

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 739 280

61 Int. Cl.:

C07K 14/37 (2006.01) C07K 16/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 03.07.2014 PCT/EP2014/064248

(87) Fecha y número de publicación internacional: 08.01.2015 WO15001049

96 Fecha de presentación y número de la solicitud europea: 03.07.2014 E 14734515 (1)

(97) Fecha y número de publicación de la concesión europea: 22.05.2019 EP 3016970

(54) Título: Células fúngicas filamentosas deficientes en O-manosiltransferasa y métodos de uso de las

(30) Prioridad:

04.07.2013 EP 13175141

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **30.01.2020**

(73) Titular/es:

GLYKOS FINLAND OY (100.0%) Viikinkaari 6 00790 Helsinki, FI

(72) Inventor/es:

NATUNEN, JARI; HILTUNEN, JUKKA; HUUSKONEN, ANNE; SALOHEIMO, MARKKU; OSTERMEIER, CHRISTIAN; SOMMER, BENJAMIN PATRICK Y WAHL, RAMON

(74) Agente/Representante:

PADIAL MARTÍNEZ, Ana Belén

DESCRIPCIÓN

Células fúngicas filamentosas deficientes en O-manosiltransferasa y métodos de uso de las mismas

5 Campo de la invención

La presente divulgación se refiere a composiciones y métodos útiles para la producción de proteínas heterólogas en células fúngicas filamentosas.

10 Antecedentes

15

20

35

50

La modificación posterior a la traducción de proteínas eucariotas, en particular proteínas terapéuticas tales como inmunoglobulinas, a menudo es necesaria para el correcto plegamiento y función de la proteína. Dado que los sistemas de expresión procarióticos convencionales carecen de la maquinaria adecuada necesaria para modificaciones de ese tipo, se tienen que usar sistemas de expresión alternativos en la producción de estas proteínas terapéuticas. Incluso cuando las proteínas eucariotas no tienen modificaciones posteriores a la traducción, los sistemas de expresión procariotas a menudo carecen de las proteínas chaperonas necesarias para un plegamiento adecuado. Las levaduras y los hongos son opciones atractivas para expresar proteínas, ya que se pueden cultivar fácilmente a gran escala en medios simples, lo que permite bajos costes de producción, y las levaduras y los hongos tienen maquinaria posterior a la traducción y chaperonas que realizan funciones similares a las de las células de mamíferos. Además, existen herramientas para manipular la estructura genética relativamente simple de las células de levadura y hongos, así como de las células eucariotas más complejas, tales como células de mamíferos o insectos (De Pourcq et al., Appl Microbiol Biotechnol, 87 (5): 1617-31).

Sin embargo, las modificaciones posteriores a la traducción que se producen en levaduras y hongos aún pueden ser una preocupación para la producción de proteínas terapéuticas recombinantes. En particular, la O-manosilación es uno de los mayores obstáculos a superar en la producción de productos biofarmacéuticos para aplicaciones humanas en hongos. Más específicamente, las levaduras tales como Pichia pastoris y Saccharomyces cerevisiae tienden a hipermanosilar los productos biofarmacéuticos expresados de manera heteróloga, lo que desencadena efectos adversos cuando se aplican en seres humanos.

La O-manosilación para restos de serina y treonina incluye en mamíferos oligosacáridos a base de GalNAc u GlcNAc/N-acetillactosamina que comprenden glicanos de manosa unidos a O. En hongos, la O-manosilación se produce como monómeros u oligómeros de hexosa. En las levaduras, por lo general hay varias O-manosiltransferasas proteínicas (/polipeptídicas), que a menudo funcionan como complejos. Parte de las desactivaciones genéticas son perjudiciales, al menos para las estructuras celulares y la estabilidad, y no todas las desactivaciones genéticas o combinaciones de levaduras son tolerados (para una revisión, véase Goto 2007, Biosci. Biotechnol. Biochem. 71 (6), 1415-1427).

Ha habido informes de desactivaciones de genes de O-manosiltransferasa de levadura, con el objetivo de reducir los niveles de O-manosilación, e incluso mutantes con múltiples desactivaciones genéticas que involucran dos o tres genes *pmt* en *S. cerevisiae* (documento WO/1994/004687). La desactivación genética de *Pmt1* o *pmt2* de *S. cerevisiae* redujo el nivel de O-manosilación de la glicoproteína III anticongelación para aproximadamente un 30 % de las proteínas y la proteína manosilada residual contiene numerosos restos de manosa por proteína, aparentemente también oligosacáridos (documento WO/2004/057007).

El documento WO/2010/034708 no informa de ningún nivel significativo de O-manosilación de la proteína de *Trichoderma* de hidrofobina recombinante cuando se expresa en la desactivación genética de *pmt1* de la célula hospedadora de *S. cerevisiae*. Parece que dicha O-manosilación es una glicosilación de levadura artificial de la proteína fúngica filamentosa original no manosilada.

El documento WO/2010/128143 informa además de una construcción de fusión de anticuerpo de cadena individualalbúmina en cepas con desactivación genética de *pmt1* y/o *pmt4* de la levadura *S. cerevisiae*.

Las desactivaciones de un solo gen, dobles y triples de pmt1, pmt2, y pmt3 de las especies de Aspergillus (Aspergillus nidulans, Aspergillus fumigatus, y/o Aspergillus awamori) se describen en Goto et al., 2009 (Eukaryotic cell 2009, 8 (10): 1465); Mouyna et al., 2010 (Molecular Microbiology 2010, 76 (5), 1205-1221); Zhou et al., 2007 (Eukaryotic cell 2007, 6 (12): 2260); Oka et al., 2004 (Microbiology 2004, 150, 1973-1982); Kriangkripipat et al., 2009; Fang et al., 2010 (Glycobiology, 2010, vol. 20 pp 542-552); y Oka et al., 2005 (Microbiology 2005, 151, 3657-3667).

A pesar de los numerosos informes sobre la supresión genética de homólogos de *pmt* en hongos filamentosos, no hay una descripción de una célula fúngica filamentosa con reducción de la O-manosilación y útil como célula hospedadora para la producción de glicoproteína recombinante.

65 En particular, Gorka-Niec et al., (2008, Acta Biochimica Polonica, Vol. 55 N.º 2/2008, 251-259) informaron de la deleción del gen pmt1 en Trichoderma reesei. La proteína PMT1 mostró la identidad más elevada con Pmt4p de S.

cerevisiae (51 %) pero complementa funcionalmente al mutante de pmt2Δ de S. cerevisiae (Gorka-Niec et al., 2007, Biochimica et Biophysica Acta 1770, 2007, 774-780). Sin embargo, los autores informaron que la interrupción del gen pmt1 causó una disminución de la secreción de proteínas, pero no alteró la O- y N-glicosilación de la proteína secretada.

5

Zakrzewska et al., (Curr Genet 2003 43: 11-16) informaron además que el gen pmt1 de Trichoderma reesei no complementaba funcionalmente al mutante pmt4Δ de S. cerevisiae.

10

De hecho, parece que las deleciones de los genes PMT en levaduras u hongos filamentosos no producen ningún fenotipo o letalidad o funciones vitales de las células gravemente dañadas, que no serían adecuadas para la producción recombinante de proteínas heterólogas, especialmente glicoproteínas de mamíferos. Por este motivo, se han propuesto métodos alternativos, tales como el uso de inhibidores de pmt, como alternativa a las cepas con desactivación genética de pmt (documento WO2009/143041).

15

Por lo tanto, sigue existiendo la necesidad de células fúngicas filamentosas mejoradas, tales como células del hongo Trichoderma, que pueden producir de manera estable proteínas heterólogas sin O-manosilación o con esta reducida, tal como inmunoglobulinas, preferentemente a altos niveles de expresión.

SUMARIO

20

La presente invención se refiere a métodos mejorados para producir proteínas sin O-manosilación o con ella reducida en sistemas de expresión de hongos filamentosos y, más específicamente, glicoproteínas, tales como anticuerpos o inmunoglobulinas relacionadas o proteínas de fusión que se pueden O-manosilar cuando se producen en sistemas de expresión de hongos filamentosos.

25

La presente invención se basa en parte en el sorprendente descubrimiento de que las células fúngicas filamentosas, tales como las células Trichoderma, se pueden modificar genéticamente para reducir o suprimir la actividad de Omanosilación, sin afectar de manera adversa a la viabilidad y el rendimiento de las glicoproteínas producidas.

30

Por consiguiente, en un primer aspecto, la invención se refiere a una célula fúngica filamentosa deficiente en PMT que comprende

35

a) una primera mutación que reduce o elimina una actividad de proteasa endógena en comparación con una célula fúngica filamentosa precursora que no tiene dicha primera mutación, siendo dichas proteasas endógenas seleccionadas entre proteasas aspárticas, serina proteasas de tipo tripsina, subtilisina proteasas, proteasas glutámicas, y sedolisina proteasas, y,

b) una segunda mutación en un gen PMT que reduce la actividad de O-manosiltransferasa endógena en comparación con una célula fúngica filamentosa precursora que no tiene dicha segunda mutación,

40

en la que dicha célula fúngica filamentosa se selecciona entre el grupo que consiste en una célula de Trichoderma, Neurospora, Myceliophthora y Chrysosporium.

45

En una realización, dicha célula deficiente en PMT expresa además una proteína heteróloga que contiene restos de serina y/o treonina. La proteína heteróloga expresada con restos de serina y/o treonina redujo la O-manosilación debido a dicha mutación en dicho gen PMT. Por ejemplo, el nivel de O-manosilación de la proteína heteróloga expresada en una célula deficiente en PMT de la invención es al menos un 10 %, un 20 %, un 30 %, un 40 %, un 50 %, un 60 %, un 70 %, un 80 % o al menos un % más bajo que en comparación con el nivel de O-manosilación de la proteína heteróloga cuando se expresa en la célula fúngica filamentosa precursora que no tiene dicha segunda mutación deficiente en PMT.

50

En otra realización, dicha segunda mutación que reduce la actividad de O-manosiltransferasa endógena es una deleción o una alteración de un gen PMT que codifica una actividad de proteína O-manosiltransferasa endógena.

55

En otra realización, dicha segunda mutación deficiente en PMT en un gen PMT puede ser una mutación (tal como una deleción o una alteración) en cualquiera de:

a) gen PMT1 que comprende el polinucleótido de la SEQ ID NO: 1,

b) un gen homólogo del gen PMT1, gen homólogo que es capaz de restablecer el nivel de O-manosilación precursora mediante complementación funcional cuando se introduce en una cepa de T. reesei que tiene una alteración en dicho gen PMT1, o,

60

c) un polinucleótido que codifica un polipéptido que tiene una identidad de al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 90 %, o al menos un 95 % con la SEQ ID NO: 2, teniendo dicho polipéptido actividad de O-manosiltransferasa.

65

En otra realización que se puede combinar con las realizaciones precedentes, dicha célula deficiente en PMT has una tercera mutación que reduce o elimina el nivel de expresión de un gen ALG3 en comparación con el nivel de

expresión en una célula precursora que no tiene dicha tercera mutación. En una realización específica, dicha célula deficiente en PMT además comprende un primer polinucleótido que codifica un dominio catalítico de Nacetilglucosaminiltransferasa I y un segundo polinucleótido que codifica un dominio catalítico de Nacetilglucosaminiltransferasa II.

5

En otra realización que se puede combinar con las realizaciones precedentes, dicha célula deficiente en PMT además comprende uno o más polinucleótidos que codifican un polipéptido seleccionado entre el grupo que consiste en:

10

- a) α1,2 manosidasa,
- b) dominio catalítico de N-acetilglucosaminiltransferasa I,
- c) α manosidasa II, γ
- d) dominio catalítico de N-acetilglucosaminiltransferasa II.

15 En otra realización que se puede combinar con las realizaciones precedentes, dicha célula deficiente en PMT además comprende uno o más polinucleótidos que codifican una β1,4 galactosiltransferasa y/o una fucosiltransferasa.

En una realización específica, dicha célula deficiente en PMT es una célula de *Trichoderma* que comprende al menos una mutación que reduce o elimina la actividad de proteína O-manosiltransferasa de pmt1 de *Trichoderma*, y, opcionalmente, que además comprende mutaciones en al menos uno u otros genes PMT más que reducen o eliminan la actividad de proteína O-manosiltransferasa seleccionadas entre el grupo que consiste en pmt2 y pmt3.

En una realización que se puede combinar con las realizaciones precedentes, las células deficientes en PMT comprenden mutaciones que reducen o eliminan la actividad de al menos dos, o al menos tres proteasas endógenas. Por lo general, dicha célula puede ser una célula de *Trichoderma* y puede comprender mutaciones que reducen o eliminan la actividad de

- a) las tres proteasas endógenas pep1, tsp1 y slp1,
- b) las tres proteasas endógenas gap1, slp1 y pep1,
 - c) tres proteasas endógenas seleccionadas entre el grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep8, pep11, pep12, tsp1, slp1, slp2, slp3, slp7, gap1 y gap2,
 - d) de tres a seis proteasas seleccionadas entre el grupo que consiste en pep1, pep2, pep3, pep4, pep5, tsp1, slp1, slp2, slp3, gap1 y gap2, o,
- e) de siete a diez proteasas seleccionadas entre el grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep7, pep8, tsp1, slp1, slp2, slp3, slp5, slp6, slp7, slp8, tpp1, gap1 y gap2.

En una realización que se puede combinar con las realizaciones precedentes, la célula fúngica filamentosa de la invención no comprende una deleción o alteración de un gen endógeno que codifica una proteína chaperona. En particular, dicha célula fúngica filamentosa de la invención expresa una proteína chaperona endógena funcional, tal como la Proteína Disulfuro Isomerasa (PDI).

En otro aspecto, la invención se refiere a un método para producir una proteína que tiene O-manosilación reducida, que comprende:

45

40

30

- a) proporcionar una célula fúngica filamentosa deficiente en PMT como se ha descrito anteriormente, y que además comprende un polinucleótido que codifica una proteína con un resto de serina o treonina,
- b) cultivar dicha célula fúngica filamentosa deficiente en PMT para producir dicha proteína con O-manosilación reducida.

50

60

en el que dicha célula fúngica filamentosa se selecciona entre el grupo que consiste en una célula de *Trichoderma, Neurospora, Myceliophthora* y *Chrysosporium*.

De acuerdo con una realización específica del método, dicha mutación en un gen *PMT* es una mutación, tal como una deleción o alteración, en cualquiera de:

- a) gen PMT1 que comprende el polinucleótido de la SEQ ID NO: 1,
- b) un gen homólogo funcional del gen *PMT1*, cuyo gen homólogo funcional es capaz de restablecer el nivel de Omanosilación precursora mediante complementación funcional cuando se introduce en una cepa de *T. reesei* que tiene una alteración en dicho gen *PMT1*, o,
- c) un polinucleótido que codifica un polipéptido que tiene una identidad de al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 90 %, o al menos un 95 % con la SEQ ID NO: 2, teniendo dicho polipéptido actividad de proteína O-manosiltransferasa.
- 65 En una realización particular del método de acuerdo con la invención, dicha célula fúngica filamentosa expresa una proteína chaperona endógena funcional, tal como PDI.

En otra realización del método, dicha célula deficiente en PMT es una célula de *Trichoderma reesei* y dicha mutación es una deleción o una alteración del gen *PMT1* de *T. reesei*.

En otras realizaciones del método, dicha célula deficiente en PMT es una célula deficiente en PMT de la invención como se ha descrito anteriormente.

En una realización específica de la invención, dicho polinucleótido que codifica una proteína es un polinucleótido recombinante que codifica una proteína heteróloga. Generalmente, dicha proteína producida es una proteína de mamífero heteróloga seleccionada entre el grupo que consiste en

10

5

- a) una inmunoglobulina, tal como IgG,
- b) una cadena ligera o una cadena pesada de una inmunoglobulina,
- c) una cadena pesada o una cadena ligera de un anticuerpo,
- d) un anticuerpo de cadena individual,
- 15 e) un anticuerpo camélido,
 - f) un anticuerpo de dominio individual monomérico o multimérico,
 - g) un fragmento FAb, un fragmento FAb2, y,
 - h) sus fragmentos de unión a antígeno.
- 20 En una realización del método, que se puede combinar con las realizaciones precedentes, dicho polinucleótido que codifica dicha proteína además comprende un polinucleótido que codifica el dominio catalítico CBH1 y un conector como una proteína vehículo y/o el promotor *cbh1*.
- En otra realización, dicho polinucleótido codifica una proteína con serina o treonina, que puede estar O-manosilada en una cepa precursora funcional de PMT, y que además comprende al menos un N-glicano.

La presente solicitud también desvela un método para producir un anticuerpo que tiene O-manosilación reducida, que comprende:

- 30 a) proporcionar una célula fúngica filamentosa deficiente en PMT que tiene
 - i. una mutación que reduce la actividad de la proteína O-manosiltransferasa endógena en comparación con la cepa precursora que no tiene una mutación de ese tipo y
 - ii. un polinucleótido que codifica un anticuerpo de cadena ligera y un polinucleótido que codifica un anticuerpo de cadena pesada,
 - b) cultivar la célula para producir dicho anticuerpo, que consiste en cadenas pesadas y ligeras, que tiene O-manosilación reducida,
- 40 en el que dicha célula fúngica filamentosa se selecciona entre el grupo que consiste en una célula de *Trichoderma, Neurospora, Myceliophthora* y *Chrysosporium*.

En un método específico para producir anticuerpos, dicha célula deficiente en PMT es una célula de *Trichoderma reesei* y dicha mutación es una deleción o una alteración del gen *PMT1* de *T. reesei*.

45

35

En una realización del método para producir anticuerpos, al menos un 70 %, un 80 %, un 90 %, un 95 %, o un 100 % del anticuerpo producido no está O-manosilado.

La presente solicitud también desvela una composición de proteína o composición de anticuerpo que se puede obtener o que se obtiene con los métodos de la invención como se ha descrito anteriormente. En una realización, al menos un 70 %, un 80 %, un 90 %, un 95 %, o un 100 % de los anticuerpos tal como se obtienen o se pueden obtener con los métodos de la invención no están O-manosilados.

En una realización específica, una composición de proteína (por ejemplo, una glicoproteína) o de anticuerpo de ese tipo con O-manosilación reducida comprende, como una glicoforma principal, cualquiera de,

- Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (glicoforma Man5);
- Mana6(Mana3)Manp4GlcNAp4GlcNAc (glicoforma Man3);
- N-glicanos de tipo híbrido o complejo tales como las glicoformas seleccionadas entre el subgrupo que consiste en GlcNAcMan3, G0, glicano híbrido, o GlcNAcMan5, o derivados galactosilados, tales como GalGlcNAcMan3, G1, G2; o, glicoforma GalGlcNAcMan5.

En una realización específica, cuando el núcleo del glicano consiste en Man3, entonces la composición carece esencialmente de glicoformas Man5.

65

En una realización que se puede combinar con una o más de las realizaciones precedentes menos de un 0,1 %, un

0,01 %, un 0,001 %, o un 0 % de los N-glicanos y/o O-glicanos de la composición de proteína comprende una estructura de Neu5Gc y/o Gala-. En una realización que se puede combinar con las realizaciones precedentes, menos de un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % de los N-glicanos y/o O-glicanos de la composición de anticuerpo comprende una estructura de Neu5Gc y/o Gala-.

5

10

En una realización que se puede combinar con una o más de las realizaciones precedentes, menos de un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % del N-glicano de la composición de glicoproteína comprende estructuras de núcleo de fucosa. En una realización que se puede combinar con las realizaciones precedentes, menos de un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % del N-glicano de la composición de anticuerpo comprende estructuras de núcleo de fucosa.

En una realización que se puede combinar con una o más de las realizaciones precedentes, menos de un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % del N-glicano de la composición de glicoproteína comprende epítopos de galactosa terminales Galβ3/4GlcNAc. En una realización que se puede combinar con las realizaciones precedentes, menos de un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % del N-glicano de la composición de anticuerpo comprende epítopos de galactosa terminales Galβ3/4GlcNAc.

En una realización que se puede combinar con una o más de las realizaciones precedentes, menos de un 1,0 %, un 0,5 %, un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % de la composición de glicoproteína comprende estructuras de glicación. En una realización que se puede combinar con las realizaciones precedentes, menos de un 1,0 %, un 0,5 %, un 0,1 %, un 0,01 %, o un 0 % de la composición de anticuerpo comprende estructuras de glicación.

En otra realización que se puede combinar con una o más de las realizaciones precedentes, la composición de glicoproteína, tal como un anticuerpo, está desprovista de una, dos, tres, cuatro, cinco, o seis de las estructuras seleccionadas entre el grupo de Neu5Gc, Gala3Galp4GlcNAc terminal, Galβ4GlcNAc terminal, Galβ3GlcNAc terminal, fucosa unida al núcleo y estructuras de glicación.

La presente solicitud también desvela a un método para reducir el nivel de O-manosilación de una composición de glicoproteína recombinante producida en una célula fúngica filamentosa, por ejemplo, célula de *Trichoderma*, generalmente, *Trichoderma reesei*, consistiendo dicho método en el uso de una célula fúngica filamentosa que tiene una mutación en un gen *PMT* en la que dicho gen *PMT* es cualquiera de:

i. gen PMT1 que comprende el polinucleótido de la SEQ ID NO: 1,

35 ii. un gen homólogo funcional del gen *PMT1*, cuyo gen homólogo funcional es capaz de restablecer el nivel de Omanosilación precursora mediante complementación funcional cuando se introduce en una cepa de *T. reesei* que tiene una alteración en dicho gen *PMT1*, o,

iii. un polinucleótido que codifica un polipéptido que tiene una identidad de al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 90 %, o al menos un 95 % con la SEQ ID NO: 2, teniendo dicho polipéptido actividad de proteína O-manosiltransferasa.

DESCRIPCIÓN DE LAS FIGURAS

50

45

40

La Figura 1 representa resultados de análisis de Southern de cepas con deleción de *pmt1* de *Trichoderma reesei* expresan el anticuerpo MAB01. A) Se espera una señal de 5,7 kb de las cepas precursoras M124 y M304 con la sonda *pmt1* ORF después de digestión con *Spel + Xbal*. No se espera señal de cepas puras con deleción de *pmt1*. B) Se espera una señal de 3,5 kb para la sonda de flanqueo en la posición 5' de *pmt1* a partir de cepas de deleción después de digestión con *Spel + Ascl*. C) Se espera una señal de 1,7 kb para la sonda de flanqueo en la posición 3' de *pmt1* a partir de cepas de deleción después de digestiones con *Ascl + Xbal*. *Ascl* no corta el locus de *pmt1* intacto en las proximidades, por lo tanto se espera señales de aproximadamente 16 kb (B) y 10 kb (C) de las cepas precursoras M124 o M304. Se espera una señal de 4,1 kb del plásmido pTTv185 digerido con *Pmel* usado como un control inhibirá acciones con ambas sondas de flanqueo (B, C).

55

La Figura 2 representa un espectro de la cadena ligera de la cepa M317 (pyr4- de M304) de *T. reesei* precursora cultivada en matraz (A) y el clon 26-8A de alteración de Δpmt1 (B), día 7.

La Figura 3 representa resultados para análisis de Western de la cepa M403 con deleción de *pmt1* de *Trichoderma reesei* a partir de fermentación en cultivo semicontinuo. Panel superior: cadena ligera de MAB01, panel inferior: cadena pesada de MAB01. En cada calle se cargaron 0,1 µl de sobrenadante.

60

La Figura 4 representa un espectro de cadena ligera de la cepa M403 de *T. reesei* cultivada en fermentador (cepa con deleción de pmt1 de anticuerpo MAB01 productor de cepa, clon 26-8A), día 7.

__

La Figura 5 representa una filogenia de los PMT de hongos filamentos seleccionados.

65

La Figura 6 representa un alineamiento de secuencia parcial de los resultados de las búsquedas de PMT con

BLAST.

DESCRIPCIÓN DETALLADA

5 Definiciones

Como se usa en el presente documento, un "sistema de expresión" o una "célula hospedadora" se refiere a la célula que está modificada genéticamente para permitir la transcripción, la traducción y el plegamiento adecuado de un polipéptido o una proteína de interés, generalmente de proteínas de mamíferos.

10

15

El término "polinucleótido" u "oligonucleótido" o "ácido nucleico", como se usa en el presente documento, se refiere generalmente a un polímero de al menos dos nucleótidos unidos mediante un enlace fosfodiéster y puede consistir en ribonucleótidos o desoxinucleótidos o sus derivados que se pueden introducir en una célula hospedadora para la modificación genética de dicha célula hospedadora. Por ejemplo, un polinucleótido puede codificar una secuencia de codificación de una proteína, y/o comprender secuencias de control o reguladoras de una secuencia de codificación de una proteína, tales como secuencias potenciadoras o promotoras o terminadoras. Un polinucleótido puede, por ejemplo, comprender la secuencia de codificación nativa de un gen o sus fragmentos, o secuencias variantes que se han optimizado para la expresión génica óptima en una célula hospedadora específica (por ejemplo, para tener en cuenta el sesgo del codón).

20

25

Como se usa en el presente documento, el término "optimizado" con referencia a un polinucleótido se refiere a que un polinucleótido se ha alterado para codificar una secuencia de aminoácidos usando codones que son preferentes en la producción de una célula u organismo, por ejemplo, una célula fúngica filamentosa tal como una célula de *Trichoderma*. Las secuencias de nucleótidos heterólogas que se transfectan en una célula hospedadora se optimizan generalmente para retener completamente o lo más posible la secuencia de aminoácidos codificada originalmente por la secuencia de nucleótidos original (no optimizada). Las secuencias optimizadas en el presente documento se han modificado mediante ingeniería para que tengan codones que son preferentes en la célula u organismo de producción correspondiente, por ejemplo la célula fúngica filamentosa.

30 L

Las secuencias de aminoácidos codificadas por secuencias de nucleótidos optimizadas también se pueden denominar optimizadas.

Como se usa en el presente documento, un "péptido" o un "polipéptido" es una secuencia de aminoácidos que

35

incluye una pluralidad de restos de aminoácido polimerizados consecutivos. El péptido o polipéptido puede incluir restos de aminoácido modificados, restos de aminoácido de origen natural no codificados por un codón y restos de aminoácido de origen no natural. Como se usa en el presente documento, una "proteína" puede hacer referencia a un péptido o un polipéptido o una combinación de más de un péptido o polipéptido ensamblados juntos mediante enlaces covalentes o no covalentes. A menos que se especifique, el término "proteína" puede incluir una o más secuencias de aminoácidos con sus modificaciones posteriores a la traducción y, en particular, con modificaciones de O-manosilación o N-glicano.

40

Como se usa en el presente documento, el término "glicoproteína" se refiere a una proteína que comprende al menos un glicano unido a N unido a al menos un resto de asparagina de una proteína, o al menos una manosa unida a al menos una serina o treonina dando como resultado O-manosilación.

45

Los términos "O-manosilación" o "actividad de O-manosiltransferasa" se usan en el presente documento para hacer referencia al enlace covalente de al menos una manosa a un aminoácido específico a través de un oxígeno (generalmente de serina o treonina). La proteína O-manosiltransferasa generalmente añade manosa a los grupos hidroxilo, tal como el hidroxilo de restos de serina o treonina.

50

En particular, la actividad de O-manosiltransferasa puede hacer referencia a la especificidad de la actividad de O-manosiltransferasa del gen PMT fúngico que codifica enzimas, y más específicamente con la misma especificidad de PMT1 de *T. reesei*.

55

Como se usa en el presente documento, "glicano" se refiere a una cadena de oligosacáridos que se puede unir a un vehículo tal como un aminoácido, péptido, polipéptido, lípido o un conjugado de extremo reductor. En ciertas realizaciones, la invención se refiere a glicanos unidos a N ("N-glicano") conjugados con un sitio de N-glicosilación de polipéptidos, tal como -Asn-Xaa-Ser/Thr- por enlace N a nitrógeno de amida de cadena lateral de resto de asparagina (Asn), en la que Xaa es cualquier resto de aminoácido excepto Pro. La invención además se puede relacionar con glicanos como parte de estructuras lipídicas precursoras de dolicol-fosfo-oligosacárido (Dol-P-P-OS), que son precursores de glicanos unidos a N en el retículo endoplásmico de células eucariotas. Los oligosacáridos precursores están unidos desde su extremo reductor a dos restos de fosfato en el lípido dolicol. Por ejemplo, la a3-manosiltransferasa Alg3 modifica el precursor Dol-P-P-P-oligosacárido de los N-glicanos. En general, las estructuras de glicano que se describen en el presente documento son estructuras de glicano terminales, en las que los restos no reductores no son modificados por otro resto hubo restos de monosacárido.

65

60

Como se usa a lo largo de la presente divulgación, la nomenclatura de glucolípidos y carbohidratos está básicamente de acuerdo con las recomendaciones de la Comisión de Nomenclatura Bioquímica IUPAC-IUB (por ejemplo, Carbohydrate Res. 1998, 312, 167; Carbohydrate Res. 1997, 297, 1; Eur. J. Biochem. 1998, 257, 29). Se supone que Gal (galactosa), Glc (glucosa), GlcNAc (N-acetilglucosamina), GalNAc (N-acetilgalactosamina), Man (manosa), y Neu5Ac tienen la configuración D, Fuc tiene la configuración L, y todas las unidades de monosacárido están en forma de piranosa (D-Galp, D-Glcp, D-GlcpNAc, D-GalpNAc, D-Manp, L-Fucp, D-Neup5Ac). El grupo amino es tal como se define para la galactosa natural y glucosaminas en la posición 2 de GalNAc o GlcNAc. Los enlaces glicosídicos se muestran en parte en la nomenclatura más corta y en parte en la más larga, los enlaces de los restos del ácido siálico SA/Neu5X en α 3 y α 6 significan lo mismo que α 2-3 y α 2-6, respectivamente, y para los restos de los monosacáridos de hexosa α 1-3, α 1-6, β 1-2, β 1-3, β 1-4, y β 1-6 se pueden acortar como α 3, α 6, β 2, β 3, β 4, y β 6, respectivamente. Lactosamina se refiere a N-acetillactosamina de tipo II, Gal β 4GlcNAc, y/o N-acetillactosamina de tipo I. Gal β 3GlcNAc y ácido siálico (SA) se refieren al ácido N-acetilneuramínico (Neu5Ac), ácido N-glicolilneuramínico (Neu5Gc), o cualquier otro ácido siálico natural que incluya derivados de Neu5X. El ácido siálico se conoce como NeuNX o Neu5X, en los que X es preferentemente Ac o Gc. Ocasionalmente Neu5Ac/Gc/X se puede denominar NeuNAc/NeuNGc/NeuNX.

10

15

20

25

35

40

45

50

55

60

65

Los azúcares que generalmente constituyen los N-glicanos encontrados en glicoproteína de mamíferos, incluyen, pero no se limitan a, N-acetilglucosamina (en lo sucesivo en el presente documento abreviado como "GlcNAc"), manosa (en lo sucesivo en el presente documento abreviado como "Man"), glucosa (en lo sucesivo en el presente documento abreviado como "Glc"), galactosa (en lo sucesivo en el presente documento abreviado como "Gal"), y ácido siálico (en lo sucesivo en el presente documento abreviado como "Neu5Ac"). Los N-glicanos comparten un pentasacárido común denominado estructura "núcleo" de Man₃GlcNAc₂ (Manα6(Manα3)Manβ4GlcNAβ4GlcNAc, algunas denominado Man3). En realizaciones el glicano Man3 Manα6(GlcNAcα2Manα3)Manβ4GlcNAβ4GlcNAc es la glicoforma principal. Cuando una fucosa se une a la estructura de núcleo, se une preferentemente en α6 para reducir el extremo de GlcNAc, el N-glicano por el núcleo del N-glicano, se puede representar como Man₃GlcNAc₂(Fuc). En una realización el N-glicano principal es Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (Man5).

Los N-glicanos de tipo híbrido preferentes comprenden GlcNAcβ2Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc ("GlcNAcMan5"), o derivados b4-galactosilados de los mismos Galβ4GlcNAcMan3, G1, G2, o la glicoforma GalGlcNAcMan5.

Un "N-glicano complejo" se refiere a un N-glicano que tiene al menos un resto de GlcNAc, opcionalmente el resto de GlcNAcβ2, en la rama terminal de 1,3 manosa de la estructura de núcleo y al menos un resto de GlcNAcβ opcionalmente el resto de GlcNAcβ2, en la rama terminal de 1,6 manosa de la estructura de núcleo.

Los N-glicanos complejos de ese tipo incluyen, pero no se limitan a, GlcNAc₂Man₃GlcNAc₂ (también conocido como glicoforma G0), Gal₁GlcNAc₂Man₃GlcNAc₂ (también conocido como glicoforma G1), y Gal₂GlcNAc₂Man₃GlcNAc₂ (también conocido como glicoforma G2), y sus glicoformas fucosiladas de núcleo FG0, FG1 y FG2, respectivamente GlcNAc₂Man₃GlcNAc₂(Fuc), Gal₁GlcNAc₂Man₃GlcNAc₂(Fuc), y Gal₂GlcNAc₂Man₃GlcNAc₂(Fuc).

"Actividad aumentada" o "reducida de una enzima endógena": La célula fúngica filamentosa puede haber aumentado o reducido los niveles de actividad de varias enzimas endógenas. Se puede proporcionar un nivel de actividad reducido inhibiendo la actividad de la enzima endógena con un inhibidor, un anticuerpo o similar. En ciertas realizaciones, la célula fúngica filamentosa se modifica genéticamente para aumentar o reducir la actividad de varias enzimas endógenas. "Genéticamente modificado" se refiere a cualquier método de ADN o ARN recombinante usado para crear una célula hospedadora procariota o eucariota que expresa un polipéptido a niveles elevados, a niveles más bajos o en una forma mutada. En otras palabras, la célula hospedadora se ha transfectado, transformado o transducido con una molécula de polinucleótido recombinante, y por lo tanto se ha alterado para que la célula altere la expresión de una proteína deseada.

Las "modificaciones genéticas" que dan como resultado una disminución o deficiencia de la expresión génica, en la función del gen, o en la función del producto génico (es decir, la proteína codificada por el gen) se puede denominar inactivación (completa o parcial), desactivación, deleción, alteración, interrupción, bloqueo, silenciamiento o regulación de forma negativa, o atenuación de la expresión de un gen. Por ejemplo, una modificación genética en un gen que da como resultado una disminución de la función de la proteína codificada por dicho gen, puede ser el resultado de una eliminación completa del gen (es decir, el gen no existe, y por lo tanto la proteína no existe), una mutación en el gen que da como resultado una traducción incompleta (interrupción) o nula de la proteína (por ejemplo, la proteína no se expresa), o una mutación en el gen que disminuye o anula la función natural de la proteína (por ejemplo, se expresa una proteína que tiene una actividad o acción enzimática reducida o nula). Más específicamente, la referencia a la disminución de la acción de las proteínas analizadas en el presente documento generalmente se refiere a cualquier modificación genética en la célula hospedadora en cuestión, lo que da como resultado una disminución de la expresión y/o funcionalidad (actividad biológica) de las proteínas e incluye una menor actividad de las proteínas (por ejemplo, disminución de la catálisis), aumento de la inhibición o degradación de las proteínas, así como una reducción o eliminación de la expresión de las proteínas. Por ejemplo, la acción o actividad de una proteína se puede disminuir bloqueando o reduciendo la producción de la proteína, reduciendo la

acción de la proteína o inhibiendo la acción de la proteína. También son posibles combinaciones de algunas de estas modificaciones. El bloqueo o la reducción de la producción de una proteína pueden incluir la colocación del gen que codifica la proteína bajo el control de un promotor que requiere la presencia de un compuesto inductor en el medio de crecimiento. Al establecer condiciones tales que el inductor se agote del medio, la expresión del gen que codifica la proteína (y, por lo tanto, de la síntesis de proteínas) se podría desactivar. El bloqueo o la reducción de la acción de una proteína también podría incluir el uso de un enfoque de tecnología de escisión similar al que se describe en el documento de Patente de Estados Unidos N.º 4.743.546. Para usar este enfoque, el gen que codifica la proteína de interés se clona entre secuencias genéticas específicas que permiten la escisión controlada y específica del gen del genoma. La escisión podría ser provocada, por ejemplo, por un cambio en la temperatura de cultivo del cultivo, tal como en el documento de Patente de Estados Unidos N.º 4.743.546, o por alguna otra señal física o nutricional.

En general, de acuerdo con la presente invención, un aumento o una disminución en una característica dada de una proteína mutante o modificada (por ejemplo, actividad enzimática) se realiza con referencia a la misma característica de una proteína precursora (es decir, normal, no modificada) que se obtiene a partir del mismo organismo (de la misma fuente o secuencia precursora), que se mide o establece en las mismas condiciones o equivalentes. De manera similar, un aumento o disminución en una característica de una célula hospedadora modificada genéticamente (por ejemplo, expresión y/o actividad biológica de una proteína, o producción de un producto) se hace con referencia a la misma característica de una célula hospedadora de tipo silvestre de la misma especie, y preferentemente de la misma cepa, en las mismas condiciones o equivalentes. Las condiciones de ese tipo incluyen el ensayo o las condiciones de cultivo (por ejemplo, componentes del medio, temperatura, pH, etc.) bajo los cuales se mide la actividad de la proteína (por ejemplo, expresión o actividad biológica) u otra característica de la célula hospedadora, tal como el tipo de ensayo usado, la célula hospedadora que se evalúa, etc. Como se ha discutido anteriormente, las condiciones equivalentes son condiciones (por ejemplo, condiciones de cultivo) que son similares, pero no necesariamente idénticas (por ejemplo, se pueden tolerar algunos cambios conservadores en las condiciones), y que no cambian sustancialmente el efecto sobre el crecimiento celular o la expresión enzimática o la actividad biológica comparándolo con una comparación realizada en las mismas condiciones.

Preferentemente, una célula hospedadora modificada genéticamente y que tienen una modificación genética que aumenta o disminuye (reduce) la actividad de una proteína dada (por ejemplo, una O-manosiltransferasa o proteasa) tiene un aumento o disminución, respectivamente, en la actividad o acción (por ejemplo, expresión, producción y/o actividad biológica) de la proteína, en comparación con la actividad de la proteína en una célula hospedadora precursora (que no tiene una modificación genética de ese tipo), de al menos aproximadamente un 5 %, y más preferentemente al menos aproximadamente un 10 %, un 15 %, un 20 %, un 25 %, un 30 %, un 35 %, un 40 %, un 45 %, un 50 %, un 55 %, un 60 %, un 65 %, un 70 %, un 75 %, un 80 %, un 85%, un 90 %, un 95 %, o cualquier porcentaje, en números enteros entre un 5 % y un 100 % (por ejemplo, 6 %, 7 %, 8 %, etc.).

En otro aspecto de la invención, una célula hospedadora modificada genéticamente y que tienen una modificación genética que aumenta o disminuye (reduce) la actividad de una proteína dada (por ejemplo, una Omanosiltransferasa o proteasa) tiene un aumento o disminución, respectivamente, en la actividad o acción (por ejemplo, expresión, producción y/o actividad biológica) de la proteína, en comparación con la actividad de la proteína de tipo silvestre en una célula hospedadora precursora, de al menos aproximadamente 2 veces, y más preferentemente al menos aproximadamente 5 veces, 10 veces, 20 veces, 30 veces, 40 veces, 50 veces, 75 veces, 100 veces, 125 veces, 150 veces, o cualquier incremento de número entero comenzando desde al menos aproximadamente 2 veces (por ejemplo, 3 veces, 4 veces, 5 veces, 6 veces, etc.).

Como se usa en el presente documento, los términos "idéntico" o "identidad porcentual", en el contexto de dos o más secuencias de ácidos nucleicos o aminoácidos, se refieren a dos o más secuencias o subsecuencias que son iguales. Dos secuencias son "básicamente idénticas" si dos secuencias tienen un porcentaje específico de restos de aminoácido o nucleótido que son iguales (es decir, un 29 % de identidad, opcionalmente un 30 %, un 40 %, un 45 %, un 50 %, un 55 %, un 60 %, un 65 %, un 70 %, un 75 %, un 80 %, un 85 %, un 90 %, un 95 %, un 99 % o un 100 % de identidad con respecto a una región especificada, o, cuando no se especifica, con respecto a toda la secuencia), cuando se compara y alinea para una correspondencia máxima con respecto a una ventana de comparación, o una región designada de acuerdo con lo medido usando uno de los siguientes algoritmos de comparación de secuencias o por alineamiento manual e inspección visual. Opcionalmente, la identidad existe sobre una región que tiene al menos aproximadamente 50 nucleótidos (o 10 aminoácidos) de longitud, o más preferentemente con respecto a una región que tiene una longitud de 100 a 500 o 1000 o más nucleótidos (o 20, 50, 200 o más) aminoácidos).

Para la comparación de secuencias, generalmente una secuencia actúa como una secuencia de referencia, con la que se comparan las secuencias de ensayo. Cuando se usa un algoritmo de comparación de secuencias, las secuencias de ensayo y de referencia se introducen en un ordenador, las coordenadas de la subsecuencia se diseñan, si fuera necesario, y se diseñan los parámetros del programa de algoritmos de secuencia. Se pueden usar parámetros del programa por defecto, o se pueden diseñar parámetros alternativos. A continuación el algoritmo de comparación de secuencias calcula el porcentaje de identidad de secuencia para las secuencias de ensayo con respecto a la secuencia de referencia, en función de los parámetros del programa. Al comparar dos secuencias para la identidad, no es necesario que las secuencias sean contiguas, pero cualquier hueco podría conllevar a una

penalización que podría reducir el porcentaje de identidad general. Para blastn, los parámetros por defecto son penalización de apertura de hueco = 5 y penalización de extensión de espacio = 2. Para blastp, los parámetros por defecto son penalización de apertura de hueco = 11 y penalización de extensión de hueco = 1.

Una "ventana de comparación", como se usa en el presente documento, incluye una referencia a un segmento de una cualquiera de las posiciones contiguas que incluyen, entre otras, de 20 a 600, generalmente de aproximadamente 50 a aproximadamente 200, más generalmente de aproximadamente 100 a aproximadamente 150 en una secuencia en la que la secuencia se puede comparar con una secuencia de referencia del mismo número de posiciones contiguas después de que las dos secuencias estén alineadas de manera óptima. En la técnica se conocen bien los métodos de alineamiento de secuencias para comparación. El alineamiento óptimo de secuencias para comparación se puede realizar, por ejemplo, mediante el algoritmo de homología local de Smith y Waterman (1981), mediante el algoritmo de alineamiento de homología de Needleman y Wunsch (1970) J Mol Biol 48 (3): 443-453, mediante el método de búsqueda de similitud de Pearson y Lipman (1988) Proc Natl Acad Sci USA 85 (8): 2444-2448, by mediante implementaciones informáticas de estos algoritmos (GAP, BESTFIT, FASTA, y TFASTA en el Paquete de Software de Wisconsin Genetics, Genetics Computer Group, 575 Science Dr., Madison, WI), o mediante alineamiento manual e inspección visual [véase, por ejemplo, Brent *et al.*, (2003) Current Protocols in Molecular Biology, John Wiley & Sons, Inc. (Ringbou Ed)].

Dos ejemplos de algoritmos que son adecuados para determinar el porcentaje de identidad de secuencia y la similitud de secuencia son los algoritmos BLAST y BLAST 2.0, que se describen en Altschul *et al.*, (1997) Nucleic Acids Res 25 (17): 3389-3402 y Altschul *et al.*, (1990) J. Mol Biol 215 (3)-403-410, respectivamente. El software para realizar los análisis de BLAST está disponible al público a través del National Center for Biotechnology Information. El programa BLASTN (para secuencias de nucleótidos) usa como defectos una longitud de palabra (W) de 11, una expectativa (E) o 10, M = 5, N = -4 y una comparación de ambas hebras. Para las secuencias de aminoácidos, el programa BLASTP usa como valor predeterminado una longitud de palabra de 3, y una expectativa (E) de 10, y la matriz de puntuación BLOSUM62 [véase Henikoff y Henikoff, (1992) Proc Natl Acad Sci USA 89 (22): 10915-10919] alineamientos (B) de 50, expectativa (E) de 10, M = 5, N = -4 y una comparación de ambas hebras.

El algoritmo BLAST también realiza un análisis estadístico de la similitud entre dos secuencias (véase, por ejemplo, Karlin y Altschul, (1993) Proc Natl Acad Sci USA 90 (12): 5873-5877). Una medida de similitud proporcionada por el algoritmo BLAST es la probabilidad de suma más pequeña (P(N)), que proporciona una indicación de la probabilidad por la cual una coincidencia entre dos secuencias de nucleótidos o aminoácidos se podría producir por casualidad. Por ejemplo, un ácido nucleico se considera similar a una secuencia de referencia si la probabilidad de la suma más pequeña en una comparación del ácido nucleico de ensayo con el ácido nucleico de referencia es menor que aproximadamente 0,2, más preferentemente menor que aproximadamente 0,01, y lo más preferentemente menos de aproximadamente 0,001.

"Variante funcional" o "gen homólogo funcional" como se usa en el presente documento se refiere a una secuencia de codificación o una proteína que tiene una similitud de secuencia con una secuencia de referencia, generalmente, una identidad de al menos un 30 %, un 40 %, un 50 %, un 60 %, un 70 %, un 80 %, un 90 % o un 95 % con la secuencia de codificación o proteína de referencia, y conservando básicamente la misma función que dicha secuencia de codificación o proteína de referencia. Una variante funcional puede conservar la misma función pero con actividad reducida o aumentada. Las variantes funcionales incluyen variantes naturales, por ejemplo, homólogos de diferentes especies o variantes artificiales, resultantes de la introducción de una mutación en la secuencia de codificación. La variante funcional puede ser una variante con solo mutaciones modificadas de manera conservativa.

Las "mutaciones modificadas de manera conservativa" como se usan en el presente documento incluyen sustituciones, deleciones o adiciones individuales a una secuencia de aminoácidos codificada que dan como resultado la sustitución de un aminoácido con un aminoácido químicamente similar. Las tablas de sustitución conservativa que proporcionan aminoácidos funcionalmente similares se conocen bien en la técnica. Las variantes modificadas de manera conservativa de ese tipo son, además y no excluyen, variantes polimórficas, homólogos interespecies y alelos de la divulgación. Los siguientes ocho grupos contienen aminoácidos que son sustituciones conservativas entre sí: 1) alanina (A), Glicina (G); 2) Ácido aspártico (D), Ácido glutámico (E); 3) Asparagina (N), Glutamina (Q); 4) Arginina (R), Lisina (K); 5) Isoleucina (I), Leucina (L), Metionina (M), Valina (V); 6) Fenilalanina (F), Tirosina (Y), Triptófano (W); 7) Serina (S), Treonina (T); y 8) Cisteína (C), Metionina (M) (véase, por ejemplo, Creighton, Proteins (1984)).

Células fúngicas filamentosas

40

45

50

55

Como se usa en el presente documento, "células fúngicas filamentosas" incluye células de todas las formas filamentosas de la subdivisión Eumycota y Oomycota (de acuerdo con lo definido por Hawksworth *et al.*, En, Ainsworth and Bisby's Dictionary of The Fungi, 8ª edición, 1995, CAB International, University Press, Cambridge, Reino Unido). Las células fúngicas filamentosas se caracterizan generalmente por una pared micelial formada por quitina, celulosa, glucano, quitosano, manano y otros polisacáridos complejos. El crecimiento vegetativo se produce por elongación de hifas y el catabolismo del carbono es necesariamente aeróbico. Por el contrario, el crecimiento vegetativo de las levaduras tales como *Saccharomyces cerevisiae* se debe al brote de un talo unicelular y el

catabolismo del carbono puede ser fermentativo.

10

15

20

30

45

50

55

Preferentemente, la célula fúngica filamentosa no se ve afectada de forma adversa por la transducción de las secuencias de ácido nucleico necesarias, la expresión posterior de las proteínas (por ejemplo, proteínas de mamíferos) o los productos intermedios resultantes. Los métodos generales para alterar genes y cultivar células fúngicas filamentosas se desvelan, por ejemplo, para *Penicillium*, en Kopke *et al*,. (2010) Appl Environ Microbiol. 76 (14): 4664-74. doi: 10.1128/AEM.00670-10, para *Aspergillus*, en Maruyama y Kitamoto (2011), Methods in Molecular Biology, vol. 765, DOI10.1007/978-1-61779-197-0_27; para Neurospora, en Collopy *et al*,. (2010) Methods Mol Biol. 2010; 638:33-40. doi: 10.1007/978-1-60761-611-5_3; y para *Myceliophthora* o *Chrysosporium* en los documentos PCT/NL2010/000045 y PCT/EP98/06496.

Los ejemplos de células fúngicas filamentosas adecuadas incluyen, pero no se limitan a, células de una cepa de Acremonium, Aspergillus, Fusarium, Humicola, Mucor, Myceliophthora, Neurospora, Penicillium, Scytalidium, Thielavia, Tolypocladium, o Trichoderma/Hypocrea.

En ciertas realizaciones, la célula fúngica filamentosa es de una cepa de *Trichoderma* sp., *Acremonium*, *Aspergillus*, *Aureobasidium*, *Cryptococcus*, *Chrysosporium*, *Chrysosporium lucknowense*, *Filibasidium*, *Fusarium*, *Gibberella*, *Magnaporthe*, *Mucor*, *Myceliophthora*, *Myrothecium*, *Neocallimastix*, *Neurospora*, *Paecilomyces*, *Penicillium*, *Piromyces*, *Schizophyllum*, *Talaromyces*, *Thermoascus*, *Thielavia*, o *Tolypocladium*.

En algunas realizaciones, la célula fúngica filamentosa es una cepa de *Myceliophthora o Chrysosporium, Neurospora* o *Trichoderma*.

Las células fúngicas de Aspergillus de la presente divulgación pueden incluir, pero no se limitan a, Aspergillus 25 aculeatus, Aspergillus awamori, Aspergillus clavatus, Aspergillus flavus, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, o Aspergillus terreus.

Las células fúngicas de Neurospora de la presente divulgación pueden incluir, pero no se limitan a, Neurospora crassa.

Las células fúngicas de *Myceliophthora* de la presente divulgación pueden incluir, pero no se limitan a, *Myceliophthora thermophila*.

En una realización preferente, la célula fúngica filamentosa es una célula fúngica de *Trichoderma*. Las células fúngicas de *Trichoderma* de la presente divulgación se pueden obtener a partir de una cepa de *Trichoderma* de tipo silvestre o un mutante de la misma. Los ejemplos de células fúngicas de *Trichoderma* incluyen, pero no se limitan a, *Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, <i>Trichoderma atroviride, Trichoderma virens, Trichoderma viride;* y formas sexuales alternativas de las mismas (es decir, *Hypocrea*).

En una realización más preferente, la célula fúngica filamentosa es una célula de *Trichoderma reesei*, y por ejemplo, cepas obtenidas a partir de ATCC 13631 (QM 6a), ATCC 24449 (mutante de radiación 207 de QM 6a), ATCC 26921 (QM 9414; mutante de ATCC 24449), VTT-D-00775 (Selinheimo *et al.*, FEBS J., 2006, 273: 4322-4335), Rut-C30 (ATCC 56765), RL-P37 (NRRL 15709) o aislado T3 de T. *harzianum* (Wolffhechel, H., 1989).

La presente divulgación también se refiere a una célula fúngica filamentosa deficiente en PMT, por ejemplo seleccionada entre células de *Trichoderma*, *Neurospora*, *Myceliophthora* o una célula de *Chrysosporium*, tal como célula fúngica de *Trichoderma reesei*, que comprende:

 a. al menos una primera mutación que reduce o elimina una actividad de proteasa endógena en comparación con la célula fúngica filamentosa precursora que no tiene dicha primera mutación (es decir, una mutación con deficiencia de proteasa), y,

b. al menos una segunda mutación en un gen *PMT* que reduce o elimina una actividad de O-manosiltransferasa endógena en comparación con una célula fúngica filamentosa precursora que no tiene dicha segunda mutación (es decir, una mutación con deficiencia de *PMT*).

Proteasas con actividad reducida

Se ha encontrado que la reducción de la actividad de la proteasa permite aumentar básicamente la producción de proteína de mamífero heteróloga. De hecho, tales proteasas encontradas en células fúngicas filamentosas que expresan una proteína heteróloga normalmente catalizan una degradación significativa de la proteína recombinante expresada. Por lo tanto, al reducir la actividad de las proteasas en las células fúngicas filamentosas que expresan una proteína heteróloga, la estabilidad de la proteína expresada aumenta, lo que da como resultado un mayor nivel de producción de la proteína y, en algunas circunstancias, mejora la calidad de la proteína producida (por ejemplo, de longitud completa en lugar de degradada).

Las proteasas incluyen, pero no se limitan a, proteasas aspárticas, serina proteasas de tipo tripsina, subtilisina proteasas, proteasas glutámicas, y sedolisina proteasas. Las proteasas de ese tipo se pueden identificar y aislar de las células fúngicas filamentosas y analizarse para determinar si la reducción de su actividad afecta a la producción de un polipéptido recombinante de la célula fúngica filamentosa. En la técnica se conocen bien los métodos para identificar y aislar proteasas, e incluyen, pero no se limitan a, cromatografía por afinidad, ensayos de zimograma y electroforesis en gel. Una proteasa identificada a continuación se puede someter a ensayo mediante deleción del gen que codifica la proteasa identificada a partir de una célula fúngica filamentosa que expresa un polipéptido recombinantes, tal como un polipéptido heterólogo o de mamífero, y determinando si la deleción da como resultado una disminución de la actividad de la proteasa total de la célula, y un aumento del nivel de producción del polipéptido recombinante expresado. Los métodos para eliminar producir deleción de genes, medir la actividad de proteasa total y medir los niveles de proteína producida se conocen bien en la técnica e incluyen los métodos que se describen en el presente documento.

Proteasas Aspárticas

15

20

25

10

Las proteasas aspárticas son enzimas que usan un resto de aspartato para la hidrólisis de los enlaces peptídicos en polipéptidos y proteínas. Por lo general, las proteasas aspárticas contienen dos restos de aspartato altamente conservados en su sitio activo que son óptimamente activos a pH ácido. Las proteasas aspárticas de organismos eucariotas tales como los hongos *Trichoderma* incluyen pepsinas, catepsinas y reninas. Estas proteasas aspárticas tienen una estructura de dos dominios, que se cree que surge de la duplicación de genes ancestrales. Coherente con un suceso de duplicación de ese tipo, el plegamiento total de cada dominio es similar, aunque las secuencias de los dos dominios han comenzado a divergir. Cada dominio contribuye con uno de los restos de aspartato catalíticos. El sitio activo se encuentra en una hendidura formada por los dos dominios de las proteasas aspárticas. Las proteasas aspárticas eucariotas incluyen además puentes disulfuro conservados, que pueden ayudar en la identificación de los polipéptidos como proteasas de ácido aspártico.

Se han identificado nueve proteasas aspárticas en células fúngicas de *Trichoderma*: pep1 (tre74156); pep2 (tre53961); pep3 (tre121133); pep4 (tre77579), pep5 (tre81004), y pep7 (tre58669), pep8 (tre122076), pep11 (121306), y pep12 (tre119876).

30

35

45

50

55

Los ejemplos de proteasas aspárticas adecuadas incluyen, pero no se limitan a, pep1 de *Trichoderma reesei* (SEQ ID NO: 22), pep2 de *Trichoderma reesei* (SEQ ID NO: 18), pep3 de *Trichoderma reesei* (SEQ ID NO: 19); pep4 de *Trichoderma reesei* (SEQ ID NO: 20), pep5 de *Trichoderma reesei* (SEQ ID NO: 21) y pep7 de *Trichoderma reesei* (SEQ ID NO: 23), EGR48424 pep8 de *Trichoderma reesei* (SEQ ID NO: 134), EGR49498 *pep11* de *Trichoderma reesei* (SEQ ID NO: 35), y homólogos de las mismas. Los ejemplos de homólogos de proteasas pep1, pep2, pep3, pep4, pep5, pep7, pep8, pep11 y pep12 identificados en otros organismos también se describen en el documento PCT/EP/2013/050186, cuyo contenido se incorpora por referencia.

40 Serina Proteasas de Tipo Tripsina

Las serina proteasas de tipo tripsina son enzimas con una especificidad de sustrato similar a la de la tripsina. Las serina proteasas de tipo tripsina usan un resto de serina para la hidrólisis de los enlaces peptídicos en polipéptidos y proteínas. Normalmente, las serina proteasas de tipo tripsina escinden los enlaces peptídicos después de un resto de aminoácido con carga positiva. Las serina proteasas de tipo tripsina de organismos eucariotas tales como los hongos *Trichoderma* incluyen la tripsina 1, la tripsina 2 y la mesotripsina. Estas serinas proteasas de tipo tripsina generalmente contienen una tríada catalítica de tres restos de aminoácido (tales como histidina, aspartato y serina) que forman un relevo de carga que sirve para hacer que el sitio activo sea nucleófilo. Las serina proteasas de tipo tripsina eucariotas incluyen además un "orificio de oxianión" formado por los átomos de hidrógeno de la amida de la estructura principal de la glicina y la serina, que pueden ayudar en la identificación de los polipéptidos que son serina proteasas de tipo tripsina.

Se ha identificado una serina proteasa de tipo tripsina en células fúngicas de *Trichoderma*: tsp1 (tre73897). Como se ha discutido en el documento PCT/EP/2013/050186, se ha demostrado que tsp1 tiene un impacto significativo en la expresión de glicoproteínas recombinantes, tales como las inmunoglobulinas.

Los ejemplos de proteasas tsp1 adecuadas incluyen, pero no se limitan a, tsp1 de *Trichoderma reesei* (SEQ ID NO: 24) y homólogos de las mismas. Los ejemplos de homólogos de proteasas tsp1 identificados en otros organismos se describen en el documento PCT/EP/2013/050186.

60

65

Subtilisina Proteasas

Las subtilisina proteasas son enzimas con especificidad de sustrato similar a la de la subtilisina. Las subtilisina proteasas usan un resto de serina para la hidrólisis de los enlaces peptídicos en polipéptidos y proteínas. En general, las subtilisina proteasas son serina proteasas que contienen una tríada catalítica de los tres aminoácidos aspartato, histidina y serina. La disposición de estos restos catalíticos se comparte con la subtilisina prototípica de

Bacillus licheniformis. Las subtilisina proteasas de organismos eucariotas tales como los hongos *Trichoderma* incluyen furina, MBTPS1 y TPP2. La serina proteasas de tipo tripsina eucariotas incluyen además un resto de ácido aspártico en el orificio de oxianión.

Se han encontrado siete subtilisina proteasas en células fúngicas de *Trichoderma*: slp1 (tre51365); slp2 (tre123244); slp3 (tre123234); slp5 (tre64719), slp6 (tre121495), slp7 (tre123865), y slp8 (tre58698). La subtilisina proteasa *slp7* también se parece a la sedolisina proteasa *tpp1*.

Los ejemplos de proteasas slp adecuadas incluyen, pero no se limitan a, slp1 (SEQ ID NO: 25), slp2 (SEQ ID NO: 26); slp3 (SEQ ID NO: 27); slp5 (SEQ ID NO: 28), slp6 (SEQ ID NO: 29), slp7 (SEQ ID NO: 30), y slp8 (SEQ ID NO: 31), de *Trichoderma reesei*, y homólogos de las mismas. Los ejemplos de homólogos de proteasas slp identificadas en otros organismos se describen en el documento PCT/EP/2013/050186.

Proteasas Glutámicas

15

20

Las proteasas glutámicas son enzimas que hidrolizan los enlaces etílicos en polipéptidos y proteínas. Las proteasas glutámicas son insensibles a la pepstatina A, y por lo tanto en ocasiones se denominan proteasas ácidas insensibles a pepstatina. Aunque las proteasas glutámicas previamente se agruparon con las proteasas aspárticas y a menudo se denominan de forma conjunta proteasas ácidas, recientemente se ha encontrado que las proteasas glutámicas tienen restos de sitio activo muy diferentes a dos de las proteasas aspárticas.

Se han identificado dos proteasas glutámicas en células fúngicas de *Trichoderma*: gap1 (tre69555) y gap2 (tre106661).

Los ejemplos de proteasas gap adecuadas incluyen, pero no se limitan a, gap1 de *Trichoderma reesei* (SEQ ID NO: 32), gap2 de *Trichoderma reesei* (SEQ ID NO: 33), y homólogos de las mismas. Los ejemplos de homólogos de proteasas gap identificados otros organismos se describen en el documento PCT/EP/2013/050186.

Sedolisina Proteasas y homólogos de proteasas

30

Las sedolisina proteasas son enzimas que usan un resto de serina para la hidrólisis de los enlaces peptídicos en polipéptidos y proteínas. Las sedolisina proteasas generalmente contienen una tríada catalítica única de serina, glutamato y aspartato. Las sedolisina proteasas también contienen un resto de aspartato en el orificio de oxianión. Las sedolisina proteasas de organismos eucariotas tales como los hongos *Trichoderma* incluyen la tripeptidil peptidasa.

Los ejemplos de proteasas tpp1 adecuadas incluyen, pero no se limitan a, tpp1 tre82623 de *Trichoderma reesei* (SEQ ID NO: 34) y homólogos de las mismas. Los ejemplos de homólogos de proteasas tpp1 identificados en otros organismos se describen en el documento PCT/EP/2013/050186.

40

45

50

35

Como se usa en referencia a la proteasa, el término "homólogo" se refiere a una proteína que tiene actividad proteasa y presenta una similitud de secuencia con una secuencia de proteasa conocida (referencia). Los homólogos se pueden identificar mediante cualquier método conocido en la técnica, preferentemente, usando la herramienta BLAST para comparar una secuencia de referencia con una segunda secuencia o fragmento de una secuencia o con una base de datos de secuencias. Como se describe en la sección "Definiciones", BLAST comparará secuencias basadas en el porcentaje de identidad y similitud.

Preferentemente, una proteasa homóloga tiene una identidad de al menos un 30 % con (opcionalmente un 30 %, un 40 %, un 45 %, un 50 %, un 55 %, un 60 %, un 65 %, un 70 %, un 75 %, un 80 %, un 85 %, un 90 %, un 95 %, un 99 % o un 100 % con respecto a la región especificada, o, cuando no se especifica, con respecto a toda la secuencia), cuando se compara con una de las secuencias de proteasas que se han enumerado anteriormente, incluyendo pep1, pep2, pep3, pep4, pep5, pep7, pep8, pep11, pep12, tsp1, slp1, slp2, slp3, slp5, slp6, slp7, slp8, tpp1, gap1 y gap2 de T. reesei. Las proteasas homólogas correspondientes de N. crassa y M. thermophila se muestran en la SEQ ID NO: 136-169.

55

60

65

Reducción de la actividad de proteasas en la célula fúngica filamentosa de la invención

Las células fúngicas filamentosas de acuerdo con la invención tienen una actividad reducida de al menos una proteasa endógena, por lo general 2, 3, 4, 5 o más, para mejorar la estabilidad y la producción de la proteína con Omanosilación reducida en dicha célula fúngica filamentosa, preferentemente en una célula de *Trichoderma* deficiente en PMT.

La actividad de las proteasas encontradas en las células fúngicas filamentosas se puede reducir mediante cualquier método conocido por los expertos en la materia. En algunas realizaciones, la actividad reducida de las proteasas se consigue reduciendo la expresión de la proteasa, por ejemplo, mediante la modificación del promotor o ARNi.

En otras realizaciones, la expresión reducida o eliminada de las proteasas es el resultado de polinucleótidos no codificantes o construcciones de ARNi que son específicas para cada uno de los genes que codifican cada una de las proteasas. En una realización, una construcción de ARNi es específica para un gen que codifica una proteasa aspártica como una proteasa de tipo pep, una serina proteasa de tipo tripsina tal como una tsp1, una proteasa glutámica tal como una proteasa de tipo gap, una subtilisina proteasa tal como una proteasa de tipo sip, o una sedolisina proteasa tal como una proteasa tel po sip. En una realización, una construcción de ARNi es específica para el gen que codifica una proteasa de tipo slp. En una realización, una construcción de ARNi es específica para el gen que codifica slp2, slp3, slp5 o slp6. En una realización, una construcción de ARNi es específica para dos o más proteasas. En una realización, dos o más proteasas son una cualquiera de las proteasas de tipo pep, una cualquiera de las proteasas de tipo slp, una cualquiera de las proteasas de tipo gap y/o una cualquiera de las sedolisina proteasas. En una realización, dos o más proteasas son slp2, slp3, slp5 y/o slp6. En una realización, la construcción de ARNi comprende una cualquiera de las siguientes secuencias de ácido nucleico (véase también el documento PCT/EP/2013/050186).

Secuencia diana de ARNi

GCACACTTTCAAGATTGGC (SEQ ID NO: 15)

GTACGGTGTTGCCAAGAAG (SEQ ID NO: 16)

GTTGAGTACATCGAGCGCGACAGCATTGTGCACACCATGCTTCCCCTCGAGTC CAAGGACAGCATCATCGTTGAGGACTCGTGCAACGGCGAGACGGAGAAGCAG GCTCCCTGGGGTCTTGCCCGTATCTCTCACCGAGAGACGCTCAACTTTGGCTC CTTCAACAAGTACCTCTACACCGCTGATGGTGGTGAGGGTGTTGATGCCTATGT CATTGACACCGGCACCAACATCGAGCACGTCGACTTTGAGGGTCGTGCCAAGT GGGGCAAGACCATCCCTGCCGGCGATGAGGACGACGGCAACGGCCACG GCACTCACTGCTCGGTACCGTTGCTAGGAAGTACGGTGTTGCCAAGAAG GCCCACGTCTACGCCGTCAAGGTGCTCCGATCCAACGGATCCGCCACCATGTC TGACGTCCTCAAGGGCGTCGAGTACG (SEQ ID NO:17)

15

30

35

En otras realizaciones, la actividad reducida de las proteasas se consigue modificando el gen que codifica la proteasa. Los ejemplos de modificaciones de ese tipo incluyen, pero no se limitan a, una mutación, tal como una deleción o alteración del gen que codifica dicha actividad de proteasa endógena.

Por consiguiente, la invención se refiere a una célula de *Trichoderma* deficiente en PMT, que tiene una primera mutación que reduce o elimina al menos una actividad de proteasa endógena en comparación con una célula fúngica filamentosa precursora que no tiene una mutación deficiente en proteasa de ese tipo, siendo dichas proteasas endógenas seleccionadas entre proteasas aspárticas, serina proteasas de tipo tripsina, subtilisina proteasas, proteasas glutámicas, y sedolisina proteasas, comprendiendo dicha célula fúngica filamentosa además al menos una segunda mutación en un gen *PMT* que reduce la actividad de proteína O-manosiltransferasa endógena en comparación con una célula precursora de *Trichoderma* que no tiene dicha segunda mutación deficiente en PMT.

La mutación de deleción o alteración incluye, pero no se limita a, una mutación de desactivación genética, una mutación de truncamiento, una mutación puntual, una mutación de sentido erróneo, una mutación de sustitución, una mutación de desplazamiento de marco, una mutación de inserción, una mutación de duplicación, una mutación de amplificación, una mutación de translocación o una mutación de inversión, y que da como resultado una reducción de la actividad de proteasa correspondiente. Los métodos para generar al menos una mutación en un gen que codifica una proteasa de interés son bien conocidos en la técnica e incluyen, pero no se limitan a, mutagénesis aleatoria e identificación sistemática, mutagénesis dirigida al sitio, mutagénesis por PCR, mutagénesis por inserción, mutagénesis química e irradiación.

En ciertas realizaciones, una parte del gen que codifica la proteasa se modifica, tal como la región que codifica el dominio catalítico, la región de codificación o una secuencia de control requerida para la expresión de la región de codificación. Una secuencia de control del gen de ese tipo puede ser una secuencia promotora o una parte funcional de la misma, es decir, una parte que es suficiente para afectar la expresión del gen. Por ejemplo, una secuencia promotora se puede inactivar dando como resultado que no haya expresión o un promotor más débil se puede sustituir por la secuencia promotora nativa para reducir la expresión de la secuencia de codificación. Otras secuencias de control para la posible modificación incluyen, pero no se limitan a, una secuencia líder, una secuencia propeptídica, una secuencia señal, un terminador de transcripción y un activador de la transcripción.

45

Los genes que codifican proteasas que están presentes en las células fúngicas filamentosas también se pueden modificar usando técnicas de deleción genética para eliminar o reducir la expresión del gen. Las técnicas de deleción

genética permiten la eliminación parcial o completa del gen, eliminando de ese modo su expresión. En tales métodos, la deleción del gen se puede conseguir mediante recombinación homóloga usando un plásmido que se ha construido para que contenga contiguamente las regiones en las posiciones 5' y 3' que flanquean el gen.

La proteasa que codifica los genes que están presentes en las células fúngicas filamentosas también se puede modificar introduciendo, sustituyendo y/o eliminando uno o más nucleótidos en el gen, o una secuencia de control de la misma requerida para la transcripción o traducción del gen. Por ejemplo, los nucleótidos se pueden insertar o eliminar para la introducción de un codón de parada, la eliminación del codón de inicio o un desplazamiento del marco en el marco de lectura abierto. Una modificación de ese tipo se puede conseguir mediante métodos conocidos en la técnica, que incluyen sin limitación, mutagénesis dirigida al sitio y mutagénesis generada por peR (véase, por ejemplo, Botstein y Shortie, 1985, Science 229: 4719; Lo et al., 1985, Proceedings of the National Academy of Sciences USA 81: 2285; Higuchi et al., 1988, Nucleic Acids Research 16: 7351; Shimada, 1996, Meth. Mol. Bioi. 57: 157; Ho et al., 1989, Gene 77: 61; Horton et al., 1989, Gene 77: 61; y Sarkar y Sommer, 1990, BioTechniques 8: 404).

Además, los genes que codifican proteasas que están presentes en las células fúngicas filamentosas se pueden modificar mediante técnicas de alteración génica insertando en el gen una construcción de alteración de ácido nucleico que contiene un fragmento de ácido nucleico homólogo al gen que creará una duplicación de la región de homología e incorporará una construcción de ácido nucleico entre las regiones duplicadas. Una interrupción del gen de ese tipo puede eliminar la expresión del gen si la construcción insertada separa el promotor del gen de la región de codificación o interrumpe la secuencia de codificación de tal manera que se produzca un producto génico no funcional. Una construcción de alteración puede ser simplemente un gen marcador seleccionable acompañado por las regiones en las posiciones 5' y 3' homólogas al gen. El marcador seleccionable permite la identificación de

transformantes que contienen el gen alterado.

25

30

45

50

55

La proteasa que codifica los genes que están presentes en las células fúngicas filamentosas también se puede modificar mediante el proceso de conversión génica (véase, por ejemplo, Iglesias y Trautner, 1983, Molecular General Genetics 189: 5 73-76). Por ejemplo, en la conversión del gen, una secuencia de nucleótidos correspondiente al gen se somete a mutagénesis *in vitro* para producir una secuencia de nucleótidos defectuosa, que a continuación se transforma en una cepa de *Trichoderma* para producir un gen defectuoso. Por recombinación homóloga, la secuencia de nucleótidos defectuosa reemplaza al gen endógeno. Puede ser deseable que la secuencia de nucleótidos defectuosa también contenga un marcador para la selección de transformantes que contienen el gen defectuoso.

Los genes que codifican de proteasas de la presente divulgación que están presentes en células fúngicas filamentosas que expresan un polipéptido recombinante también se pueden modificar mediante técnicas no codificantes establecidas usando una secuencia de nucleótidos complementaria a la secuencia de nucleótidos del gen (véase, por ejemplo, Parish y Stoker, 1997, FEMS Microbiology Letters 154: 151-157). En particular, la expresión del gen por células filamentosas fúngicas se puede reducir o inactivar introduciendo una secuencia de nucleótidos complementaria a la secuencia de nucleótidos del gen, que se puede transcribir en la cepa y es capaz de hibridarse con el ARNm producido en las células. En condiciones que permiten que la secuencia de nucleótidos no codificantes complementaria se hibride con el ARNm, la cantidad de proteína traducida se reduce o elimina.

Los genes que codifican proteasas que están presentes en las células fúngicas filamentosas también se pueden modificar por mutagénesis aleatoria o específica usando métodos bien conocidos en la técnica, incluyendo sin limitación, mutagénesis química (véase, por ejemplo, Hopwood, The Isolation of Mutants in Methods in Microbiology (J.R. Norris y D.W. Ribbons, eds.) pp. 363-433, Academic Press, New York, 25 1970). La modificación del gen se puede realizar sometiendo las células fúngicas filamentosas a mutagénesis y seleccionando las células mutantes en las que la expresión del gen se ha reducido o inactivado. La mutagénesis, que puede ser específica o aleatoria, se puede realizar, por ejemplo, mediante el uso de un agente de mutagénesis físico o químico adecuado, el uso de un oligonucleótido adecuado, sometiendo la secuencia de ADN a mutagénesis generada por peR, o cualquier combinación de las mismas. Los ejemplos de agentes mutagénicos físicos y químicos incluyen, pero no se limitan a, irradiación ultravioleta (UV), hidroxilamina, N-metil-N'-nitro-N-nitrosoguanidina (MNNG), N-metil-N'-nitrosoguanidina (NTG) O-metil hidroxilamina, ácido nitroso, etil metano sulfonato (EMS), bisulfito sódico, ácido fórmico y análogos de nucleótidos. Cuando se usan agentes de ese tipo, la mutagénesis se realiza generalmente mediante la incubación de las células fúngicas filamentosas, tales como células de *Trichoderma*, para que experimenten mutagénesis en presencia del agente de mutagénesis de elección en condiciones adecuadas, y a continuación seleccionando mutantes que muestran una expresión reducida o nula del gen.

En ciertas realizaciones, la al menos una mutación o modificación en un gen que codifica proteasa de la presente divulgación da como resultado una proteasa modificada que no tiene actividad proteasa detectable. En otras realizaciones, la al menos una modificación en un gen que codifica la proteasa de la presente divulgación da como resultado una proteasa modificada que tiene al menos un 25 % menos, al menos un 50 % menos, al menos un 75 % menos, al menos un 90 %, al menos un 95 %, o un porcentaje más elevado de menos actividad de proteasa en comparación con una proteasa no modificada correspondiente.

Las células fúngicas filamentosas o células fúngicas de *Trichoderma* de la presente divulgación pueden tener una actividad proteasa reducida o no detectable de al menos tres, o al menos cuatro proteasas seleccionadas entre el grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep8, pep11, pep12, tsp1, slp1, slp2, slp3, slp5, slp6, slp7, gap1 y gap2. En una realización preferente, una célula fúngica filamentosa de acuerdo con la invención es una célula fúngica filamentosa deficiente en PMT que tiene una deleción o alteración en al menos 3 o 4 proteasas endógenas, dando como resultado una actividad no detectable para tales proteasas endógenas eliminadas o interrumpidas y que además comprende otra mutación en un gen *PMT* que reduce actividad de proteína Omanosiltransferasa endógena en comparación con una célula precursora de *Trichoderma* que no tiene dicha mutación.

10

15

20

25

30

35

40

En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en pep1, tsp1, y slp1. En otras realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de *Trichoderma*, tiene una actividad de proteasa reducida o no detectable en gap1, slp1, y pep1. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1 y gap1. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, qap1 y pep4. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4 y slp1. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, y slp3. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, y pep3. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3 y pep2. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3, pep2 y pep5. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3, pep2, pep5 y tsp1. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3, pep2, pep5, tsp1 y slp7. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3, pep2, pep5, tsp1, slp7 y slp8. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en slp2, pep1, gap1, pep4, slp1, slp3, pep3, pep2, pep5, tsp1, slp7, slp8 y gap2. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en al menos tres proteasas endógenas seleccionadas entre el grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep8, pep11, pep12, tsp1, slp2, slp3, slp7, gap1 y gap2. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de *Trichoderma*, tiene una actividad de proteasa reducida o no detectable en al menos tres a seis proteasas endógenas seleccionadas entre el grupo que consiste en pep1, pep2, pep3, pep4, pep5, tsp1, slp1, slp2, slp3, gap1 y gap2. En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT o célula de Trichoderma, tiene una actividad de proteasa reducida o no detectable en al menos siete a diez proteasas endógenas seleccionadas entre el grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep7, pep8, tsp1, slp1, slp2, slp3, slp5, slp6, slp7, slp8, tpp1, gap1 y gap2.

En una realización que se puede combinar con las realizaciones precedentes, la célula fúngica filamentosa de la invención no comprende una deleción o alteración de un gen endógeno que codifica una proteína chaperona. En una realización particular de la presente invención, dicha célula fúngica filamentosa de la invención expresa una proteína chaperona endógena funcional, la Proteína Disulfuro Isomerasa (PDI).

O-manosiltransferasa endógena en células fúngicas filamentosas

50

55

60

65

Las O-manosiltransferasas están codificadas por genes pmt en levaduras y hongos filamentos, que se pueden dividir en tres subfamilias, basándose en homologías de secuencias: PMT1, PMT2 y PMT4.

Por ejemplo, en la levadura *S. cerevisiae*, se han caracterizado 7 PMT diferentes: ScPMT1, ScPMT5 y ScPMT7 pertenecen a la subfamilia PMT1. ScPMT2, ScPMT3 y ScPMT6 pertenecen a la subfamilia PMT2 y ScPMT4 pertenece a la subfamilia PMT4. Las O-manosiltransferasas de ese tipo y sus secuencias de codificación se pueden identificar y aislar a partir de células fúngicas filamentosas y se pueden someter a ensayo para determinar si la reducción de su actividad permite la reducción de la O-manosilación en la proteína recombinante O-manosilada secretada que preferentemente no influye en la producción de un polipéptido recombinante de ese tipo a partir de la célula fúngica filamentosa. Los métodos para identificar y aislar las PMT se conocen bien en la técnica. A continuación una O-manosiltransferasa identificada se puede someter a ensayo mediante deleción del gen que codifica la O-manosiltransferasa identificada a partir de una célula fúngica filamentosa que expresa una proteína O-manosilada recombinante, tal como una proteína O-manosilada heteróloga o de mamífero, y determinando si la the deleción da como resultado una disminución de la actividad de O-manosiltransferasa total de la célula, no influyendo preferentemente en el nivel de producción de la proteína recombinante expresada. Los métodos para producir una deleción de genes y medir los niveles de proteína producida se conocen bien la técnica que incluyen los métodos

que se describen en el presente documento.

Se han identificado tres O-manosiltransferasas en células fúngicas de *Trichoderma*: pmt1, pmt2 y pmt3, que pertenecen respectivamente, basándose en homologías de secuencias, a la subfamilia PMT4, PMT1 y PMT2.

5

Los ejemplos de O-manosiltransferasas adecuadas incluyen, pero no se limitan a, *pmt1* de *Trichoderma reesei* (SEQ ID NO: 2), *pmt2* de *Trichoderma reesei* (SEQ ID NO: 3), pmt3 de *Trichoderma reesei* (SEQ ID NO: 4) y homólogos de las mismas. La Figura 5 muestra la filogenia de homólogos de *pmt* en hongos filamentosos seleccionados y la figura 6 muestra un alineamiento de dominios conservados de pmt1 entre diferentes especies.

10

En una realización preferente, dicha célula fúngica filamentosa deficiente en PMT, por ejemplo, una célula de *Trichoderma*, tiene al menos una mutación en un gen *PMT* seleccionada entre el grupo que consiste en:

a) gen *PMT1* que comprende el polinucleótido de la SEQ ID NO: 1.

15

- b) un gen homólogo funcional del gen *PMT1*, cuyo gen homólogo funcional es capaz de restablecer el nivel de Omanosilación precursora mediante complementación funcional cuando se introduce en una cepa de *T. reesei* que tiene una alteración en dicho gen *PMT1*, y,
- c) un polinucleótido que codifica un polipéptido que tiene una identidad de al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 90 %, o al menos un 95 % con la SEQ ID NO: 2, teniendo dicho polipéptido actividad de proteína O-manosiltransferasa.

Más preferentemente, dicha célula fúngica filamentosa deficiente en PMT, por ejemplo, una célula de *Trichoderma*, tiene al menos una mutación en un gen *PMT* que

25

20

- a) tiene un polinucleótido que codifica un polipéptido que tiene una identidad de al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 90 %, o al menos un 95 % con la SEQ ID NO: 2, y,
- b) es capaz de restablecer, al menos un 50 %, preferentemente aproximadamente un 100 % del nivel de O-manosilación precursora mediante complementación funcional cuando se introduce en una cepa de *T. reesei* que tiene una alteración en un gen *PMT1* de *T. reesei*.

30

35

40

En los ejemplos que siguen a continuación se desvelan métodos para alterar el gen PMT1 en T. reesei.

Las secuencias de homólogos de pmt1 en hongos filamentos se pueden encontrar en las bases de datos usando herramientas de búsqueda de alineamiento de secuencias, tales como el algoritmo BLAST. Incluyen, pero no se limitan a, gi391865791 de *A. oryzae*, EIT75070.1 (SEQ ID NO: 5), gi317036343, XP_001398147.2 de *A. niger* (SEQ ID NO: 6), gi67522004, XP_659063.1 de *A. nidulans* (SEQ ID NO: 7), gi358379774, EHK17453.1 (de *T. virens* SEQ ID NO: 8), gi358400594, EHK49920.1 de *T. atroviride* (SEQ ID NO: 9), gi342879728, EGU80965.1 de *F. oxysporum* (SEQ ID NO: 10), gi46107450, XP_380784.1 de *G. zeae* (SEQ ID NO: 11), gi367020262, XP_003659416.1 de *M. thermophila* (SEQ ID NO: 12), gi164423013, XP_963926.2 de *N. crassa* (SEQ ID NO: 13), y gi255953619, XP_002567562.1 de *P. chrysogenum* (SEQ ID NO: 14).

Reducción de la actividad de proteína O-manosiltransferasa endógena en la célula fúngica filamentosa de la invención

Las células fúngicas filamentosas deficientes en PMT de acuerdo con la invención tienen una actividad reducida de al menos una actividad de O-manosiltransferasa, para reducir o disminuir la O-manosilación en dicha célula fúngica filamentosa, preferentemente célula de *Trichoderma*.

La actividad de dichas O-manosiltransferasas encontradas en células fúngicas filamentosas se puede reducir 50 mediante cualquier método conocido por las personas con experiencia en la materia. En algunas realizaciones la actividad reducida de las O-manosiltransferasas se consigue reduciendo la expresión de las O-manosiltransferasas, por ejemplo, mediante modificación del promotor o ARNi.

En otras realizaciones, la actividad reducida de las O-manosiltransferasas se consigue modificando el gen que codifica la O-manosiltransferasa. Los ejemplos de modificaciones de ese tipo incluyen, pero no se limitan a, una mutación, tal como una deleción o alteración del gen que codifica dicha actividad de O-manosiltransferasa endógena.

La mutación por deleción o alteración se puede llevar a cabo tal como se ha descrito en las secciones mencionadas anteriormente, en particular en relación a la deleción o alteración de genes que codifican proteasas. Estas incluyen, pero no se limitan a, mutación de desactivación genética, una mutación de truncamiento, una mutación puntual, una mutación de sentido erróneo, una mutación de sustitución, una mutación de desplazamiento de marco, una mutación de inserción, una mutación de duplicación, una mutación de amplificación, una mutación de translocación o una mutación de inversión, y que da como resultado una reducción de la actividad de O-manosiltransferasa correspondiente.

En ciertas realizaciones, la mutación o modificación en un gen que codifica la O-manosiltransferasa (PMT) de la presente divulgación da como resultado una O-manosiltransferasa modificada que no tiene actividad de O-manosiltransferasa detectable. En otras realizaciones, la al menos una modificación en un gen que codifica la O-manosiltransferasa de la presente divulgación da como resultado una O-manosiltransferasa modificada que tiene Al menos un 25 % menos, al menos un 50 % menos, al menos un 90 %, al menos un 95 %, o Un porcentaje más elevado menos de actividad de O-manosiltransferasa en comparación con una O-manosiltransferasa no modifica la correspondiente.

En una realización preferente, una mutación que reduce la actividad de proteína O-manosiltransferasa endógena en una célula fúngica filamentosa deficiente en PMT, por ejemplo, una célula de *Trichoderma*, es una célula deficiente en PMT que tiene una deleción o alteración de un gen *PMT* que codifica dicha actividad de O-manosiltransferasa, dando como resultado una expresión no detectable para dicho gen PMT con deleción o alteración.

Una realización específica de la presente invención es una célula de *Trichoderma reesei* deficiente en PMT, que comprende

- a. al menos una primera mutación que reduce una actividad de proteasa endógena en comparación con una célula precursora de *Trichoderma* que no tiene dicha primera mutación, y.
- b. al menos una alteración o deleción del gen PMT1 de T. reesei.

20

30

55

c. opcionalmente, dicha célula expresa además una proteína heteróloga con serina o treonina, que ha reducido la O-manosilación debido a dicha mutación en dicho gen PMT.

La reducción (o disminución) de la actividad de O-manosiltransferasa se puede determinar comparando el nivel de O-manosilación de una proteína heteróloga en la célula fúngica filamentosa deficiente en PMT de acuerdo con la invención, con el nivel de O-manosilación de una proteína heteróloga en la célula precursora que no tiene dicha mutación deficiente en PMT.

En realizaciones específicas, la célula fúngica filamentosa deficiente en PMT de acuerdo con la invención expresa una proteína heteróloga que ha reducido la O-manosilación debida a dicha mutación en dicho gen PMT y el nivel de O-manosilación en la proteína heteróloga expresada es al menos un 20 %, un 40 %, un 50 %, un 60 %, un 70 %, un 80 %, o un 90 % más bajo que el nivel de O-manosilación de la proteína heteróloga cuando se expresa en la célula fúngica filamentosa precursora que no tiene dicha segunda mutación deficiente de PMT.

El nivel de O-manosilación también se puede determinar como el % en moles de polipéptido O-manosilado por 35 polipéptido total producido por la célula hospedadora de la invención. Los métodos analíticos, tales como análisis MALDI TOF MS, se pueden usar para determinar el nivel de O-manosilación como se describe en detalle en el Ejemplo 1 que sigue a continuación, en la sección titulada "Análisis de las cepas M403, M404, M406 y M407 de Dpmt1". En resumen, un polipéptido tal como se produce por la célula fúngica filamentosa deficiente en PMT se purifica para determinar su nivel de O-manosilación. La estructura no O-manosilada, y la estructura O-manosilada 40 del polipéptido se separan y cuantifican por análisis MALDI-TOF MS. Por ejemplo, la cuantificación del nivel de Omanosilación se puede llevar a cabo determinando los valores del área o la intensidad de los diferentes picos del espectro de MALDI-TOF MS. Un nivel de O-manosilación de un 5 % tal como se determina con dicho método, usando valores de área o intensidad, refleja que aproximadamente un 95 % (% en moles) de los polipéptidos analizados en la composición no son realizaciones específicas O-manosiladas, la célula fúngica filamentosa deficiente en PMT expresa una proteína heteróloga que ha reducido la O-manosilación debido a dicha mutación en 45 dicho gen PMT, y el nivel de O-manosilación en la proteína heteróloga expresada (por ejemplo, tal como se ha definido anteriormente determinando los valores del área o intensidad de los picos del espectro MALDI TOF MS) se reduce a menos de un 25 %, un 20 %, un 17 %, un 15 %, un 13 %, un 12 %, un 11 %, un 10 %, un 9 %, un 8 %, un 7 %, un 6 %, un 5 %, un 4 %, un 3 %, un 2 %, o un 1 %, o un 0,5 % (como % en moldes de restos de manosa por 50 cadena polipeptídica).

En una realización, la proteína heteróloga con una reducción de la O-manosilación se selecciona entre el grupo que consiste en:

- a) una inmunoglobulina, tal como IgG,
 - b) una cadena ligera o una cadena pesada de una inmunoglobulina,
 - c) una cadena pesada o una cadena ligera de un anticuerpo,
 - d) un anticuerpo de cadena individual,
 - e) un anticuerpo camélido,
- 60 f) un anticuerpo de dominio individual monomérico o multimérico,
 - g) un fragmento FAb, un fragmento FAb2, y,
 - h) sus fragmentos de unión a antígeno.

En una realización específica, una mutación que reduce la actividad de O-manosiltransferasa endógena es una deleción o una alteración de un gen *PMT* que codifica dicha actividad de proteína O-manosiltransferasa endógena. Por ejemplo, en la célula de *Trichoderma*, una mutación que reduce la actividad de O-manosiltransferasa endógena

es una deleción o una alteración de un gen PMT1.

5

15

20

25

35

45

Célula fúngica filamentosa para producir glicoproteínas con O-manosilación reducida y N-glicanos de tipo mamífero

Las células fúngicas filamentosas de acuerdo con la presente invención pueden ser útiles en particular para producir glicoproteínas heterólogas con O-manosilación reducida y N-glicanos de tipo mamífero, tal tales N-glicanos complejos.

Por consiguiente, en un aspecto, la célula fúngica filamentosa además se modifica genéticamente para producir un N-glicano de tipo mamífero, permitiendo de ese modo la producción de la glicoproteína *in vivo* sin O-manosilación o con ella reducida y con N-glicano de tipo mamífero como glicoformas principales.

En ciertas realizaciones, este aspecto incluye métodos para producir glicoproteínas con N-glicanos de tipo mamífero en una célula de *Trichoderma*.

En cierta realización, la glicoproteína comprende, como glicoforma principal, el N-glicano de tipo mamífero que tiene la fórmula $[(Gal\beta4)_xGlcNAc\beta2]_zMan\alpha3([(Gal\beta4)_yGlcNAc\beta2]_wMan\alpha6)Man{\beta4GlcNAc}_GGlcNAc, en la que () define una ramificación en la estructura, en la que [] o { } definen una parte de la estructura de glicano ya sea presente o ausente en una secuencia lineal, y en la que x, y, z y w son 0 o 1, independientemente. En una realización w y z son 1$

En ciertas realizaciones, la glicoproteína comprende, como glicoforma principal, N-glicano de tipo mamífero seleccionado entre el grupo que consiste en:

i. Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (glicoforma Man5);

- ii. GlcNAcβ2Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (glicoforma GlcNAcMan5);
- iii. Manα6(Manα3)Manβ4GlcNAβ4GlcNAc (glicoforma Man3);
- iv. Manα6(GlcNAcβ2Manα3)Manβ4GlcNAβ4GlcNAc (GlcNAcMan3) o,
- v. N-glicanos de tipo complejo seleccionados entre la glicoforma G0, G1, o G2.

En una realización, la composición de glicoproteína con N-glicanos de tipo mamífero, producida preferentemente con una cepa con desactivación del gen alg3, incluye glicoformas que básicamente carecen o están desprovistas de glicanos Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (Man5). En realizaciones específicas, la célula fúngica filamentosa produce glicoproteínas con, como glicoforma principal, la estructura de trimanosil N-glicano Manα3[Manα6]Manβ4GlcNAcβ4GlcNAc. En otras realizaciones, la célula fúngica filamentosa produce glicoproteínas con, como glicoforma principal, la estructura de N-glicano G0 GlcNAcβ2Manα3[GlcNAcβ2Manα6]Manβ4GlcNAcβ4GlcNAc.

40 En ciertas realizaciones, la célula fúngica filamentosa deficiente en PMT una composición de glicoproteínas con una mezcla de diferentes N-glicanos.

En algunas realizaciones, el N-glicano Man3GlcNAc2 (es decir, Manα3[Manα6]Manβ4GlcNAcβ4GlcNAc) representa al menos un 10 %, al menos un 20 %, al menos un 30 %, al menos un 40 %, al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 80 %, al menos un 90 % o más de N-glicanos neutros totales (% en moles) de una proteína heteróloga con O-manosilación reducida, como se expresa en las células fúngicas filamentosas de la invención.

En otras realizaciones, el N-glicano GlcNAc2Man3 (por ejemplo G0 GlcNAcβ2Manα3[GlcNAcβ2Manα6]Manβ4GlcNAcβ4GlcNAc) representa al menos un 10 %, al menos un 20 %, al menos un 30 %, al menos un 40 %, al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 80 %, al menos un 90 % o más de N-glicanos neutros totales (% en moles) de una proteína heteróloga con O-manosilación reducida, como se expresa en las células fúngicas filamentosas de la invención.

En otras realizaciones, el N-glicano GalGlcNAc2Man3GlcNAc2 (por ejemplo N-glicano G1) representa al menos un 10 %, al menos un 20 %, al menos un 30 %, al menos un 40 %, al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 80 %, al menos un 90 % o más de N-glicanos neutros totales (% en moles) de una proteína heteróloga con O-manosilación reducida, como se expresa en las células fúngicas filamentosas de la invención.

- En otras realizaciones, el N-glicano Gal2GlcNAc2Man3GlcNAc2 (por ejemplo N-glicano G2) representa al menos un 10 %, al menos un 20 %, al menos un 30 %, al menos un 40 %, al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 80 %, al menos un 90 % o más de N-glicanos neutros totales (% en moles) de una proteína heteróloga con O-manosilación reducida, como se expresa en las células fúngicas filamentosas de la invención.
- En otras realizaciones, el N-glicano de tipo complejo representa al menos un 10 %, al menos un 20 %, al menos un 30 %, al menos un 40 %, al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 80 %, al menos un

90 % o más de N-glicanos neutros totales (% en moles) de una proteína heteróloga con O-manosilación reducida, como se expresa en las células fúngicas filamentosas de la invención.

En otras realizaciones, el N-glicano de tipo híbrido representa al menos un 10 %, al menos un 20 %, al menos un 30 %, al menos un 40 %, al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 80 %, al menos un 90 % o más de N-glicanos neutros totales (% en moles) de una proteína heteróloga con O-manosilación reducida, como se expresa en las células fúngicas filamentosas de la invención.

En otras realizaciones, menos de un 0,5 %, un 0,1 %, un 0,05 %, o menos de un 0,01 % del N-glicano de la composición de glicoproteína producido por la célula hospedadora de la invención, comprende galactosa. En ciertas realizaciones, ninguno de los N-glicanos comprende galactosa.

15

20

40

45

55

60

Las estructuras de Neu5Gc y Gala- (Galα3Galβ4GlcNAc terminal de extremo no reductor) son modificaciones de anticuerpos xenoantigénicas (obtenidas a partir de animales) conocidas que son producidas en células animales tales como células CHO. Las estructuras pueden ser antigénicas y, por lo tanto, perjudiciales incluso a bajas concentraciones. Los hongos filamentosos de la presente invención carecen de rutas de biosíntesis para producir las estructuras de Neu5Gc y Gala- terminales. En una realización que se puede combinar con las realizaciones precedentes menos de un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % de los N-glicanos y/o O-glicanos de la composición de glicoproteína comprende una estructura de Neu5Gc y/o Gala-. En una realización que se puede combinar con las realizaciones precedentes, menos de un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % de los N-glicanos y/o O-glicanos de la composición de anticuerpo comprende una estructura de Neu5Gc y/o Gala-.

Las células fúngicas filamentosas de la presente invención carecen de genes para producir proteínas heterólogas fucosiladas. En una realización que se puede combinar con las realizaciones precedentes, menos de un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % del N-glicano de la composición de glicoproteína comprende estructuras de núcleo de fucosa. En una realización que se puede combinar con las realizaciones precedentes, menos de un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % del N-glicano de la composición de anticuerpo comprende estructuras de núcleo de fucosa.

La estructura de Galβ4GlcNAc terminal del N-glicano de glicanos producidos por células de mamífero influye en la bioactividad de los anticuerpos y Galβ3GlcNAc puede ser una estructura xenoantigénica de proteínas producidas a partir de células vegetales. En una realización que se puede combinar con una o más de las realizaciones precedentes, menos de un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % del N-glicano de la composición de glicoproteína comprende epítopos de galactosa terminales Galβ3/4GlcNAc. En una realización que se puede combinar con una o más de las realizaciones precedentes, menos de un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % del N-glicano de la composición de anticuerpo comprende epítopos de galactosa terminales Galβ3/4GlcNAc.

La glicación es una modificación de proteínas posterior a la producción común, que resulta de la reacción química entre azúcares reductores tales como glucosa y los grupos amino primario en la proteína. La glicación se produce generalmente a pH neutro o ligeramente alcalino en condiciones de cultivos celulares, por ejemplo, cuando se producen anticuerpos en células CHO y analizándolos (véase, por ejemplo, Zhang et al,. (2008) Unveiling a glycation hot spot in a recombinant humanized monoclonal antibody. Anal Chem. 80 (7): 2379-2390). Dado que los hongos filamentosos de la presente invención generalmente se cultivan en pH ácido, la aparición de glicación se reduce. En una realización que se puede combinar con las realizaciones precedentes, menos de un 1,0 %, un 0,5 %, un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % de la composición de glicoproteína comprende estructuras de glicación. En una realización que se puede combinar con las realizaciones precedentes, menos de un 1,0 %, un 0,5 %, un 0,1 %, un 0,01 %, un 0,001 %, o un 0 % de la composición de anticuerpo comprende estructuras de glicación.

En una realización, la composición de glicoproteína, tal como un anticuerpo, está desprovista de uno, dos, tres, cuatro, cinco, o seis de las estructuras seleccionadas entre el grupo de Neu5Gc, Galα3Galβ4GlcNAc terminal, Galβ4GlcNAc terminal, fucosa unida a núcleo y estructuras de glicación.

En ciertas realizaciones, una proteína de tipo glicoproteínas con N-glicano de tipo mamífero y O-manosilación reducida, tal como se produce en la célula fúngica filamentosa de la invención, es una proteína terapéutica. Las proteínas terapéuticas pueden incluir inmunoglobulina, o una proteína de fusión que comprende un fragmento Fc u otras glicoproteínas terapéuticas, tales como anticuerpos, eritropoyetinas, interferones, hormonas de crecimiento, albúminas o albúmina de suero, enzimas, o factores de coagulación sanguínea y pueden ser útiles en el tratamiento de seres humanos o animales. Por ejemplo, las glicoproteínas con N-glicano de tipo mamífero y O-manosilación reducida tal como se producen mediante la célula fúngica filamentosa de acuerdo con la invención pueden ser glicoproteínas terapéuticas tales como rituximab.

Los métodos para producir glicoproteínas con N-glicanos de tipo mamífero en células fúngicas filamentosas también se describen por ejemplo en el documento WO2012/069593.

En un aspecto, la célula fúngica filamentosa de acuerdo con la invención como se ha descrito anteriormente, se modifica además genéticamente para imitar la ruta tradicional de las células de mamíferos, a partir de N-glicanos

Man5 como sustrato aceptor para GnTI, y seguida de forma secuencial por GnT1, y etapas de reacción de manosidasa II y GnTII (en lo sucesivo denominada "ruta tradicional" para producir glicoformas G0). En una variante, se usa una única enzima recombinante que comprende los dominios catalíticos de GnTI y GnTII.

Alternativamente, en un segundo aspecto, la célula fúngica filamentosa de acuerdo con la invención como se ha descrito anteriormente se modifica genéticamente para que tenga una expresión reducida de *alg3*, permitiendo la producción del núcleo de N-glicanos Man3GlcNAc2, como sustrato aceptor para las reacciones posteriores de GnTl y GnTII y evitando la necesidad de manosidasa α1,2 o enzimas manosidasa II (la ruta reducida de "*alg3*"). En una variante, se usa una única enzima recombinante que comprende los dominios catalíticos de GnTI y GnTII.

10 En dichas realizaciones para imitar la ruta tradicional para producir glicoproteínas con N-glicanos de tipo mamífero, una célula fúngica filamentosa que expresa Man₅, tal como cepa de *T. reesei*, se puede transformar con una GnTI o una enzima de fusión GnTII/GnTI usando integración aleatoria o por integración dirigida a un sitio conocido que no influve en la glicosilación de Man5. Se seleccionan cepas que sintetizan N-glicano GlcNAcMan5 para la producción 15 de proteínas con glicano o glicanos de tipo híbrido. Las cepas seleccionadas se transforman adicionalmente con un dominio catalítico de una manosidasa de tipo manosidasa II capaz de escindir las estructuras de Man5 para generar GlcNAcMan3 para la producción de proteínas que tienen la glicoforma GlcNAcMan3 correspondiente o su(s) derivado(s). En ciertas realizaciones, las enzimas de tipo manosidasa II pertenecen a la familia 38 de glicósido hidrolasa (cazy.org/GH38 all.html). Las enzimas caracterizadas incluyen las enzimas enumeradas en 20 cazy.org/GH38 characterized.html. Las enzimas especialmente útiles son las enzimas de tipo Golgi que escinden glicoproteínas, tales como las de la subfamilia α-manosidasa II α-manosidasa II (Man2A1; ManA2). Los ejemplos de enzimas de ese tipo incluyen la enzima humana AAC50302, enzima de D. melanogaster (Van den Elsen J.M. et al., (2001) EMBO J. 20: 3008-3017), las que tienen la estructura 3D de acuerdo con 1HTY de referencia PDB, y otras que se mencionan con el dominio catalítico en PDB. Para la expresión citoplásmica, el dominio catalítico de la manosidasa se fusiona generalmente con un péptido de direccionamiento N-terminal (por ejemplo, como se ha 25 desvelado en la Sección mencionada anteriormente) o se expresa con estructuras de direccionamiento de Golgi de animales o plantas endógenas de enzimas manosidasa II de animales o plantas. Después de la transformación con el dominio catalítico de una manosidasa de tipo II, se seleccionan cepas que producen GlcNAcMan3 (si se expresa GnTI) o cepas que producen GlcNAc2Man3 de manera eficaz (si se expresa una fusión de GnTI y GnTII). Para las cepas que producen GlcNAcMan3, las cepas de serotipo se transforman además con un polinucleótido que codifica 30 un dominio catalítico de GnTII y se seleccionan cepas transformantes que son capaces de producir

En una realización de ese tipo para imitar la ruta tradicional, la célula fúngica filamentosa es una célula fúngica filamentosa deficiente en PMT como se ha definido en las secciones anteriores, y que además comprende uno o más polinucleótidos que codifican un polipéptido seleccionado entre el grupo que consiste en:

i) α1,2 manosidasa,

GlcNAc2Man3GlcNAc2.

- ii) dominio catalítico de N-acetilglucosaminiltransferasa I,
- 40 iii) α manosidasa II,
 - iv) dominio catalítico de N-acetilglucosaminiltransferasa II,
 - v) β1,4 galactosiltransferasa, y,
 - vi) fucosiltransferasa.
- En realizaciones que usan la ruta de alg3 reducida, la célula fúngica filamentosa, tal como una célula de *Trichoderma*, tiene un nivel de actividad reducido de una doliquil-P-Man:Man(5)GlcNAc(2)-PP-doliquil manosiltransferasa en comparación con el nivel de actividad en una célula hospedadora precursora. La doliquil-P-Man:Man(5)GlcNAc(2)-PP-doliquil manosiltransferasa (EC 2.4.1.130) transfiere un resto de alfa-D-manosilo de doliquil-fosfato D-manosa en un oligosacárido unido a lípidos de membrana. Por lo general, la enzima doliquil-P-Man:Man(5)GlcNAc(2)-PP-doliquil manosiltransferasa está codificada por un gen *alg3*. En ciertas realizaciones, la célula fúngica filamentosa para producir glicoproteínas con N-glicanos de tipo mamífero tiene un nivel reducido de expresión de un gen *alg3* en comparación con el nivel de expresión en una cepa precursora.
- Más preferentemente, la célula fúngica filamentosa comprende una mutación de *alg3*. El gen ALG3 se puede mutar por cualquier medio conocido en la técnica, tal como mutaciones puntuales o deleción de todo el gen alg3. Por ejemplo, la función de la proteína alg3 se reduce o elimina mediante la mutación de *alg3*. En ciertas realizaciones, el gen *alg3* se altera o sufre deleción de la célula fúngica filamentosa, tal como célula de *Trichoderma*. En ciertas realizaciones, la célula fúngica filamentosa es una célula de *T. reesei* cell. Las SEQ ID NOs: 36 y 37 proporcionan las secuencias de ácidos nucleicos y aminoácidos del gen *alg3* en *T. reesei*, respectivamente. En una realización la célula fúngica filamentosa se usa para la producción de una glicoproteína, en la que el glicano o glicanos comprenden o consisten en Manα3[Manα6]Manβ4GlcNAcβ4GlcNAc, y/o una variante no reductora y alargada del mismo.
- En ciertas realizaciones, la célula fúngica filamentosa tiene un nivel reducido de actividad de una alfa-1,6-65 manosiltransferasa en comparación con el nivel de actividad en una cepa precursora. La alfa-1,6-manosiltransferasa (EC 2.4.1.232) transfiere un resto de alfa-D-manosilo de GDP-manosa en un oligosacárido unido a proteína,

formando una elongación que inicia el enlace alfa-(1->6)-D-manosil-D-manosa en el aparato de Golgi. Normalmente, la enzima alfa-1,6-manosiltransferasa está codificada por un gen *och1*. En ciertas realizaciones, la célula fúngica filamentosa h tiene un nivel reducido de expresión de un gen *och1* en comparación con el nivel de expresión en una célula filamentosa fúngica precursora. En ciertas realizaciones, el gen *och1* sufre deleción de la célula fúngica filamentosa.

Las células fúngicas filamentosas usadas en los métodos de producción de glicoproteína con N-glicanos de tipo mamífero pueden contener además un polinucleótido que codifica un dominio catalítico de N-acetilglucosaminiltransferasa I (GnTI) que cataliza la transferencia de N-acetilglucosamina a una Manα3 terminal y un polinucleótido que codifica un dominio del catalítico de N-acetilglucosaminiltransferasa (GnTII), que cataliza la N-acetilglucosamina a un resto de Manα6 terminal de un glicano aceptor para producir un N-glicano complejo. En una realización, dichos polinucleótidos que codifican GnTI y GnTII se unen para producir una fusión de proteína única que comprende ambos dominios catalíticos de GnTI y GnTII.

10

50

55

60

65

Como se desvela en el presente documento, la N-acetilglucosaminiltransferasa I (GlcNAc-TI; GnTI; EC 2.4.1.101) 15 cataliza la reacción UDP-N-acetil-D-glucosamina + 3-(alfa-D-manosil)-beta-D-manosil-R <=> UDP + 3-(2-(N-acetilbeta-D-glucosaminil)-alfa-D-manosil)-beta-D-manosil-R, en la que R representa el resto del oligosacárido unido a N en el aceptor de glicano. Un dominio catalítico de N-acetilglucosaminiltransferasa I es cualquier parte de una enzima N-acetilglucosaminiltransferasa I que es capaz de catalizar esta reacción. Las enzimas GnTl se enumeran en la base 20 de datos CAZy en la familia 13 de glicosiltransferasa (cazy.org/GT13_all). Las especies caracterizadas enzimáticamente incluyen AAR78757.1 de A. thaliana (US6 653 459), AAD03023.1 de C. elegans (Chen S. et al., J. Biol. Chem 1999; 274 (1): 288-97), AAF57454.1 de D. melanogaster (Sarkar y Schachter Biol Chem. Feb de 2001; 382 (2): 209-17); AAC52872.1 de C. griseus (Puthalakath H. et al., J. Biol. Chem 1996 271 (44): 27818-22); AAA52563.1 de H. sapiens (Kumar R. et al., Proc Natl Acad Sci U S A. Dic de1990; 87 (24): 9948-52); AAD04130.1 de M. auratus (Opat As et al., Biochem J. 15 de Dic de 1998; 336 (Pt 3): 593-8), (incluyendo un ejemplo de mutante 25 desactivante), Conejo, AAA31493.1 de O. cuniculus (Sarkar M et al,. Proc Natl Acad Sci U S A. 1 de Ene 1991; 88 (1): 234-8). Las secuencias de aminoácidos para las enzimas N-acetilglucosaminiltransferasa I de diversos organismos se describen por ejemplo en el documento PCT/EP2011/070956. Los ejemplos adicionales de enzimas activas caracterizadas se pueden encontrar en cazy.org/GT13_characterized. La estructura 3D del dominio catalítico 30 de GnTl de conejo se definió mediante cristalografía de rayos X en Unligil UM et al,. EMBO J. 16 de Oct de 2000; 19 (20): 5269-80. Las estructuras del Protein Data Bank (PDB) para GnTl son 1FO8, 1FO9, 1FOA, 2AM3, 2AM4, 2AM5, y 2APC. En ciertas realizaciones, el dominio catalítico de N-acetilglucosaminiltransferasa I es de la enzima Nacetilolucosaminiltransferasa I humana (SEQ ID NO: 38) o variantes de la misma. En ciertas realizaciones, el dominio catalítico de N-acetilglucosaminiltransferasa I contiene una secuencia que es al menos un 70 %, al menos un 75 %, al menos un 80 %, al menos un 85 %, al menos un 90 %, al menos un 95 %, al menos un 96 %, al menos 35 un 97 %, al menos un 98 %, al menos un 99 %, o un 100 % idéntica a los restos de aminoácido 84-445 de la SEQ ID NO: 38. En algunas realizaciones, como dominio catalítico se puede usar una secuencia más corta (por ejemplo, los restos de aminoácido 105-445 de la enzima humana o los restos de aminoácido 107-447 de la enzima de conejo; Sarkar et al,. (1998) Glycoconjugate J 15: 193-197). Las secuencias adicionales que se pueden usar como el 40 dominio catalítico GnTI incluyen restos de aminoácido desde aproximadamente el aminoácido 30 a 445 de la enzima humana o cualquier dominio del tallo C-terminal que comienza entre el resto de aminoácido 30 a 105 y continúa hasta aproximadamente el aminoácido 445 de la enzima humana, o secuencia homóloga correspondiente de otra GnTI o una variante catalíticamente activa o mutante de la misma. El dominio catalítico puede incluir partes Nterminales de la enzima tales como la totalidad o parte del dominio de tallo, el dominio transmembrana o el dominio 45 citoplásmico.

Como se desvela en el presente documento, la N-acetilglucosaminiltransferasa II (GlcNAc-TII; GnTII; EC 2.4.1.143) cataliza la reacción UDP-N-acetil-D-glucosamina + 6- (alfa-D-manosil)-beta-D-manosil-R <=> UDP + 6-(2-(N-acetilbeta-D-glucosaminil)-alfa-D-manosil)-beta-D-manosil-R, en la que R representa el resto del oligosacárido unido a N en el aceptor glicano. Un dominio catalítico de N-acetilglucosaminiltransferasa II es cualquier parte de una enzima Nacetilglucosaminiltransferasa II que sea capaz de catalizar esta reacción. Las secuencias de aminoácidos para las enzimas N-acetilglucosaminiltransferasa II de diversos organismos se enumeran en el documento WO2012069593. En ciertas realizaciones, el dominio catalítico de la N-acetilglucosaminiltransferasa II es del enzima Nacetilglucosaminiltransferasa II humana (SEQ ID NO: 39) o variantes de la misma. Las especies adicionales de GnTII se enumeran en la base de datos CAZy en la familia 16 de glicosiltransferasa (cazy.org/GT16_all). Las especies caracterizadas enzimáticamente incluyen GnTII de C. elegans, D. melanogaster, Homo sapiens (NP 002399.1), Rattus norvegicus, Sus scrofa (cazy.org/GT16 characterized). En ciertas realizaciones, el dominio catalítico de la N-acetilglucosaminiltransferasa II contiene una secuencia que es al menos un 70 %, al menos un 75 %, al menos un 80 %, al menos un 85 %, al menos un 90 %, al menos un 95 %, al menos un 96 %, al menos un 97 %, al menos un 98 %, al menos un 99 %, o un 100 % idéntica a los restos de aminoácido de aproximadamente 30 a aproximadamente 447 de la SEQ ID NO: 39. El dominio catalítico puede incluir partes N-terminales de la enzima tales como todo o parte del dominio de tallo, el dominio transmembrana o el dominio citoplásmico.

En realizaciones en las que la célula fúngica filamentosa contiene una proteína de fusión de la invención, la proteína de fusión puede contener además un espaciador entre el dominio catalítico de N-acetilglucosaminiltransferasa I y el dominio catalítico de N-acetilglucosaminiltransferasa II. En ciertas realizaciones, el espaciador es un espaciador

EGIV, un espaciador 2xG4S, un espaciador 3xG4S o un espaciador CBHI. En otras realizaciones, el espaciador contiene una secuencia de un dominio de tallo.

Para la expresión de RE/Golgi, la N-acetilglucosaminiltransferasa I y/o el dominio catalítico de N-acetilglucosaminiltransferasa II se fusionan generalmente con un péptido de direccionamiento o una parte de un RE o una proteína de Golgi temprana, o se expresan con una estructura de direccionamiento a RE endógena de una enzima N-acetilglucosaminiltransferasa de animal o planta. En ciertas realizaciones preferentes, la N-acetilglucosaminiltransferasa I y/o dominio catalítico de N-acetilglucosaminiltransferasa II contiene cualquiera de los péptidos de direccionamiento de la invención como se describe en la sección titulada "Secuencias de direccionamiento". Preferentemente, el péptido de direccionamiento contiene cualquiera de los dominios de tallo de la invención como se describe en la sección titulada "Secuencias de direccionamiento". En ciertas realizaciones preferentes, el péptido de direccionamiento es un péptido de direccionamiento Kre2/Mnt1. En otras realizaciones, el péptido de direccionamiento contiene además un dominio transmembrana unido al extremo N-terminal del dominio de tallo. En realizaciones en las que el péptido de direccionamiento además contiene un dominio transmembrana, el péptido de direccionamiento puede contener además un dominio citoplásmico unido al extremo N-terminal del dominio transmembrana.

10

15

25

30

35

60

65

Las células fúngicas filamentosas también puede contener un polinucleótido que codifica un transportador UDP-20 GlcNAc. El polinucleótido que codifica el transportador UDP-GlcNAc puede ser endógeno (es decir, naturalmente presente) en la célula hospedadora, o puede ser heterólogo para la célula fúngica filamentosa.

En ciertas realizaciones, la célula fúngica filamentosa puede contener además un polinucleótido que codifica una α-1,2-manosidasa. El polinucleótido que codifica la α-1,2-manosidasa puede ser endógeno en la célula hospedadora, o puede ser heterólogo para la célula hospedadora. Los polinucleótidos heterólogos son especialmente útiles para una célula hospedadora que expresa glicanos de alta manosa transferidos desde el aparato de Golgi al RE sin una escisión eficaz de exo-α-2-manosidasa. La α-1,2-manosidasa puede ser una enzima de tipo manosidasa I perteneciente a la familia 47 de las glucósido hidrolasas (cazy.org/GH47_all.html). En ciertas realizaciones la α-1,2-manosidasa es una enzima enumerada en cazy.org/GH47_characterized.html. En particular, la α-1,2-manosidasa puede ser una enzima de tipo RE que escinde glicoproteínas tales como las enzimas en la subfamilia de las enzimas EC 3.2.1.113 de RE α-manosidasa I. Los ejemplos de enzimas de ese tipo incluyen α-2-manosidasa 1B humana (AAC26169), una combinación de RE manosidasas de mamífero, o una enzima fúngica filamentosa tal como α-1,2-manosidasa (MDS1) (AAF34579 de *T. reesei*; Maras M *et al.*, J Biotech. 77, 2000, 255, o Trire 45717). Para la expresión de RE, el dominio catalítico de la manosidasa por lo general se fusiona con un péptido de direccionamiento, tal como HDEL, KDEL, o parte de un RE o proteína de Golgi temprana, o se expresa con una estructura de direccionamiento de RE endógena de una enzima manosidasa I animal o vegetal.

En ciertas realizaciones, la célula fúngica filamentosa también puede contener además un polinucleótido que codifica una β -1,4-galactosiltransferasa. Generalmente, las β -1,4-galactosiltransferasas pertenecen a la familia 7 de 40 CAZy (cazy.org/GT7 all.html) e incluyen β-N-acetilglucosaminilglicopéptido galactosiltransferasa (EC 2.4.1.38), que también se conoce como N-acetillactosamina sintasa (EC 2.4.1.90). Las subfamilias útiles incluyen β4-GalT1, β4-GalT-II, -III, -IV, -V, y -VI, tales como 134-GalTI o 134GalT-II, -III, -IV, -V, y -VI de mamífero o ser humano o cualquier combinación de las mismas. 134-GalTI, 134-GalTII, o 134-GalTIII son especialmente útiles para la galactosilación de las estructuras de GlcNAcβ2 terminal en N-glicanos tales como 45 GlcNAcMan3, GlcNAc2Man3, o GlcNAcMan5 (Guo S. et al,. Glycobiology 2001, 11: 813-20). La estructura tridimensional de la región catalítica se conoce (por ejemplo, (2006) J. Mol. Biol. 357: 1619-1633), y la estructura se ha representado una base de datos de PDB con el código 2FYD. La base de datos de CAZy incluye ejemplos de ciertas enzimas. Las enzimas caracterizadas también se enumeran en la base de datos de CAZy en cazy.org/GT7 characterized.html. Los ejemplos de enzimas β4GalT útiles incluyen β4GalT1, por ejemplo la enzima AAA30534.1 bovina de Bos taurus (Shaper N.L. et al., Proc. Natl. Acad. Sci. U.S.A. 83 (6), 1573-1577 (1986)), 50 enzima humana (Guo S. et al,. Glycobiology 2001, 11: 813-20), y la enzima AAA37297 de Mus musculus (Shaper, N.L. et al,. 1998 J. Biol. Chem. 263 (21), 10420-10428); las enzimas β4GalTII tales como β4GalTII BAA75819.1 humana, AAM77195 de Cricetulus griseus de hámster chino, la enzima BAA34385 de Mus musculus, y la enzima BAH36754 de Oryzias latipes del pescado Medaka japonés; y enzimas β4GalTIII tales como β4GalTIII BAA75820.1 55 humana, AAM77196 de Cricetulus griseus de hámster chino y la enzima AAF22221 de Mus musculus.

La galactosiltransferasa se puede expresar en la membrana plasmática de la célula hospedadora. Se puede usar un péptido de direccionamiento heterólogo, tal como un péptido Kre2 descrito en Schwientek J. Biol. Chem 1996 3398. Los promotores que se pueden usar para la expresión de la galactosiltransferasa incluyen promotores constitutivos tales como gpd, promotores de enzimas de glicosilación endógenas y glicosiltransferasas tales como las manosiltransferasas que sintetizan N-glicanos en el aparato de Golgi o RE, y promotores inducibles de proteínas endógenas de alto rendimiento tales como el promotor cbh1.

En ciertas realizaciones de la invención en las que la célula fúngica filamentosa contiene un polinucleótido que codifica una β-1,4-galactosiltransferasa, la célula fúngica filamentosa también contiene un polinucleótido que codifica una UDP-Gal 4 epimerasa y/o transportador de UDP-Gal. En ciertas realizaciones de la invención en las que la

célula fúngica filamentosa contiene un polinucleótido que codifica una β -1,4-galactosiltransferasa, la lactosa se puede usar como fuente de carbono en lugar de glucosa cuando se cultiva la célula hospedadora. El medio de cultivo puede estar entre pH 4,5 y 7,0 o entre 5,0 y 6,5. En ciertas realizaciones de la invención en las que la célula fúngica filamentosa contiene un polinucleótido que codifica una β -1,4-galactosiltransferasa y un polinucleótido que codifica una UDP-Gal 4 epimerasa y/o transportador de UDP-Gal, un catión divalente tal como Mn²+, Ca²+ o Mg²+ se puede añadir al medio de cultivo celular.

Por consiguiente, en ciertas realizaciones, la célula fúngica filamentosa de la presente divulgación, por ejemplo, seleccionada entre células de *Neurospora, Trichoderma, Myceliophthora* o *Chrysosporium*, y más preferentemente una célula de *Trichoderma reesei*, puede comprender las siguientes características:

- a) una mutación en al menos una proteasa endógena que reduce o elimina la actividad de dicha proteasa endógena, preferentemente la actividad proteasa de dos o tres o más proteasas endógenas se reduce, por ejemplo, las proteasas pep1, tsp1, gap1 y/o slp1, con el fin de mejorar la producción o estabilidad de una proteína heteróloga que se va a producir,
- b) una mutación en un gen *PMT*, por ejemplo gen pmt1 de *T. reesei*, que reduce o elimina la actividad endógena de O-manosiltransferasa en comparación con una célula precursora de *Trichoderma* que no tiene dicha segunda mutación.
- c) un polinucleótido que codifica una proteína que tiene al menos una serina o treonina, preferentemente una glicoproteína heteróloga, tal como una inmunoglobulina, un anticuerpo o una fusión de proteínas que comprende el fragmento Fc de una inmunoglobulina.
 - d) opcionalmente, una deleción o alteración del gen alg3,
 - e) opcionalmente, un polinucleótido que codifica un dominio catalítico de N-acetilglucosaminiltransferasa I y un polinucleótido que codifica un dominio catalítico de N-acetilglucosaminiltransferasa II,
 - f) opcionalmente, un polinucleótido que codifica β1,4 galactosiltransferasa,
 - g) opcionalmente, un polinucleótido o polinucleótidos que codifican la epimerasa y/o transportador de UDP-Gal 4.

Secuencias de direccionamiento

10

15

25

- 30 En ciertas realizaciones, las enzimas recombinantes, tales como α1,2 manosidasas, GnTl u otras glicosiltransferasas introducidas en las células fúngicas filamentosas, incluyen un péptido de direccionamiento unido a los dominios catalíticos. El término "unido" como se usa en el presente documento se refiere a que dos polímeros de restos de aminoácido en el caso de un polipéptido o dos polímeros de nucleótidos en el caso de un polinucleótido están acoplados directamente adyacentes entre sí o están dentro del mismo polipéptido o polinucleótido pero están 35 separados por restos de aminoácido o nucleótido intermedios. Un "péptido de direccionamiento", como se usa en el presente documento, se refiere a cualquier número de restos de aminoácidos consecutivos de la proteína recombinante que son capaces de localizar la proteína recombinante en el retículo endoplásmico (RE) o aparato de Golgi (Golgi) dentro de la célula hospedadora. El péptido de direccionamiento puede ser N-terminal o C-terminal a los dominios catalíticos. En ciertas realizaciones, el péptido de direccionamiento es N-terminal a los dominios 40 catalíticos. En ciertas realizaciones, el péptido de direccionamiento proporciona unión a un componente del RE o de Golgi, tal como con respecto a una enzima manosidasa II. En otras realizaciones, el péptido de direccionamiento proporciona una unión directa a la membrana del RE o Golgi.
- Los componentes del péptido de direccionamiento pueden provenir de una enzima que normalmente reside en el RE o el aparato de Golgi. Las enzimas de séptico incluyen manosidasas, manosiltransferasas, gicosiltransferasas, proteínas de Golgi de Tipo 2, y las enzimas MNN2, MNN4, MNN6, MNN9, MNN10, MNS1, KRE2, VAN1, y OCH1. Las enzimas de ese tipo pueden provenir de una especie de levadura o fúngica tales como las de *Acremonium, Aspergillus, Aureobasidium, Cryptococcus, Chrysosporium, Chrysosporium lucknowense, Filobasidium, Fusarium, Gibberella, Humicola, Magnaporthe, Mucor, Myceliophthora, Myrothecium, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Piromyces, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, y Trichoderma.* Las secuencias para las enzimas de ese tipo se pueden encontrar en la base de datos de secuencias de GenBank.
- En ciertas realizaciones el péptido de direccionamiento proviene de la misma enzima y organismo que uno de los dominios catalíticos de la proteína recombinante. Por ejemplo, si la proteína recombinante incluye un dominio catalítico GnTII humano, el péptido de direccionamiento de la proteína recombinante es de la enzima GnTII humana. En otras realizaciones, el péptido de direccionamiento puede provenir de una enzima y/o urbanismo diferente como los dominios catalíticos de la proteína recombinante.
- Los ejemplos de diversos péptidos de direccionamiento para su uso en proteínas de direccionamiento para el RE o aparato de Golgi que se pueden usar para direccionamiento de las enzimas recombinantes, incluyen: péptido Nterminal Kre2/Mnt1 fusionado a galactosiltransferasa (Schwientek, JBC 1996, 3398), HDEL a la localización de manosidasa para el RE de células de levadura para producir Man5 (Chiba, JBC 1998, 26298-304; Callewaert, FEBS Lett 2001, 173-178), péptido de direccionamiento OCH1 fusionado al dominio catalítico GnTI (Yoshida et al.,
 Glycobiology 1999, 53-8), péptido N-terminal de levadura de Mns1 fusionado a α2-manosidasa (Martinet et al..
- 65 Glycobiology 1999, 53-8), péptido N-terminal de levadura de Mns1 fusionado a α2-manosidasa (Martinet *et al.,* Biotech Lett 1998, 1171), parte N-terminal de Kre2 unida al dominio catalítico de GnTl o β4GalT (Vervecken, Appl.

Environ Microb 2004, 2639-46), diversos enfoques revisados en Wildt y Gerngross (Nature Rev Biotech 2005, 119), GnTI de longitud completa en *Aspergillus nidulans* (Kalsner *et al.*, Glycocon. J 1995, 360-370), GnTI de longitud completa en *Aspergillus oryzae* (Kasajima *et al.*, Biosci Biotech Biochem 2006, 2662-8), parte de la estructura de localización de Sec12 de levadura fusionada a GnTI de *C. elegans* en Aspergillus (Kainz *et al.*, 2008), parte N-terminal de Mnn9 de levadura fusionada a GnTI humana en *Aspergillus* (Kainz *et al.*, 2008), parte N-terminal de Mnn10 de *Aspergillus* fusionada GnTI humana (Kainz *et al.*, Appl. Environ Microb 2008, 1076-86), y GnTI humana de longitud completa en *T. reesei* (Maras *et al.*, FEBS Lett 1999, 365-70).

En ciertas realizaciones el péptido de direccionamiento es una parte N-terminal del péptido de direccionamiento de Mnt1/Kre2 que tiene la secuencia de aminoácidos de la SEQ ID NO: 40 (por ejemplo codificada por el polinucleótido de la SEQ ID NO: 41). En ciertas realizaciones, el péptido de direccionamiento se seleccionan entre GNT2 humano, KRE2, de tipo KRE2, Och1, Anp1, Van1 como se muestra en la Tabla 1 que sigue a continuación:

Tabla 1: Secuencia de aminoácidos de péptidos de direccionamiento

Proteína	TreID	Secuencia de aminoácidos	
GNT2 humana	-	MRFRIYKRKVLILTLVVAACGFVLWSSNGRQR KNEALAPPLLDAEPARGAGGRGGDHP (SEQ ID NO:42)	
KRE2	21576	MASTNARYVRYLLIAFFTILVFYFVSNSKYEGV DLNKGTFTAPDSTKTTPK (SEQ ID NO:43)	
tipo KRE2	69211	MAIARPVRALGGLAAILWCFFLYQLLRPSSSY NSPGDRYINFERDPNLDPTG (SEQ ID NO:44)	
Och1	65646	MLNPRRALIAAAFILTVFFLISRSHNSESASTS (SEQ ID NO:45)	
Anp1	82551	MMPRHHSSGFSNGYPRADTFEISPHRFQPRA TLPPHRKRKRTAIRVGIAVVVILVLVLWFGQPR SVASLISLGILSGYDDLKLE (SEQ ID NO:46)	
Van1	81211	MLLPKGGLDWRSARAQIPPTRALWNAVTRTR FILLVGITGLILLLWRGVSTSASE (SEQ ID NO:47)	

Los ejemplos adicionales de secuencias que se pueden usar para péptidos de direccionamiento incluyen las secuencias de direccionamiento como se describe en el documento WO2012/069593.

Las secuencias no caracterizadas se pueden someter a ensayo para su uso como péptidos de direccionamiento expresando enzimas de la ruta de glicosilación en una célula hospedadora, en la que una de las enzimas contiene la secuencia no caracterizada como el único péptido de direccionamiento y midiendo los glicanos producidos a la vista de localización citoplásmica de la biosíntesis de glicano (por ejemplo, en Schwientek JBC 1996 3398), o mediante la expresión de una proteína indicadora fluorescente fusionada con el péptido de direccionamiento, y el análisis de la localización de la proteína en el Golgi por inmunofluorescencia o fraccionando las membranas citoplasmáticas del aparato de Golgi y midiendo la localización de la proteína.

Métodos para producir una proteína que tiene O-manosilación reducida

Las células fúngicas filamentosas como se ha descrito anteriormente son útiles en métodos para producir una proteína que tiene O-manosilación reducida.

Por consiguiente, en otro aspecto, la invención se refiere a un método para producir una proteína que tiene O-manosilación reducida, que comprende:

- a) proporcionar una célula de *Trichoderma* deficiente en PMT que tiene una mutación en un gen *PMT* que reduce la actividad de proteína O-manosiltransferasa endógena en comparación con la cepa precursora que no tiene una mutación de ese tipo, y que además comprende un polinucleótido que codifica una proteína con serina o treonina, que puede estar O-manosilada,
 - b) cultivar dicha célula de *Trichoderma* deficiente en PMT para producir dicha proteína que tiene O-manosilación reducida.

15

20

25

30

40

En dicho método, la proteína producida tiene una O-manosilación reducida debido a dicha mutación en dicho gen PMT como se ha descrito en las secciones anteriores. La célula de *Trichoderma* deficiente en PMT puede haber reducido opcionalmente la actividad de proteasa endógena como se ha descrito en las secciones anteriores.

Las células fúngicas filamentosas y los métodos de la invención son útiles para la producción de proteínas con serina o treonina que pueden estar O-manosiladas. Por ejemplo, es particularmente útil para la producción de proteínas que están O-manosiladas cuando se producen en una célula hospedadora fúngica filamentosa con funcionalidad de PMT precursora, por ejemplo, en al menos una célula de célula de *Trichoderma* que es de tipo silvestre para el gen PMT1, tal como la SEQ ID NO: 1.

10

15

20

25

45

50

60

65

En los métodos de la invención, ciertos medios de crecimiento incluyen, por ejemplo, medios comunes preparados en el mercado tales como caldo de cultivo de Luria-Bertani (LB), caldo de cultivo de Sabouraud Dextrosa (SD) o caldo de cultivo de medio de Levadura (YM). También se pueden usar otros medios de crecimiento definidos o sintéticos, y alguien con experiencia en el campo de la microbiología o ciencia de la fermentación conocerá el medio apropiado para el crecimiento de la célula hospedadora particular. El medio de cultivo generalmente tiene el medio mínimo de *Trichoderma reesei* (Penttilä *et al.,* 1987, Gene 61, 155-164) como base, suplementado con sustancias que inducen el promotor de producción tal como lactosa, celulosa, grano agotado o soforosa. En la técnica se conocen los intervalos de temperatura y otras condiciones adecuadas para el crecimiento (véase, por ejemplo, Bailey y Ollis 1986). En ciertas realizaciones el pH del cultivo celular está entre 3,5 y 7, 5, entre 4,0 y 7,0, entre 4,5 y 6,5, entre 5 y 5,5, o a 5,5. En ciertas realizaciones, para producir un anticuerpo la célula fúngica filamentosa o célula fúngica de *Trichoderma* se cultiva en un intervalo de pH seleccionado de 4,7 a 6,5; pH de 4,8 a 6,0; pH de 4,9 a 5,9; y pH de 5,0 a 5,8.

En algunas realizaciones, la proteína que puede estar O-manosilada es una proteína heteróloga, preferentemente una proteína de mamífero. En otras realizaciones, la proteína heteróloga es una proteína que no es de mamífero.

En ciertas realizaciones, la proteína que puede estar O-manosilada es una glicoproteína con modificaciones de N-glicano posteriores a la traducción.

30 En ciertas realizaciones, una proteína de mamífero que puede estar O-manosilada se selecciona entre una inmunoglobulina, cadena pesada o ligera de inmunoglobulina o anticuerpo, un anticuerpo monoclonal, un fragmento Fab, un fragmento de anticuerpo F(ab')2, un anticuerpo de cadena individual, un anticuerpo de dominio individual monomérico o multimérico, un anticuerpo camélido, o sus fragmentos de unión a antígeno.

Un fragmento de una proteína, como se usa en el presente documento, consiste en al menos 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 aminoácidos consecutivos de una proteína de referencia.

Como se usa en el presente documento, una "inmunoglobulina" se refiere a una proteína multimérica que contiene una cadena pesada y una cadena ligera unidas mediante enlace covalente y capaces de combinarse específicamente con el antígeno. Las moléculas de inmunoglobulina son una gran familia de moléculas que incluyen varios tipos de moléculas tales como IgM, IgD, IgG, IgA e IgE.

Como se usa en el presente documento, un "anticuerpo" se refiere a moléculas de inmunoglobulina intactas, así como a fragmentos de las mismas que son capaces de unirse a un antígeno. Estas incluyen moléculas de anticuerpos híbridos (quiméricos) (véase, por ejemplo, Winter et al., Nature 349: 293-99225, 1991; y documento de Patente de Estados Unidos N.º 4.816.567 226); moléculas de F(ab')2; heterodímeros no covalentes; construcciones de fragmentos de anticuerpos diméricos y triméricos; moléculas de anticuerpos humanizados (véase por ejemplo, Riechmann et al., Nature 332, 323-27, 1988; Verhoeyan et al., Science 239, 1534-36, 1988; y documento de patente GB 2.276.169); y cualquier fragmento funcional obtenido a partir de tales moléculas, así como anticuerpos obtenidos mediante procesos no convencionales, tales como presentación de fagos o ratones transgénicos. Preferentemente, los anticuerpos son anticuerpos clásicos con región Fc. Los métodos de preparación de anticuerpos se conocen bien en la técnica.

En otras realizaciones, el rendimiento de la glicoproteína de mamífero es de al menos 0,5, al menos 1, al menos 2, al menos 3, al menos 4 o al menos 5 gramos por litro.

En ciertas realizaciones, la glicoproteína de mamífero es un anticuerpo, opcionalmente, IgG1, IgG2, IgG3, o IgG4. En realizaciones adicionales, el rendimiento del anticuerpo es de al menos 0,5, al menos 1, al menos 2, al menos 3, al menos 4 o al menos 5 gramos por litro. En otras realizaciones, la glicoproteína de mamífero es un anticuerpo, y el anticuerpo contiene al menos un 70 %, al menos un 80 %, al menos un 90 %, al menos un 95 %, o al menos un 98 % de un extremo C-terminal y N-terminal del anticuerpo natural y sin restos de aminoácido adicionales. En otras realizaciones, la glicoproteína de mamífero es un anticuerpo, y el anticuerpo contiene al menos un 70 %, al menos un 80 %, al menos un 90 %, al menos un 95 %, o al menos un 98 % de un extremo C-terminal y N-terminal del anticuerpo natural que no carece de ningún resto de aminoácido C-terminal o N-terminal.

En ciertas realizaciones cuando la glicoproteína de mamífero se purifica a partir del cultivo celular, el cultivo que

contiene la glicoproteína de mamífero contiene fragmentos de polipéptidos que constituyen un porcentaje de masa inferior a un 50 %, inferior a un 40 %, inferior a un 30 %, inferior a un 20 %, o inferior a un 10 % de la masa de los polipéptidos producidos. En ciertas realizaciones preferentes, la glicoproteína de mamífero es un anticuerpo, y los fragmentos de polipéptidos son fragmentos de cadena pesada y/o fragmentos de cadena ligera. En otras realizaciones, cuando la glicoproteína de mamífero es un anticuerpo y el anticuerpo se purifica a partir del cultivo celular, el cultivo que contiene el anticuerpo contiene cadenas pesadas libres y/o cadenas ligeras libres que constituyen un porcentaje de masa inferior a un 50 %, inferior a un 40 %, inferior a un 30 %, inferior a un 20 %, o inferior a un 10 % de la masa del anticuerpo producido. Los métodos para determinar el porcentaje de masa de fragmentos de polipéptidos se conocen bien en la técnica e incluyen, medir la intensidad de la señal de un gel de SDS.

En ciertas realizaciones, cuando la proteína con O-manosilación reducida, por ejemplo, un anticuerpo, se purifica a partir del cultivo celular, el cultivo contiene al menos un 70 %, un 80 %, un 90 %, un 95 % o un 100 % de las proteínas que no están O-manosiladas (% en moles, tal como se determina por ejemplo mediante análisis de MALDI TOF MS, y midiendo el área o intensidad de los picos como se describe en el Ejemplo 1 que sigue a continuación).

En ciertas realizaciones cuando la proteína con al menos un resto de serina o treonina que puede estar O-manosilado se purifica a partir del cultivo celular, y cuando la cepa es una célula de *Trichoderma* modificada mediante ingeniería genética para producir N-glicanos complejos, el cultivo además comprende al menos un 5 %, un 10 %, un 15 %, un 20 %, un 25 %, un 30 % de neutros complejos N-glicanos secretados (% en moles) en comparación con los N-glicanos neutros secretados totales (tal como se mide por ejemplo como se describe en el documento WO2012069593).

En otras realizaciones, la proteína heteróloga con O-manosilación reducida, por ejemplo, el anticuerpo, comprende la estructura de trimanosil N-glicano Manα3[Manα6]Manβ4GlcNAcβ4GlcNAc. En algunas realizaciones, la estructura Manα3[Manα6]Manβ4GlcNAcβ4GlcNAc representa al menos un 20 %, un 30 %; un 40 %, un 50 %; un 60 %, un 70 %, un 80 % (% en moles) o más, de los N-glicanos totales de la proteína heteróloga con O-manosilación reducida. En otras realizaciones, la proteína heteróloga con O-manosilación reducida comprende la estructura de N-glicano G0 GlcNAcβ2Manα3[GlcNAcβ2Manα6]Manβ4GlcNAcβ4GlcNAc. En otras realizaciones, la estructura de la glicoforma G0 no fucosilada representa al menos un 20 %, un 30 %; un 40 %, un 50 %; un 60 %, un 70 %, un 80 % (% en moles) o más, de los N-glicanos totales de la proteína heteróloga con O-manosilación reducida. En otras realizaciones, los N-glicanos galactosilados representan menos (% en moles) de un 0,5 %, un 0,1 %, un 0,05 %, un 0,01 % de los N-glicanos totales del cultivo, y/o de la proteína heteróloga con O-manosilación reducida, por ejemplo un anticuerpo. En ciertas realizaciones, el cultivo o la proteína heteróloga, por ejemplo un anticuerpo, no comprende N-glicanos galactosilados.

En ciertas realizaciones, la proteína heteróloga (purificada) es un anticuerpo, un anticuerpo de cadena ligera, un anticuerpo de cadena pesada o un Fab, que comprende estructura de N-glicano Man3, GlcNAcMan3, Man5, GlcNAcMan5, G0, G0 de núcleo, G1, o G2 como glicoforma principal y menos de un 35 %, un 20 %, un 17 %, un 15 %, un 13 %, un 12 %, un 11 %, un 10 %, un 9 %, un 8 %, un 7 %, un 6 %, un 5 %, un 4 %, un 3 %, un 2 %, o un 1 %, o menos de un 0,5 % de nivel de O-manosilación (como % en molesta como se determina por ejemplo mediante análisis MALDI TOF MS, y midiendo el área o la intensidad de los picos como se describe en el Ejemplo 1).

- La presente solicitud también se refiere a un método para producir un anticuerpo que tiene O-manosilación reducida, que comprende:
 - a. proporcionar una célula de Trichoderma deficiente en PMT que tiene

10

15

20

40

55

60

- i. una mutación que reduce la actividad de proteína O-manosiltransferasa endógena en comparación con la cepa precursora que no tiene una mutación de ese tipo y
 - ii. un polinucleótido que codifica un anticuerpo de cadena ligera y un polinucleótido que codifica un anticuerpo de cadena pesada,
 - b. cultivar la célula para producir dicho anticuerpo, que consiste en cadenas pesadas y ligeras, que tiene Omanosilación reducida.

En realizaciones específicas de ese tipo de los métodos relacionados con la producción de anticuerpos, al menos un 70 %, un 80 %, un 90 %, un 95 %, un 97 %, un 98 %, un 99 % o un 100 % el anticuerpo producido no está Omanosilado (% en moles, tal como se determina por ejemplo mediante análisis MALDI TOF MS, inhibiendo el área o la intensidad de los picos como se describe en el Ejemplo 1).

En ciertas realizaciones de cualquiera de los métodos que se desvelan, el método incluye la etapa adicional de proporcionar uno o más, dos o más, tres o más, cuatro o más, o cinco o más inhibidores de proteasa. En ciertas realizaciones, los inhibidores de proteasa son péptidos que se expresan de forma conjunta con el polipéptido de mamífero. En otras realizaciones, los inhibidores inhiben al menos dos, al menos tres, o al menos cuatro proteasas

de una familia de proteasas seleccionadas entre proteasas aspárticas, serina proteasas de tipo tripsina, subtilisina proteasas, y proteasas glutámicas.

En ciertas realizaciones de cualquiera de los métodos que se desvelan, la célula fúngica filamentosa o célula fúngica de Trichoderma también contiene una proteína vehículo. Como se usa en el presente documento, una "proteína vehículo" es una parte de una proteína que es endógena y que es secretada altamente por una célula fúngica filamentosa o célula fúngica de Trichoderma. Las proteínas vehículo adecuadas incluyen, pero no se limitan a, mananasa I de T. reesei (Man5A, o MANI), celobiohidrolasa II de T. reesei (Cel6A, o CBHII) (véase, por ejemplo, Paloheimo et al., Appl. Environ. Microbiol. Diciembre de 2003; 69 (12): 7073-7082) o celobiohidrolasa I de T. reesei (CBHI). En algunas realizaciones, la proteína vehículo es CBH1. En otras realizaciones, la proteína vehículo es una 10 proteína CBH1 de T. reesei truncada que incluye la región núcleo de CBH1 y parte de la región conectora de CBH1. En algunas realizaciones, un vehículo tal como una celobiohidrolasa o su fragmento se fusiona a una cadena ligera de anticuerpo y/o una cadena pesada de anticuerpo. En algunas realizaciones, un polipéptido de fusión de vehículoanticuerpo comprende un sitio de escisión Kex2. En ciertas realizaciones, Kex2, u otra enzima de escisión de 15 vehículo, es endógena para una célula fúngica filamentosa. En ciertas realizaciones, la proteasa de escisión de vehículo es heteróloga para la célula fúngica filamentosa, por ejemplo, otra proteína de Kex2 obtenida a partir de levadura o una proteasa TEV. En ciertas realizaciones, la enzima de escisión de vehículo está sobre expresada. En ciertas realizaciones, el vehículo consiste en aproximadamente 469 a 478 aminoácidos de la parte N-terminal de la proteína CBH1 de *T. reesei* con el de acceso en GenBank N.º EGR44817.1.

20

25

30

En ciertas realizaciones, la célula fúngica filamentosa de la invención sobre expresa la proteasa KEX2. En una realización la proteína heteróloga se expresa como una construcción de fusión que comprende un polipéptido fúngico endógeno, un sitio de proteasa tal como un sitio de escisión de Kex2, y la proteína heteróloga tal como una cadena pesada y/o ligera de anticuerpo antibody. Las combinaciones de 2-7 aminoácidos útiles que preceden al sitio de escisión de Kex2 se han descrito, por ejemplo, en Mikosch et al,. (1996) J. Biotechnol. 52: 97-106; Goller et al,. (1998) Appl Environ Microbiol. 64: 3202-3208; Spencer et al,. (1998) Eur. J. Biochem. 258: 107-112; Jalving et al,. (2000) Appl. Environ. Microbiol. 66: 363-368; Ward et al,. (2004) Appl. Environ. Microbiol. 70: 2567-2576; Ahn et al,. (2004) Appl. Microbiol. Biotechnol. 64: 833-839; Paloheimo et al,. (2007) Appl Environ Microbiol. 73: 3215-3224; Paloheimo et al,. (2003) Appl Environ Microbiol. 69: 7073-7082; y Margolles-Clark et al,. (1996) Eur J Biochem. 237: 553-560.

La presente divulgación se refiere además a la composición de proteína, por ejemplo la composición de anticuerpo, que se puede obtener o que se obtiene con el método como se ha desvelado anteriormente.

En realizaciones específicas, una composición de anticuerpo de ese tipo que se puede obtener o que se obtiene con los métodos de la divulgación, comprende al menos un 70 %, un 80 %, un 90 %, un 95 %, o un 100 % de los anticuerpos que no están O-manosilados (% en moles, tal como se determina por ejemplo mediante análisis MALDI TOF MS, y midiendo el área o la intensidad de los picos como se describe en el Ejemplo 1). En otras realizaciones específicas,1 composición de anticuerpo de ese tipo además comprende un 50 %, un 60 %, un 70 % o un 80 % (% en moles de N-glicano neutro), de la siguiente glicoforma:

- (i) Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc (glicoforma Man5);
- (ii) GlcNAcβ2Manα3[Manα6(Manα3)Manα6]Manβ4GlcNAβ4GlcNAc, o variante β4-galactosilada de la misma;
- (iii) Manα6(Manα3)Manβ4GlcNAβ4GlcNAc;
- (iv) Manα6(GlcNAcβ2Manα3)Manβ4GlcNAβ4GlcNAc, o variante β4-galactosilada de la misma: o,
- (v) N-glicanos de tipo complejo seleccionados entre las glicoformas G0, G1 o G2.

En algunas realizaciones la glicoforma de N-glicano de acuerdo con iii-v comprende menos de un 15 %, un 10 %, un 7 %, un 5 %, un 3 %, un 1 % o un 0,5 % cuesta desprovista de glicano Man5 como se ha definido en i) anteriormente.

La presente divulgación también se refiere a un método para reducir el nivel de O-manosilación de una composición de glicoproteína recombinante producida en una célula de *Trichoderma*, consistiendo dicho método en el uso de una célula de *Trichoderma* que tiene una mutación en un gen *PMT* en la que dicho gen *PMT* es cualquiera de:

55

45

50

- a. un gen PMT1 que comprende el polinucleótido de la SEQ ID NO: 1,
- b. un gen homólogo funcional del gen *PMT1*, cuyo gen es capaz de restablecer el nivel de O-manosilación precursora mediante complementación funcional cuando se introduce en una cepa de *T. reesei* que tiene una alteración en dicho gen *PMT1*, o,
- c. un polinucleótido que codifica un polipéptido que tiene una identidad de al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 90 %, o al menos un 95 % con la SEQ ID NO: 2, teniendo dicho polipéptido actividad de proteína O-manosiltransferasa.

En una realización específica de un método de ese tipo, dicha célula de Trichoderma es Trichoderma reesei.

65

60

En otra realización específica de un método de ese tipo, dicha glicoproteína recombinante comprende al menos un

anticuerpo de cadena ligera o sus fragmentos que comprenden al menos un resto de serina o treonina y con al menos un N-glicano.

EJEMPLOS

5

10

Como se ejemplificó más específicamente en el Ejemplo 2, después de la deleción de pmt1, casi un 95 % del mAb purificado y un 70 % de las moléculas Fab ya no contenían ningún resto de O-manosa. Por el contrario, como se ejemplifica en los Ejemplos 3 a 4, el análisis del nivel de O-manosilación realizado en las cepas de deleción pmt2 y pmt3 no mostró ninguna reducción observable en la O-manosilación. Junto con el análisis de títulos y crecimiento que se ha expuesto en el Ejemplo 2, estos resultados demuestran que las células fúngicas filamentosas, tales como las células de *Trichoderma*, se pueden modificar genéticamente para reducir o suprimir la actividad de O-manosilación, sin afectar adversamente la viabilidad y el rendimiento de las glicoproteínas producidas. Como tal, se identifica a pmt1 como una diana valiosa para reducir la O-manosilación de proteínas secretadas y para mejorar la calidad del producto de los productos biofarmacéuticos producidos por *Trichoderma reesei*.

15

Ejemplo 1: deleción de pmt1 en una cepa de Trichoderma reesei

Este ejemplo demuestra que *pmt1* es una diana valiosa para reducir la O-manosilación de proteínas secretadas y para mejorar la calidad del producto de los productos biofarmacéuticos producidos por *Trichoderma reesei*.

20

Generación de plásmidos de deleción de pmt1.

Se construyeron tres plásmidos de deleción diferentes (pTTv36, pTTv124, pTTv185) para la deleción del gen *pmt1* de la proteína O-manosiltransferasa (TreID75421). Todos los plásmidos contienen las mismas regiones de flanqueo en las posiciones 5' y 3' para una correcta integración en el locus de *pmt1*. La diferencia entre los tres plásmidos es el marcador usado en la selección; pTTv36 contiene un gen que codifica acetamidasa de *Aspergillus nidulans* (*amdS*), pTTv124 contiene una versión de área circular (casete blaster) del marcador *amdS* y pTTv185 una versión de área circular (casete de blaster) de un gen que codifica orotidina-5'-monofosfato (OMP) descarboxilasa de *T. reesei* (*pyr4*).

30

35

25

La tercera construcción de deleción, pTTv185, para el gen *pmt1* de la proteína O-manosiltransferasa (TrelD75421) se diseñó para permitir la eliminación del marcador de selección del genoma de *Trichoderma reesei* después de la integración satisfactoria y de ese modo para reciclar el marcador de selección para las transformaciones posteriores. En este enfoque, el reciclaje del marcador, es decir, la eliminación del gen *pyr4* de la construcción de deleción, se parece a los llamados casetes de blaster desarrollados para levaduras (Hartl, L. y Seiboth, B., 2005, Curr Genet 48: 204-211; y Alani, E. *et al.*, 1987, Genetics 116: 541-545). También se han desarrollado casetes de blaster similares para hongos filamentosos que incluyen *Hypocrea jecorina* (anamorfo: *T. reesei*) (Hartl, L. y Seiboth, B., 2005, Curr Genet 48: 204-211).

40

El número TrelD se refiere al número de identificación de un gen de proteasa en particular de la base de datos del genoma del Joint Genome Institute para *Trichoderma reesei* v2.0. Los cebadores para la construcción de plásmidos de deleción se diseñaron manualmente o usando el software Primer3 (sitio web de Primer3, Rozen y Skaletsky (2000) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365-386).

45

50

55

El principio del casete desintegrador que usa pyr4 como gen marcador es el siguiente: pyr4, que codifica orotidina-5'monofosfato (OMP) descarboxilasa de T. reesei (Smith, J.L., et al., 1991, Current Genetics 19: 27-33) es necesaria para la síntesis de uridina. Las cepas con deficiencia para la actividad de la OMP descarboxilasa no pueden crecer en un medio mínimo sin la suplementación con uridina (es decir, son auxótrofos de uridina). El uso de ácido 5fluoroorótico (5-FOA) en la generación de cepas mutantes que carecen de actividad de OMP descarboxilasa (cepas pyr4') se basa en la conversión de 5-FOA en un 5-fluoro-UMP intermedio tóxico por la OMP descarboxilasa. Por lo tanto, las células que tienen un gen *pyr4* mutado son resistentes al 5-FOA, pero además también son auxotróficas para la uridina. En principio, la resistencia al 5-FOA también puede resultar de una mutación en otro gen (pyr2, orotato fosforribosiltransferasa), y por lo tanto los mutantes espontáneos obtenidos con esta selección se deben verificar para el genotipo pyr4 complementando el mutante con el gen pyr4. Una vez mutado, el gen pyr4 se puede usar como un marcador de selección auxotrófico en T. reesei. En el casete blaster de los investigadores pyr4 va seguido de una repetición directa de 310 pb de la región no traducida de pyr4 5' (5'UTR) y está rodeado por las regiones de flanqueo en las posiciones 5' y 3' del gen que se someterá a deleción. La integración de deleción se selecciona mediante la función de pyr4. La eliminación del marcador pyr4 a continuación se fuerza en presencia de 5-FOA por recombinación entre las dos regiones homólogas (repetición directa de 5'UTR) dando como resultado un bucle fuera del marcador de selección y que permite el uso del mismo casete blaster(versión de área circular de pyr4) en rondas sucesivas de deleciones genéticas. Después de realizar un bucle, en el locus solo permanece la secuencia de 310 pb de 5'UTR.

60

65

Por lo tanto, el marcador de selección *pyr4* y el fragmento de repetición directa (DR) en la posición 5' (310 pb de 5'UTR de *pyr4*) se produjeron mediante PCR usando un plásmido que contenía una copia genómica de *pyr4* de *T*.

reesei como molde. Ambos fragmentos contenían secuencias superpuestas de 40 pb necesarias para clonar el plásmido con el casete de área circular en bucle usando una recombinación homóloga en levadura (véase a continuación). Para permitió las posibles etapas de clonación adicionales, se colocó un sitio de digestión Ascl entre el marcador pyr4 y los sitios de repetición directa en la posición 5' y Notl para rodear el casete blaster completo.

10

Se seleccionaron 1100 pb de las regiones de flanqueo en la posición 5' y 1000 pb de regiones de flanqueo en la posición 3' como la base de los plásmidos de deleción de pmt1. Los fragmentos de la región de flanqueo se produjeron mediante PCR usando una cepa QM6a de tipo silvestre de T. reesei (ATCC13631) como molde. Para el sistema de recombinación homóloga de levadura usado en la clonación (véase a continuación), las secuencias solapan que es para el vector y el marcador de selección se colocaron en los cebadores de PCR apropiados. Para permitir el cambio de marcador en la construcción, se introdujeron sitios de restricción NotI entre las regiones de flanqueo y el marcador de selección. Los sitios de restricción Pmel se colocaron entre el vector y las regiones de flanqueo para la eliminación de la secuencia del vector antes de la transformación en T. reesei. La estructura principal del vector pRS426 se digirió con enzimas de restricción (EcoRl y Xhol).

15

El primer plásmido de deleción para pmt1 (plásmido pTTv36, Tabla 2) usó amdS, un gen que codifica acetamidasa de Aspergillus nidulans, como marcador. El casete marcador se digirió a partir de un plásmido existente pHHO1 con Notl. Todos los fragmentos usados en la clonación se separaron con electroforesis en gel de agarosa y los fragmentos correctos se aislaron del gel con un kit de extracción en gel (Qiagen) usando métodos de laboratorio convencionales.

20

Para construir el primer plásmido de deleción pTTv36, la estructura principal del vector y el marcador apropiado y los fragmentos de las regiones de flanqueo se transformaron en Saccharomyces cerevisiae (cepa H3488/FY834). El protocolo de transformación de la levadura se basó en el método de recombinación homóloga de la levadura que se describe en el material de trabajo de desactivaciones genéticas de Neurospora de Colot y Collopy, (sitio web de protocolos del genoma de Dartmouth Neurospora), en el protocolo de laboratorio Gietz (University of Manitoba, sitio web del laboratorio Gietz). El ADN plasmídico de los transformantes de levadura se rescató mediante transformación en Escherichia coli. Se cultivaron unos pocos clones, el plásmido de ADN se aisló y se digirió para detectar la recombinación correcta usando métodos de laboratorio convencionales. Se secuenciaron y almacenaron algunos clones con tamaños de inserción correctos.

30

35

25

Para clonar el segundo plásmido de deleción de pmt1 (pTTv124, Tabla 2), se eliminó el marcador amdS del plásmido de eliminación pTTv36 con digestión con Notl y se reemplazó por otra variante del casete de blaster, casete de área circular amdS que contiene el gen marcador de selección amdS, seguido de sitio de restricción Ascl y una repetición directa de 300 pb de 5'UTR de amdS. El casete blaster de amdS funciona de manera similar al casete blaster de pyr4. Los clones que contienen el casete blaster de amdS pueden crecer en acetamida como única fuente de nitrógeno. En un medio que contiene 5-fluoroacetamida (5-FAA), un gen funcional amdS convertirá 5-FAA en un fluoroacetato tóxico y, por lo tanto, en presencia de 5-FAA, la eliminación del gen amdS es beneficiosa para el hongo. La eliminación del casete blaster de amdS se mejora a través de los DR de 300 pb en el casete, como en el casete blaster de pyr4, lo que permite que el gen amdS se extienda a través de un solo cruce entre los dos DR. Los clones resultantes son resistentes a 5-FAA y no pueden crecer con acetamida como única fuente de nitrógeno.

40

45

50

Los fragmentos necesarios para el casete blaster de amdS se produjeron mediante PCR usando un plásmido p3SR2 (Hynes M.J. et al., 1983, Mol. Cell. Biol. 3: 1430-1439) que contiene una copia genómica del gen c amdS como molde. Para el sistema de recombinación homóloga de levadura usado en la clonación (véase anteriormente), las secuencias solapantes se colocaron en los cebadores de PCR apropiados. Para permitir el cambio de marcador en la construcción, los sitios de restricción Not se mantuvieron entre las regiones de flanqueo y el casete blaster. Los sitios de restricción adicionales Fsel y AsiSI se introdujeron en el extremo 5' de amdS y un sitio Ascl entre el 5'DR de amdS y amdS. El plásmido pTTv124 se construyó usando el sistema de recombinación de levadura que se ha descrito anteriormente. El plásmido de ADN de los transformantes de levadura se rescató mediante transformación en Escherichia coli. Se cultivaron unos pocos clones, el plásmido de ADN se aisló y se digirió para detectar la recombinación correcta usando métodos de laboratorio convencionales. Se secuenciaron y almacenaron algunos clones con tamaños de inserción correctos.

55

Para clonar el tercer plásmido de deleción pmt1 (pTTv185, Tabla 2), el marcador amdS se eliminó del plásmido de deleción pTTv36 con digestión con Notl y se reemplazó por el casete blaster de pyr4 que se ha descrito anteriormente. El casete blaster de pyr4 se obtuvo a partir de otro plásmido con digestión con Notl, se ligó a Notl cortado con pTTv36 y se transformó en E. coli usando métodos de laboratorio convencionales. Se cultivaron unos pocos transformantes, el ADN plasmídico se aisló y se digirió a identificar sistemáticamente la ligadura y orientación correctas del casete blaster de pyr4 usando métodos de laboratorio convencionales. Un clon con un tamaño de 60 inserción y orientación correctos se secuenció y almacenó.

65

Estos plásmidos de deleción para pmt1 (pTTv36, pTTv124 y pTTv185) dan como resultado una deleción de 2465 pb en el locus de pmt1 y cubren la secuencia de codificación completa de PMT1.

Tabla 2. Cebadores para generar los plásmidos deleción pTTv36, pTTv124 y pTTv185 para proteína Omanosiltransferasa 1 (pmt1, TreID75421)

Plásmido de deleción pTTv36 para <i>pmt1</i> (TreID75421), estructura principal de vector pRS426		
Cebador	Secuencia	
75421_5'F	CGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGGTTT AAACGCTGCAGGGCGTACAGAACT (SEQ ID NO:48)	
75421_5'R	ATCTCTCAAAGGAAGAATCCCTTCAGGGTTGCGTTTCCAGTGCGG CCGCGGCTCTAAAATGCTTCACAG (SEQ ID NO:49)	
75421_3'F	CGGTTCTCATCTGGGCTTGCTCGGTCCTGGCGTAGATCTAGCGG CCGCACGATGATGACAGCCAG (SEQ ID NO:50)	
75421_3'R	GTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCGTTT AAACCGTCCAGCTCCCGCAGCGCC (SEQ ID NO:51)	
Plásmido de deleció	n pTTv124 para <i>pmt1</i> (TreID75421), estructura principal de vector pTTv36	
T282_75421_amds_ 5for	ATCGCTAACTGCTTTCTCTTCTGTGAAGCATTTTAGAGCCGCGGC CGCGGCCGGCCGCGATCGCCTAGATCTACGCCAGGACCG (SEQ ID NO:52)	
T283_amds_3rev_ loop	CGGTCCTGGCGTAGATCTAGGGCGCGCCACTGGAAACGCAACC CTGAA (SEQ ID NO:53)	
T284_amds_loop_ 5for	TTCAGGGTTGCGTTTCCAGTGGCGCGCCCTAGATCTACGCCAGG ACCG (SEQ ID NO:54)	
T287 _75421_loop_ 3rev	AGCATCATGACCGCCCCCTTCTGGCTGTCATCATCATCGTGCGG CCGCGATTATTGCACAAGCAGCGA (SEQ ID NO:55)	
Plásmido de deleció	n pTTv185 para <i>pmt1</i> (TreID75421), estructura principal de vector pTTv36	
Cebador	Secuencia	
sin nuevos cebadores plásmido	, pTTv36 digerido con Notl y ligado con fragmento de bucle de pyr4 obtenido a partir de otro	

Generación de cepas M403, M404, M406 y M407 de deleción de pmt1

5

10

Para generar una cepa diana negativa para *pyr4* adecuada para la deleción de *pmt1* usando el plásmido pTTv185, la cepa M304 productora del anticuerpo MAB01 se sometió a selección en presencia de ácido 5-fluoroorótico para seleccionar cepas que contienen genes *pyr4* alterados. La generación de la cepa M304 se describe en la Solicitud de Patente Internacional N.º PCT/EP2013/05012. La cepa M304 de *T. reesei* comprende la cadena ligera de MAB01 fusionada al vehículo de CBH1 truncado de *T. reesei* con la secuencia de escisión de Kex2 NVISKR, cadena pesada de MAB01 fusionada al vehículo de CBH1 truncado de *T. reesei* con la secuencia de escisión de Kex2 AXE1 [DGETVVKR], Δ*pep1*Δ*tsp1*Δ*slp1*, y sobreexpresa KEX2 de *T. reesei*.

15

20

Las esporas de M304 se diseminaron en placas de medio mínimo que contenían 20 g/l de glucosa, 2 g/l de proteína peptona, uridina 5 mM y 1,5 g/l de 5-FOA, pH 4,8. Algunas colonias resistentes a 5-FOA se sembraron después de 5-7 días en las placas que se han descrito anteriormente con 1 ml/l de suplemento con Triton X-100. Además se purificaron algunos clones para formar clones de células individuales mediante placas de purificación consecutivas: se seleccionó un pequeño trozo de micelio para obtener NaCl al 0,8 % - Tween 20 al 0,025 % - glicerol al 20 %, se suspendió completamente mediante agitación vorticial y se filtró a través de una punta de pipeta llena de algodón. Los clones purificados se esporularon en placas que contenían 39 g/l de agarosa de dextrosa de patata. Estos clones se analizaron para determinar la auxotrofia de uridina colocando esporas en placas de medio mínimo (20 g/l de glucosa, 1 ml/l de Triton X-100, pH 4,8) con y sin suplementos de uridina 5 mM. No se observó crecimiento en las placas sin uridina, lo que indica que los clones seleccionados *pyr4*⁻ supuestos. Los clones se almacenaron para un uso futuro y uno de ellos se designó con el número de cepa M317.

25

Pmt1 se sometió a deleción de M317 (pyr4- de la cepa M304) usando el casete de deleción de pmt1 del plásmido

pTTv185 que se ha descrito anteriormente. Para eliminar la secuencia del vector, el plásmido pTTv185 (Δ*pmt1-pyr4*) se digirió con *Pmel + Xbal* y el fragmento correcto se purificó a partir de un gel de agarosa usando el kit de extracción en gel QlAquick (Qiagen). Aproximadamente 5 μg del casete de deleción de *pmt1* se usaron para transformar la cepa M317. La preparación de protoplastos y la transformación para selección de *pyr4* se llevó a cabo básicamente de acuerdo con los métodos de Penttilä *et al,.* (1987, Gene 61:155-164) y Gruber *et al,.* (1990, Curr. Genet. 18:71-76).

Se seleccionaron 100 colonias como estrías selectivas. 40 transformantes se identificaron sistemáticamente por PCR usando los cebadores de la Tabla 3 para la integración correcta del casete de deleción usando métodos de laboratorio convencionales. 12 clones de deleción supuestos se purificaron a clones de células individuales. Los clones purificados se volvieron a identificar sistemáticamente para la integración y para la deleción del ORF de *pmt1* usando cebadores de la Tabla 5. Cuatro clones (por duplicado) eran interruptores puros (es decir, sin señal con cebadores del ORF).

10

15

20

25

30

Tabla 3. Cebadores para identificación sistemática de integración de casete de deleción pTTv185 y para deleción de la proteína O-manosiltransferasa 1 (pmt1, TrelD75421) de M317.

Cebador	Secuencia
T296_75421_5int	TATGGCTTTAGATGGGGACA (SEQ ID NO:56)
T027_Pyr4_orf_start_rev	TGCGTCGCCGTCTCGCTCCT (SEQ ID NO:57)
T061_pyr4_orf_screen_2F	TTAGGCGACCTCTTTTCCA (SEQ ID NO:58)
T297_75421_3int	CCTGTATCGTCCTGTTCC (SEQ ID NO:59)
T359_pmt1_orf_for	GCGCCTGTCGAGTCGGCATT (SEQ ID NO:60)
T360_pmt1_orf_rev	CACCGGCCATGCTCTTGCCA (SEQ ID NO:61)
T756_pmt1_orf_for2	CAAGGTGCCCTATGTCGC (SEQ ID NO:62)
T757_pmt1_orf_rev2	GATCGGGTCAGGACGGAA (SEQ ID NO:63)

La deleción de *pmt1* se verificó mediante análisis de Southern. El ADN para los análisis de Southern se extrajo con el kit Easy-DNA para el aislamiento del ADN genómico (Invitrogen) básicamente de acuerdo con las instrucciones del fabricante.

Los análisis de Southern se realizaron básicamente de acuerdo con el protocolo para hibridaciones homólogas en Sambrook *et al,.* (1989, Molecular Cloning: A laboratory manual. 2ª Ed., Cold Spring Harbor Laboratory Press) usando marcado radioactivo (3ºP-dCTP) y el kit DecaLabel Plus (Fermentas). Los esquemas de digestión de Southern se diseñaron usando el software Geneious Pro (sitio web de Geneious). Los fragmentos para las sondas se produjeron mediante PCR usando los cebadores enumerados en la Tabla 4 usando una cepa QM6a de tipo silvestre de *T. reesei* (ATCC13631) como molde. Los productos de PCR se separaron con electroforesis en gel de agarosa y los fragmentos correctos se aislaron del gel con un kit de extracción en gel (Qiagen) usando métodos de laboratorio convencionales.

Tabla 4. Cebadores para producción de fragmentos de sonda usados en análisis de Southern de cepas de deleción de proteína O-manosiltransferasa 1 (pmt1, TrelD75421)

Cebador	Secuencia	
T635_pmt1_5f_for	AGCCTGTCTGAGGGACGG (SEQ ID NO:64)	
T636_pmt1_5f_rev	CAAGGTCGAGATTCGGCA (SEQ ID NO:65)	
T637_pmt1_3f_for	CAGAAGGGGCGGTCAT (SEQ ID NO:66)	
T638_pmt1_3f_rev	GTCCCAGCTCCCGCTCT (SEQ ID NO:67)	
T359_pmt1_orf_for	GCGCCTGTCGAGTCGGCATT (SEQ ID NO:68)	
T360_pmt1_orf_rev	CACCGGCCATGCTCTTGCCA (SEQ ID NO:69)	

Ninguno de los clones se hibridó con la sonda del ORF de *pmt1* (Figura 1A) indicando una deleción satisfactoria de *pmt1*. Los análisis que usaron sondas flanqueo en las posiciones 5' y 3' revelaron que cuatro de los clones eran integrantes individuales (Figura 1B y 1C; 26-8A y B, 26-21A y B). Cuatro clones dieron señales adicionales y por lo tanto esto indicó una integración múltiple del casete de deleción. Cuatro clones puros (con y sin copias adicionales del casete de deleción) se han almacenado *para uso futuro (M403; 26-8A, M404; 26-19A, M406; 26-16B y M407; 26-19B)*.

Ejemplo 2 Análisis de las cepas M403, M404, M406 y M407 de ∆pmt1

El cultivo en matraz de agitación de la cepa M304 de *T. reesei* y ocho cepas de deleción de *pmt1* (26-8A (M403), 26-8B, 26-16A, 26-16B (M406), 26-19A (M404), 26-19B (M407), 26-21A, 26-21B) se llevó a cabo en un medio mínimo de *Trichoderma* con 40 g/l de lactosa, 20 g/l de extracto de grano agotado, PIPPS 100 mM, 9 g/l de casaminoácidos, pH 5,5 a +28 °C, 200 rpm. Las muestras se recogieron los días 3, 5, 7 y 10 mediante filtración en vacío. Las muestras de sobrenadantes se almacenaron a -20 °C (análisis de anticuerpo y glicano) o se usaron en determinaciones de pH. Los micelios para determinaciones de peso seco celular se aclararon una vez con DDIW y se secaron a +100 °C durante 20-24 h. Los micelios para extracción de ADN genómico se aclararon una vez con DDIW y se almacenaron a-20 °C.

El análisis del estado de O-manosilación se llevó a cabo para cultivos el matraz de agitación de la cepa M304 de *T. reesei*, ocho interruptores de *pmt1* (pTTv185: 26-8A, 26-8B, 26-16A, 26-16B, 26-19A, 26-19B, 26-21A, 26-21B). Todos se cultivaron en TrMM - 40 g/l de lactosa - 20 g/l de SGE - PIPPS 100 mM - 9 g/l de casaminoácidos, pH 5,5 a +28 °C y las muestras se extrajeron en los días de los puntos temporales 3, 5, 7 y 10.

El anticuerpo MAB01 de cada muestra del día 7 se purificó a partir de los sobrenadantes usando la placa de 96 pocillos ProteT G HP MultiTrap (GE Healthcare) de acuerdo con las instrucciones del fabricante. El anticuerpo se eluyó con tampón citrato 0,1 M, pH 2,6 y se neutralizó con Tris 2 M, pH 9. La concentración se determinó mediante la absorbancia de UV en un espectrofotómetro frente a la curva patrón de MAB01. Para el análisis de Omanosilación, se incubaron 10 µg de proteína en HCl de Guanidinio 6 M durante 30 minutos a +60 °C, después de lo cual se añadieron 5 µl de DTT 0,1 M reciente y se incubaron nuevamente como se ha indicado anteriormente. Las muestras se purificaron usando una placa Poros R1 de 96 pocillos y las cadenas ligeras resultantes se analizaron usando MALDI-TOF MS. Todos los análisis se realizaron como duplicados.

En cultivos de matraz, el estado de O-manosilación en los interruptores de *pmt1* se modificó notablemente; todos los interruptores de Δ*pmt1* parecían iguales - de O-manosilación casi completa pérdida en MAB01 LC (Figura 2: Espectros de la cadena ligera de la cepa M317 precursora de *T. reesei* cultivada en matraz (pyr4- de M304) (A) y el clon 26-8A interruptor de Δ*pmt1* (B), día 7).

Fermentación de la cepa M403 de Δpmt1

40 La fermentación se llevó a cabo con la cepa M403 de Δ*pmt1* (clon 26-8A; pTTv185 en M317). El medio de cultivo de fermentación contenía 30 g/l de glucosa, 60 g/l de lactosa, 60 g/l de grano agotado completo a pH 5,5. La alimentación con lactosa se inició después del agotamiento de la glucosa. La temperatura de crecimiento se desplazó de +28 °C a +22 °C después del agotamiento de la glucosa. Las muestras se recogieron mediante filtración en vacío. Las muestras de sobrenadantes se almacenaron a -20 °C.

En la Figura 3 se muestran los análisis de Western de muestras de sobrenadante. Las cadenas pesadas y ligeras de MAB01 se detectaron a partir de sobrenadante después del día tres. A pesar de la deleción de *pmt1*, que también podría reducir la O-manosilación del conector y por lo tanto ayudar en la escisión de KEX2, una cantidad sustancial de cadena ligera permanece unida al vehículo en los primeros días de la fermentación. En etapas posteriores, la escisión es más completa, pero el rendimiento se puede ver afectado por la degradación de la cadena pesada. Los resultados sobre los títulos de anticuerpos (Tabla 7 que sigue a continuación) indican una expresión bastante estable entre los días 7 y 10. En esta fermentación, la cepa de deleción de *pmt1* deleción produjo niveles de anticuerpos aproximadamente iguales a los de la cepa precursora. Se obtuvieron títulos más altos cuando la misma cepa se fermentó usando un fermentador diferente.

M403 (clon 26-8A) se cultivó en un fermentador en TrMM, 30 g/l de glucosa, 60 g/l de lactosa, 60 g/l de grano agotado, pH 5,5 con alimentación de lactosa. Las muestras se recolectaron los días 2, 3 y 5 - 11. Se llevó a cabo un análisis del nivel de O-manosilación con respecto a los cultivos en matraz. El estado de O-manosilación también disminuyó considerablemente en el cultivo en fermentador (Figura 4, Tabla 5).

El nivel de O-manosilación se calculó a partir del promedio de área e intensidad (Tabla 5). El área (Tabla 6) parece dar con mayor frecuencia una tasa más alta de LC no O-glicosilado que la intensidad (Tabla 7). En todos los puntos temporales, el nivel de O-manosilación fue inferior a un 5 %.

33

55

50

35

60

Tabla 5. Estado de O-manosilación de la cepa M403 de T. reesei (cepa de deleción de pmt1 de cepa productora de anticuemo MAB01, clon 26-8A) del culta de cepa productora de anticuemo MAB01, clon 26-8A) del

Porcenta	Porcentajes calculados a partir de área e int	os a partir de	área eir	ntensidad de s	señales estando	señales cargadas individuales. En el punto t estando LC + Hex1 prácticamente ausente.	ividuales orácticam	. En el punto nente ausent	rtemporal d 9 e.	ambas mue	stras die	itensidad de señales cargadas individuales. En el punto temporal d 9 ambas muestras dieron un 100 % para LC, estando LC + Hex1 prácticamente ausente.	6 para LC,
	3 d	5 d		р9		PΖ		8 Q	6 Q	d 10		d 11	1
	Promedio	Promedio Promedio Estd	Estd	Promedio	Estd	Promedio	Estd	Promedio	Promedio	Promedio	Estd	Promedio Estd Promedio Estd Promedio Promedio Promedio Estd Promedio	Estd
ГС	8'96	8'96	06,0	97,5 0,29	0,29	97,4 0,36	96,0	67,3	100,0	9'96	0,2	95,5	0,11
TC+Hex	4,2	3,2	06,0	2,5 0,29	0,29	2,6 0,36	96'0	2,7	0'0	3,4	0,2	4,5	0,11

Tabla 6. Porcentajes de valores del área de tres muestras paralelas de M403 cultivada en fermentador del día 7.

-	Promedio de área	Estd
LC	98,5	0,15
LC + Hex	1,5	0,15

Tabla 7. Porcentajes de valores de intensidad de tres muestras paralelas de M403 cultivada en fermentador del día 7.

	Promedio de intensidad	Estd
LC	96,3	0,57
LC + Hex	3,7	0,57

No se observaron efectos negativos de la característica del crecimiento de la cepa y capacidad de secreción. La cepa M403 creció bien y produjo un aumento de la cantidad de anticuerpo en función del tiempo en cultivo en fermentador. El mejor título se obtuvo desde el día 10 (Tabla 8). El día 11 el título disminuye.

Tabla 8: Títulos de MAB01 cultivada en fermentador que produce la cepa M403. El anticuerpo se purificó usando una placa de 96 pocillos con Proteína G.

Punto Temporal	Días cultivado	Título g/l
54:30 horas	2	0,04
71:50 horas	3	0,04
77:45 horas	3	0,07
126:20 horas	5	0,91
148:20 horas	6	1,23
168:20 horas	7	1,47
192:00 horas	8	1,50
217:15 horas	9	1,35
241:00 horas	10	1,52
275:20 horas	11	1,06

La deleción de *pmt1* disminuyó drásticamente la O-manosilación de MAB01; la cantidad de LC O-manosilada fue ~ 61 % en la cepa precursora, un 3 % en el mejor clon de Δ*pmt1* en el cultivo en matraz de agitación y prácticamente un 0 % en el cultivo en fermentador en el punto temporal el día 9.

Deleción de pmt1 en un Fab que expresa la Cepa de Trichoderma reesei

5

10

15

20

25

30

El casete de interrupción de *pmt1* (*pmt1 amdS*) se liberó de su troncal pTTv124 de la estructura principal que se ha descrito anteriormente mediante digestión de restricción y se purificó mediante extracción en gel. Usando la transformación de protoplastos, el casete de deleción se introdujo en las cepas de *T. reesei*, M304 (cepa de deleción de proteasa que expresa MAB01 3 veces) y M307 (cepas Δpep1 Δtsp1 Δslp1 Δgap1 de deleción de proteasa 4 veces, también descrita en el documento PCT/EP2013/050126 que se ha transformado para expresar un Fab). Los transformantes se sembraron en placas en medio selectivo de acetamidasa (medio mínimo que contiene acetamida como única fuente de carbono).

Los transformantes se identificaron sistemáticamente por PCR para la integración homóloga del marcador de acetamidasa en el locus de *pmt1* usando un cebador directo fuera del fragmento de la región de flanqueo en la posición 5' de la construcción y el cebador inverso dentro del marcador de selección *AmdS* (integración en 5'), así como un cebador directo dentro del marcador de selección *AmdS* y un cebador inverso fuera del fragmento de la región de flanqueo en la posición 3' (integración en 3'). Se seleccionaron tres transformantes independientes de cada transformación (cepas que expresaban MAB01 y Fab), que dieron resultados de PCR que mostraban la integración correcta de la construcción en el locus de *pmt1* para la purificación de esporas individuales para obtener clones uninucleares. La integración adecuada del casete de alteración se volvió a confirmar mediante PCR usando las mismas combinaciones de cebadores que se han descrito anteriormente y la ausencia del gen *pmt1* se verificó mediante el uso de una combinación de cebadores dirigida al marco de lectura abierto de *pmt1*. La integración correcta del casete de alteración también se verificó para todos los clones que aplican la hibridación de Southern. El ADN genómico digerido de los tres clones, así como la cepa precursora, se sometieron a ensayo frente de los

flancos en las posiciones 5 'y 3' del gen *pmt1* para confirmar la modificación del locus de *pmt1* como se esperaba. Además, el ADN de transferencia se hibridó con una sonda específica para el marco de lectura abierto de *pmt1* con el fin de verificar la ausencia de *pmt1*.

5 Expresión de MAB01 y Fab para análisis de O-manosilación

Para evaluar el impacto de la deleción de pmt1 en los niveles de O-manosilación de moléculas de mAb y Fab, las cepas se cultivaron en fermentaciones discontinuas durante 7 días, en medios que contenían un 2 % de extracto de levadura, un 4 % de celulosa, un 4 % de celobiosa, un 2 % de sorbosa, 5 g/l de KH₂PO₄, y 5 g/l de (NH₄)₂SO₄. El pH del cultivo se controló a pH 5,5 (ajustado con NH₄OH). La temperatura de partida fue 30 °C, que se desplazó a 22 °C después de 48 horas. Las fermentaciones de mAb (cepas M304, M403, M406 y M407) se llevaron a cabo en 4 recipientes de reactor de vidrio de 2 l en paralelo (DASGIP) con un volumen de cultivo de 1 l y la fermentación de Fab (TR090 N.° 5) se realizó en un reactor de tanque de acero de 15 l (Infors) con un volumen de cultivo de 6 l. Las cepas de Fab (TR090 N.° 5, TR090 N.° 3, TR090 N.° 17) se cultivaron además en matraces de agitación durante 4 días a 28 °C. Los componentes principales de los medios fueron extracto de levadura al 1 %, celobiosa al 2 %, sorbosa al 1 %, 15 g/l de KH₂PO₄, y 5 g/l de (NH₄)₂SO₄ y el pH no se controló (el pH disminuye de 5,5 a < 3 durante un periodo de tiempo de cultivo). Se tomaron muestras de sobrenadante de cultivo durante el transcurso de los ensayos y se almacenaron a -20 °C. Las muestras se recogieron diariamente de todo el transcurso de estos cultivos, y los niveles de producción se analizaron mediante cromatografía líquida de afinidad. Las muestras con niveles de producción máximos se sometieron a purificación y además a un análisis de O-manosilación.

Análisis de O-manosilación en Fab y mAb

10

15

20

25

40

45

50

La O-manosilación se analizó en moléculas de mAb y Fab expresadas a partir de la deleción de *pmt1* y las cepas precursoras. El mAb y el Fab se purificaron a partir de sobrenadantes de cultivo usando la resina de cromatografía de afinidad Lambda Select Sure y CaptureSelect Fab Lambda (BAC), respectivamente, aplicando las condiciones descritas por los protocolos de los fabricantes. Ambas moléculas purificadas, incluyendo el mAb y el Fab purificados, se sometieron a RP-LC-QTOF-MS como muestras intactas y/o reducidas/alquiladas.

Para análisis intactos, un equivalente de 20 µg de proteína se inyectó en la columna. Para análisis de mAb reducidos/alquilados, un equivalente de 100 µg de proteína se desglicosiló usando la enzima PNGasa-F, que se reduce usando DTT y se alquila usando yodoacetamida antes del análisis de LC-MS. Para los análisis de Fab reducidos/alquilados, un equivalente de 100 µg de proteína se redujo con DTT y se alquiló con yodoacetamida antes del análisis de LC-MS. 6 µg de la muestra reducida/alquilada se inyectaron en la columna. La separación mediante cromatografía en fase inversa se llevó a cabo en una columna Zorbax C3 de 2,1 x 150 mm empaquetada con partículas de 5 µm, tamaño de poro de 300 Å, los eluyente les fueron: eluyente A TFA al 0,1 % en agua y eluyente B TFA al 0,1 % en IPA al 70 %, ACN al 20 %, agua al 10 %. La columna se calentó a 75 °C y el caudal fue de 200 µl/min. El gradiente usado para la separación de la muestra se presenta en Tabla 9.

Table Or avadiante de LIDI C		. luta ataa	
i abia 9: gradiente de HPLC	usado para muestras	intactas v reducidas/alquiladas	

Tiempo	% de B	Flujo (ml/min)
0	10	0,1
0,1	10	0,2
2	10	0,2
4	28	0,2
30	36,4	0,2
31	100	0,2
34	100	0,2
35	10	0,2
40	10	0,2

La HPLC se acopló directamente con un espectrómetro de masas Q-TOF Ultima (Waters, Manchester, Reino Unido). El espectrómetro de masas ESI-TOF sea justo para desarrollarse en modo ion positivo. La evaluación de los datos de los análisis de muestras intactas y reducidas/alquiladas se llevó a cabo usando el software de análisis MassLynx (Waters, Manchester, Reino Unido). La deconvolución de los espectros de masas promediados a partir de las señales de UV principales se llevó a cabo usando el algoritmo MaxEnt, una parte del software de análisis MassLynx (Waters, Manchester, Reino Unido). Los parámetros de deconvolución fueron los siguientes: los "números máximos de iteraciones" son 8; la resolución es 0,1 Da/canal; Gaussiana Uniforme - el ancho a la altura media es 1 Da para las cadenas intactas y 0,5 para las cadenas reducidas y las proporciones de intensidad mínima son izquierda a un 30 % y derecha un 30 %. El nivel calculado de O-manosilación (%) se determinó usando la altura de la señal del pico

después de la deconvolución. Los niveles de O-manosilación observados (%) de los mAb y los Fab de las cepas de deleción de pmt1 independientes se comparan con los de las cepas de tipo silvestre precursoras respectivas en las Tablas 10 y 11.

Tabla 10: Nivel de O-manosilación [%] de los Fab de diferentes cepas

	Сера			
Muestra	M307 Precursora	TR090 N.º 5	TR090 N.º 3	TR090 N.º 17
Fab Intacto	70,1	34,2	34,3	34,7
LC	58,8	10,4	10,1	10,8
HC	42,9	26,1	25,9	25,8

Tabla 11: Nivel de O-manosilación [%] de MAB01 de diferentes cepas M403, M406 y M407 deficientes en pmt1. La cepa precursora es M304

	Cepa en medio de extracto de levadura			
Muestra	Precursora	M403	M406	M407
LC	50,7	5,7	5,8	5,8
HC	4,8	No detectada	No detectada	No detectada

Se encontró que el nivel de O-manosilación era de un 70 % en el Fab intacto obtenido a partir de la cepa precursora y se redujo a ~34 % en las tres cepas de deleción de *pmt1*. La transferencia de manosas disminuyó de manera más eficaz en las cadenas ligeras de Fab (10 % de O-manosilación residual en las cadenas ligeras obtenidas a partir de las cepas de deleción de *pmt1* con respecto a un 59 % para la cepa precursora), en comparación con las cadenas pesadas, para las cuales disminuyó de un 43 % a ~26 %.

Se encontró que el nivel de O-manosilación era de un 50 % en la cadena ligera del mAb obtenido a partir de las cepas precursoras y se redujo a un 5,7-5,8 % en las tres cepas de deleción de pmt1. Se encontró que el nivel de O-manosilación era de un 4,8 % en la cadena pesada del mAb obtenido a partir de las cepas y se redujo completamente (por debajo del límite de detección por LC-MS) en las tres cepas de deleción de pmt1.

En conclusión, después de la deleción de *pmt1*, casi un 95 % del mAb purificado y un 70 % de las moléculas de Fab ya no contenían ningún resto de O-manosa. Por lo tanto, *pmt1* es una diana valiosa para reducir la O-manosilación de proteínas secretadas y para mejorar la calidad del producto de los productos biofarmacéuticos producidos por *Trichoderma reesei*.

Ejemplo 3: deleción de pmt2 en una cepa de Trichoderma reesei

Generación de plásmidos de deleción de pmt2

5

20

25

40

45

50

Se construyeron tres plásmidos de deleción diferentes (pTTv34, pTTv122, pTTv186) para la deleción del gen *pmt2* de la proteína O-manosiltransferasa (TreID22005). Todos los plásmidos contienen las mismas regiones de flanqueo en las posiciones 5' y 3' para una correcta integración en el locus de *pmt2*. La diferencia entre los tres plásmidos es el marcador usado en la selección; pTTv34 contiene un gen que codifica acetamidasa de *Aspergillus nidulans* (*amdS*), pTTv122 contiene una versión de bucle (casete blaster) del marcador *amdS* y pTTv186 una versión de bucle (casete blaster) de un gen que codifica orotidina-5'-mono-fosfato (OMP) descarboxilasa de *T. reesei* (*pyr4*).

Se seleccionaron 1100 pb de las regiones de flanqueo en la posición 5' y 1000 pb en la posición 3' como la base del segundo gen de la proteína O-manosiltransferasa, *pmt2* (TreID22005), plásmidos de deleción. La construcción del primer plásmido para este gen se llevó a cabo básicamente como se ha descrito para *pmt1* en el Ejemplo 1. En cuanto a *pmt1*, el primer plásmido de deleción para *pmt2* (plásmido pTTv34, Tabla 12) usó *amdS*, un gen que codifica acetamidasa de *Aspergillus nidulans*, como el marcador de selección.

Al igual que para *pmt1* en el Ejemplo 1, para clonar el segundo plásmido de deleción, pTTv122 (Tabla 12), el marcador *amdS* se eliminó del plásmido de deleción pTTv34 con digestión con *Not*I y se reemplazó por el casete blaster de *amdS* para el cual los fragmentos se produjeron por PCR (véase el Ejemplo 1 mencionado anteriormente para detalles). El plásmido pTTv122 se construyó usando el sistema de recombinación de levadura que se ha descrito en el Ejemplo 1. El plásmido de ADN de los transformantes de levadura se rescató mediante transformación en *Escherichia coli*. Se cultivaron unos pocos clones, el plásmido de ADN se aisló y se digirió para identificar sistemáticamente la recombinación correcta usando métodos de laboratorio convencionales. Se secuenciaron y almacenaron algunos clones con tamaños de inserción correctos.

37

El tercer plásmido de deleción para *pmt2*, pTTv186 (Tabla 12) se clonó como el tercer plásmido para *pmt1*; el casete blaster de *amdS* se retiró del plásmido de deleción pTTv122 con digestión con *Not*1 y se reemplazó por el casete blaster de *pyr4* que se ha descrito en el Ejemplo 1. El casete blaster de *pyr4* se obtuvo a partir de otro plásmido con digestión con *Not*1, se ligó a pTTv122 cortado con *Not*1 y se transformó en *E. coli* usando métodos de laboratorio convencionales. Se cultivaron unos pocos transformantes, el plásmido de ADN se aisló y se digirió para identificar sistemáticamente la ligadura y orientación correctas del casete blaster de *pyr4* usando métodos de laboratorio convencionales. Un clon con un tamaño de inserción y orientación correctos se secuenció y almacenó. Estos plásmidos de deleción para *pmt2* (pTTv34, pTTv122 y pTTv186, Tabla 12) dan como resultado una deleción de 3186 pb en el locus de *pmt2* y cubren la secuencia de codificación completa de PMT2.

10

20

Tabla 12. Cebadores para generar los plásmidos deleción pTTv34, pTTv122 y pTTv186 para proteína O-manosiltransferasa 2 (pmt2, TreID22005).

Plásmido de deleción pTTv34 para pmt2 (TrelD22005), estructura principal de vector pRS426		
Cebador	Secuencia	
22005_5'F	CGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGGT TTAAACGTTTCAGGTACCAACACCTG (SEQ ID NO:70)	
22005_5'R	ATCTCTCAAAGGAAGAATCCCTTCAGGGTTGCGTTTCCAGTGC GGCCGCGGCGAAGAGTCTGGCGGGGA (SEQ ID NO:71)	
22005_3'F	CGGTTCTCATCTGGGCTTGCTCGGTCCTGGCGTAGATCTAGCG GCCGCAAGAGGATGGGGGTAAAGCT (SEQ ID NO:72)	
22005_3'R	GTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCGT TTAAACGAGGAGGACTCGTGAGTTAT (SEQ ID NO:73)	
Plásmido de deleciór	pTTv122 for pmt2 (TrelD22005), estructura principal de vector pTTv34	
T280_22005_amds_ 5for	GCGCCCTTCCGCCTCGACAATCCCCGCCAGACTCTTCGCCGC GGCCGCGGCCGCGCGATCGCCTAGATCTACGCCAGGACC G (SEQ ID NO:74)	
T283_amds_3rev_ loop	CGGTCCTGGCGTAGATCTAGGGCGCGCCACTGGAAACGCAAC CCTGAA (SEQ ID NO:75)	
T284_amds_loop_ 5for	TTCAGGGTTGCGTTTCCAGTGGCGCGCCCTAGATCTACGCCAG GACCG (SEQ ID NO:76)	
T285_22005_loop_ 3rev	GAGCTGGCCAGAAAAGACCAAGCTTTACCCCCATCCTCTTGCG GCCGCGATTATTGCACAAGCAGCGA (SEQ ID NO:77)	
Plásmido de deleción	pTTv186 for pmt2 (TrelD22005), estructura principal de vector pTTv122	
Cebador	Secuencia	
sin nuevos cebadores,	pTTv122 digerido con Notl y ligado con fragmento de bucle de pyr4 de otro plásmido	

15 Generación de las cepas de deleción M338, M339 y M340 de pmt2

Para eliminar la secuencia del vector, el plásmido pTTv122 (Δ*pmt2-amdS*) se digirió con *Pmel+Xbal* y el fragmento de 5,2 kb se purificó del gel de agarosa usando el kit de extracción en gel QIAquick (Qiagen). Se usaron aproximadamente 5 μg del casete de deleción de *pmt2* para transformar la cepa M124 (la cepa M124 se describe en el documento WO2012/069593). La preparación y transformación de protoplastos se llevaron a cabo básicamente de acuerdo con Penttilä *et al.*, 1987, Gene 61: 155-164 y Gruber *et al.*, 1990, Current Genetics 18: 71-76 para la selección de *amdS*.

Se seleccionaron 120 colonias como estrías selectivas. 10 transformantes se identificaron sistemáticamente por PCR usando los cebadores de la Tabla 13 para la integración correcta del casete de deleción usando métodos de laboratorio convencionales. Cinco clones de deleción supuestos se purificaron a clones de células individuales. Los clones purificados (dos en paralelo de cada uno) se volvieron a identificar sistemáticamente para la integración y

para la deleción del ORF de *pmt2* (cebadores en la Tabla 13). Cinco clones se seleccionaron para análisis de Southern.

Tabla 13. Cebadores para identificación sistemática de integración de casete de deleción pTTv122 y para deleción de la proteína O-manosiltransferasa 2 (pmt2. TrelD22005) de M124.

Cebador	Secuencia
T288_22005_5int	ACGAGTTGTTTCGTGTACCG (SEQ ID NO:78)
T020_Amds_rev2	CTTTCCATTCATCAGGGATGG (SEQ ID NO:79)
T021_amds_end_fwd	GGAGACTCAGTGAAGAGAGG (SEQ ID NO:80)
T289_22005_3int	ATGTTGCAGTTGCGAAAG (SEQ ID NO:81)
T290_22005_5orf	CCCTCGTCGCAGAAAAGATG (SEQ ID NO:82)
T291_22005_3orf	AGCCTCCTTGGGAACCTCAG (SEQ ID NO:83)

La deleción de *pmt2* se verificó mediante análisis de Southern. El ADN para los análisis de Southern se extrajo con el kit Easy-DNA para el aislamiento del ADN genómico (Invitrogen) básicamente de acuerdo con las instrucciones del fabricante.

Los análisis de Southern se realizaron básicamente como se ha descrito en el Ejemplo 1. Los fragmentos para las sondas se produjeron mediante PCR usando los cebadores que se enumeran en la Tabla 14 usando una cepa M124 de *T. reesei* como molde para la sonda de ORF y el plásmido pTTv122 para las sondas de flanqueo en las posiciones 5' y 3'. Los productos de PCR se separaron por electroforesis en gel de agarosa y los fragmentos correctos se aislaron del gel con un kit de extracción en gel (Qiagen) usando métodos de laboratorio convencionales.

Tabla 14. Cebadores para producción de fragmentos de sonda usados en análisis de Southern de cepas de deleción de proteína O-manosiltransferasa 2 (pmt2, TreID22005).

Cebador	Secuencia
T639_22005 sonda de flanqueo F en la posición 5'	CTTAGTGCGGCTGGAGGGCG (SEQ ID NO:84)
T640_22005 sonda de flanqueo R en la posición 5'	GGCCGGTTCGTGCAACTGGA (SEQ ID NO:85)
T641_22005 sonda de flanqueo F en la posición 3'	GGCCGCAAGAGGATGGGGGT (SEQ ID NO:86)
T642_22005 sonda de flanqueo R en la posición 3'	TCGGGCCAGCTGAAGCACAAC (SEQ ID NO:87)
T643_22005 sonda en la posición 5' de orf	TTGAGGAACGGCTGCCTGCG (SEQ ID NO:88)
T644_22005 sonda en la posición 3' de orf	CGATGGCTCCGTCATCCGCC (SEQ ID NO:89)

Tres de los clones no se hibridaron con la sonda de ORF de *pmt2* (los datos no se muestran) lo que indica una deleción de *pmt2* satisfactoria. Los análisis que usaron sondas de flanqueo en las posiciones 5' y 3' revelaron que los mismos tres clones eran integrantes individuales (los datos no se muestran). Los otros dos clones (19-35A y 19-40B) dieron señales correspondientes a la cepa precursora M124. Tres clones puros se han almacenado para uso futuro (M338; 19-7B, M339; 19-22B y M340; 19-39B).

Análisis de las cepas M338, M339 y M340 de Δpmt2

El cultivo en matraz de agitación de la cepa M124 de *T. reesei* y las cepas de deleción de *pmt2* (19-7B/M338, 19-22B/M339 y 19-39B/M340) se llevó a cabo en medio mínimo de *Trichoderma* con 40 g/l de lactosa, 20 g/l de extracto de grano agotado, PIPPS 100 mM, pH 5,5 con y sin sorbitol 1 M como estabilizador osmótico a +28 °C, 200 rpm. Las muestras se recogieron los días 3, 5 y 7 mediante filtración en vacío. Las muestras de sobrenadantes se almacenaron a -20 °C (análisis de anticuerpo y glicano) o se usaron en determinaciones de pH. Los micelios para determinaciones de peso seco celular se aclararon una vez con DDIW y se secaron a +100 °C durante 20-24 h. Los micelios para extracción de ADN genómico se aclararon una vez con DDIW y se almacenaron a-20 °C.

Generación de las cepas M452, M453 y M454 de deleción de pmt2

35

30

25

5

10

15

La generación de M317 se describe en el Ejemplo 1 que se ha mencionado anteriormente.

Para eliminar la secuencia del vector, el plásmido pTTv186 (Δ*pmt2-pyr4*) se digirió con *Pmel + Xbal* y el fragmento de 4,1 kb se purificó a partir de gel de agarosa usando el kit de extracción en gel QlAquick (Qiagen). Para transformar la cepa M317 se usaron aproximadamente 5 μg del casete de deleción de *pmt2*.

La preparación y transformación de protoplastos se llevaron a cabo básicamente de acuerdo con Penttilä et al., 1987, Gene 61: 155-164 y Gruber et al., 1990, Current Genetics 18:71-76 para la selección de pyr4.

Se seleccionaron 100 colonias como estrías selectivas. 20 transformantes se identificaron sistemáticamente por PCR usando los cebadores de la Tabla 15 para la integración correcta del casete de deleción usando métodos de laboratorio convencionales. Nueve clones de deleción supuestos se purificaron a clones de células individuales. Los clones purificados se volvieron a identificar sistemáticamente para integración en la posición 5' y para deleción del ORF de *pmt2* (cebadores en la Tabla 14). Tres clones eran agentes de deleción puros (es decir, sin señal con los cebadores de ORF).

Tabla 15. Cebadores para identificación sistemática de integración de casete de deleción pTTv186 y para deleción de la proteína O-manosiltransferasa 2 (pmt2, TreID22005) de M317.

Cebador	Secuencia	
T288_22005_5int		ACGAGTTGTTTCGTGTACCG (SEQ ID NO:90)
T027_Pyr4_orf_start_rev		TGCGTCGCCGTCTCGCTCCT (SEQ ID NO:91)
T061_pyr4_orf_screen_2 F		TTAGGCGACCTCTTTTCCA (SEQ ID NO:92)
T289_22005_3int		ATGTTGCAGTTGCGAAAG (SEQ ID NO:93)
T290_22005_5orf		CCCTCGTCGCAGAAAAGATG (SEQ ID NO:94)
T291_22005_3orf		AGCCTCCTTGGGAACCTCAG (SEQ ID NO:95)

20 La deleción de pmt2 se verificó mediante análisis de Southern. El ADN para los análisis de Southern se extrajo con el kit Easy-DNA para el aislamiento del ADN genómico (Invitrogen) básicamente de acuerdo con las instrucciones del fabricante.

Los análisis de Southern se realizaron básicamente como se ha descrito en el Ejemplo 1. Los fragmentos para las sondas se produjeron mediante PCR usando los cebadores que se enumeran en la Tabla 16 usando una cepa QM6a de tipo silvestre de *T. reesei* (ATCC13631) como el molde para la sonda de ORF de *pmt2* y el plásmido pTTv186 para las sondas de flanqueo en las posiciones 5' y 3'. Los productos de PCR se separaron por electroforesis en gel de agarosa y los fragmentos correctos se aislaron del gel con un kit de extracción en gel (Qiagen) usando métodos de laboratorio convencionales.

30

35

Tabla 16. Cebadores para producción de fragmentos de sonda usados en análisis de Southern de clones de deleción de proteína O-manosiltransferasa 2 (pmt2, TreID22005).

Cebador	Secuencia
T639_22005 sonda de flanqueo F en la posición 5'	CTTAGTGCGGCTGGAGGGCG (SEQ ID NO: 96)
T640_22005 sonda de flanqueo R en la posición 5'	GGCCGGTTCGTGCAACTGGA(SEQ ID NO: 97)
T641_22005 sonda de flanqueo F en la posición 3'	GGCCGCAAGAGGATGGGGGT(SEQ ID NO: 98)
T642_22005 sonda de flanqueo R en la posición 3'	TCGGGCCAGCTGAAGCACAAC(SEQ ID NO: 99)
T290_22005_5orf	CCCTCGTCGCAGAAAAGATG(SEQ ID NO: 100)
T291_22005_3orf	AGCCTCCTTGGGAACCTCAG(SEQ ID NO: 101)

Ninguno de los clones se hibridó con la sonda del ORF de *pmt2* (los datos no se muestran) indicando una deleción satisfactoria de *pmt2*. Los análisis que usaron sondas flanqueo en las posiciones 5' y 3' revelaron que dos de los

clones eran integrantes individuales (los datos no se muestran). Un clon dio una señal adicional desde la sonda de franqueo en la posición 3' (los datos no se muestran) y por lo tanto esto indicó una integración múltiple del casete de deleción. Tres clones puros (con y sin copias adicionales del casete de deleción) se han almacenado para uso futuro (M452; 27-10A, M453; 27-17A y M454: 27-18B).

Análisis de las cepas M452, M453 y M454 de Δpmt2

Se llevó a cabo el cultivo en matraz de agitación de la cepa M304 de T. reesei y tres cepas de deleción de pmt2 (27-10A/M452, 27-17A/M453 y 27-18B/M454) en medio mínimo de Trichoderma con 40 g/l de lactosa, 20 g/l de extracto de grano agotado, PIPPS 100 mM, 9 g/l de casaminoácidos, pH 5,5 a +28 °C, 200 rpm. Las muestras se recogieron los días 3, 5, 7 y 10 mediante filtración en vacío. Las muestras de sobrenadantes se almacenaron a -20 °C (análisis de anticuerpo y glicano) o se usaron en determinaciones de pH. Los micelios para determinaciones de peso seco celular se aclararon una vez con DDIW y se secaron a +100 °C durante 20-24 h. Los micelios para extracción de ADN genómico se aclararon una vez con DDIW v se almacenaron a-20 °C.

El nivel de O-manosilación se llevó a cabo para cepas de deleción de pmt2 con respecto a cultivos en matraz de cepas de deleción de pmt1. No se observó diferencia en la O-manosilación en comparación con la cepa precursora M304.

20 Ejemplo 4: deleción de pmt3 en una cepa de Trichoderma reesei

Generación de plásmidos de deleción de pmt3

Tres plásmidos de deleción diferentes (pTTv35, pTTv123, pTTv187) se construyeron para deleción del gen pmt3 de 25 la proteína O-manosiltransferasa (TreID22527). Todos los plásmidos contienen las mismas regiones de flanqueo en las posiciones 5' y 3' para la integración correcta al locus de pmt3. La diferencia entre los tres plásmidos es el marcador usado en la selección; pTTv35 contiene un gen que codifica acetamidasa de Aspergillus nidulans (amdS), pTTv123 contiene una versión de bucle (casete blaster) del marcador amdS y pTTv187 una versión de bucle (casete blaster) de un gen que codifica orotidina-5'-mono-fosfato (OMP) descarboxilasa de T. reesei (pyr4).

Se seleccionaron regiones de flanqueo de 1100 pb de la posición 5' y de 1000 pb de la posición 3' como la base del tercer gen, pmt3, de la proteína O-manosiltransferasa (TrelD22527), plásmidos de deleción. La construcción del primer plásmido para este gen se llevó a cabo básicamente como se ha descrito para pmt1 en el Eiemplo 1. En cuanto a pmt1, el primer plásmido de deleción para pmt3 (plásmido pTTv35, Tabla 17) usó amdS, un gen que codifica acetamidasa de Aspergillus nidulans, como el marcador de selección.

Al igual que para pmt1 en el Eiemplo 1, para clonar el segundo plásmido de deleción, pTTv123 (Tabla 16), el marcador amdS se eliminó del plásmido de deleción del plásmido de deleción pTTv35 con digestión con Notl y se reemplazó por el casete blaster de amdS para el cual los fragmentos se produjeron por PCR (véase el Ejemplo 1 mencionado anteriormente para detalles). El plásmido pTTv123 se construyó usando el sistema de recombinación de levadura que se ha descrito en el Ejemplo 1. El plásmido de ADN de los transformantes de levadura se rescató mediante transformación en Escherichia coli. Se cultivaron unos pocos clones, el plásmido de ADN se aisló y se digirió para identificar sistemáticamente la recombinación correcta usando métodos de laboratorio convencionales. Se secuenciaron y almacenaron algunos clones con tamaños de inserción correctos.

El tercer plásmido de deleción para pmt3, pTTv187 (Tabla 17) se clonó como el tercer plásmido para pmt1; el casete blaster de amdS se retiró del plásmido de deleción pTTv123 con digestión con Notl y se reemplazó por el casete blaster de pyr4 que se ha descrito en el Ejemplo 1. El casete blaster de pyr4 se obtuvo a partir de otro plásmido con digestión con Notl, se ligó a pTTv123 cortado con Notl y se transformó en E. coli usando métodos de laboratorio convencionales. Se cultivaron unos pocos transformantes, el plásmido de ADN se aisló y se digirió para identificar sistemáticamente la ligadura y orientación correctas del casete blaster de pyr4 usando métodos de laboratorio convencionales. Un clon con un tamaño de inserción y orientación correctos se secuenció y almacenó. Estos plásmidos de deleción para pmt3 (pTTv35, pTTv123 y pTTv187, Tabla 17) dan como resultado una deleción de 2495 pb en el locus de pmt3 y cubren la secuencia de codificación completa de PMT3.

Tabla 17. Cebadores para generar los plásmidos deleción pTTv35, pTTv123 y pTTv187 para proteína Omanosiltransferasa 3 (pmt3, TrelD22527).

Plásmido de deleción pTTv35 para <i>pmt</i> 3 (TrelD22527), estructura principal de vector pRS426		
Cebador Secuencia		
22527_5'F	CGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGAC GGTTTAAACGTGTTTAAATTTGATGAGGC (SEQ ID NO:102)	

10

15

30

35

45

40

55

50

22527_5'R	ATCTCTCAAAGGAAGAATCCCTTCAGGGTTGCGTTTCCAGT GCGGCCGCGGTCTCAGAGACAGCCTTCT (SEQ ID NO:103)
22527_3'F	CGGTTCTCATCTGGGCTTGCTCGGTCCTGGCGTAGATCTA GCGGCCGCACTCGGCTTCTTTGTCCGAG (SEQ ID NO:104)
22527_3'R	GTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAG CGTTTAAACTCCTCGTCGGCAACAAGGCC (SEQ ID NO:105)
Plásmido de deleció	n pTTv123 para <i>pmt</i> 3 (TrelD22527), estructura principal de vector pTTv35
T281_22527_amds_ 5for	GCAGATCTGGGGGAGGAATCAGAAGGCTGTCTCTGAGACC GCGGCCGCGGCCGCGATCGCCTAGATCTACGCCAG GACCG (SEQ ID NO:106)
T283_amds_3rev_ loop	CGGTCCTGGCGTAGATCTAGGGCGCGCCACTGGAAACGC AACCCTGAA (SEQ ID NO:107)
T284_amds_loop_ 5for	TTCAGGGTTGCGTTTCCAGTGGCGCGCCCTAGATCTACGC CAGGACCG (SEQ ID NO:108)
Plásmido de deleció	n pTTv123 para <i>pmt3</i> (TreID22527), estructura principal de vector pTTv35
T286_22527_loop_ 3rev	AAAGTGGGCGAGCTGAGATACTCGGACAAAGAAGCCGAGT GCGGCCGCGATTATTGCACAAGCAGCGA (SEQ ID NO:109)
Plásmido de deleció	n pTTv187 para <i>pmt</i> 3 (TrelD22527), estructura principal de vector pTTv123
Cebador	Secuencia
sin nuevos cebadores	, pTTv123 digerido con Notl y ligado con fragmento de bucle de pyr4 de otro plásmido.

Generación de las cepas M341 y M342 de deleción de pmt3

Para eliminar la secuencia del vector, el plásmido pTTv123 (Δpmt3-amdS) se digirió con Pmel + Xbal y el fragmento de 5,2 kb se purificó del gel de agarosa usando el kit de extracción en gel QlAquick (Qiagen). Se usaron aproximadamente 5 μg del casete de deleción de pmt3 para transformar la cepa M124. La preparación y transformación de protoplastos se llevaron a cabo básicamente de acuerdo con Penttilä et al., 1987, Gene 61:155-164 y Gruber et al., 1990, Current Genetics 18:71-76 para la selección de amdS.

Se seleccionaron 120 colonias como estrías selectivas. 10 transformantes se identificaron sistemáticamente por PCR usando los cebadores de la Tabla 18 para la integración correcta del casete de deleción usando métodos de laboratorio convencionales. Tres clones de deleción supuestos se purificaron a clones de células individuales. Los clones purificados (tres en paralelo de cada uno) se volvieron a identificar sistemáticamente para la integración y para la deleción del ORF de *pmt3* (cebadores en la Tabla 18). Tres clones se seleccionaron para análisis de Southern.

Tabla 18. Cebadores para identificación sistemática de integración de casete de deleción pTTv123 y para deleción de la proteína O-manosiltransferasa 3 (pmt3, TrelD22527) de M124.

Cebador	Secuencia	
T292_22527_5int		ACGGGAGATCTCGGAAAA (SEQ ID NO:110)
T020_Amds_rev2		CTTTCCATTCATCAGGGATGG (SEQ ID NO:111)
T021_amds_end_fwd		GGAGACTCAGTGAAGAGAGG (SEQ ID NO:112)
T293_22527_3int		ATGAAGCTCAGCCTGTGG (SEQ ID NO:113)
T294_22527_5orf		GGGGACGGCTTGAGGAAG (SEQ ID NO:114)

La deleción de *pmt3* se verificó mediante análisis de Southern. El ADN para los análisis de Southern se extrajo con el kit Easy-DNA para el aislamiento del ADN genómico (Invitrogen) básicamente de acuerdo con las instrucciones del fabricante.

Los análisis de Southern se realizaron básicamente como se ha descrito en el Ejemplo 1. Los fragmentos para las sondas se produjeron mediante PCR usando los cebadores que se enumeran en la Tabla 19 usando una cepa M124 de *T. reesei* como molde para la sonda de ORF y el plásmido pTTv123 para las sondas de flanqueo en las posiciones 5' y 3'. Los productos de PCR se separaron por electroforesis en gel de agarosa y los fragmentos correctos se aislaron del gel con un kit de extracción en gel (Qiagen) usando métodos de laboratorio convencionales.

Tabla 19. Cebadores para producción de fragmentos de sonda usados en análisis de Southern de cepas de deleción de proteína O-manosiltransferasa 3 (pmt3, TrelD22527).

Cebador	Secuencia
T645_22527 sonda de flanqueo F en la posición 5'	TGGCAGATGCCGAAAGGCGG (SEQ ID NO:116)
T646_22527 sonda de flanqueo R en la posición 5'	TGGCAACCAGCTGTGGCTCC (SEQ ID NO:117)
T647_22527 sonda de flanqueo F en la posición 3'	CGGCCGCACTCGGCTTCTTT (SEQ ID NO:118)
T648_22527 sonda de flanqueo R en la posición 3'	GAGTGGGCTAGGCGCAACGG (SEQ ID NO:119)
T649_22527 sonda en la posición 5' de orf	GGATCGGCCACTGCCACCAC (SEQ ID NO:120)
T650_22527 sonda en la posición 3' de orf	GCCCACTTCTCTGCGCGTGT (SEQ ID NO:121)

- Dos de los clones no se hibridaron con la sonda del ORF de pmt3 (los datos no se muestran) indicando una deleción satisfactoria de *pmt3*. Los análisis que usaron sondas flanqueo en las posiciones 5' y 3' revelaron que los mismos dos clones eran integrantes individuales (los datos no se muestran). Un clon (20-32C) dio señales correspondientes a la cepa precursora M124. Dos clones se han almacenado para uso futuro (M341; 20-34C y M342; 20-35B).
- 20 Análisis de las cepas M341 y M342 de Δpmt3

5

10

Se llevó a cabo el cultivo en matraz de agitación de la cepa M124 de *T. reesei* y cepas de deleción de *pmt3* (20-34C/M341 y 20-35B/M342) en medio mínimo de *Trichoderma* con 40 g/l de lactosa, 20 g/l de extracto de grano agotado, PIPPS 100 mM, pH 5,5 con y sin sorbitol 1 M como estabilizador osmótico a +28 °C, 200 rpm. Las muestras se recogieron los días 3, 5 y 7 mediante filtración en vacío. Las muestras de sobrenadantes se almacenaron a -20 °C (análisis de anticuerpo y glicano) o se usaron en determinaciones de pH. Los micelios para determinaciones de peso seco celular se aclararon una vez con DDIW y se secaron a +100 °C durante 20-24 h. Los micelios para extracción de ADN genómico se aclararon una vez con DDIW y se almacenaron a-20 °C.

30 Generación de las cepas M522 y M523 de deleción de pmt3

La generación de M317 se describe en el Ejemplo 1 que se ha mencionado anteriormente.

- Para eliminar la secuencia del vector, el plásmido pTTv187 (Δ*pmt3-pyr4*) se digirió con *Pmel + Xbal* y el fragmento de 4,1 kb se purificó a partir de gel de agarosa usando el kit de extracción en gel QlAquick (Qiagen). Se usaron aproximadamente 5 μg del casete de deleción de *pmt3* para transformar la cepa M317. La preparación y transformación de protoplastos se llevaron a cabo básicamente de acuerdo con Penttilä *et al.*, 1987, Gene 61: 155-164 y Gruber *et al.*, 1990, Current Genetics 18: 71-76 para selección de *pyr4*.
- Se seleccionaron 200 colonias como estrías selectivas. 59 transformantes se identificaron sistemáticamente por PCR usando los cebadores de la Tabla 20 para la integración correcta del casete de deleción usando métodos de laboratorio convencionales. Tres clones de deleción supuestos se purificaron a clones de células individuales. Los clones purificados se volvieron a identificar sistemáticamente para la integración y para la deleción del ORF de *pmt3* (cebadores en la Tabla 19). Dos clones (varias paralelas) eran agentes de deleción puros (es decir, sin señal de los cebadores del ORF).

Tabla 20. Cebadores para identificación sistemática de integración de casete de deleción pTTv187 y para deleción de la proteína O-manosiltransferasa 3 (pmt3, TrelD22527) de M317.

Cebador	Secuencia
T292_22527_5int	ACGGGAGATCTCGGAAAA (SEQ ID NO:122)
T026_Pyr4_orf_5rev2	CCATGAGCTTGAACAGGTAA (SEQ ID NO:123)
T061_pyr4_orf_screen _2F	TTAGGCGACCTCTTTTTCCA (SEQ ID NO:124)
T293_22527_3int	ATGAAGCTCAGCCTGTGG (SEQ ID NO:125)
T649_22527 sonda en la posición 3' de orf	GGATCGGCCACTGCCACCAC (SEQ ID NO:126)
T650_22527 sonda en la posición 3' de orf	GCCCACTTCTCTGCGCGTGT (SEQ ID NO:127)

La deleción de *pmt3* se verificó mediante análisis de Southern. El ADN para los análisis de Southern se extrajo con el kit Easy-DNA para el aislamiento del ADN genómico (Invitrogen) básicamente de acuerdo con las instrucciones del fabricante.

Los análisis de Southern se realizaron básicamente como se ha descrito en el Ejemplo 1. Los fragmentos para las sondas se produjeron mediante PCR usando los cebadores que se enumeran en la Tabla 21 usando una cepa QM6a de tipo silvestre de *T. reesei* (ATCC13631) como el molde para la sonda del ORF y el plásmido pTTv187 para las sondas de flanqueo en las posiciones 5' y 3'. Los productos de PCR se separaron por electroforesis en gel de agarosa y los fragmentos correctos se aislaron del gel con un kit de extracción en gel (Qiagen) usando métodos de laboratorio convencionales.

Tabla 21. Cebadores para producción de fragmentos de sonda usados en análisis de Southern de cepas de deleción de proteína O-manosiltransferasa 3 (pmt3, TrelD22527).

Cebador	Secuencia
T645_22527 sonda de flanqueo F en la posición 5'	TGGCAGATGCCGAAAGGCGG (SEQ ID NO:128)
T646_22527 sonda de flanqueo R en la posición 5'	TGGCAACCAGCTGTGGCTCC (SEQ ID NO:129)
T647_22527 sonda de flanqueo F en la posición 3'	CGGCCGCACTCGGCTTCTTT (SEQ ID NO:130)
T648_22527 sonda de flanqueo R en la posición 3'	GAGTGGGCTAGGCGCAACGG (SEQ ID NO:131)
T874_pmt3_orf_f3	CTCTGCGCGTGTTGTGG (SEQ ID NO:132)
T875_pmt3_orf_r3	TAAGGGTGCGGATTCGG (SEQ ID NO:133)

Ocho de los clones no se hibridaron con la sonda del ORF de *pmt3* (los datos no se muestran) indicando una deleción satisfactoria de *pmt3*. Un clon (33-37K) se indicó con la sonda del ORF de *pmt3* aún que el tamaño de la señal no correspondía con el de las cepas precursoras lo que sugiere una reordenación en el locus de *pmt3*. Los análisis que usaron sondas flanqueo en las posiciones 5' y 3' revelaron que los ocho clones de Δ*pmt3* eran integrantes individuales (los datos no se muestran). Un clon (33-37K) dio señales incorrectas o adicionales lo que sugiere reordenaciones en el locus de *pmt3* y múltiples interacciones del casete de deleción. Dos clones puros se han almacenado para uso futuro (M522; 33-34A y M523; 33-188A-a).

Análisis de las cepas M522 y M523 de Δpmt3

15

20

25

El cultivo en placa de 24 pocillos de la cepa M304 de *T.* reesei y ocho cepas de deleción de *pmt3* (33-34S/M522, 33-34T, 33-34U, 33-34Ö, 33-188A-a/M523, 33-188B-a, 33-188C-a y 33-188D-a) se llevó a cabo en medio mínimo de *Trichoderma* con 40 g/l de lactosa, 20 g/l de extracto de grano agotado, PIPPS 100 mM, 9 g/l de casaminoácidos, pH 5,5 a +28 °C, 800 rpm con control de humedad. Las muestras se recogieron los días 3, 5 y 6 mediante centrifugación. Las muestras de sobrenadantes se almacenaron a -20 °C. Los micelios para determinaciones de peso seco celular se aclararon una vez con DDIW y se secaron a +100 °C durante 20-24 h. Los micelios a la extracción del ADN genómico se aclararon dos veces con DDIW y se almacenaron a-20 °C.

El nivel de O-manosilación se llevó a cabo para cepas de deleción de *pmt3* con respecto a cultivos en matraz de cepas de deleción de *pmt1*. No se observó diferencia en la O-manosilación en comparación con la cepa precursora M304.

5 Ejemplo 5 - Homólogos de pmt

Los homólogos de pmt de *T. reesei* se identificaron a partir de otros organismos.

Las búsquedas de BLAST se realizaron usando la base de datos de aminoácidos no redundantes del National Center for Biotechnology Information (NCBI) usando las secuencias de aminoácidos de PMT de *Trichoderma reesei* como consultadas. Los resultados de secuencias de las búsquedas de BLAST se alinearon usando la herramienta de alineamiento ClustalW2 proporcionada por EBI. Se generaron árboles filogenéticos usando el promedio de la distancia con BLOSUM62 después del alineamiento de las secuencias en la herramienta de alineamiento Clustal Omega.

15

Un árbol filogenético y un alineamiento de la secuencia parcial de los resultados de las búsquedas de PMT BLAST se representan en las Figuras 5 y 6, respectivamente.

LISTADO DE SECUENCIAS

20

<110> Novartis AG

<120> Células fúngicas filamentosas deficientes en O-manosiltransferasa y Métodos de uso de las mismas

25

<130> NOVA 0006 WO

<160> 197

30 <170> PatentIn versión 3.5

<210> 1

<211> 2322

<212> ADN

35 <213> Trichoderma reesei

<400> 1

61	gtccaagcag	ggaacgttgc	ctgcgacagc	gcagggcagc	gtccaacgcc	atggctcgaa
120	caaggccgct	acaagctctc	gtcgagctcg	cgttcccgag	agtcggcatt	gcgcctgtcg
180	cctgacgctg	acaagcttgc	gagctcgagc	ccagagaggc	gccgaaacat	ctgtcgtcgc
240	cgaggtcgtc	gccaccccga	tggggcatca	cacgcgattc	tcggctttgt	gtgacgatcc
300	ctacttcttc	tccagcgaac	tcctactacc	aaagttcgcc	tgcattttgg	tttgacgagg
360	ggttggctac	ttggctggct	ttcgccttcg	caagctgctc	cccctttcgc	gacgtccacc
420	ggtgccctat	tggccaacaa	gactcctacg	caacattggc	tccacttcga	gacggtcact
480	cacatacctc	ctgtgtcggt	ggcgcattga	cgccttcctc	gagccttgcc	gtcgccttcc
540	cctgatcctc	tcgcgaccgg	gcttgccttg	tagtgtgccg	agtctggcta	atcatgtggg
600	cctggtgctc	tcgacgccac	ctcattctgc	ccagacccgc	cgcacattgg	ctggacaatg
660	cgagcccttt	agctgcggca	aagttctaca	gttctacatc	gcagtctctt	gccatggcct
720	cgacatctcg	cgctgtcgtg	accggctttg	gctcatcctg	ggtggaagtg	agccgcaagt
780	cattgatctg	ccgccgtcat	accattggct	tgcctttgtc	tcggtctctt	accaagtatg
840	gtttggaaag	gcatgccaga	ggagccatca	gcgccgctat	tggatatcaa	tgggatcttt
900	cctcttctgg	tcctcttcta	atcttgccct	tggcctcatc	cccgcgcctt	cactttgcag
960	catgactccc	gcgacgactt	teeggteeeg	cctgacccga	acttttccgt	ttccaggtgc
1020	catccagtac	gcgccgtcga	atgctggcaa	cgacaacgtc	agacgttgag	gagttccagg
1080	ccacaccgac	atcttcacag	accaaggcgt	gcacaaggag	tcaccatcag	tacgatacca
1140	ggtcaccggc	aaggccaaca	atctccagcc	cgacggccgc	tgcgatatga	acctaccctc
1200	tgaccagaag	ctgccgacaa	cagatectee	caactactgg	acgacaccaa	tacccccaca
1260	cacggacaag	gacacattgt	gtgcgacttc	tcaagacttg	acgttaagaa	ctcggccgta
1320	gttcacctgt	ccaaccagga	tactacccta	cacctcaccc	cccatgatgt	atcctgctct

gtgacccccg	aggaagcatt	cggcgagcgc	caaaacgaca	ctctgttcga	gatccggatt	1380
gagggaggca	agaccggcca	ggacttcaag	accgttgcca	gccacttcaa	gctcattcac	1440
ttccccagca	aggtggccat	gtggactcat	accacgcccc	ttcccgagtg	ggcctacagg	1500
cagcaggaaa	tcaacggcaa	caagcaaatc	actcccagct	ccaacgtctg	gattgccgaa	1560
gacattcctt	cgctcccgga	agacgacgct	cgccgccaca	aggagcagcg	caaggtcaag	1620
tcgctgccgt	tcctccgcaa	gtggtttgag	ctgcagaggt	ccatgttcta	ccacaacaac	1680
aagctgacca	gcagccaccc	ctactccagc	cagccctacc	actggccatt	cctcctccgc	1740
ggagtgagct	tctggacgca	gaatgacaca	cgccagcaaa	tctactttgt	gggcaacccc	1800
atcggctggt	ggcttgccag	cagtctgctg	gctgtgtttg	ccggcatcat	tggagctgat	1860
caggtctcgc	tgcgccgagg	catcgatgct	ctggatcacc	gcacccgctc	ccgactgtac	1920
aactctaccg	gcttcttctt	ccttgcctgg	gccacccact	acttcccctt	tttcctcatg	1980
ggtcgtcagc	tgttcttgca	tcactacttg	cctgcccatt	tggcgtcctg	cctggtcacg	2040
ggctccctcg	tcgagttcat	ctttaacacg	gacccggcag	acgaggagcc	ttcgcgatcc	2100
aaaaacccca	aggctactgg	tcctcggaga	cacatcacgg	ctcgcgagcg	gtttgctggc	2160
aagagcatgg	ccggtgcctg	gatcgcttgc	tttgtgattc	tcgctgccgc	cgcggctagc	2220
tggtacttct	tcttgccgtt	gacgtatggc	taccccggac	tgtctgttga	ggaggttctc	2280
aggagaaagt	ggcttggata	tgatcttcac	tttgccaagt	ag		2322

<210> 2

5

<211> 773

<212> PRT

<213> Trichoderma reesei

<400> 2

Met 1	Ala	Arg	Ser	Pro 5	Thr	Pro	Gln	Gly	Ser 10	Leu	Arg	Gln	Arg	Asn 15	Val
Ala	Ser	Lys	Gln 20	Ala	Pro	Val	Glu	Ser 25	Ala	Phe	Val	Pro	Glu 30	Val	Glu
Leu	Asp	Lys 35	Leu	Ser	Lys	Ala	Ala 40	Leu	Ser	Ser	Arg	Arg 45	Asn	Ile	Gln
Arg	Gly 50	Glu	Leu	Glu	His	Lys 55	Leu	Ala	Leu	Thr	Leu 60	Val	Thr	Ile	Leu
Gly 65	Phe	Val	Thr	Arg	Phe 70	Trp	Gly	Ile	Ser	His 75	Pro	Asp	Glu	Val	Val 80
Phe	Asp	Glu	Val	His	Phe	Gly	Lys	Phe	Ala	Ser	Tyr	Tyr	Leu	Gln	Arg

				85					90					95	
Thr	Tyr	Phe	Phe 100	Asp	Val	His	Pro	Pro 105	Phe	Ala	Lys	Leu	Leu 110	Phe	Ala
Phe	Val	Gly 115	Trp	Leu	Val	Gly	Tyr 120	Asp	Gly	His	Phe	His 125	Phe	Asp	Asn
Ile	Gly 130	Asp	Ser	Tyr	Val	Ala 135	Asn	Lys	Val	Pro	Tyr 140	Val	Ala	Phe	Arg
Ala 145	Leu	Pro	Ala	Phe	Leu 150	Gly	Ala	Leu	Thr	Val 155	Ser	Val	Thr	Tyr	Leu 160
Ile	Met	Trp	Glu	Ser 165	Gly	Tyr	Ser	Val	Pro 170	Ala	Cys	Leu	Val	Ala 175	Thr
Gly	Leu	Ile	Leu 180	Leu	Asp	Asn	Ala	His 185	Ile	Gly	Gln	Thr	Arg 190	Leu	Ile
Leu	Leu	Asp 195	Ala	Thr	Leu	Val	Leu 200	Ala	Met	Ala	Суз	Ser 205	Leu	Leu	Phe
Tyr	Ile 210	Lys	Phe	Tyr	Lys	Leu 215	Arg	His	Glu	Pro	Phe 220	Ser	Arg	Lys	Trp
Trp 225	Lys	Trp	Leu	Ile	Leu 230	Thr	Gly	Phe	Ala	Leu 235	Ser	Суѕ	Asp	Ile	Ser 240
Thr	Lys	Tyr	Val	Gly 245	Leu	Phe	Ala	Phe	Val 250	Thr	Ile	Gly	Ser	Ala 255	Val
Ile	Ile	Asp	Leu 260	Trp	Asp	Leu	Leu	Asp 265	Ile	Lys	Arg	Arg	Tyr 270	Gly	Ala
Ile	Ser	Met 275	Pro	Glu	Phe	Gly	Lys 280	His	Phe	Ala	Ala	Arg 285	Ala	Phe	Gly
Leu	Ile 290	Ile	Leu	Pro	Phe	Leu 295	Phe	Tyr	Leu	Phe	Trp 300	Phe	Gln	Val	His
Phe 305	Ser	Val	Leu	Thr	Arg 310	Ser	Gly	Pro	Gly	Asp 315	Asp	Phe	Met	Thr	Pro 320
Glu	Phe	Gln	Glu	Thr 325	Leu	Ser	Asp	Asn	Val 330	Met	Leu	Ala	Ser	Ala 335	Val

Asp	Ile	Gln	Tyr 340	Tyr	Asp	Thr	Ile	Thr 345	Ile	Arg	His	Lys	Glu 350	Thr	Lys
Ala	Tyr	Leu 355	His	Ser	His	Thr	Asp 360	Thr	Tyr	Pro	Leu	Arg 365	Tyr	Asp	Asp
Gly	Arg 370	Ile	Ser	Ser	Gln	Gly 375	Gln	Gln	Val	Thr	Gly 380	Tyr	Pro	His	Asn
Asp 385	Thr	Asn	Asn	Tyr	Trp 390	Gln	Ile	Leu	Pro	Ala 395	Asp	Asn	Asp	Gln	Lys 400
Leu	Gly	Arg	Asn	Val 405	Lys	Asn	Gln	Asp	Leu 410	Val	Arg	Leu	Arg	His 415	Ile
Val	Thr	Asp	Lys 420	Ile	Leu	Leu	Ser	His 425	Asp	Val	Ala	Ser	Pro 430	Tyr	Tyr
Pro	Thr	Asn 435	Gln	Glu	Phe	Thr	Cys 440	Val	Thr	Pro	Glu	Glu 445	Ala	Phe	Gly
Glu	Arg 450	Gln	Asn	Asp	Thr	Leu 455	Phe	Glu	Ile	Arg	Ile 460	Glu	Gly	Gly	Lys
Thr 465	Gly	Gln	Asp	Phe	Lys 470	Thr	Val	Ala	Ser	His 475	Phe	Lys	Leu	Ile	His 480
Phe	Pro	Ser	Lys	Val 485	Ala	Met	Trp	Thr	His 490	Thr	Thr	Pro	Leu	Pro 495	Glu
Trp	Ala	Tyr	Arg 500	Gln	Gln	Glu	Ile	Asn 505	Gly	Asn	Lys	Gln	Ile 510	Thr	Pro
Ser	Ser	Asn 515	Val	Trp	Ile	Ala	Glu 520	Asp	Ile	Pro	Ser	Leu 525	Pro	Glu	Asp
Asp	Ala 530	Arg	Arg	His	Lys	Glu 535	Gln	Arg	Lys	Val	Lys 540	Ser	Leu	Pro	Phe
Leu 545	Arg	Lys	Trp	Phe	Glu 550	Leu	Gln	Arg	Ser	Met 555	Phe	Tyr	His	Asn	Asn 560
Lys	Leu	Thr	Ser	Ser 565	His	Pro	Tyr	Ser	Ser 570	Gln	Pro	Tyr	His	Trp 575	Pro
Phe	Leu	Leu	Arg 580	Gly	Val	Ser	Phe	Trp 585	Thr	Gln	Asn	Asp	Thr 590	Arg	Gln

Gln Ile Tyr Phe Val Gly Asn Pro Ile Gly Trp Trp Leu Ala Ser Ser Leu Leu Ala Val Phe Ala Gly Ile Ile Gly Ala Asp Gln Val Ser Leu Arg Arg Gly Ile Asp Ala Leu Asp His Arg Thr Arg Ser Arg Leu Tyr Asn Ser Thr Gly Phe Phe Leu Ala Trp Ala Thr His Tyr Phe Pro Phe Phe Leu Met Gly Arg Gln Leu Phe Leu His His Tyr Leu Pro Ala His Leu Ala Ser Cys Leu Val Thr Gly Ser Leu Val Glu Phe Ile Phe Asn Thr Asp Pro Ala Asp Glu Glu Pro Ser Arg Ser Lys Asn Pro Lys Ala Thr Gly Pro Arg Arg His Ile Thr Ala Arg Glu Arg Phe Ala Gly Lys Ser Met Ala Gly Ala Trp Ile Ala Cys Phe Val Ile Leu Ala Ala Ala Ala Ala Ser Trp Tyr Phe Phe Leu Pro Leu Thr Tyr Gly Tyr Pro Gly Leu Ser Val Glu Glu Val Leu Arg Arg Lys Trp Leu Gly Tyr Asp

<210> 3

<211> 944

<212> PRT

<213> Trichoderma reesei

Leu His Phe Ala Lys

<400> 3

Met Ala Lys Ala Thr Ala Arg Gly Arg Ser Pro Gln Pro Pro Leu Val 1 5 10 15

Ala Glu Lys Met Pro Val Ala Val Thr Ala Pro Val Ala Ser Ser Lys 20 25 30

Ser	Lys	Ala 35	Ala	Lys	Lys	Asn	Ser 40	Ser	Tyr	Arg	Ser	Asp 45	Gly	Val	Ala
Asp	Asn 50	Asp	Val	Phe	Leu	Leu 55	Pro	Gly	Ala	Asp	Tyr 60	Val	Ala	Ala	Leu
Gly 65	Val	Thr	Val	Leu	Ala 70	Thr	Ile	Val	Arg	Leu 75	Phe	Lys	Ile	Tyr	Thr 80
Pro	Thr	Ser	Val	Val 85	Phe	Asp	Glu	Val	His 90	Phe	Gly	Gly	Phe	Ala 95	Ser
Lys	Tyr	Ile	Lys 100	Gly	Arg	Phe	Phe	Met 105	Asp	Val	His	Pro	Pro 110	Leu	Ala
Lys	Met	Leu 115	Ile	Ala	Leu	Thr	Gly 120	Trp	Leu	Ala	Gly	Phe 125	Asp	Gly	Asn
Phe	Asp 130	Phe	Lys	Asp	Ile	Gly 135	Lys	Asp	Tyr	Leu	Glu 140	Pro	Gly	Val	Pro
Tyr 145	Val	Ala	Met	Arg	Met 150	Phe	Pro	Ala	Val	Cys 155	Gly	Ile	Leu	Leu	Ala 160
Pro	Phe	Met	Phe	Phe 165	Thr	Leu	Lys	Ala	Val 170	Gly	Cys	Arg	Thr	Thr 175	Thr
Ala	Ile	Leu	Gly 180	Ala	Ser	Phe	Ile	Ile 185	Phe	Glu	Asn	Gly	Leu 190	Leu	Thr
Gln	Ala	Arg 195	Leu	Ile	Leu	Leu	Asp 200	Ser	Pro	Leu	Val	Ala 205	Ala	Thr	Ala
Phe	Thr 210	Ala	Met	Ser	Phe	Asn 215	Cys	Phe	Thr	Asn	Gln 220	His	Glu	Gln	Gly
Pro 225	Asp	Lys	Ala	Phe	Ser 230	Leu	Ser	Trp	Trp	Phe 235	Trp	Leu	Ala	Met	Thr 240
Gly	Leu	Gly	Leu	Gly 245	Ile	Thr	Ser	Ser	Ile 250	Lys	Trp	Val	Gly	Leu 255	Phe
Thr	Ile	Ala	Trp 260	Val	Gly	Ser	Leu	Thr 265	Leu	Val	Gln	Leu	Trp 270	Val	Leu
Leu	Gly	Asp 275	Ser	Lys	Asn	Val	Ser 280	Met	Arg	Leu	Trp	Phe 285	Lys	His	Phe

Met	Ala 290	Arg	Val	Phe	Cys	Leu 295	Ile	Ile	Ile	Pro	Leu 300	Thr	Phe	Tyr	Leu
Ser 305	Met	Phe	Ala	Ile	His 310	Phe	Leu	Cys	Leu	Thr 315	Asn	Pro	Gly	Glu	Gly 320
Asp	Gly	Phe	Met	Ser 325	Ser	Glu	Phe	Gln	Ala 330	Thr	Leu	Asn	Ser	Lys 335	Gly
Met	Lys	Asp	Val 340	Pro	Ala	Asp	Val	Val 345	Phe	Gly	Ser	Arg	Val 350	Thr	Ile
Arg	His	Val 355	Asn	Thr	Gln	Gly	Gly 360	Tyr	Leu	His	Ser	His 365	Pro	Leu	Met
Tyr	Pro 370	Thr	Gly	Ser	Leu	Gln 375	Gln	Gln	Ile	Thr	Leu 380	Tyr	Pro	His	Lys
Asp 385	Glu	Asn	Asn	Ile	Trp 390	Ile	Met	Glu	Asn	Gln 395	Thr	Gln	Pro	Leu	Gly 400
Val	Asp	Gly	Gln	Pro 405	Ile	Asn	Gly	Thr	Glu 410	Ala	Trp	Asp	Ala	Leu 415	Pro
Glu	Val	His	His 420	Val	Val	Asp	Gly	Ser 425	Val	Ile	Arg	Leu	Tyr 430	His	Lys
Pro	Thr	Phe 435	Arg	Arg	Leu	His	Ser 440	His	Asp	Val	Arg	Pro 445	Pro	Val	Thr
Glu	Ala 450	Glu	Trp	Gln	Asn	Glu 455	Val	Ser	Ala	Tyr	Gly 460	Tyr	Glu	Gly	Phe
Glu 465	Gly	Asp	Ala	Asn	Asp 470	Leu	Phe	Arg	Val	Glu 475	Ile	Val	Lys	Lys	Gln 480
Ser	Lys	Gly	Pro	Leu 485	Ala	Lys	Glu	Arg	Leu 490	Arg	Thr	Ile	Glu	Thr 495	Lys
Phe	Arg	Leu	Ile 500	His	Val	Met	Thr	Gly 505	Cys	Ala	Leu	Phe	Ser 510	His	Lys
Val	Lys	Leu 515	Pro	Glu	Trp	Ala	Ser 520	Glu	Gln	Gln	Glu	Val 525	Thr	Cys	Ala
Aro	Glv	Glv	Ser	Leu	Pro	Asn	Ser	Ile	Trp	Tvr	Ile	Glu	Tvr	Asn	G111

	530					535					540				
His 545	Pro	Leu	Leu	Gly	Asp 550	Asp	Val	Glu	Lys	Val 555	Asn	Tyr	Ala	Asn	Pro 560
Gly	Phe	Phe	Gly	Lys 565	Phe	Trp	Glu	Leu	His 570	Lys	Val	Met	Trp	Lys 575	Thr
Asn	Ala	Gly	Leu 580	Thr	Asp	Ser	His	Ala 585	Trp	Asp	Ser	Arg	Pro 590	Pro	Ser
Trp	Pro	Ile 595	Leu	Arg	Arg	Gly	Ile 600	Asn	Phe	Trp	Gly	Lys 605	His	His	Met
Gln	Val 610	Tyr	Leu	Leu	Gly	Asn 615	Pro	Phe	Ile	Trp	Trp 620	Ser	Ser	Thr	Ala
Ala 625	Val	Ala	Ile	Trp	Val 630	Ile	Phe	Lys	Gly	Val 635	Ala	Ile	Leu	Arg	Trp 640
Gln	Arg	Gly	Cys	Asn 645	Asp	Tyr	Ala	Ser	Ser 650	Thr	Phe	Lys	Arg	Phe 655	Asp
Tyr	Glu	Ile	Gly 660	Thr	Ser	Val	Leu	Gly 665	Trp	Ala	Leu	His	Tyr 670	Phe	Pro
Phe	Tyr	Leu 675	Met	Glu	Arg	Gln	Leu 680	Phe	Leu	His	His	Tyr 685	Phe	Pro	Ala
Leu	Tyr 690	Phe	Ala	Ile	Leu	Ala 695	Leu	Cys	Gln	Met	Phe 700	Asp	Phe	Ala	Thr
Val 705	Arg	Ile	Pro	Ala	Ala 710	Leu	Gly	Tyr	Arg	Ser 715	Thr	Leu	Ile	Asn	Arg 720
Val	Gly	Thr	Val	Ser 725	Leu	Leu	Val	Ile	Ser 730	Ala	Ala	Val	Phe	Thr 735	Leu
Phe	Ala	Pro	Leu 740	Ala	Tyr	Gly	Thr	Pro 745	Trp	Thr	Lys	Ala	Glu 750	Cys	Asn
Arg	Val	Lys 755	Leu	Phe	Asp	Lys	Trp 760	Asp	Phe	Asp	Cys	Asn 765	Thr	Phe	Leu
Asp	Asp 770	Tyr	Lys	Ser	Tyr	Thr 775	Leu	Thr	Ser	Leu	Ala 780	Pro	Ser	Ser	Ile

Ala 785	Pro	Ser	Pro	Pro	Ala 790	Ala	Asn	Val	Pro	Val 795	Val	Asn	Gln	Glu	Gln 800
Lys	Pro	Leu	Ala	Lys 805	Gln	Pro	Glu	Pro	Val 810	Ile	Ser	Gln	Ala	Ala 815	Val
Pro	Gln	Glu	Pro 820	Gln	Ile	Leu	Ser	Lys 825	Glu	Glu	Lys	Ile	Glu 830	Tyr	Arg
Asp	Gln	Asp 835	Gly	Asn	Leu	Leu	Asn 840	Asp	Glu	Gln	Val	Lys 845	Ala	Leu	Gln
Gly	Lys 850	Val	Glu	Phe	Lys	Thr 855	Lys	Tyr	Glu	Thr	Lys 860	Thr	Arg	Val	Val
Asp 865	Ala	Gln	Gly	His	Glu 870	Ile	Pro	Val	Pro	Glu 875	Gly	Gly	Trp	Pro	Asp 880
Asp	Met	Ile	Ala	Gly 885	Val	Ala	Pro	Pro	His 890	Pro	Asp	Val	Glu	Gly 895	Val
Asp	Lys	Glu	Thr 900	Pro	Lys	Val	Glu	Ser 905	Ala	Glu	Val	Pro	Lys 910	Glu	Ala
Ala	Ala	Ser 915	Arg	Asp	Gly	Glu	Val 920	Glu	Ala	Glu	Asn	Leu 925	Lys	Ala	Lys
Pro	Ala 930	Ser	Glu	Gly	Gln	Glu 935	Val	Glu	Ala	Thr	Val 940	Gln	Glu	Glu	Leu

5

<210> 4 <211> 740

<212> PRT

<213> Trichoderma reesei

<400> 4

- Met Ala Ala Asp Lys Ala Ala Leu Ala Ser Gly Ala Asp Leu Gly Asp 1 5 10 15
- Gly Leu Arg Lys Arg Gln Ala Ala Ser Gln Ala Val Pro Ser Phe Ile 20 25 30
- Pro Ala Gln Thr Glu Asp Thr Lys Lys Leu Ala Lys Lys Asp Lys Thr 35 40 45
- Phe Val Gln Val Leu Ala Asp Trp Glu Ser Val Leu Ala Pro Leu Ile 50 55 60

Phe Thr Ala Val Ala Ile Phe Thr Arg Leu Tyr Lys Ile Gly Leu Ser

65		AIG	Vai	AIG	70	rne		ALG	Leu	75	цуз	116	GIY	Бец	80
Asn	Ile	Val	Thr	Trp 85	Asp	Glu	Ala	His	Phe 90	Gly	Lys	Phe	Gly	Ser 95	Tyr
Tyr	Ile	Lys	His 100	Glu	Tyr	Tyr	Phe	Asp 105	Val	His	Pro	Pro	Leu 110	Gly	Lys
Met	Leu	Val 115	Gly	Leu	Ser	Gly	Val 120	Leu	Ala	Gly	Tyr	Asn 125	Gly	Ser	Phe
Glu	Phe 130	Lys	Ser	Gly	Glu	Gln 135	Tyr	Pro	Glu	Asp	Val 140	Asn	Tyr	Thr	Phe
145			Phe		150					155					160
-			Ala	165					170					175	
			Met 180					185					190		
		195	Leu				200					205			
	210		Ala			215					220				
225			Lys	-	230					235			-	-	240
			Glu	245					250					255	
_			260 Leu					265					270		
Ile	Val	275 Pro	Phe	Leu	Ile	Tyr	280 Met	Leu	Ser	Phe	Ala	285 Leu	His	Phe	Ala
Ile	290 Leu	Asp	His	Ser	Gly	295 Pro	Gly	Asp	Ala	Gln	300 Met	Ser	Ser	Leu	Phe
305		_			310			_		315					320

Gln	Ala	Asn	Leu	Lys 325	Gly	Thr	Glu	Val	Gly 330	Lys	Asn	Ser	Pro	Leu 335	Glu
Ile	Ala	Leu	Gly 340	Ser	Arg	Ala	Thr	Ile 345	Lys	Asn	Met	Gly	Tyr 350	Gly	Gly
Gly	Leu	Leu 355	His	Ser	His	Val	Gln 360	Thr	Tyr	Pro	Glu	Gly 365	Ser	Gly	Gln
Gln	Gln 370	Val	Thr	Cys	Tyr	His 375	His	Lys	Asp	Ala	Asn 380	Asn	Asp	Trp	Phe
Phe 385	Tyr	Pro	Asn	Arg	His 390	Glu	Pro	Asp	Tyr	Asp 395	Pro	Glu	Gly	Glu	Leu 400
Arg	Phe	Ile	Gly	Asp 405	Gly	Ser	Val	Ile	Arg 410	Leu	Ile	His	Ala	Gln 415	Thr
Gly	Arg	Asn	Leu 420	His	Ser	His	Asp	Ile 425	Asp	Ala	Pro	Ile	Thr 430	Lys	Ser
His	Arg	Glu 435	Val	Ser	Ser	Tyr	Gly 440	Asn	Leu	Thr	Val	Gly 445	Asp	Glu	Lys
Asp	His 450	Trp	Lys	Ile	Glu	Val 455	Val	Arg	Asp	Ala	Ala 460	Ser	Arg	Asp	Arg
	450					455					460				
Ser	450 Arg	Ile	Arg	Thr	Leu 470	455 Thr	Thr	Ala	Phe	Arg 475	460 Leu	Lys	His	Thr	Val 480
Ser .	450 Arg Gly	Ile Cys	Arg Tyr	Thr Leu 485	Leu 470 Arg	455 Thr	Thr Gly	Ala Asn	Phe Val 490	Arg 475 Asn	460 Leu Leu	Lys Pro	His Gln	Thr Trp 495	Val 480
Ser 465	450 Arg Gly Lys	Ile Cys Gln	Arg Tyr Ile 500	Thr Leu 485 Glu	Leu 470 Arg Val	455 Thr Ala	Thr Gly Cys	Ala Asn Asp 505	Phe Val 490 Lys	Arg 475 Asn Gln	460 Leu Leu Asn	Lys Pro Asn	His Gln Pro 510	Thr Trp 495	Val 480 Gly Asp
Ser 465 Leu Phe	450 Arg Gly Lys	Ile Cys Gln Thr 515	Arg Tyr Ile 500	Thr Leu 485 Glu Trp	Leu 470 Arg Val	455 Thr Ala Thr	Thr Gly Cys Glu 520	Ala Asn Asp 505	Phe Val 490 Lys	Arg 475 Asn Gln Trp	Leu Leu Asn	Lys Pro Asn Asp 525	His Gln Pro 510	Thr Trp 495 Arg	Val 480 Gly Asp
Ser 465 Leu Phe	Arg Gly Lys Tyr Ser 530	Ile Cys Gln Thr 515	Arg Tyr Ile 500 His	Thr Leu 485 Glu Trp Gly	Leu 470 Arg Val Asn	455 Thr Ala Thr Val	Thr Gly Cys Glu 520 Lys	Ala Asn Asp 505 Ala	Phe Val 490 Lys	Arg 475 Asn Gln Trp	Leu Leu Asn Asn Ile 540	Lys Pro Asn Asp 525	His Gln Pro 510 Arg	Thr Trp 495 Arg	Val 480 Gly Asp Pro

Leu His Va	Gly Leu 580	Arg Met	_	er Trp 85	Asp Asp	Asn	Ile 590	Val	Lys
Tyr Phe Le 59	_	Asn Pro	Phe Va	al Tyr	Trp Ala	Ser 605	Thr	Ala	Ser
Leu Gly Al 610	a Val Ala	Leu Val 615		la Trp	Tyr Val 620	Val	Arg	Trp	Gln
Arg Gly Ph	e Lys Glu	Leu Ser 630	Asn Se	er Glu	Val Asp 635	Gln	Ile	His	Tyr 640
Ala Gly Il	Tyr Pro 645		Gly Ti	rp Phe 650	Leu His	Tyr	Leu	Pro 655	Phe
Val Ile Me	Ala Arg 660	Val Thr	_	al His 65	His Tyr	Tyr	Pro 670	Ala	Leu
Tyr Phe Al 67		Ser Leu	Gly Ph 680	he Leu	Val Asp	Trp 685	Val	Leu	Arg
Asn Arg Al 690	a Ala Val	Val Gln 695	_	al Ala	Tyr Gly 700	Ile	Leu	Tyr	Thr
Val Val II 705	e Gly Leu	Tyr Ile 710	Leu Pl	he Met	Pro Ile 715	Cys	Trp	Gly	Met 720
Thr Gly Se	Ser Lys 725	Gln Tyr	Ser Ty	yr Leu 730	Lys Trp	Phe	Asp	Asn 735	Trp
Arg Ile Se	740								

<210> 5 5

<211> 775 <212> PRT <213> Aspergillus oryzae

<400> 5

Met Ser Gln Ser Pro Ser Pro Ser Leu Arg Lys Arg Gly Gly Lys Lys 1 5 10 15

Glu Ala Ser Pro Gly Pro Ser Glu Val Ser Ser Pro Tyr Pro Thr Asn 20 25 30

Gln Gly Ala Thr Pro Lys Pro Gln Ser Glu Trp Asp Tyr Arg Leu Ala 35 40 45

Ile	Thr 50	Val	Leu	Thr	Val	Leu 55	Ala	Phe	Ile	Thr	Arg 60	Phe	Tyr	Arg	Ile
Ser 65	Tyr	Pro	Asp	Glu	Val 70	Val	Phe	Asp	Glu	Val 75	His	Phe	Gly	Lys	Phe 80
Ala	Ser	Tyr	Tyr	Leu 85	Gln	Arg	Thr	Tyr	Phe 90	Phe	Asp	Val	His	Pro 95	Pro
Phe	Gly	Lys	Leu 100	Leu	Phe	Ala	Ala	Val 105	Gly	Trp	Leu	Ile	Gly 110	Tyr	Asp
Gly	His	Phe 115	Leu	Phe	Glu	Asn	Ile 120	Gly	Asp	Ser	Tyr	Ile 125	Asp	Asn	Lys
Val	Pro 130	Tyr	Val	Ala	Phe	Arg 135	Ala	Leu	Pro	Ala	Thr 140	Leu	Gly	Ala	Leu
Thr 145	Val	Pro	Val	Val	Phe 150	Leu	Ile	Met	Trp	Glu 155	Ser	Gly	Tyr	Ser	Leu 160
Pro	Ala	Cys	Val	Leu 165	Ala	Ala	Gly	Leu	Val 170	Leu	Phe	Asp	Asn	Ala 175	His
Ile	Gly	Glu	Asp 180	Arg	Leu	Ile	Leu	Leu 185	Asp	Ala	Thr	Leu	Val 190	Ile	Thr
Met	Ala	Leu 195	Ser	Ile	Leu	Cys	Tyr 200	Val	Arg	Phe	Tyr	Lys 205	Leu	Arg	His
Glu	Pro 210	Phe	Gly	Arg	Lys	Trp 215	Trp	Lys	Trp	Leu	Leu 220	Leu	Thr	Gly	Val
Ser 225	Leu	Ser	Cys	Val	11e 230	Ser	Thr	Lys	Tyr	Val 235	Gly	Val	Phe	Thr	Phe 240
				245					250					Leu 255	
			260					265					270	Lys	
		275					280					285		Phe	
Leu	Phe	\mathtt{Trp}	Phe	Gln	Val	His	Phe	Ala	Ile	Leu	Thr	Arg	Ser	${ t Gly}$	Pro

	290					295					300				
Gly 305	Asp	Asp	Phe	Met	Thr 310	Pro	Glu	Phe	Gln	Glu 315	Thr	Leu	Ser	Asp	Asn 320
Ala	Leu	Ala	Ala	Glu 325	Ser	Ile	Gly	Ile	Gln 330	Tyr	Tyr	Asp	Ala	Ile 335	Thr
Ile	Arg	His	Lys 340	Asp	Thr	Lys	Val	Phe 345	Leu	His	Ser	His	Trp 350	Glu	Arg
Tyr	Pro	Leu 355	Arg	Tyr	Asp	Asp	Gly 360	Arg	Ile	Ser	Ser	Gln 365	Gly	Gln	Gln
Val	Thr 370	Gly	Tyr	Pro	Phe	As n 375	Asp	Thr	Asn	Asn	Gln 380	Trp	Gln	Ile	Leu
Pro 385	Thr	Val	Pro	Leu	Glu 390	Asp	Asn	Glu	Gly	Gln 395	Gly	His	Ser	Val	Lys 400
Asn	Gly	Asp	Leu	Val 405	Gln	Leu	Leu	His	Leu 410	Gly	Thr	Asp	Ser	Ile 415	Leu
Leu	Thr	His	Asp 420	Val	Ala	Ser	Pro	Phe 425	Tyr	Pro	Thr	Asn	Gln 430	Glu	Phe
Thr	Thr	Val 435	Thr	Lys	Asp	Val	Ala 440	Ser	Gly	Glu	Arg	His 445	Asn	Glu	Thr
	Phe 450		Ile	_	Ile		Asn	Gly	_	Ala	_		Glu	Phe	Arg
Thr 465	Leu	Ser	Ser	His	Phe 470	Lys	Leu	Ile	His	Tyr 475	Pro	Thr	Arg	Val	Ala 480
Met	Trp	Thr	His	Thr 485	Thr	Pro	Leu	Pro	Glu 490	Trp	Gly	Phe	Lys	Gln 495	Ala
Glu	Ile	Asn	Gly 500	Asn	Lys	Asn	Val	Leu 505	Gln	Thr	Ser	Asn	Leu 510	Trp	Tyr
Ala	Glu	Ser 515	Ile	Glu	Ser	Leu	Glu 520	Glu	Asp	Ser	Pro	Arg 525	Lys	Gln	Lys
Glu	Glu 530	Arg	Lys	Val	Lys	Gln 535	Leu	Pro	Phe	Leu	Arg 540	Lys	Tyr	Leu	Glu

Leu 545	Gln	Arg	Ala	Met	Phe 550	Phe	His	Asn	Asn	Ala 555	Leu	Thr	Ser	Ser	His 560
Pro	Tyr	Ala	Ser	Glu 565	Pro	Phe	Gln	Trp	Pro 570	Phe	Leu	Leu	Arg	Gly 575	Val
Ser	Phe	Trp	Thr 580	Lys	Asn	Asp	Thr	Arg 585	Glu	Gln	Ile	Tyr	Phe 590	Leu	Gly
Asn	Pro	Ile 595	Gly	Trp	Trp	Ile	Ala 600	Ser	Ser	Leu	Leu	Ala 605	Val	Phe	Ala
Gly	Val 610	Ile	Gly	Ala	Asp	Gln 615	Leu	Ser	Leu	Arg	Arg 620	Gly	Val	Asp	Ala
Val 625	Glu	Glu	Ile	Trp	Gly 630	Pro	Gly	Ala	Arg	Ser 635	Arg	Leu	Tyr	Asn	Ser 640
Thr	Gly	Phe	Leu	Phe 645	Leu	Cys	Trp	Gly	Ala 650	His	Tyr	Phe	Pro	Phe 655	Trp
Leu	Met	Gly	Arg 660	Gln	Arg	Phe	Leu	His 665	His	Tyr	Leu	Pro	Ala 670	His	Leu
Ala	Ser	Cys 675	Leu	Val	Thr	Gly	Ala 680	Leu	Ile	Glu	Phe	Ile 685	Phe	Asn	Leu
	Pro 690		Gln		Val		_				_		Ser	Gly	Lys
Ser 705	Lys	Ser	Ile	Arg	Pro 710	Arg	His	Phe	Val	Thr 715	Ala	Lys	Glu	Arg	Met 720
Ser	Arg	Lys	Ser	Leu 725	Val	Ala	Cys	Trp	Ile 730	Ala	Thr	Leu	Ser	Ile 735	Leu
Ala	Val	Thr	Val 740	Trp	Gly	Phe	Trp	Phe 745	Tyr	Ala	Pro	Leu	Thr 750	Tyr	Gly
Thr	Pro	Gly 755	Leu	Asp	Val	Ala	Gly 760	Val	Asn	Ala	Arg	Arg 765	Trp	Leu	Gly
Tyr	Asp 770	Leu	His	Phe	Ala	Lys 775									

<210> 6 <211> 775 <212> PRT 5 <213> Aspergillus niger <400> 6

Met 1	Ser	Ser	Ser	Pro 5	Ser	Pro	Ser	Leu	Arg 10	Lys	Arg	Gly	Gly	Lys 15	Lys
Glu	Ser	Thr	Pro 20	Val	Pro	Ala	Asp	Asn 25	Phe	Ser	Ser	Pro	Leu 30	Ser	Lys
Ala	Ser	Ala 35	Pro	Arg	Ser	Glu	Trp 40	Asp	Tyr	Trp	Leu	Ala 45	Ile	Ser	Ile
Leu	Thr 50	Val	Leu	Ala	Phe	Val 55	Thr	Arg	Phe	Tyr	Lys 60	Ile	Ser	Tyr	Pro
Asn 65	Glu	Val	Val	Phe	Asp 70	Glu	Val	His	Phe	Gly 75	Lys	Phe	Ala	Ser	Tyr 80
Tyr	Leu	Gln	Arg	Thr 85	Tyr	Phe	Phe	Asp	Val 90	His	Pro	Pro	Phe	Gly 95	Lys
Leu	Leu	Phe	Ala 100	Phe	Met	Gly	Trp	Leu 105	Val	Gly	Tyr	Asp	Gly 110	His	Phe
Leu	Phe	Asp 115	Asn	Ile	Gly	Asp	Ser 120	Tyr	Ile	Glu	His	Gln 125	Val	Pro	Tyr
Val	Ala 130	Leu	Arg	Ala	Met	Pro 135	Ala	Thr	Leu	Gly	Ala 140	Leu	Thr	Val	Pro
Val 145	Val	Phe	Leu	Ile	Met 150	Trp	Glu	Ser	Gly	Tyr 155	Ser	Leu	Pro	Ala	Cys 160
Val	Leu	Ser	Ala	Gly 165	Leu	Val	Leu	Phe	Asp 170	Asn	Ala	His	Ile	Gly 175	Glu
Asp	Arg	Leu	Ile 180	Leu	Leu	Asp	Ala	Ser 185	Leu	Val	Leu	Thr	Met 190	Ala	Leu
Ser	Ile	Leu 195	Cys	Tyr	Ile	Arg	Phe 200	Tyr	Lys	Leu	Arg	His 205	Glu	Ala	Phe
Gly	Arg 210	Lys	Trp	Trp	Lys	Trp 215	Leu	Leu	Leu	Thr	Gly 220	Val	Ser	Leu	Ser
Cys 225	Val	Ile	Ser	Thr	Lys 230	Tyr	Val	Gly	Val	Phe 235	Thr	Phe	Val	Thr	Ile 240

Gly	Ser	Ala	Val	Met 245	Val	Asp	Leu	Trp	Asn 250	Leu	Leu	Asp	Ile	Arg 255	Arg
Arg	Gly	Gly	Ala 260	Leu	Thr	Met	Phe	Gln 265	Trp	Gly	Gln	His	Phe 270	Val	Ala
Arg	Ala	Phe 275	Ala	Leu	Ile	Ile	Val 280	Pro	Phe	Phe	Phe	Tyr 285	Leu	Phe	Trp
Phe	Gln 290	Val	His	Phe	Ala	Ile 295	Leu	Thr	Arg	Ser	Gly 300	Pro	Gly	Asp	Asp
Phe 305	Met	Thr	Pro	Glu	Phe 310	Gln	Glu	Thr	Leu	Ser 315	Asp	Asn	Val	Leu	Ser 320
Ala	Gln	Ser	Ile	Gly 325	Ile	Glu	Tyr	Tyr	Asp 330	Thr	Ile	Thr	Met	Lys 335	His
Lys	Asp	Thr	Lys 340	Val	Tyr	Leu	His	Ser 345	His	Leu	Glu	Arg	Tyr 350	Pro	Leu
Arg	Tyr	Asp 355	Asp	Gly	Arg	Ile	Ser 360	Ser	Gln	Gly	Gln	Gln 365	Val	Thr	Gly
Tyr	Pro 370	Tyr	Asn	Asp	Thr	Asn 375	Asn	Gln	Trp	Gln	Ile 380	Ile	Pro	Thr	Val
Pro 385	Leu	Asp	Val	Thr	Asp 390	Thr	Ser	Gly	His	Lys 395	Val	Arg	Asn	Gly	Asp 400
Val	Val	Gln	Leu	Arg 405	His	Met	Gly	Thr	Asp 410	Thr	Ile	Leu	Leu	Thr 415	His
Asp	Val	Ala	Ser 420	Pro	Tyr	Tyr	Pro	Thr 425	Asn	Gln	Glu	Phe	Thr 430	Thr	Val
Ser	His	Glu 435	Val	Ala	Asn	Gly	Asp 440	Arg	His	Asn	Asp	Thr 445	Leu	Phe	Glu
Ile	Lys 450	Ile	Glu	Asn	Gly	Lys 455	Pro	His	Gln	Glu	Phe 460	Arg	Thr	Leu	Ser
Ser 465	His	Phe	Lys	Leu	Ile 470	His	Met	Pro	Thr	Arg 475	Val	Ala	Met	Trp	Thr 480
His	Thr	Thr	Pro	Leu 485	Pro	Asp	Trp	Ala	Phe 490	Lys	Gln	Ala	Glu	Ile 495	Asn

Gly	Asn	Lys	Asn 500	Ile	Leu	Gln	Thr	Ser 505	Asn	Leu	Trp	Phe	Val 510	Glu	Ser
Ile	Glu	Ser 515	Leu	Glu	Glu	Asp	Ser 520	Pro	Arg	Leu	Val	Lys 525	Glu	Glu	Arg
Gln	Val 530	Lys	His	Leu	Pro	Phe 535	Phe	Arg	Lys	Tyr	Leu 540	Glu	Leu	Gln	Arg
Ala 545	Met	Phe	Phe	His	Asn 550	Asn	Ala	Leu	Thr	Ser 555	Ser	His	Pro	Tyr	Ala 560
Ser	Glu	Pro	Phe	Gln 565	Trp	Pro	Phe	Leu	Leu 570	Arg	Gly	Val	Ser	Phe 575	Trp
Thr	Lys	Asn	Asp 580	Thr	Arg	Glu	Gln	Ile 585	Tyr	Phe	Leu	Gly	Asn 590	Pro	Val
Gly	Trp	Trp 595	Ile	Ala	Ser	Ser	Leu 600	Leu	Ala	Val	Phe	Ala 605	Gly	Val	Ile
Gly	Ala 610	Asp	Gln	Leu	Ser	Leu 615	Arg	Arg	Gly	Val	Asp 620	Ala	Val	Glu	Glu
Ile 625	Trp	Gly	Gln	Gly	Ser 630	Arg	Ser	Arg	Leu	Tyr 635	Asn	Ser	Met	Gly	Phe 640
Leu	Phe	Leu	Cys	Trp 645	Ala	Ala	His	Tyr	Phe 650	Pro	Phe	Trp	Leu	Met 655	Gly
Arg	Gln	Arg	Phe 660	Leu	His	His	Tyr	Leu 665	Pro	Ala	His	Leu	Ala 670	Ser	Ala
Leu	Val	Ala 675	Gly	Ala	Leu	Ile	Glu 680	Phe	Ile	Phe	Asn	Leu 685	Glu	Pro	Leu
Ser	Val 690	Ile	Gln	Arg	Val	Arg 695	Ser	Glu	Asp	Asp	Pro 700	Ser	Gly	Lys	Ala
Lys 705	Ala	Ser	Ala	Ser	Val 710	Gly	Arg	Phe	Val	Thr 715	Ala	Lys	Glu	Arg	Met 720
Gly	Thr	Lys	Ser	Leu 725	Leu	Ala	Gly	Trp	Ile 730	Ala	Thr	Leu	Val	Ile 735	Leu
Ala	Gly	Thr	Ile	Tyr	Gly	Phe	Val	Phe	Tyr	Ala	Pro	Leu	Thr	Tyr	Gly

740 745 750 Thr Pro Gly Leu Asp Val Pro Gly Ile Leu Ala Arg Lys Trp Leu Gly 755 760 765 Tyr Asp Leu His Phe Ala Lys 775

<210> 7 <211> 773 <212> PRT 5 <213> Aspergillus nidulans

<400> 7

Met 1	Ser	Ser	Ser	Pro 5	Ser	Leu	Arg	Lys	Arg 10	Gly	Gly	Lys	Arg	Glu 15	Asp
Thr	Pro	Val	Pro 20	Ser	Asp	Arg	Ser	Phe 25	Ala	Pro	Ser	Ala	Ser 30	Gln	Leu
Gly	Ala	Ala 35	Ser	Arg	Ser	Ser	Glu 40	Trp	Asp	Tyr	Arg	Leu 45	Ala	Ile	Thr
Ile	Leu 50	Thr	Val	Leu	Ala	Phe 55	Ile	Thr	Arg	Phe	Tyr 60	Lys	Ile	Ser	Tyr
Pro 65	Asp	Gln	Val	Val	Phe 70	Asp	Glu	Val	His	Phe 75	Gly	Lys	Phe	Ala	Ser 80
Tyr	Tyr	Leu	Arg	Arg 85	Thr	Tyr	Phe	Phe	Asp 90	Val	His	Pro	Pro	Phe 95	Ala
Lys	Leu	Leu	Leu 100	Ala	Phe	Thr	Gly	Trp 105	Leu	Val	Gly	Tyr	Asp 110	Gly	His
Phe	Leu	Phe 115	Glu	Asn	Ile	Gly	Asp 120	Ser	Tyr	Ile	Asp	Asn 125	Lys	Val	Pro
Tyr	Val 130	Ala	Leu	Arg	Ala	Met 135	Pro	Ala	Val	Leu	Gly 140	Ala	Leu	Thr	Ile
Pro 145	Val	Val	Phe	Leu	Ile 150	Met	Trp	Glu	Ser	Gly 155	Tyr	Ser	Leu	Pro	Ala 160
Cys	Val	Leu	Ala	Ser 165	Gly	Leu	Val	Leu	Phe 170	Asp	Asn	Ala	His	Val 175	Gly
Glu	Asp	Arg	Leu	Ile	Leu	Leu	Asp	Ser	Thr	Leu	Val	Ile	Thr	Met	Ala

			180					185					190		
Leu	Ser	Ile 195	Leu	Cys	Tyr	Ile	Arg 200	Phe	Tyr	Lys	Leu	Arg 205	His	Glu	Pro
Phe	Gly 210	Arg	Lys	Trp	Trp	Lys 215	Trp	Leu	Leu	Leu	Thr 220	Gly	Val	Ser	Leu
Ser 225	Cys	Val	Ile	Ser	Thr 230	Lys	Tyr	Val	Gly	Val 235	Phe	Thr	Phe	Val	Thr 240
Ile	Gly	Ser	Ala	Val 245	Met	Val	Asp	Leu	Trp 250	Asn	Leu	Leu	Asp	Ile 255	Arg
Arg	Gln	Gly	Gly 260	Ala	Leu	Thr	Met	Phe 265	Glu	Trp	Thr	Lys	His 270	Phe	Ala
Ala	Arg	Phe 275	Phe	Ser	Leu	Ile	Val 280	Val	Pro	Phe	Phe	Phe 285	Tyr	Leu	Phe
Trp	Phe 290	Gln	Val	His	Phe	Ala 295	Ile	Leu	Thr	His	Ser 300	Gly	Pro	Gly	Asp
Asp 305	Phe	Met	Thr	Pro	Ala 310	Phe	Gln	Glu	Thr	Leu 315	Ser	Asp	Asn	Ala	Met 320
Ala	Ala	Gln	Ser	Val 325	Ser	Ile	Glu	Tyr	Phe 330	Asp	Thr	Ile	Thr	Met 335	Arg
His	Lys	Asp	Thr 340	Lys	Val	Phe	Leu	His 345	Ser	His	Ser	Asp	Thr 350	Tyr	Pro
Leu	Arg	Tyr 355	Asp	Asp	Gly	Arg	11e 360	Ser	Ser	Gln	Gly	Gln 365	Gln	Val	Thr
Gly	Tyr 370	Pro	Tyr	Asn	Asp	Thr 375	Asn	Asn	His	Trp	Gln 380	Ile	Ile	Pro	Thr
Val 385	Pro	Leu	Asp	Glu	Thr 390	Asp	Glu	Lys	Ser	Arg 395	Lys	Val	Arg	Asn	Gly 400
Asp	Ile	Val	Gln	Leu 405	Arg	His	Val	Ala	Thr 410	Asp	Thr	Ile	Leu	Leu 415	Thr
His	Asp	Val	Ala	Ser	Pro	Tyr	Tyr	Pro	Thr	Asn	Gln	Glu	Phe	Thr	Thr

Val	Ser	His 435	Glu	Leu	Ala	Asp	Gly 440	Lys	Arg	His	Asn	Asp 445	Thr	Leu	Phe
Glu	Ile 450	Arg	Val	Glu	His	Gly 455	Lys	Ser	Lys	Gln	Glu 460	Phe	Arg	Thr	Leu
Ser 465	Ser	Gln	Phe	Lys	Leu 470	Val	His	Val	Pro	Thr 475	Lys	Val	Ala	Met	Trp 480
Thr	His	Thr	Thr	Pro 485	Leu	Pro	Asp	Trp	Ala 490	Tyr	Lys	Gln	Ala	Glu 495	Ile
Asn	Gly	Asn	Lys 500	Asn	Val	Leu	Gln	Ser 505	Ser	Asn	Ile	Trp	Tyr 510	Val	Glu
Ala	Ile	Glu 515	Ser	Leu	Glu	Glu	Asp 520	Ser	Pro	Arg	Leu	Lys 525	Lys	Glu	Glu
Arg	Lys 530	Val	Lys	His	Leu	Pro 535	Phe	Trp	Arg	Lys	Tyr 540	Ile	Glu	Leu	Gln
Arg 545	Ala	Met	Phe	Phe	His 550	Asn	Asn	Ala	Leu	Thr 555	Ser	Ser	His	Pro	Tyr 560
Ala	Ser	Glu	Pro	Phe 565	Gln	Trp	Pro	Phe	Leu 570	Leu	Arg	Gly	Val	Ser 575	Phe
Trp	Thr	Lys	Ser 580	Asp	Thr	Arg	Glu	Gln 585	Ile	Tyr	Phe	Leu	Gly 590	Asn	Pro
Val	Gly	Trp 595	Trp	Ile	Ser	Ser	Ser 600	Leu	Leu	Ala	Val	Phe 605	Ala	Gly	Val
Ile	Gly 610	Ala	Asp	Gln	Leu	Ser 615	Leu	Arg	Arg	Gly	Val 620	Asp	Ala	Val	Glu
Glu 625	Ile	Trp	Gly	Pro	Gly 630	Ser	Arg	Ser	Arg	Leu 635	Tyr	Asn	Ser	Thr	Gly 640
Phe	Leu	Phe	Leu	Cys 645	Trp	Ala	Ala	His	Tyr 650	Phe	Pro	Phe	Trp	Leu 655	Met
Gly	Arg	Gln	A rg 660	Phe	Leu	His	His	Tyr 665	Leu	Pro	Ala	His	Val 670	Ala	Ser
Ala	Leu	Val 675	Thr	Gly	Ala	Leu	Ile 680	Glu	Phe	Ile	Phe	Asn 685	Ile	Gln	Pro

Ile Ser Val Pro Ala Thr Ile Pro Val Ala Ala Asp Asp Pro Thr Gly 690 695 700

Lys Gly Lys Thr Arg Arg Phe Val Thr Ala Arg Glu Arg Met Gly Val 705 710 715 720

Lys Ser Ile Val Ala Gly Trp Ile Ala Ser Leu Thr Ile Leu Ala Ala 725 730 735

Thr Ile Trp Gly Phe Trp Phe Phe Ala Pro Leu Thr Tyr Gly Thr Pro
740 745 750

Gly Leu Asp Val Ala Gln Val Asn Ala Arg Lys Trp Leu Gly Tyr Asp
755 760 765

Leu His Phe Ala Lys 770

<210> 8

<211> 774

<212> PRT

5

<213> Trichoderma virens

<400> 8

Met 1	Ala	Arg	Thr	Pro 5	Thr	Pro	Gln	Pro	Pro 10	Ser	Leu	Arg	Gln	Arg 15	Asn
Val	Ala	Ser	Lys 20	Gln	Pro	Val	Ser	G1u 25	Ala	Thr	Phe	Ala	Pro 30	Glu	Val
Glu	Leu	Asp 35	Lys	Leu	Ser	Lys	Ala 40	Ala	Ala	Ser	Ser	Arg 45	Gln	Asn	Ile
Gln	Arg 50	Gly	Glu	Thr	Glu	His 55	Arg	Val	Ala	Leu	Thr 60	Leu	Val	Thr	Ile
Leu 65	Gly	Phe	Val	Thr	Arg 70	Phe	Trp	Gly	Ile	Ser 75	His	Pro	Asp	Glu	Val 80
Val	Phe	Asp	Glu	Val 85	His	Phe	Gly	Lys	Phe 90	Ala	Ser	Tyr	Tyr	Leu 95	Gln
Arg	Thr	Tyr	Phe 100	Phe	Asp	Val	His	Pro 105	Pro	Phe	Ala	Lys	Leu 110	Leu	Phe
Ala	Phe		_	_	Leu		_	_	_	_		Phe	His	Phe	Glu

Asn	Ile 130	Gly	Asp	Ser	Tyr	Ile 135	Ala	Asn	Lys	Val	Pro 140	Tyr	Val	Ala	Phe
Arg 145	Ala	Leu	Pro	Ala	Phe 150	Leu	Gly	Ala	Leu	Thr 155	Val	Ser	Val	Thr	Tyr 160
Leu	Ile	Met	Trp	Glu 165	Ser	Gly	Tyr	Ser	Val 170	Pro	Ala	Cys	Leu	Val 175	Ala
Thr	Gly	Leu	Ile 180	Leu	Leu	Asp	Asn	Ala 185	His	Ile	Gly	Gln	Thr 190	Arg	Leu
Ile	Leu	Leu 195	Asp	Ala	Thr	Leu	Val 200	Leu	Ala	Met	Ala	Cys 205	Ser	Leu	Leu
Phe	Tyr 210	Ile	Lys	Phe	Tyr	Lys 215	Leu	Arg	His	Glu	Pro 220	Phe	Ser	Arg	Lys
Trp 225	Trp	Lys	Trp	Leu	Val 230	Leu	Thr	Gly	Phe	Ala 235	Leu	Ser	Cys	Asp	Ile 240
Ser	Thr	Lys	Tyr	Val 245	Gly	Leu	Phe	Ala	Phe 250	Val	Thr	Ile	Gly	Ser 255	Ala
Val	Ile	Ile	Asp 260	Leu	Trp	Glu	Leu	Leu 265	Asp	Ile	Arg	Arg	Pro 270	Gly	Gly
Ala	Ile	Ser 275	Leu	Pro	Leu	Phe	Gly 280	Lys	His	Phe	Ala	Ala 285	Arg	Ala	Val
Gly	Leu 290	Ile	Ile	Leu	Pro	Phe 295	Leu	Phe	Tyr	Leu	Phe 300	Trp	Phe	Gln	Val
His 305	Phe	Ala	Val	Leu	Thr 310	Arg	Ser	Gly	Pro	Gly 315	Asp	Asp	Phe	Met	Ser 320
Pro	Glu	Phe	Gln	Glu 325	Thr	Leu	Ser	Asp	Asn 330	Val	Met	Leu	Ala	Ser 335	Ala
Val	Asp	Ile	Gln 340	Tyr	Tyr	Asp	Thr	Ile 345	Thr	Ile	Arg	His	Lys 350	Glu	Thr
Lys	Ala	Tyr 355	Leu	His	Ser	His	Leu 360	Asp	Thr	Tyr	Pro	Leu 365	Arg	Tyr	Asp
Asp	Gly 370	Arg	Ile	Ser	Ser	Gln 375	Gly	Gln	Gln	Val	Thr 380	Gly	Tyr	Pro	His

Asn 385	Asp	Thr	Asn	Asn	Tyr 390	Trp	Gln	Ile	Ile	Pro 395	Ala	Ser	Asn	Asp	Gln 400
Lys	Leu	Gly	Arg	Ile 405	Val	Arg	Asn	Gln	Glu 410	Leu	Val	Arg	Leu	Arg 415	His
Ile	Val	Thr	Asp 420	Lys	Ile	Leu	Leu	Ser 425	His	Asp	Val	Ala	Ser 430	Pro	Tyr
Tyr	Pro	Thr 435	Asn	Gln	Glu	Phe	Thr 440	Ala	Val	Ser	Ala	Glu 445	Glu	Ala	Tyr
Gly	Asp 450	Arg	Leu	Asn	Asp	Thr 455	Leu	Phe	Glu	Ile	Arg 460	Ile	Glu	Gly	Gly
Lys 465	Pro	Asn	Gln	Asp	Phe 470	Lys	Thr	Ile	Ala	Ser 475	His	Phe	Lys	Leu	Ile 480
His	Phe	Pro	Ser	Lys 485	Val	Ala	Met	Trp	Thr 490	His	Thr	Thr	Pro	Leu 495	Pro
Glu	Trp	Ala	Tyr 500	Arg	Gln	Gln	Glu	Ile 505	Asn	Gly	Asn	Lys	Gln 510	Ile	Thr
Pro	Ser	Ser 515	Asn	Val	Trp	Ile	Ala 520	Glu	Asp	Ile	Pro	Ser 525	Leu	Pro	Glu
Asp	His 530	Ser	Arg	Arg	Gln	Lys 535	Glu	Glu	Arg	Lys	Val 540	Lys	Ser	Leu	Pro
Phe 545	Leu	Arg	Lys	Trp	Phe 550	Glu	Leu	Gln	Arg	Ser 555	Met	Phe	Tyr	His	Asn 560
Asn	Lys	Leu	Thr	Ser 565	Ser	His	Pro	Tyr	Ser 570	Ser	Gln	Pro	Tyr	His 575	Trp
Pro	Phe	Leu	Leu 580	Arg	Gly	Val	Ser	Phe 585	Trp	Thr	Gln	Asn	Asp 590	Thr	Arg
Gln	Gln	Ile 595	Tyr	Phe	Val	Gly	Asn 600	Pro	Ile	Gly	Trp	Trp 605	Leu	Ala	Ser
Gly	Leu 610	Leu	Ala	Val	Phe	Ala 615	Gly	Ile	Ile	Gly	Ala 620	Asp	Gln	Val	Ser
Leu	Arg	Arg	Gly	Ile	Asp	Ala	Leu	Asp	His	Arg	Thr	Arg	Ser	Arg	Leu

625 630 635 640 Tyr Asn Ser Thr Gly Phe Phe Trp Leu Ala Trp Ala Thr His Tyr Phe 645 650 Pro Phe Phe Leu Met Gly Arg Gln Leu Phe Leu His His Tyr Leu Pro 660 665 670 Ala His Leu Ala Ser Cys Leu Val Thr Gly Ser Leu Val Glu Phe Ile 675 680 685 Phe Asn Thr Asp Pro Ala Asp Glu Glu Pro Ser Arg Ala Thr Asn Pro 690 695 700 Arg Ala Ser Gly Pro Lys Arg His Ile Thr Ala Arg Glu Arg Phe Ala 705 710 Gly Lys Ser Met Ala Gly Ala Trp Ile Ala Cys Phe Val Ile Leu Thr Val Ala Ala Ser Trp Tyr Phe Phe Leu Pro Leu Thr Tyr Gly Tyr 745 Pro Gly Leu Ser Val Asp Glu Val Asn Arg Arg Lys Trp Leu Gly Tyr 760 Asp Leu His Phe Ala Lys 770

<210> 9

<211> 771

<212> PRT

5

<213> Trichoderma atroviride

<400> 9

- Met Ala Arg Ala Ser Thr Pro Gln Gly Ser Leu Arg Gln Arg Gly Val 1 5 10 15
- Ala Ser Lys Gln Thr Leu Ser Glu Ser Thr Phe Ala Pro Glu Val Glu 20 25 30
- Leu Asp Lys Leu Ser Lys Ala Ala Ala Ser Ser Arg Gln Asn Val Gln 35 40 45
- Arg Gly Glu Ile Glu His Lys Ile Ala Leu Thr Leu Val Thr Ile Leu 50 55 60
- Gly Phe Val Thr Arg Phe Trp Gly Ile Ser His Pro Asp Glu Val Val

65					70					75					80
Phe	Asp	Glu	Val	His 85	Phe	Gly	Lys	Phe	Ala 90	Ser	Tyr	Tyr	Leu	Gln 95	Arg
Thr	Tyr	Phe	Phe 100	Asp	Val	His	Pro	Pro 105	Phe	Ala	Lys	Leu	Leu 110	Phe	Ala
Phe	Val	Gly 115	Trp	Leu	Val	Gly	Tyr 120	Asp	Gly	His	Phe	His 125	Phe	Glu	Asn
Ile	Gly 130	Asp	Ser	Tyr	Val	Ala 135	Asn	Lys	Val	Pro	Tyr 140	Val	Ala	Phe	Arg
Ala 145	Leu	Pro	Ala	Val	Leu 150	Gly	Ala	Leu	Thr	Val 155	Ser	Val	Thr	Tyr	Leu 160
Ile	Met	Trp	Glu	Ser 165	Gly	Tyr	Ser	Leu	Pro 170	Ala	Cys	Leu	Val	Ala 175	Thr
Gly	Leu	Ile	Leu 180	Leu	Asp	Asn	Ala	His 185	Ile	Gly	Gln	Thr	Arg 190	Leu	Ile
Leu	Leu	Asp 195	Ala	Thr	Leu	Val	Leu 200	Ala	Met	Ala	Cys	Ser 205	Leu	Leu	Phe
Tyr	Ile 210	Lys	Phe	Tyr	Lys	Leu 215	Arg	His	Glu	Ala	Phe 220	Ser	Arg	Lys	Trp
Trp 225	Lys	Trp	Leu	Ile	Leu 230	Thr	Gly	Phe	Ala	Leu 235	Ser	Cys	Asp	Ile	Ser 240
Thr	Lys	Tyr	Val	Gly 245	Leu	Phe	Ala	Phe	Val 250	Thr	Ile	Gly	Ser	Ala 255	Val
Ile	Ile	Asp	Leu 260	Trp	Asp	Leu	Leu	Asp 265	Ile	Lys	Arg	Arg	A sn 270	Gly	Ala
Ile	Ser	Leu 275	Gln	Leu	Phe	Gly	Lys 280	His	Phe	Ala	Ala	Arg 285	Ala	Ile	Gly
Leu	Ile 290	Val	Leu	Pro	Phe	Leu 295	Phe	Tyr	Leu	Phe	Trp 300	Phe	Gln	Val	His
Phe 305	Ala	Val	Leu	Thr	Arg 310	Ser	Gly	Pro	Gly	Asp 315	Asp	Phe	Met	Thr	Pro 320

Glu Phe Gln	Glu Thr		r Asp	Asn	Val 330	Met	Leu	Ala	Asn	Ala 335	Val
Asp Ile His	Tyr Tyr 340	Asp Ty	r Ile	Thr 345	Ile	Arg	His	Lys	Glu 350	Thr	Lys
Ala Tyr Leu 355		His Pr	o Asp 360		Tyr	Pro	Leu	Arg 365	Tyr	Asp	Asp
Gly Arg Ile 370	Ser Ser	Gln Gl 37	_	Gln	Ile	Thr	Gly 380	Tyr	Pro	His	Asn
Asp Thr Asn 385	Asn Tyr	Trp Gl 390	n Val	Leu	Pro	Ser 395	Asp	Asn	Val	His	Asn 400
Thr Glu Arg	Ile Val 405	_	n Phe	Asp	Leu 410	Val	Arg	Leu	Arg	His 415	Ile
Val Thr Asp	Lys Ile 420	Leu Le	u Ser	His 425	Asp	Val	Ala	Ser	Pro 430	Tyr	Phe
Pro Thr Asn 435		Phe Th	r Ala 440		Thr	Ser	Glu	Glu 445	Ala	Phe	Gly
Glu Arg Gln 450	Asn Asp	Thr Le		Glu	Ile	Arg	Val 460	Glu	Thr	Ala	Lys
Val Gly Ala 465	Glu Phe	Lys Th	r Val	Ala	Ser	His 475	Phe	Lys	Leu	Val	His 480
Phe Pro Ser	Lys Val 485		t Trp	Thr	His 490	Thr	Thr	Pro	Leu	Pro 495	Glu
Trp Gly Tyr	Lys Gln 500	Gln Gl	u Ile	Asn 505	Gly	Asn	Lys	Gln	Val 510	Thr	Val
Ser Ser Asn 515	_	Ile Al	a Glu 520		Ile	Pro	Ser	Leu 525	Pro	Gln	Asp
Asp Ala Arg 530	Arg Gln	Lys Gl 53		Arg	Gln	Val	Lys 540	Ser	Leu	Pro	Phe
Leu Arg Lys 545	Trp Phe	Glu Le 550	u Gln	Arg	Ser	Met 555	Phe	Tyr	His	Asn	Asn 560
Lys Leu Thr	Ser Ser	His Pr	o Tyr	Ser	Ser	Gln	Pro	Tyr	His	Trp	Pro

Phe Leu Leu Arg Gly Val Ser Phe Trp Thr Gln Asn Asp Thr Arg Gln Gln Ile Tyr Phe Val Gly Asn Pro Ile Gly Trp Trp Ile Thr Ser Ser Leu Leu Ala Val Phe Ala Gly Ile Ile Ala Ala Asp Gln Ile Ser Leu Arg Arg Asn Ile Asp Ala Leu Asp His Arg Thr Arg Ser Arg Leu Tyr Asn Ser Thr Gly Phe Phe Trp Leu Ala Trp Ala Thr His Tyr Phe Pro Phe Tyr Leu Met Gly Arg Gln Leu Phe Leu His His Tyr Leu Pro Ala His Leu Ala Ser Cys Leu Val Thr Gly Ala Leu Val Glu Phe Ile Phe Asn Ser Asp Ala Val Glu Glu Glu Ser Ser Lys Ser Gly Asn Arg Ser Ser Pro Lys Arg His Val Thr Ala Arg Glu Arg Phe Ala Gly Lys Ser Met Leu Gly Ala Trp Ile Ala Cys Gly Val Ile Leu Ser Ala Ala Ala Ala Cys Trp Tyr Phe Phe Leu Pro Leu Thr Tyr Gly Tyr Pro Gly Leu Ser Val Glu Glu Val Val Arg Arg Lys Trp Leu Gly Tyr Asp Leu His

Phe Ala Lys

<210> 10

<211> 770

<212> PRT

<213> Fusarium oxysporum

<400> 10

Pro	Ser	Lys	Lys 20	Pro	Phe	Glu	Glu	Asp 25	Ser	Phe	Asp	Pro	Asn 30	Ile	Glu
Leu	Asp	Lys 35	Leu	Ala	Lys	Ala	Gly 40	Ala	Gln	Arg	Ala	Ala 45	Ala	Gln	Ser
Glu	Thr 50	Glu	Tyr	Lys	Ile	Gly 55	Leu	Phe	Leu	Ile	Thr 60	Ile	Leu	Ser	Phe
Val 65	Thr	Arg	Phe	Trp	Gly 70	Ile	Ser	His	Pro	Asn 75	Glu	Val	Val	Phe	Asp 80
Glu	Val	His	Phe	Gly 85	Lys	Phe	Ala	Ser	Tyr 90	Tyr	Leu	Glu	Arg	Thr 95	Tyr
Phe	Phe	Asp	Val 100	His	Pro	Pro	Phe	Gly 105	Lys	Leu	Leu	Phe	Ala 110	Phe	Val
Gly	Trp	Leu 115	Val	Gly	Tyr	Asp	Gly 120	Asn	Phe	His	Phe	Glu 125	Asn	Ile	Gly
Asp	Ser 130	Tyr	Ile	Ala	Asn	Lys 135	Val	Pro	Tyr	Val	Ala 140	Tyr	Arg	Ala	Leu
Pro 145	Ala	Thr	Leu	Gly	Ala 150	Leu	Thr	Val	Ser	Val 155	Thr	Tyr	Leu	Ile	Met 160
				165					170				Ala	175	
Val	Leu	Leu	Asp 180	Asn	Ala	His	Ile	Gly 185	Gln	Thr	Arg	Leu	Ile 190	Leu	Leu
Asp	Ala	Thr 195	Leu	Val	Leu	Ala	Met 200	Ala	Cys	Ser	Leu	Leu 205	Phe	Tyr	Ile
Lys	Trp 210	Tyr	Lys	Leu	Arg	His 215	Glu	Pro	Phe	Ser	Arg 220	Lys	Trp	Trp	Lys
225					230					235			Ser		240
Tyr	Val	Gly	Val	Phe 245	Ala	Phe	Val	Thr	11e 250	Gly	Ser	Ala	Val	Val 255	Ile
Asp	Leu	Trp	Asp 260	Leu	Leu	Asn	Ile	Asn 265	Arg	Pro	Gly	Gly	Ala 270	Ile	Ser

Leu	Gln	Glu 275	Phe	Thr	Lys	His	Phe 280	Ala	Ala	Arg	Ala	Phe 285	Gly	Leu	Ile
Ile	Met 290	Pro	Phe	Leu	Phe	Tyr 295	Leu	Phe	Trp	Phe	Gln 300	Val	His	Phe	Ala
Val 305	Leu	Tyr	Arg	Ser	Gly 310	Pro	Gly	Asp	Asp	Phe 315	Met	Thr	Pro	Glu	Phe 320
Gln	Glu	Thr	Leu	Ser 325	Asp	Asn	Val	Met	Leu 330	Ala	Asn	Ser	Ile	Asp 335	Ile
Gln	Tyr	Tyr	Asp 340	Gln	Ile	Thr	Ile	Arg 345	His	Lys	Glu	Thr	Lys 350	Thr	Tyr
Leu	His	Ser 355	His	Glu	Asp	Arg	Tyr 360	Pro	Leu	Arg	Tyr	Asp 365	Asp	Gly	Arg
Val	Ser 370	Ser	Gln	Gly	Gln	Gln 375	Ile	Thr	Gly	Tyr	Pro 380	Tyr	Asn	Asp	Thr
Asn 385	Asn	Tyr	Trp	Glu	Ile 390	Leu	Pro	Ala	Asn	A sn 395	Asp	Lys	Gln	Ile	Gly 400
Arg	Ile	Val	Lys	Asn 405	His	Glu	Leu	Val	Arg 410	Leu	Arg	His	Val	Gly 415	Thr
Asp	Lys	Ile	Leu 420	Leu	Ser	His	Asp	Val 425	Ala	Ser	Pro	Tyr	Tyr 430	Pro	Thr
Asn	Gln	Glu 435	Phe	Thr	Ala	Val	Thr 440	Pro	Glu	Glu	Ala	Phe 445	Gly	Lys	Arg
Glu	Lys 4 50	Asp	Thr	Leu	Phe	Glu 455	Val	Arg	Ile	Glu	His 460	Gly	Lys	Lys	Asn
Gln 465	Asn	Phe	Lys	Thr	Val 470	Ala	Gly	His	Phe	Lys 475	Leu	Ile	His	Asn	Pro 480
Ser	Lys	Val	Ala	Met 485	Trp	Thr	His	Thr	Lys 490	Pro	Leu	Pro	Glu	Trp 495	Gly
Tyr	Lys	Gln	Gln 500	Glu	Ile	Asn	Gly	Asn 505	Lys	Gln	Ile	Ala	Pro 510	Ser	Ser
Asn	Val	Trp	Ile	Ala	Glu	Asp	Ile	Pro	Ser	Leu	Pro	Ala	Asp	His	Pro

		515					520					525			
Arg	Arg 530	Gln	Lys	Pro	Glu	A rg 535	Lys	Val	Lys	Ser	Leu 540	Pro	Phe	Leu	Gln
Lys 545	Trp	Phe	Glu	Leu	Gln 550	Arg	Ala	Met	Phe	Tyr 555	His	Asn	Ser	Lys	Leu 560
Thr	Ser	Ser	His	Pro 565	Tyr	Ala	Ser	His	Pro 570	Tyr	Gln	Trp	Pro	Phe 575	Leu
Leu	Arg	Gly	Val 580	Ser	Phe	Trp	Thr	Gln 585	Ser	Glu	Thr	Arg	Gln 590	Gln	Ile
Tyr	Phe	Leu 595	Gly	Asn	Pro	Ile	Gly 600	Trp	Trp	Leu	Ala	Ser 605	Ser	Leu	Leu
Ala	Val 610	Tyr	Ala	Gly	Ile	Leu 615	Leu	Ala	Asp	Gln	Val 620	Ser	Leu	Arg	Arg
Gly 625	Val	Asp	Ala	Leu	Asp 630	Arg	Arg	Thr	Arg	Ser 635	Arg	Leu	Tyr	Asn	Ser 640
Thr	Gly	Phe	Phe	Phe 645	Leu	Ala	Trp	Ala	Thr 650	His	Tyr	Phe	Pro	Phe 655	Phe
Leu	Met	Gly	Arg 660	Gln	Leu	Phe	Leu	His 665	His	Tyr	Leu	Pro	Ala 670	His	Leu
Ala	Ser	Cys 675	Leu	Val	Ala	Gly	Ala 680	Leu	Leu	Glu	Phe	Ile 685	Phe	Asn	Ser
Glu	Ala 690	Pro	Glu	Glu	Val	Thr 695	Ile	Lys	Asp	Lys	Lys 700	Gly	Pro	Val	Ser
Pro 705	Arg	His	His	Val	Thr 710	Ala	Arg	Glu	Arg	Phe 715	Ala	Gly	Gln	Ser	Met 720
Leu	Gly	Ala	Trp	Ile 725	Ala	Cys	Gly	Val	Ile 730	Leu	Ser	Leu	Ile	Ile 735	Ala
Gly	Trp	Tyr	Phe 740	Phe	Leu	Pro	Leu	Thr 745	Tyr	Gly	Tyr	Pro	Gly 750	Leu	Ser
Val	Asp	Ala 755	Ile	Leu	Arg	Arg	Lys 760	Trp	Leu	Gly	Tyr	Asp 765	Leu	His	Phe
Ala	Lys 770														

<210> 11 <211> 788 <212> PRT 5 <213> Gibberella zeae

Met 1	Ala	Arg	Ser	Ser 5	Ser	Pro	Ser	Gln	Gly 10	Ser	Leu	Arg	Gln	Arg 15	Gly
Ala	Pro	Ser	Lys 20	Lys	Pro	Ser	Glu	Glu 25	Ser	Phe	Asn	Pro	Asn 30	Pro	Glu
Leu	Asp	Lys 35	Leu	Ala	Lys	Ala	Gly 40	Ala	Gln	Arg	Ala	Ala 45	Ala	Gln	Ser
Glu	Thr 50	Glu	His	Lys	Ile	Gly 55	Leu	Ala	Val	Ile	Thr 60	Ile	Leu	Ser	Phe
Val 65	Thr	Arg	Phe	Trp	Gly 70	Ile	Ser	His	Pro	Asn 75	Glu	Val	Val	Phe	Asp 80
Glu	Val	His	Phe	Gly 85	Lys	Phe	Ala	Ser	Tyr 90	Tyr	Leu	Glu	Arg	Thr 95	Tyr
Phe	Phe	Asp	Val 100	His	Pro	Pro	Phe	Gly 105	Lys	Leu	Leu	Phe	Ala 110	Phe	Val
Gly	Trp	Leu 115	Val	Gly	Tyr	Asp	Gly 120	His	Phe	His	Phe	Asp 125	Asn	Ile	Gly
Asp	Ser 130	Tyr	Ile	Ala	Asn	Lys 135	Ile	Pro	Tyr	Val	Ala 140	Phe	Arg	Ala	Leu
Pro 145	Ala	Thr	Leu	Gly	Ala 150	Leu	Thr	Val	Ala	Val 155	Thr	Tyr	Leu	Ile	Met 160
Trp	Glu	Ser	Gly	Tyr 165	Ser	Leu	Pro	Ala	Cys 170	Val	Leu	Ala	Ala	Gly 175	Leu
Leu	Leu	Leu	Asp 180	Asn	Ala	His	Ile	Gly 185	Gln	Thr	Arg	Leu	Ile 190	Leu	Leu
Asp	Ala	Thr 195	Leu	Val	Leu	Ala	Met 200	Ala	Cys	Ser	Leu	Leu 205	Phe	Tyr	Ile

Lys	Trp 210	Tyr	Lys	Leu	Arg	His 215	Glu	Pro	Phe	Ser	Arg 220	Lys	Trp	Trp	Lys
Trp 225	Leu	Ile	Leu	Thr	Gly 230	Phe	Ala	Leu	Ser	Cys 235	Asp	Ile	Ser	Val	Lys 240
Tyr	Val	Gly	Val	Phe 245	Ala	Phe	Val	Thr	Ile 250	Gly	Cys	Ala	Val	Val 255	Ile
Asp	Leu	Trp	Asp 260	Leu	Leu	Asn	Ile	Asn 265	Arg	Pro	Gly	Gly	Ala 270	Ile	Ser
Met	Gln	Glu 275	Phe	Gly	Lys	His	Phe 280	Ala	Ala	Arg	Ala	Phe 285	Gly	Leu	Ile
Val	Leu 290	Pro	Phe	Leu	Phe	Tyr 295	Leu	Phe	Trp	Phe	Gln 300	Val	His	Phe	Ala
Val 305	Leu	Tyr	Arg	Ser	Gly 310	Pro	Gly	Asp	Asp	Phe 315	Met	Thr	Pro	Glu	Phe 320
Gln	Glu	Thr	Leu	Ser 325	Asp	Asn	Val	Met	Leu 330	Ala	Asn	Ala	Ile	Asp 335	Ile
Gln	Tyr	Tyr	Asp 340	Ser	Ile	Thr	Ile	Arg 345	His	Lys	Glu	Thr	Lys 350	Thr	Tyr
Leu	His	Ser 355	His	Glu	Asp	Arg	Tyr 360	Pro	Leu	Arg	Tyr	Asp 365	Asp	Gly	Arg
Val	Ser 370	Ser	Gln	Gly	Gln	Gln 375	Ile	Thr	Gly	Tyr	Pro 380	Tyr	Asn	Asp	Thr
Asn 385	Asn	Tyr	Trp	Glu	Ile 390	Trp	Pro	Ala	Asp	Asn 395	Asn	Lys	Thr	Pro	Gly 400
Arg	Ile	Val	Lys	Asn 405	His	Asp	Leu	Val	Arg 410	Leu	Arg	His	Val	Gly 415	Thr
Asp	Lys	Ile	Leu 420	Leu	Ser	His	Asp	Val 425	Ala	Ser	Pro	Tyr	Tyr 430	Pro	Thr
Asn	Gln	Glu 435	Phe	Thr	Ala	Val	Thr 440	Pro	Glu	Glu	Ala	Leu 445	Gly	Lys	Arg
Glu	Lys 450	Glu	Thr	Leu	Phe	Glu 455	Val	Arg	Leu	Glu	His 460	Gly	Lys	Lys	Asn

Gln 465	Asn	Phe	Lys	Ser	Val 470	Ala	Gly	His	Phe	Lys 475	Leu	Ile	His	Asn	Pro 480
Ser	Lys	Val	Ala	Met 485	Trp	Thr	His	Thr	Lys 490	Pro	Leu	Pro	Glu	Trp 495	Gly
Tyr	Lys	Gln	Gln 500	Glu	Ile	Asn	Gly	Asn 505	Lys	Gln	Ile	Ala	Pro 510	Ser	Ser
Asn	Val	Trp 515	Ile	Ala	Glu	Asp	Ile 520	Ala	Ser	Leu	Glu	Ala 525	Asp	His	Pro
Arg	Arg 530	Gln	Lys	Pro	Glu	Arg 535	Lys	Val	Lys	Ser	Leu 540	Pro	Phe	Leu	Gln
Lys 545	Trp	Phe	Glu	Leu	Gln 550	Arg	Ala	Met	Phe	Tyr 555	His	Asn	Ser	Lys	Leu 560
Thr	Ser	Ser	His	Pro 565	Tyr	Ala	Ser	His	Pro 570	Tyr	Gln	Trp	Pro	Phe 575	Leu
Leu	Arg	Gly	Val 580	Ser	Phe	Trp	Thr	Gln 585	Ser	Glu	Thr	Arg	Gln 590	Gln	Ile
Tyr	Phe	Leu 595	Gly	Asn	Pro	Val	Gly 600	Trp	Trp	Leu	Ala	Ser 605	Ser	Leu	Leu
Ala	Val 610	Tyr	Ala	Gly	Ile	Leu 615	Leu	Ala	Asp	Gln	Val 620	Ser	Leu	Arg	Arg
Gly 625	Ile	Asp	Ala	Leu	Asp 630	Arg	Arg	Lys	Leu	Met 635	Leu	Gln	Ser	Gln	Leu 640
Met	Asn	Pro	Thr	Leu 645	Thr	Asn	Ser	Lys	Gly 650	Thr	Arg	Ser	Arg	Leu 655	Tyr
Asn	Ser	Thr	Gly 660	Phe	Phe	Phe	Leu	Ala 665	Trp	Ala	Thr	His	Tyr 670	Phe	Pro
Phe	Phe	Leu 675	Met	Gly	Arg	Gln	Leu 680	Phe	Leu	His	His	Tyr 685	Leu	Pro	Ala
His	Leu 690	Ala	Ser	Cys	Leu	Val 695	Ala	Gly	Ala	Leu	Leu 700	Glu	Phe	Ile	Phe
Asn 705	Ser	Glu	Pro	Ala	Glu 710	Glu	Ile	Thr	Ile	Lys 715	Asp	Lys	Lys	Gly	Pro 720

Val Ser Pro Arg His His Val Thr Ala Arg Glu Arg Phe Ser Gly Gln 725 730 735

Ser Met Ala Ser Ala Trp Ile Ala Cys Gly Val Val Leu Ala Leu Val 740 745 750

Val Ala Gly Trp Tyr Phe Phe Leu Pro Leu Thr Tyr Gly Tyr Pro Gly 755 760 765

Leu Ser Val Glu Ala Ile Leu Arg Arg Lys Trp Leu Gly Tyr Asp Leu 770 775 780

His Phe Ala Lys 785

<210> 12

<211> 775

<212> PRT

5

<213> Myceliophthora thermophila

<400> 12

Met Ala Ser Thr Ser Thr Pro Gln Gly Thr Leu Arg Gln Arg Asn Val Gly Val Ser Thr Lys Lys Pro Lys Asp Gly Ala Ser Ser Asp Val Glu Leu Asp Lys Leu Val Lys Ala Ala Glu Lys Ser Ser Lys Asn Ser Glu Arg Asp Phe Lys Val Val Phe Val Val Met Thr Ala Leu Ala Phe 55 Leu Thr Arg Phe Trp Gly Ile Ser His Pro Asn Glu Val Val Phe Asp Glu Val His Phe Gly Lys Phe Ala Ser Tyr Tyr Leu Glu Arg Thr Tyr 90 Phe Phe Asp Val His Pro Pro Leu Gly Lys Leu Leu Phe Ala Phe Met 100 105 110 Gly Trp Leu Val Gly Tyr Asp Gly His Phe His Phe Glu Asn Ile Gly 115 120 125 Asp Ser Tyr Ile Val Asn Lys Val Pro Tyr Val Ala Phe Arg Ser Leu 130 135 140

Pro 145	Ala	Ile	Leu	Gly	Ala 150	Leu	Thr	Val	Ser	Val 155	Thr	Tyr	Leu	Ile	Met 160
Trp	Glu	Ser	Gly	Tyr 165	Ser	Leu	Pro	Ala	Cys 170	Ile	Ile	Ala	Ala	Gly 175	Leu
Ile	Leu	Leu	Asp 180	Asn	Ala	His	Ile	Gly 185	Gln	Thr	Arg	Leu	Ile 190	Leu	Leu
Asp	Ala	Thr 195	Leu	Val	Phe	Ala	Met 200	Ala	Cys	Ser	Leu	Leu 205	Cys	Tyr	Ile
Lys	Phe 210	Tyr	Lys	Leu	Arg	His 215	Glu	Pro	Phe	Ser	Arg 220	Lys	Trp	Trp	Lys
Trp 225	Leu	Ile	Leu	Thr	Gly 230	Phe	Ala	Leu	Ser	Cys 235	Asp	Ile	Ser	Thr	Lys 240
Tyr	Val	Gly	Leu	Phe 245	Ala	Phe	Ile	Thr	Ile 250	Gly	Ser	Ala	Val	Val 255	Ile
Asp	Leu	Trp	Asp 260	Leu	Leu	Asp	Ile	Lys 265	Arg	Pro	Gly	Gly	Ala 270	Leu	Thr
Leu	Ala	Glu 275	Phe	Gly	Lys	His	Phe 280	Ala	Ala	Arg	Ala	Phe 285	Gly	Leu	Ile
Ile	Met 290	Pro	Phe	Leu	Phe	Tyr 295	Leu	Phe	Trp	Phe	Gln 300	Val	His	Phe	Ser
Ile 305	Leu	Thr	Arg	Ser	Gly 310	Pro	Gly	Asp	Asp	Phe 315	Met	Thr	Pro	Glu	Phe 320
Gln	Glu	Thr	Leu	Ser 325	Asp	Asn	Ile	Met	Leu 330	Ala	Asn	Ala	Val	Thr 335	Ile
Asp	Tyr	Tyr	Asp 340	Thr	Ile	Leu	Ile	Lys 345	His	Lys	Glu	Thr	Lys 350	Val	Tyr
Leu	His	Ser 355	His	Pro	Asp	Arg	Tyr 360	Pro	Leu	Arg	Tyr	Asp 365	Asp	Gly	Arg
Val	Ser 370	Ser	Gln	Gly	Gln	Gln 375	Val	Thr	Gly	Tyr	Pro 380	Phe	Asn	Asp	Thr
Asn	Asn	Tyr	Trp	Gln	Ile	Leu	Pro	Gly	Gly	Ala	Asp	Asp	Gln	Lys	Leu

385					390					395					400
Gly	Arg	His	Val	Arg 405	Asn	His	Asp	Leu	Val 410	Arg	Leu	Arg	His	Leu 415	Gly
Thr	Asp	Thr	Ile 420	Leu	Leu	Ser	His	Asp 425	Val	Ala	Ser	Pro	Tyr 430	Tyr	Pro
Thr	Asn	Gln 435	Glu	Phe	Thr	Thr	Val 440	Ser	Ile	Ala	Asp	Ala 445	Tyr	Gly	Glu
Arg	Ala 450	Ala	Asp	Thr	Leu	Phe 455	Glu	Ile	Arg	Ile	Glu 460	His	Gly	Lys	Asp
Gly 465	Gln	Glu	Phe	Lys	Ser 470	Val	Ser	Ser	His	Phe 475	Lys	Leu	Ile	His	Asn 480
Pro	Ser	Lys	Val	Ala 485	Met	Trp	Thr	His	Pro 490	Lys	Pro	Leu	Pro	Asp 495	Trp
Gly	Tyr	Lys	Gln 500	Gln	Glu	Ile	Asn	Gly 505	Asn	Lys	Gln	Ile	Ala 510	Pro	Ser
Ser	Asn	Val 515	Trp	Leu	Val	Glu	Asp 520	Ile	Val	Ser	Leu	Pro 525	Pro	Asp	His
Lys	Arg 530	Arg	Glu	Lys	Pro	Glu 535	Arg	Lys	Val	Lys	Thr 540	Leu	Pro	Phe	Leu
Arg 545	Lys	Trp	Phe	Glu	Leu 550	Gln	Arg	Ser	Met	Phe 555	Trp	His	Asn	Asn	Gln 560
Leu	Thr	Ala	Ser	His 565	Pro	Tyr	Ala	Ser	Leu 570	Pro	Tyr	Gln	Trp	Pro 575	Phe
Leu	Leu	Arg	Gly 580	Val	Ser	Phe	Trp	Thr 585	Gln	Asn	Glu	Thr	A rg 590	Gln	Gln
Ile	Tyr	Phe 595	Leu	Gly	Asn	Pro	Val 600	Gly	Trp	Trp	Ile	Ala 605	Ser	Ser	Val
Leu	Ala 610	Ile	Tyr	Ala	Gly	Ile 615	Val	Leu	Ala	Asp	Gln 620	Phe	Ser	Leu	Arg
Arg 625	Gly	Ile	Asp	Ala	Leu 630	Asp	His	Arg	Ser	Arg 635	Ser	Arg	Leu	Tyr	Asn 640

Ser T	hr Gly	⁷ Phe	Phe	Phe	Leu	Ala	\mathtt{Trp}	Ala	Thr	His	${ t Tyr}$	Phe	Pro	Phe
			645					650					655	

Tyr Val Met Gly Arg Gln Leu Phe Leu His His Tyr Leu Pro Ala His 660 665 670

Leu Ala Ser Ala Leu Val Thr Gly Ala Ile Val Glu Phe Ile Phe Ala 675 680 685

Gln Asp Ser Leu Glu His Glu Val Ala Tyr Gln Ala Ala Lys Ala Gly 690 695 700

Lys Lys Thr Gly Val Gln Lys Arg His Leu Ser Ala Arg Glu Arg Phe 705 710 715 720

Ala Gly Gln Ser Met Val Ala Ser Trp Ile Ala Thr Val Val Ile Leu 725 730 735

Ile Ala Val Ala Ala Ser Trp Tyr Phe Phe Leu Pro Leu Thr Tyr Gly 740 745 750

Tyr Pro Gly Leu Ser Val Asp Gln Val Leu Arg Arg Lys Trp Leu Gly 755 760 765

Tyr Asp Leu His Phe Ala Lys 770 775

<210> 13

<211> 774

<212> PRT

5

<213> Neurospora crassa

<400> 13

Met 1	Ala	Ser	Thr	Thr 5	Ala	Thr	Pro	Glu	Ala 10	Thr	Leu	Arg	Gln	Arg 15	Asn
Val	Pro	Ala	Ser 20	Ser	Lys	Lys	Ala	Lys 25	Asn	Gly	Val	Ser	Ser 30	Asp	Val
Glu	Thr	Asp 35	Lys	Val	Pro	Asp	Ala 40	Val	Ala	Pro	Ala	Lys 45	Ser	Gly	Ser
Glu	Leu 50	Glu	Tyr	Lys	Leu	Ala 55	Leu	Ile	Leu	Ile	Thr 60	Gly	Leu	Ala	Phe
		_	Phe	_	_					_			Val		_

Glu	Val	His	Phe	Gly 85	Lys	Phe	Ala	Ser	Tyr 90	Tyr	Leu	Glu	Arg	Thr 95	Tyr
Phe	Phe	Asp	Val 100	His	Pro	Pro	Phe	Gly 105	Lys	Leu	Leu	Phe	Ala 110	Phe	Met
Gly	Trp	Leu 115	Val	Gly	Tyr	Asp	Gly 120	His	Phe	His	Phe	Glu 125	Asn	Ile	Gly
Asp	Ser 130	Tyr	Ile	Arg	Asn	Lys 135	Val	Pro	Tyr	Val	Ala 140	Phe	Arg	Ser	Leu
Pro 145	Ala	Ile	Leu	Gly	Ala 150	Leu	Thr	Val	Ser	Val 155	Val	Tyr	Met	Ile	Met 160
Trp	Glu	Ser	Gly	Tyr 165	Ser	Leu	Pro	Ala	Cys 170	Leu	Ile	Ala	Ala	Gly 175	Leu
Val	Leu	Leu	Asp 180	Asn	Ala	His	Ile	Gly 185	Gln	Thr	Arg	Leu	Ile 190	Leu	Leu
Asp	Ala	Thr 195	Leu	Val	Phe	Ala	Met 200	Ala	Cys	Ser	Leu	Leu 205	Cys	Tyr	Ile
Lys	Phe 210	His	Lys	Leu	Arg	His 215	Glu	Pro	Phe	Ser	Arg 220	Lys	Trp	Trp	Lys
Trp 225	Leu	Ile	Leu	Thr	Gly 230	Phe	Ala	Leu	Ser	Cys 235	Asp	Ile	Ser	Thr	Lys 240
Tyr	Val	Gly	Leu	Phe 245	Ala	Phe	Ile	Thr	Ile 250	Gly	Ser	Ala	Val	Cys 255	Ile
Asp	Leu	Trp	Asp 260	Leu	Leu	Asp	Ile	Lys 265	Arg	Pro	Gly	Gly	Ala 270	Leu	Thr
Leu	Pro	Gln 275	Phe	Gly	Lys	His	Phe 280	Ala	Ala	Arg	Ala	Phe 285	Gly	Leu	Ile
Ile	Met 290	Pro	Phe	Ile	Phe	Tyr 295	Leu	Phe	Trp	Phe	Gln 300	Val	His	Phe	Ser
Ile 305	Leu	Thr	Arg	Ser	Gly 310	Pro	Gly	Asp	Asp	Phe 315	Met	Thr	Pro	Glu	Phe 320
Gln	Glu	Thr	Leu	Ser 325	Asp	Asn	Ile	Met	Leu 330	Ala	Asn	Ala	Val	Thr 335	Ile

Asp	Tyr	Tyr	Asp 340	Thr	Ile	Ser	Ile	Arg 345	His	Lys	Glu	Thr	Lys 350	Ala	Tyr
Leu	His	Ser 355	His	Pro	Asp	Lys	Tyr 360	Pro	Leu	Arg	Tyr	Asp 365	Asp	Gly	Arg
Val	Ser 370	Ser	Gln	Gly	Gln	Gln 375	Val	Thr	Gly	Tyr	Pro 380	Phe	Asn	Asp	Thr
Asn 385	Asn	Tyr	Trp	Gln	Ile 390	Leu	Pro	Pro	Gly	Pro 395	Asp	Asp	Gln	Lys	Leu 400
Gly	His	Pro	Ile	Lys 405	Asn	His	Asp	Leu	Val 410	Arg	Leu	Arg	His	Ile 415	Val
Thr	Asp	Thr	Ile 420	Leu	Leu	Ser	His	Asp 425	Val	Ala	Ser	Pro	Tyr 430	Tyr	Pro
Thr	Asn	Gln 435	Glu	Phe	Thr	Thr	Val 440	Ser	Ile	Gly	Asp	Ala 445	Tyr	Gly	Asp
Arg	Ala 450	Ala	Asp	Thr	Leu	Phe 455	Glu	Ile	Arg	Ile	Glu 460	His	Gly	Lys	Ala
Asn 465	Gln	Glu	Phe	Lys	Ser 470	Ile	Ser	Ser	His	Phe 475	Lys	Leu	Ile	His	Asn 480
Pro	Ser	Lys	Val	Ala 485	Met	Trp	Thr	His	Ser 490	Lys	Pro	Leu	Pro	Glu 495	Trp
Gly	His	Lys	Gln 500	Gln	Glu	Ile	Asn	Gly 505	Asn	Lys	Gln	Leu	Ala 510	Gln	Ser
Ser	Asn	Val 515	Trp	Leu	Val	Glu	Asp 520	Ile	Val	Ser	Leu	Pro 525	Ala	Asp	His
Ala	Arg 530	Arg	Glu	Lys	Pro	Glu 535	Lys	Lys	Val	Lys	Thr 540	Leu	Pro	Phe	Leu
Arg 545	Lys	Trp	Phe	Glu	Leu 550	Gln	Arg	Ser	Met	Phe 555	Trp	His	Asn	Asn	Gln 560
Leu	Thr	Ser	Ser	His 565	Pro	Tyr	Ala	Ser	Leu 570	Pro	Tyr	Gln	Trp	Pro 575	Phe
Leu	Leu	Arg	Gly 580	Val	Ser	Phe	Trp	Thr 585	Gln	Asn	Asp	Thr	Arg 590	Gln	Gln

Ile Tyr Phe Leu Gly Asn Pro Ile Gly Trp Trp Leu Ala Ser Ser Val Leu Ala Ile Tyr Ala Gly Ile Ile Leu Ala Asp Gln Phe Ser Leu Arg Arg Gly Leu Asp Ala Met Asp Arg Arg Thr Arg Ser Arg Leu Tyr Asn Ser Thr Gly Phe Phe Leu Ala Trp Ala Thr His Tyr Phe Pro Phe Phe Val Met Gly Arg Gln Leu Phe Leu His His Tyr Leu Pro Ala His Leu Ala Ser Ala Leu Val Thr Gly Ser Val Val Glu Phe Leu Phe Ser Thr Asp Ser Ala Glu Pro Glu Tyr Gln Pro Ser Lys Ser Gly Lys Lys Val Ala Pro Thr Thr Lys Arg Arg Leu Ser Ala Arg Glu Arg Leu Ala Gly Gln Ser Met Ala Gly Ala Trp Ile Ala Thr Ala Val Ile Met Val Leu Val Ala Phe Gly Trp Tyr Phe Phe Leu Pro Leu Thr Tyr Gly Tyr Pro Gly Leu Thr Ala Pro Glu Val Asn Arg Arg Lys Trp Leu Gly Tyr Asp Leu His Phe Ala Lys

<210> 14

<211> 776

<212> PRT

<213> Penicillium chrysogenum

<400> 14

Met Ser Ser Pro Ser Pro Ser Leu Arg Lys Arg Gly Gly Lys Lys Asp 1 5 10 15

Val Tyr Thr Ala Leu Pro Ser Asp Asp Thr Ser Thr Pro Val Ser Val 20 25 30

Pro	Val	Lys 35	Gln	Lys	Ser	Glu	Trp 40	Asp	Tyr	Trp	Leu	Ala 45	Ile	Val	Ile
Leu	Thr 50	Leu	Leu	Ala	Phe	Ala 55	Thr	Arg	Phe	Tyr	Arg 60	Leu	Asp	Tyr	Pro
Asn 65	Glu	Val	Val	Phe	Asp 70	Glu	Val	His	Phe	Gly 75	Lys	Phe	Ala	Ser	Tyr 80
Tyr	Leu	Gln	Arg	Thr 85	Tyr	Phe	Phe	Asp	Val 90	His	Pro	Pro	Phe	Gly 95	Lys
Leu	Leu	Phe	Ala 100	Leu	Met	Gly	Trp	Leu 105	Val	Gly	Phe	Asp	Gly 110	Ser	Phe
Leu	Phe	Glu 115	Asn	Ile	Gly	Asp	Ser 120	Tyr	Ile	Glu	Asn	Asn 125	Val	Pro	Tyr
Leu	Ser 130	Leu	Arg	Ala	Met	Pro 135	Ala	Thr	Leu	Gly	Ala 140	Leu	Thr	Ile	Pro
Val 145	Val	Phe	Leu	Ile	Met 150	Trp	Glu	Ser	Gly	Tyr 155	Ser	Leu	Pro	Ala	Cys 160
Val	Leu	Ser	Ala	Gly 165	Leu	Met	Val	Phe	Asp 170	Asn	Ala	His	Val	Gly 175	Glu
Asp	Arg	Leu	Ile 180	Leu	Leu	Asp	Ala	Thr 185	Leu	Val	Leu	Ser	Met 190	Ala	Leu
Ser	Ile	Leu 195	Cys	Tyr	Val	Arg	Phe 200	Tyr	Lys	Leu	Arg	His 205	Gln	Pro	Phe
Gly	Arg 210	Lys	Trp	Trp	Lys	Trp 215	Leu	Leu	Leu	Thr	Gly 220	Phe	Cys	Met	Ser
Cys 225	Val	Ile	Ser	Thr	Lys 230	Tyr	Val	Gly	Phe	Phe 235	Thr	Phe	Val	Thr	Ile 240
Gly	Ala	Ala	Val	Leu 245	Ile	Asp	Leu	Trp	Asn 250	Leu	Leu	Asp	Ile	Asn 255	Arg
Glu	Gln	Gly	Ala 260	Leu	Ser	Met	Ile	Ser 265	Trp	Gly	Lys	His	Phe 270	Ile	Ala
Arg	Ala	Val	${\tt Gly}$	Leu	Val	Ile	Ile	Pro	Phe	Met	Phe	Tyr	Leu	Phe	Trp

		275					280					285			
Phe	Gln 290	Val	His	Phe	Ala	Ile 295	Leu	Asn	Arg	Ser	Gly 300	Pro	Gly	Asp	Asp
Phe 305	Met	Thr	Pro	Glu	Phe 310	Gln	Glu	Thr	Leu	Ser 315	Asp	Asn	Gln	Met	Thr 320
Ala	Gln	Ser	Val	Gly 325	Ile	Gln	Tyr	Phe	Asp 330	Thr	Ile	Thr	Met	Arg 335	His
Lys	Asp	Thr	Lys 340	Val	Phe	Leu	His	Ser 345	His	Trp	Asp	Lys	Tyr 350	Pro	Leu
Arg	Tyr	Asp 355	Asp	Gly	Arg	Ile	Ser 360	Ser	Gln	Gly	Gln	Gln 365	Val	Thr	Gly
Tyr	Pro 370	His	Asn	Asp	Thr	A sn 375	Asn	Gln	Trp	Gln	Ile 380	Leu	Pro	Ala	Glu
Pro 385	Leu	Ala	Asp	Ser	Ser 390	Glu	Pro	Lys	Ser	Val 395	Arg	Asn	Gly	Asp	Ile 400
Ile	Gln	Leu	Arg	His 405	Ile	Gly	Thr	Glu	Ser 410	Tyr	Leu	Leu	Thr	His 415	Asp
Val	Ala	Ser	Pro 420	Phe	Phe	Pro	Thr	Asn 425	Gln	Glu	Phe	Thr	Thr 430	Val	Ser
Gln	Glu	Leu 435	Ala	Asp	Gly	Glu	Arg 440	His	Asn	Asp	Thr	Leu 445	Phe	Glu	Leu
Lys	Ile 450	Glu	Ser	Gly	Lys	Thr 455	Ala	Gln	Glu	Phe	Arg 460	Thr	Leu	Ala	Ser
Leu 465	Phe	Lys	Leu	Val	His 470	Val	Pro	Thr	Arg	Val 475	Ala	Leu	Trp	Thr	His 480
Thr	Thr	Pro	Leu	Pro 485	Glu	Trp	Gly	Tyr	Lys 490	Gln	Ala	Glu	Ile	Asn 495	Gly
Asn	Lys	Asn	Ile 500	Leu	Gln	Ser	Ser	Asn 505	Met	Trp	Tyr	Val	Glu 510	Asn	Ile
Glu	Asn	Leu 515	Ala	Glu	Asp	Ser	Pro 520	Arg	Leu	Val	Lys	Glu 525	Glu	Arg	Lys

Val	Lys 530	Thr	Leu	Pro	Phe	Leu 535	Arg	Lys	Tyr	Phe	Glu 540	Leu	Gln	Gly	Ala
Met 545	Phe	His	His	Asn	Asn 550	Ala	Leu	Thr	Ser	Ser 555	His	Pro	Tyr	Ala	Thr 560
Glu	Pro	Phe	Gln	Trp 565	Pro	Phe	Leu	Leu	A rg 570	Gly	Val	Ser	Phe	Trp 575	Thr
Lys	Asn	Asp	Thr 580	Arg	Glu	Gln	Ile	Tyr 585	Phe	Leu	Gly	Asn	Pro 590	Ile	Gly
Trp	Trp	Ile 595	Ala	Ser	Ser	Ile	Leu 600	Ala	Val	Phe	Ala	Gly 605	Val	Val	Gly
Ala	Asp 610	Gln	Leu	Ser	Leu	Arg 615	Arg	Gly	Val	Asp	Ala 620	Leu	Glu	Glu	Ile
Trp 625	Gly	Pro	Gly	Thr	Arg 630	Ser	Arg	Leu	Tyr	Asn 635	Ser	Thr	Gly	Phe	Leu 640
Phe	Leu	Cys	Trp	Ala 645	Ala	His	Tyr	Phe	Pro 650	Phe	Trp	Leu	Met	Gly 655	Arg
Gln	Arg	Phe	Leu 660	His	His	Tyr	Leu	Pro 665	Ser	His	Leu	Ala	Ser 670	Thr	Met
Val	Cys	Gly 675	Ala	Leu	Ile	Glu	Phe 680	Ile	Phe	Asn	Leu	Gln 685	Pro	Leu	Asp
Pro	Arg 690	Thr	Ala	Leu	Pro	Pro 695	Val	Asp	Asp	Pro	Ser 700	Gly	Lys	Ser	Lys
Ala 705	Arg	Ser	Leu	Ser	Ser 710	Leu	Arg	Arg	Phe	Ile 715	Thr	Ala	Lys	Glu	Arg 720
Met	Gly	Cys	Arg	Ser 725	Leu	Ile	Ala	Gly	Trp 730	Ile	Ala	Thr	Leu	Ile 735	Ile
Leu	Ala	Ala	Thr 740	Ile	Trp	Gly	Phe	Ile 745	Phe	Tyr	Ala	Pro	Leu 750	Thr	Tyr
Gly	Thr	Pro 755	Gly	Leu	Asp	Val	Ala 760	Gly	Val	Asn	Ala	Arg 765	Lys	Trp	Leu
Asn	Tyr 770	Asp	Leu	His	Phe	Ala 775	Lys								

5	<210> 15 <211> 19 <212> ADN <213> <i>Trichoderma reesei</i>	
	<400> 15 gcacactttc aagattggc 19	
10	<210> 16 <211> 19 <212> ADN <213> Trichoderma reesei	
15	<400> 16 gtacggtgtt gccaagaag 19	
20	<210> 17 <211> 448 <212> ADN <213> <i>Trichoderma reesei</i>	
	<400> 17	
	gttgagtaca tegagegega eageattgtg caeaceatge tteeectega gteeaa	ggac 60
	agcatcatcg ttgaggactc gtgcaacggc gagacggaga agcaggctcc ctgggg	tctt 120
	gcccgtatct ctcaccgaga gacgctcaac tttggctcct tcaacaagta cctcta	cacc 180
	gctgatggtg gtgagggtgt tgatgcctat gtcattgaca ccggcaccaa catcga	gcac 240
	gtcgactttg agggtcgtgc caagtggggc aagaccatcc ctgccggcga tgagga	cgag 300
	gacggcaacg gccacggcac tcactgctct ggtaccgttg ctggtaagaa gtacgg	tgtt 360
	gccaagaagg cccacgtcta cgccgtcaag gtgctccgat ccaacggatc cggcac	catg 420
25	tctgacgtcg tcaagggcgt cgagtacg	448
30	<210> 18 <211> 399 <212> PRT <213> <i>Trichoderma reesei</i>	
	<400> 18	

Met Gln Pro Ser Phe Gly Ser Phe Leu Val Thr Val Leu Ser Ala Ser 1 5 10 15

Met Ala Ala Gly Ser Val Ile Pro Ser Thr Asn Ala Asn Pro Gly Ser 20 25 30

Phe Glu Ile Lys Arg Ser Ala Asn Lys Ala Phe Thr Gly Arg Asn Gly 35 40 45

Pro Leu Ala Leu Ala Arg Thr Tyr Ala Lys Tyr Gly Val Glu Val Pro 50 55 60

Lys 65	Thr	Leu	Val	Asp	Ala 70	Ile	Gln	Leu	Val	Lys 75	Ser	Ile	Gln	Leu	Ala 80
Lys	Arg	Asp	Ser	Ala 85	Thr	Val	Thr	Ala	Thr 90	Pro	Asp	His	Asp	Asp 95	Ile
Glu	Tyr	Leu	Val 100	Pro	Val	Lys	Ile	Gly 105	Thr	Pro	Pro	Gln	Thr 110	Leu	Asn
Leu	Asp	Phe 115	Asp	Thr	Gly	Ser	Ser 120	Asp	Leu	Trp	Val	Phe 125	Ser	Ser	Asp
Val	Asp 130	Pro	Thr	Ser	Ser	Gln 135	Gly	His	Asp	Ile	Tyr 140	Thr	Pro	Ser	Lys
Ser 145	Thr	Ser	Ser	Lys	Lys 150	Leu	Glu	Gly	Ala	Ser 155	Trp	Asn	Ile	Thr	Туг 160
Gly	Asp	Arg	Ser	Ser 165	Ser	Ser	Gly	Asp	Val 170	Tyr	His	Asp	Ile	Val 175	Ser
Val	Gly	Asn	Leu 180	Thr	Val	Lys	Ser	Gln 185	Ala	Val	Glu	Ser	Ala 190	Arg	Asn
Val	Ser	Ala 195	Gln	Phe	Thr	Gln	Gly 200	Asn	Asn	Asp	Gly	Leu 205	Val	Gly	Leu
Ala	Phe 210	Ser	Ser	Ile	Asn	Thr 215	Val	Lys	Pro	Thr	Pro 220	Gln	Lys	Thr	Trp
Tyr 225	Asp	Asn	Ile	Val	Gly 230	Ser	Leu	Asp	Ser	Pro 235	Val	Phe	Val	Ala	Asp 240
Leu	Arg	His	Asp	Thr 245	Pro	Gly	Ser	Tyr	His 250	Phe	Gly	Ser	Ile	Pro 255	Ser
Glu	Ala	Ser	Lys 260	Ala	Phe	Tyr	Ala	Pro 265	Ile	Asp	Asn	Ser	Lys 270	Gly	Phe
Trp	Gln	Phe 275	Ser	Thr	Ser	Ser	Asn 280	Ile	Ser	Gly	Gln	Phe 285	Asn	Ala	Val
Ala	Asp 290	Thr	Gly	Thr	Thr	Leu 295	Leu	Leu	Ala	Ser	Asp 300	Asp	Leu	Val	Lys
Ala	Tyr	Tyr	Ala	Lys	Val	Gln	Gly	Ala	Arg	Val	Asn	Val	Phe	Leu	Gly

305		310			315		320
Gly Tyr	Val Phe	Asn Cys 325	Thr Thr	Gln Leu 330	Pro Asp	Phe Thr	Phe Thr 335
Val Gly	Glu Gly 340	Asn Ile	Thr Val	Pro Gly 345	Thr Leu	Ile Asn 350	Tyr Ser
Glu Ala	Gly Asn 355	Gly Gln	Cys Phe 360	Gly Gly	Ile Gln	Pro Ser 365	Gly Gly
Leu Pro 370	Phe Ala	Ile Phe	Gly Asp 375	Ile Ala	Leu Lys 380	Ala Ala	Tyr Val
Ile Phe 385	Asp Ser	Gly Asn 390	Lys Gln	Val Gly	Trp Ala	Gln Lys	Lys

<210> 19

<211> 452

<212> PRT

5

<213> Trichoderma reesei

<400> 19

1				5					10					15	
Leu	Gln	Lys	Ile 20	Thr	Ala	Val	Arg	Asn 25	Lys	Asn	Tyr	Lys	Arg 30	His	Gly
Pro	Lys	Ser 35	Tyr	Val	Tyr	Leu	Leu 40	Asn	Arg	Phe	Gly	Phe 45	Glu	Pro	Thr
Lys	Pro 50	Gly	Pro	Tyr	Phe	Gln 55	Gln	His	Arg	Ile	His 60	Gln	Arg	Gly	Leu
Ala 65	His	Pro	Asp	Phe	Lys 70	Ala	Ala	Val	Gly	Gly 75	Arg	Val	Thr	Arg	Gln 80

Met Glu Ala Ile Leu Gln Ala Gln Ala Lys Phe Arg Leu Asp Arg Gly

Lys Val Leu Ala Lys Lys Val Lys Glu Asp Gly Thr Val Asp Ala Gly

85

Glu Tyr Leu Cys Glu Val Thr Ile Gly Thr Pro Gly Gln Lys Leu Met 115 120 125

Leu Asp Phe Asp Thr Gly Ser Ser Asp Leu Trp Val Phe Ser Thr Glu

	130					135					140				
Leu 145	Ser	Lys	His	Leu	Gln 150	Glu	Asn	His	Ala	Ile 155	Phe	Asp	Pro	Lys	Lys 160
Ser	Ser	Thr	Phe	Lys 165	Pro	Leu	Lys	Asp	Gln 170	Thr	Trp	Gln	Ile	Ser 175	Tyr
Gly	Asp	Gly	Ser 180	Ser	Ala	Ser	Gly	Thr 185	Cys	Gly	Ser	Asp	Thr 190	Val	Thr
Leu	Gly	Gly 195	Leu	Ser	Ile	Lys	Asn 200	Gln	Thr	Ile	Glu	Leu 205	Ala	Ser	Lys
Leu	Ala 210	Pro	Gln	Phe	Ala	Gln 215	Gly	Thr	Gly	Asp	Gly 220	Leu	Leu	Gly	Leu
Ala 225	Trp	Pro	Gln	Ile	Asn 230	Thr	Val	Gln	Thr	Asp 235	Gly	Arg	Pro	Thr	Pro 240
Ala	Asn	Thr	Pro	Val 245	Ala	Asn	Met	Ile	Gln 250	Gln	Asp	Asp	Ile	Pro 255	Ser
Asp	Ala	Gln	Leu 260	Phe	Thr	Ala	Ala	Phe 265	Tyr	Ser	Glu	Arg	Asp 270	Glu	Asn
Ala	Glu	Ser 275	Phe	Tyr	Thr	Phe	Gly 280	Tyr	Ile	Asp	Gln	Asp 285	Leu	Val	Ser
Ala	Ser 290	_	Gln				_		_	Val	Asp 300		Ser	Gln	Gly
Phe 305	Trp	Met	Phe	Pro	Ser 310	Thr	Lys	Thr	Thr	Ile 315	Asn	Gly	Lys	Asp	11e 320
Ser	Gln	Glu	Gly	Asn 325	Thr	Ala	Ile	Ala	Asp 330	Thr	Gly	Thr	Thr	Leu 335	Ala
Leu	Val	Ser	Asp 340	Glu	Val	Cys	Glu	Ala 345	Leu	Tyr	Lys	Ala	Ile 350	Pro	Gly
Ala	Lys	Tyr 355	Asp	Asp	Asn	Gln	Gln 360	Gly	Tyr	Val	Phe	Pro 365	Ile	Asn	Thr
Asp	Ala 370	Ser	Ser	Leu	Pro	Glu 375	Leu	Lys	Val	Ser	Val 380	Gly	Asn	Thr	Gln

Asn Trp Tyr Gly Gly Val Gln Ser Arg Gly Ser Asn Pro Phe Asp Ile 405

Leu Gly Asp Val Phe Leu Lys Ser Val Tyr Ala Ile Phe Asp Gln Gly 420

Phe Val Ile Gln Pro Glu Asp Leu Ala Phe Ala Pro Ala Asp Asp Ser

Asn Gln Arg Phe Gly Ala Val Pro Lys Ile Gln Ala Lys Gln Asn Leu 435 440 445

Gln Pro Pro Gln 450

<210> 20

<211> 395

<212> PRT

5

<213> Trichoderma reesei

Met 1	Lys	Ser	Ala	Leu 5	Leu	Ala	Ala	Ala	Ala 10	Leu	Val	Gly	Ser	Ala 15	Gln
Ala	Gly	Ile	His 20	Lys	Met	Lys	Leu	Gln 25	Lys	Val	Ser	Leu	Glu 30	Gln	Gln
Leu	Glu	Gly 35	Ser	Ser	Ile	Glu	Ala 40	His	Val	Gln	Gln	Leu 45	Gly	Gln	Lys
Tyr	Met 50	Gly	Val	Arg	Pro	Thr 55	Ser	Arg	Ala	Glu	Val 60	Met	Phe	Asn	Asp
Lys 65	Pro	Pro	Lys	Val	Gln 70	Gly	Gly	His	Pro	Val 75	Pro	Val	Thr	Asn	Phe 80
Met	Asn	Ala	Gln	Tyr 85	Phe	Ser	Glu	Ile	Thr 90	Ile	Gly	Thr	Pro	Pro 95	Gln
Ser	Phe	Lys	Val 100	Val	Leu	Asp	Thr	Gly 105	Ser	Ser	Asn	Leu	Trp 110	Val	Pro
Ser	Gln	Ser 115	Cys	Asn	Ser	Ile	Ala 120	Cys	Phe	Leu	His	Ser 125	Thr	Tyr	Asp
Ser	Ser 130	Ser	Ser	Ser	Thr	Tyr 135	Lys	Pro	Asn	Gly	Ser 140	Asp	Phe	Glu	Ile

His Tyr Gly Ser Gly Ser Leu Thr Gly Phe Ile Ser Asn Asp Val Val

145	-4-	GLY	Ser	GIY	150	Deu		GLY	1110	155	Der	7,511	пор	Val	160
Thr	Ile	Gly	Asp	Leu 165	Lys	Ile	Lys	Gly	Gln 170	Asp	Phe	Ala	Glu	Ala 175	Thr
Ser	Glu	Pro	Gly 180	Leu	Ala	Phe	Ala	Phe 185	Gly	Arg	Phe	Asp	Gly 190	Ile	Leu
Gly	Leu	Gly 195	Tyr	Asp	Thr	Ile	Ser 200	Val	Asn	Gly	Ile	Val 205	Pro	Pro	Phe
Tyr	Gln 210	Met	Val	Asn	Gln	Lys 215	Leu	Ile	Asp	Glu	Pro 220	Val	Phe	Ala	Phe
Tyr 225	Leu	Gly	Ser	Ser	Asp 230	Glu	Gly	Ser	Glu	Ala 235	Val	Phe	Gly	Gly	Val 240
				245	Glu				250					255	
			260		Val	_		265					270		
		275					280					285			Ser
	290					295					300				Ile
305					Phe 310					315					320
				325	Asp				330					335	
			340		Asp			345					350		
		355			Met		360					365			
	370					375					Ser 380	Val	Tyr	Asp	Leu
Gly 385	Arg	Asp	Ala	Val	Gly 390	Leu	Ala	Lys	Ala	Lys 395					

<210> 21 <211> 426 <212> PRT 5 <213> Trichoderma reesei

Met 1	Lys	Phe	His	Ala 5	Ala	Ala	Leu	Thr	Leu 10	Ala	Cys	Leu	Ala	Ser 15	Ser
Ala	Ser	Ala	Gly 20	Val	Ala	Gln	Pro	Arg 25	Ala	Asp	Glu	Val	Glu 30	Ser	Ala
Glu	Gln	Gly 35	Lys	Thr	Phe	Ser	Leu 40	Glu	Gln	Ile	Pro	Asn 45	Glu	Arg	Tyr
Lys	Gly 50	Asn	Ile	Pro	Ala	Ala 55	Tyr	Ile	Ser	Ala	Leu 60	Ala	Lys	Tyr	Ser
Pro 65	Thr	Ile	Pro	Asp	Lys 70	Ile	Lys	His	Ala	Ile 75	Glu	Ile	Asn	Pro	Asp 80
Leu	His	Arg	Lys	Phe 85	Ser	Lys	Leu	Ile	Asn 90	Ala	Gly	Asn	Met	Thr 95	Gly
Thr	Ala	Val	Ala 100	Ser	Pro	Pro	Pro	Gly 105	Ala	Asp	Ala	Glu	Tyr 110	Val	Leu
Pro	Val	Lys 115	Ile	Gly	Thr	Pro	Pro 120	Gln	Thr	Leu	Pro	Leu 125	Asn	Leu	Asp
Thr	Gly 130	Ser	Ser	Asp	Leu	Trp 135	Val	Ile	Ser	Thr	Asp 140	Thr	Tyr	Pro	Pro
Gln 145	Val	Gln	Gly	Gln	Thr 150	Arg	Tyr	Asn	Val	Ser 155	Ala	Ser	Thr	Thr	Ala 160
Gln	Arg	Leu	Ile	Gly 165	Glu	Ser	Trp	Val	Ile 170	Arg	Tyr	Gly	Asp	Gly 175	Ser
Ser	Ala	Asn	Gly 180	Ile	Val	Tyr	Lys	Asp 185	Arg	Val	Gln	Ile	Gly 190	Asn	Thr
Phe	Phe	Asn 195	Gln	Gln	Ala	Val	Glu 200	Ser	Ala	Val	Asn	Ile 205	Ser	Asn	Glu
Ile	Ser 210	Asp	Asp	Ser	Phe	Ser 215	Ser	Gly	Leu	Leu	Gly 220	Ala	Ala	Ser	Ser

Ala 225	Ala	Asn	Thr	Val	Arg 230	Pro	Asp	Arg	Gln	Thr 235	Thr	Tyr	Leu	Glu	Asn 240
Ile	Lys	Ser	Gln	Leu 245	Ala	Arg	Pro	Val	Phe 250	Thr	Ala	Asn	Leu	Lys 255	Lys
Gly	Lys	Pro	Gly 260	Asn	Tyr	Asn	Phe	Gly 265	Tyr	Ile	Asn	Gly	Ser 270	Glu	Tyr
Ile	Gly	Pro 275	Ile	Gln	Tyr	Ala	Ala 280	Ile	Asn	Pro	Ser	Ser 285	Pro	Leu	Trp
Glu	Val 290	Ser	Val	Ser	Gly	Tyr 295	Arg	Val	Gly	Ser	Asn 300	Asp	Thr	Lys	Tyr
Val 305	Pro	Arg	Val	Trp	Asn 310	Ala	Ile	Ala	Asp	Thr 315	Gly	Thr	Thr	Leu	Leu 320
Leu	Val	Pro	Asn	Asp 325	Ile	Val	Ser	Ala	Tyr 330	Tyr	Ala	Gln	Val	Lys 335	Gly
Ser	Thr	Phe	Ser 340	Asn	Asp	Val	Gly	Met 345	Met	Leu	Val	Pro	Cys 350	Ala	Ala
Thr	Leu	Pro 355	Asp	Phe	Ala	Phe	Gly 360	Leu	Gly	Asn	Tyr	Arg 365	Gly	Val	Ile
Pro	Gly 370	Ser	Tyr	Ile	Asn	Tyr 375	Gly	Arg	Met	Asn	Lys 380	Thr	Tyr	Cys	Tyr
Gly 385	Gly	Ile	Gln	Ser	Ser 390	Glu	Asp	Ala	Pro	Phe 395	Ala	Val	Leu	Gly	Asp 400
Ile	Ala	Leu	Lys	Ala 405	Gln	Phe	Val	Val	Phe 410	Asp	Met	Gly	Asn	Lys 415	Val
Val	Gly	Phe	Ala 420	Asn	Lys	Asn	Thr	Asn 425	Val						

<210> 22 <211> 407 <212> PRT

<213> Trichoderma reesei

<400> 22

Met Gln Thr Phe Gly Ala Phe Leu Val Ser Phe Leu Ala Ala Ser Gly 1 5 10 15

5

Leu	Ala	Ala	Ala 20	Leu	Pro	Thr	Glu	Gly 25	Gln	Lys	Thr	Ala	Ser 30	Val	Glu
Val	Gln	Tyr 35	Asn	Lys	Asn	Tyr	Val 40	Pro	His	Gly	Pro	Thr 45	Ala	Leu	Phe
Lys	Ala 50	Lys	Arg	Lys	Tyr	Gly 55	Ala	Pro	Ile	Ser	Asp 60	Asn	Leu	Lys	Ser
Leu 65	Val	Ala	Ala	Arg	Gln 70	Ala	Lys	Gln	Ala	Leu 75	Ala	Lys	Arg	Gln	Thr 80
Gly	Ser	Ala	Pro	Asn 85	His	Pro	Ser	Asp	Ser 90	Ala	Asp	Ser	Glu	Tyr 95	Ile
Thr	Ser	Val	Ser 100	Ile	Gly	Thr	Pro	Ala 105	Gln	Val	Leu	Pro	Leu 110	Asp	Phe
Asp	Thr	Gly 115	Ser	Ser	Asp	Leu	Trp 120	Val	Phe	Ser	Ser	Glu 125	Thr	Pro	Lys
Ser	Ser 130	Ala	Thr	Gly	His	Ala 135	Ile	Tyr	Thr	Pro	Ser 140	Lys	Ser	Ser	Thr
Ser 145	Lys	Lys	Val	Ser	Gly 150	Ala	Ser	Trp	Ser	Ile 155	Ser	Tyr	Gly	Asp	Gly 160
Ser	Ser	Ser	Ser	Gly 165	Asp	Val	Tyr	Thr	Asp 170	Lys	Val	Thr	Ile	Gly 175	Gly
Phe	Ser	Val	Asn 180	Thr	Gln	Gly	Val	Glu 185	Ser	Ala	Thr	Arg	Val 190	Ser	Thr
Glu	Phe	Val 195	Gln	Asp	Thr	Val	Ile 200	Ser	Gly	Leu	Val	Gly 205	Leu	Ala	Phe
Asp	Ser 210	Gly	Asn	Gln	Val	Arg 215	Pro	His	Pro	Gln	Lys 220	Thr	Trp	Phe	Ser
Asn 225	Ala	Ala	Ser	Ser	Leu 230	Ala	Glu	Pro	Leu	Phe 235	Thr	Ala	Asp	Leu	Arg 240
His	Gly	Gln	Asn	Gly 245	Ser	Tyr	Asn	Phe	Gly 250	Tyr	Ile	Asp	Thr	Ser 255	Val
Ala	Lys	Gly	Pro 260	Val	Ala	Tyr	Thr	Pro 265	Val	Asp	Asn	Ser	Gln 270	Gly	Phe

Trp Glu Phe Thr Ala Ser Gly Tyr Ser Val Gly Gly Lys Leu Asn 275 280 285

Arg Asn Ser Ile Asp Gly Ile Ala Asp Thr Gly Thr Thr Leu Leu Leu 290 295 300

Leu Asp Asp Asn Val Val Asp Ala Tyr Tyr Ala Asn Val Gln Ser Ala 305 310 315 320

Gln Tyr Asp Asn Gln Glu Glu Gly Val Val Phe Asp Cys Asp Glu Asp 325 330 335

Leu Pro Ser Phe Ser Phe Gly Val Gly Ser Ser Thr Ile Thr Ile Pro 340 345 350

Gly Asp Leu Leu Asn Leu Thr Pro Leu Glu Glu Gly Ser Ser Thr Cys 355 360 365

Phe Gly Gly Leu Gln Ser Ser Ser Gly Ile Gly Ile Asn Ile Phe Gly 370 375 380

Asp Val Ala Leu Lys Ala Ala Leu Val Val Phe Asp Leu Gly Asn Glu 385 390 395 400

Arg Leu Gly Trp Ala Gln Lys
405

<210> 23

<211> 446

<212> PRT

5

<213> Trichoderma reesei

Met 1	Thr	Leu	Pro	Val 5	Pro	Leu	Arg	Glu	His 10	Asp	Leu	Pro	Phe	Leu 15	Lys
Glu	Lys	Arg	Lys 20	Leu	Pro	Ala	Asp	Asp 25	Ile	Pro	Ser	Gly	Thr 30	Tyr	Thr
Leu	Pro	Ile 35	Ile	His	Ala	Arg	Arg 40	Pro	Lys	Leu	Ala	Ser 45	Arg	Ala	Ile
Glu	Val 50	Gln	Val	Glu	Asn	Arg 55	Ser	Asp	Val	Ser	Tyr 60	Tyr	Ala	Gln	Leu

Asn Ile Gly Thr Pro Pro Gln Thr Val Tyr Ala Gln Ile Asp Thr Gly 65 70 75 80

Ser Phe Glu Leu Tr	_		Cys Ser Asn 90		Ser Ala 95
Asp Gln Arg Phe Cy 100	ys Arg Ala	Ile Gly I 105	Phe Tyr Asp	Pro Ser S	Ser Ser
Ser Thr Ala Asp Va		Gln Ser 1 120	Ala Arg Leu	Arg Tyr 0	Gly Ile
Gly Ser Ala Asp Va	al Thr Tyr	Val His <i>I</i>	Asp Thr Ile 140	Ser Leu E	Pro Gly
Ser Gly Ser Gly Se	er Lys Ala i 150	Met Lys 1	Ala Val Gln 155	Phe Gly V	/al Ala 160
Asp Thr Ser Val As	sp Glu Phe	_	Ile Leu Gly 170	_	Ala Gly 175
Asn Gly Ile Asn Th	nr Glu Tyr	Pro Asn I 185	Phe Val Asp	Glu Leu F 190	Ala Ala
Gln Gly Val Thr Al	_	Ala Phe S 200	Ser Leu Ala	Leu Gly 8 205	Ser Lys
Ala Glu Glu Glu G 210	ly Val Ile 215	Ile Phe (Gly Gly Val 220	Asp Thr A	Ala Lys
Phe His Gly Glu Le 225	au Ala His : 230	Leu Pro 1	Ile Val Pro 235	Ala Asp A	Asp Ser 240
Pro Asp Gly Val A		_	Lys Met Lys 250		Ser Leu 255
Thr Pro Pro Pro Pro 260	co Ser Ser	Ser Gly S 265	Ser Thr Asp	Asp Asn A	Asn Asn
Lys Pro Val Ala Pi 275		Thr Ser M 280	Met Thr Val	Phe Leu F 285	Asp Ser
Gly Ser Thr Leu Th	nr Leu Leu 295	Pro Pro <i>l</i>	Ala Leu Val 300	Arg Gln 1	Ile Ala
Ser Ala Leu Gly Se 305	er Thr Gln 310	Thr Asp (Glu Ser Gly 315	Phe Phe V	7al Val 320
Asp Cys Ala Leu Al	la Ser Gln	Asp Gly	Thr Ile Asp	Phe Glu F	he Asp

				325					330					335	
Gly	Val	Thr	Ile 340	Arg	Val	Pro	Tyr	Ala 345	Glu	Met	Ile	Arg	Gln 350	Val	Ser
Thr	Leu	Pro 355	Pro	His	Cys	Tyr	Leu 360	Gly	Met	Met	Gly	Ser 365	Thr	Gln	Phe
Ala	Leu 370	Leu	Gly	Asp	Thr	Phe 375	Leu	Arg	Ser	Ala	Tyr 380	Ala	Val	Phe	Asp
Leu 385	Thr	Ser	Asn	Val	Val 390	His	Leu	Ala	Pro	Tyr 395	Ala	Asn	Cys	Gly	Thr 400
Asn	Val	Lys	Ser	Ile 405	Thr	Ser	Thr	Ser	Ser 410	Leu	Ser	Asn	Leu	Val 415	Gly
Thr	Cys	Asn	Asp 420	Pro	Ser	Lys	Pro	Ser 425	Ser	Ser	Pro	Ser	Pro 430	Ser	Gln
Thr	Pro	Ser 435	Ala	Ser	Pro	Ser	Ser 440	Thr	Ala	Thr	Gln	Lys 445	Ala		

5

<210> 24 <211> 259 <212> PRT <213> *Trichoderma reesei*

Met	Ala	Pro	Ala	Ser	Gln	Val	Val	Ser	Ala	Leu	Met	Leu	${\tt Pro}$	Ala	Leu
1				5					10					15	

- Ala Leu Gly Ala Ala Ile Gln Pro Arg Gly Ala Asp Ile Val Gly Gly 20 25 30
- Thr Ala Ala Ser Leu Gly Glu Phe Pro Tyr Ile Val Ser Leu Gln Asn 35 40 45
- Pro Asn Gln Gly Gly His Phe Cys Gly Gly Val Leu Val Asn Ala Asn 50 55 60
- Thr Val Val Thr Ala Ala His Cys Ser Val Val Tyr Pro Ala Ser Gln 65 70 75 80
- Ile Arg Val Arg Ala Gly Thr Leu Thr Trp Asn Ser Gly Gly Thr Leu 85 90 95
- Val Gly Val Ser Gln Ile Ile Val Asn Pro Ser Tyr Asn Asp Arg Thr

				100					105					110		
	Thr	Asp	Phe 115	Asp	Val	Ala	Val	Trp 120	His	Leu	Ser	Ser	Pro 125	Ile	Arg	Glu
	Ser	Ser 130	Thr	Ile	Gly	Tyr	Ala 135	Thr	Leu	Pro	Ala	Gln 140	Gly	Ser	Asp	Pro
	Val 145	Ala	Gly	Ser	Thr	Val 150	Thr	Thr	Ala	Gly	Trp 155	Gly	Thr	Thr	Ser	Glu 160
	Asn	Ser	Asn	Ser	Ile 165	Pro	Ser	Arg	Leu	Asn 170	Lys	Val	Ser	Val	Pro 175	Val
	Val	Ala	Arg	Ser 180	Thr	Суз	Gln	Ala	Asp 185	Tyr	Arg	Ser	Gln	Gly 190	Leu	Ser
	Val	Thr	Asn 195	Asn	Met	Phe	Cys	Ala 200	Gly	Leu	Thr	Gln	Gly 205	Gly	Lys	Asp
	Ser	Cys 210	Ser	Gly	Asp	Ser	Gly 215	Gly	Pro	Ile	Val	Asp 220	Ala	Asn	Gly	Val
	Leu 225	Gln	Gly	Val	Val	Ser 230	Trp	Gly	Ile	Gly	Cys 235	Ala	Glu	Ala	Gly	Phe 240
	Pro	Gly	Val	Tyr			Ile	_			Val		_		Asn 255	
	Asn	Leu	Ala													
<21 <21	0> 25 1> 882 2> PR 3> <i>Tric</i>	Т	ma ree	sei												

<400> 25

5

Met Val Arg Ser Ala Leu Phe Val Ser Leu Leu Ala Thr Phe Ser Gly 1 5 10 15

Val Ile Ala Arg Val Ser Gly His Gly Ser Lys Ile Val Pro Gly Ala 20 25 30

Tyr Ile Phe Glu Phe Glu Asp Ser Gln Asp Thr Ala Asp Phe Tyr Lys 35 40 45

Lys Leu Asn Gly Glu Gly Ser Thr Arg Leu Lys Phe Asp Tyr Lys Leu

	50					55					60				
Phe 65	Lys	Gly	Val	Ser	Val 70	Gln	Leu	Lys	Asp	Leu 75	Asp	Asn	His	Glu	Ala 80
Lys	Ala	Gln	Gln	Met 85	Ala	Gln	Leu	Pro	Ala 90	Val	Lys	Asn	Val	Trp 95	Pro
Val	Thr	Leu	Ile 100	Asp	Ala	Pro	Asn	Pro 105	Lys	Val	Glu	Trp	Val 110	Ala	Gly
Ser	Thr	Ala 115	Pro	Thr	Leu	Glu	Ser 120	Arg	Ala	Ile	Lys	Lys 125	Pro	Pro	Ile
Pro	Asn 130	Asp	Ser	Ser	Asp	Phe 135	Pro	Thr	His	Gln	Met 140	Thr	Gln	Ile	Asp
Lys 145	Leu	Arg	Ala	Lys	Gly 150	Tyr	Thr	Gly	Lys	Gly 155	Val	Arg	Val	Ala	Val 160
Ile	Asp	Thr	Gly	Ile 165	Asp	Tyr	Thr	His	Pro 170	Ala	Leu	Gly	Gly	Cys 175	Phe
Gly	Arg	Gly	Cys 180	Leu	Val	Ser	Phe	Gly 185	Thr	Asp	Leu	Val	Gly 190	Asp	Asp
Tyr	Thr	Gly 195	Phe	Asn	Thr	Pro	Val 200	Pro	Asp	Asp	Asp	Pro 205	Val	Asp	Cys
Ala	Gly 210		Gly	Ser		Val 215		Gly	Ile		Ala 220		Gln	Glu	Asn
Pro 225	Tyr	Gly	Phe	Thr	Gly 230	Gly	Ala	Pro	Asp	Val 235	Thr	Leu	Gly	Ala	Tyr 240
Arg	Val	Phe	Gly	Cys 245	Asp	Gly	Gln	Ala	Gly 250	Asn	Asp	Val	Leu	Ile 255	Ser
Ala	Tyr	Asn	Gln 260	Ala	Phe	Glu	Asp	Gly 265	Ala	Gln	Ile	Ile	Thr 270	Ala	Ser
Ile	Gly	Gly 275	Pro	Ser	Gly	Trp	Ala 280	Glu	Glu	Pro	Trp	Ala 285	Val	Ala	Val
Thr	Arg 290	Ile	Val	Glu	Ala	Gly 295	Val	Pro	Cys	Thr	Val 300	Ser	Ala	Gly	Asn

Glu Gly 305	Asp S	Ser	Gly	Leu 310	Phe	Phe	Ala	Ser	Thr 315	Ala	Ala	Asn	Gly	Lys 320
Lys Val	Ile A		Val 325	Ala	Ser	Val	Asp	Asn 330	Glu	Asn	Ile	Pro	Ser 335	Val
Leu Ser		Ala 340	Ser	Tyr	Lys	Ile	Asp 345	Ser	Gly	Ala	Ala	Gln 350	Asp	Phe
Gly Tyr	Val 8	Ser	Ser	Ser	Lys	Ala 360	Trp	Asp	Gly	Val	Ser 365	Lys	Pro	Leu
Tyr Ala 370	Val S	Ser 1	Phe	Asp	Thr 375	Thr	Ile	Pro	Asp	Asp 380	Gly	Cys	Ser	Pro
Leu Pro 385	Asp S	Ser	Thr	Pro 390	Asp	Leu	Ser	Asp	Tyr 395	Ile	Val	Leu	Val	Arg 400
Arg Gly	Thr (_	Thr 405	Phe	Val	Gln	Lys	Ala 410	Gln	Asn	Val	Ala	Ala 415	Lys
Gly Ala	_	Tyr :	Leu	Leu	Tyr	Tyr	Asn 425	Asn	Ile	Pro	Gly	Ala 430	Leu	Ala
Val Asp	Val 8	Ser i	Ala	Val	Pro	Glu 440	Ile	Glu	Ala	Val	Gly 445	Met	Val	Asp
Asp Lys 450	Thr (Gly i	Ala	Thr	Trp 455	Ile	Ala	Ala	Leu	Lys 460	Asp	Gly	Lys	Thr
Val Thr 465	Leu ?	Thr :	Leu	Thr 470	Asp	Pro	Ile	Glu	Ser 475	Glu	Lys	Gln	Ile	Gln 480
Phe Ser	Asp A		Pro 485	Thr	Thr	Gly	Gly	Ala 490	Leu	Ser	Gly	Tyr	Thr 495	Thr
Trp Gly		Thr 5	Trp	Glu	Leu	Asp	Val 505	Lys	Pro	Gln	Ile	Ser 510	Ser	Pro
Gly Gly	Asn 1	Ile :	Leu	Ser	Thr	Tyr 520	Pro	Val	Ala	Leu	Gly 525	Gly	Tyr	Ala
Thr Leu 530	Ser (Gly '	Thr	Ser	Met 535	Ala	Cys	Pro	Leu	Thr 540	Ala	Ala	Ala	Val
Ala Leu 545	Ile (Gly (Gln	Ala 550	Arg	Gly	Thr	Phe	Asp 555	Pro	Ala	Leu	Ile	Asp 560

Asn Leu	Leu	Ala	Thr 565	Thr	Ala	Asn	Pro	Gln 570	Leu	Phe	Asn	Asp	Gly 575	Glu
Lys Phe	Tyr	Asp 580	Phe	Leu	Ala	Pro	Val 585	Pro	Gln	Gln	Gly	Gly 590	Gly	Leu
Ile Gln	Ala 595	Tyr	Asp	Ala	Ala	Phe 600	Ala	Thr	Thr	Leu	Leu 605	Ser	Pro	Ser
Ser Leu 610	Ser	Phe	Asn	Asp	Thr 615	Asp	His	Phe	Ile	Lys 620	Lys	Lys	Gln	Ile
Thr Leu 625	Lys	Asn	Thr	Ser 630	Lys	Gln	Arg	Val	Thr 635	Tyr	Lys	Leu	Asn	His 640
Val Pro	Thr	Asn	Thr 645	Phe	Tyr	Thr	Leu	Ala 650	Pro	Gly	Asn	Gly	Tyr 655	Pro
Ala Pro	Phe	Pro 660	Asn	Asp	Ala	Val	Ala 665	Ala	His	Ala	Asn	Leu 670	Lys	Phe
Asn Leu	Gln 675	Gln	Val	Thr	Leu	Pro 680	Ala	Gly	Arg	Ser	Ile 685	Thr	Val	Asp
Val Phe 690	Pro	Thr	Pro	Pro	Arg 695	Asp	Val	Asp	Ala	Lys 700	Arg	Leu	Ala	Leu
Trp Ser 705	Gly	Tyr	Ile	Thr 710	Val	Asn	Gly	Thr	Asp 715	Gly	Thr	Ser	Leu	Ser 720
Val Pro	Tyr	Gln	Gly 725	Leu	Thr	Gly	Ser	Leu 730	His	Lys	Gln	Lys	Val 735	Leu
Tyr Pro	Glu	Asp 740	Ser	Trp	Ile	Ala	Asp 745	Ser	Thr	Asp	Glu	Ser 750	Leu	Ala
Pro Val	Glu 755	Asn	Gly	Thr	Val	Phe 760	Thr	Ile	Pro	Ala	Pro 765	Gly	Asn	Ala
Gly Pro 770	Asp	Asp	Lys	Leu	Pro 775	Ser	Leu	Val	Val	Ser 780	Pro	Ala	Leu	Gly
Ser Arg 785	Tyr	Val	Arg	Val 790	Asp	Leu	Val	Leu	Leu 795	Ser	Ala	Pro	Pro	His 800
Gly Thr	Lys	Leu	Lys 805	Thr	Val	Lys	Phe	Leu 810	Asp	Thr	Thr	Ser	Ile 815	Gly

Gln Pro Ala Gly Ser Pro Leu Leu Trp Ile Ser Arg Gly Ala Asn Pro 820 825 830

Ile Ala Trp Thr Gly Glu Leu Ser Asp Asn Lys Phe Ala Pro Pro Gly 835 840 845

Thr Tyr Lys Ala Val Phe His Ala Leu Arg Ile Phe Gly Asn Glu Lys 850 855 860

Lys Lys Glu Asp Trp Asp Val Ser Glu Ser Pro Ala Phe Thr Ile Lys 865 870 875 880

Tyr Ala

<210> 26

<211> 541

5

<212> PRT

<213> Trichoderma reesei

Met 1	Arg	Ser	Val	Val 5	Ala	Leu	Ser	Met	Ala 10	Ala	Val	Ala	Gln	Ala 15	Ser
Thr	Phe	Gln	Ile 20	Gly	Thr	Ile	His	Glu 25	Lys	Ser	Ala	Pro	Val 30	Leu	Ser
Asn	Val	Glu 35	Ala	Asn	Ala	Ile	Pro 40	Asp	Ala	Tyr	Ile	Ile 45	Lys	Phe	Lys
Asp	His 50	Val	Gly	Glu	Asp	Asp 55	Ala	Ser	Lys	His	His 60	Asp	Trp	Ile	Gln
Ser 65	Ile	His	Thr	Asn	Val 70	Glu	Gln	Glu	Arg	Leu 75	Glu	Leu	Arg	Lys	Arg 80
Ser	Asn	Val	Phe	Gly 85	Ala	Asp	Asp	Val	Phe 90	Asp	Gly	Leu	Lys	His 95	Thr
Phe	Lys	Ile	Gly 100	Asp	Gly	Phe	Lys	Gly 105	Tyr	Ala	Gly	His	Phe 110	His	Glu
Ser	Val	Ile 115	Glu	Gln	Val	Arg	Asn 120	His	Pro	Asp	Val	Glu 125	Tyr	Ile	Glu
Arg	Asp	Ser	Ile	Val	His	Thr			Pro		Glu 140	Ser	Lys	Asp	Ser

Ile 145	Ile	Val	Glu	Asp	Ser 150	Cys	Asn	Gly	Glu	Thr 155	Glu	Lys	Gln	Ala	Pro 160
Trp	Gly	Leu	Ala	Arg 165	Ile	Ser	His	Arg	Glu 170	Thr	Leu	Asn	Phe	Gly 175	Ser
Phe	Asn	Lys	Tyr 180	Leu	Tyr	Thr	Ala	Asp 185	Gly	Gly	Glu	Gly	Val 190	Asp	Ala
Tyr	Val	Ile 195	Asp	Thr	Gly	Thr	Asn 200	Ile	Glu	His	Val	Asp 205	Phe	Glu	Gly
Arg	Ala 210	Lys	Trp	Gly	Lys	Thr 215	Ile	Pro	Ala	Gly	Asp 220	Glu	Asp	Glu	Asp
Gly 225	Asn	Gly	His	Gly	Thr 230	His	Cys	Ser	Gly	Thr 235	Val	Ala	Gly	Lys	Lys 240
Tyr	Gly	Val	Ala	Lys 245	Lys	Ala	His	Val	Tyr 250	Ala	Val	Lys	Val	Leu 255	Arg
Ser	Asn	Gly	Ser 260	Gly	Thr	Met	Ser	Asp 265	Val	Val	Lys	Gly	Val 270	Glu	Tyr
Ala	Ala	Leu 275	Ser	His	Ile	Glu	Gln 280	Val	Lys	Lys	Ala	Lys 285	Lys	Gly	Lys
Arg	Lys 290	Gly	Phe	Lys	Gly	Ser 295	Val	Ala	Asn	Met	Ser 300	Leu	Gly	Gly	Gly
Lys 305	Thr	Gln	Ala	Leu	Asp 310	Ala	Ala	Val	Asn	Ala 315	Ala	Val	Arg	Ala	Gly 320
Val	His	Phe	Ala	Val 325	Ala	Ala	Gly	Asn	Asp 330	Asn	Ala	Asp	Ala	Cys 335	Asn
Tyr	Ser	Pro	Ala 340	Ala	Ala	Thr	Glu	Pro 345	Leu	Thr	Val	Gly	Ala 350	Ser	Ala
Leu	Asp	Asp 355	Ser	Arg	Ala	Tyr	Phe 360	Ser	Asn	Tyr	Gly	Lys 365	Cys	Thr	Asp
Ile	Phe 370	Ala	Pro	Gly	Leu	Ser 375	Ile	Gln	Ser	Thr	Trp 380	Ile	Gly	Ser	Lys
Tyr	Ala	Val	Asn	Thr	Ile	Ser	Gly	Thr	Ser	Met	Ala	Ser	Pro	His	Ile

385				390					395					400
Cys G	ly Leu	Leu	Ala 405	Tyr	Tyr	Leu	Ser	Leu 410	Gln	Pro	Ala	Gly	Asp 415	Ser
Glu P	he Ala	Val 420	Ala	Pro	Ile	Thr	Pro 425	Lys	Lys	Leu	Lys	Glu 430	Ser	Val
Ile S	er Val 435	Ala	Thr	Lys	Asn	Ala 440	Leu	Ser	Asp	Leu	Pro 445	Asp	Ser	Asp
	ro Asn 50	Leu	Leu	Ala	Trp 455	Asn	Gly	Gly	Gly	Cys 460	Ser	Asn	Phe	Ser
Gln I 465	le Val	Glu	Ala	Gly 470	Ser	Tyr	Thr	Val	Lys 475	Pro	Lys	Gln	Asn	Lys 480
Gln A	la Lys	Leu	Pro 485	Ser	Thr	Ile	Glu	Glu 490	Leu	Glu	Glu	Ala	Ile 495	Glu
Gly A	sp Phe	Glu 500	Val	Val	Ser	Gly	Glu 505	Ile	Val	Lys	Gly	Ala 510	Lys	Ser
Phe G	ly Ser 515	Lys	Ala	Glu	Lys	Phe 520	Ala	Lys	Lys	Ile	His 525	Asp	Leu	Val
	lu Glu 30	Ile	Glu	Glu	Phe 535	Ile	Ser	Glu	Leu	Ser 540	Glu			

5

<210> 27 <211> 391

<212> PRT

<213> Trichoderma reesei

Met Arg Leu Ser Val Leu Leu Ser Val Leu Pro Leu Val Leu Ala Ala 1 5 10 15

Pro Ala Ile Glu Lys Arg Ala Glu Pro Ala Pro Leu Leu Val Pro Thr 20 25 30

Thr Lys His Gly Leu Val Ala Asp Lys Tyr Ile Val Lys Phe Lys Asp 35 40 45

Gly Ser Ser Leu Gln Ala Val Asp Glu Ala Ile Ser Gly Leu Val Ser 50 55 60

Asn Ala Asp His Val Tyr Gln His Val Phe Arg Gly Phe Ala Ala Thr

65					70					75					80
Leu	Asp	Lys	Glu	Thr 85	Leu	Glu	Ala	Leu	Arg 90	Asn	His	Pro	Glu	Val 95	Asp
Tyr	Ile	Glu	Gln 100	Asp	Ala	Val	Val	Lys 105	Ile	Asn	Ala	Tyr	Val 110	Ser	Gln
Thr	Gly	Ala 115	Pro	Trp	Gly	Leu	Gly 120	Arg	Ile	Ser	His	Lys 125	Ala	Arg	Gly
Ser	Thr 130	Thr	Tyr	Val	Tyr	Asp 135	Asp	Ser	Ala	Gly	Ala 140	Gly	Thr	Cys	Ser
Tyr 145	Val	Ile	Asp	Thr	Gly 150	Val	Asp	Ala	Thr	His 155	Pro	Asp	Phe	Glu	Gly 160
Arg	Ala	Thr	Leu	Leu 165	Arg	Ser	Phe	Val	Ser 170	Gly	Gln	Asn	Thr	Asp 175	Gly
Asn	Gly	His	Gly 180	Thr	His	Val	Ser	Gly 185	Thr	Ile	Gly	Ser	Arg 190	Thr	Tyr
Gly	Val	Ala 195	Lys	Lys	Thr	Gln	Ile 200	Tyr	Gly	Val	Lys	Val 205	Leu	Asp	Asn
Ser	Gly 210	Ser	Gly	Ser	Phe	Ser 215	Thr	Val	Ile	Ala	Gly 220	Met	Asp	Tyr	Val
Ala 225	Ser	Asp	Ser	Gln	Thr 230	Arg	Asn	Cys	Pro	Asn 235	Gly	Ser	Val	Ala	Asn 240
Met	Ser	Leu	Gly	Gly 245	Gly	Tyr	Thr	Ala	Ser 250	Val	Asn	Gln	Ala	Ala 255	Ala
Arg	Leu	Ile	Gln 260	Ala	Gly	Val	Phe	Leu 265	Ala	Val	Ala	Ala	Gly 270	Asn	Asp
Gly	Val	Asp 275	Ala	Arg	Asn	Thr	Ser 280	Pro	Ala	Ser	Glu	Pro 285	Thr	Val	Cys
Thr	Val 290	Gly	Ala	Ser	Thr	Ser 295	Ser	Asp	Ala	Arg	Ala 300	Ser	Phe	Ser	Asn
Tyr 305	Gly	Ser	Val	Val	Asp 310	Ile	Phe	Ala	Pro	Gly 315	Gln	Asp	Ile	Leu	Ser 320

Thr Trp Pro Asn Arg Gln Thr Asn Thr Ile Ser Gly Thr Ser Met Ala 325 330 335

Thr Pro His Ile Val Gly Leu Gly Ala Tyr Leu Ala Gly Leu Glu Gly 340 345 350

Phe Ser Asp Pro Gln Ala Leu Cys Ala Arg Ile Gln Ser Leu Ala Asn 355 360 365

Arg Asn Leu Leu Ser Gly Ile Pro Ser Gly Thr Ile Asn Ala Ile Ala 370 375 380

Phe Asn Gly Asn Pro Ser Gly 385 390

<210> 28

<211> 387

<212> PRT

5

<213> Trichoderma reesei

Met 1	Gly	Leu	Val	Thr 5	Asn	Pro	Phe	Ala	Lys 10	Asn	Ile	Ile	Pro	Asn 15	Arg
Tyr	Ile	Val	Val 20	Tyr	Asn	Asn	Ser	Phe 25	Gly	Glu	Glu	Ala	Ile 30	Ser	Ala
Lys	Gln	Ala 35	Gln	Phe	Ala	Ala	Lys 40	Ile	Ala	Lys	Arg	Asn 45	Leu	Gly	Lys
Arg	Gly 50	Leu	Phe	Gly	Asn	Glu 55	Leu	Ser	Thr	Ala	Ile 60	His	Ser	Phe	Ser
Met 65	His	Thr	Trp	Arg	Ala 70	Met	Ala	Leu	Asp	Ala 75	Asp	Asp	Ile	Met	Ile 80
Lys	Asp	Ile	Phe	Asp 85	Ala	Glu	Glu	Val	Ala 90	Tyr	Ile	Glu	Ala	Asp 95	Thr
Lys	Val	Gln	His 100	Ala	Ala	Leu	Val	Ala 105	Gln	Thr	Asn	Ala	Ala 110	Pro	Gly
Leu	Ile	Arg 115	Leu	Ser	Asn	Lys	Ala 120	Val	Gly	Gly	Gln	Asn 125	Tyr	Ile	Phe
Asp	Asn 130	Ser	Ala	Gly	Ser	Asn 135	Ile	Thr	Ala	Tyr	Val 140	Val	Asp	Thr	Gly

Ile Arg Ile 145	Thr His	Ser Gl	ı Phe	Glu	Gly	Arg 155	Ala	Thr	Phe	Gly	Ala 160
Asn Phe Val	Asn Asp 165	_	r Asp	Glu	Asn 170	Gly	His	Gly	Ser	His 175	Val
Ala Gly Thr	lle Gly	Gly Al	a Thr	Phe 185	Gly	Val	Ala	Lys	Asn 190	Val	Glu
Leu Val Ala 195	_	Val Le	200	Ala	Asp	Gly	Ser	Gly 205	Ser	Asn	Ser
Gly Val Leu 210	Asn Gly	Met Gl: 21		Val	Val	Asn	Asp 220	Val	Gln	Ala	Lys
Lys Arg Ser 225	Gly Lys	Ala Va	l Met	Asn	Met	Ser 235	Leu	Gly	Gly	Ser	Phe 240
Ser Thr Ala	Val Asn 245		a Ile	Thr	Ala 250	Leu	Thr	Asn	Ala	Gly 255	Ile
Val Pro Val	Val Ala 260	Ala Gl	y Asn	Glu 265	Asn	Gln	Asp	Thr	Ala 270	Asn	Thr
Ser Pro Gly 275		Pro Gl	n Ala 280		Thr	Val	Gly	Ala 285	Ile	Asp	Ala
Thr Thr Asp 290	lle Arg	Ala Gl	-	Ser	Asn	Phe	Gly 300	Thr	Gly	Val	Asp
Ile Tyr Ala 305	Pro Gly	Val Asy 310	o Val	Leu	Ser	Val 315	Gly	Ile	Lys	Ser	Asp 320
Ile Asp Thr	Ala Val 325		r Gly	Thr	Ser 330	Met	Ala	Ser	Pro	His 335	Val
Ala Gly Leu	Ala Ala 340	Tyr Le	u Met	Ala 345	Leu	Glu	Gly	Val	Ser 350	Asn	Val
Asp Asp Val		Leu Il	360	Asn	Leu	Ala	Ala	Lys 365	Thr	Gly	Ala
Ala Val Lys 370	Gln Asn	Ile Al	_	Thr	Thr	Ser	Leu 380	Ile	Ala	Asn	Asn
Gly Asn Phe	1										

<210> 29 <211> 409 <212> PRT 5 <213> Trichoderma reesei

Met 1	Ala	Ser	Leu	Arg 5	Arg	Leu	Ala	Leu	Tyr 10	Leu	Gly	Ala	Leu	Leu 15	Pro
Ala	Val	Leu	Ala 20	Ala	Pro	Ala	Val	Asn 25	Tyr	Lys	Leu	Pro	Glu 30	Ala	Val
Pro	Asn	Lys 35	Phe	Ile	Val	Thr	Leu 40	Lys	Asp	Gly	Ala	Ser 45	Val	Asp	Thr
Asp	Ser 50	His	Leu	Thr	Trp	Val 55	Lys	Asp	Leu	His	Arg 60	Arg	Ser	Leu	Gly
Lys 65	Arg	Ser	Thr	Ala	Gly 70	Val	Glu	Lys	Thr	Tyr 75	Asn	Ile	Asp	Ser	Trp 80
Asn	Ala	Tyr	Ala	Gly 85	Glu	Phe	Asp	Glu	Glu 90	Thr	Val	Lys	Gln	Ile 95	Lys
Ala	Asn	Pro	Asp 100	Val	Ala	Ser	Val	Glu 105	Pro	Asp	Tyr	Ile	Met 110	Trp	Leu
Ser	Asp	Ile 115	Val	Glu	Asp	Lys	Arg 120	Ala	Leu	Thr	Thr	Gln 125	Thr	Gly	Ala
Pro	Trp 130	Gly	Leu	Gly	Thr	Val 135	Ser	His	Arg	Thr	Pro 140	Gly	Ser	Thr	Ser
Tyr 145	Ile	Tyr	Asp	Thr	Ser 150	Ala	Gly	Ser	Gly	Thr 155	Phe	Ala	Tyr	Val	Val 160
Asp	Ser	Gly	Ile	Asn 165	Ile	Ala	His	Gln	Gln 170	Phe	Gly	Gly	Arg	Ala 175	Ser
Leu	Gly	Tyr	Asn 180	Ala	Ala	Gly	Gly	Asp 185	His	Val	Asp	Thr	Leu 190	Gly	His
Gly	Thr	His 195	Val	Ser	Gly	Thr	Ile 200	Gly	Gly	Ser	Thr	Tyr 205	Gly	Val	Ala
Lys	Gln 210	Ala	Ser	Leu	Ile	Ser 215	Val	Lys	Val	Phe	Gln 220	Gly	Asn	Ser	Ala

Ser Thr Ser Val Ile Leu Asp Gly Tyr Asn Trp Ala Val Asn Asp Ile Val Ser Arg Asn Arg Ala Ser Lys Ser Ala Ile Asn Met Ser Leu Gly Gly Pro Ala Ser Ser Thr Trp Ala Thr Ala Ile Asn Ala Ala Phe Asn Lys Gly Val Leu Thr Ile Val Ala Ala Gly Asn Gly Asp Ala Leu Gly Asn Pro Gln Pro Val Ser Ser Thr Ser Pro Ala Asn Val Pro Asn Ala Ile Thr Val Ala Ala Leu Asp Ile Asn Trp Arg Thr Ala Ser Phe Thr Asn Tyr Gly Ala Gly Val Asp Val Phe Ala Pro Gly Val Asn Ile Leu Ser Ser Trp Ile Gly Ser Asn Thr Ala Thr Asn Thr Ile Ser Gly Thr Ser Met Ala Thr Pro His Val Val Gly Leu Ala Leu Tyr Leu Gln Ala Leu Glu Gly Leu Ser Thr Pro Thr Ala Val Thr Asn Arg Ile Lys Ala Leu Ala Thr Thr Gly Arg Val Thr Gly Ser Leu Asn Gly Ser Pro Asn Thr Leu Ile Phe Asn Gly Asn Ser Ala

<210> 30

<211> 555

<212> PRT

<213> Trichoderma reesei

<400> 30

Met Arg Ala Cys Leu Leu Phe Leu Gly Ile Thr Ala Leu Ala Thr Ala 1 5 10 15

Ile Pro Ala Leu Lys Pro Pro His Gly Ser Pro Asp Arg Ala His Thr 20 25 30

Thr	Gln	Leu 35	Ala	Lys	Val	Ser	Ile 40	Ala	Leu	Gln	Pro	Glu 45	Cys	Arg	Glu
Leu	Leu 50	Glu	Gln	Ala	Leu	His 55	His	Leu	Ser	Asp	Pro 60	Ser	Ser	Pro	Arg
Tyr 65	Gly	Arg	Tyr	Leu	Gly 70	Arg	Glu	Glu	Ala	Lys 75	Ala	Leu	Leu	Arg	Pro 80
Arg	Arg	Glu	Ala	Thr 85	Ala	Ala	Val	Lys	Arg 90	Trp	Leu	Ala	Arg	Ala 95	Gly
Val	Pro	Ala	His 100	Asp	Val	Leu	Thr	Asp 105	Gly	Gln	Phe	Ile	His 110	Val	Arg
Thr	Leu	Ala 115	Glu	Lys	Ala	Gln	Ala 120	Leu	Leu	Gly	Phe	Glu 125	Tyr	Asn	Ser
Thr	Leu 130	Gly	Ser	Gln	Thr	Ile 135	Ala	Ile	Ser	Thr	Leu 140	Pro	Gly	Lys	Ile
Arg 145	Lys	His	Val	Met	Thr 150	Val	Gln	Tyr	Val	Pro 155	Leu	Trp	Thr	Glu	Ala 160
Asp	Trp	Glu	Glu	Cys 165	Lys	Thr	Ile	Ile	Thr 170	Pro	Ser	Cys	Leu	Lys 175	Arg
Leu	Tyr	His	Val 180	Asp	Ser	Tyr	Arg	Ala 185	Lys	Tyr	Glu	Ser	Ser 190	Ser	Leu
Phe	Gly	Ile 195	Val	Gly	Phe	Ser	Gly 200	Gln	Ala	Ala	Gln	His 205	Asp	Glu	Leu
Asp	Lys 210	Phe	Leu	His	Asp	Phe 215	Ala	Pro	Tyr	Ser	Thr 220	Asn	Ala	Asn	Phe
Ser 225	Ile	Glu	Ser	Val	Asn 230	Gly	Gly	Gln	Ser	Pro 235	Gln	Gly	Met	Asn	Glu 240
Pro	Ala	Ser	Glu	Ala 245	Asn	Gly	Asp	Val	Gln 250	Tyr	Ala	Val	Ala	Met 255	Gly
Tyr	His	Val	Pro 260	Val	Arg	Tyr	Tyr	Ala 265	Val	Gly	Gly	Glu	Asn 270	His	Asp
Ile	Ile	Pro 275	Asp	Leu	Asp	Leu	Val 280	Asp	Thr	Thr	Glu	Glu 285	Tyr	Leu	Glu

Pro	Phe 290	Leu	Glu	Phe	Ala	Ser 295	His	Leu	Leu	Asp	Leu 300	Asp	Asp	Asp	Glu
Leu 305	Pro	Arg	Val	Val	Ser 310	Ile	Ser	Tyr	Gly	Ala 315	Asn	Glu	Gln	Leu	Phe 320
Pro	Arg	Ser	Tyr	Ala 325	His	Gln	Val	Cys	Asp 330	Met	Phe	Gly	Gln	Leu 335	Gly
Ala	Arg	Gly	Val 340	Ser	Ile	Val	Val	Ala 345	Ala	Gly	Asp	Leu	Gly 350	Pro	Gly
Val	Ser	Cys 355	Gln	Ser	Asn	Asp	Gly 360	Ser	Ala	Arg	Pro	Lys 365	Phe	Ile	Pro
Ser	Phe 370	Pro	Ala	Thr	Cys	Pro 375	Tyr	Val	Thr	Ser	Val 380	Gly	Ser	Thr	Arg
Gly 385	Ile	Met	Pro	Glu	Val 390	Ala	Ala	Ser	Phe	Ser 395	Ser	Gly	Gly	Phe	Ser 400
Asp	Tyr	Phe	Ala	Arg 405	Pro	Ala	Trp	Gln	Asp 410	Arg	Ala	Val	Gly	Ala 415	Tyr
Leu	Gly	Ala	His 420	Gly	Glu	Glu	Trp	Glu 425	Gly	Phe	Tyr	Asn	Pro 430	Ala	Gly
Arg	Gly	Phe 435	Pro	Asp	Val	Ala	Ala 440	Gln	Gly	Val	Asn	Phe 445	Arg	Phe	Arg
Ala	His 450	Gly	Asn	Glu	Ser	Leu 455	Ser	Ser	Gly	Thr	Ser 460	Leu	Ser	Ser	Pro
Val 465	Phe	Ala	Ala	Leu	Ile 470	Ala	Leu	Leu	Asn	Asp 475	His	Arg	Ser	Lys	Ser 480
Gly	Met	Pro	Pro	Met 485	Gly	Phe	Leu	Asn	Pro 490	Trp	Ile	Tyr	Thr	Val 495	Gly
Ser	His	Ala	Phe 500	Thr	Asp	Ile	Ile	Glu 505	Ala	Arg	Ser	Glu	Gly 510	Cys	Pro
Gly	Gln	Ser 515	Val	Glu	Tyr	Leu	Ala 520	Ser	Pro	Tyr	Ile	Pro 525	Asn	Ala	Gly
Trp	Ser	Ala	Val	Pro	Gly	Trp	Asp	Pro	Val	Thr	Gly	Trp	Gly	Thr	Pro

530 535 540

Leu Phe Asp Arg Met Leu Asn Leu Ser Leu Val 545 550 555

<210> 31

<211> 388 <212> PRT

5

<213> Trichoderma reesei

Met 1	Ala	Trp	Leu	Lys 5	Lys	Leu	Ala	Leu	Val 10	Leu	Leu	Ala	Ile	Val 15	Pro
Tyr	Ala	Thr	Ala 20	Ser	Pro	Ala	Leu	Ser 25	Pro	Arg	Ser	Arg	Glu 30	Ile	Leu
Ser	Leu	Glu 35	Asp	Leu	Glu	Ser	Glu 40	Asp	Lys	Tyr	Val	Ile 45	Gly	Leu	Lys
Gln	Gly 50	Leu	Ser	Pro	Thr	Asp 55	Leu	Lys	Lys	His	Leu 60	Leu	Arg	Val	Ser
Ala 65	Val	Gln	Tyr	Arg	Asn 70	Lys	Asn	Ser	Thr	Phe 75	Glu	Gly	Gly	Thr	Gly 80
Val	Lys	Arg	Thr	Tyr 85	Ala	Ile	Gly	Asp	Tyr 90	Arg	Ala	Tyr	Thr	Ala 95	Val
Leu	Asp	Arg	Asp 100	Thr	Val	Arg	Glu	Ile 105	Trp	Asn	Asp	Thr	Leu 110	Glu	Lys
Pro	Pro	Trp 115	Gly	Leu	Ala	Thr	Leu 120	Ser	Asn	Lys	Lys	Pro 125	His	Gly	Phe
Leu	Tyr 130	Arg	Tyr	Asp	Lys	Ser 135		Gly		_	Thr 140	Phe	Ala	Tyr	Val
Leu 145	Asp	Thr	Gly	Ile	Asn 150	Ser	Lys	His	Val	Asp 155	Phe	Glu	Gly	Arg	Ala 160
Tyr	Met	Gly	Phe	Ser 165	Pro	Pro	Lys	Thr	Glu 170	Pro	Thr	Asp	Ile	Asn 175	Gly
His	Gly	Thr	His 180	Val	Ala	Gly	Ile	Ile 185	Gly	Gly	Lys	Thr	Phe 190	Gly	Val
Ala	Lys	Lys	Thr	Gln	Leu	Ile	Gly	Val	Lys	Val	Phe	Leu	Asp	Asp	Glu

		195					200					205			
Ala	Thr 210	Thr	Ser	Thr	Leu	Met 215	Glu	Gly	Leu	Glu	Trp 220	Ala	Val	Asn	Asp
Ile 225	Thr	Thr	Lys	Gly	Arg 230	Gln	Gly	Arg	Ser	Val 235	Ile	Asn	Met	Ser	Let 240
Gly	Gly	Pro	Tyr	Ser 245	Gln	Ala	Leu	Asn	Asp 250	Ala	Ile	Asp	His	Ile 255	Ala
Asp	Met	Gly	Ile 260	Leu	Pro	Val	Ala	Ala 265	Ala	Gly	Asn	Lys	Gly 270	Ile	Pro
Ala	Thr	Phe 275	Ile	Ser	Pro	Ala	Ser 280	Ala	Asp	Lys	Ala	Met 285	Thr	Val	Gly
Ala	Ile 290	Asn	Ser	Asp	Trp	Gln 295	Glu	Thr	Asn	Phe	Ser 300	Asn	Phe	Gly	Pro
Gln 305	Val	Asn	Ile	Leu	Ala 310	Pro	Gly	Glu	Asp	Val 315	Leu	Ser	Ala	Tyr	Va]
Ser	Thr	Asn	Thr	Ala 325	Thr	Arg	Val	Leu	Ser 330	Gly	Thr	Ser	Met	Ala 335	Ala
Pro	His	Val	Ala 340	Gly	Leu	Ala	Leu	Tyr 345	Leu	Met	Ala	Leu	Glu 350	Glu	Phe
Asp	Ser	Thr 355	Gln	Lys	Leu	Thr	Asp 360	Arg	Ile	Leu	Gln	Leu 365	Gly	Met	Lys
Asn	Lys 370	Val	Val	Asn	Leu	Met 375	Thr	Asp	Ser	Pro	Asn 380	Leu	Ile	Ile	His
Asn 385	Asn	Val	Lys												

<210> 32 <211> 256 <212> PRT

<213> Trichoderma reesei

<400> 32

5

Met Phe Ile Ala Gly Val Ala Leu Ser Ala Leu Leu Cys Ala Asp Thr 1 5 10 15

Val Leu Ala Gly Val Ala Gln Asp Arg Gly Leu Ala Ala Arg Leu Ala

145

			20					25					30		
Arg	Arg	Ala 35	Gly	Arg	Arg	Ser	Ala 40	Pro	Phe	Arg	Asn	Asp 45	Thr	Ser	His
Ala	Thr 50	Val	Gln	Ser	Asn	Trp 55	Gly	Gly	Ala	Ile	Leu 60	Glu	Gly	Ser	Gly
Phe 65	Thr	Ala	Ala	Ser	Ala 70	Thr	Val	Asn	Val	Pro 75	Arg	Gly	Gly	Gly	Gly 80
Ser	Asn	Ala	Ala	Gly 85	Ser	Ala	Trp	Val	Gly 90	Ile	Asp	Gly	Ala	Ser 95	Cys
Gln	Thr	Ala	Ile 100	Leu	Gln	Thr	Gly	Phe 105	Asp	Trp	Tyr	Gly	Asp 110	Gly	Thr
Tyr	Asp	Ala 115	Trp	Tyr	Glu	Trp	Tyr 120	Pro	Glu	Phe	Ala	Ala 125	Asp	Phe	Ser
Gly	Ile 130	Asp	Ile	Arg	Gln	Gly 135	Asp	Gln	Ile	Ala	Met 140	Ser	Val	Val	Ala
Thr 145	Ser	Leu	Thr	Gly	Gly 150	Ser	Ala	Thr	Leu	Glu 155	Asn	Leu	Ser	Thr	Gly 160
Gln	Lys	Val	Thr	Gln 165	Asn	Phe	Asn	Arg	Val 170	Thr	Ala	Gly	Ser	Leu 175	Cys
Glu	Thr	Ser	Ala 180	Glu	Phe	Ile	Ile	Glu 185	Asp	Phe	Glu	Glu	Cys 190	Asn	Ser
Asn	Gly	Ser 195	Asn	Cys	Gln	Pro	Val 200	Pro	Phe	Ala	Ser	Phe 205	Ser	Pro	Ala
Ile	Thr 210	Phe	Ser	Ser	Ala	Thr 215	Ala	Thr	Arg	Ser	Gly 220	Arg	Ser	Val	Ser
Leu 225	Ser	Gly	Ala	Glu	Ile 230	Thr	Glu	Val	Ile	Val 235	Asn	Asn	Gln	Asp	Leu 240
Thr	Arg	Cys	Ser	Val	Ser	Gly	Ser	Ser	Thr	Leu	Thr	Cys	Ser	Tyr 255	Val

<210> 33 <211> 236 5 <212> PRT <213> Trichoderma reesei <400> 33

Met 1	Asp	Ala	Ile	Arg 5	Ala	Arg	Ser	Ala	Ala 10	Arg	Arg	Ser	Asn	Arg 15	Phe
Gln	Ala	Gly	Ser 20	Ser	Lys	Asn	Val	Asn 25	Gly	Thr	Ala	Asp	Val 30	Glu	Ser
Thr	Asn	Trp 35	Ala	Gly	Ala	Ala	Ile 40	Thr	Thr	Ser	Gly	Val 45	Thr	Glu	Val
Ser	Gly 50	Thr	Phe	Thr	Val	Pro 55	Arg	Pro	Ser	Val	Pro 60	Ala	Gly	Gly	Ser
Ser 65	Arg	Glu	Glu	Tyr	Cys 70	Gly	Ala	Ala	Trp	Val 75	Gly	Ile	Asp	Gly	Tyr 80
Ser	Asp	Ala	Asp	Leu 85	Ile	Gln	Thr	Gly	Val 90	Leu	Trp	Cys	Val	Glu 95	Asp
Gly	Glu	Tyr	Leu 100	Tyr	Glu	Ala	Trp	Tyr 105	Glu	Tyr	Leu	Pro	Ala 110	Ala	Leu
Val	Glu	Tyr 115	Ser	Gly	Ile	Ser	Val 120	Thr	Ala	Gly	Ser	Val 125	Val	Thr	Val
Thr	Ala 130	Thr	Lys	Thr	Gly	Thr 135	Asn	Ser	Gly	Val	Thr 140	Thr	Leu	Thr	Ser
Gly 145	Gly	Lys	Thr	Val	Ser 150	His	Thr	Phe	Ser	Arg 155	Gln	Asn	Ser	Pro	Leu 160
Pro	Gly	Thr	Ser	Ala 165	Glu	Trp	Ile	Val	Glu 170	Asp	Phe	Thr	Ser	Gly 175	Ser
Ser	Leu	Val	Pro 180	Phe	Ala	Asp	Phe	Gly 185	Ser	Val	Thr	Phe	Thr 190	Gly	Ala
Thr	Ala	Val 195	Val	Asn	Gly	Ala	Thr 200	Val	Thr	Ala	Gly	Gly 205	Asp	Ser	Pro
Val	Ile 210	Ile	Asp	Leu	Glu	Asp 215	Ser	Arg	Gly	Asp	Ile 220	Leu	Thr	Ser	Thr
Thr 225	Val	Ser	Gly	Ser	Thr	Val	Thr	Val	Glu	Tyr 235	Glu				

<210> 34 <211> 612 <212> PRT 5 <213> Trichoderma reesei

<400> 34

Met 1	Ala	Lys	Leu	Ser 5	Thr	Leu	Arg	Leu	Ala 10	Ser	Leu	Leu	Ser	Leu 15	Val
Ser	Val	Gln	Val 20	Ser	Ala	Ser	Val	His 25	Leu	Leu	Glu	Ser	Leu 30	Glu	Lys
Leu	Pro	His 35	Gly	Trp	Lys	Ala	Ala 40	Glu	Thr	Pro	Ser	Pro 45	Ser	Ser	Gln
Ile	Val 50	Leu	Gln	Val	Ala	Leu 55	Thr	Gln	Gln	Asn	Ile 60	Asp	Gln	Leu	Glu
Ser 65	Arg	Leu	Ala	Ala	Val 70	Ser	Thr	Pro	Thr	Ser 75	Ser	Thr	Tyr	Gly	Lys 80
Tyr	Leu	Asp	Val	Asp 85	Glu	Ile	Asn	Ser	Ile 90	Phe	Ala	Pro	Ser	Asp 95	Ala
Ser	Ser	Ser	Ala 100	Val	Glu	Ser	Trp	Leu 105	Gln	Ser	His	Gly	Val 110	Thr	Ser
Tyr	Thr	Lys 115	Gln	Gly	Ser	Ser	Ile 120	Trp	Phe	Gln	Thr	Asn 125	Ile	Ser	Thr
Ala	Asn 130	Ala	Met	Leu	Ser	Thr 135	Asn	Phe	His	Thr	Tyr 140	Ser	Asp	Leu	Thr
Gly 145	Ala	Lys	Lys	Val	Arg 150	Thr	Leu	Lys	Tyr	Ser 155	Ile	Pro	Glu	Ser	Leu 160
Ile	Gly	His	Val	Asp 165	Leu	Ile	Ser	Pro	Thr 170	Thr	Tyr	Phe	Gly	Thr 175	Thr
Lys	Ala	Met	Arg 180	Lys	Leu	Lys	Ser	Ser 185	Gly	Val	Ser	Pro	Ala 190	Ala	Asp
Ala	Leu	Ala 195	Ala	Arg	Gln	Glu	Pro 200	Ser	Ser	Cys	Lys	Gly 205	Thr	Leu	Val
Phe	Glu 210	Gly	Glu	Thr	Phe	Asn 215	Val	Phe	Gln	Pro	Asp 220	Cys	Leu	Arg	Thr

Glu Tyr Ser 225	-	Sly Tyr 30	Thr Pro		Val Lys 235	Ser Gl	y Ser	Arg 240
Ile Gly Phe	Gly Ser P 245	he Leu	Asn Gl	1 Ser 2 250	Ala Ser	Phe Al	a Asp 255	Gln
Ala Leu Phe	Glu Lys H 260	is Phe	Asn Ile 26		Ser Gln	Asn Ph 27		Val
Val Leu Ile 275	_	_	Asp Let 280	ı Pro (Gln Pro	Pro Se 285	r Asp	Ala
Asn Asp Gly 290	Glu Ala A	asn Leu 295	Asp Ala	a Gln '	Thr Ile 300	Leu Th	r Ile	Ala
His Pro Leu 305		hr Glu 310	Phe Ile		Ala Gly 315	Ser Pr	o Pro	Tyr 320
Phe Pro Asp	Pro Val G 325	lu Pro	Ala Gl	7 Thr 1	Pro Asn	Glu As	n Glu 335	Pro
Tyr Leu Gln	Tyr Tyr G	Slu Phe	Leu Let 34		Lys Ser	Asn Al 35		Ile
Pro Gln Val 355			Tyr Gl ₃ 360	y Asp (Glu Glu	Gln Th 365	r Val	Pro
Arg Ser Tyr 370	Ala Val A	arg Val 375	Cys As	n Leu	Ile Gly 380	Leu Le	u Gly	Leu
Arg Gly Ile 385		eu His	Ser Se		Asp Glu 395	Gly Va	l Gly	Ala 400
Ser Cys Val	Ala Thr A	asn Ser	Thr Th	r Pro (Gln Phe	Asn Pr	o Ile 415	Phe
Pro Ala Thr	Cys Pro T	yr Val	Thr Sea		Gly Gly	Thr Va		Phe
Asn Pro Glu 435		_	Gly Sea	r Ser (Gly Gly	Phe Se 445	r Tyr	Tyr
Phe Ser Arg 450	Pro Trp T	yr Gln 455	Gln Gl	ı Ala '	Val Gly 460	Thr Ty	r Leu	Glu
Lys Tyr Val 465		lu Thr	Lys Ly		Tyr Gly 475	Pro Ty	r Val	Asp 480

Phe Ser Gly Arg Gly Phe Pro Asp Val Ala Ala His Ser Val Ser Pro 485 490 495

Asp Tyr Pro Val Phe Gln Gly Gly Glu Leu Thr Pro Ser Gly Gly Thr 500 505 510

Ser Ala Ala Ser Pro Val Val Ala Ala Ile Val Ala Leu Leu Asn Asp 515 520 525

Ala Arg Leu Arg Glu Gly Lys Pro Thr Leu Gly Phe Leu Asn Pro Leu 530 535 540

Ile Tyr Leu His Ala Ser Lys Gly Phe Thr Asp Ile Thr Ser Gly Gln 545 550 550 560

Ser Glu Gly Cys Asn Gly Asn Asn Thr Gln Thr Gly Ser Pro Leu Pro 565 570 575

Gly Ala Gly Phe Ile Ala Gly Ala His Trp Asn Ala Thr Lys Gly Trp 580 585 590

Asp Pro Thr Thr Gly Phe Gly Val Pro Asn Leu Lys Lys Leu Leu Ala 595 600 605

Leu Val Arg Phe 610

<210> 35

<211> 477

<212> PRT

5

<213> Trichoderma reesei

<400> 35

Met	Arg	Phe	Val	Gln	Tyr	Val	Ser	Leu	Ala	${ t Gly}$	Leu	Phe	Ala	Ala	Ala
1				5					10					15	

- Thr Val Ser Ala Gly Val Val Thr Val Pro Phe Glu Lys Arg Asn Leu 20 25 30
- Asn Pro Asp Phe Ala Pro Ser Leu Leu Arg Arg Asp Gly Ser Val Ser 35 40 45
- Leu Asp Ala Ile Asn Asn Leu Thr Gly Gly Gly Tyr Tyr Ala Gln Phe 50 55 60
- Ser Val Gly Thr Pro Pro Gln Lys Leu Ser Phe Leu Leu Asp Thr Gly 65 70 75 80

Ser	Ser	Asp	Thr	Trp 85	Val	Asn	Ser	Val	Thr 90	Ala	Asp	Leu	Cys	Thr 95	Asp
Glu	Phe	Thr	Gln 100	Gln	Thr	Val	Gly	Glu 105	Tyr	Cys	Phe	Arg	Gln 110	Phe	Asn
Pro	Arg	Arg 115	Ser	Ser	Ser	Tyr	Lys 120	Ala	Ser	Thr	Glu	Val 125	Phe	Asp	Ile
Thr	Tyr 130	Leu	Asp	Gly	Arg	Arg 135	Ile	Arg	Gly	Asn	Tyr 140	Phe	Thr	Asp	Thr
Val 145	Thr	Ile	Asn	Gln	Ala 150	Asn	Ile	Thr	Gly	Gln 155	Lys	Ile	Gly	Leu	Ala 160
Leu	Gln	Ser	Val	Arg 165	Gly	Thr	Gly	Ile	Leu 170	Gly	Leu	Gly	Phe	Arg 175	Glu
Asn	Glu	Ala	Ala 180	Asp	Thr	Lys	Tyr	Pro 185	Thr	Val	Ile	Asp	Asn 190	Leu	Val
Ser	Gln	Lys 195	Val	Ile	Pro	Val	Pro 200	Ala	Phe	Ser	Leu	Tyr 205	Leu	Asn	Asp
Leu	Gln 210	Thr	Ser	Gln	Gly	Ile 215	Leu	Leu	Phe	Gly	Gly 220	Val	Asp	Thr	Asp
Lys 225	Phe	His	Gly	Gly	Leu 230	Ala	Thr	Leu	Pro	Leu 235	Gln	Ser	Leu	Pro	Pro 240
Ser	Ile	Ala	Glu	Thr 245	Gln	Asp	Ile	Val	Met 250	Tyr	Ser	Val	Asn	Leu 255	Asp
Gly	Phe	Ser	Ala 260	Ser	Asp	Val	Asp	Thr 265	Pro	Asp	Val	Ser	Ala 270	Lys	Ala
Val	Leu	Asp 275	Ser	Gly	Ser	Thr	Ile 280	Thr	Leu	Leu	Pro	Asp 285	Ala	Val	Val
Gln	Glu 290	Leu	Phe	Asp	Glu	Tyr 295	Asp	Val	Leu	Asn	11e 300	Gln	Gly	Leu	Pro
Val 305	Pro	Phe	Ile	Asp	Cys 310	Ala	Lys	Ala	Asn	Ile 315	Lys	Asp	Ala	Thr	Phe 320
Asn	Phe	Lys	Phe	Asp 325	Gly	Lys	Thr	Ile	Lys 330	Val	Pro	Ile	Asp	Glu 335	Met

Ser Leu Ser Lys Phe Phe Lys Gly Trp Ser Gly Val Cys Thr Phe Gly 355

Met Gly Ser Thr Lys Thr Phe Gly 11e Gln Ser Asp Glu Phe Val Leu 370

Leu Gly Asp Thr Phe Leu Arg Ser Ala Tyr Val Val Tyr Asp Leu Gln 385

Asn Lys Gln Ile Gly Ile Ala Gln Ala Thr Leu Asn Ser Thr Ser Ser

Val Leu Asn Asn Leu Ala Ala Ala Ser Asp Glu Ile Met Ser Asp Pro

Asn Lys Gln Ile Gly Ile Ala Gln Ala Thr Leu Asn Ser Thr Ser Ser 405 410 415

Thr Ile Val Glu Phe Lys Ala Gly Ser Lys Thr Ile Pro Gly Pro Ala 420 425 430

Ser Thr Gly Asp Asp Ser Asp Ser Ser Asp Asp Ser Asp Glu Asp 435 440 445

Ser Ala Gly Ala Ala Leu His Pro Thr Phe Ser Ile Ala Leu Ala Gly 450 455 460

Thr Leu Phe Thr Ala Val Ser Met Met Met Ser Val Leu 465 470 475

<210> 36

<211> 1263

<212> ADN

5

<213> Trichoderma reesei

<400> 36

atggcgtcac	tcatcaaaac	tgccgtggac	attgccaacg	gccgccatgc	gctgtccaga	60
tatgtcatct	ttgggctctg	gcttgcggat	gcggtgctgt	gcgggctgat	tatctggaaa	120
gtgccttata	cggaaatcga	ctgggtcgcc	tacatggagc	aagtcaccca	gttcgtccac	180
ggagagcgag	actaccccaa	gatggagggc	ggcacagggc	ccctggtgta	tcccgcggcc	240
catgtgtaca	tctacacagg	gctctactac	ctgacgaaca	agggcaccga	catcctgctg	300
gcgcagcagc	tctttgccgt	gctctacatg	gctactctgg	cggtcgtcat	gacatgctac	360
tccaaggcca	aggtcccgcc	gtacatcttc	ccgcttctca	tcctctccaa	aagacttcac	420
agcgtcttcg	tcctgagatg	cttcaacgac	tgcttcgccg	ccttcttcct	ctggctctgc	480
atcttcttct	tccagaggcg	agagtggacc	atcggagctc	tcgcatacag	catcggcctg	540
ggcgtcaaaa	tgtcgctgct	actggttctc	cccgccgtgg	tcatcgtcct	ctacctcggc	600
cgcggcttca	agggcgccct	gcggctgctc	tggctcatgg	tgcaggtcca	gctcctcctc	660
gccataccct	tcatcacgac	aaattggcgc	ggctacctcg	gccgtgcatt	cgagctctcg	720
aggcagttca	agtttgaatg	gacagtcaat	tggcgcatgc	tgggcgagga	tctgttcctc	780
agccggggct	tctctatcac	gctactggca	tttcacgcca	tcttcctcct	cgcctttatc	840
ctcggccggt	ggctgaagat	tagggaacgg	accgtactcg	ggatgatccc	ctatgtcatc	900
cgattcagat	cgccctttac	cgagcaggaa	gagcgcgcca	tctccaaccg	cgtcgtcacg	960
cccggctatg	tcatgtccac	catcttgtcg	gccaacgtgg	tgggactgct	gtttgcccgg	1020
tctctgcact	accagttcta	tgcatatctg	gcgtgggcga	cccctatct	cctgtggacg	1080
gcctgcccca	atcttttggt	ggtggccccc	ctctgggcgg	cgcaagaatg	ggcctggaac	1140
gtcttcccca	gcacgcctct	tagctcgagc	gtcgtggtga	gcgtgctggc	cgtgacggtg	1200
gccatggcgt	ttgcaggttc	aaatccgcag	ccacgtgaaa	catcgaagcc	gaagcagcac	1260
taa						1263

5

<210> 37 <211> 420 <212> PRT <213> *Trichoderma reesei*

<400> 37

10

Met 1	Ala	Ser	Leu	Ile 5	Lys	Thr	Ala	Val	Asp 10	Ile	Ala	Asn	Gly	Arg 15	His
Ala	Leu	Ser	Arg 20	Tyr	Val	Ile	Phe	Gly 25	Leu	Trp	Leu	Ala	Asp 30	Ala	Val
Leu	Cys	Gly 35	Leu	Ile	Ile	Trp	Lys 40	Val	Pro	Tyr	Thr	Glu 45	Ile	Asp	Trp
Val	Ala 50	Tyr	Met	Glu	Gln	Val 55	Thr	Gln	Phe	Val	His 60	Gly	Glu	Arg	Asp
Tyr 65	Pro	Lys	Met	Glu	Gly 70	Gly	Thr	Gly	Pro	Leu 75	Val	Tyr	Pro	Ala	Ala 80
His	Val	Tyr	Ile	Tyr 85	Thr	Gly	Leu	Tyr	Tyr 90	Leu	Thr	Asn	Lys	Gly 95	Thr
Asp	Ile	Leu	Leu 100	Ala	Gln	Gln	Leu	Phe 105	Ala	Val	Leu	Tyr	Met 110	Ala	Thr

Leu Ala Val Val Met Thr Cys Tyr Ser Lys Ala Lys Val Pro Pro Tyr

Ile Phe Pro I 130	Leu Leu Ile	Leu Ser 135	Lys Arg	Leu His 140	Ser Val	Phe Val
Leu Arg Cys F 145	Phe Asn Asp 150	Cys Phe	Ala Ala	Phe Phe 155	Leu Trp	Leu Cys 160
Ile Phe Phe F	Phe Gln Arg 165	Arg Glu	Trp Thr 170	Ile Gly	Ala Leu	Ala Tyr 175
Ser Ile Gly I	Leu Gly Val 180	Lys Met	Ser Leu 185	Leu Leu	Val Leu 190	Pro Ala
Val Val Ile V 195	Val Leu Tyr	Leu Gly 200	Arg Gly	Phe Lys	Gly Ala 205	Leu Arg
Leu Leu Trp I 210	Leu Met Val	Gln Val 215	Gln Leu	Leu Leu 220	Ala Ile	Pro Phe
Ile Thr Thr A	Asn Trp Arg 230	Gly Tyr	Leu Gly	Arg Ala 235	Phe Glu	Leu Ser 240
Arg Gln Phe I	Lys Phe Glu 245	Trp Thr	Val Asn 250	Trp Arg	Met Leu	Gly Glu 255
Asp Leu Phe I	Leu Ser Arg 260	Gly Phe	Ser Ile 265	Thr Leu	Leu Ala 270	Phe His
Ala Ile Phe I 275	Leu Leu Ala	Phe Ile 280	Leu Gly	Arg Trp	Leu Lys 285	Ile Arg
Glu Arg Thr V 290	Val Leu Gly	Met Ile 295	Pro Tyr	Val Ile 300	Arg Phe	Arg Ser
Pro Phe Thr 6	Glu Gln Glu 310	Glu Arg	Ala Ile	Ser Asn 315	Arg Val	Val Thr 320
Pro Gly Tyr V	Val Met Ser 325	Thr Ile	Leu Ser 330	Ala Asn	Val Val	Gly Leu 335
Leu Phe Ala A	Arg Ser Leu 340	His Tyr	Gln Phe 345	Tyr Ala	Tyr Leu 350	Ala Trp
Ala Thr Pro T 355	Tyr Leu Leu	Trp Thr 360	Ala Cys	Pro Asn	Leu Leu 365	Val Val
Ala Pro Leu T	Trp Ala Ala	Gln Glu	Trp Ala	Trp Asn	Val Phe	Pro Ser

370 375 380

Thr Pro Leu Ser Ser Ser Val Val Val Ser Val Leu Ala Val Thr Val 385 390 395 400

Ala Met Ala Phe Ala Gly Ser Asn Pro Gln Pro Arg Glu Thr Ser Lys 405 410 415

Pro Lys Gln His 420

<210> 38

<211> 445

<212> PRT

5

<213> Homo sapiens

<400> 38

Met 1	Leu	Lys	Lys	Gln 5	Ser	Ala	Gly	Leu	Val 10	Leu	Trp	Gly	Ala	Ile 15	Leu
Phe	Val	Ala	Trp 20	Asn	Ala	Leu	Leu	Leu 25	Leu	Phe	Phe	Trp	Thr 30	Arg	Pro
Ala	Pro	Gly 35	Arg	Pro	Pro	Ser	Val 40	Ser	Ala	Leu	Asp	Gly 45	Asp	Pro	Ala
Ser	Leu 50	Thr	Arg	Glu	Val	Ile 55	Arg	Leu	Ala	Gln	Asp 60	Ala	Glu	Val	Glu
Leu 65	Glu	Arg	Gln	Arg	Gly 70	Leu	Leu	Gln	Gln	Ile 75	Gly	Asp	Ala	Leu	Ser 80
Ser	Gln	Arg	Gly	Arg 85	Val	Pro	Thr	Ala	Ala 90	Pro	Pro	Ala	Gln	Pro 95	Arg
Val	Pro	Val	Thr 100	Pro	Ala	Pro	Ala	Val 105	Ile	Pro	Ile	Leu	Val 110	Ile	Ala
Cys	Asp	Arg 115	Ser	Thr	Val	Arg	Arg 120	Cys	Leu	Asp	Lys	Leu 125	Leu	His	Tyr
Arg	Pro 130	Ser	Ala	Glu	Leu	Phe 135	Pro	Ile	Ile	Val	Ser 140	Gln	Asp	Cys	Gly
His 145	Glu	Glu	Thr	Ala	Gln 150	Ala	Ile	Ala	Ser	Tyr 155	Gly	Ser	Ala	Val	Thr 160
His	Ile	Arg	Gln	Pro	Asp	Leu	Ser	Ser	Ile	Ala	Val	Pro	Pro	Asp	His

				165					170					175	
Arg	Lys	Phe	Gln 180	Gly	Tyr	Tyr	Lys	Ile 185	Ala	Arg	His	Tyr	Arg 190	Trp	Ala
Leu	Gly	Gln 195	Val	Phe	Arg	Gln	Phe 200	Arg	Phe	Pro	Ala	Ala 205	Val	Val	Val
Glu	Asp 210	Asp	Leu	Glu	Val	Ala 215	Pro	Asp	Phe	Phe	Glu 220	Tyr	Phe	Arg	Ala
Thr 225	Tyr	Pro	Leu	Leu	Lys 230	Ala	Asp	Pro	Ser	Leu 235	Trp	Cys	Val	Ser	Ala 240
Trp	Asn	Asp	Asn	Gly 245	Lys	Glu	Gln	Met	Val 250	Asp	Ala	Ser	Arg	Pro 255	Glu
Leu	Leu	Tyr	Arg 260	Thr	Asp	Phe	Phe	Pro 265	Gly	Leu	Gly	Trp	Leu 270	Leu	Leu
Ala	Glu	Leu 275	Trp	Ala	Glu	Leu	Glu 280	Pro	Lys	Trp	Pro	Lys 285	Ala	Phe	Trp
Asp	Asp 290	Trp	Met	Arg	Arg	Pro 295	Glu	Gln	Arg	Gln	Gly 300	Arg	Ala	Cys	Ile
Arg 305	Pro	Glu	Ile	Ser	Arg 310	Thr	Met	Thr	Phe	Gly 315	Arg	Lys	Gly	Val	Ser 320
His	Gly	Gln	Phe	Phe 325	Asp	Gln	His	Leu	Lys 330	Phe	Ile	Lys	Leu	A sn 335	Gln
Gln	Phe	Val	His 340	Phe	Thr	Gln	Leu	Asp 345	Leu	Ser	Tyr	Leu	Gln 350	Arg	Glu
Ala	Tyr	Asp 355	Arg	Asp	Phe	Leu	Ala 360	Arg	Val	Tyr	Gly	Ala 365	Pro	Gln	Leu
Gln	Val 370	Glu	Lys	Val	Arg	Thr 375	Asn	Asp	Arg	Lys	Glu 380	Leu	Gly	Glu	Val
Arg 385	Val	Gln	Tyr	Thr	Gly 390	Arg	Asp	Ser	Phe	Lys 395	Ala	Phe	Ala	Lys	Ala 400
Leu	Gly	Val	Met	Asp	Asp	Leu	Lys	Ser	Gly	Val	Pro	Arg	Ala	Gly	Tyr

Arg Gly Ile Val Thr Phe Gln Phe Arg Gly Arg Arg Val His Leu Ala 420 425 430

Pro Pro Leu Thr Trp Glu Gly Tyr Asp Pro Ser Trp Asn 435 440 445

<210> 39

<211> 447

<212> PRT

<213> Homo sapiens

<400> 39

Met 1	Arg	Phe	Arg	Ile 5	Tyr	Lys	Arg	Lys	Val 10	Leu	Ile	Leu	Thr	Leu 15	Val
Val	Ala	Ala	Cys 20	Gly	Phe	Val	Leu	Trp 25	Ser	Ser	Asn	Gly	Arg 30	Gln	Arg
Lys	Asn	Glu 35	Ala	Leu	Ala	Pro	Pro 40	Leu	Leu	Asp	Ala	Glu 45	Pro	Ala	Arg
Gly	Ala 50	Gly	Gly	Arg	Gly	Gly 55	Asp	His	Pro	Ser	Val 60	Ala	Val	Gly	Ile
Arg 65	Arg	Val	Ser	Asn	Val 70	Ser	Ala	Ala	Ser	Leu 75	Val	Pro	Ala	Val	Pro 80
Gln	Pro	Glu	Ala	Asp 85	Asn	Leu	Thr	Leu	Arg 90	Tyr	Arg	Ser	Leu	Val 95	Tyr
Gln	Leu	Asn	Phe 100	Asp	Gln	Thr	Leu	Arg 105	Asn	Val	Asp	Lys	Ala 110	Gly	Thr
Trp	Ala	Pro 115	Arg	Glu	Leu	Val	Leu 120	Val	Val	Gln	Val	His 125	Asn	Arg	Pro
	Tyr 130		Arg	Leu	Leu	Leu 135	_	Ser	Leu	_	Lys 140		Gln	Gly	Ile
Asp 145	Asn	Val	Leu	Val	Ile 150	Phe	Ser	His	Asp	Phe 155	Trp	Ser	Thr	Glu	Ile 160
Asn	Gln	Leu	Ile	Ala 165	Gly	Val	Asn	Phe	Cys 170	Pro	Val	Leu	Gln	Val 175	Phe
Phe	Pro	Phe	Ser 180	Ile	Gln	Leu	Tyr	Pro 185	Asn	Glu	Phe	Pro	Gly 190	Ser	Asp

Pro	Arg	Asp 195	Cys	Pro	Arg	Asp	Leu 200	Pro	Lys	Asn	Ala	Ala 205	Leu	Lys	Leu
Gly	Cys 210	Ile	Asn	Ala	Glu	Tyr 215	Pro	Asp	Ser	Phe	Gly 220	His	Tyr	Arg	Glu
Ala 225	Lys	Phe	Ser	Gln	Thr 230	Lys	His	His	Trp	Trp 235	Trp	Lys	Leu	His	Phe 240
Val	Trp	Glu	Arg	Val 245	Lys	Ile	Leu	Arg	Asp 250	Tyr	Ala	Gly	Leu	Ile 255	Leu
Phe	Leu	Glu	Glu 260	Asp	His	Tyr	Leu	Ala 265	Pro	Asp	Phe	Tyr	His 270	Val	Phe
Lys	Lys	Met 275	Trp	Lys	Leu	Lys	Gln 280	Gln	Glu	Cys	Pro	Glu 285	Cys	Asp	Val
Leu	Ser 290	Leu	Gly	Thr	Tyr	Ser 295	Ala	Ser	Arg	Ser	Phe 300	Tyr	Gly	Met	Ala
Asp 305	Lys	Val	Asp	Val	Lys 310	Thr	Trp	Lys	Ser	Thr 315	Glu	His	Asn	Met	Gly 320
Leu	Ala	Leu	Thr	Arg 325	Asn	Ala	Tyr	Gln	Lys 330	Leu	Ile	Glu	Cys	Thr 335	Asp
Thr	Phe	Cys	Thr 340	Tyr	Asp	Asp	Tyr	Asn 345	Trp	Asp	Trp	Thr	Leu 350	Gln	Tyr
Leu	Thr	Val 355	Ser	Cys	Leu	Pro	Lys 360	Phe	Trp	Lys	Val	Leu 365	Val	Pro	Gln
Ile	Pro 370	Arg	Ile	Phe	His	Ala 375	Gly	Asp	Cys	Gly	Met 380	His	His	Lys	Lys
Thr 385	Cys	Arg	Pro	Ser	Thr 390	Gln	Ser	Ala	Gln	Ile 395	Glu	Ser	Leu	Leu	Asn 400
Asn	Asn	Lys	Gln	Tyr 405	Met	Phe	Pro	Glu	Thr 410	Leu	Thr	Ile	Ser	Glu 415	Lys
Phe	Thr	Val	Val 420	Ala	Ile	Ser	Pro	Pro 425	Arg	Lys	Asn	Gly	Gly 430	Trp	Gly
Asp	Ile	Arg 435	Asp	His	Glu	Leu	Cys 440	Lys	Ser	Tyr	Arg	Arg 445	Leu	Gln	

5	<210> 4 <211> 8 <212> F <213> 7	S5 PRT	erma re	esei												
	<400> 4	10														
	Met 1	Ala	Ser	Thr	Asn 5	Ala	Arg	Tyr	Val	Arg 10	Tyr	Leu	Leu	Ile	Ala 15	Phe
	Phe	Thr	Ile	Leu 20	Val	Phe	Tyr	Phe	Val 25	Ser	Asn	Ser	Lys	Tyr 30	Glu	Gly
	Val	Asp	Leu 35	Asn	Lys	Gly	Thr	Phe 40	Thr	Ala	Pro	Asp	Ser 45	Thr	Lys	Thr
	Thr	Pro 50	Lys	Pro	Pro	Ala	Thr 55	Gly	Asp	Ala	Lys	Asp 60	Phe	Pro	Leu	Ala
	Leu 65	Thr	Pro	Asn	Asp	Pro 70	Gly	Phe	Asn	Asp	Leu 75	Val	Gly	Ile	Ala	Pro 80
40	Gly	Pro	Arg	Met	Asn 85											
10	<210> 4 <211> 2 <212> A <213> 7	255 ADN	erma re	esei												
15	<400> 4	1														
	atgg	cgtca	a caa	atgo	gcg c	tatg	tgcgc	tato	ctact	aa to	gcct	tctt	cacaa	atcct	С	60
	gtct	tctac	t tto	gtata	caa t	tcaa	agtat	gago	ggcgt	cg at	ctca	acaa	gggca	acctt	С	120
	acago	ctccg	g att	cgac	caa g	acga	cacca	aago	ccgcc	ag co	actg	gcga	tgcca	aaaga	С	180
	tttc	ctctg	g ccc	ctgac	gcc g	gaacga	atcca	ggct	tcaa	cg ac	ctcg	tcgg	catco	gctcc	С	240
	ggcc	ctcga	a tga	ac												255
20	<210> 4 <211> 5 <212> F <213> F	58 PRT	apiens													
25	<400> 4	12														

Met Arg Phe Arg Ile Tyr Lys Arg Lys Val Leu Ile Leu Thr Leu Val 10 Val Ala Ala Cys Gly Phe Val Leu Trp Ser Ser Asn Gly Arg Gln Arg 20 25 30 Lys Asn Glu Ala Leu Ala Pro Pro Leu Leu Asp Ala Glu Pro Ala Arg 40 Gly Ala Gly Gly Arg Gly Gly Asp His Pro 50 55 <210> 43 <211> 51 <212> PRT <213> Trichoderma reesei <400> 43 Met Ala Ser Thr Asn Ala Arg Tyr Val Arg Tyr Leu Leu Ile Ala Phe 10

Phe Thr Ile Leu Val Phe Tyr Phe Val Ser Asn Ser Lys Tyr Glu Gly 20 25 30

Val Asp Leu Asn Lys Gly Thr Phe Thr Ala Pro Asp Ser Thr Lys Thr 35 40 45

Thr Pro Lys 50

10

15

5

<210> 44 <211> 52

<212> PRT

<213> Trichoderma reesei

<400> 44

Met Ala Ile Ala Arg Pro Val Arg Ala Leu Gly Gly Leu Ala Ala Ile Leu Trp Cys Phe Phe Leu Tyr Gln Leu Leu Arg Pro Ser Ser Ser Tyr 20 25 30 Asn Ser Pro Gly Asp Arg Tyr Ile Asn Phe Glu Arg Asp Pro Asn Leu 40 35 45 Asp Pro Thr Gly 50 <210> 45 <211> 33 <212> PRT <213> Trichoderma reesei <400> 45 Met Leu Asn Pro Arg Arg Ala Leu Ile Ala Ala Ala Phe Ile Leu Thr 1 5 10 15 Val Phe Phe Leu Ile Ser Arg Ser His Asn Ser Glu Ser Ala Ser Thr 20 25 30 Ser <210>46 <211> 84 <212> PRT <213> Trichoderma reesei <400> 46

5

10

15

Met Met Pro Arg His His Ser Ser Gly Phe Ser Asn Gly Tyr Pro Arg 10 Ala Asp Thr Phe Glu Ile Ser Pro His Arg Phe Gln Pro Arg Ala Thr 20 25 30 Leu Pro Pro His Arg Lys Arg Lys Arg Thr Ala Ile Arg Val Gly Ile 35 40 45 Ala Val Val Ile Leu Val Leu Val Leu Trp Phe Gly Gln Pro Arg 50 55 60 Ser Val Ala Ser Leu Ile Ser Leu Gly Ile Leu Ser Gly Tyr Asp Asp 70 65 75 80 Leu Lys Leu Glu

<210> 47 <211> 55

5

<212> PRT

<213> Trichoderma reesei

<400> 47

Met Leu Leu Pro Lys Gly Gly Leu Asp Trp Arg Ser Ala Arg Ala Gln 1 5 10 15

Ile Pro Pro Thr Arg Ala Leu Trp Asn Ala Val Thr Arg Thr Arg Phe 20 25 30

Ile Leu Leu Val Gly Ile Thr Gly Leu Ile Leu Leu Trp Arg Gly 35 40 45

Val Ser Thr Ser Ala Ser Glu 50 55

<210> 48

10

<211>69

<212> ADN

15 <213> Secuencia Artificial

<220>

<223> Cebador

20 <400> 48

	cgattaagtt gggtaacgcc agggttttcc cagtcacgac ggtttaaac	g ctgcagggcg	60
	tacagaact		69
5	<210> 49 <211> 69 <212> ADN <213> Secuencia Artificial		
	<220> <223> Cebador		
10	<400> 49		
	atctctcaaa ggaagaatcc cttcagggtt gcgtttccag tgcggccgc	g gctctaaaat	60
	gcttcacag		69
15	<210> 50 <211> 68 <212> ADN <213> Secuencia Artificial		
20	<220> <223> Cebador		
	<400> 50		
	cggttctcat ctgggcttgc tcggtcctgg cgtagatcta gcggccgca	c gatgatgatg	60
25	acagccag		68
30	<210> 51 <211> 69 <212> ADN <213> Secuencia Artificial		
	<220> <223> Cebador		
35	<400> 51		
	gtggaattgt gagcggataa caatttcaca caggaaacag cgtttaaac	c gtccagctcc	60
	cgcagcgcc		69
40	<210> 52 <211> 84 <212> ADN <213> Secuencia Artificial		
45	<220> <223> Cebador		
	<400> 52		
	atcgctaact gctttctctt ctgtgaagca ttttagagcc gcggccgcg	g ccggccgcga	60
	tcgcctagat ctacgccagg accg		84
50	<210> 53		

	<211> 48 <212> ADN <213> Secuencia Artificial		
5	<220> <223> Cebador		
10	<400> 53 cggtcctggc gtagatctag ggcgcgccac tggaaac <210> 54	egca accetgaa 48	
45	<211> 48 <212> ADN <213> Secuencia Artificial		
15	<220> <223> Cebador		
20	<400> 54 ttcagggttg cgtttccagt ggcgcgccct agatctacg	c caggaccg 48	
25	<210> 55 <211> 68 <212> ADN <213> Secuencia Artificial		
	<220> <223> Cebador		
30	<400> 55		
	agcatcatga ccgccccctt ctggctq	gtca tcatcatcgt gcggccgcga ttattgcaca 6	60
	agcagcga	•	68
35	<210> 56 <211> 20 <212> ADN		
	<213> Secuencia Artificial		
40			
40	<213> Secuencia Artificial <220>		
40	<213> Secuencia Artificial <220> <223> Cebador <400> 56		
	<213> Secuencia Artificial <220> <223> Cebador <400> 56 tatggcttta gatggggaca 20 <210> 57 <211> 20 <212> ADN		
4 5	<213> Secuencia Artificial <220> <223> Cebador <400> 56 tatggcttta gatggggaca 20 <210> 57 <211> 20 <212> ADN <213> Secuencia Artificial <220>		
45	<213> Secuencia Artificial <220> <223> Cebador <400> 56 tatggcttta gatggggaca 20 <210> 57 <211> 20 <212> ADN <213> Secuencia Artificial <220> <223> Cebador <400> 57		

5	<400> 58 ttaggcgacc tctttttcca	20
	<210> 59 <211> 18 <212> ADN <213> Secuencia Artificial	
10	<220> <223> Cebador	
15	<400> 59 cctgtatcgt cctgttcc	18
20	<210> 60 <211> 20 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador	
25	<400> 60 gcgcctgtcg agtcggcatt	20
30	<210> 61 <211> 20 <212> ADN <213> Secuencia Artificial	
35	<220> <223> Cebador	
	<400> 61 caccggccat gctcttgcca	20
40	<210> 62 <211> 18 <212> ADN <213> Secuencia Artificial	
45	<220> <223> Cebador	
	<400> 62 caaggtgccc tatgtcgc	18
50	<210> 63 <211> 18 <212> ADN <213> Secuencia Artificial	
55	<220> <223> Cebador	
60	<400> 63 gatcgggtca ggacggaa	18
60	<210> 64 <211> 18 <212> ADN	

<223> Cebador

	<213> Secuencia Artificial	
E	<220> <223> Cebador	
5	<400> 64 agcctgtctg agggacgg	18
10	<210> 65 <211> 18 <212> ADN <213> Secuencia Artificial	
15	<220> <223> Cebador	
	<400> 65 caaggtcgag attcggca	18
20	<210> 66 <211> 17 <212> ADN <213> Secuencia Artificial	
25	<220> <223> Cebador	
20	<400> 66 cagaaggggg cggtcat	17
30	<210> 67 <211> 17 <212> ADN <213> Secuencia Artificial	
35	<220> <223> Cebador	
40	<400> 67 gtcccagctc ccgctct	17
45	<210> 68 <211> 20 <212> ADN <213> Secuencia Artificial	
50	<220> <223> Cebador <400> 68 gcgcctgtcg agtcggcatt	20
55	<210> 69 <211> 20 <212> ADN <213> Secuencia Artificial	
55	<220> <223> Cebador	
60	<400> 69 caccggccat gctcttgcca	20
	<210> 70	

5	<211> 69 <212> ADN <213> Secuencia Artificial <220> <223> Cebador	
	<400> 70	
	cgattaagtt gggtaacgcc agggttttcc cagtcacgac ggtttaaacg tttcaggtac	60
	caacacctg	69
10	<210> 71 <211> 69 <212> ADN <213> Secuencia Artificial	
15	<220> <223> Cebador	
20	<400> 71	
	atctctcaaa ggaagaatcc cttcagggtt gcgtttccag tgcggccgcg gcgaagagtc	60
	tggcgggga	69
25	<210> 72 <211> 68 <212> ADN <213> Secuencia Artificial	
30	<220> <223> Cebador	
00	<400> 72	
	cggttctcat ctgggcttgc tcggtcctgg cgtagatcta gcggccgcaa gaggatgggg	60
	gtaaagct	68
35	<210> 73 <211> 69 <212> ADN <213> Secuencia Artificial	
40	<220> <223> Cebador	
	<400> 73	
	gtggaattgt gagcggataa caatttcaca caggaaacag cgtttaaacg aggaggactc	60
45	gtgagttat	69
	<210> 74 <211> 84 <212> ADN	
50	<213> Secuencia Artificial	
	<220> <223> Cehador	

	<400> 74	
	gegeeettee geetegacaa teecegeeag actettegee geggeegegg eeggeegega	60
	tcgcctagat ctacgccagg accg	84
5	<210> 75 <211> 48 <212> ADN <213> Secuencia Artificial	
10	<220> <223> Cebador	
15	<400> 75 cggtcctggc gtagatctag ggcgcgccac tggaaacgca accctgaa 48	
20	<210> 76 <211> 48 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador	
25	<400> 76 ttcagggttg cgtttccagt ggcgcgccct agatctacgc caggaccg 48	
30	<210> 77 <211> 68 <212> ADN <213> Secuencia Artificial	
35	<220> <223> Cebador <400> 77	
	gagctggcca gaaaagacca agctttaccc ccatcctctt gcggccgcga ttattgcaca	60
	agcagcga	68
40	<210> 78 <211> 20 <212> ADN <213> Secuencia Artificial	
45	<220> <223> Cebador	
50	<400> 78 acgagttgtt tcgtgtaccg 20 <210> 79	
	<211> 21 <212> ADN <213> Secuencia Artificial	
55	<220><223> Cebador	

	<400> 79 ctttccattc atcagggatg g	21
5	<210> 80 <211> 20 <212> ADN <213> Secuencia Artificial	
10	<220> <223> Cebador	
	<400> 80 ggagactcag tgaagagagg	20
15	<210> 81 <211> 18 <212> ADN <213> Secuencia Artificial	
20	<220> <223> Cebador	
0.5	<400> 81 atgttgcagt tgcgaaag	18
25	<210> 82 <211> 20 <212> ADN	
30	<213> Secuencia Artificial <220> <223> Cebador	
35	<400> 82 ccctcgtcgc agaaaagatg	20
40	<210> 83 <211> 20 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador	
45	<400> 83 agcctccttg ggaacctcag	20
50	<210> 84 <211> 20 <212> ADN <213> Secuencia Artificial	
55	<220> <223> Cebador	
	<400> 84 cttagtgcgg ctggagggcg	20
60	<210> 85 <211> 20 <212> ADN <213> Secuencia Artificial	
	<220>	

	<223> Cebador	
	<400> 85 ggccggttcg tgcaactgga	20
5	<210> 86 <211> 20 <212> ADN <213> Secuencia Artificial	
10	<220> <223> Cebador	
15	<400> 86 ggccgcaaga ggatgggggt	20
20	<210> 87 <211> 21 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador	
25	<400> 87 tcgggccagc tgaagcacaa c	21
30	<210> 88 <211> 20 <212> ADN <213> Secuencia Artificial	
35	<220> <223> Cebador	
	<400> 88 ttgaggaacg gctgcctgcg	20
40	<210> 89 <211> 20 <212> ADN <213> Secuencia Artificial	
45	<220> <223> Cebador	
	<400> 89 cgatggctcc gtcatccgcc	20
50	<210> 90 <211> 20 <212> ADN <213> Secuencia Artificial	
55	<220> <223> Cebador	
60	<400> 90 acgagttgtt tcgtgtaccg	20
	<210> 91 <211> 20 <212> ADN <213> Secuencia Artificial	

	<220> <223> Cebador	
5	<400> 91 tgcgtcgccg tctcgctcct	20
10	<210> 92 <211> 20 <212> ADN <213> Secuencia Artificial	
45	<220> <223> Cebador	
15	<400> 92 ttaggcgacc tctttttcca	20
20	<210> 93 <211> 18 <212> ADN <213> Secuencia Artificial	
25	<220> <223> Cebador	
	<400> 93 atgttgcagt tgcgaaag	18
30	<210> 94 <211> 20 <212> ADN <213> Secuencia Artificial	
35	<220> <223> Cebador	
40	<400> 94 ccctcgtcgc agaaaagatg <210> 95	20
	<211> 20 <211> 20 <212> ADN <213> Secuencia Artificial	
45	<220> <223> Cebador	
50	<400> 95 agcctccttg ggaacctcag	20
55	<210> 96 <211> 20 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador	
60	<400> 96 cttagtgcgg ctggagggcg	20
	<210> 97 <211> 20	

	<212> ADN <213> Secuencia Artificial	
5	<220> <223> Cebador	
	<400> 97 ggccggttcg tgcaactgga	20
10	<210> 98 <211> 20 <212> ADN <213> Secuencia Artificial	
15	<220> <223> Cebador	
	<400> 98 ggccgcaaga ggatgggggt	20
20	<210> 99 <211> 21 <212> ADN <213> Secuencia Artificial	
25	<220> <223> Cebador	
30	<400> 99 tcgggccagc tgaagcacaa c	21
35	<210> 100 <211> 20 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador	
40	<400> 100 ccctcgtcgc agaaaagatg	20
45	<210> 101 <211> 20 <212> ADN <213> Secuencia Artificial	
50	<220> <223> Cebador	
30	<400> 101 agcctccttg ggaacctcag	20
55	<210> 102 <211> 69 <212> ADN <213> Secuencia Artificial	
60	<220> <223> Cebador	
	<400> 102	

	cgattaagtt gggt	taacgcc	agggttttcc	cagtcacgac	ggtttaaacg	tgtttaaatt	60
	tgatgaggc						69
5	<210> 103 <211> 69 <212> ADN <213> Secuencia Artific	cial					
10	<220> <223> Cebador						
	<400> 103						
	atctctcaaa ggaa	agaatcc	cttcagggtt	gcgtttccag	tgcggccgcg	gtctcagaga	60
	cagccttct						69
15	<210> 104 <211> 68 <212> ADN <213> Secuencia Artific	cial					
20	<220> <223> Cebador						
	<400> 104						
	cggttctcat ctgg	ggcttgc	tcggtcctgg	cgtagatcta	gcggccgcac	teggettett	60
25	tgtccgag						68
30	<210> 105 <211> 69 <212> ADN <213> Secuencia Artific	cial					
	<220> <223> Cebador						
35	<400> 105						
	gtggaattgt gag	cggataa	caatttcaca	caggaaacag	cgtttaaact	cctcgtcggc	60
	aacaaggcc						69
40	<210> 106 <211> 84 <212> ADN <213> Secuencia Artific	cial					
45	<220> <223> Cebador						
	<400> 106						
	gcagatctgg ggg	aggaatc	agaaggctgt	ctctgagacc	gcggccgcgg	ccggccgcga	60
	tcgcctagat cta	cgccagg	accg				84
50	<210> 107						

	<211> 48 <212> ADN <213> Secuencia Artificial							
5	<220> <223> Cebador							
10	<400> 107 cggtcctggc gtagatctag ggcgcgccac tggaaacgca accctgaa 48 <210> 108							
15	<211> 48 <212> ADN <213> Secuencia Artificial							
	<220> <223> Cebador							
20	<400> 108 ttcagggttg cgtttccagt ggcgcgccct agatctacgc caggaccg 48							
	<210> 109 <211> 68 <212> ADN							
25	<213> Secuencia Artificial <220> <223> Cebador							
30	<400> 109							
	aaagtgggcg agctgagata ctcggacaaa gaagccgagt gcggccgcga ttattgcaca	60						
	agcagcga	68						
35	<210> 110 <211> 18 <212> ADN <213> Secuencia Artificial							
40	<220> <223> Cebador							
45	<400> acgggagatc tcggaaaa 18 110							
	<210> 111 <211> 21 <212> ADN <213> Secuencia Artificial							
50	<220> <223> Cebador							
55	<400> ctttccattc atcagggatg g 21	1						
60	<210> 112 <211> 20 <212> ADN							

	<213> Secuencia Artificial	
5	<220> <223> Cebador	
3	<400> 112 ggagactcag tgaagagagg	20
10	<210> 113 <211> 18 <212> ADN <213> Secuencia Artificial	
15	<220> <223> Cebador	
	<400> 113 atgaagetea geetgtgg	18
20	<210> 114 <211> 18 <212> ADN <213> Secuencia Artificial	
25	<220> <223> Cebador	
30	<400> 114 ggggacggct tgaggaag	18
	<210> 115 <211> 20 <212> ADN <213> Secuencia Artificial	
35	<220> <223> Cebador	
40	<400> 115 ctgcttgctg cttccagtca	20
45	<210> 116 <211> 20 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador	
50	<400> 116 tggcagatgc cgaaaggcgg	20
55	<210> 117 <211> 20 <212> ADN <213> Secuencia Artificial	
60	<220> <223> Cebador	
	<400> 117	20

5	<210> 118 <211> 20 <212> ADN <213> Secuencia Artificial <220> <223> Cebador	
10	<400> 118 cggccgcact cggcttcttt	20
15	<210> 119 <211> 20 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador	
20	<400> 119 gagtgggcta ggcgcaacgg	20
25	<210> 120 <211> 20 <212> ADN <213> Secuencia Artificial	
00	<220> <223> Cebador	
30	<400> 120 ggatcggcca ctgccaccac	20
35	<210> 121 <211> 20 <212> ADN <213> Secuencia Artificial	
40	<220> <223> Cebador	
	<400> 121 gcccacttct ctgcgcgtgt	20
45	<210> 122 <211> 18 <212> ADN <213> Secuencia Artificial	
50	<220> <223> Cebador	
	<400> 122 acgggagatc tcggaaaa	18
55	<210> 123 <211> 20 <212> ADN <213> Secuencia Artificial	
60	<220> <223> Cebador	
	<400> 123	

	ccatgagctt gaacaggtaa	20
5	<210> 124 <211> 20 <212> ADN <213> Secuencia Artificial	
10	<220> <223> Cebador	
10	<400> 124 ttaggcgacc tctttttcca	20
15	<210> 125 <211> 18 <212> ADN <213> Secuencia Artificial	
20	<220> <223> Cebador	
	<400> 125 atgaagctca gcctgtgg	18
25	<210> 126 <211> 20 <212> ADN <213> Secuencia Artificial	
30	<220> <223> Cebador	
0.5	<400> 126 ggatcggcca ctgccaccac	20
35	<210> 127 <211> 20 <212> ADN <213> Secuencia Artificial	
40	<220> <223> Cebador	
45	<400> 127 gcccacttct ctgcgcgtgt	20
50	<210> 128 <211> 20 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador	
55	<400> 128 tggcagatgc cgaaaggcgg	20
60	<210> 129 <211> 20 <212> ADN <213> Secuencia Artificial	
	<220> <223> Cebador	

	<400> 129 tggcaaccag ctgtggctcc	20)
5	<210> 130 <211> 20 <212> ADN <213> Secuencia Artificial		
10	<220> <223> Cebador		
15	<400> 130 cggccgcact cggcttcttt	20	
	<210> 131 <211> 20 <212> ADN <213> Secuencia Artificial		
20	<220> <223> Cebador		
25	<400> 131 gagtgggcta ggcgcaacgg	:	20
30	<210> 132 <211> 17 <212> ADN <213> Secuencia Artificial		
	<220> <223> Cebador		
35	<400> 132 ctctgcgcgt gttgtgg 17		
40	<210> 133 <211> 17 <212> ADN <213> Secuencia Artificial		
45	<220> <223> Cebador		
10	<400> 133 taagggtgcg gattcgg 13	7	
50	<210> 134 <211> 488 <212> PRT <213> <i>Trichoderma reesei</i> <400> 134		

Met 1	Arg	Ala	Ser	Pro 5	Leu	Ala	Val	Ala	Gly 10	Val	Ala	Leu	Ala	Ser 15	Ala
Ala	Gln	Ala	Gln 20	Val	Val	Gln	Phe	Asp 25	Ile	Glu	Lys	Arg	His 30	Ala	Pro
Arg	Leu	Ser 35	Arg	Arg	Asp	Gly	Thr 40	Ile	Asp	Gly	Thr	Leu 45	Ser	Asn	Gln
Arg	Val 50	Gln	Gly	Gly	Tyr	Phe 55	Ile	Asn	Val	Gln	Val 60	Gly	Ser	Pro	Gly
Gln 65	Asn	Ile	Thr	Leu	Gln 70	Leu	Asp	Thr	Gly	Ser 75	Ser	Asp	Val	Trp	Val 80
Pro	Ser	Ser	Thr	Ala 85	Ala	Ile	Суз	Thr	Gln 90	Val	Ser	Glu	Arg	Asn 95	Pro
Gly	Cys	Gln	Phe 100	Gly	Ser	Phe	Asn	Pro 105	Asp	Asp	Ser	Asp	Thr 110	Phe	Asp
Glu	Val	Gly 115	Gln	Gly	Leu	Phe	Asp 120	Ile	Thr	Tyr	Val	Asp 125	Gly	Ser	Ser
Ser	Lys 130	Gly	Asp	Tyr	Phe	Gln 135	Asp	Asn	Phe	Gln	Ile 140	Asn	Gly	Val	Thr
Val 145	_	Asn			Met 150	_	Leu	_	Leu			Ser	Ile	Pro	Asn 160
Gly	Leu	Ile	Gly	Val 165	Gly	Tyr	Met	Asn	Asp 170	Glu	Ala	Ser	Val	Ser 175	Thr
Thr	Arg	Ser	Thr 180	Tyr	Pro	Asn	Leu	Pro 185	Ile	Val	Leu	Gln	Gln 190	Gln	Lys
Leu	Ile	Asn 195	Ser	Val	Ala	Phe	Ser 200	Leu	Trp	Leu	Asn	Asp 205	Leu	Asp	Ala
Ser	Thr 210	Gly	Ser	Ile	Leu	Phe 215	Gly	Gly	Ile	Asp	Thr 220	Glu	Lys	Tyr	His
Gly	Asp	Leu	Thr	Ser	Ile	Asp	Ile	Ile	Ser	Pro	Asn	Gly	Gly	Lys	Thr

225					230					235					240
Phe	Thr	Glu	Phe	Ala 245	Val	Asn	Leu	Tyr	Ser 250	Val	Gln	Ala	Thr	Ser 255	Pro
Ser	Gly	Thr	Asp 260	Thr	Leu	Ser	Thr	Ser 265	Glu	Asp	Thr	Leu	Ile 270	Ala	Val
Leu	Asp	Ser 275	Gly	Thr	Thr	Leu	Thr 280	Tyr	Leu	Pro	Gln	Asp 285	Met	Ala	Glu
Glu	Ala 290	Trp	Asn	Glu	Val	Gly 295	Ala	Glu	Tyr	Ser	Asn 300	Glu	Leu	Gly	Leu
Ala 305	Val	Val	Pro	Cys	Ser 310	Val	Gly	Asn	Thr	Asn 315	Gly	Phe	Phe	Ser	Phe 320
Thr	Phe	Ala	Gly	Thr 325	Asp	Gly	Pro	Thr	Ile 330	Asn	Val	Thr	Leu	Ser 335	Glu
Leu	Val	Leu	Asp 340	Leu	Phe	Ser	Gly	Gly 345	Pro	Ala	Pro	Arg	Phe 350	Ser	Ser
Gly	Pro	Asn 355	Lys	Gly	Gln	Ser	Ile 360	Cys	Glu	Phe	Gly	Ile 365	Gln	Asn	Gly
Thr	Gly 370	Ser	Pro	Phe	Leu	Leu 375	Gly	Asp	Thr	Phe	Leu 380	Arg	Ser	Ala	Phe
Val 385	Val	Tyr	Asp	Leu	Val 390	Asn	Asn	Gln	Ile	Ala 395	Ile	Ala	Pro	Thr	Asn 400
Phe	Asn	Ser	Thr	Arg 405	Thr	Asn	Val	Val	Ala 410	Phe	Ala	Ser	Ser	Gly 415	Ala
Pro	Ile	Pro	Ser 420	Ala	Thr	Ala	Ala	Pro 425	Asn	Gln	Ser	Arg	Thr 430	Gly	His
Ser	Ser	Ser 435	Thr	His	Ser	Gly	Leu 440	Ser	Ala	Ala	Ser	Gly 445	Phe	His	Asp
Gly	Asp 450	Asp	Glu	Asn	Ala	Gly 455	Ser	Leu	Thr	Ser	Val 460	Phe	Ser	Gly	Pro
Gly 465	Met	Ala	Val	Val	Gly 470	Met	Thr	Ile	Cys	Tyr 475	Thr	Leu	Leu	Gly	Ser 480

Ala Ile Phe Gly Ile Gly Trp Leu

5

<210> 135 <211> 761 <212> PRT <213> *Trichoderma reesei*

<400> 135

Met 1	Arg	Ser	Thr	Leu 5	Tyr	Gly	Leu	Ala	Ala 10	Leu	Pro	Leu	Ala	Ala 15	Gln
Ala	Leu	Glu	Phe 20	Ile	Asp	Asp	Thr	Val 25	Ala	Gln	Gln	Asn	Gly 30	Ile	Met
Arg	Tyr	Thr 35	Leu	Thr	Thr	Thr	Lys 40	Gly	Ala	Thr	Ser	Lys 45	His	Leu	His
Arg	Arg 50	Gln	Asp	Ser	Ala	Asp 55	Leu	Met	Ser	Gln	Gln 60	Thr	Gly	Tyr	Phe
Tyr 65	Ser	Ile	Gln	Leu	Glu 70	Ile	Gly	Thr	Pro	Pro 75	Gln	Ala	Val	Ser	Val 80
Asn	Phe	Asp	Thr	Gly 85	Ser	Ser	Glu	Leu	Trp 90	Val	Asn	Pro	Val	Cys 95	Ser
Lys	Ala	Thr	Asp 100	Pro	Ala	Phe	Cys	Lys 105	Thr	Phe	Gly	Gln	Tyr 110	Asn	His
Ser	Thr	Thr 115	Phe	Val	Asp	Ala	Lys 120	Ala	Pro	Gly	Gly	Ile 125	Lys	Tyr	Gly
Thr	Gly 130	Phe	Val	Asp	Phe	Asn 135	Tyr	Gly	Tyr	Asp	Tyr 140	Val	Gln	Leu	Gly
Ser 145	Leu	Arg	Ile	Asn	Gln 150	Gln	Val	Phe	Gly	Val 155	Ala	Thr	Asp	Ser	Glu 160
Phe	Ala	Ser	Val	Gly 165	Ile	Leu	Gly	Ala	Gly 170	Pro	Asp	Leu	Ser	Gly 175	Trp
Thr	Ser	Pro	Tyr 180	Pro	Phe	Val	Ile	Asp 185	Asn	Leu	Val	Lys	Gln 190	Gly	Phe
Ile	Lys	Ser 195	Arg	Ala	Phe	Ser	Leu 200	Asp	Ile	Arg	Gly	Leu 205	Asp	Ser	Asp

Arg	Gly 210	Ser	Val	Thr	Tyr	Gly 215	Gly	Ile	Asp	Ile	Lys 220	Lys	Phe	Ser	Gly
Pro 225	Leu	Ala	Lys	Lys	Pro 230	Ile	Ile	Pro	Ala	Ala 235	Gln	Ser	Pro	Asp	Gly 240
Tyr	Thr	Arg	Tyr	Trp 245	Val	His	Met	Asp	Gly 250	Met	Ser	Ile	Thr	Lys 255	Glu
Asp	Gly	Ser	Lys 260	Phe	Glu	Ile	Phe	Asp 265	Lys	Pro	Asn	Gly	Gln 270	Pro	Val
Leu	Leu	Asp 275	Ser	Gly	Tyr	Thr	Val 280	Ser	Thr	Leu	Pro	Gly 285	Pro	Leu	Met
Asp	Lys 290	Ile	Leu	Glu	Ala	Phe 295	Pro	Ser	Ala	Arg	Leu 300	Glu	Ser	Thr	Ser
Gly 305	Asp	Tyr	Ile	Val	Asp 310	Cys	Asp	Ile	Ile	Asp 315	Thr	Pro	Gly	Arg	Val 320
Asn	Phe	Lys	Phe	Gly 325	Asn	Val	Val	Val	Asp 330	Val	Glu	Tyr	Lys	Asp 335	Phe
Ile	Trp	Gln	Gln 340	Pro	Asp	Leu	Gly	Ile 345	Cys	Lys	Leu	Gly	Val 350	Ser	Gln
Asp	Asp	Asn 355	Phe	Pro	Val	Leu	Gly 360	Asp	Thr	Phe	Leu	Arg 365	Ala	Ala	Tyr
Val	Val 370	Phe	Asp	Trp	Asp	Asn 375	Gln	Glu	Val	His	Ile 380	Ala	Ala	Asn	Glu
Asp 385	Cys	Gly	Asp	Glu	Leu 390	Ile	Pro	Ile	Gly	Ser 395	Gly	Pro	Asp	Ala	Ile 400
Pro	Ala	Ser	Ala	Ile 405	Gly	Lys	Cys	Ser	Pro 410	Ser	Val	Lys	Thr	Asp 415	Thr
Thr	Thr	Ser	Val 420	Ala	Glu	Thr	Thr	Ala 425	Thr	Ser	Ala	Ala	Ala 430	Ser	Thr
Ser	Glu	Leu 435	Ala	Ala	Thr	Thr	Ser 440	Glu	Ala	Ala	Thr	Thr 445	Ser	Ser	Glu
Ala	Ala 450	Thr	Thr	Ser	Ala	Ala 455	Ala	Glu	Thr	Thr	Ser 460	Val	Pro	Leu	Asn

Thr 465	Ala	Pro	Ala	Thr	Thr 470	Gly	Leu	Leu	Pro	Thr 475	Thr	Ser	His	Arg	Phe 480
Ser	Asn	Gly	Thr	Ala 485	Pro	Tyr	Pro	Ile	Pro 490	Ser	Leu	Ser	Ser	Val 495	Ala
Ala	Ala	Ala	Gly 500	Ser	Ser	Thr	Val	Pro 505	Ser	Glu	Ser	Ser	Thr 510	Gly	Ala
Ala	Ala	Ala 515	Gly	Thr	Thr	Ser	Ala 520	Ala	Thr	Gly	Ser	Gly 525	Ser	Gly	Ser
Gly	Ser 530	Gly	Asp	Ala	Thr	Thr 535	Ala	Ser	Ala	Thr	Tyr 540	Thr	Ser	Thr	Phe
Thr 545	Thr	Thr	Asn	Val	Tyr 550	Thr	Val	Thr	Ser	Cys 555	Pro	Pro	Ser	Val	Thr 560
Asn	Cys	Pro	Val	Gly 565	His	Val	Thr	Thr	Glu 570	Val	Val	Val	Ala	Tyr 575	Thr
Thr	Trp	Cys	Pro 580	Val	Glu	Asn	Gly	Pro 585	His	Pro	Thr	Ala	Pro 590	Pro	Lys
Pro	Ala	Ala 595	Pro	Glu	Ile	Thr	Ala 600	Thr	Phe	Thr	Leu	Pro 605	Asn	Thr	Tyr
Thr	Cys 610	Ser	Gln	Gly	Lys	Asn 615	Thr	Cys	Ser	Asn	Pro 620	Lys	Thr	Ala	Pro
Asn 625	Val	Ile	Val	Val	Thr 630	Pro	Ile	Val	Thr	Gln 635	Thr	Ala	Pro	Val	Val 640
Ile	Pro	Gly	Ile	Ala 645	Ala	Pro	Thr	Pro	Thr 650	Pro	Ser	Val	Ala	Ala 655	Ser
Ser	Pro	Ala	Ser 660	Pro	Ser	Val	Val	Pro 665	Ser	Pro	Thr	Ala	Pro 670	Val	Ala
Thr	Ser	Pro 675	Ala	Gln	Ser	Ala	Tyr 680	Tyr	Pro	Pro	Pro	Pro 685	Pro	Pro	Glu
His	Ala 690	Val	Ser	Thr	Pro	Val 695	Ala	Asn	Pro	Pro	Ala 700	Val	Thr	Pro	Ala
Pro 705	Ala	Pro	Phe	Pro	Ser 710	Gly	Gly	Leu	Thr	Thr 715	Val	Ile	Ala	Pro	Gly 720

Ser Thr Gly Val Pro Ser Gln Pro Ala Gln Ser Gly Leu Pro Pro Val 735

Pro Ala Gly Ala Ala Gly Phe Arg Ala Pro Ala Ala Val Ala Leu Leu 755

Ala Gly Ala Val Ala Ala Ala Leu 760

<210> 136

<211> 439

<212> PRT

<213> Neurospora crassa

<400> 136

Met 1	Val	Ala	Leu	Thr 5	Asn	Leu	Leu	Leu	Thr 10	Thr	Leu	Leu	Ala	Ser 15	Ala
Gly	Leu	Gly	Ala 20	Ala	Leu	Pro	Pro	Arg 25	Ile	Gly	Ser	Thr	Val 30	Ile	Glu
Ala	Arg	Glu 35	Pro	Glu	Leu	Pro	Val 40	Ser	Gly	Arg	Lys	Ile 45	Thr	Leu	Pro
Gln	Gln 50	Lys	Asn	Pro	Arg	Phe 55	His	Lys	Phe	Asn	Gly 60	Ala	Leu	Ser	Val
Tyr 65	Lys	Thr	Tyr	Leu	Lys 70	Tyr	Gly	Ala	Pro	Val 75	Pro	Asp	His	Leu	Val 80
Gln	Ala	Val	Ala	Asn 85	His	Leu	Gly	Ile	Ser 90	Val	Glu	Glu	Val	His 95	Asn
Tyr	Ala	Asn	Thr 100	Thr	Ala	Asn	Ala	Arg 105	Arg	Asp	Gln	Gly	Ser 110	Ala	Thr
Ala	Ala	Pro 115	Ile	Asp	Gln	Ser	Asp 120	Ser	Ala	Tyr	Ile	Thr 125	Pro	Val	Ser
	Gly 130		Pro	Ala		Thr 135		Asn	Leu	_	Phe 140	_	Thr	Gly	Ser
Ser 145	Asp	Leu	Trp	Val	Phe 150	Ser	Asn	Ser	Leu	Pro 155	Ser	Ser	Gln	Arg	Ala 160
Gly	His	Thr	Ile	Tyr 165	Asn	Pro	Ser	Lys	Ser 170	Ser	Thr	Ala	Lys	Arg 175	Val

Asn	Gly	Ala	Ser 180	Trp	Asp	Ile	Ser	Tyr 185	Gly	Asp	Gly	Ser	Ser 190	Ser	Lys
Gly	Gln	Val 195	Tyr	Leu	Asp	Lys	Val 200	Thr	Ile	Gly	Gly	Leu 205	Val	Val	Ser
Asn	Gln 210	Ala	Val	Glu	Thr	Ala 215	Gln	Gln	Val	Ser	Gln 220	Ser	Phe	Thr	Ala
Glu 225	Thr	Ser	Ile	Asp	Gly 230	Leu	Val	Gly	Leu	Ala 235	Phe	Gly	Ser	Leu	Asn 240
Thr	Val	Arg	Pro	Arg 245	Gln	Gln	Lys	Thr	Trp 250	Phe	Glu	Asn	Ala	Ile 255	Gly
Gln	Leu	Asp	Gln 260	Pro	Leu	Phe	Ala	Ala 265	Asp	Leu	Lys	Tyr	Glu 270	Ala	Ser
Gly	Thr	Tyr 275	Asp	Phe	Gly	Phe	Ile 280	Asp	Pro	Ala	Lys	His 285	Thr	Gly	Asp
	290					295					300		Thr		
Ser 305	Thr	Gly	Tyr	Gln	Val 310	Gly	Ser	Ser	Pro	Phe 315	Val	Ser	Gln	Ser	11e 320
				325					330				Pro	335	
			340					345		_			Asn 350		
		355					360					365	Pro		
	370					375					380		Gly		
385					390					395			Phe		400
				405					410				Asp	415	
Leu	гĀЗ	АТа	АТа	Tyr	val	val	Pne	тлг	GTĀ	GTA	Asp	ser	Pro	ser	Leu

420 425 430

Gly Trp Ala Ser Lys Gln Leu 435

<210> 137 <211> 417

5

<212> PRT <213> Myceliophthora thermophila

<400> 137

Met 1	His	Leu	Thr	Pro 5	Ala	Leu	Val	Ala	Ala 10	Thr	Cys	Ala	Val	Glu 15	Val
Cys	Ala	Gly	Val 20	Leu	Pro	Arg	Ser	Ser 25	Ser	Thr	Pro	Thr	Thr 30	Phe	Gly
Ser	Gly	Thr 35	Leu	Ser	Leu	Lys	Gln 40	Val	Arg	Asn	Pro	Asn 45	Phe	Val	Arg
Asn	Gly 50	Pro	Val	Gln	Leu	Ala 55	Arg	Ile	Tyr	His	Lys 60	Tyr	Gly	Val	Pro
Leu 65	Pro	His	Asp	Leu	Arg 70	Glu	Ala	Val	Ala	Arg 75	Phe	Arg	Ala	Glu	Ile 80
Arg	Lys	Arg	Ser	Asn 85	Gly	Ser	Thr	Glu	Thr 90	Asn	Pro	Glu	Thr	Asn 95	Asp
Val	Glu	Tyr	Leu 100	Thr	Pro	Val	Ser	Ile 105	Gly	Thr	Pro	Pro	Gln 110	Val	Leu
Asn	Leu	Asp 115	Phe	Asp	Thr	Gly	Ser 120	Ser	Asp	Leu	Trp	Val 125	Phe	Ser	Ser
Glu	Thr 130	Arg	Ser	Ser	Asp	Val 135		_	Gln		Ile 140	Tyr	Asp	Pro	Asn
Glu 145	Ser	Ser	Thr	Ala	Gln 150	Lys	Leu	Gln	Gly	Tyr 155	Ser	Trp	Gln	Ile	Ser 160
Tyr	Gly	Asp	Gly	Ser 165	Ser	Ser	Ser	Gly	Asp 170	Val	Tyr	Thr	Asp	Ala 175	Val
Thr	Val	Gly	Gly 180	Leu	Thr	Val	Pro	Ser 185	Gln	Ala	Val	Glu	Val 190	Ala	Arg
Arg	Val	Ser	Asp	Glu	Phe	Thr	Ser	Asp	Pro	Asn	Asn	Asp	Gly	Leu	Leu

		195					200					205			
Gly	Leu 210	Gly	Phe	Ser	Ser	Ile 215	Asn	Thr	Val	Gln	Pro 220	Val	Pro	Gln	Lys
Thr 225	Phe	Phe	Asp	Asn	Ala 230	Lys	Ala	Asp	Leu	Asp 235	Ala	Pro	Ile	Phe	Thr 240
Ala	Asp	Leu	Lys	Ala 245	Ser	Ala	Pro	Gly	Phe 250	Phe	Asn	Phe	Gly	Tyr 255	Ile
Asp	His	Gly	Ala 260	Tyr	Thr	Gly	Glu	Ile 265	Thr	Tyr	Met	Pro	Val 270	Asp	Ser
Ser	Asp	Gly 275	Phe	Trp	Ala	Trp	Thr 280	Ser	Pro	Gly	Tyr	Ala 285	Val	Gly	Ser
Gly	Ser 290	Phe	Lys	Arg	Thr	Thr 295	Ile	Gln	Gly	Ile	Ala 300	Asp	Thr	Gly	Thr
Ser 305	Leu	Phe	Leu	Leu	Pro 310	Ser	Ser	Val	Val	Ser 315	Ala	Tyr	Tyr	Gly	Gln 320
Ile	Ser	Gly	Ala	Lys 325	Tyr	Asp	Ser	Ile	Gln 330	Gly	Gly	Tyr	Thr	Leu 335	Pro
Cys	Ser	Gly	Ser 340	Val	Pro	Asp	Phe	Ala 345		Gly		Gly	Asp 350	Ser	Asn
Thr	Thr	Ile 355	Ser	Val	Pro	Gly	Asp 360	Tyr	Val	Arg	Tyr	Ala 365	Ala	Thr	Asp
Ser	Ser 370	Gly	Ile	Ile	Суз	Phe 375	Gly	Gly	Ile	Gln	Ala 380	Asn	Thr	Gly	Ile
Gly 385	Phe	Ser	Ile	Phe	Gly 390	Asp	Val	Ala	Leu	Lys 395	Ala	Ala	Phe	Val	Val 400
Phe	Asp	Gly	Ala	Lys 405	Gln	Gln	Leu	Gly	Trp 410	Ala	Ser	Lys	Pro	Leu 415	Pro

<210> 138 <211> 434 <212> PRT 5 <213> Neurospora crassa

<400> 138

Met 1	Leu	Leu	Phe	Pro 5	Thr	Ile	Leu	Thr	Ala 10	Ala	Leu	Ala	Ala	Thr 15	Gly
Met	Ala	Ala	Ala 20	Ile	Pro	Ser	Arg	Asp 25	Asp	Thr	Thr	Ala	Asn 30	Lys	Gly
Thr	Ala	Ser 35	Leu	Leu	Gln	Val	Arg 40	Asn	Pro	Ser	Phe	Glu 45	Phe	Arg	His
Gly	Pro 50	Leu	Ala	Leu	Ala	Lys 55	Ala	Tyr	Gln	Lys	Phe 60	Gly	Ala	Pro	Met
Pro 65	Glu	Asp	Leu	Arg	Ala 70	Ala	Ile	Ala	Arg	Phe 75	Arg	Gln	Asn	Gln	Lys 80
Arg	Thr	Thr	Gly	Thr 85	Ile	Ala	Thr	Asp	Pro 90	Glu	Lys	His	Asp	Val 95	Glu
Tyr	Leu	Thr	Pro 100	Ile	Ser	Val	Gly	Thr 105	Pro	Ser	Gln	Asp	Leu 110	Val	Val
Asp	Phe	Asp 115	Thr	Gly	Ser	Ser	Asp 120	Leu	Trp	Val	Phe	Ser 125	Thr	Glu	Met
Ser	Thr 130	Ser	Asp	Ile	Lys	Gly 135	Gln	Thr	Val	Tyr	Asp 140	Pro	Asn	Asn	Ser
Ser 145	Thr	Ser	Glu	Lys	Val 150	Gln	Gly	Ser	Thr	Trp 155	Lys	Ile	Thr	Tyr	Gly 160
Asp	Gly	Ser	Ser	Ser 165	Ser	Gly	Asp	Val	Tyr 170	Leu	Asp	Thr	Val	Thr 175	Ile
Gly	Asn	Leu	Thr 180	Val	Pro	Ser	Gln	Ala 185	Val	Glu	Ala	Ala	Lys 190	Lys	Val
Ser	Ser	Glu 195	Phe	Thr	Asp	Asp	Ser 200	His	Asn	Asp	Gly	Leu 205	Leu	Gly	Leu
Gly	Phe 210	Ser	Ala	Ile	Asn	Ala 215	Val	Glu	Pro	Thr	Pro 220	Gln	Asn	Thr	Phe
Phe 225	Asp	Asn	Ile	Lys	Gly 230	Ser	Leu	Asp	Ala	Pro 235	Leu	Phe	Thr	Val	Asp 240

Leu Lys His Gly Thr Pro Gly Ser Phe Asn Phe Gly Tyr Ile Asp Pro Ala Ala Tyr Ile Gly Asn Ile Ser Trp Thr Pro Val Asp Ser Ser Gln Gly Tyr Trp Gly Phe Thr Ser Pro Gly Tyr Ala Val Gly Thr Gly Ala Phe Arg Asn His Ser Ile Ser Gly Ile Ala Asp Thr Gly Thr Thr Leu Leu Leu Pro Lys Ser Val Val Ser Ala Tyr Tyr Lys Glu Ile Gln Gly Ala Gln Tyr Asp Ser Asp Gln Gly Gly Tyr Ile Phe Pro Cys Ser Pro Thr Pro Pro Asp Phe Val Phe Gly Val Asn Lys Gly Ile Val Thr Val Pro Gly Asp Met Val Ser Tyr Ala Pro Ala Asp Ser Ala Asn Gln Asn Cys Phe Gly Gly Ile Gln Thr Asp Thr Gly Ile Gly Phe Ser Ile Phe Gly Asp Val Ala Leu Lys Thr Ser Phe Val His Leu His Gly Ser Ile Val Pro Gly Tyr Tyr Ala Asp Cys Ala Met Arg Phe Asn Arg Met Leu Arg Ser Tyr Ser Asn Asp Gln Leu Val Asp Phe Ser Ser Ser Gly

Pro Leu

<210> 139

<211> 466

<212> PRT <213> Myceliophthora thermophila

<400> 139 5

> Met Asp Ala Leu Phe Glu Thr His Ala Lys Leu Arg Lys Arg Met Ala 5 10

Leu	Tyr	Arg	Val 20	Arg	Ala	Val	Pro	Asn 25	Gln	Asn	Tyr	Gln	Arg 30	Asp	Gly
Thr	Lys	Ser 35	Tyr	Val	Ser	Val	Leu 40	Asn	Arg	Phe	Gly	Phe 45	Gln	Pro	Thr
Lys	Pro 50	Gly	Pro	Tyr	Phe	Gln 55	Ile	Phe	Glu	Glu	Ser 60	Glu	Glu	Ala	Pro
Ser 65	Met	Ser	Ala	Ala	Pro 70	Gly	Val	Lys	Pro	Gly 75	His	Val	Trp	Gln	Gly 80
Leu	Phe	Lys	Lys	Leu 85	Lys	Asp	Gln	Glu	Glu 90	Pro	Gly	Glu	Val	Thr 95	Ala
Glu	Asp	Gln	Gln 100	Asn	Asp	Ser	Glu	Tyr 105	Leu	Cys	Glu	Val	Met 110	Ile	Gly
Thr	Ala	Trp 115	Thr	Ala	Glu	Arg	Gln 120	Ile	Val	Lys	Met	Asp 125	Phe	Asp	Thr
Gly	Leu 130	Ala	Asp	Phe	Trp	Val 135	Ser	Gln	Lys	Ser	Phe 140	Asp	Pro	Lys	Lys
Ser 145	Val	Thr	Trp	Gln	Leu 150	Ala	Lys	Asp	Lys	Ser 155	Trp	Lys	Val	Gln	Tyr 160
Gly	Asp	Gly	Ser	Ser 165	Ala	Ser	Gly	Ile	Val 170	Gly	His	Asp	Ile	Leu 175	Ile
Ile	Gly	Gly	Ile 180	Gln	Ile	Lys	Arg	Gln 185	Ala	Ile	Glu	Ile	Ala 190	Thr	Glu
Met	Ser	Ala 195	Gln	Phe	Ser	Glu	Gly 200	Thr	Met	Asp	Gly	Ile 205	Leu	Gly	Leu
Ala	Phe 210	Ser	Lys	Leu	Asn	Thr 215	Val	Gln	Thr	Asp	Gly 220	Lys	Pro	Asp	Pro
G1n 225	Arg	Thr	Val	Val	Asp 230	Asn	Met	Met	Ala	Gln 235	Asp	Asp	Ile	Pro	Pro 240
Glu	Ala	Glu	Leu	Phe 245	Ser	Thr	Ala	Leu	Tyr 250	Ser	Asn	Arg	Glu	Asp 255	Asp
Gln	Arg	Ser	Phe	Tyr	Thr	Phe	Gly	Trp	Ile	Asp	Glu	Asp	Leu 270	Val	Lys

Ala	Ser	Gly 275	Glu	Glu	Ile	Val	Trp 280	Thr	Asp	Val	Asp	Asn 285	Ser	Glu	Gly
Phe	Trp 290	Met	Phe	Ser	Ser	Glu 295	His	Val	Thr	Ile	Asp 300	Gly	Gln	Gln	Val
Arg 305	Ile	Glu	Gly	Asn	Lys 310	Ala	Ile	Ala	Asp	Thr 315	Gly	Thr	Ser	Leu	Val 320
Leu	Val	Ser	Asp	Gln 325	Val	Cys	Asp	Ala	Leu 330	Tyr	Ala	His	Ile	Pro 335	Ser
Ala	Glu	Tyr	Ser 340	Glu	Glu	Tyr	Gln	Gly 345	Trp	Thr	Phe	Pro	Gln 350	Glu	Thr
Glu	Val	Asp 355	Lys	Leu	Pro	Glu	Phe 360	Ser	Ile	Ala	Ile	Gly 365	Asp	Lys	Glu
Phe	Val 370	Leu	Gln	Lys	Glu	Asp 375	Leu	Ile	Phe	Ala	Pro 380	Ala	Asp	Glu	Arg
Val 385	Phe	Tyr	Gly	Ser	Val 390	Gln	Ser	Arg	Gly	Glu 395	Asn	Pro	Phe	Asp	Ile 400
Leu	Gly	Ile				_			_			_	Asp		Gly
His	Lys	Arg	Phe 420	Gly	Ala	Val	Pro	Lys 425	Met	Glu	Ala	Phe	Val 430	Pro	Pro
Thr	Lys	Tyr 435	Asp	Arg	Pro	Arg	Leu 440	Thr	Asp	Gln	Asp	Arg 445	Lys	Asp	Leu
Gly	Val 450	Thr	Ile	Gly	Tyr	Gly 455	Asp	Ile	Ser	Ser	Thr 460	Phe	Phe	Glu	Lys
Arg 465	Ala														

<210> 140

<211> 481

<212> PRT

<213> Neurospora crassa

<400> 140

5

Met Gly Ser Met Tyr Gln Val Gln Ser Lys Leu Arg Gln Asp Leu Gly $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Leu	His	Lys	Val 20	Gln	Ala	Val	Arg	Lys 25	Pro	Gly	Arg	Glu	Leu 30	Asn	Gly
Thr	Lys	Ala 35	Tyr	Val	Ser	Ala	Met 40	Ala	Arg	Tyr	Gly	Phe 45	Asn	Pro	Thr
Glu	Glu 50	Ser	Arg	Phe	Phe	His 55	Leu	Lys	Lys	Thr	Asp 60	Leu	Thr	Lys	Glu
Phe 65	Gln	Arg	Arg	Gly	Tyr 70	Ile	Arg	His	Trp	G1u 75	Gln	Leu	Val	Arg	Thr 80
Pro	Gln	Glu	Arg	Pro 85	Asp	Asp	Pro	His	Thr 90	Asp	Asn	Glu	Pro	Val 95	Pro
Ala	Glu	Asp	Gln 100	Gln	Tyr	Asp	Thr	Gln 105	Tyr	Leu	Cys	Glu	Ile 110	Gly	Ile
Gly	Thr	Pro 115	Gln	Gln	Lys	Val	Lys 120	Leu	Asp	Phe	Asp	Thr 125	Gly	Ser	Ala
Asp	Leu 130	Trp	Val	Arg	Cys	Thr 135	Asp	Ser	Ser	Leu	Leu 140	His	His	Ala	Asp
Lys 145	Lys	Phe	Asp	Pro	Lys 150	Lys	Ser	Asp	Thr	Phe 155	Gln	Glu	Ser	Lys	Thr 160
Asp	Gln	Thr	Trp	Lys 165	Ile	Gln	Tyr	Gly	Asp 170	Gly	Ser	Thr	Ala	Ser 175	Gly
Thr	Val	Gly	Thr 180	Asp	Val	Ile	Thr	Val 185	Gly	Gly	Leu	Gln	Ile 190	Lys	Asr
Gln	Ala	Ile 195	Glu	Leu	Ala	Lys	Lys 200	Val	Ser	Ser	Ala	Phe 205	Ser	Ser	Gly
Glu	Ala 210	Asp	Gly	Leu	Leu	Gly 215	Leu	Ala	Phe	Ser	Thr 220	Ile	Asn	Thr	Ile
Glu 225	Ser	Asp	Gly	Lys	Pro 230	Asp	Pro	Gln	Pro	Thr 235	Pro	Val	Glu	Asn	Met 240
Ile	Ser	Gln	Glu	Asp 245	Ile	Pro	Lys	Glu	A la 250	Glu	Leu	Phe	Thr	Ser 255	Ala
Phe	Tyr	Ser	Ala 260	Arg	Asp	Asp	Lys	Ser	Glu	Glu	Lys	Ser	Phe	Tyr	Thr

Phe	Gly	Trp 275	Val	Asp	Glu	Asp	Leu 280	Val	Lys	Ala	Ser	Gly 285	Lys	Asp	Ile
Thr	Trp 290	Thr	Pro	Ile	Asp	Asn 295	Ser	Glu	Gly	Phe	Trp 300	Lys	Phe	Pro	Ser
Glu 305	Ser	Ala	Thr	Val	Asp 310	Gly	Asp	Asn	Val	Ser 315	Val	Ser	Gly	Asn	Thr 320
Ala	Ile	Ala	Asp	Thr 325	Gly	Thr	Thr	Leu	Ala 330	Leu	Val	Ser	Asp	Thr 335	Val
Cys	Lys	Ala	Leu 340	Tyr	Ala	Lys	Ile	Pro 345	Gly	Ser	Lys	Tyr	Ser 350	Tyr	Arg
Tyr	Gln	Gly 355	Tyr	Leu	Ile	Pro	Ser 360	Thr	Ile	Thr	Ala	Asp 365	Gln	Leu	Pro
Gln	Leu 370	Ser	Val	Ala	Val	Gly 375	Gly	Glu	Gln	Phe	Val 380	Ile	Gln	Asn	Glu
Asp 385	Leu	Leu	Leu	Ala	Pro 390	Ala	Asp	Asp	Asp	His 395	Trp	Tyr	Gly	Gly	Val 400
Gln	Ser	Arg	Gly	Thr 405	Met	Pro	Phe	Asp	Ile 410	Leu	Gly	Asp	Thr	Phe 415	Leu
Lys	Ser	Ile	Tyr 420	Ala	Ile	Trp	Asp	Gln 425	Gly	Asn	Asn	Arg	Phe 430	Gly	Ala
Val	Pro	Lys 435	Ile	Glu	Val	Asn	Gln 440	His	Thr	Val	Phe	Pro 445	Asp	Thr	Glu
Pro	Ser 450	Pro	Glu	Ala	Ser	Ser 455	Pro	Glu	Pro	Ala	Asp 460	Lys	Val	Gly	Asp
Val 465	Ser	Pro	Val	Glu	Gln 470	Val	Lys	Gly	Ala	Val 475	Lys	Ser	Leu	Lys	Val 480
Leu															

<210> 141 <211> 397 <212> PRT 5 <213> Myceliophthora thermophila <400> 141

Met 1	Lys	Asp	Ala	Phe 5	Leu	Leu	Thr	Ala	Ala 10	Val	Leu	Leu	Gly	Ser 15	Ala
Gln	Gly	Ala	Val 20	His	Lys	Met	Lys	Leu 25	Gln	Lys	Ile	Pro	Leu 30	Ser	Glu
Gln	Leu	Glu 35	Ala	Val	Pro	Ile	Asn 40	Thr	Gln	Leu	Glu	His 45	Leu	Gly	Gln
Lys	Tyr 50	Met	Gly	Leu	Arg	Pro 55	Arg	Glu	Ser	Gln	Ala 60	Asp	Ala	Ile	Phe
Lys 65	Gly	Met	Val	Ala	Asp 70	Val	Lys	Gly	Asn	His 75	Pro	Ile	Pro	Ile	Ser 80
Asn	Phe	Met	Asn	Ala 85	Gln	Tyr	Phe	Ser	Glu 90	Ile	Thr	Ile	Gly	Thr 95	Pro
Pro	Gln	Ser	Phe 100	Lys	Val	Val	Leu	Asp 105	Thr	Gly	Ser	Ser	Asn 110	Leu	Trp
Val	Pro	Ser 115	Val	Glu	Cys	Gly	Ser 120	Ile	Ala	Cys	Tyr	Leu 125	His	Ser	Lys
Tyr	Asp 130	Ser	Ser	Ala	Ser	Ser 135	Thr	Tyr	Lys	Lys	Asn 140	Gly	Thr	Ser	Phe
Glu 145	Ile	Arg	Tyr	Gly	Ser 150	Gly	Ser	Leu	Ser	Gly 155	Phe	Val	Ser	Gln	Asp 160
Thr	Val	Ser	Ile	Gly 165	Asp	Ile	Thr	Ile	Gln 170	Gly	Gln	Asp	Phe	Ala 175	Glu
Ala	Thr	Ser	Glu 180	Pro	Gly	Leu	Ala	Phe 185	Ala	Phe	Gly	Arg	Phe 190	Asp	Gly
Ile	Leu	Gly 195	Leu	Gly	Tyr	Asp	Arg 200	Ile	Ser	Val	Asn	Gly 205	Ile	Val	Pro
Pro	Phe 210	Tyr	Lys	Met	Val	Glu 215	Gln	Lys	Leu	Ile	Asp 220	Glu	Pro	Val	Phe
Ala 225	Phe	Tyr	Leu	Ala	Asp 230	Thr	Asn	Gly	Gln	Ser 235	Glu	Val	Val	Phe	Gly 240
Gly	Val	Asp	His	Asp	Lys	Tyr	Lys	Gly	Lys	Ile	Thr	Thr	Ile	Pro	Leu

				245					250					255	
Arg	Arg	Lys	Ala 260	Tyr	Trp	Glu	Val	Asp 265	Phe	Asp	Ala	Ile	Ser 270	Tyr	Gly
Asp	Asp	Thr 275	Ala	Glu	Leu	Glu	Asn 280	Thr	Gly	Ile	Ile	Leu 285	Asp	Thr	Gly
Thr	Ser 290	Leu	Ile	Ala	Leu	Pro 295	Ser	Gln	Leu	Ala	Glu 300	Met	Leu	Asn	Ala
Gln 305	Ile	Gly	Ala	Lys	Lys 310	Ser	Tyr	Thr	Gly	Gln 315	Tyr	Thr	Ile	Asp	Cys 320
Asn	Lys	Arg	Asp	Ser 325	Leu	Lys	Asp	Val	Thr 330	Phe	Asn	Leu	Ala	Gly 335	Туг
Asn	Phe	Thr	Leu 340	Gly	Pro	Tyr	Asp	Tyr 345	Val	Leu	Glu	Val	Gln 350	Gly	Ser
Cys	Ile	Ser 355	Thr	Phe	Met	Gly	Met 360	Asp	Phe	Pro	Ala	Pro 365	Thr	Gly	Pro
Leu	Ala 370	Ile	Leu	Gly	Asp	Ala 375	Phe	Leu	Arg	Arg	Tyr 380	Tyr	Ser	Ile	Туг
Asp 385	Leu	Gly	Ala	Asp	Thr 390	Val	Gly	Leu	Ala	Glu 395	Ala	Lys			

<210> 142 <211> 396 <212> PRT

5

<213> Neurospora crassa

<400> 142

Met Lys Gly Ala Leu Leu Thr Ala Ala Met Leu Leu Gly Ser Ala Gln 1 5 10 15

Ala Gly Val His Thr Met Lys Leu Lys Lys Val Pro Leu Ala Glu Gln 20 25 30

Leu Glu Ser Val Pro Ile Asp Val Gln Val Gln His Leu Gly Gln Lys 35 40 45

Tyr Thr Gly Leu Arg Thr Glu Ser His Thr Gln Ala Met Phe Lys Ala 50 55 60

Thr Asp Ala Gln Val Ser Gly Asn His Pro Val Pro Ile Thr Asn Phe

65					70					75					80
Met	Asn	Ala	Gln	Tyr 85	Phe	Ser	Glu	Ile	Thr 90	Ile	Gly	Thr	Pro	Pro 95	Gln
Thr	Phe	Lys	Val 100	Val	Leu	Asp	Thr	Gly 105	Ser	Ser	Asn	Leu	Trp 110	Val	Pro
Ser	Ser	Gln 115	Cys	Gly	Ser	Ile	Ala 120	Cys	Tyr	Leu	His	Asn 125	Lys	Tyr	Glu
Ser	Ser 130	Glu	Ser	Ser	Thr	Tyr 135	Lys	Lys	Asn	Gly	Thr 140	Ser	Phe	Lys	Ile
Glu 145	Tyr	Gly	Ser	Gly	Ser 150	Leu	Ser	Gly	Phe	Val 155	Ser	Gln	Asp	Arg	Met 160
Thr	Ile	Gly	Asp	Ile 165	Thr	Ile	Asn	Asp	Gln 170	Leu	Phe	Ala	Glu	Ala 175	Thr
Ser	Glu	Pro	Gly 180	Leu	Ala	Phe	Ala	Phe 185	Gly	Arg	Phe	Asp	Gly 190	Ile	Leu
Gly	Leu	Gly 195	Tyr	Asp	Arg	Ile	Ala 200	Val	Asn	Gly	Ile	Thr 205	Pro	Pro	Phe
Tyr	Lys 210	Met	Val	Glu	Gln	Lys 215	Leu	Val	Asp	Glu	Pro 220	Val	Phe	Ser	Phe
Tyr 225	Leu	Ala	Asp	Gln	Asp 230	Gly	Glu	Ser	Glu	Val 235	Val	Phe	Gly	Gly	Val 240
Asn	Lys	Asp	Arg	Tyr 245	Thr	Gly	Lys	Ile	Thr 250	Thr	Ile	Pro	Leu	Arg 255	Arg
Lys	Ala	Tyr	Trp 260	Glu	Val	Asp	Phe	Asp 265	Ala	Ile	Gly	Tyr	Gly 270	Lys	Asp
Phe	Ala	Glu 275	Leu	Glu	Gly	His	Gly 280	Val	Ile	Leu	Asp	Thr 285	Gly	Thr	Ser
Leu	Ile 290	Ala	Leu	Pro	Ser	Gln 295	Leu	Ala	Glu	Met	Leu 300	Asn	Ala	Gln	Ile
Gly 305	Ala	Lys	Lys	Ser	Trp 310	Asn	Gly	Gln	Phe	Thr 315	Ile	Asp	Cys	Gly	Lys 320

Lys Ser Ser Leu Glu Asp Val Thr Phe Thr Leu Ala Gly Tyr Asn Phe Thr Leu Gly Pro Glu Asp Tyr Ile Leu Glu Ala Ser Gly Ser Cys Leu Ser Thr Phe Met Gly Met Asp Met Pro Ala Pro Val Gly Pro Leu Ala Ile Leu Gly Asp Ala Phe Leu Arg Lys Tyr Tyr Ser Ile Tyr Asp Leu Gly Ala Asp Thr Val Gly Ile Ala Thr Ala Lys Arg

<210> 143

<211> 454

<212> PRT

<213> Myceliophthora thermophila

<400> 143

Met 1	Lys	Phe	Ala	Ala 5	Leu	Ala	Leu	Ala	Ala 10	Ser	Leu	Val	Ala	Ala 15	Ala
Pro	Arg	Val	Val 20	Lys	Val	Asp	Pro	Ser 25	Asp	Ile	Lys	Pro	Arg 30	Arg	Leu
Gly	Gly	Thr 35	Lys	Phe	Lys	Leu	Gly 40	Gln	Ile	His	Asn	Asp 45	Leu	Phe	Arg
Gln	His 50	Gly	Arg	Gly	Pro	Arg 55	Ala	Leu	Ala	Lys	Ala 60	Tyr	Glu	Lys	Tyr
Asn 65	Ile	Glu	Leu	Pro	Pro 70	Asn	Leu	Leu	Glu	Val 75	Val	Gln	Arg	Ile	Leu 80
Lys	Asp	Leu	Gly	Ile 85	Glu	Pro	His	Ser	Lys 90	Lys	Ile	Pro	Gly	Ser 95	Lys
Ser	Ser	Tyr	Gly 100	Asn	Gly	Ala	Pro	Tyr 105	Thr	Asn	Glu	Thr	Asp 110	Asp	Ser
Gly	Glu	Val 115	Ser	Ala	Ile	Pro	Gln 120	Leu	Phe	Asp	Val	Glu 125	Tyr	Leu	Ala
Pro	Val	Gln	Ile	Gly	Thr	Pro 135	Pro	Gln	Thr	Leu	Met 140	Leu	Asn	Phe	Asp

Thr 145	Gly	Ser	Ser	Asp	Leu 150	Trp	Val	Phe	Ser	Ser 155	Glu	Thr	Pro	Ser	Arg 160
Gln	Gln	Asn	Gly	Gln 165	Lys	Ile	Tyr	Lys	Ile 170	Glu	Glu	Ser	Ser	Thr 175	Ala
Arg	Arg	Leu	Ser 180	Asn	His	Thr	Trp	Ser 185	Ile	Gln	Tyr	Gly	Asp 190	Gly	Ser
Arg	Ser	Ala 195	Gly	Asn	Val	Tyr	Leu 200	Asp	Thr	Val	Ser	Val 205	Gly	Gly	Val
Asn	Val 210	Phe	Asn	Gln	Ala	Val 215	Glu	Ser	Ala	Thr	Phe 220	Val	Ser	Ser	Ser
Phe 225	Val	Thr	Asp	Ala	Ala 230	Ser	Ser	Gly	Leu	Leu 235	Gly	Leu	Gly	Phe	Asp 240
Ser	Ile	Asn	Thr	Val 245	Lys	Pro	Thr	Lys	Gln 250	Lys	Thr	Phe	Ile	Ser 255	Asn
Ala	Leu	Glu	Ser 260	Leu	Glu	Met	Gly	Leu 265	Phe	Thr	Ala	Asn	Leu 270	Lys	Lys
Ala	Glu	Pro 275	Gly	Asn	Tyr	Asn	Phe 280	Gly	Phe	Ile	Asp	Glu 285	Thr	Glu	Phe
Val	Gly 290	Pro	Leu	Ser	Phe	Ile 295	Asp	Val	Asp	Ser	Thr 300	Asp	Gly	Phe	Trp
Gln 305	Phe	Asp	Ala	Thr	Gly 310	Tyr	Ser	Ile	Gln	Leu 315	Pro	Glu	Pro	Ser	Gly 320
Asn	Ile	Thr	Gly	Thr 325	Pro	Phe	Arg	Ala	Val 330	Ala	His	Thr	Ala	Ile 335	Ala
Asp	Thr	Gly	Thr 340	Thr	Leu	Leu	Leu	Leu 345	Pro	Pro	Gly	Ile	Ala 350	Gln	Ala
Tyr	Tyr	Trp 355	Gln	Val	Gln	Gly	Ala 360	Arg	Gln	Ala	Pro	Glu 365	Val	Gly	Gly
Trp	Val 370	Met	Pro	Cys	Asn	Ala 375	Ser	Met	Pro	Asp	Leu 380	Thr	Leu	His	Ile
Gly 385	Thr	Tyr	Lys	Ala	Val 390	Ile	Pro	Gly	Glu	Leu 395	Ile	Pro	Tyr	Ala	Pro 400

Val Asp Thr Asp Asp Met Asp Thr Ala Thr Val Cys Tyr Gly Gly Ile 405 410 415

Gln Ser Ala Ser Gly Met Pro Phe Ala Ile Tyr Gly Asp Ile Phe Phe 420 425 430

Lys Ala Gln Phe Thr Val Phe Asp Val Glu Asn Leu Lys Leu Gly Phe 435 440 445

Ala Pro Lys Pro Glu Leu 450

<210> 144

<211> 489

<212> PRT

5

<213> Myceliophthora thermophila

<400> 144

Met 1	Ala	Ile	Pro	Val 5	Leu	Phe	Ser	Ala	Leu 10	Val	Leu	Leu	Val	Ala 15	Leu
Leu	Cys	Cys	His 20	Ala	Thr	Ala	Ala	Leu 25	Gln	Gln	Leu	Ala	His 30	Asp	Val
Gly	Cys	Val 35	His	Leu	Pro	Val	Val 40	His	Ser	Thr	Lys	Val 45	Asp	Arg	Phe
Ser	Asp 50	Lys	Arg	Gly	Ile	Gln 55	Leu	Gln	Leu	Ala	Asn 60	Arg	Ser	Asp	Val
Ala 65	Tyr	Tyr	Ala	Gln	Leu 70	Ser	Ile	Gly	Thr	Pro 75	Pro	Gln	Pro	Val	Phe 80
Val	Gln	Leu	Asp	Thr 85	Gly	Ser	Phe	Glu	Leu 90	Trp	Val	Asn	Pro	Asp 95	Cys
Thr	Thr	Val	Ser 100	Gly	Ser	Asp	Ala	Val 105	Phe	Cys	Glu	Arg	Ala 110	Gly	Arg
Tyr	Asp	Val 115	Thr	Lys	Ser	Ser	Thr 120	Ala	Thr	Ser	Leu	Gly 125	Thr	Asn	Arg
Thr	Leu 130	Arg	Tyr	Gly	Ile	Gly 135	Ala	Ala	Asn	Ile	Ser 140	Tyr	Phe	Thr	Asp
Thr 145	Ile	Ser	Leu	Ala	Gly 150	Ser	Pro	Met	Met	Leu 155	Gln	Asp	Val	Gln	Phe 160

Gly Val Ala	Thr Ala 165		Asp A	Ala Phe 170	Ser Gly	Ile		Gly 175	Ile
Gly Tyr Gly	Lys Gly 180	Ile Gly		Gly Tyr 185	Pro Asn		Val . 190	Asp	Gln
Leu Trp Glu 195	Gln Asn	Val Thr	Arg V	Val Lys	Ala Tyr	Thr 205	Leu /	Ala	Leu
Gly Ser Lys 210	Asp Ser	Gln Glu 215	_	/al Ile	Val Phe 220	Gly	Gly	Val	Asp
Thr Ser Lys 225	Phe Ala	Gly Lys 230	Leu A	Ala Arg	Leu Pro 235	Val	Ile	Pro	Pro 240
Ala Gln Ser	Pro Asp 245	_	Pro A	Arg Phe 250	Trp Val	Glu		Lys 255	Ser
Leu Ser Ile	Thr Arg 260	Pro Ser	_	Leu Asn 265	Thr Val	_	Asp 270	Gly	Gly
Ala Met Pro 275	Val Phe	Leu Asp	Ser G 280	Gly Ser	Thr Met	Thr 285	Leu :	Leu	Pro
Ala Asn Leu 290	Thr Met	Ala Val 295		Arg Asp	Phe Gly 300	Ala	Gln	Ala	Pro
Asp Ala Asn 305	Gly Phe	Tyr Lys 310	Ile A	Asp Cys	Ala Leu 315	Thr	Ala :	Leu	Asn 320
Gly Thr Leu	Asp Phe 325	Ala Phe	Asp G	Gly Val 330	Thr Val	Arg		Pro 335	Tyr
Lys Glu Leu	Thr Arg 340	Glu Val		Ser Asn 345	Pro Pro		Cys : 350	Phe	Leu
Gly Ile Val 355	Ala Ser	Asp Arg	Phe 1 360	Thr Leu	Leu Gly	Asp 365	Thr :	Phe	Leu
Arg Ser Ala 370	Tyr Thr	Val Phe 375	_	Leu Glu	Thr Asp 380	Ser	Ile	Trp	Met
Ala Pro Ala 385	Val Asn	Cys Gly 390	Ser S	Ser Pro	Ala Ala 395	Leu	Ser :	Asn	Val 400
Gln Asp Leu	Ser Ala 405		Gly G	Glu Cys 410	Gly Val	Arg		Ile 415	Ala

Glu Ser Thr Ser Ser Thr Gln Val Pro Ser Thr Gly Val Asp Asp Thr 420 425 430

Glu Ala Gly Ala Val Pro Thr Ser Thr Thr Thr Val Val Ser Gln Pro 435 440 445

Ser Gly Thr Thr Gln Met Gly Ala Arg Pro Thr Leu Asp Asn Ala 450 455 460

Ser Asn Pro Leu Gly Ala His Arg Leu Thr Trp Val Leu Val Ile Thr 465 470 475 480

Ala Ala Leu His Leu Phe Thr Gly Ile 485

<210> 145

<211> 518

<212> PRT

5

<213> Neurospora crassa

Met 1	Ala	Ala	Phe	Pro 5	Phe	Leu	Ser	Ala	Ser 10	Phe	Val	Leu	Leu	Gln 15	Leu
Ala	Leu	Thr	Cys 20	Leu	Ala	Gln	His	Leu 25	Asn	Leu	Thr	Thr	Gly 30	Pro	Leu
His	Leu	Thr 35	Gly	His	Thr	Pro	Gly 40	Asp	Gly	Cys	Val	His 45	Leu	Pro	Ile
Ile	His 50	Ser	Thr	Asn	Thr	Asp 55	His	Phe	Ala	Arg	Arg 60	Gly	Ile	Gln	Leu
Ala 65	Leu	Asn	Asn	Arg	Ser 70	Asp	Val	Ala	Tyr	Tyr 75	Ala	Gln	Leu	Glu	Ile 80
Gly	Thr	Pro	Pro	Gln 85	Thr	Val	Tyr	Thr	Gln 90	Leu	Asp	Thr	Gly	Ser 95	Phe
Glu	Leu	Trp	Val 100	Asn	Pro	Asp	Cys	Thr 105	Thr	Val	Ser	Pro	Ser 110	Asp	Ser
Ser	Phe	Cys 115	Asp	His	Ile	Gly	Phe 120	Tyr	Asn	Ala	Ser	Leu 125	Ser	Ser	Thr
Ser	Lys 130	Ser	Leu	Gly	Thr	Ser 135	Lys	Thr	Leu	Arg	Tyr 140	Gly	Ile	Gly	Ala

Ala 145	Asn	Ile	Ser	Tyr	Val 150	Thr	Asp	Thr	Ile	Ser 155	Leu	Ser	Gly	Ser	Ser 160
Thr	Ser	Leu	Lys	Asp 165	Ile	Gln	Phe	Gly	Val 170	Ala	Thr	Ser	Ser	Lys 175	Asp
Ala	Phe	Ser	Gly 180	Ile	Leu	Gly	Ile	Gly 185	Tyr	Gly	Gln	Gly	Leu 190	Ala	Thr
Lys	Tyr	Pro 195	Asn	Phe	Ile	Asp	Gln 200	Leu	Tyr	Ala	Gln	Lys 205	Ile	Thr	Lys
Val	Lys 210	Ala	Tyr	Thr	Leu	Ala 215	Leu	Gly	Ser	Lys	Thr 220	Ala	Gln	Gln	Gly
Ser 225	Ile	Val	Phe	Gly	Gly 230	Val	Asp	Thr	Ser	Lys 235	Phe	Ala	Gly	Pro	Leu 240
Gly	Arg	Leu	Pro	Ile 245	Ile	Pro	Ala	Glu	Asp 250	Ser	Pro	Asp	Gly	Val 255	Pro
Arg	Phe	Trp	Val 260	Gln	Met	Asn	Gly	Ile 265	Ser	Leu	Thr	Pro	Pro 270	Ser	Gly
Gln	Ser	Met 275	Gly	Val	Tyr	Glu	Gly 280	Ser	Lys	Ile	Pro	Ala 285	Phe	Leu	Asp
Ser	Gly 290	Ser	Thr	Met	Thr	Ile 295	Leu	Pro	Pro	Ala	Leu 300	Ala	Asn	Lys	Ile
Ala 305	Glu	Asp	Phe	Gly	Ser 310	Pro	Glu	Met	Asp	Ala 315	Asn	Gly	Phe	Tyr	Arg 320
Val	Gly	Cys	Gly	Tyr 325	Val	Glu	Met	Asn	Gly 330	Thr	Met	Asp	Phe	Glu 335	Phe
Val	Gly	Ala	Gly 340	Gln	Lys	Val	Thr	Val 345	Arg	Val	Pro	Tyr	Lys 350	Glu	Met
Ile	Arg	Glu 355	Val	Gly	Gln	Gly	Glu 360	Ser	Lys	Met	Cys	Phe 365	Leu	Gly	Ile
Met	Gly 370	Ser	Glu	Ser	Phe	Thr 375	Leu	Leu	Gly	Asp	Thr 380	Phe	Leu	Arg	Ser
Ala	Tyr	Ala	Thr	Ser	Cys	Gly	Asn	Thr	Pro	Ala	Ala	Leu	Arg	Asp	Val

Thr Asp Leu Ser Arg Val Val Gly Asn Cys Gln Ile Gln Leu Gly Glu Lys Glu Ala Val Val Asp Val Val Ser Glu Thr Ser Ile Ala Pro Pro Thr Gly Ser Thr Gly Asp Thr Asp Gly Val Thr Gly Thr Gly Gly Asn Gly Ser Gly Asn Gly Gly Thr Arg Thr Ala Trp Gly Phe Val Thr Thr Thr Leu Ala Val Pro Met Ala Thr Gly Leu Ala Gly Val Gly Gly Ser Gly Ser Gly Ser Met Ser Ala Thr Ala Leu Asp Ser Ser Gly Arg Ser Met Ala Gly Asp Val Val Leu Ser Ala Ala Val Ala Val Gly Ala Ala Val Leu Gly Ser Leu Leu

<210> 146

<211> 501

<212> PRT

<213> Myceliophthora thermophila

Met 1	Arg	Gly	Tyr	Ala 5	Ala	Val	Ala	Phe	Gly 10	Ala	Ile	Leu	Ala	Gly 15	Ala
Val	His	Ala	Ser 20	Ala	Gly	Asn	Gly	Val 25	Val	Gln	Trp	Asp	Ile 30	Arg	Arg
Thr	Gln	Arg 35	Gln	Glu	Glu	Leu	Gln 40	Arg	Leu	Asn	Arg	Arg 45	Leu	Arg	Lys
Arg	Ala 50	Asn	Pro	Val	Leu	Glu 55	Val	Ile	Thr	Asn	Glu 60	Lys	Ile	Arg	Gly
Gly 65	Tyr	Phe	Ala	Thr	Cys 70	Lys	Ile	Gly	Thr	Pro 75	Gly	Gln	Asp	Leu	Thr 80
Leu	Gln	Leu	Asp	Thr	Glv	Ser	Ser	Asp	Ile	Trp	Val	Pro	Asp	Ser	Ala

				85					90					95	
Ala	Gln	Val	Cys 100	Arg	Glu	Ile	Gly	Thr 105	Glu	Gly	Cys	Ala	Leu 110	Gly	Thr
Phe	Asn	Pro 115	Asn	Arg	Ser	Ser	Ser 120	Phe	Glu	Val	Ile	Gly 125	Glu	Gly	Gln
Phe	Asp 130	Ile	Glu	Tyr	Val	Asp 135	Gly	Ser	Ser	Ser	Lys 140	Gly	Asp	Tyr	Phe
Thr 145	Asp	Val	Phe	Gln	Ile 150	Gly	Asp	Ile	Ser	Val 155	Gln	Asn	Met	Thr	Met 160
Gly	Leu	Gly	Leu	His 165	Thr	Asp	Ile	Ala	Tyr 170	Gly	Leu	Val	Gly	Val 175	Gly
Tyr	Ala	Ile	Asn 180	Glu	Ala	Ile	Val	Ala 185	Thr	Thr	Gln	Ser	Arg 190	Asp	Ser
Val	Tyr	Pro 195	Asn	Leu	Pro	Val	Gln 200	Met	Val	Asp	Gln	Gly 205	Leu	Ile	Asn
Thr	Val 210	Ala	Tyr	Ser	Leu	Trp 215	Leu	Asn	Asp	Leu	Asp 220	Ala	Ser	Ser	Gly
Ser 225	Ile	Leu	Phe	Gly	Gly 230	Ile	Asp	Thr	Glu	Lys 235	Tyr	Gln	Gly	Glu	Leu 240
Thr	Arg	Ile	Asp	Ile 245	Tyr	Pro	Thr	Ser	Gln 250	Gly	Asp	Phe	Ser	Ser 255	Phe
Val	Val	Ala	Leu 260	Thr	Ser	Leu	Glu	Ala 265	Arg	Ser	Pro	Ser	Gly 270	Gln	Asp
Thr	Leu	Thr 275	Ser	Gln	Glu	Phe	Pro 280	Ile	Pro	Val	Val	Leu 285	Asp	Ser	Gly
Thr	Thr 290	Leu	Ser	Tyr	Leu	Pro 295	Thr	Asp	Leu	Ala	Thr 300	Gln	Ala	Trp	Lys
Glu 305	Val	Gly	Ala	Phe	Tyr 310	Leu	Pro	Glu	Val	Gly 315	Ala	Ala	Val	Leu	Pro 320
Cys	Asp	Met	Glu	Asn 325	Ser	Lys	Gly	Ser	Phe 330	Ser	Phe	Gly	Phe	Ala 335	Gly

340 Met Thr Asp Gly Gln Ala Pro Gln Phe Leu Ser Gly Pro Tyr Lys Gly 355 360 365 Arg Asp Val Cys Gln Phe Gly Ile Gln Asn Phe Thr Ser Ala Pro Phe 370 375 380 Leu Leu Gly Asp Thr Phe Leu Arg Ser Ala Tyr Val Val Tyr Asp Leu 385 390 395 Val Asn Asn Gln Ile Gly Ile Ala Ala Thr Asp Phe Asn Ser Thr Asp 405 410 415 Ser Asn Ile Val Pro Phe Pro Ser Met Gly Ala Pro Ile Pro Ser Ala 420 430 425

Pro Asp Gly Pro Arg Ile Thr Val Gly Met Asp Glu Leu Val Leu Asp

Glu Pro Ala Tyr Ser Ala Ser Gln Gly Phe Met Glu Ser Ala Ser Gly
450 455 460

Thr Val Ala Ala Asn Gln Arg Glu Val Thr Arg Val Pro Thr Val Thr

440

Glu Glu Ser Leu Ala Pro Gly Met Pro Ala Ala Trp Gly Met Gly Gln 465 470 475 480

Leu Leu Val Val Gly Val Thr Met Ala Leu Thr Ala Leu Gly Ser Gly 485 490 495

Leu Phe Phe Val Leu 500

435

<210> 147

<211> 492

<212> PRT

5

<213> Neurospora crassa

Met 1	Lys	Gly	Tyr	Thr 5	Ser	Ser	Ala	Leu	Leu 10	Leu	Gly	Pro	Ala	Leu 15	Leu
Ser	Gln	Leu	Ala 20	Leu	Ala	Gln	Gln	Ala 25	Pro	Asn	Gly	Val	Val 30	His	Trp
Gly	Ile	Gln 35	Lys	Arg	His	Ala	Pro	Asn	Ala	Pro	Asn	Arg 45	Leu	Leu	Arg

Arg	Ala 50	Gly	Pro	Thr	His	Gln 55	Ala	Ile	Leu	Gln	Asn 60	Glu	Gln	Ala	Arg
Gly 65	Gly	Tyr	Phe	Ala	Thr 70	Cys	Ala	Met	Gly	Thr 75	Pro	Gly	Gln	Lys	Val 80
Thr	Leu	Gln	Leu	Asp 85	Thr	Gly	Ser	Ser	Asp 90	Val	Trp	Val	Pro	Asp 95	Ser
Thr	Ala	Ser	Ile 100	Cys	Asn	Lys	Gly	Ala 105	Cys	Asp	Leu	Gly	Ser 110	Trp	Gln
Gly	Glu	Phe 115	Asp	Ile	Ser	Tyr	Val 120	Asp	Gly	Ser	Ser	Ser 125	Lys	Gly	Asp
Tyr	Phe 130	Thr	Asp	Val	Phe	Asn 135	Ile	Gly	Gly	Thr	Thr 140	Val	Thr	Asn	Leu
Thr 145	Met	Gly	Leu	Gly	Ala 150	Gln	Thr	Asp	Ile	Ala 155	Tyr	Gly	Leu	Val	Gly 160
Ile	Gly	Tyr	Ala	Ile 165	Asn	Glu	Ala	Ile	Val 170	Gly	Asn	Ser	His	Ser 175	Leu
Ser	Ser	Gln	Tyr 180	Pro	Asn	Leu	Pro	Val 185	Ala	Met	Val	Asp	Asp 190	Gly	Leu
Ile	Asn	Thr 195	Ile	Ala	Tyr	Ser	Leu 200	Trp	Leu	Asn	Asp	Leu 205	Asp	Ala	Gly
Glu	Gly 210	Ser	Ile	Leu	Phe	Gly 215	Gly	Ile	Asp	Thr	Lys 220	Lys	Tyr	Lys	Gly
Asp 225	Leu	Thr	Arg	Ile	Arg 230	Ile	Tyr	Pro	Ser	Ser 235	Asn	Gly	Tyr	Tyr	Phe 240
Ser	Phe	Ile	Val	Ala 245	Leu	Thr	Ser	Leu	Gln 250	Ala	Ile	Ser	Pro	Ser 255	Gly
Asn	Asp	Thr	Leu 260	Thr	Ser	Gln	Glu	Phe 265	Pro	Ile	Pro	Val	Val 270	Leu	Asp
Ser	Gly	Thr 275	Thr	Leu	Ser	Tyr	Leu 280	Pro	Gln	Asp	Ile	Val 285	Asp	Gln	Ile
Trp	Gln 290	Glu	Val	Gly	Ala	Glu 295	Tyr	Ser	Asp	Arg	Leu 300	Glu	Leu	Ala	Val

Ile Pro Cys 3	Ser Lys Lys 310	Ser Ser A	Asn Gly Tyr 315	Phe Ser	Phe Gly Phe 320
Ala Gly Pro	Asp Gly Pro 325	Arg Ile T	Thr Val Arg 330	Met Asp	Glu Leu Val 335
Leu Asp Leu	Thr Ser Gly 340	-	Pro Lys Tyr 345	Thr Ser	Gly Pro Asn 350
Lys Gly Gln 2 355	Asp Val Cys	Glu Phe G 360	Gly Ile Gln	Asn Ser 365	Thr Ser Ala
Pro Tyr Leu 1 370	Leu Gly Asp	Thr Phe L 375	Leu Arg Ser	Ala Tyr 380	Val Val Tyr
Asp Leu Val 2 385	Asn Asn Glu 390	Ile Gly L	Leu Ala Glu 395	Thr Asp	Phe Asn Ser 400
Thr Glu Ser	Asn Ile Val 405	Ala Phe A	Ala Ser Met 410	Ser Ala	Thr Ile Pro 415
Ser Ala Thr	Gln Ala Pro 420		Ala Ala Val 125	Thr Asn	Arg Pro Val 430
Ala Thr Met 1 435	Pro Ser Phe	Ala Ala S 440	Ser Ser Gly	Phe Ser 445	Asp Thr Gly
Gly Ser Gly 2 450	Asn Asp Gly	Lys Asp G 455	Glu Asn Ala	Ser Ala 460	Gly Met Pro
Ser Ala Phe (Gly Val Ala 470	Gln Met S	Ser Val Met 475	Gly Ile	Ala Met Val 480
Phe Ala Met	Val Gly Ser 485	Gly Val P	Phe Val Leu 490	Leu	

<210> 148

<211> 668 <212> PRT

5

<213> Myceliophthora thermophila

		Ala	_					Val 15	Leu
_	_				_	_		Gln	_

Gly	Leu	Leu 35	Arg	Tyr	Pro	Leu	Met 40	Pro	Arg	Leu	Gly	Asn 45	Leu	Leu	Phe
Gly	Lys 50	His	Ala	Asn	Ile	Thr 55	Arg	Arg	Gln	Ile	Asp 60	Thr	Gly	Ile	Phe
Asp 65	Pro	Leu	Ser	Gly	Thr 70	Leu	Tyr	Thr	Ile	G1u 75	Leu	Thr	Leu	Gly	Thr 80
Pro	Gly	Gln	Thr	Val 85	Pro	Val	Gln	Phe	Asp 90	Thr	Gly	Ser	Asp	Met 95	Leu
Trp	Val	Asn	Pro 100	Val	Cys	Ser	Lys	Ala 105	Ala	Glu	Pro	Glu	Phe 110	Cys	Ala
Ala	Gln	Pro 115	Arg	Phe	Thr	Asp	Ser 120	Ser	Thr	Leu	Val	Asp 125	Phe	Gly	Glu
Gln	Gly 130	Asn	Ile	Thr	Tyr	Gly 135	Thr	Gly	Tyr	Ala	Tyr 140	Tyr	Glu	Tyr	Val
Ala 145	Asp	Tyr	Val	Ala	Ile 150	Gly	Ser	Ala	Arg	Ile 155	Thr	Gln	Gln	Val	Phe 160
Gly	Val	Ala	Leu	Asp 165	Ser	Ala	His	Ala	Asp 170	Val	Gly	Ile	Phe	Gly 175	Ala
Gly	Pro	Asn	Leu 180	Asp	Gly	Trp	Asp	Ser 185	Ala	Tyr	Pro	Leu	Val 190	Val	Asp
Ser	Leu	Ala 195	Gln	Gln	Gly	Tyr	Thr 200	Ser	Ser	Arg	Ala	Phe 205	Ser	Met	Asp
Leu	Lys 210	Gly	Phe	Glu	Ser	Ala 215	Arg	Gly	Ser	Val	Ile 220	Phe	Gly	Gly	Ile
Asp 225	Thr	Lys	Lys	Tyr	Arg 230	Gly	Ser	Leu	Ile	Lys 235	Arg	Leu	Ile	Ile	Pro 240
Ala	Ala	Glu	Ser	Pro 245	Asp	Gly	Tyr	Thr	Arg 250	Phe	Trp	Ile	Tyr	Leu 255	Asp
Gly	Ile	Ser	Val 260	Asn	Gln	Pro	Asp	Gly 265	Asp	Val	Val	Thr	Val 270	Phe	Ser
Thr	Pro	Asp 275	Gly	Gly	Lys	Gly	Gln 280	Pro	Val	Leu	Leu	Asp 285	Ser	Gly	Tyr

Thr	Leu 290	Ser	Ala	Leu	Pro	Arg 295	Pro	Ile	Phe	Gln	Lys 300	Leu	Val	Ala	Ala
Phe 305	Pro	Ser	Ala	Gln	Tyr 310	Val	Ser	Ser	Ala	Asp 315	Val	Tyr	Val	Val	Asp 320
Cys	Val	Asp	His	Gly 325	Glu	Gly	Gly	Ser	Leu 330	Asp	Phe	Ile	Phe	Gly 335	Gly
Lys	Thr	Ile	Asn 340	Val	Pro	Tyr	His	Glu 345	Phe	Val	Trp	Ala	Gln 350	Pro	Glu
Ser	Asn	Thr 355	Cys	Val	Leu	Gly	Ala 360	Phe	Glu	Asp	Asp	Phe 365	Pro	Val	Leu
Gly	Asp 370	Thr	Phe	Leu	Arg	Ser 375	Ala	Tyr	Val	Val	Tyr 380	Asp	Trp	Asp	Asn
Arg 385	Asn	Ile	Tyr	Leu	Ala 390	Gln	Ser	Asp	Asp	Cys 395	Gly	Ser	Asn	Leu	Val 400
Ala	Ile	Gly	Ser	Gly 405	Pro	Asp	Ala	Val	Pro 410	Ser	Ile	Val	Gly	Glu 415	Cys
Gly	Lys	Pro	Lys 420	Pro	Thr	Ser	Thr	Ser 425	Thr	Phe	Ser	Lys	Thr 430	Ser	Ser
Lys	Thr	Ser 435	Thr	Ala	Ser	Lys	Thr 440	Ser	Ser	Thr	Ser	Asp 445	Ser	Thr	Ser
Ser	Ser 450	Ser	Ser	His	Val	Thr 455	Thr	Ser	Ser	Ser	Ser 460	Thr	Thr	Ala	Thr
Thr 465	Leu	Ser	Thr	His	Lys 470	Pro	Pro	Phe	Pro	Thr 475	Ala	Ser	Gly	Asn	Phe 480
Thr	Thr	Thr	Arg	Ser 485	Pro	Thr	Thr	Thr	Thr 490	Ala	Ser	Ser	Thr	Ile 495	Ser
Lys	Ser	Thr	Leu 500	Thr	Ile	Thr	Ser	Ala 505	Thr	Thr	Tyr	Thr	Ile 510	Thr	Ser
Cys	Pro	Pro 515	Thr	Val	Thr	Arg	Cys 520	Pro	Ala	His	Glu	Val 525	Thr	Thr	Glu
Ile	Ile	Thr	Lys	Thr	Thr	Ala	Val	Cys	Pro	Glu	Thr	Thr	Ala	Thr	Tyr

	530					535					540				
Thr 545	Ile	Pro	Arg	Thr	Ile 550	Thr	Cys	Pro	Gly	Ser 555	Gly	Gly	Gly	Asp	Asp 560
Cys	Pro	Pro	Gly	Ala 565	Thr	Arg	Thr	Thr	Thr 570	Leu	Thr	Val	Thr	Leu 575	Ser
Pro	Val	Gly	Pro 580	Thr	Asp	Arg	Thr	Thr 585	His	Val	Val	Pro	Gly 590	Val	Thr
Thr	Thr	Thr 595	Pro	Thr	Thr	Ile	Thr 600	Ala	Pro	Pro	Thr	Gly 605	Gln	Thr	Thr
Thr	Thr 610	Leu	Val	Pro	Ala	Leu 615	Pro	Pro	Thr	Thr	Thr 620	Thr	Met	Ser	Gly
His 625	Arg	Gly	Ile	Asn	Gly 630	Thr	Val	Thr	Ala	Thr 635	Ser	Lys	Pro	Pro	Ala 640
Val	Thr	Ala	Gly	Ser 645	Ala	Lys	Val	Gly	Leu 650	Val	Ser	Gly	Ala	Thr 655	Ala
Ile	Val	Ala	Gly 660	Val	Met	Ala	Val	Leu 665	Met	Ala	Leu				

5

<210> 149 <211> 551

<212> PRT <213> Neurospora crassa

Met 1	Leu	Pro	Val	Pro 5	Leu	Thr	Thr	Leu		Leu			Val	Ala 15	Leu
Leu	Ser	Pro	Pro 20	Ala	Ala	Ala	Gly	Val 25	Leu	Ala	Ser	Ala	Thr 30	Thr	Lys
Leu	Pro		_		Pro				Ala	Gln	Gly	His 45	Arg	Ser	Ser
Thr	Ala 50	Ala	Ser	Pro	Ser	Leu 55	Thr	Ser	Arg	Ser	Ser 60	Ser	Ser	Gly	Asn
_			_								_		Pro		_

Leu Arg Arg Gln Glu Asp Glu Gly Leu Lys Asn Gln Asn Leu Gly

				85					90					95	
Thr	Thr	Tyr	Thr 100	Ile	Asp	Ile	Asp	Ile 105	Gly	Thr	Pro	Pro	Gln 110	Thr	Val
Thr	Leu	Ile 115	Leu	Asp	Thr	Gly	Ser 120	Pro	Asp	Leu	Trp	Val 125	Asn	Pro	Gln
Cys	Glu 130	Thr	Ser	Gly	Gln	Glu 135	Lys	Tyr	Cys	Asn	Ser 140	Phe	Arg	Gln	Phe
Asp 145	Tyr	Thr	Lys	Ser	Lys 150	Thr	Ile	Gln	Asp	Thr 155	Gly	Ala	Ala	Asp	Ile 160
Leu	Lys	Tyr	Gly	Lys 165	Gly	Asn	Val	Thr	Ile 170	Glu	Tyr	Val	Thr	Asp 175	Asp
Val	Ile	Ile	Gly 180	Ser	Ala	Lys	Ile	Lys 185	Ser	Gln	Ile	Leu	Gly 190	Ile	Gly
Phe	Glu	Ser 195	Ile	Asp	Ile	Pro	Leu 200	Gly	Ile	Leu	Gly	Leu 205	Ser	Pro	Ser
Val	Ser 210	Pro	Asp	Gly	Thr	Ser 215	Pro	Tyr	Pro	Tyr	Leu 220	Leu	Asp	Ser	Met
Ala 225	Ser	Gln	Gly	Ile	Ile 230	Ser	Ser	Arg	Ala	Phe 235	Ser	Leu	Asp	Leu	Arg 240
Ser	Ile	Asp	Asn	Pro 245	Ser	Gly	Ala	Ile	Ile 250	Phe	Gly	Gly	Val	Asp 255	Leu
Gly	Lys	Phe	Ser 260	Gly	Ser	Leu	Ala	Lys 265	Leu	Pro	Met	Leu	Asp 270	Pro	Ser
Gln	Thr	Pro 275	Ala	Gly	Val	Asp	Arg 280	Tyr	Trp	Ile	Val	Leu 285	Ser	Gly	Val
Gly	Met 290	Thr	Tyr	Pro	Asp	Gly 295	Glu	Glu	Val	Glu	Ser 300	Glu	Glu	Ile	Gly
Val 305	Pro	Val	Phe	Leu	Asp 310	Ser	Gly	Gly	Thr	Leu 315	Ser	Arg	Leu	Pro	Glu 320
Thr	Ile	Phe	Gln	Ala 325	Ile	Gly	Asp	Ser	Phe 330	Pro	Gly	Ser	Gln	Tyr 335	Asp

Pro	Glu	Ser	Gly 340	Phe	Tyr	Ile	Val	Asp 345	Cys	Ala	Val	Ala	Glu 350	Gln	Ala
Gly	Ser	Val 355	Asp	Phe	Ile	Phe	Gly 360	Ser	Ser	Gly	Ser	Arg 365	Ser	Ser	Lys
Lys	Ile 370	Arg	Val	Pro	Tyr	Gly 375	Asp	Phe	Val	Trp	Glu 380	Val	Gln	Thr	Gly
Val 385	Суѕ	Val	Val	Gly	Val 390	Leu	Pro	Thr	Asp	Asp 395	Glu	Pro	Val	Phe	Gly 400
Asp	Ser	Phe	Leu	Arg 405	Ala	Ala	Tyr	Val	Val 410	Phe	Asp	Gln	Asp	Asn 415	Arg
Asn	Leu	His	Leu 420	Ala	Gln	Ala	Ala	Asn 425	Cys	Gly	Glu	Gln	Ile 430	Val	Glu
Ile	Gly	Ser 435	Gly	Gln	Asp	Ala	Val 440	Pro	Ser	Ser	Thr	Gly 445	Lys	Cys	Lys
Asp	Gly 450	Ser	Ala	Gly	Ser	Thr 455	Lys	Thr	Ala	Gly	Gly 460	Gly	Gly	Leu	Asp
Val 465	Thr	Ala	Thr	Arg	Ala 470	Pro	Thr	Arg	Thr	Ala 475	Gly	Gly	Ser	Gly	Pro 480
Ala	Val	Thr	Asn	Ser 485	Asp	Phe	Gly	Pro	Gly 490	Pro	Ala	Gly	Thr	Arg 495	Val
Ser	Thr	Gly	Gly 500	Ile	Gly	Leu	Pro	Thr 505	Gly	Thr	Gly	Gly	Gly 510	Gly	Gly
Ser	Gly	Asp 515	Gly	Asn	Gly	Asn	Asn 520	Asp	Asp	Asp	Asp	Ser 525	Ala	Ala	Ser
Gly	Leu 530	Asp	Val	Gly	Val	Thr 535	Ala	Ala	Ala	Val	Leu 540	Ala	Gly	Leu	Asn
Met 545	Leu	Ile	Val	Trp	Leu 550	Leu									

<210> 150 <211> 529 <212> PRT 5 <213> Neurospora crassa

Met 1	Lys	Ser	Thr	Leu 5	Ala	Thr	Leu	Leu	Ala 10	Leu	Ala	Ser	Val	Ala 15	Val
Ala	Glu	Asn	Gly 20	Val	Val	Asn	Phe	Pro 25	Leu	Asn	Arg	Gly	Val 30	Pro	His
Phe	Arg	Val 35	Gly	Asn	Val	Arg	Gln 40	Asn	Val	Lys	Arg	Asp 45	Thr	Tyr	Ser
Gln	Ala 50	Leu	Ile	Asn	Asn	Ile 55	Thr	Gly	Gly	Ala	Tyr 60	Tyr	Ala	Glu	Val
Thr 65	Val	Gly	Thr	Pro	Gly 70	Gln	Lys	Val	Ser	Val 75	Val	Leu	Asp	Thr	Gly 80
Ser	Ser	Asp	Leu	Trp 85	Val	Val	Ser	Tyr	Lys 90	Ala	Asp	Leu	Суз	Thr 95	Asp
Pro	Ser	Ile	Gln 100	Arg	Gln	Trp	Gly	Asp 105	Ser	Суз	Asp	Lys	Thr 110	Tyr	Asn
Pro	Thr	Lys 115	Ser	Ser	Ser	Tyr	Lys 120	Val	Leu	Glu	Glu	Asp 125	Ser	Phe	Glu
Ile	Arg 130	Tyr	Leu	Asp	Asn	Ser 135	Thr	Ala	Ala	Gly	Asp 140	Tyr	Ile	Thr	Asp
Asp 145	Leu	Asn	Ile	Gly	Gly 150	Ala	Thr	Ile	Lys	Ser 155	Leu	Gln	Met	Gly	Tyr 160
Ala	Thr	Lys	Thr	Val 165	Arg	Gly	Ala	Gly	Ile 170	Leu	Gly	Val	Gly	Tyr 175	Ser
Ser	Asn	Val	Ala 180	Ser	Gln	Gln	Arg	Tyr 185	Pro	Asn	Leu	Ile	Asp 190	Gln	Phe
Val	Ala	Gln 195	Lys	Leu	Ile	Thr	Thr 200	Lys	Ala	Tyr	Ser	Leu 205	Tyr	Leu	Asn
Asp	Arg 210	Arg	Ser	Asp	Thr	Gly 215	Ser	Ile	Leu	Phe	Gly 220	Gly	Ile	Asp	Lys
Asp 225	Lys	Phe	Ile	Gly	Asp 230	Leu	Ser	Ile	Leu	Pro 235	Ile	Tyr	Leu	Ala	Lys 240
Gly	Gln	Ala	Glu	Pro 245	Ile	His	Phe	Glu	Val 250	Glu	Met	Gln	Ser	Val 255	Ser

Leu	Ala	Leu	Thr 260	Lys	Asn	Gly	Lys	Thr 265	Thr	Lys	Ile	Ile	Ser 270	Thr	Asp
Pro	Ser	Leu 275	Ser	Gln	Thr	Ser	Thr 280	Ile	Ala	Ile	Leu	Asp 285	Ser	Gly	Thr
Thr	Leu 290	Ser	Tyr	Leu	Pro	Ser 295	Lys	Ile	Thr	Asp	Gln 300	Ile	His	Thr	Lys
Leu 305	Ser	Val	Tyr	Val	Asp 310	Glu	Ile	Trp	Thr	Gly 315	Leu	Thr	Phe	Ile	Asp 320
Cys	Gln	Tyr	Leu	Thr 325	Ser	Asn	Pro	Asp	Leu 330	Arg	Leu	Ser	Phe	Thr 335	Phe
Gly	Ala	Asn	Ala 340	Thr	Ile	Ser	Val	Pro 345	Val	Trp	Glu	Leu	Val 350	Leu	Asp
Leu	Leu	Gly 355	Glu	Ser	Gln	Ser	Glu 360	Leu	Pro	Phe	Lys	Met 365	Pro	Phe	Lys
Asn	Ala 370	Cys	Ile	Phe	Gly	Ile 375	Gln	Ser	Thr	Ala	Gly 380	Phe	Gln	Glu	Asp
Asn 385	Phe	Asp	Glu	Asp	Trp 390	Ala	Leu	Leu	Gly	Glu 395	Thr	Phe	Leu	Arg	Ser 400
Ala	Tyr	Val	Val	Tyr 405	Asp	Leu	Thr	His	His 410	Gln	Ile	Gly	Ile	Ala 415	Gln
Ala	Asn	Leu	Asn 420	Ser	Thr	Thr	Thr	Asp 425	Ile	Val	Glu	Leu	Ser 430	Gly	Ala
Asp	Gly	Gly 435	Leu	Pro	Thr	Gly	Leu 440	Thr	Gly	Val	Lys	Glu 445	Gln	Gln	Thr
Ser	Asn 450	Asp	Pro	Ser	Gly	Asn 455	Ala	Gly	Ser	Gly	Ser 460	Gly	Ser	Ser	Thr
Asp 465	Lys	Asp	Gly	Ala	Lys 470	Glu	Thr	Glu	Thr	Val 475	Thr	Ala	Gly	Ser	Thr 480
Ala	Ala	Thr	Gly	Thr 485	Ala	Ala	Ser	Gly	Ala 490	Lys	Glu	Thr	Asp	Ser 495	Ala
Ala	Ala	Gly	Leu 500	Ser	Ala	Arg	Gly	Gly 505	Ala	Val	Gly	Ala	Leu 510	Ala	Val

Ala Ser Leu Thr Gly Phe Leu Ala Leu Val Gly Gly Ala Val Val Ala 515 520

Leu

<210> 151

<211> 566 <212> PRT

5

<213> Myceliophthora thermophila

Met 1	Lys	Pro	Ser	Ser 5	Ala	Ile	Leu	Leu	Ala 10	Leu	Ala	Pro	Gly	Ser 15	Ser
Ser	Lys	Asn	Val 20	Val	Glu	Phe	Ser	Val 25	Ser	Arg	Gly	Leu	Pro 30	Gly	Asn
Arg	Thr	Pro 35	Leu	Ser	Phe	Pro	Pro 40	Leu	Thr	Arg	Arg	Glu 45	Thr	Tyr	Ser
Glu	Arg 50	Leu	Ile	Asn	Asn	Ile 55	Ala	Gly	Gly	Gly	Tyr 60	Tyr	Val	Gln	Val
Gln 65	Val	Gly	Thr	Pro	Pro 70	Gln	Asn	Leu	Thr	Met 75	Leu	Leu	Asp	Thr	Gly 80
Ser	Ser	Asp	Ala	Trp 85	Val	Leu	Ser	His	Glu 90	Ala	Asp	Leu	Cys	Ile 95	Ser
Pro	Ala	Leu	Gln 100	Asp	Phe	Tyr	Gly	Met 105	Pro	Cys	Thr	Asp	Thr 110	Tyr	Asp
Pro	Ser	Lys 115	Ser	Ser	Ser	Lys	Lys 120	Met	Val	Glu	Glu	Gly 125	Gly	Phe	Lys
	Thr 130	Tyr	Leu	Asp	Gly	Gly 135			Ser	_	Asp 140	Tyr	Ile	Thr	Asp
His 145	Phe	Thr	Ile	Gly	Gly 150	Val	Thr	Val	Gln	Ser 155	Leu	Gln	Met	Ala	Cys 160
Val	Thr	Lys	Ala	Val 165	Arg	Gly	Thr	Gly	Ile 170	Leu	Gly	Leu	Gly	Phe 175	Ser
Ile	Ser	Glu	Arg 180	Ala	Ser	Thr	Lys	Tyr 185	Pro	Asn	Ile	Ile	Asp 190	Glu	Met

Tyr	Ser	Gln 195	Gly	Leu	Ile	Lys	Ser 200	Lys	Ala	Phe	Ser	Leu 205	Tyr	Leu	Asn
Asp	Arg 210	Arg	Ala	Asp	Ser	Gly 215	Thr	Leu	Leu	Phe	Gly 220	Gly	Ile	Asp	Thr
Asp 225	Lys	Phe	Ile	Gly	Pro 230	Leu	Gly	Val	Leu	Pro 235	Leu	His	Lys	Pro	Pro 240
Gly	Asp	Arg	Asp	Tyr 245	Ser	Ser	Phe	Glu	Val 250	Asn	Phe	Thr	Ser	Val 255	Ser
Leu	Thr	Tyr	Thr 260	Asn	Gly	Ser	Arg	His 265	Thr	Ile	Pro	Thr	Ala 270	Ile	Leu
Asn	His	Pro 275	Ala	Pro	Ala	Val	Leu 280	Asp	Ser	Gly	Thr	Thr 285	Leu	Ser	Tyr
Leu	Pro 290	Asp	Glu	Leu	Ala	Asp 295	Pro	Ile	Asn	Thr	Ala 300	Leu	Asp	Thr	Phe
Tyr 305	Asp	Asp	Arg	Leu	Gln 310	Met	Thr	Leu	Ile	Asp 315	Cys	Ser	His	Pro	Leu 320
Leu	Arg	Thr	Asp	Pro 325	Asp	Phe	His	Leu	Ala 330	Phe	Thr	Phe	Thr	Pro 335	Thr
Thr	Ser	Ile	Thr 340	Val	Pro	Leu	Gly	Asp 345	Leu	Val	Leu	Asp	Ile 350	Leu	Pro
Pro	Thr	Tyr 355	Pro	Gln	Ser	Asn	Ser 360	Asn	Asn	Asn	Asn	Glu 365	Val	Glu	Asp
Asp	Asp 370	Asp	Asp	Asp	Asp	Asp 375	Asp	Asp	Asp	Asp	Asp 380	Lys	Val	Pro	Pro
Ala 385	Thr	Glu	Arg	Arg	Trp 390	Cys	Val	Phe	Gly	Ile 395	Gln	Ser	Thr	Thr	Arg 400
Phe	Ala	Ala	Ser	Ser 405	Gly	Gln	Ser	Glu	Ala 410	Asn	Phe	Thr	Leu	Leu 415	Gly
Asp	Thr	Phe	Leu 420	Arg	Ser	Ala	Tyr	Val 425	Val	Tyr	Asp	Leu	Ser 430	His	Tyr
Gln	Ile	Gly	Leu	Ala	Gln	Ala	Asn	Leu	Asn	Ser	Ser	Ser	Ser	Ser	Thr

		435					440					445			
Asn	Thr 450	Asn	Thr	Ile	Val	Glu 455	Leu	Thr	Ala	Asp	Asn 460	His	Asp	Asp	Gly
Ala 465	Ser	Glu	Arg	Gly	Glu 470	Gly	Ala	Gly	Ala	Gly 475	Ala	Asp	Ala	Gly	Thr 480
Arg	Thr	Val	Ile	Ala 485	Gly	Gly	Leu	Pro	Ser 490	Gly	Leu	Met	Gly	Val 495	Glu
Ala	Gln	Gln	Thr 500	Thr	Phe	Thr	Pro	Thr 505	Ala	Thr	Ala	Asn	Gly 510	His	Pro
Gly	Tyr	Gly 515	Gly	Gly	Pro	Gly	Gly 520	Ser	Thr	Arg	Pro	Gly 525	Ser	Glu	Arg
Asn	Ala 530	Ala	Ala	Gly	Gly	Phe 535	Thr	Ala	Val	Arg	Thr 540	Gly	Leu	Leu	Gly
Glu 545	Leu	Val	Gly	Val	Ala 550	Ala	Val	Thr	Ala	Leu 555	Phe	Ile	Leu	Leu	Gly 560
Gly	Ala	Leu	Ile	Ala	Val										

5

<210> 152 <211> 897 <212> PRT <213> Myceliophthora thermophila

Met 1	Val	Arg	Leu	Asp 5	Trp	Ala	Ala	Val	Leu 10	Leu	Ala	Ala	Thr	Ala 15	Val
Ala	Lys	Ala	Val 20	Thr	Pro	His	Thr	Pro 25	Ser	Phe	Val	Pro	Gly 30	Ala	Tyr
Ile	Val	Glu 35	Tyr	Glu	Glu	Asp	Gln 40	Asp	Ser	His	Ala	Phe 45	Val	Asn	Lys
Leu	Gly 50	Gly	Lys	Ala	Ser	Leu 55	Arg	Lys	Asp	Leu	Arg 60	Phe	Lys	Leu	Phe
Lys 65	Gly	Ala	Ser	Ile	Gln 70	Phe	Lys	Asp	Thr	Glu 75	Thr	Ala	Asp	Gln	Met 80

Val Ala Lys Val Ala Glu Met Pro Lys Val Lys Ala Val Tyr Pro Val

				85					90					95	
Arg	Arg	Tyr	Pro 100	Val	Pro	Asn	His	Val 105	Val	His	Ser	Thr	Gly 110	Asn	Val
Ala	Asp	Glu 115	Val	Leu	Val	Lys	Arg 120	Gln	Ala	Ala	Gly	Asn 125	Asp	Thr	Phe
Ser	Thr 130	His	Leu	Met	Thr	Gln 135	Val	Asn	Lys	Phe	Arg 140	Asp	Ala	Gly	Ile
Thr 145	Gly	Lys	Gly	Ile	Lys 150	Ile	Ala	Val	Ile	Asp 155	Thr	Gly	Ile	Asp	Туг 160
Leu	His	Glu	Ala	Leu 165	Gly	Gly	Cys	Phe	Gly 170	Pro	Asp	Cys	Leu	Val 175	Ser
Tyr	Gly	Thr	Asp 180	Leu	Val	Gly	Asp	Asp 185	Phe	Asn	Gly	Ser	Asn 190	Thr	Pro
Lys	Pro	Asp 195	Pro	Asp	Pro	Ile	Asp 200	Asn	Cys	Gln	Gly	His 205	Gly	Thr	His
Val	Ala 210	Gly	Ile	Ile	Ala	Ala 215	Gln	Thr	Asn	Asn	Pro 220	Phe	Gly	Ile	Ile
Gly 225	Ala	Ala	Thr	Asp	Val 230	Thr	Leu	Gly	Ala	Tyr 235	Arg	Val	Phe	Gly	Cys 240
Asn	Gly	Asp	Thr	Pro 245	Asn	Asp	Val	Leu	11e 250	Ala	Ala	Tyr	Asn	Met 255	Ala
Tyr	Glu	Ala	Gly 260	Ser	Asp	Ile	Ile	Thr 265	Ala	Ser	Ile	Gly	Gly 270	Pro	Ser
Gly	Trp	Ser 275	Glu	Asp	Pro	Trp	Ala 280	Ala	Val	Val	Thr	Arg 285	Ile	Val	Glu
Asn	Gly 290	Val	Pro	Cys	Val	Val 295	Ser	Ala	Gly	Asn	Asp 300	Gly	Asp	Ala	Gly
Ile 305	Phe	Tyr	Ala	Ser	Thr 310	Ala	Ala	Asn	Gly	Lys 315	Lys	Val	Thr	Ala	11e 320
Ala	Ser	Val	Asp	Asn	Ile	Val	Thr	Pro	Ala	Leu	Leu	Ser	Asn	Ala	Ser

Tyr	Thr	Leu	Asn 340	Gly	Thr	Asp	Asp	Phe 345	Phe	Gly	Phe	Thr	Ala 350	Gly	Asp
Pro	Gly	Ser 355	Trp	Asp	Asp	Val	A sn 360	Leu	Pro	Leu	Trp	Ala 365	Val	Ser	Phe
Asp	Thr 370	Thr	Asp	Pro	Ala	Asn 375	Gly	Cys	Asn	Pro	Tyr 380	Pro	Asp	Ser	Thr
Pro 385	Asp	Leu	Ser	Gly	Tyr 390	Ile	Val	Leu	Ile	Arg 395	Arg	Gly	Thr	Cys	Thr 400
Phe	Val	Glu	Lys	Ala 405	Ser	Tyr	Ala	Ala	Ala 410	Lys	Gly	Ala	Lys	Tyr 415	Val
Met	Phe	Tyr	Asn 420	Asn	Val	Gln	Gln	Gly 425	Thr	Val	Thr	Val	Ser 430	Ala	Ala
Glu	Ala	Lys 435	Gly	Ile	Glu	Gly	Val 440	Ala	Met	Val	Thr	Ala 445	Gln	Gln	Gly
Glu	Ala 450	Trp	Val	Arg	Ala	Leu 455	Glu	Ala	Gly	Ser	Glu 460	Val	Val	Leu	His
Met 465	Lys	Asp	Pro	Leu	Lys 470	Ala	Gly	Lys	Phe	Leu 475	Thr	Thr	Thr	Pro	Asn 480
Thr	Ala	Thr	Gly	Gly 485	Phe	Met	Ser	Asp	Tyr 490	Thr	Ser	Trp	Gly	Pro 495	Thr
Trp	Glu	Val	Glu 500	Val	Lys	Pro	Gln	Phe 505	Gly	Thr	Pro	Gly	Gly 510	Ser	Ile
Leu	Ser	Thr 515	Tyr	Pro	Arg	Ala	Leu 520	Gly	Ser	Tyr	Ala	Val 525	Leu	Ser	Gly
Thr	Ser 530	Met	Ala	Cys	Pro	Leu 535	Ala	Ala	Ala	Ile	Tyr 540	Ala	Leu	Leu	Ile
Asn 545	Thr	Arg	Gly	Thr	Lys 550	Asp	Pro	Lys	Thr	Leu 555	Glu	Asn	Leu	Ile	Ser 560
Ser	Thr	Ala	Arg	Pro 565	Asn	Leu	Phe	Arg	Leu 570	Asn	Gly	Glu	Ser	Leu 575	Pro
Leu	Leu	Ala	Pro 580	Val	Pro	Gln	Gln	Gly 585	Gly	Gly	Ile	Val	Gln 590	Ala	Trp

Asp	Ala	Ala 595	Gln	Ala	Thr	Thr	Leu 600	Leu	Ser	Val	Ser	Ser 605	Leu	Ser	Phe
Asn	Asp 610	Thr	Asp	His	Phe	Lys 615	Pro	Val	Gln	Thr	Phe 620	Thr	Ile	Thr	Asn
Thr 625	Gly	Lys	Lys	Ala	Val 630	Thr	Tyr	Ser	Leu	Ser 635	Asn	Val	Gly	Ala	Ala 640
Thr	Ala	Tyr	Thr	Phe 645	Ala	Asp	Ala	Lys	Ser 650	Ile	Glu	Pro	Ala	Pro 655	Phe
Pro	Asn	Glu	Leu 660	Thr	Ala	Asp	Phe	Ala 665	Ser	Leu	Thr	Phe	Val 670	Pro	Lys
Arg	Leu	Thr 675	Ile	Pro	Ala	Gly	Lys 680	Arg	Gln	Thr	Val	Thr 685	Val	Ile	Ala
Lys	Pro 690	Ser	Glu	Gly	Val	Asp 695	Ala	Lys	Arg	Leu	Pro 700	Val	Tyr	Ser	Gly
Tyr 705	Ile	Ala	Ile	Asn	Gly 710	Ser	Asp	Ser	Ser	Ala 715	Leu	Ser	Leu	Pro	Tyr 720
Leu	Gly	Val	Val	Gly 725	Ser	Leu	His	Ser	Ala 730	Val	Val	Leu	Asp	Ser 735	Asn
Gly	Ala	Arg	Ile 740	Ser	Leu	Ala	Ser	Asp 745	Asp	Thr	Asn	Lys	Pro 750	Leu	Pro
Ala	Asn	Thr 755	Ser	Phe	Val	Leu	Pro 760	Pro	Ala	Gly	Phe	Pro 765	Asn	Asp	Thr
Ser	Tyr 770	Ala	Asn	Ser	Thr	Asp 775	Leu	Pro	Lys	Leu	Val 780	Val	Asp	Leu	Ala
Met 785	Gly	Ser	Ala	Leu	Leu 790	Arg	Ala	Asp	Val	Val 795	Pro	Leu	Ser	Gly	Gly 800
Ala	Ala	Thr	Ala	Thr 805	Ala	Arg	Leu	Thr	Arg 810	Thr	Val	Phe	Gly	Thr 815	Arg
Thr	Ile	Gly	Gln 820	Pro	Tyr	Gly	Leu	Pro 825	Ala	Arg	Tyr	Asn	Pro 830	Arg	Gly
Thr	Phe	Glu 835	Tyr	Ala	Trp	Asp	Gly 840	Arg	Leu	Asp	Asp	Gly 845	Ser	Tyr	Ala

Asp Ala Lys Arg Arg Glu Tyr Arg Glu Tyr Asp Ala Leu Arg Ile Phe Gly 855

Asp Ala Lys Arg Ala Arg Glu Tyr Asp Ala Ala Glu Thr Val Glu Phe 865

Ash Ile Glu Tyr Leu 885

By Cly Pro Ser Ala Lys Phe Arg Arg Arg Leu 895

Leu 895

Phe

<210> 153

<211> 876

<212> PRT

5

<213> Neurospora crassa

Met 1	Val	Arg	Leu	Gly 5	Leu	Ala	Thr	Thr	Leu 10	Leu	Ala	Ala	Ala	Ser 15	Phe
Ala	Gln	Ala	Ala 20	His	Gln	Lys	Ala	Pro 25	Ala	Val	Val	Pro	Gly 30	Ala	Tyr
Ile	Val	Glu 35	Tyr	Glu	Asp	Ser	His 40	Asp	Pro	Thr	Ser	Ile 45	Leu	Ala	Ser
Ile	Lys 50	Gly	Asp	Ala	Thr	Ile 55	Arg	Lys	Asp	Ile	Arg 60	His	Glu	Leu	Phe
Lys 65	Gly	Ala	Ser	Phe	Gln 70	Phe	Lys	Asp	Leu	Asn 75	Lys	Ala	Asp	Asp	Leu 80
Ala	Ser	Lys	Val	Ala 85	Ala	Met	Ser	Gly	Val 90	Lys	Ala	Leu	Tyr	Pro 95	Val
Arg	Arg	Tyr	Ser 100	Ile	Pro	Glu	His	Thr 105	Val	His	Ser	Thr	Gly 110	Ser	Ala
Val	Gln	Glu 115	Val	Val	Ala	Lys	Arg 120	Asp	Thr	Gly	Asn	Asp 125	Thr	Phe	Ser
Pro	His 130	Leu	Met	Thr	Gln	Val 135	Asn	Lys	Phe	Arg	Asp 140	Ser	Gly	Ile	Thr
Gly 145	Lys	Gly	Ile	Lys	Ile 150	Ala	Val	Ile	Asp	Thr 155	Gly	Val	Asp	Tyr	Leu 160

His	Pro	Ala	Leu	Gly 165	Gly	Cys	Phe	Gly	Pro 170	Gly	Суз	Leu	Val	Ser 175	Tyr
Gly	Thr	Asp	Leu 180	Val	Gly	Asp	Asp	Phe 185	Asn	Gly	Ser	Asn	Thr 190	Pro	Val
Pro	Asp	Ser 195	Asp	Pro	Met	Asp	Thr 200	Cys	Asn	Gly	His	Gly 205	Ser	His	Val
Leu	Gly 210	Leu	Leu	Ser	Ala	Asn 215	Thr	Asn	Asn	Pro	Tyr 220	Gly	Ile	Ile	Gly
Ala 225	Ala	Pro	Asp	Val	Thr 230	Leu	Gly	Ala	Tyr	Arg 235	Val	Phe	Gly	Cys	Ser 240
Gly	Asp	Val	Gly	Asn 245	Asp	Ile	Leu	Ile	Glu 250	Ala	Tyr	Leu	Lys	Ala 255	Tyr
Asp	Asp	Gly	Ser 260	Asp	Ile	Ile	Thr	Ala 265	Ser	Ile	Gly	Gly	Ala 270	Ser	Gly
Trp	Pro	Glu 275	Asp	Ser	Trp	Ala	Ala 280	Val	Val	Ser	Arg	Ile 285	Val	Glu	Lys
Gly	Val 290	Pro	Cys	Leu	Val	Ser 295	Ala	Gly	Asn	Asp	Gly 300	Ala	Thr	Gly	Ile
Phe 305	Tyr	Ala	Ser	Thr	Ala 310	Ala	Asn	Gly	Lys	Arg 315	Val	Thr	Ala	Val	Ala 320
Ser	Val	Asp	Asn	Ile 325	Leu	Ala	Pro	Ala	Leu 330	Leu	Ser	Glu	Ala	Ser 335	Tyr
Ser	Val	Ala	Asn 340	Gly	Ser	Leu	Ser	Thr 345	Phe	Gly	Phe	Thr	Ala 350	Gly	Ser
Pro	Ser	Ala 355	Trp	Ala	Asn	Val	Ser 360	Leu	Pro	Val	Trp	Ser 365	Val	Asn	Phe
Asn	Thr 370	Ala	Asp	Ala	Ala	Asn 375	Gly	Cys	Glu	Ala	Phe 380	Pro	Asp	Asp	Thr
Pro 385	Asp	Leu	Ser	Lys	Tyr 390	Ile	Val	Leu	Ile	Arg 395	Arg	Gly	Thr	Cys	Thr 400
Phe	Val	Gln	Lys	Ala	Gln	Asn	Ala	Ala	Ala	Lys	Gly	Ala	Lys	Tyr	Ile

				405					410					415	
Ile	Tyr	Tyr	Asn 420	Asn	Ala	Ser	Gly	Ser 425	Thr	Lys	Val	Asp	Val 430	Ser	Ala
Val	Ala	Asp 435	Val	Lys	Ala	Ala	Ala 440	Met	Val	Thr	Ser	Glu 445	Thr	Gly	Ala
Ala	Trp 450	Ile	Lys	Ala	Leu	Gln 455	Ala	Gly	Thr	Gln	Val 460	Thr	Val	Asn	Met
Ala 465	Asp	Pro	Glu	Thr	Ala 470	Pro	Lys	Asn	Leu	Asn 475	Asn	Phe	Pro	Asn	Thr 480
Ala	Thr	Pro	Gly	Phe 485	Leu	Ser	Thr	Tyr	Thr 490	Ser	Trp	Gly	Pro	Thr 495	Tyr
Glu	Val	Asp	Val 500	Lys	Pro	Gln	Ile	Ser 505	Ser	Pro	Gly	Gly	Met 510	Ile	Leu
Ser	Thr	Tyr 515	Pro	Arg	Ala	Leu	Gly 520	Ser	Tyr	Ala	Val	Leu 525	Ser	Gly	Thr
Ser	Met 530	Ala	Cys	Pro	Leu	Ala 535	Ala	Ala	Thr	Trp	Ala 540	Leu	Val	Met	Gln
Lys 545	Arg	Gly	Thr	Lys	Asp 550	Pro	Lys	Val	Leu	Glu 555	Asn	Leu	Phe	Ser	Ala 560
Thr	Ala	His	Pro	Asn 565	Leu	Phe	Asn	Asp	Gly 570	Thr	Lys	Thr	Tyr	Pro 575	Met
Leu	Ala	Pro	Val 580	Ala	Gln	Gln	Gly	Ala 585	Gly	Leu	Ile	Gln	Ala 590	Trp	Asp
Ala	Ala	A sn 595	Ala	Asn	Ala	Leu	Leu 600	Ser	Val	Ser	Ser	Ile 605	Ser	Phe	Asn
Asp	Thr 610	Glu	His	Phe	Lys	Pro 615	Leu	Gln	Ser	Phe	Glu 620	Val	Thr	Asn	Thr
Gly 625	Lys	Lys	Ala	Val	Thr 630	Tyr	Gln	Leu	Gly	His 635	Thr	Ser	Ala	Ala	Thr 640
Ala	Tyr	Thr	Phe	Ala 645	Asn	Asp	Thr	Ser	Ile 650	Gly	Pro	Ala	Ala	Phe 655	Pro

Asn	Glu	Leu	Val 660	Asp	Ala	Lys	Ala	Thr 665	Leu	Val	Leu	Thr	Pro 670	Ala	Lys
Leu	Thr	Leu 675	Asn	Pro	Gly	Gln	Lys 680	Lys	Thr	Val	Thr	Val 685	Leu	Ala	Ile
Pro	Pro 690	Leu	Gly	Leu	Asp	Ala 695	Lys	Arg	Leu	Pro	Val 700	Tyr	Ser	Gly	Tyr
Ile 705	Thr	Leu	Asn	Gly	Thr 710	Asp	Ser	Thr	Gly	Tyr 715	Ser	Leu	Pro	Tyr	Gln 720
Gly	Val	Val	Gly	Ser 725	Met	Arg	Ser	Val	Thr 730	Val	Leu	Asp	Lys	Gln 735	Asn
Ser	Tyr	Leu	Ser 740	Gln	Ser	Ser	Asp	Ala 745	Thr	Tyr	Ala	Pro	Val 750	Ala	Ala
Gly	Thr	Thr 755	Phe	Thr	Leu	Pro	Pro 760	Ala	Gly	Lys	Ala	Asn 765	Asp	Thr	Leu
Tyr	Ala 770	Thr	Thr	Val	Tyr	Pro 775	Thr	Ile	Val	Leu	Thr 780	Leu	Ser	Met	Gly
Ser 785	Ala	Glu	Val	His	Ala 790	Asp	Val	Val	Asn	Ser 795	Lys	Gly	Lys	Thr	Ile 800
Gly	Gln	Val	Leu	Thr 805	Phe	Pro	Ala	Arg	Trp 810	Asn	Pro	Arg	Gly	Thr 815	Phe
Glu	Trp	Asn	Trp 820	Asp	Gly	Ala	Leu	Ser 825	Asp	Gly	Thr	Tyr	Ala 830	Pro	Ala
Asp	Thr	Tyr 835	Lys	Ile	Thr	Leu	Lys 840	Ala	Leu	Lys	Ile	Tyr 845	Gly	Asn	Ser
Lys	Trp 850	Pro	Leu	Asp	Trp	Glu 855	Thr	Gln	Thr	Thr	Glu 860	Pro	Phe	Thr	Ile
Lys 865	Tyr	Ala	Ala	Lys	Ser 870	Lys	Arg	Ala	Phe	Thr 875	Ala				

<210> 154 <211> 534 <212> PRT 5 <213> Myceliophthora thermophila <400> 154

Met 1	Arg	Gly	Leu	Val 5	Ala	Phe	Ser	Leu	Ala 10	Ala	Cys	Val	Ser	Ala 15	Ala
Pro	Ser	Phe	Lys 20	Thr	Glu	Thr	Ile	Asn 25	Gly	Glu	His	Ala	Pro 30	Ile	Leu
Ser	Ser	Ser 35	Asn	Ala	Glu	Val	Val 40	Pro	Asn	Ser	Tyr	Ile 45	Ile	Lys	Phe
Lys	Lys 50	His	Val	Asp	Glu	Ser 55	Ser	Ala	Ser	Ala	His 60	His	Ala	Trp	Ile
Gln 65	Asp	Ile	His	Thr	Ser 70	Arg	Glu	Lys	Val	Arg 75	Gln	Asp	Leu	Lys	Lys 80
Arg	Gly	Gln	Val	Pro 85	Leu	Leu	Asp	Asp	Val 90	Phe	His	Gly	Leu	Lys 95	His
Thr	Tyr	Lys	Ile 100	Gly	Gln	Glu	Phe	Leu 105	Gly	Tyr	Ser	Gly	His 110	Phe	Asp
Asp	Glu	Thr 115	Ile	Glu	Gln	Val	Arg 120	Arg	His	Pro	Asp	Val 125	Glu	Tyr	Ile
Glu	Arg 130	Asp	Ser	Ile	Val	His 135	Thr	Met	Arg	Val	Thr 140	Glu	Glu	Thr	Cys
Asp 145	Gly	Glu	Leu	Glu	Lys 150	Ala	Ala	Pro	Trp	Gly 155	Leu	Ala	Arg	Ile	Ser 160
His	Arg	Asp	Thr	Leu 165	Gly	Phe	Ser	Thr	Phe 170	Asn	Lys	Tyr	Leu	Tyr 175	Ala
Ala	Glu	Gly	Gly 180	Glu	Gly	Val	Asp	Ala 185	Tyr	Val	Ile	Asp	Thr 190	Gly	Thr
Asn	Ile	Glu 195	His	Val	Asp	Phe	Glu 200	Gly	Arg	Ala	Lys	Trp 205	Gly	Lys	Thr
Ile	Pro 210	Ala	Gly	Asp	Ala	Asp 215	Val	Asp	Gly	Asn	Gly 220	His	Gly	Thr	His
Cys 225	Ser	Gly	Thr	Ile	Ala 230	Gly	Lys	Lys	Tyr	Gly 235	Val	Ala	Lys	Lys	Ala 240
Asn	Val	Tyr	Ala	Val		Val	Leu	Arg	Ser	Asn	Gly	Ser	Gly	Thr	Met

Ala	Asp	Val	Val 260	Ala	Gly	Val	Glu	Trp 265	Ala	Ala	Lys	Ser	His 270	Leu	Glu
Gln	Val	Gln 275	Ala	Ala	Lys	Asp	Gly 280	Lys	Arg	Lys	Gly	Phe 285	Lys	Gly	Ser
Val	Ala 290	Asn	Met	Ser	Leu	Gly 295	Gly	Gly	Lys	Thr	Arg 300	Ala	Leu	Asp	Asp
Thr 305	Val	Asn	Ala	Ala	Val 310	Ser	Val	Gly	Ile	His 315	Phe	Ala	Val	Ala	Ala 320
Gly	Asn	Asp	Asn	Ala 325	Asp	Ala	Cys	Asn	Tyr 330	Ser	Pro	Ala	Ala	Ala 335	Glu
Lys	Ala	Val	Thr 340	Val	Gly	Ala	Ser	Ala 345	Ile	Asp	Asp	Ser	Arg 350	Ala	Tyr
Phe	Ser	Asn 355	Tyr	Gly	Lys	Cys	Thr 360	Asp	Ile	Phe	Ala	Pro 365	Gly	Leu	Ser
Ile	Leu 370	Ser	Thr	Trp	Ile	Gly 375	Ser	Lys	Tyr	Ala	Thr 380	Asn	Thr	Ile	Ser
Gly 385	Thr	Ser	Met	Ala	Ser 390	Pro	His	Ile	Ala	Gly 395	Leu	Leu	Ala	Tyr	Tyr 400
Leu	Ser	Leu	Gln	Pro 405	Ala	Thr	Asp	Ser	Glu 410	Tyr	Ser	Val	Ala	Pro 415	Ile
Thr	Pro	Glu	Lys 420	Met	Lys	Ser	Asn	Leu 425	Leu	Lys	Ile	Ala	Thr 430	Gln	Asp
Ala	Leu	Thr 435	Asp	Ile	Pro	Asp	Glu 440	Thr	Pro	Asn	Leu	Leu 445	Ala	Trp	Asn
Gly	Gly 450	Gly	Cys	Asn	Asn	Tyr 455	Thr	Ala	Ile	Val	Glu 460	Ala	Gly	Gly	Tyr
Lys 465	Ala	Lys	Lys	Lys	Thr 470	Thr	Thr	Asp	Lys	Val 475	Asp	Ile	Gly	Ala	Ser 480
Val	Ser	Glu	Leu	Glu 485	Lys	Leu	Ile	Glu	His 490	Asp	Phe	Glu	Val	Ile 495	Ser
Gly	Lys	Val	Val 500	Lys	Gly	Val	Ser	Ser 505	Phe	Ala	Asp	Lys	Ala 510	Glu	Lys

Phe Ser Glu Lys Ile His Glu Leu Val Asp Glu Glu Leu Lys Glu Phe 515 520 525

Leu Glu Asp Ile Ala Ala 530

<210> 155 <211> 396

5

<212> PRT

<213> Neurospora crassa

Met 1	Lys	Leu	Ser	Ala 5	Val	Leu	Ala	Leu	Leu 10	Pro	Leu	Ala	Met	Ala 15	Ala
Pro	Ser	Ala	Pro 20	Ile	Asp	Lys	Arg	Ala 25	Pro	Ile	Leu	Glu	Ala 30	Arg	Ala
Gly	Thr	Gln 35	Ala	Val	Pro	Gly	Lys 40	Tyr	Ile	Val	Lys	Leu 45	Arg	Glu	Thr
Ala	Ser 50	Asp	Asp	Asp	Leu	Asp 55	Lys	Ala	Val	Lys	Lys 60	Leu	Gly	Asn	Ser
Lys 65	Ala	Asp	His	Val	Tyr 70	Lys	His	Ala	Phe	Arg 75	Gly	Phe	Ala	Gly	Arg 80
Ile	Asp	Asp	Lys	Thr 85	Leu	Asp	Asp	Ile	Arg 90	Ser	Leu	Pro	Glu	Val 95	Glu
Tyr	Val	Glu	Gln 100	Glu	Ala	Val	Phe	Thr 105	Ile	Asn	Thr	Tyr	Thr 110	Ser	Gln
Ser	Ser	Val 115	Pro	Ser	Trp	Gly	Leu 120	Ala	Arg	Leu	Ser	Ser 125	Lys	Thr	Thr
	Lys 130	Thr	Thr	Tyr	Val						Gly 140		Gly	Thr	Cys
Ala 145	Tyr	Ile	Ile	Asp	Thr 150	Gly	Ile	Asn	Thr	Ala 155	His	Ser	Asp	Phe	Gly 160
Gly	Arg	Ala	Thr	Trp 165	Leu	Ala	Asn	Tyr	Ala 170	Gly	Asp	Gly	Ile	Asn 175	Ser
Asp	Gly	Asn	Gly 180	His	Gly	Thr	His	Val 185	Ala	Gly	Thr	Val	Gly 190	Gly	Thr

Thr	Tyr	Gly 195	Val	Ala	Lys	Lys	Thr 200	Gln	Leu	Tyr	Ala	Val 205	Lys	Val	Leu
Asp	Ser 210	Asn	Gly	Ser	Gly	Ser 215	Asn	Ser	Gly	Val	Ile 220	Ala	Gly	Met	Asn
Phe 225	Val	Ala	Gln	Asp	Ala 230	Gln	Ser	Arg	Asn	Cys 235	Pro	Asn	Gly	Thr	Val 240
Ala	Asn	Met	Ser	Leu 245	Gly	Gly	Gly	Tyr	Ser 250	Ala	Ser	Thr	Asn	Ser 255	Ala
Ala	Ala	Ala	Met 260	Val	Arg	Ala	Gly	Val 265	Phe	Leu	Ala	Val	Ala 270	Ala	Gly
Asn	Asp	Gly 275	Ala	Asn	Ala	Ala	Asn 280	Tyr	Ser	Pro	Ala	Ser 285	Glu	Pro	Thr
Val	Cys 290	Thr	Val	Gly	Ala	Thr 295	Thr	Ser	Ala	Asp	Ala 300	Ile	Ala	Tyr	Tyr
Ser 305	Asn	Tyr	Gly	Thr	Ile 310	Val	Asp	Ile	Phe	Ala 315	Pro	Gly	Thr	Ser	Ile 320
Thr	Ser	Ala	Trp	Ile 325	Gly	Ser	Thr	Thr	Ala 330	Lys	Asn	Thr	Ile	Ser 335	Gly
Thr	Ser	Met	Ala 340	Thr	Pro	His	Ile	Thr 345	Gly	Leu	Gly	Ala	Tyr 350	Leu	Leu
Thr	Leu	Leu 355	Gly	Lys	Lys	Ser	Pro 360	Ala	Ala	Leu	Cys	Ser 365	Tyr	Ile	Ala
Ser	Thr 370	Ala	Asn	Ser	Gly	Val 375	Ile	Ser	Gly	Ile	Pro 380	Arg	Gly	Thr	Val
Asn 385	Lys	Leu	Ala	Phe	Asn 390	Gly	Asn	Pro	Ser	Ala 395	Tyr				

<210> 156 <211> 392 <212> PRT <213> Myceliophthora thermophila

<400> 156

5

Met His Phe Ser Thr Ala Leu Leu Ala Phe Leu Pro Ala Ala Leu Ala 1 5 10 15

Ala Pro Thr	Ala Glu 20	Thr Let	ı Asp	Lys 25	Arg	Ala	Pro	Ile	Leu 30	Thr	Ala
Arg Ala Gly 35	Gln Val	Val Pro	Gly 40	Lys	Tyr	Ile	Ile	Lys 45	Leu	Arg	Asp
Gly Ala Ser 50	Asp Asp	Val Let 55	ı Glu	Ala	Ala	Ile	Gly 60	Lys	Leu	Arg	Ser
Lys Ala Asp 65	His Val	Tyr Aro	g Gly	Lys	Phe	Arg 75	Gly	Phe	Ala	Gly	Lys 80
Leu Glu Asp	Asp Val 85	Leu Ası	Ala	Ile	Arg 90	Leu	Leu	Pro	Glu	Val 95	Glu
Tyr Val Glu	Glu Glu 100	Ala Ile	Phe	Thr 105	Ile	Asn	Ala	Tyr	Thr 110	Ser	Gln
Ser Asn Ala 115	Pro Trp	Gly Let	1 Ala 120	Arg	Leu	Ser	Ser	Lys 125	Thr	Ala	Gly
Ser Thr Thr 130	Tyr Thr	Tyr Ası		Ser	Ala	Gly	Glu 140	Gly	Thr	Cys	Ala
Tyr Val Ile 145	Asp Thr	Gly Ile 150	yr Tyr	Thr	Ser	His 155	Ser	Asp	Phe	Gly	Gly 160
Arg Ala Thr	Phe Ala 165	Ala Ası	n Phe	Val	Asp 170	Ser	Ser	Asn	Thr	Asp 175	Gly
Asn Gly His	Gly Thr 180	His Val	Ala	Gly 185	Thr	Ile	Gly	Gly	Thr 190	Thr	Tyr
Gly Val Ala 195	Lys Lys	Thr Lys	Leu 200	Tyr	Ala	Val	Lys	Val 205	Leu	Gly	Ser
Asp Gly Ser 210	Gly Thr	Thr Ser	_	Val	Ile	Ala	Gly 220	Ile	Asn	Phe	Val
Ala Asp Asp 225	Ala Pro	Lys Arg 230	g Ser	Cys	Pro	Lys 235	Gly	Val	Val	Ala	Asn 240
Met Ser Leu	Gly Gly 245	Ser Tyr	Ser	Ala	Ser 250	Ile	Asn	Asn	Ala	Ala 255	Ala
Ala Leu Val	Arg Ser	Gly Val	Phe	Leu	Ala	Val	Ala	Ala	Gly	Asn	Glu

Asn Gln Asn Ala Ala Asn Ser Ser Pro Ala Ser Glu Ala Ser Ala Cys Thr Val Gly Ala Thr Asp Arg Asn Asp Ala Lys Ala Ser Tyr Ser Asn Tyr Gly Ser Val Val Asp Ile Gln Ala Pro Gly Ser Asn Ile Leu Ser Thr Trp Ile Gly Ser Thr Ser Ala Thr Asn Thr Ile Ser Gly Thr Ser Met Ala Ser Pro His Ile Ala Gly Leu Gly Ala Tyr Leu Leu Ala Leu Glu Gly Ser Lys Thr Pro Ala Glu Leu Cys Asn Tyr Ile Lys Ser Thr Gly Asn Ala Ala Ile Thr Gly Val Pro Ser Gly Thr Thr Asn Arg Ile Ala Phe Asn Gly Asn Pro Ser Ala

<210> 157

<211> 433

<212> PRT

<213> Neurospora crassa

Met 1	Val	Arg	Phe	Ser 5	Val	Ala	Ala	Ala	Phe 10	Leu	Leu	Ser	Ala	Leu 15	Gly
Val	Thr	Ala	Ala 20	Pro	Ser	Gly	Gly	Arg 25	His	Asn	His	Gln	Asn 30	Thr	Gln
Asn	Thr	Gly 35	Ala	Thr	Ala	Gly	Asn 40	Ala	Ala	Gly	Val	Pro 45	Val	Ala	Asn
Ser	Asp 50	Ile	Ser	Asn	Ile	Ile 55	Pro	Gly	Arg	Tyr	Ile 60	Val	Val	Tyr	Asn
Asn 65	Thr	Phe	Gly	Glu	Glu 70	Ala	Ile	Asn	Ala	His 75	Gln	Ile	Lys	Val	Thr 80
Ser	Leu	Val	Ala	Lys	Arg	Asn	Leu	Gly	Lys	Arg	Asp	Ala	Lys	Thr	Gly

				85					90					95	
Arg	Ile	Met	Ser 100	Pro	Ser	Val	Lys	Ala 105	Phe	Lys	Met	Gly	Thr 110	Trp	Arg
Ala	Met	Ala 115	Leu	Asp	Ala	Asp	Asp 120	Asp	Met	Ile	Asn	Asp 125	Ile	Asn	Ser
Ala	Gln 130	Glu	Val	Glu	Tyr	Ile 135	Glu	Ala	Asp	Gln	Tyr 140	Val	Lys	Leu	Asn
Ala 145	Leu	Thr	Ser	Gln	Asn 150	Ser	Thr	Thr	Thr	Gly 155	Leu	Ala	Arg	Leu	Ser 160
His	Ala	Gly	Pro	Ser 165	Lys	Lys	Ala	Ala	Pro 170	Tyr	Ile	Phe	Asp	Ser 175	Ser
Ala	Gly	Glu	Gly 180	Ile	Thr	Ala	Phe	Val 185	Val	Asp	Thr	Gly	Ile 190	Arg	Val
Thr	His	Ser 195	Glu	Tyr	Glu	Gly	Arg 200	Ala	Thr	Phe	Ala	Ala 205	Asn	Phe	Val
Asn	Asn 210	Val	Asp	Thr	Asp	Glu 215	Asn	Gly	His	Gly	Ser 220	His	Val	Ala	Gly
Thr 225	Ile	Ala	Gly	Ala	Thr 230	Phe	Gly	Val	Ala	Lys 235	Lys	Ala	Lys	Leu	Val 240
Ala	Val	Lys	Val	Leu 245	Asp	Gly	Ser	Gly	Ser 250	Gly	Ser	Asn	Ser	Gly 255	Val
Leu	Gln	Gly	Met 260	Gln	Phe	Val	Ala	Asp 265	Thr	Ala	Thr	Ser	Gln 270	Lys	Leu
Gly	Gly	Lys 275	Ala	Val	Leu	Asn	Met 280	Ser	Leu	Gly	Gly	Gly 285	Lys	Ser	Arg
Ala	Ile 290	Asn	Ser	Ala	Ile	Asn 295	Gln	Ile	Ala	Ala	Ala 300	Gly	Val	Val	Pro
Val 305	Val	Ala	Ala	Gly	Asn 310	Glu	Asn	Gln	Asp	Thr 315	Ala	Asn	Thr	Ser	Pro 320
Gly	Ser	Ala	Pro	Ala 325	Ala	Ile	Thr	Val	Gly 330	Ala	Ile	Asp	Gln	Arg 335	Thr

Asp	Ala	Arg	Ala	\mathtt{Ser}	Phe	\mathtt{Ser}	Asn	Phe	${ t Gly}$	Ala	Gly	Val	Asp	Ile	Phe
			340					345					350		

Ala Pro Gly Val Asn Val Leu Ser Val Gly Ile Lys Ser Asp Thr Asp 355 360 365

Thr Asp Thr Leu Ser Gly Thr Ser Met Ala Ser Pro His Val Ala Gly 370 375 380

Leu Ala Ala Tyr Leu Met Ala Leu Glu Gly Leu Thr Asp Val Thr Ala 385 390 395 400

Val Gly Asn Arg Ile Lys Glu Leu Ala Gln Lys Thr Gly Ala Lys Val 405 410 415

Thr Asn Asn Val Arg Gly Thr Thr Ser Leu Ile Ala Asn Asn Gly Asn 420 425 430

Leu

<210> 158

<211> 420

<212> PRT

5

<213> Myceliophthora thermophila

Met 1	Ala	Gly	Arg	Leu 5	Leu	Leu	Cys	Leu	Thr 10	Ala	Ala	Leu	Ser	Ala 15	Leu
Gly	Val	Ser	Ala 20	Ala	Pro	Ala	Pro	Asp 25	Ala	Ser	Gly	Arg	Pro 30	Phe	Ile
Gly	Val	Pro 35	Val	Ser	Asn	Pro	Gly 40	Ile	Ala	Asn	Ala	Ile 45	Pro	Asn	Arg
Tyr	Ile 50	Val	Val	Tyr	Asn	Asn 55	Thr	Phe	Asn	Asp	Glu 60	Asp	Ile	Asp	Leu
His 65	Gln	Ser	Asn	Val	Ile 70	Lys	Thr	Ile	Ala	Lys 75	Arg	Asn	Ile	Ala	Lys 80
Arg	Ser	Leu	Thr	Gly 85	Lys	Leu	Leu	Ser	Thr 90	Thr	Val	Asn	Thr	Tyr 95	Lys
Ile	Asn	Asn		_							Asp	_		Thr	Ile

Asn	Glu	Ile 115	Phe	Ala	Ala	Lys	Glu 120	Val	Ser	Tyr	Ile	Glu 125	Gln	Asp	Ala
Val	Ile 130	Ser	Leu	Asn	Val	Arg 135	Gln	Met	Gln	Ser	Gln 140	Ala	Thr	Thr	Gly
Leu 145	Ala	Arg	Ile	Ser	His 150	Ala	Gln	Pro	Gly	Ala 155	Arg	Thr	Tyr	Ile	Phe 160
Asp	Ser	Ser	Ala	Gly 165	Glu	Gly	Ile	Thr	Ala 170	Tyr	Val	Val	Asp	Thr 175	Gly
Ile	Arg	Val	Thr 180	His	Glu	Glu	Phe	Glu 185	Gly	Arg	Ala	Thr	Phe 190	Ala	Ala
Asn	Phe	Ile 195	Asp	Asp	Val	Asp	Thr 200	Asp	Glu	Gln	Gly	His 205	Gly	Ser	His
Val	Ala 210	Gly	Thr	Ile	Gly	Gly 215	Lys	Thr	Phe	Gly	Val 220	Ala	Lys	Lys	Val
Asn 225	Leu	Val	Ala	Val	Lys 230	Val	Leu	Gly	Ala	Asp 235	Gly	Ser	Gly	Ser	Asn 240
Ser	Gly	Val	Ile	Ala 245	Gly	Met	Gln	Phe	Val 250	Ala	Ser	Asn	Ala	Thr 255	Ala
Met	Gly	Leu	Lys 260	Gly	Arg	Ala	Val	Met 265	Asn	Met	Ser	Leu	Gly 270	Gly	Pro
Ala	Ser	Arg 275	Ala	Val	Asn	Ser	Ala 280	Ile	Asn	Gln	Val	Glu 285	Ala	Ala	Gly
Val	Val 290	Pro	Val	Val	Ala	Ala 295	Gly	Asn	Glu	Ser	Gln 300	Asp	Thr	Ala	Asn
Thr 305	Ser	Pro	Gly	Ser	Ala 310	Glu	Ala	Ala	Ile	Thr 315	Val	Gly	Ala	Ile	Asp 320
Gln	Thr	Asn	Asp	Arg 325	Met	Ala	Ser	Phe	Ser 330	Asn	Phe	Gly	Glu	Leu 335	Val
Asp	Ile	Phe	Ala 340	Pro	Gly	Val	Asn	Val 345	Gln	Ser	Val	Gly	Ile 350	Arg	Ser
Asp	Thr	Ser 355	Thr	Asn	Thr	Leu	Ser 360	Gly	Thr	Ser	Met	Ala 365	Ser	Pro	His

Val Ala Gly Leu Ala Ala Tyr Ile Met Ser Leu Glu Asn Ile Thr Gly 370 375 380

Val Gln Ala Val Ser Asp Arg Leu Lys Glu Leu Ala Gln Ala Thr Gly 385 390 395 400

Ala Arg Ala Arg Gly Val Pro Arg Gly Thr Thr Thr Leu Ile Ala Asn 405 410 415

Asn Gly Phe Ala 420

<210> 159

<211> 421

<212> PRT

5

<213> Neurospora crassa

Met 1	Val	Gly	Leu	Lys 5	Asn	Val	Ala	Leu	Phe 10	Ala	Ala	Ser	Ile	Ile 15	Leu
Pro	Ala	Ser	Ile 20	Thr	Trp	Ala	Ala	Pro 25	Ile	Ile	Glu	Val	Glu 30	Thr	Lys
Pro	Ile	Pro 35	Glu	Lys	Tyr	Ile	Val 40	Leu	Leu	Lys	Pro	His 45	Ala	Asp	Leu
Glu	Gly 50	His	Leu	Ser	Trp	Ala 55	Lys	Asp	Val	His	Ala 60	Arg	Ser	Leu	Ser
Arg 65	Arg	Asp	Thr	Ala	Gly 70	Val	His	Lys	Ala	Trp 75	Ser	Val	Gly	Ser	Lys 80
Phe	Lys	Ala	Tyr	Ala 85	Gly	Glu	Phe	Asp	Glu 90	Glu	Thr	Leu	Lys	Ile 95	Ile
Gln	Arg	Asp	Glu 100	Arg	Asn	Val	His	Ser 105	Ile	Glu	Pro	Asp	Lys 110	Ser	Trp
Arg	Leu	Tyr 115	Lys	Ser	Asn	Lys	Lys 120	Asp	Asn	Asp	Asp	Ser 125	Asn	Ser	Asp
Asn	Thr 130	Thr	Ile	Ile	Thr	Gln 135	Lys	Gln	Ala	Pro	Trp 140	Gly	Leu	Gly	Tyr
Leu 145	Ser	His	Lys	Gly	Lys 150	Thr	Ser	Ser	Asp	Tyr 155	Val	Tyr	Asn	Ser	Thr 160

Ala Gly	Thr	Gly	Thr 165	Tyr	Ala	Tyr	Val	Val 170	Asp	Thr	Gly	Cys	Trp 175	Lys
Asp His	Val	Glu 180	Phe	Glu	Gly	Arg	Val 185	Gln	Leu	Gly	Tyr	Asn 190	Ala	Tyr
Pro Asp	Ser 195	Pro	Phe	Ile	Asp	Met 200	Asp	Gly	His	Gly	Thr 205	His	Val	Thr
Gly Thr 210		Ile	Ser	Lys	Thr 215	Tyr	Gly	Val	Ala	Lys 220	Asn	Ala	Thr	Val
Ile Cys 225	Val	Lys	Val	Phe 230	His	Gly	Gly	Gly	Ser 235	Ala	Asn	Thr	Ile	Val 240
Met Asp	Gly	Phe	Glu 245	Trp	Ala	Val	Lys	Asp 250	Ile	Ile	Ala	Lys	Lys 255	Arg
Gln Arg	Asn	Ser 260	Val	Ile	Asn	Met	Ser 265	Leu	Gly	Cys	Asp	Arg 270	Ser	Glu
Ala Phe	Asn 275	Ala	Ile	Val	Asp	Ala 280	Ala	Tyr	Asp	Gln	Gly 285	Ile	Leu	Thr
Val Val 290		Ala	Gly	Asn	Glu 295	Asn	Gln	Pro	Ala	Ala 300	Leu	Val	Ser	Pro
Ala Ser 305	Ser	Ala	Arg	Ala 310	Phe	Ser	Val	Gly	Ala 315	Ile	Asp	Asn	Lys	Asn 320
Thr Arg	Ala	Tyr	Phe 325	Ser	Asn	Tyr	Gly	Ala 330	Ile	Val	Asp	Ile	Phe 335	Ala
Pro Gly	Val	Asn 340	Ile	Val	Ser	Thr	Tyr 345	Ile	Gly	Lys	Lys	Asp 350	Gly	Asp
Asn Asn	Arg 355	Thr	Met	Thr	Met	Ser 360	Gly	Thr	Ser	Met	Ala 365	Ser	Pro	His
Val Ala 370	_	Leu	Ala	Leu	Tyr 375	Leu	Lys	Ser	Leu	Asp 380	Pro	Glu	Lys	Tyr
Gly Asn 385	Ser	Ser	Asp	Ala 390	His	Ser	Gly	Leu	Arg 395	Ala	Leu	Gly	Val	Pro 400
Asp Lys	Val	Trp	Asp 405	Ala	Gly	Glu	Met	Ser 410	Pro	Asn	Leu	Val	Ala 415	Tyr

Asn Gly Val Gln Gly 420

<210> 160 <211> 243 5 <212> PRT <213> Myceliophthora thermophila <400> 160

Met 1	Lys	Leu	Ala	Val 5	Leu	Ile	Ala	Thr	Thr 10	Ala	Gly	Leu	Ala	Ala 15	Ala
Leu	Pro	Gln	Gly 20	Val	Ala	Arg	Arg	Gly 25	Val	Gly	Arg	Pro	Leu 30	His	His
Ser	Gly	Pro 35	Asn	Ile	Arg	Asn	Thr 40	Thr	Tyr	Pro	Gln	Tyr 45	Ser	Ser	Asn
Trp	Ala 50	Gly	Ala	Val	Gln	Ile 55	Gly	Thr	Gly	Phe	Thr 60	Ser	Val	Tyr	Gly
Thr 65	Ile	Thr	Val	Pro	Ser 70	Val	His	Asp	Arg	Asn 75	Pro	Asn	Ala	Ala	Ala 80
Ser	Ala	Trp	Val	Gly 85	Ile	Asp	Gly	Asp	Thr 90	Суѕ	Gln	Gln	Ala	Ile 95	Leu
Gln	Thr	Gly	Val 100	Ser	Phe	Tyr	Gly	Asp 105	Gly	Ser	Phe	Asp	Ala 110	Trp	Tyr
Glu	Trp	Ile 115	Pro	Asp	Tyr	Ala	Tyr 120	Ser	Phe	Ser	Asn	Phe 125	Arg	Leu	Ser
Ala	Gly 130	_	Gln		Arg	Met 135		Val				Ser	Lys	Arg	Ala
Gly 145	Val	Ala	Thr	Leu	Glu 150	Asn	Leu	Ser	Thr	Gly 155	Gln	Lys	Val	Ser	His 160
Thr	Phe	Thr	Ser	Thr 165	Pro	Ser	Thr	Leu	Cys 170	Glu	Thr	Asn	Ala	Glu 175	Trp
Ile	Val	Glu	Asp 180	Phe	Gln	Glu	Gly	Ser 185	Ser	Leu	Val	Pro	Phe 190	Ala	Asp
Phe	Gly	Thr 195	Val	Thr	Phe	Thr	Asp 200	Ala	Tyr	Ala	Thr	Gly 205	Ser	Ser	Gly

Thr Val Thr Pro Ser Gly Ala Thr Ile Ile Asp Ile Lys Gln Gly Asn 210 215 220

Glu Val Leu Thr Asn Cys Ala Thr Ser Gly Ser Asp Leu Thr Cys Ser 225 230 235 240

Tyr Thr Gly

<210> 161

<211> 288

<212> PRT

5

<213> Neurospora crassa

Met 1	Lys	Leu	Leu	Ser 5	Pro	Ala	Ile	Ser	Leu 10	Leu	Gly	Val	Ile	Ser 15	Gln
Pro	Ile	Leu	Ala 20	Gln	Phe	Thr	Phe	Thr 25	Ser	Thr	Val	Glu	His 30	Asn	Gly
Val	Pro	Val 35	Pro	Gln	Ala	Glu	Thr 40	Asp	Leu	Lys	Pro	Phe 45	Lys	Pro	Gly
Thr	Leu 50	Gly	Arg	Ile	Arg	Ser 55	Arg	Thr	Asp	Asp	Asp 60	Ser	Gly	Pro	Glu
Ile 65	Gly	Thr	Thr	Thr	Leu 70	Arg	Arg	Val	Lys	Arg 75	Thr	Asn	Pro	Thr	A la 80
Asn	Ser	Asn	Asn	Trp 85	Cys	Gly	Ser	Val	Gln 90	Ser	Thr	Thr	Ser	Ser 95	Asn
Gln	Ile	Lys	Leu 100	Val	His	Gly	Thr	Phe 105	Gln	His	Pro	Thr	Cys 110	Thr	Gln
Arg	Pro	Gly 115	Val	Thr	Gln	Tyr	Pro 120	Gln	Ala	Ala	Ala	Ala 125	Trp	Ile	Gly
Ile	Asp 130	Gly	Asp	Ser	Trp	Thr 135	Ser	Ala	Leu	Leu	Gln 140	Ala	Gly	Thr	Val
Cys 145	Lys	Ile	Asn	Asn	Ser 150	Thr	Gly	Ile	Val	Glu 155	Asn	Glu	Val	Trp	Trp 160
Gln	Trp	Val	Pro	Asn 165	Gly	Ala	Tyr	Thr	Ile 170	Thr	Asn	Ile	Pro	Val 175	Phe

Ala	Gly	Asp	Trp	Phe	Asp	Ile	Thr	Ile	Asn	Thr	Thr	Ser	Ser	Thr	Ala
			180					185					190		

Ala Thr Ile Lys Ile Met Ser Asn Arg Gly Tyr Thr Tyr Ser Val Asn 195 200 205

Ala Trp Gln Gly Ala Thr Leu Ala Arg Val Asp Ala Asp Trp Val Val 210 215 220

Glu Arg Pro Tyr Tyr Gly Ser Thr Leu Ala Gly Phe Ala Gln Phe Thr 225 230 235 240

Gln Val Trp Phe Gln Asn Ala Tyr Ala Thr Leu Thr Ser Gly Thr Ser 245 250 255

Ser Leu Gly Ile Thr Gly Ala Lys Gln Tyr Gln Ile Pro Gly Gly Cys 260 265 270

Ala Ser Ala Glu Tyr Asp Asn Ser Lys Leu Tyr Ala Ala Val Ala Ala 275 280 285

<210> 162

<211> 285

<212> PRT

5

<213> Myceliophthora thermophila

Met 1	Trp	Ser	Ile	Val 5	Arg	Ser	Leu	Ser	Leu 10	Ala	Ser	Leu	Ile	Ser 15	Ser
Ala	Cys	Thr	Val 20	Thr	Ala	Gln	Leu	Ser 25	Phe	Val	Ala	Ser	Val 30	Lys	Gln
His	Gly	Lys 35	Asp	Val	Asp	Ala	Ser 40	Gly	Leu	Ser	Phe	Val 45	Arg	Ile	Pro
Pro	Leu 50	Glu	His	Arg	Trp	His 55	Ala	Ser	Arg	Pro	Arg 60	Arg	Gly	Gln	Asn
Asn 65	Arg	Thr	Val	Glu	Arg 70	Asp	Ala	Val	Ser	Tyr 75	Ser	Ala	Asn	Trp	Cys 80
Gly	Ala	Ser	Gln	His 85	Ala	Ser	Asp	Ser	Asp 90	Gly	Ile	Lys	Ser	Val 95	Leu
	Tyr					_									

Pro	Gln	Phe 115	Ala	Ala	Ala	Trp	Val 120	Gly	Ile	Asp	Gly	Ala 125	Ala	Cys	Asn
Thr	Thr 130	Leu	Leu	Gln	Ala	Gly 135	Val	Thr	Thr	Ile	Val 140	Asn	Ser	Asp	Gly
Gly 145	Gln	Ser	Ala	Ser	Ala 150	Trp	Trp	Glu	Trp	Tyr 155	Pro	Glu	Ala	Ser	Tyr 160
Thr	Ile	Ser	Gly	Leu 165	Lys	Val	Lys	Ala	Gly 170	Glu	Trp	Met	Ser	Val 175	Asn
Ile	Thr	Thr	Lys 180	Asp	Ala	Ser	Ser	Ala 185	Ile	Leu	Val	Ile	Glu 190	Asn	Ala
Asp	Thr	Gly 195	Thr	Ser	Val	Thr	Leu 200	Glu	Leu	Asn	Asn	Gly 205	Pro	Gln	Leu
Cys	Arg 210	Arg	Asp	Ala	Glu	Trp 215	Ile	Leu	Glu	Asp	Phe 220	Tyr	Glu	Ser	Gly
Lys 225	Gln	Val	Ala	Leu	Ala 230	Asn	Phe	Ala	Asp	Leu 235	Trp	Phe	Val	Asp	Ser 240
Gly	Ala	Thr	Thr	Val 245	Gly	Gly	Lys	Asn	Val 250	Gly	Phe	Asp	Gly	Ala 255	Thr
Met	Val	His	Leu 260	Arg	Asp	Glu	Asn	Gly 265	Asn	Val	Leu	Cys	Ser 270	Pro	Glu
Pro	Tyr	Asp 275	Asn	Ser	Asn	Phe	Val 280	Val	Val	Ser	Lys	Pro 285			

<210> 163 <211> 307

<212> PRT

5

<213> Myceliophthora thermophila

<400> 163

Met Lys Pro Thr Val Leu Phe Thr Leu Leu Ala Ser Gly Ala Tyr Ala 1 5 10 15

Ala Ala Thr Pro Ala Ile Pro Gly Tyr Ser Pro Arg Thr Arg Gly Met 20 25 30

Asn Pro His His Ala Pro Leu Arg Leu Leu His Thr Phe Thr Pro 35 40 45

Ile	Ser 50	Thr	Ser	Gly	Lys	Ser 55	Phe	Arg	Leu	Leu	Ala 60	Ser	Ser	Thr	Glu
Ser 65	Thr	Lys	Gly	Gly	Ala 70	Ile	Leu	Gly	Leu	Pro 75	Asp	Asn	Asp	Leu	Ser 80
Thr	Val	Arg	Thr	Thr 85	Ile	Arg	Ile	Pro	Ala 90	Ala	Lys	Met	Pro	Thr 95	Ala
Gly	Pro	Thr	Ala 100	Asn	Asn	Thr	Val	Gly 105	Glu	Tyr	Ala	Ala	Ser 110	Phe	Trp
Val	Gly	Ile 115	Asp	Ser	Ala	Thr	Asp 120	Ala	Cys	Gly	Ala	Gly 125	Gly	Ser	Leu
Arg	Ala 130	Gly	Val	Asp	Ile	Phe 135	Trp	Asp	Gly	Thr	Leu 140	Gly	Gly	Gln	Gln
Thr 145	Pro	Phe	Ala	Trp	Tyr 150	Gln	Gly	Pro	Gly	Gln 155	Ala	Asp	Val	Val	Gly 160
Phe	Gly	Gly	Gly	Phe 165	Pro	Val	Gly	Glu	Gly 170	Asp	Leu	Val	Arg	Leu 175	Thr
Leu	Glu	Ala	Gly 180	Pro	Ala	Gly	Gly	Glu 185	Glu	Ile	Ala	Val	Val 190	Ala	Glu
Asn	Phe	Gly 195	Arg	Asn	Val	Thr	Arg 200	Ala	Asp	Glu	Gly	Ala 205	Val	Pro	Val
Arg	Lys 210	Val	Arg	Lys	Val	Leu 215	Pro	Ala	Glu	Ala	Gly 220	Gly	Gln	Lys	Leu
Cys 225	Arg	Gly	Glu	Ala	Ala 230	Trp	Met	Val	Glu	Asp 235	Phe	Pro	Leu	Gln	Gly 240
Arg	Pro	Glu	Phe	Pro 245	Thr	Ala	Leu	Ala	Asn 250	Phe	Thr	Ser	Val	Thr 255	Phe
Asn	Thr	Gly	Ile 260	Thr	Leu	Asp	Asp	Gly 265	Thr	Glu	Lys	Asp	Leu 270	Thr	Gly
Ala	Glu	Val 275	Leu	Asp	Ile	Gln	Leu 280	Glu	Ala	Gln	Gly	Gly 285	Arg	Leu	Thr
Sar	Cve	Glu	Val	Val	Aen	Aen	Arc	Aen	Val	Luc	Cve	Δla	Ara	Val	₩a1

290 295 300

Gly Asp Asn 305

<210> 164 <211> 197

5

<212> PRT <213> Myceliophthora thermophila

Met Arg Trp Pro Leu Ala Ala Leu Leu Gly Ser Ala Leu Val Ala Arg Gln Ala Leu Ala Glu Leu Thr Phe Thr Val Glu Ala Thr Arg Asn Gly Val Pro Ile Pro Ala Ser Glu Ile Arg Leu Glu Pro Phe Glu Pro Gly Arg Thr Arg Met Gly Ala Val Ala Glu Ala Pro Arg Ala Gln Arg Lys Thr Arg Arg Ser Asn Ala Gln Ala Asp Ser Ala Asn Trp Cys Gly Ser Val Asn Met Ala Pro Thr Gly Thr Asn Ile Gln Leu Ala His Gly Ser Phe Gln His Pro Ser Cys Ser Ile Arg Pro Gly Tyr Thr Phe Pro Gln Ala Ala Ser Trp Val Gly Ile Asp Gly Asp Ser Tyr Arg Asp Ala Leu Leu Gln Ala Gly Thr Val Cys Lys Ile Asp Asn Ser Thr Gly Val Val Arg His Glu Ala Trp Trp Gln Trp Val Pro Ser Ala Ala Phe Thr Ile Thr Ser Met Pro Gly Gln Ser Asn Thr Thr Gly Phe Cys Ile Pro Tyr Ser Ala Pro Phe Val Ser Leu Cys Phe Phe Gly Arg Thr Arg Thr Cys Leu Phe Leu His

```
<210> 165
<211> 621
<212> PRT
5 <213> Myceliophthora thermophila
<400> 165
```

Met 1	Leu	Arg	Asn	Ile 5	Phe	Leu	Thr	Ala	Ala 10	Leu	Ala	Ala	Phe	Gly 15	Gln
Cys	Gly	Ser	Thr 20	Val	Phe	Glu	Ser	Val 25	Pro	Ala	Lys	Pro	Arg 30	Gly	Trp
Thr	Arg	Leu 35	Gly	Asp	Ala	Ser	Ala 40	Asp	Gln	Pro	Leu	Arg 45	Leu	Arg	Ile
Ala	Leu 50	Gln	Gln	Pro	Asn	Glu 55	Asp	Leu	Phe	Glu	Arg 60	Thr	Leu	Tyr	Glu
Val 65	Ser	Asp	Pro	Ser	His 70	Ala	Arg	Tyr	Gly	Gln 75	His	Leu	Ser	Arg	Asp 80
Glu	Leu	Ser	Ala	Leu 85	Leu	Ala	Pro	Arg	Ala 90	Glu	Ser	Thr	Ala	Ala 95	Val
Leu	Asn	Trp	Leu 100	Arg	Asp	Ala	Gly	Ile 105	Pro	Ser	Asp	Lys	Ile 110	Glu	Glu
Asp	Gly	Glu 115	Trp	Ile	Asn	Leu	Arg 120	Val	Thr	Val	Arg	Glu 125	Ala	Ser	Glu
Leu	Leu 130	Asp	Ala	Asp	Phe	Gly 135	Val	Trp	Ala	Tyr	Glu 140	Gly	Thr	Asn	Val
Lys 145	Arg	Val	Arg	Ala	Leu 150	Gln	Tyr	Ser	Val	Pro 155	Glu	Glu	Ile	Ala	Pro 160
His	Ile	Arg	Met	Val 165	Ala	Pro	Val	Val	Arg 170	Phe	Gly	Gln	Ile	Arg 175	Pro
Glu	Arg	Ser	Gln 180	Val	Phe	Glu	Val	Val 185	Glu	Thr	Ala	Pro	Ser 190	Gln	Val
Lys	Val	Ala 195	Ala	Ala	Ile	Pro	Pro 200	Gln	Asp	Leu	Asp	Val 205	Lys	Ala	Cys
Asn	Thr	Ser	Ile	Thr	Pro	Glu	Cys	Leu	Arg	Ala	Leu	Tyr	Lys	Val	Gly

	210					215					220				
Ser 225	Tyr	Gln	Ala	Glu	Pro 230	Ser	Lys	Lys	Ser	Leu 235	Phe	Gly	Val	Ala	Gly 240
Tyr	Leu	Glu	Gln	Trp 245	Ala	Lys	Tyr	Asp	Gln 250	Leu	Glu	Leu	Phe	Ala 255	Ser
Thr	Tyr	Ala	Pro 260	Tyr	Ala	Ala	Asp	Ala 265	Asn	Phe	Thr	Ser	Val 270	Gly	Val
Asn	Gly	Gly 275	Glu	Asn	Asn	Gln	Gly 280	Pro	Ser	Asp	Gln	Gly 285	Asp	Ile	Glu
Ala	Asn 290	Leu	Asp	Ile	Gln	Tyr 295	Ala	Val	Ala	Leu	Ser 300	Tyr	Lys	Thr	Pro
Ile 305	Thr	Tyr	Tyr	Ile	Thr 310	Gly	Gly	Arg	Gly	Pro 315	Leu	Val	Pro	Asp	Leu 320
Asp	Gln	Pro	Asp	Pro 325	Asn	Asp	Val	Ser	Asn 330	Glu	Pro	Tyr	Leu	Glu 335	Phe
Phe	Ser	Tyr	Leu 340	Leu	Lys	Leu	Pro	Asp 345	Ser	Glu	Leu	Pro	Gln 350	Thr	Leu
Thr	Thr	Ser 355	Tyr	Gly	Glu	Asp	Glu 360	Gln	Ser	Val	Pro	Arg 365	Pro	Tyr	Ala
Glu	Lys 370	Val	Cys	Gln	Met	Ile 375	Gly	Gln	Leu	Gly	Ala 380	Arg	Gly	Val	Ser
Val 385	Ile	Phe	Ser	Ser	Gly 390	Asp	Thr	Gly	Val	Gly 395	Ser	Ala	Cys	Gln	Thr 400
Asn	Asp	Gly	Lys	Asn 405	Thr	Thr	Arg	Phe	Leu 410	Pro	Ile	Phe	Pro	Gly 415	Ala
Cys	Pro	Tyr	Val 420	Thr	Ser	Ile	Gly	Ala 425	Thr	Arg	Tyr	Val	Glu 430	Pro	Glu
Gln	Ala	Ala 435	Ala	Phe	Ser	Ser	Gly 440	Gly	Phe	Ser	Asp	Ile 445	Phe	Lys	Arg
Pro	Ala 450	Tyr	Gln	Glu	Ala	Ala 455	Val	Ser	Thr	Tyr	Leu 460	His	Lys	His	Leu

Gly 465	Ser	Arg	Trp	Lys	Gly 470	Leu	Tyr	Asn	Pro	Gln 475	Gly	Arg	Gly	Phe	Pro 480
Asp	Val	Ser	Ala	Gln 485	Gly	Val	Ala	Tyr	His 490	Val	Phe	Ser	Gln	Asp 495	Lys
Asp	Ile	Lys	Val 500	Ser	Gly	Thr	Ser	Ala 505	Ser	Ala	Pro	Leu	Phe 510	Ala	Ala
Leu	Val	Ser 515	Leu	Leu	Asn	Asn	Ala 520	Arg	Leu	Ala	Gln	Gly 525	Arg	Pro	Pro
Leu	Gly 530	Phe	Leu	Asn	Pro	Trp 535	Leu	Tyr	Ser	Glu	Lys 540	Val	Gln	Lys	Ala
Gly 545	Ala	Leu	Thr	Asp	Ile 550	Val	His	Gly	Gly	Ser 555	Ser	Gly	Cys	Thr	Gly 560
-	Asp		-	565					570					575	
	Asn		580					585					590		
	Phe	595					600					605	Lys	Leu	Pro
His	Ile	Gly	Gly	Gly		Gly	His	Gly	Ala	Gly	Gly	His			

<210> 166

<211> 587

5

<212> PRT <213> Neurospora crassa

610

<400> 166

615

- Met Leu Trp Ser Val Leu Leu Leu Ala Ala Gly Ala Ser Ala His Val 1 5 10 15
- Lys Ser Ser Leu Pro Ser Val Pro Ser Gly Trp Lys Lys Val Arg Ala 20 25 30
- Ala Ser Ala Asp Glu Ser Val Ser Leu Lys Ile Ala Leu Pro Ala His 35 40 45
- Gln Pro Asp Ala Leu Glu Thr Ala Ile Leu Arg Val Ser Asp Pro Asn 50 55 60

His 65	His	Glu	Tyr	Gly	Met 70	His	Leu	Ser	Ser	Glu 75	Glu	Val	Arg	Ser	Leu 80
Val	Ala	Pro	Ala	Asp 85	Glu	Thr	Thr	Asp	Ala 90	Val	Thr	Ser	Trp	Leu 95	Asn
Arg	Asn	Gly	Ile 100	Lys	Gly	Lys	Val	Asp 105	Asn	Asp	Trp	Val	Ser 110	Phe	Thr
Thr	Ser	Val 115	Ala	Lys	Ala	Asn	Asn 120	Leu	Leu	Asn	Thr	Thr 125	Phe	Asp	Trp
Tyr	Gln 130	Gln	Asp	Gly	Asp	Lys 135	Thr	Gly	Pro	Lys	Leu 140	Arg	Thr	Leu	Gln
Tyr 145	Ser	Val	Pro	Asp	Glu 150	Leu	Asp	Ala	His	Val 155	Asp	Met	Ile	Gln	Pro 160
Thr	Thr	Arg	Phe	Gly 165	Lys	Leu	Ala	Ala	Lys 170	Ala	Ser	Thr	Ile	Phe 175	Glu
Ile	Phe	Asp	Glu 180	Pro	Glu	Pro	Lys	Asn 185	Ile	Ala	Asn	Val	Lys 190	Val	Gly
Gly	Asp	His 195	Pro	Thr	Cys	Thr	Gly 200	Cys	Ile	Tyr	Pro	Asp 205	Glu	Ile	Arg
Ser	Leu 210	Tyr	Asn	Ile	Lys	Tyr 215	Lys	Pro	Ser	Ala	Ser 220	Asp	Lys	Asn	Thr
Ile 225	Ala	Phe	Ala	Ser	Tyr 230	Leu	Glu	Gln	Tyr	Ser 235	Asn	Tyr	Asp	Asp	Phe 240
Thr	Ser	Phe	Ala	Lys 245	Ala	Phe	Ile	Pro	Asp 250	Ala	Ala	Asp	Arg	Asn 255	Tyr
Thr	Val	Lys	Leu 260	Val	Lys	Gly	Gly	Leu 265	His	Asp	Gln	Ser	Pro 270	Asp	Lys
Ile	Gly	Val 275	Glu	Ala	Asn	Leu	Asp 280	Leu	Gln	Tyr	Ile	Leu 285	Ala	Ile	Ser
Asn	Pro 290	Ile	Pro	Ile	Arg	Glu 295	Tyr	Ser	Ile	Gly	Gly 300	Arg	Gly	Pro	Leu
Val 305	Pro	Thr	Ala	Asn	Gln 310	Pro	Gly	Pro	Glu	Ile 315	Ser	Asn	Glu	Pro	Tyr 320

Leu	Asp	Phe	Phe	Gln 325	Tyr	Leu	Leu	Ser	Leu 330	Lys	Asn	Ser	Glu	Leu 335	Pro
Ala	Thr	Leu	Ser 340	Thr	Ser	Tyr	Gly	Glu 345	Glu	Glu	Gln	Ser	Val 350	Pro	Arg
Glu	Tyr	Ala 355	Leu	Lys	Val	Cys	Ser 360	Met	Ile	Gly	Gln	Leu 365	Gly	Ala	Arg
Gly	Val 370	Ser	Val	Ile	Phe	Ser 375	Ser	Gly	Asp	Ser	Gly 380	Pro	Gly	Asp	Ala
Cys 385	Ile	Arg	Asn	Asp	Gly 390	Thr	Asn	Ser	Thr	Tyr 395	Phe	Glu	Pro	Thr	Phe 400
Pro	Gly	Ala	Cys	Pro 405	Trp	Val	Thr	Ser	Val 410	Gly	Gly	Thr	Tyr	Gln 415	Thr
Gly	Pro	Glu	Lys 420	Ala	Val	Asp	Phe	Ser 425	Ser	Gly	Gly	Phe	Ser 430	Met	Tyr
His	Lys	Arg 435	Pro	Val	Tyr	Gln	Glu 440	Arg	Val	Val	Lys	Lys 445	Tyr	Leu	Asp
Lys	Ile 450	Gly	Asp	Thr	Tyr	Ser 455	Asp	Phe	Phe	Asp	Glu 460	Gln	Gly	Arg	Gly
Phe 465	Pro	Asp	Val	Ser	Ala 470	Gln	Ala	Ser	Arg	Tyr 475	Ala	Val	Tyr	Val	Asp 480
Gly	Arg	Leu	Val	Gly 485	Val	Ser	Gly	Thr	Ser 490	Ala	Ser	Ala	Pro	Met 495	Phe
Ala	Gly	Leu	Val 500	Ala	Leu	Leu	Asn	Ala 505	Ala	Arg	Lys	Ser	His 510	Gly	Leu
Pro	Ser	Leu 515	Gly	Phe	Ile	Asn	Pro 520	Leu	Leu	Tyr	Ala	Ser 525	Lys	Asp	Ala
Phe	Thr 530	Asp	Ile	Val	Asn	Gly 535	Ala	Gly	Thr	Gly	Cys 540	Arg	Gly	Arg	Pro
Glu 545	Phe	Ala	Gly	Asp	Val 550	Gly	Gly	Thr	Ala	Lys 555	Trp	Asn	Ala	Thr	Glu 560
Gly	Trp	Asp	Pro	Val 565	Thr	Gly	Leu	Gly	Thr 570	Pro	Lys	Phe	Asp	Lys 575	Leu

Leu Ala Leu Ala Ala Pro Gly Val Lys Asn Ala 580 585

<210> 167 <211> 720

<212> PRT

<213> Myceliophthora thermophila

Met 1	Arg	Ile	Arg	His 5	Ala	Leu	Val	Gly	Ile 10	Ala	Ser	Leu	Cys	Cys 15	Leu
Leu	Gly	Thr	Ala 20	Ser	Gly	Ala	Arg	Ile 25	Ser	Ser	Arg	Asp	Met 30	Leu	Ser
Arg	Arg	Val 35	Val	Pro	Pro	Ser	His 40	Thr	Leu	His	Glu	Arg 45	His	Glu	Ala
Gly	Asn 50	Val	Glu	Gly	Trp	Val 55	Lys	Arg	Gly	Leu	Ala 60	Asp	Ala	Glu	Ser
Thr 65	Val	Pro	Val	Arg	Ile 70	Gly	Leu	Lys	Gln	Ser 75	Asn	Val	Asp	Ala	Ala 80
His	Asp	Leu	Leu	Met 85	Asp	Ile	Ser	Asp	Pro 90	Arg	Ser	Pro	Asn	Tyr 95	Gly
Lys	His	Leu	Ser 100	Arg	Ser	Glu	Val	Glu 105	Asp	Leu	Phe	Ala	Pro 110	Arg	Glu
His	Ser	Val 115	Ala	Lys	Val	Lys	Arg 120	Trp	Leu	Ala	Ser	Ala 125	Gly	Val	Asp
Glu	Gly 130	Arg	Ile	Ser	Gln	Ser 135	Ala	Asn	Lys	Gln	Trp 140	Ile	Gln	Phe	Asp
Ala 145	Pro	Val	Tyr	Glu	Leu 150	Glu	Lys	Leu	Leu	Leu 155	Thr	Arg	Tyr	His	Ile 160
Phe	Glu	Asn	Leu	Glu 165	Thr	Gly	Val	Gln	Asn 170	Ile	Ala	Cys	Ser	Glu 175	Tyr
His	Val	Pro	Arg 180	Asp	Val	Ser	His	His 185	Ile	Asp	Tyr	Ile	Thr 190	Pro	Gly
Ile	Lys	Leu 195	Met	Ala	Gly	Gly	Arg 200	Glu	Glu	Arg	Met	Val 205	Arg	Trp	Arg

Lys	Ala 210	Asp	Arg	Arg	Ser	Leu 215	Val	Ala	Gly	Leu	Ala 220	Ser	Gln	Gly	Arg
Lys 225	Gly	Ala	His	Gly	Met 230	Gly	His	Gly	Gly	Gly 235	Gly	Gly	Ser	Arg	Ser 240
Pro	Asp	Asp	Pro	Val 245	Val	Asp	Asp	Ser	Pro 250	Phe	Arg	Val	Thr	Gly 255	Pro
Cys	Ser	Ala	Glu 260	Ile	Thr	Pro	Asn	Cys 265	Ile	Arg	Ala	Gln	Tyr 270	Gln	Leu
Pro	Asn	Gly 275	Thr	Arg	Ala	Ala	Ser 280	Gly	Asn	Glu	Leu	Gly 285	Ile	Phe	Gln
Gly	Leu 290	Gly	Gln	His	Tyr	Ser 295	Gln	Glu	Asp	Leu	Asp 300	Asn	Tyr	Trp	Lys
Tyr 305	Val	Ala	Pro	Trp	Val 310	Pro	Arg	Gly	Thr	His 315	Pro	Glu	Leu	Arg	Ser 320
Ile	Asn	Gly	Ala	Leu 325	Gly	Pro	Ala	Asn	Asp 330	Thr	Leu	Arg	Ala	Gly 335	Glu
Glu	Ala	Asp	Leu 340	Asp	Phe	Gln	Ile	Ala 345	Ile	Pro	Leu	Ile	Trp 350	Pro	Gln
Arg	Thr	Val 355	Leu	Phe	Gln	Thr	Asp 360	Asp	Glu	Trp	Tyr	Gln 365	Gln	Asp	Gln
Gln	Arg 370	Ala	Asp	Thr	Lys	Tyr 375	Pro	Gly	Phe	Phe	Asn 380	Thr	Phe	Phe	Asp
Ala 385	Ile	Asp	Gly	Ser	Tyr 390	Cys	His	Met	Thr	Ala 395	Phe	Asn	Met	Thr	Gly 400
Asn	Cys	Val	Thr	Pro 405	Glu	Cys	Arg	Asp	Pro 410	Glu	Tyr	Pro	Asn	Pro 415	Asn
Ala	Thr	Pro	Glu 420	Gln	Gly	Gly	Tyr	Ala 425	Gly	Ala	Leu	Met	Cys 430	Gly	Arg
His	Arg	Pro 435	Thr	Ser	Val	Val	Ser 440	Val	Ser	Tyr	Ser	Gly 445	Thr	Glu	Asp
Ser	Trp	Pro	Ala	Ser	Tyr	Met	Arg	Arg	Gln	Cys	Leu	Glu	Val	Leu	Lys

	450					455					460				
Leu 465	Ala	Leu	Gln	Gly	Val 470	Thr	Val	Val	Glu	Ser 475	Ser	Gly	Asp	Phe	Gly 480
Val	Gly	Gly	Arg	Pro 485	Phe	Asp	Pro	Arg	Ala 490	Gly	Cys	Leu	Gly	Pro 495	Asp
Arg	Ala	Val	Phe 500	Ser	Pro	Arg	Val	Met 505	Ala	Asn	Cys	Pro	Tyr 510	Val	Leu
Ser	Val	Gly 515	Ala	Thr	Ala	Leu	Val 520	Asp	Pro	Glu	Gln	Glu 525	Gln	Gln	Gln
Gln	His 530	Ala	Asp	Arg	Gly	Gly 535	Ser	Gly	Lys	Glu	Pro 540	Arg	Leu	Val	Glu
Val 545	Ala	Ala	Arg	Thr	Phe 550	Ala	Ser	Gly	Gly	Gly 555	Phe	Ser	Asn	Ile	Phe 560
Gly	Arg	Pro	Lys	Trp 565	Gln	Asp	Arg	His	Val 570	Arg	Glu	Tyr	Leu	A rg 575	Lys
Thr	Asn	Leu	Ser 580	Glu	Leu	Gly	Tyr	Asp 585	Asn	Ala	Ala	Gly	Met 590	Ser	Phe
Asp	Ser	Leu 595	Arg	Pro	Pro	Pro	Ala 600	Gly	Gly	Lys	Leu	Phe 605	Asn	Arg	Leu
Gly	Arg 610	Gly	Tyr	Pro	Asp	Val 615	Ala	Ala	Val	Gly	Gln 620	Asn	Phe	Arg	Val
Val 625	Leu	Arg	Gly	Tyr	Pro 630	Asn	Arg	Met	His	Gly 635	Thr	Ser	Ala	Ala	Ala 640
Pro	Val	Trp	Ala	Ser 645	Ile	Leu	Thr	Leu	Ile 650	Asn	Glu	Glu	Arg	A rg 655	Ala
Val	Gly	Lys	Gly 660	Pro	Val	Gly	Phe	Val 665	His	Gln	Val	Leu	Tyr 670	Gln	His
Pro	Glu	Val 675	Phe	Thr	Asp	Ile	Thr 680	Val	Gly	Ser	Asn	Pro 685	Gly	Cys	Gly
Thr	Asp	Gly	Phe	Pro	Val	Glu 695		Gly	Trp	Asp	Pro	Val	Thr	Gly	Leu

Gly Ser Pro Ile Tyr Pro Lys Leu Leu Lys Leu Phe Met Ser Leu Pro 710 705 715 720

<210> 168

<211> 719 <212> PRT 5

<213> Neurospora crassa

Met 1	Phe	Arg	Phe	His 5	Leu	Trp	Thr	Leu	Leu 10	Arg	Leu	Phe	Ala	Leu 15	Leu
Ser	Ser	Leu	Val 20	Thr	Ala	Ser	Arg	Ile 25	Val	Leu	Glu	Glu	Ala 30	Gly	His
Leu	Pro	Ala 35	Gly	Trp	Lys	Val	Glu 40	Arg	His	Ala	Thr	Ala 45	Ser	Asp	Arg
Ile	Gln 50	Leu	Ser	Ile	Ala	Leu 55	Lys	Glu	Pro	Gly	Ile 60	Glu	Glu	Leu	Lys
Arg 65	Arg	Leu	Leu	Gln	Gln 70	Ser	Thr	Ser	Asp	Asp 75	His	Pro	Asn	Ser	Arg 80
Gln	Phe	Thr	Lys	Glu 85	Glu	Val	Glu	Lys	His 90	Arg	Gln	Pro	Asp	Gln 95	Arg
Ser	Val	Thr	Ala 100	Val	Gly	Arg	Trp	Leu 105	Gln	Ser	His	Gly	Ile 110	Lys	Ser
Tyr	Asn	Ala 115	Asp	Asn	Ser	Trp	Ile 120	Thr	Phe	Lys	Ala	Thr 125	Ala	Ala	Thr
Val	Gln 130	Met	Leu	Phe	Glu	Ala 135	Asp	Leu	Ala	Tyr	Tyr 140	Ser	Tyr	Asn	Gly
Asp 145	Pro	Ser	Thr	Gln	Ile 150	Leu	Arg	Ser	Arg	Ser 155	Tyr	Thr	Ile	Pro	Arg 160
Trp	Leu	Ser	Asp	Asp 165	Ile	Asp	Phe	Val	His 170	Pro	Leu	Thr	Asn	Phe 175	Met
Pro	Pro	Arg	Asn 180	Arg	Asn	Asp	Gly	Thr 185	Leu	Gly	Ile	Gly	Arg 190	Arg	Gln
Pro	Ile	Gln 195	Pro	Lys	Leu	Ser	Ala 200	Arg	Glu	Asp	Phe	Phe 205	Ala	Pro	Pro

Cys Trp 210	Thr Gly	Thr Phe	Pro G: 215	ly Cys	Ile Arq	1 Lys 220	Leu	Tyr	Asn	Leu
Thr Tyr 225	Thr Pro	Ser Pro 230	_	he Arg	Ser Pro		Pro	Val	Arg	Phe 240
Gly Ile	Ala Ser	Phe Leu 245	Glu G	ln Tyr	Ile Thr 250	His	Arg	Asp	Val 255	Thr
Ser Phe	Leu Ala 260	_	Ala A	rg Glu 265	Leu Leu	Pro	Leu	Arg 270	Pro	Thr
Pro Ser	Arg Gly 275	Gly Ser	_	ly Ser 80	Leu Thi	Leu	Pro 285	Pro	Val	Thr
Asn Thr 290	Thr Ser	Glu Pro	Pro Ty 295	yr Asn	Ile Thr	300	Thr	Leu	Leu	Asn
Asn Ala 305	Thr Arg	Trp Asp 310		is Ser	Thr Asp 315		Ala	Leu	Ser	Gly 320
Leu Glu	Ala Asn	Leu Asp 325	Val G	ln Tyr	Ala Leu 330	Ser	Leu	Gly	His 335	Pro
Thr Arg	Val Ile 340		Ala T	hr Gly 345	Gly Arc	g Gly	Thr	Lys 350	Leu	Asp
Ser Ser	Gly Arg 355	Pro Leu		hr Asn 60	Asp Pro	Arg	Ala 365	Asn	Asn	Glu
Pro Phe 370	Leu Glu	Phe Leu	Gln A	la Leu	Leu Ala	380	Pro	Asp	Asn	Gln
Ile Pro 385	His Val	Leu Ser 390		er Tyr	Ala Asp 395		Glu	Gln	Ser	Val 400
Pro Arg	Lys Tyr	Ala His 405	Arg V	al Cys	Asp Leu 410	Phe	Ala	Ala	Val 415	Ala
Ala Arg	Gly Thr 420		Leu V	al Ala 425	Thr Gly	Asp	Gly	Gly 430	Ala	Ala
Gly Ile	Gly Phe 435	Ser Ala		ly Gly 40	Asp Thr	Cys	Ile 445	Lys	Asn	Asp
Gly Ser 450	Gly Arg	Arg Ala	Phe Va	al Pro	Thr Phe	Pro 460	Ala	Ser	Cys	Pro

Trp Val	Thr	Ser	Val	Gly 470	Ala	Thr	Asp	Asn	Thr 475	Ala	Leu	Asn	Leu	Thr 480
Gly Ala	Ala	Phe	Ser 485	Ser	Gly	Gly	Phe	Ser 490	Glu	Tyr	Phe	Asp	Arg 495	Pro
Leu Trp	Gln	Arg 500	Ala	Ala	Val	Asp	Pro 505	Tyr	Val	Ser	Ser	Leu 510	Leu	Arg
Ser Arg	Ser 515	Ser	Lys	Pro	Gly	Gln 520	Pro	Ser	Gln	Pro	A rg 525	Asp	Leu	Lys
Gly Val	_	Phe	Ser	His	Asn 535	Gly	Arg	Gly	Met	Pro 540	Asp	Met	Ala	Ala
Ile Gly 545	Ser	Gly	Phe	Gln 550	Ile	Ile	His	Arg	Gly 555	Glu	Met	Val	Glu	Val 560
Arg Gly	Thr	Ser	Ala 565	Ser	Thr	Pro	Val	V al 570	Ala	Ala	Met	Val	Ala 575	Leu
Val Asr	Asp	Gln 580	Arg	Leu	Arg	Gln	Gly 585	Lys	Arg	Ser	Leu	Gly 590	Trp	Leu
Asn Gly	His 595	Leu	Tyr	Leu	Asp	Pro 600	Arg	Val	Arg	Arg	Val 605	Leu	Thr	Asp
Val Lys 610	_	Gly	Arg	Ser	Glu 615	Gly	Cys	Val	Phe	Pro 620	Gly	Glu	Ala	Leu
Glu Glu 625	Gly	Arg	Gly	Lys 630	Gly	Lys	Glu	Lys	Tyr 635	Trp	Arg	His	Ser	Val 640
Val Glu	Lys	Arg	Gln 645	Gly	Asn	Ser	Glu	Glu 650	Asp	Gly	Gly	Thr	His 655	Gly
Gly Asp	Gly	Glu 660	Gly	Lys	Ala	Asp	Glu 665	Glu	Asp	Trp	Gly	Gly 670	Glu	Gly
Glu Val	Gly 675	Glu	Gly	Glu	Gly	Asp 680	Gln	Ser	Glu	Asn	Val 685	Ile	Leu	Gly
Gly Trp 690		Ala	Arg	Lys	Gly 695	Trp	Asp	Pro	Val	Thr 700	Gly	Leu	Gly	Val
Pro Gly 705	Asp	Phe	Gln	Glu 710	Met	Leu	Lys	Val	Leu 715	Gly	Ser	Val	Trp	

<210> 169 <211> 454 <212> PRT 5 <213> Neurospora crassa

Met 1	Arg	Ala	Thr	Leu 5	Val	Val	Val	Leu	Cys 10	His	Leu	Ser	Leu	Ala 15	Phe
Ala	Leu	Ala	Ile 20	Ser	Pro	Ala	Ala	Ser 25	His	Trp	Lys	Arg	Ser 30	Ala	Arg
Leu	Ala	Ser 35	Asp	Gln	Thr	Ala	Ser 40	Glu	Arg	Tyr	Ser	Leu 45	Pro	Ser	Arg
Val	Ala 50	Arg	Tyr	Ile	Asp	Tyr 55	Val	Leu	Pro	Ala	Pro 60	Asp	Pro	Asp	Pro
Val 65	Ser	Ser	Ala	Pro	Lys 70	Ser	Val	Ala	Val	Gln 75	Asp	Pro	Pro	Thr	Leu 80
Lys	Gly	Val	Ile	Gly 85	Ala	Arg	Gln	Thr	Arg 90	Asp	Val	Asp	Cys	Leu 95	Gln
Tyr	Ile	Ala	Pro 100	Gln	Cys	Leu	Arg	Gln 105	Leu	Ala	Trp	Leu	Ala 110	Glu	Asp
Leu	Asp	Met 115	Phe	Phe	Gly	Asp	Phe 120	Ala	Pro	Asp	Leu	Leu 125	Thr	Asn	Phe
Asn	Leu 130	Glu	Pro	Asn	Leu	Asp 135	Tyr	Lys	Tyr	Thr	Met 140	Ala	Met	Ala	Lys
Pro 145	Ile	Pro	Val	Thr	Asn 150	Ile	Gln	Val	Gly	Asp 155	Phe	Val	Val	Gln	Gly 160
Asn	Met	Asn	Ile	Met 165	Leu	Ala	Ala	Phe	Asn 170	Ala	His	Tyr	Cys	Arg 175	Thr
Gly	Leu	Asp	Pro 180	Gln	Phe	Asp	Pro	Val 185	Tyr	Pro	Asn	Pro	Ala 190	Pro	Gly
Gly	Tyr	Asn 195	Ala	Ser	Asp	Cys	Gly 200	Thr	His	Val	Pro	Pro 205	Arg	Val	Ile
Ala	Ile 210	Met	Tyr	Ala	Trp	Asn 215	Lys	Ala	Trp	Tyr	Ser 220	Asp	Ala	Asp	Phe

Ala 225	Ser	Ile	Phe	Pro	Ala 230	Ser	Asp	Pro	Trp	Val 235	Thr	Ser	Val	Gly	Gly 240
Thr	Gln	Phe	Leu	Pro 245	Val	Val	Ser	Asn	Gly 250	Ser	Ser	Ser	Thr	Thr 255	Ala
Ser	Ser	Gly	Met 260	Pro	Ser	Ser	Ser	Ser 265	Ser	Ser	Ser	Ser	Ser 270	Ser	Ser
Ser	Ser	Ser 275	Ser	Ser	Ser	Ser	Ser 280	Ser	Leu	Phe	Pro	Gly 285	Glu	Thr	Ala
Leu	Asp 290	Asp	Asn	Asn	Thr	Gly 295	Ser	Ser	Gly	Gly	Ser 300	Phe	Ser	Arg	Leu
Phe 305	Pro	Gly	Pro	Trp	Tyr 310	Gln	Gly	Asn	Leu	Thr 315	Arg	Glu	Tyr	Leu	Ala 320
Ser	Ala	Pro	Gly	Ala 325	Ala	Glu	Leu	Ala	Arg 330	Gln	Gly	Tyr	Phe	Asn 335	Gly
Ser	Gly	Arg	Gly 340	Tyr	Pro	Asp	Ile	Ser 345	Ala	Met	Ala	Arg	Ser 350	Phe	Leu
Val	Ala	Leu 355	His	Gly	Gly	Tyr	His 360		Val	Ser	Gly	Thr 365		Ala	Ser
Thr		Val	Val	Ala	Ala		Val		_	Ile		Asp	Ala	Arg	Leu
	370					375					380				
His 385	Ala	Gly	Lys	Ser	Thr 390	Val	Gly	Phe	Leu	Asn 395	Pro	Val	Leu	Tyr	Ser 400
Ala	Ala	Ala	Gly	Lys 405	Ala	Gly	Val	Leu	Arg 410	Asp	Val	Pro	Leu	Gly 415	Lys
Asn	His	Asp	Cys 420	Gly	Val	Gly	Glu	Ala 425	Phe	Pro	Ala	Arg	Arg 430	Ala	Trp
Asp	Ala	Val 435	Thr	Gly	Leu	Gly	Thr 440	Pro	Asp	Phe	Glu	Lys 445	Leu	Lys	Glu
Leu	Tyr 450	Leu	Gly	Leu	Pro										

```
<210> 170
      <211> 50
      <212> PRT
5
      <213> Aspergillus niger
      <400> 170
        Ile Val Thr Trp Asp Glu Ala His Phe Gly Lys Phe Gly Ser His Tyr
                                                  10
        Leu Lys Arg Glu Phe Tyr Phe Asp Val His Pro Pro Leu Gly Lys Met
                      20
                                             25
                                                                    30
        Leu Val Gly Leu Ser Gly Phe Leu Ala Gly Tyr Asn Gly Ser Phe Glu
                  35
                                         40
                                                                45
        Phe Lys
             50
10
      <210> 171
      <211> 50
      <212> PRT
      <213> Aspergillus oryzae
15
      <400> 171
       Ile Val Thr Trp Asp Glu Ala His Phe Gly Lys Phe Gly Ser His Tyr
                                                 10
       Leu Lys Arg Glu Phe Tyr Phe Asp Val His Pro Pro Leu Gly Lys Met
                     20
                                             25
                                                                    30
       Leu Val Gly Leu Ser Gly Tyr Leu Ala Gly Tyr Asn Gly Ser Phe Glu
                 35
                                                               45
                                        40
       Phe Lys
            50
20
      <210> 172
      <211> 50
      <212> PRT
      <213> Aspergillus nidulans
```

25

Ile 1	Val	Thr	Trp	Asp 5	Glu	Ala	His	Phe	Gly 10	Lys	Phe	Gly	Ser	His 15	Tyr
Leu	Lys	Arg	Glu 20	Phe	Tyr	Phe	Asp	Val 25	His	Pro	Pro	Leu	Gly 30	Lys	Met
Leu	Val	Gly 35	Leu	Ser	Gly	Leu	Leu 40	Ala	Gly	Tyr	Asn	Gly 45	Ser	Phe	Glu
							Phe	Lys 50							
210> 1 211> 5 212> P 213> N	0	ohthora	thermo	ophila											
400> 1	73														
Ile 1	Val	Thr	Trp	Asp 5	Glu	Ala	His	Phe	Gly 10	Lys	Phe	Gly	Ser	His 15	Tyr
Leu	Lys	Arg	Glu 20	Phe	Tyr	Phe	Asp	Val 25	His	Pro	Pro	Ala	Gly 30	Lys	Leu
Leu	Val	Gly 35	Leu	Ser	Gly	Tyr	Leu 40	Ala	Gly	Tyr	Asn	Gly 45	Ser	Phe	Glu
Phe	Lys 50														
210> 1 211> 5 212> P 213> Λ	0	ora cra	ıssa												

Ile Val Thr Trp Asp Glu Ala His Phe Gly Lys Phe Gly Ser His Tyr 10 Leu Lys Arg Glu Phe Tyr Phe Asp Val His Pro Pro Ala Gly Lys Leu 20 25 30 Leu Val Gly Leu Ser Gly Leu Leu Ala Gly Tyr Asn Gly Ser Phe Glu 35 40 45 Phe Lys 50 <210> 175 <211> 50 5 <212> PRT <213> Trichoderma virens <400> 175 Ile Val Thr Trp Asp Glu Ala His Phe Gly Lys Phe Gly Ser Tyr Tyr 5 1 10 15 Ile Lys His Glu Tyr Tyr Phe Asp Val His Pro Pro Leu Gly Lys Met 20 25 30 Leu Val Gly Leu Ser Gly Val Leu Ala Gly Tyr Asn Gly Ser Phe Glu 35 40 45 Phe Lys 50 10 <210> 176 <211> 50 <212> PRT 15 <213> Trichoderma reesei <400> 176

	Ile 1	Val	Thr	Trp	Asp 5	Glu	Ala	His	Phe	Gly 10	Lys	Phe	Gly	Ser	Tyr 15	Tyr
	Ile	Lys	His	Glu 20	Tyr	Tyr	Phe	Asp	Val 25	His	Pro	Pro	Leu	Gly 30	Lys	Met
	Leu	Val	Gly 35	Leu	Ser	Gly	Val	Leu 40	Ala	Gly	Tyr	Asn	Gly 45	Ser	Phe	Glu
	Phe	Lys 50														
5	<210> 1 <211> 5 <212> F <213> F	50 PRT	n oxysp	oorum												
	<400> 1	177														
	Ile 1	Val	Thr	Trp	Asp 5	Glu	Ala	His	Phe	Gly 10	Lys	Phe	Gly	Ser	Tyr 15	Tyr
	Ile	Lys	His	Glu 20	Tyr	Tyr	Phe	Asp	Val 25	His	Pro	Pro	Leu	Gly 30	Lys	Met
	Leu	Val	Gly 35	Leu	Ser	Gly	Val	Leu 40	Ala	Gly	Tyr	Asn	Gly 45	Thr	Phe	Glu
10	Phe	Lys 50														
15	<210> 1 <211> 5 <212> F <213> <i>I</i>	50 PRT	oora cra	ıssa												
	<400> 1	178														

Ser Val Val Phe Asp Glu Val His Phe Gly Gly Phe Ala Ser Lys Tyr

	1				5					10					15	
	Ile	Lys	Gly	Lys 20	Phe	Phe	Met	Asp	Val 25	His	Pro	Pro	Leu	Ala 30	Lys	Leu
	Met	Ile	Thr 35	Leu	Phe	Gly	Trp	Leu 40	Ala	Gly	Phe	Asp	Gly 45	Ser	Phe	Asp
	Phe	Lys 50														
5	<210> 1 <211> 5 <212> P <213> M	0 PRT	ohthora	thermo	phila											
	<400> 1	79														
	Ser 1	Val	Val	Phe	Asp 5	Glu	Val	His	Phe	Gly 10	Gly	Phe	Ala	Thr	Lys 15	Tyr
	Ile	Lys	Gly	Lys 20	Phe	Phe	Met	Asp	Val 25	His	Pro	Pro	Leu	Ala 30	Lys	Leu
	Met	Ile	Thr 35	Leu	Phe	Gly	Trp	Leu 40	Ala	Gly	Phe	Lys	Gly 45	Asn	Phe	Asp
10	Phe	Lys 50														
15	<210> 1 <211> 5 <212> P <213> 7	0 PRT	erma vir	rens												
	<400> 1	80														

	Ser 1	Val	Val	Phe	Asp 5	Glu	Val	His	Phe	Gly 10	Gly	Phe	Ala	Ser	Lys 15	Tyr
	Ile	Lys	Gly	Lys 20	Phe	Phe	Met	Asp	Val 25	His	Pro	Pro	Leu	Ala 30	Lys	Met
	Leu	Ile	Ala 35	Leu	Thr	Gly	Trp	Leu 40	Ala	Gly	Phe	Asp	Gly 45	Asn	Phe	Asp
	Phe	Lys 50														
<2 <2	210> 18 211> 50 212> P 213> <i>Ti</i>) RT	rma atr	oviride												
<4	100> 18	31														
	Ser 1	Val	Val	Phe	Asp 5	Glu	Val	His	Phe	Gly 10	Gly	Phe	Ala	Ser	Lys 15	Tyr
	Ile	Lys	Gly	Arg 20	Phe	Phe	Met	Asp	Val 25	His	Pro	Pro	Leu	Ala 30	Lys	Met
	Leu	Ile	Ala 35	Leu	Thr	Gly	Trp	Leu 40	Ala	Gly	Phe	Asp	Gly 45	Asp	Phe	Asp
	Phe	Lys 50														
<2 <2	210> 18 211> 50 212> Pl	RT	rma ree	asei												
	100> 18		iiia rec	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												

Ser Val Val Phe Asp Glu Val His Phe Gly Gly Phe Ala Ser Lys Tyr Ile Lys Gly Arg Phe Phe Met Asp Val His Pro Pro Leu Ala Lys Met 20 25 30 Leu Ile Ala Leu Thr Gly Trp Leu Ala Gly Phe Asp Gly Asn Phe Asp 35 40 45 Phe Lys 50 <210> 183 <211> 50 <212> PRT <213> Fusarium oxysporum <400> 183 Ser Val Val Phe Asp Glu Val His Phe Gly Gly Phe Ala Thr Lys Tyr 10 Ile Lys Gly Lys Phe Phe Met Asp Val His Pro Pro Leu Ala Lys Met 20 30 25 Leu Ile Ala Leu Thr Gly Trp Leu Ala Gly Phe Asp Gly Ser Phe Asp 35 40 45 Phe Lys 50

10

15

<210> 184 <211> 50 <212> PRT <213> Aspergillus nidulans

Ser Val Val Phe Asp Glu Val His Phe Gly Gly Phe Ala Thr Lys Tyr Ile Lys Gly Arg Phe Phe Met Asp Val His Pro Pro Leu Ala Lys Leu 20 25 30 Leu Ile Thr Leu Ala Gly Trp Leu Ala Gly Phe Lys Gly Asp Phe Asp 35 40 45 Phe Lys 50 <210> 185 <211> 50 <212> PRT <213> Aspergillus oryzae <400> 185 Ser Val Val Phe Asp Glu Val His Phe Gly Gly Phe Ala Ser Lys Tyr 5 10 15 Ile Lys Gly Arg Phe Phe Met Asp Val His Pro Pro Leu Ala Lys Leu 20 25 30 Leu Ile Thr Leu Ala Gly Trp Leu Ala Gly Phe Asn Gly Asp Phe Asp 35 40 45 Phe Lys 50 <210> 186 <211> 50 <212> PRT <213> Aspergillus niger <400> 186

5

10

Ser Val Val Phe Asp Glu Val His Phe Gly Gly Phe Ala Thr Lys Tyr 10 15 Ile Lys Gly Arg Phe Phe Met Asp Val His Pro Pro Leu Ala Lys Leu 20 25 30 Leu Ile Thr Leu Ala Gly Trp Leu Ala Gly Phe Asp Gly Glu Phe Asp 35 40 45 Phe Lys 50 <210> 187 <211> 50 5 <212> PRT <213> Penicillium chrysogenum <400> 187 Ser Val Val Phe Asp Glu Val His Phe Gly Gly Phe Ala Ser Lys Tyr 1 5 10 15 Ile Lys Gly Lys Phe Phe Met Asp Val His Pro Pro Leu Ala Lys Leu 20 25 30 Leu Leu Thr Leu Ala Gly Trp Leu Ala Gly Phe Asp Gly Asn Phe Asp 35 40 45 Phe Lys 50 10 <210> 188 <211> 50 <212> PRT 15 <213> Trichoderma reesei <400> 188

Glu 1	Val	Val	Phe	Asp 5	Glu	Val	His	Phe	Gly 10	Lys	Phe	Ala	Ser	Tyr 15	Tyr
Leu	Gln	Arg	Thr 20	Tyr	Phe	Phe	Asp	Val 25	His	Pro	Pro	Phe	Ala 30	Lys	Leu
Leu	Phe	Ala 35	Phe	Val	Gly	Trp	Leu 40	Val	Gly	Tyr	Asp	Gly 45	His	Phe	His
Phe	Asp 50														
<210> 1 <211> 5 <212> F <213> 7	50 PRT	erma vil	rens												
<400> 1	189														
Glu 1	Val	Val	Phe	Asp 5	Glu	Val	His	Phe	Gly 10	Lys	Phe	Ala	Ser	Tyr 15	Tyr
Leu	Gln	Arg	Thr 20	Tyr	Phe	Phe	Asp	Val 25	His	Pro	Pro	Phe	Ala 30	Lys	Leu
Leu	Phe	Ala 35	Phe	Val	Gly	Trp	Leu 40	Val	Gly	Tyr	Asp	Gly 45	His	Phe	His
Phe	Glu 50														
<210> 1 <211> 5 <212> F <213> F	50 PRT	n oxysį	oorum												
<400> 1	190														

```
Glu Val Val Phe Asp Glu Val His Phe Gly Lys Phe Ala Ser Tyr Tyr
                                         10
                                                               15
Leu Glu Arg Thr Tyr Phe Phe Asp Val His Pro Pro Phe Gly Lys Leu
                                                           30
              20
                                    25
Leu Phe Ala Phe Val Gly Trp Leu Val Gly Tyr Asp Gly Asn Phe His
                                40
Phe Glu
     50
<210> 191
<211> 50
<212> PRT
<213> Gibberella zeae
<400> 191
Glu Val Val Phe Asp Glu Val His Phe Gly Lys Phe Ala Ser Tyr Tyr
                  5
                                         10
                                                               15
Leu Glu Arg Thr Tyr Phe Phe Asp Val His Pro Pro Phe Gly Lys Leu
              20
                                    25
                                                           30
Leu Phe Ala Phe Val Gly Trp Leu Val Gly Tyr Asp Gly His Phe His
          35
                                40
                                                      45
Phe Asp
     50
<210> 192
<211> 50
<212> PRT
<213> Myceliophthora thermophila
```

5

10

15

Glu Val Val Phe Asp Glu Val His Phe Gly Lys Phe Ala Ser Tyr Tyr Leu Glu Arg Thr Tyr Phe Phe Asp Val His Pro Pro Leu Gly Lys Leu 20 25 30 Leu Phe Ala Phe Met Gly Trp Leu Val Gly Tyr Asp Gly His Phe His 35 40 45 Phe Glu 50 <210> 193 <211> 50 <212> PRT <213> Neurospora crassa <400> 193 Glu Val Val Phe Asp Glu Val His Phe Gly Lys Phe Ala Ser Tyr Tyr 5 10 15 Leu Glu Arg Thr Tyr Phe Phe Asp Val His Pro Pro Phe Gly Lys Leu 20 25 30 Leu Phe Ala Phe Met Gly Trp Leu Val Gly Tyr Asp Gly His Phe His Phe Glu 50 <210> 194 <211> 50 <212> PRT

5

10

15

<213> Aspergillus nidulans

Gln Val Val Phe Asp Glu Val His Phe Gly Lys Phe Ala Ser Tyr Tyr 10 15 Leu Arg Arg Thr Tyr Phe Phe Asp Val His Pro Pro Phe Ala Lys Leu 20 25 30 Leu Leu Ala Phe Thr Gly Trp Leu Val Gly Tyr Asp Gly His Phe Leu 35 40 45 Phe Glu 50 <210> 195 <211> 50 <212> PRT <213> Aspergillus niger <400> 195 Glu Val Val Phe Asp Glu Val His Phe Gly Lys Phe Ala Ser Tyr Tyr 5 10 15 Leu Gln Arg Thr Tyr Phe Phe Asp Val His Pro Pro Phe Gly Lys Leu 20 25 30 Leu Phe Ala Phe Met Gly Trp Leu Val Gly Tyr Asp Gly His Phe Leu 35 40 45 Phe Asp 50 <210> 196 <211> 50 <212> PRT <213> Aspergillus oryzae <400> 196

5

10

Glu 1	Val	Val	Phe	Asp 5	Glu	Val	His	Phe	Gly 10	Lys	Phe	Ala	Ser	Tyr 15	Tyr
Leu	Gln	Arg	Thr 20	Tyr	Phe	Phe	Asp	Val 25	His	Pro	Pro	Phe	Gly 30	Lys	Leu
Leu	Phe	Ala 35	Ala	Val	Gly	Trp	Leu 40	Ile	Gly	Tyr	Asp	Gly 45	His	Phe	Leu
Phe	Glu 50														
<210> 1 <211> 5 <212> F <213> F <400> 1	0 PRT Penicilliu	ım chry	rsogeni	ım											
Glu 1	Val	Val	Phe	Asp 5	Glu	Val	His	Phe	Gly 10	Lys	Phe	Ala	Ser	Tyr 15	Tyr
Leu	Gln	Arg	Thr 20	Tyr	Phe	Phe	Asp	Val 25	His	Pro	Pro	Phe	Gly 30	Lys	Leu
Leu	Phe	Ala 35	Leu	Met	Gly	Trp	Leu 40	Val	Gly	Phe	Asp	Gly 45	Ser	Phe	Leu
Phe	Glu 50														

REIVINDICACIONES

- 1. Una célula fúngica filamentosa deficiente en PMT que comprende
- a) una primera mutación en un gen que codifica una proteasa endógena que reduce o elimina una actividad de proteasa endógena en comparación con una célula fúngica filamentosa precursora que no tiene dicha primera mutación, seleccionándose dichas proteasas endógenas entre proteasas aspárticas, serina proteasas de tipo tripsina, subtilisina proteasas, proteasas glutámicas y sedolisina proteasas, y
 - b) una segunda mutación en un gen PMT que reduce la actividad de O-manosiltransferasa endógena en comparación con una célula fúngica filamentosa precursora que no tiene dicha segunda mutación,

en la que dicha célula fúngica filamentosa se selecciona entre el grupo que consiste en célula de *Trichoderma*, *Neurospora*, *Myceliophthora* y *Chrysosporium*.

- 2. La célula fúngica filamentosa deficiente en PMT de la reivindicación 1, en la que dicha segunda mutación que reduce la actividad de O-manosiltransferasa endógena es una deleción o una alteración de un gen PMT que codifica una actividad de proteína O-manosiltransferasa endógena.
- 3. La célula fúngica filamentosa deficiente en PMT de la reivindicación 1 o 2, en la que dicha segunda mutación en un gen PMT es una mutación en cualquiera de:
 - a) gen PMT1 que comprende el polinucleótido de la SEQ ID NO: 1,
 - b) un gen homólogo del gen *PMT1*, gen homólogo que es capaz de restablecer el nivel de O-manosilación precursora mediante complementación funcional cuando se introduce en una cepa de *T. reesei* que tiene una alteración en dicho gen *PMT1*, o;
 - c) un polinucleótido que codifica un polipéptido que tiene una identidad de al menos un 50 % con la SEQ ID NO: 2, teniendo dicho polipéptido actividad de O-manosiltransferasa.
- 4. La célula fúngica filamentosa deficiente en PMT de una cualquiera de las reivindicaciones 1-3, en la que dicha célula tiene una tercera mutación que reduce o elimina el nivel de expresión de un gen *ALG3* en comparación con el nivel de expresión en una célula precursora que no tiene dicha tercera mutación.
- La célula fúngica filamentosa deficiente en PMT de la reivindicación 4, que además comprende un primer polinucleótido que codifica un dominio catalítico de N-acetilglucosaminiltransferasa I y un segundo polinucleótido que codifica un dominio catalítico de N-acetilglucosaminiltransferasa II.
 - 6. La célula fúngica filamentosa deficiente en PMT de una cualquiera de las reivindicaciones 1-5, que además comprende uno o más polinucleótidos que codifican un polipéptido seleccionado entre el grupo que consiste en:
- 40 a) α1,2 manosidasa;
 - b) dominio catalítico de N-acetilglucosaminiltransferasa I;
 - c) α manosidasa II;
 - d) dominio catalítico de N-acetilglucosaminiltransferasa II;
 - e) β1,4 galactosiltransferasa; y,
- 45 f) fucosiltransferasa.
 - 7. La célula fúngica filamentosa deficiente en PMT de una cualquiera de las reivindicaciones 1-6, en la que dicha célula es una célula de *Trichoderma* que comprende una mutación que reduce o elimina la actividad de proteína Omanosiltransferasa de pmt1 de *Trichoderma*.
 - 8. La célula fúngica filamentosa deficiente en PMT de una cualquiera de las reivindicaciones 1-7, en la que dicha célula es una célula de *Trichoderma*, por ejemplo *Trichoderma reesei*, y dicha célula comprende mutaciones que reducen o eliminan la actividad de
- a) las tres proteasas endógenas pep1, tsp1 y slp1;
 - b) las tres proteasas endógenas gap1, slp1 y pep1;
 - c) las tres proteasas endógenas seleccionadas entre el grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep8, pep11, pep12, tsp1, slp1, slp2, slp3, slp7, gap1 y gap2;
 - d) de tres a seis proteasas seleccionadas entre el grupo que consiste en pep1, pep2, pep3, pep4, pep5, tsp1, slp1, slp2, slp3, gap1 y gap2; o
 - e) de siete a diez proteasas seleccionadas entre el grupo que consiste en pep1, pep2, pep3, pep4, pep5, pep7, pep8, tsp1, slp1, slp2, slp3, slp5, slp6, slp7, slp8, tpp1, gap1 y gap2.
 - 9. Un método para producir una proteína que tiene O-manosilación reducida, que comprende:

a) proporcionar una célula fúngica filamentosa deficiente en PMT de una cualquiera de las reivindicaciones 1-8, y

310

65

60

50

10

que además comprende un polinucleótido que codifica una proteína con un resto de serina o treonina,

- b) cultivar dicha célula fúngica filamentosa deficiente en PMT para producir dicha proteína que tiene O-manosilación reducida.
- 5 10. El método de acuerdo con la reivindicación 9, en el que dicha célula fúngica filamentosa expresa una proteína chaperona endógena funcional, tal como Proteína Disulfuro Isomerasa (PDI).
 - 11. El método de las reivindicaciones 9 o 10, en el que dicha proteína producida es una proteína de mamífero heteróloga seleccionada entre el grupo que consiste en

10

- a) una inmunoglobulina, tal como IgG,
- b) una cadena ligera o una cadena pesada de una inmunoglobulina,
- c) una cadena pesada o una cadena ligera de un anticuerpo,
- d) un anticuerpo de cadena individual,

- e) un anticuerpo camélido,
- f) un anticuerpo de dominio individual monomérico o multimérico,
- g) un fragmento FAb, un fragmento FAb2, y,
- h) sus fragmentos de unión a antígeno.

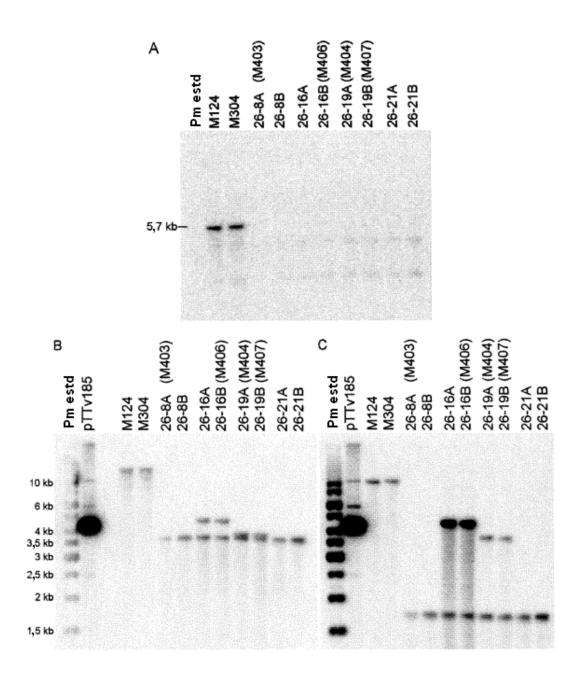


Figura 1

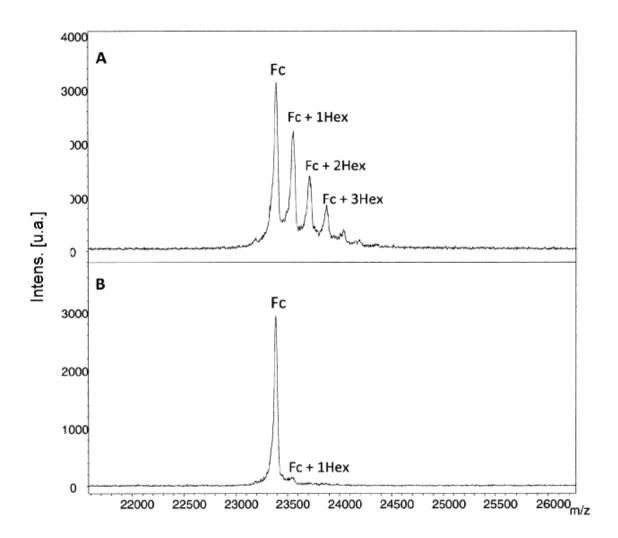


Figura 2

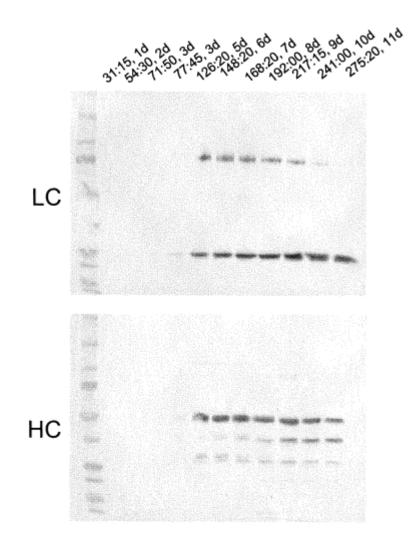


Figura 3

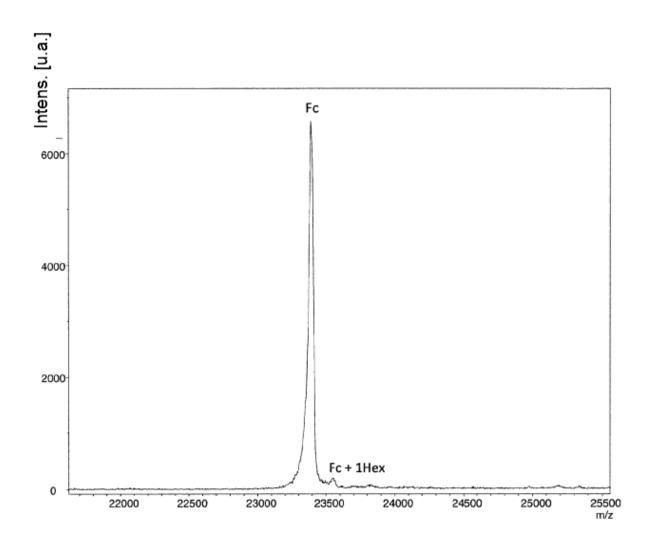


Figura 4

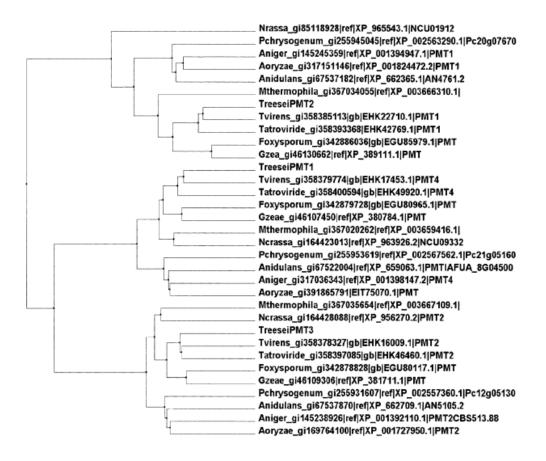


Figura 5

```
Aniger gi145238926
                             IVTWDEAHFGKFGSHYLKREFYFDVHPPLGKMLVGLSGFLAGYNGSFEFK 132
Aniger_gi145238926 IVTWDEAHFGKFGSHYLKREFYFDVHPPLGKMLVGLSGFLAGYNGSFEFK 132
Aoryzae_gi169764100 IVTWDEAHFGKFGSHYLKREFYFDVHPPLGKMLVGLSGYLAGYNGSFEFK 132
Anidulans_gi67537870 IVTWDEAHFGKFGSHYLKREFYFDVHPPLGKMLVGLSGLLAGYNGSFEFK 131
Pchrysogenum_gi255931607 IVTWDEAHFGKFGSHYLKREFYFDVHPPLGKMLVGLSGYLAGYNGSFEFK 133
Mthermophila_gi367035654 IVTWDEAHFGKFGSHYLKREFYFDVHPPAGKLLVGLSGYLAGYNGSFEFK 135
Ncrassa_gi164428088 IVTWDEAHFGKFGSHYLKREFYFDVHPPAGKLLVGLSGLLAGYNGSFEFK 140
Tvirens_gi358378327 IVTWDEAHFGKFGSYYIKHEYYFDVHPPLGKMLVGLSGVLAGYNGSFEFK 130
Tatroviride_gi358397085 IVTWDEAHFGKFGSYYIKHEYYFDVHPPLGKMLVGLSGVLAGYNGSFEFK 131
TreeseiPMT3
                             IVTWDEAHFGKFGSYYIKHEYYFDVHPPLGKMLVGLSGVLAGYNGSFEFK 131
Foxysporum gi342878828 IVTWDEAHFGKFGSYYIKHEYYFDVHPPLGKMLVGLSGVLAGYNGTFEFK 131
Gzeae_gi46109306 IVTWDEAHFGKFGSYYIKHEYYFDVHPPLGKMLVGLSGVLAGYNGTFEFK 132
Nrassa gi85118928
                             SVVFDEVHFGGFASKYIKGKFFMDVHPPLAKLMITLFGWLAGFDGSFDFK 141
Mthermophila gi367034055 SVVFDEVHFGGFATKYIKGKFFMDVHPPLAKLMITLFGWLAGFKGNFDFK 129
Tvirens_gi358385113 SVVFDEVHFGGFASKYIKGKFFMDVHPPLAKMLIALTGWLAGFDGNFDFK 127
Tatroviride gi358393368 SVVFDEVHFGGFASKYIKGRFFMDVHPPLAKMLIALTGWLAGFDGDFDFK 131
TreeseiPMT2
                             SVVFDEVHFGGFASKYIKGRFFMDVHPPLAKMLIALTGWLAGFDGNFDFK 132
Foxysporum gi342886036 SVVFDEVHFGGFATKYIKGKFFMDVHPPLAKMLIALTGWLAGFDGSFDFK 145
                          SVVFDEVHFGGFATKYIKGKFFMDVHPPLAKMLIALTGWLAGFDGSFDFK 142
Gzea_gi46130662
Anidulans gi67537182
                             SVVFDEVHFGGFATKYIKGRFFMDVHPPLAKLLITLAGWLAGFKGDFDFK 127
Aoryzae_gi317151146 SVVFDEVHFGGFASKYIKGRFFMDVHPPLAKLLITLAGWLAGFNGDFDFK 130
Aniger_gi145245359 SVVFDEVHFGGFATKYIKGRFFMDVHPPLAKLLITLAGWLAGFDGEFDFK 131
Pchrysogenum gi255945045 SVVFDEVHFGGFASKYIKGKFFMDVHPPLAKLLLTLAGWLAGFDGNFDFK 129
                        EVVFDEVHFGKFASYYLQRTYFFDVHPPFAKLLFAFVGWLVGYDGHFHFD 127
TreeseiPMT1
Tvirens_gi358379774
                             EVVFDEVHFGKFASYYLQRTYFFDVHPPFAKLLFAFVGWLVGYDGHFHFE 128
Tatroviride qi358400594 EVVFDEVHFGKFASYYLORTYFFDVHPPFAKLLFAFVGWLVGYDGHFHFE 127
Foxysporum_gi342879728 EVVFDEVHFGKFASYYLERTYFFDVHPPFGKLLFAFVGWLVGYDGNFHFE 125
Gzeae gi46107450 EVVFDEVHFGKFASYYLERTYFFDVHPPFGKLLFAFVGWLVGYDGHFHFD 125
Mthermophila gi367020262 EVVFDEVHFGKFASYYLERTYFFDVHPPLGKLLFAFMGWLVGYDGHFHFE 125
Ncrassa_gi164423013 EVVFDEVHFGKFASYYLERTYFFDVHPPFGKLLFAFMGWLVGYDGHFHFE 125
Anidulans_gi67522004 QVVFDEVHFGKFASYYLRRTYFFDVHPPFAKLLLAFTGWLVGYDGHFLFE 116
Anidulans_gi67522004
                        EVVFDEVHFGKFASYYLQRTYFFDVHPPFGKLLFAFMGWLVGYDGHFLFD 115
Aniger_gi317036343
Aoryzae gi391865791
                             EVVFDEVHFGKFASYYLQRTYFFDVHPPFGKLLFAAVGWLIGYDGHFLFE 118
Pchrysogenum_gi255953619 EVVFDEVHFGKFASYYLQRTYFFDVHPPFGKLLFALMGWLVGFDGSFLFE 115
                              *.:**.** *.: *:. :::**** .*::. * * *:.* * *.
```

Figura 6