

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 732 276

51 Int. Cl.:

C07K 14/72 (2006.01) C07K 14/59 (2006.01) C07K 16/28 (2006.01) C12N 5/10 (2006.01) C12N 15/12 (2006.01) G01N 33/53 (2006.01) G01N 33/564 A61K 39/00 (2006.01) A61K 38/17 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: 21.08.2002 E 11158929 (7)
 (97) Fecha y número de publicación de la concesión europea: 17.04.2019 EP 2383291
 - (54) Título: Regiones del epítopo de un receptor de tirotropina (TSH), usos del mismo y anticuerpos para el mismo
 - (30) Prioridad:

23.08.2001 GB 0120649 01.07.2002 GB 0215212

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 21.11.2019 (73) Titular/es:

RSR LIMITED (100.0%) 7 Robin Lane, High Bentham Lancaster LA2 7AB, GB

(72) Inventor/es:

SMITH, BERNARD REES; FURMANIAK, JADWIGA y SANDERS, JANE FINA

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Regiones del epítopo de un receptor de tirotropina (TSH), usos del mismo y anticuerpos para el mismo

10

15

20

25

30

35

40

45

50

55

60

65

5 La presente invención se refiere a las regiones del epítopo de un receptor de tirotropina (TSH), a sus usos y a sus anticuerpos.

La tirotropina o la hormona estimulante de la tiroides (TSH, *thyroid stimulating hormone*) es una hormona pituitaria que desempeña un papel clave en la regulación de la función de la tiroides. Su liberación está estimulada por la hormona TRH que se forma en el hipotálamo y controla la formación y liberación de las hormonas tiroideas importantes: tiroxina (T4) y triyodotironina (T3). Sobre la base de un mecanismo de retroalimentación, el contenido de hormona tiroidea del suero controla la liberación de TSH. La formación de T3 y T4 por las células tiroideas es estimulada por la TSH mediante un procedimiento en el que la TSH liberada por la pituitaria se une al receptor de la membrana celular tiroidea.

En ciertas condiciones patológicas, también se pueden formar diversos tipos de autoanticuerpos contra este receptor de TSH. Dependiendo del tipo de estos autoanticuerpos, puede ocurrir una inhibición de la formación y liberación de T3 y T4 en el receptor de TSH debido a la protección de las moléculas de TSH, o, por otro lado, estas hormonas tiroideas se pueden liberar de manera incontrolada. De este modo, los autoanticuerpos anti-receptor de TSH imitan la acción de la TSH y estimulan la síntesis y liberación de hormonas tiroideas.

La enfermedad tiroidea autoinmune (AITD, autoimmune thyroid disease) es la enfermedad autoinmune más común que afecta a diferentes poblaciones en todo el mundo. Una proporción de pacientes con AITD, principalmente aquellos con la enfermedad de Graves, tienen autoanticuerpos contra el receptor de TSH sustancialmente como se describió anteriormente. Los autoanticuerpos se unen al receptor de TSH y generalmente imitan las acciones de la TSH, estimulando la glándula tiroides para producir altos niveles de hormonas tiroideas. Estos autoanticuerpos se describen como que tienen actividad estimulante. En algunos pacientes, los autoanticuerpos se unen al receptor de TSH, pero no estimulan la producción de hormona tiroidea y se describen como actividad bloqueadora [J Sanders, Y Oda, SA Roberts, M. Maruyama, J Furmaniak, B Rees Smith "Understanding the thyrotrophin receptor function-structure relationship (Entendiendo la relación entre la estructura y la función del receptor de tirotropina)". Clínica de Endodoncia y Metabolismo de Bailliere. Ed. T F Davies 1997 11(3): 451-479. Pub. Bailliere Tindall, Londres].

Las mediciones de autoanticuerpos contra el receptor de TSH son importantes en el diagnóstico y manejo de la AITD, particularmente la enfermedad de Graves. Actualmente se utilizan tres tipos de ensayos para medir los autoanticuerpos del receptor de TSH:

- (a) ensayos de unión competitiva que miden la capacidad de los autoanticuerpos del receptor de TSH para inhibir la unión de la TSH a las preparaciones del receptor de TSH;
- (b) bioensayos que miden la capacidad de los autoanticuerpos del receptor de TSH para estimular las células que expresan el receptor de TSH en el cultivo; y
- (c) inmunoprecipitación de preparaciones del receptor de TSH con autoanticuerpos del receptor de TSH.

La medición de los autoanticuerpos contra el receptor de TSH usando tales ensayos se describe en las referencias J Sanders, Y Oda, S-A Roberts, M Maruyama, J Furmaniak, B Rees Smith "Understanding the thyrotrophin receptor function-structure relationship". Clínica de Endodoncia y Metabolismo de Bailliere. Ed. T F Davies 1997 11(3): 451-479. Pub. Bailliere Tindall, London, and J Sanders, Y Oda, S Roberts, A Kiddie, T Richards, J Bolton, V McGrath, S Walters, D Jaskolski, J Furmaniak, B Rees Smith "The interaction of TSH receptor autoantibodies with ¹²⁵I-labelled TSH receptor (La interacción de los anticuerpos del receptor de TSH con receptor de TSH marcado con ¹²⁵I)". Revista de Endocrinología Clínica y Metabolismo 1999 84(10):3797-3802. 52). Además, se han descrito procedimientos y ensayos para detectar autoanticuerpos en los documentos EP 1078986, DE19651093 o WO99/64865.

Sin embargo, hay una serie de limitaciones asociadas con el uso de los ensayos disponibles en la actualidad descritos anteriormente para medir autoanticuerpos contra el receptor de TSH. Los ensayos competitivos del tipo (a) que están disponibles en diferentes formatos son generalmente sensibles, relativamente fáciles de realizar y adaptables para el uso rutinario. Sin embargo, los ensayos de radiorreceptores competitivos conocidos hasta la fecha para detectar autoanticuerpos del receptor de TSH tienen desventajas fundamentales de naturaleza práctica que se pueden atribuir al hecho de que la capacidad de unión de las preparaciones del receptor de TSH generalmente reacciona muy sensiblemente a los cambios en el receptor o en una biomolécula unida por el mismo. La unión de biomoléculas que son péptidos o proteínas en la naturaleza, por ejemplo, hormonas o autoanticuerpos, a los receptores es por lo general muy complicada en la naturaleza, y la unión específica entre el receptor y la biomolécula es mucho más sensible a las alteraciones estructurales, en particular del receptor, que es el caso de

un par de unión antígeno/anticuerpo habitual que es la base de la mayoría de los inmunoensayos en los que están involucrados los receptores. Los intentos de inmovilizar y/o marcar el receptor de TSH han conducido, en general, a alteraciones estructurales que han perjudicado enormemente la funcionalidad del receptor.

5 En lo que respecta a los bioensayos del tipo mencionado en (b), estos tienden a ser costosos, requieren mucho tiempo, requieren personal altamente cualificado y son esencialmente inadecuados para el uso rutinario.

Con respecto a los ensayos de inmunoprecipitación directa de tipo (c), dichos ensayos de inmunoprecipitación disponibles actualmente no tienen en la práctica la sensibilidad requerida para la detección de autoanticuerpos del receptor de TSH.

La presente invención se define por las reivindicaciones adjuntas.

La presente divulgación alivia los problemas asociados hasta ahora con la detección de autoanticuerpos del receptor de la técnica anterior. Más particularmente, la presente divulgación proporciona procedimientos de diagnóstico y kits para la detección de autoanticuerpos contra el receptor de TSH, con sensibilidad mejorada en comparación con los procedimientos y kits de diagnóstico de la técnica anterior, y que, si se desea, permiten el uso de uno o más ligandos más competitivos o competidores para un receptor de TSH en ensayos competitivos del tipo descrito anteriormente. En particular, la presente divulgación se refiere al uso de una o más regiones epítopo identificadas del receptor de TSH en procedimientos de diagnóstico y kits para la detección de autoanticuerpos del receptor de TSH.

Por lo tanto, se proporciona por medio de la presente divulgación, para uso en diagnóstico o terapia de enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, una secuencia polipeptídica que comprende parte o la totalidad de la conformación estructural primaria (es decir, una secuencia continua de residuos de aminoácidos) de uno o más epítopos del receptor de TSH con los que interactúan autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

(en particular, dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos, y/o la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos); en el que los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos) con dicha secuencia polipeptídica, con el fin de permitir dicho diagnóstico o terapia.

Más particularmente, se proporciona mediante la presente divulgación para uso en el diagnóstico o terapia de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los cuales interactúan los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

60

65

10

15

20

25

30

35

40

45

50

55

(en particular, dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos, y/o la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos

números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos); en el que los autoanticuerpos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos) con dicha secuencia polipeptídica, con el fin de permitir dicho diagnóstico o terapia.

Alternativamente, la presente divulgación proporciona un uso para el diagnóstico o la terapia de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los que interactúan los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

5

10

40

45

50

55

60

65

(en particular, dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos, y/o la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos); en el que los linfocitos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos) con dicha secuencia polipeptídica, con el fin de permitir dicho diagnóstico o terapia.

La presente divulgación proporciona además el uso en el diagnóstico o la terapia de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los que interactúan autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

como se representa en una cualquiera de las secuencias de aminoácidos de cualquiera de las Figuras 1, 3, 5 y 7, (en particular dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos, y/o la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de dichos fragmentos); en el que los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH interactúan

en el que los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos) con dicha secuencia polipeptídica, con el fin de permitir dicho diagnóstico o terapia.

Más particularmente, la presente divulgación proporciona además el uso en el diagnóstico o la terapia de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los que interactúan los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos o variantes, análogos o derivados de tales fragmentos:

```
aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;
```

como se representa en una cualquiera de las secuencias de aminoácidos de cualquiera de las Figuras 1, 3, 5 y 7, (en particular, dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en una de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de dichos fragmentos, y/o la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en una cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos); en el que los autoanticuerpos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos) con dicha secuencia polipeptídica, con el fin de permitir dicho diagnóstico o terapia.

La presente divulgación proporciona además el uso en el diagnóstico o la terapia de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los cuales interactúan los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

como se representa en una cualquiera de las secuencias de aminoácidos de cualquiera de las Figuras 1, 3, 5 y 7, 35 (en particular dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos, y/o la 40 conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de dichos fragmentos); en el que los linfocitos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos) con dicha secuencia polipeptídica, con el 45 fin de permitir dicho diagnóstico o terapia.

Más preferentemente, generalmente se prefiere que dicho uso diagnóstico o terapéutico emplee una secuencia o secuencias polipeptídicas comprenden, consisten en o consisten esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

```
aminoácidos números 32 a 41 de un receptor de TSH;
aminoácidos números 36 a 42 de un receptor de TSH;
aminoácidos números 247 a 260 de un receptor de TSH;
aminoácidos números 277 a 296 de un receptor de TSH; y
aminoácidos números 381 a 385 de un receptor de TSH;
```

(en particular, dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos, y/o la conformación estructural primaria de los aminoácidos números 247 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 247 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos).

65

50

55

60

5

10

15

En particular, generalmente se prefiere de acuerdo con la presente divulgación que dicho uso diagnóstico o terapéutico emplea los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos.

- En particular, generalmente se prefiere de acuerdo con la presente divulgación que dicho uso diagnóstico o terapéutico emplea los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos
- En particular, generalmente se prefiere de acuerdo con la presente divulgación que dicho uso diagnóstico o terapéutico emplea los aminoácidos números 247 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos.
 - Un uso diagnóstico o terapéutico particularmente preferido de acuerdo con la presente divulgación, comprende el uso en el diagnóstico o la terapia de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH:
 - (i) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los que interactúan autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos; y
 - (ii) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH adicionales con los cuales interactúan autoanticuerpos y/o linfocitos en respuesta a un receptor de TSH (adecuadamente en condiciones que permitir la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos,
- en el que los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos) con dichas secuencias polipeptídicas, con el fin de permitir dicho diagnóstico o terapia.
 - Más particularmente, dicho uso diagnóstico o terapéutico puede comprender:

15

20

25

30

40

45

- (i) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los que interactúan los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos; y
- (ii) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH adicionales con los que interactúan los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un Receptor de TSH con dichos autoanticuerpos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos,
- en el que los autoanticuerpos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos) con dichas secuencias polipeptídicas, con el fin de permitir dicho diagnóstico o terapia.

 Alternativamente, dicho uso diagnóstico o terapéutico puede comprender:
 - (i) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los que interactúan

5

10

15

25

30

35

40

45

50

55

60

65

los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos; y

(ii) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH adicionales con los que interactúan los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un Receptor de TSH con dichos linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos.

en el que los linfocitos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos) con dichas secuencias polipeptídicas, con el fin de permitir dicho diagnóstico o terapia.

20 Un uso terapéutico o diagnóstico particularmente preferido de acuerdo con la presente divulgación comprende el uso en el diagnóstico o la terapia de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH:

(i) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los que interactúan autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos; y

(ii) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH adicionales con los cuales interactúan autoanticuerpos y/o linfocitos en respuesta a un receptor de TSH (adecuadamente en condiciones que permitir la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en una cualquiera de las secuencias de aminoácidos de La Figura 3, o una o más variantes, análogos, derivados o fragmentos de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos;

en el que los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos) con dichas secuencias polipeptídicas, con el fin de permitir dicho diagnóstico o terapia.

Más particularmente, dicho uso diagnóstico o terapéutico puede comprender:

(i) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los que interactúan los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos; y

(ii) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH flirter con los que interactúan los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un Receptor de TSH con dichos autoanticuerpos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las

secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos;

en el que los autoanticuerpos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos) con dichas secuencias polipeptídicas, con el fin de permitir dicho diagnóstico o terapia.

Alternativamente, dicho uso diagnóstico o terapéutico puede comprender:

- (i) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los que interactúan los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos; y
- (ii) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH adicionales con los que interactúan los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un Receptor de TSH con dichos linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en una cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos,
 - en el que los linfocitos producidos en respuesta a un receptor de TSH interactúan (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos) con dichas secuencias polipeptídicas, con el fin de permitir dicho diagnóstico o terapia.
- 35 Además, también puede preferirse que el uso diagnóstico o terapéutico mencionado anteriormente emplee:
 - (i) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los que interactúan autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos; y
 - (ii) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH adicionales con los cuales interactúan autoanticuerpos y/o linfocitos en respuesta a un receptor de TSH (adecuadamente en condiciones que permitir la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos;
- 55 que además emplea:

5

10

15

20

30

40

45

50

60

- (iii) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH adicionales con los que interactúan autoanticuerpos y/o linfocitos en respuesta a un receptor de TSH (adecuadamente en condiciones que permitir la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 381 a 385 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 381 a 385 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos.
- Más particularmente, dicho uso diagnóstico o terapéutico preferido emplea:

- (i) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH con los que interactúan autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos;
- (ii) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH adicionales con los cuales interactúan autoanticuerpos y/o linfocitos en respuesta a un receptor de TSH (adecuadamente en condiciones que permitir la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en una cualquiera de las secuencias de aminoácidos de La Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos; y
- (iii) una secuencia polipeptídica que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos del receptor de TSH adicionales con los que interactúan autoanticuerpos y/o linfocitos en respuesta a un receptor de TSH (adecuadamente en condiciones que permitir la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dicha secuencia polipeptídica comprende, consiste en o consiste esencialmente en la conformación estructural primaria de los aminoácidos números 381 a 385 de un receptor de TSH como se muestra en una cualquiera de las secuencias de aminoácidos de La Figura 7, o una o más variantes, análogos, derivados o fragmentos de las secuencias de aminoácidos de la Figura 7, o variantes, análogos o derivados de tales fragmentos.

Como se podrá apreciar en las Figuras adjuntas, las secuencias de aminoácidos mencionadas anteriormente pueden ser de origen humano, porcino, bovino, canino, felino, de ratón, rata u ovino, y las secuencias de aminoácidos específicas en cada uno de las especies mencionadas anteriormente se describen a continuación con mayor detalle con referencia a las Figuras 1, 3, 5 y 7.

También se proporciona mediante la presente divulgación uno o más epítopos del receptor de TSH con los que interactúan autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dichos uno o más epítopos del receptor de TSH comprenden, consisten en o consisten esencialmente en uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; 45 aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

5

10

15

20

25

30

35

40

65

- (en particular los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos, o aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos).
- Más particularmente, la presente divulgación proporciona uno o más epítopos del receptor de TSH con los que interactúan los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), dichos uno o más epítopos del receptor de TSH comprenden, consisten en o consisten esencialmente en uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de dichos fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH; (en particular los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos, o aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos).

Alternativamente, la presente divulgación proporciona uno o más epítopos del receptor de TSH con los cuales interactúan los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos), dichos uno o más epítopos del receptor de TSH comprenden, consisten en o consisten esencialmente en uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

5

10

15

35

40

45

50

60

65

(en particular los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos, o aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos).

La presente divulgación proporciona además uno o más epítopos del receptor de TSH con los que interactúan autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), dichos uno o más epítopos del receptor de TSH comprenden, consisten en o consisten esencialmente en uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

como se representa en una cualquiera de las secuencias de aminoácidos de cualquiera de las Figuras 1, 3, 5 y 7, (en particular los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos, o aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos).

Más particularmente, la presente divulgación proporciona además uno o más epítopos del receptor de TSH con los que interactúan los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), dichos uno o más epítopos del receptor de TSH comprenden, consisten en o consisten esencialmente en uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; 55 aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

como se representa en una cualquiera de las secuencias de aminoácidos de cualquiera de las Figuras 1, 3, 5 y 7, (en particular los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos, o aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor

de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos).

La presente divulgación proporciona además uno o más epítopos del receptor de TSH con los que interactúan los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos), dichos epítopos del receptor de TSH comprenden, consisten en o consisten esencialmente en uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

5

45

50

65

como se representa en una cualquiera de las secuencias de aminoácidos de cualquiera de las Figuras 1, 3, 5 y 7, (en particular los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos, o aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos).

25 Más preferentemente, generalmente se prefiere que uno o más epítopos del receptor de TSH comprendan uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 32 a 41 de un receptor de TSH;
30 aminoácidos números 36 a 42 de un receptor de TSH;
aminoácidos números 247 a 260 de un receptor de TSH;
aminoácidos números 277 a 296 de un receptor de TSH; y
aminoácidos números 381 a 385 de un receptor de TSH;

(en particular los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos, o aminoácidos números 247 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 247 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos).

Un epítopo de receptor de TSH particularmente preferido de acuerdo con la presente divulgación comprende, consiste en o consiste esencialmente en los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos).

Un epítopo de receptor de TSH particularmente preferido de acuerdo con la presente divulgación comprende, consiste en o consiste esencialmente en los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos).

Un epítopo de receptor de TSH particularmente preferido de acuerdo con la presente divulgación comprende, consiste en o consiste esencialmente en los aminoácidos números 247 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos).

También se proporciona mediante la presente divulgación un polipéptido con el que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos) y que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos

de un receptor de TSH con el que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), cuyo polipéptido comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

```
aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;
```

5

10

15

20

25

30

35

40

45

50

55

60

65

(en particular los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos y/o aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos), con el que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), con la excepción de un receptor de TSH de longitud completa.

Más particularmente, la presente divulgación proporciona un polipéptido con el que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos) y que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria (que es una secuencia continua de residuos de aminoácidos) de uno o más epítopos de un receptor de TSH con los que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), cuyo polipéptido comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

(en particular los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos y/o aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de dichos fragmentos), con los que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), con la excepción de un receptor de TSH de longitud completa.

Alternativamente, la presente divulgación proporciona un polipéptido con el que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos) y que comprende, consiste o consiste esencialmente en de parte o la totalidad de la conformación estructural primaria (que es una secuencia continua de residuos de aminoácidos) de uno o más epítopos de un receptor de TSH con los que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un Receptor de TSH con dichos linfocitos), cuyo polipéptido comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

(en particular los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos y/o aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos), con los que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos), con la excepción de un receptor de TSH de longitud completa.

La presente divulgación proporciona además un polipéptido con el que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos) y que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos de un receptor de TSH con el que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), cuyo polipéptido comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos o variantes, análogos o derivados de tales fragmentos:

```
aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;
```

5

10

15

20

25

40

45

50

55

60

65

como se representa en una cualquiera de las secuencias de aminoácidos de cualquiera de las Figuras 1, 3, 5 y 7, (en particular los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos y/o aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos), con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), con la excepción de un receptor de TSH de longitud completa.

Más particularmente, la presente divulgación proporciona además un polipéptido con el que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos) y que comprende, consiste o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos de un receptor de TSH con el que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), cuyo polipéptido comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH; aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

como se representa en una cualquiera de las secuencias de aminoácidos de cualquiera de las Figuras 1, 3, 5 y 7, (en particular los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos y/o aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos), con los que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), con la excepción de un receptor de TSH de longitud completa.

La presente divulgación proporciona además un polipéptido con el que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos) y que comprende, consiste en o consiste esencialmente en parte o la totalidad de la conformación estructural primaria de uno o más epítopos de un receptor de TSH con el que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permitan la interacción de un receptor de TSH con dichos linfocitos), cuyo polipéptido comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos o variantes, análogos o derivados de tales fragmentos:

aminoácidos números 22 a 91 de un receptor de TSH;

aminoácidos números 246 a 260 de un receptor de TSH; aminoácidos números 260 a 363 de un receptor de TSH; y aminoácidos números 380 a 418 de un receptor de TSH;

5

10

15

20

25

30

35

40

55

60

65

como se representa en una cualquiera de las secuencias de aminoácidos de cualquiera de las Figuras 1, 3, 5 y 7, (en particular los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos y/o aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos), con el que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos), con la excepción de un receptor de TSH de longitud completa.

Más preferentemente, generalmente se prefiere que un polipéptido de acuerdo con la presente divulgación pueda comprender parte o la totalidad de la conformación estructural primaria de uno o más epítopos de un receptor de TSH con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos) y, como tal, comprende, consiste en o consiste esencialmente en la conformación estructural primaria de uno o más de los siguientes, o una o más variantes, análogos, derivados o fragmentos de los mismos o variantes, análogos o derivados de dichos fragmentos, con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permitan la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos):

aminoácidos números 32 a 41 de un receptor de TSH; aminoácidos números 36 a 42 de un receptor de TSH; aminoácidos números 247 a 260 de un receptor de TSH; aminoácidos números 277 a 296 de un receptor de TSH; y aminoácidos números 381 a 385 de un receptor de TSH.

Preferentemente, un polipéptido de acuerdo con la presente divulgación comprende, consiste en o consiste esencialmente en los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos.

Preferentemente, un polipéptido de acuerdo con la presente divulgación comprende, consiste en o consiste esencialmente en los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos.

Preferentemente, un polipéptido de acuerdo con la presente divulgación comprende, consiste en o consiste esencialmente en los aminoácidos números 247 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos.

También se prefiere de acuerdo con la presente divulgación que se proporciona un polipéptido con el que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permitan la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos) y que comprende parte o la totalidad de la conformación estructural primaria de los epítopos del receptor de TSH con los que pueden interactuar los autoanticuerpos y/o los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), cuyo polipéptido comprende, consiste en o consiste esencialmente en:

(i) la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos); y

(ii) la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos),

con la excepción de un receptor de TSH de longitud completa.

Más particularmente, la presente divulgación proporciona un polipéptido con el que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos) y que comprende parte o la totalidad de conformación estructural primaria de los epítopos del receptor de TSH con los que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), cuyo polipéptido comprende, consiste o consiste esencialmente en:

- (i) la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos); y
 - (ii) la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos);

con la excepción de un receptor de TSH de longitud completa.

5

15

20

25

30

35

40

55

60

65

Alternativamente, la presente divulgación proporciona un polipéptido con el que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos) y que comprende parte o la totalidad de la conformación estructural primaria de los epítopos del receptor de TSH con los que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos), cuyo polipéptido comprende, consiste o consiste esencialmente en:

- (i) la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos); y
- (ii) la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos);

con la excepción de un receptor de TSH de longitud completa.

- La presente divulgación proporciona además un polipéptido con el que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos) y que comprende parte o la totalidad de la conformación estructural primaria de los epítopos de un receptor de TSH con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), que comprende el polipéptido, consiste en o consiste esencialmente en:
 - (i) la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos); y
 - (ii) la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta

a un receptor de TSH (adecuadamente en condiciones que permiten interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos),

con la excepción de un receptor de TSH de longitud completa.

5

10

15

20

25

30

35

40

55

60

65

- Más particularmente, la presente divulgación proporciona además un polipéptido con el que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos) y que comprende parte o la totalidad de la conformación estructural primaria de los epítopos del receptor de TSH con los que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos), cuyo polipéptido comprende, consiste o consiste esencialmente en:
 - (i) la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos); y
 - (ii) la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos).

con la excepción de un receptor de TSH de longitud completa.

- La presente divulgación proporciona además un polipéptido con el que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos) y que comprende parte o la totalidad de la conformación estructural primaria de los epítopos del receptor de TSH con los que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos), que comprende el polipéptido, consiste o consiste esencialmente en:
 - (i) la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en una de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos); y
- (ii) la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos linfocitos); con la excepción de un receptor de TSH de longitud completa.
 - También se prefiere de acuerdo con la presente divulgación que se proporciona un polipéptido con el que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos) y que comprende parte o la totalidad de la conformación estructural primaria de los epítopos del receptor de TSH con los que pueden interactuar los autoanticuerpos y/o los linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), cuyo polipéptido comprende, consiste en o consiste esencialmente en:
 - (i) la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos);

(ii) la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos); y (iii) la conformación estructural primaria de los aminoácidos números 381 a 385 de un receptor de TSH, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 381 a 385 de un receptor de TSH, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones

con la excepción de un receptor de TSH de longitud completa.

5

10

25

30

35

40

45

65

Más particularmente, la presente divulgación proporciona además un polipéptido con el que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos) y que comprende parte o la totalidad de la conformación estructural primaria de los epítopos de un receptor de TSH con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos), cuyo polipéptido comprende, consiste en o consiste esencialmente en:

que permiten la interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos),

- (i) la conformación estructural primaria de los aminoácidos números 277 a 296 de un receptor de TSH como se muestra en una cualquiera de las secuencias de aminoácidos de la Figura 5, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 277 a 296 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 5, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos);
- (ii) la conformación estructural primaria de los aminoácidos números 246 a 260 de un receptor de TSH como se muestra en cualquiera de las secuencias de aminoácidos de la Figura 3, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 246 a 260 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 3, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos);
- (iii) la conformación estructural primaria de los aminoácidos números 381 a 385 de un receptor de TSH como se muestra en una cualquiera de las secuencias de aminoácidos de la Figura 7, o una o más variantes, análogos, derivados o fragmentos de los aminoácidos números 381 a 385 de un receptor de TSH como se representa en una cualquiera de las secuencias de aminoácidos de la Figura 7, o variantes, análogos o derivados de tales fragmentos, con los que pueden interactuar los autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH (adecuadamente en condiciones que permiten interacción de un receptor de TSH con dichos autoanticuerpos o linfocitos),

con la excepción de un receptor de TSH de longitud completa.

Como se podrá apreciar a partir de las Figuras adjuntas, tales secuencias de aminoácidos pueden ser de origen 50 humano, porcino, bovino, canino, felino, de ratón, rata u ovino, y las secuencias de aminoácidos específicas en cada una de las especies mencionadas anteriormente se describen a continuación con mayor detalle con referencia a las Figuras 1, 3, 5 y 7. Adecuadamente, en el caso en que los polipéptidos de acuerdo con el segundo aspecto de la presente divulgación comprenden secuencias de aminoácidos correspondientes a parte o la totalidad de la conformación estructural primaria de más de un epítopo de un receptor de TSH, las secuencias de aminoácidos 55 respectivas correspondientes a parte o la totalidad de la conformación estructural primaria de los epítopos respectivos se pueden separar por secuencias de aminoácidos de enlace para proporcionar preferentemente las secuencias de aminoácidos respectivas en una conformación, disposición o secuencia que se asemeja o se parece sustancialmente a una conformación, disposición o secuencia de aminoácidos como están presentes en un sitio activo de un receptor de TSH, y/o puede ser eficaz para proporcionar las secuencias de aminoácidos respectivas 60 referidas anteriormente de un receptor de TSH en una conformación, disposición o secuencia óptima para la interacción con autoanticuerpos y/o linfocitos, como se describe en la presente memoria descriptiva.

Las secuencias polipeptídicas preferidas y los polipéptidos de acuerdo con la presente divulgación comprenden, consisten en o consisten esencialmente en, las secuencias de aminoácidos numeradas específicamente referidas a un receptor de TSH como se muestra respectivamente en cualquiera de las Figuras 1, 3, 5 o 7 adjuntas. Como

5

10

15

25

30

35

40

45

50

55

60

65

se indicó anteriormente, sin embargo, la presente invención también cubre "variantes", "análogos", "derivados" y "fragmentos" de secuencias de aminoácidos específicas descritas en la presente memoria descriptiva y los términos "variantes", "análogos", "derivados" y "fragmentos" como se usan en la presente memoria descriptiva cuando se hace referencia a secuencias polipeptídicas y polipéptidos de acuerdo con la presente divulgación (tales como polipéptidos que tienen una conformación estructural primaria de aminoácidos específicos como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas) pueden caracterizarse como secuencias polipeptídicas y polipéptidos que retienen esencialmente la misma función o actividad biológica (en términos de autoanticuerpo y/o interacción de linfocitos como se describe en la presente memoria descriptiva) como secuencias polipeptídicas y polipéptidos que tienen una conformación estructural primaria de aminoácidos específicos como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas. Adecuadamente, las variantes, análogos, derivados y fragmentos, o variantes, análogos o derivados de los fragmentos como se describen en la presente memoria descriptiva pueden tener una conformación estructural primaria de aminoácidos como se puede apreciar en las Figuras adjuntas, en las cuales varios o unos pocos (como 5 a 10, 1 a 5 o 1 a 3) los residuos de aminoácidos se sustituyen, delecionan o agregan, en cualquier combinación. Especialmente preferidas entre estas se encuentran las sustituciones silenciosas, las adiciones son deleciones que no alteran o alteran sustancialmente la actividad o función biológica de los polipéptidos de acuerdo con la presente divulgación como se describe específicamente anteriormente. Las sustituciones conservativas se pueden preferir como se describe a continuación con mayor detalle.

20 Más particularmente, las variantes, análogos o derivados de polipéptidos que tienen una conformación estructural primaria de aminoácidos especificados como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas pueden ser:

- (i) aquellos en los que uno o más de los residuos de aminoácidos están sustituidos con un residuo de aminoácido conservado o no conservado (preferentemente un residuo de aminoácido conservado); o
- (ii) aquellos en los que uno o más de los aminoácidos residen incluyen un grupo sustituyente; o
- (iii) aquellos que además comprenden aminoácidos adicionales que pueden ser eficaces para proporcionar los números de aminoácidos referidos anteriormente de un receptor de TSH que están presentes en un polipéptido de la presente invención en una conformación, disposición o secuencia que se parece o se parece sustancialmente a una conformación, disposición o secuencia de aminoácidos como está presente en un sitio activo de un receptor de TSH, y/o puede ser eficaz para proporcionar los números de aminoácidos de un receptor de TSH que se mencionan anteriormente en un polipéptido de la presente invención en una conformación, disposición o secuencia óptima para la interacción con autoanticuerpos y/o linfocitos como se describe en la presente memoria descriptiva.

Se considera que tales variantes, derivados y análogos están dentro del alcance de los expertos en la técnica a partir de las enseñanzas proporcionadas por la presente memoria descriptiva.

Comúnmente, las variantes, análogos o derivados pueden ser aquellos que varían de una referencia (tales como polipéptidos que tienen una conformación estructural primaria de aminoácidos especificados como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas) por sustituciones de aminoácidos conservativas. Tales sustituciones son aquellas que sustituyen un aminoácido dado en un polipéptido por otro aminoácido de características similares. Comúnmente, las sustituciones conservativas son los reemplazos, uno por otro, entre los aminoácidos alifáticos A, V, L e I; entre los residuos hidroxilo S y T; entre los residuos ácidos D y E; entre los residuos amida N y Q; entre los residuos básicos K y R; y entre los residuos aromáticos F e Y.

Se puede preferir que las variantes, análogos o derivados proporcionados por la presente divulgación sean aquellos que además comprenden aminoácidos adicionales que pueden ser efectivos para proporcionar los números de aminoácidos de un receptor de TSH que se mencionan anteriormente en un polipéptido de la presente invención en una conformación, disposición o secuencia que se parece o se parece sustancialmente a una conformación, disposición o secuencia de aminoácidos presentes en un sitio activo de un receptor de TSH, y/o puede ser eficaz para proporcionar los números de aminoácidos anteriormente indicados de un receptor de TSH que están presentes en un polipéptido de la presente invención en una conformación, disposición o secuencia óptima para la interacción con autoanticuerpos y/o linfocitos como se describe en la presente memoria descriptiva.

Más particularmente, el término "fragmento" como se usa en la presente memoria descriptiva denota un polipéptido que tiene una secuencia de aminoácidos que es totalmente igual a parte, pero no toda la secuencia de aminoácidos de un polipéptido que tiene una conformación estructural primaria de aminoácidos específicos, tal como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas, y las variantes o derivados de los mismos y dichos fragmentos pueden tener "estructura independiente", es decir, no forman parte o ni se fusionan con otros aminoácidos o polipéptidos, o pueden estar comprendidos dentro de un polipéptido más grande del cual formar una parte o región. Como se podrá apreciar, los fragmentos de acuerdo con la presente invención comprenden o contienen la conformación estructural primaria de los aminoácidos presentes en uno o más epítopos de un receptor

de TSH como se describe en la presente memoria descriptiva para que sea capaz de interactuar con autoanticuerpos y/o linfocitos como se describe en la presente memoria descriptiva.

Los polipéptidos de la presente divulgación, por lo tanto, incluyen polipéptidos que tienen una conformación estructural primaria de aminoácidos especificados como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas, así como polipéptidos (a saber, variantes, análogos y derivados como se mencionaron anteriormente) que tienen al menos 70% de identidad con polipéptidos que tienen una conformación estructural primaria de aminoácidos específicos como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas, preferentemente al menos un 80% de identidad con los polipéptidos que tienen una conformación estructural primaria de aminoácidos especificados como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas, y más preferentemente al menos un 90% de identidad con polipéptidos que tienen una conformación estructural primaria de aminoácidos especificados como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas y aún más preferentemente al menos el 95% de identidad con polipéptidos que tienen una conformación estructural primaria de aminoácidos especificados como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas y también incluye fragmentos de dichos polipéptidos sustancialmente como se mencionó anteriormente.

Un polipéptido de acuerdo con la presente divulgación se obtiene adecuadamente, o puede obtenerse mediante la expresión de un polinucleótido de acuerdo con la presente divulgación, sustancialmente como se describe a continuación. Alternativamente, los polipéptidos de la invención pueden producirse sintéticamente mediante sintetizadores de péptidos convencionales que emplean técnicas que son bien conocidas en la técnica. Un polipéptido de acuerdo con la presente divulgación obtenido de este modo puede ser ventajoso al estar libre de asociación con otros polipéptidos eucariotas o contaminantes que de otro modo podrían asociarse con el mismo en su entorno natural.

Los polipéptidos de acuerdo con la presente divulgación sustancialmente como se describe en la presente memoria descriptiva pueden expresarse en diversos sistemas que generan proteínas recombinantes. Por ejemplo, para la expresión en E. coli, el ADNc que codifica los polipéptidos apropiados de acuerdo con la presente invención se puede clonar en un vector, como pET22, pMEX8, pGEX2T o pQE81L His o un equivalente. En el caso de la expresión en levaduras (por ejemplo, Saccharomyces cerevisiae o Schizosaccharomyces pombe), pueden emplearse vectores tales como pYES2, pESP2 o pYES2/CT o un equivalente. El vector AcMNPV (Bac-N-Blue) o un equivalente se puede usar para la expresión en células de insecto y los vectores pRC/CMV, pcDNA3.1 o un equivalente se pueden usar para la expresión en células de mamíferos, como las células de ovario de hámster chino (CHO). Un polipéptido de acuerdo con la presente divulgación puede expresarse como una proteína discreta, o como una proteína de fusión unida a, por ejemplo, glutatión S transferasa (GST) o un enlazador de poli histidina. Para una proteína discreta, se puede usar la purificación por cromatografía en columna de afinidad utilizando un anticuerpo monoclonal de ratón para la parte relevante de un polipéptido de acuerdo con la presente divulgación acoplada a una partícula de sefarosa. Si un polipéptido de acuerdo con la presente divulgación se fusiona con GST, se puede usar la purificación por cromatografía de glutatión sefarosa para aislar la proteína de fusión. Se pueden usar proteasas específicas para separar GST de un polipéptido de acuerdo con la presente divulgación y se puede usar una segunda ronda de cromatografía de glutatión sefarosa para separar GST de un polipéptido de acuerdo con la presente divulgación. En el caso de péptidos unidos al enlazador de poli histidina, la purificación se puede llevar a cabo utilizando cromatografía de afinidad por metales inmovilizados.

La presente divulgación proporciona además un proceso para preparar un polipéptido sustancialmente como se describió anteriormente en la presente memoria, comprendiendo el proceso:

- (i) proporcionar una célula huésped sustancialmente como se describió anteriormente en la presente memoria:
- (ii) cultivar la célula huésped; y

5

10

15

20

25

30

35

40

50

55

60

65

(iii) recuperar un polipéptido de acuerdo con la presente divulgación del mismo.

La recuperación de un polipéptido de acuerdo con la presente divulgación puede emplear comúnmente técnicas de aislamiento y purificación convencionales, tales como separaciones cromatográficas o separaciones inmunológicas, conocidas por un experto en la técnica.

De acuerdo con un aspecto adicional de la presente divulgación, se proporciona un polinucleótido que comprende:

- (i) una secuencia de nucleótidos que codifica un polipéptido sustancialmente como se describió anteriormente en la presente memoria;
 - (ii) una secuencia de nucleótidos que codifica un polipéptido sustancialmente como se describió anteriormente en la presente memoria, polipéptido que comprende una secuencia de aminoácidos o secuencias de números de aminoácidos específicos de un receptor de TSH que se definen por referencia a cualquiera de las Figuras 1, 3, 5 y 7;
- (iii) una secuencia de nucleótidos que codifica un polipéptido de (ii), cuya secuencia de nucleótidos

comprende bases de nucleótidos que codifican los números de aminoácidos especificados mencionados anteriormente de un receptor de TSH que se definen por referencia a cualquiera de las Figuras 1, 3, 5 y 7, y qué bases de nucleótidos se definen por referencia a cualquiera de las Figuras 2, 4, 6 y 8;

- (iv) una secuencia de nucleótidos que difiere de la secuencia de (iii) en la secuencia de codones debido a la degeneración del código genético;
- (v) una secuencia de nucleótidos que comprende una variación alélica de la secuencia de (iii);
- (vi) una secuencia de nucleótidos que comprende un fragmento de cualquiera de las secuencias de (i), (ii), (iii), (iv) o (v); o
- (vii) una secuencia de nucleótidos que se hibrida en condiciones rigurosas con cualquiera de las secuencias de (i), (ii), (iii), (iv), (v) o (vi).

Las bases de nucleótidos de un polinucleótido de acuerdo con la presente divulgación, que codifican las regiones del epítopo, antes mencionadas, de un polipéptido de acuerdo con la presente divulgación, se pueden resumir como sique.

Números de Aminoácidos	Números de Nucleótidos
22-91	64-273
32-41	94-123
36-42	106-126
246-260	736-780
247-260	739-780
260-363	778-1089
277-296	829-888
380-418	1138-1254
381-385	1141-1155

Los polinucleótidos de la presente invención pueden estar en forma de ADN, incluyendo, por ejemplo, ADNc, ADN sintético y ADN genómico obtenidos apropiadamente mediante clonación o producidos por técnicas de síntesis química o por una combinación de los mismos. Una realización preferida de la presente invención. Comprende preferentemente ADNc o ADN sintético. La secuencia de codificación que codifica un polipéptido de acuerdo con la presente divulgación puede ser idéntica a la secuencia de codificación de un polinucleótido como se mencionó anteriormente en (iii) y se define por referencia a cualquiera de las Figuras 2, 4, 6 y 8. También puede ser un polinucleótido con una secuencia diferente, que, como resultado de la redundancia (degeneración) del código genético, codifica un polipéptido de acuerdo con la presente divulgación.

La presente divulgación se refiere además a variantes de los polinucleótidos descritos anteriormente en la presente memoria descriptiva que codifican polipéptidos que tienen una conformación estructural primaria de aminoácidos especificados como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas, variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de los fragmentos y sustancialmente como se describió anteriormente en la presente memoria con mayor detalle. Una variante del polinucleótido puede ser una variante natural tal como una variante alélica natural, o puede ser una variante que no se sabe que ocurra de forma natural. Dichas variantes no naturales del polinucleótido se pueden hacer mediante técnicas de mutagénesis.

Entre las variantes a este respecto se encuentran las variantes que difieren de los polinucleótidos mencionados anteriormente por sustituciones, deleciones o adiciones de nucleótidos. Las sustituciones, deleciones o adiciones pueden implicar uno o más nucleótidos. Las alteraciones en las regiones codificantes pueden producir sustituciones, deleciones o adiciones de aminoácidos conservativas o no conservativas, de nuevo sustancialmente como se describió anteriormente en la presente memoria.

Los polinucleótidos variantes de acuerdo con la presente divulgación son adecuadamente al menos el 70% idénticos en toda su longitud a un polinucleótido que codifica polipéptidos que tienen una conformación estructural primaria de aminoácidos especificados como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas, y polinucleótidos que son complementarios a, o se hibridizan con, tales polinucleótidos. Alternativamente, los más preferidos son los polinucleótidos que comprenden una región que es al menos el 80% idéntica en toda su longitud a un polinucleótido que codifica un polipéptido que tiene una conformación estructural primaria de aminoácidos especificados como se describe en la presente memoria descriptiva con referencia a las Figuras adjuntas y los polinucleótidos que son complementarios a, o se hibridizan con, tales polinucleótidos. A este respecto, los polinucleótidos al menos 90% idénticos en toda su longitud a los mismos son particularmente preferidos, y entre estos polinucleótidos particularmente preferidos, aquellos con al menos el 95% de identidad son especialmente preferidos. Además, aquellos con al menos un 97% de identidad son altamente preferidos entre aquellos con al menos un 95% de identidad y al menos un 99% de identidad son particularmente altamente preferidos, con al menos un 99% de identidad siendo el más

15

5

10

20

25

25

30

35

40

45

50

55

60

preferido.

20

35

40

45

50

55

60

Básicamente como se describió anteriormente en la presente memoria, la presente divulgación se refiere además a polinucleótidos que se hibridan con las secuencias descritas anteriormente en la presente memoria. A este respecto, la presente divulgación se refiere especialmente a polinucleótidos que se hibridan en condiciones rigurosas a los polinucleótidos descritos anteriormente en la presente memoria. Como se usa en la presente memoria, el término "condiciones rigurosas" significa que la hibridación ocurrirá solo si hay al menos un 95% y preferentemente al menos un 97% de identidad complementaria entre las secuencias.

- La presente divulgación también se refiere a vectores, que comprenden un polinucleótido o polinucleótidos de la presente divulgación, células huésped que se modifican genéticamente con vectores de la divulgación y la producción de polipéptidos de la invención mediante técnicas recombinantes.
- La presente divulgación, por lo tanto, proporciona además un sistema de vector biológicamente funcional que lleva un polinucleótido sustancialmente como se describió anteriormente en la presente memoria descriptiva y que es capaz de introducir el polinucleótido en el genoma de un organismo huésped.
 - Las células huésped se pueden modificar genéticamente para incorporar polinucleótidos y expresar polipéptidos de la presente divulgación y la presente divulgación proporciona además una célula huésped que se transforma o transfecta con un polinucleótido, o uno o más polinucleótidos, o un sistema de vectores, cada uno sustancialmente como se describe en la presente memoria. La secuencia de ADN apropiada se puede insertar en el vector mediante cualquiera de una variedad de técnicas bien conocidas y rutinarias.
- De acuerdo con una realización particularmente preferida de la presente divulgación, también se proporciona un procedimiento de detección de autoanticuerpos o linfocitos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto (en particular un humano) que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, comprendiendo dicho procedimiento:
- (a) proporcionar ya sea (i) dicha muestra de fluido corporal de dicho sujeto o (ii) linfocitos aislados de dicha muestra:
 - (b) poner en contacto dicha muestra o linfocitos aislados con un polipéptido de acuerdo con la presente invención sustancialmente como se describió anteriormente en la presente memoria (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con autoanticuerpos o linfocitos producidos en respuesta a un receptor de TSH) para permitir dicho polipéptido para interactuar con autoanticuerpos, o linfocitos, producidos en respuesta a un receptor de TSH, y presentes en, o aislados de, dicha muestra; y
 - (c) monitorizar el grado, o efecto, de la interacción de dicho polipéptido con cualquiera de dichos autoanticuerpos, o dichos linfocitos, producidos en respuesta a un receptor de TSH y presentes o aislados de dicha muestra, lo que proporciona una indicación de la presencia de dichos autoanticuerpos, o dichos linfocitos, en dicha muestra, o aislados de dicha muestra.

Básicamente como se describió anteriormente, un procedimiento de acuerdo con la presente divulgación es adecuado para la detección de autoanticuerpos o linfocitos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto. Sin embargo, un procedimiento de acuerdo con la presente divulgación puede adaptarse particularmente para su uso en la detección de autoanticuerpos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto sustancialmente como se describe más adelante con mayor detalle.

En la presente divulgación se proporciona en particular, por lo tanto, un procedimiento de detección de autoanticuerpos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto (en particular un humano) que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, comprendiendo dicho procedimiento:

- (a) proporcionar dicha muestra de fluido corporal de dicho sujeto;
- (b) poner en contacto dicha muestra con un polipéptido de acuerdo con la presente invención sustancialmente como se describió anteriormente en la presente memoria (adecuadamente en condiciones que permitan la interacción de un receptor de TSH con autoanticuerpos producidos en respuesta a un receptor de TSH) para permitir que dicho polipéptido interactúe con autoanticuerpos producidos en respuesta a un receptor de TSH y presente en dicha muestra; y
- (c) monitorizar el grado de interacción de dicho polipéptido con dichos autoanticuerpos producidos en respuesta a un receptor de TSH y presente en dicha muestra, proporcionando de este modo una indicación de la presencia de dichos autoanticuerpos en dicha muestra.
- 65 Un procedimiento de acuerdo con la presente divulgación puede emplear comúnmente un control, tal como una

muestra de fluido corporal de un sujeto normal, en otras palabras, un sujeto que se sabe que no tiene enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH.

Un procedimiento de selección de autoanticuerpos contra un receptor de -TSH de acuerdo con la presente divulgación puede comprender monitorizar directamente la interacción de (i) autoanticuerpos contra un receptor de TSH presente en la muestra de fluido corporal del sujeto y (ii) un polipéptido, como se proporciona en la presente invención, sustancialmente como se describió anteriormente en la presente memoria, comúnmente empleando técnicas de ensayo de tipo sándwich no competitivas conocidas en la técnica.

10 Comúnmente, en un procedimiento de acuerdo con la presente divulgación que emplea técnicas no competitivas, la monitorización del grado de interacción de (i) autoanticuerpos contra un receptor de TSH presente en la muestra y (ii) un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria, puede comprender proporcionar medios de marcado a un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria, o a un ligando 15 para autoanticuerpos contra un receptor de TSH, cualquiera de los cuales la técnica permitiría monitorizar la interacción descrita anteriormente. Por ejemplo, un procedimiento de acuerdo con la presente divulgación puede comprender marcar directa o indirectamente un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria; poner en contacto el polipéptido marcado de este modo con una muestra de fluido corporal que está siendo examinada para detectar 20 autoanticuerpos del receptor de TSH a fin de proporcionar una mezcla de los mismos; y agregar a la mezcla un ligando para los autoanticuerpos contra un receptor de TSH (como un reactivo anti-IgG) presente en la muestra de fluido corporal, para causar la precipitación de cualquier complejo de polipéptidos marcados y autoanticuerpos del receptor de TSH presentes en la mezcla. Alternativamente, se puede preferir que un procedimiento de acuerdo con la presente divulgación comprenda además la adición de un ligando marcado para los autoanticuerpos del 25 receptor de TSH (como un reactivo anti-IgG marcado, por ejemplo, proteína A o IgG antihumana, o receptor de TSH de longitud completa marcado, o un epítopo del mismo) a una mezcla obtenida al poner en contacto (i) un polipéptido de acuerdo con la presente divulgación, sustancialmente como se describió anteriormente, inmovilizado en un soporte y (ii) una muestra de fluido corporal que está siendo examinada para detectar autoanticuerpos contra un receptor de TSH. 30

Alternativamente, puede preferirse que un procedimiento de detección de autoanticuerpos contra un receptor de TSH en la muestra de fluido corporal de acuerdo con la presente divulgación, utilice los principios empleados en ensayos competitivos conocidos. Por ejemplo, un procedimiento de acuerdo con la presente divulgación puede emplear al menos un competidor capaz de competir con autoanticuerpos contra un receptor de TSH en la interacción del mismo con un polipéptido de acuerdo con la presente divulgación, sustancialmente como se describió anteriormente en la presente memoria.

Comúnmente, un competidor como se emplea en un procedimiento de ensayo competitivo de acuerdo con la presente divulgación puede comprender uno o más anticuerpos, que pueden ser naturales o parcial o totalmente producidos sintéticamente. Un competidor como se emplea en la presente divulgación puede comprender alternativamente cualquier otra proteína (por ejemplo, TSH) que tenga un dominio o región de unión que sea capaz de competir con autoanticuerpos contra un receptor de TSH en la interacción del mismo con un polipéptido de acuerdo con la presente divulgación, sustancialmente como se describió anteriormente. Preferentemente, sin embargo, un competidor como se emplea en la presente divulgación comprende un anticuerpo monoclonal, recombinante o policional (especialmente un anticuerpo monoclonal), capaz de competir con los autoanticuerpos del receptor de TSH en la interacción del mismo con un polipéptido de acuerdo con la presente divulgación, sustancialmente como se describió anteriormente en la presente memoria.

Comúnmente, por lo tanto, un procedimiento de ensayo competitivo de acuerdo con la presente divulgación puede comprender además proporcionar al menos un competidor, tal como un anticuerpo monoclonal o policlonal, por lo que en la etapa (b) de un procedimiento como se describe en la presente memoria, un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria puede interactuar con un competidor, tal como un anticuerpo monoclonal o policlonal, o autoanticuerpos contra un receptor de TSH presente en dicha muestra.

Comúnmente, la monitorización en un procedimiento de ensayo competitivo de acuerdo con la presente divulgación comprende comparar:

(i) interacción de un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria y uno o más competidores sustancialmente como se describió anteriormente (comúnmente un anticuerpo monoclonal o policional), en ausencia de dicha muestra de fluido corporal que se está analizando muestra de enfermedad), opcionalmente en presencia de una muestra de fluido corporal de un sujeto normal, comúnmente un sujeto que se sabe que no tiene enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH; con

65

35

40

45

50

55

60

(ii) interacción de un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria y uno o más competidores sustancialmente como se describió anteriormente en la presente memoria (comúnmente un anticuerpo monoclonal o policlonal), en presencia de dicha muestra de fluido corporal que se está analizando.

5

10

15

Comúnmente, la comparación implica observar una disminución en la interacción de un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria y el competidor en (ii) en comparación con (i) para proporcionar una indicación de la presencia de autoanticuerpos a un receptor de TSH en dicha muestra. Comúnmente, la disminución en la interacción se puede observar al marcar directa o indirectamente al competidor y al monitorizar cualquier cambio en la interacción del competidor así marcado con un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria en ausencia y en presencia de una muestra del fluido corporal que se está examinando para detectar autoanticuerpos contra un receptor de TSH. Adecuadamente, un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria puede inmovilizarse para facilitar la monitorización mencionada anteriormente.

Alternativamente, también se proporciona mediante la presente divulgación un procedimiento de detección de autoanticuerpos contra un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto (en particular un ser humano) que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, comprendiendo dicho procedimiento:

20

- (a) proporcionar dicha muestra de fluido corporal de dicho sujeto;
- (b) poner en contacto dicha muestra con:

25

(i) un receptor de TSH de longitud completa (comúnmente un receptor de TSH de longitud completa obtenido de forma recombinante), y

30

(ii) al menos un competidor capaz de competir con autoanticuerpos contra un receptor de TSH en su interacción con un polipéptido de acuerdo con la presente divulgación, sustancialmente como se describió anteriormente en la presente memoria, (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con autoanticuerpos contra un receptor de TSH), para permitir que dicho receptor de TSH de longitud completa interactúe con cualquiera de los autoanticuerpos contra un receptor de TSH presente en dicha muestra, o dicho competidor; y

35

(c) monitorizar la interacción de dicho receptor de TSH de longitud completa con dichos autoanticuerpos presentes en dicha muestra, proporcionando de este modo una indicación de la presencia de dichos autoanticuerpos contra un receptor de TSH en dicha muestra.

40 El receptor de TSH de longitud completa puede ser comúnmente de origen humano, porcino, bovino, canino, felino, de ratón, rata u ovino y más preferentemente un receptor de TSH de longitud completa obtenido de forma recombinante. Un competidor para uso en tal ensayo comprende comúnmente un anticuerpo monoclonal o policional (preferentemente monocional) sustancialmente como se describió anteriormente en la presente memoria. Adecuadamente, un marcador detectable que puede emplearse en un procedimiento de acuerdo con la presente divulgación puede seleccionarse del grupo que consiste en marcadores enzimáticos, marcadores 45 isotópicos, marcadores quimioluminiscentes, marcadores fluorescentes, colorantes y similares.

50

En el caso de que se emplee un marcador isotópico (tal como 125I, 14C, 3H o 35S), el control puede comprender medir la radioactividad dependiente de la unión de un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria. La radiactividad generalmente se mide utilizando un contador gamma o un contador de centelleo líquido.

55

En el caso de un procedimiento de detección de linfocitos de acuerdo con la presente divulgación, generalmente se prefiere que los linfocitos se aíslen inicialmente de una muestra de fluido corporal de un sujeto usando técnicas bien conocidas por un experto en la técnica. seguido por el contacto con un polipéptido de acuerdo con la presente divulgación para estimular la proliferación de los linfocitos aislados. La monitorización del efecto de la interacción de un polipéptido de acuerdo con la presente divulgación y dichos linfocitos proliferantes, comúnmente emplea medios conocidos en la técnica para monitorizar tal proliferación de linfocitos.

60

De acuerdo con una realización adicional particularmente preferida de la presente divulgación, se proporciona un kit para la detección de autoanticuerpos o linfocitos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto (en particular un humano) que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, comprendiendo dicho kit:

5

10

15

20

35

40

45

50

55

60

65

- (a) un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria;
- (b) medios para poner en contacto (i) una muestra de fluido corporal obtenida de dicho sujeto, o (ii) linfocitos aislados de una muestra de fluido corporal obtenida de dicho sujeto, con dicho polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria (adecuadamente bajo condiciones que permiten la interacción de un receptor de TSH con autoanticuerpos o linfocitos producidos en respuesta a un receptor de TSH) para permitir que dicho polipéptido interactúe con autoanticuerpos, o linfocitos, producidos en respuesta a un receptor de TSH, y presentes en, o aislados de dicha muestra; y
- (c) medios para monitorizar el grado, o efecto, de la interacción de dicho polipéptido con cualquiera de dichos autoanticuerpos, o dichos linfocitos, producidos en respuesta a un receptor de TSH y presentes en, o aislados de, dicha muestra, proporcionando de este modo una indicación de la presencia de dichos autoanticuerpos, o linfocitos, en dicha muestra o aislados de dicha muestra.

Básicamente como se describió anteriormente, un kit de acuerdo con la presente divulgación es adecuado para la detección de autoanticuerpos o linfocitos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto. Sin embargo, un kit de acuerdo con la presente divulgación puede adaptarse particularmente para su uso en la detección de autoanticuerpos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto sustancialmente como se describe más adelante con mayor detalle.

- En la presente divulgación se proporciona en particular, por lo tanto, un kit para la detección de autoanticuerpos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto (en particular un ser humano) que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, dicho kit comprende:
- (a) un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente
 30 en la presente memoria;
 - (b) medios para poner en contacto una muestra de fluido corporal obtenida de dicho sujeto con dicho polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con autoanticuerpos producidos en respuesta a un receptor de TSH) con el fin de permitir que dicho polipéptido interactúe con autoanticuerpos producidos en respuesta a un receptor de TSH y presentes en dicha muestra; y
 - (c) medios para monitorizar el grado de interacción de dicho polipéptido con dichos autoanticuerpos producidos en respuesta a un receptor de TSH y presentes en dicha muestra, proporcionando de este modo una indicación de la presencia de dichos autoanticuerpos en dicha muestra.

Un kit de acuerdo con la presente divulgación puede comprender además comúnmente medios de control, tales como medios para proporcionar una muestra de fluido corporal de un sujeto normal, en otras palabras, un sujeto que se sabe que no tiene una enfermedad autoinmune asociada con una reacción inmune a un Receptor de TSH.

Un kit para la detección de autoanticuerpos contra un receptor de TSH de acuerdo con la presente divulgación puede comprender medios para monitorizar directamente la interacción de (i) autoanticuerpos contra un receptor de TSH presente en la muestra de fluido corporal del sujeto y (ii) un polipéptido, como se proporciona en la presente divulgación, sustancialmente como se describió anteriormente en la presente memoria, que comprende comúnmente medios de ensayo de tipo sándwich no competitivos conocidos en la técnica.

Comúnmente, en un kit de acuerdo con la presente divulgación que comprende medios de ensayo no competitivos, se proporcionan medios para monitorizar el grado de interacción de (i) autoanticuerpos contra un receptor de TSH presente en la muestra y (ii) un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria, y puede comprender medios de marcado proporcionados a un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria, o a un ligando de autoanticuerpos a un receptor de TSH, cualquiera de los cuales permitiría la monitorización de lo descrito anteriormente. Interacción. Por ejemplo, un kit de acuerdo con la presente divulgación puede comprender medios para marcar directa o indirectamente un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria; medios para poner en contacto el polipéptido marcado de este modo con una muestra de fluido corporal que está siendo examinada para detectar autoanticuerpos de un receptor de TSH a fin de proporcionar una mezcla de los mismos; un ligando para autoanticuerpos contra un receptor de TSH (tal como un reactivo anti-IgG) presente en la muestra de fluido corporal; y medios para añadir el ligando a la mezcla para provocar la precipitación de cualquier complejo de polipéptidos marcados y autoanticuerpos del receptor de TSH presentes en la mezcla. Alternativamente, puede

preferirse que un kit de acuerdo con la presente divulgación comprenda además un ligando marcado para autoanticuerpos del receptor de TSH (tal como un reactivo anti-IgG marcado, por ejemplo, proteína A o IgG humana, o un receptor de TSH de longitud completa marcado o un epítopo del mismo) y medios para agregar el ligando marcado a una mezcla obtenida poniendo en contacto (i) un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente inmovilizado a un soporte y (ii) una muestra de fluido corporal que se está analizando para autoanticuerpos contra un receptor de TSH.

Alternativamente, puede preferirse que un kit para la detección de autoanticuerpos contra un receptor de TSH en la muestra de fluido corporal de acuerdo con la presente divulgación, comprenda medios competitivos conocidos de ensayo. Por ejemplo, un kit de acuerdo con la presente divulgación puede comprender además al menos un competidor capaz de competir con autoanticuerpos contra un receptor de TSH en la interacción del mismo con un polipéptido de acuerdo con la presente divulgación, sustancialmente como se describió anteriormente en la presente memoria.

Comúnmente, un competidor como se emplea en un kit de ensayo competitivo de acuerdo con la presente divulgación puede comprender uno o más anticuerpos, que pueden ser naturales o parcial o totalmente producidos sintéticamente. Un competidor como se emplea en la presente divulgación puede comprender alternativamente cualquier otra proteína que tenga un dominio o región de unión que sea capaz de competir con autoanticuerpos contra un receptor de TSH en la interacción del mismo con un polipéptido de acuerdo con la presente divulgación, sustancialmente como se describió anteriormente en la presente memoria. Preferentemente, sin embargo, un competidor como se emplea en la presente divulgación comprende un anticuerpo monoclonal o policlonal (especialmente un anticuerpo monoclonal), capaz de competir con los autoanticuerpos del receptor de TSH en la interacción del mismo con un polipéptido de acuerdo con la presente divulgación, sustancialmente como se describió anteriormente en la presente memoria.

Comúnmente, por lo tanto, un kit de ensayo competitivo de acuerdo con la presente divulgación puede comprender además al menos un competidor, tal como un anticuerpo monoclonal o policlonal, por lo que un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria puede interactuar con cualquiera de los competidores, como un anticuerpo monoclonal o policlonal, o autoanticuerpos contra un receptor de TSH presente en una muestra de fluido corporal que está siendo examinada.

Comunmente los medios de monitorización en un kit de ensayo competitivo de acuerdo con la presente divulgación comprenden medios para comparar:

(i) interacción de un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria y uno o más competidores sustancialmente como se describió anteriormente (comúnmente un anticuerpo monoclonal o policional), en ausencia de dicha muestra de fluido corporal que se está analizando (que es una muestra de enfermedad sospechosa), opcionalmente en presencia de una muestra de fluido corporal de un sujeto normal, comúnmente un sujeto que se sabe que no tiene enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH; con

(ii) interacción de un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria y uno o más competidores sustancialmente como se describió anteriormente en la presente memoria (comúnmente un anticuerpo monoclonal o policional), en presencia de dicha muestra de fluido corporal que se está analizando.

Comúnmente, la comparación implica observar una disminución en la interacción de un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria y el competidor en (ii) en comparación con (i) para proporcionar una indicación de la presencia de autoanticuerpos a un Receptor de TSH en dicha muestra. Comúnmente, la disminución en la interacción se puede observar al marcar directa o indirectamente al competidor y al monitorizar cualquier cambio en la interacción del competidor así marcado con un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria en ausencia y en presencia de una muestra del fluido corporal que se está examinando para detectar autoanticuerpos contra un receptor de TSH. Adecuadamente, un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria puede inmovilizarse para facilitar la monitorización mencionada anteriormente.

Alternativamente, la presente divulgación también proporciona un kit para la detección de autoanticuerpos contra un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto (en particular un ser humano) que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, dicho kit comprende:

(a) un receptor de TSH de longitud completa (comúnmente un receptor de TSH de longitud completa obtenido de forma recombinante);

65

5

10

25

30

35

40

45

50

55

- (b) al menos un competidor capaz de competir con autoanticuerpos contra un receptor de TSH en la interacción del mismo con un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria,
- (c) medios para poner en contacto dicha muestra de fluido corporal de dicho sujeto, dicho receptor de TSH de longitud completa y dicho competidor (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con autoanticuerpos contra un receptor de TSH), para permitir que dicho receptor de TSH de longitud completa pueda interactuar con cualquiera de los autoanticuerpos contra un receptor de TSH presente en dicha muestra, o dicho competidor; y
 - (d) medios para monitorizar la interacción de dicho receptor de TSH de longitud completa con dichos autoanticuerpos presentes en dicha muestra, proporcionando de este modo una indicación de la presencia de dichos autoanticuerpos contra un receptor de TSH en dicha muestra.
- El receptor de TSH de longitud completa puede ser comúnmente de origen humano, porcino, bovino, canino, felino, de ratón, rata u ovino y más preferentemente un receptor de TSH de longitud completa obtenido de forma recombinante. Un competidor para uso en tal kit de ensayo comprende comúnmente un anticuerpo monoclonal o policlonal (preferentemente monoclonal) sustancialmente como se describió anteriormente en la presente memoria.

20

50

- Adecuadamente, un marcador detectable que puede emplearse en un kit de acuerdo con la presente divulgación puede seleccionarse del grupo que consiste en marcadores enzimáticos, marcadores isotópicos, marcadores quimioluminiscentes, marcadores fluorescentes, colorantes y similares.
- En el caso de que se emplee un marcador isotópico (tal como ¹²⁵l, ¹⁴C, ³H o ³⁵S), los medios de monitorización pueden comprender medios para medir la radioactividad dependiente de la unión de un polipéptido de acuerdo con la presente invención sustancialmente como se describió anteriormente en la presente memoria. La radiactividad generalmente se mide utilizando un contador gamma o un contador de centelleo líquido.
- 30 En el caso de un kit para la detección de linfocitos de acuerdo con la presente divulgación, generalmente se prefiere que se proporcionen medios para aislar inicialmente linfocitos de una muestra de fluido corporal de un sujeto, usando técnicas bien conocidas por un experto en la materia. en la técnica, y también se proporcionan medios para poner en contacto un polipéptido de acuerdo con la presente invención con dichos linfocitos aislados para estimular la proliferación de los últimos por los primeros. Los medios (también conocidos por un experto en la técnica) para monitorizar el efecto de la interacción de un polipéptido de acuerdo con la presente divulgación y dichos linfocitos proliferantes, también se proporcionan en un kit de este tipo de acuerdo con la presente divulgación.
- A partir de la descripción anterior, se apreciará que la presente divulgación proporciona procedimientos de ensayo y kits para detectar autoanticuerpos (en particular) o linfocitos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal sustancialmente como se describió anteriormente. La detección de dichos autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH en la muestra de fluido corporal (o al menos el nivel de dichos autoanticuerpos y/o linfocitos en la muestra) es indicativa de la presencia de enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH en el sujeto del cual se obtuvo la muestra y, por lo tanto, puede permitir el diagnóstico de la posible aparición o presencia de enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH.
 - Por lo tanto, la presente divulgación proporciona además un procedimiento para diagnosticar la posible aparición o presencia de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH en un sujeto (en particular un ser humano) que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, el procedimiento comprende la detección de autoanticuerpos o linfocitos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal del sujeto sustancialmente como se describió anteriormente en la presente memoria, y por lo tanto Los autoanticuerpos y/o linfocitos detectados pueden proporcionar un diagnóstico de la posible aparición o presencia de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH en el sujeto.
- La presente divulgación proporciona además un procedimiento para retrasar o prevenir la aparición de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH en un sujeto animal (en particular un sujeto humano) que se sospecha que padece de, es susceptible de o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, cuyo procedimiento comprende detectar inicialmente autoanticuerpos o linfocitos indicativos del inicio o la presencia de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH en una muestra de fluido corporal obtenida de sujeto sustancialmente como se describió anteriormente en la presente memoria, proporcionando de este modo un diagnóstico de la posible aparición de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH en el sujeto, y posteriormente, tratar terapéuticamente al sujeto para retrasar la aparición y/o

prevenir la enfermedad autoinmune asociada con Una reacción inmune a un receptor de TSH.

Un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria es particularmente adecuado para uso en el tratamiento terapéutico de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH. Por ejemplo, la tolerancia puede lograrse administrando un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria a un sujeto (en particular un sujeto humano) que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a Un receptor de TSH.

10

15

5

Por lo tanto, la presente divulgación proporciona además una composición farmacéutica que comprende un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria, junto con un vehículo, diluyente o excipiente farmacéuticamente aceptable para el mismo, en el que el polipéptido puede interactuar con autoanticuerpos y/o linfocitos producidos en respuesta a un receptor de TSH.

La presente invención proporciona además un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria para su uso en la fabricación de un medicamento para el tratamiento de la enfermedad de Graves.

20

25

Las composiciones o medicamentos de acuerdo con la presente divulgación deben contener una cantidad terapéutica o profiláctica de al menos un polipéptido de acuerdo con la presente divulgación en un vehículo farmacéuticamente aceptable. El vehículo farmacéutico puede ser cualquier sustancia compatible, no tóxica, adecuada para la administración de los polipéptidos al paciente. Como vehículos, se puede usar agua estéril, alcohol, grasas, ceras y sólidos inertes. Los adyuvantes farmacéuticamente aceptables, agentes tamponantes, agentes dispersantes y similares, también pueden incorporarse en las composiciones farmacéuticas. Dichas composiciones pueden contener un único polipéptido o pueden contener dos o más polipéptidos de acuerdo con la presente divulgación.

Puede ser deseable acoplar un polipéptido de acuerdo con la presente divulgación a inmunoglobulinas, por

30

35

ejemplo, IgG, o a las células linfoides del paciente que está siendo tratado para promover la tolerancia. Dicho enfoque se describe en Bradley-Mullen, "Activation of Distinct Subsets of T Suppressor Cells with Type III Pneutnococcal Polysaccharide Coupled to Syngeneic Spleen Cells (Activación de subconjuntos distintos de células supresoras T con polisacárido pneutnocócico tipo III acoplado a células singénicas del bazo)", en: IMMUNOLOGICAL TOLERANCE TO SELF AND NON-SELF, Buttisto et al, eds., Annals N.Y. Acad. Sci. Vol. 392, pp 156-166, 1982. Alternativamente, los polipéptidos pueden modificarse para mantener o mejorar la unión al MHC mientras se reduce o elimina la unión al receptor de células T asociado. De este modo, los polipéptidos modificados pueden competir con un receptor de TSH natural para inhibir la activación de las células T auxiliares y, por lo tanto, inhibir la respuesta inmune. En todos los casos, se debe tener cuidado de que la administración de las composiciones farmacéuticas de la presente invención mejore, pero no potencie la respuesta autoinmune.

40

45

50

Las composiciones farmacéuticas de acuerdo con la presente divulgación son útiles para la administración parenteral. Preferentemente, las composiciones se administrarán por vía parenteral, es decir, por vía subcutánea, intramuscular o intravenosa. Por lo tanto, la descripción proporciona composiciones para administración parenteral a un paciente, en donde las composiciones comprenden una solución o dispersión de los polipéptidos en un vehículo aceptable, como se describió anteriormente. La concentración de los polipéptidos en la composición farmacéutica puede variar ampliamente, es decir, desde menos de aproximadamente el 0,1% en peso, siendo generalmente de al menos aproximadamente el 1% en peso hasta tanto como el 20% en peso o más. Las composiciones farmacéuticas típicas para inyección intramuscular se componen al contener, por ejemplo, 1 ml de agua tamponada estéril y de 1 a 100 µg de un polipéptido purificado de la presente invención. Una composición típica para infusión intravenosa podría componerse al contener de 100 a 500 ml de solución de Ringer estéril y de 100 a 500 mg de un polipéptido purificado de la presente divulgación. Los procedimientos reales para preparar composiciones administrables por vía parenteral son bien conocidos en la técnica y se describen con más detalle en diversas fuentes, incluyendo, por ejemplo, Remington's Pharmaceutical Science, 15ª edición, Mack Publishing Company, Easton, Pa. (1980).

55

60

65

Además de usar un polipéptido de acuerdo con la presente divulgación directamente en composiciones farmacéuticas, también es posible usar un polipéptido de acuerdo con la presente divulgación para mejorar la tolerancia a un receptor de TSH en un sujeto que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, empleando los siguientes principios. Más particularmente, los linfocitos de sangre periférica pueden recogerse del sujeto de una manera convencional y estimularse mediante la exposición a un polipéptido de acuerdo con la presente divulgación, como se definió anteriormente. Comúnmente, estarán presentes otros mitógenos y potenciadores del crecimiento, por ejemplo, fitohemaglutinina, interleucina 2 y similares. Las células T auxiliares en proliferación pueden aislarse y clonarse, también bajo la estimulación de un polipéptido de acuerdo con la presente divulgación.

Los clones que continúan proliferando se pueden usar luego para preparar composiciones terapéuticas para el sujeto. Las células T clonadas pueden estar atenuadas, por ejemlo, por exposición a radiación y administrado al sujeto para inducir tolerancia. Alternativamente, el receptor de células T o porciones del mismo pueden aislarse mediante procedimientos convencionales de purificación de proteínas de las células T clonadas y administrarse al individuo. Dichos procedimientos de inmunoterapia se describen generalmente en Sinha et al. (1990) Science 248:1380-1388.

En algunos casos, después de que una célula T auxiliar se haya clonado como se describió anteriormente, puede ser posible desarrollar péptidos terapéuticos a partir del receptor de células T, en el que los péptidos serían beneficiosos para tratar a una población de pacientes que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH. En tales casos, el gen del receptor de células T puede aislarse y clonarse mediante técnicas convencionales y péptidos basados en el receptor producido por técnicas recombinantes como se describió anteriormente. Los péptidos producidos de forma recombinante pueden incorporarse luego en composiciones farmacéuticas como se describió anteriormente.

También se proporciona mediante la presente divulgación un procedimiento de clonación de linfocitos producidos en respuesta a un receptor de TSH, cuyo procedimiento comprende:

20 proporcionar una fuente de linfocitos;

5

10

15

25

30

35

40

55

60

poner en contacto los linfocitos con un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria, para efectuar la proliferación de dichos linfocitos; v

aislar y clonar los linfocitos proliferantes.

La presente divulgación también proporciona el uso de linfocitos clonados preparados como se indicó anteriormente, en el tratamiento terapéutico de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH. Se proporciona, por lo tanto, una composición farmacéutica que comprende linfocitos clonados preparados como anteriormente, junto con un vehículo, diluyente o excipiente farmacéuticamente aceptable para los mismos y el uso de dichos linfocitos clonados en la fabricación de un medicamento para el tratamiento de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, en particular la enfermedad de Graves.

También se proporciona mediante la presente divulgación uno o más agentes terapéuticos identificados como que proporcionan un efecto terapéutico mediante la interacción con aminoácidos que comprenden parte o la totalidad de la conformación primaria de aminoácidos de uno o más epítopos de un receptor de TSH sustancialmente como se describió anteriormente en la presente memoria, y la presente divulgación proporciona además uno o más agentes terapéuticos para su uso en la interacción terapéutica con aminoácidos que comprenden parte o la totalidad de la conformación primaria de aminoácidos de uno o más epítopos de un receptor de TSH sustancialmente como se describió anteriormente en la presente memoria y, como tal, para uso en el tratamiento terapéutico de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH.

Por lo tanto, la presente divulgación proporciona además un procedimiento para tratar una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH en un sujeto, comprendiendo dicho procedimiento inicialmente la detección de autoanticuerpos o linfocitos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal obtenida del sujeto sustancialmente como se describió anteriormente en la presente memoria, proporcionando de este modo un diagnóstico de enfermedad autoinmune en el sujeto, y administrando al sujeto una cantidad terapéuticamente eficaz de al menos un agente terapéutico eficaz en el tratamiento de tal enfermedad autoinmune, tal como como un polipéptido de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria.

La presente divulgación también proporciona un procedimiento para tratar una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH en un sujeto (en particular un sujeto humano), comprendiendo dicho procedimiento administrar al sujeto una cantidad terapéuticamente eficaz de un agente terapéutico identificado como que proporciona un efecto terapéutico mediante la interacción con aminoácidos que comprenden parte o la totalidad de la conformación primaria de los aminoácidos de uno o más epítopos de un receptor de TSH sustancialmente como se describió anteriormente en la presente memoria

La cantidad de agente terapéutico administrado dependerá del estado de la enfermedad autoinmune específica que se esté tratando, posiblemente de la edad del paciente y, en última instancia, será a discreción de un médico tratante.

65 La presente divulgación además proporciona, en combinación, un kit sustancialmente como se describió

anteriormente en la presente memoria, junto con una cantidad terapéuticamente eficaz de al menos un agente terapéutico eficaz en el tratamiento de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH sustancialmente como se describió anteriormente en la presente memoria.

Como se describió anteriormente en la presente memoria, la muestra de fluido corporal que se está analizando mediante la presente divulgación comúnmente comprenderá muestras de sangre u otras fracciones de sangre de fluido, como en particular muestras de suero o muestras de plasma, pero la muestra puede en principio ser otro fluido biológico, tal como saliva u orina o extractos de tejido solubilizados, o se pueden obtener mediante biopsia con aguja.

La presente divulgación proporciona además un ligando para un receptor de TSH, tal como un anticuerpo para un receptor de TSH, o un fragmento de un anticuerpo para un receptor de TSH, cuyo ligando puede interactuar con uno o más epítopos a un receptor de TSH sustancialmente como se describió anteriormente en la presente memoria, en particular los aminoácidos números 277 a 296 de un receptor de TSH. Adecuadamente, los anticuerpos proporcionados por la presente divulgación pueden ser monoclonales (preferidos), recombinantes o policlonales. Comúnmente, un anticuerpo, tal como un anticuerpo monoclonal, como se proporciona en la presente divulgación, está en forma sustancialmente purificada.

Más específicamente, un anticuerpo monoclonal como se proporciona en la presente divulgación puede comprender cualquiera de los anticuerpos monoclonales 3C7, 2B4, 8E2, 18C5, 4D7, 16E5, 17D2, 3B3 y 14D3 o fragmentos activos de los mismos, como se describe en los Ejemplos y como se ilustra más adelante por las Figuras adjuntas. Los anticuerpos como 2B4, 8E2, 18C5, 4D7, 16E5, 17D2, 3B3 y 14D3, o fragmentos activos de los mismos, como se describe en los Ejemplos, tienen preferentemente una alta afinidad por un receptor de TSH, tal como al menos aproximadamente 10⁸ molar¹. Por lo tanto, la presente divulgación proporciona además un anticuerpo monoclonal que tiene una afinidad de al menos aproximadamente 10 molar¹ por uno o más epítopos de un receptor de TSH y cuyo epítopo es proporcionado por una cualquiera de las siguientes secuencias de aminoácidos de un receptor de TSH:

los aminoácidos 22 a 91 de un receptor de TSH; o los aminoácidos 246 a 260 de un receptor de TSH;

o más particularmente, consisten esencialmente en una de las siguientes secuencias de aminoácidos de un receptor de TSH:

35 los aminoácidos 36 a 42 de un receptor de TSH; o los aminoácidos 247 a 260 de un receptor de TSH.

15

30

40

50

55

60

65

La presente divulgación también proporciona un anticuerpo monoclonal que tiene una afinidad de al menos aproximadamente 10⁸ molar¹ para uno o más epítopos de un receptor de TSH y cuyo epítopo es proporcionado por una cualquiera de las siguientes secuencias de aminoácidos de un receptor de TSH:

los aminoácidos 32 a 41 de un receptor de TSH; o los aminoácidos 277 a 296 de un receptor de TSH.

De acuerdo con una realización particularmente preferida de la presente divulgación, se proporciona un ligando para un receptor de TSH, cuyo ligando es capaz de unirse a un receptor de TSH para estimular el receptor de TSH, cuyo ligando no comprende TSH o ni autoanticuerpos producidos naturalmente contra el receptor de TSH.

Preferentemente, el ligando comprende un anticuerpo, en particular un anticuerpo monoclonal o recombinante (preferentemente monoclonal), capaz de unirse a un receptor de TSH para estimular el receptor de TSH. Los ejemplos de anticuerpos monoclonales descritos en la presente memoria descriptiva que estimulan un receptor de TSH de este modo incluyen 4D7, 16E5, 17D2 y 14D3.

En un caso preferido, la presente divulgación proporciona un ligando para un receptor de TSH, cuyo ligando es capaz de unirse al receptor de TSH para estimular el receptor de TSH y que comprende:

un dominio V_H de anticuerpo seleccionado del grupo que consiste en:
Los dominios V_H como se muestra en cualquiera de las Figuras 10, 14, 18, 22, 42, 46 o 50, un dominio V_H
que comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de
V_H como se muestra en la Figura 10, un dominio V_H que comprende una o más CDR de V_H con una secuencia
de aminoácidos correspondiente a una CDR de V_H como se muestra en la Figura 14, un dominio V_H que
comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de V_H
como se muestra en la Figura 18, un dominio V_H que comprende una o más CDR de V_H con una secuencia
de aminoácidos correspondiente a una CDR de V_H como se muestra en la Figura 22, un dominio V_H que
comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de V_H

como se muestra en la Figura 42, un dominio V_H que comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de V_H como se muestra en la Figura 46, y un dominio V_H que comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de V_H como se muestra en la Figura 50; y/o

5

10

un dominio V_L de anticuerpo seleccionado del grupo que consiste en: Los dominios V_L como se muestra en cualquiera de las Figuras 12, 16, 20, 24, 44, 48 o 52, un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 12, un V_L dominio que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 16, un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 20, un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 24, un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 48, y un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 48, y un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 48, y un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 52.

15

20

25

30

Se puede preferir de acuerdo con la presente divulgación que un ligando sustancialmente como se describió anteriormente en la presente memoria comprende un dominio V_H de anticuerpo sustancialmente como se describió anteriormente en la presente memoria emparejado con un dominio V_L de anticuerpo sustancialmente como se describió anteriormente en la presente memoria para proporcionar un sitio de unión de anticuerpo que comprende tanto V_H como V_L los dominios para un receptor de TSH, aunque como se describe adicionalmente, un dominio V_H de anticuerpo, o un dominio V_L de anticuerpo, se pueden usar independientemente para unir un receptor de TSH. Se apreciará, por lo tanto, que un ligando sustancialmente como se describió anteriormente en la presente memoria en ausencia de un dominio V_L de anticuerpo. También se apreciará, por lo tanto, que un ligando sustancialmente como se describió anteriormente en la presente memoria puede comprender un dominio V_L de anticuerpo sustancialmente como se describió anteriormente en la presente memoria en ausencia de un dominio V_H de anticuerpo. Alternativamente, un ligando sustancialmente como se describió anteriormente en la presente memoria puede comprender un dominio V_H de anticuerpo emparejado con un dominio V_L de anticuerpo sustancialmente como se describió anteriormente en la presente memoria para proporcionar un sitio de unión de anticuerpo que comprende los dominios V_H V_L para un receptor de TSH.

35

40

45

50

55

Las realizaciones preferidas de acuerdo con la presente divulgación pueden incluir un ligando sustancialmente como se describió anteriormente en la presente memoria que comprende un dominio VH de anticuerpo como se muestra en la Figura 10 emparejado con un dominio V_L de anticuerpo como se muestra en la Figura 12 para proporcionar un sitio de unión de anticuerpo, que comprende ambos de estos dominios V_H y V_L para un receptor de TSH; o un ligando sustancialmente como se describió anteriormente en la presente memoria que comprende un dominio V_H de anticuerpo como se muestra en la Figura 14 emparejado con un dominio V∟ de anticuerpo como se muestra en la Figura 16 para proporcionar un sitio de unión de anticuerpo, que comprende ambos de estos dominios V_H y V_L para un receptor de TSH; o un ligando sustancialmente como se describió anteriormente en la presente memoria que comprende un dominio V_H de anticuerpo como se muestra en la Figura 18 emparejado con un dominio V∟ de anticuerpo como se muestra en la Figura 20 para proporcionar un sitio de unión de anticuerpo que comprende ambos de estos dominios V_H y V_L para un receptor de TSH; o un ligando sustancialmente como se describió anteriormente en la presente memoria que comprende un dominio VH de anticuerpo como se muestra en la Figura 22 emparejado con un dominio V∟ de anticuerpo como se muestra en la Figura 24 para proporcionar un sitio de unión de anticuerpo que comprende ambos dominios V_H y V_L para un receptor de TSH; o un ligando sustancialmente como se describió anteriormente en la presente memoria que comprende un dominio VH de anticuerpo como se muestra en la Figura 42 emparejado con un dominio V∟ de anticuerpo como se muestra en la Figura 44 para proporcionar un sitio de unión de anticuerpo que comprende los dominios V_H y V_L para un receptor de TSH, o un ligando sustancialmente como se describió anteriormente en la presente memoria que comprende un dominio V_H de anticuerpo como se muestra en la Figura 46 emparejado con un dominio V∟ de anticuerpo como se muestra en la Figura 48 para proporcionar un sitio de unión de anticuerpo que comprende ambos dominios V_H y V_L para un receptor de TSH, o un ligando sustancialmente como se describió anteriormente en la presente memoria que comprende un dominio V_H de anticuerpo como se muestra en la Figura 50 junto con un dominio V_L de anticuerpo como se muestra en la Figura 52 para proporcionar un sitio de unión de anticuerpo que comprende ambos dominios V_H y V_L para un receptor de TSH.

60

65

Además, se prevé de acuerdo con la presente divulgación que los dominios V_H sustancialmente como se describen anteriormente en la presente memoria pueden emparejarse con dominios V_L distintos de los descritos específicamente en la presente memoria. También se contempla adicionalmente de acuerdo con la presente divulgación que los dominios V_L sustancialmente como se describieron anteriormente en la presente memoria pueden emparejarse con dominios V_H distintos de los descritos específicamente en la presente memoria.

De acuerdo con una realización alternativa de la presente divulgación, se proporciona un ligando sustancialmente como se describió anteriormente en la presente memoria para un receptor de TSH, cuyo ligando es capaz de unirse al receptor de TSH para estimular el receptor de TSH y que puede comprender:

un dominio V_H de anticuerpo que comprende:

5

10

15

20

25

30

35

40

45

50

55

60

65

un dominio V_H que comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de V_H como se muestra en la Figura 10, o un dominio V_H que comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de V_H como se muestra en la Figura 14, o un dominio V_H que comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de V_H como se muestra en la Figura 18, o un dominio V_H que comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de V_H como se muestra en la Figura 22, o un dominio V_H que comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de V_H como se muestra en la Figura 42, o un dominio V_H que comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de V_H como se muestra en la Figura 46, o un dominio V_H que comprende una o más CDR de V_H con una secuencia de aminoácidos correspondiente a una CDR de V_H como se muestra en la Figura 50: y/o

un dominio V_L de anticuerpo que comprende:

un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 12, o un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 16, o un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 20, o un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en La Figura 24, o un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 44, o un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 48, o un dominio V_L que comprende una o más CDR de V_L con una secuencia de aminoácidos correspondiente a una CDR de V_L como se muestra en la Figura 52.

Una o más de las CDR mencionadas anteriormente pueden tomarse de los dominios V_H y V_L descritos anteriormente en la presente memoria e incorporarse en un marco adecuado. Por ejemplo, la secuencia de aminoácidos de una o más CDR sustancialmente como se describió anteriormente en la presente memoria puede incorporarse en regiones marco de anticuerpos que difieren de aquellos específicamente descritos en la presente memoria; de este modo, dichos anticuerpos incorporan la una o más CDR y son capaces de unirse al receptor de TSH, preferentemente para estimular el receptor de TSH sustancialmente como se describió anteriormente en la presente memoria. Alternativamente, un ligando de acuerdo con la presente divulgación puede comprender un polipéptido capaz de unirse al receptor de TSH para estimular el receptor de TSH sustancialmente como se describió anteriormente en la presente memoria descriptiva y que comprende la conformación estructural primaria de aminoácidos representada por una o más CDR como descritas específicamente en la presente memoria, opcionalmente junto con otros aminoácidos, que aminoácidos adicionales pueden aumentar la afinidad de unión de una o más CDR como se describe en la presente memoria para un receptor de TSH o pueden no tener sustancialmente ningún papel en afectar las propiedades de unión del polipéptido para un receptor de TSH.

Preferentemente, un ligando de acuerdo con la presente divulgación incluye un anticuerpo. El término "anticuerpo", como se usa en la presente memoria descriptiva, describe una inmunoglobulina ya sea natural o parcial o totalmente producida sintéticamente. El término también cubre cualquier polipéptido que tenga un dominio de unión que sea, o sea sustancialmente homólogo a, un dominio de unión a anticuerpo. Ejemplos de anticuerpos son los isotipos de inmunoglobulina y sus subclases y fragmentos isotípicos que comprenden un dominio de unión a antígeno tal como Fab, scFv o similares.

En particular, los fragmentos de anticuerpos específicamente como se describen en la presente memoria descriptiva forman un aspecto importante de la presente divulgación. De este modo, cuando un ligando de acuerdo con la presente invención comprende un anticuerpo sustancialmente como se describió anteriormente en la presente memoria, el anticuerpo puede comprender cualquiera de los siguientes fragmentos: (i) el fragmento Fab que consiste en los dominios V_L, V_H, C_L y C_H1; (ii) el fragmento Fd que consiste en los dominios V_H y C_H1; (iii) el fragmento Fv que consiste en los dominios V_L y V_H; (iv) el fragmento dAb que consiste en un dominio V_H; (v) regiones CDR aisladas; (vi) fragmentos F(ab')2, un fragmento bivalente que comprende dos fragmentos Fab enlazados; y (vii) moléculas Fv de cadena única (scFv), en las que un dominio V_H y un dominio V_L están unidos por un enlazador peptídico que permite que los dos dominios se asocien para formar un sitio de unión a antígeno.

Alternativamente, en el caso de que un ligando de acuerdo con la presente divulgación comprenda un anticuerpo, el anticuerpo puede comprender un anticuerpo completo, por lo que el anticuerpo incluye regiones variables y constantes, cuyas regiones variable y constante pueden ilustrarse adicionalmente para los anticuerpos

proporcionado por la presente invención en referencia a cualquiera de las Figuras 9 a 24, o 41 a 52.

La presente divulgación también abarca variantes, análogos y derivados de los ligandos específicos, anticuerpos, dominios V_H, dominios V_L, CDR y polipéptidos descritos en la presente memoria descriptiva, cuyas variantes, análogos y derivados conservan la capacidad de unirse al receptor de TSH, por lo que para estimular el receptor de TSH sustancialmente como se describió anteriormente en la presente memoria. Los términos variantes, análogos y derivados se describen sustancialmente en la presente memoria con mayor detalle con respecto a los polipéptidos de acuerdo con la presente divulgación y lo que se entiende por estos términos como se describió anteriormente en la presente memoria se aplica también a variantes, análogos y derivados de los ligandos específicos de acuerdo con la presente divulgación.

La presente divulgación también proporciona un ligando adicional capaz de unirse al receptor de TSH para estimular el receptor de TSH sustancialmente como se describió anteriormente, y dicho ligando adicional puede competir por la unión al receptor de TSH con cualquier ligando específico divulgado en la presente memoria descriptiva, cuyo ligando adicional no comprende TSH o autoanticuerpos contra un receptor de TSH. En particular, este ligando adicional puede comprender un anticuerpo adicional que tiene un sitio de unión para una región epítopo de un receptor de TSH adecuadamente como se describió anteriormente en la presente memoria, que es un anticuerpo adicional capaz de unirse al receptor de TSH para estimular el receptor de TSH sustancialmente como se describió anteriormente. y puede competir por la unión al receptor de TSH con cualquier ligando específico divulgado en la presente memoria.

También se proporciona mediante la presente divulgación un polinucleótido que comprende:

10

15

20

25

35

40

45

- (i) una secuencia de nucleótidos como se muestra en cualquiera de las Figuras 25 a 40, o 53 a 64; o partes de tales secuencias como se muestra en las Figuras 26, 28, 30, 32, 34, 36, 38, 40, 54, 56, 58, 60, 62 o 64, que codifican una secuencia de aminoácidos de un dominio V_H de anticuerpo, un el dominio V_L del anticuerpo o CDR como se muestra en cualquiera de las Figuras 10, 12, 14, 16, 18, 20, 22, 24, 42, 44, 46, 48, 50 o 52;
- (ii) una secuencia de nucleótidos que codifica un ligando sustancialmente como se describió anteriormente
 30 en la presente memoria, o que codifica una secuencia de aminoácidos de un dominio V_L de anticuerpo, un dominio V_L de anticuerpo o una CDR de un ligando sustancialmente como se describió anteriormente;
 - (iii) una secuencia de nucleótidos que codifica un ligando que tiene una conformación estructural primaria de aminoácidos como se muestra en cualquiera de las Figuras 9 a 24 o 41 a 52, o que codifica una secuencia de aminoácidos de un dominio V_H de anticuerpo, un dominio V_L de anticuerpo o CDR como se muestra en cualquiera de las Figuras 10, 12, 14, 16, 18, 20, 22, 24, 42, 44, 46, 48, 50 o 52;
 - (iv) una secuencia de nucleótidos que difiere de cualquier secuencia de (i) en la secuencia de codones debido a la degeneración del código genético;
 - (v) una secuencia de nucleótidos que comprende una variación alélica de cualquier secuencia de (i);
 - (vi) una secuencia de nucleótidos que comprende un fragmento de cualquiera de las secuencias de (i), (ii), (iii), (iv) o (v), y en particular una secuencia de nucleótidos que comprende un fragmento de cualquiera de las secuencias de (i), (ii), (iii), (iv) o (v) y que codifican un fragmento Fab, un fragmento Fd, un fragmento Fv, un fragmento dAb, una región CDR aislada, fragmentos F(ab')2 o un fragmento scFv, de un ligando sustancialmente como se describió anteriormente en la presente memoria;
 - (vii) una secuencia de nucleótidos que difiere de cualquier secuencia de (i) debido a la mutación, deleción o sustitución de una base de nucleótidos y que codifica un ligando sustancialmente como se describió anteriormente en la presente memoria, o que codifica una secuencia de aminoácidos de un dominio V_L de anticuerpo, un dominio V_L de anticuerpo o una CDR de un ligando sustancialmente como se describió anteriormente.
- Los polinucleótidos variantes de acuerdo con la presente divulgación son adecuadamente al menos un 70% idénticos en toda su longitud a cualquier secuencia de polinucleótidos de (i), los más preferidos son polinucleótidos que comprenden una región que es al menos un 80% idéntica en toda su longitud a cualquier secuencia de polinucleótidos de (i), son particularmente preferidos los polinucleótidos al menos el 90% idénticos en toda su longitud a cualquier secuencia de polinucleótidos de (i), y entre estos polinucleótidos particularmente preferidos, aquellos con al menos el 95% de identidad son especialmente preferidos. Lo que se entiende por variantes de secuencias polinucleotídicas específicas descritas en la presente memoria descriptiva se describe en la presente con mayor detalle.
- La presente divulgación proporciona además un sistema de vector biológicamente funcional que lleva un 65 polinucleótido sustancialmente como se describió anteriormente en la presente memoria y que es capaz de

introducir el polinucleótido en el genoma de un organismo huésped.

La presente divulgación también se refiere a células huésped que se transforman con polinucleótidos de la invención y a la producción de ligandos de la divulgación mediante técnicas recombinantes. Las células huésped pueden ser modificadas genéticamente para incorporar polinucleótidos y expresar ligandos de la presente divulgación.

Un ligando sustancialmente como se describió anteriormente en la presente memoria puede tener aplicaciones diagnósticas y terapéuticas, y puede interactuar o unirse de manera ventajosa con una o más regiones epítopo de un receptor de TSH sustancialmente como se describió anteriormente.

Por consiguiente, un ligando sustancialmente como se describió anteriormente en la presente memoria puede emplearse en procedimientos de detección para detectar autoanticuerpos sustancialmente como se describió anteriormente en la presente memoria y también en procedimientos de diagnóstico sustancialmente como se describió anteriormente en la presente memoria. De este modo, los ligandos de acuerdo con la presente invención pueden emplearse en lugar de los competidores descritos hasta ahora para su uso en procedimientos de detección para detectar autoanticuerpos sustancialmente como se describió anteriormente en la presente memoria y también en procedimientos de diagnóstico sustancialmente como se describió anteriormente. De manera similar, los ligandos de acuerdo con la presente divulgación pueden emplearse en lugar de los competidores descritos hasta ahora para su uso en kits para uso en la detección de autoanticuerpos sustancialmente como se describió anteriormente.

La presente divulgación también proporciona un procedimiento de detección de autoanticuerpos contra un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, comprendiendo dicho procedimiento:

- (a) proporcionar dicha muestra de fluido corporal de dicho sujeto;
- 30 (b) poner en contacto dicha muestra con:

5

10

15

20

25

35

40

45

60

65

- (i) un receptor de TSH de longitud completa, uno o más epítopos del mismo o un polipéptido que comprende uno o más epítopos de un receptor de TSH, y
- (ii) uno o más ligandos sustancialmente como se describió anteriormente en la presente memoria

(adecuadamente en condiciones que permiten la interacción de un receptor de TSH con autoanticuerpos producidos en respuesta a un receptor de TSH) para permitir que dicho receptor de TSH, dichos uno o más epítopos del mismo o dichos polipéptidos, puedan interactuar con cualquiera de los autoanticuerpos contra un receptor de TSH presente en dicha muestra, o dichos uno o más ligandos; y

(c) monitorizar la interacción de dicho receptor de TSH, dichos uno o más epítopos del mismo o dicho polipéptido, con dichos autoanticuerpos presentes en dicha muestra, proporcionando de este modo una indicación de la presencia de dichos autoanticuerpos contra un receptor de TSH en dicha muestra.

Preferentemente, un procedimiento de acuerdo con la presente divulgación como se mencionó anteriormente, comprende además proporcionar medios de marcado para dichos uno o más ligandos, medios de marcado adecuados son sustancialmente como se describió anteriormente en la presente memoria.

- La presente divulgación también proporciona un procedimiento de detección de autoanticuerpos producidos en respuesta a un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto del que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune. a un receptor de TSH, comprendiendo dicho procedimiento:
- 55 (a) proporcionar dicha muestra de fluido corporal de dicho sujeto;
 - (b) poner en contacto dicha muestra con:
 - (i) un receptor de TSH de longitud completa, uno o más epítopos del mismo o un polipéptido que comprende uno o más epítopos de un receptor de TSH, y
 - (ii) uno o más miembros de unión para un receptor de TSH;

(adecuadamente en condiciones que permitan la interacción de un receptor de TSH con autoanticuerpos producidos en respuesta a un receptor de TSH) para permitir que dicho receptor de TSH, dichos uno o más

epítopos del mismo o dichos polipéptidos, puedan interactuar con cualquiera de los autoanticuerpos contra un receptor de TSH presente en dicha muestra, o dichos uno o más miembros de unión; y

(c) monitorizar la interacción de dicho receptor de TSH, dichos uno o más epítopos del mismo o dicho polipéptido, con dichos autoanticuerpos presentes en dicha muestra, proporcionando de este modo una indicación de la presencia de dichos autoanticuerpos contra un receptor de TSH en dicha muestra;

en el que dichos uno o más miembros de unión se inmovilizan directa o indirectamente a una superficie antes o después del paso (b).

Comúnmente, dichos uno o más miembros de unión comprenden uno o más ligandos de acuerdo con la presente divulgación sustancialmente como se describió anteriormente en la presente memoria. Adecuadamente, se proporcionan medios de marcado para el receptor de TSH, uno o más epítopos del mismo o el polipéptido.

- La presente divulgación también proporciona un kit para la detección de autoanticuerpos contra un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, comprendiendo dicho kit:
- 20 (a) un receptor de TSH de longitud completa, uno o más epítopos del mismo o un polipéptido que comprende uno o más epítopos de un receptor de TSH;
 - (b) uno o más ligandos sustancialmente como se describió anteriormente en la presente memoria;
- (c) medios para poner en contacto dicha muestra de fluido corporal de dicho sujeto, dicho receptor de TSH, dichos uno o más epítopos del mismo o dicho polipéptido, y dichos uno o más ligandos, (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con autoanticuerpos producidos en respuesta a un receptor de TSH) para permitir que dicho receptor de TSH, dichos uno o más epítopos del mismo o dicho polipéptido, interactúen con cualquiera de los autoanticuerpos contra un receptor de TSH presente en dicha muestra, o dichos uno o más ligandos; y
 - (d) medios para monitorizar la interacción de dicho receptor de TSH, dichos uno o más epítopos del mismo o dicho polipéptido, con dichos autoanticuerpos presentes en dicha muestra, proporcionando de este modo una indicación de la presencia de dichos autoanticuerpos contra un receptor de TSH en dicha muestra.
 - De manera adecuada, un kit como el mencionado anteriormente comprende además medios de marcado para dichos uno o más ligandos, siendo los medios de marcado adecuados sustancialmente como se describió anteriormente en la presente memoria.
- 40 La presente divulgación también proporciona un kit para la detección de autoanticuerpos contra un receptor de TSH en una muestra de fluido corporal obtenida de un sujeto que se sospecha que padece de, es susceptible de, tiene o se recupera de una enfermedad autoinmune asociada con una reacción inmune a un receptor de TSH, comprendiendo dicho kit:
 - (a) un receptor de TSH de longitud completa, uno o más epítopos del mismo o un polipéptido que comprende uno o más epítopos de un receptor de TSH;
 - (b) uno o más miembros de unión para un receptor de TSH;

5

10

35

45

- (c) medios para poner en contacto dicha muestra de fluido corporal de dicho sujeto, dicho receptor de TSH, dichos uno o más epítopos del mismo o dicho polipéptido, y dichos uno o más miembros de unión, (adecuadamente en condiciones que permiten la interacción de un receptor de TSH con autoanticuerpos producidos en respuesta a un receptor de TSH) para permitir que dicho receptor de TSH, dichos uno o más epítopos del mismo o dicho polipéptido, interactúen con cualquiera de los autoanticuerpos contra un receptor de TSH presente en dicha muestra, o dichos uno o más miembros de unión;
 - (d) medios para inmovilizar directa o indirectamente dichos uno o más miembros a una superficie, antes o después de poner en contacto dichos uno o más miembros de unión con dicha muestra de fluido corporal de dicho sujeto y dicho receptor de TSH, dichos uno o más epítopos del mismo o dicho polipéptido; y
 - (e) medios para monitorizar la interacción de dicho receptor de TSH, dichos uno o más epítopos del mismo o dicho polipéptido, con dichos autoanticuerpos presentes en dicha muestra, proporcionando de este modo una indicación de la presencia de dichos autoanticuerpos contra un receptor de TSH en dicha muestra.
- 65 Comúnmente, dichos uno o más miembros de unión comprenden uno o más ligandos de acuerdo con la presente

divulgación sustancialmente como se describió anteriormente en la presente memoria. Adecuadamente, se proporcionan medios de marcado para el receptor de TSH, uno o más epítopos del mismo o el polipéptido.

Adecuadamente, un procedimiento o kit como se ha mencionado anteriormente puede emplear un polipéptido o epítopo de acuerdo con la presente divulgación, sustancialmente como se describió anteriormente en la presente memoria

5

10

35

40

45

60

Sustancialmente como se describió anteriormente en la presente memoria, en presencia de autoanticuerpos contra el receptor de TSH, disminuirá la unión del receptor de TSH al miembro de unión o al ligando inmovilizado. Un procedimiento y un kit de este tipo para la detección de autoanticuerpos contra un receptor de TSH pueden ser ventajosos para aliviar los problemas que pueden asociarse con el receptor de TSH cuando se inmovilizan en una superficie.

Un ligando sustancialmente como se describió anteriormente en la presente memoria también se puede emplear de manera útil en la terapia. Por lo tanto, la presente divulgación proporciona además procedimientos de tratamiento que comprenden la administración de un ligando específico sustancialmente tal como se describió anteriormente, composiciones farmacéuticas que comprenden un ligando específico tal como se describió anteriormente (junto con uno o más vehículos, diluyentes o excipientes farmacéuticamente aceptables para ello), y el uso de un ligando específico sustancialmente como se describió anteriormente en la fabricación de un medicamento o composición, en particular un medicamento o composición para uso en la estimulación de tejido tiroideo y/o tejido que contiene un receptor de TSH. En particular, un ligando específico de acuerdo con la presente divulgación puede emplearse en oncología, y en particular para uso en el diagnóstico, manejo y tratamiento del cáncer de tiroides.

Las composiciones farmacéuticas de acuerdo con la presente divulgación incluyen aquellas adecuadas para administración oral, parenteral y tópica, aunque la vía más adecuada generalmente dependerá de la condición de un paciente y de la enfermedad específica que se está tratando. La cantidad precisa de un ligando sustancialmente como se describió anteriormente para ser administrada a un paciente será responsabilidad de un médico tratante, aunque la dosis empleada dependerá de una serie de factores, que incluyen la edad y el sexo del paciente, la enfermedad específica que se están tratando y la vía de administración sustancialmente como se describió anteriormente.

La presente divulgación proporciona además un procedimiento para estimular el tejido tiroideo y/o el tejido que contiene un receptor de TSH, comprendiendo dicho procedimiento administrar a un paciente que necesita tal estimulación una cantidad diagnóstica o terapéuticamente efectiva de un ligando sustancialmente como se describió anteriormente en la presente memoria.

La presente divulgación también proporciona en combinación, un ligando sustancialmente como se describió anteriormente en la presente memoria, junto con uno o más agentes adicionales capaces de estimular el tejido tiroideo y/o el tejido que contiene un receptor de TSH, para uso simultáneo, separado o secuencial en la estimulación. tejido tiroideo y/o tejido que contiene un receptor de TSH. Preferentemente, dichos uno o más agentes adicionales comprenden TSH humana recombinante y/o una o más variantes, análogos, derivados o fragmentos de los mismos, o variantes, análogos o derivados de tales fragmentos. Alternativamente, dichos uno o más agentes adicionales pueden actuar independientemente de la unión al receptor de TSH.

Las siguientes explicaciones ilustrativas se proporcionan para facilitar la comprensión de ciertos términos utilizados en la presente memoria. Las explicaciones se proporcionan para su comodidad y no son limitativas de la invención.

LIGANDO, o MIEMBRO DE UNIÓN, PARA UN RECEPTOR DE TSH, describe una molécula que tiene una especificidad de unión para un receptor de TSH. Un ligando o miembro de unión como se describe en la presente memoria descriptiva puede ser derivado naturalmente o producido total o parcialmente de forma sintética. Dicho ligando o miembro de unión tiene un dominio o región que se une específicamente y, por lo tanto, es complementario a una o más regiones epítopo de un receptor de TSH.

55 DOMINIO C denota una región de secuencia de aminoácidos relativamente constante en moléculas de anticuerpo.

CDR denota regiones determinantes de la complementariedad que están presentes tanto en las cadenas pesadas como en las ligeras de las moléculas de anticuerpo y representan regiones de la mayoría de la variabilidad de la secuencia. Las CDR representan aproximadamente del 15 al 20% de los dominios variables y representan los sitios de unión a antígeno de un anticuerpo.

FR denota regiones marco y representa el resto de los dominios ligeros variables y dominios pesados variables que no están presentes en las CDR.

65 HC denota parte de una cadena pesada de una molécula de anticuerpo que comprende el dominio variable de

cadena pesada y el primer dominio de una región constante de IgG.

CÉLULA HUÉSPED es una célula que se ha transformado o transfectado, o que es capaz de transformación o transfección por una secuencia de polinucleótidos exógena.

IDENTIDAD, como se conoce en la técnica, es la relación entre dos o más secuencias polipeptídicas, o dos o más secuencias de polinucleótidos, según se determina comparando las secuencias.

LC denota una cadena ligera de una molécula de anticuerpo.

ESTIMULACIÓN DE UN RECEPTOR DE TSH por un ligando o miembro de unión como se describe en la presente memoria denota la capacidad del ligando o el miembro de unión de unirse a un receptor de TSH y, por lo tanto, efectuar, por ejemplo, la producción de AMP cíclico como resultado de tal unión al receptor de TSH. Dicha estimulación es análoga a las respuestas observadas en la unión de los autoanticuerpos de TSH o del receptor de TSH, a un receptor de TSH y, de este modo, un ligando o miembro de unión como se describe en la presente memoria imita el efecto de la autoanticuerpo de TSH, o el receptor de TSH, que se une a un receptor de TSH.

DOMINIO V denota una región de secuencia de aminoácidos altamente variable en moléculas de anticuerpo.

20 DOMINIO V_H denota regiones o dominios variables en cadenas pesadas de moléculas de anticuerpos.

DOMINIO V_H denota regiones o dominios variables en cadenas ligeras de moléculas de anticuerpo.

La presente divulgación se ilustrará ahora mediante las siguientes figuras y ejemplos, que no limitan el ámbito de la divulgación de ninguna manera.

La Figura 1 enumera los aminoácidos 1 a 200 de (en el siguiente orden) receptores de TSH humanos, porcinos, bovinos, felinos, caninos, de ratón, rata y ovinos.

La Figura 2 enumera las bases de nucleótidos 1 a 300 que codifican las regiones de (en el siguiente orden) receptores de TSH felinos, bovinos, caninos, de ratón, porcinos, de rata, ovinos y humanos.

La Figura 3 enumera los aminoácidos 200 a 300 de (en el siguiente orden) receptores de TSH humanos, porcinos, bovinos, felinos, caninos, de ratón, rata y ovinos.

La Figura 4 enumera las bases de nucleótidos 700 a 899 que codifican las regiones de (en el siguiente orden) receptores de TSH felinos, bovinos, caninos, de ratón, porcinos, de rata, ovinos y humanos.

La Figura 5 enumera los aminoácidos 250 a 449 de (en el siguiente orden) receptores de TSH humanos, porcinos, bovinos, felinos, caninos, de ratón, rata y ovinos. Las secuencias BTSHR.PRO y CTSHR.PRO son un aminoácido más corto que las otras secuencias TSHR enumeradas en la Figura, y se incluye "x" para fines de alineación.

La Figura 6 enumera las bases de nucleótidos 750 a 1100 que codifican las regiones de (en el siguiente orden) receptores de TSH felinos, bovinos, caninos, de ratón, porcinos, de rata, ovinos y humanos. Las secuencias COW.SEQ y CAT.SEQ son tres nucleótidos más cortos que las otras secuencias TSHR enumeradas en la Figura, y se incluye "NNN" para fines de alineación.

La Figura 7 enumera los aminoácidos 350 a 500 de (en el siguiente orden) receptores de TSH humanos, porcinos, bovinos, felinos, caninos, de ratón, rata y ovinos. Las secuencias BTSHR.PRO y CTSHR.PRO son un aminoácido más corto que las otras secuencias TSHR enumeradas en la Figura, y se incluye "x" para fines de alineación.

La Figura 8 enumera las bases de nucleótidos 1100 a 1299 que codifican las regiones de (en el siguiente orden) receptores de TSH felinos, bovinos, caninos, de ratón, porcinos, de rata, ovinos y humanos.

La Figura 9 enumera los aminoácidos de la cadena pesada (HC) de 4D7.

La Figura 10 enumera los aminoácidos de la cadena pesada (HC) de 4D7, que muestra la región o dominio variable (es decir, los aminoácidos números 10 a 115), las CDR (a saber, los aminoácidos de CDR1 números 31 a 35, los aminoácidos de CDRII números 50 a 66) y los aminoácidos de CDRIII números 99 a 104) y la región o dominio constante (a saber, los aminoácidos números 116 a 200).

La Figura 11 enumera los aminoácidos de la cadena ligera (LC) de 4D7.

65

5

10

15

35

40

45

50

La Figura 12 enumera los aminoácidos de la cadena ligera (LC) de 4D7, que muestra la región o dominio variable (a saber, los aminoácidos números 9 a 111), las CDR (a saber, los aminoácidos de CDR1 números 24 a 38, los aminoácidos de CDRII números 54 a 60) y los aminoácidos de CDRII números 93 a 101) y la región o dominio constante (a saber, los aminoácidos números 112 a 211).
La Figura 13 enumera los aminoácidos de la cadena pesada (HC) de 16E5.
La Figura 14 enumera los aminoácidos de la cadena pesada (HC) de 16E5, que muestran la región o dominio variable (a saber, los aminoácidos números 9 a 120), las CDR (a saber, los aminoácidos de CDR1 números 31 a 35, los aminoácidos de CDRII números 50 a 66) y los aminoácidos de CDRIII números 99 a 109) y la región o dominio constante (a saber, los aminoácidos números 121 a 205).
La Figura 15 enumera los aminoácidos de la cadena ligera (LC) de 16E5.
La Figura 16 enumera los aminoácidos de la cadena ligera (LC) de 16E5, que muestra la región o dominio variable (a saber, los aminoácidos números 9 a 107), las CDR (a saber, los aminoácidos de CDR1 números 24 a 34, los aminoácidos de CDRII números 50 a 56) y los aminoácidos de CDRIII números 89 a 97) y la región o dominio constante (a saber, los aminoácidos números 108 a 207).
La Figura 17 enumera los aminoácidos de la cadena pesada (HC) de 17D2.
La Figura 18 enumera los aminoácidos de la cadena pesada (HC) de 17D2, que muestran la región o dominio variable (a saber, los aminoácidos números 9 a 120), las CDR (a saber, los aminoácidos de CDR1 números 31 a 35, los aminoácidos de CDRII números 50 a 66) y los aminoácidos de CDRIII números 99 a 109) y la región o dominio constante (a saber, los aminoácidos números 121 a 205).
La Figura 19 enumera los aminoácidos de la cadena ligera (LC) de 17D2.
La Figura 20 enumera los aminoácidos de la cadena ligera (LC) de 17D2, que muestran la región o dominio variable (a saber, los aminoácidos números 9 a 107), las CDR (a saber, los aminoácidos de CDR1 números 24 a 34, los aminoácidos de CDRII números 50 a 56) y los aminoácidos de CDRIII números 89 a 97) y la región o dominio constante (a saber, los aminoácidos números 108 a 207).
La Figura 21 enumera los aminoácidos de la cadena pesada (HC) de 14D3.
La Figura 22 enumera los aminoácidos de la cadena pesada (HC) de 14D3, que muestra la región o dominio variable (a saber, los aminoácidos números 9 a 120), las CDR (a saber, los aminoácidos de CDR1 números 31 a 35, los aminoácidos de CDRII números 50 a 66) y los aminoácidos de CDRIII números 99 a 109) y la región o dominio constante (a saber, los aminoácidos números 121 a 205).
La Figura 23 enumera los aminoácidos de la cadena ligera (LC) de 14D3.
La Figura 24 enumera los aminoácidos de la cadena ligera (LC) de 14D3, que muestra la región o dominio variable (a saber, los aminoácidos números 9 a 107), las CDR (a saber, los aminoácidos de CDR1 números 24 a 34, los aminoácidos de CDRII números 50 a 56) y los aminoácidos de CDRIII números 89 a 97) y la región o dominio constante (a saber, los aminoácidos números 108 a 207).
La Figura 25 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 4D7 como se muestra en la Figura 9.
La Figura 26 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 4D7 como se muestra en la Figura 9, y muestra las bases de nucleótidos que codifican la región variable o dominio. las CDR y la región o dominio constante como se muestra en la Figura 10.

La Figura 27 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 4D7 como se muestra en la Figura 11.

La Figura 28 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 4D7 como se muestra en la Figura 11, y muestra las bases de nucleótidos que codifican la región o dominio variable, las CDR y la región o dominio constante como se muestra en la Figura 12.

La Figura 29 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 16E5 como se muestra en la Figura 13.

La Figura 30 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de

	16E5 como se muestra en la Figura 13, y muestra las bases de nucleótidos que codifican la región o dominio variable, las CDR y la región o dominio constante como se muestra en la Figura 14.
5	La Figura 31 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 16E5 como se muestra en la Figura 15.
40	La Figura 32 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 16E5 como se muestra en la Figura 15, y muestra las bases de nucleótidos que codifican la región o dominio variable, las CDR y la región o dominio constante como se muestra en la Figura 16.
10	La Figura 33 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 17D2 como se muestra en la Figura 17.
15	La Figura 34 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 17D2 como se muestra en la Figura 17, y muestra las bases de nucleótidos que codifican la región o dominio variable, las CDR y la región o dominio constante como se muestra en la Figura 18.
20	La Figura 35 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 17D2 como se muestra en la Figura 19.
20	La Figura 36 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 17D2 como se muestra en la Figura 19, y muestra las bases de nucleótidos que codifican la región o dominio variable, las CDR y la región o dominio constante como se muestra en la Figura 20.
25	La Figura 37 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 14D3 como se muestra en la Figura 21.
30	La Figura 38 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 14D3 como se muestra en la Figura 21, y muestra las bases de nucleótidos que codifican la región o dominio variable, las CDR y la región o dominio constante como se muestra en la Figura 22.
	La Figura 39 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 14D3 como se muestra en la Figura 23.
35	La Figura 40 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 14D3 como se muestra en la Figura 23, y muestra las bases de nucleótidos que codifican la región variable o dominio, las CDR y la región o dominio constante como se muestra en la Figura 24.
40	La Figura 41 enumera los aminoácidos de la cadena pesada (HC) de 3B3.
	La Figura 42 enumera los aminoácidos de la cadena pesada (HC) de 3B3, que muestra la región o dominio variable (a saber, los aminoácidos números 8 a 112), las CDR (a saber, los aminoácidos de CDR1 números 31 a 35, los aminoácidos de CDRII números 50 a 66) y los aminoácidos de CDRIII números 99 a 101) y la región o dominio constante (es decir, los aminoácidos números 113 a 196).
45	La Figura 43 enumera los aminoácidos de la cadena ligera (LC) de 3B3.
50	La Figura 44 enumera los aminoácidos de la cadena ligera (LC) de 3B3, que muestra la región o dominio variable (a saber, los aminoácidos números 9 a 111), las CDR (a saber, los aminoácidos de CDR1 números 24 a 38, los aminoácidos de CDRII números 54 a 60) y los aminoácidos de CDRIII números 93 a 101) y la región o dominio constante (a saber, los aminoácidos números 112 a 211).
	La Figura 45 enumera los aminoácidos de la cadena pesada (HC) de 3C7.
55	La Figura 46 enumera los aminoácidos de la cadena pesada (HC) de 3C7, que muestra la región variable o dominio (a saber, los aminoácidos números 10 a 115), las CDR (a saber, los aminoácidos de CDR1 números 31 a 35, los aminoácidos de CDRII números 50 a 66) y los aminoácidos de CDRIII números 99 a 104) y la región o dominio constante (a saber, los aminoácidos números 116 a 200).
60	La Figura 47 enumera los aminoácidos de la cadena ligera (LC) de 3C7.

65

La Figura 48 enumera los aminoácidos de la cadena ligera (LC) de 3C7, que muestra la región o dominio variable (a saber, los aminoácidos números 9 a 111), las CDR (a saber, los aminoácidos de CDR1 números

24 a 38, los aminoácidos de CDRII números 54 a 60) y los aminoácidos de CDRIII números 93 a 101) y la región o dominio constante (a saber, los aminoácidos números 112 a 211).

	La Figura 49 enumera los aminoácidos de la cadena pesada (HC) de 2B4.
5	La Figura 50 enumera los aminoácidos de la cadena pesada (HC) de 2B4, que muestra la región o dominio variable (a saber, los aminoácidos números 9 a 122), las CDR (a saber, los aminoácidos de CDR1 números 31 a 35, los aminoácidos de CDRII números 50 a 66) y los aminoácidos de CDRIII números 99 a 111) y la región o dominio constante (a saber, los aminoácidos números 123 a 207).
10	La Figura 51 enumera los aminoácidos de la cadena ligera (LC) de 2B4.
15	La Figura 52 enumera los aminoácidos de la cadena ligera de 2B4, que muestran la región o dominio variable (a saber, los aminoácidos números 9 a 112), las CDR (a saber, los aminoácidos de CDR1 números 24 a 39, los aminoácidos de CDRII números 55 a 61 y los aminoácidos de CDRII números 94 a 102) y la región o dominio constante (a saber, los aminoácidos números 113 a 212).
15	La Figura 53 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 3B3 como se muestra en la Figura 41.
20	La Figura 54 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 3B3 como se muestra en la Figura 41, y muestra las bases de nucleótidos que codifican la región o dominio variable, las CDR y la región o dominio constante como se muestra en la Figura 42.
25	La Figura 55 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 3B3 como se muestra en la Figura 43.
25	La Figura 56 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 3B3 como se muestra en la Figura 43, y muestra las bases de nucleótidos que codifican la región o dominio variable, las CDR y la región o dominio constante como se muestra en la Figura 44.
30	La Figura 57 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 3C7 como se muestra en la Figura 45.
35	La Figura 58 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 3C7 como se muestra en la Figura 45, y muestra las bases de nucleótidos que codifican la región o dominio variable, las CDR y la región o dominio constante como se muestra en la Figura 46.
	La Figura 59 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 3C7 como se muestra en la Figura 47.
40	La Figura 60 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 3C7 como se muestra en la Figura 47, y muestra las bases de nucleótidos que codifican la región o dominio variable, las CDR y la región o dominio constante como se muestra en la Figura 48.
45	La Figura 61 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 2B4 como se muestra en la Figura 49.
50	La Figura 62 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena pesada (HC) de 2B4 como se muestra en la Figura 49, y muestra las bases de nucleótidos que codifican la región variable o dominio, las CDR y la región o dominio constante como se muestra en la Figura 50.
50	La Figura 63 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 2B4 como se muestra en la Figura 51.
55	La Figura 64 enumera las bases de nucleótidos que codifican los aminoácidos de la cadena ligera (LC) de 2B4 como se muestra en la Figura 51, y muestra las bases de nucleótidos que codifican la región o dominio variable, las CDR y la región o dominio constante como se muestra en la Figura 52.
	Más específicamente, las Figuras 1 a 8 ilustran lo siguiente:

39

los aminoácidos 22 a 91 de un receptor de TSH,

los aminoácidos 32 a 41 de un receptor de TSH, y

La Figura 1 enumera los aminoácidos 1 a 200 de los receptores de TSH en las especies mencionadas anteriormente, que incluyen las siguientes secuencias de aminoácidos empleadas en la presente divulgación:

60

los aminoácidos 36 a 42 de un receptor de TSH.

La Figura 2 enumera las bases de nucleótidos 1 a 300 en las especies mencionadas anteriormente, que incluyen regiones codificantes para las secuencias de aminoácidos mencionadas anteriormente presentes en la Figura 1.

5

10

La Figura 3 enumera los aminoácidos 200 a 300 de los receptores de TSH en las especies mencionadas anteriormente, que incluyen las siguientes secuencias de aminoácidos empleadas en la presente divulgación:

los aminoácidos 246 a 260 de un receptor de TSH, y los aminoácidos 247 a 260 de un receptor de TSH.

La Figura 4 enumera las bases de nucleótidos 700 a 899 en las especies mencionadas anteriormente, que incluyen regiones codificantes para las secuencias de aminoácidos mencionadas anteriormente presentes en la Figura 3.

La Figura 5 enumera los aminoácidos 250 a 449 de los receptores de TSH en las especies mencionadas anteriormente, que incluyen las siguientes secuencias de aminoácidos empleadas en la presente divulgación:

los aminoácidos 260 a 363 de un receptor de TSH; y los aminoácidos 277 a 296 de un receptor de TSH.

20

La Figura 6 enumera las bases de nucleótidos 750 a 1100 en las especies mencionadas anteriormente, que incluyen regiones codificantes para las secuencias de aminoácidos mencionadas anteriormente presentes en la Figura 5.

La Figura 7 enumera los aminoácidos 350 a 500 de los receptores de TSH en las especies mencionadas anteriormente, que incluyen las siguientes secuencias de aminoácidos empleadas en la presente divulgación:

los aminoácidos 380 a 418 de un receptor de TSH; y los aminoácidos 381 a 385 de un receptor de TSH.

30

35

La Figura 8 enumera las bases de nucleótidos 1100 a 1299 en las especies mencionadas anteriormente, que incluyen regiones codificantes para las secuencias de aminoácidos mencionadas anteriormente presentes en la Figura 7.

Ejemplo 1

(1) Producción de anticuerpos monoclonales de ratón para el receptor de TSH.

Se inmunizaron ratones BALB/c con una forma madura recombinante, altamente purificada del receptor de TSH 40 expresado en células CHO. [Y Oda, J Sanders, M Evans, A Kiddie, A Munkley, C James, T Richards, J Wills, J Furmaniak, B Rees Smith "Epitope analysis of the human thyrotrophin (TSH) receptor using monoclonal antibodies (Análisis de los epítopos del receptor humano de tirotropina (TSH) utilizando anticuerpos monoclonales)". Thyroid 2000 10(12): 1051-1059]. Los anticuerpos de ratón también se produjeron mediante una técnica de inmunización de ADN con ADNc de TSHR humano de longitud completa clonado en pcDNA3.1. Los anticuerpos monoclonales (MAb) se clonaron utilizando técnicas estándar y las IgG se purificaron a partir de sobrenadantes de cultivo 45 mediante cromatografía de afinidad en proteína A Sefarosa. La reactividad de los MAb con el receptor de TSH se probó mediante (a) transferencia Western con receptores parcialmente purificados, (b) inhibición de la unión de TSH al receptor de TSH, y (c) inmunoprecipitación del receptor de TSH marcados con 35S producidos en un sistema de transcripción/traducción in vitro como se describe en Y Oda, J Sanders, S Roberts, M Maruyama, R Kato, M 50 Perez, V B Peteresen, N Wedlock, J Furmaniak, B Rees Smith "Binding characteristics of antibodies to the TSH receptor (Características de unión de los anticuerpos al receptor de TSH)". Revista de Endocrinología Molecular

1998 20: 233-244.

(2) Inhibición de la unión de 125I-TSH al receptor de TSH

55

60

65

La inhibición de la unión de ¹²⁵I-TSH al receptor de TSH se analizó en un ensayo en el que se preincubaron 50 µl de receptor de TSH solubilizado con detergente con 50 µl de MAb purificado como se describe en la etapa (1) durante 15 minutos a temperatura ambiente antes de la adición de 100 µl de ¹²⁵I-TSH (30.000 cpm) seguido de incubación a 37 °C durante una hora. Los complejos de ¹²⁵I-TSH/receptor de TSH se precipitaron mediante la adición de 2 ml de 16,5% de polietilenglicol y 25 µl de suero de donante de sangre sana, se centrifugaron a 1500xg durante 30 minutos a 4 °C, se aspiraron y se contó la radioactividad de los sedimentos utilizando técnicas conocidas.

Los MAb denominados: 2B4 MAb (a una concentración de IgG de 5 μg/ml), 8E2 MAb (a una concentración de IgG de 1 μg/ml) y 18C5 MAb (a una concentración de IgG de 1 mg/ml) mostraron 76%, 38% y 91% de inhibición de la

unión a la TSH, respectivamente. Los fragmentos Fab se produjeron a partir de 2B4 MAb, 8E2 MAb y 18C5 MAb IgG por digestión con L-cisteína/papaína o pepsina, seguido de la separación de Fc y Fab en la columna de proteína A.

5 (3) Reconocimiento de epítopos por medio de MAb

Análisis de transferencia Western [Y Oda, J Sanders, M Evans, A Kiddie, A Munkley, C James, T Richards, J Wills, J Furmaniak, B Rees Smith "Epitope analysis of the human thyrotrophin (TSH) receptor using monoclonal antibodies (Análisis de los epítopos del receptor humano de tirotropina (TSH) utilizando anticuerpos monoclonales)". Thyroid 2000 10(12): 1051-1059] mostró que el 2B4 MAb se unía a un epítopo entre los aminoácidos (aa) 380 y 418, el 8E2 MAb a un epítopo entre los aa 22 y 91 y el 18b5 MAb a un epítopo entre los aa 246 y 260 de la secuencia del receptor de TSH. Análisis con péptidos solapados del receptor de TSH que cubren estas regiones [Y Oda, J Sanders, M Evans, A Kiddie, A Munkley, C James, T Richards, J Wills, J Furmaniak, B Rees Smith "Epitope analysis of the human thyrotrophin (TSH) receptor using monoclonal antibodies (Análisis de los epítopos del receptor humano de tirotropina (TSH) utilizando anticuerpos monoclonales)". Thyroid 2000 10(12): 1051-1059] mostró que 2B4 MAb reaccionó con los aa 381 a 385, 8E2 MAb con los aa 36 a 42 y 18C5 MAb con los aa 247 a 260.

(4) Preparación del receptor de TSH marcado con 125 l

Las preparaciones solubilizadas de receptor de TSH se marcaron con ¹²⁵I por medio de MAB (4E31) marcado con ¹²⁵I reactivo con el extremo C-terminal del receptor de TSH preparado como se describe en J Sanders, Y Oda, S Roberts, A Kiddie, T Richards, J Bolton, V McGrath, S Walters, D Jaskolski, J Furmaniak, B Rees Smith "The interaction of TSH receptor autoantibodies with ¹²⁵I-labelled TSH receptor (La interacción de los anticuerpos del receptor de TSH con receptor de TSH marcado con ¹²⁵I)". Revista de Endocrinología Clínica y Metabolismo 1999 84(10):3797-3802. Se incubaron alícuotas de 4E31 F(ab)₂ marcado con ¹²⁵I durante 15 minutos a temperatura ambiente con un receptor de TSH solubilizado y luego se usaron en un ensayo de inmunoprecipitación como se describe en la etapa (5).

30 (5) Inhibición de la unión del autoanticuerpo del receptor de TSH (TRAb) al receptor de TSH por medio de MAb

La inhibición de la unión de TRAb al receptor de TSH por los MAb se probó de la siguiente manera: Se preincubaron 10 µl de receptor de TSH marcado con ¹²⁵l (30.000 cpm) preparado en la etapa (4) con 20 µl de 2B4 Fab (5 y 10 mg/ml) durante 15 minutos a temperatura ambiente, seguido de una incubación con 20 µl de suero de paciente positivo a TRAb durante una hora a temperatura ambiente. Luego se agregaron 50 µl de Proteína A en fase sólida (un reactivo anti-IgG humano) y se continuó la incubación durante una hora a temperatura ambiente, seguido de una etapa de lavado y centrifugación a 1500xg a 4 °C durante 30 minutos; aspiración y recuento de la radiactividad de los gránulos. Se llevaron a cabo experimentos similares con los Fab 8E2 y 18C5 y la combinación de dos Fab juntos.

Resultados del Ejemplo 1

Los resultados de la inhibición de la unión de TRAb al receptor de TSH se muestran en la Tabla 1.

45 Ejemplo 2

10

15

20

25

35

40

50

55

Procedimientos

(1) Producción de anticuerpos monoclonales de ratón para el receptor de TSH.

Los ratones BALB/C se inmunizaron con una forma madura recombinante y altamente purificada del receptor de TSH expresada en células CHO (Y Oda, J Sanders, M Evans, A Kiddie, A Munkley, C James, T Richards, J Wills, J Furmaniak, B Rees Smith "Epitope analysis of the human thyrotrophin (TSH) receptor using monoclonal antibodies (Análisis de los epítopos del receptor humano de tirotropina (TSH) utilizando anticuerpos monoclonales)". Thyroid 2000 10(12): 1051-1059). Los anticuerpos de ratón también se generaron mediante técnicas de inmunización de ADN con ADNc de TSHR humano de longitud completa clonado en pRC/CM.1. Los MAb se clonaron utilizando técnicas estándar y las IgG se purificaron a partir de sobrenadantes de cultivo mediante cromatografía de afinidad en proteína A Sefarosa.

Los fragmentos (Fab)₂ se produjeron a partir de las IgG purificadas por digestión con pepsina seguido de cromatografía en una columna de afinidad de proteína A como se describe en Y Oda, J Sanders, S Roberts, M Maruyama, R Kato, M Perez, V B Peteresen, N Wedlock, J Furmaniak, B Rees Smith "Binding characteristics of antibodies to the TSH receptor (Características de unión de los anticuerpos al receptor de TSH)". Revista de Endocrinología Molecular 1998 20: 233-244.

Los fragmentos Fab se prepararon mediante digestión de los MAb purificados con papaína como se describe en E. Hendry, G. Taylor, F. Grennan-Jones, A. Sullivan, N. Liddy, J. Godfrey, N. Hayakawa, M. Powell J. Furmaniak, B Rees Smith 2001 "X-ray crystal structure of a monoclonal antibody that binds to a major autoantigenic epitope on thyroid peroxidase (Estructura cristalina de rayos X de un anticuerpo monoclonal que se une a un epítopo autoantigénico importante en la peroxidasa tiroidea)". Tiroides 11(12): 1091-1099.

La reactividad de los MAb con el receptor de TSH se probó mediante (a) transferencia Western con receptores parcialmente purificados, (b) inhibición de la unión de TSH al receptor de TSH y (c) inmunoprecipitación del receptor de TSH marcados con ³⁵S producido en un sistema de transcripción/traducción *in vitro* como se describe en Y Oda, J Sanders, S Roberts, M Maruyama, R Kato, M Perez, V B Peteresen, N Wedlock, J Furmaniak, B Rees Smith "Binding characteristics of antibodies to the TSH receptor (Características de unión de los anticuerpos al receptor de TSH)". Revista de Endocrinología Molecular 1998 20: 233-244.

(2) Inhibición de la unión de 125 I TSH al receptor de TSH

5

10

15

20

30

35

40

45

50

55

65

(a) Procedimiento de PEG para uso con TSHR solubilizado detergente

La inhibición de la unión de ¹²⁵I TSH al receptor de TSH solubilizado detergente se analizó en un ensayo en el que se preincubaron 50 µl de MAb purificado como se describe en los Procedimientos (1) anteriores durante 15 minutos a temperatura ambiente antes de la adición de 100 µl de ¹²⁵I TSH (30.000 cpm) seguido de incubación a 37 °C durante una hora. Los complejos de ¹²⁵I y el receptor de TSH se precipitaron mediante la adición de 2 ml de 16,5% de polietilenglicol y 25 µl de suero de donante de sangre sana, se centrifugaron a 1500 xg durante 30 minutos a 4 °C, se aspiraron y se contó la radioactividad de los gránulos con un contador gamma.

25 (b) Procedimiento utilizando tubos recubiertos con TSHR.

En este procedimiento, los tubos de plástico se recubren primero con un MAb, tal como 4E31, que se une a una parte del TSHR no relacionado con la unión de TSH o TRAb. Luego se agregan preparaciones detergentes de TSH con solubilización, se capturan con el MAb de TSHR y luego se inmovilizan en la superficie del tubo de tal manera que se puedan unir a TSH o TRAb. En particular, el 4E31 MAb reactivo con el extremo C de TSHR (10 µg/ml de preparación F(ab)₂ en Na₂CO₃ 0,1 M y pH de 9,2) se agregó a tubos de plástico (Nune Maxisorp, 200µl por tubo) y se dejó que el recubrimiento procediera durante la noche a 4 °C después del lavado y el recubrimiento posterior (10 mg/ml de albúmina de suero bovino), los tubos se lavaron nuevamente con tampón de ensayo (Tris-HCl 10 mM, pH 7,8, NaCl 50 mM, 1 mg/ml de albúmina de suero bovino, Triton X-100 al 0,1%). Luego se agregaron 200 µl de una preparación de TSHR solubilizada detergente y se incubaron durante la noche a 4 °C, seguido de las etapas de aspiración y lavado. Después de eso, se agregaron 20 µl de tampón de "inicio" (Tris-HCl 10 mM, pH 7,8, NaCl 50 mM, albúmina sérica bovina 1 mg/ml, NaN₃ 6 mM, Triton X-100 al 1%) a los tubos recubiertos con TSHR seguidos por 100 µl de IgG MAb purificada o sueros de pacientes y se incubaron a temperatura ambiente durante 2 horas con agitación suave. Después de la aspiración, los tubos se lavaron dos veces con 1 ml de tampón de ensayo antes de la adición de 100 µl de 125l TSH (80.000 cpm) y la incubación a temperatura ambiente durante 20-60 minutos con agitación. Los tubos se lavaron dos veces con 1 ml de tampón de ensayo, se aspiraron y se contaron en un contador gamma.

(3) Análisis de las actividades de estimulación o bloqueo de la tiroides de los MAb

La capacidad de los MAb para estimular la producción de AMP cíclico en células tiroideas porcinas aisladas (actividad estimulante de la tiroides) o para actuar como antagonistas de TSH mediante el bloqueo de la estimulación con TSH del AMP cíclico (actividad de bloqueo) se evaluó utilizando reactivos de Yamasa Corporation. Tokio, Japón.

Además, se analizó la capacidad de los MAb para estimular la producción de AMP cíclico en células de ovario de hámster chino (CHO) que expresan TSHR humana tal como lo describe M. Kita, L. Ahma, P.C. Marians, H. Viase, P. Unger, P. N. Graves, T. F. Davies 1999 "Regulation and transfer of a murine model of thyrotrophin receptor antibody mediated Graves' disease (Regulación y transferencia de un modelo murino de la enfermedad de Graves mediada por anticuerpos receptores de tirotrofina)". Endocrinología 140: 1392-1398.

- (4) Unión de MAb marcados con 125 l al TSHR y el efecto de TRAb
- La IgG purificada de dos de los MAb que mostraron actividad de simulación de la tiroides (16E5 y 14D3, Tabla 2) se marcó con ¹²⁵I seguido de separación de ¹²⁵I no incorporada por filtración en Sephadex G-50 como en (4) en el Ejemplo 1.

Los tubos de plástico se recubrieron con preparaciones de TSHR como en 2b arriba. Posteriormente, se agregaron 100 µl de suero de prueba (de donantes de sangre sanos o de pacientes con enfermedad de Graves) y se incubaron los tubos durante 2 horas a temperatura ambiente con agitación. Después de esta incubación, los tubos se lavaron

2 veces con tampón de ensayo. Luego, se agregaron 100 µl de IgG 16E5 o 14D3 marcadas con ¹²⁵I (30.000 cpm diluidas en Tris-HCl 20 mM, pH 7,3, NaCl 50 mM, 1 mg/ml de albúmina de suero bovino, Triton X-100 al 0,1%) a los tubos y se incubaron durante 1 hora a temperatura ambiente con agitación. Luego, los tubos se lavaron dos veces con el mismo tampón que se usó para diluir los MAb marcados con ¹²⁵I y se contaron en un contador gamma.

(5) Unión de TSHR a tubos recubiertos con MAb y el efecto de TRAb

Preparaciones de TSH solubilizadas detergentes (20 µl se incubaron durante 1 hora a temperatura ambiente con 100 µl de suero de prueba y 20 µl de tampón de inicio (2b arriba). Luego se agregaron 100 µl de esta mezcla a tubos de plástico recubiertos con MAb TSHR (como en 2b arriba) y se incubaron durante 1 hora con agitación a temperatura ambiente, luego los tubos se aspiraron y se lavaron dos veces (2b arriba) y se agregaron 100 µl (30.000 cpm) de preparación F(ab)₂ TSHR 4E31 MAb C-terminal marcada con ¹²⁵l marcada con ¹²⁵l como en el punto 4 anterior. Después de una incubación adicional durante 1 hora a temperatura ambiente con agitación, se aspiraron los tubos, se lavaron dos veces y se contó la radioactividad con un contador gamma.

Los cebadores oligonucleotídicos se diseñaron utilizando las secuencias descritas anteriormente (Kettleborough C.A. et al "Optimization of primers for cloning libraries of mouse immunoglobulin genes using the polymerase chain reaction (Optimización de cebadores para clonar bibliotecas de genes de inmunoglobulina de ratón usando la reacción en cadena de la polimerasa)". Revista Europea de Inmunología 1993 23: 206-211).

Los cebadores de sentido y antisentido incluían secuencias de sitios de endonucleasas de restricción 5' adicionales para facilitar la clonación de productos por PCR. Los productos por RT-PCR se clonaron en el ADN de pUC18 preparado por el procedimiento Qiagen (Qiagen) y se secuenciaron por el procedimiento Sanger-Coulson

25 Resultados del Ejemplo 2

5

10

15

20

30

55

60

- (1) La actividad estimulante de la tiroides de los MAb TSHR se muestra en las Tablas 2 y 3. Cuatro de los MAb (16E5, 14D3, 17D2 y 4D7) pudieron estimular la producción de AMP cíclico en células tiroideas porcinas aisladas. Además, cuando se probaron los fragmentos Fab de tres de estos MAb, los tres también estimularon la producción de AMP cíclico (Tabla 2). Para comparación, un suero de paciente positivo para TRAb mostró niveles de estimulación similares a los MAb (Tabla 2). Además, TSHR 2B4 MAb, que tiene la capacidad de inhibir la unión de TSH a la TSHR fuertemente, no mostró actividad estimulante de la tiroides (Tabla 2). Otro TSHR MAb y Fab (3B3) no estimularon la producción de AMP cíclico ni el Tg MAb Fab 2G2 (Tabla 2).
- En una serie adicional de experimentos, algunos de los MAb que fueron capaces de estimular las células tiroideas porcinas (16E5 y 14D3) se probaron para determinar su capacidad para estimular la producción de AMP cíclico en células CHO que expresan TSHR humana Tabla 3). Se obtuvieron resultados similares a los observados con células tiroideas porcinas.
- 40 (2) En presencia de sueros de donantes de sangre sanos, el 16E5 marcado con ¹²⁵I unido a tubos recubiertos con TSHR está en el intervalo de 23 a 35% de los recuentos totales agregados Tabla 4). En presencia de sueros de pacientes con enfermedad de Graves (todos positivos para TRAb), la unión de 16E5 marcado con ¹²⁵I se redujo notablemente y estuvo en el intervalo de 1,9 a 7,5% Tabla 4).
- Esto indicó que los sueros de pacientes con enfermedad de Graves con actividad de TRAb inhiben la unión de TSHR MAb 16E5 a TSHR. Los experimentos adicionales con 16E5 marcado se muestran en la Tabla 5, en la que se comparan los efectos de los sueros de pacientes con enfermedad de Graves en (a) 16E5 marcado con ¹²⁵I con tubos recubiertos con TSHR y (b) unión con TSH marcado con ¹²⁵I con tubos recubiertos con TSHR. Se realizaron experimentos similares a los que se muestran en la Tabla 5 con TSHR MAb 14D3 marcado con ¹²⁵I y los resultados se muestran en la Tabla 6.
 - Los efectos de los sueros de pacientes con enfermedad de Graves en la unión del tubo recubierto con TSHR por 16E5, 14D3 o TSH marcados con ¹²⁵I fueron similares, con una fuerte inhibición de la unión observada en la mayoría de los casos (Tablas 5 y 6). A diferencia de los sueros de pacientes con enfermedad de Graves, los sueros de donantes de sangre sanos tuvieron poco efecto sobre la unión del MAb marcado o la TSH marcada a los tubos recubiertos con TSHR (Tablas 5 y 6). La Tabla 7 muestra el efecto de los sueros que contienen autoanticuerpos diferentes a los autoanticuerpos TSHR en la unión de los tubos recubiertos con TSHR por medio de TSH, 16E5 y 14D3 marcados. Como puede verse en la Tabla 7, los sueros que contienen autoanticuerpos para la descarboxilasa del ácido glutámico (D1 y D2) o para la 21-hidroxilasa (A1 y A2) no tuvieron efecto sobre la unión de TSH o MAb. Sin embargo, el suero G42 de un paciente con enfermedad de Graves mostró una fuerte inhibición, dependiente de la dosis, de la unión tanto de TSH como de MAb.
 - (3) Como se muestra en la Tabla 8, los tubos de plástico recubiertos con MAb 16E5 fueron capaces de unirse a TSHR y esta unión fue inhibida por los sueros de Graves que contienen autoanticuerpos TSHR. En particular, la detección de la unión a TSHR por parte del TSHR 4E31 MAb marcado con ¹²⁵I mostró que (a)

en presencia de sueros de donantes de sangre sanos, la unión a 4E31 marcada varió de 13,5-17,8% del total de cpm añadidas, mientras que (b) en presencia de los sueros de Graves, la unión de MAb marcada varió de 1,8-4,8% de las cpm totales agregadas. Se obtuvieron resultados similares con tubos de plástico recubiertos con MAb 14D3 Tabla 9).

Conclusiones

5

15

30

35

40

45

Los resultados mostrados en las Tablas 2-9 muestran que:

- (a) hemos producido MAb de TSHR y fragmentos Fab de MAb que pueden estimular células tiroideas aisladas de forma similar a TRAb en los sueros de pacientes y de manera similar a la TSH. Diferentes MAb muestran diferentes grados de actividad estimulante.
 - (b) estos MAbs se pueden usar en lugar de TSH marcados en ensayos para autoanticuerpos contra TSHR (TRAb).
 - (c) cuándo los MAb se recubren sobre superficies de plástico, pueden unir los preparados de TSHR. Esta unión es inhibida por TRAb en los sueros de pacientes, proporcionando de este modo un nuevo tipo de ensayo de TRAb.
- 20 (d) la capacidad de los MAb para estimular la tiroides significa que son potencialmente útiles como alternativas a la TSH en aplicaciones *in vivo*.

Ejemplo 3

25 Inhibición de la unión de Fab 125 l-16E5 al receptor de TSH solubilizado por los MAb del receptor de TSH

Procedimiento

La inhibición de la unión del Fab ¹²⁵l-16E5 al receptor de TSH solubilizado detergente se analizó en un ensayo en el que se incubaron 50 μl de IgG de MAb (100 μg/ml) como se describió anteriormente con el receptor durante 30 minutos a temperatura ambiente antes de la adición de 100 μl de Fab ¹²⁵l-16E5 (30.000 cpm) seguido de incubación a temperatura ambiente durante 2 horas. Los complejos de Fab ¹²⁵l-16E5 y el receptor de TSH se precipitaron mediante la adición de 2 ml de 16,5% de polietilenglicol y 50 μl de suero de donante de sangre sana, se centrifugaron a 1500xg durante 30 minutos a 4 °C, se aspiraron y la radioactividad de los gránulos se contó en un contador gamma.

Los resultados se muestran en la Tabla 10. De la Tabla 10 se puede ver que MAb 4D7 (que se une a la región del epítopo 246 a 260 y estimula las células aisladas de la tiroides) inhibe bastante fuertemente la unión de Fab 16E5 marcado al receptor de TSH (24,2% de inhibición). Otros dos MAb, 3C7 y 18C5 también inhiben fuertemente la unión a Fab 16E5 (17 y 15,7% de inhibición, respectivamente) y también se unen a la región del epítopo 246 a 260. Se observa una inhibición débil con los otros MAb. Esto sugiere que la región epítopo 246 a 260 está implicada en la unión de 16E5 al receptor de TSH. Como los otros MAb 14D3 y 17D2 estimulantes compiten bien con la unión de 16E5 al receptor de TSH, como se puede ver en la Tabla 10, la región del epítopo 246 a 260 es probablemente también importante para la unión del receptor de TSH por 14D3 y 17D2.

Tabla 1: Inhibición de la unión de TRAb en suero de paciente (K3) al receptor de TSH por medio de Fab de MAb

		Suero K3 1/10	
50		THSR marcada inmunoprecipitada (%)	% de inhibición
	Tampón	17,5	-
	2B4 (5 mg/ml) 2B4 (10 mg/ml)	10,1 3,9	42 77,7
55	18C5 (5 mg/ml) 18C5 (10 mg/ml)	13,7 9,7	21,7 44
	8E2 (5 mg/ml) 8E2 (10 mg/ml)	15,0 13,0	14,3 25,7
	2B4 + 18C5 (5 mg/ml)	5,7	67,4
60	18C5 + 8E2 (5 mg/ml)	12,4	29,1
	2B4 + 8E2 (5 mg/ml)	8,1	53,7
	TSH sin marcar	7,8	55,4
	2B4 + 8E2 + 18C5 (3,3 mg/ml)	7,4	57,7

% de inhibición =
$$100 - \left(\frac{A}{B}x100\right)$$

donde A = 125 I-TSHR (cpm) inmunoprecipitada en presencia de sueros de prueba y MAb Fab de prueba como porcentaje del total de cpm de material agregado al tubo; B = 125 I-TSHR (cpm) inmunoprecipitada en presencia de sueros de prueba y tampón de ensayo como porcentaje del total de cpm de material agregado al tubo.

Los resultados anteriores muestran que:

- (1) las secuencias del receptor de TSH que están implicadas en la unión de TSHR también están implicadas en la unión de TRAb;
- (2) el MAb de ratón reactivo con estas secuencias se puede usar eficazmente para inhibir la unión de TRAb al receptor de TSH; y
 - (3) uno o más de los MAb reactivos con una o más de las secuencias del receptor de TSH anteriores se pueden usar para detectar y medir TRAb.

Tabla 2: Actividad estimulante de la tiroides de los MAb de TSHR probados utilizando células tiroideas porcinas aisladas

Muestra de prueba		Estimulación (%) 1	Inhibición de la unión de TSH (%) ^{2,3}
16E5 IgG	200 μg/ml	466	nt
	20 μg/ml	332	83,3
	2 μg/ml	269	73,6
	0,2 μg/ml	157	nt
	0,02 μg/ml	52	nt
14D3 IgG	200 μg/ml	557	nt
	20 μg/ml	351	76,4
	2 μg/ml	323	61,0
	0,2 μg/ml	227	nt
	0,02 µg/ml	78	nt
17D2 IgG	200 μg/ml	377	nt
	20 μg/ml	207	81,3
	2 μg/ml	134	73,7
4D7 IgG	200 μg/ml	259	33 ⁴
	20 μg/ml	31	nt
3B3 IgG ^a	200 μg/ml	34	30,7
-	20 μg/ml	37	6,1
2B4 IgG ^a	200 μg/ml	100	nt
	20 μg/ml	116	69,9
3C7 Fab	1 mg/ml	348	45,2
4D7 Fab	1 mg/ml	512	48,6
16E5 Fab	200 μg/ml	425	53 ⁵
14D3 Fab	200 μg/ml	648	64 ⁵
17D2 Fab	200 μg/ml	274	45 ⁵
3B3 Fab ^a	200 μg/ml	42	66,5 ⁴
2G2 Fab ⁶	1 mg/ml	55	0
	200 μg/ml	37	0
TRAb +ve paciente	dil 1:2	771	65 ⁷
·	dil 1:4	530	nt
Conjunto de sueros de	donantes de sangre sanos	29	0,6
Suero negativo a TRAI	3	70	0

Notas al pie de la Tabla 2

65

5

10

15

20

25

30

35

40

45

50

55

¹ Las preparaciones de IgG o Fab de MAb se diluyeron en el conjunto de sueros de donantes de sangre sanos. La estimulación (%) se calculó como 100 veces la relación de: AMP cíclico producido en presencia de la muestra de prueba a AMP cíclico producido en presencia de un grupo de sueros de donantes de sangre sanos. Un nivel de estimulación de > 180% se evaluó como positivo, es decir, este nivel de estimulación siempre fue mayor que el observado por los sueros de donantes de sangre sanos individuales ² La inhibición del nivel de unión a TSH > 10% es positiva

³ Procedimiento = tubo recubierto

⁴ Inhibición probada a 250 μg/ml

⁵ Inhibición probada a 10 µg/ml

⁶ 2G2 es un MAb reactivo con la tiroglobulina, es decir, no es reactivo con TSHR

⁷ Inhibición con suero no diluido

^a Las IgG 3B3 y 2B4 actúan como antagonistas de la TSH, es decir, bloquean la capacidad de la TSH para estimular la producción de AMP cíclico por parte de las células tiroideas porcinas aisladas nt = no probado a esta concentración

Tabla 3

Muestra de prueba ¹	Estimulación (%) ²	Inhibición de la unión de TSH (%)3,4	
16E5 20 μg/ml	850	78,5 ⁵	
14D3 20 μg/ml	908	71,8 ⁵	
2B4 20 μg/ml	111	84,4	
TRAb +ve paciente	850	65,0 ⁶	
Conjunto de sueros de donantes de sangre sanos	100	0	

Notas al pie de la Tabla 3:

20

5

10

Tabla 4: Unión de MAb 16E5 marcado con ¹²⁵I a tubos recubiertos con TSHR y el efecto de TRAb en sueros de pacientes

25	Material de Prueba ¹	Inhibición de la unión de TSH (%) ²	¹²⁵ I-16E5 unido a tubos recubiertos con TSHR (% de recuentos totales añadidos)	
	G1	21	5,6	
00	G2	22,7	6,5	
30	G3	24,7	3,5	
	G4	22,7	6,0	
	G5	28,1	3,6	
35	G6	29,4	2,5	
	G7	29,3	5,8	
	G8	39	1,9	
40	G9	31,9	6,8	
	G10	34,8	5,4	
	G11	34,5	3,4	
45	G12	35,3	4,2	
70	G13	35,6	6,2	
	G14	36,9	2,8	
	G15	30,3	4,3	
50	G16	35	2,2	
	G17	47,6	3,9	
	G18	43	3,4	
55	G19	53,5	3,7	
	G20	59,2	7,5	
	G21	58,9	4,9	
60	NPS	<14	27,5	
	NSF 1	<14	23,3	
	NSF 2	<14	30,2	
65	NSF 3	<14	29,1	

¹ Todas las muestras se diluyeron 1:10 antes de la adición a las células

² La estimulación (%) se calculó como 100 veces la relación de: AMP cíclico producido en presencia de la muestra de prueba a AMP cíclico producido en presencia de un grupo de sueros de donantes de sangre sanos. ³ La inhibición del nivel de unión a TSH > 10% es positiva

⁴ Procedimiento = tubos recubiertos

⁵ Inhibición probada a a 10 μg/ml ⁶ Probado para inhibición sin diluir

Material de Prueba ¹	Inhibición de la unión de TSH (%) ²	¹²⁵ I-16E5 unido a tubos recubiertos con TSHR (% de recuentos totales añadidos)
NSF 4	<14	22,8
NSF 5	<14	28,9
NSF 6	<14	31,0
NSF 7	<14	29,2
NSF 8	<14	35,3
NSF 9	<14	26,3
NSF 10	<14	25,2

15

5

10

20

Los sueros NSF 1 - NSF 10 pertenecen a donantes de sangre sanos

Tabla 5: Efecto de los sueros de pacientes con enfermedad de Graves sobre la unión de 125 I-16E5 y la unión de 125 I-TSH a tubos recubiertos con TSHR

Material de Prueba ¹	¹²⁵ -16E5 unido a tubos recubiertos con TSHR (% de recuentos totales añadidos) ²	Inhibición de la unión de ¹²⁵ - 16E5 (%) ^{2,3}	125 -16E5 unido a tubos recubiertos con TSHR (% de recuentos totales añadidos) ⁴	Inhibición de la unión de ¹²⁵ -16E5 (%)
G23	13,2	44,0	8,9	27,1
G28	5,8	75,4	3,8	68,5
G29	13,3	43,6	8,0	34,4
G30	9,2	61,0	5,3	56,9
G32	11,9	49,6	7,5	38,4
G36	15,5	34,3	10,1	17,5
G38	16,1	31,8	10,0	18,3
G41	17,8	24,6	10,8	11,4
G43	5,9	75,0	4,0	67,2
G44	18,6	21,2	12,4	-ve
G45	5,1	78,4	3,5	71,0
G46	3,8	83,9	2,7	77,9
G47	7,2	69,5	4,3	64,8
G48	6,9	70,8	4,8	60,8
G49	9,1	61,4	6,1	49,6
G50	8,7	63,1	6,3	48,4
G51	11,9	49,6	7,9	35,2
G52	12,3	47,9	7,4	39,0
NSF4	23,0	2,6	12,5	-ve
NSF5	25,3	-ve	12,3	-ve
NSF 10	22,4	5,1	12,5	-ve
NSF 16	23,3	1,3	12,0	1,8

Notas al pie de la Tabla 4: ¹ Los sueros G1-G22 pertenecen a pacientes con enfermedad de Graves

NPS = conjunto de sueros de donantes de sangre sanos ² La inhibición de la unión a TSH > 14% es positiva; Procedimiento de PEG utilizado

Material de Prueba ¹	¹²⁵ I-16E5 unido a tubos recubiertos con TSHR (% de recuentos totales añadidos) ²	Inhibición de la unión de ¹²⁵ - 16E5 (%) ^{2,3}	125 -16E5 unido a tubos recubiertos con TSHR (% de recuentos totales añadidos) ⁴	Inhibición de la unión de ¹²⁵ I-16E5 (%)
NSF 17	24,2	-ve	11,5	5,3
NSF 18	19,9	15,7	11,2	8,0
NSF 20	21,5	8,9	12,3	-ve
NSF 21	23,3	1,3	12,3	-ve
NSF 22	24,5	-ve	12,4	-ve
NSF 26	26,5	-ve	12,8	-ve

Notas al pie de la Tabla 5:

% de inhibición =
$$100 - \left(\frac{A}{B}x100\right)$$

donde

A = unión en presencia de suero de prueba;

B = media de unión en presencia de sueros de donantes de sangre sanos

30

5

10

15

Tabla 6: Unión de MAb 14D3 marcado con ¹²⁵I a tubos recubiertos con TSHR y el efecto de TRAb en sueros de pacientes

35	Material de Prueba1	¹²⁵ I-14D3 unido a tubos recubiertos con TSHR (% de recuentos totales añadidos) ²	Inhibición de la unión de ¹²⁵ l- 14D3 (%) ^{2,3}	¹²⁵ I-TSH unido a tubos recubiertos con TSHR (% de recuentos totales añadidos) ⁴	Inhibición de la unión de ¹²⁵ l- 14D3 (%) ^{3,4}
40	G23	13,9	20	8,9	26,6
	G24	11,3	35	6,9	43,4
	G25	14,1	19	7,2	40,5
45	G26	7,3	58	2,6	78,3
.0	G27	12,3	29,7	7,3	40,1
	G28	8,0	54,4	3,8	68,3
50	G29	13,2	24,4	8,0	34,0
50	G30	12,5	28,4	5,3	56,6
	G31	9,8	44	4,3	64,3
	G32	11,4	34,8	7,5	38,0
55	G33	12,7	27,2	6,1	49,9
	G34	10,9	37,5	7,5	37,8
	G35	9,8	43,6	4,3	64,6
60	G36	13,5	22,8	10,1	16,9
	G37	11,9	31,6	9,3	23,4
	G38	11,3	35,4	10,0	17,6
65	G39	12,3	29,5	7,9	34,8

¹ Los sueros G53-G52 pertenecen a pacientes con enfermedad de Graves; los sueros NSF pertenecen a donantes de sangre sanos

² la media de unión en presencia de sueros de donantes de sangre sanos fue de 23,6% para ¹²⁵I-16E5

³ la inhibición de la unión se calculó usando la fórmula:

⁴ la media de unión en presencia de sueros de donantes de sangre sanos fue de 12,2% para ¹²⁵I-TSH

5	Material de Prueba1	125 I-14D3 unido a tubos recubiertos con TSHR (% de recuentos totales añadidos) ²	Inhibición de la unión de ¹²⁵ I- 14D3 (%) ^{2,3}	¹²⁵ I-TSH unido a tubos recubiertos con TSHR (% de recuentos totales añadidos) ⁴	Inhibición de la unión de ¹²⁵ l- 14D3 (%) ^{3,4}
	G40	9,8	44,0	7,2	40,9
	G41	14,0	19,8	10,8	10,7
10	NSF 4	17,4	0,3	12,5	-ve
	NSF 5	16,5	9,1	12,3	-ve
	NSF 10	17,6	-ve	12,5	-ve
15	NSF 16	17,7	-ve	12,0	1,1
15	NSF 17	17,0	2,7	11,5	4,6
	NSF 18	16,6	8,6	11,2	7,3
	NSF 20	18,3	-ve	12,3	-ve
20	NSF 21	16,8	3,6	12,3	-ve
	NSF 22	16,3	6,7	12,4	-ve
	NSF 26	18,4	-ve	12,8	-ve

Notas al pie de la Tabla 6:

% de inhibición =
$$100 - \left(\frac{A}{B}x100\right)$$

donde

A = unión en presencia de suero de prueba;

B = media de unión en presencia de sueros de donantes de sangre sanos

40

25

30

Tabla 7: Efecto de los sueros de varios pacientes sobre la unión de los tubos recubiertos con TSHR marcados con TSH, 16E5 y 14D3

	% Inhibición de	unión a tubos recubiertos cor	n TSHR 2 usando:
Muestra de prueba	¹²⁵ I-TSH	¹²⁵ I-16E5	¹²⁵ I-14D3
G42/5	87	71	77
G42/10	82	56	51
G42/20	70	34	24
D1/10	2	3	2
D1/100	-2	3	0
D2/10	1	125 I-16E5 71 56 34 3	-7
D2/100	-2	0	0
A1/10	-1	3	2
A1/100	-1	3	-1
A2/10	5	3	5
A2/100	1	3	1

¹ Los sueros G23-41 pertenecen a pacientes con enfermedad de Graves. Los sueros NSF pertenecen a donantes de sangre sanos

² La media de unión en presencia de sueros de donantes de sangre sanos fue de 17,4% para ¹²⁵I-14D3.

³ la inhibición de la unión se calculó usando la fórmula:

⁴ La media de unión en presencia de sueros de donantes de sangre sanos fue del 12,1% para ¹²⁵I-TSH.

Notas al pie de la Tabla 7:

¹ El suero G42 es de un paciente con enfermedad de Graves;

los sueros D1 y D2 pertenecen a pacientes con diabetes mellitus tipo 1 (positivos para autoanticuerpos contra la descarboxilasa del ácido glutámico);

los sueros A1 y A2 pertenecen a pacientes con enfermedad de Addison (positivos para autoanticuerpos esteroides 21-hidroxilasa)

Todas las muestras de prueba se diluyeron en un conjunto de suero de donantes de sangre sanos y el factor de dilución se mostró como/5, /10, /20 o /100

² la inhibición de la unión se calculó usando la fórmula:

5

10

% de inhibición = $100 - \left(\frac{A}{B}x100\right)$

donde

A = unión en presencia de suero de prueba;

B = media de unión en presencia de sueros de donantes de sangre sanos

Tabla 8: Efecto de los sueros de pacientes sobre la unión de TSHR a tubos recubiertos con 16E5 F(ab)2

20				
20	Material de Prueba1	TSHR marcada con ¹²⁵ I-4E31 unida a tubos recubiertos con 16E5 F(ab) ₂ (% de recuentos totales añadidos)	Inhibición de unión ²	Inhibición de la unión de TSH (%) ³
	G43	1,8	91,4	72,3
25	G44	4,8	77,2	45,1
	G45	3,0	85,6	71,8
	G46	2,0	90,2	83,8
30	G47	1,8	91,4	75,3
	NSF 10	17,8	14,4	<14
	NSF 17	14,8	29,1	<14
35	NSF 21	13,5	34,9	<14

Notas al pie de la Tabla 8:

Los sueros NSF pertenecen a donantes de sangre sanos

% de inhibición = $100 - \left(\frac{A}{R}x100\right)$

donde

40

45

50

A = unión a 4E31 en presencia de suero de prueba;

B = media de unión a 4E31 marcada para sueros de donantes de sangre sanos (15,4%)

³ La inhibición de la unión a TSH > 14% es positiva; Procedimiento de PEG utilizado

Tabla 9: Efecto de los sueros de pacientes en la unión de TSHR a tubos recubiertos con 14D3 F(ab)₂

55	Material de Prueba1	TSHR marcada con ¹²⁵ l-4E31 unida a tubos recubiertos con 14D3 F(ab) ₂ (% de recuentos totales añadidos)	Inhibición de unión ²	Inhibición de la unión de TSH (%) ³
	Suero A	4,0	70	72
60	Suero B	6,9	49	40
	Suero C	3,0	78	85
	Suero D	2,6	81	80
	NSF 5	15,1	-12	<14
65	NSF 17	14,6	-9	<14

¹ Los sueros G43-47 pertenecen a pacientes con enfermedad de Graves;

² la inhibición de la unión se calculó usando la fórmula:

Material de Prueba1	TSHR marcada con ¹²⁵ I-4E31 unida a tubos recubiertos con 14D3 F(ab) ₂ (% de recuentos totales añadidos)	Inhibición de unión ²	Inhibición de la unión de TSH (%) ³
NSF 21	12,0	10	<14
NSF 23	11,8	12	<14

Notas al pie de la Tabla 9:

¹ Los sueros A-D pertenecen a pacientes con enfermedad de Graves;

Los sueros NSF pertenecen a donantes de sangre sanos ² la inhibición de la unión se calculó usando la fórmula:

% de inhibición =
$$100 - \left(\frac{A}{B}x100\right)$$

donde

5

10

15

20

A = unión de 4E31 marcada en presencia de suero de prueba,

B = media de unión de 4E31 marcada para sueros de donantes de sangre sanos (15,4%)

³ La inhibición de la unión a TSH > 14% es positiva; Procedimiento de PEG utilizado

Tabla 10. Inhibición de la unión de Fab 125 I-16E5 a TSHR mediante MAb de TSHR

		T	
25	IgG (100 μg/ml)	% de inhibición	Región del epítopo (aa)
	16E5	70,4	-
	17D3	68,8	-
30	14D3	67,6	-
	17D2	69,2	-
	2G2	-ve	Específica para la tiroglobulina
35	5D6	-ve	22-41
	8E2	-ve	22-41
	4B5	7,1	22-41
40	10C4	-ve	37-56
	10D5	-ve	37-71
	4D2	-ve	37-71
45	2E2	-ve	52-71
45	1D6	-ve	202-221
	7B5	-ve	202-221
	16B6	-ve	202-221
50	3C3	11,2	202-236
	4B4	-ve	217-236
	4E4	-ve	217-236
55	8D3	-ve	217-236
	6D7	-ve	217-236
	18C5	15,7	246-260
60	3C7	17	246-260
	4D7	24,2	246-260
	3B3	8,8	277-296
65	5B5	-ve	307-326

5		
10		
15		
20		
25		

IgG (100 μg/ml)	% de inhibición	Región del epítopo (aa)
4E6	-ve	307-326
6E2	-ve	322-341
9C2	-ve	322-341
6B4	-ve	337-356
3E4	-ve	337-371
3F3	-ve	352-371
3B2	-ve	352-371
7C2	-ve	367-386
2B4	-ve	381-385
3E6	5,4	381-385
8E3	4,8	381-385
7C4	-ve	381-385
1D5	4,2	381-385
4E2	-ve	381-385
3D3	-ve	382-401
2C4	-ve	382-401
10C2	-ve	382-401
7E5	-ve	382-401

REIVINDICACIONES

- 1. Un anticuerpo monoclonal o recombinante o un fragmento del mismo para un receptor de TSH, anticuerpo o fragmento del mismo que es capaz de unirse a un receptor de TSH para estimular el receptor de TSH, anticuerpo monoclonal o recombinante o fragmento del mismo que comprende:
- una cadena pesada de anticuerpo (HC) codificada por una secuencia de polinucleótidos que comprende CDR I, CDR II y CDR III como se muestra en la Figura 30 emparejada con una cadena ligera de anticuerpo (LC) codificada por una secuencia de polinucleótidos que comprende CDR I, CDR II y CDR III como se muestra en la Figura 32 para proporcionar un sitio de unión de anticuerpo que comprende ambas cadenas pesada y 10 ligera; o una cadena pesada (HC) de anticuerpo codificada por una secuencia de polinucleótidos que comprende CDR I, CDR II y CDR III como se muestra en la Figura 34 junto con una cadena ligera de anticuerpo (LC) codificada por una secuencia de polinucleótidos que comprende CDR I, CDR III y CDR III como se muestra en la Figura 36 para proporcionar un sitio de unión de anticuerpo que comprende ambas 15 cadenas pesada y ligera; o una cadena pesada (HC) de anticuerpo codificada por una secuencia de polinucleótidos que comprende GDR I, GDR II y GDR III como se muestra en la Figura 38 junto con una cadena ligera de anticuerpo (LC) codificada por una secuencia de polinucleótidos que comprende CDR I, CDR II y CDR III, como se muestra en la Figura 40, para proporcionar un sitio de unión de anticuerpo que comprende ambas cadenas pesada y ligera. 20
 - 2. Un anticuerpo monoclonal o recombinante o un fragmento del mismo de acuerdo con la reivindicación 1 que comprende un dominio F_{ab}, que comprende:
- una cadena pesada de anticuerpo (HC) codificada por una secuencia de polinucleótidos como se muestra en la Figura 30 emparejada con una cadena ligera de anticuerpo (LC) codificada por una secuencia de polinucleótidos como se muestra en la Figura 32 para proporcionar un sitio de unión de anticuerpo que comprende ambas cadenas pesada y ligera; o una cadena pesada de anticuerpo (HC) codificada por una secuencia de polinucleótidos como se muestra en la Figura 34 emparejada con una cadena ligera de anticuerpo (LC) codificada por una secuencia de polinucleótidos como se muestra en la Figura 36 para proporcionar un sitio de unión de anticuerpo que comprende ambas cadenas pesada y ligera; o una cadena pesada (HC) de anticuerpo codificada por una secuencia de polinucleótidos como se muestra en la Figura 38 emparejada con una cadena ligera de anticuerpo (LC) codificada por una secuencia de polinucleótidos como se muestra en la Figura 40 para proporcionar un sitio de unión de anticuerpo que comprende ambas cadenas pesada y ligera.
 - **3.** Un anticuerpo monoclonal o recombinante o un fragmento del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 2 para uso en terapia.
- 4. Un anticuerpo monoclonal o recombinante o fragmento del mismo para uso de acuerdo con la reivindicación
 3, en el que el uso es para tratar el cáncer de tiroides.
 - **5.** Una composición farmacéutica que comprende un anticuerpo o fragmento del mismo como se define en cualquiera de las reivindicaciones 1 a 2, junto con uno o más vehículos, diluyentes o excipientes farmacéuticamente aceptables para el mismo.
- 6. Una combinación que comprende un anticuerpo o fragmento del mismo de acuerdo con una cualquiera de las reivindicaciones 1 a 2, y un agente adicional capaz de estimular el tejido tiroideo y/o tejido que contiene un receptor de TSH, para uso simultáneo, separado o secuencial en la estimulación del tejido tiroideo y/o tejido que contiene un receptor de TSH en el que dicho agente adicional es TSH humana recombinante.

60

50

55

35

5

	MRPTPLLQLALLLALPRSLGGKGCPSPPCECHQEDDFRVT	Mayoría
1	MRPADLLQLVLLLDLPRDLGGMGCSSPPCECHQEEDFRVT	HTSHR. PRO
1	MSLTPLLQLALVLALPRSLRGKGCPSPPCECHQEDDFRVT	PTSHR. PRO
1	MRPTPLLRLALFLVLPSSLGGERCPSPPCECRQEDDFRVT	BISHR. PRO
1	MRQTPLLQLALLLSLPRSLGGKGCPSPPCECHQEDDFRVT	CTSHR. PRO
1	MRPPPLLHLALLLALPRSLGGKGCPSPPCECHOEDDFRVT	DTSHR. PRO
1	MRPGSLLLLVLLLALSRSLRGKECASPPCECHOEDDFRVT	MTSHR. PRO
1	MRPGSLLQLTLLLALPRSLWGRGCTSPPCECHQEDDFRVT	RTSHR.PRO
1	MRPTPLLRLALLLVLPSSLWGERCPSPPCECROEDDFRVT	STSHRP. PRO
•	THE TELEPHONE SOUNDERS OF COOK SERVICE	5151112. 1110
	CKDIHRIPSLPPSTQTLKFIETHLKTIPSRAFSNLPNISR	Mayoría
	p.	
41	CKDIQRIPSLPPSTQTLKLIETHLRTIPSHAFSNLPNISR	HTSHR. PRO
41	CKDIHSIPPLPPNTQTLKFIETHLKTIPSRAFSNLPNISR	PTSHR. PRO
41	CKDIQSIPSLPPSTQTLKFIETHLKTIPSRAFSNLPNISR	BTSHR. PRO
41	CKDIHRIPSLPPSTQTLKFIETHLKTIPSRAFSNLPNISR	CTSHR. PRO
41	CKDIHRIPTLPPSTQTLKFIETQLKTIPSRAFSNLPNISR	DTSHR. PRO
41	CKELHR1PSLPPSTQTLKLIETHLKT1PSLAFSSLPN1SR	MTSHR. PRO
41	CKELHQIPSLPPSTQTLKLIETHLKTIPSLAFSSLPNISR	RTSHR.PRO
41	CKDIQRIPSLPPSTQTLKFIETHLKTIPSRAFSNLPNISR	STSHRP. PRO
	IYLSIDATLQQLESHSFYNLSKMTHIEIRNTRSLTYIDPG	Mayoría
81	IYVSIDVTLQQLESHSFYNLSKVTHIEIRNTRNLTYIDFD	HTSHR. PRO
81	IYLSIDATLOOLESQSFYNLSKMTHIEIRNTRSLTYINPG	PTSHR. PRO
81	IYLSIDATLQQLESHSFYNLSKVTHIEIRNTRSLTYIDSG	BTSHR. PRO
81	IYLSIDATLQRLESHSFYNLSKMTHIEIRNTRSLTYIDPG	CTSHR. PRO
81	IYLSIDATLQRLESHSFYNLSKMTHIEIRNTRSLTSIDPD	DTSHR. PRO
81	IYLSIDATLQRLEPHSFYNLSKMTHIEIRNTRSLTYIDPD	MTSHR. PRO
81	IYLSIDATLQRLEPHSFYNLSKMTHIEIRNTRSLTYIDFD	RTSHR.PRO
81	IYLSIDATLOOLESHSFYNLSKVTHIEIRNTRSLTYIDSG	STSHRP. PRO
	ALKELPLLKFLGIFNTGLRVFPDLTKVYSTDVFFILEITD	Mayoría
121	${\tt ALKELPLLKFLGIFNTGLKMFPDLTKVYSTDIFFILEITD}$	HTSHR. PRO
121	${\tt ALKDLPLLKFLGIFNTGLRIFPDLTKVYSTDVFFILEITD}$	PTSHR. PRO
121	${\tt ALKELPLLKFLGIFNTGLRVFPDLTKIYSTDVFFILEITD}$	BTSHR. PRO
121	${\tt ALKELPLLKFLGIFNTGLGVFPDLTKVYSTDVFFILEITD}$	CTSHR. PRO
121	ALKELPLLKFLGIFNTGLGVFPDVTKVYSTDVFFILEITD	DTSHR. PRO
121	${\tt ALTELPLLKFLGIFNTGLRIFPDLTKIYSTDIFFILEITD}$	MTSHR. PRO

Fig 1

121	ALTELPLLKFLGIFNTGLRIFPDLTKIYSTDVFFILEITD	RTSHR.PRO
121	ALKELPLLKFLGIFNTGLRVFPDLTKIYSTDVFFILEITD	STSHRP. PRO
	NPYMTSIPANAFQGLCNETLTLKLYNNGFTSIQGHAFNGT	Mayoría
161	NPYMTSIPVNAFQGLCNETLTLKLYNNGFTSVQGYAFNGT	HTSHR. PRO
161	${\tt NPYMTSIPANAFQGLCNETLTLKLYNNGFTSVQGHAFNGT}$	PTSHR. PRO
161	NPYMTSIPANAFQGLCNETLTLKLYNNGFTSIQGHAFNGT	BTSHR. PRO
161	${\tt NPYMTSIPANAFQGLCNETLTLKLYNNGFTSIQGHAFNGT}$	CTSHR. PRO
161	${\tt NPYMASIPANAFQGLCNETLTLKLYNNGFTSIQGHAFNGT}$	DTSHR. PRO
161	NPYMTSVPENAFQGLCNETLTLKLYNNGFTSVQGHAFNGT	MTSHR, PRO
161	${\tt NPYMTSVPENAFQGLCNETLTLKLYNNGFTSIQGHAFNGT}$	RTSHR.PRO
161	NPYMTSVPANAFOGI.SNETI.TI.KI.YNNGETSTOGHAFNGT	STSHRP, PRO

Fig 1 continuación

	ATGAGGCCGACGCCCTGCTGCAGCTGGCGCTGCTTCTCG	Mayoría
1 1 1 1 1 1 1	ATGAGGCAGACGCCCTGCTGCAGCTGGCGTTACTTCTCT ATGCGGCCGACGCCCTCCTGCGGGCTGGCGCTGTTTCTGG ATGAGGCCGCCCCCTGCTGCACCTGGCGCTGCTTCTCG ATGAGGCCAGGGTCCCTGCTGCTGCTTGTTCTGCTGCTCG ATGAGTCTGACGCCCCTGTTTGCAGCTGGCGCTCGTTCTCG ATGAGGCCAGGGTCCCTGCTCCAGCTCACTCTGCTGCTCG ATGCGGCCGACGCCCCTCCTGCGGTTGGCGCTGCTTCTGG ATGAGGCCGGCGGACTTGCTGCAGCTGCTGCTGCTCCG	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	CCCTGCCCAGGAGCCTGGGGGGGAAGGGGTGTCCGTCTCC	Mayoría
41 41 41 41 41 41 41	CCCTGCCCAGGAGCCTGGGGGGGAAAGGGTGTCCGTCTCC TCCTGCCCAGCAGCCTCGGTGGGGGAAAGGGTGTCCGTCTCC CCCTGCCCAGGAGCCTGGGGGGGAAAGAGTGTGCGTCTCC CCCTGCCCAGGAGCCTCAGGGGGAAAGAGTGTGCGTCTCC CCCTGCCCAGGAGCCTCTGGGGCAAAGGGTGTCCGTCTCC CCCTGCCCAGGAGCCTCTGGGGGAAAGGGTGTACTTCTCC TCCTGCCCAGCAGCCTCTGGGGGGAAAGGGTGTCCGTCTCC ACCTGCCCAGGGACCTCTGGGGGGAATGGGGTGTCCGTCTCC	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	GCCCTGCGAGTGCCACCAGGAGGACGACTTCAGAGTCACC	Mayoría
81 81 81 81 81 81 81	GCCCTGCGAGTGTCACCAGGAAGATGACTTCAGAGTCACC GCCCTGCGAATGCCGCCAGGAGGACGACTTCAGAGTCACC CCCCTGTGAGTGCCACCAGGAGGATGACTTCAGAGTCACC ACCCTGTGAGTGTCACCAGGAGGACGACTTCAGAGTCACC GCCCTGCGAATGCCACCAGGAGGACGACTTCAGAGTCACC ACCCTGCGAATGCCACCAGGAGGACGACTTCAGAGTCACC GCCCTGCGAATGCCCACCAGGAGGACGACTTCAGAGTCACC ACCCTGCGAATGCCCCCAGGAGGACGACTTCAGAGTCACC ACCCTGCGAGTGCCATCAGGAGGACGACTTCAGAGTCACC	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
121 121 121 121 121 121 121 121	TGCAAGGATATTCACCGTATCCCCAGCCTACCGCCCAGCA TGCAAGGACATCCAGAGCATCCCTAGCTTACCCCCCAGCA TGCAAGGATATCCACCGCATCCCCACCCTACCACCAGCA TGCAAGGAGCTCCACCGAATCCCCAGCCTGCCGCCCAGCA TGCAAGGATATCCACAGCATCCCCCCCTTACCACCCAATA TGCAAGGAACTCCACCAAATCCCCAGCCTACCGCCCAGCA TGCAAGGACATCCAGCGCTACCGCCCAGCA TGCAAGGACATCCAGCGCTTACCCCCCAGCA	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	CGCAGACTCTGAAGTTTATAGAGACTCATCTGAAAACCAT	Mayoría
161 161 161 161 161 161 161	CGCAGACTCTGAAATTTATAGAGACTCATCTGAAAACCAT CGCAGACCCTGAAGTTTATAGAGACTCATCTGAAAACCAT CGCAGACTCTGAAGTTTATAGAGACTCAGCTGAAAACCAT CCCAGACTCTGAAGCTCATCGAGACTCATCTGAAGACCAT CTCAGACACTAAAGTTTATAGAGACTCATCTGAAAACCAT CCCAGACTCTGAAGCTCATCGAGACTCACCTGAAGACCAT CGCAGACCCTGAAGTTTATAGAGACTCATCTGAAAACCAT CGCAGACCCTGAAGTTTATAGAGACTCATCTGAAAACCAT	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ

Fig 2

	TCCCAGTCGTGCATTTTCAAATCTGCCCAATATTTCCAGG	Mayoría
201	TCCCAGTCGTGCATTTTCAAATCTGCCCAATATTTCCAGG	CAT.SEQ
201	TCCCAGTCGTGCGTTCTCAAATCTGCCCAATATTTCCAGG	COW.SEQ
201	TCCCAGTCGTGCATTTTCAAATCTGCCCAATATTTCCAGG	DOG. SEQ
201	ACCCAGTCTTGCATTTTCGAGTCTGCCCAATATTTCCAGG	MOUSE.SEQ
201	CCCCAGTCGTGCATTTTCAAATCTGCCCAATATTTCCAGG	PTSHR.SEQ
201	TCCCAGTCTTGCCTTTTCGAGCCTGCCCAATATTTCCAGG	RAT.SEQ
201	TCCCAGTCGTGCGTTCTCAAATTTGCCCAATATTTCCAGG	SHEEP.SEQ
201	TCCAAGTCATGCATTTTCTAATCTGCCCAATATTTCCAGA	HTSHR.SEQ
	ATCTACTTGTCAATAGATGCAACTCTGCAGCGGCTGGAAT	Mayoría
241	ATCTACTTGTCAATAGATGCAACTCTGCAGCGACTGGAAT	CAT.SEQ
241	ATCTACTTGTCAATAGATGCAACTCTGCAGCAGCTGGAAT	COW.SEQ
241	ATCTACTTGTCAATAGATGCAACTCTGCAGCGGCTGGAAT	DOG. SEQ
241	ATCTATTTATCTATAGATGCAACTCTGCAGCGGCTGGAAC	MOUSE.SEQ
241	ATCTACCTGTCAATAGATGCAACTCTACAGCAGCTGGAAT	PTSHR.SEQ
241	ATCTATCTATCCATAGATGCCACTCTGCAGCGACTGGAGC	RAT.SEQ
241	ATCTACTTGTCAATAGATGCGACTTTGCAGCAACTGGAAT	SHEEP.SEQ
241	ATCTACGTATCTATAGATGTGACTCTGCAGCAGCTGGAAT	HTSHR.SEQ
	CACATTCCTTCTACAATTTG	Mayoría
281	CACATTCCTTCTACAATTTG	CAT.SEQ
281	CACATTCCTTCTACAATTTA	COW.SEQ
281	CACATTCCTTCTACAATTTA	DOG. SEQ
281	CACATTCTTTCTACAATTTG	MOUSE.SEQ
281	CACAGTCCTTCTACAATTTG	PTSHR.SEQ
281	CACATTCTTTCTACAATTTG	RAT.SEQ
281	CACATTCCTTCTACAATTTA	SHEEP.SEQ
281	CACACTCCTTCTACAATTTG	HTSHR.SEQ

Fig 2 continuación

	TKLDAVYLNKNKYLTAIDKDAFGGVYSGPTLLDVSYTSVT	Mayoría
200		ilmeild DDO
	TKLDAVYLNKNKYLTVIDKDAFGGVYSGPSLLDVSQTSVT	HTSHR. PRO
200	TKLDAVYLNKNKYLTVIDKDAFGGVFSGPTLLDVSYTSVT	PTSHR. PRO
200	TKLDAVYLNKNKYLTVIGQDAFAGVYSGPTLLDISYTSVT	BTSHR. PRO
200	TKLDAVYLNKNKYLTAIDQDAFGGVYSGPTLLDVSYTSVT	CTSHR. PRO
200	TKLDAVYLNKNKYLSAIDKDAFGGVYSGPTLLDVSYTSVT	DTSHR. PRO
200	TKLDAVYLNKNKYLTAIDNDAFGGVYSGPTLLDVSSTSVT	MTSHR. PRO
200	TKLDAVYLNKNKYLTAIDKDAFGGVYSGPTLLDVSSTSVT	RTSHR.PRO
200	TKLDAVYLNKNKYLTVIDQDAFAGVYSGPTLLDISYTSVT	STSHRP. PRO
	ALPSKGLEHLKELIARNTWTLKKLPLSLSFLHLTRADLSY	Mayoría
240	ALPSKGLEHLKELIARNTWTLKKLPLSLSFLHLTRADLSY	HTSHR. PRO
240	ALPPKGLEHLKELIARNTWTLKKLPLSLSFLHLTRADLSY	PTSHR. PRO
240	ALPSKGLEHLKELIARNTWTLRKLPLSLSFLHLTRADLSY	BTSHR. PRO
240	ALPSKGLEHLKELIARNTWTLKKLPLTLSFLHLTRADLSY	CTSHR. PRO
240	ALPSKGLEHLKELIARNTWTLKKLPLSLSFLHLTRADLSY	DTSHR. PRO
240	ALPSKGLEHLKELIAKDTWTLKKLPLSLSFLHLTRADLSY	MTSHR. PRO
240	ALPSKGLEHLKELIAKNTWTLKKLPLSLSFLHLTRADLSY	RTSHR.PRO
240	ALPSKGLEHLKELIARNTWTLKKLPLSLSFLHLTRADLSY	STSHRP. PRO
	PSHCCAFKNQKKIRGILESLM	Mayoría
280	PSHCCAFKNQKKIRGILESLM	HTSHR. PRO
280	PSHCCAFKNQKKIRGILESLM	PTSHR. PRO
280	PSHCCAFKNQKKIRGILQSLM	BTSHR. PRO
280	PSHCCAFKNQKKIRGILESFM	CTSHR. PRO
280	PSHCCAFKNQKKIRGILESLM	DTSHR. PRO
280	PSHCCAFKNQKKIRGILESLM	MTSHR. PRO
280	PSHCCAFKNQKKIRGILESLM	RTSHR.PRO
280	PSHCCAFKNQKNIRGILQSLM	STSHRP. PRO

Fig 3

	TCTTACACCAGTGTCACTGCCCTTCCATCCAAAGGCCTGG	Mayoría
700 700 700 700 700	TCTTACACCAGTGTCACTGCCCTGCCATCCAAAGGCCTGG TCTTATACCAGTGTCACAGCCCTACCATCCAAAGGCCTGG TCTTACACCAGTGTTACTGCCCTGCC	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ
700	TCTTCCACCAGCGTTACTGCTCTTCCTTCCAAAGGCCTGG	RAT.SEQ
700	TCTTATACCAGTGTCACTGCCCTACCATCCAAAGGCCTGG	SHEEP.SEQ
700	TCTCAAACCAGTGTCACTGCCCTTCCATCCAAAGGCCTGG	HTSHR.SEQ
	AGCACCTGAAGGAACTGATAGCAAGAAACACTTGGACTCT	Mayoría
740	AGCACCTGAAGGAATTGATAGCAAGAAACACTTGGACTCT	CAT.SEQ
740	AACACCTGAAGGAATTGATAGCAAGAAACACTTGGACTCT	COW.SEQ
740	AGCATCTAAAGGAGCTGATAGCAAGAAACACTTGGACTCT	DOG. SEQ
740	AGCACCTCAAAGAACTGATCGCAAAAGACACCTGGACTCT	MOUSE.SEQ
740	AACACCTGAAGGAACTGATAGCAAGAAATACTTGGACTCT	PTSHR.SEQ
740	AGCACCTCAAAGAGCTGATCGCGAAGAACACCTGGACTCT	RAT.SEQ
740	AACACCTGAAGGAATTGATAGCAAGAAACACTTGGACTCT	SHEEP.SEQ
740	AGCACCTGAAGGAACTGATAGCAAGAAACACCTGGACTCT	HTSHR.SEQ
	AAAGAAACTTCCACTTTCCTTGAGTTTCCTTCACCTCACA	Mayoría
780	AAAGAAACTTCCACTTACCTTGAGTTTCCTTCACCTCACA	CAT.SEQ
780	AAGGAAACTTCCTCTTTCCTTGAGTTTCCTTCACCTCACA	COW.SEQ
780	AAAGAAACTCCCACTTTCCTTGAGTTTCCTTCACCTTACA	DOG. SEQ
780	CAAAAAGCTCCCGCTGTCGTTGAGTTTCCTCCACCTCACT	MOUSE.SEQ
780	AAAGAAACTTCCACTGTCCTTGAGTTTCCTTCACCTCACA	PTSHR.SEQ
780	CAAAAAGCTCCCCTGTCCTTGAGCTTCCTCCACCTCACT	RAT.SEQ
780	AAAGAAACTTCCTCTTTCCTTGAGTTTCCTTCACCTCACA	SHEEP.SEQ
780	TAAGAAACTTCCACTTTCCTTGAGTTTCCTTCACCTCACA	HTSHR.SEQ
	CGGGCTGACCTTTCTTATCCAAGCCACTGCTGTGCTTTTA	Mayoría
820	CGGGCTGACCTTTCTTATCCAAGCCACTGCTGTGCTTTTA	CAT.SEQ
820	CGGGCTGACCTTTCTTATCCGAGCCACTGCTGCGCTTTTA	COW.SEQ
820	CGGGCTGACCTTTCTTATCCAAGCCACTGCTGTGCTTTTA	DOG. SEQ
820	CGGGCTGACCTCTTTACCCGAGCCACTGCTGCGCTTTTA	MOUSE.SEQ
820	CGAGCTGACCTTTCTTATCCAAGCCACTGCTGTGCTTTTA	PTSHR.SEQ
820	CGGGCTGACCTCTCTTACCCAAGTCACTGCTGTGCTTTTA	RAT.SEQ
820	CGGGCTGACCTTTCTTATCCGAGCCACTGCTGTGCTTTTA	SHEEP.SEQ
820	CGGGCTGACCTTTCTTACCCAAGCCACTGCTGTGCCTTTA	HTSHR.SEQ
	AGAATCAGAAGAAAATCAGAGGAATCCTTGAGTCTTTAAT	Mayoría
860	AGAATCAGAAGAAAATCAGAGGAATCCTTGAGTCCTTCAT	CAT.SEQ
860	AGAATCAGAAGAAAATCAGAGGAATCCTTCAGTCTTTAAT	COW.SEQ
860	AGAATCAGAAGAAATCAGAGGAATCCTTGAGTCCTTAAT	DOG. SEQ
860	AGAACCAGAAGAAAATCAGGGGAATCCTGGAGTCTTTGAT	MOUSE.SEQ
860	AGAATCAGAAGAAGATCAGAGGAATCCTTGAGTCTTTAAT	PTSHR.SEQ
860	AGAACCAGAAGAAATCAGGGGAATCCTAGAGTCTTTGAT	RAT.SEQ
860	AGAATCAGAAGAATATCAGAGGAATCCTTCAGTCTTTAAT	SHEEP.SEQ
860	AGAATCAGAAGAAAATCAGAGGAATCCTTGAGTCCTTGAT	HTSHR.SEQ

	KELIARNTWTLKKLPLSLSFLHLTRADLSYPSHCCAFKNQ	Mayoría
250 250 250 250 250 250 250 250	KELIARNTWTLKKLPLSLSFLHLTRADLSYPSHCCAFKNQ KELIARNTWTLKKLPLSLSFLHLTRADLSYPSHCCAFKNQ KELIARNTWTLRKLPLSLSFLHLTRADLSYPSHCCAFKNQ KELIARNTWTLKKLPLTLSFLHLTRADLSYPSHCCAFKNQ KELIARNTWTLKKLPLSLSFLHLTRADLSYPSHCCAFKNQ KELIAKNTWTLKKLPLSLSFLHLTRADLSYPSHCCAFKNQ KELIARNTWTLKKLPLSLSFLHLTRADLSYPSHCCAFKNQ KELIARNTWTLKKLPLSLSFLHLTRADLSYPSHCCAFKNQ KELIARNTWTLKKLPLSLSFLHLTRADLSYPSHCCAFKNQ	HTSHR. PRO PTSHR. PRO BTSHR. PRO CTSHR. PRO DTSHR. PRO MTSHR. PRO RTSHR.PRO STSHRP. PRO
	KKIRGILESLMCNESSIRSLRQRKSVNALNGPFYQEYEED	Mayoría
290 290 290 290 290 290 290 290	KKIRGILESLMCNESSMQSLRQRKSVNALNSPLHQEYEEN KKIRGILESLMCNESSIRSLRQRKSVNAVNGPFYQEYEED KKIRGILQSLMCNESSIRGLRQRKSASALNGPFYQEYEDX KKIRGILESFMCNDSSIRSLRQRKSVNALNGPFDQEYEEY KKIRGILESLMCNESSIRSLRQRKSVNTLNGPFDQEYEEY KKIRGILESLMCNESSIRNLRQRKSVNILRGPIYQEYEED KKIRGILESLMCNESSIRNLRQRKSVNVMRGPVYQEYEEG KNIRGILQSLMCNESSIWGLRQRKSASALNGPFYQEYEED	HTSHR. PRO PTSHR. PRO BTSHR. PRO CTSHR. PRO DTSHR. PRO MTSHR. PRO RTSHR.PRO STSHRP. PRO
	LGDSSAGYKENSKFQDTHSNSHYYVFFEEQEDEIIGFGQE	Mayoría
330 330 330 330 330 330 330 330	LGDSIVGYKEKSKFQDTHNNAHYYVFFEEQEDEIIGFGQE LGDTSVGNKENSKFQDTHSNSHYYVFFEEQEDEIIGFGQE LGDGSAGYKENSKFQDTQSNSHYYVFFEEQEDEIIGFGQQ LGDSHAGYKDNSKFQDTRSNSHYYVFFEEQEDEILGFGQE LGDSHAGYKDNSQFQDTDSNSHYYVFFEEQEDEILGFGQE PGDNSVGYKQNSKFQESPSNSHYYVFFEEQEDEIIGFGQE LGDNHVGYKQNSKFQEGPSNSHYYVFFEEQEDEIIGFGQE LGDGSAGYKENSKFQDTHSNSHYYVFFEDQEDEIIGFGQE	HTSHR. PRO PTSHR. PRO BTSHR. PRO CTSHR. PRO DTSHR. PRO MTSHR. PRO RTSHR.PRO STSHRP. PRO
	LKNPQEETLQAFDSHYDYTVCGGSEDMVCTPKSDEFNPCE	Mayoría
370 370 370 370 370 370 370 370	LKNPQEETLQAFDSHYDYTICGDSEDMVCTPKSDEFNPCE LKNPQEETLQAFDSHYDYTVCGGSEDMVCTPKSDEFNPCE LKNPQEETLQAFDSHYDYTVCGGSEDMVCTPKSDEFNPCE LKNPQEETLQAFDSHYDYTVCGGNEDMVCTPKSDEFNPCE LKNPQEETLQAFDSHYDYTVCGGNEDMVCTPKSDEFNPCE LKNPQEETLQAFESHYDYTVCGDNEDMVCTPKSDEFNPCE LKNPQEETLQAFDSHYDYTVCGDNEDMVCTPKSDEFNPCE LKNPQEETLQAFDSHYDYTVCGGSEEMVCTPKSDEFNPCE	HTSHR. PRO PTSHR. PRO BTSHR. PRO CTSHR. PRO DTSHR. PRO MTSHR. PRO RTSHR.PRO STSHRP. PRO
	DIMGYKFLRIWWFVSLLALLGNVFVLVILLTSHYKLTVP	Mayoría
410 410 410 410 410 410 410 410	DIMGYKFLRIWWFVSLLALLGNVFVLLILLTSHYKLNVP DIMGYRFLRIWWFVSLLALLGNVFVLVILLTSHYKLTVP DIMGYKFLRIWWFVSLLALLGNVFVLVILLTSHYKLTVP DIMGYKFLRIWWFVSLLALLGNVFVLIILLTSHYKLTVP DIMGYKFLRIWWFVSLLALLGNVFVLIVLLTSHYKLTVP DIMGYKFLRIWWFVSLLALLGNIFVLLILLTSHYKLTVP DIMGYKFLRIWWFVSPMALLGNVFVLFVLLTSHYKLTVP DIMGYKFLRIWWFVSLLALLGNVFVLVILLTSHYKLTVP	HTSHR. PRO PTSHR. PRO BTSHR. PRO CTSHR. PRO DTSHR. PRO MTSHR. PRO RTSHR.PRO STSHRP. PRO

Fig 5

	GGAACTGATAGCAAGAAACACTTGGACTCTAAAGAAACTT	Mayoría
750 750 750 750 750 750 750 750	GGAATTGATAGCAAGAAACACTTGGACTCTAAAGAAACTT GGAATTGATAGCAAGAAACACTTGGACTCTAAGGAAACTT GGAGCTGATAGCAAGAAACACTTGGACTCTAAAGAAACTC AGAACTGATCGCAAAAGACACCTGGACTCTCAAAAAGCTC GGAACTGATAGCAAGAAATACTTGGACTCTAAAGAAACTT AGAGCTGATCGCGAAGAACACCTGGACTCTCAAAAAGCTC GGAATTGATAGCAAGAAACACTTGGACTCTAAAGAAACTT GGAACTGATAGCAAGAAACACTTGGACTCTAAAGAAACTT	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	CCACTTTCCTTGAGTTTCCTTCACCTCACACGGGCTGACC	Mayoría
790 790 790 790 790 790 790	CCACTTACCTTGAGTTTCCTTCACCTCACACGGGCTGACC CCTCTTTCCTTGAGTTTCCTTCACCTCACACGGGCTGACC CCACTTTCCTTGAGTTTCCTTCACCTTACACGGGCTGACC CCGCTGTCGTTGAGTTTCCTCCACCTCACTCGGGCTGACC CCACTGTCCTTGAGTTTCCTTCACCTCACACGAGCTGACC CCCCTGTCCTTGAGCTTCCTCCACCTCACTCGGGCTGACC CCTCTTTCCTTGAGTTTCCTTCACCTCACACGGGCTGACC CCACTTTCCTTGAGTTTCCTTCACCTCACACGGGCTGACC	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	TTTCTTATCCAAGCCACTGCTGTGCTTTTAAGAATCAGAA	Mayoría
830 830 830 830 830 830 830	TTTCTTATCCAAGCCACTGCTGTGCTTTTAAGAATCAGAA TTTCTTATCCGAGCCACTGCTGCGCTTTTAAGAATCAGAA TTTCTTATCCAAGCCACTGCTGTGCTTTTAAGAATCAGAA TCTCTTACCCGAGCCACTGCTGCGCTTTTAAGAACCAGAA TTTCTTATCCAAGCCACTGCTGTGCTTTTAAGAATCAGAA TCTCTTACCCAAGTCACTGCTGTGCTTTTAAGAACCAGAA TTTCTTATCCGAGCCACTGCTGTGCTTTTAAGAATCAGAA TTTCTTATCCGAGCCACTGCTGTGCTTTTAAGAATCAGAA	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	GAAAATCAGAGGAATCCTTGAGTCTTTAATGTGTAATGAG	Mayoría
870 870 870 870 870 870 870	GAAAATCAGAGGAATCCTTGAGTCCTTCATGTGTAATGAC GAAAATCAGAGGAATCCTTCAGTCTTTAATGTGTAACGAG GAAAATCAGAGGAATCCTTGAGTCCTTAATGTGTAATGAA GAAAATCAGGGGAATCCTGGAGTCTTTGATGTGTAATGAG GAAGATCAGAGGAATCCTTGAGTCTTTAATGTGTAATGAG GAAAATCAGAGGAATCCTAGAGTCTTTGATGTGTAATGAG GAAAATCAGAGGAATCCTTCAGTCTTTAATGTGTAACGAG GAAAATCAGAGGAATCCTTCAGTCTTTAATGTGTAACGAG	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	AGCAGTATTCGGAGCCTGCGTCAGAGAAAATCTGTGAATG	Mayoría
910 910 910 910 910 910 910	AGCAGTATTCGGAGCCTGCGTCAGAGAAAATCTGTGAATG AGCAGTATTCGGGGCCTGCGTCAGAGAAAAATCCGCAAGTG AGCAGTATTCGGAGCCTGCGCCAGAGAAAAATCTGTGAATA AGCAGTATCCGGAACCTTCGTCAAAGGAAAATCAGTGAACA AGCAGTATTCGGAGCCTGCGTCAGAGAAAATCTGTGAATG AGTAGTATCCGGAACCTGCGTCAAAGAAAGTCAGTGAACG AGCAGTATTTGGGGCCTGCGTCAGAGAAAATCCGCGAGTG AGCAGTATTTGGGGCCTTGCGCCCAGAGAAAATCTGTGAATG	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ

Fig 6

	CTTTGAATGGTCCCTTCTACCAGGAATATGAAGAGGATCT	Mayoría
950 950 950 950 950 950 950	CTTTGAATGGTCCCTTCGACCAGGAATATGAAGAGTATCT CTTTGAATGGTCCCTTCTACCAGGAATATGAGGATNNNCT CTTTGAATGGCCCCTTTTGACCAGGAATATGAAGAGTATCT TCTTGAGGGGTCCCATCTACCAGGAATATGAAGAAGATCC CTGTAAATGGTCCCTTTTACCAAGAATATGAAGAGGATCT TCATGAGGGGTCCCGTCTACCAGGAATATGAAGAAGGTCT CTTTGAATGGTCCCTTCTACCAGGAATATGAAGAGAGTCT CCTTGAATAGCCCCCTCCACCAGGAATATGAAGAGAATCT	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	GGGTGACAGCAGTGTTGGGTACAAGGAAAACTCCAAGTTC	Mayoría
990 990 990 990 990 990	AGGTGACAGCCATGCTGGATATAAGGACAACTCTAAGTTC GGGTGATGGCAGTGCTGGGTACAAGGAGAACTCCAAGTTC GGGTGACAGCCATGCTGGGTACAAGGACAACTCTCAGTTC GGGTGACAACAGTGTTGGGTACAAACAAAACTCCAAGTTC GGGCGACACGAGTGTTGGGAATAAGGAAAACTCCAAGTTC GGGTGACAACCATGTTGGGTACAAACAAAACTCCAAGTTC GGGTGATGGCAGTGCTGGGTACAAGGAGAACTCCAAGTTC GGGTGACAGCATTGTTGGGTACAAGGAAAACTCCAAGTTC	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	CAGGATACCCATAGCAACTCTCATTATTATGTCTTCTTTG	Mayoría
1030 1030 1030 1030 1030 1030 1030 1030	CAGGATACTCGCAGCAACTCTCATTATTATGTCTTCTTTG CAAGATACCCAAAGCAACTCTCATTACTATGTCTTCTTTG CAGGATACCGATAGCAATTCTCATTATTATGTCTTCTTCG CAGGAGAGCCCAAGCAACTCTCACTATTACGTCTTCTTTG CAGGATACCCATAGCAACTCCCATTACTACGTCTTCTTTG CAGGAGGGCCCAAGCAACTCTCACTATTACGTCTTCTTTG CAAGATACCCACAGCAACTCTCATTACTATGTCTTCTTTG CAGGATACTCATAACAACGCTCATTATTACGTCTTCTTTG	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	AAGAACAAGAGGATGAGATCATTGGTTTTGG	Mayoría
1070 1070 1070 1070 1070	AAGAACAANNNGACGAGATCCTTGGTTTTGG AGGAGCAAGAAGATGAGATCATCGGTTTTGG AAGAACAAGAAGATGAGATCCTCGGTTTTGG AAGAACAAGAGGATGAGGTCGTTGGTTTCGG AAGAACAAGAGGATGAGATCATTGGTTTTGG	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ

Fig 6 continuación

AHYYVFFEQEDEIIGFGQELKNPQEETLQAFDSHYDYTI HTSHR.PRO SHYYVFFEQEDEIIGFGQELKNPQEETLQAFDSHYDYTV PTSHR.PRO SHYYVFFEQEDEIIGFGQQLKNPQEETLQAFDSHYDYTV CTSHR.PRO SHYYVFFEQEDEILGFGQELKNPQEETLQAFDSHYDYTV DTSHR.PRO SHYYVFFEQEDEILGFGQELKNPQEETLQAFDSHYDYTV DTSHR.PRO SHYYVFFEQEDEVVGFGQELKNPQEETLQAFDSHYDYTV MTSHR.PRO SHYYVFFEQEDEVVGFGQELKNPQEETLQAFDSHYDYTV MTSHR.PRO SHYYVFFEQEDEIIGFGQELKNPQEETLQAFDSHYDYTV RTSHR.PRO SHYYVFFEQEDEIIGFGQELKNPQEETLQAFDHYDYTV STSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL HTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL FTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL HTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL TSHR.PRO LGNVFVLLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL TSHR.PRO LGNVFVLVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL TSHR.PRO		SHYYVFFEEQEDEIIGFGQELKNPQEETLQAFDSHYDYTV	Mayoría
SHYYVFFEQEDEIIGFGQQLKNPQEETLQAFDSHYDYTV CTSHR.PRO SHYYVFFEQDEDILGFGQELKNPQEETLQAFDSHYDYTV CTSHR.PRO SHYYVFFEQDEDEILGFGQELKNPQEETLQAFDSHYDYTV DTSHR.PRO SHYYVFFEQDEDEVGFGQELKNPQEETLQAFSHYDYTV MTSHR.PRO SHYYVFFEQDEDEIIGFGQELKNPQEETLQAFDSHYDYTV RTSHR.PRO SHYYVFFEQDEDEIIGFGQELKNPQEETLQAFDSHYDYTV RTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MAYORÍA GGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL HTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL PTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MAYORÍA 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL RTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 5TSHR.PRO 1ASVDLYTHSEYYNHAIDWQTGPGCNTAGFF MAYORITA	350	AHYYVFFEEQEDEIIGFGQELKNPQEETLQAFDSHYDYTI	HTSHR.PRO
SHYYVFFEEQXBEILGFGQELKNPQEETLQAFDSHYDYTV CTSHR.PRO SHYYVFFEEQEDEILGFGQELKNPQEETLQAFDSHYDYTV DTSHR.PRO SHYYVFFEEQEDEILGFGQELKNPQEETLQAFDSHYDYTV MTSHR.PRO SHYYVFFEEQEDEILGFGQELKNPQEETLQAFDSHYDYTV MTSHR.PRO SHYYVFFEEQEDEILGFGQELKNPQEETLQAFDSHYDYTV RTSHR.PRO CHARLPYPEPEQEDEILGFGQELKNPQEETLQAFDSHYDYTV STSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MAYOF1a Mayor1a GGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL HTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO GGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO GGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO GGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO GGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO GGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLAL STSHR.PRO GGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL HTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO GGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGYYLLL MTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGYYLLL MTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGYYLLL STSHR.PRO	350	SHYYVFFEEQEDEIIGFGQELKNPQEETLQAFDSHYDYTV	PTSHR.PRO
SHYYVFFEQEDEILGFGQELKNPQEETLQAFDSHYDYTV DTSHR.PRO SHYYVFFEQEDEVVGFGQELKNPQEETLQAFDSHYDYTV MTSHR.PRO SHYYVFFEQEDEILGFGQELKNPQEETLQAFDSHYDYTV RTSHR.PRO SHYYVFFEDQEDEILGFGQELKNPQEETLQAFDSHYDYTV RTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MAYOR1a GGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL HTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL PTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL RTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL RTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MAYOR1a LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL RTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGYYLLL RTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGYYLLL RTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGYYLLL RTSHR.PRO LGNVFVLVVLILLTSHYKLTVPRFLMCNLAFADFCMGYYLLL RTSHR.PRO LGNVFVLVVLILLTSHYKLTVPRFLMCNLAFADFCMGYYLLL RTSHR.PRO LGNVFVLVVLILLTSHYKLTVPRFLMCNLAFADFCMGYYLLL RTSHR.PRO LGNVFVLVVLILLTSHYKLTVPRFLMCNLAFADFCMGYYLLL STSHR.PRO LGNVFVLVVLILLTSHYKLTVPRFLMCNLAFADFCMGYYLLL STSHR.PRO LGNVFVLVVLILLTSHYKLTVPRFLMCNLAFADFCMGYYLLL STSHR.PRO LGNVFVLVVLILLTSHYKLTVPRFLMCNLAFADFCMGYYLLL STSHR.PRO LGNVFVLVVLILLTSHYKLTVPRFLMCNLAFADFCMGYYLLL STSHR.PRO	350	SHYYVFFEEQEDEIIGFGQQLKNPQEETLQAFDSHYDYTV	BTSHR.PRO
SHYYVFFEEQEDEVVGFGQELKNPQEETLQAFESHYDYTV STSHR.PRO SHYYVFFEEQEDEIIGFGQELKNPQEETLQAFESHYDYTV RTSHR.PRO SHYYVFFEEQEDEIIGFGQELKNPQEETLQAFENHYDYTV STSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MAYOTÍA CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL PTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGSEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGSEMVCTPKSDE	350	SHYYVFFEEQXDEILGFGQELKNPQEETLQAFDSHYDYTV	CTSHR.PRO
SHYYVFFEQEDEIIGFGQELKNPQEETLQAFDSHYDYTV RTSHR.PRO SHYYVFFEDQEDEIIGFGQELKNPQEETLQAFDNHYDYTV STSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MAYOR1A GGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL HTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL HTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL HTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLVLVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MTSHR.PRO LGNVFVLVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO LGNVFVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO LGNVFVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO	350	SHYYVFFEEQEDEILGFGQELKNPQEETLQAFDSHYDYTV	DTSHR.PRO
SHYYVFFEDQEDEIIGFGQELKNPQEETLQAFDNHYDYTV STSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MAYOT1A 390 CGDSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL HTSHR.PRO 390 CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL PTSHR.PRO 390 CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO 390 CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO 390 CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO 390 CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO 390 CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL HTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGWYLLL MTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGWYLLL MTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGWYLLL RTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLULLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLULLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLULLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLULLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLULLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO 430 LGNVFVLVLULLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO 430 LGNVFVLVLULLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO 430 LGNVFVLVLULLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO	350	SHYYVFFEEQEDEVVGFGQELKNPQEETLQAFESHYDYTV	MTSHR.PRO
CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MAYORÍA 390 CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL HTSHR.PRO 390 CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL PTSHR.PRO 390 CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO 390 CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO 390 CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO 390 CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL HTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGWYLLL MTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGWYLLL STSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGWYLLL STSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLULLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVLULLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO	350	SHYYVFFEEQEDEIIGFGQELKNPQEETLQAFDSHYDYTV	RTSHR.PRO
390 CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL HTSHR.PRO 390 CGGSEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLAL PTSHR.PRO 390 CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO 390 CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO 390 CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLAL MTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL RTSHR.PRO 390 CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL HTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGYLLL MTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO	350	SHYYVFFEDQEDEI1GFGQELKNPQEETLQAFDNHYDYTV	STSHR.PRO
390 CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL HTSHR.PRO 390 CGGSEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLAL PTSHR.PRO 390 CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO 390 CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO 390 CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLAL MTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL RTSHR.PRO 390 CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL HTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGYLLL MTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO			
CGGSEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLAL PTSHR.PRO CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL MTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL RTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL RTSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL HTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLVLVLLTSHYKLTVPRFLMCNLAFADFCMGWYLLL MTSHR.PRO LGNVFVLVLVLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVLVLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVVLLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO		CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL	Mayoría
CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL BTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLAL MTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL RTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL RTSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MAYORÍA LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLVIILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLVLIVLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLVLILLTSHYKLTVPRFLMCNLAFADFCMGWYLLL MTSHR.PRO LGNVFVLVLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO	390	CGDSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL	HTSHR.PRO
CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL CTSHR.PRO CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLAL MTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL RTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL RTSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MAYORÍA LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO CGSVEFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO CGSSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLL BTSHR.PRO LGNVFVLVLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLFVLLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO	390	CGGSEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLAL	PTSHR.PRO
CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL DTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLAL MTSHR.PRO CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL RTSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MAYORÍA LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL HTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO LGNVFVLFVLLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO	390	${\tt CGGSEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL}$	BTSHR.PRO
390 CGDNEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLAL MTSHR.PRO 390 CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL RTSHR.PRO 390 CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MAYORÍA 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO 430 LGNVFVLIILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO 430 LGNVFVLIVLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGWYLLL MTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO 430 LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO	390	${\tt CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL}$	CTSHR.PRO
GGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL RTSHR.PRO CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL Mayoría LGNVFVLLILLTSHYKLNVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLIILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGWYLLL DTSHR.PRO LGNVFVLVLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO	390	${\tt CGGNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL}$	DTSHR.PRO
CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MAYORÍA LGNVFVLLILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLIILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO	390	${\tt CGDNEDMVCTPKSDEFNPCEDIMGYRFLR_IVVWFVSLLAL}$	MTSHR.PRO
LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MAYORÍA 430 LGNVFVLLILLTSHYKLNVPRFLMCNLAFADFCMGMYLLL HTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO 430 LGNVFVLIILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO 430 LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL MTSHR.PRO 430 LGNVFVLLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO 430 LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO	390	${\tt CGDNEDMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSPMAL}$	RTSHR.PRO
LGNVFVLLILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL HTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL BTSHR.PRO LGNVFVLIILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LASVDLYTHSEYYNHAIDWQTGPGCNTAGFF Mayoría	390	${\tt CGGSEEMVCTPKSDEFNPCEDIMGYKFLRIVVWFVSLLAL}$	STSHR.PRO
LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL PTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL BTSHR.PRO LGNVFVLIILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LASVDLYTHSEYYNHAIDWQTGPGCNTAGFF Mayoría		LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL	Mayoría
LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL BTSHR.PRO LGNVFVLIILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNIFVLLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LASVDLYTHSEYYNHAIDWQTGPGCNTAGFF Mayoría	430	LGNVFVLLILLTSHYKLNVPRFLMCNLAFADFCMGMYLLL	HTSHR.PRO
LGNVFVLIILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL CTSHR.PRO LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNVFVLLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO LASVDLYTHSEYYNHAIDWQTGPGCNTAGFF Mayoría	430	LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL	PTSHR.PRO
LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL DTSHR.PRO LGNIFVLLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF Mayoría	430	LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL	BTSHR.PRO
LGNIFVLLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL MTSHR.PRO LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF Mayoría	430	LGNVFVLIILLTSHYKLTVPRFLMCNLAFADFCMGMYLLL	CTSHR.PRO
430 LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL RTSHR.PRO 430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF Mayoria	430	LGNVFVLIVLLTSHYKLTVPRFLMCNLAFADFCMGMYLLL	DTSHR.PRO
430 LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL STSHR.PRO IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF Mayoría	430	LGNIFVLLILLTSHYKLTVPRFLMCNLAFADFCMGVYLLL	MTSHR.PRO
IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF Mayoría	430	${\tt LGNVFVLFVLLTSHYKLTVPRFLMCNLAFADFCMGVYLLL}$	RTSHR.PRO
	430	${\tt LGNVFVLVILLTSHYKLTVPRFLMCNLAFADFCMGLYLLL}$	STSHR.PRO
470 IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF HTSHR.PRO		IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF	Mayoría
	470	IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF	HTSHR.PRO
470 IASVDLYTQSEYYNHAIDWQTGPGCNTAGFF PTSHR.PRO	470	IASVDLYTQSEYYNHAIDWQTGPGCNTAGFF	PTSHR.PRO
470 IASVDLYTQSEYYNHAIDWQTGPGCNTAGFF BTSHR.PRO	470	IASVDLYTQSEYYNHAIDWQTGPGCNTAGFF	BTSHR.PRO
470 IASVDLYTHSEYYNHAIDWQTGPGCNAAGFF CTSHR.PRO	470	IASVDLYTHSEYYNHAIDWQTGPGCNAAGFF	CTSHR. PRO
470 IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF DTSHR.PRO	470	IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF	DTSHR.PRO
470 IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF MTSHR.PRO	470	IASVDLYTHSEYYNHAIDWQTGPGCNTAGFF	MTSHR.PRO

Fig 7

470	IASVDLYTHTEYYNHAIDWQTGPGCNTAGFF	RTSHR.PRO
470	IASVDLYTQSEYYNHAIDWQTGPGCNTAGFF	STSHR.PRO

Fig 7 continuación

	GCCAAGAGCTCAAAAACCCCCAGGAAGAGACCCTCCAGGC	Mayoría
1100 1100 1100 1100 1100 1100 1100	GCCAGGAGCTTAAAAACCCACAAGAAGAGACCCTACAGGC GCCAACAGCTCAAAAACCCCCAGGAGGAGACCCTGCAGGC GGCAGGAGCTTAAAAACCCACAGGAAGAGACCCTCCAGGC GCCAAGAGCTCAAAAATCCTCAGGAAGAGACTCTCCAAGC GCCAAGAGCTCAAAAACCCCCAGGAAGAGACCCTCCAGGC GCCAAGAGCTCAAAAATCCTCAGGAAGAGACTCTCCAAGC GCCAAGAGCTCAAAAACCCCCAGGAAGAGACCCTGCAGGC GCCAAGAGCTTAAAAACCCCCAGGAGAGAGACCCTGCAGGC	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	$\tt CTTTGACAGCCATTATGACTACACCGTGTGTGGGGGCAGT$	Mayoría
1140 1140 1140 1140 1140 1140 1140	CTTCGATAGCCATTATGACTACACTGTGTGTGGAGGCAAT CTTTGACAGCCATTACGACTATACCGTGTGTGGGGGCAGT CTTTGATAGCCATTATGACTACACTGTGTGTGTGGGGCAAT CTTCGAGAGCCACTATGACTACACGGTGTGTGGGGGACAAC CTTTGACAGCCATTACGACTACACCGTGTGTGGGGGCAGT CTTCGACAGCCACTATGACTACACTGTGTGTGGGGGACAAC CTTTGACAACCATTACGACTATACCGTGTGCGGGGGAGT TTTTGACAGCCATTATGACTACACCATATGTGGGGGACAGT	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	GAGGACATGGTGTGTACCCCCAAGTCAGATGAGTTCAACC	Mayoría
1180 1180 1180 1180 1180 1180 1180 1180	GAAGACATGGTGTGTACTCCCAAGTCAGATGAGTTCAACC GAGGACATGGTGTGTACCCCCAAGTCGGATGAGTTCAACC GAAGACATGGTGTGTACTCCTAAGTCAGATGAGTTCAACC GAGGACATGGTGTGTACCCCCAAGTCGGACGAGTTTAACC GAAGACATGGTGTGCACCCCCAAGTCAGATGAGTTCAACC GAGGACATGGTGTGTACCCCCAAGTCAGACGAGTTTAACC GAGGAGATGGTGTGTACCCCCAAGTCGGATGAGTTCAACC GAAGACATGGTGTGTACCCCCAAGTCCGATGAGTTCAACC	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	CCTGTGAAGACATCATGGGCTACAAGTTCCTGAGAATTGT	Mayoría
1220 1220 1220 1220 1220 1220 1220 1220	CCTGTGAAGACATAATGGGCTACAAGTTCCTGAGAATTGT CCTGTGAGGACATCATGGGCTACAAGTTCCTGAGAATCGT CCTGTGAAGACATAATGGGCTACAAGTTCCTGAGGATTGT CCTGTGAAGATATCATGGGCTACAGGTTCCTGAGAATCGT CCTGTGAAGACATAATGGGCTACAGGTTCCTGAGAATCGT CCTGTGAAGATATCATGGGCTACAAGTTCCTGAGAATCGT CCTGTGAGGACATCATGGGCTACAAGTTCCTGAGAATTGT CGTGTGAAGACATAATGGGCTACAAGTTCCTGAGAATTGT	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ
	GGTGTGGTTTGTTAGTCTGCTGGCTCTCCTGGGCAATGTC	Mayoría
1260 1260 1260 1260 1260 1260 1260 1260	GGTGTGGTTTGTTAGTCTGCTGGCTCTCCTGGGCAATGTC GGTGTGGTTTGTGAGTCTGCTGGCTCTCCTGGGCAACGTC GGTGTGGTTTGTTAGTCTGCTGGCTCTCCTGGGCAATGTC GGTGTGGTTTGTCAGTCTGCTGGCTCTCCTGGGCAATGTC GGTGTGGTTTGTCAGTCCGATGGCTCTCCTGGGCAACGTC GGTGTGGTTTGTGAGTCTGCTGGCTCTCCTGGGCAACGTC GGTGTGGTTTGTGAGTCTGCTGGCTCTCCTGGGCAACGTC	CAT.SEQ COW.SEQ DOG. SEQ MOUSE.SEQ PTSHR.SEQ RAT.SEQ SHEEP.SEQ HTSHR.SEQ

Fig 8

4D7 - HC

DVQLKHSGPELVKPGASMKISCKASGYSFTGYTMNWVKQSHGKNLEWIGL INPYTGGTNYNQKFKGKAKLTVDKSSSTAFMELLSLTSEDSAVYYCARDG NLDYWGQGTTLTVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPE PVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVA HPASKTKVD

Fig 9

4D7 - HC

DVQLKHSGPELVKPGASMKISCKASGYSFTGYTMNWVKQSHGKNLI Cebador PCR CDR I	EWIGL	50
INPYTGGTNYNQKFKGKAKLTVDKSSSTAFMELLSLTSEDSAVYYO	CARDG CDR III	100
NLDY WGQGTTLTVSS AKTTPPSVYPLAPGSAAQTNSMVTLGCLVK (región constante	GYFPE	150
PVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETV	[CNVA	200
HPASKTKVD Cebador PCR		209

Fig 10

4D7 - LC

SIVMSQSPASLAVSLGQRATISCRASETVDNYGFSFMHWFQQIPGQPPKL LIYAASNQGSGVPARFSGSGSGTDFSLNIHPMEEDDTAMYFCQQSKEVPY TFGGGTKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINV KWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEA THKTSTSPIVKSFNRNEC

Fig 11

4D7 - LC

SIVMSQSPASLAVSLGQRATISCRASETVDNYGFSFMHWFQQIPGQPPKL Cebador PCR CDR I	50
LIYAASNQGSGVPARFSGSGSGTDFSLNIHPMEEDDTAMYFCQQSKEVPY CDR III CDR III	100
TFGGGTKLEIK RADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINV región constante	150
KWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEA	200
THKTSTSPIVKSFNRNEC Cebador PCR	218

Fig 12

16E5 - HC

DVQLVQSGPELVKPGASVKMSCKASGYSFTGYNMHWVKQSHGKSLEWIGY IDPYNGATSYNQKFEDKATLTVDKSSSTAYMQLNSLTSEDSAVYYCARRW DWDPYAMDYWGQGTSVTVSSAKTTAPSVYPLAPVCGDTSGSSVTLGCLVK GYFPEPVTLTWNSGSLSSGVHTSPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPASKTKVD

Fig 13

16E5 - HC

<u>DVQLVQSG</u> PELVKPGASVKMSCKASGYS Cebador PCR	SFTGYNMHWVKQSHGKSLEWIG CDR I	7 50
IDPYNGATSYNQKFEDKATLTVDKSSS	TAYMQLNSLTSEDSAVYYCAR <u>RV</u>	100
DWDPYAMDYWGQGTSVTVSS AKTTAPS Y CDR III región con		K 150
GYFPEPVTLTWNSGSLSSGVHTSPAVL	QSDLYTLSSSVTVTSSTWPSQSI	200
TCNVAHPASKTKVD Cebador PCR		214

Fig 14

16E5 - LC

DILLTQSPAILSVSPGERVSFSCRASQSIGTSIHWYQQRTNGSPRLLIKY ASESISGIFSRFSGSGSGTDFTLTINSVESEDIADYYCQQSNRWPLTFGA GTKLELKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKI DGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKT STSPIVKSFNRNEC

Fig 15

16E5 - LC

DILLTQSPAILSVSPGERVSFSCRASQSIGTSIHWYQQRTNGSPRLLIKY Cebador PCR CDR I	50
ASESISGIFSRFSGSGSGTDFTLTINSVESEDIADYYCQQSNRWPLTFGA CDR III CDR III	100
GTKLELK RADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKI 150 región constante	
DGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKT200	
STSPIVKSFNRNEC	214
Cebador PCR	

Fig 16

17D2 - HC

DVQIQQSGPELVKPGASVKMSCKASGYSFTAYNMHWVKQTHGKSLEWIGY IDPYSGATSYHQKFKGKATLTVDKSSSTAYMRLNSLTSEDSAVYYCARRW DWDPYAMDYWGQGTSVTVSSAKTTPPSVYPLAPGCGDTTGSSVTLGCLVK GYFPESVTVTWNSGSLSSSVHTFPALLQSGLYTMSSSVTVPSSAWPSQTV TCSVAHPASNTTVD

Fig 17

17D2 - HC

<u>DVQIQQSG</u> PELVKPGASVK Cebador PCR	MSCKASGYSFT <u>AYNMH</u> WVKQTHGI CDR I	KSLEWIGY 50
IDPYSGATSYHQKFKGKAT CDR II	TLTVDKSSSTAYMRLNSLTSEDSA	VYYCARRW 100
DWDPYAMDYWGQGTSVTVS CDR III	SS AKTTPPSVYPLAPGCGDTTGSS región constante	VTLGCLVK 150
GYFPESVTVTWNSGSLSSS	VHTFPALLQSGLYTMSSSVTVPS	SAWPSQTV 200
TCSVAHPASNTTVD Cebador PCR		214

Fig 18

17D2 - LC

SVEMSQSPAILSVSPGERISFSCRASQSIGTSIHWYQQRTNGSPRLLIKY ASASISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQSNSWPLTFGA GTKLELKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKI DGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKT STSPIVKSFNRNEC

Fig 19

17D2 - LC

SVEMSQSPAILSVSPGERISFSCRASQSIGTSIHWYQQRTNGSPRLLIK	Y 50
ASASISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQSNSWPLTFG. CDR III CDR III	A 100
GTKLELK RADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWK región constante	I 150
DGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHK	r 200
STSPIVKSFNRNEC	214
Cebador PCR	

Fig 20

14D3 - HC

DVQMQQPGPELVKPGASLKMSCKASGYSFTGYNMHWVKQSHGKSLEWIGY IDPYSGATSYNQKFEGKATLTVDKSSSTAYMQLNSLTSEDSAVYYCARRW DWDPYAMDYWGQGTSVTVSSAKTTAPSVYPLAPVCGDTSGSSVTLGCLVK GYFPEPVTLTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVTSSTWPSQSITCNVAHPASNTKVD

Fig 21

14D3 - HC

DVQMQQPGPELVKPGASLK Cebador PCR	KMSCKASGYSFT <mark>GYNMH</mark> WVKQSHGKSLE CDR I	EWIGY 50
IDPYSGATSYNQKFEGKAT	TLTVDKSSSTAYMQLNSLTSEDSAVYYC	CARRW 100
DWDPYAMDYWGQGTSVTVS	SS AKTTAPSVYPLAPVCGDTSGSSVTL G región constante	GCLVK 150
GYFPEPVTLTWNSGSLSSG	GVHTFPAVLQSDLYTLSSSVTVTSSTWE	PSQSI 200
TCNVAHPASNTKVD Cebador PCR		214

Fig 22

ES 2 732 276 T3

14D3 - LC

NILMTQSPAILSVSPGERVSFACRASQSIGTSIHWYQQRTNGSPRLLIKY ASESISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQTNRWPLTFGA GTKLELKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVKWKI DGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEATHKT STSPIVKSFNRNEC

Fig 23

14D3 - LC

NILMTQSPAILSVSPGERVSFACRASC Cebador PCR	QSIGTSIHWYQQRTNGSPRLLIKY 50 CDR I	
ASESISGIPSRFSGSGSGTDFTLSINS	SVESEDIADYYCQQTNRWPLTFGA 100)
GTKLELK RADAAPTVSIFPPSSEQLTS región constante	SGGASVVCFLNNFYPKDINVKWKI 150)
DGSERQNGVLNSWTDQDSKDSTYSMSS	STLTLTKDEYERHNSYTCEATHKT 200)
STSPIVKSFNRNEC Cebador PCR	214	1

4D7 - HC

gacgtccagctgaagcactcaggacctgagctggtgaagcctggagcttc
aatgaagatatcctgtaaggcttctggttactcattcactggctacacca
tgaactgggtgaagcagagccatggaaagaaccttgagtggattggactt
attaatccttacactggtggtactaactacaaccagaagttcaagggcaa
ggccaaattaactgtagacaagtcatccagcacagccttcatggagctcc
tcagtctgacatctgaggactctgcagtctattactgtgcaagagatggt
aaccttgactactggggccaaggcaccactctcacagtctcctcagccaa
aacgacaccccatctgtctatccactggccctggatctgctgccaaa
ctaactccatggtgaccctggatgcctggtcaagggctatttccctgag
ccagtgacagtgacctggaactctggatccctgtccagcggtgtgcacac
cttcccagctgtcctgcagtctgacctctacactctgagcagctcagtga
ctgtccctccagcacctggcccagcgagaccgtcacctgcaacgttgcc
cacccagccagcaagaccaaggtcgac

4D7 - HC

<u>gacgtccagctgaagcactcaggacc</u> tgagctggtgaagcctggagcttc50 Cebador PCR	
aatgaagatatcctgtaaggcttctggttactcattcact <mark>ggctacacca</mark> CDR I	100
tgaactgggtgaagcagagccatggaaagaaccttgagtggattggactt	150
attaatccttacactggtggtactaactacaaccagaagttcaagggcaa CDR II	200
ggccaaattaactgtagacaagtcatccagcacagccttcatggagctcc250	
tcagtctgacatctgaggactctgcagtctattactgtgcaaga <mark>gatggt</mark> CDR III	300
aaccttgactac tggggccaaggcaccactctcacagtctcctca gccaa	350
aacgacaccccatctgtctatccactggcccctggatctgctgcccaaa región constante	400
ctaactccatggtgaccctgggatgcctggtcaagggctatttccctgag	450
ccagtgacagtgacctggaactctggatccctgtccagcggtgtgcacac	500
cttcccagctgtcctgcagtctgacctctacactctgagcagctcagtga	550
ctgtcccctccagcacctggcccagcgagaccgtcacctgcaacgttgcc	600
cacccagccagcaagaccaaggtcgac Cebador PCR	627

Fig 26

4D7 - LC

4D7 - LC

agcattgtgatgtcacagtcgccagcttctttggctgtgtctctagggca50 Cebador PCR	
gagggccaccatctcctgcagagccagcgaaactgttgataattatggct CDR I	100
ttagttttatgcactggttccaacagataccgggacagccacccaaactc	150
ctcatctat <mark>gctgcatccaaccaaggatcc</mark> ggggtccctgccaggtttag CDR II	200
tggcagtgggtctgggacagacttcagcctcaacatccatc	
aggatgatactgcaatgtatttctgtcagcaaagtaaggaggttccgtac CDR III	300
acg ttcggaggggggaccaagctggaaataaaacgggctgatgctgcacc región constante	350
aactgtatccatcttcccaccatccagtgagcagttaacatctggaggtg	400
cctcagtcgtgtgcttcttgaacaacttctaccccaaagacatcaatgtc	450
aagtggaagattgatggcagtgaacgacaaaatggcgtcctgaacagttg	500
gactgatcaggacagcaagacagcacctacagcatgagcagcaccctca	550
cgttgaccaaggacgagtatgaacgacataacagctatacctgtgaggcc	600
actcacaagacatcaacttcacccattgtcaagagcttcaacaggaatga Cebador PCR	650
gtgt	654

Fig 28

16E5 - HC

ES 2 732 276 T3

16E5 - HC

<pre>gacgtccagttggtgcaatctggacctgagctggtgaagcctggagcttc</pre>	50
Cebador PCR	
agtgaagatgtcctgcaaggcttctggttactcattcact <mark>ggctacaaca</mark> CDR I	100
tgcactgggtgaagcagagccatggaaagagccttgagtggattgggtat	150
attgatccttacaatggtgctactagctacaaccagaaattcgaggacaa CDR II	200
ggccacattgactgtagacaaatcttccagcacagcctacatgcagctca	250
acageetgaeatetgaggaetetgeagtetattaetgtgeaagaagatgg CDR III	300
gactgggacccttatgctatggactactggggtcaaggaacctcagtcac	350
cgtctcctca gccaaaacaaccccatcggtctatccactggcccctg región constante	400
tgtgtggagatacaagtggctcctcggtgactctaggatgcctggtcaag	450
ggttatttccctgagccagtgaccttgacctggaactctggatccctgtc	500
cagtggtgtgcacacctccccagctgtcctgcagtctgacctctacaccc	550
tcagcagctcagtgactgtaacctcgagcacctggcccagccag	600
acctgcaatgtggcccacccggccagcaagaccaaggtcgac Cebador PCR	642

Fig 30

16E5 - LC

gacatettgetgacteagtetecagecatectgtetgtgagtecaggaga aagagteagtteteetgeagggecagteagageattggeacaageatae actggtateageaaagaacaaatggttetecaaggetteteataaagtat gettetgagtecatetetgggatattttetaggtttagtggeagtggate agggacagattttaetettaceateaacagtgtggagtetgaagatattg cagattattaetgteaacaaagtaataggtggecgeteacgtteggaget ggaceaagetggagetgaaacgggetgatgetgeaceaactgtateeat etteceaceatecagtgageagttaacatetggaggtgeeteagtgt gettettgaacaacttetaceceaaagacateaatgteaagtggaagatt gatggeagtgaacaacatetetaceceaaagacateaatgteaagtggaagatt gatggeagtgaacgacaaaaatggegteetgaacagttggactgateagga cageaaagacagcacetacagcatgageageacecteacgttgaceaagg acgagtatgaacgacataacagctatacetgtgaggccactcacaagaca teaactteacecattgteaagagetteaacaggaatgagtgt

Fig 31

16E5 - LC

gacatettgetgaeteagteteeageeateetgtetgtgagteeaggaga50 Cebador PCR	
aagagtcagtttctcctgcagggccagtcagagcattggcacaagcatac CDR I	100
actggtatcagcaaagaacaaatggttctccaaaggcttctcataaagtat	150
gcttctgagtccatctctgggatattttctaggtttagtggcagtggatc CDR II	200
agggacagattttactcttaccatcaacagtgtggagtctgaagatattg250	
cagattattactgtcaacaaagtaataggtggccgctcacgttcggagct CDR III	300
gggaccaagctggagctgaaa cgggctgatgctgcaccaactgtatccat 350 región constante	
$\verb cttcccaccatccagtgagcagttaacatctggaggtgcctcagtcgtgt400 \\$	
${\tt gcttcttgaacaacttctaccccaaagacatcaatgtcaagtggaagatt} 450$	
${\tt gatggcagtgaacgacaaaatggcgtcctgaacagttggactgatcagga} 500$	
${\tt cagcaaagacagcacctacagcatgagcagcaccctcacgttgaccaagg} 550$	
acgagtatgaacgacataacagctatacctgtgaggccactcacaagaca600	
tcaacttcacccattgtcaagagcttcaacaggaatgagtgt Cebador PCR	642

Fig 32

17D2 - HC

gacgtccagatccagcagtctgggcctgagctggtgaagcctggagcttc
agtgaagatgtcctgcaaggcttctggttactcattcactgcctacaaca
tgcactgggtgaagcagacccatggaaagagccttgagtggattggttat
attgatccttacagtggtgctactagctaccaccagaaattcaagggcaa
ggccacattgactgttgacaaatcttccagcacagcctacatgcgcctca
acagcctgacatctgaggactctgcagtctattactgtgcaagaagatgg
gactgggacccttatgctatggactactggggtcaaggaacctcagtcac
cgtctcctcagccaaaacaacacccccatcagtctatccactggcccctg
ggtgtggagatacaactggttcctccgtgactctgggatgcctggtcaag
ggctacttccctgagtcagtgactgtgacttggaactctggatccctgtc
cagcagtgtgcacaccttcccagctctcctgcagtctggactctacacta
tgagcagctcagtgactgtccctccagccctggccaagtcagaccgtc
acctgcagcgttgctcaccggccagcaagtcagaccgtc

Fig 33

ES 2 732 276 T3

17D2 - HC

<u>gacgtccagatccagcagtctgg</u> gcctgagctggtgaagcctggagcttc Cebador PCR	50
agtgaagatgtcctgcaaggcttctggttactcattcactgcctacaaca CDR I	100
tgcactgggtgaagcagacccatggaaagagccttgagtggattggttat	150
attgatccttacagtggtgctactagctaccaccagaaattcaagggcaa CDR II	200
ggccacattgactgttgacaaatcttccagcacagcctacatgcgcctca	250
acagcctgacatctgaggactctgcagtctattactgtgcaagaagatgg	300
gactgggacccttatgctatggactactggggtcaaggaacctcagtcac CDR III	350
cgtctcctca gccaaaacacccccatcagtctatccactggccctg región constante	400
ggtgtggagatacaactggttcctccgtgactctgggatgcctggtcaag	450
ggctacttccctgagtcagtgactgtgacttggaactctggatccctgtc	500
cagcagtgtgcacaccttcccagctctcctgcagtctggactctacacta	550
tgagcagctcagtgactgtcccctccagcgcctggccaagtcagaccgtc	600
acctgcagcgttgctcacccggccagcaacaccacggtcgac Cebador PCR	642

Fig 34

17D2 - LC

Fig 35

ES 2 732 276 T3

17D2 - LC

<u>agcgttgagatgtcacagtcgcca</u> gccatcctgtctgtgagtccaggaga	50
Cebador PCR	
aagaatcagtttctcctgc <mark>agggccagtcagagcattggcacaagcatac</mark> CDR I	100
actggtatcagcaaagaacaaatggttctccaaggcttctcattaagtat	150
gcttctgcgtctatctct gggatcccttccaggtttagtggcagtggatc	200
agggacagattttactcttagcatcaacagtgtggagtctgaagatattg	250
cagattattactgt <mark>caacaaagtaatagctggccgctcacg</mark> ttcggtgct CDR III	300
gggaccaagctggagctgaaacgggctgatgctgcaccaactgtatccat región constante	350
cttcccaccatccagtgagcagttaacatctggaggtgcctcagtcgtgt	400
gcttcttgaacaacttctaccccaaagacatcaatgtcaagtggaagatt	450
gatggcagtgaacgacaaatggcgtcctgaacagttggactgatcagga	500
cagcaaagacagcacctacagcatgagcagcaccctcacgttgaccaagg	550
acgagtatgaacgacataacagctatacctgtgaggccactcacaagaca	600
tcaacttcacccattgtcaagagcttcaacaggaatgagtgt Cebador PCR	642

14D3 - HC

Fig 37

ES 2 732 276 T3

14D3 - HC

gacgtccagatgcagcagcctgggcctgagctggtgaagcctggagcttc Cebador PCR	50
actaaagatgtcctgcaaggcttctggttactcattcactggctacaaca CDR I	100
tgcactgggtgaagcagagccatggaaagagccttgagtggattggatat	150
attgatccttacagtggtgctactagctacaaccagaaattcgagggcaa	200
CDR II	_ , ,
ggccacattgactgtagacaaatcttccagcacagcctacatgcagctca	250
acagcctgacatctgaggactctgcagtctattactgtgcaagaagatgg CDR III	300
gactgggacccttatgctatggactactggggtcaaggaacctcagtcac	350
cgtctcctca gccaaaacaaccagcccatcggtctatccactggcccctg región constante	400
tgtgtggagatacaagtggctcctcggtgactctaggatgcctggtcaag	450
ggttatttccctgagccagtgaccttgacctggaactctggatccctgtc	500
cagtggtgtgcacaccttcccagctgtcctgcagtctgacctctacaccc	550
tcagcagctcagtgactgtaacctcgagcacctggcccagccag	600
acctgcaatgtggcccacccagccagcaacaccaaggtcgac Cebador PCR	642

Fig 38

14D3 - LC

aacattctgatgacacagtctccagccatcttgtctgtgagtccaggaga aagagtcagtttcgcctgcagggccagtcagagcattggcacaagcatac actggtatcagcaaagaacaaatggttctccaaggcttctcataaagtat gcttctgagtctatctctgggatcccttccaggtttagtggcagtggatc agggacagattttactcttagcatcaacagtgtggagtctgaagatattg cagattattactgtcaacaaactaataggtggccgctcacgttcggtgct gggaccaagctggagctgaaacgggctgatgctgcaccaactgtatccat cttcccaccatccagtgagcagttaacatctggaggtgcctcagtgtg gcttcttgaacaacttctaccccaaagacatcaatgtcaagtggaagatt gatggcagtgaacgacaacatgtatccat cagcaagagagacaacatcaatggcgtcctgaacagttggactgatcagga cagcaaagacagcaccaacagcatgagcagcaccctcacgttgaccaagg acgagtatgaacgacataacagctatacctgtgaggccactcacaagaca tcaacttcacccattgtcaagagcttcaacaggaatgagtgt

Fig 39

ES 2 732 276 T3

14D3 - LC

aacattctgatgacacagtctccagccatcttgtctgtgagtccaggaga Cebador PCR	50
aagagtcagtttcgcctgcagggccagtcagagcattggcacaagcatac CDR I	100
ac tggtatcagcaaagaacaaatggttctccaaggcttctcataaag tat	150
gcttctgagtctatctctgggatcccttccaggtttagtggcagtggatc CDR II	200
agggacagattttactcttagcatcaacagtgtggagtctgaagatattg	250
cagattattactgtcaacaaactaataggtggccgctcacgttcggtgct CDR III	300
gggaccaagctggagctgaaac gggctgatgctgcaccaactgtatccat región constante	350
cttcccaccatccagtgagcagttaacatctggaggtgcctcagtcgtgt	400
gcttcttgaacaacttctaccccaaagacatcaatgtcaagtggaagatt	450
gatggcagtgaacgacaaaatggcgtcctgaacagttggactgatcagga	500
cagcaaagacagcacctacagcatgagcagcaccctcacgttgaccaagg	550
acgagtatgaacgacataacagctatacctgtgaggccactcacaagaca	600
tcaacttcacccattgtcaagagcttcaacaggaatgagtgt Cebador PCR	642

3B3 - HC

DVQLQQPGAELVKPGASVKLSCTTSGVNIKDTYMHWMKQRPEQGLEWIGR IDPANGNTKYDPKFRGKATITADTSSNTVYVQLRSLTSEDTAVYYCAYDG YWGQGTLVTVSAAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVT VTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVAHPA SSTKVD

Fig 41

3B3 - HC

DVQLQQPGAELVKPGASVKLSCTTSGVNIKDTYMHWMKQRPEQGLEWIGR	50
Cebador PCR CDR I	
IDPANGNTKYDPKFRGKATITADTSSNTVYVQLRSLTSEDTAVYYCAYDG	100
CDR II CDR III	
YWGQGTLVTVSA AKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPEPVT región constante	150
VTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVAHPA200)
Cebador PC	R
SSTKVD	206

Fig 42

3B3 - LC

NIVMTQTPASLAVSLGQRATISCRASESVDSYGNNFMHWYQQKPGQSPRL LIYRASNLESGIPARFSGSGSRTDFTLTTNPVEADDVATYYCQQSHKDPL TFGAGTKLELKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINV KWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEA THKTSTSPIVKSFKANEC

Fig 43

3B3 - LC

NIVMTQTPASLAVSLGQRATISCRASESVDSYGNNFMHWYQQKPGQSPRL Cebador PCR CDR I

LIYRASNLES GIPARFSGSGSRTDFTLTTNPVEADDVATYYCQQSHKDPL CDR III

TFGAGTKLELKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINV región constante

KWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEA200

THKTSTSPIVKSFKANEC
Cebador PCR

3C7 - HC

DVQLKHSGPELVKPGASMKISCKASGYSFTGYTMNWVKQSHGKNLDWIGL INPYNGGTSYDQKFKGKATLTVDKSSSTAYMELLSLTSEDSAVYYCARDG LMDYWGQGTSVTVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPE PVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVA HPASKTKVD

Fig 45

3C7 - HC

DVQLKHSGPELVKPGASMKISCKASGYSFTGYTMNWVKQSHGKNLDWIGL Cebador PCR CDR I

INPYNGGTSYDQKFKGKATLTVDKSSSTAYMELLSLTSEDSAVYYCARDG

CDR II

LMDYWGQGTSVTVSS**AKTTPPSVYPLAPGSAAQTNSMVTLGCLVKGYFPE**CDR III región constante

PVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSETVTCNVA200

HPASKTKVD

Cebador PCR

3C7 - LC

DIVMTQTPASLAVSLGQRATIFCRASQSVDYNGISYMHWFQQKPGQPPKL LIYAASNLESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQSFEDPH TFGGGTKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINV KWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEA THKTSTSPIVKSFNRNEC

Fig 47

3C7 - LC

DIVMTQTPASLAVSLGQRATIFCRASQSVDYNGISYMHWFQQKPGQPPKL CDR I

LIYAASNLESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQSFEDPH CDR III

TFGGGTKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINV región constante

 $\textbf{KWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCEA} 2 \ 0 \ 0$

THKTSTSPIVKSFNRNEC
Cebador PCR

2B4 - HC

DVQLQQSGTVLARPGASVRMSCKASGYSFTRYWIHWLKQRPGQGLEWIGA IFPGNRDTSYNQRFKGKAEVTAVTSASTAYLDLSSLTNEDSAVYYCTRWP YYGSIYVNFDYWGQGTTLTVSSAKTTPPSVYPLAPGSAAQTNSMVTLGCL VKGYFPEPVTVTWNSGSLSSGVHTFPAVLQSDLYTLSSSVTVPSSTWPSE TVTCNVAHPASSTKVD

Fig 49

2B4 - HC

<u>DVQLQQSG</u> TVLARPGASVRMSCI	KASGYSFTRYWIHWLKQRPGQGLEWIGA	50
Cebador PCR	CDR I	
IFPGNRDTSYNQRFKGKAEVTAY CDR II	VTSASTAYLDLSSLTNEDSAVYYCTRWP	100
YYGSIYVNFDYWGQGTTLTVSSZ CDR III	AKTTPPSVYPLAPGSAAQTNSMVTLGCL región constante	150
VKGYFPEPVTVTWNSGSLSSGVI	HTFPAVLQSDLYTLSSSVTVPSSTWPSE200)
TVTCNVAHPASSTKVD		216
Cebador PCR		

Fig 50

2B4 - LC

DIVMTQSPLSLPVSLGDQASISCRTSQNLVHRNGNTYLHWYLQKPGQSPK LLIYKISNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQGTHVP PTFGGGTKLEIKRADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDIN VKWKIDGSERQNGVLNSWTDQDSKDSTYSMSSTLTLTKDEYERHNSYTCE ATHKTSTSPIVKSFNRNEC

Fig 51

2B4 - LC

DIVMTQSPLSLPVSLGDQASISCRTSQNLV	HRNGNTYLHWYLQKPGQSPK 50
Cebador PCR CDR	AT .
LLIY <mark>KISNRFS</mark> GVPDRFSGSGSGTDFTLKI CDR II	SRVEAEDLGVYFCSQGTHVP 100
PTFGGGTKLEIK RADAAPTVSIFPPSSEQL región constante	TSGGASVVCFLNNFYPKDIN 150
VKWKIDGSERQNGVLNSWTDQDSKDSTYSM	SSTLTLTKDEYERHNSYTCE200
ATHKTSTSPIVK <u>SFNRNEC</u>	219
Cebador PCR	

Fig 52

3B3 - HC

Fig 53

3B3 - HC

gacgtccagctccagcagcctggagcagagcttgtgaagccaggggcctc50 Cebador PCR	
agtcaagttgtcctgcaccacttctggcgtcaacattaaagacacctata CDR I	100
tgcactggatgaagcagaggcctgaacagggcctggagtggattggaagg	150
attgatcctgcgaatggtaatactaaatatgacccgaaattccggggcaa	200
ggccactataacagcagacacatcctccaacacggtctacgtgcaactca250	
gaagcctgacatctgaggacactgccgtctattactgtgcctatgatggt CDR III	300
tac tggggccaagggactctggtcactgtctctgca gccaaaacgacacc región constante	350
${\tt cccatctgtctatccactggcccctggatctgctgcccaaactaact$	
${\tt tggtgaccctgggatgcctggtcaagggctatttccctgagccagtgaca} 450$	
gtgacctggaactctggatccctgtccagcggtgtgcacaccttcccagc500	
${\tt tgtcctgcagtctgacctctacactctgagcagctcagtgactgtcccct} 550$	
ccagcacctggcccagcgagaccgtcacctgcaacgttgcccacccggcc600 Cebador PCR	
agcagcaccaaggtcgac	618

Fig 54

3B3 - LC

aacattgtgatgacccaaactccagcctctttggctgtgtctctagggca gagggccaccatatcctgcagagccagtgaaagtgttgatagttatggca ataattttatgcactggtaccagcagaaaccaggacagtcacccagactc ctcatctatcgtgcatccaacctagaatctgggatccctgccaggttcag tggcagtgggtctaggacagacttcaccctcaccactaatcctgtggagg ctgatgatgttgcaacctattactgtcagcaaagtcataaggatccgctc acgttcggtgctgggaccaagctggagctgaaacgggctgatgctgcacc aactgtatccatcttcccaccatccagtgagcagttaacatctggaggtg cctcagtcgtgtgcttcttgaacaacttctaccccaaagacatcaatgtc aagtggaagattgatggcagtgaacgacaaaatggcgtcctgaacagttg gactgatcaggacagcaaagacagcacctacagcatgagcagcaccctca cgttgaccaaggacgagtatgaacgacataacagctatacctgtgaggcc actcacaagacatcaacttcacccattgtcaagagcttcaaggaacatga gtgt

3B3 - LC aacattgtgatgacccaaactccagcctctttggctgtgtctctagggca50 Cebador PCR gagggccaccatatcctgcagagccagtgaaagtgttgatagttatggca 100 ataattttatgcactggtaccagcagaaaccaggacagtcacccagactc 150 ctcatctatcgtgcatccaacctagaatctgggatccctgccaggttcag 200 CDR II tggcagtgggtctaggacagacttcaccctcaccactaatcctgtggagg250 ctgatgatgttgcaacctattactgtcagcaaagtcataaggatccgctc 300 CDR III acgttcggtgctgggaccaagctggagctgaaacgggctgatgctgcacc 350 región constante aactgtatccatcttcccaccatccagtgagcagttaacatctggaggtg400 cctcagtcgtgtgcttcttgaacaacttctaccccaaagacatcaatgtc450 aagtggaagattgatggcagtgaacgacaaaatggcgtcctgaacagttg500 gactgatcaggacagcaaagacagcacctacagcatgagcagcaccctca550 cgttgaccaaggacgagtatgaacgacataacagctatacctgtgaggcc600 actcacaagacatcaacttcacccattgtcaagagcttcaacaggaatga650 Cebador PCR

Fig 56

652

gtgt

3C7 - HC

gacgtccagctgaagcatcaggacctgagctggtgaagcctggagcttca atgaagatatcctgcaaggcttctggttactcattcactggctacaccat gaactgggtgaagcagagccatggaaagaaccttgagtggattggactta ttaatccttacaatggtggtactagctacgaccagaagttcaagggcaag gccacattaactgtagacaagtcatccagcacagcctacatggagctcct cagtctgacatctgaggactctgcagtctattactgtgcaagagatggcc tgatggactactggggtcaaggaacctcagtcaccgtctcctcagccaaa acgacacccccatctgtctatccactggcccctggatctgctgccaaac taactccatggtgaccctgggatgcctggtcaagggctatttccctgagc cagtgacagtgacctggaactctggatccctgtccagcggtgtgcacacc ttcccagctgtcctgcagtctgacctctacactctgagcagctcagtgac tgtcccctccagcacctggaccctgaacctctacacctctgagcagctcagtgac tgtcccctccagcacctggccagcaggagaccgtcacctgcaacgttgcccaccggccagcagcaagaccaaggtcgac

3C7 - HC

gacgtccagctgaagcatcaggacctgagctggtgaagcctggagcttca50	
Cebador PCR	
atgaagatatcctgcaaggcttctggttactcattcactggctacaccat CDR I	100
gaac tgggtgaagcagagccatggaaagaaccttgagtggattggactta CDR II	150
ttaatccttacaatggtggtactagctacgaccagaagttcaagggcaag	200
gccacattaactgtagacaagtcatccagcacagcctacatggagctcct250	
cagtctgacatctgaggactctgcagtctattactgtgcaagagatggcc CDR III	300
tgatggactac tggggtcaaggaacctcagtcaccgtctcctca gccaaa región constanto	350 e
acgacaccccatctgtctatccactggcccctggatctgctgcccaaac400	
taactccatggtgaccctgggatgcctggtcaagggctatttccctgagc450	
cagtgacagtgacctggaactctggatccctgtccagcggtgtgcacacc500	
ttcccagctgtcctgcagtctgacctctacactctgagcagctcagtgac550	
tgtcccctccagcacctggcccagcgagaccgtcacctgcaacgttgcc <u>c</u> 600	
acceggceageaagaceaaggtegae Cebador PCR	626

Fig 58

3C7 - LC

3C7 - LC gatattgtgatgacccaaactccagcttctttggctgtgtctctaggaca50 Cebador PCR gagagccactatcttctgcagagccagccagagtgtcgattataatggaa 100 CDR I |ttagttatatgcac|tggttccaacagaaaccaggacagccacccaaactc 150 ctcatctatgctgcatccaacctagaatctgggatccctgccaggttcag 200 CDR II aggaagatgctgcaacctattactgtcagcaaagttttgaggatccgcac 300 CDR III acgttcggaggggggaccaagctggaaataaaacgggctgatgctgcacc 350 región constante aactgtatccatcttcccaccatccagtgagcagttaacatctggaggtg400 cctcagtcgtgtgcttcttgaacaacttctaccccaaagacatcaatgtc450 aagtggaagattgatggcagtgaacgacaaaatggcgtcctgaacagttg500 gactgatcaggacagcaaagacagcacctacagcatgagcagcaccctca550 cgttgaccaaggacgagtatgaacgacataacagctatacctgtgaggcc600 actcacaagacatcaacttcacccattgtcaagagcttcaacaggaatga650 Cebador PCR 654

Fig 60

gtgt

2B4 - HC

gacgtccagctgcagcagtctgggactgtgctggcaaggcctggggcttc
cgtgaggatgtcctgcaaggcttctggctacagctttaccaggtactgga
tacactggttaaaacagaggcctggacagggtctagaatggattggtgct
atttttcctggaaatcgtgataccagttacaaccagaggttcaagggcaa
ggccgaagtgactgcagtcacatccgccagcactgcctacttggacctca
gtagcctgacaaatgaggactctgcggtctattactgtacaagatggcct
tactatggttccatctacgttaactttgactactggggccaaggcaccac
tctcacagtctcctcagccaaaacgacacccccatctgtctatccactgg
cccctggatctgctgcccaaactaactccatggtgaccctgggatgcctg
gtcaagggctatttccctgagccagtgacagtgacctggaactctggatc
cctgtccagcggtgtgcacaccttcccagctgtcctgcagtctgacctct
acactctgagcagctcagtgactgtccccagcagcagag
accqtcacctqcaacqttqcccacccagcagcagcaccaaggtcgac

2B4 - HCgacgtccagctgcagcagtctgggactgtgctggcaaggcctggggcttc50 Cebador PCR cgtgaggatgtcctgcaaggcttctggctacagctttaccaggtactgga 100 CDR I tacactggttaaaacagaggcctggacagggtctagaatggattggtgct 150 atttttcctggaaatcgtgataccagttacaaccagaggttcaagggcaa 200 CDR II ggccgaagtgactgcagtcacatccgccagcactgcctacttggacctca250 gtagcctgacaaatgaggactctgcggtctattactgtacaagatggcct 300 tactatggttccatctacgttaactttgactactggggccaaggcaccac 350 CDR III tctcacagtctcctcagccaaaacgacacccccatctgtctatccactgg400 región constante cccctggatctgctgcccaaactaactccatggtgaccctgggatgcctg450 gtcaagggctatttccctgagccagtgacagtgacctggaactctggatc500 cctgtccagcggtgtgcacaccttcccagctgtcctgcagtctgacctct550 acactctgagcagctcagtgactgtcccctccagcacctggcccagcgag600 648 accgtcacctgcaacgttgcccacccagccagcagcaccaaggtcgac Cebador PCR

Fig 62

2B4 - LC

gatattgtgatgacccagtctcctctctccctgcctgtcagtcttggaga tcaagcctccatctcttgcagaactagtcagaaccttgtacacaggaatg gaaacacctatttacattggtacctgcagaagccaggccagtctccaaag ctcctgatttacaaaatttccaaccgattttctggggtcccagacaggtt cagtggcagtggatcagggacagatttcacactcaagatcagcagagtgg aggctgaggatctgggagtttatttctgctctcaaggtacacatgttcct ccgacgttcggtggaggcaccaagctggaaatcaaacgggctgatgctgc accaactgtatccatcttcccaccatccagtgagcagttaacatctggag gtgcctcagtcgtgtgcttcttgaacaacttctacccaaagacatcaat gtcaagtggaagattgatggcagtgaacgacaaaatggcgtcctgaacag ttggactgatcaggacagcaagaagacagcacctacagcatgagcagcaccc tcacgttgaccaaggacgagtatgaacgacataacagctatacctgtgag gccactcacaagacatcaacttcacccattgtcaagagcttcaacaggaa ttgagtgt

2B4 - LC gatattgtgatgacccagtctcctctctccctgcctgtcagtcttggaga50 Cebador PCR tcaagcctccatctcttgcagaactagtcagaaccttgtacacaggaatg 100 CDR I gaaacacctatttacattggtacctgcagaagccaggccagtctccaaag 150 $\verb|ctcctgatttac|| aaaatttccaaccgattttct|| \verb|ggggtcccagacaggtt||$ 200 CDR II cagtggcagtggatcagggacagatttcacactcaagatcagcagagtgg250 aggctgaggatctgggagtttatttctgctctcaaggtacacatgttcct 300 CDR III ccgacgttcggtggaggcaccaagctggaaatcaaacgggctgatgctgc 350 región constante ${\tt accaactgtatccatcttcccaccatccagtgagcagttaacatctggag} 400$ gtgcctcagtcgtgttctttgaacaacttctaccccaaagacatcaat450 gtcaagtggaagattgatggcagtgaacgacaaaatggcgtcctgaacag500 ttggactgatcaggacagcaaagacagcacctacagcatgagcagcaccc550 tcacgttgaccaaggacgagtatgaacgacataacagctatacctgtgag600gccactcacaagacatcaacttcacccattgtcaagagcttcaacaggaa650 Cebador PCR 657 tgagtgt

Fig 64