

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 746 748

61 Int. Cl.:

A01H 1/00 (2006.01) C12N 15/82 (2006.01) A01N 57/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 08.05.2013 PCT/US2013/040173

(87) Fecha y número de publicación internacional: 14.11.2013 WO13169923

(96) Fecha de presentación y número de la solicitud europea: 08.05.2013 E 13787568 (8)

(97) Fecha y número de publicación de la concesión europea: 10.07.2019 EP 2846621

(54) Título: Evento de maíz MON 87411

(30) Prioridad:

08.05.2012 US 201261644368 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **06.03.2020**

(73) Titular/es:

MONSANTO TECHNOLOGY LLC (100.0%) 800 North Lindbergh Blvd. St. Louis, MO 63167, US

(72) Inventor/es:

BURNS, WEN, C.; CHAY, CATHERINE, A.; CLONINGER, CHERYL, L.; DENG, MINGQI; FLASINSKI, STANISLAW y WU, KUNSHENG

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Evento de maíz MON 87411

Campo de la invención

La invención se refiere al evento de Zea mays transgénico MON 87411. El evento proporciona dos modos de acción para la resistencia a las infestaciones de gusanos de la raíz del maíz y la tolerancia al herbicida glifosato. La invención también se refiere a plantas, partes de plantas, semillas de plantas, células vegetales, productos agrícolas y procedimientos relacionados con el evento MON 87411 y proporciona moléculas de nucleótidos que son únicas para el evento y se crearon en relación con la inserción de ADN transgénico en el genoma de una planta de *Zea mays*.

Antecedentes de la invención

10 El maíz (Zea mays) es un cultivo importante en muchas áreas del mundo y los procedimientos de biotecnología se han aplicado a este cultivo para producir maíz con rasgos deseables. La expresión de un transgén de resistencia a insectos o tolerancia a herbicidas en una planta puede conferir los rasgos deseables de resistencia a insectos y / o tolerancia a herbicidas en la planta, pero la expresión de dichos transgenes puede estar influenciada por muchos factores diferentes, incluida la orientación y la composición de los casetes, impulsando la expresión de los genes 15 individuales transferidos al cromosoma de la planta, y la ubicación cromosómica y el resultado genómico de la inserción del transgén. Por ejemplo, puede haber variación en el nivel y el patrón de expresión transgénica entre eventos individuales que de otro modo son idénticos, excepto por el sitio de inserción cromosómica del transgén. También puede haber diferencias fenotípicas o agronómicas indeseables entre algunos eventos. Por lo tanto, a menudo es necesario producir y analizar una gran cantidad de eventos de transformación de plantas individuales para seleccionar 20 un evento que tenga propiedades superiores en relación con el rasgo deseable y las características fenotípicas y agrícolas óptimas necesarias para que sea adecuado para fines comerciales. Dicha selección a menudo requiere una caracterización molecular extensa, así como ensayos en invernadero y de campo con muchos eventos durante varios años, en múltiples ubicaciones y en diversas condiciones para que se pueda recolectar una cantidad significativa de datos agronómicos, fenotípicos y moleculares. Los datos y las observaciones resultantes deben ser analizados por 25 equipos de científicos y agrónomos con el objetivo de seleccionar un evento comercialmente adecuado. Una vez seleccionado, un evento de este tipo puede usarse para introducir el rasgo deseable en otros orígenes genéticos utilizando procedimientos de fitomejoramiento y, por lo tanto, producir diversas variedades de cultivos diferentes que contienen el rasgo deseable y se adaptan adecuadamente a las condiciones de crecimiento locales específicas.

Para producir una planta transgénica que contenga un único evento de transformación, una porción de una construcción de ADN recombinante se transfiere al genoma de una célula de maíz y la célula de maíz se cultiva posteriormente en una planta. Una célula de maíz a la que se transfiere inicialmente el evento se regenera para producir la generación R₀. La planta R₀ y las plantas descendencia de la planta R₀ pueden probarse para detectar cualquier rasgo deseado, pero la efectividad del evento puede verse afectada por factores *cis* y / o *trans* relativos al sitio de integración en el evento de transformación. El fenotipo conferido por el evento también puede verse afectado por el tamaño y el diseño de la construcción de ADN, que pueden variar según la combinación de elementos genéticos en un casete de expresión, el número de transgenes, el número de casetes de expresión y la configuración de dichos elementos y tales casetes. La identificación de un evento con rasgos deseables puede complicarse aún más por factores tales como el desarrollo de las plantas, los patrones diurnos, temporales o espaciales de la expresión del transgén; por factores extrínsecos, por ejemplo, las condiciones ambientales de crecimiento de la planta, la disponibilidad de agua, la disponibilidad de nitrógeno, el calor o el estrés. Así, la capacidad de obtener un evento que confiera un conjunto deseable de rasgos fenotípicos no es fácilmente predecible.

El documento WO2005/059103 describe un evento transgénico que expresa los genes Cry3Bb y EPSPS.

Sumario de la invención

30

35

40

La presente invención proporciona una molécula de ADN recombinante, en la que la secuencia de nucleótidos de dicha molécula comprende una secuencia:

- (a) seleccionada del grupo que consiste en la SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 21 y SEQ ID NO: 25; o
- (b) una secuencia de nucleótidos completamente complementaria a (a); o
- 50 (c) una secuencia de nucleótidos que tiene al menos un 99 % de identidad con la SEQ ID NO: 1 o su complementaria completa; o

en la que la presencia de dicha molécula de ADN es diagnóstica para la construcción comprendida dentro del ADN del evento de maíz MON 87411 en dicha muestra.

La presente invención proporciona además una molécula de ADN que comprende un segmento polinucleotídico de longitud suficiente para funcionar como una sonda de ADN que se hibrida en condiciones de hibridación rigurosas con el ADN del evento de maíz MON 87411 o la construcción comprendida en el mismo en una muestra,

en la que dicha sonda hibrida específicamente en dichas condiciones con uno o más segmentos de unión de diagnóstico para el evento de maíz MON 87411 o la construcción comprendida en el mismo como se establece en la SEQ ID NO: 1, y

en la que la detección de la hibridación de dicha sonda de ADN en dichas condiciones de hibridación es diagnóstica para el ADN del evento de maíz MON 87411 o la construcción comprendida en dicha muestra, y en la que la sonda comprende SEQ ID NO: 2 o la SEQ ID NO: 3.

En una realización relacionada, la presente invención proporciona un par de moléculas de ADN que comprenden una primera molécula de ADN y una segunda molécula de ADN diferente de la primera molécula de ADN, en el que dichas primera y segunda moléculas de ADN comprenden cada una un segmento de polinucleótido de longitud suficiente de los nucleótidos contiguos de la SEQ ID NO: 1 o SEQ ID NO: 2 o SEQ ID NO: 3 o SEQ ID NO: 4 para funcionar como cebadores de ADN cuando se usan juntos en una reacción de amplificación con una muestra que contiene ADN del molde del evento de maíz MON 87411 para producir un amplicón diagnóstico para dicho ADN de evento de maíz MON 87411 en dicha muestra, en el que el amplicón comprende la secuencia de nucleótidos seleccionada del grupo que consiste en SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 21 y SEQ ID NO: 25.

La presente invención también proporciona un procedimiento de detección dela presencia de un segmento de ADN diagnóstico de

- (I) evento de maíz MON 87411 en una muestra, comprendiendo el procedimiento:
 - (a) poner en contacto dicha muestra con la molécula de ADN como se ha descrito anteriormente;
 - (b) someter dicha muestra y dicha molécula de ADN a condiciones de hibridación rigurosas; y
 - (c) detectar la hibridación de dicha molécula de ADN con dicho segmento de ADN diagnóstico para el evento de maíz MON 87411,

en la que dicha etapa de detección es diagnóstica para la presencia de dicha molécula de evento de maíz MON 87411 en dicha muestra; o

- (II) evento de maíz MON 87411 en una muestra, comprendiendo el procedimiento:
 - (a) poner en contacto dicha muestra con las moléculas de ADN como se ha descrito anteriormente;
 - (b) realizar una reacción de amplificación suficiente para producir un amplicón de ADN; y
 - (c) detectar la presencia de dicho amplicón de ADN en dicha reacción, en el que dicho amplicón de ADN comprende la secuencia de nucleótidos seleccionada del grupo que consiste en las SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 21 y SEQ ID NO: 25, y en el que dicha detección de la presencia de dicho amplicón es diagnóstica para la presencia de ADN del evento MON 87411 de maíz en dicha muestra.

En una realización adicional, la presente invención proporciona una planta de maíz, semilla de maíz o parte de planta de maíz de la misma que comprende una molécula de polinucleótido recombinante que comprende la secuencia de nucleótidos de SEQ ID NO: 1.

La presente invención también proporciona un producto básico de maíz que comprende una cantidad detectable de una molécula de ADN única para el evento MON 87411 o la construcción comprendida en el mismo, en el que dicha molécula comprende la molécula de ADN recombinante como se ha descrito anteriormente, en la que el producto básico de maíz se define adicionalmente como un producto básico seleccionado del grupo que consiste en semillas de maíz enteras o procesadas, alimento para animales que comprende maíz, aceite de maíz, sémola de maíz, harina de maíz, copos de maíz, salvado de maíz, biomasa de maíz y productos combustibles producidos con maíz y partes de maíz.

De acuerdo con un aspecto adicional, la presente invención proporciona un procedimiento para producir una planta de maíz tolerante al herbicida de glifosato que comprende

- (a) proporcionar la construcción de ADN de SEQ ID NO: 26;
- (b) introducir dicha construcción de ADN en una célula de planta de maíz mediante un procedimiento de transformación mediado por Agrobacterium;
- (c) regenerar dicha célula de planta de maíz en plantas de maíz intactas; y
- (d) seleccionar una planta de maíz que tolere la aplicación de glifosato y sea resistente a la infestación del gusano de la raíz del maíz, en el que la introducción de la construcción de ADN en la célula de la planta de maíz da como resultado una secuencia seleccionada de las SEQ ID NO: 1-10, 21 y 25.

Las plantas de maíz obtenibles por estos procedimientos o una planta de descendencia, semilla o parte de planta de la misma también representan realizaciones preferidas de la presente invención.

Breve descripción de los dibujos

5

10

15

20

25

30

35

40

45

50

55

La figura 1 es una representación esquemática del inserto transgénico en el genoma del evento de maíz MON

87411: [A] representa la SEQ ID NO: 1, que es la secuencia contigua del inserto de ADN transgénico integrado en el genoma del maíz LH244 y 5' y 3' del ADN genómico que flanquea el ADN insertado; [B] y [C] corresponden a las posiciones relativas de las SEQ ID NO: 2 y 3, que forman las secuencias de unión del transgén/ADN genómico en 5' y 3' del evento MON 87411, respectivamente; [D] representa la SEQ ID NO: 4, que es la secuencia del inserto de ADN transgénico integrado en el genoma que resulta en el evento MON 87411; [E] corresponde a las posiciones relativas de la SEQ ID NO: 5, SEQ ID NO: 6 y SEQ ID NO: 7, abarcando cada una la unión 5' entre los extremos terminales del ADN transgénico insertado y el ADN genómico flanqueante; [F] corresponde a las posiciones relativas de la SEQ ID NO: 8, SEQ ID NO: 9 y SEQ ID NO: 10, abarcando cada una la unión 3' entre los extremos terminales del ADN transgénico insertado y el ADN genómico flanqueante; [G], [H] e [I] representan, respectivamente, los tres casetes de expresión diferentes correspondientes a la construcción de ADN transgénico insertada en el genoma de la planta de maíz que da como resultado el evento MON 87411; [J] y [K] representan cebadores oligonucleotídicos, sondas de oligonucleótidos y amplicones de ADN correspondientes a las uniones del evento MON 87411.

5

10

15

20

25

30

35

40

45

50

55

60

65

La **Figura 2** ilustra once construcciones de ADN diferentes, (417, 416, 418, 419, 402, 403, 404, 423, 405, 406 y 890) diseñadas para expresar hasta tres casetes distintos, incluyendo dos casetes protectores incorporados en la planta (PIP), dirigidos al gusano de la raíz del maíz occidental (WCR) y un solo casete de tolerancia a herbicidas. Los dos casetes PIP incluyen (a) un casete de expresión para una repetición invertida Dv_Snf7o 240 unidades, y (b) un casete de expresión para una proteína Cry3Bb. Cada una de las construcciones representadas comprende estos casetes de expresión en orden y orientación variables. Las construcciones 405 y 406 no contienen casete de tolerancia a herbicidas y la construcción 890 comprende solo un casete de expresión único para una repetición invertida Dv_Snf7o 240 unidades. Las tres construcciones comprenden un total de dieciséis elementos genéticos desde el borde izquierdo (LB) hasta el borde derecho (RB): [1] LB; [2] Ps.RbcS2-E9 3' UTR; [3] Dv_Snf7o de 240 unidades, gen de repetición invertida:; [4] Intrón DnaK de maíz; [5] líder 35S de CaMV; [6] promotor 35S de eCaMV; [7] promotor PIIG de maíz; [8] Líder Lhcb1 de trigo; [9] Intrón Act1 de arroz; [10] ORF de cry3Bb; [11] 3' UTR Hsp17 de trigo; [12] TubA de ratón (promotor, líder, intrón); [13] CTP; [14] CP4 EPSPS; [15] 3' UTR TubA de arroz; y [16] PR

La **figura 3** [A] - [N] y [aa] - [mm] ilustran los elementos operablemente unidos y el genoma de maíz que flanquea y su posición entre sí, ya que se presentan dentro de la posición de inserción de ADN transgénico en el genoma del evento de maíz MON 87411. Las siguientes descripciones identifican la composición, la función y la posición para cada uno de los elementos como se establece en SEQ ID NO: 1.

[A] La posición de nucleótido 1-500 como se establece en SEQ ID NO: 1 corresponde al ADN del genoma de maíz adyacente al ADN transgénico insertado en el evento de maíz MON 87411, que en este caso se asigna arbitrariamente como el extremo 5' del ADN insertado transgénico.

[B] La posición de nucleótido 807-1439 como se establece en la SEQ ID NO: 1 corresponde a la secuencia complementaria inversa de una subunidad pequeña E9 ribulosa bis fosfato carboxilasa en 3' de la terminación de la transcripción de *Pisum sativum* y señal de poliadenilación.

[C] La posición de nucleótidos 1469-2098 como se establece en la SEQ ID NO: 1 corresponde a la secuencia complementaria inversa diseñada para expresarse como una molécula de ARN que se pliega en una estructura de horquilla ARNbc de 240 nucleótidos y 150 nucleótidos que está diseñada para apuntar a la supresión del ortólogo de especies de *Diabrotica* de un gen de levadura que codifica una proteína Snf7 cuando se proporciona en la dieta de una especie de *Diabrotica*. Se proporciona un primer segmento de 240 nucleótidos correspondiente a una porción del gen ortólogo de snf7 de *Diabrotica* en la posición de nucleótidos 1469 - 1708 como se establece en la SEQ ID NO: 1, un segundo segmento de 240 nucleótidos correspondiente a la complementaria inversa del primer segmento se establece en la posición de nucleótidos 1850-2098 como se establece en la SEQ ID NO: 1, y el primer y el segundo segmento están operablemente unidos por un espaciador de 150 nucleótidos en el nucleótido posición 1709-1858 como se establece en la SEQ ID NO: 1.

[D] La posición de nucleótido 2135-2938 como se establece en SEQ ID NO: 1 corresponde a la secuencia complementaria inversa de un intrón derivado de un gen dnaK de *Zea mays*.

[E] La posición de nucleótidos 2839-3298 como se establece en la SEQ ID NO: 1 corresponde a la secuencia complementaria inversa de una secuencia del promotor 35S del virus del mosaico de la coliflor y una secuencia líder en 5' sin traducir. Este promotor, la secuencia líder no traducida asociada, el elemento intrón [D] y el elemento de terminación de la transcripción y de poliadenilación [B] regulan la expresión del elemento [C] en las células de las plantas de maíz.

[F] La posición de nucleótidos 3586-4534 como se establece en SEQ ID NO: 1 corresponde a una secuencia promotora derivada de un gen de proteína inducida por impedancia física de *Zea mays (Zm.PIIG)*. Este promotor, la secuencia líder no traducida asociada [G], el elemento intrón [H] y el elemento de terminación de la transcripción y de poliadenilación [J] regulan la expresión del elemento [I]. Este promotor está orientado en relación con el promotor [E] de modo que cada promotor ([E] y [F]) generará una expresión divergente de sus elementos respectivos ([C] e [I]) (véanse las flechas de bloque en la Figura 2 donde las flechas son representativas de los respectivos promotores ([E] y [F]) en la dirección de expresión indicada desde el promotor respectivo).

[G] La posición de nucleótidos 4541-4601 como se establece en SEQ ID NO: 1 corresponde a una secuencia líder en 5' no traducida derivada de un gen del complejo b1 de recogida de luz de *Triticum aestivum (Ta.Lhcb1).* [H] La posición de nucleótidos 4618-5097 como se establece en SEQ ID NO: 1 corresponde a una secuencia intrónica derivada de un gen de actina-1 de *Oryza sativa* (Os.Act1).

ni co m [J ui	La posición de nucleótido 5107-7068 como se establece en SEQ ID NO: 1 corresponde a la secuencia de ucleótidos que codifica una proteína tóxica del gusano de la raíz del maíz Cry3Bb (cry3Bb). La proteína Cry3Bb odificada es pesticida cuando se proporciona en la dieta de una especie de <i>Diabrotica</i> (gusano de la raíz del aíz).] La posición de nucleótido 7088-7297 como se establece en SEQ ID NO: 1 corresponde a la secuencia de na terminación de transcripción y señal de poliadenilación de la proteína de choque térmico de <i>Triticum</i>
[k co pi	estivum 17 (HSP17). [3] La posición de nucleótidos 7346-9526 como se establece en la SEQ ID NO: 1 corresponde a una secuencia contigua de promotor-líder-intrón derivada de un gen de alfa tubulina-3 de Oryza sativa (TubA-3). Este remotor, con el líder e intrón asociados, y la terminación de la transcripción y el elemento de poliadenilación
[L ui y C	/// Iregulan la expresión del elemento [L].] La posición de nucleótidos 9531-11126 como se establece en SEQ ID NO: 1 corresponde a la secuencia de n péptido de dirección citoplasmática de <i>Arabidopsis thaliana</i> (CTP; de la posición de nucleótidos 9531-9758), una secuencia de un EPSPS derivado de <i>Agrobacterium</i> CP4 (de la posición de nucleótidos 9759-11126). uando esta secuencia se transcribe y traduce en proteína en una célula de planta de maíz, el CTP está perativamente unido al EPSPS. Cuando se expresa en células de plantas de maíz que comprenden el evento ION 87411, este CTP-EPSPS proporciona tolerancia al herbicida glifosato.
[N	I] La posición de nucleótidos 11134-11715 como se establece en la SEQ ID NO: 1 corresponde a la secuencia e una terminación de la transcripción del gen Oryza sativa alfa tubulina-3 (TubA-3) y la señal de bliadenilación.
[N ge	I] La posición de nucleótido 11749-12248 como se establece en SEQ ID NO: 1 corresponde al ADN del enoma de maíz adyacente al ADN transgénico insertado en el evento de maíz MON 87411, que en este caso e asigna arbitrariamente como el extremo 3' del ADN insertado transgénico.
	[aa] La posición de nucleótido 501-806 como se establece en la SEQ ID NO: 1 corresponde a la porción de la secuencia del borde izquierdo de octopina de <i>Agrobacterium tumefaciens</i> de la construcción 417 adyacente al genoma en el extremo 5 'asignado arbitrariamente del ADN transgénico insertado en el genoma del maíz para formar el evento MON 87411. El extremo 5' de [aa] como se establece en la SEQ ID NO: 1 está unida al extremo 3' del elemento [A] para formar la unión de ADN transgénico insertado en 5'/genoma de maíz abarcado por la SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 y SEQ ID NO: 21. El extremo 3 'del elemento [aa] está unido al extremo 5' del elemento [B] para formar una unión única dentro del ADN insertado transgénicamente que está englobada por la SEQ ID NO: 41.
	[bb] La posición de nucleótidos 1440-1468 como se establece en la SEQ ID NO: 1 corresponde a una secuencia intermedia entre los elementos [B] y [C]. El extremo 5' de [kk] como se establece en SEQ ID NO: 1 está unido al extremo 3' del elemento [K], y el extremo 3' del elemento [kk] está unido al extremo 5' del elemento [C] para formar una unión única, abarcado por la SEQ ID NO: 42, dentro del ADN transgénico
	insertado en el genoma del maíz para formar el evento MON 87411. [cc] La posición de nucleótidos 2099-2134 como se establece en SEQ ID NO: 1 corresponde a una secuencia intermedia entre los elementos [C] y [D]. El extremo 5' de [cc] como se establece en SEQ ID NO: 1 está unido al extremo 3' del elemento [C], y el extremo 3' del elemento [cc] está unido al extremo 5' del elemento [D] para formar una unión única, abarcado por la SEQ ID NO: 43, dentro del ADN transgénico insertado en el genoma del maíz para formar el evento MON 87411.
	[ee] La posición de nucleótido 3299-3585 como se establece en SEQ ID NO: 1 corresponde a una secuencia intermedia entre los elementos [E] y [F]. El extremo 5' de [ee] como se establece en SEQ ID NO: 1 está unido al extremo 3' del elemento [E], y el extremo 3' del elemento [ee] está unido al extremo 5' del elemento [F] para formar una unión única, abarcado por la SEQ ID NO: 44, dentro del ADN transgénico insertado en el genoma del maíz para formar el evento MON 87411.
	[ff] La posición de nucleótido 4535-4540 como se establece en SEQ ID NO: 1 corresponde a una secuencia intermedia entre los elementos [F] y [G]. El extremo 5' de [ff] como se establece en SEQ ID NO: 1 está unido al extremo 3' del elemento [F], y el extremo 3' del elemento [ff] está unido al extremo 5' del elemento [G] para formar una unión única, abarcado por la SEQ ID NO: 45, dentro del ADN transgénico insertado en el genoma del maíz para formar el evento MON 87411. [gg] La posición de nucleótido 4602-4617 como se
	establece en SEQ ID NO: 1 corresponde a una secuencia intermedia entre los elementos [G] y [H]. El extremo 5' de [gg] como se establece en SEQ ID NO: 1 está unido al extremo 3' del elemento [G], y el extremo 3' del elemento [gg] está unido al extremo 5' del elemento [H] para formar una unión única, abarcado por la SEQ ID NO: 46, dentro del ADN transgénico insertado en el genoma del maíz para formar el evento MON 87411, pero que no es exclusivo del evento MON 87411.

[I] y el extremo 3' del elemento [ii] está unido al extremo 5' del elemento [J] para formar una unión, abarcado

unido al extremo 3' del elemento

[hh] La posición de nucleótido 5098-5106 como se establece en SEQ ID NO: 1 corresponde a una secuencia intermedia entre los elementos [H] e [I]. El extremo 5' de [hh] como se establece en SEQ ID NO: 1 está unido al extremo 3' del elemento [H], y el extremo 3' del elemento [hh] está unido al extremo 5' del elemento [H] para formar una unión única, abarcado por la SEQ ID NO: 47, dentro del ADN transgénico insertado en

el genoma del maíz para formar el evento MON 87411, pero que no es exclusivo del evento MON 87411. [ii] La posición de nucleótido 7069-7087 como se establece en SEQ ID NO: 1 corresponde a una secuencia intermedia entre los elementos [I] y [J]. El extremo 5 'de [ii] como se establece en la SEQ ID NO: 1 está

por la SEQ ID NO: 48, dentro del ADN transgénico insertado en el genoma del maíz para formar el evento MON 87411, pero que no es exclusivo del evento MON 87411.

[jj] La posición de nucleótido 7298-7345 como se establece en SEQ ID NO: 1 corresponde a una secuencia intermedia entre los elementos [J] y [K]. El extremo 5' de [jj] como se establece en SEQ ID NO: 1 está unido al extremo 3' del elemento [J] y el extremo 3' del elemento [jj] está unido al extremo 5' del elemento [K] para formar una unión, abarcado por la SEQ ID NO: 49, dentro del ADN transgénico insertado en el genoma del maíz para formar el evento MON 87411. [kk] La posición de nucleótido 9527-9530 como se establece en SEQ ID NO: 1 corresponde a una secuencia intermedia entre los elementos [K] y [L]. El extremo 5' de [kk] como se establece en SEQ ID NO: 1 está unido al extremo 3' del elemento [K], y el extremo 3' del elemento [kk] está unido al extremo 5' del elemento [L] para formar una unión única, abarcado por la SEQ ID NO: 50, dentro del ADN transgénico insertado en el genoma del maíz para formar el evento MON 87411.

[II] La posición de nucleótido 11127-11133 como se establece en SEQ ID NO: 1 corresponde a una secuencia intermedia entre los elementos [L] y [M]. El extremo 5' de [11] como se establece en SEQ ID NO: 1 está unido al extremo 3' del elemento [L], y el extremo 3' del elemento [11] está unido al extremo 5' del elemento [M] para formar una unión única, abarcado por la SEQ ID NO: 51, dentro del ADN transgénico insertado en el genoma del maíz para formar el evento MON 87411.

[mm] La posición de nucleótido 11716-11748 como se establece en la SEQ ID NO: 1 corresponde a la porción de la secuencia del borde izquierdo de nopalina de *Agrobacterium tumefaciens* de la construcción 417 adyacente al genoma en el extremo 3 'asignado arbitrariamente del ADN transgénico insertado en el genoma del maíz para formar el evento MON 87411. El extremo 5' de [mm] como se establece en SEQ ID NO: 1 está unido al extremo 3' del elemento [M], y el extremo 3' del elemento [mm] está unido al extremo 5' del elemento [N] para formar una unión única de ADN transgénico insertado/genoma de maíz abarcado por la SEQ ID NO: 52.

Figura 4 La ilustración de la orientación del casete para los vectores probados para mostrar una mayor eficacia de los promotores divergentes que impulsan la expresión de los agentes tóxicos del gusano de la raíz del maíz en comparación con los vectores con una orientación en tándem de los promotores que impulsan la expresión de los agentes tóxicos del gusano de la raíz del maíz.

Breve descripción de las secuencias

5

10

15

20

25

30

35

40

45

50

55

60

SEQ ID NO: 1 es una secuencia de nucleótidos del evento MON 87411 y representa de 5' a 3', un segmento del ADN genómico 5' que flanquea (adyacente a) el ADN transgénico insertado (500 nucleótidos), el ADN transgénico insertado (11.248 nucleótidos) y un segmento del ADN genómico 3' que flanquea (adyacente a) el ADN transgénico insertado (500 nucleótidos) en el evento MON 87411.

SEQ ID NO: 2 es una secuencia de unión de nucleótidos del evento MON 87411, y representa de 5' a 3', un segmento del ADN genómico '5 adyacente al ADN transgénico insertado (500 nucleótidos), y el remanente del borde del ADN transgénico insertado (263 nucleótidos) del evento MON 87411.

SEQ ID NO: 3 es una secuencia de unión de nucleótidos del evento MON 87411, y representa de 5' a 3', el remanente de ADN transgénico insertado (15 nucleótidos) y un segmento del ADN genómico de 3' adyacente al ADN genómico insertado (500 nucleótidos) del evento MON 87411.

SEQ ID NO: 4 es una secuencia de nucleótidos del evento MON 87411 y representa el ADN genómico insertado (11248 nucleótidos) del evento MON 87411.

SEQ ID NO: 5 es una secuencia de unión de nucleótidos del evento MON 87411, y representa de 5' a 3', un segmento del ADN genómico 5' adyacente al ADN transgénico insertado (50 nucleótidos), y el remanente del borde del ADN transgénico insertado (263 nucleótidos) del evento MON 87411.

SEQ ID NO: 6 es una secuencia de unión de nucleótidos del evento MON 87411, y representa de 5' a 3', un segmento del ADN genómico 5' adyacente al ADN transgénico insertado (110 nucleótidos), y el remanente del borde del ADN transgénico insertado (263 nucleótidos) del evento MON 87411.

SEQ ID NO: 7 es una secuencia de unión de nucleótidos del evento MON 87411, y representa de 5' a 3', un segmento del ADN genómico 5' adyacente al ADN transgénico insertado (145 nucleótidos), y el remanente del borde del ADN transgénico insertado (263 nucleótidos) del evento MON 87411.

SEQ ID NO: 8 es una secuencia de unión de nucleótidos del evento MON 87411, y representa de 5' a 3', un segmento de ADN transgénico insertado (83 nucleótidos) y un segmento del ADN genómico de 3' adyacente al ADN genómico insertado (34 nucleótidos) del evento MON 87411.

SEQ ID NO: 9 es una secuencia de unión de nucleótidos del evento MON 87411, y representa de 5' a 3', un segmento de ADN transgénico insertado (83 nucleótidos) y un segmento del ADN genómico de 3' adyacente al ADN genómico insertado (90 nucleótidos) del evento MON 87411.

SEQ ID NO: 10 es una secuencia de unión de nucleótidos del evento MON 87411, y representa de 5' a 3', un segmento de ADN transgénico insertado (83 nucleótidos) y un segmento del ADN genómico de 3' adyacente al ADN genómico insertado (255 nucleótidos) del evento MON 87411.

SEQ ID NO: 11 es una secuencia de nucleótidos de una secuencia de ADNc de *Diabrotica virgifera virgifera* (gusano de la raíz del maíz occidental) que codifica una subunidad del complejo ESCRT-III que es ortóloga a la levadura Snf7.

SEQ ID NO: 12 es una secuencia de nucleótidos que representa la cadena antisentido de un casete de expresión de ADN que incluye un gen recombinante diseñado para expresar una molécula de ARN repetida invertida. Los

segmentos de ADN repetidos invertidos corresponden a las posiciones 663 a 902 y a las posiciones 1292 a 1053. Las secuencias de ADN repetidas invertidas corresponden a la secuencia de nucleótidos de **SEQ ID NO: 11** desde la posición de nucleótidos 151-390.

SEQ ID NO: 13 es una secuencia de ribonucleótidos transcrita desde el ADN como se establece en la SEQ ID NO: 12

5

10

45

50

55

60

65

SEQ ID NO: 14 es una secuencia de nucleótidos que representa la cadena sentido de un casete de expresión de ADN que incluye un gen recombinante diseñado para codificar y expresar una proteína Cry3Bb tóxica del gusano de la raíz del maíz.

SEQ ID NO: 15 es una traducción de la secuencia de aminoácidos de un polinucleótido correspondiente a las posiciones 1522 - 3480 de la SEQ ID NO: 14 y que representa una proteína Cry3Bb tóxica del gusano de la raíz del maíz.

SEQ ID NO: 16 es una secuencia de nucleótidos que representa la cadena de sentido de un casete de expresión de ADN que incluye un gen recombinante diseñado para codificar y expresar una proteína 5-enolpiruvilshikimato-3-fosfato sintasa (EPSPS).

SEQ ID NO: 17 es una traducción de la secuencia de aminoácidos de un polinucleótido correspondiente a las posiciones 2186 a 3781 de la SEQ ID NO: 16 y que representa una proteína EPSPS que exhibe insensibilidad al herbicida glifosato.

SEQ ID NO: 18 es una secuencia de nucleótidos de un oligonucleótido sintético denominado SQ27011, y es idéntica a la secuencia de nucleótidos correspondiente a las posiciones 462 - 490 de la SEQ ID NO: 1.

SEQ ID NO: 19 es una secuencia de nucleótidos de un oligonucleótido sintético denominado PB3552, y es idéntico al complemento inverso de la secuencia de nucleótidos correspondiente a las posiciones 502 - 515 de la SEQ ID NO: 1. PB3552 puede marcarse en 5' con un resto de 6-carboxifluoresceína (6-FAM™) y marcarse en 3' con un resto inactivador para su uso en combinación con un par de cebadores de amplificación térmica, por ejemplo, SQ27011 y SQ9085, y capaz de usarse en el procedimiento de amplificación de ADN TAQMAN® para detectar la presencia de ADN del evento MON 87411 en una muestra biológica que contiene ADN del evento de maíz MON 87411

SEQ ID NO: 20 es una secuencia de nucleótidos de un oligonucleótido sintético denominado SQ9085, y es idéntico al complemento inverso de la secuencia de nucleótidos correspondiente a las posiciones 516 - 541 de la SEQ ID

30 **SEQ ID NO: 21** es una secuencia de nucleótidos del evento MON 87411, y corresponde a las posiciones 462 - 541 de la SEQ ID NO: 1. Se puede producir un amplicón que exhibe esta secuencia con un par de cebadores de amplificación térmica, por ejemplo, SQ27011 y SQ9085.

SEQ ID NO: 22 es una secuencia de nucleótidos de un oligonucleótido sintético denominado SQ27066, y es idéntica a la secuencia de nucleótidos correspondiente a las posiciones 11710 - 11728 de la SEQ ID NO: 1.

SEQ ID NO: 23 es una secuencia de nucleótidos de un oligonucleótido sintético denominado PB11300, y es idéntica a la secuencia de nucleótidos correspondiente a las posiciones 11731 - 11755 de la SEQ ID NO: 1. PB11300 puede marcarse en 5' con un resto de 6-carboxifluoresceína (6-FAM™) y marcarse en 3' con un resto inactivador. Marcado de esta manera, PB11300 se puede usar en combinación con un par de cebadores de PCR, por ejemplo, SQ27066 y SQ26977, para detectar el evento MON 87411 en un ensayo TAQMAN®.

40 **SEQ ID NO: 24** es una secuencia de nucleótidos de un oligonucleótido sintético denominado SQ26977, y es idéntico al complemento inverso de la secuencia de nucleótidos correspondiente a las posiciones 11756 - 11784 de la SEQ ID NO: 1.

SEQ ID NO: 25 es una secuencia de nucleótidos del evento MON 87411, y corresponde a las posiciones 11710 - 11784 de la SEQ ID NO: 1. Se puede amplificar un amplicón que exhibe esta secuencia con un par de cebadores, por ejemplo, SQ27066 y SQ26977, y es diagnóstico del evento MON 87411.

SEQ ID NO: 26 es una secuencia de nucleótidos que representa la construcción de ADN # 417.

SEQ ID NO: 27 es una secuencia de nucleótidos que representa la construcción de ADN # 416.

SEQ ID NO: 28 es una secuencia de nucleótidos que representa la construcción de ADN # 418.

SEQ ID NO: 29 es una secuencia de nucleótidos que representa la construcción de ADN # 419.

SEQ ID NO: 30 es una secuencia de nucleótidos que representa la construcción de ADN # 402.

SEQ ID NO: 31 es una secuencia de nucleótidos que representa la construcción de ADN # 403.

SEQ ID NO: 32 es una secuencia de nucleótidos que representa la construcción de ADN # 404. **SEQ ID NO: 33** es una secuencia de nucleótidos que representa la construcción de ADN # 423.

SEQ ID NO: 34 es una secuencia de nucleótidos que representa la construcción de ADN # 405.

SEQ ID NO: 35 es una secuencia de nucleótidos que representa la construcción de ADN # 406.

SEQ ID NO: 36 es una secuencia de nucleótidos que representa la construcción de ADN #890.

SEQ ID NO: 37 es una secuencia de nucleótidos de la planta de maíz LH244 que representa el alelo de tipo salvaje del evento MON 87411. Se puede producir un amplicón que exhibe esta secuencia de nucleótidos con un par de cebadores de PCR, por ejemplo, SQ27011 y SQ26977, y es diagnóstico del alelo de tipo salvaje del evento MON 87411.

SEQ ID NO: 38 es una secuencia de nucleótidos de un oligonucleótido sintético denominado SQ20221.

SEQ ID NO: 39 es una secuencia de nucleótidos de un oligonucleótido sintético denominado PB10065. PB10065 puede marcarse en 5' con VIC™) y marcarse en 3' con un resto inactivador. Marcado de esta manera, PB10065 se puede usar en combinación con un par de cebadores de PCR, por ejemplo, SQ10065 y SQ20222, para detectar la presencia de un segmento de un gen endógeno del maíz en un ensayo TAQMAN®.

SEQ ID NO: 40 es una secuencia de nucleótidos de un oligonucleótido sintético denominado SQ20222.

SEQ ID NO: 41-52 son secuencias de nucleótidos de las regiones de la SEQ ID NO: 1, donde cada SEQ ID NO: abarca una unión formada por la secuencia intermedia y los elementos del casete de expresión como se detalla en la breve descripción de la Figura 3.

Descripción detallada

10

15

20

25

30

35

40

45

50

55

60

Los inventores han identificado un evento de maíz transgénico MON 87411 que exhibe propiedades y rendimiento superiores en comparación con las plantas de maíz transgénicas existentes. El evento de maíz MON 87411 contiene tres casetes de expresión operablemente unidos que confieren colectivamente los rasgos de resistencia al gusano de la raíz del maíz y la tolerancia al herbicida glifosato a las células de maíz, tejidos de maíz, semillas de maíz y plantas de maíz que contienen el evento transgénico MON 87411. El evento de maíz MON 87411 proporciona dos modos de acción contra las especies de plagas del gusano de la raíz del maíz (incluida Diabrotica spp., especialmente cuandola plaga es Diabrotica virgifera virgifera (gusano de la raíz del maíz occidental, WCR), Diabrotica barberi (gusano de la raíz del maíz del norte, NCR), Diabrotica virgifera zeae (gusano de la raíz del maíz mexicano, MCR), Diabrotica balteata (gusano de la raíz del maíz brasileño (BZR) o complejo del gusano de la raíz del maíz brasileño (BCR) que consiste en Diabrotica viridula y Diabrotica speciosa), o Diabrotica undecimpunctata howardii (gusano de la raíz del maíz del sur, SCR). Se han referenciado otros eventos de maíz transgénico en la técnica que proporcionan diversas realizaciones conferidas individualmente, tal como MON863 (que confiere el rasgo de resistencia a los gusanos de la raíz del maíz mediante la expresión de una proteína de toxina insecticida Cry3Bb), o eventos transgénicos del maíz que proporcionan dos o más rasgos como el evento de maíz MON88017 (que confiere el rasgo de resistencia a los gusanos de la raíz del maíz mediante la expresión de un La proteína de la toxina insecticida Cry3Bb y el rasgo de resistencia al herbicida glifosato mediante la expresión de un EPSPS insensible al glifosato) y el evento de maíz DAS 59122-7 (que confiere el rasgo de resistencia a los gusanos de raíz del maíz mediante la expresión de una toxina binaria PS149B1 de Bacillus thuringiensis, también conocida como Cry34 / Cry35, y el rasgo de tolerancia al herbicida glufosinato). Otra técnica desvela la combinación mediante la reproducción de los rasgos conferidos por los eventos de maíz MON88017 o DAS 59122-7 con un evento de maíz transgénico que confiere el rasgo de resistencia al gusano de la raíz del maíz resultante de la expresión de un ARNbc dirigido a la supresión de un gen del gusano de la raíz del maíz esencial para el supervivencia de los gusanos de raíz (documento US 7,943,819). Inherentes a tales combinaciones están los problemas asociados con la necesidad de reproducir estos múltiples rasgos ubicados en múltiples loci diferentes y en múltiples cromosomas dentro del genoma del maíz juntos en una sola planta de maíz y mantener esos rasgos como híbridos en docenas, si no cientos de germoplasma de maíz diferente variedades. La solución para tales problemas sería incluir combinaciones de estos rasgos en un solo lugar. Los inventores del presente documento proporcionan una de esas soluciones al problema en forma del evento de maíz MON 87411, que combina tres casetes de expresión unidos covalentemente en un solo locus dentro del genoma del maíz, estos casetes de expresión que confieren los rasgos de resistencia al gusano de la raíz del maíz y la tolerancia al herbicida glifosato a las células de maíz, tejidos de maíz, semillas de maíz y plantas de maíz que contienen el evento transgénico MON 87411. El uso del evento de maíz MON 87411 brinda grandes beneficios a los productores de maíz: a) protección contra pérdidas económicas debido a las larvas del gusano de la raíz del maíz al proporcionar dos modos diferentes de acción de resistencia al gusano de la raíz del maíz, y b) la capacidad de aplicar herbicidas agrícolas que contienen glifosato al cultivo de maíz para un control de amplio espectro de las malezas. Adicionalmente, los transgenes que codifican los rasgos tolerantes al gusano de la raíz del maíz y al glifosato están unidos en el mismo segmento de ADN y ocurren en un solo locus en el genoma de MON 87411, proporcionando una mejora de la eficiencia reproductiva y permite el uso de marcadores moleculares para rastrear el inserto transgénico en las poblaciones reproductoras y su descendencia.

El evento de maíz MON 87411 se produjo mediante un procedimiento de transformación mediado por *Agrobacterium* de una línea de maíz endogámica con la construcción del plásmido pMON120417. Esta construcción de plásmido contiene los casetes de expresión de plantas vinculados con los elementos genéticos reguladores necesarios para la expresión en células de plantas de maíz de una proteína CP4 EPSPS, así como una proteína Cry3Bb y un ARNbc dirigido a la supresión de un gen esencial en las células de los gusanos de la raíz del maíz cuando se proporcionan células de maíz que contienen el evento de maíz MON 87411 en la dieta de dichos gusanos de la raíz del maíz. Las células de maíz se regeneraron en plantas de maíz intactas y se seleccionaron plantas individuales de la población de plantas que mostraron integridad de los casetes de expresión de plantas y resistencia al daño por alimentación de las larvas de glifosato y gusanos de raíz de maíz. Una planta de maíz que contiene en su genoma los casetes de expresión de plantas unidos presentes en el evento de maíz MON 87411 es un aspecto de la presente invención.

El ADN plasmídico insertado en el genoma del evento de maíz MON 87411 se caracterizó por análisis moleculares detallados. Estos análisis incluyeron: el número de inserto (número de sitios de integración dentro del genoma del maíz), el número de copia (el número de copias del ADN-T dentro de un locus) y la integridad del ADN transgénico insertado. La construcción del plásmido que contiene los tres casetes de expresión unidos insertados en el genoma del maíz que da lugar al evento MON 87411 contiene múltiples segmentos (secuencias de unión entre los elementos utilizados para construir o construir los varios casetes de expresión) que no se sabe que aparecen naturalmente en el genoma del maíz. ni en otros vectores o eventos transgénicos de maíz o de otro tipo (por ejemplo, secuencias como se establece en las SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10; SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 y SEQ ID NO: 52). Además, el evento de transformación que dio lugar al ADN

transgénico insertado en el evento MON 87411 se caracteriza en el presente documento como una inserción en un solo locus en el genoma del maíz, dando como resultado dos nuevos loci o secuencias de unión entre el ADN insertado y el ADN del genoma del maíz (secuencias de unión adicionales) que son de longitud suficiente para ser únicos solo para un genoma de maíz que comprende el evento MON 87411. Estas secuencias de unión son útiles para detectar la presencia del evento de ADN MON 87411 en células de maíz, tejido, semillas y plantas o productos vegetales (productos básicos). Las sondas moleculares de ADN y los pares de cebadores se describen en el presente documento que se han desarrollado para su uso en la identificación de la presencia de estos diversos segmentos de unión en muestras biológicas que contienen o se sospecha que contienen células de maíz, semilla, partes de plantas o tejidos vegetales que contienen ADN del evento MON 87411. Los datos muestran que el evento MON 87411 contiene una única inserción de ADN-T con una copia del ADN transgénico insertado. En el evento MON 87411, no se han identificado elementos adicionales del vector de transformación pMON120714 que no sean porciones de las regiones fronterizas izquierda y derecha de Agrobacterium tumefaciens utilizadas para la transferencia de ADN transgénico desde el plásmido de transformación de la planta al genoma del maíz. Por último, se realizaron amplificación térmica que produce amplicones diagnósticos específicos para la presencia de dicho ADN del evento MON 87411 en una muestra, y análisis de secuencia de ADN para determinar las uniones de genoma insertado en la planta asignadas arbitrariamente en 5' y 3', confirmar la organización de los elementos dentro del inserto y determinar la secuencia completa de ADN del ADN transgénico insertado en el evento MON 87411 de la planta de maíz (SEQ ID NO: 1).

10

15

20

25

30

35

40

45

50

55

60

Se produjeron docenas de eventos transgénicos usando la construcción utilizada para producir el evento transgénico MON 87411, y se produjeron diferentes construcciones y se usaron para producir muchas docenas de otros eventos de maíz transgénico que se compararon con el MON 87411 y eventos similares. La eficacia de todos estos eventos se probó para controlar los gusanos de la raíz del maíz en bioensayos de dieta en los que se proporcionaron tejidos transgénicos de eventos de plantas de maíz en la dieta de larvas de gusanos de la raíz del maíz. Se determinó que la orientación de la expresión de los dos casetes de expresión diferentes responsables de conferir los rasgos de resistencia al gusano de la raíz del maíz a los diversos eventos era crítica para la eficacia de los eventos en el control del gusano de la raíz del maíz cuando se proporcionaron las células del evento de maíz que expresaban estos rasgos de resistencia. en la dieta de las larvas del gusano de la raíz del maíz. Dos promotores diferentes, CAMV e35S y Zm.PIIG, se observó que proporcionaban una eficacia sorprendente y superior de los eventos de maíz que contenían casetes de expresión que expresaban el protector del gusano de la raíz del maíz ARNbc del promotor e35S y la proteína tóxica del gusano de la raíz del maíz Cry3Bb de un promotor Zm.PIIG adyacente y divergente del promotor e35S. Cuando estos promotores estaban en esta orientación particular, se obtuvieron proporciones significativamente mejoradas de eventos transgénicos que exhibían eficacia.

A menos que se indique lo contrario en el presente documento, los términos han de entenderse de acuerdo con la utilización convencional por los expertos habituales en la materia pertinente. También se pueden encontrar definiciones de términos comunes en biología molecular en Rieger y col., Glossary of Genetics: Classical and Molecular, 5ª edición, Springer-Verlag: Nueva York, 1991; y Lewin, Genes V, Oxford University Press: Nueva York, 1994. Tal como se usa en el presente documento, el término "maíz" significa *Zea mays* e incluye todas las variedades de plantas que pueden criarse con plantas de maíz que comprenden MON 87411. Tal como se usa en el presente documento, el término "que comprende" significa "que incluye pero no se limita a".

La presente invención proporciona plantas transgénicas que se han transformado con una construcción de ADN que contiene al menos tres casetes de expresión; un primer casete de expresión que expresa una cantidad tóxica del gusano de la raíz del maíz de un ARNbc diseñado para suprimir un gen esencial del gusano de la raíz del maíz ortólogo a un gen snf7 de levadura, un segundo casete de expresión expresa cantidades tóxicas del gusano de la raíz del maíz de delta-endotoxina Cry3Bb, y un tercer casete de expresión que expresa una enzima de tolerancia al glifosato CP4 EPSPS que es insensible a la inhibición del glifosato. Las plantas de maíz transformadas de acuerdo con los procedimientos y con la construcción de ADN desvelada en el presente documento son resistentes a CRW y tolerantes a las aplicaciones del herbicida glifosato. Los rasgos agronómicos relacionados proporcionan facilidad para mantener estos rasgos juntos en una población reproductora y exhiben una mayor eficacia contra el gusano de la raíz del maíz que las plantas que contienen un solo gen de inhibición del gusano de la raíz del maíz o que contienen los mismos genes de inhibición del gusano de la raíz del maíz (Cry3Bb y ARNbc) que se combinan como una material de reproducción.

Una "planta" transgénica se produce mediante la transformación de una célula vegetal con ADN heterólogo, es decir, una construcción de ácido polinucleico que incluye un transgén de interés; regeneración de una población de plantas resultante de la inserción del transgén en el genoma de la célula vegetal y selección de una planta en particular caracterizada por la inserción en una ubicación concreta del genoma. El término "evento" se refiere a la plante transformante original y a la descendencia del transformante, que incluyen el ADN heterólogo. El término "evento" también incluye la descendencia producida por un cruce sexual entre el evento y otra planta en la que la descendencia incluye el ADN heterólogo. Incluso después de varios retrocruzamientos con un padre recurrente, el ADN insertado y el ADN genómico flanqueante del evento parental transformado está presente en la descendencia del cruce en la misma ubicación cromosómica. El término "evento" también se refiere al ADN del transformante original que comprende el ADN insertado y la secuencia genómica flanqueante inmediatamente adyacente al ADN insertado, que se esperaría que se transfiriera a una descendencia que recibe el ADN insertado (por ejemplo, el transformante original y la descendencia resultante de la autofecundación) y un línea parental que no contiene el ADN insertado. La presente

invención se refiere al evento transgénico, la planta de maíz que comprende MON 87411, la descendencia de la misma y a composiciones de ADN contenidas en la misma.

Una "sonda" es un ácido nucleico aislado al que está unido un marcador convencional detectable o molécula indicadora, por ejemplo, un isótopo radiactivo, ligando, agente quimioluminiscente o enzima. Dicha sonda es complementaria a una cadena de un ácido nucleico diana, en el caso de la presente invención, a una cadena de ADN genómico de MON 87411 ya sea de una planta de MON 87411 o de una muestra que incluye ADN de MON 87411. Las sondas de acuerdo con la presente invención incluyen no solo ácidos desoxirribonucleicos o ribonucleicos, sino también poliamidas y otros materiales de sonda que se unen específicamente a una secuencia de ADN objetivo y pueden usarse para detectar la presencia de esa secuencia de ADN objetivo.

Los cebadores de ADN son ácidos polinucleicos aislados que se hibridan con una cadena de ADN objetivo complementaria por hibridación de ácido nucleico para formar un híbrido entre el cebador y la cadena de ADN diana, a continuación se extienden a lo largo de la cadena de ADN objetivo mediante una polimerasa, por ejemplo, una ADN polimerasa. Un par de cebadores de ADN o un conjunto de cebadores de ADN de la presente invención se refieren a dos cebadores de ADN útiles para la amplificación de una secuencia de ácido nucleico objetivo, por ejemplo, mediante la reacción en cadena de la polimerasa (PCR) u otros procedimientos convencionales de amplificación de ácido polinucleico.

Las sondas de ADN y los cebadores de ADN son generalmente de 11 polinucleótidos o más de longitud, a menudo de 18 polinucleótidos o más, 24 polinucleótidos o más o 30 polinucleótidos o más. Tales sondas y cebadores se seleccionan para que tengan la longitud suficiente para hibridar específicamente con una secuencia diana en condiciones de hibridación de alta rigurosidad. Preferentemente, las sondas y los cebadores de acuerdo con la presente invención tienen una similitud de secuencia completa con la secuencia objetivo, aunque las sondas que difieren de la secuencia objetivo que retienen la capacidad de hibridar con las secuencias objetivo pueden diseñarse mediante procedimientos convencionales.

20

30

35

40

45

50

55

60

Los cebadores y las sondas basadosen el ADN genómico flanqueante y las secuencias de inserción desveladas en el presente documento pueden usarse para confirmar (y, si es necesario, para corregir) las secuencias de ADN desveladas por procedimientos convencionales, por ejemplo, mediante re-clonación y secuenciación de tales moléculas de ADN.

Las sondas y cebadores de ácido nucleico de la presente invención hibridan en condiciones estrictas con una molécula de ADN diana. Cualquier procedimiento convencional de hibridación o amplificación de ácido nucleico se puede usar para identificar la presencia de ADN a partir de una planta transgénica en una muestra. La moléculas de ácido polinucleico, también denominadas segmentos de ácido nucleico, o fragmentos de los mismos, son capaces de hibridar específicamente con otras moléculas de ácido nucleico en determinadas circunstancias. Tal como se usa en el presente documento, se dice que dos moléculas de ácido polinucleico son capaces de hibridar específicamente entre sí si las dos moléculas son capaces de formar una estructura de ácido nucleico bicatenario antiparalelo. Se dice que una molécula de ácido nucleico es la "complementaria" de otra molécula de ácido nucleico si exhiben una complementariedad completa. Tal como se usa en el presente documento, se dice que las moléculas exhiben una "complementariedad completa" cuando cada nucleótido de una de las moléculas es complementario de un nucleótido de la otra. Se dice que dos moléculas son "mínimamente complementarias" si pueden hibridar entre sí con una estabilidad suficiente como para permitirles que permanezcan hibridadas entre sí en, al menos, condiciones de "rigurosidad baja". Análogamente, se dice que dos moléculas son "complementarias" si pueden hibridar entre sí con una estabilidad suficiente como para que puedan permanecer hibridadas entre sí en condiciones convencionales de rigurosidad alta". Las condiciones de rigurosidad convencionales se describen en Sambrook y col., 1989, y Haymes y col., en: Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC (1985), Por lo tanto, se permiten desviaciones de la complementariedad completa, siempre que tales desviaciones no impidan por completo la capacidad de las moléculas para formar una estructura bicatenaria. Con el fin de que una molécula de ácido nucleico sirva como cebador o sonda, solo tiene que ser suficientemente complementaria en su secuencia para poder formar una estructura bicatenaria estable en las concentraciones de disolvente y de sales concretas usadas.

Tal como se usa en el presente documento, una secuencia sustancialmente homóloga es una secuencia de ácido nucleico que hibridará específicamente con la complementaria de la secuencia de ácido nucleico con la que se está comparando en condiciones de rigurosidad alta. Las condiciones de rigurosidad apropiadas que promueven la hibridación de ADN, por ejemplo, 6,0 x cloruro de sodio/citrato de sodio (SSC) a aproximadamente 45 °C, seguido de un lavado de 2,0 x SSC a 50 °C, son conocidas por los expertos en la técnica o pueden ser encontrado en Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Por ejemplo, la concentración de sal en la etapa de lavado se puede seleccionar de una baja rigurosidad de aproximadamente 2,0 x SSC a 50 °C a una rigurosidad alta de aproximadamente 0,2 x SSC a 50 °C. Además, la temperatura en la etapa de lavado puede aumentarse desde condiciones de baja rigurosidad a temperatura ambiente, aproximadamente 22 °C, a condiciones de alta rigurosidad a aproximadamente 65 °C. Tanto la temperatura como la sal pueden variar, o bien la temperatura o la concentración de sal pueden mantenerse constantes mientras se cambia la otra variable. En una realización preferida, un ácido polinucleico de la presente invención hibridará específicamente con una o más de las moléculas de ácido nucleico establecidas en las SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 21, 25 o sus complementarias en condiciones moderadamente rigurosas,, por ejemplo a aproximadamente 2,0 x SSC y aproximadamente 65 °C. En

una realización particularmente preferida, un ácido nucleico de la presente invención hibridará específicamente con una o más de las moléculas de ácido nucleico establecidas en las SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 21, 25 o complementarias de cualquiera de ellas en condiciones de rigurosidad alta. En un aspecto de la presente invención, una molécula marcadora de ácido nucleico preferida de la presente invención tiene la secuencia de ácido nucleico establecida en las SEQ ID NO: 1, o SEQ ID NO: 2 o SEQ ID NO: 3, o SEQ ID NO: 4, o SEQ ID NO: 5, o SEQ ID NO: 6, o SEQ ID NO: 7, o SEQ ID NO: 8, o SEQ ID NO: 9, o SEQ ID NO: 10; o SEQ ID NO: 12 o SEQ ID NO: 14, o SEQ ID NO: 21, o SEQ ID NO: 25 o complementarias de las mismas. La hibridación de la sonda a la molécula de ADN objetivo se puede detectar por cualquier número de procedimientos conocidos por los expertos en la materia, estos pueden incluir, aunque no de forma limitativa, marcadores fluorescentes, marcadores radioactivos, marcadores a base de anticuerpos y marcadores quimioluminiscentes.

5

10

15

20

25

30

35

40

45

50

55

60

Con respecto a la amplificación de una secuencia de ácido nucleico objetivo (por ejemplo, mediante PCR) usando un par de cebadores de amplificación concretos, las "condiciones rigurosas" son condiciones que permiten que el par de cebadores hibride solo con la secuencia de ácido nucleico objetivo a la que se uniría un cebador que tiene la secuencia de tipo salvaje correspondiente (o su complementaria), y preferentemente, para producir un producto de amplificación único, el amplicón, en una reacción de amplificación térmica de ADN.

La expresión "específico de (una secuencia diana)" indica que una sonda o cebador hibrida en condiciones de hibridación rigurosas únicamente con la secuencia diana en una muestra que comprende la secuencia diana.

Tal como se usa en el presente documento, "ADN amplificado" o "amplicón" se refiere al producto del procedimiento de amplificación de ácido polinucleico dirigido a una molécula de ácido polinucleico objetivo que es parte de un molde de ácido polinucleico. Por ejemplo, para determinar si una planta de maíz resultante de un cruce sexual contiene ADN genómico de una planta transgénica de una planta de maíz que comprende MON 87411 de la presente invención, el ADN que se extrae de una muestra de tejido de planta de maíz puede someterse a un procedimiento de amplificación de ácido polinucleico usando un par de cebadores que incluye un cebador derivado de una secuencia de ADN en el genoma de una planta que comprende MON 87411 advacente al sitio de inserción del ADN heterólogo insertado (ADN transgénico) y un segundo cebador derivado del ADN heterólogo insertado para producir un amplicón que es diagnóstico de la presencia del ADN de la planta MON 87411. El amplicón de diagnóstico tiene una longitud y tiene una secuencia de ADN que también es diagnóstica para el ADN genómico de la planta, El amplicón puede variar en longitud desde la longitud combinada del par de cebadores más un par de bases nucleotídicas, preferentemente más aproximadamente cincuenta pares de bases nucleotídicas, más preferentemente más aproximadamente doscientos cincuenta pares de bases nucleotídicas, e incluso más preferentemente más aproximadamente cuatrocientos cincuenta pares de bases nucleotídicas o más. Como alternativa, se puede derivar un par de cebadores de la secuencia genómica en ambos lados del ADN heterólogo insertado para producir un amplicón que incluya la secuencia completa de polinucleótidos insertada (por ejemplo, un cebador directo aislado de la porción genómica de la SEQ ID NO: 1 y un cebador inverso aislado de la porción genómica de la SEQ ID NO: 1 que amplifica una molécula de ADN que comprende una secuencia de unión identificada en el presente documento en el genoma del evento MON 87411). Un miembro de un par de cebadores derivado de la secuencia genómica de la planta adyacente al ADN transgénico insertado se encuentra a una distancia de la secuencia de ADN insertada, esta distancia puede variar desde un par de bases nucleotídicas hasta aproximadamente veinte mil pares de bases nucleotídicas. El uso del término "amplicón" excluye específicamente dímeros de cebadores que se pueden formar en la reacción de amplificación térmica del

La amplificación de ácido polinucleico puede lograrse mediante cualquiera de los diversos procedimientos de amplificación de ácido polinucleico conocidos en la técnica, incluyendo la reacción en cadena de la polimerasa (PCR). Los procedimientos de amplificación son conocidos en la técnica y se describen, entre otros, en las patentes de Estados Unidos n.º 4.683.195 y 4.683.202 y en los protocolos de PCR: A Guide to Methods and Applications, ed. Innis y col., Academic Press, San Diego, 1990. Se han desarrollado procedimientos de amplificación por PCR para amplificar hasta 22 kb (kilobase) de ADN genómico y hasta 42 kb de ADN bacteriófago (Cheng y col., Proc. Natl. Acad. Sci. USA 91:5695-5699, 1994). Estos procedimientos, además de otros procedimientos conocidos en la técnica de amplificación del ADN, se pueden usar en la práctica de la presente invención. La secuencia del inserto de ADN heterólogo o la secuencia de ADN genómico flanqueante del evento MON 87411 puede verificarse (y corregirse si es necesario) amplificando tales moléculas de ADN del evento MON 87411 que comprende semillas o plantas cultivadas a partir de la semilla depositada en la ATCC que tiene el número de acceso. PTA-12669, usando cebadores derivados de las secuencias proporcionadas en el presente documento, seguido de secuenciación de ADN estándar del amplicón de PCR o fragmentos de ADN clonados del mismo.

Los kits de detección de ADN que se basan en procedimientos de amplificación de ADN contienen moléculas de cebador de ADN que hibridan específicamente con un ADN objetivo y amplifican un amplicón diagnóstico en las condiciones de reacción apropiadas. El kit puede proporcionar un procedimiento de detección basado en gel de agarosa o cualquier número de procedimientos para detectar el amplicón diagnóstico que se conocen en la técnica. Un kit que contiene cebadores de ADN que son homólogos o complementarios a cualquier porción de la región genómica del maíz como se establece en SEQ ID NO: 1 y a cualquier porción del ADN transgénico insertado como se establece en la SEQ ID NO: 1 puede usarse en los procedimientos de la invención. Las moléculas de ADN útiles como cebadores de ADN pueden seleccionarse de la secuencia de ADN transgénico / genómico desvelada de MON 87411 (SEQ ID NO: 1) por los expertos en la técnica de amplificación de ADN.

El amplicón diagnóstico producido mediante estos procedimientos se puede detectar mediante una pluralidad de técnicas. Uno de estos procedimientos es en Análisis Genético de un bit (Nikiforov, y col. Nucleic Acids Res. 22:4167-4175, 1994), en el que se diseña un oligonucleótido de ADN que solapa tanto la secuencia de ADN genómica flanqueante adyacente como la secuencia de ADN insertada. El oligonucleótido se inmoviliza en pocillos de una placa de micropocillos. Después de la PCR de la región de interés (usando un cebador en la secuencia insertada y uno en la secuencia genómica flanqueante adyacente), un producto de PCR monocatenario puede hibridar con el oligonucleótido inmovilizado y servir como molde para una reacción de extensión de base única usando una ADN polimerasa y didesoxinucleótido trifosfato (ddNTP) específicos para la siguiente base esperada. La lectura puede ser fluorescente o basarse en un ELISA. Una señal indica la presencia de la secuencia transgénica / genómica debido a una amplificación satisfactoria, hibridación y extensión de base única.

10

15

30

35

40

45

50

55

60

Otro procedimiento es la técnica de pirosecuenciación descrita por Winge (Innov. Pharma. Tech. 00:18-24, 2000). En este procedimiento se diseña un oligonucleótido que solapa el ADN genómico adyacente y la unión del ADN del inserto. El oligonucleótido hibrida con un producto de PCR monocatenario de la región de interés (un cebador en la secuencia insertada y uno en la secuencia genómica flanqueante) y se incuba en presencia de una ADN polimerasa, ATP, sulfurilasa, luciferasa, apirasa, adenosina 5'-fosfosulfato y luciferina. Los DNTP se agregan individualmente y la incorporación da como resultado una señal luminosa que se mide. Una señal luminosa indica la presencia de la secuencia transgénica / genómica debido a una amplificación satisfactoria, hibridación y extensión de una o varias bases.

La polarización de fluorescencia según lo descrito por Chen, y col., (Genome Res. 9:492-498, 1999) es un procedimiento que se puede usar para detectar el amplicón de la presente invención. Usando este procedimiento se diseña un oligonucleótido que solapa la unión entre el ADN genómico flanqueante y el insertado. El oligonucleótido hibrida con un producto de PCR monocatenario de la región de interés (un cebador en el ADN insertado y uno en la secuencia de ADN genómico flanqueante)) y se incuba en presencia de una ADN polimerasa y un ddNTP marcado con fluorescencia. La extensión de una sola base tiene como resultado la incorporación del ddNTP. La incorporación se puede medir como un cambio en la polarización usando un fluorímetro. Un cambio en la polarización indica la presencia de la secuencia transgénica / genómica debido a una amplificación satisfactoria, hibridación y extensión de base única

Taqman® (PE Applied Biosystems, Foster City, CA) se describe como un procedimiento de detección y cuantificación de la presencia de una secuencia de ADN y se entiende completamente en las instrucciones proporcionadas por el fabricante. En resumen, se diseña una sonda oligonucleotídica FRET que solapa la unión entre el ADN genómico flanqueante y el insertado. La sonda FRET y los cebadores para PCR (un cebador en la secuencia de ADN insertada y uno en la secuencia genómica flanqueante) se ciclan en presencia de una polimerasa termoestable y Dntp. La hibridación de la sonda FRET tiene como resultado la escisión y liberación del resto fluorescente lejos del resto de inactivación en la sonda FRET. Una señal fluorescente indica la presencia de la secuencia transgénica / genómica debido a la amplificación e hibridación satisfactorias.

Se han descrito balizas moleculares para su uso en la detección de secuencia, como se describe en Tyangi, y col. (Nature Biotech. 14: 303-308, 1996) Brevemente, se diseña una sonda oligonucleotídica FRET que solapa la unión entre el ADN genómico flanqueante y el insertado. La estructura única de la sonda FRET tiene como resultado que contiene una estructura secundaria que conserva los restos fluorescente y de inactivación muy cercanos. La sonda FRET y los cebadores para PCR (un cebador en la secuencia de ADN insertada y uno en la secuencia genómica flanqueante) se ciclan en presencia de una polimerasa termoestable y Dntp. Después de la amplificación satisfactoria mediante PCR, la hibridación de la sonda FRET con la secuencia objetivo da como resultado la eliminación de la estructura secundaria de la sonda y la separación espacial de los restos fluorescentes y de inactivación. Se produce una señal fluorescente. Una señal fluorescente indica la presencia de la secuencia del inserto transgénico/flanqueante del transgén debido a un amplificación, hibridación satisfactorios.

Los kits de detección de ADN pueden desarrollarse usando las composiciones desveladas en el presente documento y los procedimientos bien conocidos en la técnica de detección de ADN. Los kits son útiles para identificar el ADN del evento de maíz MON 87411 en una muestra y se pueden aplicar a los procedimientos para reproducir plantas de maíz que contienen ADN del MON 87411. Un kit contiene moléculas de ADN que son útiles como cebadores o sondas y que son homólogas o complementarias al menos a las porciones aplicables de SEQ ID NO: 1, como se describe en el presente documento. Las moléculas de ADN pueden usarse en procedimientos de amplificación de ADN (PCR) o como sondas en procedimientos de hibridación de ácido polinucleico, es decir, análisis Southern, análisis Northern.

Las secuencias de unión pueden estar representadas por una secuencia del grupo que consiste en la SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10; SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 y SEQ ID NO: 52. Por ejemplo, Las secuencias de unión pueden estar representadas arbitrariamente por las secuencias de nucleótidos proporcionadas como las SEQ ID NO: 5 y SEQ ID NO: 8. Como alternativa, Las secuencias de unión pueden estar representadas arbitrariamente por las secuencias de nucleótidos proporcionadas como las SEQ ID NO: 6 y SEQ ID NO: 9. Como alternativa, las secuencias de unión pueden estar representadas arbitrariamente por las secuencias de nucleótidos proporcionadas como las SEQ ID NO: 7 y SEQ ID NO: 10. Estos nucleótidos están unidos mediante un enlace fosfodiéster y en el evento de maíz MON

87411 están presentes como parte del genoma de la célula vegetal recombinante. La identificación de una o más SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 2, SEQ ID NO: 25, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 o SEQ ID NO: 52 en una muestra derivada de una planta de maíz, semilla o parte de la planta es determinante de que el ADN se obtuvo del evento de maíz MON 87411 y es diagnóstica de la presencia en una muestra que contiene ADN del evento de maíz MON 87411. Por lo tanto, la invención proporciona una molécula de ADN que contiene al menos una de las secuencias de nucleótidos proporcionadas como SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 21, SEQ ID NO: 25. Cualquier segmento de ADN derivado del evento de maíz transgénico MON 87411 que sea suficiente para incluir al menos una de las secuencias proporcionadas como SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 21, SEQ ID NO: 25 están dentro del ámbito de la invención. Además, cualquier polinucleótido que comprenda una secuencia complementaria a cualquiera de las secuencias descritas en este párrafo está dentro del ámbito de la invención.

10

45

50

55

60

La invención proporciona moléculas de ADN de ejemplo que pueden usarse como cebadores o sondas para detectar la presencia de ADN derivado de una planta de maíz que comprende el ADN del evento MON 87411 en una muestra. Tales cebadores o sondas son específicos para una secuencia de ácido nucleico diana y, como tales, son útiles para la identificación de la secuencia de ácido nucleico del evento de maíz MON 87411 mediante los procedimientos de la invención descritos en el presente documento.

20 Un cebador es típicamente un polinucleótido aislado altamente purificado que está diseñado para su uso en procedimientos de unión o hibridación específicos que implican amplificación térmica. Se pueden usar un par de cebadores con ADN molde, tal como una muestra de ADN genómico de maíz, en una amplificación térmica, tal como la reacción en cadena de la polimerasa (PCR), para producir un amplicón, donde el amplicón producido a partir de dicha reacción tendría una secuencia de ADN correspondiente a la secuencia del ADN molde localizada entre los dos sitios donde los cebadores hibridaron con el molde. Tal como se usa en el presente documento, un "amplicón" es una 25 pieza o fragmento de ADN que se ha sintetizado mediante técnicas de amplificación. Un amplicón de la invención comprende al menos una de las secuencias proporcionadas como SEQ ID NO: 21 o SEQ ID NO: 25. Un cebador está típicamente diseñado para hibridar con una cadena de ADN diana complementaria para formar un híbrido entre el cebador y la hebra de ADN diana, y la presencia del cebador es un punto de reconocimiento por parte de una 30 polimerasa para comenzar la extensión del cebador (es decir, la polimerización de nucleótidos adicionales en una molécula de nucleótidos en alargamiento) utilizando como molde la cadena de ADN diana. Con pares de cebadores, como se usa en la invención, se pretende hacer referencia al uso de dos cebadores que se unen a cadenas opuestas de un segmento de nucleótidos bicatenario con el fin de amplificar linealmente el segmento de polinucleótidos entre las posiciones seleccionadas para la unión por los miembros individuales del par de cebadores, típicamente en una reacción de amplificación térmica u otros procedimientos convencionales de amplificación de ácido nucleico. Un par 35 de cebadores útil para esta aplicación debe comprender una primera molécula de ADN y una segunda molécula de ADN que es diferente de la primera molécula de ADN, y en la que ambas tienen una longitud suficiente de nucleótidos contiguos de una secuencia de ADN para funcionar como cebadores de ADN que, cuando se usan juntos en una reacción de amplificación térmica con molde de ADN derivado del evento de maíz MON 87411, para producir un diagnóstico de amplicón para el evento de maíz MON 87411 ADN en una muestra. Las moléculas de ADN de ejemplo 40 útiles como cebadores se proporcionan como SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22 o SEQ ID NO: 24.

Una "sonda" es un ácido nucleico aislado que es complementario a una cadena de un ácido nucleico diana. Las sondas incluyen no solo ácidos desoxirribonucleicos o ribonucleicos, sino también poliamidas y otros materiales de sonda que se unen específicamente a una secuencia de ADN objetivo y la detección de dicha unión puede ser útil en el diagnóstico, discriminación, determinación, detección o confirmación de la presencia de esa secuencia de ADN objetivo en una muestra en particular. Una sonda puede estar unida a un marcador detectable convencional o molécula indicadora, por ejemplo, un isótopo radiactivo, ligando, agente quimioluminiscente o enzima. Ejemplos de moléculas de ADN útiles como sondas se proporcionan como la SEQ ID NO: 19 y la SEQ ID NO: 23.

Las sondas y los cebadores pueden tener identidad de secuencia completa con la secuencia objetivo, aunque los cebadores y las sondas que difieren de la secuencia objetivo que retienen la capacidad de hibridar, preferentemente, con las secuencias objetivo pueden diseñarse mediante procedimientos convencionales. Con el fin de que una molécula de ácido nucleico sirva como cebador o sonda, solo tiene que ser suficientemente complementaria en su secuencia para poder formar una estructura bicatenaria estable en las concentraciones de disolvente y de sales concretas usadas. Se puede usar cualquier procedimiento convencional de hibridación o amplificación de ácido nucleico para identificar la presencia de ADN transgénico del evento de maíz MON 87411 en una muestra. Las sondas y los cebadores tienen, generalmente, al menos aproximadamente 11 nucleótidos, al menos aproximadamente 18 nucleótidos, al menos aproximadamente 24 nucleótidos o al menos aproximadamente 30 nucleótidos o más de longitud. Dichas sondas y cebadores hibridan específicamente con una secuencia de ADN objetivo en condiciones de hibridación rigurosas. Las condiciones de rigurosidad convencionales se describen en Sambrook y col., 1989, y Haymes y col., en: Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, DC (1985).

Se puede usar cualquiera de numerosos procedimientos bien conocidos por los expertos en la técnica para aislar y manipular una molécula de ADN, o un fragmento de la misma, desvelada en la invención, incluidos los procedimientos

de amplificación térmica. Las moléculas de ADN, o fragmentos de las mismas, también pueden obtenerse por otras técnicas tales como por síntesis directamente del fragmento por medios químicos, como se practica comúnmente utilizando un sintetizador de oligonucleótidos automatizado.

Por lo tanto, las moléculas de ADN y las secuencias de nucleótidos correspondientes proporcionadas en el presente documento son útiles para, entre otras cosas, identificar I evento de maíz MON 87411, seleccionar variedades de plantas o híbridos que comprenden el evento de maíz MON 87411, detectar la presencia de ADN derivado del evento de maíz transgénico MON 87411 en una muestra y monitorizar las muestras para detectar la presencia y / o ausencia del evento de maíz MON 87411 o partes de plantas derivadas de plantas de maíz que comprenden el evento MON 87411.

10 La invención proporciona plantas de maíz, descendencia, semillas, células vegetales, partes de plantas (tales como polen, óvulo, espigas o tejido de seda, tejido de la panícula, tejido de la raíz, tejido del tallo y tejido de la hoja), y productos básicos. Estas plantas, descendencia, semillas, células vegetales, partes de plantas y productos básicos contienen una cantidad detectable de un polinucleótido de la invención, es decir, tal como un polinucleótido que tiene al menos una de las secuencias proporcionadas como SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID 15 NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25. Las plantas, descendencia, semillas, células vegetales y partes la planta de la invención también pueden contener uno o más transgenes adicionales. Dicho transgén adicional puede ser cualquier secuencia de nucleótidos que codifique una proteína o molécula de ARN que confiera un rasgo deseable que incluya, aunque sin limitaciones, una mayor resistencia a los insectos, mayor eficiencia en el uso del 20 agua, mayor función de rendimiento, mayor resistencia a la sequía, mayor calidad de la semilla, mejor calidad nutricional y / o mayor tolerancia a los herbicidas, en el que el rasgo deseable se mide con respecto a una planta de maíz que carece de dicho transgén adicional.

La invención proporciona plantas de maíz, descendencia, semillas, células vegetales y partes de la planta, tal como polen, óvulo, espigas o tejido de seda, tejido de la panícula, tejido de la raíz o el tallo, y hojas derivadas de una planta de maíz transgénico que comprende el evento MON 87411. Una muestra representativa de semilla de maíz que comprende el evento MON 87411 se ha depositada de acuerdo con el Tratado de Budapest con la Colección Americana de Cultivos Tipo (ATCC). El depositario de la ATCC ha asignado la designación de depósito de patente PTA-12669 al evento MON 87411 que comprende semilla.

25

30

35

40

45

50

55

60

La invención proporciona un microorganismo que comprende una molécula de ADN que tiene al menos una secuencia seleccionada del grupo que consiste en SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25 presente en su genoma. Un ejemplo de tal microorganismo es una célula vegetal transgénica. Los microorganismos, tal como una célula vegetal de la invención, son útiles en muchas aplicaciones industriales, incluyendo, pero sin limitaciones: (i) utilizar como herramienta de investigación para investigación científica o investigación industrial; (ii) utilizar en cultivo para producir carbohidratos endógenos o recombinantes, lípido, ácido nucleico o productos proteicos o moléculas pequeñas que pueden usarse para investigaciones científicas posteriores o como productos industriales; y (iii) usar con técnicas modernos de cultivo de tejidos vegetales para producir plantas transgénicas o cultivos de tejidos vegetales que luego puedan usarse para investigación o producción agrícola. La producción y el uso de microorganismos, tales como las células vegetales transgénicas, utilizan técnicas microbiológicas modernas y la intervención humana para producir un microorganismo artificial único. En este procedimiento, el ADN recombinante se inserta en el genoma de una célula vegetal para crear una célula vegetal transgénica que es independiente y única respecto a las células vegetales naturales. Esta célula vegetal transgénica se puede cultivar de manera muy parecida a las bacterias y las células de levadura utilizando técnicas modernas de microbiología y puede existir en estado unicelular indiferenciado. La composición genética y el fenotipo nuevo o alterado de la célula vegetal transgénica es un efecto técnico creado por la integración del ADN heterólogo en el genoma de la célula. Los microorganismos de la invención, tales como las células vegetales transgénicas, incluyen (i) procedimientos para producir células transgénicas integrando el ADN recombinante en el genoma de la célula y luego usando esta célula para derivar células adicionales que poseen el mismo ADN heterólogo; (ii) procedimientos de cultivo de células que contienen ADN recombinante utilizando técnicas modernas de microbiología; (iii) procedimientos para producir y purificar productos endógenos o recombinantes de carbohidratos, lípidos, ácidos nucleicos o proteicos de células cultivadas, y (iv) procedimientos de uso de técnicas modernas de cultivo de tejidos vegetales con células vegetales transgénicas para producir plantas transgénicas o cultivos de tejidos vegetales transgénicos.

Las plantas de la invención pueden transmitir el evento ADN, incluyendo el transgén, a la descendencia. Tal como se usa en el presente documento, "descendencia" incluye cualquier planta, semilla, célula vegetal y / o parte de planta regenerable que comprende el evento de ADN derivado de una planta ancestral y / o que comprende una molécula de ADN que tiene al menos una secuencia seleccionada del grupo que consiste en la SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25; SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 y SEQ ID NO: 52. Las plantas, la descendencia y las semillas pueden ser homocigotas o heterocigotas para el transgén. La descendencia se puede cultivar a partir de semillas producidas por una planta que contiene un evento de maíz MON

87411 y / o de semillas producidas por una planta fertilizada con polen de una planta que contiene un evento de maíz MON 87411.

Las plantas de la descendencia pueden autopolinizarse (también conocidas como "autofecundación") para generar una verdadera línea de reproducción de plantas, es decir, plantas homocigotas para el transgén. La autofecundación de la descendencia adecuada puede producir plantas que son homocigotas para ambos genes exógenos añadidos.

10

15

20

25

30

35

40

45

50

55

60

Como alternativa, las plantas de descendencia pueden cruzarse, por ejemplo, reproducirse con otra planta no relacionada, para producir una semilla o planta varietal o híbrida. La otra planta no relacionada puede ser transgénica o no transgénica. Por lo tanto, una semilla o planta varietal o híbrida se puede derivar cruzando un primer progenitor que carezca del ADN específico y único del evento de maíz MON 87411 con un segundo progenitor que comprenda el evento de maíz MON 87411, lo que da como resultado un híbrido que comprende el ADN específico y único del evento de maíz MON 87411. Cada progenitor puede ser híbrido o endogámico / varietal, siempre y cuando el cruce o la reproducción den como resultado una planta o semilla de la invención, es decir, una semilla que tiene al menos un alelo que contiene el ADN del evento de maíz MON 87411 y / o una molécula de ADN que tiene al menos una secuencia seleccionada del grupo que consiste en la SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25; SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 y SEQ ID NO: 52. Por lo tanto, se pueden cruzar dos plantas transgénicas diferentes para producir descendencia híbrida que contenga dos genes exógenos añadidos que segregan de forma independiente. Por ejemplo, el evento de maíz MON 87411 que contiene resistencia a las infestaciones por el gusano de la raíz del maíz y tolerancia al glifosato se puede cruzar con diferentes plantas de maíz transgénicas para producir una planta híbrida o endogámica que tiene las características de ambos progenitores transgénicos. Un ejemplo de esto sería un cruce del evento MON 87411 que contiene resistencia a las infestaciones de gusanos de la raíz del maíz y tolerancia al glifosato con una planta de maíz que tiene uno o más rasgos adicionales, tales como la tolerancia a los herbicidas y / o el control de insectos, lo que da como resultado una planta o semilla de la descendencia que es resistente a las infestaciones por los gusanos de la raíz del maíz y tolerante al glifosato y tiene al menos uno o más rasgos adicionales. También se contempla el retrocruzamiento con una planta parental y el cruzamiento exogámico con una planta no transgénica, como es la propagación vegetativa. Pueden encontrarse descripciones de otros procedimientos reproductivos que se usan habitualmente para los diferentes rasgos y cultivos en uno de varias referencias, por ejemplo, Fehr, en Breeding Methods for Cultivar Development, Wilcox J. ed., American Society of Agronomy, Madison WI (1987).

La invención proporciona una parte de planta que deriva de plantas de maíz que comprenden el evento MON 87411. Tal como se usa en el presente documento, una "parte de planta" hace referencia a cualquier parte de una planta que está compuesta por material derivado de una planta de maíz que comprende el evento MON 87411. Las partes de la planta incluyen, pero sin limitaciones, polen, óvulo, espiga o seda, panícula, tejido de la raíz o el tallo, fibras y hojas. Las partes de plantas pueden ser viables, no viables, regenerables y/o no regenerables.

La invención proporciona un producto básico que deriva de plantas de maíz que comprenden el evento MON 87411 y que contiene una cantidad detectable de un ácido nucleico específico del evento MON 87411. Tal como se usa en el presente documento, un "producto básico" se refiere a cualquier composición o producto que contiene material derivado de una planta de maíz, semilla de maíz entera o procesada, una o más células vegetales y/o partes de planta que contienen el ADN del evento de maíz MON 87411. Los productos básicos pueden ser adquiridos por los consumidores y pueden ser viables o no viables. Los productos básicos no viables incluye, aunque sin limitaciones, semillas de maíz no viables; semillas de maíz procesadas, partes de semilla de maíz y partes de planta de maíz; semillas de maíz y partes de planta de maíz procesadas para piensos o alimentos, aceite, sémola, harina, copos, salvado, biomasas y productos combustibles. Los productos básicos no viables incluyen, aunque sin limitaciones, semillas de maíz, plantas de maíz y células de plantas de maíz. Por lo tanto, las plantas de maíz que comprenden el evento MON 87411 pueden usarse para fabricar cualquier producto básico típicamente adquirido del maíz. Cualquiera de estos productos básicos que se deriva de plantas de maíz que contienen ADN de evento MON 87411 de maíz que contiene al menos una cantidad detectable de una o más moléculas de ADN específicas y únicas, cuya presencia es determinativa del evento de maíz MON 87411 y específicamente pueden contener una cantidad detectable de un polinucleótido que comprende una molécula de ADN que tiene al menos una secuencia seleccionada del grupo que consiste en la SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25; SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 y SEQ ID NO: 52. Se puede usar cualquier procedimiento de detección estándar para moléculas de nucleótidos, incluidos los procedimientos de detección desvelados en el presente documento. Un producto básico está dentro del ámbito de la invención si hay una cantidad detectable de una molécula de ADN que tiene al menos una secuencia de diagnóstico seleccionada del grupo que consiste en la SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25 en el producto básico.

Las plantas, descendencia, semillas, células vegetales, partes de plantas (tales como polen, óvulo, espiga o seda, panícula, tejido de la raíz o el tallo, y hojas) y productos básicos de la invención son, por tanto, útiles para, entre otras cosas, cultivar plantas con el fin de producir semillas y/o partes de plantas que comprenden el evento de maíz MON

87411 para fines agrícolas, produciendo una descendencia que comprende el evento de maíz MON 87411 con fines de reproducción e investigación de plantas, usar con técnicas microbiológicas para aplicaciones industriales y de investigación y la venta a los consumidores.

5

10

15

20

25

30

35

40

45

50

55

60

La invención proporciona procedimientos para controlar malas hierbas y procedimientos para producir plantas usando herbicida glifosato y el evento de maíz MON 87411. Se proporciona un procedimiento para controlar malas hierbas en un campo y que consiste en sembrar la variedad que contiene el evento MON 87411 o plantas híbridas en un campo y aplicar una dosis herbicidamente eficaz de glifosato al campo con el fin de controlar las malas hierbas en el campo sin dañar las plantas que contienen MON 87411. Dicha aplicación del herbicida glifosato puede ser antes de la emergencia, es decir, cualquier momento después de sembrar la semilla que contiene MON 87411 y antes de que emerja las plantas que contienen MON 87411, o tras la emergencia, es decir, cualquier momento después de la emergencia de las plantas que contienen MON 87411. También se proporciona otro procedimiento para controlar malas hierbas en el campo y que consiste en aplicar una dosis eficaz de herbicida glifosato para controlar las malas hierbas en un campo y, después, sembrar plantas de maíz que comprenden el evento MON 87411 en el campo. Dicha aplicación del herbicida glifosato sería antes de la siembra, es decir, antes de sembrar la semilla que contiene MON 87411 y podría realizarse en cualquier momento antes de la siembra, incluyendo, aunque no de forma limitativa, aproximadamente 14 días antes de la siembra a aproximadamente 1 día antes de la siembra. La invención también proporciona un procedimiento para producir semillas de maíz esencialmente libres de semillas de malas hierbas sembrando semillas de planta de maíz tolerante al glifosato que comprende MON 87411 en un campo, aplicar al campo una dosis eficaz posterior a la emergencia de herbicida glifosato suficiente para matar las malas hierbas y recoger la semilla del campo. Una dosis eficaz de herbicida de glifosato para su uso en el campo debe consistir en un rango de aproximadamente 0,125 libras por acre a aproximadamente 6,4 libras por acre de glifosato durante una estación de crecimiento. En una realización, se aplica un total de aproximadamente 1,5 libras por acre de glifosato durante una estación de crecimiento. Se pueden usar múltiples aplicaciones de glifosato durante una estación de crecimiento, por ejemplo, dos aplicaciones (como una aplicación previa a la siembra y una aplicación posterior a la emergencia o una aplicación previa a la emergencia y una aplicación posterior a la emergencia) o tres aplicaciones (como una aplicación previa a la siembra, una aplicación previa a la emergencia y una aplicación posterior a la emergencia).

Se proporcionan procedimientos para producir una planta de maíz tolerante a insectos y herbicidas que comprende las secuencias de ADN específicas y únicas para el evento MON 87411 de la invención. Las plantas transgénicas utilizadas en estos procedimientos pueden ser homocigotas o heterocigotas para el transgén. Las plantas de descendencia producidas por estos procedimientos pueden ser plantas varietales o híbridas; pueden cultivarse a partir de semillas producidas por una planta que contiene un evento de maíz MON 87411 y / o de semillas producidas por una planta fertilizada con polen de una planta que contiene un evento de maíz MON 87411; y pueden ser homocigotas o heterocigotas para el transgén. Las plantas de la descendencia se pueden autopolinizar posteriormente para generar una verdadera línea de reproducción de plantas, *es decir*, plantas homocigotas para el transgén o, alternativamente, pueden cruzarse, por ejemplo, reproducirse con otra planta no relacionada, para producir una semilla o planta varietal o híbrida.

Se proporcionan procedimientos para detectar la presencia de ADN derivado de una célula de maíz. tejido, semillas o plantas que comprenden el evento de maíz MON 87411 en una muestra. Un procedimiento consiste en (i) extraer una muestra de ADN de al menos una célula de maíz, tejido, semilla o planta, (ii) poner en contacto la muestra de ADN con al menos un cebador que es capaz de producir una secuencia de ADN específica para el ADN del evento MON 87411 en condiciones apropiadas para la secuenciación del ADN, (iii) realizar una reacción de secuenciación de ADN, y luego (iv) confirmar que la secuencia de nucleótidos comprende una secuencia de nucleótidos específica para el evento MON 87411, o la construcción comprendida en ella, tal como una seleccionada del grupo que consiste en SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 y SEQ ID NO: 52. Otro procedimiento consiste en (i) extraer una muestra de ADN de al menos una célula de maíz, tejido, semilla o planta, (ii) poner en contacto la muestra de ADN con un par de cebadores que es capaz de producir un amplicón a partir del ADN del evento MON 87411 en condiciones apropiadas para la amplificación del ADN, (iii) realizar una reacción de amplificación de ADN, y luego (iv) detectar la molécula de amplicón y / o confirmar que la secuencia de nucleótidos del amplicón comprende una secuencia de nucleótidos específica para el evento MON 87411, tal como uno seleccionado del grupo que consiste en SEQ ID NO: 21 y SEQ ID NO: 25. El amplicón debe ser uno específico para el evento MON 87411, tal como un amplicón que comprende SEQ ID NO: 21 o SEQ ID NO: 25. La detección de una secuencia de nucleótidos específica del evento MON 87411 en el amplicón es determinante y/o diagnóstica de la presencia del ADN específico del evento de maíz MON 87411 específico en la muestra. Un ejemplo de un par de cebadores que es capaz de producir un amplicón a partir del ADN del evento MON 87411 en condiciones apropiadas para la amplificación del ADN se proporciona como SEQ ID NO: 18, SEQ ID NO: 24, SEQ ID NO: 20 y SEQ ID NO: 22. Un experto en la técnica puede diseñar fácilmente otros pares de cebadores y produciría un amplicón que comprende la SEQ ID NO: 21 o la SEQ ID NO: 25, en el que dicho par de cebadores comprende al menos un cebador dentro de la región genómica que flanquea el inserto y un segundo cebador dentro del inserto. Otro procedimiento para detectar la presencia de ADN derivado de una célula de maíz, tejido, semilla o planta que comprende el evento de maíz MON 87411 en una muestra consiste en (i) extraer una muestra de ADN de al menos una célula de maíz, tejido, semilla o planta, (ii) poner en contacto la muestra de ADN con una sonda de ADN específica para el ADN del evento MON 87411, (iii) permitir que la sonda y la muestra de ADN hibriden bajo condiciones de hibridación rigurosas, y luego (iv) detectar la hibridación entre la sonda y la muestra de ADN objetivo. Se proporciona un ejemplo de la secuencia de una sonda de ADN que es específica del ADN del evento MON 87411 como SEQ ID NO: 19 o SEQ ID NO: 23. Un experto en la materia puede diseñar fácilmente otras sondas que comprenderían al menos un fragmento de ADN genómico que flanquea el inserto y al menos un fragmento de ADN del inserto, tales como las secuencias proporcionadas en, aunque no de forma limitativa, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 21 y SEQ ID NO: 25. La detección de la hibridación de la sonda a la muestra de ADN es diagnóstica de la presencia de ADN específico del evento de maíz MON 87411 en la muestra. La ausencia de hibridación es, como alternativa, diagnóstica de la ausencia del ADN específico del evento MON 87411 en la muestra.

5

10

15

20

25

30

35

40

45

50

55

60

Se proporcionan kits de detección de ADN que son útiles para la identificación del ADN del evento MON 87411 en una muestra y también se pueden aplicar a procedimientos de cultivo de plantas de maíz que contienen el ADN del evento adecuado. Dichos kits contienen cebadores y / o sondas de ADN que comprenden fragmentos de SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 y SEQ ID NO: 52. Un ejemplo de un kit de este tipo comprende al menos una molécula de ADN de longitud suficiente de nucleótidos contiguos de SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 y SEQ ID NO: 52 para funcionar como una sonda de ADN útil para detectar la presencia y / o ausencia de ADN derivado de plantas de maíz transgénicas que comprenden el evento MON 87411 en una muestra. El ADN derivado de plantas de maíz transgénicas que comprende el evento MON 87411 comprendería una molécula de ADN que tiene al menos una secuencia seleccionada del grupo que consiste en la SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 y SEQ ID NO: 52. Se proporciona una molécula de ADN suficiente para su uso como sonda de ADN que es útil para determinar, detectar o diagnosticar la presencia y / o ausencia de ADN del evento de maíz MON 87411 en una muestra como SEQ ID NO: 19 y SEQ ID NO: 23. Un experto en la materia puede diseñar fácilmente otras sondas y deben comprender un número suficiente de ácidos nucleicos contiguos, incluyendo al menos 15, al menos un 16, al menos un 17, al menos un 18, al menos un 19, al menos un 20, al menos un 21, al menos un 22, al menos un 23, al menos un 24, al menos un 25, al menos un 26, al menos un 27, al menos un 28, al menos un 29, al menos un 30, al menos un 31, al menos un 32, al menos un 33, al menos un 34, al menos un 35, al menos un 36, al menos un 37, al menos un 38, al menos 39, o al menos 40 nucleótidos contiguos de SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 21, SEQ ID NO: 25, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 y SEQ ID NO: 52 y ser lo suficientemente único para el ADN del evento de maíz MON 87411 para identificar el ADN derivado del evento. Otro tipo de kit comprende un par de cebadores útil para producir un amplicón útil para detectar la presencia y / o ausencia de ADN derivado del evento de maíz transgénico MON 87411 en una muestra. Tal kit emplearía un procedimiento que comprende poner en contacto una muestra de ADN objetivo con un par de cebadores como se describe en el presente documento, a continuación, realiza runa reacción de amplificación de ácido nucleico suficiente para producir un amplicón que comprende una molécula de ADN que tiene al menos una secuencia seleccionada del grupo que consiste en SEQ ID NO: 21 y SEQ ID NO: 25 y, después, detectar la presencia y/o ausencia del amplicón. Tal procedimiento también puede incluir secuenciar el amplicón o un fragmento del mismo, que sería determinante, es decir, diagnóstico, de la presencia de ADN específico del evento específico de maíz MON 87411en la muestra de ADN objetivo. Un experto en la materia puede diseñar fácilmente otros pares de cebadores y deben comprender un número suficiente de ácidos nucleicos contiguos, incluyendo al menos 15, al menos un 16, al menos un 17, al menos un 18, al menos un 19, al menos un 20, al menos un 21, al menos un 22, al menos un 23, al menos un 24, al menos un 25, al menos un 26, al menos un 27, al menos un 28, al menos 29, o al menos 30 nucleótidos contiguos de secuencias proporcionadas en, pero sin limitaciones, la SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9 o SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 41, SEQ ID NO: 42, SEQ ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 45, SEQ ID NO: 49, SEQ ID NO: 50, SEQ ID NO: 51 y SEQ ID NO: 52 y ser lo suficientemente único para el ADN del evento de maíz MON 87411 para identificar el ADN derivado del evento.

Los kits y procedimientos de detección son útiles para, entre otras cosas, identificar I evento de maíz MON 87411, seleccionar variedades de plantas o híbridos que comprenden el evento de maíz MON 87411, detectar la presencia de ADN derivado de las plantas de maíz transgénicas que comprenden el evento MON 87411 en una muestra y monitorizar las muestras para detectar la presencia y / o ausencia de plantas de maíz que comprenden el evento MON 87411 o partes de plantas derivadas de plantas de maíz que comprenden el evento MON 87411.

La secuencia del inserto de ADN heterólogo, las secuencias de unión o secuencias flanqueantes del evento de maíz

MON 87411 se pueden verificar (y corregir en caso necesario) mediante amplificación de dichas secuencias desde el evento usando los cebadores derivados de las secuencias proporcionadas en el presente documento, seguidas de secuenciación de ADN estándar del amplicón de o del ADN clonado.

Los ejemplos siguientes se incluyen para demostrar ejemplos de determinadas realizaciones preferidas de la invención.

INFORMACIÓN DE LOS DEPÓSITOS

El 14 de marzo de 2012 se realizó un depósito de una muestra representativa de semilla de maíz que comprende el evento MON 87411, de acuerdo con el Tratado de Budapest con la Colección Americana de Cultivos Tipo (ATCC) que tiene la dirección en 10801 University Boulevard, Manassas, Virginia, Estados Unidos, código postal 20110 y número de acceso en la ATCC asignado PTA-12669. El acceso a los depósitos estará disponible durante la tramitación de la solicitud ante el Comisionado de Patentes y Marcas Registradas y las personas que el Comisionado determine que tienen derecho a solicitarlos. Tras la emisión de la patente, todas las restricciones sobre la disponibilidad al público se eliminarán irrevocablemente. El depósito se mantendrá en el depositario durante un período de 30 años, o 5 años después de la última solicitud, o durante la vigencia de la patente, lo que sea más largo y se reemplazará según sea necesario durante ese período.

Ejemplos

5

10

15

Ejemplo 1

Este ejemplo describe el diseño y la selección de una construcción designada 417 y la ingeniería y evaluación de diferentes construcciones de ADN. La Tabla 1 tabula estas construcciones de ADN por criterios de prueba y resultados.

Las construcciones de ADN se diseñaron para expresar un protector basado en plantas (PIP) basado en ARN en maíz, dirigido al gusano de la raíz del maíz occidental (WCR). Las variaciones del transcrito de ARN se probaron para diferentes genes objetivo del WCR (Grupo 1), diferentes longitudes de ARN (Grupo 2), con o sin portador de ARN neutro (Grupo 2), diferentes estructuras secundarias (Grupo 4) y diferentes segmentos objetivo de Dv_Snf7o (Grupos 2 y 3). También se probaron variaciones en múltiples transgenes, por ejemplo, el transcrito de ARN + una proteína activa de WCR (Grupos 3 y 5), y dos transcritos de ARN dirigidos a dos objetivos de WCR (Grupos 1 y 4). También se probaron las variaciones en el número y la configuración de los casetes de expresión y los elementos utilizados (todos los grupos).

TABLA 1. Cuarenta y cinco construcciones de ADN se transformaron de manera estable en plantas de maíz. Se evaluaron las plantas de descendencia de múltiples eventos de transformación por construcción de ADN.

Construcción	Grupo	Criterios y resultados	
043	1	• Inhibición probada de la actividad del WCR en plantas que expresan combinaciones	
043		apiladas de vectores de segmentos de ARN dirigidos a transcritos de 4 genes	
059		 endógenos de WCR diferentes. La actividad del WCR se inhibió en plantas que expresaban un segmento de ARN dirigido al transcrito del gen Dv_Snf7o. 	
503	2		
475		• Inhibición probada de la actividad del WCR en plantas que expresan varios tamaño de segmentos de ARN dirigidos al transcrito del gen Dv_Snf7o (desde uno de 27 unidades hasta una de 420 unidades) diregadas para expresarse como un ARN de	
970			
474		unidades hasta uno de 429 unidades) diseñados para expresarse como un ARN de repetición invertida (IR). También se probó un portador de IR neutro de 150 unidades que estaba incluido con y sin un dy Snf7o de 27 unidades.	
477			
306		445 55455	

(continuación)

Construcción	Grupo	Criterios y resultados
476		,
713		Se observó una actividad óptima del WCR en plantas que expresaban segmentos objetivo Dv_Snf7o con una longitud igual o superior a 100 pares de bases.
868		
870		• Inhibición probada de la actividad del WCR en plantas que expresan: (a) un
871		Dv_Snf7o IR de 240 unidades y (b) un par de proteínas TIC809 y TIC810 que tienen
875		actividad inhibidora del WCR; ambos bajo un casete de expresión en una
310		construcción de ADN.
311		
330		Inhihiaián prohada da la catividad dal MCD on plantas que aversaga. (a) al
331		• Inhibición probada de la actividad del WCR en plantas que expresan: (a) el Dv_Snf7o IR de 240 unidades y (b) el par de proteínas TIC809 y TIC810 que tienen
950	3	actividad inhibidora del WCR; cada uno unido de forma independiente y operativa a
890		casetes de expresión separados en una construcción de ADN.
867		
946		Se analizaron estas combinaciones de proteínas IR + utilizando diferentes
878		combinaciones de diferentes promotores y configuraciones de casetes de expresión.
823		J
879		• La expresión en plantas de Dv Snf7o IR de 240 unidades inhibió la actividad del
880		WCR en tales plantas, con o sin expresión del par de proteínas TIC809 y TIC810.
401		District de de constant de con
354		 Plantas de descendencia probadas de un cruce híbrido entre plantas que contienen eventos que albergan la construcción de ADN # 503 (un Dv_Snf7o IR de 429 unidades) y plantas que comprenden el evento MON 88017 (Cry3Bb).
253		• Inhibición probada de la actividad del WCR en plantas que expresan un Dv_Snf7o IR de 150 o 240 unidades.
254	4	• Inhibición probada de la actividad del WCR en plantas que expresan: (a) Dv_Snf7o IR, y (b) vATPasa A IR.
255	4	• IR probadas frente a estructuras de ARN secundarias no IR para suprimir Dv_ Snf7o, vATPasa A y la
256		combinación
892		• La expresión en la planta del Dv_Snf7o IR de 240 unidades inhibió la actividad del WCR,, con o sin expresión del segmento de ARN DE LA vATPasa A.
365		• La inhibición del WCR fue mejor en la planta cuando Dv_Snf7o IR se expresó junto con Cry3Bb, en comparación con la expresión de Dv_Snf7o IR solo o Cry3Bb solo.
416		
417		• Inhibición probada de la actividad del WCR en plantas que expresan tanto (a)
418		Dv_Snf7o IR de 240 unidades como (b) la proteína Cry3Bb que tiene actividad
419		pesticida de <i>Diabrotica virgifera</i> ; cada transgén en casetes de expresión separados
423	5	en una construcción de ADN.
402	J	
403		Se probaron diez construcciones de ADN que tienen combinaciones de diferentes
404		promotores y combinaciones de diferentes configuraciones de casetes de expresión.
405		
406		• Se seleccionó la construcción de ADN n.º 417.

Usando las construcciones de ADN del Grupo 2 como ejemplo, se diseñaron 7 construcciones de ADN para probar el direccionamiento de varias longitudes de Dv_Snf7o (desde 27 hasta 429 nt de longitud). Cada construcción de ADN se produjo, las células vegetales se transformaron, las plantas se obtuvieron y las endogamias se evaluaron en bioensayos de eficacia de la cámara de crecimiento. Los resultados mostraron una correlación entre la longitud del ARN repetido invertido (IR) y la actividad del WCR (Tabla 2, columnas (B) y (H)).

TABLA 2. Correlación entre la longitud del IR y la actividad del WCR.

				<u> </u>			
(A) N.º de	(B) Longitud	(C) N.º de	(D) N.º de	(E) N.º de	(F) N.º de plantas	(G) N.º de	(H)
construcción	del	embriones	embriones	plantas	R ₀ que se espera	eventos	¿Actividad
de ADN	segmento de	transformados	con brotes	R₀ al	que alberguen un	avanzados	del WCR
	ARN de			suelo	solo evento	para las	en las
	Dv_Snf7o					pruebas en	plantas?
	(nt)					múltiples	
						plantas	
503	429	2085	433	308	233	78	++++
475	150	230	57	45	39	23	++++
970	27†	220	79	47	44	21	++
474	27	230	81	51	49	23	-
477	50	220	50	36	31	23	++
306	75	230	37	27	18	15	++
476	100	220	53	40	33	22	+++++

La columna (B) muestra las longitudes variables del ARN objetivo Dv_Snf7o diseñado para expresarse como una estructura secundaria de ARN repetido (IR) invertido en plantas de maíz. La columna (C) muestra el número de embriones de maíz que se transformaron. La columna (D) muestra el número de embriones de maíz que desarrollaron brotes. La columna (E) muestra el número de plantas de maíz regeneradas (designadas como generación R_0) viables en el suelo. La columna (F) muestra el número de plantas R_0 que se espera alberguen una sola copia del inserto de ADN en el evento de transformación. La columna (G) muestra el número de plantas R_0 que se esperaba que albergaran un solo evento de transformación y que produjeron suficiente semilla para el bioensayo de la cámara de crecimiento de múltiples plantas. La columna (H) muestra los resultados de los estudios de la cámara de crecimiento de la planta diseñados para evaluar la actividad del WCR. "++++++" indica que la RDR promedio fue menor que 0,5 RDR. "++" indica que la RDR promedio fue menor que 2,0 RDR, lo que era comparable a los controles negativos en los estudios de eficacia en la cámara de crecimiento.

† el mismo 27 unidades que en la construcción de ADN n.º 474 pero incluido en un IR neutro de 150 unidades. Para evaluar la actividad del WCRC en plantas cultivadas en cámaras de crecimiento, Se cultivaron de 6 a 8 plantas por cada 10-20 eventos por construcción en macetas de turba. Las plantas se analizaron para detectar la presencia del inserto de ADN y la expresión del transgén o los transgenes en los tejidos de las hojas y de las raíces. Las plantas que se confirmó que tenían expresión del transgén se trasplantaron luego a macetas más grandes infestadas con huevos del WCR. Las líneas de maíz no transgénicas LH59 y LH244 se incluyeron como controles negativos. Las plantas que contenían el evento MON 88017 (que expresa Cry3Bb) se incluyeron como controles positivos. El daño a la raíz de las plantas de maíz en crecimiento se evaluó después de 4 semanas. Las clasificaciones del daño a la raíz (RDR) se evaluaron en una escala de tres puntos, siendo 0 RDR sin daño en la raíz y 3 RDR con el daño máximo de la raíz.

Los resultados del estudio guiaron el diseño de las construcciones de ADN del Grupo 5 para que contuvieran (a) un casete de expresión para un Dv_Snf7o IR de 240 unidades y (b) un casete de expresión para una proteína Cry3Bb (Figura 2). El Dv_Snf7o IR de 240 unidades se seleccionó porque (a) las plantas que expresan el Dv_Snf7o IR de 240 unidades idéntico tuvieron éxito repetidamente en la inhibición de la actividad del CRW (Grupos 2-4), (b) los segmentos mayores de 100 nt de longitud disminuyen la probabilidad de desarrollo de resistencia al WCR y (c) los segmentos mayores de 240 nt harían más difícil la transferencia intacta al genoma del maíz. Las construcciones de ADN se diseñaron para probar diferentes elementos genéticos reguladores en cada casete de expresión y diferentes configuraciones de cada casete de expresión en la construcción de ADN. Las construcciones de ADN del Grupo 5 también incluyeron construcciones con y sin casetes de expresión de tolerancia al glifosato; y una construcción de control del grupo 3 que expresaba solo el IR Dv_Snf7o de 240 unidades. Cada construcción de ADN se diseñó, las células vegetales se transformaron, las plantas se obtuvieron y las endogamias se evaluaron en bioensayos de eficacia de la cámara de crecimiento (Tabla 3) (C) a (H)).

35

10

15

20

25

	(A) N.º de construcción de ADN	(B) Composición de la construcción de ADN	(C) Número de embriones transformados	(D) Número de embriones con brotes	(E) Número de plantas R₀al suelo	(F) N.º de plantas Ro que se espera que alberguen un solo evento	(G) Número de eventos R₀ avanzados a la cámara de crecimiento	(H) Rendimiento de la planta de descendencia endogámica e híbrida
5	416		820	72	72	42	27	++++++
(2)	417		521	212	94	71	44	++++++
(3)	418		588	79	65	44	28	++++++
(4)	419	Dv_Snf7o IR +	651	106	92	89	43	+++++
(2)	423	Cry3Bb + EPSPS	754	93	84	99	41	++++
(9)	402		786	84	84	58	43	+ + + +
(7)	403		714	199	84	46	40	+++++
(8)	404		740	50	20	34	29	++++
(6)	405	Dv_Snf7o IR +	21663	1586	1586	98	28	++++
(10)	406	Cry3Bb	21965	1539	1539	170	112	++++
(11)	890	IR Dv_Snf7o	3996	929	394	235	136	++++
La col muesti	umna (A) enum€ ra la combinació	era las construcciones in de transgén. La colu	de ADN probadas el muna (C) muestra el n	n la etapa 5 (véa número de embric	se también la ones de maíz q	La columna (A) enumera las construcciones de ADN probadas en la etapa 5 (véase también la figura 2 para el desglose de los elementos genéticos). La columna (B) muestra el número de embriones muestra la conumna (D) muestra el número de embriones	de los elementos gen columna (D) muestra e	éticos). La columna (B)
de ma (F) mu	iz que desarrolla testra el número	de maíz que desarrollaron brotes. La column (F) muestra el número de plantas R₀ que se €	ıa (E) muestra el núm espera que alberguen	iero de plantas de 1 un solo evento d	: maíz regenera e transformaci	de maíz que desarrollaron brotes. La columna (E) muestra el número de plantas de maíz regeneradas (designadas como generación Ro) viables en el suelo. La columna (F) muestra el número de plantas Ro que se espera que alberguen un solo evento de transformación. La columna (G) muestra el número de plantas Ro que se espera que	generación R₀) viables tra el número de planta	en el suelo. La columna 18 Ro que se espera que
alberg plantas	uen un solo ever s infestadas con	alberguen un solo evento de transformación y que produjeron suficiente se plantas infestadas con WCR (véase el siquiente párrafo para más detalles)	y que produjeron sufi nte párrafo para más	ciente semilla par detalles).	a posteriores p	alberguen un solo evento de transformación y que produjeron suficiente semilla para posteriores pruebas en varias plantas. La columna (H) resume el rendimiento de las plantas infestadas con WCR (véase el siquiente párrafo para más detalles).	s. La columna (H) resun	ne el rendimiento de las
		-		,				

TABLA 3. Números de producción vegetal a partir de la transformación de construcciones de ADN del Grupo 5.

Tal como se muestra en la Tabla 3, columna (H), "+++++" describe construcciones de ADN que, en promedio, proporcionaron la expresión génica sostenida más alta a las plantas transgénicas durante su desarrollo, la mayor parte de la inhibición del WCR durante el desarrollo y la mayor parte de la inhibición del WCR en generaciones autofertilizadas e híbridas cruzadas. "++++" describe construcciones de ADN que, en promedio, proporcionaron inhibición del WCR a las plantas transgénicas pero menor expresión génica en comparación con las plantas "++++". "+++" describe construcciones de ADN que, en promedio, proporcionaron una inhibición del WCR más baja a las plantas transgénicas en comparación con las plantas "+++++". Por lo tanto, la construcción de ADN n.º 417 se avanzó para su posterior análisis. Esta construcción tiene dieciséis elementos genéticos organizados en tres casetes de expresión desde el borde izquierdo (LB) hasta el borde derecho (RB). La construcción se muestra en la Figura 2 y la secuencia dada en SEQ ID NO: 26. Los componentes del vector son los siguientes:

- [1 LB: Corresponde a la complementaria inversa de las posiciones 1 a 442 de la SEQ ID NO: 26. Este elemento representa la secuencia del borde izquierdo de octopina de *Agrobacterium tumefaciens*.
- [2] Ps.RbcS2-E9 3' UTR: Corresponde a la complementaria inversa de las posiciones 486 a 1118 de la SEQ ID NO: 26. Representa la región 3' no traducida (UTR) del transcrito del gen de la subunidad pequeña de la ribulosa 1,5-bisfosfato carboxilasa E9 (rbcS-E9) de *Pisum sativum* (guisante).
- [3] Gen de repetición invertida Dv_Snf7o de 240 unidades: Corresponde a la complementaria inversa de las posiciones 1148 a 1777 de la SEQ ID NO: 26. Este gen transcribe ARN que contiene dos segmentos de ribonucleótidos de 240 unidades que se alinean de forma idéntica entre sí en forma de complementaria inversa, separados por un segmento neutro de 150 ribonucleótidos y que forman un ARN repetido invertido (IR). La secuencia del segmento de 240 pb se alinea con un gen ortólogo del WCR a la levadura Snf7.
- [4] Intrón DnaK de maíz: Corresponde a la complementaria inversa de las posiciones 1814 a 2617 de la SEQ ID NO: 26. Este elemento consiste en 10 nucleótidos del exón 1, intrón 1 y 11 nucleótidos del exón 2 del gen 70 de la proteína de choque térmico de *Zea mays* (maíz). Los 11 nucleótidos del exón 2 se modificaron para eliminar un resto iniciador de metionina.
- 25 [5] Líder 35 S del CaMV: Corresponde a la complementaria inversa de las posiciones 2618-2626 de la SEQ ID NO: 26. Representa la región 5' no traducida (UTR) del transcrito de ARN 35S del virus del mosaico de la coliflor (CaMV) que comienza en la posición +1 del inicio transcripcional del ARNm del gen.
 - [6] Promotor 35S del eCaMV: Corresponde a la complementaria inversa de las posiciones 2627-3238 de la SEQ ID NO: 26. Representa el promotor del ARN 35S del virus del mosaico de la coliflor (CaMV) que contiene una duplicación de la región de -90 a -350.
 - [7] Promotor PIIG de maíz: Corresponde a las posiciones 3265 4213 de la SEQ ID NO: 26. Este elemento genético representa el promotor del gen de la proteína inducida por impedancia física (PIIG) de *Zea mays*.
 - [8] Líder Lhcb1 de trigo: Corresponde a las posiciones 4220 4280 de la SEQ ID NO: 26. Este elemento genético representa la región 5' no traducida (UTR) del gen del complejo de captación de luz b1 (Lhcb1) de *Triticum aestivum* (trigo).
 - [9] Intrón Act1 de arroz: Corresponde a las posiciones 4297 4776 de la SEQ ID NO: 26. Consiste en una secuencia contigua de 12 nucleótidos del exón 1, intrón 1 y 7 nucleótidos del exón 2 del gen de Actina 1 (Act1) de *Oryza sativa* (arroz).
- [10] ORF de Cry3Bb: Corresponde a las posiciones 4786 6747 de la SEQ ID NO: 26. Representa la región de codificación de una proteína Cry3B pesticida de origen no natural diseñada para exhibir modificaciones H231R, S311L, N313T, E317K y Q349R en comparación con el gen codificador de la proteína Bt Cry3Bb nativa. La secuencia de nucleótidos se alinea con la secuencia del gen cry3Bb contenida en el evento MON 88017.
 - [11] Hsp17 3' UTR de trigo: Corresponde a las posiciones 6767 6976 de la SEQ ID NO: 26. Este elemento genético representa la 3' UTR del gen de la proteína 17 de choque térmico (HSP17) de *Triticum aestivum* (trigo).
- 45 [12] TubA de ratón (promotor, líder, intrón): Corresponde a las posiciones 7025 9205 de la SEQ ID NO: 26. Representa el promotor contiguo, líder, intrón y 4 nucleótidos del exón 2 del gen de la alfa tubulina (TubA-3) de Oryza sativa (arroz).
 - [13] CTP: Corresponde a las posiciones 9210 9437 de la SEQ ID NO: 26. Representa la región de codificación diseñada que codifica el CTP N-terminal de la 5-enolpiruvilshikimato-3-fosfato sintasa (EPSPS) de *A. thaliana*. Este elemento difiere del gen nativo (N.º de acceso de GenBank X06613) en el último codón GAG (ácido glutámico) por modificación a TGC (cisteína).
 - [14] CP4 EPSPS: Corresponde a las posiciones 9438 10805 de la SEQ ID NO: 26. Representa la región de codificación diseñada del EPSPS de CP4 de *Agrobacterium*. Difiere del gen nativo de *Agrobacterium* en el segundo codón mediante modificación de la codificación de serina a CTT (leucina) y cuatro sustituciones silenciosas.
- [15] TubA 3' UTR de arroz: Corresponde a las posiciones 10813 11394 de la SEQ ID NO: 26. Representa la región 3' no traducida (UTR) de un gen de la alfa tubulina (TubA-3) de *Oryza sativa* (arroz).
 - [16] RB: Corresponde a las posiciones 11413 11743 de la SEQ ID NO: 26. Representa la secuencia del borde derecho de nopalina de *A. tumefaciens*.

Ejemplo 2

5

10

15

20

30

35

50

60 Este ejemplo describe la transformación y selección del evento MON 87411 entre una pluralidad de eventos transgénicos.

Los embriones se cortaron de los granos de la línea de maíz LH244 y se inoculó la construcción de ADN n.º 417 que

aloja *Agrobacterium* recombinante. Los embriones cocultivados se transfirieron a medios de selección y crecimiento para generar tejido de callos transgénico con brotes en desarrollo. Los brotes en desarrollo se transfirieron al medio de enraizamiento para el desarrollo en plántulas. Las plántulas se regeneraron en plantas R_0 completas en el suelo. Las plantas R_0 recuperadas de esta manera se seleccionaron para obtener una copia única del ADN de construcción introducido. Tal como se muestra en la Tabla 3, supuestos eventos de copia única se proporcionaron en 71 transformantes de R_0 únicos. Cada transformante de R_0 se colocó en condiciones de vivero para producir la semilla de la descendencia R_1 . Se avanzaron cuarenta y cuatro eventos. Al menos 8 semillas R_1 producidas por cada una de las 44 plantas R_0 se plantaron en el suelo y las plantas R_1 se cultivaron para producir semillas R_2 . Se seleccionó una sola planta R_1 por evento para continuar cada línea que contenía cada evento por separado y la semilla de la única planta R_1 se acumuló para pruebas posteriores mediante (a) autofertilización ($R_{3,4,\dots,N}$), y (b) fertilización cruzada con otras líneas de maíz, por ejemplo, línea de maíz 93IDI3. Las plantas que representan eventos de la transformación de la construcción de ADN $n.^0$ 890 (fila 11 de la Tabla 3) también se regeneraron para servir como controles comparativos para ensayos de campo posteriores que se describen a continuación y en este ejemplo.

5

10

15

20

25

30

De los 44 eventos, se eligieron 25 eventos para proseguir basándose en un fenotipo que incluye la expresión de Cry3Bb. Las plantas R₁ que representan estos 25 eventos se evaluaron adicionalmente para determinar la inhibición del WCR en los procedimientos de eficacia de la cámara de crecimiento descritos en el Ejemplo 1 y para el número de copias de múltiples elementos genéticos del inserto de ADN. Se usaron posteriormente diecisiete eventos de los 25 eventos, ya que cuatro eventos exhibieron más de una copia del elemento genético Ps.RbcS2-E9 3' UTR y las plantas R₁ que representan otros 4 eventos exhibieron clasificaciones del daño a la raíz superiores a 0,8 RDR.

Las plantas de descendencia que comprendían los 17 eventos restantes, es decir, "A", MON 87411 y "C" a "Q", se analizaron adicionalmente en paralelo para determinar el rendimiento molecular y en el campo (véanse las Tablas 4 y 5).

TABLA 4. Análisis molecular de 17 eventos de maíz transgénico que albergan inserto de ADN del vector de transformación de ADN n.º 417.

Evento	(A) Esqueleto ausente	(B) Inserto único y número de copia única	(C) Inserto intacto	(D) Expresión de la proteína Cry3Bb por encima del umbral	(E) Expresión de IR Dv_Snf7 o ARNbc por encima del umbral	(F) Sitio de inserción neutro	(G) Tamaño esperado del transcrito
Α	+	+	+	+	+	+	+
MON 87411	+	+	+	+	+	+	+
С	+	+	+	+	+	+	+
D	+	+	-	+	+	+	+
Е	+	+	+	+	+	-	ND
F	+	+	+	+	+	-	ND
G	+	+	+	+	+	-	ND
Н	+	+	ND	ND	ND	ND	ND
I	+	+	ND	ND	ND	ND	ND
J	+	+	ND	ND	ND	ND	ND
K	+	-	ND	ND	ND	ND	ND
L	-	-	ND	ND	ND	ND	ND
М	-	+	ND	ND	ND	ND	ND
N	-	-	ND	ND	ND	ND	ND
0	-	+	ND	ND	ND	ND	ND
Р	-	-	ND	ND	ND	ND	ND
Q	-	-	ND 	ND	ND	ND	ND

[&]quot;-" indica que el evento no cumplió los criterios moleculares del análisis molecular correspondiente. "+" indica que el evento cumplió los criterios moleculares del análisis molecular correspondiente. "ND" indica que los datos no estaban disponibles.

Los eventos se seleccionaron para detectar segmentos de ADN del esqueleto del vector de transformación de *Agrobacterium* y para un número de copia único de todas las porciones del inserto de ADN deseado (Tabla 4, Columnas (A) y (B)). Siete eventos (MON 87411, A, C, D, E, F y G) se analizaron para determinar la secuencia del ADN insertado que es idéntica al vector de transformación n.º 417, con la excepción de las variaciones en el sitio de la muesca en los bordes izquierdo y derecho de *Agrobacterium* que se producen durante la inserción mediada por Agro, el evento D falló este análisis de secuencia (Tabla 4, Columna (C)). Estos 7 eventos también se evaluaron para determinar la expresión sostenida de la planta de la proteína Cry3Bb y el ARN de IR Dv_Snf7o durante el desarrollo de la planta y varias generaciones, y los 7 eventos cumplieron los criterios de aprobación para la expresión sostenida de la planta (Tabla 4, Columna (D)). En cada uno de los 7 eventos se analizaron las características del sitio de inserción genómica (es decir, el sitio de inserción neutro), tal como el desplazamiento de ADN, las duplicaciones y la

repetitividad, la proximidad a un gen endógeno, la interrupción de un gen endógeno y la proximidad a QTL y los rasgos biotecnológicos, los eventos E, F y G fallaron este análisis (Tabla 4, Columna (F)). Se realizaron trasferencias Northern en tejidos vegetales que contenían eventos MON 87411, A, C y D para determinar si los tamaños esperados de los dos transcritos de ARN que codifican Cry3Bb, o que producen el ARN de IR Dv_Snf7o estaban presentes en el ARN de los eventos, y todos los eventos evaluados pasaron este criterio (Tabla 4, Columna (G)).

5

10

Estos 17 eventos se evaluaron en ensayos de campo de agronomía, eficacia con insectos y eficacia de tolerancia al glifosato, los resultados se resumen en la Tabla 5. Los encabezados de la columna de la Tabla 5 describen el tipo de ensayo de campo ("Agronomía", "Insecto" o "Glifosato"), se enumeran los controles con los que se compararon / contrastaron los eventos y también se enumera la endogamia genética utilizada para generar el híbrido de eventos. Los ensayos de campo resumidos en las columnas (A) a (C) se plantaron un año natural antes de los ensayos de campo resumidos en las columnas (D) a (H), y dos años antes de los ensayos de campo resumidos en la columna (I).

TABLA 5: Resultados de los ensayos de campo de agronomía, eficacia con los insectos y eficacia del glifosato de los eventos generados con el vector de transformación n.º 417.

(I) Agronomía	(1) Agrandina	LFI244, n.º 890	R5	endogámica	•	,	ш	ND	QN	II	ND	11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
(H) Eficacia	de insectos	MON 88017, n.º 890	R4	endogámica	X MON	~ 0.10 RDR	~ 0,10 RDR	QN	~ 0,20 RDR	~ 0,15 RDR	ND	~ 0,15 RDR	ND	QN	QN	QΝ	ND	ND	ΠN	ND	ND	ND
(G) Eficacia del	glifosato	MON 88017	R4 endogámica X	MON 89034		II	11	QN	11	11	QN	11	QN	QN	QN	QN	QN	QN	QN	QN	ND	QN
(F) Eficacia del	glifosato	MON 88017	R5 endogámica			II	11		11	11		11	QN	Q	QN	QN	QN	QN	QN	QN	ND	QN
(D) Agronomía	(b) rejoineme	LH244, MON 88017	R5 endogámica			II	11	11	+	+	+	+	QN	QN	QN	11	11	+	-	QN	ND	ND
(C) Eficacia de	insectos	LH244, MON 88017, n.º 890	R2 inbredX93IDI3			<0.10 RDR	ND	~ 0,10 RDR	~ 0,10 RDR	QN	QN	QN	~ 0,10 RDR	QN	QN	~ 0,15 RDR	QN	~ 0,20 RDR	ΩN	QN	ND	QN
(B) Agronomía		LH244x93IDI3, n.º 890	R3 endogámica			II	11	11	II	11	11	11	11	II	11	II	11	11	=	11	=	11
(A)	Agronomía	LH244, n.º 890	R3	endogámica	•	II	п	II	11	11	II	11			11		"	11	-	11	-	11
Tipo de ensayo de	campo	Controles utilizados como comparación	Indogámico o híbrido	1	Evento de ensayo	4	MON 87411	O	۵	ш	ட	တ	ヹ	#	+	¥	7	W	Z	0	Д	ø

Los eventos se compararon con los controles en cada ensayo de campo. Los datos para cada ensayo de campo se promediaron mediante parcelas replicadas en múltiples ubicaciones. LH244 es el control para la línea de transformación. El vector de ADN "n.º 890" se usó para producir eventos que expresan solamente el IR Dv_Snf7o de 240 unidades. El evento comercial, MON 88017, que proporciona resistencia a los coleópteros y tolerancia al glifosato para las plantas de maíz se utilizó como control. "R_n endogámica" especifica la descendencia de generación N. Los eventos híbridos evaluados en los ensayos de campo se cultivaron a partir de semillas cosechadas de un cruce con un progenitor del evento bajo evaluación (MON 87411, o A a Q), y un progenitor como se indica en la Tabla 5 (Columna C, G o H). Específicamente, en la Tabla 5, la columna R2 endogámica X 93IDI3 específica que R2 endogámica del evento bajo evaluación se cruzó con la línea endogámica de maíz 93IDI3 para hacer la semilla híbrida. Análogamente, en la Tabla 5, columnas G y H, R4 endogámica X MON 89034 especifica que una descendencia R4 endogámica Del evento bajo evaluación se cruzó con una planta que contenía el evento MON 89034 para producir la semilla híbrida. "ND" indica que los datos para este evento de prueba no estaban disponibles. "=" representa la equivalencia de rasgos en comparación con los controles. "-" representa una coincidencia de rasgo en comparación con los controles." representa un aumento en el rendimiento en comparación con los controles. "RDR" es la clasificación del daño a la raíz. "‡" representa que los estudios contemporáneos de invernadero mostraron que el evento aplicable exhibía tipos fenotípicos fuera de tipo en plantas cultivadas en el vivero. "†" representa que los estudios de invernadero contemporáneos mostraron que el evento aplicable no proporcionó eficacia contra el WCR.

5

10

15

20

25

30

35

40

45

50

Los ensayos de campo agronómicos se realizaron en múltiples localizaciones de Norteamérica y Sudamérica, los resultados se promediaron en todas las localizaciones, como se resume en la Tabla 5, columnas A, B, D e I. Para estos ensayos de campo agronómicos, los granos de maíz se plantaron en un diseño de bloques completos aleatorios (RCB) en parcelas triplicadas por evento por ubicación. Cada parcela replicada consistió en 100 granos. El mantenimiento de prueba se diseñó para optimizar la producción de granos y eliminar la presión natural del WCR. Se recopilaron una o más de las siguientes clasificaciones de ensayo de campo agronómico estándar: unidades de grado al 50 % de desprendimiento (GDU), puntuación del agricultor (BR), vigor de las plántulas (SDV), encamado de tallos (STLC), encamado de raíces (RTLC), altura de la mazorca de plantas maduras (EHT), altura de la planta de plantas maduras (PHT), humedad del grano (MST) y peso de prueba del grano (TWT), fueras de tipo fenotípico y rendimiento de grano. Se evaluaron tanto los eventos endogámicos como los híbridos y los resultados se resumen en la Tabla 5, columnas A, B, D e I. Se incluyeron controles apropiados en parcelas triplicadas por control por ubicación. Las clasificaciones se promediaron por parcela en todas las localizaciones. Los datos se sometieron a un análisis de la varianza y medias separadas en la diferencia menos significativa al nivel de probabilidad del 5 % (LSD (0.05)).

En Los resultados delos ensayos de campo de la eficacia en insectos que incluyeron los análisis del daño por el WCR promediados en múltiples localizaciones de Norteamérica se resumen en la Tabla 5, columnas C y H. Para estos ensayos de campo de eficacia, los granos de maíz se plantaron en un diseño RCB en parcelas triplicadas por evento por ubicación; cada parcela replicada consistió en 25 granos. Los eventos de prueba se presentaron en plantas híbridas. Se incluyeron controles apropiados en parcelas triplicadas por control por ubicación. Cuando las parcelas de maíz alcanzaron su etapa de crecimiento V2, 5 plantas por parcela se infestaron con huevos de WCR a razón de 3.330 huevos por planta. Durante la etapa de crecimiento V10, las raíces de las 5 plantas infestadas por parcela se desenterraron, se lavaron y se evaluaron para determinar el daño a la alimentación en base a una clasificación del daño a la raíz (RDR) de 0 a 3, siendo 0 RDR sin daño en la raíz y 3 RDR con el daño máximo de la raíz. Las RDR para los eventos de prueba y las plantas de control se promediaron por planta en todas las parcelas en todas las ubicaciones. Las plantas de control negativo de cada ensayo de campo de eficacia de insectos exhibieron RDR promedio respectivo de 1,7 y 1,5 RDR. Las comprobaciones comerciales de cada ensayo de campo de eficacia de insectos exhibieron RDR promedio respectivas de 0,25 y 0,20 RDR. Las plantas que contienen eventos de la construcción de ADN n.º 890 exhibieron un rango de RDR de aproximadamente 0,35 a 0,50 RDR. Los eventos de la construcción de ADN n.º417 proporcionaron consistentemente a las plantas clasificaciones promedio de RDR menores que el umbral de daño económico de 0,25 RDR.

Los resultados de los ensayos de campo de eficacia que evalúan la tolerancia vegetativa a los tratamientos con herbicida glifosato se realizaron en múltiples ubicaciones en Norteamérica y se resumen en la Tabla 5, columnas F y G. Para estos ensayos de campo de eficacia, el régimen de aplicación de glifosato utilizado para el ensayo específico se presenta en la Tabla 6 (correspondiente a la Tabla 5, columna F) y la Tabla 7 (correspondiente a la Tabla 5, columna G).

TABLA 6. Tratamientos de ensavo de campo del herbicida.

Tratamiento	Tasa (lbs ae / A)	Calendario (por etapa de planta)		
Glifosato	1,5	V2		
Glifosato	1,5, 0,75, 0,75	V2, V8, V10		
Glifosato	1,5, 1,125, 1,125	V2, V8, V10		
"lbs ae" indica el	eguivalente en libras	de ácido. "A" indica acre.		

TABLA 7. Tratamientos de ensavo de campo del herbicida.

Tratamiento	Tasa (lbs ae / A)	Calendario (por etapa de planta)				
Sin tratar	0.0	n/d				
Glifosato	1,5- 1,5	V4. V8				
	<u>' ' ' </u>	, -				
Glifosato	3,0- 3,0	V4, V8				
Glifosato	4,5- 4,5	V4, V8				
"lbs ae" indica el	eguivalente en libras	s de ácido. "A" indica acre.				

Cada parcela de 100 plantas se clasificó según el daño al cultivo 7-10 días después del último rociado de cada tratamiento. Las clasificaciones de los daños en los cultivos incluyeron clorosis, malformación y menor altura promedia de la planta, todo lo cual indica menor tolerancia al herbicida glifosato. Cada parcela también se clasificó según la PHT, la EHT, los días hasta un 50 % de desprendimiento de polen (D50P), días hasta el 50% de emergencia de seda (D50S), el TWT, el MST y el rendimiento. Los eventos se proporcionaron como plantas endogámicas y plantas híbridas y se compararon con el evento MON 88017. Los eventos "A", MON 87411, "D", "E" y "G" fueron equivalentes al evento MON 88017 en relación con el daño al cultivo, el PHT, la EHT, D50P, D50S, el TWT, la MST y las clasificaciones de rendimiento. Según estos resultados, junto con la importante ventaja de RDR del evento MON 87411 en comparación con otros eventos y con el evento comercial MON88017, se seleccionó el evento MON 87411.

Ejemplo 3

5

10

15

20

25

35

40

45

50

Este ejemplo describe la caracterización molecular del evento MON 87411. Se tomó una muestra de tejido foliar de una planta MON 87411 (R_0). La secuenciación del ADN genómico correspondiente al sitio de inserción transgénico en caso de que se obtuviera MON 87411 y no se observaron diferencias en comparación con la secuencia en el vector de transformación correspondiente al vector $n.^{\circ}$ 417.

Las secuencias flanqueantes se mapearon a secuencias de referencia del genoma del maíz, incluyendo el genoma de referencia B73 de maíz (Ref B73). Se determinó que el evento MON 87411 estaba ubicado físicamente en el cromosoma 9. La secuencia flanqueante que termina en la unión del ADN del flanco izquierdo / inserto corresponde a la posición ZM_B73_CR09: 39261797. La secuencia flanqueante que termina en la unión de ADN del flanco derecho / inserto corresponde a la posición ZM_B73_CR09: 39261915. Las secuencias flanqueantes para el evento MON 87411 se analizaron para detectar duplicaciones del genoma, repeticiones y genes endógenos. No se detectó ninguna.

El análisis de secuencia del ADN insertado en el evento MON 87411 confirmó que solo 263 nucleótidos del borde izquierdo de *Agrobacterium* (establecido arbitrariamente como el extremo 5' del inserto), y solo 15 nucleótidos del borde derecho *Agrobacterium*(establecido arbitrariamente como el extremo 3' del inserto) se retuvo en el ADN insertado en el sitio de inserción genómica del evento MON 87411.

Se realizó un análisis comparativo de la secuencia genómica que flanquea al ADN insertado del evento MON 87411 y la región genómica correspondiente del sitio de inserción en el alelo de tipo salvaje de LH244. Este análisis determinó que un segmento de 118 pares de bases de ADN genómico LH244 fue desplazado por el ADN insertado del vector de transformación n.º 417 en el procedimiento de generación del evento MON 87411.

30 Ejemplo 4

Este ejemplo describe procedimientos que son útiles en la identificación de la presencia de ADN derivado del evento MO 87411 en una muestra de maíz. Se diseñaron un par de cebadores y una sonda con el fin de identificar la unión única formada entre el ADN genómico y el extremo 5' asignado arbitrariamente del ADN insertado del evento MON 87411 (es decir, la unión izquierda) y abarcado en la SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7 o SEQ ID NO: 21. La secuencia del cebador directo oligonucleotídico SQ27011 (SEQ ID NO: 18) es idéntica a la secuencia nucleotídica correspondiente a las posiciones 462 a 490 de SEQ ID NO: 1 y SEQ ID NO: 2, las posiciones 107 a 135 de la SEQ ID NO: 7, las posiciones 72 a 100 de la SEQ ID NO: 6, las posiciones 12 a 40 de la SEQ ID NO: 5 y las posiciones 1 a 29 de la SEQ ID NO: 21. La secuencia del cebador inverso oligonucleotídico SQ9085 (SEQ ID NO: 20) es idéntica a la complementaria inversa de la secuencia nucleotídica correspondiente a las posiciones 516 a 541 de SEQ ID NO: 1 y SEQ ID NO: 2, las posiciones 161 a 186 de la SEQ ID NO: 7, las posiciones 126 a 151 de la SEQ ID NO: 6, las posiciones 66 a 91 de la SEQ ID NO: 5, las posiciones 16 a 41 de SEQ ID NO: 4 y las posiciones 55 a 80 de la SEQ ID NO: 21. La secuencia de la sonda oligonucleotídica PB3552 (SEQ ID NO: 19) es idéntica a la complementaria inversa de la secuencia nucleotídica correspondiente a las posiciones 502 a 515 de SEQ ID NO: 1 y SEQ ID NO: 2, las posiciones 147 a 160 de SEQ ID NO: 7, las posiciones 112 a 125 de la SEQ ID NO: 6, las posiciones 52 a 65 de la SEQ ID NO: 5, las posiciones 2 a 15 de la SEQ ID NO: 4 y las posiciones 41 a 54 de la SEQ ID NO: 21. Los cebadores para la PCR SQ27011 (SEQ ID NO: 18) and SQ9085 (SEQ ID NO: 20) amplifican un amplicón de 79 nucleótidos del ADN genómico/inserto único en la unión izquierda del evento MON 87411. Este mismo par de cebadores con la sonda PB3552 (SEQ ID NO: 19), que se ha marcado con fluorescencia (es decir, un marcador fluorescente 6FAM™), se puede usar en el ensayo de PCR de punto final TaqMan® para identificar la presencia de ADN derivado del evento MON 87411 en una muestra.

Se diseñaron un par de cebadores y una sonda con el fin de identificar la unión única formada entre el ADN genómico y el extremo 3' asignado arbitrariamente del ADN insertado del evento MON 87411 (es decir, la unión izquierda) y

abarcado en la SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 8, SEQ ID NO: 9. SEQ ID NO: 10 o SEQ ID NO: 25. La secuencia del cebador directo oligonucleotídico SQ27066 (SEQ ID NO: 22) es idéntica a la secuencia nucleotídica correspondiente a las posiciones 11710 a 11728 de la SEQ ID NO: 1, las posiciones 11210 a 11228 de la SEQ ID NO: 4, las posiciones 45 a 63 de la SEQ ID NO: 8, la SEQ ID NO: 9 y la SEQ ID NO: 10, y las posiciones 1 a 19 de la SEQ ID NO: 25. La secuencia del cebador inverso oligonucleotídico SQ26977 (SEQ ID NO: 24) es idéntica a la complementaria inversa de la secuencia nucleotídica correspondiente a las posiciones 11756 a 11784 de SEQ ID NO: 1, las posiciones 91 a 117 de la SEQ ID NO: 8, las posiciones 91 a 119 de la SEQ ID NO: 9 y la SEQ ID NO: 10, las posiciones 23 a 51 de la SEQ ID NO: 3 y las posiciones 47 a 75 de la SEQ ID NO: 25. La secuencia de la sonda oligonucleotídica PB11300 (SEQ ID NO: 23) es idéntica a la secuencia nucleotídica correspondiente a las posiciones 11731 a 11755 de la SEQ ID NO: 1, las posiciones 11231 a 11248 de la SEQ ID NO: 4, las posiciones 66 a 90 de la SEQ ID NO: 8, SEQ ID NO: 9 y SEQ ID NO: 10, las posiciones 1 a 22 de la SEQ ID NO: 3 y las posiciones 22 a 46 de la SEQ ID NO: 25. Los cebadores para la PCR SQ27066 (SEQ ID NO: 22) y SQ26977 (SEQ ID NO: 24) amplifican un amplicón de 75 nucleótidos del ADN genómico/inserto único en la unión izquierda del evento MON 87411. Este mismo par de cebadores con la sonda PB11300 (SEQ ID NO: 23), que se ha marcado con fluorescencia (es decir, un marcador fluorescente 6FAM™), se puede usar en el ensayo de PCR de punto final TagMan® para identificar la presencia de ADN derivado del evento MON 87411 en una muestra.

Además de SQ27011, SQ9085, PB3552, SQ27066, SQ26977 y PB11300, debería ser evidente para las personas expertas en la técnica que pueden diseñarse otros cebadores y / o sondas para amplificar y / o hibridar con las secuencias dentro de la SEQ ID NO: 1 que son únicas y útiles para detectar la presencia de ADN derivado del evento MON 87411 en una muestra.

Según análisis moleculares y de secuencia, se desarrollaron ensayos de PCR para los ensayos de identificación de eventos para el evento MON 87411. Siguiendo las prácticas estándar de laboratorio de biología molecular, los parámetros de un ensayo de PCR estándar o un ensayo de PCR TaqMan® se optimizaron con cada conjunto de pares de cebadores y sondas (es decir, sondas marcadas con un marcador fluorescente, tal como 6FAM™) utilizadas para detectar la presencia de ADN derivado del evento MON 87411 en una muestra (SQ27011, SQ9085 y/o PB3552, o SQ27066, SQ26977 y/o PB11300). Generalmente, los parámetros que se optimizaron incluyeron la concentración del cebador y de la sonda, la cantidad de molde de ADN y los parámetros de ciclado de amplificación por PCR. Un control para la reacción de PCR incluyó cebadores (SQ20221 (SEQ ID NO: 38) y SQ20222 (SEQ ID NO: 40)) y / o sonda (PB10065 (SEQ ID NO: 39)) (sonda marcada con un marcador fluorescente, tal como VIC™), que son específicos de un control interno, un gen de copia única en el genoma del maíz. Un experto en la materia sabrá cómo diseñar otros cebadores de PCR específicos para un solo gen de copia en el genoma del maíz que se puede usar para amplificar un amplicón para usarlo como sonda de control interno o como control interno en un ensayo de PCR (por ejemplo, TaqMan®). El ADN se extrajo del tejido foliar para cada uno de los siguientes: [1] la muestra de hoja que se va a analizar; [2] el control negativo (ADN de maíz no transgénico); [3] el control negativo, agua, (no molde); y [4] el ADN de MON 87411 control positivo. La detección de los amplicones de un ensayo de PCR estándar sería la visualización por electroforesis en gel de ADN, y para un ensayo de PCR TaqMan® por detección de fluorescencia.

Un ensayo de cigosidad es útil para determinar si una planta que comprende un evento es homocigota para el ADN del evento; que comprende el ADN exógeno en la misma ubicación en cada cromosoma de un par cromosómico; o heterocigoto para un evento de ADN, que comprende el ADN exógeno en solo un cromosoma de un par cromosómico; o es nula para el ADN del evento, que es de tipo salvaje. La cigosidad de una planta de maíz que contiene el evento MON 87411 puede determinarse por amplificación térmica (PCR) o por procedimientos TaqMan® de punto final. Por ejemplo, para la amplificación por PCR, el par de cebadores SQ27011 (SEQ ID NO: 18) y SQ26977 (SEQ ID NO: 22) se hibridan dentro del ADN genómico que flanquea el inserto del evento MON 87411. Este par de cebadores generará un amplicón que tiene una longitud de 11323 nucleótidos cuando el ADN derivado del evento MON 87411 está presente en la muestra. Este mismo par de cebadores generará un amplicón que solo tiene aproximadamente 150 nucleótidos de largo cuando el ADN de maíz en la muestra no se deriva del evento MON 87411. En la electroforesis en gel del ADN, una sola banda de 11323 pb es indicativa de que el ADN en la muestra es de un evento homocigoto MON 87411, una sola banda de aproximadamente 150 pb es indicativa de que el ADN en la muestra no es de un evento MON 87411, y la presencia de una banda de 11323 pb y una banda de aproximadamente 150 pb es indicativo de que el ADN en la muestra es de una planta de maíz heterocigota para el evento MON 87411.

Se puede desarrollar un ensayo TaqMan® para determinar la cigosidad de una planta de maíz que contiene el evento MON 87411. Para este ensayo, se diseñarían tres o cuatro cebadores y dos sondas donde [1] un primer par de cebadores y una primera sonda son específicos para detectar la presencia del ADN de evento MON 87411 en una muestra y [2] un segundo par de cebadores, diferente del primer par de cebadores, y una segunda sonda, diferente de la primera sonda, son específicos para detectar la presencia de ADN de maíz de tipo salvaje (es decir, muestra que no contiene el evento MON 87411). En un ensayo TaqMan® o similar, una señal fluorescente solo de la primera sonda es indicativa y diagnóstica de una planta homocigota para el evento MON 87411; una señal fluorescente tanto de la primera sonda como de la segunda sonda es indicativa y diagnóstica de una planta heterocigota para el evento MON 87411; y una señal fluorescente solo de la segunda sonda es indicativa y diagnóstica de una planta que es homocigota para el alelo de tipo salvaje (es decir, es nula para el evento MON 87411).

Ejemplo 5

10

15

20

25

30

35

40

45

50

55

Este ejemplo describe la protección superior de la planta que comprende el evento MON 87411 frente al daño del gusano de la raíz del maíz en comparación con los productos comerciales actuales (MON 88017 y DAS-59122-7) y las plantas de control negativo. Se realizaron ensayos de campo de eficacia comparando 135 plantas de cada evento MON 87411, MON 88017, DAS-59122-7 y los controles negativos. Se recogieron las clasificaciones de daño de la raíz (RDR) y el porcentaje de plantas con una RDR menor que el nivel de daño económico (0,25 RDR) se muestra en la Tabla 8.

La Tabla 8 muestra que solo aproximadamente el 4 % de las plantas que contienen el evento MON 87411 exhibieron RDR mayores que el umbral económico de 0,25 RDR. En cambio, el 22 % de las plantas disponibles comercialmente que contienen MON 88017 exhibieron RDR mayores que el umbral económico de 0,25 RDR. Y, el 20 % de las plantas disponibles comercialmente que contienen DAS-59122-7 exhibieron RDR mayores que el umbral económico de 0,25 RDR. Y, el 96 % de las plantas de control negativo exhibieron RDR mayores que el umbral económico de 0,25 RDR. La conclusión de estos datos es que el evento MON 87411 es claramente superior a la hora de proporcionar protección contra el daño del gusano de la raíz del maíz en comparación con los productos comerciales MON 88071 y DAS-59122-7, y un control negativo.

TABLA 8. Resultados del ensayo de campo de eficacia con el porcentaje aproximado de plantas que exhiben ≤ 0,25 RDR.

Ensayo probado	Porcentaje aproximado de plantas que exhiben ≤ 0,25 RDR
evento MON 87411	96
MON 88017	78
DAS-59122-7	80
Plantas de control negativo	4
El ensayo incluyó 135 plantas para cada evento pro	bado.

Se realizaron ensayos de eficacia en invernadero para evaluar el rendimiento del evento MON 87411 con una presión de infestación extrema del gusano de la raíz de maíz. En este ensayo se evaluaron los siguientes eventos: evento MON 87411, un evento de la transformación con el vector de ADN n.º 890 que expresa solo el ARNbc; MON 88017; DAS-59122-7; y el control negativo. Para estos ensayos de eficacia a alta presión, las plantas de maíz evaluadas se cultivaron en macetas en un invernadero. La presión de infestación extrema se logró mediante la infestación secuencial de cada planta en maceta con aproximadamente 2.000 huevos del WCR por maceta en su etapa de crecimiento V2, y en 4 ocasiones adicionales que ocurren en intervalos de 1 a 1-1 / 2 semanas con aproximadamente 1.000 huevos de WCR por maceta por infestación para un total de aproximadamente 6.000 huevos de WCR añadidos a cada maceta. Las raíces de las plantas se extrajeron, se lavaron y se clasificaron según el RDR en su etapa de crecimiento de TV. Las raíces de las trece plantas de control negativo (N = 13) exhibieron daño máximo a la raíz, o una RDR absoluta de 3 RDR. Estos resultados ilustran que el evento MON 87411 es más superior a otros eventos de maíz disponibles para controlar el gusano de la raíz del maíz (Tabla 9).

TABLA 9. Clasificación de daño de la raíz (RDR) bajo alta presión de infestación del gusano de la raíz del maíz. (N = el número de plantas evaluadas).

		·
Evento	RDR media	Límites de confianza del 95 % inferior y superior
Control negativo (N = 13)	3,0	Absoluto
solo ARNbc (N = 11)	0,36	0,17/0,54
MON 88017 (N = 11)	2,1	1,8/2,4
DAS-59122-7 (N = 16)	0,29	0,17/0,42
MON 87411 (N = 13)	0,06	0,03/0,08

Una medida de la eficacia de los eventos transgénicos del gusano de la raíz del maíz es determinar la aparición de escarabajos adultos desde el suelo en macetas de plantas cultivadas en un invernadero. Para determinar la emergencia del escarabajo adulto del gusano de la raíz del maíz del suelo de plantas con el evento MON 87411 cultivadas en macetas, se germinaron de 10 a 15 plantas en macetas que contenían tierra infestada con huevos del WCR, similar a lo descrito anteriormente. Durante el período de crecimiento, cada planta de maíz se cubrió con una bolsa de malla para contener los escarabajos adultos emergentes.

Se hicieron recuentos de escarabajos adultos sobre el suelo a las 6, 12 y 18 semanas después de la emergencia de la planta y al final del ensayo se evaluaron las raíces para determinar la RDR. Las plantas que contenían el evento MON 87411 se compararon con las plantas de control negativo y otros eventos transgénicos protectores del gusano de la raíz del maíz. Los resultados fueron que se observó que emergieron significativamente menos escarabajos de los suelos, en los que se habían sembrado plantas con el evento MON 87411 en comparación con otros eventos transgénicos protectores del gusano de la raíz del maíz, ilustrando las propiedades superiores del evento MON 87411 para proteger contra el daño del gusano de la raíz del maíz.

Ejemplo 6

5

10

15

20

25

30

35

40

45 Este ejemplo ilustra que la orientación de expresión de dos promotores diferentes en una célula de maíz, cada

expresión conductora de un agente tóxico diferente del gusano de la raíz del maíz, puede resultar en relaciones significativamente mejoradas de eventos transgénicos que exhiben eficacia cuando se proporcionan en la dieta de larvas de gusanos de raíz de maíz.

Las células de maíz se transformaron con uno de los cuatro vectores de transformación de plantas diferentes, pMON120417, pMON120434, pMON120416, o pMON120419, y se obtuvieron eventos transgénicos que se regeneraron en plantas de maíz transgénicas.

5

10

15

20

25

30

35

40

45

50

Con referencia a la figura 4, todos los vectores de transformación de plantas contienen tres casetes de expresión 1,2 y 3, limitados en un extremo por un borde izquierdo de *Agrobacterium* (LB), y en el extremo opuesto por un borde derecho de *Agrobacterium* (RB). Un ARNbc tóxico del gusano de la raíz del maíz se expresa a partir del casete 1 en los cuatro vectores desde un promotor mejorado del virus del mosaico de la coliflor 35S (e35S). Una proteína toxina del gusano de la raíz del maíz, Cry3Bb, en los vectores pMON120417, pMON120434 se expresa desde el casete 2 de un promotor Zm.PIIG. Una proteína toxina del gusano de la raíz del maíz, Cry3Bb, en los vectores pMON120416, pMON 120419 se expresa desde el casete 2 de un promotor Os.Rcc3. En los cuatro vectores, una proteína, que confiere tolerancia a herbicida glifosato, CTP-EPSPS CP4, se expresa desde el casete 3 de un promotor Os.TubA3. En los cuatro vectores, el casete 1 y el casete 3 están en la misma orientación relativa. Con referencia a la figura 4, las flechas de bloque indican la dirección de la expresión del promotor en cada uno de los respectivos casetes.

La orientación relativa del casete 2 en los vectores pMON120417 y pMON120434 se invierte, como lo ilustran las flechas de bloque (Figura 4) que indican la dirección de expresión del promotor. La expresión de la proteína de la toxina del gusano de la raíz de maíz Cry3Bb en pMON120417 desde el casete 2 es divergente de la dirección de expresión del ARNbc tóxico del gusano de la raíz de maíz expresado desde el casete 1. La expresión de la proteína de la toxina del gusano de la raíz de maíz Cry3Bb en pMON120434 desde el casete 2 tiene la misma orientación que la expresión del ARNbc tóxico del gusano de la raíz del maíz del casete 1.

La orientación relativa del casete 2 en los vectores pMON120416 y pMON120419 se invierte, como lo ilustran las flechas de bloque (Figura 4) que indican la dirección de expresión del promotor. La expresión de la proteína de la toxina del gusano de la raíz de maíz Cry3Bb en pMON120416 desde el casete 2 es divergente de la dirección de expresión del ARNbc tóxico del gusano de la raíz de maíz expresado desde el casete 1. La expresión de la proteína de la toxina del gusano de la raíz de maíz Cry3Bb en pMON120419 desde el casete 2 tiene la misma orientación que la expresión del ARNbc tóxico del gusano de la raíz del maíz del casete 1.

Como se ve en la Tabla 10, cuando se proporcionó tejido de plantas de maíz transgénicas en la dieta de especies de Diabrotica de gusanos de raíz de maíz, las plantas generadas por transformación con la construcción pMON120417 o pMON120416 (expresión divergente de los componentes tóxicos del gusano de la raíz del maíz) fueron más eficaces con respecto a la actividad pesticida en comparación con las plantas generadas por transformación con la construcción pMON120434 o pMON120419 (en tándem o con la misma orientación de expresión) (Tabla 10). La relación de eventos eficaces generados a partir de la transformación usando los vectores pMON120417 y pMON120416, en comparación con la proporción de eventos eficaces de los vectores pMON120416 y pMON120419, fue significativamente mayor como lo muestran los datos en la Tabla 10. Por ejemplo, para eventos generados a partir del vector pMON120417 con la expresión dirigida por el promotor divergente de los componentes tóxicos del gusano de la raíz del maíz, 11 de 43 eventos, o casi el 25 % de los eventos exhibieron un control eficaz del gusano de la raíz. En cambio, no se obtuvieron eventos eficaces para los eventos generados a partir del vector pMON120434 con la expresión dirigida por el promotor en la orientación en tándem de los componentes tóxicos del gusano de la raíz del maíz. Para eventos generados a partir del vector pMON120416 con la expresión dirigida por el promotor divergente de los componentes tóxicos del gusano de la raíz del maíz, 17 de 27 eventos, o aproximadamente el 63 % de los eventos exhibieron un control eficaz del gusano de la raíz. En cambio, solo se obtuvieron aproximadamente un 18,5 % de eventos eficaces para eventos generados a partir del vector pMON 120419 con la expresión dirigida por el promotor en la orientación en tándem de los componentes tóxicos del gusano de la raíz del maíz. Estos datos demuestran el número significativamente mejorado de eventos eficaces y mejores proporciones de eventos transgénicos que exhiben eficacia, cuando las plantas de maíz transgénicas se generan a partir de un vector de transformación de plantas con dos promotores diferentes, cada uno impulsando la expresión en direcciones divergentes de dos agentes tóxicos diferentes del gusano de la raíz del maíz, y las plantas de maíz transgénico se proporcionan en la dieta de las larvas de gusano de la raíz del maíz.

Tabla 10. Resultados que muestran el número de eventos R₀ y el número de eventos eficaces obtenidos de cuatro vectores de transformación de plantas.

Construcción	N.º de eventos R₀	N.º de eventos eficaces
pMON120417	43	11
pMON120434	8	0

(continuación)

Construcción	N.º de eventos R0	N.º de eventos eficaces
pMON120416	27	17
pMON120419	43	8

Ejemplo 7

5

Para producir plantas de maíz o partes de plantas que comprenden agronomía mejorada, propiedades insecticidas o herbicidas, las plantas de maíz que contienen el evento MON 87411 pueden cruzarse con plantas de maíz que contienen potencialmente cualquier otro evento de maíz o combinación de los mismos y los fenotipos se evaluaron para determinar las propiedades resultantes de las plantas de descendencia. Como ejemplo no limitante, MON 87411 se puede cruzar con plantas de maíz que incluyen una o más combinaciones, de las siguientes: DAS-59122-7; MIR604; MON 89034; MON 87411; MON 87427; TC1507; 5307; DAS-06275-8; BT176; BT11; y MIR162.

LISTADO DE SECUENCIAS

```
<110> Monsanto Technology LLC
         Burns, Wen C
10
         Chay, Catherine A
          Cloninger, Cheryl L
          Deng, Mingqi
          Flasinski, Stanislaw
15
         Wu, Kunsheng
          <120> EVENTO DE MAÍZ MON 87411
          <130> MONS:308WO
          <140> Desconocido
          <141> 08/05/2013
20
          <150> 61/644.368
          <151> 08/05/2012
          <160> 52
          <170> PatentIn versión 3.5
          <210> 1
          <211> 12248
25
          <212> DNA
          <213> Secuencia artificial
          <220>
          <223> es una secuencia de nucleótidos del evento MON 87411
30
          <220>
          <221> misc feature
          <222> (1)..(500)
          <223> representa el ADN genómico que flanquea el borde izquierdo del TDNA
          <220>
          <221> misc feature
35
          <222> (501)..(11748)
          <223> representa el TDNA
          <220>
          <221> promotor
40
          <222> (2948)..(3559)
          <223> representa la secuencia complementaria nversa del promotor 35S del CaMV mejorado
          <220>
          <221> promotor
          <222> (2948)..(4534)
45
          <223> representa una región promotora divergente que promueve la transcripción bidireccional
          <220>
          <221> promotor
```

```
<222> (3586)..(4534)
<223> representa un promotor PIIG de maíz
<220>
<221> misc_feature
<222> (11749)..(12248)
<223> representa el ADN genómico que flanquea el borde derecho del TDNA
<400> 1
```

ccctagcgtt	gggcccaact	agtcagtctg	ccttccctcc	cagtcgctga	cctccttggt	60
ccacttgtca	gctttcgcgc	tcagatctaa	tctcaactgt	cgatctgtga	tcgggtggcc	120
gagatcaccc	gatgcccgtt	cgtttgcaaa	agttgttaaa	agaccctctg	tttcttagaa	180
aataacctac	attcatgttt	cttgcgatta	ggcccctggt	ttcttgtaga	gaagcccctt	240
gctttatttt	aatcacaaaa	ataaatctaa	tttagtgttt	tgaattctaa	aacttgtgaa	300
tttcatatct	tttgcatatg	aactctaaat	tgggtggttt	aaattgcaaa	atgatcataa	360
tattattctc	tatctgttta	aattataata	tttcactgtc	tacatgtatg	tattttatga	420
ctagacaata	ggttcattta	aagtgatgga	ttatttatta	aaaggaaaat	aaaaaggcaa	480
aacactaatg	aatagttaag	tggcttcatg	tccgggaaat	ctacatggat	cagcaatgag	540
tatgatggtc	aatatggaga	aaaagaaaga	gtaattacca	attttttc	aattcaaaaa	600
tgtagatgtc	cgcagcgtta	ttataaaatg	aaagtacatt	ttgataaaac	gacaaattac	660
gatccgtcgt	atttataggc	gaaagcaata	aacaaattat	tctaattcgg	aaatctttat	720
ttcgacgtgt	ctacattcac	gtccaaatgg	gggcttagat	gagaaacttc	acgatcgatg	780
cggccaccac	tcgaggtcga	ggtaccgttg	tcaatcaatt	ggcaagtcat	aaaatgcatt	840
aaaaaatatt	ttcatactca	actacaaatc	catgagtata	actataatta	taaagcaatg	900
attagaatct	gacaaggatt	ctggaaaatt	acataaagga	aagttcataa	atgtctaaaa	960
cacaagagga	catacttgta	ttcagtaaca	tttgcagctt	ttctaggtct	gaaaatatat	1020
ttgttgccta	gtgaataagc	ataatggtac	aactacaagt	gttttactcc	tcatattaac	1080
ttcggtcatt	agaggccacg	atttgacaca	tttttactca	aaacaaaatg	tttgcatatc	1140
tcttataatt	tcaaattcaa	cacacaacaa	ataagagaaa	aaacaaataa	tattaatttg	1200
agaatgaaca	aaaggaccat	atcattcatt	aactcttctc	catccatttc	catttcacag	1260
ttcgatagcg	aaaaccgaat	aaaaaacaca	gtaaattaca	agcacaacaa	atggtacaag	1320
aaaaacagtt	ttcccaatgc	cataatactc	aaactcagta	ggattctggt	gtgtgcgcaa	1380
tgaaactgat	gcattgaact	tgacgaacgt	tgtcgaaacc	gatgatacga	acgaaagcta	1440
ggcctcagcg	agtaccgctg	gcgatctaat	ccatgatatc	gtgaacatca	tctacattca	1500
aattcttatg	agctttctta	agggcatctg	cagcattttt	catagaatct	aatacagcag	1560
tatttgtgct	agctccttcg	agggcttccc	tctgcatttc	aatagttgta	agggttccat	1620
ctatttgtag	ttgggtcttt	tccaatcgtt	tcttctttt	gagggcttgg	agtgcaactc	1680
ttttattttt	cgacgcattt	ttctttgcgc	tcctgcaggc	ggccgcgtgg	atgaggagtt	1740
aatcggtcgt	gtgagagtag	tgatcgagtg	gatgtcgtcg	agagtgatga	gtgttgatgt	1800

tgttagtgat	atgtggtaga	aggtatcgtg	ataaagcgtt	aacgcgatcg	cagtacttgc	1860
aaagaaaaat	gcgtcgaaaa	ataaaagagt	tgcactccaa	gccctcaaaa	agaagaaacg	1920
attggaaaag	acccaactac	aaatagatgg	aacccttaca	actattgaaa	tgcagaggga	1980
agccctcgaa	ggagctagca	caaatactgc	tgtattagat	tctatgaaaa	atgctgcaga	2040
tgcccttaag	aaagctcata	agaatttgaa	tgtagatgat	gttcacgata	tcatggatgg	2100
tatcgcacag	cgactgctga	gggacgtcga	gctcccgctt	ggtatctgca	ttacaatgaa	2160
atgagcaaag	actatgtgag	taacactggt	caacactagg	gagaaggcat	cgagcaagat	2220
acgtatgtaa	agagaagcaa	tatagtgtca	gttggtagat	actagatacc	atcaggaggt	2280
aaggagagca	acaaaaagga	aactctttat	ttttaaattt	tgttacaaca	aacaagcaga	2340
tcaatgcatc	aaaatactgt	cagtacttat	ttcttcagac	aacaatattt	aaaacaagtg	2400
catctgatct	tgacttatgg	tcacaataaa	ggagcagaga	taaacatcaa	aatttcgtca	2460
tttatattta	ttccttcagg	cgttaacaat	ttaacagcac	acaaacaaaa	acagaatagg	2520
aatatctaat	tttggcaaat	aataagctct	gcagacgaac	aaattattat	agtatcgcct	2580
ataatatgaa	tccctatact	attgacccat	gtagtatgaa	gcctgtgcct	aaattaacag	2640
caaacttctg	aatccaagtg	ccctataaca	ccaacatgtg	cttaaataaa	taccgctaag	2700
caccaaatta	cacatttctc	gtattgctgt	gtaggttcta	tcttcgtttc	gtactaccat	2760
gtccctatat	tttgctgcta	caaaggacgg	caagtaatca	gcacaggcag	aacacgattt	2820
cagagtgtaa	ttctagatcc	agctaaacca	ctctcagcaa	tcaccacaca	agagagcatt	2880
cagagaaacg	tggcagtaac	aaaggcagag	ggcggagtga	gcgcgtaccg	aagacggttc	2940
agcgtgtcct	ctccaaatga	aatgaacttc	cttatataga	ggaagggtct	tgcgaaggat	3000
agtgggattg	tgcgtcatcc	cttacgtcag	tggagatatc	acatcaatcc	acttgctttg	3060
aagacgtggt	tggaacgtct	tctttttcca	cgatgctcct	cgtgggtggg	ggtccatctt	3120
tgggaccact	gtcggcagag	gcatcttcaa	cgatggcctt	tcctttatcg	caatgatggc	3180
atttgtagga	gccaccttcc	ttttccacta	tcttcacaat	aaagtgacag	atagctgggc	3240
aatggaatcc	gaggaggttt	ccggatatta	ccctttgttg	aaaagtctca	atcggaccat	3300
cacatcaatc	cacttgcttt	gaagacgtgg	ttggaacgtc	ttcttttcc	acgatgctcc	3360
tcgtgggtgg	gggtccatct	ttgggaccac	tgtcggcaga	ggcatcttca	acgatggcct	3420
ttcctttatc	gcaatgatgg	catttgtagg	agccaccttc	cttttccact	atcttcacaa	3480
taaagtgaca	gatagctggg	caatggaatc	cgaggaggtt	tccggatatt	accctttgtt	3540
gaaaagtctc	aatcggacct	gcagcctgca	ggctagcggc	gcgccacaaa	tcacaggcca	3600
tgaaccctac	tcatgcttcg	atttgtccaa	cacacactta	ccaaaactca	aatcatgtcc	3660
ttgacagtca	ctcgggactc	ataacatggg	tacgtatcga	ctatgtcaac	tatatgtgtt	3720

ctcatcagat	tatagattgg	cctagtacgt	agtgatattt	ccactagcac	tgtggttatg	3780
gctgtacctg	atagtgatat	cagcaccggg	tcatggctct	actaccaggt	agtgagagtg	3840
acctttatac	tgtcagactg	taactaagga	tttccaatca	ctgttcggat	cctaggctta	3900
gaattaagta	aaactctatc	actataggct	gcagcacact	cggtatatat	tgatgggcca	3960
acagaaattg	tgcgtactat	gcgcgatgta	aaatggacat	aaaccctacc	catatacaat	4020
gcaataactt	ttgtccggtc	tgggccaccg	gttagcagag	gtcctgattt	cggtggtagt	4080
ggtagcttga	tctggtcgtc	gtatcgtaga	gggatatata	aaatcatgtc	acttttgaag	4140
ggagcgctca	cagaaataat	aggtattcgc	gggagccgcc	cccgcagaac	acaaaataag	4200
gcgagcacgc	acacgcatca	gtttcgataa	aataataata	gcgccagctg	atcggaacaa	4260
ttccagctag	cactaatgta	tttctgcatt	gatctgttta	tacaacatgc	tacctcgttg	4320
agtgattttg	acatgatttg	tcaacttgct	ccgatcctat	atctcgatcg	atctccacat	4380
gacgatggtt	gttgtcctgt	atcccatgac	aaccaggcaa	cgctcaaagc	acacatgcgt	4440
tgccgattac	ccgtgcatgc	cgccaagcac	gaaagcacct	ccctccacac	cgtccatcag	4500
ctataaaaac	catgccaagc	accctgtgaa	aagccccggg	aaccatcttc	cacacactca	4560
agccacacta	ttggagaaca	cacagggaca	acacaccata	agatccaagg	gaggcctccg	4620
ccgccgccgg	taaccacccc	gcccctctcc	tctttctttc	tccgtttttt	tttccgtctc	4680
ggtctcgatc	tttggccttg	gtagtttggg	tgggcgagag	gcggcttcgt	gcgcgcccag	4740
atcggtgcgc	gggaggggg	ggatctcgcg	gctggggctc	tcgccggcgt	ggatccggcc	4800
cggatctcgc	ggggaatggg	gctctcggat	gtagatctgc	gatccgccgt	tgttggggga	4860
gatgatgggg	ggtttaaaat	ttccgccgtg	ctaaacaaga	tcaggaagag	gggaaaaggg	4920
cactatggtt	tatatttta	tatatttctg	ctgcttcgtc	aggcttagat	gtgctagatc	4980
tttctttctt	ctttttgtgg	gtagaatttg	aatccctcag	cattgttcat	cggtagtttt	5040
tcttttcatg	atttgtgaca	aatgcagcct	cgtgcggagc	ttttttgtag	gtagaagtga	5100
tcaaccatgg	ccaaccccaa	caatcgctcc	gagcacgaca	cgatcaaggt	cacccccaac	5160
tccgagctcc	agaccaacca	caaccagtac	ccgctggccg	acaaccccaa	ctccaccctg	5220
gaagagctga	actacaagga	gttcctgcgc	atgaccgagg	actcctccac	ggaggtcctg	5280
gacaactcca	ccgtcaagga	cgccgtcggg	accggcatct	ccgtcgttgg	gcagatcctg	5340
ggcgtcgttg	gcgtcccctt	cgcaggtgct	ctcacctcct	tctaccagtc	cttcctgaac	5400
accatctggc	cctccgacgc	cgacccctgg	aaggccttca	tggcccaagt	cgaagtcctg	5460
atcgacaaga	agatcgagga	gtacgccaag	tccaaggccc	tggccgagct	gcaaggcctg	5520
caaaacaact	tcgaggacta	cgtcaacgcg	ctgaactcct	ggaagaagac	gcctctgtcc	5580

ctgcgctcca	agcgctccca	ggaccgcatc	cgcgagctgt	tctcccaggc	cgagtcccac	5640
ttccgcaact	ccatgccgtc	cttcgccgtc	tccaagttcg	aggtcctgtt	cctgcccacc	5700
tacgcccagg	ctgccaacac	ccacctcctg	ttgctgaagg	acgcccaggt	cttcggcgag	5760
gaatggggct	actcctcgga	ggacgtcgcc	gagttctacc	gtcgccagct	gaagctgacc	5820
caacagtaca	ccgaccactg	cgtcaactgg	tacaacgtcg	gcctgaacgg	cctgaggggc	5880
tccacctacg	acgcatgggt	caagttcaac	cgcttccgca	gggagatgac	cctgaccgtc	5940
ctggacctga	tcgtcctgtt	ccccttctac	gacatccgcc	tgtactccaa	gggcgtcaag	6000
accgagctga	cccgcgacat	cttcacggac	cccatcttcc	tgctcacgac	cctccagaag	6060
tacggtccca	ccttcctgtc	catcgagaac	tccatccgca	agccccacct	gttcgactac	6120
ctccagggca	tcgagttcca	cacgcgcctg	aggccaggct	acttcggcaa	ggactccttc	6180
aactactggt	ccggcaacta	cgtcgagacc	aggccctcca	teggeteete	gaagacgatc	6240
acctcccctt	tctacggcga	caagtccacc	gagcccgtcc	agaagctgtc	cttcgacggc	6300
cagaaggtct	accgcaccat	cgccaacacc	gacgtcgcgg	cttggccgaa	cggcaaggtc	6360
tacctgggcg	tcacgaaggt	cgacttctcc	cagtacgatg	accagaagaa	cgagacctcc	6420
acccagacct	acgactccaa	gcgcaacaat	ggccacgtct	ccgcccagga	ctccatcgac	6480
cagctgccgc	ctgagaccac	tgacgagccc	ctggagaagg	cctactccca	ccagctgaac	6540
tacgcggagt	gcttcctgat	gcaagaccgc	aggggcacca	tccccttctt	cacctggacc	6600
caccgctccg	tcgacttctt	caacaccatc	gacgccgaga	agatcaccca	gctgcccgtg	6660
gtcaaggcct	acgccctgtc	ctcgggtgcc	tccatcattg	agggtccagg	cttcaccggt	6720
ggcaacctgc	tgttcctgaa	ggagtcctcg	aactccatcg	ccaagttcaa	ggtcaccctg	6780
aactccgctg	ccttgctgca	acgctaccgc	gtccgcatcc	gctacgcctc	caccacgaac	6840
ctgcgcctgt	tcgtccagaa	ctccaacaat	gacttcctgg	tcatctacat	caacaagacc	6900
atgaacaagg	acgatgacct	gacctaccag	accttcgacc	tcgccaccac	gaactccaac	6960
atgggcttct	cgggcgacaa	gaatgaactg	atcattggtg	ctgagtcctt	cgtctccaac	7020
gagaagatct	acatcgacaa	gatcgagttc	atccccgtcc	agctgtgata	ggaactctga	7080
ttgaattctg	catgcgtttg	gacgtatgct	cattcaggtt	ggagccaatt	tggttgatgt	7140
gtgtgcgagt	tcttgcgagt	ctgatgagac	atctctgtat	tgtgtttctt	tccccagtgt	7200
tttctgtact	tgtgtaatcg	gctaatcgcc	aacagattcg	gcgatgaata	aatgagaaat	7260
aaattgttct	gattttgagt	gcaaaaaaaa	aggaattaga	tctgtgtgtg	ttttttggat	7320
cccattttcg	acaagcttgc	ctcgagacaa	caacatgctt	ctcatcaaca	tggagggaag	7380
agggagggag	aaagtgtcgc	ctggtcacct	ccattgtcac	actagccact	ggccagctct	7440
cccacaccac	caatgccagg	ggcgagcttt	agcacagcca	ccgcttcacc	tccaccaccg	7500

cactacccta	gcttcgccca	acagccaccg	tcaacgcctc	ctctccgtca	acataagaga	7560
gagagagaag	aggagagtag	ccatgtgggg	aggaggaata	gtacatgggg	cctaccgttt	7620
ggcaagttat	tttgggttgc	caagttaggc	caataagggg	agggatttgg	ccatccggtt	7680
ggaaaggtta	ttggggtagt	atctttttac	tagaattgtc	aaaaaaaaat	agtttgagag	7740
ccatttggag	aggatgttgc	ctgttagagg	tgctcttagg	acatcaaatt	ccataaaaac	7800
atcagaaaaa	ttctctcgat	gaagatttat	aaccactaaa	actgccctca	attcgaaggg	7860
agttcaaaac	aattaaaatc	atgttcgaat	tgagtttcaa	tttcacttta	acccctttga	7920
aatctcaatg	gtaaaacatc	aacccgtcag	gtagcatggt	tctttttatt	cctttcaaaa	7980
agagttaatt	acaaacagaa	tcaaaactaa	cagttaggcc	caaggcccat	ccgagcaaac	8040
aatagatcat	gggccaggcc	tgccaccacc	ctcccctcc	tggctcccgc	tcttgaattt	8100
caaaatccaa	aaatatcggc	acgactggcc	gccgacggag	cgggcggaaa	atgacggaac	8160
aacccctcga	attctacccc	aactacgccc	accaacccac	acgccactga	caatccggtc	8220
ccacccttgt	gggcccacct	acaagcgaga	cgtcagtcgc	tcgcagcaac	cagtgggccc	8280
acctcccagt	gagcggcggg	tagatctgga	ctcttaccca	cccacactaa	acaaaacggc	8340
atgaatattt	tgcactaaaa	ccctcagaaa	aattccgata	ttccaaacca	gtacagttcc	8400
tgaccgttgg	aggagccaaa	gtggagcgga	gtgtaaaatt	gggaaactta	atcgaggggg	8460
ttaaacgcaa	aaacgccgag	gcgcctcccg	ctctatagaa	aggggaggag	tgggaggtgg	8520
aaaccctacc	acaccgcaga	gaaaggcgtc	ttcgtactcg	cctctctccg	cgccctcctc	8580
cgccgccgct	cgccgccgtt	cgtctccgcc	gccaccggct	agccatccag	gtaaaacaaa	8640
caaaaacgga	tctgatgctt	ccattcctcc	gtttctcgta	gtagcgcgct	tcgatctgtg	8700
ggtggatctg	ggtgatcctg	gggtgtggtt	cgttctgttt	gatagatctg	tcggtggatc	8760
tggccttctg	tggttgtcga	tgtccggatc	tgcgttttga	tcagtggtag	ttcgtggatc	8820
tggcgaaatg	ttttggatct	ggcagtgaga	cgctaagaat	cgggaaatga	tgcaatatta	8880
ggggggtttc	ggatggggat	ccactgaatt	agtctgtctc	cctgctgata	atctgttcct	8940
ttttggtaga	tctggttagt	gtatgtttgt	ttcggataga	tctgatcaat	gcttgtttgt	9000
tttttcaaat	tttctaccta	ggttgtatag	gaatggcatg	cggatctggt	tggattgcca	9060
tgatccgtgc	tgaaatgccc	ctttggttga	tggatcttga	tattttactg	ctgttcacct	9120
agatttgtac	tcccgtttat	acttaatttg	ttgcttatta	tgaatagatc	tgtaacttag	9180
gcacatgtat	ggacggagta	tgtggatctg	tagtatgtac	attgctgcga	gctaagaact	9240
atttcagagc	aagcacagaa	aaaaatattt	agacagattg	ggcaactatt	tgatggtctt	9300
tggtatcatg	ctttgtagtg	ctcgtttctg	cgtagtaatc	ttttgatctg	atctgaagat	9360

aggtgctatt	atattcttaa	aggtcattag	aacgctatct	gaaaggctgt	attatgtgga	9420
ttggttcacc	tgtgactccc	tgttcgtctt	gtcttgataa	atcctgtgat	aaaaaaaatt	9480
cttaaggcgt	aatttgttga	aatcttgttt	tgtcctatgc	agcctgatcc	atggcgcaag	9540
ttagcagaat	ctgcaatggt	gtgcagaacc	catctcttat	ctccaatctc	tcgaaatcca	9600
gtcaacgcaa	atctccctta	tcggtttctc	tgaagacgca	gcagcatcca	cgagcttatc	9660
cgatttcgtc	gtcgtgggga	ttgaagaaga	gtgggatgac	gttaattggc	tctgagcttc	9720
gtcctcttaa	ggtcatgtct	tctgtttcca	cggcgtgcat	gcttcacggt	gcaagcagcc	9780
ggcccgcaac	cgcccgcaaa	tcctctggcc	tttccggaac	cgtccgcatt	cccggcgaca	9840
agtcgatctc	ccaccggtcc	ttcatgttcg	gcggtctcgc	gagcggtgaa	acgcgcatca	9900
ccggccttct	ggaaggcgag	gacgtcatca	atacgggcaa	ggccatgcag	gcgatgggcg	9960
cccgcatccg	taaggaaggc	gacacctgga	tcatcgatgg	cgtcggcaat	ggcggcctcc	10020
tggcgcctga	ggcgccgctc	gatttcggca	atgccgccac	gggctgccgc	ctgacgatgg	10080
gcctcgtcgg	ggtctacgat	ttcgacagca	ccttcatcgg	cgacgcctcg	ctcacaaagc	10140
gcccgatggg	ccgcgtgttg	aacccgctgc	gcgaaatggg	cgtgcaggtg	aaatcggaag	10200
acggtgaccg	tcttcccgtt	accttgcgcg	ggccgaagac	gccgacgccg	atcacctacc	10260
gcgtgccgat	ggcctccgca	caggtgaagt	ccgccgtgct	gctcgccggc	ctcaacacgc	10320
ccggcatcac	gacggtcatc	gagccgatca	tgacgcgcga	tcatacggaa	aagatgctgc	10380
agggctttgg	cgccaacctt	accgtcgaga	cggatgcgga	cggcgtgcgc	accatccgcc	10440
tggaaggccg	cggcaagctc	accggccaag	tcatcgacgt	gccgggcgac	ccgtcctcga	10500
cggccttccc	gctggttgcg	gccctgcttg	ttccgggctc	cgacgtcacc	atcctcaacg	10560
tgctgatgaa	ccccacccgc	accggcctca	tcctgacgct	gcaggaaatg	ggcgccgaca	10620
tcgaagtcat	caacccgcgc	cttgccggcg	gcgaagacgt	ggcggacctg	cgcgttcgct	10680
cctccacgct	gaagggcgtc	acggtgccgg	aagaccgcgc	gccttcgatg	atcgacgaat	10740
atccgattct	cgctgtcgcc	gccgccttcg	cggaaggggc	gaccgtgatg	aacggtctgg	10800
aagaactccg	cgtcaaggaa	agcgaccgcc	tctcggccgt	cgccaatggc	ctcaagctca	10860
atggcgtgga	ttgcgatgag	ggcgagacgt	cgctcgtcgt	gcgtggccgc	cctgacggca	10920
aggggctcgg	caacgcctcg	ggcgccgccg	tegecaceca	tctcgatcac	cgcatcgcca	10980
tgagcttcct	cgtcatgggc	ctcgtgtcgg	aaaaccctgt	cacggtggac	gatgccacga	11040
tgatcgccac	gagcttcccg	gagttcatgg	acctgatggc	cgggctgggc	gcgaagatcg	11100
aactctccga	tacgaaggct	gcctgatgag	ctccagggtt	cttgcctggt	gccttggcaa	11160
tgcttgatta	ctgctgctat	cctatgatct	gtccgtgtgg	gcttctatct	atcagtttgt	11220
gtgtctggtt	ttgaaaaaca	tttgcttttc	gattatgtag	ggtttgcttg	tagctttcgc	11280

```
tgctgtgacc tgtgttgttt atgtgaacct tctttgtggc atctttaata tccaagttcg
                                                                     11340
tggtttgtcg taaaacgaag cctctacttc gtaaagttgt gtctatagca ttgaaatcgt
                                                                     11400
ttttttgctc gagaataatt gtgaccttta gttggcgtga aactagtttt ggatatctga
                                                                     11460
ttctctggtt cgcaatcttg agatcgtcgc tgcttaggtg agctaagtga tgttcctaag
                                                                     11520
taaatgctcc tcaccagaat acgtagctgt gtgaaaagag aacgcgtgaa tacgtagctg
                                                                     11580
tgtaaagatt gtgtcccaag taaacctcag tgatttttgt ttggattttt aatttagaaa
                                                                     11640
cattcgactg ggagcggcta gagccacacc caagttccta actatgataa agttgctctg
                                                                     11700
taacagaaaa caccatctag agcggccgcg tttaaactat cagtgtttag agaatcacaa
                                                                     11760
acctctagat gtattaatct accctagaac tagttcactt ttgtgtgcat acttttctat
                                                                     11820
tgaactggtg ttcactttgt tgcatatgtt ttgtgtactg tttatttgtc attgcccaaa
                                                                     11880
tgtgtttaat gagtgattgc tttgcgtaga caacgagcag ttcaaggttt ccgagtgtgt
                                                                     11940
tgcaaaagac ttccctgagc agcaacctgg tgaaggtaag tgtcctctga cccattatgt
                                                                     12000
catatttact ttataattat atccttaaca atatgattaa agattaacac caaattatat
                                                                     12060
acatacatat gttaaaattt taaatgtcaa ataattcaga tgtttagaat gcatccctaa
                                                                     12120
gacggccagt gcaggctcgt acgatgcata cgaaaaccta tccctagtgt tcgcttcgaa
                                                                     12180
ttaatgccga cagtttaaac tactgcatct gcaatctata gagacaaaaa cactatgaaa
                                                                     12240
atagtaga
                                                                     12248
```

- <210> 2
- <211> 763
- <212> DNA
- 5 <213> Secuencia artificial
 - <220>
 - <223> es una secuencia de nucleótidos del evento MON 87411
 - <220>
 - <221> misc_feature
- 10 <222> (1).. $(\overline{5}00)$
 - <223> representa el ADN genómico que flanquea el borde izquierdo del TDNA
 - <220>
 - <221> misc_feature
 - <222> (501)..(763)
- 15 <223> remanente del borde izquierdo

<400> 2

ccctagcgtt gggcccaact agtcagtctg ccttcc	ectec cagtegetga ceteettggt 60						
ccacttgtca gctttcgcgc tcagatctaa tctcaa	actgt cgatctgtga tcgggtggcc 120						
gagatcaccc gatgcccgtt cgtttgcaaa agttgt	taaa agaccctctg tttcttagaa 180						
aataacctac attcatgttt cttgcgatta ggcccc	etggt ttcttgtaga gaagcccctt 240						
gctttatttt aatcacaaaa ataaatctaa tttagt	gttt tgaattctaa aacttgtgaa 300						
tttcatatct tttgcatatg aactctaaat tgggtg	ggttt aaattgcaaa atgatcataa 360						
tattattctc tatctgttta aattataata tttcac	etgtc tacatgtatg tattttatga 420						
ctagacaata ggttcattta aagtgatgga ttattt	atta aaaggaaaat aaaaaggcaa 480						
aacactaatg aatagttaag tggcttcatg tccggg	gaaat ctacatggat cagcaatgag 540						
tatgatggtc aatatggaga aaaagaaaga gtaatt	acca atttttttc aattcaaaaa 600						
tgtagatgtc cgcagcgtta ttataaaatg aaagta	catt ttgataaaac gacaaattac 660						
gatccgtcgt atttataggc gaaagcaata aacaaa	ttat tctaattcgg aaatctttat 720						
ttcgacgtgt ctacattcac gtccaaatgg gggctt	agat gag 763						
<210> 3 <211> 515 <212> DNA <213> Secuencia artificial <220> <223> es una secuencia de nucleótidos del evento MON 87411 <220> <221> misc_feature <222> (1)(15) <223> remanente del borde derecho <220> <221> misc_feature <222> (1)(515) <223> representa el ADN genómico que flanquea el borde derecho del TDNA							
<400>3 aaactatcag tgtttagaga atcacaaacc tctaga	atgta ttaatctacc ctagaactag 6						
ttcacttttg tgtgcatact tttctattga actggt	gttc actttgttgc atatgttttg 12						
tgtactgttt atttgtcatt gcccaaatgt gtttaa	atgag tgattgcttt gcgtagacaa 18						
cgagcagttc aaggtttccg agtgtgttgc aaaaga	acttc cctgagcagc aacctggtga 24						
aggtaagtgt cctctgaccc attatgtcat atttac	ettta taattatate ettaacaata 30						
tgattaaaga ttaacaccaa attatataca tacata	atgtt aaaattttaa atgtcaaata 36						
attcagatgt ttagaatgca tccctaagac ggccag	gtgca ggctcgtacg atgcatacga 42						
aaacctatcc ctagtgttcg cttcgaatta atgccg	gacag tttaaactac tgcatctgca 480						
atctatagag acaaaaacac tatgaaaata gtaga	51.						
<210> 4							

<210> 4 <211> 11248 <212> DNA

5

10

15

20

	<213> Secuencia artificial	
	<220> <223> es una secuencia de nucleótidos del evento MON 87411, y representa el TDNA del evento MO	ON 87411
5	<220> <221> misc_feature <222> (1)(263) <223> remanente del borde izquierdo	
10	<220> <221> promotor <222> (2086)(4034) <223> Promotor PIIG de maíz	
15	<220> <221> promotor <222> (2448)(3059) <223> representa la secuencia complementaria nversa del promotor 35S del CaMV mejorado	
	<220> <221> promotor <222> (2448)(4034) <223> representa una región promotora divergente que promueve la transcripción bidireccional	
20	<220> <221> misc_feature <222> (11233)(11248) <223> remanente del borde derecho	
	<400> 4	
	tggcttcatg tccgggaaat ctacatggat cagcaatgag tatgatggtc aatatggaga	60
	aaaagaaaga gtaattacca atttttttc aattcaaaaa tgtagatgtc cgcagcgtta	120
	ttataaaatg aaagtacatt ttgataaaac gacaaattac gatccgtcgt atttataggc	180
	gaaagcaata aacaaattat totaattogg aaatotttat ttogacgtgt otacattoac	240
	gtccaaatgg gggcttagat gagaaacttc acgatcgatg cggccaccac tcgaggtcga	300
	ggtaccgttg tcaatcaatt ggcaagtcat aaaaatgcatt aaaaaatatt ttcatactca	360
	actacaaatc catgagtata actataatta taaagcaatg attagaatct gacaaggatt	420
	ctggaaaatt acataaagga aagttcataa atgtctaaaa cacaagagga catacttgta	480
	ttcagtaaca tttgcagctt ttctaggtct gaaaatatat ttgttgccta gtgaataagc	540
	ataatggtac aactacaagt gttttactcc tcatattaac ttcggtcatt agaggccacg	600
	atttgacaca tttttactca aaacaaaatg tttgcatatc tcttataatt tcaaattcaa	660
	cacacaacaa ataagagaaa aaacaaataa tattaatttg agaatgaaca aaaggaccat	720
	atcattcatt aactcttctc catccatttc catttcacag ttcgatagcg aaaaccgaat	780
	aaaaaacaca gtaaattaca agcacaacaa atggtacaag aaaaacagtt ttcccaatgc	840
25	cataatactc aaactcagta ggattctggt gtgtgcgcaa tgaaactgat gcattgaact	900

tgacgaacgt	tgtcgaaacc	gatgatacga	acgaaagcta	ggcctcagcg	agtaccgctg	960
gcgatctaat	ccatgatatc	gtgaacatca	tctacattca	aattcttatg	agctttctta	1020
agggcatctg	cagcattttt	catagaatct	aatacagcag	tatttgtgct	agctccttcg	1080
agggcttccc	tctgcatttc	aatagttgta	agggttccat	ctatttgtag	ttgggtcttt	1140
tccaatcgtt	tcttctttt	gagggcttgg	agtgcaactc	ttttatttt	cgacgcattt	1200
ttctttgcgc	tcctgcaggc	ggccgcgtgg	atgaggagtt	aatcggtcgt	gtgagagtag	1260
tgatcgagtg	gatgtcgtcg	agagtgatga	gtgttgatgt	tgttagtgat	atgtggtaga	1320
aggtatcgtg	ataaagcgtt	aacgcgatcg	cagtacttgc	aaagaaaaat	gcgtcgaaaa	1380
ataaaagagt	tgcactccaa	gccctcaaaa	agaagaaacg	attggaaaag	acccaactac	1440
aaatagatgg	aacccttaca	actattgaaa	tgcagaggga	agccctcgaa	ggagctagca	1500
caaatactgc	tgtattagat	tctatgaaaa	atgctgcaga	tgcccttaag	aaagctcata	1560
agaatttgaa	tgtagatgat	gttcacgata	tcatggatgg	tatcgcacag	cgactgctga	1620
gggacgtcga	gctcccgctt	ggtatctgca	ttacaatgaa	atgagcaaag	actatgtgag	1680
taacactggt	caacactagg	gagaaggcat	cgagcaagat	acgtatgtaa	agagaagcaa	1740
tatagtgtca	gttggtagat	actagatacc	atcaggaggt	aaggagagca	acaaaaagga	1800
aactctttat	ttttaaattt	tgttacaaca	aacaagcaga	tcaatgcatc	aaaatactgt	1860
cagtacttat	ttcttcagac	aacaatattt	aaaacaagtg	catctgatct	tgacttatgg	1920
tcacaataaa	ggagcagaga	taaacatcaa	aatttcgtca	tttatattta	ttccttcagg	1980
cgttaacaat	ttaacagcac	acaaacaaaa	acagaatagg	aatatctaat	tttggcaaat	2040
aataagctct	gcagacgaac	aaattattat	agtatcgcct	ataatatgaa	tccctatact	2100
attgacccat	gtagtatgaa	gcctgtgcct	aaattaacag	caaacttctg	aatccaagtg	2160
ccctataaca	ccaacatgtg	cttaaataaa	taccgctaag	caccaaatta	cacatttctc	2220
gtattgctgt	gtaggttcta	tcttcgtttc	gtactaccat	gtccctatat	tttgctgcta	2280
caaaggacgg	caagtaatca	gcacaggcag	aacacgattt	cagagtgtaa	ttctagatcc	2340
agctaaacca	ctctcagcaa	tcaccacaca	agagagcatt	cagagaaacg	tggcagtaac	2400
aaaggcagag	ggcggagtga	gcgcgtaccg	aagacggttc	agcgtgtcct	ctccaaatga	2460
aatgaacttc	cttatataga	ggaagggtct	tgcgaaggat	agtgggattg	tgcgtcatcc	2520
cttacgtcag	tggagatatc	acatcaatcc	acttgctttg	aagacgtggt	tggaacgtct	2580
tctttttcca	cgatgctcct	cgtgggtggg	ggtccatctt	tgggaccact	gtcggcagag	2640
gcatcttcaa	cgatggcctt	tcctttatcg	caatgatggc	atttgtagga	gccaccttcc	2700
ttttccacta	tcttcacaat	aaagtgacag	atagctgggc	aatggaatcc	gaggaggttt	2760

ccggatatta	ccctttgttg	aaaagtctca	atcggaccat	cacatcaatc	cacttgcttt	2820
gaagacgtgg	ttggaacgtc	ttcttttcc	acgatgctcc	tcgtgggtgg	gggtccatct	2880
ttgggaccac	tgtcggcaga	ggcatcttca	acgatggcct	ttcctttatc	gcaatgatgg	2940
catttgtagg	agccaccttc	cttttccact	atcttcacaa	taaagtgaca	gatagctggg	3000
caatggaatc	cgaggaggtt	tccggatatt	accctttgtt	gaaaagtctc	aatcggacct	3060
gcagcctgca	ggctagcggc	gcgccacaaa	tcacaggcca	tgaaccctac	tcatgcttcg	3120
atttgtccaa	cacacactta	ccaaaactca	aatcatgtcc	ttgacagtca	ctcgggactc	3180
ataacatggg	tacgtatcga	ctatgtcaac	tatatgtgtt	ctcatcagat	tatagattgg	3240
cctagtacgt	agtgatattt	ccactagcac	tgtggttatg	gctgtacctg	atagtgatat	3300
cagcaccggg	tcatggctct	actaccaggt	agtgagagtg	acctttatac	tgtcagactg	3360
taactaagga	tttccaatca	ctgttcggat	cctaggctta	gaattaagta	aaactctatc	3420
actataggct	gcagcacact	cggtatatat	tgatgggcca	acagaaattg	tgcgtactat	3480
gcgcgatgta	aaatggacat	aaaccctacc	catatacaat	gcaataactt	ttgtccggtc	3540
tgggccaccg	gttagcagag	gtcctgattt	cggtggtagt	ggtagcttga	tctggtcgtc	3600
gtatcgtaga	gggatatata	aaatcatgtc	acttttgaag	ggagcgctca	cagaaataat	3660
aggtattcgc	gggagccgcc	cccgcagaac	acaaaataag	gcgagcacgc	acacgcatca	3720
gtttcgataa	aataataata	gcgccagctg	atcggaacaa	ttccagctag	cactaatgta	3780
tttctgcatt	gatctgttta	tacaacatgc	tacctcgttg	agtgattttg	acatgatttg	3840
tcaacttgct	ccgatcctat	atctcgatcg	atctccacat	gacgatggtt	gttgtcctgt	3900
atcccatgac	aaccaggcaa	cgctcaaagc	acacatgcgt	tgccgattac	ccgtgcatgc	3960
cgccaagcac	gaaagcacct	ccctccacac	cgtccatcag	ctataaaaac	catgccaagc	4020
accctgtgaa	aagccccggg	aaccatcttc	cacacactca	agccacacta	ttggagaaca	4080
cacagggaca	acacaccata	agatccaagg	gaggcctccg	ccgccgccgg	taaccacccc	4140
gcccctctcc	tctttctttc	tccgtttttt	tttccgtctc	ggtctcgatc	tttggccttg	4200
gtagtttggg	tgggcgagag	gcggcttcgt	gcgcgcccag	atcggtgcgc	gggaggggg	4260
ggatctcgcg	gctggggctc	tcgccggcgt	ggatccggcc	cggatctcgc	ggggaatggg	4320
gctctcggat	gtagatctgc	gatccgccgt	tgttggggga	gatgatgggg	ggtttaaaat	4380
ttccgccgtg	ctaaacaaga	tcaggaagag	gggaaaaggg	cactatggtt	tatattttta	4440
tatatttctg	ctgcttcgtc	aggcttagat	gtgctagatc	tttctttctt	ctttttgtgg	4500
gtagaatttg	aatccctcag	cattgttcat	cggtagtttt	tcttttcatg	atttgtgaca	4560
aatgcagcct	cgtgcggagc	ttttttgtag	gtagaagtga	tcaaccatgg	ccaaccccaa	4620
caatcgctcc	gagcacgaca	cgatcaaggt	cacccccaac	tccgagctcc	agaccaacca	4680

caaccagtac	ccgctggccg	acaaccccaa	ctccaccctg	gaagagctga	actacaagga	4740
gttcctgcgc	atgaccgagg	actcctccac	ggaggtcctg	gacaactcca	ccgtcaagga	4800
cgccgtcggg	accggcatct	ccgtcgttgg	gcagatcctg	ggcgtcgttg	gcgtcccctt	4860
cgcaggtgct	ctcacctcct	tctaccagtc	cttcctgaac	accatctggc	cctccgacgc	4920
cgacccctgg	aaggccttca	tggcccaagt	cgaagtcctg	atcgacaaga	agatcgagga	4980
gtacgccaag	tccaaggccc	tggccgagct	gcaaggcctg	caaaacaact	tcgaggacta	5040
cgtcaacgcg	ctgaactcct	ggaagaagac	gcctctgtcc	ctgcgctcca	agcgctccca	5100
ggaccgcatc	cgcgagctgt	tctcccaggc	cgagtcccac	ttccgcaact	ccatgccgtc	5160
cttcgccgtc	tccaagttcg	aggtcctgtt	cctgcccacc	tacgcccagg	ctgccaacac	5220
ccacctcctg	ttgctgaagg	acgcccaggt	cttcggcgag	gaatggggct	actcctcgga	5280
ggacgtcgcc	gagttctacc	gtcgccagct	gaagctgacc	caacagtaca	ccgaccactg	5340
cgtcaactgg	tacaacgtcg	gcctgaacgg	cctgaggggc	tccacctacg	acgcatgggt	5400
caagttcaac	cgcttccgca	gggagatgac	cctgaccgtc	ctggacctga	tcgtcctgtt	5460
ccccttctac	gacatccgcc	tgtactccaa	gggcgtcaag	accgagctga	cccgcgacat	5520
cttcacggac	cccatcttcc	tgctcacgac	cctccagaag	tacggtccca	ccttcctgtc	5580
catcgagaac	tccatccgca	agccccacct	gttcgactac	ctccagggca	tcgagttcca	5640
cacgcgcctg	aggccaggct	acttcggcaa	ggactccttc	aactactggt	ccggcaacta	5700
cgtcgagacc	aggccctcca	teggeteete	gaagacgatc	acctcccctt	tctacggcga	5760
caagtccacc	gagcccgtcc	agaagctgtc	cttcgacggc	cagaaggtct	accgcaccat	5820
cgccaacacc	gacgtcgcgg	cttggccgaa	cggcaaggtc	tacctgggcg	tcacgaaggt	5880
cgacttctcc	cagtacgatg	accagaagaa	cgagacctcc	acccagacct	acgactccaa	5940
gcgcaacaat	ggccacgtct	ccgcccagga	ctccatcgac	cagctgccgc	ctgagaccac	6000
tgacgagccc	ctggagaagg	cctactccca	ccagctgaac	tacgcggagt	gcttcctgat	6060
gcaagaccgc	aggggcacca	teceettett	cacctggacc	caccgctccg	tcgacttctt	6120
caacaccatc	gacgccgaga	agatcaccca	gctgcccgtg	gtcaaggcct	acgccctgtc	6180
ctcgggtgcc	tccatcattg	agggtccagg	cttcaccggt	ggcaacctgc	tgttcctgaa	6240
ggagtcctcg	aactccatcg	ccaagttcaa	ggtcaccctg	aactccgctg	ccttgctgca	6300
acgctaccgc	gtccgcatcc	gctacgcctc	caccacgaac	ctgcgcctgt	tcgtccagaa	6360
ctccaacaat	gacttcctgg	tcatctacat	caacaagacc	atgaacaagg	acgatgacct	6420
gacctaccag	accttcgacc	tegecaceae	gaactccaac	atgggcttct	cgggcgacaa	6480
gaatgaactg	atcattggtg	ctgagtcctt	cgtctccaac	gagaagatct	acatcgacaa	6540

gatcgagttc	atccccgtcc	agctgtgata	ggaactctga	ttgaattctg	catgcgtttg	6600
gacgtatgct	cattcaggtt	ggagccaatt	tggttgatgt	gtgtgcgagt	tcttgcgagt	6660
ctgatgagac	atctctgtat	tgtgtttctt	tccccagtgt	tttctgtact	tgtgtaatcg	6720
gctaatcgcc	aacagattcg	gcgatgaata	aatgagaaat	aaattgttct	gattttgagt	6780
gcaaaaaaaa	aggaattaga	tctgtgtgtg	ttttttggat	cccattttcg	acaagcttgc	6840
ctcgagacaa	caacatgctt	ctcatcaaca	tggagggaag	agggagggag	aaagtgtcgc	6900
ctggtcacct	ccattgtcac	actagccact	ggccagctct	cccacaccac	caatgccagg	6960
ggcgagcttt	agcacagcca	ccgcttcacc	tccaccaccg	cactacccta	gcttcgccca	7020
acagccaccg	tcaacgcctc	ctctccgtca	acataagaga	gagagagaag	aggagagtag	7080
ccatgtgggg	aggaggaata	gtacatgggg	cctaccgttt	ggcaagttat	tttgggttgc	7140
caagttaggc	caataagggg	agggatttgg	ccatccggtt	ggaaaggtta	ttggggtagt	7200
atcttttac	tagaattgtc	aaaaaaaaat	agtttgagag	ccatttggag	aggatgttgc	7260
ctgttagagg	tgctcttagg	acatcaaatt	ccataaaaac	atcagaaaaa	ttctctcgat	7320
gaagatttat	aaccactaaa	actgccctca	attcgaaggg	agttcaaaac	aattaaaatc	7380
atgttcgaat	tgagtttcaa	tttcacttta	acccctttga	aatctcaatg	gtaaaacatc	7440
aacccgtcag	gtagcatggt	tctttttatt	cctttcaaaa	agagttaatt	acaaacagaa	7500
tcaaaactaa	cagttaggcc	caaggcccat	ccgagcaaac	aatagatcat	gggccaggcc	7560
tgccaccacc	ctcccctcc	tggctcccgc	tcttgaattt	caaaatccaa	aaatatcggc	7620
acgactggcc	gccgacggag	cgggcggaaa	atgacggaac	aacccctcga	attctacccc	7680
aactacgccc	accaacccac	acgccactga	caatccggtc	ccacccttgt	gggcccacct	7740
acaagcgaga	cgtcagtcgc	tcgcagcaac	cagtgggccc	acctcccagt	gagcggcggg	7800
tagatctgga	ctcttaccca	cccacactaa	acaaaacggc	atgaatattt	tgcactaaaa	7860
ccctcagaaa	aattccgata	ttccaaacca	gtacagttcc	tgaccgttgg	aggagccaaa	7920
gtggagcgga	gtgtaaaatt	gggaaactta	atcgaggggg	ttaaacgcaa	aaacgccgag	7980
gcgcctcccg	ctctatagaa	aggggaggag	tgggaggtgg	aaaccctacc	acaccgcaga	8040
gaaaggcgtc	ttcgtactcg	cctctctccg	cgccctcctc	cgccgccgct	cgccgccgtt	8100
cgtctccgcc	gccaccggct	agccatccag	gtaaaacaaa	caaaaacgga	tctgatgctt	8160
ccattcctcc	gtttctcgta	gtagcgcgct	tcgatctgtg	ggtggatctg	ggtgatcctg	8220
gggtgtggtt	cgttctgttt	gatagatctg	tcggtggatc	tggccttctg	tggttgtcga	8280
tgtccggatc	tgcgttttga	tcagtggtag	ttcgtggatc	tggcgaaatg	ttttggatct	8340
ggcagtgaga	cgctaagaat	cgggaaatga	tgcaatatta	ggggggtttc	ggatggggat	8400
ccactgaatt	agtctgtctc	cctgctgata	atctgttcct	ttttggtaga	tctggttagt	8460

gtatgtttgt	ttcggataga	tctgatcaat	gcttgtttgt	tttttcaaat	tttctaccta	8520
ggttgtatag	gaatggcatg	cggatctggt	tggattgcca	tgatccgtgc	tgaaatgccc	8580
ctttggttga	tggatcttga	tattttactg	ctgttcacct	agatttgtac	tcccgtttat	8640
acttaatttg	ttgcttatta	tgaatagatc	tgtaacttag	gcacatgtat	ggacggagta	8700
tgtggatctg	tagtatgtac	attgctgcga	gctaagaact	atttcagagc	aagcacagaa	8760
aaaaatattt	agacagattg	ggcaactatt	tgatggtctt	tggtatcatg	ctttgtagtg	8820
ctcgtttctg	cgtagtaatc	ttttgatctg	atctgaagat	aggtgctatt	atattcttaa	8880
aggtcattag	aacgctatct	gaaaggctgt	attatgtgga	ttggttcacc	tgtgactccc	8940
tgttcgtctt	gtcttgataa	atcctgtgat	aaaaaaaatt	cttaaggcgt	aatttgttga	9000
aatcttgttt	tgtcctatgc	agcctgatcc	atggcgcaag	ttagcagaat	ctgcaatggt	9060
gtgcagaacc	catctcttat	ctccaatctc	tcgaaatcca	gtcaacgcaa	atctccctta	9120
teggtttete	tgaagacgca	gcagcatcca	cgagcttatc	cgatttcgtc	gtcgtgggga	9180
ttgaagaaga	gtgggatgac	gttaattggc	tctgagcttc	gtcctcttaa	ggtcatgtct	9240
tctgtttcca	cggcgtgcat	gcttcacggt	gcaagcagcc	ggcccgcaac	cgcccgcaaa	9300
tectetggee	tttccggaac	cgtccgcatt	cccggcgaca	agtcgatctc	ccaccggtcc	9360
ttcatgttcg	gcggtctcgc	gagcggtgaa	acgcgcatca	ccggccttct	ggaaggcgag	9420
gacgtcatca	atacgggcaa	ggccatgcag	gcgatgggcg	cccgcatccg	taaggaaggc	9480
gacacctgga	tcatcgatgg	cgtcggcaat	ggcggcctcc	tggcgcctga	ggcgccgctc	9540
gatttcggca	atgccgccac	gggctgccgc	ctgacgatgg	gcctcgtcgg	ggtctacgat	9600
ttcgacagca	ccttcatcgg	cgacgcctcg	ctcacaaagc	gcccgatggg	ccgcgtgttg	9660
aacccgctgc	gcgaaatggg	cgtgcaggtg	aaatcggaag	acggtgaccg	tcttcccgtt	9720
accttgcgcg	ggccgaagac	gccgacgccg	atcacctacc	gcgtgccgat	ggcctccgca	9780
caggtgaagt	ccgccgtgct	gctcgccggc	ctcaacacgc	ccggcatcac	gacggtcatc	9840
gagccgatca	tgacgcgcga	tcatacggaa	aagatgctgc	agggctttgg	cgccaacctt	9900
accgtcgaga	cggatgcgga	cggcgtgcgc	accatccgcc	tggaaggccg	cggcaagctc	9960
accggccaag	tcatcgacgt	gccgggcgac	ccgtcctcga	cggccttccc	gctggttgcg	10020
gccctgcttg	ttccgggctc	cgacgtcacc	atcctcaacg	tgctgatgaa	ccccacccgc	10080
accggcctca	tcctgacgct	gcaggaaatg	ggcgccgaca	tcgaagtcat	caacccgcgc	10140
cttgccggcg	gcgaagacgt	ggcggacctg	cgcgttcgct	cctccacgct	gaagggcgtc	10200
acggtgccgg	aagaccgcgc	gccttcgatg	atcgacgaat	atccgattct	cgctgtcgcc	10260
gccgccttcg	cggaaggggc	gaccgtgatg	aacggtctgg	aagaactccg	cgtcaaggaa	10320

agcgaccgcc tctcggccgt cgccaatggc ctcaagctca atggcgtgga ttgcgatgag

ggcgagacgt	cgctcgtcgt	gcgtggccgc	cctgacggca	aggggctcgg	caacgcctcg	10440
ggcgccgccg	tegecaceca	tctcgatcac	cgcatcgcca	tgagcttcct	cgtcatgggc	10500
ctcgtgtcgc	aaaaccctgt	cacggtggac	gatgccacga	tgatcgccac	gagcttcccg	10560
gagttcatgo	acctgatggc	cgggctgggc	gcgaagatcg	aactctccga	tacgaaggct	10620
gcctgatgag	ctccagggtt	cttgcctggt	gccttggcaa	tgcttgatta	ctgctgctat	10680
cctatgatct	gtccgtgtgg	gcttctatct	atcagtttgt	gtgtctggtt	ttgaaaaaca	10740
tttgcttttc	gattatgtag	ggtttgcttg	tagctttcgc	tgctgtgacc	tgtgttgttt	10800
atgtgaacct	tctttgtggc	atctttaata	tccaagttcg	tggtttgtcg	taaaacgaag	10860
cctctacttc	gtaaagttgt	gtctatagca	ttgaaatcgt	ttttttgctc	gagaataatt	10920
gtgaccttta	gttggcgtga	aactagtttt	ggatatctga	ttctctggtt	cgcaatcttg	10980
agatcgtcgc	tgcttaggtg	agctaagtga	tgttcctaag	taaatgctcc	tcaccagaat	11040
acgtagctgt	gtgaaaagag	aacgcgtgaa	tacgtagctg	tgtaaagatt	gtgtcccaag	11100
taaacctcag	tgatttttgt	ttggattttt	aatttagaaa	cattcgactg	ggagcggcta	11160
gagccacacc	: caagttccta	actatgataa	agttgctctg	taacagaaaa	caccatctag	11220
ageggeegeg	tttaaactat	cagtgttt				11248
<210> 5 <211> 313 <212> DNA <213> Secuencia	artificial					
<220> <223> es una sec	uencia de nucle	ótidos del ever	nto MON 87411			
<220> <221> misc_featu <222> (1)(50) <223> representa		ico que flanque	a el borde izqui	ierdo del TDNA	.	
<220> <221> misc_featu <222> (51)(313) <223> remanente		erdo				
<400> 5						
ttatttatta	aaaggaaaat	aaaaaggcaa	aacactaatg	aatagttaag	tggcttcatg	60
tccgggaaat	ctacatggat	cagcaatgag	tatgatggtc	aatatggaga	aaaagaaaga	120
gtaattacca	attttttc	aattcaaaaa	tgtagatgtc	cgcagcgtta	ttataaaatg	180
aaagtacatt	ttgataaaac	gacaaattac	gatccgtcgt	atttataggc	gaaagcaata	240
aacaaattat	tctaattcgg	aaatctttat	ttcgacgtgt	ctacattcac	gtccaaatgg	300
gggcttagat	gag					313
<210> 6 <211> 373						

<212> DNA

	<213> Secuencia artificial	
	<220> <223> es una secuencia de nucleótidos del evento MON 87411	
5	<220> <221> misc_feature <222> (1)(110) <223> representa el ADN genómico que flanquea el borde izquierdo del TDNA	
10	<220> <221> misc_feature <222> (111)(373) <223> remanente del borde izquierdo	
	<400> 6	
	tttcactgtc tacatgtatg tattttatga ctagacaata ggttcattta aagtgatgga	60
	ttatttatta aaaggaaaat aaaaaggcaa aacactaatg aatagttaag tggcttcatg	120
	tccgggaaat ctacatggat cagcaatgag tatgatggtc aatatggaga aaaagaaaga	180
	gtaattacca atttttttc aattcaaaaa tgtagatgtc cgcagcgtta ttataaaatg	240
	aaagtacatt ttgataaaac gacaaattac gatccgtcgt atttataggc gaaagcaata	300
	aacaaattat tctaattcgg aaatctttat ttcgacgtgt ctacattcac gtccaaatgg	360
	gggcttagat gag	373
15	<210> 7 <211> 408 <212> DNA <213> Secuencia artificial	
	<223> es una secuencia de nucleótidos del evento MON 87411	
20	<220> <221> misc_feature <222> (1)(145) <223> representa el ADN genómico que flanquea el borde izquierdo del TDNA	
25	<220> <221> misc_feature <222> (146)(408) <223> remanente del borde izquierdo	
	<400> 7	
	cataatatta ttctctatct gtttaaatta taatatttca ctgtctacat gtatgtattt	60
	tatgactaga caataggttc atttaaagtg atggattatt tattaaaagg aaaataaaaa	120
	ggcaaaacac taatgaatag ttaagtggct tcatgtccgg gaaatctaca tggatcagca	180
	atgagtatga tggtcaatat ggagaaaaag aaagagtaat taccaatttt ttttcaattc	240
	aaaaatgtag atgtccgcag cgttattata aaatgaaagt acattttgat aaaacgacaa	300
	attacgatcc gtcgtattta taggcgaaag caataaacaa attattctaa ttcggaaatc	360
	tttatttcga cgtgtctaca ttcacgtcca aatgggggct tagatgag	408

30

<210> 8 <211> 117

	<212> DNA <213> Secuencia artificial	
	<220> <223> es una secuencia de nucleótidos del evento MON 87411	
5	<220> <221> misc_feature <222> (69)(83) <223> remanente del borde derecho	
10	<220> <221> misc_feature <222> (84)(117) <223> representa el ADN genómico que flanquea el borde derecho del TDNA	
	<400> 8	
	acacccaagt tectaactat gataaagttg etetgtaaca gaaaacacca tetagagegg	60
	ccgcgtttaa actatcagtg tttagagaat cacaaacctc tagatgtatt aatctac	117
15	<210> 9 <211> 173 <212> DNA <213> Secuencia artificial	
20	<220> <223> es una secuencia de nucleótidos del evento MON 87411	
	<220> <221> misc_feature <222> (69)(83) <223> remanente del borde derecho	
25	<220> <221> misc_feature <222> (84)(173) <223> representa el ADN genómico que flanquea el borde derecho del TDNA	
	<400> 9	
	acacccaagt tectaactat gataaagttg etetgtaaca gaaaacacca tetagagegg	60
	ccgcgtttaa actatcagtg tttagagaat cacaaacctc tagatgtatt aatctaccct	120
30	agaactagtt cacttttgtg tgcatacttt tctattgaac tggtgttcac ttt	173
	<210> 10 <211> 338 <212> DNA <213> Secuencia artificial	
35	<220> <223> es una secuencia de nucleótidos del evento MON 87411	
40	<220> <221> misc_feature <222> (69)(83) <223> remanente del borde derecho	
	<220> <221> misc_feature <222> (84)(338) <223> representa el ADN genómico que flanquea el borde derecho del TDNA	
45	<400> 10	

	acacccaagt tectaactat gataaagttg etetgtaaca gaaaacacca tetagagegg	60
	ccgcgtttaa actatcagtg tttagagaat cacaaacctc tagatgtatt aatctaccct	120
	agaactagtt cacttttgtg tgcatacttt tctattgaac tggtgttcac tttgttgcat	180
	atgttttgtg tactgtttat ttgtcattgc ccaaatgtgt ttaatgagtg attgctttgc	240
	gtagacaacg agcagttcaa ggtttccgag tgtgttgcaa aagacttccc tgagcagcaa	300
	cctggtgaag gtaagtgtcc tctgacccat tatgtcat	338
5	<210> 11 <211> 663 <212> DNA <213> Diabrotica virgifera virgifera	
	<220> <221> misc_feature <222> (1)(660) <223> ORF de Dv_Snf7o que codifica una supuesta subunidad del complejo ESCRT-III de <i>Diabrotic</i>	a virgifera
10	<400> 11	
	atgagetttt ttggaaaatt gttegggggg aaaaaggaag agatageeee tagteetggg	60
	gaggctattc aaaaactcag agagactgaa gaaatgttaa taaaaaaaca ggatttttta	120
	gaaaagaaga tagaagaatt taccatggta gcaaagaaaa atgcgtcgaa aaataaaaga	180
	gttgcactcc aagccctcaa aaagaagaaa cgattggaaa agacccaact acaaatagat	240
	ggaaccetta caactattga aatgcagagg gaagceeteg aaggagetag cacaaatact	300
	gctgtattag attctatgaa aaatgctgca gatgccctta agaaagctca taagaatttg	360
	aatgtagatg atgttcacga tatcatggat gacatagccg aacaacacga catagccaac	420
	gaaatcacaa acgctattag caatcctgtc ggattcaccg acgatctgga tgacgatgaa	480
	ttagaaaaag aattagaaga gctcgaacaa gaaggattgg aagaagacct gctccaagtg	540
	ccaggtccaa ctcaactgcc ggctgtgcct gctgatgcag ttgctactaa accaatcaaa	600
	ccagcagcta aaaaagttga agatgatgac gatatgaaag aattggaagc ctgggcctcg	660
	taa	663
15	<210> 12 <211> 2753 <212> DNA <213> Secuencia artificial	
	<220> <223> es una secuencia de nucleótidos que representa la cadena antisentido de un casete de exprerepetido invertido	esión de ARN
20	<220> <221> 3'UTR <222> (1)(633) <223> cadena antisentido de Ps.RbcS2-E9 3 'UTR	
25	<220> <221> misc_feature <222> (663)(902) <223> brazo Dv Snf7o de repetición invertida	

	<220> <221> misc_feature <222> (903)(1052) <223> bucle de repetición invertida	
5	<220> <221> misc_feature <222> (1053)(1292) <223> brazo Dv_Snf7o de repetición invertida	
10	<220> <221> Intrón <222> (1329)(2132) <223> Cadena antisentido del intrón DnaK de maíz	
15	<220> <221> misc_feature <222> (2133)(2141) <223> cadena antisentido del líder 35S del CaMV	
20	<220> <221> promotor <222> (2142)(2753) <223> representa la secuencia complementaria nversa del promotor 35S del CaMV mejorado	
	<400> 12	
	gttgtcaatc aattggcaag tcataaaatg cattaaaaaa tattttcata ctcaactaca	60
	aatccatgag tataactata attataaagc aatgattaga atctgacaag gattctggaa	120
	aattacataa aggaaagttc ataaatgtct aaaacacaag aggacatact tgtattcagt	180
	aacatttgca gcttttctag gtctgaaaat atatttgttg cctagtgaat aagcataatg	240
	gtacaactac aagtgtttta ctcctcatat taacttcggt cattagaggc cacgatttga	300

cacatttta	ctcaaaacaa	aatgtttgca	tatctcttat	aatttcaaat	tcaacacaca	360
acaaataaga	gaaaaaacaa	ataatattaa	tttgagaatg	aacaaaagga	ccatatcatt	420
cattaactct	tctccatcca	tttccatttc	acagttcgat	agcgaaaacc	gaataaaaaa	480
cacagtaaat	tacaagcaca	acaaatggta	caagaaaaac	agttttccca	atgccataat	540
actcaaactc	agtaggattc	tggtgtgtgc	gcaatgaaac	tgatgcattg	aacttgacga	600
acgttgtcga	aaccgatgat	acgaacgaaa	gctaggcctc	agcgagtacc	gctggcgatc	660
taatccatga	tatcgtgaac	atcatctaca	ttcaaattct	tatgagcttt	cttaagggca	720
tctgcagcat	ttttcataga	atctaataca	gcagtatttg	tgctagctcc	ttcgagggct	780
tccctctgca	tttcaatagt	tgtaagggtt	ccatctattt	gtagttgggt	cttttccaat	840
cgtttcttct	ttttgagggc	ttggagtgca	actcttttat	ttttcgacgc	atttttcttt	900
gcgctcctgc	aggcggccgc	gtggatgagg	agttaatcgg	tcgtgtgaga	gtagtgatcg	960
agtggatgtc	gtcgagagtg	atgagtgttg	atgttgttag	tgatatgtgg	tagaaggtat	1020
cgtgataaag	cgttaacgcg	atcgcagtac	ttgcaaagaa	aaatgcgtcg	aaaaataaaa	1080
gagttgcact	ccaagccctc	aaaaagaaga	aacgattgga	aaagacccaa	ctacaaatag	1140
atggaaccct	tacaactatt	gaaatgcaga	gggaagccct	cgaaggagct	agcacaaata	1200
ctgctgtatt	agattctatg	aaaaatgctg	cagatgccct	taagaaagct	cataagaatt	1260
tgaatgtaga	tgatgttcac	gatatcatgg	atggtatcgc	acagcgactg	ctgagggacg	1320
tcgagctccc	gcttggtatc	tgcattacaa	tgaaatgagc	aaagactatg	tgagtaacac	1380
tggtcaacac	tagggagaag	gcatcgagca	agatacgtat	gtaaagagaa	gcaatatagt	1440
gtcagttggt	agatactaga	taccatcagg	aggtaaggag	agcaacaaaa	aggaaactct	1500
ttatttttaa	attttgttac	aacaaacaag	cagatcaatg	catcaaaata	ctgtcagtac	1560
ttatttcttc	agacaacaat	atttaaaaca	agtgcatctg	atcttgactt	atggtcacaa	1620
taaaggagca	gagataaaca	tcaaaatttc	gtcatttata	tttattcctt	caggcgttaa	1680
caatttaaca	gcacacaaac	aaaaacagaa	taggaatatc	taattttggc	aaataataag	1740
ctctgcagac	gaacaaatta	ttatagtatc	gcctataata	tgaatcccta	tactattgac	1800
ccatgtagta	tgaagcctgt	gcctaaatta	acagcaaact	tctgaatcca	agtgccctat	1860
aacaccaaca	tgtgcttaaa	taaataccgc	taagcaccaa	attacacatt	tctcgtattg	1920
ctgtgtaggt	tctatcttcg	tttcgtacta	ccatgtccct	atattttgct	gctacaaagg	1980
acggcaagta	atcagcacag	gcagaacacg	atttcagagt	gtaattctag	atccagctaa	2040
accactctca	gcaatcacca	cacaagagag	cattcagaga	aacgtggcag	taacaaaggc	2100
agagggcgga	gtgagcgcgt	accgaagacg	gttcagcgtg	tcctctccaa	atgaaatgaa	2160

	concentata tagaggaagg georegogaa ggatageggg aregegede arecettaeg	2220
	tcagtggaga tatcacatca atccacttgc tttgaagacg tggttggaac gtcttctttt	2280
	tccacgatgc tcctcgtggg tgggggtcca tctttgggac cactgtcggc agaggcatct	2340
	tcaacgatgg cctttccttt atcgcaatga tggcatttgt aggagccacc ttccttttcc	2400
	actatcttca caataaagtg acagatagct gggcaatgga atccgaggag gtttccggat	2460
	attacccttt gttgaaaagt ctcaatcgga ccatcacatc aatccacttg ctttgaagac	2520
	gtggttggaa cgtcttcttt ttccacgatg ctcctcgtgg gtgggggtcc atctttggga	2580
	ccactgtcgg cagaggcatc ttcaacgatg gcctttcctt tatcgcaatg atggcatttg	2640
	taggagecae etteettte caetatette acaataaagt gacagatage tgggeaatgg	2700
	aatccgagga ggtttccgga tattaccctt tgttgaaaag tctcaatcgg acc	2753
5	<210> 13 <211> 240 <212> RNA <213> Secuencia artificial	
	<220> <223> es una secuencia de ribonucleótidos que representa la repetición invertida del ARN de Dv_9	Snf7o
	<400> 13	
	gcaaagaaaa augcgucgaa aaauaaaaga guugcacucc aagcccucaa aaagaagaaa	60
	cgauuggaaa agacccaacu acaaauagau ggaacccuua caacuauuga aaugcagagg	120
	gaagcccucg aaggagcuag cacaaauacu gcuguauuag auucuaugaa aaaugcugca	180
	gaugcccuua agaaagcuca uaagaauuug aauguagaug auguucacga uaucauggau	240
10	<210> 14 <211> 3712 <212> DNA <213> Secuencia artificial	
15	<220> <223> es una secuencia de nucleótidos que representa la cadena sentido de un casete de expresión incluye un gen recombinante diseñado para codificar y expresar una proteína Cry3Bb	ón de ADN que
20	<220> <221> promotor <222> (1)(949) <223> Promotor PIIG de maíz	
	<220> <221> misc_feature <222> (956)(1016) <223> Cadena sentido del líder Lhcb1 de trigo	
25	<220> <221> Intrón <222> (1033)(1512) <223> Cadena de sentido del intrón Act1 de arroz	
30	<220> <221> CDS <222> (1522)(3483) <223> Cadena sentido del ORF de cry3B2	
	<220>	

<221> 3'UTR

<222> (3503)..(3712)

<223> Cadena sentido de Hsp17 3' UTR de trigo

<400> 14

60 acaaatcaca ggccatgaac cctactcatg cttcgatttg tccaacacac acttaccaaa actcaaatca tqtccttqac aqtcactcqq qactcataac atqqqtacqt atcqactatq 120 tcaactatat gtgttctcat cagattatag attggcctag tacgtagtga tatttccact 180 agcactgtgg ttatggctgt acctgatagt gatatcagca ccgggtcatg gctctactac 240 caggtagtga gagtgacctt tatactgtca gactgtaact aaggatttcc aatcactgtt 300 360 cggatcctag gcttagaatt aagtaaaact ctatcactat aggctgcagc acactcggta tatattgatg ggccaacaga aattgtgcgt actatgcgcg atgtaaaatg gacataaacc 420 ctacccatat acaatgcaat aacttttgtc cggtctgggc caccggttag cagaggtcct 480 540 gatttcggtg gtagtggtag cttgatctgg tcgtcgtatc gtagagggat atataaaatc 600 atgtcacttt tgaagggagc gctcacagaa ataataggta ttcgcgggag ccgccccgc 660 agaacacaaa ataaggcgag cacgcacacg catcagtttc gataaaataa taatagcgcc agctgatcgg aacaattcca gctagcacta atgtatttct gcattgatct gtttatacaa 720 catgctacct cgttgagtga ttttgacatg atttgtcaac ttgctccgat cctatatctc 780 840 gatcgatctc cacatgacga tggttgttgt cctgtatccc atgacaacca ggcaacgctc 900 aaagcacaca tgcgttgccg attacccgtg catgccgcca agcacgaaag cacctccctc 960 cacaccgtcc atcagctata aaaaccatgc caagcaccct gtgaaaagcc ccgggaacca tcttccacac actcaagcca cactattgga gaacacacag ggacaacaca ccataagatc 1020 caagggagge ctccgccgcc gccggtaacc accccgcccc tctcctcttt ctttctccgt 1080 ttttttttcc gtctcggtct cgatctttgg ccttggtagt ttgggtgggc gagaggcggc 1140 1200 ttcgtgcgcg cccagatcgg tgcgcgggag gggcgggatc tcgcggctgg ggctctcgcc 1260 ggcgtggatc cggcccggat ctcgcgggga atggggctct cggatgtaga tctgcgatcc gccgttgttg ggggagatga tggggggttt aaaatttccg ccgtgctaaa caagatcagg 1320 aagaggggaa aagggcacta tggtttatat ttttatatat ttctgctgct tcgtcaggct 1380 tagatgtgct agatctttct ttcttctttt tgtgggtaga atttgaatcc ctcagcattg 1440 ttcatcggta gtttttcttt tcatgatttg tgacaaatgc agcctcgtgc ggagcttttt 1500

5

tgtaggtaga agtgatcaac c		ccc aac aat cgc tcc Pro Asn Asn Arg Ser 5	
gac acg atc aag gtc acc Asp Thr Ile Lys Val Thr 15			
cag tac ccg ctg gcc gac Gln Tyr Pro Leu Ala Asp 30			_
tac aag gag ttc ctg cgc Tyr Lys Glu Phe Leu Arg 45			
gac aac tcc acc gtc aag Asp Asn Ser Thr Val Lys 60			
ggg cag atc ctg ggc gtc Gly Gln Ile Leu Gly Val 75 80			
tcc ttc tac cag tcc ttc Ser Phe Tyr Gln Ser Phe 95	-		
ccc tgg aag gcc ttc atg Pro Trp Lys Ala Phe Met 110			
atc gag gag tac gcc aag Ile Glu Glu Tyr Ala Lys 125			
caa aac aac ttc gag gac Gln Asn Asn Phe Glu Asp 140			
acg cct ctg tcc ctg cgc Thr Pro Leu Ser Leu Arg 155 160			
ctg ttc tcc cag gcc gag Leu Phe Ser Gln Ala Glu 175			
gcc gtc tcc aag ttc gag Ala Val Ser Lys Phe Glu 190			
gcc aac acc cac ctc ctg Ala Asn Thr His Leu Leu 205			
gaa tgg ggc tac tcc tcg Glu Trp Gly Tyr Ser Ser 220			
ctg aag ctg acc caa cag Leu Lys Leu Thr Gln Gln			

235					240					245					250	
-		_			ctg Leu						_	_		_	_	2319
		_		_	agg Arg		_		_		_	_	_	_		2367
_	_				tac Tyr	_		_	_			_		_	_	2415
		_		_	gac Asp			_	_				_		_	2463
					ggt Gly 320											2511
_	_			_	ttc Phe	_			_						_	2559
_	_				tac Tyr			_	-							2607
			_		acc Thr							_	_	_		2655
					ggc Gly	-	_					_	_	_	_	2703
		_		_	aag Lys 400	_		_			_			_	_	2751
	_		_		ggc Gly	-	-		-		-	-	-	-	-	2799
					gac Asp											2847
_		_	_		aat Asn			_		_	_	_			_	2895
_	_	_			acc Thr		_			_		_	_			2943
	_	_			gcg Ala 480		_		_	-		_	-			2991
acc	atc	ccc	ttc	ttc	acc	tgg	acc	cac	cgc	tcc	gtc	gac	ttc	ttc	aac	3039

Thr Ile Pro Phe Phe Thr Trp Thr His Arg Ser Val Asp Phe Phe Asn 495 500 505	
acc atc gac gcc gag aag atc acc cag ctg ccc gtg gtc aag gcc tac Thr Ile Asp Ala Glu Lys Ile Thr Gln Leu Pro Val Val Lys Ala Tyr 510 515 520	3087
gcc ctg tcc tcg ggt gcc tcc atc att gag ggt cca ggc ttc acc ggt Ala Leu Ser Ser Gly Ala Ser Ile Ile Glu Gly Pro Gly Phe Thr Gly 525 530 535	3135
ggc aac ctg ctg ttc ctg aag gag tcc tcg aac tcc atc gcc aag ttc Gly Asn Leu Leu Phe Leu Lys Glu Ser Ser Asn Ser Ile Ala Lys Phe 540 545 550	3183
aag gtc acc ctg aac tcc gct gcc ttg ctg caa cgc tac cgc gtc cgcLys Val Thr Leu Asn Ser Ala Ala Leu Leu Gln Arg Tyr Arg Val Arg555560	3231
atc cgc tac gcc tcc acc acg aac ctg cgc ctg ttc gtc cag aac tcc Ile Arg Tyr Ala Ser Thr Thr Asn Leu Arg Leu Phe Val Gln Asn Ser 575 580 585	3279
aac aat gac ttc ctg gtc atc tac atc aac aag acc atg aac aag gac Asn Asn Asp Phe Leu Val Ile Tyr Ile Asn Lys Thr Met Asn Lys Asp 590 595 600	3327
gat gac ctg acc tac cag acc ttc gac ctc gcc acc acg aac tcc aac Asp Asp Leu Thr Tyr Gln Thr Phe Asp Leu Ala Thr Thr Asn Ser Asn 605 610 615	3375
atg ggc ttc tcg ggc gac aag aat gaa ctg atc att ggt gct gag tcc Met Gly Phe Ser Gly Asp Lys Asn Glu Leu Ile Ile Gly Ala Glu Ser 620 625 630	3423
ttc gtc tcc aac gag aag atc tac atc gac aag atc gag ttc atc ccc Phe Val Ser Asn Glu Lys Ile Tyr Ile Asp Lys Ile Glu Phe Ile Pro 635 640 645 650	3471
gtc cag ctg tga taggaactct gattgaattc tgcatgcgtt tggacgtatg Val Gln Leu	3523
ctcattcagg ttggagccaa tttggttgat gtgtgtgcga gttcttgcga gtctgatgag	3583
acatetetgt attgtgttte ttteeceagt gttttetgta ettgtgtaat eggetaateg	3643
ccaacagatt cggcgatgaa taaatgagaa ataaattgtt ctgattttga gtgcaaaaaa	3703
aaaggaatt	3712

<210> 15

<211> 653

<212> PRT

<213> Secuencia artificial

<220>

5

<223> Construcción sintética

<400> 15

Met Ala Asn Pro Asn Asn Arg Ser Glu His Asp Thr Ile Lys Val Thr

1				5					10					15	
Pro	Asn	Ser	Glu 20	Leu	Gln	Thr	Asn	His 25	Asn	Gln	Tyr	Pro	Leu 30	Ala	Asp
Asn	Pro	Asn 35	Ser	Thr	Leu	Glu	Glu 40	Leu	Asn	Tyr	Lys	Glu 45	Phe	Leu	Arg
Met	Thr 50	Glu	Asp	Ser	Ser	Thr 55	Glu	Val	Leu	Asp	Asn 60	Ser	Thr	Val	Lys
Asp 65	Ala	Val	Gly	Thr	Gly 70	Ile	Ser	Val	Val	Gly 75	Gln	Ile	Leu	Gly	Val 80
Val	Gly	Val	Pro	Phe 85	Ala	Gly	Ala	Leu	Thr 90	Ser	Phe	Tyr	Gln	Ser 95	Phe
Leu	Asn	Thr	Ile 100	Trp	Pro	Ser	Asp	Ala 105	Asp	Pro	Trp	Lys	Ala 110	Phe	Met
Ala	Gln	Val 115	Glu	Val	Leu	Ile	Asp 120	Lys	Lys	Ile	Glu	Glu 125	Tyr	Ala	Lys
Ser	Lys 130	Ala	Leu	Ala	Glu	Leu 135	Gln	Gly	Leu	Gln	Asn 140	Asn	Phe	Glu	Asp
Tyr 145	Val	Asn	Ala	Leu	Asn 150	Ser	Trp	Lys	Lys	Thr 155	Pro	Leu	Ser	Leu	Arg 160
Ser	Lys	Arg	Ser	Gln 165	Asp	Arg	Ile	Arg	Glu 170	Leu	Phe	Ser	Gln	Ala 175	Glu
Ser	His	Phe	Arg 180	Asn	Ser	Met	Pro	Ser 185	Phe	Ala	Val	Ser	Lys 190	Phe	Glu
Val	Leu	Phe 195	Leu	Pro	Thr	Tyr	Ala 200	Gln	Ala	Ala	Asn	Thr 205	His	Leu	Leu
Leu	Leu 210	Lys	Asp	Ala	Gln	Val 215	Phe	Gly	Glu	Glu	Trp 220	Gly	Tyr	Ser	Ser
Glu 225	Asp	Val	Ala	Glu	Phe 230	Tyr	Arg	Arg	Gln	Leu 235	Lys	Leu	Thr	Gln	Gln 240
Tyr	Thr	Asp	His	Cys 245		Asn	Trp	Tyr	Asn 250	Val	Gly	Leu	Asn	Gly 255	Leu

Arg	Gly	Ser	Thr 260	Tyr	Asp	Ala	Trp	Val 265	Lys	Phe	Asn	Arg	Phe 270	Arg	Arg
Glu	Met	Thr 275	Leu	Thr	Val	Leu	Asp 280	Leu	Ile	Val	Leu	Phe 285	Pro	Phe	Tyr
Asp	Ile 290	Arg	Leu	Tyr	Ser	Lys 295	Gly	Val	Lys	Thr	Glu 300	Leu	Thr	Arg	Asp
Ile 305	Phe	Thr	Asp	Pro	Ile 310	Phe	Leu	Leu	Thr	Thr 315	Leu	Gln	Lys	Tyr	Gly 320
Pro	Thr	Phe	Leu	Ser 325	Ile	Glu	Asn	Ser	Ile 330	Arg	Lys	Pro	His	Leu 335	Phe
Asp	Tyr	Leu	Gln 340	Gly	Ile	Glu	Phe	His 345	Thr	Arg	Leu	Arg	Pro 350	Gly	Tyr
Phe	Gly	Lys 355	Asp	Ser	Phe	Asn	Tyr 360	Trp	Ser	Gly	Asn	Tyr 365	Val	Glu	Thr
Arg	Pro 370	Ser	Ile	Gly	Ser	Ser 375	Lys	Thr	Ile	Thr	Ser 380	Pro	Phe	Tyr	Gly
Asp 385	Lys	Ser	Thr	Glu	Pro 390	Val	Gln	Lys	Leu	Ser 395	Phe	Asp	Gly	Gln	Lys 400
Val	Tyr	Arg	Thr	Ile 405	Ala	Asn	Thr	Asp	Val 410	Ala	Ala	Trp	Pro	Asn 415	Gly
Lys	Val	Tyr	Leu 420	Gly	Val	Thr	Lys	Val 425	Asp	Phe	Ser	Gln	Tyr 430	Asp	Asp
Gln	Lys	Asn 435	Glu	Thr	Ser	Thr	Gln 440	Thr	Tyr	Asp	Ser	Lys 445	Arg	Asn	Asn
Gly	His 450	Val	Ser	Ala	Gln	Asp 455	Ser	Ile	Asp	Gln	Leu 460	Pro	Pro	Glu	Thr
Thr 465	Asp	Glu	Pro	Leu	Glu 470	Lys	Ala	Tyr	Ser	His 475	Gln	Leu	Asn	Tyr	Ala 480
Glu	Cys	Phe	Leu	Met 485	Gln	Asp	Arg	Arg	Gly 490	Thr	Ile	Pro	Phe	Phe 495	Thr
Trp	Thr	His	Arg 500	Ser	Val	Asp	Phe	Phe 505	Asn	Thr	Ile	Asp	Ala 510	Glu	Lys

Ile Thr Gln Leu Pro Val Val Lys Ala Tyr Ala Leu Ser Ser Gly Ala

			515					520					525					
	Ser	Ile 530	Ile	Glu	Gly	Pro	Gly 535	Phe	Thr	Gly	Gly	Asn 540	Leu	Leu	Phe	Leu		
	Lys 545	Glu	Ser	Ser	Asn	Ser 550	Ile	Ala	Lys	Phe	Lys 555	Val	Thr	Leu	Asn	Ser 560		
	Ala	Ala	Leu	Leu	Gln 565	Arg	Tyr	Arg	Val	Arg 570	Ile	Arg	Tyr	Ala	Ser 575	Thr		
	Thr	Asn	Leu	Arg 580	Leu	Phe	Val	Gln	Asn 585	Ser	Asn	Asn	Asp	Phe 590	Leu	Val		
	Ile	Tyr	Ile 595	Asn	Lys	Thr	Met	Asn 600	Lys	Asp	Asp	Asp	Leu 605	Thr	Tyr	Gln		
	Thr	Phe 610	Asp	Leu	Ala	Thr	Thr 615	Asn	Ser	Asn	Met	Gly 620	Phe	Ser	Gly	Asp		
	Lys 625	Asn	Glu	Leu	Ile	Ile 630	Gly	Ala	Glu	Ser	Phe 635	Val	Ser	Asn	Glu	Lys 640		
	Ile	Tyr	Ile	Asp	Lys 645	Ile	Glu	Phe	Ile	Pro 650	Val	Gln	Leu					
<210> 10 <211> 43 <212> D <213> S	370 NA	cia ar	tificial															
<220> <223> es incluye u sintasa (ın ger	n reco																
<400> 16	6																	
gaca	acaad	ca to	gctto	ctcat	caa	cato	gag	ggaa	gagg	ga g	ggag	aaag	t gt	cgcc	tggt		60	
cacc.	tccat	t gt	caca	actaç	g cca	ctgo	rcca	gctc	tccc	ac a	.ccac	caat	g cc	aggg	gcga		120	
gctt	tagca	ac aç	gccad	ccgct	t tca	cctc	cac	cacc	gcac	ta c	ccta	gctt	c gc	ccaa	cagc		180	
cacc	gtcaa	ac go	catao	ctctc	c cgt	caac	ata	agag	agag	ag a	.gaag	agga	g ag	tagc	catg		240	
tggg	gagga	ag ga	aataq	gtaca	a tgo	ggcc	tac	cgtt	tggc	aa g	ttat	tttg	g gt	tgcc	aagt		300	
tagg	ccaat	a aç	gggg	aggga	a ttt	ggcc	atc	cggt	tgga	aa g	gtta	ttgg	g gt	agta	tctt		360	
ttta	ctaga	aa tt	gtca	aaaa	a aaa	atag	ıttt	gaga	gcca	tt t	ggag	agga	t gt	tgcc	tgtt		420	

5

10

agaggtgctc	ttaggacatc	aaattccata	aaaacatcag	aaaaattctc	tcgatgaaga	480
tttataacca	ctaaaactgc	cctcaattcg	aagggagttc	aaaacaatta	aaatcatgtt	540
cgaattgagt	ttcaatttca	ctttaacccc	tttgaaatct	caatggtaaa	acatcaaccc	600
gtcaggtagc	atggttcttt	ttattccttt	caaaaagagt	taattacaaa	cagaatcaaa	660
actaacagtt	aggcccaagg	cccatccgag	caaacaatag	atcatgggcc	aggcctgcca	720
ccaccctccc	cctcctggct	cccgctcttg	aatttcaaaa	tccaaaaata	tcggcacgac	780
tggccgccga	cggagcgggc	ggaaaatgac	ggaacaaccc	ctcgaattct	accccaacta	840
cgcccaccaa	cccacacgcc	actgacaatc	cggtcccacc	cttgtgggcc	cacctacaag	900
cgagacgtca	gtcgctcgca	gcaaccagtg	ggcccacctc	ccagtgagcg	gcgggtagat	960
ctggactctt	acccacccac	actaaacaaa	acggcatgaa	tattttgcac	taaaaccctc	1020
agaaaaattc	cgatattcca	aaccagtaca	gttcctgacc	gttggaggag	ccaaagtgga	1080
gcggagtgta	aaattgggaa	acttaatcga	gggggttaaa	cgcaaaaacg	ccgaggcgcc	1140
tcccgctcta	tagaaagggg	aggagtggga	ggtggaaacc	ctaccacacc	gcagagaaag	1200
gcgtcttcgt	actcgcctct	ctccgcgccc	tcctccgccg	ccgctcgccg	ccgttcgtct	1260
ccgccgccac	cggctagcca	tccaggtaaa	acaaacaaaa	acggatctga	tgcttccatt	1320
cctccgtttc	tcgtagtagc	gcgcttcgat	ctgtgggtgg	atctgggtga	tcctggggtg	1380
tggttcgttc	tgtttgatag	atctgtcggt	ggatctggcc	ttctgtggtt	gtcgatgtcc	1440
ggatctgcgt	tttgatcagt	ggtagttcgt	ggatctggcg	aaatgttttg	gatctggcag	1500
tgagacgcta	agaatcggga	aatgatgcaa	tattaggggg	gtttcggatg	gggatccact	1560
gaattagtct	gtctccctgc	tgataatctg	ttcctttttg	gtagatctgg	ttagtgtatg	1620
tttgtttcgg	atagatctga	tcaatgcttg	tttgttttt	caaattttct	acctaggttg	1680
tataggaatg	gcatgcggat	ctggttggat	tgccatgatc	cgtgctgaaa	tgcccctttg	1740
gttgatggat	cttgatattt	tactgctgtt	cacctagatt	tgtactcccg	tttatactta	1800
atttgttgct	tattatgaat	agatctgtaa	cttaggcaca	tgtatggacg	gagtatgtgg	1860
atctgtagta	tgtacattgc	tgcgagctaa	gaactatttc	agagcaagca	cagaaaaaaa	1920
tatttagaca	gattgggcaa	ctatttgatg	gtctttggta	tcatgctttg	tagtgctcgt	1980
ttctgcgtag	taatcttttg	atctgatctg	aagataggtg	ctattatatt	cttaaaggtc	2040
attagaacgc	tatctgaaag	gctgtattat	gtggattggt	tcacctgtga	ctccctgttc	2100
gtcttgtctt	gataaatcct	gtgataaaaa	aaattcttaa	ggcgtaattt	gttgaaatct	2160
tgttttgtcc	tatgcagcct	gatccatggc	gcaagttagc	agaatctgca	atggtgtgca	2220
gaacccatct	cttatctcca	atctctcgaa	atccagtcaa	cgcaaatctc	ccttatcggt	2280
ttctctgaag	acgcagcagc	atccacgagc	ttatccgatt	tcgtcgtcgt	ggggattgaa	2340

gaagagtggg	atgacgttaa	ttggctctga	gcttcgtcct	cttaaggtca	tgtcttctgt	2400
ttccacggcg	tgcatgcttc	acggtgcaag	cagccggccc	gcaaccgccc	gcaaatcctc	2460
tggcctttcc	ggaaccgtcc	gcattcccgg	cgacaagtcg	atctcccacc	ggtccttcat	2520
gttcggcggt	ctcgcgagcg	gtgaaacgcg	catcaccggc	cttctggaag	gcgaggacgt	2580
catcaatacg	ggcaaggcca	tgcaggcgat	gggcgcccgc	atccgtaagg	aaggcgacac	2640
ctggatcatc	gatggcgtcg	gcaatggcgg	cctcctggcg	cctgaggcgc	cgctcgattt	2700
cggcaatgcc	gccacgggct	gccgcctgac	gatgggcctc	gtcggggtct	acgatttcga	2760
cagcaccttc	atcggcgacg	cctcgctcac	aaagcgcccg	atgggccgcg	tgttgaaccc	2820
gctgcgcgaa	atgggcgtgc	aggtgaaatc	ggaagacggt	gaccgtcttc	ccgttacctt	2880
gcgcgggccg	aagacgccga	cgccgatcac	ctaccgcgtg	ccgatggcct	ccgcacaggt	2940
gaagtccgcc	gtgctgctcg	ccggcctcaa	cacgcccggc	atcacgacgg	tcatcgagcc	3000
gatcatgacg	cgcgatcata	cggaaaagat	gctgcagggc	tttggcgcca	accttaccgt	3060
cgagacggat	gcggacggcg	tgcgcaccat	ccgcctggaa	ggccgcggca	agctcaccgg	3120
ccaagtcatc	gacgtgccgg	gcgacccgtc	ctcgacggcc	ttcccgctgg	ttgcggccct	3180
gcttgttccg	ggctccgacg	tcaccatcct	caacgtgctg	atgaacccca	cccgcaccgg	3240
cctcatcctg	acgctgcagg	aaatgggcgc	cgacatcgaa	gtcatcaacc	cgcgccttgc	3300
cggcggcgaa	gacgtggcgg	acctgcgcgt	tegeteetee	acgctgaagg	gcgtcacggt	3360
gccggaagac	cgcgcgcctt	cgatgatcga	cgaatatccg	attctcgctg	tcgccgccgc	3420
cttcgcggaa	ggggcgaccg	tgatgaacgg	tctggaagaa	ctccgcgtca	aggaaagcga	3480
ccgcctctcg	gccgtcgcca	atggcctcaa	gctcaatggc	gtggattgcg	atgagggcga	3540
gacgtcgctc	gtcgtgcgtg	gccgccctga	cggcaagggg	ctcggcaacg	cctcgggcgc	3600
cgccgtcgcc	acccatctcg	atcaccgcat	cgccatgagc	ttcctcgtca	tgggcctcgt	3660
gtcggaaaac	cctgtcacgg	tggacgatgc	cacgatgatc	gccacgagct	tcccggagtt	3720
catggacctg	atggccgggc	tgggcgcgaa	gatcgaactc	tccgatacga	aggctgcctg	3780
atgagctcca	gggttcttgc	ctggtgcctt	ggcaatgctt	gattactgct	gctatcctat	3840
gatctgtccg	tgtgggcttc	tatctatcag	tttgtgtgtc	tggttttgaa	aaacatttgc	3900
ttttcgatta	tgtagggttt	gcttgtagct	ttcgctgctg	tgacctgtgt	tgtttatgtg	3960
aaccttcttt	gtggcatctt	taatatccaa	gttcgtggtt	tgtcgtaaaa	cgaagcctct	4020
acttcgtaaa	gttgtgtcta	tagcattgaa	atcgttttt	tgctcgagaa	taattgtgac	4080
ctttagttgg	cgtgaaacta	gttttggata	tctgattctc	tggttcgcaa	tcttgagatc	4140
gtcgctgctt	aggtgagcta	agtgatgttc	ctaagtaaat	gctcctcacc	agaatacgta	4200

	gctgtgtgaa aagagaacgc gtgaatacgt agctgtgtaa agattgtgtc ccaagtaaac 4260
	ctcagtgatt tttgtttgga tttttaattt agaaacattc gactgggagc ggctagagcc 4320
	acacccaagt tcctaactat gataaagttg ctctgtaaca gaaaacacca 4370
5	<210> 17 <211> 531 <212> PRT <213> Secuencia artificial
	<220> <223> es una traducción de secuencia de aminoácidos de las posiciones de nucleótidos 2186 a 3781 de la SEQ ID NO: 16
10	<220> <221> misc_feature <222> (1)(76) <223> Péptido de tránsito de cloroplasto (CTP) de <i>Arabidopsis thaliana</i> (berro de Thale)
15	<220> <221> misc_feature <222> (77)(531) <223> Gen de la 5-enolpiruvilshikimato-3-fosfato sintasa (EPSPS) de la cepa CP4 de Agrobacterium sp
	<400> 17
	Met Ala Gln Val Ser Arg Ile Cys Asn Gly Val Gln Asn Pro Ser Leu 1 5 10 15
	Ile Ser Asn Leu Ser Lys Ser Ser Gln Arg Lys Ser Pro Leu Ser Val 20 25 30
	Ser Leu Lys Thr Gln Gln His Pro Arg Ala Tyr Pro Ile Ser Ser Ser 35 40 45
	Trp Gly Leu Lys Lys Ser Gly Met Thr Leu Ile Gly Ser Glu Leu Arg 50 55 60
	Pro Leu Lys Val Met Ser Ser Val Ser Thr Ala Cys Met Leu His Gly 65 70 75 80
	Ala Ser Ser Arg Pro Ala Thr Ala Arg Lys Ser Ser Gly Leu Ser Gly 85 90 95
	Thr Val Arg Ile Pro Gly Asp Lys Ser Ile Ser His Arg Ser Phe Met 100 105 110
	Phe Gly Gly Leu Ala Ser Gly Glu Thr Arg Ile Thr Gly Leu Leu Glu 115 120 125

Gly	Glu 130	Asp	Val	Ile	Asn	Thr 135	Gly	Lys	Ala	Met	Gln 140	Ala	Met	Gly	Ala
Arg 145	Ile	Arg	Lys	Glu	Gly 150	Asp	Thr	Trp	Ile	Ile 155	Asp	Gly	Val	Gly	Asn 160
Gly	Gly	Leu	Leu	Ala 165	Pro	Glu	Ala	Pro	Leu 170	Asp	Phe	Gly	Asn	Ala 175	Ala
Thr	Gly	Cys	Arg 180	Leu	Thr	Met	Gly	Leu 185	Val	Gly	Val	Tyr	Asp 190	Phe	Asp
Ser	Thr	Phe 195	Ile	Gly	Asp	Ala	Ser 200	Leu	Thr	Lys	Arg	Pro 205	Met	Gly	Arg
Val	Leu 210	Asn	Pro	Leu	Arg	Glu 215	Met	Gly	Val	Gln	Val 220	Lys	Ser	Glu	Asp
Gly 225	Asp	Arg	Leu	Pro	Val 230	Thr	Leu	Arg	Gly	Pro 235	Lys	Thr	Pro	Thr	Pro 240
Ile	Thr	Tyr	Arg	Val 245	Pro	Met	Ala	Ser	Ala 250	Gln	Val	Lys	Ser	Ala 255	Val
Leu	Leu	Ala	Gly 260	Leu	Asn	Thr	Pro	Gly 265	Ile	Thr	Thr	Val	Ile 270	Glu	Pro
Ile	Met	Thr 275	Arg	Asp	His	Thr	Glu 280	Lys	Met	Leu	Gln	Gly 285	Phe	Gly	Ala
Asn	Leu 290	Thr	Val	Glu	Thr	Asp 295	Ala	Asp	Gly	Val	Arg 300	Thr	Ile	Arg	Leu
Glu 305	Gly	Arg	Gly	Lys	Leu 310	Thr	Gly	Gln	Val	Ile 315	Asp	Val	Pro	Gly	Asp 320
Pro	Ser	Ser	Thr	Ala 325	Phe	Pro	Leu	Val	Ala 330	Ala	Leu	Leu	Val	Pro 335	Gly
Ser	Asp	Val	Thr 340	Ile	Leu	Asn	Val	Leu 345	Met	Asn	Pro	Thr	Arg 350	Thr	Gly
Leu	Ile	Leu 355	Thr	Leu	Gln	Glu	Met 360	Gly	Ala	Asp	Ile	Glu 365	Val	Ile	Asn
Pro	Arg 370	Leu	Ala	Gly	Gly	Glu 375	Asp	Val	Ala	Asp	Leu 380	Arg	Val	Arg	Ser

Ser Thr Leu Lys Gly Val Thr Val Pro Glu Asp Arg Ala Pro Ser Met

	385	5				390					395					400
	Ile	a Asp	Glu	Tyr	Pro 405	Ile	Leu	Ala	Val	Ala 410	Ala	Ala	Phe	Ala	Glu 415	Gly
	Ala	1 Thr	Val	Met 420	Asn	Gly	Leu	Glu	Glu 425	Leu	Arg	Val	Lys	Glu 430	Ser	Asp
	Arç	J Leu	Ser 435	Ala	Val	Ala	Asn	Gly 440	Leu	Lys	Leu	Asn	Gly 445	Val	Asp	Cys
	Ası	Glu 450	Gly	Glu	Thr	Ser	Leu 455	Val	Val	Arg	Gly	Arg 460	Pro	Asp	Gly	Lys
	Gl ₃ 465	, Leu	Gly	Asn	Ala	Ser 470	Gly	Ala	Ala	Val	Ala 475	Thr	His	Leu	Asp	His 480
	Arç	, Ile	Ala	Met	Ser 485	Phe	Leu	Val	Met	Gly 490	Leu	Val	Ser	Glu	Asn 495	Pro
	Val	Thr	Val	Asp 500	Asp	Ala	Thr	Met	Ile 505	Ala	Thr	Ser	Phe	Pro 510	Glu	Phe
	Met	: Asp	Leu 515	Met	Ala	Gly	Leu	Gly 520	Ala	Lys	Ile	Glu	Leu 525	Ser	Asp	Thr
	Lys	530	Ala													
5	<210> 18 <211> 29 <212> DNA <213> secue	encia a	rtificia	I												
	<220> <223> es un	a secu	encia	de nu	cleóti	dos d	e un c	oligonu	ucleót	ido sir	ntético	y se	cono	ce cor	no SC	27011
	<400> 18 aaggaaaata	aaaag	gcaaa	acac	taatg						29					
10	<210> 19 <211> 14 <212> DNA <213> secue	encia a	rtificia	I												
15	<220> <223> es un	a secu	encia	de nu	cleóti	dos d	e un c	oligonu	ucleót	ido sir	ntético	y se	cono	ce cor	no PE	3552
	<400> 19 ccggacatga a	agcc									14					
20	<210> 20 <211> 26 <212> DNA <213> secue	encia a	rtificia	I												
	<220>															

	<223> es una secuencia de nucleótidos de un oligonucleótido sintético y se conoce como SQ9085	
	<400> 20 actcattgct gatccatgta gatttc 26	
5	<210> 21 <211> 80 <212> DNA <213> secuencia artificial	
10	<220> <223> es una secuencia de nucleótidos del Evento MON 87411 correspondiente a las posiciones 462 SEQ ID NO: 1	2 a 541 de la
	<400> 21	
	aaggaaaata aaaaggcaaa acactaatga atagttaagt ggcttcatgt ccgggaaatc	60
	tacatggatc agcaatgagt	80
15	<210> 22 <211> 19 <212> DNA <213> secuencia artificial	
	<220> <223> es una secuencia de nucleótidos de un oligonucleótido sintético denominado SQ27066	
20	<400> 22 acaccatcta gagcggccg 19	
	<210> 23 <211> 25 <212> DNA <213> secuencia artificial	
25	<220> <223> es una secuencia de nucleótidos de un oligonucleótido sintético denominado PB11300	
	<400> 23 tttaaactat cagtgtttag agaat 25	
30	<210> 24 <211> 29 <212> DNA <213> secuencia artificial	
	<220> <223> es una secuencia de nucleótidos de un oligonucleótido sintético denominado SQ26977	
35	<400> 24 gggtagatta atacatctag aggtttgtg 29	
40	<210> 25 <211> 75 <212> DNA <213> secuencia artificial	
	<220> <223> es una secuencia de nucleótidos del Evento MON 87411 correspondiente a las posiciones 11 de la SEQ ID NO: 1	710 a 11784
	<400> 25	
	acaccatcta gageggeege gtttaaacta teagtgttta gagaateaca aacetetaga	60
45	tgtattaatc taccc	75
	<210> 26	

	<211> 11743	
	<212> DNA	
	<213> Secuencia artificial	
	<220>	
5	<223> Construcción de ADN 417	
	<220>	
	<221> promotor	
	<222> (2627)(3238)	
	<223> representa la secuencia complementaria nversa del promotor 35S del CaMV mejorado	
10	<220>	
	<221> promotor	
	<222> (2627)(4213)	
	<223> representa una región promotora divergente que promueve la transcripción bidireccional	
	<220>	
15	<221> promotor	
	<222> (3265)(4213)	
	<223> Promotor PIIG de maíz	
	<400> 26	
	aaaagtccca tgtggatcac tccgttgccc cgtcgctcac cgtgttgggg ggaaggtgca	60
	catggctcag ttctcaatgg aaattatctg cctaaccggc tcagttctgc gtagaaacca	120
	acatgcaagc tccaccgggt gcaaagcggc agcggcggca ggatatattc aattgtaaat	180
	ggcttcatgt ccgggaaatc tacatggatc agcaatgagt atgatggtca atatggagaa	240
	aaagaaagag taattaccaa tttttttca attcaaaaat gtagatgtcc gcagcgttat	300
	tataaaatga aagtacattt tgataaaacg acaaattacg atccgtcgta tttataggcg	360
	aaaggaataa agaaattatt gtaattggga aatgtttatt tggaggtgtg tagattgagg	420

tccaaatggg	ggcttagatg	agaaacttca	cgatcgatgc	ggccaccact	cgaggtcgag	480
gtaccgttgt	caatcaattg	gcaagtcata	aaatgcatta	aaaaatattt	tcatactcaa	540
ctacaaatcc	atgagtataa	ctataattat	aaagcaatga	ttagaatctg	acaaggattc	600
tggaaaatta	cataaaggaa	agttcataaa	tgtctaaaac	acaagaggac	atacttgtat	660
tcagtaacat	ttgcagcttt	tctaggtctg	aaaatatatt	tgttgcctag	tgaataagca	720
taatggtaca	actacaagtg	ttttactcct	catattaact	tcggtcatta	gaggccacga	780
tttgacacat	ttttactcaa	aacaaaatgt	ttgcatatct	cttataattt	caaattcaac	840
acacaacaaa	taagagaaaa	aacaaataat	attaatttga	gaatgaacaa	aaggaccata	900
tcattcatta	actcttctcc	atccatttcc	atttcacagt	tcgatagcga	aaaccgaata	960
aaaaacacag	taaattacaa	gcacaacaaa	tggtacaaga	aaaacagttt	tcccaatgcc	1020
ataatactca	aactcagtag	gattctggtg	tgtgcgcaat	gaaactgatg	cattgaactt	1080
gacgaacgtt	gtcgaaaccg	atgatacgaa	cgaaagctag	gcctcagcga	gtaccgctgg	1140
cgatctaatc	catgatatcg	tgaacatcat	ctacattcaa	attcttatga	gctttcttaa	1200
gggcatctgc	agcattttc	atagaatcta	atacagcagt	atttgtgcta	gctccttcga	1260
gggcttccct	ctgcatttca	atagttgtaa	gggttccatc	tatttgtagt	tgggtctttt	1320
ccaatcgttt	cttctttttg	agggcttgga	gtgcaactct	tttattttc	gacgcatttt	1380
tctttgcgct	cctgcaggcg	gccgcgtgga	tgaggagtta	atcggtcgtg	tgagagtagt	1440
gatcgagtgg	atgtcgtcga	gagtgatgag	tgttgatgtt	gttagtgata	tgtggtagaa	1500
ggtatcgtga	taaagcgtta	acgcgatcgc	agtacttgca	aagaaaaatg	cgtcgaaaaa	1560
taaaagagtt	gcactccaag	ccctcaaaaa	gaagaaacga	ttggaaaaga	cccaactaca	1620
aatagatgga	acccttacaa	ctattgaaat	gcagagggaa	gccctcgaag	gagctagcac	1680
aaatactgct	gtattagatt	ctatgaaaaa	tgctgcagat	gcccttaaga	aagctcataa	1740
gaatttgaat	gtagatgatg	ttcacgatat	catggatggt	atcgcacagc	gactgctgag	1800
ggacgtcgag	ctcccgcttg	gtatctgcat	tacaatgaaa	tgagcaaaga	ctatgtgagt	1860
aacactggtc	aacactaggg	agaaggcatc	gagcaagata	cgtatgtaaa	gagaagcaat	1920
atagtgtcag	ttggtagata	ctagatacca	tcaggaggta	aggagagcaa	caaaaaggaa	1980
actctttatt	tttaaatttt	gttacaacaa	acaagcagat	caatgcatca	aaatactgtc	2040
agtacttatt	tcttcagaca	acaatattta	aaacaagtgc	atctgatctt	gacttatggt	2100
cacaataaag	gagcagagat	aaacatcaaa	atttcgtcat	ttatatttat	tccttcaggc	2160
gttaacaatt	taacagcaca	caaacaaaaa	cagaatagga	atatctaatt	ttggcaaata	2220
ataagctctg	cagacgaaca	aattattata	gtatcgccta	taatatgaat	ccctatacta	2280

ttgacccatg tagtatga	ag cctgtgccta	aattaacagc	aaacttctga	atccaagtgc	2340
cctataacac caacatgt	gc ttaaataaat	accgctaagc	accaaattac	acatttctcg	2400
tattgctgtg taggttct	at cttcgtttcg	tactaccatg	tccctatatt	ttgctgctac	2460
aaaggacggc aagtaatc	ag cacaggcaga	acacgatttc	agagtgtaat	tctagatcca	2520
gctaaaccac tctcagca	at caccacacaa	gagagcattc	agagaaacgt	ggcagtaaca	2580
aaggcagagg gcggagtg	ag cgcgtaccga	agacggttca	gcgtgtcctc	tccaaatgaa	2640
atgaacttcc ttatatag	ag gaagggtctt	gcgaaggata	gtgggattgt	gcgtcatccc	2700
ttacgtcagt ggagatat	ca catcaatcca	cttgctttga	agacgtggtt	ggaacgtctt	2760
ctttttccac gatgctcc	tc gtgggtgggg	gtccatcttt	gggaccactg	tcggcagagg	2820
catcttcaac gatggcct	tt cctttatcgc	aatgatggca	tttgtaggag	ccaccttcct	2880
tttccactat cttcacaa	ta aagtgacaga	tagctgggca	atggaatccg	aggaggtttc	2940
cggatattac cctttgtt	ga aaagtctcaa	tcggaccatc	acatcaatcc	acttgctttg	3000
aagacgtggt tggaacgt	ct tctttttcca	cgatgctcct	cgtgggtggg	ggtccatctt	3060
tgggaccact gtcggcag	ag gcatcttcaa	cgatggcctt	tcctttatcg	caatgatggc	3120
atttgtagga gccacctt	cc ttttccacta	tcttcacaat	aaagtgacag	atagctgggc	3180
aatggaatcc gaggaggt	tt ccggatatta	ccctttgttg	aaaagtctca	atcggacctg	3240
cageetgeag getagegg	cg cgccacaaat	cacaggccat	gaaccctact	catgcttcga	3300
tttgtccaac acacactt	ac caaaactcaa	atcatgtcct	tgacagtcac	tcgggactca	3360
taacatgggt acgtatcg	ac tatgtcaact	atatgtgttc	tcatcagatt	atagattggc	3420
ctagtacgta gtgatatt	tc cactagcact	gtggttatgg	ctgtacctga	tagtgatatc	3480
agcaccgggt catggctc	ta ctaccaggta	gtgagagtga	cctttatact	gtcagactgt	3540
aactaaggat ttccaatc	ac tgttcggatc	ctaggcttag	aattaagtaa	aactctatca	3600
ctataggctg cagcacac	tc ggtatatatt	gatgggccaa	cagaaattgt	gcgtactatg	3660
cgcgatgtaa aatggaca	ta aaccctaccc	atatacaatg	caataacttt	tgtccggtct	3720
gggccaccgg ttagcaga	gg teetgattte	ggtggtagtg	gtagcttgat	ctggtcgtcg	3780
tatcgtagag ggatatat	aa aatcatgtca	cttttgaagg	gagcgctcac	agaaataata	3840
ggtattcgcg ggagccgc	cc ccgcagaaca	caaaataagg	cgagcacgca	cacgcatcag	3900
tttcgataaa ataataat	ag cgccagctga	tcggaacaat	tccagctagc	actaatgtat	3960
ttctgcattg atctgttt	at acaacatgct	acctcgttga	gtgattttga	catgatttgt	4020
caacttgctc cgatccta	ta tctcgatcga	tctccacatg	acgatggttg	ttgtcctgta	4080
teccatgaca accaggea	ac gctcaaagca	cacatgcgtt	gccgattacc	cgtgcatgcc	4140
gccaagcacg aaagcacc	tc cctccacacc	gtccatcagc	tataaaaacc	atgccaagca	4200

ccctgtgaaa	agccccggga	accatcttcc	acacactcaa	gccacactat	tggagaacac	4260
acagggacaa	cacaccataa	gatccaaggg	aggcctccgc	cgccgccggt	aaccaccccg	4320
cccctctcct	ctttcttct	ccgtttttt	ttccgtctcg	gtctcgatct	ttggccttgg	4380
tagtttgggt	gggcgagagg	cggcttcgtg	cgcgcccaga	tcggtgcgcg	ggagggggg	4440
gatctcgcgg	ctggggctct	cgccggcgtg	gatccggccc	ggatctcgcg	gggaatgggg	4500
ctctcggatg	tagatctgcg	atccgccgtt	gttgggggag	atgatggggg	gtttaaaatt	4560
tccgccgtgc	taaacaagat	caggaagagg	ggaaaagggc	actatggttt	atattttat	4620
atatttctgc	tgcttcgtca	ggcttagatg	tgctagatct	ttctttcttc	tttttgtggg	4680
tagaatttga	atccctcagc	attgttcatc	ggtagttttt	cttttcatga	tttgtgacaa	4740
atgcagcctc	gtgcggagct	tttttgtagg	tagaagtgat	caaccatggc	caaccccaac	4800
aatcgctccg	agcacgacac	gatcaaggtc	acccccaact	ccgagctcca	gaccaaccac	4860
aaccagtacc	cgctggccga	caaccccaac	tccaccctgg	aagagctgaa	ctacaaggag	4920
ttcctgcgca	tgaccgagga	ctcctccacg	gaggtcctgg	acaactccac	cgtcaaggac	4980
gccgtcggga	ccggcatctc	cgtcgttggg	cagatcctgg	gcgtcgttgg	cgtccccttc	5040
gcaggtgctc	tcacctcctt	ctaccagtcc	ttcctgaaca	ccatctggcc	ctccgacgcc	5100
gacccctgga	aggccttcat	ggcccaagtc	gaagtcctga	tcgacaagaa	gatcgaggag	5160
tacgccaagt	ccaaggccct	ggccgagctg	caaggcctgc	aaaacaactt	cgaggactac	5220
gtcaacgcgc	tgaactcctg	gaagaagacg	cctctgtccc	tgcgctccaa	gcgctcccag	5280
gaccgcatcc	gcgagctgtt	ctcccaggcc	gagtcccact	tccgcaactc	catgccgtcc	5340
ttcgccgtct	ccaagttcga	ggtcctgttc	ctgcccacct	acgcccaggc	tgccaacacc	5400
cacctcctgt	tgctgaagga	cgcccaggtc	ttcggcgagg	aatggggcta	ctcctcggag	5460
gacgtcgccg	agttctaccg	tcgccagctg	aagctgaccc	aacagtacac	cgaccactgc	5520
gtcaactggt	acaacgtcgg	cctgaacggc	ctgaggggct	ccacctacga	cgcatgggtc	5580
aagttcaacc	gcttccgcag	ggagatgacc	ctgaccgtcc	tggacctgat	cgtcctgttc	5640
cccttctacg	acatccgcct	gtactccaag	ggcgtcaaga	ccgagctgac	ccgcgacatc	5700
ttcacggacc	ccatcttcct	gctcacgacc	ctccagaagt	acggtcccac	cttcctgtcc	5760
atcgagaact	ccatccgcaa	gccccacctg	ttcgactacc	tccagggcat	cgagttccac	5820
acgcgcctga	ggccaggcta	cttcggcaag	gactccttca	actactggtc	cggcaactac	5880
gtcgagacca	ggccctccat	cggctcctcg	aagacgatca	cctccccttt	ctacggcgac	5940
aagtccaccg	agcccgtcca	gaagctgtcc	ttcgacggcc	agaaggtcta	ccgcaccatc	6000
gccaacaccg	acgtcgcggc	ttggccgaac	ggcaaggtct	acctgggcgt	cacgaaggtc	6060

gacttctccc	agtacgatga	ccagaagaac	gagacctcca	cccagaccta	cgactccaag	6120
cgcaacaatg	gccacgtctc	cgcccaggac	tccatcgacc	agctgccgcc	tgagaccact	6180
gacgagcccc	tggagaaggc	ctactcccac	cagctgaact	acgcggagtg	cttcctgatg	6240
caagaccgca	ggggcaccat	cccttcttc	acctggaccc	accgctccgt	cgacttcttc	6300
aacaccatcg	acgccgagaa	gatcacccag	ctgcccgtgg	tcaaggccta	cgccctgtcc	6360
tcgggtgcct	ccatcattga	gggtccaggc	ttcaccggtg	gcaacctgct	gttcctgaag	6420
gagteetega	actccatcgc	caagttcaag	gtcaccctga	actecgetge	cttgctgcaa	6480
cgctaccgcg	tccgcatccg	ctacgcctcc	accacgaacc	tgcgcctgtt	cgtccagaac	6540
tccaacaatg	acttcctggt	catctacatc	aacaagacca	tgaacaagga	cgatgacctg	6600
acctaccaga	ccttcgacct	cgccaccacg	aactccaaca	tgggcttctc	gggcgacaag	6660
aatgaactga	tcattggtgc	tgagtccttc	gtctccaacg	agaagatcta	catcgacaag	6720
atcgagttca	tccccgtcca	gctgtgatag	gaactctgat	tgaattctgc	atgcgtttgg	6780
acgtatgctc	attcaggttg	gagccaattt	ggttgatgtg	tgtgcgagtt	cttgcgagtc	6840
tgatgagaca	tctctgtatt	gtgtttcttt	ccccagtgtt	ttctgtactt	gtgtaatcgg	6900
ctaatcgcca	acagattcgg	cgatgaataa	atgagaaata	aattgttctg	attttgagtg	6960
caaaaaaaa	ggaattagat	ctgtgtgtgt	tttttggatc	ccattttcga	caagcttgcc	7020
tcgagacaac	aacatgcttc	tcatcaacat	ggagggaaga	gggagggaga	aagtgtcgcc	7080
tggtcacctc	cattgtcaca	ctagccactg	gccagctctc	ccacaccacc	aatgccaggg	7140
gcgagcttta	gcacagccac	cgcttcacct	ccaccaccgc	actaccctag	cttcgcccaa	7200
cagccaccgt	caacgcctcc	tctccgtcaa	cataagagag	agagagaaga	ggagagtagc	7260
catgtgggga	ggaggaatag	tacatggggc	ctaccgtttg	gcaagttatt	ttgggttgcc	7320
aagttaggcc	aataagggga	gggatttggc	catccggttg	gaaaggttat	tggggtagta	7380
tctttttact	agaattgtca	aaaaaaaata	gtttgagagc	catttggaga	ggatgttgcc	7440
tgttagaggt	gctcttagga	catcaaattc	cataaaaaca	tcagaaaaat	tctctcgatg	7500
aagatttata	accactaaaa	ctgccctcaa	ttcgaaggga	gttcaaaaca	attaaaatca	7560
tgttcgaatt	gagtttcaat	ttcactttaa	cccctttgaa	atctcaatgg	taaaacatca	7620
acccgtcagg	tagcatggtt	ctttttattc	ctttcaaaaa	gagttaatta	caaacagaat	7680
caaaactaac	agttaggccc	aaggcccatc	cgagcaaaca	atagatcatg	ggccaggcct	7740
gccaccaccc	teccctcct	ggatacagat	cttgaatttc	aaaatccaaa	aatatcggca	7800
cgactggccg	ccgacggagc	gggcggaaaa	tgacggaaca	acccctcgaa	ttctacccca	7860
actacgccca	ccaacccaca	cgccactgac	aatccggtcc	cacccttgtg	ggcccaccta	7920
caagcgagac	gtcagtcgct	cgcagcaacc	agtgggccca	cctcccagtg	agcggcgggt	7980

agatctggac	tcttacccac	ccacactaaa	caaaacggca	tgaatatttt	gcactaaaac	8040
cctcagaaaa	attccgatat	tccaaaccag	tacagttcct	gaccgttgga	ggagccaaag	8100
tggagcggag	tgtaaaattg	ggaaacttaa	tcgagggggt	taaacgcaaa	aacgccgagg	8160
cgcctcccgc	tctatagaaa	ggggaggagt	gggaggtgga	aaccctacca	caccgcagag	8220
aaaggcgtct	tcgtactcgc	ctctctccgc	gccctcctcc	geegeegete	gccgccgttc	8280
gtctccgccg	ccaccggcta	gccatccagg	taaaacaaac	aaaaacggat	ctgatgcttc	8340
cattcctccg	tttctcgtag	tagcgcgctt	cgatctgtgg	gtggatctgg	gtgatcctgg	8400
ggtgtggttc	gttctgtttg	atagatctgt	cggtggatct	ggccttctgt	ggttgtcgat	8460
gtccggatct	gcgttttgat	cagtggtagt	tcgtggatct	ggcgaaatgt	tttggatctg	8520
gcagtgagac	gctaagaatc	gggaaatgat	gcaatattag	gggggtttcg	gatggggatc	8580
cactgaatta	gtctgtctcc	ctgctgataa	tctgttcctt	tttggtagat	ctggttagtg	8640
tatgtttgtt	tcggatagat	ctgatcaatg	cttgtttgtt	ttttcaaatt	ttctacctag	8700
gttgtatagg	aatggcatgc	ggatctggtt	ggattgccat	gatccgtgct	gaaatgcccc	8760
tttggttgat	ggatcttgat	attttactgc	tgttcaccta	gatttgtact	cccgtttata	8820
cttaatttgt	tgcttattat	gaatagatct	gtaacttagg	cacatgtatg	gacggagtat	8880
gtggatctgt	agtatgtaca	ttgctgcgag	ctaagaacta	tttcagagca	agcacagaaa	8940
aaaatattta	gacagattgg	gcaactattt	gatggtcttt	ggtatcatgc	tttgtagtgc	9000
tegtttetge	gtagtaatct	tttgatctga	tctgaagata	ggtgctatta	tattcttaaa	9060
ggtcattaga	acgctatctg	aaaggctgta	ttatgtggat	tggttcacct	gtgactccct	9120
gttcgtcttg	tcttgataaa	tcctgtgata	aaaaaaattc	ttaaggcgta	atttgttgaa	9180
atcttgtttt	gtcctatgca	gcctgatcca	tggcgcaagt	tagcagaatc	tgcaatggtg	9240
tgcagaaccc	atctcttatc	tccaatctct	cgaaatccag	tcaacgcaaa	tctcccttat	9300
cggtttctct	gaagacgcag	cagcatccac	gagcttatcc	gatttcgtcg	tcgtggggat	9360
tgaagaagag	tgggatgacg	ttaattggct	ctgagcttcg	tcctcttaag	gtcatgtctt	9420
ctgtttccac	ggcgtgcatg	cttcacggtg	caagcagccg	gcccgcaacc	gcccgcaaat	9480
cctctggcct	ttccggaacc	gtccgcattc	ccggcgacaa	gtcgatctcc	caccggtcct	9540
tcatgttcgg	cggtctcgcg	agcggtgaaa	cgcgcatcac	cggccttctg	gaaggcgagg	9600
acgtcatcaa	tacgggcaag	gccatgcagg	cgatgggcgc	ccgcatccgt	aaggaaggcg	9660
acacctggat	catcgatggc	gtcggcaatg	gcggcctcct	ggcgcctgag	gcgccgctcg	9720
atttcggcaa	tgccgccacg	ggctgccgcc	tgacgatggg	cctcgtcggg	gtctacgatt	9780
tcgacagcac	cttcatcggc	gacgcctcgc	tcacaaagcg	cccgatgggc	cgcgtgttga	9840

acccgctgcg cgaaatgggc	gtgcaggtga	aatcggaaga	cggtgaccgt	cttcccgtta	9900
ccttgcgcgg gccgaagacg	ccgacgccga	tcacctaccg	cgtgccgatg	gcctccgcac	9960
aggtgaagtc cgccgtgctg	ctcgccggcc	tcaacacgcc	cggcatcacg	acggtcatcg	10020
agccgatcat gacgcgcgat	catacggaaa	agatgctgca	gggctttggc	gccaacctta	10080
ccgtcgagac ggatgcggac	ggcgtgcgca	ccatccgcct	ggaaggccgc	ggcaagctca	10140
ccggccaagt catcgacgtg	ccgggcgacc	cgtcctcgac	ggccttcccg	ctggttgcgg	10200
ccctgcttgt tccgggctcc	gacgtcacca	tcctcaacgt	gctgatgaac	cccacccgca	10260
ccggcctcat cctgacgctg	caggaaatgg	gcgccgacat	cgaagtcatc	aacccgcgcc	10320
ttgccggcgg cgaagacgtg	gcggacctgc	gcgttcgctc	ctccacgctg	aagggcgtca	10380
cggtgccgga agaccgcgcg	ccttcgatga	tcgacgaata	tccgattctc	gctgtcgccg	10440
ccgccttcgc ggaaggggcg	accgtgatga	acggtctgga	agaactccgc	gtcaaggaaa	10500
gcgaccgcct ctcggccgtc	gccaatggcc	tcaagctcaa	tggcgtggat	tgcgatgagg	10560
gcgagacgtc gctcgtcgtg	cgtggccgcc	ctgacggcaa	ggggctcggc	aacgcctcgg	10620
gcgccgccgt cgccacccat	ctcgatcacc	gcatcgccat	gagcttcctc	gtcatgggcc	10680
tcgtgtcgga aaaccctgtc	acggtggacg	atgccacgat	gatcgccacg	agcttcccgg	10740
agttcatgga cctgatggcc	gggctgggcg	cgaagatcga	actctccgat	acgaaggctg	10800
cctgatgage tccagggttc	ttgcctggtg	ccttggcaat	gcttgattac	tgctgctatc	10860
ctatgatctg tccgtgtggg	cttctatcta	tcagtttgtg	tgtctggttt	tgaaaaacat	10920
ttgcttttcg attatgtagg	gtttgcttgt	agctttcgct	gctgtgacct	gtgttgttta	10980
tgtgaacctt ctttgtggca	tctttaatat	ccaagttcgt	ggtttgtcgt	aaaacgaagc	11040
ctctacttcg taaagttgtg	tctatagcat	tgaaatcgtt	tttttgctcg	agaataattg	11100
tgacctttag ttggcgtgaa	actagttttg	gatatctgat	tctctggttc	gcaatcttga	11160
gatcgtcgct gcttaggtga	gctaagtgat	gttcctaagt	aaatgctcct	caccagaata	11220
cgtagctgtg tgaaaagaga	acgcgtgaat	acgtagctgt	gtaaagattg	tgtcccaagt	11280
aaacctcagt gatttttgtt	tggattttta	atttagaaac	attcgactgg	gagcggctag	11340
agccacaccc aagttcctaa	ctatgataaa	gttgctctgt	aacagaaaac	accatctaga	11400
gcggccgcgt ttaaactatc	agtgtttgac	aggatatatt	ggcgggtaaa	cctaagagaa	11460
aagagcgttt attagaataa	tcggatattt	aaaagggcgt	gaaaaggttt	atccgttcgt	11520
ccatttgtat gtgcatgcca	accacagggt	teceeteggg	agtgcttggc	attccgtgcg	11580
ataatgactt ctgttcaacc	acccaaacgt	cggaaagcct	gacgacggag	cagcattcca	11640
aaaagatccc ttggctcgtc	tgggtcggct	agaaggtcga	gtgggctgct	gtggcttgat	11700
ccctcaacgc ggtcgcggac	gtagcgcagc	gccgaaaaat	cct		11743

5

<210> 27 <211> 12322 <212> DNA

<213> Secuencia artificial

<220>

<223> Construcción de ADN 416

<400> 27

60 aaaagtccca tgtggatcac tccgttgccc cgtcgctcac cgtgttgggg ggaaggtgca catggctcag ttctcaatgg aaattatctg cctaaccggc tcagttctgc gtagaaacca 120 acatgcaagc tccaccgggt gcaaagcggc agcggcggca ggatatattc aattgtaaat 180 ggcttcatgt ccgggaaatc tacatggatc agcaatgagt atgatggtca atatggagaa 240 300 aaagaaagag taattaccaa ttttttttca attcaaaaat gtagatgtcc gcagcgttat tataaaatga aagtacattt tgataaaacg acaaattacg atccgtcgta tttataggcg 360 aaagcaataa acaaattatt ctaattcgga aatctttatt tcgacgtgtc tacattcacg 420 tccaaatggg ggcttagatg agaaacttca cgatcgatgc ggccaccact cgaggtcgag 480 gtaccgttgt caatcaattg gcaagtcata aaatgcatta aaaaatattt tcatactcaa 540 ctacaaatcc atgagtataa ctataattat aaagcaatga ttagaatctg acaaggattc 600 tggaaaatta cataaaggaa agttcataaa tgtctaaaac acaagaggac atacttgtat 660 720 tcagtaacat ttgcagcttt tctaggtctg aaaatatatt tgttgcctag tgaataagca 780 taatggtaca actacaagtg ttttactcct catattaact tcggtcatta gaggccacga tttgacacat ttttactcaa aacaaaatgt ttgcatatct cttataattt caaattcaac 840 900 acacaacaaa taagagaaaa aacaaataat attaatttga gaatgaacaa aaggaccata tcattcatta actcttctcc atccatttcc atttcacagt tcgatagcga aaaccgaata 960 aaaaacacag taaattacaa gcacaacaaa tggtacaaga aaaacagttt tcccaatgcc 1020 ataatactca aactcagtag gattctggtg tgtgcgcaat gaaactgatg cattgaactt 1080 gacgaacgtt gtcgaaaccg atgatacgaa cgaaagctag gcctcagcga gtaccgctgg 1140 cgatctaatc catgatatcg tgaacatcat ctacattcaa attcttatga gctttcttaa 1200 gggcatctgc agcatttttc atagaatcta atacagcagt atttgtgcta gctccttcga 1260 gggcttccct ctgcatttca atagttgtaa gggttccatc tatttgtagt tgggtctttt 1320 ccaatcgttt cttcttttg agggcttgga gtgcaactct tttatttttc gacgcatttt 1380 tctttgcgct cctgcaggcg gccgcgtgga tgaggagtta atcggtcgtg tgagagtagt 1440 gatcgagtgg atgtcgtcga gagtgatgag tgttgatgtt gttagtgata tgtggtagaa 1500 1560 ggtatcgtga taaagcgtta acgcgatcgc agtacttgca aagaaaaatg cgtcgaaaaa

taaaagagtt	gcactccaag	ccctcaaaaa	gaagaaacga	ttggaaaaga	cccaactaca	1620
aatagatgga	acccttacaa	ctattgaaat	gcagagggaa	gccctcgaag	gagctagcac	1680
aaatactgct	gtattagatt	ctatgaaaaa	tgctgcagat	gcccttaaga	aagctcataa	1740
gaatttgaat	gtagatgatg	ttcacgatat	catggatggt	atcgcacagc	gactgctgag	1800
ggacgtcgag	ctcccgcttg	gtatctgcat	tacaatgaaa	tgagcaaaga	ctatgtgagt	1860
aacactggtc	aacactaggg	agaaggcatc	gagcaagata	cgtatgtaaa	gagaagcaat	1920
atagtgtcag	ttggtagata	ctagatacca	tcaggaggta	aggagagcaa	caaaaaggaa	1980
actctttatt	tttaaatttt	gttacaacaa	acaagcagat	caatgcatca	aaatactgtc	2040
agtacttatt	tcttcagaca	acaatattta	aaacaagtgc	atctgatctt	gacttatggt	2100
cacaataaag	gagcagagat	aaacatcaaa	atttcgtcat	ttatatttat	tccttcaggc	2160
gttaacaatt	taacagcaca	caaacaaaaa	cagaatagga	atatctaatt	ttggcaaata	2220
ataagctctg	cagacgaaca	aattattata	gtatcgccta	taatatgaat	ccctatacta	2280
ttgacccatg	tagtatgaag	cctgtgccta	aattaacagc	aaacttctga	atccaagtgc	2340
cctataacac	caacatgtgc	ttaaataaat	accgctaagc	accaaattac	acatttctcg	2400
tattgctgtg	taggttctat	cttcgtttcg	tactaccatg	tccctatatt	ttgctgctac	2460
aaaggacggc	aagtaatcag	cacaggcaga	acacgatttc	agagtgtaat	tctagatcca	2520
gctaaaccac	tctcagcaat	caccacacaa	gagagcattc	agagaaacgt	ggcagtaaca	2580
aaggcagagg	gcggagtgag	cgcgtaccga	agacggttca	gcgtgtcctc	tccaaatgaa	2640
atgaacttcc	ttatatagag	gaagggtctt	gcgaaggata	gtgggattgt	gcgtcatccc	2700
ttacgtcagt	ggagatatca	catcaatcca	cttgctttga	agacgtggtt	ggaacgtctt	2760
ctttttccac	gatgctcctc	gtgggtgggg	gtccatcttt	gggaccactg	tcggcagagg	2820
catcttcaac	gatggccttt	cctttatcgc	aatgatggca	tttgtaggag	ccaccttcct	2880
tttccactat	cttcacaata	aagtgacaga	tagctgggca	atggaatccg	aggaggtttc	2940
cggatattac	cctttgttga	aaagtctcaa	tcggaccatc	acatcaatcc	acttgctttg	3000
aagacgtggt	tggaacgtct	tctttttcca	cgatgctcct	cgtgggtggg	ggtccatctt	3060
tgggaccact	gtcggcagag	gcatcttcaa	cgatggcctt	tcctttatcg	caatgatggc	3120
atttgtagga	gccaccttcc	ttttccacta	tcttcacaat	aaagtgacag	atagctgggc	3180
aatggaatcc	gaggaggttt	ccggatatta	ccctttgttg	aaaagtctca	atcggacctg	3240
cagcctgcag	gctagcggcg	cgccggaagc	taactagtca	cggcgaatac	atgacgacat	3300
cggcctacaa	cgcacaactt	cttggcataa	aagcttcaat	ttcaatgccc	ctatctggaa	3360
gccctaggcg	ccgcgcaaat	gtaaaacatt	cgcttcgctt	ggcttgttat	ccaaaataga	3420
gtatggacct	ccgacagatt	ggcaacccgt	gggtaatcga	aaatggctcc	atctgcccct	3480

ttgtcgaagg	aatcaggaaa	cggccctcac	ctcctggcgg	agtgtagata	tgtgaaagaa	3540
tctaggcgac	acttgcagac	tggacaacat	gtgaacaaat	aagaccaacg	ttatggcaac	3600
aagcctcgac	gctactcaag	tggtgggagg	ccaccgcatg	ttccaacgaa	gcgccaaaga	3660
aagccttgca	gactctaatg	ctattagtcg	cctaggatat	ttggaatgaa	aggaaccgca	3720
gagtttttca	gcaccaagag	cttccggtgg	ctagtctgat	agccaaaatt	aaggaggatg	3780
ccaaaacatg	ggtcttggcg	ggcgcgaaac	accttgatag	gtggcttacc	ttttaacatg	3840
ttcgggccaa	aggccttgag	acggtaaagt	tttctatttg	cgcttgcgca	tgtacaattt	3900
tattcctcta	ttcaatgaaa	ttggtggctc	actggttcat	taaaaaaaaa	agaatctagc	3960
ctgttcggga	agaagaggat	tttattcgtg	agagagagag	agagagagag	agagagaggg	4020
agagagaagg	aggaggagga	ttttcaggct	tcgcattgcc	caacctctgc	ttctgttggc	4080
ccaagaagaa	tcccaggcgc	ccatgggctg	gcagtttacc	acggacctac	ctagcctacc	4140
ttagctatct	aagcgggccg	acctagtagc	tacgtgccta	gtgtagatta	aagttggcgg	4200
gccagcagga	agccacgctg	caatggcatc	ttcccctgtc	cttcgcgtac	gtgaaaacaa	4260
acccaggtaa	gcttagaatc	ttcttgcccg	ttggactggg	acacccacca	atcccaccat	4320
gccccgatat	tecteeggte	tcggttcatg	tgatgtcctc	tcttgtgtga	tcacggagca	4380
agcattctta	aacggcaaaa	gaaaatcacc	aacttgctca	cgcagtcacg	ctgcaccgcg	4440
cgaagcgacg	cccgataggc	caagatcgcg	agataaaata	acaaccaatg	atcataagga	4500
aacaagcccg	cgatgtgtcg	tgtgcagcaa	tcttggtcat	ttgcgggatc	gagtgcttca	4560
cggctaacca	aatattcggc	cgatgattta	acacattatc	agcgtagatg	tacgtacgat	4620
ttgttaatta	atctacgagc	cttgctaggg	caggtgttct	gccagccaat	ccagatcgcc	4680
ctcgtatgca	cgctcacatg	atggcagggc	agggttcaca	tgagctctaa	cggtcgatta	4740
attaatcccg	gggctcgact	ataaatacct	ccctaatccc	atgatcaaaa	ccccgggaa	4800
ccatcttcca	cacactcaag	ccacactatt	ggagaacaca	cagggacaac	acaccataag	4860
atccaaggga	ggcctccgcc	gccgccggta	accaccccgc	ccctctcctc	tttctttctc	4920
cgttttttt	tccgtctcgg	tctcgatctt	tggccttggt	agtttgggtg	ggcgagaggc	4980
ggcttcgtgc	gcgcccagat	cggtgcgcgg	gaggggcggg	atctcgcggc	tggggctctc	5040
gccggcgtgg	atccggcccg	gatctcgcgg	ggaatggggc	tctcggatgt	agatctgcga	5100
tccgccgttg	ttgggggaga	tgatgggggg	tttaaaattt	ccgccgtgct	aaacaagatc	5160
aggaagaggg	gaaaagggca	ctatggttta	tatttttata	tatttctgct	gcttcgtcag	5220
gcttagatgt	gctagatctt	tcttcttct	ttttgtgggt	agaatttgaa	tccctcagca	5280
ttgttcatcg	gtagtttttc	ttttcatgat	ttgtgacaaa	tgcagcctcg	tgcggagctt	5340

ttttgtaggt	agaagtgatc	aaccatggcc	aaccccaaca	atcgctccga	gcacgacacg	5400
atcaaggtca	cccccaactc	cgagctccag	accaaccaca	accagtaccc	gctggccgac	5460
aaccccaact	ccaccctgga	agagctgaac	tacaaggagt	tcctgcgcat	gaccgaggac	5520
tcctccacgg	aggtcctgga	caactccacc	gtcaaggacg	ccgtcgggac	cggcatctcc	5580
gtcgttgggc	agatcctggg	cgtcgttggc	gtccccttcg	caggtgctct	cacctccttc	5640
taccagtcct	tcctgaacac	catctggccc	tccgacgccg	acccctggaa	ggccttcatg	5700
gcccaagtcg	aagtcctgat	cgacaagaag	atcgaggagt	acgccaagtc	caaggccctg	5760
gccgagctgc	aaggcctgca	aaacaacttc	gaggactacg	tcaacgcgct	gaactcctgg	5820
aagaagacgc	ctctgtccct	gcgctccaag	cgctcccagg	accgcatccg	cgagctgttc	5880
tcccaggccg	agtcccactt	ccgcaactcc	atgccgtcct	tegeegtete	caagttcgag	5940
gtcctgttcc	tgcccaccta	cgcccaggct	gccaacaccc	acctcctgtt	gctgaaggac	6000
gcccaggtct	tcggcgagga	atggggctac	tcctcggagg	acgtcgccga	gttctaccgt	6060
cgccagctga	agctgaccca	acagtacacc	gaccactgcg	tcaactggta	caacgtcggc	6120
ctgaacggcc	tgaggggctc	cacctacgac	gcatgggtca	agttcaaccg	cttccgcagg	6180
gagatgaccc	tgaccgtcct	ggacctgatc	gtcctgttcc	ccttctacga	catccgcctg	6240
tactccaagg	gcgtcaagac	cgagctgacc	cgcgacatct	tcacggaccc	catcttcctg	6300
ctcacgaccc	tccagaagta	cggtcccacc	ttcctgtcca	tcgagaactc	catccgcaag	6360
ccccacctgt	tcgactacct	ccagggcatc	gagttccaca	cgcgcctgag	gccaggctac	6420
ttcggcaagg	actccttcaa	ctactggtcc	ggcaactacg	tcgagaccag	gccctccatc	6480
ggctcctcga	agacgatcac	ctcccctttc	tacggcgaca	agtccaccga	gcccgtccag	6540
aagctgtcct	tcgacggcca	gaaggtctac	cgcaccatcg	ccaacaccga	cgtcgcggct	6600
tggccgaacg	gcaaggtcta	cctgggcgtc	acgaaggtcg	acttctccca	gtacgatgac	6660
cagaagaacg	agacctccac	ccagacctac	gactccaagc	gcaacaatgg	ccacgtctcc	6720
gcccaggact	ccatcgacca	gctgccgcct	gagaccactg	acgagcccct	ggagaaggcc	6780
tactcccacc	agctgaacta	cgcggagtgc	ttcctgatgc	aagaccgcag	gggcaccatc	6840
cccttcttca	cctggaccca	ccgctccgtc	gacttcttca	acaccatcga	cgccgagaag	6900
atcacccagc	tgcccgtggt	caaggcctac	gccctgtcct	cgggtgcctc	catcattgag	6960
ggtccaggct	tcaccggtgg	caacctgctg	ttcctgaagg	agtcctcgaa	ctccatcgcc	7020
aagttcaagg	tcaccctgaa	ctccgctgcc	ttgctgcaac	gctaccgcgt	ccgcatccgc	7080
tacgcctcca	ccacgaacct	gcgcctgttc	gtccagaact	ccaacaatga	cttcctggtc	7140
atctacatca	acaagaccat	gaacaaggac	gatgacctga	cctaccagac	cttcgacctc	7200
gccaccacga	actccaacat	gggcttctcg	ggcgacaaga	atgaactgat	cattggtgct	7260

gagtccttcg	tctccaacga	gaagatctac	atcgacaaga	tcgagttcat	ccccgtccag	7320
ctgtgatagg	aactctgatt	gaattctgca	tgcgtttgga	cgtatgctca	ttcaggttgg	7380
agccaatttg	gttgatgtgt	gtgcgagttc	ttgcgagtct	gatgagacat	ctctgtattg	7440
tgtttctttc	cccagtgttt	tctgtacttg	tgtaatcggc	taatcgccaa	cagattcggc	7500
gatgaataaa	tgagaaataa	attgttctga	ttttgagtgc	aaaaaaaag	gaattagatc	7560
tgtgtgtgtt	ttttggatcc	cattttcgac	aagcttgcct	cgagacaaca	acatgcttct	7620
catcaacatg	gagggaagag	ggagggagaa	agtgtcgcct	ggtcacctcc	attgtcacac	7680
tagccactgg	ccagctctcc	cacaccacca	atgccagggg	cgagctttag	cacagccacc	7740
gcttcacctc	caccaccgca	ctaccctagc	ttcgcccaac	agccaccgtc	aacgcctcct	7800
ctccgtcaac	ataagagaga	gagagaagag	gagagtagcc	atgtggggag	gaggaatagt	7860
acatggggcc	taccgtttgg	caagttattt	tgggttgcca	agttaggcca	ataaggggag	7920
ggatttggcc	atccggttgg	aaaggttatt	ggggtagtat	ctttttacta	gaattgtcaa	7980
aaaaaaatag	tttgagagcc	atttggagag	gatgttgcct	gttagaggtg	ctcttaggac	8040
atcaaattcc	ataaaaacat	cagaaaaatt	ctctcgatga	agatttataa	ccactaaaac	8100
tgccctcaat	tcgaagggag	ttcaaaacaa	ttaaaatcat	gttcgaattg	agtttcaatt	8160
tcactttaac	ccctttgaaa	tctcaatggt	aaaacatcaa	cccgtcaggt	agcatggttc	8220
tttttattcc	tttcaaaaag	agttaattac	aaacagaatc	aaaactaaca	gttaggccca	8280
aggcccatcc	gagcaaacaa	tagatcatgg	gccaggcctg	ccaccaccct	cccctcctg	8340
gctcccgctc	ttgaatttca	aaatccaaaa	atatcggcac	gactggccgc	cgacggagcg	8400
ggcggaaaat	gacggaacaa	cccctcgaat	tctaccccaa	ctacgcccac	caacccacac	8460
gccactgaca	atccggtccc	acccttgtgg	gcccacctac	aagcgagacg	tcagtcgctc	8520
gcagcaacca	gtgggcccac	ctcccagtga	gcggcgggta	gatctggact	cttacccacc	8580
cacactaaac	aaaacggcat	gaatattttg	cactaaaacc	ctcagaaaaa	ttccgatatt	8640
ccaaaccagt	acagttcctg	accgttggag	gagccaaagt	ggagcggagt	gtaaaattgg	8700
gaaacttaat	cgagggggtt	aaacgcaaaa	acgccgaggc	gcctcccgct	ctatagaaag	8760
gggaggagtg	ggaggtggaa	accctaccac	accgcagaga	aaggcgtctt	cgtactcgcc	8820
tctctccgcg	ccctcctccg	ccgccgctcg	ccgccgttcg	tctccgccgc	caccggctag	8880
ccatccaggt	aaaacaaaca	aaaacggatc	tgatgcttcc	attcctccgt	ttctcgtagt	8940
agcgcgcttc	gatctgtggg	tggatctggg	tgatcctggg	gtgtggttcg	ttctgtttga	9000
tagatctgtc	ggtggatctg	gccttctgtg	gttgtcgatg	tccggatctg	cgttttgatc	9060
agtggtagtt	cgtggatctg	gcgaaatgtt	ttggatctgg	cagtgagacg	ctaagaatcg	9120

ggaaatgatg	caatattagg	ggggtttcgg	atggggatcc	actgaattag	tctgtctccc	9180
tgctgataat	ctgttccttt	ttggtagatc	tggttagtgt	atgtttgttt	cggatagatc	9240
tgatcaatgc	ttgtttgttt	tttcaaattt	tctacctagg	ttgtatagga	atggcatgcg	9300
gatctggttg	gattgccatg	atccgtgctg	aaatgcccct	ttggttgatg	gatcttgata	9360
ttttactgct	gttcacctag	atttgtactc	ccgtttatac	ttaatttgtt	gcttattatg	9420
aatagatctg	taacttaggc	acatgtatgg	acggagtatg	tggatctgta	gtatgtacat	9480
tgctgcgagc	taagaactat	ttcagagcaa	gcacagaaaa	aaatatttag	acagattggg	9540
caactatttg	atggtctttg	gtatcatgct	ttgtagtgct	cgtttctgcg	tagtaatctt	9600
ttgatctgat	ctgaagatag	gtgctattat	attcttaaag	gtcattagaa	cgctatctga	9660
aaggctgtat	tatgtggatt	ggttcacctg	tgactccctg	ttcgtcttgt	cttgataaat	9720
cctgtgataa	aaaaaattct	taaggcgtaa	tttgttgaaa	tcttgttttg	tcctatgcag	9780
cctgatccat	ggcgcaagtt	agcagaatct	gcaatggtgt	gcagaaccca	tctcttatct	9840
ccaatctctc	gaaatccagt	caacgcaaat	ctcccttatc	ggtttctctg	aagacgcagc	9900
agcatccacg	agcttatccg	atttcgtcgt	cgtggggatt	gaagaagagt	gggatgacgt	9960
taattggctc	tgagcttcgt	cctcttaagg	tcatgtcttc	tgtttccacg	gcgtgcatgc	10020
ttcacggtgc	aagcagccgg	cccgcaaccg	cccgcaaatc	ctctggcctt	tccggaaccg	10080
tccgcattcc	cggcgacaag	tcgatctccc	accggtcctt	catgttcggc	ggtctcgcga	10140
gcggtgaaac	gcgcatcacc	ggccttctgg	aaggcgagga	cgtcatcaat	acgggcaagg	10200
ccatgcaggc	gatgggcgcc	cgcatccgta	aggaaggcga	cacctggatc	atcgatggcg	10260
tcggcaatgg	cggcctcctg	gcgcctgagg	cgccgctcga	tttcggcaat	gccgccacgg	10320
gctgccgcct	gacgatgggc	ctcgtcgggg	tctacgattt	cgacagcacc	ttcatcggcg	10380
acgcctcgct	cacaaagcgc	ccgatgggcc	gcgtgttgaa	cccgctgcgc	gaaatgggcg	10440
tgcaggtgaa	atcggaagac	ggtgaccgtc	ttcccgttac	cttgcgcggg	ccgaagacgc	10500
cgacgccgat	cacctaccgc	gtgccgatgg	cctccgcaca	ggtgaagtcc	gccgtgctgc	10560
tcgccggcct	caacacgccc	ggcatcacga	cggtcatcga	gccgatcatg	acgcgcgatc	10620
atacggaaaa	gatgctgcag	ggctttggcg	ccaaccttac	cgtcgagacg	gatgcggacg	10680
gcgtgcgcac	catccgcctg	gaaggccgcg	gcaagctcac	cggccaagtc	atcgacgtgc	10740
cgggcgaccc	gtcctcgacg	gccttcccgc	tggttgcggc	cctgcttgtt	ccgggctccg	10800
acgtcaccat	cctcaacgtg	ctgatgaacc	ccacccgcac	cggcctcatc	ctgacgctgc	10860
aggaaatggg	cgccgacatc	gaagtcatca	acccgcgcct	tgccggcggc	gaagacgtgg	10920
cggacctgcg	cgttcgctcc	tccacgctga	agggcgtcac	ggtgccggaa	gaccgcgcgc	10980
cttcgatgat	cgacgaatat	ccgattctcg	ctgtcgccgc	cgccttcgcg	gaaggggcga	11040

ccgtgatgaa	cggtctggaa	gaactccgcg	tcaaggaaag	cgaccgcctc	teggeegteg	11100
ccaatggcct	caagctcaat	ggcgtggatt	gcgatgaggg	cgagacgtcg	ctcgtcgtgc	11160
gtggccgccc	tgacggcaag	gggctcggca	acgcctcggg	cgccgccgtc	gccacccatc	11220
tcgatcaccg	catcgccatg	agcttcctcg	tcatgggcct	cgtgtcggaa	aaccctgtca	11280
cggtggacga	tgccacgatg	atcgccacga	gcttcccgga	gttcatggac	ctgatggccg	11340
ggctgggcgc	gaagatcgaa	ctctccgata	cgaaggctgc	ctgatgagct	ccagggttct	11400
tgcctggtgc	cttggcaatg	cttgattact	gctgctatcc	tatgatctgt	ccgtgtgggc	11460
ttctatctat	cagtttgtgt	gtctggtttt	gaaaaacatt	tgcttttcga	ttatgtaggg	11520
tttgcttgta	gctttcgctg	ctgtgacctg	tgttgtttat	gtgaaccttc	tttgtggcat	11580
ctttaatatc	caagttcgtg	gtttgtcgta	aaacgaagcc	tctacttcgt	aaagttgtgt	11640
ctatagcatt	gaaatcgttt	ttttgctcga	gaataattgt	gacctttagt	tggcgtgaaa	11700
ctagttttgg	atatctgatt	ctctggttcg	caatcttgag	atcgtcgctg	cttaggtgag	11760
ctaagtgatg	ttcctaagta	aatgctcctc	accagaatac	gtagctgtgt	gaaaagagaa	11820
cgcgtgaata	cgtagctgtg	taaagattgt	gtcccaagta	aacctcagtg	atttttgttt	11880
ggatttttaa	tttagaaaca	ttcgactggg	agcggctaga	gccacaccca	agttcctaac	11940
tatgataaag	ttgctctgta	acagaaaaca	ccatctagag	cggccgcgtt	taaactatca	12000
gtgtttgaca	ggatatattg	gcgggtaaac	ctaagagaaa	agagcgttta	ttagaataat	12060
cggatattta	aaagggcgtg	aaaaggttta	tccgttcgtc	catttgtatg	tgcatgccaa	12120
ccacagggtt	cccctcggga	gtgcttggca	ttccgtgcga	taatgacttc	tgttcaacca	12180
cccaaacgtc	ggaaagcctg	acgacggagc	agcattccaa	aaagatccct	tggctcgtct	12240
gggtcggcta	gaaggtcgag	tgggctgctg	tggcttgatc	cctcaacgcg	gtcgcggacg	12300
tagcgcagcg	ccgaaaaatc	ct				12322

<210> 28

<211> 11787

<212> DNA

<213> Secuencia artificial

<220>

5

<223> Construcción de ADN 418

<400> 28

aaaagtccca tgtggatcac tccgttgccc cgtcgctcac cgtgttgggg ggaaggtgca 60 catggctcag ttctcaatgg aaattatctg cctaaccggc tcagttctgc gtagaaacca 120 acatgcaagc tccaccgggt gcaaagcggc agcggcggca ggatatattc aattgtaaat 180 ggcttcatgt ccgggaaatc tacatggatc agcaatgagt atgatggtca atatggagaa 240

aaagaaagag taattaccaa	tttttttca	attcaaaaat	gtagatgtcc	gcagcgttat	300
tataaaatga aagtacattt	tgataaaacg	acaaattacg	atccgtcgta	tttataggcg	360
aaagcaataa acaaattatt	ctaattcgga	aatctttatt	tcgacgtgtc	tacattcacg	420
tccaaatggg ggcttagatg	agaaacttca	cgatcgatgc	ggccaccact	cgaggtcgag	480
gtaccgttgt caatcaattg	gcaagtcata	aaatgcatta	aaaaatattt	tcatactcaa	540
ctacaaatcc atgagtataa	ctataattat	aaagcaatga	ttagaatctg	acaaggattc	600
tggaaaatta cataaaggaa	agttcataaa	tgtctaaaac	acaagaggac	atacttgtat	660
tcagtaacat ttgcagcttt	tctaggtctg	aaaatatatt	tgttgcctag	tgaataagca	720
taatggtaca actacaagtg	ttttactcct	catattaact	tcggtcatta	gaggccacga	780
tttgacacat ttttactcaa	aacaaaatgt	ttgcatatct	cttataattt	caaattcaac	840
acacaacaaa taagagaaaa	aacaaataat	attaatttga	gaatgaacaa	aaggaccata	900
tcattcatta actcttctcc	atccatttcc	atttcacagt	tcgatagcga	aaaccgaata	960
aaaaacacag taaattacaa	gcacaacaaa	tggtacaaga	aaaacagttt	tcccaatgcc	1020
ataatactca aactcagtag	gattctggtg	tgtgcgcaat	gaaactgatg	cattgaactt	1080
gacgaacgtt gtcgaaaccg	atgatacgaa	cgaaagctag	gcctcagcga	gtaccgctgg	1140
cgatctaatc catgatatcg	tgaacatcat	ctacattcaa	attcttatga	gctttcttaa	1200
gggcatctgc agcatttttc	atagaatcta	atacagcagt	atttgtgcta	gctccttcga	1260
gggcttccct ctgcatttca	atagttgtaa	gggttccatc	tatttgtagt	tgggtctttt	1320
ccaatcgttt cttcttttg	agggcttgga	gtgcaactct	tttattttc	gacgcatttt	1380
tetttgeget eetgeaggeg	gccgcgtgga	tgaggagtta	atcggtcgtg	tgagagtagt	1440
gatcgagtgg atgtcgtcga	gagtgatgag	tgttgatgtt	gttagtgata	tgtggtagaa	1500
ggtatcgtga taaagcgtta	acgcgatcgc	agtacttgca	aagaaaaatg	cgtcgaaaaa	1560
taaaagagtt gcactccaag	ccctcaaaaa	gaagaaacga	ttggaaaaga	cccaactaca	1620
aatagatgga acccttacaa	ctattgaaat	gcagagggaa	gccctcgaag	gagctagcac	1680
aaatactgct gtattagatt	ctatgaaaaa	tgctgcagat	gcccttaaga	aagctcataa	1740
gaatttgaat gtagatgatg	ttcacgatat	catggatggt	atcgcacagc	gactgctgag	1800
ggacgtcgag ctcccgcttg	gtatctgcat	tacaatgaaa	tgagcaaaga	ctatgtgagt	1860
aacactggtc aacactaggg	agaaggcatc	gagcaagata	cgtatgtaaa	gagaagcaat	1920
atagtgtcag ttggtagata	ctagatacca	tcaggaggta	aggagagcaa	caaaaaggaa	1980
actctttatt tttaaatttt	gttacaacaa	acaagcagat	caatgcatca	aaatactgtc	2040
agtacttatt tcttcagaca	acaatattta	aaacaagtgc	atctgatctt	gacttatggt	2100
cacaataaag gagcagagat	aaacatcaaa	atttcgtcat	ttatatttat	tccttcaggc	2160

gttaacaatt	taacagcaca	caaacaaaaa	cagaatagga	atatctaatt	ttggcaaata	2220
ataagctctg	cagacgaaca	aattattata	gtatcgccta	taatatgaat	ccctatacta	2280
ttgacccatg	tagtatgaag	cctgtgccta	aattaacagc	aaacttctga	atccaagtgc	2340
cctataacac	caacatgtgc	ttaaataaat	accgctaagc	accaaattac	acatttctcg	2400
tattgctgtg	taggttctat	cttcgtttcg	tactaccatg	tccctatatt	ttgctgctac	2460
aaaggacggc	aagtaatcag	cacaggcaga	acacgatttc	agagtgtaat	tctagatcca	2520
gctaaaccac	tctcagcaat	caccacacaa	gagagcattc	agagaaacgt	ggcagtaaca	2580
aaggcagagg	gcggagtgag	cgcgtaccga	agacggttca	gcgtgtcctc	tccaaatgaa	2640
atgaacttcc	ttatatagag	gaagggtctt	gcgaaggata	gtgggattgt	gcgtcatccc	2700
ttacgtcagt	ggagatatca	catcaatcca	cttgctttga	agacgtggtt	ggaacgtctt	2760
ctttttccac	gatgctcctc	gtgggtgggg	gtccatcttt	gggaccactg	tcggcagagg	2820
catcttcaac	gatggccttt	cctttatcgc	aatgatggca	tttgtaggag	ccaccttcct	2880
tttccactat	cttcacaata	aagtgacaga	tagctgggca	atggaatccg	aggaggtttc	2940
cggatattac	cctttgttga	aaagtctcaa	tcggaccatc	acatcaatcc	acttgctttg	3000
aagacgtggt	tggaacgtct	tctttttcca	cgatgctcct	cgtgggtggg	ggtccatctt	3060
tgggaccact	gtcggcagag	gcatcttcaa	cgatggcctt	tcctttatcg	caatgatggc	3120
atttgtagga	gccaccttcc	ttttccacta	tcttcacaat	aaagtgacag	atagctgggc	3180
aatggaatcc	gaggaggttt	ccggatatta	ccctttgttg	aaaagtctca	atcggacctg	3240
cagcctgcag	gctagcggcg	cgccgggatc	caaaaaacac	acacagatct	aattcctttt	3300
tttttgcact	caaaatcaga	acaatttatt	tctcatttat	tcatcgccga	atctgttggc	3360
gattagccga	ttacacaagt	acagaaaaca	ctggggaaag	aaacacaata	cagagatgtc	3420
tcatcagact	cgcaagaact	cgcacacaca	tcaaccaaat	tggctccaac	ctgaatgagc	3480
atacgtccaa	acgcatgcag	aattcaatca	gagttcctat	cacagctgga	cggggatgaa	3540
ctcgatcttg	tcgatgtaga	tcttctcgtt	ggagacgaag	gactcagcac	caatgatcag	3600
ttcattcttg	tcgcccgaga	agcccatgtt	ggagttcgtg	gtggcgaggt	cgaaggtctg	3660
gtaggtcagg	tcatcgtcct	tgttcatggt	cttgttgatg	tagatgacca	ggaagtcatt	3720
gttggagttc	tggacgaaca	ggcgcaggtt	cgtggtggag	gcgtagcgga	tgcggacgcg	3780
gtagcgttgc	agcaaggcag	cggagttcag	ggtgaccttg	aacttggcga	tggagttcga	3840
ggactccttc	aggaacagca	ggttgccacc	ggtgaagcct	ggaccctcaa	tgatggaggc	3900
acccgaggac	agggcgtagg	ccttgaccac	gggcagctgg	gtgatcttct	cggcgtcgat	3960
ggtgttgaag	aagtcgacgg	agcggtgggt	ccaggtgaag	aaggggatgg	tgcccctgcg	4020

gtcttgcatc	aggaagcact	ccgcgtagtt	cagctggtgg	gagtaggcct	tctccagggg	4080
ctcgtcagtg	gtctcaggcg	gcagctggtc	gatggagtcc	tgggcggaga	cgtggccatt	4140
gttgcgcttg	gagtcgtagg	tctgggtgga	ggtctcgttc	ttctggtcat	cgtactggga	4200
gaagtcgacc	ttcgtgacgc	ccaggtagac	cttgccgttc	ggccaagccg	cgacgtcggt	4260
gttggcgatg	gtgcggtaga	ccttctggcc	gtcgaaggac	agcttctgga	cgggctcggt	4320
ggacttgtcg	ccgtagaaag	gggaggtgat	cgtcttcgag	gagccgatgg	agggcctggt	4380
ctcgacgtag	ttgccggacc	agtagttgaa	ggagtccttg	ccgaagtagc	ctggcctcag	4440
gcgcgtgtgg	aactcgatgc	cctggaggta	gtcgaacagg	tggggcttgc	ggatggagtt	4500
ctcgatggac	aggaaggtgg	gaccgtactt	ctggagggtc	gtgagcagga	agatggggtc	4560
cgtgaagatg	tcgcgggtca	gctcggtctt	gacgcccttg	gagtacaggc	ggatgtcgta	4620
gaaggggaac	aggacgatca	ggtccaggac	ggtcagggtc	atctccctgc	ggaagcggtt	4680
gaacttgacc	catgcgtcgt	aggtggagcc	cctcaggccg	ttcaggccga	cgttgtacca	4740
gttgacgcag	tggtcggtgt	actgttgggt	cagcttcagc	tggcgacggt	agaactcggc	4800
gacgtcctcc	gaggagtagc	cccattcctc	gccgaagacc	tgggcgtcct	tcagcaacag	4860
gaggtgggtg	ttggcagcct	gggcgtaggt	gggcaggaac	aggacctcga	acttggagac	4920
ggcgaaggac	ggcatggagt	tgcggaagtg	ggactcggcc	tgggagaaca	gctcgcggat	4980
gcggtcctgg	gagcgcttgg	agcgcaggga	cagaggcgtc	ttcttccagg	agttcagcgc	5040
gttgacgtag	tcctcgaagt	tgttttgcag	gccttgcagc	tcggccaggg	ccttggactt	5100
ggcgtactcc	tcgatcttct	tgtcgatcag	gacttcgact	tgggccatga	aggccttcca	5160
ggggtcggcg	teggagggee	agatggtgtt	caggaaggac	tggtagaagg	aggtgagagc	5220
acctgcgaag	gggacgccaa	cgacgcccag	gatctgccca	acgacggaga	tgccggtccc	5280
gacggcgtcc	ttgacggtgg	agttgtccag	gacctccgtg	gaggagtcct	cggtcatgcg	5340
caggaactcc	ttgtagttca	gctcttccag	ggtggagttg	gggttgtcgg	ccagcgggta	5400
ctggttgtgg	ttggtctgga	gctcggagtt	gggggtgacc	ttgatcgtgt	cgtgctcgga	5460
gcgattgttg	gggttggcca	tggttgatca	cttctaccta	caaaaaagct	ccgcacgagg	5520
ctgcatttgt	cacaaatcat	gaaaagaaaa	actaccgatg	aacaatgctg	agggattcaa	5580
attctaccca	caaaaagaag	aaagaaagat	ctagcacatc	taagcctgac	gaagcagcag	5640
aaatatataa	aaatataaac	catagtgccc	ttttcccctc	ttcctgatct	tgtttagcac	5700
ggcggaaatt	ttaaaccccc	catcatctcc	cccaacaacg	gcggatcgca	gatctacatc	5760
cgagagcccc	attccccgcg	agatccgggc	cggatccacg	ccggcgagag	ccccagccgc	5820
gagatecege	ccctcccgcg	caccgatctg	ggcgcgcacg	aagccgcctc	tcgcccaccc	5880
aaactaccaa	ggccaaagat	cgagaccgag	acggaaaaaa	aaacggagaa	agaaagagga	5940

gaggggcggg	gtggttaccg	gcggcggcgg	aggcctccct	tggatcttat	ggtgtgttgt	6000
ccctgtgtgt	tctccaatag	tgtggcttga	gtgtgtggaa	gatggttccc	ggggtatctg	6060
atgatccttc	aaatgggaat	gaatgccttc	ttatatagag	ggaattcttt	tgtggtcgtc	6120
actgcgttcg	tcatacgcat	tagtgagtgg	gctgtcagga	cagctctttt	ccacgttatt	6180
ttgttcccca	cttgtactag	aggaatctgc	tttatctttg	caataaaggc	aaagatgctt	6240
ttggtaggtg	cgcctaacaa	ttctgcacca	ttcctttttt	gtctggtccc	cacaagccag	6300
ctgctcgatg	ttgacaagat	tactttcaaa	gatgcccact	aactttaagt	cttcggtgga	6360
tgtcttttc	tgaaacttac	tgaccatgat	gcatgtgctg	gaacagtagt	ttactttgat	6420
tgaagattct	tcattgatct	cctgtagctt	ttggctaatg	gtttggagac	tctgtaccct	6480
gaccttgttg	aggctttgga	ctgagaattc	ttccttacaa	acctttgagg	atgggagttc	6540
cttcttggtt	ttggcgatac	caatttgaat	aaagtgatat	ggctcgtacc	ttgttgattg	6600
aacccaatct	ggaatgctgc	taaatcctga	gctcaagcta	attcttttgt	ggtcgtcact	6660
gcgttcgtca	tacgcattag	tgagtgggct	gtcaggacag	ctcttttcca	cgttattttg	6720
ttccccactt	gtactagagg	aatctgcttt	atctttgcaa	taaaggcaaa	gatgcttttg	6780
gtaggtgcgc	ctaacaattc	tgcaccattc	cttttttgtc	tggtccccac	aagccagctg	6840
ctcgatgttg	acaagattac	tttcaaagat	gcccactaac	tttaagtctt	cggtggatgt	6900
ctttttctga	aacttactga	ccatgatgca	tgtgctggaa	cagtagttta	ctttgattga	6960
agattcttca	ttgatctcct	gtagcttttg	gctaatggtt	tggagactct	gtaccctgac	7020
cttgttgagg	ctttggactg	agaattattt	tcgacaagct	tgcctcgaga	caacaacatg	7080
cttctcatca	acatggaggg	aagagggagg	gagaaagtgt	cgcctggtca	cctccattgt	7140
cacactagcc	actggccagc	tctcccacac	caccaatgcc	aggggcgagc	tttagcacag	7200
ccaccgcttc	acctccacca	ccgcactacc	ctagcttcgc	ccaacagcca	ccgtcaacgc	7260
ctcctctccg	tcaacataag	agagagagag	aagaggagag	tagccatgtg	gggaggagga	7320
atagtacatg	gggcctaccg	tttggcaagt	tattttgggt	tgccaagtta	ggccaataag	7380
gggagggatt	tggccatccg	gttggaaagg	ttattggggt	agtatctttt	tactagaatt	7440
gtcaaaaaaa	aatagtttga	gagccatttg	gagaggatgt	tgcctgttag	aggtgctctt	7500
aggacatcaa	attccataaa	aacatcagaa	aaattctctc	gatgaagatt	tataaccact	7560
aaaactgccc	tcaattcgaa	gggagttcaa	aacaattaaa	atcatgttcg	aattgagttt	7620
caatttcact	ttaacccctt	tgaaatctca	atggtaaaac	atcaacccgt	caggtagcat	7680
ggttcttttt	attcctttca	aaaagagtta	attacaaaca	gaatcaaaac	taacagttag	7740
gcccaaggcc	catccgagca	aacaatagat	catgggccag	gcctgccacc	accetecece	7800

tcctggctcc cgctcttgaa	tttcaaaatc	caaaaatatc	ggcacgactg	gccgccgacg	7860
gagcgggcgg aaaatgacgg	aacaacccct	cgaattctac	cccaactacg	cccaccaacc	7920
cacacgccac tgacaatccg	gtcccaccct	tgtgggccca	cctacaagcg	agacgtcagt	7980
cgctcgcagc aaccagtggg	cccacctccc	agtgagcggc	gggtagatct	ggactcttac	8040
ccacccacac taaacaaaac	ggcatgaata	ttttgcacta	aaaccctcag	aaaaattccg	8100
atattccaaa ccagtacagt	tcctgaccgt	tggaggagcc	aaagtggagc	ggagtgtaaa	8160
attgggaaac ttaatcgagg	gggttaaacg	caaaaacgcc	gaggcgcctc	ccgctctata	8220
gaaaggggag gagtgggagg	tggaaaccct	accacaccgc	agagaaaggc	gtcttcgtac	8280
tegeetetet eegegeeete	ctccgccgcc	gctcgccgcc	gttcgtctcc	gccgccaccg	8340
gctagccatc caggtaaaac	aaacaaaac	ggatctgatg	cttccattcc	tccgtttctc	8400
gtagtagcgc gcttcgatct	gtgggtggat	ctgggtgatc	ctggggtgtg	gttcgttctg	8460
tttgatagat ctgtcggtgg	atctggcctt	ctgtggttgt	cgatgtccgg	atctgcgttt	8520
tgatcagtgg tagttcgtgg	atctggcgaa	atgttttgga	tctggcagtg	agacgctaag	8580
aatcgggaaa tgatgcaata	ttaggggggt	ttcggatggg	gatccactga	attagtctgt	8640
ctccctgctg ataatctgtt	cctttttggt	agatctggtt	agtgtatgtt	tgtttcggat	8700
agatctgatc aatgcttgtt	tgttttttca	aattttctac	ctaggttgta	taggaatggc	8760
atgcggatct ggttggattg	ccatgatccg	tgctgaaatg	cccctttggt	tgatggatct	8820
tgatatttta ctgctgttca	cctagatttg	tactcccgtt	tatacttaat	ttgttgctta	8880
ttatgaatag atctgtaact	taggcacatg	tatggacgga	gtatgtggat	ctgtagtatg	8940
tacattgctg cgagctaaga	actatttcag	agcaagcaca	gaaaaaaata	tttagacaga	9000
ttgggcaact atttgatggt	ctttggtatc	atgctttgta	gtgctcgttt	ctgcgtagta	9060
atcttttgat ctgatctgaa	gataggtgct	attatattct	taaaggtcat	tagaacgcta	9120
tctgaaaggc tgtattatgt	ggattggttc	acctgtgact	ccctgttcgt	cttgtcttga	9180
taaatcctgt gataaaaaaa	attcttaagg	cgtaatttgt	tgaaatcttg	ttttgtccta	9240
tgcagcctga tccatggcgc	aagttagcag	aatctgcaat	ggtgtgcaga	acccatctct	9300
tatctccaat ctctcgaaat	ccagtcaacg	caaatctccc	ttatcggttt	ctctgaagac	9360
gcagcagcat ccacgagctt	atccgatttc	gtcgtcgtgg	ggattgaaga	agagtgggat	9420
gacgttaatt ggctctgagc	ttcgtcctct	taaggtcatg	tcttctgttt	ccacggcgtg	9480
catgcttcac ggtgcaagca	gccggcccgc	aaccgcccgc	aaatcctctg	gcctttccgg	9540
aaccgtccgc attcccggcg	acaagtcgat	ctcccaccgg	tccttcatgt	tcggcggtct	9600
cgcgagcggt gaaacgcgca	tcaccggcct	tctggaaggc	gaggacgtca	tcaatacggg	9660
caaggccatg caggcgatgg	gcgcccgcat	ccgtaaggaa	ggcgacacct	ggatcatcga	9720

tggcgtcggc	aatggcggcc	tectggegee	tgaggcgccg	ctcgatttcg	gcaatgccgc	9780
cacgggctgc	cgcctgacga	tgggcctcgt	cggggtctac	gatttcgaca	gcaccttcat	9840
cggcgacgcc	tcgctcacaa	agcgcccgat	gggccgcgtg	ttgaacccgc	tgcgcgaaat	9900
gggcgtgcag	gtgaaatcgg	aagacggtga	ccgtcttccc	gttaccttgc	gcgggccgaa	9960
gacgccgacg	ccgatcacct	accgcgtgcc	gatggcctcc	gcacaggtga	agtccgccgt	10020
gctgctcgcc	ggcctcaaca	cgcccggcat	cacgacggtc	atcgagccga	tcatgacgcg	10080
cgatcatacg	gaaaagatgc	tgcagggctt	tggcgccaac	cttaccgtcg	agacggatgc	10140
ggacggcgtg	cgcaccatcc	gcctggaagg	ccgcggcaag	ctcaccggcc	aagtcatcga	10200
cgtgccgggc	gacccgtcct	cgacggcctt	cccgctggtt	gcggccctgc	ttgttccggg	10260
ctccgacgtc	accatcctca	acgtgctgat	gaaccccacc	cgcaccggcc	tcatcctgac	10320
gctgcaggaa	atgggcgccg	acatcgaagt	catcaacccg	cgccttgccg	gcggcgaaga	10380
cgtggcggac	ctgcgcgttc	gctcctccac	gctgaagggc	gtcacggtgc	cggaagaccg	10440
cgcgccttcg	atgatcgacg	aatatccgat	tctcgctgtc	gccgccgcct	tcgcggaagg	10500
ggcgaccgtg	atgaacggtc	tggaagaact	ccgcgtcaag	gaaagcgacc	gcctctcggc	10560
cgtcgccaat	ggcctcaagc	tcaatggcgt	ggattgcgat	gagggcgaga	cgtcgctcgt	10620
cgtgcgtggc	cgccctgacg	gcaaggggct	cggcaacgcc	tcgggcgccg	ccgtcgccac	10680
ccatctcgat	caccgcatcg	ccatgagctt	cctcgtcatg	ggcctcgtgt	cggaaaaccc	10740
tgtcacggtg	gacgatgcca	cgatgatcgc	cacgagcttc	ccggagttca	tggacctgat	10800
ggccgggctg	ggcgcgaaga	tcgaactctc	cgatacgaag	gctgcctgat	gagctccagg	10860
gttcttgcct	ggtgccttgg	caatgcttga	ttactgctgc	tatcctatga	tctgtccgtg	10920
tgggcttcta	tctatcagtt	tgtgtgtctg	gttttgaaaa	acatttgctt	ttcgattatg	10980
tagggtttgc	ttgtagcttt	cgctgctgtg	acctgtgttg	tttatgtgaa	ccttctttgt	11040
ggcatcttta	atatccaagt	tcgtggtttg	tcgtaaaacg	aagcctctac	ttcgtaaagt	11100
tgtgtctata	gcattgaaat	cgtttttttg	ctcgagaata	attgtgacct	ttagttggcg	11160
tgaaactagt	tttggatatc	tgattctctg	gttcgcaatc	ttgagatcgt	cgctgcttag	11220
gtgagctaag	tgatgttcct	aagtaaatgc	tcctcaccag	aatacgtagc	tgtgtgaaaa	11280
gagaacgcgt	gaatacgtag	ctgtgtaaag	attgtgtccc	aagtaaacct	cagtgatttt	11340
tgtttggatt	tttaatttag	aaacattcga	ctgggagcgg	ctagagccac	acccaagttc	11400
ctaactatga	taaagttgct	ctgtaacaga	aaacaccatc	tagagcggcc	gcgtttaaac	11460
tatcagtgtt	tgacaggata	tattggcggg	taaacctaag	agaaaagagc	gtttattaga	11520
ataatcggat	atttaaaagg	gcgtgaaaag	gtttatccgt	tcgtccattt	gtatgtgcat	11580

gccaaccaca gggttccct cgggagtgct tggcattccg tgcgataatg acttctgttc 11640
aaccacccaa acgtcggaaa gcctgacgac ggagcagcat tccaaaaaga tcccttggct 11700
cgtctgggtc ggctagaagg tcgagtgggc tgctgtggct tgatccctca acgcggtcgc 11760
ggacgtagcg cagcgccgaa aaatcct 11787

<210> 29

<211> 12322

<212> DNA

<213> Secuencia artificial

<220>

5

<223> Construcción de ADN 419

<400> 29

60 aaaagtccca tgtggatcac tccgttgccc cgtcgctcac cgtgttgggg ggaaggtgca catggctcag ttctcaatgg aaattatctg cctaaccggc tcagttctgc gtagaaacca 120 acatgcaagc tccaccgggt gcaaagcggc agcggcggca ggatatattc aattgtaaat 180 ggcttcatgt ccgggaaatc tacatggatc agcaatgagt atgatggtca atatggagaa 240 300 aaagaaagag taattaccaa ttttttttca attcaaaaat gtagatgtcc gcagcgttat 360 tataaaatga aagtacattt tgataaaacg acaaattacg atccgtcgta tttataggcg 420 aaagcaataa acaaattatt ctaattcgga aatctttatt tcgacgtgtc tacattcacg tccaaatggg ggcttagatg agaaacttca cgatcgatgc ggccaccact cgaggtcgag 480 540 gtaccgttgt caatcaattg gcaagtcata aaatgcatta aaaaatattt tcatactcaa ctacaaatcc atgagtataa ctataattat aaagcaatga ttagaatctg acaaggattc 600 tggaaaatta cataaaggaa agttcataaa tgtctaaaac acaagaggac atacttgtat 660 tcagtaacat ttgcagcttt tctaggtctg aaaatatatt tgttgcctag tgaataagca 720 taatggtaca actacaagtg ttttactcct catattaact tcggtcatta gaggccacga 780 tttgacacat ttttactcaa aacaaaatgt ttgcatatct cttataattt caaattcaac 840 900 acacaacaaa taagagaaaa aacaaataat attaatttga gaatgaacaa aaggaccata tcattcatta actcttctcc atccatttcc atttcacagt tcgatagcga aaaccgaata 960 aaaaacacag taaattacaa gcacaacaaa tggtacaaga aaaacagttt tcccaatgcc 1020 ataatactca aactcagtag gattctggtg tgtgcgcaat gaaactgatg cattgaactt 1080 gacgaacgtt gtcgaaaccg atgatacgaa cgaaagctag gcctcagcga gtaccgctgg 1140 cgatctaatc catgatatcg tgaacatcat ctacattcaa attcttatga gctttcttaa 1200 gggcatctgc agcatttttc atagaatcta atacagcagt atttgtgcta gctccttcga 1260 gggcttccct ctgcatttca atagttgtaa gggttccatc tatttgtagt tgggtctttt 1320 1380 ccaatcgttt cttctttttg agggcttgga gtgcaactct tttatttttc gacgcatttt

tctttgcgct	cctgcaggcg	gccgcgtgga	tgaggagtta	atcggtcgtg	tgagagtagt	1440
gatcgagtgg	atgtcgtcga	gagtgatgag	tgttgatgtt	gttagtgata	tgtggtagaa	1500
ggtatcgtga	taaagcgtta	acgcgatcgc	agtacttgca	aagaaaaatg	cgtcgaaaaa	1560
taaaagagtt	gcactccaag	ccctcaaaaa	gaagaaacga	ttggaaaaga	cccaactaca	1620
aatagatgga	acccttacaa	ctattgaaat	gcagagggaa	gccctcgaag	gagctagcac	1680
aaatactgct	gtattagatt	ctatgaaaaa	tgctgcagat	gcccttaaga	aagctcataa	1740
gaatttgaat	gtagatgatg	ttcacgatat	catggatggt	atcgcacagc	gactgctgag	1800
ggacgtcgag	ctcccgcttg	gtatctgcat	tacaatgaaa	tgagcaaaga	ctatgtgagt	1860
aacactggtc	aacactaggg	agaaggcatc	gagcaagata	cgtatgtaaa	gagaagcaat	1920
atagtgtcag	ttggtagata	ctagatacca	tcaggaggta	aggagagcaa	caaaaaggaa	1980
actctttatt	tttaaatttt	gttacaacaa	acaagcagat	caatgcatca	aaatactgtc	2040
agtacttatt	tcttcagaca	acaatattta	aaacaagtgc	atctgatctt	gacttatggt	2100
cacaataaag	gagcagagat	aaacatcaaa	atttcgtcat	ttatatttat	tccttcaggc	2160
gttaacaatt	taacagcaca	caaacaaaaa	cagaatagga	atatctaatt	ttggcaaata	2220
ataagctctg	cagacgaaca	aattattata	gtatcgccta	taatatgaat	ccctatacta	2280
ttgacccatg	tagtatgaag	cctgtgccta	aattaacagc	aaacttctga	atccaagtgc	2340
cctataacac	caacatgtgc	ttaaataaat	accgctaagc	accaaattac	acatttctcg	2400
tattgctgtg	taggttctat	cttcgtttcg	tactaccatg	tccctatatt	ttgctgctac	2460
aaaggacggc	aagtaatcag	cacaggcaga	acacgatttc	agagtgtaat	tctagatcca	2520
gctaaaccac	tctcagcaat	caccacacaa	gagagcattc	agagaaacgt	ggcagtaaca	2580
aaggcagagg	gcggagtgag	cgcgtaccga	agacggttca	gcgtgtcctc	tccaaatgaa	2640
atgaacttcc	ttatatagag	gaagggtctt	gcgaaggata	gtgggattgt	gcgtcatccc	2700
ttacgtcagt	ggagatatca	catcaatcca	cttgctttga	agacgtggtt	ggaacgtctt	2760
ctttttccac	gatgctcctc	gtgggtgggg	gtccatcttt	gggaccactg	tcggcagagg	2820
catcttcaac	gatggccttt	cctttatcgc	aatgatggca	tttgtaggag	ccaccttcct	2880
tttccactat	cttcacaata	aagtgacaga	tagctgggca	atggaatccg	aggaggtttc	2940
cggatattac	cctttgttga	aaagtctcaa	tcggaccatc	acatcaatcc	acttgctttg	3000
aagacgtggt	tggaacgtct	tctttttcca	cgatgctcct	cgtgggtggg	ggtccatctt	3060
tgggaccact	gtcggcagag	gcatcttcaa	cgatggcctt	tcctttatcg	caatgatggc	3120
atttgtagga	gccaccttcc	ttttccacta	tcttcacaat	aaagtgacag	atagctgggc	3180
aatggaatcc	gaggaggttt	ccggatatta	ccctttgttg	aaaagtctca	atcggacctg	3240

cagcctgcag	gctagcggcg	cgccgggatc	caaaaaacac	acacagatct	aattcctttt	3300
tttttgcact	caaaatcaga	acaatttatt	tctcatttat	tcatcgccga	atctgttggc	3360
gattagccga	ttacacaagt	acagaaaaca	ctggggaaag	aaacacaata	cagagatgtc	3420
tcatcagact	cgcaagaact	cgcacacaca	tcaaccaaat	tggctccaac	ctgaatgagc	3480
atacgtccaa	acgcatgcag	aattcaatca	gagttcctat	cacagctgga	cggggatgaa	3540
ctcgatcttg	tcgatgtaga	tcttctcgtt	ggagacgaag	gactcagcac	caatgatcag	3600
ttcattcttg	tcgcccgaga	agcccatgtt	ggagttcgtg	gtggcgaggt	cgaaggtctg	3660
gtaggtcagg	tcatcgtcct	tgttcatggt	cttgttgatg	tagatgacca	ggaagtcatt	3720
gttggagttc	tggacgaaca	ggcgcaggtt	cgtggtggag	gcgtagcgga	tgcggacgcg	3780
gtagcgttgc	agcaaggcag	cggagttcag	ggtgaccttg	aacttggcga	tggagttcga	3840
ggactccttc	aggaacagca	ggttgccacc	ggtgaagcct	ggaccctcaa	tgatggaggc	3900
acccgaggac	agggcgtagg	ccttgaccac	gggcagctgg	gtgatcttct	cggcgtcgat	3960
ggtgttgaag	aagtcgacgg	agcggtgggt	ccaggtgaag	aaggggatgg	tgcccctgcg	4020
gtcttgcatc	aggaagcact	ccgcgtagtt	cagctggtgg	gagtaggcct	tctccagggg	4080
ctcgtcagtg	gtctcaggcg	gcagctggtc	gatggagtcc	tgggcggaga	cgtggccatt	4140
gttgcgcttg	gagtcgtagg	tctgggtgga	ggtctcgttc	ttctggtcat	cgtactggga	4200
gaagtcgacc	ttcgtgacgc	ccaggtagac	cttgccgttc	ggccaagccg	cgacgtcggt	4260
gttggcgatg	gtgcggtaga	ccttctggcc	gtcgaaggac	agcttctgga	cgggctcggt	4320
ggacttgtcg	ccgtagaaag	gggaggtgat	cgtcttcgag	gagccgatgg	agggcctggt	4380
ctcgacgtag	ttgccggacc	agtagttgaa	ggagtccttg	ccgaagtagc	ctggcctcag	4440
gcgcgtgtgg	aactcgatgc	cctggaggta	gtcgaacagg	tggggcttgc	ggatggagtt	4500
ctcgatggac	aggaaggtgg	gaccgtactt	ctggagggtc	gtgagcagga	agatggggtc	4560
cgtgaagatg	tcgcgggtca	gctcggtctt	gacgcccttg	gagtacaggc	ggatgtcgta	4620
gaaggggaac	aggacgatca	ggtccaggac	ggtcagggtc	atctccctgc	ggaagcggtt	4680
gaacttgacc	catgcgtcgt	aggtggagcc	cctcaggccg	ttcaggccga	cgttgtacca	4740
gttgacgcag	tggtcggtgt	actgttgggt	cagcttcagc	tggcgacggt	agaactcggc	4800
gacgtcctcc	gaggagtagc	cccattcctc	gccgaagacc	tgggcgtcct	tcagcaacag	4860
gaggtgggtg	ttggcagcct	gggcgtaggt	gggcaggaac	aggacctcga	acttggagac	4920
ggcgaaggac	ggcatggagt	tgcggaagtg	ggactcggcc	tgggagaaca	gctcgcggat	4980
gcggtcctgg	gagcgcttgg	agcgcaggga	cagaggcgtc	ttcttccagg	agttcagcgc	5040
gttgacgtag	tcctcgaagt	tgttttgcag	gccttgcagc	tcggccaggg	ccttggactt	5100
ggcgtactcc	tcgatcttct	tgtcgatcag	gacttcgact	tgggccatga	aggccttcca	5160

ggggtcggcg	tcggagggcc	agatggtgtt	caggaaggac	tggtagaagg	aggtgagagc	5220
acctgcgaag	gggacgccaa	cgacgcccag	gatctgccca	acgacggaga	tgccggtccc	5280
gacggcgtcc	ttgacggtgg	agttgtccag	gacctccgtg	gaggagtcct	cggtcatgcg	5340
caggaactcc	ttgtagttca	gctcttccag	ggtggagttg	gggttgtcgg	ccagcgggta	5400
ctggttgtgg	ttggtctgga	gctcggagtt	gggggtgacc	ttgatcgtgt	cgtgctcgga	5460
gcgattgttg	gggttggcca	tggttgatca	cttctaccta	caaaaaagct	ccgcacgagg	5520
ctgcatttgt	cacaaatcat	gaaaagaaaa	actaccgatg	aacaatgctg	agggattcaa	5580
attctaccca	caaaaagaag	aaagaaagat	ctagcacatc	taagcctgac	gaagcagcag	5640
aaatatataa	aaatataaac	catagtgccc	ttttcccctc	ttcctgatct	tgtttagcac	5700
ggcggaaatt	ttaaaccccc	catcatctcc	cccaacaacg	gcggatcgca	gatctacatc	5760
cgagagcccc	attccccgcg	agatccgggc	cggatccacg	ccggcgagag	ccccagccgc	5820
gagatcccgc	ccctcccgcg	caccgatctg	ggcgcgcacg	aagccgcctc	tcgcccaccc	5880
aaactaccaa	ggccaaagat	cgagaccgag	acggaaaaaa	aaacggagaa	agaaagagga	5940
gaggggggg	gtggttaccg	gcggcggcgg	aggcctccct	tggatcttat	ggtgtgttgt	6000
ccctgtgtgt	tctccaatag	tgtggcttga	gtgtgtggaa	gatggttccc	gggggttttg	6060
atcatgggat	tagggaggta	tttatagtcg	agccccggga	ttaattaatc	gaccgttaga	6120
gctcatgtga	accctgccct	gccatcatgt	gagcgtgcat	acgagggcga	tctggattgg	6180
ctggcagaac	acctgcccta	gcaaggctcg	tagattaatt	aacaaatcgt	acgtacatct	6240
acgctgataa	tgtgttaaat	catcggccga	atatttggtt	agccgtgaag	cactcgatcc	6300
cgcaaatgac	caagattgct	gcacacgaca	catcgcgggc	ttgtttcctt	atgatcattg	6360
gttgttattt	tatctcgcga	tcttggccta	tcgggcgtcg	cttcgcgcgg	tgcagcgtga	6420
ctgcgtgagc	aagttggtga	ttttcttttg	ccgtttaaga	atgcttgctc	cgtgatcaca	6480
caagagagga	catcacatga	accgagaccg	gaggaatatc	ggggcatggt	gggattggtg	6540
ggtgtcccag	tccaacgggc	aagaagattc	taagcttacc	tgggtttgtt	ttcacgtacg	6600
cgaaggacag	gggaagatgc	cattgcagcg	tggcttcctg	ctggcccgcc	aactttaatc	6660
tacactaggc	acgtagctac	taggtcggcc	cgcttagata	gctaaggtag	gctaggtagg	6720
tccgtggtaa	actgccagcc	catgggcgcc	tgggattctt	cttgggccaa	cagaagcaga	6780
ggttgggcaa	tgcgaagcct	gaaaatcctc	ctcctccttc	tctctccctc	tctctctc	6840
tctctctctc	tctctcacga	ataaaatcct	cttcttcccg	aacaggctag	attcttttt	6900
ttttaatgaa	ccagtgagcc	accaatttca	ttgaatagag	gaataaaatt	gtacatgcgc	6960
aagcgcaaat	agaaaacttt	accgtctcaa	ggcctttggc	ccgaacatgt	taaaaggtaa	7020

gccacctatc	aaggtgtttc	gcgcccgcca	agacccatgt	tttggcatcc	tccttaattt	7080
tggctatcag	actagccacc	ggaagctctt	ggtgctgaaa	aactctgcgg	ttcctttcat	7140
tccaaatatc	ctaggcgact	aatagcatta	gagtctgcaa	ggctttcttt	ggcgcttcgt	7200
tggaacatgc	ggtggcctcc	caccacttga	gtagcgtcga	ggcttgttgc	cataacgttg	7260
gtcttatttg	ttcacatgtt	gtccagtctg	caagtgtcgc	ctagattctt	tcacatatct	7320
acactccgcc	aggaggtgag	ggccgtttcc	tgattccttc	gacaaagggg	cagatggagc	7380
cattttcgat	tacccacggg	ttgccaatct	gtcggaggtc	catactctat	tttggataac	7440
aagccaagcg	aagcgaatgt	tttacatttg	cgcggcgcct	agggcttcca	gataggggca	7500
ttgaaattga	agcttttatg	ccaagaagtt	gtgcgttgta	ggccgatgtc	gtcatgtatt	7560
cgccgtgact	agttagcttc	cattttcgac	aagcttgcct	cgagacaaca	acatgcttct	7620
catcaacatg	gagggaagag	ggagggagaa	agtgtcgcct	ggtcacctcc	attgtcacac	7680
tagccactgg	ccagctctcc	cacaccacca	atgccagggg	cgagctttag	cacagccacc	7740
gcttcacctc	caccaccgca	ctaccctagc	ttcgcccaac	agccaccgtc	aacgcctcct	7800
ctccgtcaac	ataagagaga	gagagaagag	gagagtagcc	atgtggggag	gaggaatagt	7860
acatggggcc	taccgtttgg	caagttattt	tgggttgcca	agttaggcca	ataaggggag	7920
ggatttggcc	atccggttgg	aaaggttatt	ggggtagtat	ctttttacta	gaattgtcaa	7980
aaaaaaatag	tttgagagcc	atttggagag	gatgttgcct	gttagaggtg	ctcttaggac	8040
atcaaattcc	ataaaaacat	cagaaaaatt	ctctcgatga	agatttataa	ccactaaaac	8100
tgccctcaat	tcgaagggag	ttcaaaacaa	ttaaaatcat	gttcgaattg	agtttcaatt	8160
tcactttaac	ccctttgaaa	tctcaatggt	aaaacatcaa	cccgtcaggt	agcatggttc	8220
tttttattcc	tttcaaaaag	agttaattac	aaacagaatc	aaaactaaca	gttaggccca	8280
aggcccatcc	gagcaaacaa	tagatcatgg	gccaggcctg	ccaccaccct	cccctcctg	8340
gctcccgctc	ttgaatttca	aaatccaaaa	atatcggcac	gactggccgc	cgacggagcg	8400
ggcggaaaat	gacggaacaa	cccctcgaat	tctaccccaa	ctacgcccac	caacccacac	8460
gccactgaca	atccggtccc	acccttgtgg	gcccacctac	aagcgagacg	tcagtcgctc	8520
gcagcaacca	gtgggcccac	ctcccagtga	gcggcgggta	gatctggact	cttacccacc	8580
cacactaaac	aaaacggcat	gaatattttg	cactaaaacc	ctcagaaaaa	ttccgatatt	8640
ccaaaccagt	acagttcctg	accgttggag	gagccaaagt	ggagcggagt	gtaaaattgg	8700
gaaacttaat	cgagggggtt	aaacgcaaaa	acgccgaggc	gcctcccgct	ctatagaaag	8760
gggaggagtg	ggaggtggaa	accctaccac	accgcagaga	aaggcgtctt	cgtactcgcc	8820
tctctccgcg	ccctcctccg	ccgccgctcg	ccgccgttcg	tctccgccgc	caccggctag	8880
ccatccaggt	aaaacaaaca	aaaacggatc	tgatgcttcc	attcctccgt	ttctcgtagt	8940

agcgcgcttc gatctgtg	gg tggatctggg	tgatcctggg	gtgtggttcg	ttctgtttga	9000
tagatetgte ggtggate	tg gccttctgtg	gttgtcgatg	tccggatctg	cgttttgatc	9060
agtggtagtt cgtggatc	tg gcgaaatgtt	ttggatctgg	cagtgagacg	ctaagaatcg	9120
ggaaatgatg caatatta	gg ggggtttcgg	atggggatcc	actgaattag	tctgtctccc	9180
tgctgataat ctgttcct	tt ttggtagatc	tggttagtgt	atgtttgttt	cggatagatc	9240
tgatcaatgc ttgtttgt	tt tttcaaattt	tctacctagg	ttgtatagga	atggcatgcg	9300
gatctggttg gattgcca	tg atccgtgctg	aaatgcccct	ttggttgatg	gatcttgata	9360
ttttactgct gttcacct	ag atttgtactc	ccgtttatac	ttaatttgtt	gcttattatg	9420
aatagatctg taacttag	gc acatgtatgg	acggagtatg	tggatctgta	gtatgtacat	9480
tgctgcgagc taagaact	at ttcagagcaa	gcacagaaaa	aaatatttag	acagattggg	9540
caactatttg atggtctt	tg gtatcatgct	ttgtagtgct	cgtttctgcg	tagtaatctt	9600
ttgatctgat ctgaagat	ag gtgctattat	attcttaaag	gtcattagaa	cgctatctga	9660
aaggctgtat tatgtgga	tt ggttcacctg	tgactccctg	ttcgtcttgt	cttgataaat	9720
cctgtgataa aaaaaatt	ct taaggcgtaa	tttgttgaaa	tcttgttttg	tcctatgcag	9780
cctgatccat ggcgcaag	tt agcagaatct	gcaatggtgt	gcagaaccca	tctcttatct	9840
ccaatctctc gaaatcca	gt caacgcaaat	ctcccttatc	ggtttctctg	aagacgcagc	9900
agcatccacg agcttatc	cg atttcgtcgt	cgtggggatt	gaagaagagt	gggatgacgt	9960
taattggctc tgagcttc	gt cctcttaagg	tcatgtcttc	tgtttccacg	gcgtgcatgc	10020
ttcacggtgc aagcagcc	gg cccgcaaccg	cccgcaaatc	ctctggcctt	tccggaaccg	10080
tccgcattcc cggcgaca	ag tcgatctccc	accggtcctt	catgttcggc	ggtctcgcga	10140
gcggtgaaac gcgcatca	cc ggccttctgg	aaggcgagga	cgtcatcaat	acgggcaagg	10200
ccatgcaggc gatgggcg	cc cgcatccgta	aggaaggcga	cacctggatc	atcgatggcg	10260
teggeaatgg eggeetee	tg gcgcctgagg	cgccgctcga	tttcggcaat	gccgccacgg	10320
gctgccgcct gacgatgg	gc ctcgtcgggg	tctacgattt	cgacagcacc	ttcatcggcg	10380
acgecteget cacaaage	gc ccgatgggcc	gcgtgttgaa	cccgctgcgc	gaaatgggcg	10440
tgcaggtgaa atcggaag	ac ggtgaccgtc	ttcccgttac	cttgcgcggg	ccgaagacgc	10500
cgacgccgat cacctacc	gc gtgccgatgg	cctccgcaca	ggtgaagtcc	gccgtgctgc	10560
tegeeggeet caacaege	cc ggcatcacga	cggtcatcga	gccgatcatg	acgcgcgatc	10620
atacggaaaa gatgctgc	ag ggctttggcg	ccaaccttac	cgtcgagacg	gatgcggacg	10680
gcgtgcgcac catccgcc	tg gaaggccgcg	gcaagctcac	cggccaagtc	atcgacgtgc	10740
cgggcgaccc gtcctcga	cg gaattaaaga	tggttgcggc	cctgcttgtt	ccgggctccg	10800

```
acgtcaccat cctcaacgtg ctgatgaacc ccacccgcac cggcctcatc ctgacgctgc
                                                                     10860
aggaaatggg cgccgacatc gaagtcatca acccgcgcct tgccggcggc gaagacgtgg
                                                                     10920
cggacctgcg cgttcgctcc tccacgctga agggcgtcac ggtgccggaa gaccgcgcgc
                                                                     10980
cttcgatgat cgacgaatat ccgattctcg ctgtcgccgc cgccttcgcg gaaggggcga
                                                                     11040
ccgtgatgaa cggtctggaa gaactccgcg tcaaggaaag cgaccgcctc tcggccgtcg
                                                                     11100
ccaatggcct caagctcaat ggcgtggatt gcgatgaggg cgagacgtcg ctcgtcgtgc
                                                                     11160
                                                                     11220
gtggccgccc tgacggcaag gggctcggca acgcctcggg cgccgccgtc gccacccatc
tegateaceg categecatg agetteeteg teatgggeet egtgteggaa aaccetgtea
                                                                     11280
cggtggacga tgccacgatg atcgccacga gcttcccgga gttcatggac ctgatggccg
                                                                     11340
qqctqqqcqc qaaqatcqaa ctctccqata cqaaqqctqc ctqatqaqct ccaqqqttct
                                                                     11400
tgcctggtgc cttggcaatg cttgattact gctgctatcc tatgatctgt ccgtgtgggc
                                                                     11460
ttctatctat cagtttgtgt gtctggtttt gaaaaacatt tgcttttcga ttatgtaggg
                                                                     11520
tttgcttgta gctttcgctg ctgtgacctg tgttgtttat gtgaaccttc tttgtggcat
                                                                     11580
ctttaatatc caagttcgtg gtttgtcgta aaacgaagcc tctacttcgt aaagttgtgt
                                                                     11640
ctatagcatt gaaatcgttt ttttgctcga gaataattgt gacctttagt tggcgtgaaa
                                                                     11700
                                                                     11760
ctagttttgg atatctgatt ctctggttcg caatcttgag atcgtcgctg cttaggtgag
ctaagtgatg ttcctaagta aatgctcctc accagaatac gtagctgtgt gaaaagagaa
                                                                     11820
cgcgtgaata cgtagctgtg taaagattgt gtcccaagta aacctcagtg atttttgttt
                                                                     11880
                                                                     11940
ggatttttaa tttagaaaca ttcgactggg agcggctaga gccacaccca agttcctaac
tatgataaag ttgctctgta acagaaaaca ccatctagag cggccgcgtt taaactatca
                                                                     12000
gtgtttgaca ggatatattg gcgggtaaac ctaagagaaa agagcgttta ttagaataat
                                                                     12060
                                                                     12120
cggatattta aaagggcgtg aaaaggttta tccgttcgtc catttgtatg tgcatgccaa
ccacagggtt cccctcggga gtgcttggca ttccgtgcga taatgacttc tgttcaacca
                                                                     12180
cccaaacgtc ggaaagcctg acgacggagc agcattccaa aaagatccct tggctcgtct
                                                                     12240
gggtcggcta gaaggtcgag tgggctgctg tggcttgatc cctcaacgcg gtcgcggacg
                                                                     12300
                                                                     12322
tagcgcagcg ccgaaaaatc ct
```

5

aaaagtccca tgtggatcac tccgttgccc cgtcgctcac cgtgttgggg ggaaggtgca

<210> 30

<211> 12797

<212> DNA

<213> Secuencia artificial

<220>

<223> Construcción de ADN 402

<400> 30

catggctcag tt	ctcaatgg	aaattatctg	cctaaccggc	tcagttctgc	gtagaaacca	120
acatgcaagc to	caccgggt	gcaaagcggc	agcggcggca	ggatatattc	aattgtaaat	180
ggcttcatgt cc	gggaaatc	tacatggatc	agcaatgagt	atgatggtca	atatggagaa	240
aaagaaagag ta	attaccaa	tttttttca	attcaaaaat	gtagatgtcc	gcagcgttat	300
tataaaatga aa	gtacattt ·	tgataaaacg	acaaattacg	atccgtcgta	tttataggcg	360
aaagcaataa ac	aaattatt	ctaattcgga	aatctttatt	tcgacgtgtc	tacattcacg	420
tccaaatggg gg	cttagatg	agaaacttca	cgatcgatgc	ggccaccact	cgaggtcgag	480
gtaccgttgt ca	atcaattg	gcaagtcata	aaatgcatta	aaaaatattt	tcatactcaa	540
ctacaaatcc at	gagtataa	ctataattat	aaagcaatga	ttagaatctg	acaaggattc	600
tggaaaatta ca	taaaggaa	agttcataaa	tgtctaaaac	acaagaggac	atacttgtat	660
tcagtaacat tt	gcagcttt ·	tctaggtctg	aaaatatatt	tgttgcctag	tgaataagca	720
taatggtaca ac	tacaagtg ·	ttttactcct	catattaact	tcggtcatta	gaggccacga	780
tttgacacat tt	ttactcaa	aacaaaatgt	ttgcatatct	cttataattt	caaattcaac	840
acacaacaaa ta	agagaaaa	aacaaataat	attaatttga	gaatgaacaa	aaggaccata	900
tcattcatta ac	tettetee	atccatttcc	atttcacagt	tcgatagcga	aaaccgaata	960
aaaaacacag ta	aattacaa (gcacaacaaa	tggtacaaga	aaaacagttt	tcccaatgcc	1020
ataatactca aa	ctcagtag (gattctggtg	tgtgcgcaat	gaaactgatg	cattgaactt	1080
gacgaacgtt gt	cgaaaccg	atgatacgaa	cgaaagctag	gcctcagcga	gtaccgctgg	1140
cgatctaatc ca	tgatatcg ·	tgaacatcat	ctacattcaa	attcttatga	gctttcttaa	1200
gggcatctgc ag	catttttc	atagaatcta	atacagcagt	atttgtgcta	gctccttcga	1260
gggcttccct ct	gcatttca	atagttgtaa	gggttccatc	tatttgtagt	tgggtctttt	1320
ccaatcgttt ct	tctttttg	agggcttgga	gtgcaactct	tttattttc	gacgcatttt	1380
tctttgcgct cc	tgcaggcg (gccgcgtgga	tgaggagtta	atcggtcgtg	tgagagtagt	1440
gatcgagtgg at	gtcgtcga	gagtgatgag	tgttgatgtt	gttagtgata	tgtggtagaa	1500
ggtatcgtga ta	aagcgtta	acgcgatcgc	agtacttgca	aagaaaaatg	cgtcgaaaaa	1560
taaaagagtt gc	actccaag	ccctcaaaaa	gaagaaacga	ttggaaaaga	cccaactaca	1620
aatagatgga ac	ccttacaa	ctattgaaat	gcagagggaa	gccctcgaag	gagctagcac	1680
aaatactgct gt	attagatt	ctatgaaaaa	tgctgcagat	gcccttaaga	aagctcataa	1740
gaatttgaat gt	agatgatg ·	ttcacgatat	catggatggt	atcgcacagc	gactgctgag	1800
ggacgtcggt cc	atggagat	cctctagagg	ccgcttggta	tctgcattac	aatgaaatga	1860
gcaaagacta tg	tgagtaac	actggtcaac	actagggaga	aggcatcgag	caagatacgt	1920

atgtaaagag aagcaatata	gtgtcagttg	gtagatacta	gataccatca	ggaggtaagg	1980
agagcaacaa aaaggaaact	ctttattttt	aaattttgtt	acaacaaaca	agcagatcaa	2040
tgcatcaaaa tactgtcagt	acttatttct	tcagacaaca	atatttaaaa	caagtgcatc	2100
tgatcttgac ttatggtcac	aataaaggag	cagagataaa	catcaaaatt	tcgtcattta	2160
tatttattcc ttcaggcgtt	aacaatttaa	cagcacacaa	acaaaaacag	aataggaata	2220
tctaattttg gcaaataata	agctctgcag	acgaacaaat	tattatagta	tcgcctataa	2280
tatgaatccc tatactattg	acccatgtag	tatgaagcct	gtgcctaaat	taacagcaaa	2340
cttctgaatc caagtgccct	ataacaccaa	catgtgctta	aataaatacc	gctaagcacc	2400
aaattacaca tttctcgtat	tgctgtgtag	gttctatctt	cgtttcgtac	taccatgtcc	2460
ctatattttg ctgctacaaa	ggacggcaag	taatcagcac	aggcagaaca	cgatttcaga	2520
gtgtaattct agatccagct	aaaccactct	cagcaatcac	cacacaagag	agcattcaga	2580
gaaacgtggc agtaacaaag	gcagagggcg	gagtgagcgc	gtaccgaaga	cggtgggccg	2640
cttatggtgt gttgtccctg	tgtgttctcc	aatagtgtgg	cttgagtgtg	tggaagatgg	2700
ttgtatctga tgatccttca	aatgggaatg	aatgccttct	tatatagagg	gaattctttt	2760
gtggtcgtca ctgcgttcgt	catacgcatt	agtgagtggg	ctgtcaggac	agctcttttc	2820
cacgttattt tgttccccac	ttgtactaga	ggaatctgct	ttatctttgc	aataaaggca	2880
aagatgcttt tggtaggtgc	gcctaacaat	tctgcaccat	tccttttttg	tctggtcccc	2940
acaagccagc tgctcgatgt	tgacaagatt	actttcaaag	atgcccacta	actttaagtc	3000
ttcggtggat gtcttttct	gaaacttact	gaccatgatg	catgtgctgg	aacagtagtt	3060
tactttgatt gaagattctt	cattgatctc	ctgtagcttt	tggctaatgg	tttggagact	3120
ctgtaccctg accttgttga	ggctttggac	tgagaattct	tccttacaaa	cctttgagga	3180
tgggagttcc ttcttggttt	tggcgatacc	aatttgaata	aagtgatatg	gctcgtacct	3240
tgttgattga acccaatctg	gaatgctgct	aaatcctgag	ctcaagctaa	ttcttttgtg	3300
gtcgtcactg cgttcgtcat	acgcattagt	gagtgggctg	tcaggacagc	tcttttccac	3360
gttattttgt tccccacttg	tactagagga	atctgcttta	tctttgcaat	aaaggcaaag	3420
atgcttttgg taggtgcgcc	taacaattct	gcaccattcc	ttttttgtct	ggtccccaca	3480
agccagctgc tcgatgttga	caagattact	ttcaaagatg	cccactaact	ttaagtcttc	3540
ggtggatgtc tttttctgaa	acttactgac	catgatgcat	gtgctggaac	agtagtttac	3600
tttgattgaa gattcttcat	tgatctcctg	tagcttttgg	ctaatggttt	ggagactctg	3660
taccctgacc ttgttgaggc	tttggactga	gaattagctt	ccactcgaag	cttgttaacc	3720
tgcaggctag cggcgcgccg	gaagctaact	agtcacggcg	aatacatgac	gacatcggcc	3780
tacaacgcac aacttcttgg	cataaaagct	tcaatttcaa	tgcccctatc	tggaagccct	3840

aggcgccgcg	caaatgtaaa	acattcgctt	cgcttggctt	gttatccaaa	atagagtatg	3900
gacctccgac	agattggcaa	cccgtgggta	atcgaaaatg	gctccatctg	cccctttgtc	3960
gaaggaatca	ggaaacggcc	ctcacctcct	ggcggagtgt	agatatgtga	aagaatctag	4020
gcgacacttg	cagactggac	aacatgtgaa	caaataagac	caacgttatg	gcaacaagcc	4080
tcgacgctac	tcaagtggtg	ggaggccacc	gcatgttcca	acgaagcgcc	aaagaaagcc	4140
ttgcagactc	taatgctatt	agtcgcctag	gatatttgga	atgaaaggaa	ccgcagagtt	4200
tttcagcacc	aagagcttcc	ggtggctagt	ctgatagcca	aaattaagga	ggatgccaaa	4260
acatgggtct	tggcgggcgc	gaaacacctt	gataggtggc	ttacctttta	acatgttcgg	4320
gccaaaggcc	ttgagacggt	aaagttttct	atttgcgctt	gcgcatgtac	aattttattc	4380
ctctattcaa	tgaaattggt	ggctcactgg	ttcattaaaa	aaaaaagaat	ctagcctgtt	4440
cgggaagaag	aggattttat	tcgtgagaga	gagagagaga	gagagagaga	gagggagaga	4500
gaaggaggag	gaggattttc	aggcttcgca	ttgcccaacc	tctgcttctg	ttggcccaag	4560
aagaatccca	ggcgcccatg	ggctggcagt	ttaccacgga	cctacctagc	ctaccttagc	4620
tatctaagcg	ggccgaccta	gtagctacgt	gcctagtgta	gattaaagtt	ggcgggccag	4680
caggaagcca	cgctgcaatg	gcatcttccc	ctgtccttcg	cgtacgtgaa	aacaaaccca	4740
ggtaagctta	gaatcttctt	gcccgttgga	ctgggacacc	caccaatccc	accatgcccc	4800
gatattcctc	cggtctcggt	tcatgtgatg	tcctctcttg	tgtgatcacg	gagcaagcat	4860
tcttaaacgg	caaaagaaaa	tcaccaactt	gctcacgcag	tcacgctgca	ccgcgcgaag	4920
cgacgcccga	taggccaaga	tcgcgagata	aaataacaac	caatgatcat	aaggaaacaa	4980
gcccgcgatg	tgtcgtgtgc	agcaatcttg	gtcatttgcg	ggatcgagtg	cttcacggct	5040
aaccaaatat	tcggccgatg	atttaacaca	ttatcagcgt	agatgtacgt	acgatttgtt	5100
aattaatcta	cgagccttgc	tagggcaggt	gttctgccag	ccaatccaga	tcgccctcgt	5160
atgcacgctc	acatgatggc	agggcagggt	tcacatgagc	tctaacggtc	gattaattaa	5220
tecegggget	cgactataaa	tacctcccta	atcccatgat	caaaaccccc	gggaaccatc	5280
ttccacacac	tcaagccaca	ctattggaga	acacacaggg	acaacacacc	ataagatcca	5340
agggaggcct	ccgccgccgc	cggtaaccac	cccgcccctc	tcctctttct	ttctccgttt	5400
tttttccgt	ctcggtctcg	atctttggcc	ttggtagttt	gggtgggcga	gaggcggctt	5460
cgtgcgcgcc	cagatcggtg	cgcgggaggg	gcgggatctc	gcggctgggg	ctctcgccgg	5520
cgtggatccg	gcccggatct	cgcggggaat	ggggctctcg	gatgtagatc	tgcgatccgc	5580
cgttgttggg	ggagatgatg	gggggtttaa	aatttccgcc	gtgctaaaca	agatcaggaa	5640
gaggggaaaa	gggcactatg	gtttatattt	ttatatattt	ctgctgcttc	gtcaggctta	5700

gatgtgct	ag atctttcttt	cttctttttg	tgggtagaat	ttgaatccct	cagcattgtt	5760
catcggta	gt ttttctttc	atgatttgtg	acaaatgcag	cctcgtgcgg	agcttttttg	5820
taggtaga	ag tgatcaacca	tggccaaccc	caacaatcgc	tccgagcacg	acacgatcaa	5880
ggtcaccc	cc aactccgagc	tccagaccaa	ccacaaccag	tacccgctgg	ccgacaaccc	5940
caactcca	cc ctggaagagc	tgaactacaa	ggagttcctg	cgcatgaccg	aggactcctc	6000
cacggagg	tc ctggacaact	ccaccgtcaa	ggacgccgtc	gggaccggca	tctccgtcgt	6060
tgggcaga	tc ctgggcgtcg	ttggcgtccc	cttcgcaggt	gctctcacct	ccttctacca	6120
gtccttcc	tg aacaccatct	ggccctccga	cgccgacccc	tggaaggcct	tcatggccca	6180
agtcgaag	tc ctgatcgaca	agaagatcga	ggagtacgcc	aagtccaagg	ccctggccga	6240
gctgcaag	gc ctgcaaaaca	acttcgagga	ctacgtcaac	gcgctgaact	cctggaagaa	6300
gacgcctc	tg tecetgeget	ccaagcgctc	ccaggaccgc	atccgcgagc	tgttctccca	6360
ggccgagt	cc cacttccgca	actccatgcc	gtccttcgcc	gtctccaagt	tcgaggtcct	6420
gttcctgc	cc acctacgccc	aggctgccaa	cacccacctc	ctgttgctga	aggacgccca	6480
ggtcttcg	gc gaggaatggg	gctactcctc	ggaggacgtc	gccgagttct	accgtcgcca	6540
gctgaagc	tg acccaacagt	acaccgacca	ctgcgtcaac	tggtacaacg	tcggcctgaa	6600
cggcctga	gg ggctccacct	acgacgcatg	ggtcaagttc	aaccgcttcc	gcagggagat	6660
gaccctga	cc gtcctggacc	tgatcgtcct	gttccccttc	tacgacatcc	gcctgtactc	6720
caagggcg	tc aagaccgagc	tgacccgcga	catcttcacg	gaccccatct	tcctgctcac	6780
gaccctcc	ag aagtacggtc	ccaccttcct	gtccatcgag	aactccatcc	gcaagcccca	6840
cctgttcg	ac tacctccagg	gcatcgagtt	ccacacgcgc	ctgaggccag	gctacttcgg	6900
caaggact	cc ttcaactact	ggtccggcaa	ctacgtcgag	accaggccct	ccatcggctc	6960
ctcgaaga	cg atcacctccc	ctttctacgg	cgacaagtcc	accgagcccg	tccagaagct	7020
gtccttcg	ac ggccagaagg	tctaccgcac	catcgccaac	accgacgtcg	cggcttggcc	7080
gaacggca	ag gtctacctgg	gcgtcacgaa	ggtcgacttc	tcccagtacg	atgaccagaa	7140
gaacgaga	cc tccacccaga	cctacgactc	caagcgcaac	aatggccacg	tctccgccca	7200
ggactccat	to gaccagotgo	cgcctgagac	cactgacgag	cccctggaga	aggcctactc	7260
ccaccago	tg aactacgcgg	agtgcttcct	gatgcaagac	cgcaggggca	ccatcccctt	7320
cttcacct	gg acccaccgct	ccgtcgactt	cttcaacacc	atcgacgccg	agaagatcac	7380
ccagctgc	cc gtggtcaagg	cctacgccct	gtcctcgggt	gcctccatca	ttgagggtcc	7440
aggcttca	cc ggtggcaacc	tgctgttcct	gaaggagtcc	tcgaactcca	tcgccaagtt	7500
caaggtca	cc ctgaactccg	ctgccttgct	gcaacgctac	cgcgtccgca	tccgctacgc	7560
ctccacca	cg aacctgcgcc	tgttcgtcca	gaactccaac	aatgacttcc	tggtcatcta	7620

catcaacaag	accatgaaca	aggacgatga	cctgacctac	cagaccttcg	acctcgccac	7680
cacgaactcc	aacatgggct	tctcgggcga	caagaatgaa	ctgatcattg	gtgctgagtc	7740
cttcgtctcc	aacgagaaga	tctacatcga	caagatcgag	ttcatccccg	tccagctgtg	7800
ataggaactc	tgattgaatt	ctgcatgcgt	ttggacgtat	gctcattcag	gttggagcca	7860
atttggttga	tgtgtgtgcg	agttcttgcg	agtctgatga	gacatctctg	tattgtgttt	7920
ctttccccag	tgttttctgt	acttgtgtaa	tcggctaatc	gccaacagat	tcggcgatga	7980
ataaatgaga	aataaattgt	tctgattttg	agtgcaaaaa	aaaaggaatt	agatctgtgt	8040
gtgtttttg	gatcccattt	tcgacaagct	tgcctcgaga	caacaacatg	cttctcatca	8100
acatggaggg	aagagggagg	gagaaagtgt	cgcctggtca	cctccattgt	cacactagcc	8160
actggccagc	tctcccacac	caccaatgcc	aggggcgagc	tttagcacag	ccaccgcttc	8220
acctccacca	ccgcactacc	ctagcttcgc	ccaacagcca	ccgtcaacgc	ctcctctccg	8280
tcaacataag	agagagagag	aagaggagag	tagccatgtg	gggaggagga	atagtacatg	8340
gggcctaccg	tttggcaagt	tattttgggt	tgccaagtta	ggccaataag	gggagggatt	8400
tggccatccg	gttggaaagg	ttattggggt	agtatctttt	tactagaatt	gtcaaaaaaa	8460
aatagtttga	gagccatttg	gagaggatgt	tgcctgttag	aggtgctctt	aggacatcaa	8520
attccataaa	aacatcagaa	aaattctctc	gatgaagatt	tataaccact	aaaactgccc	8580
tcaattcgaa	gggagttcaa	aacaattaaa	atcatgttcg	aattgagttt	caatttcact	8640
ttaacccctt	tgaaatctca	atggtaaaac	atcaacccgt	caggtagcat	ggttcttttt	8700
attcctttca	aaaagagtta	attacaaaca	gaatcaaaac	taacagttag	gcccaaggcc	8760
catccgagca	aacaatagat	catgggccag	gcctgccacc	accctccccc	tcctggctcc	8820
cgctcttgaa	tttcaaaatc	caaaaatatc	ggcacgactg	gccgccgacg	gagcgggcgg	8880
aaaatgacgg	aacaacccct	cgaattctac	cccaactacg	cccaccaacc	cacacgccac	8940
tgacaatccg	gtcccaccct	tgtgggccca	cctacaagcg	agacgtcagt	cgctcgcagc	9000
aaccagtggg	cccacctccc	agtgagcggc	gggtagatct	ggactcttac	ccacccacac	9060
taaacaaaac	ggcatgaata	ttttgcacta	aaaccctcag	aaaaattccg	atattccaaa	9120
ccagtacagt	tcctgaccgt	tggaggagcc	aaagtggagc	ggagtgtaaa	attgggaaac	9180
ttaatcgagg	gggttaaacg	caaaaacgcc	gaggcgcctc	ccgctctata	gaaaggggag	9240
gagtgggagg	tggaaaccct	accacaccgc	agagaaaggc	gtcttcgtac	tcgcctctct	9300
ccgcgccctc	ctccgccgcc	gctcgccgcc	gttcgtctcc	gccgccaccg	gctagccatc	9360
caggtaaaac	aaacaaaac	ggatctgatg	cttccattcc	tccgtttctc	gtagtagcgc	9420
gcttcgatct	gtgggtggat	ctgggtgatc	ctggggtgtg	gttcgttctg	tttgatagat	9480

ctgtcggtgg	atctggcctt	ctgtggttgt	cgatgtccgg	atctgcgttt	tgatcagtgg	9540
tagttcgtgg	atctggcgaa	atgttttgga	tctggcagtg	agacgctaag	aatcgggaaa	9600
tgatgcaata	ttaggggggt	ttcggatggg	gatccactga	attagtctgt	ctccctgctg	9660
ataatctgtt	cctttttggt	agatctggtt	agtgtatgtt	tgtttcggat	agatctgatc	9720
aatgcttgtt	tgtttttca	aattttctac	ctaggttgta	taggaatggc	atgcggatct	9780
ggttggattg	ccatgatccg	tgctgaaatg	cccctttggt	tgatggatct	tgatatttta	9840
ctgctgttca	cctagatttg	tactcccgtt	tatacttaat	ttgttgctta	ttatgaatag	9900
atctgtaact	taggcacatg	tatggacgga	gtatgtggat	ctgtagtatg	tacattgctg	9960
cgagctaaga	actatttcag	agcaagcaca	gaaaaaaata	tttagacaga	ttgggcaact	10020
atttgatggt	ctttggtatc	atgctttgta	gtgctcgttt	ctgcgtagta	atcttttgat	10080
ctgatctgaa	gataggtgct	attatattct	taaaggtcat	tagaacgcta	tctgaaaggc	10140
tgtattatgt	ggattggttc	acctgtgact	ccctgttcgt	cttgtcttga	taaatcctgt	10200
gataaaaaaa	attcttaagg	cgtaatttgt	tgaaatcttg	ttttgtccta	tgcagcctga	10260
tccatggcgc	aagttagcag	aatctgcaat	ggtgtgcaga	acccatctct	tatctccaat	10320
ctctcgaaat	ccagtcaacg	caaatctccc	ttatcggttt	ctctgaagac	gcagcagcat	10380
ccacgagctt	atccgatttc	gtcgtcgtgg	ggattgaaga	agagtgggat	gacgttaatt	10440
ggctctgagc	ttcgtcctct	taaggtcatg	tcttctgttt	ccacggcgtg	catgcttcac	10500
ggtgcaagca	gccggcccgc	aaccgcccgc	aaatcctctg	gcctttccgg	aaccgtccgc	10560
attcccggcg	acaagtcgat	ctcccaccgg	tccttcatgt	tcggcggtct	cgcgagcggt	10620
gaaacgcgca	tcaccggcct	tctggaaggc	gaggacgtca	tcaatacggg	caaggccatg	10680
caggcgatgg	gcgcccgcat	ccgtaaggaa	ggcgacacct	ggatcatcga	tggcgtcggc	10740
aatggcggcc	tcctggcgcc	tgaggcgccg	ctcgatttcg	gcaatgccgc	cacgggctgc	10800
cgcctgacga	tgggcctcgt	cggggtctac	gatttcgaca	gcaccttcat	cggcgacgcc	10860
tcgctcacaa	agcgcccgat	gggccgcgtg	ttgaacccgc	tgcgcgaaat	gggcgtgcag	10920
gtgaaatcgg	aagacggtga	ccgtcttccc	gttaccttgc	gcgggccgaa	gacgccgacg	10980
ccgatcacct	accgcgtgcc	gatggcctcc	gcacaggtga	agtccgccgt	gctgctcgcc	11040
ggcctcaaca	cgcccggcat	cacgacggtc	atcgagccga	tcatgacgcg	cgatcatacg	11100
gaaaagatgc	tgcagggctt	tggcgccaac	cttaccgtcg	agacggatgc	ggacggcgtg	11160
cgcaccatcc	gcctggaagg	ccgcggcaag	ctcaccggcc	aagtcatcga	cgtgccgggc	11220
gacccgtcct	cgacggcctt	cccgctggtt	gcggccctgc	ttgttccggg	ctccgacgtc	11280
accatcctca	acgtgctgat	gaaccccacc	cgcaccggcc	tcatcctgac	gctgcaggaa	11340
atgggcgccg	acatcgaagt	catcaacccg	cgccttgccg	gcggcgaaga	cgtggcggac	11400

ctgcgcgttc gctcctccac	gctgaagggc	gtcacggtgc	cggaagaccg	cgcgccttcg	11460
atgatcgacg aatatccgat	tctcgctgtc	gccgccgcct	tcgcggaagg	ggcgaccgtg	11520
atgaacggtc tggaagaact	ccgcgtcaag	gaaagcgacc	gcctctcggc	cgtcgccaat	11580
ggcctcaagc tcaatggcgt	ggattgcgat	gagggcgaga	cgtcgctcgt	cgtgcgtggc	11640
cgccctgacg gcaaggggct	cggcaacgcc	tcgggcgccg	ccgtcgccac	ccatctcgat	11700
caccgcatcg ccatgagctt	cctcgtcatg	ggcctcgtgt	cggaaaaccc	tgtcacggtg	11760
gacgatgcca cgatgatcgc	cacgagette	ccggagttca	tggacctgat	ggccgggctg	11820
ggcgcgaaga tcgaactctc	cgatacgaag	gctgcctgat	gagctccagg	gttcttgcct	11880
ggtgccttgg caatgcttga	ttactgctgc	tatcctatga	tctgtccgtg	tgggcttcta	11940
tctatcagtt tgtgtgtctg	gttttgaaaa	acatttgctt	ttcgattatg	tagggtttgc	12000
ttgtagcttt cgctgctgtg	acctgtgttg	tttatgtgaa	ccttctttgt	ggcatcttta	12060
atatccaagt tcgtggtttg	tcgtaaaacg	aagcctctac	ttcgtaaagt	tgtgtctata	12120
gcattgaaat cgtttttttg	ctcgagaata	attgtgacct	ttagttggcg	tgaaactagt	12180
tttggatatc tgattctctg	gttcgcaatc	ttgagatcgt	cgctgcttag	gtgagctaag	12240
tgatgttcct aagtaaatgc	tcctcaccag	aatacgtagc	tgtgtgaaaa	gagaacgcgt	12300
gaatacgtag ctgtgtaaag	attgtgtccc	aagtaaacct	cagtgatttt	tgtttggatt	12360
tttaatttag aaacattcga	ctgggagcgg	ctagagccac	acccaagttc	ctaactatga	12420
taaagttgct ctgtaacaga	aaacaccatc	tagagcggcc	gcgtttaaac	tatcagtgtt	12480
tgacaggata tattggcggg	taaacctaag	agaaaagagc	gtttattaga	ataatcggat	12540
atttaaaagg gcgtgaaaag	gtttatccgt	tcgtccattt	gtatgtgcat	gccaaccaca	12600
gggttcccct cgggagtgct	tggcattccg	tgcgataatg	acttctgttc	aaccacccaa	12660
acgtcggaaa gcctgacgac	ggagcagcat	tccaaaaaga	tcccttggct	cgtctgggtc	12720
ggctagaagg tcgagtgggc	tgctgtggct	tgatccctca	acgcggtcgc	ggacgtagcg	12780
cagcgccgaa aaatcct					12797

<210> 31

<211> 12218

<212> DNA

<213> Secuencia artificial

<220>

5

<223> Construcción de ADN 403

<400> 31

aaaagtccca tgtggatcac tccgttgccc cgtcgctcac cgtgttgggg ggaaggtgca 60 catggctcag ttctcaatgg aaattatctg cctaaccggc tcagttctgc gtagaaacca 120

acatgcaage tecaceggg	rt gcaaagcggc	agcggcggca	ggatatattc	aattgtaaat	180
ggcttcatgt ccgggaaat	c tacatggatc	agcaatgagt	atgatggtca	atatggagaa	240
aaagaaagag taattacca	a tttttttca	attcaaaaat	gtagatgtcc	gcagcgttat	300
tataaaatga aagtacatt	t tgataaaacg	acaaattacg	atccgtcgta	tttataggcg	360
aaagcaataa acaaattat	t ctaattcgga	aatctttatt	tcgacgtgtc	tacattcacg	420
tccaaatggg ggcttagat	g agaaacttca	cgatcgatgc	ggccaccact	cgaggtcgag	480
gtaccgttgt caatcaatt	g gcaagtcata	aaatgcatta	aaaaatattt	tcatactcaa	540
ctacaaatcc atgagtata	a ctataattat	aaagcaatga	ttagaatctg	acaaggattc	600
tggaaaatta cataaagga	a agttcataaa	tgtctaaaac	acaagaggac	atacttgtat	660
tcagtaacat ttgcagctt	t tctaggtctg	aaaatatatt	tgttgcctag	tgaataagca	720
taatggtaca actacaagt	g ttttactcct	catattaact	tcggtcatta	gaggccacga	780
tttgacacat ttttactca	a aacaaaatgt	ttgcatatct	cttataattt	caaattcaac	840
acacaacaaa taagagaaa	a aacaaataat	attaatttga	gaatgaacaa	aaggaccata	900
tcattcatta actcttctc	c atccatttcc	atttcacagt	tcgatagcga	aaaccgaata	960
aaaaacacag taaattaca	a gcacaacaaa	tggtacaaga	aaaacagttt	tcccaatgcc	1020
ataatactca aactcagta	g gattctggtg	tgtgcgcaat	gaaactgatg	cattgaactt	1080
gacgaacgtt gtcgaaacc	g atgatacgaa	cgaaagctag	gcctcagcga	gtaccgctgg	1140
cgatctaatc catgatato	g tgaacatcat	ctacattcaa	attcttatga	gctttcttaa	1200
gggcatctgc agcattttt	c atagaatcta	atacagcagt	atttgtgcta	gctccttcga	1260
gggetteeet etgeattte	a atagttgtaa	gggttccatc	tatttgtagt	tgggtctttt	1320
ccaatcgttt cttctttt	g agggcttgga	gtgcaactct	tttattttc	gacgcatttt	1380
tetttgeget eetgeagge	g gccgcgtgga	tgaggagtta	atcggtcgtg	tgagagtagt	1440
gatcgagtgg atgtcgtcg	a gagtgatgag	tgttgatgtt	gttagtgata	tgtggtagaa	1500
ggtatcgtga taaagcgtt	a acgcgatcgc	agtacttgca	aagaaaaatg	cgtcgaaaaa	1560
taaaagagtt gcactccaa	g ccctcaaaaa	gaagaaacga	ttggaaaaga	cccaactaca	1620
aatagatgga acccttaca	a ctattgaaat	gcagagggaa	gccctcgaag	gagctagcac	1680
aaatactgct gtattagat	t ctatgaaaaa	tgctgcagat	gcccttaaga	aagctcataa	1740
gaatttgaat gtagatgat	g ttcacgatat	catggatggt	atcgcacagc	gactgctgag	1800
ggacgtcggt ccatggaga	t cctctagagg	ccgcttggta	tctgcattac	aatgaaatga	1860
gcaaagacta tgtgagtaa	c actggtcaac	actagggaga	aggcatcgag	caagatacgt	1920
atgtaaagag aagcaatat	a gtgtcagttg	gtagatacta	gataccatca	ggaggtaagg	1980
agagcaacaa aaaggaaac	t ctttatttt	aaattttgtt	acaacaaca	agcagatcaa	2040

tgcatcaaaa tactgtcagt	acttatttct	tcagacaaca	atatttaaaa	caagtgcatc	2100
tgatcttgac ttatggtcac	aataaaggag	cagagataaa	catcaaaatt	tcgtcattta	2160
tatttattcc ttcaggcgtt	aacaatttaa	cagcacacaa	acaaaaacag	aataggaata	2220
tctaattttg gcaaataata	agctctgcag	acgaacaaat	tattatagta	tcgcctataa	2280
tatgaatccc tatactattg	acccatgtag	tatgaagcct	gtgcctaaat	taacagcaaa	2340
cttctgaatc caagtgccct	ataacaccaa	catgtgctta	aataaatacc	gctaagcacc	2400
aaattacaca tttctcgtat	tgctgtgtag	gttctatctt	cgtttcgtac	taccatgtcc	2460
ctatattttg ctgctacaaa	ggacggcaag	taatcagcac	aggcagaaca	cgatttcaga	2520
gtgtaattct agatccagct	aaaccactct	cagcaatcac	cacacaagag	agcattcaga	2580
gaaacgtggc agtaacaaag	gcagagggcg	gagtgagcgc	gtaccgaaga	cggtgggccg	2640
cttatggtgt gttgtccctg	tgtgttctcc	aatagtgtgg	cttgagtgtg	tggaagatgg	2700
ttgtatctga tgatccttca	aatgggaatg	aatgccttct	tatatagagg	gaattctttt	2760
gtggtcgtca ctgcgttcgt	catacgcatt	agtgagtggg	ctgtcaggac	agctcttttc	2820
cacgttattt tgttccccac	ttgtactaga	ggaatctgct	ttatctttgc	aataaaggca	2880
aagatgcttt tggtaggtgc	gcctaacaat	tctgcaccat	tccttttttg	tctggtcccc	2940
acaagccagc tgctcgatgt	tgacaagatt	actttcaaag	atgcccacta	actttaagtc	3000
ttcggtggat gtcttttct	gaaacttact	gaccatgatg	catgtgctgg	aacagtagtt	3060
tactttgatt gaagattctt	cattgatctc	ctgtagcttt	tggctaatgg	tttggagact	3120
ctgtaccctg accttgttga	ggctttggac	tgagaattct	tccttacaaa	cctttgagga	3180
tgggagttcc ttcttggttt	tggcgatacc	aatttgaata	aagtgatatg	gctcgtacct	3240
tgttgattga acccaatctg	gaatgctgct	aaatcctgag	ctcaagctaa	ttcttttgtg	3300
gtcgtcactg cgttcgtcat	acgcattagt	gagtgggctg	tcaggacagc	tcttttccac	3360
gttattttgt tccccacttg	tactagagga	atctgcttta	tctttgcaat	aaaggcaaag	3420
atgcttttgg taggtgcgcc	taacaattct	gcaccattcc	ttttttgtct	ggtccccaca	3480
agccagctgc tcgatgttga	caagattact	ttcaaagatg	cccactaact	ttaagtcttc	3540
ggtggatgtc tttttctgaa	acttactgac	catgatgcat	gtgctggaac	agtagtttac	3600
tttgattgaa gattcttcat	tgatctcctg	tagcttttgg	ctaatggttt	ggagactctg	3660
taccctgacc ttgttgaggc	tttggactga	gaattagctt	ccactcgaag	cttgttaacc	3720
tgcaggctag cggcgcgcca	caaatcacag	gccatgaacc	ctactcatgc	ttcgatttgt	3780
ccaacacaca cttaccaaaa	ctcaaatcat	gtccttgaca	gtcactcggg	actcataaca	3840
tgggtacgta tcgactatgt	caactatatg	tgttctcatc	agattataga	ttggcctagt	3900

acgtagtgat	atttccacta	gcactgtggt	tatggctgta	cctgatagtg	atatcagcac	3960
cgggtcatgg	ctctactacc	aggtagtgag	agtgaccttt	atactgtcag	actgtaacta	4020
aggatttcca	atcactgttc	ggatcctagg	cttagaatta	agtaaaactc	tatcactata	4080
ggctgcagca	cactcggtat	atattgatgg	gccaacagaa	attgtgcgta	ctatgcgcga	4140
tgtaaaatgg	acataaaccc	tacccatata	caatgcaata	acttttgtcc	ggtctgggcc	4200
accggttagc	agaggtcctg	atttcggtgg	tagtggtagc	ttgatctggt	cgtcgtatcg	4260
tagagggata	tataaaatca	tgtcactttt	gaagggagcg	ctcacagaaa	taataggtat	4320
tcgcgggagc	cgcccccgca	gaacacaaaa	taaggcgagc	acgcacacgc	atcagtttcg	4380
ataaaataat	aatagcgcca	gctgatcgga	acaattccag	ctagcactaa	tgtatttctg	4440
cattgatctg	tttatacaac	atgctacctc	gttgagtgat	tttgacatga	tttgtcaact	4500
tgctccgatc	ctatatctcg	atcgatctcc	acatgacgat	ggttgttgtc	ctgtatccca	4560
tgacaaccag	gcaacgctca	aagcacacat	gcgttgccga	ttacccgtgc	atgccgccaa	4620
gcacgaaagc	acctccctcc	acaccgtcca	tcagctataa	aaaccatgcc	aagcaccctg	4680
tgaaaagccc	cgggaaccat	cttccacaca	ctcaagccac	actattggag	aacacacagg	4740
gacaacacac	cataagatcc	aagggaggcc	teegeegeeg	ccggtaacca	ccccgcccct	4800
ctcctcttc	tttctccgtt	ttttttccg	tctcggtctc	gatctttggc	cttggtagtt	4860
tgggtgggcg	agaggcggct	tcgtgcgcgc	ccagatcggt	gcgcgggagg	ggcgggatct	4920
cgcggctggg	gctctcgccg	gcgtggatcc	ggcccggatc	tcgcggggaa	tggggctctc	4980
ggatgtagat	ctgcgatccg	ccgttgttgg	gggagatgat	ggggggttta	aaatttccgc	5040
cgtgctaaac	aagatcagga	agaggggaaa	agggcactat	ggtttatatt	tttatatatt	5100
tctgctgctt	cgtcaggctt	agatgtgcta	gatctttctt	tcttctttt	gtgggtagaa	5160
tttgaatccc	tcagcattgt	tcatcggtag	tttttctttt	catgatttgt	gacaaatgca	5220
gcctcgtgcg	gagcttttt	gtaggtagaa	gtgatcaacc	atggccaacc	ccaacaatcg	5280
ctccgagcac	gacacgatca	aggtcacccc	caactccgag	ctccagacca	accacaacca	5340
gtacccgctg	gccgacaacc	ccaactccac	cctggaagag	ctgaactaca	aggagttcct	5400
gcgcatgacc	gaggactcct	ccacggaggt	cctggacaac	tccaccgtca	aggacgccgt	5460
cgggaccggc	atctccgtcg	ttgggcagat	cctgggcgtc	gttggcgtcc	ccttcgcagg	5520
tgctctcacc	teettetace	agtccttcct	gaacaccatc	tggccctccg	acgccgaccc	5580
ctggaaggcc	ttcatggccc	aagtcgaagt	cctgatcgac	aagaagatcg	aggagtacgc	5640
caagtccaag	gccctggccg	agctgcaagg	cctgcaaaac	aacttcgagg	actacgtcaa	5700
cgcgctgaac	tcctggaaga	agacgcctct	gtccctgcgc	tccaagcgct	cccaggaccg	5760
catccgcgag	ctgttctccc	aggccgagtc	ccacttccgc	aactccatgc	cgtccttcgc	5820

cgtctccaag	ttcgaggtcc	tgttcctgcc	cacctacgcc	caggctgcca	acacccacct	5880
cctgttgctg	aaggacgccc	aggtcttcgg	cgaggaatgg	ggctactcct	cggaggacgt	5940
cgccgagttc	taccgtcgcc	agctgaagct	gacccaacag	tacaccgacc	actgcgtcaa	6000
ctggtacaac	gtcggcctga	acggcctgag	gggctccacc	tacgacgcat	gggtcaagtt	6060
caaccgcttc	cgcagggaga	tgaccctgac	cgtcctggac	ctgatcgtcc	tgttcccctt	6120
ctacgacatc	cgcctgtact	ccaagggcgt	caagaccgag	ctgacccgcg	acatcttcac	6180
ggaccccatc	ttcctgctca	cgaccctcca	gaagtacggt	cccaccttcc	tgtccatcga	6240
gaactccatc	cgcaagcccc	acctgttcga	ctacctccag	ggcatcgagt	tccacacgcg	6300
cctgaggcca	ggctacttcg	gcaaggactc	cttcaactac	tggtccggca	actacgtcga	6360
gaccaggccc	tccatcggct	cctcgaagac	gatcacctcc	cctttctacg	gcgacaagtc	6420
caccgagccc	gtccagaagc	tgtccttcga	cggccagaag	gtctaccgca	ccatcgccaa	6480
caccgacgtc	gcggcttggc	cgaacggcaa	ggtctacctg	ggcgtcacga	aggtcgactt	6540
ctcccagtac	gatgaccaga	agaacgagac	ctccacccag	acctacgact	ccaagcgcaa	6600
caatggccac	gtctccgccc	aggactccat	cgaccagctg	ccgcctgaga	ccactgacga	6660
gcccctggag	aaggcctact	cccaccagct	gaactacgcg	gagtgcttcc	tgatgcaaga	6720
ccgcaggggc	accatcccct	tcttcacctg	gacccaccgc	teegtegaet	tcttcaacac	6780
catcgacgcc	gagaagatca	cccagctgcc	cgtggtcaag	gcctacgccc	tgtcctcggg	6840
tgcctccatc	attgagggtc	caggcttcac	cggtggcaac	ctgctgttcc	tgaaggagtc	6900
ctcgaactcc	atcgccaagt	tcaaggtcac	cctgaactcc	gctgccttgc	tgcaacgcta	6960
ccgcgtccgc	atccgctacg	cctccaccac	gaacctgcgc	ctgttcgtcc	agaactccaa	7020
caatgacttc	ctggtcatct	acatcaacaa	gaccatgaac	aaggacgatg	acctgaccta	7080
ccagaccttc	gacctcgcca	ccacgaactc	caacatgggc	ttctcgggcg	acaagaatga	7140
actgatcatt	ggtgctgagt	ccttcgtctc	caacgagaag	atctacatcg	acaagatcga	7200
gttcatcccc	gtccagctgt	gataggaact	ctgattgaat	tctgcatgcg	tttggacgta	7260
tgctcattca	ggttggagcc	aatttggttg	atgtgtgtgc	gagttcttgc	gagtctgatg	7320
agacatctct	gtattgtgtt	tctttcccca	gtgttttctg	tacttgtgta	atcggctaat	7380
cgccaacaga	ttcggcgatg	aataaatgag	aaataaattg	ttctgatttt	gagtgcaaaa	7440
aaaaaggaat	tagatctgtg	tgtgttttt	ggatcccatt	ttcgacaagc	ttgcctcgag	7500
acaacaacat	gcttctcatc	aacatggagg	gaagagggag	ggagaaagtg	tcgcctggtc	7560
acctccattg	tcacactagc	cactggccag	ctctcccaca	ccaccaatgc	caggggcgag	7620
ctttagcaca	gccaccgctt	cacctccacc	accgcactac	cctagcttcg	cccaacagcc	7680

accgtcaacg	cctcctctcc	gtcaacataa	gagagagaga	gaagaggaga	gtagccatgt	7740
ggggaggagg	aatagtacat	ggggcctacc	gtttggcaag	ttattttggg	ttgccaagtt	7800
aggccaataa	ggggagggat	ttggccatcc	ggttggaaag	gttattgggg	tagtatcttt	7860
ttactagaat	tgtcaaaaaa	aaatagtttg	agagccattt	ggagaggatg	ttgcctgtta	7920
gaggtgctct	taggacatca	aattccataa	aaacatcaga	aaaattctct	cgatgaagat	7980
ttataaccac	taaaactgcc	ctcaattcga	agggagttca	aaacaattaa	aatcatgttc	8040
gaattgagtt	tcaatttcac	tttaacccct	ttgaaatctc	aatggtaaaa	catcaacccg	8100
tcaggtagca	tggttctttt	tattcctttc	aaaaagagtt	aattacaaac	agaatcaaaa	8160
ctaacagtta	ggcccaaggc	ccatccgagc	aaacaataga	tcatgggcca	ggcctgccac	8220
caccctcccc	ctcctggctc	ccgctcttga	atttcaaaat	ccaaaaatat	cggcacgact	8280
ggccgccgac	ggagcgggcg	gaaaatgacg	gaacaacccc	tcgaattcta	ccccaactac	8340
gcccaccaac	ccacacgcca	ctgacaatcc	ggtcccaccc	ttgtgggccc	acctacaagc	8400
gagacgtcag	tcgctcgcag	caaccagtgg	gcccacctcc	cagtgagcgg	cgggtagatc	8460
tggactctta	cccacccaca	ctaaacaaaa	cggcatgaat	attttgcact	aaaaccctca	8520
gaaaaattcc	gatattccaa	accagtacag	ttcctgaccg	ttggaggagc	caaagtggag	8580
cggagtgtaa	aattgggaaa	cttaatcgag	ggggttaaac	gcaaaaacgc	cgaggcgcct	8640
cccgctctat	agaaagggga	ggagtgggag	gtggaaaccc	taccacaccg	cagagaaagg	8700
cgtcttcgta	ctcgcctctc	teegegeeet	cctccgccgc	cgctcgccgc	cgttcgtctc	8760
cgccgccacc	ggctagccat	ccaggtaaaa	caaacaaaaa	cggatctgat	gcttccattc	8820
ctccgtttct	cgtagtagcg	cgcttcgatc	tgtgggtgga	tctgggtgat	cctggggtgt	8880
ggttcgttct	gtttgataga	tctgtcggtg	gatctggcct	tctgtggttg	tcgatgtccg	8940
gatctgcgtt	ttgatcagtg	gtagttcgtg	gatctggcga	aatgttttgg	atctggcagt	9000
gagacgctaa	gaatcgggaa	atgatgcaat	attagggggg	tttcggatgg	ggatccactg	9060
aattagtctg	tctccctgct	gataatctgt	tcctttttgg	tagatctggt	tagtgtatgt	9120
ttgtttcgga	tagatctgat	caatgcttgt	ttgtttttc	aaattttcta	cctaggttgt	9180
ataggaatgg	catgcggatc	tggttggatt	gccatgatcc	gtgctgaaat	gcccctttgg	9240
ttgatggatc	ttgatatttt	actgctgttc	acctagattt	gtactcccgt	ttatacttaa	9300
tttgttgctt	attatgaata	gatctgtaac	ttaggcacat	gtatggacgg	agtatgtgga	9360
tctgtagtat	gtacattgct	gcgagctaag	aactatttca	gagcaagcac	agaaaaaaat	9420
atttagacag	attgggcaac	tatttgatgg	tctttggtat	catgctttgt	agtgctcgtt	9480
tctgcgtagt	aatcttttga	tctgatctga	agataggtgc	tattatattc	ttaaaggtca	9540
ttagaacgct	atctgaaagg	ctgtattatg	tggattggtt	cacctgtgac	tccctgttcg	9600

tcttgtct	tg ataaatcctg	tgataaaaaa	aattcttaag	gcgtaatttg	ttgaaatctt	9660
gttttgtc	ct atgcagcctg	atccatggcg	caagttagca	gaatctgcaa	tggtgtgcag	9720
aacccato	tc ttatctccaa	tctctcgaaa	tccagtcaac	gcaaatctcc	cttatcggtt	9780
tctctgaa	ga cgcagcagca	tccacgagct	tatccgattt	cgtcgtcgtg	gggattgaag	9840
aagagtgg	ga tgacgttaat	tggctctgag	cttcgtcctc	ttaaggtcat	gtcttctgtt	9900
tccacggc	gt gcatgcttca	cggtgcaagc	agccggcccg	caaccgcccg	caaatcctct	9960
ggcctttc	cg gaaccgtccg	cattcccggc	gacaagtcga	tctcccaccg	gtccttcatg	10020
ttcggcgg	tc tcgcgagcgg	tgaaacgcgc	atcaccggcc	ttctggaagg	cgaggacgtc	10080
atcaatac	gg gcaaggccat	gcaggcgatg	ggcgcccgca	tccgtaagga	aggcgacacc	10140
tggatcat	cg atggcgtcgg	caatggcggc	ctcctggcgc	ctgaggcgcc	gctcgatttc	10200
ggcaatgc	cg ccacgggctg	ccgcctgacg	atgggcctcg	tcggggtcta	cgatttcgac	10260
agcacctt	ca teggegaege	ctcgctcaca	aagcgcccga	tgggccgcgt	gttgaacccg	10320
ctgcgcga	aa tgggcgtgca	ggtgaaatcg	gaagacggtg	accgtcttcc	cgttaccttg	10380
cgcgggcc	ga agacgccgac	gccgatcacc	taccgcgtgc	cgatggcctc	cgcacaggtg	10440
aagtccgc	cg tgctgctcgc	cggcctcaac	acgcccggca	tcacgacggt	catcgagccg	10500
atcatgac	gc gcgatcatac	ggaaaagatg	ctgcagggct	ttggcgccaa	ccttaccgtc	10560
gagacgga	tg cggacggcgt	gcgcaccatc	cgcctggaag	gccgcggcaa	gctcaccggc	10620
caagtcat	cg acgtgccggg	cgacccgtcc	tcgacggcct	tcccgctggt	tgcggccctg	10680
cttgttcc	gg gctccgacgt	caccatcctc	aacgtgctga	tgaaccccac	ccgcaccggc	10740
ctcatcct	ga cgctgcagga	aatgggcgcc	gacatcgaag	tcatcaaccc	gcgccttgcc	10800
ggcggcga	ag acgtggcgga	cctgcgcgtt	cgctcctcca	cgctgaaggg	cgtcacggtg	10860
ccggaaga	cc gcgcgccttc	gatgatcgac	gaatatccga	ttctcgctgt	cgccgccgcc	10920
ttcgcgga	ag gggcgaccgt	gatgaacggt	ctggaagaac	tccgcgtcaa	ggaaagcgac	10980
cgcctctc	gg ccgtcgccaa	tggcctcaag	ctcaatggcg	tggattgcga	tgagggcgag	11040
acgtcgct	cg tcgtgcgtgg	ccgccctgac	ggcaaggggc	tcggcaacgc	ctcgggcgcc	11100
gccgtcgc	ca cccatctcga	tcaccgcatc	gccatgagct	tcctcgtcat	gggcctcgtg	11160
tcggaaaa	cc ctgtcacggt	ggacgatgcc	acgatgatcg	ccacgagctt	cccggagttc	11220
atggacct	ga tggccgggct	gggcgcgaag	atcgaactct	ccgatacgaa	ggctgcctga	11280
tgagctcc	ag ggttcttgcc	tggtgccttg	gcaatgcttg	attactgctg	ctatcctatg	11340
atctgtcc	gt gtgggcttct	atctatcagt	ttgtgtgtct	ggttttgaaa	aacatttgct	11400
tttcgatt	at gtagggtttg	cttgtagctt	tcgctgctgt	gacctgtgtt	gtttatgtga	11460

accttctttg tggcatcttt aatatccaag ttcgtggttt gtcgtaaaac gaagcctcta 11520 cttcgtaaag ttgtgtctat agcattgaaa tcgttttttt gctcgagaat aattgtgacc 11580 tttagttggc gtgaaactag ttttggatat ctgattctct ggttcgcaat cttgagatcg 11640 tcgctqctta qqtqaqctaa qtqatqttcc taaqtaaatq ctcctcacca qaatacqtaq 11700 ctgtgtgaaa agagaacgcg tgaatacgta gctgtgtaaa gattgtgtcc caagtaaacc 11760 tcagtgattt ttgtttggat ttttaattta gaaacattcg actgggagcg gctagagcca 11820 11880 cacccaagtt cctaactatg ataaagttgc tctgtaacag aaaacaccat ctagagcggc cgcgtttaaa ctatcagtgt ttgacaggat atattggcgg gtaaacctaa gagaaaagag 11940 12000 cgtttattag aataatcgga tatttaaaag ggcgtgaaaa ggtttatccg ttcgtccatt 12060 tgtatgtgca tgccaaccac agggttcccc tcgggagtgc ttggcattcc gtgcgataat gacttctgtt caaccacca aacgtcggaa agcctgacga cggagcagca ttccaaaaaag 12120 atcccttggc tcgtctgggt cggctagaag gtcgagtggg ctgctgtggc ttgatccctc 12180 aacgcggtcg cggacgtagc gcagcgccga aaaatcct 12218

<210> 32

<211> 12797

<212> DNA

<213> Secuencia artificial

<220>

5

<223> Construcción de ADN 404

<400> 32

aaaagtccca tgtggatcac tccgttgccc cgtcgctcac cgtgttgggg ggaaggtgca 60 120 catggctcag ttctcaatgg aaattatctg cctaaccggc tcagttctgc gtagaaacca acatgcaagc tccaccgggt gcaaagcggc agcggcggca ggatatattc aattgtaaat 180 240 ggcttcatgt ccgggaaatc tacatggatc agcaatgagt atgatggtca atatggagaa 300 aaagaaagag taattaccaa tttttttca attcaaaaat gtagatgtcc gcagcgttat 360 tataaaatga aagtacattt tgataaaacg acaaattacg atccgtcgta tttataggcg 420 aaagcaataa acaaattatt ctaattogga aatotttatt togacgtgto tacattoacg tccaaatggg ggcttagatg agaaacttca cgatcgatgc ggccaccact cgaggtcgag 480 gtaccgttgt caatcaattg gcaagtcata aaatgcatta aaaaatattt tcatactcaa 540 600 ctacaaatcc atgagtataa ctataattat aaagcaatga ttagaatctg acaaggattc 660 tggaaaatta cataaaggaa agttcataaa tgtctaaaac acaagaggac atacttgtat 720 tcagtaacat ttgcagcttt tctaggtctg aaaatatatt tgttgcctag tgaataagca taatggtaca actacaagtg ttttactcct catattaact tcggtcatta gaggccacga 780 tttgacacat ttttactcaa aacaaaatgt ttgcatatct cttataattt caaattcaac 840

acacaacaaa	taagagaaaa	aacaaataat	attaatttga	gaatgaacaa	aaggaccata	900
tcattcatta	actcttctcc	atccatttcc	atttcacagt	tcgatagcga	aaaccgaata	960
aaaaacacag	taaattacaa	gcacaacaaa	tggtacaaga	aaaacagttt	tcccaatgcc	1020
ataatactca	aactcagtag	gattctggtg	tgtgcgcaat	gaaactgatg	cattgaactt	1080
gacgaacgtt	gtcgaaaccg	atgatacgaa	cgaaagctag	gcctcagcga	gtaccgctgg	1140
cgatctaatc	catgatatcg	tgaacatcat	ctacattcaa	attcttatga	gctttcttaa	1200
gggcatctgc	agcattttc	atagaatcta	atacagcagt	atttgtgcta	gctccttcga	1260
gggcttccct	ctgcatttca	atagttgtaa	gggttccatc	tatttgtagt	tgggtctttt	1320
ccaatcgttt	cttctttttg	agggcttgga	gtgcaactct	tttattttc	gacgcatttt	1380
tctttgcgct	cctgcaggcg	gccgcgtgga	tgaggagtta	atcggtcgtg	tgagagtagt	1440
gatcgagtgg	atgtcgtcga	gagtgatgag	tgttgatgtt	gttagtgata	tgtggtagaa	1500
ggtatcgtga	taaagcgtta	acgcgatcgc	agtacttgca	aagaaaaatg	cgtcgaaaaa	1560
taaaagagtt	gcactccaag	ccctcaaaaa	gaagaaacga	ttggaaaaga	cccaactaca	1620
aatagatgga	acccttacaa	ctattgaaat	gcagagggaa	gccctcgaag	gagctagcac	1680
aaatactgct	gtattagatt	ctatgaaaaa	tgctgcagat	gcccttaaga	aagctcataa	1740
gaatttgaat	gtagatgatg	ttcacgatat	catggatggt	atcgcacagc	gactgctgag	1800
ggacgtcggt	ccatggagat	cctctagagg	ccgcttggta	tctgcattac	aatgaaatga	1860
gcaaagacta	tgtgagtaac	actggtcaac	actagggaga	aggcatcgag	caagatacgt	1920
atgtaaagag	aagcaatata	gtgtcagttg	gtagatacta	gataccatca	ggaggtaagg	1980
agagcaacaa	aaaggaaact	ctttatttt	aaattttgtt	acaacaaaca	agcagatcaa	2040
tgcatcaaaa	tactgtcagt	acttatttct	tcagacaaca	atatttaaaa	caagtgcatc	2100
tgatcttgac	ttatggtcac	aataaaggag	cagagataaa	catcaaaatt	tcgtcattta	2160
tatttattcc	ttcaggcgtt	aacaatttaa	cagcacacaa	acaaaaacag	aataggaata	2220
tctaattttg	gcaaataata	agctctgcag	acgaacaaat	tattatagta	tcgcctataa	2280
tatgaatccc	tatactattg	acccatgtag	tatgaagcct	gtgcctaaat	taacagcaaa	2340
cttctgaatc	caagtgccct	ataacaccaa	catgtgctta	aataaatacc	gctaagcacc	2400
aaattacaca	tttctcgtat	tgctgtgtag	gttctatctt	cgtttcgtac	taccatgtcc	2460
ctatattttg	ctgctacaaa	ggacggcaag	taatcagcac	aggcagaaca	cgatttcaga	2520
gtgtaattct	agatccagct	aaaccactct	cagcaatcac	cacacaagag	agcattcaga	2580
gaaacgtggc	agtaacaaag	gcagagggcg	gagtgagcgc	gtaccgaaga	cggtgggccg	2640
cttatggtgt	gttgtccctg	tgtgttctcc	aatagtgtgg	cttgagtgtg	tggaagatgg	2700

ttgtatctga tgatccttca	aatgggaatg	aatgccttct	tatatagagg	gaattctttt	2760
gtggtcgtca ctgcgttcgt	catacgcatt	agtgagtggg	ctgtcaggac	agctcttttc	2820
cacgttattt tgttccccac	ttgtactaga	ggaatctgct	ttatctttgc	aataaaggca	2880
aagatgcttt tggtaggtgc	gcctaacaat	tctgcaccat	tccttttttg	tctggtcccc	2940
acaagccagc tgctcgatgt	tgacaagatt	actttcaaag	atgcccacta	actttaagtc	3000
ttcggtggat gtcttttct	gaaacttact	gaccatgatg	catgtgctgg	aacagtagtt	3060
tactttgatt gaagattctt	cattgatctc	ctgtagcttt	tggctaatgg	tttggagact	3120
ctgtaccctg accttgttga	ggctttggac	tgagaattct	tccttacaaa	cctttgagga	3180
tgggagttcc ttcttggttt	tggcgatacc	aatttgaata	aagtgatatg	gctcgtacct	3240
tgttgattga acccaatctg	gaatgctgct	aaatcctgag	ctcaagctaa	ttcttttgtg	3300
gtcgtcactg cgttcgtcat	acgcattagt	gagtgggctg	tcaggacagc	tcttttccac	3360
gttattttgt tccccacttg	tactagagga	atctgcttta	tctttgcaat	aaaggcaaag	3420
atgcttttgg taggtgcgcc	taacaattct	gcaccattcc	ttttttgtct	ggtccccaca	3480
agccagctgc tcgatgttga	caagattact	ttcaaagatg	cccactaact	ttaagtcttc	3540
ggtggatgtc tttttctgaa	acttactgac	catgatgcat	gtgctggaac	agtagtttac	3600
tttgattgaa gattcttcat	tgatctcctg	tagcttttgg	ctaatggttt	ggagactctg	3660
taccctgacc ttgttgaggc	tttggactga	gaattagctt	ccactcgaag	cttgttaacc	3720
tgcaggctag cggcgcgccg	ggatccaaaa	aacacacaca	gatctaattc	ctttttttt	3780
gcactcaaaa tcagaacaat	ttatttctca	tttattcatc	gccgaatctg	ttggcgatta	3840
gccgattaca caagtacaga	aaacactggg	gaaagaaaca	caatacagag	atgtctcatc	3900
agactcgcaa gaactcgcac	acacatcaac	caaattggct	ccaacctgaa	tgagcatacg	3960
tccaaacgca tgcagaattc	aatcagagtt	cctatcacag	ctggacgggg	atgaactcga	4020
tcttgtcgat gtagatcttc	tcgttggaga	cgaaggactc	agcaccaatg	atcagttcat	4080
tcttgtcgcc cgagaagccc	atgttggagt	tcgtggtggc	gaggtcgaag	gtctggtagg	4140
tcaggtcatc gtccttgttc	atggtcttgt	tgatgtagat	gaccaggaag	tcattgttgg	4200
agttctggac gaacaggcgc	aggttcgtgg	tggaggcgta	gcggatgcgg	acgcggtagc	4260
gttgcagcaa ggcagcggag	ttcagggtga	ccttgaactt	ggcgatggag	ttcgaggact	4320
ccttcaggaa cagcaggttg	ccaccggtga	agcctggacc	ctcaatgatg	gaggcacccg	4380
aggacagggc gtaggccttg	accacgggca	gctgggtgat	cttctcggcg	tcgatggtgt	4440
tgaagaagtc gacggagcgg	tgggtccagg	tgaagaaggg	gatggtgccc	ctgcggtctt	4500
gcatcaggaa gcactccgcg	tagttcagct	ggtgggagta	ggccttctcc	aggggctcgt	4560
cagtggtctc aggcggcagc	tggtcgatgg	agtcctgggc	ggagacgtgg	ccattgttgc	4620

gcttggagtc	gtaggtctgg	gtggaggtct	cgttcttctg	gtcatcgtac	tgggagaagt	4680
cgaccttcgt	gacgcccagg	tagaccttgc	cgttcggcca	agccgcgacg	tcggtgttgg	4740
cgatggtgcg	gtagaccttc	tggccgtcga	aggacagctt	ctggacgggc	tcggtggact	4800
tgtcgccgta	gaaaggggag	gtgatcgtct	tcgaggagcc	gatggagggc	ctggtctcga	4860
cgtagttgcc	ggaccagtag	ttgaaggagt	ccttgccgaa	gtagcctggc	ctcaggcgcg	4920
tgtggaactc	gatgccctgg	aggtagtcga	acaggtgggg	cttgcggatg	gagttctcga	4980
tggacaggaa	ggtgggaccg	tacttctgga	gggtcgtgag	caggaagatg	gggtccgtga	5040
agatgtcgcg	ggtcagctcg	gtcttgacgc	ccttggagta	caggcggatg	tcgtagaagg	5100
ggaacaggac	gatcaggtcc	aggacggtca	gggtcatctc	cctgcggaag	cggttgaact	5160
tgacccatgc	gtcgtaggtg	gagcccctca	ggccgttcag	gccgacgttg	taccagttga	5220
cgcagtggtc	ggtgtactgt	tgggtcagct	tcagctggcg	acggtagaac	tcggcgacgt	5280
cctccgagga	gtagccccat	tcctcgccga	agacctgggc	gtccttcagc	aacaggaggt	5340
gggtgttggc	agcctgggcg	taggtgggca	ggaacaggac	ctcgaacttg	gagacggcga	5400
aggacggcat	ggagttgcgg	aagtgggact	cggcctggga	gaacagctcg	cggatgcggt	5460
cctgggagcg	cttggagcgc	agggacagag	gcgtcttctt	ccaggagttc	agcgcgttga	5520
cgtagtcctc	gaagttgttt	tgcaggcctt	gcagctcggc	cagggccttg	gacttggcgt	5580
actcctcgat	cttcttgtcg	atcaggactt	cgacttgggc	catgaaggcc	ttccaggggt	5640
cggcgtcgga	gggccagatg	gtgttcagga	aggactggta	gaaggaggtg	agagcacctg	5700
cgaaggggac	gccaacgacg	cccaggatct	gcccaacgac	ggagatgccg	gtcccgacgg	5760
cgtccttgac	ggtggagttg	tccaggacct	ccgtggagga	gtcctcggtc	atgcgcagga	5820
actccttgta	gttcagctct	tccagggtgg	agttggggtt	gtcggccagc	gggtactggt	5880
tgtggttggt	ctggagctcg	gagttggggg	tgaccttgat	cgtgtcgtgc	tcggagcgat	5940
tgttggggtt	ggccatggtt	gatcacttct	acctacaaaa	aagctccgca	cgaggctgca	6000
tttgtcacaa	atcatgaaaa	gaaaaactac	cgatgaacaa	tgctgaggga	ttcaaattct	6060
acccacaaaa	agaagaaaga	aagatctagc	acatctaagc	ctgacgaagc	agcagaaata	6120
tataaaaata	taaaccatag	tgcccttttc	ccctcttcct	gatcttgttt	agcacggcgg	6180
aaattttaaa	cccccatca	tctcccccaa	caacggcgga	tcgcagatct	acatccgaga	6240
gccccattcc	ccgcgagatc	cgggccggat	ccacgccggc	gagagcccca	gccgcgagat	6300
cccgcccctc	ccgcgcaccg	atctgggcgc	gcacgaagcc	gaatatagaa	cacccaaact	6360
accaaggcca	aagatcgaga	ccgagacgga	aaaaaaaacg	gagaaagaaa	gaggagaggg	6420
gcggggtggt	taccggcggc	ggcggaggcc	tcccttggat	cttatggtgt	gttgtccctg	6480

tgtgttctcc	aatagtgtgg	cttgagtgtg	tggaagatgg	ttcccggggg	ttttgatcat	6540
gggattaggg	aggtatttat	agtcgagccc	cgggattaat	taatcgaccg	ttagagctca	6600
tgtgaaccct	gccctgccat	catgtgagcg	tgcatacgag	ggcgatctgg	attggctggc	6660
agaacacctg	ccctagcaag	gctcgtagat	taattaacaa	atcgtacgta	catctacgct	6720
gataatgtgt	taaatcatcg	gccgaatatt	tggttagccg	tgaagcactc	gatcccgcaa	6780
atgaccaaga	ttgctgcaca	cgacacatcg	cgggcttgtt	tccttatgat	cattggttgt	6840
tattttatct	cgcgatcttg	gcctatcggg	cgtcgcttcg	cgcggtgcag	cgtgactgcg	6900
tgagcaagtt	ggtgattttc	ttttgccgtt	taagaatgct	tgctccgtga	tcacacaaga	6960
gaggacatca	catgaaccga	gaccggagga	atatcggggc	atggtgggat	tggtgggtgt	7020
cccagtccaa	cgggcaagaa	gattctaagc	ttacctgggt	ttgttttcac	gtacgcgaag	7080
gacaggggaa	gatgccattg	cagcgtggct	tcctgctggc	ccgccaactt	taatctacac	7140
taggcacgta	gctactaggt	cggcccgctt	agatagctaa	ggtaggctag	gtaggtccgt	7200
ggtaaactgc	cagcccatgg	gcgcctggga	ttcttcttgg	gccaacagaa	gcagaggttg	7260
ggcaatgcga	agcctgaaaa	tectectect	ccttctctct	ccctctctct	ctctctct	7320
ctctctctct	cacgaataaa	atcctcttct	tcccgaacag	gctagattct	tttttttta	7380
atgaaccagt	gagccaccaa	tttcattgaa	tagaggaata	aaattgtaca	tgcgcaagcg	7440
caaatagaaa	actttaccgt	ctcaaggcct	ttggcccgaa	catgttaaaa	ggtaagccac	7500
ctatcaaggt	gtttcgcgcc	cgccaagacc	catgttttgg	catcctcctt	aattttggct	7560
atcagactag	ccaccggaag	ctcttggtgc	tgaaaaactc	tgcggttcct	ttcattccaa	7620
atatcctagg	cgactaatag	cattagagtc	tgcaaggctt	tctttggcgc	ttcgttggaa	7680
catgcggtgg	cctcccacca	cttgagtagc	gtcgaggctt	gttgccataa	cgttggtctt	7740
atttgttcac	atgttgtcca	gtctgcaagt	gtcgcctaga	ttctttcaca	tatctacact	7800
ccgccaggag	gtgagggccg	tttcctgatt	ccttcgacaa	aggggcagat	ggagccattt	7860
tcgattaccc	acgggttgcc	aatctgtcgg	aggtccatac	tctattttgg	ataacaagcc	7920
aagcgaagcg	aatgttttac	atttgcgcgg	cgcctagggc	ttccagatag	gggcattgaa	7980
attgaagctt	ttatgccaag	aagttgtgcg	ttgtaggccg	atgtcgtcat	gtattcgccg	8040
tgactagtta	gcttccattt	tcgacaagct	tgcctcgaga	caacaacatg	cttctcatca	8100
acatggaggg	aagagggagg	gagaaagtgt	cgcctggtca	cctccattgt	cacactagee	8160
actggccagc	tctcccacac	caccaatgcc	aggggcgagc	tttagcacag	ccaccgcttc	8220
acctccacca	ccgcactacc	ctagcttcgc	ccaacagcca	ccgtcaacgc	ctcctctccg	8280
tcaacataag	agagagagag	aagaggagag	tagccatgtg	gggaggagga	atagtacatg	8340
gggcctaccg	tttggcaagt	tattttgggt	tgccaagtta	ggccaataag	gggagggatt	8400

tggccatccg	gttggaaagg	ttattggggt	agtatctttt	tactagaatt	gtcaaaaaaa	8460
aatagtttga	gagccatttg	gagaggatgt	tgcctgttag	aggtgctctt	aggacatcaa	8520
attccataaa	aacatcagaa	aaattctctc	gatgaagatt	tataaccact	aaaactgccc	8580
tcaattcgaa	gggagttcaa	aacaattaaa	atcatgttcg	aattgagttt	caatttcact	8640
ttaacccctt	tgaaatctca	atggtaaaac	atcaacccgt	caggtagcat	ggttcttttt	8700
attcctttca	aaaagagtta	attacaaaca	gaatcaaaac	taacagttag	gcccaaggcc	8760
catccgagca	aacaatagat	catgggccag	gcctgccacc	accctccccc	tcctggctcc	8820
cgctcttgaa	tttcaaaatc	caaaaatatc	ggcacgactg	gccgccgacg	gagcgggcgg	8880
aaaatgacgg	aacaacccct	cgaattctac	cccaactacg	cccaccaacc	cacacgccac	8940
tgacaatccg	gtcccaccct	tgtgggccca	cctacaagcg	agacgtcagt	cgctcgcagc	9000
aaccagtggg	cccacctccc	agtgagcggc	gggtagatct	ggactcttac	ccacccacac	9060
taaacaaaac	ggcatgaata	ttttgcacta	aaaccctcag	aaaaattccg	atattccaaa	9120
ccagtacagt	tcctgaccgt	tggaggagcc	aaagtggagc	ggagtgtaaa	attgggaaac	9180
ttaatcgagg	gggttaaacg	caaaaacgcc	gaggcgcctc	ccgctctata	gaaaggggag	9240
gagtgggagg	tggaaaccct	accacaccgc	agagaaaggc	gtcttcgtac	tcgcctctct	9300
ccgcgccctc	ctccgccgcc	gctcgccgcc	gttcgtctcc	gccgccaccg	gctagccatc	9360
caggtaaaac	aaacaaaaac	ggatctgatg	cttccattcc	tccgtttctc	gtagtagcgc	9420
gcttcgatct	gtgggtggat	ctgggtgatc	ctggggtgtg	gttcgttctg	tttgatagat	9480
ctgtcggtgg	atctggcctt	ctgtggttgt	cgatgtccgg	atctgcgttt	tgatcagtgg	9540
tagttcgtgg	atctggcgaa	atgttttgga	tctggcagtg	agacgctaag	aatcgggaaa	9600
tgatgcaata	ttaggggggt	ttcggatggg	gatccactga	attagtctgt	ctccctgctg	9660
ataatctgtt	cctttttggt	agatctggtt	agtgtatgtt	tgtttcggat	agatctgatc	9720
aatgcttgtt	tgtttttca	aattttctac	ctaggttgta	taggaatggc	atgcggatct	9780
ggttggattg	ccatgatccg	tgctgaaatg	cccctttggt	tgatggatct	tgatatttta	9840
ctgctgttca	cctagatttg	tactcccgtt	tatacttaat	ttgttgctta	ttatgaatag	9900
atctgtaact	taggcacatg	tatggacgga	gtatgtggat	ctgtagtatg	tacattgctg	9960
cgagctaaga	actatttcag	agcaagcaca	gaaaaaaata	tttagacaga	ttgggcaact	10020
atttgatggt	ctttggtatc	atgctttgta	gtgctcgttt	ctgcgtagta	atcttttgat	10080
ctgatctgaa	gataggtgct	attatattct	taaaggtcat	tagaacgcta	tctgaaaggc	10140
tgtattatgt	ggattggttc	acctgtgact	ccctgttcgt	cttgtcttga	taaatcctgt	10200
gataaaaaaa	attcttaagg	cgtaatttgt	tgaaatcttg	ttttgtccta	tgcagcctga	10260

tccatggcgc	aagttagcag	aatctgcaat	ggtgtgcaga	acccatctct	tatctccaat	10320
ctctcgaaat	ccagtcaacg	caaatctccc	ttatcggttt	ctctgaagac	gcagcagcat	10380
ccacgagctt	atccgatttc	gtcgtcgtgg	ggattgaaga	agagtgggat	gacgttaatt	10440
ggctctgagc	ttcgtcctct	taaggtcatg	tcttctgttt	ccacggcgtg	catgcttcac	10500
ggtgcaagca	gccggcccgc	aaccgcccgc	aaatcctctg	gcctttccgg	aaccgtccgc	10560
attcccggcg	acaagtcgat	ctcccaccgg	tccttcatgt	tcggcggtct	cgcgagcggt	10620
gaaacgcgca	tcaccggcct	tctggaaggc	gaggacgtca	tcaatacggg	caaggccatg	10680
caggcgatgg	gcgcccgcat	ccgtaaggaa	ggcgacacct	ggatcatcga	tggcgtcggc	10740
aatggcggcc	tcctggcgcc	tgaggcgccg	ctcgatttcg	gcaatgccgc	cacgggctgc	10800
cgcctgacga	tgggcctcgt	cggggtctac	gatttcgaca	gcaccttcat	cggcgacgcc	10860
tcgctcacaa	agcgcccgat	gggccgcgtg	ttgaacccgc	tgcgcgaaat	gggcgtgcag	10920
gtgaaatcgg	aagacggtga	ccgtcttccc	gttaccttgc	gcgggccgaa	gacgccgacg	10980
ccgatcacct	accgcgtgcc	gatggcctcc	gcacaggtga	agtccgccgt	gctgctcgcc	11040
ggcctcaaca	cgcccggcat	cacgacggtc	atcgagccga	tcatgacgcg	cgatcatacg	11100
gaaaagatgc	tgcagggctt	tggcgccaac	cttaccgtcg	agacggatgc	ggacggcgtg	11160
cgcaccatcc	gcctggaagg	ccgcggcaag	ctcaccggcc	aagtcatcga	cgtgccgggc	11220
gacccgtcct	cgacggcctt	cccgctggtt	gcggccctgc	ttgttccggg	ctccgacgtc	11280
accatcctca	acgtgctgat	gaaccccacc	cgcaccggcc	tcatcctgac	gctgcaggaa	11340
atgggcgccg	acatcgaagt	catcaacccg	cgccttgccg	gcggcgaaga	cgtggcggac	11400
ctgcgcgttc	gctcctccac	gctgaagggc	gtcacggtgc	cggaagaccg	cgcgccttcg	11460
atgatcgacg	aatatccgat	tctcgctgtc	gccgccgcct	tcgcggaagg	ggcgaccgtg	11520
atgaacggtc	tggaagaact	ccgcgtcaag	gaaagcgacc	gcctctcggc	cgtcgccaat	11580
ggcctcaagc	tcaatggcgt	ggattgcgat	gagggcgaga	cgtcgctcgt	cgtgcgtggc	11640
cgccctgacg	gcaaggggct	cggcaacgcc	tcgggcgccg	ccgtcgccac	ccatctcgat	11700
caccgcatcg	ccatgagctt	cctcgtcatg	ggcctcgtgt	cggaaaaccc	tgtcacggtg	11760
gacgatgcca	cgatgatcgc	cacgagcttc	ccggagttca	tggacctgat	ggccgggctg	11820
ggcgcgaaga	tcgaactctc	cgatacgaag	gctgcctgat	gagctccagg	gttcttgcct	11880
ggtgccttgg	caatgcttga	ttactgctgc	tatcctatga	tctgtccgtg	tgggcttcta	11940
tctatcagtt	tgtgtgtctg	gttttgaaaa	acatttgctt	ttcgattatg	tagggtttgc	12000
ttgtagcttt	cgctgctgtg	acctgtgttg	tttatgtgaa	ccttctttgt	ggcatcttta	12060
atatccaagt	tcgtggtttg	tcgtaaaacg	aagcctctac	ttcgtaaagt	tgtgtctata	12120
gcattgaaat	cgtttttttg	ctcgagaata	attgtgacct	ttagttggcg	tgaaactagt	12180

tttggatatc tgattctctg gttcgcaatc ttgagatcgt cgctgcttag gtgagctaag 12240 12300 tgatgttcct aagtaaatgc tcctcaccag aatacgtagc tgtgtgaaaa gagaacgcgt 12360 gaatacgtag ctgtgtaaag attgtgtccc aagtaaacct cagtgatttt tgtttggatt tttaatttag aaacattcga ctgggagcgg ctagagccac acccaagttc ctaactatga 12420 taaagttgct ctgtaacaga aaacaccatc tagagcggcc gcgtttaaac tatcagtgtt 12480 tgacaggata tattggcggg taaacctaag agaaaagagc gtttattaga ataatcggat 12540 atttaaaagg gcgtgaaaag gtttatccgt tcgtccattt gtatgtgcat gccaaccaca 12600 gggttcccct cgggagtgct tggcattccg tgcgataatg acttctgttc aaccacccaa 12660 acgtcggaaa gcctgacgac ggagcagcat tccaaaaaga tcccttggct cgtctgggtc 12720 12780 ggctagaagg tegagtggge tgetgtgget tgatecetea acgeggtege ggaegtageg 12797 cagcgccgaa aaatcct

<210> 33

<211> 11906

<212> DNA

<213> Secuencia artificial

<220>

5

<223> Construcción de ADN 423

<400> 33

aaaagtccca tgtggatcac tccgttgccc cgtcgctcac cgtgttgggg ggaaggtgca 60 catggctcag ttctcaatgg aaattatctg cctaaccggc tcagttctgc gtagaaacca 120 acatgcaagc tccaccgggt gcaaagcggc agcggcggca ggatatattc aattgtaaat 180 ggcttcatgt ccgggaaatc tacatggatc agcaatgagt atgatggtca atatggagaa 240 300 aaagaaagag taattaccaa tttttttca attcaaaaat gtagatgtcc gcagcgttat 360 tataaaatga aagtacattt tgataaaacg acaaattacg atccgtcgta tttataggcg aaagcaataa acaaattatt ctaattcgga aatctttatt tcgacgtgtc tacattcacg 420 480 tccaaatggg ggcttagatg agaaacttca cgatcgatgc ggccaccact cgaggtcgag 540 gtaccacaca cagatctaat tcctttttt ttgcactcaa aatcagaaca atttatttct catttattca tcgccgaatc tgttggcgat tagccgatta cacaagtaca gaaaacactg 600 gggaaagaaa cacaatacag agatgtctca tcagactcgc aagaactcgc acacacatca 660 accaaattgg ctccaacctg aatgagcata cgtccaaacg catgcagaat tcaatcagag 720 ttcctatcac agctggacgg ggatgaactc gatcttgtcg atgtagatct tctcgttgga 780 gacgaaggac tcagcaccaa tgatcagttc attcttgtcg cccgagaagc ccatgttgga 840 900

gttgatgtag	atgaccagga	agtcattgtt	ggagttctgg	acgaacaggc	gcaggttcgt	960
ggtggaggcg	tagcggatgc	ggacgcggta	gcgttgcagc	aaggcagcgg	agttcagggt	1020
gaccttgaac	ttggcgatgg	agttcgagga	ctccttcagg	aacagcaggt	tgccaccggt	1080
gaagcctgga	ccctcaatga	tggaggcacc	cgaggacagg	gcgtaggcct	tgaccacggg	1140
cagctgggtg	atcttctcgg	cgtcgatggt	gttgaagaag	tcgacggagc	ggtgggtcca	1200
ggtgaagaag	gggatggtgc	ccctgcggtc	ttgcatcagg	aagcactccg	cgtagttcag	1260
ctggtgggag	taggccttct	ccaggggctc	gtcagtggtc	tcaggcggca	gctggtcgat	1320
ggagtcctgg	gcggagacgt	ggccattgtt	gcgcttggag	tcgtaggtct	gggtggaggt	1380
ctcgttcttc	tggtcatcgt	actgggagaa	gtcgaccttc	gtgacgccca	ggtagacctt	1440
gccgttcggc	caagccgcga	cgtcggtgtt	ggcgatggtg	cggtagacct	tctggccgtc	1500
gaaggacagc	ttctggacgg	gctcggtgga	cttgtcgccg	tagaaagggg	aggtgatcgt	1560
cttcgaggag	ccgatggagg	gcctggtctc	gacgtagttg	ccggaccagt	agttgaagga	1620
gtccttgccg	aagtagcctg	gcctcaggcg	cgtgtggaac	tcgatgccct	ggaggtagtc	1680
gaacaggtgg	ggcttgcgga	tggagttctc	gatggacagg	aaggtgggac	cgtacttctg	1740
gagggtcgtg	agcaggaaga	tggggtccgt	gaagatgtcg	cgggtcagct	cggtcttgac	1800
gcccttggag	tacaggcgga	tgtcgtagaa	ggggaacagg	acgatcaggt	ccaggacggt	1860
cagggtcatc	tccctgcgga	agcggttgaa	cttgacccat	gcgtcgtagg	tggagcccct	1920
caggccgttc	aggccgacgt	tgtaccagtt	gacgcagtgg	tcggtgtact	gttgggtcag	1980
cttcagctgg	cgacggtaga	actcggcgac	gtcctccgag	gagtagcccc	attcctcgcc	2040
gaagacctgg	gcgtccttca	gcaacaggag	gtgggtgttg	gcagcctggg	cgtaggtggg	2100
caggaacagg	acctcgaact	tggagacggc	gaaggacggc	atggagttgc	ggaagtggga	2160
ctcggcctgg	gagaacagct	cgcggatgcg	gtcctgggag	cgcttggagc	gcagggacag	2220
aggcgtcttc	ttccaggagt	tcagcgcgtt	gacgtagtcc	tcgaagttgt	tttgcaggcc	2280
ttgcagctcg	gccagggcct	tggacttggc	gtactcctcg	atcttcttgt	cgatcaggac	2340
ttcgacttgg	gccatgaagg	ccttccaggg	gtcggcgtcg	gagggccaga	tggtgttcag	2400
gaaggactgg	tagaaggagg	tgagagcacc	tgcgaagggg	acgccaacga	cgcccaggat	2460
ctgcccaacg	acggagatgc	cggtcccgac	ggcgtccttg	acggtggagt	tgtccaggac	2520
ctccgtggag	gagtcctcgg	tcatgcgcag	gaactccttg	tagttcagct	cttccagggt	2580
ggagttgggg	ttgtcggcca	gcgggtactg	gttgtggttg	gtctggagct	cggagttggg	2640
ggtgaccttg	atcgtgtcgt	gctcggagcg	attgttgggg	ttggccatgg	ttgatcactt	2700
ctacctacaa	aaaagctccg	cacgaggctg	catttgtcac	aaatcatgaa	aagaaaaact	2760
accgatgaac	aatgctgagg	gattcaaatt	ctacccacaa	aaagaagaaa	gaaagatcta	2820

gcacatctaa	gcctgacgaa	gcagcagaaa	tatataaaaa	tataaaccat	agtgcccttt	2880
tcccctcttc	ctgatcttgt	ttagcacggc	ggaaatttta	aaccccccat	catctccccc	2940
aacaacggcg	gatcgcagat	ctacatccga	gagccccatt	ccccgcgaga	tccgggccgg	3000
atccacgccg	gcgagagccc	cagccgcgag	atcccgcccc	tcccgcgcac	cgatctgggc	3060
gcgcacgaag	ccgcctctcg	cccacccaaa	ctaccaaggc	caaagatcga	gaccgagacg	3120
gaaaaaaaa	cggagaaaga	aagaggagag	gggcggggtg	gttaccggcg	gcggcggagg	3180
cctcccttgg	atcttatggt	gtgttgtccc	tgtgtgttct	ccaatagtgt	ggcttgagtg	3240
tgtggaagat	ggttctagag	gatctgctag	agtcagcttg	tcagcgtgtc	ctctccaaat	3300
gaaatgaact	tccttatata	gaggaagggt	cttgcgaagg	atagtgggat	tgtgcgtcat	3360
cccttacgtc	agtggagata	tcacatcaat	ccacttgctt	tgaagacgtg	gttggaacgt	3420
cttcttttc	cacgatgctc	ctcgtgggtg	ggggtccatc	tttgggacca	ctgtcggcag	3480
aggcatcttc	aacgatggcc	tttcctttat	cgcaatgatg	gcatttgtag	gagccacctt	3540
ccttttccac	tatcttcaca	ataaagtgac	agatagctgg	gcaatggaat	ccgaggaggt	3600
ttccggatat	taccctttgt	tgaaaagtct	caatcggacc	atcacatcaa	tccacttgct	3660
ttgaagacgt	ggttggaacg	tcttctttt	ccacgatgct	cctcgtgggt	gggggtccat	3720
ctttgggacc	actgtcggca	gaggcatctt	caacgatggc	ctttccttta	tcgcaatgat	3780
ggcatttgta	ggagccacct	tccttttcca	ctatcttcac	aataaagtga	cagatagctg	3840
ggcaatggaa	tccgaggagg	tttccggata	ttaccctttg	ttgaaaagtc	tcaatcggac	3900
ctggtaccgt	tgtcaatcaa	ttggcaagtc	ataaaatgca	ttaaaaaata	ttttcatact	3960
caactacaaa	tccatgagta	taactataat	tataaagcaa	tgattagaat	ctgacaagga	4020
ttctggaaaa	ttacataaag	gaaagttcat	aaatgtctaa	aacacaagag	gacatacttg	4080
tattcagtaa	catttgcagc	ttttctaggt	ctgaaaatat	atttgttgcc	tagtgaataa	4140
gcataatggt	acaactacaa	gtgttttact	cctcatatta	acttcggtca	ttagaggcca	4200
cgatttgaca	catttttact	caaaacaaaa	tgtttgcata	tctcttataa	tttcaaattc	4260
aacacacaac	aaataagaga	aaaaacaaat	aatattaatt	tgagaatgaa	caaaaggacc	4320
atatcattca	ttaactcttc	tccatccatt	tccatttcac	agttcgatag	cgaaaaccga	4380
ataaaaaaca	cagtaaatta	caagcacaac	aaatggtaca	agaaaaacag	ttttcccaat	4440
gccataatac	tcaaactcag	taggattctg	gtgtgtgcgc	aatgaaactg	atgcattgaa	4500
cttgacgaac	gttgtcgaaa	ccgatgatac	gaacgaaagc	taggcctcag	cgagtaccgc	4560
tggcgatcta	atccatgata	tcgtgaacat	catctacatt	caaattctta	tgagctttct	4620
taagggcatc	tgcagcattt	ttcatagaat	ctaatacagc	agtatttgtg	ctagctcctt	4680

cgagggcttc cctctgcatt	tcaatagttg	taagggttcc	atctatttgt	agttgggtct	4740
tttccaatcg tttcttcttt	ttgagggctt	ggagtgcaac	tcttttattt	ttcgacgcat	4800
ttttctttgc gctcctgcag	gcggccgcgt	ggatgaggag	ttaatcggtc	gtgtgagagt	4860
agtgatcgag tggatgtcgt	cgagagtgat	gagtgttgat	gttgttagtg	atatgtggta	4920
gaaggtatcg tgataaagcg	ttaacgcgat	cgcagtactt	gcaaagaaaa	atgcgtcgaa	4980
aaataaaaga gttgcactcc	aagccctcaa	aaagaagaaa	cgattggaaa	agacccaact	5040
acaaatagat ggaaccctta	caactattga	aatgcagagg	gaagccctcg	aaggagctag	5100
cacaaatact gctgtattag	attctatgaa	aaatgctgca	gatgccctta	agaaagctca	5160
taagaatttg aatgtagatg	atgttcacga	tatcatggat	ggtatcgcac	agcgactgct	5220
gagggacgtc ggtccatgga	gatcctctag	aggccgcttg	gtatctgcat	tacaatgaaa	5280
tgagcaaaga ctatgtgagt	aacactggtc	aacactaggg	agaaggcatc	gagcaagata	5340
cgtatgtaaa gagaagcaat	atagtgtcag	ttggtagata	ctagatacca	tcaggaggta	5400
aggagagcaa caaaaaggaa	actctttatt	tttaaatttt	gttacaacaa	acaagcagat	5460
caatgcatca aaatactgtc	agtacttatt	tcttcagaca	acaatattta	aaacaagtgc	5520
atctgatctt gacttatggt	cacaataaag	gagcagagat	aaacatcaaa	atttcgtcat	5580
ttatatttat tccttcaggc	gttaacaatt	taacagcaca	caaacaaaaa	cagaatagga	5640
atatctaatt ttggcaaata	ataagctctg	cagacgaaca	aattattata	gtatcgccta	5700
taatatgaat ccctatacta	ttgacccatg	tagtatgaag	cctgtgccta	aattaacagc	5760
aaacttctga atccaagtgc	cctataacac	caacatgtgc	ttaaataaat	accgctaagc	5820
accaaattac acatttctcg	tattgctgtg	taggttctat	cttcgtttcg	tactaccatg	5880
tccctatatt ttgctgctac	aaaggacggc	aagtaatcag	cacaggcaga	acacgatttc	5940
agagtgtaat tctagatcca	gctaaaccac	tctcagcaat	caccacacaa	gagagcattc	6000
agagaaacgt ggcagtaaca	aaggcagagg	gcggagtgag	cgcgtaccga	agacggtggg	6060
ccgcttatgg tgtgttgtcc	ctgtgtgttc	tccaatagtg	tggcttgagt	gtgtggaaga	6120
tggttgtatc tgatgatcct	tcaaatggga	atgaatgcct	tcttatatag	agggaattct	6180
tttgtggtcg tcactgcgtt	cgtcatacgc	attagtgagt	gggctgtcag	gacagctctt	6240
ttccacgtta ttttgttccc	cacttgtact	agaggaatct	gctttatctt	tgcaataaag	6300
gcaaagatgc ttttggtagg	tgcgcctaac	aattctgcac	cattcctttt	ttgtctggtc	6360
cccacaagcc agctgctcga	tgttgacaag	attactttca	aagatgccca	ctaactttaa	6420
gtcttcggtg gatgtctttt	tctgaaactt	actgaccatg	atgcatgtgc	tggaacagta	6480
gtttactttg attgaagatt	cttcattgat	ctcctgtagc	ttttggctaa	tggtttggag	6540
actetgtace etgacettgt	tgaggctttg	gactgagaat	tcttccttac	aaacctttga	6600

ggatgggagt	tccttcttgg	ttttggcgat	accaatttga	ataaagtgat	atggctcgta	6660
ccttgttgat	tgaacccaat	ctggaatgct	gctaaatcct	gagctcaagc	taattctttt	6720
gtggtcgtca	ctgcgttcgt	catacgcatt	agtgagtggg	ctgtcaggac	agctcttttc	6780
cacgttattt	tgttccccac	ttgtactaga	ggaatctgct	ttatctttgc	aataaaggca	6840
aagatgcttt	tggtaggtgc	gcctaacaat	tctgcaccat	tccttttttg	tctggtcccc	6900
acaagccagc	tgctcgatgt	tgacaagatt	actttcaaag	atgcccacta	actttaagtc	6960
ttcggtggat	gtcttttct	gaaacttact	gaccatgatg	catgtgctgg	aacagtagtt	7020
tactttgatt	gaagattctt	cattgatctc	ctgtagcttt	tggctaatgg	tttggagact	7080
ctgtaccctg	accttgttga	ggctttggac	tgagaattag	cttccactcg	aagcttgtta	7140
acctgcaggc	tagcggcgcg	ccagtctagt	cgacaagctt	gcctcgagac	aacaacatgc	7200
ttctcatcaa	catggaggga	agagggaggg	agaaagtgtc	gcctggtcac	ctccattgtc	7260
acactagcca	ctggccagct	ctcccacacc	accaatgcca	ggggcgagct	ttagcacagc	7320
caccgcttca	cctccaccac	cgcactaccc	tagcttcgcc	caacagccac	cgtcaacgcc	7380
teeteteegt	caacataaga	gagagagaga	agaggagagt	agccatgtgg	ggaggaggaa	7440
tagtacatgg	ggcctaccgt	ttggcaagtt	attttgggtt	gccaagttag	gccaataagg	7500
ggagggattt	ggccatccgg	ttggaaaggt	tattggggta	gtatctttt	actagaattg	7560
tcaaaaaaaa	atagtttgag	agccatttgg	agaggatgtt	gcctgttaga	ggtgctctta	7620
ggacatcaaa	ttccataaaa	acatcagaaa	aattctctcg	atgaagattt	ataaccacta	7680
aaactgccct	caattcgaag	ggagttcaaa	acaattaaaa	tcatgttcga	attgagtttc	7740
aatttcactt	taaccccttt	gaaatctcaa	tggtaaaaca	tcaacccgtc	aggtagcatg	7800
gttcttttta	ttcctttcaa	aaagagttaa	ttacaaacag	aatcaaaact	aacagttagg	7860
cccaaggccc	atccgagcaa	acaatagatc	atgggccagg	cctgccacca	ccctccccct	7920
cctggctccc	gctcttgaat	ttcaaaatcc	aaaaatatcg	gcacgactgg	ccgccgacgg	7980
agcgggcgga	aaatgacgga	acaacccctc	gaattctacc	ccaactacgc	ccaccaaccc	8040
acacgccact	gacaatccgg	tcccaccctt	gtgggcccac	ctacaagcga	gacgtcagtc	8100
gctcgcagca	accagtgggc	ccacctccca	gtgagcggcg	ggtagatctg	gactcttacc	8160
cacccacact	aaacaaaacg	gcatgaatat	tttgcactaa	aaccctcaga	aaaattccga	8220
tattccaaac	cagtacagtt	cctgaccgtt	ggaggagcca	aagtggagcg	gagtgtaaaa	8280
ttgggaaact	taatcgaggg	ggttaaacgc	aaaaacgccg	aggcgcctcc	cgctctatag	8340
aaaggggagg	agtgggaggt	ggaaacccta	ccacaccgca	gagaaaggcg	tcttcgtact	8400
cgcctctctc	cgcgccctcc	teegeegeeg	ctcgccgccg	ttcgtctccg	ccgccaccgg	8460

ctagccatcc	aggtaaaaca	aacaaaaacg	gatctgatgc	ttccattcct	ccgtttctcg	8520
tagtagcgcg	cttcgatctg	tgggtggatc	tgggtgatcc	tggggtgtgg	ttcgttctgt	8580
ttgatagatc	tgtcggtgga	tctggccttc	tgtggttgtc	gatgtccgga	tctgcgtttt	8640
gatcagtggt	agttcgtgga	tctggcgaaa	tgttttggat	ctggcagtga	gacgctaaga	8700
atcgggaaat	gatgcaatat	taggggggtt	tcggatgggg	atccactgaa	ttagtctgtc	8760
tccctgctga	taatctgttc	ctttttggta	gatctggtta	gtgtatgttt	gtttcggata	8820
gatctgatca	atgcttgttt	gttttttcaa	attttctacc	taggttgtat	aggaatggca	8880
tgcggatctg	gttggattgc	catgatccgt	gctgaaatgc	ccctttggtt	gatggatctt	8940
gatattttac	tgctgttcac	ctagatttgt	actcccgttt	atacttaatt	tgttgcttat	9000
tatgaataga	tctgtaactt	aggcacatgt	atggacggag	tatgtggatc	tgtagtatgt	9060
acattgctgc	gagctaagaa	ctatttcaga	gcaagcacag	aaaaaaatat	ttagacagat	9120
tgggcaacta	tttgatggtc	tttggtatca	tgctttgtag	tgctcgtttc	tgcgtagtaa	9180
tcttttgatc	tgatctgaag	ataggtgcta	ttatattctt	aaaggtcatt	agaacgctat	9240
ctgaaaggct	gtattatgtg	gattggttca	cctgtgactc	cctgttcgtc	ttgtcttgat	9300
aaatcctgtg	ataaaaaaaa	ttcttaaggc	gtaatttgtt	gaaatcttgt	tttgtcctat	9360
gcagcctgat	ccatggcgca	agttagcaga	atctgcaatg	gtgtgcagaa	cccatctctt	9420
atctccaatc	tctcgaaatc	cagtcaacgc	aaatctccct	tatcggtttc	tctgaagacg	9480
cagcagcatc	cacgagctta	tccgatttcg	tcgtcgtggg	gattgaagaa	gagtgggatg	9540
acgttaattg	gctctgagct	tegteetett	aaggtcatgt	cttctgtttc	cacggcgtgc	9600
atgcttcacg	gtgcaagcag	ccggcccgca	accgcccgca	aatcctctgg	cctttccgga	9660
accgtccgca	ttcccggcga	caagtcgatc	tcccaccggt	ccttcatgtt	cggcggtctc	9720
gcgagcggtg	aaacgcgcat	caccggcctt	ctggaaggcg	aggacgtcat	caatacgggc	9780
aaggccatgc	aggcgatggg	cgcccgcatc	cgtaaggaag	gcgacacctg	gatcatcgat	9840
ggcgtcggca	atggcggcct	cctggcgcct	gaggcgccgc	tcgatttcgg	caatgccgcc	9900
acgggctgcc	gcctgacgat	gggcctcgtc	ggggtctacg	atttcgacag	caccttcatc	9960
ggcgacgcct	cgctcacaaa	gcgcccgatg	ggccgcgtgt	tgaacccgct	gcgcgaaatg	10020
ggcgtgcagg	tgaaatcgga	agacggtgac	cgtcttcccg	ttaccttgcg	cgggccgaag	10080
acgccgacgc	cgatcaccta	ccgcgtgccg	atggcctccg	cacaggtgaa	gtccgccgtg	10140
ctgctcgccg	gcctcaacac	gcccggcatc	acgacggtca	tcgagccgat	catgacgcgc	10200
gatcatacgg	aaaagatgct	gcagggcttt	ggcgccaacc	ttaccgtcga	gacggatgcg	10260
gacggcgtgc	gcaccatccg	cctggaaggc	cgcggcaagc	tcaccggcca	agtcatcgac	10320
gtgccgggcg	acccgtcctc	gacggccttc	ccgctggttg	cggccctgct	tgttccgggc	10380

tccgacgtca	ccatcctcaa	cgtgctgatg	aaccccaccc	gcaccggcct	catcctgacg	10440
ctgcaggaaa	tgggcgccga	catcgaagtc	atcaacccgc	gccttgccgg	cggcgaagac	10500
gtggcggacc	tgcgcgttcg	ctcctccacg	ctgaagggcg	tcacggtgcc	ggaagaccgc	10560
gcgccttcga	tgatcgacga	atatccgatt	ctcgctgtcg	ccgccgcctt	cgcggaaggg	10620
gcgaccgtga	tgaacggtct	ggaagaactc	cgcgtcaagg	aaagcgaccg	cctctcggcc	10680
gtcgccaatg	gcctcaagct	caatggcgtg	gattgcgatg	agggcgagac	gtcgctcgtc	10740
gtgcgtggcc	gccctgacgg	caaggggctc	ggcaacgcct	cgggcgccgc	cgtcgccacc	10800
catctcgatc	accgcatcgc	catgagcttc	ctcgtcatgg	gcctcgtgtc	ggaaaaccct	10860
gtcacggtgg	acgatgccac	gatgatcgcc	acgagcttcc	cggagttcat	ggacctgatg	10920
gccgggctgg	gcgcgaagat	cgaactctcc	gatacgaagg	ctgcctgatg	agctccaggg	10980
ttcttgcctg	gtgccttggc	aatgcttgat	tactgctgct	atcctatgat	ctgtccgtgt	11040
gggcttctat	ctatcagttt	gtgtgtctgg	ttttgaaaaa	catttgcttt	tcgattatgt	11100
agggtttgct	tgtagctttc	gctgctgtga	cctgtgttgt	ttatgtgaac	cttctttgtg	11160
gcatctttaa	tatccaagtt	cgtggtttgt	cgtaaaacga	agcctctact	tcgtaaagtt	11220
gtgtctatag	cattgaaatc	gtttttttgc	tcgagaataa	ttgtgacctt	tagttggcgt	11280
gaaactagtt	ttggatatct	gattctctgg	ttcgcaatct	tgagatcgtc	gctgcttagg	11340
tgagctaagt	gatgttccta	agtaaatgct	cctcaccaga	atacgtagct	gtgtgaaaag	11400
agaacgcgtg	aatacgtagc	tgtgtaaaga	ttgtgtccca	agtaaacctc	agtgattttt	11460
gtttggattt	ttaatttaga	aacattcgac	tgggagcggc	tagagccaca	cccaagttcc	11520
taactatgat	aaagttgctc	tgtaacagaa	aacaccatct	agagcggccg	cgtttaaact	11580
atcagtgttt	gacaggatat	attggcgggt	aaacctaaga	gaaaagagcg	tttattagaa	11640
taatcggata	tttaaaaggg	cgtgaaaagg	tttatccgtt	cgtccatttg	tatgtgcatg	11700
ccaaccacag	ggttcccctc	gggagtgctt	ggcattccgt	gcgataatga	cttctgttca	11760
accacccaaa	cgtcggaaag	cctgacgacg	gagcagcatt	ccaaaaagat	cccttggctc	11820
gtctgggtcg	gctagaaggt	cgagtgggct	gctgtggctt	gatccctcaa	cgcggtcgcg	11880
gacgtagcgc	agcgccgaaa	aatcct				11906

5

<210> 34 <211> 7158

<212> DNA

<213> Secuencia artificial

<220>

<223> Construcción de ADN 405

<400> 34

aaaagtccca	tgtggatcac	tccgttgccc	cgtcgctcac	cgtgttgggg	ggaaggtgca	60
catggctcag	ttctcaatgg	aaattatctg	cctaaccggc	tcagttctgc	gtagaaacca	120
acatgcaagc	tccaccgggt	gcaaagcggc	agcggcggca	ggatatattc	aattgtaaat	180
ggcttcatgt	ccgggaaatc	tacatggatc	agcaatgagt	atgatggtca	atatggagaa	240
aaagaaagag	taattaccaa	tttttttca	attcaaaaat	gtagatgtcc	gcagcgttat	300
tataaaatga	aagtacattt	tgataaaacg	acaaattacg	atccgtcgta	tttataggcg	360
aaagcaataa	acaaattatt	ctaattcgga	aatctttatt	tcgacgtgtc	tacattcacg	420
tccaaatggg	ggcttagatg	agaaacttca	cgatcgatgc	ggcccacgtg	gattaccctg	480
ttatccctag	aattcgatat	cagttcgctc	gtggccgtca	cggccagcgc	ctgcgttggc	540
ctagtaggcc	aagcaggacg	tattcgtttg	ttgtgcggcc	gctacctcag	caaatcaacc	600
tcactctatt	taaatgaggt	ggtaggattt	gctgaggagg	ctgctccgtt	gtcctgcagg	660
agacgagaaa	cacctttaat	taacctcagc	gcgtgttctg	ctggcgatcg	caacaggcac	720
agcgctgagg	gtaccgttgt	caatcaattg	gcaagtcata	aaatgcatta	aaaaatattt	780
tcatactcaa	ctacaaatcc	atgagtataa	ctataattat	aaagcaatga	ttagaatctg	840
acaaggattc	tggaaaatta	cataaaggaa	agttcataaa	tgtctaaaac	acaagaggac	900
atacttgtat	tcagtaacat	ttgcagcttt	tctaggtctg	aaaatatatt	tgttgcctag	960
tgaataagca	taatggtaca	actacaagtg	ttttactcct	catattaact	tcggtcatta	1020
gaggccacga	tttgacacat	ttttactcaa	aacaaaatgt	ttgcatatct	cttataattt	1080
caaattcaac	acacaacaaa	taagagaaaa	aacaaataat	attaatttga	gaatgaacaa	1140
aaggaccata	tcattcatta	actcttctcc	atccatttcc	atttcacagt	tcgatagcga	1200
aaaccgaata	aaaaacacag	taaattacaa	gcacaacaaa	tggtacaaga	aaaacagttt	1260
tcccaatgcc	ataatactca	aactcagtag	gattctggtg	tgtgcgcaat	gaaactgatg	1320
cattgaactt	gacgaacgtt	gtcgaaaccg	atgatacgaa	cgaaagctag	gcctcagcga	1380
gtaccgctgg	cgatctaatc	catgatatcg	tgaacatcat	ctacattcaa	attcttatga	1440
gctttcttaa	gggcatctgc	agcattttc	atagaatcta	atacagcagt	atttgtgcta	1500
gctccttcga	gggcttccct	ctgcatttca	atagttgtaa	gggttccatc	tatttgtagt	1560
tgggtctttt	ccaatcgttt	cttctttttg	agggcttgga	gtgcaactct	tttattttc	1620
gacgcatttt	tctttgcgct	cctgcaggcg	gccgcgtgga	tgaggagtta	atcggtcgtg	1680
tgagagtagt	gatcgagtgg	atgtcgtcga	gagtgatgag	tgttgatgtt	gttagtgata	1740
tgtggtagaa	ggtatcgtga	taaagcgtta	acgcgatcgc	agtacttgca	aagaaaaatg	1800
cgtcgaaaaa	taaaagagtt	gcactccaag	ccctcaaaaa	gaagaaacga	ttggaaaaga	1860
cccaactaca	aatagatgga	acccttacaa	ctattgaaat	gcagagggaa	gccctcgaag	1920

gagctagcac	aaatactgct	gtattagatt	ctatgaaaaa	tgctgcagat	gcccttaaga	1980
aagctcataa	gaatttgaat	gtagatgatg	ttcacgatat	catggatggt	atcgcacagc	2040
gactgctgag	ggacgtcgag	ctcccgcttg	gtatctgcat	tacaatgaaa	tgagcaaaga	2100
ctatgtgagt	aacactggtc	aacactaggg	agaaggcatc	gagcaagata	cgtatgtaaa	2160
gagaagcaat	atagtgtcag	ttggtagata	ctagatacca	tcaggaggta	aggagagcaa	2220
caaaaaggaa	actctttatt	tttaaatttt	gttacaacaa	acaagcagat	caatgcatca	2280
aaatactgtc	agtacttatt	tcttcagaca	acaatattta	aaacaagtgc	atctgatctt	2340
gacttatggt	cacaataaag	gagcagagat	aaacatcaaa	atttcgtcat	ttatatttat	2400
tccttcaggc	gttaacaatt	taacagcaca	caaacaaaaa	cagaatagga	atatctaatt	2460
ttggcaaata	ataagctctg	cagacgaaca	aattattata	gtatcgccta	taatatgaat	2520
ccctatacta	ttgacccatg	tagtatgaag	cctgtgccta	aattaacagc	aaacttctga	2580
atccaagtgc	cctataacac	caacatgtgc	ttaaataaat	accgctaagc	accaaattac	2640
acatttctcg	tattgctgtg	taggttctat	cttcgtttcg	tactaccatg	tccctatatt	2700
ttgctgctac	aaaggacggc	aagtaatcag	cacaggcaga	acacgatttc	agagtgtaat	2760
tctagatcca	gctaaaccac	tctcagcaat	caccacacaa	gagagcattc	agagaaacgt	2820
ggcagtaaca	aaggcagagg	gcggagtgag	cgcgtaccga	agacggtcct	tcaaatggga	2880
atgaatgcct	tcttatatag	agggaattct	tttgtggtcg	tcactgcgtt	cgtcatacgc	2940
attagtgagt	gggctgtcag	gacagctctt	ttccacgtta	ttttgttccc	cacttgtact	3000
agaggaatct	gctttatctt	tgcaataaag	gcaaagatgc	ttttggtagg	tgcgcctaac	3060
aattctgcac	cattcctttt	ttgtctggtc	cccacaagcc	agctgctcga	tgttgacaag	3120
attactttca	aagatgccca	ctaactttaa	gtcttcggtg	gatgtctttt	tctgaaactt	3180
actgaccatg	atgcatgtgc	tggaacagta	gtttactttg	attgaagatt	cttcattgat	3240
ctcctgtagc	ttttggctaa	tggtttggag	actctgtacc	ctgaccttgt	tgaggctttg	3300
gactgagaat	tcttccttac	aaacctttga	ggatgggagt	tccttcttgg	ttttggcgat	3360
accaatttga	ataaagtgat	atggctcgta	ccttgttgat	tgaacccaat	ctggaatgcg	3420
gcgcgccaag	cttctgcagg	tccgattgag	acttttcaac	aaagggtaat	atccggaaac	3480
ctcctcggat	tccattgccc	agctatctgt	cactttattg	tgaagatagt	ggaaaaggaa	3540
ggtggctcct	acaaatgcca	tcattgcgat	aaaggaaagg	ccatcgttga	agatgcctct	3600
gccgacagtg	gtcccaaaga	tggaccccca	cccacgagga	gcatcgtgga	aaaagaagac	3660
gttccaacca	cgtcttcaaa	gcaagtggat	tgatgtgatg	gtccgattga	gacttttcaa	3720
caaagggtaa	tatccggaaa	cctcctcgga	ttccattgcc	cagctatctg	tcactttatt	3780

gtgaagatag tggaaaagga aggtggctc	c tacaaatgcc	atcattgcga	taaaggaaag	3840
gccatcgttg aagatgcctc tgccgacag	t ggtcccaaag	atggaccccc	acccacgagg	3900
agcatcgtgg aaaaagaaga cgttccaac	c acgtcttcaa	agcaagtgga	ttgatgtgat	3960
atctccactg acgtaaggga tgacgcaca	a teccaetate	cttcgcaaga	cccttcctct	4020
atataaggaa gttcatttca tttggagag	g acacgctgac	aagctgactc	tagcagatcc	4080
tctagaacca tcttccacac actcaagcc	a cactattgga	gaacacacag	ggacaacaca	4140
ccataagatc caagggaggc ctccgccgc	c gccggtaacc	accccgcccc	tctcctcttt	4200
ctttctccgt ttttttttcc gtctcggtc	t cgatctttgg	ccttggtagt	ttgggtgggc	4260
gagaggcggc ttcgtgcgcg cccagatcg	g tgcgcgggag	gggcgggatc	tegeggetgg	4320
ggctctcgcc ggcgtggatc cggcccgga	t ctcgcgggga	atggggctct	cggatgtaga	4380
tetgegatee geegttgttg ggggagatg	a tggggggttt	aaaatttccg	ccgtgctaaa	4440
caagatcagg aagaggggaa aagggcact	a tggtttatat	ttttatatat	ttctgctgct	4500
tcgtcaggct tagatgtgct agatctttc	t ttcttcttt	tgtgggtaga	atttgaatcc	4560
ctcagcattg ttcatcggta gtttttctt	t tcatgatttg	tgacaaatgc	agcctcgtgc	4620
ggagcttttt tgtaggtaga agtgatcaa	c catggccaac	cccaacaatc	gctccgagca	4680
cgacacgatc aaggtcaccc ccaactccg	a gctccagacc	aaccacaacc	agtacccgct	4740
ggccgacaac cccaactcca ccctggaag	a gctgaactac	aaggagttcc	tgcgcatgac	4800
cgaggactcc tccacggagg tcctggaca	a ctccaccgtc	aaggacgccg	tcgggaccgg	4860
catctccgtc gttgggcaga tcctgggcg	t cgttggcgtc	cccttcgcag	gtgctctcac	4920
ctccttctac cagtccttcc tgaacacca	t ctggccctcc	gacgccgacc	cctggaaggc	4980
cttcatggcc caagtcgaag tcctgatcg	a caagaagatc	gaggagtacg	ccaagtccaa	5040
ggccctggcc gagctgcaag gcctgcaaa	a caacttcgag	gactacgtca	acgcgctgaa	5100
ctcctggaag aagacgcctc tgtccctgc	g ctccaagcgc	tcccaggacc	gcatccgcga	5160
getgttetee caggeegagt ceeacttee	g caactccatg	ccgtccttcg	ccgtctccaa	5220
gttcgaggtc ctgttcctgc ccacctacg	c ccaggctgcc	aacacccacc	tcctgttgct	5280
gaaggacgcc caggtcttcg gcgaggaat	g gggctactcc	tcggaggacg	tcgccgagtt	5340
ctaccgtcgc cagctgaagc tgacccaac	a gtacaccgac	cactgcgtca	actggtacaa	5400
cgtcggcctg aacggcctga ggggctcca	c ctacgacgca	tgggtcaagt	tcaaccgctt	5460
ccgcagggag atgaccctga ccgtcctgg	a cctgatcgtc	ctgttcccct	tctacgacat	5520
ccgcctgtac tccaagggcg tcaagaccg	a gctgacccgc	gacatcttca	cggaccccat	5580
cttcctgctc acgaccctcc agaagtacg	g teccacette	ctgtccatcg	agaactccat	5640
ccgcaagccc cacctgttcg actacctcc	a gggcatcgag	ttccacacgc	gcctgaggcc	5700

aggctacttc	ggcaaggact	ccttcaacta	ctggtccggc	aactacgtcg	agaccaggcc	5760
ctccatcggc	tcctcgaaga	cgatcacctc	ccctttctac	ggcgacaagt	ccaccgagcc	5820
cgtccagaag	ctgtccttcg	acggccagaa	ggtctaccgc	accatcgcca	acaccgacgt	5880
cgcggcttgg	ccgaacggca	aggtctacct	gggcgtcacg	aaggtcgact	tctcccagta	5940
cgatgaccag	aagaacgaga	cctccaccca	gacctacgac	tccaagcgca	acaatggcca	6000
cgtctccgcc	caggactcca	tcgaccagct	gccgcctgag	accactgacg	agcccctgga	6060
gaaggcctac	tcccaccagc	tgaactacgc	ggagtgcttc	ctgatgcaag	accgcagggg	6120
caccatcccc	ttcttcacct	ggacccaccg	ctccgtcgac	ttcttcaaca	ccatcgacgc	6180
cgagaagatc	acccagctgc	ccgtggtcaa	ggcctacgcc	ctgtcctcgg	gtgcctccat	6240
cattgagggt	ccaggcttca	ccggtggcaa	cctgctgttc	ctgaaggagt	cctcgaactc	6300
catcgccaag	ttcaaggtca	ccctgaactc	cgctgccttg	ctgcaacgct	accgcgtccg	6360
catccgctac	gcctccacca	cgaacctgcg	cctgttcgtc	cagaactcca	acaatgactt	6420
cctggtcatc	tacatcaaca	agaccatgaa	caaggacgat	gacctgacct	accagacctt	6480
cgacctcgcc	accacgaact	ccaacatggg	cttctcgggc	gacaagaatg	aactgatcat	6540
tggtgctgag	tccttcgtct	ccaacgagaa	gatctacatc	gacaagatcg	agttcatccc	6600
cgtccagctg	tgataggaac	tctgattgaa	ttctgcatgc	gtttggacgt	atgctcattc	6660
aggttggagc	caatttggtt	gatgtgtgtg	cgagttcttg	cgagtctgat	gagacatctc	6720
tgtattgtgt	ttctttcccc	agtgttttct	gtacttgtgt	aatcggctaa	tcgccaacag	6780
attcggcgat	gaataaatga	gaaataaatt	gttctgattt	tgagtgcaaa	aaaaaaggaa	6840
ttagatctgt	gtgtgttttt	tggatccgtc	gacagacctc	aattgcgagc	tttctaattt	6900
caaactattc	gggcctaact	tttggtgtga	tgatgctgac	tggcaggata	tataccgttg	6960
taatttgagc	tcgtgtgaat	aagtcgctgt	gtatgtttgt	ttgattgttt	ctgttggagt	7020
gcagcccatt	tcaccggaca	agtcggctag	attgatttag	ccctgatgaa	ctgccgaggg	7080
gaagccatct	tgagcgcgga	atgggaatgg	atttcgttgt	acaacgagac	gacagaacac	7140
ccacgggacc	gagcttcg					7158

<210> 35

<211> 8208

<212> DNA

<213> Secuencia artificial

<220>

5

<223> Construcción de ADN 406

<400> 35

aaaagtccca tgtggatcac tccgttgccc cgtcgctcac cgtgttgggg ggaaggtgca

catggctcag	ttctcaatgg	aaattatctg	cctaaccggc	tcagttctgc	gtagaaacca	120
acatgcaagc	tccaccgggt	gcaaagcggc	agcggcggca	ggatatattc	aattgtaaat	180
ggcttcatgt	ccgggaaatc	tacatggatc	agcaatgagt	atgatggtca	atatggagaa	240
aaagaaagag	taattaccaa	tttttttca	attcaaaaat	gtagatgtcc	gcagcgttat	300
tataaaatga	aagtacattt	tgataaaacg	acaaattacg	atccgtcgta	tttataggcg	360
aaagcaataa	acaaattatt	ctaattcgga	aatctttatt	tcgacgtgtc	tacattcacg	420
tccaaatggg	ggcttagatg	agaaacttca	cgatcgatgc	ggcccacgtg	gattaccctg	480
ttatccctag	aattcgatat	cagttcgctc	gtggccgtca	cggccagcgc	ctgcgttggc	540
ctagtaggcc	aagcaggacg	tattcgtttg	ttgtgcggcc	gcgttaacaa	gcttctgcag	600
gtccgattga	gacttttcaa	caaagggtaa	tatccggaaa	cctcctcgga	ttccattgcc	660
cagctatctg	tcactttatt	gtgaagatag	tggaaaagga	aggtggctcc	tacaaatgcc	720
atcattgcga	taaaggaaag	gccatcgttg	aagatgcctc	tgccgacagt	ggtcccaaag	780
atggaccccc	acccacgagg	agcatcgtgg	aaaaagaaga	cgttccaacc	acgtcttcaa	840
agcaagtgga	ttgatgtgat	ggtccgattg	agacttttca	acaaagggta	atatccggaa	900
acctcctcgg	attccattgc	ccagctatct	gtcactttat	tgtgaagata	gtggaaaagg	960
aaggtggctc	ctacaaatgc	catcattgcg	ataaaggaaa	ggccatcgtt	gaagatgcct	1020
ctgccgacag	tggtcccaaa	gatggacccc	cacccacgag	gagcatcgtg	gaaaaagaag	1080
acgttccaac	cacgtcttca	aagcaagtgg	attgatgtga	tatctccact	gacgtaaggg	1140
atgacgcaca	atcccactat	ccttcgcaag	accettecte	tatataagga	agttcatttc	1200
atttggagag	gacacgctga	caagctgact	ctagcagatc	ctctagaacc	atcttccaca	1260
cactcaagcc	acactattgg	agaacacaca	gggacaacac	accataagat	ccaagggagg	1320
cctccgccgc	cgccggtaac	caccccgccc	ctctcctctt	tctttctccg	tttttttc	1380
cgtctcggtc	tcgatctttg	gccttggtag	tttgggtggg	cgagaggcgg	cttcgtgcgc	1440
gcccagatcg	gtgcgcggga	ggggcgggat	ctcgcggctg	gggctctcgc	cggcgtggat	1500
ccggcccgga	tctcgcgggg	aatggggctc	tcggatgtag	atctgcgatc	cgccgttgtt	1560
gggggagatg	atggggggtt	taaaatttcc	gccgtgctaa	acaagatcag	gaagagggga	1620
aaagggcact	atggtttata	tttttatata	tttctgctgc	ttcgtcaggc	ttagatgtgc	1680
tagatettte	tttcttcttt	ttgtgggtag	aatttgaatc	cctcagcatt	gttcatcggt	1740
agtttttctt	ttcatgattt	gtgacaaatg	cagcctcgtg	cggagctttt	ttgtaggtag	1800
aagtgatcaa	ccatggccaa	ccccaacaat	cgctccgagc	acgacacgat	caaggtcacc	1860
cccaactccg	agctccagac	caaccacaac	cagtacccgc	tggccgacaa	ccccaactcc	1920
accctggaag	agctgaacta	caaggagttc	ctgcgcatga	ccgaggactc	ctccacggag	1980

gtcctggaca	actccaccgt	caaggacgcc	gtcgggaccg	gcatctccgt	cgttgggcag	2040
atcctgggcg	tcgttggcgt	ccccttcgca	ggtgctctca	cctccttcta	ccagtccttc	2100
ctgaacacca	tctggccctc	cgacgccgac	ccctggaagg	ccttcatggc	ccaagtcgaa	2160
gtcctgatcg	acaagaagat	cgaggagtac	gccaagtcca	aggccctggc	cgagctgcaa	2220
ggcctgcaaa	acaacttcga	ggactacgtc	aacgcgctga	actcctggaa	gaagacgcct	2280
ctgtccctgc	gctccaagcg	ctcccaggac	cgcatccgcg	agctgttctc	ccaggccgag	2340
tcccacttcc	gcaactccat	gccgtccttc	gccgtctcca	agttcgaggt	cctgttcctg	2400
cccacctacg	cccaggctgc	caacacccac	ctcctgttgc	tgaaggacgc	ccaggtcttc	2460
ggcgaggaat	ggggctactc	ctcggaggac	gtcgccgagt	tctaccgtcg	ccagctgaag	2520
ctgacccaac	agtacaccga	ccactgcgtc	aactggtaca	acgtcggcct	gaacggcctg	2580
aggggctcca	cctacgacgc	atgggtcaag	ttcaaccgct	tccgcaggga	gatgaccctg	2640
accgtcctgg	acctgatcgt	cctgttcccc	ttctacgaca	tccgcctgta	ctccaagggc	2700
gtcaagaccg	agctgacccg	cgacatcttc	acggacccca	tcttcctgct	cacgaccctc	2760
cagaagtacg	gtcccacctt	cctgtccatc	gagaactcca	tccgcaagcc	ccacctgttc	2820
gactacctcc	agggcatcga	gttccacacg	cgcctgaggc	caggctactt	cggcaaggac	2880
tccttcaact	actggtccgg	caactacgtc	gagaccaggc	cctccatcgg	ctcctcgaag	2940
acgatcacct	cccctttcta	cggcgacaag	tccaccgagc	ccgtccagaa	gctgtccttc	3000
gacggccaga	aggtctaccg	caccatcgcc	aacaccgacg	tcgcggcttg	gccgaacggc	3060
aaggtctacc	tgggcgtcac	gaaggtcgac	ttctcccagt	acgatgacca	gaagaacgag	3120
acctccaccc	agacctacga	ctccaagcgc	aacaatggcc	acgtctccgc	ccaggactcc	3180
atcgaccagc	tgccgcctga	gaccactgac	gagcccctgg	agaaggccta	ctcccaccag	3240
ctgaactacg	cggagtgctt	cctgatgcaa	gaccgcaggg	gcaccatccc	cttcttcacc	3300
tggacccacc	gctccgtcga	cttcttcaac	accatcgacg	ccgagaagat	cacccagctg	3360
cccgtggtca	aggcctacgc	cctgtcctcg	ggtgcctcca	tcattgaggg	tccaggcttc	3420
accggtggca	acctgctgtt	cctgaaggag	tcctcgaact	ccatcgccaa	gttcaaggtc	3480
accctgaact	ccgctgcctt	gctgcaacgc	taccgcgtcc	gcatccgcta	cgcctccacc	3540
acgaacctgc	gcctgttcgt	ccagaactcc	aacaatgact	tcctggtcat	ctacatcaac	3600
aagaccatga	acaaggacga	tgacctgacc	taccagacct	tcgacctcgc	caccacgaac	3660
tccaacatgg	gcttctcggg	cgacaagaat	gaactgatca	ttggtgctga	gtccttcgtc	3720
tccaacgaga	agatctacat	cgacaagatc	gagttcatcc	ccgtccagct	gtgataggaa	3780
ctctgattga	attctgcatg	cgtttggacg	tatgctcatt	caggttggag	ccaatttggt	3840

tgatgtgtgt	gcgagttctt	gcgagtctga	tgagacatct	ctgtattgtg	tttctttccc	3900
cagtgttttc	tgtacttgtg	taatcggcta	atcgccaaca	gattcggcga	tgaataaatg	3960
agaaataaat	tgttctgatt	ttgagtgcaa	aaaaaagga	attagatctg	tgtgtgtttt	4020
ttggatcccc	ggggcggccg	ctacctcagc	aaatcaacct	cactctattt	aaatgaggtg	4080
gtaggatttg	ctgaggaggc	tgctccgttg	tcctgcagga	gacgagaaac	acctttaatt	4140
aacaaatcac	aggccatgaa	ccctactcat	gcttcgattt	gtccaacaca	cacttaccaa	4200
aactcaaatc	atgtccttga	cagtcactcg	ggactcataa	catgggtacg	tatcgactat	4260
gtcaactata	tgtgttctca	tcagattata	gattggccta	gtacgtagtg	atatttccac	4320
tagcactgtg	gttatggctg	tacctgatag	tgatatcagc	accgggtcat	ggctctacta	4380
ccaggtagtg	agagtgacct	ttatactgtc	agactgtaac	taaggatttc	caatcactgt	4440
tcggatccta	ggcttagaat	taagtaaaac	tctatcacta	taggctgcag	cacactcggt	4500
atatattgat	gggccaacag	aaattgtgcg	tactatgcgc	gatgtaaaat	ggacataaac	4560
cctacccata	tacaatgcaa	taacttttgt	ccggtctggg	ccaccggtta	gcagaggtcc	4620
tgatttcggt	ggtagtggta	gcttgatctg	gtcgtcgtat	cgtagaggga	tatataaaat	4680
catgtcactt	ttgaagggag	cgctcacaga	aataataggt	attcgcggga	gccgcccccg	4740
cagaacacaa	aataaggcga	gcacgcacac	gcatcagttt	cgataaaata	ataatagcgc	4800
cagctgatcg	gaacaattcc	agctagcact	aatgtatttc	tgcattgatc	tgtttataca	4860
acatgctacc	tcgttgagtg	attttgacat	gatttgtcaa	cttgctccga	tcctatatct	4920
cgatcgatct	ccacatgacg	atggttgttg	tcctgtatcc	catgacaacc	aggcaacgct	4980
caaagcacac	atgcgttgcc	gattacccgt	gcatgccgcc	aagcacgaaa	gcacctccct	5040
ccacaccgtc	catcagcggt	ccgattgaga	cttttcaaca	aagggtaata	tccggaaacc	5100
tcctcggatt	ccattgccca	gctatctgtc	actttattgt	gaagatagtg	gaaaaggaag	5160
gtggctccta	caaatgccat	cattgcgata	aaggaaaggc	catcgttgaa	gatgcctctg	5220
ccgacagtgg	tcccaaagat	ggacccccac	ccacgaggag	catcgtggaa	aaagaagacg	5280
ttccaaccac	gtcttcaaag	caagtggatt	gatgtgatgg	tccgattgag	acttttcaac	5340
aaagggtaat	atccggaaac	ctcctcggat	tccattgccc	agctatctgt	cactttattg	5400
tgaagatagt	ggaaaaggaa	ggtggctcct	acaaatgcca	tcattgcgat	aaaggaaagg	5460
ccatcgttga	agatgcctct	gccgacagtg	gtcccaaaga	tggaccccca	cccacgagga	5520
gcatcgtgga	aaaagaagac	gttccaacca	cgtcttcaaa	gcaagtggat	tgatgtgata	5580
tctccactga	cgtaagggat	gacgcacaat	cccactatcc	ttcgcaagac	ccttcctcta	5640
tataaggaag	ttcatttcat	ttggagagga	cacgctgaac	cgtcttcggt	acgcgctcac	5700
tacgccatat	gcctttgtta	ctgccacgtt	tctctgaatg	ctctcttgtg	tggtgattgc	5760

tgagagtggt	ttagctggat	ctagaattac	actctgaaat	cgtgttctgc	ctgtgctgat	5820
tacttgccgt	cctttgtagc	agcaaaatat	agggacatgg	tagtacgaaa	cgaagataga	5880
acctacacag	caatacgaga	aatgtgtaat	ttggtgctta	gcggtattta	tttaagcaca	5940
tgttggtgtt	atagggcact	tggattcaga	agtttgctgt	taatttaggc	acaggcttca	6000
tactacatgg	gtcaatagta	tagggattca	tattataggc	gatactataa	taatttgttc	6060
gtctgcagag	cttattattt	gccaaaatta	gatattccta	ttctgttttt	gtttgtgtgc	6120
tgttaaattg	ttaacgcctg	aaggaataaa	tataaatgac	gaaattttga	tgtttatctc	6180
tgctccttta	ttgtgaccat	aagtcaagat	cagatgcact	tgttttaaat	attgttgtct	6240
gaagaaataa	gtactgacag	tattttgatg	cattgatctg	cttgtttgtt	gtaacaaaat	6300
ttaaaaataa	agagtttcct	ttttgttgct	ctccttacct	cctgatggta	tctagtatct	6360
accaactgac	actatattgc	ttctctttac	atacgtatct	tgctcgatgc	cttctcccta	6420
gtgttgacca	gtgttactca	catagtcttt	gctcatttca	ttgtaatgca	gataccaagc	6480
gggagctcga	cgtccctcag	cagtcgctgt	gcgataccat	ccatgatatc	gtgaacatca	6540
tctacattca	aattcttatg	agctttctta	agggcatctg	cagcattttt	catagaatct	6600
aatacagcag	tatttgtgct	agctccttcg	agggcttccc	tctgcatttc	aatagttgta	6660
agggttccat	ctatttgtag	ttgggtcttt	tccaatcgtt	tcttctttt	gagggcttgg	6720
agtgcaactc	ttttatttt	cgacgcattt	ttctttgcaa	gtactgcgat	cgcgttaacg	6780
ctttatcacg	ataccttcta	ccacatatca	ctaacaacat	caacactcat	cactctcgac	6840
gacatccact	cgatcactac	tctcacacga	ccgattaact	cctcatccac	gcggccgcct	6900
gcaggagcgc	aaagaaaaat	gcgtcgaaaa	ataaaagagt	tgcactccaa	gccctcaaaa	6960
agaagaaacg	attggaaaag	acccaactac	aaatagatgg	aacccttaca	actattgaaa	7020
tgcagaggga	agccctcgaa	ggagctagca	caaatactgc	tgtattagat	tctatgaaaa	7080
atgctgcaga	tgcccttaag	aaagctcata	agaatttgaa	tgtagatgat	gttcacgata	7140
tcatggatta	gatcgccagc	ggtactcgct	gaggcctagc	tttcgttcgt	atcatcggtt	7200
tcgacaacgt	tcgtcaagtt	caatgcatca	gtttcattgc	gcacacacca	gaatcctact	7260
gagtttgagt	attatggcat	tgggaaaact	gtttttcttg	taccatttgt	tgtgcttgta	7320
atttactgtg	ttttttattc	ggttttcgct	atcgaactgt	gaaatggaaa	tggatggaga	7380
agagttaatg	aatgatatgg	tccttttgtt	cattctcaaa	ttaatattat	ttgtttttc	7440
tcttatttgt	tgtgtgttga	atttgaaatt	ataagagata	tgcaaacatt	ttgttttgag	7500
taaaaatgtg	tcaaatcgtg	gcctctaatg	accgaagtta	atatgaggag	taaaacactt	7560
gtagttgtac	cattatgctt	attcactagg	caacaaatat	attttcagac	ctagaaaagc	7620

7680 tgcaaatgtt actgaataca agtatgtcct cttgtgtttt agacatttat gaactttcct 7740 ttatgtaatt ttccagaatc cttgtcagat tctaatcatt gctttataat tatagttata ctcatggatt tgtagttgag tatgaaaata ttttttaatg cattttatga cttgccaatt 7800 7860 gattgacaac ggtaccgtcg gtccgagttt gcgtcttggc gcgccaagaa gaacgattcg 7920 ctaccttagg accepttatag ttagaattcg atatctagtt agggataaca gggtaatgtc 7980 gacagacctc aattgcgagc tttctaattt caaactattc gggcctaact tttggtgtga tgatgctgac tggcaggata tataccgttg taatttgagc tcgtgtgaat aagtcgctgt 8040 gtatgtttgt ttgattgttt ctgttggagt gcagcccatt tcaccggaca agtcggctag 8100 attgatttag ccctgatgaa ctgccgaggg gaagccatct tgagcgcgga atgggaatgg 8160 atttcgttgt acaacgagac gacagaacac ccacgggacc gagcttcg 8208

<210> 36

<211> 2632

<212> DNA

<213> Secuencia artificial

<220>

5

<223> Construcción de ADN 890

<400> 36

aaaagtccca tgtggatcac tccgttgccc cgtcgctcac cgtgttgggg ggaaggtgca 60 catggctcag ttctcaatgg aaattatctg cctaaccggc tcagttctgc gtagaaacca 120 acatgcaagc tccaccgggt gcaaagcggc agcggcggca ggatatattc aattgtaaat 180 ggcttcatgt ccgggaaatc tacatggatc agcaatgagt atgatggtca atatggagaa 240 aaagaaagag taattaccaa tttttttca attcaaaaat gtagatgtcc gcagcgttat 300 tataaaatga aagtacattt tgataaaacg acaaattacg atccgtcgta tttataggcg 360 aaagcaataa acaaattatt ctaattegga aatetttatt tegaegtgte tacatteaeg 420 480 tccaaatggg ggcttagatg agaaacttca cgatcgatgc ggccgcttaa ttaaggcgcg ccgctagcct gcaggctgca ggtccgattg agacttttca acaaagggta atatccggaa 540 acctcctcgg attccattgc ccagctatct gtcactttat tgtgaagata gtggaaaagg 600 aaggtggctc ctacaaatgc catcattgcg ataaaggaaa ggccatcgtt gaagatgcct 660 ctgccgacag tggtcccaaa gatggacccc cacccacgag gagcatcgtg gaaaaagaag 720 780 acgttccaac cacgtcttca aagcaagtgg attgatgtga tggtccgatt gagacttttc aacaaagggt aatateegga aaceteeteg gatteeattg eecagetate tgteaettta 840 ttgtgaagat agtggaaaag gaaggtggct cctacaaatg ccatcattgc gataaaggaa 900 aggccatcgt tgaagatgcc tctgccgaca gtggtcccaa agatggaccc ccacccacga 960 1020 ggagcatcgt ggaaaaagaa gacgttccaa ccacgtcttc aaagcaagtg gattgatgtg

atatctccac	tgacgtaagg	gatgacgcac	aatcccacta	tccttcgcaa	gacccttcct	1080
ctatataagg	aagttcattt	catttggaga	ggacacgctg	agggcccacc	gtcttcggta	1140
cgcgctcact	ccgccctctg	cctttgttac	tgccacgttt	ctctgaatgc	tctcttgtgt	1200
ggtgattgct	gagagtggtt	tagctggatc	tagaattaca	ctctgaaatc	gtgttctgcc	1260
tgtgctgatt	acttgccgtc	ctttgtagca	gcaaaatata	gggacatggt	agtacgaaac	1320
gaagatagaa	cctacacagc	aatacgagaa	atgtgtaatt	tggtgcttag	cggtatttat	1380
ttaagcacat	gttggtgtta	tagggcactt	ggattcagaa	gtttgctgtt	aatttaggca	1440
caggcttcat	actacatggg	tcaatagtat	agggattcat	attataggcg	atactataat	1500
aatttgttcg	tctgcagagc	ttattatttg	ccaaaattag	atattcctat	tctgtttttg	1560
tttgtgtgct	gttaaattgt	taacgcctga	aggaataaat	ataaatgacg	aaattttgat	1620
gtttatctct	gctcctttat	tgtgaccata	agtcaagatc	agatgcactt	gttttaaata	1680
ttgttgtctg	aagaaataag	tactgacagt	attttgatgc	attgatctgc	ttgtttgttg	1740
taacaaaatt	taaaaataaa	gagtttcctt	tttgttgctc	tccttacctc	ctgatggtat	1800
ctagtatcta	ccaactgaca	ctatattgct	tctctttaca	tacgtatctt	gctcgatgcc	1860
ttctccctag	tgttgaccag	tgttactcac	atagtctttg	ctcatttcat	tgtaatgcag	1920
ataccaagcg	ggagctcgac	gtccctcagc	agtcgctgtg	cgataccatc	catgatatcg	1980
tgaacatcat	ctacattcaa	attcttatga	gctttcttaa	gggcatctgc	agcatttttc	2040
atagaatcta	atacagcagt	atttgtgcta	gctccttcga	gggcttccct	ctgcatttca	2100
atagttgtaa	gggttccatc	tatttgtagt	tgggtctttt	ccaatcgttt	cttctttttg	2160
agggcttgga	gtgcaactct	tttattttc	gacgcatttt	tctttgcaag	tactgcgatc	2220
gcgttaacgc	tttatcacga	taccttctac	cacatatcac	taacaacatc	aacactcatc	2280
actctcgacg	acatccactc	gatcactact	ctcacacgac	cgattaactc	ctcatccacg	2340
cggccgcctg	caggagcgca	aagaaaaatg	cgtcgaaaaa	taaaagagtt	gcactccaag	2400
ccctcaaaaa	gaagaaacga	ttggaaaaga	cccaactaca	aatagatgga	acccttacaa	2460
ctattgaaat	gcagagggaa	gccctcgaag	gagctagcac	aaatactgct	gtattagatt	2520
ctatgaaaaa	tgctgcagat	gcccttaaga	aagctcataa	gaatttgaat	gtagatgatg	2580
ttcacgatat	catggattag	atcgccagcg	gtactcgctg	aggcctagct	tt	2632

5

<210> 37 <211> 193

<212> DNA

<213> Zea mays

<221> misc_feature

<223> representa un segmento del sitio de integración en el genoma del maíz LH244 en el que se insertó TDNA de la construcción de ADN n.º 417 para crear el Evento MON 87411

	<400> 37 aaggaaaata aaaaggcaaa acactaatga atagttaagt ggttaacttt gtgaaattaa	60
	tctcatgtaa tatatgatcc cacccctgaa ataactttag taattcatta agatagctat	120
	agttaagtta tgtaatacat tgagatgggt agtacttaga gaatcacaaa cctctagatg	180
	tattaatcta ccc	193
5	<210> 38 <211> 28 <212> DNA <213> secuencia artificial	
	<220> <223> es una secuencia de nucleótidos que representa un oligonucleótido sintético y se conoce cor	no SQ20221
10	<400> 38 gttgctatgt actaacagaa ctgcatgt 28	
	<210> 39 <211> 24 <212> DNA <213> secuencia artificial	
15	<220> <223> es una secuencia de nucleótidos que representa un oligonucleótido sintético y se conoce cor	no PB10065
	<400> 39 gccctatgac ttaccgagag ttca 24	
20	<210> 40 <211> 29 <212> DNA <213> secuencia artificial	
	<220> <223> es una secuencia de nucleótidos que representa un oligonucleótido sintético y se conoce cor	no SQ20222
25	<400> 40 ttgttgtgtg gctccattct gacttgtga 29	
30	<210> 41 <211> 60 <212> DNA <213> Secuencia artificial	
	<220> <223> es una secuencia de nucleótidos del evento MON 87411	
	<400> 41 gatgcggcca ccactcgagg tcgaggtacc gttgtcaatc aattggcaag tcataaaatg 60	
35	<210> 42 <211> 89 <212> DNA <213> Secuencia artificial	
40	<220> <223> una secuencia de unión única dentro del inserto transgénico del evento MON 87411	
	<400> 42	
	ttgtcgaaac cgatgatacg aacgaaagct aggcctcagc gagtaccgct ggcgatctaa	60
	tccatgatat cgtgaacatc atctacatt	89
	<210> 43 <211> 96	

	<212> DNA <213> Secuencia artificial	
	<220> <223> una secuencia de unión única dentro del inserto transgénico del evento MON 8741'	
5	<400> 43	
	aatgtagatg atgttcacga tatcatggat ggtatcgcac agcgactgct gagggacgtc	60
	gageteeege ttggtatetg cattacaatg aaatga	96
10	<210> 44 <211> 347 <212> DNA <213> Secuencia artificial	
	<220> <223> una secuencia de unión única dentro del inserto transgénico del evento MON 87411	
	<400> 44	
	taccetttgt tgaaaagtet caateggace ateacateaa tecaettget ttgaagaegt	60
	ggttggaacg tettetttt eeacgatget eetegtgggt gggggteeat etttgggace	120
	actgtcggca gaggcatctt caacgatggc ctttccttta tcgcaatgat ggcatttgta	180
	ggagccacct tccttttcca ctatcttcac aataaagtga cagatagctg ggcaatggaa	240
	teegaggagg ttteeggata ttaccetttg ttgaaaagte teaateggae etgeageetg	300
	caggetageg gegegeeaca aateacagge catgaaceet acteatg	347
15	<210> 45 <211> 76 <212> DNA <213> Secuencia artificial	
20	<220> <223> una secuencia de unión única dentro del inserto transgénico del evento MON 87411	
	<400> 45	
	gctataaaaa ccatgccaag caccctgtga aaagccccgg gaaccatctt ccacacactc	60
	aagccacact attgga	76
25	<210> 46 <211> 86 <212> DNA <213> Secuencia artificial	
	<220> <223> una secuencia de unión dentro del inserto transgénico del evento MON 87411	
	<400> 46	
	actattggag aacacacagg gacaacacac cataagatcc aagggaggcc teegeegeeg	60
30	ccggtaacca ccccgcccct ctcctc	86
	<210> 47 <211> 79 <212> DNA <213> Secuencia artificial	

	<220> <223> una secuencia de unión dentro del inserto transgénico del evento MON 87411	
	<400> 47	
	tgcagcctcg tgcggagctt ttttgtaggt agaagtgatc aaccatggcc aaccccaaca	60
	atcgctccga gcacgacac	79
5	<210> 48 <211> 89 <212> DNA <213> Secuencia artificial	
10	<220> <223> una secuencia de unión dentro del inserto transgénico del evento MON 87411	
	<400> 48	
	tcgacaagat cgagttcatc cccgtccagc tgtgatagga actctgattg aattctgcat	60
	gcgtttggac gtatgctcat tcaggttgg	89
15	<210> 49 <211> 108 <212> DNA <213> Secuencia artificial	
	<220> <223> una secuencia de unión única dentro del inserto transgénico del evento MON 87411	
	<400> 49	
	tctgattttg agtgcaaaaa aaaaggaatt agatctgtgt gtgttttttg gatcccattt	60
20	tcgacaagct tgcctcgaga caacaacatg cttctcatca acatggag	108
	<210> 50 <211> 104 <212> DNA <213> Secuencia artificial	
25	<220> <223> una secuencia de unión única dentro del inserto transgénico del evento MON 87411	
	<400> 50	
	aattettaag gegtaatttg ttgaaatett gttttgteet atgeageetg ateeatggeg	60
	caagttagca gaatctgcaa tggtgtgcag aacccatctc ttat	104
30	<210> 51 <211> 107 <212> DNA <213> Secuencia artificial	
	<220> <223> una secuencia de unión única dentro del inserto transgénico del evento MON 87411	
35	<400> 51	
	tggccgggct gggcgcgaag atcgaactct ccgatacgaa ggctgcctga tgagctccag	60
	ggttcttgcc tggtgccttg gcaatgcttg attactgctg ctatcct	107
	<210> 52 <211> 103 <212> DNA	

	<213> Secuencia artificial	
	<220> <223> es una secuencia de nucleótidos del evento MON 87411	
	<400> 52 tatgataaag ttgctctgta acagaaaaca ccatctagag cggccgcgtt taaactatca	60
5	gtgtttagag aatcacaaac ctctagatgt attaatctac cct	103

REIVINDICACIONES

- 1. Una molécula de ADN recombinante, en la que la secuencia de nucleótidos de dicha molécula comprende una secuencia:
- (a) seleccionada del grupo que consiste en la SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 21 y SEQ ID NO: 25: 0
 - (b) una secuencia de nucleótidos completamente complementaria a (a); o
 - (c) una secuencia de nucleótidos que tiene al menos un 99 % de identidad con la SEQ ID NO: 1 o su complementaria completa;
- en la que la presencia de dicha molécula de ADN es diagnóstica para la construcción comprendida dentro del ADN del evento de maíz MON 87411 en dicha muestra.
 - 2. La molécula de ADN recombinante de la reivindicación 1, en la que
 - (i) dicha molécula de ADN es del evento de maíz MON 87411, una muestra representativa de semilla que comprende el evento de maíz MON 87411 que se depositó con el número de acceso ATCC PTA-12669; o
 - (ii) dicha muestra comprende una planta de maíz, célula vegetal de maíz, semilla de maíz, planta de descendencia de maíz, parte de la planta de maíz o producto básico de maíz.
 - 3. Una molécula de ADN que comprende un segmento de polinucleótido de longitud suficiente para funcionar como una sonda de ADN que hibrida en condiciones de hibridación rigurosas con el ADN del evento de maíz MON 87411 o la construcción comprendida en el mismo en una muestra,
- en la que dicha sonda hibrida específicamente en dichas condiciones con uno o más segmentos de unión de diagnóstico para el evento de maíz MON 87411 o la construcción comprendida en el mismo como se establece en la SEQ ID NO: 1, y
 - en la que la detección de la hibridación de dicha sonda de ADN en dichas condiciones de hibridación es diagnóstica para el ADN del evento de maíz MON 87411 o la construcción comprendida en dicha muestra, y en la que la sonda comprende la SEQ ID NO: 2 o la SEQ ID NO: 3.
 - 4. Un par de moléculas de ADN que comprenden
 - (I) una primera molécula de ADN y una segunda molécula de ADN diferente de la primera molécula de ADN, en el que dichas primera y segunda moléculas de ADN comprenden cada una un segmento de polinucleótido de longitud suficiente de los nucleótidos contiguos de la SEQ ID NO: 1 o SEQ ID NO: 2 o SEQ ID NO: 3 o SEQ ID NO: 4 para funcionar como cebadores de ADN cuando se usan juntos en una reacción de amplificación con una muestra que contiene ADN del molde del evento de maíz MON 87411 para producir un amplicón diagnóstico para dicho ADN de evento de maíz MON 87411 en dicha muestra, en el que el amplicón comprende la secuencia de nucleótidos seleccionada del grupo que consiste en SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 21 y SEQ ID NO: 25.
- 35 5. Un procedimiento de detección de la presencia de un segmento de ADN diagnóstico de
 - (I) evento de maíz MON 87411 en una muestra, comprendiendo el procedimiento:
 - (a) poner en contacto dicha muestra con la molécula de ADN de la reivindicación 3;
 - (b) someter dicha muestra y dicha molécula de ADN a condiciones de hibridación rigurosas; y
 - (c) detectar la hibridación de dicha molécula de ADN con dicho segmento de ADN diagnóstico para el evento de maíz MON 87411.

en el que dicha etapa de detección es diagnóstica para la presencia de dicha molécula de evento de maíz MON 87411 en dicha muestra; o

- (II) evento de maíz MON 87411 en una muestra, comprendiendo el procedimiento:
 - (a) poner en contacto dicha muestra con el par de moléculas de ADN de la reivindicación 4 (1);
 - (b) realizar una reacción de amplificación suficiente para producir un amplicón de ADN; y
 - (c) detectar la presencia de dicho amplicón de ADN en dicha reacción.

en el que dicho amplicón de ADN comprende la secuencia de nucleótidos seleccionada del grupo que consiste en las SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 21 y SEQ ID NO: 25, y en el que dicha detección de la presencia de dicho amplicón es diagnóstica para la presencia de ADN del evento MON 87411 de maíz en dicha muestra.

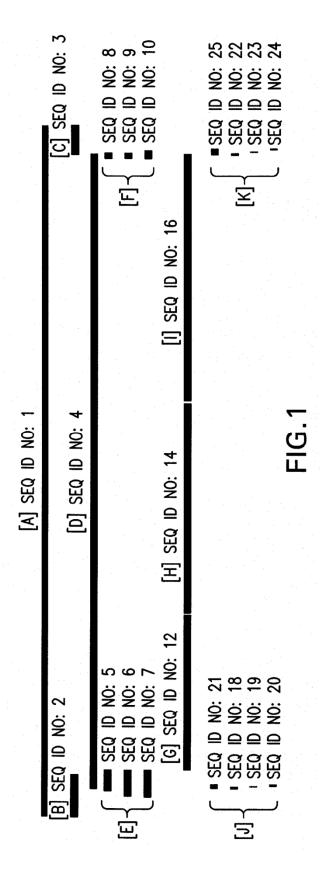
6. Una planta de maíz, semilla de maíz o parte de planta de maíz de la misma que comprende una molécula de polinucleótido recombinante que comprende la secuencia de nucleótidos de SEQ ID NO: 1.

135

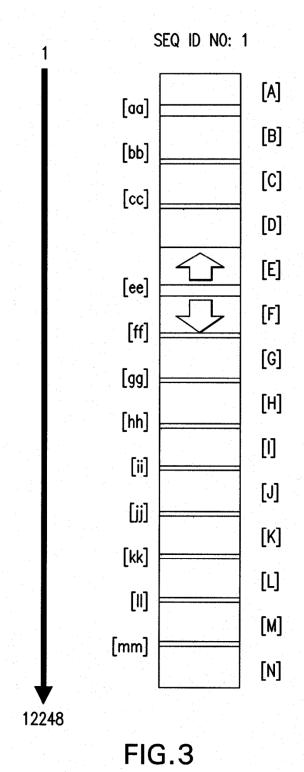
45

50

40


5

15


25

30

- 7. La planta de maíz, semilla de maíz, o parte de la planta de maíz de la misma de la reivindicación 6, en la que dicha planta de maíz comprende además un evento transgénico seleccionado del grupo que consiste en DAS-59122-7; MON 89034; MON 88017; MIR604; MON 87427; TC1507; 5307; DAS-06275-8; BT176; BT11; y MIR162.
- 8. Un producto básico de maíz que comprende una cantidad detectable de una molécula de ADN única para el evento MON 87411 o la construcción comprendida en el mismo, en el que dicha molécula comprende la molécula de ADN recombinante de la reivindicación 1, en el que el producto básico de maíz se define además como un producto básico seleccionado del grupo que consiste en semillas de maíz enteras o procesadas, alimento para animales que comprende maíz, aceite de maíz, sémola de maíz, harina de maíz, copos de maíz, salvado de maíz, biomasa de maíz y productos combustibles producidos utilizando maíz y partes de maíz.
- 10 9. Un procedimiento de producción de una planta de maíz tolerante al herbicida glifosato que comprende
 - (a) proporcionar la construcción de ADN de SEQ ID NO: 26;
 - (b) introducir dicha construcción de ADN en una célula vegetal de maíz mediante un procedimiento de transformación mediado por Agrobacterium;
 - (c) regenerar dicha célula vegetal de maíz en plantas de maíz intactas; y
- (d) seleccionar una planta de maíz que tolere la aplicación de glifosato y sea resistente a la infestación del gusano de la raíz del maíz, en el que la introducción de la construcción de ADN en la célula vegetal de maíz da como resultado una secuencia seleccionada de las SEQ ID NO: 1-10, 21 y 25.
- 10. Una planta de maíz obtenible por el procedimiento de la reivindicación 9 o una planta de descendencia, semilla o parte de planta de la misma que comprende la construcción de ADN de la SEQ ID NO: 26.
 - 11. Un material vegetal no vivo o un microorganismo que comprende una cantidad detectable de la molécula de ADN recombinante de la reivindicación 1, preferentemente dicho microorganismo se selecciona del grupo que consiste en una bacteria y una célula vegetal.

<u>_</u>	-////	V////			/////	V/////	V////				V////	<u>je</u>
rbicida	<u>5</u>			3'UTR								caset
a al he	Ξ			25	<u> </u>				9	ş.		ha del
anci	[13]			8			·		case	case	sete	Jec
Casete de tolerancia al herbicida	[13]			TubA de arroz (promotor, líder,	intron)				No 3er casete	No 3er casete	No 2º ni 3ºr casete	erda-de
Casete	1	1	1	1	1		1	1			Š	ıd izqui
	[11] Hsp17 3'UTR de trigo	Hsp17 3'UTR de trigo	4	1	Hsp17 3'UTR de trigo	Hsp17 3'UTR de trigo	1	-	Hsp17 3'UTR de trigo	Ps.RbcS2- E9 3' UTR		Designa una direccionalidad izquierda-derecha del casete.
	[10] ORF de Cry38b	ORF de Cry38b	Promotor 35S de ENH FMV	Promotor Rcc3 de arroz	ORF de Cry38b	ORF de Cry38b	Promotor Rcc3 de arroz	Promotor 35S del eFMV	ORF de Cry38b			a direcc
erecho	ORF de	ORF de	Lider Lhcb1 de trigo	Líder Lhcb1 de trigo	ORF de	ORF de	Lider Lhcb1 de trigo	Lider Lhcb1 de trigo	ORF de	Dv Snf7 o 240-mer REPETICIÓN INVERTIDA		igna un
Casete del rasgo PIP derecho	[9] Intrôn Act1 de arroz	Intrón Act1 de arroz	Intrón Act1 de arroz	Intrón Act1 de arroz	Intrón Act1 de arroz	Intrón Act1 de arroz	Intrón Act1 de arroz	Intrón DnaK de maíz	Intrón Act1 de arroz	Intrón DnaK de maíz		Des
te del ras	[8] Líder Lhcb1 de trigo	Líder Lhcb1 de trigo	ORF de Cry38b	Cry38b	Líder Lhcb1 de trigo	Líder Lhcb1 de trigo	Cry38b	240-mer ICIÓN TIDA	Líder Lhcb1 de trigo	Líder 35S del CaMV		
Case	[7] Promotor PIIG de maíz	Promotor Rcc3 de arroz	ORF de	ORF de Cry38b	Promotor Rcc3 de arroz	Promotor PIIG de maíz	ORF de Cry38b	Dv_Snf7o240-mer REPETICIÓN INVERTIDA	Líder 35S del CaMV	Promotor 35S del eCaMV		7
	1	1	Hsp17 3'UTR de trigo	Hsp17 3'UTR de trigo	1	1	Hsp17 3°UTR de trigo	Ps.Rbcs2- Eg 3' UTR	Promotor 35S del eCaMV	Promotor ePIIG de maíz		FIG
	Ī	•	-	-	Ī	•	-	₽	1	Hsp17 3'UTR de trigo	-	
	Promotor 35S del	Promo- tor 35S del eCaMV	Promotor 35S del eCaMV	Promotor 35S del eCaMV	Promotor 35S del eFMV	Promotor 35S del eFMV	Promotor 35S del eFMV	Promotor 35S del eCaMV	•	ORF de Cry38b	Promotor 35S del eCaMV	rda del ca
quierdo	[5] Lider 35S del CaMV	Líder 35S del CaMV	Líder 35S del CaMV	Líder 35S del I CaMV	Líder de trigo	Líder Lhcb1 de trigo	Líder Lhcb1 de trigo	lideres + 35S Lhcb1	Promotor 35S del eFMV	Intrón Act1 de arroz	Lider 35S del CaMV	a-izquie
go PIP ize	[4] Intrón DnaK de maíz	Intrón DnaK de maíz	Intrón DnaK de maíz	Intrón DnaK de maíz	Intrón DnaK de maíz	Intrón DnaK de maíz	Intrón DnaK de maíz	Intrón Act1 de arroz	Intrón DnaK de maíz	Lider Lhcb1 de trigo	Intrón DnaK de maíz	derech
Sasete del rasgo PIP izquierdo	[3] Dv_Snf7o 240- mer REPETICIÓN INVERTIDA	Dv_Snf7 o 240- mer REPETICIÓN INVERTIDA	Dv_Snf7o 240- mer REPETICIÓN INVERTIDA	Dv_Snf7o 240- mer REPETICIÓN INVERTIDA	Dv_Snf7o 240- mer REPETICIÓN INVERTIDA	Dv_Snf7o 240. mer REPETICIÓN INVERTIDA	Dv_Snf7 o 240- mer REPETICIÓN INVERTIDA	ORF de Cry38b	Dv_Snf7o 240- mer REPETICIÓN INVERTIDA	Promotor Lider 35S del 35S del eCaliv Caliv	Dv_Snf7o 240- mer REPETICIÓN INVERTIDA	Designa una direccionalidad derecha-izquierda del casete.
	[1] [2] Ps.RbcS2- E9 3' UTR	Ps.Rbcs2- E9 3' UTR	Ps.RbcS2- E9 3' UTR	Ps.Rbcsz- Eg 3° UTR	Ps.Rbcsz- Eg 3' UTR	Ps.Rbcs2- E9 3' UTR	Ps.Rbc22- E9 3' UTR	Hsp17 3'UTR de trigo	Ps.Rbc.2- E9 3' UTR	1	Ps.Rbcsz- Eg 3° UTR	una dir
8												igna
ción): 26)	F. 27)	: 28)	: 29)	30)	: 31)	: 32)	33)	: 34)	: 35)	: 36)	Des
struc	417 (Seq id no: 26)	416 (seq ID No: 27)	418 10 NO	419 ID NO	402 ID NO	403 D NO:	404 D NO:	423 D NO:	405 (SEQ ID NO: 34)	406 (Seq ID No: 35)	890 ID NO	
Construcción	(SEO	(SEO	418 (SEQ ID NO:	419 (SEQ ID NO:	402 (SEQ ID NO:	403 (SEQ ID NO: ,	404 (SEQ ID NO:	423 (SEQ ID NO:	(SEO	(350	890 (Seq id no: 36)	
-)						I

139

Construcción	Límite	Casete	Casete 2	Casete 3	Límite
pMON120417	B	e35s/Dv_Snf7o 240mer IR/T-E9:1:1	Zm.PIIG/Ta.Lhcb1/0s.Act/ Cry3Bb/Ta.Hsp17:1:1	Os.TubA3//CTP2-EPSPS CP4//TubA3:1:3	22
pMON120434	9	e35s/0v_Snf7o 240mer IR/T-E9:1:1	Zm.PIIG/Ta.Lhcb1/0s.Act/ Cry3Bb/Ta.Hsp17:1:1	Os.TubA3//CTP2-EPSPS CP4//TubA3:1:3	22
pMON120416	B	e35s/Dv_Snf7o 240mer IR/T-E9:1:1	Os.Rcc3/Ta.Lhcb1/Os.Act/ Cry3Bb/Ta.Hsp17:1:1	Os.TubA3//CTP2-EPSPS CP4//TubA3:1:3	22
pMON120419	8	e35s/Dv_Snf7o 240mer IR/T-E9:1:1	0s.Rcc3/Ta.Lhcb1/0s.Act/ Cry3Bb/Ta.Hsp17:1:1	Os.TubA3//CTP2-EPSPS CP4//TubA3:1:3	82

FIG.4