

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 746 921

61 Int. Cl.:

H04W 4/06 (2009.01) H04L 29/06 (2006.01) H04W 72/08 (2009.01) H04W 4/08 (2009.01) H04W 72/04 (2009.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 25.01.2013 PCT/US2013/023254

(87) Fecha y número de publicación internacional: 01.08.2013 WO13112909

(96) Fecha de presentación y número de la solicitud europea: 25.01.2013 E 13741349 (8)

(97) Fecha y número de publicación de la concesión europea: 24.07.2019 EP 2807838

(54) Título: Técnicas de distribución mejorada de contenido de multidifusión

(30) Prioridad:

27.01.2012 US 201261591641 P 20.07.2012 US 201213553880

45) Fecha de publicación y mención en BOPI de la traducción de la patente: 09.03.2020

(73) Titular/es:

INTEL CORPORATION (100.0%) 2200 Mission College Boulevard Santa Clara, CA 95054, US

(72) Inventor/es:

OYMAN, OZGUR

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Técnicas de distribución mejorada de contenido de multidifusión

5 Antecedentes

Los sistemas informáticos son comúnmente utilizados por usuarios para obtener y consumir diversos tipos de contenido multimedia, tal como vídeos, archivos de audio e imágenes. Existen numerosas tecnologías y normas que se emplean en diversos contextos para descargar y consumir contenido multimedia. Algunas de esas tecnologías y normas se refieren a la transmisión de contenido multimedia mediante unidifusión, que implica la transmisión de contenido multimedia desde un origen a un destino. Otras tecnologías y normas de este tipo se refieren a la transmisión de contenido multimedia mediante multidifusión, que implica la transmisión de contenido multimedia desde un origen a múltiples destinos. La transmisión mediante multidifusión puede ofrecer mejoras en la eficacia de transmisión v/o la reducción ventajosa del consumo de ancho de banda.

15

20

10

Debido a la gran variedad en las capacidades de diversos sistemas informáticos utilizados para consumir contenido multimedia, la variedad de perfiles de suscripción de usuarios y la variedad de cualidades y capacidades de los canales de comunicación utilizados para transmitir contenido multimedia desde los proveedores de contenido a los consumidores de contenido, los proveedores de contenido multimedia pueden poner a disposición múltiples versiones de contenido multimedia para su consumo. Diferentes versiones de un elemento de contenido multimedia particular pueden corresponder, por ejemplo, a diferentes velocidades binarias subyacentes, diferentes resoluciones, diferentes capas de calidad y/o diferentes vistas. Cada versión de contenido multimedia puede ser adecuada para una pluralidad de consumidores de contenido multimedia. Con el fin de aprovechar los beneficios de la transmisión mediante multidifusión mientras se proporcionan múltiples versiones de contenido multimedia, pueden ser deseables técnicas de distribución mejorada de contenido de multidifusión. La solicitud de patente EP 2 453 652 A1 da a conocer la transmisión de archivos de codificación de vídeo escalables a través de MBMS.

La invención está definida en la reivindicación 1. Formas de realización preferidas se definen en las reivindicaciones dependientes.

30

25

Breve descripción de los dibujos

- La FIG. 1 ilustra una forma de realización de un aparato y una forma de realización de un sistema.
- La FIG. 2 ilustra una forma de realización de una primera transmisión.
 - La FIG. 3A ilustra una primera forma de realización de un segmento de correspondencia.
 - La FIG. 3B ilustra una segunda forma de realización de un segmento de correspondencia.

40

- La FIG. 3C ilustra una tercera forma de realización de un segmento de correspondencia.
- La FIG. 3D ilustra una cuarta forma de realización de un segmento de correspondencia.
- 45 La FIG. 4 ilustra una forma de realización de un flujo lógico.
 - La FIG. 5 ilustra una forma de realización de una segunda transmisión.
 - La FIG. 6 ilustra una forma de realización de un medio de almacenamiento.

50

60

65

- La FIG. 7 ilustra una forma de realización de una arquitectura informática.
- La FIG. 8 ilustra una forma de realización de un sistema de comunicación.

55 Descripción detallada

Varias formas de realización se refieren, en general, a técnicas de distribución mejorada de contenido de multidifusión. En algunas formas de realización, por ejemplo, un aparato puede comprender un circuito procesador, un componente de comunicación controlado por el circuito procesador para recibir una transmisión de datos que comprende un segmento de descripción y un segmento de correspondencia, un componente de procesamiento de correspondencia controlado por el circuito procesador para determinar una pluralidad de flujos de contenido de multidifusión que representan diferentes versiones de un contenido multimedia en función del segmento de correspondencia, y un componente de selección controlado por el circuito procesador para seleccionar y recibir uno o más de la pluralidad de flujos de contenido de multidifusión en función de las características identificadas en el segmento de descripción. En varias de dichas formas de realización, el aparato puede comprender un componente de adaptación controlado por el circuito procesador para conmutar de forma adaptativa a través de la pluralidad de

flujos de contenido de multidifusión para la recepción y el procesamiento en función de las características identificadas en el segmento de descripción. También se describen y reivindican otras formas de realización.

5

10

15

20

25

30

35

45

50

55

60

Las técnicas dadas a conocer en el presente documento pueden implicar la transmisión de contenido a través de una o más conexiones inalámbricas usando una o más tecnologías de banda ancha móvil inalámbrica. Ejemplos de tecnologías de banda ancha móvil inalámbrica pueden incluir, sin limitación, cualquiera de las normas 802.16m y 802.16p del Instituto de Ingenieros Eléctricos y Electrónicos (IEEE), las normas de Evolución a Largo Plazo (LTE) y LTE-Avanzada (LTE ADV) del Proyecto de Asociación de Tercera Generación (3GPP), y las normas de las Telecomunicaciones Móviles Internacionales Avanzadas (IMT-ADV), incluidas sus revisiones, progenie y variantes. Otros ejemplos adecuados pueden incluir, sin limitación, las tecnologías del Sistema Global de Comunicaciones Móviles (GSM)/Velocidades de Datos Mejoradas para la Evolución GSM (EDGE), las tecnologías del Sistema Universal de Telecomunicaciones Móviles (UMTS)/Acceso por Paquetes de Alta Velocidad (HSPA), las tecnologías de Interoperabilidad Mundial para el Acceso por Microondas (WiMAX) o las tecnologías WiMAX II, las tecnologías del sistema 2000 de Acceso Múltiple por División de Código (CDMA) (por ejemplo, CDMA2000 1xRTT, CDMA2000 EV-DO, CDMA EV-DV, etc.), las tecnologías de Red Radioeléctrica de Área Metropolitana de Alto Rendimiento (HIPERMAN) definidas por las Redes de Acceso Radioeléctrico de Banda Ancha (BRAN) del Instituto Europeo de Normas de Telecomunicaciones (ETSI), tecnologías de Banda Ancha Inalámbrica (WiBro), tecnologías del sistema GSM con Servicio Radioeléctrico General por Paquetes (GPRS) (GSM/GPRS), tecnologías de Acceso por Paquetes de Enlace Descendente de Alta Velocidad (HSDPA), tecnologías de Acceso por Paquetes de Multiplexación por División Ortogonal de Frecuencia (OFDM) de Alta Velocidad (HSOPA), tecnologías de sistema de Acceso por Paquetes de Enlace Ascendente de Alta Velocidad (HSUPA), la versión 8 y 9 de LTE/Evolución de Arquitectura de Sistema (SAE) de 3GPP, etc. Las formas de realización no están limitadas en este contexto.

A modo de ejemplo y de manera no limitativa, varias formas de realización pueden describirse con referencia específica a varias normas LTE y LTE ADV de 3GPP, tales como la Red de Acceso Radioeléctrico Terrestre UMTS evolucionada LTE (E-UTRAN) de 3GPP, el Acceso Radioeléctrico Terrestre Universal (E-UTRA) y la serie 36 de especificaciones técnicas de la Tecnología Radioeléctrica LTE ADV (denominadas conjuntamente "especificaciones 3GPP LTE"), y normas IEEE 802.16, tales como la norma IEEE 802.16-2009 y la tercera revisión actual de IEEE 802.16 denominada "802.16Rev3" que consolida las normas 802.16-2009, 802.16h-2010 y 802.16m-2011, y los borradores de normas IEEE 802.16p, incluida la especificación IEEE P802.16.1b/D2, enero de 2012, titulada "Draft Amendment to IEEE Standard for WirelessMAN-Advanced Air Interface for Broadband Wireless Access Systems, Enhancements to Support Machine-to-Machine Applications" (denominadas conjuntamente "normas IEEE 802.16"), y cualquier borrador, revisión o variante de las especificaciones 3GPP LTE y las normas IEEE 802.16. Aunque algunas formas de realización pueden describirse como un sistema según las especificaciones 3GPP LTE o las normas IEEE 802.16 a modo de ejemplo y de manera no limitativa, puede apreciarse que otros tipos de sistemas de comunicaciones pueden implementarse como otros diversos tipos de sistemas y normas de comunicaciones móviles de banda ancha. Las formas de realización no están limitadas en este contexto.

Además de, o como alternativa a, la transmisión a través de una o más conexiones inalámbricas, las técnicas dadas a conocer en el presente documento pueden implicar la transmisión de contenido a través de una o más conexiones cableadas a través de uno o más medios de comunicación cableados. Ejemplos de medios de comunicación cableados pueden incluir un hilo, un cable, conductores metálicos, una placa de circuito impreso (PCI), una placa base, una matriz de conmutación, un material semiconductor, un cable de par trenzado, un cable coaxial, fibras ópticas, etc. Las formas de realización no están limitadas en este contexto.

A continuación se hace referencia a los dibujos, donde números de referencia similares se utilizan para hacer referencia a elementos similares en todos ellos. En la siguiente descripción, a efectos de explicación, se exponen numerosos detalles específicos para proporcionar un entendimiento minucioso de la misma. Sin embargo, puede resultar evidente que las formas de realización novedosas pueden llevarse a la práctica sin estos detalles específicos. En otros casos, se muestran estructuras y dispositivos bien conocidos en forma de diagrama de bloques para facilitar una descripción de los mismos. La intención es cubrir todas las modificaciones, equivalencias y alternativas coherentes con la materia objeto reivindicada.

La FIG. 1 ilustra un diagrama de bloques para un aparato 100. Aunque el aparato 100 mostrado en la FIG. 1 tiene un número limitado de elementos en una topología determinada, puede apreciarse que el aparato 100 puede incluir un número mayor o menor de elementos en topologías alternativas según se desee para una implementación dada.

El aparato 100 puede comprender un aparato implementado por ordenador 100 que tiene un circuito procesador 120 dispuesto para ejecutar uno o más componentes de software 122-a. Cabe señalar que "a" y "b" y "c" y designaciones similares, tal como se utilizan en el presente documento, pretenden ser variables que representan cualquier entero positivo. Por lo tanto, por ejemplo, si una implementación establece un valor para a = 5, entonces un conjunto completo de componentes de software 122-a puede incluir los componentes 122-1, 122-2, 122-3, 122-4 y 122-5. Las formas de realización no están limitadas en este contexto.

65 En varias formas de realización, el aparato 100 puede implementarse en un dispositivo fijo. Un dispositivo fijo se refiere, en general, a un dispositivo electrónico diseñado para estar en una posición o ubicación fija, estacionaria,

permanente o inmóvil de otro modo que no varía con el tiempo. Por ejemplo, se puede instalar un dispositivo fijo con accesorios, complementos y carcasas para prohibir el movimiento, incluidas líneas de alimentación cableadas, líneas de transmisión, etc. Puede apreciarse que, aunque un dispositivo fijo es, en general, estacionario, algunos dispositivos fijos pueden desconectarse de su equipo actual en una primera ubicación fija, desplazarse hasta una segunda ubicación fija y conectarse a un equipo en la segunda ubicación fija. En algunas otras formas de realización, el aparato 100 puede implementarse como un dispositivo móvil. Un dispositivo móvil está diseñado para ser lo suficientemente portátil como para moverse con frecuencia entre varias ubicaciones en el tiempo. En varias formas de realización, el aparato 100 puede implementarse en cualquier dispositivo electrónico fijo o móvil que tenga capacidades o equipos de comunicaciones inalámbricas y/o cableadas y que cumpla con una o más normas de comunicación cableadas y/o inalámbricas. Por ejemplo, en una forma de realización, el aparato puede comprender un dispositivo de comunicaciones móviles que cumpla con una o más especificaciones 3GPP LTE o normas IEEE 802.16. Las formas de realización no están limitadas en este contexto.

5

10

15

20

25

30

35

40

45

50

55

60

65

El aparato 100 puede comprender el circuito procesador 120. El circuito procesador 120 puede estar dispuesto, en general, para ejecutar uno o más componentes de software 122-a. El circuito de procesamiento 120 puede ser cualquiera de varios procesadores comercialmente disponibles, incluidos, de manera no limitativa, procesadores AMD® Athlon®, Duron® y Opteron ®; aplicación ARM ®, procesadores integrados y seguros; procesadores IBM® y Motorola® DragonBall® y PowerPC®; procesadores Cell de IBM y Sony®; procesadores Intel® Celeron®, Core (2) Duo®, Core i3, Core i5, Core i7, Itanium®, Pentium ®,Xeon® y XScale®; y procesadores similares. Microprocesadores duales, procesadores de múltiples núcleos y otras arquitecturas de múltiples procesadores también pueden utilizarse como la unidad de procesamiento 120.

El aparato 100 puede comprender un componente de comunicación 122-1. En algunas formas de realización, el componente de comunicación 122-1 puede estar dispuesto para ejecutarse mediante el circuito procesador 120 para recibir una transmisión 110 a través de una conexión cableada o inalámbrica. En varias formas de realización, la transmisión 110 puede comprender una transmisión de multidifusión. Una transmisión de multidifusión puede comprender cualquier transmisión entregada a un grupo de destinos de manera sustancialmente simultánea mediante una única transmisión desde un origen. En algunas formas de realización, la transmisión 110 puede cumplir con un protocolo de Servicio de Radiodifusión/Multidifusión Multimedia (MBMS), tal como 3GPP TS 26.346 versión 10.3.0 Versión 10, publicada en marzo de 2012. En varias de dichas formas de realización, la transmisión 110 puede comprender una transmisión de descripción de servicios de usuario (USD) MBMS que proporciona información de capa de aplicación en los servicios MBMS disponibles, incluidas opciones de transporte relacionadas, descripción de sesión, características de contenido, planificaciones de radiodifusión y procedimientos de reparación de archivos. En varias formas de realización, la transmisión 110 puede comprender una transmisión de metadatos. Las formas de realización no están limitadas en este contexto.

En algunas formas de realización, una pluralidad de versiones de contenido de un elemento de contenido particular pueden estar disponibles para el aparato 100 a través de una o más conexiones inalámbricas y/o cableadas. Tal como se utiliza en el presente documento, el término "pluralidad" se utiliza para denotar dos o más de algo. Ejemplos de un elemento de contenido particular de este tipo pueden incluir vídeos, archivos de audio, imágenes y otros tipos de medios. Cada una de la pluralidad de versiones de contenido puede comprender una versión particular del elemento de contenido particular que varía con respecto a otras versiones del elemento de contenido en función de una o más características. Ejemplos de características en función de las cuales las versiones de contenido pueden diferir pueden incluir una velocidad binaria subyacente, una velocidad de trama, una resolución, un tipo de códec, un idioma de audio, un idioma de subtítulos y otras características. En varias formas de realización, cada una de la pluralidad de versiones de contenido puede estar disponible para el aparato 100 a través de un servicio de multidifusión correspondiente. En algunas de dichas formas de realización, cada servicio de multidifusión puede comprender un flujo de contenido correspondiente. En varias formas de realización, una pluralidad de flujos de contenido puede comprender transmisiones y/o flujos de transmisión distintos. En otras formas de realización, la pluralidad de flujos de contenido puede comprender segmentos distintos dentro de una o más transmisiones y/o flujos de transmisión compartidos. En algunas formas de realización, la pluralidad de flujos de contenido puede comprender flujos de contenido de multidifusión. En varias formas de realización, cada una de la pluralidad de versiones de contenido puede estar disponible para el aparato 100 a través de un flujo de contenido en un servicio MBMS correspondiente. Las formas de realización no están limitadas en este contexto.

En varias formas de realización, cada versión de una pluralidad de versiones de contenido puede transmitirse en uno o más flujos de bits utilizando técnicas de codificación de vídeo escalable (SVC), tal como de acuerdo con el Anexo G de la norma ITU-T H.264 publicada el 4 de abril de 2012. Las técnicas SVC pueden comprender, en general, generar uno o más flujos de bits que comprenden una capa base y una o más capas de mejora. En algunas formas de realización, cada versión de contenido puede corresponder o estar asociada a una capa SVC diferente, cada servicio MBMS puede corresponder o estar asociado a una versión de contenido diferente y, por lo tanto, cada flujo de contenido de multidifusión y servicio MBMS asociado puede corresponder o estar asociado a una capa SVC diferente. En varias de dichas formas de realización, uno de una pluralidad de servicios MBMS puede corresponder o estar asociado a una capa base SVC, y cada servicio MBMS restante de entre la pluralidad de servicios MBMS puede corresponder o estar asociado a una capa de una pluralidad de capas de mejora SVC. Las formas de realización no están limitadas en este contexto.

En algunas formas de realización, cada versión de una pluralidad de versiones de contenido puede transmitirse en uno o más flujos de bits utilizando técnicas de codificación de vídeo de múltiples vistas (MVC), tal como de acuerdo con el Anexo H de la norma ITU-T H.264 publicada el 4 de abril de 2012. Las técnicas MVC pueden comprender, en general, combinar una pluralidad de flujos de vídeo sincronizados temporalmente que representan diferentes vistas de un contenido de vídeo tridimensional (3D) en uno o más flujos de bits codificados. En varias formas de realización, la pluralidad de versiones de contenido puede comprender representaciones de una única escena 3D capturada desde diferentes puntos de vista. Un caso especial importante para MVC es la codificación estereoscópica de vídeo 3D, en cuyo caso se codifican dos vistas, una para el ojo izquierdo y otra para el ojo derecho. MVC introduce la predicción intervista entre vistas con el fin de mejorar la eficiencia de compresión, así como permitir la predicción temporal y espacial ordinaria. MVC es capaz de comprimir vídeo estereoscópico de una manera compatible con versiones anteriores y sin comprometer las resoluciones de las vistas. En algunas formas de realización, el único flujo de bits codificado puede generarse codificando la pluralidad de flujos de bits sincronizados temporalmente en función de las predicciones intervista. Las formas de realización no están limitadas en este contexto.

10

15

20

40

45

50

55

60

65

En algunas formas de realización, la transmisión 110 puede comprender un segmento o sección de descripción 111 y un segmento o sección de correspondencia 113. El segmento de descripción 111 puede comprender información, datos o lógica que describen características de una pluralidad de versiones de contenido. En varias formas de realización, el segmento de descripción 111 puede comprender una pluralidad de partes de descripción 112-b. Cada parte de descripción 112-b puede comprender información de metadatos que describe las características de una versión de contenido particular que está disponible para ser recibida por el aparato 100. Las formas de realización no están limitadas en este contexto.

25 En algunas formas de realización, el segmento de correspondencia 113 puede comprender información, datos o lógica que identifica, para cada una de las versiones de contenido descritas en el segmento de descripción 111, una descripción de servicios de distribución de multidifusión correspondiente a través de la cual esa versión de contenido está disponible para ser recibida por el aparato 100. En varias formas de realización, el segmento de correspondencia 113 puede comprender partes de correspondencia 114-c. Cada parte de correspondencia 114-c 30 puede comprender información que identifica una versión de contenido descrita por una parte de descripción 112-b, e información que identifica un servicio de distribución de multidifusión a través del cual la versión de contenido descrita por la parte de descripción 112-b está disponible para ser recibida por el aparato 100. En algunas formas de realización, una pluralidad de flujos de contenido puede corresponder o estar asociada a una pluralidad de servicios de distribución de multidifusión, y el segmento de correspondencia 113 puede comprender información, datos o lógica que identifican, para cada una de las versiones de contenido descritas en el segmento de descripción 111, un 35 flujo de contenido correspondiente y un servicio de distribución de multidifusión a través del cual está disponible esa versión de contenido. Las formas de realización no están limitadas en este contexto.

Tal como se describe en el presente documento, los servicios de multidifusión y/o los flujos de contenido pueden, o no, corresponder o estar asociados a diferentes ubicaciones físicas, diferentes direcciones de red, identificaciones y/o ubicaciones, o diferentes transmisiones. Por ejemplo, en algunas formas de realización, dos servicios de multidifusión y/o flujos de contenido diferentes pueden corresponder o estar asociados a dos dispositivos de origen de contenido diferentes (por ejemplo, servidores de multidifusión) en dos ubicaciones diferentes. En otras formas de realización, dos servicios de multidifusión y/o flujos de contenido diferentes pueden corresponder o estar asociados a dos dispositivos de origen diferentes (por ejemplo, servidores de multidifusión) en la misma ubicación. En otras formas de realización adicionales, dos servicios de multidifusión y/o flujos de contenido diferentes pueden corresponder o estar asociados a dos transmisiones y/o flujos de transmisión diferentes de un único dispositivo (por ejemplo, servidor de multidifusión). En otras formas de realización, dos servicios de multidifusión y/o flujos de contenido diferentes pueden corresponder o estar asociados a diferentes partes de una única transmisión y/o flujo de transmisión de un único dispositivo (por ejemplo, servidor de multidifusión). Las formas de realización no están limitadas en este contexto.

En varias formas de realización, el segmento de descripción 111 puede comprender un archivo de metadatos de descripción de presentación multimedia (MPD) recibido en una transmisión USD MBMS, y cada parte de descripción 112-b puede describir características de una versión de contenido disponible para ser recibida por el aparato 100 a través de un servicio MBMS. En algunas de dichas formas de realización, el segmento de correspondencia 113 puede comprender una pluralidad de partes de correspondencia 114-c, cada una de las cuales identifica un servicio MBMS a través del cual una versión de contenido correspondiente descrita por una parte de descripción 112-b puede ser recibida por el aparato 100. En varias formas de realización, múltiples versiones de contenido pueden estar disponibles para el aparato 100 como múltiples servicios MBMS. En un ejemplo de dicha forma de realización, un primer servicio MBMS puede corresponder o estar asociado a una versión de contenido de alta resolución y un segundo servicio MBMS puede corresponder o estar asociado a una versión de contenido de baja resolución 111 puede comprender una parte de descripción 112-1 que describe la versión de contenido de alta resolución, el segmento de correspondencia 113 puede comprender una parte de correspondencia 114-1 que identifica la versión de contenido de alta resolución e indica que está disponible a través

del primer servicio MBMS, y puede comprender una parte de correspondencia 114-2 que identifica la versión de contenido de baja resolución e indica que está disponible a través del segundo servicio MBMS. En otro ejemplo de dicha forma de realización, un primer servicio MBMS puede corresponder o estar asociado a una versión de contenido de capa base (vista izquierda) y un segundo servicio MBMS puede corresponder o estar asociado a una versión de contenido de capa de mejora (vista derecha) codificada en función de SVC (MVC), y el segmento de descripción 111 puede comprender la parte de descripción 112-1 que describe la versión de contenido de capa base (vista izquierda) y la parte de descripción 112-2 que describe la versión de contenido de capa de mejora (vista derecha). En dicho ejemplo, el segmento de correspondencia 113 puede comprender la parte de correspondencia 114-1 que identifica la versión de contenido de capa base (vista izquierda) e indica que está disponible a través del primer servicio MBMS, y puede comprender una parte de correspondencia 114-2 que identifica la versión de contenido de capa de mejora (vista derecha) y que indica que está disponible a través del segundo servicio MBMS. Las formas de realización no están limitadas en este contexto.

En algunas formas de realización, múltiples versiones de contenido pueden estar disponibles para el aparato 100 como diferentes servicios MBMS dentro de un único grupo MBMS. En un ejemplo de dicha forma de realización, un grupo MBMS puede comprender un primer servicio MBMS correspondiente a una versión de contenido de alta resolución y un segundo servicio MBMS correspondiente a una versión de contenido de baja resolución, y el segmento de descripción 111 puede comprender la parte de descripción 112-1 que describe la versión de contenido de alta resolución y la parte de descripción 112-2 que describe la versión de contenido de baja resolución. En dicho ejemplo, el segmento de correspondencia 113 puede comprender la parte de correspondencia 114-1 que identifica la versión de contenido de alta resolución e indica que está disponible a través del primer servicio MBMS del grupo MBMS, y puede comprender la parte de correspondencia 114-2 que identifica la versión de contenido de baja resolución e indica que está disponible a través del segundo servicio MBMS del grupo MBMS. Las formas de realización no están limitadas en este contexto.

En otras diversas formas de realización, múltiples versiones de contenido pueden estar disponibles para el aparato 100 como diferentes servicios MBMS dentro de diferentes grupos MBMS. En un ejemplo de dicha forma de realización, un grupo MBMS puede comprender un primer servicio MBMS correspondiente a una versión de contenido de alta resolución y un segundo servicio MBMS correspondiente a una versión de contenido de baja resolución, y el segmento de descripción 111 puede comprender la parte de descripción 112-1 que describe la versión de contenido de alta resolución y la parte de descripción 112-2 que describe la versión de contenido de baja resolución. En dicho ejemplo, el segmento de correspondencia 113 puede comprender la parte de correspondencia 114-1 que identifica la versión de contenido de alta resolución e indica que está disponible a través del primer servicio MBMS del grupo MBMS, y puede comprender la parte de correspondencia 114-2 que identifica la versión de contenido de baja resolución e indica que está disponible a través del segundo servicio MBMS del grupo MBMS. Las formas de realización no están limitadas en este contexto.

El aparato 100 puede comprender un componente de procesamiento de correspondencia 122-2. El componente de procesamiento de correspondencia 122-2 puede estar dispuesto para ejecutarse mediante el circuito procesador 120 para procesar la transmisión 110. En algunas formas de realización, el componente de procesamiento de correspondencia 122-2 puede estar operativo para procesar la transmisión 110 para identificar una pluralidad de versiones de contenido, identificar características de cada una de la pluralidad de versiones de contenido e identificar una pluralidad de servicios de distribución de multidifusión a través de los cuales las versiones de contenido están disponibles para el aparato 100. En varias formas de realización, cada uno de la pluralidad de servicios de distribución de multidifusión puede corresponder o estar asociado a uno de una pluralidad de flujos de contenido. En una forma de realización de ejemplo, el componente de procesamiento de correspondencia 122-2 puede identificar una versión de contenido de alta resolución y una versión de contenido de baja resolución, y determinar que la versión de contenido de alta resolución está disponible a través de un primer servicio MBMS, y que la versión de contenido de baja resolución está disponible a través de un segundo servicio MBMS. Las formas de realización no están limitadas a este ejemplo.

El aparato 100 puede comprender un componente de medición de conexión 122-3. El componente de medición de conexión 122-3 puede estar dispuesto para ejecutarse mediante el circuito procesador 120 para medir y/o analizar las características de trayectoria de señales entre el aparato 100 y cada uno de la pluralidad de servicios de distribución y/o de flujos de contenido de multidifusión. En algunas formas de realización, el componente de medición de conexión 122-3 puede estar operativo para medir una calidad de canal y/o velocidad binaria efectiva asociada a la transmisión a través de cada servicio de distribución y/o flujo de contenido de multidifusión. En formas de realización en las que el componente de procesamiento de correspondencia 122-2 ha identificado una pluralidad de servicios de distribución de multidifusión que comprenden servicios MBMS, el componente de medición de conexión 122-3 puede estar operativo para medir una calidad de canal, velocidad binaria efectiva y/u otras características asociadas a la transmisión a través de cada servicio MBMS. En formas de realización en las que la pluralidad de versiones de contenido están disponibles a través de una pluralidad de servicios MBMS dentro de un grupo MBMS, el componente de medición de conexión 122-3 puede estar operativo para medir una calidad de canal, velocidad binaria efectiva y/u otras características del grupo MBMS así como de los servicios MBMS del grupo. En formas de realización en las que cada una de la pluralidad de versiones de contenido está disponible a través de una pluralidad de servicios MBMS dentro de una pluralidad de servicios MBMS, el componente de medición de conexión

122-3 puede estar operativo para medir una calidad de canal, velocidad binaria efectiva y/u otras características de cada uno de los grupos MBMS, así como de cada uno de los servicios MBMS de los grupos. Las formas de realización no están limitadas en este contexto.

El aparato 100 puede comprender un componente de selección 122-4. El componente de selección 122-4 puede estar dispuesto para ejecutarse mediante el circuito procesador 120 para seleccionar y recibir una o más de una pluralidad de versiones de contenido y/o los servicios de multidifusión correspondientes. La selección de una o más de la pluralidad de versiones de contenido y/o servicios de multidifusión correspondientes puede comprender seleccionar y recibir uno o más de una pluralidad de flujos de contenido para su procesamiento, incluidas su renderización y reproducción, en función de las características identificadas en el segmento de descripción 111. Por ejemplo, el segmento de descripción 111 puede comprender una parte de descripción 112-1 que identifica un primer servicio de multidifusión y/o un primer flujo de contenido como correspondiente a una primera versión de contenido, y el componente de selección 122-4 puede seleccionar y recibir el primer flujo de contenido para su procesamiento en función de esta correspondencia con la primera versión de contenido.

En varias formas de realización, el componente de selección 122-4 puede estar operativo para seleccionar y recibir una o más de la pluralidad de versiones de contenido y/o flujos de contenido en función de la calidad de canal, velocidad binaria efectiva y/u otras características asociadas a la transmisión a través de cada uno de la pluralidad de servicios de multidifusión y/o flujos de contenido, según lo medido por el componente de medición de conexión 122-3. En una forma de realización de ejemplo, el componente de medición de conexión 122-3 puede estar operativo para medir una primera velocidad binaria efectiva asociada a la transmisión de una primera versión de contenido a través de un primer flujo de contenido y puede estar operativo para medir una segunda velocidad binaria efectiva asociada a la transmisión de una segunda versión de contenido a través de un segundo flujo de contenido.

Siguiendo con el ejemplo mencionado anteriormente, el componente de selección 122-4 puede estar operativo para comparar la primera velocidad binaria efectiva con la segunda velocidad binaria efectiva, y seleccionar y recibir la primera versión de contenido y/o primer flujo de contenido o la segunda versión de contenido y/o segundo flujo de contenido en función de si la primera velocidad binaria efectiva o la segunda velocidad binaria efectiva es la velocidad binaria más alta posible admitida a través de la conexión de multidifusión al cliente. Las formas de realización no están limitadas a este ejemplo. Como se ha indicado anteriormente, la pluralidad de flujos de contenido puede comprender flujos de contenido de multidifusión. En algunas de dichas formas de realización, el componente de selección 122-4 puede estar operativo para seleccionar y recibir, para su procesamiento, un flujo de contenido de multidifusión disponible a través de un servicio MBMS. Las formas de realización no están limitadas en este contexto.

En varias formas de realización, una vez que el componente de selección 122-4 ha seleccionado y recibido un servicio de multidifusión y/o flujo de contenido, el componente de comunicación 122-1 puede estar operativo para obtener la versión de contenido y/o flujo de contenido del servicio de multidifusión correspondiente. En algunas formas de realización, el componente de comunicación 122-1 puede recibir una o más transmisiones de contenido que comprenden la versión de contenido y/o flujo de contenido a través de un canal o frecuencia particulares designados para la versión de contenido y/o flujo de contenido como parte del servicio de multidifusión. En varias formas de realización, múltiples versiones y/o flujos de contenido pueden estar disponibles a través de un mismo canal o frecuencia, y el componente de comunicaciones 122-1 puede estar operativo para identificar y procesar partes de las transmisiones de contenido a través de ese canal o frecuencia que corresponden o están asociados a la versión de contenido y/o flujo de contenido seleccionados. En otras formas de realización, cada versión y/o flujo de contenido puede estar disponible a través de un canal o frecuencia diferente como parte del servicio de multidifusión, y el componente de comunicación 122-1 puede estar operativo para identificar el/los canal(es) o la(s) frecuencia(s) a través de los cuales la versión de contenido y/o flujo de contenido seleccionados están disponibles, y para procesar partes de las transmisiones de contenido a través de ese/esos canal(es) o esa(s) frecuencia(s) que corresponden o están asociados a la(s) versión(es) de contenido y/o flujo(s) de contenido seleccionados. Las formas de realización no están limitadas en este contexto.

El aparato 100 puede comprender un componente de adaptación 122-5. El componente de adaptación 122-5 puede estar dispuesto para ejecutarse mediante el circuito procesador 120 para conmutar de forma adaptativa a través de una pluralidad de flujos de contenido de multidifusión para la recepción y el procesamiento en función de las características identificadas en el segmento de descripción. En algunas formas de realización, el componente de adaptación 122-5 puede conmutar de forma adaptativa a través de la pluralidad de flujos de contenido de multidifusión en función de, además, mediciones de calidad de canal y/o de velocidad binaria efectiva realizadas por el componente de medición de conexión 122-3. En una forma de realización de ejemplo, después de que el componente de selección 122-4 haya seleccionado y recibido un servicio de multidifusión y/o flujo de contenido, el componente de adaptación 122-5 puede conmutar de manera adaptativa a un servicio de multidifusión y/o flujo de contenido diferentes basándose en la medición de calidad de canal realizada por el componente de selección 122-4 que indica que la renderización y reproducción de un servicio de multidifusión y/o flujo de contenido diferente puede proporcionar una experiencia de usuario mejorada. Las formas de realización no están limitadas en este contexto.

65

15

20

35

40

45

50

55

En varias formas de realización, un servicio MBMS puede comprender la(s) versión(es) de contenido y/o flujo(s) de contenido seleccionados, y el componente de comunicación 122-1 puede estar operativo para recibir transmisiones de contenido para el servicio MBMS y extraer la(s) versión(es) de contenido y/o el/los flujo(s) de contenido seleccionados a partir de esas transmisiones de contenido. En algunas de dichas formas de realización, la(s) versión(es) de contenido y/o el/los flujo(s) de contenido seleccionados pueden corresponder o estar asociados a un servicio MBMS comprendido dentro de un grupo de servicios MBMS, y el componente de comunicación 122-1 puede estar operativo para recibir transmisiones de contenido para el grupo de servicios MBMS, y extraer la(s) versión(es) de contenido y/o el/los flujo(s) de contenido seleccionados a partir de partes de las transmisiones de grupo de servicios MBMS que corresponden o están asociadas al servicio MBMS al que corresponden la(s) versión(es) de contenido y/o el/los flujo(s) de contenido seleccionados. Las formas de realización no están limitadas en este contexto.

10

15

20

25

30

35

40

45

50

55

60

65

En varias formas de realización, el componente de comunicación 122-1 puede estar operativo para recibir transmisiones de contenido que comprenden servicios MBMS y/o grupos de servicios de acuerdo con un protocolo de distribución de archivos a través de transporte unidireccional (FLUTE). En algunas de estas formas de realización, el componente de comunicación 122-1 puede estar operativo para establecer una sesión FLUTE para un servicio MBMS correspondiente a la versión de contenido y/o flujo de contenido seleccionados, recibir transmisiones de contenido MBMS para el servicio MBMS a través de la sesión FLUTE y extraer la versión de contenido y/o flujo de contenido seleccionados a partir de las transmisiones de contenido recibidas a través de la sesión FLUTE. En varias formas de realización, el componente de comunicación 122-1 puede estar operativo para establecer múltiples sesiones FLUTE correspondientes a múltiples servicios MBMS, identificar la(s) sesión(es) FLUTE correspondiente(s) al/a los servicio(s) MBMS que comprende(n) la(s) versión(es) de contenido y/o el/los flujo(s) de contenido seleccionados a partir de las transmisiones de contenido recibidas a través de la(s) sesión(es) FLUTE identificada(s). En algunas de dichas formas de realización, los múltiples servicios MBMS pueden estar comprendidos dentro de un único grupo de servicios MBMS. Las formas de realización no están limitadas en este contexto.

En una forma de realización de ejemplo, dos versiones de un vídeo pueden estar disponibles a través de un grupo de servicios MBMS: una versión de alta resolución y una versión de baja resolución. El grupo de servicios MBMS puede comprender un primer servicio MBMS correspondiente a la versión de alta resolución y un segundo servicio MBMS correspondiente a la versión de baja resolución. El componente de comunicación 122-1 puede recibir una transmisión 110. La transmisión 110 puede comprender un segmento de descripción 111 que describe la versión de alta resolución y la versión de baja resolución. La transmisión 110 también puede comprender un segmento de correspondencia 113. El componente de procesamiento de correspondencia 122-2 puede procesar el segmento de correspondencia 113 para identificar el grupo de servicios MBMS y el primer y segundo servicios MBMS, y determinar que la versión de alta resolución corresponde al primer servicio MBMS y que la versión de baja resolución corresponde al segundo servicio MBMS. El componente de medición de conexión 122-3 puede medir a continuación la calidad de canal asociada a la transmisión del grupo de servicios MBMS. En función de la calidad de canal medida, el componente de selección 122-4 puede seleccionar y recibir la versión de alta resolución para su procesamiento. En función de la determinación mediante el componente de procesamiento de correspondencia 122-2 de que la versión de alta resolución corresponde al primer servicio MBMS, el componente de comunicación 122-1 puede recibir las transmisiones de grupo de servicios MBMS y extraer de las transmisiones de grupo de servicios MBMS el flujo de contenido correspondiente al primer servicio MBMS. Las formas de realización no están limitadas a este ejemplo.

En otra forma de realización de ejemplo, dos versiones de un vídeo pueden estar disponibles a través de un grupo de servicios MBMS: una versión de capa base (vista izquierda) y una versión de capa de mejora (vista derecha) codificada a través de SVC (MVC). El grupo de servicios MBMS puede comprender un primer servicio MBMS correspondiente a la versión de capa base (vista izquierda) y un segundo servicio MBMS correspondiente a la versión de capa de mejora (vista derecha). El componente de comunicación 122-1 puede recibir una transmisión 110. La transmisión 110 puede comprender un segmento de descripción 111 que describe la versión de capa base (vista izquierda) y de capa de mejora (vista derecha). La transmisión 110 también puede comprender un segmento de correspondencia 113. El componente de procesamiento de correspondencia 122-2 puede procesar el segmento de correspondencia 113 para identificar el grupo de servicios MBMS y el primer y segundo servicios MBMS, y determinar que la versión de capa base (vista izquierda) corresponde al primer servicio MBMS, y la versión de capa de mejora (vista derecha) corresponde al segundo servicio MBMS. El componente de medición de conexión 122-3 puede medir a continuación la calidad de canal asociada a la transmisión del grupo de servicios MBMS. En función de la determinación de que la calidad de canal medida es lo suficientemente alta como para recibir tanto una capa base como de mejora (vistas izquierda y derecha), el componente de selección 122-4 puede seleccionar y recibir versiones tanto de capa base (vista izquierda) como de capa de mejora (vista derecha) para su procesamiento. En función de la determinación mediante el componente de procesamiento de correspondencia 122-2 de que la versión de capa base (vista izquierda) corresponde al primer servicio MBMS y de que la versión de capa de mejora (vista derecha) corresponde al segundo servicio MBMS, el componente de comunicación 122-1 puede recibir las transmisiones de grupo de servicios MBMS y extraer de las transmisiones de grupo de servicios MBMS el flujo de contenido correspondiente tanto al primer como al segundo servicio MBMS. Las formas de realización no están limitadas a este ejemplo.

La FIG. 1 también puede ilustrar una forma de realización de un sistema 140. El sistema 140 puede comprender el aparato 100 y un dispositivo de audio 142. El dispositivo de audio 142 puede comprender cualquier dispositivo capaz de generar tonos, música, voz, frases, efectos de sonido, ruido de fondo u otros sonidos en función de los datos de audio recibidos. Ejemplos de dispositivo de audio 142 pueden incluir un altavoz, un sistema de múltiples altavoces, un sistema de entretenimiento en el hogar, un televisor, un aparato de consumo, un sistema informático, un dispositivo móvil y un dispositivo multimedia electrónico portátil, entre otros ejemplos. Las formas de realización no están limitadas en este contexto.

10 En varias formas de realización, el dispositivo de audio 142 puede estar dispuesto para generar tonos, música, voz, frases, efectos de sonido, ruido de fondo u otros sonidos en función de los datos de audio 141 recibidos desde el aparato 100. En algunas formas de realización, los datos de audio 141 pueden generarse por el circuito procesador 120, junto con la reproducción de uno o más flujos de contenido recibidos por el componente de comunicación 122-1. Las formas de realización no están limitadas en este contexto.

15

20

25

30

La FIG. 2 puede ilustrar una forma de realización de una transmisión 200, que puede ser igual o similar a la transmisión 110 en la FIG. 1. Como se muestra en la FIG. 2, la transmisión 200 comprende un segmento de descripción 211 y un segmento de correspondencia 213. En el ejemplo de la FIG. 2, el segmento de descripción 211 comprende partes de descripción 212-1, 212-2 y 212-3. La parte de descripción 212-1 indica dos características de versión de contenido A. En concreto, la parte de descripción 212-1 indica que la versión de contenido A tiene una resolución de 1920 por 1080, y una velocidad binaria de 4 MB/s. Del mismo modo, la parte de descripción 212-2 indica que la versión de contenido B tiene una resolución de 1600 por 900 y una velocidad binaria de 2 MB/s, y la parte de descripción 212-3 indica que la versión de contenido C tiene una resolución de 1280 por 720, y una velocidad binaria de 1 MB/s. Además, en el ejemplo de la FIG. 2, el segmento de correspondencia 213 comprende partes de correspondencia 214-1, 214-2 y 214-3. La parte de correspondencia 214-1 indica un servicio de multidifusión correspondiente a la versión de contenido A. En concreto, la parte de correspondencia 214-1 indica que la versión de contenido A está disponible a través del servicio de multidifusión 1. Del mismo modo, la parte de correspondencia 214-2 indica que la versión de contenido B está disponible a través del servicio de multidifusión 2, y la parte de correspondencia 214-3 indica que la versión de contenido C está disponible a través del servicio de multidifusión 3. Cabe señalar que, aunque las partes de descripción 212-b y las partes de correspondencia 214-c se muestran en formato tabular en la FIG. 2 para facilitar la ilustración, en algunas formas de realización la transmisión 200 puede comprender la información de las partes de descripción 212-b y las partes de correspondencia 214-c en cualquier formato, y no comprende tablas necesariamente. Las formas de realización no están limitadas en este contexto.

35

40

La FIG. 3A puede ilustrar una primera forma de realización de un segmento de correspondencia 300, por ejemplo, puede estar comprendido dentro de la transmisión 200 de la FIG. 2. La FIG. 3A comprende un ejemplo de un segmento de correspondencia que puede estar asociado a formas de realización en las que una pluralidad de versiones de contenido están disponibles como una pluralidad de servicios MBMS. Como se muestra en la FIG. 3A, el segmento de correspondencia 300 comprende partes de correspondencia 314-1, 314-2 y 314-3. En el ejemplo de la FIG. 3A, la parte de correspondencia 314-1 indica que la versión de contenido A está disponible a través del servicio MBMS 1, la parte de correspondencia 314-2 indica que la versión de contenido B está disponible a través del servicio MBMS 2, y la parte de correspondencia 314-3 indica que la versión de contenido C está disponible a través del servicio MBMS 3. Las formas de realización no están limitadas a este ejemplo.

45

50

55

La FIG. 3B puede ilustrar una segunda forma de realización de un segmento de correspondencia 300, por ejemplo, puede estar comprendido dentro de la transmisión 200 de la FIG. 2. La FIG. 3B comprende un ejemplo de un segmento de correspondencia que puede estar asociado a formas de realización en las que una pluralidad de versiones de contenido están disponibles como una pluralidad de servicios MBMS dentro de un único grupo de servicios MBMS. Como se muestra en la FIG. 3B, el segmento de correspondencia 300 comprende partes de correspondencia 314-1, 314-2 y 314-3. En el ejemplo de la FIG. 3B, la parte de correspondencia 314-1 indica que la versión de contenido A está disponible a través del Grupo MBMS 1, Servicio 1, la parte de correspondencia 314-2 indica que la versión de contenido B está disponible a través del Grupo MBMS 1, Servicio 2, y la parte de correspondencia 314-3 indica que la versión de contenido C está disponible a través del Grupo MBMS 1, Servicio 3. Las formas de realización no están limitadas a este ejemplo.

60

65

La FIG. 3C puede ilustrar una tercera forma de realización de un segmento de correspondencia 300, por ejemplo, puede estar comprendido dentro de la transmisión 200 de la FIG. 2. La FIG. 3C comprende un ejemplo de un segmento de correspondencia que puede estar asociado a formas de realización en las que una pluralidad de versiones de contenido están disponibles como una pluralidad de servicios MBMS dentro de una pluralidad de grupos de servicios MBMS. Como se muestra en la FIG. 3C, el segmento de correspondencia 300 comprende partes de correspondencia 314-1, 314-2 y 314-3. En el ejemplo de la FIG. 3C, la parte de correspondencia 314-1 indica que la versión de contenido A está disponible a través del Grupo MBMS 1, Servicio 1, la parte de correspondencia 314-2 indica que la versión de contenido B está disponible a través del Grupo MBMS 2, Servicio 1, y la parte de correspondencia 314-3 indica que la versión de contenido C está disponible a través del Grupo MBMS 3, Servicio 1. Las formas de realización no están limitadas a este ejemplo.

En varias formas de realización, el componente de comunicación 122-1 puede estar operativo para establecer una o más sesiones de distribución de archivos a través de transporte unidireccional (FLUTE) con uno o más centros de servicio de radiodifusión/multidifusión (BMSC). En algunas formas de realización, cada sesión FLUTE puede corresponder a un servicio MBMS o a un grupo de servicios MBMS, de modo que la recepción de transmisiones de contenido asociadas a un servicio MBMS particular se lleva a cabo a través de una sesión FLUTE correspondiente a ese servicio MBMS o un grupo de servicios MBMS al que pertenece el servicio MBMS.

La FIG. 3D puede ilustrar una cuarta forma de realización de un segmento de correspondencia 300, por ejemplo, puede estar comprendido dentro de la transmisión 200 de la FIG. 2 y, por ejemplo, puede ser adecuado para su uso en formas de realización en las que los servicios MBMS y/o los grupos de servicios MBMS se reciben a través de sesiones FLUTE. Como se muestra en la FIG. 3D, el segmento de correspondencia 300 comprende partes de correspondencia 314-1, 314-2 y 314-3. En el ejemplo de la FIG. 3D, la parte de correspondencia 314-1 indica que la versión de contenido A está disponible en el Servicio MBMS 1 a través de la Sesión FLUTE 1, la parte de correspondencia 314-2 indica que la versión de contenido B está disponible en el Servicio MBMS 2 a través de la Sesión FLUTE 2, y la parte de correspondencia 314-3 indica que la versión de contenido C está disponible en el Servicio MBMS 3 a través de la Sesión FLUTE 3. Las formas de realización no están limitadas a este ejemplo.

10

15

20

25

30

35

40

45

50

55

60

65

La FIG. 4 puede ilustrar una forma de realización de una transmisión de contenido 400. En el ejemplo de la FIG. 4, la transmisión de contenido 400 puede ser un ejemplo de varias formas de realización en las que múltiples servicios de multidifusión corresponden a diferentes partes de la misma transmisión o serie de transmisiones que pueden estar ocurriendo simultáneamente. Como se muestra en la FIG. 4, la transmisión de contenido 400 puede comprender partes de contenido 402-1 y 402-2. La parte de contenido 402-1 comprende segmentos de contenido 403-1, 403-2 y 403-3, y la parte de contenido 402-2 comprende segmentos de contenido 403-4, 403-5 y 403-6. Como se ilustra mediante el eje de tiempo en la FIG. 4, los diversos segmentos de contenido dentro de una parte de contenido particular pueden transmitirse secuencialmente en el tiempo. Como ilustra el eje de servicio de multidifusión en la FIG. 4, las diversas partes de contenido pueden transmitirse a través de diversos servicios de multidifusión. En algunas formas de realización, la parte de contenido 402-1 puede corresponder a una primera versión de contenido, y la parte de contenido 402-2 puede corresponder a una segunda versión de contenido. En varias de dichas formas de realización, el componente de selección 122-4 puede seleccionar y recibir la primera versión de contenido y/o la segunda versión de contenido, y el componente de comunicación 122-2 puede extraer los segmentos de contenido a partir de la(s) parte(s) de contenido correspondiente(s) a la(s) versión(es) de contenido seleccionada(s). En una forma de realización de ejemplo, el componente de selección 122-4 puede seleccionar y recibir la primera versión de contenido, y el componente de comunicación 122-2 puede extraer segmentos de contenido 403-1, 403-2 y 403-3 de la parte de contenido 402-1, que corresponden a la primera versión de contenido. Las formas de realización no están limitadas a este ejemplo.

En algunas formas de realización, la transmisión de contenido 400 puede corresponder a una transmisión de contenido de grupo de servicios MBMS. En varias de dichas formas de realización, cada parte de contenido dentro de la transmisión de contenido 400 puede corresponder a un servicio MBMS diferente dentro de un grupo de servicios MBMS. Por ejemplo, la parte de contenido 402-1 puede corresponder a un primer servicio MBMS dentro del paquete de servicios MBMS, y la parte de contenido 402-2 puede corresponder a un segundo servicio MBMS dentro del grupo de servicios MBMS. En algunas de dichas formas de realización, el componente de selección 122-4 puede seleccionar y recibir una versión de contenido correspondiente al primer servicio MBMS y/o al segundo servicio MBMS, y el componente de comunicación 122-2 puede extraer los segmentos de contenido a partir de la(s) parte(s) de contenido correspondiente(s) al/a los servicio(s) MBMS seleccionado(s). En una forma de realización de ejemplo, el componente de selección 122-4 puede seleccionar y recibir una versión de contenido correspondiente a la parte de contenido 402-1 y a un primer servicio MBMS, y el componente de comunicación 122-2 puede extraer segmentos de contenido 403-1, 403-2 y 403-3 de la parte de contenido 402-1, que corresponden al primer servicio MBMS y, por lo tanto, a la primera versión de contenido. Las formas de realización no están limitadas en este contexto.

En el presente documento se incluye un conjunto de flujos lógicos representativos de metodologías a modo de ejemplo para realizar aspectos novedosos de la arquitectura dada a conocer. Aunque, a efectos de simplicidad de explicación, la una o más metodologías mostradas en el presente documento se muestran y describen como una serie de acciones, los expertos en la técnica comprenderán y apreciarán que las metodologías no están limitadas por el orden de las acciones. Según esto, algunas acciones pueden ocurrir en un orden diferente y/o simultáneamente con otras acciones en relación con lo mostrado y descrito en el presente documento. Por ejemplo, los expertos en la técnica comprenderán y apreciarán que una metodología puede representarse, como alternativa, como una serie de estados o eventos interrelacionados, como en un diagrama de estados. Además, no todas las acciones ilustradas en una metodología pueden requerirse para una implementación novedosa.

Un flujo lógico puede implementarse en software, firmware y/o hardware. En formas de realización de software y firmware, un flujo lógico puede implementarse mediante instrucciones ejecutables por ordenador almacenadas en un medio legible por ordenador o medio legible por máquina no transitorio, tal como un almacenamiento óptico, magnético o semiconductor. Las formas de realización no están limitadas en este contexto.

La FIG. 5 ilustra una forma de realización de un flujo lógico 500. El flujo lógico 500 puede ser representativo de algunas o todas las operaciones ejecutadas por una o más formas de realización descritas en el presente documento, tal como el aparato 100. Más particularmente, el flujo lógico 500 puede implementarse mediante el componente de comunicación 122-1, el componente de procesamiento de correspondencia 122-2, el componente de medición de conexión 122-3, el componente de selección 122-4 y/o el componente de adaptación 122-5.

5

10

15

20

25

30

35

40

45

50

55

60

65

En la forma de realización ilustrada mostrada en la FIG. 5, el flujo lógico 500 puede recibir una transmisión que comprende un segmento de descripción y un segmento de correspondencia en el bloque 502. Por ejemplo, el aparato 100 de la FIG. 1 puede recibir una transmisión 110 que comprende un segmento de descripción 111 y un segmento de correspondencia 113, a través del componente de comunicación 122-1. En algunas formas de realización, el segmento de descripción puede identificar características de una pluralidad de versiones de contenido. Por ejemplo, el segmento de descripción 111 de la FIG. 1 puede comprender partes de descripción 112-b que pueden identificar características de una pluralidad de versiones de contenido. En varias formas de realización. el segmento de correspondencia puede identificar una pluralidad de flujos de contenido de multidifusión correspondientes a la pluralidad de versiones de contenido. Por ejemplo, el segmento de correspondencia 113 de la FIG. 1 puede comprender partes de correspondencia 114-c, que pueden identificar una pluralidad de flujos de contenido de multidifusión correspondientes a la pluralidad de versiones de contenido descritas por las partes de descripción 112-b. El flujo lógico 500 puede determinar una pluralidad de flujos de contenido de multidifusión en función del segmento de correspondencia en el bloque 504. Por ejemplo, el componente de procesamiento de correspondencia 122-2 de la FIG. 1 puede procesar partes de correspondencia 114-c para identificar la pluralidad de flujos de contenido de multidifusión. El flujo lógico 500 puede seleccionar y recibir uno o más de la pluralidad de flujos de contenido de multidifusión para su procesamiento en función de la información en el segmento de descripción en el bloque 506. Por ejemplo, el componente de selección 122-4 de la FIG. 1 puede seleccionar uno o más de la pluralidad de flujos de contenido de multidifusión determinados por el componente de procesamiento de correspondencia 122-2, basándose en las características identificadas en las partes de descripción 112-b. El flujo lógico 500 puede conmutar de manera adaptativa a través de una pluralidad de flujos de contenido de multidifusión para la recepción y el procesamiento en función de las características identificadas en el segmento de descripción en el bloque 508. Por ejemplo, el componente de adaptación 122-5 de la FIG. 1 puede conmutar de manera adaptativa a través de la pluralidad de flujos de contenido de multidifusión determinados por el componente de procesamiento de correspondencia 122-2, en función de las características identificadas en las partes de descripción 112-b. Las formas de realización no están limitadas a estos ejemplos.

La FIG. 6 ilustra una forma de realización de un medio de almacenamiento 600. El medio de almacenamiento 600 puede comprender un artículo de fabricación. En una forma de realización, el medio de almacenamiento 600 puede comprender cualquier medio legible por ordenador o medio legible por máquina no transitorio, tal como un almacenamiento óptico, magnético o semiconductor. El medio de almacenamiento puede almacenar varios tipos de instrucciones ejecutables por ordenador, tales como instrucciones para implementar el flujo lógico 500. Ejemplos de un medio de almacenamiento legible por ordenador o legible por máquina pueden incluir cualquier medio tangible capaz de almacenar datos electrónicos, incluida una memoria volátil o una memoria no volátil, una memoria extraíble o no extraíble, una memoria borrable o no borrable, una memoria grabable o regrabable, etc. Ejemplos de instrucciones ejecutables por ordenador pueden incluir cualquier tipo adecuado de código, tales como código fuente, código compilado, código interpretado, código ejecutable, código estático, código dinámico, código orientado a objetos, código visual, y similares. Las formas de realización no están limitadas en este contexto.

La FIG. 7 ilustra una forma de realización de un dispositivo 700 para su uso en una red de acceso inalámbrico de banda ancha. El dispositivo 700 puede implementar, por ejemplo, el aparato 100, el medio de almacenamiento 600 y/o un circuito lógico 730. El circuito lógico 730 puede incluir circuitos físicos para realizar las operaciones descritas para el aparato 100. Como se muestra en la FIG. 7, el dispositivo 700 puede incluir una interfaz de radio 710, un sistema de circuitos de banda base 720 y una plataforma informática 730, aunque las formas de realización no están limitadas a esta configuración.

El dispositivo 700 puede implementar parte o la totalidad de la estructura y/o de las operaciones del aparato 100, del medio de almacenamiento 600 y/o del circuito lógico 730 en una sola entidad informática, tal como enteramente en un único dispositivo. De manera alternativa, el dispositivo 700 puede distribuir partes de la estructura y/u operaciones del aparato 100, del medio de almacenamiento 600 y/o del circuito lógico 730 a través de múltiples entidades informáticas que utilizan una arquitectura de sistema distribuida, tal como una arquitectura cliente-servidor, una arquitectura de 3 niveles, una arquitectura de N niveles, una arquitectura estrechamente acoplada o agrupada, una arquitectura de igual a igual, una arquitectura maestro-esclavo, una arquitectura de base de datos compartida y otros tipos de sistemas distribuidos. Las formas de realización no están limitadas en este contexto.

En una forma de realización, la interfaz radioeléctrica 710 puede incluir un componente o combinación de componentes adaptados para transmitir y/o recibir señales moduladas de una sola portadora o de múltiples portadoras (por ejemplo, que incluyen símbolos de modulación por código complementario (CCK) y/o de multiplexación por división ortogonal de frecuencia (OFDM)), aunque las formas de realización no están limitadas a ningún esquema de modulación o interfaz aérea específicos. La interfaz radioeléctrica 710 puede incluir, por

ejemplo, un receptor 712, un transmisor 716 y/o un sintetizador de frecuencias 714. La interfaz radioeléctrica 710 puede incluir controles de polarización, un oscilador de cristal y/o una o más antenas 718-f. En otra forma de realización, la interfaz de radio 710 puede usar osciladores externos controlados por voltaje (VCO), filtros de ondas acústicas de superficie, filtros de frecuencia intermedia (IF) y/o filtros de RF, según se desee. Debido a la variedad de posibles diseños de interfaz de RF, se omite una descripción detallada de los mismos.

5

10

15

20

25

30

35

40

45

50

55

60

El sistema de circuitos de banda base 720 puede comunicarse con la interfaz de radio 710 para procesar señales de recepción y/o transmisión y puede incluir, por ejemplo, un convertidor de analógico a digital 722 para convertir de manera descendente señales recibidas, y un convertidor de digital a analógico 724 para convertir de manera ascendente señales de transmisión. Además, el sistema de circuitos de banda base 720 puede incluir un circuito de procesamiento de banda base o capa física (PHY) 756 para el procesamiento de capa de enlace PHY de señales de recepción/transmisión respectivas. El sistema de circuitos de banda base 720 puede incluir, por ejemplo, un circuito de procesamiento 728 para el procesamiento de capa de enlace de datos/control de acceso al medio (MAC). El sistema de circuitos de banda base 720 puede incluir un controlador de memoria 732 para comunicarse con el circuito de procesamiento 728 y/o una plataforma informática 730, por ejemplo, a través de una o más interfaces

En algunas formas de realización, el circuito de procesamiento PHY 726 puede incluir un módulo de construcción y/o detección de tramas, en combinación con un sistema de circuitos adicional tal como una memoria intermedia, para construir y/o desconstruir tramas de comunicación, tal como un paquete 600. De manera alternativa o adicional, el circuito de procesamiento MAC 728 puede compartir el procesamiento para algunas de estas funciones o realizar estos procesos de manera independiente al circuito de procesamiento PHY 726. En algunas formas de realización, el procesamiento MAC y PHY se puede integrar en un único circuito.

La plataforma informática 730 puede proporcionar funcionalidad informática al dispositivo 700. Como se muestra, la plataforma informática 730 puede incluir un componente de procesamiento 740. De manera adicional o alternativa al sistema de circuitos de banda base 720, el dispositivo 700 puede ejecutar operaciones de procesamiento o lógica del aparato 100, del medio de almacenamiento 600 y del circuito lógico 730 utilizando el componente de procesamiento 730. El componente de procesamiento 730 (y/o PHY 726 y/o MAC 728) puede comprender varios elementos de hardware, elementos de software o una combinación de ambos. Ejemplos de elementos de hardware pueden incluir dispositivos, dispositivos lógicos, componentes, procesadores, microprocesadores, circuitos, circuitos de procesador (por ejemplo, el circuito de procesador 120), elementos de circuito (por ejemplo, transistores, resistencias, condensadores, inductores, etc.), circuitos integrados, circuitos integrados específicos de la aplicación (ASIC), dispositivos de lógica programable (PLD), procesadores de señales digitales (DSP), matriz de puertas programables in situ (FPGA), unidades de memoria, puertas lógicas, registros, dispositivos de semiconductor, chips, microchips, conjuntos de chips, etc. Ejemplos de elementos de software pueden incluir componentes de software, programas, aplicaciones, programas de ordenador, programas de aplicación, programas de sistema, programas de desarrollo de software, programas de máquina, software de sistema operativo, software personalizado (middleware), software inalterable (firmware), módulos de software, rutinas, subrutinas, funciones, métodos, procedimientos, interfaces de software, interfaces de programación de aplicaciones (API), conjuntos de instrucciones, código informático, código de ordenador, segmentos de código, segmentos de código de ordenador, palabras, valores, símbolos o cualquier combinación de los mismos. El determinar si una forma de realización se implementa mediante elementos de hardware y/o elementos de software puede variar en función de varios factores, tales como la velocidad computacional deseada, los niveles de potencia, las tolerancias térmicas, el balance del ciclo de procesamiento, las velocidades de datos de entrada, las velocidades de datos de salida, los recursos de memoria, las velocidades de bus de datos y otras limitaciones de diseño o rendimiento, según se desee para una implementación dada.

La plataforma informática 730 puede incluir además otros componentes de la plataforma 750. Otros componentes de plataforma 750 incluyen elementos informáticos comunes, tales como uno o más procesadores, procesadores de múltiples núcleos, coprocesadores, unidades de memoria, conjuntos de chips, controladores, dispositivos periféricos, interfaces, osciladores, dispositivos de temporización, tarjetas de vídeo, tarjetas de sonido, componentes multimedia de entrada/salida (E/S) (por ejemplo, pantallas digitales), fuentes de alimentación, etc. Ejemplos de unidades de memoria pueden incluir, de manera no limitativa, varios tipos de medios de almacenamiento legibles por ordenador y legibles por máquina en forma de una o más unidades de memoria de alta velocidad, tales como una memoria de sólo lectura (ROM), una memoria de acceso aleatorio (RAM), una RAM dinámica (DRAM), una DRAM de doble velocidad de datos (DDRAM), una DRAM síncrona (SDRAM), una RAM estática (SRAM), una ROM programable (PROM), una ROM programable y borrable eléctricamente (EEPROM), una memoria flash, una memoria polimérica tal como una memoria polimérica ferroeléctrica, una memoria ovónica, una memoria ferroeléctrica o de cambio de fase, una memoria de óxido de silicio-óxido de nitruro-silicio (SONOS), tarjetas magnéticas u ópticas, una disposición de dispositivos tales como unidades de matrices redundantes de de discos independientes (RAID), dispositivos de memoria de estado sólido (por ejemplo, memoria USB, unidades de estado sólido (SSD)) y cualquier otro tipo de medio de almacenamiento adecuado para almacenar información.

El dispositivo 700 puede ser, por ejemplo, un dispositivo ultramóvil, un dispositivo móvil, un dispositivo fijo, un dispositivo de máquina a máquina (M2M), un asistente personal digital (PDA), un dispositivo informático móvil, un

teléfono inteligente, un teléfono, un teléfono digital, un teléfono celular, un equipo de usuario, lectores de libros electrónicos, un microteléfono, un radiolocalizador unidireccional, un radiolocalizador bidireccional, un dispositivo de mensajería, un ordenador, un ordenador personal (PC), un ordenador de sobremesa, un ordenador portátil, un ordenador de tipo notebook, un ordenador de tipo netbook, un ordenador de mano, una tableta electrónica, un servidor, un sistema de servidores o conjunto de servidores, un servidor web, un servidor de red, un servidor de Internet, una estación de trabajo, un miniordenador, un ordenador central, un superordenador, un dispositivo de red, un dispositivo de Internet, un sistema informático distribuido, sistemas de multiprocesador, sistemas basados en procesador, dispositivos electrónicos de consumo, dispositivos electrónicos de consumo programables, dispositivos de juego, un televisor, un televisor digital, un descodificador, un punto de acceso inalámbrico, una estación base, un nodo B, una estación de abonado, un centro de abonados móviles, un controlador de red radioeléctrica, un encaminador, un concentrador, una pasarela, un puente, un conmutador, una máquina o una combinación de los mismos. Por consiguiente, las funciones y/o configuraciones específicas del dispositivo 700 descritas en el presente documento pueden incluirse u omitirse en varias formas de realización del dispositivo 700, según se desee de manera adecuada. En algunas formas de realización, el dispositivo 700 puede estar configurado para ser compatible con protocolos y frecuencias asociados a una o más de las especificaciones 3GPP LTE y/o las normas IEEE 802.16 para WMAN y/u otras redes inalámbricas de banda ancha, mencionadas en el presente documento, aunque las formas de realización no están limitadas a este respecto.

10

15

25

30

35

40

60

65

Las formas de realización del dispositivo 700 pueden implementarse utilizando arquitecturas de entrada única y salida única (SISO). Sin embargo, determinadas implementaciones pueden incluir múltiples antenas (por ejemplo, las antenas 718-f) para la transmisión y/o recepción utilizando técnicas de antena adaptativa para la conformación de haz o el acceso múltiple por división espacial (SDMA) y/o utilizando técnicas de comunicación MIMO.

Los componentes y características del dispositivo 700 se pueden implementar utilizando cualquier combinación de sistema de circuitos discretos, circuitos integrados específicos de la aplicación (ASIC), puertas lógicas y/o arquitecturas de un solo chip. Además, las características del dispositivo 700 pueden implementarse utilizando microcontroladores, matrices lógicas programables y/o microprocesadores o cualquier combinación de lo anterior cuando sea apropiado. Debe observarse que los elementos de hardware, firmware y/o software pueden denominarse de manera colectiva o individual en el presente documento como "lógica" o "circuito".

Debe apreciarse que el dispositivo 700 a modo de ejemplo mostrado en el diagrama de bloques de la FIG. 7 puede representar un ejemplo funcionalmente descriptivo de muchas posibles implementaciones. Por consiguiente, la división, omisión o inclusión de funciones de bloque representadas en las figuras adjuntas no infiere que los componentes de hardware, circuitos, software y/o elementos para implementar estas funciones estén necesariamente divididos, omitidos o incluidos en las formas de realización.

La FIG. 8 ilustra una forma de realización de un sistema de acceso inalámbrico de banda ancha 800. Como se muestra en la FIG. 8, el sistema de acceso inalámbrico de banda ancha 800 puede ser una red de tipo protocolo de Internet (IP) que comprende una red de tipo Internet 810 o similar que es capaz de admitir acceso inalámbrico móvil y/o acceso inalámbrico fijo a Internet 810. En una o más formas de realización, el sistema de acceso inalámbrico de banda ancha 800 puede comprender cualquier tipo de red inalámbrica basada en acceso múltiple por división ortogonal de frecuencia (OFDMA), tal como un sistema que cumple con una o más de las especificaciones 3GPP LTE y/o las normas IEEE 802.16, y el alcance de la materia objeto reivindicada no está limitado a estos aspectos.

En el sistema de acceso inalámbrico de banda ancha 800 a modo de ejemplo, las redes de servicio de acceso (ASN) 45 814, 818 son capaces de acoplarse a estaciones base (BS) 814, 820 (o eNodoB) respectivamente, para proporcionar comunicación inalámbrica entre uno o más dispositivos fijos 816 e Internet 110, o uno o más dispositivos móviles 822 e Internet 110. Un ejemplo de un dispositivo fijo 816 y un dispositivo móvil 822 es el dispositivo 700, donde el dispositivo fijo 816 comprende una versión estacionaria del dispositivo 700 y el dispositivo 50 móvil 822 comprende una versión móvil del dispositivo 700. La ASN 812 puede implementar perfiles que son capaces de definir el mapeo de funciones de red con una o más entidades físicas en el sistema de acceso inalámbrico de banda ancha 800. Las estaciones base 814, 820 (o eNodoB) pueden comprender equipos de radio para proporcionar comunicación de RF con el dispositivo fijo 816 y el dispositivo móvil 822, tal como se describe con referencia al dispositivo 700, y pueden comprender, por ejemplo, el equipo de capa PHY y MAC de conformidad con 55 una especificación 3GPP LTE o la norma IEEE 802.16. Las estaciones base 814, 820 (o eNodoB) pueden comprender además una placa base IP para acoplarse a Internet 810 a través de la ASN 812, 818, respectivamente, aunque el alcance de la materia objeto reivindicada no está limitado a estos aspectos.

El sistema de acceso inalámbrico de banda ancha 800 puede comprender además una red de servicio de conectividad (CSN) visitada 824 capaz de proporcionar una o más funciones de red que incluyen, pero sin limitarse a, funciones de tipo apoderado (*proxy*) y/o retransmisión, por ejemplo, funciones de autenticación, autorización y contabilidad (AAA), funciones de protocolo de configuración dinámica de *host* (DHCP), controles de servicio de nombre de dominio o similares, pasarelas de dominio tales como pasarelas de red telefónica pública conmutada (PSTN) o pasarelas de voz sobre protocolo de Internet (VoIP) y/o funciones de servidor de tipo protocolo de Internet (IP), o similares. Sin embargo, se trata simplemente de ejemplos de los tipos de funciones que pueden ser desempeñadas por la CSN visitada 824 y/o la CSN propia 826, y el alcance de la materia objeto reivindicada no está

limitado a estos aspectos. La CSN visitada 124 puede denominarse CSN visitada en caso de que la CSN visitada 824 no forme parte del proveedor de servicios habitual del dispositivo fijo 816 o del dispositivo móvil 822, por ejemplo cuando el dispositivo fijo 816 o el dispositivo móvil 822 se encuentren alejados de su respectiva CSN propia 826, o en caso de que el sistema de acceso inalámbrico de banda ancha 800 forme parte del proveedor de servicios habitual del dispositivo fijo 816 o del dispositivo móvil 822, pero donde el sistema de acceso inalámbrico de banda ancha 800 puede encontrarse en otra ubicación o estado que no sea la ubicación principal o propia del dispositivo fijo 816 o del dispositivo móvil 822.

El dispositivo fijo 816 puede estar ubicado en cualquier lugar dentro del alcance de una o ambas estaciones base 814, 820, tal como en o cerca de una vivienda o negocio para proporcionar a clientes domésticos o comerciales acceso de banda ancha a Internet 810 a través de las estaciones base 814, 820 y la ASN 812, 818, respectivamente, y la CSN propia 826. Cabe señalar que, aunque el dispositivo fijo 816 está dispuesto generalmente en una ubicación estacionaria, se puede mover a diferentes ubicaciones según sea necesario. El dispositivo móvil 822 se puede utilizar en una o más ubicaciones si el dispositivo móvil 822 se encuentra dentro del alcance de una o ambas estaciones base 814, 820, por ejemplo.

De acuerdo con una o más formas de realización, un sistema de soporte operativo (OSS) 828 puede ser parte del sistema de acceso inalámbrico de banda ancha 800 para proporcionar funciones de gestión para el sistema de acceso inalámbrico de banda ancha 800 y para proporcionar interfaces entre entidades funcionales del sistema de acceso inalámbrico de banda ancha 800. El sistema de acceso inalámbrico de banda ancha 800 de la FIG. 8 es simplemente un tipo de red inalámbrica que muestra un cierto número de los componentes del sistema de acceso inalámbrico de banda ancha 800, y el alcance de la materia objeto reivindicada no está limitado a estos aspectos.

Los siguientes ejemplos corresponden a otras formas de realización:

identificadas en el segmento de descripción.

Un procedimiento puede comprender recibir, en un dispositivo informático que comprende un circuito procesador, una transmisión de datos que comprende un segmento de descripción y un segmento de correspondencia, identificar una pluralidad de flujos de contenido de multidifusión que representan diferentes versiones de un contenido multimedia en función del segmento de correspondencia, y seleccionar, mediante el circuito procesador, uno o más de la pluralidad de flujos de contenido de multidifusión para su procesamiento en función de las características

Dicho procedimiento puede comprender recibir el uno o más de la pluralidad de flujos de contenido de multidifusión desde un servidor de multidifusión.

Dicho procedimiento puede comprender renderizar en un dispositivo de salida el contenido multimedia del uno o más flujos de contenido de multidifusión seleccionados.

Dicho procedimiento puede comprender conmutar de forma adaptativa, mediante el circuito procesador, a través de la pluralidad de flujos de contenido de multidifusión para la recepción y el procesamiento en función de las características identificadas en el segmento de descripción.

De acuerdo con dicho procedimiento, cada uno de la pluralidad de flujos de contenido de multidifusión puede comprender uno de una pluralidad de servicios de radiodifusión/multidifusión multimedia (MBMS).

De acuerdo con dicho procedimiento, la pluralidad de servicios MBMS puede estar comprendida dentro de un grupo de servicios MBMS.

De acuerdo con dicho procedimiento, el dispositivo informático puede comprender un cliente de transmisión continua dinámica adaptativa a través de protocolo de transferencia de hipertexto (DASH).

De acuerdo con dicho procedimiento, la transmisión de datos puede comprender una transmisión de descripción de servicios de usuario (USD) que representa el segmento de correspondencia.

De acuerdo con dicho procedimiento, el segmento de descripción puede comprender un archivo de metadatos de descripción de presentación de medios (MPD) en la transmisión USD.

Dicho procedimiento puede comprender establecer una pluralidad de sesiones de distribución de archivos a través de transporte unidireccional (FLUTE), donde cada una de la pluralidad de sesiones FLUTE corresponde a uno de la pluralidad de flujos de contenido de multidifusión.

De acuerdo con dicho procedimiento, el segmento de correspondencia puede comprender información que identifica, para cada uno de la pluralidad de flujos de contenido de multidifusión y servicios MBMS correspondientes, una sesión correspondiente de la pluralidad de sesiones FLUTE.

65

60

20

35

Dicho procedimiento puede comprender determinar una o más sesiones FLUTE correspondientes a los servicios MBMS que comprenden los flujos de contenido de multidifusión seleccionados.

Dicho procedimiento puede comprender recibir los flujos de contenido de multidifusión seleccionados en los servicios MBMS correspondientes a las sesiones FLUTE determinadas.

Dicho procedimiento puede comprender seleccionar y recibir el uno o más de la pluralidad de flujos de contenido de multidifusión en función de un formato o velocidad binaria subyacente de una versión de contenido a la que corresponde el uno o más de la pluralidad de flujos de contenido de multidifusión.

Dicho procedimiento puede comprender seleccionar y recibir el uno o más de la pluralidad de flujos de contenido de multidifusión en función de una calidad de canal o velocidad binaria efectiva asociadas a la transmisión del uno o más de la pluralidad de flujos de contenido de multidifusión.

De acuerdo con dicho procedimiento, cada uno de la pluralidad de flujos de contenido de multidifusión y servicios MBMS puede corresponder a una capa de una pluralidad de capas en un flujo de bits de codificación de vídeo escalable (SVC).

De acuerdo con dicho procedimiento, cada uno de la pluralidad de flujos de contenido de multidifusión y servicios MBMS puede corresponder a una vista de una pluralidad de vistas en un flujo de bits de codificación de vídeo de múltiples vistas (MVC).

Un aparato puede comprender un circuito procesador, un componente de comunicación dispuesto para ejecutarse mediante el circuito procesador para recibir una transmisión de multidifusión que comprende una sección de descripción y una sección de correspondencia, un componente de procesamiento de correspondencia dispuesto para ejecutarse mediante el circuito procesador para identificar un grupo de flujos de contenido de multidifusión que comprende una pluralidad de flujos de contenido de multidifusión en función de la sección de correspondencia, donde cada uno de la pluralidad de flujos de contenido de multidifusión corresponde a una versión de una pluralidad de versiones de contenido, y un componente de selección dispuesto para ejecutarse mediante el circuito procesador para seleccionar al menos uno de la pluralidad de flujos de contenido de multidifusión para su procesamiento en función de las características identificadas en la sección de descripción.

Con respecto a dicho aparato, el componente de selección puede estar dispuesto para ejecutarse mediante el circuito procesador para recibir el al menos uno de la pluralidad de flujos de contenido de multidifusión desde un dispositivo de origen de contenido de multidifusión.

Con respecto a dicho aparato, el procesamiento puede comprender la renderización y reproducción del contenido multimedia.

Dicho aparato puede comprender un componente de adaptación dispuesto para ejecutarse mediante el circuito procesador para conmutar de forma adaptativa a través de la pluralidad de flujos de contenido de multidifusión para la recepción y el procesamiento en función de las características identificadas en la sección de descripción.

Con respecto a dicho aparato, cada uno de la pluralidad de flujos de contenido de multidifusión puede comprender uno de una pluralidad de servicios de radiodifusión/multidifusión multimedia (MBMS).

Con respecto a dicho aparato, el grupo de flujos de contenido de multidifusión puede comprender un grupo de servicios MBMS.

Dicho aparato puede comprender un cliente de transmisión continua dinámica adaptativa a través de protocolo de transferencia de hipertexto (DASH).

Con respecto a dicho aparato, la transmisión de multidifusión puede comprender una transmisión de descripción de servicios de usuario (USD) que representa la sección de correspondencia.

Con respecto a dicho aparato, la sección de descripción puede comprender un archivo de metadatos de descripción de presentación de medios (MPD) en la transmisión USD.

Con respecto a dicho aparato, el componente de comunicación puede estar dispuesto para ejecutarse mediante el circuito procesador para establecer una pluralidad de sesiones de distribución de archivos a través de transporte unidireccional (FLUTE), donde cada una de la pluralidad de sesiones FLUTE corresponde a uno de la pluralidad de flujos de contenido de multidifusión, donde la sección de correspondencia comprende información que identifica, para cada uno de la pluralidad de flujos de contenido de multidifusión y servicios MBMS correspondientes, una sesión correspondiente de la pluralidad de sesiones FLUTE.

65

10

25

30

35

45

Con respecto a dicho aparato, el componente de procesamiento de correspondencia puede estar dispuesto para ejecutarse mediante el circuito procesador para determinar una o más sesiones FLUTE correspondientes a los servicios MBMS que comprenden los flujos de contenido de multidifusión seleccionados.

- 5 Con respecto a dicho aparato, el componente de comunicación puede estar dispuesto para ejecutarse mediante el circuito procesador para recibir los flujos de contenido de multidifusión seleccionados en los servicios MBMS correspondientes a las sesiones FLUTE determinadas.
- Con respecto a dicho aparato, el componente de selección puede estar dispuesto para ejecutarse mediante el circuito procesador para seleccionar y recibir el al menos uno de la pluralidad de flujos de contenido de multidifusión en función de un formato o velocidad binaria subyacente de una versión de contenido a la que corresponde el al menos uno de la pluralidad de flujos de contenido de multidifusión, o en función de una calidad de canal o velocidad binaria efectiva asociadas a la transmisión del al menos uno de la pluralidad de flujos de contenido de multidifusión.
- 15 Con respecto a dicho aparato, cada uno de la pluralidad de flujos de contenido de multidifusión y servicios MBMS puede corresponder a una capa de una pluralidad de capas en un flujo de bits de codificación de vídeo escalable (SVC).
- Con respecto a dicho aparato, cada uno de la pluralidad de flujos de contenido de multidifusión y servicios MBMS puede corresponder a una vista de una pluralidad de vistas en un flujo de bits de codificación de vídeo de múltiples vistas (MVC).
 - Al menos un medio legible por máquina puede comprender una pluralidad de instrucciones que, en respuesta a ser ejecutadas en un dispositivo informático, hacen que el dispositivo informático reciba una transmisión de descripción de servicios de usuario (USD) que comprende una sección de descripción y una sección de correspondencia, y seleccione al menos un flujo de contenido de entre una pluralidad de flujos de contenido identificados usando la sección de correspondencia, donde cada uno de la pluralidad de flujos de contenido comprende un flujo de contenido de multidifusión asociado a una versión de contenido de multidifusión diferente disponible a través de un servicio de radiodifusión/multidifusión multimedia (MBMS) correspondiente, donde el al menos un flujo de contenido se selecciona de acuerdo con las propiedades especificadas en la sección de descripción.

25

30

35

40

- Dicho al menos un medio legible por máquina puede comprender instrucciones que, en respuesta a ser ejecutadas en un dispositivo informático, hacen que el dispositivo informático establezca una o más sesiones de distribución de archivos a través de transporte unidireccional (FLUTE) correspondientes al al menos un flujo de contenido seleccionado.
- Dicho al menos un medio legible por máquina puede comprender instrucciones que, en respuesta a ser ejecutadas en un dispositivo informático, hacen que el dispositivo informático reciba el al menos un flujo de contenido seleccionado usando la una o más sesiones FLUTE.
- Con respecto a dicho al menos un medio legible por máquina, cada uno de la pluralidad de flujos de contenido puede estar asociado a una capa de una pluralidad de capas en un flujo de codificación de vídeo escalable (SVC).
- Con respecto a dicho al menos un medio legible por máquina, cada uno de la pluralidad de flujos de contenido puede estar asociado a una vista de una pluralidad de vistas en un flujo de codificación de vídeo de múltiples vistas (SVC).
 - Con respecto a dicho al menos un medio legible por máquina, la pluralidad de flujos de contenido puede comprender una pluralidad de servicios MBMS de un grupo de servicios MBMS.
 - Dicho al menos un medio legible por máquina puede comprender instrucciones que, en respuesta a ser ejecutadas en un dispositivo informático, hacen que el dispositivo informático reciba el al menos un flujo de contenido seleccionado desde un servidor MBMS.
- Dicho al menos un medio legible por máquina puede comprender instrucciones que, en respuesta a ser ejecutadas en un dispositivo informático, hacen que el dispositivo informático renderice una versión de contenido de multidifusión correspondiente al al menos un flujo de contenido seleccionado.
- Un sistema puede comprender un procesador, un dispositivo de audio acoplado de manera comunicativa al procesador, un componente de comunicación dispuesto para ejecutarse mediante el procesador para recibir una transmisión de datos que comprende una sección de descripción y una sección de correspondencia, un componente de procesamiento de correspondencia para ejecutarse mediante el procesador para identificar una pluralidad de flujos de contenido de servicio de radiodifusión/multidifusión multimedia (MBMS) en función de la sección de correspondencia, donde cada uno de la pluralidad de flujos de contenido MBMS corresponde a una versión de una pluralidad de versiones de contenido, y un componente de selección dispuesto para ejecutarse mediante el

procesador para seleccionar al menos uno de la pluralidad de flujos de contenido MBMS para su procesamiento en función de las características identificadas en la sección de descripción.

- Con respecto a dicho sistema, el componente de selección puede estar dispuesto para ejecutarse mediante el procesador para seleccionar y recibir el al menos uno de la pluralidad de flujos de contenido MBMS en función de un formato o velocidad binaria subyacente de una versión de contenido a la que corresponde el al menos uno de la pluralidad de flujos de contenido MBMS, o en función de una calidad de canal o velocidad binaria efectiva asociadas a la transmisión del al menos uno de la pluralidad de flujos de contenido MBMS.
- Dicho sistema puede comprender un componente de adaptación dispuesto para ejecutarse mediante el procesador para conmutar de forma adaptativa a través de la pluralidad de flujos de contenido MBMS para la recepción y el procesamiento en función de las características identificadas en la sección de descripción.
- Con respecto a dicho sistema, el componente de comunicación puede estar dispuesto para ejecutarse mediante el procesador para establecer una pluralidad de sesiones de distribución de archivos a través de transporte unidireccional (FLUTE), donde cada una de la pluralidad de sesiones FLUTE corresponde a uno de la pluralidad de flujos de contenido MBMS, donde la sección de correspondencia comprende información que identifica, para cada uno de la pluralidad de flujos de contenido MBMS, una sesión correspondiente de la pluralidad de sesiones FLUTE.
- Con respecto a dicho sistema, el componente de comunicación puede estar dispuesto para ejecutarse mediante el procesador para recibir el al menos un flujo de contenido MBMS seleccionado en uno o más servicios MBMS correspondientes a las sesiones FLUTE determinadas.
- Con respecto a dicho sistema, la pluralidad de flujos de contenido MBMS puede estar comprendida dentro de un grupo de servicios MBMS.
 - Con respecto a dicho sistema, la sección de descripción puede comprender un archivo de descripción de presentación multimedia (MPD) en una transmisión de descripción de servicios de usuario (USD).
- 30 Dicho sistema puede comprender un cliente de transmisión continua dinámica adaptativa a través de protocolo de transferencia de hipertexto (DASH).

- Con respecto a dicho sistema, cada uno de la pluralidad de flujos de contenido MBMS puede corresponder a una capa de una pluralidad de capas en un flujo de bits de codificación de vídeo escalable (SVC).
- Con respecto a dicho sistema, cada uno de la pluralidad de flujos de contenido MBMS puede corresponder a una vista de una pluralidad de vistas en un flujo de bits de codificación de vídeo de múltiples vistas (MVC).
- Algunas formas de realización pueden describirse con la expresión "una forma de realización" junto con sus derivados. Estos términos significan que una propiedad, estructura o característica particular descrita en relación con la forma de realización está incluida en al menos una forma de realización. No todas las veces que aparece la expresión "en una forma de realización" en diversos lugares de la memoria descriptiva se hace referencia necesariamente a la misma forma de realización.
- Además, en la siguiente descripción y/o reivindicaciones pueden usarse los términos "acoplado" y/o "conectado", así como sus derivados. En formas de realización particulares, puede usarse el término "conectado" para indicar que dos o más elementos están en contacto físico y/o eléctrico directo entre sí. "Acoplado" puede significar que dos o más elementos están en contacto físico y/o eléctrico directo. Sin embargo, "acoplado" también puede significar que dos o más elementos pueden no estar en contacto directo entre sí pero, no obstante, seguir actuando conjuntamente y/o interaccionando entre sí. Por ejemplo, "acoplado" puede significar que dos o más elementos no hacen contacto entre sí pero están unidos entre sí indirectamente a través de otro elemento u elementos intermedios.
- Además, el término "y/o" puede significar "y", puede significar "o", puede significar "o exclusiva", puede significar "uno", puede significar "algunos, pero no todos", puede significar "ninguno" y/o puede significar "ambos", aunque el alcance de la materia objeto reivindicada no está limitado a este respecto. En la siguiente descripción y/o reivindicaciones pueden usarse los términos "comprender" e "incluir", así como sus derivados, siendo tales términos sinónimos.
- Cabe destacar que el resumen de la divulgación se proporciona para permitir que el lector comprenda rápidamente la naturaleza de la divulgación técnica. Se presenta con el entendimiento de que no se utilizará para interpretar o limitar el alcance o el significado de las reivindicaciones. Además, en la anterior descripción detallada, puede observarse que las diversas características están agrupadas en una única forma de realización con el objetivo de agilizar la divulgación. No debe interpretarse que este procedimiento de divulgación indica que las formas de realización reivindicadas requieren más características que las enumeradas de manera expresa en cada reivindicación. Por el contrario, como reflejan las siguientes reivindicaciones, la materia objeto inventiva radica en menos de todas las características de una sola forma de realización dada a conocer. Por tanto, las siguientes

reivindicaciones están incorporadas en la descripción detallada, donde cada reivindicación representa por sí misma una forma de realización independiente. En las reivindicaciones adjuntas, los términos "que incluye" y "en el/los que" se utilizan como equivalencias de los términos respectivos "que comprende" y "donde", respectivamente. Además, los términos "primero", "segundo", "tercero", etc., se utilizan simplemente como etiquetas, y no pretenden imponer requisitos numéricos en sus objetos.

5

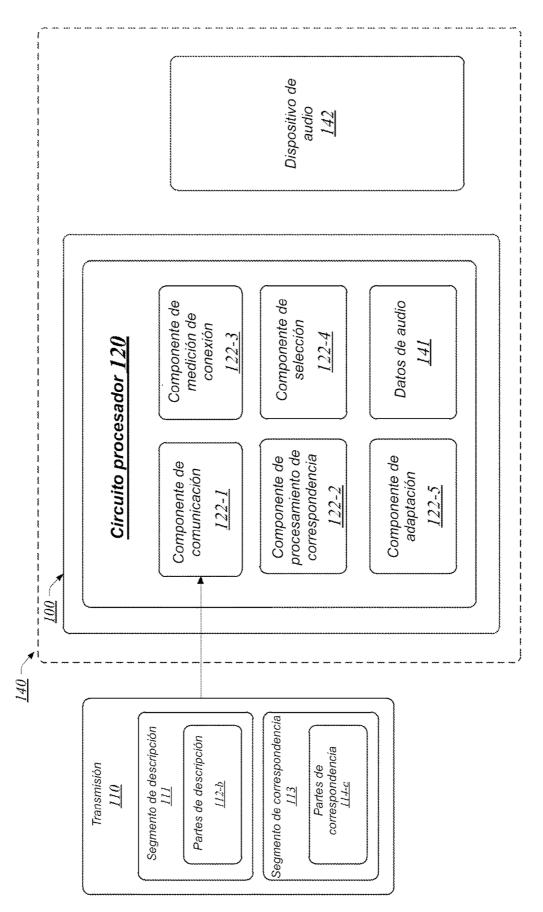
10

Lo descrito anteriormente incluye ejemplos de la arquitectura dada a conocer. Evidentemente, no es posible describir cada combinación concebible de componentes y/o metodologías, pero los expertos en la técnica pueden reconocer que muchas otras combinaciones y permutaciones son posibles. Por consiguiente, la arquitectura novedosa pretende abarcar todas estas alteraciones, modificaciones y variaciones que estén dentro del alcance de las reivindicaciones adjuntas.

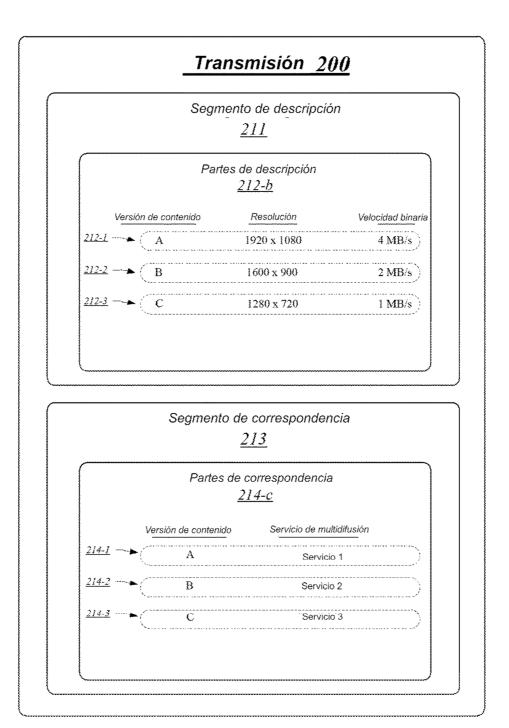
REIVINDICACIONES

1. Equipo de usuario, UE (700), que comprende:

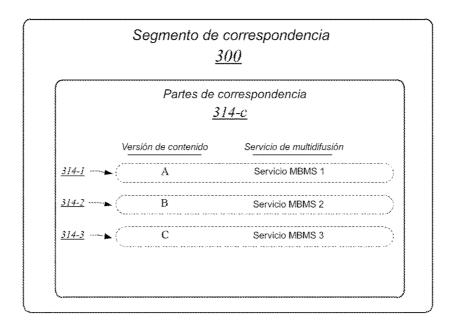
10

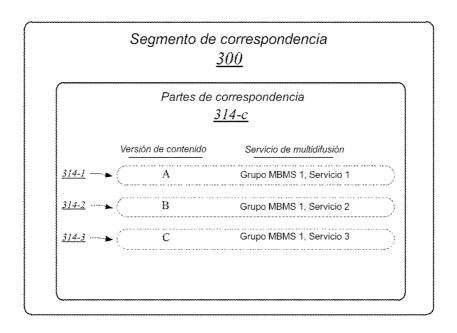

15

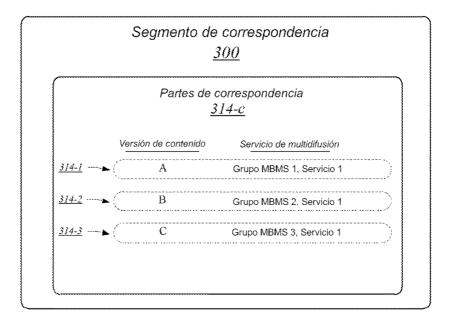
20

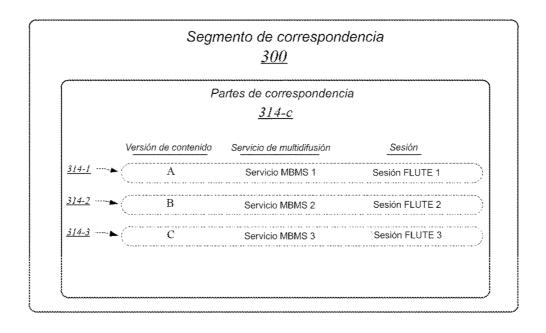

25

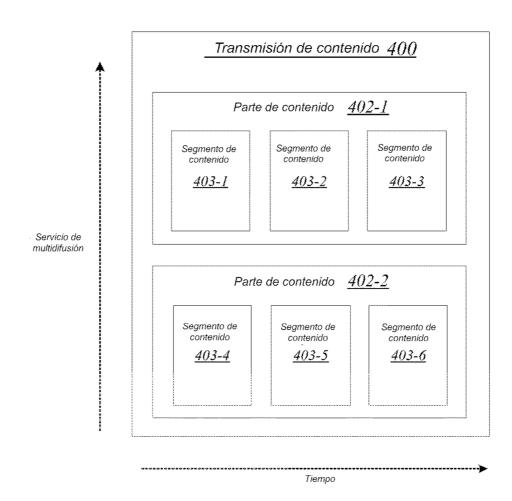
45


- una radio (710) dispuesta para recibir una transmisión de multidifusión que comprende una descripción de servicio de usuario, USD, de un protocolo de servicio de radiodifusión/multidifusión multimedia, MBMS, donde la transmisión de multidifusión comprende una sección de descripción (211) y una sección de correspondencia (213); y
 - un circuito procesador (120) dispuesto para identificar un grupo de flujos de contenido de multidifusión que comprende flujos de contenido de multidifusión en función de la sección de correspondencia (213), donde cada uno de la pluralidad de flujos de contenido de multidifusión corresponde a una versión de una pluralidad de versiones de contenido, y seleccionar uno de los flujos de contenido de multidifusión a procesar en función de las características identificadas en la sección de descripción (211), donde el flujo de contenido de multidifusión se selecciona en función de una velocidad binaria subyacente de una versión de contenido a la que corresponde el flujo de contenido de multidifusión, o en función de una calidad de canal o velocidad binaria efectiva asociadas a la transmisión del flujo de contenido de multidifusión;
 - la radio (710) está dispuesta además para establecer una pluralidad de sesiones de distribución de archivos a través de transporte unidireccional, FLUTE, donde cada una de la pluralidad de sesiones FLUTE corresponde a uno de los flujos de contenido de multidifusión y la sección de correspondencia está dispuesta para comprender información que identifica, para cada flujo de contenido de multidifusión y servicio MBMS correspondiente, una sesión FLUTE correspondiente.
 - 2. El UE (700) según la reivindicación 1, en el que el circuito procesador (120) renderiza y reproduce contenido multimedia de uno de los flujos de contenido de multidifusión.
 - 3. El UE (700) según cualquiera de las reivindicaciones 1 a 2, en el que el circuito procesador (120) conmuta de forma adaptativa a través de un conjunto de flujos de contenido de multidifusión para recibir y procesar uno de los flujos de contenido de multidifusión en función de las características identificadas en la sección de descripción (211).
- 4. El UE (700) según cualquiera de las reivindicaciones 1 a 3, en el que cada uno de los flujos de contenido de multidifusión comprende un servicio de radiodifusión/multidifusión multimedia, MBMS, donde el grupo de flujos de contenido de multidifusión comprende un grupo de servicios MBMS.
- 5. El UE (700) según la reivindicación 4, en el que cada flujo de contenido de multidifusión y servicio MBMS corresponden a una capa en un flujo de bits de codificación de vídeo escalable, SVC.
 - 6. El UE (700) según la reivindicación 4, en el que cada flujo de contenido de multidifusión y servicio MBMS corresponden a una vista en un flujo de bits de codificación de vídeo de múltiples vistas, MVC.
- 40 7. El UE (700) según cualquiera de las reivindicaciones 1 a 6, que comprende un cliente de transmisión continua dinámica adaptativa a través de protocolo de transferencia de hipertexto, DASH.
 - 8. El UE (700) según cualquiera de las reivindicaciones 1 a 7, en el que la transmisión de multidifusión comprende una transmisión de descripción de servicios de usuario, USD, para representar la sección de correspondencia.
 - El UE (700) según la reivindicación 8, en el que la sección de descripción (211) comprende un archivo de metadatos de descripción de presentación de medios, MPD, en la transmisión USD.
- 10. El UE (700) según cualquiera de las reivindicaciones 1 a 9, en el que la radio (710) está dispuesta para recibir uno de los flujos de contenido de multidifusión desde un dispositivo de origen de contenido de multidifusión.
 - 11. El UE (700) según cualquiera de las reivindicaciones 1 a 10, en el que el circuito procesador (120) determina una sesión FLUTE correspondiente a un servicio MBMS que comprende el flujo de contenido de multidifusión seleccionado.
 - 12. El UE (700) según la reivindicación 11, en el que la radio (710) recibe el flujo de contenido de multidifusión seleccionado en el servicio MBMS correspondiente a la sesión FLUTE determinada.
- 13. El UE (700) según cualquiera de las reivindicaciones 1 a 12, que comprende una o más antenas de radiofrecuencia, RF.


FIG


FIG. 3A


FIG. 3B



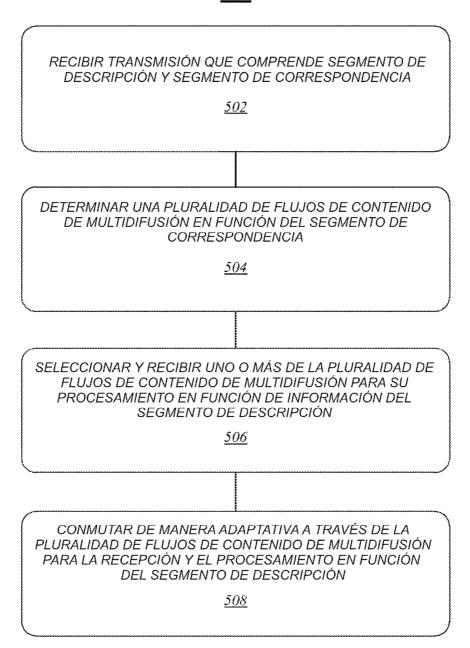

FIG. 3C

FIG. 3D

Instrucciones ejecutables por ordenador para 500

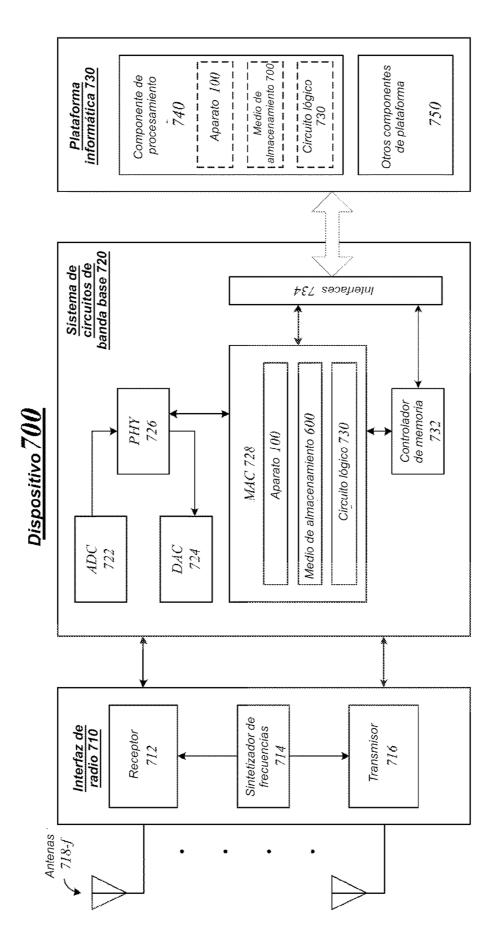
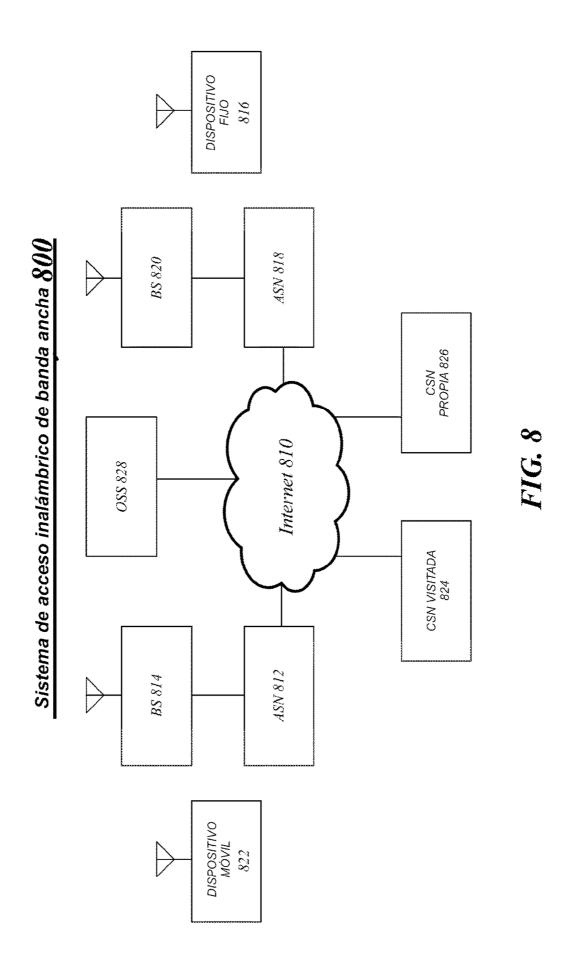



FIG. 7

