

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 733 452

51 Int. Cl.:

C22C 38/00 (2006.01) B32B 15/01 (2006.01) C21D 9/46 (2006.01) C21D 8/02 (2006.01) C23C 2/06 (2006.01) C23C 2/28 (2006.01) C23C 2/02 C22C 38/02 (2006.01) C22C 38/04 (2006.01) C22C 38/06 (2006.01)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 27.07.2012 PCT/JP2012/069223

(87) Fecha y número de publicación internacional: 07.02.2013 WO13018722

(96) Fecha de presentación y número de la solicitud europea: 27.07.2012 E 12819665 (6)

(97) Fecha y número de publicación de la concesión europea: 24.04.2019 EP 2738276

(54) Título: Lámina de acero galvanizada de alta resistencia y lámina de acero de alta resistencia con moldeabilidad superior, y método para producirlas

(30) Prioridad:

29.07.2011 JP 2011167722

Fecha de publicación y mención en BOPI de la traducción de la patente: 29.11.2019

(73) Titular/es:

NIPPON STEEL CORPORATION (100.0%) 6-1, Marunouchi 2-chome, Chiyoda-ku Tokyo, JP

(72) Inventor/es:

KAWATA, HIROYUKI; MARUYAMA, NAOKI; MURASATO, AKINOBU; MINAMI, AKINOBU; YASUI, TAKESHI; YAMAGUCHI, YUJI y SUGIURA, NATSUKO

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Lámina de acero galvanizada de alta resistencia y lámina de acero de alta resistencia con moldeabilidad superior, y método para producirlas

Campo técnico

10

15

20

40

5 La presente invención se refiere a una lámina de acero de alta resistencia y una lámina de acero galvanizada de alta resistencia que tienen excelente formabilidad y a métodos para su producción.

Antecedentes de la técnica

En los últimos años, ha habido una demanda creciente de mayor resistencia en la lámina de acero que se utiliza para automóviles, etc. En particular, con el fin de mejorar la seguridad de colisión, etc., también se utiliza una lámina de acero de alta resistencia con una carga de tracción máxima de 900 MPa o más. Dicha lámina de acero de alta resistencia se forma a bajo costo en grandes volúmenes al presionarla de la misma manera que una lámina de acero blanda y se utiliza como miembros estructurales.

Sin embargo, en los últimos años, junto con el rápido aumento de la resistencia de la lámina de acero de alta resistencia, en particular en la lámina de acero de alta resistencia con una carga de tracción máxima de 900 MPa o más, ha surgido el problema de que la formabilidad se ha vuelto insuficiente y el trabajo acompañado de deformación local como la conformabilidad elástica se ha vuelto difícil. Por este motivo, en la lámina de acero de alta resistencia con una carga de tracción máxima elevada, también se ha exigido la realización de una docilidad suficiente.

- PLT 1 describe, como técnica para mejorar la plegabilidad de la lámina de acero de alta resistencia, una lámina de acero con una resistencia a la tracción de entre 780 y 1470 MPa, una buena forma y excelente plegabilidad, que se obtiene al tomar una lámina de acero cuya microestructura está compuesta principalmente por bainita o martensita revenida, lo que hace que la cantidad de Si contenida en el acero, en % en masa, 0,6 % o menos, se enfríe a una temperatura al menos 50 °C inferior a la temperatura de transformación de bainita predeterminada para promover la transformación de austenita a bainita o martensita y, así, hacer que la tasa de volumen de austenita residual que está contenida en la estructura y que tiene un punto de transformación de martensita de -196 °C o sea del 2 % o inferior.
- PLT 2 describe, como técnica para mejorar la formabilidad de la lámina de acero de alta resistencia, el método para mejorar la ductilidad y la capacidad de embridado elástico mediante el enfriamiento de una lámina de acero que se ha laminado en caliente a 500 °C o menos, enrollándola, luego el recalentamiento entre 550 y 700 °C, después la realización sucesiva de un proceso de laminación en frío y un proceso de recocido continuo, de modo que una segunda fase que contiene austenita residual y además contiene una fase de transformación a baja temperatura se torne fina en tamaño de partícula promedio y para que la cantidad de austenita residual, la cantidad de solución sólida C en la austenita residual y el tamaño de partícula promedio cumplan fórmulas de relación predeterminadas.
 - PLT 3 describe, como técnica para mejorar la capacidad de embridado elástico de la lámina de acero de alta resistencia, una lámina de acero que se reduce en diferencia estándar en dureza dentro de la lámina de acero y a la que se le proporciona dureza equivalente en toda la región de lámina de acero.
- PLT 4 describe, como técnica para mejorar la capacidad de embridado elástico de la lámina de acero de alta resistencia, una lámina de acero que se reduce en dureza de las partes duras a través del tratamiento térmico y que se reduce en diferencia de dureza con las partes blandas.
 - PLT 5 describe, como técnica para mejorar la capacidad de embridado elástico de la lámina de acero de alta resistencia, ponerle a las partes duras la bainita relativamente blanda para reducir la diferencia de dureza con respecto a las partes blandas.
 - PLT 6 describe, como técnica para mejorar la capacidad de embridado elástico de la lámina de acero de alta resistencia, una lámina de acero que tiene una estructura compuesta, por tasa de área, por entre el 40 y el 70 % de martensita revenida y un equilibrio de ferrita, en donde la relación entre un valor límite superior y un valor límite inferior de una concentración de Mn en la sección transversal de la dirección del espesor de la lámina de acero se reduce. PLT 7 describe una placa de acero que tiene una microestructura que contiene ferrita y/o bainita y además austenita
- PLT 7 describe una placa de acero que tiene una microestructura que contiene ferrita y/o bainita y además austenita en una fracción de volumen de entre el 3 y el 50 %.

Lista de referencias

Bibliografía de patentes

PLT 1: publicación de patente japonesa n.º 10-280090A

50 PLT 2: publicación de patente japonesa n.º 2003-183775A

PLT 3: publicación de patente japonesa n.º 2008-266779A

PLT 4: publicación de patente japonesa n.º 2007-302918A

PLT 5: publicación de patente japonesa n.º 2004-263270A

PLT 6: publicación de patente japonesa n.º 2010-65307A

PLT 7: publicación de patente japonesa n.º H11-193439A

5 Compendio de la invención

Problema técnico

La lámina de acero de alta resistencia que se describe en PLT 1, tiene el problema de que en la estructura de la lámina de acero hay poca ferrita y austenita residual para mejorar la ductilidad y, por lo tanto, no se puede obtener suficiente ductilidad.

10 El método de producción de lámina de acero de alta resistencia de acuerdo con PLT 2 requiere un aparato de recalentamiento a gran escala, por lo que existe el problema de que el costo de producción aumenta.

También en las técnicas que se describen en PLT de 3 a 6, la docilidad en la lámina de acero de alta resistencia con una resistencia a la tracción máxima de 900 MPa o más es insuficiente.

La presente invención se realizó teniendo en cuenta los problemas anteriores y tiene como objetivo la provisión de una lámina de acero de alta resistencia y una lámina de acero galvanizada de alta resistencia que tienen excelente formabilidad y métodos para su producción, a través de los cuales se garantiza una resistencia a la tracción máxima de 900 MPa o mayor resistencia mientras se obtiene excelente ductilidad y capacidad de embridado elástico.

Solución al problema

30

35

40

Los inventores, etc. realizaron estudios intensivos sobre la estructura de la lámina de acero y el método de producción para obtener excelente ductilidad y capacidad de embridado elástico en la lámina de acero de alta resistencia. Como resultado, descubrieron que al hacer que los ingredientes de acero sean intervalos adecuados y además al establecer condiciones de recocido adecuadas después de la laminación en frío, es posible hacer que la relación de la fase de austenita residual en la estructura de la lámina de acero sea un intervalo predeterminado mientras se reduce la temperatura de inicio de transformación de martensita de la fase de austenita residual, y que al producir la lámina de acero de alta resistencia en dichas condiciones y controlando la relación de la fase de austenita residual en la estructura de la lámina de acero y el punto de transformación de martensita con los intervalos adecuados, se garantiza una resistencia a la tracción máxima de 900 MPa o mayor mientras se mejora la ductilidad y la capacidad de embridado elástico (expansibilidad de agujero) y se obtiene excelente formabilidad.

La presente invención se realizó como resultado de estudios adicionales basados en los hallazgos anteriores y tiene como esencia lo siguiente:

- (1) Lámina de acero de alta resistencia que tiene excelente formabilidad que consiste en, en % en masa, C: entre el 0,075 y el 0,300 %, Si: entre el 0,70 y el 2,50 %, Mn: entre el 1,30 y el 3,50 %, P: entre el 0,001 y el 0,030 %, S: entre el 0,0001 y el 0,0100 %, Al: entre el 0,005 y el 1,500 %, N: entre el 0,0001 y el 0,0100 %, y O: entre el 0,0001 y el 0,0100 %, que contiene, como elementos opcionales, uno o más de Ti: entre el 0,005 y el 0,150 %, Nb: entre el 0,005 y el 0,150 %, B: entre el 0,001 y el 2,00 %, Ni: entre el 0,01 y el 2,00 %, Cu: entre el 0,01 y el 2,00 %, Mo: entre el 0,01 y el 1,00 %, V: entre el 0,01 y el 1,00 %, V: entre el 0,005 y el 0,150 %, y uno o más de Ca, Ce, Mg, Zr, Hf y REM: entre el 0,0001 y el 0,5000 % total, y el resto es hierro e impurezas inevitables, en donde la estructura de la lámina de acero contiene, en fracción de volumen, entre el 2 y el 20 % de fase de austenita residual, fase de ferrita: entre el 10 y el 75 %, fase de ferrita bainítica y/o fase de bainita: entre el 10 y el 50 %, fase de martensita revenida: entre el 10 y el 50 %, y fase de martensita fresca: el 10 % o menos, y la fase de austenita residual tiene un punto de transformación de martensita de -60 °C o menos.
- (2) La lámina de acero de alta resistencia que tiene excelente formabilidad de acuerdo con (1), caracterizada por que una relación de la fase de austenita residual que se transforma a martensita a -198 °C es, en fracción de volumen, el 2 % o menos de la fase de austenita residual total.
- 45 (3) La lámina de acero de alta resistencia que tiene excelente formabilidad de acuerdo con (1) o (2), caracterizada por que la fase de austenita residual tiene un punto de transformación de martensita de -198 °C o menos.
 - (4) Lámina de acero galvanizada de alta resistencia que tiene excelente formabilidad caracterizada por que comprende la lámina de acero de alta resistencia de acuerdo con cualquiera de (1) a (3) en cuya superficie se forma una capa galvanizada.
- 50 (5) Un método de producción de lámina de acero de alta resistencia que tiene excelente formabilidad caracterizado por que comprende un proceso de laminación en caliente por el que se calienta una placa que consiste en, en % en masa, C: entre el 0,075 y el 0,300 %, Si: entre el 0,70 y el 2,50 %, Mn: entre el 1,30 y el 3,50 %, P: entre el 0,001 y el

0,030 %, S: entre el 0,0001 y el 0,0100 %, Al: entre el 0,005 y el 1,500 %, N: entre el 0,0001 y el 0,0100 %, y O: entre el 0,0001 y el 0,0100 %, que contiene, como elementos opcionales, uno o más de Ti: entre el 0,005 y el 0,150 %, Nb: entre el 0,005 y el 0,150 %, B: entre el 0,0001 y el 0,0100 %, Cr: entre el 0,01 y el 2,00 %, Ni: entre el 0,01 y el 2,00 %, Cu: entre el 0,01 y el 2,00 %, Mo: entre el 0,01 y el 1,00 %, W: entre el 0,01 y el 1,00 %, V: entre el 0,005 y el 0,150 %, y uno o más de Ca, Ce, Mg, Zr, Hf y REM: entre el 0,0001 y el 0,5000 % total, y el resto es hierro e impurezas inevitables, directamente o después de enfriar una vez, hasta 1050 °C o más, se termina la laminación en el punto Ar₃ o más para obtener una lámina de acero, y se enrolla entre 500 y 750 °C de temperatura, un proceso de laminación en frío por el que se decapa la lámina de acero enrollada, enrollandola luego a una tasa de atornillado de entre el 35 y el 75 %, y un proceso de recocido por el que se calienta la lámina de acero después del proceso de laminación en 10 frío hasta una temperatura de calentamiento máxima de 740 a 1000 °C, luego se enfría a una tasa de enfriamiento promedio desde la temperatura de calentamiento máxima hasta 700 °C de entre 1,0 y 10,0 °C/seg y a una tasa de enfriamiento promedio desde 700 hasta 500 °C de entre 5,0 y 200 °C/seg, después se mantiene a una temperatura de 350 a 450 °C durante 30 a 1000 segundos, luego se enfríar hasta temperatura ambiente y, mientras se enfría desde la temperatura de calentamiento máxima hasta la temperatura ambiente, se recalienta desde el punto Bs o menos de 15 500 °C hasta 500 °C o más al menos una vez y se recalienta desde el punto Ms o menos de 350 °C hasta 350 °C o más al menos una vez.

- (6) El método de producción de lámina de acero galvanizada de alta resistencia que tiene excelente formabilidad caracterizado por producir una lámina de acero de alta resistencia por el método de producción de lámina de acero de alta resistencia de acuerdo con (5) y luego galvanizarla.
- (7) Un método de producción de lámina de acero galvanizada de alta resistencia que tiene excelente formabilidad caracterizado por producir una lámina de acero de alta resistencia por el método de producción de acuerdo con (5) durante cuyo proceso de recocido, en el momento de enfriar desde la temperatura de calentamiento máxima hasta temperatura ambiente, se sumerge la lámina de acero después del proceso de laminación en frío en un baño de zinc para galvanizarla por inmersión en caliente.
- (8) Un método de producción de lámina de acero galvanizada de alta resistencia que tiene excelente formabilidad caracterizado por producir una lámina de acero de alta resistencia por el método de producción de acuerdo con (5) después de cuyo proceso de recocido se realiza galvanizado por inmersión en caliente.
 - (9) Un método de producción de lámina de acero galvanizada de alta resistencia que tiene excelente formabilidad de acuerdo con (7) o (8) caracterizado por la realización de tratamiento de aleación entre 470 y 650 °C de temperatura después del galvanizado por inmersión en caliente.

Efectos ventajosos de la invención

30

50

De acuerdo con la presente invención, se puede realizar una lámina de acero de alta resistencia donde se garantiza una resistencia a la tracción máxima de 900 MPa o superior mientras se obtiene excelente formabilidad.

Breve descripción de los dibujos

La figura 1A es una vista que muestra un ejemplo de un patrón de enfriamiento en el tratamiento de recocido en el método de producción de la presente invención.

La figura 1B es una vista que muestra otro ejemplo de un patrón de enfriamiento en el tratamiento de recocido en el método de producción de la presente invención.

La figura 2 es una vista que explica una modalidad de la presente invención y una vista que muestra la relación entre una resistencia a la tracción TS y una elongación total EL.

La figura 3 es una vista que explica una modalidad de la presente invención y una gráfica que muestra la relación entre una resistencia a la tracción TS y una tasa de expansión de agujero λ .

Descripción de modalidades

A continuación se explican una lámina de acero de alta resistencia y una lámina de acero galvanizada de alta resistencia que tienen excelente formabilidad y métodos para su producción de las modalidades de la presente invención. Cabe destacar que las siguientes modalidades se explican detalladamente para permitir una mejor comprensión de la esencia de la presente invención, por consiguiente, a menos que se indique lo contrario, no limitan la presente invención.

Cabe destacar que, en la siguiente explicación, la temperatura de inicio a la que la austenita (γ-hierro) se transforma en martensita en el proceso de la caída de la temperatura en la producción de lámina de acero se denomina "punto Ms", mientras que la temperatura de inicio a la que la austenita residual en la estructura de la lámina de acero de alta resistencia de la presente invención que se produce se transforma en martensita se denomina "punto Ms_r".

Primero, se explica la estructura de la lámina de acero de alta resistencia de la presente invención.

La estructura de lámina de acero de la lámina de acero de alta resistencia de la presente invención tiene una fase de austenita residual de entre el 2 y el 20 %. La fase de austenita residual tiene un punto Ms_r de -60 °C o menos. La fase de austenita residual que está contenida en dicha estructura de lámina de acero de la lámina de acero de alta resistencia de la presente invención es estable incluso con respecto a múltiples tratamientos de enfriamiento profundo.

La estructura distinta de la fase de austenita residual no está particularmente limitada siempre que se pueda garantizar una resistencia a la tracción máxima de 900 MPa o superior en resistencia y tiene, en fracción de volumen en la estructura de lámina de acero, una fase de ferrita: entre el 10 y el 75 %, fase de ferrita bainítica y/o fase de bainita: entre el 10 y el 50 %, fase de martensita revenida: entre el 10 y el 50 %, y fase de martensita fresca: el 10 % o menos. Al tener una estructura de lámina de acero de este tipo, el resultado es una lámina de acero de alta resistencia que tiene una formabilidad más excelente.

A continuación se explican las fases que se pueden obtener en la estructura de la lámina de acero:

Fase de austenita residual

25

35

45

50

La fase de austenita residual tiene la propiedad de mejorar en gran medida la resistencia y la ductilidad, pero en general forma puntos de partida de fractura y degrada considerablemente la capacidad de embridado elástico.

En la estructura de la presente lámina de acero, al recalentar dos veces como se explica más adelante, los defectos que estaban presentes en la fase de austenita residual y que eran susceptibles de formar sitios de partida para la transformación de martensita ya se consumen y solo queda selectivamente la fase austenita con su alto grado de limpieza. Como resultado, se obtiene una fase de austenita residual extremadamente estable. Esta fase residual de austenita se transforma gradualmente en martensita junto con la deformación, por lo que tiene la propiedad de no formar fácilmente puntos de partida de fractura y provoca un deterioro extremadamente pequeño de la capacidad de embridado elástico.

Como indicador de la estabilidad mencionada anteriormente, se puede mencionar la temperatura de inicio de la transformación de martensita (punto Ms_r) de la fase de austenita residual. La austenita residual estable en la que permanece una fase de austenita con un alto grado de limpieza no cambia en cantidad de austenita residual ni siquiera al sumergir en nitrógeno líquido durante 1 hora, es decir, aplicando el llamado tratamiento de enfriamiento profundo. El punto Ms_r es la temperatura de nitrógeno líquido (-198 °C) o menos y es extremadamente estable. Además, en general, al aplicar repetidamente el tratamiento de enfriamiento profundo, la austenita residual disminuye gradualmente, pero en la lámina de acero de alta resistencia de acuerdo con la presente invención, la austenita residual no disminuye y es extremadamente estable incluso si es tratada para un enfriamiento profundo cinco veces.

La lámina de acero de la presente invención proporciona una lámina de acero de alta resistencia con una resistencia y una ductilidad considerablemente mejoradas y con una capacidad de embridado elástico extremadamente pequeña en cuanto a su deterioro por una fase de austenita residual con un punto Ms_r de -60 °C o menos presente en una fracción de volumen del 2 % o más.

Desde el punto de vista de la resistencia y la ductilidad, la fracción de volumen de la fase de austenita residual en la estructura de lámina de acero es preferentemente el 4 % o más, más preferentemente el 6 % o más. Por otra parte, para que la fracción de volumen de la fase de austenita residual en la estructura de lámina de acero supere el 20 %, es necesario agregar elementos tales como C o Mn por encima de la cantidad adecuada, lo que perjudica la soldabilidad, por lo que el límite superior de la fase de austenita residual se establece en el 20 %.

En la presente invención, la relación de la fase de austenita residual que se transforma en martensita a -198 °C es preferentemente una fracción de volumen del 2 % o menos. Debido a esto, se obtiene una fase de austenita residual más estable, por lo que la ductilidad y la capacidad de embridado elástico mejoran notablemente y se obtiene excelente formabilidad.

Además, si el punto Ms_r de la austenita residual en la estructura de lámina de acero es de -198 °C o menos, el resultado es una fase de austenita residual más estable, la ductilidad y la capacidad de embridado elástico mejoran aun más notablemente y se obtiene excelente formabilidad, por lo que es preferible.

La fracción de volumen de la fase de austenita residual se obtiene al examinar la lámina de acero en el plano paralelo a la superficie de la lámina en un 1/4 de espesor mediante análisis de rayos X, calculando la fracción de área y considerándola como la fracción de volumen. Sin embargo, el plano de 1/4 de espesor se hace el plano obtenido mediante el esmerilado y el pulido químico del material de base después del tratamiento de enfriamiento profundo para obtener un acabado de espejo.

Además, considerando el error de medición, se considera que la fase de austenita residual se transforma en martensita en el momento en que se satisface la relación que se muestra a continuación:

$$\nabla \gamma(n) / \nabla \gamma(0) < 0.90$$

en donde "n" es el número de veces de tratamiento de enfriamiento profundo. Vy(n) es el porcentaje de austenita

residual después del enésimo tratamiento de embutición profunda y $V\gamma(0)$ es el porcentaje de austenita residual en el material de base.

Fase de ferrita

La fase de ferrita es una estructura que es eficaz para mejorar la ductilidad y está contenida en la estructura de lámina de acero en una fracción de volumen de entre el 10 y el 75 %. Si la fracción de volumen de la fase de ferrita en la estructura de lámina de acero es inferior al 10 %, es probable que no se obtenga una ductilidad suficiente. La fracción de volumen de la fase de ferrita en la estructura de lámina de acero, desde el punto de vista de la ductilidad, es más preferentemente el 15 % o más, aun más preferentemente el 20 % o más. La fase de ferrita es una estructura blanda, por lo que si la fracción de volumen supera el 75 %, a veces no se obtendrá suficiente resistencia. Para aumentar suficientemente la resistencia a la tracción de la lámina de acero, la fracción de volumen de la fase de ferrita en la estructura de lámina de acero se establece preferentemente en el 65 % o menos, y aún más preferentemente en el 50 % o menos.

Fase de ferrita bainítica y/o fase de bainita La fase de ferrita bainítica y/o fase de bainita es una estructura con un buen equilibrio de resistencia y ductilidad y está contenida en la estructura de lámina de acero en una fracción de volumen de entre el 10 y el 50 %. La fase de ferrita bainítica y/o bainita es una microestructura que tiene una resistencia intermedia a la de una fase de ferrita blanda, fase de martensita dura, fase de martensita revenida y fase de austenita residual. Desde el punto de vista de la capacidad de embridado elástico, es más preferible la inclusión del 15 % o más y es aun más preferible la inclusión del 20 % o más. Si la fracción de volumen de la fase de ferrita bainítica y/o bainita supera el 50 %, el límite elástico aumenta excesivamente y la capacidad de congelación de forma se deteriora, por lo que no se prefiere.

Fase de martensita revenida

La fase de martensita revenida es una estructura que mejora en gran medida la resistencia a la tracción y se incluye en la estructura de lámina de acero en una fracción de volumen de entre el 10 y el 50 % o menos. Desde el punto de vista de la resistencia a la tracción, la fracción de volumen de la martensita revenida es del 10 % o más. Si la fracción de volumen de la martensita revenida que está contenida en la estructura de lámina de acero supera el 50 %, el límite elástico aumenta excesivamente y la capacidad de congelación de forma se deteriora, por lo que no es preferible.

Fase de martensita fresca

La fase de martensita fresca tiene el efecto de mejorar considerablemente la resistencia a la tracción. Sin embargo, forma puntos de partida de fractura y degrada en gran medida la capacidad de embridado elástico, por lo que se limita a una fracción de volumen del 15 % en la estructura de lámina de acero. Para aumentar la capacidad de embridado elástico, es más preferible establecer la fracción de volumen de la fase de martensita fresca en la estructura de lámina de acero en el 10 % o menos, aun más preferentemente el 5 % o menos.

Otros

15

20

25

30

35

45

La estructura de lámina de acero de la lámina de acero de alta resistencia de la presente invención además puede contener una fase de perlita y/o fase de cementita gruesa u otra estructura. Sin embargo, si la estructura de lámina de acero de la lámina de acero de alta resistencia contiene una gran cantidad de fase de perlita y/o fase de cementita gruesa, surge el problema del deterioro de la plegabilidad. A partir de esto, la fracción de volumen de la fase de perlita y/o fase de cementita gruesa que está contenida en la estructura de lámina de acero es preferentemente un total del 10 % o menos, más preferentemente el 5 % o menos.

Las fracciones de volumen de las diferentes estructuras que están contenidas en la estructura de lámina de acero de la lámina de acero de alta resistencia de la presente invención, por ejemplo, se pueden medir a través del siguiente método:

En la medición de las fracciones de volumen de la fase de ferrita, fase de ferrita bainítica, fase de bainita, fase de martensita revenida y fase de martensita fresca que están contenidas en la estructura de lámina de acero de la lámina de acero de alta resistencia de la presente invención, primero, se toma una muestra utilizando la sección transversal del espesor de la lámina paralela a la dirección de la laminación de la lámina de acero como la superficie examinada. Además, la superficie examinada de esta muestra es pulida y grabada con Nital y el intervalo de entre 1/8 y 3/8 del espesor de la lámina es observado mediante un microscopio electrónico de barrido de emisión de campo (FE-SEM) para medir la fracción del área. Esto se considera como la fracción de volumen.

A continuación se explica la composición de los ingredientes de la lámina de acero de alta resistencia de la presente invención. Cabe destacar que en las siguiente explicación, a menos que se designe específicamente lo contrario, "%" indica "% en masa".

C: entre el 0,075 y el 0,300 %

C es un elemento necesario para obtener una fase de austenita residual. Se incluye para lograr tanto una excelente

formabilidad como resistencia elevada. Si el contenido de C supera el 0,300 %, la soldabilidad resulta insuficiente. Desde el punto de vista de la soldabilidad, el contenido de C es más preferentemente el 0,250 % o menos, aun más preferentemente el 0,220 % o menos. Si el contenido de C es inferior al 0,075 %, se dificulta obtener una cantidad suficiente de fase de austenita residual y la resistencia y la formabilidad disminuyen. Desde el punto de vista de la resistencia y la formabilidad, el contenido de C es más preferentemente el 0,090 % o más, aun más preferentemente el 0,100 % o más.

Si: entre el 0,70 y el 2,50 %

5

10

15

20

25

30

35

40

45

55

Si es un elemento que permite obtener fácilmente la fase de austenita residual suprimiendo la formación de carburos basados en hierro en la lámina de acero y es un elemento necesario para aumentar la resistencia y la formabilidad. Si el contenido de Si supera el 2,50 %, la lámina de acero se torna frágil y la ductilidad se deteriora. Desde el punto de vista de la ductilidad, el contenido de Si es más preferentemente el 2,20 % o menos, aun más preferentemente el 2,00 % o menos. Si el contenido de Si es inferior al 0,70 %, se forman carburos basados en hierro después del recocido mientras se enfrían a temperatura ambiente, la fase de austenita residual no se puede obtener de forma suficiente y la resistencia y la formabilidad se deterioran. Desde el punto de vista de la resistencia y la formabilidad, el valor límite inferior de Si es más preferentemente el 0,90 % o más, aun más preferentemente el 1,00 % o más.

Mn: entre el 1,30 y el 3,50 %

Mn se agrega para aumentar la resistencia de la lámina de acero. Si el contenido de Mn supera el 3,50 %, se forman partes concentradas en MN gruesas en el centro del espesor de la lámina de acero, se produce fácilmente la fragilización y surge con facilidad el resquebrajamiento de la placa fundida u otro problema. Además, si el contenido de Mn supera el 3,50 %, surge el problema de que la soldabilidad también se deteriora. Por lo tanto, el contenido de Mn tiene que establecerse en el 3,50 % o menos. Desde el punto de vista de la soldabilidad, el contenido de Mn es más preferentemente el 3,20 % o menos, aun más preferentemente el 3,00 % o menos. Si el contenido de Mn es inferior al 1,30 %, se forma una gran cantidad de estructuras blandas durante el enfriamiento después del recocido, por lo que se dificulta garantizar una resistencia a la tracción máxima de 900 MPa o más. Por lo tanto, el contenido de Mn tiene que establecerse en el 1,30 % o más. Además, para aumentar la resistencia de la lámina de acero, el contenido de Mn es más preferentemente el 1,50 % o más, aun más preferentemente el 1,70 % o más.

P: entre el 0.001 v el 0.030 %

P tiende a segregarse en el centro del espesor de la lámina de acero y tiene la probabilidad de provocar que la zona de soldadura se fragilice. Si el contenido de P supera el 0,030 %, la zona de soldadura se fragiliza considerablemente, por lo que el contenido de P se limita a 0,030 % o menos. El límite inferior de P no se establece específicamente siempre que se muestre el efecto de la presente invención, pero si al establecer el contenido de P en menos del 0,001 %, el costo de producción aumenta considerablemente, el límite inferior se establece en el 0,001 %.

S: entre el 0,0001 y el 0,0100 %

S tiene un efecto perjudicial en la soldabilidad y la fabricabilidad en el momento de la fundición y en el momento de la laminación en caliente. Por lo tanto, el valor límite superior del contenido de S es establece en el 0,0100 % o menos. Además, S se une con Mn para formar MnS grueso, el cual provoca que la ductilidad y la capacidad de embridado elástico disminuyan, por lo que el contenido se establece más preferentemente en el 0,0050 % o menos, aun más preferentemente en el 0,0025 % o menos. El límite inferior del contenido de S no se establece específicamente siempre que se muestre el efecto de la presente invención, pero si al establecer el contenido de S en menos del 0,0001 %, el costo de producción aumenta considerablemente, el límite inferior se establece en el 0,0001 %.

Al: entre el 0,005 y el 1,500 %

Al es un elemento que suprime la formación de carburos basados en hierro y permite obtener fácilmente austenita residual. Aumenta la resistencia y la formabilidad de la lámina de acero. Si el contenido de Al supera el 1,500 %, la soldabilidad se deteriora, por lo que el límite superior se establece en el 1,500 %. Desde el punto de vista de la soldabilidad, el contenido de Al es más preferentemente el 1,200 % o menos, aun más preferentemente el 0,900 % o menos. Al es un elemento que también es eficaz como un material desoxidante, pero si el contenido de Al es inferior al 0.005 %, el efecto como material desoxidante no se obtiene de forma suficiente, por lo que el límite inferior del contenido de Al se establece en el 0,005 %. Para obtener de forma suficiente el efecto de desoxidación, la cantidad de Al se establece más preferentemente en el 0,010 % o más.

50 N: entre el 0,0001 y el 0,0100 %

N forma nitruros gruesos que provocan el deterioro de la ductilidad y de la capacidad de embridado elástico, por lo que la cantidad de adición debe mantenerse baja. Si el contenido de Ni supera el 0,0100 %, esta tendencia se acentúa, por lo que el límite superior del contenido de N se establece en el 0,0100 %. N se convierte en una causa de formación de sopladuras en el momento de la soldadura, por lo que cuanto más pequeño sea el contenido, mejor. El límite inferior del contenido de N no se establece específicamente siempre que se muestre el efecto de la presente invención, pero si al establecer el contenido de N en menos del 0,0001 %, el costo de producción aumenta considerablemente, el

límite inferior se establece en el 0,0001 %.

O: entre el 0,0001 y el 0,0100 %

O forma óxidos que provocan el deterioro de la ductilidad y de la capacidad de embridado elástico, por lo que el contenido debe mantenerse bajo. Si el contenido de O supera el 0,0100 %, el deterioro de la capacidad de embridado elástico se hace notable, por lo que el límite superior del contenido de O se establece en el 0,0100 % o menos. El contenido de O es más preferentemente el 0,0080% o menos, aun más preferentemente el 0,0060 % o menos. El límite inferior del contenido de O no se establece específicamente siempre que se muestre el efecto de la presente invención, pero si al establecer el contenido de O en menos del 0,0001 %, el costo de producción aumenta considerablemente, el límite inferior se establece en el 0,0001 %.

La lámina de acero de alta resistencia de la presente invención además puede contener los elementos que se muestran a continuación de acuerdo con las necesidades:

Ti: entre el 0,005 y el 0,150 %

15

20

25

30

35

50

Ti es un elemento que contribuye con el aumento de la resistencia de la lámina de acero a través del fortalecimiento de la precipitación, el fortalecimiento de grano fino mediante la supresión del crecimiento de granos de cristal de ferrita y el fortalecimiento de la dislocación a través de la supresión de la recristalización. Si el contenido de Ti supera el 0,150 %, la precipitación de carbonitruros aumenta y la formabilidad se deteriora, por lo que el contenido de Ti se establece en el 0,150 % o menos. Desde el punto de vista de la formabilidad, el contenido de Ti es más preferentemente el 0,100 % o menos, aun más preferentemente el 0,070 % o menos. Para obtener de forma suficiente el efecto del aumento de la resistencia con Ti, el contenido de Ti tiene que establecerse en el 0,005 % o más. Para aumentar la resistencia de la lámina de acero, el contenido de Ti es preferentemente el 0,010 % o más, más preferentemente el 0,015 % o más.

Nb: entre el 0,005 y el 0,150 %

Nb es un elemento que contribuye con el aumento de la resistencia de la lámina de acero a través del fortalecimiento de la precipitación, el fortalecimiento de grano fino mediante la supresión del crecimiento de granos de cristal de ferrita y el fortalecimiento de la dislocación a través de la supresión de la recristalización. Si el contenido de Nb supera el 0,150 %, la precipitación de carbonitruros aumenta y la formabilidad se deteriora, por lo que el contenido de Nb se establece en el 0,150 % o menos. Desde el punto de vista de la formabilidad, el contenido de Nb es más preferentemente el 0,100 % o menos, aun más preferentemente el 0,060 % o menos. Para obtener de forma suficiente el efecto del aumento de la resistencia con Nb, el contenido de Nb tiene que establecerse en el 0,005 % o más. Para aumentar la resistencia de la lámina de acero, el contenido de Nb es preferentemente el 0,010 % o más, más preferentemente el 0,015 % o más.

V: entre el 0,005 y el 0,150 %

V es un elemento que contribuye con el aumento de la resistencia de la lámina de acero mediante el fortalecimiento de la precipitación, el fortalecimiento de grano fino mediante la supresión del crecimiento de granos de cristal de ferrita y el fortalecimiento de la dislocación a través de la supresión de la recristalización. Si el contenido de V supera el 0,150 %, la precipitación de carbonitruros aumenta y la formabilidad se deteriora, por lo que el contenido se establece en el 0,150 % o menos. Para obtener de forma suficiente el efecto del aumento de la resistencia con V, el contenido tiene que ser del 0,005 % o más.

B: entre el 0,0001 y el 0,0100 %

B es un elemento que suprime la transformación de fase a una temperatura elevada y es eficaz para aumentar la resistencia, y puede agregarse en lugar de parte del C y/o Mn. Si el contenido de B supera el 0,0100 %, la docilidad en caliente se ve afectada y la productividad disminuye, por lo que el contenido de B se establece en el 0,0100 % o menos. Desde el punto de vista de la productividad, el contenido de B es preferentemente el 0,0050 % o menos, más preferentemente el 0,0030 % o menos. Para obtener de forma suficiente una mayor resistencia con B, el contenido de B tiene que establecerse en el 0,0001 % o más. Para aumentar eficazmente la resistencia de la lámina de acero, el contenido de B es preferentemente el 0,0003 % o más, más preferentemente el 0,0005 % o más.

Mo: entre el 0,01 y el 1,00 %

Mo es un elemento que suprime la transformación de fase a una temperatura elevada y es eficaz para aumentar la resistencia, y puede agregarse en lugar de parte del C y/o Mn. Si el contenido de Mo supera el 1,00 %, la docilidad en caliente se ve afectada y la productividad disminuye, por lo que el contenido de Mo se establece en el 1,00 % o menos. Para obtener de forma suficiente una mayor resistencia con Mo, el contenido tiene que ser el 0,01 % o más.

W: entre el 0,01 y el 1,00 %

W es un elemento que suprime la transformación de fase a una temperatura elevada y es eficaz para aumentar la resistencia, y puede agregarse en lugar de parte del C y/o Mn. Si el contenido de W supera el 1,00 %, la docilidad en

caliente se ve afectada y la productividad disminuye, por lo que el contenido de W se establece en el 1,00 % o menos. Para obtener de forma suficiente una mayor resistencia con W, el contenido tiene que ser el 0,01 % o más.

Cr: entre el 0,01 y el 2,00 %

Cr es un elemento que suprime la transformación de fase a una temperatura elevada y es eficaz para aumentar la resistencia, y puede agregarse en lugar de parte del C y/o Mn. Si el contenido de Cr supera el 2,00 %, la docilidad en caliente se ve afectada y la productividad disminuye, por lo que el contenido de Cr se establece en el 2,00 % o menos. Para obtener de forma suficiente una mayor resistencia con Cr, el contenido tiene que ser el 0,01 % o más.

Ni: entre el 0,01 y el 2,00 %

Ni es un elemento que suprime la transformación de fase a una temperatura elevada y es eficaz para aumentar la resistencia, y puede agregarse en lugar de parte del C y/o Mn. Si el contenido de Ni supera el 2,00 %, la soldabilidad se ve afectada, por lo que el contenido de Ni se establece en el 2,00 % o menos. Para obtener de forma suficiente una mayor resistencia con Ni, el contenido tiene que ser el 0,01 % o más.

Cu: entre el 0,01 y el 2,00 %

45

50

55

Cu es un elemento que aumenta la resistencia por la presencia de partículas finas en el acero y se puede agregar en lugar de parte del C y/o Mn. Si el contenido de Cu supera el 2,00 %, la soldabilidad se ve afectada, por lo que el contenido se establece en el 2,00 % o menos. Para obtener de forma suficiente una mayor resistencia con Cu, el contenido tiene que ser el 0,01 % o más.

Uno o más de Ca, Ce, Mg, Zr, Hf y REM: entre el 0,0001 y el 0,5000 % total

Ca, Ce, Mg, Zr, Hf y REM son elementos que son eficaces para mejorar la formabilidad. Se pueden agregar uno o más. Si el contenido de uno o más de Ca, Ce, Mg, Zr, Hf y REM supera un total de 0,5000 %, a la inversa, la ductilidad puede verse afectada, por lo que total de los contenidos de los elementos se establece en el 0,5000 % o menos. Para obtener de forma suficiente el efecto de la mejora de la formabilidad de la lámina de acero, el total de los contenidos de los elementos tiene que ser del 0,0001 % o menos. Desde el punto de vista de la formabilidad, el total de los contenidos de los elementos es preferentemente el 0,0005 % o más, más preferentemente el 0,0010 % o más. Aquí, "REM" es una abreviatura de "metal de tierras raras" e incluye los elementos que pertenecen a la serie lantanoide. En la presente invención, el REM o Ce suele agregarse como un metal de Misch. A veces, los elementos de la serie lantanoide además de La o Ce están contenidos de forma combinada. Además, incluso cuando se incluyen elementos de la serie lantanoide distintos de La y Ce, se muestran los efectos de la presente invención. Además, incluso si se agrega metal La o Ce, se muestran los efectos de la presente invención.

Anteriormente se explicó la composición de los ingredientes de la presente invención, pero, siempre que se encuentren dentro de un intervalo que no afecte las propiedades de la lámina de acero de la presente invención, también se pueden incluir, por ejemplo, elementos distintos de los elementos añadidos esenciales como impurezas derivadas de los materiales de partida.

También se puede hacer que la lámina de acero de alta resistencia de la presente invención sea una lámina de acero galvanizada de alta resistencia en cuya superficie se forme una capa galvanizada o capa zincada. Al formar una capa galvanizada en la superficie de la lámina de acero de alta resistencia, se produce una lámina de acero con excelente resistencia a la corrosión. Además, al formar una capa zincada en la superficie de la lámina de acero de alta resistencia, se produce una lámina de acero con excelente resistencia a la corrosión y que tiene excelente adhesión de recubrimiento.

40 A continuación se explica el método de producción de la lámina de acero de alta resistencia de la presente invención.

Para producir la lámina de acero de alta resistencia de la presente invención, primero, se funde una placa que tiene la composición de ingredientes mencionada anteriormente. Como la placa que se utiliza para la laminación en caliente, por ejemplo, es posible utilizar una placa fundida continuamente o una placa que se produzca a través de un fundidor de placas finas, etc. Para el método de producción de la lámina de acero de alta resistencia de la presente invención, es preferible utilizar un proceso tal como fundición continua-laminación directa (CC-DR) donde el acero se funde e inmediatamente se lamina en caliente.

La temperatura de calentamiento de placa en el proceso de laminación en caliente tiene que ser de 1050 °C o más. Si la temperatura de calentamiento de placa es baja, la temperatura de laminación de acabado disminuye por debajo del punto Ar₃. Como resultado, se produce una laminación de dos fases de fase de ferrita y fase de austenita, por lo que la estructura de lámina laminada en caliente se convierte en una estructura de grano mixto irregular. La estructura irregular no se elimina ni siquiera después del proceso de laminación en frío y recocido y, por lo tanto, la ductilidad y la plegabilidad se deterioran. Además, si la temperatura de laminación de acabado disminuye, la carga de laminación aumenta y la laminación se dificulta o pueden aparecer defectos de forma en la lámina de acero después de la laminación. El límite superior de la temperatura de calentamiento de placa no se establece específicamente siempre que se muestre el efecto de la presente invención, pero no es preferible desde el punto de vista económico establecer

la temperatura de calentamiento en una temperatura excesivamente alta, por lo que el límite superior de la temperatura de calentamiento de placa se establece preferentemente en 1350 °C o menos.

El punto Ar₃ se puede calcular a través de la siguiente fórmula:

10

15

20

25

30

35

50

$$Ar_3$$
 (°C) = 901 - 325xC + 33xSi - 92x(Mn + Ni/2 + Cr/2 + Cu/2 + Mo/2) + 52xAl

5 En la fórmula anterior, C, Si, Mn, Ni, Cr, Cu, Mo y Al son los contenidos de los diferentes elementos (% en masa).

La temperatura de laminación de acabado de la laminación en caliente se establece el mayor de 800 °C o el punto Ar₃ como el límite inferior y 1000 °C como el límite superior. Si la temperatura de laminación de acabado es inferior a 800 °C, la carga de laminación en el momento de la laminación de acabado se eleva, la laminación se dificulta y pueden aparecer defectos de forma en la lámina de acero laminada en caliente que se obtiene después de la laminación. Si la temperatura de laminación de acabado es inferior al punto Ar₃, la laminación en caliente se convierte en laminación de región de dos fases de la fase de ferrita y la fase de austenita, y la estructura de lámina de acero laminada en caliente a veces se convierte en una estructura de grano mixto irregular.

El límite superior de la temperatura de laminación de acabado no se establece específicamente siempre que se muestre el efecto de la presente invención, pero si la temperatura de laminación de acabado se eleva excesivamente, para garantizar esa temperatura, la temperatura de calentamiento de placa tiene que elevarse excesivamente. Por lo tanto, el límite superior de temperatura de la temperatura de laminación de acabado se establece preferentemente en 1000 °C o menos.

La lámina de acero después de la laminación se enrolla entre 500 y 750 °C. Si se enrolla la lámina de acero a una temperatura que supera los 750 °C, los óxidos que se forman en la superficie de la lámina de acero aumentan excesivamente de espesor y la capacidad de decapado se deteriora. Para aumentar la capacidad de decapado, la temperatura de enrollamiento es preferentemente 720 °C o menos, más preferentemente 700 °C o menos. Si la temperatura de enrollamiento disminuye a menos de 500 °C, la resistencia de la lámina de acero laminada en caliente se eleva excesivamente y el laminado en frío se dificulta. Desde el punto de vista de aligerar la carga en la laminación en frío, la temperatura de enrollamiento se establece preferentemente en 550 °C o más. Es más preferible 600 °C o más.

La lámina de acero laminada en caliente así producida es decapada. Debido al decapado, los óxidos en la superficie de la lámina de acero se pueden retirar. Esto es importante con respecto a mejorar la convertibilidad química de la lámina de acero de alta resistencia laminada en frío del producto final o la capacidad de recubrimiento por inmersión en caliente de la lámina de acero laminada en frío para el uso de la lámina de acero zincada o galvanizada por inmersión en caliente. El decapado puede ser un solo tratamiento o puede dividirse en múltiples tratamientos.

La lámina de acero decapada puede suministrarse como está al proceso de recocido, pero al laminarla en frío con una tasa de atornillado de entre el 35 y el 75 %, se obtiene una lámina de acero con una alta precisión de espesor y excelente forma. Si la tasa de atornillado es inferior al 35 %, es difícil mantener la forma plana y el producto final reduce su ductilidad, por lo que la tasa de atornillado se establece en el 35 % o más. Si la tasa de atornillado supera el 75 %, la carga de laminación en frío se torna demasiado grande y la laminación en frío se dificulta. A partir de esto, el límite superior del atornillado se establece en el 75 %. El número de pasadas de laminación y la tasa de atornillado para cada pasada no se fijan específicamente siempre que se muestre el efecto de la presente invención.

Después, la lámina de acero laminada en caliente o lámina de acero laminada en frío obtenida se somete al siguiente tratamiento de recocido.

Primero, la lámina de acero laminada se calienta a una temperatura de calentamiento máxima en un intervalo de entre 740 y 1000 °C. Si la temperatura de calentamiento máxima es inferior a 740 °C, la cantidad de fase de austenita resulta insuficiente y se dificulta garantizar una cantidad suficiente de estructuras duras en la transformación de fase durante el enfriamiento posterior. Si la temperatura de calentamiento máxima supera los 1000 °C, la fase de austenita se torna gruesa en tamaño de partícula, no se realiza fácilmente transformación durante el enfriamiento y, en particular, se dificulta obtener suficientemente una estructura de ferrita blanda.

El calentamiento hasta la temperatura de calentamiento máxima se realiza preferentemente con una tasa de calentamiento de entre (temperatura de calentamiento máxima -20) °C y temperatura de calentamiento máxima, es decir, en los últimos 20 °C en el momento de calentamiento, de entre 0,1 y 0,8 °C/seg. Al hacer que la tasa de calentamiento en 20 °C hasta la temperatura de calentamiento máxima sea un calentamiento gradual en el intervalo anterior, se obtienen los efectos de que la tasa de progreso de la transformación inversa a la fase de austenita se ralentiza y los defectos en la fase de austenita inicial se vuelven más pequeños.

El tiempo de retención en el momento del calentamiento hasta la temperatura de calentamiento máxima se puede determinar de forma adecuada de acuerdo con la temperatura de calentamiento máxima, etc. y no se limita específicamente, pero 10 segundos o más es preferible, mientras que entre 40 y 540 segundos es más preferible.

55 Luego, se realiza enfriamiento primario con una tasa de enfriamiento promedio de entre la temperatura de

calentamiento máxima y 700 °C de entre 1,0 y 10,0 °C/seg. A través de este enfriamiento primario, es posible realizar de forma adecuada transformación de ferrita y transformación a ferrita bainítica y/o bainita mientras se deja una fase de austenita no transformada hasta el punto Ms y se transforma todo o parte en martensita.

Si la tasa de enfriamiento promedio en el intervalo de temperatura de enfriamiento anterior es inferior a 1,0 °C/seg, se realiza transformación de perlita durante el enfriamiento, por lo cual, la fase de austenita no transformada se reduce y no se puede obtener una estructura dura suficiente. Como resultado, a veces no es posible garantizar una resistencia a la tracción máxima de 900 MPa o más. Si la tasa de enfriamiento promedio supera 10,0 °C/seg, a veces no se puede formar suficientemente una estructura de ferrita blanda.

El tiempo de retención en la región de temperatura de transformación de ferrita de la derecha después del calentamiento hasta cuando la temperatura de la lámina de acero alcanza los 700 °C no se limita específicamente, pero es preferentemente entre 20 y 1000 segundos. Para que la fase de ferrita blanda se forme lo suficiente, es necesario retener la lámina durante 20 segundos o más en la región de temperatura de transformación de ferrita de la derecha después del recocido hasta cuando la temperatura de la lámina de acero alcanza los 700 °C; retenerla allí preferentemente durante 30 segundos o más; retenerla allí más preferentemente durante 50 segundos o más. Si el tiempo durante el cual se retiene la lámina en la región de temperatura de transformación de ferrita supera los 1000 segundos, la transformación de ferrita continúa de forma excesiva, la austenita no transformada se reduce y no se puede obtener una estructura dura suficiente.

Además, después del enfriamiento primario anterior, se realiza un enfriamiento secundario con una tasa de enfriamiento promedio de entre 700 y 500 °C de entre 5,0 y 200 °C/seg. Debido a este enfriamiento secundario, la transformación de austenita a ferrita después del recocido continúa correctamente. Si el enfriamiento con una tasa de enfriamiento promedio de entre 1 °C/seg y 10,0 °C/seg similar al enfriamiento primario de una región de temperatura que supera los 700 °C, la fase de ferrita se forma de forma insuficiente y no se puede garantizar la ductilidad de la lámina de acero de alta resistencia.

En el método de producción de la presente invención, la lámina de acero tratada para el enfriamiento en las dos etapas anteriores se retiene a una temperatura de entre 350 y 450 °C entre 30 y 1000 segundos. Si la temperatura de retención en este momento es inferior a 350 °C, se forman carburos basados en hierro finos y no se realiza una concentración de C en la fase de austenita, lo que genera una fase de austenita inestable. Si el tiempo de retención supera los 450 °C, el límite de solución sólida de C en la fase de austenita disminuye y C se satura incluso en una pequeña cantidad, por lo que no se realiza una concentración de C, lo que genera una fase de austenita inestable.

30 Si el tiempo de retención es inferior a 30 segundos, la transformación de bainita no se realiza lo suficiente, la cantidad de C (carbono) que se descarga de la fase de bainita a la fase de austenita es pequeña, la concentración de C en la fase de austenita resulta insuficiente y se genera una fase de austenita inestable. Si el tiempo de retención supera los 1000 segundos, comienzan a formarse carburos basados en hierro gruesos y la concentración de C en la austenita, en cambio, disminuye, por lo que se genera una fase de austenita inestable.

Además, en el proceso de recocido de la presente invención, tal como se muestra en la figura 1A, cuando se enfría de la temperatura de calentamiento máxima a temperatura ambiente, la lámina se recalienta del punto Bs (temperatura de inicio de la transformación de bainita) o menos de 500 °C a 500 °C o más al menos una vez y se recalienta del punto Ms o menos de 350 °C a 350 °C o más al menos una vez. Al realizar el tratamiento de recalentamiento con estos dos tipos de condiciones, es posible realizar la fase de austenita que tiene defectos internos y transformar fácilmente a otras estructuras en la fase de austenita residual no transformada, es decir, la fase de austenita inestable, preferencialmente transformar y obtener una fase de bainita, fase de ferrita bainítica o fase de martensita revenida.

Cabe destacar que, por ejemplo, tal como se muestra en la figura 1B, incluso si se enfría al punto Ms o menos de 350 °C y luego se recalienta a 500 °C o más, se considera que se realizó recalentamiento del punto Ms o menos de 350 °C a 350 °C o más y recalentamiento del punto Bs o menos de 500 °C a 500 °C respectivamente. También se puede realizar dicho patrón de tratamiento de recalentamiento.

Además, es posible retener la lámina en el intervalo de temperatura de entre 350 y 450 °C mencionado anteriormente entre el recalentamiento del punto Ms o menos de 350 °C a 350 °C o más y el recalentamiento del punto Bs o menos de 500 °C a 500 °C o más.

El punto Bs (temperatura de inicio de la transformación de bainita) se puede calcular a través de la siguiente fórmula:

En la fórmula anterior, VF es la fracción de volumen de ferrita, mientras que C, Mn, Cr, Ni, Al y Si son las cantidades de adición de estos elementos (% en masa).

El punto Ms (temperatura de inicio de la transformación de martensita) se puede calcular a través de la siguiente fórmula:

45

50

20

En la fórmula anterior, VF es la fracción de volumen de ferrita, mientras que C, Si, Mn, Cr, Ni y Al son las cantidades de adición de estos elementos (% en masa).

Cabe destacar que es difícil medir directamente la fracción de volumen de la fase de ferrita durante la producción de la lámina de acero de alta resistencia, por lo que en la presente invención se corta un pequeño trozo de la lámina de acero laminada en frío antes de pasar la lámina a través de la línea de recocido continuo, ese pequeño trozo se recoce con el mismo historial de temperatura que cuando se pasa a través de la línea de recocido continuo, se mide el cambio en el volumen de la fase de ferrita del pequeño trozo, el resultado se utiliza para calcular un valor numérico y ese valor se utiliza como la fracción de volumen VF de la ferrita. Esta medición se puede realizar utilizando el resultado de la primera operación de medición cuando se produce la lámina de acero en las mismas condiciones. El valor no tiene que ser medido cada vez. La medición se realiza nuevamente cuando las condiciones de producción cambian considerablemente. Por supuesto, también es posible observar la microestructura de la lámina de acero realmente producida y retroalimentar los resultados a la producción la próxima vez, y así sucesivamente.

10

15

20

25

30

45

En el recalentamiento mencionado anteriormente del punto Bs o menos de 500 °C o más, la temperatura de inicio se establece en el punto Bs o menos de 500 °C para provocar la formación de núcleos de bainita para consumir los defectos en la austenita. La temperatura de recalentamiento se establece en 500 °C o más para desactivar la transformación de núcleos y evitar la formación de carburos basados en hierro inducida por la realización excesiva de transformación en la región de temperatura elevada.

En el recalentamiento mencionado anteriormente del punto Ms o menos de 350°C a 350°C o más, la temperatura de inicio se establece en el punto Ms o menos de 350°C para provocar la formación de núcleos de martensita para consumir los defectos en la austenita. La temperatura de recalentamiento se establece en 350 °C o más para evitar la formación de carburos basados en hierro finos que obstruyen la concentración de C en la fase de austenita en la martensita y/o bainita debido a que se deja reposar a menos de 350 °C.

El motivo por el que la realización del recalentamiento de dos etapas mencionado anteriormente en diferentes regiones de temperatura genera que la fase de austenita residual aumente notablemente no está del todo claro, pero se cree que los núcleos de bainita y los núcleos de martensita consumen, respectivamente, diferentes tipos de defectos.

Debido a los procesos anteriores, los defectos que pueden formar sitios de partida de transformación de martensita que están presentes en la fase de austenita residual se consumen, solo permanece selectivamente la fase de austenita con su alto grado de limpieza y se obtiene una fase de austenita residual extremadamente estable. Como resultado, se obtiene una lámina de acero de alta resistencia que tiene elevada ductilidad y capacidad de embridado elástico y excelente formabilidad.

La lámina de acero recocida se puede laminar en frío entre aproximadamente el 0,03 y el 0,80 % para corregir la forma. En ese momento, si la tasa de laminación en frío después del recocido es demasiado alta, la fase de ferrita blanda se endurece por trabajo y la ductilidad se deteriora considerablemente, por lo que la tasa de laminación se establece preferentemente en el intervalo anterior.

La lámina de acero recocida se puede galvanizar electrolíticamente para obtener una lámina de acero galvanizada de alta resistencia. Además, la lámina de acero recocida se puede galvanizar por inmersión en caliente para obtener una lámina de acero galvanizada de alta resistencia. En tal caso, por ejemplo, es posible enfriar de la temperatura de calentamiento máxima a temperatura ambiente en el proceso de recocido, por ejemplo, hasta 500 °C, aplicar recalentamiento adicional y luego sumergir en un baño de zinc para el galvanizado por inmersión en caliente.

Además, durante el enfriamiento secundario durante el tratamiento de recocido anterior y mientras se retiene entre 350 y 450 °C o después de retener entre 350 y 450 °C, la lámina de acero se puede sumergir en un baño de galvanizado para producir una lámina de acero galvanizada de alta resistencia.

Después del galvanizado por inmersión en caliente, es posible tratar adicionalmente la capa de revestimiento de la superficie de la lámina de acero para alearla a una temperatura de entre 470 y 650 °C. Al realizar dicho tratamiento de aleación, se obtiene una aleación de Zn-Fe por la capa galvanizada que se está aleando que se forma en la superficie, y se obtiene una lámina de acero galvanizada de alta resistencia que tiene excelente prevención de herrumbre.

Este calentamiento en el tratamiento de aleación se puede realizar en lugar del recalentamiento del punto Bs o menos de 500 °C o más o el recalentamiento del punto Ms o menos de 350 °C o más.

Al realizar el tratamiento de revestimiento, para mejorar la adhesión de revestimiento, por ejemplo, es posible revestir la lámina de acero antes del proceso de recocido con un revestimiento compuesto por uno o más elementos seleccionados de Ni, Cu, Co y Fe. Al realizar dicho tratamiento de revestimiento a través de este método, se obtiene una lámina de acero galvanizada de alta resistencia que se forma con una capa galvanizada en su superficie, tiene elevada ductilidad y capacidad de embridado elástico y tiene excelente formabilidad.

La lámina de acero de alta resistencia en cuya superficie se forma una capa galvanizada además se puede formar con una película compuesta por un óxido P y/o óxido compuesto que contiene P.

Ejemplos

A continuación, se explica de forma más específica y utilizando ejemplos la lámina de acero de alta resistencia y la lámina de acero galvanizada de alta resistencia que tienen excelente formabilidad y los métodos para su producción de la presente invención. La presente invención no se limita, por supuesto, a los siguientes ejemplos y se puede cambiar de forma adecuada a un intervalo capaz de coincidir con la esencia de la presente invención. Todos están incluidos en el alcance técnico de la presente invención.

Las placas que tienen los ingredientes químicos (composiciones) de A AG que se muestran en las tablas 1 y 2 se fundieron, luego, inmediatamente después de la fundición, se laminaron en caliente, se enfriaron, se enrollaron y se decaparon en las condiciones que se muestran en las tablas de 3 a 5. Luego de esto, los experimentos 5, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 98, 102 y 119 dejaron las láminas de acero laminadas en caliente como estaban, mientras que los otros experimentos las laminaron en frío en las condiciones que se describen en las tablas de 3 a 6 después del decapado. Después de esto, se aplicó un proceso de recocido en las condiciones que se muestran en las tablas de 7 a 14 para obtener las láminas de acero de los experimentos de 1 a 127.

Tabla 1

10

Experimento	С	Si	Mn	Р	S	Al	N	0
Experimento	% en masa	% en masa	% en masa	% en masa	% en masa	% en masa	% en masa	% en masa
А	0,107	1,33	1,56	0,020	0,0038	0,043	0,0035	0,0006
В	0,193	1,97	2,49	0,014	0,0009	0,027	0,0021	0,0016
С	0,107	0,99	2,02	0,017	0,0024	0,038	0,0030	0,0025
D	0,247	1. 14	1,92	0,019	0,0034	0,005	0,0050	0,0029
E	0,191	1,05	1,41	0,015	0,0029	0,067	0,0030	0,0011
F	0,133	1,89	1,92	0,010	0,0046	0,038	0,0041	0,0022
G	0,203	1,02	1,51	0,014	0,0052	0,073	0,0024	0,0015
Н	0,182	0,75	1,87	0,012	0,0037	0,263	0,0037	0,0019
I	0,084	1,51	2,79	0,018	0,0031	0,123	0,0013	0,0020
J	0,260	0,71	2,20	0,019	0,0014	0,302	0,0040	0,0025
K	0,199	1,19	1,89	0,018	0,0027	0,041	0,0060	0,0004
L	0,094	0,90	1,85	0,014	0,0034	0,056	0,0051	0,0013
М	0,183	2,00	1,99	0,007	0,0018	0,045	0,0041	0,0016
N	0,170	1,66	2,59	0,020	0,0008	0,015	0,0037	0,0016
0	0,140	0,74	1,45	0,013	0,0043	0,598	0,0055	0,0004
Р	0,099	0,98	1,89	0,020	0,0007	0,044	0,0034	0,0006
Q	0,230	1,24	1,45	0,016	0,0010	0,068	0,0054	0,0028
R	0,119	1,39	2,27	0,016	0,0019	0,031	0,0060	0,0016
S	0,225	1,80	1,52	0,014	0,0042	0,032	0,0029	0,0011
Т	0,142	0,99	2,17	0,011	0,0046	0,068	0,0021	0,0011
U	0,194	1,24	1,45	0,011	0,0015	0,053	0,0044	0,0019
V	0,133	2,27	2,55	0,017	0,0051	0,071	0,0056	0,0023
W	0,090	1,44	1,68	0,016	0,0044	0,054	0,0020	0,0007
Х	0,101	1,95	1,54	0,009	0,0025	0,062	0,0058	0,0007
Υ	0,114	1,62	2,70	0,010	0,0034	0,071	0,0020	0,0013
Z	0,150	1,06	3,16	0,010	0,0036	0,055	0,0018	0,0029
AA	<u>0,015</u>	1,05	2,00	0,013	0,0022	0,027	0,0035	0,0014
AB	0,097	0,06	1,97	0,012	0,0022	0,027	0,0032	0,0008

Experimento	С	Si	Mn	Р	S	Al	N	0
Lxperimento	% en masa							
AC	0,101	1,05	0,52	0,015	0,0021	0,033	0,0033	0,0014
AD	0,093	1,68	2,67	0,002	0,0013	0,033	0,0076	0,0009
AE	0,152	0,75	2,07	0,013	0,0018	0,065	0,0015	0,0005
AF	0,148	1,72	1,55	0,007	0,0025	0,059	0,0080	0,0014
AG	0,209	0,89	2,50	0. 007	0,0036	0,039	0,0057	0,0008

Tabla 2

	Ti	Nb	В	Cr	Ni	Cu	Мо	V	Ca	Се	Mg	Zr	Hf	REM	
Experimento	% en masa														
Α															Ej. inv.
В															Ej. inv.
С															Ej. inv.
D															Ej. inv.
Е	0,044														Ej. inv.
F		0,022													Ej. inv.
G			0,0019												Ej. inv.
Н				0,49											Ej. inv.
I									0,0020						Ej. inv.
J							0,25								Ej. inv.
K								0,105							Ej. inv.
L	0,023	0,013	0,0026	0,39			0,11		0,0032	0,0010					Ej. inv.
M					0,65										Ej. inv.
N						0,24									Ej. inv.
0					1,00	0,60									Ej. inv.
Р										0,0025					Ej. inv.
Q											0,0017				Ej. inv.
R												0,0019			Ej. inv.
S													0,0025		Ej. inv.
Т														0,0021	Ej. inv.
U	0,069		0,0015												Ej. inv.
V	0,005	0,035			0,23				0,0019						Ej. inv.
W			0,0009							0,0024					Ej. inv.
Х				0,67			0,18								Ej. inv.
Υ															Ej. inv.
Z															Ej. inv.
AA															<u>Ej.</u> comp.
AB															<u>Ej.</u> comp.

	Ti	Nb	В	Cr	Ni	Cu	Мо	V	Ca	Се	Mg	Zr	Hf	REM	
Experimento	% en masa														
AC															<u>Ej.</u> comp.
AD															Ej. inv.
AE															Ej. inv.
AF															Ej. inv.
AG															Ej. inv.

Tabla 3

Experimento	Ingredientes químicos	Temp. de calentamiento de placa	Punto de transformación Ar3	Temp. final de laminación en caliente	Temp. de enrollamiento	Tasa de laminación en frío	
	·	°C	°C	°C	°C	%	
1	Α	1265	769	915	584	52	Ej. inv.
2	Α	1215	769	901	600	52	Ej. inv.
3	Α	1185	769	952	612	52	Ej. inv.
4	Α	1265	769	952	583	52	Ej. inv.
5	Α	1225	769	926	562	0	Ej. inv.
6	В	1195	676	943	618	40	Ej. inv.
7	В	1170	676	910	638	40	Ej. inv.
8	В	1240	676	925	567	40	Ej. inv.
9	В	1185	676	929	528	40	Ej. inv.
10	С	1205	715	912	632	52	Ej. inv.
11	С	1200	715	900	671	52	Ej. inv.
12	С	1175	715	892	695	52	Ej. inv.
13	С	1205	715	885	614	52	Ej. inv.
14	С	1245	715	923	605	0	Ej. inv.
15	D	1190	682	935	660	52	Ej. inv.
16	D	1275	682	904	546	52	Ej. inv.
17	D	1235	682	930	556	52	Ej. inv.
18	D	1250	682	949	613	52	Ej. inv.
19	D	1195	682	905	568	0	Ej. inv.
20	E	1225	747	913	598	38	Ej. inv.
21	E	1240	747	908	682	38	Ej. inv.
22	E	1240	747	898	563	67	Ej. inv.
23	Е	1245	747	908	645	67	Ej. inv.
24	E	1270	747	892	620	0	Ej. inv.
25	F	1180	745	944	652	50	Ej. inv.
26	F	1230	745	893	639	50	Ej. inv.
27	F	1215	745	928	542	50	Ej. inv.
28	F	1215	745	894	687	50	Ej. comp

Experimento	Ingredientes químicos	Temp. de calentamiento de placa	Punto de transformación Ar3	Temp. final de laminación en caliente	Temp. de enrollamiento	Tasa de laminación en frío	
		°C	°C	°C	°C	%	
29	F	1210	745	943	577	0	Ej. inv.
30	G	1170	734	939	681	52	Ej. inv.
31	G	1180	734	933	619	52	Ej. inv.
32	G	1200	734	893	661	52	Ej. comp.
33	G	1230	734	917	594	52	Ej. inv.
34	G	1255	734	931	594	0	Ej. inv.
35	Н	1235	686	890	643	38	Ej. inv.

Tabla 4

Experimento	Ingredientes químicos	Temp. de calentamiento de placa	Punto de transformación Ar3	Temp. final de laminación en caliente	Temp. de enrollamiento	Tasa de laminación en frío	
		°C	°C	°C	°C	%	
36	Н	1240	686	886	554	38	Ej. inv.
37	Н	1225	686	942	572	38	Ej. comp
38	Н	1245	686	929	557	38	Ej. inv.
39	Н	1215	686	905	570	0	Ej. inv.
40	I	1205	673	885	528	68	Ej. inv.
41	I	1175	673	951	643	68	Ej. inv.
42	I	1205	673	926	559	68	Ej. comp
43	I	1265	673	953	566	68	Ej. inv.
44	I	1235	673	910	615	0	Ej. inv.
45	J	1265	642	949	612	36	Ej. inv.
46	J	1215	642	938	618	36	Ej. inv.
47	J	1250	642	898	638	36	Ej. comp
48	J	1295	642	856	677	52	Ej. inv.
49	J	1215	642	933	588	0	Ej. inv.
50	K	1205	704	930	658	71	Ej. inv.
51	K	1230	704	930	615	71	Ej. inv.
52	K	1195	704	942	672	71	Ej. comp
53	K	1265	704	914	611	71	Ej. inv.
54	K	1240	704	950	597	0	Ej. inv.
55	L	1190	710	919	616	50	Ej. inv.
56	L	1190	710	950	669	50	Ej. inv.
57	L	1270	710	902	693	50	Ej. comp
58	L	1200	710	891	679	50	Ej. inv.
59	L	1230	710	924	582	0	Ej. inv.
60	M	1270	697	944	660	52	Ej. inv.
61	M	1180	697	931	581	52	Ej. inv.

Experimento	Ingredientes químicos	Temp. de calentamiento de placa	Punto de transformación Ar3	Temp. final de laminación en caliente	Temp. de enrollamiento	Tasa de laminación en frío	
		°C	°C	°C	°C	%	
62	M	1255	697	883	569	52	Ej. comp.
63	M	1245	697	945	605	52	Ej. inv.
64	N	1185	652	933	675	52	Ej. inv.
65	N	1225	652	895	580	52	Ej. inv.
66	N	1265	652	925	628	52	Ej. comp.
67	N	1220	652	914	681	5 2	Ej. inv.
68	0	1225	704	949	613	52	Ej. inv.
69	0	1255	704	877	690	52	Ej. inv.
70	0	1220	704	903	671	52	Ej. comp.

Tabla 5

Experimento	Ingredientes químicos	Temp. de calentamiento de placa	Punto de transformación Ar3	Temp. final de laminación en caliente	Temp. de enrollamiento	Tasa de laminación en frío	
		°C	°C	°C	°C	%	
71	0	1215	704	915	684	52	Ej. inv.
72	Р	1230	730	932	609	52	Ej. inv.
73	Р	1180	730	923	603	52	Ej. inv.
74	Р	1230	730	903	639	52	Ej. comp
75	Р	1215	730	927	614	52	Ej. inv.
76	Q	1180	737	890	646	52	Ej. inv.
77	Q	1270	737	93 4	671	52	Ej. inv.
78	Q	1260	737	913	664	52	Ej. comp
79	Q	1280	737	947	591	52	Ej. inv.
80	R	1190	701	909	642	40	Ej. inv.
81	R	1245	701	907	629	40	Ej. inv.
82	R	1205	701	886	568	52	Ej. comp
83	R	1210	701	924	602	52	Ej. inv.
84	S	1215	749	900	648	52	Ej. inv.
85	S	1180	749	918	573	52	Ej. inv.
86	S	1210	749	931	578	52	Ej. inv.
87	S	1265	749	920	589	52	Ej. inv.
88	Т	1245	691	942	625	47	Ej. inv.
89	Т	1275	691	889	652	47	Ej. inv.
90	Т	1275	691	907	585	47	Ej. inv.
91	Т	1230	691	897	558	47	Ej. inv.
92	U	1225	748	904	551	67	Ej. inv.
93	U	1190	748	904	608	67	Ej. inv.
94	U	1205	748	897	591	52	Ej. inv.

Experimento	Ingredientes químicos	Temp. de calentamiento de placa	Punto de transformación Ar3	Temp. final de laminación en caliente	Temp. de enrollamiento	Tasa de laminación en frío	
		°C	°C	°C	°C	%	
95	U	1275	748	930	607	52	Ej. inv.
96	V	1185	691	909	678	52	Ej. inv.
97	V	1200	691	899	645	52	Ej. inv.
98	V	1215	691	901	650	0	Ej. inv.
99	V	1230	691	917	582	52	Ej. inv.
100	W	1260	768	888	664	52	Ej. inv.
101	W	1190	768	907	657	52	Ej. inv.
102	W	1195	768	921	564	0	Ej. inv.
103	W	1280	768	914	606	52	Ej. inv.
104	Х	1235	755	910	634	52	Ej. inv.
105	Х	1275	755	952	604	52	Ej. inv.

Tabla 6

Experimento	Ingredientes químicos	Temp. de calentamiento de placa	Punto de transformación Ar3	Temp. final de laminación en caliente	Temp. de enrollamiento	Tasa de laminación en frío	
		°C	°C	°C	°C	%	
106	Х	1210	755	900	621	52	Ej. inv.
107	Х	1280	755	939	616	52	Ej. inv.
108	Y	1200	673	886	673	67	Ej. inv.
109	Υ	1185	673	925	652	67	Ej. inv.
110	Y	1175	673	940	673	43	Ej. inv.
111	Υ	1185	673	953	563	43	Ej. inv.
112	Z	1225	599	929	643	52	Ej. inv.
113	Z	1185	599	915	694	52	Ej. inv.
114	Z	1220	599	902	683	52	Ej. inv.
115	Z	1275	599	<u>735</u>	666	52	Ej. comp.
116	AA	1190	748	935	623	52	Ej. comp.
117	AB	1205	692	889	622	52	Ej. comp.
118	AC	1175	857	894	660	52	Ej. comp.
119	В	1210	676	925	566	0	Ej. inv.
120	AD	1200	682	866	588	50	Ej. inv.
121	AD	1225	682	903	600	50	Ej. inv.
122	AE	1230	689	889	601	50	Ej. inv.
123	AE	1220	689	887	611	50	Ej. inv.
124	AF	1220	770	894	621	50	Ej. inv.
125	AF	1215	770	922	588	50	Ej. inv.
126	AG	1205	634	902	599	50	Ej. inv.
127	AG	1210	634	892	591	50	Ej. inv.

Tabla 7

			Proceso de o	calentamiento	Primer proceso de enfriamiento	Segundo proceso de enfriamiento	
Experimento	Ingredientes químicos	Tipo de acero	Tasa da calentamiento	Temp. de calentamiento máx.	Tasa de enfriamiento promedio	Tasa de enfriamiento promedio	
			°C/seg	°C	°C/seg	°C/seg	
1	Α	CR	0,3	920	3,3	34	Ej. inv.
2	Α	CR	0,3	812	3,1	32	Ej. inv.
3	А	GA	0,3	816	3,1	28	Ej. inv.
4	А	GI	0,3	821	3,4	29	Ej. inv.
5	А	HR-GA	0,3	812	3,3	33	Ej. inv.
6	В	CR	0,3	819	1,7	27	Ej. inv.
7	В	CR	0,3	825	1,6	28	Ej. inv.
8	В	CR	0,3	826	1,5	31	Ej. inv.
9	В	GA	0,3	823	2,5	27	Ej. inv.
10	С	CR	0,5	846	2,5	13	Ej. inv.
11	С	CR	0,5	836	2,6	11	Ej. inv.
12	С	CR	<u>15</u>	831	3,2	11	Ej. inv.
13	С	EG	0,5	845	3,4	10	Ej. inv.
14	С	HR	0,4	845	3,1	13	Ej. inv.
15	D	CR	0,7	793	6,2	10	Ej. inv.
16	D	CR	0,7	782	4,5	10	Ej. inv.
17	D	CR	<u>8</u>	781	3,6	8	Ej. inv.
18	D	GI	0,7	786	4,4	10	Ej. inv.
19	D	HR	0,7	784	3,7	8	Ej. inv.
20	Е	CR	0,7	822	2,6	7	Ej. inv.
21	Е	CR	0,7	829	3,1	12	Ej. inv.
22	Е	GA	0,7	823	2,5	8	Ej. inv.
23	Е	EG	0,7	821	2,5	12	Ej. inv.
24	Е	HR-GA	0,7	816	2,6	10	Ej. inv.
25	F	CR	0,7	834	2,5	8	Ej. inv.
26	F	CR	0,7	898	3,5	7	Ej. inv.
27	F	CR	0,7	892	2,9	46	Ej. inv.
28	F	CR	0,7	1076	2,7	52	Ej. comp
29	F	HR	0,7	898	2,7	55	Ej. inv.
30	G	CR	0,5	793	3,3	31	Ej. inv.
31	G	CR	0,5	789	2,8	35	Ej. inv.
32	G	CR	0,5	730	3,2	32	Ej. comp
33	G	EG	0,5	783	2,7	30	Ej. inv.
34	G	HR-GA	0,5	800	3,5	30	Ej. inv.
35	Н	CR	0,5	780	4,9	33	Ej. inv.

Tabla 8

			Proceso de o	calentamiento	Primer proceso de enfriamiento	Segundo proceso de enfriamiento	
Experimento	Ingredientes químicos	Tipo de acero	Tasa da calentamiento	Temp. de calentamiento máx.	Tasa de enfriamiento promedio	Tasa de enfriamiento promedio	
			°C/seg	°C	°C/seg	°C/seg	
36	Н	CR	0,5	889	5,3	31	Ej. inv.
37	Н	CR	0,5	886	<u>31</u>	30	Ej. comp
38	Н	GA	0,5	788	5,4	30	Ej. inv.
39	Н	HR	0,5	790	2,6	33	Ej. inv.
40	I	CR	0,5	817	3,1	26	Ej. inv.
41	I	CR	0,6	817	3,2	34	Ej. inv.
42	I	CR	0,5	818	0,2	33	Ej. comp
43	I	GI	0,5	811	2,5	35	Ej. inv.
44	I	HR-GA	0,5	828	3,5	30	Ej. inv.
45	J	CR	0,4	840	2,5	34	Ej. inv.
46	J	CR	0,4	835	3,3	102	Ej. inv.
47	J	CR	0,4	856	3,6	1	Ej. comp
48	J	GI	0,4	835	2,4	33	Ej. inv.
49	J	HR-GA	0,4	846	2,7	31	Ej. inv.
50	K	CR	0,5	810	3,3	59	Ej. inv.
51	K	CR	0,5	793	2,7	65	Ej. inv.
52	K	CR	0,5	804	2,7	57	Ej. comp
53	K	GI	0,5	796	3,1	61	Ej. inv.
54	K	HR-GA	0,5	799	3,1	63	Ej. inv.
55	L	CR	0,4	821	2,9	56	Ej. inv.
56	L	CR	0,4	837	2,9	61	Ej. inv.
57	L	CR	0,4	828	3,5	58	Ej. comp
58	L	GI	0,4	837	2,8	66	Ej. inv.
59	L	HR-GA	0,4	826	3,1	53	Ej. inv.
60	M	CR	0,4	829	3,0	57	Ej. inv.
61	M	CR	0,4	824	3,5	11	Ej. inv.
62	M	CR	0,4	823	3,4	59	Ej. comp
63	M	GA	0,4	815	2,7	64	Ej. inv.
64	N	CR	0,4	827	3,0	27	Ej. inv.
65	N	CR	0,4	821	3,1	31	Ej. inv.
66	N	CR	0,4	810	3,5	29	Ej. comp
67	N	GI	0,4	818	2,6	31	Ej. inv.
68	0	CR	0,5	953	3,8	8	Ej. inv.
69	0	CR	0,5	943	3,3	30	Ej. inv.
70	0	CR	0,5	944	3,7	32	Ej. comp

Tabla 9

			Proceso de o	calentamiento	Primer proceso de enfriamiento	Segundo proceso de enfriamiento	
Experimento	Ingredientes químicos	Tipo de acero	Tasa da calentamiento	Temp. de calentamiento máx.	Tasa de enfriamiento promedio	Tasa de enfriamiento promedio	
			°C/seg	°C	°C/seg	°C/seg	
71	0	GA	0,5	939	2,7	41	Ej. inv.
72	Р	CR	0,4	849	7,8	27	Ej. inv.
73	Р	CR	0,3	838	2,6	30	Ej. inv.
74	Р	CR	0,4	842	2,9	33	Ej. comp.
75	Р	GA	0,4	841	2,6	8	Ej. inv.
76	Q	CR	0,4	794	2,8	28	Ej. inv.
77	Q	CR	0,4	801	3,4	30	Ej. inv.
78	Q	CR	0,4	800	2,7	26	Ej. comp.
79	Q	GA	0,4	806	2,8	29	Ej. inv.
80	R	CR	0,4	817	3,2	27	Ej. inv.
81	R	CR	0,4	803	3,3	30	Ej. inv.
82	R	CR	0,4	800	2,6	30	Ej. comp
83	R	GI	0,4	807	2,7	33	Ej. inv.
84	S	CR	0,4	798	1,9	27	Ej. inv.
85	S	CR	0,4	806	1,8	128	Ej. inv.
86	S	GA	0,4	801	2,4	35	Ej. inv.
87	S	GI	0,4	804	2,1	28	Ej. inv.
88	Т	CR	0,4	835	2,1	32	Ej. inv.
89	Т	CR	0,4	820	1,6	34	Ej. inv.
90	Т	GA	0,5	826	2,4	32	Ej. inv.
91	Т	EG	0,4	833	1,9	29	Ej. inv.
92	U	CR	0,4	785	4,8	28	Ej. inv.
93	U	CR	0,4	771	5,4	32	Ej. inv.
94	U	GA	0,4	787	4,7	26	Ej. inv.
95	U	EG	0,4	775	5,2	27	Ej. inv.
96	V	CR	0,4	865	5,0	47	Ej. inv.
97	V	CR	0,4	880	5,1	49	Ej. inv.
98	V	HR	0,4	872	4,8	52	Ej. inv.
99	V	GA	0,4	867	5,2	54	Ej. inv.
100	W	CR	0,2	882	5,1	50	Ej. inv.
101	W	CR	0,2	796	5,3	51	Ej. inv.
102	W	HR-GA	0,2	793	4,6	47	Ej. inv.
103	W	GI	0,2	804	5,1	54	Ej. inv.
104	Х	CR	0,5	852	5,4	47	Ej. inv.
105	Х	CR	0,5	847	4,9	53	Ej. inv.

Tabla 10

			Proceso de o	calentamiento	Primer proceso de enfriamiento	Segundo proceso de enfriamiento	
Experimento	Ingredientes químicos	Tipo de acero	Tasa da calentamiento	Temp. de calentamiento máx.	Tasa de enfriamiento promedio	Tasa de enfriamiento promedio	
			°C/seg	°C	°C/seg	°C/seg	
106	Х	CR	<u>17</u>	853	4,6	53	Ej. inv.
107	Х	EG	0,5	857	5,0	47	Ej. inv.
108	Υ	CR	0,5	810	4,7	50	Ej. inv.
109	Υ	CR	0,5	791	3,1	46	Ej. inv.
110	Υ	GA	0,5	803	2,5	50	Ej. inv.
111	Υ	CR	<u>18</u>	807	3,5	43	Ej. inv.
112	Z	CR	0,5	759	2,8	51	Ej. inv.
113	Z	CR	0,5	759	2,7	48	Ej. inv.
114	Z	EG	0,5	747	3,4	51	Ej. inv.
115	Z	CR	0,5	757	2,8	28	Ej. comp.
116	AA	CR	0,5	799	3,1	30	Ej. comp.
117	AB	CR	0,5	795	3,1	27	Ej. comp.
118	AC	CR	0,5	790	3,3	30	Ej. comp.
119	В	HR	0,4	827	1,7	34	Ej. inv.
120	AD	CR	0,4	819	1,8	26	Ej. inv.
121	AD	GA	0,8	842	2,8	27	Ej. inv.
122	AE	CR	0,7	943	3,1	63	Ej. inv.
123	AE	GA	0,7	846	1,9	24	Ej. inv.
124	AF	CR	0,7	899	2,1	33	Ej. inv.
125	AF	GA	0,7	928	2,2	65	Ej. inv.
126	AG	CR	0,7	793	2,1	68	Ej. inv.
127	AG	GA	0,7	809	2,0	61	Ej. inv.

Tabla 11

	recal	eso de enta- nto 1	Proce recal mier	enta-	recal	eso de lenta- nto 3	Pro- ceso de reten- ción	reca	eso de alenta- ento 4	Proce recal mier	enta-	Proceso de aleación	ormación de	ormación de s)	
Experimento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Tiempo de retención	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de aleación	Temp. de inicio de transformación de bainita (Bs)	Temp. de inicio de transformación de martensita (Ms)	
	°C	°C	°C	°C	°C	°C	seg	°C	°C	°C	°C	°C	°C	°C	
1	464	541			292	360	244						598	412	Ej. inv.
2	458	525			335	379	273			318	378		567	346	Ej. inv.
3	455	520			322	397	240					520	559	370	Ej. inv.
4	456	547			328	397	253						560	360	Ej. inv.
5	460	514			304	414	254					514	571	341	Ej. inv.
6	429	527			273	417	236						440	279	Ej. inv.
7	411	520	421	518	254	421	279	423	518				436	280	Ej. inv.
8	441	516			267	392	243						450	299	Ej. inv.
9	422	534			234	373	56					477	434	271	Ej. inv.
10	483	513			311	385	279						570	402	Ej. inv.
11	490	548			291	421	241						566	403	Ej. inv.
12					312	412	218	397	505				568	387	Ej. inv.
13	495	510			316	379	215						572	395	Ej. inv.
14	459	520			331	370	237						570	392	Ej. inv.
15	454	546			283	358	235						504	295	Ej. inv.
16							245	378	526	318	378		505	280	Ej. inv.
17	475	536			253	387	260						497	280	Ej. inv.
18	482	526			263	390	284						502	291	Ej. inv.
19	476	534			255	362	216						500	284	Ej. inv.
20	476	547			308	400	54						554	321	Ej. inv.
21	458	545			305	406	60						565	324	Ej. inv.
22	489	551			334	400	64	425	520			520	582	345	Ej. inv.
23	484	519			294	369	56						577	334	Ej. inv.
24	453	526			318	388	71	388	504			504	565	326	Ej. inv.
25	477	546			314	424	60						510	342	Ej. inv.
26	464	545			326	359	212						537	368	Ej. inv.
27					344	383	472	407	511				532	378	Ej. inv.
28	478	521			336	404	246						545	384	Ej. comp.
29	471	534			292	416	216						532	371	Ej. inv.

	Proce recal mier	enta-	Proce recal mier	enta-	reca	eso de lenta- nto 3	Pro- ceso de reten- ción	reca	eso de alenta- ento 4	Proce recal mier		Proceso de aleación	rmación de	rmación de)	
Experimento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Tiempo de retención	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de aleación	Temp. de inicio de transformación de bainita (Bs)	Temp. de inicio de transformación de martensita (Ms)	
	°C	°C	°C	°C	°C	°C	seg	°C	°C	°C	°C	°C	°C	°C	
30	463	531			225	362	64						526	265	Ej. inv.
31					254	379	267	411	520				545	290	Ej. inv.
32	483	509			191	366	532						504	219	Ej. comp.
33	488	505			232	358	210						510	236	Ej. inv.
34	466	517	483	518	262	374	261					518	523	292	Ej. inv.
35	463	528			326	414	237						522	331	Ej. inv.

Tabla 12

	reca	eso de lenta- nto 1	recal	eso de lenta- nto 2	reca	eso de lenta- nto 3	Pro- ceso de reten- ción	recal	eso de enta- nto 4	recal	eso de lenta- nto 5	Proceso de aleación	sformación de)	sformación de As)	
Experimento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Tiempo de retención	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de aleación	Temp. de inicio de transformación de bainita (Bs)	Temp. de inicio de transformación de martensita (Ms)	
	°C	°C	°C	°C	°C	°C	Seg	°C	°C	°C	°C	°C	°C	°C	
36	488	546					276	419	519	318	378		542	355	Ej. inv.
37	476	531			331	399	253						563	376	Ej. comp.
38	445	543	451	501	239	368	257					501	469	264	Ej. inv.
39	447	504					216			318	378		500	295	Ej. inv.
40	443	526			338	408	368						464	349	Ej. inv.
41	452	552			312	422	444						481	356	Ej. inv.
42					276	387	431	408	517				451	308	Ej. comp.

	reca	eso de lenta- nto 1	recal	eso de lenta- nto 2	reca	eso de lenta- nto 3	Pro- ceso de reten- ción	reca	eso de lenta- nto 4	recal	eso de enta- nto 5	Proceso de aleación	sformación de	sformación de Ms)	
Experimento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Tiempo de retención	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de aleación	Temp. de inicio de transformación de bainita (Bs)	Temp. de inicio de transformación de martensita (Ms)	
	°C	°C	°C	°C	°C	°C	Seg	°C	°C	°C	°C	°C	°C	°C	
43	460	511			315	402	339						473	344	Ej. inv.
44	454	543			313	369	388					543	479	352	Ej. inv.
45	482	530			248	409	258						495	260	Ej. inv.
46	471	533			267	416	255	417	525	319	379		499	267	Ej. inv.
47	451	502			285	404	287						338	3	Ej. comp.
48	481	532					280			250	377		506	278	Ej.
49	492	532			285	355	2245					476	514	290	Ej. inv.
50	488	545			308	356	357						534	330	Ej. inv.
51	464	536			232	358	225						471	269	Ej. inv.
52	-	-	-	-	-	-	253	-	-	-	-		526	315	Ej. comp.
53	466	540			289	399	277						503	305	Ej. inv.
54	478	543			280	386	242	401	522			522	512	292	Ej. inv.
55	472	552	482	512	297	386	74						553	383	Ej. inv.
56	480	510			344	363	74						560	391	Ej. inv.
57	440	510	-	-	-	-	225	-	-	-	-		556	384	<u>Ej.</u> comp.
58	462	527			306	381	217						561	396	Ej.
59	493	547			311	372	236	406	503			503	566	398	Ej.
60	441	553			304	361	290						458	307	Ej.
61	431	529			268	392	256						454	289	Ej. inv.

	reca	eso de lenta- nto 1	reca	eso de lenta- nto 2	reca	eso de lenta- nto 3	Pro- ceso de reten- ción	reca	eso de lenta- nto 4	recal	eso de lenta- nto 5	Proceso de aleación	sformación de)	sformación de As)	
Experimento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Tiempo de retención	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de aleación	Temp. de inicio de transformación de bainita (Bs)	Temp. de inicio de transformación de martensita (Ms)	
	°C	°C	°C	°C	°C	°C	Seg	°C	°C	°C	°C	°C	°C	°C	
62	-	-	-	-	249	394	216	-	-	-	-		437	251	Ej. comp.
63	437	542			248	381	261	375	559			559	440	269	Ej. inv.
64	463	539			327	411	316						481	344	Ej. inv.
65	446	533			296	425	301						470	326	Ej. inv.
66	420	513	433	508	-	-	396	-	-	-	-		454	302	Ej. comp.
67	427	523			280	419	339					523	455	320	Ej. inv.
68	494	540			345	367	366						591	370	Ej. inv.
69	495	506			303	422	304						592	371	Ej. inv.
70	-	-	-	-	301	385	332	-	-	304	396		585	361	Ej. comp.

Tabla 13

	reca	eso de lenta- nto 1	reca	eso de lenta- nto 2	reca	eso de lenta- nto 3	Pro- ceso de reten- ción	recal	eso de enta- nto 4	Proces recale mien	nta-	Proceso de aleación	ormación de	ormación de :)	
Experimento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Tiempo de retención	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de aleación	Temp. de inicio de transformación de bainita (Bs)	Temp. de inicio de transformación de martensita (Ms)	
	°C	°C	°C	°C	°C	°C	seg	°C	°C	°C	°C	°C	°C	°C	
71	476	526			329	361	299	376	539			537	585	361	Ej. inv.
72	487	513			308	379	273						585	415	<u>Ej.</u> inv.

	reca	eso de lenta- nto 1	recal	eso de lenta- nto 2	recal	eso de lenta- nto 3	Pro- ceso de reten- ción	recal	eso de lenta- nto 4	Proces recale mien	nta-	Proceso de aleación	ormación de	ormación de s)	
Experimento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Tiempo de retención	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de aleación	Temp. de inido de transformación de bainita (Bs)	Temp. de inicio de transformación de martensita (Ms)	
	°C	°C	°C	°C	°C	°C	seg	°C	°C	°C	°C	°C	°C	°C	
73	485	510					247			306	373		582	399	Ej. inv.
74	469	530			335	397							568	395	Ej. comp.
75	460	504			296	414	228	417	528			528	568	389	Ej. inv.
76	486	515	473	523	215	414	238						498	249	Ej. inv.
77	468	513					250			216	371		501	224	<u>Ej.</u> inv.
78	472	554			250	367	3600						528	269	Ej. comp.
79	487	545			232	395	269	396	521			521	526	257	Ej. inv.
80	482	537			342	397	453						511	348	Ej. inv.
81	487	536			296	417	431						496	330	Ej. inv.
82	444	534	-	-	-	-	488	440	515	-	-		483	334	Ej. comp.
83	458	527			292	409	492						515	353	Ej. inv.
84	453	542			189	425	288						472	219	Ej. inv.
85	489	551	490	520			263	406	509	227	366		504	266	Ej. inv.
86	481	513			232	414	252					513	480	268	Ej. inv.
87	454	535			257	400	244						505	281	<u>Ej.</u> inv.
88	485	535			313	365	255						548	385	Ej. inv.
89					330	411	210	414	506	318	378		529	348	Ej. inv.
90	447	517			316	381	264					517	541	369	Ej. inv.
91	493	505	462	512	291	393	276			332	364		547	380	Ej. inv.

	reca	eso de lenta- nto 1	recal	eso de lenta- nto 2	recal	eso de lenta- nto 3	Pro- ceso de reten- ción	reca	eso de lenta- nto 4	Proces recale mien	nta-	Proceso de aleación	ormación de	ormación de s)	
Experimento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Tiempo de retención	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de aleación	Temp. de inicio de transformación de bainita (Bs)	Temp. de inicio de transformación de martensita (Ms)	
	°C	°C	°C	°C	°C	°C	seg	°C	°C	°C	°C	°C	°C	°C	
92	484	529			219	400	147						528	226	<u>Ej.</u> inv.
93					248	392	131						514	285	Ej. inv.
94	497	534	459	519	279	384	128					519	544	289	Ej. inv.
95	458	535	469	504	239	402	125	382	513	258	357		532	271	Ej. inv.
96	435	507			311	379	622						444	322	Ej. inv.
97					304	376	456	419	509	330	368		459	344	<u>Ej.</u> inv.
98	427	504			306	364	537						451	337	Ej. inv.
99	415	522					526			312	379	522	438	321	Ej. inv.
100	472	527			289	365	61						591	408	Ej. inv.
101	492	527	451	536	302	362	133						550	330	<u>Ej.</u> inv.
102	459	504			323	359	534					504	551	354	Ej. inv.
103	461	524					246			285	353		545	317	Ej. inv.
104	453	517			288	409	372						521	373	Ej. inv.
105					336	397	353	453	530	340	373		508	361	<u>Ej.</u> inv.

Tabla 14

	reca	eso de lenta- nto 1	Proce recal mier	enta-	Proce recal mier	enta-	Pro- ceso de reten- ción	Proce recal mier	enta-	Proces recalenta 5		Proceso de aleación	ormación de	ormación de s)	
Experimento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Tiempo de retención	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de aleación	Temp. de inicio de transformación de bainita (Bs)	Temp. de inicio de transformación de martensita (Ms)	
	°C	°C	°C	°C	°C	°C	seg	°C	°C	°C	°C	°C	°C	°C	
106	468	515			291	415	410						521	371	Ej. inv.
107	495	552	465	502	309	381	232	441	539				519	362	<u>Ej.</u> inv.
108	441	523			300	368	783						469	335	Ej. inv.
109	422	519			309	419	625						449	316	Ej. inv.
110	429	535			284	378	655					488	457	301	Ej. inv.
111	441	541	444	518			285			299	378		466	305	Ej. inv.
112	373	542			200	355	272						384	213	<u>Ej.</u> inv.
113	373	540			213	422	220						387	245	Ej. inv.
114	409	550	396	515			270			240	369		412	255	Ej. inv.
115	399	536			218	409	286						410	252	Ej. comp.
116	471	506			302	409	232						-	-	Ej. comp.
117	477	527			289	377	284						595	401	Ej. comp.
118	481	527			275	374	228						648	304	Ej. comp.
119	438	540					275			319	375		449	300	Ej. inv.
120	454	511			308	35	101						468	338	Ej. inv.
121					344	319	106	365	503			500	485	366	Ej. inv.
122	464	526					77			275	382		565	383	Ej. inv.
123					357	399	100	380	519			517	558	373	<u>Ej.</u> inv.

	reca	eso de lenta- nto 1	Proce recal mier	enta-	Proce recal mier	enta-	Pro- ceso de reten- ción	Proce recal mier	enta-	Proces recalenta- 5		Proceso de aleación	ormación de	ormación de ;)	
Experimento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Tiempo de retención	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de detención del enfriamiento	Temp. de detención del recalentamiento	Temp. de aleación	Temp. de inicio de transformación de bainita (Bs)	Temp. de inicio de transformación de martensita (Ms)	
	°C	°C	°C	°C	°C	°C	seg	°C	°C	°C	°C	°C	°C	°C	
124	484	532			298	405	98						575	387	Ej. inv.
125					343	370	87	361	509			503	574	385	Ej. inv.
126	473	536					73			241	357		470	286	Ej. inv.
127					297	380	100	349	508			498	487	314	<u>Ej.</u> inv.

En el proceso de recocido, primero se calentó las láminas de acero a las temperaturas de calentamiento máximas descritas en las tablas de 7 a 10 con tasas de calentamiento promedio de entre la (temperatura de calentamiento máxima -20 °C) y la temperatura de calentamiento máxima de las tasas de calentamiento promedio descritas en las tablas de 7 a 10. Después, en el primer proceso de enfriamiento (enfriamiento primario) de la temperatura de calentamiento máxima a 700 °C, se enfriaron con las tasas de enfriamiento promedio descritas en las tablas de 7 a 10. Además, en el segundo proceso de enfriamiento (enfriamiento secundario) de 700 °C, se enfriaron con las tasas de enfriamiento promedio descritas en las tablas de 7 a 10.

5

Después de eso, las láminas de acero se recalentaron del punto Bs o 480 °C o menos a 500 °C o más de 1 a 3 veces (procesos de recalentamiento 1, 2 y 4) y, además, se recalentaron del punto Ms o 350 °C o menos a 350 °C o más 1 o 2 veces (procesos de recalentamiento 3 y 5).

Después del proceso de recalentamiento 3, las láminas de acero se retuvieron en un intervalo de entre 300 y 450 °C durante exactamente las veces descritas en las tablas de 11 a 14, luego se trataron a través de los procesos de recalentamiento 4 y 5 y se enfriaron hasta temperatura ambiente.

- Después de enfriarse hasta temperatura ambiente, en los experimentos de 6 a 49, las láminas de acero se laminaron en frío en un 0,15 %, en los experimentos de 60 a 83, las láminas de acero se laminaron en frío en un 0,30 %, en el experimento 89, la lámina de acero se laminó en frío en un 1,50 %, en el experimento 93, la lámina de acero se laminó en frío en un 1,00 %, y en los experimentos de 96 a 118 y de 120 a 127, las láminas de acero se laminaron en frío en un 0,25 %.
- Los tipos de láminas en los experimentos se muestran en las tablas como lámina de acero laminada en frío (CR), lámina de acero laminada en caliente (HR), lámina de acero galvanizada electrolíticamente (EG), lámina de acero galvanizada por inmersión en caliente (GI), lámina de acero zincada por inmersión en caliente (GA), y lámina de acero laminada en caliente y zincada por inmersión en caliente (HR-GA) (lo mismo en las tablas que se muestran a continuación).
- Los experimentos 13, 23, 33, 91, 95, 107 y 114 son ejemplos en los que las láminas de acero se electrodepositan después del proceso de recocido para obtener láminas de acero galvanizadas (EG).
 - Los experimentos 4, 18, 43, 83 y 87 son ejemplos en los que después del segundo proceso de enfriamiento, las láminas de acero se sumergen en un baño de galvanizado hasta el tratamiento de retención en un intervalo de entre 350 y 450 °C para obtener láminas de acero galvanizadas por inmersión en caliente (GI).
- Los experimentos 48, 53, 58, 98 y 103 son ejemplos en los que después del tratamiento de retención en un intervalo de entre 300 y 450 °C, las láminas de acero se sumergen en un baño de galvanizado, luego se enfrían a temperatura ambiente para obtener láminas de acero galvanizadas por inmersión en caliente (GI).

Los experimentos 3, 5, 9, 34, 38, 44, 49, 67, 86, 90, 94, 99, 102 y 110 son ejemplos en los que después del segundo proceso de enfriamiento, las láminas de acero se sumergen en un baño de galvanizado hasta retener en un intervalo de entre 350 y 450 °C y luego son tratadas para su aleación a las temperaturas descritas para obtener láminas de acero zincadas (GA).

- Los experimentos 22, 24, 54, 59, 63, 71, 75, 79, 121, 123, 125 y 127 son ejemplos en los que después del tratamiento de retención en un intervalo de entre 300 y 450 °C, las láminas de acero se sumergen en un baño de galvanizado y son tratadas para su aleación a las temperaturas descritas para obtener láminas de acero zincadas por inmersión en caliente.
- Los experimentos 9, 63 y 90 son ejemplos en los que a las superficies de las capas de revestimiento se les proporcionan películas compuestas por óxidos compuestos basados en P.

Las tablas de 15 a 18 proporcionan los resultados del análisis de las microestructuras de las láminas de acero de los experimentos de 1 a 127. En las fracciones de microestructura, las cantidades de austenita residual (γ residual) se midieron mediante difracción de rayos X en planos paralelos al espesor de la lámina en un 1/4 de espesor. El resto proporciona los resultados de la medición de las fracciones de microestructuras en el intervalo de entre 1/8 de espesor y 3/8 de espesor. Las secciones transversales de los espesores de las láminas paralelas a la dirección de la laminación se recortaron, se pulieron para reflejar las superficies, se grabaron con Nital, luego se examinaron utilizando microscopio electrónico de barrido de emisión de campo (FE-SEM).

Tabla 15

15

			Result	ados d	e la ob	servaci	ón de l	as microestri	ucturas	
Cynorimonto	Ingredientes	Tipo de			Frac	cción de	e volun	nen		1
Experimento	químicos	acero	F	В	BF	TM	М	γ residual	Otros	ı
			%	%	%	%	%	%	%	
1	А	CR	12	6	41	32	0	8	1	Ej. inv.
2	А	CR	55	5	17	18	1	4	0	Ej. inv.
3	А	GA	54	6	25	10	0	5	0	Ej. inv.
4	А	GI	54	18	9	15	1	3	0	Ej. inv.
5	А	HR-GA	57	3	20	13	0	6	1	Ej. inv.
6	В	CR	36	8	23	21	1	10	1	Ej. inv.
7	В	CR	39	5	17	28	0	11	0	Ej. inv.
8	В	CR	26	4	42	15	0	13	0	Ej. inv.
9	В	GA	41	5	31	<u>8</u>	0	15	0	Ej. ref.
10	С	CR	13	11	31	39	0	6	0	Ej. inv.
11	С	CR	13	2	42	36	0	7	0	Ej. inv.
12	С	CR	27	3	28	36	1	5	0	Ej. inv.
13	С	EG	14	5	28	48	0	5	0	Ej. inv.
14	С	HR	17	4	<u>50</u>	20	2	5	2	Ej. ref.
15	D	CR	32	1	21	30	0	15	1	Ej. inv.
16	D	CR	33	2	26	28	0	11	0	Ej. inv.
17	D	CR	32	6	18	29	1	13	1	Ej. inv.
18	D	GI	31	2	17	33	0	17	0	Ej. inv.
19	D	HR	32	7	20	22	0	19	0	Ej. inv.
20	Е	CR	43	1	24	20	0	12	0	Ej. inv.
21	Е	CR	38	4	20	30	0	8	0	Ej. inv.
22	Е	GA	31	3	21	25	2	16	2	Ej. inv.
23	Е	EG	39	1	19	29	0	12	0	Ej. inv.

			Result	ados d	e la ob	servaci	ón de l	as microestri	ucturas	
Evacrimente	Ingredientes	Tipo de			Fra	cción de	e volun	nen		
Experimento	químicos	acero	F	В	BF	TM	М	γ residual	Otros	
			%	%	%	%	%	%	%	
24	E	HR-GA	42	9	22	15	1	11	0	Ej. inv.
25	F	CR	41	3	18	29	0	9	0	Ej. inv.
26	F	CR	15	0	29	46	0	9	1	Ej. inv.
27	F	CR	12	<u>3</u>	<u>51</u>	25	0	9	0	Ej. inv.
28	F	CR	0	<u>23</u>	<u>35</u>	35	0	6	1	Ej. comp.
29	F	HR	14	11	38	30	0	7	0	Ej. ref.
30	G	CR	56	3	18	9	0	14	0	Ej. ref.
31	G	CR	50	0	22	11	0	17	0	Ej. inv.
32	G	CR	66	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>0</u>	34	Ej. comp.
33	G	EG	55	0	23	10	0	12	0	Ej. inv.
34	G	HR-GA	53	3	13	22	0	8	1	Ej. inv.
35	Н	CR	37	7	17	26	0	13	0	Ej. inv.

Tabla 16

			Result	tados d	e la ob	servació	ón de l	as microestr	ucturas	
Cym a rinn a mta	Ingrediente	Tipo de			Frac	cción de	volun	nen		
Experimento	químico	acero	F	В	BF	TM	М	γ residual	Otros	
			%	%	%	%	%	%	%	
36	Н	CR	21	7	31	29	0	11	1	Ej. inv.
37	Н	CR	<u>0</u>	<u>6</u>	<u>45</u>	39	0	10	0	Ej. comp.
38	Н	GA	58	2	12	15	0	13	0	Ej. inv.
39	Н	HR	52	3	14	21	0	10	0	Ej. inv.
40	I	CR	50	4	18	23	0	5	0	Ej. inv.
41	l	CR	43	4	22	26	2	3	0	Ej. inv.
42	l	CR	67	18	2	<u>5</u>	0	<u>0</u>	8	Ej. comp.
43	1	GI	46	3	22	20	3	6	0	Ej. inv.
44	I	HR-GA	41	1	37	15	0	3	3	Ej. inv.
45	J	CR	38	7	14	28	0	13	0	Ej. inv.
46	J	CR	36	6	16	26	0	16	0	Ej. inv.
47	J	CR	73	13	2	<u>5</u>	0	1	6	Ej. comp.
48	J	GI	32	2	17	30	0	19	0	Ej. inv.
49	J	HR-GA	27	10	30	17	0	16	0	Ej. inv.
50	K	CR	28	2	41	14	0	15	0	Ej. inv.
51	K	CR	53	9	18	10	0	10	0	Ej. inv.
52	К	CR	35	0	33	17	3	12	0	Ej. comp.
53	К	GI	42	1	33	13	0	11	0	Ej. inv.
54	K	HR-GA	42	3	17	25	1	11	1	Ej. inv.

			Result	ados d	e la ob	servació	ón de l	as microestr	ucturas	
Experimento	Ingrediente	Tipo de			Frac	cción de	volun	nen		
Experimento	químico	acero	F	В	BF	TM	М	γ residual	Otros	
			%	%	%	%	%	%	%	
55	L	CR	40	13	37	<u>5</u>	0	5	0	Ej. ref.
56	L	CR	26	4	<u>50</u>	15	1	4	0	Ej. ref.
57	L	CR	39	11	36	<u>7</u>	1	6	0	Ej. comp.
58	L	GI	24	<u>5</u>	<u>49</u>	17	0	4	1	Ej. ref.
59	L	HR-GA	26	14	36	20	0	4	0	Ej. inv.
60	М	CR	32	5	36	18	0	9	0	Ej. inv.
61	М	CR	42	5	21	20	0	12	0	Ej. inv.
62	М	CR	49	4	24	<u>7</u>	2	14	0	Ej. comp.
63	М	GA	47	0	19	20	2	12	0	Ej. inv.
64	N	CR	<u>0</u>	1	<u>55</u>	35	0	9	0	Ej. ref.
65	N	CR	19	4	42	25	1	9	0	Ej. inv.
66	N	CR	39	1	23	22	1	14	0	Ej. comp.
67	N	GA	27	0	44	16	0	13	0	Ej. inv.
68	0	CR	36	1	20	34	2	7	0	Ej. inv.
69	0	CR	35	3	43	13	0	6	0	Ej. inv.
70	0	CR	41	5	33	13	2	6	0	Ej. comp.

Tabla 17

			Result	tados d	e la ob	servacić	n de l	as microestr	ucturas	
Experimento	Ingredientes	Tipo de			Frac	cción de	volun	nen		
Lxperimento	químicos	acero	F	В	BF	TM	М	γ residual	Otros	
			%	%	%	%	%	%	%	
71	0	GA	41	3	33	15	0	8	0	Ej. inv.
72	Р	CR	<u>0</u>	5	39	46	1	9	0	Ej. ref.
73	Р	CR	18	3	42	28	1	8	0	Ej. inv.
74	Р	CR	35	4	31	13	8	9	0	Ej. comp.
75	Р	GA	34	2	32	28	0	4	0	Ej. inv.
76	Q	CR	50	5	20	11	0	13	1	Ej. inv.
77	Q	CR	54	1	15	20	0	10	0	Ej. inv.
78	Q	CR	51	1	11	28	0	9	0	Ej. comp.
79	Q	GA	46	0	16	23	0	15	0	Ej. inv.
80	R	CR	36	0	30	25	0	7	2	Ej. inv.
81	R	CR	53	7	15	19	0	6	0	Ej. inv.
82	R	GA	55	4	13	20	2	6	0	Ej. comp.
83	R	GI	41	0	18	29	3	6	3	Ej. inv.
84	S	CR	52	10	13	11	0	14	0	Ej. inv.
85	S	CR	43	8	13	24	0	12	0	Ej. inv.

			Result	tados d	e la ob	servació	n de l	as microestri	ucturas	
Evacrimente	Ingredientes	Tipo de			Frac	cción de	volun	nen		
Experimento	químicos	acero	F	В	BF	TM	М	γ residual	Otros	
			%	%	%	%	%	%	%	
86	S	GA	50	5	15	17	0	13	0	Ej. inv.
87	S	GI	45	1	20	16	2	15	1	Ej. inv.
88	Т	CR	<u>3</u>	<u>4</u>	<u>60</u>	27	1	5	0	Ej. ref.
89	Т	CR	37	0	22	33	1	7	0	Ej. inv.
90	Т	GA	15	2	35	40	0	7	1	Ej. inv.
91	Т	EG	12	1	<u>57</u>	21	0	8	1	Ej. ref.
92	U	CR	57	2	17	9	1	13	1	Ej. ref.
93	U	CR	52	6	23	9	0	10	0	Ej. ref.
94	U	GA	46	5	22	16	0	11	0	Ej. inv.
95	U	EG	53	0	21	17	0	9	0	Ej. inv.
96	V	CR	30	5	42	13	2	7	1	Ej. inv.
97	V	CR	14	5	36	36	1	7	1	Ej. inv.
98	V	GI	15	1	30	44	0	10	0	Ej. inv.
99	V	GA	32	4	28	30	0	6	0	Ej. inv.
100	W	CR	17	11	33	30	1	7	1	Ej. inv.
101	W	CR	68	1	9	18	0	4	0	Ej. inv.
102	W	GA	65	5	9	14	0	6	1	Ej. inv.
103	W	GI	65	1	22	9	0	3	0	Ej. ref.
104	Х	CR	38	5	20	28	0	7	2	Ej. inv.
105	Х	CR	47	1	27	21	0	4	0	Ej. inv.

Tabla 18

			Result	tados d	e la ob	servació	n de l	as microestr	ucturas	
Cyporimonto	Ingredientes	Tipo de			Frac	cción de	volun	nen		
Experimento	químicos	acero	F	В	BF	TM	М	γ residual	Otros	
			%	%	%	%	%	%	%	
106	Х	CR	38	5	35	15	1	6	0	Ej. inv.
107	Х	EG	47	4	26	19	0	3	1	Ej. inv.
108	Υ	CR	41	1	31	18	0	8	1	Ej. inv.
109	Υ	CR	54	4	29	<u>8</u>	0	5	0	Ej. ref.
110	Υ	GA	52	13	15	14	0	6	0	Ej. inv.
111	Υ	CR	48	3	19	19	1	10	0	Ej. inv.
112	Z	CR	59	3	23	<u>6</u>	0	9	0	Ej. ref.
113	Z	CR	62	1	13	15	0	9	0	Ej. inv.
114	Z	EG	59	5	10	17	0	9	0	Ej. inv.
115	Z	CR	60	7	10	12	0	9	2	Ej. comp.
116	AA	CR	98	<u>0</u>	<u>0</u>	<u>0</u>	0	<u>0</u>	2	Ej. comp.

			Result	tados d	e la ob	servació	n de l	as microestri	ucturas	
Experimento	Ingredientes	Tipo de			Frac	cción de	volun	nen		
Experimento	químicos	acero	F	В	BF	TM	М	γ residual	Otros	
			%	%	%	%	%	%	%	
117	AB	CR	35	31	8	23	0	<u>0</u>	3	Ej. comp.
118	AC	CR	72	15	0	9	0	<u>0</u>	4	Ej. comp.
119	В	HR	31	5	34	13	0	17	0	Ej. inv.
120	AD	CR	48	7	24	15	0	6	0	Ej. inv.
121	AD	GA	22	<u>21</u>	<u>37</u>	16	0	4	0	Ej. ref.
122	AE	CR	<u>4</u>	<u>31</u>	<u>33</u>	19	1	11	1	Ej. ref.
123	AE	GA	16	<u>28</u>	<u>38</u>	10	0	8	0	Ej. ref.
124	AF	CR	<u>7</u>	0	31	45	2	13	2	Ej. ref.
125	AF	GA	9	7	43	28	0	12	1	Ej. ref.
126	AG	CR	36	6	23	21	0	14	0	Ej. inv.
127	AG	GA	22	<u>31</u>	<u>22</u>	14	2	9	0	Ej. ref.

Las tablas de 19 a 22 muestran los resultados de la medición de las fracciones de austenita residual y las cantidades de solución sólida C en la austenita residual después de las pruebas de tratamiento de enfriamiento profundo. Estas se midieron mediante difracción de rayos X en planos paralelos al espesor de la lámina en 1/4 de espesor. Los puntos Ms_r se midieron preparando nitrógeno líquido

(-198 °C) y se enfrió etanol utilizando nitrógeno líquido en aumentos de 20 °C de 0 °C a -100 °C, reteniendo las láminas de acero a esas temperaturas durante 1 hora, luego midiendo las fracciones de austenita residual y utilizando las temperaturas máximas a las que las fracciones de austenita caen como los puntos Ms_r de la fase de austenita residual.

Tabla 19

			Te	emp. de trans	formación d	e γ residual		
Experimento	Ingredientes	Tipo de	Punto Ms _r		volumen d n en nitróge		Cantidad de	
Experimento	químicos	acero	i unto ivior	1°	3°	5°	solución sólida C	
			°C				%	
1	А	CR	< -198	G	G	G	0,93	Ej. inv.
2	А	CR	< -198	G	G	G	0,88	Ej. inv.
3	А	GA	< -198	G	G	G	0,89	Ej. inv.
4	А	GI	< -198	G	G	G	1,07	Ej. inv.
5	А	HR-GA	< -198	G	G	G	0,89	Ej. inv.
6	В	CR	< -198	G	G	G	0,95	Ej. inv.
7	В	CR	< -198	G	G	G	1,02	Ej. inv.
8	В	CR	< -198	G	G	G	1,07	Ej. inv.
9	В	GA	< -198	G	G	G	0,96	Ej. inv.
10	С	CR	< -198	G	G	G	0,96	Ej. inv.
11	С	CR	< -198	G	G	G	0,90	Ej. inv.
12	С	CR	Entre -100 y -80	Р			1,01	Ej. inv.
13	С	EG	< -198	G	G	G	1,01	Ej. inv.

			Te	emp. de trans	formación d	e γ residual		
Experimento	Ingredientes	Tipo de	Punto Ms _r	Fracción de la inmersión			Cantidad de	
Experimento	químicos	acero	T drito ivis	1°	3°	5°	solución sólida C	
			°C				%	
14	С	HR	< -198	G	G	G	0,99	Ej. inv.
15	D	CR	< -198	G	G	G	0,98	Ej. inv.
16	D	CR	< -198	G	G	G	1,03	Ej. inv.
17	D	CR	Entre -100 y -80	Р			0,92	Ej. inv.
18	D	GI	< -198	G	G	G	0,88	Ej. inv.
19	D	HR	< -198	G	G	G	0,95	Ej. inv.
20	E	CR	< -198	G	G	G	0,94	Ej. inv.
21	E	CR	< -198	G	G	G	1,05	Ej. inv.
22	E	GA	< -198	G	G	G	1,04	Ej. inv.
23	E	EG	< -198	G	G	G	0,88	Ej. inv.
24	E	HR-GA	< -198	G	G	G	0,96	Ej. inv.
25	F	CR	< -198	G	G	G	1,01	Ej. inv.
26	F	CR	< -198	G	G	G	1,02	Ej. inv.
27	F	CR	< -198	G	G	G	1,05	Ej. inv.
28	F	CR	< -198	G	G	G	0,97	<u>Ej.</u> comp.
29	F	HR	< -198	G	G	G	0,93	Ej. inv.
30	G	CR	< -198	G	G	G	0,98	Ej. inv.
31	G	CR	< -198	G	G	G	1,07	Ej. inv.
32	G	CR		Sin aus	stenita resid	ual		Ej. comp.
33	G	EG	< -198	G	G	G	1,04	Ej. inv.
34	G	HR-GA	< -198	G	G	G	1,06	Ej. inv.
35	Н	CR	< -198	G	G	G	0,99	Ej. inv.

Tabla 20

			Те	mp. de trans	formación d	e γ residual		
Experimento	Ingredientes químicos	Tipo de acero	Punto Ms _r		e volumen de n en nitrógei	espués de la no líquido	Cantidad de solución sólida C	
			°C	1°	3°	5°	%	
36	Н	CR	< -198	G	G	G	0,99	Ej. inv.
37	Н	CR	< -198	G	G	G	1,06	Ej. comp.
38	Н	GA	< -198	G	G	G	0,92	Ej. inv.
39	Н	HR	< -198	G	G	G	0,97	Ej. inv.
40	I	CR	< -198	G	G	G	0,91	Ej. inv.
41	I	CR	< -198	G	G	G	0,90	Ej. inv.

ES 2 733 452 T3

			Temp. de transformación de γ residual							
Experimento	Ingredientes químicos	Tipo de acero	Punto Ms _r		espués de la no líquido	Cantidad de solución sólida C				
			°C	1°	3°	5°	%			
42	I	CR		Sin au	stenita resid	ual		Ej. comp.		
43	I	GI	< -198	G	G	G	1,03	Ej. inv.		
44	I	HR-GA	< -198	G	G	G	1,02	Ej. inv.		
45	J	CR	< -198	G	G	G	0,94	Ej. inv.		
46	J	CR	< -198	G	G	G	1,00	Ej. inv.		
47	J	CR	> 0	Р			0,98	Ej. comp.		
48	J	GI	< -198	G	G	G	0,95	Ej. inv.		
49	J	HR-GA	< -198	G	G	G	1,03	Ej. inv.		
50	K	CR	< -198	G	G	G	1,06	Ej. inv.		
51	K	CR	< -198	G	G	G	0,93	Ej. inv.		
52	K	CR	Entre -40 y -20	Р			0,99	Ej. comp.		
53	K	GI	< -198	G	G	G	0,88	Ej. inv.		
54	К	HR-GA	< -198	G	G	G	1,03	Ej. inv.		
55	L	CR	< -198	G	G	G	1,06	Ej. inv.		
56	L	CR	< -198	G	G	G	0,95	Ej. inv.		
57	L	CR	Entre -60 y -40	Р			0,98	Ej. comp.		
58	L	GI	< -198	G	G	G	0,97	Ej. inv.		
59	L	HR-GA	< -198	G	G	G	0,92	Ej. inv.		
60	М	CR	< -198	G	G	G	1,01	Ej. inv.		
61	М	CR	< -198	G	G	G	1,00	Ej. inv.		
62	М	CR	Entre -40 y -20	Р			0,93	Ej. comp.		
63	М	GA	< -198	G	G	G	1,02	Ej. inv.		
64	N	CR	< -198	G	G	G	0,96	Ej. inv.		
65	N	CR	< -198	G	G	G	0,91	Ej. inv.		
66	N	CR	Entre -40 y -20	Р			0,92	Ej. comp.		
67	N	GA	< -198	G	G	G	0,94	Ej. inv.		
68	0	CR	< -198	G	G	G	0,99	Ej. inv.		
69	0	CR	< -198	G	G	G	0,95	Ej. inv.		
70	0	CR	Entre -60 y -40	Р			0,94	Ej. comp.		

ES 2 733 452 T3

Tabla 21

			Temp. de transformación de γ residual								
Experimento	Ingredientes químicos	Tipo de acero	Punto Ms _r		volumen de n en nitrógei	Cantidad de solución sólida C					
			°C	1°	3°	5°	%				
71	0	GA	< -198	G	G	G	0,90	Ej. inv.			
72	Р	CR	< -198	G	G	G	0,93	Ej. inv.			
73	Р	CR	< -198	G	G	G	1,06	Ej. inv.			
74	Р	CR	Entre -20 y 0	Р			0,74	Ej. comp.			
75	Р	GA	< -198	G	G	G	1,02	Ej. inv.			
76	Q	CR	< -198	G	G	G	1,04	Ej. inv.			
77	Q	CR	< -198	G	G	G	1,02	Ej. inv.			
78	Q	CR	Entre -40 y -20	Р			0,78	Ej. comp.			
79	Q	GA	< -198	G	G	G	0,91	Ej. inv.			
80	R	CR	< -198	G	G	G	1,05	Ej. inv.			
81	R	CR	< -198	G	G	G	0,97	Ej. inv.			
82	R	GA	Entre -40 y -20	Р			0,94	Ej. comp.			
83	R	GI	< -198	G	G	G	1,01	Ej. inv.			
84	S	CR	< -198	G	G	G	0,90	Ej. inv.			
85	S	CR	< -198	G	G	G	1,02	Ej. inv.			
86	S	GA	< -198	G	G	G	0,99	Ej. inv.			
87	S	GI	< -198	G	G	G	1,05	Ej. inv.			
88	Т	CR	< -198	G	G	G	1,03	Ej. inv.			
89	Т	CR	< -198	G	G	G	1,03	Ej. inv.			
90	Т	GA	< -198	G	G	G	1,03	Ej. inv.			
91	Т	EG	< -198	G	G	G	1,03	Ej. inv.			
92	U	CR	< -198	G	G	G	0,89	Ej. inv.			
93	U	CR	< -198	G	G	G	1,02	Ej. inv.			
94	U	GA	< -198	G	G	G	0,99	Ej. inv.			
95	U	EG	< -198	G	G	G	0,92	Ej. inv.			
96	V	CR	< -198	G	G	G	0,95	Ej. inv.			
97	V	CR	< -198	G	G	G	0,94	Ej. inv.			
98	V	GI	< -198	G	G	G	1,05	Ej. inv.			
99	V	GA	< -198	G	G	G	0,95	Ej. inv.			
100	W	CR	< -198	G	G	G	0,89	Ej. inv.			
101	W	CR	< -198	G	G	G	0,93	Ej. inv.			
102	W	GA	< -198	G	G	G	1,07	Ej. inv.			
103	W	GI	< -198	G	G	G	0,92	Ej. inv.			
104	X	CR	< -198	G	G	G	1,05	Ej. inv.			
105	X	CR	< -198	G	G	G	1,00	Ej. inv.			

Tabla 22

5

10

15

			Temp. de transformación de γ residual							
Experimento	Ingredientes químicos	Tipo de acero	Punto Ms _r		e volumen de n en nitróge	espués de la no líquido	Cantidad de solución sólida C			
			°C	1°	3°	5°	%			
106	X	CR	< -198	G	Р		0,89	Ej. inv.		
107	Х	EG	< -198	G	G	G	1,07	Ej. inv.		
108	Y	CR	< -198	G	G	G	0,96	Ej. inv.		
109	Y	CR	< -198	G	G	G	0,93	Ej. inv.		
110	Y	GA	< -198	G	G	G	0,99	Ej. inv.		
111	Y	CR	< -198	G	G	G	1,04	Ej. inv.		
112	Z	CR	< -198	G	G	G	1,01	Ej. inv.		
113	Z	CR	< -198	G	G	G	0,91	Ej. inv.		
114	Z	EG	< -198	G	G	G	1,05	Ej. inv.		
115	Z	CR	< -198	G	G	G	0,95	Ej. comp.		
116	AA	CR		Sin au	stenita resid	ual		Ej. comp.		
117	AB	CR		Sin au	stenita resid	ual		Ej. comp.		
118	AC	CR		Sin au	stenita resid	ual		Ej. comp.		
119	В	HR	< -198	G	G	G	0,90	Ej. inv.		
120	AD	CR	< -198	G	G	G	0,99	Ej. inv.		
121	AD	GA	< -198	G	G	G	0,89	Ej. inv.		
122	AE	CR	< -198	G	G	G	0,99	Ej. inv.		
123	AE	GA	< -198	G	G	G	0,86	Ej. inv.		
124	AF	CR	< -198	G	G	G	0,93	Ej. inv.		
125	AF	GA	< -198	G	G	G	0,90	Ej. inv.		
126	AG	CR	< -198	G	G	G	0,89	Ej. inv.		
127	AG	GA	< -198	G	G	G	0,87	Ej. inv.		

En el tratamiento de inmersión en nitrógeno líquido, la operación desde la inmersión de la lámina de acero en nitrógeno líquido durante 1 hora, hasta retirarla y dejarla reposar en el aire hasta alcanzar temperatura ambiente se cuenta como un tratamiento. Las fracciones de austenita residual se midieron en los puntos temporales de los finales del primer, tercer y 10° tratamientos. Las láminas de acero con fracciones de austenita residual que no cambiaron se evaluaron como "G (bueno)" mientras que las láminas de acero con fracciones de austenita residual que disminuyeron se evaluaron como "P (deficiente)".

Las tabas de 23 a 26 muestran la evaluación de las propiedades de las láminas de acero de los experimentos de 1 a 127. En ese momento, se tomaron piezas de prueba de tracción basadas en JIS Z 2201 de las láminas de acero de los experimentos de 1 a 127 y se sometieron a pruebas de tracción basadas en JIS Z 2241 para medir el límite elástico (YS), la resistencia a la tracción (TS) y la elongación total (EL).

La figura 2 muestra la relación entre la resistencia a la tracción (TS) y la elongación total (EL), mientras que la figura 3 muestra la relación entre la resistencia a la tracción (TS) y la tasa de expansión de agujero (λ) que sirve como un indicador de la capacidad de embridado elástico. Las láminas de acero de la presente invención satisfacen todos los siguientes TS≥900 MPa, TS×EL≥17000 MPa %, TS×λ≥24000 MPa %. Las láminas de acero de los ejemplos comparativos no son láminas de acero que satisfacen todos estos.

Tabla 23

			Resultad	dos de la n materia		n del	TS × EL	TS×λ	
Experimento	Ingredientes químicos	Tipo de acero	YS	TS	EL	λ			
			MPa	MPa	%	%	% de MPa	% de MPa	
1	A	CR	943	1026	19	54	19 494	55 404	Ej. inv.
2	А	CR	503	1004	19	39	19 076	39 086	Ej. inv.
3	A	GA	474	982	20	37	19 640	36 315	Ej. inv.
4	A	GI	492	998	19	40	18 962	40 202	Ej. inv.
5	A	HR-GA	493	941	23	48	21 643	45 168	Ej. inv.
6	В	CR	777	1102	19	42	20 938	46 284	Ej. inv.
7	В	CR	729	1143	20	41	22 860	46 863	Ej. inv.
8	В	CR	872	1426	14	24	19 964	34 224	Ej. inv.
9	В	GA	674	1163	21	39	24 423	45 357	Ej. inv.
10	С	CR	835	980	23	45	22 540	44 100	Ej. inv.
11	С	CR	846	992	20	46	19 840	45 632	Ej. inv.
12	С	CR	778	969	20	27	19 380	26 163	Ej. inv.
13	С	EG	959	1074	20	47	21 480	50 478	Ej. inv.
14	С	HR	707	937	20	47	18 740	43 955	Ej. inv.
15	D	CR	906	1213	19	38	23 047	46 094	Ej. inv.
16	D	CR	873	1205	18	47	21 690	56 635	Ej. inv.
17	D	CR	830	1193	19	24	22 667	28 632	Ej. inv.
18	D	GI	1000	1306	17	37	22 202	48 322	Ej. inv.
19	D	HR	752	1179	20	36	23 580	42 444	Ej. inv.
20	E	CR	611	1094	17	43	18 598	47 042	Ej. inv.
21	E	CR	694	1168	19	43	22 192	50 224	Ej. inv.
22	E	GA	836	1093	19	39	20 767	42 627	Ej. inv.
23	E	EG	723	1122	16	44	17 952	49 368	Ej. inv.
24	E	HR-GA	657	1055	20	51	21 100	53 805	Ej. inv.
25	F	CR	578	1010	23	48	23 230	48 480	Ej. inv.
26	F	CR	762	1021	21	52	21 441	53 092	Ej. inv.
27	F	CR	945	1129	19	41	21 451	46 289	Ej. inv.
28	F	CR	1061	1137	8	<u>14</u>	9096	<u>15 918</u>	Ej. comp.
29	F	HR	829	1078	18	44	19 404	47 432	Ej. inv.
30	G	CR	505	1093	22	41	24 046	44 813	Ej. inv.
31	G	CR	699	1160	18	50	20 880	58 000	Ej. inv.
32	G	CR	483	642	15	<u>17</u>	9630	10 914	Ej. comp.
33	G	EG	581	1147	22	50	25 234	57 350	Ej. inv.
34	G	HR-GA	619	1158	17	48	19 686	55 584	Ej. inv.
35	Н	CR	665	1071	16	46	17 136	49 596	Ej. inv.

ES 2 733 452 T3

Tabla 24

Experimento			Resultad	dos de la n materia		n del	TS × EL	TS×λ	
	Ingredientes químicos	Tipo de acero	YS	TS	EL	λ			
		0.00.0	MPa	MPa	%	%	% de MPa	% de MPa	
36	Н	CR	942	1155	18	52	20 790	60 060	Ej. inv.
37	Н	CR	1017	1106	<u>8</u>	9	8848	9954	Ej. comp.
38	Н	GA	477	1103	19	37	20 957	40 811	Ej. inv.
39	Н	HR	590	1095	19	48	20 805	52 560	Ej. inv.
40	I	CR	546	935	23	49	21 505	45 815	Ej. inv.
41	I	CR	513	925	19	63	17 575	58 275	Ej. inv.
42	I	CR	460	<u>861</u>	13	2	<u>11 193</u>	<u>1722</u>	Ej. comp.
43	I	GI	564	998	18	48	17 964	47 520	Ej. inv.
44	I	HR-GA	630	955	18	59	17 190	56 015	Ej. inv.
45	J	CR	680	1038	22	43	22 836	44 634	Ej. inv.
46	J	CR	606	991	22	50	21 802	49 550	Ej. inv.
47	J	CR	511	<u>765</u>	16	<u>3</u>	12 240	2295	Ej. comp.
48	J	GI	652	977	24	45	23 448	43 965	Ej. inv.
49	J	HR-GA	743	1046	21	37	21 966	38 702	Ej. inv.
50	K	CR	820	1154	20	49	23 080	56 546	Ej. inv.
51	K	CR	584	1118	20	47	22 360	52 546	Ej. inv.
52	K	CR	895	1227	13	1	<u>15 951</u>	1227	Ej. comp.
53	K	GI	720	1142	18	44	20 556	50 248	Ej. inv.
54	K	HR-GA	766	1141	16	40	18 256	45 640	Ej. inv.
55	L	CR	615	998	19	38	18 962	37 924	Ej. inv.
56	L	CR	687	925	22	47	20 350	43 475	Ej. inv.
57	L	CR	656	964	21	14	20 244	13 496	Ej. comp.
58	L	GI	736	1024	18	42	18 432	42 634	Ej. inv.
59	L	HR-GA	732	998	18	48	17 964	47 520	Ej. inv.
60	M	CR	1013	1346	16	30	21 536	40380	Ej. inv.
61	M	CR	1076	1421	15	28	21 315	39788	Ej. inv.
62	M	CR	826	1420	18	4	25 560	<u>5680</u>	Ej. comp.
63	M	GA	915	1443	13	26	18 759	37518	Ej. inv.
64	N	CR	1249	1443	14	29	20 202	41847	Ej. inv.
65	N	CR	962	1375	16	31	22 000	42625	Ej. inv.
66	N	CR	806	1333	17	8	22 661	10664	Ej. comp.
67	N	GA	932	1353	19	30	25 707	40590	Ej. inv.
68	0	CR	681	1019	20	49	20 380	49931	Ej. inv.
69	0	CR	655	980	24	35	23 520	34300	Ej. inv.
70	0	CR	615	1021	19	1 <u>5</u>	19 399	<u>15315</u>	Ej. comp.

Tabla 25

			Resultad	dos de la n materia		n del	TS × EL	TS × λ	
Experimento	Ingredientes químicos	Tipo de acero	YS	TS	EL	λ			
			MPa	MPa	%	%	% de MPa	% de MPa	
71	0	GA	659	1081	19	42	20 539	45 402	Ej. inv.
72	Р	CR	1002	1099	19	38	20 881	41 762	Ej. inv.
73	Р	CR	791	1034	18	39	18 612	40 672	Ej. inv.
74	Р	CR	707	980	19	4	18 620	3920	Ej. comp.
75	Р	GA	666	963	20	41	19 260	39 650	Ej. inv.
76	Q	CR	642	1118	17	37	19 006	41 366	Ej. inv.
77	Q	CR	569	1182	16	40	18 912	47 280	Ej. inv.
78	Q	CR	598	1206	17	7	20 502	8005	Ej. comp.
79	Q	GA	601	1101	22	50	24 222	55 050	Ej. inv.
80	R	CR	709	1162	19	38	22 078	44 156	Ej. inv.
81	R	CR	525	1070	20	38	21 400	40 660	Ej. inv.
82	R	GA	582	1134	18	<u>16</u>	20 412	<u>18 144</u>	Ej. comp.
83	R	GI	732	1128	16	43	18 048	48 504	Ej. inv.
84	S	CR	607	1228	16	39	19 648	47 892	Ej. inv.
85	S	CR	724	1209	18	41	21 762	49 569	Ej. inv.
86	S	GA	622	1211	20	54	24 220	65 394	Ej. inv.
87	S	GI	740	1238	17	47	21 046	58 186	Ej. inv.
88	Т	CR	1107	1157	16	36	18 512	41 652	Ej. inv.
89	Т	CR	871	1224	17	38	20 808	46 512	Ej. inv.
90	Т	GA	916	1149	19	41	21 831	47 109	Ej. inv.
91	Т	EG	1089	1184	16	44	18 944	52 096	Ej. inv.
92	U	CR	529	1130	20	54	22 600	61 020	Ej. inv.
93	U	CR	597	1137	17	43	19 329	48 891	Ej. inv.
94	U	GA	622	1052	20	52	21 040	54 704	Ej. inv.
95	U	EG	559	1042	19	40	19 798	41 680	Ej. inv.
96	V	CR	934	1210	15	41	18 150	49 610	Ej. inv.
97	V	CR	1055	1247	17	47	21 199	58 609	Ej. inv.
98	V	GI	900	1150	17	50	19 550	57 500	Ej. inv.
99	V	GA	795	1155	15	44	17 325	50 820	Ej. inv.
100	W	CR	878	982	22	45	21 604	44 190	Ej. inv.
101	W	CR	366	977	23	40	22 471	39 080	Ej. inv.
102	W	GA	37 5	934	21	51	19 614	47 634	Ej. inv.
103	W	GI	391	1013	17	44	17 221	44 572	Ej. inv.
104	X	CR	764	1104	16	47	17 664	51 610	Ej. inv.
105	X	CR	626	1112	18	41	20 016	45 592	Ej. inv.

Tabla 26

5

10

15

Experimento			Resulta	dos de la materi		ón del	TS × EL	TS×λ	
	Ingredientes químicos	Tipo de acero	YS	TS	EL	λ			
		0.00.0	MPa	MPa	%	%	% de MPa	% de MPa	
106	X	CR	707	1136	17	23	19 312	26 201	Ej. inv.
107	X	EG	663	1079	20	46	21 580	49 634	Ej. inv.
108	Υ	CR	742	1080	19	42	20 520	45 360	Ej. inv.
109	Y	CR	619	1128	19	39	21 432	43 992	Ej. inv.
110	Y	GA	543	1125	17	36	19 125	40 500	Ej. inv.
111	Y	CR	673	1188	19	47	22 572	55 836	Ej. inv.
112	Z	CR	606	1198	18	43	21 564	51 514	Ej. inv.
113	Z	CR	572	1245	17	33	21 165	41 085	Ej. inv.
114	Z	EG	583	1196	19	34	22 724	40 664	Ej. inv.
115	Z	CR	554	1152	4	<u>16</u>	<u>4608</u>	<u>18 432</u>	Ej. comp.
116	AA	CR	323	424	38	107	<u>16 112</u>	45 368	Ej. comp.
117	AB	CR	683	<u>766</u>	15	28	11 490	21 448	Ej. comp.
118	AC	CR	398	<u>834</u>	22	35	18 348	29 190	Ej. comp.
119	В	HR	833	1167	17	40	19 839	46 680	Ej. inv.
120	AD	CR	641	906	22	45	19 932	40 770	Ej. inv.
121	AD	GA	734	966	23	43	22 218	41 538	Ej. inv.
122	AE	CR	953	1156	20	39	23 120	45 084	Ej. inv.
123	AE	GA	890	1135	18	35	20 430	39 725	Ej. inv.
124	AF	CR	891	1169	18	56	21 042	65 464	Ej. inv.
125	AF	GA	879	1234	17	38	20 978	46 892	Ej. inv.
126	AG	CR	635	1152	19	39	21 888	44 928	Ej. inv.
127	AG	GA	701	1055	21	46	22 155	48 530	Ej. inv.

El experimento 115 es un ejemplo en el que la temperatura final de la laminación en caliente es baja. La microestructura se estira en una dirección, lo que la hace irregular, por lo que la ductilidad y la capacidad de embridado elástico son deficientes.

Los experimentos 12, 17, 106 y 111 son ejemplos en los que la tasa de calentamiento de la (temperatura de calentamiento máxima -20°C) en el proceso de calentamiento es grande. La fase de austenita residual es inestable y la capacidad de embridado elástico es deficiente.

El experimento 28 es un ejemplo en el que la temperatura de calentamiento máxima en el proceso de recocido es alta. La estructura blanda no se forma de manera suficiente y la ductilidad es deficiente.

El experimento 32 es un ejemplo en el que la temperatura de calentamiento máxima en el proceso de recocido es baja. Se incluye una gran cantidad de carburos basados en hierro gruesos que forman puntos de partida de fractura, por lo que la ductilidad y la capacidad de embridado elástico son deficientes.

El experimento 37 es un ejemplo en el que la tasa de enfriamiento promedio en el primer proceso de enfriamiento (enfriamiento primario) es alta. No se forman estructuras blandas de manera suficiente, por lo que la ductilidad y la capacidad de embridado elástico son deficientes.

El experimento 42 es un ejemplo en el que la tasa de enfriamiento promedio en el primer proceso de enfriamiento (enfriamiento primario) es baja. Se forman carburos basados en hierro gruesos y la capacidad de embridado elástico

es deficiente.

5

15

20

El experimento 47 es un ejemplo en el que la tasa de enfriamiento en el segundo proceso de enfriamiento (enfriamiento secundario) es baja. Se forman carburos basados en hierro gruesos y la capacidad de embridado elástico es deficiente.

El experimento 52 es un ejemplo donde no se realiza tratamiento de recalentamiento. La fase de austenita residual es inestable y la capacidad de embridado elástico es deficiente.

Los experimentos 57, 66 y 82 son ejemplos donde solo se realiza un recalentamiento del punto Bs o 480 °C o menos a 500 °C o más. La fase de austenita residual es inestable y la capacidad de embridado elástico es deficiente.

Los experimentos 62 y 70 son ejemplos donde solo se realiza un recalentamiento del punto Ms o 350°C o menos a 350°C o más. La fase de austenita residual es inestable y la capacidad de embridado elástico es deficiente.

El experimento 74 es un ejemplo donde el tiempo en el tratamiento en el intervalo de entre 300 y 450 °C es corto. No se concentra carbono en la austenita residual, la fase de austenita residual es inestable y la capacidad de embridado elástico es deficiente.

Después, el experimento 78 es un ejemplo donde el tiempo de retención en el intervalo de entre 300 y 450 °C es largo. Se forman carburos basados en hierro, la cantidad de solución sólida C en la austenita residual disminuye, la fase de austenita residual es inestable y la capacidad de embridado elástico es deficiente.

Después, los experimentos de 116 a 118 son ejemplos en donde la composición de los ingredientes se desvía del intervalo predeterminado. En cada caso, no se pueden obtener propiedades suficientes.

A partir de los resultados de los ejemplos que se explicaron anteriormente, resulta evidente que de acuerdo con la lámina de acero de alta resistencia y la lámina de acero galvanizada de alta resistencia que tienen excelente formabilidad y los métodos para su producción de la presente invención, se obtiene una lámina de acero de alta resistencia que garantiza una resistencia a la tracción máxima de 900 MPa o más de alta resistencia mientras se le proporciona excelente ductilidad y capacidad de embridado elástico y tiene formabilidad suficientemente elevada.

Aplicabilidad industrial

De acuerdo con la presente invención, por ejemplo, en aplicaciones tales como miembros que se obtienen moldeando una lámina de acero al presionarla, etc., se garantiza una resistencia a la tracción máxima de 900 MPa o más de alta resistencia mientras se obtienen excelente ductilidad y capacidad de embridado elástico y, simultáneamente, se obtienen excelente resistencia y formabilidad. Debido a esto, por ejemplo, en particular, al aplicar la presente invención en el campo de las autopartes, etc., en particular al aplicarla en el campo de los automóviles, es posible disfrutar plenamente de las ventajas de una mayor seguridad, junto con una mayor resistencia del chasis, una mejor formabilidad a la hora de trabajar los miembros, etc. La contribución a la sociedad es inconmensurable.

REIVINDICACIONES

1. Lámina de acero de alta resistencia que tiene excelente formabilidad que consiste en, en % en masa,

C: entre el 0,075 y el 0,300 %,

Si: entre el 0,70 y el 2,50 %,

5 Mn: entre el 1,30 y el 3,50 %,

P: entre el 0,001 y el 0,030 %,

S: entre el 0,0001 y el 0,0100 %,

Al: entre el 0,005 y el 1,500 %,

N: entre el 0,0001 y el 0,0100 %, y

10 O: entre el 0,0001 y el 0,0100 %,

que contiene, como elementos opcionales, uno o más de

Ti: entre el 0,005 y el 0,150 %,

Nb: entre el 0,005 y el 0,150 %,

B: entre el 0,0001 y el 0,0100 %,

15 Cr: entre el 0,01 y el 2,00 %,

Ni: entre el 0,01 y el 2,00 %,

Cu: entre el 0,01 y el 2,00 %,

Mo: entre el 0,01 y el 1,00 %,

W: entre el 0,01 y el 1,00 %,

20 V: entre el 0,005 y el 0,150 %, y

uno o más de Ca, Ce, Mg, Zr, Hf y REM: entre el 0,0001 y el 0,5000 % total, y

el resto es hierro e impurezas inevitables, en donde

la estructura de la lámina de acero contiene, en fracción de volumen, entre el 2 y el 20 % de fase de austenita residual,

fase de ferrita: entre el 10 y el 75 %,

fase de ferrita bainítica y/o fase de bainita: entre el 10 y el 50 %,

fase de martensita revenida: entre el 10 y el 50 %, y

fase de martensita fresca: el 10 % o menos, y

dicha fase de austenita residual tiene un punto de transformación de martensita de -60 °C o menos.

- 2. La lámina de acero de alta resistencia que tiene excelente formabilidad de acuerdo con la reivindicación 1, caracterizada por que una relación de dicha fase de austenita residual que se transforma a martensita a -198 °C es, en fracción de volumen, el 2 % o menos de la fase de austenita residual total.
 - 3. La lámina de acero de alta resistencia que tiene excelente formabilidad de acuerdo con la reivindicación 1 o 2, caracterizada por que dicha fase de austenita residual tiene un punto de transformación de martensita de -198 °C o menos.
- 4. Lámina de acero galvanizada de alta resistencia que tiene excelente formabilidad caracterizada por que comprende la lámina de acero de alta resistencia de acuerdo con la reivindicación 1 o 2 en cuya superficie se forma una capa galvanizada.
 - 5. Un método de producción de lámina de acero de alta resistencia que tiene excelente formabilidad caracterizado por que comprende:
- 40 un proceso de laminación en caliente en el que se calienta una placa que consiste en, en % en masa,

C: entre el 0,075 y el 0,300 %,

Si: entre el 0,70 y el 2,50 %,

Mn: entre el 1,30 y el 3,50 %,

P: entre el 0,001 y el 0,030 %,

S: entre el 0,0001 y el 0,0100 %,

Al: entre el 0,005 y el 1,500 %,

N: entre el 0,0001 y el 0,0100 %, y

O: entre el 0,0001 y el 0,0100 %,

5 que contiene, como elementos opcionales, uno o más de

Ti: entre el 0,005 y el 0,150 %,

Nb: entre el 0.005 y el 0.150 %,

B: entre el 0,0001 y el 0,0100 %,

Cr: entre el 0,01 y el 2,00 %,

10 Ni: entre el 0,01 y el 2,00 %,

20

25

35

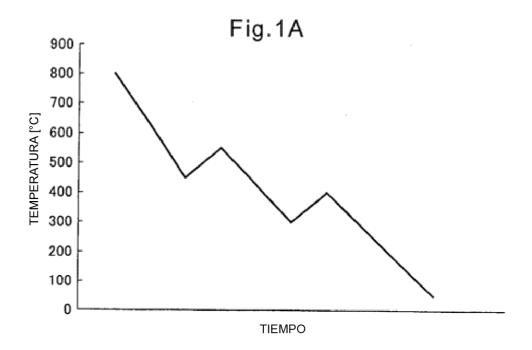
Cu: entre el 0,01 y el 2,00 %,

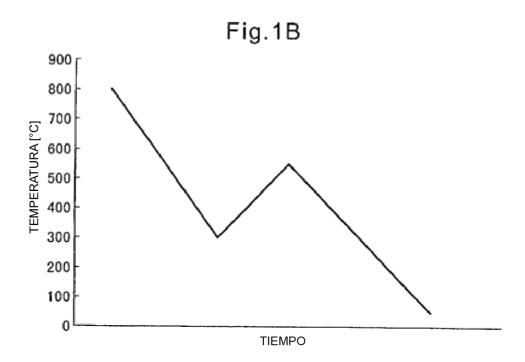
Mo: entre el 0,01 y el 1,00 %,

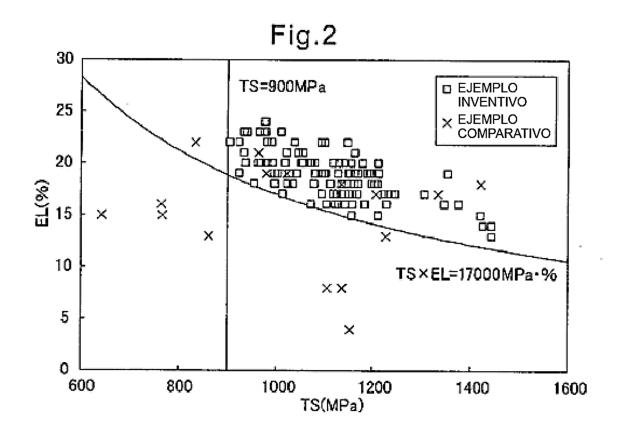
W: entre el 0,01 y el 1,00 %,

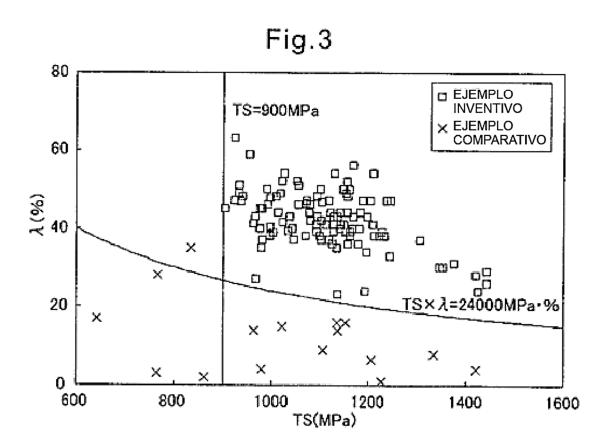
V: entre el 0,005 y el 0,150 %, y

uno o más de Ca, Ce, Mg, Zr, Hf y REM: entre el 0,0001 y el 0,5000 % total, y


el resto es hierro e impurezas inevitables,


directamente, o después de enfriar una vez, a 1050 °C o más, terminando la laminación al punto Ar₃ o más para obtener una lámina de acero y enrollándola entre 500 y 750 °C de temperatura,


un proceso de laminación en frío para decapar la lámina de acero enrollada, enrollándola luego a una tasa de atornillado de entre el 35 y el 75 %, y


un proceso de recocido para calentar la lámina de acero después del proceso de laminación en frío hasta una temperatura de recalentamiento máxima de entre 740 y 1000 °C, luego enfriar con una tasa de enfriamiento promedio desde dicha temperatura de calentamiento máxima hasta 700 °C de entre 1,0 y 10,0 °C/seg y con una tasa de enfriamiento promedio desde 700 hasta 500 °C de entre 5,0 y 200 °C/seg, después mantener a una temperatura de 350 a 450 °C durante 30 a 1000 segundos, luego enfriar a temperatura ambiente y, mientras se enfría de dicha temperatura de calentamiento máxima a temperatura ambiente, recalentar desde el punto Bs o menos de 500 °C hasta 500 °C o más al menos una vez y recalentar desde el punto Ms o menos de 350 °C hasta 350 °C o más al menos una vez.

- 6. Un método de producción de lámina de acero galvanizada de alta resistencia que tiene excelente formabilidad caracterizado por producir una lámina de acero de alta resistencia por el método de producción de lámina de acero de alta resistencia de acuerdo con la reivindicación 5 y luego galvanizarla.
 - 7. Un método de producción de lámina de acero galvanizada de alta resistencia que tiene excelente formabilidad caracterizado por producir una lámina de acero de alta resistencia por el método de producción de acuerdo con la reivindicación 5 durante cuyo proceso de recocido, en el momento de enfriar desde dicha temperatura de calentamiento máxima hasta la temperatura ambiente, sumergir la lámina de acero después de dicho proceso de laminación en frío en un baño de zinc para galvanizarla por inmersión en caliente.
 - 8. Un método de producción de lámina de acero galvanizada de alta resistencia que tiene excelente formabilidad caracterizado por producir una lámina de acero de alta resistencia por el método de producción de acuerdo con la reivindicación 5 después de cuyo proceso de recocido se realiza galvanizado por inmersión en caliente.
- 40 9. Un método de producción de lámina de acero galvanizada de alta resistencia que tiene excelente formabilidad de acuerdo con la reivindicación 7 o 8 caracterizado por que realiza el tratamiento de aleación a una temperatura de entre 470 y 650 °C después de dicho galvanizado por inmersión en caliente.

