

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 743 735

(51) Int. CI.:

C22C 38/00 (2006.01) **C22C 38/12** (2006.01) C22C 38/02 (2006.01) **C22C 38/16** (2006.01)

C22C 38/04 (2006.01) C22C 38/06 (2006.01) C21D 8/06 (2006.01) C21D 8/08 (2006.01) C21D 9/02 C22C 38/18 (2006.01) C22C 38/08 (2006.01) C22C 38/10 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

25.03.2013 PCT/JP2013/058566 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 03.10.2013 WO13146676

(96) Fecha de presentación y número de la solicitud europea: 25.03.2013 E 13767810 (8)

14.08.2019 (97) Fecha y número de publicación de la concesión europea: EP 2832878

(54) Título: Alambrón y cable de acero usando el mismo

(30) Prioridad:

29.03.2012 JP 2012077003

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 20.02.2020

(73) Titular/es:

KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.) (100.0%) 2-4, Wakinohama-Kaigandori 2-chome, Chuo-ku Kobe-shi, Hyogo 651-8585, JP

(72) Inventor/es:

ISHIDA, TOMONOBU y YOSHIHARA, NAO

(74) Agente/Representante:

UNGRÍA LÓPEZ, Javier

DESCRIPCIÓN

Alambrón y cable de acero usando el mismo

5 Campo técnico

La presente invención se refiere a un alambrón y un cable de acero usando el mismo cada uno de los cuales se usa para o como alambres de acero pretensados y cuerdas de alambre.

10 Antecedentes de la técnica

Hay fuertes demandas para que los miembros de hormigón tengan una mayor resistencia y un peso más ligero en las áreas de ingeniería civil y construcción. El hormigón pretensado (en lo sucesivo en el presente documento también denominado "PC") es bien conocido como una forma de fortalecer dichos miembros de hormigón. En el hormigón pretensado, la tensión de compresión se aplica al material de hormigón mediante el uso de alambres de acero. Tal cable de acero para PC, concretamente, un cable de acero de pretensado (cable de acero de PC), cuando tiene una mayor fuerza, puede contribuir más satisfactoriamente a una mayor resistencia y un peso más ligero de PC. Ahora se conoce una cadena de pretensado que incluye 7 alambres con un diámetro de 15,2 mm y que tiene una fuerza máxima de aproximadamente 261 kN, según lo prescrito en el Japanese Industrial Standard (JIS) G3536.

20

25

30

15

Además de las normas industriales japonesas, se prescriben varias normas (especificaciones) y pruebas recomendadas para pretensar alambres de acero desde el punto de vista de la seguridad arquitectónica. En particular, es importante tener en cuenta la resistencia a la fractura retardada cuando se aplica un cable de acero de pretensado de alta resistencia. La fractura retrasada es un fenómeno donde, cuando se usa un acero durante mucho tiempo bajo la aplicación de un esfuerzo, el hidrógeno migrado al acero se acumula típicamente en una falla fina en la superficie del acero, provoca que una microestructura alrededor del defecto se vuelva frágil y, por lo tanto, induce una fractura frágil. Los alambres de acero de pretensado se usan mientras están siempre tensos y pueden someterse posiblemente a una fractura retardada. Para evitar esto, se prescriben normas estrictas sobre ellos. En particular, es bien sabido que los alambres de acero de pretensado se vuelven más susceptibles a la fractura retardada con una resistencia creciente. Por lo tanto, se hacen demandas para desarrollar aceros que puedan sufrir menos fracturas retrasadas incluso cuando tienen una mayor resistencia.

35

Típicamente, la Bibliografía de Patentes 1 desvela una técnica para mejorar la resistencia a la fractura retardada de un cable de acero de pretensado que tiene un contenido de carbono del 0,6 % al 1,1 %. De acuerdo con la técnica, un alambrón después del trefilado se somete a un azulado a una temperatura de 450 °C o superior para esferoidizar la cementita tipo placa para mejorar de esta manera la resistencia a la fractura retardada. La técnica en la Bibliografía de Patentes 1, sin embargo, hace que el cable de acero tenga una baja resistencia debido a la esferoidización de la cementita tipo placa, por lo tanto tiene limitaciones en la mejora de la resistencia y, de manera desventajosa, no ayuda a que el cable de acero tenga una resistencia del alambre de 2000 MPa o más.

40

la Bibliografía de Patentes 2 desvela una técnica para mejorar la resistencia a la fractura retardada de un cable de acero de pretensado que tiene un contenido de carbono del 0,6 % al 1,3 %. La mejora se logra impartiendo un esfuerzo residual de compresión a una capa superficial del cable de acero y formando de esta manera una perlita deformada en la capa superficial. La técnica en la Bibliografía de Patentes 2, sin embargo, se aplica a alambres de acero de pretensado que tienen una resistencia de alambre de hasta aproximadamente 1600 MPa y probablemente no pueda garantizar suficientemente la resistencia a la fractura retardada causada por la difusión de hidrógeno a resistencias de alambre más altas de típicamente 2000 MPa o más.

50

55

45

La Bibliografía de Patentes 3 describe una técnica para mejorar la resistencia a la fractura retardada en una fase de martensita templada de un cable de acero no pretensado, sino un acero para rodamientos con un contenido de carbono del 0,65 % al 1,20 %. La mejora se logra dispersando partículas típicamente de nitruros que contienen Ti o Al que tienen un tamaño de partícula de 50 a 300 nm en una cantidad predeterminada o superior para atrapar hidrógeno. Sin embargo, el hidrógeno se comporta de manera diferente en diferentes microestructuras y dimensiones, cantidades y otros factores de precipitados que actúan como sitios de captura apropiados también difieren en diferentes microestructuras. Esto impide la aplicación de la técnica en la Bibliografía de Patentes 3 típicamente a un cable de acero de pretensado sin modificación, donde el cable de acero de pretensado incluye una perlita como fase principal. Un proceso de fabricación para tal rodamiento de acero realiza un tratamiento de enfriado-temple después del trefilado; mientras que un proceso de fabricación para un cable de acero de pretensado realiza el trefilado después de un tratamiento de patentado. De esta manera, los dos procesos de fabricación difieren significativamente entre sí y emplean diferentes procedimientos para controlar la precipitación típicamente de nitruros.

60

El documento EP 1 897 964 A1 desvela un alambrón de alta resistencia que destaca en el rendimiento del trefilado y un proceso para producir el mismo.

65

Listado de citas

Bibliografía de patentes

Bibliografía de patente 1: Publicación de solicitud de patente japonesa sin examinar (JP-A) N.º 2004-360005

Bibliografía de patente 2: documento JP-A N.º 2004-131797

Bibliografía de patente 3: Patente japonesa N.º 3591236

Sumario de la invención

10 Problema técnico

Un objeto de la presente invención es proporcionar un alambrón que incluya una perlita como fase principal, donde el alambrón sufre menos reducción de la resistencia a la fractura retardada incluso cuando tiene una alta resistencia v puede usarse típicamente como un cable de acero de pretensado de alta resistencia v un cable de alambre que tiene una resistencia a la fractura tan tardía que cumple con las normativas de construcción.

Solución al problema

La invención se define en las reivindicaciones.

20

25

30

15

5

Los presentes inventores realizaron investigaciones sobre inclusiones que tienen un efecto de trampa de hidrógeno en un alambrón que incluye una perlita como fase principal. Como resultado, han descubierto que es importante garantizar que las partículas de AIN en una cantidad a un nivel predeterminado o superior y asegurar, de tales partículas de AIN, partículas de AIN que tengan un tamaño de 10 a 20 µm en una cantidad a un nivel predeterminado o superior. De manera específica, la presente invención proporciona, en un aspecto, un alambrón que incluye C en un contenido del 0,8 % al 1,2 % (en porcentaje de masa, en lo sucesivo en el presente documento igual para la composición química); Si en un contenido del 0,1 % al 2,0 %; Mn en un contenido del 0,1 % al 2,0 %; N en un contenido del 0,002 % al 0,010 %; Al en un contenido del 0,04 % al 0,15 %; P en un contenido del 0,02 % o menos (incluyendo el 0 %); y S en un contenido del 0,02 % o menos (incluyendo el 0 %), siendo el resto hierro e impurezas inevitables, en la cual el contenido de Al y el contenido de N cumplen una condición especificada por la Expresión (1) dada como sigue:

$$[AI] \le -2.1 \times 10 \times [N] + 0.255$$
 (1)

35

45

donde [Al] y [N] son contenidos (en porcentaje en masa) de Al y N, respectivamente; el alambrón tiene una microestructura que incluye el 95 por ciento en área o más de una perlita; el alambrón tiene un contenido de AIN del 0.005 % o más; y un porcentaje de partículas de AIN que tienen un diámetro d_{GM} de 10 a 20 µm es el 50 % o más en porcentaje en número en una distribución de valores extremos de valores máximos de los diámetros d_{GM} de partículas de AlN, donde el diámetro d_{GM} está representado por una media geométrica (ab)^{1/2} de una longitud "a" y 40 un espesor "b" de una partícula de AIN. En una realización preferida, el alambrón puede tener un contenido de nitrógeno en soluto del 0,003 % o menos.

En la presente invención, el alambrón puede contener además cualquiera de (a) al menos un elemento seleccionado del grupo que consiste en Cr en un contenido del 1,0 % o menos (excluyendo el 0 %), Ni en un contenido del 1,0 % o menos (excluyendo el 0 %), Co en un contenido del 1,0 % o menos (excluyendo el 0 %), Mo en un contenido del 1,0 % o menos (excluyendo el 0 %) y Cu en un contenido del 0,5 % o menos (excluyendo el 0 %); y (b) al menos un elemento seleccionado del grupo que consiste en B en un contenido del 0,005 % o menos (excluyendo el 0 %), Nb en un contenido del 0,5 % o menos (excluyendo el 0 %) y V en un contenido del 0,5 % o menos (excluyendo el 0 %).

50 La presente invención también incluye un cable de acero obtenido a partir del alambrón.

Efectos ventajosos de la invención

La presente invención ajusta los contenidos de Al y N apropiadamente y controla el contenido total de partículas de 55 AIN y el contenido de partículas de AIN que tienen un tamaño predeterminado (d_{GM} de 10 a 20 µm) de manera apropiada. Por lo tanto la presente invención puede proporcionar un alambrón que tenga una excelente resistencia a la fractura retardada. La presente invención, en la realización preferida, ajusta el contenido de nitrógeno del soluto a un nivel predeterminado o superior y, por lo tanto, puede ayudar al cable de acero a tener mejores propiedades de torsión.

60

65

Descripción de las realizaciones

Después de investigaciones intensivas, los presentes inventores han descubierto que, en un alambrón que incluye una perlita como fase principal, es eficaz asegurar AIN (partículas) en un contenido predeterminado como un sitio de trampa de hidrógeno y para garantizar que las partículas de AIN tengan un tamaño de 10 a 20 µm en un contenido a un nivel predeterminado o superior.

El contenido de AIN se especifica al 0,005 % o más, porque el alambrón ofrece un efecto creciente de trampa de hidrógeno con un contenido creciente de AIN. El contenido de AIN es preferentemente el 0,006 % o más, más preferentemente el 0,007 % o más y en particular preferentemente el 0,01 % o más. Aunque no es crítico, el límite superior del contenido de AIN es en general de aproximadamente el 0,04 %.

Se emplea en el presente documento una distribución de valores extremos de valores máximos como índice para garantizar que las partículas de AlN tengan un tamaño de 10 a 20 μ m en un número a un nivel predeterminado o superior. Inicialmente, una media geométrica (ab)^{1/2} de la longitud "a" y el grosor "b" de una partícula de AlN se emplea como un tamaño de la partícula de AlN y se indica como d_{GM} (μ m). Como se usa en el presente documento, el término "longitud "a"" de una partícula de AlN se refiere a la longitud (dimensión) de la partícula de AlN en la dirección longitudinal del alambrón; y el término "espesor "b"" de la partícula de AlN se refiere a una dimensión de la partícula de AlN en una dirección perpendicular a la dirección longitudinal del alambrón.

La frase "distribución de valores extremos de valores máximos de d_{GM}" se refiere a una distribución determinada midiendo un máximo d_{GM} (máx) entre los valores d_{GM} de partículas de AlN presentes en un área predeterminada; repitiendo este procedimiento en dos o más campos de vista; y sometiendo los dos o más valores de d_{GM} (máx) medidos a un procesamiento estadístico. El porcentaje de partículas de AlN que tienen un d_{GM} (máx) de 10 a 20 μm es del 50 % o más (en porcentaje en número) en la distribución del valor extremo en la realización de la presente invención. Si las partículas de AlN que tienen un tamaño d_{GM} mayor de 20 μm están presentes en un gran porcentaje, las partículas de AlN están presentes en un número total menor y pueden no exhibir el efecto de trampa de hidrógeno suficientemente. Además, tales partículas de AlN que tienen un tamaño d_{GM} menor de 10 μm exhiben un efecto de trampa de hidrógeno más bajo. Por lo tanto, las partículas de AlN que son efectivas para la trampa de hidrógeno se pueden asegurar suficientemente controlando las partículas de AlN que tienen un d_{GM} (máx) de 10 a 20 μm para estar presentes en un porcentaje numérico del 50 % o más en la distribución de valor extremo.

El alambrón de acuerdo con la realización de la presente invención incluye una perlita que ocupa el 95 por ciento en área o más de la fase principal. El porcentaje de área de la perlita es preferentemente del 97 % o más, y más preferentemente del 100 %.

A continuación, las composiciones químicas del alambrón de acuerdo con la realización de la presente invención se ilustrarán a continuación.

Contenido de carbono (C): del 0,8 % al 1,2 %

10

30

35

40

50

55

60

65

El elemento carbono (C) contribuye eficazmente a una mayor resistencia. el alambrón y un cable de acero después del tratamiento en frío tienen mayores resistencias con un contenido de carbono en aumento. Por lo tanto, el contenido de carbono se especifica al 0,8 % o más. El contenido de carbono es preferentemente el 0,85 % o más y más preferentemente el 0,90 % o más. Sin embargo, el carbono, si está presente en un contenido excesivamente alto, puede provocar fragilidad por envejecimiento durante el trefilado en frío, de este modo provocando que el cable de acero tenga una tenacidad inferior y, de manera desventajosa, invita al agrietamiento durante el varado. Para evitar esto, el contenido de carbono se especifica al 1,2 % o menos. El contenido de carbono es preferentemente el 1,1 % o menos y más preferentemente el 1,05 % o menos.

45 Contenido de silicio (Si): del 0,1 % al 2,0 %

El elemento silicio (Si) no solo actúa como un desoxidante, sino también tiene acciones eficaces para ayudar al alambrón a tener una mayor resistencia y ofrecer mejores propiedades de relajación. Cuando se aplica galvanizado en caliente al alambrón, el elemento silicio también ofrece una acción de supresión de la reducción de la resistencia que se produce al galvanizar. Para exhibir estas acciones de manera eficaz, el contenido de Si se especifica al 0,1 % o más. El contenido de Si es preferentemente el 0,2 % o más y más preferentemente el 0,4 % o más. En cambio, Si, si está presente en un contenido excesivamente alto, puede provocar que el alambrón tenga una capacidad de estiramiento inferior del alambre frío y sufrir una mayor relación de rotura. Para evitar esto, el contenido de Si se especifica al 2,0 % o menos. El contenido de Si es preferentemente el 1,8 % o menos y más preferentemente el 1,5 % o menos.

Contenido de manganeso (Mn): del 0,1 % al 2,0 %

El elemento manganeso (Mn) no solo actúa como desoxidante como con el Si, sino también tiene una acción particular de fijar azufre (S) en el acero como MnS y ayudando al acero a tener una mejor tenacidad y ductilidad. Para exhibir estas acciones de manera eficaz, el contenido de Mn se especifica al 0,1 % o más. El contenido de Mn es preferentemente del 0,15 % o más, y más preferentemente del 0,2 % o más. Sin embargo, el elemento manganeso se segrega fácilmente y, si se añade en exceso, puede provocar la formación de fases superenfriadas tales como la martensita, debido a la capacidad de endurecimiento excesivamente alta de una región donde el Mn se segrega. Para evitar esto, el contenido de Mn se especifica al 2,0 % o menos. El contenido de Mn es preferentemente el 1,8 % o menos y más preferentemente el 1,5 % o menos.

Contenido de nitrógeno (N): del 0,002 % al 0,010 %

El elemento nitrógeno (N) es importante para la formación de AlN que presenta la realización de la presente invención y está contenido en un contenido del 0,002 % o más. El contenido de nitrógeno es preferentemente el 0,0025 % o más, más preferentemente el 0,0030 % o más y en particular preferentemente el 0,0040 % o más. Sin embargo, el nitrógeno, si se añade en exceso, puede provocar que el alambrón tenga propiedades de torsión inferiores debido a un mayor contenido de nitrógeno en soluto. Esto se debe a que el nitrógeno se disuelve como un elemento intersticial en el acero como con el carbono y provoca fragilidad debido al envejecimiento por deformación. Para evitar esto, El contenido de nitrógeno se especifica al 0,010 % o menos. El contenido de nitrógeno es preferentemente el 0,0090 % o menos y más preferentemente el 0,0080 % o menos.

Contenido de nitrógeno en soluto: el 0,003 % o menos

10

20

25

30

35

40

45

50

55

60

El nitrógeno en soluto provoca propiedades de torsión inferiores y preferentemente se minimiza en cantidad. Por lo tanto, el contenido de nitrógeno en soluto es preferentemente del 0,003 % o menos, más preferentemente del 0,002 % o menos y además preferentemente del 0,001 % o menos. El contenido de nitrógeno en soluto puede controlarse típicamente ajustando los contenidos de elementos formadores de nitruro tales como Al, B y Nb; y el contenido de nitrógeno.

Contenido de aluminio (AI): del 0,04 % al 0,15 % y [AI] \leq -2,1 × 10 × [N] + 0,255

El elemento de aluminio (AI) actúa como un desoxidante y es importante en el presente documento, porque el aluminio se combina con nitrógeno para formar AIN, de esta manera atrapa el hidrógeno y ayuda a que el alambrón tenga una mejor resistencia a la fractura retardada. El nitruro de aluminio AIN también contribuye eficazmente al refinamiento del grano mediante un efecto de fijación. Para exhibir estos efectos de manera eficaz, el contenido de AI se especifica al 0,04 % o más. El contenido de AI es preferentemente del 0,05 % o más, y más preferentemente del 0,055 % o más. En cambio, el AI, si está presente en un contenido excesivamente alto, particularmente a un intervalo de altos contenidos de nitrógeno, puede formar partículas gruesas de AIN y esto puede reducir el efecto de trampa de hidrógeno de AIN. Para evitar esto, el contenido de AI se especifica al 0,15 % en términos de su límite superior y se adapta para cumplir con una condición especificada por la Expresión (1) dada como sigue. [Fórm. matem. 1]

$$[AI] \le -2.1 \times 10 \times [N] + 0.255$$
 (1)

En la expresión (1), [Al] y [N] denotan contenidos (en porcentaje en masa) de Al y N, respectivamente. La expresión (1) es una expresión que ha derivado de muchos ejemplos experimentales en los que se examinó la resistencia a la fractura retardada a diferentes contenidos de nitrógeno y aluminio. Cuando el contenido de Al cumple con la condición especificada por la Expresión (1), el límite superior del contenido de Al se controla más estrictamente en un rango de altos contenidos de nitrógeno para suprimir la formación de partículas gruesas de AlN. El contenido de Al es preferentemente el 0,14 % o menos y más preferentemente el 0,12 % o menos en términos de su límite superior.

Contenido de fósforo (P): el 0,02 % o menos

El elemento fósforo (P) se segrega en un límite de grano de austenita anterior, hace que el límite del grano sea frágil y hace que el alambrón tenga propiedades de fatiga inferiores. Para evitar esto, el contenido de fósforo se minimiza preferentemente y se especifica en el presente documento al 0,02 % o menos. El contenido de fósforo es preferentemente el 0,015 % o menos y más preferentemente el 0,010 % o menos.

Contenido de azufre (S): el 0,02 % o menos

El elemento azufre (S) se segrega en un límite de grano de austenita anterior, hace que el límite del grano sea frágil y hace que el alambrón tenga propiedades de fatiga inferiores, como con el fósforo. Para evitar esto, el contenido de azufre se minimiza preferentemente y se especifica en la presente memoria al 0,02 % o menos. El contenido de azufre es preferentemente el 0,015 % o menos y más preferentemente el 0,010 % o menos.

el alambrón de acuerdo con la realización de la presente invención tiene una composición química básica como anteriormente, siendo el resto sustancialmente hierro. Sin embargo, las impurezas inevitables son naturalmente aceptables, donde las impurezas inevitables se introducen en el acero en condiciones típicamente de materias primas, materiales de instalaciones e instalaciones de fabricación y están contenidos en el acero. De acuerdo con la necesidad de tener mejores propiedades tales como la resistencia, la dureza y la ductilidad, el alambrón de acuerdo con la realización de la presente invención puede contener además cualquiera de los elementos como sigue.

Al menos un elemento seleccionado del grupo que consiste en Cr en un contenido del 1,0 % o menos (excluyendo el 0 %), Ni en un contenido del 1,0 % o menos (excluyendo el 0 %), Co en un contenido del 1,0 % o menos

ES 2 743 735 T3

(excluyendo el 0 %), Mo en un contenido del 1,0 % o menos (excluyendo el 0 %) y Cu en un contenido del 0,5 % o menos (excluyendo el 0 %).

El elemento cromo (Cr) tiene acciones para reducir el espacio laminar de la perlita y ayudar a que el alambrón tenga una mayor resistencia y una mejor tenacidad. Para exhibir estas acciones de manera eficaz, el contenido de Cr es preferentemente el 0,05 % o más, más preferentemente el 0,1 % o más y además preferentemente el 0,2 % o más. En cambio, el Cr, si está presente en un contenido excesivamente alto, puede provocar que el alambrón tenga una mayor capacidad de endurecimiento y, por lo tanto, aumentar el riesgo de formación de una fase superenfriada durante el laminado en caliente. Para evitar esto, el contenido de Cr es preferentemente el 1,0 % o menos, más preferentemente el 0,6 % o menos y además preferentemente el 0,5 % o menos.

10

15

20

25

30

35

45

50

55

60

65

El elemento níquel (Ni) ayuda al cable de acero después del trefilado a tener una mayor tenacidad. Para exhibir tales acciones de manera eficaz, el contenido de Ni es preferentemente el 0,05 % o más, más preferentemente el 0,1 % o más y además preferentemente el 0,2 % o más. Sin embargo, el Ni, si se añade en exceso, puede exhibir efectos saturados, siendo así económicamente inútil. Para evitar esto, el contenido de Ni es preferentemente el 1,0 % o menos, más preferentemente el 0,7 % o menos y además preferentemente el 0,6 % o menos.

El elemento Cobalto (Co) tiene acciones para reducir la cementita pro-eutectoide (particularmente con un alto contenido de carbono) y ayudar a que el alambrón controle más fácilmente su microestructura para que sea una perlita homogénea. Para exhibir estas acciones de manera eficaz, el contenido de Co es preferentemente el 0,05 % o más, más preferentemente el 0,1 % o más y además preferentemente el 0,2 % o más. Sin embargo, el Co, si se añade en exceso, puede exhibir efectos saturados, siendo así económicamente inútil. Para evitar esto, el contenido de Co es preferentemente el 1,0 % o menos, más preferentemente el 0,8 % o menos y además preferentemente el 0,6 % o menos.

El elemento molibdeno (Mo) ayuda al cable de acero a tener una mejor resistencia a la corrosión. Para exhibir tales acciones de manera eficaz, el contenido de Mo es preferentemente el 0,05 % o más y más preferentemente el 0,1 % o más. Sin embargo, Mo, si está presente en un contenido excesivamente alto, puede provocar la formación de una fase sobreenfriada más fácilmente durante el laminado en caliente y hacer que el alambrón tenga una ductilidad inferior. Para evitar esto, el contenido de Mo es preferentemente el 1,0 % o menos, más preferentemente el 0,5 % o menos y además preferentemente el 0,3 % o menos.

El elemento cobre (Cu) ayuda al cable de acero a tener una mejor resistencia a la corrosión. Para exhibir tales acciones de manera eficaz, el contenido de Cu es preferentemente el 0,05 % o más y más preferentemente el 0,08 % o más. En cambio, el Cu, si está presente en un contenido excesivamente alto, puede reaccionar con el azufre para segregarse como CuS en una región límite de grano y, por lo tanto, generar un defecto durante la fabricación del alambrón. Para evitar tal influencia, el contenido de Cu es preferentemente el 0,5 % o menos, más preferentemente el 0,2 % o menos y además preferentemente el 0,18 % o menos.

Al menos un elemento seleccionado del grupo que consiste en B en un contenido del 0,005 % o menos (excluyendo el 0 %), Nb en un contenido del 0,5 % o menos (excluyendo el 0 %) y V en un contenido del 0,5 % o menos (excluyendo el 0 %).

El elemento boro (B) tiene acciones para prevenir la formación de ferrita pro-eutectoide y cementita pro-eutectoide y ayuda a que el alambrón controle fácilmente su microestructura para que sea una perlita homogénea. El boro también tiene acciones de fijación, como el nitruro de boro (BN), del exceso de nitrógeno en soluto después de la precipitación de AlN, suprime el envejecimiento por deformación causado por el nitrógeno del soluto y ayuda a que el alambrón tenga una mayor tenacidad. Además, el propio boro soluto tiene la acción de ayudar a que el alambrón a tener una mayor tenacidad. Para exhibir tales acciones de manera eficaz, el contenido de boro es preferentemente el 0,0003 % o más, más preferentemente el 0,0005 % o más y además preferentemente el 0,001 % o más. En cambio, el boro, si está presente en un contenido excesivamente alto, puede provocar la precipitación de un compuesto con hierro, es decir, un compuesto de Fe-B tal como FeB₂ y provoca grietas tras el laminado en caliente. Para evitar esto, el contenido de boro es preferentemente el 0,005 % o menos, más preferentemente del 0,004 % o menos y además preferentemente del 0,003 % o menos.

El elemento niobio (Nb) forma un nitruro con exceso de nitrógeno soluto después de la precipitación de AlN y contribuye al refinamiento del grano. Además, el elemento también fija ventajosamente el nitrógeno del soluto y, por lo tanto, suprime la fragilidad por envejecimiento. Para exhibir tales acciones de manera eficaz, el contenido de Nb es preferentemente del 0,01 % o más, más preferentemente el 0,03 % o más, y además preferentemente el 0,05 % o más. Sin embargo, el Nb, si está presente en un contenido excesivamente alto, puede exhibir efectos saturados, siendo así económicamente inútil. Para evitar esto, el contenido de Nb es preferentemente el 0,5 % o menos, más preferentemente el 0,4 % o menos y además preferentemente el 0,2 % o menos.

El elemento vanadio (V) forma un nitruro con exceso de nitrógeno soluto después de la precipitación de AlN y contribuye al refinamiento del grano, como con el Nb. Además, el vanadio también fija el nitrógeno del soluto y por lo tanto suprime la fragilidad por envejecimiento. Para exhibir tales acciones de manera eficaz, el contenido de vanadio

es preferentemente del 0,01 % o más, más preferentemente el 0,02 % o más y además preferentemente el 0,03 % o más. Sin embargo, el vanadio, si está presente en un contenido excesivamente alto, puede exhibir efectos saturados, siendo así económicamente inútil. Para evitar esto, el contenido de vanadio es preferentemente el 0,5 % o menos, más preferentemente el 0,4 % o menos y además preferentemente el 0,2 % o menos.

En general, puede fabricarse un alambrón regular (que se refiere a uno antes del trefilado en frío) preparando un lingote de acero con composiciones químicas controladas adecuadamente mediante la fabricación de lingotes, y sometiendo el lingote a desbastado y laminado en caliente (cuando sea necesario, además de un tratamiento patentado). Cabe destacar, sin embargo, que el alambrón de acuerdo con la realización de la presente invención está destinada a controlar el contenido y la distribución del tamaño de partícula de partículas de AIN apropiadamente, donde la distribución del tamaño de partícula se controla de modo que el porcentaje de partículas de AIN que tienen un tamaño d_{GM} de 10 a 20 µm sea un 50 % o más (en porcentaje en número) en la distribución de valores extremos d_{GM} de valores máximos de partículas de AIN. Para este fin, es importante controlar adecuadamente los contenidos de AI y N dentro de los intervalos especificados anteriormente y controlar adecuadamente una histéresis térmica en un intervalo de temperatura en el que precipita AIN.

En el acero, AlN comienza a precipitar a aproximadamente 1300 °C o menos, precipitó en una cantidad mayor con una temperatura descendente, y precipitó completamente a aproximadamente 900 °C. Durante los procesos de fabricación, los procesos de desbastado y laminado en caliente afectan significativamente el comportamiento de precipitación de AlN porque el acero está expuesto a temperaturas dentro de los intervalos mencionados anteriormente en estos procesos. En consecuencia, las condiciones de desbastado y laminado en caliente deben controlarse adecuadamente. En general, El enfriamiento después del desbastado se realiza a una velocidad de enfriamiento baja y, por lo tanto, a menudo hace que la partícula de AlN precipitada se vuelva gruesa. En cambio, el enfriamiento después del laminado en caliente se realiza a una velocidad de enfriamiento relativamente alta y, por lo tanto, permite que las partículas de AlN precipitadas sean finas.

De manera específica, el desbastado puede realizarse a una temperatura de calentamiento de 1230 °C a 1280 °C y una velocidad de enfriamiento de 0,2 °C/segundo o más. El desbastado, cuando se realiza a una temperatura de calentamiento alta y a una velocidad de enfriamiento alta, puede evitar la precipitación y el engrosamiento de partículas de AIN. Por esta razón, la temperatura de desbastado es preferentemente 1230 °C o más alto y más preferentemente 1240 °C o más alto. En cambio, el desbastado, si se realiza a una temperatura de calentamiento excesivamente alta, puede provocar grietas de enfriamiento. Para evitar esto, la temperatura de desbastado es preferentemente 1280 °C o inferior, y más preferentemente 1270 °C o inferior en términos de su límite superior. La velocidad de enfriamiento es preferentemente de 0,2 °C/segundo o más, más preferentemente 0,4 °C/segundo o más y además preferentemente 0,5 °C/segundo o más. La velocidad de enfriamiento no está limitada en su límite superior, pero es típicamente 1,5 °C/segundo o menos y preferentemente 1,2 °C/segundo o menos.

Una sección cuadrada obtenida por desbastado se lamina en caliente, se enfría a 850 °C a 950 °C típicamente por enfriamiento con agua y se coloca en forma de una bobina. Las partículas finas de AIN (que tienen un d_{GM} de 10 a 20 µm) pueden precipitarse colocando el alambrón en forma de bobina a una temperatura relativamente baja. Por esta razón, la temperatura de colocación es preferentemente de 950 °C o inferior, más preferentemente 940 °C o inferior y además preferentemente 920 °C o inferior. En cambio, la colocación, si se realiza a una temperatura excesivamente baja, puede provocar que se precipiten partículas de AIN muy finas en un gran número, donde tales partículas de AIN muy finas no contribuyen a la trampa de hidrógeno. Para evitar esto, la temperatura de colocación es preferentemente de 850 °C o más alta, más preferentemente 870 °C o más y además más preferentemente 890 °C o más alta.

El contenido y la distribución del tamaño de partícula de las partículas de AlN pueden no controlarse adecuadamente, por lo general, cuando al menos parte de las condiciones de floración y laminación en caliente no cumplen las condiciones especificadas anteriormente. En este caso, También es eficaz realizar un tratamiento de patentado en un intervalo de temperatura apropiado después del laminado en caliente. El tratamiento de patentado se realiza preferentemente a una temperatura de recalentamiento de 880 °C a 1000 °C y una temperatura de patentado de 530 °C a 620 °C. Si el tratamiento después del laminado en caliente tiene un bajo contenido de AlN, la temperatura de recalentamiento puede ajustarse a ser relativamente baja (por ejemplo, aproximadamente 880 °C a aproximadamente 940 °C) para aumentar la cantidad de precipitación de AlN. Si el trabajo después del laminado en caliente incluye partículas de AlN gruesas, la temperatura de recalentamiento puede establecerse en relativamente alta (por ejemplo, 940 °C a 1000 °C) para permitir que las partículas de AlN gruesas se disuelvan una vez en el acero y se precipiten nuevamente.

el alambrón de acuerdo con la realización de la presente invención incluye suficientemente partículas de AIN capaces de actuar eficazmente como sitios de trampa de hidrógeno, de este modo puede proporcionar alambres de acero tales como cables y alambres de acero de pretensado que tienen una excelente resistencia a la fractura retardada, y son útiles. La presente invención, en otro aspecto, también incluye tales alambres de acero.

65 Ejemplos

5

10

15

20

25

30

35

40

45

50

55

La presente invención se ilustrará con detalle adicional con referencia a varios ejemplos de trabajo a continuación. Cabe destacar, sin embargo, que no debe interpretarse que los ejemplos limiten el alcance de la invención; que pueden realizarse naturalmente diversos cambios y modificaciones en el mismo sin desviarse del espíritu y alcance de la invención como se describe en el presente documento; y todos esos cambios y modificaciones deben considerarse dentro del alcance de la invención.

Los lingotes de acero que tienen composiciones químicas dadas en la Tabla 1 se sometieron a desbastado, laminado en caliente y procesamiento en bobinas de alambrón, y algunos de ellos se sometieron a un tratamiento de patentado bajo las condiciones dadas en la Tabla 2. Las muestras se tomaron muestras de los trabajos resultantes y se sometieron a una medición de restos de extracción para determinar el contenido total de partículas de AlN y a una observación de sección transversal para evaluar la distribución de partículas de AlN. Los resultados se indican en la Tabla 2.

1. Contenido total de AIN y mediciones de contenido de nitrógeno en soluto

15

20

10

Se realizó una medición de residuos de extracción electrolítica con una solución de acetilacetona al 10 % usando una malla de 0,1 µm como medición de residuos de extracción, en donde la cantidad de partículas de AIN en el residuo se midió por el método del bromoéster. Independientemente, el contenido de nitrógeno en soluto se determinó midiendo el contenido de compuestos de nitrógeno incluyendo AIN mediante espectrofotometría de absorción de indofenol y restando el contenido del contenido de nitrógeno total en el acero. Los pesos de la muestra fueron 3 g en el método de bromoéster y 0,5 g en la espectrofotometría de absorción.

2. Medición de distribución de AIN

La medición se realizó de la siguiente manera. Se cortó una muestra de cada alambrón en una sección transversal que incluye el eje del alambrón y que está en paralelo a la dirección longitudinal del alambrón de modo que el área total de dos áreas desde la capa superficial a una posición de un cuarto (D/4) el diámetro D del alambrón sea 140 mm². De manera específica, la longitud L de la muestra se determinó de modo que L×D/4+L×D/4=L×D/2 sea 140 mm². El tamaño de una partícula de AlN que tiene el tamaño máximo en un campo de vista de observación en la sección transversal se midió de acuerdo con JIS G0555 y esta medición se realizó en veinte (20) campos de vista arbitrarios. En la medición, las inclusiones del Grupo D y del Grupo DS especificadas en JIS G0551 se consideraron como partículas de AlN y la media geométrica (ab)^{1/2} de la longitud (a) y el grosor (b) de cada partícula de AlN se empleó como el tamaño de la partícula de AlN.

A continuación, las bobinas de alambrón obtenidas anteriormente se sometieron a un estiramiento de alambre para dar cables de acero y se midió la resistencia a la tracción (resistencia del cable) de cada cable de acero. Los cables de acero se sometieron adicionalmente a varamientos y estiramientos en caliente para dar hilos que tenían diámetros de filamento y estructuras de filamento como se indica en la Tabla 2, y la resistencia del cable, la resistencia a la fractura retardada y las propiedades de torsión se midieron de cada hebra. Los resultados se indican en la Tabla 3.

3. Medición de la resistencia a la tracción del cable de acero (resistencia del cable)

La resistencia a la tracción de cada cable de acero se midió de acuerdo con JIS Z2241.

45

4. Medida de resistencia de la cuerda

Para la fuerza de la cuerda, la fuerza máxima de una muestra en un ensayo de tracción se midió de acuerdo con JIS G3536.

50

55

5. Medición de resistencia a la fractura retrasada

La propiedad de fractura retrasada (resistencia a la fractura retrasada) se midió de la siguiente manera. Cada una de las doce (12) muestras se sumergió en una solución de tiocianato de amonio al 20 por ciento en masa a 50 °C bajo una carga de 0,8 p.u de acuerdo con la descripción en la Bibliografía 1 (Boletín fib N.º 30: Acceptance of stay cable systems using prestressing steels, enero de 2005) y se midió un período de tiempo hasta que se rompió la muestra. El término "0,8 p.u" se refiere a una carga del 80 % de una carga de rotura. En el presente documento se aceptó una muestra de prueba con un tiempo de ruptura mínimo de 2 horas o más y un tiempo de ruptura medio de 5 horas o

60

65

6. Medición de propiedades de torsión

Para las propiedades de torsión, una muestra de prueba que tiene un número de torsión de 3 o más (capaz de retorcerse tres veces o más) de acuerdo con la Normativa FKK HTS-26 del sistema FKK Freynessit se aceptó en el presente documento.

Tabla 1]

Tipo de acero		nposic	ión qu	Composición química (en		entaje c	porcentaje de masa) *siendo el resto hierro e impurezas inevitables	ı) *sieı	ndo el	resto	hierro	e imp	ırezas	inevi	itables	Límite superior del contenido de Al
	ပ	: <u>s</u>	Mn	z	₹	۵	S	స	J.	ပိ	Mo	z	g	>	В	(valor derecho de la Expresión (1))
٧	0,92	1,18	0,48	0,0040	90'0	0,06 0,010	0,010	0,19								0,17
В	0,80	0,61	0,51	0,0025	0,10	0,10 0,011 0,006	0,006									0,20
ပ	0,90	1,19	0,50	0,0053	90,0	0,06 0,008	0,008									0,14
٥	0,86	1,21	0,71	0,86 1,21 0,71 0,0080	0,05	0,05 0,010 0,010	0,010					_	60'0			60'0
Ш	1,05	0,30	1,78	0,0032	0,07	0,07 0,010 0,011	0,011									0,19
ш	0,92	0,81	0,51	0,0020	90'0	0,06 0,007 0,010	0,010		80,0		_	0,28				0,21
9	0,84	1,82	0,20	0,0061	0,12	0,12 0,010 0,020	0,020								0,0048	0,13
I	0,92		1,10 0,48	0,0048	0,07	0,020	0,07 0,020 0,008	0,28							0,0028	0,15
_	06'0	0,89	0,81	0,0068	60'0	0,09 0,007 0,010	0,010								0,0039	0,11
ſ	1,20	0,40	0,49	0,0096	0,05	0,008	0,012			0,18	80,0		0,07			0,05
¥	0,85	0,58	0,61	0,0042	0,13	0,13 0,006	800'0									0,17
Г	1,30	0,79	0,51	0,0072	0,08	0,08 0,010 0,007	0,007									0,10
Σ	0,70	1,32	1,32 0,81	0,0036	0,10	0,10 0,015 0,011	0,011									0,18
Z	0,93	0,71	09'0	0,0028	0,03	0,03 0,010 0,010	0,010									0,20
0	1,10	0,38	0,81	0,0029	0,17	0,17 0,008	0,013									0,19
凸	0,85	0,39	0,68	0,0010	0,07	0,07 0,010 0,010	0,010									•
Ø	0,90	0,40	0,40 0,58	0,0120	90,0	0,06 0,008 0,011	0,011									1
œ	0,96	0,61	0,59	0600'0	0,11	0,11 0,008	0,011									0,07
တ	96'0	1,20	0,30	1,20 0,30 0,0050	0,08	0,08 0,008 0,010	0,010							0,10		90'0

[T

[abla2]

	Distribución de AIN		0	0	0	×	0	×	×	×	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	×	×	×	0
	Contenido de AIN (ppm)		73	64	120	140	121	150	37	113	62	113		118	72	64	53	161	138	223	69	106	174	26	47	59	12	206	165	123
	Contenido de nitrógeno en soluto (ppm)		15	3	12	5	11	3	13	11	30	12	desbastado	6	2	5	2	9	1	2	1	1	11	3	12	4	3	40	9	8
	Microestructura		۵	۵	۵	Ф	۵	۵	Д	۵	Ь	۵	sarrolladas tras el	P/B	Ь	۵	۵	۵	۵	Ъ	۵	Ь	۵	Ь	۵	Ь	۵	۵	۵	۵
ado	Temperatura de patentado	(°C)				-	550				-	570	Grietas de enfriamiento desarrolladas tras el desbastado	500	290	540	550	610	570	290	540	550	550	620	560	530	580	580	580	580
Patentado	Temperatura de calentamiento	(°C)					096				-	970	Grietas d	006	880	910	930	940	940	1000	940	056	096	096	096	096	096	096	096	950
r caliente	Diámetro de alambre enrollado	(mm)	18,0	16,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0	14,0		14,0	16,0	14,0	12,0	10,0	6,0	5,5	7,0	8,0	14,0	12,0	13,0	8,0	13,0	13,0	13,0	8,0
Laminado en caliente	Temperatura de colocación	(°C)	950	850	006	006	950	006	1050	750	940	1000		006	800	850	820	850	800	850	006	006	006	870	880	880	820	820	850	880
stado	Velocidad de enfriamiento	(°C/s)	0,5	8,0	0,4	0,4	0,5	0,1	0,5	9,0	8,0	0,5	9'0	0,5	9,0	6,0	0,5	8,0	7,0	0,5	0,5	9'0	0,5	9,0	0,5	9,0	0,5	9'0	0,5	9'0
Desbastado	Temperatura de desbastado	(°C)	1260	1240	1260	1200	1260	1250	1230	1280	1280	1250	1300	1260	1260	1250	1240	1280	1260	1270	1260	1250	1250	1260	1240	1250	1250	1260	1250	1250
	Tipo de acero		∢	В	O	O	O	O	O	O	ပ	O	O	O	D	ш	ш	U	I	-	7	Y	٦	M	z	0	۵	ø	œ	S
	Número de prueba		-	2	က	4	5	9	7	80	6	10	11	12	13	41	15	16	17	18	19	20	21	22	23	24	25	56	27	28

[Tabla 3]

Número de	Tipo de	Resistencia del cable	Diámetro del hilo	Estru	Fuerza máxima	Tiempo mínimo de ruptura	Tiempo medio de ruptura	Número de torsiones	Observaciones
pinepa	accio	(MPa)	(mm)	O	(kN)	(hora)	(hora)	(tiempo)	
1	¥	2240	15,2	7 cables	346	2,5	5,3	31	Alta resistencia
2	В	2169	15,2	7 cables	335	3	5,2	29	
3	၁	2176	15,2	7 cables	336	2,3	5,8	32	
4	ပ	2143	15,2	7 cables	331	9,0	2,5	26	
5	၁	2137	15,2	7 cables	330	3,1	6,3	28	
9	ပ	2130	15,2	7 cables	329	0,5	2,7	21	
7	ပ	2143	15,2	7 cables	331	2,0	2,5	22	
8	ပ	2169	15,2	7 cables	335	0,5	2,7	21	
6	ပ	2169	15,2	7 cables	335	2,2	6,3	8	
10	ပ	2182	15,2	7 cables	337	3,5	6,8	26	
11	O				•				
12	ပ			Numerosas rupt	uras desarrol	Numerosas rupturas desarrolladas tras el trefilado	op		
13	۵	2272	12,7	7 cables	231	3,5	6,8	26	Buena ductilidad
14	ш	2213	12,7	7 cables	225	2,2	6,2	38	
15	ш	2207	21,8	19 cables	299	6	14,2	46	Gran número de torsión
16	უ	2187	21,8	19 cables	661	4	5,9	51	Gran número de torsión
17	I	2116	28,6	19 cables	1062	3,2	6,1	48	Alta resistencia y gran número de torsión
18	_	2090	28,6	19 cables	1049	3,5	5,6	47	Torsión grande
19	٦	2111	15,2	7 cables	326	10	15,7	28	Buena ductilidad
20	¥	2040	15,2	7 cables	315	11	16,3		25
21	٦			Numerosas rupt	uras desarro	Numerosas rupturas desarrolladas tras el trefilado	op		
22	Σ	1823	15,2	7 cables	257	•	•	-	-
23	z	2046	15,2	7 cables	316	9,0	2,6	26	
24	0			Numerosas rupt	uras desarro	Numerosas rupturas desarrolladas tras el trefilado	qo		
25	Ф	1998	28,6	19 cables	1003	0,4	3,1	31	
26	ø	2096	28,6	19 cables	1052	1,4	4,3	2	
27	œ	2197	28,6	19 cables	1103	9,0	3,6	16	
28	S	2194	21,8	19 cables	663	2,5	5,4	34	

ES 2 743 735 T3

Las pruebas n.º 1 a 3, 5, 9, 10 y 13 a 20 tenían composiciones químicas, microestructuras, contenidos de AlN y distribuciones de AlN que cumplen respectivamente las condiciones especificadas en la presente invención, logrando así una resistencia del cable de 2000 MPa o más (preferentemente 2100 MPa o más), ofreció una resistencia de hebra tan alta como para cumplir con un criterio prescrito en JIS G3536, todavía tenía buena resistencia a la fractura retrasada, y podía dar hebras de alta resistencia que son prácticamente viables. Además, estas muestras de prueba también cumplían la condición de contenido de nitrógeno en soluto y, por lo tanto, ofrecían excelentes propiedades de torsión. De las muestras según la realización de la presente invención, las pruebas n.º 15 a 18 eran muestras que tenían particularmente un contenido reducido de nitrógeno en soluto y, por lo tanto, ofrecían propiedades de torsión muy excelentes; mientras que la prueba N.º 9 tenía un contenido de nitrógeno en soluto más alto y ofrecía un número más pequeño de torsión entre las muestras de acuerdo con la realización de la presente invención.

Las pruebas n.º 10, 15 y 17 se sometieron a laminación en caliente a una temperatura de colocación fuera del intervalo de condiciones preferidas, pero se sometió a un tratamiento de patente apropiado a partir de entonces, y podría dar alambrones que cumplan las condiciones especificadas en la presente invención.

En cambio, las pruebas n.º 4, 6 a 8, 11, 12 y 21 a 27 fueron muestras que no cumplieron con alguna de las condiciones especificadas en la presente invención o fueron fabricadas bajo una condición que no cumplía con las condiciones de fabricación requeridas para obtener aceros de acuerdo con la realización de presente invención.

La prueba N.º 4 experimentó desbastado realizado a baja temperatura de calentamiento; y la prueba N.º 6 se sometió a enfriamiento realizado a una velocidad de enfriamiento baja después del desbastado. Estas muestras sufrieron la precipitación de partículas gruesas de AIN, tuvieron una distribución de tamaño de partícula de AIN que no cumplía la condición especificada en la presente invención, y ofrecía resistencia inferior a la fractura retardada.

La prueba N.º 7 se sometió a una colocación a una temperatura excesivamente alta después del laminado en caliente, sufrió una precipitación insuficiente de partículas de AlN durante la colocación, tuvo un contenido de AlN y una distribución del tamaño de partícula de AlN que no cumplía las condiciones especificadas en la presente invención y ofrecía una resistencia inferior a la fractura retardada. La prueba N.º 8 se sometió a colocamiento realizado a una temperatura excesivamente baja después del laminado en caliente, sufrió un refinamiento excesivo de partículas de AlN, por lo tanto tuvo una distribución de tamaño de partícula de AlN que no cumplía la condición especificada en la presente invención y ofrecía resistencia inferior a la fractura retardada.

La prueba N.º 11 se sometió a desbastado realizado a una temperatura de calentamiento excesivamente alta y sufrió grietas de enfriamiento.

La prueba N.º 12 se sometió a un tratamiento de patentado realizado a una temperatura excesivamente baja, por lo tanto, tenía una microestructura que incluía una mezcla (P+B) de fases de bainita (B) y perlita (P) y ofrecía una capacidad de tracción inferior del cable. Esta muestra tenía una fracción de bainita de aproximadamente el 20 por ciento en área.

La prueba N.º 21 fue una muestra que tenía un contenido de carbono excesivamente alto, sufrió una importante fragilidad por envejecimiento durante el trefilado y sufrió numerosas roturas. La prueba N.º 22 fue una muestra que tenía un contenido de carbono excesivamente bajo y no pudo ofrecer una resistencia correspondiente al tipo de cadena B como se prescribe en JIS G3536.

La prueba N.º 23 fue una muestra con un contenido de Al excesivamente bajo, no pudo incluir partículas de AlN en una cantidad suficiente y ofreció resistencia inferior a la fractura retardada. La prueba N.º 24 era una muestra que tenía un contenido de nitrógeno dentro del intervalo especificado en la presente invención pero que era relativamente bajo y tenía un contenido de Al excesivamente alto, sufrió la formación de óxidos que contienen Al en gran cantidad, y sufrió numerosas roturas en el trefilado.

La prueba N.º 25 era una muestra que tenía un contenido de nitrógeno excesivamente bajo, no pudo incluir partículas de AlN en una cantidad suficiente, tuvo una distribución de tamaño de partícula de AlN que no cumplía la condición especificada en la presente invención, y ofrecía resistencia inferior a la fractura retardada. La prueba N.º 26 era una muestra que tenía un contenido de nitrógeno excesivamente alto, sufría la precipitación de partículas gruesas de AlN y, por lo tanto, ofrecía una resistencia inferior a la fractura retardada. La prueba N.º 26 tenía un contenido de nitrógeno en soluto que no cumplía la condición preferida en la presente invención y tenía un número más pequeño de torsión entre todas las muestras de prueba.

La prueba N.º 27 era una muestra que tenía un contenido de nitrógeno dentro del intervalo especificado en la presente invención, pero al ser relativamente alto y tener un contenido de Al que no cumple con la condición especificada por la Expresión (1), sufrió la precipitación de partículas gruesas de AlN y ofreció una resistencia inferior a la fractura retardada.

65

10

15

20

25

30

40

45

50

55

60

REIVINDICACIONES

1. Un alambrón que consiste en: en porcentaje de masa, en lo sucesivo en el presente documento lo mismo para la composición química;

5

C en un contenido del 0,8 % al 1,2 %,

Si en un contenido del 0,1 % al 2,0 %;

Mn en un contenido del 0,1 % al 2,0 %;

N en un contenido del 0,002 % al 0,010 %;

10 Al en un contenido del 0,04 % al 0,15 %;

P en un contenido del 0,02 % o menos; y

S en un contenido del 0,02 % o menos;

y opcionalmente al menos un elemento seleccionado del grupo que consiste en:

15

Cr en un contenido del 1,0 % o menos, excluyendo el 0 %;

Ni en un contenido del 1,0 % o menos, excluyendo el 0 %;

Co en un contenido del 1.0 % o menos, excluvendo el 0 %:

Mo en un contenido del 1,0 % o menos, excluyendo el 0 %; y

Cu en un contenido del 0,5 % o menos, excluyendo el 0 %;

20

25

y opcionalmente al menos un elemento seleccionado del grupo que consiste en:

B en un contenido del 0,005 % o menos, excluyendo el 0 %;

Nb en un contenido del 0,5 % o menos, excluyendo el 0 %; y

V en un contenido del 0,5 % o menos, excluyendo el 0 %;

siendo el resto hierro e impurezas inevitables;

el contenido de Al y el contenido de N cumplen una condición especificada por la Expresión (1) dada como sigue:

30

35

45

55

$$[AI] \le -2.1 \times 10 \times [N] + 0.255$$
 (1)

donde [Al] y [N] son contenidos en porcentaje en masa de Al y N, respectivamente;

teniendo el alambrón una microestructura que comprende un 95 por ciento en área o más de una perlita;

teniendo el alambrón un contenido de AIN del 0,005 % o más; y

teniendo un porcentaje de partículas de AIN un diámetro d_{GM} de 10 a 20 µm siendo el 50 % o más en porcentaje en número en una distribución de valores extremos de valores máximos de los diámetros d_{GM} de partículas de AIN, donde el diámetro d_{GM} está representado por una media geométrica (ab)^{1/2} de una longitud "a" y un espesor "b" de una partícula de AIN, en donde el término "longitud "a"" de una partícula de AIN se refiere a la longitud (dimensión) de la partícula de AIN en la dirección longitudinal del alambrón;

40 el término "espesor "b "" de la partícula de AIN se refiere a una dimensión de la partícula de AIN en una dirección perpendicular a la dirección longitudinal de la varilla de alambre y

el tamaño de una partícula de AIN que tiene el tamaño máximo en un campo de vista de observación en la sección transversal se mide de acuerdo con JIS G0555, en donde la medición se realiza en veinte campos de vista arbitrarios y en donde las inclusiones del Grupo D y del Grupo DS como se especifica en JIS G0551 se consideran partículas de AIN en la medición.

- 2. El alambrón de acuerdo con la reivindicación 1, que tiene un contenido de nitrógeno en soluto del 0,003 % o menos.
- 3. El alambrón de acuerdo con la reivindicación 1, que comprende además al menos un elemento seleccionado del grupo que consiste en:

Cr en un contenido del 0,05 % al 1,0 %;

Ni en un contenido del 0,05 % al 1,0 %;

Co en un contenido del 0.05 % al 1.0 %:

Mo en un contenido del 0,05 % al 1,0 %; y

Cu en un contenido del 0,05 % al 0,5 %.

4. El alambrón de acuerdo con la reivindicación 1, que comprende además al menos un elemento seleccionado del grupo que consiste en:

B en un contenido del 0,0003 % al 0,005 %;

Nb en un contenido del 0,01 % al 0,5 %; y

V en un contenido del 0,01 % al 0,5 %.

65

5. Un cable de acero obtenido a partir del alambrón de una cualquiera de las reivindicaciones 1 a 4.