

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 747 048

51 Int. Cl.:

F24F 1/06 (2011.01) **F24F 1/68** (2011.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 27.02.2014 PCT/US2014/018832

(87) Fecha y número de publicación internacional: 25.09.2014 WO14149482

96 Fecha de presentación y número de la solicitud europea: 27.02.2014 E 14709518 (6)

(97) Fecha y número de publicación de la concesión europea: 14.08.2019 EP 2971982

(54) Título: Bobina modular para enfriadores enfriados por aire

(30) Prioridad:

15.03.2013 US 201361788516 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **09.03.2020**

(73) Titular/es:

CARRIER CORPORATION (100.0%) 1 Carrier Place Farmington, CT 06034, US

(72) Inventor/es:

RUSSO, JACKIE S. y TETU, LEE G.

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Bobina modular para enfriadores enfriados por aire

5 ANTECEDENTES DE LA INVENCIÓN

15

55

60

La invención se refiere en general a sistemas de acondicionamiento de aire y, más particularmente, a una disposición de bobina de condensador modular para un condensador de un sistema de acondicionamiento de aire.

- En un sistema de acondicionamiento de aire convencional, el condensador del circuito de refrigeración está ubicado en el exterior de un edificio. Típicamente, el condensador incluye una bobina de condensación, un ventilador para hacer circular un medio de refrigeración por la bobina de condensación. El sistema de acondicionamiento de aire incluye además una unidad interior que tiene un evaporador para transferir la energía térmica al aire interior a acondicionar.
- Los condensadores enfriados por aire, incluidos los enfriadores enfriados por aire y las unidades de azotea, se utilizan a menudo para aplicaciones que requieren refrigeración y calefacción de gran capacidad. Debido a que se necesitan mayores superficies de la bobina del condensador para la funcionalidad del sistema, el condensador generalmente incluye una pluralidad de unidades de condensador. Cada una de estas unidades de condensador incluye una bobina de intercambiador de calor dispuesta generalmente lateralmente dentro de un alojamiento de condensador de tal manera que las unidades pueden apilarse para alojar una longitud máxima de intercambiador de calor de microcanal. Varios ventiladores están ubicados en la parte superior del alojamiento de condensador para cada unidad.
- Por ejemplo, en las disposiciones de bobina en forma de V laterales, el aire entra a través de cada lado del alojamiento de condensador, realiza un giro brusco de 90 grados, pasa a través de una de las patas de la V, gira de nuevo, y sale en una dirección ascendente. Esto da como resultado una distribución de aire desigual y una velocidad frontal variable a través de la bobina de condensador. Pueden causarse desuniformidades e ineficiencias adicionales durante el funcionamiento de un solo ventilador. La disposición de bobina en forma de V lateral no permite el funcionamiento de un ventilador/una bobina y el cortocircuito de un ventilador a otro puede convertirse en un problema. Las disposiciones de condensador convencionales tienen problemas inherentes, incluyendo también problemas relacionados con el drenaje de agua y las aplicaciones de bomba de calor.
- El documento WO 2011 099629 A1 describe una unidad de refrigeración que comprende un alojamiento donde una unidad de intercambio de calor dotada de un intercambiador de calor de aire se monta en la parte superior del alojamiento.

BREVE DESCRIPCIÓN DE LA INVENCIÓN

- De acuerdo con un aspecto de la invención, se proporciona un módulo de condensador configurado para su uso en un condensador, que incluye un alojamiento que tiene un primer lado longitudinal que define una primera entrada de aire y un segundo lado longitudinal opuesto que define una segunda entrada de aire. Un conjunto de intercambiador de calor está situado en el alojamiento. El conjunto de intercambiador de calor incluye al menos una bobina de intercambiador de calor. Una sección transversal del conjunto de intercambiador de calor es generalmente constante entre un lado frontal del alojamiento y un lado trasero opuesto del alojamiento. Un conjunto de ventilador incluye al menos un ventilador generalmente alineado con una sola bobina de intercambiador de calor en el conjunto de intercambiador de calor. El conjunto de intercambiador de calor. El conjunto de ventilador está dispuesto en una configuración de aspirado. El conjunto de ventilador incluye un primer ventilador generalmente alineado con la primera bobina de intercambiador de calor y un segundo ventilador generalmente alineado con la segunda bobina de intercambiador de calor.
 - De acuerdo otro aspecto más de la invención, se proporciona un condensador que incluye una pluralidad de módulos de condensador y un bastidor configurado para recibir la pluralidad de módulos de condensador. Cada módulo de condensador incluye un alojamiento que tiene un primer lado longitudinal que define una primera entrada de aire y un segundo lado longitudinal opuesto que define una segunda entrada de aire. Un conjunto de intercambiador de calor está situado en el alojamiento. El conjunto de intercambiador de calor incluye al menos una bobina de intercambiador de calor. Una sección transversal del conjunto de intercambiador de calor es generalmente constante entre un lado frontal del alojamiento y un lado trasero opuesto del alojamiento. Un conjunto de ventilador incluye al menos un ventilador generalmente alineado con una sola bobina de intercambiador de calor en el conjunto de intercambiador de calor. La pluralidad de módulos de condensador se apila en el bastidor, de tal forma que al menos una de la superficie frontal y la superficie trasera de cada módulo de condensador esté dispuesta adyacente a la superficie frontal o la superficie trasera de otro módulo de condensador.
- Estas y otras ventajas y características se harán más evidentes a partir de la siguiente descripción tomada junto con los dibujos.

BREVE DESCRIPCIÓN DEL DIBUJO

10

35

40

45

50

55

60

65

La materia, que se considera como la invención, se señala particularmente y se reivindica claramente en las reivindicaciones en la conclusión de la memoria descriptiva. Lo anterior y otras características y ventajas de la invención son evidentes a partir de la siguiente descripción detallada tomada junto con los dibujos adjuntos, en los que:

La Figura 1 es un diagrama esquemático de un ciclo de compresión de vapor de un sistema de acondicionamiento de aire;

la Figura 2 es una vista en perspectiva de un condensador de acuerdo con una realización de la invención;

la Figura 3 es una vista lateral de un condensador de acuerdo con una realización de la invención;

la Figura 4 es una vista frontal de un módulo de condensador de acuerdo con una realización de la invención;

la Figura 5 es una porción de un módulo de condensador de acuerdo con una realización de la invención;

la Figura 6 es una vista en perspectiva de un condensador de acuerdo con una realización de la invención; y la Figura 7 es una vista en perspectiva de un condensador de acuerdo con otra realización de la invención.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN

Con referencia ahora a la Figura 1, se ilustra esquemáticamente un ciclo convencional de compresión de vapor o refrigeración 10 de un sistema de acondicionamiento de aire. Los sistemas de acondicionamiento de aire ejemplares incluyen sistemas *split*, compactos y de azotea, por ejemplo. Un refrigerante R está configurado para circular a través del ciclo de compresión de vapor 10, de tal forma que el refrigerante R absorbe el calor cuando se evapora a baja temperatura y presión y libera calor cuando se condensa a una mayor temperatura y presión. Dentro de este ciclo 10, el refrigerante R fluye en sentido antihorario como se indica por las flechas. El compresor 12 recibe vapor de refrigerante del evaporador 18 y lo comprime a una temperatura y presión más altas, y el vapor relativamente caliente pasa entonces al condensador 14 donde se enfría y se condensa a un estado líquido por una relación de intercambio de calor con un medio de enfriamiento, tal como aire o agua. El refrigerante líquido R pasa entonces del condensador 14 a una válvula de expansión 16, donde el refrigerante R se expande a un estado bifásico líquido/vapor de baja temperatura a medida que pasa al evaporador 18. El vapor de baja presión regresa entonces al compresor 12 donde el ciclo se repite.

Con referencia ahora a las Figuras 2 y 3, un condensador enfriado por aire 14, tal como se usa en el ciclo de compresión de vapor 10 de la Figura 1, se ilustra con más detalle. El condensador 14 incluye uno o más módulos de condensador idénticos 22 colocados dentro de un bastidor 20, tal como el tipo de bastidor 20 que se encuentra normalmente en las azoteas de los edificios, por ejemplo. Puede instalarse cualquier número de módulos de condensador 22 en el bastidor 20 para formar un condensador 14 configurado para cumplir con los requisitos de capacidad y refrigeración para una aplicación determinada. Haciendo referencia ahora al módulo de condensador ejemplar 22 ilustrado en la Figura 4, el módulo de condensador 22 incluye un alojamiento o gabinete 24 configurado para recibirse dentro del bastidor 20. Los lados longitudinales opuestos 26, 28 del alojamiento 24 definen cada uno una entrada para que el aire fluya hacia el módulo 22. De manera similar, un primer extremo 30 del alojamiento 24, conectado a ambos lados longitudinales opuestos 26, 28, define una abertura de salida para que el aire salga del módulo de condensador 22. En una realización, cuando los módulos de condensador 22 se colocan dentro del bastidor 20, al menos una de una superficie frontal opuesta 32 y una superficie trasera 34 del alojamiento 24 se dispone adyacente a una superficie frontal 32 o una superficie trasera 34 del alojamiento 24 de otro módulo de condensador 22 (véase la Figura 3) de tal forma que la pluralidad de módulos de condensador 22 se apilan generalmente de forma longitudinal dentro del bastidor 20.

En el interior del aloiamiento 24 de cada módulo de condensador 22 se encuentra un conjunto de intercambiador de calor 32 dispuesto entre los lados longitudinales opuestos 26, 28. La sección transversal del conjunto de intercambiador de calor 32 es generalmente constante a lo largo de una longitud del módulo de condensador 22, tal como entre la superficie frontal 32 y la superficie trasera 34, por ejemplo. El conjunto de intercambiador de calor 32 incluye al menos una bobina de intercambiador de calor 34, por ejemplo, una bobina de intercambiador de calor de microcanal, a través de la cual fluye el refrigerante R. La pluralidad de bobinas de intercambiador de calor 34 del conjunto de intercambiador de calor 32 pueden disponerse, pero no es necesario, separadas, generalmente de forma simétrica o equidistante, d un centro del módulo de condensador 22 entre los lados longitudinales opuestos 26, 28, como se ilustra esquemáticamente por la línea C. En la realización ilustrativa, no limitativa, el conjunto de intercambiador de calor 32 incluye una primera bobina de intercambiador de calor 34' montada en el primer lado longitudinal 26 del alojamiento 24 y una segunda bobina de intercambiador de calor 34" montada en el segundo lado longitudinal 28 del alojamiento 24. La primera bobina de intercambiador de calor 34' y la segunda bobina de intercambiador de calor 34" pueden, pero no necesitan ser, sustancialmente idénticas. La pluralidad de bobinas de intercambiador de calor 34 puede disponerse dentro del alojamiento 24 de manera que el conjunto de intercambiador de calor 32 tenga una configuración generalmente en forma de V, como se conoce en la técnica. Configuraciones alternativas del conjunto de intercambiador de calor 32, tales como la configuración generalmente en forma de U ilustrada en la Figura 2, una configuración en forma de A, una configuración generalmente horizontal, o cualquiera de las configuraciones ilustradas en las Figuras 6 y 7, por ejemplo, también están dentro del alcance de

ES 2 747 048 T3

la invención. En una realización, el conjunto de intercambiador de calor 32 puede incluir un intercambiador de calor con aletas, de tubos aplanados, de banco múltiple, que tiene múltiples bancos de tubos dispuestos generalmente aguas abajo entre sí con respecto a un flujo de aire.

- El módulo de condensador 22 incluye adicionalmente un conjunto de ventilador 40 configurado para hacer circular aire a través del alojamiento 24 y el conjunto de intercambiador de calor 32. El aire que fluye a través del módulo de condensador 22 puede descargarse a un conducto de aire (no mostrado), o como alternativa, puede aspirar aire directamente desde una fuente externa a través de una sección de tipo de conducto, es decir, paneles de absorción de sonido, por ejemplo. Dependiendo de las características del módulo de condensador 22, el conjunto de ventilador 40 puede colocarse aguas abajo con respecto al conjunto de intercambiador de calor 32 (es decir, "configuración de aspirado") como se muestra en las Figuras, o aguas arriba con respecto al conjunto de intercambiador de calor 32 (es decir, "configuración de soplado").
- En una realización, el conjunto de ventilador 40 está montado en el primer extremo 30 del alojamiento 24 en una configuración de aspirado. El conjunto de ventilador 40 generalmente incluye al menos un ventilador 42 configurado para aspirar aire a través de cada una de las respectivas bobinas de intercambiador de calor 34 en el conjunto de intercambiador de calor 32. En una realización, la pluralidad de ventiladores 42 en el conjunto de ventilador 40 es sustancialmente igual a la pluralidad de las bobinas de intercambiador de calor 34 en el conjunto de intercambiador de calor 32. Además, el al menos un ventilador 42 configurado para aspirar aire a través de una respectiva bobina de intercambiador de calor 34 está generalmente alineado en vertical con esa bobina 34. Por ejemplo, en realizaciones donde el conjunto de intercambiador de calor 32 incluye una primera bobina de intercambiador de calor 34' y una segunda bobina de intercambiador de calor 34'', al menos un primer ventilador 42' está generalmente alineado con la primera bobina de intercambiador de calor 34'' y al menos un segundo ventilador 42'' está generalmente alineado con la segunda bobina de intercambiador de calor 34''.

25

30

35

50

- En una realización, un divisor (no mostrado), tal como se forma a partir de una pieza de chapa metálica, por ejemplo, se extiende hacia el interior desde el primer extremo 30 del alojamiento 24 a lo largo de la línea central C. El divisor se puede usar para separar el módulo de condensador 22 que incluye el conjunto de intercambiador de calor 32 y el conjunto de ventilador 40 en una pluralidad de porciones modulares generalmente idénticas, tales como una primera porción 46 y una segunda porción 48, por ejemplo.
- El funcionamiento del al menos un ventilador 42 asociado con al menos una bobina de intercambiador de calor 34 en la primera o la segunda porción modular 46, 48 del módulo de condensador 22 hace que el aire fluya a través de una entrada de aire adyacente y hacia el alojamiento 24. A medida que el aire pasa sobre la bobina de intercambiador de calor 34, el calor se transfiere desde el refrigerante R en el interior de la bobina 34 al aire, haciendo que la temperatura del aire aumente.
- Al disponer el conjunto de intercambiador de calor 32 generalmente de forma longitudinal entre los lados longitudinales opuestos 26, 28 del alojamiento 24, el número de giros en la trayectoria de flujo de aire que entra en el alojamiento 24 se reduce a un solo giro. Esta nueva orientación del conjunto de intercambiador de calor 32 también permite un mejor escurrimiento, lo que reduce la probabilidad de corrosión y permite la condensación evaporativa. Además, la inclusión de porciones generalmente modulares 46, 48 dentro de cada módulo de condensador 22 proporciona una reducción significativa en las pérdidas del sistema en el módulo 22, así como en la potencia requerida del ventilador. Debido a que la velocidad del aire a través del alojamiento 24 es más uniforme, se mejora la capacidad de transferencia de calor del módulo de condensador 22.
 - Aunque la invención se ha descrito en detalle en relación con solo un número limitado de realizaciones, debe entenderse fácilmente que la invención no está limitada a dichas realizaciones descritas. Adicionalmente, aunque se han descrito diversas realizaciones de la invención, debe entenderse que los aspectos de la invención pueden incluir solamente algunas de las realizaciones descritas. Por consiguiente, la invención no debe verse limitada por la descripción anterior, sino que está limitada únicamente por el alcance de las reivindicaciones adjuntas.

REIVINDICACIONES

- 1. Un módulo de condensador (22) configurado para su uso en un condensador que comprende:
- un alojamiento (24) que tiene un primer lado longitudinal (26) y un segundo lado longitudinal opuesto (28) configurado para definir al menos una primera entrada de aire;

un conjunto de intercambiador de calor (32) situado dentro del alojamiento, incluyendo al menos una bobina de intercambiador de calor (34), donde una sección transversal del conjunto de intercambiador de calor es generalmente constante entre un lado frontal del alojamiento y un lado trasero opuesto del alojamiento, y al menos una de la superficie frontal y la superficie posterior está configurada para apoyarse en un módulo de condensador adyacente (22); y

un conjunto de ventilador (40) que incluye al menos un ventilador (42) generalmente alineado con una única bobina de intercambiador de calor en el conjunto de intercambiador de calor;

- donde el conjunto de intercambiador de calor incluye una primera bobina de intercambiador de calor (34') y una segunda bobina de intercambiador de calor (34"); y
- donde el conjunto de ventilador está dispuesto en una configuración de aspirado;
- caracterizado porque el conjunto de ventilador incluye un primer ventilador (42') generalmente alineado con la primera bobina de intercambiador de calor y un segundo ventilador (42") generalmente alineado con la segunda bobina de intercambiador de calor.
- 2. El módulo de condensador (22) de acuerdo con la reivindicación 1, donde al menos una de la primera bobina de intercambiador de calor (34') y la segunda bobina de intercambiador de calor (34") es una bobina de intercambiador de calor de microcanal.
- 25 3. El módulo condensador (22) de acuerdo con la reivindicación 1, donde la primera bobina de intercambiador de calor (34") está montada en la primera pared lateral longitudinal (26) y la segunda bobina de intercambiador de calor (34") está montada en la segunda pared lateral longitudinal (28).
- 4. El módulo de condensador (22) de acuerdo con la reivindicación 1, donde el conjunto de ventilador (40) está montado en una superficie superior del alojamiento (24).
 - 5. El módulo de condensador (22) de acuerdo con la reivindicación 1, donde un divisor está configurado para separar el módulo de condensador en una primera porción modular (46) y una segunda porción modular (48).
- 35 6. El módulo de condensador (22) de acuerdo con la reivindicación 1, donde el conjunto de intercambiador de calor (32) incluye una de una configuración en forma de V, una configuración en forma de A, una configuración en forma de U, y una configuración sustancialmente horizontal.
 - 7. Un condensador (14) que comprende:

10

15

20

40

50

- un bastidor (20) configurado para recibir una pluralidad de módulos de condensador;
 - una pluralidad de módulos de condensador (22), cada uno construido de acuerdo con cualquier reivindicación anterior;
- donde la pluralidad de módulos de condensador se apila generalmente de manera longitudinal en el bastidor, de tal forma que al menos una de la superficie frontal y la superficie trasera de cada módulo de condensador esté dispuesta adyacente a la superficie frontal o la superficie trasera de otro módulo de condensador.
 - 8. El condensador (14) de acuerdo con la reivindicación 7, donde en la pluralidad de módulos de condensador (22) estos son sustancialmente idénticos.
 - 9. El condensador (14) de acuerdo con la reivindicación 7, donde un divisor se extiende a lo largo de la línea central entre el primer lado longitudinal y el segundo lado longitudinal para crear una primera porción modular (46) y una segunda porción modular (48).
- 55 10. El condensador (14) de acuerdo con la reivindicación 9, donde la primera porción modular (46) y la segunda porción modular (48) son sustancialmente idénticas.

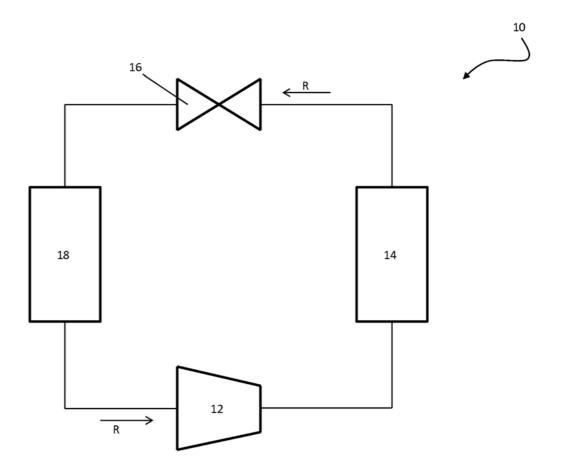


FIG. 1

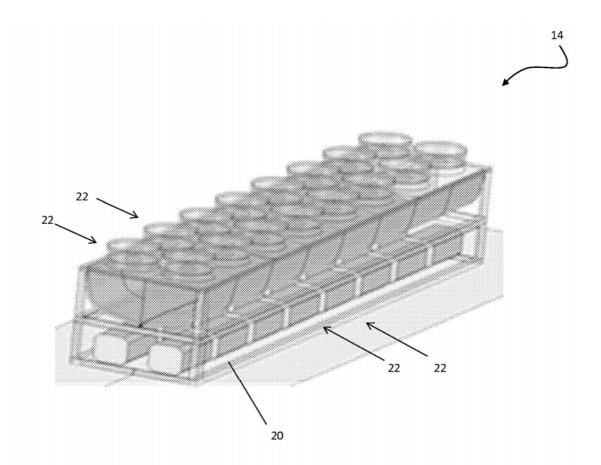


FIG. 2

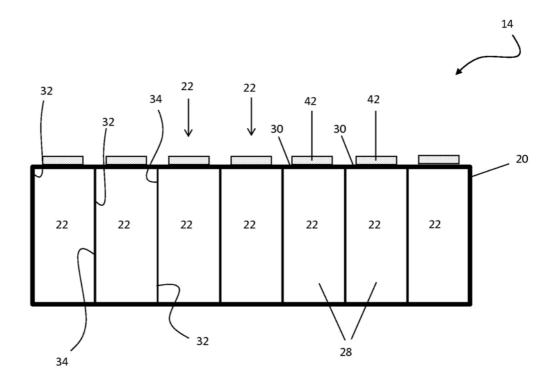


FIG. 3

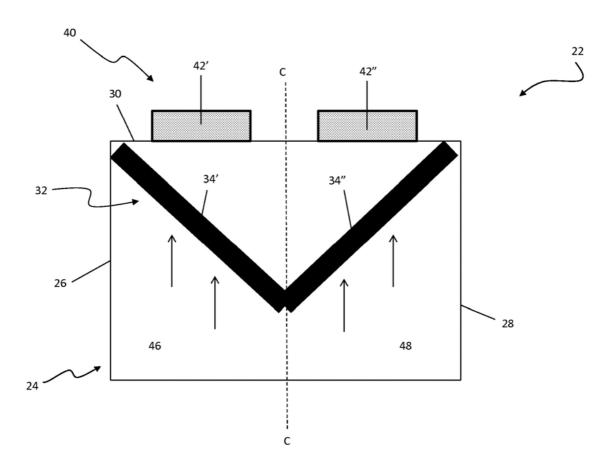


FIG. 4

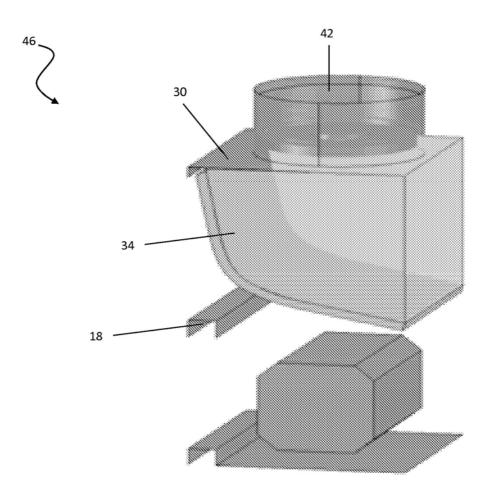
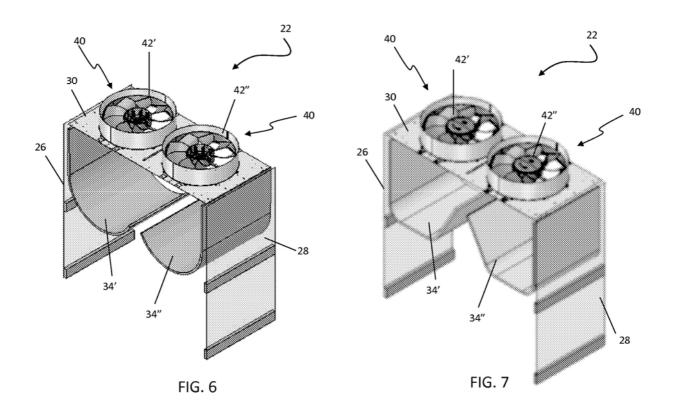



FIG. 5

