

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 740 957

61 Int. Cl.:

C12Q 1/6888 (2008.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86) Fecha de presentación y número de la solicitud internacional: 18.11.2015 PCT/NO2015/050218

(87) Fecha y número de publicación internacional: 26.05.2016 WO16080844

(96) Fecha de presentación y número de la solicitud europea: 18.11.2015 E 15828394 (5)

(97) Fecha y número de publicación de la concesión europea: 17.07.2019 EP 3221471

(54) Título: Método para predecir el aumento de la resistencia de una trucha arcoíris a la necrosis pancreática infecciosa (IPN)

(30) Prioridad:

18.11.2014 NO 20141382

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 07.02.2020

(73) Titular/es:

AQUA GEN AS (100.0%) P.O. Box 1240, Sluppen 7462 Trondheim, NO

(72) Inventor/es:

SANTI, NINA; MOEN, THOMAS y ØDEGÅRD, JØRGEN

74) Agente/Representante:

SÁEZ MAESO, Ana

DESCRIPCIÓN

Método para predecir el aumento de la resistencia de una trucha arcoíris a la necrosis pancreática infecciosa (IPN)

5 Campo de la invención

10

15

40

La presente invención se refiere generalmente a polimorfismos, y en particular a polimorfismos de un solo nucleótido (SNP), asociados con el aumento de la resistencia de una trucha arcoíris (*Oncorhynchus mykiss*) a la necrosis pancreática infecciosa (IPN). En particular, la presente invención proporciona métodos para predecir el aumento de la resistencia de una trucha arcoíris a la necrosis pancreática infecciosa (IPN) y métodos para seleccionar una trucha arcoíris con una mayor resistencia a la necrosis pancreática infecciosa. La presente invención proporciona además células de trucha arcoíris aisladas y poblaciones de las mismas que portan al menos un alelo, tal como al menos dos alelos, que confieren resistencia a la IPN ("alelo de resistencia a la IPN") en su genoma. La presente invención también proporciona un huevo o esperma aislado de la trucha arcoíris, y poblaciones del mismo, que comprenden dentro de su genoma al menos un alelo que confiere resistencia a la IPN; con la condición de que el huevo aislado de trucha arcoíris no esté fertilizado.

Antecedentes de la invención

- La necrosis pancreática infecciosa (IPN, por sus siglas en inglés) es una enfermedad viral que causa una gran mortalidad en el cultivo de la trucha arcoíris, en Noruega e internacionalmente. La enfermedad es causada por el virus de la IPN (IPNV), clasificado como un virus biRNA acuático, que causa necrosis de las células pancreáticas y las células del hígado, lo que resulta en letargo y mortalidad repentina.
- Compañías reproductoras como AquaGen AS han llevado a cabo programas continuos de selección de peces con el objetivo de mejorar las poblaciones de acuicultura con respecto a la resistencia a enfermedades y se han desarrollado protocolos para probar la resistencia de los peces a varias enfermedades específicas. Estas pruebas de desafío se han usado para seleccionar peces como reproductores que poseen una resistencia a las enfermedades en cuestión superior a la media. Las pruebas convencionales implican pruebas de desafío controladas de los hermanos de los candidatos para la reproducción. Sin embargo, esta metodología se ve obstaculizada por el hecho de que los peces infectados no pueden usarse como reproductores (progenitores de la próxima generación). Por lo tanto, se tiene que recurrir a la selección de animales aleatorios (no probados) de las familias de los peces evaluados que obtuvieron mejores resultados en la prueba de desafío (la llamada selección de familia).
- Por lo tanto, existe la necesidad de contar con metodologías mejoradas para evaluar la resistencia de la trucha arcoíris a la necrosis pancreática infecciosa (IPN), en particular metodologías que permitan el análisis directo y la selección de individuos resistentes a la IPN, mientras que se mantiene la posibilidad de usar los peces probados como reproductores.
 - Molecular and general genetics, Springer Verlag, Berlin, De, vol. 265, no. 1, 14 de diciembre de 2000, páginas 23-32 se refiere a la identificación de dos QTL responsables de la susceptibilidad del virus IPN en la trucha arcoíris
 - Fish pathology, vol. 42, no. 3, 26 de septiembre de 2007, páginas 131-140se refiere a la identificación de un tercer QTL responsable de la susceptibilidad del virus IPN en la trucha arcoíris.
- Bishop S C (ED): "Capítulo 8: Breeding for Resistance to viral diseases in salmonids", 1 de enero de 2010, Breeding for disease resistance in farmed animals, CABI Publ, Wallingford, páginas 166-179 se refiere a dichos tres QTL identificados en las dos publicaciones citadas anteriormente. WO2014/006428 se refiere a métodos para predecir la resistencia a la IPN en el salmón mediante el análisis de los SNP.
- BMC Genomics, Biomed central LTD, Londres, Reino Unido, vol. 10, no. 1, 7 de agosto de 2009, página 368 se relaciona con la genotipificación del salmón para 307 marcadores de SNP y 148 microsatélites para el mapeo de QTL para la resistencia a la IPN

Resumen de la invención

- Los presentes inventores han resuelto esta necesidad al identificar un polimorfismo, y en particular polimorfismos de un solo nucleótido (SNP), dentro del genoma, y más particularmente en el cromosoma 1 de la trucha arcoíris que está asociado con una mayor resistencia de los peces a la necrosis pancreática infecciosa (IPN).
- La presente invención proporciona en un primer aspecto un método para predecir el aumento de la resistencia de una trucha arcoíris (*Oncorhynchus mykiss*) a la necrosis pancreática infecciosa (IPN), el método comprende: determinar la presencia de al menos un alelo (tla como al menos dos) que confiere resistencia a la IPN ("alelo de resistencia a la IPN") dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), en donde el al menos un SNP se selecciona de los SNP enumerados en la Tabla 1.

De acuerdo con ciertas modalidades, la presente invención proporciona un método para predecir el aumento de la resistencia de una trucha arcoíris (*Oncorhynchus mykiss*) a la necrosis pancreática infecciosa (IPN), el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP está ubicado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos.

La trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con otras modalidades, la presente invención proporciona un método para predecir el aumento de la resistencia de una trucha arcoíris (*Oncorhynchus mykiss*) a la necrosis pancreática infecciosa (IPN), el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945, AX-89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, AX-89935317, AX-89966423, AX-89933348, AX-89969315, AX-89919958, AX-89968417, AX-89946851, AX-89976917, AX-89945446, AX-89919457, AX-89973597, AX-89938138, AX-89971866, AX-89958882, AX-89961273, AX-89944901, AX-89919465, AX-89959425, AX-89917102, AX-89959281, AX-89916766, AX-89920507, AX-89957370, AX-89934009, AX-89929663, AX-89952300, AX-89916572, AX-89946911, AX-89974593, AX-89927158, AX-89970383, AX-89965404, AX-89955634, AX-89932926, AX-89941493, AX-89943031, AX-89957682, AX-89960611, AX-89950199, AX-89928407, AX-89962035, AX-89931951, AX-89976536, AX-89916801, AX-89929085, AX-89925267, chr1 7515539, chr1 7108873, chr1 6864558, chr1 7186663, chr1 6730531, chr1 27891953, AX 89953259, chr1 6740481, chr1 6770611, chr1_7412807, chr1 7360179. chr1 7411803, chr1 7431445, chr1_7433199, chr1 7441254. chr1 7441877. chr1 7533570, chr1 6834898, chr1 6730142, chr1 6746052, chr1 6794061, chr1 7399212, chr1 7442637, chr1_7709828, chr1_7598090, chr1_7670293, chr1 7358019, chr1_7626471, chr1_7598743, chr1_7670561, chr1_7647634. chr1_7356089, chr1_8109044, chr1_10439048, chr1_8142346, chr1_8092208, chr1_8138683, chr1 8139206. chr1 8139744, chr1 8140789, chr1 8141687, chr1 8154917, chr1 7454708, chr1 7504847, chr1 8202031, chr1 7505817, chr1 27786931, chr1 7505686, chr1 8228173, chr1 8309469, chr1 8163977, chr1_7505259, chr1_8194629, chr1_8474659, chr1 8282602, chr1_8306806, chr1_8341618, chr1_8343786, chr1 8345836, chr1 8350569, chr1 8402403, AX 89962103, chr1 8334901, chr1 8279302, chr1 7561600, AX 89956272,chr1 7938827, chr1 10810229, chr1 11007071 y chr1 10884171.

La trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

La presente invención proporciona en un aspecto adicional un método para seleccionar una trucha arcoíris con mayor resistencia a la necrosis pancreática infecciosa. En particular, la presente invención proporciona un método para seleccionar una trucha arcoíris con mayor resistencia a la necrosis pancreática infecciosa, el método comprende:

determinar la presencia de al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN") dentro del genoma (por ejemplo, en el cromosoma 1) del genoma) de dicha trucha arcoíris; y seleccionar dicha trucha arcoíris por tener mayor resistencia cuando está presente al menos un alelo de resistencia a la

IPN; en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), en donde el al menos un SNP se selecciona de los SNP enumerados en la Tabla 1.

De acuerdo con modalidades particulares, la presente invención proporciona un método para seleccionar una trucha arcoíris que tiene mayor resistencia a la necrosis pancreática infecciosa, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP está ubicado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos; y

65

60

10

15

20

25

30

35

40

45

50

seleccionar dicha trucha arcoíris por tener resistencia aumentada cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

5 De acuerdo con otras modalidades particulares, la presente invención proporciona un método para seleccionar una trucha arcoíris que tiene mayor resistencia a la necrosis pancreática infecciosa, el método comprende: determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es seleccionado del grupo que consiste en: AX-8992954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, 10 AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945, AX-89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, AX-89935317, AX-89966423, AX-89933348, AX-89969315, AX-89919958, AX-89968417, AX-89946851, AX-89976917, AX-89945446, AX-89919457, AX-89973597, AX-89938138, AX-89971866, AX-89958882, AX-89961273, AX-89944901, 15 AX-89919465, AX-89959425, AX-89917102, AX-89959281, AX-89916766, AX-89920507, AX-89957370, AX-89934009, AX-89929663, AX-89952300, AX-89916572, AX-89946911, AX-89974593, AX-89927158, AX-89970383, AX-89965404, AX-89955634, AX-89932926, AX-89941493, AX-89943031, AX-89957682, AX-89960611, AX-89950199, AX-89928407, AX-89962035, AX-89931951, AX-89976536, AX-89916801, AX-89929085, AX-89925267, chr1-7515539, chr1-7108873, 20 chr1-6864558, chr1-7186663, chr1-6730531, chr1-27891953, AX-89953259, chr1-6740481, chr1-6770611, chr1-7412807, chr1-7360179, chr1-7411803, chr1-7431445, chr1-7433199, chr1-7441254, chr1-7441877, chr1-7533570, chr1-6834898, chr1-6730142, chr1_6746052, chr1-6794061, chr1-7399212, chr1-7442637, chr1-7358019, chr1-7709828, chr1-7598090, chr1-7626471, chr1-7598743, chr1-7670293, chr1-7670561, chr1-7647634, chr1-7356089, chr1-8109044, chr1-10439048, chr1-8142346, chr1-8092208, chr1-8138683, chr1-8139206, chr1-8139744, chr1-8140789, chr1-8141687, 25 chr1-8154917, chr1-7454708, chr1-7504847, chr1-7505686, chr1-7505817, chr1-8202031, chr1-8228173, chr1-8309469, chr1-8163977, chr1-27786931, chr1-8194629, chr1-7505259, chr1-8474659, chr1-8282602, chr1-8306806, chr1-8341618, chr1-8343786, chr1-8345836, chr1-8350569, chr1-8402403, AX-89962103, chr1-8279302, chr1-8334901, chr1-7561600, AX-89956272, chr1-7938827, chr1-10810229, chr1-11007071 y chr1-10884171.

seleccionar dicha trucha arcoíris por tener resistencia aumentada cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

La presente invención proporciona en un aspecto adicional una célula de trucha arcoíris aislada que comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), en donde el al menos un SNP se selecciona de los SNP enumerados en la Tabla 1.

De acuerdo con ciertas modalidades, la presente invención proporciona una célula aislada de trucha arcoíris que comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en la sec. con núms. de ident.: 79 a 156 y 230 a 299, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5, tales como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no estén en la posición 36 de dicha secuencia derivada.

40

45

50

55

60

65

La presente invención proporciona en un aspecto adicional una población aislada de células de trucha arcoíris, cada célula individual dentro de la población aislada comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), en donde el al menos un SNP se selecciona de los SNP enumerados en la Tabla 1. De acuerdo con ciertas modalidades, la presente invención proporciona una población aislada de células de trucha arcoíris, cada célula individual dentro de la población aislada comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en la sec. con núms. de ident.: 79 a 156 y 230 a 299, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5, tales como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no estén en la posición 36 de dicha secuencia derivada.

La presente invención proporciona en un aspecto adicional un huevo o esperma no fertilizado aislado de trucha arcoíris que comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP); al menos un SNP se selecciona de los SNP enumerados en la Tabla 1 y el huevo de trucha arcoíris aislado no está fertilizado.

De acuerdo con ciertas modalidades, la presente invención proporciona un huevo o esperma no fertilizado de trucha arcoíris aislado que comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec.

con núms. de ident.: 79 a 156 y 230 a 299, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5, tales como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no estén en la posición 36 de dicha secuencia derivada.

La presente invención proporciona en un aspecto adicional una población aislada de huevos o esperma de la trucha arcoíris, cada huevo o esperma individual dentro de la población comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido(SNP), al menos un SPN es seleccionado de los SNP enumerados en la Tabla 1 y cada huevo individual dentro de la población aislada de huevos de trucha arcoíris no está fertilizado.

De acuerdo con ciertas modalidades, la presente invención proporciona una población aislada de huevos sin fertilizar o esperma de la trucha arcoíris, cada huevo o esperma individual dentro de la población comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 156 y 230 a 299, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5, tales como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no estén en la posición 36 de dicha secuencia derivada.

20 Breve descripción de las figuras

15

25

30

Figura 1. "Diagrama de Manhattan" de un estudio de asociación de genoma amplio (GWAS), en busca de SNP asociados con la resistencia a la PN en trucha arcoíris. Los SNP distribuidos en el genoma de la trucha arcoíris se probaron para determinar su asociación con la resistencia a la IPN y, en consecuencia, su capacidad para predecir la resistencia a la IPN. Cada punto de datos representa un SNP individual, cada SNP ha sido probado individualmente. La posición de los SNP (eje x) corresponde a su posición en el mapa genético femenino. La línea horizontal indica el nivel de significación correspondiente a una tasa de falsos positivos (α) de 0,05 cuando la hipótesis nula supone que ninguno de los SNP está asociado con la resistencia a la IPN, y se aplica una corrección de Bonferroni para corregir el hecho de que (aproximadamente) 50 000 SNPs fueron probados. La corrección de Bonferroni es altamente conservadora en este caso, ya que asume que todas las pruebas (SNP) son independientes, y no lo son. En el eje y, los SNP se trazan de acuerdo con el negativo del logaritmo en base 10 de sus valores p. Como se ilustra en la figura, los SNP más fuertemente asociados con la resistencia a la IPN se encuentran en el cromosoma 1.

Figura 2. Los niveles de significancia de los SNP, ubicados en el cromosoma 1 de la trucha arcoíris, probaron su asociación con la resistencia a la IPN. Los SNP se han ordenado de acuerdo a su posición en un mapa genético (más precisamente, un mapa genético basado en recombinaciones que ocurren en la trucha arcoíris hembra). cM = centi-Morgan, la medida estándar de la distancia genética; -log10 (valor p) = el negativo de los logaritmos de base 10 de los valores p de los SNP.

Figura 3. Niveles de significancia de los SNP, obtenidos de un estudio que identifica SNP adicionales asociados con la resistencia a la IPN (Ejemplo 3). Se probaron SNP nuevos y ya conocidos en el cromosoma 1 para determinar su asociación con la resistencia a la IPN. Los valores en el eje x son posiciones, en pares de bases, de SNP a lo largo de una secuencia de referencia de ADN del cromosoma 1 de trucha arcoíris, los valores en el eje y son el negativo del logaritmo en base 10 de los valores p.

45 Descripción detallada de la invención

La invención se define por las reivindicaciones adjuntas.

A menos que se defina específicamente en la presente descripción, todos los términos técnicos y científicos usados tienen el mismo significado que entiende comúnmente un experto en la técnica en los campos de la genética, la bioquímica y la biología molecular.

Todos los métodos y materiales similares o equivalentes a los descritos en la presente descripción pueden usarse en la práctica o prueba de la presente invención, los métodos y materiales adecuados se describen en la presente descripción.

Polimorfismos y alelos de resistencia a la IPN de la invención

Los presentes inventores han identificado un locus de rasgos cuantitativos (QTL) responsable de una fracción significativa de la variación genética en la resistencia a la IPN en la trucha arcoíris. Más específicamente, los presentes inventores han identificado polimorfismos, y en particular polimorfismos de un solo nucleótido (SNP), dentro del genoma, más particularmente en el cromosoma 1, de la trucha arcoíris, que están asociados con una mayor resistencia de los peces a la necrosis pancreática infecciosa (IPN). Los detalles específicos de los polimorfismos de un solo nucleótido de la invención se proporcionan en la Tabla 1 a continuación. Las secuencias de nucleótidos respectivas que incluyen el SNP (en la posición 36) se muestran en la Tabla 2.

65

60

Los polimorfismos de la invención pueden estar presentes en cualquiera de dos formas, es decir, los polimorfismos tienen dos alelos. Un alelo se puede caracterizar por ser un alelo que confiere mayor resistencia a la necrosis pancreática infecciosa. Esto significa que una trucha arcoíris que tiene dicho alelo en la posición de un polimorfismo detallado en la presente descripción muestra una mayor resistencia a la IPN. Este alelo se denota en la presente descripción "alelo de resistencia a la IPN". El alelo de resistencia a la IPN respectivo para cada uno de los polimorfismos de un solo nucleótido de la invención se especifica en la Tabla 1 a continuación. Por lo tanto, un alelo de resistencia a la IPN de acuerdo con la presente invención puede usarse para predecir el aumento de la resistencia de una trucha arcoíris a la necrosis pancreática infecciosa. Un alelo de resistencia a la IPN de acuerdo con la presente invención puede usarse además para seleccionar una trucha arcoíris que tenga mayor resistencia a la necrosis pancreática infecciosa. El otro alelo se puede caracterizar como un alelo que no confiere mayor resistencia a la necrosis pancreática infecciosa. Tal alelo se denota aquí "alelo de no resistencia a la IPN".

Las truchas arcoíris son organismos diploides, en algunos casos triploides, y por lo tanto poseen al menos dos copias de los polimorfismos de la invención (una copia que se encuentra en cada copia del cromosoma 1).

Como se demuestra en la presente invención, si al menos un alelo de un polimorfismo, y más particularmente de un SNP, es el alelo de resistencia a la IPN respectivo, entonces la trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa en comparación con una trucha arcoíris en donde ambos alelos son alelos de no resistencia a la IPN (es decir, la trucha arcoíris es homocigótica para el alelo de no resistencia a la IPN). En un gran número de casos, la resistencia a la necrosis pancreática infecciosa aumenta aún más si ambos alelos de un polimorfismo, y más particularmente de un SNP, son el alelo de resistencia a la IPN respectivo (tal trucha arcoíris es homocigótica para el alelo de resistencia a la IPN). Este aumento adicional se observa, por ejemplo, para los SNP AX-89929954 (SNP#1), AX-89918280 (SNP#2) y chr1_7515539 (SNP#160) que son los SNP más significativos estadísticamente asociados con la IPN (ver Tabla 3).

Un polimorfismo de la invención puede ser cualquiera de varios polimorfismos asociados con el aumento de la resistencia de una trucha arcoíris a la necrosis pancreática infecciosa. Particularmente, un polimorfismo de la invención es un polimorfismo localizado en el cromosoma 1 de la trucha arcoíris (siguiendo la nomenclatura de Palti y otros (2011)), es decir, un polimorfismo que se encuentra en el cromosoma 1 sobre la base de un análisis de enlace genético, hibridación fluorescente in situ (FISH) o cualquier otro método que asigne polimorfismos de ADN a sus cromosomas respectivos.

Un polimorfismo de la invención puede ser cualquier polimorfismo, incluyendo el polimorfismo de un solo nucleótido, localizado dentro de cualquiera de las secuencias genómicas de la trucha arcoíris enumeradas en la columna titulada "contigo GenBank" en la Tabla 1.

Un polimorfismo de la invención puede ser cualquier polimorfismo, incluyendo el polimorfismo de un solo nucleótido, localizado dentro de la secuencia genómica de la trucha arcoíris que tiene una identificación del GenBank FR904293.1.

Un polimorfismo de la invención puede ser cualquier polimorfismo, incluyendo un polimorfismo de un solo nucleótido, cuya distancia genética de SNP AX-89929954 es menor o igual a 10 centi-Morgan. Aquí, la distancia genética se debe estimar sobre la base del evento de recombinación que ocurre en la trucha arcoíris hembra, y no de los eventos de recombinación que ocurren en la trucha arcoíris macho. Una persona experta en la técnica sabrá cómo estimar las distancias de mapas genéticos, así como qué material de datos se requiere para esta estimación.

Un polimorfismo de la invención puede ser cualquier polimorfismo, incluyendo un polimorfismo de un solo nucleótido, que se encuentra en un fuerte desequilibrio de ligamiento (LD) con SNP AX-89929954. Aquí, dos polimorfismos se definen en LD fuerte si el cuadrado del coeficiente de correlación entre los dos loci (r², la medida más usada de LD) es igual o mayor que 0,5. Una persona experta en la técnica sabrá cómo estimar r², así como qué material de datos se requiere para esta estimación.

Un polimorfismo de la invención puede ser al menos uno de los polimorfismos de un solo nucleótido enumerado en la Tabla 1. Por lo tanto, el al menos un SNP de la invención se selecciona de los SNP enumerados en la Tabla 1. Cada uno de los SNP enumerados en la Tabla 1 se contempla como divulgado individualmente como parte de la presente invención.

Tabla 1: SNP asociados con una mayor resistencia a la IPN. A=Adenina, G=Guanina; C=Citosina, T=Timina. ID de Affymetix es un identificador único dado a cada SNP por Affymetrix, el proveedor de un ensayo de genotipado comercial que incorpora muchos de los SNP enumerados en la tabla; el ID de Affymerix sirve como un enlace a más detalles relacionados con los SNP, proporcionados en un archivo que se puede descargar desde http://www.affymetrix.com/estore/. Contigo GenBank es el nombre de un contigo de ADN del GenBank (una secuencia del genoma de la trucha arcoíris) donde reside el SNP, y la posición es la posición del SNP dentro de este contio. dbSNP ss-no. (ss#) es el número de presentación del NCBI del SNP dentro de la Base de datos de polimorfismo de un solo nucleótido del NCBI (Centro Nacional de Información Biotecnológica) (dbSNP); el número SNP de referencia respectivo (rs) se puede recuperar de NCBI.

10

15

20

	SNP #	Nombre - Affymetrix ID	SEQ ID NO:	Cóntigo GenBank	Posición en cóntigo GenBank	dbSNP ss-No. (ss#)	Alelo de resistencia a IPN	Alelo de no resistencia a IPN
5	1	AX-89929954	1	FR904293.1	1651243	1398298005	С	Α
	2	AX-89918280	2	FR904293.1	1353665	1399389616	G	Α
	3	AX-89938309	3	FR930508.1	112	1958018818	Т	G
10	4	AX-89960828	4	FR932837.1	3160	1399779599	Т	С
	5	AX-89930342	5	FR904678.1	635143	1947222023	G	Т
	6	AX-89928530	6	CCAF010009978.1	26749	1958018819	G	Α
15	7	AX-89949788	7	CCAF010004413.1	12904	1399149964	G	Α
	8	AX-89928131	8	CCAF010064480.1	22746	1398895466	А	G
	9	AX-89949832	9	CCAF010004406.1	28738	1398503537	А	С
20	10	AX-89916790	10	FR913799.1	19857	1398404711	Т	С
	11	AX-89973719	11	FR904293.1	1133744	1398781172	А	G
	12	AX-89962023	12	FR905874.1	180661	1399167685	Т	G
25	13	AX-89921280	13	CCAF010065595.1	582	1958018820	Α	G
20	14	AX-89931666	14	FR904678.1	34120	1398786470	Α	G
	15	AX-89921585	15	FR904678.1	474477	1958018821	Α	G
	16	AX-89953905	16	FR904293.1	1653144	1958018822	G	Α
30	17	AX-89952945	17	CCAF010008412.1	13251	1398012752	Т	С
	18	AX-89934682	18	CCAF010013460.1	37152	1399451952	Т	G
	19	AX-89951942	19	CCAF010065594.1	2104	1399313562	Т	С
35	20	AX-89937020	20	FR905950.1	96027	1398530423	Α	С
	21	AX-89924837	21	FR907200.1	27594	1398178048	А	С
	22	AX-89958601	22	FR941615.1	565	1399167665	G	Α
40	23	AX-89923477	23	FR904678.1	226522	1398405156	А	С
	24	AX-89959350	24	FR904678.1	213771	1398405213	Т	G
	25	AX-89929482	25	FR915682.1	18182	1958018823	Т	G
45	26	AX-89937712	26	CCAF010064481.1	7407	1398895514	А	G
	27	AX-89949602	27	CCAF010031932.1	11494	1398103752	G	Α
	28	AX-89925103	28	CCAF010064481.1	13695	1398895535	А	G
50	29	AX-89938051	29	FR934499.1	1547	1399453527	Т	С
	30	AX-89924174	30	FR904977.1	400797	1397830928	А	G
	31	AX-89936461	31	FR904503.1	739897	1397951621	G	А
55	32	AX-89916703	32	CCAF010010010.1	3461	1398072822	Т	G
00	33	AX-89935317	33	FR950362.1	1884	1398377786	Т	С
	34	AX-89966423	34	FR905282.1	358121	1399924230	С	Т
60	35	AX-89933348	35	FR904343.1	1639174	1397844923	Т	С
60	36	AX-89969315	36	FR904977.1	54937	1958018824	Т	С
	37	AX-89919958	37	-	-	1399438973	G	Α
	38	AX-89968417	38	CCAF010031923.1	32394	1398245860	А	G
65	39	AX-89946851	39	CCAF010004466.1	1967	1958018825	G	Α

	40	AX-89976917	40	FR904293.1	2327239	1398180239	С	Т
	41	AX-89945446	41	FR968676.1	1099	1399533056	G	Α
5	42	AX-89919457	42	FR904381.1	1273596	1398863772	G	Т
J	43	AX-89973597	43	FR906031.1	36393	1399449790	Т	С
	44	AX-89938138	44	FR913799.1	490	1398404618	Т	С
10	45	AX-89971866	45	CCAF010031920.1	30454	1958018826	Т	С
10	46	AX-89958882	46	CCAF010052946.1	13953	1399924706	С	А
	47	AX-89961273	47	CCAF010031914.1	39607	1399509347	G	А
4-	48	AX-89944901	48	CCAF010005406.1	331	1398303825	Α	G
15	49	AX-89919465	49	FR910575.1	22175	1398003168	G	Т
	50	AX-89959425	50	CCAF010011658.1	30908	1399510298	G	А
	51	AX-89917102	51	CCAF010031900.1	8080	1398786550	Т	С
20	52	AX-89959281	52	CCAF010086830.1	12600	1399845186	G	А
	53	AX-89916766	53	CCAF010034613.1	16962	1398773412	G	Т
	54	AX-89920507	54	-	-	1958018827	Т	А
25	55	AX-89957370	55	HG973520.1	2622978	1399185465	Α	С
	56	AX-89934009	56	FR904293.1	2034797	1958018828	G	Α
	57	AX-89929663	57	CCAF010005452.1	22290	1958018829	С	А
30	58	AX-89952300	58	CCAF010056921.1	2048	1399343172	G	Т
	59	AX-89916572	59	FR904293.1	914413	1958018830	Т	G
	60	AX-89946911	60	FR904503.1	1083993	1958018831	Т	С
35	61	AX-89974593	61	-	-	1397844976	С	Α
	62	AX-89927158	62	CCAF010077121.1	16057	1399413068	Α	С
	63	AX-89970383	63	FR906481.1	114723	1958018832	G	Α
40	64	AX-89965404	64	FR904294.1	287791	1958018833	С	Т
40	65	AX-89955634	65	FR905454.1	302890	1958018834	Т	С
	66	AX-89932926	66	CCAF010004500.1	3394	1399419631	G	Т
45	67	AX-89941493	67	CCAF010008330.1	11016	1398381496	Α	G
45	68	AX-89943031	68	FR915682.1	18027	1399011222	С	Т
	69	AX-89957682	69	CCAF010044148.1	5113	1399499631	Α	G
	70	AX-89960611	70	FR904301.1	1592957	1399172382	Т	С
50	71	AX-89950199	71	HG973520.1	2957326	1958018835	Т	С
	72	AX-89928407	72	FR904678.1	632394	1398105778	Т	С
	73	AX-89962035	73	CCAF010004633.1	13819	1398455543	С	Т
55	74	AX-89931951	74	CCAF010011658.1	6770	1399511408	Α	С
	75	AX-89976536	75	HG973520.1	1007871 3	1399510949	Т	G
	76	AX-89916801	76	FR933232.1	298	1397811509	G	Α
60	77	AX-89929085	77	CCAF010044174.1	47606	1958018836	G	Α
	78	AX-89925267	78	HG973520.1	723322	1958018837	G	Т
	160	chr1_7515539	160	FR904293.1	1279149	1947221883	G	Т
65	161	chr1_7108873	161	CCAF010004472.1	29772	1947221884	G	А
	162	chr1_6864558	162	FR904293.1	1930130	1947221885	С	Т

	163	chr1_7186663	163	CCAF010004468.1	16367	1947221886	Т	С
	164	chr1_6730531	164	FR904293.1	2064157	1947221887	Т	G
5	165	chr1_27891953	165	FR904658.1	512537	1947221888	Т	С
-	166	AX-89953259	166	CCAF010004501.1	540	1947221889	G	Т
	167	chr1_6740481	167	FR904293.1	2054207	1947221890	Т	С
10	168	chr1_6770611	168	FR904293.1	2024077	1947221891	С	Т
10	169	chr1_7412807	169	FR904293.1	1381881	1947221892	G	С
	170	chr1_7360179	170	FR904293.1	1434509	1947221893	Α	Т
4.5	171	chr1_7411803	171	FR904293.1	1382885	1947221894	G	Α
15	172	chr1_7431445	172	FR904293.1	1363243	1947221895	С	Т
	173	chr1_7433199	173	FR904293.1	1361489	1947221896	С	Α
	174	chr1_7441254	174	FR904293.1	1353434	1947221897	Α	G
20	175	chr1_7441877	175	FR904293.1	1352811	1947221898	Α	С
	176	chr1_7533570	176	FR904293.1	1261118	1947221899	G	Α
	177	chr1_6834898	177	FR904293.1	1959790	1947221900	Т	С
25	178	chr1_6730142	178	FR904293.1	2064546	1947221901	Т	С
	179	chr1_6746052	179	FR904293.1	2048636	1947221902	G	Α
	180	chr1_6794061	180	FR904293.1	2000627	1947221903	G	Т
30	181	chr1_7399212	181	CCAF010004460.1	4509	1947221904	Т	С
	182	chr1_7442637	182	FR904293.1	1352051	1947221905	Α	G
	183	chr1_7358019	183	FR904293.1	1436669	1947221906	G	Α
35	184	chr1_7709828	184	CCAF010004440.1	18118	1947221907	А	С
	185	chr1_7598090	185	CCAF010004445.1	30169	1947221908	Т	С
	186	chr1_7626471	186	CCAF010004445.1	1788	1947221909	G	Α
40	187	chr1_7598743	187	CCAF010004445.1	29516	1947221910	Т	G
.0	188	chr1_7670293	188	FR904293.1	1124395	1947221911	А	Т
	189	chr1_7670561	189	FR904293.1	1124127	1947221912	Т	G
4 <i>E</i>	190	chr1_7647634	190	CCAF010004444.1	4148	1947221913	Т	Α
45	191	chr1_7356089	191	FR904293.1	1438599	1947221914	С	G
	192	chr1_8109044	192	FR904293.1	685644	1947221915	G	Α
	193	chr1_10439048	193	CCAF010013455.1	19790	1947221916	А	С
50	194	chr1_8142346	194	CCAF010004413.1	25975	1947221917	Т	С
	195	chr1_8092208	195	FR904293.1	702480	1947221918	Т	G
	196	chr1_8138683	196	CCAF010004413.1	29638	1947221919	А	Т
55	197	chr1_8139206	197	CCAF010004413.1	29115	1947221920	G	Т
	198	chr1_8139744	198	CCAF010004413.1	28577	1947221921	G	С
	199	chr1_8140789	199	CCAF010004413.1	27532	1947221922	Т	Α
60	200	chr1_8141687	200	CCAF010004413.1	26634	1947221923	Α	G
	201	chr1_8154917	201	CCAF010004413.1	13404	1947221924	G	Т
	202	chr1_7454708	202	FR904293.1	1339980	1947221925	Т	С
65	203	chr1_7504847	203	FR904293.1	1289841	1947221926	Т	С
	204	chr1_7505686	204	FR904293.1	1289002	1947221927	Т	Α

	205	chr1_7505817	205	FR904293.1	1288871	1947221928	Α	Т
	206	chr1_8202031	206	CCAF010004411.1	32050	1947221929	Т	G
5	207	chr1_8228173	207	CCAF010004411.1	5908	1947221930	Α	G
	208	chr1_8309469	208	CCAF010004406.1	46564	1947221931	Т	С
	209	chr1_8163977	209	CCAF010004413.1	4344	1947221932	Α	С
10	210	chr1_27786931	210	FR904658.1	617559	1947221933	С	G
10	211	chr1_8194629	211	CCAF010004411.1	39452	1947221934	Α	G
	212	chr1_7505259	212	FR904293.1	1289429	1947221935	G	Α
	213	chr1_8474659	213	FR904293.1	320029	1947221936	С	Т
15	214	chr1_8282602	214	FR904293.1	512086	1947221937	Т	G
	215	chr1_8306806	215	CCAF010004406.1	49227	1947221938	Т	Α
	216	chr1_8341618	216	CCAF010004406.1	14415	1947221939	A	G
20	217	chr1_8343786	217	CCAF010004406.1	12247	1947221940	С	Т
	218	chr1_8345836	218	CCAF010004406.1	10197	1947221941	Т	С
	219	chr1_8350569	219	CCAF010004406.1	5464	1947221942	Α	G
25	220	chr1_8402403	220	FR904293.1	392285	1947221943	G	Α
	221	AX-89962103	221	FR904678.1	32488	1947221944	Α	G
	222	chr1_8279302	222	FR904293.1	515386	1947221945	Α	G
30	223	chr1_8334901	223	CCAF010004406.1	21132	1947221946	Α	G
	224	chr1_7561600	224	CCAF010004449.1	1915	1947221947	Α	G
	225	AX-89956272	225	FR904678.1	215682	1947221948	Т	С
35	226	chr1_7938827	226	FR904293.1	855861	1947221949	Α	G
- -	227	chr1_10810229	227	HG973520.1	3299862	1947221950	Т	С
	228	chr1_11007071	228	HG973520.1	3103020	1947221951	G	Т
40	229	chr1_10884171	229	HG973520.1	3225920	1947221952	С	Т

El NCBI dbSNP ss-no. en la Tabla 1 anterior indica una secuencia de referencia y una posición del SNP dentro de esa secuencia de referencia. Los expertos en la técnica pueden identificar fácilmente la secuencia de referencia y la posición del SNP usando el número de presentación dbSNP ss.

Tabla 2: Secuencia de nucleótidos que contiene SNP. [alelo de resistencia a la IPN/ alelo de no resistencia a la IPN] indica el sitio polimórfico incluyendo las variantes alélicas.

SNP#	Nombre	SEQ ID NO:	Secuencia de nucleotidos que contiene SNP	Alelo de resistencia a IPN	Alelo de no resistencia a IPN
1	AX-89929954	1	GAAAGAAACAGTGATAGGCTTTTAGTGAGC ACATA[C/A]ATTTGACACACAGTTGTGTGA AAACAAAGCATGTG	C	A
2	AX-89918280	2	AATATATGCCTTATATCAGGATCGCTAACCA CAGA[G/A]CAGGATTACAATTTAATACTTG CACAATATACATA	G	A
3	AX-89938309	3	TCCTTGTATCGCAGAACTTTTAAATGTTTGA ATCC[T/G]TCTTGATGTTATGTGATTGGTGG ATTCAAATAAGT	Т	G

5	4	AX-89960828	4	GATGCAGGGTTGCACAGAACGTTGATGCC AGTAGT[T/C]ATGGCATGGCTCTCAGTACA AACTCATACTGAGTG	Т	С
10	5	AX-89930342	5	GAATGGCAATTAATTTCATGCTGAACTAACT GAAT[G/T]AAGAAAGGAAATGACCCCAACC CTGGTTGCATACT	G	Т
15	6	AX-89928530	6	CTCACATTCTTCACCTTATTGGAATGCATGG AAAG[G/A]CGCCATGGGAAGCTCACTGCG GTTTCGAACCTACG	G	A
20	7	AX-89949788	7	AGTCAAAACCATGAAAAAGCTGATTTTAGA ATGAC[G/A]TTTGTAACACTCTCCATGATGA CGGTTAATAGAAG	G	A
25	8	AX-89928131	8	CGTGTCAATATTGGAACGACTAAATACGTG AATCT[A/G]TCAGGACGGGTGAACTGAGCA CAAATCTAGATCAT	Α	G
30	9	AX-89949832	9	AGTCCCTCCCTTAGTGGTATCAAACCATAAC TAAT[A/C]ATTTCTTCACAAATTATGGAACA AAAATAAATCCC	A	С
35	10	AX-89916790	10	AAACGGAGTGCCGAAGACTCTGAACTCACA GACTC[T/C]CTGCCGAAAAAAAACGAAAGTA ATGTCCTCAACTCT	T	С
40	11	AX-89973719	11	TGTAAATTCATAAGTAAAGAGAACACCTGT TTAAG[A/G]AGAGCACATTATGCAAAACCT CATATGGAAAACGT	A	G
45	12	AX-89962023	12	GCGTGGACACATGAGGGACGCTGTGCTCC CTGTGT[T/G]CTCCCAGCAACACGAGGTAA TTCTGCAGAACAACC	Т	G
50	13	AX-89921280	13	AAAGGAAGAAGAATGGTCAGGAGAGGTAA GGTTGG[A/G]AGGAATTATGCTTTTCAATG ATCTGGTCCTGCAAG	A	G
5560	14	AX-89931666	14	GCAATAATAACCATTGAAAAATATGCTTTG GGAAT[A/G]TCTCCATTCTTTCCCTAGTCCA ATATGTGTTCTTT	A	G
65	15	AX-89921585	15	AGGGGCGGTTAGACACATGGGTGTGGCTA GAAATG[A/G]GGGTTGGTGACACCCACTCC TTGGCACTCGATGAT	A	G

5	16	AX-89953905	16	CAGCCAGCTTTCGAGTAGCAGGGAGAGA CAGTAA[G/A]TATTGACACAGTGTAAGCAC TAGGCAGCACTAGGC	G	A
10	17	AX-89952945	17	CAATACAATGAGGTGTAAATGGTTGAATTC ACTGT[T/C]GGATAAAGACTGCAGGACAGG CCAGTAAAACATTT	Т	С
15	18	AX-89934682	18	GTCCTCTATGCCTCCTATGAGTTCTTCGAGG CCAT[T/G]TGCAGCGTGAGTAGCTGCCTGG ACCCCATGCTGTA	Т	G
20	19	AX-89951942	19	ATTACTTTTGAATCACAGCTTCAGCATATAG CCCT[T/C]GCTATAGATACAATTCATACATC AAGATAATGACT	Т	С
25	20	AX-89937020	20	TATAGTAGATAATTGATTCAAATGGCAGTT GTATT[A/C]CACTTTTGTTTTTCTTTACAGTG GTCAGTGCTATT	A	С
30	21	AX-89924837	21	CACACAAGGTAGATACACCTGCAGAGCATG TTTCG[A/C]AAATTAATAAGGTAAGTCTGA ATACCAAATACTGA	A	С
35	22	AX-89958601	22	CTGTTGTTGGCCAGATTACCATCAGTGCAG TTGGA[G/A]TTCAGGCCTTATCTCTGCCTCA CACAACATCATCT	G	A
40	23	AX-89923477	23	ATGGGTCGTGTTCATCAGGCAGAAAAATGA CGTAT[A/C]ATGCCCTAATGAACATGACCCT GGCATTACCTAGA	A	С
45	24	AX-89959350	24	GAACCCCTAGGCTAGATGTTCAACCTGGCC TCAGG[T/G]CAATTCTGAAGATTTGGTACG CAAATATGTTCGCC	Т	G
50	25	AX-89929482	25	CTGTTCATTCTGTCTGTTTCAGTTGGTGCTC TGGA[T/G]AGGAGAAAAGCCCACCTGCTGT GAGCCCCTTATTG	Т	G
5560	26	AX-89937712	26	TCAGCGTCCTACAGCTAAACCATACGATGA AATTA[A/G]AACAATAAATTCAGTGTGATA TCCGTTATGGACCA	A	G
65	27	AX-89949602	27	AGGTGGCAGGAAAAAGAATACCTCCAGCC AATCGC[G/A]TGACATCTGTCCATTCAAGCT GCAGCGAATCTGAC	G	A

5	28	AX-89925103	28	CACGTCTCTCCAAAACGTTTCCACTTACTTT CCCA[A/G]GAAGCCTTTCCCGTTGGGCTGC TCCTTCAGCCACT	A	G
10	29	AX-89938051	29	TCCATAGTGGCTACCAGCCCACATACGCAC TGACA[T/C]AATCACAGACAGACTGACAGA CAGCAGCTTGATCA	Т	С
15	30	AX-89924174	30	ATTTGAGAATCAGATGCAGAAGAGCAAGG TTTTCC[A/G]AGCCTGTGGCTATCCTCCATA CGATTCAACCACCT	A	G
20	31	AX-89936461	31	TACCGTACAGCCCTGCTAAAGGAGGAAAAC AAGGG[G/A]CATGATGGTATGTCTTGGGGC TTCCTCAGGGCCCA		A
25	32	AX-89916703	32	AAACAACTCTTCAAGATGATGAGTAACAAC CAAAG[T/G]CAGAAATTCCCCTTAAAATAA CTGAAAGGAAAAAG	Т	G
30	33	AX-89935317	33	GTGTTTGTAAACTGGTAATTGAAATTGTACT GATA[T/C]CAGATGATGTAGAAATAAATGT GTTTTGATGTAGG	Т	С
35	34	AX-89966423	34	TACAGAGGAGCTATGGGCTTCATCCTCATG TACGA[C/T]ATCTGCAATGAAGAGTCCTTCA ACGCTGTGCAGGA	С	Т
40	35	AX-89933348	35	GGCCCCATTATTTTGGCTTCTTGTGTAGCAG ACTT[T/C]GTAGTGTGTAAGGAAGCCTTGCT GGTCTTGCACAG		С
45 50	36	AX-89969315	36	TCTGCTGAGCTCCCCTGAAAGACTGTGAGT CACAA[T/C]GGTCATTTATTTACCTTCTCTGC TTCACTCAACAC	T:	С
55	37	AX-89919958	37	ACTATTCCTCACATGCTACAGAATAGCTAG GGTAA[G/A]AGGATAGTAACATTAACCATA ACACCAAAGCTAAT	G	A
60	38	AX-89968417	38	TCCAGTCCCACTAGTTTGGCTTTGAAGTCGC GGAT[A/G]GTAGACTCGCTCTTGTATCTCTT CTCAGTCAGGTC		G
65	39	AX-89946851	39	GTAAAGGCTAGCAGACCCTGGGAACATTCC CCTGC[G/A]CTCAGCCTCTCTGCCATGGAG GAAATGCTAAAAGT	G	A

5	40	AX-89976917	40	TTTTGAACAGCACTTATCTCTTCTCCAGA GGGG[C/T]ATATCACAGAGCATGACCAAAA AGTTAGCCAGCTA	c	Т
10	41	AX-89945446	41	AAGTTGACCTCTTATGATTTTATTATTGGTT TGTG[G/A]TGCAAGATGTTCTGTCCAGGTT TCAACTTATAGCC	G	A
15	42	AX-89919457	42	ACCACCACACCTGCCTGAGTCATGTAAGAA GATTA[G/T]GCATGGTGGATGGAGGTGGG AAGACAATTAATGGT	G	T
20	43	AX-89973597	43	TGGTCGTCTGAGCCCTATGTAGTGAATTCA AACTT[T/C]CTTGTCTAAGCCAAGTATCAAC CTGCAAACCCAAG	Т	С
25	44	AX-89938138	44	TCCCCTTCTGTGTGCTCAAGGTGTGAATATT TTAT[T/C]GTTAACTTACTTCACTCGTGTCCT GCAGTTAGATG		С
30	45	AX-89971866	45	AGCAGGCAGGTTGAGACAAGCCTGCAGGG CCAATA[T/C]CTGTCACTATCATAACTCAAG CCAACAATACCCAA		С
35	46	AX-89958882	46	CTTGCTTGCCATCACCCGTCTGGTCCAAGG GACTA[C/A]GGTCAATATAACCTCCAATCTT AGTAACCTACCTC	C .	A
40	47	AX-89961273	47	GCAGACACCCTGGGCAGCGTTGGAGTGAT CATCTC[G/A]GCCATCCTGATGCAGAAGTA TGACCTGATGATCGC	G	A
45	48	AX-89944901	48	AACTGGGCTAAAACGATGGGACGGTGTGC GAAAAC[A/G]AACTAACCCTAACCAGAAAA TTGTATGCTTTGTTT	A	G
50 55	49	AX-89919465	49	ACCACCTTCACATTAACCTTCTCCATGACAA AACA[G/T]CCCCAAGCCTGAACAGCCCCTA GCCCCTTCCACTA	G	Т
60	50	AX-89959425	50	GAAGACACAAACTCAACAAGAGCACAACA ACACAG[G/A]CTTAAGGTACTGCAATTCCT GCTTATTTTCATAAA	G	A
65	51	AX-89917102	51	AAATGAAAAGCGAGAAAGGACGGAGGTAT TTTAAA[T/C]ATATTTACCATAGTACTCACC GAAGGCTGCAGCCA	Т	С

			1			
5	52	AX-89959281	52	GAAATTGCCCCTTGATTTTGTCAGTTTAGCG ATCA[G/A]TATACACAAAATAATTAACTAAA GGAACAACCATA		A
10	53	AX-89916766	53	AAACCACATGGTCTTCCTGCAACTTTGTGCC AAAT[G/T]AGTAGTTTCACAATGAACGTTGT GAGGTCTGCAGC		Т
15	54	AX-89920507	54	AGACACACAGCAGACTAGACTGAGGATGT GAACCA[T/A]TCCTCCACTTAATGCAAATGC AGGGACACATTCAG	T .	A
20	55	AX-89957370	55	CTATTCCTGCTTACCGTAGTTGAACTGGCTG TTGG[A/C]TTTCTCACAGTTGATGATGTTGA AGCGATAGGGCA		С
25	56	AX-89934009	56	GGTGTAAGTACAGACTCTTTGAAAGCATGC AAATA[G/A]AAGTAAAGACACTGTCATTCC TTTAAATGTTCTTG	G	A
30	57	AX-89929663	57	CTTCTTTATTTGCTATGATTATTACTTAATAG TGC[C/A]GATTGTATTTGTCATCCGTATTGA CTGCAGAACTA		A
35	58	AX-89952300	58	ATTGTTCAAGGACATTATGCTTGTCCTACAT ATTG[G/T]CAATTTGATGTCGTTCTTTAACA TTTATAATTGAT	G	Т
40	59	AX-89916572	59	AAAACTTCTTAAGGGACAAGAAGGAAGTT GAAGTT[T/G]GGGGTGGGCTAGGAAGATA AAGAGTTGGGGGTGTG	Т	G
4550	60	AX-89946911	60	ACCAACACAGAGATGAGACGTGCCGAGCG CAAGGC[T/C]ACCAAGAAGAAGCTCCCGCT GAAACGAGAGATGGA	Т	С
55	61	AX-89974593	61	TTAATCTAACTCACTCTCCATAACATCACAG AAGT[C/A]GATGTATTCGATTATAACAAGCT CAGGGCTGTCAT	C	A
60	62	AX-89927158	62	CCCTTTACCTAGAATGGTCTGCAGCGTGAT GTCAA[A/C]GTGGTTATTTTGTCCATTGTTG CCAGTGATAAGCC	A	С
65	63	AX-89970383	63	TGCAGAATGGACAACTGAAGAGAGATATG TCGCAC[G/A]TGAGGGAAACAACTCCGTGT CTAGGCCTTCTGAAG	G	A

5	64	AX-89965404	64	GTTAGTGAAAGCCATTTCAGGGTAAACCCT CCAGG[C/T]CGTCCAATGTACCATAGAAGC AAAACAATGATAAT	С	Т
10	65	AX-89955634	65	CCCATCTGTCAGAACCTTGCCCACAGCTGTT TCCC[T/C]ACTCAATGAAAACAAGCTAACAT CCTGCAGGTTGA		С
15	66	AX-89932926	66	GGAATATTCGAACGGCTTGTTGTCCAATGA GTCGG[G/T]GGCCTTACCACCACAAACCCC AAGGCCTGAGGCAG	G	Т
20	67	AX-89941493	67	TTAAGAGAGTCACAAACATGAAAAACTGTG ATAGT[A/G]CAAAGAAGATGAACGATAGG CTTGTGGATAGATTA	A	G
25	68	AX-89943031	68	TTTATTTCAGCATTTAGCCCAATCCTGCTAA GAAC[C/T]GTCAGTTAATCACTAATTAGGA GAATATCAATAAA	С	Т
30	69	AX-89957682	69	CTCGAAGTAAGAAATGAAGCTGCAGGTCTG CAGGC[A/G]GAGTGCTGTCAGTGGAATATA ATACCCTTAATAGA		G
35	70	AX-89960611	70	GATAAGGATGCAACAGATTTATTTTAGTTTT AGAT[T/C]ATGCTTTCAGACTGATTTCGGCT CTTAAAAAGATA		С
40	71	AX-89950199	71	TCTCTGTTCAATATTTAGAATAAAAAGCTGA CAAA[T/C]GTCACGTAATGGACTGGAAACA GCAGACACATGGC	T	С
45 50	72	AX-89928407	72	CTATAGGTGGATGATATGATATGGTTGCAG CTAGA[T/C]AGTGACAGCTGCCTACCTTGTA AGTACCACCTCGA		С
55	73	AX-89962035	73	GCGTTTCCAGTAAAACGACGTCCCCCTTCG CCCTA[C/T]ATTTAATGAGCACGTAGTCTAG ATTTTTGTTTAAC	C	Т
60	74	AX-89931951	74	GCAGGTTTTTGCAGAAATCAGTTGCTAATA AAGTT[A/C]TTCTGTAACCATTGTATAAGCA GGGTCACCATGAC	 A	С
65	75	AX-89976536	75	TTTCTCTTAATGCATCATCCTTGTGCGAAAT CATG[T/G]TAAGTACACACCGTTAAAGTTA GGTGCTTTGTTAC	Т	G

7	76	AX-89916801	76	AAACTAATGAAAAACACAAGAGTGCCTGCA GTAAC[G/A]CTGTACTAACGCTGTACTAAC AGTACACTCTCAGG	G	A
7	77	AX-89929085	77	CTGCAGCAGATGGAACTATATCTCTAGTGG CTGTG[G/A]GTGGAGGAGGAGATGTGGTG AAGACTGAGCAGACA	G	A
7	78	AX-89925267	78	CAGAAAGGAAAAATGTGTCAAAGTTCTAGA TAGTG[G/T]GTGGAAAGACTCAAACAATGC AGTTTGGAATGAAG	G	Т
1	160	chr1_7515539	160	ATAATTTACTTTTAAGATTTCTGACCGGCCT TGTT[G/T]TTTTTGCTTATGTGCCATTATTGC CGGCTAGACCA	G	Т
1	161	chr1_7108873	161	TAAAGAACAAGAAAACAGTACACATGCATT AACTC[G/A]CCATGTTGGTGTTGGAGAACT CGATACAGAGACAG	G	A
1	162	chr1_6864558	162	CTCATGGAGAGGCATATCTTGTCCTATCCCC ATAA[C/T]GGCCACCTGGTAATGAGCCGTG AAACACTAGAGCC	С	Т
1	163	chr1_7186663	163	CCATTTAGATTATTCAACGGTGAAACATACA CATC[T/C]TGTAAATTACTCTCAGGTAACCG GACTTGATTTGT	 T	С
1	164	chr1_6730531	164	GTTTGTAGCCCCATCTCACTGGCTTCTTGAA AGTA[T/G]AATTTATTATGATTGTTTAATTA TAATAGTGAATA	 T	G
	165	chr1_27891953	165	ATTTCATGTATTGGCCAACAAACGAACTTGT AGGC[T/C]TACGTGCCATGGTTGTCACATTT TAATAAAACATG		С
	166	AX-89953259	166	CACAGTTATAGCAACACTTAAGTAGAATGG AAATG[G/T]TTTCATTTAATTTTAGTCAGTT GGCATTCAGTTGA	G	T
	167	chr1_6740481	167	AGTCTGCAGACCCTACCCAGCCTGGTCTCC CAGGC[T/C]GTCACACAGCAGCACAGGGAC TTTCTGGATGGCTT	Т	С

	168	chr1_6770611	168		С	Т
5	100	CIII 1_0770011		ATTTCATGAACCTACACAAATCCAGTGTCAG GAAA[C/T]CCTTATAAACTTTTGCTCATGGG TGTGGAGATGTG		
10	169	chr1_7412807	169	ATAGGGCCAAGACAGAAGACAGACATGAA AGTCCT[G/C]CTGACGGGCAAAACATACAG ACCCCACCTGGAGAA	G	С
15	170	chr1_7360179	170	TTCAGTTCAGTCAAACTGGCTGTCGTTGGC GCTGC[A/T]GGACTAGCTGGCACATTCAAT GGGAATCGTTTGTC	A	Т
20	171	chr1_7411803	171	AAAGGTCTTGATGGATATTGTGAGTTATCG GTGTC[G/A]TAAGAAATCGCCACCTCGCAA CCCATGCGACCCCA	G	A
2530	172	chr1_7431445	172	ACTCCAAAGCCACCACAGTCTCCTCCAGCCA TGGT[C/T]CATCCCTCCAGTAGCCCAACCAA TTACCAAACAGA	C	Т
35	173	chr1_7433199	173	ACATGCGACACATGGACAGATTAATTAGAT TGGGT[C/A]ACAACACATTGTATTGCAAAC ATGTGAAGCTATAA	c	A
40	174	chr1_7441254	174	CTCTCATTCCTCCTATTCATATGTATATACAC TGG[A/G]CTAGTTAGTGTTATGGTTGTTATT CACTGGCAATA		G
45	175	chr1_7441877	175	CAAACAACCCTGGAAGTCAAATCAAGAGGC AAGGC[A/C]CTGTGTTTCCTTGAAAGCCAG AGCTGTTTGTGTCC	A	С
50	176	chr1_7533570	176	GGACCAGTGTTTCATATCCTGTGGTGAGCT TCACA[G/A]GTCAAATGTGATTAATCATAAT TGAAATCAAATTA	G	A
55	177	chr1_6834898	177	AAGAGAATATTTGGAATAGCATTGGCAAAT ACACC[T/C]AGTGGGGTGGAGCTGCGTCAG TAGTGCACAGCACA		С
60	178	chr1_6730142	178	GAAAATACTGTTACTGTAGAATATAATAGT CATAA[T/C]CCTCTGATCCAAATAATTATGC ATAGGTAGTGTTC	T	С
65						

	-					-
5	179	chr1_6746052	179	CTCAACATAATTAAATACCAACACCAATGTA AATC[G/A]TTCTTCAGAAACATTGAGTAAAT ATACCTTTACTA		A
10	180	chr1_6794061	180	AGAAAGCAGGAAGTTCAGGGGTCAACTGG GCAAGG[G/T]CAATAAGAGGCATTTCTAAC CGTGATCCTGAACCC	G	Т
15	181	chr1_7399212	181	CGAATCAAGCCAAATAAAGCGGCCACATCT CAAAT[T/C]TGGTCAGCCTTTGGAGGAGAA CGATAAACGGACTT		С
20	182	chr1_7442637	182	CCGCAGATGACATCACTACACTGCCTGATA CAGCA[A/G]AGCGTGCTTTGCGGTGAGTTA AAAAAATACCATGG	A	G
25	183	chr1_7358019	183	CATGAGCTCAAGCACATCTGCTTCTTTCTTC AGGG[G/A]AAAAAAATACAGGGATCCCCA ACTGCATTTGATTT	G	A
30	184	chr1_7709828	184	TGTAGTCTAATAATGAGGGGATTAGTGAAA ACTTT[A/C]AGTCAGACCTTTGTCTTTAAAA CAATAGATTTCTG	A	С
35	185	chr1_7598090	185	ATGTTGGCATTGTAGGTGTCATAGCAACCA GGACC[T/C]AATCCCTGTACCAAACATGTG ATTAAAAAACATATA	Т	С
40	186	chr1_7626471	186	TTACCCGGCTAAGGAGCGCTTTCTTCGCACT TGGA[G/A]TATAATGAAACCTCAAACTGTC TCATTTAATATGC	G	A
45 50	187	chr1_7598743	187	TTGGGACAGTTTAACGTTCACCTCAGGAAT CCACA[T/G]CCTTTCATTTTAAGTTTATTTTA CTTGGCAGAGCA	т	G
55	188	chr1_7670293	188	CAACAATGCAACAGAAATTAGTGTGTGACA AAAAT[A/T]TGAACGGCTGCTTTGAAAATT ATTATCAAGGCAGT	A	Т
60	189	chr1_7670561	189	GTGCCCTTATCTTACCGCTGATCAGTGGCA ACCCA[T/G]TAGTTTTTACTAACTGAAAACA CCATTGACATTCT	T .	G
65	190	chr1_7647634	190	ACTGCCTGGTTATGACACCTGAACCCTACA GAGAG[T/A]GTGGGGCTATAGTTAAAATTT ACTCCCCTAAGGTT	Т	A

	191		191	AGGATCCCATCCCATAATGAATGGGTCTAG CTATA[C/G]ATTTATGACCAGTTGTTTTCCG	С	G
5		chr1_7356089		GGTTTATGACCTC		
10	192		192	TAAATAGCTTTGTGGAGTAGATTATGAATT GTATT[G/A]ATGCCATATCCACTGTTCTGCA	G	A
10		chr1_8109044		ATGACTCTCCATA		
15	193	chr1_10439048	193	ACCCTTTGATGTGATTTGCTTCTGAGAAACA TCAT[A/C]ATTTATTGATGCTTCCATTAAAG TAGCATAGATGT	A	С
20	194	chr1_8142346	194	AAATCACAGTGCAGTTATCACAAAACATTA TCTTC[T/C]GTGTTGTAGCCTAACTAGACTA TACAGCTGTAAAA	Т	С
25	195	chr1_8092208	195	AAGTTTGTACCCCAAATTTCCATTTATGGAA TGGA[T/G]AGTTTAATTGCATTTTTGGATTG ATACAGTAACCA	Т	G
30	196	chr1_8138683	196	GGGTTATGTATAAATCGATGTAATTATTATT TTTG[A/T]TTTAAAAGGTATAATATTGTATA ACATTGTAATAA	A	Т
35	197	chr1_8139206	197	GATGGCATTCACTATCCTTTAACACCACATC GTAG[G/T]TGATGTGGCACAAAAGCAGTGC TTAAAAAAATAAAT	G	Т
40 45	198	chr1_8139744	198	CACACAAAAACTATTAGCCCATCGTTGGTAT AGTG[G/C]CAAAATGTTTTAAATGTCAGCA ATCAAATTCAAGA	G	С
50	199		199	TCAGTGACGGCTGTGAACATAAAGGGTATA GTTGC[T/A]TTACTGGTCCACGTTCAAAAAC CAGAGTTGAGATT	Т	A
	200	chr1_8140789	200		A	G
55		chr1_8141687		ACCAATTTTATAGTGACACAGAAAAATATCT AGAT[A/G]TGATTCTCACCAAAGAGACCAT ATTTTGAAATAGT		
60	201	chrl_8154917	201	CTCGATCTTCTCAAGTCAAGTGGCCAATTAA ATAT[G/T]AATCTAAACACAACAATCCAGTT TGACTAGTTGTT	G	Т

	202		202	AGGACACACGCTGGGTGAGCAACACACAT CCCCAG[T/C]CCCCCTGAGAAATCAGGCTTC	Т	С
5		chr1_7454708		TTACAAGGTTATAA		
10	203		203	GGGGCCTTTGTCACACAGAAAGAGATGAC ATCAGT[T/C]GCAAGAGAGGCCATCAGTGT	Т	С
		chr1_7504847		GTTCAAGGACTGGAA		
15	204	chr1_7505686	204	GGAAGTCTAGGGTGGAAGGGAGGACATTG TGCGGG[T/A]CGTTCCACCAATTGAGTACCT TTTCAGCAGTCACT	T 	A
20	205	chr1_7505817	205	CATCTCAAAAATAAGTTAAATAAATAAATTA CTAT[A/T]GTAAGTGCCAAATAAAGTAACA GGGTTGAATTTTA	A	Т
25	206	chr1_8202031	206	TGTAGATTAAACAACAAAGTCAGATTATCT GAGCC[T/G]TGTGTGCCCCAACTTCAACAA GGAGACCGTATTGT	Т	G
30	207	chr1_8228173	207	TTATCAATAATTATAATCAATGACTCACATC TTGA[A/G]TATCTACAGATGTAGACTTGTG ATTGAGCTACTGT	A	G
35	208	chr1_8309469	208	AACGACCTCATACTGGGCCGGAGGATCTCC TTCTA[T/C]GAGCTCAGGGGGGAAATAGGG TGTGGGAACTTCTC	Т	С
40 45	209	chr1_8163977	209	AACAATACACTCTTGTCACTTGCCTTTACTG AGAA[A/C]GTCGTGGTGGACACCAGATTCC CATGTGAAGGAGA	A	С
50	210		210	AAGTCATTGACCTTGCTGCCTTGGTCGTCCC TCTC[C/G]GTGGTGGTGAACACGCGCGTTT TGGACTCCTCTGT	С	G
	211	chr1_27786931	211		A	G
55	211	chr1_8194629		TGCTGAAGCTGGACAAGGAGAACGCCGTC GACCGC[A/G]CAGAGCAGGCTGAGACCGA CAAGAAGGCAGCAGAG		
60	212	chr1_7505259	212	GATCAGCTGGAGAACATCTACAAGGACAAT CCCCT[G/A]GTGAATCTCCATTATGCCACTT TTAGCCAACAACT	G	А

5	213	chr1_8474659	213	TATGAGCAGCTGAAAAACAATTAAAATATT TTTTT[C/T]CCTGTGTTTGAGGAAGGGGAA GAGTGGACCCAGGG	С	Т
10	214	chr1_8282602	214	ATATTTCCTTCCTCACATCCCTGGCAATTAT AGTA[T/G]AATCTGAGCCATAACAACATGA CCTGGATAGATGA	Т	G
15	215	chr1_8306806	215	AAATAATGGCATGCATTTGATATTAGTGTA TGTTT[T/A]AAAACATTACAGGTTACAGAG AAACTATAAGGAAT	Т	A
20	216	chr1_8341618	216	ACATTCAGGTAATGGTACATTTTGTTTAATT AAAC[A/G]ACTTTCCATAGTTTGTGGAGAA AGGGTGTGTACTC	A	G
25	217	chr1_8343786	217	GGTTTTATGCTTGAACATTCATTTTGGAATT TCCA[C/T]GACTGTCTCTAGCTGCTTTAATC TTCTTTCAAGGA	С	Т
30	218	chr1_8345836	218	TAGATGTTGAGTATATCTAACACTTCCAGAA CATC[T/C]AGTTTAGTGCTGATGTGTCATTT CTGTTCCAGGCA	Т	С
35 40	219	chr1_8350569	219	CAATGGAACGCCTCCTCTTTCTAATAACCCT AGTA[A/G]AGTGCCGTCAAATGTCGTTGAC AGATTTGAGTCTT	A	G
45	220	chr1_8402403	220	AAAGGATATATTGATGAATATGACCTATGT ACTGT[G/A]CTACTTAAATTCAGATAGCTGT TTGTTCATGTGTG	G	A
50	221	AX-89962103	221	GCTATATTAATTCAGAAATGCCATTTTCTGT CATG[A/G]GGGAAAATATAGTTTTACACTT ATCCCAGAAACAC	A	G
55	222	chr1_8279302	222	TGTACATTGTAAAGATGGAGAAATATTGAC AAAAA[A/G]ATGTCGTATAGGCTACTGTAT TACTTGATATGTTT		G
60	223	chr1_8334901	223	TTTAACCCAGCATTGTGACACATTTTTATTA AATC[A/G]AGGATGTGCAGTTTGTTTTATCC ACTTCATTAATA	A :	G

5	224	chr1_7561600	224	AATTTGACCAATTTGTCTTCATACATTTCAG ATAA[A/G]CTCACGATTCTTAAGTCATGTTG TATTTTTACCGA	A	G
10	225	AX-89956272	225	CCTGACTGAAAGCAGGGCACAATATCAGG AAGTTG[T/C]ATTAGCCACCATCATGGCGG TGGAAAATTGTGCTT	Т	С
15	226	chr1_7938827	226	GTTATGGTGAAAGAGAAGCTCAGTTACGG AGCACA[A/G]CAGCAAATCCTCAACAAGCC AAACCTGCAAGACAA	А	G
20	227	chr1_10810229	227	GACATCTGGAGAGCTAAGGAAACAACCAA GCCTGT[T/C]GGAACTTCTATTGGGTGTCTC TGCTAGCAGTCCAA	Т	С
25	228	chr1_11007071	228	CAATAACTAGAAAAATACATTTCCTAAAGA AAATG[G/T]GTGTGCTTGCTTGTCTTA AAGTATTTATGTT	G	Т
30 35	229	chr1_10884171	229	TATCAGGACAAGCTGGAACTAGATAGCTGG TTATG[C/T]AACGTTAACTATTGGGATCAGA AACTGAACTAGCT		Т

La columna en la Tabla 2 etiquetada como "Secuencia de nucleótidos que contiene SNP" proporciona una secuencia de nucleótidos de referencia para la identificación del SNP dentro del genoma de una trucha arcoíris. Las secuencias sec. con núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229 son cada una de las secuencias polimórficas que incluyen un sitio polimórfico. Una "secuencia polimórfica" es una secuencia de nucleótidos que incluye un sitio polimórfico en el que se produce un SNP. El experto en la técnica puede usar toda o solo una parte de la secuencia polimórfica que flanquea el sitio polimórfico para identificar el SNP dentro del genoma de una trucha arcoíris.

40

65

De acuerdo con modalidades particulares, al menos un SNP de la invención se selecciona del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-45 89952945, AX-89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, AX-89935317, AX-89966423, AX-89933348, AX-89969315, AX-89919958, AX-89968417, AX-89946851, AX-89976917, AX-89945446, AX-89919457, AX-89973597, AX-89938138, AX-89971866, AX-89958882, AX-89961273, AX-89944901, AX-50 89919465, AX-89959425, AX-89917102, AX-89959281, AX-89916766, AX-89920507, AX-89957370, AX-89934009, AX-89929663, AX-89952300, AX-89916572, AX-89946911, AX-89974593, AX-89927158, AX-89970383, AX-89965404, AX-89955634, AX-89932926, AX-89941493, AX-89943031, AX-89957682, AX-89960611, AX-89950199, AX-89928407, AX-89962035, AX-89931951, AX-89976536, AX-89916801, AX-89929085, AX-89925267, chr1 7515539, chr1 7108873, chr1_7186663, chr1_6730531, chr1_27891953, AX-89953259, chr1_6740481, chr1_6770611, chr1 6864558, chr1_7412807. chr1_7441254, 55 chr1_7360179, chr1_7411803, chr1_7431445, chr1_7433199, chr1_7441877, chr1_6794061, chr1_7399212, chr1_7442637, chr1 7533570, chr1 6834898, chr1 6730142, chr1 6746052, chr1 7626471, chr1 7598743, chr1 7670293, chr1 7670561, chr1 7598090, chr1 7358019, chr1 7709828, chr1_7356089, chr1_8109044,chr1_10439048, chr1 8142346, chr1 8092208, chr1 8138683, chr1_7647634, chr1 8139206. chr1 8139744, chr1_8140789, chr1_8141687, chr1 8154917, chr1 7454708, chr1 7504847, 60 chr1 7505686, chr1_7505817, chr1_8202031, chr1 8228173, chr1 8309469, chr1 8163977, chr1_27786931,chr1_8194629, chr1_8282602, chr1 7505259, chr1_8474659, chr1_8306806, chr1_8341618, chr1 8350569, chr1 8402403, chr1 8343786. chr1 8345836, AX-89962103. chr1 8279302, chr1 8334901, chr1 7561600, AX-89956272,chr1 7938827, chr1 10810229, chr1 11007071 y chr1 10884171.

De acuerdo con otras modalidades particulares, al menos un SPN de la invención es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-

89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945, AX-89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, AX-89935317 y AX-89966423.

5

De acuerdo con otras modalidades particulares, al menos un SPN de la invención es seleccionado del grupo que consiste en: AX-8992954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945 y AX-89934682.

10

De acuerdo con otras modalidades particulares, al menos un SPN de la invención es AX-89929954 o AX-89918280.

De acuerdo con más modalidades particulares, al menos un SPN de la invención es AX-89929954.

15 De ac

De acuerdo con otras modalidades particulares, al menos un SPN de la invención es AX-89918280.

De acuerdo con modalidades particulares adicionales, al menos un SPN de la invención es seleccionado del grupo que consiste en: chr1_7515539, chr1_7108873, chr1_6864558, chr1_7186663, chr1_6730531, chr1_27891953, AX-89953259, chr1_6740481, chr1_6770611, chr1_7412807, chr1_7360179, chr1_7411803, chr1_7431445, chr1_7433199, chr1_7441254, chr1_7441877, chr1_7533570, chr1_6834898, chr1_6730142, chr1_6746052, chr1_6794061, chr1_7399212, chr1_7442637, chr1_7358019, chr1_7709828, chr1_7598090, chr1_7626471, chr1_7598743, chr1_7670293, chr1_7670561, chr1_7647634, chr1_7356089, chr1_8109044, y chr1_10439048.

25

De acuerdo con modalidades particulares adicionales, al menos un SPN de la invención es seleccionado del grupo que consiste en: chr1 7515539, chr1 7108873 y chr1 6864558.

De acuerdo con ciertas modalidades, al menos un SPN de la invención es seleccionado de los SNP correspondientes a la posición 36 de las secuencias polimórficas expuestas en cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229.

30

De acuerdo con modalidades particulares, al menos un SPN de la invención es seleccionado de los SNP correspondientes a la posición 36 de las secuencias polimórficas expuestas en cualquiera de las sec. con núms. de ident.: 1 a 34.

35

40

De acuerdo con otras modalidades particulares adicionales, al menos un SPN de la invención es seleccionado de los SNP correspondientes a la posición 36 de las secuencias polimórficas expuestas en cualquiera de las sec. con núms. de ident.: 160 a 193.

D(

De acuerdo con otras modalidades particulares adicionales, al menos un SPN de la invención es seleccionado de los SNP correspondientes a la posición 36 de las secuencias polimórficas expuestas en cualquiera de las sec. con núms. de ident.:

De acuerdo con otras modalidades particulares adicionales, al menos un SPN de la invención es seleccionado de los SNP correspondientes a la posición 36 de las secuencias polimórficas expuestas en cualquiera de las sec. con núms. de ident.: 160 a 162

45

De acuerdo con modalidades particulares, al menos un SPN de la invención es seleccionado de los SNP correspondientes a la posición 36 de las secuencias polimórficas expuestas en la sec. con núm. de ident.: 1 o la sec. con núm. de ident.: 2.

50

De acuerdo con más modalidades particulares, al menos un SPN de la invención es el SNP definido por la posición 36 de la secuencia polimórfica expuesta en la sec. con núm. de ident:1.

De acuerdo con más modalidades particulares, al menos un SPN de la invención es el SNP definido por la posición 36 de la secuencia polimórfica expuesta en la sec. con núm. de ident:2.

55

De acuerdo con modalidades particulares, al menos un SPN de la invención es seleccionado de los SNP correspondientes a la posición 36 de las secuencias polimórficas expuestas en la sec. con núm. de ident.: 230, sec. con núm. de ident: 231 y sec. con núm. de ident: 232.

60

De acuerdo con más modalidades particulares, al menos un SPN de la invención es el SNP definido por la posición 36 de la secuencia polimórfica expuesta en la sec. con núm. de ident: 230.

De a

De acuerdo con más modalidades particulares, al menos un SPN de la invención es el SNP definido por la posición 36 de la secuencia polimórfica expuesta en la sec. con núm. de ident:231.

65 De a

De acuerdo con más modalidades particulares, al menos un SPN de la invención es el SNP definido por la posición 36 de la secuencia polimórfica expuesta en la sec. con núm. de ident: 232.

Se entiende que la descripción anterior con respecto a los polimorfismos de la invención, y en particular con respecto a los SNP y alelos de resistencia a la IPN, es aplicable a los siguientes aspectos.

Métodos de la invención

5

10

15

20

25

30

35

55

60

65

La presente invención proporciona en un aspecto un método para predecir el aumento de la resistencia de una trucha arcoíris (*Oncorhynchus mykiss*) a la necrosis pancreática infecciosa (IPN). Particularmente, la presente invención proporciona un método para predecir el aumento de la resistencia de una trucha arcoíris (*Oncorhynchus mykiss*) a la necrosis pancreática infecciosa (IPN), el método comprende:

determinar la presencia de al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN") dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), en donde al menos un SNP se selecciona de los SNP enumerados en la Tabla 1.

De acuerdo con ciertas modalidades, la presente invención proporciona un método para predecir el aumento de la resistencia de una trucha arcoíris (Oncorhynchus mykiss) a la necrosis pancreática infecciosa (IPN), el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP está ubicado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos.

La trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1 (y se repite en la Tabla 2).

De acuerdo con modalidades particulares, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP está ubicado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en cualquiera de las sec. con núms. de ident.: 1 a 34 y 160 a 193, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 1 a 34 y 160 a 193 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos.

La trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con estas modalidades particulares, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, presente en un sitio polimórfico de al menos un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP que se encuentra dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en cualquiera de las sec. con núms. de ident.: 1 a 18 y 160 a 162, o en una posición correspondiente
 a la posición 36 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 1 a 18 y 160 a 162 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos.

La trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con más modalidades particulares, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, dicho al menos un SNP localizado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 1 o la sec. con núm. de ident.: 2, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de ident.: 1 o la sec. con núm. de ident.: 2 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos; en donde la presencia de una citosina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 1 o la presencia de una guanina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 2 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.

De acuerdo con otras modalidades particulares adicionales el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, dicho al menos un SNP localizado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 160, sec. con núm. de ident.: 161 o la sec. con núm. de ident.: 162, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de ident.: 160, sec. con núm. de ident.: 161 o sec. con núm. de ident.: 162 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos;

- en donde la presencia de una guanina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 160, la presencia de una guanina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 161 o la presencia de una citocina en la posición correspondiente a la posición 36 sec. con núm. de ident.: 162 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.
- De acuerdo con más modalidades particulares, el método comprende:
 determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un
 polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo,
 en el cromosoma 1 del genoma) de dicha trucha arcoíris, dicho al menos un SNP localizado dentro de dicho genoma en
 una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 1,
- o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de ident.: 1 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos;
 - en donde la presencia de una citosina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 1 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.
- De acuerdo con más modalidades particulares, el método comprende:
 determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un
 polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo,
 en el cromosoma 1 del genoma) de dicha trucha arcoíris, dicho al menos un SNP localizado dentro de dicho genoma en
 una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 2,
- o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de ident.: 2 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos;
 - en donde la presencia de una guanina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 2 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.
- 35 De acuerdo con otras modalidades particulares adicionales el método comprende:
 - determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, dicho al menos un SNP localizado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 160,
- o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de ident.: 160 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos;
 - en donde la presencia de una guanina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 160 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.
- 45 De acuerdo con otras modalidades particulares adicionales el método comprende:
 - determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, dicho al menos un SNP localizado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 161,
- o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de ident.: 161 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos;
 - en donde la presencia de una guanina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 161 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.
- 55 De acuerdo con otras modalidades particulares adicionales el método comprende:
 - determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, dicho al menos un SNP localizado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 162,
- o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de ident.:162 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos;
 - en donde la presencia de una citocina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 162 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.

De acuerdo con otras modalidades, la presente invención proporciona un método para predecir el aumento de la resistencia de una trucha arcoíris (*Oncorhynchus mykiss*) a la necrosis pancreática infecciosa (IPN), el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945, AX-89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, 10 AX-89935317, AX-89966423, AX-89933348, AX-89969315, AX-89919958, AX-89968417, AX-89946851, AX-89976917, AX-89945446, AX-89919457, AX-89973597, AX-89938138, AX-89971866, AX-89958882, AX-89961273, AX-89944901, AX-89919465, AX-89959425, AX-89917102, AX-89959281, AX-89916766, AX-89920507, AX-89957370, AX-89934009, AX-89929663, AX-89952300, AX-89916572, AX-89946911, AX-89974593, AX-89927158, AX-89970383, AX-89965404, AX-89955634, AX-89932926, AX-89941493, AX-89943031, AX-89957682, AX-89960611, AX-89950199, AX-89928407, 15 AX-89962035, AX-89931951, AX-89976536, AX-89916801, AX-89929085 AX-89925267, chr1 7515539, chr1 7108873, chr1_6864558, chr1_7186663, chr1_6730531, chr1_27891953, AX-89953259, chr1_6740481, chr1_6770611, chr1 7412807, chr1 7360179, chr1 7411803, chr1 7431445, chr1 7433199, chr1 7441254, chr1 7441877, chr1 6834898, chr1 6730142, chr1 6746052, chr1 6794061, chr1 7399212, chr1_7442637, chr1 7533570, 20 chr1 7358019, chr1 7709828, chr1_7598090, chr1_7626471, chr1_7598743, chr1_7670293, chr1 7670561, chr1 7647634, chr1 7356089, chr1 8109044, chr1 10439048, chr1 8142346, chr1 8092208, chr1_7454708, chr1 8138683,chr1 8139206, chr1 8139744, chr1 8140789, chr1_8141687, chr1 8154917, chr1_8309469, chr1_7504847, chr1_7505686, chr1_7505817, chr1_8202031, chr1_8228173, chr1_8163977, chr1_7505259, chr1_8350569, chr1_8474659, chr1_8402403, chr1 27786931, chr1 8194629, chr1 8282602, chr1 8306806, chr1 8341618, 25 chr1 8343786, chr1 8345836, chr1 8279302, chr1 8334901, AX-89962103, chr1_7561600, AX-89956272,chr1_7938827, chr1_10810229, chr1_11007071 y chr1_10884171.

La trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con modalidades particulares, el método comprende:

30

35

40

45

50

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es seleccionado del grupo que consiste en: AX-8992954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945, AX-89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, AX-89935317 y AX-89966423.

La trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con modalidades particulares, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945 y AX-89934682.

La trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con más modalidades particulares, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es AX-89929954 o AX-89918280; en donde la presencia de una citosina en la posición de AX-89929954 o una guanina en la posición de AX-89918280 indica que la trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa.

De acuerdo con más modalidades particulares, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es AX-89929954;

en donde la presencia de una citosina en la posición de AX-89929954 indica que la trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa.

De acuerdo con más modalidades particulares, el método comprende:

10

30

35

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es AX-89918280;

en donde la presencia de una guanina en la posición de AX-89918280 indica que la trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa.

De acuerdo con modalidades particulares adicionales, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un 15 polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es seleccionado del grupo que consiste en: chr1 7515539, chr1 7108873, chr1 6864558chr1 7186663, chr1 6730531, chr1 27891953. AX-89953259. chr1 7412807, chr1 7360179, chr1 6770611, chr1 7411803, chr1 7431445, chr1 6740481, chr1 7433199, 20 chr1 7441254, chr1_7441877, chr1_7533570, chr1 6834898, chr1 6730142, chr1 6746052, chr1 6794061, chr1 7399212, chr1 7442637, chr1 7358019, chr1 7709828, chr1 7598090, chr1 7626471, chr1 7598743, chr1 7670293, chr1 7670561, chr1 7647634, chr1 7356089, chr1 8109044, y chr1 10439048.

La trucha arcoíris tiene mayor resistencia a la necrosis pancreática infecciosa cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con más modalidades particulares, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es chr1_7515539, chr1_7108873 o chr1_6864558, en donde la presencia de una guanina en la posición de chr1_7515539, una guanina en la posición de chr1_7108873 o una citosina chr1_6864558 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.

De acuerdo con otras modalidades particulares adicionales el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es chr1 7515539;

40 en donde la presencia de una guanina en la posición de chr1_7515539 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.

De acuerdo con más modalidades particulares, el método comprende:

- determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es chr1_7108873;
 - en donde la presencia de una guanina en la posición de chr1_7108873 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.
- De acuerdo con más modalidades particulares, el método comprende:
 - determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es chr1 6864558;
- en donde la presencia de una citocina en la posición de chr1_6864558 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.

Los métodos para predecir el aumento de la resistencia de una trucha arcoíris a la IPN pueden implicar la determinación de la identidad de un nucleótido presente de al menos un alelo de más de un SNP, como al menos dos, al menos tres o al menos 4 SNP. La predicción puede basarse entonces en la presencia de los alelos de resistencia a la IPN para los SNP analizados. Por ejemplo, se pueden genotipar al menos los SNP AX-89929954 (SNP#1) y AX-89918280 (SNP#2). También se pueden genotipar al menos los SNP AX-89929954 (SNP#1), AX-89918280 (SNP#2) y AX-89938309 (SNP#3). También se pueden genotipar al menos los SNP AX-89929954 (SNP#1), AX-89918280 (SNP#2), AX-89938309 (SNP#3), AX-89960828 (SNP#4) y chr 1 7515539 (SNP#160).

La presente invención proporciona en un aspecto adicional un método para seleccionar una trucha arcoíris con mayor resistencia a la necrosis pancreática infecciosa. En particular, la presente invención proporciona un método para seleccionar una trucha arcoíris con mayor resistencia a la necrosis pancreática infecciosa, el método comprende: determinar la presencia de al menos un (tal como al menos dos) alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN") dentro del genoma (por ejemplo, en el cromosoma 1) del genoma) de dicha trucha arcoíris; y seleccionar dicha trucha arcoíris que tiene resistencia aumentada cuando está presente al menos un alelo de resistencia a la IPN, en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), en donde al menos un SNP es seleccionado de los SNP enumerados en la Tabla 1.

De acuerdo con ciertas modalidades, la presente invención proporciona un método para seleccionar una trucha arcoíris que tiene mayor resistencia a la necrosis pancreática infecciosa, el método comprende:
determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP está ubicado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con núms.

seleccionar dicha trucha arcoíris por tener resistencia aumentada cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con modalidades particulares, el método comprende:

25

30

40

45

50

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP está ubicado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en cualquiera de las sec. con núms. de ident.: 1 a 34, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 1 a 34 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos;

seleccionar dicha trucha arcoíris por tener resistencia aumentada cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

35 De acuerdo con modalidades particulares adicionales, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP está ubicado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en cualquiera de las sec. con núms. de ident.: 160 a 193, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 160 a 193 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos; and

seleccionar dicha trucha arcoíris por tener resistencia aumentada cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con modalidades particulares, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP está ubicado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en cualquiera de las sec. con núms. de ident.: 1 a 18, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 1 a 18 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos; v

seleccionar dicha trucha arcoíris por tener resistencia aumentada cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con modalidades particulares adicionales, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP está ubicado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en cualquiera de las sec. con núms. de ident.: 160 a 162, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 160 a 162 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos; y

seleccionar dicha trucha arcoíris por tener resistencia aumentada cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

5 De acuerdo con más modalidades particulares, el método comprende:

10

15

20

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, dicho al menos un SNP localizado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 1 o la sec. con núm. de ident.: 2, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de ident.: 1 o la sec. con núm. de ident.: 2 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos;

seleccionar dicha trucha arcoíris por tener una mayor resistencia a la necrosis pancreática infecciosa cuando una citosina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 1 o una guanina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 2.

De acuerdo con otras modalidades particulares adicionales el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, dicho al menos un SNP localizado dentro de dicho genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 160, sec. con núm. de ident.:161 o sec. con núm. de ident.: 162, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de ident.: 160, sec. con núm. de ident.:161 o sec. con núm. de ident.: 162 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos; y

- seleccionar dicha trucha arcoíris por tener una mayor resistencia a la necrosis pancreática infecciosa cuando una guanina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 160, guanina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 161 o una citosina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 162.
- De acuerdo con más modalidades particulares, el método comprende:
 determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un
 polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo,
 en el cromosoma 1 del genoma) de dicha trucha arcoíris, dicho al menos un SNP localizado dentro de dicho genoma en
 una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 1,
 o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de
 ident.: 1 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos; y
- seleccionar dicha trucha arcoíris por tener una mayor resistencia a la necrosis pancreática infecciosa cuando una citosina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 1.
- De acuerdo con más modalidades particulares, el método comprende:
 determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un
 polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo,
 en el cromosoma 1 del genoma) de dicha trucha arcoíris, dicho al menos un SNP localizado dentro de dicho genoma en
 una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 1 o
 la sec. con núm. de ident.: 2, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se
- deriva de la sec. con núm. de ident.: 2 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos; y seleccionar dicha trucha arcoíris por tener una mayor resistencia a la necrosis pancreática infecciosa cuando una guanina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 2.
- De acuerdo con otras modalidades, la presente invención proporciona un método para seleccionar una trucha arcoíris que tiene mayor resistencia a la necrosis pancreática infecciosa, el método comprende: determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un
- polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131,
- AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945, AX-89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, AX-89935317, AX-89966423, AX-89933348, AX-89969315, AX-89919958, AX-89968417, AX-89946851, AX-89976917,
- 60 AX-89945446, AX-89919457, AX-89973597, AX-89938138, AX-89971866, AX-89958882, AX-89961273, AX-89944901, AX-89919465, AX-89959425, AX-89917102, AX-89959281, AX-89916766, AX-89920507, AX-89957370, AX-89934009, AX-89929663, AX-89952300, AX-89916572, AX-89946911, AX-89974593, AX-89927158, AX-89970383, AX-89965404, AX-89955634, AX-89932926, AX-89941493, AX-89943031, AX-89957682, AX-89960611, AX-89950199, AX-89928407,
- AX-89962035, AX-89931951, AX-89976536, AX-89916801, AX-89929085, AX-89925267; and, chr1_7515539, chr1_7108873, chr1_6864558, chr1_7186663, chr1_6730531, chr1_27891953, AX-89953259, chr1_6740481, chr1_6770611, chr1_7412807, chr1_7360179, chr1_7411803, chr1_7431445, chr1_7433199, chr1_7441254,

```
chr1 7441877,
                chr1 7533570, chr1 6834898,
                                                chr1 6730142, chr1 6746052,
                                                                                chr1 6794061,
                                                                                                chr1 7399212,
chr1 7442637,
                chr1 7358019,
                                chr1 7709828,
                                                chr1 7598090,
                                                                chr1 7626471,
                                                                                 chr1 7598743,
                                                                                                 chr1 7670293,
chr1_7670561,
                                chr1_7356089,
                                                chr1_8109044,
                                                                chr1_10439048, chr1_8142346,
                                                                                                 chr1_8092208,
                chr1_7647634,
chr1_8138683,
                chr1_8139206,
                                chr1_8139744,
                                                chr1_8140789, chr1_8141687,
                                                                                 chr1_8154917,
                                                                                                 chr1_7454708,
chr1_7504847, chr1_7505686, chr1_7505817, chr1_27786931, chr1_8194629, chr1_7505259,
                                                chr1_8202031, chr1_8228173, chr1_8474659, chr1_8282602,
                                                                                 chr1_8309469,
                                                                                                 chr1 8163977,
                                                                                 chr1 8306806,
                                                                                                 chr1 8341618,
chr1 8343786, chr1 8345836,
                                chr1 8350569,
                                                chr1 8402403,
                                                                AX-89962103,
                                                                                 chr1 8279302,
                                                                                                 chr1 8334901,
chr1 7561600, AX-89956272,chr1 7938827, chr1 10810229, chr1 11007071 y chr1 10884171.
```

seleccionar dicha trucha arcoíris por tener resistencia aumentada cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con modalidades particulares, el método comprende:

10

15

20

25

30

35

40

45

50

65

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945, AX-89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, AX-89935317 y AX-89966423; y

seleccionar dicha trucha arcoíris por tener resistencia aumentada cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con estas modalidades particulares, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es seleccionado del grupo que consiste en: AX-8992954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945 y AX-89934682; y

seleccionar dicha trucha arcoíris por tener mayor resistencia cuando el nucleótido de al menos un alelo es el alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con modalidades particulares adicionales, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es seleccionado del grupo que consiste en: 7515539, chr1_7108873, chr1_6864558, chr1_7186663, chr1_6730531, chr1_27891953, AX-89953259, chr1_6740481, chr1_7360179, chr1_6770611, chr1_7412807, chr1_7411803, chr1_7431445, chr1_7433199, chr1_7441254, chr1_6794061, chr1_7399212, chr1_7533570, chr1_6834898, chr1_6730142, chr1_6746052, chr1 7441877, chr1 7358019, chr1_7709828, chr1_7598090, chr1_7626471, chr1_7598743, chr1_7670293, chr1_7670561, chr1_7647634, chr1_7356089, chr1_8109044, y chr1_10439048 y seleccionar dicha trucha arcoíris por tener mayor resistencia cuando el nucleótido de al menos un alelo es el alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1. De acuerdo con otras modalidades adicionales, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es seleccionado del grupo que consiste en: chr1 7515539, chr1 7108873 y chr1 6864558

seleccionar dicha trucha arcoíris por tener mayor resistencia cuando el nucleótido de al menos un alelo es el alelo de resistencia a la IPN del SNP respectivo. El alelo de resistencia a la IPN de cada SNP se especifica en la Tabla 1.

De acuerdo con más modalidades particulares, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es AX-89929954 o AX-89918280; y

seleccionar dicha trucha arcoíris por tener una mayor resistencia a la necrosis pancreática infecciosa cuando una citosina está presente en la posición de AX-89918280.

De acuerdo con más modalidades particulares, el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es AX-89929954; y

seleccionar dicha trucha arcoíris por tener una mayor resistencia a la necrosis pancreática infecciosa cuando una citosina está presente en la posición de AX-89929954.

De acuerdo con más modalidades particulares, el método comprende:

está presente en la posición de AX-89918280.

10

15

30

35

40

55

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es AX-89918280; y seleccionar dicha trucha arcoíris por tener una mayor resistencia a la necrosis pancreática infecciosa cuando una guanina

De acuerdo con otras modalidades particulares adicionales el método comprende:

determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma (por ejemplo, en el cromosoma 1 del genoma) de dicha trucha arcoíris, al menos un SNP es chr1-7515539, chr1_7108873 o chr1_6864558; y

seleccionar dicha trucha arcoíris por tener una mayor resistencia a la necrosis pancreática infecciosa cuando una guanina está presente en la posición de chr1 7515539, a guanine está presente en la posición de chr1 7515539, a guanine está presente en la posición de chr1 6864558.

Los métodos para seleccionar una trucha arcoíris que tiene mayor resistencia a la necrosis pancreática infecciosa puede implicar determinar la identidad de un nucleótido de al menos un alelo de más de un SNP, tal como al menos dos, al menos tres o al menos 4 SNP. La selección podrá entonces basarse en la presencia del alelo de resistencia a la IPN para los SNP analizados. Por ejemplo, se pueden genotipar al menos los SNP AX-89929954 (SNP#1) y AX-89918280 (SNP#2). También se pueden genotipar al menos los SNP AX-89929954 (SNP#1), AX-89918280 (SNP#2) y AX-89938309 (SNP#3).
 También se pueden genotipar al menos los SNP AX-89929954 (SNP#1), AX-89918280 (SNP#2), AX-89938309 (SNP#4), AX-89960828 (SNP#4) y chr1_7515539 (SNP#160).

En la técnica se conocen numerosas técnicas para determinar la identidad de un nucleótido de un alelo presente en un sitio polimórfico. Por ejemplo, la determinación puede involucrar el análisis de secuencia de la trucha arcoíris que se va a probar usando, por ejemplo, metodologías de secuencia tradicionales (por ejemplo, el "método de terminación de cadena mediada por dideoxi", también conocido como el "Método de Sanger" (Sanger, F., y otros, J. Molec. Biol. 94: 441 (1975); Prober y otros, Science 238: 336-340 (1987)) y el "método de degradación química" también conocido como el "método de Maxam-Gilbert" (Maxam, A. M., y otros, Proc. Natl. Acad. Sci. (U. S. A.) 74: 560 (1977). Alternativamente, la determinación puede involucrar la extensión de una sola base de oligonucleótidos de ADN que terminan en el sitio polimórfico (por ejemplo, ensayos iPLEX de Sequenom (San Diego, EE.UU.) y ensayos de Infinium de Illumina (San Diego, EE. UU.), ensayos de ligamiento específicos de alelos (por ejemplo, tecnología de axiomas de Affymetrix (San Diego, EE. UU.), PCR específica de alelo (por ejemplo, ensayos SNPtype de Fluidigm (San Francisco) o ensayos KASP de LGC Genomics (Teddington, UK)), o hibridación competitiva de sondas complementarias a los diferentes alelos (por ejemplo el ensayo TaqMan de Applied Biosystems (Foster City, EE. UU.)).

Los métodos para la detección de la variación alélica también son revisados por Nollau y otros, Clin. Chem. 43, 1114-1120, 1997; y en libros de texto estándar, por ejemplo "Laboratory Protocols for Mutation Detection", Ed. por U. Landegren, Oxford University Press, 1996 y "PCR", 2da Edición por Newton & Graham, BIOS Scientific Publishers Limited, 1997.

Para analizar los SNP, puede ser apropiado, por ejemplo, usar oligonucleótidos específicos para alelos de SNP alternativos. Dichos oligonucleótidos que detectan variaciones de un solo nucleótido en secuencias diana pueden denominarse "oligonucleótidos específicos de alelo", "sondas específicas de alelo" o "cebadores específicos de alelo". El diseño y uso de sondas específicas de alelos para analizar polimorfismos se describen en, por ejemplo, Mutation Detection A Practical Approach, ed. Cotton y otros. Oxford University Press, 1998; Saiki y otros., Nature 324, 163-166 (1986); Dattaqupta, EP235726; y Saiki, WO 89/11548.

La presente invención proporciona en un aspecto adicional una célula de trucha arcoíris aislada que comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), en donde el al menos un SNP se selecciona de los SNP enumerados en la Tabla 1.

De acuerdo con ciertas modalidades, al menos un SPN es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945, AX-89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, AX-89935317, AX-8996423, AX-89933348, AX-89969315, AX-89919958, AX-89968417, AX-89946851, AX-89976917, AX-89945446, AX-89919457, AX-89973597, AX-89938138, AX-89971866, AX-89958882, AX-89961273, AX-89944901, AX-89919465, AX-89959425, AX-89917102, AX-89959281, AX-89916766, AX-89920507, AX-89957370, AX-89934009, AX-89929663, AX-89952300, AX-89916572, AX-89946911, AX-89974593, AX-89927158, AX-89970383, AX-89965404, AX-89955634, AX-89932926, AX-89941493, AX-89943031, AX-89957682, AX-89960611, AX-89950199, AX-89928407, AX-89962035, AX-89932926, AX-89941493, AX-89943031, AX-89957682, AX-89960611, AX-89950199, AX-89928407, AX-89962035, AX-89932926, AX-89941493, AX-89943031, AX-89957682, AX-89960611, AX-89950199, AX-89928407, AX-89962035, AX-899829633, AX-899828407, AX-8998828407, AX-899828407, AX-8998828407, AX-8998828407, AX-89982

89931951, AX-89976536, AX-89916801, AX-89929085, AX-89925267, chr1 7515539, chr1 7108873, chr1 6864558, chr1 7186663, chr1 6730531, chr1 27891953, AX-89953259, chr1 6740481, chr1 6770611, chr1 7412807, chr1_7360179, chr1_7411803, chr1_7431445, chr1_7433199, chr1_7441254, chr1_7441877, chr1_7533570, chr1_6834898, chr1_6730142, chr1_6746052, chr1_6794061, chr1_7399212, chr1_7442637, chr1_7358019, chr1_7626471, chr1_10439048, chr1_7598743, chr1_7670293, chr1_7670561, chr1_8142346, chr1_8092208, chr1_8138683, chr1_7647634, chr1_8139206, chr1_7709828, chr1 7598090, chr1 8109044, chr1 7356089, chr1 8140789, chr1 8141687, chr1 8139744, chr1 8154917, chr1 7454708, chr1 7504847, chr1_7505686, chr1 7505817, chr1 8202031, chr1 8228173, chr1 8309469, chr1 8163977, chr1 27786931, chr1 8194629, chr1_8306806, chr1_8341618, chr1_8343786, chr1_7505259, chr1 8474659, chr1_8282602, chr1 8345836, chr1_8402403, chr1 8334901, chr1 7561600, 10 chr1_8350569, AX-89962103, chr1_8279302, 89956272,chr1 7938827, chr1_10810229, chr1_11007071 y chr1_10884171.

De acuerdo con modalidades particulares, al menos un SPN es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945, AX-89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, AX-89935317 y AX-89966423.

- De acuerdo con otras modalidades particulares, al menos un SPN es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945 y AX-89934682.
- 25 De acuerdo con más modalidades particulares, al menos un SPN es AX-89929954 o AX-89918280.

De acuerdo con otras modalidades particulares, al menos un SPN es AX-89929954.

15

30

35

40

60

65

De acuerdo con otras modalidades particulares, al menos un SPN es AX-89918280.

De acuerdo con ciertas modalidades, la presente invención proporciona una célula aislada de trucha arcoíris que comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en la sec. con núms. de ident.: 79 a 156, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con modalidades particulares, la célula de trucha arcoíris aislada, comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 112, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 112 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

- De acuerdo con otras modalidades particulares, la célula de trucha arcoíris aislada, comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 96, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 96 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.
- De acuerdo con más modalidades particulares, la célula de trucha arcoíris aislada, comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en la sec. con núm. de ident.: 79 y la sec. con núm. de ident.: 80, y b) secuencias de nucleótidos derivadas de cualquiera de la sec. con núm. de ident.: 79 y la sec. con núm. de ident.: 80 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con más modalidades particulares, la célula de trucha arcoíris aislada, comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 79, y b) secuencias de nucleótidos derivadas de la sec. con núm. de ident.: 79 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con más modalidades particulares, la célula de trucha arcoíris aislada, comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 80, y b) secuencias de nucleótidos derivadas

de la sec. con núm. de ident.: 80 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con modalidades particulares, la célula de trucha arcoíris aislada es un huevo aislado no fertilizado, tal como un huevo incubado aislado no fertilizado.

De acuerdo con modalidades particulares, la célula de trucha arcoíris aislada es una célula de esperma aislada.

De acuerdo con otras modalidades, la célula de trucha arcoíris aislada es una célula somática aislada.

5

10

15

45

50

La presente invención proporciona en un aspecto adicional una población aislada de células de trucha arcoíris, cada célula individual dentro de la población aislada comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), en donde al menos un SPN es seleccionado de los SNP enumerados en la Tabla 1.

De acuerdo con ciertas modalidades, al menos un SPN es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945, AX-20 89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, AX-89935317, AX-89966423, AX-89933348, AX-89969315, AX-89919958, AX-89968417, AX-89946851, AX-89976917, AX-89945446, AX-89919457, AX-89973597, AX-89938138, AX-89971866, AX-89958882, AX-89961273, AX-89944901, AX-89919465, AX-89959425, AX-89917102, AX-89959281, AX-89916766, AX-89920507, AX-89957370, AX-89934009, AX-89929663, AX-25 89952300, AX-89916572, AX-89946911, AX-89974593, AX-89927158, AX-89970383, AX-89965404, AX-89955634, AX-89932926, AX-89941493, AX-89943031, AX-89957682, AX-89960611, AX-89950199, AX-89928407, AX-89962035, AX-89931951, AX-89976536, AX-89916801, AX-89929085, AX-89925267, chr1 7515539, chr1 7108873, chr1 6864558, chr1 6730531, chr1 27891953, AX-89953259, chr1 6740481, chr1 6770611, chr1 7412807, chr1 7186663, chr1_7360179, chr1_7411803, chr1_7431445, chr1_7433199, chr1_7441254, chr1_7441877, chr1_7533570, chr1_6730142, chr1_7598090, chr1_7399212, chr1_7670293, 30 chr1_6834898, chr1_6746052, chr1_6794061, chr1_7442637, chr1_7358019, chr1_7626471, chr1_10439048, chr1 7709828, chr1 7598743, chr1 7670561, chr1 7647634, chr1 7356089, chr1 8109044, chr1 8142346, chr1 8092208, chr1 8139206, chr1 8138683, chr1 8141687, chr1 8154917, chr1 7454708, chr1 8139744, chr1 8140789, chr1 7504847. chr1 7505686. chr1 7505817, chr1 8202031, chr1 8228173, chr1 8309469, chr1 8163977, chr1 27786931, chr1 8194629, chr1 8306806, chr1_8345836. 35 chr1 7505259, chr1 8474659, chr1 8282602, chr1_8341618, chr1 8343786, chr1_8402403, AX-89962103. chr1 8334901, chr1 7561600, chr1 8350569, chr1 8279302, 89956272,chr1 7938827, chr1 10810229, chr1 11007071 y chr1 10884171.

De acuerdo con modalidades particulares, al menos un SPN es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945, AX-89934682, AX-89951942, AX-89937020, AX-89924837, AX-89958601, AX-89923477, AX-89959350, AX-89929482, AX-89937712, AX-89949602, AX-89925103, AX-89938051, AX-89924174, AX-89936461, AX-89916703, AX-89935317 y AX-89966423.

De acuerdo con otras modalidades particulares, al menos un SPN es seleccionado del grupo que consiste en: AX-89929954, AX-89918280, AX-89938309, AX-89960828, AX-89930342, AX-89928530, AX-89949788, AX-89928131, AX-89949832, AX-89916790, AX-89973719, AX-89962023, AX-89921280, AX-89931666, AX-89921585, AX-89953905, AX-89952945 y AX-89934682.

De acuerdo con más modalidades particulares, al menos un SPN es AX-89929954 o AX-89918280.

De acuerdo con otras modalidades particulares, al menos un SPN es AX-89929954.

De acuerdo con otras modalidades particulares, al menos un SPN es AX-89918280.

De acuerdo con modalidades particulares adicionales, al menos un SPN es seleccionado del grupo: chr1 7515539, chr1_7108873, chr1_6864558, chr1_7186663, chr1_6730531, chr1_27891953, AX-89953259, chr1 6740481, chr1 6770611, chr1 7412807, chr1 7360179, chr1 7411803, chr1 7431445, chr1 7433199, chr1 7441254, 60 chr1_7441877, chr1_7533570, chr1_6834898, chr1_6730142, chr1_6746052, chr1 6794061, chr1 7399212, chr1_7709828, chr1_7598090, chr1_7442637, chr1_7358019, chr1_7626471, chr1_7598743, chr1_7670293, chr1_7670561, chr1_7647634, chr1_7356089, chr1_8109044, y chr1_10439048

De acuerdo con más modalidades particulares adicionales, al menos un SPN es chr1_7515539, chr1_7108873 y chr1_6864558.

De acuerdo con otras modalidades particulares, al menos un SPN es chr1 7515539,

De acuerdo con otras modalidades particulares, al menos un SPN es chr1_7108873.

5 De acuerdo con otras modalidades particulares, al menos un SPN es chr1 6864558.

10

15

20

25

30

35

40

45

60

De acuerdo con ciertas modalidades, la presente invención proporciona una población aislada de células de trucha arcoíris, cada célula individual dentro de la población aislada comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en la sec. con núms. de ident.: 79 a 156, y 230 a 299 y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5, tales como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no estén en la posición 36 de dicha secuencia derivada.

De acuerdo con modalidades particulares, la población de células de trucha arcoíris aislada es una población en donde cada célula individual dentro de la población aislada comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 112, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 112 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con otras modalidades particulares, la población de células de trucha arcoíris aislada es una población en donde cada célula individual dentro de la población aislada comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 96, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 96 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con más modalidades particulares, la población de células de trucha arcoíris aislada es una población en donde cada célula individual dentro de la población aislada comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en sec. con núm. de ident.: 79 y la sec. con núm. de ident.: 80, y b) secuencias de nucleótidos derivadas de cualquiera de la sec. con núm. de ident.: 79 y la sec. con núm. de ident.: 80 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con más modalidades particulares, la población de células de trucha arcoíris aislada es una población en donde cada célula individual dentro de la población aislada comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 79, y b) secuencias de nucleótidos derivadas de la sec. con núm. de ident.: 79 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con más modalidades particulares, la población de células de trucha arcoíris aislada es una población en donde cada célula individual dentro de la problación comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 80, y b) secuencias de nucleótidos derivadas de la sec. con núm. de ident.: 80 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

50 De acuerdo con modalidades particulares, las células de dicha población aislada son huevos no fertilizados, tal como huevos incubados no fertilizados.

De acuerdo con otras modalidades particulares, las células de dicha población aislada son células de esperma.

55 De acuerdo con otras modalidades, las células de dicha población aislada son células somáticas.

La presente invención proporciona en un aspecto particular un huevo de trucha arcoíris no fertilizado aislado que comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP) y al menos un SPN es seleccionado de los SNP enumerados en la Tabla 1.

De acuerdo con modalidades particulares, al menos un SPN es AX-89929954 o AX-89918280.

De acuerdo con ciertas modalidades, la presente invención proporciona un huevo de trucha arcoíris no fertilizado aislado que comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de

ident.: 79 a 156 y 230 a 299, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5, tales como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no estén en la posición 36 de dicha secuencia derivada.

De acuerdo con modalidades particulares, la presente invención proporciona un huevo de trucha arcoíris no fertilizado aislado que comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en sec. con núm. de ident.: 79 y la sec. con núm. de ident.: 80, y b) secuencias de nucleótidos derivadas de cualquiera de la sec. con núm. de ident.: 79 y la sec. con núm. de ident.: 80 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con otras modalidades particulares adicionales, al menos un SPN es chr1 7515539, chr1_7108873 o chr1 6864558.

De acuerdo con modalidades particulares, la presente invención proporciona un huevo de trucha arcoíris no fertilizado aislado que comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 230 a 232 y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 230 a 232 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con modalidades particulares, el huevo de trucha arcoíris no fertilizado aislado que es un huevo incubado no fertilizado aislado.

La presente invención proporciona en un aspecto adicional una población aislada de huevos de trucha arcoíris no fertilizados, cada huevo individual de la población aislada comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido(SNP) y al menos un SPN es seleccionado de los SNP enumerados en la Tabla 1.

De acuerdo con modalidades particulares, al menos un SPN es AX-89929954 o AX-89918280.

De acuerdo con modalidades adicionales, al menos un SPN es chr1 7515539, chr1 7108873 o chr1 6864558.

De acuerdo con ciertas modalidades, la presente invención proporciona una población aislada de huevos de trucha arcoíris no fertilizados que comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 156, y 230 a 299 y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5, tales como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no estén en la posición 36 de dicha secuencia derivada.

De acuerdo con modalidades particulares, la presente invención proporciona una población aislada de huevos de trucha arcoíris no fertilizados, cada huevo individual dentro de la población aislada comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en sec. con núm. de ident.: 79 y la sec. con núm. de ident.: 80, y b) secuencias de nucleótidos derivadas de cualquiera de la sec. con núm. de ident.: 79 y la sec. con núm. de ident.: 80 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con modalidades particulares, la presente invención proporciona una población aislada de huevos de trucha arcoíris no fertilizados, cada huevo individual dentro de la población aislada comprende dentro de su genoma (por ejemplo, en el cromosoma 1 de su genoma) al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 230 a 232, y b) secuencias de nucleótidos derivadas de cualquiera de la sec. con núm. de ident.: 230 a 232 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

De acuerdo con otras modalidades, la población aislada de huevos de trucha arcoíris no fertilizados es una población de huevos incubados no fertilizados.

60 Moléculas de ácido nucleico

30

45

65

La presente descripción también describe una molécula de ácido nucleico, tal como una molécula de ácido nucleico aislada. Más particularmente, la presente descripción discute un ácido nucleico, tal como un ácido nucleico aislado, que comprende al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 156 y 230 a 299, b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos,

siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada, y c) complementos de a) y b).

La molécula de ácido nucleico, tal como una molécula de ácido nucleico aislada, puede comprender al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 112, b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 112 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada, y c) complementos de a) y b).

5

20

25

30

35

40

La molécula de ácido nucleico, tal como una molécula de ácido nucleico aislada, puede comprender al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 96, b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 96 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada, y c) complementos de a) y b).

La molécula de ácido nucleico, tal como una molécula de ácido nucleico aislada, puede comprender al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 y la sec. con núm. de ident.: 80, b) secuencias de nucleótidos derivadas de cualquiera de la sec. con núm. de ident.: 79 y la sec. con núm. de ident.: 80 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada, y c) complementos de a) y b).

La molécula de ácido nucleico, tal como una molécula de ácido nucleico aislada, puede comprender la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 79, o una secuencia de nucleótidos derivada de la sec. con núm. de ident.: 79 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada, o un complemento de estas.

La molécula de ácido nucleico, tal como una molécula de ácido nucleico aislada, puede comprender la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 80, o una secuencia de nucleótidos derivada de la sec. con núm. de ident.: 80 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada, o un complemento de estas.

La molécula de ácido nucleico, tal como una molécula de ácido nucleico aislada, puede comprender al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 230 a 263, b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 230 a 263 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada, y c) complementos de a) y b).

La molécula de ácido nucleico, tal como una molécula de ácido nucleico aislada, puede comprender al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 230 a 232, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 230 a 232 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada, y c) complementos de a) y b).

La molécula de ácido nucleico, tal como una molécula de ácido nucleico aislada, puede comprender la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 230, o una secuencia de nucleótidos derivada de la sec. con núm. de ident.: 230 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada, o un complemento de estas.

La molécula de ácido nucleico, tal como una molécula de ácido nucleico aislada, puede comprender la secuencia de nucleótidos expuesta en las sec. con núms. de ident.: 231 o una secuencia de nucleótidos derivada de la sec. con núm. de ident.: 231 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada, o un complemento de estas.

La molécula de ácido nucleico, tal como una molécula de ácido nucleico aislada, puede comprender la secuencia de nucleótidos expuesta en las sec. con núms. de ident.: 232 o una secuencia de nucleótidos derivada de la sec. con núm. de ident.: 232 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada, o un complemento de estas.

La molécula de ácido nucleico puede tener una longitud de al menos 71 nucleótidos, tal como al menos 75 nucleótidos o al menos 100 nucleótidos.

De acuerdo con ciertas modalidades, el ácido nucleico tiene una longitud de 71 nucleótidos a 400 nucleótidos, tal como de 71 nucleótidos a 200 nucleótidos o de 71 a 100 nucleótidos.

La presente descripción describe además un oligonucleótido, tal como un oligonucleótido aislado. Más particularmente, la presente descripción discute un oligonucleótido, tal como un oligonucleótido aislado, que comprende al menos 10

nucleótidos contiguos, tal como al menos 16 nucleótidos contiguos, de una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 156 y 230 a 299 y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 y 156 y 230 a 299 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada; en donde dichos al menos 10 nucleótidos contiguos incluyen el nucleótido en la posición 36 de a) o b); o un complemento de dicho oligonucleótido.

El oligonucleótido comprende al menos 10 nucleótidos contiguos, tal como al menos 16 nucleótidos contiguos, de una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 112, y b) secuencias de nucleótidos derivadas de cualquiera de la sec. con núm. de ident.: 79 y 112 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada; en donde dichos al menos 10 nucleótidos contiguos incluyen el nucleótido en la posición 36 de a) o b); o un complemento de dicho oligonucleótido.

10

25

30

35

40

45

60

65

El oligonucleótido puede comprender al menos 10 nucleótidos contiguos, tal como al menos 16 nucleótidos contiguos, de una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 96, y b) secuencias de nucleótidos derivadas de cualquiera de la sec. con núm. de ident.: 79 a 96 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada; en donde dichos al menos 10 nucleótidos contiguos incluyen el nucleótido en la posición 36 de a) o b); o un complemento de dicho oligonucleótido.

El oligonucleótido comprende al menos 10 nucleótidos contiguos, tal como al menos 16 nucleótidos contiguos, de una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 y 80, y b) secuencias de nucleótidos derivadas de cualquiera de la sec. con núm. de ident.: 79 y 80 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada; en donde dichos al menos 10 nucleótidos contiguos incluyen el nucleótido en la posición 36 de a) o b); o un complemento de dicho oligonucleótido.

El oligonucleótido puede comprender al menos 10 nucleótidos contiguos, tal como al menos 16 nucleótidos contiguos, de una secuencia de nucleótidos seleccionada del grupo que consiste en a) la secuencia de nucleótidos expuesta en las sec. con núms. de ident.: 79, y b) secuencias de nucleótidos derivadas de la sec. con núm. de ident.: 79 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada; en donde dichos al menos 10 nucleótidos contiguos incluyen el nucleótido en la posición 36 de a) o b); o un complemento de dicho oligonucleótido.

El oligonucleótido puede comprender al menos 10 nucleótidos contiguos, tal como al menos 16 nucleótidos contiguos, de una secuencia de nucleótidos seleccionada del grupo que consiste en a) la secuencia de nucleótidos expuesta en las sec. con núms. de ident.: 80, y b) secuencias de nucleótidos derivadas de la sec. con núm. de ident.: 80 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada; en donde dichos al menos 10 nucleótidos contiguos incluyen el nucleótido en la posición 36 de a) o b); o un complemento de dicho oligonucleótido.

El oligonucleótido puede comprender al menos 10 nucleótidos contiguos, tal como al menos 16 nucleótidos contiguos, de una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 230 a 263, y b) secuencias de nucleótidos derivadas de cualquiera de la sec. con núm. de ident.: 230 y 263 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada; en donde dichos al menos 10 nucleótidos contiguos incluyen el nucleótido en la posición 36 de a) o b); o un complemento de dicho oligonucleótido.

El oligonucleótido puede comprender al menos 10 nucleótidos contiguos, tal como al menos 16 nucleótidos contiguos, de una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 230 a 232 y b) secuencias de nucleótidos derivadas de cualquiera de la sec. con núm. de ident.: 230 a 232 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada; en donde dichos al menos 10 nucleótidos contiguos incluyen el nucleótido en la posición 36 de a) o b); o un complemento de dicho oligonucleótido.

El oligonucleótido puede comprender al menos 10 nucleótidos contiguos, tal como al menos 16 nucleótidos contiguos, de una secuencia de nucleótidos seleccionada del grupo que consiste en a) la secuencia de nucleótidos expuesta en las sec. con núms. de ident.: 230, y b) secuencias de nucleótidos derivadas de la sec. con núm. de ident.: 230 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada; en donde dichos al menos 10 nucleótidos contiguos incluyen el nucleótido en la posición 36 de a) o b); o un complemento de dicho oligonucleótido.

El oligonucleótido puede comprender al menos 10 nucleótidos contiguos, tal como al menos 16 nucleótidos contiguos, de una secuencia de nucleótidos seleccionada del grupo que consiste en a) la secuencia de nucleótidos expuesta en las sec. con núms. de ident.: 80, y b) secuencias de nucleótidos derivadas de la sec. con núm. de ident.: 231 por 1 a 5, tal como

- 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada; en donde dichos al menos 10 nucleótidos contiguos incluyen el nucleótido en la posición 36 de a) o b); o un complemento de dicho oligonucleótido.
- El oligonucleótido puede comprender al menos 10 nucleótidos contiguos, tal como al menos 16 nucleótidos contiguos, de una secuencia de nucleótidos seleccionada del grupo que consiste en a) la secuencia de nucleótidos expuesta en las sec. con núms. de ident.: 80, y b) secuencias de nucleótidos derivadas de la sec. con núm. de ident.: 232 por 1 a 5, tal como 1 a 2, sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada; en donde dichos al menos 10 nucleótidos contiguos incluyen el nucleótido en la posición 36 de a) o b); o un complemento de dicho oligonucleótido.
 - El oligonucleótido o su complemento puede tener una longitud de al menos 10 nucleótidos, tal como al menos 16 nucleótidos.
- 15 El oligonucleótido o su complemento pueden tener una longitud de al menos 16 nucleótidos, tal como al menos 20 nucleótidos.
 - El oligonucleótido o su complemento pueden tener una longitud de al menos 20 nucleótidos, tal como al menos 25 nucleótidos.
 - El oligonucleótido o su complemento pueden tener una longitud de 10 a 200 nucleótidos, tal como 10 a 150 nucleótidos.
 - El oligonucleótido o su complemento pueden tener una longitud de 10 a 100 nucleótidos, tal como 10 a 70 nucleótidos.
- 25 El oligonucleótido o su complemento pueden tener una longitud de 16 a 100 nucleótidos, tal como 16 a 70 nucleótidos.
 - El oligonucleótido o su complemento pueden tener una longitud de 10 a 50 nucleótidos, tal como 10 a 40 nucleótidos.
 - El oligonucleótido o su complemento pueden tener una longitud de 16 a 50 nucleótidos, tal como 16 a 40 nucleótidos.
 - El oligonucleótido o su complemento pueden tener una longitud de 10 a 30 nucleótidos, tal como 8 a 25 nucleótidos.
 - El oligonucleótido o su complemento pueden tener una longitud de 16 a 30 nucleótidos, tal como 16 a 25 nucleótidos.
- 35 El oligonucleótido o su complemento puede ser un cebador, tal como un cebador de PCR.

20

30

45

65

- El oligonucleótido o su complemento puede ser una sonda, tal como una sonda de hibridación.
- La presente descripción también discute un complemento para el oligonucleótido especificado anteriormente. Dicho complemento puede usarse como una sonda, tal como una sonda de hibridación.
 - Una sonda o cebador puede tener adherida un marcador detectable o una molécula reportera. Los marcadores típicos incluyen isótopos radiactivos, sustratos de enzimas, cofactores, ligandos, agentes quimioluminiscentes o fluorescentes, haptenos y enzimas. Los métodos para marcar y orientar en la elección de los marcadores apropiados para varios propósitos se discuten, por ejemplo, en Sambrook y otros. (In Molecular Cloning, A Laboratory Manual, CSHL, Nueva York, 1989) y Ausubel y otros. (In Current Protocols in Molecular Biology, John Wiley & Sons, Nueva York, 1998). Como ejemplo particular, una sonda o cebador puede incluir un fluoróforo, como un fluoróforo aceptor o un fluoróforo donante. Dicho fluoróforo se puede unir en el extremo 5' o 3' de la sonda/cebador.
- Las sondas generalmente tienen una longitud de al menos 15 nucleótidos, tal como al menos 16, al menos 17, al menos 18, al menos 19, al menos 20, al menos 25, al menos 30, al menos 35, al menos 40, al menos 45, al menos 50, al menos 55, al menos 60, al menos 65, al menos 70, o más nucleótidos contiguos complementarios a la molécula de ácido nucleido diana, tal como 20 a 70 nucleótidos, 20 a 60 nucleótidos, 20 a 50 nucleótidos, 20 a 40 nucleótidos, o 20 a 30 nucleótidos.
- Los cebadores son más cortos en longitud. Un oligonucleótido usado como cebador puede tener al menos 10 nucleótidos de longitud. La especificidad de un cebador aumenta con su longitud. Así, por ejemplo, un cebador que incluye 30 nucleótidos consecutivos se apareará a una secuencia diana con una especificidad más alta que un cebador correspondiente de solo 15 nucleótidos. Así, para obtener una mayor especificidad, los cebadores tienen una longitud de al menos 15 nucleótidos, tal como al menos 16, al menos 17, al menos 18, al menos 19, al menos 20, al menos 25, al menos 30, al menos 35, al menos 40, al menos 45, al menos 50, al menos 55, al menos 60, al menos 65, al menos 70, o más nucleótidos contiguos complementarios a la molécula de ácido nucleico diana, tal como 15 a 70 nucleótidos, 15 a 60 nucleótidos, 15 a 50 nucleótidos, 15 a 40 nucleótidos, o 15 a 30 nucleótidos. Los pares de cebadores pueden usarse para la amplificación de secuencias de ácido nucleico, por ejemplo, mediante PCT, PCR en tiempo real u otros métodos de amplificación de ácido nucleico conocidos en la técnica.

Validación de los resultados subyacentes a la presente invención.

Se llevaron a cabo dos pruebas de desafío, con el fin de validar la asociación entre la resistencia a la IPN y los alelos en cuatro de los polimorfismos de la invención. Las pruebas se llevaron a cabo en dos tanques de 100 litros, y en cada tanque se probó la resistencia de un grupo de individuos de truchas arcoíris contra una de las dos cepas del virus IPN. Las dos cepas fueron 1) una cepa (AGT11-2) del serotipo Sp aislado de la trucha arcoíris noruega criada en agua de mar; la misma cepa que se usó cuando se hicieron las invenciones por primera vez, y 2) una cepa del serotipo Wb aislada de un brote en la trucha arcoíris en Chile. El experimento de validación confirmó que existe una asociación estadísticamente significativa entre la resistencia a la IPN y los alelos en los cuatro polimorfismos investigados. Además, la asociación también fue válida cuando la cepa del virus IPN usada en el descubrimiento inicial de la invención (una cepa del serotipo Sp) se reemplazó por una cepa diferente (del serotipo Wb, West Buxon). De ello se deduce que la asociación entre los polimorfismos de ADN y la resistencia a la IPN es reproducible e independiente de la cepa del virus.

Los cuatro polimorfismos probados en el experimento de validación fueron representativos de todos los polimorfismos de la invención. Los polimorfismos restantes de la invención no se probaron directamente. Sin embargo, dado que todos los polimorfismos de las Invenciones son marcadores de un mismo locus de rasgos cuantitativos (QTL), es razonable concluir que cualquier otro polimorfismo de la Invención hubiera pasado la prueba de validación.

Es una consecuencia natural y necesaria de estos hallazgos que los polimorfismos de ADN de la presente invención se pueden usar para crear truchas arcoíris con mayor resistencia a la IPN. Los resultados de este estudio de validación se presentan en los Ejemplos 2 y 3.

Ciertas definiciones

5

10

15

20

35

40

45

50

55

Como se usa en la presente descripción, "mayor resistencia" a la necrosis pancreática infecciosa significa que un individuo que tiene mayor resistencia tiene una mayor probabilidad de sobrevivir a un brote de IPN que un individuo aleatorio (del mismo brote) con el que es comparable. Dos individuos son comparables si lo son, con respecto a todos los factores discriminatorios excepto el genotipo en el SNP que se usa para predecir la resistencia a la IPN, representantes aleatorios de una y de la misma población de truchas arcoíris. Un brote de IPN es una condición en la cual la trucha arcoíris viva está expuesta al virus de la IPN de tal manera que algunas personas se infectan y propagan el virus (lo que lleva a una propagación de la enfermedad). Un brote puede ser, por ejemplo, un brote no deseado del virus en un tanque o estanque de truchas arcoíris criadas en agua dulce, un brote no deseado en una red de truchas criadas en agua de mar, o un brote controlado inducido como parte de un experimento de laboratorio. La prueba de desafío de IPN que se describe aquí (pruebas de desafío 1, 2, 3 y 4) son ejemplos de experimentos de laboratorio que miden las tasas de supervivencia durante los brotes de IPN.

Como se usa en la presente descripción, un "alelo de resistencia a la IPN" es un alelo que confiere mayor resistencia a la necrosis pancreática infecciosa. Esto significa que una trucha arcoíris que tiene dicho alelo en la posición de un polimorfismo detallado en la presente descripción muestra una mayor resistencia a la IPN. El "alelo de resistencia a la IPN" puede identificar un polimorfismo de nucleótido único que se puede usar para detectar o determinar el grado de resistencia a la IPN.

Como se usa en la presente descripción, un "polimorfismo" es una variación en una secuencia genómica. En particular, un polimorfismo es una posición en el genoma donde generalmente se encuentran diferentes variantes alélicas entre individuos de una población, o entre individuos de diferentes poblaciones. El polimorfismo puede ser una diferencia de un solo nucleótido presente en un lugar, o puede ser una inserción o eliminación de uno o unos pocos nucleótidos en una posición de un gen.

Como se usa en la presente descripción, un "polimorfismo de un solo nucleótido" o "SNP" se refiere a un polimorfismo de una sola base (nucleótido) en una secuencia de ADN entre individuos en una población. Como tal, un polimorfismo de un solo nucleótido se caracteriza por la presencia en una población de uno o dos, tres o cuatro nucleótidos diferentes (es decir, adenina, citosina, guanina o timina), típicamente menos de los cuatro nucleótidos, en un lugar particular en un genoma, como el genoma de la trucha arcoíris.

Como se usa en la presente descripción, "secuencia polimórfica" se refiere a una secuencia de nucleótidos que incluye un sitio polimórfico en el que se produce un SNP u otro tipo de polimorfismo.

Como se usa en la presente descripción, un "sitio polimórfico" es el lugar o posición dentro de una secuencia dada en la que se produce la divergencia. Los sitios polimórficos preferidos tienen al menos dos alelos, cada uno de los cuales aparece a una frecuencia superior al 1 %, y más preferentemente superior al 10 %. Los expertos en la técnica reconocerán que las moléculas de ácido nucleico pueden ser moléculas de doble cadena y que la referencia a un sitio particular en una cadena se refiere, también, al sitio correspondiente en una cadena complementaria. Al definir un sitio polimórfico o una referencia alélica a una adenina, una timina, una citosina o una guanina en un sitio particular en una cadena de una molécula de ácido nucleico también define la timina, adenina, guanina o citosina (respectivamente) en el sitio correspondiente en una cadena complementaria del ácido nucleico.

65

60

Aquí, cuando se especifica que un polimorfismo tiene un alelo particular, entonces se entiende que ese alelo particular va junto con la secuencia dada para el polimorfismo. Por ejemplo, cuando se dice que la guanina es el alelo de resistencia de SNP AX-89929954 (SNP#1), se entiende que el alelo de resistencia de AX-89929954 alberga un nucleótido de guanina en el sitio polimórfico, definido en la Tabla 2, cuando el ADN se lee en la dirección definida en la Tabla 2. En otras palabras, como se indica en la Tabla 2, la forma de resistencia de la secuencia de ADN de AX-89929954 (con la secuencia GAAAGAAACAGTGATAGGCTTTTAGTGAGCACATACATTTGACACACAGTTGTGTGAAAA flangueante) CAAAGCATGTG (sitio polimórfico subrayado) cuando se lee en la dirección definida en la Tabla 2. Cuando se lee en la opuesta, dirección secuencia de AX-89929954 (con secuencia flangueante) la **TGTTTCTTTC** (sitio polimórfico subrayado). Aunque solo se usa una dirección cuando los alelos de resistencia a la IPN y los alelos de no resistencia a la IPN se definen en la presente descripción, las dos direcciones de lectura son equivalentes.

Como se usa en la presente descripción, una "muestra", tal como una muestra biológica que incluye moléculas de ácido nucleico, es una muestra obtenida de una trucha arcoíris, que incluye, entre otros, células, tejidos y fluidos corporales.

Como se usa en la presente descripción, un "oligonucleótido" es una pluralidad de nucleótidos juntos unidos por enlaces fosfodiéster nativos, típicamente de 8 a 300 nucleótidos de longitud.

Como se usa en la presente descripción, "sondas" y "cebador" son oligonucleótidos aislados de al menos 8 nucleótidos, tal como al menos 10 nucleótidos, capaces de hibridar con un ácido nucleico diana.

Como se usa en la presente descripción, "aislado" significa que un organismo o un componente biológico, tal como una célula, una población de células o una molécula de ácido nucleico, se ha separado de su entorno natural.

- Como se usa en la presente descripción, "ligamiento genético" se refiere a la tendencia de los polimorfismos que se encuentran cerca uno del otro en un cromosoma para heredarse juntos durante la meiosis. Por lo tanto, se dice que los polimorfismos ubicados cerca uno del otro en el mismo cromosoma, están ligados genéticamente. Los alelos en dos de estos loci genéticamente ligados se heredan conjuntamente (de progenitores a descendencia) más a menudo de los que no lo son. Supongamos, por ejemplo, dos polimorfismos; polimorfismo A que tiene alelos A1 y A2, y polimorfismo B que tiene alelos B1 y B2. Supongamos además que una trucha arcoíris dada porta todos los alelos A1, A2, B1 y B2 (en otras palabras, esta trucha arcoíris es heterocigótica tanto en el marcador como en el marcador B). Si los alelos A1 y B1, en esta trucha arcoíris en particular, se localizan en la misma copia del cromosoma, entonces los alelos A1 y B1 se heredan conjuntamente más a frecuentemente, para la descendencia de la trucha arcoíris que no.
- Tal como se usa en la presente descripción, "análisis de ligamiento genético" se refiere a un procedimiento estadístico donde se investigan datos genotípicos, provenientes de conjuntos de animales que comprenden progenitores y sus descendientes, para probar la presencia de ligamiento genético entre polimorfismos. El análisis de ligamiento genético se puede usar para asignar polimorfismos a los cromosomas, siempre que el análisis incorpore polimorfismos que ya se han asignado al cromosoma usando, por ejemplo, la hibridación fluorescente in situ.
 - Como se usa en la presente descripción "hibridación fluorescente in situ" o "FISH" se refiere a una técnica que detecta la presencia o ausencia de secuencias específicas de ADN en los cromosomas. El FISH puede usarse para asignar polimorfismos de ADN conocidos a los cromosomas.
- "Centi-Morgan" es una unidad de medida, que se usa para describir distancias genéticas, donde la distancia genética es una medida de la medida en que dos polimorfismos están ligados genéticamente.
- El desequilibrio de ligamiento (LD) o, más precisamente, el desequilibrio de ligamiento en la fase gamética, se usa para describir la herencia conjunta de alelos en polimorfismos genéticamente ligados, a nivel de la población. Supongamos, por ejemplo, dos polimorfismos ubicados en el mismo cromosoma; polimorfismo A que tiene alelos A1 y A2, y polimorfismo B que tiene alelos B1 y B2. Todas las copias del cromosoma en cuestión albergarán una combinación de alelos en los dos loci (es decir, un haplotipo), y hay cuatro posibles haplotipos: A1-B1, A1-B2, A2-B1, y A2-B2. Se dice que los dos loci son LD entre sí si el número de haplotipos A1-B1 y A2-B2 dentro de la población es significativamente mayor o significativamente menor que el número de haplotipos A1-B2 y A2-B1.
 - Cuando se indica un límite o rango numérico en la presente descripción, se incluyen los puntos finales. Además, todos los valores y subgrupos dentro de un límite o rango numérico se incluyen específicamente como si se escribieran explícitamente.
- Con la descripción general de esta invención, puede obtenerse una comprensión adicional por referencia a ciertos ejemplos específicos, que se proporcionan en la presente descripción con fines de ilustración solamente y no se pretende que sean limitativos a menos que se especifique lo contrario.

EJEMPLOS

65

55

10

15

40

Ejemplo 1: Identificación de polimorfismos de un solo nucleótido predictivos para la IPN

Se realizaron dos pruebas de desafío, probando la resistencia de las truchas arcoíris a la IPN. La producción y la cría de grupos familiares, así como la preparación para el desafío, se realizaron como se describió anteriormente en Wetten y otros. 2011.

5

10

La primera prueba (Desafío 1) se realizó con el objetivo de encontrar el aislado de virus óptimo para el desafío de la IPN en la trucha arcoíris. Se probaron dos cepas de virus separadas; la cepa V-1244, que es virulenta para el salmón del Atlántico, y otra cepa aislada de la trucha arcoíris criada con agua de mar en Noruega (serotipo-Sp, AGTT11-2). Ambas cepas se probaron en tanques por triplicado, cada uno con 100 peces derivados de diez familias separadas de truchas. Los individuos fallecidos o moribundos se muestrearon diariamente. La prueba finalizó 38 días después del inicio de la prueba. La cepa de salmón causó 20 % de mortalidad general, mientras que la cepa de trucha arcoíris fue mucho más virulenta, causando 85 % de mortalidad general.

La cepa del virus aislada de la trucha arcoíris (AGTT11-2) se usó en el segundo desafío (Desafío 2). El obietivo de este 15

20

25

45

55

60

65

estudio fue identificar los SNP que son diagnósticos del nivel de resistencia a la IPN en truchas arcoíris individuales. Es decir, SNP asociados con resistencia a la IPN. Se incluyeron cincuenta familias diferentes de truchas arcoíris en la prueba, cada una representada con un tanque separado de 200 alevines (peso promedio de alevines = 0,2 gramos). Todas las familias se sometieron a un desafío de baño mediante la adición de un volumen de sobrenadante de virus correspondiente a una concentración final de virus de aproximadamente 106 TCID₅₀/ml de agua. Los individuos fallecidos o moribundos se muestrearon diariamente. Todos los peces que murieron durante el ensayo, así como todos los sobrevivientes recolectados al final de 40 días después del desafío, se congelaron a -18 °C para permitir el análisis de ADN. La prueba finalizó 48 días después del inicio de la prueba.

Del desafío 2, se incluyeron 8683 animales en el análisis; estos animales comprenden 46 grupos de hermanos completos originarios de 29 progenitores macho y 25 hembras. El número de grupos de hermanos completos por padre macho varió de 1 a 3, al igual que el número de grupos de hermanos completos por madre hembra.

La tasa de mortalidad general en la prueba de Desafío 2 fue de 93 %. Dentro de los grupos de hermanos completos, la tasa de mortalidad varió de 67,8 % a 99,5 %. De los 8683 individuos sometidos a prueba de desafío, 1723 fueron 30 genotipados. Estos 1723 animales comprendían (en promedio) 19 muertes tempranas y 19 sobrevivientes o mortalidades tardías de cada uno de los 46 grupos de hermanos completos. Aquí, las primeras mortalidades fueron los primeros peces en morir dentro de su grupo de hermanos completos respectivo, excluyendo a los individuos que murieron antes del día 13 de la prueba de desafío 1 (se asumió que las pocas muertes ocurridas antes del día 13 no se debieron a la IPN). Las muertes tardías fueron los individuos que murieron, o que fueron los últimos en morir, dentro de sus grupos de hermanos respectivos. Los individuos fallecidos que mostraron signos de no haber podido sostenerse a sí mismos con alimentos 35 sólidos no fueron genotipados; Estos se identificaron sobre la base de su pequeño tamaño y la falta de pigmentos rojos (provenientes del alimento) en sus aletas.

El ADN se extrajo de la aleta de la cola de los animales genotipados, usando un método estándar (el kit DNAeasy 96 de 40 QIAGEN (Venlo, Países Bajos)).

Los 1723 animales se genotiparon usando la matriz de genotipado de truchas Axiom®, un chip SNP que alberga 57 501 polimorfismos de un solo nucleótido (SNP) en formato de 96 pocillos. Este chip SNP fue desarrollado por AquaGen en colaboración con el Departamento de Agricultura de los Estados Unidos (USDA) y Affymetrix, y está disponible comercialmente en Affymetrix (San Diego, EE. UU.). El genotipado se realizó usando la plataforma patentada Axiom de Affymetrix, siguiendo la Guía del usuario del flujo de trabajo automatizado del ensayo Axiom® 2.0 (http://media.affymetrix.com/support/downloads/manuals/axiom 2 assay auto workflow user guide.pdf).

Basado en los datos sin procesar proporcionados por la maquinaria Axiom. Jos genotipos se nombraron usando el software Affymetrix PowerTools (http://www.affymetrix.com/estore/partners_programs/programs/developer/tools/powertools.aff x). 50

El análisis e interpretación de los datos sin procesar se realizó de acuerdo con el flujo de trabajo de mejores prácticas

(http://www.affymetrix.com/estore/partners_programs/programs/developer/tools/powertools.aff x). Los SNP y los animales que tienen parámetros de calidad por debajo de los umbrales predeterminados, proporcionados en el Flujo de trabajo de mejores prácticas, no se consideraron para análisis posteriores.

Los SNP se probaron individualmente para determinar la asociación con la resistencia a la IPN, definida como el tiempo hasta la muerte (o el final de la prueba para los sobrevivientes) en la prueba de desafío. Las pruebas se realizaron a través de prueba de relación de probabilidad comparando un modelo lineal mixto que incluye el efecto aleatorio de la familia (incluidos los efectos poligénicos) y un SNP dado con un modelo base que ignora el efecto del SNP:

$$H_0$$
: $y = 1\mu + Zu + e$

$$H_1$$
: $y = 1\mu + Zu + Mg + e$

donde y es un vector de fenotipos de tiempo hasta la muerte de individuos con genotipos conocidos para un locus SNP dado, μ es el efecto fijo de la media global,

$$\mathbf{u} \sim N(\mathbf{0}, \mathbf{I}\sigma_u^2)$$

es un vector de efectos aleatorios de las familias, Z es una matriz de incidencia que vincula individuos con familias.

 $g \sim N(\mathbf{0}, \sigma_{SNP}^2)$

es el efecto de sustitución alélica de un SNP específico, **M** es una matriz de genotipos (con los genotipos codificados 0, 1 y 2 para el primer homocigoto, heterocigoto y el otro homocigoto) y

10 $\mathbf{e} \sim N(\mathbf{0}, \mathbf{I}\sigma_e^2)$

es un vector de residuos aleatorios. Los componentes de la varianza asociados y la razón de probabilidad de los dos modelos se estimaron con el software DMU (Madsen & Jensen, 2013), usando una metodología de probabilidad máxima restringida (REML). Las probabilidades de REML para modelos anidados solo son comparables cuando las partes fijas de los dos modelos son idénticas, y el efecto de sustitución del SNP se definió como aleatorio.

La prueba de razón de probabilidad se realizó de la siguiente manera:

$$D = 2lnL_1 - 2lnL_0 \sim \chi_1^2$$

20

25

30

35

40

45

15

5

donde InL_0 y InL_0 son las probabilidades de registro de REML de los modelos H_0 y H_1 , respectivamente. La prueba de razón de probabilidad se realizó locus por locus, usando procedimientos de computación en paralelo.

Para corregir correcciones múltiples de una manera muy estricta, el umbral para declarar significancia en la prueba de asociación entre genotipos de SNP y resistencia a la IPN se dividió por 50 000 (el número aproximado de SNP polimórficos de alta calidad), es decir, se aplicó una corrección de Bonferroni. Por lo tanto, un umbral de valor p para todo el experimento para 0,05 se tradujo a un umbral de valor p de 10-6 para cada SNP individual. En otras palabras, la hipótesis nula (H0) declaró que no se encontró ningún QTL para la resistencia a la IPN en el material investigado, la hipótesis alternativa declaró que al menos un QTL para la resistencia a la IPN existía en el material investigado, la probabilidad de observar al menos un QTL fue de 0,05 solo (5 %) si la hipótesis nula era cierta y un SNP individual necesitaba un valor de p inferior a 10-6 para ser declarado significativo para todo el experimento.

Los mapas de ligamiento se produieron usando el software Lep-MAP (Rastas y otros. 2013), Inicialmente, los SNP se colocaron en grupos de enlace mediante análisis de dos puntos usando el módulo 'Separate Chromosomes', especificando un umbral de LOD de 110 (lodLimit = 110), junto con los parámetros missingLimit = 5, achiasmaticMeiosis = 0, dataZTolerance = 2, malePrior = 0,1, femalePrior = 0,1 dataTolerance = 0,05 sizeLimit = 20 (vea las opciones del programa para una descripción completa de los parámetros para este y las etapas siguientes). Posteriormente, se agregaron SNP no ligados a cada grupo usando el módulo 'JoinSingles', especificando un umbral de LOD de 30 (lodLimit = 30) y requiriendo una diferencia de LOD mínima de 10 entre las ubicaciones de los grupos de enlaces candidatos (lodDifference = 10), junto con los parámetros achiasmaticMeiosis = 0, dataZTolerance = 2, malePrior = 0,1, femalePrior = 0,1, dataTolerance = 0,05. El ordenamiento de los SNP en cada grupo se realizó inicialmente usando el módulo 'OrderMarkers2' (cuatro iteraciones), con los parámetros missingLimit = 5, achiasmaticMeiosis = 0, nonNearldenticalLimit = 2 0.01, missingClusteringLimit = 0.01, hammingClusteringLimit = 0.001, filterIdenticalSubset = 25 2, dataZTolerance = 2, initError = 0,005, initRecombination = 0,0001 0,001, alpha = 1, MAFLimit = 0,05, informativeFamilyLimit = 3. Tras el ordenamiento inicial, se eliminaron los marcadores con tasas de error superiores a 0,01. Se llevó a cabo una evaluación final de este de SNP corregido usando 'OrderMarkers2' (cuatro iteraciones) y especificando 'improvementOrder = 1' además de los mismos parámetros usados para el ordenamiento inicial. Los números de cromosomas se asignaron a los grupos de enlace resultantes según Phillips y otros. (2006). Se produjeron mapas de ligamiento masculino y femenino, basados en los eventos de recombinación observados en machos y hembras, respectivamente.

50

55

65

Las secuencias de SNP, es decir, secuencias de ADN de 71 pb centradas en los SNP, se alinearon contra una secuencia de referencia para el genoma de la trucha arcoíris (Berthelot y otros, 2014; ID de secuencia de referencia de GenBank: CCAF010000000). Para esto, se usó BLAST+ (Altschul y otros. 1990, Camacho y otros. 2008) con parámetros esperados = 0,1, puntuación de coincidencia = 1, puntuación de falta de coincidencia = -2, penalización por apertura de huecos = 0, penalización por extensión de huecos = 0. Se usaron dos secuencias de entrada para cada secuencia de 71 pb, una para cada variante (alelo) del SNP. La sub-secuencia CCAF010000000 con el puntaje BLAST más alto fue aceptada como la subsecuencia que alberga el SNP, siempre que no haya más de dos faltas de coincidencia entre la subsecuencia y el mejor ajuste de las dos secuencias de 71 pb correspondientes a cada SNP.

60 Resultados

Entre los 57 501 SNP probados para asociación a resistencia a la IPN, cinco SNP cumplieron con el requisito de tener valores de p por debajo de 10-6, el requisito necesario para declarar la significación estadística del experimento. Como puede apreciarse en la Figura 1, todos estos cinco SNP se localizan en uno y el mismo cromosoma, es decir, el cromosoma 1 siguiendo la nomenclatura de Palti y otros. (2011). Además, como puede apreciarse en la Figura 1, el cromosoma 1 albergaba una gran fracción de los SNP que estaban individualmente, pero no significativos en el

experimento (aquí, definidos como SNP que tienen valores de p por debajo de 0,01). Como puede apreciarse en la Figura 2, los SNP en el cromosoma 1 más fuertemente asociados con la resistencia a la IPN se localizaron en una subregión del cromosoma, centrada en el SNP más significativo. El agrupamiento de los SNP significativos dentro de una región relativamente estrecha del cromosoma indica fuertemente que los SNP asociados significativamente a la IPN son marcadores para uno y el mismo QTL. Ochenta y dos SNP fueron individual o experimentalmente significativos en la prueba de asociación con resistencia a la IPN, mientras que también se ubicaron en el cromosoma 1. La alineación de las secuencias de ADN pertenecientes a estos SNP contra la secuencia del genoma de la trucha arcoíris disponible en GenBank (Bertheloet y otros. 2014; ID de referencia de secuencia del GenBank: CCAF010000000) reveló que los SNP residían dentro de un número limitado de estructuras o cóntigos del genoma (Tabla 1).

10

15

20

25

30

5

En cualquiera de los SNP significativos, se espera que las truchas arcoíris que tienen diferentes genotipos de SNP difieran entre sí en términos de resistencia a la IPN. Por ejemplo, en el SNP más significativo, el SNP que tiene el identificador de Affymetrix SNP AX-89929954 (SNP#1, Tabla 1), se espera que los grupos de truchas homocigotas para el alelo que confieren una resistencia relativa a la IPN tengan un índice de supervivencia promedio de 45 % bajo condiciones similares a las condiciones de la prueba de desafío 1 (considerando solo a los individuos que fueron genotipados). En contraste, se espera que los grupos de truchas homocigotos para el alelo que no confieren resistencia relativa a la IPN tengan tasas de supervivencia promedio de 17 % en condiciones similares (considerando solo a los individuos que fueron genotipados), mientras que se espera que los grupos de individuos heterocigotos en el SNP tienen tasas de supervivencia promedio de 36 % en condiciones similares (considerando solo a los individuos que fueron genotipados) (ver Tabla 3). Por lo tanto, el SNP AX-89929954 puede usarse como una herramienta para predecir el nivel de resistencia a la IPN de cualquier individuo. Aquí, el nivel de resistencia se define como el nivel de resistencia relativa, lo que significa que un individuo será más resistente a la IPN, mientras el individuo porte más copias del alelo de resistencia a la IPN en AX-89929954. Más precisamente, se espera que un individuo que porta una copia del alelo de resistencia a la IPN (que es la citosina) sea más resistente a la IPN que un individuo que no porta alelos del alelo de resistencia a la IPN en AX-89929954, dado que otros determinantes de la resistencia de los individuos a la IPN es similar en los dos individuos. De manera similar, se espera que un individuo que porta dos copias del alelo de resistencia a la IPN en AX-89929954 sea más resistente a la IPN que un individuo que porta una copia del alelo de resistencia a la IPN en AX-89929954, dado que otros determinantes de la resistencia de los individuos a la IPN es similar en los dos individuos. Por lo tanto, los genotipos en AX-89929954 pueden usarse para predecir la resistencia a la IPN de una trucha arcoíris aislada y en una población de truchas arcoíris. Además, ya que es más probable que una persona transmita (a su descendencia) una copia del alelo de resistencia a la IPN en AX-89929954, mientras más copias del alelo de resistencia a la IPN este porta, también se pueden usar genotipos en AX-89929954 para predecir el nivel de resistencia a la IPN en la descendencia de un individuo. Al seleccionar animales que portan una o dos copias del alelo de resistencia a la IPN en AX-89929954 como progenitores, uno puede seleccionar grados más altos de resistencia a la IPN en la próxima generación.

35

Los otros SNP que son SNP significativos individualmente o por experimentos, detallados en la Tabla 1, comparten con AX-8992954 la capacidad de predecir los niveles de resistencia a la IPN, como se puede apreciar en la Tabla 1 y en la Tabla 3. Además, estos SNP se pueden usar en combinación, por ejemplo, en combinaciones de dos SNP, para formar herramientas predictivas aún más potentes.

40

45

Tabla 3: Tasas de supervivencia dentro de los grupos de peces de entre los peces genotipados de la prueba de desafío 2. Cada grupo consta de todos los peces genotipados que tienen el genotipo en cuestión en el SNP en cuestión. R = alelo de resistencia a la IPN; A = alelo de no resistencia a la IPN; AA. AR y RR = los tres genotipos posibles en cualquier SNP en particular; NA = no aplicable (porque ningún individuo tuvo el genotipo en cuestión en el SNP en cuestión). Las tasas de supervivencia son las tasas medias de supervivencia (± error estándar) dentro del grupo de animales que tienen el genotipo en cuestión en el SNP en cuestión.

SNP#	Nombre - Affymetrix ID	Valor p	Tasas de supervivencia en prueba de desafío de IPN			
			Media AA +/- SE	Media AR +/- SE	Media RR +/- SE	
1	AX-89929954	2.50E-08	0.17 ± 0.01	0.36 ± 0.01	0.45 ± 0.07	
2	AX-89918280	1.02E-07	0.17 ± 0.01	0.36 ± 0.01	0.38 ± 0.05	
3	AX-89938309	5.10E-07	0.1 ± 0.01	0.29 ± 0.01	0.34 ± 0.02	
4	AX-89960828	7.92E-07	0.17 ± 0.01	0.32 ± 0.01	0.32 ± 0.04	
5	AX-89930342	3.97E-06	0.13 ± 0.01	0.28 ± 0.01	0.34 ± 0.02	
6	AX-89928530	6.06E-06	0.13 ± 0.01	0.28 ± 0.01	0.33 ± 0.02	
7	AX-89949788	6.53E-06	0.18 ± 0.01	0.35 ± 0.01	0.4 ± 0.04	
8	AX-89928131	1.90E-05	0.21 ± 0.01	0.34 ± 0.01	0.36 ± 0.05	
9	AX-89949832	2.89E-05	0.18 ± 0.01	0.34 ± 0.01	0.37 ± 0.03	

10	AV 90016700	4.035.05	0.00 + 0.02	0.24 + 0.04	0.22 + 0.01
10	AX-89916790	4.02E-05	0.08 ± 0.02	0.24 ± 0.01	0.32 ± 0.01
11	AX-89973719	5.66E-05	0.18 ± 0.01	0.32 ± 0.01	0.35 ± 0.04
12	AX-89962023	5.70E-05	0.2 ± 0.01	0.34 ± 0.01	0.37 ± 0.06
13	AX-89921280	5.95E-05	0.21 ± 0.01	0.34 ± 0.01	0.37 ± 0.06
14	AX-89931666	6.36E-05	0.12 ± 0.01	0.3 ± 0.01	0.26 ± 0.02
15	AX-89921585	7.21E-05	0.04 ± 0.02	0.21 ± 0.01	0.31 ± 0.01
16	AX-89953905	8.37E-05	0.17 ± 0.01	0.32 ± 0.01	0.43 ± 0.03
17	AX-89952945	9.47E-05	0.19 ± 0.01	0.36 ± 0.01	0.28 ± 0.04
18	AX-89934682	1.00E-04	0.19 ± 0.01	0.36 ± 0.01	0.28 ± 0.05
19	AX-89951942	0.00010856	0.21 ± 0.01	0.34 ± 0.01	0.38 ± 0.06
20	AX-89937020	0.00017884	0.16 ± 0.01	0.3 ± 0.01	0.37 ± 0.03
21	AX-89924837	0.00021198	0.21 ± 0.01	0.36 ± 0.01	0.3 ± 0.12
22	AX-89958601	0.00025353	0.17 ± 0.01	0.3 ± 0.01	0.37 ± 0.03
23	AX-89923477	0.00031093	0.07 ± 0.03	0.22 ± 0.01	0.3 ± 0.01
24	AX-89959350	0.00031728	0.07 ± 0.03	0.22 ± 0.01	0.3 ± 0.01
25	AX-89929482	0.00032841	0.11 ± 0.02	0.23 ± 0.01	0.31 ± 0.01
26	AX-89937712	0.00033084	0.2 ± 0.01	0.33 ± 0.01	0.4 ± 0.04
27	AX-89949602	0.0003479	0.08 ± 0.01	0.27 ± 0.01	0.33 ± 0.02
28	AX-89925103	0.00038971	0.21 ± 0.01	0.32 ± 0.01	0.41 ± 0.04
29	AX-89938051	0.00041583	0.21 ± 0.01	0.35 ± 0.01	0.32 ± 0.06
30	AX-89924174	0.00050314	0.21 ± 0.01	0.35 ± 0.01	0.31 ± 0.06
31	AX-89936461	0.0005141	0.18 ± 0.01	0.33 ± 0.01	0.26 ± 0.03
32	AX-89916703	0.00067347	0.11 ± 0.01	0.27 ± 0.01	0.32 ± 0.01
33	AX-89935317	0.00074987	0.1 ± 0.02	0.25 ± 0.01	0.32 ± 0.01
34	AX-89966423	0.00085343	0.1 ± 0.01	0.3 ± 0.01	0.28 ± 0.02
35	AX-89933348	0.00106426	0.16 ± 0.02	0.26 ± 0.01	0.3 ± 0.01
36	AX-89969315	0.00107414	0.18 ± 0.01	0.26 ± 0.01	0.38 ± 0.02
37	AX-89919958	0.00113481	0.07 ± 0.02	0.25 ± 0.01	0.31 ± 0.01
38	AX-89968417	0.00123226	0.02 ± 0.02	0.2 ± 0.01	0.3 ± 0.01
39	AX-89946851	0.00135127	0.18 ± 0.01	0.31 ± 0.01	0.34 ± 0.03
40	AX-89976917	0.00143634	0.18 ± 0.01	0.26 ± 0.01	0.37 ± 0.02
41	AX-89945446	0.00154415	0.1 ± 0.02	0.25 ± 0.01	0.32 ± 0.01
42	AX-89919457	0.00154766	0.21 ± 0.01	0.36 ± 0.02	0.31 ± 0.04
43	AX-89973597	0.00155033	0.2 ± 0.01	0.28 ± 0.01	0.37 ± 0.03
44	AX-89938138	0.00159849	0.12 ± 0.03	0.21 ± 0.01	0.3 ± 0.01
45	AX-89971866	0.00223949	0.02 ± 0.02	0.21 ± 0.01	0.29 ± 0.01
46	AX-89958882	0.00228346	0.18 ± 0.01	0.3 ± 0.01	0.31 ± 0.02
47	AX-89961273	0.00249722	0.02 ± 0.02	0.21 ± 0.01	0.29 ± 0.01
48	AX-89944901	0.00262016	0.18 ± 0.01	0.34 ± 0.01	0.35 ± 0.03
49	AX-89919465	0.00282048	NA	0.41 ± 0.02	0.23 ± 0.01
50	AX-89959425	0.00298056	0.14 ± 0.01	0.3 ± 0.01	0.37 ± 0.02
51	AX-89917102	0.00323292	0.15 ± 0.02	0.26 ± 0.01	0.3 ± 0.01
	I .	1			

52	AX-89959281	0.00425635	0.23 ± 0.01	0.4 ± 0.02	0.5 ± 0.2
53	AX-89916766	0.00451942	NA	0.41 ± 0.02	0.23 ± 0.01
54	AX-89920507	0.00457228	NA	0.41 ± 0.02	0.23 ± 0.01
55	AX-89957370	0.00460351	0.2 ± 0.01	0.3 ± 0.01	0.26 ± 0.02
56	AX-89934009	0.00463068	0.13 ± 0.01	0.27 ± 0.01	0.33 ± 0.02
57	AX-89929663	0.00493969	0.14 ± 0.01	0.31 ± 0.01	0.32 ± 0.02
58	AX-89952300	0.0052556	NA	0.41 ± 0.02	0.23 ± 0.01
59	AX-89916572	0.00571541	0.2 ± 0.01	0.29 ± 0.01	0.37 ± 0.03
60	AX-89946911	0.00574551	0.13 ± 0.02	0.24 ± 0.01	0.32 ± 0.01
61	AX-89974593	0.00611967	0.12 ± 0.03	0.23 ± 0.01	0.29 ± 0.01
62	AX-89927158	0.00627456	NA	0.38 ± 0.02	0.23 ± 0.01
63	AX-89970383	0.00628358	0.24 ± 0.01	0.37 ± 0.02	0.64 ± 0.12
64	AX-89965404	0.00638481	NA NA	0.41 ± 0.02	0.23 ± 0.01
65	AX-89955634	0.00639828	NA NA	0.41 ± 0.02	0.23 ± 0.01
66	AX-89932926	0.00657013	0.13 ± 0.02	0.41 ± 0.02	0.20 ± 0.01
67	AX-89941493	0.00675854	0.19 ± 0.02	0.27 ± 0.01	0.3 ± 0.02
68	AX-89943031	0.0067705	0.19 ± 0.02 0.12 ± 0.03	0.21 ± 0.01	0.3 ± 0.02
			1	l	
69	AX-89957682	0.00689041	0.09 ± 0.03	0.24 ± 0.01	0.29 ± 0.01
70	AX-89960611	0.00728331	0.17 ± 0.01	0.33 ± 0.01	0.35 ± 0.02
71	AX-89950199	0.00747825	0.19 ± 0.02	0.27 ± 0.01	0.3 ± 0.02
72	AX-89928407	0.00764258	0.08 ± 0.02	0.24 ± 0.01	0.3 ± 0.01
73	AX-89962035	0.00770092	NA NA	0.41 ± 0.02	0.23 ± 0.01
74	AX-89931951	0.00796054	0.21 ± 0.01	0.36 ± 0.02	0.29 ± 0.04
75	AX-89976536	0.00852971	0.21 ± 0.01	0.36 ± 0.01	0.29 ± 0.04
76	AX-89916801	0.00898601	0.02 ± 0.02	0.22 ± 0.01	0.28 ± 0.01
77	AX-89929085	0.0094422	0.02 ± 0.02	0.22 ± 0.01	0.28 ± 0.01
78	AX-89925267	0.0099745	0.2 ± 0.05	0.22 ± 0.01	0.29 ± 0.01
160	chr1_7515539	3.10E-07	0.18 ± 0.01	0.37 ± 0.02	0.38 ± 0.05
161	chr1_7108873	4.56E-07	0.18 ± 0.01	0.36 ± 0.02	0.45 ± 0.08
162	chr1_6864558	4.56E-07	0.18 ± 0.01	0.36 ± 0.02	0.45 ± 0.08
163	chr1_7186663	9.66E-07	0.18 ± 0.01	0.36 ± 0.02	0.45 ± 0.08
164	chr1_6730531	1.26E-06	0.18 ± 0.01	0.33 ± 0.02	0.34 ± 0.04
165	chr1_27891953	1.38E-06	0.22 ± 0.01	0.31 ± 0.02	0.66 ± 0.06
166	AX-89953259	1.59E-06	0.18 ± 0.01	0.33 ± 0.02	0.33 ± 0.04
167	chr1_6740481	1.76E-06	0.18 ± 0.01	0.33 ± 0.02	0.33 ± 0.04
168	chr1_6770611	1.76E-06	0.18 ± 0.01	0.33 ± 0.02	0.33 ± 0.04
169	chr1_7412807	2.16E-06	0.18 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
170	chr1_7360179	2.18E-06	0.18 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
171	chr1_7411803	2.18E-06	0.18 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
172	chr1_7431445	2.18E-06	0.18 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
173	chr1_7433199	2.18E-06	0.18 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
174	chr1_7441254	2.18E-06	0.18 ± 0.01	0.36 ± 0.02	0.38 ± 0.05

175	chr1 7441877	2.18E-06	0.18 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
176	chr1 7533570	2.18E-06	0.18 ± 0.01	0.36 ± 0.02 0.36 ± 0.02	0.38 ± 0.05
177	chr1 6834898	2.19E-06	0.18 ± 0.01	0.30 ± 0.02 0.32 ± 0.02	0.38 ± 0.03 0.33 ± 0.04
178	chr1 6730142	2.23E-06	0.18 ± 0.01	0.32 ± 0.02 0.33 ± 0.02	0.33 ± 0.04 0.33 ± 0.04
	_				
179	chr1_6746052	2.23E-06	0.18 ± 0.01	0.33 ± 0.02	0.33 ± 0.04
180	chr1_6794061	2.23E-06	0.18 ± 0.01	0.33 ± 0.02	0.33 ± 0.04
181	chr1_7399212	2.95E-06	0.18 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
182	chr1_7442637	3.02E-06	0.18 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
183	chr1_7358019	3.11E-06	0.18 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
184	chr1_7709828	3.45E-06	0.2 ± 0.01	0.3 ± 0.01	0.77 ± 0.07
185	chr1_7598090	5.65E-06	0.19 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
186	chr1_7626471	7.50E-06	0.19 ± 0.01	0.37 ± 0.02	0.38 ± 0.05
187	chr1_7598743	7.56E-06	0.19 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
188	chr1_7670293	9.90E-06	0.19 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
189	chr1_7670561	9.90E-06	0.19 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
190	chr1_7647634	1.22E-05	0.19 ± 0.01	0.36 ± 0.02	0.38 ± 0.05
191	chr1_7356089	2.28E-05	0.18 ± 0.01	0.36 ± 0.02	0.39 ± 0.04
192	chr1_8109044	3.84E-05	0.18 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
193	chr1_10439048	4.96E-05	0.21 ± 0.01	0.35 ± 0.02	0.37 ± 0.08
194	chr1_8142346	5.19E-05	0.19 ± 0.01	0.36 ± 0.02	0.4 ± 0.04
195	chr1_8092208	8.17E-05	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
196	chr1_8138683	8.17E-05	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
197	chr1_8139206	8.17E-05	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
198	chr1_8139744	8.17E-05	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
199	chr1_8140789	8.17E-05	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
200	chr1_8141687	8.17E-05	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
201	chr1_8154917	8.17E-05	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
202	chr1_7454708	8.74E-05	0.18 ± 0.01	0.33 ± 0.02	0.42 ± 0.04
203	chr1_7504847	8.74E-05	0.18 ± 0.01	0.33 ± 0.02	0.42 ± 0.04
204	chr1_7505686	8.74E-05	0.18 ± 0.01	0.33 ± 0.02	0.42 ± 0.04
205	chr1_7505817	8.74E-05	0.18 ± 0.01	0.33 ± 0.02	0.42 ± 0.04
206	chr1_8202031	8.96E-05	0.19 ± 0.01	0.36 ± 0.02	0.4 ± 0.04
207	chr1_8228173	8.96E-05	0.19 ± 0.01	0.36 ± 0.02	0.4 ± 0.04
208	chr1_8309469	8.96E-05	0.19 ± 0.01	0.36 ± 0.02	0.4 ± 0.04
209	chr1_8163977	8.96E-05	0.19 ± 0.01	0.36 ± 0.02	0.4 ± 0.04
210	chr1_27786931	9.68E-05	0.22 ± 0.01	0.3 ± 0.02	0.61 ± 0.06
211	chr1_8194629	0.00010535	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
212	chr1_7505259	0.00010824	0.18 ± 0.01	0.33 ± 0.02	0.42 ± 0.04
213	chr1_8474659	0.00014238	0.19 ± 0.01	0.35 ± 0.02	0.39 ± 0.04
214	chr1_8282602	0.00014575	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
215	chr1_8306806	0.00014575	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
216	chr1_8341618	0.00014575	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04

217	chr1_8343786	0.00014575	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
218	chr1_8345836	0.00014575	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
219	chr1_8350569	0.00014575	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
220	chr1_8402403	0.00014575	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
221	AX-89962103	0.00016979	0.35 ± 0.02	0.26 ± 0.02	0.13 ± 0.02
222	chr1_8279302	0.00018144	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
223	chr1_8334901	0.00020083	0.19 ± 0.01	0.35 ± 0.02	0.4 ± 0.04
224	chr1_7561600	0.00023783	0.19 ± 0.01	0.32 ± 0.02	0.42 ± 0.04
225	AX-89956272	0.00026395	0.31 ± 0.01	0.22 ± 0.02	0.07 ± 0.03
226	chr1_7938827	0.00026777	0.2 ± 0.01	0.3 ± 0.02	0.44 ± 0.05
227	chr1_10810229	0.00029614	0.19 ± 0.01	0.37 ± 0.02	0.29 ± 0.05
228	chr1_11007071	0.00029787	0.19 ± 0.01	0.37 ± 0.02	0.29 ± 0.05
229	chr1_10884171	0.00029812	0.19 ± 0.01	0.37 ± 0.02	0.29 ± 0.05

Ejemplo 2: Crear truchas arcoíris con mayor resistencia a la IPN.

10

20

25

30

Se toma una muestra de tejido de cada padre potencial, es decir, de cada trucha arcoíris que es un padre candidato para la creación de dicha trucha con mayor resistencia a la IPN. La muestra de tejido se puede tomar usando cualquiera de las varias técnicas disponibles para el muestreo no invasivo de truchas vivas. Por ejemplo, la muestra puede ser un trozo de la aleta adiposa de la trucha, cortada con unas tijeras o un bisturí, o puede ser una biopsia de tejido muscular, tomada con un punzón de biopsia tal como el punch para biopsia con émbolo de 3,0 mm (BPP-30F)) de Brymill (Basingstoke, Reino Unido). La muestra también puede ser algunas escamas recolectadas usando un fórceps. Después del muestreo. las muestras de tejido deben congelarse inmediatamente y mantenerse en estado congelado hasta la extracción de ADN, o, alternativamente, colocarse en etanol para su almacenamiento a largo plazo en el congelador. Las muestras de escamas se pueden secar en una hoja de papel antes del almacenamiento. En el momento del muestreo, los progenitores potenciales deben estar físicamente marcados, usando, por ejemplo, los marcadores Passive Integrated Transponder (PIT). El marcaje físico facilitará la recuperación posterior de los individuos seleccionados usando el método.

El ADN se extrae de la muestra de tejido, usando cualquiera de los distintos métodos disponibles para extraer ADN de alta calidad de las muestras de trucha. Por ejemplo, el ADN se puede extraer utilizando el kit DNAeasy de QIAGEN (Venlo, Países Bajos), siguiendo el protocolo suministrado con ese kit.

El ADN extraído se genotipa al menos para uno de los polimorfismos de un solo nucleótido (SNP) especificado en la Tabla 1. Por ejemplo, el ADN extraído puede ser genotipado usando el SNP AX-89929954 (SNP#1). El genotipado se puede realizar usando cualquier método bien establecido para genotipar SNP. Por ejemplo, el genotipado se puede realizar usando el protocolo iPlex® en el sistema MassARRAY® de Sequenom (San Diego, Estados Unidos). Para el genotipado de SNP AX-89929954 usando el protocolo iPlex, se pueden usar estos cebadores:

Cebador directo PCR: ACGTTGGATGTCCACAGTCCACATGCTTTG (SEQ ID NO: 157).

Cebador inverso PCR: ACGTTGGATGGGAAAGAAACAGTGATAGGC (SEQ ID NO: 158),

Cebador de extensión: CACACAACTGTGTCAAAT (sec. con núm. de ident.: 159)

Todos los demás parámetros experimentales están de acuerdo con el protocolo iPlex. El protocolo iPlex puede aplicarse en un múltiplex de varios SNP, en cuyo caso los parámetros experimentales, incluidas las secuencias de cebadores, pueden tener que ajustarse de acuerdo con las propiedades de otros SNP dentro del multiplex. Estos ajustes se realizan usando el software Assay Design Suite de Seguenom (https://ww.myseguenom.com/Tools).

Los datos sin procesar del genotipado iPlex se procesan usando el software Typer de Seguenom. Las muestras genotipadas se agruparán en tres grupos distintos y bien definidos correspondientes a los tres genotipos, siempre que los tres genotipos estén representados dentro de las muestras genotipadas.

35 Aplicando las etapas descritas anteriormente, se puede encontrar que algunas de las truchas genotipadas tienen dos copias del alelo citosina (C), mientras que otras pueden tener dos copias del alelo adenina (A). Sin embargo, otros pueden tener una copia de cada alelo (AC). Los progenitores que tengan dos copias de C (es decir, que tengan el genotipo CC) serán seleccionados como progenitores. La descendencia de estos progenitores será homocigótica para el alelo C en SNP AX-89929954, lo que significa que todos serán homocigotos (CC) para el alelo asociado con una mayor resistencia a la IPN. En condiciones similares a las condiciones usadas en el experimento para la prueba de desafío 2 descritas en el Ejemplo 1 anterior, se espera que dichos animales (CC) tengan una tasa de supervivencia del 45 %, mientras que los animales originados de progenitores seleccionados al azar tendrán una tasa de supervivencia esperada de 26 %.

Si no se encuentran individuos con genotipo CC, los individuos con genotipo AC pueden ser seleccionados como progenitores. Si los candidatos parentales (es decir, los animales genotipados) eran un subconjunto aleatorio de la población de la que se originaron, también se espera que el uso de estos animales AC como progenitores produzca descendencia con mayor resistencia a la IPN.

El método puede aplicarse usando cualquiera de los SNP enumerados en la Tabla 1. El método también se puede aplicar usando una combinación de dos o más SNP. Por ejemplo, se pueden genotipar los SNP AX-89929954 y AX-89918280 (SNP#2), y usar como progenitores, los individuos que tienen el genotipo CC en AX-89929954 y genotipo GG en AX-89918280.

Después de la identificación de los progenitores que usan el método, estos progenitores se recuperan separándolos del tanque en donde se encuentran (generalmente se hace mientras se mueve cada pez a otro tanque). No forma parte de la invención, se producen desendencias y se crían huevos fertilizados, usando métodos de acuicultura estándar.

Ejemplo 3: Experimentos de validación de los resultados subyacentes a la invención.

5

10

15

20

25

30

35

40

45

50

60

65

Se llevaron a cabo dos pruebas de desafío adicionales (prueba de desafío 3 y 4), para validar la asociación entre la resistencia a la IPN y los alelos en los polimorfismos de ADN de la invención. Las pruebas se llevaron a cabo en dos tanques de 100 litros, y en cada tanque se probó la resistencia de un grupo de individuos de truchas arcoíris contra una de las dos cepas del virus IPN. Las dos cepas fueron 1) una cepa (AGT11-2) del serotipo Sp aislado de la trucha arcoíris noruega criada en agua de mar; la misma cepa que se usó en el Ejemplo 1, y 2) una cepa del serotipo Wb aislada de un brote de IPN en truchas arcoíris en Chile. Cada tanque contenía aprox. 12 alevines de trucha arcoíris de cada uno de 133 grupos de hermanos completos. El mismo conjunto de grupos de hermanos completos se usó en ambas pruebas. La prueba se llevó a cabo 1 semana después de la primera alimentación (es decir, después de la transición a la alimentación sólida). Los peces se aclimataron y se alimentaron al inicio en el sitio de prueba. Al comienzo de las pruebas, el volumen de aqua se redujo a la mitad del volumen original, después de lo cual se agregaron 100 ml del aislado de virus respectivo a cada tanque, para obtener una concentración final igual a una TCID₅₀ de 10⁵partículas de virus por ml de agua. Tres horas después de la adición del virus, el volumen de agua se llevó de nuevo al nivel previo al desafío (la aireación del agua se mantuvo durante estas tres horas). Las muestras de mortalidad se tomaron muestras y se registraron dos veces al día durante todo el período de prueba. El ADN se extrajo de los peces de prueba muestreados, usando un protocolo estándar. Ambas pruebas finalizaron 28 días después del inicio de la prueba. En ese momento, las tasas de mortalidad diarias fueron de 0,9 % (Sp) y de 0,19 % (Wb), y disminuyeron. En contraste, en el pico de la curva de mortalidad, la mortalidad diaria había sido de 10,1 % (Sp) y 1,56 % (Wb). En otras palabras, al final de las pruebas, la curva de supervivencia se había allanado, y es razonable suponer que la mayoría de los peces que sobrevivieron al período de prueba habrían sobrevivido también si el período de prueba se hubiera prolongado. Las mortalidades acumuladas fueron 70.0 % (Sp) y 9.38 % (Wb). Todos los animales de la prueba Sp (1603 animales) y todas las mortalidades de la prueba Wb (174 animales) fueron muestreados y genotipados para cuatro de los polimorfismos de ADN de la invención. La genotipación se realizó usando el sistema de genotipado iPLEX de Agena Bioscience (San Diego, Estados Unidos) (el sistema iPLEX era anteriormente propiedad de Sequenom, San Diego, Estados Unidos). Los cebadores de PCR y de extensión para el genotipo iPLEX se diseñaron usando Assay Design Suite v2.0 (disponible en www.mysequenom.com/Tools), usando la configuración predeterminada y los cuatro polimorfismos de ADN se genotiparon en una misma reacción multiplex. Como se puede ver en la Tabla 4. las frecuencias de los alelos designados como alelos de resistencia a la IPN fueron significativamente mayores en los sobrevivientes de la prueba Sp que en la mortalidad de la prueba Sp, para los cuatro polimorfismos. Del mismo modo, las frecuencias de los alelos designados como alelos de resistencia a la IPN fueron significativamente mayores en los sobrevivientes de la prueba Wb que en las mortalidades de la prueba Wb. Aquí, la significación estadística se probó mediante la aplicación de una regresión logística del número de alelos de resistencia a la IPN en la supervivencia/no supervivencia binaria, para cada polimorfismo. La Tabla 4 contiene los valores p de esta prueba, para los cuatro polimorfismos. Para la prueba de Wb, donde solo se registraron las mortalidades, se estimaron los recuentos de genotipos entre los 1416 sobrevivientes suponiendo que las frecuencias de alelos en general eran las mismas en la prueba de Wb que en la prueba de Sp (una suposición razonable, dado que las dos pruebas de desafío contenían animales de las mismas familias, en las mismas relaciones), y asumiendo además que cada polimorfismo estaba en el equilibrio de Hardy-Weinberg.

El experimento de validación confirmó que existe una asociación estadísticamente significativa entre la resistencia a la IPN y los alelos en los cuatro polimorfismos investigados. Además, la asociación también fue válida cuando la cepa del virus IPN usada en el descubrimiento inicial de la invención (una cepa del serotipo Sp) se reemplazó por una cepa diferente (del serotipo Wb, West Buxon). De ello se deduce que la asociación entre los polimorfismos de ADN y la resistencia a la IPN es reproducible e independiente de la cepa del virus.

Es una consecuencia natural y necesaria de estos hallazgos que los polimorfismos de ADN de la invención se pueden usar para crear truchas arcoíris con mayor resistencia a la IPN. Por ejemplo, uno puede usar el polimorfismo de ADN AX-89929954 para detectar una cantidad de individuos de trucha arcoíris. Habiendo identificado un macho y una hembra que son homocigotos para el alelo de resistencia a la IPN (es decir, ambos tienen genotipo CC), estos dos animales pueden aparearse, y todas las descendencias que provengan de ese apareamiento tendrán el genotipo CC de acuerdo con las reglas de Mendel. Se espera que estos individuos sean más resistentes a la IPN que los individuos aleatorios (pero por

lo demás comparables) provenientes de la misma población de truchas arcoíris, siempre que el alelo de mortalidad (A en el caso de AX-89929954) también exista en la población.

Tabla 4: Resultados del experimento que valida la asociación entre la resistencia a la IPN y los polimorfismos de la invención. Para cada uno de los cuatro polimorfismos, la tabla contiene: 1) la identidad de los alelos de resistencia y mortalidad (como se define en la Tabla 1 y en la Tabla 2), 2) recuentos de animales que tienen cualquiera de los tres genotipos posibles, dentro de los subgrupos de sobrevivientes Sp (SP_SURV), mortalidades So (SP_MORT) y mortalidades Wb (WB_MORT), 3) valores p de la regresión del número de alelos de resistencia a la IPN en el rasgo binario supervivencia/no supervivencia.

WB_MORT 3' 52 8' WB_MORT 13 70 87
WB_MORT 13
WB_MORT 13 70
- 13 70
7(
Section 1. Control of the Control of
Section 1. Control of the Control of
WB MORT
20
82
69
WB_MORT
14
53
103

^{*}Los conteos para WB SURV se estimaron como se describió arriba.

Ejemplo 4: Identificación y prueba de los SNP adicionales asociados con resistencia a la IPN

Doce truchas arcoíris individuales de la población de trucha arcoíris de AquaGen se secuenciaron con el genoma completo usando HiSeq2000 de Illumina (San Diego, Estados Unidos); ver Palti y otros, (2015). Las lecturas de secuencia que se 5 originaron en estos 12 animales se alinearon con la secuencia del genoma de referencia disponible públicamente para la trucha arcoíris (Berthelot y otros, 2014), usando bowtie2 (Langmead y Salzberg, 2012). Antes de la alineación de las lecturas de la secuencia Illumina, las subsecuencias (andamios y contigos) de la secuencia de referencia se fusionaron y ordenaron mediante la alineación conjunta de las subsecuencias con las secuencias de cromosomas del salmón del Atlántico (presentadas en GenBank); las dos especies están estrechamente relacionadas y muestran un gran grado de 10 sintenia. A partir de las lecturas de secuencias alineadas, los SNP se identificaron mediante freebayes (Garrion y Marth, 2012). El conjunto de SNP (putativos) se filtró en freebayes usando la siguiente cadena de parámetros: "-no-indels --nomnps --no-complex --min-mapping-quality 30 --read-mismatch-limit 2 --read-indel-limit 1". Para cada SNP filtrado, los genotipos en los 12 animales secuenciados se dedujeron usando freebayes. Los genotipos se compararon con los genotipos en uno de los SNP originales de la invención (AX-89929954), calculando para cada SNP filtrado el cuadrado del coeficiente de correlación entre ese SNP y AX-89929954. El cuadrado del coeficiente de correlación (r²) entre dos 15 polimorfismos de ADN es una medida de la cantidad de deseguilibrio de enlace entre los polimorfismos de ADN; cuanto mayor es ², los genotipos en los dos polimorfismos de ADN están más correlacionados. Teniendo en cuenta que los altos niveles de r² se observaron predominantemente para polimorfismos de ADN que no estaban a más de 3 millones de pares de bases (3 Mb) distantes del AX-89929954, la mayoría de los SNP que estaban a más de 3 Mb del AX-89929954 se eliminaron, al igual que todos los SNP con un valor de r² inferior a 0,2. Además, los SNP que tienen valores de r² por 20 encima de 0,5 se priorizaron, al igual que los SNP a no más de 500 pb de una región génica (una región génica se definió como una región que contiene un acierto de BLASTN, cuando BLASTN se ejecutó contra la versión más reciente de la base de datos RefSeq-RNA, con valores predeterminados del parámetro BLASTN). Al final, se seleccionó un subconjunto de 500 SNP y se genotipó usando la química KASP, implementado a través del sistema SNPline de LGC Genomics (http://www.lgcgroup.com/products/genotyping-instruments/snpline/#.VkNMKLcvdhE). El genotipado se realizó en el 25 mismo material genético que se describe en el Ejemplo 1 (1723 animales de una prueba de desafío de IPN), y las asociaciones entre genotipos y resistencia a la IPN se analizaron de la misma manera que se describe en el Ejemplo 1. Los SNP individuales que muestran estadísticas de pruebas con chi cuadrado mayor a 13,0 se definieron como fuertemente asociados a la IPN, que podrían usarse como herramientas para seleccionar animales resistentes a la IPN. 30 En la Figura 3, el negativo del logaritmo de los valores p (H0: los genotipos no están asociados con la resistencia a la IPN, H1: los genotipos están asociados con la resistencia a la IPN) se representan contra las posiciones en el genoma de referencia de la trucha arcoíris "ordenados físicamente", para todos los polimorfismos de ADN probados como parte del experimento descrito en el Ejemplo 1 o como parte del estudio de validación descrito aquí. La figura ilustra que los polimorfismos más fuertemente asociados a la resistencia a la IPN se localizan dentro de una región estrecha, lo que significa que la posición más probable de los polimorfismos de ADN causales subvacentes al QTL está relativamente bien 35 definida, y que cualquier otro polimorfismo de ADN ubicado dentro de la región QTL (la "región pico" de la gráfica), si está asociada con la IPN, son probablemente marcadores para una y la misma mutación causal subvacente.

Ciertas referencias citadas en la solicitud

Altschul SF, Gish W, Miller W, Myers EW, y Lipman DJ (1990) Basic local alignment search tool. J. Mol. Biol. 215:403-410.

Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M y otros (2014) The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertabrates. Nature Communiciations 5: 3657.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J y otros (2008) BLAST+: architecture and applications. BMC Bioinformatics 10:421.

Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing (2012) arXiv preprint arXiv:1207.3907 [q-bio. GN]

Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357-359.

Madsen P, Su G, Labouriau R, y Christensen OF (2010) DMU - A package for analysing multivariate mixed models. Proceedings from the 9th World Congress on Genetics Applied to Livestock Production (WCGALP); http://www.kongressband.de/wcgalp2010/assets/pdf/0732.pdf

Palti Y, Genet C, Luo MC, Charlet A, Gao G y otros (2011) A first generation integrated map of the rainbow trout genome. BMC Genomics 12:180.

Palti Y, Gao G, Liu S, Kent MP, Lien S, Miller MR, Rexroad CE III, Moen T (2015) The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout. Molecular Ecology Resources 15: 662-672. Phillips RB, Nichols KM, Dekoning JH, Morasch MR, Keatley KA y otros (2006) Assignment of rainbow trout linkage groups to specific chromosomes. Genetics 174: 1661-1670.

Rastas P, Paulin L, Hanski I, Lehtonen R, y Auvinen P (2013) Lep-MAP: fast and accurate linkage map construction for large SNP datasets. Bioinformatics 29: 3128-34.

Wetten M, Kjøglum S, Fjalestad KT, Skjærvik O, Storset A. (2011) Genetic variation in resistance to infectious pancreatic necrosis in rainbow trout (Onchorhynchus mykiss) after a challenge test. Aquaculture Research 1-7.

Listado de secuencias

65

60

40

<110> AquaGen AS

	<120> Método para predecir resistencia <130> P61402282PCT00 <150> 20141382	
5	<151> 2014-11-18 <160> 299 <170> Patentln versión 3.5	
10	<210> 1 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
10	<220> <221> caractmisceláneas <222> (36)(36)	
15	<223> C o A < 400> 1	
	gaaagaaaca gtgataggct tttagtgagc acatanattt gacacacagt tgtgtgaaaa	60
	caaagcatgt g	71
20	<210> 2 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
25	<220> <221> caractmisceláneas <222> (36)(36) <223> G o A	
	<400> 2 aatatatgcc ttatatcagg atcgctaacc acagancagg attacaattt aatacttgca	60
30	caatatacat a	71
35	<210> 3 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220>	
40	<221> caract_misceláneas <222> (36)(36) <223> T o G <400> 3 tccttgtatc gcagaacttt taaatgtttg aatccntctt gatgttatgt gattggtgga	60
	ttcaaataag t	71
45	<210> 4 <211> 71	
50	<212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas <222> (36)(36)	
55	<223> To C <400> 4 gatgcagggt tgcacagaac gttgatgcca gtagtnatgg catggctctc agtacaaact	60
	catactgagt g	71
	<210> 5	
60	<211> 71 <212> ADN <213> Oncorhynchus mykiss <220>	
65	<pre><221> caractmisceláneas <222> (36)(36) <223> G o T</pre>	

	<400> 5	
	gaatggcaat taatttcatg ctgaactaac tgaatnaaga aaggaaatga ccccaaccct	60
5	ggttgcatac t	71
	<210> 6 <211> 71 <212> ADN	
10	<213> Oncorhynchus mykiss <220> <221> caractmisceláneas <222> (36)(36)	
	<223> G o A <400> 6	
15	ctcacattct tcaccttatt ggaatgcatg gaaagncgcc atgggaaget cactgcggtt	60
	tcgaacctac g	71
	<210> 7 <211> 71	
	<212> ADN <213> Oncorhynchus mykiss	
	<220> <221> caractmisceláneas	
	<222> (36)(36) <223> G o A	
	<400> 7 agtcaaaacc atgaaaaagc tgattttaga atgacntttg taacactctc catgatgacg	60
30	gttaatagaa g	71
	<210> 8	
35	<211> 71 <212> ADN <213> Oncorhynchus mykiss <220>	
	<221> caractmisceláneas <222> (36)(36) <223> A o G	
	<400>8 cgtgtcaata ttggaacgac taaatacgtg aatctntcag gacgggtgaa ctgagcacaa	60
	atctagatca t	71
	<210> 9 <211> 71	
	<212> ADN <213> Oncorhynchus mykiss	
	<220> <221> caractmisceláneas	
	<222> (36)(36) <223> A o C	
	<400> 9 agtccctccc ttagtggtat caaaccataa ctaatnattt cttcacaaat tatggaacaa	60
55	aaataaatcc c	71
	<210> 10	
	<211> 71 <212> ADN	
	<213> Oncorhynchus mykiss <220>	
	<221> caractmisceláneas <222> (36)(36)	
65	<223> T o C <400> 10	

	aaacggagtg	ccgaagactc	tgaactcaca	gactcnctgc	cgaaaaaaac	gaaagtaatg	60
	tcctcaactc	t					71
5	<210> 11 <211> 71 <212> ADN						
10		nynchus mykiss misceláneas	3				
	<222> (36)(3 <223> A o G <400> 11						
15	tgtaaattca	taagtaaaga	gaacacctgt	ttaagnagag	cacattatgc	aaaacctcat	60
15	atggaaaacg	t					71
	<210> 12						
20	<211> 71 <212> ADN						
		nynchus mykiss	3				
	<221> caract.						
25	<222> (36)(3 <223> T o G	36)					
	<400> 12						
	gcgtggacac	atgagggacg	ctgtgctccc	tgtgtnctcc	cagcaacacg	aggtaattct	60
30	gcagaacaac	С					71
00	<210> 13						
	<211> 71 <212> ADN						
	<213> Oncorh	nynchus mykiss	;				
35	<220> <221> caract.	miscolánoss					
	<222> (36)(3						
	<223> A o G <400> 13						
40		gaatggtcag	gagaggtaag	gttggnagga	attatgcttt	tcaatgatct	60
	ggtcctgcaa	g					71
	<210> 14						
45	<211> 71						
	<212> ADN <213> Oncorh	nynchus mykiss	;				
	<220>						
50	<221> caract. <222> (36)(3						
00	<223> A o G	,0,					
	<400> 14	ccattgaaaa	atatocttto	ggaatntctc	cattettee	ctactccaat	60
E E			acacyccccy	ggaacheece		ccagcccaac	
55	atgtgttctt	τ					71
	<210> 15 <211> 71						
	<212> ADN						
60	<213> Oncorh <220>	nynchus mykiss	3				
	<221> caract.						
	<222> (36)(3 <223> A o G	36)					
65	<400> 15						

	aggggcggtt	agacacatgg	gtgtggctag	aaatgngggt	tggtgacacc	cactccttgg	60
	cactcgatga	t					71
5	<210> 16 <211> 71 <212> ADN						
10		nynchus mykiss	3				
10	<222> (36)(3 <223> G o A <400> 16						
4.5		tcgagtagca	gggagaggac	agtaantatt	gacacagtgt	aagcactagg	60
15	cagcactagg	С					71
	<210> 17						
20	<211> 71 <212> ADN						
		nynchus mykiss	3				
	<221> caract.						
25	<222> (36)(3 <223> T o C	90)					
	<400> 17	aggtgtaaat	aatta aatta	20+0+2002+	222727+772	gg2.02.gg.0.2	60
			ggccgaaccc	accycnygac	aaayaccyca	gyacayycca	
30	gtaaaacatt	t					71
	<210> 18 <211> 71						
	<211> / 1 <212> ADN						
35		nynchus mykiss	3				
33	<221> caract.						
	<222> (36)(3 <223> T o G	86)					
	<400> 18						
40	gtcctctatg	cctcctatga	gttcttcgag	gccatntgca	gcgtgagtag	ctgcctggac	60
	cccatgctgt	a					71
45	<210> 19 <211> 71						
40	<211> / 1 <212> ADN						
	<213> Oncorh <220>	nynchus mykiss	5				
	<221> caract.						
50	<222> (36)(3 <223> T o C	86)					
	<400> 19						
	attacttttg	aatcacagct	tcagcatata	gccctngcta	tagatacaat	tcatacatca	60
55	agataatgac	t					71
	<210> 20						
	<211> 71 <212> ADN						
60	<213> Oncorh	ynchus mykiss	3				
	<220> <221> caract.	misceláneas					
	<222> (36)(3						
65	<223> A o C						

	tatagtagat	aattgattca	aatggcagtt	gtattncact	tttgttttc	tttacagtgg	60
	tcagtgctat	t					71
5		nynchus mykiss	3				
10	<220> <221> caract. <222> (36)(3 <223> A o C <400> 21						
15	cacacaaggt	agatacacct	gcagagcatg	tttcgnaaat	taataaggta	agtctgaata	60
15	ccaaatactg	a					71
20	<220>	nynchus mykiss	3				
25	<221> caract. <222> (36)(3 <223> G o A <400> 22						
	ctgttgttgg	ccagattacc	atcagtgcag	ttgganttca	ggccttatct	ctgcctcaca	60
30	caacatcatc	t					71
35	<220> <221> caract. <222> (36)(3 <223> A o C		3				
40	<400> 23 ataggtcgtg	ttcatcaggc	agaaaaatga	cotatnatoc	cctaatgaac	atgaccctgg	60
	cattacctag			- y y -	-	,,	71
45	<210> 24 <211> 71 <212> ADN	nynchus mykiss	s				
50	<220> <221> caract. <222> (36)(3 <223> T o G <400> 24	_misceláneas 36)			.		60
		gctagatgtt	caacetggee	tcaggiicaat	tetgaagatt	tggtacgcaa	60
55	atatgttcgc	С					71
60	<210> 25 <211> 71 <212> ADN <213> Oncorh <220> <221> caract. <222> (36)(3		5				
65	<223> T o G <400> 25	,					

	ctgttcattc	tgtctgtttc	agttggtgct	ctgganagga	gaaaagccca	cctgctgtga	60
	gccccttatt	g					71
5	<210> 26 <211> 71 <212> ADN <213> Oncort <220>	nynchus mykiss	S				
10	<220> <221> caract. <222> (36)(3 <223> A o G <400> 26						
15	tcagcgtcct	acagctaaac	catacgatga	aattanaaca	ataaattcag	tgtgatatcc	60
	gttatggacc	a					71
20	<220>	nynchus mykiss	3				
25	<221> caract. <222> (36)(3 <223> G o A <400> 27 aggtggcagg		cctccagcca	atcgcntgac	atctgtccat	tcaagctgca	60
	gcgaatctga	С					71
35	<210> 28 <211> 71 <212> ADN <213> Oncort <220> <221> caract. <222> (36)(3 <223> A o G		3				
40	<400> 28	caaaacgttt	ccacttactt	taccanasaa	catttacaat	tagactacta	60
.0	-	_	CCacccaccc	cccangaag	ccccccgc	tyggetgete	
45	<pre><ttcagccac <210=""> 29 <211> 71 <212> ADN <213> Opents</ttcagccac></pre>	nynchus mykiss					71
50	<220> <221> caract. <222> (36)(3 <223> T o C <400> 29	_misceláneas 6)		.			60
		ctaccagece	acatacgcac	tgacanaatc	acagacagac	tgacagacag	
55	cagcttgatc	a					71
60	<210> 30 <211> 71 <212> ADN <213> Oncort <220> <221> caract. <222> (36)(3		3				
65	<223> A o G <400> 30	·•,					

	atttgagaat	cagatgcaga	agagcaaggt	tttccnagcc	tgtggctatc	ctccatacga	60
	ttcaaccacc	t					71
5	<210> 31 <211> 71 <212> ADN <213> Oncort <220>	nynchus mykiss	S				
10	<221> caract. <222> (36)(3 <223> G o A <400> 31	36)					
15	taccgtacag	ccctgctaaa	ggaggaaaac	aagggncatg	atggtatgtc	ttggggcttc	60
	ctcagggccc	a					71
20	<220>	nynchus mykiss	6				
25	<221> caract. <222> (36)(3 <223> T o G <400> 32	36)					60
	aaacaactct	tcaagatgat	gagtaacaac	caaagncaga	aattcccctt	aaaataactg	60
30	aaaggaaaaa	g					71
35	<210> 33 <211> 71 <212> ADN <213> Oncorh <220> <221> caract. <222> (36)(3 <223> T o C		S				
40	<400> 33			.	.		60
40	gtgtttgtaa	actggtaatt	gaaattgtac	tgatancaga	tgatgtagaa	ataaatgtgt	60
	tttgatgtag	g					71
45		nynchus mykiss	3				
50	<220> <221> caract. <222> (36)(3 <223> C o T <400> 34	36)	ant agt ant a	toggonotat		at act to a c	60
		ctatgggctt	catectcatg	tacganatet	gcaacgaaga	gicciicaac	
55	gctgtgcagg	a					71
60	<210> 35 <211> 71 <212> ADN <213> Oncorh <220> <221> caract. <222> (36)(3		5				
65	<223> T o C <400> 35	,					

	ggccccatta	ttttggcttc	ttgtgtagca	gacttngtag	tgtgtaagga	agccttgctg	60
	gtcttgcaca	g					71
5	<210> 36 <211> 71 <212> ADN <213> Oncorh	nynchus mykiss	i				
10	<220> <221> caract. <222> (36)(3 <223> T o C <400> 36						
15	tctgctgagc	tcccctgaaa	gactgtgagt	cacaanggtc	atttatttac	cttctctgct	60
10	tcactcaaca	С					71
20	<210> 37 <211> 71 <212> ADN <213> Oncorh <220> <221> caract.	nynchus mykiss	3				
25	<222> (36)(3 <223> G o A <400> 37	6)					60
	actattcctc	acatgctaca	gaatagctag	ggtaanagga	tagtaacatt	aaccataaca	60
30	ccaaagctaa	t					71
	<210> 38 <211> 71 <212> ADN						
35	<220> <221> caract. <222> (36)(3 <223> A o G		•				
40	<400> 38 tccagtccca	ctagtttggc	tttgaagtcg	cggatngtag	actcgctctt	gtatctcttc	60
	tcagtcaggt	С					71
45	<210> 39 <211> 71 <212> ADN						
50	<220> <221> caract. <222> (36)(3 <223> G o A		•				
	<400> 39 gtaaaggcta	gcagaccctg	ggaacattcc	cctgcnctca	gcctctctgc	catggaggaa	60
55	atgctaaaag				·		71
60	<210> 40 <211> 71 <212> ADN <213> Oncorh	nynchus mykiss	;				
	<220> <221> caract. <222> (36)(3 <223> C o T	_misceláneas					
65	<400> 40						

	ttttgaacag	cacttatctc	ttctctccag	aggggnatat	cacagagcat	gaccaaaaag	60
	ttagccagct	a					71
5	<210> 41 <211> 71 <212> ADN <213> Oncort <220>	ıynchus mykiss	3				
10	<221> caract. <222> (36)(3 <223> G o A <400> 41						
15	aagttgacct	cttatgattt	tattattggt	ttgtgntgca	agatgttctg	tccaggtttc	60
10	aacttatagc	С					71
20		nynchus mykiss	3				
25	<220> <221> caract. <222> (36)(3 <223> G o T <400> 42						
		ctgcctgagt	catgtaagaa	gattangcat	ggtggatgga	ggtgggaaga	60
	caattaatgg	t					71
30	<210> 43 <211> 71 <212> ADN	washus mukisa					
35	<220> <221> caract. <222> (36)(3 <223> T o C		•				
40	<400> 43 tggtcgtctg	agccctatgt	agtgaattca	aacttncttg	tctaagccaa	gtatcaacct	60
	gcaaacccaa	g					71
45	<210> 44 <211> 71 <212> ADN <213> Opcorb	ıynchus mykiss	.				
50	<220> <221> caract. <222> (36)(3 <223> T o C <400> 44	_misceláneas 6)					
	teceettetg	tgtgctcaag	gtgtgaatat	tttatngtta	acttacttca	ctcgtgtcct	60
55	gcagttagat	g					71
60	<210> 45 <211> 71 <212> ADN <213> Oncorh <220> <221> caract.	nynchus mykiss misceláneas	3				
65	<222> (36)(3 <223> T o C <400> 45						

	agcaggcagg	ttgagacaag	cctgcagggc	caatanctgt	cactatcata	actcaagcca	60
	acaataccca	a					71
5	<210> 46 <211> 71 <212> ADN <213> Oncorhy	nchus mykiss					
10	<220> <221> caract <222> (36)(36 <223> C o A <400> 46						
15	cttgcttgcc	atcacccgtc	tggtccaagg	gactanggtc	aatataacct	ccaatcttag	60
	taacctacct	С					71
20	<210> 47 <211> 71 <212> ADN <213> Oncorhy <220> <221> caract	-					
25	<222> (36)(36) <223> G o A <400> 47 gcagacaccc	3)	tagaataata	atctcngcca	tootgatgca	gaagtatgac	60
			oggagogaco			gaageaegae	
30	ctgatgatcg (С					71
	<210> 48 <211> 71 <212> ADN <213> Oncorhy	nchus mykiss					
35	<220> <221> caract <222> (36)(36 <223> A o G	misceláneas					
40	<400> 48 aactgggcta	aaacgatggg	acggtgtgcg	aaaacnaact	aaccctaacc	agaaaattgt	60
	atgctttgtt	t					71
45	<210> 49 <211> 71 <212> ADN <213> Oncorby	ynchus mykiss					
50	<220> <221> caract <222> (36)(36 <223> G o T <400> 49	misceláneas					
	accaccttca	cattaacctt	ctccatgaca	aaacancccc	aagcctgaac	agcccctagc	60
55	cccttccact a	a					71
60	<210> 50 <211> 71 <212> ADN <213> Oncorhy <220> <221> caract	-					
65	<222> (36)(36 <223> G o A						

	gaagacacaa	actcaacaag	agcacaacaa	cacagnetta	aggtactgca	attcctgctt	60
	attttcataa	a					71
5	<210> 51 <211> 71 <212> ADN <213> Oncorb	ıynchus mykiss	·				
10	<220> <221> caract. <222> (36)(3 <223> T o C <400> 51	_misceláneas	•				
15	aaatgaaaag	cgagaaagga	cggaggtatt	ttaaanatat	ttaccatagt	actcaccgaa	60
	ggctgcagcc	a					71
20	<210> 52 <211> 71 <212> ADN <213> Oncorh <220> <221> caract.	nynchus mykiss	3				
25	<222> (36)(3 <223> G o A <400> 52		tcagtttagc	gatcantata	cacaaaataa	ttaactaaag	60
	gaacaaccat	a					71
30	<210> 53 <211> 71 <212> ADN						
35	<213> Oncorh <220> <221> caract. <222> (36)(3 <223> G o T		3				
40	<400> 53	gtcttcctgc	aactttgtgc	caaatnagta	otttcacaat	gaacgttgtg	60
.0	_		aaccccgcgc		g	333 -	71
	aggtctgcag <210> 54	C					,_
45	<211> 71 <212> ADN <213> Oncorh	ynchus mykiss	3				
50	<220> <221> caract. <222> (36)(3 <223> T o A <400> 54	6)					-
	agacacacag	cagactagac	tgaggatgtg	aaccantcct	ccacttaatg	caaatgcagg	60
55	gacacattca	g					71
60	<220> <221> caract.		S				
65	<222> (36)(3 <223> A o C <400> 55	ω)					

	ctattcctgc ttaccg	tagt tgaactggct	gttggntttc	tcacagttga	tgatgttgaa	60
	gcgatagggc a					71
5	<210> 56 <211> 71 <212> ADN <213> Oncorhynchus (<220>	mykiss				
10	<221> caractmiscelá <222> (36)(36) <223> G o A <400> 56	neas				
15	ggtgtaagta cagact	cttt gaaagcatgo	: aaatanaagt	aaagacactg	tcattccttt	60
	aaatgttctt g					71
20	<210> 57 <211> 71 <212> ADN <213> Oncorhynchus (<220> <221> caractmiscelá	•				
25	<222> (36)(36) <223> C o A <400> 57	illoud				
	cttctttatt tgctat	gatt attacttaat	agtgcngatt	gtatttgtca	tccgtattga	60
30	ctgcagaact a					71
35	<210> 58 <211> 71 <212> ADN <213> Oncorhynchus (<220> <221> caractmiscelá <222> (36)(36) <223> G o T	•				
40	<400> 58 attgttcaag gacatt	atgc ttgtcctaca	tattgncaat	ttgatgtcgt	tctttaacat	60
45	ttataattga t <210> 59 <211> 71 <212> ADN <213> Oncorhynchus (mykiss				71
50	<221> caractmiscelá <222> (36)(36) <223> T o G <400> 59					60
	aaaacttctt aaggga	caag aaggaagttg	aagttngggg	tgggctagga	agataaagag	60
55	ttgggggtgt g <210> 60 <211> 71					71
60	<212> ADN <213> Oncorhynchus (<220> <221> caractmiscelá <222> (36)(36) <223> T o C <400> 60	•				
C.E.						

	accaacacag	agatgagacg	tgccgagcgc	aaggcnacca	agaagaagct	cccgctgaaa	60
	cgagagatgg	a					71
5	<210> 61 <211> 71 <212> ADN <213> Oncorh	ıynchus mykiss	S				
10	<220> <221> caract. <222> (36)(3 <223> C o A <400> 61	6)					
15	ttaatctaac	tcactctcca	taacatcaca	gaagtngatg	tattcgatta	taacaagctc	60
	agggctgtca <210> 62 <211> 71 <212> ADN	t					71
20	<213> Oncorh <220> <221> caract. <222> (36)(3		8				
25	<223> A o C <400> 62						
20		agaatggtct	gcagcgtgat	gtcaangtgg	ttattttgtc	cattgttgcc	60
	agtgataagc	С					71
30	<210> 63 <211> 71 <212> ADN <213> Oncorh	nynchus mykiss	S				
35	<220> <221> caract. <222> (36)(3 <223> G o A <400> 63						
40	tgcagaatgg	acaactgaag	agagatatgt	cgcacntgag	ggaaacaact	ccgtgtctag	60
	gccttctgaa	g					71
45	<210> 64 <211> 71 <212> ADN <213> Oncorh <220>	nynchus mykiss	3				
50	<221> caract. <222> (36)(3 <223> C o T <400> 64						
	gttagtgaaa	gccatttcag	ggtaaaccct	ccaggncgtc	caatgtacca	tagaagcaaa	60
55	acaatgataa	t					71
55	<210> 65 <211> 71 <212> ADN						
60	<213> Oncorh <220> <221> caract. <222> (36)(3 <223> T o C <400> 65		8				
65	100- 00						

	cccatctgtc agaaccttgc ccacagctgt ttcccnactc aatgaaaaca agctaacatc	60
	ctgcaggttg a	71
5	<210> 66 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220>	
10	<221> caractmisceláneas <222> (36)(36) <223> G o T <400> 66	
15	ggaatattcg aacggcttgt tgtccaatga gtcggnggcc ttaccaccac aaaccccaag gcctgaggca g	60 71
20	<210> 67 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas	
25	<222> (36)(36) <223> A o G <400> 67	
	ttaagagagt cacaaacatg aaaaactgtg atagtncaaa gaagatgaac gataggcttg	60
30	tggatagatt a	71
35	<210> 68 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas <222> (36)(36) <223> C o T	
40	<400> 68 tttatttcag catttagccc aatcctgcta agaacngtca gttaatcact aattaggaga	60
45	atatcaataa a <210> 69 <211> 71 <212> ADN <213> Oncorhynchus mykiss	71
50	<220> <221> caractmisceláneas <222> (36)(36) <223> A o G <400> 69	
	ctcgaagtaa gaaatgaagc tgcaggtctg caggcngagt gctgtcagtg gaatataata	60
55	cccttaatag a	71
60	<210> 70 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas	
65	<222> (36)(36) <223> T o C <400> 70	

	gataaggatg caacagattt attttagttt tagatnatgc tttcagactg atttcggctc	60
	ttaaaaagat a	71
5	<210> 71 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220>	
10	<221> caractmisceláneas <222> (36)(36) <223> T o C <400> 71	
15	tctctgttca atatttagaa taaaaagctg acaaangtca cgtaatggac tggaaacagc	60
	agacacatgg c	71
20	<210> 72 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caract. misceláneas	
25	<222> (36)(36) <223> T o C <400> 72	6.0
	ctataggtgg atgatatgat atggttgcag ctaganagtg acagctgcct accttgtaag	60
30	taccacctcg a	71
35	<210> 73 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas <222> (36)(36) <223> C 0 T	
40	<pre><400> 73 gcgtttccag taaaacgacg tcccccttcg ccctanattt aatgagcacg tagtctagat</pre>	60
	ttttgtttaa c	71
45	<210> 74 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
50	<220> <221> caractmisceláneas <222> (36)(36) <223> A o C <400> 74	
	gcaggttttt gcagaaatca gttgctaata aagttnttct gtaaccattg tataagcagg	60
55	gtcaccatga c	71
60	<210> 75 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas <222> (36)(36)	
65	<223> T o G <400> 75	

	tttctcttaa	tgcatcatcc	ttgtgcgaaa	tcatgntaag	tacacaccgt	taaagttagg	60
	tgctttgtta	С					71
5		nynchus mykiss	;				
10	<220> <221> caract. <222> (36)(3 <223> G o A <400> 76						
15	aaactaatga	aaaacacaag	agtgcctgca	gtaacnctgt	actaacgctg	tactaacagt	60
. •	acactctcag	g					71
20	<210> 77 <211> 71 <212> ADN <213> Oncorh <220> <221> caract. <222> (36)(3 <223> G o A <400> 77		3				
	ctgcagcaga	tggaactata	tctctagtgg	ctgtgngtgg	aggaggagat	gtggtgaaga	60
30	ctgagcagac	a					71
30	<210> 78 <211> 71 <212> ADN <213> Oncorh	nynchus mykiss					
35	<220> <221> caract. <222> (36)(3 <223> G o T <400> 78	_misceláneas					
40	cagaaaggaa	aaatgtgtca	aagttctaga	tagtgngtgg	aaagactcaa	acaatgcagt	60
	ttggaatgaa	α					71
45	<210> 79 <211> 71 <212> ADN	nynchus mykiss	;				
50	gaaagaaaca	gtgataggct	tttagtgagc	acatacattt	gacacacagt	tgtgtgaaaa	60
	caaagcatgt	g					71
55	<210> 80 <211> 71 <212> ADN <213> Oncorh <400> 80	nynchus mykiss	;				
	aatatatgcc	ttatatcagg	atcgctaacc	acagagcagg	attacaattt	aatacttgca	60
60	caatatacat	a					71
65	<210> 81 <211> 71 <212> ADN <213> Oncorh <400> 81	nynchus mykiss	3				

	tccttgtatc	gcagaacttt	taaatgtttg	aatccttctt	gatgttatgt	gattggtgga	60
	ttcaaataag	t					71
5	<210> 82 <211> 71 <212> ADN <213> Oncorh <400> 82	nynchus mykiss	S				
10	gatgcagggt	tgcacagaac	gttgatgcca	gtagttatgg	catggctctc	agtacaaact	60
	catactgagt	g					71
15	<210> 83 <211> 71 <212> ADN <213> Oncorh <400> 83	nynchus mykiss	3				
20	gaatggcaat	taatttcatg	ctgaactaac	tgaatgaaga	aaggaaatga	ccccaaccct	60
	ggttgcatac	t					71
25	<210> 84 <211> 71 <212> ADN <213> Oncort <400> 84	nynchus mykiss	3				
	ctcacattct	tcaccttatt	ggaatgcatg	gaaaggcgcc	atgggaagct	cactgcggtt	60
30	tcgaacctac	g					71
35	<210> 85 <211> 71 <212> ADN <213> Oncorh <400> 85	nynchus mykiss	3				
	agtcaaaacc	atgaaaaagc	tgattttaga	atgacgtttg	taacactctc	catgatgacg	60
40	gttaatagaa <210> 86 <211> 71 <212> ADN						71
45	<213> Oncorh <400> 86	nynchus mykiss	S				
	cgtgtcaata	ttggaacgac	taaatacgtg	aatctatcag	gacgggtgaa	ctgagcacaa	60
	atctagatca	t					71
50	<210> 87 <211> 71 <212> ADN <213> Oncorh <400> 87	nynchus mykiss	3				
55		ttagtggtat	caaaccataa	ctaataattt	cttcacaaat	tatggaacaa	60
	aaataaatcc	С					71
60	<210> 88 <211> 71 <212> ADN <213> Oncorh <400> 88	nynchus mykiss	:				
65	aaacggagtg	ccgaagactc	tgaactcaca	gactctctgc	cgaaaaaaac	gaaagtaatg	60
	tecteaacte	t.					71

5	<210> 89 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 89	
	tgtaaattca taagtaaaga gaacacctgt ttaagaagag cacattatgc aaaacctcat	60
	atggaaaacg t	71
10	<210> 90 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 90	
15	gcgtggacac atgagggacg ctgtgctccc tgtgttctcc cagcaacacg aggtaattct	60
	gcagaacaac c	71
20	<210> 91 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 91	
25	aaaggaagaa gaatggtcag gagaggtaag gttggaagga attatgcttt tcaatgatct	60
	ggtcctgcaa g	71
30	<210> 92 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 92	
	gcaataataa ccattgaaaa atatgctttg ggaatatctc cattctttcc ctagtccaat	60
35	atgtgttctt t	71
40	<210> 93 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 93	
	aggggcggtt agacacatgg gtgtggctag aaatgagggt tggtgacacc cactccttgg	60
45	cactcgatga t	71
50	<210> 94 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 94	
00	cagccagctt tcgagtagca gggagaggac agtaagtatt gacacagtgt aagcactagg	60
	cagcactagg c	71
55	<210> 95 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 95	
60	caatacaatg aggtgtaaat ggttgaattc actgttggat aaagactgca ggacaggcca	60
	gtaaaacatt t	71
65	<210> 96 <211> 71 <212> ADN	

	<213> Oncorhynchus mykiss <400> 96	
	gtcctctatg cctcctatga gttcttcgag gccatttgca gcgtgagtag ctgcctggac	60
5	cccatgctgt a	71
10	<210> 97 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 97	
	attacttttg aatcacagct tcagcatata gcccttgcta tagatacaat tcatacatca	60
15	agataatgac t	71
20	<210> 98 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 98	
20	tatagtagat aattgattca aatggcagtt gtattacact tttgtttttc tttacagtgg	60
	tcagtgctat t	71
25	<210> 99 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 99	
30	cacacaaggt agatacacct gcagagcatg tttcgaaaat taataaggta agtctgaata	60
	ccaaatactg a	71
35	<210> 100 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 100	
40	ctgttgttgg ccagattacc atcagtgcag ttggagttca ggccttatct ctgcctcaca	60
	caacatcatc t	71
45	<210> 101 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 101	
	atgggtcgtg ttcatcaggc agaaaaatga cgtataatgc cctaatgaac atgaccctgg	60
50	cattacctag a	71
55	<210> 102 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 102	
	gaacccctag gctagatgtt caacctggcc tcaggtcaat tctgaagatt tggtacgcaa	60
60	atatgttcgc c	71
	<210> 103 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
65	<400> 103	

	ctgttcattc to	gtctgtttc a	agttggtgct	ctggatagga	gaaaagccca	cctgctgtga	60
	gccccttatt g						71
5	<210> 104 <211> 71 <212> ADN <213> Oncorhyn <400> 104	nchus mykiss					
10	tcagcgtcct a	cagctaaac (catacgatga	aattaaaaca	ataaattcag	tgtgatatcc	60
	gttatggacc a						71
15	<210> 105 <211> 71 <212> ADN <213> Oncorhyn <400> 105	nchus mykiss					
20	aggtggcagg a	aaaagaata (cctccagcca	atcgcgtgac	atctgtccat	tcaagctgca	60
	gcgaatctga c						71
25	<210> 106 <211> 71 <212> ADN <213> Oncorhyn <400> 106						
00	cacgtetete ea	aaaacgttt (ccacttactt	tcccaagaag	cctttcccgt	tgggctgctc	60
30	cttcagccac t						71
35	<210> 107 <211> 71 <212> ADN <213> Oncorhyn <400> 107	nchus mykiss					
	tccatagtgg c	taccagccc a	acatacgcac	tgacataatc	acagacagac	tgacagacag	60
40	cagcttgatc a						71
45	<210> 108 <211> 71 <212> ADN <213> Oncorhyn <400> 108	nchus mykiss					
45	atttgagaat c	agatgcaga	agagcaaggt	tttccaagcc	tgtggctatc	ctccatacga	60
50	ttcaaccacc t <210> 109 <211> 71 <212> ADN <213> Oncorhyn <400> 109						71
55	taccgtacag co	cctgctaaa q	ggaggaaaac	aaggggcatg	atggtatgtc	ttggggcttc	60
	ctcagggccc a						71
60	<210> 110 <211> 71 <212> ADN <213> Oncorhyn <400> 110	·					
	aaacaactct to	caagatgat (gagtaacaac	caaagtcaga	aattcccctt	aaaataactg	60
65	ааасстааааа с						71

	<210> 111 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
5	<400> 111 gtgtttgtaa actggtaatt gaaattgtac tgatatcaga tgatgtagaa ataaatgtgt	60
10	tttgatgtag g <210> 112 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 112	71
15	tacagaggag ctatgggctt catectcatg tacgacatet gcaatgaaga gteetteaac	60
	gctgtgcagg a	71
20	<210> 113 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 113	
	ggccccatta ttttggcttc ttgtgtagca gactttgtag tgtgtaagga agccttgctg	60
25	gtcttgcaca g	71
30	<210> 114 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 114	
	tctgctgagc tcccctgaaa gactgtgagt cacaatggtc atttatttac cttctctgct	60
35	tcactcaaca c <210> 115 <211> 71 <212> ADN <213> Oncorhynchus mykiss	71
40	<400> 115 actattcctc acatgctaca gaatagctag ggtaagagga tagtaacatt aaccataaca	60
	ccaaagctaa t	71
45	<210> 116 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 116	
50	tecagtecea etagtitgge titgaagteg eggatagtag aetegetett gtatetette	60
	tcagtcaggt c	71
55	<210> 117 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 117	
60	gtaaaggcta gcagaccctg ggaacattcc cctgcgctca gcctctctgc catggaggaa	60
	atgctaaaag t	71
65	<210> 118 <211> 71 <212> ADN <213> Oncorhynchus mykiss	

	<400> 118 ttttgaacag cacttatctc ttctctccag aggggcatat cacagagcat gaccaaaaag	60
5	<pre>ttagccagct a <210> 119</pre>	71
10	<211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 119	
	aagttgacct cttatgattt tattattggt ttgtggtgca agatgttctg tccaggtttc	60
	aacttatagc c	71
15	<210> 120 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 120	
20	accaccacac ctgcctgagt catgtaagaa gattaggcat ggtggatgga ggtgggaaga	60
	caattaatgg t	71
25	<210> 121 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 121	
30	tggtcgtctg agccctatgt agtgaattca aactttcttg tctaagccaa gtatcaacct	60
	gcaaacccaa g	71
35	<210> 122 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 122	
	teceettetg tgtgeteaag gtgtgaatat tttattgtta aettaettea etegtgteet	60
40	gcagttagat g	71
45	<210> 123 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 123	
	agcaggcagg ttgagacaag cctgcagggc caatatctgt cactatcata actcaagcca	60
50	acaataccca a	71
50 55	<210> 124 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 124	
	cttgcttgcc atcacccgtc tggtccaagg gactacggtc aatataacct ccaatcttag	60
	taacctacct c	71
60	<210> 125 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 125	
65		

	gcagacaccc tgggcagcgt tggagtgatc atctcggcca tcctgatgca gaagtatgac	60
	ctgatgatcg c	71
5	<210> 126 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 126	
10	aactgggcta aaacgatggg acggtgtgcg aaaacaaact aaccctaacc agaaaattgt	60
	atgctttgtt t	71
15	<210> 127 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 127	
20	accaccttca cattaacctt ctccatgaca aaacagcccc aagcctgaac agcccctagc	60
20	cccttccact a	71
25	<210> 128 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 128 gaagacacaa actcaacaag agcacaacaa cacaggctta aggtactgca attcctgctt	60
30	attttcataa a	71
35	<210> 129 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 129	
	aaatgaaaag cgagaaagga cggaggtatt ttaaatatat ttaccatagt actcaccgaa	60
40	ggctgcagcc a <210> 130 <211> 71 <212> ADN	71
45	<213> Oncorhynchus mykiss <400> 130	
40	gaaattgccc cttgattttg tcagtttagc gatcagtata cacaaaataa ttaactaaag	60
	gaacaaccat a	71
50	<210> 131 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 131	
55	aaaccacatg gtcttcctgc aactttgtgc caaatgagta gtttcacaat gaacgttgtg	60
	aggtctgcag c	71
60	<210> 132 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 132	
65	agacacacag cagactagac tgaggatgtg aaccattcct ccacttaatg caaatgcagg	60
	gacacattca g	71

5	<210> 133 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 133	
	ctattcctgc ttaccgtagt tgaactggct gttggatttc tcacagttga tgatgttgaa	60
	gcgatagggc a	71
10	<210> 134 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 134	
15	ggtgtaagta cagactcttt gaaagcatgc aaatagaagt aaagacactg tcattccttt	60
	aaatgttctt g	71
20	<210> 135 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 135	
25	cttctttatt tgctatgatt attacttaat agtgccgatt gtatttgtca tccgtattga	60
	ctgcagaact a	71
30	<210> 136 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 136	
	attgttcaag gacattatgc ttgtcctaca tattggcaat ttgatgtcgt tctttaacat	60
35	ttataattga t	71
40	<210> 137 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 137	
	aaaacttctt aagggacaag aaggaagttg aagtttgggg tgggctagga agataaagag	60
45	ttgggggtgt g	71
50	<210> 138 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 138	
	accaacacag agatgagacg tgccgagcgc aaggctacca agaagaagct cccgctgaaa	60
	cgagagatgg a	71
55	<210> 139 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 139	
60	ttaatctaac tcactctcca taacatcaca gaagtcgatg tattcgatta taacaagctc	60
	agggctgtca t	71
65	<210> 140 <211> 71 <212> ADN	

	<213> Oncorhynchus mykiss <400> 140	
	ccctttacct agaatggtct gcagcgtgat gtcaaagtgg ttattttgtc cattgttgcc	60
5	agtgataagc c	71
10	<210> 141 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 141	
	tgcagaatgg acaactgaag agagatatgt cgcacgtgag ggaaacaact ccgtgtctag	60
15	gccttctgaa g	71
20	<210> 142 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 142	
	gttagtgaaa gccatttcag ggtaaaccct ccaggccgtc caatgtacca tagaagcaaa	60
	acaatgataa t	71
25	<210> 143 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 143	
30	cccatctgtc agaaccttgc ccacagctgt ttccctactc aatgaaaaca agctaacatc	60
	ctgcaggttg a	71
35	<210> 144 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 144	
40	ggaatattcg aacggcttgt tgtccaatga gtcgggggcc ttaccaccac aaaccccaag	60
- -0	gcctgaggca g	71
45	<210> 145 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 145	
	ttaagagagt cacaaacatg aaaaactgtg atagtacaaa gaagatgaac gataggcttg	60
50	tggatagatt a	71
55	<210> 146 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 146	
	tttatttcag catttagccc aatcctgcta agaaccgtca gttaatcact aattaggaga	60
60	atatcaataa a	71
	<210> 147 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
65	<400> 147	

	ctcgaagtaa	gaaatgaagc	tgcaggtctg	caggcagagt	gctgtcagtg	gaatataata	60
	cccttaatag	a					71
5	<210> 148 <211> 71 <212> ADN <213> Oncorh <400> 148	nynchus mykiss	3				
10	gataaggatg	caacagattt	attttagttt	tagattatgc	tttcagactg	atttcggctc	60
	ttaaaaagat	a					71
15	<210> 149 <211> 71 <212> ADN <213> Oncorh <400> 149	nynchus mykiss	3				
20	tctctgttca	atatttagaa	taaaaagctg	acaaatgtca	cgtaatggac	tggaaacagc	60
	agacacatgg	С					71
25	<210> 150 <211> 71 <212> ADN <213> Oncorh <400> 150	nynchus mykiss	3				
	ctataggtgg	atgatatgat	atggttgcag	ctagatagtg	acagctgcct	accttgtaag	60
30	taccacctcg	a					71
35	<210> 151 <211> 71 <212> ADN <213> Oncorh <400> 151	nynchus mykiss	S				
	gcgtttccag	taaaacgacg	tccccttcg	ccctacattt	aatgagcacg	tagtctagat	60
40	ttttgtttaa <210> 152 <211> 71 <212> ADN	С					71
45	<213> Oncorh <400> 152	nynchus mykiss	3				
	gcaggttttt	gcagaaatca	gttgctaata	aagttattct	gtaaccattg	tataagcagg	60
	gtcaccatga	С					71
50	<210> 153 <211> 71 <212> ADN <213> Oncorh <400> 153	nynchus mykiss	3				
55		tgcatcatcc	ttgtgcgaaa	tcatgttaag	tacacaccgt	taaagttagg	60
	tgctttgtta	С					71
60	<210> 154 <211> 71 <212> ADN <213> Oncorh <400> 154	nynchus mykiss	3				
65	aaactaatga	aaaacacaag	agtgcctgca	gtaacgctgt	actaacgctg	tactaacagt	60
	acactctcag	σ					71

	<210> 155 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
5	<400> 155	٠.
	ctgcagcaga tggaactata tctctagtgg ctgtgggtgg aggaggagat gtggtgaaga	60
	ctgagcagac a	71
10	<210> 156 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 156	
15	cagaaaggaa aaatgtgtca aagttctaga tagtgggtgg aaagactcaa acaatgcagt	60
	ttggaatgaa g	71
20	<210> 157 <211> 30 <212> ADN <213> Secuencia Artificial <220>	
25	<223> Cebador Directo PCT <400> 157	
20	acgttggatg tccacagtcc acatgctttg 30	
30	<210> 158 <211> 30 <212> ADN <213> Secuencia Artificial <220> <223> Cebador inverso PCR <400> 158	
35	acgttggatg ggaaagaaac agtgataggc 30 <210> 159	
40	<211> 20 <212> ADN <213> Secuencia Artificial <220> <223> Cebador de Extensión	
45	<400> 159 cacacaactg tgtgtcaaat 20 <210> 160 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
50	<220> <221> caractmisceláneas <222> (36)(36) <223> G o T <400> 160	
	ataatttact tttaagattt ctgaccggcc ttgttntttt tgcttatgtg ccattattgc	60
55	cggctagacc a	71
60	<210> 161 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220>	
65	<221> caractmisceláneas <222> (36)(36) <223> G o A <400> 161	

	taaagaacaa	gaaaacagta	cacatgcatt	aactcnccat	gttggtgttg	gagaactcga	60
	tacagagaca	g					71
5	<210> 162 <211> 71 <212> ADN <213> Oncorh <220>	nynchus mykiss	3				
10	<221> caract. <222> (36)(3 <223> C o T <400> 162						
	ctcatggaga	ggcatatctt	gtcctatccc	cataanggcc	acctggtaat	gagccgtgaa	60
15	acactagagc	С					71
20	<210> 163 <211> 71 <212> ADN <213> Oncorh <220> <221> caract. <222> (36)(3 <223> T o C		5				
25	<400> 163						
	ccatttagat	tattcaacgg	tgaaacatac	acatcntgta	aattactctc	aggtaaccgg	60
	acttgatttg	t					71
30	<210> 164 <211> 71 <212> ADN <213> Oncorh <220>	nynchus mykiss	3				
35	<221> caract. <222> (36)(3 <223> T o G <400> 164						
40	gtttgtagcc	ccatctcact	ggcttcttga	aagtanaatt	tattatgatt	gtttaattat	60
	aatagtgaat	a					71
45	<210> 165 <211> 71 <212> ADN <213> Oncorh <220>	nynchus mykiss	S				
50	<221> caract. <222> (36)(3 <223> T o C <400> 165						
	atttcatgta	ttggccaaca	aacgaacttg	taggcntacg	tgccatggtt	gtcacatttt	60
55	aataaaacat	g					71
	<210> 166 <211> 71 <212> ADN						
60			3				
65	.55 .50						

	cacagttata gcaacactta agtagaatgg aaatgntttc atttaatttt agtcagttgg	60
	cattcagttg a	71
5	<210> 167 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220>	
10	<221> caractmisceláneas <222> (36)(36) <223> T o C <400> 167	
15	agtetgeaga ceetaceeag cetggtetee caggengtea cacageagea cagggaettt	60
	ctggatggct t	71
20	<210> 168 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas <222> (36)(36)	
25	<223> C o T <400> 168	
	atttcatgaa cctacacaaa tccagtgtca ggaaancctt ataaactttt gctcatgggt	60
30	gtggagatgt g	71
30	<210> 169 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
35	<220> <221> caractmisceláneas <222> (36)(36) <223> G o C <400> 169	
40	atagggccaa gacagaagac agacatgaaa gtcctnctga cgggcaaaac atacagaccc	60
	cacctggaga a	71
45	<210> 170 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220>	
50	<pre><221> caract_misceláneas <222> (36)(36) <223> A o T <400> 170</pre>	
	ttcagttcag tcaaactggc tgtcgttggc gctgcnggac tagctggcac attcaatggg	60
55	aatcgtttgt c	71
60	<210> 171 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas <222> (36)(36)	
65	<223> G o A <400> 171	

	aaaggtettg atggatattg tgagttateg gtgtentaag aaategeeac etegeaacee	60
	atgcgacccc a	71
5	<210> 172 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220>	
10	<221> caractmisceláneas <222> (36)(36) <223> C o T <400> 172	
15	actecaaage caccacagte teetecagee atggtneate cetecagtag cecaaccaat	60
	taccaaacag a	71
20	<210> 173 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas	
25	<222> (36)(36) <223> C o A <400> 173	
	acatgcgaca catggacaga ttaattagat tgggtnacaa cacattgtat tgcaaacatg	60
30	tgaagctata a <210> 174 <211> 71 <212> ADN	71
35	<213> Oncorhynchus mykiss <220> <221> caractmisceláneas <222> (36)(36) <223> A o G	
40	<400> 174 ctctcattcc tcctattcat atgtatatac actggnctag ttagtgttat ggttgttatt	60
	cactggcaat a	71
45	<210> 175 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
50	<220> <221> caractmisceláneas <222> (36)(36) <223> A o C <400> 175	
	caaacaaccc tggaagtcaa atcaagaggc aaggcnctgt gtttccttga aagccagagc	60
55	tgtttgtgtc c	71
60	<210> 176 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas <222> (36)(36)	
65	<223> G o A <400> 176	

	ggaccagtgt ttcat	atcct gtggt	gaget to	cacangtca	aatgtgatta	atcataattg	60
5	aaatcaaatt a <210> 177 <211> 71 <212> ADN <213> Oncorhynchus	s mykiss					71
10	<220> <221> caractmisce <222> (36)(36) <223> T o C <400> 177	láneas					
	aagagaatat ttgga	atagc attgo	gcaaat ac	caccnagtg	gggtggagct	gcgtcagtag	60
15	tgcacagcac a <210> 178 <211> 71						71
20	<212> ADN <213> Oncorhynchus <220> <221> caract_misce <222> (36)(36) <223> T o C	•					
25	<400> 178 gaaaatactg ttact	otaga atata	aataot ca	ataancctc	tgatccaaat	aattatgcat	60
	-	yougu urer			- 3	3	71
30	aggtagtgtt c <210> 179 <211> 71 <212> ADN <213> Oncorhynchus	s mykiss					71
35	<220> <221> caractmisce <222> (36)(36) <223> G o A <400> 179	láneas					
40	ctcaacataa ttaaa	itacca acaco	caatgt aa	atcnttct	tcagaaacat	tgagtaaata	60
	tacctttact a <210> 180 <211> 71						71
45	<212> ADN <213> Oncorhynchus <220> <221> caractmisce	•					
50	<222> (36)(36) <223> G o T <400> 180						
	agaaagcagg aagtt	caggg gtcaa	actggg ca	aggncaat	aagaggcatt	tctaaccgtg	60
55	atcctgaacc c						71
00	<210> 181 <211> 71 <212> ADN <213> Oncorhynchus	s mykiss					
60	<220> <221> caractmisce <222> (36)(36) <223> T o C <400> 181	láneas					
65							

	cgaatcaagc	caaataaagc	ggccacatct	caaatntggt	cagcctttgg	aggagaacga	60
	taaacggact	t					71
5	<210> 182 <211> 71 <212> ADN <213> Oncort <220>	nynchus mykiss	3				
10	<221> caract. <222> (36)(3 <223> A o G <400> 182						
15	ccgcagatga	catcactaca	ctgcctgata	cagcanagcg	tgctttgcgg	tgagttaaaa	60
	aaataccatg	g					71
20	<220>	nynchus mykiss	3				
25	<221> caract. <222> (36)(3 <223> G o A <400> 183						
	catgagctca	agcacatctg	cttctttctt	cagggnaaaa	aaatacaggg	atccccaact	60
30	gcatttgatt	t					71
35	<210> 184 <211> 71 <212> ADN <213> Oncorh <220> <221> caract.	nynchus mykiss	3				
40	<222> (36)(3 <223> A o C <400> 184						
40	tgtagtctaa	taatgagggg	attagtgaaa	actttnagtc	agacctttgt	ctttaaaaca	60
	atagatttct	g					71
45	<210> 185 <211> 71 <212> ADN <213> Oncorh <220>	nynchus mykiss	3				
50	<221> caract. <222> (36)(3 <223> T o C <400> 185						
	atgttggcat	tgtaggtgtc	atagcaacca	ggaccnaatc	cctgtaccaa	acatgtgatt	60
55	aaaaacatat	a					71
60	<220> <221> caract.		3				
65	<222> (36)(3 <223> G o A <400> 186	, io					

	ttacccggct	aaggagcgct	ttcttcgcac	ttggantata	atgaaacctc	aaactgtctc	60
	atttaatatg	c					71
5	<210> 187 <211> 71 <212> ADN <213> Oncorh	iynchus mykiss	3				
10	<220> <221> caract. <222> (36)(3 <223> T o G <400> 187						
15	ttgggacagt	ttaacgttca	cctcaggaat	ccacancett	tcattttaag	tttattttac	60
20	ttggcagagc <210> 188 <211> 71 <212> ADN	a					71
	<213> Oncorh <220> <221> caract. <222> (36)(3	_misceláneas	3				
25	<223> A o T <400> 188	-					
	caacaatgca	acagaaatta	gtgtgtgaca	aaaatntgaa	cggctgcttt	gaaaattatt	60
30	atcaaggcag	t					71
	<210> 189 <211> 71						
35	<212> ADN <213> Oncorh <220> <221> caract.		3				
	<222> (36)(3 <223> T o G <400> 189	6)					
40		cttaccgctg	atcagtggca	acccantagt	ttttactaac	tgaaaacacc	60
	attgacattc	t					71
45	<210> 190 <211> 71 <212> ADN <213> Oncorh	ıynchus mykiss	3				
50	<220> <221> caract. <222> (36)(3 <223> T o A <400> 190	_misceláneas					
	actgcctggt	tatgacacct	gaaccctaca	gagagngtgg	ggctatagtt	aaaatttact	60
55	cccctaaggt	t					71
60	<210> 191 <211> 71 <212> ADN <213> Oncorh <220> <221> caract.	_misceláneas	5				
65	<222> (36)(3 <223> C o G <400> 191	(O)					

	aggatcccat	cccataatga	atgggtctag	ctatanattt	atgaccagtt	gttttccggg	60
	tttatgacct	С					71
5	<210> 192 <211> 71 <212> ADN <213> Oncorh	nynchus mykiss	ì				
10	<220> <221> caract. <222> (36)(3 <223> G o A <400> 192						
15	taaatagctt	tgtggagtag	attatgaatt	gtattnatgc	catatccact	gttctgcaat	60
	gactctccat	a					71
20	<210> 193 <211> 71 <212> ADN <213> Oncorh <220> <221> caract.	nynchus mykiss	3				
25	<222> (36)(3 <223> A o C <400> 193						
	accctttgat	gtgatttgct	tctgagaaac	atcatnattt	attgatgctt	ccattaaagt	60
30	agcatagatg	t					71
35	<210> 194 <211> 71 <212> ADN <213> Oncorh <220> <221> caract. <222> (36)(3 <223> T o C		S				
40	<400> 194	~~~*****		+ a++ an a+ a+	+ a+ > a a a+ > >	atamatata	60
		gcagttatca	Caaaacatta	tettengtgt	tgtageetaa	ctagactata	
45	<pre>cagctgtaaa <210> 195 <211> 71 <212> ADN</pre>						71
50	<213> Oncorn <220> <221> caract. <222> (36)(3 <223> T o G <400> 195		i				
	aagtttgtac	cccaaatttc	catttatgga	atgganagtt	taattgcatt	tttggattga	60
55	tacagtaacc	a					71
60	<220> <221> caract.		;				
65	<222> (36)(3 <223> A o T <400> 196	00)					

	gggttatgta taaatcgatg taattattat ttttgnttta aaaggtataa tattgtataa	60
	cattgtaata a	71
5	<210> 197 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220>	
10	<pre>-221> caractmisceláneas <222> (36)(36) <223> G o T <400> 197</pre>	
15	gatggcattc actatccttt aacaccacat cgtagntgat gtggcacaaa agcagtgctt	60
	aaaaaataaa t	71
20	<210> 198 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caract. misceláneas	
25	<222> (36)(36) <223> G o C <400> 198	
	cacacaaaaa ctattagccc atcgttggta tagtgncaaa atgttttaaa tgtcagcaat	60
30	caaattcaag a	71
35	<210> 199 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas <222> (36)(36) <223> T o A	
40	<pre><400> 199 tcagtgacgg ctgtgaacat aaagggtata gttgcnttac tggtccacgt tcaaaaacca</pre>	60
45	<pre>gagttgagat t <210> 200 <211> 71 <212> ADN <213> Oncorhynchus mykiss</pre>	71
50	<220> <221> caractmisceláneas <222> (36)(36) <223> A o G <400> 200	
	accaatttta tagtgacaca gaaaaatatc tagatntgat tctcaccaaa gagaccatat	60
55	tttgaaatag t	71
60	<210> 201 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas <222> (36)(36)	
65	<223> Go T <400> 201	

	ctcgatcttc t	caagtcaag 1	tggccaatta	aatatnaatc	taaacacaac	aatccagttt	60
	gactagttgt t						71
5	<210> 202 <211> 71 <212> ADN <213> Oncorhyr <220>	nchus mykiss					
10	<221> caractm <222> (36)(36) <223> T o C <400> 202						
15	aggacacacg c	tgggtgagc a	aacacacatc	cccagncccc	ctgagaaatc	aggcttctta	60
	caaggttata a						71
20	<210> 203 <211> 71 <212> ADN <213> Oncorhyr <220> <221> caractm <222> (36)(36)	nisceláneas					
25	<223> T o C <400> 203						
	ggggcctttg t	cacacagaa a	agagatgaca	tcagtngcaa	gagaggccat	cagtgtgttc	60
00	aaggactgga a						71
30	<210> 204 <211> 71 <212> ADN						
35	<213> Oncorhyr <220> <221> caractm <222> (36)(36) <223> T o A <400> 204 .	nisceláneas					
40	ggaagtctag g	gtggaaggg a	aggacattgt	gcgggncgtt	ccaccaattg	agtacctttt	60
45	cagcagtcac t <210> 205 <211> 71 <212> ADN <213> Oncorhyr						71
50	<220> <221> caractn <222> (36)(36) <223> A o T <400> 205						
	catctcaaaa a	taagttaaa 1	taaataaatt	actatngtaa	gtgccaaata	aagtaacagg	60
55	gttgaatttt a						71
60	<210> 206 <211> 71 <212> ADN <213> Oncorhyr <220> <221> caractm	nisceláneas					
65	<222> (36)(36) <223> T o G <400> 206)					

	tgtagattaa	acaacaaagt	cagattatct	gagccntgtg	tgccccaact	tcaacaagga	60
	gaccgtattg	t					71
5	<210> 207 <211> 71 <212> ADN <213> Oncort <220>	nynchus mykiss	3				
10	<221> caract. <222> (36)(3 <223> A o G <400> 207						
15	ttatcaataa	ttataatcaa	tgactcacat	cttgantatc	tacagatgta	gacttgtgat	60
	tgagctactg	t					71
20	<210> 208 <211> 71 <212> ADN <213> Oncorh <220> <221> caract.	nynchus mykiss	3				
25	<222> (36)(3 <223> T o C <400> 208						
	aacgacctca	tactgggccg	gaggatctcc	ttctangagc	tcagggggga	aatagggtgt	60
30	gggaacttct	С					71
35	<220> <221> caract. <222> (36)(3 <223> A o C		8				
40	<400> 209	tcttgtcact	tacctttact	gagaangt cg	taataaacac	cagattccca	60
			tyccttact	gagaangccg	cygcygacac	cayacccca	
45	<pre>tgtgaaggag <210> 210 <211> 71 <212> ADN</pre>	a					71
50	<213> Oncorh <220> <221> caract. <222> (36)(3 <223> C o G <400> 210		5				
	aagtcattga	ccttgctgcc	ttggtcgtcc	ctctcngtgg	tggtgaacac	gcgcgttttg	60
55	gactcctctg	t					71
60	<220> <221> caract.		5				
65	<222> (36)(3 <223> A o G <400> 211	90)					

	tgctgaagct ggacaaggag aacgccgtcg accgcncaga gcaggctgag accgacaaga	60
	aggcagcaga g	71
5	<210> 212 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
10	<220> <221> caractmisceláneas <222> (36)(36) <223> G o A <400> 212	
15	gatcagctgg agaacatcta caaggacaat cccctngtga atctccatta tgccactttt	60
	agccaacaac t	71
20	<210> 213 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caract. misceláneas	
25	<222> (36)(36) <223> C o T <400> 213	
	tatgagcagc tgaaaaacaa ttaaaatatt tttttncctg tgtttgagga aggggaagag	60
30	tggacccagg g	71
	<210> 214 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
35	<220> <221> caractmisceláneas <222> (36)(36) <223> T o G <400> 214	
40	atatttcctt cctcacatcc ctggcaatta tagtanaatc tgagccataa caacatgacc	60
	tggatagatg a	71
45	<210> 215 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
50	<220> <221> caractmisceláneas <222> (36)(36) <223> T o A <400> 215	
	aaataatggc atgcatttga tattagtgta tgtttnaaaa cattacaggt tacagagaaa	60
55	ctataaggaa t	71
60	<210> 216 <211> 71 <212> ADN <213> Oncorhynchus mykiss <220> <221> caractmisceláneas	
65	<222> (36)(36) <223> A o G <400> 216	

	acattcaggt	aatggtacat	tttgtttaat	taaacnactt	tccatagttt	gtggagaaag	60
	ggtgtgtact	С					71
5	<210> 217 <211> 71 <212> ADN <213> Oncort <220>	nynchus mykiss	S				
10	<221> caract. <222> (36)(3 <223> C o T <400> 217						
15	ggttttatgc	ttgaacattc	attttggaat	ttccangact	gtctctagct	gctttaatct	60
	tctttcaagg	a					71
20	<210> 218 <211> 71 <212> ADN <213> Oncorh <220> <221> caract.	nynchus mykiss misceláneas	5				
25	<222> (36)(3 <223> T o C <400> 218						
	tagatgttga	gtatatctaa	cacttccaga	acatcnagtt	tagtgctgat	gtgtcatttc	60
30	tgttccaggc	a					71
35	<210> 219 <211> 71 <212> ADN <213> Oncorh <220> <221> caract. <222> (36)(3 <223> A o G <400> 219		5				
40	caatggaacg	cctcctctt	ctaataaccc	tagtanagtg	ccgtcaaatg	tcgttgacag	60
	atttgagtct	t					71
45	<210> 220 <211> 71 <212> ADN <213> Oncort <220>	nynchus mykiss	6				
50	<221> caract. <222> (36)(3 <223> G o A <400> 220						
	aaaggatata	ttgatgaata	tgacctatgt	actgtnctac	ttaaattcag	atagctgttt	60
55	gttcatgtgt	g					71
60	<210> 221 <211> 71 <212> ADN <213> Oncorh <220> <221> caract. <222> (36)(3		5				
65	<223> A o G <400> 221	•					

	gctatattaa	ttcagaaatg	ccattttctg	tcatgnggga	aaatatagtt	ttacacttat	60
	cccagaaaca	С					71
5	<210> 222 <211> 71 <212> ADN <213> Oncort <220>	nynchus mykiss	S				
10	<221> caract. <222> (36)(3 <223> A o G <400> 222						
15	tgtacattgt	aaagatggag	aaatattgac	aaaaanatgt	cgtataggct	actgtattac	60
	ttgatatgtt	t					71
20	<210> 223 <211> 71 <212> ADN <213> Oncort <220> <221> caract.	nynchus mykiss	8				
25	<222> (36)(3 <223> A o G <400> 223						
	tttaacccag	cattgtgaca	catttttatt	aaatcnagga	tgtgcagttt	gttttatcca	60
30	cttcattaat	a					71
35	<210> 224 <211> 71 <212> ADN <213> Oncorh <220> <221> caract. <222> (36)(3 <223> A o G <400> 224		6				
40		atttgtcttc	atacatttca	gataanctca	cgattcttaa	gtcatgttgt	60
	atttttaccg	a					71
45		nynchus mykiss	S				
50	<220> <221> caract. <222> (36)(3 <223> T o C <400> 225						
	cctgactgaa	agcagggcac	aatatcagga	agttgnatta	gccaccatca	tggcggtgga	60
55	aaattgtgct	t					71
60	<210> 226 <211> 71 <212> ADN <213> Oncorh <220> <221> caract. <222> (36)(3		S				
65	<223> A o G <400> 226	,,					

	gttatggtga	aagagaagct	cagttacgga	gcacancagc	aaatcctcaa	caagccaaac	60
	ctgcaagaca	a					71
5		nynchus mykiss	3				
10	<220> <221> caract. <222> (36)(3 <223> T o C <400> 227						
15	gacatctgga	gagctaagga	aacaaccaag	cctgtnggaa	cttctattgg	gtgtctctgc	60
	tagcagtcca	a					71
20	<210> 228 <211> 71 <212> ADN <213> Oncorh <220> <221> caract.	nynchus mykiss misceláneas	;				
25	<222> (36)(3 <223> G o T <400> 228	6)					
	caataactag	aaaaatacat	ttcctaaaga	aaatgngtgt	gcttgcttgc	ttgtcttaaa	60
30	gtatttatgt	t					71
35	<220> <221> caract. <222> (36)(3 <223> C o T		3				
40	<400> 229 tatcaggaca	agctggaact	agatagctgg	ttatgnaacg	ttaactattg	ggatcagaaa	60
	ctgaactagc					33	71
45	<210> 230 <211> 71 <212> ADN	nynchus mykiss	3				,1
50	ataatttact	tttaagattt	ctgaccggcc	ttgttgtttt	tgcttatgtg	ccattattgc	60
	cggctagacc	a					71
55	<210> 231 <211> 71 <212> ADN <213> Oncorh <400> 231	nynchus mykiss	3				
	taaagaacaa	gaaaacagta	cacatgcatt	aactcgccat	gttggtgttg	gagaactcga	60
60	tacagagaca	g					71
65	<210> 232 <211> 71 <212> ADN <213> Oncorh <400> 232	nynchus mykiss	S				

	ctcatggaga	ggcatatctt	gtcctatccc	cataacggcc	acctggtaat	gagccgtgaa	60
	acactagagc	С					71
5	<210> 233 <211> 71 <212> ADN <213> Oncorh <400> 233	nynchus mykiss	5				
10	ccatttagat	tattcaacgg	tgaaacatac	acatcttgta	aattactctc	aggtaaccgg	60
	acttgatttg	t					71
15	<210> 234 <211> 71 <212> ADN <213> Oncorh <400> 234	nynchus mykiss	3				
20	gtttgtagcc	ccatctcact	ggcttcttga	aagtataatt	tattatgatt	gtttaattat	60
	aatagtgaat	a					71
25	<210> 235 <211> 71 <212> ADN <213> Oncorh <400> 235	nynchus mykiss	S				
	atttcatgta	ttggccaaca	aacgaacttg	taggcttacg	tgccatggtt	gtcacatttt	60
30	aataaaacat	g					71
35	<210> 236 <211> 71 <212> ADN <213> Oncorh <400> 236	nynchus mykiss	S				
	cacagttata	gcaacactta	agtagaatgg	aaatggtttc	atttaatttt	agtcagttgg	60
40	cattcagttg <210> 237 <211> 71 <212> ADN <213> Oncorh	a nynchus mykiss	S				71
45	<400> 237	ccctacccag	aat aat at aa	asaaatatas	G2G2GG2GG2	cagggagttt	60
			cetygtetee	caggetgtea	cacaycayca	Cagggaceee	
	ctggatggct	t					71
50	<210> 238 <211> 71 <212> ADN <213> Oncorh <400> 238	nynchus mykiss	5				
55	atttcatgaa	cctacacaaa	tccagtgtca	ggaaaccctt	ataaactttt	gctcatgggt	60
	gtggagatgt	g					71
60	<210> 239 <211> 71 <212> ADN	nynchus mykiss	3				
65	atagggccaa	gacagaagac	agacatgaaa	gtcctgctga	cgggcaaaac	atacagaccc	60
	cacctggaga	а					71

5	<210> 240 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 240	
	ttcagttcag tcaaactggc tgtcgttggc gctgcaggac tagctggcac attcaatggg	60
	aatcgtttgt c	71
10	<210> 241 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 241	
15	aaaggtettg atggatattg tgagttateg gtgtegtaag aaategeeae etegeaaeee	60
	atgcgacccc a	71
20	<210> 242 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 242	
25	actccaaagc caccacagtc tectecagec atggtecate cetecagtag cecaaccaat	60
	taccaaacag a	71
30	<210> 243 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 243 .	
	acatgcgaca catggacaga ttaattagat tgggtcacaa cacattgtat tgcaaacatg	60
35	tgaagctata a	71
40	<210> 244 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 244	
	ctctcattcc tcctattcat atgtatatac actggactag ttagtgttat ggttgttatt	60
45	cactggcaat a	71
	<210> 245 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
50	<400> 245 caaacaaccc tggaagtcaa atcaagaggc aaggcactgt gtttccttga aagccagagc	60
55	tgtttgtgtc c	71
55	<210> 246 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 246	
60	ggaccagtgt ttcatatcct gtggtgagct tcacaggtca aatgtgatta atcataattg	60
	aaatcaaatt a	71
65	<210> 247 <211> 71 <212> ADN	

	<213> Oncorhynchus mykiss <400> 247	
	aagagaatat ttggaatagc attggcaaat acacctagtg gggtggagct gcgtcagtag	60
5	tgcacagcac a	71
10	<210> 248 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 248 gaaaatactg ttactgtaga atataatagt cataatcctc tgatccaaat aattatgcat	60
15	aggtagtgtt c <210> 249 <211> 71	71
20	<212> ADN <213> Oncorhynchus mykiss <400> 249	
	ctcaacataa ttaaatacca acaccaatgt aaatcgttct tcagaaacat tgagtaaata	60
	tacctttact a	71
25	<210> 250 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 250	
30	agaaagcagg aagttcaggg gtcaactggg caagggcaat aagaggcatt tctaaccgtg	60
	atcctgaacc c	71
35	<210> 251 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 251	
40	cgaatcaagc caaataaagc ggccacatct caaatttggt cagcctttgg aggagaacga	60
.0	taaacggact t	71
45	<210> 252 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 252	
	ccgcagatga catcactaca ctgcctgata cagcaaagcg tgctttgcgg tgagttaaaa	60
50	aaataccatg g	71
55	<210> 253 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 253	
	catgagetea ageacatetg ettetttett caggggaaaa aaatacaggg ateeccaact	60
60	gcatttgatt t	71
60	<210> 254 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
65	<400> 254	

	tgtagtctaa	taatgagggg	attagtgaaa	actttaagtc	agacctttgt	ctttaaaaca	60
	atagatttct (g					71
5	<210> 255 <211> 71 <212> ADN <213> Oncorhy <400> 255	ynchus mykiss					
10	atgttggcat	tgtaggtgtc	atagcaacca	ggacctaatc	cctgtaccaa	acatgtgatt	60
	aaaaacatat	a					71
15	<210> 256 <211> 71 <212> ADN <213> Oncorhy <400> 256	ynchus mykiss	ş				
20	ttacccggct	aaggagcgct	ttcttcgcac	ttggagtata	atgaaacctc	aaactgtctc	60
	atttaatatg (С					71
25	<210> 257 <211> 71 <212> ADN <213> Oncorhy <400> 257	ynchus mykiss	;-				
	ttgggacagt	ttaacgttca	cctcaggaat	ccacatcctt	tcattttaag	tttattttac	60
30	ttggcagagc	a					71
35	<210> 258 <211> 71 <212> ADN <213> Oncorhy <400> 258	ynchus mykiss					
	caacaatgca a	acagaaatta	gtgtgtgaca	aaaatatgaa	cggctgcttt	gaaaattatt	60
40	atcaaggcag	t					71
45	<210> 259 <211> 71 <212> ADN <213> Oncorhy <400> 259	ynchus mykiss	ş				
	gtgcccttat	cttaccgctg	atcagtggca	acccattagt	ttttactaac	tgaaaacacc	60
	attgacattc	t					71
50	<210> 260 <211> 71 <212> ADN <213> Oncorhy <400> 260	ynchus mykiss	;				
55	actgcctggt	tatgacacct	gaaccctaca	gagagtgtgg	ggctatagtt	aaaatttact	60
	cccctaaggt 1	t					71
60	<210> 261 <211> 71 <212> ADN <213> Oncorhy <400> 261		1				
65	aggatcccat	cccataatga	atgggtctag	ctatacattt	atgaccagtt	gttttccggg	60
-	tttatgacct	С					71

	<210> 262 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
5	<400> 262 taaatagett tgtggagtag attatgaatt gtattgatge catatecaet gttetgeaat	60
	gactctccat a	71
10	<210> 263 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 263	
15	accetttgat gtgatttget tetgagaaac atcataattt attgatgett eeattaaagt	60
	agcatagatg t	71
20	<210> 264 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 264	
25	aaatcacagt gcagttatca caaaacatta tcttctgtgt tgtagcctaa ctagactata	60
	cagctgtaaa a	71
30	<210> 265 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 265	
	aagtttgtac cccaaatttc catttatgga atggatagtt taattgcatt tttggattga	60
35	tacagtaacc a	71
40	<210> 266 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 266	
	gggttatgta taaatcgatg taattattat ttttgattta aaaggtataa tattgtataa	60
45	cattgtaata a	71
50	<210> 267 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 267	
	gatggcattc actatccttt aacaccacat cgtaggtgat gtggcacaaa agcagtgctt	60
	aaaaaataaa t	71
55	<210> 268 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 268	
60	cacacaaaaa ctattagccc atcgttggta tagtggcaaa atgttttaaa tgtcagcaat	60
	caaattcaag a	71
65	<210> 269 <211> 71 <212> ADN	

	<213> Oncorhynchus mykiss <400> 269	
5	tcagtgacgg ctgtgaacat aaagggtata gttgctttac tggtccacgt tcaaaaacca	60
	gagttgagat t	71
10	<210> 270 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
	<400> 270 accaatttta tagtgacaca gaaaaatatc tagatatgat tctcaccaaa gagaccatat	60
15	tttgaaatag t	71
20	<210> 271 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 271	
	ctcgatcttc tcaagtcaag tggccaatta aatatgaatc taaacacaac aatccagttt	60
25	gactagttgt t	71
30	<210> 272 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 272	
	aggacacacg ctgggtgagc aacacacatc cccagtcccc ctgagaaatc aggcttctta	60
	caaggttata a	71
35	<210> 273 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 273	
40	ggggcctttg tcacacagaa agagatgaca tcagttgcaa gagaggccat cagtgtgttc	60
	aaggactgga a	71
45	<210> 274 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 274	
50	ggaagtctag ggtggaaggg aggacattgt gcgggtcgtt ccaccaattg agtacctttt	60
	cagcagtcac t	71
55	<210> 275 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 275	
	catctcaaaa ataagttaaa taaataaatt actatagtaa gtgccaaata aagtaacagg	60
60	gttgaatttt a	71
65	<210> 276 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 276	

	tgtagattaa	acaacaaagt	cagattatct	gagccttgtg	tgccccaact	tcaacaagga	60
5	gaccgtattg	t					71
10	<210> 277 <211> 71 <212> ADN <213> Oncorhy <400> 277	ynchus mykiss					
10	ttatcaataa	ttataatcaa	tgactcacat	cttgaatatc	tacagatgta	gacttgtgat	60
	tgagctactg	t					71
15	<210> 278 <211> 71 <212> ADN <213> Oncorhy <400> 278						
20	aacgacctca	tactgggccg	gaggatctcc	ttctatgagc	tcagggggga	aatagggtgt	60
	gggaacttct	C					71
25	<210> 279 <211> 71 <212> ADN <213> Oncorhy <400> 279	ynchus mykiss					
30	aacaatacac	tcttgtcact	tgcctttact	gagaaagtcg	tggtggacac	cagattccca	60
	tgtgaaggag	a					71
35	<210> 280 <211> 71 <212> ADN <213> Oncorhy <400> 280	ynchus mykiss					
	aagtcattga	ccttgctgcc	ttggtcgtcc	ctctccgtgg	tggtgaacac	gcgcgttttg	60
40	gactcctctg	t					71
45	<210> 281 <211> 71 <212> ADN <213> Oncorhy <400> 281						60
	tgctgaagct		aacgccgtcg	accgcacaga	gcaggctgag	accgacaaga	60
50	aggcagcaga	g					71
55	<210> 282 <211> 71 <212> ADN <213> Oncorhy <400> 282	ynchus mykiss					
	gatcagctgg	agaacatcta	caaggacaat	cccctggtga	atctccatta	tgccactttt	60
	agccaacaac	t					71
60	<210> 283 <211> 71 <212> ADN <213> Oncorhy <400> 283	ynchus mykiss					
65	tatgagcagc	tgaaaaacaa	ttaaaatatt	tttttccctg	tgtttgagga	aggggaagag	60
	tggacccagg	g					71

99

5	<210> 284 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 284	
	atatttcctt cctcacatcc ctggcaatta tagtataatc tgagccataa caacatgacc	60
10 15	tggatagatg a <210> 285 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 285	71
	aaataatggc atgcatttga tattagtgta tgttttaaaa cattacaggt tacagagaaa	60
	ctataaggaa t	71
20	<210> 286 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 286	
25	acattcaggt aatggtacat tttgtttaat taaacaactt tccatagttt gtggagaaag	60
	ggtgtgtact c	71
30	<210> 287 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 287	
35	ggttttatgc ttgaacattc attttggaat ttccacgact gtctctagct gctttaatct	60
	tctttcaagg a	71
40	<210> 288 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 288	
	tagatgttga gtatatctaa cacttccaga acatctagtt tagtgctgat gtgtcatttc	60
45	tgttccaggc a	71
50	<210> 289 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 289	
	caatggaacg cctcctcttt ctaataaccc tagtaaagtg ccgtcaaatg tcgttgacag	60
55	atttgagtet t <210> 290 <211> 71 <212> ADN <213> Oncorhynchus mykiss	71
60	<400> 290	60
	aaaggatata ttgatgaata tgacctatgt actgtgctac ttaaattcag atagctgttt	60
65	gttcatgtgt g <210> 291 <211> 71	71

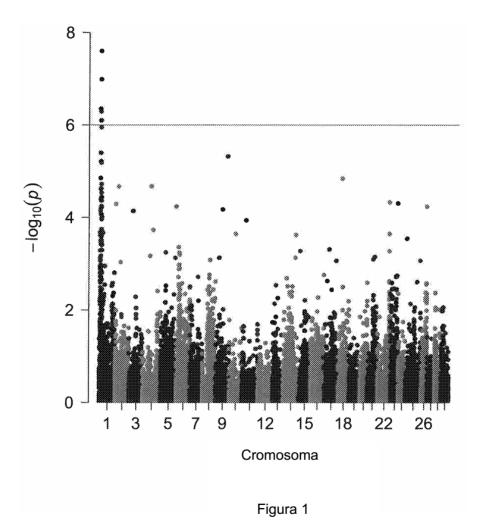
	<212> ADN <213> Oncorhynchus mykiss <400> 291	
5	gctatattaa ttcagaaatg ccattttctg tcatgaggga aaatatagtt ttacacttat	60
	cccagaaaca c	71
10	<210> 292 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 292	60
	tgtacattgt aaagatggag aaatattgac aaaaaaatgt cgtataggct actgtattac	60
15	ttgatatgtt t	71
20	<210> 293 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 293	
	tttaacccag cattgtgaca catttttatt aaatcaagga tgtgcagttt gttttatcca	60
25	cttcattaat a	71
30	<210> 294 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 294	
	aatttgacca atttgtcttc atacatttca gataaactca cgattcttaa gtcatgttgt	60
	atttttaccg a	71
35	<210> 295 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 295	
40	cctgactgaa agcagggcac aatatcagga agttgtatta gccaccatca tggcggtgga	60
	aaattgtgct t	71
45	<210> 296 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 296	
50	gttatggtga aagagaaget cagttaegga geacaaeage aaateeteaa caageeaaae	60
55	ctgcaagaca a <210> 297 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 297	71
	gacatctgga gagctaagga aacaaccaag cctgttggaa cttctattgg gtgtctctgc	60
00	tagcagtcca a	71
60	<210> 298 <211> 71 <212> ADN <213> Oncorhynchus mykiss	
65	<400> 298	

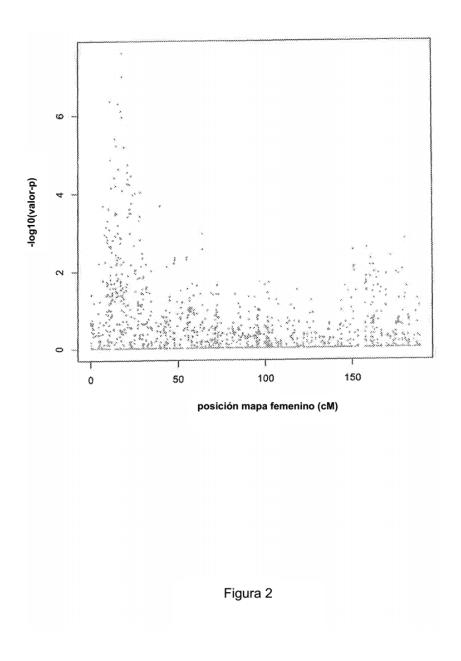
	caataactag aaaaatacat ttcctaaaga aaatgggtgt gcttgcttgc ttgtcttaaa	60
	gtatttatgt t	71
5	<210> 299 <211> 71 <212> ADN <213> Oncorhynchus mykiss <400> 299	
10	tatcaggaca agctggaact agatagctgg ttatgcaacg ttaactattg ggatcagaaa	60
	ctgaactagc t	71

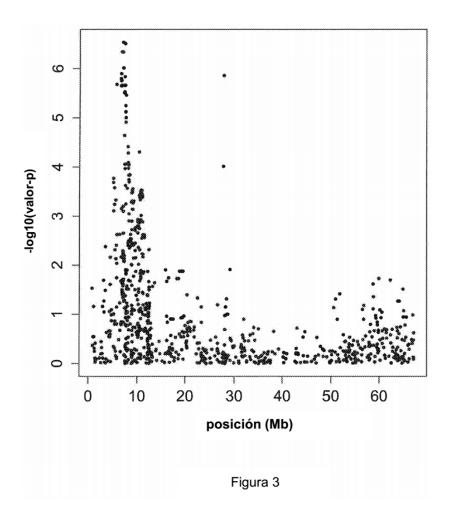
REIVINDICACIONES

1. Un método para predecir el aumento de la resistancia de una trucha arcoíris (Oncorhynchus mykiss) a la necrosis pancreática infecciosa (IPN), el método comprende: determinar la presencia de al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN") con el genoma de dicha trucha arcoíris, en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), en donde al menos un SPN es seleccionado de los SNP enumerados en la Tabla 1.

5


- El método de acuerdo con la reivindicación 1, el método comprende:
 determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos
 un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática
 infecciosa dentro del genoma de dicha trucha arcoíris, al menos un SNP se localiza dentro del genoma en una
 posición correspondiente a la posición 36 de la secuencia de nucleótidos expuestas en cualquiera de las sec. con
 núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229, o en una posición correspondiente a la posición 36
 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con
 núms. de ident.: 160 a 229 por 1 a 5 sustituciones de nucleótidos.
- El método de acuerdo con la reivindicación 1 o 2, el método comprende: 3. determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos 20 un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma de dicha trucha arcoíris, al menos un SNP se localiza dentro del genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 1, sec. con núm. de ident.: 2, sec. con núm. de ident.: 230, sec. con núm. de ident: 231 o sec. con núm. de ident.: 232, o en una posición 25 correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de ident.: 1, sec. con núm. de ident.: 2, sec. con núm. de ident.: 230, sec. con núm. de ident: 231 o sec. con núm. de ident.: 232 por 1 a 5 sustituciones de nucleótidos; en donde la presencia de una citosina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 1, la presencia de una guanina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 2, la presencia de una guanina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 230, la presencia de una guanina en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 231 o la presencia de una citocina en la posición correspondiente a la 30 posición 36 de la sec. con núm. de ident.: 232 indica que la trucha arcoíris ha aumentado la resistencia a la necrosis pancreática infecciosa.
- 4. Un método para seleccionar una trucha arcoíris que tiene mayor resistencia a la necrosis pancreática infecciosa, el método comprende: determinar la presencia de al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN") dentro del genoma de dicha trucha arcoíris; y seleccionar dicha trucha arcoíris por tener mayor resistencia cuando al menos un alelo de resistencia a la IPN está presente, en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido(SNP), en donde al menos un SPN es seleccionado de los SNP enumerados en la Tabla 1.
- El método de acuerdo con la reivindicación 4, el método comprende: determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con una mayor resistencia a la necrosis pancreática infecciosa dentro del genoma de dicha trucha arcoíris, al menos un SNP se localiza dentro del genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229, o en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de cualquiera de las sec. con núms. de ident.: 1 a 78 y sec. con núms. de ident.: 160 a 229 por 1 a 5 sustituciones de nucleótidos; y seleccionar dicha trucha arcoíris por tener mayor resistencia cuando el nucleótido de al menos un alelo es un nucleótido correspondiente al alelo de resistencia a la IPN del SNP (como se especifica en la Tabla 1).
- 6. El método de acuerdo con la reivindicación 4, el método comprende: determinar la identidad de un nucleótido de al menos un alelo, opcionalmente de al menos dos alelos, de al menos un polimorfismo de un solo nucleótido (SNP) asociado con la necrosis pancreática infecciosa dentro del genoma de dicha trucha arcoíris, al menos un 55 SNP se localiza dentro del genoma en una posición correspondiente a la posición 36 de la secuencia de nucleótidos expuesta en la sec. con núm. de ident.: 1, sec. con núm. de ident.: 2, sec. con núm. de ident.: 160, sec. con núm. de ident.: 161 o sec. con núm. de ident.:162 en una posición correspondiente a la posición 36 de una secuencia de nucleótidos que se deriva de la sec. con núm. de ident.: 1, sec. con núm. de ident.: 2, sec. con núm. de ident.: 160, sec. con núm. de ident.: 161 o la sec. con núm. de ident.: 162 por 1 a 5 sustituciones de nucleótidos; y seleccionar dicha trucha arcoíris por tener una mayor resistencia a la necrosis pancreática infecciosa cuando una 60 citosina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 1, una guanina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 2, una guanina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 230, una guanina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 231, o una citosina está presente en la posición correspondiente a la posición 36 de la sec. con núm. de ident.: 232. 65


- 7. Una célula de trucha arcoíris aislada que comprende dentro de su genoma al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), en donde al menos un SPN es seleccionado de los SNP enumerados en la Tabla 1.
- 8. La célula de trucha arcoíris aislada de acuerdo con la reivindicación 7, en donde la célula de trucha arcoíris aislada, comprende dentro de su genoma al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 156 y 230 a 299, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5 sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.


5

40

- Una población aislada de células de trucha arcoíris, cada célula individual dentro de la población aislada comprende dentro de su genoma al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), en donde al menos un SPN es seleccionado de los SNP enumerados en la Tabla 1.
- La población de células de trucha arcoíris aislada de acuerdo con la reivindicación 9, cada célula individual dentro de la población aislada comprende dentro de su genoma al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 156 y 230 a 299, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5 sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.
- 25 11. Un huevo o esperma de trucha arcoíris aislado que comprende dentro de su genoma al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP); al menos un SPN es seleccionado de los SNP enumerados en la Tabla 1 y el huevo aislado de trucha arcoíris no está fertilizado.
- 12. El huevo o esperma de trucha arcoíris aislado de acuerdo con la reivindicación 11, en donde el huevo o esperma de trucha arcoíris aislado comprende dentro de su genoma al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 156 y 230 a 299, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5 sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.
 - 13. Una población aislada de huevos o esperma de la trucha arcoíris, cada huevo o esperma individual dentro de la población aislada comprende dentro de su genoma al menos un alelo que confiere resistencia a la IPN ("alelo de resistencia a la IPN"), en donde al menos un alelo de resistencia a la IPN es un alelo de al menos un polimorfismo de un solo nucleótido (SNP), al menos un SPN es seleccionado de los SNP enumerados en la Tabla 1 y cada huevo individual dentro de la población aislada de huevos de trucha arcoíris no está fertilizado.
- 14. La población aislada de huevos o esperma de la trucha arcoíris de acuerdo con la reivindicación 13, cada huevo o esperma individual dentro de la población aislada comprende dentro de su genoma al menos una secuencia de nucleótidos seleccionada del grupo que consiste en a) las secuencias de nucleótidos expuestas en las sec. con núms. de ident.: 79 a 156 y 230 a 299, y b) secuencias de nucleótidos derivadas de cualquiera de las sec. con núms. de ident.: 79 a 156 y 230 a 299 por 1 a 5 sustituciones de nucleótidos, siempre que dichas sustituciones de nucleótidos no sean en la posición 36 de dicha secuencia derivada.

