

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 742 974

51 Int. Cl.:

B62L 3/08 (2006.01) B62M 7/00 (2010.01) B60T 8/00 (2006.01) B62K 11/00 (2006.01) B60W 30/08 (2012.01) B62J 99/00 (2009.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- 96 Fecha de presentación y número de la solicitud europea: 17.06.2016 E 16174954 (4)
- 97 Fecha y número de publicación de la concesión europea: 31.07.2019 EP 3124369
 - (54) Título: Dispositivo de freno automático para vehículo de tipo silla de montar
 - (30) Prioridad:

27.07.2015 JP 2015147572

Fecha de publicación y mención en BOPI de la traducción de la patente: 17.02.2020

(73) Titular/es:

HONDA MOTOR CO., LTD. (100.0%) 1-1, Minami-Aoyama 2-chome, Minato-ku Tokyo 107-8556, JP

(72) Inventor/es:

KAJIYAMA, KEIGO; SAITO, SATOSHI y TODA, MAKOTO

74 Agente/Representante:

ARIAS SANZ, Juan

DESCRIPCIÓN

Dispositivo de freno automático para vehículo de tipo silla de montar

5 Campo técnico

La presente invención se refiere a un vehículo de tipo silla de montar que tiene un dispositivo de freno automático.

Técnica anterior

10

Convencionalmente, se conoce un dispositivo de freno automático para un vehículo que utiliza, para el control de freno automático del vehículo, la velocidad del propio vehículo y una desaceleración objetivo en húmedo cuando se evita el contacto del propio vehículo con un obstáculo delantero (véase el documento JP 1999-14648 A, por ejemplo).

15

Se conoce un vehículo de tipo silla de montar según el preámbulo de la reivindicación 1 por Giovanni Savino ET AL: "AUTONOMOUS EMERGENCY BRAKING FOR CORNERING MOTORCYCLE", Actas de la 24ª Conferencia técnica internacional sobre la seguridad mejorada de los vehículos (SMV), 11 de junio de 2015 (11-06-2015), XP055371696, Gotemburgo, Suecia.

20

El documento US 2009/014258 A1 da a conocer un dispositivo de frenado combinado para vehículos de tipo silla de montar, que primero activa los frenos traseros y luego activa los frenos delanteros independientemente de los medios de accionamiento de freno (delantero o trasero) que se activen primero y tiene como objetivo mantener la controlabilidad del vehículo de dos ruedas al tiempo que proporciona la desaceleración solicitada por el conductor.

25

Sumario de la invención

Problemas a resolver por la invención

30 En caso de que un dispositivo de freno automático tal como se describió anteriormente se aplique a un vehículo de tipo silla de montar, como una motocicleta o similar, es deseable no solo evitar el contacto con un obstáculo delantero, sino también considerar la supresión de una alteración involuntaria de la actitud del conductor en un momento de control de freno automático.

En consecuencia, es objeto de la presente invención suprimir una alteración involuntaria de la actitud de un conductor en un momento de control de freno automático en un dispositivo de freno automático para un vehículo de tipo silla de montar.

Medios para resolver los problemas

40

Este objeto se resuelve por un vehículo de tipo silla de montar que tiene un dispositivo de freno automático según la reivindicación 1. El dispositivo de freno automático incluye un freno delantero (2) y un freno trasero (3) que pueden accionarse de manera independiente uno con respecto a otro, y un modulador de freno (10) configurado para controlar el accionamiento de los frenos delantero y trasero (2, 3). El modulador de freno (10) incluye medios de determinación de posibilidad de colisión (19) para determinar la posibilidad de colisión del propio vehículo con un obstáculo delantero, medios de control de freno automático (21) para realizar un control automático de freno que aumenta automáticamente las fuerzas de frenado de los frenos delantero y trasero (2, 3) cuando los medios de determinación de posibilidad de colisión (19) determinan que existe la posibilidad de colisión, y unos medios de determinación de funcionamiento de freno (20) para determinar la presencia o ausencia de funcionamiento de freno por el conductor del propio vehículo.

50

45

Por otro lado, los vehículos de tipo silla de montar incluyen los vehículos en general para conducirse por un conductor sentado a horcajadas en una carrocería. El vehículo de tipo silla de montar incluye no solo las motocicletas (incluye ciclomotores y vehículos de tipo scooter), sino también vehículos de tres ruedas (incluidos no solo los vehículos que tienen una rueda delantera y dos ruedas traseras, sino también los vehículos que tienen dos ruedas delanteras y una rueda trasera) o vehículos de cuatro ruedas.

55

60

Además, según la invención, cuando los medios de determinación de posibilidad de colisión (19) determinan que existe una posibilidad de colisión, y los medios de determinación de funcionamiento de freno (20) determinan que el funcionamiento de freno por el conductor está ausente, los medios de control de freno automático (21) accionan primero solo el freno trasero (3) hasta un límite de bloqueo para generar una fuerza de frenado de rueda trasera y, a continuación, también acciona el freno delantero (2) para generar una fuerza de frenado de rueda delantera mientras se mantiene un estado accionado por límite de bloqueo del freno trasero (3).

65

Según una invención mencionada en la reivindicación 2, el modulador de freno (10) incluye una memoria (16) configurada para almacenar un mapa de fuerza de frenado (M) que tiene un eje de ordenadas que indica la

magnitud de la fuerza de frenado de uno de los frenos delantero y trasero (2, 3) y que tiene un eje de abscisas que indica la magnitud de la fuerza de frenado del otro de los frenos delantero y trasero (2, 3), una línea límite (E) y una línea límite (C), respectivamente, que indican las fuerzas de frenado, se describen unos límites de bloqueo de los frenos delantero y trasero (2, 3) en el mapa de fuerza de frenado (M), y los medios de control de freno automático (21) accionan el freno trasero (3) a lo largo de la línea límite (C) del freno trasero (3) en el mapa de fuerza de frenado (M).

Según una invención mencionada en la reivindicación 3, el modulador de freno (10) incluye los medios de estimación del coeficiente de fricción (17) para estimar un coeficiente de fricción de superficie de carretera, una pluralidad de líneas límite (E) y una pluralidad de líneas límite (C) se describen según el coeficiente de fricción de superficie de carretera, y los medios de control de freno automático (21) seleccionan la línea límite (E) y la línea límite (C) según el coeficiente de fricción de superficie de carretera.

Efectos de la invención

15

10

5

Según la invención mencionada en la reivindicación 1, aunque es posible el frenado automático por los frenos delantero y trasero, solo se acciona el freno trasero en un momento de inicio del frenado automático. Por tanto, el cabeceo del propio vehículo se suprime, y se da al conductor una sensación de desaceleración. Por tanto, puede suprimirse una alteración involuntaria de la actitud del conductor.

20

- Además, según la reivindicación 1, puede realizarse el control de freno automático que aprovecha al máximo la fuerza de frenado del freno trasero.
- Según la invención mencionada en la reivindicación 2, el control de freno automático puede realizarse fácilmente haciendo referencia al mapa de fuerza de control.

Según la invención mencionada en la reivindicación 3, el frenado límite de los frenos delantero y trasero puede realizarse según el coeficiente de fricción de superficie leído estimado.

30 Breve descripción de los dibujos

La figura 1 es un diagrama de bloques de un dispositivo de control de freno en una realización de la presente invención.

La figura 2 es un mapa de fuerza de frenado almacenado por una memoria del dispositivo de control de freno.

La figura 3 es un diagrama de flujo que representa el procesamiento del dispositivo de control de freno.

La figura 4 es un diagrama de flujo que representa el procesamiento del control de freno automático en la figura 3.

40

- La figura 5 es un diagrama de asistencia para explicar un caso de aumento de las fuerzas de frenado de un freno delantero y de un freno trasero cuando se determina que el funcionamiento de freno está ausente en la figura 4.
- La figura 6 es un diagrama de asistencia para explicar un primer ejemplo de un caso de aumento de las fuerzas de frenado de los frenos delantero y trasero cuando se determina que el funcionamiento de freno está presente en la figura 4.
- La figura 7 es un diagrama de asistencia para explicar un segundo ejemplo del caso de aumento de las fuerzas de frenado de los frenos delantero y trasero cuando se determina que el funcionamiento de freno está presente en la figura 4.

Modo de llevar a cabo la invención

Más adelante se describirá una realización de la presente invención con referencia a los dibujos.

55

- Un dispositivo de control de freno 1 según la presente realización se aplica por ejemplo a un vehículo de tipo silla de montar como una motocicleta que tiene una rueda delantera y una rueda trasera o similar.
- El dispositivo de control de freno 1 tiene un freno delantero 2 y un freno trasero 3 que se proporcionan de manera independiente uno con respecto a otro.
 - El freno delantero 2 se configura como freno de disco hidráulico que incluye un disco de freno delantero 4 unido a una rueda delantera del vehículo de tipo silla de montar para que pueda rotarse de manera solidaria con la rueda delantera y una pinza de freno delantera 6 provista de una presión hidráulica (presión de aceite) para sujetar el disco de freno delantero 4.

El freno trasero 3 se configura como freno de disco hidráulico que incluye un disco de freno trasero 5 unido a una rueda trasera del vehículo de tipo silla de montar para que pueda rotarse de manera solidaria con la rueda trasera y una pinza de freno trasera 7 provista de una presión hidráulica (presión de aceite) para sujetar el disco de freno trasero 5.

5

El dispositivo de control de freno 1 tiene un cilindro principal delantero 8 y un cilindro principal trasero 9 proporcionados de manera independiente uno con respecto a otro.

10

El cilindro principal delantero 8 está acoplado con un elemento de funcionamiento de freno delantero 8a, tal como una palanca de freno o similar. El cilindro principal delantero 8 genera una presión hidráulica (presión de aceite) según un funcionamiento del elemento de funcionamiento de freno delantero 8a.

15

El cilindro principal trasero 9 se acopla con un elemento de funcionamiento de freno trasero 9a, como un pedal de freno o similar. El cilindro principal trasero 9 genera una presión hidráulica (presión de aceite) según un funcionamiento del elemento de funcionamiento de freno trasero 9a.

El dispositivo de control de freno 1 tiene un modulador de freno 10 interpuesto entre los cilindros principales delantero y trasero 8 y 9 y las pinzas de freno delantera y trasera 6 y 7. El dispositivo de control de freno 1 constituye un denominado sistema de frenos de tipo por cable que conecta eléctricamente los cilindros principales delantero y trasero 8 y 9 con las pinzas de freno delantera y trasera 6 y 7.

20

El modulador de freno 10 incluye: una unidad de circuito hidráulico 11 que puede cambiar un paso hidráulico y que tiene medios de generación de presión de aceite 11a como una bomba o similares; y una unidad de control electrónica (ECU) 12 que controla la acción de la unidad de circuito hidráulico 11.

25

Los cilindros principales delantero y trasero 8 y 9 están acoplados a las pinzas de freno delantera y trasera 6 y 7 a través de la unidad de circuito hidráulico 11. La unidad de circuito hidráulico 11 bloquea en tiempos normales la comunicación entre los cilindros principales delantero y trasero 8 y 9 y las pinzas de freno delantera y trasera 6 y 7, y genera, en los medios de generación de presión de aceite 11a, una presión de aceite correspondiente a las presiones de aceite generadas en los cilindros principales delantero y trasero 8 y 9. El modulador de freno 10 provee la presión de aceite generada por la unidad de circuito hidráulico 11 a las pinzas de freno delantera y trasera 6 y 7 según corresponda, generando de ese modo fuerzas de frenado en los frenos delantero y trasero 2 y 3. En un momento de fallo de la unidad de circuito hidráulico 11, por ejemplo, las presiones de aceite generadas en los cilindros principales delantero y trasero 8 y 9 pueden proveerse a las pinzas de freno delantera y trasera 6 y 7.

35

30

El modulador de freno 10 puede generar fuerzas de frenado en los frenos delantero y trasero 2 y 3 según corresponda realizando el control de freno automático basándose en diversos tipos de información que incluyen información del vehículo de manera independiente del funcionamiento de los elementos de funcionamiento de freno delantero y trasero 8a y 9a por un conductor.

40

La ECU 12 se provee de información de detección acerca de las cantidades de funcionamiento de los elementos de funcionamiento de freno delantero y trasero 8a y 9a, información de detección de medios de reconocimiento exteriores 13 que se describirán más adelante, e información de detección de sensores de velocidad de rueda 14 y 15 para las ruedas delantera y trasera.

45

50

El modulador de freno 10 genera una presión de aceite correspondiente a las cantidades de funcionamiento de los elementos de funcionamiento de freno delantero y trasero 8a y 9a en los medios de generación de presión de aceite 11a de la unidad de circuito hidráulico 11, y provee la presión del aceite a las pinzas de freno delantera y trasera 6 y 7. Por tanto, el modulador de freno 10 puede generar fuerzas de frenado en los frenos delantero y trasero 2 y 3, y realizar el control de freno automático sin depender de las cantidades de funcionamiento de los elementos de funcionamiento de freno delantero y trasero 8a y 9a.

55

Los medios de reconocimiento exteriores 13 incluyen, por ejemplo, un dispositivo de radar instalado en una parte de extremo delantera del vehículo de tipo silla de montar. El dispositivo de radar emite ondas electromagnéticas tales como ondas milimétricas o similares hacia la parte delantera del vehículo en ciclos de control predeterminados, y recibe las ondas reflejadas. La ECU 12 determina si existe o no un obstáculo delante del vehículo (incluido otro vehículo) en base a un estado de transmisión y recepción de ondas milimétricas en el dispositivo de radar y, cuando hay un obstáculo, calcula una distancia y una velocidad en relación con el obstáculo. El obstáculo se denominará más adelante como obstáculo delantero.

60

Por otro lado, los medios de reconocimiento exteriores 13 pueden utilizar una cámara además del dispositivo de radar, y puede ser una configuración que combine información de transmisión y recepción del dispositivo de radar e información de imagen de la cámara.

65

La ECU 12 está formada por un microordenador que incluye una unidad de procesamiento central, una memoria y una interfaz de entrada/salida como hardware (solo la memoria se representa con el número de referencia 16). La

ECU 12 realiza varios tipos de control de procesamiento según señales de detección de varios tipos de sensores o interruptores e información de reconocimiento de exteriores o similares. La ECU 12 realiza el control de freno antibloqueo (control ABS) y el control de freno automático que va a describirse más adelante o similares controlando la acción de los frenos delantero y trasero 2 y 3 en base a un programa almacenado en la memoria 16.

5

La ECU 12 incluye una unidad de estimación de coeficiente de fricción 17 que realiza el procesamiento de estimar un coeficiente de fricción de superficie de carretera. El coeficiente de fricción de superficie de carretera se estima calculando el coeficiente de fricción según una diferencia entre las velocidades de rueda de las ruedas delantera y trasera. Como la diferencia entre las velocidades de rueda de las ruedas delantera y trasera se utiliza, por ejemplo, una diferencia entre las velocidades de rueda de la rueda trasera como rueda motriz y la rueda delantera como rueda motriz, una diferencia entre las velocidades de rueda de las ruedas delantera y trasera debido a una acción momentánea del modulador de freno 10, o similares.

15

10

La memoria 16 de la ECU 12 almacena un mapa de fuerza de frenado M para las ruedas delantera y trasera.

Tal como se muestra en la figura 2, el mapa de fuerza de frenado M, por ejemplo, tiene un eje de ordenadas que indica la fuerza de frenado del freno trasero 3 y un eje de abscisas que indica la fuerza de frenado del freno delantero 2. En el mapa de fuerza de frenado M, una curva A representa una curva de aumento ideal de las fuerzas de frenado de los frenos delantero y trasero 2 y 3. Un extremo derecho Z de la curva A en la figura 2 es un punto límite de frenado delantero trasero en el que el vehículo de tipo silla de montar produce una desaceleración máxima mediante la combinación de los frenos delantero y trasero 2 y 3, y es un punto límite de bloqueo delantero-trasero que indica que aumentar las fuerzas de frenado hasta este punto o más bloquea al menos una de las ruedas delantera y trasera.

30

25

Además, un punto B en el eje de las ordenadas es un punto límite de frenado de rueda trasera cuando solo se acciona el freno trasero 3, y es un punto límite de bloqueo trasero que indica que aumentar la fuerza de frenado de rueda trasera hasta este punto o más bloquea la rueda trasera. Además, una línea recta C desde el punto límite de bloqueo trasero B hasta el punto límite de bloqueo delantero-trasero Z es una línea límite de freno trasero que indica una fuerza de frenado como límite de bloqueo del freno trasero 3.

Además, un punto D en el eje de abscisas es un punto límite de frenado de rueda delantera cuando solo se acciona el freno delantero 2, y es un punto límite de bloqueo delantero que indica que aumentar la fuerza de frenado de rueda delantera hasta este punto o más bloquea la rueda delantera. Además, una línea recta E desde el punto límite de bloqueo delantero D hasta el punto límite de bloqueo delantero-trasero Z es una línea límite de freno delantero que indica una fuerza de frenado como límite de bloqueo del freno delantero 2.

35

En el mapa de fuerza de frenado M, una región F definida por las límeas límite de freno delantero y trasero E y C se establece como una región sin bloqueo en la que puede evitarse el bloqueo de las ruedas delantera y trasera por los frenos delantero y trasero 2 y 3.

40

Una pluralidad de líneas límite de freno delantero E y una pluralidad de líneas límite de freno trasero C se establecen según el coeficiente de fricción de superficie de carretera. Las líneas límite de freno delantero y trasero E y C utilizadas en control de freno automático se seleccionan según el coeficiente de fricción de superficie de carretera estimado por la unidad de estimación del coeficiente de fricción 17.

45

50

En el mapa de fuerza de frenado M, por ejemplo, se calcula un pequeño coeficiente de fricción de superficie de carretera que se encuentra en un nivel obtenido dividiendo el coeficiente de fricción de superficie de carretera estimado por un factor de seguridad (por ejemplo, 1.2 o similar). Una región G definida por las líneas límite delantera y trasera E' y C' correspondiente al coeficiente de fricción de superficie de carretera pequeño a este nivel se establece como región de determinación de la posibilidad de colisión utilizada en la determinación de la posibilidad de colisión que se describirá más adelante. Las líneas límite de freno delantero y trasero E y C se cruzan entre sí en un punto de intersección Z' en la curva A. El punto de intersección Z' corresponde a una fuerza de frenado de límite superior en la región de determinación de posibilidad de colisión G.

55

60

65

La ECU 12 incluye: una unidad de control de freno 18 que realiza un control de freno normal que acciona los frenos delantero y trasero 2 y 3 según la entrada de los elementos de funcionamiento de freno delantero y trasero 8a y 9a, control de freno antibloqueo que evita el bloqueo de las ruedas delantera y trasera por los frenos, y similar; una unidad de determinación de posibilidad de colisión 19 que determina una posibilidad de colisión del vehículo de tipo silla de montar con un obstáculo delantero en base a la información de detección de los medios de reconocimiento exteriores 13 y los sensores de velocidad de rueda delantera y trasera 14 y 15; una unidad de determinación de funcionamiento de freno 20 que determina condiciones tales como la presencia o ausencia de funcionamiento de freno por el conductor del vehículo de tipo silla de montar, cantidades del funcionamiento y similares; y una unidad de control de freno automático 21 que realiza el control de freno automático que acciona los frenos delantero y trasero 2 y 3 más fuertemente que el control de freno normal según las condiciones del funcionamiento de freno (aumenta automáticamente las fuerzas de frenado de los frenos delantero y trasero 2 y 3) cuando la unidad de determinación de posibilidad de colisión 19 determina que existe una posibilidad de colisión.

En la siguiente referencia a la figura 3 y a la figura 4 se describirán procesamientos realizados en la ECU 12 según la presente realización. Este procesamiento se realiza repetidamente en ciclos de control predeterminados.

- Como se muestra en la figura 3, primero, en la etapa S1, la unidad de determinación de posibilidad de colisión 19 determina la posibilidad de colisión del vehículo de tipo silla de montar con un obstáculo delantero. Específicamente, la unidad de determinación de posibilidad de colisión 19 obtiene información sobre la presencia o ausencia de un obstáculo delantero, una distancia relativa y una velocidad relativa entre el obstáculo delantero y el vehículo de tipo silla de montar, y similares en base a valores de detección de los medios de reconocimiento exteriores 13, y calcula la velocidad de vehículo del vehículo de tipo silla de montar en base a los valores de detección de los sensores de velocidad de la rueda 14 y 15.
- Haciendo referencia también a la figura 2, la unidad de determinación de posibilidad de colisión 19 determina si existe o no la posibilidad de colisión con el obstáculo delantero incluso cuando una fuerza de frenado en el límite superior (por ejemplo, el punto de intersección Z') en la región de determinación de posibilidad de colisión G del mapa de fuerza de frenado M actúa sobre el vehículo de tipo silla de montar que tiene la velocidad de vehículo calculada.
- Cuando la determinación en la etapa S1 es NO (no hay posibilidad de colisión), el procesamiento actual se termina directamente. Cuando la determinación en la etapa S1 es SÍ (existe la posibilidad de colisión), el procesamiento procede a la etapa S2, donde la unidad de control de freno automático 21 realiza el control de freno automático que va a describirse a continuación.
- Como se muestra en la figura 4, la unidad de control de freno automático 21 determina primero la presencia o ausencia de funcionamiento de freno en base a la información de detección de los medios de detección de funcionamiento de freno no representados en las figuras, medios de detección que están unidos a los elementos de funcionamiento de freno delantero y trasero 8a y 9a (etapa S3). Cuando la determinación en la etapa S3 es NO (ausencia de funcionamiento de freno), el procesamiento procede a la etapa S4. Cuando la determinación en la etapa S3 es SÍ (presencia de funcionamiento de freno), el procesamiento procede a la etapa S11 para ser descrito más adelante.
 - En la etapa S4, como control de freno automático, la unidad de control de freno automático 21 solo acciona el freno trasero 3 para generar una fuerza de frenado de rueda trasera.
- En este caso, cuando el freno delantero 2 se acciona para generar una fuerza de frenado en la rueda delantera como control de freno automático en el estado de ausencia de funcionamiento de freno, el vehículo de tipo silla de montar tiende a provocar un cabeceo relativamente grande (picado), que tiende a llevar a una alteración involuntaria de la actitud del conductor.
- 40 Además, en la presente realización, solo se acciona primero el freno trasero 3 para generar una fuerza de frenado de rueda trasera. Por tanto, se suprime la aparición de cabeceo del vehículo de tipo silla de montar, y se da al conductor una sensación de desaceleración. Por lo tanto, se suprime una alteración de la actitud del conductor.
- Al mismo tiempo que la etapa S4, en la etapa S5, la unidad de control de freno automático 21 lee un valor estimado del coeficiente de fricción de superficie de carretera de la unidad de estimación del coeficiente de fricción 17. Además, la unidad de control de freno automático 21 selecciona las líneas límite según el valor estimado del coeficiente de fricción de superficie de carretera entre la pluralidad de las líneas límite E y la pluralidad de las líneas límite C para los frenos delantero y trasero 2 y 3, respectivamente, en el mapa de fuerza de frenado M.
- Después de eso, en la etapa S6, la unidad de control de freno automático 21 aumenta la fuerza de frenado de rueda trasera hasta que la fuerza de frenado de rueda trasera alcanza la línea límite seleccionada C del freno trasero 3 (véase la flecha Y1 en la figura 5), y determina si la fuerza de frenado de rueda trasera ha aumentado o no hasta la línea límite seleccionada C. Cuando la determinación en la etapa S6 es NO (la fuerza de frenado de rueda trasera no ha alcanzado la línea límite C), el procesamiento actual se finaliza de forma temporal. Cuando la determinación en la etapa S6 es SÍ (la fuerza de frenado de rueda trasera ha alcanzado la línea límite C), el procesamiento procede a la etapa S7, donde el frenado se realiza al tiempo que el freno delantero 2 también se utiliza a lo largo de la línea límite seleccionada C del freno trasero 3.
- En la etapa S7, la unidad de control de freno automático 21 también acciona el freno delantero 2 a lo largo de la línea límite C del freno trasero 3 en el mapa de fuerza de frenado M, es decir, al tiempo que se mantiene el estado accionado por límite de bloqueo del freno trasero 3 (véase la flecha Y2 en la figura 5).
 - Cuando la acción del freno delantero 2 produce una fuerza de frenado de rueda delantera, el cabeceo de una carrocería provoca que un desplazamiento de carga en el vehículo de tipo silla de montar, disminuyendo así la fuerza de frenado como el límite de bloqueo del freno trasero 3. Por tanto, a medida que se aumenta la fuerza de frenado del freno delantero 2, la fuerza máxima de frenado del freno trasero 3 se disminuye gradualmente, pero la

fuerza de frenado (desaceleración) del vehículo en conjunto se incrementa, obteniéndose la fuerza de frenado (desaceleración) del vehículo en conjunto sumando las fuerzas de frenado de los frenos delantero y trasero 2 y 3.

A continuación, en la etapa S8, la unidad de control de freno automático 21 aumenta la fuerza de frenado del freno delantero 2 hasta que las fuerzas de frenado de los frenos delantero y trasero 2 y 3 alcanzan el punto límite de bloqueo delantero-trasero Z, que es el punto de intersección de las líneas límite E y C de los frenos delantero y trasero 2 y 3. Luego, cuando las fuerzas de frenado de las ruedas delantera y trasera han alcanzado el punto límite de bloqueo delantero-trasero Z, se termina el control del aumento de las fuerzas de frenado de los frenos delantero y trasero 2 y 3 al tiempo que se mantiene este estado (estado de frenado límite de los frenos delantero y trasero 2 y 3).

10

15

20

25

40

50

55

60

65

Por otro lado, el estado de frenado límite de los frenos delantero y trasero 2 y 3 se cancela según una condición de restablecimiento tal como, por ejemplo, la aparición de un estado detenido en el que la velocidad del vehículo es cero, la desaparición del obstáculo delantero, o similar.

Cuando se determina en la etapa S3 que el funcionamiento de freno está presente, por otro lado, la unidad de control de freno automático 21 en la etapa S11 lee una relación entre las operaciones de los frenos delantero y trasero 2 y 3 por el conductor de la unidad de determinación de funcionamiento de freno 20. Específicamente, la unidad de control de freno automático 21 lee la relación de funcionamiento delantera-trasera en una posición de funcionamiento de freno actual (véase el punto medio P1 o P2 en la figura 6) en el mapa de fuerza de frenado M.

Además, al mismo tiempo que la etapa S11, la unidad de control de freno automático 21 de la etapa S12 lee un valor estimado del coeficiente de fricción de superficie de carretera de la unidad de estimación del coeficiente de fricción 17. Además, la unidad de control de freno automático 21 selecciona las límeas límite correspondientes al valor estimado del coeficiente de fricción de superficie de carretera de entre la pluralidad de las líneas límite E y la pluralidad de las líneas límite C para los frenos delantero y trasero 2 y 3, respectivamente, en el mapa de fuerza de frenado M.

Después de eso, en la etapa S13, la unidad de control de freno automático 21 determina si aumentar las fuerzas de frenado de los frenos delantero y trasero 2 y 3 al tiempo que se mantiene la relación entre los funcionamientos de los frenos delantero y trasero 2 y 3 por el conductor (véanse las flechas Y3 en la figura 6), o si hacer que los frenos delantero y trasero 2 y 3 alcancen el estado de frenado límite en el menor tiempo posible sin mantener la relación entre los funcionamientos (véanse las flechas Y4 en la figura 7). Esta determinación se hace dependiendo de si la posibilidad de colisión con el obstáculo delantero puede eliminarse o no con las fuerzas de frenado que mantienen la relación entre los funcionamientos. Puede decirse que la unidad de control de freno automático 21 incluye una unidad de determinación de necesidad de frenado límite 22 que realiza la determinación descrita anteriormente.

Cuando la determinación en la etapa S13 es NO (aumentan las fuerzas de frenado al tiempo que se mantiene la relación entre los funcionamientos de los frenos delantero y trasero 2 y 3), en la etapa S14, se mantiene la relación entre los funcionamientos de los frenos delantero y trasero 2 y 3, y al menos una de las fuerzas de frenado de los frenos delantero y trasero 2 y 3 se realiza para alcanzar la línea límite E o C del mapa de fuerza de frenado M (realizadas para alcanzar los puntos P1' o P2' en la línea límite C o E, respectivamente).

Al aumentar por tanto las fuerzas de frenado de los frenos delantero y trasero 2 y 3 al tiempo que se mantiene la relación entre los funcionamientos de los frenos delantero y trasero 2 y 3 por el conductor, es posible realizar el control de freno automático al tiempo que se reduce una sensación de extrañeza sentida por el conductor.

Cuando la determinación en la etapa S13 es SÍ (aumento a la fuerza de frenado límite sin mantener la relación entre los funcionamientos de los frenos delantero y trasero 2 y 3), en la etapa S15, se hace que las fuerzas de frenado de los frenos delantero y trasero 2 y 3 alcancen el punto límite de bloqueo delantero-trasero Z en el menor tiempo posible independientemente de la relación entre los funcionamientos de los frenos delantero y trasero 2 y 3.

La posibilidad de colisión del vehículo de tipo silla de montar puede eliminarse de manera más segura haciendo por tanto que las fuerzas de frenado de los frenos delantero y trasero 2 y 3 alcancen el punto límite de bloqueo delantero-trasero Z de manera inmediata independientemente de la relación entre los funcionamientos de los frenos delantero y trasero 2 y 3 por el conductor.

Como se describió anteriormente, un dispositivo de control de freno 1 en la realización anterior incluye: un freno delantero 2 y un freno trasero 3 capaces de accionarse de manera independiente uno con respecto a otro; y un modulador de freno 10 configurado para controlar la acción de los frenos delantero y trasero 2 y 3; incluyendo el modulador de freno 10 una unidad de determinación de posibilidad de colisión 19 configurada para determinar la posibilidad de colisión de un propio vehículo con un obstáculo delantero, una unidad de control de freno automático 21 configurada para realizar un control de freno automático que aumenta automáticamente las fuerzas de frenado de los frenos delantero y trasero 2 y 3 cuando la unidad de determinación de posibilidad de colisión 19 determina que existe posibilidad de colisión, y una unidad de determinación de funcionamiento de freno 20 configurada para determinar la presencia o ausencia de funcionamiento de freno por el conductor del propio vehículo, cuando la

unidad de determinación de posibilidad de colisión 19 determina que existe una posibilidad de colisión y la unidad de determinación de funcionamiento de freno 20 determina que el funcionamiento de freno por el conductor está ausente, la unidad de control de freno automático 21 accionando primero solo el freno trasero 3 para generar una fuerza de frenado de rueda trasera, y luego accionando también el freno delantero 2 para generar una fuerza de frenado de rueda delantera.

Según esta constitución, mientras que el frenado automático por los frenos delantero y trasero 2 y 3 sea posible, solo se acciona el freno trasero 3 en un momento de inicio de frenado automático. Por tanto, el cabeceo del propio vehículo se suprime, y se da una sensación de desaceleración al conductor. Por tanto, puede suprimirse una alteración involuntaria de la actitud del conductor.

Además, en el dispositivo de control de freno 1, cuando la unidad de determinación de posibilidad de colisión 19 determina que existe una posibilidad de colisión, y la unidad de determinación de funcionamiento de freno 20 determina que el funcionamiento de freno por el conductor está ausente, la unidad de control de freno automático 21 acciona primero solo el freno trasero 3 hasta un límite de bloqueo, y luego acciona también el freno delantero 2 al tiempo que mantiene un estado accionado de límite de bloqueo del freno trasero 3. Por tanto, puede realizarse el control de freno automático que aprovecha al máximo la fuerza de frenado del freno trasero 3.

Además, en el dispositivo de control de freno 1, el modulador de freno 10 incluye una memoria 16 que almacena un 20 mapa de fuerza de frenado M que tiene un eje de ordenadas que indica la magnitud de una de las fuerzas de frenado de los frenos delantero y trasero 2 y 3 y que tiene un eje de abscisas que indica la magnitud de la fuerza de frenado del otro de los frenos delantero y trasero 2 y 3, se describen una línea límite E y una línea límite C que indican las fuerzas de frenado como límites de bloqueo de los frenos delantero y trasero 2 y 3 en el mapa de fuerza de frenado M, y la unidad de control de freno automático 21 acciona el freno trasero 3 a lo largo de la línea límite C del freno trasero 3 en el mapa de fuerza de frenado M. Por tanto, el control de freno automático puede realizarse 25 fácilmente haciendo referencia al mapa de fuerza de control M.

Además, en el dispositivo de control de freno 1, el modulador de freno 10 incluye una unidad de estimación de coeficiente de fricción 17 configurada para estimar un coeficiente de fricción de superficie de carretera, se describen una pluralidad de líneas límite E y una pluralidad de líneas límite C según el coeficiente de fricción de superficie de carretera, y la unidad de control de freno automático 21 selecciona la línea límite E y la línea límite C según el coeficiente de fricción de superficie de carretera. Por tanto, el frenado límite de los frenos delantero y trasero 2 y 3 puede realizarse según el coeficiente de fricción de superficie de carretera estimado.

35 Por otro lado, en el dispositivo de control de freno 1, cuando la unidad de determinación de posibilidad de colisión 19 determina que existe posibilidad de colisión, y la unidad de determinación de funcionamiento de freno 20 determina que el funcionamiento de freno del conductor está presente, la unidad de control de freno automático 21 cambia una manera de aumentar las fuerzas de frenado de los frenos delantero y trasero 2 y 3 según el funcionamiento de freno por el conductor. 40

Según esta constitución, mientras que el frenado automático por los frenos delantero y trasero 2 y 3 sea posible, la manera de aumentar las fuerzas de frenado de los frenos delantero y trasero 2 y 3 cambia según el funcionamiento de freno por el conductor. Por tanto, puede realizarse un control de freno automático óptimo según el funcionamiento de freno por el conductor, manteniendo por ejemplo una relación entre los funcionamientos de los frenos delantero y trasero 2 y 3 por el conductor y por tanto posibilitando un frenado automático natural que reduce una sensación de extrañeza cuando exista un margen para el frenado del propio vehículo, o realizando el frenado límite de manera inmediata independientemente de la relación entre los funcionamientos cuando no exista margen para el frenado del propio vehículo.

50 Además, en el dispositivo de control de freno 1, la unidad de control de freno automático 21 incluye una unidad de determinación de necesidad de frenado límite 22 configurada para determinar si deben aumentarse las fuerzas de frenado de los frenos delantero y trasero 2 y 3 al tiempo que se mantiene una relación entre los funcionamientos de los frenos delantero y trasero 2 y 3 por el conductor o para hacer que los frenos delantero y trasero 2 y 3 alcancen un estado de frenado límite sin mantener la relación entre los funcionamientos. Por tanto, en base a la determinación 55 de la unidad de determinación de necesidad de frenado límite 22, puede realizarse una conmutación entre realizar un control de freno automático que reduce una sensación de extrañeza manteniendo la relación entre los funcionamientos de los frenos delantero y trasero 2 y 3 y realizar el frenado límite de los frenos delantero y trasero 2 y 3 de manera inmediata independientemente de la relación entre los funcionamientos de los frenos delantero y trasero 2 v 3.

Cabe señalar que la presente invención no se limita a la anterior realización, sino que solo se limita por el alcance de las reivindicaciones adjuntas. Por ejemplo, puede proporcionarse un dispositivo de advertencia no reivindicado para el sentido de la vista, el sentido del oído, el sentido del tacto, y similar, dispositivo de advertencia no reivindicado que notifica una posibilidad de colisión al conductor.

El vehículo de tipo silla de montar descrito anteriormente incluye vehículos en general que van a conducirse por un

8

60

65

5

10

15

30

conductor montado a horcajadas en una carrocería. El vehículo de tipo silla de montar descrito anteriormente incluye no solo las motocicletas (incluidos los ciclomotores y los vehículos de motor tipo scooter), sino también los vehículos de tres ruedas (incluidos no solo los vehículos que tienen una rueda delantera y dos ruedas traseras, sino también los vehículos que tiene dos ruedas delanteras y una rueda trasera) o vehículos de cuatro ruedas.

5

La constitución en la realización anterior es un ejemplo de la presente invención, y es susceptible de diversos cambios, tales como por ejemplo la sustitución de elementos constitutivos en la realización por elementos constitutivos muy conocidos, siempre y cuando las modificaciones no se aparten del alcance de la presente invención tal como se define en las reivindicaciones adjuntas.

10

Descripción de los símbolos de referencia

- 1: Dispositivo de control de freno
- 15 2: Freno delantero
 - 3: Freno trasero
 - 10: Modulador de freno

20

- 16: Memoria
- 17: Unidad de estimación del coeficiente de fricción (medios de estimación del coeficiente de fricción)
- 25 19: Unidad de determinación de posibilidad de colisión (medios de determinación de posibilidad de colisión)
 - 20: Unidad de determinación de funcionamiento de freno (medios de determinación de funcionamiento de freno)
 - 21: Unidad de control de freno automático (medios de control de freno automático)

30

- 22: Unidad de determinación de necesidad de frenado límite (medios de determinación de necesidad de frenado límite)
- M: Mapa de fuerza de frenado

35

40

C, E: Línea límite

La presente invención tiene por objeto suprimir una alteración involuntaria de la actitud de un conductor en un momento de control de freno automático en un dispositivo de freno automático instalado en un vehículo de tipo silla de montar.

Un modulador de freno 10 que controla la acción de frenos delantero y trasero 2 y 3 incluye una unidad de determinación de posibilidad de colisión 19, una unidad de control de freno automático 21 y una unidad de determinación de funcionamiento de freno 20. Cuando la unidad de determinación de posibilidad de colisión 19 determina que existe una posibilidad de colisión, y la unidad de determinación de funcionamiento de freno 20 determina que el funcionamiento de freno por un conductor está ausente, la unidad de control de freno automático 21 acciona primero solo el freno trasero 3 para generar una fuerza de frenado de rueda trasera, y luego acciona también el freno delantero 2 para generar una fuerza de frenado de rueda delantera.

REIVINDICACIONES

5	1.	Un vehículo de tipo silla de montar que tiene un dispositivo de freno automático (1), comprendiendo el dispositivo de freno automático (1):
		un freno delantero (2) y un freno trasero (3) capaz de accionarse de manera independiente uno con respecto a otro; y
10		un modulador de frenos (10) configurado para controlar la acción de los frenos delantero y trasero (2, 3);
		incluyendo el modulador de frenos (10)
15		medios de determinación de posibilidad de colisión (19) configurados para determinar una posibilidad de colisión del propio vehículo con un obstáculo delantero,
		medios de control de freno automático (21) configurados para realizar un control de freno automático que aumenta automáticamente las fuerzas de frenado de los frenos delantero y trasero (2, 3) cuando los medios de determinación de posibilidad de colisión (19) determinan que existe una posibilidad de colisión, y
20		medios de determinación de funcionamiento de freno (20) configurados para determinar la presencia o ausencia de funcionamiento de freno por un conductor del propio vehículo,
		caracterizado porque
25		cuando los medios de determinación de posibilidad de colisión (19) determinan que existe una posibilidad de colisión, y
30		los medios de determinación de funcionamiento de freno (20) determinan que el funcionamiento de freno por el conductor está ausente,
		los medios de control de freno automático (21) accionan primero solo el freno trasero (3) hasta un límite de bloqueo para generar una fuerza de frenado de rueda trasera y, a continuación, acciona también el freno delantero (2) para generar una fuerza de frenado de rueda delantera manteniendo al mismo tiempo un estado accionado por límite de bloqueo del freno trasero (3).
35	2.	El vehículo de tipo silla de montar según la reivindicación 1, en el que
40		el modulador de freno (10) incluye una memoria (16) configurada para almacenar un mapa de fuerza de frenado (M) que tiene un eje de ordenadas que indica la magnitud de la fuerza de frenado de uno de los frenos delantero y trasero (2, 3) y que tiene un eje de abscisas que indica la magnitud de la fuerza de frenado del otro de los frenos delantero y trasero (2, 3),
45		una línea límite (E) y una línea límite (C) que indican respectivamente las fuerzas de frenado cuando se describen límites de bloqueo de los frenos delantero y trasero (2, 3) en el mapa de fuerza de frenado (M), y
		los medios de control de freno automático (21) accionan el freno trasero (3) a lo largo de la línea límite (C) del freno trasero (3) en el mapa de fuerza de frenado (M).
50	3.	El vehículo de tipo silla de montar según la reivindicación 2, en el que
		el modulador de freno (10) incluye medios de estimación de coeficiente de fricción (17) para estimar un coeficiente de fricción de superficie de carretera (μ) ,
55		se describen una pluralidad de líneas límite (E) y una pluralidad de líneas límite (C) según el coeficiente de fricción de superficie de carretera (μ) , y
		los medios de control de freno automático (21) seleccionan la línea límite (E) y la línea límite (C) según el coeficiente de fricción de superficie de carretera (µ).

FIG. 1

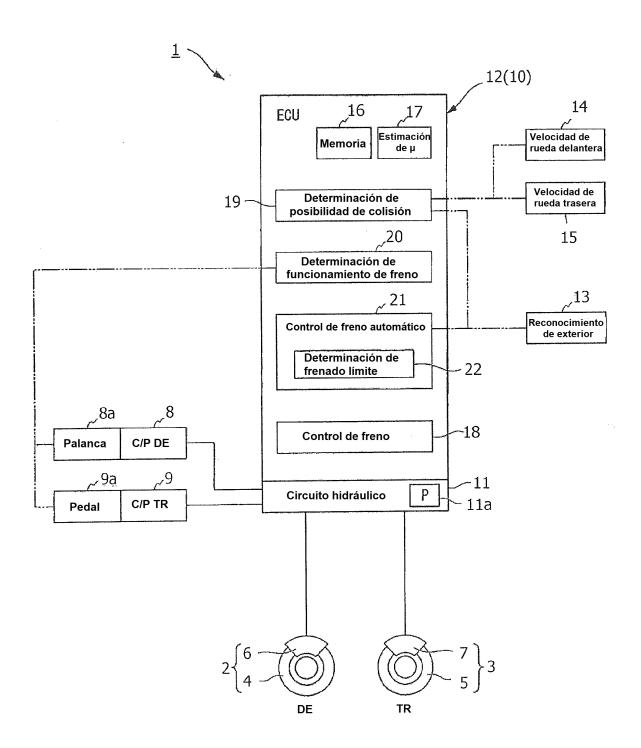
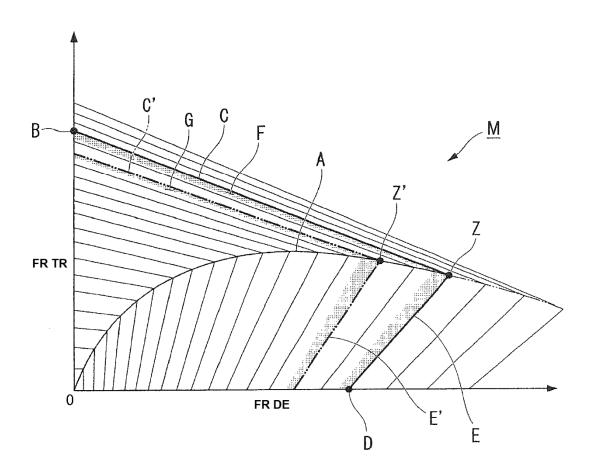



FIG.2

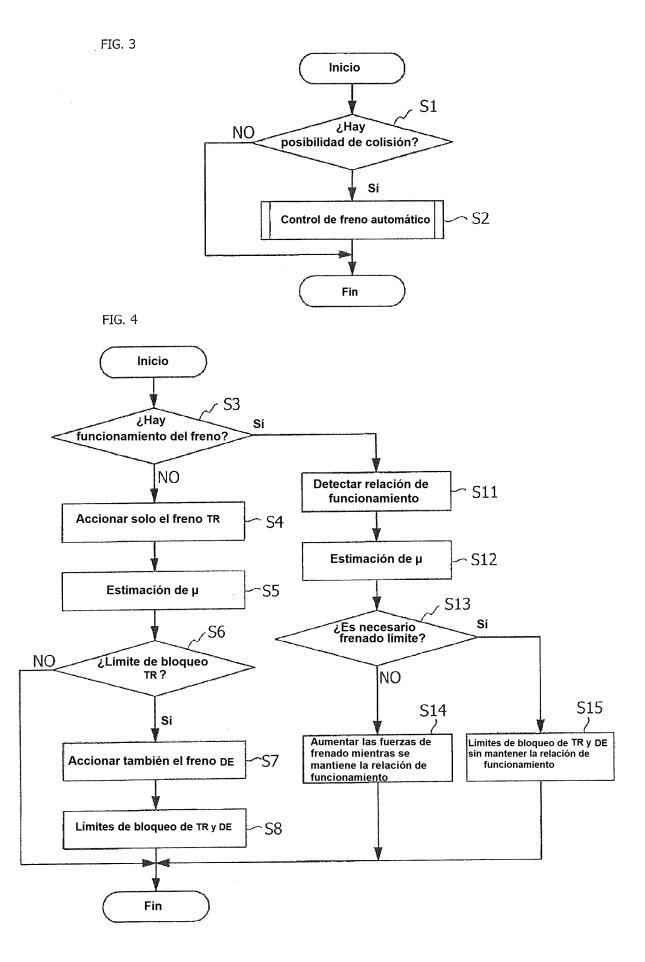
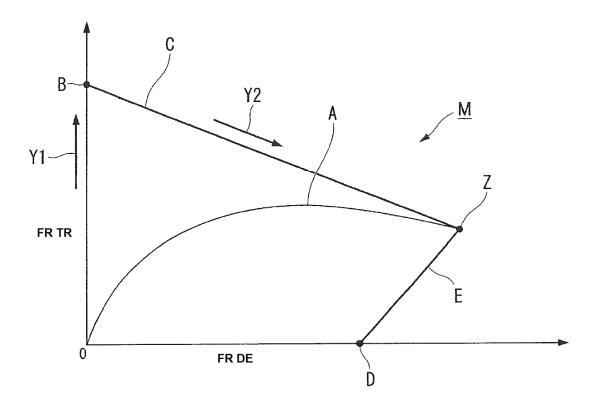
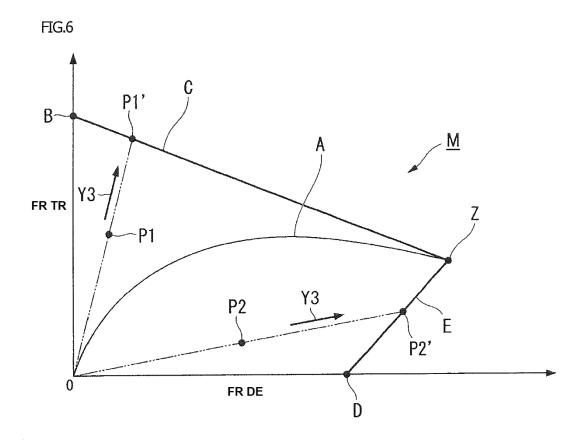
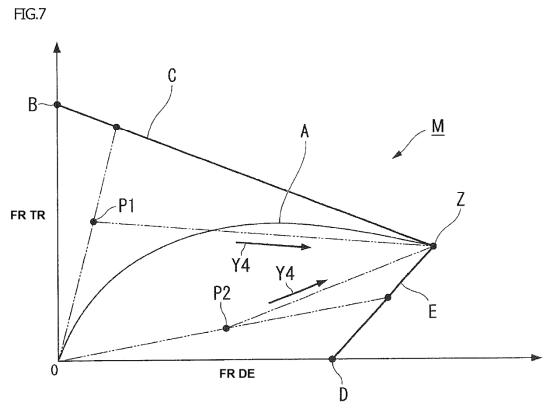





FIG.5

