

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 740 475

51 Int. Cl.:

A61B 10/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 30.01.2013 PCT/US2013/023707

(87) Fecha y número de publicación internacional: 07.08.2014 WO14120133

(96) Fecha de presentación y número de la solicitud europea: 30.01.2013 E 13703694 (3)

(97) Fecha y número de publicación de la concesión europea: 29.05.2019 EP 2950719

(54) Título: Recipiente de recogida de muestras que tiene una cámara de separación de fluidos

(30) Prioridad:

29.01.2013 US 201313752590

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **05.02.2020**

(73) Titular/es:

BECTON, DICKINSON AND COMPANY (100.0%) 1 Becton Drive Franklin Lakes, NJ 07417-1880, US

(72) Inventor/es:

ELLIS, ROBERT; MOSKOWITZ, KEITH, A.; GELFAND, CRAIG, A.; WASEK, RAYMOND; WILKINSON, BRADLEY, M.; ALLA, JEAN-BERNARD y LEE, KENNETH, LOUIS

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Recipiente de recogida de muestras que tiene una cámara de separación de fluidos

Antecedentes de la invención

Campo de la invención

5 La presente invención se refiere a un recipiente de recogida de muestras como se expone en la reivindicación 1.

Descripción de la técnica relacionada

Cuando se obtiene una muestra de orina de un paciente ambulatorio, generalmente es preferible recoger la muestra de la porción de orina a mitad de la micción. Es importante rechazar la orina de "la primera micción" de las muestras porque los primeros volúmenes de orina evacuada llevan un nivel desproporcionadamente mayor de bacterias. Las bacterias a menudo se recogen de la piel/tejido externo y también posiblemente procedentes del volumen de la uretra. El nivel elevado de bacterias del primer chorro o primera micción de orina puede dar lugar a resultados de falsos positivos por la presencia de bacterias, y podría sugerir una infección falsa del tracto urinario, lo que lleva a un tratamiento o medicación innecesarios y a un manejo inadecuado del paciente. Puesto que las bacterias de la superficie están siempre presentes, la posibilidad de contaminación de una muestra de orina es universal. Como 15 resultado, las muestras de orina se solicitan típicamente en "condiciones de asepsia" o "a mitad de la micción". Dichas solicitudes requieren que el paciente o un proveedor de cuidados utilice toallitas antisépticas para desinfectar el tejido externo. Además, los pacientes son instruidos para permitir que la primera orina caiga en el inodoro antes de llenar un recipiente de recogida de muestras. Se cree que la primera micción de orina no sólo contiene gran cantidad de bacterias procedentes de la superficie del tejido, sino que, de hecho, "lava" las superficies externas, de modo que hay pocas o ninguna bacteria de superficie errantes capturadas en los volúmenes de orina posteriores a la mitad de la micción.

El estado de la técnica de recogida de orina a mitad de la micción es esencialmente un proceso manual que se basa enteramente en el usuario o paciente para realizar la recogida correctamente. Las instrucciones típicas para la recogida de orina a mitad de la micción pueden requerir que el usuario miccione en el inodoro, después detenga el flujo de orina, mueva el vaso de recogida a su posición, miccione en el vaso hasta que esté lleno, detenga el flujo de orina y aleje el vaso, y finalice la micción en el inodoro. Generalmente, un usuario será instruido para limpiar el tejido/piel externa circundante con una toallita antiséptica antes de miccionar. El proceso es complicado, quedando las manos de un usuario cerca del flujo de orina y, a menudo, exponiendo la piel del usuario a la orina.

Un ejemplo de un documento del estado de la técnica es el documento WO 84/03213 que divulga un dispositivo para recoger una porción de orina evacuada a mitad de la micción. El dispositivo incluye una cámara de recepción del flujo anterior que contiene gránulos de material absorbente de orina. Cuando se recibe orina, los gránulos se hinchan y activan un elemento de válvula móvil para que bloquee una abertura de entrada de flujo de la cámara. Un embudo de recepción de líquido recibe un flujo de orina evacuado y lo descarga hacia la abertura de entrada de flujo de la cámara o tubo de recepción del flujo anterior. Cuando la abertura de entrada de flujo recibe un líquido a mitad de la micción procedente del embudo, éste es recibido por un recipiente de recogida de muestras a mitad de la micción.

La complicación y la incomodidad no son los únicos inconvenientes de tener un proceso manual dependiente del usuario. Además, los pacientes deben recibir instrucciones adecuadas que imponen un requisito adicional y una carga tanto para el paciente como para el cuidador. A menudo, como en situaciones donde la privacidad no es 40 posible (por ejemplo, en medio de un ambiente de la sala de urgencias ocupada), los cuidadores no proporcionan ninguna instrucción en absoluto. Además, los pacientes pueden no entender, u optar por no seguir, las instrucciones, incluso cuando se les dan, particularmente si el paciente está ya nervioso, asustado, o agitado. Por ejemplo, hay evidencia anecdótica significativa de personas que no utilizan las toallitas antisépticas, ya sea porque les queman o se sienten incómodos o porque los pacientes confunden las toallitas antisépticas con las toallitas para las manos y 45 las utilizan después de proporcionar la muestra. De hecho, no hay manera de saber, a menos que se observe al paciente que proporciona la muestra de orina, si siguieron realmente algunas de las instrucciones.

También hay complicaciones fisiológicas que pueden contribuir a la contaminación bacteriana elevada. Cierta evidencia indica que interrumpir intencionalmente el flujo de orina puede llevar a la reintroducción de bacterias, esencialmente creando una nueva "primera micción" a partir del flujo de orina reiniciado. La orina reiniciada puede 50 no fluir sobre la misma piel/tejido que el primer flujo, y, como resultado, puede recoger las bacterias de la piel previamente no humedecida. Otra posibilidad es que el flujo de orina detenido en realidad puede desalojar bacterias, células muertas, u otros contaminantes potenciales que no habrían estado disponibles para contaminar la orina durante un evento de micción por lo demás normal. Por lo tanto, el proceso manual de inicio-detención-inicio otra vez para la recogida de orina a mitad de la micción puede a su vez contribuir a cierta contaminación bacteriana.

La frecuencia de la contaminación bacteriana de las muestras de orina varía del 10-40%, dependiendo de la naturaleza de las pruebas y la institución donde se realizan los estudios. Dichas estadísticas indican que el problema es generalizado y bastante común. Esto probablemente contribuye a residuos significativos, tanto en aumento de los costes como del tiempo asociado con el manejo de las muestras de baja calidad o la ejecución de pruebas que dan 5 datos ambiguos o potencialmente inútiles. La repetición de la prueba puede ser apropiada en algunas circunstancias; sin embargo, sobre todo en pacientes ambulatorios, el paciente puede no estar disponible para proporcionar una segunda muestra. En consecuencia, nunca se realiza una nueva prueba o simplemente nunca se solicita.

Por lo tanto, en vista de las dificultades para obtener una muestra de orina correcta utilizando métodos disponibles en la actualidad, existe la necesidad de un aparato de recogida que haga el proceso de recogida más fácil y reduzca el riesgo de exponer al paciente al flujo de orina. El aparato debe ser intuitivo de usar y debe ser diseñado para promover el uso y manejo adecuados de la muestra recogida en todos los puntos antes, durante y después de la micción de orina. Además, el dispositivo debe aumentar la comodidad y la conveniencia del paciente mediante la selección de manera eficaz de la orina a mitad de la micción, por lo que el usuario no necesita forzar conscientemente la detención y después el comienzo de la micción. Al no requerir que el paciente inicie-detenga-inicie el flujo de micción de orina se reduce el riesgo de contaminación fisiológica natural a partir de la interrupción del flujo. De forma similar, el dispositivo debería requerir sólo la manipulación mínima de un paciente con el fin de recoger la orina. Además, el aparato debe eliminar la necesidad de que los pacientes sean expuestos directamente al flujo de orina. Finalmente, para garantizar la transferencia segura y fácil de la muestra de orina desde el recipiente de recogida a un tubo de recogida de muestras para la prueba, el dispositivo debe incluir uno o más puertos de acceso que permitan un flujo directo de la muestra recogida desde el recipiente a un tubo de ensayo.

Resumen de la invención

En la presente memoria se proporciona un recipiente de recogida de muestras como se expone en la reivindicación 1. El recipiente de recogida de muestras incluye además un puerto para acceder y retirar la porción intermedia de flujo del fluido del recipiente y para transferir la porción intermedia de flujo a un tubo de recogida de muestras. También se describe un método para recoger una muestra de fluido utilizando un recipiente de recogida de muestras que tiene una cámara de separación de fluidos, ya que es útil en relación con la presente invención, aunque no está dentro de su alcance de protección.

De acuerdo con una realización de la presente invención, un recipiente de recogida de muestras incluye una primera cámara que tiene una porción superior abierta, una pared lateral y una porción inferior; una segunda cámara que tiene una parte superior, una parte inferior cerrada, y una pared lateral; y una válvula dispuesta entre la primera cámara y la segunda cámara. La válvula puede hacer la transición desde una posición abierta que permite la comunicación de fluido entre la primera cámara y la segunda cámara a una posición cerrada que mantiene el aislamiento del fluido entre la primera cámara y la segunda cámara. En la posición abierta, un volumen predeterminado de fluido, recibido en la primera cámara, puede pasar desde la primera cámara a la segunda cámara. Cuando el volumen predeterminado de fluido pasa a la segunda cámara, la válvula pasa desde la posición abierta a la posición cerrada, de tal forma que el fluido adicional recibido dentro de la primera cámara se mantiene en la primera cámara en aislamiento de fluido del volumen predeterminado de fluido contenido en la segunda cámara.

40 En ciertas configuraciones, la válvula del recipiente de recogida de muestras incluye un canal que se extiende entre la primera cámara y la segunda cámara y un material expandible absorbente. El material expandible absorbente absorbe el volumen predeterminado de fluido y se expande para aplicarse con el canal, lo que hace que la válvula pase a la posición cerrada. En ciertas configuraciones alternativas, el recipiente comprende además una junta de tal forma que la expansión del material expansible absorbente posiciona la junta para hacer la transición de la válvula.

45 El material expansible absorbente puede ser una esponja.

En ciertas configuraciones alternativas, la válvula incluye un canal, que se extiende entre la primera cámara y la segunda cámara, y una boya flotante. Cuando la segunda cámara recibe el volumen predeterminado de fluido, la boya flotante se aplica al canal mediante una fuerza de flotación ejercida sobre el flotador por el volumen predeterminado de fluido para hacer que el flotador pase desde la posición abierta a la posición cerrada. 50 Opcionalmente, una porción de la boya flotante sella inicialmente el canal. El fluido que pasa desde la primera cámara a la segunda cámara libera el flotador del canal y coloca la válvula en la posición abierta temporalmente.

En ciertas configuraciones, el recipiente de recogida de muestras incluye además un puerto para acceder y extraer una muestra de fluido de la primera cámara. El puerto puede incluir una boquilla que define un canal entre la primera cámara y un exterior del recipiente de recogida de muestras; y un tabique que cubre el canal que hace la transición desde una posición cerrada a una posición abierta para permitir la extracción de la muestra de fluido del mismo. El puerto puede estar dispuesto dentro de la pared lateral de la primera cámara. El puerto también puede incluir una

aguja que tiene una punta externa, una punta interna adyacente a la primera cámara, y una cánula de aguja que se extiende entre las mismas, en el que el acceso de fluido al primer recipiente se establece a través de la cánula de aguja. Opcionalmente, la punta externa de la aguja está rebajada con respecto a una superficie externa del recipiente de recogida para el manejo seguro del dispositivo.

5 De acuerdo con una realización adicional de la presente invención, un recipiente de recogida de muestras incluye una cámara interior que tiene una porción inferior, una pared lateral y una parte superior abierta; y un absorbedor dispuesto dentro de la cámara interior que absorbe un volumen predeterminado de fluido. Cuando un flujo de fluido entra en la cámara a través de la parte superior abierta, el absorbedor absorbe el volumen predeterminado. El fluido adicional procedente del flujo de fluido se mantiene en la cámara interna en aislamiento de fluido del fluido absorbido por el absorbedor. Opcionalmente, el absorbedor incluye bentonita, tierra de diatomeas, pelitas, zeolitas, quitosano, alginatos, polvos a base de almidón y/o poliacrilato de sodio. El absorbedor puede incluir un polvo. Como alternativa, el absorbedor puede incluir una bolsa que encierra un material absorbente.

En ciertas configuraciones, la cámara interior incluye una pantalla que separa la cámara interior en una primera cámara y una segunda cámara con el absorbedor mantenido en su interior. La pantalla permite que el fluido pase desde la primera cámara a la segunda cámara, pero evita que el absorbedor pase desde la segunda cámara a la primera cámara.

De acuerdo con una realización adicional de la presente invención, un recipiente de recogida de muestras incluye una primera cámara que tiene una porción superior abierta, una pared lateral y una porción inferior; una segunda cámara que tiene una parte superior, una parte inferior cerrada, y una pared lateral; y una válvula dispuesta entre la primera cámara y la segunda cámara. La válvula puede hacer la transición desde una primera posición cerrada en la que la primera cámara y la segunda cámara están en aislamiento de fluido, a una posición abierta que permite la comunicación de fluido entre la primera cámara y la segunda cámara, a una segunda posición cerrada en la que el aislamiento de fluido entre la primera cámara y la segunda cámara se restaura. La válvula puede incluir una válvula de charnela de acción de resorte.

25 En ciertas configuraciones, un fluido que entra en la primera cámara hace que la válvula pase desde la primera posición cerrada a la posición abierta y la presencia de un volumen predeterminado de fluido dentro de la segunda cámara hace que la válvula pase desde la posición abierta a la segunda posición cerrada. Opcionalmente, la válvula incluye una válvula de charnela que puede pasar desde la primera posición cerrada a la posición abierta cuando el fluido entra en contacto con la superficie de la charnela adyacente a la primera cámara. La válvula también puede pasar posteriormente desde la posición abierta a la segunda posición cerrada cuando un volumen predeterminado de fluido recibido dentro de la segunda cámara entra en contacto con la superficie de la charnela adyacente a la segunda cámara.

Breve descripción de los dibujos

La siguiente descripción se proporciona para permitir a los expertos en la técnica realizar y utilizar las realizaciones descritas contempladas para llevar a cabo la invención. Sin embargo, diversas modificaciones, equivalencias, variaciones y alternativas seguirán siendo evidentes para los expertos en la técnica. Todas y cada una de dichas modificaciones, variaciones, equivalencias y alternativas pretenden estar dentro del alcance de la presente invención.

La Figura 1A es una vista frontal en sección transversal de un recipiente de recogida de muestras con una válvula en 40 la posición abierta de acuerdo con una realización de la presente invención.

La Figura 1B es una vista frontal en sección transversal del recipiente de la Figura 1A con la válvula en la posición cerrada de acuerdo con una realización de la presente invención.

La Figura 2A es una vista frontal en sección transversal de un recipiente de recogida de muestras con una válvula en la posición abierta de acuerdo con una realización de la presente invención.

45 La Figura 2B es una vista frontal en sección transversal del recipiente de la Figura 2A con la válvula en la posición cerrada de acuerdo con una realización de la presente invención.

La Figura 3A es una vista frontal en sección transversal de un recipiente de recogida de muestras con una válvula en la posición abierta de acuerdo con una realización de la presente invención.

La Figura 3B es una vista frontal en sección transversal del recipiente de la Figura 3A con la válvula en la posición 50 cerrada de acuerdo con una realización de la presente invención.

La Figura 4 es una vista en perspectiva de un recipiente de recogida de muestras que tiene una bolsa absorbente de acuerdo con una realización de la presente invención.

ES 2 740 475 T3

La Figura 5 es una vista en perspectiva de la bolsa absorbente de la Figura 4, de acuerdo con una realización de la presente invención, con una parte recortada parcial para revelar el interior de la bolsa.

La Figura 6 es una vista en perspectiva de un recipiente de recogida de muestras que tiene un material absorbente de acuerdo con una realización de la presente invención.

- 5 La Figura 7 es una vista frontal en sección transversal de un recipiente de recogida de muestras, que tiene un puerto de salida, de acuerdo con una realización de la presente invención.
 - La Figura 8 es una vista frontal en sección transversal de un recipiente de recogida de muestras, de acuerdo con una realización de la presente invención, que tiene un puerto elastomérico sin filos.
- La Figura 9 es una vista frontal en sección transversal del recipiente de recogida de muestras de la Figura 8 aplicado 10 con un tubo de recogida de muestras para extraer una muestra del recipiente, de acuerdo con una realización de la presente invención.
 - La Figura 10 es una vista frontal en sección transversal de un tubo de recogida de muestras, de acuerdo con una realización de la presente invención.
- La Figura 11A es una vista desde arriba de un material absorbente para su uso en un recipiente de recogida de 15 muestras, de acuerdo con una realización de la presente invención.
 - La Figura 11B es una vista desde arriba de un material absorbente para su uso en un recipiente de recogida de muestras, de acuerdo con una realización de la presente invención.
 - La Figura 11C es una vista desde arriba de un material absorbente para su uso en un recipiente de recogida de muestras, de acuerdo con una realización de la presente invención.
- 20 La Figura 11D es una vista desde arriba de un material absorbente para su uso en un recipiente de recogida de muestras, de acuerdo con una realización de la presente invención.
 - La Figura 11E es una vista en perspectiva de un material absorbente para su uso en un recipiente de recogida de muestras, de acuerdo con una realización de la presente invención.

Descripción de las realizaciones preferidas

- 25 Con el fin de facilitar la comprensión de la invención, los dibujos adjuntos y la descripción ilustran realizaciones preferidas de la misma, a partir de las cuales se pueden comprender y apreciar la invención, diversas realizaciones de sus estructuras, construcción y método operativo, y muchas ventajas.
- Para los fines de la descripción en lo sucesivo en el presente documento, los términos "superior", "inferior", "derecha", "izquierda", "vertical", "horizontal", "parte superior", "parte inferior", "lateral", "longitudinal", y derivados de 30 los mismos, se relacionarán con la invención según se orienta en las figuras de los dibujos. Sin embargo, debe entenderse que la invención puede asumir variaciones alternativas y secuencias de etapas, excepto cuando se especifique expresamente lo contrario. También debe entenderse que los dispositivos y procesos específicos ilustrados en los dibujos adjuntos, y descritos en la siguiente memoria descriptiva, son simplemente realizaciones ejemplares de la invención. Por lo tanto, las dimensiones específicas y otras características físicas relacionadas con 35 las realizaciones divulgadas en el presente documento no deben considerarse como limitantes.
- Con referencia a las Figuras 1A-3B, un recipiente 10 de recogida de muestras incluye una primera cámara 12 en comunicación de fluido con una segunda cámara 14 a través de una válvula 16. El recipiente 10 de recogida de muestras está adaptado para recibir y separar un flujo de fluido en un volumen inicial o nulo y un flujo intermedio o volumen de muestra. El flujo intermedio o volumen de muestra se puede extraer del recipiente 10 de recogida de 40 muestras para pruebas biológicas. El recipiente 10 se forma a partir de cualquier polímero de grado médico relativamente inerte, tal como polietileno o poliestireno de alta densidad. Como alternativa, el recipiente 10 puede estar formado de vidrio, papel o productos a base de celulosa.
- El recipiente 10 de recogida de muestras incluye una primera cámara 12 que tiene una porción superior abierta 18, una pared lateral 20, y una porción inferior cerrada 22. Como se muestra en las Figuras 3A-3B, la pared lateral 20 puede estar inclinada hacia la porción inferior 22 de la primera cámara 12 dando a la primera cámara 12 una forma de embudo de tal manera que el diámetro A de la porción superior abierta 18 sea mayor que el diámetro B de la porción inferior cerrada 22. En esta configuración, el fluido introducido en la cámara con forma de embudo se desliza más fácilmente hacia abajo hacia el fondo del recipiente.

La primera cámara 12 puede incluir un indicador 44 de volumen de fluido para mostrar la cantidad de fluido contenido en la misma. La primera cámara 12 puede estar cubierta por una tapa extraíble 24 que se puede colocar sobre la porción superior abierta 18 de la primera cámara 12 después de que la muestra de fluido se introduzca en la cámara 12. La tapa 24 evita que la muestra de fluido se escape del recipiente 10 y evita que la muestra se 5 contamine.

La primera cámara 12 está en comunicación de fluido con la segunda cámara 14. La segunda cámara 14 incluye una parte superior cerrada 26, una pared lateral 20 y una parte inferior cerrada 28. En una realización no limitativa, la segunda cámara 14 está posicionada debajo de la primera cámara 12, de tal forma que la porción inferior 22 de la primera cámara 12 también forma la parte superior cerrada 26 de la segunda cámara 14. En una realización, la segunda cámara 14 tiene un volumen de aproximadamente 12 ml a 15 ml que puede ser más pequeño que el volumen de la primera cámara 12.

La comunicación fluida entre la primera cámara 12 y la segunda cámara 14 se establece a través de la válvula 16. La válvula 16 pasa desde una primera posición en la que se establece la comunicación de fluido entre la primera cámara 12 y la segunda cámara 14 a una segunda posición en la que la primera cámara 12 y la segunda cámara 14 se mantienen en aislamiento de fluido. En una realización, la válvula 16 incluye un canal 32 que conecta la primera cámara 12 con la segunda cámara 14. Cuando la válvula 16 está en la posición cerrada, el canal 32 está bloqueado para evitar que el fluido en la primera cámara 12 fluya a la segunda cámara 14. De manera similar, la válvula 16 evita que el fluido contenido en la segunda cámara 14 pase de nuevo a la primera cámara 12. Cuando la válvula 16 está en la posición cerrada, el fluido sigue la trayectoria de flujo de fluido L₂. En la posición abierta, el flujo de fluido 20 L₁ se permite entre la primera cámara 12 y la segunda cámara 14 a través del canal 32.

Con referencia a las Figuras 1A y 1B, en una realización no limitativa de la presente invención, la válvula 16 incluye un material absorbente expandible 34, tal como una esponja comprimida, contenida dentro de la segunda cámara 14. El material absorbente 34 puede estar pegado a la parte inferior cerrada 28 de la segunda cámara 14. En una realización ejemplar, el material absorbente 34 tiene un diámetro de 1,7 pulgadas (4,32 cm) y una altura expandida 25 de aproximadamente 5/8 pulgadas (1,59 cm). En comparación, la altura de la segunda cámara 14 es de aproximadamente 1/2 pulgada (1,27 cm). En consecuencia, cuando se expande, el material absorbente 34 ocupa todo el volumen de la segunda cámara 14. Cuando se humedece, el material absorbente 34 se expande hacia arriba hacia la parte superior cerrada 26 para aplicarse al canal 32. El material absorbente 34 puede conformarse en cualquier configuración que permita una rápida absorción y expansión de tamaño del fluido. Algunas configuraciones 30 aumentan la tasa de absorción al aumentar el área de superficie del material absorbente 34. Con referencia a las Figuras 11A-11E, las posibles formas del material absorbente 34 incluyen, pero sin limitación, un cilindro, un objeto de forma cilíndrica con orificios perforados, una forma cilíndrica con cuñas eliminadas, una forma de rosquilla y una pluralidad de cilindros más delgados separados.

Con referencia de nuevo a las Figuras 3A y 3B, de acuerdo con una realización no limitativa, la segunda cámara 14 incluye una base 36 con nervios. El material absorbente 34 se coloca sobre la base 36 con nervios o una estructura de soporte similar. La estructura de soporte eleva el material absorbente 34 permitiendo que el fluido se acumule en el espacio 38 por debajo del material absorbente 34 y permitiendo que el fluido sea absorbido por una superficie inferior del material absorbente 34. Exponer una superficie adicional del material absorbente 34 al fluido aumenta la tasa de absorción.

40 De acuerdo con una realización adicional no limitativa, la válvula 16 incluye además una junta 40 para crear un sellado hermético en el canal 32, como se muestra en las Figuras 1A-1B. La junta 40 está unida a una porción superior del material absorbente 34. La junta 40 puede ser, por ejemplo, un disco de espuma polimérica. Se aprecia que la junta 40 bloquea eficazmente que una porción del material absorbente 34 absorba líquido. Por consiguiente, es importante que otras superficies del material absorbente 34 sean accesibles al flujo de fluido L₁, de manera que el material absorbente 34 se expanda lo más rápidamente posible. A medida que el material absorbente humedecido 34 se expande y se eleva en una dirección ascendente, la junta 40 se aplica al canal 32, sellando de este modo el canal 32 y, de manera eficaz, pasando la válvula 16 a la posición cerrada. Una vez que la junta 40 está en su lugar y aplicada con el canal 32, la primera cámara 12 y la segunda cámara 14 están en aislamiento de fluido entre sí. Por consiguiente, cualquier fluido adicional que entre en la primera cámara 12 a través de la parte superior abierta 18 se mantiene en la primera cámara 12. Este fluido mantenido en la primera cámara 12 es la muestra de orina a mitad de la micción.

En una realización adicional no limitativa, la válvula 16 consiste en una boya flotante 142 que se fuerza en una dirección ascendente hacia el canal 32 a medida que aumenta el nivel de fluido de la segunda cámara 14. En una realización, la boya flotante 142 incluye una junta 40 para formar un sellado entre el flotador 142 y el canal 32.

55 Con referencia a las Figuras 2A y 2B, en una realización adicional de la invención, la válvula 16 es una "válvula de charnela". En la válvula de charnela, una porción 144 del flotador 142 está unida a la parte superior cerrada 26 de la

segunda cámara 14 formando una bisagra 146. En una realización, la bisagra 146 es una bisagra activa. En otra realización, la válvula de charnela incluye un resorte mecánico. El flotador 142 se mantiene cerca del canal 32, de tal forma que, inicialmente, el flotador 142 cubre el canal 32. La fuerza ejercida sobre el flotador 142 desde el flujo de fluido L₁ que entra en la primera cámara 12 empuja el flotador 142 lejos del canal 32 permitiendo que el fluido pase directamente a través del canal 32 desde la primera cámara 12 a la segunda cámara 14. A medida que aumenta el nivel de fluido de la segunda cámara 14, el intervalo de movimiento para el flotador 142 se reduce, hasta que, finalmente, el flotador 142 se mantiene en su lugar contra la parte superior 26 de la segunda cámara 14 y el canal 32. Una vez que el flotador 142 está en su lugar contra el canal 32, se bloquea el flujo de fluido L₂ desde la primera cámara 12 a la segunda cámara 14. Por lo tanto, el fluido adicional introducido en la primera cámara 12 se recoge y se mantiene en la primera cámara 12. El fluido recogido dentro de la primera cámara 12 es la porción de flujo intermedio del flujo de orina.

Con referencia de nuevo a las Figuras 3A y 3B, la válvula 16 del recipiente 10 de recogida de muestras también puede incluir tanto un flotador 142 como un material absorbente expandible 34. Cuando se humedece, el material absorbente 34 aumenta de tamaño entrando en contacto eventualmente con el flotador 142 de la válvula de charnela 16 y forzando el flotador 142 hacia el canal 32 para formar un sellado. Cuando se expande, el material absorbente 34 mantiene el flotador 142 en la posición cerrada, asegurando así que la primera cámara 12 y la segunda cámara 14 permanezcan en aislamiento de fluido incluso cuando el recipiente de muestras se empuja o se mueve.

Con referencia a las Figuras 4 y 5, de acuerdo con una realización adicional de la presente invención, se incluye una bolsa absorbente 234 dentro del recipiente 10 de recogida de muestras. La bolsa 234 puede ser una bolsa 236 de 20 papel de filtro no tejido que contiene un polvo microabsorbente 238. El fluido entra en el recipiente de acuerdo con el flujo de fluido L. La bolsa 234 absorbe un primer volumen predeterminado del fluido. La porción absorbida se corresponde con la micción inicial u orina evacuada que se mantiene aislada en la segunda cámara en las realizaciones de la invención descritas anteriormente. En la presente realización, una vez que la bolsa 234 alcanza un punto de saturación, lo que indica que ha absorbido la cantidad predeterminada de fluido, cualquier fluido 25 adicional introducido en el recipiente 10 se mantiene en el recipiente 10 en forma líquida.

En una realización, el recipiente 10 incluye una pantalla 240 que separa la primera cámara 12 de la segunda cámara 14. La pantalla 240 mantiene eficazmente la bolsa 234 dentro de la segunda cámara 14 e impide que la bolsa flote hacia la parte superior del recipiente a medida que aumenta el nivel de líquido. La pantalla 240 podría formarse a partir de una tela metálica o de un disco que tiene una pluralidad de orificios perforados.

30 Con referencia a la Figura 6, de acuerdo con una realización adicional de la presente invención, la primera cámara 12 y la segunda cámara 14 están separadas por un trozo de papel de filtro 340. La segunda cámara 14 contiene un polvo absorbente 334. El polvo absorbente 334 puede ser un compuesto a base de mineral o un compuesto sintético. Los ejemplos de compuestos absorbentes a base de minerales incluyen bentonita y tierra de diatomeas. La bentonita es un filosilicato de aluminio absorbente formado a partir de arcilla impura. La tierra de diatomeas es un compuesto constituido por partículas absorbentes de sílice. Otros materiales absorbentes naturales incluyen: pelitas, zeolitas y quitosano. Los polvos absorbentes orgánicos están disponibles comercialmente a partir de varias fuentes incluyendo: Sigma-Aldrich, LLC, MedTrade Products Ltd., y Haliburton. Los alginatos absorbentes o los polvos a base de almidón también se pueden usar dentro del alcance de la invención. La mayoría de los polvos absorbentes sintéticos se forman a partir de poliacrilato de sodio. Un polvo de poliacrilato de sodio disponible en el mercado es el "Insta-Snow" producido por Steve Spangler, Inc. en Englewood, Colorado.

Cuando se humedece, el polvo absorbente forma una estructura maciza que no pasará a través del papel de filtro 340, separando así la primera cámara 12 de la segunda cámara 14. El polvo 334 contiene un volumen inicial predeterminado de fluido. Una vez que el polvo 334 está saturado, cualquier fluido adicional introducido en el recipiente 10 se mantiene en el recipiente 10 en forma líquida. Al igual que con las realizaciones anteriores descritas anteriormente, la porción líquida no absorbida constituye la muestra de orina a mitad de la micción. Como alternativa, se conocen papeles de fibra en la técnica que están impregnados con partículas de poliacrilato de sodio. El papel absorbente de este tipo es fabricado por Safetec of America, Inc. ubicado en Buffalo, NY. Una o más trozos del papel absorbente se colocan en la segunda cámara 14 del recipiente 10. El papel absorbente se usa para absorber una primera micción de fluido de manera muy similar a la del polvo absorbente.

50 Con referencia a la Figura 7, de acuerdo con una realización no limitativa, la invención incluye además un puerto de salida 50 para extraer la muestra (por ejemplo, la orina a mitad de la micción) del recipiente 10 de muestras. En una realización, el puerto de salida 50 comprende una aguja 52 que tiene una cánula 59 de aguja para acceder a la muestra contenida en la primera cámara 12. La aguja 52 puede estar situada en una porción recortada 56 de la pared lateral 20 o la tapa 24, de manera que un extremo proximal 83 de la aguja 52 esté rebajado de las superficies del recipiente 10. La aguja 52 está en contacto con un tubo de acceso 58 que se extiende hacia la primera cámara 12 del recipiente 10. El fluido pasa a través del tubo de acceso 58 antes de entrar en la cánula 54 de aguja para extraerlo del recipiente 10.

Con referencia a las Figuras 7 y 10, para extraer una muestra del recipiente 10, un usuario coloca un tubo 510 de recogida de muestras (por ejemplo, un tubo de ensayo) sobre la aguja 52. Generalmente, el tubo 510 incluye un extremo abierto 512 cubierto por un tapón 514 que tiene un tabique 516 que se puede perforar. La aguja 52 perfora el tabique 516 accediendo a una porción interior 518 del tubo 510 y creando una conexión de fluido entre la primera 5 cámara 12 y el tubo 510 a través de la cánula 54 de aguja. En una configuración, el tubo 510 de recogida de muestras puede evacuarse de tal forma que al aplicarse con el recipiente 10, el fluido se extraiga del interior del recipiente hacia el tubo 510 de recogida de muestras mediante extracción al vacío. En otra configuración, todo el conjunto del recipiente puede invertirse permitiendo que el fluido (por ejemplo, la muestra de orina a mitad de la micción) fluya desde el recipiente 10 de recogida al tubo 510 de recogida de muestras.

10 Con referencia a la Figura 8, de acuerdo con una realización alternativa, un puerto 70 libre de filos se extiende desde la pared lateral 20 o la tapa 24 de la primera cámara 12. El puerto 70 libre de filos incluye una boquilla 72 que se extiende desde el recipiente 10 o la tapa 24. Un canal 74 se define a través de la boquilla 72 permitiendo el acceso a la primera cámara 12. Un sellado elastomérico 76 cubre el canal 74 evitando que el fluido se escape del puerto 70 hasta que un usuario esté preparado para recoger el fluido en un tubo 410 de recogida de muestras, como se muestra en la Figura 9. Con referencia a la Figura 9, el tubo 410 de recogida de muestras tiene una parte superior abierta 412 cubierta por un tapón o un cierre 414 de tapa abatible. El cierre 414 de tapa abatible incluye un tubo 418 de acceso. El tubo 418 de acceso encaja dentro del canal 74 de la boquilla 72 y empuja el sellado elastomérico 76 hacia fuera para establecer una conexión de fluido entre la primera cámara 12 y el tubo 410 de recogida de muestras. Una vez establecida la conexión de fluido, el recipiente 10 se invierte permitiendo que la muestra de fluido 20 fluya, a lo largo de la trayectoria de flujo L₃, desde la primera cámara 12 al tubo 410 de recogida por gravedad. El cierre 414 de tapa abatible puede incluir además un respiradero 420 que permite que el aire desplazado por la muestra de fluido se escape del tubo encerrado 410.

El recipiente 10 de recogida de muestras reivindicado actualmente se utiliza para recoger una muestra de orina a mitad de la micción para su análisis. Durante el uso, un paciente dirige un chorro de orina al recipiente 10 a través de la parte superior abierta 18 de la primera cámara 12. El chorro de orina fluye hacia abajo por la pared lateral 20 hacia el canal 32 y la válvula 16. En una realización, la primera cámara 12 tiene forma de embudo con una pared lateral inclinada 20. La pared lateral inclinada 20 permite que el fluido fluya más fácilmente hacia abajo hacia la parte inferior 22 de la primera cámara 12. La primera cámara 12 con forma de embudo también asegura que toda la primera micción o el primer chorro de orina pase a través la primera cámara 12 y entre en la segunda cámara 14. Para los recipientes que tienen lados rectos y esquinas en ángulo recto, una porción de la primera micción se puede agrupar en la primera cámara 12, contaminando potencialmente la muestra de fluido.

La corriente de fluido pasa a través del canal 32 y la válvula 16 y se recoge en la segunda cámara 14. A medida que el nivel de fluido en la segunda cámara 14 aumenta a un nivel predeterminado, la válvula 16 pasa desde una posición abierta a una posición cerrada. El volumen predeterminado para la segunda cámara 14 puede estar entre aproximadamente 12 ml y 15 ml. La válvula 16 no debe pasar a la posición cerrada hasta que el volumen predeterminado de fluido pase a la segunda cámara 14. Si la válvula 16 se cierra demasiado pronto, una porción de la micción inicial quedará atrapada en la primera cámara 12, contaminando la muestra de orina a mitad de la micción. Si la válvula 16 se cierra demasiado lentamente, parte de la primera micción, que inicialmente pasó a la segunda cámara 14, regresará a la primera cámara 12 contaminando la muestra de orina contenida en la primera 40 cámara 12.

Una vez que se recoge la cantidad requerida de orina a mitad de la micción en la primera cámara 12, el recipiente 10 de recogida de muestras se retira del chorro de orina. Como alternativa, el paciente puede detener conscientemente el flujo de orina para evitar el desbordamiento del recipiente 10. El recipiente 10 puede incluir una línea indicadora 44 de nivel de fluido para informar al paciente cuando se ha recogido la cantidad necesaria de fluido. La tapa 24 se coloca entonces sobre la parte superior abierta 18 de la primera cámara 12 para evitar que el fluido se escape del recipiente 10 o que se contamine. La muestra de orina a mitad de la micción se extrae entonces desde la primera cámara 12 a través del puerto de salida 50 o del puerto 70 libre de filos utilizando cualquiera de los procedimientos de extracción descritos anteriormente.

REIVINDICACIONES

1. Un recipiente (10) de recogida de muestras que comprende:

una primera cámara (12) configurada para mantener un fluido, teniendo la primera cámara una porción superior abierta (18), una pared lateral (20) y una porción inferior (22);

5 una segunda cámara (14) que tiene una parte superior (26), una parte inferior cerrada (28) y una pared lateral (20);

una válvula (16) dispuesta entre la primera cámara (12) y la segunda cámara (14) y que puede pasar desde una posición abierta que permite la comunicación de fluido entre la primera cámara (12) y la segunda cámara (14) a una posición cerrada que mantiene el aislamiento del fluido entre la primera cámara (12) y la segunda cámara (14);

en el que, en la posición abierta, un volumen predeterminado de fluido recibido en la primera cámara (12) puede 10 pasar desde la primera cámara (12) a la segunda cámara (14) y, en el que, cuando el volumen predeterminado de fluido pasa a la segunda cámara (14), la válvula (16) hace la transición desde la posición abierta a la posición cerrada, de tal forma que el fluido adicional recibido dentro de la primera cámara (12) se mantiene en la primera cámara (12) en aislamiento de fluido del volumen predeterminado de fluido contenido en la segunda cámara (14);

un material expandible (34) que se puede expandir para hacer la transición de la válvula (16) desde la posición 15 abierta a la posición cerrada;

un puerto (50, 70) que tiene una posición cerrada y una posición abierta, en el que el puerto (50, 70) está configurado para proporcionar acceso al fluido adicional recibido dentro de la primera cámara (12) a través del puerto (50, 70) cuando el puerto (50, 70) está en la posición abierta; y

en el que el fluido adicional se mantiene en la primera cámara (12) cuando la válvula (16) está en la posición cerrada 20 y el puerto (50, 70) está en la posición cerrada y el fluido adicional es inaccesible desde la primera cámara (12) a través del puerto (50, 70) o a través de la válvula (16) cuando la válvula (16) está en la posición cerrada y el puerto (50, 70) está en la posición cerrada.

- El recipiente de recogida de muestras de la reivindicación 1, en el que la válvula (16) comprende un canal (32) que se extiende entre la primera cámara (12) y la segunda cámara (14), en el que el material expandible (34) es un material absorbente y el material expandible (34) absorbe un volumen predeterminado de fluido y se expande para aplicarse con el canal (32), haciendo así la transición de la válvula (16) a la posición cerrada.
 - 3. El recipiente de recogida de muestras de la reivindicación 2, que comprende además una junta (40) de tal forma que la expansión del material expandible (34) posiciona la junta (40) para hacer la transición de la válvula (16).
- 4. El recipiente de recogida de muestras de la reivindicación 2, en el que el material expandible (34) es una 30 esponja.
 - 5. El recipiente de recogida de muestras de la reivindicación 1, en el que la válvula (16) comprende:

un canal (32) que se extiende entre la primera cámara (12) y la segunda cámara (14); y

una boya flotante (142) que se aplica al canal (32) cuando la válvula (16) pasa desde una posición abierta a una posición cerrada.

- 35 6. El recipiente de recogida de muestras de la reivindicación 5, en el que una porción de la boya flotante (142) sella inicialmente el canal (32), y en el que el fluido que pasa desde la primera cámara (12) a la segunda cámara (14) libera la boya flotante (142) del canal (32) colocando la válvula (16) en la posición abierta.
 - 7. El recipiente de recogida de muestras de la reivindicación 1, en el que el puerto (50, 70) comprende:

una boquilla (72) que define un canal (74) entre la primera cámara (12) y un exterior del recipiente (10) de recogida 40 de muestras; y

un tabique que cubre el canal (74) que hace la transición desde una posición cerrada a una posición abierta para permitir la extracción de una muestra de fluido desde la primera cámara (12).

8. El recipiente de recogida de muestras de la reivindicación 1, en el que el puerto (50, 70) está dispuesto dentro de la pared lateral (20) de la primera cámara (12).

ES 2 740 475 T3

- 9. El recipiente de recogida de muestras de la reivindicación 1, en el que el puerto (50, 70) está dispuesto dentro de una tapa extraíble (24) adaptada para cubrir la porción superior abierta (18) de la primera cámara (12).
- 10. El recipiente de recogida de muestras de la reivindicación 1, en el que el puerto (50, 70) comprende una aguja (52) que tiene una punta externa, una punta interna adyacente a la primera cámara (12), y una cánula (54) de aguja
 5 que se extiende entre las mismas, en el que el acceso de fluido a la primera cámara (12) se establece a través de la cánula (54) de aguja.
 - 11. El recipiente de recogida de muestras de la reivindicación 10, en el que la punta externa de la aguja (52) está rebajada con respecto a una superficie externa del recipiente (10) de recogida de muestras.

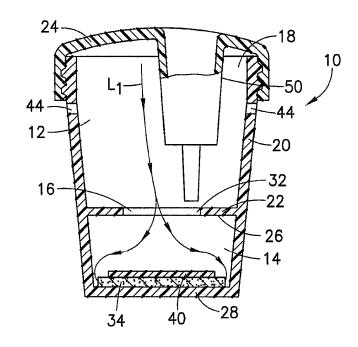


FIG.1A

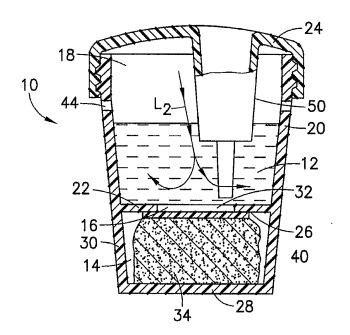


FIG.1B

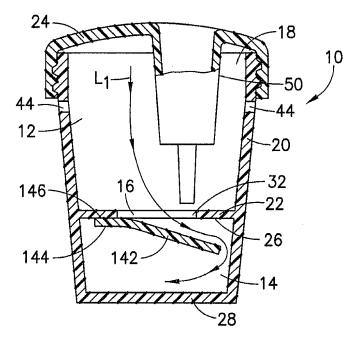


FIG.2A

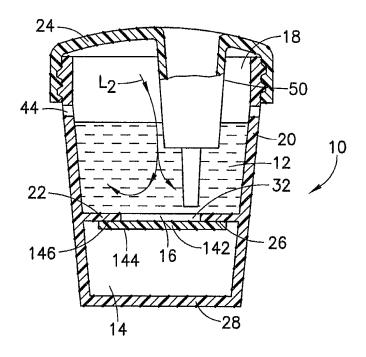
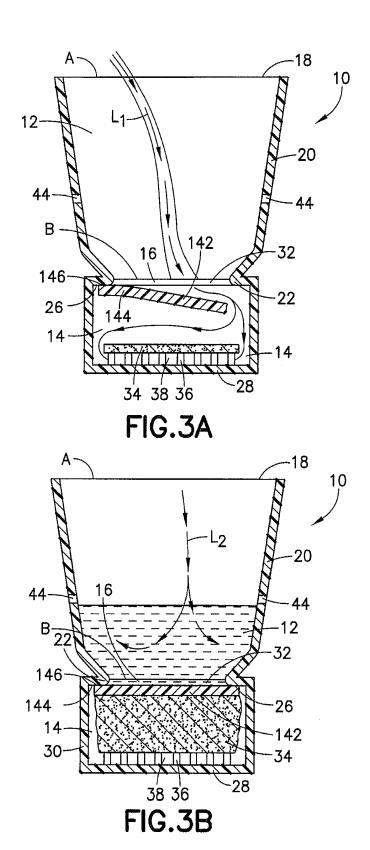



FIG.2B

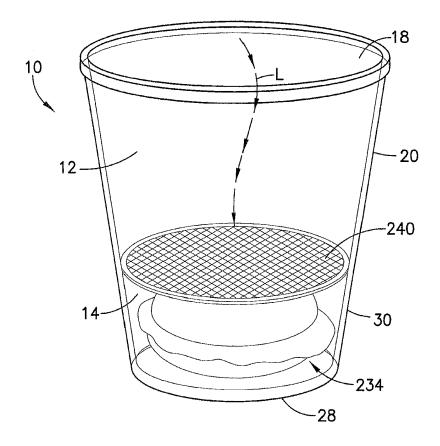
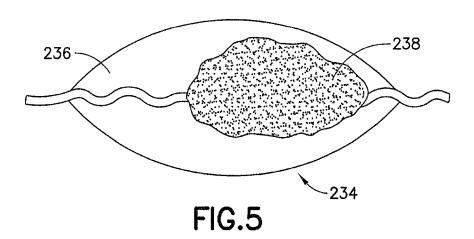



FIG.4

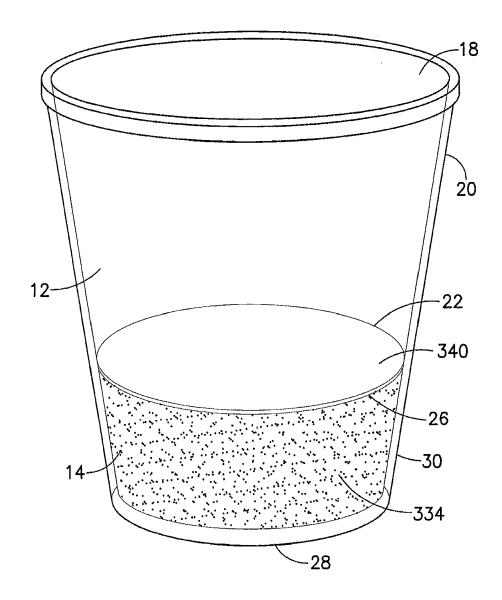
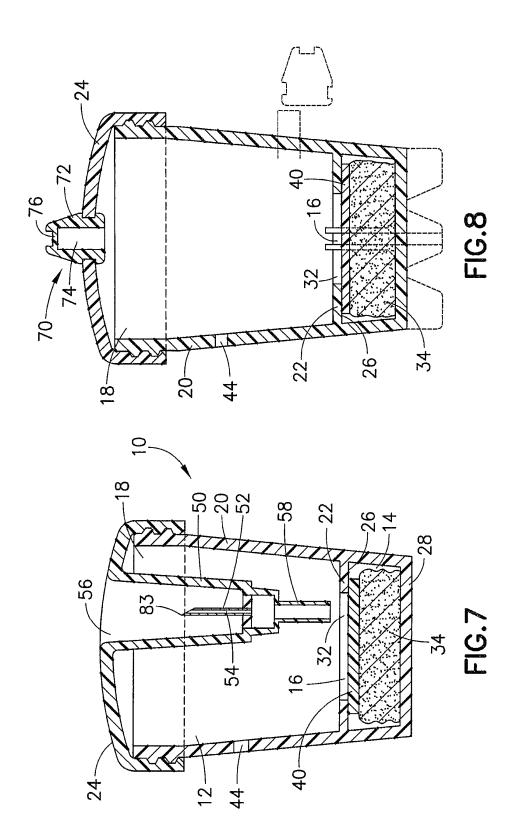
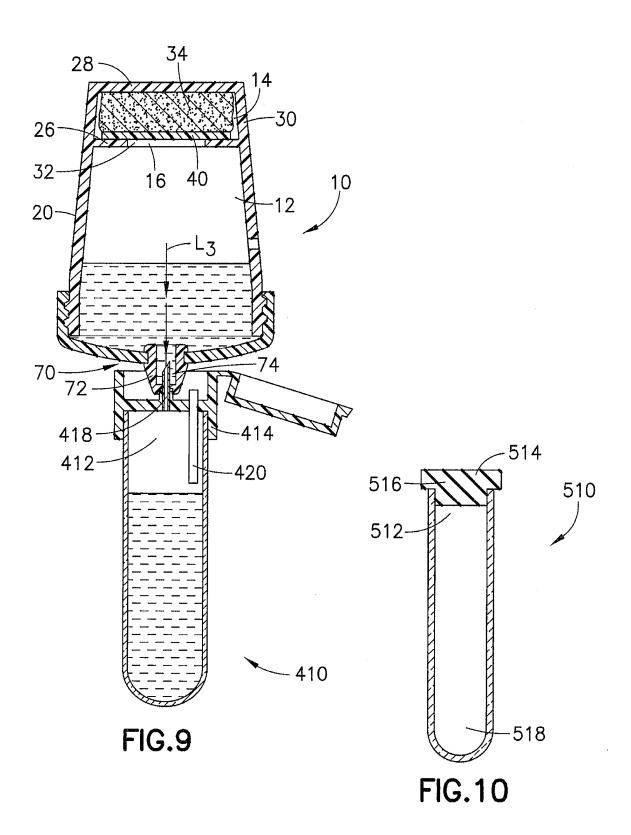




FIG.6

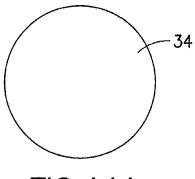


FIG.11A

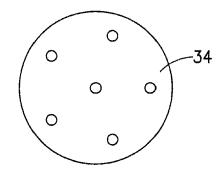


FIG.11B

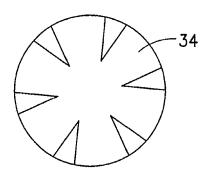


FIG.11C

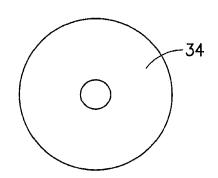


FIG.11D

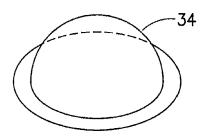


FIG.11E