

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

(1) Número de publicación: 2 728 758

(51) Int. CI.:

C11D 3/386 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 05.04.2017 E 17164901 (5)
 Fecha y número de publicación de la concesión europea: 27.03.2019 EP 3385361

(54) Título: Composiciones de detergente que comprenden mananasas bacterianas

Fecha de publicación y mención en BOPI de la traducción de la patente: **28.10.2019**

(73) Titular/es:

HENKEL AG & CO. KGAA (100.0%) Henkelstrasse 67 40589 Düsseldorf, DE

(72) Inventor/es:

HERBST, DANIELA; WIELAND, SUSANNE; MUSSMANN, NINA; LEINONEN, TAIJA; VALTAKARI, LEENA; RACHINGER, MICHAEL; JUNTUNEN, KARI; DOLLAK, DANIELA; LORENZ, PATRICK; VEHMAANPERÄ, JARI; OJAPALO, PENTTI; PURANEN, TERHI y JÄRVINEN, KRISTIINA

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Composiciones de detergente que comprenden mananasas bacterianas

5 Campo de la invención

Esta invención se refiere a nuevas composiciones de detergente que comprenden enzimas mananasas bacterianas. Las composiciones de detergente que comprenden mananasas bacterianas son útiles en aplicaciones de lavandería y limpieza en las que se desea la degradación o modificación de manano. La invención también se refiere al uso de dichas composiciones de detergente en aplicaciones de lavandería y limpieza, así como a un método para degradar el manano.

Antecedentes

Los mananos son polisacáridos que contienen manosa y se encuentran en varias plantas. Los mananos son poco solubles en un ambiente acuoso y sus propiedades fisicoquímicas dan lugar a dispersiones viscosas. Además, los mananos tienen una alta capacidad de unión con el agua. Todas estas características causan problemas en varias industrias, entre las que se incluyen, las de la elaboración de cerveza, panificación, nutrición animal, y aplicaciones de lavandería y limpieza.

20

25

30

10

En las dietas basadas en plantas, están presentes diferentes β-mananos y, dependiendo de sus cantidades y propiedades, pueden comprometer la digestión de nutrientes, la colonización microbiana y rendimiento del crecimiento. La degradación enzimática de los mananos reduce la viscosidad digestiva de los mananos con alta solubilidad en agua y conduce a la producción de manano-oligosacáridos que pueden formar mananos lineales insolubles en agua presentes en las plantas leguminosas. La mananasa aumenta la ganancia diaria promedio, la eficiencia de la alimentación, la uniformidad de peso y la habitabilidad en todos los animales monogástricos.

Para aplicaciones de alimentación animal, tales como piensos para animales monogástricos con dietas de cereales, el manano es un factor que contribuye a la viscosidad del contenido intestinal y, por lo tanto, afecta negativamente a la digestibilidad del alimento y a la tasa de crecimiento animal. Para los rumiantes, el manano representa un componente sustancial de la ingesta de fibra y una digestión más completa del manano facilitaría mayores eficiencias de conversión de los alimentos.

Para aplicaciones de lavandería y limpieza, las composiciones de detergente que comprenden mananasa pueden utilizarse para degradar el manano. Sin embargo, es difícil proporcionar mananasas que sean estables en diferentes condiciones de almacenamiento y uso y que aún muestren una buena actividad degradativa de manano.

El documento WO 99/64619 A2 desvela y caracteriza varias mananasas y su posible uso supuesto en varias aplicaciones industriales.

40

Es un objeto de la presente invención proporcionar composiciones de detergente que comprenden nuevas enzimas que presentan actividad mananasa cuando se aplican en estas composiciones de detergente. Un objeto adicional de la presente invención es proporcionar composiciones de detergente que tengan un rendimiento mejorado de eliminación de manchas en manchas que contienen manano.

45

50

55

Sumario

Según el primer aspecto de la invención, se proporciona una composición de detergente que comprende al menos una enzima que tiene una secuencia de aminoácidos que tiene al menos un 74 % de identidad de secuencia con la secuencia de aminoácidos de la SEQ ID NO: 16 (Man7), en la que al menos una enzima tiene actividad degradativa de manano

En una realización de la invención, al menos una enzima tiene una secuencia de aminoácidos que tiene al menos un 75 %, al menos un 76 %, al menos un 77 %, al menos un 78 %, al menos un 79 %, al menos un 80 %, al menos un 81 %, al menos un 82 %, al menos un 83 %, al menos un 84 %, al menos un 85 %, al menos un 86 %, al menos un 87 %, al menos un 88 %, al menos un 89 %, al menos un 90 %, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 96 %, al menos un 97 %, al menos un 98 % o al menos un 99 % de identidad de secuencia con la SEQ ID NO:16.

- 60 Las mananasas comprendidas en la composición de detergente de la invención son adecuadas para degradar y modificar materiales que contengan manano en diversos entornos químicos, preferentemente en composiciones de detergente.
- En una realización de la presente invención, la composición de detergente comprende además una o más enzimas adicionales seleccionadas del grupo que consiste en proteasa, lipasa, cutinasa, amilasa, carbohidrasa, celulasa,

pectinasa, pectato liasa, mananasa, arabinasa, galactanasa, xilanasa, oxidasa, xantanasa, lacasa y/o peroxidasa, preferentemente seleccionadas del grupo que consiste en proteasas, amilasas, celulasas y lipasas.

- En una realización adicional de la presente invención, la composición de detergente está en forma de una pastilla, un comprimido homogéneo, un comprimido que tiene dos o más capas, una bolsa que tiene uno o más compartimentos, un polvo regular o compacto, un gránulo, una pasta, un gel, o un líquido regular, compacto o concentrado. En una realización, la composición de detergente puede ser una composición de detergente de lavandería, preferentemente una composición de detergente de lavandería líquida o sólida.
- 10 La presente invención se refiere además al uso de la composición de detergente como se describe en el presente documento para la degradación de manano.

En una realización adicional, la presente invención se refiere al uso de la composición de detergente como se describe en el presente documento en un proceso de lavandería.

La presente invención se refiere además a un método para eliminar una mancha de una superficie, que comprende poner en contacto la superficie con una composición de detergente como se describe en el presente documento.

La presente invención también se refiere a un método para degradar manano que comprende aplicar al manano una composición de detergente como se describe en el presente documento, en el que, preferentemente, el manano está en la superficie de un textil.

Breve descripción de las figuras

15

30

50

55

60

65

25 La figura 1 muestra una representación esquemática del vector pEV1 para la replicación en Bacillus

La figura 2 muestra esquemáticamente los casetes de expresión utilizados en la transformación de protoplastos de *Trichoderma reesei* para la sobreproducción de la proteína mananasa Man7 recombinante según la presente invención, así como otras proteínas mananasas (Man6 y Man14) recombinantes. Los genes de mananasa estaban bajo el control del promotor *cel7A/cbh1* de *T. reesei* (*pcbh1*) y la terminación de la transcripción se garantizó utilizando la secuencia de terminación *cel7A/cbh1* de *T. reesei* (*tcbh1*). El gen de amdS se incluyó como un marcador de transformación.

- La figura 3 muestra el perfil de temperatura de las mananasas Man6, Man7 y Man14 recombinantes (producidas por *Bacillus*) analizado en tampón de Britton-Robinson 40 mM, pH 7, utilizando un tiempo de reacción de 10 minutos, como sustrato se utilizó galactomanano de algarrobo entrecruzado con azurina. Todas las mediciones se realizaron al menos por duplicado. Los puntos de datos son promedios de mediciones individuales.
- La figura 4 describe el efecto del pH sobre la actividad de las proteínas mananasas Man6, Man7 y Man14 recombinantes (producidas por *Bacillus*) en tampón de Britton-Robinson 40 mM, a un pH de 4 a 11. La temperatura de reacción fue de 50 °C y el tiempo de reacción fue de 10 min. Como sustrato se utilizó galactomanano de algarrobo entrecruzado con azurina. Todas las mediciones se realizaron al menos por duplicado. Los puntos de datos son promedios de mediciones individuales.
- La figura 5 muestra un análisis SDS PAGE de mananasas bacterianas.
 - La figura 6 describe el rendimiento de la eliminación de manchas de Man 6 y Man7 (producidas en *Bacillus* y *Trichoderma*) como un aumento de la luminosidad (suma de ΔL^* de 4 manchas) en presencia de 4,4 g/l de detergente A líquido comercial para uso industrial a 40 °C, 16 °dH, 60 min, pH de aprox. 8,3 y enzimas dosificadas como unidades de actividad. Para establecer comparaciones se utilizaron 4,0 l de la preparación comercial Mannaway®.
 - La figura 7 describe el rendimiento de eliminación de manchas de Man 6 y Man7 (producidas en *Bacillus*) como un aumento de la luminosidad (suma de ΔL* de 4 manchas) en presencia de 4,4 g/l de detergente A líquido comercial para uso industrial a 40 °C, 16 °dH, 60 min, pH de aprox. 8,3 y enzimas dosificadas como proteína enzimática activa (PEA). Para establecer comparaciones se utilizaron 4,0 l de la preparación comercial Mannaway®.
 - La figura 8 describe el rendimiento de eliminación de manchas de Man 6 y Man7 (producidas en *Bacillus*) como un aumento de la luminosidad (suma de ΔL* de 4 manchas) en presencia de 3,8 g/l de detergente en polvo comercial para ropa de color a 40 °C, 16 °dH, 60 min, pH de aprox. 10. y enzimas dosificadas como unidades de actividad. Para establecer comparaciones se utilizaron 4,0 l de la preparación comercial Mannaway®.
 - La figura 9 describe el rendimiento de eliminación de manchas de Man 6 y Man7 (producidas en *Bacillus*) como un aumento de la luminosidad (suma de ΔL* de 4 manchas) en presencia de 3,8 g/l de detergente en polvo comercial para ropa de color a 40 °C, 16 °dH, 60 min, pH de aprox. 10 y enzimas dosificadas como proteína enzimática activa. Para establecer comparaciones se utilizaron 4,0 l de la preparación comercial Mannaway®.

	La figura 10 describe el rendimiento de eliminación de manchas de Man 6 y Man7 (producidas en <i>Bacillus</i>) como un aumento de la luminosidad (suma de ΔL^* de 3 manchas) en presencia de 4,2 g/l de detergente blanqueador en polvo para uso comercial a 40 °C, 16 °dH, 60 min, pH de aprox. 9,5 y enzimas dosificadas como proteína enzimática activa. Para establecer comparaciones se utilizaron 4,0 l de la preparación comercial Mannaway®.
	La figura 11 describe el rendimiento de eliminación de manchas de Man14 (producida en <i>Bacillus</i>) como un aumento de la luminosidad (suma de Δ L* de 2 manchas) en presencia de 5 g/l de detergente B líquido comercial para uso industrial a 40 °C, 16 °dH, 60 min, pH de aprox. 8,3 y enzimas dosificadas como unidades de actividad. Para establecer comparaciones se utilizaron 4,0 l de la preparación comercial Mannaway®.
	La figura 12 describe el rendimiento de eliminación de manchas de Man14 (producida en <i>Bacillus</i>) como un aumento de la luminosidad (suma de ΔL* de 2 manchas) en presencia de 5 g/l de detergente B líquido comercial para uso industrial a 40 °C, 16 °dH, 60 min, pH de aprox. 8,3 y enzimas dosificadas como proteína enzimática activa. Para establecer comparaciones se utilizaron 4,0 l de la preparación comercial Mannaway®.
	La figura 13 describe la estabilidad de Man 6 y Man7 (producidas en <i>Bacillus</i>) en detergente líquido (OMO para ropa de color) a 37 °C. Para establecer comparaciones se utilizaron 4,0 l de la preparación comercial Mannaway®
	La figura 14 describe la estabilidad de Man 6 (producida en <i>Bacillus</i>) detergente A líquido comercial para uso industrial. Para establecer comparaciones se utilizó la preparación comercial Mannaway® 4,0 l.
LIS	STADOS DE SECUENCIAS
	SEQ ID NO: 1 Secuencia del cebador oligonucleotídico Man6_1
	SEQ ID NO: 2 Secuencia del cebador oligonucleotídico Man6_2
	SEQ ID NO: 3 Secuencia del cebador oligonucleotídico Man7_1
	SEQ ID NO: 4 Secuencia del cebador oligonucleotídico Man7_2
	SEQ ID NO: 5 Secuencia del cebador oligonucleotídico Man14_1
	SEC ID NO: 6 Secuencia del cebador oligonucleotídico Man14_2
	SEC ID NO: 7 Secuencia del cebador oligonucleotídico Vec_1
	SEC ID NO: 8 Secuencia del cebador oligonucleotídico Vec_2
	SEQ ID NO: 9 La secuencia de nucleótidos de la man6 de Bacillus clausii
	SEQ ID NO: 10 La secuencia de nucleótidos de la <i>man6 de Bacillus clausii</i> sin secuencia codificante de péptido señal y con optimización de codones para <i>Trichoderma reesei</i>
	SEQ ID NO: 11 La secuencia de aminoácidos deducida de la Man6 de Bacillus clausii
	SEQ ID NO: 12 La secuencia de aminoácidos deducida de la Man6 de Bacillus clausii sin péptido señal
	SEQ ID NO: 13 La secuencia de nucleótidos de la man7 de Bacillus hemicellulosilyticus
	SEQ ID NO: 14 La secuencia de nucleótidos de la <i>man</i> 7 de <i>Bacillus hemicellulosilyticus</i> sin secuencia codificante de péptido señal y con optimización de codones para <i>Trichoderma reesei</i>
	SEQ ID NO: 15 La secuencia de aminoácidos deducida de la Man7 de Bacillus hemicellulosilyticus
	SEQ ID NO: 16 La secuencia de aminoácidos deducida de la Man7 de <i>Bacillus hemicellulosilyticus</i> sin péptido señal
	SEQ ID NO: 17 La secuencia de nucleótidos de la man14 de Virgibacillus soli
	SEQ ID NO: 18 La secuencia de nucleótidos de la <i>man14</i> de <i>Virgibacillus soli</i> sin secuencia codificante de péptidos señal y con optimización de codones para <i>Trichoderma reesei</i>
	SEQ ID NO: 19 La secuencia de aminoácidos deducida de la Man14 de Virgibacillus soli
	SEQ ID NO: 20 La secuencia de aminoácidos deducida de la Man14 de Virgibacillus soli sin péptido señal

	SEQ ID NO: 21 Secuencia del cebador oligonucleotídico BMAN1
_	SEQ ID NO: 22 Secuencia del cebador oligonucleotídico BMAN2
5	SEQ ID NO: 23 Secuencia del cebador oligonucleotídico BMAN3
	SEQ ID NO: 24 Secuencia del cebador oligonucleotídico BMAN4
10	SEQ ID NO: 25 La secuencia de nucleótidos de man31 de Bacillus pumilus
	SEQ ID NO: 26 La secuencia de aminoácidos deducida de la Man31 de Bacillus pumilus
15	SEQ ID NO: 27 La secuencia de nucleótidos de la man32 de Bacillus amyloliquefaciens
15	SEQ ID NO: 28 La secuencia de aminoácidos deducida de la Man32 de Bacillus amyloliquefaciens
	SEQ ID NO: 29 La secuencia de nucleótidos de la man33 de Amphibacillus xylanus
20	SEQ ID NO: 30 La secuencia de aminoácidos deducida de la Man33 de Amphibacillus xylans
	SEQ ID NO: 31 La secuencia de nucleótidos de la man34 de Paenibacillus polymyxa
25	SEQ ID NO: 32 La secuencia de aminoácidos deducida de la Man34 de Paenibacillus polymyxa
20	SEQ ID NO: 33 La secuencia de nucleótidos de la man35 de Bacillus hemicellulosilyticus
	SEQ ID NO: 34 La secuencia de aminoácidos deducida de la Man35 de Bacillus hemicellulosilyticus
30	SEQ ID NO: 35 La secuencia de nucleótidos de la man36 de Bacillus alcalophilus
	SEQ ID NO: 36 La secuencia de aminoácidos deducida de la Man36 de Bacillus alcalophilus
35	SEQ ID NO: 37 La secuencia de nucleótidos de la <i>man37</i> de <i>Bacillus</i> sp.
00	SEQ ID NO: 38 La secuencia de aminoácidos deducida de la Man37 de <i>Bacillus</i> sp.
	SEQ ID NO: 39 La secuencia de nucleótidos de la man38 de Bacillus circulans
40	SEQ ID NO: 40 La secuencia de aminoácidos deducida de la Man38 de Bacillus circulans
	SEQ ID NO: 41 La secuencia de nucleótidos de la <i>man39</i> de <i>Paenibacillus</i> sp.
45	SEQ ID NO: 42 La secuencia de aminoácidos deducida de la Man39 de <i>Paenibacillus</i> sp.
70	SEQ ID NO: 43 La secuencia de nucleótidos de la man40 de Bacillus circulans
	SEQ ID NO: 44 La secuencia de aminoácidos deducida de la Man40 de Bacillus circulans
50	SEQ ID NO: 45 La secuencia de nucleótidos de la man41 de Bacillus nealsonii
	SEQ ID NO: 46 La secuencia de aminoácidos deducida de la Man41 de Bacillus nealsonii
55	SEQ ID NO: 47 La secuencia de nucleótidos de la man42 de Bacillus circulans
	SEQ ID NO: 48 La secuencia de nucleótidos de la Man42 de Bacillus circulans
	Descripción detallada
60	Como se usa en el presente documento, "aislada" significa una sustancia en una forma o entorno que no se produce en la naturaleza. Como ejemplos no limitativos de sustancias aisladas se incluyen (1) cualquier sustancia de origen no natural, (2) cualquier sustancia incluyendo cualquier enzima, variante, ácido nucleico, proteína, péptido o cofactor, que se extrae, al menos parcialmente, de uno o más o de todos los constituyentes de origen natural con los que está

asociado en la naturaleza; (3) cualquier sustancia modificada por la mano del hombre relacionada con esa sustancia encontrada en la naturaleza; o (4) cualquier sustancia modificada al aumentar o disminuir la cantidad de la sustancia

en relación con otros componentes con los que está asociada de forma natural (por ejemplo, producción recombinante

en una célula hospedadora); una o múltiples copias de un gen que codifica la sustancia; y uso de un promotor alternativo al promotor asociado naturalmente con el gen que codifica la sustancia). En una realización un polipéptido, una enzima, un polinucleótido, una célula hospedadora o la composición de la invención está aislado(a).

- 5 Como se usa en el presente documento, la expresión "que comprende" incluye los significados más amplios de "que incluye", "que contiene" y "que comprende", así como las expresiones más limitadas "que consiste en" y "que consiste solo en".
- Como se usa en el presente documento, "fragmento" significa una proteína o un polinucleótido que tiene delecionado uno o más aminoácidos o nucleótidos. En el contexto de ADN, un fragmento incluye tanto ADN monocatenario como bicatenario de cualquier longitud. Un fragmento puede ser un fragmento activo que tiene la función biológica, tal como actividad enzimática o actividad reguladora, de la proteína o del polinucleótido. Un fragmento también puede ser un fragmento inactivo, es decir, no tiene uno o más efectos biológicos de la proteína o polinucleótido natural.
- 15 Como se usa en el presente documento, "variante" significa un fragmento de secuencia (nucleótido o aminoácido) insertado o delecionado por uno o más nucleótidos/aminoácidos o que se modifica químicamente.
- Como se usa en el presente documento, un "péptido" y un "polipéptido" son secuencias de aminoácidos que incluyen una pluralidad de restos de aminoácidos polimerizados consecutivos. Para los fines de la presente invención, los péptidos son moléculas que incluyen hasta 20 restos de aminoácidos, y los polipéptidos incluyen más de 20 restos de aminoácidos. El péptido o polipéptido puede incluir restos de aminoácidos modificados, restos de aminoácidos de origen natural no codificados por un codón, y restos de aminoácidos de origen no natural. Como se usa en el presente documento, una "proteína" puede referirse a un péptido o a un polipéptido de cualquier tamaño. Una proteína puede ser una enzima, una proteína, un anticuerpo, una proteína de membrana, una hormona peptídica, un regulador, o cualquier otra proteína.
 - El término "polinucleótido" significa un polímero monocatenario o bicatenario de bases de desoxirribonucleótidos o ribonucleótidos leídas desde el extremo 5' al extremo 3'. Los polinucleótidos incluyen ARN y ADN, y pueden aislarse de fuentes naturales, sintetizarse *in vitro*, o prepararse a partir de una combinación de moléculas naturales y sintéticas.
 - Como se usa en el presente documento, "modificación", "modificado", y términos similares en el contexto de los polinucleótidos, se refieren a modificaciones en una región codificante o no codificante del polinucleótido, tal como una secuencia reguladora, una región 5' no traducida, una región 3' no traducida, un elemento genético de regulación positiva, un elemento genético de regulación negativa, un potenciador, un supresor, un promotor, una región exónica o intrónica. En algunas realizaciones la modificación puede ser solo estructural, sin efecto sobre el efecto, la acción o la función biológica del polinucleótido. En otras realizaciones, la modificación es una modificación estructural que proporciona un cambio en el efecto, la acción o la función biológica del polinucleótido. Dicha modificación puede potenciar, suprimir o cambiar la función biológica del polinucleótido.

30

35

50

55

60

- Como se usa en el presente documento, "identidad" significa el porcentaje de coincidencias exactas de restos de aminoácidos entre dos secuencias alineadas sobre el número de posiciones donde hay restos presentes en ambas secuencias. Cuando una secuencia tiene un resto que no tiene resto correspondiente en la otra secuencia, el programa de alineación permite un espacio en la alineación, y esa posición no se cuenta en el denominador del cálculo de identidad. La identidad es un valor determinado con la herramienta de alineación de secuencias EMBOSS Needle en el sitio web de EMBL-EBI (www.ebi.ac.uk/Tools/psa/emboss_needle/).
 - Como se usa en el presente documento, "célula hospedadora" significa cualquier tipo de célula que sea susceptible de transformación, transfección, transducción, emparejamiento, cruce o similar con una construcción de ácido nucleico o un vector de expresión que comprende un polinucleótido. La expresión "célula hospedadora" abarca cualquier descendencia que no sea idéntica debido a las mutaciones que se producen durante la replicación. Son ejemplos no limitativos de una célula hospedadora las células fúngicas, las células fúngicas filamentosas de la División Ascomycota Subdivisión Pezizomycotina; preferentemente del grupo que consiste en miembros de la Clase Sordariomycetes, Subclase Hypocreomycetidae, Órdenes Hipocreales y Microascales y Aspergillus, Chrysosporium, Myceliophthora y Humicola; más preferentemente del grupo que consiste en las Familias Hypocreacea, Nectriaceae, Clavicipitaceae, Microascaceae, y los géneros Tricoderma (anamorfo de Hypocrea), Fusarium, Gibberella, Nectria, Stachybotrys, Claviceps, Metarhizium, Villosiclava, Ophiocordyceps, Cephalosporium y Scedosporium; más preferentemente del grupo que consiste en Trichoderma reesei (Hypocrea jecorina), T. citrinoviridae, T. longibrachiatum, T. virens, T. harzianum, T. asperellum, T. atroviridae, T. parareesei, Fusarium oxysporum, F. gramineanum, F. pseudograminearum, F. venenatum, Gibberella fujikuroi, G. moniliformis, G. zeaea, Nectria (Haematonectria) haematococca, Stachybotrys chartarum, S. chlorohalonata, Claviceps purpurea, Metarhizium acridum, M. anisopliae, Villosiclava virens, Ophiocordyceps sinensis, Acremonium (Cephalosporium) chrysogenum, y Scedosporium apiospermum y Aspergillus niger, Aspergillus awamori, Aspergillus oryzae, Chrysosporium lucknowense, Myceliophthora thermophila, Humicola insolens, y Humicola grisea, más preferentemente Trichoderma reesei. Son ejemplos no limitativos de una célula hospedadora, las células bacterianas, preferentemente bacilos grampositivos (por ejemplo, B. subtilis, B. licheniformis, B. megaterium, B. amyloliquefaciens, B. pumilus), actinomycetales (por ejemplo, Streptomyces sp.) y levaduras (por ejemplo, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica)

En una realización de ejemplo de la célula hospedadora esta es una célula fúngica, preferentemente una célula fúngica filamentosa, tal como *Trichoderma* o *Trichoderma* reesei. En una realización de ejemplo de la célula hospedadora esta es una célula bacteriana, preferentemente una célula de *Bacillus* grampositivo, tal como *B. subtilis*, *B. licheniformis*, *B. megaterium*, *B. amyloliquefaciens*, *B. pumilus*.

5

10

15

Una "célula recombinante" o "célula hospedadora recombinante" se refiere a una célula o célula hospedadora que se ha modificado o alterado genéticamente para comprender una secuencia de ácido nucleico que no es natural para dicha célula o célula hospedadora. En una realización, la modificación genética comprende integrar el polinucleótido en el genoma de la célula hospedadora. En otra realización, el polinucleótido es exógeno en comparación con la célula hospedadora.

Como se usa en el presente documento, "expresión" incluye cualquier etapa implicada en la producción de un polipéptido en una célula hospedadora, incluyendo, pero sin limitación, transcripción, traducción, modificación postraduccional y secreción. La expresión puede ir seguida de la recolección, es decir, de la recuperación de las células hospedadoras o del producto expresado.

La expresión "vector de expresión" significa una molécula de ADN, lineal o circular, que comprende un segmento que codifica un polipéptido de interés unido operativamente a segmentos adicionales que proporcionan su transcripción. Dichos segmentos adicionales pueden incluir secuencias promotoras y terminadoras, y pueden incluir opcionalmente uno o más orígenes de replicación, uno o más marcadores de selección, un potenciador, una señal de poliadenilación, un transportador y similares. Los vectores de expresión generalmente derivan de plásmidos o de ADN vírico, o pueden contener elementos de ambos. El vector de expresión puede ser cualquier vector de expresión que esté convenientemente sujeto a procedimientos de ADN recombinante, y la elección del vector dependerá a menudo de la célula hospedadora en la que se introducirá el vector. Por lo tanto, el vector puede ser un vector de replicación autónoma, es decir, un vector, que existe como una entidad extracromosómica, cuya replicación es independiente de la replicación cromosómica, por ejemplo, un plásmido. Como alternativa, el vector puede ser uno que, cuando se introduce en la célula hospedadora, se integra en el genoma de la célula hospedadora y se replica junto con el cromosoma (o cromosomas) en que se ha integrado.

La expresión "expresado recombinante" o "expresado de manera recombinante" utilizada en el presente documento en relación con la expresión de un polipéptido o proteína se define según la definición estándar en la técnica.

La expresión "obtenido de" y "obtenible" como se usa en el presente documento en relación con una fuente microbiana específica, significa que el polinucleótido y/o polipéptido se produce por la fuente específica (expresión homóloga), o por una célula en la que se ha insertado un gen de la fuente (expresión heteróloga).

La expresión "composición enzimática" significa un producto de fermentación enzimática convencional, posiblemente aislado y purificado, de una sola especie de un microorganismo, comprendiendo dicha preparación habitualmente diversas actividades enzimáticas diferentes; o una mezcla de enzimas monocomponentes, preferentemente enzimas derivadas de especies bacterianas o fúngicas utilizando técnicas recombinantes convencionales, cuyas enzimas se han fermentado y posiblemente aislado y purificado por separado y que pueden provenir de diferentes especies, preferentemente especies fúngicas o bacterianas o el producto de fermentación de un microorganismo que actúa como una célula hospedadora para la expresión de una mananasa recombinante, pero cuyo microorganismo produce simultáneamente otras enzimas.

45

35

40

La expresión "unidos operativamente", cuando se refiere a segmentos de ADN, significa que los segmentos están ordenados de modo que funcionen al unísono para sus propósitos previstos, por ejemplo, la transcripción se inicia en el promotor y continúa a través del segmento codificante hasta el terminador

El término "promotor" significa una parte de un gen que contiene secuencias de ADN que proporcionan la unión de la ARN polimerasa y el inicio de la transcripción. Las secuencias promotoras se encuentran, comúnmente, pero no siempre, en las regiones 5' no codificantes de los genes.

El término "secuencia señal secretora" significa una secuencia de ADN que codifica un polipéptido (un "péptido secretor") que, como un componente de un polipéptido más grande, dirige el polipéptido más grande a través de una ruta secretora de una célula hospedadora en la que se sintetiza. La secuencia señal secretora puede ser natural o puede reemplazarse con una secuencia de señal secretora o secuencia transportadora de otra fuente. Dependiendo de la célula hospedadora, el péptido más grande puede escindirse para eliminar el péptido secretor durante el tránsito a través de la ruta secretora.

60

La expresión "región central" significa un dominio de una enzima que puede o no haberse modificado o alterado, pero que ha conservado su actividad original; el dominio catalítico tal como se conoce en la técnica ha permanecido funcional.

Por el término "enlazador" o "espaciador" se entiende un polipéptido que comprende al menos dos aminoácidos que pueden estar presentes entre los dominios de una proteína multidominio, por ejemplo, una enzima que comprende un

núcleo enzimático y un dominio de unión tal como un módulo de unión a carbohidratos (CBM, del inglés *carbohydrate binding module*) o cualquier otro híbrido de enzima, o entre dos proteínas o polipéptidos expresados como un polipéptido de fusión, por ejemplo, una proteína de fusión que comprende dos enzimas núcleo. Por ejemplo, la proteína de fusión de un núcleo enzimático con un CBM se proporciona mediante la fusión de una secuencia de ADN que codifica el núcleo enzimático, una secuencia de ADN que codifica el enlazador y una secuencia de ADN que codifica el CBM secuencialmente en un marco de lectura abierto y que expresa esta construcción.

La expresión "composición de detergente", incluye, a menos que se indique lo contrario, agentes de lavado granulares o en polvo, multiuso o de uso industrial, especialmente detergentes de limpieza; agentes de lavado líquidos, en gel o pasta, multiuso, especialmente los tipos de líquidos denominados de uso industrial (HDL, heavy-duty liquid); detergentes líquidos para tejidos delicados; agentes de lavado manual de vajilla o de lavado ligero de vajilla, especialmente los del tipo muy espumoso; agentes de lavavajillas, incluidos los diversos tipos de comprimidos, granulados, líquidos y ayudantes de aclarado de uso doméstico e institucional; agentes limpiadores líquidos y desinfectantes, champús para automóviles o alfombras, limpiadores de aseos; limpiadores de metales; así como auxiliares de limpieza, tales como los aditivos blanqueadores y los tipos de "barritas para manchas" o de tratamiento previo. Las expresiones "composición de detergente" y "formulación detergente" se utilizan en referencia a mezclas que están destinadas para su uso en un medio de lavado para la limpieza de objetos sucios. En algunas realizaciones, las expresiones se utilizan en referencia a tejidos y/o prendas de lavado (por ejemplo, "detergentes de lavandería"). En realizaciones alternativas, las expresiones se refieren a otros detergentes, como los que se utilizan para lavar platos, cubertería, etc. (por ejemplo, "detergentes para lavavajillas"). No se pretende limitar la presente invención a ninguna formulación o composición de detergente particular. Se pretende que, además de las variantes según la invención, el término abarca detergentes que pueden contener, por ejemplo, tensioactivos, adyuvantes de detergencia, quelantes o agentes quelantes, sistemas o componentes blanqueadores, polímeros, acondicionadores de tejido, reforzadores de formación de espuma, supresores de espuma de jabón, tintes, perfumes, inhibidores de ennegrecimiento, abrillantadores ópticos, bactericidas, fungicidas, agentes de suspensión de la suciedad, agentes anticorrosivos, inhibidores o estabilizadores enzimáticos, activadores enzimáticos, transferasa(s), enzimas hidrolíticas, oxidorreductasas, agentes azulantes y tintes fluorescentes, antioxidantes y solubilizantes.

El término "textil" significa cualquier material textil, incluyendo hilos, productos intermedios de hilos, fibras, materiales no tejidos, materiales naturales, materiales sintéticos, y cualquier otro material textil, telas fabricadas de estos materiales y productos fabricados de telas (por ejemplo, prendas de vestir y otros artículos). El textil o la tela puede estar en forma de puntos, tejidos, telas vaqueras, tejidos no tejidos, fieltros, hilos y telas de toalla. El textil puede estar basado en celulosa, tal como celulosas naturales, incluyendo algodón, lino/tela de sábana, yute, ramio, sisal o celulosa de fibra de coco o artificial (por ejemplo, procedente de pulpa de madera), incluida la viscosa/el rayón, ramio, fibras de acetato de celulosa (tricel), lyocell o sus mezclas. El textil o la tela también puede tener una base no celulósica, como las poliamidas naturales, incluyendo lana, camello, cachemir, mohair, conejo y seda o polímeros sintéticos como el nailon, aramida, poliéster, acrílico, polipropileno y spandex/elastano, o mezclas de los mismos, así como una mezcla de fibras basadas y no basadas en celulosa. Son ejemplos de mezclas las mezclas de algodón y/o rayón/viscosa con uno o más materiales complementarios, como lana, fibras sintéticas (por ejemplo, fibras de poliuretano, fibras acrílicas, fibras de poliéster, fibras de alcohol polivinílico, fibras de poli(cloruro de polivinilo), fibras de poliuretano, fibras de poliurea, fibras de acetato de celulosa, lyocell). La tela puede ser ropa convencional lavable, por ejemplo ropa de hogar sucia. Cuando se utiliza el término tela o prenda de vestir, se pretende incluir también los textiles en sentido más amplio.

El término "estabilidad" incluye estabilidad de almacenamiento y estabilidad durante el uso, por ejemplo, durante un proceso de lavado (en estabilidad de lavado) y refleja la estabilidad de la variante de proteasa según la invención en función del tiempo, por ejemplo, cuánta actividad se conserva cuando la proteasa se mantiene en solución, en particular en una solución de detergente. La estabilidad está influenciada por muchos factores, por ejemplo, el pH, la temperatura, la composición de detergente, por ejemplo, cantidad de adyuvante de detergencia, tensioactivos, etc. La estabilidad de la proteasa puede medirse utilizando el 'ensayo de estabilidad' descrito en el apartado de Materiales y Métodos del presente documento. La expresión "estabilidad mejorada" o "estabilidad aumentada", como se define en el presente documento, se refiere a una proteasa variante que muestra estabilidad aumentada en soluciones, en relación con la estabilidad de la proteasa precursora. Las expresiones "estabilidad mejorada" y "estabilidad aumentada" incluyen "estabilidad química mejorada", "estabilidad del detergente" o "estabilidad mejorada del detergente".

Composición de detergente

La presente invención se refiere a nuevas composiciones de detergente que comprenden enzimas mananasas bacterianas. Las composiciones de detergente que comprenden mananasas bacterianas son útiles en aplicaciones de lavandería y limpieza en las que se desea la degradación o modificación de manano. La invención también se refiere al uso de dichas composiciones de detergente en aplicaciones de lavandería y limpieza, así como a un método para degradar el manano.

65

10

15

20

25

30

35

40

45

50

Como se usa en el presente documento, el término "manano" se refiere a polisacáridos que consisten en una cadena principal de manosa ligadas entre sí por enlaces β -1,4 con cadenas laterales de galactosa fijadas a la cadena principal por enlaces α -1,6. Los mananos comprenden material vegetal, tal como goma guar y goma de algarrobo. Los glucomananos son polisacáridos que tienen una cadena principal de manosa y glucosa ligadas de manera alterna más o menos regularmente por enlaces β -1,4, los galactomananos y galactoglucomananos son mananos y glucomananos con ramificaciones laterales de galactosa unidas por enlaces alfa-1,6.

Como se usa en el presente documento, el término "mananasa" o "galactomananasa" significa una enzima mananasa definida según la técnica como manan endo-1,4-beta-manosidasa y que tiene los nombres alternativos beta-mananasa y endo-1,4-mananasa y cataliza la hidrólisis de enlaces 1,4-beta-D-manosídicos en mananos, galactomananos, glucomananos y galactoglucomananos. Según la nomenclatura enzimática, las mananasas se clasifican como EC 3.2.1.78.

- La "actividad mananasa", como se usa en el presente documento, se refiere a la actividad degradativa de manano de un polipéptido. Degradar o modificar, como se usa en este documento, significa que la mananasa hidroliza las unidades de manosa del polisacárido de manano. La actividad degradativa de manano de los polipéptidos según la presente invención, puede someterse a ensayo según procedimientos de ensayo estándar conocidos en la técnica. El ejemplo 7 proporciona un ejemplo de un método estándar para determinar la actividad mananasa.
- Según el primer aspecto, la composición de detergente de la presente invención comprende al menos una enzima que tiene una secuencia de aminoácidos que tiene al menos un 74 % de identidad de secuencia con la secuencia de aminoácidos de la SEQ ID NO: 16 (Man7), en la que la al menos una enzima tiene actividad degradativa de mamano.
- En una realización de la invención, al menos una enzima tiene una secuencia de aminoácidos que tiene al menos un 75 %, al menos un 76 %, al menos un 77 %, al menos un 78 %, al menos un 79 %, al menos un 80 %, al menos un 81 %, al menos un 82 %, al menos un 83 %, al menos un 84 %, al menos un 85 %, al menos un 86 %, al menos un 87 %, al menos un 88 %, al menos un 89 %, al menos un 90 %, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 96 %, al menos un 97 %, al menos un 98% o al menos un 99% de identidad de secuencia con la secuencia de aminoácidos de la SEQ ID NO: 16.
 - Las mananasas comprendidas en la composición de detergente de la invención son adecuadas para degradar y modificar materiales que contengan manano en diversos entornos químicos, preferentemente en composiciones de detergente.
- En una realización de la presente invención, la composición de detergente comprende además una o más enzimas adicionales seleccionadas del grupo que consiste en proteasa, lipasa, cutinasa, amilasa, carbohidrasa, celulasa, pectinasa, pectato liasa, mananasa, arabinasa, galactanasa, xilanasa, oxidasa, xantanasa, lacasa y/o peroxidasa, preferentemente seleccionadas del grupo que consiste en proteasas, amilasas, celulasas y lipasas.
- 40 En general, las propiedades de la(s) enzima(s) seleccionada(s) deben ser compatibles con el detergente seleccionado, (es decir, pH óptimo, compatibilidad con otros ingredientes enzimáticos y no enzimáticos, etc.), y la(s) enzima(s) debe(n) estar presente(s) en cantidades eficaces.

Celulasas

5

10

30

65

45 Las celulasas adecuadas incluyen las de origen bacteriano o fúngico. Se incluyen los mutantes modificados químicamente u obtenidos mediante ingeniería de proteínas. Las celulasas adecuadas incluyen celulasas de los siguientes géneros Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, por ejemplo, las celulasas fúngicas producidas a partir de Humicola insolens, Myceliophthora thermophila y Fusarium oxysporum divulgadas en los documentos US 4.435.307, US 5.648.263, US 5.691.178, US 5.776.757 y WO 89/09259. Las celulasas 50 especialmente adecuadas son las celulasas alcalinas o neutras que tienen beneficios para el cuidado del color. Son ejemplos de dichas celulasas las celulasas descritas en los documentos EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, y WO 98/08940. Otros ejemplos son variantes de celulasa como las descritas en los documentos WO 94/07998, EP 0 531 315, US 5.457.046, US 5.686.593, US 5.763.254, WO 95/24471, WO 98/12307 y 55 PCT/DK98/00299. Son ejemplos de celulasas que exhiben actividad endo-beta-1,4-glucanasa (EC 3.2.1.4) las que se describen en el documento WO02/099091. Otros ejemplos de celulasas incluyen la familia de celulasas 45 descrita en el documento WO96/29397, y especialmente variantes de las mismas que tienen sustituciones, inserciones y/o deleciones en una o más de las posiciones correspondientes a las siguientes posiciones en la SEC ID Nº: 8 del documento WO 02/099091: 2, 4, 7, 8, 10, 13, 15, 19, 20, 21, 25, 26, 29, 32, 33, 34, 35, 37, 40, 42, 42a, 43, 44, 48, 53, 54, 55, 58, 59, 63, 64, 65, 66, 67, 70, 72, 76, 79, 80, 82, 84, 86, 88, 90, 91, 93, 95, 95d, 95h, 95j, 97, 100, 101, 102, 60 103, 113, 114, 117, 119, 121, 133, 136, 137, 138, 139, 140a, 141, 143a, 145, 146, 147, 150e, 150j, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160c, 160e, 160k, 161, 162, 164, 165, 168, 170, 171, 172, 173, 175, 176, 178, 181, 183, 184, 185, 186, 188, 191, 192, 195, 196, 200 y/o 20, preferentemente seleccionadas entre P19A, G20K, Q44K, N48E, Q119H o Q146 R. Las celulasas disponibles en el comercio incluyen Celluclean™ Celluzyme™ y Carezyme™

9

(Novozymes A/S), Clazinase ™ y Puradax HA™ (Genencor International Inc.) y KAC-500 (B)™ (Kao Corporation).

Proteasas

Las proteasas adecuadas incluyen las de origen bacteriano, fúngico, vegetal, vírico o animal, por ejemplo, de origen vegetal o microbiano. Se prefieren las de origen microbiano. Se incluyen los mutantes modificados químicamente u obtenidos mediante ingeniería de proteínas. Puede ser una proteasa alcalina, tal como una serina proteasa o una metaloproteasa. Una serina proteasa puede ser, por ejemplo, de la familia S1, tal como tripsina, o de la familia S8, tal como subtilisina. Una proteasa de las metaloproteasas puede ser, por ejemplo, una termolisina, por ejemplo, la familia M4 u otra metaloproteasa, tal como la de las familias M5, M7 o M8.

El término "subtilasas" se refiere a un subgrupo de serina proteasas según Siezen et al., Protein Engng. 4 (1991) 719-10 737 y Siezen et al. Protein Science 6 (1997) 501-523. Las serina proteasas son un subgrupo de proteasas caracterizado por tener una serina en el sitio activo, que forma un aducto covalente con el sustrato. Las subtilasas pueden dividirse en 6 subdivisiones, es decir, la familia Subtilisina, la familia Termitasa, la familia Proteinasa K, la familia de peptidasas Lantibióticas, la familia Kexina y la familia Pirolisina. Son ejemplos de subtilasas las derivadas 15 de Bacillus tales como Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus y Bacillus gibsonii descritas en los documentos; US7262042 y WO09/021867, y subtilisina lentus, subtilisina novo, subtilisina Carlsberg, Bacillus licheniformis, subtilisina BPN', subtilisina 309, subtilisina 147 y subtilisina 168 descritas en el documento WO89/06279 y proteasa PD138 descrita en el documento (WO93/18140). Otras proteasas útiles pueden ser las descritas en los documentos WO92/175177, WO01/016285, WO02/026024 y WO02/016547. Los ejemplos de 20 proteasas del tipo tripsina son tripsina (por ejemplo, de origen porcino o bovino) y la proteasa de Fusarium descrita en los documentos WO89/06270, WO94/25583 y WO05/040372, y las proteasas de quimotripsina derivadas de Cellumonas descritas en los documentos WO05/052161 y WO05/052146. Una proteasa adicional preferida es la proteasa alcalina de Bacillus Ientus DSM 5483, que se describe, por ejemplo, en el documento WO95/23221, y variantes de la misma, que se describen en los documentos WO92/21760, WO95/23221, EP1921147 y EP1921148. 25 Los ejemplos de metaloproteasas son la metaloproteasa neutra que se describe en el documento WO07/044993 (Genencor Int.) tal como las derivadas de Bacillus amyloliquefaciens.

Los ejemplos de proteasas útiles son las variantes descritas en los documentos: WO92/19729, WO96/034946, WO98/20115, WO98/20116, WO99/011768, WO01/44452, WO03/006602, WO04/03186, WO04/041979, WO07/006305, WO11/036263, WO11/036264, especialmente las variantes con sustituciones en una o más de las siguientes posiciones: 3, 4, 9, 15, 27, 36, 57, 68, 76, 87, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 118, 120, 123, 128, 129, 130, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218, 222, 224, 232, 235, 236, 245, 248, 252 y 274 utilizando la numeración BPN'. Las variantes de subtilasas más preferidas pueden comprender las mutaciones: S3T, V4I, S9R, A15T, K27R, *36D, V68A, N76D, N87S,R, *97E, A98S, S99G,D,A, S99AD, S101G,M,R S103A, V104I,Y,N, S106A, G118V,R, H120D,N, N123S, S128L, P129Q, S130A, G160D, Y167A, R170S, A194P, G195E, V199M, V205I, L217D, N218D, M222S, A232V, K235L, Q236H, Q245R, N252K, T274A (utilizando la numeración BPN'). Las enzimas proteasas adecuadas, disponibles en el comercio, incluyen las comercializadas con las marcas registradas Alcalase®, Duralase™, Durazym™, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra, Ovozyme®, Coronase®, Coronase® Ultra, Neutrase®, Everlase® y Esperase® (Novozymes A/S), las comercializadas con la marca registrada Maxatase®, Maxacal®, Maxapem®, Purafect®, Purafect Prime®, Preferenz™, Purafect MA®, Purafect Ox®, Purafect OxP®, Puramax®, Buen ase®, Effectenz™, FN2®, FN3®, FN4®, Excellase®, Opticlean® y Optimase® (Danisco/DuPont), Axapem™ (GistBrocases N.V.), BLAP (secuencia mostrada en la Figura 29 del documento US5352604) y variantes de las mismas (Henkel AG) y KAP (subtilisina de Bacillus alkalophilus) de Kao.

Lipasas y Cutinasas

30

35

40

45

50

55

60

Las lipasas y cutinasas adecuadas incluyen las de origen bacteriano o fúngico. Se incluyen enzimas mutantes modificadas químicamente o modificadas por proteínas. Los ejemplos incluyen lipasa de *Thermomyces*, por ejemplo, de *T. lanuginosus* (previamente denominada *Humicola lanuginosa*) como se describe en los documentos EP258068 y EP305216, cutinasa de *Humicola*, por ejemplo, *H. insolens* (WO96/13580), lipasa de cepas de *Pseudomonas* (algunas de estas ahora han cambiado su nombre a *Burkholderia*), por ejemplo, *P. alcaligenes* o *P. pseudoalcaligenes* (EP218272) *P. cepacia* (EP331376), cepa SD705 de *P. sp* (WO95/06720 y WO96/27002), *P. wisconsinensis* (WO96/12012), lipasas de *Streptomyces* de tipo GDSL (WO10/065455), cutinasa de *Magnaporthe grisea* (WO10/107560), cutinasa de *Pseudomonas mendocina* (US 5.389.536), lipasa de *Termobifida fusca* (WO11/084412), lipasa de *Geobacillus stearothermophilus* (WO11/084417), lipasa de *Bacillus subtilis* (WO11/084599) y lipasa de *Streptomyces griseus* (WO11/150157) y S. *pristinaespiralis* (WO12/137147).

Otros ejemplos son variantes de lipasa, tales como las descritas en los documentos EP407225, WO92/05249, WO94/01541, WO94/25578, WO95/14783, WO95/30744, WO95/35381, WO95/22615, WO96/00292, WO97/04079, WO97/07202, WO00/34450, WO00/60063, WO01/92502, WO07/87508 y WO09/109500.

Los productos de lipasa comerciales preferidos incluyen Lipolase™, Lipex™; Lipolex™ y Lipoclean™ (Novozymes A/S), Lumafast (originalmente de Genencor) y Lipomax (originalmente de Gist-Brocades). Otros ejemplos más son lipasas a veces denominadas aciltransferasas o perhidrolasas, por ejemplo, aciltransferasas

con homología a lipasa A de *Cándida antártica* (WO10/111143), aciltransferasa de *Mycobacterium smegmatis* (WO05/56782), perhidrolasas de la familia CE 7 (WO09/67279), y variantes de la perhidrolasa de *M. smegmatis*, en

particular la variante S54V utilizada en el producto comercial Gentle Power Bleach de Huntsman Textile Effects Pte Ltd (WO10/100028).

Amilasas

5

10

15

20

25

30

35

40

45

50

55

Las amilasas adecuadas que pueden utilizarse junto con variantes de subtilasa de la invención pueden ser una alfaamilasa o una glucoamilasa y pueden ser de origen bacteriano o fúngico. Se incluyen los mutantes modificados químicamente u obtenidos mediante ingeniería de proteínas. Las amilasas incluyen, por ejemplo, alfa-amilasas obtenidas de *Bacillus*, por ejemplo, una cepa especial de *Bacillus licheniformis*, descrita con más detalle en el documento GB 1.296.839.

Las amilasas adecuadas incluyen amilasas que tienen la SEQ ID NO: 3 en el documento WO 95/10603 o variantes que tienen una identidad de secuencia del 90 % con la SEQ ID NO: 3 de la misma. Las variantes preferidas se describen en los documentos WO 94/02597, WO 94/18314, WO 97/43424 y la SEQ ID NO: 4 del documento WO 99/019467, como variantes con sustituciones en una o más de las siguientes posiciones: 15, 23, 105, 106, 124, 128, 133, 154, 156, 178, 179, 181, 188, 190, 197, 201, 202, 207, 208, 209, 211, 243, 264, 304, 305, 391, 408 y 444. Diferentes amilasas adecuadas incluyen amilasas que tienen la SEC ID Nº: 6 en el documento WO 02/010355 o variantes de la misma que tienen una identidad de secuencia del 90 % con la misma. Las variantes preferidas son las que tienen una deleción en las posiciones 181 y 182 y una sustitución en la posición 193.

Otras amilasas que son adecuadas, son las alfa-amilasas híbridas que comprenden los restos 1-33 de la alfa-amilasa derivada de *B. amyloliquefaciens* mostrados en la SEC ID Nº: 6 del documento WO 2006/066594 y los restos 36-483 de la alfa-amilasa de *B. liqueniforme* mostrados en la SEC ID Nº: 4 del documento WO 2006/066594 o variantes que tienen una identidad de secuencia del 90 % con la misma. Las variantes preferidas de esta alfa-amilasa híbrida son las que tienen una sustitución, una deleción o una inserción en una o más de las siguientes posiciones: G48, T49, G107, H156, A181, N190, M197, 1201, A209 y Q264. Las variantes más preferidas de la alfa-amilasa híbrida que comprenden los restos 1-33 de la alfa-amilasa derivada de B. *amyloliquefaciens* mostrados en la SEC ID Nº: 6 del documento WO 2006/066594 y los restos 36-483 de la SEC ID Nº: 4 del documento WO2006 / 066594 son las que tienen las sustituciones:

M197T:

H156Y+A181T+N190F+A209V+Q264S; o G48A+T49I+G107A+H156Y+A181T+N190F+I201F+A209V+Q264S.

Otras amilasas que son adecuadas son las amilasas que tienen la SEQ ID NO: 6 en el documento WO 99/019467 o variantes de las mismas que tienen una identidad de secuencia del 90 % con la SEQ ID NO: 6. Las variantes preferidas de SEQ ID NO: 6 son las que tienen una sustitución, una deleción o una inserción en una o más de las siguientes posiciones: R181, G182, H183, G184, N195, I206, E212, E216 y K269. Son amilasas particularmente preferidas las que tienen una deleción en las posiciones R181 y G182, o en las posiciones H183 y G184. Otras amilasas que pueden utilizarse son las que tienen la SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 2 o SEQ ID NO: 7 del documento WO 96/023873 o variantes de las mismas que tienen una identidad de secuencia del 90 % con la SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 o SEQ ID NO: 7 variantes preferidas de SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 o SEQ ID NO: 7 son las que tienen una sustitución, una deleción o una inserción en una o más de las siguientes posiciones: 140, 181, 182, 183, 184, 195, 206, 212, 243, 260, 269, 304 y 476. Las variantes más preferidas son las que tienen una deleción en las posiciones 181 y 182 o en las posiciones 183 y 184. Las variantes de amilasa más preferidas de SEQ ID NO: 1, SEQ ID NO: 2 o SEQ ID NO: 7 son las que tienen una deleción en las posiciones 183 y 184 y una sustitución en una o más de las posiciones 140, 195, 206, 243, 260, 304 y 476. Otras amilasas que pueden utilizarse son amilasas que tienen la SEC ID Nº: 2 del documento WO 08/153815, la SEQ

ID NO: 10 en el documento WO 01/66712 o variantes de las mismas que tienen una identidad de secuencia del 90 % con la SEQ ID NO: 2 del documento WO 08/153815 o una identidad de secuencia del 90 % con la SEQ ID NO: 10 en el documento WO 01/66712. Las variantes preferidas de la SEQ ID NO: 10 en el documento WO 01/66712 son las que tienen una sustitución, una deleción o una inserción en una o más de las siguientes posiciones: 176, 177, 178, 179, 190, 201, 207, 211 y 264. Otras amilasas adecuadas son las amilasas que tienen la SEQ ID NO: 2 del documento WO 09/061380 o variantes que tienen una identidad de secuencia del 90 % con la SEQ ID NO: 2 de la misma. Las variantes preferidas de la SEQ ID NO: 2 son las que tienen un truncamiento del extremo C y/o una sustitución, una deleción o una inserción en una o más de las siguientes posiciones: Q87, Q98, S125, N128, T131, T165, K178, R180, S181, T182, G183, M201, F202, N225, S243, N272, N282, Y305, R309, D319, Q320, Q359, K444 y G475. Las variantes más preferidas de la SEQ ID NO: 2 son las que tienen la sustitución en una o más de las siguientes posiciones: Q87E,R, Q98R, S125A, N128C, T131I, T165I, K178L, T182G, M201L, F202Y, N225E,R, N272E,R, S243Q,A,E,D, Y305R, R309A, Q320R, Q359E, K444E y G475K y/o la deleción en la posición R180 y/o S181 o de T182 y/o G183. Las variantes de amilasa más preferidas de la SEQ ID NO: 2 son las que tienen las sustituciones:

60

65

N128C+K178L+T182G+Y305R+G475K; N128C+K178L+T182G+F202Y+Y305R+D319T+G475K; S125A+N128C+K178L+T182G+Y305R+G475K; o

S125A+N128C+T131I+T165I+K178L+T182G+Y305R+G475K en las que las variantes están truncadas en el extremo C y opcionalmente comprenden además una sustitución en la posición 243 y/o una deleción en la posición 180 y/o posición 181.

Otras amilasas adecuadas son las alfa-amilasas que tienen la SEQ ID NO: 12 en el documento WO01/66712 o una variante que tiene al menos una identidad de secuencia del 90 % con la SEQ ID NO: 12. Las variantes de amilasa preferidas son las que tienen una sustitución, una deleción o una inserción en una o más de las siguientes posiciones de la SEC ID Nº: 12 en el documento WO01/66712: R28, R118, N174; R181, G182, D183, G184, G186, W189, N195, M202, Y298, N299, K302, S303, N306, R310, N314; R320, H324, E345, Y396, R400, W439, R444, N445, K446, Q449, R458, N471, N484. Las amilasas preferidas particulares incluyen variantes que tienen una deleción de D183 y G184 y que tienen las sustituciones R118K, N195F, R320K y R458K, y una variante que adicionalmente tiene sustituciones en una o más posiciones seleccionadas del grupo: M9, G149, G182, G186, M202, T257, Y295, N299, M323, E345 y A339, lo más preferido es una variante que adicionalmente tiene sustituciones en todas estas posiciones.

Otros ejemplos son variantes de amilasa como las descritas en los documentos WO2011/098531, WO2013/001078 y WO2013/001087.

Las amilasas disponibles en el comercio son Duramyl™, Termamyl™, Fungamyl™, Stainzyme™, Stainzyme Plus™, Natalase™, Liquozyme X y BAN™ (de Novozymes A / S), y Rapidase™, Purastar™/Effectenz™, Powerase y Preferenz S100 (de Genencor International Inc./DuPont).

Peroxidasas/Oxidasas

10

15

40

50

55

60

65

Las peroxidasas/oxidasas adecuadas incluyen las de origen vegetal, bacteriano o fúngico. Se incluyen los mutantes modificados químicamente u obtenidos mediante ingeniería de proteínas. Como ejemplos de peroxidasas útiles se incluyen peroxidasas de *Coprinus*, por ejemplo, de *C. cinereus* y variantes de las mismas como las descritas en los documentos WO 93/24618, WO 95/10602 y WO 98/15257.

Las peroxidasas disponibles en el comercio incluyen Guardzyme™ (Novozymes A/S).

- La enzima (o enzimas) de detergente puede incluirse en una composición de detergente añadiendo aditivos individuales que contengan una o más enzimas, o añadiendo un aditivo combinado que comprenda todas estas enzimas. Un aditivo de detergente de la invención, es decir, un aditivo individual o un aditivo combinado, puede formularse, por ejemplo, como un granulado, un líquido, una pasta semilíquida, etc. Las formulaciones de aditivos de detergentes preferidas son granulados, en particular, granulados no en polvo, líquidos, en particular, líquidos o pastas semilíquidas estabilizados.
- Pueden producirse granulados no en polvo, por ejemplo, como se describe en los documentos US 4.106.991 y 4.661.452 y pueden recubrirse opcionalmente mediante métodos conocidos en la técnica. Son ejemplos de materiales de recubrimiento cerosos los productos de poli(óxido de etileno) (polietilenglicol, PEG) con pesos molares medios de 1 000 a 20 000; nonilfenoles etoxilados que tienen de 16 a 50 unidades de óxido de etileno; alcoholes grasos etoxilados en los que el alcohol contiene de 12 a 20 átomos de carbono y en los que hay de 15 a 80 unidades de óxido de etileno; alcoholes grasos; ácidos grasos; y mono y di y triglicéridos de ácidos grasos. En el documento GB 1483591 se ofrecen ejemplos de materiales de recubrimiento formadores de película adecuados para su aplicación mediante técnicas de lecho fluido. Las preparaciones enzimáticas líquidas pueden, por ejemplo, estabilizarse añadiendo un poliol tal como propilenglicol, un azúcar o alcohol de azúcar, ácido láctico o ácido bórico según métodos establecidos. Pueden prepararse enzimas protegidas según el método desvelado en el documento EP 238.216.

Una composición para su uso en detergentes sólidos de lavandería, por ejemplo, puede incluir de 0,000001 % a 5 %, tal como de 0,000005 % a 2 %, tal como de 0,00001 % a 1 %, tal como de 0,00001 % a 0,1 % de proteína enzimática en peso de la composición.

Una composición para su uso en detergentes líquidos de lavandería, por ejemplo, puede incluir de 0,000001 % a 3 %, tal como de 0,000005 % a 1%, tal como de 0,00001% a 0,01% de proteína enzimática en peso de la composición.

Una composición para su uso en lavavajillas automático, por ejemplo, puede incluir de 0,000001 % a 5 %, tal como de 0,000005 % a 2 %, tal como de 0,00001 % a 1 %, tal como de 0,00001 % a 0,1 % de proteína enzimática en peso de la composición.

La enzima (o enzimas) de la composición de detergente de la invención puede estabilizarse utilizando agentes estabilizantes convencionales, por ejemplo, un poliol, tal como propilenglicol o glicerol, un azúcar o alcohol de azúcar, ácido láctico, ácido bórico o un derivado de ácido bórico, por ejemplo, un éster de borato aromático, o un derivado de ácido fenilborónico, tal como ácido 4-formilfenil borónico, y la composición puede formularse como se describe, por ejemplo, en los documentos WO92/19709 y WO92/19708.

En una realización, la invención está dirigida a composiciones de detergente que comprenden una enzima de la presente invención en combinación con uno o más componentes adicionales de la composición de limpieza. La elección de componentes adicionales se incluye en las competencias del experto en la técnica e incluye ingredientes convencionales, incluyendo los componentes no limitativos ejemplares expuestos a continuación.

La elección de componentes puede incluir, para el cuidado textil, tener en cuenta el tipo de textil que se va a limpiar, el tipo y/o grado de suciedad, la temperatura a la que se realizará la limpieza y la formulación del producto de detergente. Aunque los componentes mencionados a continuación se clasifican mediante un encabezamiento general

según una funcionalidad particular, esto no debe interpretarse como una limitación, ya que los componentes pueden comprender funcionalidades adicionales como apreciarán los expertos en la técnica.

1. Tensioactivos

5

La composición de detergente puede comprender uno o más tensioactivos, que pueden ser aniónicos y/o catiónicos y/o no iónicos y/o semipolares y/o zwitteriónicos, o una mezcla de los mismos. En una realización particular, la composición de detergente incluye una mezcla de uno o más tensioactivos no iónicos y de uno o más tensioactivos aniónicos. Normalmente, el tensioactivo (o tensioactivos) está presente a un nivel de aproximadamente 0,1 % a 60 % en peso, tal como de aproximadamente 1 % a aproximadamente 40 %, o de aproximadamente 3 % a aproximadamente 20 %, o de aproximadamente 3 % a aproximadamente 10 %. El tensioactivo (o tensioactivos) se selecciona en función de la aplicación de limpieza deseada, e incluye cualquier tensioactivo (o tensioactivos) convencional conocido en la técnica. Para uso en detergentes, puede utilizarse cualquier tensioactivo conocido en la técnica.

15

20

10

Cuando se incluye en esta composición, el detergente generalmente contendrá de aproximadamente 1 % a aproximadamente 40 % en peso, tal como de aproximadamente 5 % a aproximadamente 30 %, incluyendo de aproximadamente 5 % a aproximadamente 25 % de un tensioactivo aniónico. Como ejemplos no limitativos de tensioactivos aniónicos se incluyen sulfatos y sulfonatos, en particular, alquilbencenosulfonatos lineales (LAS), isómeros de LAS, alquilbencenosulfonatos ramificados (BABS), fenilalcanosulfonatos, alfa-olefinsulfonatos (AOS), sulfonatos de olefina, sulfonatos de alqueno, alcano-2,3-diilbis (sulfatos), hidroxialcanosulfonatos y disulfonatos, alquilsulfatos (AS) tales como dodecil sulfato de sodio (SDS), sulfatos de alcoholes grasos (FAS), sulfatos de alcoholes primarios (PAS), etersulfatos de alcohol (AES o AEOS o FES, también conocidos como etoxisulfatos de alcohol o éter sulfatos de alcoholes grasos), alcanosulfonatos secundarios (SAS), parafina sulfonatos (PS), éster sulfonatos, ésteres de glicerol de ácido graso sulfonado, esteres metílicos de alfa-sulfo ácidos grasos (alfa-SFMe o SES), incluyendo éster sulfonato de metilo (MES), ácido alquil- o alquenilsuccínico, ácido dodecenil/tetradecenil succínico (DTSA), derivados de ácidos grasos de aminoácidos, diésteres y monoésteres de ácido sulfo-succínico o jabón, y combinaciones de los mismos.

30

25

Cuando se incluye en esta composición, el detergente generalmente contendrá de aproximadamente 0 % a aproximadamente 10 % en peso de un tensioactivo catiónico. Como ejemplos no limitativos de tensioactivos catiónicos se incluyen alquildimetiletanolamina quat (ADMEAQ), bromuro de cetiltrimetilamonio (CTAB), cloruro de dimetildistearilamonio (DSDMAC) y alquilbencildimetilamonio, compuestos de alquil amonio cuaternario, compuestos de amonio cuaternario alcoxilado (AQA) y combinaciones de los mismos.

35

40

Cuando se incluye en esta composición, el detergente generalmente contendrá de aproximadamente 0,2 % a aproximadamente 40 % en peso de un tensioactivo no iónico, por ejemplo, de aproximadamente 0,5 % a aproximadamente 30 %, en particular de aproximadamente 1 % a aproximadamente 20 %, de aproximadamente 3 % a aproximadamente 10 %, tal como de aproximadamente 3 % a aproximadamente 5 %, o de aproximadamente 8 % a aproximadamente 12 %. Como ejemplos no limitativos de tensioactivos no iónicos se incluyen etoxilatos de alcohol (AE o AEO), propoxilatos de alcohol, alcoholes grasos propoxilados (PFA), ésteres alquílicos de ácidos grasos alcoxilados, tales como ésteres alquílicos de ácidos grasos etoxilados y/o propoxilados, etoxilatos de alquilfenol (APE), etoxilatos de nonilfenol (NPE), alquilpoliglicósidos (APG), aminas alcoxiladas, monoetanolamidas de ácidos grasos (FAM), dietanolamidas de ácidos grasos (FADA), monoetanolamidas de ácidos grasos etoxilados (PFAM), monoetanolamidas de ácidos grasos propoxilados (PFAM), amidas de ácidos grasos de polihidroxialquilo o derivados de N-acil N-alquil glucosamina (glucamidas, GA, o glucamida de ácidos grasos, FAGA), así como los productos disponibles con las marcas registradas SPAN y TWEEN, y combinaciones de los mismos.

50

45

Cuando se incluye en esta composición, el detergente generalmente contendrá de aproximadamente 0 % a aproximadamente 10 % en peso de un tensioactivo semipolar. Como ejemplos no limitativos de tensioactivos semipolares se incluyen óxidos de amina (AO) tales como óxido de alquildimetilamina, óxido de N-(coco alquil)-N, N-dimetilamina y óxido de N-(sebo-alquil)-N,N-bis(2-hidroxietil) amina, alcanolamidas de ácidos grasos y alcanolamidas de ácidos grasos etoxilados, y combinaciones de los mismos.

55 Cւ ap

Cuando se incluye en esta composición, el detergente generalmente contendrá de aproximadamente 0 % a aproximadamente 10 % en peso de un tensioactivo zwitteriónico. Como ejemplos no limitativos de tensioactivos zwitteriónicos se incluyen betaína, alquildimetilbetaína, sulfobetaína, y combinaciones de las mismas.

2. Hidrótropos

60

65

Un hidrótropo es un compuesto que solubiliza compuestos hidrófobos en soluciones acuosas (o, por el contrario, sustancias polares en un entorno no polar). Normalmente, los hidrótropos tienen un carácter tanto hidrófilo como hidrófobo (las denominadas propiedades anfifílicas conocidas de los tensioactivos); sin embargo, la estructura molecular de los hidrótropos generalmente no favorece la autoagregación espontánea. Los hidrótropos no muestran una concentración crítica por encima de la cual se produce una autoagregación como la que se encuentra en los tensioactivos y los lípidos que forman mesofases micelares, lamelares u otras bien definidas. En su lugar, muchos

hidrótropos muestran un proceso de agregación de tipo continuo en el que los tamaños de los agregados crecen a medida que aumenta la concentración. Sin embargo, muchos hidrótropos alteran el comportamiento de las fases, la estabilidad y las propiedades coloidales de sistemas que contienen sustancias de carácter polar y no polar, incluyendo mezclas de agua, aceite, tensioactivos y polímeros. Los hidrótropos se utilizan clásicamente en todas las industrias, desde aplicaciones farmacéuticas, cuidado personal, alimentos, hasta aplicaciones técnicas. El uso de hidrótropos en composiciones de detergente permite, por ejemplo, formulaciones más concentradas de tensioactivos (como en el proceso de compactación de detergentes líquidos mediante la eliminación de agua) sin inducir fenómenos no deseados, como la separación de fases o la alta viscosidad.

El detergente puede contener 0-5 % en peso, tal como de aproximadamente 0,5 a aproximadamente 5 %, o de aproximadamente 3 % a aproximadamente 5 %, de un hidrótropo. Se puede utilizar cualquier hidrótropo conocido en la técnica para su uso en detergentes. Como ejemplos no limitativos de hidrótropos se incluyen benceno sulfonato sódico, p-tolueno sulfonato sódico (STS), xileno sulfonato sódico (SXS), cumeno sulfonato sódico (SCS), cimeno sulfonato sódico, óxidos de amina, alcoholes y poliglicoléteres, hidroxinaftoato sódico, hidroxinaftaleno sulfonato sódico, etilhexil sulfato sódico y combinaciones de los mismos.

3. Adyuvantes y coadyuvantes (de detergencia)

La composición de detergente puede contener aproximadamente 0-65 % en peso, tal como aproximadamente de 5 % a aproximadamente 45 % de un adyuvante y coadyuvante de detergencia, o una mezcla de los mismos. En un detergente para lavavajillas, normalmente el nivel del adyuvantes es de 40-65 %, particularmente de 50-65%. El adyuvante y coadyuvante puede ser particularmente un agente quelante que forme complejos solubles en agua con Ca y Mg. Para su uso en detergentes para la ropa, puede utilizarse cualquier adyuvante y coadyuvante conocido en la técnica. Como ejemplos no limitativos de adyuvantes se incluyen zeolitas, difosfatos (pirofosfatos), trifosfatos, tal como trifosfato sódico (STP o STPP), carbonatos, tal como carbonato sódico, silicatos solubles tal como metasilicato sódico, silicatos en capas (por ejemplo, SKS-6 de Hoechst), etanolaminas, tal como 2-aminoetan-1-ol (MEA), dietanolamina (DEA, también conocida como iminodietanol), trietanolamina (TEA, también conocida como 2,2',2"-nitrilotrietanol), y carboximetil inulina (CMI), y combinaciones de los mismos.

La composición de detergente también puede contener 0-20 % en peso, tal como aproximadamente de 5 % a 30 aproximadamente 10 %, de un adyuvante de detergente, o una mezcla de los mismos. La composición de detergente puede incluir un coadyuvante solo, o en combinación con un adyuvante, por ejemplo un adyuvante de zeolita. Como ejemplos no limitativos de coadyuvantes se incluyen homopolímeros de poliacrilatos o copolímeros de los mismos, tales como ácido(poliacrílico) (PAA) o ácido (copoliacrílico/maleico) (PAA/PMA). Otros ejemplos no limitativos incluyen citrato, quelantes, tales como aminocarboxilatos, aminopolicarboxilatos y fosfonatos, y ácido alquil o alquenilsuccínico. 35 Como ejemplos específicos adicionales se incluyen ácido 2,2',2"-nitrilotriacético (NTA), ácido etilendiaminotetraacético (EDTA), ácido dietilentriaminopentaacético (DTPA), ácido iminodisuccínico (IDS), ácido etilendiamino-N.N'-disuccínico (EDDS), ácido metilglicinodiacético (MGDA), ácido glutámico-ácido N,N-diacético (GLDA), ácido 1-hidroxietano-1,1difosfónico etilendiaminotetra-(metilenfosfónico) (EDTMPA), (HEDP), ácido dietilentriaminopentakis(metilenfosfónico) (DTPMPA o DTMPA), ácido N-(2-hidroxietil)iminodiacético (EDG), ácido 40 aspártico-ácido N-monoacético (ASMA), ácido aspártico-ácido N,N-diacético (ASDA), ácido aspártico-ácido Nmonopropiónico (ASMP), ácido iminodisuccínico (IDA), ácido N-(2-sulfometil)-aspártico(SMAS), ácido N-(2-sulfoetil)aspártico (SEAS), ácido N-(2-sulfometil)-glutámico (SMGL), ácido N-(2-sulfoetil)-glutámico (SEGL), ácido Nmetiliminodiacético (MIDA), ácido α-alanin-N,N-diacético (a-ALDA), ácido serin-N,N-diacético (SEDA), ácido isoserin-N,N-diacético (ISDA), ácido fenilalanin-N,N-diacético (PHDA), ácido antranílico-ácido N,N-diacético (ANDA), ácido 45 sulfanílico-ácido N,N-diacético (SLDA), ácido taurin-N,N-diacético (TUDA) y ácido sulfometil-N,N-diacético (SMDA), ácido N-(2-hidroxietil)-etilendiamino-N,N'N'-triacético (HEDTA), dietanolglicina (DEG), ácido dietilentriamina penta (metilenfosfónico)(DTPMP), ácido aminotris(metilenfosfónico) (ATMP), y combinaciones y sales de los mismos. Por ejemplo, en los documentos WO 09/102854 y US 5977053 se describen otros ejemplos de adyuvantes y/o 50 coadyuvantes

4. Sistemas de blanqueamiento

55

60

65

El detergente puede contener 0-50 % en peso, tal como aproximadamente de 0,1 % a aproximadamente 25 %, de un sistema de blanqueamiento. Para su uso en detergentes de lavandería, puede utilizarse cualquier sistema de blanqueamiento conocida en la técnica. Los componentes adecuados del sistema de blanqueamiento incluyen catalizadores de blanqueamiento, fotoblanqueadores, activadores de blanqueamiento, fuentes de peróxido de hidrógeno tales como percarbonato de sodio y perboratos de sodio, perácidos preformados y mezclas de los mismos. Los perácidos preformados adecuados incluyen, pero sin limitación, ácidos peroxicarboxílicos y sales, ácidos percarbónicos y sales, ácidos perimídicos y sales, ácidos peroximonosulfúricos y sales, por ejemplo, oxona (R) y mezclas de los mismos. Como ejemplos no limitativos de sistemas de blanqueamiento se incluyen sistemas de blanqueamiento basados en peróxido, que puede comprender, por ejemplo, una sal inorgánicas, incluidas las sales de metales alcalinos, tales como sales de perborato de sodio (generalmente mono- o tetrahidrato), percarbonato, persulfato, perfosfato, sales de persilicato, en combinación con un activador blanqueante de formación de perácido. En el presente documento, por activador blanqueante se entiende un compuesto que reacciona con el blanqueador de peroxígeno tipo peróxido de hidrógeno para formar un perácido. El perácido formado de este modo constituye el

blanqueador activado. Los activadores blanqueantes adecuados para su uso en el presente documento incluyen los que pertenecen a la clase de ésteres de amidas, imidas o anhídridos. Son ejemplos adecuados la tetracetiletilendiamina (TAED), sodio 4-[(3,5,5-trimetilhexanoil)oxi]benzenosulfonato (ISONOBS), ácido diperoxi dodecanoico, 4-(dodecanoiloxi)bencenosulfonato (LOBS), 4-(decanoiloxi)bencenosulfonato, 4-(decanoiloxi)benzoato (DOBS), 4-(nonanoiloxi)bencenosulfonato (NOBS) y/o los descritos en el documento WO98/17767. Una familia particular de activadores blanqueantes de interés se desvelo en el documento EP624154 y se prefiere particularmente en esa familia el acetil trietil citrato (ATC). El ATC, o un triglicérido de cadena corta como la triacetina, tiene la ventaja de que es ecológico ya que con el tiempo se degrada en ácido cítrico y alcohol. Además, el acetil trietil citrato y la triacetina tienen una buena estabilidad hidrolítica en el producto durante el almacenamiento y es un activador blanqueante eficaz. Por último, el ATC proporciona una buena capacidad adyuvante al aditivo de lavandería. Como alternativa, el sistema de blanqueamiento puede comprender peroxiácidos, por ejemplo, del tipo amida, imida o sulfona. El sistema de blanqueamiento también puede comprender perácidos tales como ácido 6-(ftalimino)peroxihexanoico (PAP). El sistema de blanqueamiento también puede incluir un catalizador blanqueante. En algunas realizaciones, el componente blanqueante puede ser un catalizador orgánico seleccionado del grupo que consiste en catalizadores orgánicos que tienen las siguientes fórmulas:

(i)

20 (ii)

5

10

15

(iii) y mezclas de los mismos; en las que cada R¹ es independientemente un grupo alquilo ramificado que contiene de 9 a 24 carbonos o un grupo alquilo lineal que contiene de 11 a 24 carbonos, preferentemente cada R¹ es independientemente un grupo alquilo ramificado que contiene de 9 a 18 carbonos o un grupo alquilo lineal que contiene de 11 a 18 carbonos, más preferentemente cada R¹ se selecciona independientemente del grupo que consiste en 2-propilheptilo, 2-butiloctilo, 2-pentilnonilo, 2-hexildecilo, n-dodecilo, n-tetradecilo, n-hexadecilo, n-octadecilo, iso-nonilo, iso-decilo, iso-tridecilo e iso-pentadecilo. Se describen otros sistemas de blanqueamiento ejemplares, por ejemplo, en los documentos WO2007/087258, WO2007/087244, WO2007/087259 y WO2007/087242. Por ejemplo, la ftalocianina de zinc sulfonada puede ser un fotoblanqueador adecuado

5. Polímeros

35

40

45

25

30

El detergente puede contener 0-10 % en peso, tal como 0,5-5 %, 2-5 %, 0,5-2 % o 0,2-1 % de un polímero. Para su uso en detergentes puede utilizarse cualquier polímero conocido en la técnica. Como se ha mencionado anteriormente, el polímero puede funcionar como un coadyuvante o puede proporcionar propiedades contra la redeposición, protección de fibra, eliminación de suciedad, inhibición de la transferencia de tintes, limpieza de grasa y/o propiedades antiespumantes. Algunos polímeros pueden tener más de una de las propiedades mencionadas anteriormente y/o más de uno de los motivos mencionados a continuación. Los polímeros ejemplares incluyen (carboximetil)celulosa (CMC), alcohol(polivinílico) (PVA), poli(vinilpirrolidona) (PVP), poli(etilenglicol) o poli(óxido de etileno) (PEG), poli(etilenimina) etoxilada, carboximetil inulina (CMI) y policarboxilatos tales como PAA, PAA/PMA, ácido poli-aspártico y copolímeros de lauril metacrilato/ácido acrílico, CMC modificada hidrofóbicamente (HM-CMC) y siliconas, copolímeros de ácido tereftálico y glicoles oligoméricos, copolímeros de poli(tereftalato de etileno) y poli(tereftalato de oxietileno) (PET-POET), PVP, poli(vinilimidazol) (PVI), poli(vinilpiridin-N-óxido) (PVPO o PVPNO) y polivinilpirrolidonavinilimidazol (PVPVI). Otros polímeros ejemplares incluyen policarboxilatos sulfonados, óxido de polietileno y óxido de polipropileno (PEO-PPO) y etoxi sulfato dicuaternario. Otros polímeros ejemplares se describen, por ejemplo, en el documento WO 2006/130575. También se contemplan las sales de los polímeros mencionados anteriormente.

50

55

6. Agentes de coloración de tela

Las composiciones de detergente de la presente invención también pueden incluir agentes de coloración de tela tales como tintes o pigmentos, que cuando se formulan en composiciones de detergente pueden depositarse sobre una tela cuando dicha tela se pone en contacto con un líquido de lavado que comprende dichas composiciones de detergente y, por lo tanto, altera el tinte de dicha tela a través de la absorción/reflexión de la luz visible. Los agentes de blanqueamiento fluorescentes emiten al menos algo de luz visible. Por el contrario, los agentes de coloración de tela

alteran el tinte de una superficie al absorber al menos una parte del espectro de luz visible. Los agentes de coloración de tela adecuados incluyen tintes y conjugados de tinte y arcilla, y también pueden incluir pigmentos. Los tintes adecuados incluyen tintes de molécula pequeña y tintes poliméricos. Los tintes de molécula pequeña adecuados incluyen tintes de molécula pequeña seleccionados del grupo que consiste en tintes que se encuentran en las clasificaciones del Índice de Color (IC) de Direct Blue, rojo directo, violeta directo, azul ácido, rojo ácido, violeta ácido, azul básico, violeta básico y rojo básico, o mezclas de los mismos, por ejemplo, como se describe en los documentos WO2005/03274, WO2005/03275, WO2005/03276 y EP1876226 (incorporados por referencia en el presente documento). Preferentemente, la composición de detergente comprende de aproximadamente 0,00003 % en peso a aproximadamente 0,2 % en peso, de aproximadamente 0,00008 % en peso a aproximadamente 0,05 % en peso, o incluso de aproximadamente 0,0001 % en peso a aproximadamente 0,04 % en peso de agente de coloración de tela. La composición puede comprender de 0,0001 % en peso a 0,2 % en peso de agente de coloración de tela, esto puede ser especialmente preferido cuando la composición está en forma de una bolsa de una sola dosis. Agentes de coloración adecuados también se desvelan, por ejemplo, en los documentos WO 2007/087257 y WO2007/087243.

7. Materiales complementarios

10

15

20

25

30

35

40

45

50

55

60

65

Para su uso en detergentes de lavandería también puede utilizarse cualquier componente de detergente conocido en la técnica. Otros componentes de detergente opcionales incluyen agentes contra la corrosión, agentes contra el encogimiento, agentes contra la redeposición de manchas, agentes contra las arrugas, bactericidas, aglutinantes, inhibidores de la corrosión, agentes desintegrantes/disgregantes, tintes, estabilizadores enzimáticos (incluido el ácido bórico, boratos, CMC, y/o polioles tal como propilenglicol), acondicionadores de telas incluyendo arcillas, rellenos/ayudantes de procesamiento, agentes de blanqueamiento fluorescentes/abrillantadores ópticos, reforzadores de formación de espuma, reguladores de espuma (espuma de jabón), perfumes, agentes de suspensión de la suciedad, suavizantes, supresores de espuma de jabón, inhibidores de ennegrecimiento y agentes percolantes, en solitario o en combinación. Para uso en detergentes de lavandería puede utilizarse cualquier ingrediente conocido en la técnica. La elección de dichos ingredientes se incluye en las competencias del experto en la técnica.

Dispersantes: Las composiciones de detergente de la presente invención también pueden contener dispersantes. En particular, los detergentes en polvo pueden comprender dispersantes. Los materiales orgánicos solubles en agua adecuados incluyen ácidos homo o copoliméricos o sus sales, en los que el ácido policarboxílico comprende al menos dos radicales carboxilo separados entre sí por no más de dos átomos de carbono. Por ejemplo, en Powdered Detergents, Surfactant science series volumen 71, Marcel Dekker, Inc., se describen dispersantes adecuados.

Agentes inhibidores de transferencia de tinte: Las composiciones de detergente de la presente invención también pueden incluir uno o más agentes inhibidores de transferencia de tinte. Como agentes inhibidores de transferencia de tinte poliméricos adecuados se incluyen, pero sin limitación, polímeros de polivinilpirrolidona, polímeros de N-óxido poliamina, copolímeros de N-vinilpirrolidona y N-vinilimidazol, poliviniloxazolidonas y polivinilimidazoles o mezclas de los mismos. Cuando están presentes en una composición objeto de estudio, los agentes inhibidores de transferencia de tinte pueden estar presentes a niveles de aproximadamente 0,0001 % a aproximadamente 10 %, de aproximadamente 0,01 % a aproximadamente 5 % o incluso de aproximadamente 0,1 % a aproximadamente 3 % en peso de la composición.

Agente blanqueador fluorescente: Las composiciones de detergente de la presente invención también contendrán, preferentemente, componentes adicionales que pueden teñir los artículos que se va a limpiar, tales como agentes de blanqueamiento fluorescentes o abrillantadores ópticos. Cuando está presente, el abrillantador está preferentemente a un nivel de aproximadamente 0.01 % a aproximadamente 0.5 %. En la composición de la presente invención puede utilizarse cualquier agente blanqueador fluorescente adecuado para uso en una composición de detergente de lavandería. Los agentes de blanqueamiento fluorescentes que se utilizan más frecuentemente son los que pertenecen a las clases de derivados de ácido diaminoestilbensulfónico, derivados de diarilpirazolina y derivados de bisfenildistirilo. Ejemplos de agentes de blanqueamiento fluorescentes del tipo de los derivados de ácido diaminoestilbenosulfónico, incluyen las sales de sodio de: 4,4'-bis-(2-dietanolamino-4-anilino-s-triacin-6-ilamino) estilbeno-2,2'-disulfonato; 4,4'-bis-(2,4-dianilino-s-triacin-6- ilamino) estilbeno-2,2'-disulfonato; 4,4'-bis-(2-anilino-4(Nmetil-N-2-hidroxi-etilamino)-s-triacin-6-ilamino) estilben-2,2'-disulfonato, 4,4'-bis-(4-fenil-2,1,3-triazol-2-il)estilben-2,2'disulfonato; 4,4'-bis-(2-anilino-4(1-metil-2-hidroxi-etilamino)-s-triacin-6-ilamino) estilbeno-2,2'-disulfonato y 2-(estilbil-4"-nafto-1.,2':4,5)-1,2,3-trizol-2"-sulfonato. Los agentes de blanqueamiento fluorescentes preferidos son Tinopal DMS y Tinopal CBS, disponibles en Ciba-Geigy AG, Basilea, Suiza. Tinopal DMS es la sal disódica de 4,4'-bis-(2-morfolino-4 anilino-s-triacin-6-ilamino) estilbeno disulfonato. Tinopal CBS es la sal disódica de 2,2'-bis-(fenil-estiril) disulfonato. También preferidos son los agentes de blanqueamiento fluorescentes como Parawhite KX disponible en el comercio, suministrado por Paramount Minerals and Chemicals, Bombay, India. Otros fluorescentes adecuados para su uso en la invención incluyen las 1-3-diaril pirazolinas y las 7-alquilaminocumarinas. Los niveles de abrillantador fluorescente adecuados incluyen niveles inferiores de aproximadamente 0,01 % en peso, de 0,05, de aproximadamente 0,1 o incluso de aproximadamente 0,2 % en peso a niveles superiores de 0,5 o incluso de 0,75 % en peso.

Polímeros de eliminación de suciedad: Las composiciones de detergente de la presente invención también pueden incluir uno o más polímeros de eliminación de suciedad que ayudan a eliminar la suciedad de telas tales como telas a base de algodón y poliéster, en particular, la eliminación de suciedad hidrófoba de telas a base de poliéster. Los

polímeros de eliminación de suciedad pueden ser, por ejemplo, polímeros no iónicos o aniónicos, basados en tereftalto, polivinil caprolactama y copolímeros relacionados, copolímeros de injerto de vinilo, poliamidas de poliéster, véase, por ejemplo, el Capítulo 7 en Powdered Detergents, Surfactant science series volumen 71, Marcel Dekker, Inc. Otro tipo de polímeros de eliminación de suciedad son polímeros anfifílicos, alcoxilados que limpian la grasa, que comprenden una estructura central y una pluralidad de grupos alcoxilato fijados a esa estructura central. La estructura central puede comprender una estructura de polialquilenimina o una estructura de polialcanolamina como se describe en detalle en el documento WO 2009/087523 (incorporado por referencia en el presente documento). Además, los copolímeros de injerto aleatorio son polímeros de eliminación de suciedad adecuados. En el documento WO 2007/138054 se describen con más detalle copolímeros de injerto adecuados WO 2006/108856 y WO 2006/113314 (incorporados por referencia en el presente documento). Otros polímeros de eliminación de suciedad son estructuras polisacarídicas sustituidas, especialmente estructuras de celulosa sustituidas, tales como derivados de celulosa modificados, tales como los descritos en los documentos EP 1867808 o WO 2003/040279 (ambos incorporados por referencia en el presente documento). Los polímeros celulósicos adecuados incluyen celulosa, éteres de celulosa, ésteres de celulosa, amidas de celulosa y mezclas de las mismas. Los polímeros celulósicos adecuados incluyen celulosa aniónicamente modificada, celulosa no aniónicamente modificada, celulosa catiónicamente modificada, celulosa zwitteriónicamente modificada, y mezclas de las mismas. Los polímeros celulósicos adecuados incluyen metilcelulosa, carboximetilcelulosa, etilcelulosa, hidroxietilcelulosa, hidroxipropilmetilcelulosa, éster de carboximetilcelulosa, y mezclas de las mismas.

10

15

25

30

35

40

45

50

55

60

65

Agentes contra la redeposición: Las composiciones de detergente de la presente invención también pueden incluir uno o más agentes contra la redeposición tales como carboximetilcelulosa (CMC), alcohol polivinílico (PVA), polivinilpirrolidona (PVP), polioxietileno y/o polietilenglicol (PEG), homopolímeros de ácido acrílico, copolímeros de ácido acrílico y ácido maleico, y polietileniminas etoxiladas. Los polímeros basados en celulosa descritos anteriormente como polímeros de eliminación de suciedad, también pueden funcionar como agentes contra la redeposición.

Otros materiales complementarios adecuados incluyen, pero sin limitación, agentes antiencogimiento, agentes antiarrugas, bactericidas, aglutinantes, transportadores, tintes, estabilizadores enzimáticos, suavizantes de tela, cargas, reguladores de espuma, hidrótropos, perfumes, pigmentos, supresores de espuma de jabón, disolventes y estructurantes para detergentes líquidos y/o agentes elastizantes de estructura.

En una realización adicional de la presente invención, la composición de detergente está en forma de una pastilla, un comprimido homogéneo, un comprimido que tiene dos o más capas, una bolsa que tiene uno o más compartimentos, un polvo regular o compacto, un gránulo, una pasta, un gel, o un líquido regular, compacto o concentrado. En una realización, la composición de detergente puede ser una composición de detergente de lavandería, preferentemente una composición de detergente de lavandería líquida o sólida. Existen diversas formas de formulación de detergentes, tales como capas (fases iguales o diferentes), bolsitas, así como formas para unidades de dosificación de lavadora.

Las bolsitas pueden configurarse como compartimentos individuales o múltiples. Pueden tener cualquier forma, configuración y material que sea adecuado para contener la composición, por ejemplo, que no permita liberar la composición de la bolsa antes de que entre en contacto con el agua. La bolsa está fabricada de una película soluble en agua que encierra un volumen interior. Dicho volumen interior puede dividirse en compartimentos de la bolsa. Las películas preferidas son materiales poliméricos, preferentemente polímeros que se forman en una película o lámina. Los polímeros, copolímeros o derivados preferidos de los mismos son poliacrilatos seleccionados, y copolímeros de acrilato solubles en agua, metilcelulosa, carboximetilcelulosa, dextrina sódica, etilcelulosa, hidroxietilcelulosa, hidroxipropil metil celulosa, malto dextrina, polimetacrilatos, lo más preferentemente copolímeros de alcohol polivinílico e, hidroxipropil metil celulosa (HPMC). Preferentemente, el nivel de polímero en la película, por ejemplo PVA, es de al menos aproximadamente 60 %. Normalmente, el peso molecular promedio preferido será de aproximadamente 20 000 a aproximadamente 150 000. Las películas también pueden ser de composiciones de mezcla que comprenden mezclas de polímeros hidrolíticamente degradables y solubles en agua, tales como polilactida y alcohol polivinílico (conocido con la referencia comercial M8630, comercializado por Chris Craft In. Prod. Of Gary, Ind., EE. UU.) más plastificantes como glicerol, etilenglicerol, propilenglicol, sorbitol y mezclas de los mismos. Las bolsitas pueden comprender una composición de detergente de lavandería sólida o componentes de partes y/o una composición de limpieza líquida o componentes de partes separados por la película soluble en aqua. El compartimento para componentes líquidos puede tener una composición diferente a la de los compartimentos que contienen sólidos. Ref: (US2009/0011970 A1).

Los ingredientes de detergente pueden separarse físicamente entre sí mediante compartimentos en bolsitas disolubles en agua o en diferentes capas de comprimidos. De este modo, se puede evitar la interacción de almacenamiento negativa entre los componentes. Los diferentes perfiles de disolución de cada uno de los compartimentos también pueden dar lugar a una disolución retardada de los componentes seleccionados en la solución de lavado.

Un detergente líquido o en gel que no es una unidad dosificada, puede ser acuoso, que normalmente contiene al menos 20 % en peso y hasta 95 % de agua, tal como hasta aproximadamente 70 % de agua, hasta aproximadamente 65 % de agua, hasta aproximadamente 45 % de agua, hasta aproximadamente el 35% de agua. Otros tipos de líquidos, incluyendo, sin limitación, alcanoles, aminas, dioles, éteres y polioles, pueden

incluirse en un líquido o gel acuoso. Un detergente líquido acuoso o en gel puede contener de 0 a 30 % de disolvente orgánico. Un detergente líquido o en gel puede ser no acuoso.

Las composiciones de detergente de la presente invención pueden proporcionarse en forma de pastillas de jabón de lavandería y utilizarse para lavar a mano la ropa, telas y/o textiles. El término pastilla de jabón de lavandería incluye pastillas de lavandería, pastillas de jabón, pastillas combinadas, pastillas syndet (tensioactivos sintéticos) y pastillas de detergente. Los tipos de pastillas generalmente difieren en el tipo de tensioactivo que contienen, y la expresión pastilla de jabón de lavandería incluye pastillas que contienen jabones de ácidos grasos y/o jabones sintéticos. La pastilla de jabón de lavandería tiene una forma física que es sólida y no líquida, en gel o en polvo a temperatura ambiente. El término sólido se define como una forma física que no cambia significativamente con el tiempo, es decir, si un objeto sólido (por ejemplo, una pastilla de jabón de lavandería) se coloca dentro de un recipiente, el objeto sólido no cambia al llenar el recipiente en el que se coloca. La pastilla es un sólido normalmente en forma de pastilla, pero puede tener otras formas sólidas, tales como redondeadas u ovaladas.

5

10

25

30

35

40

50

55

60

65

La pastilla de jabón de lavandería puede contener una o más enzimas adicionales, inhibidores de proteasa, tales como aldehídos peptídicos (o aducto de hidrosulfito o aducto de hemiacetal), ácido bórico, borato, derivados de bórax y/o ácido fenilborónico, tal como el ácido 4-formilfenilborónico, uno o más jabones o tensioactivos sintéticos, polioles, tales como glicerina, compuestos que controlan el pH, tales como ácidos grasos, ácido cítrico, ácido acético y/o ácido fórmico, y/o una sal de un catión monovalente y un anión orgánico en la que el catión monovalente puede ser, por ejemplo, Na+, K+ o NH₄+ y el anión orgánico puede ser, por ejemplo, formato, acetato, citrato o lactato de manera que la sal de un catión monovalente y un anión orgánico pueda ser, por ejemplo, formiato sódico.

La pastilla de jabón de lavandería también puede contener agentes complejantes como EDTA y HEDP, perfumes y/o diferentes tipos de cargas, tensioactivos, por ejemplo, tensioactivos sintéticos aniónicos, adyuvantes, agentes poliméricos de eliminación de suciedad, quelantes detergentes, agentes estabilizantes, cargas, tintes, colorantes, inhibidores de transferencia de tinte, policarbonatos alcoxilados, supresores de espumas, estructurantes, aglutinantes, agentes de lixiviación, activadores de blanqueamiento, agentes de eliminación de suciedad arcillosa, agentes contra la redeposición, agentes dispersantes poliméricos, abrillantadores, suavizantes de tela, perfumes y/u otros compuestos conocidos en la técnica.

La pastilla de jabón de lavandería puede procesarse en aparatos convencionales de fabricación de pastillas de jabón de lavandería, tales como, sin limitación: mezcladoras, empastilladoras, por ejemplo, una empastilladora de vacío bifásica, extrusoras, cortadoras, logo estampadoras, túneles de enfriamiento y empacadoras. La invención no se limita a preparar las pastillas de jabón de lavandería mediante un solo método. La premezcla de la invención puede añadirse al jabón en diferentes fases del proceso. Por ejemplo, la premezcla que contiene un jabón, una enzima, opcionalmente una o más enzimas adicionales, un inhibidor de proteasa y una sal de un catión monovalente y un anión orgánico, puede prepararse y, después, la mezcla se empastilla. La enzima y enzimas adicionales opcionales pueden añadirse al mismo tiempo que el inhibidor de proteasa, por ejemplo, en forma líquida. Además de la etapa de mezclar y de empastillar, el proceso puede comprender además las siguientes etapas de molienda, extrusión, corte, estampado, enfriamiento y/o empacado.

La presente invención se refiere además a diferentes usos de la composición de detergente como se describe en este documento, tal como para degradar mananos y para su uso en un proceso de lavandería.

La presente invención se refiere además a un método para eliminar una mancha de una superficie, que comprende poner en contacto la superficie con una composición de detergente como se describe en el presente documento.

La presente invención también se refiere a un método para degradar manano que comprende aplicar al manano una composición de detergente como se describe en el presente documento, en el que, preferentemente, el manano está en la superficie de un textil. Al degradar el manano fijado al textil o tejido, la mancha o suciedad unida al manano se elimina y no puede volver a unirse al manano o a las manchas de manano.

En una realización de la presente invención, la mananasa comprendida en la composición de detergente de la presente invención, tiene una actividad relativa de al menos 30 % en el intervalo de temperatura de 45 °C a 65 °C. Proporcionar mananasas que conserven su actividad a temperaturas superiores a la temperatura ambiente y en pH ácido, es ventajoso para aplicaciones en las que se requiere la degradación de manano en dichas condiciones.

En una realización, la mananasa comprendida en las composiciones de detergente de la presente invención, hidroliza al azar los enlaces endo-beta-1,4-manosídicos.

En una realización, la mananasa comprendida en las composiciones de detergente de la presente invención, puede obtenerse o derivar de una fuente bacteriana.

En una realización, la mananasa comprendida en las composiciones de detergente de la presente invención, se fusiona con al menos un polipéptido adicional, formando así un polipéptido de fusión. El polipéptido de fusión o el polipéptido adicional pueden tener otras actividades catalíticas o de unión además de las de la mananasa. En una realización, el

polipéptido adicional comprende o consiste en un módulo de unión a carbohidratos, que es opcionalmente un fragmento de otra proteína o enzima derivada del mismo o diferente organismo que la mananasa. La mananasa puede conectarse al polipéptido adicional con un enlazador.

5 Ejemplos

20

Los siguientes ejemplos se proporcionan para ilustrar varios aspectos de la presente invención. Con estos ejemplos no se pretende limitar la invención, que se define mediante las reivindicaciones adjuntas.

Aunque los siguientes ejemplos están relacionados con tres proteínas mananasas diferentes, se considera que la proteína mananasa Man7 es la nueva mananasa según la presente invención.

Ejemplo 1: Exploración

Para la identificación de nuevas beta-1,4-mananasas se exploraron bases de datos públicas (NCBI, EBI) y se seleccionaron genomas de propiedad exclusiva y públicos. Todos los genomas de propiedad exclusiva y públicos utilizados en este trabajo se muestran en la Tab. 1. Todos los aciertos se agruparon y finalmente se seleccionaron 15 genes de origen bacteriano para la clonación en *Bacillus* en función de la distancia filogenética entre ellos (Tabla 2)

Tabla 1: Lista de genomas de propiedad exclusiva y públicos utilizados para la exploración de beta-1,4-mananasas

Especie	Сера	Fuente
Bacillus pumilus	MS8	ABE
Amphibacillus xylanus	NBRC 15112	NCBI
Bacillus hemicellulosilyticus	JCM 9152	NCBI
Bacillus clausii	KSM-K16	NCBI
Bacillus amyloliquefaciens	RH1330	ABE
Virigibacillus soli	PL205	NCBI

Tabla 2: Lista de genes seleccionados para la clonación en Bacillus

ID de secuencia	Especie	Familia GH	Longitud
orf2511	Bacillus amyloliquefaciens	26	360 aa
AXY_08250	Amphibacillus xylanus	5	497 aa
Man7	Bacillus hemicellulosilyticus	5	490 aa
T1Z249.2	Bacillus nealsonii	5	369 aa
Man6	Bacillus clausii	5	324 aa
Q9EYQ3	Clostridium cellulolyticum	5	424 aa
YdhT	Bacillus cellulosilyticus	26	1183 aa
V5X1N9	Paenibacillus polymyxa	5	588 aa
Q9ZI87	Geobacillus stearothermophilus	5	694 aa
Q49HI4	Bacillus circulans	5	327 aa
orf0659	Bacillus pumilus	5	376 aa
JCM9152_1090	Bacillus hemicellulosilyticus	26	489 aa
D3HC62	Streptococcus gallolyticus	5	487 aa
A0LSH9	Acidothermus cellulolyticus	5	763 aa
Man14	Virgibacillus soli	5	482 aa

Ejemplo 2: Clonación de mananasas bacterianas en Bacillus

A menos que se indique otra cosa, los métodos de biología molecular, incluyendo manipulaciones y transformaciones de ADN, se realizaron como se describe en Sambrook y Russell (2001) y Harwood y Cutting (1990). Los genes *man6*, *man7* y *man14*, se amplificaron por PCR utilizando polimerasa Pfx Accu Prime (Invitrogen). Las PCR se realizaron siguiendo las instrucciones del fabricante. Para la construcción de los plásmidos de expresión se utilizaron las siguientes condiciones de PCR: desnaturalización inicial durante 120 segundos a 94 °C, seguido de 35 ciclos de 15 segundos a 94 °C, 30 segundos de emparejamiento en uno de los siguientes 50/55 °C, 110/290 segundos de extensión a 68 °C y la extensión final a 68 °C durante 10 min. Para la amplificación de ADN genómico de *man7* de *Bacillus hemicellulosilyticus* se utilizó JCM 9152. *man6* and *man14* se ordenaron como genes sintéticos sin optimización de codones (Eurofins MWG, Alemania). En la Tabla 3 se muestran las secuencias de los cebadores utilizados para la clonación. Los nucleótidos protuberantes para la hibridación se indican subrayados.

Tabla 3: Lista de cebadores utilizados para la amplificación de man6, man7 y man14

Molde	Cebador	pb	Secuencia	SEQ ID NO
sin. gen <i>man6</i>	Man6_1	39	CAACCGCCTCTGCAGCTTATGCACAAA	1
sin. gen <i>man6</i>	Man6_2	39	CGGTATATCTCTGTCTTAATCACTCTTA AGCCCATTTTC	2

35

25

ADNg de <i>B.</i> hemicellulosilyticus	Man7_1	37	CAACCGCCTCTGCAGCTTCTGATGGTCATAGC CAAAC	3	
ADNg de <i>B.</i> hemicellulosilyticus	Man7_2	36	CGGTATATCTCTGTCTTATTGGATTGTT ACATGATC	4	
sin. gen <i>man14</i>	Man14_1	40	CAACCGCCTCTGCAGCTGCAAGCGGG TTTTATGTAAACGG	5	
sin. gen <i>man14</i>	Man14_2	39	CGGTATATCTCTGTCTTATTTAATGGTA	6	
derivado de pUB110	Vec 1	17	AGCTGCAGAGGCGGTTG	7	
derivado de pUB110	Vec 2	21	GACAGAGATATACCGACAGTG	8	

Los genes se clonaron en un vector estándar pEV1 (Fig. 1), un derivado de pUB110 que incluye el promotor PaprE de Bacillus licheniformis y el péptido señal de xilanasa de Bacillus amyloliquefaciens, utilizando la mezcla maestra de ensamblaie de ADN NEBuilder®Hifi (NEB, Frankfurt). Para la clonación se aplicó una relación de vector: inserto de 1: 3. La cantidad total de fragmentos fue de 0,2 pmol en un volumen total de 20 µl. Las muestras se incubaron durante 40 min a 50 °C. Para los fines de la construcción, los plásmidos de expresión se transformaron por competencia inducida en Bacillus subtilis SCK6, como se describe en Zhang y Zhang 2011. Las células transformadas se colocaron en placas con LB (Luria-Bertani) complementadas con 10 mg/l de kanamicina. Las placas se incubaron durante 20 h a 37 °C. Las colonias que surgieron se seleccionaron y el plásmido se aisló utilizando el kit QiaPrep MiniPrep (Qiagen, Hilden). El procedimiento de aislamiento se llevó a cabo siguiendo las recomendaciones de los fabricantes para preparaciones de plásmidos de grampositivos. Los insertos se secuenciaron mediante secuenciación de Sanger (GATC, Alemania) y revelaron las secuencias de ADN correspondientes a las partes maduras de las mananasas Man6, Man7 y Man14. Las comparaciones de las secuencias se realizaron utilizando el alineamiento de secuencias de ClustalW (Thompson et al 1994). Por último, los plásmidos de expresión se transformaron mediante electroporación en una cepa de producción de Bacillus adecuada. La cepa de producción de Bacillus se cultivó en medio de electroporación que contenía Triptona 20 g/l, extracto de levadura 10 g, NaCl 10 g y sacarosa 2 M y se recogieron 10 ml a una DO(600 nm) de 0,4. Las células se lavaron con tampón de electroporación que contenía sacarosa 0,272 M, MgCl₂ 1 mM y KH₂PO4 7 mM y finalmente se resuspendieron en 250 µl de tampón de electroporación. La electroporación se realizó utilizando las siguientes condiciones: 1,2 kV, 150 ω, 50 μF. Después de esto, se añadió 1 ml de medio de electroporación y las células se incubaron durante 3 horas a 37 °C. Las células se colocaron en placas LB complementadas con kanamicina 20 mg/l y se incubaron durante 18 horas a 37 ° C. Los clones se verificaron como se describió anteriormente y se utilizaron para la generación de material para pruebas analíticas. Por lo tanto, las cepas se inocularon en una expresión estándar en condiciones de inducción de proteínas y se incubaron durante 30 horas a 37 °C. Los sobrenadantes se recogieron y se utilizaron para pruebas analíticas y de aplicación. En las Tablas 4 y 5 se muestran los genes y las características de las enzimas.

Tabla 4. Resumen de los genes que codifican las mananasas de la familia GH5 de *Bacillus clausii* KSM-K16, *Bacillus hemicellulosilvticus* JCM 9152 v Virgibacillus soli PL205.

nonneonal conjugación o los y linguacións con l'ascol						
Gen	Longitud incluyendo SP (pb)	SEQ ID NO				
man6	975	9				
man7	1473	13				
man14	1449	17				

30

10

15

20

Tabla 5. Resumen de las secuencias de aminoácidos deducidas a partir de las secuencias de genes que codifican las mananasas de la familia GH5 de *Bacillus clausii* KSM-K16, *Bacillus hemicellulosilyticus* JCM 9152 *y Virgibacillus soli* PL205.

, on : =====						
Proteína Man	Nº de AA	Longitud de SS	СВМ	PM pronosticado (Da), sin incluir ss	pl pronosticado, sin incluir ss	SEQ ID NO
Man6	324	35		31,84	4,56	11
Man7	490	21	Si	51,36	4,81	15
Man14	482	16	Si	50,68	4,35	19

5 Ejemplo 3: Clonación por PCR de mananasas bacterianas man6 y man7 en Trichoderma reesei

En el aislamiento y tratamientos enzimáticos de ADN (por ejemplo, aislamiento del ADN plasmídico, digestión de ADN para producir fragmentos de ADN), en transformaciones de *E. coli*, secuenciación, etc., se utilizaron métodos estándar de biología molecular. Los métodos básicos utilizados fueron los descritos por el fabricante de la enzima, el reactivo o el kit o los descritos en el manual estándar de biología molecular, por ejemplo, Sambrook y Russell (2001). El aislamiento de ADN genómico se realizó como describen con detalle Raeder y Broda (1985).

Man6 and man7 de Bacillus clausii y Bacillus hemicellulosilyticus, respectivamente, también se clonaron para su expresión en *Trichoderma reesei* Los genes se clonaron por PCR utilizando genes sintéticos con optimización de codones para *Trichoderma reesei*. Las secuencias de ADN que codifican los péptidos señal de man6 y man7, se eliminaron utilizando PCR y se crearon nuevos sitios de clonación. Las secuencias de los cebadores se muestran en la Tabla 6 (SEQ ID NO: 21-24).

Tabla 6. Oligonucleótidos utilizados como cebadores de PCR para amplificar genes mananasa de *Bacillus* hemicellulosilyticus y *Bacillus clausii*.

nemicellalosilyticas y Bacillas ciaasii.				
Molde, ADN	Oligonucleótidos	Longitud	Secuencia ^{(a}	SEQ
(sintético) de		(pb)		ID NO:
Bacillus	BMAN1	60	5'-AGTCAATCGCGACAAGCGCC	21
hemicellulosilyticus			AGACCCACTCGGGCTTCTAC	
			ATCGAGGGCTCGACGCTCTA- 3' (s)	
Bacillus	BMAN2	46	5'-CGCGCCGGATCCTTACTGGA	22
hemicellulosilyticus			TCGTGACGTGGTCCAGGTAG ATGGCG-3'	
			(as)	
Bacillus clausii	BMAN3	60	5'-AGTCAATCGCGACAAGCGCC	23
			AGAACGGCTTCCACGTCTCC	
			GGCACGGAGCTCCTGGACAA -3' (s)	
Bacillus clausii	BMAN4	50	5'-CGCGCCGGATCCTTAGTCGC	24
			TCTTCAGGCCGTTCTCGCCG	
			TAGACGATGCG-3' (as)	
(a "s" entre paréntesis = cadena en sentido, "as" = cadena antisentido.				

Los genes se amplificaron por PCR con los cebadores descritos en la Tabla 6 y utilizando como moldes ADN sintéticos en las reacciones. Cada una de las mezclas de PCR de *man6 de Bacillus clausii* y de *man7* de *Bacillus hemicellulosilyticus* contenía tampón HF 1x para la polimerasa Phusion HF (NEB/BioNordika, Finlandia), mezcla de dNTP 0,2 mM (Thermo Fisher Scientific, Finlandia), 1 µM de cada cebador, DMSO al 3 % (Thermo Fisher Scientific), 1 unidad de polimerasa Phusion High-Fidelity (NEB/BioNordika, Finlandia) y 50 ng del ADN plasmídico correspondiente. Las condiciones para las reacciones de PCR fueron las siguientes: desnaturalización inicial durante 30 segundos a 98 °C, seguido de 28 ciclos de 10 segundos a 98 °C, 30 segundos de emparejamiento en uno de los siguientes 45/50/55/60 °C, extensión de 45 segundos a 72 °C y la extensión final a 72 °C durante 7 min.

La combinación de cebadores descrita en la Tabla 6 produjo productos de ADN específicos que tenían los tamaños esperados. Los productos de la PCR se aislaron del gel de agarosa con el kit de extracción de gel GenJet (Thermo Fisher Scientific) siguiendo las instrucciones del fabricante, se digirieron con las enzimas de restricción *Nrul* y BamHI (Thermo Fisher Scientific) y se clonaron en un vector de expresión escindido con *Nrul* y BamHI. Las mezclas de ligamiento se transformaron en *Escherichia coli* XL1-Blue (AH Diagnostics) y se sembraron en placas con LB (Luria-Bertani) que contenía ampicilina 50-100 µg/ml. Se recogieron varias colonias de *E. coli* de las placas y el ADN se aisló con el kit GenJet Plasmid Miniprep (Thermo Fisher Scientific). Los clones positivos se exploraron utilizando digestiones con enzimas de restricción. Los genes que codificaban las mananasas de la familia GH5, *man6* de *Bacillus clausii* y man7 de *Bacillus hemicellulosilyticus*, se secuenciaron sin sus propias secuencias codificantes del péptido señal y los plásmidos se denominaron pALK4274 y pALK4273, respectivamente (para detalles véase el Ejemplo 6).

21

Ejemplo 4: Clonación de mananasa bacteriana sintética man14

30

25

10

15

20

35

En el aislamiento y tratamientos enzimáticos de ADN (por ejemplo, aislamiento del ADN plasmídico, digestión de ADN para producir fragmentos de ADN), en transformaciones de *E. coli*, secuenciación, etc., se utilizaron métodos estándar de biología molecular. Los métodos básicos utilizados fueron los descritos por el fabricante de la enzima, el reactivo o el kit o los descritos en el manual estándar de biología molecular, por ejemplo, Sambrook y Russell (2001). El aislamiento de ADN genómico se realizó como describen con detalle Raeder y Broda (1985).

El gen de mananasa *man14* de *Virgibacillus soli* también se clonó para la expresión en *Tricoderma*. El gen que codifica la mananasa Man14 de la familia GH5 de *Virgibacillus soli* se ordenó de GenScript como una construcción sintética con optimización de codones para *Trichoderma reesei*.

El ADN plasmídico obtenido de GenScript, que incluía el gen *man14* se resuspendió en agua estéril, se digirió con las enzimas de restricción *Nrul* y BamHI (Thermo Fisher Scientific) siguiendo las instrucciones del fabricante y se clonaron en un vector de expresión escindido con *Nrul* y BamHI. La mezcla de ligamiento se transformó en *Escherichia coli* XL1-Blue (AH Diagnostics) y se sembró en placas con LB (Luria-Bertani) que contenía ampicilina 50-100 μg/ml. Se recogieron varias colonias de *E. coli* de las placas y el ADN se aisló con el kit GenJet Plasmid Miniprep (Thermo Fisher Scientific). Los clones positivos se exploraron utilizando digestiones con enzimas de restricción y se mostró que contenían insertos de tamaños esperados. Los sitios de fusión de *man14* de *Virgibacillus soli* para el plásmido de expresión, se secuenciaron y el plásmido se denominó pALK4414 (para detalles, véase el Ejemplo 6).

Ejemplo 5: Producción de proteínas de mananasa GH5 bacteriana recombinantes en Bacillus

5

10

15

20

25

30

35

40

45

50

55

60

Se construyeron plásmidos de expresión para la producción de proteínas de mananasa GH5 (Man6, Man7 y Man14) recombinantes de *Bacillus clausii, Bacillus hemicellulosilyticus* y *Virgibacillus soli.* Los plásmidos de expresión construidos se enumeran en la Tabla 7. Los genes de GH5 (man6, *man7* and man 14) recombinantes, sin sus propias secuencias de señal, se fusionaron al promotor *PaprE* de *Bacillus licheniformis* y el péptido señal de la xilanasa de *B. amyloliquefaciens*. La terminación de la transcripción se garantizó mediante un terminador fuerte y se utilizó un marcador de resistencia a kanamicina para la selección de los transformantes. Las transformaciones se realizaron como se describe en el Ejemplo 2.

Tabla 7. Plásmidos de expresión construidos para producir las proteínas Man6, Man7 y Man14 recombinantes de Bacillus clausii, Bacillus hemicellulosilyticus y Virgibacillus soli en una cepa de expresión de Bacillus apropiada.

Proteína mananasa (GH5)	Plásmido de expresión
Man6	pEV1 Man6
Man7	pEV1 Man7
Man14	pEV1 Man14

La producción de GH5 de los transformantes se analizó a partir de los sobrenadantes de cultivo de los cultivos en matraz de agitación. Los transformantes se inocularon de las placas LB a matraces de agitación que contenían glucosa al 2 %, polvo de macerado de maíz al 6 %, (NH4)2HPO4 al 1,3 %, MgSO4 al 0,05 % x 7H2O y CaCl2 al 0,5 %. El pH se ajustó a pH 7,5. La producción de proteína GH5 de los transformantes se analizó a partir de sobrenadantes de cultivo después de cultivarlos durante 30 horas a 37 °C, 180 rpm. La producción heteróloga de proteínas recombinantes se analizó mediante SDS-PAGE con posterior tinción con Coomassie. Los mejores transformantes de producción se seleccionaron para cultivarse en biorreactores a escala de laboratorio. Los transformantes se cultivaron en biorreactores a 37 °C en condiciones de inducción de proteínas y suministro adicional hasta que se alcanzó un rendimiento adecuado. Los sobrenadantes se recuperaron para pruebas de aplicación por centrifugación o filtración.

Ejemplo 6: Producción de proteínas de mananasa GH5 bacterianas recombinantes en Trichoderma reesei

Se construyeron plásmidos de expresión para la producción de proteínas de mananasa GH5 (Man6, Man7 y Man14) recombinantes de *Bacillus clausii, Bacillus hemicellulosilyticus* y *Virgibacillus soli* (véanse los ejemplos 3 y 4) en *Trichoderma reesei.* Los plásmidos de expresión construidos se enumeran en la Tabla 8. Los genes de GH5 (man6, man7 y man14) recombinantes, sin sus propias secuencias señal, se fusionaron al promotor *cel7A/cbh1* de *T. reesei* con el transportador y enlazador CMB *cel6A/cbh2* de *T. reesei* seguido del sitio de reconocimiento de la proteasa Kex2. La terminación de la transcripción se garantizó mediante el terminador *cel7A/cbh1* de *T. reesei* y para la selección de los transformantes se utilizó el gen marcador *amd*S de *A. nidulans* como se describe en Paloheimo *et al.* (2003). Los casetes de expresión lineal (Fig. 2) se aislaron de las cadenas principales del vector después de digestiones con *Notl* y se transformaron en protoplastos de *T. Reesei.* Las cepas hospedadoras utilizadas no producen ninguna de las cuatro celulasas principales de *T. reesei*(CBHI, CBHII, EGI, EGII). Las transformaciones se realizaron como en Penttilä. *et al.* (1987) con las modificaciones descritas en Karhunen. *et al.* (1993), seleccionando acetamidasa como única fuente de nitrógeno (gen marcador amdS). Los transformantes se purificaron en placas de selección a través de conidios individuales antes de esporularlos en PD.

Tabla 8. Se construyeron casetes de expresión para producir proteínas recombinantes Man6, Man7 y Man14 de *Bacillus clausii, Bacillus hemicellulosilyticus* y *Virgibacillus soli* en *Trichoderma reesei*. La estructura general de los casetes de expresión fue como se describe en la Fig. 2.

Proteína mananasa (GH5)	Plásmido de expresión	Casete de expresión ^{(a}			
Man6	pALK4274	7,0 kb <i>Not</i> l			
Man7	pALK4273	7,5 kb <i>Notl</i>			
Man14	pALK4414	7,6 kb <i>Not</i> l			
(a El casete de expresión para la transformación en <i>T. reesei</i> se aisló de la cadena principal del vector utilizando					
digestión con la enzima Notl.					

La producción de mananasa de los transformantes se analizó a partir de los sobrenadantes de cultivo de los cultivos en matraz de agitación. Los transformantes se inocularon de las inclinaciones de PD a matraces de agitación que contenían 50 ml de medio inductor de celulasa basado en lactosa compleja (JJoutsjoki *et al.* 1993) tamponado con KH₂PO₄. al 5 %. La producción de proteína GH5 de los transformantes se analizó a partir de sobrenadantes de cultivo después de cultivarlos durante 7 días a 30 °C, 250 rpm. La producción heteróloga de proteínas recombinantes se analizó mediante SDS-PAGE con posterior tinción con Coomassie. Los mejores transformantes de producción se seleccionaron para cultivarse en biorreactores a escala de laboratorio. Los transformantes se cultivaron en biorreactores en forma discontinua o mediante un tipo de proceso de suministro adicional en condiciones de inducción de proteínas a una temperatura típica de cultivo de hongos mesófilos y en condiciones ligeramente ácidas. El cultivo continuó hasta el agotamiento de los azúcares en el medio o hasta que se alcanzó el rendimiento adecuado. Los sobrenadantes se recuperaron para pruebas de aplicación por centrifugación o por filtración.

Ejemplo 7: Ensayo de actividad galactomananasa mediante el método con DNS

La actividad mananasa (MNU) se midió como la liberación de azúcares reductores del galactomanano (0,3 % p/p) a 50 °C y pH 7,0 en 5 min. La cantidad de carbohidratos reductores liberados se determinó espectrofotométricamente utilizando ácido dinitrosalicílico. El sustrato (0,3 % p/p) utilizado en el ensayo se preparó de la siguiente manera: 0,6 g de goma de algarrobo (Sigma G-0753) estaban en tampón de citrato de sodio 50 mM, pH 7 (o tampón de fosfato de citrato, pH 7) a aproximadamente 80 °C utilizando un termoagitador magnético y se calentaron hasta el punto de ebullición. La solución se enfrió y se dejó disolver durante la noche en sala refrigerada (2-8 °C) con agitación continua y los residuos insolubles se eliminaron por centrifugación. Después, esa solución se llenó hasta 200 ml con tampón. El sustrato se conservó congelado y se fundió por calentamiento en un baño de agua hirviendo a aproximadamente 80 °C, se enfrió a temperatura ambiente y se mezcló cuidadosamente antes de usarlo. El reactivo DNS utilizado en el ensayo se preparó disolviendo 50 g de ácido 3,5 dinitrosalicílico (Sigma D-550) en aproximadamente 4 litros de agua. Con agitación magnética continua, se añadieron gradualmente 80,0 g de NaOH y se dejaron disolver. Una cantidad de 1500 g de sal de Rochelle (tartrato de K-Na, Merck 8087) se añadió en pequeñas porciones con agitación continua. La solución que podría haberse calentado con precaución a una temperatura máxima de 45 °C, se enfrió a temperatura ambiente y se llenó hasta 5 000 ml. Después de eso, se filtró a través de un filtro de papel Whatman No.1 y se conservó en un frasco oscuro a temperatura ambiente. La reacción se inició primero añadiendo 1,8 ml de solución de sustrato a cada uno de los dos tubos de ensayo y se dejó equilibrar a 50 °C durante 5 minutos después de lo cual 200 µl de solución de enzima diluida adecuadamente se añadieron a uno de los tubos, se mezcló bien con un mezclador vorticial y se incubó exactamente durante 5 minutos a 50 °C. Los blancos enzimáticos no necesitaban equilibrarse o incubarse. La reacción se detuvo añadiendo 3,0 ml de reactivo DNS en ambos tubos y se mezcló. Se añadieron 200 µl de solución de muestra a los tubos blancos enzimáticos. Ambos tubos se colocaron en un baño de agua hirviendo. Después de hervir durante exactamente 5 minutos, los tubos se colocaron en un baño de agua fría y se dejaron enfriar a temperatura ambiente. La absorbancia de la muestra se midió contra el blanco enzimático a 540 nm y se leyó la actividad de la curva de calibración y se multiplicó por el factor de dilución. Una muestra diluida adecuada produjo una diferencia de absorbancia de 0,15 a 0,4. Se preparó una curva estándar 20 mM a partir de la solución madre de manosa disolviendo 360 mg de manosa (SigmaM-6020, conservada en un evaporador) en tampón de ensayo y diluida en soluciones que contenían 3, 6, 10 y 14 µmol/ml de manosa. Los estándares se manejaron como las muestras, solo que se incubaron a 50 °C. Las absorbancias se midieron contra el blanco de reactivo (que contenía tampón en lugar de la dilución estándar de manosa) a 540 nm. Para cada serie de ensayos se construyó una curva de calibración. Una unidad de mananasa (MNU) se definió como la cantidad de enzima que produce carbohidratos reductores que tienen un poder reductor correspondiente a un nmol de manosa de galactomanano en un segundo en las condiciones de ensayo (1 MNU = 1nkat).

Ejemplo 8: Purificación de mananasa Man6

10

15

20

25

30

35

40

45

50

55

Las células y los sólidos se eliminaron del medio de cultivo de fermentación mediante centrifugación durante 10 minutos, 4000 g a 4 °C. Para la purificación de la proteína se utilizaron 10 ml de sobrenadante. La muestra se filtró a través de una membrana de PVDF de 0,44 µm (Millex-HV, Merck Millipore Ltd, Carrigtwohill, IRL). El filtrado se cargó en una columna desalinizadora HiPrep 26/10 (GE Healthcare, Uppsala, Suecia) equilibrada en HEPES 20 mM pH 7. La muestra desalada se cargó después en una columna HiTrap Q HP de 5 ml (GE Healthcare, Uppsala, Suecia) preequilibrada con HEPES 20 mM pH 7. Después de cargar la muestra, la columna se lavó con el mismo tampón para 20 ml. Las proteínas se eluyeron con gradiente de sal lineal HEPES 20 mM, NaCl 500 mM pH 7 en 15 CV. Se recogieron fracciones de 5 ml y se analizaron por SDS-PAGE. Las fracciones que contenían la proteína diana se combinaron y se concentraron a 2 ml utilizando los dispositivos de ultrafiltración Vivaspin 20, 10 kDa MWCO (GE Healthcare). La muestra concentrada se fraccionó adicionalmente utilizando una columna de filtración en gel Superdex

75 26/60 equilibrada con MES 20 mM, NaCl 200 mM, pH 6,5. Se recogieron fracciones de 2 ml y se analizaron por SDS-PAGE. Las fracciones que contenían mananasa pura se combinaron. Otras mananasas se purificaron utilizando el mismo protocolo, pero cambiando la composición del tampón en las etapas de desalinización e intercambio iónico. Las composiciones de tampón se muestran en la Tabla 9.

Tabla 9. Tampones utilizados en la cromatografía de intercambio iónico

Mananasa	Tampones utilizados en la cromatografía de intercambio iónico
Man6	HEPES 20 mM pH 7
Man7	HEPES 20 mM pH 7
Man14	MES 20 mM pH 6
Las muestras purificadas tenían una pureza superior al 95 %.	

El contenido enzimático de la muestra purificada se determinó utilizando medidas de absorbancia UV de 280 nm. Los coeficientes de excitación para cada mananasa se calcularon sobre las bases de la secuencia de aminoácidos de la enzima utilizando ExPASy Server http://web.expasy.org/protparam/. (Gasteiger E et al 2005). La actividad de la enzima (MNU) de las muestras purificadas se midió como la liberación de azúcares reductores como se describe en el Ejemplo 7. La actividad específica (MNU/mg) de las mananasas se calculó dividiendo la actividad MNU de la muestra purificada entre la cantidad de enzima purificada. Los valores obtenidos se utilizaron para calcular las dosis de enzimas utilizadas en los Ejemplos 10 y 11.

Perfiles de pH de las mananasas

5

10

15

20

25

30

50

55

Los perfiles de pH de las mananasas purificadas se determinaron utilizando el ensayo de comprimidos de betamanazima con galactomanano de algarrobo entrecruzado con azurina (T-MNZ 11/14) de Megazyme con pequeñas modificaciones en el protocolo sugerido. La linealidad del ensayo se verificó con cada una de las enzimas purificadas. El ensayo se realizó en tampón de Britton-Robinson 40 mM ajustado a valores de pH entre 4 y 11. La solución enzimática se diluyó en el tampón de ensayo y 500 µl de solución enzimática se equilibraron en un baño de agua a 50 °C durante 5 minutos antes de añadir un comprimido de sustrato. Después de 10 minutos, la reacción se detuvo añadiendo 10 ml de Tris al 2 % a pH 12. Los tubos de reacción se dejaron a temperatura ambiente durante 5 minutos, se agitaron y el líquido se filtró a través de un filtro de papel Whatman No.1. La eliminación de tinte azul del sustrato se cuantificó midiendo la absorbancia a 595 nm. La actividad enzimática a cada pH se refirió como actividad relativa en la que la actividad al pH óptimo se estableció en 100 %. Los perfiles de pH se muestran en la Figura 3.

La actividad relativa (%) de la mananasa se calculó dividiendo la actividad mananasa de una muestra entre la actividad mananasa de una muestra de referencia. En el caso del perfil de pH, la muestra de referencia es una muestra con el pH óptimo. En el caso del perfil de temperatura, la muestra de referencia es una muestra a la temperatura óptima.

Perfiles de temperatura de las mananasas

La temperatura óptima de las mananasas purificadas se determinó utilizando el ensayo de comprimidos de betamanazima con galactomanano de algarrobo entrecruzado con azurina (T-MNZ 11/14) de Megazyme con pequeñas modificaciones en el protocolo sugerido. El ensayo se realizó a temperaturas que variaban entre 30-90 ° C durante 10 minutos en un tampón de Britton-Robinson 40 mM, pH 7. La actividad enzimática se informó como actividad relativa donde la actividad a temperatura óptima se estableció en 100%. Los perfiles de temperatura se muestran en la Figura 40 4.

Temperatura y pH característicos de las mananasas

La Man6 tiene una masa molecular entre 30-35 kDa. La temperatura óptima de la enzima a pH 7 es de 50 °C a 70 °C.

45 Dicha enzima tiene un pH óptimo en el intervalo de pH de al menos pH 6 a pH 9 a 50 °C. La temperatura óptima y el pH óptimo se determinaron utilizando un tiempo de reacción de 10 minutos y como sustrato se utilizó galactomanano de algarrobo entrecruzado con azurina.

La Man7 tiene una masa molecular entre 50-55 kDa. La temperatura óptima de la enzima a pH 7 es de 50 °C a 70 °C. Dicha enzima tiene un pH óptimo en el intervalo de pH de al menos pH 7 a pH 10 a 50 °C. La temperatura óptima y el pH óptimo se determinaron utilizando un tiempo de reacción de 10 minutos y como sustrato se utilizó galactomanano de algarrobo entrecruzado con azurina.

La Man14 tiene una masa molecular entre 30-40 kDa. La temperatura óptima de la enzima a pH 7 es de 50 °C a 70 °C. Dicha enzima tiene un pH óptimo en el intervalo de pH de al menos pH 7 a pH 8 a 50 °C. La temperatura óptima y el pH óptimo se determinaron utilizando un tiempo de reacción de 10 minutos y como sustrato se utilizó galactomanano de algarrobo entrecruzado con azurina.

Ejemplo 9: Rendimiento de eliminación de manchas de las mananasas Man6 y Man7 con detergentes comerciales sin agentes de blanqueamiento

Las mananasas Man6 y Man7 producidas en *Bacillus* (como se describe en el Ejemplo 5) y en *Tricoderma* (como se describe en el Ejemplo 6), se sometieron a ensayo con respecto a su capacidad para eliminar manchas estándar sensibles a mananasa a 40 ° C y con una dureza del agua de 16 °dH con detergentes comerciales sin agentes de blanqueamiento y se comparó con la preparación de mananasa comercial Mannaway® 4,0 l (Novozymes). Se utilizaron los siguientes paños de ensayo del Center for testmaterial B.V. (Países Bajos) manchados artificialmente: Pudin de chocolate mananasa sensible sobre algodón (E-165), Goma de algarrobo, con pigmento sobre algodón (CS-73) y sobre poliéster/algodón (PC-S-73) y goma guar con negro de carbón sobre algodón (CS-43). La tela se cortó en muestras de 6 cm x 6 cm y en el ensayo se utilizaron 2 piezas de cada una de ellas.

10

Se utilizó detergente A líquido comercial para uso industrial que contenía todas las otras enzimas, salvo mananasa, a una concentración de 4,4 g por litro de líquido de lavado y se utilizó detergente en polvo comercial para ropa de color sin enzimas a 3,8 g/l. Se preparó detergente que contenía líquido de lavado en agua de grifo sintética con una dureza de 16 °dH. Se añadieron proteasa Savinase® 16 l (0,5 %p/p) y amilasa Stainzyme® 12 l (0,4 %p/p) al agua dura utilizada con detergente en polvo comercial para ropa de color, el detergente líquido ya contenía amilasa y proteasa. El pH del líquido de lavado del detergente en polvo para ropa de color era de aproximadamente 10 y con el detergente líquido de aproximadamente 8,3.

20

15

Las dosificaciones de mananasa estaban en el intervalo de 0-0,2/0,25 % del peso del detergente, pero para la evaluación, las dosificaciones se calcularon como unidades de actividad enzimática (MNU) por ml de líquido de lavado o como mg de proteína enzimática activa (PEA) por l de líquido de lavado. La actividad se midió como se describe en el Ejemplo 7. El contenido de PEA de cada preparación se calculó dividiendo la actividad enzimática entre la actividad específica, definida en el Ejemplo 8. La muestra de control contenía la solución de detergente pero no mananasa.

25 P

Para agua de grifo sintética con una dureza de 16 °dH, se prepararon las siguientes soluciones madre en agua desionizada (Milli-Q o equivalente):

30

Solución madre con una dureza de 1 000 °dH al calcio: CaCl2 x 2 H2O (1.02382.1000, Merck KGaA, Alemania) 26,22 g/l

Solución madre con una dureza de 200 °dH al magnesio: MgSO4 x 7 H2O (1.05886.1000, Merck KGaA, Alemania) 8,79 g/l H2O

35

Solución madre de NaHCO3: NaHCO3 (1.06329.1000 Merck KGaA, Alemania) 29,6 g/l

S

Se añadieron 13,3 ml de solución de CaCl2, 13,3 ml de solución de MgSO4 y 10,0 ml de solución de NaHCO3 recién preparada en un matraz volumétrico en el orden indicado, hasta 1 litro con agua desionizada y se mezclaron. La dureza del agua se determinó por valoración complejométrica y se encontró que era correcta.

40

45

50

55

Los tratamientos de eliminación de manchas se realizaron en un Launder-Ometer Atlas LP-2 de la siguiente manera. En primer lugar, el Launder-Ometer se precalentó a 40 °C. Después, en recipientes de 1,2 litros, se añadió detergente, 250 ml de agua de grifo sintética con una dureza de 16 °dH y enzima diluida (<1,0 ml). Se añadieron manchas y el Launder-Ometer se activó a 40 °C durante 60 minutos con una velocidad de rotación de 42 rpm. Después de eso, las muestras se enjuagaron cuidadosamente con agua corriente y se secaron durante la noche en aire interior, en una rejilla protegida contra la luz solar. El efecto de eliminación de manchas se evaluó midiendo el color como valores de reflectancia con el espectrofotómetro Fúngicas Minolta CM-3610A utilizando las coordenadas de espacio de color L*a*b* (iluminación D65/10°, corte de 420 nm). La desaparición de las manchas, que indica el rendimiento de las mananasas (eficiencia de eliminación de manchas), se calculó como ΔL* (delta L*), lo que significa valor de luminosidad L* de la tela tratada con enzima menos valor de luminosidad L* de la tela tratada con líquido de lavado sin mananasa (control). Los resultados finales (efecto de eliminación total de la mancha) se mostraron como la suma de ΔL* de cada mancha. Los valores de color de cada mancha fueron un promedio de 2 muestras. Los resultados obtenidos con detergente líquido comercial se muestran en las Figs. 6-7. Las mananasas según la invención, tienen un rendimiento de eliminación de manchas similar (Man6) o considerablemente mejor (Man7) con detergente líquido cuando se dosifican como unidades de actividad o como proteína enzimática activa en comparación con la preparación de mananasa comercial Mannaway® 4,0 l. Se obtuvo un rendimiento similar con Man6 y Man7 independientemente del hospedador de expresión, Bacillus o Trichoderma (Fig 6). Los resultados obtenidos con el detergente en polvo comercial para ropa de color (Figs. 8-9) muestran que las mananasas según la invención tienen un mejor rendimiento de eliminación de manchas con el polvo detergente de color cuando se dosifican como unidades de actividad o como proteína enzimática activa en comparación con la preparación de mananasa comercial Mannaway® 4,0 l.

60

Ejemplo 10: Rendimiento de eliminación de manchas de las mananasas Man6 y Man7 con detergente que contiene blanqueador

65

La capacidad de las mananasas Man6 y Man7 producidas en *Bacillus* (como se describe en el Ejemplo 5) para eliminar manchas estándar sensibles a mananasa, se sometió a ensayo a una temperatura de 40 °C y una dureza del agua de 16 °dH con detergente en polvo comercial con blanqueador y se comparó con la preparación comercial de mananasa

Mannaway® 4,0 I (Novozymes). El sistema de ensayo fue similar al descrito en el Ejemplo 9, solo que se utilizaron 3 paños de ensayo diferentes del Center for testmaterial B.V. (Países Bajos) manchados artificialmente: Pudin de chocolate mananasa sensible sobre algodón (E-165), Goma de algarrobo, con pigmento sobre algodón (C-S-73) y goma guar con negro de carbón sobre algodón (CS-43). El detergente en polvo comercial para ropa de color se utilizó a una concentración de 4,2 g por litro de líquido de lavado y el pH del líquido de lavado fue de aprox. 9,5. Al agua dura utilizada en el ensayo, se añadió proteasa Savinase® 16 I (0,5 % p/p) y amilasa Stainzyme® 12 I (0,4 % p/p), ya que el detergente no contenía enzimas. El color de las muestras después del tratamiento se midió y los resultados se calcularon como la suma de ΔL* de cada una de las 3 manchas como se describe en el Ejemplo 9. Los resultados (Fig. 10) obtenidos con detergente comercial que contiene blanqueador, indican que la mananasa según la invención (Man7) tiene un rendimiento de eliminación de manchas considerablemente mejor en comparación con la mananasa comercial Mannaway® 4,0 I cuando se dosifica como proteína enzimática activa. Con Man6 se obtiene al menos un rendimiento similar en comparación con una mananasa bacteriana comercial.

Ejemplo 11: Rendimiento de eliminación de manchas de la mananasa Man14 con detergente líquido comercial

La capacidad de la mananasa Man14 producida en *Bacillus* (como se describe en el Ejemplo 5) para eliminar manchas estándar sensibles a mananasa, se sometió a ensayo a una temperatura de 40 °C y una dureza del agua de 16 °dH con detergente B líquido comercial de uso industrial y se comparó con la preparación comercial de mananasa Mannaway® 4,0 l (Novozymes). El sistema de ensayo fue similar al descrito en el Ejemplo 9, solo que se utilizaron dos paños de ensayo diferentes del Center for testmaterial B.V. (Países Bajos) manchados artificialmente: Pudin de chocolate mananasa sensible sobre algodón (E-165) y goma de algarrobo, con pigmento sobre algodón (CS-73). El detergente B líquido comercial para uso industrial se utilizó a una concentración de 5 g por litro de líquido de lavado y el pH del líquido de lavado fue de aprox. 8,3. Al agua dura utilizada en el ensayo, se añadió proteasa Savinase® 16 l (0,5 % p/p) y amilasa Stainzyme® 12 l (0,4 % p/p), ya que el detergente no contenía enzimas. El color de las muestras después del tratamiento se midió y los resultados se calcularon como la suma de Δ L* de cada una de las 2 manchas como se describe en el Ejemplo 9. Los resultados (Figs. 11-12) obtenidos con detergente que contiene líquido comercial indican que Man14 tuvo un buen rendimiento en un detergente líquido, comparable al producto comercial, cuando se dosifica como unidades de actividad o como proteína enzimática activa.

30 Ejemplo 12: Estabilidad de las mananasas Man6 y Man7 en detergentes líquidos comerciales

10

15

20

25

35

40

45

50

La estabilidad de las preparaciones de mananasa Man6 y Man7 producidas en Bacillus se sometieron a ensayo en detergente líquido OMO para ropa de color adquirido en el supermercado local y se comparó con la de la preparación de mananasa comercial Mannaway® 4,0 l. Se añadieron preparaciones de mananasa al 0,5 % p/p en detergentes y las muestras se incubaron a 37 °C, durante 5 semanas, en tubos de plástico con tapa. La actividad se midió a determinados intervalos con el ensayo de actividad descrito en el Ejemplo 7, solo que se utilizó un tiempo de incubación de 30 minutos. Los resultados se calcularon como actividad residual (%), que se obtuvo dividendo la actividad de una muestra tomada en cierto punto de tiempo entre la actividad inicial de la muestra. La estabilidad de Man7 producida tanto en Bacillus como en Tricoderma y la de Man6 producida en Tricoderma se sometió a ensayo contra Mannaway® 4,0 I también en un detergente líquido A de uso industrial que contenía proteasa pero no mananasa. En este ensayo, se utilizaron mananasas al 1 % (p/p) y se incubaron muestras a 37 °C durante 12 semanas. Los resultados en el detergente Omo para ropa de color (Fig. 13) muestran que, en comparación con la preparación Mannaway® 4,0 l, Man6 tuvo una estabilidad considerablemente mejor y Man7 una estabilidad similar. Tanto Man7 como especialmente Man6, fueron más estables que la preparación Mannaway® 4,0 l con otro detergente A líquido comercial, tal como se muestra en la figura 14. Los resultados obtenidos en otro ensayo en las mismas condiciones mostraron que Man6 tenía una estabilidad similar independientemente del hospedador de expresión, Bacillus o Trichoderma (datos no mostrados). Los resultados de los experimentos de estabilidad muestran que la mananasa según la invención es estable en detergentes durante varias semanas, incluso cuando se conserva a alta temperatura como 37 °C. La estabilidad de las mananasas (Man6 y Man7) según la invención se mejora en comparación con la de una mananasa bacteriana comercial en detergente líquido.

Ejemplo 13: Rendimiento de lavado de composiciones de detergente líquido según la invención

El rendimiento de lavado de composiciones de detergente líquido según la presente invención se determinó utilizando manchas estandarizadas que pueden obtenerse en el CFT (Center for Testmaterials) B.V., Vlaardingen, Países Bajos ("CFT"), Eidgenössische Material- und Prüfanstalt Testmaterialien AG [Federal materials and testing agency, Testmaterials], San Gallen, Suiza ("EMPA") y Warwick Equest Ltd Unit 55, Consett Business Park, Consett, Condado de Durham ("Equest").

60 Como formulación base se utilizó un agente de lavado líquido con la siguiente composición (todos los valores se dan en porcentaje en peso):

Nombre químico	Materia prima de la sustancia activa [%]	Formulacion de detergente de la sustancia activa [%]				
Agua desmin.	100	Reposo				
ácido alquilbencenosulfónico	96	2-7				

Tensioactivos aniónicos	70	6-10						
Sal sódica de ácido graso C12-C18	30	1-4						
Tensioactivos no iónicos	100	4-7						
Fosfonatos	40	0,1-2						
Ácido cítrico	100	1-3						
NaOH	50	1-4						
ácido borónico	100	0,1-2						
agente antiespumante	100	0,01-1						
Glicerol	100	1-3						
Enzimas	100	0,1-2						
Agente conservante	100	0,05-1						
Etanol	93	0,5-2						
Abrillantador óptico	90	0,01-1						
Perfume	100	0,1-1						
Tinte	100	0.001-0,1						
El pH de la composición de detergente variaba entre 8,2-8,6.								

En función de esta formulación base, la composición 2 de detergente líquido se preparó añadiendo la enzima respectiva como se indica a continuación:

5 Composición 2: Enzima según la SEC ID Nº: 16 (Man7)

El lavado se realizó de la siguiente manera según el Método AISE: 3,5 kg de paño de lastre limpio, 4 Paños SBL, lavadora Miele, programa corto a 20 °C y 40 °C.

10 Todas las mananasas se añadieron en las mismas cantidades en función del contenido total de proteínas.

La relación de dosificación del agente de lavado líquido fue de 4,0 gramos por litro de líquido de lavado. El procedimiento de lavado se realizó durante 60 minutos a una temperatura de 20 °C y 40 °C, teniendo el agua una dureza de entre 15,5 y 16,5 ° (grados alemanes de dureza).

Los resultados obtenidos son los valores de diferencia entre las unidades de remisión obtenidas con los detergentes y las unidades de remisión obtenidas con el detergente que contiene la mananasa de referencia disponible en el comercio (Mannaway 4,0 I, obtenida de Novozymes). Por lo tanto, un valor positivo indica un rendimiento de lavado mejorado de las composiciones de detergente que comprenden las mananasas de la presente invención en comparación con la misma composición de detergente que comprende la mananasa de referencia. En el ensayo de lavado se ensayó una gran variedad de manchas.

La blancura, es decir, el brillo de las manchas, se determinó fotométricamente como una indicación del rendimiento de lavado. Se utilizó un dispositivo espectrométrico Minolta CM508d, que se calibró de antemano utilizando un patrón blanco proporcionado con la unidad.

Los resultados obtenidos son los valores de diferencia entre las unidades de remisión obtenidas con los detergentes y las unidades de remisión obtenidas con el detergente que contiene las combinaciones de enzimas. Por lo tanto, un valor positivo indica un rendimiento de lavado mejorado debido a las combinaciones de enzimas presentes en el detergente. Las mananasas de la invención en composiciones de detergente muestran un rendimiento mejorado en una variedad de manchas que comprenden manano.

	20 °C	<u>40 °C</u>
Mancha	Comp.2	Comp.2
Helado de Chocolate (Equest)	4,2	n.d.
Helado de Chocolate Carte D'or (Equest)	3,3	0,7
Cacao [CO] (Equest)	2,3	n.d.
Mayonesa/color negro carbón (CFT CS05S [CO])	4,3	2,2
(continuación)	•	•

()		
	<u>20 °C</u>	<u>40 °C</u>
Aderezo para ensaladas, con negro natural (CFT CS06 [CO])	3,5	2,6
Lápiz labial, diluido, Rojo (CFT CS216 [CO])	1,5	0,7

Ejemplo 14: Rendimiento de lavado de las composiciones de detergente en polvo según la invención

35

15

20

25

30

El rendimiento de lavado de las composiciones de detergente en polvo según la presente invención se determinó utilizando manchas estandarizadas que pueden obtenerse en el CFT (Center for Testmaterials) B.V., Vlaardingen,

Países Bajos ("CFT"), Eidgenössische Material- und Prüfanstalt Testmaterialien AG [Federal materials and testing agency, Testmaterials], San Gallen, Suiza ("EMPA") Warwick Equest Ltd Unit 55, Consett Business Park, Consett, Condado de Durham ("Equest").

5 Como formulación base se utilizó un agente de lavado sólido con la siguiente composición (todos los valores se dan en porcentaje en peso):

Nombre químico	Materia prima de la sustancia activa [%]	Formulacion de detergente de la sustancia activa [%]		
Agua desmin.	100	1-4		
ácido alquilbencenosulfónico	97	9-13		
Tensioactivos no iónicos	100	4-7		
Percarbonatos	88	9-13		
TAED	92	1-5		
Fosfonatos	60	0,1-3		
Poliacrilatos	45	1-4		
Silicato de sodio	40	5-10		
Carbonato de sodio	100	18-22		
Carboximetilcelulosa	69	1-4		
Polímero de eliminación de suciedad	100	0,1-1		
Abrillantador óptico	70	0,1-1		
Agente antiespumante	c.t.	0,01-1		
Sulfato de sodio	100	22-30		
Enzimas	100	0,1-1		
Perfume	100	0,1-1		
NaOH	100	0,1-1		
Nombre químico	Materia prima de sustancia activa [%]	Formulación de detergente de sustancia activa [%]		
Reposo	-	1-4		

En función de esta formulación base, la composición de detergente sólida 4 se preparó añadiendo las enzimas respectivas como se indica a continuación:

Composición 4: Enzima según la SEC ID Nº: 16 (Man7)

El lavado se realizó de la siguiente manera según el Método AISE: 3,5 kg de paño de lastre limpio, 4 Paños SBL, lavadora Miele, programa corto a 20 °C y 40 °C. Todas las mananasas se añadieron en las mismas cantidades en función del contenido total de proteínas.

La relación de dosificación del agente de lavado en polvo fue de 3,8 gramos por litro de líquido de lavado. El procedimiento de lavado se realizó durante 60 minutos a una temperatura de 20 °C y 40 °C, teniendo el agua una dureza de entre 15,5 y 16,5 ° (grados alemanes de dureza).

La blancura, es decir, el brillo de las manchas, se determinó fotométricamente como una indicación del rendimiento de lavado. Se utilizó un dispositivo espectrométrico Minolta CM508d, que se calibró de antemano utilizando un patrón blanco proporcionado con la unidad.

Los resultados obtenidos son los valores de diferencia entre las unidades de remisión obtenidas con los detergentes y las unidades de remisión obtenidas con el detergente que contiene la mananasa de referencia (Mannaway 4,0 I, obtenida de Novozymes). Por lo tanto, un valor positivo indica un rendimiento de lavado mejorado de las variantes en el detergente. Las mananasas de la invención muestran un rendimiento mejorado sobre diversas manchas. Por lo tanto, es evidente que las mananasas según la invención muestran un rendimiento de lavado mejorado en comparación con Mannaway.

	20 °C	40 °C
Mancha	Comp.4	Comp.4
Helado De Chocolate Carte D'or (Equest)	2,8	0,5
Vienetta (Equest)	0,8	n.d.
Helado de chocolate L [CO] (Equest)	0,9	n.d.
Papilla de avena (EMPA 163 [CO])	n.d.	5,1
Cacao (CFT CS02 [CO])	3,1	n.d.
Mayonesa/color negro carbón (CFT CS05S [CO])	1,0	2,7

25

30

Aderezo para ensaladas, con negro natural (CFT CS06 [CO])	4,8	5,1
Sebo BEY con negro de carbón (CFT CS32 [CO])	1,4	0,7
Bebida de chocolate, pura (CFT CS44 [CO])	1,4	0,8

Sin limitar el alcance y la interpretación de las reivindicaciones de la patente, a continuación se enumeran ciertos efectos técnicos de uno o más de los aspectos o realizaciones desvelados en el presente documento: Un efecto técnico es la degradación o modificación del manano. Otro efecto técnico es el suministro de mananasa que tiene una buena estabilidad de almacenamiento. La descripción anterior ha proporcionado a modo de ejemplos no limitativos de implementaciones particulares y realizaciones de la invención, una descripción completa e informativa del mejor modo contemplado actualmente por los inventores para llevar a cabo la invención. Sin embargo, es obvio para un experto en la materia que la invención no está restringida a los detalles de las realizaciones presentadas anteriormente, sino que puede implementarse en otras realizaciones utilizando medios equivalentes sin apartarse de las características de la invención.

Además, algunas de las características de los aspectos y realizaciones de esta invención, desvelados anteriormente, pueden utilizarse de manera ventajosa sin el uso correspondiente de otras características. Como tal, la descripción anterior se considerará meramente ilustrativa de los principios de la presente invención, y no como limitación de la misma. Por tanto, el alcance de la invención solo está restringido por las reivindicaciones de patente adjuntas. En una realización, al menos un componente de las composiciones de la invención tiene una característica química, estructural o física diferente en comparación con el componente natural correspondiente del cual procede el al menos un componente. En una realización, dicha característica es al menos una de tamaño uniforme, dispersión homogénea, isoforma diferente, degeneración de codones diferente, modificación postraduccional diferente, metilación diferente, estructura terciaria o cuaternaria diferente, actividad enzimática diferente, afinidad diferente, actividad de unión diferente e inmunogenicidad diferente.

LISTADO DE SECUENCIAS

5

10

15

```
25
          <110> Henkel AG & Co. KGaA
          <120> Composiciones de detergente que comprenden mananasas bacterianas
          <130> PT034268EP
30
          <160> 48
          <170> PatentIn versión 3.5
35
          <210> 1
          <211>39
          <212> ADN
          <213> Secuencia artificial
40
          <220>
          <223> cebador
          caaccgcctc tgcagcttat gcacaaaacg gatttcacg
                                                               39
45
          <210> 2
          <211>39
          <212> ADN
          <213> Secuencia artificial
50
          <220>
          <223> cebador
55
          cggtatatct ctgtcttaat cactcttaag cccattttc
                                                          39
          <210>3
          <211> 37
          <212> ADN
60
          <213> Secuencia artificial
          <220>
```

	<223> cebador	
5	<400> 3 caaccgcctc tgcagcttct gatggtcata gccaaac 3	7
5	<210> 4 <211> 36 <212> ADN <213> Secuencia artificial	
10	<220> <223> cebador	
15	<400> 4 cggtatatct ctgtcttatt ggattgttac atgatc 36	
20	<210> 5 <211> 40 <212> ADN <213> Secuencia artificial	
	<220> <223> cebador	
25	<400> 5 caaccgcctc tgcagctgca agcgggtttt atgtaaacgg 4	0
30	<210> 6 <211> 39 <212> ADN <213> Secuencia artificial	
35	<220> <223> cebador	
	<400> 6 cggtatatct ctgtcttatt taatggtaac gttatcaac 39	
40	<210> 7 <211> 17 <212> ADN <213> Secuencia artificial	
45	<220> <223> cebador	
	<400> 7 agctgcagag gcggttg 17	
50	<210> 8 <211> 21 <212> ADN <213> Secuencia artificial	
55	<220> <223> cebador	
60	<400> 8 gacagagata taccgacagt g 21	
	<210> 9 <211> 975 <212> ADN <213> Bacillus clausii	
65	<400> 9	

atgaagaggg	aggacatgga	tcaaatgaaa	agaaagcggt	tacaattgtt	tggaacacta	60
gtggtattgg	ttttgttcgt	gtacggtagc	ggttcggcat	atgcacaaaa	cggatttcac	120
gtatccggta	cagagttgtt	ggacaaaaat	ggcgatcctt	atgttatgcg	tggcgtcaac	180
catggacact	cttggtttaa	gcaagatctg	gaggaagcaa	tccctgccat	agcagaaaca	240
ggggcgaaca	cggtgagaat	ggtcttatcc	aatggacagc	aatgggaaaa	agatgatgcc	300
tctgagcttg	cccgtgtgct	ggctgccaca	gaaacatatg	gattgacaac	tgtgctggaa	360
gtccatgacg	ctacaggaag	tgacgatcct	gctgatttag	agaaagcagt	cgattattgg	420
atcgaaatgg	ctgatgttct	caaggggaca	gaagaccgag	taatcattaa	cgttgccaat	480
gaatggtatg	ggtcgtggag	gagcgacgtt	tgggcagaag	catacgcaca	agcgatcccg	540
cgcttgcgca	gcgctggcct	ctcccataca	ttaatggttg	atgcggcagg	ttggggccag	600
taccctgcct	ccatccacga	gcggggagcc	gatgtgtttg	cgtccgatcc	attaaaaaac	660
acgatgtttt	cgatccatat	gtacgaatat	gcaggagctg	atagggcgac	aattgcctat	720
aacattgatc	gtgtgcttgc	tgaaaatctt	gctgtggtga	tcggtgaatt	tggccatagg	780
catcatgatg	gcgatgtcga	tgaagatgcg	attttggcct	atacagcaga	gcggcaagtg	840
ggctggctgg	cctggtcatg	gtatggcaac	agcgggggtg	ttgaatactt	ggatttagct	900
gaaggcccat	caggcccatt	gacgagttgg	ggcaaacgaa	ttgtttatgg	tgaaaatggg	960
cttaagagtg	attaa					975

5

<210> 10

<211> 870 <212> ADN

<213> Bacillus clausii

<400> 10

cagaacggct	tccacgtctc	cggcacggag	ctcctggaca	agaacggcga	cccttacgtc	60
atgcgcggcg	tcaaccacgg	ccacagctgg	ttcaagcagg	acctcgagga	agccatccct	120
gctatcgctg	agacgggcgc	taacacggtc	cgcatggtcc	tgagcaacgg	ccagcagtgg	180
gagaaggacg	acgctagcga	gctggctcgc	gtcctcgctg	ctacggagac	gtacggcctc	240
accacggtcc	tggaggtcca	cgacgctacg	ggctcggacg	accccgccga	cctcgagaag	300
gccgtcgact	actggatcga	gatggctgac	gtcctgaagg	gcaccgagga	ccgcgtcatc	360
atcaacgtcg	ccaacgagtg	gtacggctcc	tggcgcagcg	acgtctgggc	cgaggcctac	420
gctcaggcta	tccctcgcct	ccgctcggcc	ggcctctccc	acacgctcat	ggtcgacgct	480
gccggctggg	gccagtaccc	tgcttccatc	cacgagcgcg	gcgctgacgt	ctttgcttcg	540
gaccccctga	agaacaccat	gttctccatc	cacatgtacg	agtacgctgg	cgctgaccgc	600
gctaccatcg	cctacaacat	cgaccgcgtc	ctggctgaga	acctggctgt	cgtcatcggc	660
gagtttggcc	accgccacca	cgacggcgac	gtcgacgagg	acgctatcct	ggcttacacc	720
gccgagcgcc	aggtcggctg	gctggcttgg	tcgtggtacg	gcaactcggg	cggcgtcgag	780
tacctggacc	tggctgaggg	cccttcgggc	cctctcacga	gctggggcaa	gcgcatcgtc	840
tacggcgaga	acggcctgaa	gagcgactaa				870

<210> 11 <211> 324

<212> PRT

5

<213> Bacillus clausii

<400> 11

1	цув	ALG	GIU	5 5	Mec	иор	GIII	Mec	10	ALG	цуз	ALG	цец	15	цец
Phe	Gly	Thr	Leu 20	Val	Val	Leu	Val	Leu 25	Phe	Val	Tyr	Gly	Ser 30	Gly	Ser
Ala	Tyr	Ala 35	Gln	Asn	Gly	Phe	His 40	Val	Ser	Gly	Thr	Glu 45	Leu	Leu	Asp
Lys	Asn 50	Gly	Asp	Pro	Tyr	Val 55	Met	Arg	Gly	Val	Asn 60	His	Gly	His	Ser
Trp 65	Phe	Lys	Gln	Asp	Leu 70	Glu	Glu	Ala	Ile	Pro 75	Ala	Ile	Ala	Glu	Thr 80
Gly	Ala	Asn	Thr	Val 85	Arg	Met	Val	Leu	Ser 90	Asn	Gly	Gln	Gln	Trp 95	Glu
Lys	Asp	Asp	Ala 100	Ser	Glu	Leu	Ala	Arg 105	Val	Leu	Ala	Ala	Thr 110	Glu	Thr
Tyr	Gly	Leu 115	Thr	Thr	Val	Leu	Glu 120	Val	His	Asp	Ala	Thr 125	Gly	Ser	Asp
Asp	Pro 130	Ala	Asp	Leu	Glu	Lys 135	Ala	Val	Asp	Tyr	Trp 140	Ile	Glu	Met	Ala
Asp 145	Val	Leu	Lys	Gly	Thr 150	Glu	Asp	Arg	Val	Ile 155	Ile	Asn	Val	Ala	As n 160
Glu	Trp	Tyr	Gly	Ser 165	Trp	Arg	Ser	Asp	Val 170	Trp	Ala	Glu	Ala	Tyr 175	Ala
Gln	Ala	Ile	Pro 180	Arg	Leu	Arg	Ser	Ala 185	Gly	Leu	Ser	His	Thr 190	Leu	Met
Val	Asp	Ala 195	Ala	Gly	Trp	Gly	Gln 200	Tyr	Pro	Ala	Ser	Ile 205	His	Glu	Arg
Gly	Ala 210	Asp	Val	Phe	Ala	Ser 215	Asp	Pro	Leu	Lys	Asn 220	Thr	Met	Phe	Ser
Ile 225	His	Met	Tyr	Glu	Tyr 230	Ala	Gly	Ala	Asp	Arg 235	Ala	Thr	Ile	Ala	Tyr 240

	ASII	тте	Asp	Arg	245	ьеu	ALA	GIU	ASII	250	Ата	vai	vai	тте	255	GIU
	Phe	Gly	His	Arg 260	His	His	Asp	Gly	Asp 265	Val	Asp	Glu	Asp	Ala 270	Ile	Leu
	Ala	Tyr	Thr 275	Ala	Glu	Arg	Gln	Val 280	Gly	Trp	Leu	Ala	Trp 285	Ser	Trp	Tyr
	Gly	Asn 290	Ser	Gly	Gly	Val	Glu 295	Tyr	Leu	Asp	Leu	Ala 300	Glu	Gly	Pro	Ser
	Gly 305	Pro	Leu	Thr	Ser	Trp 310	Gly	Lys	Arg	Ile	Val 315	Tyr	Gly	Glu	Asn	Gly 320
	Leu	Lys	Ser	Asp												
<210> <211> <212> <213>	289 PRT	ıs claı	ısii													
<400>	12															
	Gln 1	Asn	Gly	Phe	His 5	Val	Ser	Gly	Thr	Glu 10	Leu	Leu	Asp	Lys	Asn 15	Gly
	Asp	Pro	Tyr	Val 20	Met	Arg	Gly	Val	Asn 25	His	Gly	His	Ser	Trp 30	Phe	Lys
	Gln	Asp	Leu 35	Glu	Glu	Ala	Ile	Pro 40	Ala	Ile	Ala	Glu	Thr 45	Gly	Ala	Asn
	Thr	Val 50	Arg	Met	Val	Leu	Ser 55	Asn	Gly	Gln	Gln	Trp 60	Glu	Lys	Asp	Asp
	Ala 65	Ser	Glu	Leu	Ala	Arg 70	Val	Leu	Ala	Ala	Thr 75	Glu	Thr	Tyr	Gly	Leu 80
	Thr	Thr	Val	Leu	Glu 85	Val	His	Asp	Ala	Thr 90	Gly	Ser	Asp	Asp	Pro 95	Ala
	Asp	Leu	Glu	Lys 100		Val	Asp	Tyr	Trp 105		Glu	Met	Ala	Asp 110	Val	Leu
	Lys	Gly	Thr 115		Asp	Arg	Val	Ile 120	Ile	Asn	Val	Ala	Asn 125	Glu	Trp	Tyr

Gly	Ser 130	Trp	Arg	Ser	Asp	Val 135	Trp	Ala	Glu	Ala	Tyr 140	Ala	Gln	Ala	Ile
Pro 145	Arg	Leu	Arg	Ser	A la 150	Gly	Leu	Ser	His	Thr 155	Leu	Met	Val	Asp	Ala 160
Ala	Gly	Trp	Gly	Gln 165	Tyr	Pro	Ala	Ser	Ile 170	His	Glu	Arg	Gly	Ala 175	Asp
Val	Phe	Ala	Ser 180	Asp	Pro	Leu	Lys	Asn 185	Thr	Met	Phe	Ser	Ile 190	His	Met
Tyr	Glu	Tyr 195	Ala	Gly	Ala	Asp	Arg 200	Ala	Thr	Ile	Ala	Tyr 205	Asn	Ile	Asp
_	210		Ala			215					220			_	
225			Asp		230					235				-	240
			Gln	245	_				250		_			255	
_	_		Glu 260	-		-		265		_			270		
	Ser	Trp 275	Gly	Ĺys	Arg	11e	Val 280	Tyr	Gly	Glu	Asn	Gly 285	Leu	Ĺys	Ser
Asp															

<210> 13

<211> 1473 <212> ADN

5

<213> Bacillus hemicellulosilyticus

<400> 13

atgagaaatt	tcggtaagtt	aattgtcagt	tcttgtcttc	tattcagttt	ttttctttt	60
gcctctgatg	gtcatagcca	aacacattct	ggtttttata	tcgaaggttc	aaccctttat	120
gacgccaacg	gagagccctt	tgtaatgaga	ggtatcaatc	atggacatgc	ctggtataaa	180
catgattcta	acgtcgctat	accagctatt	gctaatcaag	gagcaaatac	aattcgtatt	240
gttctgtcag	atggtggtca	atgggcaaaa	gatgatataa	acacattaaa	tcaagtgctc	300
gatttagcag	aggaacatga	gatgattgct	gttgttgagg	ttcacgatgc	aacaggatct	360
aattctatgg	ctgacttaaa	tcgtgctgtc	gattattgga	ttgaaatgaa	agacgcttta	420
attggaaaag	aagatcgcgt	cataattaac	attgccaatg	aatggtatgg	agcatgggac	480
ggacaaggct	gggcaaatgg	ctataaggag	gttattccac	gtttacgaaa	tgctggcttc	540
actcatacat	taatggtaga	tgcagctggt	tggggacaat	accctcaatc	gattcatgat	600
tatggtcaag	aggtatttaa	tgctgatcct	ttagcaaata	cgatgttttc	catccatatg	660
tatgaatatg	ctggcggaaa	tgcttcaatg	gtacaatcta	atatcgatgg	tgtcgtcgat	720
caagggttag	ctcttgtaat	aggagaattt	gggcatatgc	atacggacgg	agatgttgat	780
gaagcaacga	tattgagcta	ctcgcaacaa	agaggagtcg	gttggctagc	ttggtcttgg	840
aaaggcaatg	ggactcaatg	ggaatatcta	gatttatctt	atgattggca	aggaacaaac	900
ttaacttctt	ggggaaatac	cattgtccac	gggcctaatg	gattactcga	aacatccatt	960
ccaagctcga	ttttccatac	cgctccaaac	aatggagatc	cccctcctca	taacggtaat	1020
gaaacgatct	tatatgattt	cgaacatggc	actcaaggct	ggtcaggttc	ttcacttctt	1080
ggaggacctt	ggacgacgaa	tgaatggagt	acaaatggta	accattcatt	aaaggccgat	1140
attttcttat	cagctaactc	caaacatgaa	ttagcaaaag	ttgaaaatcg	aaatttatca	1200
ggctactcta	ctttacaagc	cactgtccgc	catgcacatt	ggggaaatgt	tggtaattta	1260
acggcgagaa	tgtatgtaaa	aacgggctca	aactatagct	ggtttaatgg	tgatcctatc	1320
ccagtaaact	cagcaaatgg	tacgactgtc	actttgcctc	tttcatctat	tccaaaccta	1380
aatgacgtaa	aagaaattgg	cgttgaattt	attggagctt	caaatagcaa	tggacaaacc	1440
gccatttatt	tagatcatgt	aacaatccaa	taa			1473

5 <210> 14 <211> 1395 <212> ADN <213> Bacillus hemicellulosilyticus

10 <400> 14

cagacccact cgggcttcta	catcgagggc	tcgacgctct	acgacgctaa	cggcgagcct	60
tttgtcatgc gcggcatcaa	ccacggccac	gcctggtaca	agcacgactc	caacgtcgct	120
atccctgcta tcgctaacca	gggcgctaac	accatccgca	tcgtcctcag	cgacggtggc	180
cagtgggcca aggacgacat	caacacgctg	aaccaggtcc	tcgacctggc	cgaggagcac	240
gagatgatcg ctgtcgtcga	ggtccacgac	gctaccggct	ccaacagcat	ggccgacctc	300
aaccgcgccg tcgactactg	gatcgagatg	aaggacgccc	tgatcggcaa	ggaagaccgc	360
gtcatcatca acatcgctaa	cgagtggtac	ggcgcttggg	acggccaggg	ctgggccaac	420
ggctacaagg aagtcatccc	tcgcctgcgc	aacgctggct	tcacccacac	cctcatggtc	480
gacgctgccg gctggggcca	gtaccctcag	agcatccacg	actacggcca	agaggtcttc	540
aacgccgacc ctctggccaa	caccatgttc	tccatccaca	tgtacgagta	cgctggcggc	600
aacgcctcca tggtccagag	caacatcgac	ggcgtcgtcg	accagggcct	cgctctggtc	660
atcggcgagt tcggccacat	gcacacggac	ggcgacgtcg	acgaggctac	catcctgagc	720
tactcgcagc agcgcggcgt	cggctggctg	gcctggtcgt	ggaagggcaa	cggcacccag	780
tgggagtacc tcgacctgag	ctacgactgg	cagggcacca	acctcacgtc	gtggggcaac	840
acgatcgtcc acggccctaa	cggcctcctg	gagacgtcca	tcccttccag	catctttcac	900
accgctccta acaacggcga	ccctcctccc	cacaacggca	acgagacgat	cctgtacgac	960
ttcgagcacg gcacgcaggg	ctggtcgggc	tcgtccctgc	tgggcggccc	ttggaccacc	1020
aacgagtggt cgaccaacgg	caaccactcc	ctcaaggccg	acatcttcct	gtccgccaac	1080
agcaagcacg agctcgccaa	ggtcgagaac	cgcaacctca	gcggctactc	gacgctgcag	1140
gctaccgtcc gccacgctca	ctggggcaac	gtcggcaacc	tgacggctcg	catgtacgtc	1200
aagacgggca gcaactactc	gtggttcaac	ggcgacccca	tccctgtcaa	ctcggctaac	1260
ggcaccaccg tcaccctccc	tctgagctcg	atccccaacc	tcaacgacgt	caaggagatc	1320
ggcgtcgagt tcatcggcgc	tagcaacagc	aacggccaga	ccgccatcta	cctggaccac	1380
gtcacgatcc agtaa					1395

<210> 15 <211> 490

<212> PRT

5

<213> Bacillus hemicellulosilyticus

Met	Arg	Asn	Phe	Gly	Lys	Leu	Ile	Val	Ser	Ser	Cys	Leu	Leu	Phe	Ser
1				5					10					15	

Phe Phe Leu Phe Ala Ser Asp Gly His Ser Gln Thr His Ser Gly Phe 20 25 30

Tyr Ile Glu Gly Ser Thr Leu Tyr Asp Ala Asn Gly Glu Pro Phe Val 35 40 45

Met Arg Gly Ile Asn His Gly His Ala Trp Tyr Lys His Asp Ser Asn 50 60

Val Ala Ile Pro Ala Ile Ala Asn Gln Gly Ala Asn Thr Ile Arg Ile 65 70 75 80

Val Leu Ser Asp Gly Gly Gln Trp Ala Lys Asp Asp Ile Asn Thr Leu 85 90 95

Asn Gln Val Leu Asp Leu Ala Glu Glu His Glu Met Ile Ala Val Val

			100					105					110		
Glu	Val	His 115	Asp	Ala	Thr	Gly	Ser 120	Asn	Ser	Met	Ala	Asp 125	Leu	Asn	Arg
Ala	Val 130	Asp	Tyr	Trp	Ile	Glu 135	Met	Lys	Asp	Ala	Leu 140	Ile	Gly	Lys	Glu
Asp 145	Arg	Val	Ile	Ile	Asn 150	Ile	Ala	Asn	Glu	Trp 155	Tyr	Gly	Ala	Trp	Asp 160
Gly	Gln	Gly	Trp	Ala 165	Asn	Gly	Tyr	Lys	Glu 170	Val	Ile	Pro	Arg	Leu 175	Arg
Asn	Ala	Gly	Phe 180	Thr	His	Thr	Leu	Met 185	Val	Asp	Ala	Ala	Gly 190	Trp	Gly
Gln	Tyr	Pro 195	Gln	Ser	Ile	His	Asp 200	Tyr	Gly	Gln	Glu	Val 205	Phe	Asn	Ala
Asp	Pro 210	Leu	Ala	Asn	Thr	Met 215	Phe	Ser	Ile	His	Met 220	Tyr	Glu	Tyr	Ala
Gly 225	Gly	Asn	Ala	Ser	Met 230	Val	Gln	Ser	Asn	Ile 235	Asp	Gly	Val	Val	Asp 240
Gln	Gly	Leu	Ala	Leu 245	Val	Ile	Gly	Glu	Phe 250	Gly	His	Met	His	Thr 255	Asp
Gly	Asp	Val	Asp 260	Glu	Ala	Thr	Ile	Leu 265	Ser	Tyr	Ser	Gln	Gln 270	Arg	Gly
Val	Gly	Trp 275	Leu	Ala	Trp	Ser	Trp 280	Lys	Gly	Asn	Gly	Thr 285	Gln	Trp	Glu
Tyr	Leu 290	Asp	Leu	Ser	Tyr	Asp 295	Trp	Gln	Gly	Thr	Asn 300	Leu	Thr	Ser	Trp
Gly 305	Asn	Thr	Ile	Val	His 310	Gly	Pro	Asn	Gly	Leu 315	Leu	Glu	Thr	Ser	11e 320
Pro	Ser	Ser	Ile	Phe 325	His	Thr	Ala	Pro	Asn 330	Asn	Gly	Asp	Pro	Pro 335	Pro
His	Asn	Gly	Asn 340	Glu	Thr	Ile	Leu	Tyr 345	Asp	Phe	Glu	His	Gly 350	Thr	Gln

	Gly	T	rp	Ser 355	Gly	Ser	Ser	Leu	Leu 360	Gly	Gly	Pro	Trp	365		r A	sn	Glu
	Trp		er 70	Thr	Asn	Gly	Asn	His 375	Ser	Leu	Lys	Ala	Asp 380		e Ph	e L	eu	Ser
	Ala 385		sn	Ser	Lys	His	Glu 390	Leu	Ala	Lys	Val	Glu 395		Arq	g As	n L	eu	Ser 400
	Gly	T	yr	Ser	Thr	Leu 405	Gln	Ala	Thr	Val	Arg 410		Ala	Hi:	s Tr	_	ly 15	Asn
	Val	G.	ly	Asn	Leu 420	Thr	Ala	Arg	Met	Tyr 425	Val	Lys	Thr	Gly	y Se 43		sn	Tyr
	Ser	T	rp	Phe 435	Asn	Gly	Asp	Pro	Ile 440	Pro	Val	Asn	Ser	Ala 44!		n G	ly	Thr
	Thr		al 50	Thr	Leu	Pro	Leu	Ser 455	Ser	Ile	Pro	Asn	Leu 460		n As	p V	al	Lys
	Glu 465		le	Gly	Val	Glu	Phe 470	Ile	Gly	Ala	Ser	Asn 475		Ası	n Gl	y G	ln	Thr 480
	Ala	. I	le	Tyr	Leu	Asp 485	His	Val	Thr	Ile	Gln 490							
<210> <211> <212> <213>	464 PRT	lus	hem	nicellui	losilyti	cus												
<400>	16																	
	G: 1	ln	Thi	r His	s Ser	Gly 5	Phe	Tyr	Ile	Glu	Gly 10	Ser	Thr	Leu	Tyr	Asp 15	Al	a
	A	sn	Gl	y Glu	ı Pro 20	Phe	Val	Met	Arg	Gly 25	Ile	Asn	His	Gly	His 30	Ala	Tr	p
	T	yr	Lys	s His 35	s Asp	Ser	Asn	Val	Ala 40	Ile	Pro	Ala		Ala 45	Asn	Gln	G1	У
	A	la	Ası 50	ı Thi	r Ile	Arg	Ile	Val 55	Leu	Ser	Asp	_	Gly 60	Gln	Trp	Ala	Ly	s

5

Asp Asp Ile Asn Thr Leu Asn Gln Val Leu Asp Leu Ala Glu Glu His 65 70 75 80

Glu	Met	Ile	Ala	Val 85	Val	Glu	Val	His	Asp 90	Ala	Thr	Gly	Ser	Asn 95	Ser
Met	Ala	Asp	Leu 100	Asn	Arg	Ala	Val	Asp 105	Tyr	Trp	Ile	Glu	Met 110	Lys	Asp
Ala	Leu	Ile 115	Gly	Lys	Glu	Asp	Arg 120	Val	Ile	Ile	Asn	Ile 125	Ala	Asn	Glu
Trp	Туг 130	Gly	Ala	Trp	Asp	Gly 135	Gln	Gly	Trp	Ala	Asn 140	Gly	Tyr	Lys	Glu
Val 145	Ile	Pro	Arg	Leu	Arg 150	Asn	Ala	Gly	Phe	Thr 155	His	Thr	Leu	Met	Val 160
Asp	Ala	Ala	Gly	Trp 165	Gly	Gln	Tyr	Pro	Gln 170	Ser	Ile	His	Asp	Tyr 175	Gly
Gln	Glu	Val	Phe 180	Asn	Ala	Asp	Pro	Leu 185	Ala	Asn	Thr	Met	Phe 190	Ser	Ile
His	Met	Tyr 195	Glu	Tyr	Ala	Gly	Gly 200	Asn	Ala	Ser	Met	Val 205	Gln	Ser	Asn
Ile	Asp 210	Gly	Val	Val	Asp	Gln 215	Gly	Leu	Ala	Leu	Val 220	Ile	Gly	Glu	Phe
Gly 225	His	Met	His	Thr	Asp 230	Gly	Asp	Val	Asp	Glu 235	Ala	Thr	Ile	Leu	Ser 240
Tyr	Ser	Gln	Gln	Arg 245	Gly	Val	Gly	Trp	Leu 250	Ala	Trp	Ser	Trp	Lys 255	Gly
Asn	Gly	Thr	Gln 260	Trp	Glu	Tyr	Leu	Asp 265	Leu	Ser	Tyr	Asp	Trp 270	Gln	Gly
Thr	Asn	Leu 275	Thr	Ser	Trp	Gly	Asn 280	Thr	Ile	Val	His	Gly 285	Pro	Asn	Gly
Leu	Leu 290	Glu	Thr	Ser	Ile	Pro 295	Ser	Ser	Ile	Phe	His 300	Thr	Ala	Pro	Asn
As n 305	Gly	Asp	Pro	Pro	Pro 310	His	Asn	Gly	Asn	Glu 315	Thr	Ile	Leu	Tyr	Asp 320
Phe	Glu	His	Gly	Thr	Gln	Gly	Trp	Ser	Gly	Ser	Ser	Leu	Leu	Gly	Gly

Pro Trp Thr Thr Asn Glu Trp Ser Thr Asn Gly Asn His Ser Leu Lys 340 345 350

Ala Asp Ile Phe Leu Ser Ala Asn Ser Lys His Glu Leu Ala Lys Val 355 360 365

Glu Asn Arg Asn Leu Ser Gly Tyr Ser Thr Leu Gln Ala Thr Val Arg 370 375 380

His Ala His Trp Gly Asn Val Gly Asn Leu Thr Ala Arg Met Tyr Val 385 390 395 400

Lys Thr Gly Ser Asn Tyr Ser Trp Phe Asn Gly Asp Pro Ile Pro Val 405 410 415

Asn Ser Ala Asn Gly Thr Thr Val Thr Leu Pro Leu Ser Ser Ile Pro 420 425 430

Asn Leu Asn Asp Val Lys Glu Ile Gly Val Glu Phe Ile Gly Ala Ser 435 440 445

As Ser As Gly Gln Thr Ala Ile Tyr Leu Asp His Val Thr Ile Gln 450 460

<210> 17

<211> 1449

<212> ADN

5

<213> Virgibacillus soli

atgttattct	ctacttcact	gtttacttct	acttcaaaag	cgaatgcagc	aagcgggttt	60
tatgtaaacg	gaaacacact	ctatgacgca	acaggtaccc	cttttgtgat	aagaggaatc	120
aatcatgctc	actcttggtt	taaagacgac	acagcaaccg	caatacctgc	cattgcagca	180
actggggcga	atactattag	aatcgtatta	tcggatggca	gccaatatag	tcgggatgat	240
attgatggcg	tgaggaatct	aatatcattg	gctgaggaaa	ataatctaat	tgctatgtta	300
gaggtccacg	atgctactgg	aaaagatgat	atcagctcat	tagatagtgc	ggcagattat	360
tggattagta	taaaagaagc	acttatcggc	aaggaagaca	aagtcctaat	aaacatcgca	420
aatgaatggt	acggtacttg	ggatggggct	agttgggcgg	atggctacaa	acaagtgatt	480
cccaaattaa	gaaatgcagg	acttaaccac	acactaatag	tagactctgc	tggctggggg	540
caatttccgg	agtccattca	caattacgga	aaagaagtat	tcaatgctga	cccctacaa	600
aatacaatgt	tctctattca	tatgtatgaa	tatgctggtg	gggacgcttc	tactgtcaaa	660
gcaaatattg	acggtgtatt	aaatcaaggt	ctagccgtaa	tcattggaga	atttggacat	720
aggcatacag	acggagatgt	agatgaagca	acaattatga	attattccca	agagaaaaat	780
			aatggcatgg			840
tcctatgatt	gggccggaaa	taacctaacc	gactggggaa	ataccattgt	aaatagtaca	900
aacggcttaa	aagctacatc	tgaaataagt	ccagtatttg	gagatggaga	tgacggtgta	960
ggcgacggtg	gtcctgggga	ttctaacgga	actgaaacta	cgctttataa	cttcgaaacc	1020
gggacagaag	gatggagcgg	cgaaaatata	gaaactggac	cttggtcagt	gaatgagtgg	1080
gcagcaaaag	gtaaccactc	tttaaaagct	gatgttaatt	tgggtgataa	ctctgaacat	1140
tatctatacc	taactcaaaa	cctaaatttt	agcggaaagt	cacaactcac	agcgactgta	1200
aagcatgctg	attggggaaa	cttcggggat	gaaataaatg	caaagttata	tgtaaaaaca	1260
gaatcagatt	ggcaatggtt	tgatggagga	attgaaaaga	tcaattcttc	aattggaact	1320
attataacct	tagatttatc	atcgctctca	aacccaagtg	atattaaaga	agttggtgtt	1380
cagtttacgg	gttcttcaaa	tagttatggc	ctaacagctt	tatatgttga	taacgttacc	1440
attaaataa						1449

<210> 18

<211> 1401

<212> ADN

5

<213> Virgibacillus soli

gcctcgggct	tctacgtcaa	cggcaacact	ctctacgacg	ccacgggcac	cccatttgtc	60
atccgcggca	tcaaccacgc	tcactcgtgg	ttcaaggacg	acactgccac	cgctatccct	120
gctatcgctg	ctacgggcgc	caacacgatc	cgcatcgtcc	tcagcgacgg	ctcgcagtac	180
tecegegaeg	acatcgacgg	cgtccgcaac	ctcatctccc	tggccgagga	gaacaacctc	240
atcgccatgc	tggaggtcca	cgacgctacc	ggcaaggacg	acatcagctc	gctggacagc	300
gccgccgact	actggatctc	gatcaaggaa	gccctcatcg	gcaaggaaga	caaggtcctg	360
atcaacatcg	ccaacgagtg	gtacggcacc	tgggacggcg	ctagctgggc	tgacggctac	420
aagcaggtca	tccctaagct	ccgcaacgcc	ggcctcaacc	acacgctcat	cgtcgactcg	480
gctggctggg	gccagttccc	ggagagcatc	cacaactacg	gcaaggaagt	cttcaacgcc	540
gaccccctgc	agaacacgat	gttctcgatc	cacatgtacg	agtacgccgg	cggcgacgct	600
tccacggtca	aggccaacat	cgacggcgtc	ctcaaccagg	gcctggctgt	catcatcggc	660
gagtttggcc	accgccacac	cgacggcgac	gtcgacgagg	ccaccatcat	gaactacagc	720
caggagaaga	acgtcggctg	gctggcttgg	agctggaagg	gcaacggcat	ggagtgggac	780
tacctcgacc	tgagctacga	ctgggccggc	aacaacctca	ccgactgggg	caacacgatc	840
gtcaactcga	ccaacggcct	gaaggccacc	tcggagatca	gccctgtctt	tggcgacggc	900
		.				960
	tcggcgacgg					
aactttgaga	cgggcaccga	gggctggagc	ggcgagaaca	tcgagacggg	cccttggtcg	1020
gtcaacgagt	gggctgccaa	gggcaaccac	tccctcaagg	ccgacgtcaa	cctgggcgac	1080
aacagcgagc	actacctcta	cctgacgcag	aacctcaact	tctccggcaa	gtcgcagctg	1140
acggctaccg	tcaagcacgc	tgactggggc	aacttcggcg	acgagatcaa	cgccaagctc	1200
tacgtcaaga	ccgagagcga	ctggcagtgg	ttcgacggtg	gcatcgagaa	gatcaactcc	1260
agcatcggca	ccatcatcac	gctcgacctg	tcgtccctgt	cgaacccgtc	cgacatcaag	1320
gaagtcggcg	tccagttcac	tggctcgtct	aactcttacg	gcctcactgc	tctttacgtc	1380
gacaacgtca	ctatcaaqta	α				1401

5

<210> 19 <211> 482 <212> PRT <213> Virgibacillus soli

	Phe			Thr	_		-		Ala
_		•							

- Ala Ser Gly Phe Tyr Val Asn Gly Asn Thr Leu Tyr Asp Ala Thr Gly 20 25 30
- Thr Pro Phe Val Ile Arg Gly Ile Asn His Ala His Ser Trp Phe Lys 35 40 45
- Asp Asp Thr Ala Thr Ala Ile Pro Ala Ile Ala Ala Thr Gly Ala Asn 50 60
- Thr Ile Arg Ile Val Leu Ser Asp Gly Ser Gln Tyr Ser Arg Asp Asp 65 70 75 80
- Ile Asp Gly Val Arg Asn Leu Ile Ser Leu Ala Glu Glu Asn Asn Leu 85 90 95
- Ile Ala Met Leu Glu Val His Asp Ala Thr Gly Lys Asp Asp Ile Ser 100 105 110
- Ser Leu Asp Ser Ala Ala Asp Tyr Trp Ile Ser Ile Lys Glu Ala Leu 115 120 125
- Ile Gly Lys Glu Asp Lys Val Leu Ile Asn Ile Ala Asn Glu Trp Tyr 130 135 140
- Gly Thr Trp Asp Gly Ala Ser Trp Ala Asp Gly Tyr Lys Gln Val Ile

145					150					155					160
Pro	Lys	Leu	Arg	Asn 165	Ala	Gly	Leu	Asn	His 170	Thr	Leu	Ile	Val	Asp 175	Ser
Ala	Gly	Trp	Gly 180	Gln	Phe	Pro	Glu	Ser 185	Ile	His	Asn	Tyr	Gly 190	Lys	Glu
Val	Phe	Asn 195	Ala	Asp	Pro	Leu	Gln 200	Asn	Thr	Met	Phe	Ser 205	Ile	His	Met
Tyr	Glu 210	Tyr	Ala	Gly	Gly	Asp 215	Ala	Ser	Thr	Val	Lys 220	Ala	Asn	Ile	Asp
Gly 225	Val	Leu	Asn	Gln	Gly 230	Leu	Ala	Val	Ile	Ile 235	Gly	Glu	Phe	Gly	His 240
Arg	His	Thr	Asp	Gly 245	Asp	Val	Asp	Glu	A la 250	Thr	Ile	Met	Asn	Tyr 255	Ser
Gln	Glu	Lys	Asn 260	Val	Gly	Trp	Leu	Ala 265	Trp	Ser	Trp	Lys	Gly 270	Asn	Gly
Met	Glu	Trp 275	Asp	Tyr	Leu	Asp	Leu 280	Ser	Tyr	Asp	Trp	Ala 285	Gly	Asn	Asn
Leu	Thr 290	Asp	Trp	Gly	Asn	Thr 295	Ile	Val	Asn	Ser	Thr 300	Asn	Gly	Leu	Lys
Ala 305	Thr	Ser	Glu	Ile	Ser 310	Pro	Val	Phe	Gly	Asp 315	Gly	Asp	Asp	Gly	Val 320
Gly	Asp	Gly	Gly	Pro 325	Gly	Asp	Ser	Asn	Gly 330	Thr	Glu	Thr	Thr	Leu 335	Tyr
Asn	Phe	Glu	Thr 340	Gly	Thr	Glu	Gly	Trp 345	Ser	Gly	Glu	Asn	Ile 350	Glu	Thr
Gly	Pro	Trp 355	Ser	Val	Asn	Glu	Trp 360	Ala	Ala	Lys	Gly	Asn 365	His	Ser	Leu
Lys	Ala 370	Asp	Val	Asn	Leu	Gly 375	Asp	Asn	Ser	Glu	His 380	Tyr	Leu	Tyr	Leu
Thr 385	Gln	Asn	Leu	Asn	Phe 390	Ser	Gly	Lys	Ser	Gln 395	Leu	Thr	Ala	Thr	Val 400

Lys His Ala Asp Trp Gly Asn Phe Gly Asp Glu Ile Asn Ala Lys Leu 405 410 415

Tyr Val Lys Thr Glu Ser Asp Trp Gln Trp Phe Asp Gly Gly Ile Glu 420 425 430

Lys Ile Asn Ser Ser Ile Gly Thr Ile Ile Thr Leu Asp Leu Ser Ser 435 440 445

Leu Ser Asn Pro Ser Asp Ile Lys Glu Val Gly Val Gln Phe Thr Gly 450 455 460

Ser Ser Asn Ser Tyr Gly Leu Thr Ala Leu Tyr Val Asp Asn Val Thr 465 470 475 480

Ile Lys

<210> 20

<211> 466

<212> PRT

5

<213> Virgibacillus soli

<400> 20

Ala Ser Gly Phe Tyr Val Asn Gly Asn Thr Leu Tyr Asp Ala Thr Gly 1 5 10 15

Thr Pro Phe Val Ile Arg Gly Ile Asn His Ala His Ser Trp Phe Lys 20 25 30

Asp Asp Thr Ala Thr Ala Ile Pro Ala Ile Ala Ala Thr Gly Ala Asn 35 40 45

Thr Ile Arg Ile Val Leu Ser Asp Gly Ser Gln Tyr Ser Arg Asp Asp 50 55 60

Ile Asp Gly Val Arg Asn Leu Ile Ser Leu Ala Glu Glu Asn Asn Leu 65 70 75 80

Ile Ala Met Leu Glu Val His Asp Ala Thr Gly Lys Asp Asp Ile Ser 85 90 95

Ser Leu Asp Ser Ala Ala Asp Tyr Trp Ile Ser Ile Lys Glu Ala Leu 100 105 110

Ile Gly Lys Glu Asp Lys Val Leu Ile Asn Ile Ala Asn Glu Trp Tyr 115 120 125

Gly	Thr 130	Trp	Asp	Gly	Ala	Ser 135	Trp	Ala	Asp	Gly	Tyr 140	Lys	Gln	Val	Ile
Pro 145	Lys	Leu	Arg	Asn	Ala 150	Gly	Leu	Asn	His	Thr 155	Leu	Ile	Val	Asp	Ser 160
Ala	Gly	Trp	Gly	Gln 165	Phe	Pro	Glu	Ser	Ile 170	His	Asn	Tyr	Gly	Lys 175	Glu
Val	Phe	Asn	Ala 180	Asp	Pro	Leu	Gln	Asn 185	Thr	Met	Phe	Ser	Ile 190	His	Met
Tyr	Glu	Tyr 195	Ala	Gly	Gly	Asp	Ala 200	Ser	Thr	Val	Lys	Ala 205	Asn	Ile	Asp
Gly	Val 210	Leu	Asn	Gln	Gly	Leu 215	Ala	Val	Ile	Ile	Gly 220	Glu	Phe	Gly	His
Arg 225	His	Thr	Asp	Gly	Asp 230	Val	Asp	Glu	Ala	Thr 235	Ile	Met	Asn	Tyr	Ser 240
Gln	Glu	Lys	Asn	Val 245	Gly	Trp	Leu	Ala	Trp 250	Ser	Trp	Lys	Gly	Asn 255	Gly
Met	Glu	Trp	Asp 260	Tyr	Leu	Asp	Leu	Ser 265	Tyr	Asp	Trp	Ala	Gly 270	Asn	Asn
Leu	Thr	Asp 275	Trp	Gly	Asn	Thr	Ile 280	Val	Asn	Ser	Thr	A sn 285	Gly	Leu	Lys
Ala	Thr 290	Ser	Glu	Ile	Ser	Pro 295	Val	Phe	Gly	Asp	Gly 300	Asp	Asp	Gly	Val
Gly															
305	Asp	Gly	Gly	Pro	Gly 310	Asp	Ser	Asn	Gly	Thr 315	Glu	Thr	Thr	Leu	Tyr 320
		_			310					315				Leu Glu 335	320
Asn	Phe	Glu	Thr	Gly 325	310 Thr	Glu	Gly	Trp	Ser 330	315	Glu	Asn	Ile	Glu	320 Thr
Asn	Phe	Glu Trp	Thr Ser 340	Gly 325 Val	310 Thr Asn	Glu Glu	Gly Trp	Trp Ala 345	Ser 330	315 Gly Lys	Glu Gly	Asn Asn	Ile His 350	Glu 335	320 Thr

```
Lys His Ala Asp Trp Gly Asn Phe Gly Asp Glu Ile Asn Ala Lys Leu
                385
                                        390
                Tyr Val Lys Thr Glu Ser Asp Trp Gln Trp Phe Asp Gly Gly Ile Glu
                                   405
                                                            410
                Lys Ile Asn Ser Ser Ile Gly Thr Ile Ile Thr Leu Asp Leu Ser Ser
                              420
                                                       425
                Leu Ser Asn Pro Ser Asp Ile Lys Glu Val Gly Val Gln Phe Thr Gly
                                                  440
                Ser Ser Asn Ser Tyr Gly Leu Thr Ala Leu Tyr Val Asp Asn Val Thr
                                             455
                Ile Lys
                465
        <210> 21
        <211>60
 5
        <212> ADN
        <213> Secuencia artificial
        <220>
        <223> cebador
10
        agtcaatcgc gacaagcgcc agacccactc gggcttctac atcgagggct cgacgctcta
                                                                      60
        <210> 22
        <211> 46
15
        <212> ADN
        <213> Secuencia artificial
        <220>
20
        <223> cebador
        cgcgccggat ccttactgga tcgtgacgtg gtccaggtag atggcg
                                                       46
        <210> 23
25
        <211>60
        <212> ADN
        <213> Secuencia artificial
        <220>
30
        <223> cebador
        agtcaatcgc gacaagcgcc agaacggctt ccacgtctcc ggcacggagc tcctggacaa
                                                                      60
35
        <210> 24
        <211> 51
        <212> ADN
        <213> Secuencia artificial
40
        <220>
        <223> cebador
```

<400> 24 cgcgccggat ccttagtcgc tcttcaggcc gttctcgccg tagacgatgc g 51

<210> 25 5 <211> 1846

<212> ADN <213> Bacillus pumilus

<400> 25

10

atgaaaaaat gggttcaacg ggtggcttgt tttatgctgc tgatcacttt atgggcgggt 60 tggttcactc tgaccgtaaa ggcctcctcc tatgtgcaaa catctggtac acattttgta 120 ttgaacaacc acccatttta ctttgctggc acaaataatt attatttcca ttacaaatca 180 aaaaagatgg tagatgctgt ttttgacgat atgaaggcaa tggatttaaa ggttattcgt 240 300 atttggggat ttcacgatgg tacccctcaa gaaaactcag tcttacaatc tcgtccaggt gtttatgaag aatccggttt tcaaaaacta gactatgcga tttataaagc agggcaggaa 360 420 ggaatcaagc tggtcatacc gctcgtgaac aattgggatg actttggcgg gatgaatcaa tatgtgaagt ggtttcaggc aggatcacat gatcactttt atacagattc tcggattaaa 480 acagcttaca aaaactatgt gcgctatgta ttagagagaa ccaatacgta ctcaggtgtt 540 caatataaag atgaccctgc tattatgaca tgggagctcg ccaatgagcc gcgcgctcag 600 660 tcagaccctt cgggagatat actagtaaac tgggcagatg aaatgagtgc atggatcaaa tcaattgact cgaatcatct tgttgctgta ggagacgaag ggttctttcg catgacaggt 720 catgatgatt ggttttacag tggaggagaa ggtgttgatt gggatcgttt gactgctctc 780 840 cctcatattg attatggaac ctatcattta tacccggatc actggaatca gtctgctgca 900 tggggagtga aatggatcaa agatcatatc acccgaggaa acgcaatcgg aaaacctgtt gtattagaag agtttggcta tcaaaatcaa gcagcccgtc ctgatgtata tgatagctgg 960 ctgaagacaa ttgaacagct cggaggcgca ggtagccaat tttggatttt aacaagcatt 1020 1080 caagacgatg attccctcta cccggattat gatggttttc gagttttaaa ggagagccgg 1140 gaggcaggaa ttattcgtga acacgccaaa agaatgaatg aaaagaactg atgaagaatg cctgtttata aggaacttca tttgcataaa aaaattggat atggtatagt ttttatggaa 1200 atgctaacga ttaccgagac aagagtgggg aaacccgctc ttttgtattg aacaggcaat 1260 ttttgtctcg acattattca tccgttttct gctccccctg ctcacaataa agcagggttt 1320 ttatgcagaa tgattgataa gagcgtttat cgaaagcaca aggaggaaga gaatgagcaa 1380 1440 aaaagtagtg gatatcgtaa gcgacatggt gcagccaatt ttagatggct tacagcttga

actcgttgat	gttgaatttg	tcaaagaggg	tcaaaactgg	ttccttcgcg	tatttattga	1500
ctctgataaa	ggcgtcgata	tcgaggagtg	tgccaaagtg	agcgaagcct	tgagcgaaaa	1560
gcttgatgag	gcagatccaa	ttagccaaaa	ctactttctt	gaagtgtcct	ctcctggagc	1620
ggagcgccca	ttaaagaaaa	aagctgattt	tgaaaaagca	cttggaaaaa	atgttttcat	1680
gaaaacatac	gaaccaattg	atggtgaaaa	ggcatttgaa	ggtgagctta	caagctttga	1740
tggtgagatt	gcaacagtga	cagtgaagat	caagacaaga	aagaaagaga	tcaatattcc	1800
atacgaaaaa	attgctaacg	caagattagc	agtttcgttc	aattaa		1846

<210> 26

5

<211> 376

<212> PRT

<213> Bacillus pumilus

<400> 26

Met Lys Lys Trp Val Gln Arg Val Ala Cys Phe Met Leu Leu Ile Thr 1 5 10 15

Leu Trp Ala Gly Trp Phe Thr Leu Thr Val Lys Ala Ser Ser Tyr Val 20 25 30

Gln Thr Ser Gly Thr His Phe Val Leu Asn Asn His Pro Phe Tyr Phe 35 40 45

Ala Gly Thr Asn Asn Tyr Tyr Phe His Tyr Lys Ser Lys Lys Met Val 50 60

Asp Ala Val Phe Asp Asp Met Lys Ala Met Asp Leu Lys Val Ile Arg 65 70 75 80

Ile Trp Gly Phe His Asp Gly Thr Pro Gln Glu Asn Ser Val Leu Gln 85 90 95

Ser Arg Pro Gly Val Tyr Glu Glu Ser Gly Phe Gln Lys Leu Asp Tyr 100 105 110

Ala Ile Tyr Lys Ala Gly Gln Glu Gly Ile Lys Leu Val Ile Pro Leu 115 120 125

Val Asn Asn Trp Asp Asp Phe Gly Gly Met Asn Gln Tyr Val Lys Trp 130 135 140

Phe Gln Ala Gly Ser His Asp His Phe Tyr Thr Asp Ser Arg Ile Lys 145 150 155 160

Thr	Ala	Tyr	Lys	Asn 165	Tyr	Val	Arg	Tyr	Val 170	Leu	Glu	Arg	Thr	Asn 175	Thr
Tyr	Ser	Gly	Val 180	Gln	Tyr	Lys	Asp	Asp 185	Pro	Ala	Ile	Met	Thr 190	Trp	Glu
Leu	Ala	Asn 195	Glu	Pro	Arg	Ala	Gln 200	Ser	Asp	Pro	Ser	Gly 205	Asp	Ile	Leu
Val	Asn 210	Trp	Ala	Asp	Glu	Met 215	Ser	Ala	Trp	Ile	Lys 220	Ser	Ile	Asp	Ser
Asn 225	His	Leu	Val	Ala	Val 230	Gly	Asp	Glu	Gly	Phe 235	Phe	Arg	Met	Thr	Gly 240
His	Asp	Asp	Trp	Phe 245	Tyr	Ser	Gly	Gly	Glu 250	Gly	Val	Asp	Trp	Asp 255	Arg
Leu	Thr	Ala	Leu 260	Pro	His	Ile	Asp	Tyr 265	Gly	Thr	Tyr	His	Leu 270	Tyr	Pro
Asp	His	Trp 275	Asn	Gln	Ser	Ala	Ala 280	Trp	Gly	Val	Lys	Trp 285	Ile	Lys	Asp
His	Ile 290	Thr	Arg	Gly	Asn	Ala 295	Ile	Gly	Lys	Pro	Val 300	Val	Leu	Glu	Glu
Phe 305	Gly	Tyr	Gln	Asn	Gln 310	Ala	Ala	Arg	Pro	Asp 315	Val	Tyr	Asp	Ser	Trp 320
Leu	Lys	Thr	Ile	Glu 325		Leu	Gly	Gly	Ala 330		Ser	Gln	Phe	Trp 335	
Leu	Thr	Ser	Ile 340	Gln	Asp	Asp	Asp	Ser 345	Leu	Tyr	Pro	Asp	Tyr 350	Asp	Gly
Phe	Arg	Val 355	Leu	Lys	Glu	Ser	Arg 360	Glu	Ala	Gly	Ile	Ile 365	Arg	Glu	His
Ala	Lvs	Arσ	Met.	Asn	G111	Lvs	Asn								

<210> 27

5

<211> 1083 <212> ADN

<213> Bacillus amyloliquefaciens

atgctcaaaa	agttcgcagt	ctgtctgtct	atcattttat	tactcatctc	agccgcccgt	60
ccgatatcgg	ctcacaccgt	ttaccctgtc	aatcccaatg	cccagcagac	gacaaaagac	120
gtcatgaact	ggctggcgca	tttgcccaac	cgttcagaaa	acagggtcat	gtccggtgca	180
ttcggcgggt	acagcgatgt	caccttttca	atgacggagg	aaaaccgctt	gaaaaacgcg	240
acgggacagt	ctcccgccat	ctacggctgt	gattatggga	gagggtggct	ggaaacatcg	300
gatatcaccg	attctatcga	ctacagctgc	aacagcagcc	tcatttcgta	ctggaaaagc	360
ggcggcctcc	ctcaggtcag	cctgcatctc	gcaaatccgg	cctttccatc	aggacactat	420
aaaacggcca	tttcaaacag	ccagtataaa	aatatcctga	acccttcaac	tgttgaagga	480
cggcggcttg	aggccttgct	cagcaaaatc	gccgacggcc	ttactcagct	gaaaaatcaa	540
ggcgtcaccg	ttctgttcag	gccgctgcat	gagatgaacg	gtgaatggtt	ctggtggggg	600
ctgacaggct	acaaccaaaa	agacactgag	agaatctcgc	tgtacaaaga	gctttacaag	660
aagatatacc	gctatatgac	agagacaaga	ggattggata	atcttttgtg	ggtgtattcg	720
cctgatgcca	acagagactt	caaaacagac	ttctacccag	gctcatctta	tgtggatatt	780
accggactgg	atgcttactt	caccgacccg	tatgcgatat	caggctatga	tgaaatgctg	840
tctctgaaaa	aaccgtttgc	ctttgccgag	accggtccgt	ccggtaatat	cggaagcttt	900
gattacgctg	tttttatcaa	tgcgatcagg	caaaagtatc	ccgagacaac	ctactttttg	960
acatgggatg	aacaattaag	cccggcagcc	aatcaaggcg	cgcaaagcct	ttatcaaaac	1020
agctggacgc	tgaacaaggg	cgaaatgtgg	aatggcggaa	ccttgacgcc	gatcgcggaa	1080
taa						1083

<210> 28

<211> 360 <212> PRT

5

<213> Bacillus amyloliquefaciens

Met 1	Leu	Lys	Lys	Phe 5	Ala	Val	Cys	Leu	Ser 10	Ile	Ile	Leu	Leu	Leu 15	Ile
Ser	Ala	Ala	Arg 20	Pro	Ile	Ser	Ala	His 25	Thr	Val	Tyr	Pro	Val 30	Asn	Pro
Asn	Ala	Gln 35	Gln	Thr	Thr	_	Asp 40	Val	Met	Asn	_	Leu 45	Ala	His	Leu
Pro	Asn 50	Arg	Ser	Glu		Arg 55		Met	Ser	Gly	Ala 60	Phe	Gly	Gly	Tyr
	-	Val									-		-		

Thr	Gly	Gln	Ser	Pro 85	Ala	Ile	Tyr	Gly	Cys 90	Asp	Tyr	Gly	Arg	Gly 95	Trp
Leu	Glu	Thr	Ser 100	Asp	Ile	Thr	Asp	Ser 105	Ile	Asp	Tyr	Ser	Cys 110	Asn	Ser
Ser	Leu	Ile 115	Ser	Tyr	Trp	Lys	Ser 120	Gly	Gly	Leu	Pro	Gln 125	Val	Ser	Leu
His	Leu 130	Ala	Asn	Pro	Ala	Phe 135	Pro	Ser	Gly	His	Tyr 140	Lys	Thr	Ala	Ile
Ser 145	Asn	Ser	Gln	Tyr	Lys 150	Asn	Ile	Leu	Asn	Pro 155	Ser	Thr	Val	Glu	Gly 160
Arg	Arg	Leu	Glu	Ala 165	Leu	Leu	Ser	Lys	Ile 170	Ala	Asp	Gly	Leu	Thr 175	Gln
	-		180	-				185		-			His 190		
		195					200					205	Gln		
	210	_				215	-			-	220	-	Ile	-	_
225					230	Ī		_		235		-	Val	-	240
	-			245	-		-		250		-		Gly -	255	
			260					265					Pro 270		
		275	_	_			280					285	Phe -		
	290		_			295			_		300	-	Tyr -		
305					310					315			Tyr		320
Thr	\mathtt{Trp}	Asp	GLu	GLn	Leu	Ser	Pro	Ala	Ala	Asn	GLn	GLY	Ala	Gln	Ser

325 330 335

Leu Tyr Gln Asn Ser Trp Thr Leu Asn Lys Gly Glu Met Trp Asn Gly 340 345 350

Gly Thr Leu Thr Pro Ile Ala Glu 355

<210> 29 <211> 1494 <212> ADN 5

<213> Amphibacillus xylanus

gtgaagttaa	ctaaactaaa	actattgagt	agtgtatttt	ttgttgtatt	aactgtgtta	60
atgttgtttg	tccctgggaa	tattgtgaat	gtaaaagctg	ctaacggctt	ttatgtaagc	120
gattccaatc	tgtatgatgc	aaatggaaat	caatttgtta	tgcgtggggt	taatcatgcc	180
cattcatggt	ataaggacac	gtataccgag	gcaattcctg	caattgcggc	tacaggagcg	240
aatactatcc	gaattgtatt	atctgatgga	gggcaatacc	aaaaagatga	tataaacata	300
gtcagaaatt	tgattgaaac	cgcagaagcc	aataatttag	tcgctgtact	tgaggttcat	360
gatgctactg	ggtcggattc	attatcggat	ttgaaccggg	ctgtagatta	ttggattgaa	420
attaaagatg	cgttaattgg	taaagaagat	acggtgatca	taaacattgt	caatgaatgg	480
tatggcactt	gggatggtcg	tctctgggca	gatggttata	aacaggcgat	accgagatta	540
agagatgctg	gattaacaca	tacgttgatg	attgatgcag	caggttgggg	gcaatttcct	600
agctcgatcc	atcaatatgg	tagagaagta	tttaatgcag	atcgtttagg	gaatacaatg	660
ttttcgattc	atatgtatga	atatgctggc	ggtgatgatc	aaatggttag	agataatatt	720
aacggtgtga	tcaatcaaga	cttagctcta	gtgattggtg	aatttggtca	ttatcacaca	780
gatggcgatg	ttgatgaaga	tacgattttg	agttacgcgg	agcagacagg	tgttggttgg	840
ttagcatggt	catggaaagg	caatggaact	gagtgggagt	atcttgatct	atcaaatgat	900
tggggaggaa	attatttaac	atcttggggt	gacaggattg	taaatggagc	aaatggatta	960
agagaaacga	gtcaaattgc	ttctgttttt	tcaggaaaca	atggcgggac	tcctggaaat	1020
ggtgaggaag	agactcctgg	tgatgtaagt	catttcgcaa	acttcgagaa	tggtactgaa	1080
ggttgggaag	caagcaatgt	atctggtgga	ccttgggcaa	caaatgaatg	gagtgctagt	1140
ggttcatatg	ctttaaaagc	cgatgcgcaa	ttagcatctg	gaagagaaca	ctatttatat	1200
cgaatcggtc	cctttaattt	atctgggtca	acattaaacg	caacggtaag	gggtgctaat	1260
tgggggaatt	atggatctgg	tatcgacgtg	aagctatacg	ttaagtacgg	agatggctgg	1320
acgtggagag	atagtggtgt	acagacaatt	agagcgggag	aatctattga	tctatcacta	1380
gatttatcaa	atgttgatcg	ctcaaacatt	agagaagttg	gtatccagtt	tattggtgga	1440
aatcattcat	ctggaaaaac	cgctttttat	gttgatcatg	tttattcaca	ttag	1494

5

<210> 30

<211> 497 <212> PRT

<213> Amphibacillus xylanus

<400> 30

Val 1	Lys	Leu	Thr	Lys 5	Leu	Lys	Leu	Leu	Ser 10	Ser	Val	Phe	Phe	Val 15	Val
Leu	Thr	Val	Leu 20	Met	Leu	Phe	Val	Pro 25	Gly	Asn	Ile	Val	Asn 30	Val	Lys
Ala	Ala	Asn 35	Gly	Phe	Tyr	Val	Ser 40	Asp	Ser	Asn	Leu	Tyr 45	Asp	Ala	Asn
Gly	Asn 50	Gln	Phe	Val	Met	Arg 55	Gly	Val	Asn	His	Ala 60	His	Ser	Trp	Tyr
Lys 65	Asp	Thr	Tyr	Thr	Glu 70	Ala	Ile	Pro	Ala	Ile 75	Ala	Ala	Thr	Gly	Ala 80
Asn	Thr	Ile	Arg	Ile 85	Val	Leu	Ser	Asp	Gly 90	Gly	Gln	Tyr	Gln	Lys 95	Asp
Asp	Ile	Asn	Ile 100	Val	Arg	Asn	Leu	Ile 105	Glu	Thr	Ala	Glu	Ala 110	Asn	Asn
Leu	Val	Ala 115	Val	Leu	Glu	Val	His 120	Asp	Ala	Thr	Gly	Ser 125	Asp	Ser	Leu
Ser	Asp 130	Leu	Asn	Arg	Ala	Val 135	Asp	Tyr	Trp	Ile	Glu 140	Ile	Lys	Asp	Ala
Leu 145	Ile	Gly	Lys	Glu	Asp 150	Thr	Val	Ile	Ile	Asn 155	Ile	Val	Asn	Glu	Trp 160
Tyr	Gly	Thr	Trp	Asp 165	Gly	Arg	Leu	Trp	Ala 170	Asp	Gly	Tyr	Lys	Gln 175	Ala
Ile	Pro	Arg	Leu 180	Arg	Asp	Ala	Gly	Leu 185	Thr	His	Thr	Leu	Met 190	Ile	Asp
Ala	Ala	Gly 195	Trp	Gly	Gln	Phe	Pro 200	Ser	Ser	Ile	His	Gln 205	Tyr	Gly	Arg

Glu Val Phe Asn Ala Asp Arg Leu Gly Asn Thr Met Phe Ser Ile His 215 Met Tyr Glu Tyr Ala Gly Gly Asp Asp Gln Met Val Arg Asp Asn Ile 230 Asn Gly Val Ile Asn Gln Asp Leu Ala Leu Val Ile Gly Glu Phe Gly His Tyr His Thr Asp Gly Asp Val Asp Glu Asp Thr Ile Leu Ser Tyr Ala Glu Gln Thr Gly Val Gly Trp Leu Ala Trp Ser Trp Lys Gly Asn 280 Gly Thr Glu Trp Glu Tyr Leu Asp Leu Ser Asn Asp Trp Gly Gly Asn Tyr Leu Thr Ser Trp Gly Asp Arg Ile Val Asn Gly Ala Asn Gly Leu 310 Arg Glu Thr Ser Gln Ile Ala Ser Val Phe Ser Gly Asn Asn Gly Gly 330 Thr Pro Gly Asn Gly Glu Glu Glu Thr Pro Gly Asp Val Ser His Phe 345 Ala Asn Phe Glu Asn Gly Thr Glu Gly Trp Glu Ala Ser Asn Val Ser Gly Gly Pro Trp Ala Thr Asn Glu Trp Ser Ala Ser Gly Ser Tyr Ala Leu Lys Ala Asp Ala Gln Leu Ala Ser Gly Arg Glu His Tyr Leu Tyr 385 390 395 400 Arg Ile Gly Pro Phe Asn Leu Ser Gly Ser Thr Leu Asn Ala Thr Val Arg Gly Ala Asn Trp Gly Asn Tyr Gly Ser Gly Ile Asp Val Lys Leu 425 Tyr Val Lys Tyr Gly Asp Gly Trp Thr Trp Arg Asp Ser Gly Val Gln 435 440 Thr Ile Arg Ala Gly Glu Ser Ile Asp Leu Ser Leu Asp Leu Ser Asn 450

Val Asp Arg Ser Asn Ile Arg Glu Val Gly Ile Gln Phe Ile Gly Gly 465 470 475 480

Asn His Ser Ser Gly Lys Thr Ala Phe Tyr Val Asp His Val Tyr Ser 485 490 495

His

<210> 31 <211> 1767 5 <212> ADN <213> Paenibacillus polymyxa

<400> 31

atgaaaaaac tactgtcttg tctcatttcg ctgtcaatgc ttgtgtatat cttaccgaca 60 120 atgatagtgt ccgctaacaa tgatggcgta acgaaccttg ctcttgattc aacacctagt gcgcaaagtg atattatttc tgatgctgtc tacaaaatca cagctcagca ttcaggaaaa 180 agccttgagg ttgaaggcgg ttctaaagat gacggcgcga atgttcaaca atggacagat 240 300 aacgggaaag aacagcagaa atggagagtt gtggacgtcg gtggcggata ttacaagctc atcagtcaat ctagcggaaa agcactggat gtggcaggtg gtaatacaca tgatggtgcc 360 aatgtgcaac agtggacgga caacggaaat gctcagcaaa agtggaagat catcgatgta 420 ggaggaggct attataagtt gatctcacaa agctctggaa aggcactcga cgtcgttggt 480 ggttatacgc acgacggggc caatgtgcag caatgggcag acaatggatc tgctcaacag 540 600 cgctggcgtt tcacacaaat tgatacaacc acggatacga cgccgccaac agcaccaacg aatttacaat catcatcgaa aacaagtacc tctgtaacat tgacttggac cacaagcatt 660 720 gataatgtag gtgtgacagg ctatgtcatt tataatggaa cagatttggt cgggacttct acaactacat cttatattgt tacaggatta acagcgaaca cttcctataa cttcactgtc 780 aaagcgaagg atgccgctgg gaatatttca gaaccatcaa atgtcttgaa agtcacaacg 840 agttcagatt cttctcaaaa cacaggtttt tatgtgaagg gcacaacatt atatgatgga 900 aacggtaatc catttgtgat gagaggaatc aatcatgcat acacatggta taaagggcaa 960 1020 gaatcagtag caattcctgc gattgcgaaa acgggtgcaa acaccatccg gattgtctta tctgacggac agcagtggac aaaagatgat ttaagcgcgc ttcaaaaattt gattacactc 1080 agtgagcaaa acaaacttgt agtgatttta gaggtgcacg acggtactgg caatgacaat 1140 gccgcagttt taaataaaat tgctgattat tggattgaaa tgaagtcagc tttaattggg 1200 aaggaaaata cagttatttt aaacatcgca aatgaatggt ttggtacatg ggatggaaac 1260 ggctgggcgc agggctacaa atcagtcata ccaaagctgc gaaatgcggg catcaaaaac 1320

acgattatgg	tggatgcggc	tggatgggga	caatatccaa	aatcgatttt	tgattacgga	1380
acgcaagtgt	tcgatgcaga	tccgctcaag	aatacgatgt	tttccattca	tatgtatgaa	1440
tacgcaggcg	gcaacgcaga	aacagtgaaa	agtaatatcg	acaacgtcct	gaataaaaat	1500
cttgcactca	tcattggaga	atttggaatt	aaacatacaa	acggagatgt	tgatgaagca	1560
acgatcatgt	catacgcaca	gcaaaaaggt	gttgggtatc	ttggctggtc	atggaaagga	1620
aatggttcag	gtcttgaata	tttagatatg	agtaacgatt	gggctggcag	cagttataca	1680
gagcaaggac	atgccattat	cgaaggacca	aatggcattc	gtgcaacatc	aaaattatca	1740
accatttaca	gcaatgggaa	acaataa				1767

<210> 32

<211> 588

<212> PRT

5

<213> Paenibacillus polymyxa

Met 1	Lys	Lys	Leu	Leu 5	Ser	Cys	Leu	Ile	Ser 10	Leu	Ser	Met	Leu	Val 15	Tyr
Ile	Leu	Pro	Thr 20	Met	Ile	Val	Ser	Ala 25	Asn	Asn	Asp	Gly	Val 30	Thr	Asn
Leu	Ala	Leu 35	Asp	Ser	Thr	Pro	Ser 40	Ala	Gln	Ser	Asp	Ile 45	Ile	Ser	Asp
Ala	Val 50	Tyr	Lys	Ile	Thr	Ala 55	Gln	His	Ser	Gly	Lys 60	Ser	Leu	Glu	Val
Glu 65	Gly	Gly	Ser	Lys	Asp 70	Asp	Gly	Ala	Asn	Val 75	Gln	Gln	Trp	Thr	Asp 80
Asn	Gly	Lys	Glu	Gln 85	Gln	Lys	Trp	Arg	Val 90	Val	Asp	Val	Gly	Gly 95	Gly
Tyr	Tyr	Lys	Leu 100	Ile	Ser	Gln	Ser	Ser 105	Gly	Lys	Ala	Leu	Asp 110	Val	Ala
Gly	Gly	Asn 115	Thr	His	Asp	Gly	Ala 120	Asn	Val	Gln	Gln	Trp 125	Thr	Asp	Asn
Gly	Asn 130	Ala	Gln	Gln	Lys	Trp 135	Lys	Ile	Ile	Asp	Val 140	Gly	Gly	Gly	Tyr
Tyr 145	Lys	Leu	Ile	Ser	Gln 150	Ser	Ser	Gly	Lys	Ala 155	Leu	Asp	Val	Val	Gly 160

Gly	Tyr	Thr	His	Asp 165	Gly	Ala	Asn	Val	Gln 170	Gln	Trp	Ala	Asp	Asn 175	Gly
Ser	Ala	Gln	Gln 180	Arg	Trp	Arg	Phe	Thr 185	Gln	Ile	Asp	Thr	Thr 190	Thr	Asp
Thr	Thr	Pro 195	Pro	Thr	Ala	Pro	Thr 200	Asn	Leu	Gln	Ser	Ser 205	Ser	Lys	Thr
Ser	Thr 210	Ser	Val	Thr	Leu	Thr 215	Trp	Thr	Thr	Ser	Ile 220	Asp	Asn	Val	Gly
Val 225	Thr	Gly	Tyr	Val	Ile 230	Tyr	Asn	Gly	Thr	Asp 235	Leu	Val	Gly	Thr	Ser 240
Thr	Thr	Thr	Ser	Tyr 245	Ile	Val	Thr	Gly	Leu 250	Thr	Ala	Asn	Thr	Ser 255	Tyr
Asn	Phe	Thr	Val 260	Lys	Ala	Lys	Asp	Ala 265	Ala	Gly	Asn	Ile	Ser 270	Glu	Pro
Ser	Asn	Val 275	Leu	Lys	Val	Thr	Thr 280	Ser	Ser	Asp	Ser	Ser 285	Gln	Asn	Thr
Gly	Phe 290	Tyr	Val	Lys	Gly	Thr 295	Thr	Leu	Tyr	Asp	Gly 300	Asn	Gly	Asn	Pro
Phe 305	Val	Met	Arg	Gly	Ile 310	Asn	His	Ala	Tyr	Thr 315	Trp	Tyr	Lys	Gly	Gln 320
Glu	Ser	Val	Ala	Ile 325	Pro	Ala	Ile	Ala	Lys 330	Thr	Gly	Ala	Asn	Thr 335	Ile
Arg	Ile	Val	Leu 340	Ser	Asp	Gly	Gln	Gln 345	Trp	Thr	Lys	Asp	Asp 350	Leu	Ser
Ala	Leu	Gln 355	Asn	Leu	Ile	Thr	Leu 360	Ser	Glu	Gln	Asn	Lys 365	Leu	Val	Val
Ile	Leu 370	Glu	Val	His	Asp	Gly 375	Thr	Gly	Asn	Asp	As n 380	Ala	Ala	Val	Leu
A sn 385	Lys	Ile	Ala	Asp	Tyr 390	Trp	Ile	Glu	Met	Lys 395	Ser	Ala	Leu	Ile	Gly 400
Lys	Glu	Asn	Thr	Val	Ile	Leu	Asn	Ile	Ala	Asn	Glu	Trp	Phe	Gly	Thr

					405					410					415	
	Trp	Asp	Gly	Asn 420	Gly	Trp	Ala	Gln	Gly 425	Tyr	Lys	Ser	Val	Ile 430	Pro	Lys
	Leu	Arg	Asn 435	Ala	Gly	Ile	Lys	Asn 440	Thr	Ile	Met	Val	Asp 445	Ala	Ala	Gly
	Trp	Gly 450	Gln	Tyr	Pro	Lys	Ser 455	Ile	Phe	Asp	Tyr	Gly 460	Thr	Gln	Val	Phe
	Asp 465	Ala	Asp	Pro	Leu	Lys 470	Asn	Thr	Met	Phe	Ser 475	Ile	His	Met	Tyr	Glu 480
	Tyr	Ala	Gly	Gly	Asn 485	Ala	Glu	Thr	Val	Lys 490	Ser	Asn	Ile	Asp	Asn 495	Val
	Leu	Asn	Lys	Asn 500	Leu	Ala	Leu	Ile	Ile 505	Gly	Glu	Phe	Gly	Ile 510	Lys	His
	Thr	Asn	Gly 515	Asp	Val	Asp	Glu	Ala 520	Thr	Ile	Met	Ser	Tyr 525	Ala	Gln	Gln
	Lys	Gly 530	Val	Gly	Tyr	Leu	Gly 535	Trp	Ser	Trp	Lys	Gly 540	Asn	Gly	Ser	Gly
	Leu 545	Glu	Tyr	Leu	Asp	Met 550	Ser	Asn	Asp	Trp	Ala 555	Gly	Ser	Ser	Tyr	Thr 560
	Glu	Gln	Gly	His	Ala 565	Ile	Ile	Glu	Gly	Pro 570	Asn	Gly	Ile	Arg	Ala 575	Thr
	Ser	Lys	Leu	Ser 580	Thr	Ile	Tyr	Ser	Asn 585	Gly	Lys	Gln				
<210> 33 <211> 147 <212> AD <213> Bad	N	hemic	ellulos	silyticu	IS											

10

<400> 33

5

atggatatat	taagaaagtg	tgtacttgta	ctattggcct	tactattgtt	gttacctacg	60
acatcaacgg	cattttctga	aagcgcttct	actaatgaga	gagtgctaaa	tttatctgat	120
ccgaatgcga	cacgctatac	gaaggaattg	tttgcgtttc	ttcaagacgt	gagtggtgag	180
caagtgttgt	tcgggcaaca	gcatgcaaca	gatgaagggt	tgactctgac	aggtgaagga	240
aatcgaattg	gttcaactga	gtcggaggtg	aagaatgcag	taggtgatta	tccagctgtt	300
tttgggtggg	atacgaacag	cttggatggt	cgtgaaaagc	caggtacaga	tgtggaaagt	360
caagagcaac	gaattttaaa	tacagcagaa	tcgatgaaag	tggcacatga	attaggaggg	420
atcatcacat	taagtatgca	tccggataac	tttgttaccg	gtcattacta	tggcgatacg	480
gatggtaacg	tcgttcaaga	aatattgcca	ggtggctcca	agcacaatga	atttaacgct	540
tggctagata	atattgctgc	cctagcacat	gaattagttg	atgataatgg	agagcctatt	600
ccggttatct	tccgtccatt	ccatgagcaa	acaggttcgt	ggttttggtg	gggtgcgagc	660
acaacaactc	ctgagcaata	caaagcgatt	tttcgatata	cagtcgaata	cttaagagat	720
gcaaagggtg	ttcataactt	tttatatgga	ttctcccctg	gtgcgggtcc	tgctggcgat	780
ctagatcgat	atttagaaac	gtacccaggt	gataattatg	tcgatatctt	aggtattgat	840
aattatgata	gtaagtcaaa	tgcggggtca	gacgcttggt	tatctggaat	ggtaaaagat	900
ttagcgatga	tctcgaaatt	agcagaggaa	agagggaagg	tatcagcctt	tactgaattt	960
ggatacagcg	ctgaagggat	gagtcaaacg	ggtgatgcgt	tagattggta	tacacgtgtg	1020
ttaaatgcga	taaaagcaga	tgaagatgcg	cgaaacatat	cctacatgct	aacgtgggct	1080
aactttgggt	ggcctaataa	tatatttgtt	ccgtatcgtg	atgtgaatgg	ggatttaggt	1140
ggagatcatg	agttattacc	tgactttgta	cagttttatg	aagatgaata	ctcagcattt	1200
cgtgaagata	taaatgaaag	tgtttacaat	cgtaatgaga	gttatattgt	tgcggatcat	1260
gagccattta	tgtatgttgt	ttcccctacg	acaggtacat	atataacagg	ctcgtctgtt	1320
gtcttacgag	cgaaagtagt	taacgatgag	gatccgtccg	ttacgtatca	agtggcgggt	1380
tctgaagaag	tctatgagat	gactttagat	gaaaatgggt	attactctgc	tgattatatt	1440
cctactgctc	ctaagaatgg	agctctgtag				1470

<210> 34

<211> 489

<212> PRT

5

<213> Bacillus hemicellulosilyticus

Met	Asp	Ile	Leu	Arg	Lys	Cys	Val	Leu	Val	Leu	Leu	Ala	Leu	Leu	Leu
1				5					10					15	

- Leu Leu Pro Thr Thr Ser Thr Ala Phe Ser Glu Ser Ala Ser Thr Asn 20 25 30
- Glu Arg Val Leu Asn Leu Ser Asp Pro Asn Ala Thr Arg Tyr Thr Lys 35 40 45
- Glu Leu Phe Ala Phe Leu Gln Asp Val Ser Gly Glu Gln Val Leu Phe 50 55 60

Gly 65	Gln	Gln	His	Ala	Thr 70	Asp	Glu	Gly	Leu	Thr 75	Leu	Thr	Gly	Glu	Gly 80
Asn	Arg	Ile	Gly	Ser 85	Thr	Glu	Ser	Glu	Val 90	Lys	Asn	Ala	Val	Gly 95	Asp
Tyr	Pro	Ala	Val 100	Phe	Gly	Trp	Asp	Thr 105	Asn	Ser	Leu	Asp	Gly 110	Arg	Glu
Lys	Pro	Gly 115	Thr	Asp	Val	Glu	Ser 120	Gln	Glu	Gln	Arg	Ile 125	Leu	Asn	Thr
Ala	Glu 130	Ser	Met	Lys	Val	Ala 135	His	Glu	Leu	Gly	Gly 140	Ile	Ile	Thr	Leu
Ser 145	Met	His	Pro	Asp	Asn 150	Phe	Val	Thr	Gly	His 155	Tyr	Tyr	Gly	Asp	Thr 160
Asp	Gly	Asn	Val	Val 165	Gln	Glu	Ile	Leu	Pro 170	Gly	Gly	Ser	Lys	His 175	Asn
Glu	Phe	Asn	Ala 180	Trp	Leu	Asp	Asn	Ile 185	Ala	Ala	Leu	Ala	His 190	Glu	Leu
Val	Asp	Asp 195	Asn	Gly	Glu	Pro	Ile 200	Pro	Val	Ile	Phe	Arg 205	Pro	Phe	His
Glu	Gln 210	Thr	Gly	Ser	Trp	Phe 215	Trp	Trp	Gly	Ala	Ser 220	Thr	Thr	Thr	Pro
Glu 225	Gln	Tyr	Lys	Ala	11e 230	Phe	Arg	Tyr	Thr	Val 235	Glu	Tyr	Leu	Arg	Asp 240
Ala	Lys	Gly	Val	His 245	Asn	Phe	Leu	Tyr	Gly 250	Phe	Ser	Pro	Gly	Ala 255	Gly
Pro	Ala	Gly	Asp 260	Leu	Asp	Arg	Tyr	Leu 265	Glu	Thr	Tyr	Pro	Gly 270	Asp	Asn
Tyr	Val	Asp 275	Ile	Leu	Gly	Ile	Asp 280	Asn	Tyr	Asp	Ser	Lys 285	Ser	Asn	Ala
Gly	Ser 290	Asp	Ala	Trp	Leu	Ser 295	Gly	Met	Val	Lys	Asp 300	Leu	Ala	Met	Ile
Ser 305	Lys	Leu	Ala	Glu	Glu 310	Arg	Gly	Lys	Val	Ser 315	Ala	Phe	Thr	Glu	Phe 320

Gly	Tyr	Ser	Ala	Glu 325	Gly	Met	Ser	Gln	Thr 330	Gly	Asp	Ala	Leu	Asp 335	Trp
Tyr	Thr	Arg	Val 340	Leu	Asn	Ala	Ile	Lys 345	Ala	Asp	Glu	Asp	Ala 350	Arg	Asn
Ile	Ser	Tyr 355	Met	Leu	Thr	Trp	A la 360	Asn	Phe	Gly	Trp	Pro 365	Asn	Asn	Ile
Phe	Val 370	Pro	Tyr	Arg	Asp	Val 375	Asn	Gly	Asp	Leu	Gly 380	Gly	Asp	His	Glu
Leu 385	Leu	Pro	Asp	Phe	Val 390	Gln	Phe	Tyr	Glu	Asp 395	Glu	Tyr	Ser	Ala	Phe 400
Arg	Glu	Asp	Ile	Asn 405	Glu	Ser	Val	Tyr	Asn 410	Arg	Asn	Glu	Ser	Tyr 415	Ile
Val	Ala	Asp	His 420	Glu	Pro	Phe	Met	Tyr 425	Val	Val	Ser	Pro	Thr 430	Thr	Gly
Thr	Tyr	Ile 435	Thr	Gly	Ser	Ser	Val 440	Val	Leu	Arg	Ala	Lys 445	Val	Val	Asn
Asp	Glu 450	Asp	Pro	Ser	Val	Thr 455	Tyr	Gln	Val	Ala	Gly 460	Ser	Glu	Glu	Val
Tyr 465	Glu	Met	Thr	Leu	Asp 470	Glu	Asn	Gly	Tyr	Tyr 475	Ser	Ala	Asp	Tyr	Ile 480

Pro Thr Ala Pro Lys Asn Gly Ala Leu 485

<210> 35

<211> 1110

<212> ADN

<213> Bacillus alcalophilus

atgagaagta	tgaagctttt	atttgctatg	tttattttag	tttttcctc	ttttactttt	60
aacttagtag	ttgcgcaagc	tagtggacat	ggacaaatgc	ataaagtacc	ttgggcaccc	120
caagctgaag	cacctggaaa	aacggctgag	aatggagtct	gggataaagt	tagaaataat	180
cctggaaaag	ccaatcctcc	agcaggaaaa	gtcaatggtt	tttatataga	tggaacaacc	240
ttatatgatg	caaatggtaa	gccatttgtg	atgcgcggaa	ttaaccacgc	tcattcctgg	300
tacaagcctc	acatagaaac	cgcgatggag	gcaattgctg	atactggagc	aaactccatt	360
cototaotto	tctcagatgg	acaacagtgg	accaaagatg	atgttgacga	agtagcaaaa	420
cgcgcagccc	ccccagacgg	acaacagogg	accadagacg	acgoogacga	ageageaaaa	120
attatatctt	tagcagaaaa	acattcttta	gttgctgttc	ttgaggtaca	tgatgcactc	480
ggaacagatg	atattgaacc	attacttaaa	acagtcgatt	actggattga	gatcaaagat	540
gctttaatcg	gaaaagagga	caaagtaatt	attaacattt	ctaatgaatg	gtttggttct	600
tggagcagtg	aaggttgggc	agaaggatat	aaaaaagcaa	ttcctttact	aagagaggcg	660
ggtctaaaac	atacacttat	ggttgacgca	gctgggtggg	gacaatttcc	tagatctatt	720
catgaaaaag	gattagacgt	ttttaactca	gacccattaa	agaatacaat	gttttccatt	780
catatgtatg	aatgggcagc	gggtaatcct	caacaagtaa	aagacaatat	tgacggtgtt	840
cttgaaaaga	atttagctgt	agtaattggt	gagttcggtc	atcatcacta	cggaagagat	900
gttgctgttg	atacgatctt	aagtcattca	gagaagtatg	atgtaggttg	gcttgcctgg	960
tcttggcacg	gaaatagtgg	tggtgtagag	tatcttgact	tagcaacaga	tttttcaggg	1020
acgcaactaa	ctgaatgggg	agaaagaatt	gtgtacggtc	cgaatggttt	aaaagaaact	1080
tctgaaatcg	ttagtgtata	caaaaaataa				1110

<210> 36

5

<211> 369 <212> PRT

<213> Bacillus alcalophilus

<400> 36

Met	Arg	Ser	Met	Lys	Leu	Leu	Phe	Ala	Met	Phe	Ile	Leu	Val	Phe	Ser
1				5					10					15	

- Ser Phe Thr Phe Asn Leu Val Val Ala Gln Ala Ser Gly His Gly Gln 20 25 30
- Met His Lys Val Pro Trp Ala Pro Gln Ala Glu Ala Pro Gly Lys Thr 35 40 45
- Ala Glu Asn Gly Val Trp Asp Lys Val Arg Asn Asn Pro Gly Lys Ala 50 60
- Asn Pro Pro Ala Gly Lys Val Asn Gly Phe Tyr Ile Asp Gly Thr Thr 65 70 75 80
- Leu Tyr Asp Ala Asn Gly Lys Pro Phe Val Met Arg Gly Ile Asn His 85 90 95
- Ala His Ser Trp Tyr Lys Pro His Ile Glu Thr Ala Met Glu Ala Ile 100 105 110

Ala	Asp	Thr 115	Gly	Ala	Asn	Ser	11e 120	Arg	Val	Val	Leu	Ser 125	Asp	Gly	Gln
Gln	Trp 130	Thr	Lys	Asp	Asp	Val 135	Asp	Glu	Val	Ala	Lys 140	Ile	Ile	Ser	Leu
Ala 145	Glu	Lys	His	Ser	Leu 150	Val	Ala	Val	Leu	Glu 155	Val	His	Asp	Ala	Leu 160
Gly	Thr	Asp	Asp	Ile 165	Glu	Pro	Leu	Leu	Lys 170	Thr	Val	Asp	Tyr	Trp 175	Ile
Glu	Ile	Lys	Asp 180	Ala	Leu	Ile	Gly	Lys 185	Glu	Asp	Lys	Val	Ile 190	Ile	Asn
Ile	Ser	Asn 195	Glu	Trp	Phe	Gly	Ser 200	Trp	Ser	Ser	Glu	Gly 205	Trp	Ala	Glu
Gly	Tyr 210	Lys	Lys	Ala	Ile	Pro 215	Leu	Leu	Arg	Glu	Ala 220	Gly	Leu	Lys	His
Thr 225	Leu	Met	Val	Asp	Ala 230	Ala	Gly	Trp	Gly	Gln 235	Phe	Pro	Arg	Ser	Ile 240
His	Glu	Lys	Gly	Leu 245	Asp	Val	Phe	Asn	Ser 250	Asp	Pro	Leu	Lys	As n 255	Thr
Met	Phe	Ser	Ile 260	His	Met	Tyr	Glu	Trp 265	Ala	Ala	Gly	Asn	Pro 270	Gln	Gln
Val	Lys	Asp 275	Asn	Ile	Asp	Gly	Val 280	Leu	Glu	Lys	Asn	Leu 285	Ala	Val	Val
Ile	Gly 290	Glu	Phe	Gly	His	His 295	His	Tyr	Gly	Arg	Asp 300	Val	Ala	Val	Asp
Thr 305	Ile	Leu	Ser	His	Ser 310	Glu	Lys	Tyr	Asp	Val 315	Gly	Trp	Leu	Ala	Trp 320
Ser	Trp	His	Gly	As n 325	Ser	Gly	Gly	Val	Glu 330	Tyr	Leu	Asp	Leu	Ala 335	Thr
Asp	Phe	Ser	Gly 340	Thr	Gln	Leu	Thr	Glu 345	Trp	Gly	Glu	Arg	Ile 350	Val	Tyr
Gly	Pro	A sn 355	Gly	Leu	Lys	Glu	Thr 360	Ser	Glu	Ile	Val	Ser 365	Val	Tyr	Lys

Lys

<210> 37 <211> 1482 5 <212> ADN <213> Bacillus sp.

<400> 37

atgaaaaaa agttatcaca gatttatcat ttaattattt gcacacttat aataagtgtg 60 120 ggaataatgg ggattacaac gtccccatca gaagcaagtt caggctttta tgttgatggc 180 aatacgttat atgacgcaaa cgggcaacca tttgtcatga aaggcattaa ccatggacat gcttggtata aagacaccgc ttcaacagct attcctgcca ttgcagagca aggcgcgaac 240 acgatacgta ttgttttatc agatggcggt caatgggaaa aagacgacat tgacaccgtt 300 360 cgtgaagtta ttgagcttgc ggagcaaaat aaaatggtgg ctgtcgttga agttcatgat gccacgggcc gtgattcacg cagtgattta gatcgggcag tcgattattg gatagagatg 420 480 aaagatgcac ttatcggcaa agaggatact gtcattatta acattgcaaa cgaatggtat 540 ggcagttggg atggcgccgc ttgggctgat ggctacattg atgtcattcc gaagcttcgc 600 gatgccggct taacacacac cttaatggtt gatgcagcag gatgggggca atatccgcaa tctattcatg attacggaca agatgtgttt aatgcagatc cgttaaaaaa tacgatattc 660 tccatccata tgtatgagta tgctggtggt gatgctaaca ctgttagatc aaatattgat 720 780 agagtcatag atcaagacct tgctctcgta ataggtgagt tcggtcatag acacactgat ggcgatgttg atgaagatac aatccttagt tattctgaag aaactggcac aggatggctc 840 900 gcttggtctt ggaaaggcaa cagtgccgaa tgggattatt tagacctttc agaagattgg 960 gctggtaacc atttaactga ttggggaaat aggattgtcc acggggcaaa tggcttgcag 1020 gaaacctcca aaccatccac cgtatttaca gatgataacg gtggtgcccc tgaaccgcca actactacta ccttgtatga ctttgaagga agcacacaag ggtggcatgg aagcaacgtg 1080 1140 atgggtggcc cttggtccgt aacagaatgg ggtgcgtcag gcaactactc tttaaagggc gatgtcaatt taagctcaaa ttcttcacat gaactgtata gtgaacaaag tcgtaatcta 1200 cacggatact ctcagctaaa tgcaaccgtt cgccatgcca attggggaaa tcccggtaat 1260 ggcatgaatg caagacttta cgtgaaaacg ggctctgatt atacatggta tagcggtcct 1320 tttacacgta tcaatagctc caactcaggt acaacgttat cttttgattt aaacaacatc 1380 gaaaatagtc atcatgttag ggaaataggt gtgcaatttt cagctgcaga taatagcagc 1440 ggtcaaactg ctctatacgt tgataatgtt actttaagat aa 1482

10

<210> 38 <211> 493

<213> Bacillus sp.

Met	Lys	Lys	Lys	Leu	Ser	Gln	Ile	Tyr	His	Leu	Ile	Ile	Cys	Thr	Leu
1				5					10					15	

- Ile Ile Ser Val Gly Ile Met Gly Ile Thr Thr Ser Pro Ser Glu Ala 20 25 30
- Ser Ser Gly Phe Tyr Val Asp Gly Asn Thr Leu Tyr Asp Ala Asn Gly 35 40 45
- Gln Pro Phe Val Met Lys Gly Ile Asn His Gly His Ala Trp Tyr Lys 50 60
- Asp Thr Ala Ser Thr Ala Ile Pro Ala Ile Ala Glu Gln Gly Ala Asn 65 70 75 80
- Thr Ile Arg Ile Val Leu Ser Asp Gly Gly Gln Trp Glu Lys Asp Asp 85 90 95
- Ile Asp Thr Val Arg Glu Val Ile Glu Leu Ala Glu Gln Asn Lys Met
 100 105 110
- Val Ala Val Val Glu Val His Asp Ala Thr Gly Arg Asp Ser Arg Ser 115 120 125
- Asp Leu Asp Arg Ala Val Asp Tyr Trp Ile Glu Met Lys Asp Ala Leu 130 135 140
- Ile Gly Lys Glu Asp Thr Val Ile Ile Asn Ile Ala Asn Glu Trp Tyr 145 150 155 160
- Gly Ser Trp Asp Gly Ala Ala Trp Ala Asp Gly Tyr Ile Asp Val Ile 165 170 175
- Pro Lys Leu Arg Asp Ala Gly Leu Thr His Thr Leu Met Val Asp Ala 180 185 190
- Ala Gly Trp Gly Gln Tyr Pro Gln Ser Ile His Asp Tyr Gly Gln Asp 195 200 205
- Val Phe Asn Ala Asp Pro Leu Lys Asn Thr Ile Phe Ser Ile His Met 210 215 220
- Tyr Glu Tyr Ala Gly Gly Asp Ala Asn Thr Val Arg Ser Asn Ile Asp

225					230					235					240
Arg	Val	Ile	Asp	Gln 245	Asp	Leu	Ala	Leu	Val 250	Ile	Gly	Glu	Phe	Gly 255	His
Arg	His	Thr	Asp 260	Gly	Asp	Val	Asp	Glu 265	Asp	Thr	Ile	Leu	Ser 270	Tyr	Ser
Glu	Glu	Thr 275	Gly	Thr	Gly	Trp	Leu 280	Ala	Trp	Ser	Trp	Lys 285	Gly	Asn	Ser
Ala	Glu 290	Trp	Asp	Tyr	Leu	Asp 295	Leu	Ser	Glu	Asp	Trp 300	Ala	Gly	Asn	His
Leu 305	Thr	Asp	Trp	Gly	Asn 310	Arg	Ile	Val	His	Gly 315	Ala	Asn	Gly	Leu	Gln 320
Glu	Thr	Ser	Lys	Pro 325	Ser	Thr	Val	Phe	Thr 330	Asp	Asp	Asn	Gly	Gly 335	Ala
Pro	Glu	Pro	Pro 340	Thr	Thr	Thr	Thr	Leu 345	Tyr	Asp	Phe	Glu	Gly 350	Ser	Thr
Gln	Gly	Trp 355	His	Gly	Ser	Asn	Val 360	Met	Gly	Gly	Pro	Trp 365	Ser	Val	Thr
Glu	Trp 370	Gly	Ala	Ser	Gly	A sn 375	Tyr	Ser	Leu	Lys	Gly 380	Asp	Val	Asn	Leu
Ser 385	Ser	Asn	Ser	Ser	His 390	Glu	Leu	Tyr	Ser	Glu 395	Gln	Ser	Arg	Asn	Leu 400
His	Gly	Tyr	Ser	Gln 405	Leu	Asn	Ala	Thr	Val 410	Arg	His	Ala	Asn	Trp 415	Gly
Asn	Pro	Gly	Asn 420	Gly	Met	Asn	Ala	Arg 425	Leu	Tyr	Val	Lys	Thr 430	Gly	Ser
Asp	Tyr	Thr 435	Trp	Tyr	Ser	Gly	Pro 440	Phe	Thr	Arg	Ile	Asn 445	Ser	Ser	Asn
Ser	Gly 450	Thr	Thr	Leu	Ser	Phe 455	Asp	Leu	Asn	Asn	Ile 460	Glu	Asn	Ser	His
His 465	Val	Arg	Glu	Ile	Gly 470	Val	Gln	Phe	Ser	Ala 475	Ala	Asp	Asn	Ser	Ser 480

Gly Gln Thr Ala Leu Tyr Val Asp Asn Val Thr Leu Arg 485 490

<210> 39
5 <211> 1551
 <212> ADN
 <213> Bacillus circulans

<400> 39

atggggtggt	ttttagtgat	tttacgcaag	tggttgattg	cttttgtcgc	atttttactg	60
atgttctcgt	ggactggaca	acttacgaac	aaagcacatg	ctgcaagcgg	attttatgta	120
agcggtacca	aattattgga	tgctacagga	caaccatttg	tgatgcgagg	agtcaatcat	180
gcgcacacat	ggtataaaga	tcaactatcc	accgcaatac	cagccattgc	taaaacaggt	240
gccaacacga	tacgtattgt	actggcgaat	ggacacaaat	ggacgcttga	tgatgtaaac	300
accgtcaaca	atattctcac	cctctgtgaa	caaaacaaac	taattgccgt	tttggaagta	360
catgacgcta	caggaagcga	tagtctttcc	gatttagaca	acgccgttaa	ttactggatt	420
ggtattaaaa	gcgcgttgat	cggcaaggaa	gaccgtgtaa	tcattaatat	agctaacgag	480
tggtacggaa	catgggatgg	agtcgcctgg	gctaatggtt	ataagcaagc	catacccaaa	540
ctgcgtaatg	ctggtctaac	tcatacgctg	attgttgact	ccgctggatg	gggacaatat	600
ccagattcgg	tcaaaaatta	tgggacagaa	gtactgaatg	cagacccgtt	aaaaaacaca	660
gtattctcta	tccatatgta	tgaatatgct	gggggcaatg	caagtaccgt	caaatccaat	720
attgacggtg	tgctgaacaa	gaatcttgca	ctgattatcg	gcgaatttgg	tggacaacat	780
acaaacggtg	atgtggatga	agccaccatt	atgagttatt	cccaagagaa	gggagtcggc	840
tggttggctt	ggtcctggaa	gggaaatagc	agtgatttgg	cttatctcga	tatgacaaat	900
gattgggctg	gtaactccct	cacctcgttc	ggtaataccg	tagtgaatgg	cagtaacggc	960
attaaagcaa	cttctgtgtt	atccggcatt	tttggaggtg	ttacgccaac	ctcaagccct	1020
acttctacac	ctacatctac	gccaacctca	actcctactc	ctacgccaag	tccgaccccg	1080
agtccaggta	ataacgggac	gatcttatat	gatttcgaaa	caggaactca	aggctggtcg	1140
ggaaacaata	tttcgggagg	cccatgggtc	accaatgaat	ggaaagcaac	gggagcgcaa	1200
actctcaaag	ccgatgtctc	cttacaatcc	aattccacgc	atagtctata	tataacctct	1260
aatcaaaatc	tgtctggaaa	aagcagtctg	aaagcaacgg	ttaagcatgc	gaactggggc	1320
aatatcggca	acgggattta	tgcaaaacta	tacgtaaaga	ccgggtccgg	gtggacatgg	1380
tacgattccg	gagagaatct	gattcagtca	aacgacggta	ccattttgac	actatccctc	1440
agcggcattt	cgaatttgtc	ctcagtcaaa	gaaattgggg	tagaattccg	cgcctcctca	1500
aacagtagtg	gccaatcagc	tatttatgta	gatagtgtta	gtctgcaata	a	1551

<211> 516 <212> PRT <213> Bacillus circulans

Met 1	Gly	Trp	Phe	Leu 5	Val	Ile	Leu	Arg	Lys 10	Trp	Leu	Ile	Ala	Phe 15	Val
Ala	Phe	Leu	Leu 20	Met	Phe	Ser	Trp	Thr 25	Gly	Gln	Leu	Thr	Asn 30	Lys	Ala
His	Ala	Ala 35	Ser	Gly	Phe	Tyr	Val 40	Ser	Gly	Thr	Lys	Leu 45	Leu	Asp	Ala
Thr	Gly 50	Gln	Pro	Phe	Val	Met 55	Arg	Gly	Val	Asn	His 60	Ala	His	Thr	Trp
Tyr 65	Lys	Asp	Gln	Leu	Ser 70	Thr	Ala	Ile	Pro	Ala 75	Ile	Ala	Lys	Thr	Gl ₃ 80
Ala	Asn	Thr	Ile	Arg 85	Ile	Val	Leu	Ala	Asn 90	Gly	His	Lys	Trp	Thr 95	Let
Asp	Asp	Val	Asn 100	Thr	Val	Asn	Asn	Ile 105	Leu	Thr	Leu	Cys	Glu 110	Gln	Ası
Lys	Leu	Ile 115	Ala	Val	Leu	Glu	Val 120	His	Asp	Ala	Thr	Gly 125	Ser	Asp	Sei
Leu	Ser 130	Asp	Leu	Asp	Asn	Ala 135	Val	Asn	Tyr	Trp	Ile 140	Gly	Ile	Lys	Sei
Ala 145	Leu	Ile	Gly	Lys	Glu 150	Asp	Arg	Val	Ile	Ile 155	Asn	Ile	Ala	Asn	Glu 160
Trp	Tyr	Gly	Thr	Trp 165	Asp	Gly	Val	Ala	Trp 170	Ala	Asn	Gly	Tyr	Lys 175	Glr
Ala	Ile	Pro	Lys 180	Leu	Arg	Asn	Ala	Gly 185	Leu	Thr	His	Thr	Leu 190	Ile	Val
Asp	Ser	Ala 195	Gly	Trp	Gly	Gln	Tyr 200	Pro	Asp	Ser	Val	Lys 205	Asn	Tyr	Gly
Thr	Glu 210	Val	Leu	Asn	Ala	Asp 215	Pro	Leu	Lys	Asn	Thr 220	Val	Phe	Ser	Ιlϵ

His 225	Met	Tyr	Glu	Tyr	Ala 230	Gly	Gly	Asn	Ala	Ser 235	Thr	Val	Lys	Ser	Asn 240
Ile	Asp	Gly	Val	Leu 245	Asn	Lys	Asn	Leu	Ala 250	Leu	Ile	Ile	Gly	Glu 255	Phe
Gly	Gly	Gln	His 260	Thr	Asn	Gly	Asp	Val 265	Asp	Glu	Ala	Thr	Ile 270	Met	Ser
Tyr	Ser	Gln 275	Glu	Lys	Gly	Val	Gly 280	Trp	Leu	Ala	Trp	Ser 285	Trp	Lys	Gly
Asn	Ser 290	Ser	Asp	Leu	Ala	Tyr 295	Leu	Asp	Met	Thr	Asn 300	Asp	Trp	Ala	Gly
Asn 305	Ser	Leu	Thr	Ser	Phe 310	Gly	Asn	Thr	Val	Val 315	Asn	Gly	Ser	Asn	Gly 320
Ile	Lys	Ala	Thr	Ser 325	Val	Leu	Ser	Gly	Ile 330	Phe	Gly	Gly	Val	Thr 335	Pro
Thr	Ser	Ser	Pro 340	Thr	Ser	Thr	Pro	Thr 345	Ser	Thr	Pro	Thr	Ser 350	Thr	Pro
Thr	Pro	Thr 355	Pro	Ser	Pro	Thr	Pro 360	Ser	Pro	Gly	Asn	Asn 365	Gly	Thr	Ile
Leu	Tyr 370	Asp	Phe	Glu	Thr	Gly 375	Thr	Gln	Gly	Trp	Ser 380	Gly	Asn	Asn	Ile
Ser 385	Gly	Gly	Pro	Trp	Val 390	Thr	Asn	Glu	Trp	Lys 395	Ala	Thr	Gly	Ala	Gln 400
Thr	Leu	Lys	Ala	Asp 405	Val	Ser	Leu	Gln	Ser 410	Asn	Ser	Thr	His	Ser 415	Leu
Tyr	Ile	Thr	Ser 420	Asn	Gln	Asn	Leu	Ser 425	Gly	Lys	Ser	Ser	Leu 430	Lys	Ala
Thr	Val	Lys 435	His	Ala	Asn	Trp	Gly 440	Asn	Ile	Gly	Asn	Gly 445	Ile	Tyr	Ala
Lys	Leu 4 50	Tyr	Val	Lys	Thr	Gly 455	Ser	Gly	Trp	Thr	Trp 460	Tyr	Asp	Ser	Gly
Glu 465	Asn	Leu	Ile	Gln	Ser 470	Asn	Asp	Gly	Thr	Ile 475	Leu	Thr	Leu	Ser	Leu 480

Ser Gly Ile Ser Asn Leu Ser Ser Val Lys Glu Ile Gly Val Glu Phe 485 490 495

Arg Ala Ser Ser Asn Ser Ser Gly Gln Ser Ala Ile Tyr Val Asp Ser 500 505 510

Val Ser Leu Gln 515

<210> 41 5 <211> 984 <212> ADN <213> Paenibacillus sp.

<400> 41

10

60 atgagacaac ttttagcaaa aggtatttta gctgcactgg tcatgatgtt agcgatgtat ggattgggga atctctcttc taaagcttcg gctgcaacag gtttttatgt aagcggtacc 120 acticataty attitacty taaacctttt gtaatgegeg gtgtcaatca ttegeatace 180 tggttcaaaa atgatctaaa tgcagccatc cctgctattg ccaaaacagg tgcaaataca 240 gtacgtatcg ttttatctaa tggtgttcag tatactagag atgatgtaaa ctcagtcaaa 300 360 aatattattt ccctggttaa ccaaaacaaa atgattgctg ttcttgaggt gcatgatgct accggtaaag acgattacgc ttctcttgat gccgctgtaa actactggat cagcatcaaa 420 480 gatgccttga ttggcaagga agatcgagtc attgttaata ttgccaatga atggtacggt 540 acatggaatg gcagtgcttg ggcagatggt tataagcagg ctattcccaa actaagaaat 600 gcaggcatca aaaacacttt aatcgttgat gccgccggct ggggacaatg tcctcaatcg 660 atcgttgatt acgggcaaag tgtatttgca gcagattcgc ttaaaaatac aattttctct attcacatgt atgaatatgc aggcggtaca gatgcgatcg tcaaaagcaa tatggaaaat 720 780 gtactgaaca aaggacttcc tttgatcatc ggtgaatttg gcgggcagca tacaaacggc gatgtagatg aacatgcaat tatgcgttat ggtcagcaaa aaggtgtagg ttggctggca 840 tggtcgtggt atggcaacaa tagtgaactc agttatctgg atttggctac aggtcccgcc 900 960 ggtagtctga caagtatcgg caatacgatt gtaaatgatc catatggtat caaagctacc 984 tcgaaaaaag cgggtatctt ctaa

<210> 42

<211> 327

<212> PRT

15

<213> Paenibacillus sp.

Met Arg Gln Leu Leu Ala Lys Gly Ile Leu Ala Ala Leu Val Met Met 1 5 10 10

Leu	Ala	Met	Tyr 20	Gly	Leu	Gly	Asn	Leu 25	Ser	Ser	Lys	Ala	Ser 30	Ala	Ala
Thr	Gly	Phe 35	Tyr	Val	Ser	Gly	Thr 40	Thr	Leu	Tyr	Asp	Ser 45	Thr	Gly	Lys
Pro	Phe 50	Val	Met	Arg	Gly	Val 55	Asn	His	Ser	His	Thr 60	Trp	Phe	Lys	Asn
Asp 65	Leu	Asn	Ala	Ala	Ile 70	Pro	Ala	Ile	Ala	Lys 75	Thr	Gly	Ala	Asn	Thr 80
Val	Arg	Ile	Val	Leu 85	Ser	Asn	Gly	Val	Gln 90	Tyr	Thr	Arg	Asp	Asp 95	Val
Asn	Ser	Val	Lys 100	Asn	Ile	Ile	Ser	Leu 105	Val	Asn	Gln	Asn	Lys 110	Met	Ile
Ala	Val	Leu 115	Glu	Val	His	Asp	Ala 120	Thr	Gly	Lys	Asp	Asp 125	Tyr	Ala	Ser
Leu	Asp 130	Ala	Ala	Val	Asn	Tyr 135	Trp	Ile	Ser	Ile	Lys 140	Asp	Ala	Leu	Ile
Gly 145	Lys	Glu	Asp	Arg	Val 150	Ile	Val	Asn	Ile	Ala 155	Asn	Glu	Trp	Tyr	Gly 160
Thr	Trp	Asn	Gly	Ser 165	Ala	Trp	Ala	Asp	Gly 170	Tyr	Lys	Gln	Ala	Ile 175	Pro
Lys	Leu	Arg	Asn 180	Ala	Gly	Ile	Lys	Asn 185	Thr	Leu	Ile	Val	Asp 190	Ala	Ala
Gly	Trp	Gly 195	Gln	Cys	Pro	Gln	Ser 200	Ile	Val	Asp	Tyr	Gly 205	Gln	Ser	Val
Phe	Ala 210	Ala	Asp	Ser	Leu	Lys 215	Asn	Thr	Ile	Phe	Ser 220	Ile	His	Met	Tyr
Glu 225	Tyr	Ala	Gly	Gly	Thr 230	Asp	Ala	Ile	Val	Lys 235	Ser	Asn	Met	Glu	Asn 240
Val	Leu	Asn	Lys	Gly 245	Leu	Pro	Leu	Ile	Ile 250	Gly	Glu	Phe	Gly	Gly 255	Gln
uie	Thr	Aer	G1 17	Δen	Va 1	Aen	G111	Hie	Δla	Tle	Mot	Arc	Таг	G1 17	G1 5

265

270

600

660

720

780

840

900

960

981

260

	Gln	Lys	Gly 275	Val	Gly	Trp	Leu	Ala 280	Trp	Ser	Trp	Tyr	Gly 285	Asn	Asn	Ser	
	Glu	Leu 290	Ser	Tyr	Leu	Asp	Leu 295	Ala	Thr	Gly	Pro	Ala 300	Gly	Ser	Leu	Thr	
	Ser 305		Gly	Asn	Thr	Ile 310	Val	Asn	Asp	Pro	Tyr 315	Gly	Ile	Lys	Ala	Thr 320	
	Ser	Lys	Lys	Ala	Gly 325	Ile	Phe										
	-	circul	ans														
<400	> 43																
а	tggccaa	agt t	gcaa	aagg	g tac	aato	tta:	acag	tcatt	g ca	ıgcac	tgat	gtt [.]	tgtca	att		60
t	tggggag	geg e	ggcg	cccaa	a ago	cgca	gca	gcta	caggt	t tt	tacg	tgaa	tgg	aggca	aaa		120
t	tgtacga	att c	tacg	ggtaa	a acc	attt	tac	atga	ggggt	a to	aato	atgg	gca	ctcct	gg		180
t	ttaaaaa	atg a	tttg	aacad	ggc	ctato	cct	gcga [.]	tcgca	aa aa	acgg	gtgc	caa	tacg	gta		240
c	gaattgt	tt t	atca	aacg	g tac	cacaa	tac	acca	aggat	g at	ctga	attc	cgt	aaaaa	aac		300
а	tcatta	atg t	cgta	aatgo	c aaa	caag	atg	attg	ctgto	jc tt	gaag	taca	cga	tgcca	act		360
ç	ggaaaga	atg a	cttc	aacto	gtt	ggat	gca	gcgg	tcaac	ct ac	tgga	taag	cat	caaaq	gaa		420
ç	cactgat	cg g	gaag	gaaga	a tcg	ggtt	att	gtaa	acatt	g ca	aacg	agtg	gta	cggaa	aca		480
t	ggaacgg	gaa g	cgcg	tgggd	tga	ıcggg	tac	aaaa	aagct	a tt	ccga	aatt	aag	agato	gcg		540

10

5

<210> 4 <211> 326

caaaaagcgg gaatctttta a

ggtattaaaa ataccttgat tgtagatgca gcaggctggg gtcagtaccc tcaatcgatc

gtcgattacg gacaaagcgt attcgccgcg gattcacaga aaaatacggc gttttccatt

cacatgtatg agtatgcagg caaggatgcg gccaccgtca aatccaatat ggaaaatgtg

ctgaataagg ggctggcctt aatcattggt gagttcggag gatatcacac caatggagat

gtcgatgaat atgcaatcat gaaatatggt ctggaaaaag gggtaggatg gcttgcatgg

tcttggtacg gtaatagctc tggattaaac tatcttgatt tggcaacagg acctaacggc

agtttgacga gctatggtaa tacggttgtc aatgatactt acggaattaa aaatacgtcc

<212> PRT <213> Bacillus circulans

<400> 44

Met 1	Ala	Lys	Leu	Gln 5	Lys	Gly	Thr	Ile	Leu 10	Thr	Val	Ile	Ala	Ala 15	Leu
Met	Phe	Val	Ile 20	Leu	Gly	Ser	Ala	Ala 25	Pro	Lys	Ala	Ala	Ala 30	Ala	Thr
Gly	Phe	Tyr 35	Val	Asn	Gly	Gly	Lys 40	Leu	Tyr	Asp	Ser	Thr 45	Gly	Lys	Pro
Phe	Tyr 50	Met	Arg	Gly	Ile	Asn 55	His	Gly	His	Ser	Trp 60	Phe	Lys	Asn	Asp
Leu 65	Asn	Thr	Ala	Ile	Pro 70	Ala	Ile	Ala	Lys	Thr 75	Gly	Ala	Asn	Thr	Val 80
Arg	Ile	Val	Leu	Ser 85	Asn	Gly	Thr	Gln	Tyr 90	Thr	Lys	Asp	Asp	Leu 95	Asn
Ser	Val	Lys	Asn 100	Ile	Ile	Asn	Val	Val 105	Asn	Ala	Asn	Lys	Met 110	Ile	Ala
Val	Leu	Glu 115	Val	His	Asp	Ala	Thr 120	Gly	Lys	Asp	Asp	Phe 125	Asn	Ser	Leu
Asp	Ala 130	Ala	Val	Asn	Tyr	Trp 135	Ile	Ser	Ile	Lys	Glu 140	Ala	Leu	Ile	Gly
Lys 145	Glu	Asp	Arg	Val	Ile 150	Val	Asn	Ile	Ala	Asn 155	Glu	Trp	Tyr	Gly	Thr 160
Trp	Asn	Gly	Ser	Ala 165	Trp	Ala	Asp	Gly	Tyr 170	Lys	Lys	Ala	Ile	Pro 175	Lys
Leu	Arg	Asp	Ala 180	Gly	Ile	Lys	Asn	Thr 185	Leu	Ile	Val	Asp	Ala 190	Ala	Gly
Trp	Gly	Gln 195	Tyr	Pro	Gln	Ser	Ile 200	Val	Asp	Tyr	Gly	Gln 205	Ser	Val	Phe
Ala	Ala 210	Asp	Ser	Gln	Lys	As n 215	Thr	Ala	Phe	Ser	Ile 220	His	Met	Tyr	Glu
Tyr 225	Ala	Gly	Lys	Asp	Ala 230	Ala	Thr	Val	Lys	Ser 235	Asn	Met	Glu	Asn	Val 240

	Leu	Asn	Lys	Gly	Leu 245	Ala	Leu	Ile	Ile	Gly 250	Glu	Phe	Gly	Gly	Tyr 255	His
	Thr	Asn	Gly	Asp 260	Val	Asp	Glu	Tyr	Ala 265	Ile	Met	Lys	Tyr	Gly 270	Leu	Glu
	Lys	Gly	Val 275	Gly	Trp	Leu	Ala	Trp 280	Ser	Trp	Tyr	Gly	As n 285	Ser	Ser	Gly
	Leu	Asn 290	Tyr	Leu	Asp	Leu	Ala 295	Thr	Gly	Pro	Asn	Gly 300	Ser	Leu	Thr	Ser
	Tyr 305	Gly	Asn	Thr	Val	Val 310	Asn	Asp	Thr	Tyr	Gly 315	Ile	Lys	Asn	Thr	Ser 320
	Gln	Lys	Ala	Gly	Ile 325	Phe										
,																
-	ın															

<210> 45 5 <211> 1110 <212> ADN <213> Bacillus nealsonii

<400> 45

atggttgtga	aaaaattatc	aagttttatt	ctaattttac	tgttagttac	ttctgctttg	60
tttattactg	attcaaaagc	aagtgctgct	tcgggatttt	atgtaagcgg	taccacttta	120
tatgatgcaa	cgggtaaacc	gtttactatg	agaggtgtaa	atcatgctca	ttcttggttt	180
aaagaagatt	cagcagctgc	tattccagca	atagcagcaa	ctggagcaaa	cacagtaaga	240
attgttttat	ctgatggtgg	acaatacacc	aaagatgata	ttaatactgt	taaaagcctt	300
ttgtcattgg	cagaaaaaat	aaacttgcat	tctggagtca	tgacgcacag	aaaagacgat	360
gtggaatctt	taaatcgtgc	agtcgattat	tggatcagct	taaaagacac	attgataggc	420
aaagaagata	aagtgataat	aaacattgcg	aatgaatggt	atggtacttg	ggatggtgcg	480
gcatgggcag	ctggttataa	acaagctatt	ccaaagttac	ggaatgcagg	cttaaatcat	540
actctaataa	ttgattctgc	tggatgggga	caatacccag	cttccattca	taattatgga	600
aaagaggtat	ttaatgcgga	tccattgaaa	aatacaatgt	tctccataca	tatgtatgag	660
tacgctggtg	gggatgcagc	aactgttaag	tcaaatattg	atggtgtctt	aaaccaagga	720
ttagctttaa	taataggaga	gtttggacaa	aaacatacaa	atggagatgt	agatgaagca	780
accatcatga	gttattcaca	gcaaaaaaat	atcggttggc	ttgcatggtc	ttggaaagga	840
aatagcacag	attggagcta	tctggattta	agcaacgatt	ggtctggtaa	cagtttaact	900
gattggggta	atacggttgt	taatggggca	aatgggttaa	aagccacttc	aaaactaagc	960
ggagtattcg	gtageteage	aggaacaaat	aatatattot	atgattttga	aagcggtaat.	1020
caaaactgga	ctggatcaaa	tatcgcgggt	ggaccttgga	acgaattcaa	gcttgatatc	1080
attcaggacg	agcctcagac	tccagcgtaa				1110

<210> 46

<211> 369 <212> PRT

5

<213> Bacillus nealsonii

Met 1	Val	Val	Lys	Lys 5	Leu	Ser	Ser	Phe	Ile 10	Leu	Ile	Leu	Leu	Leu 15	Val
Thr	Ser	Ala	Leu 20	Phe	Ile	Thr	Asp	Ser 25	Lys	Ala	Ser	Ala	Ala 30	Ser	Gly
Phe	Tyr	Val 35	Ser	Gly	Thr	Thr	Leu 40	Tyr	Asp	Ala	Thr	Gly 45	Lys	Pro	Phe
	50	-	-			55				-	Phe 60	-		-	
65					70					75	Ala				80
				85				_	90	_	Asp			95	
	-		100					105	-		Asn		110		_
		115		-	-	-	120				Leu	125	-		
	130					135					Gly 140 Thr				
145					150					155	Lys				160
	-			165	-	-			170		Gly		-	175	
Эту	пец	noil	180	1111	шеu	116	116	185	DET	nid	GTÄ	TTP	190	GIII	TYL

Pro Ala Ser Ile His Asn Tyr Gly Lys Glu Val Phe Asn Ala Asp Pro

		195					200					205			
Leu	Lys 210	Asn	Thr	Met	Phe	Ser 215	Ile	His	Met	Tyr	Glu 220	Tyr	Ala	Gly	Gly
Asp 225	Ala	Ala	Thr	Val	Lys 230	Ser	Asn	Ile	Asp	Gly 235	Val	Leu	Asn	Gln	Gly 240
Leu	Ala	Leu	Ile	Ile 245	Gly	Glu	Phe	Gly	Gln 250	Lys	His	Thr	Asn	Gly 255	Asp
Val	Asp	Glu	Ala 260	Thr	Ile	Met	Ser	Tyr 265	Ser	Gln	Gln	Lys	Asn 270	Ile	Gly
Trp	Leu	Ala 275	Trp	Ser	Trp	Lys	Gly 280	Asn	Ser	Thr	Asp	Trp 285	Ser	Tyr	Leu
Asp	Leu 290	Ser	Asn	Asp	Trp	Ser 295	Gly	Asn	Ser	Leu	Thr 300	Asp	Trp	Gly	Asn
Thr 305	Val	Val	Asn	Gly	Ala 310	Asn	Gly	Leu	Lys	Ala 315	Thr	Ser	Lys	Leu	Ser 320
Gly	Val	Phe	Gly	Ser 325	Ser	Ala	Gly	Thr	Asn 330	Asn	Ile	Leu	Tyr	Asp 335	Phe
Glu	Ser	Gly	Asn 340	Gln	Asn	Trp	Thr	Gly 345	Ser	Asn	Ile	Ala	Gly 350	Gly	Pro
Trp	Asn	Glu 355	Phe	Lys	Leu	Asp	Ile 360		Gln	Asp	Glu	Pro 365	Gln	Thr	Pro
Ala															
<210> 47 <211> 984 <212> ADN <213> <i>Bacillu</i> s	s circul	ans													

87

5

atgatgttga	tatggatgca	gggatggaag	tctattctag	tcgcgatctt	ggcgtgtgtg	60
tcagtaggcg	gtgggcttcc	tagtccagaa	gcagccacag	gattttatgt	aaacggtacc	120
aagctgtatg	attcaacggg	caaggccttt	gtgatgaggg	gtgtaaatca	tccccacacc	180
tggtacaaga	atgatctgaa	cgcggctatt	ccggctatcg	cgcaaacggg	agccaatacc	240
gtacgagtcg	tcttgtcgaa	cgggtcgcaa	tggaccaagg	atgacctgaa	ctccgtcaac	300
agtatcatct	cgctggtgtc	gcagcatcaa	atgatagccg	ttctggaggt	gcatgatgcg	360
acaggcaaag	atgagtatgc	ttcccttgaa	gcggccgtcg	actattggat	cagcatcaaa	420
ggggcattga	tcggaaaaga	agaccgcgtc	atcgtcaata	ttgctaatga	atggtatgga	480
aattggaaca	gcagcggatg	ggccgatggt	tataagcagg	ccattcccaa	attaagaaac	540
gcgggcatta	agaatacgtt	gatcgttgat	gcagcgggat	gggggcaata	cccgcaatcc	600
atcgtggatg	agggggccgc	ggtatttgct	tccgatcaac	tgaagaatac	ggtattctcc	660
atccatatgt	atgagtatgc	cggtaaggat	gccgctacgg	tgaaaacgaa	tatggacgat	720
gttttaaaca	aaggattgcc	tttaatcatt	ggggagttcg	gcggctatca	tcaaggtgcc	780
gatgtcgatg	agattgctat	tatgaagtac	ggacagcaga	aggaagtggg	ctggctggct	840
tggtcctggt	acggaaacag	cccggagctg	aacgatttgg	atctggctgc	agggccaagc	900
ggaaacctga	ccggctgggg	aaacacggtg	gttcatggaa	ccgacgggat	tcagcaaacc	960
tccaagaaag	cgggcattta	ttaa				984

<210> 48

<211> 327

<212> PRT

5

<213> Bacillus circulans

	Leu	-	Gln	-	-	-		Val	Ala 15	Ile

Leu Ala Cys Val Ser Val Gly Gly Leu Pro Ser Pro Glu Ala Ala 20 25 30

Thr Gly Phe Tyr Val Asn Gly Thr Lys Leu Tyr Asp Ser Thr Gly Lys 35 40 45

Ala Phe Val Met Arg Gly Val Asn His Pro His Thr Trp Tyr Lys Asn 50 60

Asp Leu Asn Ala Ala Ile Pro Ala Ile Ala Gln Thr Gly Ala Asn Thr 65 70 75 80

Val Arg Val Val Leu Ser Asn Gly Ser Gln Trp Thr Lys Asp Asp Leu 85 90 95

Asn Ser Val Asn Ser Ile Ile Ser Leu Val Ser Gln His Gln Met Ile 100 105 110

Ala Val Leu Glu Val His Asp Ala Thr Gly Lys Asp Glu Tyr Ala Ser 115 120 125

Leu	Glu 130	Ala	Ala	Val	Asp	Tyr 135	Trp	Ile	Ser	Ile	Lys 140	Gly	Ala	Leu	Ile
Gly 145	Lys	Glu	Asp	Arg	Val 150	Ile	Val	Asn	Ile	Ala 155	Asn	Glu	Trp	Tyr	Gly 160
Asn	Trp	Asn	Ser	Ser 165	Gly	Trp	Ala	Asp	Gly 170	Tyr	Lys	Gln	Ala	Ile 175	Pro
Lys	Leu	Arg	Asn 180	Ala	Gly	Ile	Lys	Asn 185	Thr	Leu	Ile	Val	Asp 190	Ala	Ala
Gly	Trp	Gly 195	Gln	Tyr	Pro	Gln	Ser 200	Ile	Val	Asp	Glu	Gly 205	Ala	Ala	Val
Phe	Ala 210	Ser	Asp	Gln	Leu	Lys 215	Asn	Thr	Val	Phe	Ser 220	Ile	His	Met	Tyr
Glu 225	Tyr	Ala	Gly	Lys	Asp 230	Ala	Ala	Thr	Val	Lys 235	Thr	Asn	Met	Asp	Asp 240
Val	Leu	Asn	Lys	Gly 245	Leu	Pro	Leu	Ile	Ile 250	Gly	Glu	Phe	Gly	Gly 255	Tyr
His	Gln	Gly	Ala 260	Asp	Val	Asp	Glu	Ile 265	Ala	Ile	Met	Lys	Tyr 270	Gly	Gln
Gln	Lys	Glu 275	Val	Gly	Trp	Leu	Ala 280	Trp	Ser	Trp	Tyr	Gly 285	Asn	Ser	Pro
Glu	Leu 290	Asn	Asp	Leu	Asp	Leu 295	Ala	Ala	Gly	Pro	Ser 300	Gly	Asn	Leu	Thr
Gly 305	Trp	Gly	Asn	Thr	Val 310	Val	His	Gly	Thr	Asp 315	Gly	Ile	Gln	Gln	Thr 320
Ser	Lys	Lys	Ala	Gly 325	Ile	Tyr									

REIVINDICACIONES

1. Una composición de detergente que comprende al menos una enzima que tiene una secuencia de aminoácidos que tiene al menos un 74 % de identidad de secuencia con la secuencia de aminoácidos de la SEQ ID NO: 16, en el que la al menos una enzima tiene actividad degradativa de manano.

5

10

35

- 2. La composición de detergente de la reivindicación 1, en la que la al menos una enzima tiene una secuencia de aminoácidos que tiene al menos un 75 %, al menos un 76 %, al menos un 77 %, al menos un 78 %, al menos un 79 %, al menos un 80 %, al menos un 81 %, al menos un 82 %, al menos un 83 %, al menos un 84 %, al menos un 85 %, al menos un 86 %, al menos un 87 %, al menos un 88 %, al menos un 89 %, al menos un 90 %, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 96 %, al menos un 97 %, al menos un 98% o al menos un 99% de identidad de secuencia con la secuencia de aminoácidos de la SEQ ID NO: 16.
- 3. La composición de detergente de una cualquiera de las reivindicaciones 1 a 2, comprendiendo la composición además una o más enzimas adicionales seleccionadas del grupo que consiste en proteasa, lipasa, cutinasa, amilasa, carbohidrasa, celulasa, pectinasa, pectato liasa, mananasa, arabinasa, galactanasa, xilanasa, oxidasa, xantanasa, lacasa y/o peroxidasa.
- 4. La composición de detergente según una cualquiera de las reivindicaciones 1 a 3, en la que la composición está en forma de una pastilla, un comprimido homogéneo, un comprimido que tiene dos o más capas, una bolsa que tiene uno o más compartimentos, un polvo regular o compacto, un gránulo, una pasta, un gel, o un líquido regular, compacto o concentrado.
- 5. La composición detergente de una cualquiera de las reivindicaciones 1 a 4, en la que la composición de detergente es una composición de detergente de lavandería, preferentemente una composición de detergente de lavandería líquida o sólida.
 - 6. Uso de una composición de detergente de cualquiera de las reivindicaciones 1 a 5 para degradar manano.
- 30 7. Uso de una composición de detergente según una cualquiera de las reivindicaciones 1 a 5 en un proceso de lavandería.
 - 8. Un método para eliminar una mancha de una superficie, que comprende poner en contacto la superficie con una composición de detergente según una cualquiera de las reivindicaciones 1 a 5.
 - 9. Un método para degradar manano que comprende aplicar al manano una composición de detergente según cualquiera de las reivindicaciones 1 a 5, en el que, preferentemente, el manano está en la superficie de un textil.

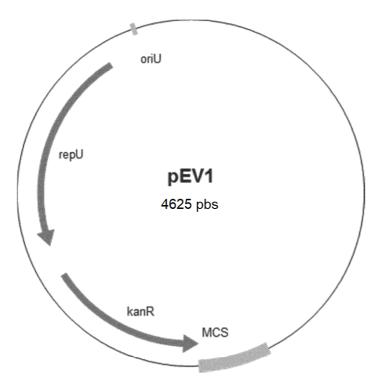


Fig.1

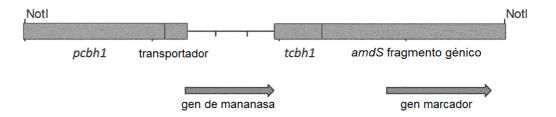


Fig. 2

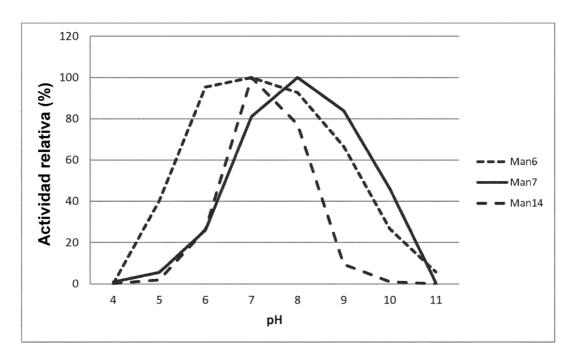


Fig. 3

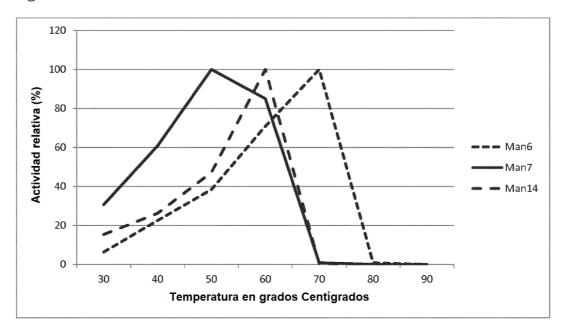


Fig. 4

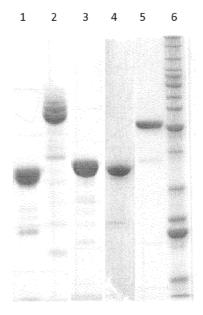


Fig. 5

- 1. Man6 Tr
- 2. Man7 Tr
- 3. Man14
- 4. Man6 Bs
- 5. Man7 Bs
- 6. Marcador-Pm

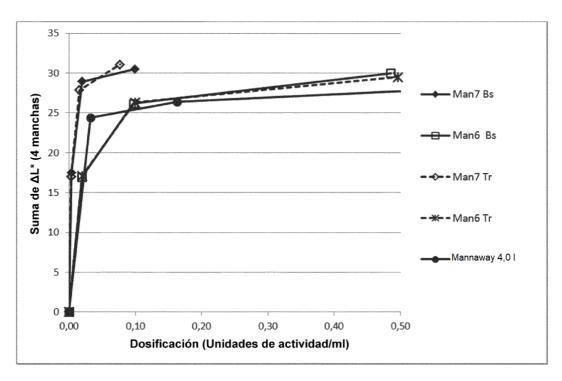


Fig 6.

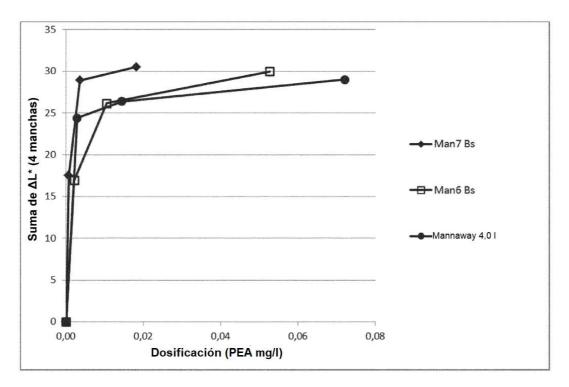


Fig 7.

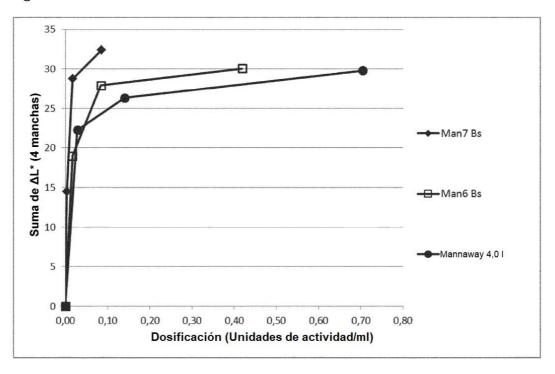


Fig 8.

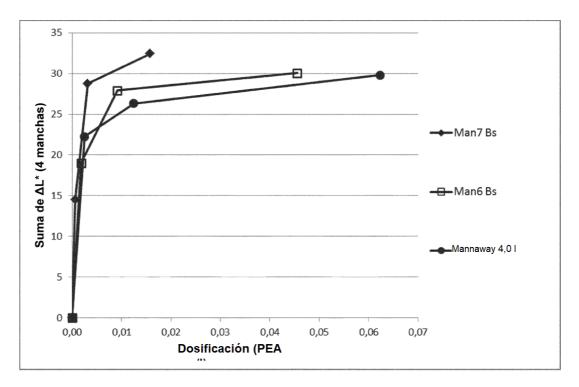


Fig 9.

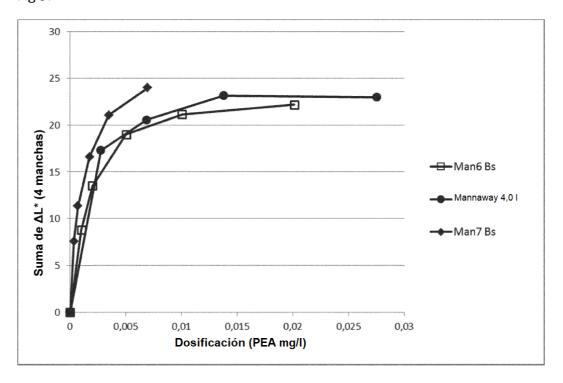


Fig 10.

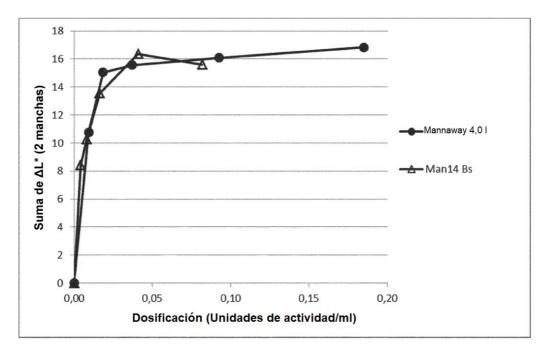


Fig. 11

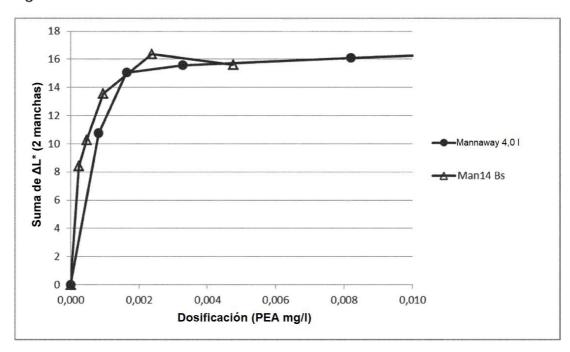


Fig. 12

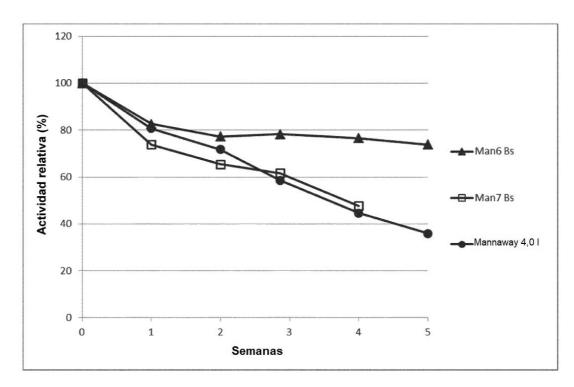


Fig. 13

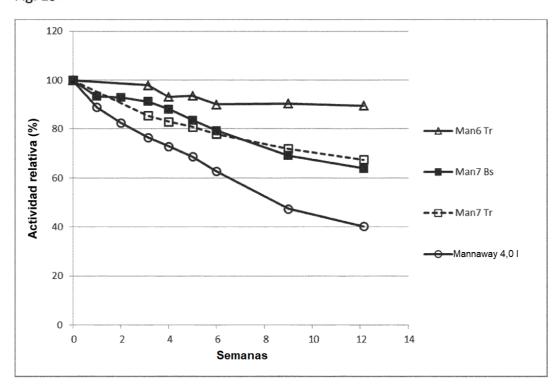


Fig. 14