

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 746 299

61 Int. Cl.:

F24S 50/20 (2008.01) **F24S 23/70** (2008.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 23.06.2015 PCT/JP2015/068002

(87) Fecha y número de publicación internacional: 04.02.2016 WO16017323

96 Fecha de presentación y número de la solicitud europea: 23.06.2015 E 15827831 (7)

(97) Fecha y número de publicación de la concesión europea: 31.07.2019 EP 3176519

(54) Título: Dispositivo colector de calor solar

(30) Prioridad:

29.07.2014 JP 2014153498

Fecha de publicación y mención en BOPI de la traducción de la patente: **05.03.2020**

(73) Titular/es:

TOYO ENGINEERING CORPORATION (100.0%) 5-1, Marunouchi 1-chome, Chiyoda-ku Tokyo 100-6511, JP

(72) Inventor/es:

KATO, YOSHINOBU y SATAKE, KIYOSHI

74 Agente/Representante:

SALVÀ FERRER, Joan

DESCRIPCIÓN

Dispositivo colector de calor solar

5 CAMPO TÉCNICO

[0001] La presente invención se refiere a un dispositivo colector de calor solar.

ANTECEDENTES DE LA TÉCNICA

10

[0002] Se han desarrollado técnicas para usar luz solar y calor solar como fuente de energía renovable (bibliografías de patentes 1 a 3, bibliografía de no patentes 1). Las técnicas que usan el calor solar que se han desarrollado incluyen el sistema de generación de energía solar térmica de tipo reflector cilíndrico, el sistema de generación de energía solar térmica de tipo Fresnel, el sistema de generación de energía solar térmica de tipo torre y el sistema de generación de energía de tipo plato reflector y similares, que se clasifican según cómo se capta la luz. En estas técnicas, se ha introducido el espejo de reflexión de tipo de seguimiento solar para aumentar la eficiencia de captación del calor solar y la tasa de captación de la luz solar. El espejo de reflexión de tipo de seguimiento solar acciona un espejo de reflexión (espejo captador de calor) según el movimiento del sol.

20 [0003] El espejo de reflexión de tipo de seguimiento solar incluye un tipo de seguimiento en un solo eje y un tipo de seguimiento en dos ejes. En el tipo de seguimiento en un solo eje, la relación posicional entre el sol y el espejo de reflexión se ajusta a lo largo de un eje. Por ejemplo, el ángulo del espejo de reflexión se cambia unidimensionalmente a lo largo del eje este-oeste solamente o a lo largo del eje norte-sur solamente según el movimiento diario del sol. En el tipo de seguimiento en dos ejes, la relación posicional entre el sol y el espejo de 25 reflexión se ajusta a lo largo de dos ejes. Por ejemplo, según el movimiento diario del sol, la altitud del sol se sigue mientras se cambia el ángulo del espejo de reflexión y el acimut del sol se sigue girando el espejo de reflexión. Alternativamente, el acimut y la altitud del sol se siguen cambiando el ángulo del espejo de reflexión a lo largo tanto del eje este-oeste como del eje norte-sur. El espejo de reflexión de tipo de seguimiento en dos ejes es capaz de un control preciso del ángulo en la dirección de los dos ejes. Por lo tanto, en general, se emplea un espejo de reflexión 30 con un área superficial más pequeña que la del espejo de reflexión de tipo de seguimiento en un solo eje que realiza el control del ángulo solo en la dirección de un solo eje. En la actualidad, el sistema de generación de energía solar térmica de tipo reflector cilíndrico y el sistema de generación de energía solar térmica de tipo Fresnel emplean el espejo de reflexión de tipo de seguimiento en un solo eje. Por otra parte, el sistema de generación de energía solar térmica de tipo torre y el sistema de generación de energía solar de tipo plato reflector emplean el espejo de reflexión 35 de tipo de seguimiento en dos ejes.

[0004] El documento US 2011/303214 A1 describe un dispositivo de captación de calor solar con espejos de reflexión de tipo de seguimiento solar en un solo eje y en dos ejes.

40 LISTA DE REFERENCIAS

BIBLIOGRAFÍAS DE PATENTES

[0005]

45

Bibliografía de patentes 1: JP-A-2011-137620 Bibliografía de patentes 2: US 2009/0056703 A Bibliografía de patentes 3: WO 2012/042888 A

50 Bibliografía distinta de no patentes

[0006] Bibliografía distinta de no patentes 1: *NEDO Renewable Energy Technology White Paper*, 2nd Edition "Chapter 5 Solar thermal power generation and usage of solar heat"

55 RESUMEN DE LA INVENCIÓN

PROBLEMAS QUE SOLUCIONAR POR LA INVENCIÓN

[0007] Un objetivo de la presente invención es proporcionar un dispositivo colector de calor solar con mayor 60 eficiencia de captación de calor usando un grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje y un grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes en combinación.

SOLUCIÓN A LOS PROBLEMAS

65 [0008] Para lograr el objetivo descrito anteriormente, una realización de la presente invención describe un

dispositivo colecto de calor solar que incluye: un grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje que tiene una pluralidad de espejos de reflexión de tipo de seguimiento solar en un solo eje seleccionados de entre espejos de reflexión de tipo Fresnel y espejos de reflexión de tipo reflector cilíndrico; un grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes que tiene una pluralidad de espejos de reflexión de tipo de seguimiento solar 5 en dos ejes que incluyen cada uno un área superficial del 5 al 20 % de un área superficial de uno de los espejos de reflexión de tipo de seguimiento solar en un solo eje; y una unidad colectora de calor que capta calor recibiendo luz de reflexión del grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje y del grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes para transferir el calor de un primer extremo a un segundo extremo en una dirección longitudinal de la unidad; el grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje 10 está dispuesto de modo que los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje están orientados en una misma dirección: el grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes se divide en un primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes y un segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes; el primer y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos eies están dispuestos lado a lado en una dirección ortogonal a una 15 dirección del eje largo de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje; y el grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje está dispuesto intercalado entre el primer y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes; y la unidad colectora de calor está instalada justo encima del dispositivo de seguimiento solar en un solo eje en la dirección de los ejes largos de múltiples espejos de reflexión de tipo de seguimiento en un solo eje.

20

[0009] En la presente invención, se combinan el grupo de espejos de reflexión de tipo de seguimiento en un solo eje y el grupo de espejos de reflexión de tipo de seguimiento en dos ejes. El área superficial de un espejo de reflexión de tipo de seguimiento en dos ejes puede establecerse en el intervalo del 5 al 20 % o del 5 al 15 % del área superficial de un espejo de reflexión de tipo de seguimiento solar en un solo eje. En comparación con el espejo de reflexión de tipo de seguimiento en un solo eje que capta la luz en una línea, el espejo de reflexión de tipo de seguimiento en dos ejes que capta la luz en un punto puede ajustar la relación posicional entre el sol y el espejo de reflexión con mayor precisión y tasa de captación de luz más alta. Por lo tanto, la eficiencia de captación de calor (capacidad de captación de calor por unidad de área del espejo de reflexión) es alta y la temperatura final también es alta. Por estas razones, siempre que el área de captación de calor de todo el grupo de espejos de reflexión sea la misma, la combinación del grupo de espejos de reflexión de tipo de seguimiento en un solo eje y el grupo de espejos de reflexión de tipo de seguimiento en un solo eje y temperatura final en comparación con solamente el grupo de espejos de reflexión de tipo de seguimiento en un solo eje.

- 135 **[0010]** La forma del espejo de reflexión de tipo de seguimiento en dos ejes no está limitada en particular. Puede emplearse una forma cuadrada, rectangular o circular. Por ejemplo, la forma y el tamaño pueden ajustarse según las circunstancias, incluyendo el lugar donde se establece el dispositivo colector de calor solar (sin embargo, se debe satisfacer el intervalo numérico anterior del área superficial).
- 40 [0011] Como la unidad colectora de calor, se usa un tubo colector de calor, un dispositivo colector de calor o una combinación de los mismos. El tubo colector de calor incluye uno o una pluralidad de tubos. El tubo puede tener un medio (medio calorífico) en el mismo. El medio calorífico fluye de un primer lado de extremo a un segundo lado de extremo en una dirección de la longitud del tubo colector de calor. Por lo tanto, el calor se transfiere del primer lado de extremo al segundo lado de extremo. El medio calorífico puede ser líquido conocido (tal como sal fundida, aceite caliente o agua), gas (tal como aire, nitrógeno o dióxido de carbono) o similares. El dispositivo colector de calor incluye un medio calorífico sólido (tal como cerámica porosa). El calor se transfiere de un primer lado de extremo a un segundo lado de extremo en una dirección de la longitud, que es similar al tubo colector de calor.
- [0012] Si la dirección del eje largo del grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje coincide con la dirección norte-sur, el primer y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes están dispuestos lado a lado en la dirección este-oeste en relación con la dirección norte-sur. La eficiencia de captación de calor y el grado de captación de luz pueden aumentarse disponiendo el grupo de espejos de reflexión de tipo de seguimiento en un solo eje y el grupo de espejos de reflexión de tipo de seguimiento en dos ejes como se indicó anteriormente.

55

[0013] En el dispositivo colector de calor solar según una alternativa no según la presente invención, el grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje puede estar dispuesto de modo que los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje estén orientados en una misma dirección. El grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes puede estar dispuesto en una 60 dirección en la que se extienden los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje y en una dirección de transferencia de calor.

[0014] Cuando, por ejemplo, la unidad colectora de calor es un tubo colector de calor, el medio calorífico se transfiere del primer lado de extremo (lado de aguas arriba) al segundo lado de extremo (lado de aguas abajo) (es 65 decir, se transfiere calor). Por lo tanto, debido al calor captado por el grupo de espejos de reflexión de tipo de

seguimiento solar en un solo eje en el lado de aguas arriba de la transferencia de calor, se aumenta la temperatura del medio calorífico. Después de eso, la captación de calor por el grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes en el lado de aguas abajo de la transferencia de calor puede aumentar el grado de captación de luz. Esto aumenta aún más la temperatura del medio calorífico. Como el calor es captado en las dos fases de esta manera, 5 puede aumentarse la eficiencia de captación de calor y el grado de captación de luz, aumentando así la temperatura aún más.

[0015] En el dispositivo colector de calor solar según la presente invención, el grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje puede estar dispuesto de modo que los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje estén orientados en una misma dirección. El grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes puede dividirse en un primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes y un tercer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes y un tercer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes. El primer y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes pueden estar dispuestos lado a lado en una dirección ortogonal a una dirección del eje largo de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje. El grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje puede estar dispuesto intercalado entre el primer y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes. El tercer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes. El tercer grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje y en una dirección en la que se extienden los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje y en una dirección de transferencia de calor.

[0016] Los grupos de espejos de reflexión de tipo de seguimiento solar en dos ejes pueden estar dispuestos para rodear tres lados del grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje con los tres grupos de espejos de reflexión de tipo de seguimiento solar en dos ejes. Por lo tanto, aumentando la eficiencia de captación de captación de luz, puede aumentarse la temperatura.

EFECTOS DE LA INVENCIÓN

[0017] El dispositivo colector de calor solar según la presente invención emplea la combinación del grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje y el grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes. Si el área superficial total de los espejos de reflexión es la misma, cuando se combinan el tipo de seguimiento en un solo eje y el tipo de seguimiento en dos ejes, la eficiencia de captación de calor y el grado de captación de luz son mayores que cuando únicamente se usa el tipo de seguimiento en un solo eje. Además, como un espejo de reflexión de tipo de seguimiento en dos ejes tiene un área pequeña, es posible la producción en masa 35 del espejo de reflexión. Esto permite la reducción del coste de fabricación para el dispositivo colector de calor solar.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

[0018]

40

La FIG. 1 es una vista en perspectiva de un sistema de generación de energía en el que se usa un dispositivo colector de calor solar según la presente invención.

La FIG. 2 es una vista en planta que ilustra la disposición de los grupos de espejos de reflexión incluidos en el dispositivo colector de calor solar de la FIG. 1 (sin embargo, el número de espejos es diferente del de la FIG. 1).

45 La FIG. 3 es una vista en planta que ilustra la disposición de grupos de espejos de reflexión incluidos en un dispositivo colector de calor solar según una alternativa no según la invención.

La FIG. 4 es una vista en planta que ilustra la disposición de grupos de espejos de reflexión incluidos en un dispositivo colector de calor solar según una realización adicional diferente de la de la FIG. 1.

La FIG. 5 es una vista en planta que ilustra la disposición de grupos de espejos de reflexión incluidos en un dispositivo colector de calor solar no según la invención, en el que únicamente se usan grupos de espejos de reflexión de tipo de seguimiento solar en dos ejes.

DESCRIPCIÓN DETALLADA DE LAS REALIZACIONES

55 (1) Dispositivo colector de calor solar de las FIGS. 1 y 2

[0019] Un dispositivo colector de calor solar 1 incluye un grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje 20 y grupos de espejos de reflexión de tipo de seguimiento solar en dos ejes 30 y 40.

60 **[0020]** El grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje 20 incluye la combinación de un número requerido de espejos de reflexión de tipo Fresnel lineales 21. Los espejos de reflexión de tipo Fresnel lineales 21 están dispuestos a intervalos iguales en la dirección de la anchura con sus ejes largos orientados en la misma dirección (por ejemplo, dirección norte-sur).

65 [0021] Un grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes se divide en el primer grupo

de espejos de reflexión de tipo de seguimiento solar en dos ejes 30 y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 40. El grupo de espejos de reflexión 30 y el grupo de espejos de reflexión 40 están dispuestos lado a lado en una dirección ortogonal a la dirección del eje largo del espejo de reflexión de tipo de seguimiento solar en un solo eje 21. Aquí, el grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje 20 está dispuesto intercalado entre el grupo de espejos de reflexión 30 y el grupo de espejos de reflexión 40. Cuando los espejos de reflexión de tipo Fresnel lineales 21 están dispuestos con sus ejes largos orientados en la dirección norte-sur, el primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 30 y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 30 y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 30 y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 30 y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 40 están dispuestos lado a lado en la dirección esteceste.

10

[0022] El primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 30 incluye la combinación de un número requerido de espejos de reflexión 31. El segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 40 incluye la combinación de un número requerido de espejos de reflexión 41. El número de espejos del primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 30 puede ser igual o diferente del segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 40. El número de espejos del primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 30 y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 30 y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 40 puede ajustarse según proceda según la cantidad pretendida de calor que debe captarse o las circunstancias del lugar de instalación.

20 **[0023]** Cada una del área superficial (el área de una superficie frontal que recibe la luz solar) de un espejo de reflexión 31 y el área superficial de un espejo de reflexión 41 es aproximadamente el 10 % del área superficial de un espejo de reflexión de tipo Fresnel lineal 21. Por ejemplo, puede usarse el espejo de reflexión 31 con un área de aproximadamente 2 x 2 m y el espejo de reflexión 41 con el mismo grado de área. El área no está limitada a la anterior siempre que el espejo de reflexión sea capaz de control en dos ejes. Las FIGS. 1 y 2 ilustran los espejos de reflexión 25 31 y 41 con una forma cuadrada. El espejo de reflexión, sin embargo, puede tener otra forma.

[0024] En la FIG. 1, la combinación de una pluralidad de tubos colectores de calor 11 se usa como una unidad colectora de calor 10. Alternativamente, puede usarse un dispositivo colector de calor conocido o una unidad colectora de calor que emplea un procedimiento de calor, que se ha obtenido mediante el tubo colector de calor 11, además en otro sólido (tal como un cuerpo moldeado de hormigón). La unidad colectora de calor 10 está instalada justo encima del grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje 20 en las FIGS. 1 y 2. El lugar de instalación de la unidad colectora de calor 10 puede cambiarse según proceda según las circunstancias del lugar donde esté instalado el dispositivo colector de calor solar 1. La unidad colectora de calor 10 se instala al ser soportada por un soporte hecho de una columna, armazón o placa de metal.

35

[0025] A continuación, se describe un procedimiento de funcionamiento del dispositivo colector de calor solar 1 según la realización de la presente invención con referencia a un sistema de generación de energía ilustrado en la FIG. 1. Aquí, se hace la descripción de la realización en la que se usa agua como el medio calorífico que fluye a través del tubo colector de calor 11. Se envía agua desde una línea de suministro de agua 71 hasta el tubo colector de calor 11 de la unidad colectora de calor 10. En la fase inicial de la operación, se suministra agua desde una fuente de agua, que no se muestra.

[0026] El grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje 20 refleja la luz solar recibida mientras que sigue en un solo eje la posición del sol, y envía la luz a la unidad colectora de calor 10. El primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 30 y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 40 refleja la luz solar recibida mientras que siguen en dos ejes la posición del sol, y envían la luz a la unidad colectora de calor 10. El agua de la unidad colectora de calor 10 (tubo colector de calor 11) se convierte en vapor. La temperatura del vapor puede determinarse según la condición necesaria. En Japón, la temperatura puede aumentarse para que sea superior o igual a 600 °C, aumentando la tasa de captación de luz.

50

[0027] Después de eso, se suministra el vapor a un dispositivo de generación de energía 50 que tiene una turbina y un generador de energía a través de un tubo de suministro de vapor 72. La turbina se hace girar por el vapor suministrado al dispositivo de generación de energía 50. La energía se genera transmitiendo la energía motriz, que se genera por la rotación de la turbina, al generador de energía. El vapor usado en la rotación de la turbina se envía desde una línea de retorno de vapor 73 hasta un condensador 60. El vapor enviado se vuelve a convertir en agua después de la condensación. Después de eso, el agua generada se suministra a la unidad colectora de calor 10 a través de la línea de suministro de agua 71. En la banda de tiempo en la que puede usarse la luz solar, la generación de energía usando el calor solar puede proseguirse repitiendo la operación de circulación anterior.

60 (2) Dispositivo colector de calor solar de la FIG. 3 no según la invención

[0028] En un dispositivo colector de calor solar de la FIG. 3, la posición de un grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 130 es diferente de la del dispositivo colector de calor solar 1 de la FIG. 1. El grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 130 está dispuesto en una dirección en la que 65 se extienden los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje 21 y en

ES 2 746 299 T3

la dirección de transferencia de calor. Aquí, la dirección de transferencia de calor se refiere a la dirección en la que se transfiere el medio calorífico (agua) de la unidad colectora de calor 10 (tubo colector de calor 11), y corresponde a la dirección desde un primer extremo 10a hasta un segundo extremo 10b en la unidad colectora de calor 10 en la FIG. 3. Como el número de grupos de espejos de reflexión de tipo de seguimiento solar en dos ejes es menor en la FIG. 3, el ejemplo mostrado contiene menos espejos de reflexión. Sin embargo, el número total de espejos de reflexión en el grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes en la FIG. 3 puede aumentarse para que sea igual al número total de espejos de reflexión en el grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes en la FIG. 2.

- 10 [0029] Cuando el agua, que es el medio calorífico, se transfiere del primer extremo (aguas arriba) 10a al segundo extremo (aguas abajo) 10b en la unidad colectora de calor 10, en primer lugar, el agua es calentada por la luz solar reflejada por el grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje 20 en lado de aguas arriba. Después de eso, el agua es calentada aún más por la luz solar reflejada por el grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 130 en el lado de aguas abajo. En el dispositivo colector de calor solar de la FIG. 3, el agua como el medio calorífico es calentada en dos fases como anteriormente.
 - (3) Dispositivo colector de calor solar de la FIG. 4
- [0030] En el dispositivo colector de calor solar de la FIG. 4 se combinan los grupos de espejos de reflexión en 20 el dispositivo colector de calor solar de las FIGS. 1 y 2. El grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje 20 incluye la combinación de un número requerido de espejos de reflexión de tipo Fresnel lineales 21. Los espejos de reflexión de tipo Fresnel lineales 21 están dispuestos a intervalos iguales con sus ejes largos orientados en la misma dirección (por ejemplo, dirección norte-sur).
- Un grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes se divide en el primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 30, el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 130. Los grupos de espejos de reflexión 30 y 40 están dispuestos lado a lado en una dirección ortogonal a la dirección del eje largo del espejo de reflexión de tipo de seguimiento solar en un solo eje 21. Aquí, el grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje 20 está dispuesto intercalado entre los grupos de espejos de reflexión 30 y 40. El grupo de espejos de reflexión 130 está dispuesto en una dirección en la que se extienden los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje 21 y en la dirección de transferencia de calor. Obsérvese que en la FIG. 4, como el número de grupos de espejos de reflexión de tipo de seguimiento solar en dos ejes es mayor, el ejemplo mostrado contiene más espejos de reflexión. Sin embargo, el número total de espejos de reflexión en los tres grupos de espejos de reflexión de tipo de seguimiento solar en dos ejes puede disminuirse para que sea igual al número total de espejos de reflexión en el grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes en la FIG. 2.
- [0032] La disposición óptima puede seleccionarse de entre las disposiciones de los grupos de espejos de reflexión de tipo de seguimiento solar en dos ejes ilustradas en las FIGS. 2 a 4 en consideración del espacio y la forma del lugar donde esté instalado el dispositivo colector de calor solar según la presente invención y cuánta luz solar puede recibir el dispositivo. En esta ocasión, el número de espejos de reflexión incluidos en un grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes puede aumentarse o disminuirse según proceda. Además, el dispositivo colector de calor solar según la presente invención puede aplicarse para mejorar la eficiencia de captación de calor del dispositivo colector de calor solar existente que emplea únicamente el espejo de reflexión de tipo de seguimiento solar en un solo eje.
 - (5) Dispositivo colector de calor solar de la FIG. 5 no según la invención.
- 50 **[0033]** La FIG. 5 ilustra el ejemplo de aplicación del dispositivo colector de calor solar no según la presente invención. En la FIG. 5, se proporcionan dos grupos de espejos de reflexión de tipo de seguimiento solar en dos ejes 230 y 330 y dos unidades colectoras de calor 10 y 110.
- [0034] De los dos grupos de espejos de reflexión de tipo de seguimiento solar en dos ejes, el primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 230 está dispuesto en el lado de aguas arriba de la transferencia de calor mientras que el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 330 está dispuesto en el lado de aguas abajo de la transferencia de calor. La primera unidad colectora de calor 10 está dispuesta justo encima del primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 230 y la segunda unidad colectora de calor 110 está dispuesta justo encima del segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes 330. En la operación, el medio calorífico calentado por la primera unidad colectora de calor 10 es calentado aún más por la segunda unidad colectora de calor 110. El dispositivo colector de calor solar según la realización de la presente invención puede ser uno cualquiera de los siguientes primer y segundo dispositivo colector de calor solar.
- 65 [0035] El primer dispositivo colector de calor solar es un dispositivo colector de calor solar que incluye un grupo

de espejos de reflexión que incluye un grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje y un grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes, y una unidad colectora de calor solar para obtener calor captando la luz procedente del grupo de espejos de reflexión. El grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje incluye una combinación de una pluralidad de espejos de reflexión seleccionados de entre espejos de reflexión de tipo Fresnel y espejos de reflexión de tipo reflector cilíndrico. El grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes incluye una combinación de una pluralidad de espejos de reflexión de tipo de seguimiento solar en un área superficial del 5 al 20 % de un área superficial de uno de los espejos de reflexión de tipo de seguimiento solar en un solo eje. La unidad colectora de calor es un tubo colector de calor, un dispositivo colector de calor o una combinación de los mismos para captar calor recibiendo la luz de reflexión procedente del grupo de espejos de reflexión y transfiriendo el calor de un primer extremo a un segundo extremo en una dirección longitudinal de los mismos.

[0036] El grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje está dispuesto de modo que los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje están orientados en la misma dirección. El grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes se divide en un primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes y un segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes en lados opuestos en una dirección ortogonal a una dirección del eje largo de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje.

20 **[0037]** La unidad colectora de calor está instalada justo encima del dispositivo de seguimiento solar en un solo eje en la dirección de los ejes largos de múltiples espejos de reflexión de tipo de seguimiento en un solo eje.

[0038] En el segundo dispositivo colector de calor solar según el primer dispositivo colector de calor solar, el grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje está dispuesto de modo que los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje se extienden en la misma dirección. El grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes se divide en un primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes y un segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes en lados opuestos en una dirección ortogonal a una dirección del eje largo de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje y un tercer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes está dispuesto en una dirección en la que se extienden los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje y en una dirección de transferencia de calor.

[0039] Esta solicitud internacional se basa y reivindica el beneficio de prioridad de la solicitud de patente japonesa N.° 2014-153498, depositada el 29 de julio de 2014.

[0040] Las descripciones anteriores respecto a la realización particular de la presente invención se han presentado con fines de ilustración. No pretenden ser exhaustivas o limitar la presente invención a las formas descritas tal y como están. Resulta evidente para los expertos en la materia que son posibles varias modificaciones o variaciones en vista de las descripciones descritas anteriormente.

APLICABILIDAD INDUSTRIAL

[0041] El dispositivo colector de calor solar según la presente invención puede usarse para la generación de energía solar térmica. El dispositivo colector de calor solar según la presente invención también puede aplicarse a un sistema de suministro de agua caliente o un sistema de calefacción en el que se use vapor, agua caliente o aire caliente. En la construcción del dispositivo colector de calor solar según la presente invención puede aumentarse la adquisición local de materiales y maquinaria. El aumento en la adquisición local es importante para promover los planes para difundir el uso de la energía solar.

50 LISTA DE NÚMEROS DE REFERENCIA

[0042]

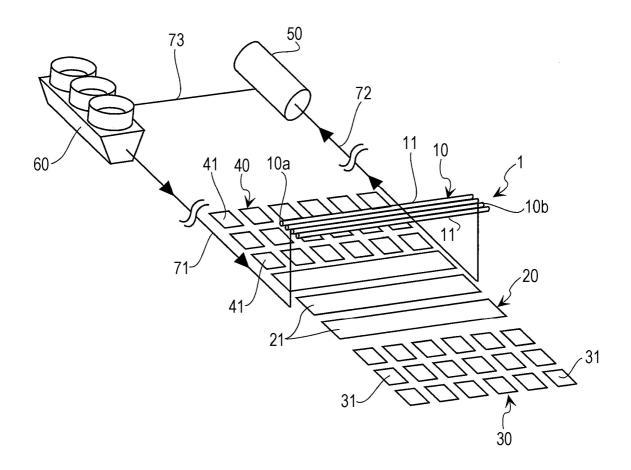
35

40

1:	Dispositivo colector de calor solar
55 10:	Unidad colectora de calor
11:	Tubo colector de calor
20:	Grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje
21:	Espejo de reflexión de tipo de seguimiento solar en un solo eje
30, 40:	Grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes
60 31 41:	Espeio de reflexión de tipo de seguimiento solar en un dos ejes

50: Dispositivo de generación de energía

60: Condensador


REIVINDICACIONES

- 1. Un dispositivo colector de calor solar (1) que comprende:
- 5 un grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje (20) que incluye una pluralidad de espejos de reflexión de tipo de seguimiento solar en un solo eje (21) seleccionados de entre espejos de reflexión de tipo Fresnel y espejos de reflexión de tipo reflector cilíndrico;
 - un grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes (30, 40) que incluye una pluralidad de espejos de reflexión de tipo de seguimiento solar en dos ejes (31, 41);
- 10 una unidad colectora de calor (10) que capta calor recibiendo luz de reflexión del grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje (20) y del grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes (30, 40) para transferir el calor de un primer extremo (10a) a un segundo extremo (10b) en una dirección longitudinal de la unidad (10):

caracterizado porque

- 15 cada espejo de reflexión de tipo de seguimiento solar en dos ejes (31, 41) tiene un área superficial del 5 al 20 % del área superficial de uno de los espejos de reflexión de tipo de seguimiento solar en un solo eje (21); el grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje (20) está dispuesto de modo que los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje (21) están orientados en una misma dirección;
- 20 el grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes (30, 40) se divide en un primer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes (30) y un segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes (40);
- el primer y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes (30, 40) están dispuestos lado a lado en una dirección ortogonal a una dirección del eje largo de los múltiples espejos de reflexión de tipo de 25 seguimiento solar en un solo eje (21); y
 - el grupo de espejos de reflexión de tipo de seguimiento solar en un solo eje (20) está dispuesto intercalado entre el primer y el segundo grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes (30, 40); y la unidad colectora de calor (10) está instalada justo encima del grupo de espejos reflectores de tipo de seguimiento solar en un solo eje (20) en la dirección de los ejes largos de múltiples espejos de reflexión de tipo de seguimiento en
- 30 un solo eje (21).
 - 2. El dispositivo colector de calor solar (1) según la reivindicación 1, en el que:
- el grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes (30, 40) se divide además en un tercer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes (130); en el que el tercer grupo de espejos de reflexión de tipo de seguimiento solar en dos ejes (130) está dispuesto en una dirección en la que se extienden los ejes largos de los múltiples espejos de reflexión de tipo de seguimiento solar en un solo eje (21) y en una dirección de transferencia de calor.
- 40 3. El dispositivo colector de calor solar (1) según la reivindicación 1 o 2, en el que la unidad colectora de calor (10) es un tubo colector de calor (11), un dispositivo colector de calor o una combinación de los mismos.

FIG. 1

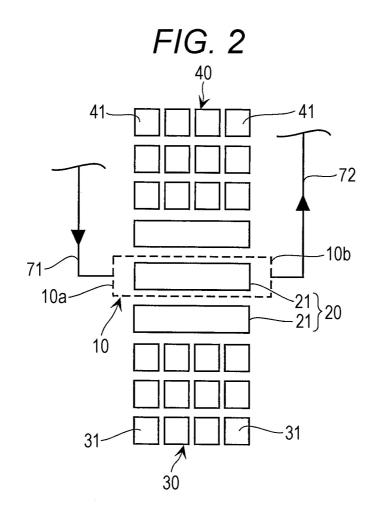
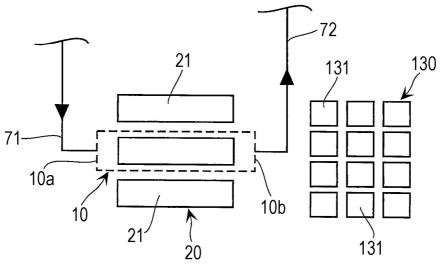



FIG. 3

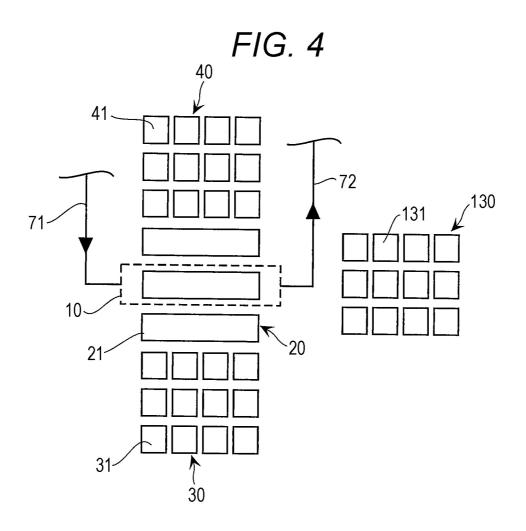
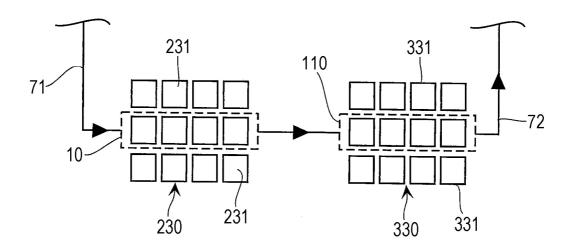



FIG. 5

