0,0016			32	
0,0031			64	
	0,0001	0,0003	0	
	0,0003	0,0005	0	
	0,0005	0,0010	0	
	0,0010	0,0021	0	
	0,0021	0,0042	0	
	0,0041	0,0084	22	
0,0008	0,0001	0,0003	20	4
0,0008	0,0010	0,0021	49	4
0,0016	0,0001	0,0003	44	32
0,0016	0,0003	0,0005	46	32
0,0016	0,0005	0,0010	61	32
0,0016	0,0010	0,0021	49	32
0,0016	0,0021	0,0042	72	32
0,0031	0,0005	0,0010	71	64
0,0031	0,0010	0,0021	75	64
0,0031	0,0021	0,0042	78	64
0,0031	0,0041	0,0084	87	72

Solución de 1.001	Solución de STL + IZN (1:2)	И	observado	esp.
ppm	ppm		% de actividad	acción (colby)
0,0125	ррш		0	(colby)
0,0250			5	
0,0500			45	
0,2000			78	
,	0,0083	0,0168	0	
	0,0165	0,0335	1	
	0,0330	0,0670	34	
0,0125	0,0165	0,0335	30	1
0,0250	0,0165	0,0335	41	6
0,0250	0,0330	0,0670	83	37
0,0500	0,0083	0,0168	59	45
0,0500	0,0165	0,0335	53	46
0,0500	0,0330	0,0670	75	64
0,2000	0,0165	0,0335	87	79
Tabla B1.4: Rhizoctonia sola	ni:			
Solución de 1.001	Solución de STL + IZN (1:2)	И	observado	esp.
ppm	ppm		% de actividad	acción (colby)
0,0125			0	(0010)
0,0250			6	
0,1000			0	
	0,0083	0,0168	1	
	0,0165	0,0335	88	
0,0125	0,0165	0,0335	100	88
0,0250	0,0083	0,0168	59	7
0,0250	0,0165	0,0335	100	89
0,1000	0,0083	0,0168	51	1
Tabla B1.5: Septoria tritici:				
Solución de 1.001	Solución de STL + IZN (1:2)	Л	observado	esp.
ppm	ppm		% de actividad	acción (colby)
0,0016			52	
	0,0010	0,0021	5	
	0,0021	0,0042	2	
0,0016	0,0010	0,0021	79	55
0,0016	0,0021	0,0042	71	53

Tabla B2:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

STL = compuesto de fórmula VII

DFZ = difenoconazol

10 B2.1: Gaeumannomyces graminis

Solución de 1.001	Solución de STL + DFZ (3:5)		observado	esperada
nnm	ppm	ppm	% de actividad	acción (colby)
ppm 0,0125	ррш	ррпп	0	accion (colby)
0,0250			4	
0,0500			0	
0,1000			0	
0,1000	0,0188	0,0313	44	
0,0125	0,0188	0,0313	89	44
0,0250	0,0188	0,0313	71	46
0,0500	0,0188	0,0313	64	44
0,1000	0,0188	0,0313	49	44
B2.2: Alternaria sola		0,0010	10	
Solución de 1.001	Solución de STL + DFZ (3:5)		observado	esperada
ppm	ppm		% de actividad	acción (colby)
0,0016			39	
	0,0001	0,0002	0	
	0,0003	0,0005	1	
	0,0012	0,0020	4	
	0,0023	0,0039	1	
0,0016	0,0001	0,0002	50	39
0,0016	0,0003	0,0005	48	39
0,0016	0,0012	0,0020	65	41
0,0016	0,0023	0,0039	66	39
B2.3: Monographella	a nivalis:			
Solución de 1.001	Solución de STL + DFZ (3:5)		obsonyado	osporada
ppm	ppm		observado % de actividad	esperada acción (colby)
0,0250	T P P I I		0	assisti (solby)
0,0500			26	
2,000	0,0047	0,0078	9	
	0,0094	0,0156	2	
	0,0188	0,0313	12	
	0,0375	0,0625	25	

0,0250	0,0375	0,0625	81	25
0,0500	0,0047	0,0078	72	33
0,0500	0,0094	0,0156	65	27
0,0500	0,0188	0,0313	42	35
0,0500	0,0375	0,0625	78	45

Tabla B3:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = \text{compuesto n.}^{\circ} 1.001$

STL = compuesto de fórmula VII

10 AZ = azoxistrobina

B3.1: Gaeumannomyces graminis

<u> </u>		1	1	T
Solución de 1.001	Solución de STL + AZ (1:2)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0031			0	
0,0063			0	
0,0125			8	
0,0250			0	
0,0500			0	
	0,0021	0,0042	12	
	0,0041	0,0084	42	
0,0031	0,0041	0,0084	91	42
0,0063	0,0021	0,0042	38	12
0,0063	0,0041	0,0084	62	42
0,0125	0,0041	0,0084	90	47
0,0250	0,0021	0,0042	45	12
0,0250	0,0041	0,0084	93	42
0,0500	0,0041	0,0084	84	42
B3.2: Alternaria sola	ıni:			
Solución de 1.001	Solución de STL + AZ (1:2)		observado	esperada
ppm	ppm		% de actividad	acción (colby)
0,0016			45	
0,0031			66	
	0,0003	0,0005	3	
	0,0005	0,0010	0	
	0,0010	0,0021	0	
0,0016	0,0003	0,0005	67	47
0,0016	0,0010	0,0021	72	45
0,0031	0,0005	0,0010	81	66

.3: Fusarium culmo	Solución de STL + AZ ppm	(1:2)		observado % de actividad	esperada acción (colby)
m 0250 0500 000		(1:2)		% de actividad	
m 0250 0500 000		(1:2)		% de actividad	
0250 0500 000	ppm			actividad	acción (colby)
0500				19	230.011 (00.0 y)
000				10	
				48	
2000				55	
				59	
	0,0165		0,0335	6	
	0,0330		0,0670	0	
	0,0660		0,1340	0	
	0,0660		0,1340	0	
)250	0,0165		0,0335	30	24
)500	0,0330		0,0670	56	48
)500	0,0660		0,1340	62	48
000	0,0660		0,1340	63	55
2000	0,0660		0,1340	69	59
.4: Monographella	nivalie:				
.+. Monographelia	Tiivaiis.				
lución de 1.001	Solución de STL + AZ	(1:2)		observado	esperada
		`		% de actividad	acción (colby)
m 2008	ppm				accion (colby)
1000	0.0010		0.0021	· ·	
2008					61
1006	10,0010		0,0021	11	- 61
.5: Septoria tritici:					
_					
lución de 1.001	Solución de STL + AZ	(1:2)			esperada
m	ppm				acción (colby)
				1	
	0,0010		0,0021		
				1	
				17	
0016			0,0021	49	42
	0,0021		0,0042	65	45
016	1 .		0,0084	94	86
lución de 1.001 m 0016 0031	0,0010 0,0010 Solución de STL + AZ ppm 0,0010 0,0021 0,0041 0,0010 0,0021	(1:2)	0,0042	49 65	42 45

Tabla B4:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

STL = compuesto de fórmula VII

PTC = protioconazol

B4.1: Gaeumannomyces graminis

Solución de 1.001	Solución de STL + PTC (1:2)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0125			0	, , , , ,
0,0250			0	
0,0500			0	
0,1000			0	
0,2000			12	
	0,0165	0,0335	24	
	0,0330	0,0670	88	
0,0125	0,0165	0,0335	79	24
0,0250	0,0330	0,0670	100	88
0,0500	0,0165	0,0335	88	24
0,1000	0,0165	0,0335	62	24
0,2000	0,0165	0,0335	74	33
B4.2: Alternaria sola	ni:			
Solución de 1.001	Solución de STL + PTC (1:2)		observado	esperada
ppm	ppm		% de actividad	acción (colby)
0,0008			29	
0,0016			47	
0,0031			73	
	0,0001	0,0003	0	
	0,0010	0,0021	0	
	0,0021	0,0042	0	
	0,0041	0,0084	3	
0,0008	0,0010	0,0021	42	29
0,0016	0,0001	0,0003	63	47
0,0016	0,0021	0,0042	64	47
0,0031	0,0041	0,0084	86	74
B4.3: Monographella	a nivalis:			
Solución de 1.001	Solución de STL + PTC (1:2)		observado	esperada
nnm			% de	aggián (aglbu)
0,0500	ppm		actividad 15	acción (colby)
0,1000	0.0003	0.0160	64	
	0,0083	0,0168	4	
	0,0165	0,0335	0	

0,0500	0,0165	0,0335	83	15
0,1000	0,0083	0,0168	79	65

Tabla B5:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = compuesto n.^{\circ} 1.001$

STL = compuesto de fórmula VII

10 TCZ = tebuconazol

B5.1: Gaeumannomyces graminis

Solución de 1.001	Solución de STL + TCZ (1:2)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0250			0	
0,0500			2	
0,1000			0	
0,2000			0	
	0,0165	0,0335	42	
	0,0330	0,0670	78	
0,0250	0,0165	0,0335	57	42
0,0250	0,0330	0,0670	100	78
0,0500	0,0330	0,0670	98	78
0,1000	0,0165	0,0335	61	42
0,1000	0,0330	0,0670	98	78
0,2000	0,0165	0,0335	68	42
0,2000	0,0330	0,0670	89	78
B5.2: Alternaria sola	ıni:			
Solución de 1.001	Solución de STL + TCZ (1:2)		observado	esperada
ppm	ppm		% de actividad	acción (colby)
0,0008	l le		3	
0,0016			36	
0,0031			75	
-,	0,0005	0,0010	0	
	0,0010	0,0021	0	
	0,0021	0,0042	0	
0,0008	0,0005	0,0010	31	3
0,0016	0,0010	0,0021	44	36
0,0016	0,0021	0,0042	64	36
0,0031	0,0010	0,0021	86	75
B5.3: Fusarium culn				
Solución de 1.001	Solución de STL + TCZ (1:2)		observado	esperada

			% de	
ppm	ppm		actividad	acción (colby)
0,0250			9	
0,0500			39	
	0,0021	0,0042	2	
	0,0041	0,0084	1	
	0,0083	0,0168	4	
0,0250	0,0021	0,0042	32	11
0,0250	0,0041	0,0084	28	11
0,0500	0,0041	0,0084	52	40
0,0500	0,0083	0,0168	52	41
B5.4: Monographella	a nivalis:			
	0 + 1/ + 07/ 707/40			
Solución de 1.001	Solución de STL + TCZ (1:2)		observado % de	esperada
ppm	ppm		actividad	acción (colby)
0,0250			2	
0,0500			9	
0,1000			60	
	0,0083	0,0168	0	
	0,0165	0,0335	5	
	0,0330	0,0670	14	
	0,0660	0,1340	63	
0,0250	0,0165	0,0335	25	7
0,0250	0,0330	0,0670	53	16
0,0500	0,0083	0,0168	29	9
0,0500	0,0165	0,0335	41	13
0,0500	0,0330	0,0670	65	22
0,0500	0,0660	0,1340	84	66
0,1000	0,0083	0,0168	70	60
0,1000	0,0165	0,0335	76	62
0,1000	0,0330	0,0670	85	66
B5.5: Rhizoctonia so	olani:			
Solución de 1.001	Solución de STL + TCZ (1:2)		observado	esperada
ppm	ppm		% de actividad	acción (colby)
0,0250	hk		13	(0010y)
0,0500			1	
0,1000			17	
	0,0330	0,0670	0	
	0,0660	0,1340	28	
0,0250	0,0330	0,0670	97	13
0,0500	0,0660	0,1340	87	29

0,1000	0,0660		0,1340	61	41
B5.6: Septoria tritici:					
Solución de 1.001	Solución de STL + TCZ	(1:2)		observado	esperada
ppm	ppm			% de actividad	acción (colby)
0,0008				27	
0,0016				45	
0,0031				82	
	0,0010		0,0021	0	
	0,0021		0,0042	5	
	0,0041		0,0084	0	
0,0008	0,0010		0,0021	36	27
0,0016	0,0010		0,0021	70	45
0,0016	0,0021		0,0042	60	47
0,0031	0,0041		0,0084	91	82

Tabla B6:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

STL = compuesto de fórmula VII

10 PYS = piraclostrobina

B6.1: Gaeumannomyces graminis

Solución de 1.001	Solución de STL + PYS (1:1)		observado	esperada
Goldcioli de 1.001	Solucion de STE +1 13 (1.1)		% de	езрегаца
ppm	ppm	ppm	actividad	acción (colby)
0,0063			0	
0,0250			0	
0,1000			0	
	0,0125	0,0125	15	
0,0063	0,0125	0,0125	34	15
0,0250	0,0125	0,0125	46	15
0,1000	0,0125	0,0125	84	15
B6.2: Alternaria sola	ni:			
Solución de 1.001	Solución de STL + PYS (1:1)		observado	esperada
ppm	ppm		% de actividad	acción (colby)
0,0016			35	
0,0031			71	
	0,0002	0,0002	0	
	0,0031	0,0031	0	
	0,0063	0,0063	0	

_					
0,0016	0,0002	0,0002		45	35
0,0016	0,0031		0,0031	46	35
0,0031	0,0063		0,0063	80	71
B6.3: Monographell	a nivalis:				
Solución de 1.001	Solución de STL	± PVS (1·1)		observado	esnerada
ppm	ppm	+1 10 (1.1)		% de actividad	acción (colby)
0,0016	PP			0	400.0 (00.0)
0,0031				3	
- 0,000	0,0031		0,0031	4	
	0,0063		0,0063	78	
0,0016	0,0031		0,0031	28	4
0,0031	0,0063		0,0063	92	78
B6.4: Septoria tritici	:				
Solución de 1.001	Solución de STL	+ PYS (1:1)		observado	esperada
ppm	ppm			% de actividad	acción (colby)
0,0008	Perm			11	(00.0)
0,0016				53	
0,0031				89	
	0,0002		0,0002	3	
	0,0016		0,0016	3	
	0,0031		0,0031	2	
	0,0063		0,0063	1	
0,0008	0,0016		0,0016	28	14
0,0016	0,0002		0,0002	66	54
0,0016	0,0031		0,0031	69	54
0,0031	0,0063		0,0063	97	89

Tabla B7:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

STL = compuesto de fórmula VII

10 TFS = trifloxistrobina

B7.1: Gaeumannomyces graminis

Solución de 1.001	Solución de STL+TFS (1:1)		observado	esperada
			% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0063			0	
0,0125			4	

	1			
0,0250			2	
0,0500			3	
0,1000			0	
0,2000			0	
	0,0125	0,0125	19	
	0,0250	0,0250	53	
0,0063	0,0125	0,0125	71	19
0,0125	0,0250	0,0250	92	55
0,0250	0,0250	0,0250	90	54
0,0500	0,0125	0,0125	44	21
0,0500	0,0250	0,0250	74	55
0,1000	0,0250	0,0250	92	53
0,2000	0,0250	0,0250	92	53
D7 0 4/4 : /				
B7.2: Alternaria sola	ni:			
Solución de 1.001	Solución de STL+TFS (1:1)		observado % de	esperada
ppm	ppm	ppm	actividad	acción (colby)
0,0016			28	
0,0031			66	
	0,0002	0,0002	4	
	0,0004	0,0004	0	
	0,0016	0,0016	0	
	0,0031	0,0031	0	
	0,0063	0,0063	5	
0,0016	0,0002	0,0002	41	31
0,0016	0,0004	0,0004	42	28
0,0016	0,0016	0,0016	43	28
0,0016	0,0031	0,0031	57	28
0,0031	0,0004	0,0004	75	66
0,0031	0,0031	0,0031	76	66
0,0031	0,0063	0,0063	81	68
		0,000		
B7.3: Fusarium culm	orum:			
Solución de 1.001	Solución de STL+TFS (1:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0125			11	, ,
0,0250			24	
0,0500			49	
0,1000			58	
0,2000			60	
,	0,0031	0,0031	2	
	0,0063	0,0063	0	
	0,000	0,0000	U	

	0,0125	0,0125	1	
	0,0250	0,0250	9	
	0,0500	0,0500	5	
	0,1000	0,1000	10	
0,0125	0,0250	0,0250	47	18
				25
0,0250	0,0031	0,0031	38	
0,0250	0,0063	0,0063	36	24
0,0250	0,0125	0,0125	35	24
0,0250	0,0250	0,0250	62	30
0,0250	0,0500	0,0500	69	28
0,0500	0,0063	0,0063	54	49
0,0500	0,0125	0,0125	62	49
0,0500	0,0250	0,0250	69	53
0,0500	0,0500	0,0500	77	52
0,0500	0,1000	0,1000	81	54
0,1000	0,0125	0,0125	65	58
0,1000	0,0250	0,0250	71	61
0,1000	0,0500	0,0500	75	60
0,1000	0,1000	0,1000	82	62
0,2000	0,0250	0,0250	75	63
0,2000	0,0500	0,0500	76	62
0,2000	0,1000	0,1000	83	64
B7.4: Rhizoctonia so	Janis			
B7.4. HIIIZUCIUIIIa SU	nani.			
Solución de 1.001	Solución de STL+TFS (1:1)		observado	esperada
Solucion de 1.001	Solucion de STE+11 S (1.1)		% de	esperada
ppm	ppm	ppm	actividad	acción (colby)
0,0125			3	
0,0250			8	
	0,0125	0,0125	0	
0,0125	0,0125	0,0125	96	3
0,0250	0,0125	0,0125	100	8
B7.5: Septoria tritici:				
Solución de 1.001	Solución de STL+TFS (1:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			53	
	0,0031	0,0031	42	
0,0016	0,0031	0,0031	89	72

Tabla B8:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

STL = compuesto de fórmula VII

FDL = fludioxonil

5 B8.1: Gaeumannomyces graminis

Solución de 1.001	Solución de STL+FD	L (1:4)		observado	esperada
nnm	nam		nnm	% de	
ppm	ppm		ppm	actividad	acción (colby)
0,0250				0	
0,0500				0	
0,1000				0	
0,2000				0	
	0,0100		0,0400	16	
	0,0200		0,0800	52	
0,0250	0,0200		0,0800	100	52
0,0500	0,0200		0,0800	100	52
0,1000	0,0200		0,0800	100	52
0,2000	0,0100		0,0400	61	16
0,2000	0,0200		0,0800	96	52
B8.2: Alternaria sola	ıni:				
Onlysián de d 00d	Ochoción de OTL ED	L (d. 4)			
Solución de 1.001	Solución de STL+FD	L (1:4)		observado % de	esperada
ppm	ppm		ppm	actividad	acción (colby)
0,0008				19	
0,0016				42	
0,0031				68	
	0,0006		0,0025	0	
	0,0013		0,0050	0	
	0,0025		0,0100	0	
0,0008	0,0006		0,0025	40	19
0,0016	0,0013		0,0050	60	42
0,0031	0,0025		0,0100	80	68
B8.3: Fusarium culn					
Solución de 1.001	Solución de STL+FD	L (1:4)		observado % de	esperada
ppm	ppm		ppm	actividad	acción (colby)
0,0250				18	
0,0500				51	
0,2000				55	
	0,0100		0,0400	9	
	0,0200		0,0800	15	
0,0250	0,0100		0,0400	42	25
0,0250	0,0200		0,0800	76	30
0,0500	0,0200		0,0800	91	58

0,2000	0.0200	0.0800	71	62
0,2000	0,0200	0,0000	/ 1	02

Tabla B9:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = \text{compuesto n.}^{\circ} 1.001$

STL = compuesto de fórmula VII

10 CPL = ciprodinil

B9.1: Gaeumannomyces graminis

	1				
Solución de 1.001	Solución de	STL+CPL (1:4)		observado % de	esperada
ppm	ppm		ppm	actividad	acción (colby)
0,0125				0	
0,0250				0	
0,0500				0	
0,1000				0	
0,2000				0	
	0,0100		0,0400	0	
	0,0200		0,0800	30	
0,0125	0,0100		0,0400	39	0
0,0250	0,0200		0,0800	88	30
0,0500	0,0200		0,0800	56	30
0,1000	0,0200		0,0800	55	30
0,2000	0,0200		0,0800	66	30
B9.2: Alternaria sola	ni:				
Solución de 1.001	Solución de	STL+CPL (1:4)		observado	esperada
_ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				37	
0,0031				67	
	0,0002		0,0006	0	
	0,0013		0,0050	0	
	0,0025		0,0100	0	
0,0016	0,0002		0,0006	41	37
0,0016	0,0013		0,0050	43	37
0,0031	0,0025	-	0,0100	75	67
B9.3: Rhizoctonia sc	olani:				
0 1 1/ 1 1 2		<u> </u>			
Solución de 1.001	Solución de	STL+CPL (1:4)		observado % de	esperada
ppm	ppm		ppm	actividad	acción (colby)
0,0500			1	1	I

0,2000			6	
	0,0200	0,0800	0	
0,0500	0,0200	0,0800	99	0
0,2000	0,0200	0,0800	69	6

Tabla B10:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

STL = compuesto de fórmula VII

10 FLN = fluazinam

B10.1: Gaeumannomyces graminis

	Solución de STL+FLN		Ι	
Solución de 1.001	(1:6)		observado % de	esperada
ppm	ppm	ppm	actividad	acción (colby)
0,0125			0	
0,0250			0	
0,0500			0	
0,1000			0	
0,2000			0	
	0,0036	0,0214	3	
	0,0072	0,0428	40	
	0,0143	0,0857	91	
	0,0286	0,1714	90	
0,0125	0,0072	0,0428	83	40
0,0250	0,0072	0,0428	89	40
0,0250	0,0143	0,0857	100	91
0,0500	0,0286	0,1714	100	90
0,1000	0,0036	0,0214	51	3
0,1000	0,0286	0,1714	100	90
0,2000	0,0072	0,0428	76	40
B10.2: Alternaria sol	lani:			
	O L :			
Solución de 1.001	Solución de STL+FLN (1:6)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			38	
	0,0001	0,0003	0	
	0,0009	0,0054	0	
0,0016	0,0001	0,0003	55	38
0,0016	0,0009	0,0054	52	38
B10.3: Monographe	lla nivalis:			

Solución de 1.001	Solución de STL+FLN (1:6)		observado	esperada
Coldcion de 1.001	(1.0)		% de	Сэрстаца
ppm	ppm	ppm	actividad	acción (colby)
0,0063			0	
0,0125			0	
0,0250			0	
0,0500			16	
0,1000			61	
0,2000			85	
	0,0036	0,0214	8	
	0,0072	0,0428	37	
0,0063	0,0036	0,0214	26	8
0,0125	0,0072	0,0428	98	37
0,0250	0,0072	0,0428	95	38
0,0500	0,0072	0,0428	84	47
0,1000	0,0036	0,0214	82	64
0,1000	0,0072	0,0428	94	76
0,2000	0,0072	0,0428	100	90
B10.4: Rhizoctonia s	olani:			
Solución de 1.001	Solución de STL+FLN (1:6)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0250			0	, , ,
0,0500			0	
	0,0143	0,0857	0	
0,0250	0,0143	0,0857	100	0
0,0500	0,0143	0,0857	71	0

Tabla B11:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

IZM = isopirazam

10 DFZ: difenoconazol

B11.1: Gaeumannomyces graminis:

Solución de 1.001	Solución de IZM+DF	Z (1:1)		observado	esperada
				% de	المعالم ما المعالم ما
ppm	ppm		ppm	actividad	acción (colby)
0,1000				0	
	0,0500		0,0500	0	
0,1000	0,0500		0,0500	57	0
B11.2: Alternaria solani:					

Solución de 1.001	Solución de IZM+D)FZ (1:1)		observado	esperada
				% de	:4:- (
ppm	ppm		ppm	actividad	acción (colby)
0,0008				24	
0,0016	0.0040		0.0040	48	
	0,0016		0,0016	10	
0.000	0,0031		0,0031	9	
0,0008	0,0016		0,0016	45	31
0,0016	0,0031		0,0031	63	53
B11.3: Monographe	lla nivalis:				
Solución de 1.001	Solución de IZM+D)FZ(1:1)		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0500				36	
0,1000				69	
	0,0063		0,0063	0	
	0,0125		0,0125	0	
	0,1000		0,1000	2	
0,0500	0,0063		0,0063	54	36
0,1000	0,0125		0,0125	82	69
0,1000	0,1000		0,1000	89	70
B11.4: Rhizoctonia	solani:				
Solución de 1.001	Solución de IZM+D)FZ(1:1)		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0125				0	
0,0250				8	
0,0500				0	
0,2000				0	
	0,0250		0,0250	17	
	0,0500		0,0500	36	
0,0125	0,0250		0,0250	37	17
0,0250	0,0500		0,0500	52	41
0,0500	0,0500		0,0500	72	36
0,2000	0,0250		0,0250	44	17
0,2000	0,0500		0,0500	56	36

Tabla B12:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

IZM = isopirazam

AZO: azoxistrobina

B12.1: Gaeumannomyces graminis:

Solución de 1.001	Solución de IZM+AZO (1:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			0	
0,0031			0	
0,0063			0	
0,0125			0	
,	0,0031	0,0031	45	
0,0016	0,0031	0,0031	79	45
0,0031	0,0031	0,0031	92	45
0,0063	0,0031	0,0031	68	45
0,0125	0,0031	0,0031	80	45
,-		-,		-
B12.2: Alternaria sol	lani.			
Solución de 1.001	Solución de IZM+AZO (1:1)		observado	esperada
nnm	nom	nnm	% de actividad	acción (colby)
ppm 0,0008	ppm	ppm	33	(COIDY)
0,0016			46	
0,0010	0,0002	0,0002	5	
	0,0016	0,0002	8	
	0,0031	0,0010	14	
0,0008	0,0016	0,0031	58	38
0,0016	0,0002	0,0002	78	48
0,0016	0,0002	0,0002	77	53
0,0010	0,0031	0,0031	11	33
B12.3: Monographei	lla nivalis:			
Solución de 1.001	Solución de IZM+AZO (1:1)		observado	esperada
			% de	acción
ppm	ppm	ppm	actividad	(colby)
0,0031			1	
0,0063			1	
0,0250			0	
0,0500			29	
	0,0063	0,0063	79	
0,0031	0,0063	0,0063	100	79
0,0063	0,0063	0,0063	93	79
0,0250	0,0063	0,0063	100	79
0,0500	0,0063	0,0063	98	85
B12.4: Rhizoctonia s	solani:			
Solución de 1.001	Solución de IZM+AZO (1:1)		observado	esperada

ppm	ppm	ppm	% de actividad	acción (colby)
0,0063			0	
0,0125			0	
0,0250			0	
0,0500			0	
0,1000			3	
0,2000			17	
	0,0125	0,0125	54	
	0,0250	0,0250	69	
	0,0500	0,0500	85	
0,0063	0,0125	0,0125	91	54
0,0125	0,0250	0,0250	88	69
0,0250	0,0250	0,0250	96	69
0,0250	0,0500	0,0500	100	85
0,0500	0,0125	0,0125	60	54
0,0500	0,0250	0,0250	76	69
0,0500	0,0500	0,0500	95	85
0,1000	0,0250	0,0250	84	70
0,1000	0,0500	0,0500	100	85
0,2000	0,0250	0,0250	87	74
0,2000	0,0500	0,0500	99	87

Tabla B13:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

IZM = isopirazam

10 PTC: protioconazol

B13.1: Alternaria solani:

Solución de 1.001	Solución de IZM+PTC (1:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0008			20	
0,0016			51	
0,0031			78	
	0,0004	0,0004	16	
	0,0008	0,0008	5	
	0,0016	0,0016	10	
	0,0031	0,0031	12	
0,0008	0,0004	0,0004	45	32
0,0008	0,0008	0,0008	48	23
0,0008	0,0016	0,0016	60	27
0,0016	0,0016	0,0016	65	56

				1	
0,0016	0,0031		0,0031	65	57
0,0031	0,0004	0,0004		96	82
B13.2: Monographel	la nivalis:				
3 - 4					
Solución de 1.001	Solución de IZM+PT	C (1:1)		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0250				8	
0,1000				61	
	0,0125		0,0125	0	
	0,0500		0,0500	21	
0,0250	0,0500		0,0500	51	27
0,1000	0,0125		0,0125	87	61
B13.3: Rhizoctonia s	solani:				
Solución de 1.001	Solución de IZM+PT	C (1:1)		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0250				0	
0,0500				0	
0,2000				0	
	0,0500		0,0500	37	
0,0250	0,0500		0,0500	55	37
0,0500	0,0500		0,0500	58	37
0,2000	0,0500		0,0500	61	37

Tabla B14:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

IZM = isopirazam

10 TCZ: tebuconazol

B14.1: Gaeumannomyces graminis:

Solución de 1.001	Solución de IZM+TCZ (1:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,1000			12	
0,2000			0	
	0,1000	0,1000	0	
	0,1000	0,1000	51	
0,1000	0,1000	0,1000	76	57
0,2000	0,1000	0,1000	100	51
B14.2: Alternaria solani:				

Solución de 1.001	Solución de IZM+TCZ (1:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0004			9	
0,0008			24	
0,0016			52	
0,0031			83	
	0,0002	0,0002	7	
	0,0004	0,0004	7	
	0,0008	0,0008	9	
	0,0016	0,0016	6	
	0,0031	0,0031	17	
0,0004	0,0004	0,0004	24	15
0,0008	0,0008	0,0008	37	31
0,0008	0,0016	0,0016	49	29
0,0016	0,0002	0,0002	73	56
0,0016	0,0016	0,0016	62	55
0,0016	0,0031	0,0031	80	61
0,0031	0,0004	0,0004	94	84
,	,			
B14.3: Monographe	lla nivalis:			
Solución de 1.001	Solución de IZM+TCZ (1:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0500		PP	17	(00.03)
0,1000			67	
0,1000	0,0063	0,0063	0	
	0,0125	0,0125	0	
0,0500	0,0063	0,0063	34	17
0,1000	0,0125	0,0125	81	67
		0,0123		01
B14.4: Rhizoctonia s	solani:			
Solución de 1.001	Solución de IZM+TCZ (1:1)		observado	esperada
	· ·		% de	acción
ppm 0.0125	ppm	ppm	actividad	(colby)
0,0125			0	
0,0250			0	
0,0500			3	
0,1000	0.0050	0.00=0	7	
	0,0250	0,0250	28	
	0,0500	0,0500	76	
	0,1000	0,1000	78	
0,0125	0,0250	0,0250	57	28
0,0250	0,0500	0,0500	87	76

0,0500	0,1000	0,1000	97	78
0,1000	0,1000	0,1000	89	79

Tabla B15:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = compuesto n.^{\circ} 1.001$

IZM = isopirazam

10 PYS: piraclostrobina

B15.1: Alternaria solani:

		1	Г	T
Solución de 1.001	Solución de IZM + PYS (2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0008			36	, ,
0,0016			56	
0,0031			82	
	0,0005	0,0003	2	
	0,0010	0,0005	11	
	0,0021	0,0010	0	
	0,0042	0,0021	10	
0,0008	0,0021	0,0010	65	36
0,0016	0,0005	0,0003	79	57
0,0016	0,0010	0,0005	79	61
0,0016	0,0021	0,0010	78	56
0,0016	0,0042	0,0021	82	60
0,0031	0,0042	0,0021	94	84
B15.2: Monographe	lla nivalis:			
Solución de 1.001	Solución de IZM + PYS (2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0500			17	
0,1000			63	
	0,0168	0,0083	27	
0,0500	0,0168	0,0083	54	40
0,1000	0,0168	0,0083	94	73
B15.3: Rhizoctonia s	solani:			
Solución de 1.001	Solución de IZM + PYS (2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0031			5	, , ,
0,0063			0	
0,0125			0	

0,0250			0	
0,0500			9	
	0,0084	0,0041	11	
	0,0168	0,0083	58	
0,0031	0,0084	0,0041	37	15
0,0063	0,0084	0,0041	49	11
0,0063	0,0168	0,0083	72	58
0,0125	0,0084	0,0041	43	11
0,0125	0,0168	0,0083	87	58
0,0250	0,0084	0,0041	50	11
0,0250	0,0168	0,0083	72	58
0,0500	0,0084	0,0041	40	19
0,0500	0,0168	0,0083	77	62

Tabla B16:

Las abreviaturas se definen de la siguiente manera:

5 1.001 = compuesto n.º 1.001

IZM = isopirazam

10 TFS: trifloxistrobina

B16.1: Gaeumannomyces graminis:

	Solución de IZM+TFS	1	1	I
Solución de 1.001	(2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,2000			16	
	0,0670	0,0330	14	
	0,1340	0,0660	14	
0,2000	0,0670	0,0330	75	28
0,2000	0,1340	0,0660	85	60
B16.2: Alternaria sol	lani:			
Solución de 1.001	Solución de IZM+TFS (2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0008			40	
	0,0005	0,0003	0	
	0,0010	0,0005	0	
	0,0021	0,0010	12	
0,0008	0,0005	0,0003	50	40
0,0008	0,0010	0,0005	52	40
0,0008	0,0021	0,0010	60	47
B16.3: Fusarium cul	morum:			

Solución de 1.001	Solución de IZM+TFS (2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0250	рріп	ррпп	26	(OOLDY)
0,0500			46	
0,1000			50	
0,2000			56	
0,2000	0,0084	0,0041	6	
	0,0335	0,0041	9	
	0,0670	0,0330	4	
	0,1340	0,0660	4	
	0,1340	0,0660	2	
0,0250	0,0084	0,0000	41	30
0,0250	0,0335	0,0041	46	32
0,0250	0,0670	0,0103	68	28
0,0500	0,0870	0,0330	58	51
			70	48
0,0500	0,0670	0,0330		
0,0500	0,1340	0,0660	78	47
0,1000	0,0670	0,0330	62	52
0,1000	0,1340	0,0660	77	51
0,2000	0,0335	0,0165	67	60
0,2000	0,0670	0,0330	66	57
0,2000	0,1340	0,0660	75	57
B16.4: Monographei	lla nivalis:			
	Solución de IZM+TFS			
Solución de 1.001	(2:1)		observado	esperada
nnm	nnm	nnm	% de	acción (colby)
ppm 0,0004	ppm	ppm	actividad 2	(COIDY)
0,0004	0,0010	0,0005	42	
0.0004				4.4
0,0004	0,0010	0,0005	64	44
B16.5: Rhizoctonia s	solani:			
	Solución de IZM+TFS			
Solución de 1.001	(2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0063			0	· - J/
0,0125			0	
0,0250			0	
0,0500			11	
0,1000			0	
0,1000	0,0084	0,0041	0	
	0,0084	0,0041	3	
	1 0,0 100	0,0000	ای	I

0,0125	0,0084	0,0041	35	0
0,0250	0,0168	0,0083	74	3
0,0500	0,0168	0,0083	45	14
0,1000	0,0168	0,0083	64	3

Tabla B17:

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

IZM = isopirazam

10 FDL: fludioxonil

5

B17.1: Alternaria solani

Solución de 1.001	Solución de IZM+FDL (1:2)		observado	esperada
			% de	acción
ppm	ppm	ppm	actividad	(colby)
0,0008			25	
0,0016	0.0004	0.000	57	
	0,0001	0,0003	0	
	0,0003	0,0005	9	
	0,0010	0,0021	1	
	0,0021	0,0042	0	
0,0008	0,0001	0,0003	49	25
0,0008	0,0003	0,0005	42	32
0,0008	0,0010	0,0021	44	26
0,0016	0,0001	0,0003	79	57
0,0016	0,0010	0,0021	78	57
0,0016	0,0021	0,0042	76	57
B17.2: Fusarium cul	morum:			
Solución de 1.001	Solución de IZM+FDL (1:2)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0063			9	
0,0125			16	
0,0250			27	
0,0500			46	
0,2000			54	
	0,0041	0,0084	3	
	0,0083	0,0168	6	
	0,0165	0,0335	0	
	0,0330	0,0670	2	
	0,0660	0,1340	2	
	0,0660	0,1340	48	
0,0063	0,0083	0,0168	48	15

0,0125	0,0165	0,0335	28	16
0,0250	0,0165	0,0335	96	27
0,0250	0,0330	0,0670	60	28
0,0500	0,0041	0,0084	55	48
0,0500	0,0330	0,0670	79	47
0,0500	0,0660	0,1340	100	72
0,2000	0,0660	0,1340	100	76
B17.3: Monographel	la nivalis:			
Solución de 1.001	Solución de IZM+FDL (1:2)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,1000			73	
	0,0083	0,0168	0	
0,1000	0,0083	0,0168	80	73
B17.4: Rhizoctonia s	solani:			
Solución de 1.001	Solución de IZM+FDL (1:2)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0250			0	
0,0500			6	
0,1000			0	
	0,0330	0,0670	81	
0,0250	0,0330	0,0670	96	81
0,0500	0,0330	0,0670	96	82
0,1000	0,0330	0,0670	96	81

Tabla B18:

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

IZM = isopirazam

10 CPL: ciprodinil

5

B18.1: Alternaria solani

Solución de 1.001	Solución de IZM+CPL (1:2)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			60	
	0,0001	0,0003	12	
	0,0003	0,0005	1	
	0,0010	0,0021	1	
	0,0021	0,0042	8	
0,0016	0,0001	0,0003	73	65

0,0016	0,0003		0,0005	67	61	
0,0016	0,0010		0,0021	68	60	
0,0016	0,0021			0,0042	72	63
			0,0042	1/2	00	
B18.2: Monographeli	la nivalis:					
Solución de 1.001	Solución de IZM+	-CPL	(1:2)		observado	esperada
ppm	ppm			ppm	% de actividad	acción (colby)
0,0031					0	
0,0063					0	
	0,0041			0,0084	24	
0,0031	0,0041			0,0084	78	24
0,0063	0,0041			0,0084	51	24
B18.3: Rhizoctonia s	olani:					
Solución de 1.001	Solución de IZM+CPL (1:2)		(1:2)		observado	esperada
ppm	ppm			ppm	% de actividad	acción (colby)
0,0125					20	
0,0250					0	
0,0500					0	
	0,0165			0,0335	47	
0,0125	0,0165			0,0335	77	58
0,0250	0,0165			0,0335	71	47
0,0500	0,0165			0,0335	54	47
B18.4: Septoria tritici	i:					
Solución de 1.001	Solución de IZM+	-CPL	(1:2)		observado	esperada
			nnm	% de actividad	acción (colby)	
0,0016	ppm			ppm	62	(colby)
0,0010	0.0001			0,0003	0	
0,0016	0,0001		0,0003	69	62	
0,0010	[0,000 [0,0001		0,0003	03	02

Tabla B19:

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

IZM = isopirazam

10 FLN: fluazinam

5

B19.1: Gaeumannomyces graminis:

Solución de 1.001	Solución de IZM+FLN (1:3)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0500			0	

0.1000			4	
0,1000 0,2000			0	
0,2000	0,0500	0.1500	76	
		0,1500 0,1500	30	
0.0500	0,0500			20
0,0500	0,0500	0,1500	95	30
0,1000	0,0500	0,1500	83	31
0,2000	0,0500	0,1500	90	30
B19.2: Alternaria sol	ani:			
Solución de 1.001	Solución de IZM+FLN (1:3)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0004		1-1-	11	(
0,0008			29	
0,0016			65	
3,00.0	0,0001	0,0003	5	
	0,0002	0,0006	0	
	0,0004	0,0012	16	
	0,0008	0,0023	16	
	0,0016	0,0047	10	
0,0004	0,0001	0,0003	28	15
0,0008	0,0001	0,0003	47	33
0,0008	0,0004	0,0012	46	40
0,0008	0,0008	0,0023	46	40
0,0016	0,0002	0,0006	72	65
0,0016	0,0016	0,0047	78	69
B19.3: Monographel				
Solución de 1.001	Solución de IZM+FLN (1:3)		observado	esperada
			% de	
ppm	ppm	ppm	actividad	(colby)
0,0250			3	
0,0500			12	
0,1000			63	
0,2000	0.000	0.0400	90	
	0,0063	0,0188	3	
0.0050	0,0250	0,0750	8	40
0,0250	0,0250	0,0750	95	10
0,0500	0,0250	0,0750	55	19
0,1000	0,0063	0,0188	80	65
0,1000	0,0250	0,0750	92	66
0,2000	0,0250	0,0750	100	90

Tabla B20:

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

DFZ = difenoconazol

5 AZO: azoxistrobina

B20.1: Gaeumannomyces graminis:

Caluaión de 1 001	Solución de DFZ+AZO		abaan tada	aanarada
Solución de 1.001	(1:1)		observado % de	esperada acción
ppm	ppm	ppm	actividad	(colby)
0,0125			0	
0,0250			0	
0,0500			0	
0,2000			0	
	0,0125	0,0125	54	
	0,0250	0,0250	42	
0,0125	0,0125	0,0125	60	54
0,0125	0,0250	0,0250	72	42
0,0250	0,0250	0,0250	76	42
0,0500	0,0250	0,0250	79	42
0,2000	0,0250	0,0250	63	42
B20.2: Monographel				
Solución de 1.001	Solución de DFZ+AZO (1:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0500			6	
	0,0063	0,0063	39	
0,0500	0,0063	0,0063	79	42
B20.3: Rhizoctonia s	solani:			
Solución de 1.001	Solución de DFZ+AZO (1:1)		observado % de	esperada acción
ppm	ppm	ppm	actividad	(colby)
0,0500			0	
	0,0500	0,0500	33	
0,0500	0,0500	0,0500	52	33
B20.4: Septoria tritic	i:			
Solución de 1.001	Solución de DFZ+AZO (1:1)		observado % de	esperada acción
ppm	ppm	ppm	% de actividad	(colby)
0,0016			35	
	0,0004	0,0004	5	
0,0016	0,0004	0,0004	47	38

Tabla B21:

Las abreviaturas se definen de la siguiente manera:

5 1.001 = compuesto n.º 1.001

DFZ = difenoconazol

PTC = protioconazol

B21.1: Rhizoctonia solani:

Solución de 1.001	Solución de (1:1)	DFZ+PTC		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0500				0	
	0,1000		0,1000	15	
0,0500	0,1000		0,1000	52	15

Tabla B22:

15

25

30

10

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

20 DFZ = difenoconazol

TCZ = tebuconazol

B22.1: Monographella nivalis:

Solución de 1.001	Solución de DFZ+TCZ (1:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,1000			46	
	0,0125	0,0125	1	
0,1000	0,0125	0,0125	59	46

Tabla B23:

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

DFZ = difenoconazol

35 PYS = piraclostrobina

B23.1: Monographella nivalis:

Solución de 1.001	Solución de DFZ+PYS (2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0250			0	
0,0500			6	
	0,0670	0,0330	58	
0,0250	0,0670	0,0330	85	58
0,0500	0,0670	0,0330	87	61

Tabla B24:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

DFZ = difenoconazol

10 TFS = trifloxistrobina

B24.1: Alternaria solani

	Solución de DFZ+TFS			
Solución de 1.001	(2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			40	
	0,0003	0,0001	0	
0,0016	0,0003	0,0001	66	40
B24.2: Monographe	lla nivalis:			
Solución de 1.001	Solución de DFZ+TFS (2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0008			0	
0,0016			0	
0,0031			0	
0,0063			0	
	0,0010	0,0005	15	
	0,0021	0,0010	49	
	0,0042	0,0021	79	
0,0008	0,0010	0,0005	27	15
0,0016	0,0021	0,0010	64	49
0,0016	0,0042	0,0021	92	79
0,0031	0,0042	0,0021	90	79
0,0063	0,0042	0,0021	94	79
B24.3: Botrytis ciner	rea:			
Solución de 1.001	Solución de DFZ+TFS (2:1)		observado % de	esperada acción
ppm	ppm	ppm	% de actividad	(colby)
0,0063			69	
0,0125			83	
	0,0168	0,0083	24	
0,0063	0,0168	0,0083	85	77
0,0125	0,0168	0,0083	98	87

15 <u>Tabla B25:</u>

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

DFZ = difenoconazol

FDL = fludioxonil

5

B25.1: Fusarium culmorum

Solución de 1.001	Solución de DFZ+FDL (1:2)		observado	esperada
nnm	ppm	ppm	% de actividad	acción (colby)
0,0250	ррпі	ррш	27	accion (colby)
0,0500			50	
0,0000	0,0165	0,0335	8	
	0,0330	0,0670	10	
	0,0660	0,1340	75	
0,0250	0,0165	0,0335	51	33
0,0500	0,0330	0,0670	88	55
0,0500	0,0660	0,1340	99	87
B25.2 Botrytis cinere				
Solución de 1.001	Solución de DFZ+FDL (1:2)		observado	esperada
			% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0031			54	
0,0063			69	
0,0125			84	
	0,0041	0,0084	11	
	0,0083	0,0168	22	
0,0031	0,0041	0,0084	65	59
0,0063	0,0041	0,0084	91	72
0,0063	0,0083	0,0168	100	76
0,0125	0,0041	0,0084	96	86
0,0125	0,0083	0,0168	100	88

10

20

Tabla B26:

Las abreviaturas se definen de la siguiente manera:

15 1.001 = compuesto n.º 1.001

DFZ = difenoconazol

CPL = ciprodinil

B26.1: Altnernaria solani

Solución de 1.001	Solución de DFZ+CPL + (1:2)		observado	esperada
			% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0016			57	
	0,0001	0,0003	0	
0,0016	0,0001	0,0003	67	57

B26.2: Fusarium culmorum					
Solución de 1.001	Solución de DFZ+CPL + (1:2)			observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0250				29	
	0,0021		0,0042	4	
0,0250	0,0021		0,0042	47	32

Tabla B27:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = compuesto n.^{0} 1.001$

DFZ = difenoconazol

10 FLN = fluazinam

B27.1: Fusarium culmorum

			-			
Solución de 1.001	Solución de DFZ	+FLN (1:	3)		observado	esperada
ppm	ppm			ppm	% de actividad	acción (colby)
0,0250				Je Je · · ·	27	(**************************************
0,0500					49	
	0,0016			0,0047	6	
	0,0031			0,0094	4	
0,0250	0,0016			0,0047	41	32
0,0500	0,0031			0,0094	57	51
B27.2: Monographe	lla nivalis					
Solución de 1.001	Solución de DFZ	+FLN (1:	3)		observado	esperada
ppm	ppm			ppm	% de actividad	acción (colby)
0,0500					6	
0,1000					27	
0,2000					87	
	0,0500			0,1500	0	
0,0500	0,0500			0,1500	78	6
0,1000	0,0500			0,1500	83	27
0,2000	0,0500			0,1500	97	87
B27.3: Botrytis ciner	rea					
Solución de 1.001	Solución de DFZ	+FLN (1:	3)		observado	esperada
ppm	ppm			ppm	% de actividad	acción (colby)
0,0016					49	
0,0031					57	
0,0063					63	
0,0125					89	

	0,0004	0,0012	3	
	0,0016	0,0047	2	
	0,0031	0,0094	2	
	0,0063	0,0188	5	
	0,0125	0,0375	6	
0,0016	0,0016	0,0047	74	50
0,0031	0,0031	0,0094	84	58
0,0063	0,0004	0,0012	74	65
0,0063	0,0031	0,0094	85	64
0,0063	0,0063	0,0188	100	65
0,0125	0,0063	0,0188	99	89
0,0125	0,0125	0,0375	100	89

Tabla B28:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

AZ = azoxistrobina

10 PTC = protioconazol

B28.1: Gäumannomyces graminis

Solución de 1.001	Solución de AZO+PTC (1:1)		observado	esperada
			% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0031			0	
0,0125			0	
0,0250			0	
0,0500			0	
0,1000			0	
0,2000			0	
	0,0063	0,0063	17	
	0,0250	0,0250	60	
	0,0500	0,0500	66	
	0,1000	0,1000	66	
	0,1000	0,1000	66	
0,0031	0,0063	0,0063	40	17
0,0125	0,0250	0,0250	67	60
0,0250	0,0063	0,0063	41	17
0,0250	0,0500	0,0500	76	66
0,0500	0,1000	0,1000	77	66
0,1000	0,0250	0,0250	71	60
0,1000	0,1000	0,1000	75	66
0,2000	0,1000	0,1000	78	66
B28.2: Alternaria sol	lani			

Solución de 1.001	Solución de AZO	+PTC (1:1)		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				24	
	0,0002	0,0002		5	
	0,0016		0,0016	6	
0,0016	0,0002		0,0002	40	28
0,0016	0,0016		0,0016	44	29
B28.3: Fusarium cul	morum				
Solución de 1.001	Solución de AZO	+PTC (1:1)		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0500				55	
0,1000				56	
	0,1000		0,1000	55	
0,0500	0,1000		0,1000	100	80
0,1000	0,1000		0,1000	97	80
B28.4: Monographe	lla nivalis				
Solución de 1.001	Solución de AZO-	+PTC (1:1)		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				0	
0,0031				2	
0,0125				2	
0,0500				6	
	0,0031		0,0031	18	
	0,0063		0,0063	63	
0,0016	0,0031	0,0031		45	18
0,0031	0,0063	0,0063		93	64
0,0125	0,0063		0,0063	73	64
0,0500	0,0063		0,0063	95	65

Tabla B29:

Las abreviaturas se definen de la siguiente manera:

5 1.001 = compuesto n.º 1.001

AZ = azoxistrobina

10 TCZ = tebuconazol

B29.1: Gäumannomyces graminis

Solución de 1.001	Solución de AZO+TCZ (1:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0250			2	

0,0500				0	
0,1000				0	
0,2000				0	
	0,0031		0,0031	4	
	0,0250	0,0250		44	
	0,0500		0,0500	69	
0,0250	0,0031		0,0031	41	6
0,0250	0,0250		0,0250	58	45
0,0500	0,0250		0,0250	66	44
0,0500	0,0500		0,0500	79	69
0,1000	0,0500		0,0500	78	69
0,2000	0,0250		0,0250	53	44
B29.2: Monographel	lla nivalis				
Solución de 1.001	Solución de AZO	D+TCZ (1:1)		observado	esperada
ppm	ppm			% de actividad	acción (colby)
0,0250				0	
	0,0063		0,0063	62	
0,0250	0,0063	.	0,0063	73	62
B29.3: Septoria tritic	i				
Solución de 1.001	Solución de AZO	D+TCZ (1:1)		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0008				17	
0,0016				40	
0,0031				88	
	0,0016		0,0016	0	
	0,0031		0,0031	12	
	0,0063		0,0063	3	
0,0008	0,0016		0,0016	22	17
0,0016	0,0031		0,0031	68	47
0,0031	0,0063		0,0063	95	89

Tabla B30:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

AZ = azoxistrobina

10 PYS = piraclostrobina

B30.1: Gäumannomyces graminis

Solución de 1.001	Solución de AZO+PYS (2:1)		observado	esperada
			% de	
ppm	ppm	ppm	actividad	acción (colby)

0.0001			7	
0,0031			7	
0,0125			0	
0,0250			0	
0,0500			1	
0,1000			4	
0,2000			0	
	0,0084	0,0041	40	
	0,0168	0,0083	51	
	0,0335	0,0165	55	
	0,0670	0,0330	53	
	0,1340	0,0660	53	
	0,1340	0,0660	62	
0,0031	0031 0,0084		52	45
0,0125	0,0168	0,0083	60	51
0,0125	0,0335	0,0165	66	55
0,0250	0,0084	0,0041	53	40
0,0250	0,0335	0,0165	72	55
0,0250	0,0670	0,0330	80	53
0,0500	0,0335	0,0165	64	56
0,0500	0,0670	0,0330	66	54
0,1000	0,0335	0,0165	72	57
0,1000	0,0670	0,0330	69	55
0,1000	0,1340	0,0660	75	63
0,2000	0,0335	0,0165	64	55
0,2000	0,0670	0,0330	61	53
0,2000	0,1340	0,0660	68	62
B30.2: Alternaria sol	lani			
Solución de 1.001	Solución de AZO+PYS (2:1)		observado	esperada
			% de	:
ppm	ppm	ppm	actividad	acción (colby)
0,0016	0.0004	0.0010	31	
	0,0021	0,0010	11	
0.0010	0,0042	0,0021	7	20
0,0016	0,0021	0,0010	58	38
0,0016	0,0042	0,0021	58	36
B30.3: Fusarium cul	morum			
Solución de 1.001	Solución de AZO+PYS (2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0250			28	
0,0500			55	
0,1000			56	
	0,0670	0,0330	0	

	0,1340		0,0660	8	
0,0250	0,0670		0,0330	43	28
0,0500	0,0670		0,0330	61	55
0,0500	0,1340		0,0660	66	58
0,1000	0,1340		0,0660	69	60
B30.4: Monographella nivalis					
Solución de 1.001	Solución de AZO+PYS (2:1)			observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				0	
0,0031				0	
	0,0021		0,0010	31	
	0,0042		0,0021	52	
0,0016	0,0021		0,0010	61	31
0,0016	0,0042		0,0021	61	52
0,0031	0,0042		0,0021	82	52

Tabla B31:

10

5 Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

AZ = azoxistrobina

TFS = trifloxistrobina

B31.1: Gäumannomyces graminis

Solución de 1.001	Solución de AZO +TFS (2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0063			0	
0,0125			0	
0,0250			4	
0,0500			0	
0,2000			3	
	0,0084	0,0041	41	
	0,0168	0,0083	61	
	0,0335	0,0165	44	
0,0063	0,0084	0,0041	51	41
0,0063	0,0168	0,0083	67	61
0,0125	0,0084	0,0041	56	41
0,0125	0,0168	0,0083	69	61
0,0125	0,0335	0,0165	76	44
0,0250	0,0335	0,0165	75	46
0,0500	0,0335	0,0165	53	44
0,2000	0,0335	0,0165	72	46

Solución de 1.001	Solución de AZ	O +TFS (2:1)	observado	esperada
nnm			% de actividad	
ppm 0,0008	ppm	ppm	1	acción (colby)
0,0008	0,0003	0,0001	0	
	0,0005	0,0001		
	0,0003	0,0005		
0,0008	0,0003	0,0003	39	1
0,0008	0,0005	0,0001		5
0,0008	0,0000	0,0005		1
B31.3: Fusarium cul		0,0000	72	1
Solución de 1.001	Solución de AZ	O +TFS (2:1)	observado	esperada
			% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0125			11	
0,0250			29	
0,0500			52	
0,1000			52	
0,2000	0.0005	0.0105	59	
	0,0335	0,0165		
	0,0670	0,0330 0,0660		
0.0105	0,1340	·		20
0,0125 0,0250	0,0335 0,0335	0,0165 0,0165		36
0,0250	0,0670	0,0330		34
0,0500	0,0335	0,0165		57
0,0500	0,0670	0,0330		56
0,0500	0,1340	0,0660		56
0,1000	0,0670	0,0330		55
0,1000	0,1340	0,0660		55
0,2000	0,0670	0,0330		62
0,2000	0,1340	0,0660		62
B31.4: Monographe		,,,,,,		
Solución de 1.001	Solución de AZ	O +TFS (2:1)	observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0004		, pp.	0	. (22.0)
0,0008			0	
-,	0,0010	0,0005		
0,0004	0,0010	0,0005		37
0,0008	0,0010	0,0005		37

Solución de 1.001	Solución de AZO +TFS (2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			44	
	0,0042	0,0021	65	
0,0016	0,0042	0,0021	95	80
B31.6: Botrytis cinere	B31.6: Botrytis cinerea			
Solución de 1.001	Solución de AZO +TFS (2:1)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0008			29	
0,0016			51	
	0,0021	0,0010	18	
	0,0042	0,0021	34	
0,0008	0,0021	0,0010	65	42
0,0016	0,0042	0,0021	76	68

Tabla B32:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

AZ = azoxistrobina

10 FDL = fludioxonil

B32.1: Gäumannomyces graminis

Solución de 1.001	Solución de AZO+FDL (1:2)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0063			10	
0,0125			1	
0,0250			6	
0,0500			0	
0,1000			0	
0,2000			0	
	0,0041	0,0084	11	
	0,0083	0,0168	34	
	0,0165	0,0335	55	
	0,0660	0,1340	63	
0,0063	0,0041	0,0084	35	20
0,0125	0,0041	0,0084	38	11
0,0125	0,0083	0,0168	63	35
0,0250	0,0083	0,0168	48	38
0,0500	0,0660	0,1340	70	63
0,1000	0,0083	0,0168	49	34
0,1000	0,0165	0,0335	63	55

0,2000	0,0165	0,033	5 66	55
B32.2: Alternaria so.	lani			
Solución de 1.001	Solución de AZO	FDL (1:2)	observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			38	
0,0031			69	
	0,0003	0,000	5 0	
	0,0005	0,001	0 0	
	0,0010	0,002	1 1	
	0,0021	0,004	2 0	
0,0016	0,0003	0,000	5 69	38
0,0016	0,0005	0,001	0 45	38
0,0016	0,0021	0,004	2 74	38
0,0031	0,0010	0,002	1 77	69
B32.3: Fusarium cui	morum			
Solución de 1.001	Solución de AZO	FDL (1:2)	observado	esperada
			% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0250			24	
0,0500			51	
0,1000			55	
0,2000			57	
	0,0330	0,067		
	0,0660	0,134		
	0,0660	0,134		
0,0250	0,0330	0,067		24
0,0500	0,0330	0,067		51
0,0500	0,0660	0,134		56
0,1000	0,0330	0,067		55
0,1000	0,0660	0,134		59
0,2000	0,0330	0,067		57
0,2000	0,0660	0,134	0 91	61
B32.4: Rhizoctonia	solani			
Solución de 1.001	Solución de AZO	FDL (1:2)	observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0500			11	
0,1000			10	
	0,0330	0,067	0 0	
	0,0660	0,134	0 20	
0,0500	0,0330	0,067		11
0,0500	0,0660	0,134	0 76	29

0,1000	0,0660		0,1340	94	28
B32.5: Botrytis cinerea					
Solución de 1.001	Solución de AZ	O+FDL (1:2)		observado	esperada
ppm	ppm	ppm		% de actividad	acción (colby)
0,0031				63	
0,0063				85	
	0,0041		0,0084	10	
	0,0083		0,0168	36	
0,0031	0,0041		0,0084	79	66
0,0063	0,0083		0,0168	100	90

Tabla B33:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = compuesto n.^{\circ} 1.001$

AZ = azoxistrobina

10 CPL = ciprodinil

B33.1: Gäumannomyces graminis

	1	T	1	Τ
Solución de 1.001	Solución de AZO+CPL (1:2)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0125			0	
0,0250			0	
0,0500			0	
0,1000			0	
0,2000			2	
	0,0083	0,0168	50	
	0,0165	0,0335	43	
	0,0330	0,0670	56	
0,0125	0,0083	0,0168	65	50
0,0125	0,0165	0,0335	81	43
0,0250	0,0165	0,0335	65	43
0,0250	0,0330	0,0670	83	56
0,0500	0,0330	0,0670	73	56
0,1000	0,0165	0,0335	61	43
0,2000	0,0330	0,0670	64	57
B33.2: Alternaria sol	ani			
Solución de 1.001	Solución de AZO+CPL (1:2)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0008			9	
0,0016			44	

	0,0001	0,0003	0	
	0,0003	0,0005	3	
0,0008	0,0001	0,0003	26	9
0,0008	0,0003	0,0005	35	11
0,0016	0,0003	0,0005	53	45
B33.3: Monographella	a nivalis			
Solución de 1.001	Solución de AZO+CPL (1:2)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0031			0	
0,0063			0	
0,0125			0	
	0,0041	0,0084	29	
0,0031	0,0041	0,0084	61	29
0,0063	0,0041	0,0084	58	29
0,0125	0,0041	0,0084	43	29

Tabla B34:

Las abreviaturas se definen de la siguiente manera:

5 1.001 = compuesto n.º 1.001

AZ = azoxistrobina

10 FLN = fluazinam

B34.1: Gäumannomyces graminis

Solución de 1.001	Solución de AZO+FLN (1:3)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0063			0	
0,0125			0	
0,0250			4	
0,0500			0	
0,2000			0	
	0,0063	0,0188	20	
	0,0125	0,0375	48	
	0,0250	0,0750	57	
0,0063	0,0063	0,0188	55	20
0,0125	0,0063	0,0188	50	20
0,0125	0,0125	0,0375	71	48
0,0250	0,0250	0,0750	77	59
0,0500	0,0250	0,0750	74	57
0,2000	0,0250	0,0750	81	57
B34.2: Monographella nivalis				

Solución de 1.001	Solución de AZO+FLN (1:3)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0031		1-1-	0	(1111)
0,0063			0	
0,0125			0	
0,0250			0	
	0,0031	0,0094	17	
0,0031	0,0031	0,0094	98	17
0,0063	0,0031	0,0094	71	17
0,0125	0,0031	0,0094	51	17
0,0250	0,0031	0,0094	42	17
B34.3: <i>Septoria tritici</i>				
Solución de 1.001	Solución de AZO+FLN (1:3)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0008			36	
0,0016			53	
	0,0008	0,0023	2	
	0,0016	0,0047	6	
0,0008	0,0008	0,0023	54	37
0,0016	0,0016	0,0047	75	56
B34.4: <i>Botrytis cinere</i>	<i>е</i> а			
Solución de 1.001	Solución de AZO+FLN (1:3)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0031			73	
	0,0031	0,0094	2	
0,0031	0,0031	0,0094	90	74

Tabla B35:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

PTC = protioconazol

10 TCZ = tebuconazol

B35.1: Gäumannomyces graminis

Solución de 1.001	Solución de PTC+TCZ 1:1		observado	esperada
			% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0250			7	
0,0500			9	
0,1000			17	

	0.0500		0.0500		
	0,0500		0,0500	0	
0.0050			0,1000	53	_
0,0250	0,0500		0,0500	57	7
0,0500	0,1000		0,1000	88	58
0,1000	0,1000		0,1000	100	61
B35.2: Alternaria sola	ni				
Solución de 1.001	Solución de PTC+1	TCZ 1:1		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				7	
0,0063				75	
	0,0031		0,0031	13	
	0,0063		0,0063	6	
0,0016	0,0031		0,0031	44	19
0,0063	0,0031		0,0031	87	78
0,0063	0,0063		0,0063	89	76
B35.3: Fusarium culm	norum				
Solución de 1.001	Solución de PTC+TCZ 1:1			observado	esperada
ррт	ppm		ppm	% de actividad	acción (colby)
0,0125				7	
0,0250				46	
	0,0250		0,0250	31	
	0,0500		0,0500	40	
0,0125	0,0250		0,0250	59	36
0,0250	0,0500		0,0500	100	67
B35.4: Monographella nivalis					
Solución de 1.001	Solución de PTC+TCZ 1:1			observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0125				0	
	0,0250		0,0250	0	
0,0125	0,0250		0,0250	91	0

Tabla B36:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = \text{compuesto n.}^{\circ} 1.001$

PTC = protioconazol

10 PYS = piraclostrobina

B36.1: Gäumannomyces graminis

	Solución de 1.001	Solución de PTC+PYS 2:1	observado	esperada
--	-------------------	-------------------------	-----------	----------

				% de	
ppm	ppm		ppm	actividad	acción (colby)
0,0500				7	
	0,1340		0,0660	41	
0,0500	0,1340		0,0660	100	46
B36.2: Fusarium culm	norum				
Solución de 1.001	Solución de PT	C+PYS 2:1		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0250				29	
	0,0042		0,0021	1	
0,0250	0,0042		0,0021	46	30
B36.3: Monographella	ella nivalis				
Solución de 1.001	Solución de PTC+PYS 2:1			observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0031				2	
0,0063				0	
	0,0084		0,0041	30	
	0,0168		0,0083	90	
0,0031	0,0084		0,0041	51	32
0,0063	0,0084		0,0041	39	30
0,0063	0,0168		0,0083	99	90

Tabla B37:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

PTC = protioconazol

10 TFS = trifloxistrobina

B37.1: Fusarium culmorum

Solución de 1.001	Solución de PTC+TFS 2:1		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0125	ppm	ppiii	10	accion (colby)
0,0250			27	
	0,0335	0,0165	16	
	0,0670	0,0330	41	
0,0125	0,0335	0,0165	39	24
0,0250	0,0670	0,0330	96	57
B37.2: Monographella nivalis				
Solución de 1.001	Solución de PTC+TFS 2:1		observado	esperada

			% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0004			0	
	0,0005	0,0003	81	
0,0004	0,0005	0,0003	95	81

Tabla B38:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = \text{compuesto n.}^{\circ} 1.001$

PTC = protioconazol

10 FDL = fludioxonil

B38.1: Alternaria solani

0 1 1/ 1 1001	0 1 1/ 1 870 581 4			
Solución de 1.001	Solución de PTC+FDL 1:	2	observado % de	esperada
ppm	ppm	ppm	actividad	acción (colby)
0,0008			4	
0,0016			14	
0,0031			46	
	0,0005	0,0010	0	
	0,0010	0,0021	0	
	0,0021	0,0042	6	
0,0008	0,0005	0,0010	27	4
0,0008	0,0010	0,0021	25	4
0,0016	0,0021	0,0042	42	18
0,0031	0,0021	0,0042	75	49
B38.2: Fusarium cul	morum			
Solución de 1.001	Solución de PTC+FDL 1:	2	observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0125			9	
0,0250			28	
0,0500			52	
	0,0165	0,0335	9	
	0,0330	0,0670	12	
0,0125	0,0165	0,0335	34	17
0,0250	0,0165	0,0335	44	35
0,0250	0,0330	0,0670	62	37
0,0500	0,0330	0,0670	64	57
B38.3: Botrytis ciner	ea			
Solución de 1.001	Solución de PTC+FDL 1:	2	observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)

0,0016			21	
0,0031			42	
0,0063			64	
	0,0021	0,0042	4	
	0,0041	0,0084	1	
	0,0083	0,0168	25	
0,0016	0,0021	0,0042	29	24
0,0031	0,0041	0,0084	69	43
0,0063	0,0041	0,0084	77	64
0,0063	0,0083	0,0168	96	73

Tabla B39:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = \text{compuesto n.}^{\circ} 1.001$

PTC = protioconazol

10 CPL = ciprodinil

B39.1: Monographella nivalis

Solución de 1.001	Solución	de PTC+CPL 1:2		observado	esperada
ppm	ррт		ppm	% de actividad	acción (colby)
0,0031				0	
0,0063				0	
0,0125				2	
	0,0041		0,0084	18	
	0,0083		0,0168	68	
0,0031	0,0041		0,0084	45	18
0,0063	0,0041		0,0084	39	18
0,0063	0,0083		0,0168	86	68
0,0125	0,0083		0,0168	81	68
B39.2: Septoria tritici					
Solución de 1.001	Solución	de PTC+CPL 1:2		observado	esperada
ppm	ррт		ppm	% de actividad	acción (colby)
0,0016				59	
	0,0001		0,0003	3	
0,0016	0,0001		0,0003	78	60
B39.3: Botrytis cinerea					
Solución de 1.001	Solución	de PTC+CPL 1:2		observado	esperada
ppm	ррт		ppm	% de actividad	acción (colby)
0,0031				39	
0,0063				64	

	0,0003	0,0005	0	
	0,0010	0,0021	0	
	0,0021	0,0042	0	
	0,0041	0,0084	0	
0,0031	0,0003	0,0005	54	39
0,0031	0,0010	0,0021	46	39
0,0031	0,0041	0,0084	68	39
0,0063	0,0021	0,0042	76	64
0,0063	0,0041	0,0084	73	64

Tabla B40:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = compuesto n.^{\circ} 1.001$

PTC = protioconazol

10 FLN = fluazinam

B40.1: Alternaria solani

	1		1	<u> </u>
Solución de 1.001	Solución de PTC+FLN 1:3		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			25	
0,0031			50	
	0,0016	0,0047	5	
	0,0031	0,0094	5	
0,0016	0,0016	0,0047	45	29
0,0031	0,0016	0,0047	62	53
0,0031	0,0031	0,0094	64	53
B40.2: Monographel	la nivalis			
Solución de 1.001	Solución de PTC+FLN 1:3		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0031			2	
0,0063			0	
0,0125			2	
0,0250			3	
0,0500			0	
	0,0031	0,0094	13	
	0,0063	0,0188	38	
0,0031	0,0031	0,0094	28	14
0,0063	0,0063	0,0188	98	38
0,0125	0,0063	0,0188	84	39
0,0250	0,0063	0,0188	61	40
0,0500	0,0063	0,0188	66	38

B40.3: Septoria tritici					
Solución de 1.001	Solución de PT	C+FLN 1:3		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				60	
0,0031				89	
	0,0001		0,0003	0	
	0,0031		0,0094	0	
0,0016	0,0001		0,0003	70	60
0,0031	0,0031		0,0094	99	89
B40.4: Botrytis cinere	а				
Solución de 1.001	Solución de PT	C+FLN 1:3		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				26	
0,0031				48	
0,0063				66	
0,0125				88	
	0,0016		0,0047	6	
	0,0031		0,0094	9	
	0,0063		0,0188	20	
0,0016	0,0016		0,0047	60	30
0,0031	0,0016		0,0047	57	51
0,0031	0,0031		0,0094	96	52
0,0063	0,0031		0,0094	91	69
0,0063	0,0063		0,0188	100	73
0,0125	0,0063		0,0188	99	90

Tabla B41:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

TCZ = tebuconazol

10 PYS = piraclostrobina

B41.1: Alternaria solani

Solución de 1.001	Solución de TCZ+PYS 2:1		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			49	
0,0031			81	
	0,0042	0,0021	5	
	0,0084	0,0041	17	
0,0016	0,0042	0,0021	78	52

0,0031	0,0084	0,0041	94	84
B41.2: Monographeli	la nivalis			
Solución de 1.001	Solución de TCZ+PYS 2:1		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0031			10	
0,0063			14	
0,0125			4	
0,0250			23	
0,0500			40	
0,1000			67	
	0,0042	0,0021	23	
	0,0084	0,0041	10	
	0,0168	0,0083	32	
0,0031	0,0042	0,0021	48	31
0,0031	0,0084	0,0041	64	19
0,0063	0,0084	0,0041	100	22
0,0063	0,0168	0,0083	90	42
0,0125	0,0168	0,0083	100	35
0,0250	0,0168	0,0083	66	48
0,0500	0,0084	0,0041	51	46
0,0500	0,0168	0,0083	77	59
0,1000	0,0168	0,0083	96	78
B41.3: Botrytis cinere	эа			
Solución de 1.001	Solución de TCZ+PYS 2:1		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0008			33	
0,0016			54	
0,0031			73	
0,0063			88	
	0,0005	0,0003	3	
	0,0021	0,0010	0	
	0,0042	0,0021	0	
	0,0084	0,0041	7	
0,0008	0,0021	0,0010	52	33
0,0016	0,0021	0,0010	78	54
0,0016	0,0042	0,0021	96	54
0,0031	0,0005	0,0003	81	74
0,0031	0,0021	0,0010	80	73
0,0031	0,0042	0,0021	98	73
0,0031	0,0084	0,0041	100	75
0,0063	0,0042	0,0021	97	88

0,0063	0.0084	0.0041	99	89
0,0000	0,000	0,00-1	55	03

Tabla B42:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = compuesto n.^{\circ} 1.001$

TCZ = tebuconazol

10 TFS = trifloxistrobina

B42.1: Alternaria solani

Solución de 1.001	Solución de T	CZ+TFS 2:1		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0004				10	
0,0008				30	
0,0016				54	
	0,0010		0,0005	10	
	0,0021		0,0010	17	
	0,0042		0,0021	9	
0,0004	0,0010		0,0005	30	19
0,0008	0,0021		0,0010	44	42
0,0016	0,0042		0,0021	74	58
B42.2: Fusarium cul	lmorum				
Solución de 1.001	Solución de T	CZ+TFS 2:1		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0125				16	
0,0250				34	
0,0500				54	
0,1000				58	
0,2000				59	
	0,0042		0,0021	1	
	0,0168		0,0083	1	
	0,0335		0,0165	2	
	0,0670		0,0330	6	
	0,1340		0,0660	6	
	0,1340		0,0660	8	
0,0125	0,0168		0,0083	42	17
0,0125	0,0335		0,0165	58	18
0,0250	0,0042		0,0021	51	35
0,0250	0,0168		0,0083	51	35
0,0250	0,0335		0,0165	66	36
0,0250	0,0670		0,0330	71	39
0,0500	0,0168		0,0083	60	54

0,0008 24 0,0016 45 0,0031 76		1		1	1	1
0.0500	0,0500	0,0335		0,0165	69	55
0,1000 0,0335 0,0165 72 59 0,1000 0,0670 0,0330 78 61 0,1000 0,1340 0,0660 80 61 0,2000 0,0335 0,0165 75 60 0,2000 0,1340 0,0660 83 63 B42.3: Rhizoctonia solani Observado esperada Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ppm ppm ppm observado esperada ppm ppm ppm acción (colby 0,0500 0 0 0 0,1340 0,0660 13 0 0,0500 0 0 0 0,1340 0,0660 13 35 0,0500 0,1340 0,0660 68 13 0,1340 0,0660 52 26 B42.4: Septoria tritici Solución de TCZ+TFS 2:1 observado esperada esperada 0,0004 0 0 0 0	0,0500	0,0670		0,0330	78	57
0,1000 0,0670 0,0330 78 61 0,1000 0,1340 0,0660 80 61 0,2000 0,0335 0,0165 75 60 0,2000 0,0670 0,0330 76 62 0,2000 0,1340 0,0660 83 63 B42.3: Rhizoctonia solani Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada acción (colby de actividad acción (colby de actividad) 0,0250 0 0 0 0 0,0500 0 0 0 0 0,1000 15 0 0 0 0,0500 0,0670 0,0330 35 0 0,0250 0,0670 0,0330 51 35 0,0500 0,1340 0,0660 68 13 0,0500 0,1340 0,0660 52 26 B42.4: Septoria tritici 9 0 0 0 Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada acc	0,0500	0,1340		0,0660	75	57
0,1000 0,1340 0,0660 80 61 0,2000 0,0335 0,0165 75 60 0,2000 0,0670 0,0330 76 62 0,2000 0,1340 0,0660 83 63 B42.3: Rhizoctonia solani Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada acción (colby 0.0250 0,0250 0	0,1000	0,0335		0,0165	72	59
0,2000 0,0335 0,0165 75 60 0,2000 0,0670 0,0330 76 62 0,2000 0,1340 0,0660 83 63 B42.3: Rhizoctonia solani Solución de TCZ+TFS 2:1 observado esperada acción (colby ppm ppm ppm actividad acción (colby 0,0250 0 0 0 0,0500 0 0 0 0,1000 15 0 0 0,0500 0,0670 0,0330 35 0 0,0500 0,0670 0,0330 51 35 0,0500 0,1340 0,0660 68 13 0,0500 0,1340 0,0660 52 26 B42.4: Septoria tritici Solución de TCZ+TFS 2:1 observado esperada acción (colby 0 0,0004 9 0 0 0 0 0,0016 64 0 0 0 0 0 0 0 0 0 0	0,1000	0,0670		0,0330	78	61
0,2000 0,0670 0,0330 76 62 0,2000 0,1340 0,0660 83 63 B42.3: Rhizoctonia solani Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada acción (colby de actividad acción (colby acción de acción de acción (colby de actividad acción (colby de actividad acción (colby de acción de acción (colby de acción de acción (colby de acción (colby de acción de acción (colby de acción de acción (colby de acción (colby de acción de acción (colby acción de acción (colby de acción de acción (colby de acción de acción (colby acción de a	0,1000	0,1340		0,0660	80	61
0,2000 0,1340 0,0660 83 63 B42.3: Rhizoctonia solani Solución de 1.001 Solución de TCZ+TFS 2:1 observado de actividad acción (colby de actividad acción (colby oppm esperada ppm ppm ppm ppm acción (colby de actividad acción (colby oppm 0,0500 0 0 0 0 0,1000 15 0 0 0 0,0250 0,0670 0,0330 35 0 0,0250 0,0670 0,0330 51 35 0,0500 0,1340 0,0660 68 13 0,0500 0,1340 0,0660 52 26 B42.4: Septoria tritici Solución de TCZ+TFS 2:1 observado esperada acción (colby observado esperada acción (colby observado esperada acción (colby observado	0,2000	0,0335		0,0165	75	60
Solución de 1.001 Solución de TCZ+TFS 2:1 Observado de acción (colby 0.0250 0	0,2000	0,0670		0,0330	76	62
Solución de 1.001 Solución de TCZ+TFS 2:1 Observado esperada acción (colby 0.0250 0.0500 0.0500 0.0670 0.0330 35 0.0500 0.0100 0.0660 13 0.0500 0.0500 0.0500 0.0660 13 0.0500 0.0500 0.0500 0.0660 0.0330 51 35 0.0500 0.0500 0.01340 0.0660 68 13 0.0500 0.1340 0.0660 52 26 0.0500 0.1340 0.0660 52 26 0.0500 0.1340 0.0660 52 26 0.0500 0.01340 0.0660 52 26 0.0500 0.01340 0.0660 52 26 0.0500 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.00000	0,2000	0,1340		0,0660	83	63
ppm ppm % de actividad acción (colby) 0,0250 0 0 0,0500 0 0 0,1000 15 0 0,0670 0,0330 35 0,0250 0,0670 0,0330 51 35 0,0500 0,1340 0,0660 68 13 0,1000 0,1340 0,0660 52 26 B42.4: Septoria tritici 52 26 26 B42.4: Septoria tritici 52 26 32 Solución de 1.001 Solución de TCZ+TFS 2:1 observado experada exción (colby) 40 0,0004 ppm ppm ppm ppm 40 40 0,0016 64 0,0010 0,0005 10 10 10 0,0004 0,0010 0,0005 27 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18	B42.3: Rhizoctonia so	olani				
ppm ppm ppm actividad acción (colby 0,0250 <	Solución de 1.001	Solución de TCZ-	+TFS 2:1			esperada
0,0250 0 <td>mag</td> <td>mag</td> <td></td> <td>maa</td> <td>,</td> <td>acción (colby)</td>	mag	mag		maa	,	acción (colby)
0,0500 0 15 0,1000 15 15 0,0670 0,0330 35 0,0250 0,0670 0,0330 51 35 0,0500 0,1340 0,0660 68 13 0,1000 0,1340 0,0660 52 26 B42.4: Septoria tritici Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ppm ppm ppm observado esperada 0,0004 9 olución de 1.001 Solución de 1.001 0,0010 0,0005 10 0,0004 0,0010 0,0005 10 0 0,0004 0,0010 0,0005 27 17 0,0008 0,0010 0,0005 65 32 0,00016 0,0010 0,0005 88 67 0,0016 0,0010 0,0005 88 67 0,0016 0,0011 0,0010 0,0010 86 76 B42.5:		- February		PP		(00.00)
0,1000 15 0,0670 0,0330 35 0,1340 0,0660 13 0,0500 0,1340 0,0660 68 13 0,1000 0,1340 0,0660 52 26 B42.4: Septoria tritici Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada esperada esción (colby, observado esperada esción (colby, observado esperada esción (colby, observado esperada esción (colby, observado esperada e						
0,0670 0,0330 35 0,1340 0,0660 13 0,0250 0,0670 0,0330 51 35 0,0500 0,1340 0,0660 68 13 0,1000 0,1340 0,0660 52 26 B42.4: Septoria tritici Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada esperada esperada ppm ppm ppm ppm acción (colby) 0,0004 0,0004 9 acción (colby) 0,0004 0,0010 0,0005 10 0,0004 0,0010 0,0005 27 17 0,0008 0,0010 0,0005 65 32 0,0008 0,0021 0,0010 80 50 0,0016 0,0010 0,0005 88 67 0,0016 0,0021 0,0010 86 76 B42.5: Botrytis cinerea Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada acción (colby)						
0,1340	3,:333	0.0670		0.0330		
0,0250 0,0670 0,0330 51 35 0,0500 0,1340 0,0660 68 13 0,1000 0,1340 0,0660 52 26 B42.4: Septoria tritici Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada estrividad acción (colby) ppm ppm ppm ppm observado esperada ección (colby) 0,0004 0,0004 9 0,0008 0,0010 0,0005 10 0,0004 0,0010 0,0005 10 0,0008 0,0010 0,0005 27 17 0,0008 0,0010 0,0005 65 32 0,0016 0,0010 0,0005 88 67 0,0016 0,0021 0,0010 86 76 B42.5: Botrytis cinerea Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ectividad acción (colby) 0,0008 24 Observado esperada acción (colby) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
0,0500 0,1340 0,0660 68 13 0,1000 0,1340 0,0660 52 26 B42.4: Septoria tritici Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ppm ppm observado esperada ppm ppm acción (colby) 0,0004 0,0008 24 0,00010 0,0010 34 0,0004 0,0010 0,0005 27 17 0,0008 0,0010 0,0005 65 32 0,0016 0,0010 0,0010 88 67 0,0016 0,0010 0,0010 86 76 Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada 9 Observado esperada actividad actividad acción (colby)	0.0250					35
0,1000 0,1340 0,0660 52 26 B42.4: Septoria tritici Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada acción (colby de actividad esperada acción (colby de acc						
B42.4: Septoria tritici						
ppm ppm % de actividad acción (colby) 0,0004 9 0,0008 24 0,0016 64 0,0010 0,0005 0,0021 0,0010 0,0004 0,0010 0,0008 0,0010 0,0008 0,0021 0,0016 0,0010 0,0016 0,0010 0,0016 0,0021 0,0016 0,0021 0,0016 0,0021 0,0010 0,0010 86 76 Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ección (colby) 0,0008 24 0,0016 45 0,0031 76				,		
ppm ppm ppm actividad acción (colby) 0,0004 9	Solución de 1.001	Solución de TCZ-	+TFS 2:1			esperada
0,0004 9 0,0008 24 0,0016 64 0,0010 0,0005 10 0,0004 0,0010 0,0005 27 17 0,0008 0,0010 0,0005 65 32 0,0016 0,0010 0,0005 88 67 0,0016 0,0010 0,0005 88 67 0,0016 0,0021 0,0010 86 76 B42.5: Botrytis cinerea Solución de TCZ+TFS 2:1 observado esperada ectividad acción (colby) 0,0008 24 45 0,0016 0,0031 76	ppm	ppm		ppm	,	acción (colby)
0,0008 24 0,0016 64 0,0010 0,0005 0,0021 0,0010 0,0004 0,0010 0,0008 0,0010 0,0010 0,0005 0,0016 0,0010 0,0016 0,0010 0,0016 0,0021 0,0016 0,0021 0,0010 86 76 Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada % de actividad acción (colby) 0,0008 0,0008 24 0,0031 45 0,0031 76					9	, ,
0,0010 0,0005 10 0,0021 0,0010 34 0,0004 0,0010 0,0005 27 17 0,0008 0,0010 0,0005 65 32 0,0008 0,0021 0,0010 80 50 0,0016 0,0010 0,0005 88 67 0,0016 0,0021 0,0010 86 76 B42.5: Botrytis cinerea Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ppm ppm acción (colby) 0,0008 24 0,0016 45 0,0031 76					24	
0,0010 0,0005 10 0,0021 0,0010 34 0,0004 0,0010 0,0005 27 17 0,0008 0,0010 0,0005 65 32 0,0008 0,0021 0,0010 80 50 0,0016 0,0010 0,0010 86 76 B42.5: Botrytis cinerea Solución de TCZ+TFS 2:1 observado esperada Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ppm ppm acción (colby 0,0008 24 0,0016 45 0,0031 76					64	
0,0021 0,0010 34 0,0004 0,0010 0,0005 27 17 0,0008 0,0010 0,0005 65 32 0,0008 0,0021 0,0010 80 50 0,0016 0,0010 0,0005 88 67 0,0016 0,0021 0,0010 86 76 B42.5: Botrytis cinerea Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ppm ppm ppm actividad actividad acción (colby) 0,0008 24 0,0016 45 0,0031 76 76		0,0010		0,0005	10	
0,0004 0,0010 0,0005 27 17 0,0008 0,0010 0,0005 65 32 0,0008 0,0021 0,0010 80 50 0,0016 0,0010 0,0005 88 67 0,0016 0,0021 0,0010 86 76 B42.5: Botrytis cinerea Solución de TCZ+TFS 2:1 observado esperada ppm ppm actividad acción (colby) 0,0008 24 0,0016 45 0,0031 76 45						
0,0008 0,0021 0,0010 80 50 0,0016 0,0010 0,0005 88 67 0,0016 0,0021 0,0010 86 76 B42.5: Botrytis cinerea Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ppm ppm actividad acción (colby) 0,0008 24 0,0031 76	0,0004	0,0010			27	17
0,0016 0,0010 0,0005 88 67 0,0016 0,0021 0,0010 86 76 B42.5: Botrytis cinerea Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ppm ppm actividad acción (colby) 0,0008 24 0,0016 45 0,0031 76	0,0008	0,0010		0,0005	65	32
0,0016 0,0021 0,0010 86 76 B42.5: Botrytis cinerea Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ppm ppm ppm acción (colby) 0,0008 24 45 0,0031 76 76	0,0008	0,0021		0,0010	80	50
B42.5: Botrytis cinerea Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ppm ppm ppm actividad acción (colby) 0,0008 24 45 0,0031 76 76	0,0016	0,0010		0,0005	88	67
Solución de 1.001 Solución de TCZ+TFS 2:1 observado esperada ppm ppm ppm acción (colby) 0,0008 24 0,0016 45 0,0031 76	0,0016			0,0010	86	76
ppm ppm % de actividad acción (colby) 0,0008 24 0,0016 45 0,0031 76	B42.5: Botrytis cinere	ea				
ppm ppm actividad acción (colby) 0,0008 24 0,0016 45 0,0031 76	Solución de 1.001	Solución de TCZ-	+TFS 2:1			esperada
0,0008 24 0,0016 45 0,0031 76	ppm	ppm		ppm	,	acción (colby)
0,0016 45 0,0031 76						
0,0031 76	0,0016				45	
0.0021 0.0010 15	0,0031				76	
10,00		0,0021		0,0010	15	

	0,0042	0,0021	32	
0,0008	0,0021	0,0010	72	35
0,0016	0,0021	0,0010	88	53
0,0016	0,0042	0,0021	98	62
0,0031	0,0021	0,0010	89	79
0,0031	0,0042	0,0021	99	83

Tabla B43:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = \text{compuesto n.}^{\circ} 1.001$

TCZ = tebuconazol

10 FDL = fludioxonil

B43.1: Alternaria solani

Solución de 1.001	Solución de TCZ+FDL	1:2	observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			45	
	0,0001	0,0003	0	
	0,0021	0,0042	0	
0,0016	0,0001	0,0003	54	45
0,0016	0,0021	0,0042	78	45
B43.2: Fusarium cul	morum			
Solución de 1.001	Solución de TCZ+FDL	1:2	observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0250			34	
0,0500			55	
0,1000			55	
0,2000			61	
	0,0330	0,0670	1	
	0,0660	0,1340	1	
	0,0660	0,1340	25	
0,0250	0,0330	0,0670	56	34
0,0500	0,0330	0,0670	89	56
0,0500	0,0660	0,1340	100	67
0,1000	0,0330	0,0670	81	56
0,1000	0,0660	0,1340	97	66
0,2000	0,0330	0,0670	76	61
0,2000	0,0660	0,1340	98	71
B43.3: Monographe	lla nivalis			
Solución de 1.001	Solución de TCZ+FDL	1:2	observado	esperada

			% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0063			1	
0,0125			4	
0,0250			14	
0,0500			11	
	0,0041	0,0084	24	
	0,0083	0,0168	70	
0,0063	0,0083	0,0168	95	70
0,0125	0,0083	0,0168	98	71
0,0250	0,0041	0,0084	55	35
0,0250	0,0083	0,0168	100	74
0,0500	0,0041	0,0084	59	33
B43.4: Botrytis ciner	ea			
Solución de 1.001	Solución de TCZ+FDL 1:2		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0008			36	
0,0016			51	
0,0031			80	
	0,0005	0,0010	0	
	0,0010	0,0021	12	
	0,0021	0,0042	37	
	0,0041	0,0084	22	
0,0008	0,0005	0,0010	42	36
0,0016	0,0021	0,0042	91	69
0,0031	0,0010	0,0021	94	82
0,0031	0,0041	0,0084	100	84

Tabla B44:

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

TCZ = tebuconazol

10 CPL = ciprodinil

5

B44.1: Alternaria solani

Solución de 1.001	Solución de TCZ+CPL 1:2		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			35	
	0,0001	0,0003	8	
	0,0003	0,0005	0	
	0,0005	0,0010	0	
	0,0010	0,0021	4	

	0,0021	0,0042	5	
0,0016	0,0001	0,0003	57	40
0,0016	0,0003	0,0005	52	35
0,0016	0,0005	0,0010	47	35
0,0016	0,0010	0,0021	64	38
0,0016	0,0021	0,0042	52	39
B44.2: Monographella nivalis				
Solución de 1.001	Solución de TCZ+CPL 1:2		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			4	
0,0031			0	
0,0063			3	
	0,0021	0,0042	10	
	0,0041	0,0084	52	
0,0016	0,0021	0,0042	35	14
0,0031	0,0041	0,0084	97	52
0,0063	0,0041	0,0084	91	53

Tabla B45:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

TCZ = tebuconazol

10 FLN = fluazinam

B45.1: Alternaria solani

Solución de 1.001	Solución de TCZ+FLN 1:3		observado	esperada
30.00.0.1.00.1			% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0008			10	
0,0016			40	
0,0031			76	
	0,0001	0,0003	0	
	0,0002	0,0006	0	
	0,0004	0,0012	0	
	0,0008	0,0023	5	
	0,0016	0,0047	10	
	0,0031	0,0094	22	
0,0008	0,0004	0,0012	27	10
0,0016	0,0001	0,0003	50	40
0,0016	0,0008	0,0023	46	43
0,0016	0,0016	0,0047	66	45
0,0031	0,0002	0,0006	88	76

0,0031	0,0016		0,0047	90	78
0,0031	0,0031		0,0094	92	81
B45.2: Monographell	a nivalis				
Solución de 1.001	Solución de TCZ+FL	N 1:3		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				2	
0,0031				0	
0,0063				5	
0,0125				5	
0,0250				6	
0,0500				9	
	0,0016		0,0047	0	
	0,0031		0,0094	45	
0,0016	0,0016		0,0047	31	2
0,0031	0,0031		0,0094	90	45
0,0063	0,0031		0,0094	73	48
0,0125	0,0031		0,0094	79	48
0,0250	0,0016		0,0047	29	6
0,0500	0,0031		0,0094	84	50
B45.3: Botrytis cinere	ea ea				
Solución de 1.001	Solución de TCZ+FL	N 1:3		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0008	FF		1-1-	36	(===,
0,0016				68	
0,0031				86	
	0,0004		0,0012	3	
	0,0008		0,0023	8	
	0,0016		0,0047	6	
	0,0031		0,0094	10	
0,0008	0,0004		0,0012	59	38
0,0008	0,0008		0,0023	85	41
0,0016	0,0008		0,0023	94	71
0,0016	0,0016		0,0047	99	70
0,0031	0,0016		0,0047	99	87
0,0031	0,0031		0,0094	100	88

Tabla B46:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = compuesto n.^{0} 1.001$

PYS = piraclostrobina

10 TFS = trifloxistrobina

B46.1: Alternaria solani

Solución do 1 001	Solución de PYS+TFS 1:1		obsorvado	osporada
Solución de 1.001	501ucion de P15+1F5 1.1		observado % de	esperada
ppm	ppm	ppm	actividad	acción (colby)
0,0016			53	
0,0031			73	
	0,0002	0,0002	0	
	0,0008	0,0008	0	
	0,0031	0,0031	13	
	0,0063	0,0063	20	
0,0016	0,0002	0,0002	65	53
0,0016	0,0031	0,0031	67	59
0,0031	0,0008	0,0008	80	73
0,0031	0,0031	0,0031	86	76
0,0031	0,0063	0,0063	89	78
B46.2: Monographe	lla nivalis			
Solución de 1.001	Solución de PYS+TFS 1:1		observado	esperada
nnm	nnm	nnm	% de actividad	acción (colby)
0,0016	ppm	ppm	1	accion (colby)
0,0010			2	
			0	
0,0063				
0,0250	0,0031	0,0031	25	
		0,0031	66	
0,0016	0,0063	0,0003	37	26
0,0031	0,0063	0,0063	98	67
0,0063	0,0031	0,0031	55	25
0,0063	0,0063	0,0063	76	66
0,0250	0,0063	0,0063	100	69
B46.3: Septoria tritic	i			
Solución de 1.001	Solución de PYS+TFS 1:1	ı	observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016	PP		53	400.0 (00)
0,0010	0,0004	0,0004	0	
	0,0004	0,0004	1	
	0,0010	0,0010	1	
0,0016	0,0004	0,0004	61	53
0,0016	0,0004	0,0004	60	54
	0,0016	0,0018	66	54
0,0016 B46.4: <i>Botrytis ciner</i>		0,0031	00	04
Solución de 1.001	Solución de PYS+TFS 1:1	1	observado	esperada
Solucion de 1.001	301001011 UE F 13+1F3 1.1	<u> </u>	UDSELVACIO	cope raua

			% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0016			43	
	0,0002	0,0002	3	
	0,0008	0,0008	0	
0,0016	0,0002	0,0002	52	45
0,0016	0,0008	0,0008	51	43

Tabla B47:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = compuesto n.^{0} 1.001$

PYS = piraclostrobina

10 FDL = fludioxonil

B47.1: Alternaria solani

	1			ı	
Solución de 1.001	Solución de	PYS+FDL 1:4		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				53	
	0,0013		0,0050	2	
0,0016	0,0013		0,0050	71	54
B47.2: Septoria tritici					
Solución de 1.001	Solución de	PYS+FDL 1:4		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0008				15	
0,0016				53	
	0,0006		0,0025	14	
	0,0013		0,0050	39	
0,0008	0,0006		0,0025	48	26
0,0016	0,0013		0,0050	90	71
B47.3: Botrytis cinere	ea				
Solución de 1.001	Solución de	PYS+FDL 1:4		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				42	
0,0031				68	
	0,0013		0,0050	16	
	0,0025		0,0100	38	
0,0016	0,0013		0,0050	88	51
0,0031	0,0013		0,0050	93	73
0,0031	0,0025		0,0100	99	80

15 <u>Tabla B48:</u>

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

PYS = piraclostrobina

CPL = ciprodinil

5

B48.1: Alternaria solani

Solución de 1.001	Solución de PYS-	-CPL 1:4		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0008				24	
0,0016				46	
	0,0001		0,0003	8	
	0,0003		0,0013	1	
	0,0006		0,0025	2	
	0,0013		0,0050	2	
0,0008	0,0006		0,0025	34	26
0,0016	0,0001		0,0003	59	50
0,0016	0,0003		0,0013	55	47
0,0016	0,0006		0,0025	59	48
0,0016	0,0013		0,0050	70	48
B48.2: Fusarium cui	lmorum				
Solución de 1.001	Solución de PYS-	+CPL 1:4		observado	esperada
ppm	ppm			% de actividad	acción (colby)
0,0125				10	
0,0250				32	
0,0500				59	
0,1000				56	
0,2000				60	
	0,0100 0,0200 0,0400		0,0400	12	
			0,0800	8	
			0,1600	8	
	0,0400		0,1600	35	
0,0125	0,0100		0,0400	36	20
0,0250	0,0100		0,0400	46	40
0,0250	0,0200		0,0800	56	37
0,0500	0,0400		0,1600	100	73
0,1000	0,0200		0,0800	73	60
0,1000	0,0400		0,1600	98	71
0,2000	0,0400		0,1600	98	74
B48.3: Monographe	lla nivalis				
Solución de 1.001	Solución de PYS-	-CPL 1:4		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0250		PP:		15	

0,0500					21	
0,0300	0,0050			0,0200	0	
	0,0000			0,0800	0	
	0,0200			0,1600	46	
0.0250				0,0800	48	15
0,0250	0,0200					
0,0500	0,0050			0,0200	58	21
0,0500	0,0400			0,1600	85	57
B48.4: Rhizoctonia s	olani					
Solución de 1.001	Solución de	PYS+0	CPL 1:4		observado	esperada
ppm	ppm			ppm	% de actividad	acción (colby)
0,0500	PP			PP	0	(00.0)
0,2000					0	
3,200	0,0400			0,1600	16	
	0,0400			0,1600	61	
0,0500	0,0400			0,1600	76	61
0,2000	0.0400			0,1600	72	61
0,2000	0,0400			0,1000	12	01
B48.5: Septoria tritici						
Solución de 1.001	Solución de	PYS+0	CPL 1:4		observado	esperada
ppm	ppm			ppm	% de actividad	acción (colby)
0,0016					58	` ,
,	0,0013			0,0050	0	
0,0016	0,0013			0,0050	67	58
B48.6: Botrytis cinere		D) (0)				
Solución de 1.001	Solución de	PYS+0	JPL 1:4		observado % de	esperada
ppm	ppm			ppm	actividad	acción (colby)
0,0008					30	
0,0016					59	
0,0031					76	
	0,0002			0,0006	3	
	0,0006			0,0025	7	
	0,0013			0,0050	0	
	0,0025			0,0100	21	
0,0008	0,0002		0,0006	44	32	
0,0008	0,0006		0,0025	41	35	
0,0016	0,0013		0,0050	91	59	
0,0031	0,0006			0,0025	91	78
0,0031	0,0013			0,0050	85	76
0,0031	0,0025			0,0100	99	81

Tabla B49:

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

PYS = piraclostrobina

FLN = fluazinam

5

B49.1: Monographella nivalis

Solución de 1.001	Solución de PY	S+FLN 1:6		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0031				6	
	0,0018		0,0107	13	
0,0031	0,0018		0,0107	86	18
B49.2: Botrytis cinere	B49.2: Botrytis cinerea				
Solución de 1.001	Solución de PY	S+FLN 1:6		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				48	
	0,0002		0,0013	0	
	0,0009		0,0054	0	
0,0016	0,0002		0,0013	53	48
0,0016	0,0009		0,0054	56	48

Tabla B50:

10

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

15 TFS = trifloxistrobina

FDL = fludioxonil

B50.1: Fusarium culmorum

20

			1	<u> </u>
Solución de 1.001	Solución de TFS+FDL 1:4		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0125			11	
0,0250			33	
0,0500			56	
0,1000			59	
0,2000			65	
	0,0050	0,0200	2	
	0,0100	0,0400	20	
	0,0200	0,0800	29	
0,0125	0,0050	0,0200	51	12
0,0125	0,0100	0,0400	50	28
0,0250	0,0050	0,0200	50	34
0,0250	0,0100	0,0400	62	46
0,0250	0,0200	0,0800	100	53
0,0500	0,0200	0,0800	93	69

	T		I		
0,1000	0,0200		0,0800	88	71
0,2000	0,0200	0,0200		93	76
B50.2: Monographell	a nivalis				
Solución de 1.001	Solución de TFS+F	DL 1:4		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0004				0	, ,
0,0008				3	
	0,0003		0,0013	44	
0,0004	0,0003		0,0013	67	44
0,0008	0,0003		0,0013	73	46
B50.3: Rhizoctonia s	olani				
Solución de 1.001	Solución de TFS+F	DL 1:4		observado	esperada
		<u> </u>		% de	
ppm	ppm		ppm	actividad	acción (colby)
0,1000				0	
0,2000				0	
	0,0400		0,1600	30	
	0,0400		0,1600	65	
0,1000	0,0400		0,1600	99	65
0,2000	0,0400		0,1600	96	65
B50.4: Septoria tritici					
Solución de 1.001	Solución de TFS+F	DL 1:4		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0008				27	
0,0016				56	
	0,0006		0,0025	10	
	0,0013		0,0050	21	
0,0008	0,0006		0,0025	47	34
0,0016	0,0006		0,0025	78	60
0,0016	0,0013		0,0050	73	65
B50.5: Botrytis cinere	ea .				
Solución de 1.001	Solución de TFS+F	DL 1:4		observado	esperada
				% de	
ppm	ppm		ppm	actividad	acción (colby)
0,0008				9	
0,0016				26	
0,0031	0.0000		0.0005	49	
	0,0006		0,0025	6	
	0,0013		0,0050	33	
0.0000	0,0025		0,0100	37	4.4
0,0008	0,0006		0,0025	22	14
0,0016	0,0013		0,0050	78	50
0,0031	0,0025		0,0100	89	68

Tabla B51:

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

TFS = trifloxistrobina

10 CPL = ciprodinil

5

B51.1: Fusarium culmorum

Solución de 1.001	Solución de TFS+CPL 1:4		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0250			29	
0,0500			54	
0,1000			57	
0,2000			58	
	0,0100	0,0400	7	
	0,0200	0,0800	6	
	0,0400	0,1600	6	
	0,0400	0,1600	8	
0,0250	0,0100	0,0400	56	34
0,0250	0,0200	0,0800	70	33
0,0500	0,0100	0,0400	64	57
0,0500	0,0200	0,0800	77	56
0,0500	0,0400	0,1600	80	58
0,1000	0,0100	0,0400	67	60
0,1000	0,0200	0,0800	77	60
0,1000	0,0400	0,1600	84	61
0,2000	0,0200	0,0800	73	60
0,2000	0,0400	0,1600	83	62
B51.2: Monographe	lla nivalis			
Solución de 1.001	Solución de TFS+CPL 1:4		observado	esperada
			% de	: ((lb.)
ppm	ppm	ppm	actividad	acción (colby)
0,0004			2	
0,0008			0	
0,0016			0	
0,0031			2	
0,0125	0.0000	0.0040	0	
	0,0003	0,0013	46	
0.0004	0,0006	0,0025	88	40
0,0004	0,0003	0,0013	98	48
0,0008	0,0003	0,0013	93	46
0,0008	0,0006	0,0025	98	88
0,0016	0,0006	0,0025	98	88

0,0031	0,0006		0,0025	97	88
0,0125	0,0006		0,0025	97	88
B51.3: Septoria tritici	,				
Solución de 1.001	Solución de T	FS+CPL 1:4		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0008				18	
0,0016				47	
	0,0006		0,0025	10	
	0,0013		0,0050	25	
0,0008	0,0006		0,0025	34	26
0,0016	0,0013		0,0050	78	60

Tabla B52:

Las abreviaturas se definen de la siguiente manera:

5 1.001 = compuesto n.º 1.001

TFS = trifloxistrobina

10 FLN = fluazinam

B52.1: Alternaria solani

	1			_	T I
Solución de 1.001	Solución de TFS	S+FLN 1:6		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				21	
0,0031				57	
	0,0009		0,0054	5	
0,0016	0,0009		0,0054	48	25
0,0031	0,0009		0,0054	82	59
B52.2: Fusarium cul	morum				
Solución de 1.001	Solución de TFS	S+FLN 1:6		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0125				6	
0,0250				26	
	0,0072		0,0428	23	
	0,0143		0,0857	30	
0,0125	0,0072		0,0428	40	28
0,0250	0,0143		0,0857	58	48
B52.3: Monographe	lla nivalis				
Solución de 1.001	Solución de TFS	S+FLN 1:6		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0004				3	
0,0063				2	

	0,0002		0,0013	38	
0,0004	0,0002		0,0013	97	40
0,0063	0,0002		0,0013	85	39
B52.4: Botrytis cinere	a				
Solución de 1.001	Solución de TFS+FLN	1:6		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0016				29	
0,0031				58	
0,0063				74	
	0,0009		0,0054	18	
	0,0018		0,0107	76	
0,0016	0,0009		0,0054	84	42
0,0031	0,0009		0,0054	91	65
0,0031	0,0018		0,0107	100	90
0,0063	0,0009		0,0054	88	79

Tabla B53:

Las abreviaturas se definen de la siguiente manera:

5 $1.001 = compuesto n.^{\circ} 1.001$

FDL = fludioxonil

10 CPL = ciprodinil

B53.1: Fusarium culmorum

0 1 17 1 4 004	0 1 17 1 501	ODI (4.4)		Ι, ,	
Solución de 1.001	Solución de FDL	FCPL (1:1)		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0500				49	
0,1000				59	
0,2000				55	
	0,1000		0,1000	8	
	0,1000		0,1000	6	
0,0500	0,1000		0,1000	81	51
0,1000	0,1000		0,1000	85	62
0,2000	0,1000		0,1000	84	58
B53.2: Monographel	lla nivalis				
Solución de 1.001	Solución de FDL	-CPL (1:1)		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0063				0	
0,0125				0	
	0,0125		0,0125	26	
0,0063	0,0125		0,0125	67	26
0,0125	0,0125		0,0125	46	26

B53.3: Botrytis cinerea					
Decie: Deay are enter					
Solución de 1.001	Solución de FDL+CPL (1:	1)	observado	esperada	
ppm	ppm	ppm	% de actividad	acción (colby)	
0,0016			49		
0,0031			71		
0,0063			87		
	0,0031	0,0031	3		
	0,0063	0,0063	4		
	0,0125	0,0125	16		
0,0016	0,0031	0,0031	61	50	
0,0031	0,0063	0,0063	91	72	
0,0063	0,0063	0,0063	97	87	
0,0063	0,0125	0,0125	100	89	

Tabla B54:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

FDL = fludioxonil

10 FLN = fluazinam

B54.1: Alternaria solani

Solución de 1.001	Solución de FDI	+FLN (2:3)		observado	esperada
001001011 00 1.001	Coldolon de l'El			% de	Coporada
ppm	ppm		ppm	actividad	acción (colby)
0,0008				42	
	0,0002		0,0002	3	
0,0008	0,0002		0,0002	65	44
B54.2: Fusarium culi	morum				
Solución de 1.001	Solución de FDI	_+FLN (2:3)		observado	esperada
ppm	ppm		ppm	% de actividad	acción (colby)
0,0500				51	
0,1000				55	
0,2000				60	
	0,0400		0,0600	0	
	0,0800		0,1200	0	
	0,0800		0,1200	15	
0,0500	0,0400		0,0600	64	51
0,0500	0,0800		0,1200	87	59
0,1000	0,0400		0,0600	61	55
0,1000	0,0800		0,1200	87	62
0,2000	0,0400		0,0600	75	60

0,2000	0,0800	0,1200	88	66
B54.3: Monographe	lla nivalis			
Solución de 1.001	Solución de FDL+FLN (2:3)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0500			3	
0,1000			22	
	0,0100	0,0150	5	
	0,0200	0,0300	0	
	0,0400	0,0600	1	
	0,0800	0,1200	67	
0,0500	0,0400	0,0600	38	4
0,0500	0,0800	0,1200	100	68
0,1000	0,0100	0,0150	39	26
0,1000	0,0200	0,0300	46	22
0,1000	0,0400	0,0600	68	23
0,1000	0,0800	0,1200	94	74
B54.4: Botrytis ciner	rea			
Solución de 1.001	Solución de FDL+FLN (2:3)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0008			34	
0,0031			75	
0,0063			89	
	0,0002	0,0002	9	
	0,0050	0,0075	4	
	0,0100	0,0150	8	
0,0008	0,0002	0,0002	61	40
0,0031	0,0050	0,0075	89	76
0,0063	0,0050	0,0075	98	90
0,0063	0,0100	0,0150	100	90

Tabla B55:

5

Las abreviaturas se definen de la siguiente manera:

1.001 = compuesto n.º 1.001

CPL = ciprodinil

10 FLN = fluazinam

B55.1: Alternaria solani

Solución de 1.001	Solución de CPL+FLN (2:3)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016			55	

	0.0000	0.0000		
	0,0002	0,0002	0	
0.004.0	0,0003	0,0005	9	
0,0016	0,0002	0,0002	69	55
0,0016	0,0003	0,0005	69	59
B55.2: Fusarium cui				
Solución de 1.001	Solución de CPL+FLN (2:3)		observado % de	esperada
ppm	ppm	ppm	actividad	acción (colby)
0,0250			16	
0,2000			51	
	0,0025	0,0038	0	
	0,0200	0,0300	0	
0,0250	0,0025	0,0038	44	16
0,2000	0,0200	0,0300	60	51
B55.3: Monographe	lla nivalis			
Solución de 1.001	Solución de CPL+FLN (2:3)		observado	esperada
001001011 00 1.001	Coldolori do Cr Err Erv (E.S)		% de	
ppm	ppm	ppm	actividad	acción (colby)
0,1000			19	
0,2000			79	
	0,0100	0,0150	2	
	0,0200	0,0300	28	
0,1000	0,0100	0,0150	41	21
0,2000	0,0200	0,0300	90	85
B55.4: Septoria tritic	oi			
Solución de 1.001	Solución de CPL+FLN (2:3)		observado	esperada
ppm	ppm	ppm	% de actividad	acción (colby)
0,0016	Pierri	PP	63	
3,00.0	0,0002	0,0002	5	
0,0016	0,0002	0,0002	82	65
B55.5: Botrytis ciner		0,000		
Solución de 1.001	Solución de CPL+FLN (2:3)		observado	esperada
001401011 40 1.001	Coldolori do Or Err Erv (E.S)		% de	
ppm	ppm	ppm	actividad	acción (colby)
0,0016			38	
0,0031			53	
0,0063			66	
0,0125			83	
	0,0013	0,0019	1	
	0,0050	0,0075	4	
	0,0100	0,0150	4	
0,0016	0,0013	0,0019	58	38
0,0031	0,0050	0,0075	76	55
0,0063	0,0050	0,0075	94	67

0,0063	0,0100	0,0150	100	67
0,0125	0,0013	0,0019	94	84
0,0125	0,0050	0,0075	97	84
0,0125	0,0100	0,0150	100	84

REIVINDICACIONES

- 1. Una composición adecuada para el control de enfermedades causadas por fitopatógenos, que comprende
- 5 como componente (A) 3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida;

У

10

como componente (B) un compuesto seleccionado del grupo que consiste en

el compuesto de fórmula VII

isopirazam, difenoconazol, azoxistrobina, protioconazol, tebuconazol, piraclostrobina, trifloxistrobina, fludioxonil y ciprodinil;

v como componente (C) un compuesto seleccionado del grupo que consiste en:

- 20 isopirazam, difenoconazol, azoxistrobina, protioconazol, tebuconazol, piraclostrobina, trifloxistrobina, fludioxonil y ciprodinil; con la condición de que en cada composición el componente (B) es diferente del componente (C).
 - 2. La composición de acuerdo con la reivindicación 1, en la que la relación ponderal de (A) a (B+C) es de
- 25 2000 a 1: 1000.

50

- 3. La composición de acuerdo con la reivindicación 1, en la que la relación ponderal de (A) a (B+C) es de 4:1 a 1:4.
- La composición de acuerdo con la reivindicación 3, en la que la relación ponderal de componente (B) a componente (C) es de 2: 1 a 1: 6.
 - 5. La composición de acuerdo con la reivindicación 1, seleccionada del grupo que consiste en:

35
3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida + el compuesto de fórmula VII + isopirazam;

- 3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida + el compuesto de fórmula VII + difenoconazol;
 - 3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida + el compuesto de fórmula VII + azoxistrobina;
- 45 3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida + el compuesto de fórmula VII + protioconazol;
 - 3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida + el compuesto de fórmula VII + tebuconazol;
 - 3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida + el compuesto de fórmula VII + piraclostrobina;
- 3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida + el compuesto de fórmula VII + trifloxistrobina;
 - 3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida + el compuesto de

fórmula VII + fludioxonil;

5	$ 3\hbox{-}(difluorometil)\hbox{-}N\hbox{-}metoxi\hbox{-}1\hbox{-}metil\hbox{-}N\hbox{-}[1\hbox{-}metil\hbox{-}2\hbox{-}(2,4,6\hbox{-}triclorofenil)etil]} pirazol\hbox{-}4\hbox{-}carboxamida fórmula VII + ciprodinil;} $	+	el	compuesto	de
5	3- (diffuorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida difenoconazol;	+	-	isopirazam	+
10	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida azoxistrobina;	+	-	isopirazam	+
	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida protioconazol;	+	-	isopirazam	+
15	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida tebuconazol;	+	-	isopirazam	+
20	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida piraclostrobina;	+	-	isopirazam	+
20	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida trifloxistrobina;	+	-	isopirazam	+
0.5	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida-ca	+ iso	pira	zam + fludioxo	nil;
25	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida	+ iso	pira	zam + ciprodir	nil;
	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida azoxistrobina;	+	C	lifenoconazol	+
30	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida protioconazol;	+	c	lifenoconazol	+
35	$3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida \ tebuconazol;\\$	+	C	lifenoconazol	+
	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida piraclostrobina;	+	C	lifenoconazol	+
40	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida trifloxistrobina;	+	C	lifenoconazol	+
45	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida fludioxonil;	+	c	lifenoconazol	+
40	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida ciprodinil;	+	C	lifenoconazol	+
50	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida protioconazol;	+	á	azoxistrobina	+
	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida tebuconazol;	+	á	azoxistrobina	+
55	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida piraclostrobina;	+	á	azoxistrobina	+
00	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida trifloxistrobina;	+	á	azoxistrobina	+
60	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida fludioxonil;	+	á	azoxistrobina	+
65	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida ciprodinil;	+	ć	azoxistrobina	+

	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida tebuconazol;	+	protioconazol	+
5	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida piraclostrobina;	+	protioconazol	+
	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida trifloxistrobina;	+	protioconazol	+
10	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida fludioxonil;	+	protioconazol	+
15	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida ciprodinil;	+	protioconazol	+
15	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida piraclostrobina;	+	tebuconazol	+
20	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida trifloxistrobina;	+	tebuconazol	+
	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida fludioxonil;	+	tebuconazol	+
25	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida -	tebu	conazol + ciprodi	inil;
	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida trifloxistrobina;	+	piraclostrobina	+
30	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida fludioxonil;	+	piraclostrobina	+
0.5	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida ciprodinil;	+	piraclostrobina	+
35	3- (difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil] pirazol-4-carboxamida fludioxonil;	+	trifloxistrobina	+
40	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida ciprodinil; y,	+	trifloxistrobina	+
	3-(difluorometil)-N-metoxi-1-metil-N-[1-metil-2-(2,4,6-triclorofenil)etil]pirazol-4-carboxamida -	- fludi	oxonil + ciprodini	l.

- 6. Un método de control de enfermedades en plantas útiles o en material de propagación de las mismas, causadas por fitopatógenos, que comprende aplicar a las plantas útiles, el emplazamiento de las mismas o el material de propagación de las mismas, una composición de acuerdo con la reivindicación 1.
- 7. Un método no terapéutico para proteger sustancias naturales de origen vegetal y/o animal, que se han apartado de su ciclo de vida natural, y/o sus formas procesadas, que comprende aplicar a dichas sustancias naturales de origen vegetal y/o animal o sus formas procesadas, una combinación de componentes (A) y (B) y (C) de acuerdo con la reivindicación 1.