



OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA



11) Número de publicación: 2 747 815

(51) Int. CI.:

C07K 14/755 (2006.01) A61K 38/36 (2006.01) A61K 38/37 (2006.01) A61P 7/04 (2006.01)

(12)

### TRADUCCIÓN DE PATENTE EUROPEA

T3

08.06.2015 PCT/EP2015/062730 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 10.12.2015 WO15185758

(96) Fecha de presentación y número de la solicitud europea: 08.06.2015 E 15732554 (9) 07.08.2019

(54) Título: Preparación que comprende péptidos de factor VIII y factor von Willebrand

(30) Prioridad:

06.06.2014 EP 14171579

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 11.03.2020

(97) Fecha y número de publicación de la concesión europea:

(73) Titular/es:

**OCTAPHARMA AG (100.0%)** Seidenstrasse 2 8853 Lachen, CH

EP 3152230

(72) Inventor/es:

KANNICHT, CHRISTOPH; SOLECKA, BARBARA; KOHLA, GUIDO y WINGE, STEFAN

(74) Agente/Representante:

ROEB DÍAZ-ÁLVAREZ, María

#### **DESCRIPCIÓN**

Preparación que comprende péptidos de factor VIII y factor von Willebrand

5 La presente invención se refiere a preparaciones farmacéuticas para tratar trastornos hemorrágicos.

#### Antecedentes de la invención

El factor VIII («FVIII») es una glicoproteína del plasma sanguíneo de aproximadamente 280 kDa de masa molecular.

10 Está involucrado en la cascada de reacciones de coagulación que conducen a la coagulación sanguínea. El trastorno hemorrágico más común es causado por una deficiencia del factor VIII funcional, llamado hemofilia A. Se trata con el reemplazo del factor VIII, ya sea derivado del plasma o recombinante. El factor VIII se usa para el tratamiento agudo y profiláctico de las hemorragias en pacientes con hemofilia A.

15 La secuencia de aminoácidos del factor VIII está organizada en tres dominios estructurales: un dominio A triplicado de 330 aminoácidos, un dominio B simple de 980 aminoácidos y un dominio C duplicado de 150 aminoácidos. El dominio B no tiene homología con otras proteínas y proporciona 18 de los 25 sitios potenciales de glicosilación unidos a asparagina (N) de esta proteína. El dominio B aparentemente no tiene función en la coagulación. Las moléculas del factor VIII con dominio B eliminado tienen actividad procoagulante sin cambios en comparación con el factor VIII de longitud completa. Algunas preparaciones de factor VIII recombinante (rFVIII) tienen un dominio B eliminado.

En plasma, el factor VIII se estabiliza mediante asociación con la proteína del factor Von Willebrand («vWF»), que parece inhibir la eliminación del factor VIII, por ejemplo, por proteólisis o aclaramiento mediado por receptor a través del receptor de LRP. En circulación, el factor von Willebrand está presente en un exceso molar de 50 veces con 25 respecto al factor VIII en condiciones fisiológicas normales.

El factor von Willebrand es una glicoproteína adhesiva multimérica presente en el plasma de los mamíferos, que tiene múltiples funciones fisiológicas. Durante la hemostasia primaria, el factor von Willebrand actúa como un mediador entre los receptores específicos en la superficie de las plaquetas y los componentes de la matriz extracelular, como el colágeno. Además, el factor von Willebrand sirve como portador y proteína estabilizante para el factor VIII procoagulante. El factor von Willebrand se sintetiza en células endoteliales y megacariocitos como una molécula precursora de 2813 aminoácidos. El polipéptido precursor, factor pre-pro- von Willebrand, consiste en un péptido señal de 22 residuos, un pro-péptido de 741 residuos y el polipéptido de 2050 residuos que se encuentra en el factor von Willebrand en plasma maduro (Fischer y col., FEBS Lett. 351: 345-348, 1994). Tras la secreción en plasma, el factor von Willebrand circula en forma de varias especies con diferentes tamaños moleculares. Estas moléculas del factor von Willebrand consisten en oligómeros y multímeros de la subunidad madura de 2050 residuos de aminoácidos. El factor von Willebrand se puede encontrar generalmente en plasma como multímeros que varían en tamaño aproximadamente de 500 a 20.000 kDa (Furlan, Ann Hematol. junio de 1996; 72(6): 341-8).

40 La vida media *in vivo* promedio del factor VIII humano en la circulación humana es de aproximadamente 12 horas. El factor von Willebrand podría disminuir las posibles inmunorreacciones contra el factor VIII cuando está en complejo con el factor VIII al proteger el FVIII de los sitios de anticuerpos inhibidores potenciales conocidos en la cadena pesada (dominio A2) y la cadena ligera (dominio A3 / C2) (Ragni, J Thromb. Haemost. 10: 2324-2327, 2012) o en otros sitios potenciales inhibidores de anticuerpos en la molécula del factor VIII.

Otro trastorno hemorrágico en humanos es la enfermedad de von Willebrand (vWD). Dependiendo de la gravedad de los síntomas hemorrágicos, la vWD puede tratarse mediante terapia de reemplazo con concentrados que contengan el factor von Willebrand, en general derivado del plasma, aunque el factor von Willebrand recombinante también está en desarrollo. Se sabe que el factor von Willebrand estabiliza el factor VIII in vivo y, por lo tanto, juega un papel crucial para regular los niveles plasmáticos de factor VIII y, como consecuencia, es un factor central para controlar la hemostasia primaria y secundaria.

Hasta hoy, el tratamiento estándar de la hemofilia A y la vWD implica infusiones intravenosas frecuentes de preparaciones de concentrados de fctor VIII y factor VIII / factor von Willebrand. Estas terapias de reemplazo son generalmente efectivas, sin embargo, por ejemplo, en pacientes con hemofilia A severa que reciben tratamiento profiláctico, el factor VIII debe administrarse por vía intravenosa (i.v.) aproximadamente 3 veces por semana debido a la corta vida media plasmática del factor VIII de aproximadamente 12 horas. Al alcanzar niveles de factor VIII superiores al 1 % del plasma humano normal correspondiente a un aumento de los niveles de factor VIII en 0,01 U / ml, la hemofilia A grave se convierte en hemofilia A moderada. En la terapia profiláctica, el régimen de dosificación está 60 diseñado de tal manera que los niveles de la actividad del factor VIII no caen por debajo de los niveles del 2 - 3 % de la actividad del factor VIII de los no hemofílicos.

La administración de un factor VIII a través de la administración intravenosa (i.v.) es engorrosa, asociada con dolor y conlleva el riesgo de una infección, especialmente porque esto se hace principalmente en el tratamiento domiciliario por los propios pacientes o por los padres de los niños diagnosticados con hemofilia A. Además, las inyecciones intravenosas frecuentes provocan inevitablemente la formación de cicatrices, lo que interfiere con las infusiones futuras. Aún así, el tratamiento por vía intravenosa puede ser necesario en una situación de emergencia o cirugía, es decir, cuando se necesita un alto nivel de factor VIII de inmediato.

Se ha propuesto la administración subcutánea (a.s.) para el factor VIII, por ejemplo, en el documento WO 95/01804 A1 y el documento WO 95/026750 A1. Sin embargo, se tuvieron que administrar dosis muy altas de factor VIII para lograr una biodisponibilidad aceptable.

Otro enfoque para mejorar la biodisponibilidad tras la administración no intravenosa ha sido usar factor VIII fusionado con albúmina (documento WO 2011/020866 A2).

15 El documento WO 2013/057167 A1 propone administrar el factor VIII en combinación con glucosaminoglucanos sulfatados por administración no intravenosa, opcionalmente junto con el factor von Willebrand.

El documento WO 2008/151817 A1 describe el uso general de multímeros de factor von Willebrand sin escindir para la estabilización de factor VIII, derivado de plasma o recombinante (mutantes de supresión y longitud completa) 20 destinados al tratamiento extravascular.

El documento WO 2013/160005 A1 y el documento WO 2013/083858 A1 describen el uso general del factor von Willebrand recombinante o fragmentos de factor von Willebrand recombinante para mejorar la biodisponibilidad después del tratamiento de administración subcutánea para moléculas de factor VIII muy específicas, donde dichas moléculas de factor VIII comprenden un dominio B truncado con un tamaño de 100 - 400 aminoácidos. De acuerdo con el documento WO 2013/160005, las moléculas de factor VIII A1 con dominios B truncados entre 100 y 400 aminoácidos tienen una mayor biodisponibilidad de factor VIII en comparación con el factor VIII que tiene el dominio B completo o moléculas de factor VIII truncado del dominio B que no tienen o tienen solo unos pocos aminoácidos.

30 Todavía existe la necesidad de preparaciones de factor VIII que muestren una biodisponibilidad mejorada, estabilidad y / o menor riesgo de generación de anticuerpos, evitando así los inconvenientes de la técnica anterior.

Es el objeto de la presente invención proporcionar preparaciones alternativas de factor VIII. Preferentemente, estas preparaciones deberían mostrar una estabilidad mejorada, una biodisponibilidad mejorada y / o un riesgo reducido de reacciones inmunológicas.

En una realización, este objeto se logra mediante una composición que comprende un complejo de factor VIII y un péptido de factor von Willebrand, donde el péptido de factor von Willebrand consiste en los aminoácidos 764 a 2128 de la SEQ ID NO: 1.

De acuerdo con la presente invención, se proporciona una preparación de factor VIII que comprende un péptido de factor von Willebrand. El factor VIII forma un complejo con los péptidos del factor von Willebrand.

40

El factor VIII como se usa en el presente documento abarca el factor VIII de longitud completa, el factor VIII con dominio B eliminado o un factor VIII en el que el dominio B ha sido reemplazado por un enlazador artificial o un fragmento del dominio B natural o una combinación de ambos, es decir, el dominio B tiene un tamaño diferente en comparación con el factor VIII de longitud completa. También abarca el factor VIII con un número limitado de modificaciones que tienen inserción, supresión o sustituciones, especialmente el factor VIII adaptado a los haplotipos como se describe en K.R. Viel, y col. New England J Med 2009; 360:1618-1627. Preferentemente, la homología de secuencia con el factor VIII (como se define en los aminoácidos 20 - 2351 de P00451 de SwissProt, 21 de julio de 1986) pero sin tener en cuenta la homología en el dominio B del 99 % de acuerdo con FASTA como se implementa en la versión FASTA 36, basado en W. R. Pearson (1996) «Effective protein sequence comparison» Meth. Enzymol. 266:227-258. En otras palabras, al calcular una homología de secuencia, el dominio B no se incluye en la comparación de ambas proteínas. También se abarca el factor VIII modificado, como las proteínas de fusión Fc HES-Factor VIII o FEG Factor VIII o Factor VIII y las proteínas de fusión de albúmina de factor VIII como se describe en Oldenburg, Hemofilia (2014), 20 (Supl. 4), 23-28.

El factor VIII de la presente invención puede ser factor VIII derivado de plasma o recombinante. Cuando se usa el factor VIII recombinante, se expresa preferentemente en una línea celular humana para imitar el patrón de glicosilación 60 humana (Casademunt, Eur J Haematol. 2012; 89:165-76) o como se describe en el documento WO 2010/020690.

El péptido del factor von Willebrand, como se usa en el presente documento, es un péptido que consiste en los

aminoácidos 764 a 2128 de la SEQ ID NO: 1 en una cadena de aminoácidos simple. SEQ ID NO: 1 es la secuencia P04275 de la base de datos Swiss Prot a partir del 11 de enero de 2011.

Típicamente, una relación molecular de péptidos de factor VIII y factor von Willebrand estará entre 1:1 y 1:20, preferentemente 1:2 a 1:10. Si las moléculas peptídicas del factor von Willebrand están en forma de dímeros o multímeros, la relación molecular se calcula en una sola cadena de aminoácidos, es decir, un complejo de una molécula del factor VIII con un dímero de moléculas peptídicas del factor von Willebrand tendrá una relación de 1:2

Un complejo, como se usa en el presente documento, se refiere a una unión no covalente del factor VIII al péptido del 10 factor von Willebrand.

Una realización adicional de la invención es la composición que comprende el complejo del factor VIII con el péptido del factor von Willebrand, donde

- 15 el complejo del factor VIII y el péptido del factor von Willebrand muestra una unión reducida a las membranas de fosfolípidos en comparación con el factor VIII solo;
  - el complejo del factor VIII y el péptido del factor von Willebrand muestra una unión reducida al colágeno III en comparación con el complejo del factor VIII y el factor von Willebrand de longitud completa; y
- el complejo de factor VIII y el péptido de factor von Willebrand muestra una unión reducida a la heparina en 20 comparación con el complejo del factor VIII y el factor von Willebrand de longitud completa.

Como el factor von Willebrand a menudo forma oligómeros o multímeros, también los péptidos de la presente invención pueden estar en forma de multímeros u oligómeros.

- 25 El péptido de la presente invención tiene al menos una propiedad seleccionada del grupo que consiste en
  - (i) una constante de unión por afinidad para heparina de K<sub>D</sub> > 1 nM, preferentemente ≥ 2,43 nM;
  - (ii) una constante de unión por afinidad para el colágeno III de K<sub>D</sub> > 5 nM, preferentemente ≥ 17,02 nM;
  - (iii) una constante de unión por afinidad para el factor VIII de K₀< 100 NM o < 10 nM, preferentemente ≤ 6,19 nM; y
- (iv) una inhibición de la unión de unión a fosfolípidos de factor VIII de al menos el 70 %, preferentemente de al menos el 80 % o al menos el 90 %.
  - El péptido de factor von Willebrand de la invención muestra una unión reducida a la heparina, una menor afinidad por el colágeno (como el colágeno III), una menor afinidad por los fosfolípidos, aunque una alta unión al factor VIII.
  - Sorprendentemente, la baja unión a fosfolípidos y colágeno mejora la velocidad de liberación en caso de administración no intravenosa, especialmente subcutánea.

La medición de las constantes de unión de afinidad respectivas se describe en la parte experimental.

40

En una realización, el péptido de factor von Willebrand se deriva del factor von Willebrand por escisión proteolítica o química. Si se utiliza la escisión proteolítica, se prefiere especialmente la proteasa S. aureus V-8.

La composición de la presente invención tiene al menos una de las siguientes propiedades:

45

35

- (i) el péptido de factor von Willebrand protege el factor VIII de la unión del anticuerpo para minimizar la formación de inhibidores en un paciente;
- (ii) el factor VIII se estabiliza para proporcionar una actividad restante del factor VIII de al menos el 90 % después del almacenamiento durante 12 meses en forma líquida congelada a -70 °C;
- 50 (iii) el factor VIII se estabiliza para proporcionar una actividad restante del factor VIII de al menos el 90 % después del almacenamiento durante 24 meses en forma liofilizada a 5 °C;
  - (iv) el factor VIII se estabiliza para proporcionar una actividad restante del factor VIII de al menos el 90 % después del almacenamiento durante 12 meses en forma liofilizada a 25 °C:
  - (v) la vida media del factor VIII se prolonga in vivo en al menos un 20 %; y
- 55 (vi) la formación de inhibidores se reduce en pacientes no tratados previamente a menos del 20 %, preferentemente menos del 10 % después del tratamiento con la composición durante 6 meses.

Sorprendentemente, el péptido de factor von Willebrand parece aumentar la estabilidad del factor VIII durante el almacenamiento (vida útil) y / o reducir la formación de inhibidores en los pacientes. La formación de inhibidores es uno 60 de los principales problemas en el tratamiento de los trastornos hemorrágicos crónicos.

La composición de la presente invención es especialmente útil en el tratamiento o prevención de un trastorno

#### hemorrágico.

Por lo tanto, una realización adicional de la invención es la composición para su uso en un procedimiento para tratar un trastorno hemorrágico, comprendiendo dicho procedimiento administrar a un paciente que lo necesite una cantidad 5 efectiva de la composición de la presente invención.

La cantidad depende de la enfermedad o afección a tratar y puede ser seleccionada por un experto en la materia. Para el tratamiento a largo plazo, típicamente son adecuadas cantidades de 20 a 40 UI / kg de peso corporal por aplicación. En una situación de emergencia, la cantidad puede ser de aproximadamente 10 a 50 UI / kg de peso corporal.

La composición de la invención puede aplicarse mediante administración intravenosa o administración no intravenosa. La administración no intravenosa puede ser una inyección subcutánea, una inyección intradérmica o una administración intramuscular.

15 Una ventaja del procedimiento de la presente invención es la posibilidad de usar nano filtración para la eliminación de virus. El factor von Willebrand, debido a su tamaño, no se puede nanofiltrar con un nanofiltro con un tamaño de poro pequeño para eliminar los virus. Debido a que el péptido de factor von Willebrand es mucho más pequeño en tamaño que la molécula de factor von Willebrand de longitud completa, se hace posible la nanofiltración con tamaños de poro pequeños. La nanofiltración se realiza a un tamaño de poro y condiciones que reducen la concentración de uno de los virus parvovirus porcinos más pequeños conocidos en un factor de al menos 100 (2 log), preferentemente en un factor de 1000 (3 log) y lo más preferentemente a una concentración por debajo del límite de detección del ensayo de parvovirus, opcionalmente usando uno o más nanofiltros en serie. Para esta prueba, se agrega parvovirus porcino en una muestra y se analiza después de la filtración. •

#### 25 Breve descripción de los dibujos

45

50

La figura 1 muestra la purificación del fragmento III (SPIII) de pdVWF digerido por la proteasa *S.aureus* V8. A-Cromatograma MonoQ del perfil de elución del fragmento III (indicado por una flecha). B- Gel de SDS-PAGE del fragmento purificado; red.- reducido; n.r.- no reducido.

La figura 2 muestra la purificación del fragmento I (III-T4) del fragmento III digerido por tripsina. Cromatograma MonoQ del perfil de elución del fragmento I (indicado por una flecha). La imagen SDS-PAGE no reductora del fragmento purificado se muestra en el inserto.

35 La figura 3 muestra la purificación del fragmento II a partir del fragmento III después de la segunda digestión con proteasa S.aureus V8. A- Cromatograma MonoQ del perfil de elución del fragmento II (indicado por una flecha), el segundo producto de escisión así como la proteasa V8 también están indicados. B- Cromatograma de la segunda cromatografía MonoQ requerida para la eliminación completa de la proteasa. La imagen SDS-PAGE reductora del fragmento purificado se muestra en el inserto.

La figura 4 muestra la unión de pdVWF, fragmento II y III a rFVIII. Sensogramas de unión A, B, C (curvas grises) y alineación de curvas (curvas negras) representativas de la interacción entre rFVIII inmovilizado y pdVWF / fragmentos purificados II y III. Las concentraciones y el tipo de muestra se indican en el diagrama. C- Constantes de disociación  $(K_d)$  expresadas como media y SEM; n = 8.

La figura 5 muestra la unión de rFVIII a monocapa de fosfolípidos en SPR e inhibición por pdVWF. Sensogramas de unión a A de rFVIII y rFVIII en presencia de 108 nM de BSA (albúmina de suero bovino) o 47,6 nM de pdVWF; cada muestra por triplicado. B- Media y SD de los niveles de unión medidos 120 segundos después del final de la inyección de analito expresado como porcentaje de unión de rFVIII; n = 3.

La figura 6 muestra la inhibición de la interacción rFVIII-fosfolípido por fragmentos derivados del factor von Willebrand medidos en SPR. La unión de rFVIII a la monocapa de fosfolípidos se realizó en presencia de tres concentraciones diferentes de los tres fragmentos derivados del factor von Willebrand (las concentraciones y el tipo de fragmento se indican en el gráfico). El gráfico representa la media y SD de los niveles de unión medidos 120 segundos después del 55 final de la inyección de analito expresado como porcentaje de unión de rFVIII; n = 3.

La figura 7 muestra la inhibición dependiente de la concentración de la unión de rFVIII a la monocapa de fosfolípidos por el fragmento III. A- sensogramas de unión de rFVIII a monocapa de fosfolípidos en presencia de diferentes concentraciones del fragmento III (las concentraciones se indican en el gráfico), cada muestra por triplicado. B- Media 9 y SD de los niveles de unión medidos 120 segundos después del final de la inyección de analito expresado como porcentaje de unión de rFVIII; n = 3.

La figura 8 muestra la unión de pdVWF y el fragmento III al colágeno tipo III. Sensogramas de unión A, B (curvas grises) y alineación de curvas (curvas negras) representativas de la interacción entre colágeno inmovilizado tipo III y pdVWF / fragmento purificado III. Las concentraciones y el tipo de muestra se indican en el diagrama. C- Constantes de disociación (K<sub>d</sub>) expresadas como media y SEM; n = 9.

5

La figura 9 muestra la unión de pdVWF y el fragmento III a la heparina. Sensogramas de unión A, B (curvas grises) y alineación de curvas (curvas negras) representativas de la interacción entre heparina inmovilizada y pdVWF / fragmento purificado III. Las concentraciones y el tipo de muestra se indican en el diagrama. C- Constantes de disociación ( $K_d$ ) expresadas como media y SEM; n = 6.

10

La figura 10 muestra una comparación de los valores del tiempo de coagulación de la sangre total (WBCT) medidos en muestras de sangre de perros con hemofilia A tratados por s.c. con FVIII solo o en combinación con el fragmento III de VWF. El WBCT obtenido después de la aplicación s.c. de FVIII en combinación con un exceso molar de cinco veces el fragmento III de VWF aplicado a 200 UI de FVIII / kg de peso corporal. La línea discontinua horizontal marca el límite superior del tiempo de coagulación en perros normales (12 minutos).

La Figura 11 muestra la actividad de FVIII medida con el ensayo de actividad de FVIII cromogénico en muestras de plasma de perros con hemofilia A obtenidas después de la aplicación de FVIII o FVIII en combinación con el fragmento III de VWF. A-FVIII o FVIII con un exceso molar de cinco veces el fragmento III de VWF se aplicó por vía subcutánea a 20 UI de FVIII / kg de peso corporal; el área bajo la curva (AUC) para la muestra de FVIII sola fue 2.867, y para FVIII en combinación con el fragmento III de VWF de 4.917. B-FVIII o FVIII con un exceso molar de cinco veces el fragmento III de VWF se aplicó por vía intravenosa a 200 UI de FVIII / kg de peso corporal. El AUC para la muestra de FVIII solo

25 La figura 12 muestra la unión del monómero del fragmento III recombinante, el dímero del fragmento III recombinante y el VWF derivado de plasma (fIVWF) a rFVIII. Sensogramas de unión A, B, C (curvas grises) y alineación de curvas (curvas negras) representativas de la interacción entre VWF inmovilizado o fragmentos de VWF recombinantes y FVIII. El tipo de muestra se indican en el diagrama. La concentración de FVIII aplicada fue 0, 0,2, 0,6, 1,7, 5, 15, 45 y 135 nM. D- Constantes de disociación (K<sub>d</sub>) expresadas como media y SD; n = 4.

30

La figura 13 muestra la estabilización de FVIII por el fragmento III de VWF. Actividad de FVIII o FVIII solo o FVIII en complejo con el fragmento III de VWF incubado a 40 °C medida en diferentes momentos.

La figura 14 muestra la unión de heparina usando cromatografía de afinidad de heparina de dos fragmentos de VWF 35 como se describe en el ejemplo 9.

#### **EJEMPLOS**

La invención se explica adicionalmente mediante los siguientes ejemplos no limitantes.

fue 27,69, y para FVIII en combinación con el fragmento III de VWF de 45,72.

40

#### Ejemplo 1

Producción y purificación de fragmentos derivados del factor plasmático de von Willebrand.

45 <u>Producción y purificación del fragmento III (SPIII, res. 764-2128)</u>(de acuerdo con Marti y col. Identificación de subestructuras con puentes disulfuro dentro del factor von Willebrand humano. Biochemistry 1987; 26:8099-8109 con modificaciones) (SEQ ID NO: 2):

SLSCRPPMVKLVCPADNLRAEGLECTKTCQNYDLECMSMGCVSGCLCPPGMVRHENRCVA

50

LERCPCFHQGKEYAPGETVKIGCNTCVCQDRKWNCTDHVCDATCSTIGMAHYLTFDGLKY LFPGECOYVLVODYCGSNPGTFRILVGNKGCSHPSVKCKKRVTILVEGGEIELFDGEVNV KRPMKDETHFEVVESGRYIILLLGKALSVVWDRHLSISVVLKQTYQEKVCGLCGNFDGIQ NNDLTSSNLQVEEDPVDFGNSWKVSSQCADTRKVPLDSSPATCHNNIMKQTMVDSSCRIL TSDVFQDCNKLVDPEPYLDVCIYDTCSCESIGDCACFCDTIAAYAHVCAQHGKVVTWRTA TLCPQSCEERNLRENGYECEWRYNSCAPACQVTCQHPEPLACPVQCVEGCHAHCPPGKIL DELLOTCVDPEDCPVCEVAGRRFASGKKVTLNPSDPEHCOICHCDVVNLTCEACOEPGGL VVPPTDAPVSPTTLYVEDISEPPLHDFYCSRLLDLVFLLDGSSRLSEAEFEVLKAFVVDM MERLRISOKWVRVAVVEYHDGSHAYIGLKDRKRPSELRRIASOVKYAGSOVASTSEVLKY TLFQIFSKIDRPEASRITLLLMASQEPQRMSRNFVRYVQGLKKKKVIVIPVGIGPHANLK QIRLIEKQAPENKAFVLSSVDELEQQRDEIVSYLCDLAPEAPPPTLPPDMAQVTVGPGLL GVSTLGPKRNSMVLDVAFVLEGSDKIGEADFNRSKEFMEEVIQRMDVGQDSIHVTVLQYS YMVTVEYPFSEAQSKGDILQRVREIRYQGGNRTNTGLALRYLSDHSFLVSQGDREQAPNL VYMVTGNPASDEIKRLPGDIQVVPIGVGPNANVQELERIGWPNAPILIQDFETLPREAPD LVLQRCCSGEGLQIPTLSPAPDCSQPLDVILLLDGSSSFPASYFDEMKSFAKAFISKANI GPRLTOVSVLOYGSITTIDVPWNVVPEKAHLLSLVDVMOREGGPS0IGDALGFAVRYLTS EMHGARPGASKAVVILVTDVSVDSVDAAADAARSNRVTVFPIGIGDRYDAAQLRILAGPA GDSNVVKLQRIEDLPTMVTLGNSFLHKLCSGFVRICMDEDGNEKRPGDVWTLPDQCHTVT CQPDGQTLLKSHRVNCDRGLRPSCPNSQSPVKVEETCGCRWTCPCVCTGSSTRHIVTFDG QNFKLTGSCSYVLFQNKEQDLEVILHNGACSPGARQGCMKSIEVKHSALSVELHSDMEVT VNGRLVSVPYVGGNMEVNVYGAIMHEVRFNHLGHIFTFTPQNNEFQLQLSPKTFASKTYG LCGICDENGANDFMLRDGTVTTDWKTLVQEWTVQRPGQTCQPILE

El fragmento III se prepara por digestión del factor von Willebrand derivado de plasma (pdVWF) con proteasa *S. aureus* V-8. La digestión se lleva a cabo durante 3 horas a 37 °C en un tampón de 50 nM Tris-HCl, 150 mM de NaCl, pH 5 7,8 a una relación en peso de enzima a proteína de 1:40.

La purificación del fragmento se lleva a cabo utilizando una fuerte columna de intercambio aniónico (MonoQ). El tampón de funcionamiento es un Tris-HCl de 20 mM, pH 7,4, y el tampón de elución (tampón B) es Tris-HCl de 20 mM, NaCl de 500 mM, pH 7,4. La proteasa *S. aureus* V-8 eluye de la columna de intercambio aniónico en aproximadamente 22 mS / cm (aproximadamente el 40 % de tampón B), por lo tanto, se requiere una larga etapa de lavado al 42 % antes de la elución del fragmento para lavar la proteasa. Alternativamente, se puede realizar una etapa SEC en Superose 6 10/300 GL para la eliminación de la proteasa. La purificación del fragmento III y el producto obtenido se representan en la figura 1. La secuencia definida por Marti *y col.* 1987 ha sido confirmada por análisis de EM.

15 Producción y purificación del fragmento I (III-T4, res. 764-1035) (de acuerdo con Marti y col. 1987 con modificaciones) (SEQ ID NO: 3):

SLSCRPPMVKLVCPADNLRAEGLECTKTCQNYDLECMSMGCVSGCLCPPGMVRHENRCVA LERCPCFHQGKEYAPGETVKIGCNTCVCQDRKWNCTDHVCDATCSTIGMAHYLTFDGLKY LFPGECQYVLVQDYCGSNPGTFRILVGNKGCSHPSVKCKKRVTILVEGGEIELFDGEVNV KRPMKDETHFEVVESGRYIILLLGKALSVVWDRHLSISVVLKQTYQEKVCGLCGNFDGIQ NNDLTSSNLQVEEDPVDFGNSWKVSSQCADTR

20 El fragmento I se prepara a partir del fragmento III (SPIII) mediante digestión con tripsina (TPCK tratada de bovino). La digestión se lleva a cabo durante 1,5 horas en un tampón de 100 mM de NH<sub>4</sub>HCO<sub>3</sub> con pH 8,0 a una relación en peso

de enzima a proteína de 1:100. La digestión se terminó mediante la adición de inhibidor de tripsina de soja.

La purificación del fragmento I se lleva a cabo utilizando una fuerte columna de intercambio aniónico (MonoQ) seguido de SEC en Superose 6, 10 / 300 GL. El tampón de funcionamiento para la columna de intercambio aniónico es Tris-HCl de 20 mM, pH 7,4, y el tampón de elución (tampón B) es Tris-HCl de 20 mM, NaCl de 500 mM, pH 7,4. El tampón de funcionamiento para el SEC es PBS (solución salina tamponada con fosfato) pH 7,0.

La purificación del fragmento I y el producto obtenido se representan en la figura 2. La secuencia definida por Marti *y col.* 1987 ha sido confirmada por análisis de EM.

Producción y purificación del fragmento II (res. 764-1673) (SEQ ID NO: 4):

SLSCRPPMVKLVCPADNLRAEGLECTKTCONYDLECMSMGCVSGCLCPPGMVRHENRCVA LERCPCFHQGKEYAPGETVKIGCNTCVCQDRKWNCTDHVCDATCSTIGMAHYLTFDGLKY LFPGECQYVLVQDYCGSNPGTFRILVGNKGCSHPSVKCKKRVTILVEGGEIELFDGEVNV KRPMKDETHFEVVESGRYIILLLGKALSVVWDRHLSISVVLKQTYQEKVCGLCGNFDGIQ NNDLTSSNLOVEEDPVDFGNSWKVSSOCADTRKVPLDSSPATCHNNIMKOTMVDSSCRIL TSDVFQDCNKLVDPEPYLDVCIYDTCSCESIGDCACFCDTIAAYAHVCAQHGKVVTWRTA TLCPQSCEERNLRENGYECEWRYNSCAPACQVTCQHPEPLACPVQCVEGCHAHCPPGKIL DELLQTCVDPEDCPVCEVAGRRFASGKKVTLNPSDPEHCQICHCDVVNLTCEACQEPGGL VVPPTDAPVSPTTLYVEDISEPPLHDFYCSRLLDLVFLLDGSSRLSEAEFEVLKAFVVDM MERLRISOKWVRVAVVEYHDGSHAYIGLKDRKRPSELRRIASOVKYAGSOVASTSEVLKY TLFQIFSKIDRPEASRITLLLMASQEPQRMSRNFVRYVQGLKKKKVIVIPVGIGPHANLK QIRLIEKQAPENKAFVLSSVDELEQQRDEIVSYLCDLAPEAPPPTLPPDMAQVTVGPGLL GVSTLGPKRNSMVLDVAFVLEGSDKIGEADFNRSKEFMEEVIORMDVGODSIHVTVLQYS YMVTVEYPFSEAQSKGDILQRVREIRYQGGNRTNTGLALRYLSDHSFLVSQGDREQAPNL VYMVTGNPASDEIKRLPGDIQVVPIGVGPNANVQELERIGWPNAPILIQDFETLPREAPD LVLQRCCSGE

15 El fragmento II se prepara a partir del fragmento III mediante la segunda digestión con proteasa de *S. aureus* V8. La digestión se lleva a cabo durante 21 horas en un tampón de 50 mM de Tris-HCl, 150 mM de NaCl con pH 7,8 a una relación en peso de enzima a proteína de 1:10.

La purificación del fragmento II se lleva a cabo utilizando una fuerte columna de intercambio aniónico (MonoQ). El tampón de funcionamiento es un Tris-HCl de 20 mM, pH 7,4, y el tampón de elución (tampón B) es Tris-HCl de 20 mM, NaCl de 500 mM, pH 7,4. Se requirió una segunda purificación MonoQ con una larga etapa de lavado al 42 % de B para eliminar la proteasa.

La purificación del fragmento II y el producto obtenido se representan en la figura 3. El segundo sitio de escisión de V8 entre Glu<sup>1673</sup>-Gli<sup>1674</sup> fue determinado por Fretto *y col.* 1986 y fue confirmado por análisis de EM.

#### Ejemplo 2

10

Determinación de la afinidad de unión al factor VIII.

El análisis se llevó a cabo utilizando el instrumento Biacore 2000 (GE Healthcare) de acuerdo con McCormick *y col.* 2004 con modificaciones. rFVIII se acopló brevemente de manera covalente al chip sensor CM5 dando como resultado un nivel de recubrimiento de ~ 200 RU. Posteriormente, se inyectaron los fragmentos del factor von Willebrand, así como el factor von Willebrand (flvWF) de longitud completa sobre la superficie del chip sensor. El tampón de funcionamiento fue 20 mM de HEPES, 150 mM de NaCl, 5 mM de CaCl2, Tween 20 al 0,02 %. Las constantes de afinidad de disociación se determinaron para flvWF así como para los fragmentos II y III, no hubo unión significativa del fragmento I al Factor VIII, por lo tanto, no se determinó el K<sub>d</sub>. Los sensogramas de unión y los valores calculados de K<sub>d</sub> se representan en la figura 4. El flvWF se unió a rFVIII con K<sub>d</sub> de 0,67 nM, el fragmento III se unió con menor afinidad (K<sub>d</sub> de 6,18 nM), la afinidad se redujo aún más para el fragmento II (KD de 154,60 nM)

#### Ejemplo 3

Determinación de la unión del factor VIII a la monocapa fosfolípida e inhibición por el factor von Willebrand y los 5 fragmentos derivados del factor von Willebrand.

El análisis se llevó a cabo utilizando el instrumento Biacore 2000 (GE Healthcare) de acuerdo con Saenko *y col.* 1999 con modificaciones. Se prepararon brevemente vesículas de fosfolípidos a partir de DOPC (1,2-dioleoil-sn-glicerol-3-fosfocolina) y DOPS (1,2-dioleoil-sn-glicerol-3-fosfo-L-serina). Se prepararon vesículas unilamelares de acuerdo con MacDonal *y col.* 1991 utilizando una extrusora y recubiertas con un chip sensor HPA. Posteriormente, se inyectaron los componentes de interés sobre la superficie de PCPS y se evaluó el nivel de unión 120 segundos después del final de la inyección.

Controles negativos; el factor von Willebrand y BSA no se unieron a la superficie de PSPC (no se muestra), en cambio, 15 se mostró un alto nivel de unión de rFVIII. Esta unión podría inhibirse por completo con el factor von Willebrand, en cambio, la adición de alta concentración de BSA no tuvo efecto sobre la unión (figura 5).

Para evaluar si los fragmentos obtenidos por digestión limitada fueron capaces de inhibir la unión de PSPC similar a flVWF, los fragmentos I, II y III se inyectaron sobre la superficie del chip sensor. Solo el fragmento III fue capaz de inhibir la interacción entre rFVIII y la monocapa de fosfolípidos (figura 6). Este efecto dependía de la dosis con una inhibición casi completa con un exceso de 2,5 veces el fragmento III sobre el rFVIII (figura 7).

#### Ejemplo 4

25 Determinación de la afinidad de unión al colágeno III de flVWF y el fragmento III.

El análisis se llevó a cabo utilizando el instrumento Biacore 2000 (GE Healthcare) de acuerdo con Romjin y col. 2003 con modificaciones. El colágeno tipo III digerido con pepsina humana se unió brevemente de manera covalente a la superficie de un chip sensor CM5. Posteriormente, las muestras se inyectaron sobre la superficie del chip sensor. El tampón de funcionamiento fue 10 mM de HEPES, 150 mM de NaCl, 3,4 mM de EDTA, Tween 20 al 0,005 %. El flVWF se unió al colágeno III con una afinidad muy alta (0,75 nM), la unión del fragmento III se redujo significativamente a 17,02 nM (figura 8).

#### Ejemplo 5

35

Determinación de la afinidad de unión a la heparina de fIVWF y el fragmento III.

El análisis se llevó a cabo utilizando el instrumento Biacore T200 (GE Healthcare) de acuerdo con Sarafanov *y col.* 2001. La heparina de la mucosa intestinal porcina se biotiniló brevemente utilizando un kit de reactivo NHS-biotina, y 40 se unió a la superficie de un chip sensor SA. La celda de flujo de referencia se revistió con biotina. Posteriormente, las muestras se inyectaron sobre la superficie del chip sensor. El tampón de funcionamiento fue 150 mM de HEPES, 150 mM de NaCl, 5 mM de CaCl2, Tween 20 al 0,05 %. El flVWF se unió a la heparina con una afinidad de 0,65 nM, la afinidad de unión del fragmento III se redujo significativamente a 2,43 nM (figura 9).

#### 45 Ejemplo 6

Determinación de la recuperación del complejo FVIII o FVIII / VWF fragmento III y la vida media en circulación en perros con hemofilia A.

50 Dos perros con hemofilia A fueron sometidos a inyección subcutánea y posteriormente intravenosa de FVIII suprimido con dominio B recombinante solo o en combinación con un exceso molar de cinco veces el fragmento III de VWF. El perro 1 recibió 200 UI / kg de peso corporal de FVIII solo y el perro 2 recibió 200 UI / kg de peso corporal de FVIII en complejo con el fragmento III de VWF. Se recogieron muestras de sangre a las 0,5, 1,2, 4, 8, 12, 24, 32, 48, 72 y 96 horas después de cada administración farmacológica por vía subcutánea o intravenosa. Las muestras fueron analizadas para determinar el tiempo de coagulación de la sangre total (WBCT) y la actividad en el ensayo de actividad cromogénica de FVIII. La administración subcutánea del fragmento III de VWF en complejo con FVIII dio como resultado un aumento de 1,4 veces el tiempo requerido para exceder el tiempo de coagulación para un perro normal en comparación con la administración subcutánea de FVIII solo (figura 10). La administración del fragmento III de VWF con FVIII también dio como resultado un aumento de la actividad de FVIII en plasma de perro con el tiempo y valores en el área casi duplicada bajo la curva (AUC) para ambas aplicaciones, subcutánea e intravenosa, en comparación con la administración de FVIII solo (figura 11).

#### Ejemplo 7

Determinación de la afinidad de unión a FVIII del monómero y dímero del fragmento III recombinante.

5 El fragmento III recombinante se expresó de forma transitoria en la línea celular HEK293 con un Strep-Tag C-terminal y se purificó por cromatografía de afinidad con Strep-tactin. Los monómeros y dímeros del fragmento III se separaron por cromatografía de exclusión por tamaño (SEC). El análisis se realizó con el instrumento Biacore 2000. Los monómeros y dímeros del fragmento III se inmovilizaron en CM5 y se inyectaron series de concentración de FVIII sobre la superficie del chip sensor. Se usó VWF de longitud completa derivada de plasma como control. El tampón de funcionamiento fue 150 mM de HEPES, 150 mM de NaCl, 5 mM de CaCl<sub>2</sub>, Tween 20 al 0,05 %. FVIII unido al dímero de fragmento III con una constante de afinidad de 1,9 nM. La afinidad del FVIII con el fragmento III monomérico fue significativamente menor (K<sub>d</sub> = 14,3 nM) (figura 12).

#### Ejemplo 8

15

Estabilización de rFVIII en solución por el fragmento III de VWF.

2000 UI de FVIII recombinante (Nuwiq®) se reconstituyeron en 2,5 ml de agua, con o sin adición de exceso molar de cinco veces el fragmento III de VWF. Ambas preparaciones se incubaron a 40 °C y se tomaron alícuotas a las 48, 96, 192, 384, 408 y 672 horas. Las muestras se analizaron para determinar la actividad de FVIII en un ensayo de actividad cromogénica de FVIII. El fragmento III de VWF contribuyó a una actividad significativamente más larga de FVIII a 40 °C (figura 13).

#### Ejemplo 9

25

Comparación de la unión de heparina entre el fragmento III recombinante y el fragmento NovoSeq21.

El fragmento III recombinante y el fragmento de NovoSeq21 (SEQ ID NO: 21 del documento WO2013/160005A1) se expresaron de forma transitoria en la línea celular HEK293 con un Strep-Tag C-terminal y se purificaron por cromatografía de afinidad con Strep-tactin. La unión a heparina se probó usando cromatografía de afinidad por la heparina. Ambos fragmentos recombinantes se unieron a la columna de heparina (heparina HiTrap HP 1 ml, GE Healthcare) y se eluyeron con un gradiente lineal de sal que varía de 0 - 500 mM de NaCl. Ambos fragmentos se ejecutaron por triplicado, véase la figura 14. El pico de elución medio para el fragmento NovoSeq21 fue a 15,57 ± 0,04 minutos, lo que corresponde a 285,381 mM de NaCl, y para el fragmento III a 15,47 ± 0,02 minutos, lo que corresponde 35 a 282,051 mM de NaCl. Esto indica una mayor afinidad por la heparina del fragmento NovoSeq21.

#### Procedimientos analíticos

Descripción de los procedimientos analíticos

40

FVIII: C, procedimiento de detección basado en Coatest

El procedimiento se basa en el principio de dos etapas y se realizó utilizando la técnica de microplacas. En la etapa uno, el factor X activado (Xa) se genera a través de la vía intrínseca donde FVIII: C actúa como un cofactor. En la etapa dos, el factor Xa se determina luego mediante el uso de un sustrato cromogénico sintético, S-2222 en presencia de un inhibidor de trombina 1-2581 para evitar la hidrólisis del sustrato por la trombina. La reacción se detiene con ácido, y el VIII: La actividad de C, que es proporcional a la liberación de pNA (para-nitroanilina), se determina fotométricamente a 405 nm frente a un blanco reactivo.

50 El procedimiento cumple con los requisitos de la Farmacopea Europea. La unidad de FVIII: C se expresa en unidades internacionales (UI) como se define en la Norma Internacional de Concentrado actual (SI) establecida por la Organización Mundial de la Salud (OMS). La rutina que usa tampón que contiene BSA al 1 % en lugar de plasma hemofílico severo para prediluciones ha sido validada. Véanse también referencias bibliográficas (European Pharmacopoeia Supplement 2000, general Methods, 2.7.4. Assay of Blood Coagulation FVIII; Rosen S (1984) Assay of FVIII: C with a Chromogenic Substrate. J, Haematol, Suppl 40, vol 33, 139-145, 1984; Carlebjork G, Oswaldsson U, Rosen S (1987) A simple and accurate micro plate assay for the determination of FVIII activity. Thrombosis Research 47; 5-14, 1987; Mire-Sluis AR, Gerrard T, Gaines das R, Padilla A and Thorpe R. Biological assays: Their Role in the

development and quality Control of Recombinant Biological Medicinal Products. Biological, 24, 351-362 (1996)).

60 Determinación de la proteína total de acuerdo con Bradford

La determinación de proteínas de acuerdo con Bradford se basa en la observación de que la absorbancia máxima para

una solución ácida de azul brillante de Coomassie G-250 cambia de 465 nm a 595 nm cuando se produce la unión a la proteína. Ambas interacciones hidrofóbicas e iónicas estabilizan la forma aniónica del tinte, causando un cambio de color visible. El ensayo es útil ya que el coeficiente de extinción de una solución de complejo colorante-albúmina es constante en un rango de concentración de 10 veces. Véase también la referencia Bradford, MM. A rapid and sensitive method for the quantisation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. 1976, para más información.

Determinación de la proteína total de acuerdo con el análisis de aminoácidos (AAA)

10 Antes del AAA, todas las proteínas se hidrolizan con 6 M de HCl durante 24 horas a 110 °C. Los aminoácidos se separan por cromatografía de intercambio catiónico en resinas de poliestireno sulfonadas y se detectan continuamente en el eluyente. La detección se basa en la derivatización de ninhidrina posterior a la columna utilizando un fotómetro dual para la medición simultánea a 440 nm para prolina e hidroxiprolina y 570 nm para todos los demás aminoácidos. Los aminoácidos asparagina y glutamina se desamidan durante AAA y se determinan como ácido aspártico y ácido glutámico, respectivamente. Por lo tanto, los resultados de ácido aspártico y ácido glutámico representan la suma de ácido aspártico / asparagina (Asx) y ácido glutámico / glutamina (Glx), respectivamente, en la muestra original. El triptófano no genera una respuesta distinta utilizando este procedimiento y, por lo tanto, no está cuantificado por el AAA. La cisteína se destruye durante la hidrólisis y no se cuantifica. El AAA se describe además en la referencia: Total protein AAA analytical method. Spackman, D. H., Stein, W. H., y Moore, S. (1958) Anal. Biochem. 30: 1190-1206.

Pureza o actividad específica (FVIII: C / proteína total)

La pureza (o también llamada actividad específica) para una muestra, se calcula tomando el valor obtenido del análisis FVIII: análisis de C y su división por el valor logrado del análisis de proteína total.

SDS-PAGE (distribución de peso molecular)

25

45

50

60

La electroforesis en gel de SDS-poliacrilamida (SDS-PAGE) implica la separación de proteínas en función de su tamaño. Este procedimiento describe la SDS-PAGE de proteínas, que se ejecuta en condiciones reducidas. Al calentar 30 la muestra en condiciones desnaturalizantes y reductoras, las proteínas se despliegan y se recubren con sulfato dodecil sódico de detergente aniónico (SDS), adquiriendo una carga negativa neta alta que es proporcional a la longitud de la cadena de polipéptidos. Cuando se cargan en una matriz de gel de poliacrilamida y se colocan en un campo eléctrico, las moléculas de proteína cargadas negativamente migran hacia el electrodo cargado positivamente y se separan por un efecto de tamizado molecular, es decir, por su peso molecular. Los geles de poliacrilamida impiden que las moléculas más grandes migren tan rápido como las moléculas más pequeñas. Debido a que la relación carga / masa es casi la misma entre los polipéptidos desnaturalizados con SDS, la separación final de proteínas depende casi por completo de las diferencias en la masa molecular relativa de los polipéptidos. En un gel de densidad uniforme, la distancia de migración relativa de una proteína (Rt) es negativamente proporcional al logaritmo de su masa. Si las proteínas de masa conocida se ejecutan simultáneamente con las incógnitas, se puede trazar la relación entre Rf y la masa, y estimar las masas de proteínas desconocidas. Las bandas de proteínas separadas por electroforesis se visualizan mediante tinción con plata. La evaluación se realiza visualmente juzgando las apariencias de los estándares, la referencia (muestra de control) y las muestras analizadas.

Contenido de antígeno del factor VIII (FVIII:Ag)

La cantidad de contenido de antígeno de factor VIII (FVIII: Ag) se mide con un kit ELISA (ASSERACHROM® VIII: Ag, inmunoensayo enzimático para factor VIII, kit, Diagnostica Stago (Francia), como se describe más detalladamente<sup>(18)</sup> con el reemplazo del tampón del kit proporcionado con tampón Tris-NaCl + 1 % de albúmina de suero bovino para diluciones de muestra.

Cromatografía de exclusión por tamaño (SEC)

El monómero, el agregado y el fragmento se miden usando una columna analítica de cromatografía de exclusión por tamaño (SEC-HPLC) (Superdex 200, 10/300 GL, GE Healthcare) procesada en condiciones de tampón nativo (HEPES 55 25 mM, NaCl 0,5 M, arginina 0,3 M, CaCl2 50 mM, polisorbato 80 al 0,02 %, pH 7,5). La carga de muestra es aproximadamente el 1 % de la columna de exclusión por tamaño y la concentración de factor VIII: C es aproximadamente 1000 UI / ml.

Inmunotransferencia frente al factor VIII

El producto de degeneración del factor VIII basado en el tamaño se mide mediante inmunotransferencia FVIII. Las proteínas y péptidos de distribución de masa molecular de FVIII en preparaciones de factor VIII se separan de acuerdo

con la masa molecular mediante electroforesis en gel (PAGE) de poliacrilamida de sulfato dodecil sódico (SDS) en condiciones reductoras. Posteriormente, las proteínas se transfieren electroforéticamente desde la matriz de gel a una membrana de nitrocelulosa que posteriormente se incuba con un agente bloqueante. A continuación, se añaden anticuerpos ovinos policionales disponibles comercialmente dirigidos a la molécula del factor VIII humano completo seguido de un anticuerpo secundario marcado con enzima como sonda. Como tercera etapa, se agrega un sustrato quimioluminiscente y cuando se combina con la enzima, la luz se produce como un subproducto. La salida de luz se captura como una imagen en tiempo real usando una cámara enfriada con dispositivo de carga acoplada. La intensidad de la señal se correlaciona con la abundancia del antígeno (FVIII) en la membrana de transferencia.

#### 10 PAGE 2D

Se realizó una electroforesis en 2D con tinción con plata para estudiar el patrón de banda electroforética de la cadena de proteína del factor VIII. El enfoque isoeléctrico se realizó como el primer recorrido de dimensión usando un gradiente de pH lineal de pH 3 a 10. La SDS-PAGE de segunda dimensión se ejecutó usando geles de acetato de tris 15 (3 - 8 %). Los geles se tiñeron con colorante plateado después del recorrido de la segunda dimensión.

Proteína total (Bradford)

La determinación de proteínas de acuerdo con Bradford se basa en la observación de que la absorbancia máxima para una solución ácida de azul brillante de Coomassie G-250 cambia de 465 nm a 595 nm cuando se produce la unión a la proteína. Ambas interacciones hidrofóbicas e iónicas estabilizan la forma aniónica del tinte, causando un cambio de color visible. El ensayo es útil ya que el coeficiente de extinción de una solución de complejo colorante-albúmina es constante en un rango de concentración de 10 veces. Véase también la referencia Bradford, MM. A rapid and sensitive method for the quantisation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. 1976, para más información.

#### LISTADO DE SECUENCIAS

<110> Octapharma AG

30

<120> Preparación que comprende péptidos de factor VIII y factor von Willebrand

<130> 151432WO

35 <160> 7

<170> PatentIn versión 3.5

<210> 1

40 <211> 2813

<212> PRT

<213> Homo sapiens

<400> 1

| Met<br>1   | Ile        | Pro        | Ala        | Arg<br>5   | Phe        | Ala        | Gly        | Val        | Leu<br>10  | Leu        | Ala        | Leu        | Ala        | Leu<br>15  | Ile        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Leu        | Pro        | Gly        | Thr<br>20  | Leu        | Cys        | Ala        | Glu        | Gly<br>25  | Thr        | Arg        | Gly        | Arg        | Ser<br>30  | Ser        | Thr        |
| Ala        | Arg        | Cys<br>35  | Ser        | Leu        | Phe        | Gly        | Ser<br>40  | Asp        | Phe        | Val        | Asn        | Thr<br>45  | Phe        | Asp        | Gly        |
| Ser        | Met<br>50  | Tyr        | Ser        | Phe        | Ala        | Gly<br>55  | Tyr        | Cys        | Ser        | Tyr        | Leu<br>60  | Leu        | Ala        | Gly        | Gly        |
| Cys<br>65  | Gln        | Lys        | Arg        | Ser        | Phe<br>70  | Ser        | Ile        | Ile        | Gly        | Asp<br>75  | Phe        | Gln        | Asn        | Gly        | Lys<br>80  |
| Arg        | Val        | Ser        | Leu        | Ser<br>85  | Val        | Tyr        | Leu        | Gly        | Glu<br>90  | Phe        | Phe        | Asp        | Ile        | His<br>95  | Leu        |
| Phe        | Val        | Asn        | Gly<br>100 | Thr        | Val        | Thr        | Gln        | Gly<br>105 | Asp        | Gln        | Arg        | Val        | Ser<br>110 | Met        | Pro        |
| Tyr        | Ala        | Ser<br>115 | Lys        | Gly        | Leu        | Tyr        | Leu<br>120 | Glu        | Thr        | Glu        | Ala        | Gly<br>125 | Tyr        | Tyr        | Lys        |
| Leu        | Ser<br>130 | Gly        | Glu        | Ala        | Tyr        | Gly<br>135 | Phe        | Val        | Ala        | Arg        | Ile<br>140 | Asp        | Gly        | Ser        | Gly        |
| Asn<br>145 | Phe        | Gln        | Val        | Leu        | Leu<br>150 | Ser        | Asp        | Arg        | Tyr        | Phe<br>155 | Asn        | Lys        | Thr        | Cys        | Gly<br>160 |
| Leu        | Cys        | Gly        | Asn        | Phe<br>165 | Asn        | Ile        | Phe        | Ala        | Glu<br>170 | Asp        | Asp        | Phe        | Met        | Thr<br>175 | Gln        |

| Glu        | Gly        | Thr               | Leu<br>180 | Thr        | Ser                | Asp        | Pro        | Tyr<br>185 | Asp        | Phe        | Ala        | Asn               | Ser<br>190 | Trp        | Ala        |
|------------|------------|-------------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|-------------------|------------|------------|------------|
| Leu        | Ser        | Ser<br>195        | Gly        | Glu        | Gln                | Trp        | Cys<br>200 | Glu        | Arg        | Ala        | Ser        | Pro<br>205        | Pro        | Ser        | Ser        |
| Ser        | Cys<br>210 | Asn               | Ile        | Ser        | Ser                | Gly<br>215 | Glu        | Met        | Gln        | Lys        | Gly<br>220 | Leu               | Trp        | Glu        | Gln        |
| Cys<br>225 | Gln        | Leu               | Leu        | Lys        | Ser<br>230         | Thr        | Ser        | Val        | Phe        | Ala<br>235 | Arg        | Cys               | His        | Pro        | Leu<br>240 |
| Val        | Asp        | Pro               | Glu        | Pro<br>245 | Phe                | Val        | Ala        | Leu        | Cys<br>250 | Glu        | Lys        | Thr               | Leu        | Cys<br>255 | Glu        |
| Cys        | Ala        | Gly               | Gly<br>260 | Leu        | Glu                | Cys        | Ala        | Cys<br>265 | Pro        | Ala        | Leu        | Leu               | Glu<br>270 | Tyr        | Ala        |
| Arg        | Thr        | Cys<br>275        | Ala        | Gln        | Glu                | Gly        | Met<br>280 | Val        | Leu        | Tyr        | Gly        | Trp<br>285        | Thr        | Asp        | His        |
| Ser        | Ala<br>290 | Cys               | Ser        | Pro        | Val                | Cys<br>295 | Pro        | Ala        | Gly        | Met        | Glu<br>300 | Tyr               | Arg        | Gln        | Cys        |
| Val<br>305 | Ser        | Pro               | Cys        | Ala        | <b>A</b> rg<br>310 | Thr        | Cys        | Gln        | Ser        | Leu<br>315 | His        | Ile               | Asn        | Glu        | Met<br>320 |
| Cys        | Gln        | Glu               | Arg        | Cys<br>325 | Val                | Asp        | Gly        | Cys        | Ser<br>330 | Cys        | Pro        | Glu               | Gly        | Gln<br>335 | Leu        |
| Leu        | Asp        | Glu               | Gly<br>340 | Leu        | Cys                | Val        | Glu        | Ser<br>345 | Thr        | Glu        | Cys        | Pro               | Cys<br>350 | Val        | His        |
| Ser        | Gly        | <b>Lys</b><br>355 | Arg        | Tyr        | Pro                | Pro        | Gly<br>360 | Thr        | Ser        | Leu        | Ser        | <b>Arg</b><br>365 | Asp        | Cys        | Asn        |
| Thr        | Cys<br>370 | Ile               | Cys        | Arg        | Asn                | Ser<br>375 | Gln        | Trp        | Ile        | Cys        | Ser<br>380 | Asn               | Glu        | Glu        | Cys        |
| Pro<br>385 | Gly        | Glu               | Cys        | Leu        | Val<br>390         | Thr        | Gly        | Gln        | Ser        | His<br>395 | Phe        | Lys               | Ser        | Phe        | Asp<br>400 |
| Asn        | Arg        | Tyr               | Phe        | Thr<br>405 | Phe                | Ser        | Gly        | Ile        | Cys<br>410 | Gln        | Tyr        | Leu               | Leu        | Ala<br>415 | Arg        |
| Asp        | Cys        | Gln               | Asp        | His        | Ser                | Phe        | Ser        | Ile        | Val        | Ile        | Glu        | Thr               | Val        | Gln        | Cys        |

| Ala        | Asp            | Asp<br>435 | Arg        | Asp        | Ala        | Val        | Cys<br>440 | Thr               | Arg        | Ser               | Val        | Thr<br>445 | Val               | Arg               | Leu        |
|------------|----------------|------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|------------|------------|-------------------|-------------------|------------|
| Pro        | Gly<br>450     | Leu        | His        | Asn        | Ser        | Leu<br>455 | Val        | Lys               | Leu        | Lys               | His<br>460 | Gly        | Ala               | Gly               | Val        |
| Ala<br>465 | Met            | Asp        | Gly        | Gln        | Asp<br>470 | Val        | Gln        | Leu               | Pro        | Leu<br>475        | Leu        | Lys        | Gly               | Asp               | Leu<br>480 |
| Arg        | Ile            | Gln        | His        | Thr<br>485 | Val        | Thr        | Ala        | Ser               | Val<br>490 | Arg               | Leu        | Ser        | Tyr               | Gly<br>495        | Glu        |
| Asp        | Leu            | Gln        | Met<br>500 | Asp        | Trp        | Asp        | Gly        | <b>Arg</b><br>505 | Gly        | Arg               | Leu        | Leu        | Val<br>510        | Lys               | Leu        |
| Ser        | Pro            | Val<br>515 | Tyr        | Ala        | Gly        | Lys        | Thr<br>520 | Суз               | Gly        | Leu               | Суѕ        | Gly<br>525 | Asn               | Tyr               | Asn        |
| Gly        | <b>Asn</b> 530 | Gln        | Gly        | Asp        | Asp        | Phe<br>535 | Leu        | Thr               | Pro        | Ser               | Gly<br>540 | Leu        | Ala               | Glu               | Pro        |
| Arg<br>545 | Val            | Glu        | Asp        | Phe        | Gly<br>550 | Asn        | Ala        | Trp               | Lys        | <b>Leu</b><br>555 | His        | Gly        | Asp               | Cys               | Gln<br>560 |
| Asp        | Leu            | Gln        | Lys        | Gln<br>565 | His        | Ser        | Asp        | Pro               | Cys<br>570 | Ala               | Leu        | Asn        | Pro               | <b>Arg</b><br>575 | Met        |
| Thr        | Arg            | Phe        | Ser<br>580 | Glu        | Glu        | Ala        | Cys        | Ala<br>585        | Val        | Leu               | Thr        | Ser        | Pro<br>590        | Thr               | Phe        |
| Glu        | Ala            | Cys<br>595 | His        | Arg        | Ala        | Val        | Ser<br>600 | Pro               | Leu        | Pro               | Tyr        | Leu<br>605 | Arg               | Asn               | Cys        |
| Arg        | Tyr<br>610     | Asp        | Val        | Cys        | Ser        | Cys<br>615 | Ser        | Asp               | Gly        | Arg               | Glu<br>620 | Суз        | Leu               | Cys               | Gly        |
| Ala<br>625 | Leu            | Ala        | Ser        | Tyr        | Ala<br>630 | Ala        | Ala        | Суѕ               | Ala        | Gly<br>635        | Arg        | Gly        | Val               | Arg               | Val<br>640 |
| Ala        | Trp            | Arg        | Glu        | Pro<br>645 | Gly        | Arg        | Cys        | Glu               | Leu<br>650 | Asn               | Cys        | Pro        | Lys               | Gly<br>655        | Gln        |
| Val        | Tyr            | Leu        | Gln<br>660 | Cys        | Gly        | Thr        | Pro        | Cys<br>665        | Asn        | Leu               | Thr        | Суз        | <b>Arg</b><br>670 | Ser               | Leu        |
| Ser        | Tyr            | Pro        | Asp        | Glu        | Glu        | Cys        | Asn        | Glu               | Ala        | Cys               | Leu        | Glu        | Gly               | Cys               | Phe        |

|                   |            | 675        |            |            |                   |                    | 680        |            |            |                   |                   | 685        |                   |            |            |
|-------------------|------------|------------|------------|------------|-------------------|--------------------|------------|------------|------------|-------------------|-------------------|------------|-------------------|------------|------------|
| Cys               | Pro<br>690 | Pro        | Gly        | Leu        | Tyr               | Met<br>695         | Asp        | Glu        | Arg        | Gly               | <b>Asp</b><br>700 | Cys        | Val               | Pro        | Lys        |
| <b>Ala</b><br>705 | Gln        | Cys        | Pro        | Суз        | <b>Tyr</b><br>710 | Tyr                | Asp        | Gly        | Glu        | Ile<br>715        | Phe               | Gln        | Pro               | Glu        | Asp<br>720 |
| Ile               | Phe        | Ser        | Asp        | His<br>725 | His               | Thr                | Met        | Cys        | Tyr<br>730 | Cys               | Glu               | Asp        | Gly               | Phe<br>735 | Met        |
| His               | Cys        | Thr        | Met<br>740 | Ser        | Gly               | Val                | Pro        | Gly<br>745 | Ser        | Leu               | Leu               | Pro        | <b>Asp</b><br>750 | Ala        | Val        |
| Leu               | Ser        | Ser<br>755 | Pro        | Leu        | Ser               | His                | Arg<br>760 | Ser        | Lys        | Arg               | Ser               | Leu<br>765 | Ser               | Cys        | Arg        |
| Pro               | Pro<br>770 | Met        | Val        | Lys        | Leu               | <b>V</b> al<br>775 | Cys        | Pro        | Ala        | Asp               | Asn<br>780        | Leu        | Arg               | Ala        | Glu        |
| Gly<br>785        | Leu        | Glu        | Cys        | Thr        | Lys<br>790        | Thr                | Cys        | Gln        | Asn        | <b>Tyr</b><br>795 | Asp               | Leu        | Glu               | Cys        | Met<br>800 |
| Ser               | Met        | Gly        | Cys        | Val<br>805 | Ser               | Gly                | Суѕ        | Leu        | Cys<br>810 | Pro               | Pro               | Gly        | Met               | Val<br>815 | Arg        |
| His               | Glu        | Asn        | Arg<br>820 | Cys        | Val               | Ala                | Leu        | Glu<br>825 | Arg        | Cys               | Pro               | Cys        | Phe<br>830        | His        | Gln        |
| Gly               | Lys        | Glu<br>835 | Tyr        | Ala        | Pro               | Gly                | Glu<br>840 | Thr        | Val        | Lys               | Ile               | Gly<br>845 | Суѕ               | Asn        | Thr        |
| Cys               | Val<br>850 | Cys        | Gln        | Asp        | Arg               | Lys<br>855         | Trp        | Asn        | Cys        | Thr               | <b>Asp</b><br>860 | His        | Val               | Cys        | Asp        |
| <b>Ala</b><br>865 | Thr        | Cys        | Ser        | Thr        | Ile<br>870        | Gly                | Met        | Ala        | His        | <b>Tyr</b><br>875 | Leu               | Thr        | Phe               | Asp        | Gly<br>880 |
| Leu               | Lys        | Tyr        | Leu        | Phe<br>885 | Pro               | Gly                | Glu        | Cys        | G1n<br>890 | Tyr               | Val               | Leu        | Val               | Gln<br>895 | Asp        |
| Tyr               | Cys        | Gly        | Ser<br>900 | Asn        | Pro               | Gly                | Thr        | Phe<br>905 | Arg        | Ile               | Leu               | Val        | Gly<br>910        | Asn        | Lys        |
| Gly               | Cys        | Ser<br>915 | His        | Pro        | Ser               | Val                | Lys<br>920 | Cys        | Lys        | Lys               | Arg               | Val<br>925 | Thr               | Ile        | Leu        |

- Val Glu Gly Gly Glu Ile Glu Leu Phe Asp Gly Glu Val Asn Val Lys 930 935 940
- Arg Pro Met Lys Asp Glu Thr His Phe Glu Val Val Glu Ser Gly Arg 945 950 955 960
- Tyr Ile Ile Leu Leu Gly Lys Ala Leu Ser Val Val Trp Asp Arg 965 970 975
- His Leu Ser Ile Ser Val Val Leu Lys Gln Thr Tyr Gln Glu Lys Val 980 985 990
- Cys Gly Leu Cys Gly Asn Phe Asp Gly Ile Gln Asn Asn Asp Leu Thr 995 1000 1005
- Ser Ser Asn Leu Gln Val Glu Glu Asp Pro Val Asp Phe Gly Asn 1010 1015 1020
- Ser Trp Lys Val Ser Ser Gln Cys Ala Asp Thr Arg Lys Val Pro 1025 1030 1035
- Leu Asp Ser Ser Pro Ala Thr Cys His Asn Asn Ile Met Lys Gln 1040 1045 1050
- Thr Met Val Asp Ser Ser Cys Arg Ile Leu Thr Ser Asp Val Phe 1055 1060 1065
- Gln Asp Cys Asn Lys Leu Val Asp Pro Glu Pro Tyr Leu Asp Val 1070 1075 1080
- Cys Ile Tyr Asp Thr Cys Ser Cys Glu Ser Ile Gly Asp Cys Ala 1085 1090 1095
- Cys Phe Cys Asp Thr Ile Ala Ala Tyr Ala His Val Cys Ala Gln 1100 1105 1110
- His Gly Lys Val Val Thr Trp Arg Thr Ala Thr Leu Cys Pro Gln 1115 1120 1125
- Ser Cys Glu Glu Arg Asn Leu Arg Glu Asn Gly Tyr Glu Cys Glu 1130 1135 1140
- Trp Arg Tyr Asn Ser Cys Ala Pro Ala Cys Gln Val Thr Cys Gln 1145 1150 1155
- His Pro Glu Pro Leu Ala Cys Pro Val Gln Cys Val Glu Gly Cys 1160 1165 1170

| His               | Ala<br>1175                                                             |                                 | Cys               | Pro                      | Pro                      | Gly<br>1180                                       | _                               | Ile                      | Leu                      | Asp                      | Glu<br>1185                                              | Leu                      | Leu                             | Gln                      |
|-------------------|-------------------------------------------------------------------------|---------------------------------|-------------------|--------------------------|--------------------------|---------------------------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|----------------------------------------------------------|--------------------------|---------------------------------|--------------------------|
| Thr               | Cys<br>1190                                                             | Val                             | Asp               | Pro                      | Glu                      | Asp<br>1195                                       | Cys                             | Pro                      | Val                      | Cys                      | Glu<br>1200                                              | Val                      | Ala                             | Gly                      |
| Arg               | Arg<br>1205                                                             | Phe                             | Ala               | Ser                      |                          | Lys<br>1210                                       |                                 | Val                      | Thr                      | Leu                      | Asn<br>1215                                              | Pro                      | Ser                             | Asp                      |
| Pro               | Glu<br>1220                                                             |                                 | Суѕ               | Gln                      | Ile                      | Cys<br>1225                                       |                                 | Cys                      | Asp                      | Val                      | Val<br>1230                                              | Asn                      | Leu                             | Thr                      |
| Cys               | Glu<br>1235                                                             | Ala                             | Cys               | Gln                      | Glu                      | Pro<br>1240                                       | _                               | Gly                      | Leu                      | Val                      | Val<br>1245                                              | Pro                      | Pro                             | Thr                      |
| Asp               | Ala<br>1250                                                             | Pro                             | Val               | Ser                      | Pro                      | Thr<br>1255                                       | Thr                             | Leu                      | Tyr                      | Val                      | Glu<br>1260                                              | Asp                      | Ile                             | Ser                      |
| Glu               | Pro<br>1265                                                             | Pro                             | Leu               | His                      | Asp                      | Phe<br>1270                                       | Tyr                             | Cys                      | Ser                      | Arg                      | Leu<br>1275                                              | Leu                      | Asp                             | Leu                      |
| Val               | Phe<br>1280                                                             | Leu                             | Leu               | Asp                      | Gly                      | Ser<br>1285                                       | Ser                             | Arg                      | Leu                      | Ser                      | Glu<br>1290                                              | Ala                      | Glu                             | Phe                      |
| Glu               | Val                                                                     | Leu                             | Lvs               | Ala                      | Phe                      | Val                                               | Val                             | Agn                      | Mot                      | Met.                     | Glu                                                      | Δτα                      | T.011                           | Ara                      |
|                   | 1295                                                                    |                                 | -10               |                          |                          | 1300                                              | ,,,,                            | пор                      | 1100                     |                          | 1305                                                     | ALG                      | шец                             | mrg                      |
| Ile               |                                                                         | Gln                             |                   |                          |                          | 1300                                              | Val                             |                          |                          |                          | 1305                                                     | Tyr                      |                                 |                          |
|                   | 1295<br>Ser                                                             | Gln                             | Lys               | Trp                      | Val                      | 1300<br>Arg<br>1315                               | Val                             | Ala                      | Val                      | Val                      | 1305<br>Glu<br>1320                                      | Tyr                      | His                             | Asp                      |
| Gly               | 1295<br>Ser<br>1310                                                     | Gln<br>His                      | Lys<br>Ala        | Trp<br>Tyr               | Val                      | 1300<br>Arg<br>1315<br>Gly<br>1330                | Val<br>Leu                      | Ala<br>Lys               | Val<br>Asp               | Val<br>Arg               | 1305<br>Glu<br>1320<br>Lys<br>1335                       | Tyr<br>Arg               | His<br>Pro                      | Asp                      |
| Gly<br>Glu        | 1295<br>Ser<br>1310<br>Ser<br>1325                                      | Gln<br>His<br>Arg               | Lys<br>Ala<br>Arg | Trp<br>Tyr               | Val<br>Ile<br>Ala        | 1300<br>Arg<br>1315<br>Gly<br>1330<br>Ser<br>1345 | Val<br>Leu<br>Gln               | Ala<br>Lys<br>Val        | Val<br>Asp<br>Lys        | Val<br>Arg<br>Tyr        | 1305<br>Glu<br>1320<br>Lys<br>1335<br>Ala<br>1350        | Tyr<br>Arg<br>Gly        | His<br>Pro<br>Ser               | Asp<br>Ser<br>Gln        |
| Gly<br>Glu<br>Val | 1295<br>Ser<br>1310<br>Ser<br>1325<br>Leu<br>1340<br>Ala                | Gln<br>His<br>Arg               | Lys<br>Ala<br>Arg | Trp<br>Tyr<br>Ile<br>Ser | Val<br>Ile<br>Ala<br>Glu | 1300 Arg 1315 Gly 1330 Ser 1345 Val 1360          | Val<br>Leu<br>Gln<br>Leu        | Ala<br>Lys<br>Val        | Val<br>Asp<br>Lys        | Val<br>Arg<br>Tyr        | 1305 Glu 1320 Lys 1335 Ala 1350 Leu 1365                 | Tyr<br>Arg<br>Gly<br>Phe | His<br>Pro<br>Ser<br>Gln        | Asp<br>Ser<br>Gln        |
| Gly<br>Glu<br>Val | 1295<br>Ser<br>1310<br>Ser<br>1325<br>Leu<br>1340<br>Ala<br>1355<br>Ser | Gln<br>His<br>Arg<br>Ser<br>Lys | Lys Ala Arg Thr   | Trp Tyr Ile Ser          | Val<br>Ile<br>Ala<br>Glu | 1300 Arg 1315 Gly 1330 Ser 1345 Val 1360 Pro 1375 | Val<br>Leu<br>Gln<br>Leu<br>Glu | Ala<br>Lys<br>Val<br>Lys | Val<br>Asp<br>Lys<br>Tyr | Val<br>Arg<br>Tyr<br>Thr | Glu<br>1320<br>Lys<br>1335<br>Ala<br>1350<br>Leu<br>1365 | Tyr Arg Gly Phe          | His<br>Pro<br>Ser<br>Gln<br>Leu | Asp<br>Ser<br>Gln<br>Ile |

| Val Gly<br>141 |       | Gly Pro | His | Ala<br>1420        |     | Leu | Lys | Gln | Ile<br>1425          | _   | Leu | Ile |
|----------------|-------|---------|-----|--------------------|-----|-----|-----|-----|----------------------|-----|-----|-----|
| Glu Lys<br>143 |       | Ala Pro | Glu | Asn<br>1435        |     | Ala | Phe | Val | Leu<br>1440          | Ser | Ser | Val |
| Asp Glu<br>144 |       | Glu Gln | Gln | Arg<br>1450        | Asp | Glu | Ile | Val | Ser<br>1455          | Tyr | Leu | Cys |
| Asp Leu<br>146 |       | Pro Glu | Ala | Pro<br>1465        | Pro | Pro | Thr | Leu | Pro<br>1 <b>4</b> 70 | Pro | Asp | Met |
| Ala Gln<br>147 |       | Thr Val | Gly | Pro<br>1480        | Gly | Leu | Leu | Gly | Val<br>1485          | Ser | Thr | Leu |
| Gly Pro        | _     | Arg Asn | Ser | Met<br>1495        |     | Leu | Asp | Val | Ala<br>1500          | Phe | Val | Leu |
| Glu Gly<br>150 |       | Asp Lys | Ile | Gly<br>1510        | Glu | Ala | Asp | Phe | <b>As</b> n<br>1515  | Arg | Ser | Lys |
| Glu Phe<br>152 |       | Glu Glu | Val | Ile<br>1525        | Gln | Arg | Met | Asp | Val<br>1530          | Gly | Gln | Asp |
| Ser Ile<br>153 |       | Val Thr | Val | Leu<br>1540        | Gln | Tyr | Ser | Tyr | Met<br>1545          | Val | Thr | Val |
| Glu Tyr<br>155 |       | Phe Ser | Glu | Ala<br>1555        | Gln | Ser | Lys | Gly | Asp<br>1560          | Ile | Leu | Gln |
| Arg Val        |       | Glu Ile | Arg | <b>Tyr</b><br>1570 | Gln | Gly | Gly | Asn | Arg<br>1575          | Thr | Asn | Thr |
| Gly Leu<br>158 |       | Leu Arg | Tyr | Leu<br>1585        | Ser | Asp | His | Ser | Phe<br>1590          | Leu | Val | Ser |
| Gln Gly<br>159 | _     | Arg Glu | Gln | Ala<br>1600        | Pro | Asn | Leu | Val | Tyr<br>1605          | Met | Val | Thr |
| Gly Asn<br>161 |       | Ala Ser | Asp | Glu<br>1615        | Ile | Lys | Arg | Leu | Pro<br>1620          | Gly | Asp | Ile |
| Gln Val<br>162 |       | Pro Ile | Gly | Val<br>1630        | Gly | Pro | Asn | Ala | Asn<br>1635          | Val | Gln | Glu |
| Leu Glu        | Arg I | Ile Gly | Trp | Pro                | Asn | Ala | Pro | Ile | Leu                  | Ile | Gln | Asp |

|     | 1640        |     |     |     |     | 1645        |     |     |     |     | 1650        |     |     |     |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Phe | Glu<br>1655 | Thr | Leu | Pro | Arg | Glu<br>1660 | Ala | Pro | Asp | Leu | Val<br>1665 | Leu | Gln | Arg |
| Cys | Cys<br>1670 | Ser | Gly | Glu | Gly | Leu<br>1675 | Gln | Ile | Pro | Thr | Leu<br>1680 | Ser | Pro | Ala |
| Pro | Asp<br>1685 | Cys | Ser | Gln | Pro | Leu<br>1690 | Asp | Val | Ile | Leu | Leu<br>1695 | Leu | Asp | Gly |
| Ser | Ser<br>1700 | Ser | Phe | Pro | Ala | Ser<br>1705 | Tyr | Phe | Asp | Glu | Met<br>1710 | Lys | Ser | Phe |
| Ala | Lys<br>1715 | Ala | Phe | Ile | Ser | Lys<br>1720 | Ala | Asn | Ile | Gly | Pro<br>1725 | Arg | Leu | Thr |
| Gln | Val<br>1730 | Ser | Val | Leu | Gln | Tyr<br>1735 |     | Ser | Ile | Thr | Thr<br>1740 | Ile | Asp | Val |
| Pro | Trp<br>1745 |     | Val | Val | Pro | Glu<br>1750 |     | Ala | His | Leu | Leu<br>1755 | Ser | Leu | Val |
| Asp | Val<br>1760 | Met | Gln | Arg | Glu | Gly<br>1765 | Gly | Pro | Ser | Gln | Ile<br>1770 | Gly | Asp | Ala |
| Leu | Gly<br>1775 |     | Ala | Val | Arg | Tyr<br>1780 |     | Thr | Ser | Glu | Met<br>1785 | His | Gly | Ala |
| Arg | Pro<br>1790 | Gly | Ala | Ser | Lys | Ala<br>1795 | Val | Val | Ile | Leu | Val<br>1800 | Thr | Asp | Val |
| Ser | Val<br>1805 | Asp | Ser | Val | Asp | Ala<br>1810 | Ala | Ala | Asp | Ala | Ala<br>1815 | Arg | Ser | Asn |
| Arg | Val<br>1820 | Thr | Val | Phe | Pro | Ile<br>1825 | Gly | Ile | Gly | Asp | Arg<br>1830 | Tyr | Asp | Ala |
| Ala | Gln<br>1835 | Leu | Arg | Ile | Leu | Ala<br>1840 | Gly | Pro | Ala | Gly | Asp<br>1845 | Ser | Asn | Val |
| Val | Lys<br>1850 | Leu | Gln | Arg | Ile | Glu<br>1855 | Asp | Leu | Pro | Thr | Met<br>1860 | Val | Thr | Leu |
| Gly | Asn<br>1865 | Ser | Phe | Leu | His | Lys<br>1870 | Leu | Cys | Ser | Gly | Phe<br>1875 | Val | Arg | Ile |

| Cys | Met<br>1880 |     | Glu | Asp | Gly | Asn<br>1885 | Glu | Lys | Arg | Pro | Gly<br>1890 | Asp | Val | Trp |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Thr | Leu<br>1895 | Pro | Asp | Gln | Cys | His<br>1900 | Thr | Val | Thr | Cys | Gln<br>1905 | Pro | Asp | Gly |
| Gln | Thr<br>1910 | Leu | Leu | Lys | Ser | His<br>1915 | Arg | Val | Asn | Cys | Asp<br>1920 | Arg | Gly | Leu |
| Arg | Pro<br>1925 | Ser | Cys | Pro | Asn | Ser<br>1930 | Gln | Ser | Pro | Val | Lys<br>1935 | Val | Glu | Glu |
| Thr | Cys<br>1940 |     | Cys | Arg | Trp | Thr<br>1945 | Суз | Pro | Cys | Val | Cys<br>1950 |     | Gly | Ser |
| Ser | Thr<br>1955 | Arg | His | Ile | Val | Thr<br>1960 | Phe | Asp | Gly | Gln | Asn<br>1965 | Phe | Lys | Leu |
| Thr | Gly<br>1970 | Ser | Cys | Ser | Tyr | Val<br>1975 | Leu | Phe | Gln | Asn | Lys<br>1980 | Glu | Gln | Asp |
| Leu | Glu<br>1985 | Val | Ile | Leu | His | Asn<br>1990 | Gly | Ala | Cys | Ser | Pro<br>1995 | Gly | Ala | Arg |
| Gln | Gly<br>2000 | _   | Met | Lys | Ser | Ile<br>2005 | Glu | Val | Lys | His | Ser<br>2010 | Ala | Leu | Ser |
| Val | Glu<br>2015 | Leu | His | Ser | Asp | Met<br>2020 | Glu | Val | Thr | Val | Asn<br>2025 | Gly | Arg | Leu |
| Val | Ser<br>2030 | Val | Pro | Tyr | Val | Gly<br>2035 | Gly | Asn | Met | Glu | Val<br>2040 | Asn | Val | Tyr |
| Gly | Ala<br>2045 | Ile | Met | His | Glu | Val<br>2050 | Arg | Phe | Asn | His | Leu<br>2055 | Gly | His | Ile |
| Phe | Thr<br>2060 | Phe | Thr | Pro | Gln | Asn<br>2065 | Asn | Glu | Phe | Gln | Leu<br>2070 | Gln | Leu | Ser |
| Pro | Lys<br>2075 | Thr | Phe | Ala | Ser | Lys<br>2080 | Thr | Tyr | Gly | Leu | Cys<br>2085 | Gly | Ile | Cys |
| Asp | Glu<br>2090 | Asn | Gly | Ala | Asn | Asp<br>2095 | Phe | Met | Leu | Arg | Asp<br>2100 | Gly | Thr | Val |
| Thr | Thr<br>2105 | Asp | Trp | Lys | Thr | Leu<br>2110 | Val | Gln | Glu | Trp | Thr<br>2115 | Val | Gln | Arg |

| Pro | Gly<br>2120          |     | Thr | Cys | Gln | Pro<br>2125 |     | Leu | Glu | Glu | Gln<br>2130          | Cys | Leu | Val |
|-----|----------------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|----------------------|-----|-----|-----|
| Pro | Asp<br>2135          | Ser | Ser | His | Cys | Gln<br>2140 | Val | Leu | Leu | Leu | Pro<br>21 <b>4</b> 5 | Leu | Phe | Ala |
| Glu | Cys<br>2150          | His | Lys | Val | Leu | Ala<br>2155 |     | Ala | Thr | Phe | Tyr<br>2160          | Ala | Ile | Cys |
| Gln | Gln<br>2165          | Asp | Ser | Cys | His | Gln<br>2170 | Glu | Gln | Val | Cys | Glu<br>2175          | Val | Ile | Ala |
| Ser | Tyr<br>2180          |     | His | Leu |     | Arg<br>2185 | Thr | Asn | Gly | Val | Cys<br>2190          | Val | Asp | Trp |
| Arg | Thr<br>2195          | Pro | Asp | Phe | Cys | Ala<br>2200 | Met | Ser | Cys | Pro | Pro<br>2205          |     | Leu | Val |
| Tyr | Asn<br>2210          | His | Cys | Glu | His | Gly<br>2215 | Cys | Pro | Arg | His | Cys<br>2220          | Asp | Gly | Asn |
| Val | Ser<br>2225          | Ser | Cys | Gly | Asp | His<br>2230 | Pro | Ser | Glu | Gly | Cys<br>2235          |     | Cys | Pro |
| Pro | Asp<br>2240          | Lys | Val | Met | Leu | Glu<br>2245 | Gly | Ser | Cys | Val | Pro<br>2250          | Glu | Glu | Ala |
| Cys | Thr<br>2255          |     | Cys | Ile |     | Glu<br>2260 |     | Gly | Val | Gln | His<br>2265          |     | Phe | Leu |
| Glu | Ala<br>2270          | Trp | Val | Pro | Asp | His<br>2275 | Gln | Pro | Cys | Gln | Ile<br>2280          | Суз | Thr | Cys |
| Leu | Ser<br>2285          | Gly | Arg | Lys | Val | Asn<br>2290 | Cys | Thr | Thr | Gln | Pro<br>2295          | Cys | Pro | Thr |
| Ala | Lys<br>2300          | Ala | Pro | Thr | Cys | Gly<br>2305 | Leu | Cys | Glu | Val | Ala<br>2310          | Arg | Leu | Arg |
| Gln | Asn<br>2315          | Ala | Asp | Gln | Суз | Cys<br>2320 | Pro | Glu | Tyr | Glu | Cys<br>2325          | Val | Cys | Asp |
| Pro | Val<br>2330          | Ser | Cys | Asp | Leu | Pro<br>2335 | Pro | Val | Pro | His | Cys<br>2340          | Glu | Arg | Gly |
| Leu | Gln<br>23 <b>4</b> 5 | Pro | Thr | Leu | Thr | Asn<br>2350 | Pro | Gly | Glu | Cys | Arg<br>2355          | Pro | Asn | Phe |

| Thr | Cys<br>2360 |     | Cys | Arg | Lys | Glu<br>2365          |     | Cys | Lys | Arg | Val<br>2370 | Ser | Pro | Pro |
|-----|-------------|-----|-----|-----|-----|----------------------|-----|-----|-----|-----|-------------|-----|-----|-----|
| Ser | Cys<br>2375 | Pro | Pro | His | Arg | Leu<br>2380          | Pro | Thr | Leu | Arg | Lys<br>2385 | Thr | Gln | Cys |
| Cys | Asp<br>2390 | Glu | Tyr | Glu |     | Ala<br>2395          |     | Asn | Cys | Val | Asn<br>2400 | Ser | Thr | Val |
| Ser | Cys<br>2405 | Pro | Leu | Gly | Tyr | Leu<br>2410          | Ala | Ser | Thr | Ala | Thr<br>2415 | Asn | Asp | Cys |
| Gly | Cys<br>2420 |     | Thr | Thr | Thr | Cys<br>2 <b>4</b> 25 |     | Pro | Asp | Lys | Val<br>2430 | _   | Val | His |
| Arg | Ser<br>2435 |     | Ile | Tyr | Pro | Val<br>2440          | _   | Gln | Phe | Trp | Glu<br>2445 | Glu | Gly | Cys |
| Asp | Val<br>2450 | Cys | Thr | Cys | Thr | Asp<br>2455          | Met | Glu | Asp | Ala | Val<br>2460 | Met | Gly | Leu |
| Arg | Val<br>2465 | Ala | Gln | Cys | Ser | Gln<br>2 <b>4</b> 70 | Lys | Pro | Cys | Glu | Asp<br>2475 | Ser | Cys | Arg |
| Ser | Gly<br>2480 | Phe | Thr | Tyr | Val | Leu<br>2485          | His | Glu | Gly | Glu | Cys<br>2490 | Cys | Gly | Arg |
| Cys | Leu<br>2495 | Pro | Ser | Ala |     | Glu<br>2500          | Val | Val | Thr | Gly | Ser<br>2505 | Pro | Arg | Gly |
| Asp | Ser<br>2510 | Gln | Ser | Ser | Trp | Lys<br>2515          | Ser | Val | Gly | Ser | Gln<br>2520 | Trp | Ala | Ser |
| Pro | Glu<br>2525 | Asn | Pro | Cys | Leu | Ile<br>2530          | Asn | Glu | Cys | Val | Arg<br>2535 | Val | Lys | Glu |
| Glu | Val<br>2540 | Phe | Ile | Gln | Gln | Arg<br>2545          | Asn | Val | Ser | Cys | Pro<br>2550 | Gln | Leu | Glu |
| Val | Pro<br>2555 | Val | Cys | Pro | Ser | Gly<br>2560          | Phe | Gln | Leu | Ser | Cys<br>2565 | Lys | Thr | Ser |
| Ala | Cys<br>2570 | Cys | Pro | Ser | Cys | Arg<br>2575          | Cys | Glu | Arg | Met | Glu<br>2580 | Ala | Cys | Met |
| Leu | Asn         | Gly | Thr | Val | Ile | Gly                  | Pro | Gly | Lys | Thr | Val         | Met | Ile | Asp |

|     | 2585        |     |     |     |     | 2590        |     |     |     |     | 2595                 |     |     |     |
|-----|-------------|-----|-----|-----|-----|-------------|-----|-----|-----|-----|----------------------|-----|-----|-----|
| Val | Cys<br>2600 |     | Thr | Cys | Arg | Cys<br>2605 |     | Val | Gln | Val | Gly<br>2610          | Val | Ile | Ser |
| Gly | Phe<br>2615 | Lys | Leu | Glu | Cys | Arg<br>2620 | Lys | Thr | Thr | Cys | Asn<br>2625          | Pro | Cys | Pro |
| Leu | Gly<br>2630 |     | Lys | Glu | Glu | Asn<br>2635 |     | Thr | Gly | Glu | Cys<br>2640          | Cys | Gly | Arg |
| Cys | Leu<br>2645 | Pro | Thr | Ala | Cys | Thr<br>2650 | Ile | Gln | Leu | Arg | Gly<br>2655          | Gly | Gln | Ile |
| Met | Thr<br>2660 |     | Lys | Arg | _   | Glu<br>2665 |     | Leu | Gln | Asp | Gly<br>2670          | _   | Asp | Thr |
| His | Phe<br>2675 |     | Lys | Val | Asn | Glu<br>2680 | Arg | Gly | Glu | Tyr | Phe<br>2685          | Trp | Glu | Lys |
| Arg | Val<br>2690 | Thr | Gly | Cys | Pro | Pro<br>2695 | Phe | Asp | Glu | His | Lys<br>2700          | Cys | Leu | Ala |
| Glu | Gly<br>2705 | -   | Lys | Ile | Met | Lys<br>2710 | Ile | Pro | Gly | Thr | Cys<br>2715          | Cys | Asp | Thr |
| Cys | Glu<br>2720 | Glu | Pro | Glu | Суз | Asn<br>2725 | Asp | Ile | Thr | Ala | Arg<br>2730          | Leu | Gln | Tyr |
| Val | Lys<br>2735 | Val | Gly | Ser | Cys | Lys<br>2740 | Ser | Glu | Val | Glu | Val<br>27 <b>4</b> 5 | Asp | Ile | His |
| Tyr | Cys<br>2750 | Gln | Gly | Lys | Cys | Ala<br>2755 | Ser | Lys | Ala | Met | Tyr<br>2760          |     | Ile | Asp |
| Ile | Asn<br>2765 |     | Val | Gln | Asp | Gln<br>2770 | Суз | Ser | Суѕ | Суз | Ser<br>2775          | Pro | Thr | Arg |
| Thr | Glu<br>2780 | Pro | Met | Gln | Val | Ala<br>2785 | Leu | His | Cys | Thr | Asn<br>2790          | Gly | Ser | Val |
| Val | Tyr<br>2795 |     | Glu | Val | Leu | Asn<br>2800 | Ala | Met | Glu | Cys | <b>Lys</b><br>2805   | Cys | Ser | Pro |
| Arg | Lys<br>2810 | Cys | Ser | Lys |     |             |     |     |     |     |                      |     |     |     |

<210> 2 <211> 1365 <212> PRT 5 <213> Homo sapiens

<400> 2

Ser Leu Ser Cys Arg Pro Pro Met Val Lys Leu Val Cys Pro Ala Asp 1 5 10 15

Asn Leu Arg Ala Glu Gly Leu Glu Cys Thr Lys Thr Cys Gln Asn Tyr 20 25 30

Asp Leu Glu Cys Met Ser Met Gly Cys Val Ser Gly Cys Leu Cys Pro 35 40 45

Pro Gly Met Val Arg His Glu Asn Arg Cys Val Ala Leu Glu Arg Cys 50 55 60

Pro Cys Phe His Gln Gly Lys Glu Tyr Ala Pro Gly Glu Thr Val Lys 65 70 75 80

Ile Gly Cys Asn Thr Cys Val Cys Gln Asp Arg Lys Trp Asn Cys Thr 85 90 95

Asp His Val Cys Asp Ala Thr Cys Ser Thr Ile Gly Met Ala His Tyr 100 105 110

Leu Thr Phe Asp Gly Leu Lys Tyr Leu Phe Pro Gly Glu Cys Gln Tyr 115 120 125

Val Leu Val Gln Asp Tyr Cys Gly Ser Asn Pro Gly Thr Phe Arg Ile 130 135 140

Leu Val Gly Asn Lys Gly Cys Ser His Pro Ser Val Lys Cys Lys Lys 145 150 155 160

Arg Val Thr Ile Leu Val Glu Gly Glu Ile Glu Leu Phe Asp Gly
165 170 175

Glu Val Asn Val Lys Arg Pro Met Lys Asp Glu Thr His Phe Glu Val 180 185 190

Val Glu Ser Gly Arg Tyr Ile Ile Leu Leu Gly Lys Ala Leu Ser 195 200 205

Val Val Trp Asp Arg His Leu Ser Ile Ser Val Val Leu Lys Gln Thr 210 215 220

| Tyr<br>225 | Gln        | Glu        | Lys        | Val        | Cys<br>230 | Gly        | Leu        | Cys        | Gly        | Asn<br>235 | Phe        | Asp        | Gly            | Ile        | Gln<br>240 |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|------------|
| Asn        | Asn        | Asp        | Leu        | Thr<br>245 | Ser        | Ser        | Asn        | Leu        | Gln<br>250 | Val        | Glu        | Glu        | Asp            | Pro<br>255 | Val        |
| Asp        | Phe        | Gly        | Asn<br>260 | Ser        | Trp        | Lys        | Val        | Ser<br>265 | Ser        | Gln        | Cys        | Ala        | <b>Asp</b> 270 | Thr        | Arg        |
| Lys        | Val        | Pro<br>275 | Leu        | Asp        | Ser        | Ser        | Pro<br>280 | Ala        | Thr        | Cys        | His        | Asn<br>285 | Asn            | Ile        | Met        |
| Lys        | Gln<br>290 | Thr        | Met        | Val        | Asp        | Ser<br>295 | Ser        | Cys        | Arg        | Ile        | Leu<br>300 | Thr        | Ser            | Asp        | Val        |
| Phe<br>305 | Gln        | Asp        | Cys        | Asn        | Lys<br>310 | Leu        | Val        | Asp        | Pro        | Glu<br>315 | Pro        | Tyr        | Leu            | Asp        | Val<br>320 |
| Cys        | Ile        | Tyr        | Asp        | Thr<br>325 | Cys        | Ser        | Суѕ        | Glu        | Ser<br>330 | Ile        | Gly        | Asp        | Суѕ            | Ala<br>335 | Суѕ        |
|            | -          |            | 340        |            |            |            |            | 345        |            |            |            |            | Gln<br>350     |            | _          |
| -          |            | 355        |            | _          |            |            | 360        |            |            | _          |            | 365        | Ser            |            |            |
|            | 370        |            |            |            |            | 375        | Ī          |            |            |            | 380        | _          | Arg            |            |            |
| 385        |            |            |            |            | 390        |            |            |            | _          | 395        |            |            | Glu            |            | 400        |
|            |            |            |            | 405        |            |            |            |            | 410        |            |            |            | Cys            | 415        |            |
|            |            |            | 420        |            |            |            |            | 425        |            |            |            |            | Pro<br>430     |            |            |
|            |            | 435        |            |            |            |            | 440        |            |            |            |            | 445        | Gly            |            |            |
|            | 450        |            |            |            |            | 455        |            |            |            |            | 460        |            | Cys            |            |            |
| Asp<br>465 | Val        | Val        | Asn        | Leu        | Thr<br>470 | Cys        | Glu        | Ala        | Cys        | Gln<br>475 | Glu        | Pro        | Gly            | Gly        | Leu<br>480 |

| Val        | Val        | Pro        | Pro        | Thr<br>485 | Asp        | Ala        | Pro               | Val        | Ser<br>490     | Pro        | Thr        | Thr        | Leu        | Tyr<br>495     | Val               |
|------------|------------|------------|------------|------------|------------|------------|-------------------|------------|----------------|------------|------------|------------|------------|----------------|-------------------|
| Glu        | Asp        | Ile        | Ser<br>500 | Glu        | Pro        | Pro        | Leu               | His<br>505 | Asp            | Phe        | Tyr        | Cys        | Ser<br>510 | Arg            | Leu               |
| Leu        | Asp        | Leu<br>515 | Val        | Phe        | Leu        | Leu        | Asp<br>520        | Gly        | Ser            | Ser        | Arg        | Leu<br>525 | Ser        | Glu            | Ala               |
| Glu        | Phe<br>530 | Glu        | Val        | Leu        | Lys        | Ala<br>535 | Phe               | Val        | Val            | Asp        | Met<br>540 | Met        | Glu        | Arg            | Leu               |
| Arg<br>545 | Ile        | Ser        | Gln        | Lys        | Trp<br>550 | Val        | Arg               | Val        | Ala            | Val<br>555 | Val        | Glu        | Tyr        | His            | <b>Asp</b><br>560 |
| Gly        | Ser        | His        | Ala        | Tyr<br>565 | Ile        | Gly        | Leu               | Lys        | <b>Asp</b> 570 | Arg        | Lys        | Arg        | Pro        | Ser<br>575     | Glu               |
| Leu        | Arg        | Arg        | Ile<br>580 | Ala        | Ser        | Gln        | Val               | Lys<br>585 | Tyr            | Ala        | Gly        | Ser        | Gln<br>590 | Val            | Ala               |
| Ser        | Thr        | Ser<br>595 | Glu        | Val        | Leu        | Lys        | <b>Tyr</b><br>600 | Thr        | Leu            | Phe        | Gln        | Ile<br>605 | Phe        | Ser            | Lys               |
| Ile        | Asp<br>610 | Arg        | Pro        | Glu        | Ala        | Ser<br>615 | Arg               | Ile        | Thr            | Leu        | Leu<br>620 | Leu        | Met        | Ala            | Ser               |
| Gln<br>625 | Glu        | Pro        | Gln        | Arg        | Met<br>630 | Ser        | Arg               | Asn        | Phe            | Val<br>635 | Arg        | Tyr        | Val        | Gln            | Gly<br>640        |
| Leu        | Lys        | Lys        | Lys        | Lys<br>645 | Val        | Ile        | Val               | Ile        | Pro<br>650     | Val        | Gly        | Ile        | Gly        | Pro<br>655     | His               |
| Ala        | Asn        | Leu        | Lys<br>660 | Gln        | Ile        | Arg        | Leu               | Ile<br>665 | Glu            | Lys        | Gln        | Ala        | Pro<br>670 | Glu            | Asn               |
| Lys        | Ala        | Phe<br>675 | Val        | Leu        | Ser        | Ser        | Val<br>680        | Asp        | Glu            | Leu        | Glu        | Gln<br>685 | Gln        | Arg            | Asp               |
| Glu        | Ile<br>690 | Val        | Ser        | Tyr        | Leu        | Cys<br>695 | Asp               | Leu        | Ala            | Pro        | Glu<br>700 | Ala        | Pro        | Pro            | Pro               |
| Thr<br>705 | Leu        | Pro        | Pro        | Asp        | Met<br>710 | Ala        | Gln               | Val        | Thr            | Val<br>715 | Gly        | Pro        | Gly        | Leu            | Leu<br>720        |
| Gly        | Val        | Ser        | Thr        | Leu<br>725 | Gly        | Pro        | Lys               | Arg        | Asn<br>730     | Ser        | Met        | Val        | Leu        | <b>Asp</b> 735 | Val               |

| АІА               | Pne               | vai               | 740        | GIU        | GTĀ                | ser               | Asp        | 145        | тте               | GIŸ               | GIU        | АІА        | 750        | Pne        | Asn        |
|-------------------|-------------------|-------------------|------------|------------|--------------------|-------------------|------------|------------|-------------------|-------------------|------------|------------|------------|------------|------------|
| Arg               | Ser               | <b>Lys</b><br>755 | Glu        | Phe        | Met                | Glu               | Glu<br>760 | Val        | Ile               | Gln               | Arg        | Met<br>765 | Asp        | Val        | Gly        |
| Gln               | <b>Asp</b><br>770 | Ser               | Ile        | His        | Val                | Thr<br>775        | Val        | Leu        | Gln               | Tyr               | Ser<br>780 | Tyr        | Met        | Val        | Thr        |
| <b>Val</b><br>785 | Glu               | Tyr               | Pro        | Phe        | Ser<br>790         | Glu               | Ala        | Gln        | Ser               | <b>Lys</b><br>795 | Gly        | Asp        | Ile        | Leu        | Gln<br>800 |
| Arg               | Val               | Arg               | Glu        | Ile<br>805 | Arg                | Tyr               | Gln        | Gly        | Gly<br>810        | Asn               | Arg        | Thr        | Asn        | Thr<br>815 | Gly        |
| Leu               | Ala               | Leu               | Arg<br>820 | Tyr        | Leu                | Ser               | Asp        | His<br>825 | Ser               | Phe               | Leu        | Val        | Ser<br>830 | Gln        | Gly        |
| Asp               | Arg               | Glu<br>835        | Gln        | Ala        | Pro                | Asn               | Leu<br>840 | Val        | Tyr               | Met               | Val        | Thr<br>845 | Gly        | Asn        | Pro        |
| Ala               | Ser<br>850        | Asp               | Glu        | Ile        | Lys                | <b>Arg</b><br>855 | Leu        | Pro        | Gly               | Asp               | 11e<br>860 | Gln        | Val        | Val        | Pro        |
| Ile<br>865        | Gly               | Val               | Gly        | Pro        | <b>A</b> sn<br>870 | Ala               | Asn        | Val        | Gln               | Glu<br>875        | Leu        | Glu        | Arg        | Ile        | Gly<br>880 |
| Trp               | Pro               | Asn               | Ala        | Pro<br>885 | Ile                | Leu               | Ile        | Gln        | Asp<br>890        | Phe               | Glu        | Thr        | Leu        | Pro<br>895 | Arg        |
| Glu               | Ala               | Pro               | Asp<br>900 | Leu        | Val                | Leu               | Gln        | Arg<br>905 | Cys               | Cys               | Ser        | Gly        | Glu<br>910 | Gly        | Leu        |
| Gln               | Ile               | Pro<br>915        | Thr        | Leu        | Ser                | Pro               | Ala<br>920 | Pro        | Asp               | Cys               | Ser        | Gln<br>925 | Pro        | Leu        | Asp        |
| Val               | 11e<br>930        | Leu               | Leu        | Leu        | Asp                | Gly<br>935        | Ser        | Ser        | Ser               | Phe               | Pro<br>940 | Ala        | Ser        | Tyr        | Phe        |
| Asp<br>945        | Glu               | Met               | Lys        | Ser        | Phe<br>950         | Ala               | Lys        | Ala        | Phe               | Ile<br>955        | Ser        | Lys        | Ala        | Asn        | Ile<br>960 |
| Gly               | Pro               | Arg               | Leu        | Thr<br>965 | Gln                | Val               | Ser        | Val        | <b>Leu</b><br>970 | Gln               | Tyr        | Gly        | Ser        | Ile<br>975 | Thr        |
| Thr               | Ile               | Asp               | Val        | Pro        | Trp                | Asn               | Val        | Val        | Pro               | Glu               | Lys        | Ala        | His        | Leu        | Leu        |

| Ser |                      | Val 1<br>995 | Asp V | /al N | Met ( |             | rg ( | Glu ( | Gly ( | Gly 1 |             | er ( | Gln : | Ile Gly |
|-----|----------------------|--------------|-------|-------|-------|-------------|------|-------|-------|-------|-------------|------|-------|---------|
| Asp | Ala<br>1010          | Leu          | Gly   | Phe   | Ala   | Val<br>1015 | _    | Tyr   | Leu   | Thr   | Ser<br>1020 | Glu  | Met   | His     |
| Gly | Ala<br>1025          | Arg          | Pro   | Gly   | Ala   | Ser<br>1030 | Lys  | Ala   | Val   | Val   | Ile<br>1035 | Leu  | Val   | Thr     |
| Asp | Val<br>10 <b>4</b> 0 |              | Val   | Asp   | Ser   | Val<br>1045 | -    | Ala   | Ala   | Ala   | Asp<br>1050 | Ala  | Ala   | Arg     |
| Ser | Asn<br>1055          | _            | Val   | Thr   | Val   | Phe<br>1060 | Pro  | Ile   | Gly   | Ile   | Gly<br>1065 | Asp  | Arg   | Tyr     |
| Asp | Ala<br>1070          | Ala          | Gln   | Leu   | Arg   | Ile<br>1075 | Leu  | Ala   | Gly   | Pro   | Ala<br>1080 | Gly  | Asp   | Ser     |
| Asn | Val<br>1085          | Val          | Lys   | Leu   | Gln   | Arg<br>1090 | Ile  | Glu   | Asp   | Leu   | Pro<br>1095 | Thr  | Met   | Val     |
| Thr | Leu<br>1100          | Gly          | Asn   | Ser   | Phe   | Leu<br>1105 | His  | Lys   | Leu   | Cys   | Ser<br>1110 | Gly  | Phe   | Val     |
| Arg | Ile<br>1115          | Cys          | Met   | Asp   | Glu   | Asp<br>1120 | Gly  | Asn   | Glu   | Lys   | Arg<br>1125 | Pro  | Gly   | Asp     |
| Val | Trp<br>1130          | Thr          | Leu   | Pro   | Asp   | Gln<br>1135 | Сув  | His   | Thr   | Val   | Thr<br>1140 | Суз  | Gln   | Pro     |
| Asp | Gly<br>11 <b>4</b> 5 | Gln          | Thr   | Leu   | Leu   | Lys<br>1150 | Ser  | His   | Arg   | Val   | Asn<br>1155 | Cys  | Asp   | Arg     |
| Gly | Leu<br>1160          | Arg          | Pro   | Ser   | Cys   | Pro<br>1165 | Asn  | Ser   | Gln   | Ser   | Pro<br>1170 | Val  | Lys   | Val     |
| Glu | Glu<br>1175          | Thr          | Cys   | Gly   | Cys   | Arg<br>1180 | Trp  | Thr   | Cys   | Pro   | Cys<br>1185 | Val  | Cys   | Thr     |
| Gly | Ser<br>1190          | Ser          | Thr   | Arg   | His   | Ile<br>1195 | Val  | Thr   | Phe   | Asp   | Gly<br>1200 | Gln  | Asn   | Phe     |
| Lys | Leu<br>1205          | Thr          | Gly   | Ser   | Cys   | Ser<br>1210 | Tyr  | Val   | Leu   | Phe   | Gln<br>1215 | Asn  | Lys   | Glu     |

| 10 |                                                 | Pro      | Gly<br>50  | Met               | Val              | Arg      |       | G1u<br>55 | Asn       | Ar         | g Cy        | s Va | 1 Al<br>60 | a Leu       | Glu       | Arg               | Cys |
|----|-------------------------------------------------|----------|------------|-------------------|------------------|----------|-------|-----------|-----------|------------|-------------|------|------------|-------------|-----------|-------------------|-----|
|    |                                                 | Asp      |            | <b>Gl</b> u<br>35 | Cys              | Met      | Ser   | Met       | Gly<br>40 | Сy         | s Va.       | l Se | r Gl       | y Cys<br>45 | Leu       | Cys               | Pro |
|    |                                                 | Asn      | Leu        | Arg               | <b>Ala</b><br>20 | Glu      | Gly   | Leu       | Glu       | Cy:<br>25  | s Th        | r Ly | s Th       | r Cys       | Gln<br>30 | Asn               | Tyr |
|    |                                                 | Ser<br>1 | Leu        | Ser               | Cys              | Arg<br>5 | Pro   | Pro       | Met       | Va.        | 1 Ly:<br>10 | s Le | u Va       | l Cys       | Pro       | <b>Al</b> a<br>15 | Asp |
|    | <400> 3                                         | •        |            |                   |                  |          |       |           |           |            |             |      |            |             |           |                   |     |
| 5  | <210> 3<br><211> 272<br><212> PRT<br><213> Homo | sapier   | าร         |                   |                  |          |       |           |           |            |             |      |            |             |           |                   |     |
|    |                                                 | Gln      | Arg<br>135 |                   | o Gl             | y Gl     | n Th  |           | s (       | Gln        | Pro         | Ile  | Leu        | Glu<br>1365 |           |                   |     |
|    |                                                 | Thr      | Val        |                   | r Th             | r As     | p Tr  |           | s :       | <b>Fhr</b> | Leu         | Val  | Gln        | Glu<br>1350 | Trp       | Thr               | Val |
|    |                                                 | Ile      | Cys<br>132 |                   | p Gl             | u As     | n Gl  |           | a 1       | Asn        | Asp         | Phe  | Met        | Leu<br>1335 | Arg       | Asp               | Gly |
|    |                                                 | Leu      | Ser<br>131 |                   | o Ly             | s Th     | r Ph  |           | a s       | Ser        | Lys         | Thr  | Tyr        | Gly<br>1320 | Leu       | Cys               | Gly |
|    |                                                 | His      | Ile<br>129 |                   | e Th             | r Ph     | e Th  |           | 00        | Gln        | Asn         | Asn  | Glu        | Phe<br>1305 | Gln       | Leu               | Gln |
|    |                                                 | Val      | Tyr<br>128 |                   | y Al             | a Il     | e Me  |           | s (<br>85 | Glu        | Val         | Arg  | Phe        | Asn<br>1290 | His       | Leu               | Gly |
|    |                                                 | Arg      | Leu<br>126 |                   | l Se             | r Va     | l Pr  |           | r \       | Val        | Gly         | Gly  | Asn        | Met<br>1275 | Glu       | Val               | Asn |
|    |                                                 | Leu      | Ser<br>125 |                   | l Gl             | u Le     | u Hi  |           | r 1       | Asp        | Met         | Glu  | Val        | Thr<br>1260 | Val       | Asn               | Gly |
|    |                                                 | Ala      | Arg<br>123 |                   | n Gl             | у Су     | s Me  | _         | s s       | Ser        | Ile         | Glu  | Val        | Lys<br>1245 | His       | Ser               | Ala |
|    |                                                 | GIN      | 122        |                   | u GI             | u va     | T 114 |           | 25        | als        | Asn         | GIĀ  | Ата        | 1230        | ser       | Pro               | стх |

|    |                                        | Pro<br>65  | Cys        | Phe        | His        | Gln        | Gly<br>70  | Lys        | Glu        | Tyr        | Ala        | Pro<br>75  | Gly        | Glu        | Thr        | Val            | Lys<br>80  |
|----|----------------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------|------------|
|    |                                        | Ile        | Gly        | Cys        | Asn        | Thr<br>85  | Cys        | Val        | Cys        | Gln        | Asp<br>90  | Arg        | Lys        | Trp        | Asn        | Cys<br>95      | Thr        |
|    |                                        | Asp        | His        | Val        | Cys<br>100 | Asp        | Ala        | Thr        | Cys        | Ser<br>105 | Thr        | Ile        | Gly        | Met        | Ala<br>110 | His            | Tyr        |
|    |                                        | Leu        | Thr        | Phe<br>115 | Asp        | Gly        | Leu        | Lys        | Tyr<br>120 | Leu        | Phe        | Pro        | Gly        | Glu<br>125 | Cys        | Gln            | Tyr        |
|    |                                        | Val        | Leu<br>130 | Val        | Gln        | Asp        | Tyr        | Cys<br>135 | Gly        | Ser        | Asn        | Pro        | Gly<br>140 | Thr        | Phe        | Arg            | Ile        |
|    |                                        | Leu<br>145 | Val        | Gly        | Asn        | Lys        | Gly<br>150 | Cys        | Ser        | His        | Pro        | Ser<br>155 | Val        | Lys        | Cys        | Lys            | Lys<br>160 |
|    |                                        | Arg        | Val        | Thr        | Ile        | Leu<br>165 | Val        | Glu        | Gly        | Gly        | Glu<br>170 | Ile        | Glu        | Leu        | Phe        | <b>Asp</b> 175 | Gly        |
|    |                                        | Glu        | Val        | Asn        | Val<br>180 | Lys        | Arg        | Pro        | Met        | Lys<br>185 | Asp        | Glu        | Thr        | His        | Phe<br>190 | Glu            | Val        |
|    |                                        | Val        | Glu        | Ser<br>195 | Gly        | Arg        | Tyr        | Ile        | Ile<br>200 | Leu        | Leu        | Leu        | Gly        | Lys<br>205 | Ala        | Leu            | Ser        |
|    |                                        | Val        | Val<br>210 | Trp        | Asp        | Arg        | His        | Leu<br>215 | Ser        | Ile        | Ser        | Val        | Val<br>220 | Leu        | Lys        | Gln            | Thr        |
|    |                                        | Tyr<br>225 | Gln        | Glu        | Lys        | Val        | Cys<br>230 | Gly        | Leu        | Cys        | Gly        | Asn<br>235 | Phe        | Asp        | Gly        | Ile            | Gln<br>240 |
|    |                                        | Asn        | Asn        | Asp        | Leu        | Thr<br>245 | Ser        | Ser        | Asn        | Leu        | Gln<br>250 | Val        | Glu        | Glu        | Asp        | Pro<br>255     | Val        |
|    | <210> 4                                | Asp        | Phe        | Gly        | Asn<br>260 | Ser        | Trp        | Lys        | Val        | Ser<br>265 | Ser        | Gln        | Cys        | Ala        | Asp<br>270 | Thr            | Arg        |
| 5  | <211> 910<br><212> PRT<br><213> Homo s | sapien     | s          |            |            |            |            |            |            |            |            |            |            |            |            |                |            |
|    | <400> 4                                |            |            |            |            |            |            |            |            |            |            |            |            |            |            |                |            |
| 10 |                                        | Ser<br>1   | Leu        | Ser        | Cys        | Arg<br>5   | Pro        | Pro        | Met        | Val        | Lys<br>10  | Leu        | Val        | Cys        | Pro        | Ala<br>15      | Asp        |

| Asn        | Leu        | Arg        | Ala<br>20          | Glu        | Gly        | Leu                | Glu        | Суs<br>25      | Thr               | Lys        | Thr        | Сув        | Gln<br>30  | Asn        | Tyr        |
|------------|------------|------------|--------------------|------------|------------|--------------------|------------|----------------|-------------------|------------|------------|------------|------------|------------|------------|
| Asp        | Leu        | Glu<br>35  | Cys                | Met        | Ser        | Met                | Gly<br>40  | Сув            | Val               | Ser        | Gly        | Cys<br>45  | Leu        | Cys        | Pro        |
| Pro        | Gly<br>50  | Met        | Val                | Arg        | His        | Glu<br>55          | Asn        | Arg            | Cys               | Val        | Ala<br>60  | Leu        | Glu        | Arg        | Cys        |
| Pro<br>65  | Cys        | Phe        | His                | Gln        | Gly<br>70  | Lys                | Glu        | Tyr            | Ala               | Pro<br>75  | Gly        | Glu        | Thr        | Val        | Lys<br>80  |
| Ile        | Gly        | Cys        | Asn                | Thr<br>85  | Cys        | Val                | Cys        | Gln            | <b>As</b> p<br>90 | Arg        | Lys        | Trp        | Asn        | Cys<br>95  | Thr        |
| Asp        | His        | Val        | Cys<br>100         | Asp        | Ala        | Thr                | Cys        | Ser<br>105     | Thr               | Ile        | Gly        | Met        | Ala<br>110 | His        | Tyr        |
| Leu        | Thr        | Phe<br>115 | Asp                | Gly        | Leu        | Lys                | Tyr<br>120 | Leu            | Phe               | Pro        | Gly        | Glu<br>125 | Cys        | Gln        | Tyr        |
| Val        | Leu<br>130 | Val        | Gln                | Asp        | Tyr        | C <b>ys</b><br>135 | Gly        | Ser            | Asn               | Pro        | Gly<br>140 | Thr        | Phe        | Arg        | Ile        |
| Leu<br>145 | Val        | Gly        | Asn                | Lys        | Gly<br>150 | Cys                | Ser        | His            | Pro               | Ser<br>155 | Val        | Lys        | Cys        | Lys        | Lys<br>160 |
| Arg        | Val        | Thr        | Ile                | Leu<br>165 | Val        | Glu                | Gly        | Gly            | Glu<br>170        | Ile        | Glu        | Leu        | Phe        | Asp<br>175 | Gly        |
| Glu        | Val        | Asn        | <b>V</b> al<br>180 | Lys        | Arg        | Pro                | Met        | Lys<br>185     | Asp               | Glu        | Thr        | His        | Phe<br>190 | Glu        | Val        |
| Val        | Glu        | Ser<br>195 | Gly                | Arg        | Tyr        | Ile                | 11e<br>200 | Leu            | Leu               | Leu        | Gly        | Lys<br>205 | Ala        | Leu        | Ser        |
| Val        | Val<br>210 | Trp        | Asp                | Arg        | His        | Leu<br>215         | Ser        | Ile            | Ser               | Val        | Val<br>220 | Leu        | Lys        | Gln        | Thr        |
| Tyr<br>225 | Gln        | Glu        | Lys                | Val        | Cys<br>230 | Gly                | Leu        | Cys            | Gly               | Asn<br>235 | Phe        | Asp        | Gly        | Ile        | Gln<br>240 |
| Asn        | Asn        | Asp        | Leu                | Thr<br>245 | Ser        | Ser                | Asn        | Leu            | Gln<br>250        | Val        | Glu        | Glu        | Asp        | Pro<br>255 | Val        |
| Asp        | Phe        | Gly        | Asn<br>260         | Ser        | Trp        | Lys                | Val        | <b>Ser</b> 265 | Ser               | Gln        | Cys        | Ala        | Asp<br>270 | Thr        | Arg        |

| Lys        | Val                | Pro<br>275 | Leu        | Asp        | Ser        | Ser               | Pro<br>280         | Ala        | Thr        | Cys        | His        | Asn<br>285 | Asn        | Ile        | Met        |
|------------|--------------------|------------|------------|------------|------------|-------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Lys        | Gln<br>290         | Thr        | Met        | Val        | Asp        | Ser<br>295        | Ser                | Cys        | Arg        | Ile        | Leu<br>300 | Thr        | Ser        | Asp        | Val        |
| Phe<br>305 | Gln                | Asp        | Cys        | Asn        | Lys<br>310 | Leu               | Val                | Asp        | Pro        | Glu<br>315 | Pro        | Tyr        | Leu        | Asp        | Val<br>320 |
| Cys        | Ile                | Tyr        | Asp        | Thr<br>325 | Cys        | Ser               | Cys                | Glu        | Ser<br>330 | Ile        | Gly        | Asp        | Cys        | Ala<br>335 | Cys        |
| Phe        | Cys                | Asp        | Thr<br>340 | Ile        | Ala        | Ala               | Tyr                | Ala<br>345 | His        | Val        | Cys        | Ala        | Gln<br>350 | His        | Gly        |
| Lys        | Val                | Val<br>355 | Thr        | Trp        | Arg        | Thr               | <b>A</b> la<br>360 | Thr        | Leu        | Суз        | Pro        | Gln<br>365 | Ser        | Cys        | Glu        |
| Glu        | <b>A</b> rg<br>370 | Asn        | Leu        | Arg        | Glu        | <b>Asn</b><br>375 | Gly                | Tyr        | Glu        | Cys        | Glu<br>380 | Trp        | Arg        | Tyr        | Asn        |
| Ser<br>385 | Cys                | Ala        | Pro        | Ala        | Cys<br>390 | Gln               | Val                | Thr        | Cys        | Gln<br>395 | His        | Pro        | Glu        | Pro        | Leu<br>400 |
| Ala        | Cys                | Pro        | Val        | Gln<br>405 | Cys        | Val               | Glu                | Gly        | Cys<br>410 | His        | Ala        | His        | Cys        | Pro<br>415 | Pro        |
| Gly        | Lys                | Ile        | Leu<br>420 | Asp        | Glu        | Leu               | Leu                | Gln<br>425 | Thr        | Cys        | Val        | Asp        | Pro<br>430 | Glu        | Asp        |
| Cys        | Pro                | Val<br>435 | Cys        | Glu        | Val        | Ala               | Gly<br>440         | Arg        | Arg        | Phe        | Ala        | Ser<br>445 | Gly        | Lys        | Lys        |
| Val        | Thr<br>450         | Leu        | Asn        | Pro        | Ser        | Asp<br>455        | Pro                | Glu        | His        | Cys        | Gln<br>460 | Ile        | Cys        | His        | Cys        |
| Asp<br>465 | Val                | Val        | Asn        | Leu        | Thr<br>470 | Cys               | Glu                | Ala        | Cys        | Gln<br>475 | Glu        | Pro        | Gly        | Gly        | Leu<br>480 |
| Val        | Val                | Pro        | Pro        | Thr<br>485 | Asp        | Ala               | Pro                | Val        | Ser<br>490 | Pro        | Thr        | Thr        | Leu        | Tyr<br>495 | Val        |
| Glu        | Asp                | Ile        | Ser<br>500 | Glu        | Pro        | Pro               | Leu                | His<br>505 | Asp        | Phe        | Tyr        | Cys        | Ser<br>510 | Arg        | Leu        |
| Leu        | Asp                | Leu        | Val        | Phe        | Leu        | Leu               | Asp                | Gly        | Ser        | Ser        | Arg        | Leu<br>525 | Ser        | Glu        | Ala        |

| Glu        | Phe<br>530 | Glu               | Val               | Leu        | Lys        | Ala<br>535 | Phe               | Val               | Val            | Asp        | Met<br>540 | Met        | Glu               | Arg            | Leu            |
|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|----------------|------------|------------|------------|-------------------|----------------|----------------|
| Arg<br>545 | Ile        | Ser               | Gln               | Lys        | Trp<br>550 | Val        | Arg               | Val               | Ala            | Val<br>555 | Val        | Glu        | Tyr               | His            | <b>Asp</b> 560 |
| Gly        | Ser        | His               | Ala               | Tyr<br>565 | Ile        | Gly        | Leu               | Lys               | <b>Asp</b> 570 | Arg        | Lys        | Arg        | Pro               | Ser<br>575     | Glu            |
| Leu        | Arg        | Arg               | Ile<br>580        | Ala        | Ser        | Gln        | Val               | <b>Lys</b><br>585 | Tyr            | Ala        | Gly        | Ser        | Gln<br>590        | Val            | Ala            |
| Ser        | Thr        | Ser<br>595        | Glu               | Val        | Leu        | Lys        | <b>Tyr</b><br>600 | Thr               | Leu            | Phe        | Gln        | Ile<br>605 | Phe               | Ser            | Lys            |
| Ile        | Asp<br>610 | Arg               | Pro               | Glu        | Ala        | Ser<br>615 | Arg               | Ile               | Thr            | Leu        | Leu<br>620 | Leu        | Met               | Ala            | Ser            |
| Gln<br>625 | Glu        | Pro               | Gln               | Arg        | Met<br>630 | Ser        | Arg               | Asn               | Phe            | Val<br>635 | Arg        | Tyr        | Val               | Gln            | Gly<br>640     |
| Leu        | Lys        | Lys               | Lys               | Lys<br>645 | Val        | Ile        | Val               | Ile               | Pro<br>650     | Val        | Gly        | Ile        | Gly               | Pro<br>655     | His            |
| Ala        | Asn        | Leu               | <b>Lys</b><br>660 | Gln        | Ile        | Arg        | Leu               | Ile<br>665        | Glu            | Lys        | Gln        | Ala        | Pro<br>670        | Glu            | Asn            |
| Lys        | Ala        | Phe<br>675        | Val               | Leu        | Ser        | Ser        | Val<br>680        | Asp               | Glu            | Leu        | Glu        | Gln<br>685 | Gln               | Arg            | Asp            |
| Glu        | Ile<br>690 | Val               | Ser               | Tyr        | Leu        | Cys<br>695 | Asp               | Leu               | Ala            | Pro        | Glu<br>700 | Ala        | Pro               | Pro            | Pro            |
| Thr<br>705 | Leu        | Pro               | Pro               | Asp        | Met<br>710 | Ala        | Gln               | Val               | Thr            | Val<br>715 | Gly        | Pro        | Gly               | Leu            | Leu<br>720     |
| Gly        | Val        | Ser               | Thr               | Leu<br>725 | Gly        | Pro        | Lys               | Arg               | <b>Asn</b> 730 | Ser        | Met        | Val        | Leu               | <b>Asp</b> 735 | Val            |
| Ala        | Phe        | Val               | Leu<br>740        | Glu        | Gly        | Ser        | Asp               | Lys<br>745        | Ile            | Gly        | Glu        | Ala        | <b>Asp</b><br>750 | Phe            | Asn            |
| Arg        | Ser        | <b>Lys</b><br>755 | Glu               | Phe        | Met        | Glu        | Glu<br>760        | Val               | Ile            | Gln        | Arg        | Met<br>765 | Asp               | Val            | Gly            |

Gln Asp Ser Ile His Val Thr Val Leu Gln Tyr Ser Tyr Met Val Thr

|    |                                      |            | 770        |                   |                   |            |            | 115        |            |                   |            |            | 780        |            |            |            |                 |
|----|--------------------------------------|------------|------------|-------------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|------------|------------|------------|-----------------|
|    |                                      | Val<br>785 | Glu        | Tyr               | Pro               | Phe        | Ser<br>790 | Glu        | Ala        | Gln               | Ser        | Lys<br>795 | Gly        | Asp        | Ile        | Leu        | Glr<br>800      |
|    |                                      | Arg        | Val        | Arg               | Glu               | Ile<br>805 | Arg        | Tyr        | Gln        | Gly               | Gly<br>810 | Asn        | Arg        | Thr        | Asn        | Thr<br>815 | Gly             |
|    |                                      | Leu        | Ala        | Leu               | Arg<br>820        | Tyr        | Leu        | Ser        | Asp        | His<br>825        | Ser        | Phe        | Leu        | Val        | Ser<br>830 | Gln        | Gly             |
|    |                                      | Asp        | Arg        | Glu<br>835        | Gln               | Ala        | Pro        | Asn        | Leu<br>840 | Val               | Tyr        | Met        | Val        | Thr<br>845 | Gly        | Asn        | Pro             |
|    |                                      | Ala        | Ser<br>850 | Asp               | Glu               | Ile        | Lys        | Arg<br>855 | Leu        | Pro               | Gly        | Asp        | Ile<br>860 | Gln        | Val        | Val        | Pro             |
|    |                                      | Ile<br>865 | Gly        | Val               | Gly               | Pro        | Asn<br>870 | Ala        | Asn        | Val               | Gln        | Glu<br>875 | Leu        | Glu        | Arg        | Ile        | Gl <sub>3</sub> |
|    |                                      | Trp        | Pro        | Asn               | Ala               | Pro<br>885 | Ile        | Leu        | Ile        | Gln               | Asp<br>890 | Phe        | Glu        | Thr        | Leu        | Pro<br>895 | Arç             |
|    | <210> 5                              | Glu        | Ala        | Pro               | <b>Asp</b><br>900 | Leu        | Val        | Leu        | Gln        | <b>Arg</b><br>905 | Cys        | Cys        | Ser        | Gly        | Glu<br>910 |            |                 |
| 5  | <211> 272<br><212> PRT<br><213> Homo | sapier     | าร         |                   |                   |            |            |            |            |                   |            |            |            |            |            |            |                 |
|    | <400> 5                              |            |            |                   |                   |            |            |            |            |                   |            |            |            |            |            |            |                 |
|    |                                      | Ser<br>1   | Leu        | Ser               | Cys               | Arg<br>5   | Pro        | Pro        | Met        | Val               | Lys<br>10  | Leu        | Val        | Cys        | Pro        | Ala<br>15  | Asp             |
|    |                                      | Asn        | Leu        | Arg               | Ala<br>20         | Glu        | Gly        | Leu        | Glu        | Су <b>з</b><br>25 | Thr        | Lys        | Thr        | Cys        | Gln<br>30  | Asn        | Tyr             |
|    |                                      | Asp        | Leu        | <b>Gl</b> u<br>35 | Cys               | Met        | Ser        | Met        | Gly<br>40  | Cys               | Val        | Ser        | Gly        | Cys<br>45  | Leu        | Cys        | Pro             |
|    |                                      | Pro        | Gly<br>50  | Met               | Val               | Arg        | His        | Glu<br>55  | Asn        | Arg               | Cys        | Val        | Ala<br>60  | Leu        | Glu        | Arg        | Cys             |
|    |                                      | Pro<br>65  | Cys        | Phe               | His               | Gln        | Gly<br>70  | Lys        | Glu        | Tyr               | Ala        | Pro<br>75  | Gly        | Glu        | Thr        | Val        | Lys<br>80       |
| 10 |                                      | Ile        | Gly        | Cys               | Asn               | Thr        | Cys        | Val        | Cys        | Gln               | Asp        | Arg        | Lys        | Trp        | Asn        | Cys        | Thr             |

|            |                   |            |                    | 85                |                   |                   |            |            | 90         |            |            |                   |            | 95                |                   |
|------------|-------------------|------------|--------------------|-------------------|-------------------|-------------------|------------|------------|------------|------------|------------|-------------------|------------|-------------------|-------------------|
| Asp        | His               | Val        | Cys<br>100         | Asp               | Ala               | Thr               | Cys        | Ser<br>105 | Thr        | Ile        | Gly        | Met               | Ala<br>110 | His               | Tyr               |
| Leu        | Thr               | Phe<br>115 | Asp                | Gly               | Leu               | Lys               | Tyr<br>120 | Leu        | Phe        | Pro        | Gly        | Glu<br>125        | Cys        | Gln               | Tyr               |
| Val        | <b>Leu</b><br>130 | Val        | Gln                | Asp               | Tyr               | Cys<br>135        | Gly        | Ser        | Aşn        | Pro        | Gly<br>140 | Thr               | Phe        | Arg               | Ile               |
| Leu<br>145 | Val               | Gly        | Asn                | Lys               | <b>Gly</b><br>150 | Cys               | Ser        | His        | Pro        | Ser<br>155 | Val        | Lys               | Cys        | Lys               | <b>Lys</b><br>160 |
| Arg        | Val               | Thr        | Ile                | <b>Leu</b><br>165 | Val               | Glu               | Gly        | Gly        | Glu<br>170 | Ile        | Glu        | Leu               | Ph€        | <b>Asp</b><br>175 | Gly               |
| Glu        | Val               | Asn        | <b>Va</b> l<br>180 | Lys               | Arg               | Pro               | Met        | Lys<br>185 | Asp        | Glu        | Thr        | His               | Phe<br>190 | Glu               | Val               |
| Val        | Glu               | Ser<br>195 | Gly                | Arg               | Tyr               | Ile               | Ile<br>200 | Leu        | Leu        | Leu        | Gly        | <b>Lys</b><br>205 | Ala        | Leu               | Ser               |
| Val        | Val<br>210        | Trp        | Asp                | Arg               | His               | <b>Leu</b><br>215 | Ser        | Il⊕        | Ser        | Val        | Val<br>220 | Leu               | Lys        | Gln               | Thr               |
| Tyr<br>225 | Gln               | Glu        | Lys                | Val               | Cys<br>230        | Gly               | Leu        | Cys        | Gly        | Asn<br>235 | Phe        | Asp               | Gly        | Ile               | Gln<br>240        |
| Asn        | Asn               | Asp        | Leu                | Thr<br>245        | Ser               | Ser               | Asn        | Leu        | Gln<br>250 | Val        | Glu        | Glu               | Asp        | Pro<br>255        | Val               |
| Asp        | Phe               | Gly        | Asn<br>260         | Ser               | Trp               | Lys               | Val        | Ser<br>265 | Ser        | Gln        | Cys        | Ala               | Asp<br>270 | Thr               | Arg               |

<210> 6 <211> 174 5 <212> PRT

<213> Homo sapiens

<400> 6

Val Ile Leu Leu Asp Gly Ser Ser Ser Phe Pro Ala Ser Tyr Phe 1 5 10 15

Asp Glu Met Lys Ser Phe Ala Lys Ala Phe Ile Ser Lys Ala Asn Ile 20 25 30

Gly Pro Arg Leu Thr Gln Val Ser Val Leu Gln Tyr Gly Ser Ile Thr 35 40 45

Thr Ile Asp Val Pro Trp Asn Val Val Pro Glu Lys Ala His Leu Leu 50 55 60

Ser Leu Val Asp Val Met Gln Arg Glu Gly Gly Pro Ser Gln Ile Gly 65 70 75 80

Asp Ala Leu Gly Phe Ala Val Arg Tyr Leu Thr Ser Glu Met His Gly 85 90 95

Ala Arg Pro Gly Ala Ser Lys Ala Val Val Ile Leu Val Thr Asp Val 100 \$105\$

Ser Val Asp Ser Val Asp Ala Ala Ala Asp Ala Ala Arg Ser Asn Arg 115 120 125

Val Thr Val Phe Pro Ile Gly Ile Gly Asp Arg Tyr Asp Ala Ala Gln 130 135 140

Leu Arg Ile Leu Ala Gly Pro Ala Gly Asp Ser Asn Val Val Lys Leu 145 150 155 160

Gln Arg Ile Glu Asp Leu Pro Thr Met Val Thr Leu Gly Asn 165 170

5 <210> 7 <211> 390

<212> PRT

<213> Homo sapiens

10 <400> 7

- Gln Cys Ile Gly Glu Asp Gly Val Gln His Gln Phe Leu Glu Ala Trp 1 5 10 15
- Val Pro Asp His Gln Pro Cys Gln Ile Cys Thr Cys Leu Ser Gly Arg 20 25 30
- Lys Val Asn Cys Thr Thr Gln Pro Cys Pro Thr Ala Lys Ala Pro Thr 35 40 45
- Cys Gly Leu Cys Glu Val Ala Arg Leu Arg Gln Asn Ala Asp Gln Cys 50 60
- Cys Pro Glu Tyr Glu Cys Val Cys Asp Pro Val Ser Cys Asp Leu Pro 65 70 75 80
- Pro Val Pro His Cys Glu Arg Gly Leu Gln Pro Thr Leu Thr Asn Pro

|            |            |            |            | 85         |            |                |            |            | 90         |            |            |            |            | 95         |            |
|------------|------------|------------|------------|------------|------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly        | Glu        | Cys        | Arg<br>100 | Pro        | Asn        | Phe            | Thr        | Cys<br>105 | Ala        | Cys        | Arg        | Lys        | Glu<br>110 | Glu        | Cys        |
| Lys        | Arg        | Val<br>115 | Ser        | Pro        | Pro        | Ser            | Cys<br>120 | Pro        | Pro        | His        | Arg        | Leu<br>125 | Pro        | Thr        | Leu        |
| Arg        | Lys<br>130 | Thr        | Gln        | Cys        | Cys        | <b>Asp</b> 135 | Glu        | Tyr        | Glu        | Cys        | Ala<br>140 | Cys        | Asn        | Cys        | Val        |
| Asn<br>145 | Ser        | Thr        | Val        | Ser        | Cys<br>150 | Pro            | Leu        | Gly        | Tyr        | Leu<br>155 | Ala        | Ser        | Thr        | Ala        | Thr<br>160 |
| Asn        | Asp        | Cys        | Gly        | Cys<br>165 | Thr        | Thr            | Thr        | Thr        | Cys<br>170 | Leu        | Pro        | Asp        | Lys        | Val<br>175 | Cys        |
| Val        | His        | Arg        | Ser<br>180 | Thr        | Ile        | Tyr            | Pro        | Val<br>185 | Gly        | Gln        | Phe        | Trp        | Glu<br>190 | Glu        | Gly        |
| Cys        | Asp        | Val<br>195 | Суѕ        | Thr        | Суѕ        | Thr            | Asp<br>200 | Met        | Glu        | Asp        | Ala        | Val<br>205 | Met        | Gly        | Leu        |
| Arg        | Val<br>210 | Ala        | Gln        | Cys        | Ser        | Gln<br>215     | Lys        | Pro        | Cys        | Glu        | Asp<br>220 | Ser        | Cys        | Arg        | Ser        |
| Gly<br>225 | Phe        | Thr        | Tyr        | Val        | Leu<br>230 | His            | Glu        | Gly        | Glu        | Cys<br>235 | Cys        | Gly        | Arg        | Cys        | Leu<br>240 |
| Pro        | Ser        | Ala        | Cys        | Glu<br>245 | Val        | Val            | Thr        | Gly        | Ser<br>250 | Pro        | Arg        | Gly        | Asp        | Ser<br>255 | Gln        |
| Ser        | Ser        | Trp        | Lys<br>260 | Ser        | Val        | Gly            | Ser        | Gln<br>265 | Trp        | Ala        | Ser        | Pro        | Glu<br>270 | Asn        | Pro        |
| Cys        | Leu        | Ile<br>275 | Asn        | Glu        | Cys        | Val            | Arg<br>280 | Val        | Lys        | Glu        | Glu        | Val<br>285 | Phe        | Ile        | Gln        |
|            | Arg<br>290 |            |            |            | _          | 295            |            |            |            |            | 300        |            | -          |            |            |
| Gly<br>305 | Phe        | Gln        | Leu        | Ser        | Cys<br>310 | Lys            | Thr        | Ser        | Ala        | Cys<br>315 | Cys        | Pro        | Ser        | Cys        | Arg<br>320 |
| Cys        | Glu        | Arg        | Met        | Glu        | Ala        | Cys            | Met        | Leu        | Asn<br>330 |            | Thr        | Val        | Ile        | Gly        |            |

Gly Lys Thr Val Met Ile Asp Val Cys Thr Thr Cys Arg Cys Met Val 340 345 350

Gln Val Gly Val Ile Ser Gly Phe Lys Leu Glu Cys Arg Lys Thr Thr 355 360 365

Cys Asn Pro Cys Pro Leu Gly Tyr Lys Glu Glu Asn Asn Thr Gly Glu 370 380

Cys Cys Gly Arg Cys Leu 385 390

#### REIVINDICACIONES

- 1. Una composición que comprende un complejo de factor VIII y un péptido de factor von Willebrand, 5 donde el péptido de factor von Willebrand consiste en los aminoácidos 764 a 2128 de la SEQ ID NO: 1.
  - 2. La composición de la reivindicación 1, donde los péptidos del factor von Willebrand tienen al menos una propiedad seleccionada del grupo que consiste en
- 10 (i) una constante de unión por afinidad para heparina de K<sub>D</sub> > 1 nM, preferentemente ≥ 2,43 nM;
  - (i) una constante de unión por afinidad para el colágeno III de K<sub>D</sub> > 5 nM, preferentemente ≥ 17,02 nM;
  - (iii) una constante de unión por afinidad para el factor VIII de K<sub>D</sub> < 100 NM o < 10 nM, preferentemente ≤ 6,19 nM; y
  - (iv) una inhibición de la unión a fosfolípidos de factor VIII de al menos el 70 %, preferentemente de al menos el 80 %.

15

- 3. La composición de la reivindicación 1 o 2, donde los péptidos del factor von Willebrand se derivan del factor von Willebrand por escisión proteolítica o escisión química, preferentemente por escisión proteolítica con proteasa S. aureus V-8.
- 20 4. La composición de una cualquiera de las reivindicaciones 1 a 3, donde el factor VIII es un factor VIII de longitud completa, un factor VIII con dominio B eliminado o un factor VIII en el que el dominio B ha sido reemplazado por un enlazador artificial o un fragmento del dominio B natural o una combinación de los mismos.
- 5. La composición de una cualquiera de las reivindicaciones 1 a 4, donde el factor VIII es factor VIII 25 derivado de plasma o factor VIII recombinante, donde un factor VIII recombinante se expresa preferentemente en la línea celular humana.
  - 6. La composición de una cualquiera de las reivindicaciones 1 a 5, donde la composición tiene al menos una de las propiedades seleccionadas del grupo que consiste en

30

- (i) los péptidos de factor von Willebrand protegen el factor VIII de la unión del anticuerpo para minimizar la formación de inhibidores en un paciente;
- (ii) estabiliza el factor VIII para proporcionar una actividad del factor VIII restante de al menos el 90 % después del almacenamiento durante 12 meses en forma líquida congelada a -70 °C;
- (iii) estabiliza el factor VIII para proporcionar una actividad del factor VIII restante de al menos el 90 % después del almacenamiento durante 24 meses en forma liofilizada a 5 °C;
  - (Iv) estabiliza el factor VIII para proporcionar una actividad del factor VIII restante de al menos el 90 % después del almacenamiento durante 12 meses en forma liofilizada a 25 °C;
  - (v) prolonga la vida media del factor VIII in vivo en al menos un 20 %; y
- 40 (vi) reduce la formación de inhibidores en pacientes no tratados previamente a menos del 20 %, después del tratamiento con la composición durante 6 meses.
  - 7. La composición de cualquiera de las reivindicaciones 1 a 6 para su uso en el tratamiento o prevención de un trastorno hemorrágico.

45

- 8. La composición para su uso de acuerdo con la reivindicación 7, donde el tratamiento o prevención comprende la administración no intravenosa de la composición, preferentemente donde la administración no intravenosa es una invección subcutánea.
- 50 9. Un procedimiento para la reducción de virus en una preparación de la composición de una cualquiera de las reivindicaciones 1 a 6 que comprende la etapa de nanofiltrar los péptidos del factor von Willebrand antes o después de una combinación con el factor VIII, reduciendo así el parvovirus porcino, si está presente, en al menos un factor de 100





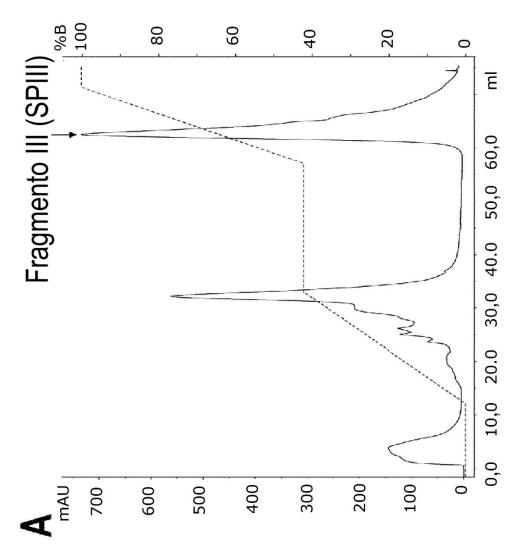



Fig. 1

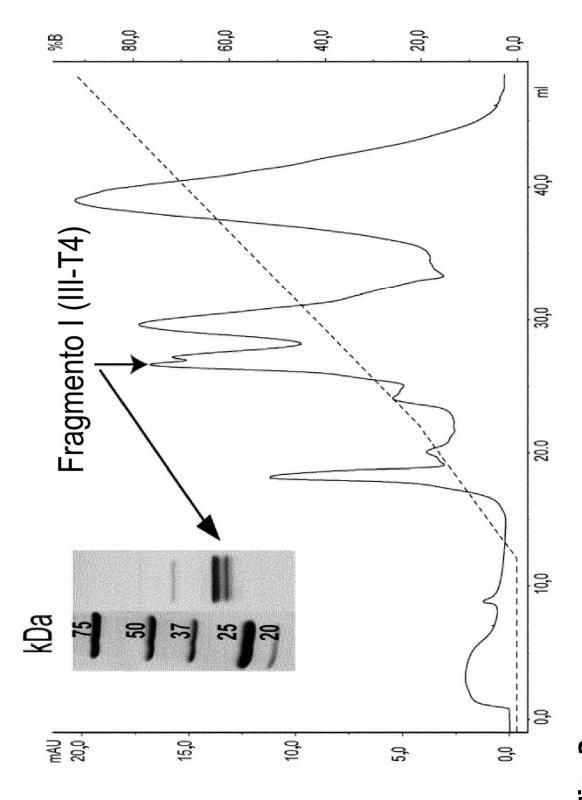
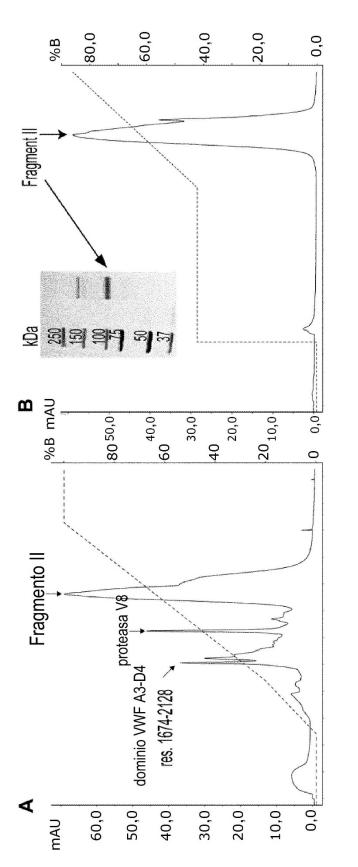
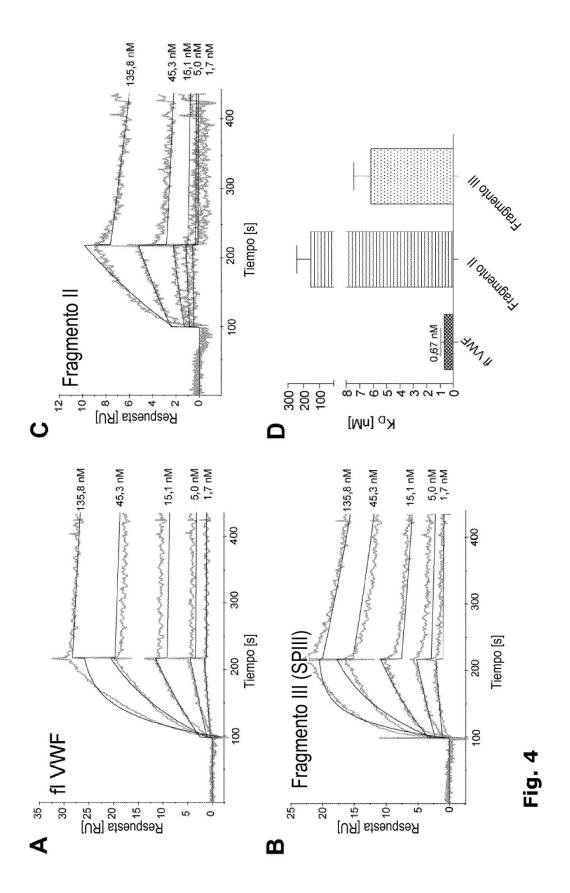
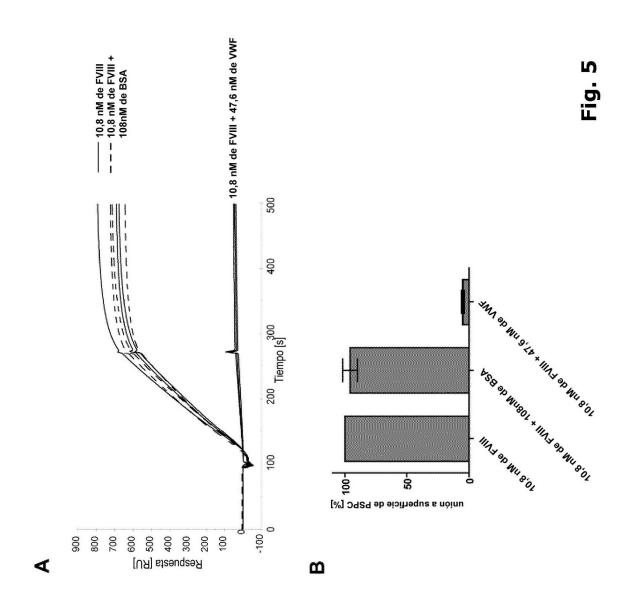
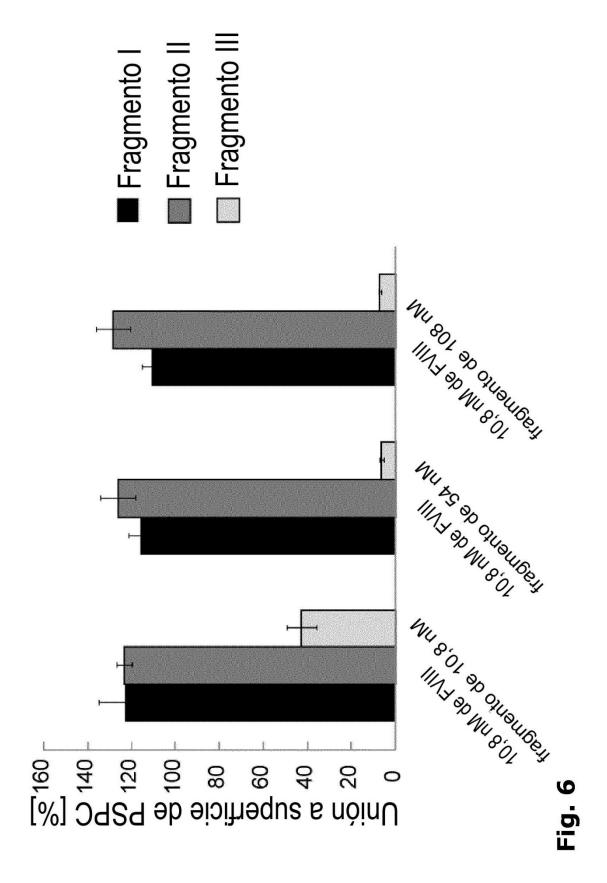
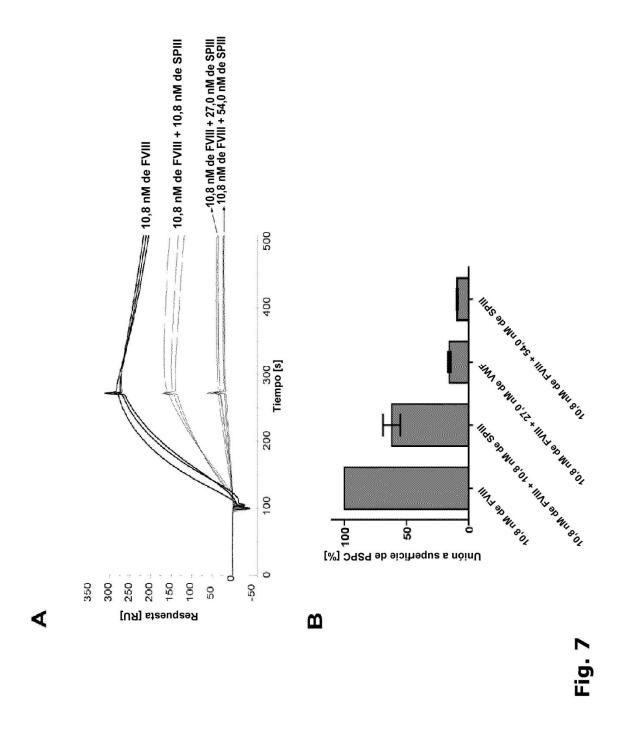
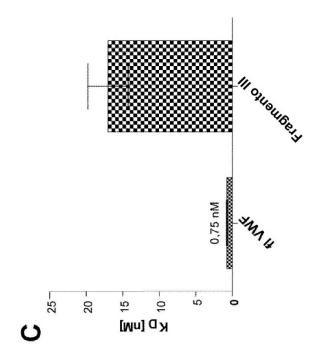



FIG. 2



Fig. 3











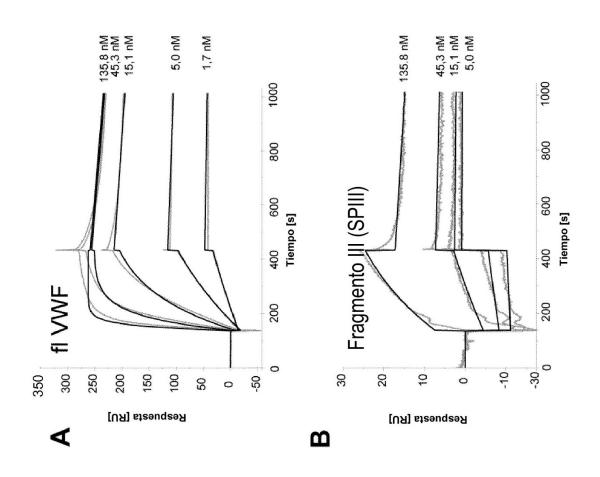
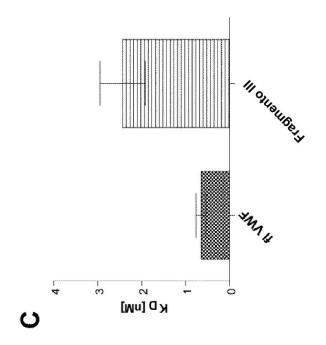
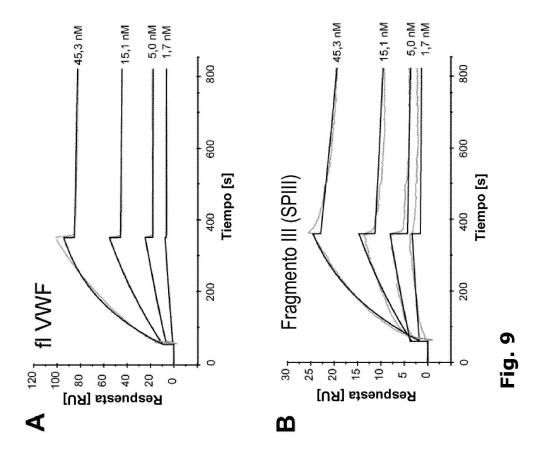





Fig.





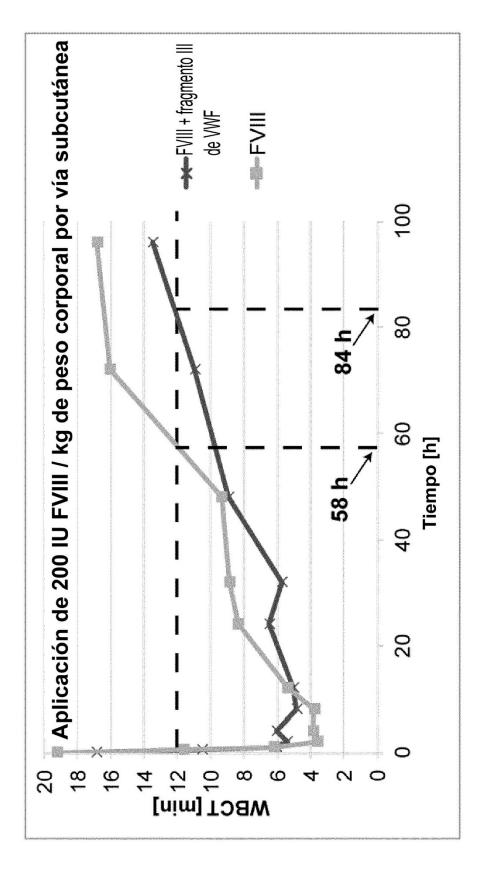
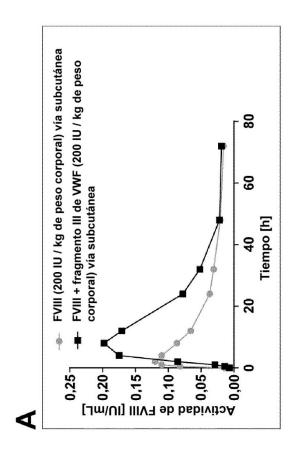
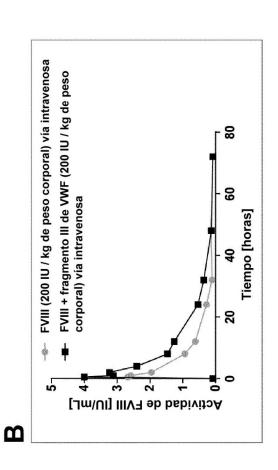
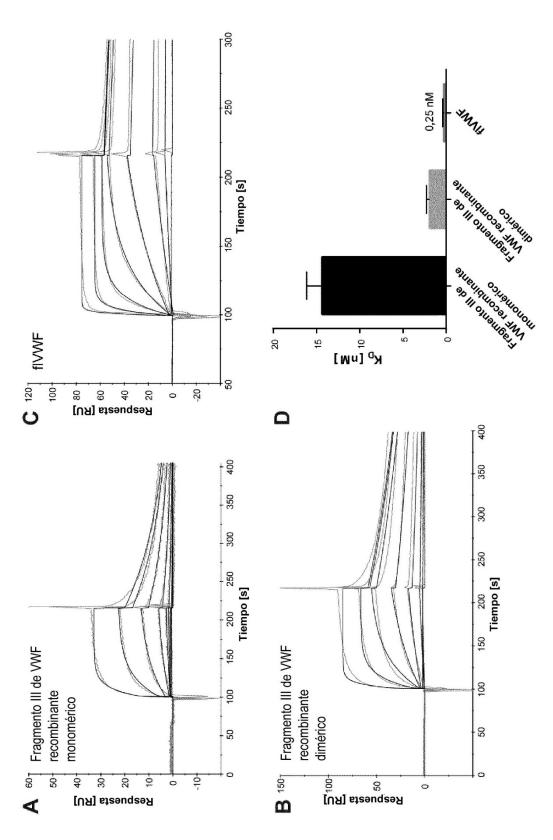






Fig. 10

Fig. 11







Fia. 1

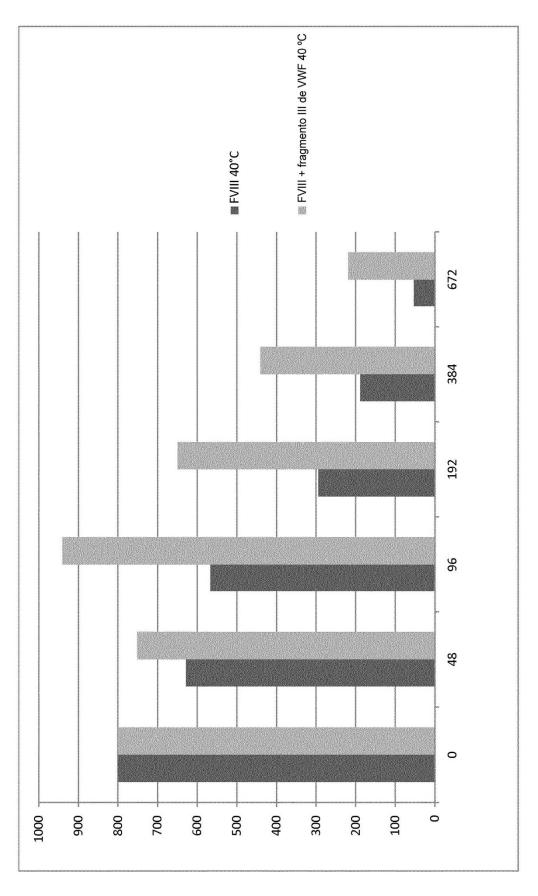



Fig. 13

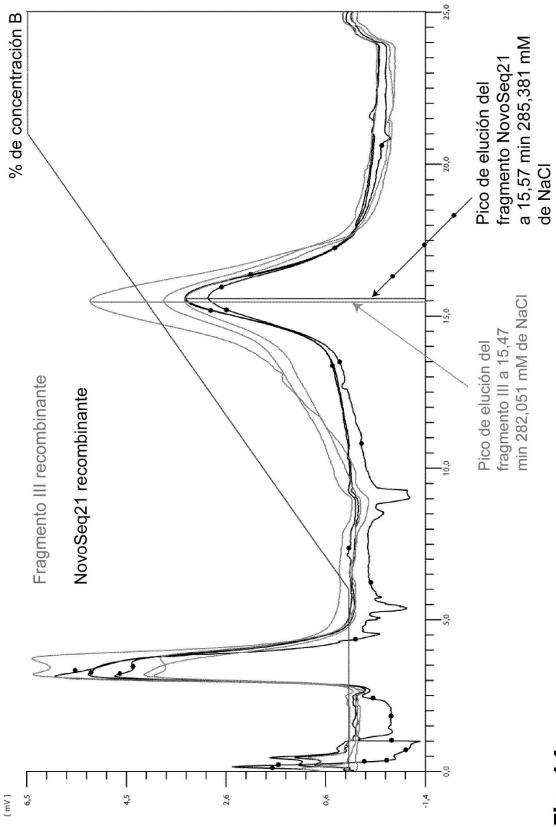



Fig. 14