

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 731 325

61 Int. Cl.:

C12Q 1/689 (2008.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 01.10.2014 PCT/GB2014/052970

(87) Fecha y número de publicación internacional: 09.04.2015 WO15049516

(96) Fecha de presentación y número de la solicitud europea: 01.10.2014 E 14789348 (1)

(97) Fecha y número de publicación de la concesión europea: 03.04.2019 EP 3052650

(54) Título: Detección de micobacterias usando bacteriófagos

(30) Prioridad:

01.10.2013 GB 201317392 22.11.2013 GB 201320613

Fecha de publicación y mención en BOPI de la traducción de la patente: 15.11.2019

(73) Titular/es:

THE UNIVERSITY OF NOTTINGHAM (100.0%) University Park Nottingham, Nottinghamshire NG7 2RD, GB

(72) Inventor/es:

REES, CATHERINE y SWIFT, BENJAMIN

(74) Agente/Representante:

SÁEZ MAESO, Ana

DESCRIPCIÓN

Detección de micobacterias usando bacteriófagos

5

10

15

Esta invención se refiere a un método para detectar micobacterias viables.

La detección de micobacterias resulta de interés para una diversidad de aplicaciones. Resulta particularmente útil para poder detectar la presencia del organismo en personas o animales para el diagnóstico de infecciones micobacterianas. La detección rápida y confiable de infección por micobacterias resulta importante para controlar enfermedad, y la capacidad de usar técnicas de alto rendimiento permite la selección de grandes cantidades de muestras. Resultaría muy valiosa, por ejemplo, para proporcionar selección de alto rendimiento que pudiera evaluar muestras de manera rápida y confiable a partir de animales individuales en una manada de ganado en cuanto a *Mycobacterium bovis* (TB bovina) o *Mycobacterium avium* subsp. *paratuberculosis* (MAP), siendo ambas enfermedades endémicas de ganado en Reino Unido. Ambos organismos puede detectarse en la sangre de animales que se exponen a MAP, incluso cuando se encuentran en estado de enfermedad subclínico. La detección rápida y confiable de estos organismos en una manada resulta una etapa muy importante en el control de enfermedad.

Los métodos rápidos actuales para detección de micobacterias viable resultan capaces de detectar y enumerar MAP viable en sangre en dos días. Sin embargo, el método que se usa resulta laborioso y sería difícil ampliarlo para análisis de muestras de alto rendimiento. En un entorno de veterinaria, donde animales de una manada entera requieren evaluación, frecuentemente resulta necesario evaluar cientos de muestras al mismo tiempo, y los métodos actuales resultan demasiados costosos y laboriosos para realizar ensayos de gran escala que resultan factibles.

Los ensayos clínicos estándares actuales para TB constituyen ensayos basados en anticuerpos (respuesta inmunológica). El problema con estos consiste en que detectan la respuesta del sistema inmunológico del huésped con respecto al organismo en lugar de detectar organismos viables. Se conoce que la sensibilidad de estos ensayos es baja cuando se usa como un diagnóstico, requiriendo la repetición de resultados o etapas avanzadas de infección antes de obtener un resultado positivo claro. Una desventaja en particular de ensayos basados en anticuerpos consiste en que estos ensayos tampoco distinguen entre animales infectados y vacunados.

En métodos basados en PCR anteriores para detectar micobacterias la sensibilidad del ensayo se limita por la capacidad de recuperar ADN a partir de las micobacterias que resultan físicamente robustas y difíciles de lisar.

Además, los métodos basados en PCR anteriores no diferencian de manera sencilla entre células vivas y muertas. En la industria alimentaria especialmente, la capacidad de diferenciar entre micobacterias vivas y muertas resulta muy importante debido a que los alimentos procesados pueden contener todavía el ADN de células inactivadas. Potencialmente, la capacidad de distinguir entre micobacterias vivas y muertas resulta importante también en diagnósticos clínicos usando muestras de sangre, debido a que se detectarían también células muertas en macrófagos, incluso si el animal se encontraba recuperándose de la infección.

Muchas de la mayoría de micobacterias que causan enfermedad, tales como *Mycobacterium avium* subsp. paratuberculosis (MAP), *Mycobacterium tuberculosis*, *Mycobacterium bovis* son de crecimiento lento y, por lo tanto, difíciles de cultivar. La duración de tiempo que se requiere para cultivar estas especies vuelve difícil el uso de cultivos en un ensayo diagnóstico para infección.

SWIFT BENJAMIN M C ET AL: "Development of a rapid phase-based method for the detection of viable Mycobacterium avium subsp. paratuberculosis in blood within 48 h", JOURNAL OF MICROBIOLOGICAL METHODS, vol. 94, no. 3, 25 de junio de 2013, páginas 175-179 y BOTSARIS GEORGE ET AL: "Detection of Mycobacterium avium subsp. paratuberculosis in bulk tank milk by combined phage-PCR assay: Evidence that plaque number is a good predictor of MAP", INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, ELSEVIER BV, NL, vol. 164, no. 1, 3 de abril de 2013, páginas 76-80, se refieren a la detección de micobacterias.

Resultaría ventajoso proporcionar un método específico y sensible para detectar micobacterias viables, y, en particular, un método que podría realizarse en un formato de "tubo único" que tiene el potencial de automatizarse para permitir la evaluación rápida y rentable de grandes cantidades de muestra. Resultaría particularmente ventajoso proporcionar un ensayo que podría diferenciar entre individuos infectados y vacunados.

La presente invención se define en las reivindicaciones adjuntas.

60

45

50

En un primer aspecto la presente divulgación se refiere a un método para evaluar micobacterias dianas en una mezcla de reacción que comprende las etapas de:

a) proporcionar una mezcla de reacción;

65

b) mezclar un bacteriófago con la mezcla de reacción en condiciones adecuadas para permitir que el bacteriófago infecte cualquiera de las micobacterias dianas que se presentan en la mezcla de reacción;

- c) permitir tiempo para que el bacteriófago lise micobacterias dianas vivas infectadas;
- 5 e) analizar ADN a partir de micobacterias lisadas para identificar una secuencia de ADN distintiva que ocurre en las especies de *Mycobacterium* dianas

El método puede comprender además la etapa d) separar cualquiera de las células no lisadas a partir de la mezcla de reacción. La etapa d) separar cualquiera de las células no lisadas a partir de la mezcla de reacción puede realizarse entre las etapas c) y e).

En otro aspecto la divulgación se refiere a un método para evaluar micobacterias dianas en una mezcla de reacción que comprende las etapas de:

- 15 a) proporcionar una mezcla de reacción;
 - b) mezclar un bacteriófago con la mezcla de reacción en condiciones adecuadas para permitir que el bacteriófago infecte cualquiera de las micobacterias dianas que se presentan en la mezcla de reacción:
- 20 c) permitir tiempo para que el bacteriófago lise micobacterias dianas vivas infectadas;
 - d) separar cualquiera de las células no lisadas a partir de la mezcla de reacción
- e) analizar ADN a partir de micobacterias lisadas para identificar una secuencia de ADN distintiva que ocurre en las especies de *Mycobacterium* dianas.

El bacteriófago que se usa puede seleccionarse debido a que resulta un bacteriófago que infecta específicamente la cepa micobacteriana diana para detectar. El bacteriófago que se usa puede seleccionarse debido a que constituye un bacteriófago de amplio rango de huésped e infecta un rango de cepas micobacterianas que incluye la cepa micobacteriana diana. El bacteriófago que se usa puede que no sea específico para la cepa micobacteriana diana pero puede infectar un rango de cepas bacterianas.

Los bacteriófagos resultan solo capaces de lisar células viables (también denominadas células competentes en replicación). Micobacterias viables en una muestra permite que el bacteriófago se replique lo que da como resultado eventualmente lisis de célula huésped. Sin embargo, micobacterias no viables no puede sostener la replicación de bacteriófago y no se lisan por acción del bacteriófago. Esto permite que el método distinga entre muestras que contienen micobacterias dianas viables.

Células micobacterianas no lisadas pueden retirarse a partir de la mezcla de reacción entre etapas c) y e).

40 Micobacterias no lisadas puede retirarse a partir de la mezcla de reacción mediante cualquier método adecuado.

Micobacterias no lisadas puede retirarse a partir de la mezcla de reacción mediante centrifugación, filtración o mediante métodos de barrera tales como columnas de centrifugado.

De manera alternativa, sustancialmente todas las micobacterias (viables y no viables) en una mezcla de reacción pueden unirse a un sustrato antes del agregado del bacteriófago. Luego, a continuación del agregado del bacteriófago y lisis de cualquiera de las micobacterias viables de unión, el sustrato puede retirarse luego, retirando así cualquiera de las micobacterias no lisadas (no viables). El sustrato puede ser, por ejemplo, una columna de cromatografía o perlas magnéticas u otro material recubierto con un polipéptido que se une específicamente a las micobacterias dianas.

La mezcla de reacción puede ser cualquier muestra de la cual se sospecha que contiene micobacterias. Por ejemplo, la mezcla de reacción puede ser una muestra de sangre o tejido o una muestra de alimento o alimentos de animales. La mezcla de reacción puede constituirse al mezclar o disolver una muestra de la cual se sospecha que contiene micobacterias en un disolvente, solución reguladora. La mezcla de reacción puede prepararse usando un sustrato que puede mezclarse con una muestra de la cual se sospecha que contiene micobacterias y retirando luego el sustrato a partir de la muestra con cualquiera de las micobacterias que se presentan adheridas al sustrato. Luego, el sustrato puede ponerse en contacto con, mezclarse con, o disolverse en un líquido para proporcionar la mezcla de reacción.

- 60 La mezcla de reacción puede prepararse mediante un método que comprende las etapas de:
 - i) proporcionar una muestra de la cual se sospecha que comprende una célula micobacteriana diana;
 - ii) proporcionar un sustrato que se une específicamente a la célula micobacteriana diana;

iii) poner en contacto la muestra con un sustrato en condiciones adecuadas para generar que la célula micobacteriana diana se una con el sustrato; y

3

65

55

30

- iv) retirar el sustrato y cualquiera de las micobacterias de unión a partir de la muestra; y
- 5 v) proporcionar una mezcla de reacción que comprende el sustrato y cualquiera de las micobacterias de unión.

El sustrato puede ser cualquier sustrato, por ejemplo, un sustrato que puede sostener un sistema de unión biotinaavidina. El sustrato puede ser, por ejemplo, perlas magnéticas, imanes de varilla o una superficie tal como el fondo de una placa de 96 pozos. El sustrato puede constituirse para unirse específicamente a la célula micobacteriana diana mediante recubrimiento de esta con una sustancia que se une específicamente a las micobacterias dianas, por ejemplo, el sustrato puede recubrirse con un péptido que se une específicamente a las micobacterias dianas. El sustrato puede recubrirse con un anticuerpo que se une específicamente a las micobacterias dianas.

La célula micobacteriana diana puede ser cualquiera de las especies que corresponden al género *Mycobacterium*, por ejemplo, *Mycobacterium avium* subsp. *paratuberculosis* (MAP), *Mycobacterium tuberculosis*, *Mycobacterium bovis* en *Mycobacterium leprae*, *Mycobacterium avium*. La célula micobacteriana diana puede corresponder a cualquiera de las especies micobacterianas de interés.

La célula micobacteriana diana puede ser cepa K10 de Mycobacterium avium subsp. paratuberculosis, o B4.

20

10

El bacteriófago puede ser cualquier bacteriófago lítico que resulta capaz de infectar y lisar las micobacterias dianas. El bacteriófago puede ser específico con respecto a las micobacterias dianas. El bacteriófago puede ser cualquier bacteriófago de amplio rango de huésped que resulta capaz de infectar y lisar las micobacterias dianas. Por ejemplo, el bacteriófago puede ser bacteriófago D29 o TM4.

25

50

- El bacteriófago puede lisar solamente micobacterias dianas vivas. El bacteriófago no puede lisar micobacterias muertas o no viables.
- El ADN a partir de *Mycobacterium* lisada puede analizarse mediante cualquier técnica adecuada para identificar secuencias distintivas que se encuentran en la célula micobacteriana diana. La mezcla de reacción puede analizarse para identificar secuencias distintivas a partir de una o más de una de las micobacterias dianas diferentes, por ejemplo, a partir de una o dos micobacterias dianas diferentes, o tres micobacterias dianas diferentes, o cuatro micobacterias dianas diferentes, o seis micobacterias dianas diferentes, o siete micobacterias dianas diferentes, u ocho micobacterias dianas diferentes, o nueve micobacterias dianas diferentes, o diez micobacterias dianas diferentes o más. El ADN puede analizarse mediante PCR usando cebadores que se anillan, que permiten amplificación, específicamente con respecto a una secuencia de ADN distintiva que ocurre en la célula micobacteriana diana o cada una de las especies micobacterianas dianas.
- El ADN puede analizarse mediante PCR usando cebadores que se anillan específicamente a una secuencia de ADN distintiva que ocurre en la célula micobacteriana diana o cada uno de los tipos de micobacterias dianas. La secuencia de ADN distintiva puede ser una secuencia que tiene al menos el 60% de identidad, al menos el 70% de identidad, al menos el 80% de identidad, al menos el 90% de identidad, al menos el 95% de identidad, 98% de identidad o 100% de identidad con respecto a la SEQ ID No. 1. Los cebadores pueden anillarse específicamente a la secuencia de ADN distintiva y/o pueden permitir amplificación del ADN distintivo específico. El cebador directo puede tener, por ejemplo, la secuencia 5'-CAG CGG CTG CTT TAT ATT CC-3' (SEQ ID NO: 2) y/o el cebador inverso puede tener, por ejemplo, la secuencia 5'-GGC ACG GCT CTT GTT GTA GT-3' (SEQ ID NO: 3).

Para aumentar la especificidad pueden considerarse más de una, más de dos, más de tres, más de cuatro, más de cinco, más de seis, más de siete o más de ocho secuencias distintivas para cada una de las micobacterias para detectarse.

- La secuencia de ADN distintiva puede constituir el elemento de inserción IS900 (SEQ ID NO: 1 que se muestra en la Figura 11) o la secuencia de gen única f57 para *Mycobacterium avium* subsp. *paratuberculosis* (MAP).
- La etapa de fusión de ADN en la PCR puede llevarse a cabo a una temperatura que no lisa células micobacterianas. Si la etapa de fusión de ADN de la PCR se lleva a cabo a una temperatura que no lisa las células micobacterianas, entonces no es necesario retirar las células micobacterianas no lisadas a partir de la mezcla de reacción antes de la etapa de PCR. La etapa de fusión de ADN en la PCR puede llevarse a cabo a menos de 92 °C, a menos de 93 °C, a menos de 94 °C o a menos de 95 °C.

La muestra puede ser una muestra a partir de un animal o humano del que se sospecha que se encuentra infectado con la micobacteria diana.

La muestra puede ser una muestra de sangre, fluido corporal o tejido. La muestra puede ser una muestra de sangre, suero, esputo, leche, saliva, urina, heces. La muestra puede ser una muestra de un producto de consumo humano o animal. Por ejemplo, la muestra puede ser una muestra de leche, queso o un producto lácteo que contiene leche sin procesar.

El método puede realizarse en un recipiente de reacción, por ejemplo, un tubo de ensayo, un tubo de microcentrifugación o un pozo de una placa de múltiples pozos. Las etapas a) a e) del método pueden realizarse en un recipiente de reacción. Resulta ventajoso que el método puede realizarse en un recipiente de reacción debido a que permite que el método se realice como un método de selección de alto rendimiento. El método puede ser un método de selección de alto rendimiento. Esto resulta ventajoso si una gran cantidad de muestras requieren de evaluación, por ejemplo, si una manada de ganado necesita evaluarse para TB bovina.

El método puede realizarse en 24 horas o en 48 horas. Las etapas a) a e), y en particular las etapas a) a c) del método pueden realizarse en 24 horas o en 48 horas. Esto resulta ventajoso debido a que puede determinarse si existen micobacterias vivas o viables en una muestra en 24 horas o en 48 horas. Preferiblemente, los resultados pueden obtenerse en menos de 48 horas, menos de 24 horas, menos de 12 horas, menos de 10 horas, menos de 8 horas, menos de 6 horas, o 5 horas o menos.

15

25

30

35

40

5

El método puede comprender el uso de anticuerpos, por ejemplo, pueden usarse anticuerpos como un agente de captura para unirse a células no lisadas.

El método puede comprender el uso de anticuerpos. El método puede comprender el uso de anticuerpos para identificar micobacterias o infección por micobacterias. El método puede comprender el uso de anticuerpos como una agente de captura para unirse a células no lisadas pero no para identificar micobacterias o infección por micobacterias.

El método de la invención resultaría capaz de distinguir entre un individuo que ha sido vacunado contra una micobacteria y un individuo que ha sido infectado con la micobacteria. Esto permite llevar a cabo vacunación de los animales, por ejemplo humanos y vacas, contra micobacterias y un ensayo que se encuentra todavía disponible para detectar infección micobacteriana. Los métodos anteriores para detectar micobacterias que usan anticuerpos antimicobacterianos que se producen por un individuo infectado como marcadores de infección no pueden usarse en animales que han sido vacunados debido a que la reacción inmunológica con respecto a la vacuna produce anticuerpos que pueden detectarse mediante estos ensayos. El presente método puede distinguir entre un animal infectado y un animal vacunado debido a que no detecta anticuerpos sino que detecta células micobacterianas viables.

El método de la invención permite además la detección de micobacterias, por ejemplo en muestras de sangre, en etapas de infección muy tempranas, y antes de que cualquiera de los síntomas clínicos sean visibles. El método puede ser capaz de identificar la presencia de micobacterias vivas cuando se presentan en una muestra en números muy bajos, por ejemplo, menos de 10 células por muestra.

El método de la invención podría usarse también para monitorear la eficacia de un tratamiento, y para buscar si los números de bacterias se reducen a medida que el tratamiento se aplica. Dos o más micobacterias dianas diferentes pueden identificarse en una muestra al mismo tiempo mediante el uso de un bacteriófago de amplio rango de huésped o mediante el uso de dos o más bacteriófagos que infectan específicamente las dos o más micobacterias dianas diferentes. Las secuencias distintivas a partir de dos o más micobacterias diferentes pueden identificarse mediante cualquier método capaz de identificar una secuencia de ADN específica, por ejemplo, usando reacciones de PCR con cebadores específicos para cada micobacteria diana. Esto permite identificar dos o más micobacterias dianas diferentes en una muestra al mismo tiempo.

45

En otro aspecto la presente invención proporciona el uso de un bacteriófago que infecta específicamente una especie micobacteriana diana en un método para detectar infección mediante la micobacteria diana en el que el bacteriófago lisa la micobacteria diana para liberar ADN micobacteriano y se identifican secuencias de ADN micobacteriano distintivas mediante PCR u otro método capaz de identificar una secuencia de ADN específica.

50

En otro aspecto, la presente divulgación se refiere a un kit adecuado para realizar el método de la presente invención.

Un kit puede comprender un bacteriófago que resulta específico con respecto a una micobacteria diana e instrucciones para su uso de acuerdo con el método de la presente divulgación.

55

El kit puede comprender un sustrato que se une específicamente a micobacteria, y en particular a la micobacteria diana.

El kit 60 distin

El kit puede comprender además oligonucleótidos que permiten la amplificación específica de una secuencia de ADN distintiva en la micobacteria diana.

Ahora sigue a continuación, a modo de ejemplo solamente, una descripción detallada de la presente invención con referencia a los dibujos adjuntos, en los que:

La Figura 1 muestra un gráfico que muestra el tiempo requerido por el bacteriófago para liberarse a partir de *M. smegmatis* (cuadrados) y MAP (diamantes) después de incubación inicial de 40 min para permitir adsorción de fago.

Las barras de error representan las desviaciones estándares de la media del número de placas que se recuperan a partir del ensayo de fago (n=4);

- La Figura 2 muestra amplificación mediante PCR de la región de ADN de 400 bp de F57 específica para MAP. Carril 1, escalera de ADN de 100 bp. Carril 2, ADN molde que se retira a partir de células de MAP lisadas por bacteriófago. Carril 3, molde a partir de células de MAP no lisadas por bacteriófago. Carril 4, control negativo (agua destilada estéril). Carril 5, control positivo (ADN genómico de K10 de MAP);
- La Figura 3 muestra un gel que muestra el efecto de retirar contaminación que lleva ADN potencial a partir de cultivos puros en el ensayo de bacteriófago de un día. Amplificación mediante PCR de la región de ADN aproximada de 300 bp de IS900 específica para MAP. Carril 1 y 8, escalera de ADN de 100 bp. Carriles 2 y 4, ADN molde que se retira a partir de células de MAP lisadas por bacteriófago (cepas K10 y ATCC 19851, respectivamente). Carril 3 y 5, molde a partir de células de MAP no lisadas por bacteriófago (cepas K10 y ATCC 19851, respectivamente). Carril 6, control positivo (ADN genómico de K10 de MAP). Carril 7, control negativo (SDW);

20

25

30

35

50

55

60

- La Figura 4 muestra un gel que muestra amplificación mediante PCR de la región de ADN aproximada de 300 bp de IS900 específica para MAP. Carril 1, escalera de ADN de 100 bp. Carril 2 a 5, ADN molde de MAP que se amplifica a partir de células de MAP no lisadas por bacteriófago (K10) que se diluyen de 1 x 10⁶ a 1 x 10³ pfu.ml⁻¹. Carril 6, control negativo (SDW). Carril 7, control positivo (ADN genómico de K10 de MAP);
- La Figura 5 muestra detección de células de MAP disociadas en el sobrenadante durante incubación de 3 h en perlas magnéticas; el gráfico muestra el número de placas que se forman mediante los bacteriófagos que se recuperan a partir del sobrenadante durante PMMS cada 15 minutos por 3 h. La línea de tendencia representa el aumento general en el tiempo en cuanto al número de células de MAP que se disocian a partir de perlas que se detectan mediante el ensayo de FBTB;
- La Figura 6 muestras el número de células de MAP disociadas a partir de perlas magnéticas durante incubación a 37 °C. El gráfico muestra los números de placas que se recuperan a partir del sobrenadante durante PMMS cada 15 minutos por 3 h (barras azules) y a partir de las perlas después de 3 h de incubación (barra derecha);
- La Figura 7 muestra la disociación de células de MAP en PBS que se comparan con respecto a Media Plus(MP). El gráfico muestra el número de placas que se recuperan cada hora a partir del sobrenadante de células de MAP aisladas y suspendidas en ya sea MP (barra izquierda de cada par) o PBS (barra derecha de cada par). La prueba t no asociada se usó para determinar la importancia de la diferencia entre detección de MAP en PBS y MP. Las barras de error representan las desviaciones estándares de la media de número de placas que se recuperan a partir del ensayo de fago (n=3);
- La Figura 8 muestra la disociación de células de MAP a pH 7,4 en comparación con 6,6. El gráfico muestra el número de placas que se recuperan cada hora a partir del sobrenadante de células de MAP aisladas y suspendidas en ya sea MP (barras rojas) o PBS (barras verdes). La prueba t no asociada se usó para determinar la importancia de la diferencia entre detección de MAP en PBS y MP. Las barras de error representan las desviaciones estándares de la media de número de placas que se recuperan a partir del ensayo de fago (n=3);
- La Figura 9 muestra resultados de un experimento para determinar la temperatura de desnaturalización más baja posible con la que se puede amplificar ADN genómico de MAP pero sin lisar células de MAP (a) amplificación mediante PCR de la región de ADN de 400 bp de F57 específica para MAP. Carril 1 y 10, escalera de ADN de 100 bp. Carriles 2, 4, 6 y 8 contienen ADN genómico de MAP (K10). Carriles 2 & 3, 4 & 5, 6 & 7 y 8 & 9 tuvieron una temperatura de desnaturalización de 94, 85,1, 74,8 y 70 °C, respectivamente;
 - La Figura 10 muestra resultados de un experimento para determinar la temperatura de desnaturalización más baja posible con la que se puede amplificar ADN genómico de MAP pero sin lisar células de MAP (b) amplificación mediante PCR de la región de ADN de 400 bp de F57 específica para MAP. Los experimentos que se representan en ambos paneles se llevaron a cabo usando las mismas condiciones de temperatura para PCR. El panel A muestra resultados que se obtuvieron usando ADN genómico de MAP (K10) y el panel B muestra resultados que se obtuvieron usando células de MAP (K10). Carril 1, escalera de ADN de 100 bp. Carriles 2 a 6 usaron una temperatura de desnaturalización de 95, 92,6, 89,6, 83,1 y 80 °C, respectivamente. Carril 7 fue el control negativo (SDW);
 - La Figura 11 muestra la SEQ ID NO. 1 la secuencia distintiva de IS900 específica para células de MAP;
 - La Figura 12 muestra resultados de un experimento usando columnas de centrifugado para impedir la detección de células de MAP no infectadas mediante el ensayo de PCR. Amplificación mediante PCR de la región de ADN de 400 bp de F57 específica a MAP. Carril 1, escalera de ADN de 100 bp. Carril 2, ADN molde que se retira a partir de células de MAP lisadas por bacteriófago. Carril 3, molde a partir de células de MAP no lisadas por bacteriófago. Carril 4, ADN molde concentrado que se retira a partir de células de MAP lisadas por bacteriófago Carril 5, molde concentrado a partir de células de MAP no lisadas por bacteriófago. Carril 6, control positivo (ADN genómico de K10 de MAP). Carril 7, control negativo (SDW);

La Figura 13 muestra resultados de un experimento que evalúa el uso de columnas de centrifugado para separar células de MAP no infectadas a partir de ADN libre. Amplificación mediante PCR de la región de ADN de 400 bp de F57 específica para MAP. Carril 1, escalera de ADN de 100 bp. Carril 2, ADN molde concentrado que se retira a partir de células de MAP lisadas por bacteriófago. Carril 3, ADN molde concentrado que se retira a partir de células de MAP no lisadas por bacteriófago. Carril 4, ADN molde concentrado que se retira a partir de células de *M. smegmatis* infectadas por bacteriófago. Carril 5, molde concentrado a partir de células de *M. smegmatis* no lisadas por bacteriófago. Carril 6, control positivo (ADN genómico de K10 de MAP). Carril 7, control negativo (SDW);

10

15

5

La Figura 14 muestra resultados de un experimento que evalúa el uso de columnas de centrifugado para separar células de MAP no infectadas a partir de ADN libre después de dos rondas de PMMS. Amplificación mediante PCR de la región de ADN de 400 bp de F57 específica para MAP. Carril 1, escalera de ADN de 100 bp. Carril 2, ADN molde concentrado que se retira a partir de células de MAP lisadas por bacteriófago. Carril 3, ADN molde concentrado que se retira a partir de células de MAP no infectadas por bacteriófago después de una ronda de PMMS. Carril 4, ADN molde concentrado que se retira a partir de células de MAP infectadas por bacteriófago después de dos rondas de PMMS. Carril 5, molde concentrado a partir de células de MAP no infectadas por bacteriófago después de dos rondas de PMMS. Carril 6, control negativo (SDW); Carril 7, control positivo (ADN genómico de K10 de MAP);

La Figura 15 muestra resultados de un experimento que evalúa el efecto de regulador de columna de centrifugado en la liberación de ADN de MAP. Amplificación mediante PCR de la región de ADN aproximada de 300 bp de IS900 específica para MAP. Carril 1, escalera de ADN de 100 bp. Carril 2 a 5, células de MAP (K10) diluidas de 1 x 10⁴ pfu.ml⁻¹ a 1 x 10¹ pfu.ml⁻¹. Carril 6, control positivo (ADN genómico de K10 de MAP);

La Figura 16 muestra resultados de un experimento que evalúa la detección de ADN de MAP después de una y dos rondas de PMMS sin concentración de columna de centrifugado. Amplificación mediante PCR de la región de ADN aproximada de 300 bp de IS900 específica para MAP. Carril 1, escalera de ADN de 100 bp. Carriles 2 y 3 usaron ADN molde después de una ronda de PMMS. Carriles 4 y 5 usaron ADN molde después de dos rondas de PMMS. Carriles 2 y 4 fueron células de MAP (K10) infectadas por fago. Carriles 3 y 5 fueron células de MAP no infectadas. Carril 6 fue control negativo (SDW);

La Figura 17 muestra detección de ADN de K10 y B4 de MAP después de una y dos rondas de PMMS sin concentración de columna de centrifugado. Amplificación mediante PCR de la región de ADN de 400 bp de F57 específica para MAP. Carril 1, escalera de ADN de 100 bp. Carriles 2 a 5, una ronda de PMMS. Carriles 2, 3, 6 y 7 fueron cepa K10. Carriles 4, 5, 8 y 9 fueron cepas B4. El fago se agregó a muestras en carriles 3, 5, 7 y 9. Carril 10 fue control negativo (SDW);

La Figura 18 muestra detección de ADN de ATCC 19851 de MAP después de dos rondas de PMMS sin concentración de columna de centrifugado. Amplificación mediante PCR de la región de ADN de 400 bp de F57 específica para MAP. Carril 1, escalera de ADN de 100 bp. Carril 2, MAP (ATCC 19851) infectada con bacteriófago. Carril 3, MAP no infectada con bacteriófago. Carril 4, control positivo (ADN genómico de K10 de MAP). Carril 5, control negativo (SDW).

La Figura 19 muestra la capacidad del ensayo de un día para detectar MAP temprana en la sangre de manadas infectadas experimentales que se comparan con PCR directa en sangre y el ensayo de fago en sangre. Gris claro – indica que no se detectaron MAP a partir de ya sea PCR en sangre o ensayo de fago. Gris oscuro – indica que se detectó MAP a partir de ya sea la PCR en sangre o ensayo de fago;

La Figura 20 muestra una tabla de correlaciones entre el ensayo de un día con el ensayo de fago y el ensayo de PCR en sangre; y

50

35

40

45

La Figura 21 muestra un gel que muestra resultados de ensayo. Dos cepas de MAP se evaluaron, a saber K10 y B4. Carriles 1-4, una ronda de PMMS; carriles 5-8, dos rondas de PMMS. El fago se agregó a muestras en carriles 2, 4, 6, 8 y 9, No se agregaron células de MAP a la muestra en carril 9 (control negativo)

55 Resultados

Determinación del tiempo requerido para que el bacteriófago D29 libere ADN a partir de MAP

Para poder detectar el ADN a partir de MAP lisada por el bacteriófago, se requiere conocimiento específico del ciclo de vida del fago D29. Cuando se usa el fago para liberar el ADN a partir de células en una muestra como un molde para PCR, si la muestra se toma demasiado temprano antes de que las células se lisen, no se detectará ADN. Si la muestra se deja esperar demasiado después de la lisis, el ADN puede haber comenzado a degradarse mediante nucleasas que se liberan a partir de las células de MAP lisadas y, de nuevo, esto conduciría a pérdida de señal. Por lo tanto, el poder determinar exactamente cuándo se lisan las células por el fago en las condiciones experimentales para usarse permitirá la recuperación de buen ADN molde para detección mediante PCR.

Los protocolos estándares existen para medir crecimiento de bacteriófago y replicación en un huésped. En general, sin el uso de un agente fagocítico, el efecto de diferentes números de fagos en células huéspedes, tamaño de explosión y medición de la fase de eclipse tienen que llevarse a cabo mediante una serie de diluciones. Para medir la fase de eclipse del fago, tanto el huésped como el fago se diluirían normalmente en un rango contable y detectable, que resulta largo y requiere de una gran cantidad de dilución y muestreo. Para simplificar este experimento se usó FAS para inactivar el bacteriófago después de permitir un breve período de infección, de manera tal que la fase de eclipse de D29 podría determinarse de manera más sencilla.

La Figura 1 muestra que usando este método, se descubrió que la fase de eclipse de D29 cuando infecta *M. smegmatis* dura alrededor de 90 min. Sin embargo, cuando se usó el mismo método para determinar la fase de eclipse para fago D29 que infecta MAP, se descubrió que la fase de eclipse se prolongaba hasta 120 min. Por lo tanto, se determinó que si se usa este fago como un agente lisante para detectar MAP, las muestras deberían dejarse durante al menos 160 min después de infección.

Aislamiento de Mycobacterium avium subsp. paratuberculosis y extracción de ADN usando bacteriófago

aMP3 y aMptD, que se unen específicamente a MAP, se acoplaron a perlas magnéticas para facilitar la captura de células de MAP. Para desarrollar un ensayo de un tubo, se usaron estos para capturar y retener las células de MAP antes de agregar el fago para alcanzar lisis celular de células viables.

El método de PMMS se usó inicialmente para aislar células de MAP (que se enumeran usando el ensayo de fago como 1 x 10⁴ pfu.ml-¹) a partir de FPTB Media Plus (MP). Después de PMMS, se inoculó una muestra con bacteriófago (100 μl de bacteriófago de FPTB reconstituido) y una muestra se incubó con 100 μl de MP solamente. Cada muestra de MAP se incubó luego a 37 °C durante 180 min, según se determinó que se trataba del tiempo óptimo para permitir adsorción, replicación y lisis de las células de MAP mediante el bacteriófago en el experimento anterior. Después de incubación, las células se centrifugaron (pulso de 10 s a 13.000 x g) para recolectar perlas y cualquiera de las células de MAP no lisadas que continuaban fijas a estas en el fondo del tubo, y las muestras se colocaron luego en un soporte de imán de PMMS.

El ADN genómico de MAP que se libera mediante el fago debería presentarse en el sobrenadante. En este caso, la amplificación mediante PCR de F57 se llevó a cabo para determinar si el ADN de MAP liberado podía detectarse.

Los resultados (Fig. 2, carril 2) muestran que cuando el fago se agregó a la muestra se produjo una banda sólida de tamaño esperado de aproximadamente 400 bp. Sin embargo, en el control negativo, donde el fago no se agregó para lisar las células, un producto de PCR borroso resultó visible (Fig. 2, carril 3). Esto sugirió que existió ADN de MAP libre en la muestra de control, o que hubo ocurrido alguna contaminación de la muestra con bacteriófago o que células de MAP intactas que no se habían lisado mediante el fago podrían haberse liberado en el sobrenadante y actuado como ADN molde para la reacción PCR si se hubieran lisado durante la etapa de calentamiento (desnaturalización) de la PCR. Esto se puede eliminar mediante optimización de las condiciones de reacción.

Optimización de detección-PCR de lisis celular mediada por bacteriófago

Retiro de posible ADN de MAP libre

15

20

25

30

45

50

55

60

Los cultivos bacterianos de laboratorio pueden tener ADN libre en estos a continuación de autolisis de células viejas o moribundas y esto puede haber dado como resultado el resultado positivo de amplificación mediante PCR. Antes de repetir el experimento que se describe anteriormente, los cultivos de cepas K10 y ATCC 19851 de MAP se sometieron a tratamiento con DNasa I (NEB, Reino Unido). El objetivo consistió en degradar cualquier ADN genómico libre que podría haberse transportado a partir de los cultivos en las muestras. La etapa de lavado que se usó durante PMMS retiraría la DNasa I a partir de la muestra de manera tal que cualquier ADN molde que se libera después de esto podría detectarse todavía. En este experimento, se usó la PCR IS900 P90 para aumentar la sensibilidad del evento de detección y para reducir el impacto de cualquiera de los niveles bajos de DNasa I que permanecen en las muestras. Los resultados (Fig. 3) muestran que una vez más un producto de PCR más fuerte (producto PCR IS900 = aprox. 300 bp) se amplificó cuando se usó el bacteriófago para liberar el ADN de MAP a partir de las cepas K10 y ATCC 19851, sin embargo, una banda de PCR fuerte se observó todavía en los controles sin bacteriófago agregado a estos (Fig. 3, carriles 3 y 5). Esto mostró que la DNasa I no estaba teniendo un efecto adverso en la PCR y si existía ADN libre en la muestra original, se hubiera retirado. Sin embargo, este tratamiento no retiró la apariencia de productos de PCR en las muestras de control negativo y sugiere que este resultado de falso positivo se debe a ya sea contaminación de bacteriófago o células libres que se liberan en el sobrenadante que se detecta.

Retiro de posible contaminación de bacteriófago

Para descartar contaminación de bacteriófago, el experimento anterior se repitió usando pipetas nuevas, puntas de pipeta en un banco nuevo que no se había usado con micobacteriófago. Se usaron también nuevos reactivos y equipo. Se usaron cuatro muestras de células de MAP (K10) que contienen de 1 x 10⁶ a 1 x 10³ pfu.ml⁻¹. La PCR IS900 se usó de nuevo para asegurar que se detectó cualquier ADN que pudiera haberse presentado en la muestra. Los

resultados (Fig. 4) muestran que cuando no se agregó bacteriófago, se detectaron todavía señales de PCR fuertes en cada una de las suspensiones celulares que se evaluaron. Esto sugiere que el bacteriófago no se introdujo de manera inadvertida en las muestras de control negativo y que, por lo tanto, los resultados de falso positivo pueden deberse a células libres en la muestra.

Mejora de eficiencia de captura magnética mediada por péptido

5

15

40

45

65

La contaminación de bacteriófago y transporte de ADN a partir de cultivos puros se descartaron como responsables 10 de las bandas fuertes en el control sin infectar. De este modo, se investigó la eficiencia de captura y estabilidad de las células en la superficie de perla. El ensayo de FPTB se usó para determinar si células de MAP pueden disociarse a partir de perlas magnéticas durante PMMS. El protocolo original cuando se usó PMMS requirió solo captura de célula de MAP durante 30 min, y el lavado posterior tomaría solo unos 20 min adicionales. De este modo, solo se requeriría que las células de MAP permanezcan en las perlas magnéticas por un máximo de 1 h. Durante el ensayo de un día, se requiere que las células permanezcan en las perlas durante casi 4 h, lo que puede otorgar a las células tiempo suficiente para ser disociadas a partir de péptidos que se unen a estas. Por lo tanto, se diseñó un experimento para determinar el número de células que podrían detectarse a partir de perlas durante la incubación de 3 h requerida.

Para realizar esto, se mezclaron aproximadamente 1 x 10⁶ pfu.ml⁻¹ de células de MAP (K10) con las perlas magnéticas durante 15 min y se llevó a cabo PMMS. Las muestras se colocaron a 37 °C y las muestras se colocaron en soportes 20 magnéticos y se tomaron 100 µl a partir del sobrenadante a intervalos de 30 min durante 3 h. El ensavo de FPTB se llevó a cabo para detectar cualquiera de las células que se liberan en el sobrenadante. Los resultados mostraron que a medida que el tiempo avanzaba, el número de células detectadas en el sobrenadante casi se duplicaba del punto de tiempo cero al punto de tiempo 180. Existió un pico a los 150 min, donde se detectaron 8,1 x 102 pfu.ml⁻¹, sin embargo, esto cayó a 6,7 x 10² pfu.ml después de 180 min (Fig. 5). Los resultados muestran además que existieron 25 6 x 10⁵ pfu.ml⁻¹ células detectables que se fijaron a las perlas que resultó un pfu.ml⁻¹ más bajo de menos de la mitad de log₁₀ en comparación con el inóculo inicial y el número de células de casi 4 log₁₀ mayor que se habían disociado a partir de las perlas (Fig. 6) lo que sugirió que la mayoría de las células permanecieron fijas a las perlas.

30 Los resultados a partir de este experimento muestran que MAP puede caer de las perlas y puede detectarse mediante PCR una vez en el sobrenadante. Varios parámetros tales como pH, temperatura y duración de tiempo, pueden alterarse de manera que pueden aumentar o disminuir la tasa de disociación de cualquier evento de unión reversible. En este caso, la duración de incubación resulta difícil de cambiar ya que el bacteriófago requiere cierta cantidad de tiempo para liberar el ADN de célula huésped. Acortar el tiempo de incubación puede dar como resultado células que 35 no se lisan de manera eficiente y aumentar el tiempo de incubación puede dar como resultado más células de MAP que se disocian a partir de perlas creando problemas adicionales.

Por lo tanto, se decidió cambiar el pH a un parámetro que podría usarse para optimizar unión celular con respecto a las perlas. Los métodos de PMMS originales usaron PBS (pH 7,4) para unir las células de MAP a las perlas. En el protocolo modificado que se desarrolló para el ensayo en sangre de MAP, se usó MP en su lugar que tiene un pH de 6,6. Este cambio en pH puede alterar la asociación de constantes de unión lo que puede, a su vez, haber dado como resultado la disociación de las células de MAP en el sobrenadante. Para investigar el efecto de pH, el experimento que se describe anteriormente se repitió, sin embargo, esta vez, las células se resuspendieron en PBS o MP y cada hora se evaluaron muestras usando el ensayo de FPTB para comparar la tasa de disociación de las células de MAP que se incubaron en las dos soluciones. Los resultados muestran que cuando se usó PBS, existió detección significativamente más baja (P<0,001) de células de MAP en el sobrenadante en cada punto de tiempo, en comparación con el número similar de células de MAP detectadas.

Debido a que el pH de MP (6,6) fue menor que PBS (7,4), el pH de MP se ajustó usando hidróxido de sodio. El experimento anterior se repitió, sin embargo los resultados muestran que no hubo diferencia significativa entre el 50 número de células de MAP que se detectaron ya sea con MP a pH 7,4 o 6,6 (Fig. 7). En este punto, se propuso una explicación alternativa para el resultado original, en cuanto a que la falta de disociación de MAP que se detectó en la muestra de PBS podría haberse debido a la unión de fago que inhibe PBS, y la detección así de células de MSP.

55 Entonces el experimento se repitió, sin embargo, el número de células de MAP que se detectaron en las perlas se determinó también usando el ensayo de FPTB así como también se monitoreó el número de células de MAP en el sobrenadante. Los resultados (Fig. 8) muestran que cuando las perlas se evaluaron, no se detectó MAP lo que sugiere que el PBS no permite que el fago infecte bien y, por lo tanto, la conclusión original en cuanto a que la diferencia de pH afectaba la tasa de disociación puede no haber sido acertada. 60

A medida que se determinó que el efecto de pH no tenía un efecto importante en la reducción de la constante de disociación de la MAP en las perlas magnéticas, se investigó la temperatura en su lugar como un parámetro alternativo que podría alterarse. La temperatura (37 °C) se seleccionó originalmente ya que se había optimizado en el ensayo de FPTB para permitir buen crecimiento y replicación del bacteriófago así como también el crecimiento rápido de M. smegmatis. Se conoce además que la temperatura puede afectar el tiempo requerido para liberación de fago D29 en micobacterias. De este modo, la reducción de la temperatura puede reducir el número de células que se disocian a partir de las perlas, pero puede aumentar la cantidad de tiempo que se necesita para que el fago lise su huésped.

Cuando se trata de evaluar esto usando el ensayo de fago a una temperatura inferior, no se forman buenos céspedes de M. smegmatis, lo que da como resultado dificultad para visualizar las placas. Por lo tanto, se usó un enfoque diferente para determinar cuándo se liberaba ADN a partir de las células a temperatura inferior. Los kits comerciales que determinan el momento en que la integridad celular se compromete se comercializan. El CellTox Green Cytoxicity Assay (Promega, Reino Unido) contiene un colorante que se une al ADN de células con integridad de membrana deficiente. De este modo, cuando una célula se lisa mediante el fago, debería existir un aumento de señal a medida que se libera ADN lo que, a su vez, podría usarse para determinar el final de la fase de eclipse. Al detectar cuando se liberó el ADN de célula huésped se permitiría que la sincronización de muestro para detección mediante PCR de este ADN se sincronice de manera óptima.

El ensayo de citotoxicidad se llevó a cabo en MAP y *M. smegmatis*. Como controles, se usaron una muestra que contiene justo fago y una muestra que consiste en justo MP (no fagos o bacterias de células presentes). Las muestras de MAP y *M. smegmatis* (que contienen 1 x 10⁵ pfu.ml⁻¹ de células) se infectaron con bacteriófago D29 en un MOI de 10. La misma cantidad de fago se agregó a muestra libre de bacteria y no se agregó nada al control negativo de MP solo. Cada muestra se incubó durante 40 min para permitir infección de fago y luego se colocó en placas negras de 96 pozos y se incubaron durante 4 h, con una lectura de fluorescencia que se toma cada 10 min. Los resultados muestran que la fluorescencia se redujo constantemente a medida que el tiempo avanzó a partir de cada una de las muestras. El control negativo de medio único indicó que el nivel de fondo de fluorescencia era inferior con respecto a cada una de las otras muestras, lo que sugirió que se detectó ADN de ya sea en el fago o las células. Sin embargo, no se detectó un evento de lisis durante las 4 h de incubación.

A pesar de que a partir de este resultado, la temperatura inferior parece no inducir siquiera lisis mediada por bacteriófago de las células huéspedes, pueden haber existido desventajas usando el ensayo de citotoxicidad comercial para este experimento, ya que no se diseñó originalmente para usarse de esta manera. A pesar de que se consideró la unión de las células como la razón para los resultados de falso positivo que se obtuvieron usando células no infectadas, no se pudo obtener una prueba definitiva para mostrar que este resultó el caso a partir de estos experimentos y cambiar las condiciones de unión para intentar y optimizar la unión celular demostró ser difícil ya que interfirió con la eficiencia de las etapas de lisis de fago.

Impedimento de detección de células de MAP no lisadas

5

10

15

20

35

40

45

50

55

60

65

Las células de MAP disociadas no lisadas pueden haber sido detectadas mediante el ensayo de PCR debido a que la etapa de desnaturalización de 95 °C inicial puede lisar células bacterianas (según se usa cuando se lleva a cabo PCR directa de colonia). Esta lisis resultó, sin embargo, inconveniente y el resultado fue un resultado de PCR de falso positivo en nuestro ensayo. La temperatura de desnaturalización se redujo, por lo tanto, para tratar y reducir lisis celular. El ADN genómico de MAP (K10) y 10² pfu.ml¹¹ de células de MAP (K10) se prepararon como 10 µl de ADN molde en 25 µl de volúmenes de reacción de PCR. Las células de MAP se lavaron inicialmente dos veces mediante centrifugación y resuspensión en MP nuevo antes de usarse como molde. Un non-Hot Start PCR master mix (Qiagen) se usó en la reacción. Una PCR de gradiente de temperatura se usó para cambiar la temperatura de desnaturalización a 94, 85,1, 74,8 y 70 °C. El ADN genómico se usó para asegurar que la PCR podía todavía amplificar los productos de PCR correctos, y esto se comparó con la capacidad de la PCR para lisar y amplificar ADN a partir de células enteras. Los resultados muestran que solo el MAP genómico y las células de MAP a 94 °C rindieron un buen producto de PCR después de PCR de F57 específico para MAP (Fig. 9). El experimento se repitió pero se usó un rango menor de temperaturas para desnaturalización: 95, 92,6, 89,6, 83,1 y 80 °C. Los resultados mostraron de nuevo que los productos de PCR se amplificaron solamente cuando se usaron las temperaturas de desnaturalización de 95 y 92,6 °C, mostrando que el ADN genómico libre no podría amplificarse en preferencia con respecto a aquel a partir de células enteras mediante simple reducción de la temperatura de desnaturalización (Fig. 10b).

La siguiente etapa para intentar impedir la detección de PCR del control sin infectar consistió en retirar las células de MAP disociadas a partir de la muestra. Cuando se llevó a cabo la etapa de identificación de PCR durante un ensayo de sangre que usaba ensayos de placa, se usaron columnas de centrifugado para aislar y concentrar ADN a partir de muestras de placas. Las columnas de centrifugado pueden actuar como una barrera con respecto a las células libres en el sobrenadante mientras que se unen y concentran todavía el ADN libre que se liberaría a partir de células después de infección de fago.

Para evaluar si este enfoque funcionaría, las células de K10 de MAP (1 x 10⁴ pfu.ml⁻¹) se procesaron a través del protocolo de PMMS. Las células se suspendieron en 1 ml de MP y se incubaron durante 3 h a 37 °C con o sin bacteriófago. Después de incubación se retiraron 10 µl a partir del sobrenadante de cada muestra y el resto se procesó a través de columna de centrifugado concentradora de ADN. El ADN concentrado eluido y la muestra no concentrada se evaluaron luego en cuanto a la presencia de ADN de MAP detectable usando la PCR de F57 específica para MAP. Los resultados muestran que ninguna de las muestras no concentradas dio un resultado de PCR positivo. La muestra concentrada, infectada con bacteriófago, produjo una amplificación mediante PCR muy fuerte, sin embargo, la muestra de control no infectada por fago dio como resultado también la amplificación de la banda específica para MAP, a pesar de que la amplificación fue más débil lo que indica que se presentaron cantidades más bajas de ADN. Sin embargo,

la muestra de control negativo de PCR (no se agregó molde de ADN) produjo también una banda fuerte, lo que sugirió un error de contaminación (Fig. 12).

Debido a este problema, el experimento se repitió, usando *M. smegmatis* así como también SDW como controles de PCR y experimental negativo. Los resultados muestran que, según se esperaba, M. smegmatis y los controles negativos sin ADN (SDW) no produjeron resultados de PCR positivos. Sin embargo, ambas muestras de MAP infectada y no infectada dieron bandas de PCR positivas fuertes, incluso después de separar la muestra usando las columnas de centrifugado (Fig. 13).

10

15

20

25

30

35

40

45

Ambas muestras infectada y no infectada rindieron una vez más bandas positivas, lo que sugirió que las células enteras pueden detectarse todavía. Según se conoce, las células de MAP pueden disociarse a partir de perlas durante la incubación de 3 h, se investigó el uso de las perlas de nuevo después de lisis celular para retirar cualquiera de las células libres. El experimento se repitió, sin embargo, cuando las células se suspendieron en 1 ml de MP, y las perlas se retiraron (mediante centrifugación por impulso y separación magnética), el sobrenadante se retiró y se mezcló con perlas magnéticas nuevas. Las muestras se incubaron luego mediante rotación durante 30 min para permitir que cualquiera de las células de MAP libres se una con las perlas. Las muestras se volvieron a colocar luego en el soporte magnético y el sobrenadante se retiró luego y se procesó a través de las columnas de centrifugado y el ensayo de detección mediante PCR se llevó a cabo de nuevo.

Los resultados muestran que después de la primera ronda de PMMS, existió una amplificación mediante PCR más fuerte a partir de la muestra infectada por fago en comparación con la muestra no infectada. Sin embargo, después de la segunda ronda, existió todavía una fuerte, aunque más borrosa, banda de PCR a partir de la muestra no infectada (Fig. 14).

Existieron fuertes productos de PCR amplificados una vez más a partir de células de MAP no infectadas incluso después de dos rondas de PMMS. El concentrador de ADN usa un regulador de unión de ADN que puede inducir lisis de las células bacterianas. A pesar de que los componentes del kit no se encuentran disponibles, se investigó la hipótesis de que el regulador puede inducir lisis celular. Las células de MAP (K10) se diluyeron serialmente en 10 veces de 1 x 10⁴ pfu.ml-¹ a 1 x 10¹ pfu.ml-¹ y se trataron como sobrenadante después de PMMS, por lo tanto, las muestras se sometieron a concentración de ADN usando las columnas de centrifugado y el molde eluido se amplificó usando PCR de IS900 específica para MAP. Los resultados muestran que al margen de no poder detectar ADN a partir de la muestra de 10² pfu.ml-¹, se detectó ADN a partir de cada una de las otras concentraciones de células que se evaluaron (Fig. 16). Se ha demostrado que, por lo tanto, los reguladores en el kit concentrador de ADN tienen la capacidad de romper células de MAP y liberar su ADN, lo que puede explicar porque las bandas positivas se detectaban todavía a partir de muestras que no se infectaron con bacteriófago.

El experimento con dos rondas de PMMS se repitió usando 1 x 10⁴ pfu.ml⁻¹ de células de MAP (K10) pero esta vez las columnas de centrifugado no se usaron para concentrar el ADN. Cuando el PMMS se llevó a cabo las perlas se resuspendieron finalmente en 100 μl de MP. La muestra se centrifugó por impulso luego y se colocó en un soporte magnético. Una muestra de 10 μl del sobrenadante se tomó como ADN molde y el resto se colocó en un tubo de microcentrifugación nuevo. La muestra se mezcló con perlas magnéticas nuevas y se incubó mientras rotaba durante 30 min. Las perlas se separaron en un soporte magnético y 10 μl del sobrenadante se usó como ADN molde. La PCR de IS900 específica para MAP se llevó a cabo luego. Los resultados muestran que se detectó MAP de manera fuerte cuando se usó bacteriófago en tanto la primera y la segunda ronda de PMMS. Sin embargo, solo un producto de PCR borroso se amplificó en la muestra no infectada después de la primera ronda de PMMS y no se observó amplificación en absoluto después de la segunda ronda de PMMS (Fig. 16).

El experimento con dos rondas de perlas se repitió usando 1 x 10⁴ pfu.ml-¹ cepas K10 de MAP y una cepa de MAP diferente; B4. El ensayo de PCR de F57 específico para MAP menos sensible se usó también. Los resultados muestran que una vez más después de la primera ronda de PMMS, los productos de PCR se amplificaron a partir de cada una de las muestras. Después de la segunda ronda de PMMS, solo se detectaron las muestras de MAP infectadas con bacteriófagos, no fue así con las no infectadas (Fig. 17). El experimento se repitió con cepa ATCC 19851 de MAP. Sin embargo, en este caso los resultados muestran que el ADN de MAP se detectó a partir de muestras no infectadas después de la segunda ronda de PMMS (Fig. 18).

Evaluación de diseño de ensayo preliminar en muestras de sangre a partir de terneros infectados de manera experimental.

A pesar de no encontrarse totalmente optimizadas, las muestras a partir de animales se evaluaron usando el diseño de ensayo preliminar que se describe anteriormente. El excedente de sangre a partir de muestras se sometió a PMMS y se resuspendió luego en 100 µl de MP. Las perlas se separaron a partir de las muestras mediante centrifugación por impulsos y se dejaron reposar en un imán. El sobrenadante se colocó en un tubo de microcentrifugación nuevo y se agregaron perlas magnéticas nuevas. Las muestras se incubaron durante 30 min girando a temperatura ambiente.

Las perlas se separaron mediante centrifugación por impulsos y se dejaron reposar las muestras en un imán. Diez microlitros de muestras se usaron luego como ADN molde para PCR de IS900 específico para MAP. La Figura 19

muestra los resultados del ensayo de un día en comparación con las PCRs en sangre originales y el ensayo de fago en sangre.

- 5 En el mes 6, el ensayo de un día detectó ADN de MAP en ocho animales (números 1-6, 9 y 11). MAP viable se detectó en cuatro animales en el mes 6; 4, 7, 10 y 11, todos ellos en concordancia con el ensayo de un día. La PCR directa en sangre detectó ADN de MAP en cuatro animales; 4, 7, 10 y 11, que solo concordaron con dos muestras a partir del ensayo de un día.
- En el mes 7, seis animales; 1, 3, 5, 6, 7 y 11 fueron positivos a partir del primer día, que concordaron con cuatro de los siete resultados positivos para la detección de MAP viable y tres de los cinco resultados positivos para la PCR directa en sangre. En el mes 8, el ensayo de un día detectó MAP en siete animales; 2-5, 7, 10 y 11. Esto concordó con la totalidad de cinco de las muestras positivas a partir del ensayo de fago y cuatro de los cinco positivos para la PCR directa en sangre.

Conclusión

15

20

25

30

35

40

45

50

55

60

65

Mientras que algunas mejoras adicionales al ensayo pueden requerirse, resulta claro para la persona experta a partir de los datos que se presentan aquí que el método objeto de esta solicitud funciona y tiene utilidad en el campo.

Discusión

El objetivo de la invención y experimentos que se presentan aquí consiste en desarrollar un método robusto nuevo para detectar y enumerar MAP viable, preferiblemente en un día, en un formato que puede automatizarse. Existe equipo que se dispone comercialmente que permite la separación y lavado de células usando tecnología de captura de perla (Tecan Group; Te-MgS, Life Technologies; Dynabead Tech). Siempre que la tecnología se mantuviera en un formato de un tubo, la automatización resultaría posible. La captura y detección de bacterias se ha llevado a cabo con anterioridad, por ejemplo, en *E. coli, Helicobacter pylori* y *L. monocytogenes*. Sin embargo, la mayoría de estos métodos usan PCR como una identificación de punto terminal que no diferencia entre células vivas y muertas. Resulta importante evaluar el estado de viabilidad de organismos para determinar si estos representan una amenaza a la salud pública. Existen varios colorantes que pueden usarse para determinar viabilidad de bacterias, sin embargo, debido a la pared celular inusual de micobacterias, estos ensayos tienden a ser menos eficientes. El cultivo resulta el método ideal para determinar viabilidad, sin embargo, con micobacterias tales como MAP, pueden transcurrir varias semanas para que las colonias se desarrollen.

El bacteriófago lítico infecta y rompe bacterias de manera eficiente en horas. Una modificación del ensayo The FASTPlaqueTB[™] (FPTB) que se describe en WO 92/02633 se usó para determinar cuánto tiempo toma para que el fago D29, una vez que ha infectado las células, libere fago de progenie (fase de eclipse) a partir de MAP y *M. smegmatis*. Han existido diferencias en la fase de eclipse de D29 que se informó cuando infectaba micobacterias diferentes. Cuando se usó el ensayo de FPTB, la fase de eclipse de D29 en *M. smegmatis* fue de 90 min. En *M. tuberculosis* y *M. avium* se ha observado, sin embargo, que la duración de la fase de eclipse para D29 es mucho más larga de alrededor de 120 min. Esto corresponde a la fase de eclipse de 120-135 min que se descubrió usando el ensayo de FPTB cuando D29 infectó células de MAP. Conociendo que el período de latencia fue de al menos 260 min, se usó un período de incubación de 3 h para permitir buena lisis de células de MAP a partir de las muestras.

La novedad del ensayo de un día que se describe en la presente consiste en que las células de MAP pueden aislarse a partir de un medio (tal como sangre) en perlas magnéticas. Las perlas pueden infectarse luego in situ con bacteriófago. Solo células de MAP viables soportarán replicación de bacteriófago y lisarán la célula huésped para facilitar la liberación de partículas de fago de progenie, que liberarán además ADN genómico de MAP. El ADN liberado a partir de las células de MAP puede detectarse luego mediante PCR. El diseño experimental inicial consistió en determinar si el ADN de MAP podría detectarse a partir de células de MAP que se exponen a bacteriófago en comparación con aquellas que no lo hacen, ya que la novedad del ensayo consiste en que solo se pueden detectar células viables. Estos resultados que se presentan aquí mostraron que un producto de PCR de MAP borroso se amplificó a partir de la muestra no infectada, optimización de rutina del método permitirá que se elimine esto. Para intentar retirar el producto de PCR borroso, cultivos puros de MAP se trataron inicialmente con DNasa I para eliminar el efecto potencial de ADN transportado a partir de los cultivos de MAP, que puede haber dado como resultado amplificación de producto de ADN específico para MAP. Aunque la contaminación de ADN que podría haberse potencialmente transportado a partir de la reserva de cultivo puro se retiró, el ADN específico para MAP se amplificó todavía mediante la PCR.

Ser capaz de distinguir entre células de MAP huéspedes viables y no viables resulta importante de manera vital para el ensayo de detección. En un caso clínico de enfermedad de Johne y otras infecciones generales originadas por patógenos micobacterianos, los organismos son tomados por macrófagos y ya sea las células se eliminan o sobreviven y persisten en las células. El ensayo se reoptimizó para impedir la detección de células no infectadas. Durante PCR, las temperaturas de 95 °C se usaron para desnaturalizar el ADN y para activar polimerasas Taq ADN de inicio en caliente, si se usan. Las PCRs de colonias que no usan el ADN molde preparado pero usan en su lugar células intactas como la fuente de ADN molde usan la etapa de desnaturalización para lisar en caliente las células y liberar ADN a

partir de células enteras. Células enteras libres en la muestra que no se retiran pueden ser, por lo tanto, detectables. La temperatura de desnaturalización se redujo para investigar si esto detendría lisis de célula entera y detección. Las PCRs específicas para MAP se llevaron a cabo en células de MAP enteras y ADN genómico de MAP. Los resultados muestran, sin embargo, que el ADN solo puede amplificarse a partir del ADN genómico de MAP a una temperatura de desnaturalización mínima de 92,6 °C.

A continuación se usaron barreras físicas para retirar las células enteras a partir del ADN de MAP. Las columnas de centrifugado de ADN pueden usarse para limpiar, concentrar y purificar ADN a partir de un rango de muestras diferentes. Limpieza de ADN y concentrador de Zymo se diseñó originalmente para concentrar ADN a partir de grandes volúmenes de muestra a volúmenes muy pequeños para procesos posteriores tales como PCR o secuenciación de ADN. Una matriz de columna se usa para capturar ADN, donde se lava y se eluye en volúmenes más pequeños mediante un cambio descendiente de pH. La barrera física de la columna se usó para bloquear células libres en la solución que pueden detectarse mediante PCR, al mismo tiempo que se captura y se concentra ADN libre liberado mediante el bacteriófago en las muestras infectadas. Por lo tanto, métodos de barreras físicas o filtración podrían usarse para retirar células no lisadas a partir de ADN de MAP.

Muestras de sangre a partir de terneros infectados con MAP se evaluaron usando el método que incluye dos rondas de perlas de MAP. Esto se comparó con el ensayo de fago en sangre para determinar en primer lugar si se detectaban células viables o no viables, pero además para evaluar la sensibilidad de la detección de MAP en sangre en comparación con una PCR directa y el ensayo de fago en sangre. Los resultados mostraron que a medida que los meses transcurrían la concordancia entre todos los ensayos aumentó, a excepción del ensayo de fago en sangre y la PCR directa en sangre, donde la concordancia continuó siendo la misma del 64%. En el mes 8, el ensayo de un día concordó con el ensayo de fago en sangre en el 82% de los resultados de ensayo. Asumiendo que los ensayos tuvieron la misma sensibilidad, las discrepancias podrían atribuirse al ensayo de un día que detecta MAP no viables que pueden presentarse en la sangre ya que el ensayo de un día no se encontraba totalmente optimizado al momento del experimento.

Cuando se desarrolló el método de detección de fago basado en sangre, la separación magnética mediada por péptido (PMMS) se usó para concentrar células de MAP y separarlas a partir de una matriz potencialmente inhibidora, antes de que se llevaran a cabo los procesos posteriores. La PMMS permitió que células de MAP se resuspendan en un medio que permite que ocurra infección de bacteriófago de las células y, por lo tanto, podría reemplazarse con cualquier técnica de separación.

La PMMS se usó para aislar células de MAP a partir de sangre. Las células concentradas se lisaron de manera eficiente luego usando el micobacteriófago lítico D29. Finalmente, el ADN liberado a partir de células infectadas se usaría luego para detectar MAP usando amplificación mediante PCR de secuencias específicas distintivas.

La novedad del ensayo que se describe consisten en el uso de bacteriófago como un agente lisante específico para indicar viabilidad (solo células viables son capaces de soportar replicación de fago que da como resultado lisis celular). Una vez lisadas, la identidad de la célula micobacteriana viable que se detecta se determina mediante amplificación de secuencia distintiva a partir del genoma bacteriano.

La técnica produce un ensayo general en un formato de tubo pequeño, compatible con automatización, que resulta rápido (resultados de ensayo a nivel especies en un día), sensible y que solo detecta células viables. La etapa de proceso crítica que se identifica es una segunda limpieza de los lisados de ADN antes de amplificación mediante PCR.

El ensayo

- Células de MAP que se presentan en sangre a partir de animales infectados se recuperan a partir de matriz mediante separación magnética mediada por péptidos (PMMS)
 - o Péptidos con capacidad de unión específica con MAP se recubren con perlas magnéticas, y se agregan a muestra de sangre y se mezclan durante 30 min con muestras de sangre diluidas.
 - o Perlas se recuperan usando un soporte magnético, y se lavan luego dos veces antes de resuspenderse finalmente en 100 µl de medio de detección (tiempo total de 1 hora)
 - Fago (D29) se agrega a la muestra y se incuba durante 2 h para permitir lisis de células infectadas
 - Células no lisadas (no viables) se retiran luego a partir de fase líquida mediante separación magnética
 - Cualquiera de las células no lisadas restantes que pueden haber sido liberadas en la fase líquida se retira mediante una segunda ronda de PMMS (tiempo total de 3 horas)
 - La mezcla de lisis (que contiene el ADN genómico de las células lisadas, viables) se usa luego como un molde para amplificación mediante PCR de secuencias distintivas (en ejemplo dado de secuencia f57). (tiempo total de 3 horas).

13

55

5

10

15

20

25

60

Demostración de ensayo

- Dos cepas diferentes de MAP se usaron; K10 y B4. Las células de MAP se recuperaron mediante PMMS y se transfirieron en el tubo de ensayo. Fago D29 se agregó como un agente lisante específico a una muestra. Después de incubación de 2 h para permitir que el fago lise las células viables, se retiraron células no lisadas a partir del tubo mediante ya sea una ronda (carriles 1-4) o dos rondas (carriles 5-8) de PMMS. Los lisados restantes se usaron como un molde para amplificación mediante PCR de la secuencia de genoma de f57 específica para MAP.
 - La presencia de una banda amplificada en ya sea la presencia o ausencia del fago D29 a continuación de solo una ronda de PMMS (Carriles 1-4) indica que las células intactas permanecen en la muestra; el ADN genómico se detecta a partir de células no lisadas que se lisan luego durante el proceso de amplificación mediante PCR.
- A continuación de las dos rondas de PMMS, se detecta una banda solamente en las muestras donde se agrega el fago D29, mostrando que el fago ha lisado específicamente las células micobacterianas viables, liberando el ADN genómico en la fase líquida y permitiendo amplificación mediante PCR de la secuencia f57.

Conclusión

20

- La segunda ronda de PMMS contribuye a asegurar el retiro completo de células no lisadas
- Una vez que se retiran células no lisadas, solo se detectan células de MAP infectadas con fago
- 25 Fago solo lisará células de MAP viables, por lo tanto el ensayo detecta células de MAP viables en un día
 - Tiempo total requerido para ensayo a partir de que se recibe muestra = 7 h; esto podría reducirse; y las etapas requeridas resultan compatibles con un sistema de lavado automático.
- El ensayo de PCR que se usa aquí consiste en un sistema de tubo manual estándar, pero esto podría automatizarse claramente o reemplazarse con un sistema de amplificación de ADN no basado en PCR.

Aplicaciones potenciales de ensayo

Método rápido nuevo para confirmar diagnóstico de enfermedad de Johne en ganado. Los ensayos actuales requieren repetir ensayos ELISA de leche y se conoce que no son confiables. Este ensayo podría reemplazar el ensayo de ELISA para uso en programas de control de manadas.

Detección de otras micobacterias en sangre

40

- El ensayo podría usarse en combinación con otros métodos de IMS/PMMS para permitir detección de otras micobacterias que originan enfermedad sistémica en ganado (tal como *M. bovis*) o en humanos (tal como *M. tuberculosis*). Para desarrollar tales ensayos, las secuencias genómicas distintivas ya se han identificado.
- 45 Detección de micobacterias a partir de otros tipos de muestra.

IMS se puede aplicar a un amplio rango de tipos de muestras u otros métodos de preparación de muestra podrían usarse antes de recuperación y concentración de las células micobacterianas mediante separación magnética. Ejemplos de otros especímenes clínicos que pueden ser relevantes son muestras de semen a partir de toros que se

50 usan en programas de garantía de manadas.

REIVINDICACIONES

- 1. Un método para evaluación de micobacterias dianas en una muestra que comprende las etapas de:
- a) mezclar un bacteriófago con una mezcla de reacción en condiciones adecuadas para permitir que el bacteriófago infecte y lise cualquiera de las micobacterias que se presentan en la muestra;
- b) retirar cualquiera de las células no lisadas a partir de la mezcla de reacción mediante centrifugación, filtración o mediante métodos de barrera tales como columnas de centrifugado, o mediante unión a y retiro de un sustrato que comprende un material que se recubre con un polipéptido, un péptido o un anticuerpo que se une específicamente a las micobacterias dianas;
- c) analizar ADN a partir de micobacterias lisadas para identificar una secuencia de ADN distintiva que ocurre en las especies de *Mycobacterium* dianas;
 - en el que la etapa b) se realiza entre etapas a) y c).
- El método de acuerdo con la reivindicación 1, en el que la muestra es una muestra a partir de un animal o humana
 del cual se sospecha que se encuentra infectado con la célula micobacteriana diana; o en el que la muestra es una muestra de sangre, fluido corporal o tejido.
 - 3. El método de acuerdo con la reivindicación 2, en el que la muestra es una muestra de un producto de consumo humano o animal.
 - 4. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que la célula micobacteriana diana es *Mycobacterium avium* subsp. *paratuberculosis* (MAP), *Mycobacterium tuberculosis*, *Mycobacterium leprae* o *Mycobacterium bovis*.
- 5. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que el bacteriófago es un micobacteriófago de amplio rango de huésped, D29 o TM4.
 - 6. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que el ADN se analiza mediante un sistema de amplificación de ADN no basado en PCR.
 - 7. El método de acuerdo con una cualquiera de las reivindicaciones 1-5, en el que el ADN se analiza mediante PCR usando cebadores que se anillan específicamente a una secuencia de ADN distintiva que ocurre en la célula micobacteriana diana y/o, de manera opcional, en el que la secuencia de ADN distintiva es una secuencia que tiene al menos el 60%, 70%, 80%, 90%, 95%, 98% o 100% de identidad con respecto a la SEQ ID No. 1.
 - 8. El método de acuerdo con la reivindicación 7 en el que la etapa de fusión de ADN en la PCR se lleva a cabo a una temperatura que no lisa células micobacterianas, preferiblemente, a menos de 95 °C.
- 9. El método de acuerdo con una cualquiera de las reivindicaciones anteriores en el que las etapas a) a c) del método se realizan en un recipiente de reacción, por ejemplo un tubo de ensayo, un tubo de microcentrifugación o un pozo de una plaza de múltiples pozos.
 - 10. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que las etapas a) a c) del método pueden realizarse en 24 horas.
 - 11. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que los resultados pueden obtenerse en menos de 12 horas o menos de 8 horas.
- 12. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en el que método no comprende el uso de anticuerpos para identificación de micobacterias o identificación de infección micobacteriana.
 - 13. El método de acuerdo con una cualquiera de las reivindicaciones anteriores en el que se identifican secuencias distintivas a partir de dos o más micobacterias diferentes; o en el que el método se dispone para realizarse en un recipiente de reacción único.

60

5

25

35

40

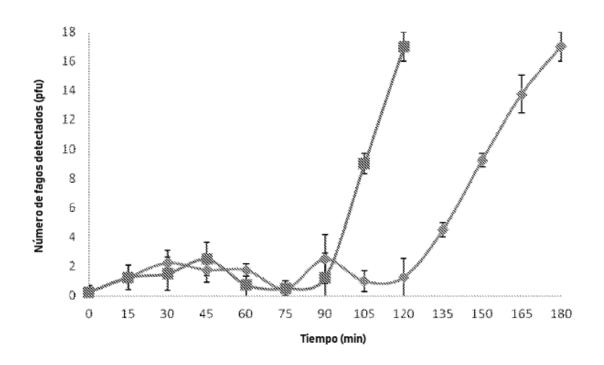


Figura 1

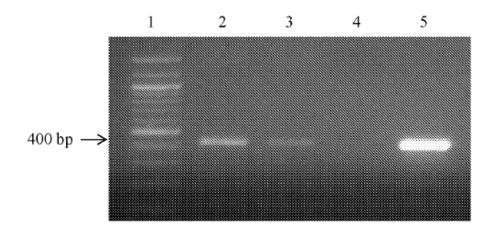


Figura 2

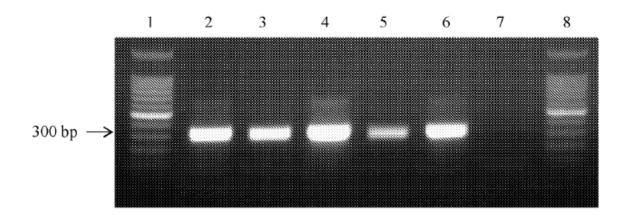


Figura 3

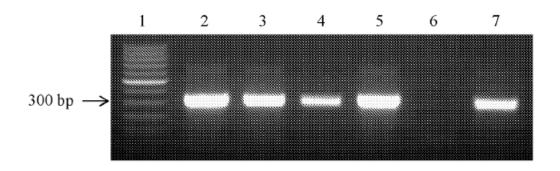


Figura 4

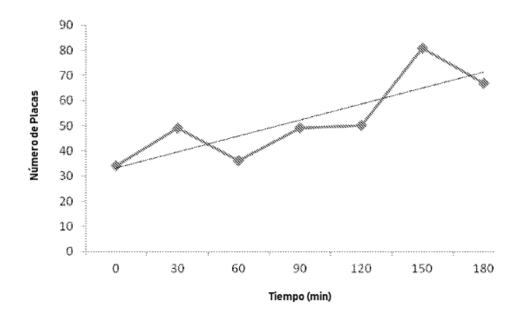


Figura 5

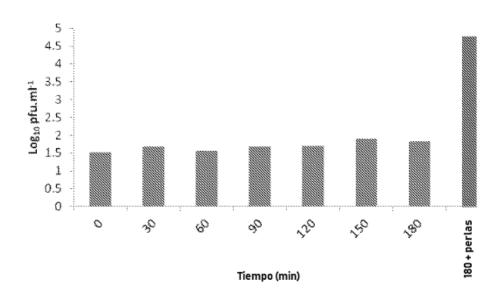


Figura 6

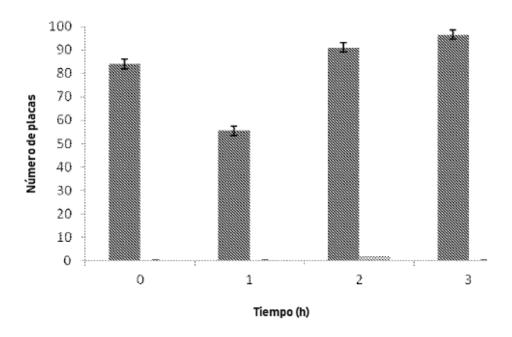


Figura 7

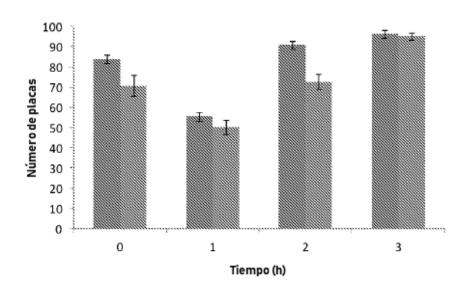


Figura 8

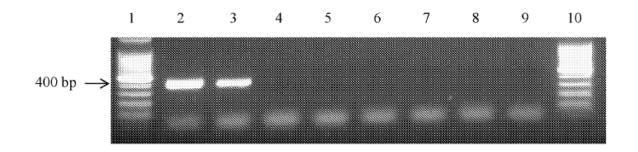


Figura 9

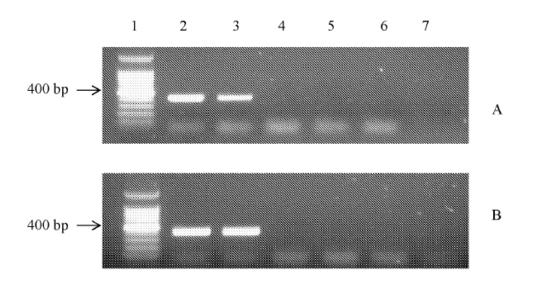


Figura 10

SEQ ID NO 1 - IS900 Secuencia distintiva

TCCTTACCTTTCTTGAAGGGTGTTCGGGGCCGTCGCTTAGGCTTCGAATTGCCCAGGGAC GGTCCCGCGACGACTCGACCGCTAATTGAGAGATGCGATTGGATCGCTGTGTAAGGACAC GTCGGCGTGGTCGTCTGCTGGGTTGATCTGGACAATGACGGTTACGGAGGTGGTTGTGGC ACAACCTGTCTGGGCGGGCGTGGACGCCGGTAAGGCCGACCATTACTGCATGGTTATTAA CGACGACGCGCAGCGATTGCTCTCGCAGCGGGTGGCCAACGACGAGGCCGCGCTGCTGGA GTTGATTGCGGCGGTGACGACGTTGGCCGATGGAGGCGAGGTCACGTGGGCGATCGACCT CAACGCCGGCGCGCGCGTTGCTGATCGCCTTGCTCATCGCTGCCGGGCAGCGGCTGCT TTATATTCCCGGGCGCACGGTCCATCACGCCGCGGGTAGTTACCGCGGCGAAGGCAAGAC CGACGCCAAAGACGCTGCGATCATCGCCGATCAGGCCCGGATGCGCCACGACTTGCAGCC TCTGCGCGCCGGCGATGACATCGCAGTCGAGCTGCGCATCCTGACCAGCCGACGTTCCGA TCTGGTGGCTGATCGGACCCGGGCGATCGAACCGAATGCGCGCCCAGCTGCTGGAATACT TTCXMCGCTGGAACGCGCCTTCGACTACAACAAGAGCCGTGCCGCGCTGATCCTGCTTAC TGGCTACCAAACTCCCGACGCGCTGCGCAGCGCCGGTGGCGCTCGAGTAGCCGCGTTCTT GCGTAAACGCAAGGCCCGCAACGCCGATACCGTCGCAGCCACCGCGCTGCAGGCCGCTAA CGCCCAACACAGCATCGTGCCCGGCCAACACTGGCGGCCACTGTGGTGGCCCGCCTGGC CAAGGAGGTGATGGCCCTCGACACCGAAATCGGCGACACCGACGCGATGATCGAGGAGCG ATTTCGCCGCCACCGCCACGCCGAAATCATCCTGAGCATGCCCGGATTCGGCGTCATCCT GGGCGCTGAGTTCCTCGCCGCCACCGGCGGGGACATGGCCGCATTCGCCTCCGCCGACCG CCTCGCCGGCGTCGCCGGCCTGGCGCGCGTACCACGAGATTCCGGCCGCATCAGCGGAAA CCTCAAACGCCCCGACGCTACGACCGGCGCCTGCTGCGCCCTGCTACCTGTCGGCCTT GGTCAGCATCCGCACCGACCCTCCTCGCGCACCTACTACGACCGAAAACGCACCGAAGG AAAACGCCACACCCAAGCCGTCCTCGCCCTGGCCCGCCGCCGCCTCAACGTCCTGTGGGC CATGCTGCGCGACCACGCTGTCTACCACCCCGCAACCACTACCGCGGCGGCTTGACAACG TCATTGAGAAT

Figura 11

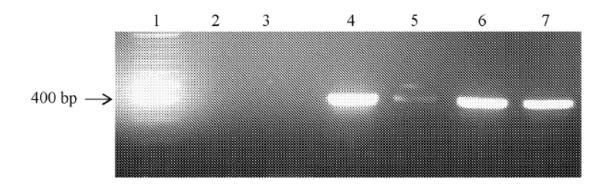


Figura 12

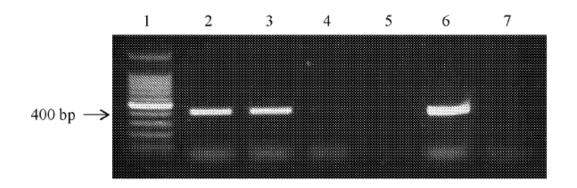


Figura 13

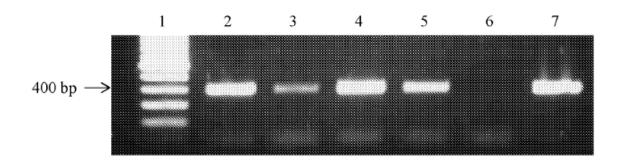


Figura 14

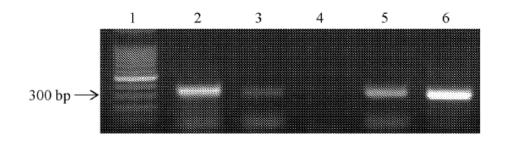


Figura 15

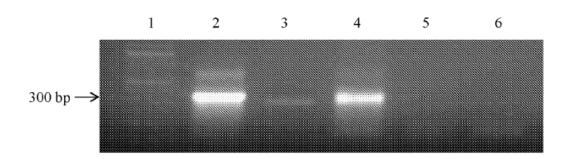


Figura 16

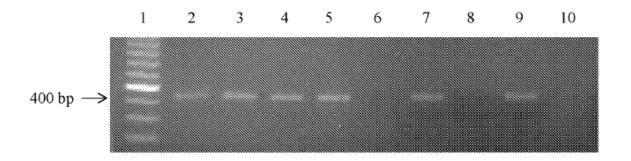


Figura 17

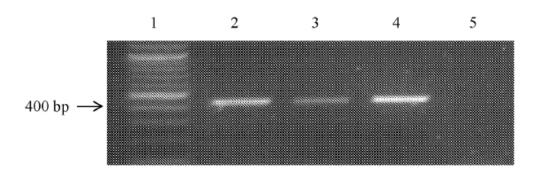


Figura 18

	Mes 6			Mes 7			Mes 8		
	Sangre- PCR	Fago	Un día	Sangre- PCR	Fago		Sangre- PCR	Fago	Un día
1									
2									
3									
4									
5									
6					\$155 \$100 B \$1800 B \$210 B \$1800 B \$200				

7	
8	
9	
10	
11	

Figura 19

	Concordancia entre cada uno de los ensayos (%)					
	Un día vs Ensayo de fago	Un día Vs PCR en sangre	Un día Vs PCR y Fago	Fago Vs PCR		
Mes 6	64	27	27	64		
Mes 7	55	55	36	64		
Mes 8	82	64	55	64		

Figura 20

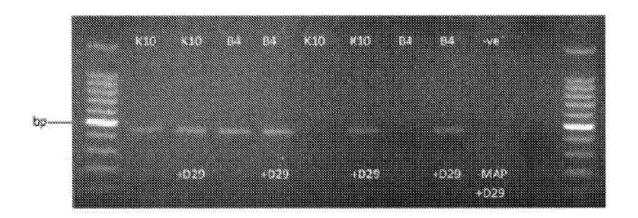


Figura 21