

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 745 284

51 Int. Cl.:

C07D 403/12 (2006.01) C07D 231/56 (2006.01) C07D 403/14 (2006.01) C07D 471/04 (2006.01) A61K 31/437 (2006.01) A61K 31/416 (2006.01) A61P 11/00 A61P 11/06 (2006.01) A61P 11/08 (2006.01) A61P 17/00 (2006.01)

12 TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 02.09.2016 PCT/EP2016/070729

(87) Fecha y número de publicación internacional: 16.03.2017 WO17042100

96) Fecha de presentación y número de la solicitud europea: 02.09.2016 E 16759802 (8)

(97) Fecha y número de publicación de la concesión europea: 17.07.2019 EP 3347353

54 Título: Heteroarilos sustituidos con pirazolilo y su uso como medicamentos

(30) Prioridad:

11.09.2015 US 201562217269 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **28.02.2020**

(73) Titular/es:

BOEHRINGER INGELHEIM INTERNATIONAL GMBH (100.0%) Binger Strasse 173 55216 Ingelheim am Rhein, DE

(72) Inventor/es:

HOFFMANN, MATTHIAS; DAHMANN, GEORG; GNAMM, CHRISTIAN; FANDRICK, DANIEL; SCOTT, JOHN y MCCARTHY, CLIVE

74 Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Heteroarilos sustituidos con pirazolilo y su uso como medicamentos

5 La invención se refiere a nuevos heteroarilos sustituidos de fórmula 1

$$R^2$$
 CH_3
 N
 R^3
 1

o de fórmula 1'

10 de

$$R^2$$
 CH_3
 R^3
 1
 1

en la que A es N o CH,

15 en la que Y es -O- o -CH₂

en la que R^3 es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula $\underline{1}$ y se selecciona entre el grupo que consiste en -alquilo C_{1-6} lineal o ramificado, -haloalquilo C_{1-6} , -cicloalquilo C_{3-6} , -alquileno C_{1-4} -cicloalquilo C_{3-6} , un heterociclo monocíclico de cinco o seis miembros con 1, 2 o tres heteroátomos seleccionados

ES 2 745 284 T3

cada uno de ellos independientemente entre O, S o N, un heterociclo bicíclico de nueve a 10 miembros con 1, 2 o 3 heteroátomos seleccionados cada uno de ellos independientemente entre O, S o N,

en el que R^3 está opcionalmente sustituido con uno, dos, tres o cuatro sustituyentes seleccionados cada uno independientemente entre sí del grupo que consiste en halógeno (F), -alquilo C_{1-3} , oxo, -CN

en el que R² se selecciona entre el grupo que consiste en -alquilo C₁₋₃, -haloalquilo C₁₋₃, F, Br, Cl,

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

1. Antecedentes de la invención

1.1 Inhibidores de SYK

5

10

20

25

30

35

40

50

55

60

La presente invención describe nuevos compuestos que inhiben la proteína cinasa SYK (tirosina cinasa del bazo), la preparación y formulación de los mismos y su uso para preparar un medicamento.

SYK es una tirosina cinasa intracelular que tiene una importante función mediadora en la transducción de señales de diferentes receptores en linfocitos B, mastocitos, monocitos, macrófagos, neutrófilos, linfocitos T, células dendríticas y células epiteliales. Los receptores en los que SYK desempeña una función importante en la transducción de señales incluyen, por ejemplo, los receptores de IgE (FcɛRI) e IgG (FcyR1) en mastocitos y linfocitos B, el receptor de linfocitos B (BCR) y el receptor de linfocitos T (TCR) en los linfocitos B y T, el receptor ICAM1 (ICAM1R) en las células epiteliales del tracto respiratorio, el receptor DAP12 en los linfocitos citolíticos naturales, células dendríticas y osteoclastos, el receptor 1 de dectina en una subpoblación de linfocitos T auxiliares (linfocitos Th-17), así como los receptores de integrinas para las integrinas β1, β2 y β3 en neutrófilos, monocitos y macrófagos (Wong et al.; Expert Opin. Investig. Drugs (2004) 13(7), 743-762; Ulanova et al.; Expert Opion. Ther. Target (2005) 9(5); 901-921; Wang et al.; J. Immunol. (2006) 177, 6859-6870; Leib y Gut-Landmann et al.; Nature Immunology (2007) 8, 630-638; Slack et al., European J. Immunol. (2007) 37, 1600-1612). Los procesos moleculares se describen mejor para la transducción de señales del FcɛRI. En los mastocitos, la unión de IgE a FcɛRI causa la reticulación de los receptores de IgE y el reclutamiento y la activación de Lyn (una tirosina cinasa de la familia Src). Lyn activa fosforila los denominados motivos ITAM, que están presentes en muchos de los receptores mencionados anteriormente y, por lo tanto, generan sitios de unión para el dominio SH2 de SYK. Como resultado de la unión al motivo ITAM, SYK se activa y luego fosforila varios sustratos que son necesarios para la liberación de mediadores alérgicos e inflamatorios, tales como, por ejemplo, la histamina y βhexosamidasa (βHA), así como para la síntesis de mediadores lipídicos, tales como, por ejemplo, las prostaglandinas y los leucotrienos.

En vista de su función central en diferentes vías de transducción de señales, SYK se ha analizado como una diana terapéutica para diferentes enfermedades, tales como, por ejemplo, rinitis alérgica, asma, enfermedades autoinmunitarias, artritis reumatoide, osteopenia, osteoporosis, EPOC y diversas leucemias y linfomas (Wong et al.; Expert Opin. Investig. Drugs (2004) 13(7), 743-762; Ulanova et al.; Expert Opion. Ther. Target (2005) 9(5); 901-921; Sigh y Masuda. Annual Reports in Medicinal Chemistry (2007) Vol 42; 379-391; Bajpai et al.; Expert Opin. Investig. Drugs (2008) Vol 15 (5); 641-659; Masuda y Schmitz; PPT (2008) Vol 21; 461-467; Riccaboni et al., Drug Discovery Today (2010) Vol 00 (0); 517-530; Efremov y Luarenti, Expert Opin Investig Drugs. (2011) 20(5):623-36).

La rinitis alérgica y el asma son enfermedades asociadas con reacciones alérgicas y procesos inflamatorios que implican diferentes tipos de células, eosinófilos, linfocitos T y células dendríticas. Tras haberse producido la exposición a alérgenos, los receptores de inmunoglobulina de alta afinidad de IgE (FcɛRI) e IgG (FcγR1) se activan e inducen la liberación de mediadores proinflamatorios y broncoconstrictores. Por lo tanto, un inhibidor de la actividad de la cinasa SYK debería poder inhibir estas etapas.

La artritis reumatoide (AR) es una enfermedad autoinmunitaria, en la que las estructuras de los huesos y los ligamentos que rodean las articulaciones se van destruyendo progresivamente. En la fisiopatología de la AR, los linfocitos B desempeñan un papel importante, como se ha demostrado, por ejemplo, mediante el uso terapéutico de rituximab, un anticuerpo que destruye los linfocitos B. Además de la función de SYK en la transducción de señales del BCR (que tras su estimulación también induce la liberación de mediadores proinflamatorios), SYK también desempeña un papel importante en la maduración y proliferación de los linfocitos B (Cheng *et al. Nature* (1995) 378, 303-306, Cornall *et al., PNAS* (2000) 97(4), 1713-1718). Un inhibidor de la actividad de la cinasa SYK puede ofrecer, por tanto, una opción terapéutica para el tratamiento de enfermedades autoinmunitarias tales como la AR y enfermedades con un aumento de la proliferación de los linfocitos B, tal como, por ejemplo, linfomas de linfocitos B.

La enfermedad pulmonar obstructiva crónica (EPOC) se caracteriza por un deterioro sucesivo de la función pulmonar y por la inflamación crónica de las vías respiratorias, que se inicia y produce por sustancias nocivas de todo tipo y que contribuye al mantenimiento del curso de la enfermedad. A nivel celular, en la EPOC, hay, en particular, una multiplicación de los linfocitos T, neutrófilos, granulocitos y macrófagos. En particular, hay un aumento en el número de linfocitos positivos para CD8, que está directamente relacionado con el deterioro de la función pulmonar. Otra característica de la EPOC es el deterioro agudo de la función pulmonar (agravamientos), caracterizados por

ES 2 745 284 T3

infecciones víricas (por ejemplo, Rhinovirus) o bacterianas (por ejemplo, Streptococcus pneumoniae, Haemophilus influenzae y Moraxella catarrhalis).

En vista de la función proinflamatoria de SYK en los macrófagos, linfocitos T y neutrófilos como se ha descrito anteriormente (véase: Wong et al.; Expert Opin. Investig. Drugs (2004) 13(7), 743-762; y referencias citadas en dicho documento), un inhibidor de la actividad de la cinasa SYK podría ser un nuevo enfoque terapéutico para el tratamiento de los procesos inflamatorios que subyacen a la EPOC. También se ha demostrado que SYK, en las células epiteliales del tracto respiratorio, participa en la captación mediada por ICAM1R y la posterior replicación del rinovirus, y que un ARNip contra SYK bloquea estas etapas (Wang et al.; J. Immunol. (2006) 177, 6859-6870; Lau et al.; J. Immunol. (2008) 180, 870-880). Por lo tanto, también se podría usar terapéuticamente un inhibidor de la actividad de la cinasa SYK en los agravamientos causados por los rinovirus.

Varios estudios sugieren que SYK participa en la transformación maligna de los linfocitos (resumido en Sigh y Masuda, *Annual Reports in Medicinal Chemistry* (2007) Vol. 42; 379-391). Una proteína de fusión TEL-SYK con una actividad constitutiva de SYK transformó los linfocitos B de un paciente con síndrome mielodisplásico, se aisló una proteína de fusión constitutivamente activa ITK-SYK de pacientes con linfomas de linfocitos T periféricos (PTCL). Además, se encontró SYK constitutivamente activa en células de linfoma de linfocitos B de pacientes, en especial, en la leucemia linfoblástica aguda de linaje B (B-ALL), linfoma folicular (FL), linfoma difuso de linfocitos B grandes (DLBCL), linfomas de células del manto y linfomas no Hodgkin de linfocitos B (NHL), así como en la leucemia mieloide aguda (AML). Basándose en estos datos, parece que SYK es un proto-oncogén en células hematopoyéticas y representa una posible diana para el tratamiento de ciertas leucemias y linfomas.

La púrpura trombocitopénica idiopática (PTI) es una enfermedad autoinmunitaria en la que autoanticuerpos IgG contra antígenos presentes en las plaquetas se unen y destruyen las plaquetas. Los pacientes con PTI tienen un aclaramiento acelerado de las plaquetas recubiertas con IgG en circulación a través de los macrófagos del bazo y del hígado. En vista de la función mediada por FcγR proinflamatoria de SYK en los macrófagos, se considera que un inhibidor de SYK tiene un beneficio terapéutico en las citopenias mediadas por FcγR como la PTI. De hecho, el inhibidor de SYK R788 (R406) mejoró los recuentos de plaquetas en un estudio sin ocultación, de un solo centro, en pacientes con PTI (Podolanczuk *et al*; *Blood* (2009) 113, 3154-3169).

El penfigoide bulloso (Ujiie *et al. Journal of Dermatology* 2010; 37: 194-204) es una enfermedad cutánea crónica, autoinmunitaria, subepidérmica y con ampollas, que rara vez afecta a las membranas mucosas.

El penfigoide bulloso se caracteriza por la presencia de autoanticuerpos de inmunoglobulina G (IgG) específicos de los antígenos del penfigoide bulloso hemidesmosómicos BP230 (BPAg1) y BP180 (BPAg2). El pénfigo vulgar (Venugopal *et al. Dermatol. Clin.* 2011; 29:373-80) es una enfermedad crónica con formación de ampollas en la piel con lesiones en la piel que rara vez son pruríticas, pero que suelen ser dolorosas. El pénfigo vulgar es una enfermedad autoinmunitaria causada por autoanticuerpos IgG dirigidos tanto contra la desmogleína 1 como la desmogleína 3, que produce la pérdida de cohesión entre los queratinocitos de la epidermis. Se caracteriza por extensas ampollas flácidas y erosiones mucocutáneas. En ambas enfermedades, los autoanticuerpos IgG se unen al receptor Fc gamma (FcRy), y activan FcRy y la señalización cadena abajo a través de la cinasa SYK. Por lo tanto, se podría usar terapéuticamente un inhibidor de la actividad de la cinasa SYK que bloquea la señalización aguas abajo de FcRg para tratar a los pacientes con penfigoide bulloso y pénfigo vulgar.

El lupus eritematoso sistémico (LES) es una enfermedad autoinmunitaria crónica que puede afectar básicamente a cualquier órgano del cuerpo. Se caracteriza por una inflamación multisistémica del sistema microvascular y la presencia de autoanticuerpos. Los ratones deficientes en FcγR están protegidos frente a varios aspectos del LES en modelos preclínicos relacionados con la enfermedad, lo que sugiere que un inhibidor de SYK puede tener un beneficio terapéutico en el LES en vista de la función proinflamatoria mediada por FcγR de Syk en diversas células.

1.2 Técnica anterior

10

15

20

25

30

50

55

60

Las 1,6-naftiridinas se conocen como inhibidores de SYK. Por ejemplo, las patentes de los Estados Unidos n.º US 3.928.367, US 4.017.500, US 4.115.395 y US 4.260.759 describen 5-amino-1,6-naftiridinas con actividad antifúngica y antibacteriana. Además, el documento WO 9918077 describe 5-piperazinil-1,6-naftiridinas como antagonistas de la serotonina. Además, la patente de los Estados Unidos n.º 7.321.041 describe 1,6-naftiridinas sustituidas como inhibidores de SYK, sin embargo, estas 1,6-naftiridinas tienen un patrón de sustitución completamente diferente al de los compuestos de acuerdo con la invención. Asimismo, el documento WO 2011092128 divulga 1,6-naftiridinas que están sustituidas en las posiciones 5 y 7.

En los documentos WO 2012/167733, WO 2012/167423 y WO 2012/123312 se han divulgado otros derivados de naftiridina, tales como pirido[3,4-*b*]pirazinas, que también estaban sustituidos en la posición 5 y en la posición 7, como inhibidores de SYK.

65 Además, el documento WO 01/83485 divulga imidazopirimidinas y triazolopirimidinas sustituidas como inhibidores de SYK, mientras que el documento WO 2008/113469 divulga imidazo- y triazolopirimidinas sustituidas como inhibidores

de GSK 3ß.

10

35

También las quinolonas son conocidas como inhibidores de SYK. Por ejemplo, los documentos WO 2006038041 y WO 2013014060 divulgan compuestos de quinolina que están sustituidos en las posiciones 5 y 7, sin embargo, el patrón de sustitución, en particular, en la posición 7, es completamente diferente del de los compuestos de fórmula 1 de la presente invención.

Además, también se han presentado los documentos WO2015/140051, WO2015/140054 y WO2015/140055. En el presente documento también se divulgan diversos heteroarilos sustituidos con pirazolilo que no están todos sustituidos en la posición 3 de los compuestos.

Además, el documento WO2015017610 también divulga heteroarilos sustituidos con pirazolilo que tienen modificaciones centrales en comparación con los compuestos de la presente invención.

Además, Thoma et al "Orally bioavailabe SYK inhibitors with activity in a rat PK/PD model", Bioorganic & Medicinal Chemistry Letters (2015) http://dx.doi.org/10.1016/j.bmd.2015.08037 (artículo en impresión) se ha publicado en línea, en donde se divulgan inhibidores de SYK con estructuras de benzo- y pirido-tiazol/isotiazol similares. Sin embargo, el compuesto n.º 5, el más prometedor, con capacidad inhibidora de SYK satisfactoria, no se ha continuado estudiando debido al hecho de que el compuesto n.º 5 también inhibió a Aurora B (AURB), lo que impidió gravemente la selectividad por SYK del compuesto n.º 5.

Por consiguiente, el objetivo de la presente invención fue proporcionar inhibidores de SYK eficaces con excelentes capacidades inhibidoras de SYK que también muestren una suficiente selectividad por SYK.

- Sorprendentemente, se ha descubierto que los compuestos de las fórmulas 1 y 1' de la presente invención son particularmente adecuados para el tratamiento de problemas respiratorios, enfermedades alérgicas, osteoporosis, gastroenteropatías, enfermedades autoinmunitarias, enfermedades inflamatorias y enfermedades del sistema nervioso central o periférico, en particular, para el tratamiento del asma, rinitis alérgica, artritis reumatoide, dermatitis alérgica, lupus eritematoso (LES) y EPOC, en particular, porque todos estos compuestos de la presente invención muestran las siguientes capacidades deseadas al mismo tiempo:
 - alta inhibición de SYK (reflejada por "bajos" valores de Cl₅₀ con respecto a la inhibición de SYK (valor de Cl₅₀
 10 nMol en el "Ensayo de inhibición de SYK" y de CE₅₀
 150 nMol en el "Ensayo de CD63")
 - excelente selectividad de SYK, lo que significa una inhibición muy baja de otras cinasas, tales como Aurora B (reflejada por "elevados" valores de Cl₅₀ con respecto a la inhibición de AURB), FLT3 (reflejada por "altos" valores de Cl₅₀ con respecto a la inhibición de FLT3), GSK3β (reflejada por "altos" valores de Cl₅₀ con respecto a la inhibición de GSK3β) etc.
 - buena estabilidad metabólica, que puede medirse por un bajo porcentaje de Qn en hepatocitos humanos (%Qh<20).
- 40 2. Descripción de la invención

La presente invención se refiere a un compuesto de fórmula 1,

$$R^2$$
 R^2
 R^3
 R^3

45

en la que A es N o CH,

en la que Y es -O- o CH2,

en la que R³ es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula 1 y se selecciona entre el grupo que consiste en -alquilo C₁₋₆ lineal o ramificado, -haloalquilo C₁₋₆, -cicloalquilo C₃₋₆, -alquileno C₁₋₄-cicloalquilo C₃₋₆, un heterociclo monocíclico de cinco o seis miembros con 1, 2 o tres heteroátomos seleccionados cada uno de ellos independientemente entre O, S o N, un heterociclo bicíclico de nueve a 10 miembros con 1, 2 o 3 heteroátomos seleccionados cada uno de ellos independientemente entre O, S o N,

10

en el que R^3 está opcionalmente sustituido con uno, dos, tres o cuatro sustituyentes seleccionados cada uno independientemente entre sí del grupo que consiste en halógeno (F), -alquilo C_{1-3} , oxo, -CN

en el que R2 se selecciona entre el grupo que consiste en -alquilo C1-3, -haloalquilo C1-3, F, Br, CI,

15

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En una realización preferida, la invención se refiere a los compuestos de fórmula 1'

$$R^2$$
 CH_3
 N
 R^3
 1
 1

20

30

en la que A, Y, R² y R³ se definen como se ha mencionado anteriormente, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En una realización preferida adicional, la invención se refiere a los compuestos de fórmula <u>1</u> o de fórmula <u>1</u>, en la que A es N o CH en la que Y es -O- o CH₂,

en la que R³ es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula 1 y se selecciona entre el grupo que consiste en metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, terc-butilo, -fluoroalquilo C₁₋₆, ciclopropilo, ciclobutilo, ciclopentilo, -alquileno C₁₋₂-ciclopropilo C₃₋₆, -alquileno C₁₋₂-ciclopentilo C₃₋₆, -alquileno C₁₋₂-ciclopentilo C₃₋₆, un heterociclo monocíclico de cinco o seis miembros con 1 átomo de oxígeno, un heterociclo bicíclico de 9 a 10 miembros con 1 o 2 heteroátomos seleccionados cada uno de ellos independientemente entre O, S o N, en el que R³ está opcionalmente sustituido con uno dos tres o cuatro sustituyentes cada uno seleccionado

en el que R³ está opcionalmente sustituido con uno, dos, tres o cuatro sustituyentes cada uno seleccionado independientemente entre sí del grupo que consiste en F, Cl, Br, metilo, etilo, -CN

en el que R² se selecciona entre el grupo que consiste en metilo, etilo, isopropilo, -CF₃, F, Br, Cl, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En otra realización preferida la invención se refiere a los compuestos mencionados anteriormente de fórmula $\underline{1}$ o de fórmula $\underline{1}'$,

40 en la que A es N o CH, en la que Y es -O- o -CH₂-,

en la que R^3 es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula $\underline{1}$ y se selecciona entre el

grupo que consiste en metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, terc-butilo, - $(CH_2)_2$ - CF_3 , - CH_2 - CH_2F , ciclopropilo, ciclobutilo, ciclopentilo, -metileno-ciclopropilo C_{3-6} , tetrahidrofuranilo, tetrahidropiranilo, hexahidrofuropiranilo,

en el que R³ está opcionalmente sustituido con uno, dos, tres o cuatro sustituyentes cada uno seleccionado independientemente entre sí del grupo que consiste en F, Cl, Br, metilo, etilo, -CN en la que R² se selecciona entre el grupo que consiste en metilo y F,

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En otra realización preferida, la invención se refiere a los compuestos mencionados anteriormente de fórmula 1 o de fórmula 1, en la que R² es metilo, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En una realización preferida adicional, la invención se refiere a los compuestos mencionados anteriormente de fórmula 1 o de fórmula 1', en la que R² es F, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En una realización preferida adicional, la invención se refiere a los compuestos mencionados anteriormente de fórmula 1 o de fórmula 1, en la que R³ es un sustituyente en posición meta del anillo de pirazolilo de fórmula 1, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En otra realización preferida la invención se refiere a los compuestos mencionados anteriormente de fórmula $\underline{1}$ o de fórmula $\underline{1}$, en la que R^3 es un sustituyente en posición orto del anillo de pirazolilo de fórmula $\underline{1}$, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En una realización preferida adicional, la invención se refiere a los compuestos mencionados anteriormente de fórmula 1 o de fórmula 1, en la que R³ está sustituido con uno, dos, tres o cuatro sustituyentes seleccionados cada uno independientemente entre sí del grupo que consiste en F, metilo y -CN, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

30 En otra realización preferida la invención se refiere a los compuestos mencionados anteriormente de fórmula <u>1</u> o de fórmula <u>1</u>',

en la que A es N o CH,

en la que Y es -CH₂-,

15

20

35

en la que R³ es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula 1 y se selecciona entre el grupo que consiste en metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, terc-butilo, -(CH₂)₂-CF₃, -CH₂-CH₂F, en el que R³ está opcionalmente sustituido con uno, dos, tres o cuatro sustituyentes seleccionados cada uno independientemente entre sí del grupo que consiste en F, metilo y -CN y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

40 En una realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula 1 o de fórmula 1', que se selecciona del grupo que consiste en

45 y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En una realización preferida adicional, la invención se refiere a los compuestos mencionados anteriormente de fórmula 1 o de fórmula 1,

en la que A es \overline{N} o CH,

en la que Y es -O- o CH_2 ,

en la que R^3 es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula $\underline{1}$ y se selecciona entre el grupo que consiste en isopropilo, isobutilo y t-butilo,

en la que R³ no está adicionalmente sustituido,

15

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula <u>1</u> o de fórmula <u>1'</u>, que se selecciona del grupo que consiste en

10 y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula 1 o de fórmula 1, que es

y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

20 En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula <u>1</u> o de fórmula <u>1'</u>, que es

y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

5 En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula <u>1</u> o de fórmula <u>1'</u>, que es

10 y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula $\underline{1}$ o de fórmula $\underline{1}$, que es

15

y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula $\underline{1}$ o de fórmula $\underline{1}'$, que es

y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

5 En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula 1 o de fórmula 1', que es

10 y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula 1 o de fórmula 1', que es

15

y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula <u>1</u> o de fórmula <u>1</u>, en la que

en la que A es N o CH, en la que Y es -CH₂-,

- en la que R^3 es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula $\underline{1}$ y se selecciona entre el grupo que consiste en ciclopropilo, ciclobutilo, ciclopentilo, -metileno-ciclopropilo C_{3-6} , tetrahidrofuranilo, tetrahidropiranilo, hexahidrofuropiranilo,
- en el que R³ está opcionalmente sustituido con uno, dos, tres o cuatro sustituyentes seleccionados cada uno independientemente entre sí del grupo que consiste en F, metilo y -CN y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula <u>1</u> o de fórmula <u>1</u>, que se selecciona del grupo que consiste en

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

5

10 En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula <u>1</u> o de fórmula <u>1</u>', que es

15 y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula $\underline{1}$ o de fórmula $\underline{1}$, que es

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

5

10

15

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula 1 o de fórmula 1, que es

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula $\underline{1}$ o de fórmula $\underline{1}$, que es

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

20 En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula <u>1</u> o de fórmula <u>1</u>', que es

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula <u>1</u> o de fórmula <u>1</u>', que es

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

10

15

20

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula 1 o de fórmula 1, que es

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En otra realización particularmente preferida, la invención se refiere al compuesto mencionado anteriormente de fórmula 1 o de fórmula 1, que es

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

En una realización preferida adicional, la invención se refiere a los compuestos anteriormente mencionados para su uso en el tratamiento de una enfermedad que puede tratarse mediante la inhibición de la enzima SYK.

En otra realización preferida, la invención se refiere a los compuestos anteriormente mencionados para su uso en el

tratamiento de una enfermedad seleccionada entre el grupo que consiste en rinitis alérgica, asma, EPOC, síndrome de dificultad respiratoria del adulto, bronquitis, linfoma de linfocitos B, dermatitis y dermatitis de contacto, dermatitis alérgica, rinoconjuntivitis alérgica, artritis reumatoide, síndrome antifosfolípido, enfermedad de Berger, síndrome de Evans, colitis ulcerosa, glomerulonefritis alérgica basada en anticuerpos, granulocitopenia, síndrome de Goodpasture, hepatitis, púrpura de Henoch-Schönlein, vasculitis por hipersensibilidad, anemia inmunohemolítica, anemia hemolítica autoinmunitaria, púrpura trombocitopénica idiopática, síndrome de Kawasaki, conjuntivitis alérgica, lupus eritematoso, nefritis por lupus, linfoma de células capsulares, neutropenia, esclerosis lateral no familiar, arteriosclerosis, enfermedad de Crohn, esclerosis múltiple, miastenia grave, osteoporosis, enfermedades osteolíticas, osteopenia, psoriasis, síndrome de Sjögren, esclerodermia, linfoma de linfocitos T, urticaria/angioedema, granulomatosis de Wegener, enfermedad celíaca, macroglobulinemia de Waldenström, esclerosis sistémica (SSC), malaria y dengue.

En una realización preferida adicional, la invención se refiere a los compuestos anteriormente mencionados para su uso en el tratamiento de una enfermedad seleccionada entre el grupo que consiste en asma, EPOC, rinitis alérgica, síndrome de dificultad respiratoria del adulto, bronquitis, dermatitis alérgica, dermatitis de contacto, púrpura trombocitopénica idiopática, artritis reumatoide, lupus eritematoso, nefritis por lupus, esclerosis sistémica (SSC) y rinoconjuntivitis alérgica.

En otra realización preferida, la invención se refiere al compuesto anteriormente mencionado para su uso en el tratamiento de una enfermedad seleccionada entre el grupo que consiste en asma, EPOC, rinitis alérgica, púrpura trombocitopénica idiopática, dermatitis alérgica, lupus eritematoso, nefritis lúpica y artritis reumatoide.

En una realización preferida adicional, la invención se refiere a formulaciones farmacéuticas, que contienen uno o más de los compuestos anteriormente mencionados y un excipiente farmacéuticamente aceptable.

En otra realización preferida, la invención se refiere a formulaciones farmacéuticas, que contienen uno o más de los compuestos anteriormente mencionados, en combinación con una sustancia activa seleccionada entre el grupo que consiste en anticolinérgicos, betamiméticos, corticoesteroides, inhibidores de PDE4, inhibidores de EGFR, antagonistas de LTD4, inhibidores de CCR3, inhibidores de iNOS, antagonistas de CRTH2, inhibidores de triple cinasa contra PDGFR, FGFR y VEGFR, inhibidores de HMG-CoA reductasa y AINE.

En otra realización preferida, la invención se refiere a un compuesto intermedio seleccionado entre el grupo que consiste en la fórmula 7

la fórmula 8

10

15

20

30

la fórmula 11

en las que R² es F o metilo,

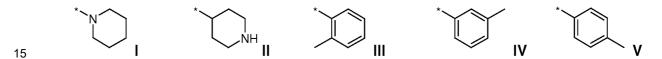
5

10

en las que Y es -O- o CH₂,

y en las que R³ se define como en una de las reivindicaciones 1 a 3 y en las que Hal es Cl o Br y las que PG es un grupo protector seleccionado entre el grupo que consiste en bencilo, 1-feniletilo, 1-(4-metoxifenil)etilo.

En otra realización preferida, la invención se refiere a un compuesto intermedio seleccionado entre el grupo que consiste en


HN
$$\frac{\mathsf{F}}{\mathsf{Br}}$$
 $\frac{\mathsf{OH}}{\mathsf{Br}}$ $\frac{\mathsf{G.2}}{\mathsf{G.3}}$ $\frac{\mathsf{G.3}}{\mathsf{Br}}$

$$\frac{\mathsf{Br}}{\mathsf{6.4}}$$

3. TÉRMINOS Y DEFINICIONES USADOS

A menos que se indique otra cosa, todos los sustituyentes son independientes entre sí. Si, por ejemplo, varios grupos alquilo C₁₋₆ son posibles sustituyentes en un grupo, en el caso de tres sustituyentes, por ejemplo, alquilo C₁₋₆ podría representar, independientemente entre sí, un metilo, un n-propilo y un *terc*-butilo.

Dentro del alcance de la presente solicitud, en la definición de posibles sustituyentes, estos también pueden presentarse en forma de una fórmula estructural. Un asterisco (*) en la fórmula estructural del sustituyente debe entenderse como el punto de enlace con el resto de la molécula. Además, el átomo del sustituyente que sigue al punto de enlace se entiende como el átomo de la posición número 1. Por tanto, por ejemplo, los grupos N-piperidinilo (I), 4-piperidinilo (II), 2-tolilo (III), 3-tolilo (IV) y 4-tolilo (V) se representan de la siguiente manera:

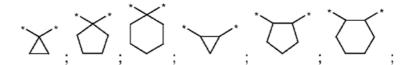
Si no hay un asterisco (*) en la fórmula estructural del sustituyente, cada átomo de hidrógeno puede retirarse en el sustituyente y la valencia así liberada puede servir como un sitio de unión al resto de una molécula. Por lo tanto, por ejemplo, VI

puede representar 2-tolilo, 3-tolilo, 4-tolilo y bencilo.

20

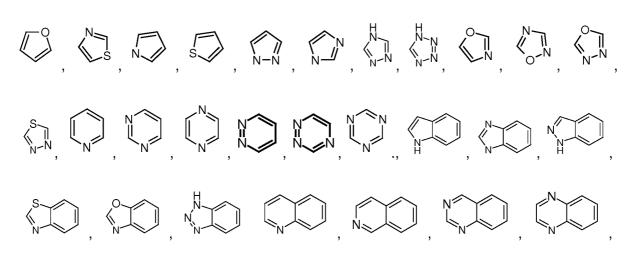
25

30


35

Como alternativa al * dentro del alcance de la presente solicitud, X_1 también se entiende como el punto de enlace del grupo R^1 a la estructura de fórmula $\underline{1}$ y X_2 como el punto de enlace del grupo R^2 a la estructura de fórmula $\underline{1}$.

Por el término "alquilo C₁₋₆" (incluyendo los que forman parte de otros grupos) se entiende grupos alquilo ramificados y no ramificados con de 1 a 6 átomos de carbono, y por el término "alquilo C₁₋₃" se entiende grupos alquilo ramificados y no ramificados con de 1 a 3 átomos de carbono. "Alquilo C₁₋₄" denota, por consiguiente, grupos alquilo ramificados y no ramificados con de 1 a 4 átomos de carbono. Se prefieren los grupos alquilo con de 1 a 4 átomos de carbono. Los ejemplos de estos incluyen: metilo, etilo, n-propilo, *isopropilo, n*-butilo, *iso*-butilo, *sec*-butilo, *terc-butilo, n*-pentilo, *iso*-pentilo, *neo*-pentilo o hexilo. Las abreviaturas Me, Et, *n*-Pr, *i*-Pr, *n*-Bu, *i*-Bu, *t*-Bu, etc., también pueden usarse opcionalmente para los grupos mencionados anteriormente. A menos que se indique otra cosa, las definiciones de propilo, butilo, pentilo y hexilo incluyen todas las formas isoméricas posibles de los grupos en cuestión. Por lo tanto, por ejemplo, propilo incluye *n*-propilo e *iso*-propilo, butilo incluye *iso*-butilo, *sec*-butilo y *terc*-butilo etc.


Por el término "alquileno C₁₋₆" (incluyendo los que forman parte de otros grupos) se entiende grupos alquileno ramificados y no ramificados con de 1 a 6 átomos de carbono, y por el término "alquileno C₁₋₄" se entiende grupos alquileno ramificados y no ramificados con de 1 a 4 átomos de carbono. Se prefieren los grupos alquileno con de 1 a 4 átomos de carbono. Los ejemplos de estos incluyen: metileno, etileno, propileno, 1-metiletileno, butileno, 1-metilpropileno, 1,1-dimetiletileno, 1,2-dimetilpropileno, 1,3-dimetilpropileno o hexileno. A menos que se indique otra cosa, las definiciones de propileno, butileno, pentileno y hexileno incluyen todas las posibles formas isoméricas de los grupos en cuestión con el mismo número de átomos de carbono. Por lo tanto, por ejemplo, propilo incluye también 1-metiletileno y butileno incluye 1-metilpropileno, 1,1-dimetiletileno, 1,2-dimetiletileno.

Si la cadena de carbono está sustituida con un grupo que, junto con uno o dos átomos de carbono de la cadena de alquileno, forma un anillo carbocíclico con 3, 5 o 6 átomos de carbono, esto incluye, entre otros, los siguientes ejemplos de los anillos:

Por el término "alquenilo C₂₋₆" (incluyendo los que forman parte de otros grupos) se entiende grupos alquenilo ramificados y no ramificados con de 2 a 6 átomos de carbono, y por el término "alquenilo C₂₋₄" se entiende grupos alquenilo ramificados y no ramificados con de 2 a 4 átomos de carbono, siempre que tengan al menos un doble enlace. Se prefieren los grupos alquenilo con de 2 a 4 átomos de carbono. Los ejemplos incluyen: etenilo o vinilo, propenilo, butenilo, pentenilo o hexenilo. A menos que se indique otra cosa, las definiciones de propenilo, butenilo, pentenilo y hexenilo incluyen todas las posibles formas isoméricas de los grupos en cuestión. Por lo tanto, por ejemplo, propenilo incluye 1-propenilo y 2-propenilo, butenilo incluye 1-, 2- y 3-butenilo, 1-metil-1-propenilo, 1-metil-2-propenilo, etc.

- Por el término "alquenileno C₂₋₆" (incluyendo los que forman parte de otros grupos) se entiende grupos alquenilo ramificados y no ramificados con de 2 a 6 átomos de carbono, y por el término "alquenileno C₂₋₄" se entiende grupos alquileno ramificados y no ramificados con de 2 a 4 átomos de carbono. Se prefieren los grupos alquenileno con de 2 a 4 átomos de carbono. Los ejemplos de estos incluyen: etenileno, propenileno, 1-metiletenileno, butenileno, 1-metilpropenileno, 1,1-dimetilpropenileno, 1,2-dimetiletenileno, pentenileno, 1,1-dimetilpropenileno, 2,2-dimetilpropenileno, 1,2-dimetilpropenileno o hexenileno. A menos que se indique otra cosa, las definiciones de propenileno, butenileno, pentenileno y hexenileno incluyen todas las posibles formas isoméricas de los grupos en cuestión con el mismo número de átomos de carbono. Por lo tanto, por ejemplo, propenilo también incluye 1-metiletenileno y butenileno incluye 1-metilpropenileno, 1,1-dimetiletenileno, 1,2-dimetiletenileno.
- Por el término "arilo" (incluyendo los que forman parte de otros grupos) se entiende sistemas de anillos aromáticos con de 6 o 10 átomos de carbono. Los ejemplos incluyen: fenilo o naftilo, siendo fenilo el grupo arilo preferido. A menos que se indique lo contrario, los grupos aromáticos pueden estar sustituidos con uno o más grupos seleccionados entre metilo, etilo, iso-propilo, terc-butilo, hidroxi, flúor, cloro, bromo y yodo.
- Por el término "aril-alquileno C₁₋₆" (incluyendo los que forman parte de otros grupos) se entiende grupos alquileno ramificados y no ramificados con de 1 a 6 átomos de carbono, que están sustituidos por un sistema de anillo aromático con de 6 o 10 átomos de carbono. Los ejemplos incluyen: bencilo, 1- o 2-feniletilo o 1- o 2-naftiletilo. A menos que se indique lo contrario, los grupos aromáticos pueden estar sustituidos con uno o más grupos seleccionados entre metilo, etilo, *iso*-propilo, *terc-butilo*, hidroxi, flúor, cloro, bromo y yodo.
 - Por el término "heteroaril-alquileno C_{1-6} " (incluyendo los que forman parte de otros grupos) se entiende, aunque ya están incluidos en "aril-alquileno C_{1-6} ", los grupos alquileno ramificados y no ramificados con de 1 a 6 átomos de carbono, que están sustituidos con un heteroarilo.
- Si no se define específicamente de otro modo, un heteroarilo de este tipo incluye grupos aromáticos heterocíclicos de cinco o seis elementos o anillos heteroarílicos bicíclicos de 5-10 elementos que pueden contener uno, dos, tres o cuatro heteroátomos seleccionados entre oxígeno, azufre y nitrógeno, y contienen tantos enlaces dobles conjugados que se forma un sistema aromático. Los siguientes son ejemplos de grupos aromáticos heterocíclicos de cinco o seis miembros o anillos heteroarilo bicíclicos:

50

45

5

10

A menos que se indique lo contrario, estos heteroarilos pueden estar sustituidos con uno o más grupos seleccionados entre metilo, etilo, etilo, iso-propilo, terc-butilo, hidroxi, flúor, cloro, bromo y yodo.

Los siguientes son ejemplos de heteroaril-alquilenos C₁₋₆:

10

15

20

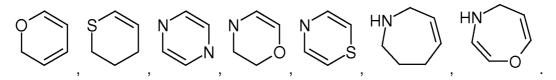
25

30

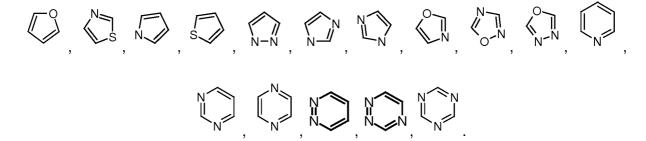
35

40

$$(CH_2)_4 - * (CH_2)_6$$
 isopropil $- * (CH_2)_6$


Por el término "haloalquilo C_{1-6} " (incluyendo los que forman parte de otros grupos) se entiende grupos alquilo ramificados y no ramificados con de 1 a 6 átomos de carbono, que están sustituidos con uno o más átomos de halógeno. Por el término "alquilo C_{1-4} " se entiende grupos alquilo ramificados y no ramificados con de 1 a 4 átomos de carbono, que están sustituidos con uno o más átomos de halógeno. Se prefieren los grupos alquilo con de 1 a 4 átomos de carbono. Los ejemplos incluyen: CF_3 , CHF_2 , CH_2F , CH_2CF_3 .

Por el término "cicloalquilo C₃₋₇" (incluyendo los que forman parte de otros grupos) se entiende grupos alquilo cíclicos con de 3 a 7 átomos de carbono, si no se define específicamente de otro modo. Los ejemplos incluyen: ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o ciclohexilo o cicloheptilo. A menos que se indique lo contrario, los grupos alquilo cíclicos pueden estar sustituidos con uno o más grupos seleccionados entre metilo, etilo, *iso*-propilo, *terc-butilo*, hidroxi, flúor, cloro, bromo y yodo.

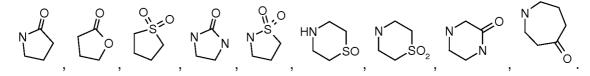

Si no se define específicamente de otro modo, por el término "cicloalquilo C₃₋₁₀" también se entiende grupos alquilo monocíclicos con de 3 a 7 átomos de carbono y también grupos alquilo bicíclicos con de 7 a 10 átomos de carbono, o grupos alquilo monocíclicos que están unidos por al menos un puente de carbono C₁₋₃.

Por la expresión "anillos heterocíclicos" o el término "heterociclo" se entiende, a menos que se indique otra cosa, anillos heterocíclicos de cinco, seis o siete miembros, saturados, parcialmente saturados o insaturados que pueden contener un, dos o tres heteroátomos, seleccionados entre oxígeno, azufre y nitrógeno, mientras que el anillo puede estar enlazado a la molécula a través de un átomo de carbono o a través de un átomo de nitrógeno, si lo hay. Aunque está incluida por la expresión "anillos heterocíclicos" o por el término "heterociclos", la expresión "anillo heterocíclico saturado" se refiere a anillos saturados de cinco, seis o siete miembros. Los ejemplos incluyen:

Aunque está incluida por la expresión "anillos heterocíclicos" o por el término "grupo heterocíclico", el término "grupo heterocíclico parcialmente saturado" se refiere a anillos parcialmente saturados de cinco, seis o siete miembros que contienen uno o dos dobles enlaces, sin que se produzcan tantos dobles enlaces de manera que se forme un sistema aromático, salvo que se defina específicamente de otra manera. Los ejemplos incluyen:

Aunque está incluida por la expresión "anillos heterocíclicos" o por el término "heterociclos", la expresión "anillos aromáticos heterocíclicos", "grupo heterocíclico insaturado" o "heteroarilo" se refiere a grupos aromáticos heterocíclicos de cinco o seis miembros o anillos heteroarilo bicíclico de 5-10 miembros que pueden contener uno, dos, tres o cuatro heteroátomos, seleccionados entre oxígeno, azufre y nitrógeno, y contienen tantos dobles enlaces conjugados que se forma un sistema aromático, a menos que no se especifique lo contrario. Los ejemplos de grupos aromáticos heterocíclicos de cinco o seis miembros incluyen:

10


30

35

40

A menos que se mencione lo contrario, un anillo heterocíclico (o heterociclo) puede estar provisto de un grupo ceto.

Los ejemplos incluyen:

Aunque está cubierta por el término "cicloalquilo", la expresión "cicloalquilos bicíclicos" representa generalmente anillos de carbono bicíclicos de ocho, nueve o diez miembros. Los ejemplos incluyen

Aunque ya está incluida por el término "heterociclo", la expresión "heterociclos bicíclicos" representa generalmente anillos bicíclicos de ocho, nueve o diez miembros que pueden contener uno o más heteroátomos, preferentemente 1-4, más preferentemente 1-3, incluso más preferentemente 1-2, en particular, un heteroátomo, seleccionados entre oxígeno, azufre y nitrógeno, a menos que no se especifique lo contrario. El anillo puede estar unido a la molécula a través de un átomo de carbono del anillo o a través de un átomo de nitrógeno del anillo, si lo hay. Los ejemplos incluyen:

Aunque ya está incluida por el término "arilo", la expresión "arilo bicíclico" denota un anillo de arilo bicíclico de 5-10 miembros que contiene suficientes dobles enlaces conjugados para formar un sistema aromático. Un ejemplo de un arilo bicíclico es naftilo.

Aunque ya está incluida en "heteroarilo", la expresión "heteroarilo bicíclico" representa un anillo heteroarilo bicíclico de 5-10 miembros, que puede contener uno, dos, tres o cuatro heteroátomos, seleccionados entre oxígeno, azufre y nitrógeno, y contiene suficientes dobles enlaces conjugados para formar un sistema aromático, salvo que se defina específicamente de otra manera.

Aunque incluida por la expresión "cicloalquilos bicíclicos" o "arilo bicíclico", la expresión "cicloalquilo condensado" o "arilo condensado" denota anillos bicíclicos en los que el puente que separa los anillos denota un enlace sencillo

directo. Los siguientes son ejemplos de un cicloalquilo bicíclico condensado:

15

30

35

40

45

Aunque incluida por la expresión "heterociclos bicíclicos" o "heteroarilos bicíclicos", la expresión "heterociclos bicíclicos condensados" de "heteroarilos bicíclicos condensados" denota heteroanillos bicíclicos de 5-10 elementos que contienen uno, dos, tres o cuatro heteroátomos, seleccionados entre oxígeno, azufre y nitrógeno, y en los que el puente que separa los anillos denota un enlace sencillo directo. Los "heteroarilos bicíclicos condensados" además contienen suficientes dobles enlaces conjugados para formar un sistema aromático. Los ejemplos incluyen pirrolizina, indol, indolizina, isoindol, indazol, purina, quinolina, isoquinolina, benzoimidazol, benzofurano, benzopirano, benzotiazol, benzoisotiazol, piridopirimidina, pteridina, pirimidopirimidina,

"Halógeno" dentro del alcance de la presente invención denota flúor, cloro, bromo o yodo. Salvo que se indique lo contrario, flúor, cloro y bromo se consideran halógenos preferidos.

20 Los compuestos de las fórmulas generales 1 o 1' pueden tener grupos ácidos, principalmente grupos carboxilo y/o grupos básicos, tales como, por ejemplo, funciones amino. Los compuestos de las fórmulas generales 1 o 1' pueden por tanto estar presentes como sales internas, como sales con ácidos inorgánicos farmacéuticamente utilizables, tales como ácido clorhídrico, ácido sulfúrico, ácido fosfórico, ácido sulfónico o ácidos orgánicos (tales como, por ejemplo, ácido maleico, ácido fumárico, ácido cítrico, ácido tartárico o ácido acético) o como sales con bases farmacéuticamente utilizables tales como hidróxidos o carbonatos de metales alcalinos o alcalinotérreos, hidróxidos de cinc o amonio, o aminas orgánicas, tales como, por ejemplo, dietilamina, trietilamina, trietanolamina, entre otros.

Como se ha mencionado anteriormente, los compuestos de las fórmulas 1 o 1' pueden convertirse en sales de los mismos, en particular, para un uso farmacéutico, en las sales fisiológica y farmacológicamente aceptables de los mismos. Estas sales pueden estar presentes, por una parte, como sales de adición de ácidos fisiológica y farmacológicamente aceptables de los compuestos de fórmula 1 con ácidos inorgánicos u orgánicos. Por otro lado, el compuesto de fórmulas 1 o 1', cuando R es hidrógeno, puede convertirse mediante la reacción con bases inorgánicas en sales fisiológica y farmacológicamente aceptables con cationes de metales alcalinos o alcalinotérreos como contraión. Las sales de adición de ácidos pueden prepararse, por ejemplo, usando ácido clorhídrico, ácido bromhídrico, ácido sulfúrico, ácido fosfórico, ácido metanosulfónico, ácido acético, ácido fumárico, ácido succínico, ácido láctico, ácido cítrico, ácido tartárico o ácido maleico. También es posible usar mezclas de los ácidos mencionados anteriormente. Para preparar las sales de metal alcalino y metal alcalinotérreo de los compuestos de las fórmulas 1 o 1' en las que R representa hidrógeno, es preferible utilizar los hidróxidos e hidruros de metales alcalinos y alcalinotérreos, de los cuales se prefieren hidróxidos e hidruros de los metales alcalinos, particularmente sodio y potasio, siendo particularmente preferidos hidróxido de sodio y de potasio.

Los compuestos de las fórmulas generales 1 o 1' pueden convertirse opcionalmente en sales de los mismos, particularmente, para un uso farmacéutico, en las sales de adición de ácidos farmacológicamente aceptables con un ácido inorgánico u orgánico. Los ejemplos de ácidos adecuados para este fin incluyen ácido succínico, ácido bromhídrico, ácido acético, ácido fumárico, ácido maleico, ácido metanosulfónico, ácido láctico, ácido fosfórico, ácido clorhídrico, ácido sulfúrico, ácido tartárico o ácido cítrico. También es posible usar mezclas de los ácidos mencionados anteriormente.

La invención se refiere a los compuestos de fórmula <u>1</u> o <u>1'</u> en cuestión, opcionalmente, en forma de isómeros ópticos individuales, mezclas de enantiómeros o racematos individuales, en forma de tautómeros, así como en forma de bases libres o las sales de adición de ácidos correspondientes con ácidos farmacológicamente aceptables, tales como, por ejemplo, sales de adición de ácidos con ácidos hidrácidos, por ejemplo, ácido clorhídrico o bromhídrico, o ácidos orgánicos, tales como, por ejemplo, ácido oxálico, fumárico, diglicólico o metanosulfónico.

Los compuestos de fórmula 1 o 1' de acuerdo con la invención pueden estar presentes opcionalmente como racematos, pero también pueden obtenerse en forma de enantiómeros puros, es decir, en la forma (R) o (S). Se

prefieren los compuestos con la estereoquímica específica de fórmula 1'.

La invención se refiere a los compuestos en cuestión, opcionalmente, en forma de isómeros ópticos individuales, diastereómeros, mezclas de diastereómeros, mezclas de enantiómeros o racematos individuales, en forma de tautómeros, así como en forma de bases libres o las sales de adición de ácidos correspondientes con ácidos farmacológicamente aceptables, tales como, por ejemplo, sales de adición de ácidos con ácidos hidrácidos, por ejemplo, ácido clorhídrico o bromhídrico, o ácidos orgánicos, tales como, por ejemplo, ácido oxálico, fumárico, diglicólico o metanosulfónico.

La invención se refiere a los compuestos respectivos de fórmulas <u>1</u> o <u>1'</u> en forma las sales farmacológicamente aceptables de los compuestos de las fórmulas <u>1</u> o <u>1'</u> también pueden estar presentes en forma de sus hidratos respectivos (por ejemplo, Monohidratos, dihidratos, etc.), así como en forma de sus solvatos respectivos.

Por un hidrato del compuesto de acuerdo con las fórmulas <u>1</u> o <u>1</u>' se pretende, para los fines de la invención, una sal cristalina del compuesto de acuerdo con las fórmulas <u>1</u> o <u>1</u>', que contiene agua de cristalización.

Por un solvato del compuesto de acuerdo con las fórmulas <u>1</u> o <u>1'</u> se pretende, para los fines de la invención, una sal cristalina del compuesto de acuerdo con las fórmulas <u>1</u> o <u>1'</u>, que contiene moléculas de disolvente (por ejemplo, etanol, metanol, etc.) en la red cristalina.

El experto estará familiarizado con los métodos convencionales de obtención de hidratos y solvatos (por ejemplo, recristalización en el disolvente correspondiente o en agua).

4. MÉTODOS DE PREPARACIÓN

Los Ejemplos de acuerdo con la invención se prepararon como se muestra en los Esquemas 1, 2 o 3.

Esquema 1:

15

20

25

30

35

A es N, CH Y es O, CH₂ Hal es Br o Cl Hal¹ es Cl, F siendo X -B(OH)₂, -pinacoléster del ácido borónico PG es un grupo protector (por ejemplo, bencilo, 1-feniletilo, 1-(4-metoxifenil)etilo) y R^2 y R^3 son como se han definido anteriormente en el presente documento.

Esquema 2:

5

Hal es Br o Cl siendo X -B(OH)₂, -pinacoléster del ácido borónico PG es un grupo protector (por ejemplo, bencilo, 1-feniletilo, 1-(4-metoxifenil)etilo) y R² y R³ son como se han definido anteriormente en el presente documento.

6.4

Esquema 3

6.3

12

Hal es Br o Cl

PG es un grupo protector (por ejemplo, bencilo, 1-feniletilo, 1-(4-metoxifenil)etilo) y

R² y R³ son como se han definido anteriormente en el presente documento.

- 4.1. Materiales de partida de fórmula 2, 3, 4, 5 y 6
- 25 4.1.1. Síntesis de compuestos de fórmula 2 a partir del Esquema 1, 2 y 3

Síntesis de (R)-4-[(R)-1-Hidroxietil]-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona $(\underline{2.1})$ para los Ejemplos 1, 2, 4-12, 14, 15, 17, 19 y síntesis de (R)-4-[(S)-1-Hidroxietil]-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona $(\underline{2.2})$ para los Ejemplos 13, 16, 18, 20, 21, 22.

30

10

15

20

<u>Etapa 1:</u> Síntesis de ácido (1'*R*,3*R*/*S*)-1-(1'-(4-metoxifeniletil)-5-oxo-3-pirrolidin-carboxílico (mezcla de diastereoisómeros)

Una suspensión de 100 g de (R)-1-(4-metoxi-fenil)-etilamina y 95 g de ácido itacónico en 0,5 l de 1-metil-2-pirrolidinona se calentó a 80 °C durante 1 hora. La solución se agitó durante 4 horas más a 120 °C. La mezcla de reacción se enfrió a 25 °C y se vertió en 1,5 l de agua desmineralizada. El precipitado se filtró, se lavó con agua desmineralizada y se secó a 50 °C.

10 Rendimiento: sólido de 195 g (rendimiento cuantitativo) como una mezcla de diaestereoisómeros Análisis (método G): Tr: 2,6 min y 2,7 min, (M+H)+: 264

5

15

20

30

Etapa 2: Síntesis de (R/S)-N-metoxi-5-oxo-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-3-carboxamida como una mezcla de diastereoisómeros

Se añadieron 260 g de 1,1'-carbonildiimidazol (CDI) a una solución de 285 g de ácido (1'R,3R/S)-1-(1'-(4-metoxifeniletil)-5-oxo-3-pirrolidin carboxílico (mezcla de diaestereoisómeros) en 1,4 l de 2-metiltetrahidrofurano a 20 °C. La suspensión se agitó a 20 °C durante 80 minutos. Se añadieron 235 ml de etildiisopropilamina (DIPEA) y 130 g de clorhidrato de N,O-dimetilhidroxilamina. La suspensión se agitó durante 3 horas a 20 °C. En refrigeración, se añadieron 850 ml de ácido clorhídrico 4 M. La fase orgánica se separó y se lavó dos veces con 500 ml de ácido clorhídrico 1 N. La fase acuosa se extrajo de nuevo dos veces con 500 ml de acetato de etilo. Las fases orgánicas combinadas se secaron sobre sulfato sódico. Tras la filtración, el disolvente se evaporó a presión reducida.

25 Rendimiento: 271 g (82 % del teórico) de (R/S)-N-metoxi-5-oxo-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-3-carboxamida (mezcla de diaestereoisómeros) en forma de un aceite.

Análisis (método H): T_r: 11,1 min (41 % del área) y 13,8 min (59 % del área), (M+H)[†]: 307

Etapa 3: Síntesis de (R/S)-4-acetil-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona como una mezcla de diastereoisómeros

Se añadieron lentamente 530 ml de una solución 3 M de bromuro de metilmagnesio en éter dietílico a una solución enfriada de 271 g de (R/S)-N-metoxi-5-oxo-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-3-carboxamida (mezcla de diaestereoisómeros) en 1,4 l de 2-metiltetrahidrofurano de modo que la temperatura permaneció por debajo de 0 °C. Después de completarse la adición, la temperatura se mantuvo durante 75 minutos a 0 °C y después se calentó hasta 20 °C. La suspensión se agitó durante 16 horas a 20 °C. En refrigeración, se añadieron 650 ml de ácido clorhídrico 4 M. La fase orgánica se separó y se lavó con 500 ml de una solución saturada de carbonato de sodio y con 500 ml de salmuera saturada. La fase orgánica se secó sobre sulfato sódico. Tras la filtración, el disolvente se evaporó a

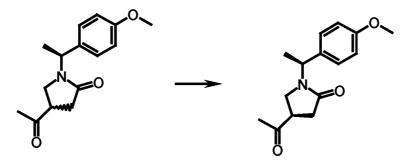
presión reducida.

Rendimiento: 188 g (81 % del teórico) de (R/S)-4-acetil-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona (mezcla de diaestereoisómeros) en forma de un aceite.

Análisis (método H): Tr: 7,4 min y 9,6 min, (M+H)+: 262

Etapa 4: Cristalización de (R)-4-acetil-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona en condiciones de epimerización inducidas por una base

10


5

Se disolvieron 103 g de una mezcla de diaestereoisómeros de (R/S)-4-acetil-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2ona en 155 ml 1-butanol a 25 °C. Se añadieron 18 ml de hidróxido de benciltrimetilamonio (solución al 40 % en metanol). La solución se agitó durante 30 minutos a 25 °C. La solución se enfrió a 0 °C. Comenzó la precipitación. La suspensión se agitó durante 15 minutos a 0 °C. Se añadieron lentamente 100 ml de n-heptano y la suspensión se agitó durante 30 minutos a 0 °C. La adición de porciones de 100 ml de n-heptano se repitió 4 veces con agitación posterior de la suspensión a 0 °C durante 30 minutos. El precipitado se aisló, se lavó con n-heptano y se secó a 50 °C. Rendimiento: 77,1 g de un sólido de color beige (75 % del teórico) con una pureza diastereoisomérica de ~95:5 (método H).

20 Para una purificación adicional, el producto en bruto se disolvió en 310 ml de 2-metil-2-butanol a 40 °C (temperatura <50 °C). La solución se enfrió lentamente a 0 °C. Comenzó la precipitación. A 0 °C, se añadieron 385 ml de n-heptano y la suspensión se agitó durante 1 hora. El precipitado se filtró, se lavó con n-heptano y se secó a 50 °C. Rendimiento: 68,7 g (67 % del teórico) de un sólido incoloro con una pureza diastereoisomérica de > 99:1. Análisis (método H): Tr: 6,8 min, (M+H)+: 262

25

Etapa 4: Cristalización de (R)-4-acetil-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona en condiciones de epimerización inducidas por una base

30

35

Se disolvieron 13,2 g de una mezcla de diaestereoisómeros de (R/S)-4-acetil-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2ona en 18 ml de 1-butanol a 25 °C. La solución se enfrió a 3 °C y se trató con 100 mg de (R)-4-acetil-1-[(S)-1-(4metoxifenil)-etil]-pirrolidin-2-ona. La mezcla resultante se agitó durante 15 min a 3 °C; momento en el que, se añadieron 2,3 ml de hidróxido de benciltrimetilamonio (solución al 40 % en metanol). La solución se agitó durante 30 minutos a 3 °C. Se añadieron lentamente 64 ml de n-heptano durante 1 h a entre 0 y 3 °C y la suspensión se agitó durante 60 minutos a 0 °C. El precipitado se aisló, se lavó con n-heptano y se secó a 30 °C.

Rendimiento: 10,6 g de un sólido de color beige (80 % del teórico) con una pureza diastereoisomérica de ~98:2 (método H).

Análisis (método H): Tr: 6,8 min, (M+H)+: 262

40

Etapa 5: Síntesis de (R)-4-[(R)-1-Hidroxietil]-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona 2.1

Se disolvieron 94,6 mg de dímero de dicloro (pentametilciclopentadienil)-iridio (III) y 105 mg de (S,S)-N-(ptoluenosulfonil)-1,2-difeniletilendiamina [(R,R)-TsDPEN] en 20 ml de acetonitrilo y a continuación se cargaron en una suspensión de 50 g de (R)-4-acetil-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona y 65 g de formiato sódico en 500 ml de agua a 25 °C. La suspensión se calentó a 60 °C y se agitó a esta temperatura mientras se rociaba con nitrógeno durante 3 h. La reacción se diluyó a 60 °C con 500 ml de acetato de isopropilo y a continuación se enfrió a temperatura ambiente. Las capas se separaron y la porción orgánica se lavó dos veces con 300 ml de agua. La porción orgánica se concentró para dar un sólido oleoso. El material residual se cristalizó tres veces en acetato de etilo y hexanos, seguido de secado en un horno de vacío con una corriente de nitrógeno a 30 °C.
25,4 g de un sólido beige con una pureza diastereomérica de > 99:1

Etapa 5: Síntesis de (R)-4-[(S)-1-Hidroxietil]-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona (2.2)

15

20

Se disolvieron 9,46 mg de dímero de dicloro (pentametilciclopentadienil)-iridio (III) y 10,52 mg de (R,R)-N-(ptoluenosulfonil)-1,2-difeniletilendiamina [(R,R)-TsDPEN] en 1 ml de acetonitrilo y a continuación se cargaron en una suspensión de 5 g de (R)-4-acetil-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona y 6,5 g de formiato sódico en 50 ml de agua a 25 °C. La suspensión se calentó a 60 °C y se agitó a esta temperatura mientras se rociaba con nitrógeno durante 3 h. La reacción se diluyó a 60 °C con 50 ml de acetato de isopropilo y a continuación se enfrió a temperatura ambiente. Las capas se separaron y la porción orgánica se lavó con 20 ml de agua. La porción orgánica se concentró a un aceite. El aceite se disolvió en 8 ml de acetato de isopropilo a reflujo. La solución se enfrió a temperatura ambiente, en donde sucedió la cristalización. La mezcla se diluyó gota a gota con 10 ml de heptano a temperatura ambiente. La mezcla se agitó durante 30 minutos. Los sólidos se recogieron por filtración, se lavaron con una solución de acetato de isopropilo al 20 % en volumen en heptano y se secaron en un horno de vacío con una corriente de nitrógeno a 55 °C. 3,82 g de un sólido beige con una pureza diastereomérica de 99:1. Análisis (método I): T_r: 12,9 min, (M+H)⁺: 264

30 Si

Síntesis de 4-metilbencenosulfonato de [(1S)-1-[(1S)-1-(4-metoxifenil)etil]-5-oxo-pirrolidin-3-il]etilo] (2.3) para el Ejemplo 13, 16, 18, 20, 21, 22

A una mezcla de (R)-4-[(S)-1-Hidroxietil]-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona $\underline{2.2}$ (20,0 g), cloruro de ptoluenosulfonilo (21,67 g) y N,N-dimetilpiridin-4-amina (0,92 g) se añadieron 42 ml de piridina y diclorometano (42 ml/DCM). La mezcla resultante se agitó a 34 °C durante 18 h en una atmósfera de argón. La mezcla de reacción se diluyó con acetato de isopropilo y se lavó con agua y HCl acuoso 2 M. Las fases orgánicas combinadas se secaron sobre sulfato de magnesio, se filtraron y se concentraron al vacío. El residuo se recogió en acetato de isopropilo y n-Heptano. El precipitado se retiró por filtración, se lavó con n-heptano/acetato de isopropilo para proporcionar 4-metilbencenosulfonato de [(1S)-1-[(3R)-1-[(1S)-1-(4-metoxifenil)etil]-5-oxo-pirrolidin-3-il]etilo] ($\underline{2.3}$) (19,83 g) en forma de un sólido. Análisis: HPLC-EM: $T_r = 0,680$ min (método J), M+H = 418

Síntesis de 5-(1-Hidroxi-etil)-3-(4-metoxi-bencil)-oxazolidin-2-ona (2.4) para el Ejemplo 3

15

25

10

- Etapa 1: A ácido (R)-2-hidroxi-succínico (10 g) se añadió, con refrigeración, anhídrido del ácido trifluoracético (25 ml) y la mezcla se agitó a temperatura ambiente. Después de 4 h, la solución se concentró al vacío, a lo que se le añadió alcohol bencílico y la mezcla se agitó durante una noche. La solución se concentró al vacío (3 mbar, 60 °C) y el aceite residual (28 g) se usó sin purificación adicional en la siguiente etapa.
- 20 Análisis: HPLC-EM: T_r = 0,99 min (método E), M+H = 225

Etapa 2: El producto de la etapa previa (23 g) se disolvió en tolueno (350 ml) y trietilamina (16 ml) y se añadió difenilfosforilazida (24,5 ml). La mezcla se agitó a la temperatura de reflujo durante 3 h, después se concentró parcialmente y se extrajo con agua (250 ml) y EtOAc (250 ml). Las fases se separaron y la fase acuosa se extrajo dos veces con EtOAc (100 ml). Las fases orgánicas combinadas se lavaron con NaHCO₃ sat., se secaron sobre MgSO₄ y se concentraron. El residuo se purificó mediante SiO₂ (Ciclohexano/EtOAc 1:2) para proporcionar 7,4 g de un sólido de color blanco. Análisis: HPLC-EM: T_r = 0,95 min (método E), M+H = 222

Etapa 3: A éster bencílico del ácido (R)-2-oxo-oxazolidin-5-carboxílico (1,5 g) en acetonitrilo (20 ml) se añadió Cs₂CO₃

(3,31 g) y después de 10 min, 1-bromometil-4-metoxi-benceno (1,86 g) y la mezcla se agitó durante 14 h a 45 °C. Se añadieron agua (20 ml) y DCM (60 ml) y la mezcla se agitó durante 10 min. Después, las fases se separaron, la fase orgánica se concentró y el producto se purificó a través de HPLC prep. para proporcionar éster bencílico del ácido (R)-3-(4-metoxi-bencil)-2-oxooxazolidin-5-carboxílico (349 mg) en forma de un sólido de color blanco.

5 Análisis: HPLC-EM: T_r = 0,85 min (X018 S03), M+H = 342

Etapa 4: A éster bencílico del ácido (R)-3-(4-metoxi-bencil)-2-oxo-oxazolidin-5-carboxílico (345 mg) en 2,5 ml de agua y dioxano(2,5 ml) se añadieron 0,485 ml de LiOH (2,5 N) y la mezcla se agitó a temperatura ambiente durante 1,5 h. Se añadieron acetonitrilo (10 ml), agua (20 ml) y HCl acuoso 1 M (1,2 ml) y el producto se liofilizó para proporcionar un sólido de color blanco (310 mg), que se usó sin purificación adicional en la siguiente etapa. Análisis: HPLC-EM: T_r = 0,52 min (X018 S01), M+H = 252

Etapa 5: A ácido (R)-3-(4-metoxi-bencil)-2-oxo-oxazolidin-5-carboxílico (310 mg) y dimetilhidroxilamina*HCl (210 mg) en DMF (5 ml) a 0 °C se añadió hidroxibenzotriazol (140 mg), N-metilmorfolina (300 µl) y 1-etil-3-(3-dimetilaminopropil)carbodiimida xHCl (200 mg) y la mezcla se agitó durante 3,5 h. Se añadieron iPrOAc (50 ml) y una solución de ácido cítrico 10 %, 20 ml) y las fases se separaron. La fase acuosa se extrajo dos veces con iPrOAc (20 ml) y las fases orgánicas combinadas se lavaron con NaHCO₃ acuoso (5 %, 20 ml). La fase orgánica secada se concentró y se purificó mediante HPLC prep. para proporcionar metoxi-metil-amida del ácido (R)-3-(4-metoxi-bencil)-2-oxo-oxazolidin-5-carboxílico (147 mg) en forma de un aceite incoloro.

20 Análisis: HPLC-EM: T_r = 0,60 min (X018_S03), M+H = 295

Etapa 6: A metoxi-metil-amida del ácido (R/S)-3-(4-metoxi-bencil)-2-oxo-oxazolidin-5-carboxílico (145 mg) en 2 ml de THF se añadió bromuro de metilmagnesio (1,4 N, 490 μl) en refrigeración durante 20 min a -10 °C y la mezcla se agitó durante 30 min. A esta mezcla se añadió KHSO₄ acuoso 1 N (160 μl, NaBH₄ (56 mg) y EtOH (300 μl) a -1 °C y la mezcla se agitó durante 30 min. Se añadieron diclorometano (20 ml) y agua (15 ml) y las fases se separaron y la fase acuosa se extrajo una vez con DCM. Las fases orgánicas combinadas se concentraron y se purificaron mediante HPLC prep. (agua/acetonitrilo/NH₃) para proporcionar 5-(1-hidroxi-etil)-3-(4-metoxi-bencil)-oxazolidin-2-ona (90 mg) 2.4 en forma de un aceite incoloro que contenía todos los 4 estereoisómeros en una cantidad comparable. Análisis: HPLC-EM: T_r = 0,42 min (X011 S03), M+H = 250

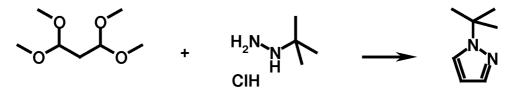
30

25

10

15

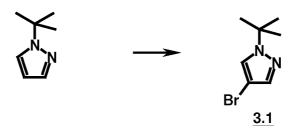
HPLC quiral: Chirlapak AS-H 4,6 x 250 mm, 5 μ m, 4 ml/min, CO₂ sc/Isopropanol, NH₃ 20 mM, 20 % en 10 min, 150 bar. T_r = 2,577 min (producto a), T_r = 2,986 min (producto b), T_r = 3,362 min (producto c), T_r = 3,655 min (producto d).


4.1.2. Síntesis de pirazoles con la fórmula 3 y 4

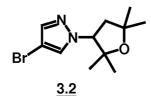
35

4.1.2.1. Síntesis de pirazoles halogenados 3

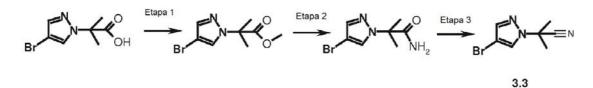
Síntesis de 4-Bromo-1-terc-butil-pirazol (3.1) para los Ejemplos 3, 13, 15


40 Etapa 1: Síntesis de 1-terc-butil-pirazol

A una mezcla agitada de 34,48 g de 1,1,3,3-tetrametoxi-propano y 26,20 g de clorhidrato de *terc*-butilhidrazina en 230 ml de etanol, se añadieron gota a gota 40,0 ml de ácido clorhídrico conc. por debajo de 50 °C, después la mezcla se agitó a la temperatura de reflujo durante 2 h. La mezcla de reacción se diluyó con agua. El disolvente se retiró casi por completo por destilación y el residuo acuoso se extrajo con éter dietílico. Las fases acuosas combinadas se basificaron con una solución 10 N de hidróxido sódico y se extrajeron con éter dietílico. Las fases orgánicas combinadas se lavaron con salmuera saturada, se secaron sobre sulfato sódico, se filtraron y se concentraron al vacío para producir 21,90 g de 1-*terc*-butil-pirazol en forma de un aceite.


Análisis: HPLC-EM: Tr = 0,412 min (método A), M+H = 125

Etapa 2: Síntesis de 4-bromo-1-terc-butil-pirazol


A una mezcla de 21,9 g de 1-*terc*-butil-pirazol en 150 ml de DCM se añadieron en porciones 31,5 g de N-bromosuccinimida entre 0 y 10 °C. La mezcla resultante se agitó durante 30 min. Se dejó que la mezcla de reacción alcanzara temperatura ambiente. El precipitado se retiró por filtración y se lavó con DCM. Los extractos orgánicos combinados se lavaron con agua y salmuera saturada, se secaron sobre sulfato de magnesio, se filtraron y se concentraron al vacío, proporcionando 34,0 g de 4-bromo-1-*terc*-butil-pirazol en forma de un aceite. Análisis: HPLC-EM: T_r = 1,35 min (método B), M+H = 203/205

10 Síntesis de 4-Bromo-1-(2,2,5,5-tetrametil-tetrahidrofurano-3-il)-1H-pirazol (3.2) para los Ejemplos 14, 16

A una mezcla de 1-(2,2,5,5-tetrametil-tetrahidrofurano-3-il)-1H-pirazol (900 mg) en 15 ml de DCM se añadió N-bromosuccinimida (830 mg) a temperatura ambiente. La mezcla resultante se agitó durante 2 h. Después, a la mezcla de reacción se añadieron 15 ml de salmuera saturada. La fase orgánica se secó sobre Na₂SO₄, se filtró y se concentró al vacío para producir 1,26 g de 3.2 en forma de un aceite que posteriormente cristalizó. Análisis: HPLC-EM: T_r = 0,601 min (método X018 S03), M+H = 273/275

20 Síntesis de 2-(4-Bromo-pirazol-1-il)-2-metil-propionitrilo (3.3) para el Ejemplo 17

Etapa 1: El ácido (4 g) se disolvió en metanol (40 ml) y se añadió cloruro de tionilo (4,5 ml) a 10 °C. La mezcla se agitó durante una noche a temperatura ambiente, después se evaporó y se disolvió en DCM. La fase orgánica se extrajo con bicarbonato sódico acuoso, se secó sobre MgSO₄ y después de filtración, se concentró al vacío para producir 4 g del éster metílico para la etapa 2.

Análisis: EM: M+H = 247/249, T_r = 1,121 min (método Z001_005)

35

40

Etapa 2: El éster metílico (1 g) se disolvió en metanol (4 ml) que contenía NH₃ al 10 %. Se añadieron 0,5 g cloruro de calcio y la mezcla se agitó durante 20 h a temperatura ambiente. La mezcla se concentró y se distribuyó entre acetato de isopropilo (50 ml) y agua (20 ml). La fase de agua se extrajo de nuevo con acetato de isopropilo (20 ml) y las fases orgánicas combinadas se secaron y se concentraron al vacío para producir 830 mg de amida.

Análisis: EM: M+H = 232/234, T_f = 0,705 min (método Z018 S04)

Etapa 3: La amida (336 mg) se disolvió en 400 μl de POCl₃ y se agitó a 90 °C durante 1,5 h. La mezcla de reacción se vertió en agua y el pH se ajustó a 7-8 mediante la adición de NaHCO₃ acuoso. La fase de agua se extrajo 3x con DCM y las fases orgánicas se concentraron al vacío para producir 284 mg de <u>3.3</u>. Análisis: EM: M+H = 214, T_r = 0,58 min (método X011 S03)

Síntesis de 4-bromo-1-(3,3-difluoro-ciclopentil)-1H-pirazol 3.4 para los Ejemplos 7, 22

Etapa 1: El 4-bromopirazol (12 g) y 2-ciclopenten-1-ona (7,1 g) se suspendieron en acetonitrilo (100 ml). Después, se añadió trifluorometanosulfonato de escandio (0,5 g) (ligeramente exotérmica) y la mezcla se agitó a temperatura ambiente durante una noche y 2 h a 40 °C. La mezcla se concentró y el aceite de color amarillo se purificó a través de gel de sílice (SiO₂ de 2 kg, gradiente ciclohexano → ciclohexano: acetato de etilo 7:3) para producir 16,8 g de cetona. Análisis: EM: M+H = 229/231, T_r = 0,622 min (método X018 S03)

Etapa 2: La cetona (5 g) se disolvió en diclorometano (80 ml) y se añadió en porciones trifluoruro de [bis(2-10 metoxietil)amino]azufre (45 ml, 50 % en THF) a 30 °C. La mezcla se vertió en una solución acuosa de bicarbonato sódico y se extrajo con diclorometano. La fase orgánica se lavó con salmuera, se secó sobre Na₂SO₄, y después de filtración, se concentró 40 mbar para producir 3,67 g de <u>3.4</u>. Análisis: EM: M+H = 251/253, T_r = 0,848 min (método X018 S03)

15 Los siguientes halogenuros estaban disponibles en el mercado:

- 4-Bromo-1-(3,3,3-trifluoropropil)-1H-pirazol 3.5 para el Ejemplo 12
- 4-Cloro-1-(2-Fluoro-etil)-1H-pirazol 3.6 para el Ejemplo 11
- -4-Bromo-3-*terc*-butil-1H-pirazol 3.7 para el Ejemplo 4

20

25

30

35

40

4.1.3. Síntesis de compuestos de fórmula 4 (Esquema 1 y 2)

Síntesis de 1-terc-Butil-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)pirazol (4.1) para los Ejemplos 3, 13, 15

A una mezcla agitada de 4-bromo-1-*terc*-butil-pirazol 3.1 (50 g) en 230 ml de THF se añadió gota a gota N-butillitio 2,5 M (100 ml, hexano) en una atmósfera de argón por debajo de -60 °C, después la mezcla se agitó a esta temperatura durante 5 min, antes de añadir gota a gota 2-isopropoxi-4,4,5,5-tetrametil-1,3,2-dioxaborolano (52 ml) por debajo de -60 °C. Se dejó que la mezcla de reacción alcanzara temperatura ambiente. La mezcla se enfrió con un baño de hielo y se diluyó con un tampón fosfato acuoso y agua y se neutralizó con ácido clorhídrico acuoso 2 M. El disolvente orgánico se retiró mediante destilación y el residuo se extrajo con DCM. Los extractos orgánicos combinados se lavaron con salmuera saturada, se secó sobre sulfato sódico, se filtró y se concentró al vacío para producir 1-*terc*-butil-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)pirazol (44,26 g) en forma de un sólido. Análisis: HPLC-EM: T_r = 0,904 min (método F), M+H = 251

Síntesis de ácido 3-terc-butil-1H-pirazol-4-il-4-borónico (4.2) para el Ejemplo 4

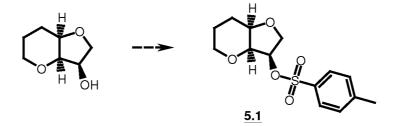
Etapa 1: Se disolvió 4-bromo-3-terc-butil-1H-pirazol 3.7 (580 mg) en diclorometano (20 ml) y trietilamina (477 µl) y dicarbonato de di-terc-butilo (623 mg) a temperatura ambiente durante 48 h. La mezcla se extrajo con agua y la fase

orgánica se separó y se concentró para producir 833 mg en forma de un aceite incoloro. Análisis: HPLC-EM: $T_r = 0.80$ min (X012 S01), M+H = 249

Etapa 2: Se disolvió éster *terc*-butílico del ácido 4-bromo-3-*terc*-butil-pirazol-1-carboxílico (369 mg) en THF (6 ml) y se enfrió a -78 °C. Se añadió n-BuLi (837 μl, 1,6 M) y la mezcla se agitó durante 20 min. Después, se añadió 2-metoxi-4,4,4,4-tetrametil-1,3,2-dioxaborolano (239 μl) y la mezcla se dejó calentar a temperatura ambiente durante una noche. Se añadieron agua y DCM a la mezcla de reacción y la fase orgánica se separó. La fase acuosa se purificó mediante HPLC prep. para proporcionar 39 mg de <u>4.2.</u>

Análisis: HPLC-EM: Tr = 0,47 min (X012_S01), M+H = 169

10


15

Los siguientes ácidos borónicos, ésteres borónicos estaban disponibles en el mercado:

- 1-(Ciclopropilmetil)-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)-1H-pirazol 4.4 para los Ejemplos 6, 8
- 1-Ciclopropil-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)-1H-pirazol 4.5 para los Ejemplos 5, 20
- Pinacol éster del ácido 1-isopropil-1H-pirazol-4-borónico 4.6 para los Ejemplos 2, 18
- 1-Ciclobutil-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)-1H-pirazol 4.8 para los Ejemplos 1, 21
- 4-(4,4,5,5-Tetrametil-1,3,2-dioxaborolan-2-il)-1H-pirazol 4.9 para los Ejemplos 9, 10
- Isobutil-4-(4,4,5,5-tetrametil-1,3,2-dioxaborolan-2-il)-1H-pirazol 4.10 para el Ejemplo 19

20 4.1.4. Síntesis de compuestos de fórmula 5

Síntesis de (3R,3aS,7aR)-(hexahidro-furo[3,2-b]piran-3-il) éster del ácido tolueno-4-sulfónico (5.1) para el Ejemplo 10

25

Se disolvió (3R,3aR,7aR)-hexahidro-furo[3,2-b]piran-3-ol (300 mg) en diclorometano (3 ml) y piridina (0,445 g). Se añadieron cloruro del ácido p-tolueno sulfónico (0,524 g) y DMAP (15 mg) y la mezcla se agitó durante 68 h a temperatura ambiente. Después, se añadieron agua (20 ml) y diclormetano (20 ml) y la agitación se continuó durante 15 min. Las fases se separaron y la fase orgánica se concentró. La purificación se consiguió mediante cromatografía ultrarrápida sobre gel de sílice (ciclohexano→ ciclohexano / acetato de etilo 1: 1) para proporcionar 5.1 (0,451 g) en forma de un aceite incoloro.

Análisis: HPLC-EM: T_r = 0,52 min (X012_S01), M+H = 299

El siguiente tosilato estaba disponible en el mercado:

35

30

- 4-Metilbencenosulfonato de (S)-2,2-dimetiltetrahidro-2H-piran-4-ilo <u>5.2</u> para el Ejemplo 9
- 4.1.5. Síntesis de Heterocíclico 6 a partir del Esquema 1, 2 y 3
- 40 Síntesis de 6-bromo-2,3-dimetil-2H-indazol-4-ol (6.1) para los Ejemplos 8 -11, 13, 16-22

45

50

Etapa 1: Se disolvió 1-bromo-3,5-difluorobenceno (100 g) en THF (600 ml) y se enfrió a -78 °C. Se añadió LDA (300 ml, 2 N en heptano/THF/etilbenceno) durante 20 min y la mezcla se agitó durante 1 h. Esta mezcla se añadió mediante una cánula de transferencia a anhídrido acético (250 ml, enfriado a -78 °C) en 30 min. Después, la mezcla se calentó a -30 °C, se retiró THF al vacío y se añadió diclorometano (300 ml). La mezcla se basificó con una solución saturada de bicarbonato sódico y se extrajo 3x con diclorometano (300 ml). La fase orgánica se lavó con una solución sat. de cloruro de amonio y salmuera sat., se secó y se concentró a 100 mbar/50 °C al vacío. El residuo se destiló en fracciones al vacío a 30 a 10 mbar/70-100 °C para producir 57,8 g y 747 g (contenido 80 %) del producto deseado.

Análisis: HPLC-EM: $T_r = 0.974 \text{ min}$ (Z018 S04), M+H = 235

Etapa 2: A 1-(4-bromo-2,6-difluoro-fenil)etanona (22,05 g) disuelta en THF (80 ml) se añadió hidrato de hidrazina (10 ml) a temperatura ambiente y la mezcla se agitó durante una noche. Se añadieron agua (50 ml) y 2-Me-THF (70 ml) y la fase orgánica se secó y se concentró al vacío. El producto en bruto se disolvió en acetonitrilo (70 ml) a 80 °C y se enfrió a temperatura ambiente durante 2 días. El precipitado se filtró y se lavó con acetonitrilo y se secó al vacío durante 45 min a 45 °C para proporcionar 15,6 g de agujas de color blanco. Análisis: HPLC-EM: $T_r = 0,58$ min (X011_S03), M+H = 229/231

Etapa 3: El indazol (32 g) de la etapa previa se suspendió en diclorometano (400 ml) y se añadió tetrafluoroborato de trimetiloxonio (26,75 g) y la mezcla se agitó durante 24 h a temperatura ambiente. Se añadió bicarbonato sódico saturado (150 ml) y la mezcla se basificó a pH 9 con carbonato sódico (10 ml). El precipitado se retiró por filtración, las fases se separaron y la fase de agua se extrajo con iPrOAc. Las fases orgánicas combinadas se secaron y se concentraron al vacío para producir 33,1 g de material de partida, que se disolvió en metil-*terc*-butil éter (100 ml) y se calentó a reflujo y se enfrió a temperatura ambiente. El precipitado se retiró por filtración después de 2 días para producir 6.1 (22,4 g) en forma de cristales de color amarillo claro.

Análisis: HPLC-EM: T_r = 0,673 min (X018_S02), M+H = 243/245

Síntesis de 4,6-dicloro-2,3-dimetil-2H-pirazolo[4,3-c]piridina (6.2) para los Ejemplos 3, 4, 15

20

10

15

Etapa 1: A una solución de 2,4,6-tricloro-piridina (5,00 g) en tetrahidrofurano (anhidro, 50,00 ml) a -78 °C en una atmósfera de nitrógeno se añadió gota a gota n-butillitio (2,5 M en hexano) (10,96 ml). La mezcla se agitó a -78 °C durante 1 h y después se añadió gota a gota piperidin-1-carbaldehído (3,04 ml). La reacción se agitó a -78 °C durante 1 h. La mezcla de reacción se inactivó con NH₄Cl ac. sat. (50 ml). La mezcla se extrajo con TBME (3 x 40 ml) y la fase orgánica se lavó sucesivamente con HCl 1 M (75 ml) y carbonato de amonio sat. (75 ml). La fase orgánica se secó (Na₂SO₄) y se concentró, y el residuo se purificó por FCC Biotage Isolera (SiO₂: 50 g) eluyendo con TBME al 10-50 % en ciclohexano para dar 2,94 g de producto en forma de un sólido de color amarillo.

Análisis: HPLC-EM: $T_r = 1,27 \text{ min (método P)}$

RMN 1 H (DMSO, 250 MHz) δ 8,07 (1H, s), 10,28 (1H, s)

30

35

25

Etapa 2: A bromuro de metilmagnesio (3 M en éter dietílico, 3,83 ml) se añadió gota a gota una solución agitada de 2,4,6-tricloro-piridin-3-carbaldehído (2,20 g) en tetrahidrofurano (anhidro, 44 ml) a -78 °C en una atmósfera de nitrógeno. La reacción se agitó a -78 °C durante 30 min y después se dejó calentar a temperatura ambiente. La reacción se interrumpió con NH₄Cl (25 ml) y se neutralizó a pH 7-8 con HCl 1 M. La fase acuosa se extrajo con EtOAc (3 x 50 ml) la fase orgánica combinada se secó (Na₂SO₄) y se concentró. El material en bruto se purificó por Biotage Isolera (SiO₂; 50 g) eluyendo en EtOAc al 0-100 % en ciclohexano para dar 1,39 g (58,7 %) en forma de un aceite incoloro.

Análisis: HPLC-EM: $T_r = 1,19 \text{ min (método P)}, M+H = 226/228$ RMN 1 H (CDCl₃, 500 MHz) δ 1,64 (3H, d, J = 6,9 Hz), 2,67 (1H, d, J = 9,2 Hz), 5,51 (1H, d, J = 6,9 Hz), 7,33 (1H, s)

40

50

Etapa 3: A una solución agitada de 1-(2,4,6-tricloro-piridin-3-il)-etanol (2,57 g) en diclorometano (51,4 ml) se añadió N-óxido de N-metilmorfolina (1,994 g). La reacción se agitó a temperatura ambiente durante 10 min, tiempo después del cual se añadió perrutenato de tetra-n-propilamonio (TPAP) (135,6 mg) y la agitación se continuó durante 7 días. La mezcla se filtró a través de celite y el filtrado se concentró y se purificó por FCC Biotage Isolera (SiO₂; 25 g) eluyendo con 7:1 de ciclohexano - EtOAc para dar 1,74 g en forma de un aceite incoloro.

45 con 7:1 de ciclohexano - EtOAc para dar 1,74 g en forma de ur Análisis: HPLC-EM: T_r = 1,27 min (método P), M+H = 224/226

RMN ¹H (CDCl₃, 500 MHz) δ 2,59 (3H, s), 7,38 (1H, s)

Etapa 4: A una solución de 1-(2,4,6-tricloro-piridin-3-il)-etanona (1,75 g en etanol, absoluto (8,75 ml) se añadió hidrato de hidrazina (0,76 ml). La reacción se agitó a temperatura ambiente durante el fin de semana (40 h). El disolvente se evaporó y se añadió agua (10 ml). La fase acuosa se extrajo con DCM (3 x 10 ml), las fases orgánicas combinadas se

secaron (Na₂SO₄) y se concentraron. El material en bruto se purificó por FCC Biotage Isolera (SiO₂; 50 g) eluyendo EtOAc al 10-30 % en ciclohexano para dar 0,74 g de producto en forma de un sólido de color blanquecino.

Análisis: HPLC-EM: T_r = 1,15 min (método P), M+H = 202/204

RMN ¹H (DMSO, 500 MHz) δ 2,64 (3H, s), 7,64 (1H, s)

5

Etapa 5: A una solución de 4,6-dicloro-3-metil-1H-pirazolo[4,3-c]piridina (550,00 mg) en dioxano (11,00 ml) en una atmósfera de nitrógeno se añadió tetrafluoroborato de trimetiloxonio (563,70 mg). La reacción se agitó a temperatura ambiente durante 1 h. Se añadió NaHCO₃ (10 ml) y la mezcla se extrajo con DCM (3 x 10 ml). Los extractos orgánicos combinados se secaron (Na₂SO₄), se concentraron y el residuo en bruto se purificó por FCC Biotage Isolera (SiO₂; 10 g) 50/50 de EtOAc/ciclohexano para dar 380 mg de <u>6.2</u> (64,6 %) en forma de un sólido de color blanco.

Análisis: HPLC-EM: $T_r = 1,16 \text{ min (método P)}, M+H = 216/218$

RMN ¹H (CDCl₃, 500 MHz) δ 2,84 (3H, s), 4,10 (3H, s), 7,39 (1H, s)

Síntesis de 6-bromo-3-fluoro-2-metil-2H-indazol-4-ol (6.3) para los Ejemplos 1, 2, 5-7, 12, 14

15

10

Etapa 1: Se suspendieron 25 g de 6-bromo-4-metoxi-1H-indazol (disponible en el mercado de JW-Pharmlab) en 400 ml de diclorometano y se añadieron 20 g de tetrafluoroborato de trimetiloxonio y la mezcla se agitó durante 4 h a temperatura ambiente. La mezcla de reacción se diluyó con agua (300 ml), se filtró a través de celulosa y tierra de diatomeas, y la fase orgánica se extrajo con bicarbonato sódico acuoso semisaturado. La fase orgánica se secó y se concentró al vacío para producir 24,6 g.

Análisis: HPLC-EM: $T_r = 0.938 \text{ min}$ (Z018 S04), M+H = 241/243

RMN 1 H (DMSO, 400 MHz) δ 3,90 (3H, s), 4,10 (3H, s), 6,51 (1H, s), 7,38 (1H, s), 8,37 (1H, s)

25

30

35

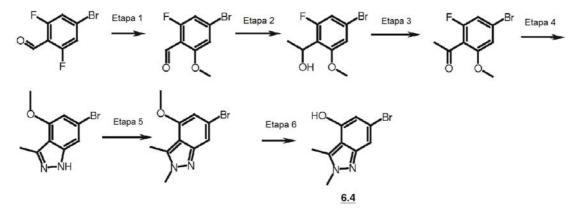
20

Etapa 2: El indazol (5 g) de la etapa previa se disolvió en 70 ml de THF y se enfrió a -78 °C. Se añadió lentamente LDA (13,5 ml, 2 M en THF) y la mezcla se agitó durante 30 min, tiempo después del cual se añadió N-fluorobencenosulfonimida (9,16 g). Después de 30 min, la mezcla de reacción se dejó calentar, después se añadieron agua y diclorometano y la fase orgánica se separó y se concentró. El residuo se disolvió en DMF/agua/TFA y se purificó mediante HPLC prep. para producir 2,95 g.

Análisis: HPLC-EM: T_r = 0,56 min (X012_S01), M+H = 259/261

RMN 1 H (DMSO, 400 MHz) δ 3,90 (3H, \overline{s}), 3,94 (3H, s), 6,49 (1H, s), 7,26 (1H, s)

Etapa 3: Se disolvió 2-fluoroindazol (2,9 g) de la etapa previa en DCM (10 ml) y tribromuro de boro (3,24 ml) y la mezcla se calentó a reflujo durante una noche, tiempo después del cual se añadió agua y la mezcla se basificó con NaOH 1 N. La fase acuosa se separó, se acidificó con HCl 4 N y el precipitado se retiró por filtración y se secó a 60 °C durante 2 h al vacío para dar 6.3 (2,4 g).


Análisis: HPLC-EM: T_r = 0,41 min (X012_S01), M+H = 245/246

RMN ¹H (DMSO, 400 MHz) δ 3,92 (3H, s), 6,34 (1H, s), 7,08 (1H, s), 10,80 (1H, s)

40

45

Síntesis de 6-bromo-2,3-dimetil-2H-indazol-4-ol (6.4) para los Ejemplos 13, 16, 18, 20-22

Etapa 1: Se disolvió bromo-2,6 difluoro-benzaldehído (200 g) en 1 l de metanol y se añadió Cs₂CO₃ (300 g) en

refrigeración a 10 °C y la agitación se continuó a 30 °C durante una noche. La mezcla se acidificó a pH 6 con HCl acuoso y el precipitado formado se filtró. El precipitado se suspendió en 3:1 de EtOH/agua (800 ml) y se disolvió en el calor y se enfrió a temperatura ambiente durante 2 días. El precipitado (91 g) se recogió y se purificó mediante SiO₂ (MPLC, 9:1 de ciclohexano/acetato de etilo) para dar 65,5 g de producto. Las aguas madre se concentraron y se extrajeron con DCM y también se purificaron mediante SiO₂ (MPLC, 9:1 de ciclohexano/acetato de etilo) para dar 29,4 g de producto.

Análisis: HPLC-EM: $T_r = 0.987 \text{ min } (Z018_S04)$ RMN ¹H (DMSO, 400 MHz) δ 3,91 (3H, s), 7,25-7,33 (2H, m), 10,23 (1H, s)

Etapa 2: Se disolvió 4-bromo-2-fluoro-6-metoxi-benzaldehído (65,5 g) en THF (250 ml) y se añadió bromuro de metilmagnesio (220 ml, 1,4 N en tolueno/THF) a 0 °C y se agitó durante 48 h a temperatura ambiente. Se añadió más cantidad de bromuro de metilmagnesio (60 ml, 1,4 N en tolueno/THF) y la agitación se continuó durante 4 h. La mezcla se concentró, se suspendió en DCM y agua (50 ml) y se añadió HCl (4 N, 20 ml) en refrigeración con hielo. Un precipitado se retiró por filtración, las fases se separaron y la fase acuosa se extrajo dos veces con DCM. Las fases orgánicas se secaron y se concentraron para dar 70 g de producto.

Análisis: HPLC-EM: T_r = 0,950 min (Z018_S04), M+H⁺ = 231/233

RMN ¹H (DMSO, 400 MHz) δ 1,37-1,38 (3H, d), 3,82 (3H, s), 4,95-4,96 (1H, d), 5,10-5,13 (1H, dt), 7,02-7,06 (2H, m)

Etapa 3: Se disolvió 1-(4-bromo-2-fluoro-6-metoxi-fenil)etanol (90 g) en DCM (500 ml) y perrutenato de tetrapropilamonio (0,6 g, TPAP) y N-óxido de N-metil morfolina (42 g, NMO) y la mezcla se agitó durante 3 h a temperatura ambiente. Se añadieron más TPAP (0,5 g) y NMO (10 g) y la mezcla se agitó durante 3 h, tiempo después del cual se diluyó con DCM y agua y la fase orgánica se separó. Se añadieron resina de 2,4,6-trimercaptotraizina (9 g, 0,5 mnol/g) a la fase orgánica y se agitó durante 30 min, se secó con Na₂SO₄, se filtró a través de celulosa y tierra de diatomeas y se concentró al vacío para producir 100 g (contenido 70 %) de producto, que se usó en la siguiente etapa sin purificación adicional.

Análisis: HPLC-EM: T_r = 0,993 min (Z018_S04), M+H+ = 247/249 RMN ¹H (DMSO, 400 MHz) δ 2,45 (3H, s), 3,87 (3H, s), 7,22-7,23 (2H, m)

Etapa 4: Se suspendieron 100 g de producto (contenido 70 %) de la etapa previa en etilenglicol e hidrato de hidrazina (200 ml) y la mezcla se agitó a 100 °C durante 4 h, después a 70 °C durante 48 h. La mezcla se vertió en agua enfriada con hielo y se extrajo 3x con DCM. Las fases orgánicas combinadas se secaron (Na₂SO₄) para proporcionar 85 g de producto en forma de un sólido de color amarillo, que se usó en la siguiente etapa sin purificación adicional. Análisis: HPLC-EM: T_r = 0,940 min (Z018 S04), M+H⁺ = 241/243

Etapa 5: Se disolvieron 50 g de producto de la etapa previa en DCM (200 ml) y se añadió en porciones tetrafluoroborato de trimetiloxonio (30 g) a 0 °C y se agitó durante una noche a temperatura ambiente. A la mezcla se le añadió NaHCO₃ acuoso y el pH se ajustó a 9 con Na₂CO₃. Después, la mezcla se extrajo 3x con DCM y dos veces con acetato de etilo, las fases orgánicas se secaron y el residuo se purificó a través de SiO₂ (MPLC, 2,5 kg, 4:1 de ciclohexano/acetato de etilo) y las fracciones deseadas se combinaron para dar 18 g de producto.

40 Análisis: HPLC-EM: T_r = 0,944 min (Z018_S04), M+H⁺ = 255/257 RMN 1 H (DMSO, 400 MHz) δ 2,66 (3H, s), 3,89 (3H, s), 3,96 (3H, s), 6,40 (1H, s), 7,26 (1H, s)

Etapa 6: A 6-bromo-4-metoxi-2,3-dimetil-2H-indazol (2,3 g) en DCM (20 ml) se añadió tribromuro de boro (25 ml, 1 M en DCM) y la mezcla se agitó durante 2 h a 40 °C. La mezcla se concentró y se extrajo con agua y DCM. El precipitado se recogió y se secó para proporcionar 1,62 g de <u>6.4</u>.

Análisis: HPLC-EM: T_r = 0,761 min (Z018_S04), M+H⁺ = 241/243 RMN 1 H (DMSO, 400 MHz) δ 2,67 (3H, s), 3,94 (3H, s), 6,28 (1H, s), 7,08 (1H, s), 10,40 (1H, s)

4.2. Síntesis de los Intermedios 7, 8 y 9, de los Esquemas 1 y 2

Síntesis de ((R)-4-[(R)-1-(6-Bromo-2,3-dimetil-2H-indazol-4-iloxi)-etil]-1-[(S)-1-(4-metoxi-fenil)-etil]-pirrolidin-2-ona <math>(7.1) para los Ejemplos 8-11, 13, 16-22

55

45

50

Se disolvió $\underline{6.1}$ (32,8 g) en DMA (400 ml), después se añadió $\underline{2.1}$ (39 g) y la mezcla se calentó a 80 °C. Se añadió tercbutilato potásico (25 g) y la mezcla se agitó durante 20 min a 80 °C y a continuación se enfrió a temperatura ambiente. Se añadieron NH₄Cl acuoso (100 ml) y agua (200 ml). Después, la mezcla se extrajo 3x con i-PrOAc (300 ml) y las fases orgánicas combinadas se secaron sobre Mg₂SO₄ y se evaporaron a presión reducida para producir 75,1 g (contenido 88 %) de producto, de los cuales se purificaron 12 g mediante HPLC preparativa para producir 10,0 g de 7.1.

Análisis: HPLC-EM: T_r = 0,597 min (X016_S01), M+H = 486/484

RMN 1 H (DMSO, 400 MHz) δ 1,16 (3H, d, J = 6,1 Hz), 1,41 (3H, d, J = 7,2 Hz), 2,33-2,39 (1H, m), 2,44 (3H, s), 2,73 (1H, s), 2,78-2,82 (1H, m), 2,89 (1H, s), 3,18 (1H, d, J = 5,1 Hz), 3,49 (1H, t, J = 9,2 Hz), 3,64 (3H, s), 3,93 (3H, s), 4,60-4,66 (1H, m), 5,18-5,23 (1H, c, J = 7,2 Hz), 6,37 (1H, s), 6,57-6,60 (2H, m), 7,09-7,11 (2H, m), 7,21 (1H, d, J = 1,2 Hz)

Como alternativa, 7.1 se sintetizó de la siguiente manera:

10

15

20

25

30

35

$$-N$$

$$\frac{OH}{Br}$$

$$\frac{6.4}{O}$$

$$\frac{2.3}{7.1}$$

Se suspendieron 6-bromo-2,3-dimetil-2H-indazol-4-ol $\underline{6.4}$ (10,5 g), carbonato potásico (16,8 g) y $\underline{2.3}$ (18,6 g) en DMF anhidra y se agitaron durante 2 h a 70 °C y durante una noche a 50 °C. Se añadieron más $\underline{2.3}$ (5 g) y carbonato potásico (5 g) y la mezcla se agitó durante 3 h a 70 °C. La mezcla se concentró, se añadieron agua y DCM y la fase acuosa se extrajo 3x con DCM (250 ml). La fase orgánica se lavó con KHSO₄ y se secó (Na₂SO₄) y se concentró. La mezcla se purificó mediante SiO₂ (DCM: MeOH 9:1) para dar 12,7 g de $\underline{7.1}$

Análisis: HPLC-EM: T_r = 1,029 min (Z018_S04), M+H = 486/488

RMN 1 H (DMSO, 400 MHz) δ 1,16 (3H, d, J = 6,1 Hz), 1,41 (3H, d, J = 7,2 Hz), 2,33-2,39 (1H, m), 2,44 (3H, s), 2,73 (1H, s), 2,78-2,82 (1H, m), 2,89 (1H, s), 3,18 (1H, d, J = 5,1 Hz), 3,49 (1H, t, J = 9,2 Hz), 3,64 (3H, s), 3,93 (3H, s), 4,60-4,66 (1H, m), 5,18-5,23 (1H, c, J = 7,2 Hz), 6,37 (1H, s), 6,57-6,60 (2H, m), 7,09-7,11 (2H, m), 7,21 (1H, d, J = 1,2 Hz)

Síntesis de (R)-4-[(R)-1-(6-Cloro-2,3-dimetil-2H-pirazolo[4,3-c]piridin-4-iloxi)-etil]-1-[(S)-1-(4-metoxifenil)-etil]-pirrolidin-2-ona (7.2) para los Ejemplos 3, 4, 15

Se disolvió <u>2.1</u> (3,2 g) en THF (50 ml) y se añadió NaH (1,08 g, 60 % dispersión en aceite mineral) y la mezcla se agitó durante 5 min, después se añadió <u>6.2</u> (2,5 g) y la agitación se continuó a 50 °C durante 3 h. Después del enfriamiento, se añadió NH₄Cl acuoso (50 ml) y la mezcla se extrajo 2x con iPrOAc y las fases orgánicas combinadas se secaron (MgSO₄) y se concentraron. El producto se purificó mediante HPLC prep. para dar <u>7.2</u> (3,65 g) en forma de un sólido de color blanco.

Análisis: HPLC-EM: T_r = 0,60 min (X012_S01), M+H = 443

RMN ¹H (DMSO, 400 MHz) δ 1,22 (3H, \overline{d} , J = 6,2 Hz), 1,40 (3H, d, J = 7,2 Hz), 2,37-2,43 (1H, m), 2,45 (3H, s), 2,51-

2,56 (1H, m), 2,64-2,72 (1H, m), 2,76-2,80 (1H, m), 3,53 (1H, t, J = 9,3 Hz), 3,62 (3H, s), 3,96 (3H, s), 5,16-5,18 (1H, c, J = 7,2 Hz), 5,33-5,35 (1H, m), 6,47-6,49 (2H, m), 7,01-7,03 (3H, m)

Síntesis de (1R,4R)-4-[(R)-1-(6-Bromo-3-fluoro-2-metil-2H-indazol-4-iloxi)-etil]-1-[1-(4-metoxi-fenil)-etil]-pirrolidin-2-ona (7.3) para los Ejemplos 1, 2, 5-7, 12, 14

Se disolvieron 2,4 g de <u>6.3</u> en DMF (20 ml), se añadieron carbonato potásico (5,41 g) y <u>2.3</u> (6,13 g) y la mezcla se agitó a 70 °C durante una noche. La mezcla se concentró al vacío, se añadió agua y la mezcla se extrajo 3x con DCM. La fase orgánica se separó para producir 5,5 g (contenido 80 %) de producto <u>7.3</u>, que se usó sin purificación adicional en la siguiente etapa.

Análisis: HPLC-EM: $T_r = 0.61 \text{ min}$ (X012 S01), M+H = 490/492

Análisis $\overline{7.5}$: HPLC-EM: T_r = 0,87 min (X018 S03), M+H = 431

5

25

15 Síntesis de (R)-5-[(R)-1-(6-Cloro-2,3-dimetil-2H-pirazolo[4,3-c]piridin-4-iloxi)-etil]-3-(4-metoxi-bencil)-oxazolidin-2-ona (7.4) para el Ejemplo 3

A <u>6.2</u> (75 mg) y NaH (32 mg) se añadió <u>2.4</u> (90 mg) disuelto en dimetilacetamida (DMA; 2 ml) y la solución se agitó durante 5 h. La mezcla se purificó mediante HPLC prep. (agua/acetonitrilo/NH₃) para proporcionar <u>7.4</u> (38 mg) y <u>7.5</u> (46 mg) en forma de sólidos de color blanco. (<u>7.4</u> y <u>7.5</u> como una mezcla de enantiómeros)
Análisis 7.4: HPLC-EM: T_r = 083 min (X018 S03), M+H = 431

Síntesis de (R)-4-[(R)-1-(6-Bromo-2,3-dimetil-2H-indazol-4-iloxi)-etil]-pirrolidin-2-ona (8.1) para los Ejemplos 8, 13, 18, 19, 20

Una mezcla de <u>7.1</u> (2,3 g) en TFA (40 ml) y anisol (5 ml) se agitó a 80 °C durante 15 h y 8 h a temperatura ambiente. La mezcla de reacción se concentró, se diluyó con acetonitrilo (8 ml), se basificó con NH₃ al 25 % y se diluyó con agua y se separó mediante HPLC prep. El aceite de color amarillo se disolvió en metil *terc*-butil éter y se formó un precipitado de color blanco que se recogió después de 3 días para dar <u>8.1</u> (1,35 g).

Análisis: HPLC-EM: $T_r = 0.45 \text{ min (X012_S01)}, M+H = 352/354$

RMN 1 H (DMSO, 400 MHz) δ 1,28 (3H, d, J = 6,1 Hz), 2,15-2,35 (2H, m), 2,63 (3H, s), 2,72-2,82 (1H, m), 3,07-3,11 (1H, m), 3,37 (1H, t, J = 8,9 Hz), 3,95 (3H, s), 4,63-4,69 (1H, m), 6,45 (1H, s), 7,23 (1H, d, J = 1,0 Hz), 7,55 (1H, s)

10 Síntesis de (R)-4-[(R)-1-(6-Cloro-2,3-dimetil-2H-pirazolo[4,3-c]piridin-4-iloxi)-etil]-pirrolidin-2-ona (8.2) para los Eiemplos 4, 15

Se agitó <u>7.2</u> (2,4 g, contenido 85 %) en TFA (20 ml) a 80 °C durante 4 h, tiempo después del cual se concentró. El residuo se disolvió en iPrOAc y NaHCO₃ acuoso sat. (30 ml) y se añadió agua (20 ml). El precipitado se recogió, se lavó con agua, iPrOAc y éter de petróleo para proporcionar 890 mg de un sólido de color blanco, <u>8.2</u>. Análisis: HPLC-EM: T_r = 0,48 min (X012_S02), M+H = 309

RMN ¹H (CDCl₃, 500 MHz) δ 1,41 (3H, \overline{d} , J = 6,3 Hz), 2,43-2,57 (2H, m), 2,86 (1H, ddd, J = 14,1, 8,3, 6,0 Hz), 3,32 (1H, dd, J = 9,6, 6,4 Hz), 3,55 (1H, t, J = 9,1 Hz), 4,00 (3H, s), 5,59 (1H, m), 5,72 (1H, s), 7,03 (1H, s)

Síntesis de (R)-4-[(R)-1-(6-Bromo-3-fluoro-2-metil-2H-indazol-4-iloxi)-etil]-pirrolidin-2-ona (8.3) para los Ejemplos 1, 2, 5, 6

Una mezcla de $\underline{7.3}$ (2,8 g) en 10 ml TFA se agitó a 80 °C durante 2 h. La mezcla de reacción se vertió en agua, se basificó con NaOH (4 N) y se extrajo con DCM. La fase orgánica se concentró y se purificó a través de SiO₂ y las fracciones deseadas se combinaron para dar $\underline{8.3}$ (0,868 g).

30 Análisis: HPLC-EM: T_r = 0,46 min (X012_S02), M+H = 357/359

20

25

4.1.6. Síntesis de ácidos borónicos y ésteres borónicos 9 y 12 de los Esquemas 1 y 2

Síntesis de (R)-4-{(R)-1-[2,3-Dimetil-6-(4,4,5,5-tetrametil-[1,3,2]dioxaborolan-2-il)-2H-indazol-4-iloxi]-etil}-1-[(S)-1-(4-metoxi-fenil)-etil]-pirrolidin-2-ona (9.1) para los Ejemplos 11, 16, 17, 22

Se suspendieron <u>7.1</u> (50 mg), bis-(pinacolato)-diboro (31 mg), tetraquis(trifenilfosfina)paladio (0) (24 mg) y acetato potásico (30 mg) en dioxano (2 ml) y la mezcla se agitó a 100 °C durante 1,5 h. La mezcla se diluyó con DCM (20 ml) y agua (20 ml) y la fase orgánica se separó y se concentró para producir <u>9.1</u> (84 mg, contenido 50 %) en forma de un aceite, que se usó en la siguiente etapa sin purificación adicional.

Análisis: HPLC-EM: $T_r = 0.41$ (ácido) + 0.61 (éster, <u>9.1</u>) min (X016_S01), M+H = 452 y 534

Síntesis de (R)-4-{(R)-1-[3-Fluoro-2-metil-6-(4,4,5,5-tetrametil-[1,3,2]dioxaborolan-2-il)-2H-indazol-4-iloxi]-etil}-10 pirrolidin-2-ona (12.1) para el Ejemplo 12, 14

Se suspendieron 8.3 (400 mg), bis-(pinacolato)-diboro (342 mg) y acetato potásico (330 mg) en dioxano (5 ml) y se desgasificaron con nitrógeno durante 5 min.

Se añadió metanosulfonato de (2-diciclohexilfosfino-2',4',6'-triisopropil-1,1'-bifenil)[2-(2-amino-1,1'-bifenil)] paladio (II) (95 mg) y la mezcla se agitó a 75 °C durante una noche, tiempo después del cual se filtró mediante MP SPE Agilent StratoSpheres PL-Tiol usando MeOH como eluyente y se concentró para producir 12.1 (400 mg) en forma de un aceite que se usó sin purificación adicional.

Análisis: HPLC-EM: T_r = 0,51 min; M+H: 404 (método X012_S01).

- 4.3 Síntesis de los ejemplos de la patente de fórmula 1 mediante intermedios con la fórmula 8 111
- 25 Síntesis de (R)-4-{(R)-1-[6-(1-Ciclobutil-1H-pirazol-4-il)-3-fluoro-2-metil-2H-indazol-4-iloxi]-etil}-pirrolidin-2-ona (Ejemplo 1)

A <u>8.3</u> (70 mg) en dioxano (1 ml) y Na₂CO₃ acuoso 2 M (295 μ l) se añadieron borolano <u>4.8</u> (48,7 mg) y 1,1'-Bis(difenilfosfino)ferrocenodicloropaladio (II) (A), 7,2 mg) y la mezcla se agitó durante 45 min a 70 °C. La mezcla se filtró mediante MP SPE Agilent StratoSpheres PL-Tiol usando MeOH como eluyente y se purificó mediante HPLC prep. para producir, después de liofilización, 43 mg del Ejemplo 1. Análisis: HPLC-EM: $T_r = 0.68$ min (001_CA02), M+H = 398

RMN 1 H (DMSO, 400 MHz) δ 1,31 (3H, d, J = 6,1 Hz), 1,78-1,85 (2H, m), 2,17-2,32 (2H, m), 2,38-2,44 (3H, m), 2,75-2,77 (1H, m), 3,09-3,13 (1H, m), 3,37 (1H, t, J = 9,0 Hz), 3,92 (3H, s), 4,73-4,85 (2H, m), 6,66 (1H, s), 7,18 (1H, s), 7,53 (1H, s), 7,96 (1H, s), 8,33 (1H, s)

Los siguientes ejemplos se sintetizaron de manera análoga al Ejemplo 1 utilizando los siguientes sistemas de catalizador de paladio:

A) 1,1'-Bis(difenilfosfino)ferrocenodicloropaladio (II) o

10

15

B) Diciclohexil-[2-(2,4,6-triisopropilfenil)fenil]fosfano [2-(2-aminofenil)fenil]-metilsulfoniloxi-paladio

Ejemplo	fórmula <u>8</u>	ácido/éster borónico (correspondiente a la fórmula 4)	Rendimiento Catalizador	Análisis
Ejemplo 2 (R)-4-{(R)-1-[3-Fluoro-6-(1-isopropil-1H-pirazol-4-il)-2-metil-2H-indazol-4-iloxi]-etil}-pirrolidin-2-ona	8.3	1-Isopropil-4-(4,4,5,5- tetrametil-1,3,2- dioxaborolan-2-il) pirazol <u>4.6</u>	39 mg (51 %) A)	HPLC-EM: T _r = 0,64 min (001_CA02)M+H = 386
Ejemplo 4 (R)-4-{(R)-1-[6-(3- terc-Butil-1H-pirazol- 4-il)-2,3- dimetil-2H- pirazolo[4,3-c]piridin- 4-iloxi]-etil}-pirrolidin- 2-ona	8.2	Ácido 3- <i>terc</i> -butil-1H- pirazol-4-il-4-borónico <u>4.2</u>	15 mg (32 %) B)	HPLC-EM: $T_r = 46 \text{ min } (X012_S01) \text{ M+H} = 397$ RMN $^1\text{H} \text{ (DMSO, } 400 \text{ MHz)} \delta 1,30$ (9H, s), 1,36 (3H, d, J = 6,2 Hz), 2,22-2,35 (2H, m), 2,65 (3H, s), 2,75-2,84 (1H, m), 3,12-3,17 (1H, m), 3,40 (2H, t, J = 9,0 Hz), 3,98 (3H, s), 5,66-5,71 (1H, m), 6,59 (1H, s), 7,42 (1H, s), 7,53 (1H, s)

(continuación)

		(continua		
Ejemplo	fórmula <u>8</u>	ácido/éster borónico (correspondiente a la fórmula 4)	Rendimiento Catalizador	Análisis
Ejemplo 5	8.3	1-Ciclopropil-4-(4,4,5,5-tetrametil-	44 mg (58 %)	HPLC-EM:
(R)-4-{(R)-1-[6-(1- Ciclopropil-1H- pirazol-4-il)-3-fluoro- 2-metil-2H-indazol-4- iloxi]-etil}-pirrolidin-2- ona		[1,3,2]dioxaborolan- 2- il)-1H-pirazol <u>4.5</u>	A)	Tr = 0,62 min (001_CA02), M+H = 384
Ejemplo 6	8.3	1-(Ciclopropilmetil)-4- (4,4,5,5-tetrametil-	47 mg (60 %)	HPLC-EM:
(R)-4-{(R)-1-[6-(1- Ciclopropilmetil-1H- pirazol-4-il)-3-fluoro- 2-metil-2H-indazol-4- iloxi]-etil}-pirrolidin-2- ona		1,3,2-dioxaborolan-2- il)-1H-pirazol <u>4.4</u>	A)	T _r = 0,66 min (001_CA02), M+H = 398
Ejemplo 8	<u>8.1</u>	1-(Ciclopropilmetil)-4- (4,4,5,5-tetrametil-	22 mg (40 %)	HPLC-EM:
(R)-4-{(R)-1-[6-(1- Ciclopropilmetil-1H- pirazol-4-il)-2,3- dimetil-2H-indazol-4- iloxi]-etil}-pirrolidin-2- ona		1,3,2-dioxaborolan-2- il)-1H-pirazol <u>4.4</u>	A)	T _r = 0,55 min (X011_S03), M+H = 395
Ejemplo 13 (R)-4-{(R)-1-[6-(1-	<u>8.1</u>	1- <i>terc</i> -Butil-4-(4,4,5,5- tetrametil-1,3,2-	120 mg (47 %)	HPLC-EM:
terc-Butil-1H-pirazol- 4-il)-2,3-dimetil-2H- indazol-4-iloxi]-etil}- pirrolidin-2-ona		dioxaborolan-2-il) pirazol <u>4.1</u>	A)	$T_r = 0.51 \text{ min } (X018_S01), M+H = 396 \ \text{RMN} \ ^1\text{H} (DMSO, 400 \text{ MHz}) \ \delta \ 1,32 \ (3H, d, J = 6.0 \text{ Hz}), 1,56 (9H, s), 2,20-2,38 (2H, m), 2,63 (3H, s), 2,75-2,85 \ (1H, m), 3,12-3,16 (1H, m), 3,40 (1H, t, J = 9,1 \text{ Hz}), 3,94 (3H, s), 4,75-4,80 \ (1H, m), 6,59 (1H, s), 7,57 (1H, s), 7,89 (1H, s), 8,26 (1H, s)$
Ejemplo 15 (R)-4-{(R)-1-[6-(1-	<u>8.2</u>	1- <i>terc</i> -Butil-4-(4,4,5,5- tetrametil-1,3,2-	630 mg (60 %)	HPLC-EM: T _r = 0,48 min (X012_S01), M+H = 397
terc-Butil-1H-pirazol- 4-il)-2,3-dimetil-2H- pirazolo[4,3-c]piridin- 4-iloxi]-etil}-pirrolidin- 2-ona		dioxaborolan-2-il) pirazol <u>4.1</u>	A)	RMN ¹ H (MeOD, 500 MHz) δ 1,47 (3H, d, J = 6,3 Hz), 1,63 (9H, s), 2,54 (2H, dd, J = 8,2, 5,1 Hz), 2,70 (3H, s), 2,88-2,99 (1H, m), 3,36 (1H, dd, J = 10,1, 5,8 Hz), 3,59 (1H, dd, J = 10,0, 8,7 Hz), 4,00 (3H, s), 5,72 (1H, p, J = 6,2 Hz), 7,16 (1H, s), 8,18 (1H, s)
Ejemplo 18 (R)-4-{(R)-1-[6-(1-	<u>8.1</u>	1-Isopropil-4-(4,4,5,5- tetrametil-1,3,2-	430 mg (99 %)	HPLC-EM: T _r = 0,52 min (X018_S03), M+H = 382
Isopropil-1H-pirazol- 4-il)-2,3-dimetil-2H- indazol-4-iloxi]-etil}- pirrolidin-2-ona		dioxaborolan-2-il) pirazol <u>4.6</u>	В)	RMN ¹ H (DMSO, 400 MHz) δ 1,32 (3H, d, J = 6,1 Hz), 1,46 (6H, d, J = 6,7 Hz), 2,19-2,37 (2H, m), 2,63 (3H, s), 2,75-2,85 (1H, m), 3,11-3,15 (1H, m), 3,40 (1H, t, J = 9,1 Hz), 3,95 (3H, s), 4,47-4,53 (1H, m), 4,74-4,80 (1H, m), 6,59 (1H, s), 7,20 (1H, s), 7,58 (1H, s), 7,89 (1H, s), 8,23 (1H, s)
Ejemplo 19 (R)-4-{(R)-1-[6-(1- sobutil-1H-pirazol-4-il)-2,3-dimetil-2H-indazol-4-iloxi]-etil}-pirrolidin-2-ona	8.1	1-Isobutil-4-(4,4,5,5- tetrametil-1,3,2- dioxaborolan-2-il)-1H- pirazol <u>4.10</u>	242 mg (98 %) B)	HPLC-EM: T _r = 0,43 min (X017_S01), M+H = 396

(continuación)

		,		
Ejemplo	fórmula	ácido/éster borónico	Rendimiento	Análisis
	<u>8</u>	(correspondiente a la	Catalizador	
		fórmula 4)		
Ejemplo 20	<u>8.1</u>	1-Ciclopropil-4-(4,4,5,5-	23 mg	HPLC-EM:
		tetrametil-[1,3,2]	(35 %)	
(R)-4-{(R)-1-[6-(1-		dioxaboro-lan-2-il)-1H-	A)	T _r = 0,58 min (003 CA04), M+H = 381
Ciclopropil-1H-		pirazol <u>4.5</u>		_ ,
pirazol-4-il)-2,3-				
dimetil-2H-indazol-4-				
iloxi]-etil}-pirrolidin-2-				
ona				
Ejemplo 21	<u>8.1</u>	1-Ciclobutil-4-(4,4,5,5-	145 mg	HPLC-EM:
(R)-4-{(R)-1-[6-(1-		tetrametil-1,3,2-	(65 %)	T _r = 0,57 min (X018_S03), M+H = 394
Ciclobutil-1H-pirazol-		dioxaborolan-2-il)-1H-		
4-il)-2,3-dimetil-2H-		pirazol <u>4.8</u>		
indazol-4-iloxi]-etil}-				
pirrolidin-2-ona				

Como alternativa, el Ejemplo 13 se sintetizó mediante el siguiente procedimiento de síntesis:

5

Etapa 1: Se cargó complejo de cloruro de litio y cloruro de isopropilmagnesio (1,3 M en THF, 28,4 ml, 37 mmol) a una solución de 4-bromo-1-(terc-butil)-1H-pirazol (5,0 g, 25 mmol) en THF anhidro (25 ml) en una atmósfera de argón a temperatura ambiente. Se cargó dioxano anhidro (3,3 g, 37 mmol) en la reacción, y la reacción se agitó a 45 °C durante 4 h. La mezcla resultante se enfrió a temperatura ambiente y se cargó en una solución anhidra de anhídrido acético (7,5 g, 73 mmol) en THF (25 ml) a -20 °C. La mezcla resultante se calentó a temperatura ambiente y se concentró a un residuo. La mezcla se disolvió en metil t-butil éter (50 ml) y se lavó con agua (25 ml). La porción orgánica se concentró para proporcionar 1-(1-(terc-butil)-1H-pirazol-4-il)etan-1-ona en forma de un aceite (7,6 g, 36 % en peso) y 67 % de rendimiento. La cristalización en una mezcla de metil t-butil éter y heptano proporcionó material analíticamente puro, 1-(1-(terc-butil)-1H-pirazol-4-il)etan-1-ona. RMN t1 (500 MHz, CDCl3) t3 = 7,96 (s, 1t4), 7,86 (s, 1t7), 2,37 (s, 3t8), 1,55 (s, 9t9).

15

10

Etapa 2: Se cargó 1,4 dioxano desgasificado (10 ml) en una mezcla de acetato de paladio (51 mg, 0,23 mmol), tetrafluoroborato de tri-t-butilfosfonio (128 mg, 0,44 mmol), t-butóxido de litio (1,47 g, 18 mmol), ácido 3-yodo-1,5-dimetil-1H-pirazol-4-carboxílico (1,0 g, 3,7 mmol, Organic Letters (2015), 17(12), 2964-2967) y 1-(1-t-butil)-1H-pirazol-4-il)etan-1-ona (0,68 g, 4,1 mmol) a temperatura ambiente en una atmósfera de argón. La mezcla agitada se calentó a 80 °C durante aproximadamente 15 min y se agitó a esta temperatura durante 30 min. La reacción se enfrió a temperatura ambiente y se diluyó con ácido trifluoroacético (30 ml) y acetonitrilo (15 ml). La mezcla se agitó a 78 °C durante 10 h. La reacción se enfrió a temperatura ambiente y se concentró hasta un residuo sólido. El residuo se

disolvió en una mezcla de acetato de isopropilo y agua. El pH de la capa acuosa se ajustó a pH ~10 con NaOH 3 M. Las capas se separaron y la porción orgánica se lavó dos veces con agua. La porción orgánica se concentró hasta un sólido (1,92 g). El sólido se disolvió en n-propanol caliente (7 ml) y se enfrió a temperatura ambiente, momento en el que sucedió la cristalización. La mezcla se diluyó gota a gota con agua (10 ml) y se agitó durante 30 min. Los sólidos se recogieron por filtración y se lavaron con una solución de n-propanol al 20 %vol en agua. Los sólidos se secaron en un horno de vacío a 50 °C con una corriente de nitrógeno para proporcionar 6-(1-(terc-butil)-1H-pirazol-4-il)-2,3-dimetilpirano[4,3-c]pirazol-4(2H)-ona en forma de un sólido con una pureza de ~94 %p (rendimiento 49 %). RMN 1 H (CDCl₃, 400 MHz), δ = 7,96 (s, 1H), 7,83 (s, 1H), 6,61 (s, 1H), 3,89 (s, 3H), 2,66 (s, 3H), 1,62 (s, 9H).

Etapa 3: Se cargó gota a gota metilfosfonato de dimetilo (1,2 g, 10 mmol) en una suspensión anhidra de 10 diisopropilamida de litio (2,0 M, 4,6 ml, 9.2 mmol) en THF (15 ml) a -78 °C en una atmósfera de argón. Después de una agitación durante 50 min, se cargó una suspensión anhidra de 6-(1-(*terc*-butil)-1H-pirazol-4-il)-2,3-dimetilpirano[4,3-c]pirazol-4(2H)-ona (0,89 g, 3.11 mmol) en THF (10 ml) en la solución de fosfonato litiado anterior a -78 °C. La mezcla de reacción se agitó a -78 °C durante 1 h y se dejó calentar a temperatura ambiente durante 1 h. La reacción se interrumpió con metanol (3 ml) y se agitó durante 1 h. Se cargó HCl acuoso 3 M (4 ml) en la reacción 15 y la reacción se agitó durante una noche a temperatura ambiente. La reacción se diluyó con agua (15 ml) y se concentró al vacío para retirar los disolventes orgánicos. La suspensión resultante se diluyó con acetato de isopropilo y aqua. El pH de la capa acuosa se ajustó a 3-4 con HCl 3 M. Las capas se separaron y la porción acuosa se extrajo de nuevo con acetato de isopropilo. Las capas orgánicas combinadas se concentraron hasta un sólido al vacío. El sólido se 20 disolvió en n-propanol caliente (6 ml), se enfrió a temperatura ambiente y se diluyó gota a gota con aqua (35 ml) con agitación. La mezcla se agitó durante 1 h a temperatura ambiente. Los sólidos se recogieron por filtración, se lavaron con agua y se secaron en un horno de vacío a 50 °C con una corriente de nitrógeno para proporcionar 6-(1-(terc-butil)-1H-pirazol-4-il)-2,3-dimetil-2H-indazol-4-ol (760 mg, 84 %p, rendimiento del 72 %). RMN ¹H (DMSO-d₆, 400 MHz), δ = 9,86 (s, 1H), 8,11 (s, 1H), 7,75 (s, 1H), 7,11 (s, 1H), 6,41 (s, 1H), 3,94 (s, 3H), 2,67 (s, 3H), 1,55 (s, 9H).

25

30

35

50

Etapa 4: Una mezcla de carbonato potásico (610 mg, 4,4 mmol), Se agitaron 4-metilbencenosulfonato de (S)-1-((R)-1-((S)-1-(4-metoxifenil)etil)-5-oxopirrolidin-3-il)etilo (810 mg, 1,9 mmol) y 6-(1-(terc-butil)-1H-pirazol-4-il)-2,3-dimetil-2H-indazol-4-ol (418 mg, 1,5 mmol) en dimetil formamida anhidra (1,5 ml) en una atmósfera de nitrógeno a 70 °C durante 18 h. Se cargó más 4-metilbencenosulfonato de (S)-1-((R)-1-((S)-1-(4-metoxifenil)etil)-5-oxopirrolidin-3-il)etilo (0,280 mg, 0,66 mmol) en la reacción y la reacción se agitó a 70 °C durante 20 h. La reacción se diluyó con acetato de isopropilo y agua. Las capas se separaron y la porción orgánica se lavó dos veces. La porción orgánica se concentró para dar un sólido oleoso. La purificación por cromatografía sobre gel de sílice (Metanol en acetato de etilo) proporcionó el producto pretendido, (R)-4-((R)-1-((6-(1-(terc-butil)-1H-pirazol-4-il)-2,3-dimetil-2H-indazol-4-il)oxi)etil)-1-((S)-1-(4-metoxifenil)etil)pirrolidin-2-ona (10.5), en forma de una espuma con una pureza de aproximadamente el 90 % (769 mg, 89 %). RMN ¹H (CDCl₃, 500 MHz), δ = 7,77 (s, 1H), 7,72 (s, 1H), 7,24 (s, 1H), 7,15 (d, J = 8,74 Hz, 2H), 6,23 (d, J = 8,54 Hz, 2H), 6,26 (s, 1H), 5,46 (c, J = 7,41 Hz, 1H), 4,50-4,56 (m, 1H), 3,97 (s, 3H), 3,69 (s, 3H), 3,48 (t, J = 9,0 Hz, 1H), 2,93-3,0 (m, 1H), 2,62-2,80 (m, 2H), 2,55-2,62 (m, 1H), 2,48 (s, 3H), 1,64 (s, 9H), 1,50 (d, J = 7,4 Hz, 3H), 1,31 (d, J = 6,3 Hz, 3H).

40 <u>Etapa 5:</u> Una solución de (R)-4-((R)-1-((6-(1-(*terc*-butil)-1H-pirazol-4-il)-2,3-dimetil-2H-indazol-4-il)oxi)etil)-1-((S)-1-(4-metoxifenil)etil)pirrolidin-2-ona (585 mg, 1,1 mmol) en ácido trifluoroacético (3 ml) y anisol (1,5 ml) se agitó a 75 °C en una atmósfera de nitrógeno durante 18 h. La reacción se enfrió a temperatura ambiente y se diluyó con acetato de isopropilo y agua. El pH de la porción acuosa se ajustó a 6 con NaOH acuoso 3 M. Las capas se separaron y la porción orgánica se concentró hasta un aceite. La purificación por cromatografía sobre gel de sílice (EtOH en EtOAc) proporcionó el ejemplo 13 en forma de una espuma (420 mg, 94 %).

Síntesis de (R)-5-{(R)-1-[6-(1-*terc*-Butil-1H-pirazol-4-il)-2,3-dimetil-2H-pirazolo[4,3-c]piridin-4-iloxi]-etil}-oxazolidin-2-ona (Ejemplo 3)

Etapa 1: A $\underline{4.1}$ (46 mg) y diciclohexil-[2-(2,4,6-triisopropilfenil) fenil]fosfano [2-(2-aminofenil)fenil]-metilsulfoniloxipaladio (15 mg) se añadió $\underline{7.4}$ (38 mg), disuelto en dioxano (1 ml) y MeOH (0,2 ml) y Na₂CO₃ acuoso 2 M (0,175 ml), y la mezcla se calentó durante 50 min a 90 °C. Después de este tiempo, se añadió MeOH (10 ml) y la mezcla se filtró

mediante MP SPE Agilent StratoSpheres PL-Tiol y se concentró. El residuo se disolvió en DCM (20 ml) y se extrajo con agua (20 ml) y la fase acuosa se extrajo con DCM (10 ml). Las fases orgánicas combinadas se secaron y se concentraron para producir 10.1 (74 mg), que se usó sin purificación adicional para la siguiente etapa. Análisis: HPLC-EM: T_r = 0,86 min (X018 S03), M+H = 519

Etapa 2: A 10.1 (74 mg) se añadió ácido trifluoracético (2,956 g) y la mezcla se agitó durante 30 h a 75 °C. Después, la mezcla se concentró y se purificó mediante HPLC prep. (agua/acetonitrilo/NH₃) para proporcionar un sólido de color blanco, que después se separó mediante SFC quiral (Knauer Eurocel 01; CO₂sc al 80 %/MeOH al 20 % + NH₃ 20 mM; Contrapresión 120 bar; 40 °C, para proporcionar el Ejemplo 3 (13 mg) en forma de un sólido de color blanco. Análisis: HPLC-EM: T_r = 0,92 min (V011_S01), M+H = 399

Síntesis de (R)-4-((R)-1-{6-[1-((R)-2,2-Dimetil-tetrahidro-piran-4-il)-1H-pirazol-4-il]-2,3-dimetil-2H-indazol-4-iloxi}-etil)-pirrolidin-2-ona (Ejemplo 9)

Etapa 1: A 7.1 (200 mg), 4-(4,4,5,5-Tetrametil-[1,3,2]dioxaborolan-2-il)-1H-pirazol 4.9 (120 mg), Diciclohexil-[2-(2,4,6-triisopropilfenil)fenil]fosfano [2-(2-aminofenil) fenil]-metilsulfoniloxi-paladio (40 mg) se añadió dioxano (3 ml) y Na₂CO₃ acuoso 2 M (0,7 ml) y la mezcla se agitó durante 2 h a 90 °C. La mezcla se diluyó con DCM (50 ml) y agua (30 ml). Después de la separación de las fases, la fase acuosa se extrajo 2x con DCM (25 ml). Las fases orgánicas combinadas se secaron (MgSO₄) y se purificaron por HPLC prep. para proporcionar 11.1 en forma de un aceite de color amarillo (137 mg).

Análisis: HPLC-EM: T_r = 0,44 min (X012_S01), M+H = 474

5

10

15

20

35

40

Etapa 2: A <u>5.2</u> (61 mg) y Cs₂CO₃ (93 mg) se añadió <u>11.1</u> (68 mg) disuelto en DMF (1 ml) y la suspensión se calentó a 70 °C durante 3 h. Se añadió más <u>5.2</u> (45 mg) y Cs₂CO₃ (93 mg) y la agitación se continuó durante 5 h a 70 °C, después se añadió más <u>5.2</u> (45 mg) y Cs₂CO₃ (93 mg) y la agitación se continuó a 80 °C durante 10 h y 3 días a temperatura ambiente. La mezcla se diluyó con DCM (20 ml) y agua (20 ml) y las fases se separaron. La fase acuosa se extrajo con DCM (20 ml) y las fases orgánicas combinadas se secaron, se concentraron y se purificaron mediante HPLC prep. para proporcionar <u>10.2</u> (57 mg) en forma de un aceite incoloro.

Análisis: HPLC-EM: T_r = 0,65 min (X012_S01), M+H = 586

Etapa 3: A $\frac{10.2}{10.2}$ (57 mg) se añadió ácido trifluoracético (2 ml) y la mezcla se agitó durante 3 h a 80 °C. La mezcla se concentró y se purificó mediante HPLC prep. para proporcionar el Ejemplo 9 (23,7 mg) Análisis: HPLC-EM: $T_r = 0.90$ min (003_CA03), M+H = 452

 $Sintesis \quad de \quad 4-(1-\{6-[(R)-(3S,3aR,7aR)-1-(Hexahidro-furo[3,2-b]piran-3-il)-1H-pirazol-4-il]-2,3-dimetil-2H-indazol-4-iloxi\}-etil)-pirrolidin-2-ona (Ejemplo 10)$

Etapa 1: A $\underline{5.1}$ (64 mg) y Cs₂CO₃ (93 mg) se añadió $\underline{11.1}$ (68 mg) disuelto en DMF (1 ml) y la suspensión se calentó a 70 °C durante 3 h. Se añadió más $\underline{5.1}$ (45 mg) y Cs₂CO₃ (93 mg) y la agitación se continuó durante 5 h a 70 °C,

después se añadió más $\frac{5.1}{1}$ (45 mg) y Cs₂CO₃ (93 mg) y la agitación se continuó a 80 °C durante 10 h y 3 días a temperatura ambiente y 3 h a 100 °C. La mezcla se diluyó con DCM (20 ml) y agua (20 ml) y las fases se separaron. La fase acuosa se extrajo con DCM (20 ml) y las fases orgánicas combinadas se secaron, se concentraron y se purificó mediante HPLC prep. para proporcionar 10.3 (42 mg) en forma de un aceite incoloro.

Análisis: HPLC-EM: $T_r = 0.64 \text{ min (X012 S01)}, M+H = 600$

10

15

20

25

30

35

Etapa 2: A <u>10.3</u> (41 mg) se añadió ácido trifluoracético (2 ml) y la mezcla se agitó durante 3 h a 80 °C. La mezcla se concentró y se purificó mediante HPLC prep. para proporcionar el Ejemplo 10 (17,1 mg). Análisis: HPLC-EM: T_r = 0,88 min (003 CA03), M+H = 466

Síntesis de (R)-4-((R)-1-{6-[1-(2-Fluoro-etil)-1H-pirazol-4-il]-2,3-dimetil-2H-indazol-4-iloxi}-etil)-pirrolidin-2-ona (Ejemplo 11)

Se calentaron $\underline{9.1}$ (150 mg), $\underline{3.6}$ (35 mg) y diciclohexil-[2-(2,4,6-triisopropilfenil)fenil]fosfano [2-(2-aminofenil)fenil]metilsulfoniloxi-paladio (17 mg) en dioxano (1 ml) y Na₂CO₃ acuoso 2 M (394 μ l) durante 3 h min a 100 °C. Se añadió agua y la fase acuosa se extrajo 3x con DCM y las fases orgánicas combinadas se concentraron, se disolvieron en MeOH y se filtraron mediante MP SPE Agilent StratoSpheres PL-Tiol y se concentraron para proporcionar $\underline{10.4}$, que se usó sin purificación adicional para la siguiente etapa.

Análisis: HPLC-EM: T_r = 0.53 min (X011 S03), M+H = 520

Etapa 2: A 10.4 (107 mg) se añadió ácido trifluoracético (1,5 ml) y se calentó durante 2,5 h a 70 °C. A la mezcla se le añadió agua y NaHCO₃ acuoso sat. y la fase acuosa se extrajo 2x con DCM. Las fases orgánicas combinadas se concentraron y se purificaron mediante HPLC prep. para proporcionar el Ejemplo 11 (12 mg) en forma de un sólido de color blanco.

Análisis: HPLC-EM: T_r = 0,41 min (X011_S03), M+H = 386 RMN 1 H (DMSO, 400 MHz) δ 1,32 (3H, d, J = 6,0 Hz), 2,19-2,37 (2H, m), 2,63 (3H, s), 2,75-2,84 (1H, m), 3,11-3,15 (1H, m), 3,40 (1H, t, J = 9,1 Hz), 3,94 (3H, s), 4,40 (1H, t, J = 4,7 Hz), 4,47 (1H, t, J = 4,7 Hz), 4,73-4,78 (2H, m), 4,86 (1H, t, J = 4,7 Hz), 6,56 (1H, s), 7,20 (1H, s), 7,56 (1H, s), 7,96 (1H, s), 8,23 (1H, s)

Los siguientes Ejemplos se sintetizaron de una manera análoga al Ejemplo 11 utilizando el intermedio $\underline{9.1}$ y uno de los siguientes sistemas de catalizador de paladio:

A) 1,1'-Bis(difenilfosfino)ferrocenodicloropaladio (II) o

B) Diciclohexil-[2-(2,4,6-triisopropilfenil)fenil]fosfano [2-(2-aminofenil)fenil]-metilsulfoniloxi-paladio

Ejemplo	Bromuro	Rendimiento	Análisis
	(correspondiente a	A) o B)	
	la fórmula 3)		
Ejemplo 16	4-Bromo-1-(2,2,5,5-	27 mg	HPLC-EM:
(R)-4-((R)-1-{2,3-Dimetil-6-[1-	tetrametiltetrahidro-	(41 %) (dos	T _r = 0,70 min (003_CA04), M+H = 466
(2,2,5,5-tetrametil-tetrahidro-	furan-3-il)-1H-	etapas)	
furan-3-il)-1H-pirazol-4-il]-2H-	pirazol 3.2	B)	RMN ¹ H (DMSO, 400 MHz) δ 0,77 (3H, d, J
indazol-4-iloxi}-etil)-pirrolidin-			= 1,1 Hz), 1,27 (3H, s), 1,33 (3H, d, J =
2-ona			6,0 Hz), 1,37 (6H, s), 2,20-2,38 (3H, m), 2,64
			(3H, s), 2,76-2,85 (2H, m), 3,11-3,15 (1H,
			m), 3,38-3,42 (1H, m), 3,95 (3H, s), 4,74-
			4,81 (2H, m), 6,66 (1H, s), 7,24 (1H, s), 7,56
			(1H, s), 7,97 (1H, s), 8,34 (1H, d, J = 4,0 Hz)

(continuación)

Ejemplo	Bromuro (correspondiente a la fórmula 3)	Rendimiento A) o B)	Análisis
Ejemplo 17	2-(4-Bromo-pirazol- 1-il)-2- metilpropionitrilo 3.3	6 mg (9 %) (dos etapas)	HPLC-EM:
2-(4-{2,3-Dimetil-4-[(R)-1- ((R)-5-oxopirrolidin-3-il)- etoxi]-2H-indazol-6-il}-pirazol- 1-il)-2-metil-propionitrilo		A)	T _r = 0,41 min (X012_S01), M+H = 407
Ejemplo 22	4-Bromo-1-(3,3-difluorociclopentil)-	80 mg (35 %)	HPLC-EM:
(R)-4-((R)-1-{6-[1-(3,3-Difluoro-ciclopentil)-1H-pirazol-4-il]-2,3-dimetil-2H-indazol-4-iloxi}-etil)-pirrolidin-2-ona	1H-pirazol <u>3['].4</u>	B)	T _r = 0,592 min (X018_S03), M+H = 444

Síntesis de (R)-4-((R)-1-{3-Fluoro-2-metil-6-[1-(3,3,3-trifluoro-propil)-1H-pirazol-4-il]-2H-indazol-4-iloxi}-etil)-pirrolidin-2-ona (Ejemplo 12)

- 5 Se calentaron 12.1 (40 mg), 3.5 (19 mg) y 1,1'-Bis(difenilfosfino)ferrocenodicloropaladio (II) (2,9 mg) en dioxano (1 ml) y Na₂CO₃ acuoso 2 M (119 µI) durante una noche a 45 °C. La mezcla se diluyó con MeOH y se filtró mediante MP SPE Agilent StratoSpheres PL-Tiol, se concentró y se purificó mediante HPLC prep. para proporcionar el Ejemplo 12 (8 mg). Análisis: HPLC-EM: T_r = 0,48 min (X011_S03), M+H = 440
- RMN ¹H (DMSO, 400 MHz) δ 1,31 (3H, d, J = 6,1 Hz), 2,17-2,32 (2H, m), 2,71-2,81 (1H, m), 2,85-2,98 (2H, m), 3,09-3,13 (1H, m), 3,37 (1H, t, J = 901 Hz), 3,92 (3H, d, J = 1,2 Hz), 4,39 (2H, t, J = 6,9 Hz), 4,70-4,76 (1H, m), 6,63 (1H, s), 7,17 (1H, s), 7,53 (1H, s), 8,00 (1H, s), 8,32 (1H, s)

El siguiente Ejemplo 14 se sintetizó de manera análoga al Ejemplo 12

Ejemplo	Bromuro (correspondiente a la fórmula 3)	Rendimiento	Análisis
Ejemplo 14 (R)-4-((R)-1-{3-Fluoro-2-metil-6-[1-(2,2,5,5-tetrametil-tetrahidro-furan-3-il)-1H-pirazol-4-il]-2H-indazol-4-iloxi}-etil)-pirrolidin-2-ona	4-Bromo-1-(2,2,5,5-tetrametil- tetrahidro-furan-3-il)-1H- pirazol 3.2	22 mg (24 %)	HPLC-EM: $T_r = 0.54 \text{ min}$ (X011_S03), M+H = 470

15 4.5 Métodos analíticos

20

Los compuestos ilustrativos preparados de acuerdo con los esquemas de síntesis anteriores se caracterizaron mediante los siguientes métodos cromatográficos y/o espectroscopia de RMN.

4.5.1 Métodos cromatográficos (métodos HPLC-EM)

Método A

Columna:		Xbridge BEH C18, 2,1 x 30 mm, 1,7 μm		
Proveedor de la columna:		Waters		
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, NH ₃ al 0,1 %]	% Sol [Acetonitrilo]	Flujo [ml/min]	Temp. [°C]
0,00	99	1	1,3	60
0,02	99	1	1,3	60
1,00	0	100	1,3	60
1,10	0	100	1,3	60

25	Método B:		
	Columna:	Sunfire C18, 3 x 30 mm, 2,5 µm	

Proveedor de la columna:		Waters		
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,1 %]	% Sol [Metanol]	Flujo [ml/min]	Temp. [°C]
0,0	95	5	1,8	60
0,25	95	5	1,8	60
1,70	0	100	1,8	60
1,75	0	100	2,5	60
1,90	0	100	2,5	60

Método E:

Wolder E.					
Columna:		Sunfire C18, 2,1 x 20 mm, 2,5 μm			
Proveedor de la columna:		Waters			
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,10 %]	% Sol [Metanol]	Flujo [ml/min]	Temp. [°C]	
0,00	99	1	1,3	60	
0,15	99	1	1,3	60	
1,10	0	100	1,3	60	
1,25	0	100	1,3	60	

Método F:

Columna:		XBridge C18, 3 x 30 mm, 2,5 μm		
Proveedor de la columna:		Waters		
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, NH ₃ al 0,1 %]	% Sol [Acetonitrilo]	Flujo [ml/min]	Temp. [°C]
0,00	97	3	2,2	60
0,20	97	3	2,2	60
1,20	0	100	2,2	60
1,25	0	100	3	60
1,40	0	100	3	60

Método H:

Eluyente A: Hexano Eluyente B: 2-Propanol

Tiempo % de % de [min] A B Caudal [ml/min] 00,00 90 10 1,0 20,00 90 10 1,0

10

5

La fase estacionaria usada fue una Chiralpak AD-H (Daicel), $5 \mu m$; dimensión: $150 \times 4,6 mm$, (temperatura de la columna: constante a $10 \,^{\circ}$ C). Detección DAD $225 \, nm$.

Método I:

15

Eluyente A: Hexano Eluyente B: 2-Propanol

Tiempo % de % de Caudal [ml/min] A B 00,00 90 10 1,0 25,00 90 10 1,0

La fase estacionaria usada fue una Chiralpak AD-H (Daicel), 5 μ m; dimensión: 150 x 4,6 mm, (temperatura de la columna: constante a 10 °C).

Detección DAD 225 nm.

Método J:

Columna:		Sunfire C18, 2,1 x 30	Sunfire C18, 2,1 x 30 mm, 2,5 µm			
Proveedor de la columna:		Waters	Waters			
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,1 %]	% Sol [Acetonitrilo]	Flujo [ml/min]	Temp. [°C]		
0,0	99	1	1,5	60		
0,02	99	1	1,5	60		
1,00	0	100	1,5	60		
1,10	0	100	1,5	60		

Método X018_S03

Columna:		Sunfire C18, 3,0 x 30 mm, 2,5 μm		
Proveedor de la columna:		Waters		
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,1 %]	% Sol [Acetonitrilo] Flujo [ml/min] Temp.		Temp. [°C]
0,0	95	5	1,5	60
1,3	0	100	1,5	60
1,5	0	100	1,5	60

Método X018_S01

Columna:		Sunfire C18, 2,1 x 30 mm, 2,5 μm		
Proveedor de la columna:		Waters		
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,1 %]	% Sol [Acetonitrilo] Flujo [ml/min] Temp		Temp. [°C]
0,0	99	1	1,5	60
0,02	99	1	1,5	60
1,00	0	100	1,5	60
1,10	0	100	1,5	60

Método X011_S03

	11101040710	1000		
Columna:	lumna: Xbridge BEH C18, 2,1 x 30 mm, 1,7 μm			
Proveedor de la columna:		Waters		
Tiempo de gradiente/disolvente [min] % Sol [H ₂ O, NH ₃ al 0,1 %]		% Sol [Acetonitrilo]	Flujo [ml/min]	Temp. [°C]
0,00	95	5	1,3	60
0,02	95	5	1,3	60
1,00	0	100	1,3	60
1,10	0	100	1,3	60

Método X012_S01

	Wictodo Ac	12_001			
Nombre del método:	X012 S01				
Nombre del método:		X012_S01			
Columna:		Xbridge BEH C18, 2,1	I x 30 mm, 1,7 μm		
Proveedor de la columna:			Waters		
Tiempo de Gradiente/Disolvente [min] % Sol [H ₂ O, TFA al 0,1 %]		% Sol [Acetonitrilo]	Flujo [ml/min]	Temp. [°C]	
0,0 99		1	1,6	60	
0,02 99		1	1,6	60	
1,00		100	1,6	60	
1,10	0	100	1,6	60	

Método X012_S02

Nombre del método:		X012_S02	X012_S02		
Columna:		Xbridge BEH C	Xbridge BEH C18, 2,1 x 30 mm, 1,7 μm		
Proveedor de la colu	ımna:	Waters	Waters		
0,0	99	1	1 1,3 60		
0,02	99	1	1 1,3 60		
1,00	0	100	100 1,3 60		
1,10	0	100	1,3	60	

Método X016_S01

Melodo X010_301					
Nombre del método:		X016_S01			
Columna:		Xbridge BEH Phenyl	, 2,1 x 30 mm, 1,7	μm	
Nombre del método:		X016_S01			
Proveedor de la columna:		Waters			
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,1 %]	% Sol [Acetonitrilo] Flujo [ml/min] Temp.		Temp. [°C]	
0,0	99	1 1,6 60		60	
0,02	99	1 1,6 60			
1,00	0	100	1,6	60	
1,10	0	100	1,6	60	

Método X017_S01

Columna:		Zorbax Stable Bond C18, 2,1 x 30 mm, 1,8 µm		
Proveedor de la columna:		Waters		
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,1 %]	% Sol [Acetonitrilo]	Flujo [ml/min]	Temp. [°C]
0,0	99	1	1,6	60
0,02	99	1	1,6	60
1,00	0	100	1,6	60
1,10	0	100	1,6	60

Método P:

5

Columna: Supelco Ascentis Express (2,1 x 30 mm, columna de 2,7 µm)

Caudal: 1 ml/min

Disolvente A: Ácido fórmico al 0,1 %/agua Disolvente B: Ácido fórmico al 0,1 %/acetonitrilo

Volumen de inyección: 3 µl Temperatura de la columna: 40 °C Longitud de onda de detección UV: 215nm

- Eluyente: de 0 a 1,5 minutos, gradiente constante de 95 % de disolvente A + 5 % de disolvente B a 100 % de disolvente B; de 1,5 a 1,6 minutos, 100 % de disolvente B; de 1,60 a 1,61 minutos, gradiente constante de 100 % de disolvente B a 95 % de disolvente A + 5 % de disolvente B; de 1,61 a 2,00 minutos, 95 % de disolvente A + 5 % de disolvente B.
- 20 Detección de EM usando Waters LCT Premier, QT de micro, ZQ o Shimadzu LCMS2010EV detección UV usando matriz de fotodiodos Waters 2996, matriz de fotodiodos Waters 2998, UV Waters 2487 o PDA Shimadzu SPD-M20A

Método 001_CA02

С	olumna:	SunFire C18_3,0 x 30 mm, 2,5 μm

Proveedor de la columna:		Waters		
Descripción:		Waters Acquity, Detector QDa		
Tiempo de Gradiente/Disolvente [min]	% Sol [Acetonitrilo, TFA al 0,08 %]	Flujo [ml/min]	Temp. [°C]	
0,0	5,0	1,5	40,0	
1,3	100,0	1,5	40,0	
1,5	100,0	1,5	40,0	
1,6	5,0	1,5	40,0	

Método 003 CA03

Descripción del disposit	ivo:	Agilopt 1100 con DAE	Agilent 1100 con DAD, Automuestreador CTC y Detector de			
Descripción del dispositivo:		Aglient 1100 con DAD, Automuestreador CTC y Detector de EM Waters				
Columna:		Sunfire C18_3,0 x 30	mm_3,5 µm			
Productor de la columna	a:	Waters				
Descripción:						
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,1 %]	% Sol [Acetonitrilo]	Flujo [ml/min]	Temp. [°C]		
0,0	98,0	2,0	2,0	60,0		
0,3	98,0	2,0	2,0	60,0		
1,5	0,0	100,0	2,0	60,0		
1,6	0,0	100,0	2,0	60,0		

Método 003_CA04

Descripción del dispositivo: Agilent 1100 con DAD, Automuestreado de EM Waters			CTC y Detector	
Columna:		XBridge C18_3,0 x 30) mm, 2,5 µm	
Productor de la columna:		Waters		
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, NH ₄ OH al 0,1 %]	% Sol [Acetonitrilo]	Flujo [ml/min]	Temp. [°C]
0,0	98,0	2,0	2,0	60,0
1,2	0,0	100,0	2,0	60,0
1,4	0,0	100,0	2,0	60,0

Método Z001_005

Columna:	XBridge C18, 3 x 30 mm, 2,5 μm			
Proveedor de la columna:		Waters		
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,1 %]	% Sol [Metanol]	Flujo [ml/min]	Temp. [°C]
0,0	95	5	1,9	60
0,20	95	5	1,9	60
1,55	0	100	1,9	60
1,60	0	100	2,4	60
1,80	0	100	2,4	60

Método Z018_S03

Columna:		Sunfire, 3 x 30 mm, 2,5 µm		
Proveedor de la columna:		Waters		
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,1 %]	% Sol [Acetonitrilo]	Flujo [ml/min]	Temp. [°C]
0,0	95	5	1,9	60
0,20	95	5	1,9	60
1,55	0	100	1,9	60
1,60	0	100	2,4	60
1,80	0	100	2,4	60

Método 7018 S04

Columna:		Sunfire, 3 x 30 mm,	Sunfire, 3 x 30 mm, 2,5 µm	
Proveedor de la columna:		Waters	•	
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,1 %]	% Sol [Acetonitrilo]	Flujo [ml/min]	Temp. [°C]
0,00	97	3	2,2	60
0,20	97	3	2,2	60
1,20	0	100	2,2	60
1,25	0	100	3	60
1,40	0	100	3	60

Método V011_S01

	Wictodo VOTI_	.001		
Columna:	XBridge C18, 4,6 x 30 mm, 3,5 μm			
Proveedor de la columna:		Waters		
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, NH ₃ al 0,1 %]	%Sol [ACN]	Flujo [ml/min]	Temp. [°C]
0,0	97	3	5	60
0,2	97	3	5	60
1,6	0	100	5	60
1,7	0	100	5	60

5

Método X018 S02

	MELOGO AU	10_002		
Nombre del método:				
Columna:		Sunfire C18, 2,1 x 30	0 mm, 2,5 µm	
Proveedor de la columna:	Proveedor de la columna:			
Tiempo de Gradiente/Disolvente [min]	% Sol [H ₂ O, TFA al 0,1 %]	% Sol [Acetonitrilo]	Flujo [ml/min]	Temp. [°C]
0,0	39	1	1,3	60
0,02	99	1	1,3	60
1,00 0		100	1,3	60
Nombre del método:			•	- '
1,10	0	100	1,3	60

Método G: Eluyente A: Agua / KH_2PO_4 al 0,2 % a pH = 3 Eluyente B: Acetonitrilo

Tiempo	% de	% de	Caudal [ml/min]
[min]	Α	В	
0,00	80	20	1,50
5,00	20	80	1,50
8,00	20	80	1,50

La fase estacionaria usada fue una Inertsil C8-3 (GL Sciences), 5 µm; dimensión: 100 x 4,0 mm, (temperatura de la columna: constante a 30 °C). Detección UV 220 nm.

5 4.5.2 Espectroscopia de RMN

Configuración de la RMN de 500 MHz Bruker DRX

Espectrómetro de RMN digital de alto rendimiento, consola Microbay de 2 canales y estación de trabajo host de 10 Windows XP que ejecuta Topspin versión 1.3.

Dotada de:

- Imán de Oxford instruments 11.74 Tesla (frecuencia de resonancia de protones de 500 MHz)
- Controlador de temperatura B-VT 3000
 - Accesorio de espectroscopia de gradiente GRASP II para la adquisición rápida de secuencias de pulsos 2D
 - Interruptor de bloqueo de deuterio para la regulación del gradiente
 - Sonda de resonancia doble de geometría inversa de banda ancha de 5 mm con ajuste y apareamiento automáticos (BBI ATMA). Permite la observación de ¹H con pulsos/desacoplamiento de núcleos en el intervalo de frecuencia ¹⁵N y ³¹P con bloqueo de ²H y bobinas de gradiente z blindadas.

Configuración de la RMN de 400 MHz Bruker DPX

Consola de espectrómetro de RMN de dos canales digital de 400 MHz Bruker de alto rendimiento y una estación de trabajo host de Windows XP que ejecuta XwinNMR versión 3.5.

Dotada de:

20

- Imán de Oxford instruments 9.39 Tesla (frecuencia de resonancia de protones de 400 MHz)
- Unidad de controlador de temperatura variable B-VT 3300
 - Sonda conmutable de cuatro núcleos (QNP) para la observación de ¹H, ¹³C, ¹⁹F y ³¹P con bloqueo de ²H

Configuración de la RMN de 500 MHz Bruker

Espectrómetro de RMN digital de alto rendimiento, Consola One Bay de 2 canales y estación de trabajo host de Linux que ejecuta Topspin versión 2.1 PL6.

Dotada de:

- 40 Imán 500A Bruker-Biospin AVANCE III 11.75 Tesla (frecuencia de resonancia de protones de 500 MHz)
 - Controlador de temperatura B-VT 3000
 - Sonda de observación de flúor de banda ancha multinuclear (BBFO) de 5 mm con ajuste digital que cubre el intervalo de ¹⁵N y ³¹P, así como de ¹⁹F con desacoplamiento de ¹H.

45 Configuración de la RMN de 400 MHz Bruker DPX

Espectrómetro de RMN digital de alto rendimiento, Consola Microbay de 2 canales y estación de trabajo host de Linux que ejecuta Topspin versión 2.1 PL6

- 50 Dotada de:
 - Imán DPX400C Bruker-Biospin AVANCE III 9.40 Tesla (frecuencia de resonancia de protones de 400 MHz)
 - Unidad de controlador de temperatura variable B-VT 3200
- Sonda de observación de flúor de banda ancha multinuclear (BBFO) de 5 mm con ajuste digital que cubre el intervalo de ¹⁵N y ³¹P, así como de ¹⁹F con desacoplamiento de ¹H.

5. Ejemplos

60 Los siguientes ejemplos se prepararon de manera análoga a los métodos de síntesis descritos anteriormente. Estos

compuestos son adecuados como inhibidores de SYK y tienen valores de Cl₅₀ con respecto a la inhibición de SYK de menos de 10 nMol en el ensayo de inhibición de SYK y valores de CE₅₀ de menos de 150 nMol en el ensayo de CD63. Además, estos compuestos presentan una muy buena selectividad hacia SYK, lo que significa que, mientras que SYK se inhibe de manera eficaz, otras cinasas, tales como Aurora B (AURB), FLT3, GSK3β, etc. no se inhiben o prácticamente no se inhiben (las cinasas adicionales que no deberían inhibirse de manera eficaz son RET, FLT4 RPS6KA3, STK22D y EPHA2). Por consiguiente, se minimizan los efectos secundarios no deseados de estos inhibidores de SYK eficaces de la invención.

AURB fosforila a Ser10 y Ser28 en la histona H3, un hecho clave en la mitosis y la proliferación celular. La inhibición de AURB, por lo tanto, tiene el potencial de bloquear la proliferación celular y podría comprometer los tejidos que presenten un alto recambio celular, tal como el intestino o la médula ósea. Por lo tanto, se desea evitar la inhibición paralela de AURB de un inhibidor de SYK eficaz para mejorar el perfil de seguridad clínica global del compuesto. Por consiguiente, todos los compuestos de ejemplo muestran valores de Cl₅₀ con respecto a la inhibición de Aurora B de más de 10000 nMol y las relaciones de Cl_{50(AURB)}/Cl_{50 (SYK)} de todos los compuestos de ejemplo son mayores de 10000, preferentemente incluso mayores de 15000.

FLT3 es un receptor de tirosina cinasa. Cuando se une un ligando de FLT3 al receptor, se activa la actividad tirosina cinasa intrínseca del receptor, que, a su vez, fosforila y activa las moléculas de transducción de señales (tales como SHC) que, a su vez, propaga la señal en la célula. La señalización a través de FLT3 desempeña un papel en la supervivencia celular, proliferación y diferenciación y es importante para el desarrollo de linfocitos (linfocitos B y linfocitos T). Por lo tanto, se desea evitar la inhibición paralela de FLT3 de un inhibidor de SYK eficaz para mejorar el perfil de seguridad clínica global del compuesto. Por consiguiente, todos los compuestos de ejemplo de la presente invención muestran valores de Cl₅₀ con respecto a la inhibición de FLT3 de más de 1000 nMol.

La glucógeno sintasa cinasa 3 beta (GSK3β) es una serina-treonina cinasa dirigida por prolina que es prominente en las vías de señalización intracelular de TGF-β y Wnt. GSK3β facilita una serie de vías de señalización intracelular, incluyendo la activación del complejo de β-catenina. En adultos, GSK3β participa en la proliferación celular y en el metabolismo energético, mientras que en los neonatos participa en el desarrollo de células neuronales y la formación de patrones corporales. Por lo tanto, se desea evitar la inhibición paralela de GSK3β de un inhibidor de SYK eficaz
 para mejorar el perfil de seguridad clínica global del compuesto. Por consiguiente, todos los compuestos de ejemplo de la invención muestran valores de Cl₅₀ con respecto a la inhibición de GSK3β de más de 5000 nMol, preferentemente de más de 10000 nMol.

Los valores de Cl₅₀ con respecto a la inhibición de SYK, con respecto a la inhibición de Aurora B y la de FLT3 para cada una de las sustancias de ejemplo individuales se muestran en la tabla 1 a continuación y se determinaron experimentalmente como se expone a continuación:

5.1 Prueba de inhibición de SYK cinasa

40 Se expresó SYK humana recombinante (aminoácidos 342-635) en forma de una proteína de fusión con un marcador GST N-terminal, se purificó por afinidad y se ultracongeló a una concentración de aproximadamente 50 - 100 μM en tampón de almacenamiento (HEPES 25 mM, pH 7,5; MgCl₂ 25 mM; MnCl₂ 5 mM; KCl 50 mM; BSA al 0,2 %; CHAPS al 0,01 %; Na₃NO₄ 100 μM; DTT 0,5 mM, glicerol al 10 %) a -80 °C hasta su uso.

45 Se determinó la actividad catalítica de la proteína de fusión GST-SYK cinasa usando el ensayo de cinasa Glo® Luminescence Kinase (Promega; V6712). En este ensayo homogéneo, se cuantifica la cantidad de ATP que queda después de la reacción de la cinasa mediante una reacción de luciferina-luciferasa usando luminiscencia. La señal de luminiscencia obtenida se correlaciona con la cantidad de ATP todavía presente y, por lo tanto, es inversamente proporcional a la actividad de la cinasa.

Método

50

55

60

65

20

Se disolvieron los compuestos de ensayo en DMSO al 100 % a una concentración de 10 mM y se diluyeron en DMSO a una concentración de 1 mM. Se realiza la dilución en serie en DMSO al 100 %. Todas las diluciones adicionales de las sustancias se llevaron a cabo con tampón de ensayo (HEPES 25 mM, pH 7,5; MgCl₂ 25 mM; MnCl₂ 5 mM; KCl 50 mM; HSA al 0,2 %; CHAPS al 0,01 %; Na₃NO₄ 100 μM; DTT 0,5 mM). Las etapas de dilución y el intervalo de concentración se adaptaron según las necesidades. Se transfirieron partes alícuotas de 7 μl de estas diluciones a una placa Optiplate de 384 pocillos (Perkin Elmer, n.º 6007290). Se diluyó GST-SYK a 12 nM en el tampón de ensayo y se usaron 5 μl de esta dilución en el ensayo de cinasa (concentración final de SYK = 4 nM en un volumen total de 15 μl). Tras 15 minutos de incubación a temperatura ambiente, se añadieron a cada pocillo 3 μl de una mezcla de ATP 750 nM y 100 μg/ml de poli(ácido L-glutámico L-tirosina 4:1), Fluka n.º 81357) en tampón de ensayo y se prosiguió con la incubación durante 60 minutos más a temperatura ambiente.

Los controles positivos son las mezclas de reacción que no contienen sustancia de ensayo; los controles negativos (blancos) son mezclas de reacción que no contienen cinasa.

Tras 60 minutos, se añadieron 10 µl de solución Kinase-Glo® (Promega, n.º de cat. V6712) (calentada hasta temperatura ambiente) a cada pocillo y se continuó la incubación durante 15 minutos más. Se leyeron las placas en el lector Envision Luminescence Reader (Perkin-Elmer).

5 Evaluación de datos y cálculo:

El archivo de resultados del lector es un archivo csv que contiene el número de pocillo y las unidades relativas de luz (URL) medidas. Para la evaluación y el cálculo de los datos, la medición del control negativo se estableció como el 100 % de control y la medición del control positivo se estableció como el 0 % de control. Basándose en estos valores, se calculó el valor del % para la medición de la concentración de cada sustancia usando un software Assay Explorer (Accelrys). Normalmente, los valores de % de control calculados están entre los valores del 0 % y 100 %, pero también pueden estar fuera de estos límites en casos individuales según la variabilidad o las características de los compuestos. Los valores de Cl_{50} se calcularon a partir de los valores de % control, usando el software Assay Explorer. Cálculo: $[y=(a-d)/(1+(x/c)^h)^+d]$ a = valor bajo, d = valor alto; x = conc. M.; $C=Cl_{50}$ M; $C=Cl_{50}$ M; C=

Las capacidades inhibidoras de SYK satisfactorias se representan por un valor de $Cl_{50}(syK)$ medido mediante este ensayo de < 10 nMol.

5.2 Ensayo de CD63 (ensayo celular para la inhibición de SYK)

SYK es esencial para la activación mediada por FcεR1 y la desgranulación de mastocitos y basófilos. En este ensayo, se incuban en sangre completa IgE generadas contra dinitrofenol (DNP), donde se une al FcεR1 en los basófilos. Posteriormente se añade el antígeno de DNP, que se une a la IgE unida a FcεR1, dando como resultado la desgranulación de basófilos dependiente de SYK. CD63 normalmente reside en la membrana granular intracelular en los basófilos, que tras la desgranulación, se expresa en la superficie, donde puede detectarse mediante citometría de flujo. La expresión superficial de CD63 se correlaciona extremadamente bien con la liberación de histamina por los basófilos. El ensayo de CD63 se ha validado previamente como un biomarcador de acoplamiento de diana clínica en el programa para SYK de Fostamatinib (Braselmann *et al*, *J. Pharm. Exp. Therap.* 319:998-1008, 2006).

30 Método:

10

15

20

35

40

45

50

55

60

Se mezcla cuidadosamente sangre completa heparinizada (mezclador vorticial) y se añaden partes alícuotas de 100 μ l por ensayo en una placa de 96 pocillos. Se diluye Anti-DNP (1 mg/ml) a 1:100 con PBS/HSA al 0,1 % a 10 μ g/ml (concentración final: 1 μ g/ml). Se prediluye DNP/BSA (5 mg/ml) a una concentración de 60ng/ml con solución de lavado.

Compuestos: Se preparan soluciones de 1 mM; 100 μ M; 10 μ M; 1 μ M y 0,1 μ M con DMSO al 100 %. diluciones a 1:100 con PBS/HSA al 0,1 % para generar concentraciones de 10 μ M; 1 μ M; 0,1 μ M; 0,01 μ M; 0,001 μ M (concentración final: 1000; 100; 10; 1; 0,1 nM).

Los reactivos se proporcionan por el kit Basotest®.

Se incuban 10 µl de 10 µg/ml de anti DNP y 10 µl del compuesto con 100 µl de sangre completa en un baño de agua precalentado al 37 °C. Después de 30 minutos, se añaden 20 µl de tampón de estimulación a las muestras de sangre completa y se agitan vorticialmente de manera cuidadosa. Se incuban las muestras durante 10 min a 37 °C en un baño de agua. Se añaden 100 µl de DNP/BSA por ensayo a la sangre completa. Se añaden 100 µl de la solución de lavado a un tubo de ensayo adicional como control negativo. Se añaden 100 µl de DNP/BSA (final de 30ng/ml) en los tubos de compuesto. Todos los tubos se mezclan una vez más. Las muestras se incuban durante 20 min a 37 °C en un baño de agua.

La desgranulación se detiene incubando las muestras sobre hielo durante 5 min. Se añaden 20 µl de reactivo de tinción a cada tubo. Se agita vorticialmente y se incuban los tubos durante 20 min en un baño de hielo, cubiertos para prevenir la exposición a la luz. Se lisan las muestras de sangre completa y se fijan con 2 ml de solución de lisado 1 x precalentada (a temperatura ambiente). Se agita vorticialmente y se incuba durante 10 min a temperatura ambiente. Se sedimentan las células por centrifugación (5 min, 250 x g, 4 °C). Se desecha el sobrenadante.

Se añaden 3 ml de solución de lavado a los tubos. Se centrifugan los tubos (5 min, 250 x g, 4 °C). Se aspira el sobrenadante. Se añaden 200 µl de solución de lavado al sedimento celular, se agita vorticialmente. Se incuban los tubos en un baño de hielo cubierto hasta su análisis.

Las células se analizan mediante citometría de flujo usando la luz de excitación azul-verde (láser de ion de argón de 488 nm). Los datos se adquieren usando activación de fluorescencia en el canal FL2 (PE) para seleccionar respecto de granulocitos basófilos que expresan altas cantidades de IgE. Esta clasificación en vivo reduce la cantidad de datos y ahorra capacidad de memoria. Se adquieren al menos 500 basófilos por muestra.

Evaluación de datos y cálculo:

65

Para la evaluación y el cálculo de los datos, la medición del control negativo (sangre no estimulada) se ajustó al 100 % del control y la medición del control positivo (sangre estimulada con DNP/anti-DNP) se ajustó como 0 % del control. Basándose en estos valores, se calculó el valor del % de cada concentración de sustancia, una curva de concentración-efecto y un valor de CE₅₀ calculado usando GraphPad Prism, versión 6.01 para Windows. El valor de CE₅₀ se calculó usando un ajuste no lineal (log(inhibidor) frente a respuesta - pendiente variable). Normalmente, los valores de % de control calculados están entre los valores del 0 % y 100 %, pero también pueden estar fuera de estos límites en casos individuales según la variabilidad o las características de los compuestos.

Las capacidades inhibidoras de CD63 satisfactorias se representan por un valor de CE₅₀ medido mediante este ensayo de < 150 nMol.</p>

5.3 Ensayo de Aurora cinasa B

Se expresó Aurora B recombinante humana (aminoácidos 1-344, número de clon DU1773, peso molecular de 40,2 kDa, Universidad de Dundee) como una proteína de fusión con un marcador His N-terminal, se purificó por afinidad y se ultracongeló a una concentración de aproximadamente 0,25 - 0,5 mg/ml en tampón de almacenamiento (Tris-HCl 50 mM, pH 8; Na-β-glicerofosfato 25 mM; EGTA 0,1 mM; NaCl 150 mM; Brij-35 al 0,03 %; DTT 1 mM, glicerol al 10 %) a -80 °C hasta su uso.

Se determinó la actividad de la proteína cinasa Aurora B usando el ensayo de luminiscencia de cinasa ADP Glo® (Promega; V9103X). En este ensayo homogéneo, se cuantifica la cantidad de ADP que queda después de la reacción de la cinasa mediante una reacción de luciferina-luciferasa usando luminiscencia. La señal de luminiscencia obtenida se correlaciona con la cantidad de ADP todavía presente y, por lo tanto, se correlaciona con la actividad de la cinasa.

Método

20

25

45

50

55

Se disolvieron los compuestos de ensayo en DMSO al 100 % a una concentración de 10 mM y se diluyeron en DMSO a una concentración de 5 mM. Se realiza la dilución en serie por etapas de 1:10 en DMSO al 100 %. Todas las diluciones adicionales de las sustancias se llevaron a cabo con tampón de ensayo (Hepes 50 mM, pH 7,5, MgCl₂ 10 mM, EGTA 1 mM, ATP ultra puro 60 μM, Brij35 al 0,01 %, BSA al 0,1 %, β-glicerofosfato 5 mM) hasta se alcanzó una concentración que era 2,5 veces superior a la concentración final del ensayo (concentración final de los compuestos: de 50 μM a 0,005 nM). Se transfirieron partes alícuotas de 4 μl de estas diluciones a una placa Optiplate de 384 pocillos (Perkin Elmer, n.º 6007290). Se diluyó His-Aurora B hasta 125 nM en el tampón de ensayo y se usaron 4 μl de esta dilución en el ensayo de cinasa (concentración final de Aurora B = 50 nM en un volumen total de 10 μl). Tras 15 minutos de incubación a temperatura ambiente, se añadieron a cada pocillo 2 μl de sustrato 250 μM ([LRRLSLGLRRLSLGLRRLSLG]; Universidad de Dundee) en tampón de ensayo y se prosiguió con la incubación durante 60 minutos más a temperatura ambiente.

40 Los controles positivos son las mezclas de reacción que no contienen sustancia de ensayo; los controles negativos (blancos) son mezclas de reacción que no contienen cinasa.

Tras 60 minutos, se añadieron 10 µl de solución ADP-Glo® (reactivo ADP-Glo n.º V912B Promega) (calentada a temperatura ambiente) a cada pocillo y se continuó la incubación durante 40 minutos más. Luego se añadieron 20 µl de la mezcla de detección de cinasa (tampón de detección n.º V913B Promega; Sustrato de detección de cinasa n.º V914B Promega) y se incubaron durante 40 minutos a temperatura ambiente. Se leyeron las placas en el lector Envision Luminescence Reader (Perkin-Elmer).

Evaluación de datos y cálculo:

El archivo de resultados del lector es un archivo csv que contiene el número de pocillo y las ULR medidas. Para la evaluación y el cálculo de los datos, la medición del control negativo se estableció como el 0 % de control y la medición del control positivo se estableció como el 100 % de control. Basándose en estos valores, puede calcularse el valor del % de cada concentración de sustancia usando un software Assay Explorer (por ejemplo, Accelrys). Normalmente, los valores de % de control calculados están entre los valores del 0 % y 100 %, pero también pueden estar fuera de estos límites en casos individuales según la variabilidad o las características de los compuestos. Los valores de Cl_{50} se calcularon a partir de los valores de % control, usando el software Assay Explorer. Cálculo: [y=(a-d)/(1+(x/c)^b)+d], a = valor bajo, d = valor alto; x = conc. M.; Cl_{50} M; cl_{50} B = pendiente; cl_{50} B = pendien

60 Los compuestos de la presente invención son inhibidores de SYK y no deben afectar a otras cinasas, tales como AURB, lo que generalmente se refleja por un elevado valor de CI_{50(AURB)}, preferentemente de >10000 nMol y más preferentemente de > 15000 nMol, de manera particularmente preferente de > 20000 nMol y por una relación de IC_{50(AURB)}/IC_{50(SYK)} > 10000, más preferentemente >15000, de manera particularmente preferente >20000.

65 5.4 Ensayo de cinasa FLT3

Se expresó FLT3 humana recombinante (aminoácidos 564-958, peso molecular de 48,6 kDa, Invitrogen, n.º PR4666C) con un marcador de histidina, se purificó por afinidad y se ultracongeló a una concentración de aproximadamente 0,35 mg/ml en tampón de almacenamiento (Tris 50 mM (pH 7,5), NaCl 100 mM, EDTA 0,05 mM, NP-40 al 0,05 %, DTT al 2 mM y glicerol al 50 %) a -80 °C hasta su uso. Se determinó la actividad de la proteína cinasa FLT3 usando el ensayo de luminiscencia de cinasa ADP Glo® (Promega; V9103X). En este ensayo homogéneo, se cuantifica la cantidad de ADP que queda después de la reacción de la cinasa mediante una reacción de luciferina-luciferasa usando luminiscencia. La señal de luminiscencia obtenida se correlaciona con la cantidad de ADP todavía presente y, por lo tanto, se correlaciona con la actividad de la cinasa.

10 Método

30

50

Se disolvieron los compuestos de ensayo en DMSO al 100 % a una concentración de 10 mM y se diluyeron en DMSO a una concentración de 5 mM. Se realiza la dilución en serie por etapas de 1:10 en DMSO al 100 %. Todas las diluciones adicionales de las sustancias se llevaron a cabo con tampón de ensayo (Hepes 50 mM, pH 7,5, MgCl₂ 10 mM, EGTA 1 mM, Brij35 al 0,01 %, BSA al 0,1 %) hasta que se alcanzó una concentración que era 2,5 veces superior a la concentración final del ensayo (concentración final de los compuestos: de 50 µM a 0,005 nM). Se transfirieron partes alícuotas de 4 µl de estas diluciones a una placa Optiplate de 384 pocillos (Perkin Elmer, n.º 6007290). Se diluyó la enzima FLT3 a 5 nM en el tampón de ensayo y se usaron 4 µl de esta dilución en el ensayo de cinasa (concentración final de FLT3 = 2 nM en un volumen total de 10 µl). Después de 60 minutos de incubación a temperatura ambiente, se añadieron 2 µl de mezcla de 2,5 mg/ml de sustrato (Poli-Glu/Tyr; Sigma, n.º P0275) y ATP ultrapuro 2,5 mM (Promega n.º V915B) en tampón de ensayo a cada pocillo y se continuó la incubación durante 90 minutos adicionales a temperatura ambiente.

Los controles positivos son las mezclas de reacción que no contienen sustancia de ensayo; los controles negativos (blancos) son mezclas de reacción que no contienen cinasa.

Tras 90 minutos, se añadieron 10 µl de solución ADP-Glo® (reactivo ADP-Glo n.º V912B Promega) (calentada a temperatura ambiente) a cada pocillo y se continuó la incubación durante 60 minutos más. Luego se añadieron 20 µl de la mezcla de detección de cinasa (tampón de detección n.º V913B Promega; Sustrato de detección de cinasa n.º V914B Promega) y se incubaron durante 40 minutos a temperatura ambiente. Se leyeron las placas en el lector Envision Luminescence Reader (Perkin-Elmer).

Evaluación de datos y cálculo:

El archivo de resultados del lector es un archivo csv que contiene el número de pocillo y las ULR medidas. Para la evaluación y el cálculo de los datos, la medición del control negativo se estableció como el 0 % de control y la medición del control positivo se estableció como el 100 % de control. Basándose en estos valores, puede calcularse el valor del % de cada concentración de sustancia usando un software Assay Explorer (por ejemplo, Accelrys). Normalmente, los valores de % de control calculados están entre los valores del 0 % y 100 %, pero también pueden estar fuera de estos límites en casos individuales según la variabilidad o las características de los compuestos. Los valores de Cl₅₀ se calcularon a partir de los valores de % control, usando el software Assay Explorer. Cálculo: [y=(a-d)/(1+(x/c)^b)+d], a = valor bajo, d = valor alto; x = conc. M; C= Cl₅₀ M; b = pendiente; y = % de control.

Los compuestos de la presente invención son inhibidores de SYK y no deben afectar a otras cinasas, tales como FLT3, lo que generalmente se refleja por un elevado valor de Cl₅₀(FLT3), preferentemente de >1000 nMol.

5.5 Ensayo de GSK3β cinasa

Se midió la inhibición de GSK3beta en el ensayo de cinasa ADP-Glo, Custom, n.º V9103X, Promega.

Se obtiene GSK3β humana (expresada y purificada de células SF21) de la Universidad de Dundee, Escocia (Dr. James Hastie - Departamento de Bioquímica, 51,05 KDa, n.º 899) en Tris 50 mM (pH 7,5); NaCl 150 mM; EGTA 0,1 mM, Sacarosa 270 mM, β-mercaptoetanol al 0,1 %, benzamidina 1 mM, PMSF 0,2 mM).

La enzima se diluye a 0,63 mg/ml (12,34 μ M), se almacena en partes alícuotas a -80 °C

Método:

Se prepara tampón de ensayo (Hepes 50 mM, pH 7,5, MgCl₂ 10 mM, EGTA 1 mM, Brij35 al 0,01 %, BSA al 0,1 %) a partir de soluciones madre, que se almacenan a 4 °C. Todos los tampones y reactivos se equilibran a temperatura ambiente. Se diluyen la enzima y el ATP justo antes de su uso.

Los compuestos de ensayo se disuelven en DMSO a una concentración de 10 mM y se almacenan a -20 °C.

65 Se preparan diluciones seriadas de soluciones madre de compuesto 10 mM en DMSO con un factor de dilución de 6. Las soluciones madre de compuesto se usan para la dilución seriada con predilución a 1:2, que da como resultado

una concentración inicial de ensayo de 50 µM u otros factores de predilución útiles. La concentración de DMSO final es del 1 %.

Las diluciones seriadas (8 concentraciones) se transiferen a tampón de ensayo con una dilución de 1:40.

Se añaden 4 µl de estas diluciones de compuestos en tampón a placas Optiplate de 384 pocillos (placas de 384 pocillos, Optiplate de color blanco, fondo plano n.º 6007290, Perkin Elmer).

Los controles positivos y negativos contienen DMSO también diluido a 1:40 en tampón de ensayo, 4 µl/pocillo.

Se diluye His-GSK3beta en tampón de ensayo a una concentración 2,5 veces por encima de la concentración final (final = 2 nM), Se añaden 4 µl/pocillo a las prediluciones de compuesto y los valores elevados. Se añade tampón de ensayo sin enzima a los controles negativos.

15 No se necesita sustrato debido a la autofosforilación en la enzima.

Se centrifugan las placas Optiplate (centrifugación breve), se agitan cuidadosamente, se cubren con una tapa y se incuban a temperatura ambiente durante 60 min.

Se diluye ATP (ATP ultrapuro, 10 mM n. $^{\circ}$ V915B, Promega) en tampón de ensayo a una concentración 5 veces superior a la concentración final (final = 7 μ M), Se añadieron 2 μ I/pocillo a una mezcla de compuesto y enzima, y también a los valores elevados y bajos.

Se centrifugan las placas Optiplate (centrifugación breve), se agitan cuidadosamente, se cubren con una tapa y se incuban a temperatura ambiente durante 90 min.

Se añaden 10 µl de reactivo ADP-Glo (reactivo ADP-Glo n.º V912B Promega) a todos los pocillos para eliminar el ATP no usado. Las placas se mezclan mediante agitación cuidadosa, tiempo de incubación de 60 min, cubiertas con una tapa.

Se añaden 20 µl de reactivo de detección de cinasa (sustrato de detección de cinasa n.º V914B Promega disuelto en tampón de detección de cinasa n.º V913B Promega) a todos los pocillos para transformar el ADP en ATP, que se produjo durante la rección de cinasa. Las placas se mezclan mediante agitación cuidadosa, tiempo de incubación de 40 min, selladas con TopSeal, protegidas de la luz.

Se leyeron las placas en el lector Envision Luminescence Reader (Perkin-Elmer).

Evaluación de datos y cálculo:

5

10

30

35

El archivo de resultados del lector es un archivo csv que contiene el número de pocillo y las ULR medidas. Para la evaluación y el cálculo de los datos, la medición del control negativo se estableció como el 0 % de control y la medición del control positivo se estableció como el 100 % de control. Basándose en estos valores, puede calcularse el valor del % de cada concentración de sustancia usando un software Assay Explorer (por ejemplo, Accelrys). Normalmente, los valores de % de control calculados están entre los valores del 0 % y 100 %, pero también pueden estar fuera de estos límites en casos individuales según la variabilidad o las características de los compuestos. Los valores de Cl₅₀ se calcularon a partir de los valores de % control, usando el software Assay Explorer. Cálculo: [y=(a-d)/(1+(x/c)^b)+d], a = valor bajo, d = valor alto; x = conc. M.; C= Cl₅₀ M; b = pendiente; y = % de control.

Los compuestos de la presente invención son inhibidores de SYK y no deben afectar a otras cinasas, tales como GSK3β, lo que generalmente se refleja por un elevado valor de Cl_{50(GSK3β)}, preferentemente de >5000 nMol y más preferentemente de > 10000 nMol.

5.6 Ensayo de estabilidad microsomal en el hígado humano

Adicionalmente, es deseable que un inhibidor de SYK que sea suficientemente específico para SYK como se ha descrito anteriormente tenga una cierta estabilidad metabólica, medida, por ejemplo, en presencia de microsomas hepáticos humanos, correspondiente a Qh < 23 %, en donde Qh es el porcentaje de flujo sanguíneo hepático (cuanto mayor sea la estabilidad, menor será el valor de Qh). En caso de que el valor de Qh del inhibidor de SYK en cuestión sea muy elevado (mayor del 23 %), será difícil alcanzar un nivel plasmático adecuado del inhibidor de SYK correspondiente en el paciente que se vaya a tratar.

<u>Método:</u>

La degradación metabólica para un inhibidor de SYK específico se realiza a 37 °C con microsomas hepáticos humanos combinados (los microsomas hepáticos humanos están disponibles en el mercado como "BD UltraPool™" de Corning Life Sciences, Fogostraat 12, 1060 LJ Amsterdam, Países Bajos). El volumen de incubación final de 100 µl por punto

de tiempo contiene tampón TRIS a pH 7,6 (0,1 M), cloruro de magnesio (5 mM) proteína microsomal (1 mg/ml) y el compuesto de ensayo a una concentración final de 1 µM.

Tras un corto período de preincubación a 37 °C, se inicia la reacción mediante la adición de beta-nicotinamida adenina dinucleótido fosfato en su forma reducida (NADPH, 1 mM) y se termina transfiriendo una alícuota al disolvente después de diferentes puntos de tiempo. Además, la degradación independiente de NADPH se controla en incubaciones sin NADPH, se termina en el último punto temporal.

Se sedimentan las incubaciones inactivadas (terminadas) por centrifugación (10000 g, 5 min).

Se ensaya una alícuota del sobrenadante mediante CL-EM/EM para la cantidad de compuesto original restante. La semivida (t1/2 *in vitro*) está determinada por la pendiente de la gráfica semilogarítmica del perfil de concentracióntiempo.

15 Evaluación de datos y cálculo:

5

10

20

30

35

45

50

55

60

La eliminación intrínseca (EL INTRÍNSECA) se calcula considerando la cantidad de proteína en la incubación:

CL_INTRINSIC [µl/min/mg de proteína] = (Ln 2/(t1/2 in vitro [min] * contenido de proteína [mg/ml])) * 1000

El contenido de proteína [mg/ml] se determinó con el "Kit de ácido bicinconínico" de Sigma Aldrich (disponible en el mercado).

El aclaramiento intrínseco aumentado a escala (CL_UP_INT) se calcula considerando el peso del hígado [g de hígado/kg de peso corporal] y la recuperación microsomal [mg de proteína/g de hígado]:

CL UP INT [ml/min/kg] = 0,001 * CL INTRINSIC*peso del hígado*recuperación microsomal

con recuperación microsomal = 45 mg de proteína/g de hígado

con un peso del hígado = 25,7 g de hígado/kg de peso corporal

El porcentaje de flujo sanguíneo hepático (% Qh) finalmente se calcula considerando el flujo sanguíneo hepático humano Q [ml/min/kg]:

% Q_h [%] =((Q* CL_UP_INT)/(Q+ CL_UP_INT)/Q)*100

con el flujo sanguíneo hepático (Q) = 20,7 ml/ min/kg.

40 5.7 Ensayo de estabilidad en hepatocitos humanos

Una forma más exhaustiva de medir la estabilidad metabólica de un compuesto de la presente invención que la estabilidad microsomal (sección 5.6) es el ensayo de estabilidad en hepatocitos humanos descrito a continuación. En el presente documento, se lleva a cabo la degradación metabólica del compuesto en cuestión en una suspensión de hepatocitos humanos.

Se incuban hepatocitos humanos (normalmente criopreservados) en un sistema tampón adecuado (por ejemplo, medio Eagle modificado de Dulbecco más 3,5 µg de glucagón/500 ml, 2,5 mg de insulina/500 ml y 3,75 mg/500 ml de hidrocortisona) que contenía suero de la especie al 5 %.

Después de (normalmente) una preincubación de 30 min en una incubadora (37 °C, CO_2 al 10 %) se añaden 5 μ l de la solución del compuesto que se va a ensayar (80 μ M; a partir de una solución madre 2 mM en DMSO diluida a 1:25 con medio) en 395 μ l de suspensión de hepatocitos (densidad celular en el intervalo de 0,25-5 Mio células/ml, normalmente 1 Mio células/ml; la concentración final del compuesto en cuestión es de 1 μ M, la concentración final de DMSO es del 0,05 %).

Las células se incubaron durante seis horas (incubadora, agitador orbital) y se tomaron muestras (25 µl) a las 0, 0,5, 1, 2, 4 y 6 horas. Las muestras se transfieren en acetonitrilo y se sedimentan mediante centrifugación (5 minutos). El sobrenadante se transfiere a una nueva placa de 96 pocillos profundos, se evapora con nitrógeno y se resuspende.

La degradación del compuesto que se va a ensayar se analiza mediante HPLC-EM/EM.

Evaluación de datos y cálculo:

65 Se calcula CLint del siguiente modo CL INTRINSIC = Dosis / ABC = (CO/CD) / (ABD + clasto/k) x 1000/60.

- C0: concentración inicial en la incubación [µM],
- CD: densidad celular de las células vitales [106células/ml],
- 5 ABD: área bajo los datos [μM x h], clasto: concentración del último punto de datos [μΜ],
 - k: pendiente de la línea de regresión para la degradación del compuesto en cuestión [h-1].
- La eliminación intrínseca hepática calculada *in vitro* se puede reescalar a la eliminación intrínseca hepática *in vivo* y usar para predecir la eliminación hepática en sangre *in vivo* (EL) mediante el uso de un modelo de hígado (modelo bien agitado).
 - CL_INTRINSIC_INVIVO [ml/min/kg] = (CL_INTRINSIC [μ l_/min/10 θ células] x hepatocelularidad [10^6 células/g de hígado] x factor hepático [g/kg de peso corporal]) / 1000
 - CL [ml/min/kg] = CL_INTRINSIC_INVIVO [ml/min/kg] x flujo sanguíneo hepático [ml/min/kg] /(CL_INTRINSIC_INVIVO [ml/min/kg] + flujo sanguíneo hepático [ml/min/kg])
 - Qh [%] = EL [ml/min/kg] / flujo sanguíneo hepático [ml/min/kg])
 - Hepatocelularidad, humano: 120x106 células/g de hígado
 - Factor hepático, humano: 25,7 g/kg de peso corporal
- 25 Flujo sanguíneo, humano: 21 ml/(min x kg)

15

20

Una estabilidad en hepatocitos humanos satisfactoria para un compuesto en cuestión medida mediante este ensayo se representa por un $Q_h < 20$ % (según el cual tanto mejor es la estabilidad cuanto menor sea el valor de Q_h).

experimentalmente)	relación de selectividad, Clso(AURB)/Clso(SYK)	34800	23955
metabólica (determinada	estabilidad en hepatocitos humanos (capítulo 5.7) HEPhu [%Qh]	10	*
r SYK y estabilidad	Valor de Clso de la inhibición de FLT3 (capítulo 5.4) [nM]	2230	2834
SYK, selectividad po	Valor de CE ₅₀ del Alor de CI ₅₀ de la ensayo de CD63 inhibición de (capítulo 5.2) AURB (capítulo [nM]	34800	31141
to a la inhibición de	Valor de CE50 del ensayo de CD63 (capítulo 5.2) [nM]	41	45
iedades con respect	Valor de Clso de inhibición de SYK, (capítulo 5.1) [nM]	1	1,3
Tabla 1: Compuestos de ejemplo y sus propiedades con respecto a la inhibición de SYK, selectividad por SYK y estabilidad metabólica (determinada experimentalmente)	Estructura	Ouiral No.	Quiral
ĭ	ӹ́ ž	-	2

	relación de selectividad, Clso(AURB)/Clso(SYK)	15731	29636
	estabilidad en hepatocitos humanos (capítulo 5.7) HEPhu [%Qh]	7	10
	Valor de Clso de la inhibición de FLT3 (capítulo 5.4) [nM]	1340	7410
(continuación)	Valor de Clso de la inhibición de AURB (capítulo 5.3) [nM]	31461	65200
(conti	Valor de CΕ ₅₀ del ensayo de CD63 (capítulo 5.2) [nM]	51	64
	Valor de Clso de inhibición de SYK, (capítulo 5.1) [nM]	2	2,2
	Estructura	Ouiral Ouiral	Quiral
	Ξ, Š.	м	4

	:lso(SYK)		
	relación de selectividad, Clso(AURB)/Clso(SYK)	15152	13115
	estabilidad en hepatocitos humanos (capítulo 5.7) HEPhu [%Q _h]	*	9
	Valor de Clso de la inhibición de FLT3 (capítulo 5.4) [nM]	3990	3730
(continuación)	Valor de Clso de la inhibición de AURB (capítulo 5.3) [nM]	50000	34100
(contin	Valor de CE ₅₀ del ensayo de CD63 (capítulo 5.2) [nM]	52	42
	Valor de Cl ₅₀ de inhibición de SYK, (capítulo 5.1) [nM]	ຄຸ ຕິ	2,6
	Estructura	Quiral	Quiral
	щŠ	ĸ	ဖ

	relación de selectividad, Clso(AURB)/Clso(SYK)	20154	15080
	estabilidad en hepatocitos humanos (capítulo 5.7) HEPhu [%Q _h]	4 >	2
	Valor de Clso de la inhibición de FLT3 (capítulo 5.4) [nM]	2440	2071
(continuación)	Valor de Clso de la inhibición de AURB (capítulo 5.3) [nM]	26200	21112
(conti	Valor de CEso del ensayo de CD63 (capítulo 5.2) [nM]	553	47
	Valor de Clso de inhibición de SYK, (capítulo 5.1) [nM]	1,3	4,1
	Estructura	Quiral	Quiral
	ijż	7	∞

	relación de selectividad, Clso(AURB)/Clso(SYK)	21219	10312
	estabilidad en hepatocitos humanos (capítulo 5.7) HEPhu [%Qh]	Q	ō
	Valor de Clso de la inhibición de FLT3 (capítulo 5.4) [nM]	1840	2015
(continuación)	Valor de Clso de la inhibición de AURB (capítulo 5.3) [nM]	23341	34030
(conti		52	65
	Valor de Clso de inhibición de SYK, (capítulo 5.1) [nM]	1,1	င် ဗိ
	Estructura	Quiral	Ouiral
	щ¸s̈́	O	10

	relación de selectividad, Clso(AURB)/Clso(SYK)	20800	10207
	estabilidad en hepatocitos humanos (capítulo 5.7) HEPhu [%Qh]	4	4>
	Valor de Clso de la inhibición de FLT3 (capítulo 5.4) [nM]	3480	5030
(continuación)	Valor de CEso del Valor de CIso de la ensayo de CD63 inhibición de (capítulo 5.2) AURB (capítulo [nM]	31200	29600
(conti		65	67
	Valor de Cl₅o de inhibición de SYK, (capítulo 5.1) [nM]	1,5	5,9
	Estructura	Ouiral N N N N N N N N N N N N N N N N N N N	Ouiral Ouiral
	щ°́	7	2

(continuación)	relación de selectividad, Clso(AURB)/Clso(SYK)	39982	15625
	estabilidad en hepatocitos humanos (capítulo 5.7) HEPhu [%Qh]	೯	12
	Valor de Clso de la inhibición de FLT3 (capítulo 5.4) [nM]	5219	4050
	Valor de Clso de la inhibición de AURB (capítulo 5.3) [nM]	35984	20000
	Valor de CE ₅₀ del ensayo de CD63 (capítulo 5.2) [nM]	58	76
	Valor de Cl₅o de inhibición de SYK, (capítulo 5.1) [nM]	0,9	3,2
		Quiral	Ouiral
	Estructura		
	щŠ	3	41

(continuación)	relación de selectividad, Clso(AURB)/Clso(SYK)	22985	143 <u>23</u>
	estabilidad en hepatocitos humanos (capítulo 5.7) HEPhu [%Qh]	10	Q
	Valor de Clso de la inhibición de FLT3 (capítulo 5.4) [nM]	4788	3490
	Valor de Cl ₅₀ de la inhibición de AURB (capítulo 5.3) [nM]	50566	44400
	Valor de CE ₅₀ del ensayo de CD63 (capítulo 5.2) [nM]	77	82
	Valor de Clso de inhibición de SYK, (capítulo 5.1) [nM]	2,2	3,1
		Ouiral	Quiral
	Estructura		
	Щ, S.	15	16

r			
(continuación)	relación de selectividad, Clso(AURB)/Clso(SYK)	17241	18323
	estabilidad en hepatocitos humanos (capítulo 5.7) HEPhu [%Q _h]	4	4 ^
	Valor de Cl50 de la inhibición de FLT3 (capítulo 5.4) [nM]	11295	4673
	Valor de CEso del Alanca de CIso de la ensayo de CD63 inhibición de (capítulo 5.2) AURB (capítulo [nM]	50000	20155
		92	99
	Valor de Clso de inhibición de SYK, (capítulo 5.1) [nM]	2, 9	1,1
		Quiral	Quiral
	Estructura		
	ijŠ	17	18

	50(SYK)		
	relación de selectividad, Clso(AURB)/Clso(SYK)	13212	13932
(continuación)	estabilidad en hepatocitos humanos (capítulo 5.7) HEPhu [%Qh]	7	4
	Valor de Clso de la inhibición de FLT3 (capítulo 5.4) [nM]	4954	3316
	Valor de Clso de la inhibición de AURB (capítulo 5.3) [nM]	23782	34831
	Valor de CE ₅₀ del ensayo de CD63 (capítulo 5.2) [nM]	107	134
	Valor de Clso de inhibición de SYK, (capítulo 5.1) [nM]	1,8	2,5
	Estructura	Quiral	Ouiral
	щ¸s	19	20

(continuación)	relación de selectividad, Clso(AURB)/Clso(SYK)	14442	11207
	estabilidad en hepatocitos humanos (capítulo 5.7) HEPhu [%Qh]	7	ಣ
	Valor de Clso de la inhibición de FLT3 (capítulo 5.4) [nM]	2210	1948
	Valor de Clso de la inhibición de AURB (capítulo 5.3) [nM]	17330	13448
	Valor de CE ₅₀ del ensayo de CD63 (capítulo 5.2) [nM]	76	67
	Valor de Clso de inhibición de SYK, (capítulo 5.1) [nM]	1,2	1,2
	Estructura	Ouiral N N N N N N N N N N N N N N N N N N N	Quiral
	ij².	21	22

Tabla 2: Compuestos de la técnica anterior estructuralmente más próximos (divulgados en el documento WO 15017610) y sus propiedades respecto de la inhibición de SYK, selabilidad metabólica (determinada experimentalmente) CIso(AURB)/CISO(SYK) relación de selectividad, 810 370 891 estabilidad en hepatocitos humanos s (capítulo 5.7) HEPhu ([%Qh] 31 17 Valor de Clso de la inhibición de la Inhibición de PLT3 (capítulo (5.4) [nM] 384 43 25 Valor de Clso de la inhibición de AURB (capítulo 5.3) [nM] 1692 162 37 del ensayo de CD63 (capítulo 5.2) [nM] Valor de Clso de Valor de CEso 77 42 20 la inhibición de SYK, capítulo 5.1) [nM] 0,2 1,9 0,1 Quiral Quiral Quiral Estructura ejemplo 5.20 en la página 506 del documento WO15017610 ejemplo 6.09 en la página 559 del documento WO15017610 example3A.02, en la página 196 del documento WO15017610 Compuesto de la técnica anterior

	relación de selectividad, Clso(AURB)/Clso(SYK)	964	>4850
	estabilidad en relación de hepatocitos humanos selectividad, (capítulo 5.7) HEPhu Clso(AURB)/Clso(SYK) [%Ch]	2	4>
	Valor de Clso de la inhibición de FLT3 (capítulo 5.4) [nM]	307	6677
u)	Valor de Clso de la inhibición de AURB (capítulo 5.3) [nM]	1771	>20000
(continuación)	Valor de CEso del ensayo de CD63 (capítulo 5.2) [nM]	58	483
	Valor de Cl ₅₀ de Valor de CE ₅₀ la inhibición de del ensayo de SYK, capítulo CD63 (capítulo 5.1) [nM]	8,0	10,3
		Quiral	Quiral
	Estructura		
	Compuesto de la técnica anterior	ejemplo 3B.22 en la página 219 del documento WO15017610	ejemplo 6.60 en la página 587 del documento WO15017610

Los compuestos de ejemplo de la presente invención, n.º 1 a 22 (véase la tabla 1) se han sintetizado de acuerdo con el capítulo 4 y después, se sometió a los compuestos de ejemplo a los diferentes ensayos como se ha descrito en el capítulo 5 a fin de determinar

- la capacidad de inhibición de SYK (un bajo valor de Cl₅₀ representa una buena inhibición de SYK, en particular, los valores de Cl₅₀ de <10 nMol en el "ensayo de inhibición de SYK" y los valores de CE₅₀ de < 150 nMol en el "ensayo de CD63" representan propiedades inhibidoras de SYK satisfactorias)
 - · la selectividad por SYK significa una muy baja inhibición de otras cinasas, tales como, por ejemplo

20

25

30

- a) Aurora B (una buena selectividad por SYK se refleja por "elevados" valores de CI₅₀ con respecto a la inhibición de AURB; se desea una CI_{50(AURB)} >10000 o una relación de CI_{50(AURB)}/CI_{50(SYK)} >10000 nMol y representa una buena selectividad por SYK),
- b) FLT3 (una buena selectividad por SYK se refleja por "elevados" valores de Cl₅₀ con respecto a la inhibición de FLT3, se desea una Cl_{50(FLT3)} >1000 nMol y representa una buena selectividad por SYK),
 - la estabilidad metabólica que puede medirse, por ejemplo, mediante el porcentaje de Qh en hepatocitos humanos (%Qh<20 representa una estabilidad metabólica suficiente para que un inhibidor de SYK se desarrolle como medicamento).
 - También se han sintetizado los compuestos de la técnica anterior estructuralmente más próximos divulgados en el documento WO15017610 y se sometieron a los mismos ensayos descritos en el capítulo 5 a fin de determinar las propiedades de estos compuestos de la técnica anterior estructuralmente más próximos con respecto a la capacidad de inhibición de SYK, potencia en CD63, la selectividad por SYK y la estabilidad metabólica y para compararlos con los compuestos de ejemplo de la presente invención.
 - Mientras que el ejemplo 5.20 en la página 506 del documento WO15017610, el ejemplo 3A.02 en la página 196 del documento WO15017610, el ejemplo 6.09 en la página 559 del documento WO15017610 y el ejemplo 3B.22 en la página 219 del documento WO15017610 tienen valores de Cl_{50(SYK)} aceptables con una Cl_{50(SYK)} < 10 nMol en el "Ensayo de inhibición de SYK" y con una CE₅₀ < 150 nMol en el "ensayo de CD63", estos compuestos de la técnica anterior no muestran una selectividad por SYK satisfactoria respecto de AURB. Las Cl_{50(AURB)} de estos compuestos de la técnica anterior son de 162 nMol, 1692 nMol, 37 nMol y 771 nMol, significativamente menores que las Cl_{50(AURB)} de los compuestos de ejemplo de la invención, que tienen Cl_{50(AURB)} > 10000 nMol (la mayoría de ellos incluso tienen una Cl_{50(AURB)} > 15000 nMol). Esto mismo es cierto para las relaciones de Cl_{50(AURB)}/Cl_{50(SYK)}, que son, para los ejemplos de la técnica anterior 5.20, 3A.02, 6.09 y 3B.22 con valores de 810, 891, 370 y 964, significativamente menores de 10000. Sin embargo, los compuestos de ejemplo de la presente invención, tienen relaciones de Cl_{50(AURB)}/Cl_{50(SYK)} de >10000, con gran frecuencia incluso >15000.
- Además, el ejemplo 5.20 en la página 506 del documento WO15017610, el ejemplo 3A.02 en la página 196 del documento WO15017610, el ejemplo 6.09 en la página 559 del documento WO15017610 y el ejemplo 3B.22 en la página 219 del documento WO15017610 no muestran una selectividad por SYK satisfactoria con respecto a FLT3.
- Las CI_{50(FLT3)} de los compuestos de la técnica anterior, ejemplo 5.20 en la página 506 del documento WO15017610, el ejemplo 3A.02 en la página 196 del documento WO15017610, el ejemplo 6.09 en la página 559 del documento WO15017610 y el ejemplo 3B.22 en la página 219 del documento WO15017610, siendo de 43 nMol, 384 nMol, 25 nMol y 307 nMol, son significativamente menores que la CI_{50(FLT3)} de los compuestos de ejemplo de la invención, que tienen CI_{50(FLT3)} > 1000 nMol (la mayoría incluso tienen una CI_{50(FLT3)} > 2000 nMol).
- A diferencia del compuesto de la técnica anterior 6.60 en la página 587 del documento WO15017610 parece tener una Cl_{50(AURB)} >50000 nMol y una Cl_{50(FLT-3)} = 6677 nMol, al menos con respecto a las mediciones absolutas de selectividad por SYK, para este compuesto de la técnica anterior 6.60 (en la página 587 del documento WO15017610), la capacidad inhibidora de SYK no es suficiente, con una Cl_{50(SYK)} de 10,3 nMol (Cl_{50(SYK)} mayor de 10 nMol) y con una CE_{50(SYK)} en el ensayo de CD63 de 483 nMol (la CE₅₀ en el ensayo de CD63 es mayor de 150 nMol).
- 55 Por consiguiente, únicamente los compuestos de la presente invención tienen al mismo tiempo
 - a) una excelente capacidad inhibidora de SYK (CI_{50(SYK)} < 10 nMol, CE₅₀ < 150 nMol)
- b) una buena selectividad por SYK ($Cl_{50(AURB)} > 10000$ nMol y $Cl_{50(AURB)} / Cl_{50(SYK)} > 10000$ y $Cl_{50(FLT3)} > 1000$ nMol)) y
 - c) una estabilidad metabólica suficiente (%Qh < 20 en hepatocitos humanos)
- siendo todas propiedades que son muy significativas para el uso de un inhibidor de SYK como medicamento para tratar enfermedades relacionadas con SYK.

6. INDICACIONES

Como se ha descubierto, los compuestos de fórmula 1 o 1' se caracterizan por su selección de aplicaciones en el campo terapéutico. Ha de hacerse mención particular de aquellas aplicaciones para las que se usan preferentemente los compuestos de fórmula 1 o 1' de acuerdo con la invención, basándose en su actividad farmacéutica como inhibidores de SYK. Los ejemplos incluyen problemas respiratorios, enfermedades alérgicas, osteoporosis, enfermedades o problemas gastrointestinales, enfermedades inmunitarias o autoinmunitarias, enfermedades alérgicas, enfermedades inflamatorias, por ejemplo, enfermedades inflamatorias de las articulaciones, piel y ojos, y enfermedades del sistema nervioso central o periférico.

10

15

20

En especial, cabe destacar la prevención y el tratamiento de las enfermedades respiratorias y pulmonares que se acompañan de un aumento de la producción de moco, inflamación y/o enfermedades obstructivas de las vías aéreas. Ejemplos de estas incluyen asma, asma pediátrica, SDRA (síndrome de dificultad respiratoria del adulto), bronquitis aguda, alérgica o crónica, anemia hemolítica autoinmunitaria, bronquitis crónica obstructiva (EPOC) (incluyendo el tratamiento de las agravaciones inducidas por rinovirus), tos, rinitis o sinusitis alérgica, rinoconjuntivitis alérgica, rinitis o sinusitis crónica, alveolitis, pulmón de granjeros, vías aéreas hiperreactivas, bronquitis infecciosa o neumonitis, bronquiectasia, hipertensión de las arterias pulmonares, fibrosis pulmonar, edema bronquial, edema pulmonar, neumonía o neumonía intersticial provocada por diversas causas tales como aspiración, inhalación de gases tóxicos o bronquitis, neumonía o neumonía intersticial provocada por insuficiencia cardíaca, radiación, quimioterapia, fibrosis quística o mucoviscidosis, deficiencia de alfa 1-antitripsina.

Los compuestos de acuerdo con la invención también son preferentemente adecuados para el tratamiento de enfermedades alérgicas tales como, por ejemplo, rinitis alérgica, rinoconjuntivitis alérgica, conjuntivitis alérgica y dermatitis de contacto, urticaria/angioedema y dermatitis alérgica.

25

65

También cabe mencionar preferentemente el tratamiento de enfermedades inflamatorias del tracto gastrointestinal. Son ejemplos de estas la enfermedad de Crohn y la colitis ulcerosa.

Los compuestos de acuerdo con la invención también son preferentemente adecuados para el tratamiento de enfermedades inflamatorias de las articulaciones, de los vasos sanguíneos y del riñón o enfermedades inflamatorias de la piel y de los ojos. Son ejemplos de estas la artritis reumatoide, glomerulonefritis basada en anticuerpos, psoriasis, síndrome de Kawasaki, enfermedad celíaca (esprúe), arteriosclerosis y granulomatosis de Wegener, artrosis, esclerodermia sistémica, espondilitis anquilosante.

Los compuestos de acuerdo con la invención también son preferentemente adecuados para el tratamiento de enfermedades autoinmunitarias. Son ejemplos de estas la hepatitis (autoinmunitaria), lupus eritematoso, nefritis por lupus, lupus sistémico, lupus eritematoso sistémico, lupus discoide, lupus eritematoso cutáneo (agudo, subagudo, crónico), síndrome antifosfolípido, enfermedad de Berger, síndrome de Evans, anemia inmunohemolítica, PTI (púrpura trombocitopénica idiopática; adulta, neonatal y pediátrica), miastenia grave, síndrome de Sjögren, esclerodermia, penfigoide ampollar y pénfigo vulgar.

Los compuestos de acuerdo con la invención también son preferentemente adecuados para el tratamiento de linfomas de linfocitos B, como la leucemia linfocítica crónica y linfomas no Hodgkin, macroglobulinemia de Waldenström (*Clinical Cancer Research* (2015), 21(11), 2538-2545) o linfomas de linfocitos T.

Los compuestos de acuerdo con la invención también son preferentemente adecuados para el tratamiento de la enfermedad del injerto contra el hospedador.

Preferentemente, también caben mencionar la prevención y el tratamiento de enfermedades del sistema nervioso central o periférico. Son ejemplos de estas la esclerosis múltiple aguda y crónica o la esclerosis lateral no familiar.

También ha de hacerse mención preferentemente al tratamiento de la esclerosis sistémica (SSC). Pamuk Omer Nuri; Can Guray; Ayvaz Suleyman; Karaca Turan; Demirtas Selim; Pamuk Gulsum E; Tsokos George, *Clinical and experimental rheumatology* (2015); ISSN:0392-856X.

También ha de hacerse mención preferentemente al tratamiento de enfermedades infecciosas. Los ejemplos de estas son malaria (Abstracts, Joint 41st Great Lakes and 46th Central Regional Meeting of the American Chemical Society, GrandRapids, MI, Estados Unidos, 27-30 de mayo (2015), JGLCRM-283; documento WO 2014100113) y dengue (*Journal of Biological Chemistry*, Volumen: 290, Número: 28, Páginas: 17306-17320)

Preferentemente, también se puede mencionar la prevención y el tratamiento de enfermedades osteoporóticas tales como, por ejemplo, osteopenia asociada a una enfermedad, osteoporosis y enfermedades osteolíticas.

La presente invención se refiere de manera particularmente preferida al uso de compuestos de fórmula <u>1</u> para preparar una composición farmacéutica para el tratamiento de enfermedades seleccionadas entre asma, EPOC, rinitis alérgica, Síndrome de dificultad respiratoria en adultos, bronquitis, dermatitis alérgica, dermatitis de contacto, PTI, artritis reumatoide, lupus eritematoso sistémico, nefritis lúpica y rinoconjuntivitis alérgica.

Lo más preferentemente, los compuestos de fórmula <u>1</u> se pueden usar para el tratamiento de una enfermedad seleccionada entre asma, rinitis alérgica, artritis reumatoide, lupus eritematoso sistémico, nefritis por lupus, dermatitis alérgica y EPOC.

7. COMBINACIONES

10

15

20

25

30

Los compuestos de fórmula $\underline{1}$ o $\underline{1'}$ pueden usarse solos o junto con otras sustancias activas de fórmula 1 o 1' de acuerdo con la invención. Los compuestos de fórmula 1 o 1' también pueden usarse opcionalmente junto con otras sustancias farmacológicamente activas. Preferentemente, las sustancias activas usadas en el presente documento pueden seleccionarse, por ejemplo, entre los betamiméticos, anticolinérgicos, corticoesteroides, inhibidores de PDE4, antagonistas de LTD4, inhibidores de EGFR, inhibidores de MRP4, agonistas de la dopamina, antihistamínicos H1, antagonistas de PAF, inhibidores de la iNos, inhibidores de la HMG-CoA reductasa (estatinas), inhibidores de PI3cinasa, antagonistas de CCR3, antagonistas de CCR2, antagonistas de CCR1, inhibidores de IKK2, agonistas de A2a, inhibidores de la integrina alfa-4, antagonistas de CRTH2, histamina 1, antagonistas de H1/H3 combinadas, inhibidores de la p38 cinasa, metilxantinas, inhibidores de ENaC, antagonistas de CXCR1, antagonistas de CXCR2, inhibidores de ICE, antagonistas de LTB4, antagonistas de 5-LO, antagonistas de FLAP, antagonistas de LTB4; cromoglicina, miméticos de glucocorticoides disociados, agentes inmunosupresores, citostáticos, fármacos antiinflamatorios no esteroideos (AINE), cloroquina, hidroxicloroquina, anticuerpos anti-TNF, anticuerpos anti-GM-CSF, anticuerpos anti-CD46, anticuerpos anti-IL-1, anticuerpos anti-IL-2, anticuerpos anti-IL-4, anticuerpos anti-IL-5, anticuerpos anti-IL-6, anticuerpos anti-receptor de IL6, anticuerpos anti-IL-13, anticuerpos anti-IL-18, anticuerpos anti-CD30 L, anticuerpos anti-Ox40L, anticuerpos anti-IL-4/IL-13, anticuerpos anti-IL-23 (p19), anticuerpos anti-IL-12/IL-23 (p40), anticuerpos anti-CD3, anticuerpos anti-CD4, anticuerpos anti-CD154, anticuerpos CD89, anticuerpos anti-IL-2/CD25, anticuerpos anti-CD22, anticuerpos anti-interferón, anticuerpos anti-ICOS, anticuerpos anti-ICOS, anticuerpos anti-CD20, anticuerpos anti-CD40, anticuerpos anti-BAFF/BLyS, anticuerpos anti-CD18, anticuerpos anti-CD62L, anticuerpos anti-CD147, anticuerpos anti-integrina, agentes que interfieren con LFA-1, moduladores de la vía de IL-36, antagonistas de M-CSF/c-fms, fusiones CTLA-4, moduladores de mTor, inhibidores de receptores de tipo Toll 7 (inhibidor de TLR7), inhibidores de receptores de tipo Toll 9 (inhibidores de TLR9), moduladores coestimulantes de linfocitos T, tales como fusiones de CTLA-4, inhibidores de JAK, moduladores de IRF, antagonistas de los receptores de quimiocinas CX3 (antagonistas de CX3CR1), inhibidores de IRAK (en particular, inhibidores IRAK1 e IRAK4), moduladores de la esfingosina-1-fosfato (moduladores de la vía de S1P), inhibidores de triple cinasa contra PDGFR, FGFR y VEGFR, por ejemplo, Nintedanib

o combinaciones dobles o triples de los mismos, tales como, por ejemplo, combinaciones de uno, dos o tres compuestos seleccionados de entre

- Inhibidores de SYK de fórmula <u>1</u> o <u>1'</u>, betamiméticos, corticoesteroides, inhibidores de EGFR y antagonistas de PDE4.
 - Inhibidores de SYK de fórmula <u>1</u> o <u>1'</u>, anticolinérgicos, betamiméticos, corticoesteroides, inhibidores de EGFR y antagonistas de PDE4,
 - Inhibidores de SYK de fórmula 1 o 1', inhibidores de PDE4, corticosteroides e inhibidores de EGFR,
- Inhibidores de SYK de fórmula 1 o 1, inhibidores de EGFR e inhibidores de PDE4,
 - Inhibidores de SYK de fórmula $\frac{1}{2}$ o $\frac{1}{1}$ e inhibidores de EGFR,
 - Inhibidores de SYK de fórmula 1, betamiméticos y anticolinérgicos
 - Inhibidores de SYK de fórmula 1 o 1', anticolinérgicos, betamiméticos, corticosteroides e inhibidores de PDE4,
- Inhibidores de SYK de fórmula 1 o 1', anticolinérgicos, betamiméticos, corticoesteroides, inhibidores de iNOS, inhibidores de HMG-CoA reductasa.

Las combinaciones de tres sustancias activas, tomadas cada una de una de las categorías de compuestos mencionadas anteriormente, también son un objeto de la invención.

Los betamiméticos adecuados usados son preferentemente compuestos seleccionados entre arformoterol, carmoterol, formoterol, indacaterol, salmeterol, albuterol, bambuterol, bitolterol, broxaterol, carbuterol, clenbuterol, fenoterol, hexoprenalina, ibuterol, isoetarina, isoprenalina, levosalbutamol, mabuterol, meluadrina, metaproterenol, milveterol, orciprenalina, pirbuterol, procaterol, reproterol, rimiterol, ritodrina, salmefamol, soterenol, sulfonterol, terbutalina, tiaramida, tolubuterol, zinterol, 6-Hidroxi-8-{1-hidroxi-2-[2-(4-metoxi-fenil)-1,1-dimetil-etilamino]-etil}-4H-benzo[1,4]oxazin-3-ona; 8-{2-[2-(2,4-Difluoro-fenil)-1,1-dimetil-etilamino]-1-hidroxi-etil}-6-hidroxi-4H-benzo[1,4]oxazin-3-ona; 8-{2-[2-(4-Fluoro-fenil)-1,1-dimetil-etilamino]-1-hidroxi-etil}-6-hidroxi-4H-benzo[1,4]oxazin-3-ona; 8-{2-[2-(4-Fluoro-fenil)-1,1-dimetil-etilamino]-1-hidroxi-etil}-6-hidroxi-4H-benzo[1,4]oxazin-3-ona; 8-{2-[2-(4-Fluoro-fenil)-1,1-dimetil-etilamino]-1-hidroxi-etil}-6-hidroxi-4H-benzo[1,4]oxazin-3-ona; 8-{2-[2-(4-Fluoro-fenil)-1,1-dimetil-etilamino]-1-hidroxi-etil}-6-hidroxi-4H-benzo[1,4]oxazin-3-ona; 8-{2-[2-(4-Fluoro-fenil)-1,1-dimetil-etilamino]-1-hidroxi-etil}-6-hidroxi-4H-benzo[1,4]oxazin-3-ona; 8-{2-[2-(4-Fluoro-fenil)-1,1-dimetil-etilamino]-1-hidroxi-etil}-6-hidroxi-etil-etilamino]-1-hidroxi-etil-etilamino

dimetil-etilamino]-1-hidroxi-etil}-6-hidroxi-4*H*-benzo[1,4]oxazin-3-ona; N-(5-{2-[3-(4,4-Dietil-2-oxo-4H-benzo[d][1,3]oxazina-1-il)-1,1-dimetil-propilamino]-1-hidroxi-etil}-2-hidroxifenil)-metanosulfonamida; *N*-(5-{2-[3-(4,4-Dietil-2-oxo-4H-benzo[d][1,3]oxazin-1-il)-1,1-dimetil-propilamino]-1-hidroxi-etil}-2-hidroxi-fenil)-metanosulfonamida; *N*-(5-{2-[3-(4,4-Dietil-6-metoxi-2-oxo-4*H*-benzo[d][1,3]oxazin-1-il)-1,1-dimetil-propilamino]-1-

metanosulfonamida; N-(5-{2-[3-(4,4-Dietil-6-metoxi-2-oxo-4*H*-benzo[*d*][1,3]oxazin-1-il)-1,1-dimetil-propilamino]-1-hidroxi-etil}-2-hidroxifenil)-metanosulfonamida; N-(5-{2-[1,1-Dimetil-3-(2-oxo-4,4-dipropil-4H-benzo[d][1,3]oxazina-1-il)-propilamino]-1-hidroxi-etil}-2-hidroxi-fenil)-metanosulfonamida; 8-{2-[1,1-Dimetil-3-(2-oxo-2,3-dihidrobenzoimidazol-1-il)-propilamino]-1-hidroxi-etil}-6-hidroxi-4H-benzo[1,4]oxazina-3-ona; 8-{2-[1,1-Dimetil-3-(6-metil-2-metil-2-metil-3-(6-metil-2-metil-3-(6-metil-3-

55 oxo-2,3-dihidro-benzoimidazol-1-il)-propilamino]-1-hidroxi-etil}-6-hidroxi-4*H*-benzo[1,4]oxazin-3-ona; 8-{2-[1,1-Dimetil-3-(2-oxo-5-trifluormetil-2,3-dihidro-benzoimidazol-1-il)-propilamino]-1-hidroxi-etil}-6-hidroxi-4*H*-benzo[1,4]oxazin-3-

8-{2-[1,1-Dimetil-3-(3-metil-2-oxo-2,3-dihidro-benzoimidazol-1-il)-propilamino]-1-hidroxi-etil}-6-hidroxi-4Hbenzo[1,4]oxazin-3-ona; N-[2-hidroxi-5-((1R)-1-hidroxi-2-{2-[4-(2-hidroxi-2-fenil-etilamino)-fenil]-etilamino}-etil)-fenil]formamida; 8-Hidroxi-5-((1 R)-1-hidroxi-2-{2-[4-(6-metoxi-bifenil-3-ilamino)-fenil]-etilamino}-etil)-1H-quinolin-2-ona; 8hidroxi-5-[(1*R*)-1-hidroxi-2-(6-fenetilamino-hexilamino)-etil]-1*H*-quinolin-2-ona; 5-[(1R)-2-(2-{4-[4-(2-Amino-2-metilpropoxi)-fenilamino]-fenil}-etilamino)-1-hidroxi-etil]-8-hidroxi-1*H*-quinolin-2-ona; [3-(4-{6-[(2R)-2-hidroxi-2-(4-hidroxi-3hidroximetil-fenil)-etilamino]-hexiloxí}-butil)-5-metilfenil]-urea; 4-((1R)-2-{6-[2-(2,6-Diclorbenciloxi)-etoxi]-hexilamino}-1-3-(4-{6-[(2R)-2-hidroxi-2-(4-hidroxi-3-hidroximetil-fenil)-etilamino]-hexiloxi}-butil)hidroxi-etil)-2-hidroximetil-fenol; bencenosulfonamida; 3-(3-{7-[(2R)-2-hidroxi-2-(4-hidroxi-3-hidroximetil-fenil)-etilamino]-heptiloxi}-propil)bencenosulfonamida; 4-((1R)-2-{6-[4-(3-ciclopentanosulfonil-fenil)-butoxi]-hexilamino}-1-hidroxi-etil)-2-hidroximetil-4-(2-{6-[2-(2,6-dicloro-benciloxi)-etoxi]-hexilamino}-1-hidroxi-etil)-2-hidroximetil-fenol; 10 Vilanterol: Adamantanil-2-{3-[(2R)-2-({(2R)-2-hidroxi-2-[4-hidroxi-3-(hidroximetil)fenil]etil}amino)propil]fenil}acetamida; 2-(3-{2-[2hidroxi-3-metanosulfonilamino-fenil)-etilamino]-propil}-fenil)-N-[4-(4-hidroxi-fenil)-2-vinil-penta-2,4-dienil]-acetamida; (1R)-5-{2-[6-(2,2-Difluoro-2-fenil-etoxi)-hexilamino]-1-hidroxi-etil}-8-hidroxi-1H-quinolin-2-ona; (R,S)-4-(2-{[6-(2,2-Difluoro-4-fenilbutoxi)hexillamino}-1-hidroxi-etil)-2-(hidroximetil)fenol: (R,S)-4-(2-{[6-(2,2-Difluoro-2feniletoxi)hexil]amino}-1-hidroxi-etil)-2-(hidroximetil)fenol; (R,S)-4-(2-{[4,4-Difluoro-6-(4-fenilbutoxi)hexil]amino}-1-15 hidroxi-etil)-2-(hidroximetil)fenol; (R,S)-4-(2-{[6-(4,4-Difluoro-4-fenilbutoxi)hexil]amino}-1-hidroxi-etil)-2-(hidroximetil)fenol: (R,S)-5- $(2-\{[6-(2,2-Difluoro-2-feniletoxi])$ hexil]amino}-1-hidroxietil)-8-hidroxiquinolin-2(1H)-ona; (R,S)-[2-({6-[2,2-Difluoro-2-(3-metilfenil)etoxi]hexil}amino)-1-hidroxietil]-2-(hidroximetil)fenol; 4-(1R)-2-{[6-(2,2-(R,S)-2-(Hidroximetil)-4-(1-hidroxi-2-{[4,4,5|5-Difluoro-2-feniletoxi)hexil]amino}-1-hidroxietil)-2-(hidroximetil)fenol; tetrafluoro-6-(3-fenilpropoxi)-hexil]amino}etil)fenol; (R,S)-[5-(2-{[6-(2,2-Difluoro-2-feniletoxi)hexil]amino}-1-hidroxi-etil)-20 2-hidroxifenil]formamida; (R,S)-4-[2-({6-[2-(3-Bromofenil)-2,2-difluoroetoxi]hexil}amino)-1-hidroxietil]-2-(hidroximetil)fenol; -Difluoro-2-{[6-({2-hidroxi-2-[4-hidroxi-3-(hidroximetil)fenil]-S)-N-[3-(1,1 etil}amino)hexil]oxi}etil)fenil]-urea; 3-[3-(1,1-Difluoro-2-{[6-({2-hidroxi-2-[4-hidroxi-3-(hidroximetil) fenil]etil}amino)hexil]oxi}etil)fenil]imidazolidin-2,4-diona; (R,S)-4-[2-({6-[2,2-Difluoro-2-(3metoxifenil)etoxi]hexil]amino)-1-hidroxietil]-2-(hidroximetil)fenol; 5-((1R)-2-{[6-(2,2-Difluoro-2-feniletoxi)hexil]amino}-1-25 4-((1R)-2-{[4,4-Difluoro-6-(4-fenilbutoxi)hexil]amino}-1-hidroxi-etil)-2hidroxietil)-8-hidroxiquinolin-2(1H)-ona; (hidroximetil)fenol; (R.S)-4-(2-{[6-(3,3-Difluoro-3-fenilpropoxi)hexil]amino}-1-hidroxi-etil)-2-(hidroximetil)fenol; (R.S)-(2-{[6-(2,2-Difluoro-2-feniletoxi)-4,4-difluorohexil]amino}-1-hidroxietil)-2-(hidroximetil)fenol; (R,S)-4-(2-{[6-(2,2-Difluoro-3fenilpropoxi)hexil]amino}-1-hidroxietil)-2-(hidroximetil) fenol; 3-[2-(3-Clorofenil)-etoxi]-N-(2-dietilamino-etil)-N-(2-[2-(4-dietilamino-etil]-N-(2-[2-(4-dietilamino-etil)-N-(2-[2-(4-dietilamino-etil)-N-(2-[2-(4-dietilamino-etil)-N-(2-[2-(4-dietilamino-etil)-N-(2-[2-(4-dietilamino-etil)-N-(2-[2-(4-dietilamino-etil)-N-(2-[2-(4-dietilamino-etil)-N-(2-[2-(4-dietilamino-etil)-N-(2-[2-(4-dietilamino-etil)-N-(2-[2-(4-dietilamino-etil 30 hidroxi-2-oxo-2,3-dihidro-benzotiazol-7-il)-etilamino]-etil}-propionamida; N-(2-Dietilamino-etil)-N-{2-[2-(4-hidroxi-2-oxo-2,3-dihidro-benzotiazol-7-il)-etilamino]-etil}-3-(2-naftalen-1-il-etoxi)-propionamida; 7-[2-(2-{3-[2-(2-Cloro-fenil)etilamino]-propilsulfanil}-etilamino)-1-hidroxi-etil]-4-hidroxi-3H-benzotiazol-2-ona, opcionalmente en forma racematos, enantiómeros, diastereómeros y opcionalmente en forma de sales de adición de ácidos, solvatos o hidratos farmacológicamente aceptables de los mismos. De acuerdo con la invención, las sales de adición de ácidos de los betamiméticos se seleccionan preferentemente de 35 entre el clorhidrato, bromhidrato, yodhidrato, hidrosulfato, hidrofosfato, hidrometanosulfonato, hidronitrato, hidromaleato, hidroacetato, hidrocitrato, hidrofumarato, hidrotartrato, hidroxalato, hidrosuccinato, hidrobenzoato e hidro-p-toluenosulfonato, preferentemente, el clorhidrato, bromhidrato, hidrosulfato, hidrofosfato, hidrofumarato e

Los anticolinérgicos usados son preferentemente compuestos seleccionados entre sales de tiotropio, en particular, la sal bromuro, sales de oxitropio, en particular, la sal bromuro, sales de flutropio, en particular, la sal bromuro, sales de ipratropio, en particular, la sal bromuro, sales de aclidinio, en particular, la sal bromuro, sales de glicopirona, en particular, la sal bromuro, sales de trospio, en particular, la sal cloruro, tolterodina, sales de (3R)-1-fenetil-3-(9H-45 xanteno-9-carboniloxi)-1-azoniabiciclo[2.2.2]octano; metobromuro de tropenoléster del ácido 2,2-difenil propiónico; metobromuro de escopinéster del ácido 2,2-difenil-propiónico; metobromuro de escopinéster del ácido 2-fluoro-2,2difenil-acético; metobromuro de tropenol-éster del ácido 2-fluoro-2,2-difenil-acético; metobromuro de tropenol-éster del ácido 3,3',4,4'-tetrafluorobencílico; metobromuro de escopinéster del ácido 3,3',4,4'-tetrafluorobencílico; metobromuro 50 de tropenol-éster del ácido 4,4'-difluorobencílico; metobromuro de escopinéster del ácido 4,4'-difluorobencílico; metobromuro de tropenol-éster del ácido 3,3'-difluorobencílico; metobromuro de escopinéster del ácido 3,3'difluorobencílico; metobromuro de tropenol-éster del ácido 9-hidroxi-fluoren-9-carboxílico; metobromuro de tropenoléster del ácido 9-fluoro-fluoren-9-carboxílico; metobromuro de escopinéster del ácido 9-hidroxi-fluoren-9-carboxílico; metobromuro de escopinéster del ácido 9-fluoro-fluoren-9-carboxílico; metobromuro de tropenol-éster del ácido 9-55 metil-fluoren-9-carboxílico; metobromuro de escopinéster del ácido 9-metil-fluoren-9-carboxílico; metobromuro de ciclopropil-tropinéster del ácido bencílico; metobromuro de ciclopropil-tropinéster del ácido 2,2-difenil-propiónico; metobromuro de ciclopropil-tropinéster del ácido 9-hidroxi-xanteno-9-carboxílico; metobromuro de ciclopropiltropinéster del ácido 9-metil-fluoren-9-carboxílico; metobromuro de ciclopropil-tropinéster del ácido 9-metil-xanteno-9carboxílico; metobromuro de ciclopropil-tropinéster del ácido 9-hidroxi-fluoren-9-carboxílico; metobromuro de ciclopropil-tropinéster de metiléster del ácido 4,4'-difluorobencílico; metobromuro de tropenoléster del ácido 9-hidroxi-60 xanteno-9-carboxílico; metobromuro de escopinéster del ácido 9-hidroxi-xanteno-9-carboxílico; metobromuro de tropenoléster del ácido 9-metil-xanteno-9-carboxílico; metobromuro de escopinéster del ácido 9-metil-xanteno-9carboxílico; metobromuro de tropenoléster del ácido 9-etil-xanteno-9-carboxílico; metobromuro de tropenoléster del ácido 9-difluormetil-xanteno-9-carboxílico; metobromuro de escopinéster del ácido 9-hidroximetil-xanteno-9-65 carboxílico:

hidrometanosulfonato. De las sales de adición de ácidos mencionadas anteriormente, las sales de ácido clorhídrico,

ácido metanosulfónico, ácido benzoico y ácido acético son particularmente preferidas de acuerdo con la invención.

propionamida;

10

20

25

30

35

40

45

N-(2-Dietilamino-etil)-N-{2-[2-(4-hidroxi-2-oxo-2,3-dihidro-benzotiazol-7-il)-etilamino]-etil}-3-(2-naftalen-1-il-etoxi)propionamida;

У

7-[2-(2-{3-[2-(2-cloro-fenil)-etilamino]-propilsulfanil}-etilamino)-1-hidroxi-etil]-4-hidroxi-3H-benzotiazol-2-ona Darotropio:

opcionalmente en forma de los solvatos o hidratos de los mismos.

En las sales mencionadas anteriormente, los cationes tiotropio, oxitropio, flutropio, ipratropio, glicopirronio, actinio y trospio son los principios farmacológicamente activos. Como aniones, las sales mencionadas anteriormente pueden contener preferentemente cloruro, bromuro, yoduro, sulfato, fosfato, metanosulfonato, nitrato, maleato, acetato, citrato, fumarato, tartrato, oxalato, succinato, benzoato o p-toluenosulfonato, mientras que el cloruro, bromuro, yoduro, sulfato, metanosulfonato o p-toluenosulfonato se prefieren como contraiones. De todas las sales, los cloruros, bromuros, yoduros y metanosulfonato son particularmente preferidos.

15 Es de particular importancia el bromuro de tiotropio. En el caso del bromuro de tiotropio, las combinaciones farmacéuticas de acuerdo con la invención lo contienen preferentemente en forma del monohidrato de bromuro de tiotropio cristalino, que se conoce por el documento WO 02/30928. Si el bromuro de tiotropio se usa en forma anhidra en las combinaciones farmacéuticas de acuerdo con la invención, es preferible usar bromuro de tiotropio cristalino anhidro, que se conoce por el documento WO 03/000265.

Los corticosteroides utilizados en el presente documento son preferiblemente compuestos seleccionados entre beclometasona, betametasona, budesonida, butixocort, ciclesonida, deflazacort, dexametasona, etiprednol, flunisolida, fluticasona, loteprednol, mometasona, prednisolona, prednisona, rofleponida, triamcinolona, tipredano; Pregna-1,4-dien-3,20-diona, 6-fluoro-11-hidroxi-16,17-[(1 -metiletilideno) bis(oxi)]-21 -[[4-[(nitrooxi)metil]benzoil]oxi]-, (6-alfa, 11 -beta, 16-alfa)-(9CI); 16,17-butilidenodioxi-6,9-difluoro-11-hidroxi-17-(metiltio)androst-4-en-3-ona; (S)fluorometiléster del ácido 6,9-difluoro-17-[(2-furanilcarbonil)oxi]-11-hidroxi-16-metil-3-oxo-androsta-1,4-dien-17-

carbotiona; 6,9-difluoro-17-[(2-furanilcarbonil)oxi]-11-hidroxi-16-metil-3-oxo-androsta-1,4-dieno-17-carbotionato de (S)-fluorometilo; cianometil éster del ácido 6-alfa,9-alfa-difluoro-11-beta-hidroxi-16alfa-metil-3-oxo-17alfa-(2,2,3,3tetrametilciclopropilcarbonil)oxiandrosta-1,4-dieno-17beta-carboxílico, cada uno opcionalmente en forma de racematos, enantiómeros o diastereómeros de los mismos y, opcionalmente, en forma de sales y derivados, solvatos

y/o hidratos farmacéuticamente aceptables de los mismos.

De manera particularmente preferible, el esteroide se selecciona entre budesonida. fluticasona. mometasona. ciclesonida y 6,9-difluoro-17-[(2-furanilcarbonil)oxi]-11-hidroxi-16-metil-3-oxo-androsta-1,4-dien-17-carbotionato de (S)-fluorometilo, opcionalmente en forma de racematos, enantiómeros o diastereómeros de los mismos y, opcionalmente, en forma de sales y derivados, solvatos y/o hidratos farmacéuticamente aceptables de los mismos.

Cualquier referencia a los esteroides incluye una referencia a las sales o a los derivados, hidratos o solvatos de los mismos que puedan existir. Pueden ser ejemplos de posibles sales y derivados de los esteroides: sales de metales alcalinos, tales como, por ejemplo, sales de sodio o potasio, sulfobenzoatos, fosfatos, isonicotinatos, acetatos, propionatos, dihidrógeno fosfatos, palmitatos, pivalatos o furoatos de los mismos.

Los inhibidores de PDE4 que pueden usarse son preferentemente compuestos seleccionados entre enprofilina,

teofilina, roflumilast, ariflo (cilomilast), tofimilast, pumafentrina, lirimilast, apremilast, arofilina, atizoram, oglemilast, 5-[(N-(2,5-dicloro-3-piridinil)-carboxamida]-8-metoxi-quinolina (D-4418); 5-[N-(3,5-dicloro-1-oxido-4piridinil)-carboxamida]-8-metoxi-2-(trifluorometil)-quinolina (D-4396 (Sch-351591)); amida del ácido N-(3,5-dicloropirid-

4-il)-[1-(4-fluorobencil)-5-hidroxi-indol-3-il]glioxílico (AWD-12-281 (GW-842470)); 9-[(2-fluorofenil)metil]-N-metil-2-(trifluorometil)-9H-Purin-6-amina (NCS-613); 4-[(2R)-2-[3-(ciclopentiloxi)-4-metoxifenil]-2-feniletil]-Piridina (CDP-840); N-[(3R)-3,4,6,7-tetrahidro-9-metil-4-oxo-1-fenilpirrolo[3,2,1-jk][1,4]benzodiazepin-3-il]-4-piridincarboxamida

168787); 4-[6,7-dietoxi-2,3-bis(hidroximetil)-1-naftalenil]-1-(2-metoxietil)-2(1H)-Piridinona (T-440); 2-[4-[6,7-dietoxi-2,3-bis(hidroximetil)-1-naftalenil]-1-(2-metoxietil)-2(1H)-Piridinona (T-440); 2-[4-[6,7-dietoxietil]-1-(4-metoxietil)-1-(4-50 2,3-bis(hidroximetil)-1-naftalenil]-2-piridinil]-4-(3-piridinil)-1(2H)-ftalazinona (T-2585): (3-(3-ciclopeniloxi-4beta-[3-(ciclopentiloxi)-4-metoxifenil]-1,3-dihidro-1.3metoxibencil)-6-etilamino-8-isopropil-3*H*-purina (V-11294A); dioxo-2H-Isoindolo-2-propanamida (CDC-801); Imidazo[1,5-a]pirido[3,2-e]pirazin-6(5H)-ona, 9-etil-2-metoxi-7-metil-5-

propil-(D-22888); 5-[3-(ciclopentiloxi)-4-metoxifenil]-3-[(3-metilfenil)metil]-, (3S,5S)-2-Piperidinona (HT-0712); 4-[1-[3,4-bis(difluorometoxi)fenil]-2-(3-metil-1-oxido-4-piridinil)etil]-alfa,alfa-bis(trifluorometil)-Bencenometanol (L-826141); 55 (-)p-[(4aR*,10fcS*)-9-Etoxi-N-(3,5-Dicloro-1-oxo-piridin-4-il)-4-difluormetoxi-3-ciclopropilmetoxibenzamida;

1,2,3,4,4a,10b-hexahidro-8-metoxi-2-metilbenzo[s][1,6]naftiridin-6-il]-N,N-diisopropilbenzamida; (R)-(+)-1-(4-Brombencil)-4-[(3-ciclopentiloxi)-4-metoxifenil]-2-pirrolidona; 3-(Ciclopentiloxi-4-metoxifenil)-1-(4-N'-[N-2-ciano-Smetil-isotioureido]bencil)-2-pirrolidona; ácido cis[4-ciano-4-(3-ciclopentiloxi-4-metoxifenil)ciclohexan-1-carboxílico]; 2carbometoxi-4-ciano-4-(3-ciclopropilmetoxi-4-difluorometoxifenil)ciclohexan-1-ona; cis[4-Ciano-4-(3-ciclopropilmetoxi-4-difluorometoxifenil)ciclohexan-1-ona;

60 4-difluormetoxifenil)ciclohexan-1-ol]; [4-(3-ciclopentiloxi-4-metoxifenil)pirrolidin-2-iliden]acetato de (R)-(+)-etilo; [4-(3-ciclopentiloxi-4-metoxifen ciclopentiloxi-4-metoxifenil)pirrolidin-2-iliden]acetato de (S)-(-)-etilo; 9-Ciclopentil-5,6-dihidro-7-etil-3-(2-tienil)-9Hpirazolo[3,4-c]-1,2,4-triazolo[4,3-a]piridina; 9-Ciclopentil-5,6-dihidro-7-etil-3-(terc-butil)-9H-pirazolo[3,4-c]-1,2,4triazolo[4,3-a]piridina, opcionalmente en forma de racematos, enantiómeros o diastereómeros y, opcionalmente, en

65 forma de sales de adición de ácidos, solvatos y/o hidratos farmacéuticamente aceptables de los mismos. Por sales de adición de ácidos con ácidos farmacológicamente aceptables que los inhibidores de PDE4 mencionados anteriormente podrían estar en una posición para formar se entiende, por ejemplo, sales seleccionadas entre el clorhidrato, bromhidrato, yodhidrato, hidrosulfato, hidrofosfato, hidrometanosulfonato, hidronitrato, hidromaleato, hidroacetato, hidrobenzoato, hidrocitrato, hidrofumarato, hidrotartrato, hidrooxalato, hidrosuccinato, hidrobenzoato e hidro-p-toluenosulfonato, preferentemente clorhidrato, bromhidrato, hidrosulfato, hidrofosfato, hidrofumarato e hidrometanosulfonato.

Los antagonistas de LTD4 que pueden usarse son preferentemente compuestos seleccionados entre montelukast, (E)-8-[2-[4-[4-(4-Fluorofenil)butoxi]fenil]etenil]-2-(1H-tetrazol-5-il)-4H-1-benzopiran-4-ona pranlukast, zafirlukast; 10 (MEN-91507); ácido 4-[6-acetil-3-[3-(4-acetil-3-hidroxi-2-propilfeniltio)propoxi]-2-propilfenoxi]-butírico (MN-001); ácido 1-(((R)-(3-(2-(6,7-difluoro-2-quinolinil)etenil)fenil)-3-(2-(2-hidroxi-2-propil)fenil)tio)metilciclopropan-acético; ácido (((1(R)-3(3-(2-(2,3-diclorotieno[3,2-b]piridin-5-il)-(E)-etenil)fenil)-3-(2-(1-hidroxi-1-metiletil)fenil) [2-[[2-(4-terc-butil-2-tiazolil)-5-benzofuranil]oximetil]fenil]acético. propil)tio)metil)ciclopropano-acético; ácido opcionalmente en forma de racematos, enantiómeros o diastereómeros, opcionalmente, en forma de las sales de 15 adición de ácidos farmacológicamente aceptables y, opcionalmente, en forma de las sales y derivados, solvatos y/o hidratos farmacéuticamente aceptables de los mismos. Por sales de adición de ácidos con ácidos farmacológicamente aceptables que los antagonistas de LTD4 pueden ser capaces de formar se entiende, por ejemplo, sales seleccionadas entre el clorhidrato, bromhidrato, yodhidrato, hidrosulfato, hidrofosfato, hidrometanosulfonato, hidronitrato, hidromaleato, hidroacetato, hidrobenzoato, hidrocitrato, hidrofumarato, hidrotartrato, hidrocalato, hidrosuccinato, 20 hidrobenzoato e hidro-p-toluenosulfonato, preferentemente clorhidrato, bromhidrato, hidrosulfato, hidrofosfato, hidrofumarato e hidrometanosulfonato. Por sales o derivados que los antagonistas de LTD4 pueden ser capaces de formar se entiende, por ejemplo: sales de metales alcalinos, tales como, por ejemplo, sales de sodio o potasio, sales de metales alcalinotérreos, sulfobenzoatos, fosfatos, isonicotinatos, acetatos, propionatos, dihidrógeno fosfatos, palmitatos, pivalatos o furoatos.

4-[(3-cloro-4-

4-[(3-cloro-4-

4-[(3-cloro-4-

25 Los inhibidores de EGFR usados son preferentemente compuestos seleccionados entre fluorofenil)amino]-6-{[4-(morfolin-4-il)-1-oxo-2-buten-1-il]amino}-7-ciclopropilmetoxi-quinazolina, fluorofenil)amino]-6-{[4-(N,N-dietilamino)-1-oxo-2-buteno-1-il]amino}-7-ciclopropilmetoxi-quinazolina, fluorofenil)amino]-6-{[4-(N,N-dimetilamino)-1-oxo-2-buteno-1-il]amino}-7-ciclopropilmetoxi-quinazolina, 4-[(R)-(1-fenil-30 etil)amino]-6-{[4-(morfolin-4-il)-1-oxo-2-buten-1-il]amino}-7-ciclopentiloxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-[/4-((R)-6-metil-2-oxo-morfolin-4-il)-1-oxo-2-buteno-1-il]amino}-7-ciclopropilmetoxi-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-{[4-((R)-6-metil-2-oxo-morfolin-4-il)-1-oxo-2-buteno-1-il]amino}-7-[(S)-(tetrahidrofurano-3-il)oxi]quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-{[4-((R)-2-metoximetil-6-oxo-morfolin-4-il)-1-oxo-2-buteno-1-il]amino}-7-ciclopropilmetoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-[2-((S)-6-metil-2-oxo-morfolin-4-il)-etoxi]-7-metoxi-

45

50

55

60

65

4-[(3-cloro-4-fluorofenil)amino]-6-((4-[N-(2-metoxi-etil)-N-metil-amino]-1-oxo-2-buteno-1-il}amino)-7-35 quinazolina. ciclopropilmetoxi-quinazolina, 4-[(3-cloró-4-fluorofènil)amino]-6-{[4-(N,N-dimetilamino)-1-oxo-2-buteno-1-il]amino}-7ciclopentiloxi-quinazolina, 4-[(R)-(1-feniletil)amino]-6-[(4-(N,N-bis-(2-metoxi-etil)-amino)-1-oxo-2-buteno-1-il]amino}-7ciclopropilmetoxi-quinazolina, 4-[(R)-(1-fenil-etil)amino]-6-((4-[N-(2-metoxi-etil)-N-etil-amino]-1-oxo-2-buteno-1-4-[(R)-(1-fenil-etil)amino]-6-({4-[N-(2-métoxi-etil)-N-metil-amino]-1-oxo-2il\amino)-7-ciclopropilmetoxi-quinazolina, 40 buten-1-il}amino)-7-ciclopropilmetoxi-quinazolina, 4-[(R)-(1-fenil-etil)amino]-6-({4-[N-(tetrahidropiran-4-il)-N-metil-

amino]-1-oxo-2-buteno-1-il}amino)-7-ciclopropilmetoxi-quinazolina, 4-[(R)-(1-Fenil-etil)amino]-6-((4-[N-(2-metoxi-etil)-N-metil-amino]-1-oxo-2-buteno-1-il}amino)-7-ciclopropilmetoxi-quinazolina, 4-[(R)-(1-Fenil-etil)amino]-6-({4-[N-(tetrahidropiran-4-il)-N-metil-amino]-1-oxo-2-buteno-1-il}amino)-7-ciclopropilmetoxi-quinazolina, 4-[(3-cloro-4fluorofenil)amino]-6-{[4-(N,N-dimetilamino)-1-oxo-2-buten-1-il]amino}-7-((R)-tetrahidrofuran-3-iloxi)-quinazolina, 4-[(3cloro-4-fluorofenil)amino]-6-[[4-(N,N-dimetilamino)-1-oxo-2-buteno-1-il]amino}-7-((S)-tetrahidrofurano-3-iloxi)-

4-[(3-cloro-4-fluorofenil)amino]-6-((4-[N-(2-metoxietil)-N-metil-amino]-1-oxo-2-buteno-1-il}amino)-7ciclopentiloxi-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-{[4-(N-ciclopropil-N-metil-amino)-1-oxo-2-buteno-1-4-[(3-cloro-4-fluorofenil)amino]-6-{[4-(N,N-dimetilamino)-1-oxo-2-buteno-1il]amino}-7-ciclopentiloxi-quinazolina, il]amino}-7-[(R)-(tetrahidrofurano-2-il)metoxi]-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-{[4-(N,N-dimetilamino)-1oxo-2-buteno-1-il]amino}-7-[(S)-(tetrahidrofurano-2-il)metoxi]-quinazolina, 4-[(3-etinil-fenil)amino]-6,7-bis-(2-metoxietoxi)-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-7-[3-(morfolin-4-il)-propiloxi]-6-[(vinilcarbonil)amino]-quinazolina, 4-

[(R)-(1-fenil-etil)amino]-6-(4-hidroxi-fenil)-7H-pirrolo[2,3-d]pirimidina, 3-ciano-4-[(3-cloro-4-fluorofenil)amino]-6-{[4-4-{[3-cloro-4-(3-fluoro-benciloxi)-fenil]amino}-6-(5-(N,N-dimetilamino)-1-oxo-2-buteno-1-illamino}-7-etoxi-quinolina, {[(2-metanosulfonil-etil)amino]metil}-furan-2-il)quinazolina, 4-[(R)-(1-fenil-etil)amino]-6-{[4-((R)-6-metil-2-oxo-morfolin-4-[(3-cloro-4-fluorofenil)amino]-6-{[4-(morfolin-4-il)-1-oxo-2-4-il)-1-oxo-2-buten-1-il]amino}-7-metoxi-quinazolina,

buteno-1-il]-amino}-7-[(tetrahidrofurano-2-il)metoxi]-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-({4-[N,N-bis-(2metoxi-etil)-amino]-1-oxo-2-buteno-1-il}amino)-7-[(tetrahidrofurano-2-il)metoxi]-quinazolina, 4-[(3-etinil-fenil)amino]-6-{[4-(5,5-dimetil-2-oxo-morfolin-4-il)-1-oxo-2-buten-1-il]amino}-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-[2-(2,2-dimetil-2-oxo-morfolin-4-il)-1-oxo-2-buten-1-il]amino}-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino}-quinazolina, 4-[(3-cloro-fenil)amino}-quinazolina, 4-[(3-cloro-fenil)amino}-quinazolina, 4-[(3-cloro-fenil)amino}-quinazolina, 4-[(3-cloro-fenil)amino}-quinazolina, 4-[(3-cloro-fenil)ami 4-[(3-cloro-4-fluorofenil)amino]-6-[2-(2.2-dimetil-6-oxodimetil-6-oxo-morfolin-4-il)-etoxi]-7-metoxi-quinazolina, morfolin-4-il)-etoxi]-7-[(R)-(tetrahidrofurano-2-il)metoxi]-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-7-[2-(2.2-dimetil-

6-oxo-morfolin-4-il)-etoxi]-6-[(S)-tetrahidrofurano-2-il)metoxi]-quinazolina, 4-[(3-cloro-4-fluororfenil)amino]-6-{2-[4-(2-4-[(3-cloro-4-fluororfenil)amino]-6-[1-(tercoxo-morfolin-4-il)-piperidin-1-il]-etoxi}-7-metoxi-quinazolina, butiloxicarbonil)-piperidin-4-iloxi]-7-metoxi-quinazolina, 4-[(3-cloro-4-fluororfenil)amino]-6-(trans-4-amino-ciclohexan-1-iloxi)-7-metoxiquinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(trans-4-metanosulfonilamino-ciclohexan-1-iloxi)-7-

4-[(3-cloro-4-fluorofenil)amino]-6-(tetrahidropiran-3-iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-4metoxiquinazolina. fluorofenil)amino]-6-(1-metil-piperidin-4-iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-{1-[(morfolin-4-iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-(1-metil-piperidin-4-iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-(1-metil-piperidin-4-iloxi)-7-metil-piperidin-4-[(3-cloro-4-fluorofenil)amino]-6-(1-metil-piperidin-4-iloxi)-8-(1-metil-piper

il)carbonil]-piperidin-4-iloxi}-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-{1-[(metoximetil)carbonil]-cloro-4-fluororfenil)amino]-6-[1-(2-acetilamino-etil)-piperidin-4-iloxi]-7-metoxi-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-(tetrahidropiran-4-iloxi)-7-etoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-((S)-tetrahidrofuran-3iloxi)-7-hidroxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(tetrahidropiran-4-iloxi)-7-(2-metoxi-etoxi)-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-{trans-4-[(dimetilamino)sulfonilamino]-ciclohexan-1-iloxi}-7-metoxi-quinazolina, [(3-cloro-4-fluoro-fenil)amino]-6-{trans-4-[(morfolin-4-il)carbonilamino]-ciclohexan-1-iloxi}-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-{trans-4-[(morfolin-4-il)carbonilamino]-ciclohexan-1-iloxi}-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(trans-4-[(morfolin-4-il)carbonilamino]-ciclohexan-1-iloxi}-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(trans-4-[(morfolin-4-il)carbonilamino]-ciclohexan-1-iloxi]-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(trans-4-[(morfolin-4-il)carbonilamino]-ciclohexan-1-iloxi]-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(trans-4-[(morfolin-4-il)carbonilamino]-ciclohexan-1-iloxi]-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(trans-4-[(3-cloro-4-fluoro-fenil)amino]-6-(trans-4-fluoro-fenil)amino]-6-(trans-4-fluoro-fenil)amino]-6-(trans-4-fluoro-fenil)amino]-6-(trans-4-fluoro-fenil)amino]-6-(trans-4-fluoro-fenil)amino]-6-(trans-4-fluoro-fenil)amino]-6-(trans-4-fluoro-fenil)amino]-6-(trans-4-fluoro-fenil)amino]-6-(trans-4-fluoro-fenil)amino]-6-(trans-4-fluoro-fenil)amino]-6-(trans-6-fluoro-fenil cloro-4-fluoro-fenil)amino]-6-{trans-4-[(morfolin-4-il)sulfonilamino]-ciclohexan-1-iloxi}-7-metoxi-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-(tetrahidropiran-4-iloxi)-7-(2-acetilamino-etoxi)-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-(tetrahidropiran-4-iloxi)-7-(2-metanosulfonilamino-etoxi)-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-{1-[(piperidin-1-10 il)carbonil]-piperidin-4-iloxi}-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(1-aminocarbonillmetil-piperidin-4iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-(cis-4-{N-[(tetrahidropiran-4-il)carbonil]-N-metil-amino}ciclohexan-1-iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(cis-4-{N-[(morfolin-4-il)carbonil]-N-metilamino}-ciclohexan-1-iloxi)-7-metoxiquinazolina; 4-{2-[4-(3-cloro-4-fluoro-fenilamino)-7-metoxi-quinazolin-6-iloxi]-etil}-15 6-metil-morfolin-2-ona, 4-{4-[4-(3-cloro-2-fluoro-fenilamino)-7-metoxi-quinazolin-6-iloxi]-ciclohexil}-1-metilpiperazin-2-4-[(3-cloro-4-fluoro-fenil)amino]-6-(cis-4-{N-[(morfolin-4-il)sulfonil]-N-metil-amino}-ciclohexan-1-iloxi)-7metoxiquinazolina. 4-[(3-cloro-4-fluororfenil)amino]-6-(trans-4-etansulfonilamino-ciclohexan-1-iloxi)-7-4-[(3-cloro-4-fluoro-fenil)amino]-6-(1-metanosulfonil-piperidin-4-iloxi)-7-etoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(1-metanosulfonil-piperidin-4-iloxi)-7-etoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(1-metanosulfonil-piperidin-4-iloxi)-7-etoxi-quinazolina, metoxiquinazolina, cloro-4-fluoro-fenil)amino]-6-(1-metanosulfonil-piperidin-4-iloxi)-7-(2-metoxi-etoxi)-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-[1-(2-metoxi-acetil)-piperidin-4-iloxi]-7-(2-metoxi-etoxi)-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-20 (cis-4-acetilamino-ciclohexan-1-iloxi)-7-metoxi-quinazolina, 4-[(3-etinilfenil)amino]-6-[1-(terc-butiloxicarbonil)-piperidin-4-iloxi]-7-metoxi-quinazolina, 4-[(3-etinil-fenil)amino]-6-(tetrahidropiran-4-iloxi]-7-metoxi-quinazolina, fluoro-fenil)amino]-6-(cis-4-{N-[(piperidin-1-il)carbonil]-N-metil-amino}-ciclohexan-1-iloxi)-7-metoxi-quinazolina, 4-[(3cloro-4-fluoro-fenil)amino]-6-(cis-4-{N-[(4-metilpiperazina-1-il)carbonil]-N-metil-amino}-ciclohexan-1-iloxi)-7-metoxi-25 4-[(3-cloro-4-fluoro-fenil)amino]-6-{cis-4-[(morfolin-4-il)carbonilamino]-ciclohexan-1-iloxi}-7-metoxiquinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-{1-[2-(2-oxopirrolidin-1-il)etil]-piperidin-4-iloxi}-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-{1-[(morfolin-4-il)carbonil]-piperidin-4-iloxi}-7-(2-metoxi-etoxi)-quinazolina, 4-[(3-etinilfenil)amino]-6-(1-acetil-piperidin-4-iloxi)-7-metoxi-quinazolina, 4-[(3-etinil-fenil)amino]-6-(1-metil-piperidin-4-iloxi)-7metoxi-quinazolina, 4-[(3-etinil-fenil)amino]-6-(1-metanosulfonil-piperidin-4-iloxi)-7-metoxi-quinazolina, 4-[(3-etinil-fenil)amino]-6-(1-metanosulfonil-fenil-fenil)-7-metoxi-quinazolina, 4-[(3-etinil-fenil-4-[(3-cloro-4-fluoro-fenil)amino]-6-(1-30 fluoro-fenil)amino]-6-(1-metil-piperidin-4-iloxi)-7(2-metoxietoxi)-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(cis-4-metilaminoisopropiloxicarbonil-piperidin-4-iloxi)-7-metoxiquinazolina, ciclohexan-1-iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-{cis-4-[N-(2-metoxi-acetil)-N-metil-amino]ciclohexan-1-iloxi}-7-metoxiquinazolina, 4-[(3-etinil-fenil)amino]-6-(piperidin-4-iloxi)-7-metoxi-quinazolina, 4-[(3-etinil-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amino]-6-(piperidin-fenil)amin fenil)amino]-6-[1-(2-metoxi-acetil)-piperidin-4-iloxi]-7-metoxi-quinazolina, 4-[(3-etinil-fenil)amino]-6-{1-[(morfolin-4-4-[(3-cloro-4-fluoro-fenil)amino]-6-{1-[(cis-2,6-dimetilmorfolin-4-35 il)carbonil]-piperidin-4-iloxi}-7-metoxi-quinazolina, il)carbonil]-piperidin-4-iloxi}-7-metoxi-quinazolina, 4-[(3-clòro-4-fluoro-fenil)amino]-6-{1-[(2-metil-morfolin-4-il)carbonil]piperidin-4-iloxi}-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-{1-[(S,S)-(2-oxa-5-aza-biciclo[2,2,1]hept-5il)carbonil]-piperidin-4-iloxi}-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-{1-[(N-metil-N-2-metoxietilamino)carbonil]-piperidin-4-iloxi}-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(1-etil-piperidin-4-iloxi)-7-40 4-[(3-cloro-4-fluoro-fenil)amino]-6-{1-[(2-metoxietil)carbonil]-piperidin-4-iloxi}-7-metoximetoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-{1-[(3-metoxipropil-amino)-carbonil]-piperidin-4-iloxi}-7-metoxiquinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-[cis-4-(N-metanosulfonil-N-metil-amino)-ciclohexan-1-iloxi]-7-metoxiquinazolina, quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-[cis-4-(N-acetil-N-metil-amino)-ciclohexan-1-iloxi]-7-metoxi-4-[(3-cloro-4-fluoro-fenil)amino]-6-(trans-4-metilamino-ciclohexan-1-iloxi)-7-metoxi-quinazolina, quinazolina, cloro-4-fluorofenil)amino]-6-[trans-4-(N-metanosulfonil-N-metil-amino)-ciclohexan-1-iloxi]-7-metoxi-quinazolina, 4-[(3-45 cloro-4-fluoro-fenil)amino]-6-(trans-4-dimetilamino-ciclohexan-1-iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-(trans-4-{N-[(morfolin-4-il)carbonil]-N-metil-amino}-ciclohexan-1-iloxi)-7-metoxiquinazolina, 4-[(3-cloro-4-fluorofenil)amino]-6-[2-(2,2-dimetil-6-oxo-morfolin-4-il)-etoxi]-7-[(S)-(tetrahidrofuran-2-il)metoxi]-quinazolina, cloro-4-fluoro-fenil)amino]-6-(1-metanosulfonil-piperidin-4-iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-6-(1-metanosulfonil-piperidin-4-iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-fenil-piperidin-4-iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-fenil-piperidin-4-iloxi)-7-metoxi-quinazolina, 4-[(3-cloro-fenil-piperidin-4-iloxi)-8-((3-cloro-fenil-piperidin-4-iloxi)-8-((3-cloro-fenil-piperidin-4-iloxi)-8-((3-cloro-fenil-6-(1-cianopiperidin-4-iloxi)-7-metoxi-quinazolina, 3-ciano-4-[(3-cloro-4-fluoro-fenil)amino]-6-{[4-(*N,N*-dimetilamino)-1-oxo-2-buten-1-il]amino}-7-etoxi-quinolina, [4-[(3-cloro-4-fluoro-fenil)amino]-6-[[4-(homomorfolin-4-il)-1-oxo-2-buteno-50 4-[(3-cloro-4-fluoro-fenil)amino]-7-(2-{4-[(S)-(2-oxo-1-il]amino}-7-[(S)-(tetrahidrofurano-3-il)oxi]-quinazolina, tetrahidrofuran-5-il)carbonil]-piperazin-1-il}-etoxi)-6-[(vinilcarbonil)amino]-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-7-[2-((S)-6-metil-2-oxo-morfolin-4-il)-etoxi]-6-[(vinilcarbonil)amino]-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-7-[4-55 ((R)-6-metil-2-oxo-morfolin-4-il)-butiloxi]-6-[(vinilcarbonil)amino]-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-7-[4-((S)-6-metil-2-oxo-morfolin-4-il)-butiloxi]-6-[(vinilcarbonil)amino]-quinazolina, 4-[(3-cloro-4-fluoro-fenil)amino]-7-(2-{4-[(S)-(2-oxo-tetrahidrofuran-5-il)carbonil]-piperazin-1-il}-etoxi)-6-[(vinilcarbonil)amino]-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-7-[2-((S)-6-metil-2-oxo-morfolin-4-il)-etoxi]-6-[(vinilcarbonil)amino]-quinazolina, 4-[(3-cloro-4-fluorofenil)amino]-7-[4-((R)-6-metil-2-oxo-morfolin-4-il)-butiloxi]-6-[(vinilcarbonil)amino]-quinazolina, 4-[(3-cloro-4fluorofenil)amino]-7-[4-((S)-6-metil-2-oxo-morfolin-4-il)-butiloxi]-6-[(vinilcarbonil)amino]-quinazolina, 60 cetuximab, trastuzumab, panitumumab (=ABX-EGF), Mab ICR-62, gefitinib, pelitinib, canertinib y erlotinib, opcionalmente en forma de racematos, enantiómeros o diastereómeros de los mismos, Opcionalmente, en forma de sales de adición de ácidos farmacológicamente aceptables de los mismos, de los solvatos y/o hidratos de los mismos.

hidrosulfato, hidrofosfato, hidrometanosulfonato, hidronitrato, hidromaleato, hidroacetato, hidrobenzoato, hidrocitrato, hidrofumarato, hidrotartrato, hidrooxalato, hidrosuccinato, hidrobenzoato e hidro-p-toluenosulfonato, preferentemente clorhidrato, bromhidrato, hidrosulfato, hidrofosfato, hidrofumarato e hidrometanosulfonato.

- Los ejemplos de agonistas de la dopamina que pueden usarse incluyen preferentemente compuestos seleccionados entre bromocriptina, cabergolina, alfa-dihidroergocriptina, lisurida, pergolida, pramipexol, roxindol, ropinirol, talipexol, tergurida y viozan. Cualquier referencia a los agonistas de dopamina mencionados anteriormente dentro del alcance de la presente invención incluye una referencia a cualquier sal de adición de ácidos farmacológicamente aceptable y, opcionalmente, a sus hidratos que puedan existir. Por las sales de adición de ácidos fisiológicamente aceptables que pueden ser formadas por los agonistas de dopamina mencionados anteriormente se entiende, por ejemplo, sales farmacéuticamente aceptables que se seleccionan entre las sales de ácido clorhídrico, ácido bromhídrico, ácido sulfúrico, ácido fosfórico, ácido metanosulfónico, ácido acético, ácido fumárico, ácido succínico, ácido láctico, ácido cítrico, ácido tartárico y ácido maleico.
- Los ejemplos de antihistamínicos H1 incluyen preferentemente compuestos seleccionados entre epinastina, cetirizina, azelastina, fexofenadina, levocabastina, loratadina, mizolastina, ketotifeno, emedastina, dimetinden, clemastina, bamipina, cexclorfeniramina, feniramina, doxilamina, clorofenoxamina, dimenhidrinato, difenhidramina, prometazina, ebastina, olopatadina, desloratidina y meclozina. Cualquier referencia a los antihistamínicos H1 mencionados anteriormente dentro del alcance de la presente invención incluye una referencia a cualquier sal de adición de ácidos farmacológicamente aceptable que pueda existir.
 - Los ejemplos de antagonistas de PAF incluyen preferentemente compuestos seleccionados entre lexipafant, 4-(2-clorofenil)-9-metil-2-[3(4-morfolinil)-3-propanon-1-il]-6*H*-tieno-[3,2-f]-[1,2,4]triazolo[4,3-a][1,4]diazepinas, 6-(2-clorofenil)-8,9-dihidro-1-metil-8-[(4-morfolinil)carbonil]-4*H*,7*H*-ciclo-penta-[4,5]tieno-[3,2-f][1,2,4]triazolo[4,3-
- a][1,4]diazepinas. Cualquier referencia a los antagonistas de PAF mencionados anteriormente incluye dentro del alcance de la presente invención una referencia a cualquiera de sus sales de adición de ácidos farmacológicamente aceptables que puedan existir. Los ejemplos de fármacos antiinflamatorios no esteroideos (AINE) incluyen preferentemente compuestos seleccionados entre Aceclofenaco, Acemetacina, Acetilsalicilsäure, Alclofenaco, Alminoprofeno, Amfenac, Ampiroxicam, Antolmetinguacilo, Anirolac, Antrafenina, Azapropazona, Benorilat, Bermoprofeno, Bindarit, Bromfenaco, Bucloxinsäure, Bucolom, Bufexamaco, Bumadizona, Butibufeno, Butixirat, Carbasalatcalcio, Carprofeno, Trisalicilato de colin-magnesio, Celecoxib, Cinmetacina, Cinnoxicam, Clidanaco,
- Clobuzarit, Deboxamet, Dexibuprofeno, Dexketoprofeno, Diclofenaco, Diflunisal, Droxicam, Eltenaco, Enfenaminsäure, Etersalat, Etodolaco, Etofenamat, Etoricoxib, Feclobuzona, Felbinac, Fenbufeno, Fenclofenaco, Fenoprofeno, Fentiazaco, Fepradinol, Feprazona, Flobufeno, Floctafenina, Flufenaminsäure, Flufenisal, Flunoxaprofeno, Flurbiprofeno, Flurbiprofenaxetilo, Furofenaco, Furprofeno, Glucametacina, Ibufenaco, Ibuprofeno, Indobufeno, Indometacina, Indometacinfarnesil, Indoprofeno, Isoxepaco, Isoxicam, Cetoprofeno, Ketorolaco,
- Lobenzarit, Lonazolaco, Lornoxicam, Loxoprofeno, Lumiracoxib, Meclofenaminsäure, Meclofeno, Mefenaminsäure, Meloxicam, Mesalazina, Miroprofeno, Mofezolaco, Nabumetona, Naproxeno, Nifluminsäure, Olsalazina, Oxaprozina, Oxipinaco, Oxifenbutazona, Parecoxib, Fenilbutazona, Pelubiprofeno, Pimeprofeno, Pirazolaco, Priroxicam, Pirprofeno, Pranoprofeno, Prifelona, Prinomod, Proglumetacina, Proquazona, Protizininsäure, Rofecoxib, Romazarit,
- Priprofeno, Pranoprofeno, Prifelona, Prinomod, Proglumetacina, Proquazona, Protizininsaure, Rofecoxio, Romazarit, Salicilamid, Salicilsäure, Salmisteína, Salnacedina, Salsalat, Sulindaco, Sudoxicam, Suprofeno, Talniflumat, Tenidap, Tenosal, Tenoxicam, Tepoxalina, Tiaprofensäure, Taramid, Tilnoprofenarbamel, Timegadina, Tinoridina, Tiopinaco, Tolfenaminsäure, Tolmetina, Ufenamat, Valdecoxib, Ximoprofeno, Zaltoprofeno y Zoliprofeno.
- Los inhibidores de MRP4 usados son preferentemente compuestos seleccionados entre N-acetil-dinitrofenil-cisteína, cGMP, colato, diclofenaco, deshidroepiandrosterona-3-glucuronida, deshidroepiandrosterona-3-sulfato, dilazep, dinitrofenil-s-glutatión, estradiol-17-beta-glucuronida, estradiol-3,17-disulfato, estradiol-3-glucuronida, estradiol-3-sulfato, estrona-3-sulfato, flurbiprofeno, folato, N5-formil-tetrahidrofolato, glicocolato, sulfato de ácido glicolitocólico, ibuprofeno, indometacina, indoprofeno, ketoprofeno, sulfato de ácido litocólico, Metotrexato, ácido((*E*)-3-[[[3-[2-(7-cloro-2-quinolinil)etenil]fenil]-[[3-dimetilamino)-3-oxopropil]tio]metil]tio]-propanoico), alfa-naftil-beta-D-glucuronida,
- 50 nitrobenzil-mercaptopurina-ribósido, probenecid, sildenafilo, sulfinpirazona, tauroquenodesoxicolato, taurocolato, taurodesoxicolato, taurolitocolato, sulfato de ácido taurolitocólico, topotecán, trequinsina y zaprinast, dipiridamol, opcionalmente en forma de racematos, enantiómeros, diastereómeros y las sales de adición de ácidos farmacológicamente aceptables e hidratos de los mismos.
- Los ejemplos de inhibidores de JAK incluyen preferentemente compuestos seleccionados entre Tofacitinib y 55 Ruxolitinib.
 - Los ejemplos de agentes inmunodepresores incluyen compuestos seleccionados entre micofenolato mofetilo, ácido micofenólico, azatioprina, ciclosporina, tacrolimus, pimecrolimus, abetimus, gusperimus y leflunomida.

 Un ejemplo de un citostático es la ciclofosfamida.
- La invención se refiere más preferentemente al uso de inhibidores de MRP4 para preparar una composición farmacéutica para tratar afecciones respiratorias, que contienen los inhibidores de SYK de fórmula 1 o 1' e inhibidores de MRP4 de acuerdo con la invención, Seleccionándose preferentemente los inhibidores de MRP4 entre deshidroepiandrosterona-3-sulfato, estradiol-3,17-disulfato, flurbiprofeno, indometacina, indoprofeno, taurocolato, opcionalmente en forma de racematos, enantiómeros, diastereómeros y las sales de adición de ácidos farmacológicamente aceptables e hidratos de los mismos. La separación de enantiómeros de los racematos se puede llevar a cabo usando métodos conocidos en la técnica (por ejemplo, cromatografía en fases quirales, etc.).

Por sales de adición de ácidos con ácidos farmacológicamente aceptables se entiende, por ejemplo, sales seleccionadas entre los clorhidratos, bromhidratos, yodhidratos, hidrosulfatos, hidrofosfatos, hidrometanosulfonatos, hidronitratos, hidrometanosulfonatos, hidrocetatos, hidrocetatos, hidrocetatos, hidrocetatos, hidrocetatos, hidrocetatos, hidrocetatos, hidrocetatos, hidrocetatos, preferentemente, los clorhidratos, bromhidratos, hidrosulfatos, hidrofosfatos, hidrof

La invención también se refiere a preparaciones farmacéuticas que contienen una triple combinación de los inhibidores de SYK de fórmula 1 o 1', inhibidores de MRP4 y otra sustancia activa de acuerdo con la invención, tales como, por ejemplo, un anticolinérgico, un inhibidor de PDE4, un esteroide, un antagonista de LTD4 o betamimético, y la preparación de los mismos y su uso para tratar problemas respiratorios.

Los compuestos que pueden usarse como inhibidores de iNOS son compuestos seleccionados entre: S-(2aminoetil)isotiourea, aminoguanidina, 2-aminometilpiridina, 5.6-dihidro-6-metil-4*H*-1.3-tiazin-2-amina (= AMT), Lcanavanina, 2-iminopiperidina, S-isopropilisotiourea, S-metilisotiourea, S-etilisotiourea, S-metilisotiourea, S-metilisotioure 15 arginina), L-NIO (Nω-iminoetil-L-ornitina), L-NIL (Nω-iminoetil-lisina), ácido (S)-6-acetimidoilamino-2-amino-hexanoico (1H-tetrazol-5-il)-amida (SC-51) (J. Med. Chem. 2002, 45, 1686-1689), N-[[3-(aminometil)fenil]metil]-Etanimidamida (=1400W), ácido (S)-4-(2-acetimidoilamino-etilsulfanil)-2-amino-butírico (GW274150) (Bioorg. Med. Chem. Lett. 2000, 10, 597-600), 2-[2-(4-metoxi-piridin-2-il)-etil]-3H-imidazo[4,5-b]piridina (BYK191023) (Mol. Pharmacol. 2006, 69, 328-20 337), 2-((R)-3-amino-1-fenil-propoxi)-4-cloro-5-fluorobenzonitrilo (documento WO 01/62704), 2-((1R,3S)-3-amino-4hidroxi-1-tiazol-5-il-butilsulfanil)-6-trifluorometil-nicotinonitrilo (documento WO 2004/041794), 2-((1R,3S)-3-amino-4hidroxi-1-tiazol-5-il-butilsulfanil)-4-cloro-benzonitrilo (documento WO 2004/041794), 2-((1R,3S)-3-amino-4-hidroxi-1tiazol-5-il-butilsulfanil)-5-cloro-benzonitrilo (documento WO 2004/041794), (2S,4R)-2-amino-4-(2-cloro-5-trifluorometilfenilsulfanil)-4-tiazol-5-il-butan-1-ol (documento WO 2004/041794), 2-((1*R*,3*S*)-3-amino-4-hidroxi-1-tiazol-5-il-butilsulfanil)-5-cloro-nicotinonitrilo (documento WO 2004/041794), 4-((S)-3-amino-4-hidroxi-1-fenil-butilsulfanil)-6-25 metoxi-nicotinonitrilo (WO 02/090332), 3-fenil-3,4-dihidro-1-isoquinolinamina sustituida, tal como, por ejemplo (1S.5S.6R)-7-cloro-5-metil-2-aza-biciclo[4.1.0]hept-2-en-3-ilamina (ONO-1714) (Biochem. Biophys. Res. Commun. 2000, 270, 663-667), (4R,5R)-5-etil-4-metil-tiazolidin-2-ilidenamina (*Bioorg.* Med. Chem. 2004, 12, 4101), (4R,5R)-5-etil-4-metilselenazolidin-2-ilidenamina (*Bioorg.* Med. Chem. Lett. 2005, 15, 1361), 4-aminotetrahidrobiopterina (*Curr.* Drug Metabol. 2002, 3, 119-121), (E)-3-(4-cloro-fenil)-N-(1-{2-oxo-2-[4-(6-trifluorometil-pirimidin-4-iloxi)-piperidin-1-il]etilcarbamoil}-2-piridin-2-il-etil)-acrilamida (FR260330) (Eur. J. Pharmacol. 2005, 509, 71-76), 3-(2,4-difluorofenil)-6-[2-(4-imidazol-1-ilmetil-fenoxi)-etoxi]-2-fenil-piridina (PPA250) (J. Pharmaco Exp. Ther. 2002, 303, 52-57), 3-{[(Benzo[1,3]dioxol-5-ilmetil)-carbamoil]-metil}-4-(2-imidazol-1-il-pirimidin-4-il)-piperazin-1-carboxilato (BBS-1) (Drugs Future 2004, 29, 45-52), Ácido (R)-1-(2-imidazol-1-il-6-metil-pirimidin-4-il)-pirrolidin-2-carboxílico (2-benzo[1,3]dioxol-35 5-il-etil)-amida (BBS-2) (Drugs Future 2004, 29, 45-52) y las sales farmacéuticas, los profármacos o los solvatos de los mismos.

Los ejemplos de inhibidores de iNOS dentro del alcance de la presente invención también pueden incluir oligonucleótidos no codificantes, en particular, aquellos oligonucleótidos no codificantes que se unen a ácidos nucleicos que codifican iNOS. Por ejemplo, el documento WO 01/52902 describe oligonucleótidos no codificantes, en particular, oligonucleótidos no codificantes, que se unen a ácidos nucleicos que codifican iNOS, para modular la expresión de iNOS. Los oligonucleótidos no codificantes de iNOS como los descritos, en particular, en el documento WO 01/52902, por lo tanto, también pueden combinarse con los inhibidores de PDE4 de la presente invención debido a su efecto similar al de los inhibidores de iNOS.

Los inhibidores de la HMG-CoA reductasa adecuados (también denominados estatinas) que se pueden usar en combinaciones dobles o triples con los compuestos de fórmula 1 se seleccionan entre Atorvastatina, Cerivastatina, Flurvastatina, Lovastatina, Pitavastatina, Pravastatina, Rosuvastatina, Simvastatina, opcionalmente, en forma de sales de adición de ácidos, profármacos, solvatos o hidratos farmacológicamente aceptables de los mismos.

8. FORMULACIONES

50

10

Los compuestos de fórmula 1 o 1' de acuerdo con la invención también tienen propiedades necesarias para la fabricación de formas farmacéuticas adecuadas. Estas propiedades incluyen, por ejemplo, propiedades relevantes para una suficiente biodisponibilidad del principio activo, en particular, solubilidades del mismo suficientemente elevadas, como por ejemplo, una solubilidad que es > 2 µg/ml medida en solución acuosa a pH 6,8.

Las formas adecuadas para la administración son, por ejemplo, comprimidos, cápsulas, soluciones, jarabes, emulsiones o polvos inhalables o aerosoles. El contenido del o de los compuestos farmacéuticamente eficaces en cada caso debe estar en el intervalo del 0,1 al 90 % en peso, preferentemente, del 0,5 al 50 % en peso de la composición total, es decir, en cantidades que sean suficientes para alcanzar el intervalo de dosis especificado de aquí en adelante en el presente documento.

65 Los preparados se pueden administrar por vía oral en forma de un comprimido, en forma de un polvo, en forma de un polvo en una cápsula (por ejemplo, una cápsula de gelatina dura), en forma de una solución o de una suspensión.

Cuando se administra por inhalación, la combinación de principio activo puede administrarse en forma de polvo, en forma de solución acuosa o acuosa etanólica o usando una formulación de gas propulsor.

Preferentemente, por lo tanto, las formulaciones farmacéuticas se caracterizan por el contenido de uno o más compuestos de fórmula 1 o 1 de acuerdo con las realizaciones preferidas anteriores.

Es particularmente preferible que los compuestos de fórmula 1 o 1' se administren por vía oral, y también es particularmente preferible que se administren una o dos veces al día. Se pueden obtener comprimidos adecuados, por ejemplo, mezclando la/s sustancia/s activa/s con excipientes conocidos, por ejemplo, diluyentes inertes tales como carbonato de calcio, fosfato de calcio o lactosa, disgregantes tales como almidón de maíz o ácido algínico, aglomerantes tales como almidón o gelatina, lubricantes tales como estearato de magnesio o talco y/o agentes para retrasar la liberación, tales como carboximetilcelulosa, ftalato de acetato de celulosa o acetato de polivinilo. Los comprimidos también pueden comprender varias capas.

Los comprimidos recubiertos pueden prepararse, por consiguiente, mediante el recubrimiento de los núcleos producidos de manera análoga a los comprimidos con sustancias normalmente usadas para recubrimientos de comprimidos, por ejemplo, colidona o goma laca, goma arábiga, talco, dióxido de titanio o azúcar. Para lograr la liberación retardada o evitar incompatibilidades, el núcleo también puede consistir en varias capas. De manera similar, el recubrimiento del comprimido puede consistir en varias capas para lograr una liberación retardada, Posiblemente, usando los excipientes mencionados anteriormente para los comprimidos.

Los jarabes que contienen las sustancias activas o combinaciones de los mismos de acuerdo con la invención pueden contener además un edulcorante tal como sacarina, ciclamato, glicerol o azúcar y un potenciador del sabor, por ejemplo, un saborizante tal como vainillina o extracto de naranja. También pueden contener adyuvantes o espesantes de suspensión tales como carboximetilcelulosa sódica, agentes humectantes tales como, por ejemplo, productos de condensación de alcoholes grasos con óxido de etileno, o conservantes tales como *p*-hidroxibenzoatos.

Las cápsulas que contienen uno o más principios activos o combinaciones de principios activos pueden prepararse, por ejemplo, mezclando los principios activos con vehículos inertes tales como la lactosa o el sorbitol y usándolos para rellenar cápsulas de gelatina. Los supositorios adecuados pueden prepararse, por ejemplo, mezclando con vehículos proporcionados para este fin, tales como grasas neutras o polietilenglicol o sus derivados.

Los excipientes que pueden usarse incluyen, por ejemplo, agua, disolventes orgánicos farmacéuticamente aceptables tales como parafinas (por ejemplo, fracciones de petróleo), aceites vegetales (por ejemplo, aceite de cacahuete o de sésamo), alcoholes monofuncionales o polifuncionales (por ejemplo, etanol o glicerol), vehículos tales como, por ejemplo, polvos minerales naturales (por ejemplo, caolines, arcillas, talco, tiza), polvos minerales sintéticos (por ejemplo, ácido silícico altamente dispersado y silicatos), azúcares (por ejemplo, azúcar de caña, lactosa y glucosa), emulsionantes (por ejemplo, lignina, licores de sulfito agotados, metilcelulosa, Almidón y polivinilpirrolidona) y lubricantes (por ejemplo, estearato de magnesio, talco, ácido esteárico y laurilsulfato de sodio).

Para la administración oral, los comprimidos pueden, por supuesto, contener, aparte de los vehículos mencionados anteriormente, aditivos tales como citrato de sodio, carbonato de calcio y fosfato dicálcico junto con diversos aditivos tales como almidón, preferentemente, almidón de patata, gelatina y similares. Además, al mismo tiempo, se pueden usar lubricantes tales como estearato de magnesio, laurilsulfato de sodio y talco para el proceso de formación de comprimidos. En el caso de las suspensiones acuosas, las sustancias activas pueden combinarse con varios potenciadores del sabor o colorantes además de los excipientes mencionados anteriormente.

También se prefiere que los compuestos de fórmula 1 o 1' se administren por inhalación, en particular, que se administran una o dos veces al día. Para este fin, los compuestos de fórmula 1 o 1' deben estar disponibles en formas adecuadas para inhalación. Los preparados inhalables incluyen polvos inhalables, aerosoles de dosis medidas que contienen propulsores o soluciones inhalables sin propulsor, que están presentes opcionalmente en mezcla con excipientes fisiológicamente aceptables convencionales.

Dentro del alcance de la presente invención, la expresión soluciones inhalables sin propulsor también incluye concentrados o soluciones inhalables listas para su uso, estériles. Los preparados que pueden usarse de acuerdo con la invención se describen con más detalle en la siguiente parte de la memoria descriptiva.

Polvos inhalables

10

25

30

35

40

45

50

Si las sustancias activas de fórmula 1 o 1' están presentes en una mezcla con excipientes fisiológicamente aceptables, se pueden usar los siguientes excipientes fisiológicamente aceptables para preparar los polvos inhalables de acuerdo con la invención: monosacáridos (por ejemplo, disacáridos (por ejemplo, lactosa, sacarosa, maltosa), oligo y polisacáridos (por ejemplo, dextrano), polialcoholes (por ejemplo, sorbitol, manitol, xilitol), sales (por ejemplo, cloruro de sodio, carbonato de calcio) o mezclas de estos excipientes entre sí. Preferentemente, se usan monosacáridos o disacáridos, mientras que se prefiere el uso de lactosa o glucosa, particularmente, pero no exclusivamente, en forma de sus hidratos. Para los fines de la invención, la lactosa es el excipiente particularmente preferido, mientras que el

monohidrato de lactosa es el más particularmente preferido. Los métodos para preparar los polvos inhalables de acuerdo con la invención mediante molienda y micronización y, finalmente, mezclando los componentes entre sí se conocen de la técnica anterior.

5 Aerosoles inhalables que contienen propulsores

Los aerosoles inhalables que contienen propulsores que pueden usarse de acuerdo con la invención pueden contener los compuestos de fórmula 1 o 1' disueltos en el gas propulsor o en forma dispersa. Los gases propulsores que pueden usarse para preparar los aerosoles de inhalación de acuerdo con la invención son conocidos de la técnica anterior. Los gases propulsores adecuados se seleccionan entre hidrocarburos tales como *n*-propano, *n*-butano o isobutano y halohidrocarburos tales como, preferentemente, derivados fluorados de metano, etano, propano, butano, ciclopropano o ciclobutano. Los gases propulsores mencionados anteriormente se pueden usar solos o en mezclas de los mismos. Son gases propulsores particularmente preferidos los derivados de alcano fluorados seleccionados entre TG134a (1,1,1,2-tetrafluoroetano), TG227 (1,1,1,2,3,3,3-heptafluoropropano) y mezclas de los mismos. Los aerosoles de inhalación impulsados por propulsor usados dentro del alcance del uso de acuerdo con la invención también pueden contener otros ingredientes tales como codisolventes, estabilizantes, tensioactivos, antioxidantes, lubricantes y ajustadores de pH. Todos estos ingredientes son conocidos en la técnica.

Soluciones inhalables sin propulsor

10

15

20

25

30

35

40

45

50

55

60

Los compuestos de fórmula 1 o 1' de acuerdo con la invención se usan preferentemente para preparar soluciones inhalables y suspensiones inhalables sin propulsor. Los disolventes usados para este fin incluyen soluciones acuosas o alcohólicas, preferentemente, etanólicas. El disolvente puede ser agua sola o una mezcla de agua y etanol. Las soluciones o suspensiones se ajustan a un pH de 2 a 7, preferentemente, de 2 a 5, usando ácidos adecuados. El pH puede ajustarse usando ácidos seleccionados entre ácidos inorgánicos u orgánicos. Los ejemplos de ácidos inorgánicos particularmente adecuados incluyen ácido clorhídrico, ácido bromhídrico, ácido nítrico, ácido sulfúrico y/o ácido fosfórico. Los ejemplos de ácidos orgánicos particularmente adecuados incluyen ácido ascórbico, ácido cítrico, ácido málico, ácido tartárico, ácido maleico, ácido succínico, ácido fumárico, ácido acético, ácido fórmico y/o ácido propiónico, etc. Los ácidos inorgánicos preferidos son el ácido clorhídrico y sulfúrico. También es posible usar los ácidos que ya han formado una sal de adición de ácido con uno de los principios activos. De los ácidos orgánicos, se prefieren el ácido ascórbico, ácido fumárico y ácido cítrico. Si se desea, también se pueden usar mezclas de los ácidos anteriores, en particular, en el caso de ácidos que tienen otras propiedades además de sus cualidades acidificantes, tales como aromatizantes, antioxidantes o agentes complejantes, tales como ácido cítrico o ácido ascórbico, por ejemplo. De acuerdo con la invención, se prefiere usar, en particular, ácido clorhídrico para ajustar el pH.

Se pueden añadir codisolventes y/u otros excipientes a las soluciones inhalables sin propulsor usadas para el fin de acuerdo con la invención. Los codisolventes preferidos son aquellos que contienen grupos hidroxilo u otros grupos polares, por ejemplo, alcoholes - en particular, alcohol isopropílico, glicoles - en particular, propilenglicol, polietilenglicol, polipropilenglicol, glicoléter, glicerol, alcoholes polioxietilénicos y ésteres de ácidos grasos de polioxietileno. Los términos excipientes y aditivos, en este contexto, denotan cualquier sustancia farmacológicamente aceptable que no sea una sustancia activa, pero que pueda formularse con la sustancia o sustancias activas en el disolvente farmacológicamente adecuado para mejorar las propiedades cualitativas de la formulación de sustancias activas. Preferentemente, estas sustancias no tienen efecto farmacológico o, en relación con la terapia deseada, no tienen un efecto farmacológico apreciable o al menos no indeseable. Los excipientes y aditivos incluyen, por ejemplo, tensioactivos tales como lecitina de soja, ácido oleico, ésteres de sorbitán, tales como polisorbatos, polivinilpirrolidona, otros estabilizantes, agentes formadores de complejos, antioxidantes y/o conservantes que garantizan o prolongan la vida útil de la formulación farmacéutica terminada, saporíferos, vitaminas y/u otros aditivos conocidos en la técnica. Los aditivos también incluyen sales farmacológicamente aceptables tales como cloruro de sodio como agentes isotónicos. Los excipientes preferidos incluyen antioxidantes tales como el ácido ascórbico, por ejemplo, siempre que no se haya usado para ajustar el pH, vitamina A, vitamina E, tocoferoles y vitaminas o provitaminas similares que se dan en el cuerpo humano. Se pueden usar conservantes para proteger la formulación de la contaminación con patógenos. Los conservantes adecuados son aquellos que se conocen en la técnica, en particular, cloruro de cetilpiridinio, cloruro de benzalconio o ácido benzoico o benzoatos tales como benzoato de sodio a la concentración conocida de la técnica anterior.

Para las formas de tratamiento descritas anteriormente, se proporcionan envases listos para su uso de un medicamento para el tratamiento de problemas respiratorios, que contienen una descripción adjunta que incluye, por ejemplo, los términos enfermedad respiratoria, EPOC o asma, junto con una imidazolil-pirimidina de acuerdo con la fórmula 1 o 1' y uno o más ingredientes de combinación seleccionados entre los descritos anteriormente.

REIVINDICACIONES

1. El compuesto de fórmula 1,

5

10

15

en la que A es N o CH, en la que Y es -O- o CH₂,

en la que R³ es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula 1 y se selecciona entre el grupo que consiste en -alquilo C₁₋₆ lineal o ramificado, -haloalquilo C₁₋₆, -cicloalquilo C₃₋₆, -alquileno C₁₋₄-cicloalquilo C₃₋₆, un heterociclo monocíclico de cinco o seis miembros con 1, 2 o tres heteroátomos seleccionados cada uno de ellos independientemente entre O, S o N, un heterociclo bicíclico de nueve a 10 miembros con 1, 2 o 3 heteroátomos seleccionados cada uno de ellos independientemente entre O, S o N, en el que R³ está opcionalmente sustituido con uno dos tres o quatro sustituyentes seleccionados cada uno

en el que R³ está opcionalmente sustituido con uno, dos, tres o cuatro sustituyentes seleccionados cada uno independientemente entre sí del grupo que consiste en halógeno (F), -alquilo C₁₋₃, oxo, -CN en el que R² se selecciona entre el grupo que consiste en -alquilo C₁₋₃, -haloalquilo C₁₋₃, F, Br, Cl, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

2. El compuesto de fórmula 1' de la reivindicación 1,

20

 CH_3 R^2 R^3 R^3

en la que A, Y, R^2 y R^3 se definen como en la reivindicación 1, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

- 3. El compuesto de fórmula $\underline{1}$ de la reivindicación 1 o de fórmula $\underline{1}$ de la reivindicación 2, en la que A es N o CH, en la que Y es -O- o CH₂,
- en la que R^3 es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula $\underline{1}$ y se selecciona entre el grupo que consiste en metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, terc-butilo, -fluoroalquilo C_{1-6} , ciclopropilo, ciclobutilo, ciclopentilo, -alquileno C_{1-2} -ciclopropilo C_{3-6} , -alquileno C_{1-2} -ciclobutilo C_{3-6} , -alquileno C_{1-2} -ciclopentilo C_{3-6} , un heterociclo monocíclico de cinco o seis miembros con 1 átomo de oxígeno, un heterociclo bicíclico de 9 a 10 miembros con 1 o 2 heteroátomos seleccionados cada uno de ellos independientemente entre O, S o N,
- en el que R³ está opcionalmente sustituido con uno, dos, tres o cuatro sustituyentes cada uno seleccionado independientemente entre sí del grupo que consiste en F, Cl, Br, metilo, etilo, -CN
 - en el que R² se selecciona entre el grupo que consiste en metilo, etilo, isopropilo, -CF₃, F, Br, Cl, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.
 - 4. El compuesto de fórmula $\underline{1}$ o de fórmula $\underline{1}'$ de una de las reivindicaciones 1 a 3, en la que A es N o CH, en la que Y es -O- o -CH₂-,
- en la que R³ es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula <u>1</u> y se selecciona entre el grupo que consiste en metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, terc-butilo, -(CH₂)₂-CF₃, -CH₂-CH₂F, ciclopropilo, cicloputilo, ciclopentilo, -metileno-ciclopropilo C₃₋₆, tetrahidrofuranilo, tetrahidropiranilo,
- - en el que R^3 está opcionalmente sustituido con uno, dos, tres o cuatro sustituyentes cada uno seleccionado independientemente entre sí del grupo que consiste en F, Cl, Br, metilo, etilo, -CN en la que R^2 se selecciona entre el grupo que consiste en metilo y F,
- 25 y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

10

15

- 5. El compuesto de fórmula <u>1</u> o de fórmula <u>1'</u> de una de las reivindicaciones 1 a 4, en el que R² es metilo, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.
- 30 6. El compuesto de fórmula <u>1</u> o de fórmula <u>1'</u> de una de las reivindicaciones 1 a 4, en la que R² es F, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.
 - 7. El compuesto de fórmula $\underline{1}$ o de fórmula $\underline{1}$ ' de al menos una de las reivindicaciones 1 a 6, en el que R^3 es un sustituyente en posición meta del anillo de pirazolilo de fórmula $\underline{1}$,
- 35 y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.
 - 8. El compuesto de fórmula <u>1</u> o de fórmula <u>1'</u> de al menos una de las reivindicaciones 1 a 6, en el que R³ es un sustituyente en posición orto del anillo de pirazolilo de fórmula <u>1</u>, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.
 - 9. El compuesto de fórmula <u>1</u> o de fórmula <u>1'</u> de al menos una de las reivindicaciones 1 a 8 en el que R³ está sustituido con uno, dos, tres o cuatro sustituyentes seleccionados cada uno independientemente entre sí del grupo que consiste en F, metilo y -CN, y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.
- 45 10. El compuesto de fórmula <u>1</u> o de fórmula <u>1'</u> de al menos una de las reivindicaciones 1 a 6, en la que A es N o CH, en la que Y es -CH₂-,
- en la que R³ es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula 1 y se selecciona entre el grupo que consiste en metilo, etilo, n-propilo, isopropilo, n-butilo, isobutilo, terc-butilo, -(CH₂)₂-CF₃, -CH₂-CH₂F, en el que R³ está opcionalmente sustituido con uno, dos, tres o cuatro sustituyentes seleccionados cada uno independientemente entre sí del grupo que consiste en F, metilo y -CN y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.
- 11. El compuesto de fórmula <u>1</u> o de fórmula <u>1'</u> de al menos una de las reivindicaciones 1 a 6, que se selecciona del grupo que consiste en

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

- 5 12. El compuesto de fórmula 1 o de fórmula 1 de al menos una de las reivindicaciones 1 a 6, en la que A es N o CH, en la que Y es -O- o CH₂,
 - R^3 es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula $\underline{1}$ y se selecciona entre el grupo que consiste en isopropilo, isobutilo y t-butilo, en la que R^3 no está adicionalmente sustituido,
- 10 y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.
 - 13. El compuesto de fórmula 1 o de fórmula 1 de la reivindicación 12, que se selecciona del grupo que consiste en

15

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

20 14. El compuesto de fórmula 1 o de fórmula 1' de la reivindicación 13, que es

y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

5 15. El compuesto de fórmula $\underline{1}$ o de fórmula $\underline{1}$ de la reivindicación 13, que es

y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

16. El compuesto de fórmula 1 o de fórmula 1 de la reivindicación 13, que es

- 15 y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.
 - 17. El compuesto de fórmula 1 o de fórmula 1 de la reivindicación 13, que es

y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

18. El compuesto de fórmula 1 o de fórmula 1 de la reivindicación 13, que es

5

15

25

y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

10 19. El compuesto de fórmula 1 o de fórmula 1' de la reivindicación 13, que es

y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

20. El compuesto de fórmula 1 o de fórmula 1 de la reivindicación 13, que es

20 y las sales farmacéuticamente aceptables del compuesto mencionado anteriormente.

21. El compuesto de fórmula $\underline{1}$ o de fórmula $\underline{1}'$ de una de las reivindicaciones 1 a 6, en el que A es N o CH, en el que Y es -CH₂-,

en el que R³ es un sustituyente en posición orto o meta del anillo de pirazolilo de fórmula <u>1</u> y se selecciona entre el grupo que consiste en

ciclopropilo, ciclobutilo, ciclopentilo, -metileno-ciclopropilo C₃₋₆, tetrahidrofuranilo, tetrahidropiranilo, hexahidrofuropiranilo,

en el que R³ está opcionalmente sustituido con uno, dos, tres o cuatro sustituyentes seleccionados cada uno independientemente entre sí del grupo que consiste en F, metilo y -CN

30 y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

22. El compuesto de fórmula 1 o de fórmula 1 de la reivindicación 21, que se selecciona del grupo que consiste en

- 10 y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.
 - 23. El compuesto de fórmula $\underline{1}$ o de fórmula $\underline{1'}$ de la reivindicación 22, que es

- 15 y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.
 - 24. El compuesto de fórmula $\underline{1}$ o de fórmula $\underline{1'}$ de la reivindicación 22, que es

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

25. El compuesto de fórmula 1 o de fórmula 1 de la reivindicación 22, que es

10 y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

26. El compuesto de fórmula 1 o de fórmula 1 de la reivindicación 22, que es

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

27. El compuesto de fórmula 1 o de fórmula 1 de la reivindicación 22, que es

20

15

5

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

28. El compuesto de fórmula 1 o de fórmula 1 de la reivindicación 22, que es

- 5 y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.
 - 29. El compuesto de fórmula $\underline{1}$ o de fórmula $\underline{1'}$ de la reivindicación 22, que es

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

30. El compuesto de fórmula 1 o de fórmula 1' de la reivindicación 22. que es

15

10

y las sales farmacéuticamente aceptables de los compuestos mencionados anteriormente.

31. Un compuesto intermedio seleccionado entre el grupo que consiste en la fórmula 7

la fórmula <u>8</u>

la fórmula <u>11</u>

5

en el que R² es F o metilo, en el que Y es -O- o CH₂,

90

en el que A es N o CH,

10

15

20

25

30

40

y en el que R³ se define como en una de las reivindicaciones 1 a 3 y en el que Hal es Cl o Br y en el que PG es un grupo protector seleccionado entre el grupo que consiste en bencilo, 1-feniletilo, 1-(4-metoxifenil)etilo.

32. Un compuesto intermedio seleccionado entre el grupo que consiste en

33. El compuesto de una cualquiera de las reivindicaciones 1 a 30 para su uso en el tratamiento de una enfermedad que puede tratarse mediante la inhibición de la enzima SYK.

34. El compuesto de cualquiera de las reivindicaciones 1 a 30 para su uso en el tratamiento de una enfermedad seleccionada entre el grupo que consiste en rinitis alérgica, asma, EPOC, síndrome de dificultad respiratoria del adulto, bronquitis, linfoma de linfocitos B, dermatitis y dermatitis de contacto, dermatitis alérgica, rinoconjuntivitis alérgica, artritis reumatoide, síndrome antifosfolípido, enfermedad de Berger, síndrome de Evans, colitis ulcerosa, glomerulonefritis alérgica basada en anticuerpos, granulocitopenia, síndrome de Goodpasture, hepatitis, púrpura de Henoch-Schönlein, vasculitis por hipersensibilidad, anemia inmunohemolítica, anemia hemolítica autoinmunitaria, púrpura trombocitopénica idiopática, síndrome de Kawasaki, conjuntivitis alérgica, lupus eritematoso, nefritis por lupus, linfoma de células capsulares, neutropenia, esclerosis lateral no familiar, arteriosclerosis, enfermedad de Crohn, esclerosis múltiple, miastenia grave, osteoporosis, enfermedades osteolíticas, osteopenia, psoriasis, síndrome de Sjögren, esclerodermia, linfoma de linfocitos T, urticaria/angioedema, granulomatosis de Wegener, enfermedad celíaca, macroglobulinemia de Waldenström, esclerosis sistémica (SSC), malaria y dengue.

35. El compuesto para su uso de acuerdo con la reivindicación 34, donde la enfermedad se selecciona entre el grupo que consiste en asma, EPOC, rinitis alérgica, síndrome de dificultad respiratoria del adulto, bronquitis, dermatitis alérgica, dermatitis de contacto, púrpura trombocitopénica idiopática, artritis reumatoide, lupus eritematoso, nefritis por lupus, esclerosis sistémica (SSC) y rinoconjuntivitis alérgica.

36. El compuesto para su uso de acuerdo con al menos una de las reivindicaciones 34 o 35, donde la enfermedad se selecciona entre el grupo que consiste en asma, EPOC, rinitis alérgica, púrpura trombocitopénica idiopática, dermatitis alérgica, lupus eritematoso, nefritis lúpica y artritis reumatoide.

35. Formulaciones farmacéuticas, **caracterizadas por que** contienen uno o más compuestos de acuerdo con una de las reivindicaciones 1 a 30 y un excipiente farmacéuticamente aceptable.

38. Formulaciones farmacéuticas, **caracterizadas por que** contienen uno o más compuestos de acuerdo con una de las reivindicaciones 1 a 30 en combinación con una sustancia activa seleccionada del grupo que consiste en anticolinérgicos, betamiméticos, corticoesteroides, inhibidores de PDE4, inhibidores de EGFR, antagonistas de LTD4, inhibidores de CCR3, inhibidores de iNOS, antagonistas de CRTH2, inhibidores de triple cinasa contra PDGFR, FGFR y VEGFR, inhibidores de HMG-CoA reductasa y AINE.