

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 739 002

(2006.01)

(2006.01)

51 Int. Cl.:

C12N 9/10 C12P 13/00

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea:
 (97) Fecha y número de publicación de la concesión europea:
 (98) Et 16175996 (4)
 (97) Fecha y número de publicación de la concesión europea:
 (98) Decha y número de publicación de la concesión europea:
 (98) Decha y número de publicación de la concesión europea:
 (98) Decha y número de publicación de la concesión europea:
 (97) Decha y número de publicación de la concesión europea:
 (98) Decha y número de publicación de la concesión europea:

(54) Título: Microorganismos para producir putrescina u ornitina y proceso para producir putrescina u ornitina usando los mismos

(30) Prioridad:

24.06.2015 KR 20150090021

Fecha de publicación y mención en BOPI de la traducción de la patente: **28.01.2020**

(73) Titular/es:

CJ CHEILJEDANG CORPORATION (100.0%) CJ Cheiljedang Center, 330, Dongho-ro, Jung-gu Seoul 04560, KR

(72) Inventor/es:

JUNG, HEE KYOUNG; UM, HYE WON; LI, HONG XIAN; PARK, SU JIN; YANG, YOUNG LYEOL; LEE, KYOUNG MIN y LEE, HYO HYOUNG

(74) Agente/Representante:

PADIAL MARTÍNEZ, Ana Belén

DESCRIPCIÓN

Microorganismos para producir putrescina u ornitina y proceso para producir putrescina u ornitina usando los mismos

5 [Campo Técnico]

La presente invención se refiere a un microorganismo recombinante para producir putrescina u ornitina, y un método para producir putrescina u ornitina usando los mismos.

10 [Antecedentes de la Técnica]

La putrescina se encuentra en bacterias u hongos gram negativos y está presente en diversas especies en alta concentración. Por lo tanto se espera que desempeñe funciones importantes en el metabolismo de los microorganismos. En general, la putrescina es un material de base muy importante para la síntesis de poliamina nailon-4,6 y se produce principalmente mediante un método de síntesis química. El método de síntesis química consiste en un proceso de 3 etapas que incluye una reacción de oxidación catalítica, una etapa en la que se usa un compuesto de cianuro y una reacción de hidrogenación que usa hidrógeno a alta presión. En este sentido, para la producción de putrescina, se requiere el desarrollo de un método más respetuoso con el medio ambiente usando biomasa que pueda reducir el consumo de energía.

20

25

40

15

En estas circunstancias, como métodos para producir putrescina usando un microorganismo, se desvelaron métodos para la producción de putrescina con un rendimiento elevado mediante transformación de *E. coli* y un microorganismo del género *Corynebacterium* (Publicación de Patente Internacional N.º WO 2006/005603; Publicación de Patente Internacional N.º WO 2009/125924; Qian ZD *et al.*, Biotechnol. Bioeng. 104 (4): 651 - 662, 2009; Schneider *et al.*, Appl. Microbiol. Biotechnol. 88 (4): 859 -868, 2010; Schneider *et al.*, Appl. Microbiol. Biotechnol. 95: 169 - 178, 2012).

La ortitina es un material que se encuentra ampliamente en plantas, animales y microorganismos y se usa como un precursor en la biosíntesis de arginina, prolina, y poliaminas. La ornitina desempeña un papel importante en la ruta de excreción de urea producida a partir de aminoácidos o amoniaco por el ciclo de ornitina en el metabolismo *in vivo* de animales superiores. La ornitina también se usa como suplemento nutricional o fármacos farmacéuticos en la industria para mejorar la cirrosis hepática y trastornos de la función hepática. Los métodos conocidos para producir ornitina incluyen el tratamiento de caseína de leche con enzimas digestivas y el uso de *E. coli* transformada o un microorganismo del género *Corynebacterium* (Patente Coreana N.º 10-1372635; T. Gotoh *et al.*, Bioprocess Biosyst. 55 Eng., 33: 773 - 777, 2010).

SugR, que es un regulador transcripcional del metabolismo del azúcar (en lo sucesivo en el presente documento, SugR), es un regulador transcripcional conocido en *Corynebacterium*, y hubo un informe previo de que SugR inhibe el gen que codifica la fosfotransferasa de la proteína PEP del sistema PTS y los genes asociados con la glicólisis de azúcares (VF Wendisch, *et al.*, J. Bacteriol. 190: 24, 8033 - 8044, 2008). La citrato sintasa es una enzima que en primer lugar actúa en el ciclo del TCA y puede regular su velocidad. Se informó que una cepa modificada de *Corynebacterium* con actividad reducida de GItA aumentó la producción de aspartato y lisina (Shiio *et al.*, Agric Biol Chem. 46; 101 - 107, 1982).

Jiang L-Y *et al.*, (J. Ind Microbiol Biotechnol 2013; 40: 1143-1151) desvela *Corynebacterium glutamicum* para la producción de ornitina. La citrato sintasa (gltA) entre otras enzimas dependientes de NAPD se sobreexpresan.

[Divulgación]

50 [Problema Técnico]

Los presentes inventores han confirmado que la manipulación de *sugR*, el gen que codifica SugR y *gltA*, el gen que codifica la sintasa de citrato, mejora la productividad de la putrescina o de la ornitina, completando de ese modo la presente invención.

55

[Solución Técnica]

Un objeto de la presente invención es proporcionar un microorganismo recombinante que pueda producir putrescina u ornitina con alto rendimiento.

60

Otro objeto de la presente invención es proporcionar un método para producir putrescina u ornitina usando el microorganismo mencionado anteriormente.

[Efectos Ventajosos]

65

Los presentes inventores han confirmado que el aumento de manera simultánea de la actividad de la citrato sintasa

(en lo sucesivo en el presente documento, GltA) a la vez que se debilita la actividad de SugR en un microorganismo del género *Corynebacterium* que produce putrescina u ornitina aumenta la cantidad de producción de putrescina u ornitina. Por lo tanto, el microorganismo de la presente invención se puede usar ampliamente para la producción industrial de putrescina u ornitina, y el microorganismo se puede usar ampliamente como un medio eficaz y deseable en términos de aspectos económicos y ambientales para proporcionar un material de base para la producción de diversos productos poliméricos, en los que se usan putrescina u ornitina como materiales sin procesar.

[Mejor Modo de Llevar a Cabo la Invención]

5

30

35

- Un aspecto de la presente divulgación proporciona un microorganismo modificado del género *Corynebacterium* que produce putrescina u ornitina, en el que el microorganismo se ha modificado de modo que una actividad de regulador transcripcional del metabolismo del azúcar (SugR) se debilita en comparación con la actividad de SugR en la misma cepa pero no modificada de *Corynebacterium* y una actividad de citrato sintasa (GltA) aumenta en comparación con su actividad de GltA en la misma cepa pero no modificada de *Corynebacterium*.
- en el que la actividad de SugR se debilita por: 1) deleción de una parte o la totalidad de un polinucleótido que codifica la proteína; 2) modificación de la secuencia de control de la expresión para reducir la expresión del polinucleótido; 3) modificación de la secuencia de polinucleótidos en los cromosomas para debilitar la actividad de la proteína; o 4) un método seleccionado entre una combinación de los mismos; y la actividad de GltA aumenta por: 1) aumento del número de copias de un polinucleótido que codifica la enzima; 2) modificación de la secuencia de control de la expresión para aumentar la expresión del polinucleótido; 3) modificación de la secuencia de polinucleótidos en el cromosoma para aumentar la actividad de la enzima; o 4) modificación por una combinación de los mismos.
- Una realización a modo de ejemplo de la presente divulgación proporciona el microorganismo modificado del género 25 *Corynebacterium* que produce putrescina u ornitina, en el que el SugR consiste en una secuencia de aminoácidos de SEQ ID NO: 1 o de SEQ ID NO: 3.
 - Otra realización a modo de ejemplo de la presente divulgación proporciona el microorganismo modificado del género *Corynebacterium* que produce putrescina u ornitina, en el que el GltA consiste en una secuencia de aminoácidos de SEQ ID NO: 5 o de SEQ ID NO: 7.
 - Otra realización a modo de ejemplo de la presente divulgación proporciona el microorganismo modificado del género *Corynebacterium* que produce putrescina u ornitina, en el que el microorganismo del género *Corynebacterium* se selecciona entre el grupo que consiste en *Corynebacterium glutamicum*, *Corynebacterium ammoniagenes*, *Corynebacterium thermoaminogenes*, *Brevibacterium flavum*, y *Brevibacterium lactofermentum*.
 - Otra realización a modo de ejemplo de la presente divulgación proporciona el microorganismo modificado del género *Corynebacterium* que produce putrescina u ornitina, en el que además se introduce una actividad de ornitina descarboxilasa (ODC).
 - Otra realización a modo de ejemplo de la presente divulgación proporciona el microorganismo modificado del género *Corynebacterium* que produce putrescina u ornitina, en el que el ODC consiste en una secuencia de aminoácidos de SEQ ID NO: 17.
- Otra realización a modo de ejemplo de la presente divulgación proporciona el microorganismo modificado del género Corynebacterium que produce putrescina u ornitina, en el que una actividad de i) ornitina carbamoiltransferasa (ArgF) se debilita en comparación con la actividad de ArgF en la misma cepa pero no modificada de Corynebacterium, ii) un agente exportador de glutamato se debilita en comparación con la actividad del agente exportador de glutamato en la misma cepa pero no modificada de Corynebacterium, o iii) la ornitina carbamoiltransferasa y un agente exportador de glutamato se debilitan en comparación con la actividad de ornitina carbamoiltransferasa y el agente exportador de glutamato en la misma cepa pero no modificada de Corynebacterium.
- Otra realización a modo de ejemplo de la presente divulgación además proporciona el microorganismo modificado del género *Corynebacterium* que produce putrescina u ornitina, en el que el ornitina carbamoiltransferasa consiste en una secuencia de aminoácidos de SEQ ID NO: 9 o de SEQ ID NO: 11, y el agente exportador de glutamato consiste en una secuencia de aminoácidos de SEQ ID NO: 13 o de SEQ ID NO: 15.
- Otra realización a modo de ejemplo de la presente divulgación proporciona el microorganismo modificado del género *Corynebacterium* que produce putrescina u ornitina, en el que una actividad de al menos una enzima seleccionada entre el grupo que consiste en acetil-gamma-glutamil-fosfato reductasa (ArgC), acetilglutamato sintasa u ornitina acetiltransferasa (ArgJ), acetilglutamato quinasa (ArgB), y acetilornitina aminotransferasa (ArgD) aumenta en comparación con la actividad de dicha enzima o enzimas en la misma cepa pero no modificada de *Corynebacterium*.
- Otra realización a modo de ejemplo de la presente divulgación proporciona el microorganismo modificado del género Corynebacterium que produce putrescina u ornitina, en el que el acetil-gamma-glutamil fosfato reductasa consiste en

una secuencia de aminoácidos de SEQ ID NO: 19 o de SEQ ID NO: 21, the acetilglutamato sintasa u ornitina acetiltransferasa consiste en una secuencia de aminoácidos de SEQ ID NO: 23 o de SEQ ID NO: 25, the acetilglutamato quinasa consiste en una secuencia de aminoácidos de SEQ ID NO: 27 o de SEQ ID NO: 29, y la acetilornitina aminotransferasa consiste en una secuencia de aminoácidos de SEQ ID NO: 31 o de SEQ ID NO: 33.

5

Otra realización a modo de ejemplo de la presente divulgación además proporciona el microorganismo modificado del género Corynebacterium que produce putrescina u ornitina, en el que una actividad de acetiltransferasa se debilita en comparación con la actividad de acetiltransferasa en la misma cepa pero no modificada de Corynebacterium.

10

Otra realización a modo de ejemplo de la presente divulgación proporciona el microorganismo modificado del género Corynebacterium que produce putrescina u ornitina, en el que el acetiltransferasa consiste en una secuencia de aminoácidos de SEQ ID NO: 35 o de SEQ ID NO: 37.

Otra realización a modo de ejemplo de la presente divulgación proporciona el microorganismo modificado del género 15 Corynebacterium que produce putrescina u ornitina, en el que una actividad de una proteína que consiste en la SEQ ID NO: 39 o la SEQ ID NO: 41 aumenta en comparación con la actividad de dicha proteína en la misma cepa pero no modificada de Corynebacterium.

- 20 Otro aspecto de la presente divulgación proporciona un método para producir putrescina u ornitina, que incluye:
 - (i) cultivar un microorganismo modificado del género Corynebacterium que produce putrescina u ornitina en un medio, en el que una actividad de regulador transcripcional del metabolismo del azúcar (SugR) se debilita en comparación con su actividad endógena y una actividad de citrato sintasa (GltA) aumenta en comparación con su actividad endógena; y
 - (ii) recuperar putrescina u ornitina del microorganismo cultivado por el medio cultivado en la etapa (i).

Una realización a modo de ejemplo de la presente divulgación proporciona el método para producir putrescina u ornitina, en el que el microorganismo del género Corynebacterium es Corynebacterium glutamicum.

30

25

En lo sucesivo en el presente documento, la presente divulgación se describe con detalle.

Un aspecto de la presente divulgación se refiere a un microorganismo modificado del género Corvnebacterium que produce putrescina u ornitina, en el que una actividad de regulador transcripcional del metabolismo del azúcar (SugR) se debilita en comparación con la actividad de SugR en la misma cepa pero no modificada de 35 Corynebacterium y una actividad de citrato sintasa (GltA) aumenta en comparación con su actividad de GltA en la misma cepa pero no modificada de Corynebacterium. Como se usa en el presente documento, la expresión "regulador transcripcional del metabolismo del azúcar (SugR)" se refiere a una enzima que funciona ampliamente como un inhibidor con respecto a los genes asociados con diversos aspectos del metabolismo del azúcar, tal como 40 absorción de azúcar y el sistema de fosfotransferasa, glicólisis, fermentación relacionada con la lactato deshidrogenasa, etc. En la presente divulgación, SugR incluye tanto las proteínas endógenas como las proteínas extrañas dentro de un microorganismo del género Corynebacterium, y específicamente, un SugR obtenido a partir de un microorganismo del género Corynebacterium.

45 En la presente divulgación, el regulador transcripcional del metabolismo del azúcar puede incluir, pero no se limita a, cualquier proteína que incluye la secuencia de aminoácidos de SEQ ID NO: 1 o de SEQ ID NO: 3, o cualquier proteína que incluya una secuencia de aminoácidos que tenga una homología de secuencia de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior 50 con respecto a las secuencias de aminoácidos mencionadas anteriormente, siempre y cuando la proteína tenga sustancialmente la misma actividad que el regulador transcripcional del metabolismo del azúcar.

Además, dado que la secuencia de aminoácidos de una proteína que codifica la actividad mencionada anteriormente puede variar dependiendo de la especie o cepa del microorganismo, el SugR puede estar limitado con respecto a su origen en la presente divulgación, pero el SugR se puede obtener, por ejemplo, a partir de un microorganismo del género Corynebacterium, y específicamente, se puede obtener a partir de Corynebacterium glutamicum. Es evidente que cualquier secuencia de aminoácidos que tenga una homología con respecto a las secuencias mencionadas anteriormente y que tenga una actividad biológica sustancialmente igual o correspondiente a la proteína de SEQ ID NO: 1 o de SEQ ID NO: 3 también puede pertenecer al alcance de la presente divulgación, aunque la secuencia de aminoácidos puede tener una deleción, modificación, sustitución, o adición en parte de la secuencia.

El polinucleótido que codifica el regulador transcripcional del metabolismo del azúcar de la presente divulgación, siempre y cuando tenga una actividad similar a la del regulador transcripcional del metabolismo del azúcar, puede incluir cualquier polinucleótido que codifique la proteína que tiene una secuencia de aminoácidos de SEQ ID NO: 1 o

65

55

60

de SEQ ID NO: 3, o los polinucleótidos que codifican proteínas que tienen una homología de secuencia de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más

específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a las secuencias de aminoácidos mencionadas anteriormente. Con respecto al polinucleótido que codifica el regulador transcripcional del metabolismo del azúcar, teniendo en cuenta los codones basándose en la degeneración del codón o los preferidos por organismos para expresar el regulador, se pueden realizar diversas modificaciones en la región codificante dentro del alcance sin cambiar la secuencia de aminoácidos del polipéptido, y específicamente, el polinucleótido puede incluir la secuencia de polinucleótidos de SEQ ID NO: 2 o de SEQ ID NO: 4, pero no se limita a estas.

Como se usa en el presente documento, la expresión "citrato sintasa (GltA)" se refiere a una enzima que está implicada en la producción de diversos compuestos intermedios biosintéticos intracelulares y la producción de ácido nucleico con contenido reducido de purina. Se sabe que GltA actúa para mediar la condensación hidrolítica entre acetil-CoA y oxaloacetato para la producción de citrato. En la presente divulgación, GltA incluye tanto las enzimas endógenas como las proteínas extrañas presentes en un microorganismo del género *Corynebacterium*, y específicamente, GltA obtenido a partir de un microorganismo del género *Corynebacterium*.

10

15

20

25

30

35

40

45

50

55

60

65

En la presente divulgación, GltA puede incluir, pero no se limita a, las proteínas que tienen la secuencia de aminoácidos de SEQ ID NO: 5 o de SEQ ID NO: 7, o cualquier proteína que incluya una secuencia de aminoácidos que tenga una homología de secuencia de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a las secuencias de aminoácidos mencionadas anteriormente, y que tenga la actividad sustancial de mediar la condensación hidrolítica entre acetil-CoA y oxaloacetato para la producción de citrato.

Además, dado que la secuencia de aminoácidos de la proteína que presenta la actividad puede variar de acuerdo con la especie o cepa del microorganismo, GltA se puede obtener, por ejemplo, *Corynebacterium*, y específicamente, *Corynebacterium glutamicum*, pero el origen de GltA no se limita a esto en la presente divulgación. Es evidente que cualquier secuencia de aminoácidos que tenga una homología con respecto a las secuencias mencionadas anteriormente y que tenga una actividad biológica sustancialmente igual o correspondiente a la proteína de SEQ ID NO: 5 o de SEQ ID NO: 7 también puede pertenecer al alcance de la presente divulgación, aunque la secuencia de aminoácidos puede tener una deleción, modificación, sustitución, o adición en parte de la secuencia.

El polinucleótido que codifica GltA de la presente divulgación puede incluir los polinucleótidos que codifican el aminoácido de SEQ ID NO: 5 o de SEQ ID NO: 7, o los polinucleótidos que codifican proteínas que tienen una homología de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a las secuencias de aminoácidos mencionadas anteriormente. Con respecto al polinucleótido que codifica GltA, teniendo en cuenta los codones basándose en la degeneración del codón o los preferidos por organismos para expresar el GltA, se pueden realizar diversas modificaciones en la región codificante dentro del alcance sin cambiar la secuencia de aminoácidos del polipéptido, y específicamente, el polinucleótido puede incluir la secuencia de polinucleótidos de SEQ ID NO: 6 o de SEQ ID NO: 8, pero no se limita a estas

Como se usa en el presente documento, el término "homología" se refiere a un grado de identidad en comparación con una secuencia de aminoácidos dada o una secuencia de polinucleótidos y se puede indicar como un porcentaje. En la presente divulgación, las secuencias homólogas que tienen una actividad igual o similar a la de la secuencia de aminoácidos dada o la secuencia de polinucleótidos se indican en términos de " % de homología". Por ejemplo, la homología se puede confirmar usando un software convencional para calcular parámetros (por ejemplo, parámetros tales como puntuación, identidad y similitud), específicamente BLAST 2.0, o comparando secuencias por transferencia de Southern en condiciones de hibridación rigurosas definidas, y las condiciones de hibridación apropiadas que se van a definir se pueden determinar con un método que está dentro del alcance de la técnica y que es bien conocido para alguien con una experiencia habitual en la materia (por ejemplo, J. Sambrook *et al.*, Molecular Cloning, A Laboratory Manual, 2ª Edición, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989; F.M. Ausubel *et al.*, Current Protocols in Molecular Biology, John Wiley & Sons, Inc., Nueva York).

Además, los polinucleótidos que codifican SugR y citrato sintasa de la presente divulgación se pueden hibridar en condiciones rigurosas con las secuencias de polinucleótidos de SEQ ID NO: 2 o 4, o de SEQ ID NO: 6 u 8, o sondas obtenidas a partir de las secuencias de polinucleótidos, respectivamente, y pueden ser un tipo modificado que codifica SugR y citrato sintasa que están implicados en las funciones normales. Como se usa en el presente documento, la expresión "condiciones rigurosas" se refiere a una condición que permite una hibridación específica entre polinucleótidos. Por ejemplo, las condiciones rigurosas se describen específicamente en las referencias (por ejemplo, J. Sambrook *et al.*, en el mismo lugar).

En la presente divulgación, se realizaron intentos para debilitar la actividad de SugR, o para aumentar la actividad de GltA, o para aplicar tanto un debilitamiento de la actividad de SugR como un aumento de la actividad de GltA de forma simultánea con respecto a un microorganismo del género *Corynebacterium* que produce putrescina u ornitina,

y como resultado, se confirmó que la cantidad de producción de putrescina u ornitina aumentó en todas las cepas modificadas.

En particular, el microorganismo de la presente divulgación puede incluir microorganismos tanto de tipo silvestre como de tipo modificado siempre y cuando puedan producir putrescina u ornitina. Por ejemplo, el microorganismo puede pertenecer al género *Escherichia*, el género *Shigella*, el género *Citrobacter*, el género *Salmonella*, el género *Enterobacter*, el género *Yersinia*, el género *Klebsiella*, el género *Erwinia*, el género *Corynebacterium*, el género *Brevibacterium*, el género *Lactobacillus*, el género *Selenomanas*, el género *Vibrio*, el género *Pseudomonas*, el género *Streptomyces*, el género *Arcanobacterium*, y el género *Alcaligenes*. De forma específica, el microorganismo de la presente divulgación de pertenecer al género *Corynebacterium*, y más específicamente, se puede seleccionar entre el grupo que consiste en *Corynebacterium glutamicum*, *Corynebacterium ammoniagenes*, *Corynebacterium thermoaminogenes*, *Brevibacterium flavum*, y *Brevibacterium lactofermentum*, e incluso más específicamente, puede ser *Corynebacterium glutamicum*, pero no se limita a estos.

5

10

30

35

50

55

60

- De forma específica, como se usa en el presente documento, la expresión "que produce putrescina u ornitina" se refiere a un microorganismo proporcionado con productividad de putrescina u ornitina en una cepa precursora que tiene la putrescina o la ornitina en un estado natural o no tiene actividad de putrescina u ornitina.
- Además, el microorganismo que produce putrescina u ornitina se puede modificar de modo que una actividad de ornitina carbamoiltransferasa (ArgF), que está implicada en la síntesis de la arginina, se debilita en comparación con la actividad de ArgF en la misma cepa pero no modificada de *Corynebacterium* y/o una actividad de agente exportador de glutamato (NCgl1221), que es una proteína implicada en la secreción de glutamato, se debilita en comparación con la actividad del agente exportador de glutamato en la misma cepa pero no modificada de *Corynebacterium*.
 - Además, el microorganismo que tiene productividad de putrescina se puede modificar para debilitar la actividad de la acetiltransferasa (NCgl1469), que es una proteína que acetila la putrescina, en comparación con la actividad en la misma cepa pero no modificada de *Corynebacterium* y/o para introducir la actividad de ODC, que es una proteína que convierte la ornitina en putrescina.
 - En particular, la modificación de las actividades de mejora o debilitamiento se puede producir mediante un proceso denominado transformación en la presente divulgación. Como se usa en el presente documento, el término "transformación" se refiere a un proceso de introducción de un polinucleótido que codifica una proteína particular o un vector que incluye una secuencia promotora con actividad fuerte o débil, etc., en una célula hospedadora, permitiendo de este modo la expresión de la proteína codificada por el polinucleótido en la célula hospedadora o la inducción de la modificación del cromosoma de la célula hospedadora.
- Además, el polinucleótido incluye ADN y ARN que codifican la proteína diana. El polinucleótido se puede insertar en cualquier forma siempre y cuando pueda introducirse en una célula hospedadora y expresarse en la misma. Por ejemplo, el polinucleótido se puede introducir en una célula hospedadora en forma de un casete de expresión, que es un constructo genético que incluye todos los elementos esenciales necesarios para la autoexpresión. El casete de expresión puede incluir convencionalmente un promotor conectado de forma operativa al polinucleótido, una señal de terminación de la transcripción, un dominio de unión a ribosoma y una señal de terminación de la traducción. El casete de expresión puede tener la forma de un vector de expresión capaz de autorreplicación. Además, el polinucleótido se puede introducir en una célula hospedadora como tal y se conecta de manera operativa a una secuencia necesaria para su expresión en la célula hospedadora, pero no se limita a esta.
 - Además, como se usa en el presente documento, la expresión "conectado de forma operativa" se refiere a una conexión funcional entre una secuencia promotora, que inicia y media la transcripción del polinucleótido que codifica la proteína diana de la presente divulgación, y la secuencia genética mencionada anteriormente.
 - Como se usa en el presente documento, el término "vector" se refiere a cualquier constructo de ADN que incluye la secuencia de polinucleótidos que codifica la proteína diana, que está conectada de forma operativa a una secuencia de control apropiada capaz de expresar la proteína diana en una célula hospedadora apropiada. La secuencia de control incluye un promotor capaz de iniciar la transcripción, cualquier secuencia de operador capaz de controlar la transcripción, una secuencia que codifica un dominio de unión a ribosoma de ARNm apropiado, y secuencias capaces de controlar la terminación de la transcripción y la traducción. El vector, después de transformarse en una célula hospedadora apropiada, se puede replicar o funcionar independientemente del genoma del hospedador, o se puede integrar en el propio genoma hospedador.
 - El vector que se va a usar en la presente divulgación puede no estar particularmente limitado siempre y cuando el vector se puede replicar en una célula hospedadora, y se pueda usar cualquier vector conocido en la técnica. Los ejemplos del vector usado convencionalmente pueden incluir plásmidos, cósmidos, virus, y bacteriófagos naturales o recombinantes. Por ejemplo, como vector fago o vector cósmido, se pueden usar, pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, Charon21A, etc.; y como un vector plasmídico, se pueden usar aquellos basados en pBR, pUC, pBluescriptII, pGEM, pTZ, pCL, pET, etc.. El vector que se va a usar en la presente divulgación puede no

estar particularmente limitado, pero se puede usar cualquier vector de expresión conocido. De forma específica, se pueden usar los vectores pDZ, pDZTn, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC, etc.

Como tal, el polinucleótido que codifica una proteína diana extraña se puede sustituir por un polinucleótido modificado en el cromosoma mediante un vector para la inserción en el cromosoma bacteriano. La inserción del polinucleótido en el cromosoma se puede llevar a cabo usando cualquier método conocido en la técnica, por ejemplo, por recombinación homóloga, pero no se limita a esta. Dado que el vector de la presente divulgación se puede insertar en el cromosoma mediante recombinación homóloga, se puede incluir un marcador de selección para confirmar la inserción en el cromosoma. El marcador de selección se usa para la selección de una célula transformada, es decir, para confirmar si se ha insertado el polinucleótido diana, y se pueden usar marcadores capaces de proporcionar fenotipos seleccionables tales como resistencia a fármacos, requisito de nutrientes, resistencia a agentes citotóxicos y expresión de proteínas de superficie. En las circunstancias tratadas con agentes selectivos, solo las células capaces de expresar los marcadores de selección pueden sobrevivir o expresar otros rasgos fenotípicos, y de ese modo las células transformadas se pueden seleccionar.

Como se usa en el presente documento, la expresión "mejora de la actividad" no solo incluye la provisión de un efecto más alto que la función original debido a la nueva introducción de una actividad o un aumento de la actividad de una proteína en sí misma, sino que también incluye el aumento de su actividad por un aumento de la actividad de un gen endógeno, amplificación de un gen endógeno a partir de uno o varios factores internos o externos, deleción de uno o varios factores reguladores para inhibir la expresión génica, un aumento del número de copias del gen, introducción de un gen del exterior, modificación de la secuencia de control de la expresión, y específicamente, un aumento de la actividad enzimática debido a la sustitución o modificación de un promotor y una mutación dentro de un gen, etc.

De forma específica, en la presente divulgación, la mejora o aumento de actividad se puede llevar a cabo mediante:

- 1) aumento del número de copias de un polinucleótido que codifica la enzima,
- 2) modificación de la secuencia de control de la expresión para aumentar la expresión del polinucleótido,
- 3) modificación de la secuencia de polinucleótidos en el cromosoma para aumentar la actividad de la enzima, y
- 4) modificación por una combinación de los mismos,

pero el método no se limita a esto.

El aumento del número de copias de un polinucleótido (método 1) se puede llevar a cabo de una manera en la que el polinucleótido se une de forma operativa a un vector, o insertando el polinucleótido en el cromosoma de una célula hospedadora, aunque el método no es particularmente limitado al mismo. De forma específica, el aumento del número de copias de un polinucleótido dentro del cromosoma de la célula hospedadora se puede llevar a cabo mediante la introducción de un vector que se puede replicar y funcionar independientemente de una célula hospedadora y al que el polinucleótido que codifica la proteína de la presente divulgación se une de forma operativa; o se puede llevar a cabo introduciendo un vector que puede insertar el polinucleótido en el cromosoma de una célula hospedadora y al que el polinucleótido se une de forma operativa, en una célula hospedadora.

A continuación, la modificación de la secuencia de control de la expresión para aumentar la expresión de un polinucleótido (método 2) se puede llevar a cabo induciendo una modificación en la secuencia de polinucleótidos mediante deleción, inserción, sustitución no conservativa o conservativa de la secuencia de polinucleótidos, o una combinación de los mismos para mejorar aún más la actividad de la secuencia de control de la expresión, o sustituyendo la secuencia de polinucleótidos por una secuencia de polinucleótidos que tiene una actividad más fuerte, aunque el método no está particularmente limitado a ello. La secuencia de control de expresión incluye un promotor, una secuencia de operador, una secuencia que codifica el sitio de unión a ribosoma y una secuencia que regula la terminación de la transcripción y la traducción.

Un promotor exógeno fuerte, en lugar del promotor original, se puede conectar a la región cadena arriba de la unidad de expresión del polinucleótido. Los ejemplos del promotor fuerte pueden ser el promotor *CJT*, el promotor *IysCP1*, el promotor *GTTu*, el promotor

Además, la modificación de una secuencia de polinucleótidos en el cromosoma (método 3) se puede llevar a cabo mediante la inducción de una modificación en la secuencia de control de la expresión mediante deleción, inserción, sustitución no conservativa o conservativa de la secuencia de polinucleótidos, o una combinación de las mismas para mejorar aún más la actividad de la secuencia de polinucleótido, o destituyendo la secuencia de polinucleótido con una secuencia de polinucleótido mejorada que tiene una actividad más fuerte, aunque el método no está particularmente limitado a la misma.

Como se usa en el presente documento, el "debilitamiento de la actividad" se puede conseguir mediante deleción de

7

60

20

25

30

35

40

45

50

55

una parte o la totalidad de un polinucleótido que codifica la proteína para debilitar la actividad de la proteína, mediante modificación de la secuencia de control de la expresión para reducir la expresión del polinucleótido, mediante modificación de la secuencia de polinucleótidos en los cromosomas para debilitar la actividad de la proteína, y mediante un método seleccionado entre una combinación de los mismos.

De forma específica, en la presente divulgación, el debilitamiento de la actividad se puede conseguir mediante:

- 1) deleción de una parte o la totalidad de un polinucleótido que codifica la proteína,
- 2) modificación de la secuencia de control de la expresión para reducir la expresión del polinucleótido,
- 3) modificación de la secuencia de polinucleótidos en los cromosomas para debilitar la actividad de la proteína, y
- 4) un método seleccionado entre una combinación de los mismos,
- pero el método no se limita a esto.

5

10

25

35

40

45

50

55

60

65

De forma específica, el método de deleción de una parte o de la totalidad de un polinucleótido que codifica una proteína se puede llevar a cabo sustituyendo el polinucleótido que codifica la proteína diana endógena dentro del cromosoma con un polinucleótido que tiene una deleción parcial en la secuencia de polinucleótidos o un gen marcador que usa un vector para la inserción cromosómica dentro de las bacterias. Como se usa en el presente documento, el término "una parte" puede variar dependiendo de los tipos de polinucleótidos, y puede hacer referencia de forma específica de 1 a 300, más específicamente de 1 a 100, e incluso más específicamente de 1 a 20 50.

Además, el método de modificación de la secuencia de control de la expresión se puede llevar a cabo induciendo una modificación en la secuencia de control de expresión mediante deleción, inserción, sustitución no conservativa o conservativa de una secuencia de polinucleótidos, o una combinación de las mismas para debilitar aún más la actividad de la secuencia de control de la expresión, o sustituyendo la secuencia de polinucleótidos con una secuencia de polinucleótidos que tiene una actividad más débil. La secuencia de control de la expresión incluye un promotor, una secuencia de operador, una secuencia que codifica un sitio de unión a ribosoma y una secuencia que regula la terminación de la transcripción y la traducción.

Además, el método de modificación de una secuencia de polinucleótidos en el cromosoma se puede llevar a cabo mediante la inducción de una modificación en la secuencia de polinucleótidos mediante deleción, inserción, sustitución no conservativa o conservativa de la secuencia de polinucleótidos, o una combinación de las mismas para debilitar aún más la actividad de la proteína, o mediante sustitución de la secuencia de polinucleótidos con una secuencia de polinucleótidos mejorada que tiene una actividad más fuerte.

Además, el método de deleción del factor regulador que inhibe la expresión del polinucleótido de la proteína se puede llevar a cabo sustituyendo el polinucleótido para el factor de inhibición de la expresión con un polinucleótido que tiene una deleción parcial en la secuencia del polinucleótido o un gen marcador. Como se usa en el presente documento, el término "una parte" puede variar dependiendo de los tipos de polinucleótidos, y puede hacer referencia de forma específica de 1 a 300, más específicamente de 1 a 100, e incluso más específicamente de 1 a 50

Como se usa en el presente documento, la expresión "actividad endógena" se refiere a un estado activo de una enzima en un estado no modificado, por ejemplo, en un estado natural, que un microorganismo tiene originalmente, y la expresión "mejora en comparación con su actividad endógena" se refiere a un estado de aumento de la actividad de la proteína que el microorganismo tiene después de su manipulación, tal como la introducción de un gen que presenta una actividad o un aumento del número de copias del gen correspondiente, deleción del factor de control de la inhibición de la expresión del gen, o una modificación de la secuencia de la secuencia de control de la expresión, por ejemplo, el uso de un promotor mejorado, en comparación con la actividad que el microorganismo tiene antes de su manipulación.

El microorganismo del género *Corynebacterium* de la presente divulgación puede ser un microorganismo del género *Corynebacterium* que tiene productividad de putrescina, en el que además se introduce el actividad de ornitina descarboxilasa (ODC).

Como se usa en el presente documento, la expresión "ornitina descarboxilasa (ODC)" se refiere una enzima que tiene productividad de putrescina mediando en la descarboxilación de la ornitina. Aunque el microorganismo del género *Corynebacterium* no tiene una ruta de biosíntesis de putrescina, cuando ODC se introduce desde el exterior, la putrescina se sintetiza y se libera por vía extracelular. En la presente divulgación, la ODC puede consistir en una secuencia de aminoácidos de SEQ ID NO: 17, o puede incluir, pero no se limita a, cualquier proteína que tenga una homología de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con la secuencia de aminoácidos mencionada anteriormente, siempre y cuando la proteína tenga sustancialmente la misma actividad de ODC.

Además, dado que la secuencia de aminoácidos de la proteína que presenta la actividad puede variar de acuerdo

con la especie o cepa del microorganismo, el origen de ODC no está limitado en la presente divulgación, y específicamente, puede ser una ODC obtenida a partir de *E. coli*. Es evidente que cualquier secuencia de aminoácidos que tenga una homología con respecto a las secuencias mencionadas anteriormente y que tenga una actividad biológica sustancialmente igual o correspondiente a la proteína de SEQ ID NO: 17 también puede pertenecer al alcance de la presente divulgación, aunque la secuencia de aminoácidos puede tener una deleción, modificación, sustitución, o adición en parte de la secuencia.

El polinucleótido que codifica ODC de la presente divulgación puede incluir los polinucleótidos que codifican el aminoácido de SEQ ID NO: 17, o los polinucleótidos que codifican proteínas que tienen una homología de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a la secuencia de aminoácidos mencionada anteriormente. Con respecto al polinucleótido que codifica la ODC, teniendo en cuenta los codones basándose en la degeneración del codón o los preferidos por organismos para expresar la proteína, se pueden realizar diversas modificaciones en la región codificante dentro del alcance sin cambiar la secuencia de aminoácidos del polipéptido.

10

15

20

35

40

45

50

55

60

65

El microorganismo del género *Corynebacterium* puede ser un microorganismo del género *Corynebacterium* que produce putrescina u ornitina, en el que las actividades de i) ornitina carbamoiltransferasa (ArgF) se debilitan en comparación con la actividad de ArgF en la misma cepa pero no modificada de *Corynebacterium*, ii) el agente exportador de glutamato (NCgl1221) se debilita en comparación con la actividad del agente exportador de glutamato en la misma cepa pero no modificada de *Corynebacterium*, o iii) la ornitina carbamoiltransferasa y un agente exportador de glutamato se debilitan en comparación con las actividades de ornitina carbamoiltransferasa y el agente exportador de glutamato en la misma cepa pero no modificada de *Corynebacterium*.

En la presente divulgación, la ornitina carbamoiltransferasa puede incluir, pero no se limita a, cualquier proteína que consista en la secuencia de aminoácidos de SEQ ID NO: 9 o de SEQ ID NO: 11, o cualquier proteína que consista en una secuencia de aminoácidos que tenga una homología de secuencia de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a las secuencias de aminoácidos mencionadas anteriormente, siempre y cuando la proteína tenga o sustancialmente la misma actividad que la ornitina carbamoiltransferasa.

Además, el agente exportador de glutamato en la presente divulgación puede incluir, pero no se limita a, cualquier proteína que consista en la secuencia de aminoácidos de SEQ ID NO: 13 o de SEQ ID NO: 15, o cualquier proteína que incluya una secuencia de aminoácidos que tenga una homología de secuencia de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a las secuencias de aminoácidos mencionadas anteriormente, siempre y cuando la proteína tenga sustancialmente la misma actividad que el agente exportador de glutamato.

Además, el microorganismo del género *Corynebacterium* de la presente divulgación puede ser un microorganismo del género *Corynebacterium* que produce putrescina u ornitina, en el que al menos una actividad enzimática seleccionada entre el grupo que consiste en acetil-gamma-glutamil fosfato reductasa (ArgC), acetilglutamato sintasa u ornitina acetiltransferasa (ArgJ), acetilglutamato quinasa (ArgB), y acetilornitina aminotransferasa (ArgD) aumenta en comparación con la actividad de dicha enzima o enzimas en la misma cepa pero no modificada de *Corynebacterium*.

En la presente divulgación, la acetil-gamma-glutamil fosfato reductasa puede incluir, pero no se limita a, cualquier proteína que consista en la secuencia de aminoácidos de SEQ ID NO: 19 o de SEQ ID NO: 21, o cualquier proteína que consista en una secuencia de aminoácidos que tenga una homología de secuencia de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a las secuencias de aminoácidos mencionadas anteriormente, siempre y cuando la proteína tenga sustancialmente la misma actividad que la acetil-gamma-glutamil fosfato reductasa.

Además, la acetilglutamato sintasa u ornitina acetiltransferasa puede incluir, pero no se limita a, cualquier proteína que consista en la secuencia de aminoácidos de SEQ ID NO: 23 o de SEQ ID NO: 25, o cualquier proteína que consista en una secuencia de aminoácidos que tenga una homología de secuencia de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a las secuencias de aminoácidos mencionadas anteriormente, siempre y cuando la proteína tenga sustancialmente la misma actividad que acetilglutamato sintasa u ornitina acetiltransferasa.

En la presente divulgación, la acetilglutamato quinasa puede incluir, pero no se limita a, cualquier proteína que consista en la secuencia de aminoácidos de SEQ ID NO: 27 o de SEQ ID NO: 29, o cualquier proteína que consista en una secuencia de aminoácidos que tenga una homología de secuencia de un 70 % o superior, específicamente

un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a las secuencias de aminoácidos mencionadas anteriormente, siempre y cuando la proteína tenga sustancialmente la misma actividad que acetilglutamato quinasa.

5

10

Además, en la presente divulgación, la acetilornitina aminotransferasa puede incluir, pero no se limita a, cualquier proteína que consista en la secuencia de aminoácidos de SEQ ID NO: 31 o de SEQ ID NO: 33, o cualquier proteína que consista en una secuencia de aminoácidos que tenga una homología de secuencia de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a las secuencias de aminoácidos mencionadas anteriormente, siempre y cuando la proteína tenga sustancialmente la misma actividad que acetilornitina aminotransferasa.

15

Además, el microorganismo del género *Corynebacterium* de la presente divulgación puede ser un microorganismo del género *Corynebacterium* que tiene productividad de putrescina, en el que la actividad de acetiltransferasa (NCgl1469) se debilita en comparación con la actividad de acetiltransferasa en la misma cepa pero no modificada de *Corynebacterium*.

20

En la presente divulgación, la acetiltransferasa puede incluir cualquier proteína que pueda transferir un grupo acetilo a la putrescina. La acetiltransferasa puede incluir, pero no se limita a, cualquier proteína que consista en la secuencia de aminoácidos de SEQ ID NO: 35 o de SEQ ID NO: 37, o cualquier proteína que consista en una secuencia de aminoácidos que tenga una homología de secuencia de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a las secuencias de aminoácidos mencionadas anteriormente, siempre y cuando la proteína tenga sustancialmente la misma actividad que acetiltransferasa.

30

25

Por último, el microorganismo del género *Corynebacterium* de la presente divulgación puede ser un microorganismo del género *Corynebacterium* que tiene productividad de putrescina, en el que la actividad de NCgl2522 aumenta en comparación con su actividad del NCgl2522 en la misma cepa pero no modificada de *Corynebacterium*.

35

En la presente divulgación, NCgl2522 es una proteína que desempeña el papel de liberar putrescina, y puede incluir cualquier proteína que pueda transferir un grupo acetilo a la putrescina. La acetiltransferasa puede incluir, pero no se limita a, cualquier proteína que consista en la secuencia de aminoácidos de SEQ ID NO: 39 o de SEQ ID NO: 41, o cualquier proteína que consista en una secuencia de aminoácidos que tenga una homología de secuencia de un 70 % o superior, específicamente un 80 % o superior, más específicamente un 90 % o superior, incluso más específicamente un 95 % o superior, además incluso más específicamente un 98 % o superior, y lo más específicamente un 99 % o superior con respecto a las secuencias de aminoácidos mencionadas anteriormente, siempre y cuando la proteína tenga sustancialmente la misma actividad que NCgl2522.

40

45

En otro aspecto, la presente divulgación proporciona un método para producir putrescina u ornitina, que incluye:

(i) cultivar el microorganismo modificado del género *Corynebacterium* que produce putrescina u ornitina en un medio; y

(ii) recuperar putrescina u ornitina del microorganismo cultivado pues cultivo en la etapa (i).

En la presente divulgación, el microorganismo del género Corynebacterium puede ser Corynebacterium glutamicum.

50

El microorganismo del género *Corynebacterium* que produce putrescina u ornitina de la presente divulgación es el mismo que el que se ha descrito anteriormente.

55

En el método mencionado anteriormente, el microorganismo se puede cultivar mediante cultivo discontinuo, cultivo continuo, y cultivo semicontinuo conocido en la técnica, aunque no se limitan particularmente a los mismos. En particular, con respecto a la condición de cultivo, el pH apropiado (es decir, un pH óptimo de 5 a 9, específicamente un pH de 6 a 8, y lo más específicamente un pH de 6,8) se puede mantener usando un compuesto químico básico (por ejemplo, hidróxido sódico, hidróxido potásico, o amoniaco) o un producto químico ácido (por ejemplo, ácido fosfórico o ácido sulfúrico), aunque no se limita en particular a los mismos. Además, una condición aerobia se puede mantener añadiendo oxígeno o una mezcla de gases que contiene oxígeno a un cultivo celular. La temperatura del cultivo se puede mantener de 20 °C a 45 °C, y específicamente de 25 °C a 40 °C, y el microorganismo se puede cultivar de aproximadamente 10 horas a 160 horas. La putrescina o la ornitina producida con el cultivo mencionado anteriormente se puede secretar a un medio de cultivo o puede permanecer dentro de las células.

60

65

Además, en el medio de cultivo, las fuentes de carbono, tales como azúcares y carbohidratos (por ejemplo, glucosa, sacarosa, lactosa, fructosa, maltosa, molasas, almidón y celulosa), aceites y grasas (por ejemplo, aceite de soja, aceite de semilla de girasol, aceite de cacahuete, y aceite de coco), ácidos grasos (por ejemplo, ácido palmítico, ácido esteárico y ácido linoleico), alcoholes (por ejemplo, glicerol y etanol) y ácidos orgánicos (por ejemplo, ácido

acético), se pueden usar individualmente o en combinación, pero no se limitan a los mismos; las fuentes de nitrógeno, tales como compuestos orgánicos que contienen nitrógeno (por ejemplo, peptona, extracto de levadura, jugo de carne, extracto de malta, licor de maíz fermentado, harina de soja, y urea) o compuestos inorgánicos (por ejemplo, sulfato de amonio, cloruro de amonio, fosfato de amonio, carbonato de amonio y nitrato de amonio), se pueden usar individualmente o en combinación, pero no se limitan a los mismos; y las fuentes de potasio, tales como dihidrogenofosfato de potasio, hidrogenofosfato de dipotasio o sales que contienen sodio que corresponden a los mismos, se pueden usar individualmente o en combinación, pero no se limitan a las mismas. Además, en el medio pueden estar contenidas otras sustancias esenciales que estimulan el crecimiento incluyendo sales metálicas (por ejemplo, sulfato de magnesio o sulfato de hierro), aminoácidos y vitaminas.

10

El método de recuperación de la putrescina o de la ornitina producida durante el cultivo de la presente divulgación se puede llevar a cabo a cabo con un método de cultivo apropiado conocido en la técnica, por ejemplo, cultivo discontinuo, cultivo continuo o cultivos semicontinuo y, por lo tanto, el material objetivo se puede recuperar del cultivo.

15

[Modos para llevar a cabo la invención]

En lo sucesivo en el presente documento, la presente invención se describirá en detalle con las realizaciones adjuntas a modo de ejemplo. Sin embargo, las realizaciones a modo de ejemplo que se desvelan en el presente documento son solo para fines ilustrativos y no se deberían interpretar como limitantes del alcance de la presente invención.

Ejemplo 1: Preparación de cepas con debilitamiento del gen sugR a partir de cepas que tienen productividad de putrescina

25

30

35

20

Los presentes inventores han confirmado el efecto del debilitamiento de *sugR*, que es el gen que codifica SugR, en una cepa que tiene productividad de putrescina.

1-1. Preparación de cepas con debilitamiento del gen sugR a partir de la cepa basada en ATCC13032 que tiene productividad de putrescina

Con el fin de confirmar si el debilitamiento del gen *sugR* estaba relacionado con la productividad de la putrescina en una cepa basada en ATCC13032 de *Corynebacterium glutamicum* que tiene productividad de putrescina (Publicación de Solicitud de Patente Coreana N.º 10-2013-0082478), se preparó una cepa con debilitamiento del gen *sugR*. De forma específica, la cepa con debilitamiento del gen *sugR* se preparó cambiando el codón de inicio del gen *sugR* y sustituyendo el promotor por el promotor con debilitamiento de B6 (Patek M (2005) *Regulation of gene expression*. En: Eggeling L, Bott M (eds) *Handbook of Corynebacterium glutamicum*. CRC, BocaRaton).

40 |

En primer lugar, se preparó un vector para cambiar el codón de iniciación del gen sugR. Con respecto a la proximidad de la secuencia de polinucleótidos del gen que codifica el SugR descrito por la SEQ ID NO: 2, se prepararon los pares de cebadores de las SEQ ID NOS: 43 y 44 para obtener el fragmento recombinante homólogo cadena arriba del codón de inició del gen sugR y los padres de cebadores de las SEQ ID NOS: 45, 46 y 47 para obtener el fragmento recombinante homólogo cadena abajo del codón de inicio del gen sugR. Los cebadores usados para el cambio de los codones de inicio se resumen en la Tabla 1 que sigue a continuación.

Cebador	Secuencia (5' -> 3')
sugR F1_Sall (SEQ ID NO: 43)	CTTGCATGCCTGCAGGTCGACAGGATTCATCTG
	GCATCTGGC
sugR -R1 (SEQ ID NO: 44)	GTCACTCCTTAAAGCAAAAAGCC
sugR -F2_GTG (SEQ ID NO: 45)	TTTTTGCTTTAAGGAGTGACGTGTACGCAGAGG AGCGCCGTC
sugR -F2_TTG (SEQ ID NO: 46)	TTTTTGCTTTAAGGAGTGACTTGTACGCAGAGG AGCGCCGTC

sugR -R2_BamHI (SEQ ID NO: 47)	CGAGCTCGGTACCCGGGGATCCGCGAGAGTACG
	AAGCGCAGT

La PCR se llevó a cabo usando el ADN genómico de la cepa ATCC13032 de *Corynebacterium glutamicum* como un molde a lo largo junto con 2 pares de cebadores, respectivamente, para amplificar la región cadena arriba y la región cadena abajo del codón de inicio del gen *sugR*, respectivamente, y los resultados se sometieron a electroforesis para obtener los fragmentos deseados. En particular, la PCR se llevó a cabo mediante 30 ciclos de desnaturalización a 95 °C durante 30 segundos, hibridación a 55 °C durante 30 segundos, y con extensión a 72 °C durante 30 segundos. Los fragmentos obtenidos de ese modo se sometieron a electroforesis en un gel de agarosa al 0,8 %, y las bandas de los tamaños deseados se eluyeron y se purificaron.

- El vector *pDZ* (Patente Coreana N.º 10-0924065) se trató con *BamH*I y *Sal*I y a continuación los productos de PCR de la cepa *ATCC13032* se sometieron a clonación por fusión. La clonación por fusión se llevó a cabo usando el Kit de Clonación En-Fusion® HD (Clontech). Por lo tanto, se prepararon los plásmidos *pDZ-1'sugR(GTG)* y que *pDZ-1'sugR(TTG)*.
- En el caso del vector para la sustitución en un promotor con debilitamiento de B6, la SEQ ID NO: 48 para la preparación del vector se preparó como se muestra en la Tabla 2 que sigue a continuación.

	[Tabla 2]
Cebador	Secuencia (5' -> 3')
sugR F3 (SEQ ID NO: 48)	TTTTTGCTTTAAGGAGTGACGAAGGCAACCATGAA
	TCTAATGTACGCAGAGGAGCGCCGTC

La PCR se llevó a cabo usando los pares de cebadores de las SEQ ID NOS: 43 y 44 para obtener el fragmento recombinante homólogo cadena arriba del codón de inicio del gen *sugR* y los pares de cebadores de las SEQ ID NOS: 48 y 47 para obtener el fragmento recombinante homólogo cadena abajo el codón de inicio del gen *sugR*, que se preparó con respecto a la proximidad de la secuencia de polinucleótidos del gen que codifica el SugR descrito por la SEQ ID NO: 2, y la región cadena arriba y la región cadena abajo del codón de inicio del gen *sugR* se amplificaron, respectivamente, y los resultados se sometieron a electroforesis para obtener los fragmentos deseados. Los fragmentos obtenidos de ese modo se sometieron a electroforesis en un gel de agarosa al 0,8 %, y las bandas de los tamaños deseados se eluyeron y se purificaron. El vector *pDZ* se trató con *BamH*I y *SaI*I y a continuación los productos de PCR de la cepa ATCC13032 se sometieron a clonación por fusión. La clonación por fusión se llevó a cabo usando el Kit de Clonación En-Fusion® HD (Clontech). Por lo tanto, se preparó el plásmido *pDZ-1'sugR(B6)*.

Los plásmidos *pDZ-1'sugR(GTG)*, *pDZ-1'sugR(TTG)*, y *pDZ-1'sugR(B6)* se introdujeron en un microorganismo del género *Corynebacterium* KCCM11240P (Publicación de Solicitud de Patente Coreana N.º 10-2013-0082478) por electroporación para obtener transformantes, y los transformantes se sembraron en placas en medios de placa BHIS (37 g/l de infusión de cerebro y corazón, 91 g/l de sorbitol, y agar al 2 %) que contenían kanamicina (25 µg/ml) y X-gal (5-bromo-4-cloro-3-indolin-D-galactósido) y se cultivaron para obtener colonias. Entre las colonias, se seleccionaron colonias azules y por lo tanto se seleccionaron las cepas introducidas con los plásmidos *pDZ-1'sugR(GTG)*, *pDZ-1'sugR(TTG)*, y *pDZ-1'sugR(B6)*.

- 40 Las cepas seleccionadas se cultivaron con agitación (30 °C, 8 horas) en medio CM (10 g/l de glucosa, 10 g/l de polipeptona, 5 g/l de extracto de levadura, 5 g/l de extracto de carne, 2,5 g/l de NaCl, 2 g/l de urea, pH 6,8) y se diluyeron secuencialmente de 10⁻⁴ a 10⁻¹⁰, se sembraron en placas en un medio sólido que contenía X-gal, y se cultivaron para formar colonias.
- Entre las colonias formadas de ese modo, se seleccionaron colonias blancas que aparecían a una tasa relativamente baja y las cepas en las que el codón de inicio de *sugR* se cambió a GTG o TTG por un cruce secundario o las cepas en las que el promotor se cambió a B6 se seleccionaron en último lugar. Con respecto a las cepas seleccionadas en último lugar, la PCR se llevó a cabo usando un par de cebadores de SEQ ID NOS: 43 y 47 y se confirmó que el codón de inicio de *sugR* se cambió a GTG o TTG, o el promotor se convirtió en un promotor con debilitamiento de B6, y las cepas modificadas de *Corynebacterium glutamicum* se denominaron KCCM11240P sugR (GTG), KCCM11240P sugR (TTG), KCCM11240P sugR (B6).
 - 1-2. Preparación de una cepa con debilitamiento del gen sugR a partir de una cepa basada en ATCC13869 que tiene productividad de putrescina

35

DAB12-a ΔNCg/1469 (Publicación de Solicitud de Patente Coreana N.º 10-2014-0115244), que es una cepa de Corynebacterium glutamicum basada en ATCC13869 que tiene productividad de putrescina, se denominó DAB12-b, y una cepa con debilitamiento de sugR se preparó basándose en la cepa DAB12-b.

De forma específica, para confirmar las secuencias del gen que codifica SugR obtenido a partir de la cepa ATCC13869 de *Corynebacterium glutamicum* y la proteína expresada a partir de las mismas, la PCR se llevó a cabo usando el ADN genómico de la cepa ATCC13869 de *Corynebacterium glutamicum* como un molde junto con un par de cebadores de SEQ ID NO: 43 y de SEQ ID NO: 49.

10

25

30

35

40

50

55

60

	[Tabla 3]
Cebador	Secuencia (5' -> 3')
sugR R (SEQ ID NO: 49)	GGACTTGCAGTGACTGTAAGAA

En particular, la PCR se llevó a cabo mediante 30 ciclos de desnaturalización a 95 °C durante 30 segundos, hibridación a 55 °C durante 30 segundos, y con extensión a 72 °C durante 1 minuto y 30 segundos.

Los productos de PCR obtenidos de ese modo se separaron mediante electroforesis y se sometieron al análisis de secuencias, y como resultado, se confirmó que el gen que codifica SugR obtenido a partir de la cepa ATCC13869 de *Corynebacterium glutamicum* incluye una secuencia de polinucleótidos descrita por la SEQ ID NO: 4. La comparación de la secuencia de proteínas que se está codificando a partir de la misma y la secuencia de aminoácidos del SugR obtenido a partir de la cepa ATCC13032 de *Corynebacterium glutamicum* (SEQ ID NO: 1) reveló que su homología era de un 99 %.

Con el fin de cambiar el codón de inicio de *sugR* obtenido a partir de la cepa ATCC13869 de *Corynebacterium glutamicum* y sustituir el promotor con debilitamiento de B6, la PCR se llevó a cabo como en el Ejemplo 1-1 usando el ADN genómico de la cepa ATCC13869 de *Corynebacterium glutamicum* como molde junto con los cebadores que se han descrito en las Tablas 1 y 2 mencionadas anteriormente, y los fragmentos de PCR de la región cadena arriba y de la región cadena abajo del codón de inicio de *sugR* se amplificaron, respectivamente, y a continuación se sometieron a electroforesis para obtener los fragmentos deseados. En particular, la PCR se llevó a cabo mediante 30 ciclos de desnaturalización a 95 °C durante 30 segundos, hibridación a 55 °C durante 30 segundos, y con extensión a 72 °C durante 30 segundos. Los fragmentos obtenidos de ese modo se sometieron a electroforesis en un gel de agarosa al 0,8 %, y las bandas de los tamaños deseados se eluyeron y se purificaron.

El vector *pDZ* se trató con *BamH*I y *Sal*I y a continuación los productos de PCR de la cepa *ATCC13032* se sometieron a clonación por fusión. La clonación por fusión se llevó a cabo usando el Kit de Clonación En-Fusion® HD (Clontech). Por lo tanto, se prepararon los plásmidos *pDZ-2'sugR(GTG)*, *pDZ-2'sugR(TTG)*, y *pDZ-2'sugR(B6)*.

Los plásmidos *pDZ-2'sugR(GTG)*, *pDZ-2'sugR(TTG)*, y *pDZ-2'sugR(B6)* se transformaron en la cepa DAB12-b de *Corynebacterium glutamicum* de la misma manera que en el Ejemplo 1-1, y se seleccionaron las cepas en las que el codón de inicio de *sugR* se cambió y/o el promotor se convirtió en un promotor con debilitamiento de B6. Las cepas de *Corynebacterium glutamicum* modificadas seleccionadas de ese modo se denominaron DAB12-b sugR(GTG), DAB12-b sugR(TTG), y DAB12-b sugR(B6), respectivamente.

Ejemplo 2: Preparación de una cepa con potenciación de *gltA* a partir de una cepa que tiene productividad de putrescina

Con el fin de confirmar el efecto de potenciación de la actividad de gltA, que es citrato sintasa, en una cepa que tiene productividad de putrescina, se preparó una cepa modificada en la que el gen *gltA* se introdujo en un gen transposón dentro del cromosoma de la cepa que tiene productividad de putrescina. El vector *pDZTn* (documento WO 2009/125992) a la transformación, que puede introducir un gen en el cromosoma, y se usó la región del gen transposón del microorganismo del género *Corynebacterium*.

2-1. Preparación de una cepa con potenciación de *gltA* a partir de una cepa basada en *ATCC13032* que tiene productividad de putrescina

Los fragmentos del gen *gltA* se amplificaron usando el ADN genómico de la cepa *ATCC13032* de *Corynebacterium glutamicum* como molde junto con los cebadores de las SEQ ID NOS: 50 y 51 (Tabla 4). En particular, la PCR se llevó a cabo mediante 30 ciclos de desnaturalización a 95 °C durante 30 segundos, hibridación a 55 °C durante 30 segundos, y con extensión a 72 °C durante 30 segundos o 1 minuto y 30 segundos. Los fragmentos obtenidos de ese modo se sometieron a electroforesis en un gel de agarosa al 0,8 %, y las bandas de los tamaños deseados se eluyeron y se purificaron.

El vector *pDZTn* se trató con *Spel* y a continuación los productos de PCR se sometieron a clonación por fusión, respectivamente. La clonación por fusión se llevó a cabo usando el Kit de Clonación En-Fusion® HD (Clontech). El

plásmido obtenido de este modo se denominó pDZTn1'-gltA.

10

15

25

30

35

40

50

55

[Tabla 4]

Cebador	Secuencia (5' -> 3')
gltA F_spel (SEQ ID NO: 50)	GAAGGAATGAGTTCCTCGAGACTAGTACTCGGCAC TCCTTGTC
gltA R_spel (SEQ ID NO: 51)	GTTATTAGATGTCGGGCCCACTAGTGTGCTGTACAT TCCTTGAAAATC

El plásmido preparado de ese modo se introdujo en la cepa KCCM11240P mediante electroporación para obtener un transformante, y el transformante se cultivó con agitación (30 °C, 8 horas) en medio CM (10 g/l de glucosa, 10 g/l de polipeptona, 5 g/l de extracto de levadura, 5 g/l de extracto de carne, 2,5 g/l de NaCl, 2 g/l de urea, pH 6,8), se diluyó secuencialmente de 10-4 a 10-10, se sembró en placas en un medio sólido que contenía X-gal, y se cultivó para formar colonias.

Entre las colonias formadas de ese modo, se seleccionaron colonias blancas que aparecían a una tasa relativamente baja y por último se seleccionó la cepa en la que el gen que codifica gltA se introdujo mediante un cruce secundario. Con respecto a la cepa seleccionada en último lugar, se confirmó que la PCR se llevó a cabo usando un par de cebadores de SEQ ID NOS: 50 y 51 y que el gen que codifica gltA se introdujo en la misma, y la cepa modificada de *Corynebacterium glutamicum* se denominó KCCM11240P Tn::gltA.

2-2. Preparación de una cepa con potenciación de *gltA* a partir de una cepa basada en ATCC13869 que tiene productividad de putrescina

20 Con respecto a la cepa DAB12-b usada en el Ejemplo 1-2, se preparó una cepa con potenciación de gltA.

De forma específica, para confirmar las secuencias del gen que codifica gltA obtenido a partir de la cepa *ATCC13869* de *Corynebacterium glutamicum* y la proteína expresada a partir de la misma, la PCR se llevó a cabo usando el ADN genómico de la cepa ATCC13869 de *Corynebacterium glutamicum* como un molde junto con un par de cebadores de SEQ ID NO: 50 y SEQ ID NO: 51.

En particular, la PCR se llevó a cabo mediante 30 ciclos de desnaturalización a 95 °C durante 30 segundos, hibridación a 55 °C durante 30 segundos, y con extensión a 72 °C durante 1 minuto y 30 segundos. Los productos de PCR obtenidos de ese modo se separaron mediante electroforesis y se sometieron al análisis de secuencias, y como resultado, se confirmó que el gen que codifica gltA obtenido a partir de la cepa ATCC13869 de *Corynebacterium glutamicum* incluye una secuencia de polinucleótidos descrita por la SEQ ID NO: 8. La comparación de la secuencia de proteínas que se está codificando a partir de la misma y la secuencia de aminoácidos del gen gltA obtenido a partir de la cepa *ATCC13032* de *Corynebacterium glutamicum* (SEQ ID NO: 5) reveló que su homología era de un 99 %.

Con el fin de potenciar el gltA obtenido a partir de la cepa *ATCC13869* de *Corynebacterium glutamicum*, la PCR se llevó a cabo como en el Ejemplo 2-1 usando el ADN genómico de la cepa *ATCC13869* de *Corynebacterium glutamicum* como molde junto con los cebadores de las SEQ ID NOS: 50 y 51 para amplificar fragmentos del gen. En particular, la PCR se llevó a cabo mediante 30 ciclos de desnaturalización a 95 °C durante 30 segundos, hibridación a 55 °C durante 30 segundos, y con extensión a 72 °C durante 30 segundos o 1 minuto y 30 segundos. Los fragmentos de PCR obtenidos de ese modo se sometieron a electroforesis en un gel de agarosa al 0,8 %, y las bandas de los tamaños deseados se eluyeron y se purificaron.

El vector *pDZTn* se trató con *Spe*l y a continuación los productos de PCR se sometieron a clonación por fusión, respectivamente. La clonación por fusión se llevó a cabo usando el Kit de Clonación En-Fusion® HD (Clontech). El plásmido obtenido de ese modo se denominó *pDZTn2'-gltA*. El plásmido *pDZTn2'-gltA* se transformó en la cepa *DAB12-b* de *Corynebacterium glutamicum* de la misma manera que en el Ejemplo 2-1 y por lo tanto se seleccionó la cepa en la que se potenció gltA. La cepa modificada de *Corynebacterium glutamicum* seleccionada de ese modo se denominó *DAB12-b Tn:gltA*.

Ejemplo 3: Preparación de cepas que tienen productividad de putrescina con la integración de debilitamiento de sugR y potenciación de gltA y confirmación de la productividad de putrescina de las cepas

Con el fin de confirmar la mejora de la productividad de putrescina de las cepas con debilitamiento de sugR preparadas en los Ejemplos 1-1 y 1-2 mediante la inserción del gen gltA, el gen gltA se introdujo en el gen

transposón. En particular, se usaron los vectores pDZTn1'-gltA y pDZTn2'-gltA preparados en los Ejemplos 2-1 y 2-2.

De forma específica, el plásmido *pDZTn1'-gltA* se transformó en las cepas KCCM11240P sugR(GTG), - KCCM11240P sugR(TTG), y - KCCM11240P sugR(B6) de *Corynebacterium glutamicum* de la misma manera que en el Ejemplo 2-1 para preparar cepas con potenciación de gltA. Las cepas modificadas de *Corynebacterium glutamicum* preparadas de ese modo se denominaron KCCM11240P sugR(GTG) Tn::gltA, KCCM11240P sugR(TTG) Tn::gltA, y KCCM11240P sugR(B6) Tn::gltA, respectivamente, y entre ellas, KCCM11240P sugR(TTG) Tn::gltA (*Corynebacterium glutamicum* CC01-1147) se depositó en el Korean Culture Center of Microorganisms (KCCM) el 28 de noviembre de 2014, con el número de acceso KCCM11615P.

Además, el plásmido pDZTn2'-gltA se transformó en las cepas DAB12-b sugR(GTG), -DAB12-b sugR(TTG), y -DAB12-b sugR(B6) de Corynebacterium glutamicum de la misma manera que en el Ejemplo 2-2 para preparar cepas con potenciación de gltA. Las cepas modificadas de Corynebacterium glutamicum preparadas de ese modo se denominaron DAB12-b sugR(GTG) Tn::gltA, DAB12-b sugR(TTG) Tn::gltA, y DAB12-b sugR(B6) Tn::gltA, respectivamente.

10

15

35

Ejemplo 4: Evaluación de la productividad de putrescina de cepas que tienen productividad de putrescina con la integración de debilitamiento de *sugR* y potenciación de *gltA*

- Con el fin de confirmar el efecto del debilitamiento de *sugR* y de potenciación de *gltA* en cepas que tienen productividad de putrescina en la producción de putrescina, la productividad de putrescina se comparó entre las cepas modificadas de *Corynebacterium glutamicum* que tienen productividad de putrescina preparadas en los Ejemplos 1, 2, y 3.
- De forma específica, 6 tipos diferentes de cepas modificadas de *Corynebacterium glutamicum*, es decir, (KCCM11240P sugR (GTG) Tn::gltA/ KCCM11240P sugR (TTG) Tn::gltA/ KCCM11240P sugR (B6) Tn::gltA/ DAB12-b sugR (GTG) Tn::gltA/ DAB12-b sugR (B6) Tn::glt
 - Cada una de las cepas cultivadas a partir del mismo en una cantidad de aproximadamente un bucle de platino se inoculó en una cantidad de 25 ml de medio de título (glucosa al 8 %, proteína de soja al 0,25 %, sólidos de maíz fermentado al 0,50 %, $(NH_4)_2SO_4$ al 4 %, KH_2PO_4 al 0,1 %, $MgSO_4\cdot 7H_2O$ al 0,05 %, urea al 0,15 %, 100 g de biotina, 3 mg de HCl de tiamina, 3 mg de calcio-ácido pantoténico, 3 mg de nicotinamida, $CaCO_3$ al 5 %, basándose en 1 l), y se cultivó con agitación a 30 °C a una tasa de 200 rpm durante 50 horas.
- En todos los cultivos de las cepas, si añadió arginina 1 mM a los medios. Después de finalizar el cultivo, la concentración de la putrescina producir en cada cultivo se midió y los resultados se muestran en la Tabla 5 que sigue continuación.

[Tabla 5]										
Сера	Putrescina (g/l)	Productividad (g/l/h)	Índice (%)							
KCCM11240P	5,8	0,116	100							
KCCM11240P sugR (TTG)	6,3	0,126	109							
KCCM11240P sugR (GTG)	6,3	0,126	109							
KCCM11240P sugR (B6)	6,0	0,120	103							
KCCM11240P Tn::gltA	6,2	0,124	107							
KCCM11240P sugR (TTG) Tn::gltA	6,8	0,136	117							
KCCM11240P sugR (GTG) Tn::gltA	6,5	0,130	112							
KCCM11240P sugR (B6) Tn::gltA	6,3	0,126	109							
DAB12-b	6,5	0,129	100							
DAB12-b sugR (TTG)	6,9	0,138	107							
DAB12-b sugR (GTG)	6,8	0,136	105							
DAB12-b sugR (B6)	6,7	0,134	104							
DAB12-b Tn::gltA	7,0	0,140	109							

DAB12-b sugR (TTG) Tn::gltA	7,3	0,146	113
DAB12-b sugR (GTG) Tn::gltA	7,1	0,142	110
DAB12-b sugR (B6) Tn::gltA	7,1	0,142	110

Como se muestra en la Tabla 5 mencionada anteriormente, las cepas modificadas de *Corynebacterium glutamicum* con debilitamiento de sugR o con potenciación de gltA mostraron un aumento de la productividad de putrescina en comparación con la cepa no modificada, KCCM11240P, de un 3 % a un 9 %, y también, las cepas modificadas de *Corynebacterium glutamicum* con debilitamiento de sugR y con potenciación de gltA de forma simultánea mostraron un aumento de la productividad de putrescina de un 9 % a un 17 %.

Además, las cepas modificadas de la cepa DAB12-b con debilitamiento de sugR o con potenciación de gltA mostraron un aumento de la productividad de putrescina en comparación con la cepa no modificada, de un 4 % a un 9 % y también, las cepas modificadas de la cepa DAB12-b con debilitamiento de sugR y con potenciación de gltA de forma simultánea mostraron un aumento de la productividad de putrescina de un 10 % a un 13 %.

10

15

35

40

60

Ejemplo 5: Preparación de cepas con un aumento de capacidad de secreción de putrescina basándose en cepas que tienen productividad de putrescina con integración de debilitamiento de sugR y potenciación de gltA y confirmación de productividad de putrescina de las cepas

5-1. Preparación de cepas con un aumento de la capacidad de secreción de putrescina basándose en cepas con integración de debilitamiento de sugR y potenciación de gltA

- Con el fin de confirmar si la cepa KCCM11401P con un aumento de la capacidad de secreción de putrescina (Publicación de Solicitud de Patente Coreana N.º 10-2014-0115244) puede mejorar la productividad de putrescina mediante el debilitamiento de la actividad del gen *sugR* y la potenciación de la actividad del gen *gltA*, se prepararon cepas modificadas.
- De forma específica, en primer lugar, los plásmidos pDZI-1'sugR(GTG), pDZ-1'sugR(TTG), y pDZ-1'sugR(B6) preparados en el Ejemplo 1-1 se transformaron en la cepa KCCM 11401P de Corynebacterium glutamicum, y a partir de la misma se seleccionaron las cepas en las que el codón de inicio de sugR se convirtió en TTG dando como resultado del debilitamiento de sugR. Las cepas de Corynebacterium glutamicum modificadas seleccionadas de ese modo se denominaron KCCM11401P sugR(GTG), KCCM11401P sugR(TTG), y KCCM11401P sugR(B6), respectivamente.

A continuación, con el fin de confirmar si la productividad de putrescina se puede mejorar con la potenciación de la actividad del gen *gltA*, el gen *gltA* se introdujo en un gen transposón de las cepas con debilitamiento del gen *sugR* preparadas anteriormente. En particular, se usó el vector *pDZTn1'-gltA* preparado en el Ejemplo 2-1.

De forma específica, el plásmido *pDZTn1'-gltA* preparado en el Ejemplo 2-1 se transformó en KCCM11401P sugR(GTG), KCCM11401P sugR(TTG), y KCCM11401P sugR(B6), y se seleccionaron las cepas con potenciación de *gltA*. Las cepas de *Corynebacterium glutamicum* modificadas seleccionadas de ese modo se denominaron KCCM11401P sugR(GTG) Tn::gltA, KCCM11401P sugR(TTG) Tn::gltA, y KCCM11401P sugR(B6) Tn::gltA.

5-2. Evaluación de cepas con un aumento de capacidad de secreción de putrescina basándose en cepas que tiene productividad de putrescina con integración de debilitamiento de sugR y potenciación de gltA con respecto a la productividad de putrescina

- Con el fin de confirmar el efecto del debilitamiento de sugR y de la potenciación de gltA en cepas que tienen productividad de putrescina con respecto a su producción de putrescina, la productividad de putrescina se comparó entre las cepas modificadas de *Corynebacterium glutamicum* preparadas en el Ejemplo 5-1.
- De forma específica, 7 tipos diferentes de cepas modificadas de *Corynebacterium glutamicum* (es decir, (KCCM11401P sugR(GTG), KCCM11401P sugR(TTG), KCCM11401P sugR(B6), KCCM11401P Tn::gltA, KCCM11401P sugR(GTG) Tn::gltA, KCCM11401P sugR(TTG) Tn::gltA, y KCCM11401P sugR(B6) Tn::gltA) y una cepa precursora única (KCCM11401P) se sembraron en placas respectivamente en medio de placas CM que contiene arginina 1 mM (glucosa al 1 %, polipeptona al 1 %, extracto de levadura al 0,5 %, extracto de carne al 0,5 %, NaCl al 0,25 %, urea al 0,2 %, 100 µl de NaOH al 50 %, agar al 2 %, pH 6,8, basándose en 1 l), y se cultivaron a 30 °C durante 24 horas.

Cada una de las cepas cultivadas a partir del mismo en una cantidad de aproximadamente un bucle de platino se inoculó en una cantidad de 25 ml de medio de título (glucosa al 8 %, proteína de soja al 0,25 %, sólidos de maíz fermentado al 0,50 %, $(NH_4)_2SO_4$ al 4 %, KH_2PO_4 al 0,1 %, $MgSO_4 \cdot 7H_2O$ al 0,05 %, urea al 0,15 %, 100 g de biotina, 3 mg de HCl de tiamina, 3 mg de calcio-ácido pantoténico, 3 mg de nicotinamida, $CaCO_3$ al 5 % 1 L, basándose en 1 l), y se cultivó con agitación a 30 °C a una tasa de 200 rpm durante 50 horas.

[Tabla 6]

Сера	Putrescina (g/l)	Productividad (g/l/h)	Índice (%)
KCCM11401P	5,3	0,106	100
KCCM11401P sugR (TTG)	5,6	0,112	106
KCCM11401P sugR (GTG)	5,5	0,110	104
KCCM11401P sugR (B6)	5,4	0,108	102
KCCM11401P Tn::gltA	5,6	0,112	106
KCCM11401P sugR (TTG) Tn::gltA	6,1	0,122	115
KCCM11401P sugR (GTG) Tn::gltA	5,9	0,118	111
KCCM11401P sugR (B6) Tn::gltA	5,8	0,116	109

Como se muestra en la Tabla 6 mencionada anteriormente, las cepas modificadas de *Corynebacterium glutamicum* con debilitamiento de sugR o con potenciación de gltA mostraron un aumento de la productividad de putrescina en comparación con la cepa no modificada, KCCM11401P, de un 2 % a un 6 %, y también, las cepas modificadas de *Corynebacterium glutamicum* con debilitamiento de sugR y con potenciación de gltA de forma simultánea mostraron un aumento de la productividad de putrescina de un 9 % a un 15 % en la productividad de putrescina. Se confirmó que los resultados están de acuerdo con la interpretación de los resultados de la Tabla 5.

10 <u>Ejemplo 6. Preparación de cepas con debilitamiento de sugR a partir de una cepa que tiene productividad de ornitina</u>

15

20

25

30

35

Con el fin de confirmar si el debilitamiento de sugR obtenido a partir de la cepa ATCC13032 de *Corynebacterium glutamicum* tiene un efecto en la productividad de ornitina, se prepararon cepas modificadas usando los vectores preparados en el Ejemplo 1-1.

Los plásmidos preparados en el Ejemplo 1-1, es decir, pDZ-1'sugR(GTG), pDZ-1'sugR(TTG), y pDZ-1'sugR(B6), se introdujeron en la cepa KCCM11137P (Patente Coreana N.º 10-1372635), que se preparó usando la cepa ATCC13032 de *Corynebacterium glutamicum* como la cepa precursora, por electroporación para obtener transformantes, y los transformantes se sembraron en placas en medios de placa BHIS (37 g/l de infusión de cerebro y corazón, 91 g/l de sorbitol, y agar al 2 %) que contenían kanamicina (25 µg/ml) y X-gal (5-bromo-4-cloro-3-indolin-D-galactósido) y se cultivaron para obtener colonias. Entre las colonias, se seleccionaron colonias azules y por lo tanto se seleccionaron las cepas introducidas con los plásmidos pDZ-1'sugR(GTG), pDZ-1'sugR(TTG), y pDZ-1'sugR(B6).

Las cepas seleccionadas se cultivaron con agitación (30 °C, 8 horas) en medio CM (10 g/l de glucosa, 10 g/l de polipeptona, 5 g/l de extracto de levadura, 5 g/l de extracto de carne, 2,5 g/l de NaCl, 2 g/l de urea, pH 6,8) y se diluyeron secuencialmente de 10-4 a 10-10, se sembraron en placas en un medio sólido que contenía X-gal, y se cultivaron para formar colonias. Entre las colonias formadas de ese modo, se seleccionaron colonias blancas que aparecían a una tasa relativamente baja y las cepas, en las que el codón de inicio de *sugR* se cambió a GTG o TTG por un cruce secundario o las cepas en el que el promotor se cambió a B6 se seleccionaron en último lugar. Con respecto a las cepas seleccionadas en último lugar, la PCR se llevó a cabo usando un par de cebadores de SEQ ID NO: 43 y 47 y a continuación se confirmó que el codón de inicio de *sugR* se cambió a GTG o TTG. Las cepas modificadas de *Corynebacterium glutamicum* obtenidas se denominaron KCCM11137P sugR(GTG), KCCM11137P sugR(B6), respectivamente.

Ejemplo 7. Preparación de cepas con potenciación de gltA a partir de cepas que tienen productividad de ornitina

- 40 Con el fin de confirmar el efecto de la potenciación del gen *gltA* en una cepa que tiene productividad de ornitina en su producción de ornitina, se preparó una cepa modificada insertando gen *gltA* en el cromosoma de la cepa que tiene productividad de ornitina usando los vectores preparados en el Ejemplo 2-1.
- De forma específica, los vectores preparados en el Ejemplo 2-1 se introdujeron en la cepa KCCM11137P (Patente Coreana N.º 10-1372635) por electroporación para obtener transformantes, y los transformantes se cultivaron con agitación (30 °C, 8 horas) en medio CM (10 g/l de glucosa, 10 g/l de polipeptona, 5 g/l de extracto de levadura, 5 g/l de extracto de carne, 2,5 g/l de NaCl, 2 g/l de urea, pH 6,8), diluidos secuencialmente de 10-4 a 10-10, se sembraron en placas en un medio sólido que contenía X-gal, y se cultivaron para formar colonias.
- 50 Entre las colonias formadas de ese modo, se seleccionaron colonias blancas que aparecían a una tasa relativamente baja y en último lugar se seleccionó la cepa en la que el gen que codifica gltA se introdujo mediante un

cruce secundario. Con respecto a la cepa seleccionada en último lugar, la PCR se llevó a cabo usando un par de cebadores de SEQ ID NOS: 50 y 51 y se confirmó que el gen que codifica gltA se había introducido la misma, y la cepa de *Corynebacterium glutamicum* modificada se denominó KCCM11137P Tn::gltA.

Ejemplo 8. Preparación de cepas con integración de debilitamiento de sugR y potenciación de gltA y confirmación de la productividad de putrescina de las cepas

8-1. Preparación de cepas basadas en ATCC13032 que tienen productividad de ornitina con integración de debilitamiento de sugR y potenciación de gltA

Con el fin de confirmar el efecto de potenciación de la actividad de productividad de ornitina en las cepas con debilitamiento de sugR, KCCM11137P sugR(GTG), KCCM11137P sugR(TTG), y KCCM11137P sugR(B6) preparadas en el Ejemplo 6 mediante la inserción del gen *gltA* en el cromosoma, el gen *gltA* se introdujo en un gen transposón. En particular, se usó el vector *pDZTn1'-gltA* preparado en el Ejemplo 2-1.

El plásmido pDZTn1'-gltA se transformó en la cepa KCCM11137P sugR TTG) de Corynebacterium glutamicum de la misma manera que en el Ejemplo 2-1 y se seleccionaron cepas con potenciación de gltA. Las cepas de Corynebacterium glutamicum modificadas seleccionadas de ese modo se denominaron KCCM11137P sugR(GTG) Tn::gltA, KCCM11137P sugR(TTG) Tn::gltA, y KCCM11137P sugR(B6) Tn::gltA, respectivamente.

8-2. Evaluación de cepas con integración de debilitamiento de sugR y potenciación de gltA en la productividad de ornitina

Con el fin de confirmar el efecto del debilitamiento de sugR y de la potenciación de gltA en cepas que tienen productividad de ornitina con respecto a su producción de ornitina, la productividad de ornitina se comparó entre las cepas modificadas de *Corynebacterium glutamicum* preparadas en el Ejemplo 8-1.

De forma específica, 7 tipos diferentes de cepas modificadas de *Corynebacterium glutamicum* (es decir, (KCCM11137P sugR(GTG), KCCM11137P sugR(TTG), KCCM11137P sugR(B6), KCCM11137P Tn::gltA, KCCM11137P sugR(GTG) Tn::gltA, KCCM11137P sugR(TTG) Tn::gltA, y KCCM11137P sugR(B6) Tn::gltA) y una cepa precursora única (KCCM11137P) se sembraron en placas respectivamente en medio de placas CM que contiene arginina 1 mM (glucosa al 1 %, polipeptona al 1 %, extracto de levadura al 0,5 %, extracto de carne al 0,5 %, NaCl al 0,25 %, urea al 0,2 %, 100 μl de NaOH al 50 %, agar al 2 %, pH 6,8, basándose en 1 l), y se cultivó a 30 °C durante 24 horas.

Cada una de las cepas cultivadas a partir del mismo en una cantidad de aproximadamente un bucle de platino se inoculó en una cantidad de 25 ml de medio de título (glucosa al 8 %, proteína de soja al 0,25 %, sólidos de maíz fermentado al 0,50 %, (NH₄)₂SO₄ al 4 %, KH₂PO₄ al 0,1 %, MgSO₄·7H₂O al 0,05 %, urea al 0,15 %, 100 g de biotina, 3 mg de HCl de tiamina, 3 mg de calcio-ácido pantoténico, 3 mg de nicotinamida, CaCO₃ al 5 % basándose en 1 l), y se cultivó con agitación a 30 °C a una tasa de 200 rpm durante 50 horas. En todos los cultivos de cepas, se añadió arginina 1 mM a los medios. Después de finalizar el cultivo, la concentración de ornitina producida en cada cultivo se midió y los resultados se muestran en la Tabla 7 que sigue a continuación.

	[Tabla 7]		
Сера	Ornitina (g/l)	Productividad (g/l/h)	Índice (%)
KCCM11137P	11,5	0,230	100
KCCM11137P sugR(TTG)	12,5	0,250	109
KCCM11137P sugR(GTG)	12,3	0,246	107
KCCM11137P sugR(B6)	12,5	0,250	109
KCCM11137P Tn::gltA	12,4	0,248	108
KCCM11137P sugR(TTG) Tn::gltA	13,5	0,270	117
KCCM11137P sugR(GTG) Tn::gltA	13	0,260	113
KCCM11137P sugR(B6) Tn::gltA	12,9	0,258	112

Como se muestra en la Tabla 7 mencionada anteriormente, las cepas de *Corynebacterium glutamicum* modificadas con debilitamiento de sugR o con potenciación de gltA mostraron un aumento de la productividad de ornitina en comparación con la cepa no modificada, KCCM11137P, de un 7 % a un 9 %, y también, las cepas de *Corynebacterium glutamicum* modificadas con debilitamiento de sugR y con potenciación de gltA de forma simultánea mostraron un aumento de la productividad de ornitina de un 12 % a un 17 % en la productividad de ornitina.

45

50

5

10

15

20

25

30

35

En conclusión, en una cepa de *Corynebacterium* que produce putrescina u ornitina, se confirmó que la producción de putrescina y ornitina se puede aumentar mediante el debilitamiento de sugR o la potenciación de gltA, y que cuando gltA se potenciaba a la vez que sugR se debilitaba, la producción de putrescina y ornitina aumentaba de forma más significativa.

5

```
<110> CJ CHEILJEDANG CORPORATION
```

<120> MICROORGANISMOS PARA PRODUCIR PUTRESCINA U ORNITINA Y PROCESO PARA PRODUCIR PUTRESCINA U ORNITINA USANDO LOS MISMOS

10

<130> KMC/80313EP1

<150> KR10-2015-0090021

<151> 24-06-2015

15

<160> 51

<170> KopatentIn 2.0

20 <210> 1

<211> 259

<212> PRT

<213> SugR de ATCC13032 de Corynebacterium glutamicum

Met 1	Tyr	Ala	Glu	Glu 5	Arg	Arg	Arg	Gln	Ile 10	Ala	Ser	Leu	Thr	Ala 15	Val
Glu	Gly	Arg	Val 20	Asn	Val	Thr	Glu	Leu 25	Ala	Gly	Arg	Phe	Asp 30	Val	Thr
Ala	Glu	Thr 35	Ile	Arg	Arg	Asp	Leu 40	Ala	Val	Leu	Asp	Arg 45	Glu	Gly	Ile
Val	His 50	Arg	Val	His	Gly	Gly 55	Ala	Val	Ala	Thr	G1n 60	Ser	Phe	Gln	Thr
Thr 65	Glu	Leu	Ser	Leu	Asp 70	Thr	Arg	Phe	Arg	Ser 75	Ala	Ser	Ser	Ala	Lys 80
Tyr	Ser	Ile	Ala	Lys 85	Ala	Ala	Met	Gln	Phe 90	Leu	Pro	Ala	Glu	His 95	Gly
Gly	Leu	Phe	Leu 100	Asp	Ala	Gly	Thr	Thr 105	Val	Thr	Ala	Leu	Ala 110	Asp	Leu
Ile	Ser	Glu 115	His	Pro	Ser	Ser	Lys 120	Gln	Trp	Ser	Ile	Val 125	Thr	Asn	Сув
Leu	Pro 130	Ile	Ala	Leu	Asn	Leu 135	Ala	Asn	Ala	Gly	Leu 140	Asp	Asp	Val	Gln
Leu 145	Leu	Gly	Gly	Ser	Val 150	Arg	Ala	Ile	Thr	Gln 155	Ala	Val	Val	Gly	Asp 160
Thr	Ala	Leu	Arg	Thr 165	Leu	Ala	Leu	Met	Arg 170	Ala	Asp	Val	Val	Phe 175	Ile
Gly	Thr	Asn	Ala 180	Leu	Thr	Leu	Asp	His 185	Gly	Leu	Ser	Thr	Ala 190	Asp	Ser
Gln	Glu	Ala 195	Ala	Met	Lys	Ser	Ala 200	Met	Ile	Thr	Asn	Ala 205	His	Lys	Val
Val	Val 210	Leu	Cys	Asp	Ser	Thr 215		Met	Gly	Thr	Asp 220		Leu	Val	Ser
Phe	Gly	Ala	Ile	Ser	Asp	Ile	Asp	Val	Val	Val	Thr	Asp	Ala	Gly	Ala
225					230					235					240
Pro	Ala	Ser	Phe	Val 245	Glu	Gln	Leu	Arg	Glu 250	Arg	Asp	Val	Glu	Val 255	Val
Ile	Ala	Glu													

<210> 2

5

<211> 780 <212> ADN <213> SugR de ATCC13032 de Corynebacterium glutamicum

atgtacgcag	aggagcgccg	tcgacagatt	gcctcattaa	cggcagttga	gggacgtgta	60
aatgtcacag	aattagcggg	ccgattcgat	gtcactgcag	agacgattcg	acgagacctt	120
gcggtgctag	accgcgaggg	aattgttcac	cgcgttcacg	gtggcgcagt	agccacccaa	180
tctttccaaa	ccacagagtt	gagcttggat	actcgtttca	ggtctgcatc	gtcagcaaag	240
tactccattg	ccaaggcagc	gatgcagttc	ctgcccgctg	agcatggcgg	actgttcctc	300
gatgcgggaa	ctactgttac	tgctttggcc	gatctcattt	ctgagcatcc	tagctccaag	360
cagtggtcga	tcgtgaccaa	ctgcctcccc	ategeaetta	atctggccaa	cgccgggctt	420
gatgatgtcc	agetgettgg	aggaagcgtt	cgcgcgatca	cccaggctgt	tgtgggtgac	480
actgcgcttc	gtactctcgc	gctgatgcgt	gcggatgtag	tgttcatcgg	caccaacgcg	540
ttgacgttgg	atcacggatt	gtctacggcc	gattcccaag	aggetgeeat	gaaatctgcg	600
atgatcacca	acgcccacaa	ggtggtggtg	ttgtgtgact	ccaccaagat	gggcaccgac	660
tacctcgtga	gctttggcgc	aatcagcgat	atcgatgtgg	tggtcacega	tgcgggtgca	720
ccagcaagtt	tegttgagea	gttgcgagaa	cgcgatgtag	aagttgtgat	tgcagaatga	780
						780

<210> 3 <211> 257

5

<212> PRT

<213> SugR de ATCC13869 de Corynebacterium glutamicum

<400> 3

Met Tyr Ala Glu Glu Arg Arg Gln Ile Ala Ser Leu Thr Ala Val 1 5 10 15

Glu Gly Arg Val Asn Val Thr Glu Leu Ala Gly Arg Phe Asp Val Thr 20 25 30

Ala Glu Thr Ile Arg Arg Asp Leu Ala Val Leu Asp Arg Glu Gly Ile
35 40 45

Val His Arg Val His Gly Gly Ala Val Ala Thr Gln Ser Phe Gln Thr 50 55 60

Thr Glu Leu Ser Leu Asp Thr Arg Phe Arg Ser Ala Ser Ser Ala Lys

65					70					75					80
Tyr	Ser	Ile	Ala	Lys 85	Ala	Ala	Met	Gl n	Phe 90	Leu	Pro	Ala	Glu	His 95	Gly
Gly	Leu	Phe	Leu 100	Asp	Ala	Gly	Thr	Thr 105	Val	Thr	Ala	Leu	Ala 110	Asp	Leu
Ile	Ser	Glu 115	His	Pro	Ser	Ala	Lys 120	Gln	Trp	Ser	Ile	Val 125	Thr	Asn	Суз
Leu	Pro 130	Ile	Ala	Leu	Asn	Leu 135	Ala	Asn	Ala	Gly	Leu 140	Asp	Asp	Val	Gln
Leu 145	Leu	Gly	Gly	Ser	Val 150	Arg	Ala	Ile	Thr	Gln 155	Ala	Val	Val	Gly	Asp 160
Thr	Ala	Leu	Arg	Thr 165	Leu	Ala	Leu	Met	Arg 170	Ala	Asp	Val	Val	Phe 175	Ile
Gly	Thr	Asn	Ala 180	Leu	Thr	Leu	Asp	His 185	Gly	Leu	Ser	Thr	Ala 190	Asp	Ser
Gln	Glu	Ala 195	Ala	Met	Lys	Ser	Ala 200	Met	Ile	Thr	Asn	Ala 205	His	Lys	Val
Val	Val 210	Leu	Cys	Asp	Ser	Thr 215	Lys	Met	Gly	Thr	Asp 220	Tyr	Leu	Val	Ser
Phe 225	Gly	Ala	Ile	Ser	Asp 230	Ile	Asp	Val	Val	Val 235	Thr	Asp	Ala	Gly	Ala 240
Pro	Ala	Ser	Phe	Val 245	Glu	Gln	Leu	Arg	Glu 250	Arg	Asp	Val	Glu	Val 255	Val
Ile															

<210> 4 <211> 780 <212> ADN <213> SugR de ATCC13869 de Corynebacterium glutamicum

atgtacgcag	aggagegeeg	tcgacagatt	gcctcattaa	cggcagttga	gggacgtgta	60
aatgtcacag	aattagcggg	ccgattcgat	gtcactgcag	agacgattcg	acgagacett	120
gcggtgctag	accgcgaggg	aattgttcac	cgcgttcacg	gtggcgcagt	agccacccaa	180
totttocaaa	ccacagagtt	gagcttggat	actcgtttca	ggtctgcatc	gtcagcaaag	240
tactccattg	ccaaggcagc	gatgcagttc	ctgcccgctg	agcatggcgg	actgttcctc	300
gatgcgggaa	ctactgttac	tgctttggcc	gatctcattt	ctgagcatcc	tagcgccaag	360
cagtggtcga	tegtgaccaa	ctgcctcccc	atcgcactta	atctggccaa	cgccgggctt	420
gatgatgtcc	agctacttgg	aggaagegtt	cgcgcgatca	cccaggetgt	tgtgggtgac	480
actgcgcttc	gtactctcgc	gctgatgcgt	gcggatgtag	tgttcatcgg	caccaacgcg	540
ttgacgttgg	atcacggatt	gtctacggcc	gattcccaag	aggetgeeat	gaaatctgcg	600
atgatcacca	acgcccacaa	ggtggtggtg	ttgtgtgact	ccaccaagat	gggcaccgac	660
tacctcgtga	getttggege	aatcagcgat	atcgatgtgg	tggtcaccga	tgcgggtgca	720
ccagcaagtt	tcgttgagca	gttgcgagaa	cgcgatgtag	aagttgtgat	tgcagaatga	780
						780

5

<210> 5

<211> 437

<212> PRT

<213> GltA de ATCC13032 de Corynebacterium glutamicum

Met 1	Phe	Glu	Arg	Asp 5	Ile	Val	Ala	Thr	Asp 10	Asn	Asn	Lys	Ala	Val 15	Leu
His	Tyr	Pro	Gly 20	Gly	Glu	Phe	Glu	Met 25	Asp	Ile	Ile	Glu	Ala 30	Ser	Glu
Gly	Asn	Asn 35	Gly	Val	Val	Leu	Gly 40	Lys	Met	Leu	Ser	Glu 45	Thr	Gly	Leu
Ile	Thr 50	Phe	Asp	Pro	Gly	Tyr 55	Val	Ser	Thr	Gly	Ser 60	Thr	Glu	Ser	Lys
Ile 65	Thr	Tyr	Ile	Asp	Gly 70	Asp	Ala	Gly	Ile	Leu 75	Arg	Tyr	Arg	Gly	Tyr 80
Asp	Ile	Ala	Asp	Leu 85	Ala	Glu	Asn	Ala	Thr 90	Phe	Asn	Glu	Val	Ser 95	Tyr
Leu	Leu	Ile	Asn 100	Gly	Glu	Leu	Pro	Thr 105	Pro	Asp	Glu	Leu	His 110	Lys	Phe
Asn	Asp	Glu 115	Ile	Arg	His	His	Thr 120	Leu	Leu	Asp	Glu	Asp 125	Phe	Lys	Ser
Gln	Phe 130	Asn	Val	Phe	Pro	Arg 135	Asp	Ala	His	Pro	Met 140	Ala	Thr	Leu	Ala
Ser 145	Ser	Val	Asn	Ile	Leu 150	Ser	Thr	Tyr	Tyr	Gln 155	Asp	Gln	Leu	Asn	Pro 160
Leu	Asp	Glu	Ala	Gln 165	Leu	Asp	Lys	Ala	Thr 170	Val	Arg	Leu	Met	Ala 175	Lys
Val	Pro	Met	Leu 180	Ala	Ala	Tyr	Ala	His 185	Arg	Ala	Arg	Lys	Gly 190	Ala	Pro
Tyr	Met	Tyr 195	Pro	Asp	Asn	Ser	Leu 200	Asn	Ala	Arg	Glu	Asn 205	Phe	Leu	Arg
Met	Met 210	Phe	Gly	Tyr	Pro	Thr 215	Glu	Pro	Tyr	Glu	11e 220	Asp	Pro	Ile	Met
Val 225	Lys	Ala	Leu	Asp	Lys 230	Leu	Leu	Ile	Leu	His 235	Ala	Asp	His	Glu	Gln 240
Asn	Cys	Ser	Thr	Ser	Thr	Val	Arg	Met	Ile	Gly	Ser	Ala	Gln	Ala	Asn

				245					250					255	
Met	Phe	Val	Ser 260	Ile	Ala	Gly	Gly	Ile 265	Asn	Ala	Leu	Ser	Gly 270	Pro	Leu
His	Gly	Gly 275	Ala	Asn	Gln	Ala	Val 280	Leu	Glu	Met	Leu	Glu 285	Asp	Ile	Lys
Ser	Asn 290	His	Gly	Gly	Asp	Ala 295	Thr	Glu	Phe	Met	Asn 300	Lys	Val	Lys	Asn
Lys 305	Glu	Asp	Gly	Val	Arg 310	Leu	Met	Gly	Phe	Gly 315	His	Arg	Val	Tyr	Lys 320
Asn	Tyr	Asp	Pro	Arg 325	Ala	Ala	Ile	Val	Lys 330	Glu	Thr	Ala	His	Glu 335	Ile
Leu	Glu	His	Leu 3 4 0	Gly	Gly	Asp	Asp	Leu 345	Leu	Asp	Leu	Ala	Ile 350	Lys	Leu
Glu	Glu	Ile 355	Ala	Leu	Ala	Asp	Asp 360	Tyr	Phe	Ile	Ser	Arg 365	Lys	Leu	Tyr
Pro	Asn 370	Val	Asp	Phe	Tyr	Thr 375	Gly	Leu	Ile	Tyr	Arg 380	Ala	Met	Gly	Phe
Pro 385	Thr	Asp	Phe	Phe	Thr 390	Val	Leu	Phe	Ala	Ile 395	Gly	Arg	Leu	Pro	Gly 400
Trp	Ile	Ala	His	Tyr 405	Arg	Glu	Gln	Leu	Gly 410	Ala	Ala	Gly	Asn	Lys 415	Ile
Asn	Arg	Pro	Arg 420	Gln	Val	Tyr	Thr	Gly 425	Asn	Glu	Ser	Arg	Lys 4 30	Leu	Val
Pro	Arg	Glu 435	Glu	Arg											

<210>6

<211> 1314 <212> ADN 5

<213> gltA de ATCC13032 de Corynebacterium glutamicum

atgtttgaaa	gggatatcgt	ggctactgat	aacaacaagg	ctgtcctgca	ctaccccggt	60
ggcgagttcg	aaatggacat	catcgaggct	tctgagggta	acaacggtgt	tgtcctgggc	120
aagatgctgt	ctgagactgg	actgatcact	tttgacccag	gttatgtgag	cactggctcc	180
accgagtcga	agatcaccta	catcgatggc	gatgcgggaa	tcctgcgtta	cegeggetat	240
gacatcgctg	atctggctga	gaatgccacc	ttcaacgagg	tttcttacct	acttatcaac	300
ggtgagctac	caaccccaga	tgagcttcac	aagtttaacg	acgagattcg	ccaccacacc	360
cttctggacg	aggacttcaa	gtcccagttc	aacgtgttcc	cacgcgacgc	tcacccaatg	420
gcaaccttgg	cttcctcggt	taacattttg	tctacctact	accaggacca	gctgaaccca	480
ctcgatgagg	cacagettga	taaggcaacc	gttcgcctca	tggcaaaggt	tccaatgctg	540
gctgcgtacg	cacacegege	acgcaagggt	gctccttaca	tgtacccaga	caactccctc	600
aatgcgcgtg	agaacttcct	gcgcatgatg	ttcggttacc	caaccgagcc	atacgagatc	660
gacccaatca	tggtcaaggc	tctggacaag	ctgctcatcc	tgcacgctga	ccacgagcag	720
aactgctcca	cctccaccgt	togtatgato	ggttccgcac	aggccaacat	gtttgtctcc	780
atcgctggtg	gcatcaacgc	totgtocggo	ccactgcacg	gtggcgcaaa	ccaggctgtt	840
ctggagatgc	tcgaagacat	caagagcaac	cacggtggcg	acgcaaccga	gttcatgaac	900
aaggtcaaga	acaaggaaga	cggcgtccgc	ctcatgggct	teggacaceg	cgtttacaag	960
aactacgatc	cacgtgcagc	aatcgtcaag	gagaccgcac	acgagatect	cgagcacete	1020
ggtggcgacg	atcttctgga	tctggcaatc	aagctggaag	aaattgcact	ggctgatgat	1080
tacttcatct	cccgcaagct	ctaccogaac	gtagacttct	acaccggcct	gatctaccgc	1140
gcaatgggct	tcccaactga	cttcttcacc	gtattgttcg	caatcggtcg	tctgccagga	1200
tggatcgctc	actaccgcga	gcagctcggt	gcagcaggca	acaagatcaa	ccgcccacgc	1260
caggtetaca	ccoocaacoa	atecegeaag	ttaatteete	gcgaggagcg	ctaa	1314

<210> 7

<211> 437

<212> PRT

<213> GltA de ATCC13869 de Corynebacterium glutamicum

<400> 7

Met 1	Phe	Glu	Arg	Asp 5	Ile	Val	Ala	Thr	Asp 10	Asn	Asn	Lys	Ala	Val 15	Leu
His	Tyr	Pro	Gly 20	Gly	Glu	Phe	Glu	Met 25	Asp	Ile	Ile	Glu	Ala 30	Ser	Glu
Gly	Asn	Asn 35	Gly	Val	Val	Leu	Gly 40	Lys	Met	Leu	Ser	Glu 45	Thr	Gly	Leu
Ile	Thr 50	Phe	Asp	Pro	Gly	Tyr 55	Val	Ser	Thr	Gly	Ser 60	Thr	Glu	Ser	Lys
Ile 65	Thr	Tyr	Ile	Asp	Gly 70	Asp	Ala	Gly	Ile	Leu 75	Arg	Tyr	Arg	Gly	Tyr 80
Asp	Ile	Ala	Asp	Leu 85	Ala	Glu	Asn	Ala	Thr 90	Phe	Asn	Glu	Val	Ser 95	Tyr
Leu	Leu	Ile	Asn 100	Gly	Glu	Leu	Pro	Thr 105	Pro	Asp	Glu	Leu	His 110	Lys	Phe
Asn	Asp	Glu 115	Ile	Arg	His	His	Thr 120	Leu	Leu	Asp	Glu	Asp 125	Phe	Lys	Ser
Gln	Phe 130	Asn	Val	Phe	Pro	Arg 135	Asp	Ala	His	Pro	Met 140	Ala	Thr	Leu	Ala
Ser 145	Ser	Val	Asn	Ile	Leu 150	Ser	Thr	Tyr	Tyr	Gln 155	Asp	Gln	Leu	Asn	Pro 160

Leu Asp Glu Ala Gln Leu Asp Lys Ala Thr Val Arg Leu Met Ala Lys Val Pro Met Leu Ala Ala Tyr Ala His Arg Ala Arg Lys Gly Ala Pro 185 Tyr Met Tyr Pro Asp Asn Ser Leu Asn Ala Arg Glu Asn Phe Leu Arg 200 Met Met Phe Gly Tyr Pro Thr Glu Pro Tyr Glu Ile Asp Pro Ile Met Val Lys Ala Leu Asp Lys Leu Leu Ile Leu His Ala Asp His Glu Gln 230 Asn Cys Ser Thr Ser Thr Val Arg Met Ile Gly Ser Ala Gln Ala Asn 245 250 Met Phe Val Ser Ile Ala Gly Gly Ile Asn Ala Leu Ser Gly Pro Leu 260 265 270 His Gly Gly Ala Asn Gln Ala Val Leu Glu Met Leu Glu Asp Ile Lys 280 Asn Asn His Gly Gly Asp Ala Thr Ala Phe Met Asn Lys Val Lys Asn Lys Glu Asp Gly Val Arg Leu Met Gly Phe Gly His Arg Val Tyr Lys Asn Tyr Asp Pro Arg Ala Ala Ile Val Lys Glu Thr Ala His Glu Ile Leu Glu His Leu Gly Gly Asp Asp Leu Leu Asp Leu Ala Ile Lys Leu 345 Glu Glu Ile Ala Leu Ala Asp Asp Cys Phe Ile Ser Arg Lys Leu Tyr Pro Asn Val Asp Phe Tyr Thr Gly Leu Ile Tyr Arg Ala Met Gly Phe 375 Pro Thr Asp Phe Phe Thr Val Leu Phe Ala Ile Gly Arg Leu Pro Gly 385 390 400 Trp Ile Ala His Tyr Arg Glu Gln Leu Gly Ala Ala Gly Asn Lys Ile 405 410 Asn Arg Pro Arg Gln Val Tyr Thr Gly Lys Glu Ser Arg Lys Leu Val 420 425

Pro Arg Glu Glu Arg 435

<210>8

<211> 1314

<212> ADN

5

<213> gltA de ATCC13869 de Corynebacterium glutamicum

60	ctaccccggt	ctgtcctgca	aacaacaagg	ggetactgat	gggatategt	atgtttgaaa
120	tgtcctgggc	acaacggtgt	tctgagggta	catcgaggct	aaatggacat	ggcgagttcg
180	cactggctcc	gttatgtgag	tttgacccag	actgatcact	ctgagactgg	aagatgctgt
240	ccgcggctat	tcctgcgtta	gatgcgggaa	catcgatggc	agatcaccta	accgagtcga
300	acttatcaac	tttcttacct	ttcaacgagg	gaatgccacc	atctggctga	gacatcgctg
360	ccaccacacc	acgagattcg	aagtttaacg	tgagcttcac	caaccccaga	ggtgagctac
420	tcacccaatg	cacgcgacgc	aacgtgttcc	gtcccagttc	aggacttcaa	cttctggacg
480	gctgaaccca	accaggatca	tctacctact	taacattttg	cttcctcggt	gcaaccttgg
540	tccaatgctg	tggcaaaggt	gttcgcctca	taaggcaacc	cacagcttga	ctcgatgagg
600	caactccctc	tgtacccaga	gctccttaca	acgcaagggt	cacaccgcgc	gctgcgtacg
660	atacgagatc	caaccgagcc	ttcggttacc	gcgcatgatg	agaacttcct	aacgcgcgtg
720	ccacgagcag	tgcacgctga	ctgctcatcc	tctggacaag	tggtcaaggc	gacccaatca
780	gtttgtctcc	aggccaacat	ggttccgcac	tcgtatgatc	cctccaccgt	aactgctcca
840	ccaggctgtt	gtggcgcaaa	ccactgcacg	tetgteegge	gcatcaacgc	atcgctggtg
900	gttcatgaac	acgcaaccgc	cacggtggcg	caagaacaac	tcgaagacat	ctggagatgc
960	cgtttacaag	teggacaccg	ctcatgggct	cggcgtccgc	acaaggaaga	aaggtcaaga
1020	cgagcacctc	acgagatcct	gagaccgcac	aatcgtcaag	cacgtgcagc	aactacgatc
1080	ggctgatgat	aaattgcact	aagctggaag	tctggcaatc	atcttctgga	ggtggcgacg
1140	gatctaccgc	acaccggcct	gtagacttct	ctacccgaac	cccgcaagct	tgcttcatct
1200	tctgccagga	caatcggtcg	gtattgttcg	cttettcace	tcccaactga	gcaatgggct
1260	ecgeecaege	acaagatcaa	gcagcaggca	gcagctcggt	actaccgcga	tggatcgctc
1314	ctaa	gcgaggagcg	ttggttcctc	atcccgcaag	ccggcaagga	caggtetaca

<210> 9

<211> 319

<212> PRT

<213> ArgF de ATCC13032 de Corynebacterium glutamicum

<400> 9

Met Thr Ser Gln Pro Gln Val Arg His Phe Leu Ala Asp Asp Asp Leu Thr Pro Ala Glu Gln Ala Glu Val Leu Thr Leu Ala Ala Lys Leu Lys 25 Ala Ala Pro Phe Ser Glu Arg Pro Leu Glu Gly Pro Lys Ser Val Ala Val Leu Phe Asp Lys Thr Ser Thr Arg Thr Arg Phe Ser Phe Asp Ala 55 Gly Ile Ala His Leu Gly Gly His Ala Ile Val Val Asp Ser Gly Ser Ser Gln Met Gly Lys Gly Glu Ser Leu Gln Asp Thr Ala Ala Val Leu Ser Arg Tyr Val Glu Ala Ile Val Trp Arg Thr Tyr Ala His Ser Asn Phe His Ala Met Ala Glu Thr Ser Thr Val Pro Leu Val Asn Ser Leu Ser Asp Asp Leu His Pro Cys Gln Ile Leu Ala Asp Leu Gln Thr Ile Val Glu Asn Leu Ser Pro Glu Glu Gly Pro Ala Gly Leu Lys Gly Lys Lys Ala Val Tyr Leu Gly Asp Gly Asp Asn Asn Met Ala Asn Ser Tyr Met Ile Gly Phe Ala Thr Ala Gly Met Asp Ile Ser Ile Ile Ala Pro 180 Glu Gly Phe Gln Pro Arg Ala Glu Phe Val Glu Arg Ala Glu Lys Arg 200 Gly Gln Glu Thr Gly Ala Lys Val Val Thr Asp Ser Leu Asp Glu 210 Val Ala Gly Ala Asp Val Val Ile Thr Asp Thr Trp Val Ser Met Gly Met Glu Asn Asp Gly Ile Asp Arg Thr Thr Pro Phe Val Pro Tyr Gln Val Asn Asp Glu Val Met Ala Lys Ala Asn Asp Gly Ala Ile Phe Leu 265 His Cys Leu Pro Ala Tyr Arg Gly Lys Glu Val Ala Ala Ser Val Ile Asp Gly Pro Ala Ser Lys Val Phe Asp Glu Ala Glu Asn Arg Leu His 295 Ala Gln Lys Ala Leu Leu Val Trp Leu Leu Ala Asn Gln Pro Arg

<210> 10 <211> 960 <212> ADN <213> argF de ATCC13032 de *Corynebacterium glutamicum*

5 <400> 10

60 atgacttcac aaccacaggt togccatttt otggctgatg atgatetcac cootgcagag 120 caggoagagg ttttgaccct agccgcaaag ctcaaggcag cgccgttttc ggagcgtcca ctcgagggac caaagtccgt tgcagttctt tttgataaga cttcaactcg tactcgcttc 180 240 teettegaeg egggeatege teatttgggt ggacaegeea tegtegtgga tteeggtage teacagatgg gtaagggega gteectgeag gacacegeag etgtattgte eegetaegtg 300 gaagcaattg tgtggcgcac ctacgcacac agcaatttcc acgccatggc ggagacgtcc 360 actgtgccgc tggtgaactc cttgtccgat gatctgcacc catgccagat tctggctgat 420 ctgcagacta tcgtggaaaa cctcagccct gaagaaggcc cagcaggcct taagggtaag 480 540 aaggetgtgt acctgggega tggegacaac aacatggeca actectacat gattggettt 600 gccaccgcgg gcatggatat ttccatcatc gctcctgaag ggttccagcc tcgtgcggaa 660 ttogtggage gegeggaaaa gegtggeeag gaaaceggeg egaaggttgt tgteaeegae 720 agectegacg aggttgeegg egeegatgtt gteateaceg atacetgggt atecatgggt atggaaaacg acggcatcga tegcaccaca cetttegtte ettaccaggt caacgatgag 780 gtcatggcga aagctaacga cggcgccate ttectgcact geetteetge etaccgtgge 840 900 aaagaagtgg cagcctccgt gattgatgga ccagcgtcca aagttttcga tgaagcagaa aaccgcctcc acgctcagaa agcactgctg gtgtggctgc tggccaacca gccgaggtaa 960 960

10 <210> 11

<211> 319

<212> PRT

<213> ArgF de ATCC13869 de Corynebacterium glutamicum

Met 1	Thr	Ser	Gln	Pro 5	Gln	Val	Arg	His	Phe 10	Leu	Ala	Asp	Asp	Asp 15	Leu
Thr	Pro	Ala	Glu 20	Gln	Ala	Glu	Val	Leu 25	Thr	Leu	Ala	Ala	Lys 30	Leu	Lys
Ala	Ala	Pro 35	Phe	Ser	Glu	Arg	Pro 40	Leu	Glu	Gly	Pro	Lys 45	Ser	Val	Ala
Val	Leu 50	Phe	Asp	Lys	Thr	Ser 55	Thr	Arg	Thr	Arg	Phe 60	Ser	Phe	Asp	Ala
Gly 65	Ile	Ala	His	Leu	Gly 70	Gly	His	Ala	Ile	Val 75	Val	Asp	Ser	Gly	Ser 80
Ser	Gln	Met	Gly	Lys 85	Gly	Glu	Thr	Leu	Gln 90	Asp	Thr	Ala	Ala	Val 95	Leu
Ser	Arg	Tyr	Val 100	Glu	Ala	Ile	Val	Trp 105	Arg	Thr	Tyr	Ala	His 110	Ser	Asn
Phe	His	Ala 115	Met	Ala	Glu	Thr	Ser 120	Thr	Val	Pro	Leu	Val 125	Asn	Ser	Leu
Ser	Asp 130	Asp	Leu	His	Pro	Cys 135	Gln	Ile	Leu	Ala	Asp 140	Leu	Gln	Thr	Ile
Val 145	Glu	Asn	Leu	Ser	Pro 150	Glu	Glu	Gly	Pro	Ala 155	Gly	Leu	Lys	Gly	Lys 160
Lys	Ala	Val	Tyr	Leu 165	Gly	Asp	Gly	Asp	Asn 170	Asn	Met	Ala	Asn	Ser 175	Tyr
Met	Ile	Gly	Phe 180	Ala	Thr	Ala	Gly	Met 185	Asp	Ile	Ser	Ile	Ile 190	Ala	Pro
Glu	Gly	Phe 195	G l n	Pro	Arg	Ala	Glu 200	Phe	Val	Glu	Arg	Ala 205	Glu	Lys	Arg
Gly	Gln 210	Glu	Thr	Gly	Ala	Lys 215	Val	Val	Val	Thr	Asp 220	Ser	Leu	Asp	Glu
Val 225	Ala	Gly	Ala	Asp	Val 230	Val	Ile	Thr	Asp	Thr 235	Trp	Val	Ser	Met	Gly 240
Met	Glu	Asn	Asp	Gly 245	Ile	Asp	Arg	Thr	Thr 250	Pro	Phe	Val	Pro	Tyr 255	Gln
Val	Asn	Asp	Glu 260	Val	Met	Ala	Lys	Ala 265	Asn	Asp	Gly	Ala	11e 270	Phe	Leu
His	Cys	Leu 275	Pro	Ala	Tyr	Arg	Gly 280	Lys	Glu	Val	Ala	Ala 285	Ser	Val	Ile
Asp	Gly 290	Pro	Ala	Ser	Lys	Val 295	Phe	Asp	Glu	Ala	Glu 300	Asn	Arg	Leu	His
Ala	Gl n	Lys	Ala		Leu		Trp	Leu	Leu	Ala		Gln	Pro	Arg	

<210> 12 <211> 960 <212> ADN <213> argF de ATCC13869 de *Corynebacterium glutamicum*

<400> 12

5

atgacttcac	aaccacaggt	togocattto	ctggctgatg	atgatotoac	ccctgcagag	60
caggcagagg	ttttgaccct	agccgcaaag	ctcaaggcag	cgccgttttc	ggagcgtcca	120
ctcgagggac	caaagtccgt	tgcagttctt	tttgataaga	cttcaactcg	tactcgcttc	180
tccttcgacg	cgggcatcgc	tcatttgggt	ggacatgcca	tcgtcgtgga	ttccggcagc	240
tcacagatgg	gtaagggcga	gaccctgcag	gacaccgcag	ctgtattgtc	ccgctacgtg	300
gaagcaattg	tgtggcgcac	ctacgcacac	agcaatttcc	acgccatggc	ggagacgtcc	360
actgtgccac	tggtgaactc	cttgtccgat	gatctgcacc	catgccagat	tctggctgat	420
ctgcagacca	tcgtggaaaa	cctcagccct	gaagaaggcc	cagcaggcct	taagggtaag	480
aaggetgtgt	acctgggcga	tggcgacaac	aacatggcca	actcctacat	gattggcttt	540
gccaccgcgg	gcatggatat	ctccatcatc	gctcctgaag	ggttccagcc	tegtgeggaa	600
ttcgtggagc	gcgcggaaaa	gcgtggccag	gaaaccggcg	cgaaggttgt	tgtcaccgac	660
agcctcgacg	aggttgccgg	cgccgatgtt	gtcatcaccg	atacctgggt	atccatgggt	720
atggaaaacg	acggcatcga	togcaccaca	cctttcgttc	cctaccaggt	caacgatgag	780
gtcatggcga	aagctaacga	cggcgccatc	ttcctgcact	gccttcctgc	ctaccgcggc	840
22222270	cagceteegt	aattaataa	ccaccaticca	220ttttc02	+	900
aaayaaycyy	cageeeeege	gaccgacgga	ccagcgccca	aagcccccga	cyaaycayaa	300
aacegeetee	acgctcagaa	agcactgctg	gtgtggctgc	tggcccacca	gccgaggtaa	960
0.40						960

<210> 13 10 <211> 533

<212> PRT

<213> NCgl1221 de ATCC13032 de Corynebacterium glutamicum

Met Ile Leu Gly Val Pro Ile Gln Tyr Leu Leu Tyr Ser Leu Trp Asn Trp Ile Val Asp Thr Gly Phe Asp Val Ala Ile Ile Leu Val Leu Ala Phe Leu Ile Pro Arg Ile Gly Arg Leu Ala Met Arg Ile Ile Lys Arg Arg Val Glu Ser Ala Ala Asp Ala Asp Thr Thr Lys Asn Gln Leu Ala Phe Ala Gly Val Gly Val Tyr Ile Ala Gln Ile Val Ala Phe Phe Met Leu Ala Val Ser Ala Met Gln Ala Phe Gly Phe Ser Leu Ala Gly Ala Ala Ile Pro Ala Thr Ile Ala Ser Ala Ala Ile Gly Leu Gly Ala Gln 100 Ser Ile Val Ala Asp Phe Leu Ala Gly Phe Phe Ile Leu Thr Glu Lys 120 Gln Phe Gly Val Gly Asp Trp Val Arg Phe Glu Gly Asn Gly Ile Val Val Glu Gly Thr Val Ile Glu Ile Thr Met Arg Ala Thr Lys Ile Arg 155 Thr Ile Ala Gln Glu Thr Val Ile Ile Pro Asn Ser Thr Ala Lys Val Cys Ile Asn Asn Ser Asn Asn Trp Ser Arg Ala Val Val Ile Pro 185 Ile Pro Met Leu Gly Ser Glu Asn Ile Thr Asp Val Ile Ala Arg Ser Glu Ala Ala Thr Arg Arg Ala Leu Gly Gln Glu Lys Ile Ala Pro Glu Ile Leu Gly Glu Leu Asp Val His Pro Ala Thr Glu Val Thr Pro Pro 230 235 Thr Val Val Gly Met Pro Trp Met Val Thr Met Arg Phe Leu Val Gln 250 Val Thr Ala Gly Asn Gln Trp Leu Val Glu Arg Ala Ile Arg Thr Glu 260 265

Ile Ile Ser Glu Phe Trp Glu Glu Tyr Gly Ser Ala Thr Thr Ser Gly Thr Leu Ile Asp Ser Leu His Val Glu His Glu Glu Pro Lys Thr Ser Leu Ile Asp Ala Ser Pro Gln Ala Leu Lys Glu Pro Lys Pro Glu 310 Ala Ala Ala Thr Val Ala Ser Leu Ala Ala Ser Ser Asn Asp Asp Ala 330 Asp Asn Ala Asp Ala Ser Val Ile Asn Ala Gly Asn Pro Glu Lys Glu 340 Leu Asp Ser Asp Val Leu Glu Glu Leu Ser Ser Glu Glu Pro Glu 360 Glu Thr Ala Lys Pro Asp His Ser Leu Arg Gly Phe Phe Arg Thr Asp Tyr Tyr Pro Asn Arg Trp Gln Lys Ile Leu Ser Phe Gly Gly Arg Val 390 395 Arg Met Ser Thr Ser Leu Leu Gly Ala Leu Leu Leu Ser Leu 405 Phe Lys Val Met Thr Val Glu Pro Ser Glu Asn Trp Gln Asn Ser Ser Gly Trp Leu Ser Pro Ser Thr Ala Thr Ser Thr Ala Val Thr Thr Ser Glu Thr Ser Ala Pro Val Ser Thr Pro Ser Met Thr Val Pro Thr Thr Val Glu Glu Thr Pro Thr Met Glu Ser Asn Val Glu Thr Gln Glu Glu 465 470 475 Thr Ser Thr Pro Ala Thr Ala Thr Pro Gln Arg Ala Asp Thr Ile Glu 490 485 Pro Thr Glu Glu Ala Thr Ser Gln Glu Glu Thr Thr Ala Ser Gln Thr 500 Gln Ser Pro Ala Val Glu Ala Pro Thr Ala Val Gln Glu Thr Val Ala

Pro Thr Ser Thr Pro 530

<210> 14

<211> 1602

<212> ADN

<213> NCgl1221 de ATCC13032 de Corynebacterium glutamicum

<400> 14

60	gattgtcgat	tgtggaattg	ctctattcat	tcaatatttg	gcgtacccat	atgattttag
120	tatoggooga	tgattccacg	ttggcgtttt	tatcctggtc	atgtagcaat	accggttttg
180	caccactaag	ccgatgcgga	gagtctgcag	gcgccgagtg	gtattatcaa	ctggccatgc
240	gtttttcatg	aaattgtggc	tatatcgcgc	cgttggcgtt	cgttcgccgg	aaccagctcg
300	gattccggca	egggegetge	ttctctctcg	ggcttttggt	cegegatgea	cttgccgtct
360	cttcttggcc	ttgttgcgga	gcgcagtcga	tggccttggt	cagetgeeat	accattgcgt
420	ttttgagggc	actgggtgcg	ggcgtgggtg	aaagcaattc	tcctgacgga	ggatttttca
480	caaaattcgc	tgcgcgcgac	gagatcacca	caccgtcatt	ttgtcgaagg	aacggcatcg
540	catcaacaat	cgaaagtgtg	aactccacgg	gatcatcccc	aagagaccgt	acgattgcac
600	ttctgaaaac	ccatgttggg	attecgatce	ggttgtcgtt	ggtcgcgtgc	tctaataact
660	ccaggagaaa	gcgcacttgg	gegactegte	ctctgaagct	teategegeg	atcacagatg
720	cacgccgcca	ccacggaagt	gtgcacccag	tgaactcgat	aaatcctcgg	atcgcaccgg
780	caccgccggc	togtgcaagt	atgcgtttcc	gatggtcacc	gcatgccgtg	acggtggtcg
840	ctgggaagaa	tcagcgaatt	acagaaatca	cgccatccgc	tggtcgaacg	aatcaatggc
900	tgagcatgaa	ccttacacgt	ctcattgatt	atcgggaacc	caaccactac	tacggcagcg
960	gaagccggag	ttaaggaacc	ccccaggete	cgacgcctcc	cctcgcttat	gagccaaaga
1020	caatgcagac	acgatgcaga	tcctctaacg	gctagctgca	cggttgcatc	gctgcggcga
1080	gctggaacaa	attccgatgt	aaggaacttg	caatccagag	tcaatgcagg	gcctcggtga
1140	ccgaggcttc	atcactctct	gcaaaaccag	ggaagaaaca	gcgaagaacc	gaactctcca
1200	cggacgtgtc	tgtcgtttgg	cagaagatcc	aaatcggtgg	attactaccc	ttccgcactg
1260	taaggtcatg	tgtcactatt	ctgctcttgc	gttgggtgcg	cgtccctgtt	cgcatgagca
1320	aagcactgcc	ggctgtcacc	tccagtggat	ttggcaaaac	caagtgagaa	actgtggaac
1380	ttcgatgaca	taagcacgcc	tecgegeeag	ctccgaaact	cggtgaccac	acctcaactg
1440	gcagcaggaa	acgtcgaaac	atggaatcta	gaccccaacg	cggtggagga	gtgcccacta
1500	gaccgaggaa	ccatcgaacc	cgagccgaca	aacgccccag	ctgcaaccgc	acctcaaccc
1560	ggaagcacca	ctccagcagt	cagacgcagt	gactgcgtcg	aggaggaaac	gccacgtcgc
1602		ag	tecacecett	tgegeegaeg	aagagacagt	accgcggtcc

<210> 15

<211> 533 <212> PRT

<213> NCgl1221 de ATCC13869 de Corynebacterium glutamicum

<400> 15

Met Ile Leu Gly Val Pro Ile Gln Tyr Leu Leu Tyr Ser Leu Trp Asn 1 5 10 15

Phe	Leu	11e 35	Pro	Arg	Ile	G1y	Arg 40	Leu	Ala	Met	Arg	11e 45	Ile	Lys	Gln
Arg	Val 50	Glu	Ser	Ala	Ala	Asp 55	Ala	Asp	Thr	Thr	Lys 60	Asn	Gln	Leu	Ala
Phe 65	Ala	Gly	Val	Gly	Val 70	Tyr	Ile	Ala	Gln	Ile 75	Val	Ala	Phe	Phe	Met 80
Leu	Ala	Val	Ser	Ala 85	Met	Gln	Ala	Phe	Gly 90	Phe	Ser	Leu	Ala	Gly 95	Ala
Ala	Ile	Pro	Ala 100	Thr	Ile	Ala	Ser	Ala 105	Ala	Ile	Gly	Leu	Gly 110	Ala	Gln
Ser	Ile	V al 115	Ala	As p	Phe	Leu	Ala 120	Gly	Phe	Phe	Ile	Leu 125	Thr	Glu	Lys
Gln	Phe 130	Gly	Val	Gly	Asp	Trp 135	Val	Arg	Phe	Glu	Gly 140	Asn	Gly	Ile	Val
Val 145	Glu	Gly	Thr	Val	11e 150	Glu	Ile	Thr	Met	Arg 155	Ala	Thr	Lys	Ile	Arg 160
Thr	Ile	Ala	Gln	Glu 165	Thr	Val	Ile	Ile	Pro 170	Asn	Ser	Thr	Ala	Lys 175	Val
Cys	Ile	Aşn	As n 180	Ser	Aşn	Asn	Trp	Ser 185	Arg	Ala	Val	Val	Val 190	Ile	Pro
Ile	Pro	Met 195	Leu	Gly	Ser	Glu	Asn 200	Ile	Thr	Asp	Val	Ile 205	Ala	Arg	Ser
Glu	Ala 210	Ala	Thr	Arg	Arg	Ala 215	Leu	Gly	Gln	Glu	Lys 220	Ile	Ala	Pro	Glu
11e 225	Leu	Gly	Glu	Leu	Asp 230	Val	His	Pro	Ala	Thr 235	Glu	Val	Thr	Pro	Pro 240
Thr	Val	Val	Gly	Met 245	Pro	Trp	Met	Val	Thr 250	Met	Arg	Phe	Leu	Val 255	Gln
Val	Thr	Ala	Gly 260	Aşn	Gln	Trp	Leu	Val 265	Glu	Arg	Ala	Ile	Arg 270	Thr	Glu
Ile	Ile	Asn 275	Glu	Phe	Trp	G1u	Glu 280	Tyr	Gly	Ser	Ala	Thr 285	Thr	Thr	Ser
Gly	Thr 290	Leu	Ile	Asp	Ser	Leu 295	His	Val	Glu	His	Glu 300	Glu	Pro	Lys	Thr
Ser 305	Leu	Ile	Asp	Ala	Ser 310	Pro	Gln	Ala	Leu	Lys 315	Glu	Pro	Lys	Pro	Glu 320
Ala	Ala	Ala	Thr	Val 325	Ala	Ser	Leu	Ala	A la 330	Ser	Ser	Asn	Asp	Asp 335	Ala
Asp	Asn	Ala	Asp 340	Ala	Ser	Ala	Ile	As n 3 4 5	Ala	Gly	Aşn	Pro	G1u 350	Lys	Glu
Leu	Asp	Ser	Asp	Val	Leu	Glu	Gln	Glu	Leu	Ser	Ser	Glu 365	Glu	Pro	Glu

GLU	Thr	ALA	Lys	Pro	Asp	His	ser	Leu	Arg	GLY	Pne	Pne	Arg	Thr	Asp
	370					375					380				

Tyr Tyr Pro Asn Arg Trp Gln Lys Ile Leu Ser Phe Gly Gly Arg Val 385 390 395

Arg Met Ser Thr Ser Leu Leu Leu Gly Ala Leu Leu Leu Ser Leu 405 410 415

Phe Lys Val Met Thr Val Glu Pro Ser Glu Asn Trp Gln Asn Ser Ser 420 425 430

Gly Trp Leu Ser Pro Ser Thr Ala Thr Ser Thr Ala Val Thr Thr Ser 435 440 445

Glu Thr Ser Ala Pro Ala Ser Thr Pro Ser Met Thr Val Pro Thr Thr 450 455 460

Val Glu Glu Thr Pro Thr Met Glu Ser Ser Val Glu Thr Gln Glu 465 470 475 480

Thr Ser Thr Pro Ala Thr Ala Thr Pro Gln Arg Ala Asp Thr Ile Glu 485 490 495

Pro Thr Glu Glu Ala Thr Ser Gln Glu Glu Thr Thr Ala Ser Gln Thr 500 505 510

Gln Ser Pro Ala Val Glu Ala Pro Thr Ala Val Gln Glu Thr Val Ala
515 520 525

Pro Thr Ser Thr Pro 530

<210> 16

<211> 1602

<212> ADN

<213> NCgl1221 de ATCC13869 de Corynebacterium glutamicum

atgattttag	gcgtacccat	tcaatatttg	ctctattcat	tgtggaattg	gattgtcgat	60
accggttttg	atgtagcaat	tatectggte	ttggcgtttt	tgattccacg	tatcggccga	120
ctggccatgc	gtattatcaa	gcagcgagtg	gagtetgeag	ccgatgcgga	caccactaag	180
aaccagctcg	cgttcgctgg	cgttggcgtt	tatatcgcgc	aaattgtggc	gtttttcatg	240
cttgccgtct	ccgcgatgca	ggcttttggt	ttctctctcg	cgggcgctgc	gattccggca	300
accattgcgt	cagctgccat	tggtcttggt	gcgcagtcga	ttgttgcgga	cttcttggcc	360
ggatttttca	teetgaegga	aaagcaattc	ggcgtgggtg	actgggtgcg	ctttgagggc	420
aacggcatcg	ttgttgaagg	cacegteatt	gagatcacca	tgcgcgcgac	caaaattcgc	480
acgattgcac	aagagaccgt	gateateeeg	aactccacgg	cgaaagtgtg	catcaacaat	540
tctaataact	ggtcgcgtgc	ggttgtcgtt	atteegatee	ccatgttggg	ttctgaaaac	600
atcacagatg	tcatcgcgcg	ctctgaagct	gcgactcgtc	gcgcacttgg	ccaggagaaa	660
atogcacogg	aaatcctcgg	tgaactcgat	gtgcacccag	ccacggaagt	cacaccgcca	720
acggtggtcg	gcatgccgtg	gatggtcacc	atgegtttee	tcgtgcaagt	caccgccggc	780
		cgccatccgc				840
		atogggaaco				900
		cgacgcctcc				960
getgeggega	cggttgcatc	gctagctgca	tcgtctaacg	acgatgcaga	caatgcagac	1020
geeteggega	tcaatgcagg	caatccagag	aaggaacttg	attccgatgt	gctggaacaa	1080
gaactctcca	gcgaagaacc	ggaagaaaca	gcaaaaccag	atcactctct	ccgaggcttc	1140
ttccgcactg	attactaccc	aaatcggtgg	cagaagatcc	tgtcgtttgg	cggacgtgtc	1200
cgcatgagca	cttccctgtt	gttgggtgcg	ctgctcttgc	tgtcactatt	taaggtcatg	1260
actgtggaac	caagtgagaa	ttggcaaaac	tccagtggat	ggctgtcacc	aagcactgcc	1320
acctcaactg	cggtgaccac	ctccgaaact	teegegeeag	caagcacgcc	ttcgatgaca	1380
gtgcccacta	cggtggagga	gaccccaacg	atggaatcta	gcgtcgaaac	gcagcaggaa	1440
acctcaaccc	ctgcaaccgc	aacgccccag	cgagccgaca	ccatcgaacc	gaccgaggaa	1500
gccacgtcgc	aggaggaaac	gactgcatcg	cagacgcagt	ctccagcagt	ggaagcacca	1560
accgcggtcc	aagaaacagt	tgcgccgacg	tccacccctt	ag		1602

<210> 17

5

<211> 711 <211> 711 <212> PRT <213> SpeC de *Escherichia coli*

- Met Lys Ser Met Asn Ile Ala Ala Ser Ser Glu Leu Val Ser Arg Leu 1 5 10 15
- Ser Ser His Arg Arg Val Val Ala Leu Gly Asp Thr Asp Phe Thr Asp 20 25 30
- Val Ala Ala Val Val Ile Thr Ala Ala Asp Ser Arg Ser Gly Ile Leu 35 40 45
- Ala Leu Leu Lys Arg Thr Gly Phe His Leu Pro Val Phe Leu Tyr Ser 50 60
- Glu His Ala Val Glu Leu Pro Ala Gly Val Thr Ala Val Ile Asn Gly 65 70 75 80
- Asn Glu Gln Gln Trp Leu Glu Leu Glu Ser Ala Ala Cys Gln Tyr Glu 85 90 95
- Glu Asn Leu Leu Pro Pro Phe Tyr Asp Thr Leu Thr Gln Tyr Val Glu 100 105 110
- Met Gly Asn Ser Thr Phe Ala Cys Pro Gly His Gln His Gly Ala Phe 115 120 125
- Phe Lys Lys His Pro Ala Gly Arg His Phe Tyr Asp Phe Phe Gly Glu

	130					135					140				
Asn 145	Val	Phe	Arg	Ala	Asp 150	Met	Cys	Asn	Ala	Asp 155	Val	Lys	Leu	Gly	Asp 160
Leu	Leu	Ile	His	Glu 165	Gly	Ser	Ala	Lys	Asp 170	Ala	Gln	Lys	Phe	Ala 175	Ala
Lys	Val	Phe	His 180	Ala	Asp	Lys	Thr	Tyr 185	Phe	Val	Leu	Aşn	Gly 190	Thr	Ser
Ala	Ala	Asn 195	Lys	Val	Val	Thr	As n 200	Ala	Leu	Leu	Thr	Arg 205	Gly	Asp	Leu
Val	Leu 210	Phe	Asp	Arg	Aşn	Asn 215	His	Lys	Ser	Aşn	His 220	His	Gly	Ala	Leu
Ile 225	Gln	Ala	Gly	Ala	Thr 230	Pro	Val	Tyr	Leu	Glu 235	Ala	Ser	Arg	Asn	Pro 240
Phe	Gly	Phe	Ile	Gly 245	Gly	Ile	Asp	Ala	His 250	Cys	Phe	Asn	Glu	Glu 255	Tyr
Leu	Arg	Gln	Gln 260	Ile	Arg	Asp	Val	Ala 265	Pro	Glu	Lys	Ala	Asp 270	Leu	Pro
Arg	Pro	Tyr 275	Arg	Leu	Ala	Ile	11e 280	Gln	Leu	Gly	Thr	Tyr 285	Asp	Gly	Thr
Val	Tyr 290	Aşn	Ala	Arg	Gln	Val 295	Ile	Asp	Thr	Val	Gly 300	His	Leu	Cys	Asp
Tyr 305	Ile	Leu	Phe	Asp	Ser 310	Ala	Trp	Val	Gly	Tyr 315	Glu	Gln	Phę	Ile	Pro 320
Met	Met	Ala	Asp	Ser 325	Ser	Pro	Leu	Leu	Leu 330	Glu	Leu	Aşn	Glu	As n 335	As p
Pro	Gly	Ile	Phe 340	Val	Thr	Gln	Ser	Val 345	His	Lys	Gln	Gln	Ala 350	Gly	Phe
Şer	Gln	Thr 355	Ser	Gln	Ile	His	Lys 360	Lys	Asp	Asn	His	Ile 365	Arg	Gly	Gln
Ala	Arg 370	Phe	Сув	Pro	His	Lys 375	Arg	Leu	Asn	Asn	Ala 380	Phe	Met	Leu	His
Ala 385	Ser	Thr	Ser	Pro	Phe 390	Tyr	Pro	Leu	Phe	Ala 395	Ala	Leu	Asp	Val	Asn 400
Ala	Lys	Ile	His	Glu 405	Gly	Glu	Ser	Gly	Arg 410	Arg	Leu	Trp	Ala	Glu 41 5	Cys
Val	Glu	Ile	Gly 420	Ile	Glu	Ala	Arg	Lys 425	Ala	Ile	Leu	Ala	Arg 430	Cys	Lys
Leu	Phe	Arg 435	Pro	Phe	Ile	Pro	Pro 440	Val	Val	Asp	Gly	Lys 445	Leu	Trp	Gln
Asp	Tyr 450	Pro	Thr	Ser	Val	Leu 455	Ala	Ser	Asp	Arg	Arg 460	Phe	Phe	Ser	Phe
Glu	Pro	Glv	Ala	Lvs	Tre	His	Glv	Phe	Glu	Glv	Tvr	Ala	Ala	Asp	Gln

465					470					475					480
Tyr	Phe	Val	Asp	Pro 485	Cys	Lys	Leu	Leu	Leu 490	Thr	Thr	Pro	Gly	Ile 495	Asp
Ala	Glu	Thr	G ly 500	Glu	Tyr	Ser	Asp	Phe 505	Gly	Val	Pro	Ala	Thr 510	Ile	Leu
Ala	His	Tyr 515	Leu	Arg	Glu	Asn	Gly 520	Ile	Val	Pro	Glu	Lys 525	Cys	Asp	Leu
Asn	Ser 530	Ile	Leu	Phe	Leu	Leu 535	Thr	Pro	Ala	Glu	Ser 5 4 0	His	Glu	Lys	Leu
Ala 545	Gln	Leu	Val	Ala	Met 550	Leu	Ala	Gln	Phe	G1u 555	Gln	His	Ile	Glu	Asp 560
Asp	Ser	Pro	Leu	Val 565	Glu	Val	Leu	Pro	Ser 570	Val	Tyr	Asn	Lys	Tyr 575	Pro
Val	Arg	Tyr	Arg 580	Asp	Tyr	Thr	Leu	Arg 585	Gln	Leu	Cys	Gln	Glu 590	Met	His
Asp	Leu	Tyr 595	Val	Ser	Phe	Asp	Val 600	Lys	Asp	Leu	Gln	Lys 605	Ala	Met	Phe
Arg	Gln 610	Gln	Ser	Phe	Pro	Ser 615	Val	Val	Met	Asn	Pro 620	Gln	Asp	Ala	His
Ser 625	Ala	Tyr	Ile	Arg	Gly 630	Asp	Val	Glu	Leu	Val 635	Arg	Ile	Arg	Asp	Ala 640
Glu	Gly	Arg	Ile	Ala 645	Ala	Glu	Gly	Ala	Leu 650	Pro	Tyr	Pro	Pro	Gly 655	Val
Leu	Cys	Val	Val 660	Pro	Gly	Glu	Val	Trp 665	Gly	Gly	Ala	Val	Gln 670	Arg	Tyr
Phe	Leu	Ala 675	Leu	Glu	Glu	Gly	Val 680	Asn	Leu	Leu	Pro	Gly 685	Phe	Ser	Pro
Glu	Leu 690	Gln	Gly	Val	Tyr	Ser 695	Glu	Thr	Asp	Ala	Asp 700	Gly	Val	Lys	Arg
Leu 705	Tyr	Gly	Tyr	Val	Leu 710	Lys									

<210> 18

5

<211> 2136 <212> ADN <213> SpeC de *Escherichia coli*

atgaaatcaa	tgaatattgc	cgccagtagt	gaactggtat	cccgactttc	ttctcatcgt	60
cgcgtggtgg	cgttgggaga	tactgatttt	acggacgtcg	cggcagtcgt	cattaccgct	120
gcggatagtc	gcagtggcat	tcttgcgttg	cttaagcgca	ccggttttca	tctaccggtg	180
tttttgtatt	ccgaacatgc	tgttgaatta	cctgcgggcg	ttacggcggt	aatcaacggc	240
aacqaqcaqc	agtggctgga	gctggaatcc	gcagcctgtc	agtatgaaga	gaatttgctg	300

ccaccgtttt	atgacacgct	gacgcagtac	gttgagatgg	gcaacagcac	ctttgcttgc	360
cctggacatc	aacatggtgc	gttttttaaa	aagcatcctg	ccggacgcca	tttttacgat	420
ttetttggtg	agaacgtctt	tegegeegat	atgtgtaacg	ctgacgtaaa	attgggcgat	480
ctgcttattc	atgaaggatc	ggcgaaagat	gcgcagaaat	togcagocaa	agtctttcat	540
gccgataaaa	cctattttgt	gctgaacggc	acatoggoag	cgaataaagt	ggtgacgaat	600
gcgctgttaa	cgcgtggcga	tctggtgctc	ttcgaccgta	acaaccataa	gtcgaatcat	660
cacggcgcgc	tgattcaggc	gggggcgacg	ccggtctatc	tggaagette	acgcaacccg	720
tttggtttca	ttggcggtat	tgatgcgcac	tgttttaatg	aagagtatct	gcgccagcaa	780
attegegaeg	ttgcgccaga	aaaagccgac	ctgccgcgcc	cgtatcgcct	ggcgattatt	840
cagctgggaa	cctatgacgg	cactgtctat	aacgcccgtc	aggtgatcga	taccgttggg	900
catctgtgtg	attacattct	gtttgattcc	gcgtgggtcg	gttatgaaca	atttateceg	960
atgatggcgg	atagctcgcc	gctgctgtta	gaacttaacg	aaaacgatcc	ggggatettt	1020
gtgactcagt	cggtgcacaa	acagcaggcg	ggattctcac	agacgtcgca	gatccataaa	1080
aaagataacc	atatccgcgg	acaggcgcgt	ttttgcccgc	ataagcggtt	gaataacgcc	1140
tttatgctcc	atgcttctac	cagecettte	tatccgctgt	ttgctgcact	ggatgttaac	1200
gccaaaattc	atgaagggga	gagtgggcgt	eggetgtggg	ctgagtgtgt	tgagataggg	1260
attgaagcgc	gcaaggctat	tettgegege	tgtaagctgt	teegeeegtt	tatcccgccc	1320
gttgttgatg	gcaaattgtg	gcaggattat	ccgacatcag	tgttagccag	cgaccgccgt	1380
tttttcagtt	ttgagccggg	ggcgaagtgg	cacggctttg	aaggatatgc	cgcggatcag	1440
tattttgttg	atccgtgcaa	gctgttactc	actacaccag	gtatcgatgc	cgaaaccggc	1500
gaatatagcg	actttggcgt	teeggegaeg	attetggege	actatetgeg	tgagaacggc	1560
attgtgccgg	agaagtgcga	totcaactcc	attctgtttt	tattaactcc	ggcggaaagc	1620
cacgagaagc	tggcacaact	ggtggcgatg	ctggcgcaat	ttgaacagca	tattgaggat	1680
gactogcogc	tggttgaggt	gttgccgagc	gtttataaca	agtatccggt	gcgctatcgc	1740
gactacaccc	tgcgccagtt	gtgtcaggag	atgcacgatc	tgtatgtcag	tttcgacgtc	1800
aaagacctac	aaaaagcgat	gttccgccag	cagagtttcc	cgtcagtggt	gatgaacccc	1860
caggatgcgc	atagcgctta	tattegeggt	gacgtggagt	tggtgcggat	tcgtgatgcc	1920
gaagggcgaa	ttgcggcaga	aggggcgttg	ccttatccac	ctggcgtgct	ttgcgtggta	1980
cccggggaag	tetggggtgg	ggcggttcaa	cgttatttcc	ttgcactgga	agaaggggtg	2040
aatttgttgc	cgggattttc	geeggagetg	caaggtgttt	atagegaaae	cgatgcggat	2100
aacat aaaac	aattateaa	ttatatatta	aagtaa			2136

```
<210> 19
<211> 357
<212> PRT
<213> ArgC de ATCC13032 de Corynebacterium glutamicum
5
<400> 19
```

Met Ile Met His Asn Val Tyr Gly Val Thr Met Thr Ile Lys Val Ala Ile Ala Gly Ala Ser Gly Tyr Ala Gly Gly Glu Ile Leu Arg Leu Leu Leu Gly His Pro Ala Tyr Ala Ser Gly Glu Leu Glu Ile Gly Ala Leu Thr Ala Ala Ser Thr Ala Gly Ser Thr Leu Gly Glu Leu Met Pro His Ile Pro Gln Leu Ala Asp Arg Val Ile Gln Asp Thr Thr Ala Glu Thr Leu Ala Gly His Asp Val Val Phe Leu Gly Leu Pro His Gly Phe Ser Ala Glu Ile Ala Leu Gln Leu Gly Pro Asp Val Thr Val Ile Asp Cys 105 Ala Ala Asp Phe Arg Leu Gln Asn Ala Ala Asp Trp Glu Lys Phe Tyr 120 Gly Ser Glu His Gln Gly Thr Trp Pro Tyr Gly Ile Pro Glu Met Pro 130 135 Gly His Arg Glu Ala Leu Arg Gly Ala Lys Arg Val Ala Val Pro Gly Cys Phe Pro Thr Gly Ala Thr Leu Ala Leu Leu Pro Ala Val Gln Ala Gly Leu Ile Glu Pro Asp Val Ser Val Val Ser Ile Thr Gly Val Ser 185 Gly Ala Gly Lys Lys Ala Ser Val Ala Leu Leu Gly Ser Glu Thr Met 200 Gly Ser Leu Lys Ala Tyr Asn Thr Ser Gly Lys His Arg His Thr Pro 215 Glu Ile Ala Gln Asn Leu Gly Glu Val Ser Asp Lys Pro Val Lys Val Ser Phe Thr Pro Val Leu Ala Pro Leu Pro Arg Gly Ile Leu Thr Thr 250 Ala Thr Ala Pro Leu Lys Glu Gly Val Thr Ala Glu Gln Ala Arg Ala 265 260 Val Tyr Glu Glu Phe Tyr Ala Gln Glu Thr Phe Val His Val Leu Pro 280 285 Glu Gly Ala Gln Pro Gln Thr Gln Ala Val Leu Gly Ser Asn Met Cys 290 295

His Val Gln Val Glu Ile Asp Glu Glu Ala Gly Lys Val Leu Val Thr 305 310 315 320

Ser Ala Ile Asp Asn Leu Thr Lys Gly Thr Ala Gly Ala Ala Val Gln 325 330 335

Cys Met Asn Leu Ser Val Gly Phe Asp Glu Ala Ala Gly Leu Pro Gln 340 345 350

Val Gly Val Ala Pro 355

<210> 20

<211> 1074

<212> ADN

5

<213> argC de ATCC13032 de Corynebacterium glutamicum

<400> 20

atgatcatgc ataacgtgta tggtgtaact atgacaatca aggttgcaat cgcaggagcc 60 120 agtggatatg ccggcggaga aatcettegt etecttttag gecatecage ttatgcatet ggtgaactag aaatcggagc actcaccgcg gcatcaaccg caggcagcac gctcggtgaa 180 ttgatgecac acatteegea gttggeggat egtgttatte aagacaceae agetgaaact 240 300 ctagecggte atgatgtegt atttetagga ettecacaeg gattetetge agaaattgea 360 cttcagctcg gaccagatgt cacagtgatt gactgtgcag ctgactttcg tctgcaaaat gctgcagatt gggagaagtt ctacggctca gagcaccagg gaacatggcc ttatggcatt 420 480 ccagaaatgc caggacaccg cgaggctctt cgtggtgcta agcgtgtagc agtgccagga tgtttcccaa ccggtgcaac cttggctctt cttcctgcgg ttcaagcggg acttatcgag 540 600 ccagatgttt ccgtagtgtc catcaccggc gtatcaggtg caggtaagaa agcatctgtt 660 gcactacttg gctcggaaac catgggttca ctcaaggcgt acaacacctc cggaaagcac 720 egecacacee eggaaattge ecagaacete ggegaagtea gegacaagee agteaaggtg 780 agetteacce cagtgettge accgttacet egeggaatte teaccactge aaccgcacet 840 ttgaaagaag gcgttaccgc agaacaggct cgcgcagtat atgaagagtt ctatgcacag gaaacctteg tgcatgttct tecagaaggt geacageeac aaacccaage agttettgge 900 tccaacatgt gccacgtgca ggtagaaatt gatgaggaag caggcaaagt ccttgttacc 960 1020 teegeaateg ataaceteae caagggaact geeggegeeg etgtteagtg catgaactta 1074 agegttggtt ttgatgagge ageaggeetg ceacaggteg gegtegeace ttaa

10

15

<210> 21

<211> 347

<212> PRT

<213> ArgC de ATCC13869 de Corynebacterium glutamicum

Met 1	Thr	Ile	Lys	Val 5	Ala	Ile	Ala	Gly	Ala 10	Ser	Gly	Tyr	Ala	Gly 15	Gly
G1u	Ile	Leu	Arg 20	Leu	Leu	Leu	Gly	His 25	Pro	Ala	Tyr	Ala	Ser 30	Gly	Glu
Leu	Glu	11e 35	Gly	Ala	Leu	Thr	Ala 40	Ala	Ser	Thr	Ala	Gly 45	Ser	Thr	Leu
Gly	Glu 50	Leu	Met	Pro	His	Ile 55	Pro	Gln	Leu	Ala	Asp 60	Arg	Val	Ile	Gln
Asp 65	Thr	Thr	Ala	Glu	Thr 70	Leu	Ala	Gly	His	Asp 75	Val	Val	Phe	Leu	Gly 80
Leu	Pro	His	Gly	Phe 85	Ser	Ala	Glu	Ile	Al a 90	Leu	Gln	Leu	Gly	Pro 95	Asp
Val	Thr	Val	Ile 100	Asp	Cys	Ala	Ala	Asp 105	Phe	Arg	Leu	Gln	Asn 110	Ala	Ala
Asp	Trp	Glu 115	Lys	Phe	Tyr	Gly	Ser 120	Glu	His	Gln	Gly	Thr 125	Trp	Pro	Tyr
Gly	11e 130	Pro	Glu	Ile	Pro	Gly 135	His	Arg	Glu	Ala	Leu 140	Arg	Gly	Ala	Lys
Arg 145	Val	Ala	Val	Pro	Gly 150	Cys	Phe	Pro	Thr	Gly 155	Ala	Thr	Leu	Ala	Leu 160
Leu	Pro	Ala	Val	Gln 165	Ala	Gly	Leu	Ile	Glu 170	Pro	Asp	Val	Ser	Val 175	Val
Ser	Ile	Thr	Gly 180	Val	Ser	Gly	Ala	Gly 185	Lys	Lys	Ala	Ser	Val 190	Ala	Leu
Leu	Gly	Ser 195	Glu	Thr	Met	Gly	Ser 200	Leu	Lys	Ala	Tyr	Asn 205	Thr	Ser	Gly
Lys	His 210	Arg	His	Thr	Pro	Glu 215	Ile	Ala	Gln	Asn	Leu 220	Gly	Glu	Val	Ser
Asp 225	Lys	Pro	V al	Lys	Val 230	Ser	Phe	Thr	Pro	Val 235	Leu	Ala	Pro	Leu	Pro 240
Arg	Gly	Ile	Leu	Thr 245	Thr	Ala	Thr	Ala	Pro 250	Leu	Lys	Glu	Gly	Val 255	Thr
Ala	Glu	Gln	Ala 260	Arg	Ala	Val	Tyr	G1u 265	Glu	Phe	Tyr	Ala	Gln 270	Glu	Thr
Phe	Val	His 275	Val	Leu	Pro	Glu	Gly 280	Ala	Gln	Pro	Gln	Thr 285	Gln	Ala	Val
Leu	Gly 290	Ser	Aşn	Met	Суѕ	His 295	Val	Gl n	Val	Glu	Ile 300	Asp	Glu	Glu	Ala
Gly 305	Lys	Val	Leu	Val	Thr 310	Ser	Ala	Ile	Asp	As n 315	Leu	Thr	Lys	Gly	Thr 320
Ala	Gly	Ala	Ala	Val	Gln	Cys	Met	Asn	Leu 330	Ser	Val	Gly	Phe	Asp	Glu

Ala Ala Gly Leu Pro Gln Val Gly Val Ala Pro 340 345

<210> 22 <211> 1044 5 <212> ADN

<213> argC de ATCC13869 de Corynebacterium glutamicum

<400> 22

atgacaatca	aggttgcaat	cgcaggagcc	agtggatatg	ccggcggaga	aatccttcgt	60
ctccttttag	gccatccagc	ttatgcatct	ggtgaactag	aaatcggagc	actcaccgcg	120
gcatcaaccg	caggcagcac	gctcggtgaa	ttgatgccac	acattccgca	gttggcggat	180
cgtgttattc	aagacaccac	agctgaaact	ctagccggtc	atgatgtcgt	atttctagga	240
cttccacacg	gattetetge	agaaattgca	cttcagctcg	gaccagatgt	cacagtgatt	300
gactgtgcag	ctgactttcg	tctgcaaaat	gctgcagatt	gggagaagtt	ctacggctca	360
gagcaccagg	gaacatggcc	ttatggcatt	ccagaaatac	caggacaccg	cgaggctctt	420
cgtggtgcta	agcgtgtagc	agtgccagga	tgtttcccaa	ccggtgcaac	cttggctctt	480
cttcctgcgg	ttcaagcggg	acttatcgag	ccagatgttt	ccgtagtgtc	catcaccggc	540
gtatcaggtg	caggtaagaa	agcatctgtt	gcactacttg	gctcggaaac	catgggttca	600
ctcaaggegt	acaacacctc	cggaaagcac	cgccacaccc	cggaaattgc	ccagaacctc	660
ggcgaagtca	gcgacaagcc	agtcaaggtg	agetteacee	cagtgettge	accgttacct	720
cgcggaattc	tcaccactgc	aaccgcacct	ttgaaagaag	gegttacege	agagcagget	780
cgcgcagtat	atgaagagtt	ctatgcacag	gaaaccttcg	tgcatgttct	tccagaaggt	840
gcacagccac	aaacccaagc	agttcttggc	tccaacatgt	gccacgtgca	ggtagaaatt	900
gatgaggaag	caggcaaagt	ccttgttacc	teegeaateg	ataacctcac	caagggaact	960
gecggegecg	ctgttcagtg	catgaactta	agcgttggct	ttgatgaggc	agcaggcctg	1020
ccacaggtcg	gcgtcgcacc	ttaa				1044

10

<210> 23

<211> 388 <212> PRT

15 <213> ArgJ de ATCC13032 de Corynebacterium glutamicum

Met Ala Glu Lys Gly Ile Thr Ala Pro Lys Gly Phe Val Ala Ser Ala 1 5 10 15

Thr Thr Ala Gly Ile Lys Ala Ser Gly Asn Pro Asp Met Ala Leu Val 20 25 30

Val Asn Gln Gly Pro Glu Phe Ser Ala Ala Ala Val Phe Thr Arg Asn 35 40 45

Arg Val Phe Ala Ala Pro Val Lys Val Ser Arg Glu Asn Val Ala Asp

	50					55					60				
Gly 65	Gln	Ile	Arg	Ala	Val 70	Leu	Tyr	Asn	Ala	Gly 75	Asn	Ala	Asn	Ala	Cys 80
Asn	Gly	Leu	Gln	Gly 85	Glu	Lys	Asp	Ala	Arg 90	Glu	Ser	Val	Ser	His 95	Leu
Ala	Gln	Asn	Le u 100	Gly	Leu	Glu	Asp	Ser 105	Asp	Ile	Gly	Val	Cys 110	Ser	Thr
Gly	Leu	Ile 115	Gly	Glu	Leu	Leu	Pro 120	Met	Asp	Lys	Leu	Asn 125	Ala	Gly	Ile
Asp	Gln 130	Leu	Thr	Ala	Glu	Gly 135	Ala	Leu	Gly	Asp	Asn 140	Gly	Ala	Ala	Ala
Ala 145	Lys	Ala	Ile	Met	Thr 150	Thr	Asp	Thr	Val	Asp 155	Lys	Glu	Thr	Val	Val 160
Phe	Ala	Asp	Gly	Trp 165	Thr	Val	Gly	Gly	Met 170	Gly	Lys	Gly	Val	Gly 175	Met
Met	Ala	Pro	Ser 180	Leu	Ala	Thr	Met	Leu 185	Val	Cys	Leu	Thr	Thr 190	Asp	Ala
Ser	Val	Thr 195	Gln	Glu	Met	Ala	Gln 200	Ile	Ala	Leu	Ala	As n 205	Ala	Thr	Ala
Val	Thr 210	Phe	Asp	Thr	Leu	Asp 215	Ile	Asp	Gly	Ser	Thr 220	Ser	Thr	Asn	Asp
Thr 225	Val	Phe	Leu	Leu	Ala 230	Ser	Gly	Ala	Ser	Gly 235	Ile	Thr	Pro	Thr	Gln 240
Asp	Glu	Leu	Asn	Asp 245	Ala	Val	Tyr	Ala	Ala 250	Cys	Ser	Asp	Ile	Ala 255	Ala
Lys	Leu	Gln	Ala 260	Asp	Ala	Glu	Gly	Val 265	Thr	Lys	Arg	Val	Ala 270	Val	Thr
Val	Val	Gly 275	Thr	Thr	Asn	Asn	Glu 280	Gln	Ala	Ile	Asn	Ala 285	Ala	Arg	Thr
Val	Ala 290	Arg	Asp	Asn	Leu	Phe 295	Lys	Cys	Ala	Met	Phe 300	Gly	Ser	Asp	Pro
Asn 305	Trp	Gly	Arg	Val	Leu 310	Ala	Ala	Val	Gly	Met 315	Ala	Asp	Ala	Asp	Met 320
Glu	Pro	Glu	Lys	11e 325	Ser	Val	Phe	Phe	Asn 330	Gly	Gln	Ala	Val	Cys 335	Leu
Asp	Ser	Thr	Gly 340	Ala	Pro	Gly	Ala	Arg 345	Glu	Val	Asp	Leu	Ser 350	Gly	Ala
Asp	Ile	Asp 355	Val	Arg	Ile	Asp	Leu 360	Gly	Thr	Ser	Gly	Glu 365	Gly	Gln	Ala
Thr	Val 370	Arg	Thr	Thr	Asp	Le u 375	Ser	Phe	Ser	Tyr	Val 380	Glu	Ile	Asn	Ser
Ala	Tyr	Ser	Ser												

385

5

<210> 24

<211> 1167

<212> ADN

<213> argJ de ATCC13032 de Corynebacterium glutamicum

<400> 24

atggcagaaa	aaggcattac	cgcgccgaaa	ggcttcgttg	cttctgcaac	gaccgcgggt	60
attaaagctt	ctggcaatcc	tgacatggcg	ttggtggtta	accagggtcc	agagttttcc	120
gcagcggccg	tgtttacacg	taaccgagtt	ttcgcagcgc	ctgtgaaggt	gagccgagag	180
aacgttgctg	atggccagat	cagggctgtt	ttgtacaacg	ctggtaatgc	taatgcgtgt	240
aatggtctgc	agggtgagaa	ggatgctcgt	gagtctgttt	ctcatctage	tcaaaatttg	300
ggcttggagg	attccgatat	tggtgtgtgt	tecaetggte	ttattggtga	gttgcttccg	360
atggataagc	tcaatgcagg	tattgatcag	ctgaccgctg	agggegettt	gggtgacaat	420
ggtgcagctg	ctgccaaggc	gatcatgacc	actgacacgg	tggataagga	aaccgtcgtg	480
tttgctgatg	gttggactgt	cggcggaatg	ggcaagggcg	tgggcatgat	ggcgccgtct	540
cttgccacca	tgctggtctg	cttgaccact	gatgcatccg	ttactcagga	aatggctcag	600
atcgcgctgg	ctaatgctac	ggccgttacg	tttgacaccc	tggatattga	tggatcaacc	660
tccaccaatg	acaccgtgtt	cctgctggca	tetggegeta	gcggaatcac	cccaactcag	720
gatgaactca	acgatgcggt	gtacgcaget	tgttctgata	tegeagegaa	gcttcaggct	780
gatgcagagg	gtgtgaccaa	gcgcgttgct	gtgacagtgg	tgggaaccac	caacaacgag	840
caggcgatta	atgcggctcg	cactgttgct	cgtgacaatt	tgttcaagtg	cgcaatgttt	900
ggatctgatc	caaactgggg	tegegtgttg	gctgcagtcg	gcatggctga	tgctgatatg	960
gaaccagaga	agatttctgt	gttcttcaat	ggtcaagcag	tatgccttga	ttccactggc	1020
geteetggtg	ctcgtgaggt	ggatetttee	ggcgctgaca	ttgatgtccg	aattgatttg	1080
ggcaccagtg	gggaaggcca	ggcaacagtt	cgaaccactg	acctgagctt	ctcctacgtg	1140
gagatcaact	ccgcgtacag	ctcttaa				1167

10

<210> 25

<211> 388

<212> PRT

<213> ArgJ de ATCC13869 de Corynebacterium glutamicum

15

Met Ala Lys Lys Gly Ile Thr Ala Pro Lys Gly Phe Val Ala Ser Ala 1 5 10 15

Thr Thr Ala Gly Ile Lys Ala Ser Gly Asn Pro Asp Met Ala Leu Val 20 25 30

Val Asn Gln Gly Pro Glu Phe Ser Ala Ala Val Phe Thr Arg Asn

		35					40					45			
Arg	Val 50	Phe	Ala	Ala	Pro	Val 55	Lys	Val	Ser	Arg	G1u 60	Asn	Val	Ala	Asp
Gly 65	Gln	Ile	Arg	Ala	Val 70	Leu	Tyr	Asn	Ala	Gly 75	Asn	Ala	Asn	Ala	Cys 80
Asn	Gly	Leu	Gln	Gly 85	Gl u	Lys	Asp	Ala	Arg 90	Glu	Ser	Val	Ser	His 95	Leu
Ala	Gln	Asn	Le u 100	Gly	Leu	Glu	Asp	Ser 105	Asp	Ile	Gly	Val	Cys 110	Ser	Thr
Gly	Leu	Ile 115	Gly	Glu	Leu	Leu	Pro 120	Met	Asp	Lys	Leu	Asn 125	Thr	Gly	Ile
Asp	Gln 130	Leu	Thr	Ala	Glu	Gly 135	Ala	Leu	Gly	Asp	Asn 140	Gly	Ala	Ala	Ala
Ala 145	Lys	Ala	Ile	Met	Thr 150	Thr	Asp	Thr	Val	Asp 155	Lys	Glu	Thr	Val	Val 160
Phe	Ala	Asp	Gly	Trp 165	Thr	Val	Gly	Gly	Met 170	Gly	Lys	Gly	Val	Gly 175	Met
Met	Ala	Pro	Ser 180	Leu	Ala	Thr	Met	Leu 185	Val	Cys	Leu	Thr	Thr 190	Asp	Ala
Ser	Val	Thr 195	Gln	Glu	Met	Ala	Gln 200	Ile	Ala	Leu	Ala	As n 205	Ala	Thr	Ala
Val	Thr 210	Phe	Asp	Thr	Leu	Asp 215	Ile	Asp	Gly	Ser	Thr 220	Ser	Thr	Asn	Asp
Thr 225	Val	Phe	Leu	Leu	Ala 230	Ser	Gly	Ala	Ser	G1y 235	Ile	Thr	Pro	Thr	Gln 240
Asp	Glu	Leu	Asn	Asp 245	Ala	Val	Tyr	Ala	Ala 250	Суз	Ser	Asp	Ile	Ala 255	Ala
Lys	Leu	Gln	Ala 260	Asp	Ala	Glu	Gly	Val 265	Thr	Lys	Arg	Val	Ala 270	Val	Thr
Val	Val	Gly 275	Thr	Thr	Aşn	Asn	Glu 280	Gln	Ala	Ile	Aşn	Ala 285	Ala	Arg	Thr
Val	Ala 290	Arg	Asp	Asn	Leu	Phe 295	Lys	Cys	Ala	Met	Phe 300	Gly	Ser	Asp	Pro
Asn 305	Trp	Gly	Arg	Val	Leu 310	Ala	Ala	Val	Gly	Met 315	Ala	Asp	Ala	Asp	Met 320
Glu	Pro	Glu	Lys	11e 325	Ser	Val	Phe	Phe	Asn 330	Asp	Gln	Ala	Val	Сув 335	Leu
Asp	Ser	Thr	Gly 340	Ala	Pro	Gly	Ala	Arg 345	Glu	Val	Asp	Leu	Ser 350	Gly	Ala
Asp	Ile	Asp 355	Val	Arg	Ile	Asp	Leu 360	Gly	Thr	Ser	Gly	Glu 365	Gly	Gln	Ala
Thr	Val	Arg	Thr	Thr	Asp	Leu	Ser	Phe	Ser	Tyr	Val	Glu	Ile	Asn	Ser

370 375 380

Ala Tyr Ser Ser 385

<210> 26 <211> 1167 <212> ADN <213> argJ de ATCC13869 de *Corynebacterium glutamicum*

<400> 26

5

atggccaaaa aaggcattac cgcgccgaaa ggcttcgttg cttctgcaac gaccgcgggt 60 120 attaaagett etggeaatee tgacatggeg ttggtggtta accagggtee agagttttee 180 gcagcggccg tgtttacacg caaccgagtt ttcgcagcgc ctgtgaaggt gagccgggag 240 aacgttgctg atggccagat cagggctgtt ttgtacaacg ctggtaatgc taatgcgtgt 300 aatggtetge agggtgagaa ggatgetegt gagtetgttt eteatetage teaaaatttg 360 ggettggagg attecgatat tggtgtgtgt tecactggte ttattggtga gttgetteeg atggataage teaatacagg tattgateag etgacegetg agggegettt gggtgacaat 420 480 ggtgcagctg ctgccaaggc gatcatgacc actgacacgg tggataagga aaccgtcgtg 540 tttgctgatg gttggactgt cggcggaatg ggcaagggcg tgggcatgat ggcgccgtct 600 cttgccacca tgctggtctg cttgaccact gatgcatccg ttactcagga aatggctcag 660 attgegetgg ctaatgetae ggeegttaeg tttgacaece tggatattga tggateaace 720 tccaccaatg acaccgtgtt cctgctggca tctggcgcta gcggaatcac cccaactcag 780 gatgaactca acgatgcggt gtacgcagct tgttctgata tcgcagcgaa gcttcaggct gatgcagagg gggtgaccaa gcgcgttgct gtgacagtgg tgggaaccac caacaacgag 840 caggegatea atgeggeteg caeggttget egtgacaatt tgttcaagtg egcaatgttt 900 960 ggatetgate caaactgggg tegegtgttg getgeagteg geatggetga tgetgatatg gaaccagaga agatttctgt gttcttcaat gatcaagcag tatgccttga ttccactggc 1020 gctcctggtg ctcgtgaggt ggatctttcc ggcgctgaca ttgatgtccg aattgatttg 1080 ggcaccagtg gggaaggcca ggcaacagtt cgaaccactg acctgagctt ctcctacgtg 1140 gagatcaact ccgcgtacag ctcttaa 1167

10

<210> 27

<211> 317

<212> PRT

15 <213> ArgB de ATCC13032 de Corynebacterium glutamicum

Met 1	Asn	Asp	Leu	Ile 5	Lys	Asp	Leu	Gly	Ser 10	Glu	Val	Arg	Ala	Asn 15	Val
Leu	Ala	Glu	Ala	Leu	Pro	Trp	Leu	Gln	His	Phe	Arg	Asp	Lys	Ile	Val
			20					25					30		
Val	Val	Lys 35	Tyr	Gly	Gly	Asn	Ala 40	Met	Val	Asp	Asp	Asp 45	Leu	Lys	Ala
Ala	Phe 50	Ala	Ala	Asp	Met	Val 55	Phe	Leu	Arg	Thr	Val 60	Gly	Ala	Lys	Pro
Val 65	Val	Val	His	Gly	Gly 70	Gly	Pro	Gln	Ile	Ser 75	Glu	Met	Leu	Asn	Arg 80
Val	Gly	Leu	Gln	Gly 85	Glu	Phe	Lys	Gly	Gly 90	Phe	Arg	Val	Thr	Thr 95	Pro
Glu	Val	Met	Asp 100	Ile	Val	Arg	Met	Val 105	Leu	Phe	Gly	Gln	Val 110	Gly	Arg
Asp	Leu	Val 115	Gly	Leu	Ile	Aşn	Ser 120	His	Gly	Pro	Tyr	Ala 125	Val	Gly	Thr
Ser	Gly 130	Glu	Asp	Ala	Gly	Leu 135	Phe	Thr	Ala	Gln	Lys 140	Arg	Met	Val	Asn
Ile 145	Asp	Gly	Val	Pro	Thr 150	Asp	Ile	Gly	Leu	Val 155	Gly	Asp	Ile	Ile	Asn 160
Val	Asp	Ala	Ser	Ser 165	Leu	Met	Asp	Ile	Ile 170	Glu	Ala	Gly	Arg	Ile 175	Pro
Val	Val	Ser	Thr 180	Ile	Ala	Pro	Gly	Glu 185	Asp	Gly	Gln	Ile	Tyr 190	Aşn	Ile
Asn	Ala	Asp 195	Thr	Ala	Ala	Gly	Ala 200	Leu	Ala	Ala	Ala	Ile 205	Gly	Ala	Glu
Arg	Leu 210	Leu	Val	Leu	Thr	Asn 215	Val	Glu	Gly	Leu	Tyr 220	Thr	Asp	Trp	Pro
Asp 225	Lys	Ser	Ser	Leu	Val 230	Ser	Lys	Ile	Lys	Ala 235	Thr	Glu	Leu	Glu	Ala 240
Ile	Leu	Pro	Gly	Leu 245	Asp	Ser	Gly	Met	11e 250	Pro	Lys	Met	Glu	Ser 255	Cys
Leu	Asn	Ala	Val 260	Arg	Gly	Gly	Val	Ser 265	Ala	Ala	His	Val	11e 270	Asp	Gly
Arg	Ile	Ala 275	His	Ser	Val	Leu	Leu 280	Glu	Leu	Leu	Thr	Met 285	Gly	Gly	Ile
Gly	Thr 290	Met	Val	Leu	Pro	Asp 295	Val	Phe	Asp	Arg	Glu 300	Asn	Tyr	Pro	Glu
Gly 305	Thr	Val	Phe	Arg	Lys 310	Asp	Asp	Lys	Asp	Gly 315	Glu	Leu			

<210> 28
<211> 954
<212> ADN
<213> argB de ATCC13032 de Corynebacterium glutamicum

<400> 28

60 atgaatgact tgatcaaaga tttaggctct gaggtgcgcg caaatgtcct cgctgaggcg 120 ttgccatggt tgcagcactt ccgcgacaag attgttgtcg tgaaatatgg cggaaacgcc atggtggatg atgateteaa ggetgetttt getgeegaca tggtettett gegeacegtg 180 240 ggcgcaaaac cagtggtggt gcacggtggt ggacctcaga tttctgagat gctaaaccgt 300 gtgggtctcc agggcgagtt caagggtggt ttccgtgtga ccactcctga ggtcatggac 360 attgtgcgca tggtgctctt tggtcaggtc ggtcgcgatt tagttggttt gatcaactct 420 catggccctt acgctgtggg aacctccggt gaggatgccg gcctgtttac cgcgcagaag cgcatggtca acatcgatgg cgtacccact gatattggtt tggtcggaga catcattaat 480 gtegatgeet etteettgat ggatateate gaggeeggte geatteetgt ggtetetaeg 540 600 attgctccag gcgaagacgg ccagatttac aacattaacg ccgataccgc agcaggtgct ttggetgeag cgattggtge agaacgeetg etggttetea ecaatgtgga aggtetgtae 660 720 accgattggc ctgataagag ctcactggtg tccaagatca aggccaccga gctggaggcc 780 attetteegg gaettgatte eggeatgatt ceaaagatgg agtettgett gaacgeggtg cgtggggag taagcgctgc tcatgtcatt gacggccgca tcgcgcactc ggtgttgctg 840 900 gagettttga ccatgggtgg aattggcacg atggtgctgc cggatgtttt tgatcgggag aattateetg aaggeacegt ttttagaaaa gacgacaagg atggggaact gtaa 954

10

<210> 29 <211> 317

<212> PRT

<213> ArgB de ATCC13869 de Corynebacterium glutamicum

15

Met 1	Asn	Asp	Leu	Ile 5	Lys	Asp	Leu	Gly	Ser 10	Glu	Val	Arg	Ala	Asn 15	Val
Leu	Ala	Glu	Ala 20	Leu	Pro	Trp	Leu	Gln 25	His	Phe	Arg	Asp	Lys 30	Ile	Val
Val	Val	Lys 35	Tyr	Gly	Gly	Asn	Ala 40	Met	Val	Asp	Asp	Asp 45	Leu	Lys	Ala
Ala	Phe 50	Ala	Ala	Asp	Met	Val 55	Phe	Leu	Arg	Thr	Val 60	Gly	Ala	Lys	Pro
Val 65	Val	Val	His	Gly	Gly 70	Gly	Pro	Gln	Ile	Ser 75	Glu	Met	Leu	Asn	Arg 80
Val	Gly	Leu	Gl n	Gly 85	Glu	Phe	Lys	Gly	Gly 90	Phe	Arg	Val	Thr	Thr 95	Pro
Glu	Val	Met	Asp 100	Ile	Val	Arg	Met	Val 105	Leu	Phe	Gly	Gl n	Val 110	Gly	Arg
Asp	Leu	Val 115	Gly	Leu	Ile	Aşn	Ser 120	His	Gly	Pro	Tyr	Ala 125	Val	Gly	Thr
Ser	Gly 130	Glu	Asp	Ala	Gly	Leu 135	Phe	Thr	Ala	Gln	Lys 140	Arg	Met	Val	Asn
Ile 145	Asp	Gly	Val	Pro	Thr 150	Asp	Ile	Gly	Leu	Val 155	Gly	Asp	Ile	Ile	Asn 160
Val	Asp	Ala	Ser	Ser 165	Leu	Met	Asp	Ile	Ile 170	Glu	Ala	Gly	Arg	Ile 175	Pro
Val	Val	Ser	Thr 180	Ile	Ala	Pro	Gly	Glu 185	Asp	Gly	Gln	Ile	Tyr 190	Asn	Ile
Asn	Ala	Asp 195	Thr	Ala	Ala	Gly	Ala 200	Leu	Ala	Ala	Ala	Ile 205	Gly	Ala	Glu
Arg	Leu 210	Leu	Val	Leu	Thr	Asn 215	Val	Glu	Gly	Leu	Tyr 220	Thr	Asp	Trp	Pro
Asp 225	Lys	Ser	Ser	Leu	Val 230	Ser	Lys	Ile	Lys	Ala 235	Thr	Glu	Leu	Glu	Ala 240
Ile	Leu	Pro	Gly	Leu 245	Asp	Ser	Gly	Met	Ile 250	Pro	Lys	Met	Glu	Ser 255	Суз
Leu	Asn	Ala	Val 260	Arg	Gly	Gly	Val	Ser 265	Ala	Ala	His	Val	Ile 270	Asp	Gly
Arg	Ile	Ala 275	His	Ser	Val	Leu	Leu 280	Glu	Leu	Leu	Thr	Met 285	Gly	Gly	Ile
Gly	Thr 290	Met	Val	Leu	Pro	Asp 295	Val	Phe	Asp	Arg	Glu 300	Asn	Tyr	Pro	Glu
Gly 305	Thr	Val	Phe	Arg	Lys 310	Asp	Asp	Lys	Asp	Gly 315	Glu	Leu			

<210> 30 <211> 954 <212> ADN <213> argB de ATCC13869 de *Corynebacterium glutamicum*

<400> 30

5

atgaatgact tgatcaaaga tttaggctct gaggtgcgcg caaatgtcct cgctgaggcg 60 ttgccatggt tgcagcattt cogcgacaag attgttgtcg tgaaatatgg cggaaacgcc 120 atggtggatg atgateteaa ggetgetttt getgeegaca tggtettett gegeacegtg 180 ggegeaaaac cagtggtggt gcacggtggt ggacctcaga tttctgagat gctaaaccgt 240 300 gtgggtctcc agggcgagtt caagggtggt ttccgtgtga ccactcctga ggtcatggac 360 attgtgcgca tggtgctctt tggtcaggtc ggtcgcgatt tagttggttt gatcaactct catggccctt acgctgtggg aacctccggt gaggatgccg gcctgtttac cgcgcagaag 420 cgcatggtca acategatgg cgtacccact gatattggtt tggtcggaga catcattaat 480 gtegatgeet etteettgat ggatateate gaggeeggte geatteetgt ggtetetaeg 540 600 attgctccag gcgaagacgg ccagatttac aacatcaacg ccgataccgc agcgggtgct ttggctgcag cgattggtgc agaacgcctg ctggttctca ccaatgtgga aggtctgtac 660 accgattggc ctgataagag ctcactggtg tccaagatca aggccaccga gctggaggcc 720 780 attetteegg gacttgatte eggeatgatt ceaaagatgg agtettgett gaatgeggtg cgtgggggag taagcgctgc tcatgtcatt gacggccgca tcgcgcactc ggtgttgctg 840 900 gagettttga ccatgggtgg aattggcacg atggtgctgc cggatgtttt tgatcgggag 954 aattatccgg aaggcaccgt ttttagaaaa gacgacaagg atggggaact gtaa

10 <210> 31

<211> 391

<212> PRT

<213> ArgD de ATCC13032 de Corynebacterium glutamicum

Met 1	Ser	Thr	Leu	Glu 5	Thr	Trp	Pro	Gln	Val 10	Ile	Ile	Asn	Thr	Tyr 15	Gly
Thr	Pro	Pro	Val 20	Glu	Leu	Val	Ser	Gly 25	Lys	Gly	Ala	Thr	Val 30	Thr	Asp
Asp	Gln	Gly 35	Asn	Val	Tyr	Ile	Asp 40	Leu	Leu	Ala	Gly	Ile 45	Ala	Val	Asn
Ala	Leu 50	Gly	His	Ala	His	Pro 55	Ala	Ile	Ile	Glu	Ala 60	Val	Thr	Asn	Gln
Ile 65	Gly	Gln	Leu	Gly	His 70	Val	Ser	Asn	Leu	Phe 75	Ala	Ser	Arg	Pro	Val 80
Val	Glu	Val	Ala	Glu 85	Glu	Leu	Ile	Lys	Arg 90	Phe	Ser	Leu	Asp	Asp 95	Ala
Thr	Leu	Ala	Ala 100	Gln	Thr	Arg	Val	Phe 105	Phe	Cys	Asn	Ser	Gly 110	Ala	Glu
Ala	Asn	Glu 115	Ala	Ala	Phe	Lys	Ile 120	Ala	Arg	Leu	Thr	Gly 125	Arg	Ser	Arg
Ile	Leu 130	Ala	Ala	Val	His	Gly 135	Phe	His	Gly	Arg	Thr 140	Met	Gly	Ser	Leu
Ala 145	Leu	Thr	Gly	Gln	Pro 150	Asp	Lys	Arg	Glu	Ala 155	Phe	Leu	Pro	Met	Pro 160
Ser	Gly	Val	Glu	Phe 165	Tyr	Pro	Tyr	Gly	Asp 170	Thr	Asp	Tyr	Leu	Arg 175	Lys
Met	Val	Glu	Thr 180	Asn	Pro	Thr	Asp	Val 185	Ala	Ala	Ile	Phe	Leu 190	Glu	Pro
Ile	Gln	Gly 195	Glu	Thr	Gly	Val	Val 200	Pro	Ala	Pro	Glu	Gly 205	Phe	Leu	Lys
Ala	Val 210	Arg	Glu	Leu	Cys	Asp 215	Glu	Tyr	Gly	Ile	Leu 220	Met	Ile	Thr	Asp
Glu 225	Val	Gln	Thr	Gly	Val 230	Gly	Arg	Thr	Gly	Asp 235	Phe	Phe	Ala	His	Gln 240

His Asp Gly Val Val Pro Asp Val Val Thr Met Ala Lys Gly Leu Gly 245 250 255

Gly Gly Leu Pro Ile Gly Ala Cys Leu Ala Thr Gly Arg Ala Ala Glu 260 265 270

Leu Met Thr Pro Gly Lys His Gly Thr Thr Phe Gly Gly Asn Pro Val 275 280 285

Ala Cys Ala Ala Ala Lys Ala Val Leu Ser Val Val Asp Asp Ala Phe 290 295 300

Cys Ala Glu Val Ala Arg Lys Gly Glu Leu Phe Lys Glu Leu Leu Ala 305 310 315 320

Lys Val Asp Gly Val Val Asp Val Arg Gly Arg Gly Leu Met Leu Gly 325 330 335

Val Val Leu Glu Arg Asp Val Ala Lys Gln Ala Val Leu Asp Gly Phe 340 345 350

Lys His Gly Val Ile Leu Asn Ala Pro Ala Asp Asn Ile Ile Arg Leu 355 360 365

Thr Pro Pro Leu Val Ile Thr Asp Glu Glu Ile Ala Asp Ala Val Lys 370 380

Ala Ile Ala Glu Thr Ile Ala 385 390

<210> 32

<211> 1176

<212> ADN

<213> argD de ATCC13032 de Corynebacterium glutamicum

60	cccaccagtt	cgtacggcac	attattaata	gccacaggtc	tggaaacttg	atgagcacgc
120	ctacatcgac	agggcaatgt	actgatgacc	cgcaaccgtc	ccggcaaggg	gagctggtgt
180	categaggeg	acccggcgat	ggccacgccc	caacgcgttg	gcatcgcagt	ttgctcgcgg
240	caggcccgtc	tgttcgcatc	gtctcaaact	acttggtcac	agatcggcca	gtcaccaacc
300	cctcgccgcg	acgacgccac	ttttcgcttg	catcaagcgt	ccgaggagct	gtcgaggtcg
360	tttcaagatt	acgaggctgc	gccgaagcaa	caactcgggc	ttttcttctg	caaacccggg
420	cggccgcacc	atggtttcca	gctgcagttc	ccggattctg	ctggtcgttc	gcacgcttga
480	gccaatgcca	aagcgttcct	gacaagcgtg	tggccagcca	tegegetgae	atgggttccc
540	ggtagaaacc	tgcgcaaaat	accgattact	ttacggcgac	agttctaccc	agcggtgtgg
600	gggcgttgtt	agggtgaaac	gagccaatcc	tatcttcctc	atgtggctgc	aacccaacgg
660	cggcatcttg	gcgatgagta	cgcgagctgt	caaggcagtg	aaggatteet	ccagcacctg
720	tgcacatcag	gcgatttctt	ggccgtaccg	gactggcgtt	atgaagtcca	atgatcaccg
780	cggtcttccc	gacttggcgg	atggccaagg	tgtggtgacc	ttgttcccga	cacgatggcg
84(caagcacggg	taaccccaaa	gctgaattga	taaccataca	atttaaccac	atoggtgett
900	gtctgttgtc	aggcagtgct	gcagctgcca	agttgcttgt	gtggcaaccc	accactttcg
960	acttcttgcc	tgttcaagga	aagggcgagc	agttgcccgc	tctgcgcaga	gatgacgctt
1020	ggtgctggag	tgttgggcgt	aggggettga	egteegtgge	gcgttgtaga	aaggttgacg
1080	tttgaatgca	acggcgttat	ggttttaagc	tgttcttgat	caaagcaagc	egegaegteg
1140	agaaatcgca	tcaccgacga	ccgctggtga	tttgaccccg	acattatccg	ccggcggaca
1170			gcataa	cgagacaatc	aggetattge	gacgcagtca

5

<210> 33 <211> 391

<212> PRT

<213> ArgD de ATCC13869 de Corynebacterium glutamicum

<400> 33

Met Ser Thr Leu Glu Thr Trp Pro Gln Val Ile Ile Asn Thr Tyr Gly Thr Pro Pro Val Glu Leu Val Ser Gly Lys Gly Ala Thr Val Thr Asp Asp Gln Gly Lys Val Tyr Ile Asp Leu Leu Ala Gly Ile Ala Val Asn Ala Leu Gly His Ala His Pro Ala Ile Ile Glu Ala Val Thr Asn Gln Ile Gly Gln Leu Gly His Val Ser Asn Leu Phe Ala Ser Arg Pro Val Val Glu Val Ala Glu Glu Leu Ile Lys Arg Phe Ser Leu Asp Asp Ala Thr Leu Ala Ala Gln Thr Arg Val Phe Phe Cys Asn Ser Gly Ala Glu Ala Asn Glu Ala Ala Phe Lys Ile Ala Arg Leu Thr Gly Arg Ser Arg Ile Leu Ala Ala Val His Gly Phe His Gly Arg Thr Met Gly Ser Leu 130 Ala Leu Thr Gly Gln Pro Asp Lys Arg Glu Ala Phe Leu Pro Met Pro Ser Gly Val Glu Phe Tyr Pro Tyr Gly Asp Thr Asp Tyr Leu Arg Lys Met Val Glu Thr Asn Pro Thr Asp Val Ala Ala Ile Phe Leu Glu Pro Ile Gln Gly Glu Thr Gly Val Val Pro Ala Pro Glu Gly Phe Leu Lys 200 195

Ala Val Arg Glu Leu Cys Asp Glu Tyr Gly Ile Leu Met Ile Thr Asp

215

220

Glu 225	Val	Gln	Thr	Gly	Val 230	Gly	Arg	Thr	Gly	Asp 235	Phe	Phe	Ala	His	Gln 240
His	Asp	Gly	Val	Val 245	Pro	Asp	Val	Val	Thr 250	Met	Ala	Lys	Gly	Leu 255	Gly
Gly	Gly	Leu	Pro 260	Ile	Gly	Ala	Cys	Leu 265	Ala	Thr	Gly	Arg	Ala 270	Ala	Glu
Leu	Met	Thr 275	Pro	Gly	Lys	His	Gly 280	Thr	Thr	Phe	Gly	Gly 285	Asn	Pro	Val
Ala	Cys 290	Ala	Ala	Ala	Lys	Ala 295	Val	Leu	Ser	Val	Val 300	Asp	Asp	Ala	Phe
Cys 305	Ala	Glu	Val	Thr	Arg 310	Lys	Gly	Glu	Leu	Phe 315	Lys	Glu	Leu	Leu	Ala 320
Lys	Val	Asp	Gly	Val 325	Val	Asp	Val	Arg	Gly 330	Arg	Gly	Leu	Met	Leu 335	Gly
Val	Val	Leu	Glu 340	Arg	Asp	Val	Ala	Lys 345	G1n	Ala	Val	Leu	Asp 350	Gly	Phe
Lys	His	Gly 355	Val	Ile	Leu	Asn	Ala 360	Pro	Ala	Asp	Asn	11e 365	Ile	Arg	Leu
Thr	Pro 370	Pro	Leu	Val	Ile	Thr 375	Asp	Glu	Glu	Ile	Ala 380	Asp	Ala	Val	Lys
Ala 385	Ile	Ala	Glu	Thr	Ile 390	Ala									

<210> 34

<211> 1176 <212> ADN <213> argD de ATCC13869 de *Corynebacterium glutamicum*

at	gagcacgc	tggaaacttg	gccacaggtc	attattaata	cgtacggcac	cccaccagtt	6
ga	gctggtgt	ccggcaaggg	cgcaaccgtc	accgatgacc	agggcaaagt	ctacatcgac	12
tt	gctcgcgg	gcatcgcagt	caacgcgttg	ggccacgccc	acceggegat	catcgaggcg	18
gt	caccaacc	agateggeea	acttggtcac	gtctcaaact	tgttcgcatc	caggcccgtc	24
gt	cgaggtcg	ccgaggagct	catcaagcgt	ttttcgcttg	acgacgccac	cctcgccgcg	30
ca	aacccggg	ttttcttctg	caactcgggc	gccgaagcaa	acgaggetge	tttcaagatt	36
ge	acgcttga	ctggtcgttc	ccggattctg	gctgcagttc	atggtttcca	cggccgcacc	42
at	gggttece	tcgcgctgac	tggccagcca	gacaagcgtg	aagcattcct	gccaatgcca	48
ag	cggtgtgg	agttctaccc	ttacggcgac	accgattact	tgcgcaaaat	ggtagaaacc	54
aa	cccaacgg	atgtggctgc	tatetteete	gagccaatcc	agggtgaaac	gggcgttgtt	60
cc	agcacctg	aaggattcct	caaggcagtg	cgcgagctgt	gcgatgagta	cggcatcttg	66
ate	gatcaccg	atgaagtcca	gactggcgtt	ggccgtaccg	gcgatttctt	tgcacatcag	720
ca	egatggeg	ttgttcccga	tgtggtgacc	atggccaagg	gacttggcgg	cggtcttccc	780
ate	eggtgett	gtttggccac	tggccgtgca	gctgaattga	tgaccccagg	caagcacggc	840
ace	cactttcg	gtggcaaccc	agttgcttgt	gcagctgcca	aggcagtgct	gtctgttgtc	900
gai	tgacgett	tetgegeaga	agttacccgc	aagggcgagc	tgttcaagga	acttcttgcc	960
aa	ggttgacg	gcgttgtaga	cgtccgtggc	aggggcttga	tgttgggcgt	ggtgctggag	1020
cg	cgacgtcg	caaagcaagc	tgttcttgat	ggttttaagc	acggcgttat	tttgaatgca	1080
CC	ggcggaca	acattatccg	tttgaccccg	ccgctggtga	tcaccgacga	agaaatcgca	1140
ga	cgcagtca	aggctattgc	cgagacaatc	gcataa			1176

⁵

<210> 35 <211> 203

<213> NCgl1469 de ATCC13032 de Corynebacterium glutamicum

<400> 35

Met 1	Ser	Pro	Thr	Val 5	Leu	Pro	Ala	Thr	Gln 10	Ala	Asp	Phe	Pro	Lys 15	Ile
Val	Asp	Val	Leu 20	Val	Glu	Ala	Phe	Ala 25	Asn	Asp	Pro	Ala	Phe 30	Leu	Arq
Trp	Ile	Pro 35	Gln	Pro	Asp	Pro	Gly 40	Ser	Ala	Lys	Leu	Arg 45	Ala	Leu	Phe
Glu	Leu 50	Gln	Ile	Glu	Lys	Gln 55	Tyr	Ala	Val	Ala	Gly 60	Asn	Ile	Asp	Va]
Ala 65	Arg	Asp	Ser	Glu	Gly 70	Glu	Ile	Val	Gly	Val 75	Ala	Leu	Trp	Asp	Arq 80
Pro	Asp	Gly	Asn	His 85	Ser	Ala	Lys	Asp	Gln 90	Ala	Ala	Met	Leu	Pro 95	Arq
Leu	Val	Ser	Ile 100	Phe	Gly	Ile	Lys	Ala 105	Ala	Gln	Val	Ala	Trp 110	Thr	Ası
Leu	Ser	Ser 115	Ala	Arg	Phe	His	Pro 120	Lys	Phe	Pro	His	Trp 125	Tyr	Leu	Ту
Thr	Val 130	Ala	Thr	Ser	Ser	Ser 135	Ala	Arg	Gly	Thr	Gly 140	Val	Gly	Ser	Ala
Leu 145	Leu	Asn	His	Gly	Ile 150	Ala	Arg	Ala	Gly	Asp 155	Glu	Ala	Ile	Tyr	Le:
Glu	Ala	Thr	Ser	Thr 165	Arg	Ala	Ala	Gln	Leu 170	Tyr	Asn	Arg	Leu	Gly 175	Phe
Val	Pro	Leu	Gly 180	Tyr	Ile	Pro	Ser	Asp 185	Asp	Asp	Gly	Thr	Pro 190	Glu	Let

<210> 36

<211> 612

<212> ADN

5

<213> NCgl1469 de ATCC13032 de Corynebacterium glutamicum

Ala Met Trp Lys Pro Pro Ala Met Pro Thr Val 195 200

atgagtecea	cegttttgcc	tgctacacaa	gctgacttcc	ctaagatcgt	cgatgttctg	60
gttgaagcat	tegecaaega	tccagcattt	ttacgatgga	tcccgcagcc	ggaccccggt	120
tcagcaaagc	ttcgagcact	tttcgaactg	cagattgaga	agcagtatgc	agtggcggga	180
aatattgatg	tcgcgcgtga	ttctgaggga	gaaatcgtcg	gcgtcgcgtt	atgggatcgg	240
ccagatggta	atcacagtgc	caaagatcaa	gcagcgatgc	tecceegget	cgtctccatt	300
ttcgggatca	aggetgegea	ggtggcgtgg	acggatttga	gttcggctcg	tttccacccc	360
aaattccccc	attggtacct	ctacaccgtg	gcaacatcta	gttctgcccg	tggaacgggt	420
gttggcagtg	cgcttcttaa	tcacggaatc	gctcgcgcgg	gtgatgaagc	tatctatttg	480
gaggcgacgt	cgactcgtgc	ggctcaacta	tataaccgtc	tgggatttgt	gcccttgggt	540
tatatcccct	cagatgatga	tggcactcct	gaactggcga	tgtggaaacc	gccagcgatg	600
ccaactgttt	aa					612

<210> 37

<211> 203

<212> PRT

<213> NCgl1469 de ATCC13869 de Corynebacterium glutamicum

<400> 37

Met Ser Pro Thr Val Leu Pro Ala Thr Gln Ala Asp Phe Pro Lys Ile 5 10

Val Asp Val Leu Val Glu Ala Phe Ala Asn Asp Pro Ala Phe Leu Arg 25

Trp Ile Pro Gln Pro Asp Pro Gly Ser Ala Lys Leu Arg Ala Leu Phe 40

Glu Leu Gln Ile Glu Lys Gln Tyr Ala Val Ala Gly Asn Ile Asp Val

Ala Arg Asp Ser Glu Gly Glu Ile Val Gly Val Ala Leu Trp Asp Arg

Pro Asp Gly Asn His Ser Ala Lys Asp Gln Ala Ala Ile Leu Pro Arg

Leu Val Ser Ile Phe Gly Ile Lys Ala Ala Gln Val Ala Trp Thr Asp

Leu Ser Ser Ala Arg Phe His Pro Lys Phe Pro His Trp Tyr Leu Tyr

Thr Val Ala Thr Ser Ser Ala Arg Gly Thr Gly Val Gly Ser Ala 130 135 140

10

	Leu 145	Leu	Asn	His	Gly	Ile 150	Ala	Arg	Ala	Gly	Asp 155	Glu	Ala	Ile	Tyr	Leu 160	
ı	Glu	Ala	Thr	Ser	Thr 165	Arg	Ala	Ala	Gln	Leu 170	Tyr	Asn	Arg	Leu	Gly 175	Phe	
	Val	Pro	Leu	Gly 180	Tyr	Ile	Pro	Ser	Asp 185	Asp	Asp	Gly	Thr	Pro 190	Glu	Leu	
	Ala	Met	Trp 195	Lys	Pro	Pro	Ala	Met 200	Pro	Thr	Val						
<210> 38 <211> 61 <212> AE <213> NO <400> 38	2 DN Cgl14	69 de	ATCC	13869	9 de C	orynei	bacter	ium gl	utamio	cum							
atgagt	tccc	a cc	gttt	tgcc	tgc	taca	caa	gctg	actt	cc c	taag	atcg	t cg	atgt	tctg	ī	60
gttgaa	agca	t to	gcca	acga	tcc	agca	ttt	ttac	gatg	ga t	cccg	cago	c gg	acco	cggt		120
tcagca	aaag	c tt	cgag	cact	ttt	cgaa	ctg	caga	ttga	ga a	ıgcag	tatg	c ag	tggc	ggga		180
aatatt	tgat	g to	gege	gtga	tto	tgag	gga	gaaa	togt	cg g	jegte	gcgt	t at	ggga	togg	Ī	240
ccagat	tggt	a at	caca	gtgo	caa	agat	caa	gcag	cgat	ac t	cccc	cggc	t cg	tctc	catt		300
ttcggg	gatc	a ag	gctg	cgca	ggt	ggcg	tgg	acgg	attt	ga g	jtteg	gctc	g tt	tcca	cccc	!	360
aaatto	ccc	c at	tggt	acct	cta	cacc	gtg	gcaa	catc	ta ç	jttet	gccc	g tg	gaac	gggt		420
gttggd	cagt	g cg	cttc	ttaa	tca	.cgga	atc	gata	gcgc	gg g	jtgat	gaag	c ta	tcta	tttg	ī	480
gaggcg	gacg	t cg	acto	gtgo	ggo	tcaa	cta	tata	accg	tc t	ggga	tttg	t go	cctt	gggt		540
tatato	ccc	t ca	gatg	atga	tgg	cact	cct	gaac	tggc	ga t	gtgg	aaac	c go	cago	gatg	i	600
ccaact	tgtt	t aa	L														612
<210> 39 <211> 49 <212> PF <213> NO)4 RT	22 de	ATCC	13032	2 de <i>C</i>	orynei	bacter	ium gl	utamio	cum							

10

5

15

- Met Thr Ser Glu Thr Leu Gln Ala Gln Ala Pro Thr Lys Thr Gln Arg
 1 5 10 15
- Trp Ala Phe Leu Ala Val Ile Ser Gly Gly Leu Phe Leu Ile Gly Val 20 25 30
- Asp Asn Ser Ile Leu Tyr Thr Ala Leu Pro Leu Leu Arg Glu Gln Leu 35 40 45
- Ala Ala Thr Glu Thr Gln Ala Leu Trp Ile Ile Asn Ala Tyr Pro Leu 50 55 60
- Leu Met Ala Gly Leu Leu Gly Thr Gly Thr Leu Gly Asp Lys Ile 65 70 75 80

Gly	His	Arg	Arg	Met 85	Phe	Leu	Met	Gly	Leu 90	Ser	Ile	Phe	Gly	Ile 95	Ala
Ser	Leu	Gly	Ala 100	Ala	Phe	Ala	Pro	Thr 105	Ala	Trp	Ala	Leu	Val 110	Ala	Ala
Arg	Ala	Phe 115	Leu	Gly	Ile	Gly	Ala 120	Ala	Thr	Met	Met	Pro 125	Ala	Thr	Leu
Ala	Leu 130	Ile	Arg	Ile	Thr	Phe 135	Glu	Asp	Glu	Arg	Glu 140	Arg	Asn	Thr	Ala
Ile 145	Gly	Ile	Trp	Gly	Ser 150	Val	Ala	Ile	Leu	Gly 155	Ala	Ala	Ala	Gly	Pro 160
Ile	Ile	Gly	Gly	Ala 165	Leu	Leu	Glu	Phe	Phe 170	Trp	Trp	Gly	Ser	Val 175	Phe
Leu	Ile	Asn	Val 180	Pro	Val	Ala	Val	Ile 185	Ala	Leu	Ile	Ala	Thr 190	Leu	Phe
Val	Ala	Pro 195	Ala	Asn	Ile	Ala	Asn 200	Pro	Ser	Lys	His	Trp 205	Asp	Phe	Leu
Ser	Ser 210	Phe	Tyr	Ala	Leu	Leu 215	Thr	Leu	Ala	Gly	Leu 220	Ile	Ile	Thr	Ile
Lys 225	Glu	Ser	Val	Asn	Thr 230	Ala	Arg	His	Met	Pro 235	Leu	Leu	Leu	Gly	Ala 240
Val	Ile	Met	Leu	Ile 245	Ile	Gly	Ala	Val	Leu 250	Phe	Ser	Ser	Arg	Gln 255	Lys
			260				_	265					Asn 270	_	
Phe	Leu	Gly 275	Gly	Val	Val	Ala	Ala 280	Gly	Met	Ala	Met	Phe 285	Thr	Val	Ser
Gly	Leu 290	Glu	Met	Thr	Thr	Ser 295	Gln	Arg	Phe	Gln	Leu 300	Ser	Val	Gly	Phe
Thr 305	Pro	Leu	Glu	Ala	Gly 310	Leu	Leu	Met	Ile	Pro 315	Ala	Ala	Leu	Gly	Ser 320
Phe	Pro	Met	Ser	11e 325	Ile	Gly	Gly	Ala	As n 330	Leu	His	Arg	Trp	Gly 335	Phe
Lys	Pro	Leu	Ile 340	Ser	Gly	Gly	Phe	Ala 345	Ala	Thr	Ala	Val	Gly 350	Ile	Ala
Leu	Cys	11e 355	Trp	Gly	Ala	Thr	His 360	Thr	Asp	Gly	Leu	Pro 365	Phe	Phe	Ile
Ala	Gly 370	Leu	Phe	Phe	Met	Gly 375	Ala	Gly	Ala	Gly	Ser 380	Val	Met	Ser	Val
Ser 385	Ser	Thr	Ala	Ile	11e 390	Gly	Ser	Ala	Pro	Val 395	Arg	Lys	Ala	Gly	Met 4 00
Ala	Ser	Ser	Ile	Glu 405	Glu	Val	Ser	Tyr	Glu 410	Phe	Gly	Thr	Leu	Leu 415	Ser

Val	Ala	Ilę	Leu	Gly	Ser	Leu	Phe	Pro	Phę	Phę	Tyr	Ser	Leu	His	Ala
			420					425					430		

Pro Ala Glu Val Ala Asp Asn Phe Ser Ala Gly Val His His Ala Ile 435 440 445

Asp Gly Asp Ala Ala Arg Ala Ser Leu Asp Thr Ala Tyr Ile Asn Val 450 455 460

Leu Ile Ile Ala Leu Val Cys Ala Val Ala Ala Ala Leu Ile Ser Ser 465 470 475 480

Tyr Leu Phe Arg Gly Asn Pro Lys Gly Ala Asn Asn Ala His
485 490

<210> 40

<211> 1485

5 <212> ADN

<213> NCgl2522 de ATCC13032 de Corynebacterium glutamicum

60	ggctttcctc	cccaacgttg	cctacgaaaa	ggcgcaagcg	aaaccttaca	atgacttcag
120	ctacaccgca	actcgattct	ggtgtagaca	ctttctgatc	gcggtggtct	gccgttatca
180	gatcatcaac	aagcgttgtg	accgaaaccc	getegeagee	tgcgtgaaca	ctccctctgc
240	tgacaaaatc	gcactttggg	ttgggtaccg	gggccttctt	tgctcatggc	gcatatcccc
300	acttggtgct	gaatcgcttc	agcattttcg	catgggcttg	ggatgttcct	ggecacegee
360	categgtgeg	ctttccttgg	gctgcgagag	ggctcttgtt	caactgcgtg	gcgtttgctc
420	tgagcgtgag	cgtttgagga	atccgcatta	cttggctctg	tgcctgcaac	gcaacgatga
480	ggcaggcccg	ttggcgctgc	gtggcaattc	ttggggttcc	caattggtat	cgcaacactg
540	cattaacgtt	cggttttcct	tggtggggtt	ggaattcttc	gtgcgctgtt	atcattggtg
600	tatcgcgaat	cgccggccaa	ctttttgtgg	gatogotacg	ttatcgcgtt	ccggtggctg
660	tgctgggttg	tgctcacact	ttctatgcgc	cttgtcgtcg	attgggattt	ccgtctaagc
720	tttgggtgca	tgcctcttct	gcacgccata	tgtgaatact	tcaaggaatc	atcatcacga
780	gatcgaggag	gtcagaagaa	tttagcagtc	tgcggtgttg	tgatcattgg	gtcatcatgt
840	ggttgctgcg	taggcggtgt	cgcctttct	gttccgtaat	atctgtcgtt	ccacttctag
900	tttccagttg	cctcgcagcg	gaaatgacta	gtccggtttg	tgtttactgt	ggcatggcga
960	attgggtagc	teccagetge	ttgctcatga	tgaggctggt	tcactccact	tctgtgggtt
1020	accgctgatc	ggggcttcaa	ctgcatcgtt	tggtgcaaac	ctattatcgg	ttecegatgt
1080	cgcgactcat	gtatttgggg	atcgccctgt	tgccgttggc	ttgctgccac	agtggtggtt
1140	tgctggttcg	tgggcgcggg	ctattcttca	catcgcgggt	tgccgttttt	actgatggtt
1200	ggctggcatg	cggtgcgtaa	ggttccgcgc	tgcgattatc	tgtcttccac	gtaatgtctg
1260	cgcgattttg	tgttgtctgt	ttcggcacgc	ctcttatgag	tcgaagaggt	gcgtcgtcga
1320	ggataacttc	cagaggttgc	catgccccgg	ctactcgctg	tcccattctt	ggtagcttgt
1380	ggacaccgca	gtgcatcttt	gatgcggcgc	gattgatggc	ttcaccacgc	tcggcgggtg
1440	gatcagcagt	cggctgctct	tgcgcagtag	tgccctagta	tgttgatcat	tacattaacg
1485		actag	aataatgcgc	gaagggagcc	geggaaatee	taccttttcc

5

<210> 41 <211> 494

<213> NCgl2522 de ATCC13869 de Corynebacterium glutamicum

<400> 41

Met 1	Ile	Ser	Glu	Thr 5	Leu	Gln	Ala	Gln	Ala 10	Pro	Thr	Lys	Thr	Gln 15	Arg
Trp	Ala	Phe	Leu 20	Ala	Val	Ile	Ser	Gly 25	Gly	Leu	Phe	Leu	Ile 30	Gly	Val
Asp	Asn	Ser 35	Ile	Leu	Tyr	Thr	Ala 40	Leu	Pro	Leu	Leu	Arg 45	Glu	Gln	Leu
Ala	Ala 50	Thr	Glu	Thr	Gln	Ala 55	Leu	Trp	Ile	Ile	Asn 60	Ala	Tyr	Pro	Leu
Leu 65	Met	Ala	Gly	Leu	Leu 70	Leu	Gly	Thr	Gly	Thr 75	Leu	Gly	Asp	Lys	Ile 80
Gly	His	Arg	Arg	Met 85	Phe	Leu	Met	Gly	Leu 90	Ser	Ile	Phe	Gly	11e 95	Ala
Ser	Leu	Gly	Ala 100	Ala	Phe	Ala	Pro	Thr 105	Ala	Trp	Ala	Leu	Val 110	Ala	Ala
Arg	Ala	Phe 115	Leu	Gly	Ile	Gly	Ala 120	Ala	Thr	Met	Met	Pro 125	Ala	Thr	Leu
Ala	Leu 130	Ile	Arg	Ile	Thr	Phe 135	Glu	Asp	Glu	Arg	Glu 140	Arg	Asn	Thr	Ala
Ile 145	Gly	Ile	Trp	Gly	Ser 150	Val	Ala	Ile	Leu	Gly 155	Ala	Ala	Ala	Gly	Pro 160
Ile	Ile	Gly	Gly	Ala 165	Leu	Leu	Glu	Phe	Phe 170	Trp	Trp	Gly	Ser	Val 175	Phe
Leu	Ile	Asn	Val 180	Pro	Val	Ala	Val	Ile 185	Ala	Leu	Ile	Ala	Thr 190	Leu	Phe
Val	Ala	Pro 195	Ala	Asn	Ile	Ala	Asn 200	Pro	Ser	Lys	His	Trp 205	Asp	Phe	Leu
Ser	Ser 210	Phe	Tyr	Ala	Leu	Leu 215	Thr	Leu	Ala	Gly	Leu 220	Ile	Val	Thr	Ile
Lys 225	Glu	Ser	Val	Asn	Thr 230	Ala	Arg	His	Leu	Pro 235	Leu	Leu	Val	Gly	Ala 240
Ile	Ile	Leu	Leu	Ile	Ile	Gly	Ala	Val	Leu	Phe	Ser	Ser	Ara	Gl n	Lys

				245					250					255	
Lys	Ile	Glu	Glu 260	Pro	Leu	Leu	Asp	Leu 265	Ser	Leu	Phe	Arg	Asn 270	Arg	Leu
Phe	Leu	Gly 275	Gly	Val	Val	Ala	Ala 280	Gly	Met	Ala	Met	Phe 285	Thr	Val	Ser
Gly	Leu 290	Glu	Met	Thr	Thr	Ser 295	Gln	Arg	Phe	Gln	Leu 300	Ser	Val	Gly	Phe
Thr 305	Pro	Leu	Glu	Ala	Gly 310	Leu	Leu	Met	Ile	Pro 315	Ala	Ala	Leu	Gly	Ser 320
Phe	Pro	Met	Ser	11e 325	Ile	Gly	Gly	Ala	Asn 330	Leu	His	Arg	Trp	Gly 335	Phe
Lys	Pro	Leu	Ile 340	Ser	Gly	Gly	Phe	Leu 345	Ala	Thr	Ala	Val	Gly 350	Ile	Ala
Leu	Cys	Ile 355	Trp	Gly	Ala	Thr	His 360	Thr	Asp	Gly	Leu	Pro 365	Phe	Phe	Ile
Ala	Gly 370	Leu	Phe	Phe	Met	Gly 375	Ala	Gly	Ala	Gly	Ser 380	Val	Met	Ser	Val
Ser 385	Ser	Thr	Ala	Ile	11e 390	Gly	Ser	Ala	Pro	Val 395	Arg	Lys	Ala	Gly	Met 400
Ala	Ser	Ser	Ile	Glu 405	Glu	Val	Ser	Tyr	Glu 41 0	Phe	Gly	Thr	Leu	Leu 415	Ser
Val	Ala	Ile	L eu 4 20	Gly	Ser	Leu	Phe	Pro 425	Phe	Phe	Tyr	Ser	Leu 4 30	His	Ala
Pro	Ala	Glu 435	Val	Ala	Asp	Asn	Phe 440	Ser	Ala	Gly	Val	His 445	His	Ala	Ile
Tyr	Gly 450	Asp	Ala	Ala	Arg	Ala 455	Ser	Leu	Asp	Thr	Ala 460	Tyr	Ile	Asn	Val
Leu 465	Ile	Ile	Ala	Leu	Val 470	Cys	Ala	Val	Ala	Ala 475	Ala	Leu	Ile	Ser	Ser 480
Tyr	Leu	Phe	Arg	Gly 485	Asn	Pro	Lys	Gly	Ala 490	Asn	Asn	Ala	His		

<210> 42

<211> 1485

5

<212> ADN <213> NCgl2522 de ATCC13869 de *Corynebacterium glutamicum*

```
60
atgatttcag aaactttgca ggcgcaagcg cctacgaaaa cccaacgttg ggctttcctc
                                                                          120
gctgttatca gcggtggtct ctttctgatc ggtgtagaca actcaatcct ctacaccgca
ctocccctgc tgcgtgaaca actcgcagcc actgaaaccc aagcgttgtg gatcatcaac
                                                                          180
                                                                         240
gcatatecee tgeteatgge gggtettett ttgggtaeeg geaetttggg tgacaaaate
ggccaccgcc ggatgttcct catgggcttg agcattttcg gaatcgcttc acttggcgct
                                                                          300
                                                                          360
gegtttgete caactgegtg ggetettgtt getgegagag ettteettgg categgtgeg
                                                                          420
gcgacgatga tgcccgcaac cttggctctg atccgcatta cgtttgaaga tgaacgcgaa
                                                                          480
eggaacaceg egattggcat ttggggttet gtggcaatte ttggegegge ggeaggteeg
atcattggtg gtgcgctgtt ggaattcttc tggtggggtt cggttttcct cattaacgtt
                                                                          540
coggtggctg ttategcgtt gategctacg ctttttgtgg cgccggccaa tategcgaat
                                                                          600
cogtocaage actgggattt ettatecteg ttetatgeat tgettaceet tgeaggtttg
                                                                          660
                                                                          720
attgtcacca tcaaagaatc ggtaaacact gcacgtcatc tgccactgct tgtaggtgcc
                                                                          780
atcatcttgc ttatcattgg tgcggtgttg tttagcagtc gtcagaagaa gatcgaggag
                                                                         840
ccacttctag atctgtcgtt gttccgtaat cgccttttct taggcggtgt ggttgctgcg
                                                                          900
ggcatggcga tgtttactgt gtccggtttg gaaatgacta cctcgcagcg tttccagttg
tetgtgggtt teactecact tgaggetggt ttgeteatga teceagetge attgggtage
                                                                          960
ttcccgatgt ctattatcgg tggtgcaaac ttgcatcgtt ggggcttcaa accgctgatc
                                                                         1020
                                                                         1080
agtggtggtt teettgeeae ggeagtegge ategeeetgt gtatttgggg egegaeteat
                                                                         1140
actgatggtt tgccgttttt catcgcgggt ctgttcttca tgggcgcggg tgctggttcg
                                                                         1200
gtaatgtetg tgtetteeae tgegattate ggtteegege eggtgegtaa ggetggeatg
                                                                         1260
gegtegtega tegaagaggt etettatgag tteggeaege tgttgtetgt egegattttg
                                                                        1320
ggtagettgt teccattett etactegetg catgeceegg cagaggttge ggataaette
                                                                         1380
teggegggtg tteaccacge gatttatgge gatgeggege gtgeatettt ggacacegea
tacattaacg tgttgatcat tgccctagta tgcgcagtag cggctgctct gatcagcagt
                                                                         1440
                                                                         1485
taccttttcc goggaaatcc gaagggagcc aataatgcgc actag
```

```
<210> 43
```

<211> 42

<212> ADN

<213> Secuencia Artificial

<220>

<223> sugR F1_ cebador Sall

10

5

<400> 43

cttgcatgcc tgcaggtcga caggattcat ctggcatctg gc 42

	<210> 44 <211> 23 <212> ADN <213> Secuencia Artificial	
5	<220> <223> sugR -cebador R1	
10	<400> 44 gtcactcctt aaagcaaaaa gcc 23	
15	<210> 45 <211> 42 <212> ADN <213> Secuencia Artificial	
	<220> <223> sugR -F2_cebador GTG	
20	<400> 45 tttttgcttt aaggagtgac gtgtacgcag aggagcgccg tc 42	
25	<210> 46 <211> 42 <212> ADN <213> Secuencia Artificial	
0.0	<220> <223> sugR -F2_cebado TTG	
30	<400> 46 tttttgcttt aaggagtgac ttgtacgcag aggagcgccg tc 42	
35	<210> 47 <211> 42 <212> ADN <213> Secuencia Artificial	
40	<220> <223> sugR -R2_cebador BamHI	
	<400> 47 cgagctcggt acccggggat ccgcgagagt acgaagcgca gt 42	
45	<210> 48 <211> 62 <212> ADN <213> Secuencia Artificial	
50	<220> <223> cebador sugR F3	
	<400> 48	
	tttttgcttt aaggagtgac gaaggcaacc atgaactcta atgtacgcag aggagcgccg	60
55	tc	62
	<210> 49 <211> 22	
	<212> ADN	
60	<213> Secuencia Artificial	

	<220> <223> cebador sugR R	
	<400> 49 ggacttgcag tgactgtaag aa 22	
5	ggacttgcag tgactgtaag aa 22	
10	<210> 50 <211> 46 <212> ADN <213> Secuencia Artificial	
	<220> <223> gltA F_cebador spel	
15	<400> 50 gaaggaatga gtteetegag actagtacte ggeacceate ettgte	46
20	<210> 51 <211> 50 <212> ADN <213> Secuencia Artificial	
25	<220> <223> gltA R_cebador spel	
	<400> 51	
	gttattagat gtogggocca ctagtgtgct gtacatgctc cttgaaaatc	50

REIVINDICACIONES

- 1. Un microorganismo modificado del género *Corynebacterium* que produce putrescina u ornitina, en el que el microorganismo se ha modificado de modo que una actividad de regulador transcripcional del metabolismo del azúcar (SugR) se debilita en comparación con la actividad de SugR en la misma cepa pero no modificada de *Corynebacterium* y una actividad de citrato sintasa (GltA) aumenta en comparación con su actividad de GltA en la misma cepa pero no modificada de *Corynebacterium*, en el que la actividad de SugR se debilita por:
 - 1) deleción de una parte o la totalidad de un polinucleótido que codifica la proteína;
 - 2) modificación de la secuencia de control de la expresión para reducir la expresión del polinucleótido;
 - 3) modificación de la secuencia de polinucleótidos en los cromosomas para debilitar la actividad de la proteína; o
 - 4) un método seleccionado entre una combinación de los mismos.

y la actividad de GltA aumenta por:

15

10

5

- 1) aumento del número de copias de un polinucleótido que codifica la enzima;
- 2) modificación de la secuencia de control de la expresión para aumentar la expresión del polinucleótido;
- 3) modificación de la secuencia de polinucleótidos en el cromosoma para aumentar la actividad de la enzima; o
- 4) modificación por una combinación de los mismos.

20

- 2. El microorganismo de acuerdo con la reivindicación 1, en el que el regulador transcripcional del metabolismo del azúcar consiste en una secuencia de aminoácidos de SEQ ID NO: 1 o SEQ ID NO: 3.
- 3. El microorganismo de acuerdo con la reivindicación 1, en el que la citrato sintasa consiste en una secuencia de aminoácidos de SEQ ID NO: 5 o SEQ ID NO: 7.
 - 4. El microorganismo de acuerdo con la reivindicación 1, en el que el microorganismo del género *Corynebacterium* se selecciona entre el grupo que consiste en *Corynebacterium glutamicum*, *Corynebacterium ammoniagenes*, *Corynebacterium thermoaminogenes*, *Brevibacterium flavum*, y *Brevibacterium lactofermentum*.

30

40

- 5. El microorganismo de acuerdo con la reivindicación 1, en el que además se introduce una actividad de ornitina descarboxilasa (ODC).
- 6. El microorganismo de acuerdo con la reivindicación 5, en el que la ornitina descarboxilasa consiste en una secuencia de aminoácidos de SEQ ID NO: 17.
 - 7. El microorganismo de acuerdo con la reivindicación 1, en el que una actividad de i) ornitina carbamoiltransferasa (ArgF) se debilita en comparación con la actividad de ArgF en la misma cepa pero no modificada de Corynebacterium, ii) un agente exportador de glutamato se debilita en comparación con la actividad del agente exportador de glutamato en la misma cepa pero no modificada de Corynebacterium, o iii) la ornitina carbamoiltransferasa y un agente exportador de glutamato se debilitan en comparación con la actividad de ornitina carbamoiltransferasa y el agente exportador de glutamato en la misma cepa pero no modificada de Corynebacterium.
- 45 8. El microorganismo de acuerdo con la reivindicación 7, en el que la ornitina carbamoiltransferasa consiste en una secuencia de aminoácidos de SEQ ID NO: 9 o SEQ ID NO: 11, y el agente exportador de glutamato consiste en una secuencia de aminoácidos de SEQ ID NO: 13 o SEQ ID NO: 15.
- 9. El microorganismo de acuerdo con la reivindicación 1, en el que una actividad de al menos una enzima seleccionada entre el grupo que consiste en acetil-gamma-glutamil-fosfato reductasa (ArgC), acetilglutamato sintasa u ornitina acetiltransferasa (ArgJ), acetilglutamato quinasa (ArgB), y acetilornitina aminotransferasa (ArgD) aumenta en comparación con la actividad de dicha enzima o enzimas en la misma cepa pero no modificada de *Corynebacterium*.
- 10. El microorganismo de acuerdo con la reivindicación 9, en el que la acetil-gamma-glutamil-fosfato reductasa consiste en una secuencia de aminoácidos de SEQ ID NO: 19 o SEQ ID NO: 21, la acetilglutamato sintasa o la ornitina acetiltransferasa consiste en una secuencia de aminoácidos de SEQ ID NO: 23 o SEQ ID NO: 25, la acetilglutamato quinasa consiste en una secuencia de aminoácidos de SEQ ID NO: 27 o SEQ ID NO: 29, y la acetilornitina aminotransferasa consiste en una secuencia de aminoácidos de SEQ ID NO: 31 o SEQ ID NO: 33.

60

- 11. El microorganismo de acuerdo con la reivindicación 1, en el que una actividad de acetiltransferasa se debilita en comparación con la actividad de acetiltransferasa en la misma cepa pero no modificada de *Corynebacterium*.
- 12. El microorganismo de acuerdo con la reivindicación 11, en el que la acetiltransferasa consiste en una secuencia de aminoácidos de SEQ ID NO: 35 o SEQ ID NO: 37.

- 13. El microorganismo de la reivindicación 1, en el que una actividad de una proteína que consiste en la SEQ ID NO: 39 o la SEQ ID NO: 41 aumenta en comparación con la actividad de dicha proteína en la misma cepa pero no modificada de *Corynebacterium*.
- 5 14. Un método para producir putrescina u ornitina, que comprende:
 - (i) cultivar el microorganismo modificado del género *Corynebacterium* de acuerdo con una cualquiera de las reivindicaciones 1 a 13 en un medio; y
 - (ii) recuperar putrescina u ornitina del microorganismo cultivado o el medio cultivado.

10

15. El método de acuerdo con la reivindicación 14, en el que el microorganismo del género *Corynebacterium* es *Corynebacterium glutamicum*.