

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 742 505

61 Int. Cl.:

C07K 14/31 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 28.08.2014 PCT/EP2014/068259

(87) Fecha y número de publicación internacional: 05.03.2015 WO15028550

(96) Fecha de presentación y número de la solicitud europea: 28.08.2014 E 14755841 (5)

(97) Fecha y número de publicación de la concesión europea: 19.06.2019 EP 3039033

(54) Título: Polipéptidos de unión que tienen un andamio mutado

(30) Prioridad:

28.08.2013 EP 13182022

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **14.02.2020**

(73) Titular/es:

AFFIBODY AB (100.0%) Gunnar Asplunds Allé 24 171 69 Solna, SE

(72) Inventor/es:

NORDLING, ERIK; NILSSON, JOAKIM y STRÖMBERG, PATRIK

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Polipéptidos de unión que tienen un andamio mutado

Campo de la invención

La presente invención se refiere a nuevos polipéptidos, métodos de producción de los mismos y nuevas poblaciones de variantes de polipéptidos basadas en un andamio común. Las poblaciones pueden usarse, por ejemplo, para proporcionar nuevas proteínas y polipéptidos de unión.

Antecedentes.

5

10

15

20

25

40

Se han descrito diferentes métodos para la construcción de nuevas proteínas de unión (Nygren PA y Uhlén M (1997) Curr Opin Struct Biol 7: 463-469). Una estrategia ha sido combinar la generación de bibliotecas y el cribado con la selección de las propiedades deseadas.

Los polipéptidos de la variante Z de primera generación basados en un andamio común de primera generación, la población de tales moléculas y los métodos que las implican se han descrito en el documento W095/19374. Además, los polipéptidos de la variante Z basados en un andamio de segunda generación, las poblaciones de tales moléculas y los métodos que los implican se han descrito en el documento WO2009/080811. Las enseñanzas de estas dos descripciones se incorporan al presente texto como referencia.

Para algunas aplicaciones, se desean polipéptidos o poblaciones de la variante Z de los mismos que tengan propiedades mejoradas, tales como una mayor estabilidad alcalina, baja antigenicidad, estabilidad estructural, capacidad de síntesis química e hidrofilicidad. El documento WO2009/080811 describe variantes Z que tienen un andamio común con propiedades mejoradas, pero no todas las propiedades deseadas pueden ser obtenidas por polipéptidos variantes Z, como se describe en el presente texto.

Uno de los factores clave para el éxito de los productos farmacéuticos polipeptídicos es su estabilidad. Lo más probable es que los polipéptidos que muestran una alta estabilidad estructural resistan funcionalmente las modificaciones químicas, los cambios en las condiciones físicas y la proteolisis, tanto durante la producción como dentro del cuerpo humano. Además, la estabilidad influirá en la vida útil activa de los productos farmacéuticos polipeptídicos, así como la vida activa del polipéptido farmacéutico dentro del cuerpo humano.

Por lo tanto, existe una continua necesidad de mejorar la estabilidad de los polipéptidos de variante Z.

Descripción de la invención

Es un objeto de la presente invención proporcionar un polipéptido con un nuevo andamio, el cual polipéptido alivia los inconvenientes mencionados anteriormente, y otros, de los polipéptidos de la variante Z disponibles actualmente.

Otro objeto de la presente invención es proporcionar un método para la producción de un polipéptido basado en un nuevo andamiaje.

También es un objeto de la presente invención proporcionar una población de tales variantes polipeptídicas mejoradas, todas ellas basadas en un nuevo andamio.

Otro objeto de la presente invención es proporcionar una población de polinucleótidos.

Otro objeto más de la presente invención es proporcionar una combinación de una población de polipéptidos y una población de polinucleótidos.

Un objeto más de la presente invención es proporcionar un método para seleccionar un polipéptido deseado que tenga afinidad para una diana predeterminada de una población de polipéptidos.

Otro objeto es proporcionar un método para aislar un polinucleótido que codifica un polipéptido deseado que tenga afinidad para una diana predeterminada.

Otro objeto es proporcionar un método para identificar un polipéptido deseado que tenga afinidad para una diana predeterminada.

Otro objeto más es proporcionar un método para seleccionar e identificar un polipéptido deseado que tenga afinidad para una diana predeterminada.

45 Un objeto relacionado es proporcionar un método para la producción de un polipéptido deseado que tenga afinidad para una diana predeterminada.

Estos y otros objetos pueden lograrse mediante diferentes aspectos descritos en la presente solicitud.

En un primer aspecto de la presente descripción se proporciona un polipéptido que comprende una secuencia de aminoácidos seleccionada entre

i) $EX_2X_3X_4AX_6X_7EIX_{10}$ $X_{11}LPNLX_{16}X_{17}X_{18}QX_{20}$ $X_{21}AFIX_{25}X_{26}LX_{28}X_{29}X_{30}$

 $PX_{32}QSX_{35}X_{36}LLX_{39}E$ AKKLX₄₅X₄₆X₄₇Q;

en donde cada uno de X₂, X₃, X₄, X₆, X₇, X₁₀, X₁₁, X₁₇, X₁₈, X₂₀, X₂₁, X₂₅ y X₂₈ corresponde independientemente a cualquier resto de aminoácido; y

en donde, independientemente entre ellos,

X₁₆ se selecciona entre N v T;

X₂₆ se selecciona entre K y S;

10 $X_{29}X_{30}PX_{32}$ se selecciona entre DDPS y RQPE;

X₃₅ se selecciona entre A v S:

X₃₆ se selecciona entre E y N;

X₃₉ se selecciona entre A, C v S;

X₄₅ se selecciona entre E, N v S;

15 X_{46} se selecciona entre D, E y S;

20

25

30

35

40

45

50

X₄₇ se selecciona entre A v S; v

ii) una secuencia de aminoácidos que tiene al menos 91% de identidad con la secuencia definida en i), siempre y cuando X_{46} no sea D cuando X_{45} es N.

Dentro de la secuencia polipeptídica i) anterior, cada aminoácido X definido como "que corresponde independientemente a cualquier aminoácido corresponde individualmente a un resto de aminoácido que se selecciona entre todos los aminoácidos posibles. Más claramente, esto se aplica a las posiciones de aminoácidos correspondientes a las posiciones X₂, X₃, X₄, X₆, X₇, X₁₀, X₁₁, X₁₇, X₁₈, X₂₀, X₂₁, X₂₅ y X₂₈ en la secuencia i) anterior. Esto significa que cada uno de tales X puede ser cualquier resto de aminoácido, independientemente de la identidad de cualquier otro resto indicado como X en la secuencia. En la secuencia de aminoácidos, estos aminoácidos X pueden elegirse entre los 20 restos de aminoácidos de origen natural, de tal manera que cualquiera de estos 20 restos de aminoácidos puede estar presente en la posición X correspondiente en cualquier variante dada. La selección del resto de aminoácido en cada posición puede ser más o menos aleatoria. También es posible limitar el grupo del que se seleccionan los diferentes restos de aminoácidos variados a 19, 18, 17, 16 o menos, de los 20 restos de aminoácidos de origen natural. La variabilidad en diferentes posiciones se puede ajustar individualmente entre uno, lo que significa que no hay aleatorización, hasta los 20 aminoácidos. La introducción aleatoria de un subconjunto más pequeño de aminoácidos puede obtenerse mediante una selección cuidadosa de las bases de desoxirribonucleótidos introducidas, por ejemplo los codones T(A/C)C pueden introducirse para obtener una introducción aleatoria de serina o de tirosina en una posición dada en la cadena polipeptídica. Del mismo modo, los codones (T/C/A/G)CC pueden introducirse para obtener una introducción aleatoria de fenilalanina, leucina, alanina y valina en una posición dada en la cadena polipeptídica. El experto en la materia está al tanto de muchas alternativas de combinaciones de bases de desoxirribonucleótidos que pueden usarse para obtener diferentes combinaciones de aminoácidos en una posición en la cadena polipeptídica dada. El conjunto de aminoácidos que pueden aparecer en una posición en la cadena polipeptídica dada también se puede determinar mediante la introducción de trinucleótidos durante la síntesis de oligonucleótidos, en vez de una base de desoxirribonucleótido a la vez. También se puede obtener un conjunto definido de aminoácidos utilizando la síntesis de agrupación dividida que permite la incorporación de codones definidos en posiciones deseables en la síntesis. Otra alternativa más para obtener enlazadores de doble cadena aleatorizados es incorporando conjuntos aleatorizados de bloques de construcción de trinucleótidos utilizando ligaduras y restricciones del ADN bicatenario construido posteriormente.

En una realización de la presente descripción, se proporciona un polipéptido que tiene afinidad para una diana predeterminada. En una de tales realizaciones, los restos de aminoácidos que confieren especificidad de unión a la diana son los de las posiciones correspondientes a las posiciones 2, 3, 4, 6, 7, 10, 11, 17, 18, 20, 21, 25 y 28 en la secuencia i) anterior. Del mismo modo, en un polipéptido así, los restos de aminoácidos que no confieren especificidad de unión a la diana se denominan "aminoácidos de andamiaje" o simplemente "andamiaje". Por consiguiente, en una realización, los restos de aminoácidos de andamiaje como se definen en este documento son los de las posiciones correspondientes a las posiciones 1, 5, 8, 9, 12-15, 19, 22-24, 27, 31, 33-34, 37-38, 40-44 y 48 en la secuencia i) anterior. Un experto en la técnica apreciará que las propiedades ventajosas conferidas por los aminoácidos de los polipéptidos como se definen en el presente documento son independientes de la especificidad de unión con la diana de dicho polipéptido.

Como apreciará el experto en la técnica, la función de cualquier polipéptido, tal como el polipéptido de la presente descripción, depende de la estructura terciaria de dicho polipéptido. Por tanto es posible realizar cambios menores en la secuencia de aminoácidos de un polipéptido sin afectar a la función de los mismos. Por lo tanto, la descripción abarca variantes modificadas de dicho polipéptido que no alteran las propiedades funcionales del polipéptido, tales como su estabilidad mejorada y/o su afinidad de unión por una diana predeterminada.

De esta forma, la presente descripción también abarca un polipéptido que comprende una secuencia de aminoácidos con 91% de identidad, o más, con una secuencia definida en i). En algunas realizaciones, el polipéptido puede comprender una secuencia que es al menos el 93%, tal como al menos el 95%, tal como al menos el 97% idéntica a la secuencia definida en i).

En algunas realizaciones, tales diferencias entre las definiciones de secuencia i) y ii) pueden encontrarse en cualquier posición de la secuencia del polipéptido como se describe en el presente documento. En otras realizaciones, dichos cambios se pueden encontrar tan solo en los restos de aminoácidos del andamiaje. En otras realizaciones, los cambios pueden encontrarse solo en los restos de aminoácidos que confieren especificidad de unión a la diana. Por ejemplo, es posible que un resto de aminoácido que pertenece a un cierto grupo funcional de restos de aminoácidos (por ejemplo, hidrófobo, hidrófilo, polar, etc.) pueda intercambiarse por otro resto de aminoácido del mismo grupo funcional.

La expresión "% de identidad", tal como se utiliza en toda la especificación, se puede calcular, por ejemplo, de la manera que sigue. La secuencia problema se alinea con la secuencia diana utilizando el algoritmo CLUSTAL W (Thompson et al, Nucleic Acids Research, 22: 4673-4680 (1994)). Se hace una comparación sobre la ventana correspondiente a una de las secuencias alineadas, por ejemplo la más corta. En algunos casos la ventana puede definirse por la secuencia diana. En otros casos, la ventana puede definirse por la secuencia problema. Se comparan los restos de aminoácidos en cada posición, y el porcentaje de posiciones en la secuencia problema que tienen correspondencias idénticas en la secuencia objetivo se reporta como "% de identidad".

Cuando se usan como andamios para polipéptidos de unión, las secuencias descritas en este documento proporcionan ventajas en comparación con andamios similares conocidos, y se han diseñado para mostrar una alta estabilidad estructural y, por tanto, una mejor vida útil de almacenamiento. Estas ventajas también se aplican al tercer aspecto de la divulgación (véase más adelante), que se relaciona con las poblaciones de las variantes de polipéptido de este primer aspecto.

En una realización de la presente descripción, X₁₆ es T.

En una realización, X₂₆ es K.

5

20

25

30 En una realización, X₂₉X₃₀PX₃₂ es DDPS.

En una realización, X₂₉X₃₀PX₃₂ es RQPE.

En una realización, X₃₅ es S.

En una realización, X₃₆ es E.

En una realización, X₃₉ es S.

35 En una realización, X_{45} se selecciona entre E y S.

En una realización, X₄₅ es E.

En una realización, X₄₅ es S.

En una realización, X₄₆ se selecciona entre E y S.

En una realización, X₄₆ es E.

40 En una realización, X₄₆ es S.

En una realización, X₄₆ es D.

En una realización, X₄₆ no es D o E cuando X₄₅ es N.

En una realización, X₄₅X₄₆ se selecciona entre EE, ES, SE y SS, tal como de ES y SE.

En una realización, X₄₅X₄₆ es ES.

45 En una realización, X₄₅X₄₆ es SE.

En una realización, X₄₅X₄₆ es SD.

En una realización, X₄₇ es S.

10

15

20

25

35

40

50

55

La expresión "afinidad de unión para una diana predeterminada", como se usa en esta memoria, se refiere a una propiedad de un polipéptido que se puede probar, por ejemplo, mediante el uso de tecnología de resonancia de plasmones superficiales (SPR). Por ejemplo, dicha afinidad de unión se puede probar en un experimento en el que la diana predeterminada, o un fragmento de la misma, se inmoviliza en un *chip* sensor del instrumento, y la muestra que contiene el polipéptido a analizar se pasa sobre el *chip*. Alternativamente, el polipéptido a probar se inmoviliza en un *chip* sensor del instrumento, y una muestra que contiene el objetivo predeterminado, o un fragmento del mismo, se pasa sobre el *chip*. El profesional experto en la materia puede interpretar entonces los resultados obtenidos por tales experimentos para establecer al menos una medida cualitativa de la afinidad de unión del polipéptido por la diana predeterminada. Si se desea una medida cuantitativa, por ejemplo, para determinar un valor de K_D para la interacción, también se pueden usar métodos de resonancia de plasmones superficiales. Los valores de unión pueden definirse, por ejemplo, en un instrumento Biacore (GE Healthcare) o ProteOn XPR 36 (Bio-Rad). La diana predeterminada se inmoviliza adecuadamente en un *chip* sensor del instrumento, y se preparan las muestras del polipéptido cuya afinidad se va a determinar mediante dilución en serie y se inyectan por orden aleatorio. Los valores K_D se pueden calcular entonces a partir de los resultados utilizando, por ejemplo, el modelo de enlace de Langmuir 1:1 del software BIAevaluation 4.1, u otro software adecuado, proporcionado por el fabricante del instrumento.

La expresión "afinidad de unión para una diana predeterminada", como se usa en este documento, puede también referirse a una propiedad de un polipéptido que puede analizarse, por ejemplo, mediante ELISA. Por ejemplo, la afinidad de unión se puede probar en un experimento en el que las muestras del polipéptido se capturan en placas de ELISA recubiertas con anticuerpo y diana predeterminada biotinilada, o un fragmento de las mismas, seguido de HRP conjugada con estreptavidina. Se agrega el sustrato TMB y se mide la absorbancia a 450 nm utilizando un lector de placas de pocillos múltiples, como Victor³ (Perkin Elmer). El profesional experto en la materia puede interpretar los resultados obtenidos por tales experimentos para establecer al menos una medida cualitativa de la afinidad de unión del complejo por el objetivo predeterminado. Si se desea una medida cuantitativa, por ejemplo para determinar el valor de EC50 (la concentración efectiva máxima mitad) para la interacción, también se puede usar ELISA. La respuesta del polipéptido frente a una serie de dilución de la diana predeterminada, o un fragmento de la misma, se mide utilizando ELISA como se describe anteriormente. El experto en la materia puede interpretar entonces los resultados obtenidos por tales experimentos, y los valores de EC50 pueden calcularse a partir de los resultados utilizando, por ejemplo, GraphPad Prism 5 y regresión no lineal.

30 Como se describió anteriormente, se cree que los polipéptidos variantes Z constituyen o forman parte de un dominio de proteína de haz de tres hélices (thri-hélix bundle protein), el motivo que tiene afinidad para una diana predeterminada que esencialmente forma parte de dos hélices alfa con un bucle de interconexión, dentro de dicho dominio de proteína de haz de tres hélices.

Se pueden realizar diferentes modificaciones y/o adiciones al polipéptido como se definió anteriormente con el fin de adaptar el polipéptido al uso específico pretendido, sin apartarse del alcance de la presente invención.

Dichas modificaciones y adiciones se describen con más detalle a continuación, y pueden comprender aminoácidos adicionales comprendidos en la misma cadena polipeptídica, o marcadores y/o agentes terapéuticos que están conjugados químicamente o unidos de otra forma al polipéptido.

Por tanto, en una realización se proporciona un polipéptido como se describe anteriormente que comprende restos de aminoácidos adicionales. En algunas realizaciones, los restos de aminoácidos adicionales pueden localizarse en el extremo C del polipéptido. En algunas realizaciones, los restos de aminoácidos adicionales pueden localizarse en el extremo N del polipéptido.

En una realización, dichos restos de aminoácidos adicionales en el extremo C comprenden AP.

En una realización, dichos restos de aminoácidos adicionales en el extremo N comprenden AEAKYAK.

45 En otra realización más, se proporciona un polipéptido como se describe anteriormente, que consiste en la secuencia de i) o ii) que tiene de 0 a 7 restos de aminoácido adicionales en el extremo N-terminal y de 0 a 3 restos aminoácido adicionales en el extremo C.

Los restos de aminoácidos adicionales pueden desempeñar un papel en la unión del polipéptido, pero igualmente pueden servir para otros fines relacionados, por ejemplo, con uno o más entre la producción, la purificación, la estabilización, el acoplamiento o la detección del polipéptido. En algunas realizaciones, dichos restos de aminoácidos adicionales constituyen uno o más dominios de polipéptidos.

Tales restos de aminoácidos adicionales pueden comprender uno o más restos de aminoácidos añadidos con el propósito de acoplamiento químico. Un ejemplo de esto es la adición de un resto de cisteína en la primera o en la última posición en la cadena polipeptídica, es decir, en el extremo N- o C-terminal. También se puede introducir un resto de cisteína a usar para el acoplamiento químico mediante el reemplazo de otro aminoácido en la superficie del dominio de la proteína, preferiblemente en una porción de la superficie que no está implicada en la unión a la diana. Tales restos de aminoácidos adicionales también pueden comprender una "etiqueta" para la purificación o la detección

del polipéptido, tal como una etiqueta de hexahistidilo (His6), o una etiqueta "myc" o una etiqueta "FLAG" para la interacción con anticuerpos específicos a la etiqueta. Los profesionales expertos están al tanto de otras alternativas.

Los "restos de aminoácidos adicionales" discutidos anteriormente también pueden constituir uno o más dominios polipeptídicos con cualquier función deseada, tal como otra función de unión, o una función de extensión de la vida mitad, o una función enzimática, o una función quelante de iones metálicos, o una función fluorescente, o cualquier combinación de los mismos.

En un ejemplo de realización, se proporciona un compuesto que tiene afinidad para una diana predeterminada, comprendiendo dicho compuesto:

- a) al menos un polipéptido como se definió anteriormente;
- b) al menos un dominio de unión a la albúmina de la proteína G estreptocócica, o un derivado de la misma; y
 - c) opcionalmente, al menos un resto enlazador para unir dicho al menos un dominio de unión a la albúmina o un derivado del mismo al extremo C o N de dicho al menos un polipéptido.

Los ejemplos no limitantes de derivados del dominio de unión a albúmina de la proteína G estreptocócica se describen en los documentos WO2009/016043 y WO2012/004384.

También, en otra realización, se proporciona un polipéptido como se define anteriormente, que comprende una secuencia de aminoácidos seleccionada entre:

YAK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀ X₂₁AFIX₂₅X₂₆LX₂₈X₂₉X₃₀

 $PX_{32}QSX_{35}X_{36}LLX_{39}E$ AKKLX₄₅X₄₆X₄₇Q AP; y

FNK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀ X₂₁AFIX₂₅X₂₆LX₂₈X₂₉X₃₀

 $20 \qquad \mathsf{PX}_{32} \mathsf{QSX}_{35} \mathsf{X}_{36} \mathsf{LLX}_{39} \mathsf{E} \; \mathsf{AKKLX}_{45} \mathsf{X}_{46} \mathsf{X}_{47} \mathsf{Q} \; \mathsf{AP}$

5

10

40

en donde cada X_y se define como anteriormente (e y señala la posición de aminoácido del resto X dentro de la secuencia de polipéptido definida por i) anteriormente).

En algunas realizaciones, se proporciona un polipéptido, que comprende una secuencia de aminoácidos seleccionada entre

25 ADNNFNK $EX_2X_3X_4AX_6X_7EIX_{10} X_{11}LPNLX_{16}X_{17}X_{18}QX_{20}$

 $X_{21}AFIX_{25}X_{26}LX_{28}X_{29}X_{30}\ PX_{32}QSX_{35}X_{36}LLX_{39}E\ AKKLX_{45}X_{46}X_{47}Q\ APK;$

ADNKFNK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀

X₂₁AFIX₂₅X₂₆LX₂₈X₂₉X₃₀ PX₃₂QSX₃₅X₃₆LLX₃₉E AKKLX₄₅X₄₆X₄₇Q APK;

VDNKFNK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀

 $30 \qquad X_{21} A F I X_{25} X_{26} L X_{28} X_{29} X_{30} \ P X_{32} Q S X_{35} X_{36} L L X_{39} E \ A K K L X_{45} X_{46} X_{47} Q \ A P K;$

VDAKIAK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀

 $X_{21}AFIX_{25}X_{26}LX_{28}X_{29}X_{30}$ PX₃₂QSX₃₅X₃₆LLX₃₉E AKKLX₄₅X₄₆X₄₇Q APK; y

AEAKIAK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀

X₂₁AFIX₂₅X₂₆LX₂₈X₂₉X₃₀ PX₃₂QSX₃₅X₃₆LLX₃₉E AKKLX₄₅X₄₆X₄₇Q APK;

en donde X_y se define como se describió anteriormente (e y denota la posición de aminoácido del resto X dentro de la secuencia polipeptídica definida por i) más arriba).

Las variantes de polipéptido descritas en el presente documento pueden generarse tomando un polipéptido variante Z, por ejemplo basado en un andamiaje conocido y que tenga afinidad para una diana dada, y realizando una mutagénesis dirigida al sitio en posiciones seleccionadas para obtener un polipéptido que tenga un andamio según el presente descripción, reteniendo la afinidad de la diana. Alternativamente, un polipéptido de acuerdo con la presente descripción puede hacerse mediante síntesis química de la molécula completa o usando otros métodos de biología molecular, conocidos por los expertos en la técnica, para injertar el motivo de unión de un polipéptido variante Z en el andamio descrito en el presente texto.

Como ilustración general, polipéptidos de la variante Z originales que comprenden la siguiente secuencia de andamiaje común y que tienen una especificidad de unión definida por la secuencia de aminoácidos dentro de un motivo de unión [BM]:

AEAKYAK- [BM] -DDPSQSSELL SEAKKLNDSQ APK

puede modificarse para proporcionar un polipéptido como se describe en el presente documento.

En varias realizaciones específicas de este aspecto de la descripción, se proporcionan los siguientes polipéptidos:

AEAKYAK- [BM] -RQPEQSSELL SEAKKLNDSQ APK

AEAKYAK- [BM] -DDPSQSSELL SEAKKLSESQ APK

5

10

15

40

50

AEAKYAK- [BM] -DDPSQSSELL SEAKKLESSQ APK

AEAKYAK- [BM] -DDPSQSSELL SEAKKLSDSQ APK

AEAKYAK- [BM] -DDPSQSSELL SEAKKLNESQ APK

AEAKYAK- [BM] -RQPEQSSELL SEAKKLSESQ APK

AEAKYAK- [BM] -RQPEQSSELL SEAKKLESSQ APK

AEAKYAK- [BM] -RQPEQSSELL SEAKKLSDSQ APK

AEAKYAK- [BM] -RQPEQSSELL SEAKKLNSSQ APK

Los polipéptidos descritos en el presente documento tienen muchas aplicaciones, por ejemplo, aplicaciones de importancia terapéutica, de diagnóstico o de pronóstico para una enfermedad. Una lista no limitante de enfermedades, en la que dichos polipéptidos pueden encontrar un uso terapéutico, de diagnóstico o de pronóstico, incluye cáncer, enfermedades inflamatorias, enfermedades autoinmunes, enfermedades infecciosas, enfermedades neurológicas, enfermedades neurológicas, enfermedades neurológicas, enfermedades del tracto gastrointestinal, enfermedades cardiovasculares, enfermedades hematológicas, enfermedades dermatológicas, alergias y otras.

Así pues, en una realización se proporciona un polipéptido con afinidad para una diana predeterminada. En realizaciones más específicas, dicha diana se selecciona entre el grupo que consiste en HER2, TNFa, EGFR, IGF1R, IgG, PDGFRβ, HER3, C5, FcRn, CAIX, amiloide β, CD4, IL8, IL6 e insulina. En otras realizaciones, dicho polipéptido puede ser usado en aplicaciones biotecnológicas, industriales y farmacéuticas, por ejemplo el uso como un ligando de afinidad en tecnología de separación, aplicaciones de purificación o como agente de detección. En una realización más específica de este tipo, la diana predeterminada puede ser un dominio de unión con la albúmina ("ABD" o "módulo GA") de la proteína G estreptocócica, o un derivado de la misma.

El profesional experto en la materia apreciará que la lista de objetivos predeterminados debe considerarse no limitante, y que los polipéptidos como se definen en este documento con afinidad por otras dianas predeterminadas están dentro del alcance de la presente descripción.

Los ejemplos no limitantes de polipéptidos variantes Z conocidos, basados en un andamio conocido y que tienen afinidad por diferentes dianas, son variantes Z con afinidad por el receptor de EGF (descrito en el documento WO2007/065635), para el receptor HER2 (descrito en el documento WO2009/080810), para el receptor HER3 (descrito en el documento WO2010/056124), para el receptor IGF1 (descrito en el documento WO2009/019117), para el receptor β PDGF (descrito en el documento WO2009/077175), para el dominio de unión a la albúmina (ABD)
 (descrito en el documento WO2014/064237), para el receptor de Fc neonatal (FcRn) (descrito en PCT/EP2014/055299) y para la anhidrasa carbónica IX (descrito en el documento WO2014/096163). Téngase en cuenta, para mayor claridad, que en la presente descripción un motivo de unión de la variante Z [BM] corresponde a los primeros 28 restos de aminoácidos de los motivos de unión descritos en los documentos enumerados anteriormente, en los que las definiciones de motivos de unión son 29 restos de aminoácidos y corresponden a los

restos de aminoácidos en las posiciones correspondientes a las posiciones 1-29 de la secuencia i) anterior.

En una realización, se proporciona un polipéptido con afinidad para una diana predeterminada, que comprende además una etiqueta, tal como una etiqueta seleccionada entre el grupo que consiste en tintes fluorescentes y metales, colorantes cromóforos, compuestos quimioluminiscentes y proteínas bioluminiscentes, enzimas, radionucleidos y partículas. Tales etiquetas pueden usarse, por ejemplo, para la detección del polipéptido.

45 En algunas realizaciones, el polipéptido está presente como resto en un polipéptido de fusión o conjugado que también comprende un segundo resto que tiene una actividad biológica deseada. Los ejemplos no limitantes de dicha actividad biológica deseada comprenden una actividad terapéutica, una actividad de unión y una actividad enzimática.

En algunas realizaciones, dicho resto comprende además un marcador. En algunos casos, el marcador se puede acoplar solo al polipéptido con afinidad para una diana predeterminada, y en algunos casos tanto al polipéptido con afinidad para una diana predeterminada como al segundo resto del conjugado o polipéptido de fusión. Además, también es posible que el marcador se pueda acoplar solo a un segundo resto y no al polipéptido con afinidad para

una diana predeterminada. Por lo tanto, en otra realización más se proporciona un polipéptido con afinidad para una diana predeterminada que comprende un segundo resto, en el que dicho marcador está acoplado solamente al segundo resto.

En la presente memoria, los polipéptidos o los polipéptidos de fusión se pueden usar como reactivos de detección, reactivos de captura, como reactivos de separación, como agentes de diagnóstico para diagnóstico *in vivo* o *in vitro*, o como agentes terapéuticos. Los métodos que emplean los polipéptidos o los polipéptidos de fusión de acuerdo con la presente descripción *in vitro* pueden realizarse en diferentes formatos, tales como en placas de microtitulación, en matrices de proteínas, en superficies de biosensores, en secciones de tejido, etc.

También debe entenderse que el polipéptido o los polipéptidos de fusión de acuerdo con la presente descripción pueden ser útiles como agentes terapéuticos, de diagnóstico o de pronóstico, por sí mismos o como un medio para dirigirse a otros agentes terapéuticos, de diagnóstico o de pronóstico, por ejemplo con efectos directos o indirectos sobre dicha diana. Se puede conseguir un efecto terapéutico directo, por ejemplo, inhibiendo la señalización por dicha diana. Dicho objetivo también puede servir como marcador valioso para predecir el pronóstico de ciertas enfermedades (por ejemplo, las enfermedades listadas anteriormente).

Por lo tanto, en una realización se proporciona un polipéptido o un polipéptido de fusión como se describe en el presente documento para uso en terapia o para uso como agente de diagnóstico. En otra realización, dicho polipéptido o polipéptido de fusión comprende además un agente terapéutico. Los ejemplos no limitantes de dichos agentes terapéuticos son un agente terapéutico que potencia el efecto de dicho polipéptido o polipéptido de fusión, un agente terapéutico que actúa en sinergia con dicho polipéptido o polipéptido de fusión, y un agente terapéutico que afecta a un aspecto diferente de la enfermedad a tratar. También se contemplan composiciones farmacéuticas que comprenden polipéptidos como se describe en el presente documento, solos o junto con otros agentes terapéuticos.

En un segundo aspecto de la presente descripción, se proporciona un polinucleótido que codifica un polipéptido o un polipéptido de fusión como se describe en el presente documento. Esta descripción abarca también un método para producir un polipéptido o un polipéptido de fusión como se describió anteriormente que comprende la expresión de tal polinucleótido; un vector de expresión que comprende el polinucleótido; y una célula hospedadora que comprende dicho vector de expresión.

En un tercer aspecto de la presente descripción, se proporciona una población de variantes de polipéptido basada en un andamio común, comprendiendo cada polipéptido de la población una secuencia de aminoácidos seleccionada entre:

30 i) $EX_2X_3X_4AX_6X_7EIX_{10}X_{11}LPNLX_{16}X_{17}X_{18}QX_{20}X_{21}AFIX_{25}X_{26}LX_{28}X_{29}X_{30}$

PX₃₂QSX₃₅X₃₆LLX₃₉E AKKLX₄₅X₄₆X₄₇Q;

en donde cada uno de X_2 , X_3 , X_4 , X_6 , X_7 , X_{10} , X_{11} , X_{17} , X_{18} , X_{20} , X_{21} , X_{25} y X_{28} corresponde independientemente a cualquier resto de aminoácido; y

en donde, independientemente entre ellos,

35 X₁₆ se selecciona entre N y T;

25

45

50

X₂₆ se selecciona entre K y S;

X₂₉X₃₀PX₃₂ se selecciona entre DDPS y RQPE;

X₃₅ se selecciona entre A y S;

X₃₆ se selecciona entre E y N;

40 X₃₉ se selecciona entre A, C y S;

X₄₅ se selecciona entre E, N y S;

X₄₆ se selecciona entre D, E y S;

X₄₇ se selecciona entre A y S; y

ii) una secuencia de aminoácidos que tiene al menos 91% de identidad con la secuencia definida en i), siempre y cuando X_{46} no sea D cuando X_{45} es N.

En la secuencia i) anterior, cada uno de X_2 , X_3 , X_4 , X_6 , X_7 , X_{10} , X_{11} , X_{17} , X_{18} , X_{20} , X_{21} , X_{25} y X_{28} corresponde individualmente a un resto de aminoácido que varía en la población. Por lo tanto, cada uno de dichos restos de aminoácidos puede ser cualquier resto de aminoácido independientemente de la identidad de cualquier otro resto indicado como X_y en la secuencia, como se explicó anteriormente en relación con el primer aspecto (polipéptido) de la descripción. Las opciones no limitantes para los restos de aminoácidos específicos X_y en la población de

polipéptidos, y para cualquier resto de aminoácidos adicionales en cualquiera de los extremos de la secuencia i) o ii), son las mismas que las listadas anteriormente como realizaciones del primer aspecto de la descripción.

Como se discutió anteriormente, los polipéptidos que comprenden cambios menores en comparación con las secuencias de aminoácidos anteriores sin afectar en gran medida a la estructura terciaria y su función, también están dentro del alcance de la presente descripción. Por lo tanto, la presente descripción también abarca una población de variantes de polipéptido basadas en un andamio común, en donde cada polipéptido de la población comprende una secuencia de aminoácidos con una identidad 91% o más con una secuencia como se define en i). En algunas realizaciones, cada polipéptido puede comprender una secuencia que es al menos el 93%, tal como al menos el 95%, tal como al menos el 97% idéntica a la secuencia definida en i).

La población definida en el presente texto consiste en un gran número de variantes únicas y diferentes de las moléculas de polipéptidos definidas. En este contexto, un gran número puede significar, por ejemplo, que la población comprende al menos 1 x 10⁴ moléculas polipeptídicas únicas, o al menos 1 x 10⁶, al menos 1 x 10⁸, al menos 1 x 10¹⁰, o al menos 1 x 10¹⁴ moléculas polipeptídicas únicas. Como apreciará un experto en la técnica, es necesario utilizar un grupo que sea lo suficientemente grande como para proporcionar el tamaño de la población deseado. La "población" descrita en este documento también se puede indicar como "biblioteca".

Un profesional experto apreciará que la población como se describe en el presente documento puede ser útil como biblioteca para la selección de nuevas moléculas de unión basadas en el polipéptido definido en i). Es bien sabido en la técnica que las moléculas de unión pueden aislarse de una población (o biblioteca) de polipéptidos aleatorizados. Esta tecnología se describe en términos generales en la publicación PCT WO95/19374, en Nord et al (1997) Nature Biotechnology 15: 772-777 y en WO2009/080811, y se ha aplicado con éxito para seleccionar moléculas de unión basadas en un andamio de dominio Z común contra una variedad de moléculas diana a través de la variación aleatoria de trece posiciones diferentes de unión a dianas y la posterior selección de aglutinantes de interés en una presentación de fago u otro sistema de selección basado en el acoplamiento genotipo-fenotipo. La población como se describe en este documento es una población de variantes de polipéptidos que exhiben propiedades mejoradas, en particular en términos de estabilidad, en comparación con las poblaciones en la técnica anterior. Los ejemplos de variantes Z aisladas de una población (o biblioteca) de polipéptidos aleatorizados incluyen variantes Z con afinidad por el receptor de EGF (descrito en WO2007/065635), por el receptor de HER2 (descrito en WO2009/080810), por el receptor de HER3 (descrito en WO2009/077175), por el receptor de IGF1 (descrito en WO2009/019117), por el receptor Fc neonatal (FcRn) (descrito en PCT/EP2014/055299) y para anhidrasa carbónica IX (descrito en WO2014/096163).

20

25

30

45

50

55

En un cuarto aspecto de la presente descripción, se proporciona una población de polinucleótidos. Cada polinucleótido de esta población codifica un miembro de una población de polipéptidos como se definió anteriormente en relación con el tercer aspecto.

En un quinto aspecto de la presente descripción, se proporciona una combinación de una población de polipéptidos según el tercer aspecto y una población de polinucleótidos de acuerdo con el cuarto, en la que cada miembro de la población de polipéptidos está asociado física o espacialmente con un polinucleótido correspondiente que codifica ese miembro a través de medios para el acoplamiento genotipo-fenotipo. Esta asociación física o espacial será más o menos estricta, dependiendo del sistema utilizado.

Los medios para el acoplamiento genotipo-fenotipo pueden comprender un sistema de presentación de fagos. Los sistemas de presentación de fagos son bien conocidos por los expertos y se describen, por ejemplo, en Smith GP (1985) Science 228: 1315-1317 y Barbas CF et al (1991) Proc Natl Acad Sci USA 88: 7978-7982.

Además, los medios para el acoplamiento genotipo-fenotipo pueden comprender un sistema de presentación de la superficie celular. El sistema de presentación de la superficie celular puede comprender células procariotas, tales como células gram-positivas, o células eucariotas, tales como células de levadura. Los sistemas de presentación de la superficie celular son bien conocidos por los expertos. Los sistemas procarióticos se describen, por ejemplo, en Francisco JA et al (1993) Proc Natl Acad Sci USA 90: 10444-10448 y Lee SY et al. (2003) Trends Biotechnol 21: 45-52. Los sistemas eucariotas se describen, por ejemplo, en Boder ET et al (1997) Nat Biotechnol 15: 553-557 y Gai SA et al. (2007) Curr Opin Struct Biol 17: 467-473. En una realización, dicho acoplamiento genotipo-fenotipo puede comprender un sistema de presentación de fagos.

Además, los medios para el acoplamiento genotipo-fenotipo pueden comprender un sistema de presentación libre de células. El sistema de presentación libre de células puede comprender un sistema de presentación de ribosomas, o un sistema de presentación de compartimentación *in vitro*, o un sistema de presentación *cis*, o un sistema de presentación de microesferas. Los sistemas de presentación de ribosomas son bien conocidos por los expertos, y se describen, por ejemplo, en Mattheakis LC et al (1994) Proc Natl Acad Sci USA 91: 9022-9026 y Zahnd C et al (2007) Nat Methods 4: 269-279. Los sistemas de compartimentación *in vitro* son bien conocidos por los expertos, y se describen, por ejemplo, en Sepp A et al (2002) FEBS Lett 532: 455-458. Los sistemas de presentación *Cis* son bien conocidos por los expertos, y se describen, por ejemplo, en Odegrip R et al (2004) Proc Natl Acad Sci USA 101: 2806-2810. Los sistemas de presentación de microperlas son bien conocidos por los expertos, y se describen, por ejemplo, en Nord O et al (2003) J Biotechnol 106: 1-13.

Además, los medios para el acoplamiento genotipo-fenotipo pueden comprender un sistema sin presentación tal como el ensayo de complementación de fragmentos de proteínas (PCA). Los sistemas de PCA son bien conocidos por los expertos, y se describen, por ejemplo, en Koch H et al. (2006) J Mol Biol 357: 427-441.

En un sexto aspecto de la presente descripción, se proporciona un método para seleccionar un polipéptido deseado que tiene afinidad para una diana predeterminada de una población de polipéptidos, que comprende las etapas de:

(a) proporcionar una población de polipéptidos según el tercer aspecto;

5

10

15

35

40

45

50

- (b) poner en contacto la población de polipéptidos con la diana predeterminada en condiciones que permitan una interacción específica entre la diana y al menos un polipéptido deseado que tenga afinidad por la diana; y
- (c) seleccionar, sobre la base de dicha interacción específica, el al menos un polipéptido deseado del resto de la población de polipéptidos.

A continuación, este método se denomina "método de selección" de acuerdo con la descripción.

La etapa (a) puede comprender las etapas preparatorias de proporcionar una población de polinucleótidos y expresar dicha población de polinucleótidos para producir dicha población de polipéptidos. Los medios para producir una población de polipéptidos varían dependiendo del sistema de presentación utilizado y pueden encontrarse ejemplos de tales medios en las referencias de genotipo-fenotipo anteriores. Cada miembro de dicha población de polipéptidos utilizado en el método de selección puede asociarse físicamente con el polinucleótido que codifica ese miembro a través de medios para el acoplamiento genotipo-fenotipo. Los medios para el acoplamiento genotipo-fenotipo pueden ser uno de los descritos anteriormente.

La etapa (b) comprende las fases de poner la población de polipéptidos en contacto con la diana predeterminada en condiciones que permiten la interacción específica entre la diana y al menos un polipéptido deseado que tiene una afinidad por la diana. El margen de condiciones aplicables viene determinado por la robustez de la diana, la robustez del sistema de presentación y las propiedades deseadas de la interacción con la diana. Por ejemplo, puede desearse un método específico para separar la interacción, tal como la acidificación a un pH predeterminado. El experto en la técnica sabe qué experimentos se requieren para determinar las condiciones adecuadas.

La etapa (c) comprende la selección de al menos un polipéptido. Los medios para la selección del polipéptido deseado entre la población restante, en función de la interacción específica entre la diana predeterminada y al menos un polipéptido deseado que tiene afinidad por la diana, varían según el sistema de presentación utilizado y se pueden encontrar en las referencias de genotipo-fenotipo anteriores. Por ejemplo, los sistemas de selección de presentación in vitro están libres de células en contraste con sistemas como la presentación de fagos y el ensayo de compartimentación de fragmentos de proteínas.

En un séptimo aspecto de la presente descripción, se proporciona un método para aislar un polinucleótido que codifica un polipéptido deseado que tiene afinidad para una diana predeterminada, que comprende las etapas de:

- seleccionar dicho polipéptido deseado y el polinucleótido que lo codifica, entre una población de polipéptidos, usando el método de selección de acuerdo con el sexto aspecto; y
- aislar el polinucleótido así separado que codifica el polipéptido deseado.

A continuación, este método se denomina "método de aislamiento" de acuerdo con la descripción.

La separación del polinucleótido del polipéptido se puede hacer de manera diferente dependiendo del sistema de presentación utilizado para la selección. Por ejemplo, en los sistemas de presentación sin células, tales como la presentación *cis* y la presentación de ribosoma, el polinucleótido o el correspondiente mRNA se recupera mediante una elución eficiente del polipéptido utilizando los medios descritos en las referencias de genotipo-fenotipo anteriores.

El aislamiento del polinucleótido puede realizarse por diferentes métodos dependiendo del sistema de presentación utilizado para la selección. En la mayor parte de los sistemas de selección descritos anteriormente, por ejemplo el ensayo de complementación de fragmentos de proteínas, el polinucleótido puede aislarse directamente mediante amplificación por PCR específica utilizando los oligonucleótidos apropiados. Además, como en la presentación de ribosomas, el polinucleótido puede aislarse del mRNA correspondiente mediante transcripción inversa. Los diversos medios para el aislamiento del polinucleótido se pueden encontrar en las referencias genotipo-fenotipo anteriores.

En un octavo aspecto de la presente descripción, se proporciona un método para identificar un polipéptido deseado que tiene afinidad para una diana predeterminada, que comprende las etapas de:

- aislar un polinucleótido que codifica dicho polipéptido deseado usando el método de aislamiento de acuerdo con el séptimo aspecto; y
 - secuenciar el polinucleótido para establecer por deducción la secuencia de aminoácidos de dicho polipéptido deseado.

La secuenciación del polinucleótido se puede realizar de acuerdo con procedimientos estándar bien conocidos por los expertos en la materia.

En un noveno aspecto de la presente descripción, se proporciona un método para seleccionar e identificar un polipéptido deseado que tiene una afinidad para una diana predeterminada de una población de polipéptidos, que comprende las etapas de:

- (a) sintetizar cada miembro de una población de polipéptidos de acuerdo con el tercer aspecto en un soporte o esfera separados;
- (b) seleccionar o enriquecer los portadores o esferas basándose en la interacción del polipéptido con la diana predeterminada; y
- (c) identificar el polipéptido mediante la metodología de caracterización de proteínas.

En el paso (c), es posible, por ejemplo, utilizar el análisis espectrométrico de masas.

A continuación, este método se denomina "método de selección e identificación" de acuerdo con la descripción.

En un décimo aspecto de la presente descripción, se proporciona un método para la producción de un polipéptido deseado que tiene una afinidad para una diana predeterminada, que comprende las etapas:

- seleccionar e identificar un polipéptido deseado usando el método de selección de acuerdo con el sexto aspecto o el método de selección e identificación de acuerdo con el noveno aspecto; y
 - producir dicho polipéptido deseado.

5

10

25

40

A continuación, este método se denomina "método de producción" de acuerdo con la descripción.

En el método de producción, la producción se puede llevar a cabo utilizando la expresión recombinante de un polinucleótido que codifica el polipéptido deseado. La producción también se puede llevar a cabo usando síntesis química del polipéptido *de novo* deseado.

En un undécimo aspecto de la presente descripción, se proporciona un método para la producción de un polipéptido deseado que tiene una afinidad para una diana predeterminada, que comprende las etapas:

- (a1) aislar un polinucleótido que codifica dicho polipéptido deseado usando el método de aislamiento de acuerdo con el séptimo aspecto; o
 - (a2) retrotraducción de un polipéptido identificado utilizando el método de selección e identificación de acuerdo con el noveno aspecto; y
 - (b) expresar el polinucleótido así aislado para producir dicho polipéptido deseado,

en donde la etapa (b) se realiza después de la etapa (a1) o la etapa (a2).

Los polipéptidos, las poblaciones y los métodos de acuerdo con la descripción permiten la provisión de agentes con una afinidad para una diana predeterminada, a través de la provisión de un polipéptido que se caracteriza por la unión específica a la diana predeterminada.

También es posible proporcionar polipéptidos que se unen a una diana predeterminada que muestre poca o ninguna unión no específica.

También es posible proporcionar polipéptidos que se unen a una diana predeterminada que puede usarse fácilmente como un resto en un polipéptido de fusión.

También es posible proporcionar polipéptidos que se unen a una diana predeterminada que resuelvan uno o más de los problemas conocidos experimentados con los reactivos de anticuerpos existentes.

Además, es posible proporcionar polipéptidos que se unen a una diana predeterminada que se pueda usar en aplicaciones terapéuticas y/o diagnósticas.

También es posible proporcionar polipéptidos que se unen a una diana predeterminada que se preparan fácilmente mediante síntesis química de péptidos.

Además, la invención permite la identificación de polipéptidos que se unen a una diana predeterminada que muestran una estabilidad mejorada frente a agentes conocidos que se unen a la misma diana.

También es posible proporcionar polipéptidos que se unen a una diana predeterminada que exhibe una baja antigenicidad cuando se usan *in vivo* en un mamífero y/o que exhiben una biodistribución mejorada tras la administración a un mamífero.

Las modificaciones discutidas anteriormente para los polipéptidos que constituyen la población de acuerdo con la presente descripción también son aplicables a los polipéptidos obtenidos por cualquiera de los métodos mencionados anteriormente.

Los polipéptidos de acuerdo con la presente descripción pueden producirse por cualquier medio conocido, incluyendo síntesis o expresión química en diferentes huéspedes procariotas o eucariotas, incluyendo células bacterianas, células de levadura, células vegetales, células de insectos, plantas enteras y animales transgénicos.

Aunque los polipéptidos, las poblaciones de polipéptidos y los métodos de identificación, selección, aislamiento y producción descritos en el presente documento se han descrito con referencia a diversos aspectos y realizaciones ejemplares, los expertos en la técnica entenderán que pueden hacerse diversos cambios y pueden sustituirse por equivalentes los elementos de los mismos sin apartarse del alcance de la invención. Además, pueden hacerse muchas modificaciones para adaptar una situación o una molécula en particular a las enseñanzas de la invención sin apartarse del alcance esencial de la misma. Por tanto, se pretende que la descripción no quede limitada a ninguna realización particular contemplada, sino que incluya todas las realizaciones que estén dentro del alcance de las reivindicaciones adjuntas.

Breve descripción de las figuras

50

55

La Figura 1 es un listado de las secuencias de aminoácidos de ejemplos de un polipéptido como se describe en el 20 presente documento. Las secuencias de polipéptidos de variante Z de unión a C5 que en los Ejemplos 2-3 se muestra que tienen una estabilidad mejorada, se enumeran en la Figura 1 como SEC ID NO: 12, 17, 18 y 22, y las secuencias de las mismas que corresponden a la secuencia más corta definida en el presente texto se listan como SEC ID NO: 19-21. Las secuencias de aminoácidos de los polipéptidos de unión con C5 fusionados con los dominios de unión a la albúmina están en la Figura 1 con los identificadores de secuencia SEC ID NO: 4-11, 13-16 y 23-25. Las secuencias de polipéptidos de la variante Z con afinidad para HER2, PDGF-RB, FcRn y CAIX que en el Ejemplo 12 se muestra 25 que tienen estabilidad mejorada se listan como SEC ID NO: 28-29, SEC ID NO: 31-32, SEC ID NO: 34-35 y SEC ID NO: 37-42, respectivamente, junto con los correspondientes polipéptidos de control SEC ID NO: 27, 30, 33 y 36. Las secuencias de dichos polipéptidos de la variante Z con afinidad por HER2, PDGF-Rβ, FcRn y CAIX correspondientes a la secuencia más corta definida en el presente texto se listan como SEC ID NO: 43-54. Además, las secuencias de 30 aminoácidos de un polipéptido de unión a C5 control, el polipéptido de unión a C5 control fusionado a la albúmina, el dominio de unión a la albúmina y de C5 humano se listan como SEC ID NO: 26, 1, 2 y 3, respectivamente.

La Figura 2 es una imagen de un gel SDS-PAGE en el que el primer carril contiene el marcador de tamaño SeeBlue 2P y las bandas representan el polipéptido de unión con C5 PSI0242 (SEC ID NO: 1) (0) antes de la prueba de estabilidad; y (2w) después de una prueba de estabilidad de 2 semanas.

La Figura 3 es un cromatograma de HPLC de fase inversa de PSI0242 (SEC ID NO: 1) antes de la prueba de estabilidad (línea continua) y después de una prueba de estabilidad de 2 semanas (línea de puntos).

La Figura 4 es una imagen de un gel SDS-PAGE en el que el primer carril contiene marcador de tamaño SeeBlue 2P y las bandas representan (0) las muestras iniciales; y (2w) las muestras después de una prueba de estabilidad de 2 semanas. A: SEC ID NO: 1; B: SEC ID NO: 13; C: SEC ID NO: 14; D: SEC ID NO: 16.

40 La Figura 5 es un cromatograma de HPLC de fase inversa de un inhibidor de C5 modificado (SEC ID NO: 5) antes de la prueba de estabilidad (línea continua) y después de una prueba de estabilidad de 2 semanas (línea de puntos).

La Figura 6 es un cromatograma de HPLC de fase reversa de un inhibidor de C5 modificado (SEC ID NO: 16) antes de la prueba de estabilidad (línea continua) y después de una prueba de estabilidad de 2 semanas (línea de puntos).

La Figura 7 son espectros de CD recogidos para A: Z17351 (SEC ID NO: 37); B: Z17352 (SEC ID NO: 38); C: Z17355 (SEC ID NO: 39); D: Z17357 (SEC ID NO: 40); E: Z17359 (SEC ID NO: 41); F: Z17360 (SEC ID NO: 42); y G: Z09782 (SEC ID NO: 36).

La Figura 8 son imágenes de geles de SDS-PAGE que muestran polipéptidos originales y de la invención antes (0) y después (2w) de una prueba de estabilidad de 2 semanas. A: Polipéptidos dirigidos a HER2: carril 1: Mw, carril 2: Z02891 (0), carril 3: Z02891 (2w), carril 4: Mw, carril 5: Z17341 (0), carril 6: Z17341 (2w), carril 7: Z17342 (0), carril 8: Z17342 (2w); B: Polipéptidos dirigidos a PDGF- Rβ: carril 1: Mw, carril 2: Z15805 (0), carril 3: Z15805 (2w), carril 4: Mw, carril 5: Z17343 (0), carril 6: Z17343 (2w), carril 7: Z17344 (0), carril 8: Z17344 (2w); C: Polipéptidos dirigidos a FcRn: carril 1: Z10103 (0), carril 2: Z10103 (2w), carril 3: Mw, carril 4: Z17347 (0), carril 5: Z17347 (2w), carril 6: Z17348 (0), carril 7: Z17348 (2w); y D: Polipéptidos dirigidos a CAIX: carril 1: Mw, carril 2: Z09782 (0), carril 3: Z09782 (2w), carril 4: Mw, carril 5: Z17351 (0), carril 6: Z17351 (2w), carril 7: Z17352 (0), carril 8: Z17352 (2w); carril 9: Z17355 (0), carril 10: Z17355 (2w), carril 11: Z17357 (0), carril 12: Z17357 (2w), carril 13: Z17359 (0), carril 14: Z17359 (2w), carril 15: Z17360 (0), carril 16: Z17360 (2w). El marcador de tamaño molecular (Mw) fue el estándar de proteínas pre-teñidas

con Novex® Sharp (216, 160, 110, 80, 60, 50, 40, 30, 20, 15, 10, 3,5 kDa). (Las bandas diagonales que se observan en la Figura 8C son un artificio que resulta de una impresión de un segundo gel teñido en el mismo contenedor).

La Figura 9 muestra sensogramas de unión de variantes Z que comprenden las sustituciones de aminoácidos ND a SE en la posición 52-53 (negro) y variantes Z originales (gris) con afinidad para la misma diana después de una prueba de estabilidad de 2 semanas. A: Unión de Z017341 (SEC ID NO: 28) y Z02891 (SEC ID NO: 27) a HER2; B: unión de Z017343 (SEC ID NO: 31) y Z15805 (SEC ID NO: 30) a PDGF-Rβ; C: Unión de Z017347 (SEC ID NO: 34) y Z10130 (SEC ID) NO: 33) a FcRn y D: Unión de Z017351 (SEC ID NO: 37) y Z09782 (SEC ID NO: 36) a CAIX. Las concentraciones invectadas de cada variante Z fueron las que se describen en el Ejemplo 13.

Ejemplos

Los siguientes ejemplos describen nuevos polipéptidos de la variante Z que muestran una estabilidad mejorada. En este documento, las propiedades de los polipéptidos de la variante Z basadas en generaciones anteriores de andamiajes se compararon con los polipéptidos de la variante Z basados en el andamiaje descrito en el presente documento.

Ejemplo comparativo 1

15 Prueba de estabilidad de la variante Z de unión a C5 conocida

Una variante Z de unión a C5 designada como PSI0242 (SEC ID NO: 1) se formuló en NaP 25 mM/NaCl 125 mM pH 7,0 y se sometió a un estudio de estabilidad acelerada durante 2 semanas a 37 °C La estabilidad se midió por la aparición de nuevas variantes después de las pruebas de estabilidad realizadas mediante SDS-PAGE y HPLC en fase inversa (RPC). En ambos análisis, la muestra inicial y la sometida al estudio de estabilidad se desarrollaron en paralelo. Para la SDS-PAGE, se cargaron 7,5 µg de proteína en cada pocillo. La RPC se desarrolló en un equipo HPLC Agilent 1100 utilizando una fase móvil A que consiste en 0,1% de ácido trifluoroacético (TFA) en agua, y una fase móvil B que

consiste en 0,1% TFA/45% MeOH/45% isopropilamina (IPA) /10% agua.

Los resultados indican que se formaron nuevas formas de la proteína durante la incubación, visualizadas como bandas

en SDS-PAGE (Fig. 2) y como nuevos picos en los cromatogramas de HPLC de fase inversa (RPC) (Fig. 3). En la Fig. 3, el pico principal después de la incubación durante 2 semanas corresponde al 57% de la muestra de proteína original.

Las posiciones 1-60 en SEC ID NO: 1 corresponden al polipéptido Z06175a, descrito previamente en el documento WO2013/126006 como SEC ID NO: 753.

Ejemplo 2

20

25

50

Prueba de estabilidad de polipéptidos y compuestos de unión a C5 modificados

Los polipéptidos y compuestos de unión a C5 modificados se sintetizaron y se purificaron esencialmente como se describe en el documento WO2013/126006.

Brevemente, el ADN que codifica las variantes Z de unión a C5 fue codón optimizado en *E. coli* y sintetizado por GeneArt, GmbH. Los genes sintéticos que representan las nuevas variantes Z de unión a C5 se subclonaron y se expresaron en *E. coli*.

- Las variantes Z expresadas intracelularmente se purificaron usando métodos de cromatografía convencionales. La homogeneización y la clarificación se realizaron por sonicación seguida de centrifugación y filtración. La cromatografía de intercambio aniónico se utilizó como etapa de captura. Se obtuvo una purificación adicional mediante cromatografía de interacción hidrófoba. Las purificaciones se ejecutaron en condiciones ácidas (pH 5,5). El pulido y el cambio de tampón se realizaron por cromatografía de exclusión por tamaño.
- 40 Las proteínas purificadas se formularon en NaP 25 mM/NaCl 125 mM pH 7,0 y se sometieron a un estudio de estabilidad acelerado durante 2 semanas a 37 °C. La estabilidad se midió por la aparición de nuevas variantes después de la prueba de estabilidad mediante SDS-PAGE y HPLC en fase inversa (RPC). En ambos análisis, la muestra inicial y la sometida al estudio de estabilidad se realizaron en paralelo. Para la SDS-PAGE, se cargaron 7,5 μg de proteína en cada pocillo. Un ejemplo de un gel resultante se muestra en la Fig. 4.
- La RPC se realizó en un equipo HPLC Agilent 1100 utilizando Mobile Phase A que consiste en 0,1% de ácido trifluoroacético (TFA) en agua, y una Mobile Phase B que consiste en 0,1% TFA/45% Me0H/45% isopropilamina (IPA)/10% agua. En la Fig. 5 se muestra un ejemplo de un cromatograma resultante para la SEC ID NO: 5.

Los resultados de las pruebas de estabilidad se resumen en la Tabla 1.

Tabla 1. Estabilidad de polipéptidos de la variante Z después de 2 semanas de incubación a 37 °C. Se comparan los resultados de SDS-PAGE y HPLC.

SEC ID NO:	Dooignación	Bandas	RPC	Pico medio	RPC
SECIDINO:	Designación	SDS-PAGE	Pre-picos	(% de proteína total)	Post-picos
1	PSI0242	2	2	57	1
4	PSI0332	2	1	57	1
5	PSI0334	1	1	73	0
6	PSI0335	2	2	57	1
7	PSI0336	2	2	57	1
8	PSI0337	2	2	57	1
9	PSI0339	2	2	57	1
10	PSI0340	2	2	67	1
11	PSI0369	2	1	90	1
12	PSI0377	1	0	77	0
13	PSI0378	1	0	89	0
14	PSI0379	1	0	88	0
15	PSI0381	1	0	87	0
16	PSI0383	1	0	91	0
22	PSI0400	1	0	91	0
23	PSI0410	1	1	72	1
24	PSI0403	1	1	77	1
25	PSI0404	1	1	88	0

A partir de la Tabla 1 se puede concluir que ciertos polipéptidos o compuestos de unión con C5 modificados tienen propiedades mejoradas, tales como un aumento de la estabilidad, en comparación con PSI0242. Dichos polipéptidos o compuestos de unión con C5 mejorados incluyen PSI0334 (SEC ID NO: 5), PSI0340 (SEC ID NO: 10), PSI0369 (SEC ID NO: 11), PSI0377 (SEC ID NO: 12), PSI0378 (SEC ID NO: 13), PSI0379 (SEC ID NO: 14), PSI0381 (SEC ID NO: 15), PSI0383 (SEC ID NO: 16), PSI0400 (SEC ID NO: 22), PSI0410 (SEC ID) NO: 23), PSI0403 (SEC ID NO: 24) y PSI0404 (SEC ID NO: 25). Seis de las variantes mencionadas (SEC ID NO: 5, 12, 13, 14, 16 y 22) tienen en común que los restos de aminoácidos en las posiciones 52-53 se han sustituido de ND (cf. PSI0242) a SE. En la SEC ID NO: 15, la sustitución correspondiente es de ND a ES. En la SEC ID NO: 24, solo el resto de aminoácido en la posición 53 ha sido sustituido de D a E, mientras que en la SEC ID NO: 25, el resto de aminoácido en la posición 52 ha sido sustituido de N a S.

Ejemplo 3

5

10

15

20

25

Unión de compuestos modificados a C5 humana

La albúmina sérica humana se inmovilizó a Amina Reactiva de 2ª generación (AR2G) Dip and Read Biosensors (Pall Life Sciences (ForteBio) NO de cat. 18-5092) mediante acoplamiento de amina. PSI0242 (SEC ID NO: 1; 1 μM) y compuestos de unión a C5 modificados (1 μM) en tampón de lectura (tampón HBS-EP [HEPES 10 mM, pH 7,4, NaCl 150 mM, EDTA 3 mM, 0,005% de Surfactante P20], GE Healthcare, nº cat. BR100188) se cargaron, cada uno en un sensor separado con HSA, durante 120 segundos, seguido de un registro de línea de base durante 60 segundos en tampón de lectura antes de ser sometido a C5 humana (Quidel, nº de cat. A403) a concentraciones que oscilan entre 0,79 nM y 25 nM en tampón de lectura con un ciclo de regeneración y un registro de línea de base entre cada concentración. Las condiciones de regeneración para los sensores fueron glicina 10 mM, pH 2 (tres pulsos con 30 segundos y tampón de funcionamiento durante 60 segundos). Cada espectrograma se restó de la referencia frente al de una construcción análoga que contenía un dominio de unión a albúmina (SEC ID NO: 2) pero sin la capacidad de unión de C5. Los datos se analizaron de acuerdo con el modelo de Langmuir 1:1 utilizando ForteBio Analysis 7.1 (software de cinética Pall Life sciences (ForteBio)).

La K_D relativa de la interacción de PSI0242 (SEC ID NO: 1) con C5 se muestra en la Tabla 2. La K_D de PSI0242 (SEC ID NO: 1) varió de 1-3 nM en diferentes realizaciones.

Los resultados en la Tabla 2 indican que los compuestos de unión de C5 de acuerdo con la presente descripción tienen una capacidad de unión a C5 humano que es similar a la del polipéptido PSI0242 (SEC ID NO: 1) descrito en el documento WO2013/126006.

Tabla 2. Valor de K_D de la interacción de SEC ID NO: 5, 13, 15 y 16 con C5 en comparación con el valor de K_D de la interacción de C5 con SEC ID NO: 1.

SEC ID NO:	Designación	K _D Rel.
1	PSI0242	1,0
5	PSI0334	1,1
13	PSI0378	1,3
15	PSI0381	23
16	PSI0383	2,1

Ejemplo 4

15

20

25

30

10 Estabilidad del polipéptido de unión a C5 sintetizado químicamente.

Se solicitó de BACHEM AG un PSI0400 (SEC ID NO: 22) sintetizado químicamente. La estabilidad del polipéptido se ensayó de acuerdo con la misma metodología que en el Ejemplo 2. Los resultados de la prueba de estabilidad se muestran en la Tabla 3.

Tabla 3. Estabilidad del polipéptido de unión a C5 producido químicamente PSI0400 (SEC ID NO: 22) después de 2 semanas de incubación.

SEC ID NO	Designación	Bandas SDS- PAGE	Pre-picos RPC	Pico principal (% de proteína total)	Post-picos RPC
22	PSI0400	1	0	91	0

La estabilidad de PSI0400 fue comparable a la del mismo polipéptido producido en E. coli en el Eiemplo 2.

La integridad del pliegue de PSI0400 (SEC ID NO: 22) se comparó con un polipéptido de unión con C5 recombinante (PSI0257, SEC ID NO: 26), producido de acuerdo con los métodos del Ejemplo 2, utilizando espectros de dicroísmo circular (CD) del UV lejano.

Los espectros de CD se registraron mediante un espectropolarímetro CD J-720 (Jasco, Japón). Las muestras se diluyeron a 0,17 mg/ml de concentración de proteína 10 usando tampón Pi (Na-K-PO₄ 5 mM, pH 7,0). En primer lugar se registró un espectro de CD del tampón Pi, luego se registraron los espectros para cada una de las muestras y, finalmente, para el tampón Pi de nuevo. Cuando los dos espectros de tampón coinciden, el espectro registrado en primer lugar se usó como espectro del tampón. El espectro del tampón se suavizó utilizando el procedimiento de Savitzky-Golay con un ancho de convolución de 25. Los otros espectros se suavizaron según el mismo procedimiento con un ancho de convolución de 15. El espectro del tampón suavizado se restó de cada uno de los otros espectros suavizados. El programa CDNN se utilizó para estimar el contenido secundario de las proteínas, y las estimaciones resultantes se presentan en la Tabla 4. Los resultados mostraron que ni las dos sustituciones de aminoácidos en las posiciones 52 y 53 ni la producción de polipéptidos por síntesis química influyen en el contenido de la estructura secundaria del polipéptido sintetizado químicamente. La integridad del contenido de la estructura secundaria se comparó con el PSI0257 producido de forma recombinante (SEC ID NO: 26).

15

Tabla 4. Comparación del contenido de estructura secundaria para dos polipéptidos de unión a C5 según se determina por CD.

	SEC ID NO: 26	SEC ID NO: 22
Hélice	63%	69 %
Antiparalelo	3 %	2 %
Paralelo	3 %	3 %
Giro-beta	13 %	12 %
Bobina Rndm.	13 %	11 %

Ejemplo 5

10

15

20

25

30

5 Unión de variantes Z modificadas y polipéptidos a C5 humano.

La afinidad de unión de los compuestos de unión a C5 PSI0242 (SEC ID NO: 1), PSI0340 (SEC ID NO: 10), PSI0378 (SEC ID NO: 13) y PSI0410 (SEC ID NO: 23) y el polipéptido de unión a C5 PSI0400 (SEC ID NO: 22) para C5 humano se analizó utilizando un instrumento Biacore T200 (GE Healthcare). Se acopló C5 humano (Quidel, nº de cat. A403) a un chip sensor CM5 (900 RU) utilizando la química de acoplamiento de aminas según el protocolo del fabricante. El acoplamiento se realizó inyectando hC5 a una concentración de 7,5 μg/ml en tampón de acetato sódico 10 mM pH 5 (GE Healthcare). La célula de referencia se trató con los mismos reactivos pero sin inyectar C5 humano. La unión del polipéptido C5 y compuestos a hC5 inmovilizado se estudió con el método de cinética de ciclo único, en el que cinco concentraciones de muestra, típicamente 25, 12,5, 6,25, 3,12 y 1,56 nM, fueron inyectadas en tampón HBS-EP una tras otra a un caudal de 30 μl/min a 25 °C en el mismo ciclo sin regeneración entre inyecciones. Los datos de la celda de referencia se restaron para compensar los cambios en el índice de refracción global. En la mayoría de los casos, se incluyó también una inyección de HBS-EP como control, de modo que los sensogramas se duplicaron. Las superficies se regeneraron en tampón HBS-EP. Las constantes cinéticas se calcularon a partir de los sensogramas utilizando el modelo de analito de Langmuir 1:1 del Biacore T200 Evaluation Software, versión 1.0. Los valores K_D resultantes de las interacciones se presentan en la Tabla 5.

Tabla 5. Valor de K_D de la interacción de SEC ID NO: 10, 13, 22 y 23 con C5 en comparación con el valor de K_D de la interacción de C5 con SEC ID NO: 1.

SEC ID NO:	Designación	K _D Rel.
1	PSI0242	1,0
10	PSI0340	1,1
13	PSI0378	1,3
22	PSI0400	0,53
23	PSI0410	1,3

Los presentes datos muestran que las sustituciones de aminoácidos que mejoran la estabilidad no tienen ningún efecto negativo significativo sobre la capacidad de las moléculas para unirse a C5, y que por tanto no influyen en sus actividades biológicas.

Ejemplo 6

Inhibición de la hemólisis

Para estudios de la función de la ruta del complemento clásica y la inhibición de la misma por los compuestos de unión con C5 PSI0378 (SEC ID NO: 13) y PSI0410 (SEC ID NO: 23), y el polipéptido de unión con C5 PSI0400 (SEC ID NO: 22), se prepararon eritrocitos de oveja a partir de sangre de oveja fresca entera en una solución de Alsever (Swedish National Veterinary Institute). Los eritrocitos se trataron después con antisuero anti-eritrocitos de oveja, de conejo (Sigma) para que se convirtieran en eritrocitos de oveja (EA) sensibilizados con anticuerpos. El proceso entero se realizó en condiciones asépticas. Todos los demás reactivos fueron de fuentes comerciales.

El ensayo *in vitro* se realizó en una placa de microtitulación en forma de U de 96 pocillos mediante adiciones consecutivas de una proteína de prueba, un suero de complemento y suspensión EA. Las concentraciones finales de todos los reactivos, en un volumen de reacción total de 50 μl por pocillo y a pH 7,3-7,4, fueron: CaCl₂ 0,15 mM; MgCl₂ 0,5 mM; NaN₃ 3 mM; NaCl 138 mM; 0,1% gelatina; barbital sódico 1,8 mM; ácido barbitúrico 3,1 mM; 5 millones de EA; suero C5 de proteína de complemento a una dilución adecuada, y el compuesto de unión a C5 o el polipéptido a las concentraciones deseadas.

Los compuestos de unión a C5 y el polipéptido se pre-incubaron con el suero del complemento descrito anteriormente durante 20 minutos en hielo antes de comenzar la reacción mediante la adición de una suspensión de EA. La reacción hemolítica se dejó proceder a 37 °C en condiciones de agitación durante 45 minutos y luego se terminó opcionalmente mediante la adición de 100 µl de solución salina enfriada con hielo que contenía 0,02% de Tween 20. Las células se centrifugaron hasta el fondo del vial y la porción superior, correspondiente a 100 µl de sobrenadante, se transfirió a una microplaca transparente que tiene pocillos de área mitad y fondo plano. Los resultados de la reacción se analizaron como densidad óptica utilizando un lector de placas de microtítulo a una longitud de onda de 415 nm.

Se incluyeron una muestra de control (PSI0242, SEC ID NO: 1) y un vehículo en cada placa para definir los valores de las reacciones no inhibidas y totalmente inhibidas, respectivamente. Estos valores se utilizaron para calcular el % de inhibición de la hemólisis del complemento en cualquier concentración de la muestra dada. Las potencias inhibitorias (valores de IC50) de los compuestos de unión con C5 y el polipéptido ensayados se definieron aplicando el mismo ensayo en presencia de una concentración controlada de C5 humano añadido a suero agotado en C5. Para inhibidores muy potentes (nanomolar bajo a sub-nanomolar), una concentración final de C5 de la mezcla de reacción se controló a 0.1 nM, que se estableció opcionalmente utilizando sueros agotados o deficientes de C5. Los resultados se presentan a continuación en la Tabla 6.

SEC ID NO:	Designación	Potencia (%)	IC 50 (nM)
1	PSI0242	100	0,47
13	PSI0378	83	0,58
22	PSI0400	-	4
23	PSI0410	107	0,49

Tabla 6. La capacidad inhibidora de los compuestos y polipéptido de unión a C5.

Los resultados del ensayo de hemólisis indican que los compuestos de unión con C5 mejorados PSI0378 (SEC ID NO: 13) y PSI0410 (SEC ID NO: 23) no difieren significativamente del compuesto de referencia PSI0242 (SEC ID NO: 1) en términos de función. El polipéptido de unión con C5 PSI0400 (SEC ID NO: 22) es funcional en el ensayo y como no comprende un dominio de unión a la albúmina, los resultados no pueden compararse directamente con los del compuesto de referencia.

Ejemplo 7

5

10

15

20

25

35

40

45

30 Unión a albúmina humana

Para la evaluación de la afinidad de los compuestos de unión con C5 por la albúmina, se utilizó un ELISA de albúmina humana, que utiliza albúmina humana recombinante como recubrimiento (Novozymes) y anticuerpos disponibles comercialmente de Affibody AB (primario) y DakoCytomation (detección). Se empleó un método estándar preparado a partir de PSI0242 (SEC ID NO: 1) y que comprende un polipéptido de unión a C5 y un dominio de unión a albúmina de proteína G estreptocócica, para la cuantificación de muestras.

Se recubrió una microplaca de 96 pocillos con albúmina humana recombinante. La placa se lavó después con solución salina tamponada con fosfato que contenía 0,05 % de Tween 20 (PBST) y se bloqueó durante 1-2 horas con 1% de caseína en PBS. Después de un lavado de la placa, el estándar, los controles del método, la muestra de control y las muestras de prueba se añaden a la placa. Después de la incubación durante 2 horas, el material no unido se eliminó mediante un lavado. Una IgG anti-Affibody® de cabra (Affibody AB, nº cat. 20.1000.01.0005) se añadió a los pocillos y la placa se incubó durante 1,5 horas para permitir la unión a los compuestos de unión a C5 unidos. Después de un lavado, se permitió que la HRP IgG anti-cabra de conejo (DakoCytomation) se uniera a los anticuerpos de cabra durante 1 h. Después de un lavado final, la cantidad de HRP unida se detectó mediante la adición de un sustrato TMB (3,3',5,5'-tetrametilbenzidina), que se convirtió en un producto azul por la enzima. La adición de ácido clorhídrico 1 M después de 30 minutos detuvo la reacción y el color del contenido de los pocillos viró de azul a amarillo. La absorbancia a 450 nm se midió fotométricamente, utilizando la absorbancia a 650 nm como una longitud de onda de referencia. La intensidad del color fue proporcional a la cantidad de PSI0242 (SEC ID NO: 1) y las concentraciones de la muestra se determinaron a partir de la curva patrón.

Los compuestos de unión de C5 que comprenden un derivado del dominio de unión a la albúmina de la proteína G estreptocócica (ABD) mostraron ser capaces de unirse a la albúmina humana. Los datos se presentan en la Tabla 7.

Tabla 7. Resumen de los resultados de ELISA

SEC ID NO:	Designación	% del contenido total de proteínas
1	PSI0242	103
13	PSI0378	85
23	PSI0410	150

5 La interpretación del ensayo es que ambos polipéptidos de unión con C5 investigados con estabilidad mejorada mantienen su capacidad para unirse a la albúmina sérica humana.

Ejemplo 8

10

Prueba de estabilidad de tres meses de variantes Z de unión con C5 y polipéptidos

Las variantes de unión con C5 y polipéptidos que mostraron una estabilidad mejorada en comparación con PSI0242 en la prueba de estabilidad de 2 semanas a 37 °C (Ejemplo 2) se sometieron a una prueba de estabilidad más larga, de 3 meses a 37 °C. La configuración de la prueba de estabilidad y el análisis por RPC fue como se describe en el Ejemplo 2. La evaluación de la estabilidad se realizó midiendo el pico principal del cromatograma y calculando el porcentaje correspondiente del contenido total de proteínas. Los datos del Ejemplo 2 se incluyen en la Tabla 8 a continuación, para facilitar la interpretación.

15 Tabla 8. Estabilidad de los polipéptidos y compuestos de unión a C5 después de 3 meses de incubación a 37 °C.

SEC ID NO:	Designación	2 semanas, 37 °C Pico principal (% de proteína total)	3 meses, 37 °C Pico principal (% de proteína total)
5	PSI0334	73	16
13	PSI0378	89	59
14	PSI0379	88	58
15	PSI0381	87	46
16	PSI0383	91	59
23	PSI0410	72	16
24	PSI0403	77	35
25	PSI0404	88	46

Compuestos de unión con C5 que comprenden las sustituciones de aminoácidos ND a SE en las posiciones 52-53 (SEC ID NO: 13, 14 y 16) en comparación con PSI0242 mostraron una proporción de proteína en la forma original después de 3 meses a 37 °C mayor que PSI0242 (SEC ID NO: 1), después de 2 semanas en las mismas condiciones (véase la Tabla 1). Los otros compuestos probados también muestran una estabilidad aumentada en comparación con el PSI0242.

Ejemplo 9

20

Generación, estudio de estabilidad y evaluación de la unión de polipéptidos con andamiajes modificados con especificidad para diferentes dianas

Generación de polipéptidos con andamio modificado con especificidad para diferentes dianas: Variantes de polipéptidos que comprenden el nuevo andamiaje descrito en este documento se generan tomando polipéptidos de la variante Z con especificidad para diferentes dianas, y realizando mutagénesis dirigida al sitio en posiciones seleccionadas dentro del andamiaje. Alternativamente, las nuevas moléculas pueden producirse por síntesis química de la molécula entera o usando otros métodos de biología molecular conocidos por los expertos en la técnica, para injertar un motivo de unión de un polipéptido variante Z en el nuevo andamiaje.

Estudio comparativo de estabilidad de polipéptidos con andamios modificados con especificidad para diferentes dianas: para cada nuevo polipéptido creado como se describe anteriormente, la estabilidad se compara con la estabilidad del polipéptido original u otro polipéptido comparable. Los polipéptidos se someten a diferentes condiciones, como la formulación en [NaP 25 mM, NaCl 125 mM, pH 7,0] e incubación a 37 °C durante 2 semanas como se describe en el Ejemplo 2 y/o durante 3 meses como se describe en el Ejemplo 8. La estabilidad se evalúa analizando la aparición de nuevas variantes realizando análisis de SDS-PAGE y RPC como se describe en el Ejemplo 2

Se espera que los polipéptidos con las modificaciones introducidas en las posiciones de los andamiajes muestren una estabilidad mejorada similar a los resultados presentados en el Ejemplo 2 y el Ejemplo 12.

10 Evaluación de la unión de los polipéptidos modificados con andamios:Los polipéptidos que han mostrado propiedades de estabilidad mejoradas se evalúan en términos de capacidades conservadas de unión a su diana después de la introducción de alteraciones en el andamio. Los estudios de unión se realizan en un instrumento biosensor, o cualquier otro instrumento conocido por el experto en la materia y que mide la interacción entre dos o más moléculas. Por ejemplo, la molécula diana, o un fragmento de la misma, se inmoviliza en un chip sensor del instrumento, y la muestra 15 que contiene el polipéptido a analizar se pasa sobre el chip. Alternativamente, el polipéptido a ensayar se inmoviliza en un chip sensor del instrumento, y una muestra que contiene la diana predeterminada, o un fragmento de la misma, se pasa sobre el chip. La afinidad de unión se puede probar en un experimento en el que se capturan muestras del polipéptido en placas ELISA recubiertas con anticuerpo y se agrega un blanco biotinilado predeterminado, o un fragmento del mismo, seguido de HRP conjugada con estreptavidina. Se agrega el sustrato TMB y se mide la absorbancia a 450 nm utilizando un lector de placas de múltiples pocillos, como Victor3 (Perkin Elmer). Si se desea 20 una medida cuantitativa, por ejemplo, para determinar el valor de EC50 (la mitad de la concentración efectiva máxima) para la interacción, también se puede usar ELISA. La respuesta del polipéptido frente a una serie de dilución de la diana predeterminada, o un fragmento de la misma, se mide utilizando ELISA como se describe anteriormente. Los resultados obtenidos por tales experimentos y los valores de EC50 pueden calcularse a partir de los resultados 25 utilizando, por ejemplo, GraphPad Prism 5 y regresión no lineal. Si el polipéptido contiene un dominio de unión a albúmina, el efecto sobre la unión a albúmina se evaluará de la misma manera, como se describe en el Ejemplo 3 o como se describe en el Ejemplo 7.

Los polipéptidos que tienen las mutaciones de andamio descritas en el presente documento y, además, capacidades de unión similares o mejoradas para su objetivo, se consideran mejores candidatos para un mayor desarrollo, por ejemplo, en productos biofarmacéuticos.

Ejemplo 10

30

35

40

Generación de polipéptidos con andamiaje modificado con especificidad para cuatro dianas diferentes

Se generaron variantes de polipéptidos que comprenden el nuevo andamiaje descrito en el presente documento tomando polipéptidos de la variante Z con especificidad para diferentes dianas, y realizando mutagénesis dirigida al sitio en posiciones seleccionadas dentro del andamiaje. Las sustituciones de aminoácidos en las posiciones de los andamios en las variantes polipeptídicas Z02891 (SEC ID NO: 27), que dirigen al receptor 2 del factor de crecimiento epidérmico humano (HER2); Z15805 (SEC ID NO: 30), que dirigen al receptor beta del factor de crecimiento de las plaquetas (PDGF-Rβ); Z10103 (SEC ID NO: 33), que dirigen al receptor de Fc neonatal (FcRn); y Z09782 (SEC ID NO: 36), que dirigen a la anhidrasa carbónica IX (CAIX), se especifican en la Tabla 9.

Tabla 9. Polipéptidos originales y de la invención producidos y analizados en términos de estabilidad y función en los Ejemplos descritos a continuación.

SEC ID NO:	Designación	Diana	Sustituciones de aminoácidos	Original frente a invención
27	Z02891	HER2	-	original
28	Z17341	HER2	N52S, D53E	invención
29	Z17342	HER2	D36R, D37Q, S39E, N52S, D53E	invención
30	Z15805	PDGF-Rβ	-	original
31	Z17343	PDGF-Rβ	N52S, D53E	invención
32	Z17344	PDGF-Rβ	D36R, D37Q, S39E, N52S, D53E	invención
33	Z10103	FcRn	-	original
34	Z17347	FcRn	N52S, D53E	invención
35	Z17348	FcRn	D36R, D37Q, S39E, N52S, D53E	invención

36	Z09782	CAIX	-	original
37	Z17351	CAIX	N52S, D53E	invención
38	Z17352	CAIX	D36R, D37Q, S39E, N52S, D53E	invención
39	Z17355	CAIX	D53E	invención
40	Z17357	CAIX	D36R, D37Q, S39E, D53E	invención
41	Z17359	CAIX	N52S	invención
42	Z17360	CAIX	D36R, D37Q, S39E, N52S	invención

Todas las variantes se clonaron con una etiqueta de histidina 6 x N-terminal (His₆) y se obtuvieron constructos de polipéptidos codificados en el formato MGSSHHHHHHLQ- [Z#####]. Se introdujeron mutaciones en los plásmidos de los polipéptidos de la invención utilizando pares de cebadores de oligonucleótidos solapados que codifican las sustituciones de aminoácidos deseadas y aplicando técnicas de biología molecular establecidas. Las secuencias plasmídicas correctas fueron verificadas por secuenciación de DNA.

Se transformaron células *E. coli* (cepa T7E2) (GeneBridge) con plásmidos que contenían los fragmentos génicos que codifican los polipéptidos originales y de la invención. Las células se cultivaron a 37 °C en medio TSB-YE suplementado con 50 μg/ml de kanamicina y a continuación se indujo la expresión de proteínas mediante la adición de IPTG. Las células peletizadas se rompieron utilizando un homogeneizador FastPrep® -24 (Nordic Biolabs) y los residuos celulares se eliminaron mediante centrifugación. Cada sobrenadante que contenía la variante Z como una proteína marcada como His₆ se purificó por cromatografía de afinidad de iones metálicos inmovilizados (IMAC) utilizando columnas His GraviTrapTM (GE Healthcare) de acuerdo con las instrucciones del fabricante. Las variantes Z purificadas cambiaron de tampón a solución salina tamponada con fosfato (PBS; KH₂PO₄ 1,47 mM, Na₂HPO₄ 8,1 mM, NaCl 137 mM, KCl 2,68 mM, pH 7,4) utilizando columnas de desalinización PD-10 (GE Helthcare). La identidad correcta de cada polipéptido se comprobó mediante SDS-PAGE y HPLC-MS.

Ejemplo 11

5

10

15

20

25

30

Análisis de espectroscopía de dicroísmo circular de polipéptidos de andamiaje modificado

Se realizó un análisis de dicroísmo circular (CD) para determinar las temperaturas de fusión (Tm) y evaluar los cambios potenciales en la estructura secundaria de los polipéptidos de la invención como resultado de las sustituciones de aminoácidos.

Variantes Z purificadas etiquetadas con His₆ se diluyeron a 0,5 mg/ml en PBS. Para cada variante Z diluida, se registró un espectro de CD a 250-195 nm a 20 °C. Se realizó una medición de temperatura variable (VTM) para determinar la Tm. En la VTM, la absorbancia se midió a 221 nm mientras que la temperatura se elevó de 20 a 90 °C, con una pendiente de temperatura de 5 °C/min. Después de la VTM, se registró un segundo espectro de CD a 250-195 nm a 20 °C. Las mediciones de CD se realizaron en un espectropolarímetro Jasco J-810 (Jasco Scandinavia AB) usando una celda con una longitud de trayectoria óptica de 1 mm.

La Tm de cada polipéptido correspondiente, determinada a partir del punto medio de la transición en el gráfico de la señal de CD frente a la temperatura, se muestra en la Tabla 10. Todos los polipéptidos mutados mostraron una estructura de hélice alfa conservada y se replegaron de manera reversible o casi reversible incluso después de calentar a 90 °C. Un conjunto seleccionado de espectros de CD se muestra en la Fig. 7.

Tabla 10. Temperaturas de fusión para variantes Z originales y de la invención determinadas por CD.

SEC ID NO:	Designación	Diana	Tm (°C)	Original frente a invención
27	Z02891	HER2	70	original
28	Z17341	HER2	66	invención
29	Z17342	HER2	62	invención
30	Z15805	PDGF-Rβ	48	original
31	Z17343	PDGF-Rβ	46	invención
32	Z17344	PDGF-Rβ	42	invención

33	Z10103	FcRn	48	original
34	Z17347	FcRn	50	invención
35	Z17348	FcRn	44	invención
36	Z09782	CAIX	43	original
37	Z17351	CAIX	40	invención
38	Z17352	CAIX	45	invención
39	Z17355	CAIX	43	invención
40	Z17357	CAIX	47	invención
41	Z17359	CAIX	41	invención
42	Z17360	CAIX	46	invención

Ejemplo 12

Estudio comparativo de estabilidad de polipéptidos con andamiajes modificados con especificidad para cuatro dianas diferentes

Para cada nuevo polipéptido creado como se describe en el Ejemplo 10, la estabilidad se comparó con la estabilidad del polipéptido original. Los polipéptidos, formulados en PBS a pH 7,4, se diluyeron a 1 mg/ml y se incubaron 200 µl de alícuotas a 37°C durante 2 semanas. Las muestras recolectadas antes y después de la prueba de estabilidad se analizaron mediante SDS-PAGE usando geles Bis-Tris NuPAGE al 10% (Invitrogen) y cargando 5 µg de proteína en cada pocillo. Los geles teñidos con azul de Coomassie resultantes se muestran en la Fig. 8. La estabilidad se evaluó mediante la aparición de nuevas variantes después de la incubación a la temperatura elevada y las variantes mutadas se compararon con el polipéptido original correspondiente.

Todos los polipéptidos con modificaciones introducidas en posiciones de andamiaje como se describe en la Tabla 9 mostraron una estabilidad mejorada en comparación con el polipéptido original correspondiente. En muestras de los polipéptidos originales, era visible en el gel una segunda banda justo por encima de la banda principal. Una segunda banda correspondiente no fue visible en las muestras de los polipéptidos de la invención con la sustitución D53E y/o N52S. Esto es en analogía con los resultados presentados en los Ejemplos 2 y 4. Así pues, el efecto estabilizante observado para las mutaciones de andamiaje de la invención parece ser un efecto general, al margen de la especificidad de la diana de la variante Z o polipéptido que comprende dicha variante Z. Los polipéptidos con las sustituciones D53E y/o N52S, solos o combinados con las sustituciones D36R, D37Q y S39E, mostraron perfiles similares en el gel SDS-PAGE. La substitución D53E sola o en combinación con las sustituciones D36R, D37Q y S39E pareció reducir la cantidad de la especie con una confirmación alternativa observada como una segunda banda en el gel SDS-PAGE, pero no pudo evitar completamente la formación de esta especie.

Eiemplo 13

15

20

40

Evaluación de la unión de polipéptidos con andamiaje modificado

Un conjunto de polipéptidos que muestran propiedades de estabilidad mejoradas en el Ejemplo 12 se siguieron evaluando en términos de capacidades de unión a sus dianas conservadas después de la introducción de alteraciones en el andamio, así como después de haber sido sometidos a la prueba de estabilidad, es decir, incubada a 37 °C durante 2 semanas.

Las constantes cinéticas comparativas (k_{on} y k_{off}) y las afinidades (K_D) se determinaron utilizando un instrumento Biacore 2000. Las proteínas diana HER2-Fc humana (R&D Systems, n° de cat. 1129-ER-050), PDGF-Rβ humana (R&D Systems, cat. no. 385-PR-100/CF), FcRn humana (Biorbyt, n° de catálogo orb 84388) y CAIX humana (R&D Systems, n° de catálogo 2188-CA), respectivamente, se inmovilizaron en la superficie de la capa de dextrano carboxilado de chips CM5 (GE Helthcare). La inmovilización se realizó utilizando la química de acoplamiento de aminas según el protocolo del fabricante y utilizando HBS-EP como tampón de desarrollo. Se activó y desactivó una superficie de celda de flujo en el chip para usar como blanco durante las inyecciones de analito. El nivel de inmovilización de la proteína diana en la superficie correspondiente fue de aproximadamente 850 RU para HER2, 2200 RU para PDGF-Rβ, 750 para FcRn y 580 RU para CAIX.

Se usó HBS-EP (HER2, PDGF-Rβ, CAIX) o un tampón de Na₂HPO₄ /ácido cítrico pH 6,0 /(Na₂HPO₄ 126 mM, ácido cítrico 37 mM) (FcRn) como tampón de desarrollo, y el caudal fue de 30 μl/min en los experimentos de unión realizados a 25 °C, como se describe a continuación.

Las variantes Z Z02891 (SEC ID NO: 27), Z17341 (SEC ID NO: 28) y Z17342 (SEC ID NO: 29) que se dirigen a HER2 se diluyeron en tampón de desarrollo hasta concentraciones finales de 3,33, 10, 30 y 90 nM y se inyectaron durante 5 minutos, seguido de 30 minutos de disociación en el tampón de desarrollo. La regeneración mediante cuatro impulsos alternativos entre HCl 10 mM y NaOH 10 mM, seguida de un equilibrio de 5 min en tampón de desarrollo se aplicó después de cada inyección de analito.

Las variantes Z, Z15805 (SEC ID NO: 30), Z17343 (SEC ID NO: 31) y Z17344 (SEC ID NO: 32) que se dirigen al PDGF-Rβ se diluyeron en tampón de desarrollo hasta concentraciones finales de 6,67, 20, 60 y 180 nM y se inyectaron durante 5 minutos, seguido de 20 minutos de disociación en el tampón de desarrollo. Se aplicó la regeneración mediante tres pulsos de NaOH 10 mM seguido de un equilibrio de 5 minutos en el tampón de desarrollo después de cada inyección de analito.

Las variantes Z, Z10103 (SEC ID NO: 33), Z17347 (SEC ID NO: 34) y Z17348 (SEC ID NO: 35) que se dirigen a FcRn se diluyeron en tampón de desarrollo hasta concentraciones finales de 3,33, 10 y 30 nM y se inyectaron durante 3 minutos, seguido de 15 minutos de disociación en tampón de desarrollo. Después de cada inyección de analito, se aplicó la regeneración mediante tres pulsos de HBS-EP seguido de un equilibrio de 10 minutos en el tampón de desarrollo.

Las variantes Z, Z09782 (SEC ID NO: 36), Z17351 (SEC ID NO: 37), Z17355 (SEC ID NO: 39) y Z17359 (SEC ID NO: 41) que dirigen a CAIX se diluyeron en un tampón de desarrollo hasta concentraciones finales de 30, 90 y 270 nM y se inyectaron durante 5 minutos, seguido de 15 minutos de disociación en tampón de desarrollo. Se aplicó la regeneración mediante tres pulsos de glicina 10 mM -HCl pH 3.0, seguido de un equilibrado de 5 minutos en un tampón de desarrollo después de cada inyección de analito.

Las constantes cinéticas se calcularon a partir de los sensogramas utilizando el modelo 1:1 de Langmuir (HER2, FcRn, CAIX) o la unión 1:1 con el modelo de transferencia de materia (PDGF-Rβ del software BiaEvaluation 4.1 (GE Healthcare). Las curvas de la superficie de blanco se restaron de las curvas de las superficies de ligando y los datos de los ciclos del tampón se restaron de los datos de los ciclos de la muestra de prueba para corregir cualquier posible desplazamiento de la señal.

Las constantes cinéticas comparativas para las variantes de Z que se unen a su molécula diana se muestran en la Tabla 11 y en la Fig. 9 se muestran los sensogramas para un subconjunto de las interacciones analizadas. Los datos indican que la afinidad se efectúa solo marginalmente por las sustituciones ND a SE en posición 52-53 y para una pareja de variantes, Z17341 (SEC ID NO: 28) y Z17343 (SEC ID) NO: 31), la afinidad es incluso ligeramente mejorada. Una combinación de las sustituciones ND a SE en la posición 52-53 con las sustituciones D36R, D37Q y S39E, tal como en Z17342 (SEC ID NO: 29), Z17344 (SEC ID NO: 32) y Z17348 (SEC ID NO: 35), tuvieron un efecto más negativo en la afinidad debido principalmente a velocidades de disociación más rápidas, pero de todas formas se obtuvieron aglutinantes funcionales con K_D en el margen 10-9 M. Las variantes evaluadas también tenían capacidades de unión conservadas después de 2 semanas de incubación a 37 °C.

35

5

10

15

20

25

30

SEQ ID NO:	Muestra de prueba	Original fr. invención	k _a (Ms ⁻¹)	k _d (s ⁻¹)	K _D (M)	K _{DOrig}	K _{D(2w]} / K _{D(0)}
27	Z02891 (0)	Original	1.33x10 ⁸	7.10x10 ⁻⁵	5.4x10 ⁻¹¹	1.0	
27	Z02891 (2w)	Original	1.15x10 ⁵	7.19x10 ⁻⁵	6.2x10 ⁻¹¹	1.0	1.17
28	Z17341 (0)	invención	1.88x10 ⁵	8.35x10 ⁻⁵	4.5x10 ⁻¹¹	0.83	
28	Z17341 (2w)	invención	2.06x10 ⁶	8.91x10 ⁻⁵	4.3x10 ⁻¹¹	0.69	0.97
29	Z17342 (0)	invención	8.94x10 ⁵	1.57x10 ⁻³	1.8x10 ⁻⁹	33	
29	Z17342 (2w)	invención	6.49x10 ⁵	1.50x10 ⁻³	2.3x10 ⁻⁹	37	1.31
Variante	s Z que unen P	DGF-Rβ					
SEQ ID NO:	Muestra de prueba	Original fr. invención	k _a (Ms ⁻¹)	k _d (s ⁻¹)	K _D (M)	K _{Diny} / K _{Dorig}	K _{D(2w)}
							K _{D(0)}
30	Z15805 (0)	Original	7.15x10 ⁶	1.39x10 ⁻³	1.9x10 ⁻¹⁰	1.0	
30	Z15805 (2w)	Original	5.81x10 ⁶	1.66x10 ⁻³	2.9x10 ⁻¹⁰	1.0	1.47
31	Z17343 (0)	invención	4.80x10 ⁶	1.77x10 ⁻³	3.7x10 ⁻¹⁰	1.90	
31	Z17343 (2w)	invención	6.45x10 ⁶	1.71x10 ⁻³	2.3x10 ⁻¹⁰	0.93	0.72
32	Z17344 (0)	invención	5.15x10 ⁷	6.16x10 ⁻²	1.2x10 ⁻⁹	6.19	
32	Z17344 (2w)	invención	5.62x10 ⁷	6.23x10 ⁻²	1.1x10 ⁻⁹	3.88	0.93
SEQ	es Z que unen I	Original fr.	k _a (Ms ⁻¹)	k _d (s ⁻¹)	K _□ (M)	K _{Dinv} /	K _{D(2w)}
ID NO:		Invencion	- ' '	-, ,	-, ,	K _{DOrig} "	K _{D(0)}
33	Z10103 (0)	Original	1.60x10 ⁶	4.56x10 ⁻³	2.9x10 ⁻⁹	1.0	
33			3.15x10 ⁶	5.75 x10 ⁻³	1.8x10 ⁻⁹	1.0	0.64
	Z10103 (2w)	Original	0.100.10	J./J A 10			0.04
34	Z10103 (2w) Z17347 (0)	Original invención		7.99 x10 ⁻³	6.7x10 ⁻⁹	2.36	0.04
		invención invención	1.18x10 ⁶ 2.27x10 ⁶	7.99 x10 ⁻³ 8.79 x10 ⁻³	6.7x10 ⁻⁹ 3.9x10 ⁻⁹		0.57
34	Z17347 (0)	invención	1.18x10 ⁵	7.99 x10 ⁻³	6.7x10 ⁻⁹ 3.9x10 ⁻⁹ 5.5x10 ⁻⁹	2.36	
34 34	Z17347 (0) Z17347 (2w)	invención invención	1.18x10 ⁶ 2.27x10 ⁶	7.99 x10 ⁻³ 8.79 x10 ⁻³	6.7x10 ⁻⁹ 3.9x10 ⁻⁹	2.36 2.13	
34 34 35 35	Z17347 (0) Z17347 (2w) Z17348 (0)	invención invención invención invención	1.18x10 ⁶ 2.27x10 ⁶ 1.82x10 ⁶	7.99 x10 ⁻³ 8.79 x10 ⁻³ 1.00 x10 ⁻²	6.7x10 ⁻⁹ 3.9x10 ⁻⁹ 5.5x10 ⁻⁹	2.36 2.13 1.93	0.57
34 34 35 35	Z17347 (0) Z17347 (2w) Z17348 (0) Z17348 (2w)	invención invención invención invención	1.18x10 ⁶ 2.27x10 ⁶ 1.82x10 ⁶	7.99 x10 ⁻³ 8.79 x10 ⁻³ 1.00 x10 ⁻²	6.7x10 ⁻⁹ 3.9x10 ⁻⁹ 5.5x10 ⁻⁹ 6.3x10 ⁻⁹	2.36 2.13 1.93	0.57 1.14 K _{D(2w)}
34 34 35 35 Variante	Z17347 (0) Z17347 (2w) Z17348 (0) Z17348 (2w) es Z que unen C	invención invención invención invención AIX Original fr. invención	1.18x10 ⁶ 2.27x10 ⁶ 1.82x10 ⁶ 1.28x10 ⁶ k _a (Ms ⁻¹) 2.08x10 ⁵	7.99 x10 ⁻³ 8.79 x10 ⁻³ 1.00 x10 ⁻² 8.09 x10 ⁻³ k _d (s ⁻¹) 1.46x10 ⁻³	6.7x10 ⁻⁹ 3.9x10 ⁻⁹ 5.5x10 ⁻⁹ 6.3x10 ⁻⁹ K _D (M) 7.0x10 ⁻⁹	2.36 2.13 1.93 3.46	0.57 1.14
34 34 35 35 Variante SEQ ID NO:	Z17347 (0) Z17347 (2w) Z17348 (0) Z17348 (2w) es Z que unen C	invención invención invención invención AIX Original fr. invención Original Original	1.18x10 ⁶ 2.27x10 ⁶ 1.82x10 ⁶ 1.28x10 ⁶ 1.28x10 ⁶ k _a (Ms ⁻¹) 2.08x10 ⁵ 1.40x10 ⁵	7.99 x10 ⁻³ 8.79 x10 ⁻³ 1.00 x10 ⁻² 8.09 x10 ⁻³ k _d (s ⁻¹) 1.46x10 ⁻³ 1.38x10 ⁻³	6.7x10 ⁻⁹ 3.9x10 ⁻⁹ 5.5x10 ⁻⁹ 6.3x10 ⁻⁹ K _D (M) 7.0x10 ⁻⁹ 9.9x10 ⁻⁹	2.36 2.13 1.93 3.46 K _{Dlnv} / K _{Dorig}	0.57 1.14 K _{D(2w)}
34 34 35 35 Variante SEQ ID NO:	Z17347 (0) Z17347 (2w) Z17348 (0) Z17348 (2w) es Z que unen C Muestra de prueba Z09782 (0) Z09782 (2w)	invención invención invención invención AIX Original fr. invención Original	1.18x10 ⁶ 2.27x10 ⁶ 1.82x10 ⁶ 1.28x10 ⁶ 1.28x10 ⁶ k _a (Ms ⁻¹) 2.08x10 ⁵ 1.40x10 ⁵	7.99 x10 ⁻³ 8.79 x10 ⁻³ 1.00 x10 ⁻² 8.09 x10 ⁻³ k _d (s ⁻¹) 1.46x10 ⁻³ 1.38x10 ⁻³ 2.63x10 ⁻³	6.7x10 ⁻⁹ 3.9x10 ⁻⁹ 5.5x10 ⁻⁹ 6.3x10 ⁻⁹ K _D (M) 7.0x10 ⁻⁹ 9.9x10 ⁻⁹ 1.8x10 ⁻⁸	2.36 2.13 1.93 3.46 Kplnv / Kporig	0.57 1.14 K _{D(2w)}
34 34 35 35 Variante SEQ ID NO: 36 36	Z17347 (0) Z17347 (2w) Z17348 (0) Z17348 (2w) es Z que unen C Muestra de prueba Z09782 (0) Z09782 (2w) Z17351 (0)	invención invención invención invención AIX Original fr. invención Original Original	1.18x10 ⁵ 2.27x10 ⁵ 1.82x10 ⁵ 1.28x10 ⁵ 1.28x10 ⁵ 2.08x10 ⁵ 1.40x10 ⁵ 1.51x10 ⁵	7.99 x10 ⁻³ 8.79 x10 ⁻³ 1.00 x10 ⁻² 8.09 x10 ⁻³ k _d (s ⁻¹) 1.46x10 ⁻³ 1.38x10 ⁻³ 2.63x10 ⁻³	6.7x10 ⁻⁹ 3.9x10 ⁻⁹ 5.5x10 ⁻⁹ 6.3x10 ⁻⁹ K _D (M) 7.0x10 ⁻⁹ 9.9x10 ⁻⁹ 1.8x10 ⁻⁸ 1.5x10 ⁻⁸	2.36 2.13 1.93 3.46 Kplnv / Kporig	0.57 1.14 K _{D(2w)}
34 35 35 35 Variante SEQ ID NO: 36 36 37	Z17347 (0) Z17347 (2w) Z17348 (0) Z17348 (2w) es Z que unen C Muestra de prueba Z09782 (0) Z09782 (2w)	invención invención invención invención AIX Original fr. invención Original Original invención	1.18x10 ⁵ 2.27x10 ⁵ 1.82x10 ⁵ 1.28x10 ⁵ 1.28x10 ⁵ 1.28x10 ⁵ 1.40x10 ⁵ 1.51x10 ⁵ 1.91x10 ⁵	7.99 x10 ⁻³ 8.79 x10 ⁻³ 1.00 x10 ⁻² 8.09 x10 ⁻³ k _d (s ⁻¹) 1.46x10 ⁻³ 1.38x10 ⁻³	6.7x10 ⁻⁹ 3.9x10 ⁻⁹ 5.5x10 ⁻⁹ 6.3x10 ⁻⁹ K _D (M) 7.0x10 ⁻⁹ 9.9x10 ⁻⁹	2.36 2.13 1.93 3.46 K _{Dinv} / K _{Dorig} 1.0 1.0 2.49	0.57 1.14 K _{D(2w)} / K _{D(0)}
34 35 35 35 Variante SEQ ID NO: 36 36 37 37	Z17347 (0) Z17347 (2w) Z17348 (0) Z17348 (2w) es Z que unen C Museira de prueba Z09782 (0) Z09782 (2w) Z17351 (0) Z17355 (0)	invención invención invención invención AIX Original fr. invención Original Original invención invención	1.18x10 ⁵ 2.27x10 ⁶ 1.82x10 ⁶ 1.28x10 ⁶ 1.28x10 ⁶ 2.08x10 ⁵ 1.40x10 ⁵ 1.51x10 ⁵ 1.51x10 ⁵ 1.57x10 ⁵	7.99 x10 ⁻³ 8.79 x10 ⁻³ 1.00 x10 ⁻² 8.09 x10 ⁻³ k _d (s ⁻¹) 1.46x10 ⁻³ 1.38x10 ⁻³ 2.63x10 ⁻³ 2.86x10 ⁻³ 1.23x10 ⁻³	6.7x10 ⁻⁹ 3.9x10 ⁻⁹ 5.5x10 ⁻⁹ 6.3x10 ⁻⁹ K ₀ (M) 7.0x10 ⁻⁹ 9.9x10 ⁻⁹ 1.8x10 ⁻⁸ 1.5x10 ⁻⁸ 7.9x10 ⁻⁹ 1.1x10 ⁻⁸	2.36 2.13 1.93 3.46 Kolnv / Kporig 1.0 1.0 2.49 1.52	0.57 1.14 K _{D(2w)} / K _{D(0)}
34 35 35 35 Variante SEQ ID NO: 36 36 37 37	Z17347 (0) Z17347 (2w) Z17348 (0) Z17348 (2w) es Z que unen C Muestra de prueba Z09782 (0) Z09782 (2w) Z17351 (0) Z17351 (2w)	invención invención invención invención AIX Original fr. invención Original Original invención invención invención	1.18x10 ⁵ 2.27x10 ⁵ 1.82x10 ⁵ 1.28x10 ⁵ 1.28x10 ⁵ 1.28x10 ⁵ 1.40x10 ⁵ 1.51x10 ⁵ 1.91x10 ⁵	7.99 x10 ⁻³ 8.79 x10 ⁻³ 1.00 x10 ⁻² 8.09 x10 ⁻³ k _d (s ⁻¹) 1.46x10 ⁻³ 1.38x10 ⁻³ 2.63x10 ⁻³ 2.86x10 ⁻³	6.7x10 ⁻⁹ 3.9x10 ⁻⁹ 5.5x10 ⁻⁹ 6.3x10 ⁻⁹ K ₀ (M) 7.0x10 ⁻⁹ 9.9x10 ⁻⁹ 1.8x10 ⁻⁸ 1.5x10 ⁻⁸ 7.9x10 ⁻⁹	2.36 2.13 1.93 3.46 K _{Dinv} / K _{Dorig} 1.0 1.0 2.49 1.52 1.12	0.57 1.14 K _{D(2w)} / K _{D(0)} 1.41

Tabla 11. Análisis cinético comparativo de polipéptidos originales y de la invención.

5

^{*} Los valores de K_D no deben considerarse absolutos, ya que se determinaron con fines comparativos y solo incluyeron un número limitado de concentraciones de muestra.

^{**} K_D relativa que compara la K_D del polipéptido de la invención respectivo con la K_D de su polipéptido original (establecido en 1.0) ya sea antes (0) o después de la prueba de estabilidad (2w) descrita en el Ejemplo 12.

^{***} K_D relativa que compara la K_D de (2w) con K_D de (0) para cada pareja de polipéptidos idénticos en secuencia.

Lista detallada de realizaciones

1. Polipéptido que comprende una secuencia de aminoácidos seleccionada entre:

i) $EX_2X_3X_4AX_6X_7EIX_{10}$ $X_{11}LPNLX_{16}X_{17}X_{18}QX_{20}$ $X_{21}AFIX_{25}X_{26}LX_{28}X_{29}X_{30}$ $PX_{32}QSX_{35}X_{36}LLX_{39}$ $AKKLX_{45}X_{46}X_{47}Q$,

en donde cada uno de X₂, X₃, X₄, X₆, X₇, X₁₀, X₁₁, X₁₇, X₁₈, X₂₀, X₂₁, X₂₅ y X₂₈ corresponde independientemente a cualquier resto de aminoácido; γ

en donde, independientemente entre ellos,

X₁₆ se selecciona entre N y T;

X₂₆ se selecciona entre K y S;

10 $X_{29}X_{30}PX_{32}$ se selecciona entre DDPS y RQPE;

X₃₅ se selecciona entre A y S;

 X_{36} se selecciona entre E y N;

X₃₉ se selecciona entre A, C y S;

X₄₅ se selecciona entre E, N y S;

15 X_{46} se selecciona entre D, E y S;

X₄₇ se selecciona entre A y S; y

- ii) una secuencia de aminoácidos que tiene al menos 91% de identidad con la secuencia definida en i), siempre y cuando X_{46} no sea D o E cuando X_{45} es N.
- 2. Polipéptido de acuerdo con el ítem 1, en el que X₁₆ es T.
- 3. Polipéptido de acuerdo con el ítem 1 o 2, en el que X₂₆ es K.
 - 4. Polipéptido de acuerdo con cualquier ítem anterior, en el que X₂₉X₃₀PX₃₂ es DDPS.
 - 5. Polipéptido de acuerdo con el ítem 1-3, en el que X₂₉X₃₀PX₃₂ es RQPE.
 - 6. Polipéptido de acuerdo con cualquier ítem anterior, en el que X_{35} es S.
 - 7. Polipéptido de acuerdo con cualquier ítem anterior, en el que X₃₆ es E.
- 8. Polipéptido de acuerdo con cualquier ítem anterior, en el que X_{39} es S.
 - 9. Polipéptido de acuerdo con cualquier ítem anterior, en el que X_{45} se selecciona entre E y S.
 - 10. Polipéptido de acuerdo con el ítem 9, en el que X_{45} es E.
 - 11. Polipéptido de acuerdo con el ítem 9, en el que X₄₅ es S.
 - 12. Polipéptido de acuerdo con cualquier ítem precedente, en el que X₄₆ se selecciona entre E y S.
- 30 13. Polipéptido de acuerdo con el ítem 12, en el que X₄₆ es E.
 - 14. Polipéptido de acuerdo con el ítem 12, en el que X₄₆ es S.
 - 15. Polipéptido de acuerdo con el ítem 12, en el que X₄₆ es D.
 - 16. Polipéptido de acuerdo con cualquier ítem precedente, en el que X₄₅X₄₆ se selecciona entre EE, ES, SE y SS.
 - 17. Polipéptido de acuerdo con el ítem 16, en el que X₄₅X₄₆ se selecciona entre ES y SE.
- 35 18. Polipéptido de acuerdo con el ítem 17, en donde $X_{45}X_{46}$ es ES.
 - 19. Polipéptido de acuerdo con el ítem 17, en donde X₄₅X₄₆ es SE.
 - 20. Polipéptido de acuerdo con el ítem 17, en el que X₄₅X₄₆ es SD.
 - 21. Polipéptido de acuerdo con cualquier ítem precedente, en el que X₄₇ es S.

- 22. Polipéptido de acuerdo con uno cualquiera de los ítems 1-21, que comprende restos de aminoácidos adicionales.
- 23. Polipéptido de acuerdo con el ítem 22, que comprende restos de aminoácidos adicionales en el extremo C de dicho polipéptido.
- 24. Polipéptido de acuerdo con el ítem 23, en donde los restos de aminoácidos adicionales en el extremo C de dicho polipéptido comprenden AP.
 - 25. Polipéptido de acuerdo con el ítem 22, que comprende restos de aminoácidos adicionales en el extremo N de dicho polipéptido.
 - 26. Polipéptido de acuerdo con el ítem 25, en el que los restos de aminoácidos adicionales en el extremo C de dicho polipéptido comprenden AEAKYAK.
- 27. Polipéptido de acuerdo con uno cualquiera de los ítems 22-26, en el que los restos de aminoácidos adicionales se añaden con el propósito de unión, producción, purificación, estabilización, acoplamiento o detección del polipéptido.
 - 28. Polipéptido de acuerdo con uno cualquiera de los ítems 22-27, en el que dichos restos de aminoácidos adicionales constituyen uno o más dominios de polipéptido.
- 29. Polipéptido de acuerdo con el ítem 28, en el que dichos uno o más dominios de polipéptido tienen una función seleccionada entre el grupo de una función de unión, una función enzimática, una función quelante de iones metálicos y una función fluorescente, o mezclas de las mismas.
 - 30. Polipéptido de acuerdo con uno cualquiera de los ítems 1-27, que comprende una secuencia de aminoácidos seleccionada entre:

YAK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀ X₂₁AFIX₂₅X₂₆LX₂₈X₂₉X₃₀

 $20 \qquad \qquad PX_{32}QSX_{35}X_{36}LLX_{39}E \qquad AKKLX_{45}X_{46}X_{47}Q \ AP; \ y$

FNK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀ X₂₁AFIX₂₅X₂₆LX₂₈X₂₉X₃₀

PX₃₂QSX₃₅X₃₆LLX₃₉E AKKLX₄₅X₄₆X₄₇Q AP

en donde cada $X_{\scriptscriptstyle V}$ es como se define en uno cualquiera de los items 1-21.

31. Polipéptido de acuerdo con el ítem 30, que comprende una secuencia de aminoácidos seleccionada entre:

25 ADNNFNK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀

X₂₁AFIX₂₅X₂₆LX₂₈X₂₉X₃₀ PX₃₂QSX₃₅X₃₆LLX₃₉E AKKLX₄₅X₄₆X₄₇Q APK;

 $ADNKFNK \ EX_{2}X_{3}X_{4}AX_{6}X_{7}EIX_{10} \ X_{11}LPNLX_{16}X_{17}X_{18}QX_{20}$

 $X_{21}AFIX_{25}X_{26}LX_{28}X_{29}X_{30}PX_{32}QSX_{35}X_{36}LLX_{39}EAKKLX_{45}X_{46}X_{47}QAPK;$

 $VDNKFNK \ EX_{2}X_{3}X_{4}AX_{6}X_{7}EIX_{10} \ X_{11}LPNLX_{16}X_{17}X_{18}QX_{20}$

30 $X_{21}AFIX_{25}X_{26}LX_{28}X_{29}X_{30}PX_{32}QSX_{35}X_{36}LLX_{39}EAKKLX_{45}X_{46}X_{47}QAPK$;

VDAKIAK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀

 $X_{21}AFIX_{25}X_{26}LX_{28}X_{29}X_{30}PX_{32}QSX_{35}X_{36}LLX_{39}EAKKLX_{45}X_{46}X_{47}QAPK;$

у

AEAKIAK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀

 $35 \qquad X_{21}AFIX_{25}X_{26}LX_{28}X_{29}X_{30} \ PX_{32}QSX_{35}X_{36}LLX_{39}E \ AKKLX_{45}X_{46}X_{47}Q \ APK;$

en donde cada X_v es como se define en uno cualquiera de los ítems 1-21.

- 32. Polipéptido de acuerdo con uno cualquiera de los ítems 1-31 que tiene afinidad por una diana predeterminada, en el que dicha diana se selecciona opcionalmente entre el grupo que consiste en ABD, HER2, TNF α , EGFR, IGF1R, IgG, PDGFR β , HER3, C5, FcRn, CAIX, amiloide β , CD4, IL8, IL6 e insulina.
- 40 33. Polipéptido de fusión que comprende un polipéptido de acuerdo con uno cualquiera de los items 1-32 como resto.
 - 34. Polipéptido o polipéptido de fusión de acuerdo con uno cualquiera de los ítems 1-33, que comprende además una etiqueta.

- 35. Polipéptido o polipéptido de fusión de acuerdo con uno cualquiera de los ítems 1-34, que comprende además un agente terapéutico.
- 36. Polinucleótido que codifica un polipéptido o un polipéptido de fusión de acuerdo con uno cualquiera de los ítems 1-33
- 5 37. Población de variantes de polipéptido basada en un andamiaje común, comprendiendo cada polipéptido de la población una secuencia de aminoácidos seleccionada entre:
 - i) $EX_2X_3X_4AX_6X_7EIX_{10} X_{11}LPNLX_{16}X_{17}X_{18}QX_{20} X_{21}AFIX_{25}X_{26}LX_{28}X_{29}X_{30}$

PX₃₂QSX₃₅X₃₆LLX₃₉E AKKLX₄₅X₄₆X₄₇Q

en donde cada uno de X_2 , X_3 , X_4 , X_6 , X_7 , X_{10} , X_{11} , X_{17} , X_{18} , X_{20} , X_{21} , X_{25} y X_{28} corresponde independientemente a cualquier resto de aminoácido; y

en donde, independientemente entre ellos,

X₁₆ se selecciona entre N y T;

X₂₆ se selecciona entre K y S;

X₂₉X₃₀PX₃₂ se selecciona entre DDPS y RQPE;

15 X₃₅ se selecciona entre A y S;

10

X₃₆ se selecciona entre E y N;

X₃₉ se selecciona entre A, C y S;

X₄₅ se selecciona entre E, N v S;

X₄₆ se selecciona entre D, E y S;

20 X₄₇ se selecciona entre A y S; y

- ii) una secuencia de aminoácidos que tiene al menos 91% de identidad con la secuencia definida en i), siempre y cuando X_{46} no sea D o E cuando X_{45} es N.
- 38. Población de acuerdo con el ítem 37, que comprende al menos 1 x 10⁴ moléculas de polipéptido únicas.
- 39. Población de acuerdo con el ítem 38, que comprende al menos 1 x 106 moléculas de polipéptido únicas.
- 40. Población de acuerdo con el ítem 39, que comprende al menos 1 x 108 moléculas de polipéptido únicas.
 - 41. Población de acuerdo con el ítem 40, que comprende al menos 1 x 10¹⁰ moléculas de polipéptido únicas.
 - 42. Población de acuerdo con el ítem 41, que comprende al menos 1 x 1012 moléculas de polipéptido únicas.
 - 43. Población de acuerdo con el ítem 42, que comprende al menos 1 x 10¹⁴ moléculas de polipéptido únicas.
- 44. Población de polinucleótidos, caracterizada porque en cada miembro de la misma codifica un miembro de una población de polipéptidos de acuerdo con uno cualquiera de los ítems 37-43.
 - 45. Combinación de una población de polipéptidos de acuerdo con uno cualquiera de los ítems 37-43 con una población de polinucleótidos de acuerdo con el ítem 44, en donde cada miembro de dicha población de polipéptidos está física o espacialmente asociado con el polinucleótido que codifica ese miembro a través de medios para el acoplamiento genotipo-fenotipo.
- 46. Combinación de acuerdo con el ítem 45, en la que dichos medios para el acoplamiento genotipo-fenotipo comprenden un sistema de presentación de fagos.
 - 47. Combinación de acuerdo con el ítem 45, en la que dichos medios para el acoplamiento genotipo-fenotipo comprenden un sistema de presentación de selección de la superficie celular.
- 48. Combinación de acuerdo con el ítem 47, en donde dicho sistema de presentación de la superficie celular comprende células procariotas.
 - 49. Combinación de acuerdo con el ítem 48, en donde dichas células procariotas son células Gram-positivas.

- 50. Combinación de acuerdo con el ítem 47, en donde dicho sistema de presentación de la superficie celular comprende células eucariotas.
- 51. Combinación de acuerdo con el ítem 50, en donde dichas células eucariotas son células de levadura.

5

20

30

- 52. Combinación de acuerdo con el ítem 45, en donde dichos medios para el acoplamiento genotipo-fenotipo comprenden un sistema de presentación libre de células.
 - 53. Combinación de acuerdo con el ítem 52, en donde dicho sistema de presentación libre de células comprende un sistema de presentación de ribosomas.
 - 54. Combinación de acuerdo con el ítem 52, en donde dicho sistema de presentación libre de células comprende un sistema de presentación de compartimentación *in vitro*.
- 10 55. Combinación de acuerdo con el ítem 52, en donde dicho sistema de presentación libre de células comprende un sistema para presentación *cis*.
 - 56. Combinación de acuerdo con el ítem 52, en donde el sistema de presentación libre de células comprende un sistema de presentación de microperlas.
- 57. Combinación de acuerdo con el ítem 45, en donde dicho medio para el acoplamiento genotipo-fenotipo comprende un sistema sin presentación.
 - 58. Combinación de acuerdo con el ítem 57, en donde dicho sistema sin presentación es un ensayo de complementación de fragmentos de proteínas.
 - 59. Método para seleccionar un polipéptido deseado que tiene afinidad para una diana predeterminada, de una población de polipéptidos, que comprende las etapas:
 - (a) proporcionar una población de polipéptidos de acuerdo con uno cualquiera de los items 37-43;
 - (b) poner en contacto la población de polipéptidos con la diana predeterminada bajo condiciones que permiten la interacción específica entre la diana y al menos un polipéptido deseado que tiene afinidad para la diana; y
 - (c) seleccionar, sobre la base de dicha interacción específica, el al menos un polipéptido deseado de la población restante de polipéptidos.
- 25 60. Método de acuerdo con el ítem 59, en donde la etapa (a) comprende las etapas preparatorias de proporcionar una población de polinucleótidos de acuerdo con el ítem 44 y expresar dicha población de polinucleótidos para producir dicha población de polipéptidos.
 - 61. Método de acuerdo con el ítem 60, en donde cada miembro de dicha población de polipéptidos está asociado física o espacialmente con el polinucleótido que codifica ese miembro a través de medios para el acoplamiento genotipofenotipo.
 - 62. Método de acuerdo con el ítem 61, en donde dichos medios para el acoplamiento genotipo-fenotipo son como se definen en uno cualquiera de los ítems 46-58.
 - 63. Método para aislar un polinucleótido que codifica un polipéptido deseado que tiene afinidad para un objetivo predeterminado, que comprende las etapas:
- seleccionar dicho polipéptido deseado y el polinucleótido que lo codifica, entre una población de polipéptidos usando el método de acuerdo con el ítem 59; y
 - aislar el polinucleótido así separado, que codifica el polipéptido deseado.
 - 64. Método para identificar un polipéptido deseado que tiene afinidad por una diana predeterminada, que comprende las etapas:
- aislar un polinucleótido que codifica dicho polipéptido deseado usando el método de acuerdo con el ítem 63; y
 - secuenciar el polinucleótido para establecer por deducción la secuencia de aminoácidos de dicho polipéptido deseado.
 - 65. Método para seleccionar e identificar un polipéptido deseado que tiene afinidad por una diana predeterminada de una población de polipéptidos, que comprende las etapas:
- 45 (a) sintetizar cada miembro de una población de polipéptidos de acuerdo con uno cualquiera de los ítems 37-43 en un portador o perla separados;

- (b) seleccionar o enriquecer los portadores o perlas basándose en la interacción del polipéptido con la diana predeterminada; y
- (c) identificar el polipéptido mediante la metodología de caracterización de proteínas.
- 69. Método de acuerdo con el ítem 65, en donde la metodología de caracterización de proteínas utilizada en la etapa 5 (c) es el análisis espectrométrico de masas.

Lista de secuencias

```
<110> AFFIBODY AB
```

<120> NUEVOS POLIPÉPTIDOS

10

<130> 21071642

<150> EP13182022.7

<151> 2013-08-28

15

<160> 54

<170> PatentIn versión 3.5

20

<210> 1 <211> 108

<212> PRT

<213> SECUENCIA ARTIFICIAL

25 <220>

<223> Variante Z de unión C5 diseñada

<400> 1

Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile 1 5 10 15

Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn

Lys Leu Asp Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 35 40 45

Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp Gly Ser Leu Ala 50 60

Glu Ala Lys Glu Ala Ala Asn Ala Glu Leu Asp Ser Tyr Gly Val Ser 65 70 75 80

Asp Phe Tyr Lys Arg Leu Ile Asp Lys Ala Lys Thr Val Glu Gly Val 85 90 95

Glu Ala Leu Lys Asp Ala Ile Leu Ala Ala Leu Pro

30

<210> 2

<211> 46

<212> PRT <213> SECUENCIA ARTIFICIAL

35

<220:

<223> Polipéptido de unión a albúmina diseñado

<400> 2

Leu 1	Ala	Glu	Ala	Lys 5	Glu	Ala	Ala	Asn	Ala 10	Glu	Leu	Asp	Ser	Tyr 15	Gly
Val	Ser	Asp	Phe 20	Tyr	Lys	Arg	Leu	Ile 25	Asp	Lys	Ala	Lys	Thr 30	Val	Glu
Gly	Val	Glu 35	Ala	Leu	Lys	Asp	Ala 40	Ile	Leu	Ala	Ala	Leu 45	Pro		
<210> 3 <211> 1676 <212> PRT <213> HOMO SAPIENS															
<400 Met 1		Leu	Leu	Gly 5	Ile	Leu	Cys	Phe	Leu 10	Ile	Phe	Leu	Gly	Lys 15	Thr
Trp	Gly	Gln	Glu 20	Gln	Thr	Tyr	Val	Ile 25	Ser	Ala	Pro	Lys	Ile 30	Phe	Arg
Val	Gly	Ala 35	Ser	Glu	Asn	Ile	Val 40	Ile	Gln	Val	Tyr	Gly 45	Tyr	Thr	Glu
Ala	Phe 50	Asp	Ala	Thr	Ile	Ser 55	Ile	Lys	Ser	Tyr	Pro 60	Asp	Lys	Lys	Phe
Ser 65	Tyr	Ser	Ser	Gly	His 70	Val	His	Leu	Ser	Ser 75	Glu	Asn	Lys	Phe	Gln 80
Asn	Ser	Ala	Ile	Leu 85	Thr	Ile	Gln	Pro	Lys 90	Gln	Leu	Pro	Gly	Gly 95	Gln
Asn	Pro	Val	Ser 100	Tyr	Val	Tyr	Leu	Glu 105	Val	Val	Ser	Lys	His 110	Phe	Ser
Lys	Ser	Lys 115	Arg	Met	Pro	Ile	Thr 120	Tyr	Asp	Asn	Gly	Phe 125	Leu	Phe	Ile
His	Thr 130	Asp	Lys	Pro	Val	Tyr 135	Thr	Pro	Asp	Gln	Ser 140	Val	Lys	Val	Arg
Val 145	Tyr	Ser	Leu	Asn	Asp 150	Asp	Leu	Lys	Pro	Ala 155	Lys	Arg	Glu	Thr	Val 160
Leu	Thr	Phe	Ile	Asp 165	Pro	Glu	Gly	Ser	Glu 170	Val	Asp	Met	Val	Glu 175	Glu

Ile	Asp	His	Ile 180	Gly	Ile	Ile	Ser	Phe 185	Pro	Asp	Phe	Lys	Ile 190	Pro	Ser
Asn	Pro	Arg 195	Tyr	Gly	Met	Trp	Thr 200	Ile	Lys	Ala	Lys	Tyr 205	Lys	Glu	Asp
Phe	Ser 210	Thr	Thr	Gly	Thr	Ala 215	Tyr	Phe	Glu	Val	Lys 220	Glu	Tyr	Val	Leu
Pro 225	His	Phe	Ser	Val	Ser 230	Ile	Glu	Pro	Glu	туг 235	Asn	Phe	Ile	Gly	Туг 240
Lys	Asn	Phe	Lys	Asn 245	Phe	Glu	Ile	Thr	11e 250	Lys	Ala	Arg	Tyr	Phe 255	Tyr
Asn	Lys	Val	Val 260	Thr	Glu	Ala	Asp	Val 265	Tyr	Ile	Thr	Phe	Gly 270	Ile	Arg
Glu	Asp	Leu 275	Lys	Asp	Asp	Gln	Lys 280	Glu	Met	Met	Gln	Thr 285	Ala	Met	Gln
Asn	Thr 290	Met	Leu	Ile	Asn	Gly 295	Ile	Ala	Gln	Val	Thr 300	Phe	Asp	Ser	Glu
Thr 305	Ala	Val	Lys	Glu	Leu 310	Ser	Tyr	Tyr	Ser	Leu 315	Glu	Asp	Leu	Asn	Asn 320
Lys	Tyr	Leu	Tyr	Ile 325	Ala	Val	Thr	Val	Ile 330	Glu	Ser	Thr	Gly	Gly 335	Phe
Ser	Glu	Glu	Ala 340	Glu	Ile	Pro	Gly	Ile 345	Lys	Tyr	Val	Leu	Ser 350	Pro	Tyr
Lys	Leu	Asn 355	Leu	Val	Ala	Thr	Pro 360	Leu	Phe	Leu	Lys	Pro 365	Gly	Ile	Pro
Tyr	Pro 370	Ile	Lys	Val	Gln	Val 375	Lys	Asp	Ser	Leu	Asp 380	Gln	Leu	Val	Gly
Gly 385	Val	Pro	Val	Thr	Leu 390	Asn	Ala	Gln	Thr	Ile 395	Asp	Val	Asn	Gln	Glu 400
Thr	Ser	Asp	Leu	Asp 405	Pro	Ser	Lys	Ser	Val 410	Thr	Arg	Val	Asp	Asp 415	Gly
Val	Ala	Ser	Phe 420	Val	Leu	Asn	Leu	Pro 425	Ser	Gly	Val	Thr	Val 430	Leu	Glu

Phe	Asn	Val 435	Lys	Thr	Asp	Ala	Pro 440	Asp	Leu	Pro	Glu	Glu 445	Asn	Gln	Ala
Arg	Glu 450	Gly	Tyr	Arg	Ala	Ile 455	Ala	Tyr	Ser	Ser	Leu 460	Ser	Gln	Ser	Туі
Leu 465	Tyr	Ile	Asp	Trp	Thr 470	Asp	Asn	His	Lys	Ala 475	Leu	Leu	Val	Gly	Glu 480
His	Leu	Asn	Ile	Ile 485	Val	Thr	Pro	Lys	Ser 490	Pro	Tyr	Ile	Asp	Lys 495	Ile
Thr	His	Tyr	Asn 500	Tyr	Leu	Ile	Leu	Ser 505	Lys	Gly	Lys	Ile	Ile 510	His	Phe
Gly	Thr	Arg 515	Glu	Lys	Phe	Ser	Asp 520	Ala	Ser	Tyr	Gln	Ser 525	Ile	Asn	Ile
Pro	Val 530	Thr	Gln	Asn	Met	Val 535	Pro	Ser	Ser	Arg	Leu 540	Leu	Val	Tyr	Туі
Ile 545	Val	Thr	Gly	Glu	Gln 550	Thr	Ala	Glu	Leu	Val 555	Ser	Asp	Ser	Val	Trg 560
Leu	Asn	Ile	Glu	Glu 565	Lys	Cys	Gly	Asn	Gln 570	Leu	Gln	Val	His	Leu 575	Sei
Pro	Asp	Ala	As p 580	Ala	Tyr	Ser	Pro	Gly 585	Gln	Thr	Val	Ser	Leu 590	Asn	Met
Ala	Thr	Gly 595	Met	Asp	Ser	Trp	Val 600	Ala	Leu	Ala	Ala	Val 605	Asp	Ser	Ala
Val	Tyr 610	Gly	Val	Gln	Arg	Gly 615	Ala	Lys	Lys	Pro	Leu 620	Glu	Arg	Val	Phe
Gln 625	Phe	Leu	Glu	Lys	Ser 630	Asp	Leu	Gly	Cys	Gly 635	Ala	Gly	Gly	Gly	Le: 640
Asn	Asn	Ala	Asn	Val 645	Phe	His	Leu	Ala	Gly 650	Leu	Thr	Phe	Leu	Thr 655	Asr
Ala	Asn	Ala	Asp 660	Asp	Ser	Gln	Glu	Asn 665	Asp	Glu	Pro	Cys	Lys 670	Glu	Ile

Leu Arg Pro Arg Arg Thr Leu Gln Lys Lys Ile Glu Glu Ile Ala Ala 675 680 Lys Lys Ile Glu Glu Ile Ala Ala

Lys	Tyr 690	Lys	His	Ser	Val	Val 695	Lys	Lys	Суѕ	Cys	Tyr 700	Asp	Gly	Ala	Cys
Val 705	Asn	Asn	Asp	Glu	Thr 710	Cys	Glu	Gln	Arg	Ala 715	Ala	Arg	Ile	Ser	Leu 720
Gly	Pro	Arg	Cys	Ile 725	Lys	Ala	Phe	Thr	Glu 730	Cys	Cys	Val	Val	Ala 735	Ser
Gln	Leu	Arg	Ala 740	Asn	Ile	Ser	His	Lys 745	Asp	Met	Gln	Leu	Gly 750	Arg	Leu
His	Met	Lys 755	Thr	Leu	Leu	Pro	Val 760	Ser	Lys	Pro	Glu	Ile 765	Arg	Ser	Tyr
Phe	Pro 770	Glu	Ser	Trp	Leu	Trp 775	Glu	Val	His	Leu	Val 780	Pro	Arg	Arg	Lys
Gln 785	Leu	Gln	Phe	Ala	Leu 790	Pro	Asp	Ser	Leu	Thr 795	Thr	Trp	Glu	Ile	Gln 800
Gly	Val	Gly	Ile	Ser 805	Asn	Thr	Gly	Ile	Cys 810	Val	Ala	Asp	Thr	Val 815	Lys
Ala	Lys	Val	Phe 820	Lys	Asp	Val	Phe	Leu 825	Glu	Met	Asn	Ile	Pro 830	Tyr	Ser
Val	Val	Arg 835	Gly	Glu	Gln	Ile	Gln 840	Leu	Lys	Gly	Thr	Val 845	Tyr	Asn	Tyr
Arg	Thr 850	Ser	Gly	Met	Gln	Phe 855	Cys	Val	Lys	Met	Ser 860	Ala	Val	Glu	Gly
Ile 865	Cys	Thr	Ser	Glu	Ser 870	Pro	Val	Ile	Asp	His 875	Gln	Gly	Thr	Lys	Ser 880
Ser	Lys	Cys	Val	A rg 885	Gln	Lys	Val	Glu	Gly 890	Ser	Ser	Ser	His	Leu 895	Val
Thr	Phe	Thr	Val 900	Leu	Pro	Leu	Glu	Ile 905	Gly	Leu	His	Asn	Ile 910	Asn	Phe
Ser	Leu	Glu 915	Thr	Trp	Phe	Gly	Lys 920	Glu	Ile	Leu	Val	Lys 925	Thr	Leu	Arg
Val	Val	Pro	Glu	Gly	Val	Lys	Arg	Glu	Ser	Tyr	Ser	Gly	Val	Thr	Leu

930	935	940
Asp Pro Arg Gly Ile Tyr 945 950		Arg Lys Glu Phe Pro 960
Tyr Arg Ile Pro Leu Asp	Leu Val Pro Lys Thr	Glu Ile Lys Arg Ile
965	970	975
Leu Ser Val Lys Gly Leu	Leu Val Gly Glu Ile	Leu Ser Ala Val Leu
980	985	990
Ser Gln Glu Gly Ile Asn	Ile Leu Thr His Leu	Pro Lys Gly Ser Ala
995	1000	1005
Glu Ala Glu Leu Met Sen	r Val Val Pro Val Ph	ne Tyr Val Phe His
1010	1015	1020
Tyr Leu Glu Thr Gly Ass	n His Trp Asn Ile Ph	ne His Ser Asp Pro
1025	1030	1035
Leu Ile Glu Lys Gln Lys	s Leu Lys Lys Lys Le	eu Lys Glu Gly Met
1040	1045	1050
Leu Ser Ile Met Ser Tyr	r Arg Asn Ala Asp Ty	r Ser Tyr Ser Val
1055	1060	1065
Trp Lys Gly Gly Ser Ala	a Ser Thr Trp Leu Th	r Ala Phe Ala Leu
1070	1075	1080
Arg Val Leu Gly Gln Val	l Asn Lys Tyr Val Gl	u Gln Asn Gln Asn
1085	1090	1095
Ser Ile Cys Asn Ser Let	u Leu Trp Leu Val Gl	u Asn Tyr Gln Leu
1100	1105	1110
Asp Asn Gly Ser Phe Lys	s Glu Asn Ser Gln Ty	r Gln Pro Ile Lys
1115	1120	1125
Leu Gln Gly Thr Leu Pro	o Val Glu Ala Arg Gl 1135	u Asn Ser Leu Tyr 1140
Leu Thr Ala Phe Thr Val	l Ile Gly Ile Arg Ly 1150	rs Ala Phe Asp Ile 1155
Cys Pro Leu Val Lys Ile	e Asp Thr Ala Leu Il	e Lys Ala Asp Asn
1160	1165	1170

Phe	Leu 1175		Glu	Asn	Thr	Leu 1180		Ala	Gln	Ser	Thr 1185	Phe	Thr	Leu
Ala	Ile 1190		Ala	Tyr	Ala	Leu 1195		Leu	Gly	Asp	Lys 1200	Thr	His	Pro
Gln	Phe 1205		Ser	Ile	Val	Ser 1210	Ala	Leu	Lys	Arg	Glu 1215	Ala	Leu	Val
Lys	Gly 1220	Asn	Pro	Pro	Ile	Туг 1225	Arg	Phe	Trp	Lys	Asp 1230	Asn	Leu	Gln
His	Lys 1235	_	Ser	Ser	Val	Pro 1240		Thr	Gly	Thr	Ala 1245	Arg	Met	Val
Glu	Thr 1250		Ala	Tyr	Ala	Leu 1255		Thr	Ser		Asn 1260	Leu	Lys	Asp
Ile	Asn 1265	_	Val	Asn	Pro	Val 1270		Lys	Trp	Leu	Ser 1275	Glu	Glu	Gln
Arg	Tyr 1280		Gly	Gly	Phe	Tyr 1285		Thr	Gln		Thr 1290	Ile	Asn	Ala
Ile	Glu 1295	Gly	Leu	Thr	Glu	Tyr 1300		Leu	Leu	Val	Lys 1305	Gln	Leu	Arg
Leu	Ser 1310	Met	Asp	Ile	Asp	Val 1315	Ser	Tyr	Lys	His	Lys 1320	Gly	Ala	Leu
His	Asn 1325	Tyr	Lys	Met	Thr	Asp 1330	Lys	Asn	Phe	Leu	Gly 1335	Arg	Pro	Val
Glu	Val 1340	Leu	Leu	Asn	Asp	Asp 1345	Leu	Ile	Val	Ser	Thr 1350	Gly	Phe	Gly
Ser	Gly 1355		Ala	Thr	Val	His 1360	Val	Thr	Thr	Val	Val 1365	His	Lys	Thr
Ser	Thr 1370		Glu	Glu	Val	Cys 1375		Phe	Tyr	Leu	Lys 1380	Ile	Asp	Thr
Gln	Asp 1385		Glu	Ala	Ser	His 1390	_	Arg	Gly	Tyr	Gly 1395	Asn	Ser	Asp
Tyr	Lys 1400	Arg	Ile	Val	Ala	Cys 1405	Ala	Ser	Tyr	Lys	Pro 1410	Ser	Arg	Glu

Glu Ser Ser Ser Gly Ser Ser His Ala Val Met Asp Ile Ser Leu 1420 Pro Thr Gly Ile Ser Ala Asn Glu Glu Asp Leu Lys Ala Leu Val 1435 Glu Gly Val Asp Gln Leu Phe Thr Asp Tyr Gln Ile Lys Asp Gly 1450 His Val Ile Leu Gln Leu Asn Ser Ile Pro Ser Ser Asp Phe Leu 1470 1460 1465 Cys Val Arg Phe Arg Ile Phe Glu Leu Phe Glu Val Gly Phe Leu 1480 Ser Pro Ala Thr Phe Thr Val Tyr Glu Tyr His Arg Pro Asp Lys 1490 1495 1500 Gln Cys Thr Met Phe Tyr Ser Thr Ser Asn Ile Lys Ile Gln Lys 1510 Val Cys Glu Gly Ala Ala Cys Lys Cys Val Glu Ala Asp Cys Gly 1525 Gln Met Gln Glu Glu Leu Asp Leu Thr Ile Ser Ala Glu Thr Arg Lys Gln Thr Ala Cys Lys Pro Glu Ile Ala Tyr Ala Tyr Lys Val Ser Ile Thr Ser Ile Thr Val Glu Asn Val Phe Val Lys Tyr Lys 1570 Ala Thr Leu Leu Asp Ile Tyr Lys Thr Gly Glu Ala Val Ala Glu 1585 1580 Lys Asp Ser Glu Ile Thr Phe Ile Lys Lys Val Thr Cys Thr Asn 1595 $$ 1600 $$ Ala Glu Leu Val Lys Gly Arg Gln Tyr Leu Ile Met Gly Lys Glu 1615 Ala Leu Gln Ile Lys Tyr Asn Phe Ser Phe Arg Tyr Ile Tyr Pro 1625 1630 1635 Leu Asp Ser Leu Thr Trp Ile Glu Tyr Trp Pro Arg Asp Thr Thr 1640 1645 1650 Cys Ser Ser Cys Gln Ala Phe Leu Ala Asn Leu Asp Glu Phe Ala 1660 Glu Asp Ile Phe Leu Asn Gly Cys <210> 4 <211> 108 <212> PRT <213> SECUENCIA ARTIFICIAL

<223> Variante Z de unión C5 diseñada Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Arg Gln Pro Glu Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp Gly Ser Leu Ala 55 Glu Ala Lys Glu Ala Ala Asn Ala Glu Leu Asp Ser Tyr Gly Val Ser Asp Phe Tyr Lys Arg Leu Ile Asp Lys Ala Lys Thr Val Glu Gly Val 90 Glu Ala Leu Lys Asp Ala Ile Leu Ala Ala Leu Pro <210> 5 <211> 108 10 <212> PRT <213> SECUENCIA ARTIFICIAL <220> <223> Variante Z de unión C5 diseñada 15 <400> 5 Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn 20 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys Val Asp Gly Ser Leu Ala Glu Ala Lys Glu Ala Ala Asn Ala Glu Leu Asp Ser Tyr Gly Val Ser Asp Phe Tyr Lys Arg Leu Ile Asp Lys Ala Lys Thr Val Glu Gly Val 90 Glu Ala Leu Lys Asp Ala Ile Leu Ala Ala Leu Pro 20 <210> 6

<211> 108

```
<212> PRT
     <213> SECUENCIA ARTIFICIAL
     <220>
     <223> Variante Z de unión C5 diseñada
     <400> 6
      Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile
      Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
      Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
      Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp Gly Ser Leu Ala
      Glu Ala Lys Val Leu Ala Asn Arg Glu Leu Asp Lys Tyr Gly Val Ser
      Asp Phe Tyr Lys Arg Leu Ile Asn Lys Ala Lys Thr Val Glu Gly Val
      Glu Ala Leu Lys Leu His Ile Leu Ala Ala Leu Pro
                  100
     <210> 7
10
     <211> 108
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
15
     <223> Variante Z de unión C5 diseñada
      Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Ser Glu Ile
      Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
      Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
      Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp Gly Ser Leu Ala
      Glu Ala Lys Glu Ala Ala Asn Ala Glu Leu Asp Ser Tyr Gly Val Ser
      Asp Phe Tyr Lys Arg Leu Ile Asp Lys Ala Lys Thr Val Glu Gly Val
                                          90
      Glu Ala Leu Lys Asp Ala Ile Leu Ala Ala Leu Pro
```

_	<212	> 108 > PR		NCIA	ARTI	FICIA	AL									
5	<220 <223		riante	Z de	uniór	n C5 (diseñ	ada								
	<400 Ala 1	_	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Glu	Arg	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Lys	Val	Asp 60	Gly	Ser	Leu	Ala
10	Glu 65	Ala	Lys	Glu	Ala	Ala 70	Asn	Ala	Glu	Leu	Asp 75	Ser	Tyr	Gly	Val	Ser 80
	Asp	Phe	Tyr	Lys	Arg 85	Leu	Ile	Asp	Lys	Ala 90	Lys	Thr	Val	Glu	Gly 95	Val
	Glu	Ala	Leu	Lys 100	Asp	Ala	Ile	Leu	Ala 105	Ala	Leu	Pro				
15	<212	> 108 > PR	-	NCIA	ARTI	FICIA	AL									
20	<220 <223		riante	Z de	uniór	n C5 (diseñ	ada								
20	<400	> 9														

Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Ala 25 Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 40 Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp Gly Ser Leu Ala Glu Ala Lys Glu Ala Ala Asn Ala Glu Leu Asp Ser Tyr Gly Val Ser Asp Phe Tyr Lys Arg Leu Ile Asp Lys Ala Lys Thr Val Glu Gly Val Glu Ala Leu Lys Asp Ala Ile Leu Ala Ala Leu Pro 100 <210> 10 <211> 108 <212> PRT <213> SECUENCIA ARTIFICIAL <220> <223> Variante Z de unión C5 diseñada <400> 10 Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile 1 5 10 15 Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Glu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp Gly Ser Leu Ala Glu Ala Lys Glu Ala Ala Asn Ala Glu Leu Asp Ser Tyr Gly Val Ser Asp Phe Tyr Lys Arg Leu Ile Asp Lys Ala Lys Thr Val Glu Gly Val Glu Ala Leu Lys Asp Ala Ile Leu Ala Ala Leu Pro 100 <210> 11 <211> 103 <212> PRT <213> SECUENCIA ARTIFICIAL <220> <223> Variante Z de unión C5 diseñada <400> 11

5

10

15

20

Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile

	Ala 1	Glu	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Asp	Arg	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Asn	Asp	Ser	Gln 55	Ala	Pro	Leu	Ala	Glu 60	Ala	Lys	Glu	Ala
	Ala 65	Asn	Ala	Glu	Leu	Asp 70	Ser	Tyr	Gly	Val	Ser 75	Asp	Phe	Tyr	Lys	Arg 80
	Leu	Ile	Asp	Lys	Ala 85	Lys	Thr	Val	Glu	Gly 90	Val	Glu	Ala	Leu	Lys 95	Asp
	Ala	Ile	Leu	Ala 100	Ala	Leu	Pro									
5				NCIA	ARTI	FICIA	۸L									
10	<220 <223		iante	Z de	uniór	n C5 (diseñ	ada								
	<400 Ala 1	> 12 Glu	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Asp	Arg	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Ser	Glu	Ser	Gln 55	Ala	Pro							
15	<210 <211 <212 <213	> 108 > PR	T	NCIA	ARTI	FICIA	۸L									
20	<220 <223		iante	Z de	uniór	n C5 (diseñ	ada								
	<400	> 13														

Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Gl 1 5 10 15	u Ile
Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Il 20 25 30	e Asn
Lys Leu Asp Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Gl 35 40 45	u Ala
Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys Val Glu Gly Ser Le 50 55 60	u Ala
Glu Ala Lys Glu Ala Ala Asn Ala Glu Leu Asp Ser Tyr Gly Va 65 70 75	l Ser 80
Asp Phe Tyr Lys Arg Leu Ile Asp Lys Ala Lys Thr Val Glu Gl 85 90 95	y Val
Glu Ala Leu Lys Asp Ala Ile Leu Ala Ala Leu Pro 100 105	
<210> 14 <211> 108 <212> PRT <213> SECUENCIA ARTIFICIAL	
<220> <223> Variante Z de unión C5 diseñada	
<pre><400> 14 Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Gl 1 5 10 15</pre>	u Ile
Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Il 20 25 30	e Asn
Lys Leu Asp Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Gl 35 40 45	u Ala
Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys Val Ala Gly Ser Le 50 55 60	u Ala
Glu Ala Lys Glu Ala Ala Asn Ala Glu Leu Asp Ser Tyr Gly Va 65 70 75	1 Ser 80
Asp Phe Tyr Lys Arg Leu Ile Asp Lys Ala Lys Thr Val Glu Gl 85 90 95	y Val
Glu Ala Leu Lys Asp Ala Ile Leu Ala Ala Leu Pro 100 105	
<210> 15 <211> 108 <212> PRT <213> SECUENCIA ARTIFICIAL	
<220> <223> Variante Z de unión C5 diseñada	

	<400 Ala 1	_	Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Asp	Arg	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Asp	Asp	Pro	Ser	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Glu	Ser	Ser	Gln 55	Ala	Pro	Lys	Val	Glu 60	Gly	Ser	Leu	Ala
	Glu 65		Lys	Glu	Ala	Ala 70		Ala	Glu	Leu	Asp 75		Tyr	Gly	Val	Ser 80
	Asp	Phe	Tyr	Lys	Arg 85	Leu	Ile	Asp	Lys	Ala 90	Lys	Thr	Val	Glu	Gly 95	Val
5	Glu	Ala	Leu	Lys 100	Asp	Ala	Ile	Leu	Ala 105	Ala	Leu	Pro				
0	<210 <211 <212 <213	> 108 > PR	Т	NCIA	ARTI	FICIA	۸L									
0	<220 <223		iante	Z de	uniór	n C5 (diseñ	ada								
	<400 Ala 1		Ala	Lys	Tyr 5	Ala	Lys	Glu	Val	Leu 10	Glu	Ala	Trp	Asp	Glu 15	Ile
	Asp	Arg	Leu	Pro 20	Asn	Leu	Thr	Ile	Glu 25	Gln	Trp	Leu	Ala	Phe 30	Ile	Asn
	Lys	Leu	Asp 35	Arg	Gln	Pro	Glu	Gln 40	Ser	Ser	Glu	Leu	Leu 45	Ser	Glu	Ala
	Lys	Lys 50	Leu	Ser	Glu	Ser	Gln 55	Ala	Pro	Lys	Val	Glu 60	Gly	Ser	Leu	Ala
	Glu 65	Ala	Lys	Glu	Ala	Ala 70	Asn	Ala	Glu	Leu	Asp 75	Ser	Tyr	Gly	Val	Ser 80
	Asp	Phe	Tyr	Lys	Arg 85	Leu	Ile	Asp	Lys	Ala 90	Lys	Thr	Val	Glu	Gly 95	Val
5	Glu	Ala	Leu	Lys 100	Asp	Ala	Ile	Leu	Ala 105	Ala	Leu	Pro				
10	<210 <211 <212 <213	> 57 > PR		NCIA.	ARTI	FICIA	۸L									
	<220 <223		iante	Z de	uniór	n C5 (diseñ	ada								

```
<400> 17
     Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile
     20
     Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                40
     Lys Lys Leu Glu Ser Ser Gln Ala Pro
5
     <210> 18
     <211> 57
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
10
     <220>
     <223> Variante Z de unión C5 diseñada
     Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile
                                        10
     Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn
                                    25
     Lys Leu Asp Arg Gln Pro Glu Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                40
     Lys Lys Leu Ser Glu Ser Gln Ala Pro
15
     <210> 19
     <211> 48
     <212> PRT
20
     <213> SECUENCIA ARTIFICIAL
     <220>
     <223> Variante Z de unión C5 diseñada
25
     <400> 19
     Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr
                     5
                                        10
     Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser
                 20
                                    25
     Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Glu Ser Gln
                                40
     <210> 20
     <211>48
30
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
     <223> Variante Z de unión C5 diseñada
35
     <400> 20
```

Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Glu Ser Ser Gln 40 <210> 21 <211>48 <212> PRT <213> SECUENCIA ARTIFICIAL <223> Variante Z de unión C5 diseñada 10 <400> 21 Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Arg Gln Pro Glu Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Glu Ser Gln <210> 22 15 <211> 58 <212> PRT <213> SECUENCIA ARTIFICIAL 20 <223> Variante Z de unión C5 diseñada Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 35 40 Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys 50 25 <210> 23 <211> 108 <212> PRT <213> SECUENCIA ARTIFICIAL 30 <220> <223> Variante Z de unión C5 diseñada <400> 23

Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile 1 5 10 15)
Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asr 20 25 30	1
Lys Leu Asp Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 35 40 45	a
Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Glu Gly Ser Leu Ala 50 55 60	3
Glu Ala Lys Glu Ala Ala Asn Ala Glu Leu Asp Ser Tyr Gly Val Ser 65 70 75 80	r
Asp Phe Tyr Lys Arg Leu Ile Asp Lys Ala Lys Thr Val Glu Gly Val 85 90 95	L
Glu Ala Leu Lys Asp Ala Ile Leu Ala Ala Leu Pro 100 105	
<210> 24 <211> 108 <212> PRT <213> SECUENCIA ARTIFICIAL	
<220> <223> Variante Z de unión C5 diseñada	
<pre><400> 24 Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile 1 5 10 15</pre>	•
Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asr 20 25 30	ı
Lys Leu Asp Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala 35 40 45	a
Lys Lys Leu Asn Glu Ser Gln Ala Pro Lys Val Glu Gly Ser Leu Ala 50 55 60	3
Glu Ala Lys Glu Ala Ala Asn Ala Glu Leu Asp Ser Tyr Gly Val Ser 65 70 75 80	r
Asp Phe Tyr Lys Arg Leu Ile Asp Lys Ala Lys Thr Val Glu Gly Val 85 90 95	L
Glu Ala Leu Lys Asp Ala Ile Leu Ala Ala Leu Pro 100 105	
<210> 25 <211> 108 <212> PRT <213> SECUENCIA ARTIFICIAL	

<223> Variante Z de unión C5 diseñada

Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Asp Ser Gln Ala Pro Lys Val Glu Gly Ser Leu Ala Glu Ala Lys Glu Ala Ala Asn Ala Glu Leu Asp Ser Tyr Gly Val Ser Asp Phe Tyr Lys Arg Leu Ile Asp Lys Ala Lys Thr Val Glu Gly Val 90 Glu Ala Leu Lys Asp Ala Ile Leu Ala Ala Leu Pro 5 <210> 26 <211>62 <212> PRT <213> SECUENCIA ARTIFICIAL 10 <220> <223> Engineered C5 binding Z variant <400> 26 Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile Asp Arg Leu Pro Asn Leu Thr Ile Glu Gln Trp Leu Ala Phe Ile Asn Lys Leu Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys Val Asp Gly Ser 55 <210> 27 15 <211> 58 <212> PRT <213> SECUENCIA ARTIFICIAL 20 <223> Variante Z de unión HER2 diseñada <400> 27

Ala Glu Ala Lys Tyr Ala Lys Glu Val Leu Glu Ala Trp Asp Glu Ile

Ala Glu Ala Lys Tyr Ala Lys Glu Met Arg Asn Ala Tyr Trp Glu Ile

```
Ala Leu Leu Pro Asn Leu Thr Asn Gln Gln Lys Arg Ala Phe Ile Arg
      Lys Leu Tyr Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                   40
      Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
          50
     <210> 28
     <211> 58
     <212> PRT
 5
     <213> SECUENCIA ARTIFICIAL
     <220>
     <223> Variante Z de unión HER2 diseñada
10
     <400> 28
      Ala Glu Ala Lys Tyr Ala Lys Glu Met Arg Asn Ala Tyr Trp Glu Ile
      Ala Leu Leu Pro Asn Leu Thr Asn Gln Gln Lys Arg Ala Phe Ile Arg
                20
                                   25
      Lys Leu Tyr Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
      Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys
15
     <210> 29
     <211> 58
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
20
     <220>
     <223> Variante Z de unión HER2 diseñada
      Ala Glu Ala Lys Tyr Ala Lys Glu Met Arg Asn Ala Tyr Trp Glu Ile
      Ala Leu Leu Pro Asn Leu Thr Asn Gln Gln Lys Arg Ala Phe Ile Arg
      Lys Leu Tyr Arg Gln Pro Glu Gln Ser Ser Glu Leu Leu Ser Glu Ala
      Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys
                              55
25
     <210> 30
     <211> 58
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
30
     <220>
     <223> Variante Z de ingeniería PDGFRbeta vinculante
```

```
Ala Glu Ala Lys Tyr Ala Lys Glu Leu Ile Glu Ala Ala Glu Ile
      Asp Ala Leu Pro Asn Leu Thr Arg Arg Gln Trp Asn Ala Phe Ile Lys
                  20
                                       25
      Lys Leu Val Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
      Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
     <210> 31
     <211> 58
 5
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
10
     <223> Variante Z de ingeniería PDGFRbeta vinculante
     Ala Glu Ala Lys Tyr Ala Lys Glu Leu Ile Glu Ala Ala Ala Glu Ile
      Asp Ala Leu Pro Asn Leu Thr Arg Arg Gln Trp Asn Ala Phe Ile Lys
                  20
                                       25
      Lys Leu Val Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
      Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys
          50
     <210> 32
15
     <211> 58
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
20
     <220>
     <223> Variante Z de ingeniería PDGFRbeta vinculante
      Ala Glu Ala Lys Tyr Ala Lys Glu Leu Ile Glu Ala Ala Glu Ile
      Asp Ala Leu Pro Asn Leu Thr Arg Arg Gln Trp Asn Ala Phe Ile Lys
                  20
                                       25
      Lys Leu Val Arg Gln Pro Glu Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                   40
      Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys
                              55
25
     <210> 33
     <211> 58
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
30
     <220>
```

<400> 30

```
<400> 33
      Ala Glu Ala Lys Tyr Ala Lys Glu Gln Asp Ala Ala His Glu Ile
      Arg Trp Leu Pro Asn Leu Thr Phe Asp Gln Arg Val Ala Phe Ile His
      Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
      Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
 5
     <210> 34
     <211> 58
     <212> PRT
10
     <213> SECUENCIA ARTIFICIAL
     <220>
     <223> Variante Z de unión de FcRn diseñada
15
     <400> 34
      Ala Glu Ala Lys Tyr Ala Lys Glu Gln Asp Ala Ala Ala His Glu Ile
      Arg Trp Leu Pro Asn Leu Thr Phe Asp Gln Arg Val Ala Phe Ile His
      Lys Leu Ala Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                   40
      Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys
     <210> 35
     <211> 58
20
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
     <223> Variante Z de unión de FcRn diseñada
25
     <400> 35
      Ala Glu Ala Lys Tyr Ala Lys Glu Gln Asp Ala Ala Ala His Glu Ile
      Arg Trp Leu Pro Asn Leu Thr Phe Asp Gln Arg Val Ala Phe Ile His
      Lys Leu Ala Arg Gln Pro Glu Gln Ser Ser Glu Leu Leu Ser Glu Ala
              35
                                   40
      Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys
     <210> 36
30
     <211> 58
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
```

<223> Variante Z de unión de FcRn diseñada

```
<220>
     <223> Variante Z de unión CAIX diseñada
     <400> 36
      Ala Glu Ala Lys Tyr Ala Lys Glu Asn Leu Phe Ala Gly Trp Glu Ile
      Ser Asp Leu Pro Asn Leu Thr Asp Tyr Gln Arg Asn Ala Phe Ile Tyr
      Lys Leu Trp Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                   40
      Lys Lys Leu Asn Asp Ser Gln Ala Pro Lys
     <210> 37
     <211> 58
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
10
     <223> Variante Z de unión CAIX diseñada
15
     <400> 37
      Ala Glu Ala Lys Tyr Ala Lys Glu Asn Leu Phe Ala Gly Trp Glu Ile
      Ser Asp Leu Pro Asn Leu Thr Asp Tyr Gln Arg Asn Ala Phe Ile Tyr
      Lys Leu Trp Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
      Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys
     <210> 38
     <211> 58
20
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
     <223> Variante Z de unión CAIX diseñada
25
      Ala Glu Ala Lys Tyr Ala Lys Glu Asn Leu Phe Ala Gly Trp Glu Ile
      Ser Asp Leu Pro Asn Leu Thr Asp Tyr Gln Arg Asn Ala Phe Ile Tyr
      Lys Leu Trp Arg Gln Pro Glu Gln Ser Ser Glu Leu Leu Ser Glu Ala
      Lys Lys Leu Ser Glu Ser Gln Ala Pro Lys
     <210> 39
30
     <211> 58
     <212> PRT
```

```
<213> SECUENCIA ARTIFICIAL
     <220>
     <223> Variante Z de unión CAIX diseñada
      Ala Glu Ala Lys Tyr Ala Lys Glu Asn Leu Phe Ala Gly Trp Glu Ile
      Ser Asp Leu Pro Asn Leu Thr Asp Tyr Gln Arg Asn Ala Phe Ile Tyr
      Lys Leu Trp Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                   40
      Lys Lys Leu Asn Glu Ser Gln Ala Pro Lys
     <210> 40
10
     <211> 58
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
     <220>
15
     <223> Variante Z de unión CAIX diseñada
     <400> 40
      Ala Glu Ala Lys Tyr Ala Lys Glu Asn Leu Phe Ala Gly Trp Glu Ile
      Ser Asp Leu Pro Asn Leu Thr Asp Tyr Gln Arg Asn Ala Phe Ile Tyr
      Lys Leu Trp Arg Gln Pro Glu Gln Ser Ser Glu Leu Leu Ser Glu Ala
            35
                                  40
      Lys Lys Leu Asn Glu Ser Gln Ala Pro Lys
          50
20
     <210> 41
     <211> 58
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
25
     <220>
     <223> Variante Z de unión CAIX diseñada
     <400> 41
      Ala Glu Ala Lys Tyr Ala Lys Glu Asn Leu Phe Ala Gly Trp Glu Ile
      Ser Asp Leu Pro Asn Leu Thr Asp Tyr Gln Arg Asn Ala Phe Ile Tyr
                                       25
      Lys Leu Trp Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                   40
      Lys Lys Leu Ser Asp Ser Gln Ala Pro Lys
30
          50
                               55
     <210> 42
     <211> 58
```

```
<212> PRT
     <213> SECUENCIA ARTIFICIAL
     <220>
     <223> Variante Z de unión CAIX diseñada
     <400> 42
      Ala Glu Ala Lys Tyr Ala Lys Glu Asn Leu Phe Ala Gly Trp Glu Ile
      Ser Asp Leu Pro Asn Leu Thr Asp Tyr Gln Arg Asn Ala Phe Ile Tyr
      Lys Leu Trp Arg Gln Pro Glu Gln Ser Ser Glu Leu Leu Ser Glu Ala
                                   40
      Lys Lys Leu Ser Asp Ser Gln Ala Pro Lys
10
     <210> 43
     <211> 48
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
15
     <220>
     <223> Variante Z de unión HER2 diseñada
      Glu Met Arg Asn Ala Tyr Trp Glu Ile Ala Leu Leu Pro Asn Leu Thr
      Asn Gln Gln Lys Arg Ala Phe Ile Arg Lys Leu Tyr Asp Asp Pro Ser
      Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Glu Ser Gln
                                   40
20
     <210> 44
     <211> 48
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
25
     <220>
     <223> Variante Z de unión HER2 diseñada
     <400> 44
      Glu Met Arg Asn Ala Tyr Trp Glu Ile Ala Leu Leu Pro Asn Leu Thr
      Asn Gln Gln Lys Arg Ala Phe Ile Arg Lys Leu Tyr Arg Gln Pro Glu
      Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Glu Ser Gln
30
     <210> 45
     <211> 48
     <212> PRT
35
     <213> SECUENCIA ARTIFICIAL
```

<220>

```
<223> Variante Z de ingeniería PDGFRbeta vinculante
     <400> 45
      Glu Leu Ile Glu Ala Ala Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                            10
      Arg Arg Gln Trp Asn Ala Phe Ile Lys Lys Leu Val Asp Asp Pro Ser
      Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Glu Ser Gln
 5
     <210> 46
     <211>48
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
10
     <223> Variante Z de ingeniería PDGFRbeta vinculante
     <400> 46
      Glu Leu Ile Glu Ala Ala Ala Glu Ile Asp Ala Leu Pro Asn Leu Thr
                                            10
      Arg Arg Gln Trp Asn Ala Phe Ile Lys Lys Leu Val Arg Gln Pro Glu
      Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Glu Ser Gln
15
     <210> 47
     <211>48
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
20
     <220>
     <223> Variante Z de unión de FcRn diseñada
25
     <400> 47
      Glu Gln Asp Ala Ala Ala His Glu Ile Arg Trp Leu Pro Asn Leu Thr
                                            10
      Phe Asp Gln Arg Val Ala Phe Ile His Lys Leu Ala Asp Asp Pro Ser
                  20
                                       25
      Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Glu Ser Gln
                                   40
     <210> 48
     <211>48
30
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
     <223> Variante Z de unión de FcRn diseñada
35
     <400> 48
```

Glu Gln Asp Ala Ala Ala His Glu Ile Arg Trp Leu Pro Asn Leu Thr

Phe Asp Gln Arg Val Ala Phe Ile His Lys Leu Ala Arg Gln Pro Glu Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Glu Ser Gln 40 <210> 49 <211> 48 <212> PRT <213> SECUENCIA ARTIFICIAL <220> <223> Variante Z de unión CAIX diseñada 10 <400> 49 Glu Asn Leu Phe Ala Gly Trp Glu Ile Ser Asp Leu Pro Asn Leu Thr Asp Tyr Gln Arg Asn Ala Phe Ile Tyr Lys Leu Trp Asp Asp Pro Ser Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Glu Ser Gln <210> 50 15 <211>48 <212> PRT <213> SECUENCIA ARTIFICIAL <220> 20 <223> Variante Z de unión CAIX diseñada Glu Asn Leu Phe Ala Gly Trp Glu Ile Ser Asp Leu Pro Asn Leu Thr Asp Tyr Gln Arg Asn Ala Phe Ile Tyr Lys Leu Trp Arg Gln Pro Glu Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Glu Ser Gln 25 <210> 51 <211>48 <212> PRT <213> SECUENCIA ARTIFICIAL 30 <220> <223> Variante Z de unión CAIX diseñada Glu Asn Leu Phe Ala Gly Trp Glu Ile Ser Asp Leu Pro Asn Leu Thr 10 Asp Tyr Gln Arg Asn Ala Phe Ile Tyr Lys Leu Trp Asp Asp Pro Ser 20 25 Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Glu Ser Gln 35

```
<210> 52
     <211>48
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
     <223> Variante Z de unión CAIX diseñada
     <400> 52
      Glu Asn Leu Phe Ala Gly Trp Glu Ile Ser Asp Leu Pro Asn Leu Thr
                                           10
      Asp Tyr Gln Arg Asn Ala Phe Ile Tyr Lys Leu Trp Arg Gln Pro Glu
      Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Asn Glu Ser Gln
10
                                   40
     <210> 53
     <211>48
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
15
     <220>
     <223> Variante Z de unión CAIX diseñada
20
      Glu Asn Leu Phe Ala Gly Trp Glu Ile Ser Asp Leu Pro Asn Leu Thr
                                           10
      Asp Tyr Gln Arg Asn Ala Phe Ile Tyr Lys Leu Trp Asp Asp Pro Ser
                  20
      Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Asp Ser Gln
                                   40
     <210> 54
     <211>48
25
     <212> PRT
     <213> SECUENCIA ARTIFICIAL
     <220>
     <223> Variante Z de unión CAIX diseñada
30
     <400> 54
      Glu Asn Leu Phe Ala Gly Trp Glu Ile Ser Asp Leu Pro Asn Leu Thr
      Asp Tyr Gln Arg Asn Ala Phe Ile Tyr Lys Leu Trp Arg Gln Pro Glu
      Gln Ser Ser Glu Leu Leu Ser Glu Ala Lys Lys Leu Ser Asp Ser Gln
                                   40
```

REIVINDICACIONES

- 1. Polipéptido que comprende una secuencia de aminoácidos seleccionada entre:
- i) $EX_2X_3X_4AX_6X_7EIX_{10} X_{11}LPNLX_{16}X_{17}X_{18}QX_{20} X_{21}AFIX_{25}X_{26}LX_{28}X_{29}X_{30}$

PX₃₂QSX₃₅X₃₆LLX₃₉E AKKLX₄₅X₄₆X₄₇Q;

en donde cada uno de X₂, X₃, X₄, X₆, X₇, X₁₀, X₁₁, X₁₇, X₁₈, X₂₀, X₂₁, X₂₅ y X₂₈ es independientemente cualquier resto de aminoácido; y

en donde, independientemente entre ellos,

X₁₆ se selecciona entre N y T;

X₂₆ se selecciona entre K y S;

10 $X_{29}X_{30}PX_{32}$ se selecciona entre DDPS y RQPE;

X₃₅ se selecciona entre A y S;

X₃₆ se selecciona entre E y N;

X₃₉ se selecciona entre A, C y S;

X₄₅ se selecciona entre E y S;

15 X₄₆ se selecciona entre D, E y S;

X₄₇ se selecciona entre A y S; y

- ii) una secuencia de aminoácidos que tiene al menos 91% de identidad con la secuencia definida en i), siempre y cuando X_{46} no sea D o E cuando X_{45} es N.
- 2. Polipéptido según la reivindicación 1ª, en donde X₄₅ es S.
- 20 3. Polipéptido según la reivindicación 1 o 2, en donde X₄₅X₄₆ se elige entre ES y SE.
 - 4. Polipéptido según una cualquiera de las reivindicaciones 1-3, que comprende una secuencia de aminoácidos elegida entre:

YAK EX₂X₃X₄AX₆X₇EIX₁₀ X₁₁LPNLX₁₆X₁₇X₁₈QX₂₀ X₂₁AFIX₂₅X₂₆LX₂₈X₂₉X₃₀

PX₃₂QSX₃₅X₃₆LLX₃₉E AKKLX₄₅X₄₆X₄₇Q AP; v

 $25 \qquad \text{FNK EX}_2 X_3 X_4 A X_6 X_7 \text{EIX}_{10} \quad X_{11} \text{LPNLX}_{16} X_{17} X_{18} Q X_{20} \quad X_{21} \text{AFIX}_{25} X_{26} \text{LX}_{28} X_{29} X_{30}$

 $PX_{32}QSX_{35}X_{36}LLX_{39}E$ AKKL $X_{45}X_{46}X_{47}Q$ AP,

en donde cada X_y es como se define en una cualquiera de las reivindicaciones 1-4, en donde y denota la posición de aminoácido del resto X dentro de la secuencia de polipéptidos definida por i).

- 5. Polipéptido de fusión que comprende un polipéptido según una cualquiera de las reivindicaciones 1-4 como resto.
- 30 6. Polinucleótido que codifica un polipéptido o polipéptido de fusión según una cualquiera de las reivindicaciones 1-5.
 - 7. Población de variantes de polipéptido basada en un andamiaje común, comprendiendo cada polipéptido de la población una secuencia de aminoácidos elegida entre:
 - $i) \hspace{0.5cm} \mathsf{EX}_2 \mathsf{X}_3 \mathsf{X}_4 \mathsf{AX}_6 \mathsf{X}_7 \mathsf{EIX}_{10} \; \mathsf{X}_{11} \mathsf{LPNLX}_{16} \mathsf{X}_{17} \mathsf{X}_{18} \mathsf{QX}_{20} \; \mathsf{X}_{21} \mathsf{AFIX}_{25} \mathsf{X}_{26} \mathsf{LX}_{28} \mathsf{X}_{29} \mathsf{X}_{30} \\$

PX₃₂QSX₃₅X₃₆LLX₃₉E AKKLX₄₅X₄₆X₄₇Q;

en donde cada uno de X₂, X₃, X₄, X₆, X₇, X₁₀, X₁₁, X₁₇, X₁₈, X₂₀, X₂₁, X₂₅ y X₂₈ es independientemente cualquier resto de aminoácido: v

en donde, independientemente entre ellos,

X₁₆ se selecciona entre N y T;

X₂₆ se selecciona entre K y S;

X₂₉X₃₀PX₃₂ se selecciona entre DDPS y RQPE;

X₃₅ se selecciona entre A y S;

X₃₆ se selecciona entre E y N;

X₃₉ se selecciona entre A, C y S;

5 X₄₅ se selecciona entre E y S;

15

35

X₄₆ se selecciona entre D, E y S;

X₄₇ se selecciona entre A y S; y

- ii) una secuencia de aminoácidos que tiene al menos 91% de identidad con la secuencia definida en i), siempre y cuando X₄₆ no sea D o E cuando X₄₅ es N.
- 10 8. Población según la reivindicación 7, que comprende al menos 1 x 10⁴ moleculas de polipéptidos únicas.
 - 9. Población de polinucleótidos, caracterizada porque cada miembro de la misma codifica un miembro de una población de polipéptidos según la reivindicación 7-8.
 - 10. Combinación de una población de polipéptidos según una cualquiera de las reivindicaciones 7-8 con una población de polinucleótidos según la reivindicación 9, en donde cada miembro de dicha población de polipéptidos está asociado física o espacialmente con el polinucleótido que codifica ese miembro a través de medios para el acoplamiento genotipo-fenotipo.
 - 11. Combinación según la reivindicación 10, en donde dichos medios para el acoplamiento de genotipo-fenotipo comprenden un sistema de presentación de fago.
- 12. Método para seleccionar un polipéptido deseado que tiene una afinidad para una diana predeterminada de una población de polipéptidos, que comprende las etapas de:
 - (a) proporcionar una población de polipéptidos según una cualquiera de las reivindicaciones 7-8;
 - (b) poner en contacto la población de polipéptidos con la diana predeterminada bajo condiciones que permiten la interacción específica entre la diana y al menos un polipéptido deseado que tiene una afinidad para la diana; y
- (c) seleccionar sobre la base de dicha interacción específica, el al menos un polipéptido deseado de la población de polipéptidos restantes.
 - 13. Método para aislar un polinucleótido que codifica un polipéptido deseado que tiene una afinidad para una diana predeterminada, que comprende las etapas de:
 - seleccionar dicho polipéptido deseado y el polinucleótido que lo codifica entre una población de polipéptidos usando el método según la reivindicación 12; y
- aislar el polinucleótido así separado que codifica el polipéptido deseado.
 - 14. Método para identificar un polipéptido deseado que tiene afinidad para una diana predeterminada, que comprende las etapas:
 - aislar un polinucleótido que codifica dicho polipéptido deseado usando el método según la reivindicación 13; y
 - secuenciar el polinucleótido para establecer por deducción la secuencia de aminoácidos de dicho polipéptido deseado.
 - 15. Método para seleccionar e identificar un polipéptido deseado que tiene una afinidad para una diana predeterminada entre una población de polipéptidos, que comprende las etapas de:
 - (a) sintetizar cada miembro de una población de polipéptidos según una cualquiera de las reivindicaciones 7-8 en un vehículo o esfera separado;
- 40 (b) seleccionar o enriquecer los vehículos o esferas basados en la interacción del polipéptido con la diana predeterminada; y
 - (c) identificar el polipéptido mediante metodología de caracterización de proteínas.

Designación	Secuencia de aminoácidos	SEQ ID NO:
PSI0242	AEAKYAKEVLEANDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVDGSLAEAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	1
ABD	LAEAKEAANAELDSYGVSDFYKRLIDKAKTVEGVEALKDAILAALP	2
Human C5	MGLIGILCFLIFLGKTWGQEQTYVISAPRIFRVGASENIVIQVYGYTEAFDATISIRSYPDKKFSYSSGHVHLSSENKFQ NSAILTIQPKQLPGGQNPVSYVLEVVSKHFSKSKRMPITYDNGFLFIHTDKPVYTPDQSVKVRVYSINDDLKPAKRETV LTFIOPEGSEVDMYEEIDHIGIISPPDFRIPSKSKRMPITYDNGFLFIHTDKPVYTPDQSVKVRVYSLNDDLKPAKRETV KNFKNFEITIKARYFYNKVYTEADVYITFGIREDLKDDQKEMMQTAMONTMLINGIAQVTFDSETAVKELSYSLEDLNN KYLYIAVTVIESTGGFSEEAEIPGIKYVLSPYKLNIVATPLFLKPGIPYPIKVQVKDSLDQLVGGVPVTLNAQTIDWVGE TSDLOPSKSYTRVDGGVASFVLINLESGYTLEFRYEDLFREDLFKPGIPYPIKVQVKDSLDQLVGGVPVTLNAQTIDWVGE TSDLOPSKSYTRVDGGVASFVLINLESGYTLILSKGXIIHFGTREKFSDASYQSINIPVTGWATARYSSLSQSYLYIDWTDNHKALLVGE HLNIIVYPFKSPYIDKITHYNYLILSKGKIIHFGTREKFSDASYQSINIPVTGWAPSSRLLVYYTVTGEQTAELVSDSVW INIEKCGNQLQVHLSPDADAYSPGQTVSLNMATGMDSWVALAAVDSAVYGVGRGAKKPLERRYGGGGGL NNANVFHLAGITFLTNANADDSQENDEPCKEILRPRRTLQKKIEEIAAKYKHSVVKKCCYDGACVNNDETCEQRAARISL GVGISNTGICVADTVKAKVFKDVFLEMNIPFSLETWFGKETLLYNVPEGWYRRYGLYFREDDLYFRETQ GVGISNTGICVADTVKAKVFKDVFLEIMINIPSSLETWFGKITLLWYTRYGMOFGVERSYSGOTLDPRGIYGTISRRKEFP YRIPDDLVVFRTEIKRILSVKGLLVGEILSAVLSQEGINILTHLPKGSAEAELMSVVPYVFYYFHAUFSHEFP YRIPDDLVVFRTEIKRILSVKGLLVGEILSAVLSQEGINILTHLPKGSAEAELMSVVPFYVFHYLETGHHWNIFHSDPLI EKQKLKKKLKEGMLSIMSYRNADYSYSWKGGSASTWLTAFALKYDTALLSAYEKTGONWUNIKWLSEEQRY GGGFYSTODTINAIEGLTEXSLLYGGLREAFDICPLVKIDTALIKADNFLLENTLPRQSTFTLAISAYALSGEGATAVH ALVEGYDOLFUTYGIRSANDLORDSSGENDLYGSSCHAVMDISLENTKATSTEEDLG GGGFYSTODTINAIEGLTESALLGANSDYRKEGALHNYKMTDKNFTAYALLDIYKTGEAVAEKGGSGALAVH ALVEGYDOLFTDYQIKGGNOEELDLTISALEREDLK ALVEGYDOLFTDYQIKGGRANDLQARSPERINISAYEYKSTFILLSTYYSTYRPEDRQCTWFYSTSNINIGWVC EGAACKCVEADCGOWGEELDLTISATRYGYGRACKPEILYKGATAYRYGTGGAATANLDEFAEDIF KKVTCTNAELVKGRQYLTISKEDLTSTYTYPELDSTTTTSTYTTGEADLENTRICGEATARICGEATANLESTANGC KKKVTCTNAELVKGRQYLTISKENDGOTGSRYNTGTRINGSTRYLLDGTSTATNINDEFAEDIFNGC KKKVTCTNAELVKGRQYLTISKENDGOTGSRYNTGTRINGSTRYLLDGTSTATNINDEFAEDIFNGC KKKVTCTNAELVKGRQYLTISKENDGOTGSRYNTGTRINGSTRYLDGILYKRYTGTGEADLENDITKGEALQILYSTYRYNDFYTGSSCGAFLANDLOFTGSCOAFLANGTGSTATNINGG	m
PSI0332	ABAKYAKEVLEANDEIDRLPNLTIEQWLAFINKLDRQPEQSSELLSEAKKLNDSQAPKVDGSLAEAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	4
PSI0334	ABAKYAKEVLEANDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLSESQAPKVDGSLABAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	2
PSI0335	ABAKYAKEVLEANDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVDGSLAEAKVLANRELDKYGVSDFYK RLINKAKTVEGVEALKLHILAALP	9
PSI0336	ABAKYAKEVLEAWSEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVDGSLAEAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	7
PSI0337	AEAKYAKEVLEAWDEIERLPNLTIEGWLAFINKLDDDPSGSSELLSEAKKLNDSGAPKVDGSLAEAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	ω

Figura 1A

Designación	Secuencia de aminoácidos	SEC ID NO:
PSI0339	AEAKYAKEVLEAWDEIDRLPNLTIEGWLAFIAKLDDDPSQSSELLSEAKKLNDSQAPKVDGSLAEAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	on
PSI0340	AEAKYAKEVLEAMDEIDRIPNLTIEQWLAFINKLEDDPSQSSELLSEAKKLNDSQAPKVDGSLAEAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	1.0
PSI0369	AEAKYAKBVLEAMDEIDRLPNLTIEQMLAFINKLDDDPSQSSELLSEAKKLNDSQAPLAEAKEAANAELDSYGVSDFYKRLIDK AKTVEGVEALKDAILAALP	11
PSI0377	AEAKYAKEVLEAMDEIDRLPNLTIEQMLAFINKLDDDPSQSSELLSEAKKLSESQAP	12
PSI0378	AEAKYAKEVLEAMDEIDRIPNITIEQMIAFINKLDDDPSQSSELLSEAKKLSESQAPKVEGSLAEAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	13
PSI0379	AEAKYAKEVLEAMDEIDRIPNITIEQMLAFINKLDDDPSQSSELLSEAKKLSESQAPKVAGSLAEAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	14
PSI0381	AEAKYAKEVLEAMDEIDRLPNLTIEQMLAFINKLDDDPSQSSELLSEAKKLESSQAPKVEGSLAEAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	15
PSI0383	AEAKYAKEVLEAWDEIDRLPNLTIEQWLAFINKLDRQPEQSSELLSEAKKLSESQAPKVEGSLAEAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	16
PSI0389	AEAKYAKEVLEAWDEIDRLPNLTIEGWLAFINKLDDDPSQSSELLSEAKKLESSQAP	17
PSI0390	AEAKYAKEVLEAMDEIDRLPNLTIEGWLAFINKLDRQPEQSSELLSEAKKLSESQAP	18
PSI0377 PP	EVLEANDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLSESQ	19
PSI0389 PP	EVLEANDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLESSQ	20
PSI0390 PP	EVLEANDEIDRLPNLTIEQWLAFINKLDRQPEQSSELLSEAKKLSESQ	21
PSI0400	AEAKYAKEVLEAMDEIDRLPULTIEQWLAFINKLDDDPSQSSELLSEAKKLSESQAPK	22
	AEAKYAKEVLEAWDEIDRLPNLTIEQWLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVEGSLAEAKEAANAELDSYGVSDFYK	
PSI0410	RLIDKAKTVEGVBALKDAILAALP	23
0	AEAKYAKEVLEAMDEIDRIPNITIEQMLAFINKLDDDPSQSSELLSEAKKLNESQAPKVEGSLAEAKEAANAELDSYGVSDFYK	ć
PSI0403	KLIDKAKIVEGVEALKUALLAALF	7.4
PSI0404	AEAKYAKEVLEAWDEIDRIPNITIEGWLAFINKLDDDPSQSSELISEAKKISDSQAPKVEGSLAEAKEAANAELDSYGVSDFYK RLIDKAKTVEGVEALKDAILAALP	25
PSI0257	AEAKYAKEVLEAMDEIDRLPHLTIEQMLAFINKLDDDPSQSSELLSEAKKLNDSQAPKVDGS	26
202891	AEAKYAKEMRNAYWEIALLPNLTVQQKRAFIRKLYDDPSQSSELLSEAKKLNDSQAPK	27
217341	AEAKYAKEMRNAYWEIALLPULTUQQKRAFIRKLYDDPSQSSELLSEAKKLSESQAPK	28
Z17342	AEAKYAKEMRNAYWEIALLPVLTVQQKRAFIRKLYRQPEQSSELLSEAKKLSESQAPK	29
Z15805	AEAKYAKELIEAAAEIDALPNLTRRQWNAFIKKLVDDPSQSSELLSEAKKLNDSQAPK	30
Z17343	AEAKYAKELIEAAAEIDALPULTRRQWNAFIKKLVDDPSQSSELLSEAKKLSESQAPK	31

Figura 1B

Designación	Secuencia de aminoácidos	SEC ID NO:
Z17344	AEAKYAKELIEAAAEIDALPNLTRROMNAFIKKLVROPEOSSELLSEAKKLSESQAPK	32
Z10103	AEAKYAKEQDAAAHEIRWLPULTFDQRVAFIHKLADDPSQSSELLSEAKKLNDSQAPK	33
217347	AEAKYAKEQDAAAHEIRWLPULTFDQRVAFIHKLADDPSQSSELLSEAKKLSESQAPK	34
Z17348	AEAKYAKEQDAAAHEIRWLPULTFDQRVAFIHKLARQPEQSSELLSEAKKLSESQAPK	35
209782	AEAKYAKENLFAGWEISDLPNLTDYQRNAFIYKLWDDPSQSSELLSEAKKLNDSQAPK	36
217351	AEAKYAKENLFAGWEISDLPNLTDYQRNAFIYKLWDDPSQSSELLSEAKKLSESQAPK	37
217352	AEAKYAKENLFAGWEISDLPNLTDYQRNAFIYKLWRQPEQSSELLSEAKKLSESQAPK	38
217355	AEAKYAKENLFAGWEISDLPNLTDYQRWAFIYKLWDDPSQSSELLSEAKKLNESQAPK	39
217357	AEAKYAKENLFAGWEISDLPNLTDYQRNAFIYKLWRQPEQSSELLSEAKKINESQAPK	40
217359	AEAKYAKENLFAGWEISDLPNLTDYQRNAFIYKLWDDPSQSSELLSEAKKLSDSQAPK	41
217360	AEAKYAKENLFAGWEISDLPNLTDYQRNAFIYKLWRQPEQSSELLSEAKKLSDSQAPK	42
Z17341 PP	EMRNAYWEIALLPNLTNQQKRAFIRKLYDDPSQSSELLSEAKKLSESQ	43
Z17342 PP	EMRNAYWEIALLPHLTHQQKRAFIRKLYRQPEQSSELLSEAKKLSESQ	44
Z17343 PP	ELIEAAAEIDALPNLTRRÇMNAFIKKLVDDPSQSSELLSEAKKLSESQ	45
Z17344 PP	ELIEAAAEIDALPNLTRRÇMNAFIKKLVRQPEQSSELLSEAKKLSESQ	46
Z17347 PP	EQDAAAHEIRWLPNLTFDQRVAFIHKLADDPSQSSELLSEAKKLSESQ	47
Z17348 PP	EQDAAAHEIRWLPNLTFDQRVAFIHKLARQPEQSSELLSEAKKLSESQ	48
Z17351 PP	ENLFAGWEISDLPULTDYQRNAFIYKLWDDPSQSSELLSEAKKLSESQ	49
Z17352 PP	ENLFAGWEISDLPHLTDYQRNAFIYKLWRQPEQSSELLSEAKKLSESQ	5.0
Z17355 PP	ENLFAGWEISDLPHLTDYQRNAFIYKLWDDPSQSSELLSEAKKLNESQ	51
Z17357 PP	ENLFAGWEISDLPHLTDYQRNAFIYKLWRQPEQSSELLSEAKKLNESQ	52
Z17359_PP	ENLFAGWEISDLPNLTDYQRNAFIYKLWDDPSQSSELLSEAKKLSDSQ	53
Z17360 PP	ENLFAGWEISDLPULTDYQRNAFIYKLWRQPEQSSELLSEAKKLSDSQ	54

Figura 1C

Figura 2

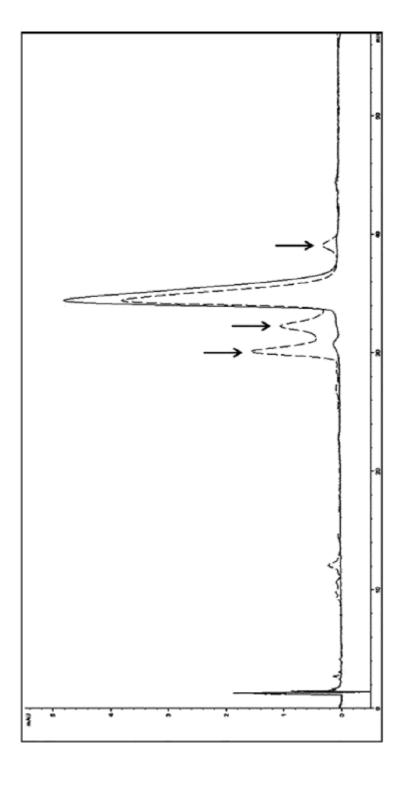
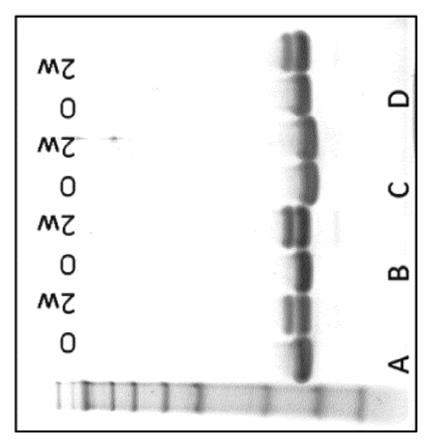



Figura 3

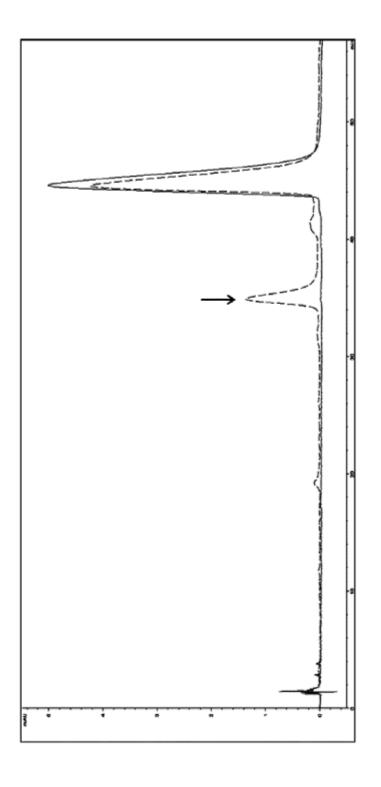
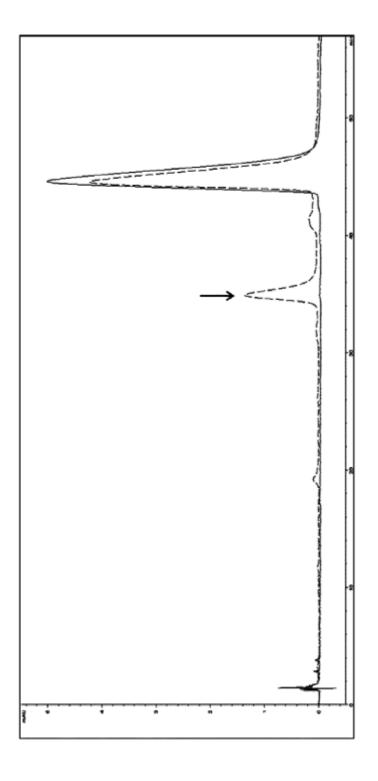
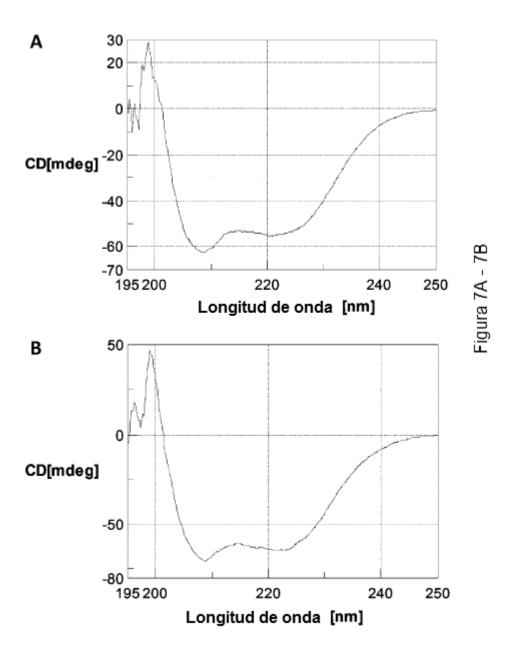
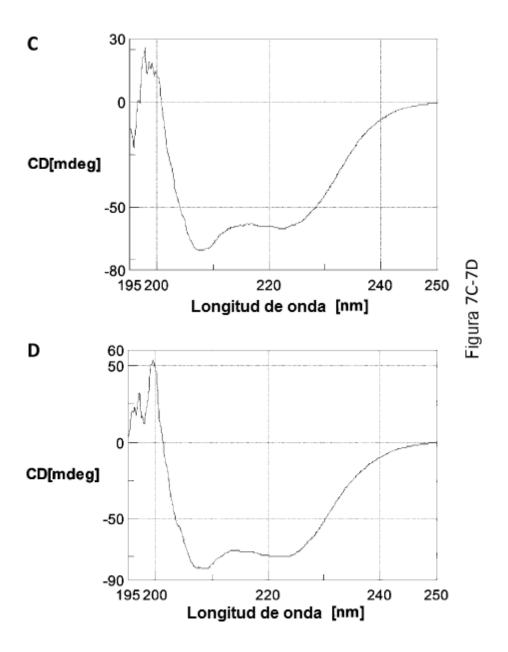
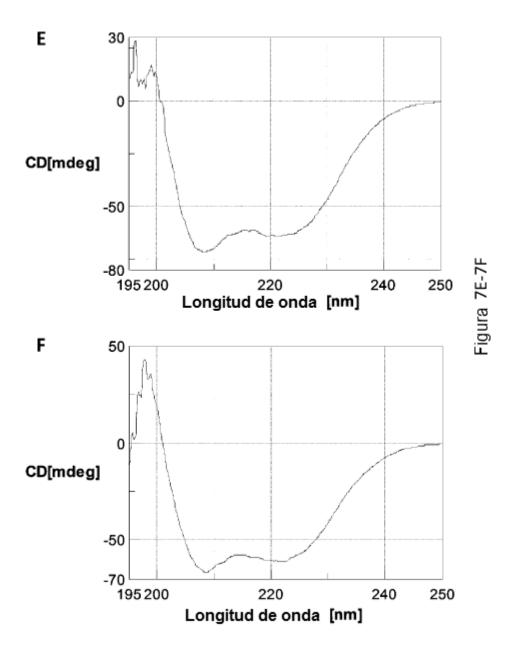
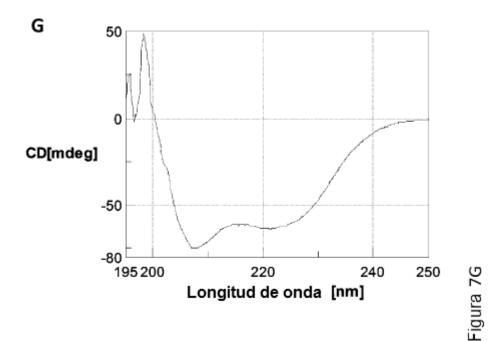
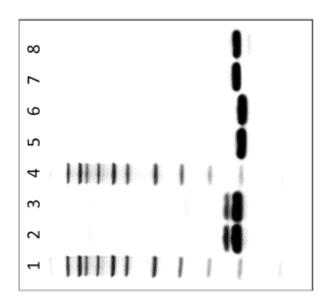


Figura 5


Figura 6

igura 8A

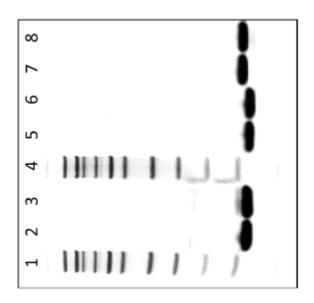


Figura 8B

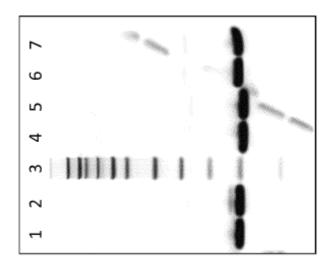


Figura 80

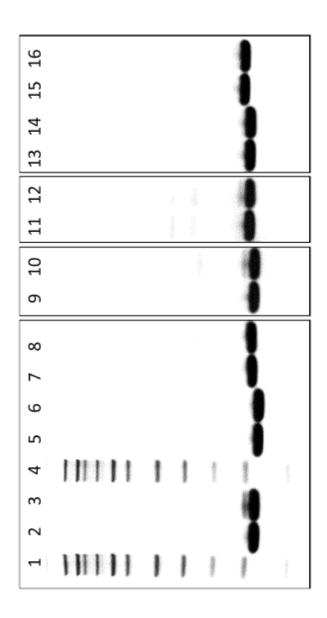
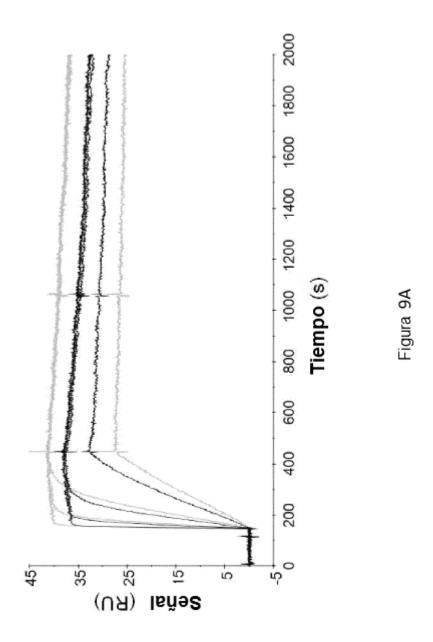
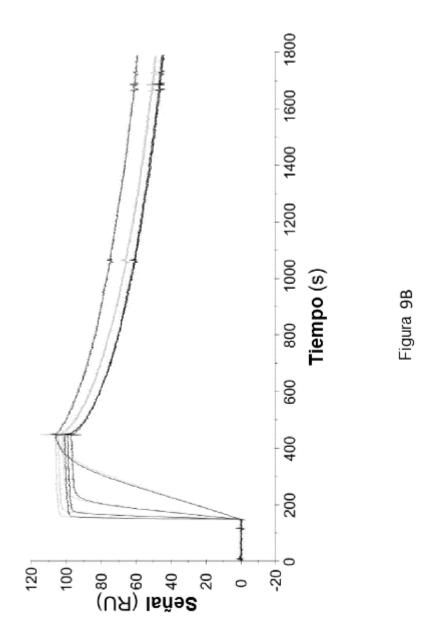
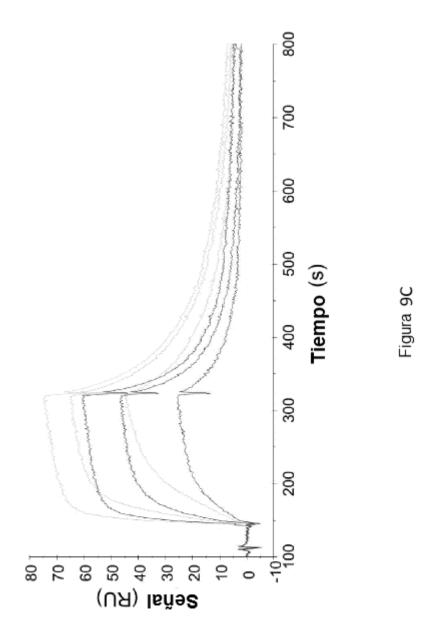
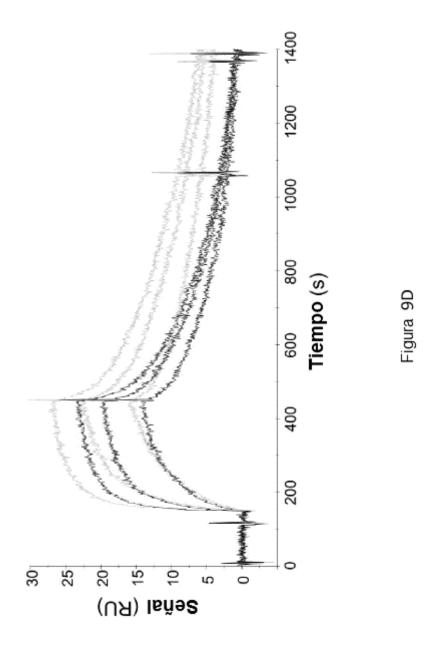






Figura 8D

