

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 745 500

51 Int. Cl.:

A61C 8/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 17.07.2012 PCT/EP2012/063939

(87) Fecha y número de publicación internacional: 24.01.2013 WO13011003

(96) Fecha de presentación y número de la solicitud europea: 17.07.2012 E 12737778 (6)

(97) Fecha y número de publicación de la concesión europea: 12.06.2019 EP 2734145

(54) Título: Contrafuerte para un diente postizo artificial

(30) Prioridad:

19.07.2011 DE 102011051930 12.08.2011 DE 102011052644

Fecha de publicación y mención en BOPI de la traducción de la patente: **02.03.2020**

(73) Titular/es:

ZV3 - ZIRCON VISION GMBH (100.0%) Hans-Urmiller-Ring 46c 82515 Wolfratshausen, DE

(72) Inventor/es:

FEITH, JOHAN

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Contrafuerte para un diente postizo artificial

25

45

50

La presente invención se refiere a un contrafuerte para un diente postizo artificial, a un diente postizo artificial con un contrafuerte correspondiente y a un procedimiento para producir y/o implantar un diente postizo artificial.

- 5 Del estado de la técnica (documento DE 10 2006 045 186 A1) se conocen unos contrafuertes para un diente postizo con dos partes.
 - El documento DE 10 2006 059 515 A1 propone atornillar al hueso la parte de un implante dental a introducir en el hueso mediante una herramienta adecuada, la cual se ajuste al implante en cuanto a su forma geométrica para transmitir un par de giro.
- El documento US 5,816,809 A muestra una pieza de unión entre una pieza distal implantable en el hueso y una corona a colocar encima, en donde la pieza de unión se produce a partir de titanio, acero o compuestos de resina reforzados con fibras y el extremo superior de la pieza de unión presenta un punto de rotura controlada.
- Asimismo se conocen del documento US 2003/0104338 A1 unos implantes dentales con dos partes, que se componen de una pieza de anclaje y de un contrafuerte o abutment. Tras el implante de la pieza de anclaje y la espera de un espacio de tiempo de cicatrización posiblemente necesario, el contrafuerte se atornilla o pega sobre la pieza de anclaje. El contrafuerte soporta después la corona o la superestructura correspondiente. Entre la pieza de anclaje y el contrafuerte queda una rendija, en la que pueden introducirse bacterias. De este modo puede llegarse en ocasiones a un retroceso óseo causado por las bacterias. A causa del retroceso óseo se modifica también el recorrido del límite natural de la encía. La encía se hunde o desplaza de tal manera, que en ocasiones se hacen visibles zonas de transición entre el implante y la corona. Esto perturba la impresión óptica del diente postizo artificial. Los implantes al descubierto de titanio son especialmente molestos y estéticamente indeseados.
 - El documento DE 101 59 683 A1 propone por ello usar implantes enterizos, en especial sobre base de óxido de circonio, en donde el contrafuerte y la pieza de anclaje estén fabricados a partir de una pieza. Los implantes enterizos de este tipo prácticamente no pueden rectificarse con medios convencionales después del sinterizado. Es decir el óxido de circonio, sin bien puede rectificarse también en estado sinterizado, sin embargo se producen micro-grietas, con lo que el diente postizo artificial en ocasiones se hace inservible.
 - Asimismo durante el rectificado del óxido de circonio el material se calienta de tal manera, que las células en contacto con el implante mueren. Una adaptación a posteriori del implante es por ello imposible. Los requisitos impuestos al proceso de producción del implante así como a la persona que coloca el implante son correspondientemente elevados.
- 30 El documento US 60/438,266 propone un implante con dos partes, que abarca una pieza de anclaje y un contrafuerte. El contrafuerte está insertado parcialmente en la pieza de anclaje y unido a la misma a través de una rosca. El implante tiene una junta de contacto exterior que, en el caso del implante colocado en el hueso, está claramente distanciada. El implante está configurado de tal manera, que la junta de contacto exterior se cierra al menos por secciones mediante una corona a aplicar.
- Tampoco los implantes de titanio deberían rectificarse *in situ*. Debido a que los implantes de este tipo también poseen una elevada conductividad calorífica, el calentamiento local producido por el rectificado se reparte por todo el implante. El mismo se calienta y las células óseas, que están en contacto directo con el implante, mueren. Se invierte un posible logro de cicatrización, ya alcanzado. Asimismo pueden entrar en la encía del paciente esquirlas metálicas, que se desprendan durante el rectificado y se aceleran mucho mediante la herramienta de rectificado. Con frecuencia no es posible una eliminación a posteriori de estas esquirlas. Las mismas permanecen en la encía y en ocasiones colorean la misma, de forma ópticamente chocante.
 - Teniendo en cuenta estas insuficiencias, el documento EP 2 146 665 propone usar un implante dental con tres partes formado por una pieza de anclaje, un contrafuerte y una corona. El contrafuerte debe estar fabricado de forma preferida con material sintético, de tal manera que el mismo pueda rectificarse fácilmente. La pieza de anclaje debe estar fabricada al menos por secciones con una cerámica técnica, que presente una dureza claramente mayor que el material sintético del contrafuerte. A la hora de usar cerámicas técnicas, se plantea el problema de que las mismas deben introducirse en el hueso con sumo cuidado. Si durante la introducción de una pieza de anclaje correspondiente se produce un daño a la misma (p.ej. se rompe una parte), su extracción es extremadamente problemática. Por ejemplo una pieza de anclaje de este tipo solo puede trocearse con dificultad, en donde debe contarse con una considerable pérdida de tejido y de hueso.
 - Asimismo la inserción de la pieza de anclaje se garantiza casi siempre mediante una herramienta metálica, en donde durante ese proceso puede producirse una abrasión, de tal manera que quedan unos residuos. Estos residuos pueden perturbar considerablemente la producción de una unión por pegado.
- El documento EP 1 319 375 A1 propone el empleo de resinas epoxídicas, para obtener un pico, que se inserte en el implante y represente la unión a una corona. Las resinas epoxídicas usadas pueden enhebrarse con una fibras de

carbono correspondientes o en las mismas pueden embutirse otros materiales.

10

15

20

25

50

55

La tarea de la invención es resuelta mediante un contrafuerte conforme a la presente reivindicación 1 y un diente postizo artificial conforme a la reivindicación 7.

Las herramientas que se utilicen para insertar la pieza de anclaje ya no deben aplicarse por lo tanto directamente a la pieza de anclaje, sino a un alojamiento de herramienta previsto para ello sobre el contrafuerte, en especial la parte superior del contrafuerte. Las fuerzas aplicadas (aprox. de 20 a 50 Nm, en especial de 30 a 40 Nm) se transmiten después indirectamente a la pieza de anclaje. En este sentido por ejemplo un resbalamiento de la herramienta conduce a un daño al contrafuerte – no a un daño a la pieza de anclaje. El contrafuerte puede sustituirse bastante más fácilmente que la pieza de anclaje, de tal manera que se evite un daño al paciente. En el caso del contrafuerte puede tratarse de un contrafuerte que posteriormente forme parte del diente postizo artificial o bien, alternativamente, de un contrafuerte que después de la inserción de la pieza de anclaje se extraiga y de forma preferida se sustituya por otro contrafuerte. En la presente solicitud un contrafuerte puede ser cualquier cuerpo tridimensional, que sea adecuado para colocarse sobre una pieza de anclaje de forma preferida con ajuste geométrico. Un contrafuerte correspondiente solo puede usarse como ayuda a la inserción para insertar la pieza de anclaje en el tejido biológico. Es posible, aunque no imprescindible, que el contrafuerte forme un elemento funcional del diente postizo completo, que comprenda corona y pieza de anclaje.

El alojamiento de herramienta puede comprender un apéndice, que se asiente sobre la parte superior del contrafuerte a lo largo del eje longitudinal, en especial en el lado alejado del contrafuerte. El alojamiento de herramienta sobresale por lo tanto, de tal manera que después de una inserción de la pieza de anclaje pueda extraerse, p.ej. mediante rectificado o corte.

El contrafuerte presenta un punto de rotura controlada, que limita una transmisión del par de giro entre la parte superior de contrafuerte y la parte inferior de contrafuerte y/o entre el alojamiento de herramienta y la parte inferior de contrafuerte. El contrafuerte presenta por lo tanto una limitación de la transmisión de fuerzas, que impide la aplicación de una fuerza excesiva a la pieza de anclaje. Esta limitación de fuerza se garantiza mediante un punto de rotura controlada, que conduce a una rotura controlada del contrafuerte en el caso de la aplicación de unas fuerzas excesivas. De este modo puede evitarse efectivamente un daño a la pieza de anclaje.

El contrafuerte puede comprender al menos una muesca para preparar el punto de rotura controlada.

El perfil del contrafuerte puede comprender un perfil poligonal y/o una forma estrellada de seis puntas, para unir el contrafuerte con encaje geométrico a la pieza de anclaje.

30 El alojamiento de herramienta puede comprender un perfil poligonal y/o una forma estrellada de seis puntas y/o un alojamiento para perfiles poligonales y/o un alojamiento para una forma estrellada de seis puntas. Teóricamente sería concebible configurar el alojamiento de herramienta de forma similar a un tornillo ranurado o ranurado en cruz. Sin embargo, son preferibles formas estrelladas de seis puntas o perfiles poligonales. Por ejemplo pueden usarse perfiles, que son conocidos para tornillos de Torx interior y Torx exterior. Alternativamente pueden usarse perfiles poligonales (p.ej. hexágono interior). Los perfiles de este tipo son especialmente adecuados para transmitir elevados pares de giro, sin que se produzca un daño a los perfiles correspondientes – es decir al alojamiento de herramienta y con ello a la pieza de anclaje -. Asimismo las formas de este tipo proporcionan un mejor guiado de la herramienta aplicada. Según la aplicación puede elegirse una forma de hélice (con dos elementos y/o tres elementos). La sección transversal puede tener la forma de un ocho.

El contrafuerte está configurado de forma que puede rectificarse al menos por secciones y comprende un material sintético reforzado con fibras de vidrio y/o reforzado con fibras de carbono. Una configuración de este tipo hace posible que el contrafuerte pueda adaptarse a circunstancias individuales, p.ej. a causa de un acortamiento, un decapado del perímetro o una conformación de una inclinación del contrafuerte. Teóricamente podría concebirse un rectificado *in situ*. Los materiales sintéticos son aisladores térmicos, de tal manera que tampoco un rectificado en la cavidad bucal conduce un calentamiento de la pieza de anclaje. El refuerzo con fibras de vidrio y/o fibras de carbono conduce a un contrafuerte muy estable. Sin embargo, el material sintético es flexible de tal manera que, si se producen unas fuerzas excesivas, las mismas no se transmiten directamente a la pieza de anclaje.

El refuerzo con fibras de vidrio y/o fibras de carbono es tal, que las fibras están orientadas en paralelo al eje longitudinal del contrafuerte. Los ensayos han demostrado que de este modo se obtiene un contrafuerte extremadamente estable, que puede transmitir fuerzas de rotación superiores a 30 Nm. De forma preferida la pieza de anclaje se produce en un procedimiento de pultrusión. Después del mismo puede realizarse un rectificado.

La parte inferior de contrafuerte y/o la zona del alojamiento del contrafuerte pueden estrecharse a lo largo del eje longitudinal (de forma preferida hacia abajo).

La parte superior de contrafuerte puede estar configurada ensanchada con respecto a la parte inferior de contrafuerte y/o sobresaliendo hacia fuera para configurar una superficie de contacto, en donde la superficie de contacto se extiende de forma preferida fundamentalmente en perpendicular al eje longitudinal. La zona de transición entre superficies verticales y superficies horizontales puede estar conformada en ángulo recto, en ángulo agudo,

redondeada o escalonada. Por ejemplo el contrafuerte puede tener una conformación en forma de seta. La superficie de contacto puede usarse para establecer un extremo de contacto con una superficie correspondiente sobre la pieza de anclaje. En este sentido es posible establecer una unión por pegado entre el contrafuerte y la pieza de anclaje.

El contrafuerte/la ayuda a la inserción puede comprender un cuerpo base sólido de material sintético, en especial un material sintético reforzado con fibras de vidrio y/o reforzado con fibras de carbono. Un cuerpo sólido es especialmente apropiado para transmitir las fuerzas aplicadas (en el caso de una cerámica técnica 20-35 Nm, en el caso de metal 20-50 Nm). En el caso del material sintético reforzado con fibras de vidrio puede tratarse de un compuesto de fibramaterial sintético, en donde como base se utilice resina epoxídica. En un ejemplo de realización el porcentaje de fibras en el material sintético reforzado con fibras de vidrio y/o reforzado con fibras de carbono puede ser superior al 50 % y/o superior al 60 % y/o superior al 70 %. Ha quedado demostrado que un porcentaje de fibras especialmente alto conduce a que, en el caso de sobregiro – es decir si se aplica una fuerza excesiva – se produce una coloración del material que puede apreciarse bien visualmente. Esto puede entenderse por parte del médico como una señal de que el contrafuerte es inservible. Asimismo el elevado porcentaje en volumen de fibras conduce a que, incluso en el caso de una configuración sólida del contrafuerte, puede establecerse una resistencia definida relativamente. En este sentido el contrafuerte puede dimensionarse de tal manera que, en el caso de una fuerza predefinida (p.ej. de 35, 40 ó 45 Nm), se produzca una fatiga del material. En este sentido se impide efectivamente la transmisión de fuerzas más allá de estos límites.

5

10

15

30

35

40

45

50

55

Asimismo el contrafuerte puede estar configurado de tal manera, que pueda insertarse con encaje geométrico en la pieza de anclaje configurada para ello.

La tarea citada anteriormente es resuelta asimismo mediante un diente postizo artificial con un implante para alojar una corona, en donde el implante presenta un contrafuerte como el descrito anteriormente y una pieza de anclaje. La pieza de anclaje puede presentar una zona de alojamiento del contrafuerte para alojar el contrafuerte y estar configurada al menos por secciones con un primer material, en donde el primer material pertenezca de forma preferida al grupo de materiales de las cerámicas técnicas, en especial de la cerámica oxídica. Se obtienen unas ventajas similares a las que ya se han descrito en conexión al contrafuerte.

La pieza de anclaje puede presentar una sección de resalte o sección frustocónica, en especial con una superficie de envuelta cóncava, para alojar una parte de una corona. Mediante la conformación especial puede producirse una zona de alojamiento de la corona. La misma es especialmente adecuada para formar un límite de preparación, de tal manera que la corona pueda aplicarse sobre la pieza de anclaje y opcionalmente sobre el contrafuerte. La zona de alojamiento de la corona garantiza que, durante este proceso de aplicación de material, no se produzca ninguna cavidad y ningún saliente que apoyen una infestación bacteriana.

La pieza de anclaje puede comprender al menos una sección roscada para atornillar la pieza de anclaje en un hueso. De forma preferida, por lo tanto, la pieza de anclaje puede anclarse en el hueso a través de una rosca. La inserción de la pieza de anclaje se facilita por medio de que están previstas unas secciones roscadas, que hacen posible el atornillado de la pieza de anclaje a modo de un tornillo. La conformación conforme a la invención del contrafuerte con el alojamiento de herramienta surte efecto especialmente en este punto, ya que el par de giro puede usarse para atornillar la pieza de anclaje en el hueso.

La pieza de anclaje puede estar configurada de tal manera que al menos una superficie de sección transversal presente una limitación de superficie fundamentalmente oval, en especial elíptica. Esta superficie de sección transversal se obtiene de forma preferida mediante un corte a través de la pieza de anclaje en perpendicular a su eje longitudinal. Según que diente debe ser sustituido por el diente postizo artificial, es deseable poner a disposición piezas de anclaje en diferentes conformaciones. Por ejemplo, en el caso de una sustitución de un premolar queda solo poco espacio entre los dientes adyacentes para la pieza de anclaje. Por ello la pieza de anclaje tiene que ser muy pequeña, por ejemplo conformarse con un diámetro de la sección subgingival inferior a 5 mm, en especial inferior a 4,5 mm. Para poder modelar y/o colocar encima la corona de forma adecuada se lleva a cabo un ensanchamiento en la zona superior (p.ej. isogingival y/o en la sección de resalte). Para tener aquí en cuenta las circunstancias naturales, este ensanchamiento puede tener en una vista en planta una conformación fundamentalmente oval. De forma preferida la pieza de anclaje está configurada de tal manera que, en especial en la zona superior, se obtenga una superficie de sección transversal que sea simétrica axialmente al menos respecto a un eje de simetría que, en el estado de inserción, se extienda desde el lado palatinal del diente postizo artificial hasta su lado labial.

En especial en las piezas de anclaje pequeñas de este tipo es ventajoso que la zona de alojamiento del contrafuerte comprenda una ranura alargada, en especial un orificio rasgado. Este orificio rasgado puede extenderse a lo largo de todo el eje de simetría citado. En el caso de una pieza de anclaje muy pequeña es de este modo posible transmitir durante la inserción unas fuerzas de torsión relativamente elevadas. Asimismo esta conformación tiene la ventaja de que las fuerzas, que actúan sobre la corona, pueden aplicarse de forma adecuada a la pieza de anclaje. En especial se obtiene una elevada rigidez a lo largo del citado eje de simetría, de tal manera que las fuerzas habituales pueden desviarse óptimamente.

Si la pieza de anclaje comprende una sección roscada, como ya se ha descrito anteriormente, la rosca debería estar equipada con un paso de rosca relativamente pequeño. De forma preferida la rosca está equipada de tal manera, que

ES 2 745 500 T3

por cada rotación se produzca una diferencia de altura inferior a 2 mm, en especial inferior a 1 mm. En este sentido es posible orientar la pieza de anclaje de forma ventajosa (p.ej. a causa de una orientación prefijada de la pieza de anclaje y/o de la zona de alojamiento del contrafuerte). En este sentido puede garantizarse un asiento óptimo de la pieza de anclaje, en donde por ejemplo un giro de 180º durante la inserción solo conduce a una pequeña diferencia de altura.

Basándose en las reivindicaciones dependientes se obtienen unas formas de realización ventajosas.

A continuación se describe la invención mediante varios ejemplos de realización, que se explican con más detalle basándose en unas figuras. Aquí muestran:

- la fig. 1 un corte a través de un diente postizo artificial conforme a la invención con una corona, una pieza de anclaje y un contrafuerte;
 - la fig. 2 una vista en planta sobre la pieza de anclaje de la fig. 1;
 - la fig. 3 una primera forma de realización de un contrafuerte;

5

35

45

- la fig. 4 una segunda forma de realización de un contrafuerte con un alojamiento de herramienta en forma de una hoja de trébol;
- 15 la fig. 5 una tercera forma de realización de un contrafuerte con un triángulo como alojamiento de herramienta;
 - la fig. 6 una cuarta forma de realización de un contrafuerte con un triángulo como alojamiento de herramienta;
 - la fig. 7 una guinta forma de realización de un contrafuerte (cuadrada);
 - la fig. 8 una sexta forma de realización de un contrafuerte (cónica);
 - la fig. 9 la pieza de anclaje insertada de la fig. 1;
- 20 la fig. 10 una vista en planta sobre otra pieza de anclaje:
 - la fig. 11 una séptima forma de realización de un contrafuerte (elíptica);
 - la fig. 12 la pieza de anclaje insertada de la fig. 10.
 - En la siguiente descripción se usan las mismas cifras de referencia para piezas iguales o con el mismo efecto.
- Un diente postizo artificial conforme a la invención comprende, como puede verse en la fig. 1, una corona 1, un contrafuerte 20 y una pieza de anclaje 30, en donde el contrafuerte 20 y la pieza de anclaje 30 configuran un implante 10 con dos partes, sobre el que se asienta la corona 1. Como puede verse en las figs. 2 y 8, la pieza de anclaje 30 es en el ejemplo de realización descrito un pasador fundamentalmente con simetría rotacional, que se extiende a lo largo de un eje longitudinal 7 y se inserta en la encía y en el hueso 2. En otro ejemplo de realización la pieza de anclaje 30 puede estar ejecutada asimétricamente y estar adaptada a circunstancias individuales. Conforme a la vista lateral (véase la representación esquemática de la fig. 9), el diámetro de la pieza de anclaje 30 aumenta en una sección subgingival 33 desde abajo y disminuye más allá de la sección subgingival 33.
 - Esta sección más allá de la sección subgingival 33 recibe el nombre de sección de resalte 34, que termina en una sección de meseta, que recibe el nombre de zona de alojamiento 37. De forma preferida la pieza de anclaje 30 está individualizada de tal manera, específicamente para cada paciente, que la zona de transición entre la sección subgingival 33 y la sección de resalte 34 discurre isogingivalmente.

La sección de resalte 34 frustocónica tiene una superficie de envuelta cóncava, que aloja la corona 1.

Como puede verse en la fig. 1, sobre la sección de meseta o zona de alojamiento 37 está situada una sección parcial del contrafuerte 20. La zona de alojamiento 37 puede pegarse al contrafuerte 20 durante la colocación del implante.

A lo largo del eje longitudinal 7 se extiende en el interior de la pieza de anclaje 30 un canal de alojamiento 36, que aloja también una sección del contrafuerte 20.

En un primer ejemplo de realización la sección superior del canal de alojamiento 36 está configurada como forma poligonal y la sección inferior como cilindro. En el efecto final la sección superior del canal de alojamiento 36 tiene en su sección transversal una conformación, que se corresponde con tres círculos que se entrecruzan – de forma similar a una hoja de trébol -. La sección transversal correspondiente a través de la sección inferior del canal de alojamiento 36 es circular.

El contrafuerte 20 comprende una parte inferior de contrafuerte 23 configurada de forma correspondiente al canal de alojamiento 36, sobre la que se asienta una parte superior de contrafuerte 21. La parte inferior de contrafuerte 23 está dividida en una parte de accionamiento 23a (correspondiente a la sección superior del canal de alojamiento 36) y en

una parte de retención 23b (correspondiente a la sección inferior del canal de alojamiento 36). En sección transversal, la parte de accionamiento 23a de la parte inferior de contrafuerte 23 sobresale con relación a la parte de retención 23b, en donde por encima de ésta sobresale la parte superior de contrafuerte 21. En el estado de implantación completa la parte superior de contrafuerte 21 configurada frustocónicamente está alineada con la sección de resalte 34, en especial con la superficie de envuelta cóncava, de la pieza de anclaje 30 y está situada mediante una superficie de base 22b de la parte superior de contrafuerte sobre la zona de alojamiento 37 de la pieza de anclaje 30. El contrafuerte 20 configurado de forma enteriza forma con la pieza de anclaje 30 una junta de contacto 5, que está cubierta y cerrada mediante la corona 1.

5

10

15

20

25

30

35

40

45

50

55

En un ejemplo de realización preferido la pieza de anclaje 30 está configurada como cerámica técnica y el contrafuerte 20 con material sintético. También para la producción de la corona 1 puede usarse una cerámica técnica, por ejemplo óxido de circonio. En este sentido el diente postizo artificial tiene una "espina dorsal" flexible en forma del contrafuerte 20 y un caparazón rígido en forma de la corona 1 y de la pieza de anclaje 30.

El contrafuerte puede adaptarse de forma preferida a las circunstancias específicas de cada paciente. Sobre la base de la fig. 3 se explica cómo puede producirse un contrafuerte 20 individualizado de forma correspondiente. En una forma inicial el contrafuerte 20, como ya se ha explicado, tiene una parte superior de contrafuerte 21 y una parte inferior de contrafuerte 23 con una parte de accionamiento 23a y una parte de retención 23b. La parte superior de estructura 21 está ejecutada como cilindro y está dimensionada de tal manera, que sobresale lateralmente de la zona de alojamiento 37. El cilindro tiene una superficie de tapa 22a de la parte superior de contrafuerte y la superficie de base 22b de la parte superior de contrafuerte. Después de la implantación de la pieza de anclaje 30 se inserta en el canal de alojamiento 36 el contrafuerte 20 con la parte de accionamiento 23a y la parte de retención 23b, configuradas de forma correspondiente al canal de alojamiento 36. La superficie de base 22b de la parte superior de contrafuerte y la zona de alojamiento 37 contactan entre ellas en el estado de inserción del contrafuerte 20. Después de la inserción la parte superior de contrafuerte 21 puede adaptarse *in situ* o en un modelo, de tal manera que se tengan en cuenta las circunstancias específicas del paciente. Por ejemplo el contrafuerte 20, en especial la parte superior de contrafuerte 21, puede rectificarse de tal manera que se obtenga una forma frustocónica, como la que se muestra en la fig. 1.

En una forma de realización alternativa pueden ponerse a disposición unos contrafuertes 20 preconfeccionados.

Una parte esencial de la presente solicitud se ocupa de la inserción efectiva de la pieza de anclaje 30 en el hueso 2 y en la encía 3. Para ello la pieza de anclaje 30 presenta, como se muestra en la fig. 9, una sección roscada 31, que hace posible atornillar la pieza de anclaje 30 al hueso. Es posible poner a disposición unas herramientas que engranen en el canal de alojamiento 36 de la pieza de anclaje 30 y faciliten el atornillado. A este respecto, sin embargo, puede producirse fácilmente un daño a la pieza de anclaje 30. Asimismo pueden aplicarse unas fuerzas tan grandes, que resulte dañado el hueso 2 del paciente.

La presente invención resuelve este problema por medio de que antes del atornillado de la pieza de anclaje 30 en el hueso 2 se inserta un contrafuerte, como se muestra por ejemplo en la fig. 4. A causa de la unión por encaje geométrico de la parte de retención 23b al canal de alojamiento 36 se establece de esta manera una unión forzada por una fuerza externa entre el contrafuerte 20 y la pieza de anclaje 30. La unión debida a una fuerza externa se establece en especial con relación a un movimiento de rotación alrededor del eje longitudinal 7. Conforme a la invención se prevé un alojamiento de herramienta 40 en el contrafuerte 20, que hace posible una aplicación en especial por encaje geométrico de la herramienta. En el ejemplo de realización mostrado en la fig. 4 se trata, en el caso del alojamiento de herramienta 40, de una escotadura prevista sobre la superficie de tapa 22a de la parte superior de contrafuerte, que en el efecto final tiene una conformación similar a la zona superior del canal de alojamiento 36. La escotadura está configurada por lo tanto en forma de una forma poligonal, que tiene un aspecto similar a tres taladros que se entrecruzan o a una hoja de trébol. El médico que intervenga aquí puede usar por lo tanto el mismo instrumento que se ha usado originalmente para el atornillado directo de la pieza de anclaje 30, para atornillar la pieza de anclaje 30 mediante el contrafuerte 20 conforme a la invención.

En un ejemplo de realización el contrafuerte 20 conforme a la invención presenta un punto de rotura controlada 45, que se encuentra entre la parte superior de estructura 21 y la parte inferior de contrafuerte 23, en especial por encima de la parte de accionamiento 23a. Este punto de rotura controlada 45 puede estar configurado de tal manera que, si se producen unas fuerzas dañinas para la pieza de anclaje 30, la parte superior de contrafuerte 21 se rompe. Por lo tanto se evita efectivamente un daño a la pieza de anclaje 30. La parte inferior de estructura 23 que queda después de una rotura correspondiente en la pieza de anclaje 30, que de forma preferida es de material sintético, puede extraerse fácilmente.

En otro ejemplo de realización (véase la fig. 5) el alojamiento de herramienta 40 no está encajado en la parte superior de contrafuerte 21, sino que sobresale por encima de la misma. La fig. 5 muestra un triángulo, que sobresale de la superficie de tapa 22a de la parte superior de contrafuerte y puede alojarse en una herramienta configurada de forma correspondiente (p.ej. una llave triangular).

Una muesca entre el alojamiento de herramienta 40 de la fig. 5 y la parte superior de contrafuerte 21 forma el punto de rotura controlada 45, que puede romperse de forma controlada. La forma de realización conforme a la fig. 5 tiene la ventaja de que incluso después de la rotura del alojamiento de herramienta 40 queda un contrafuerte 20 con plena

capacidad funcional. En este sentido puede provocarse conscientemente una rotura del alojamiento de herramienta 40. Alternativamente, después de una inserción con éxito de la pieza de anclaje 30, la parte saliente en forma del alojamiento de herramienta 40 puede rectificarse. Dado el caso puede realizarse una mecanización ulterior de la parte superior de contrafuerte 21. En este sentido es posible usar el contrafuerte 20 no solo como ayuda a la inserción, sino también como componente del diente postizo artificial.

5

10

15

20

25

55

60

Mientras que en la fig. 5 la parte de accionamiento 23a y la parte de retención 23b son iguales a las partes de accionamiento 23a y a las partes de retención 23b de los ejemplos de realización conforme a las figs. 3 y 4, en la fig. 6 está prevista una parte inferior de contrafuerte 23, que presenta una superficie de base triangular. La parte inferior de contrafuerte 23 conforme a la fig. 6 es por lo tanto un triángulo alargado, que puede insertarse de forma similar a la forma poligonal de las figs. 3 a 5 en un canal de alojamiento 36 correspondiente. También aquí se obtiene una unión por encaje geométrico, que garantiza una transmisión efectiva a la pieza de anclaje 30 de las fuerzas ejercidas sobre el contrafuerte 20.

La fig. 7 muestra otro ejemplo de realización del contrafuerte 20 conforme a la invención. La parte superior de contrafuerte 21 y la parte inferior de contrafuerte 23 están configuradas en forma de un paralelepípedo. La superficie de base del paralelepípedo son unos cuadrados, en donde el paralelepípedo de la parte inferior de contrafuerte 23 se asienta centralmente sobre la superficie de base 22b de la parte superior de contrafuerte. La parte inferior de contrafuerte 23 forma por lo tanto un polígono, que puede insertarse por encaje geométrico en un canal de alojamiento 36 configurado de forma correspondiente. La parte superior de contrafuerte 21 paralelepipédica puede rectificarse, como las partes superiores de estructura 21 ya explicadas. En la forma sin rectificar la parte superior de contrafuerte 21 completa configura, sin embargo, también un polígono que puede usarse como alojamiento de herramienta 40 para una llave-herramienta configurada de forma correspondiente. En el efecto final la llave engrana con encaje geométrico en al menos dos superficies laterales dispuestas alternativamente del paralelepípedo de la parte superior de contrafuerte 21, de tal manera que puede aplicarse un par de giro. La parte superior de contrafuerte 21 forma por lo tanto el alojamiento de herramienta 40, que se usa para aplicar unas fuerzas apropiadas. Por lo tanto, mediante el contrafuerte 20 conforme a la fig. 7 puede atornillarse también una pieza de anclaje 30 configurada de forma correspondiente en un hueso 2. De forma preferida el contrafuerte 21 se compone de dos cubos, en donde los mismos están unidos entre sí con la formación de un punto de rotura controlada 45. Por lo tanto, siempre que la llaveherramienta se aplique a la zona superior del contrafuerte 21, puede limitarse efectivamente la fuerza transmitida a la pieza de anclaje 30.

La fig. 8 muestra otro ejemplo de realización del contrafuerte 20 conforme a la invención 20. Con relación al contrafuerte de la fig. 4, aquí la parte inferior de contrafuerte 23 está configurada en total cónicamente, de tal manera que el diámetro de la parte inferior de contrafuerte 23 disminuye desde arriba hacia abajo. Tanto la parte de accionamiento 23 con la conformación en forma de hoja de trébol como la parte de retención 23b puede estrecharse hacia abajo.

La fig. 11 muestra otro contrafuerte 20 conforme a la invención, que no tiene una configuración con simetría de rotación con relación a su eje longitudinal 7. En el efecto final la parte superior de contrafuerte 21 es un cilindro finito con una superficie de tapa 22a de la parte superior de contrafuerte elíptica y una superficie de base 22b de la parte superior de contrafuerte elíptica. Como alojamiento de herramienta 40 está previsto un orificio rasgado que está dispuesto de tal manera en el cilindro, que la longitud del orificio rasgado puede maximizarse, en donde en las zonas de borde queda suficiente material, de tal manera que al insertar una herramienta no se produce ningún daño al contrafuerte 20. También la parte inferior de contrafuerte 23 presenta una parte de accionamiento 23a configurada de forma correspondiente, que también está configurada como cilindro con superficie de base y de tapa elípticas, de forma preferida ovales. La parte de retención 23b puede tener una sección transversal circular o también cualquier otra sección transversal, en especial una elíptica.

Un contrafuerte 20 correspondiente puede usarse de forma especialmente ventajosa en unión a una pieza de anclaje 30 alargada, como se muestra en las figs. 10 y 12. Una pieza de anclaje 30 correspondiente tiene una sección subgingival inferior 33 cilíndrica. En la sección subgingival superior 33 se ensancha la pieza de anclaje 30, de tal manera que aquí se obtiene un cono truncado con una superficie de tapa elíptica. De forma correspondiente a esto también la sección de resalte 34 y la zona de alojamiento 37 están configuradas de forma correspondiente elípticamente. El canal de alojamiento 36 puede estar conformado entonces en forma de un orificio rasgado, que sea especialmente adecuado para absorber fuerzas de torsión. En este sentido puede establecerse de forma sencilla una transmisión de fuerzas entre el contrafuerte 20 de la fig. 11 y la pieza de anclaje 30 de las figs. 10 y 12.

En general existe en el campo de la odontología el problema de que las piezas de anclaje 30 atornillables pueden estar dimensionadas muy pequeñas. Por ejemplo la sección subgingival inferior 33 puede presentar un diámetro inferior a 5 mm, en especial inferior a 4 mm, en especial inferior a 3 mm. Ha resultado ser extremadamente problemático prever en unas piezas de anclaje 30 tan pequeñas un canal de alojamiento 36, que sea adecuado para absorber unas fuerzas suficientemente altas, p.ej. superiores a 30 Nm. La presente invención propone por ello equipar la pieza de anclaje 30 con una zona superior alagada (p.ej. una sección de resalte 34 alargada). Las piezas de anclaje 30 conformadas de esta manera pueden ser especialmente apropiadas para producir juegos de dientes artificiales para premolares. Asimismo las mismas son adecuadas para la aplicación de aberturas en forma de ranura, como las que se muestran p.ej. en la fig. 10. La abertura en forma de ranura conforme a la invención, de forma preferida en

forma de un orificio rasgado, simplifica el atornillado de las piezas de anclaje 30 en el hueso 2.

Basándose en los ejemplos de realización descritos debería estar claro que la parte inferior de contrafuerte 23 o una zona parcial de la misma (p.ej. la parte de accionamiento 23a) puede presentar formas muy diferentes, que cumplen el objetivo conforme a la invención, precisamente una unión por encaje geométrico a un canal de alojamiento 36 configurado de forma correspondiente. Son concebibles perfiles poligonales, p.ej. triangulares, rectangulares, pentagonales, hexagonales, etc. o formas poligonales, p.ej. como las que son conocidas para los tornillos de Torx.

Asimismo existen numerosas posibilidades diferentes, en donde el alojamiento de herramienta 40 se prevé en el contrafuerte 20. Como se ha descrito el alojamiento de herramienta 40 puede estar insertado en la parte superior de contrafuerte 21 (p.ej. la fig. 4) y/o fijado a la misma (p.ej. fig. 5). Asimismo la parte superior de contrafuerte 21 puede presentar una forma, que ponga a disposición la funcionalidad de un alojamiento de herramienta 40.

Asimismo el punto de rotura controlada 45 puede preverse en diferentes posiciones según cada necesidad. De esta manera es por ejemplo concebible no prever el punto de rotura controlada, en el caso del contrafuerte 20, entre la parte superior de contrafuerte 21 y la parte inferior de contrafuerte 23, sino en lugar de ello prever un punto de rotura controlada correspondiente centralmente, como se muestra por ejemplo en la fig. 7, en la parte superior de contrafuerte 21. En este sentido es posible producir un contrafuerte 20 que pueda emplearse, incluso después de activarse la rotura controlada, funcionalmente para producir un diente postizo artificial. Con relación a la conformación de la parte superior de contrafuerte 21 se obtienen numerosas posibilidades de variación. Por ejemplo la parte superior de contrafuerte 21 de la fig. 4 puede dimensionarse de tal manera que, después de la rotura controlada o después de la extracción del alojamiento de herramienta 40, quede una parte superior de contrafuerte 21, como la que se muestra en la fig. 3. Asimismo el punto de rotura controlada 45 puede estar previsto según cada necesidad en diferentes posiciones, p.ej. en la parte superior de contrafuerte 21. Por ejemplo puede estar encontrarse centrado, como se muestra en la fig. 7, o en el tercio inferior o superior de la parte superior de contrafuerte 21. Para el técnico que intervenga aquí debería estar claro que la posición del punto de rotura controlada 45 es responsable en gran medida de qué aspecto tiene el contrafuerte 20 después de una rotura controlada.

25 En los ejemplos de realización anteriores se ha descrito el contrafuerte 20 conforme a la invención en unión a una corona 1. En lugar de la corona 1 puede apuntalarse cualquier superestructura mediante el contrafuerte descrito.

Lista de símbolos de referencia

5

10

15

20

1	Corona
2	Hueso
3	Encía
5	Junta de contacto
7	Eje longitudinal
9	Rosca
10	Implante
20	Contrafuerte
21	Parte superior de contrafuerte
22a	Superficie de tapa de la parte superior de contrafuerte
22b	Superficie de base de la parte superior de contrafuerte
23	Parte inferior de contrafuerte
23a	Parte de accionamiento
23b	Parte de retención
30	Pieza de anclaje
31	Sección roscada
32	Sección sin rosca
33	Sección subgingival

ES 2 745 500 T3

34	Sección de resalte
36	Canal de alojamiento
37	Zona de alojamiento
40	Alojamiento de herramienta
45	Punto de rotura controlada

REIVINDICACIONES

- 1.- Contrafuerte (20) para un diente postizo artificial, que comprende:
 - una parte superior de contrafuerte (21) dispuesta a lo largo de un eje longitudinal (7), y
 - una parte inferior de contrafuerte (23), que para la inserción por encaje geométrico del contrafuerte (20) en una zona de alojamiento de contrafuerte (26) de una pieza de anclaje (30) presenta un perfil tal, que un par de giro aplicado al contrafuerte (20) puede transmitirse a la pieza de anclaje (30),

en donde la parte superior de contrafuerte (21) comprende un alojamiento de herramienta (40) para el alojamiento con encaje geométrico de una herramienta, en donde el contrafuerte (20) puede rectificarse al menos por secciones, y está configurado como material sintético reforzado con fibras de vidrio y/o reforzado con fibras de carbono, en donde las fibras están orientadas en paralelo al eje longitudinal (7),

caracterizado porque

5

10

20

30

un punto de rotura controlada (45) limita la transmisión del par de giro entre la parte superior de contrafuerte (21) y la parte inferior de contrafuerte (23) y/o entre el alojamiento de herramienta (40) y la parte inferior de contrafuerte (23).

- 2.- Contrafuerte (20) según la reivindicación 1, caracterizado porque el alojamiento de herramienta (40) comprende
 un apéndice, que se asienta sobre la parte superior de contrafuerte (21) a lo largo del eje longitudinal (7), en especial en el lado alejado de la parte inferior de contrafuerte (23)
 - 3.- Contrafuerte (20) según una de las reivindicaciones anteriores, **caracterizado por** al menos una muesca para disponerla en un/el punto de rotura controlada (45).
 - 4.- Contrafuerte (20) según una de las reivindicaciones anteriores, **caracterizado porque** el perfil del contrafuerte (20) comprende un perfil poligonal y/o una forma estrellada de seis puntas.
 - 5.- Contrafuerte (20) según una de las reivindicaciones anteriores, **caracterizado porque** el alojamiento de herramienta (40) comprende un perfil poligonal y/o una forma estrellada de seis puntas y/o un alojamiento para perfiles poligonales y/o un alojamiento para una forma estrellada de seis puntas.
- 6.- Contrafuerte (20) según una de las reivindicaciones anteriores, **caracterizado porque** la parte superior de contrafuerte (21) está configurada ensanchada con respecto a la parte inferior de contrafuerte (21) y/o sobresaliendo hacia fuera para configurar una superficie de contacto (22b), en donde la superficie de contacto se extiende de forma preferida fundamentalmente en perpendicular al eje longitudinal (7).
 - 7.- Diente postizo artificial con un implante (10) para alojar una corona (1), en donde el implante (10) presenta un contrafuerte (20) según una de las reivindicaciones anteriores y una pieza de anclaje (30), en donde la pieza de anclaje (30) presenta una zona de alojamiento de contrafuerte (36) para alojar el contrafuerte (20) y está configurada al menos por secciones con un primer material, en donde el primer material pertenece de forma preferida al grupo de materiales de la cerámica técnica.
 - 8.- Diente postizo artificial según la reivindicación 7, **caracterizado porque** la pieza de anclaje (30) presenta una sección frustocónica (34), con una superficie de envuelta cóncava para alojar una parte de una corona (1).
- 35 9.- Diente postizo artificial según las reivindicaciones 7 u 8, **caracterizado porque** la pieza de anclaje (30) comprende al menos una sección roscada (31a, 31b) para atornillar la pieza de anclaje (30) en un hueso (2).
 - 10.- Diente postizo artificial según la reivindicación 9, **caracterizado porque** la pieza de anclaje (30) está configurada de tal manera, que al menos una superficie de sección transversal presenta una limitación de superficie fundamentalmente oval, en especial elíptica.
- 40 11.- Diente postizo artificial según la reivindicación 10, **caracterizado porque** la zona de alojamiento de contrafuerte (36) comprende un orificio alargado, que está orientado de forma preferida a lo largo del eje de simetría de una/la limitación de superficie oval, en especial elíptica, de la pieza de anclaje (30).

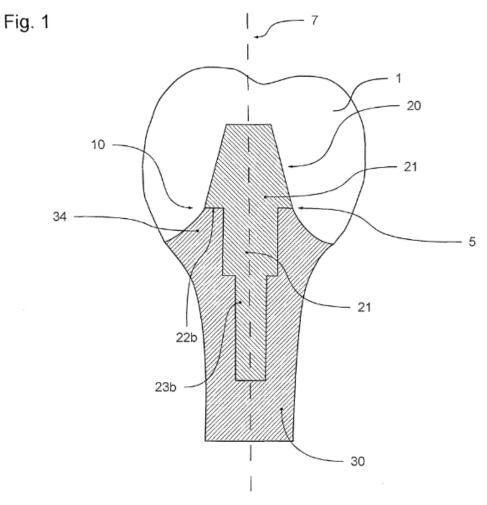
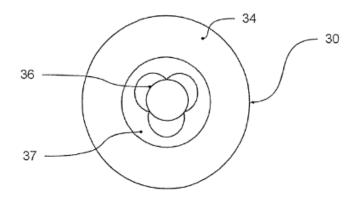
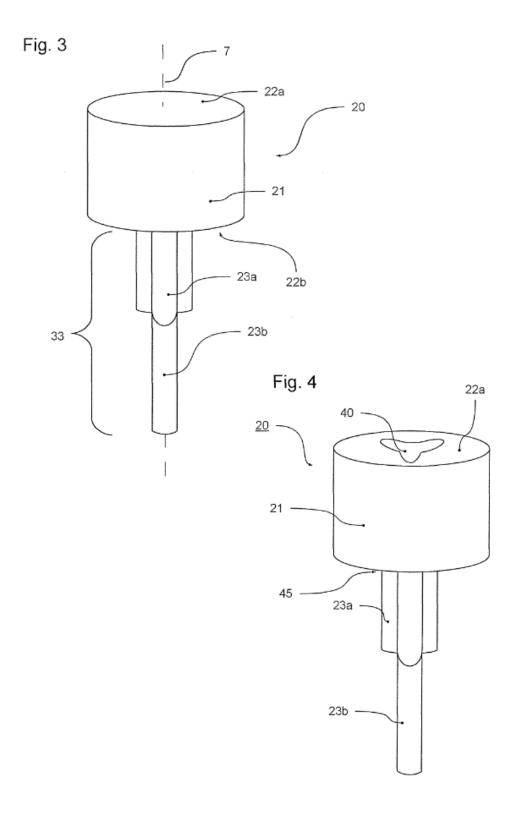
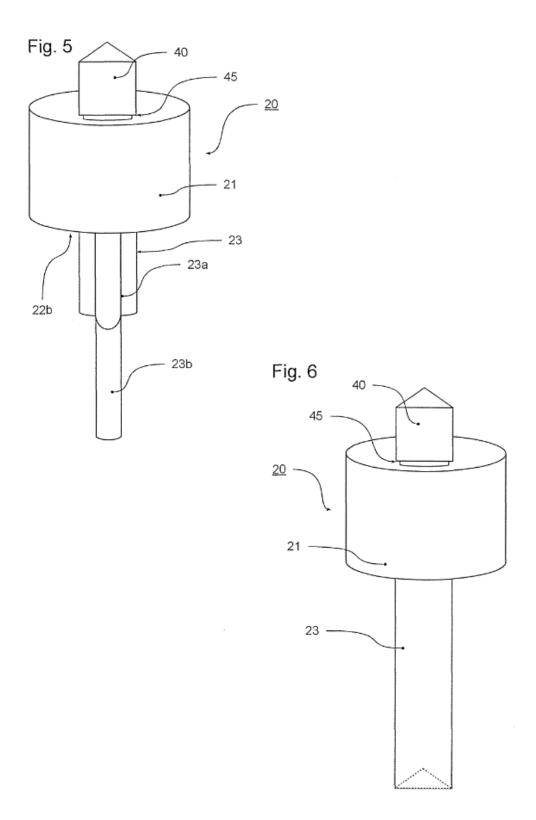
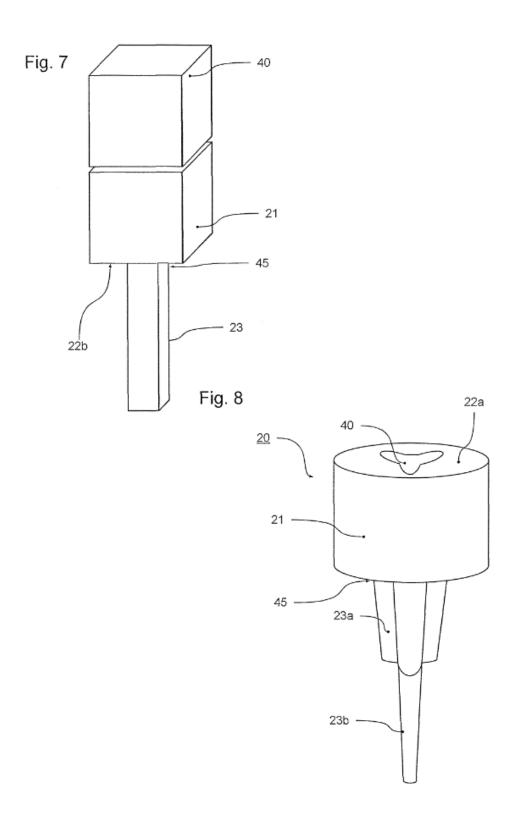






Fig. 2

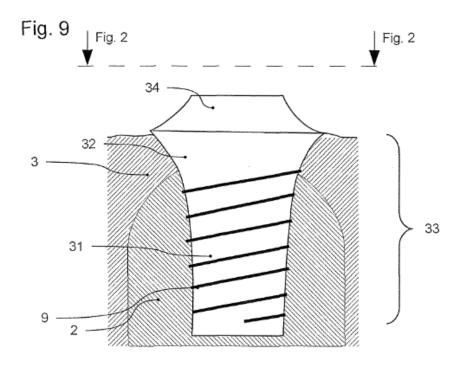
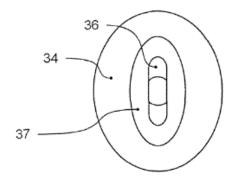
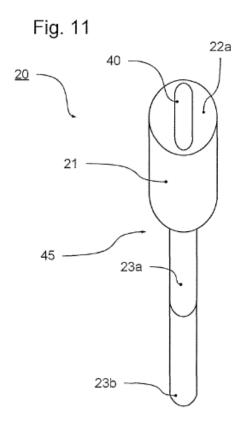
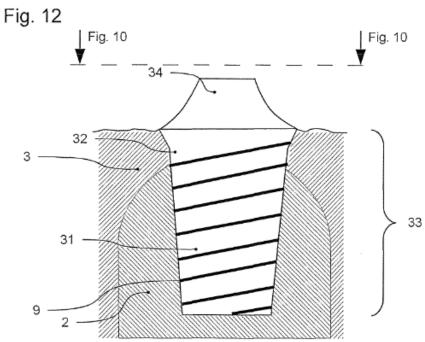





Fig. 10

