

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 748 176

(51) Int. CI.:

F16K 5/04 (2006.01) F16K 11/085 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 09.03.2015 E 15158175 (8)
(97) Fecha y número de publicación de la concesión europea: 07.08.2019 EP 3067597

54) Título: Uso de una válvula de control de fluido

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 13.03.2020

(73) Titular/es:

ESBE AB (100.0%) Bruksgatan 22 333 75 Reftele, SE

(72) Inventor/es:

DAVIDSSON, JONAS

74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Uso de una válvula de control de fluido

Campo de la invención

5

10

25

35

40

La presente invención se relaciona con el uso de una válvula de control de fluido que comprende una carcasa de válvula con una cámara de válvula que tiene al menos dos puertos de válvula distribuidos alrededor de una pared de cámara circunferencial, un rotor de válvula, que se dispone de manera giratoria dentro de dicha cámara de válvula y comprende una parte de bloqueo y un paso de flujo, en donde el rotor de válvula se puede hacer girar entre una posición cerrada, en la que uno de dichos al menos dos puertos de válvula se bloquea mediante dicha parte de bloqueo, y una primera posición abierta, en la que el paso de flujo del rotor de válvula permite la comunicación de fluido entre dichos al menos dos puertos de válvula, una disposición de ranura formada en el rotor de válvula, y un miembro de sellado que se configura para ser recibido en la disposición de ranura y moverse junto con el rotor de válvula tal como se reivindica en la reivindicación 1.

Antecedentes de la invención

Una válvula de este tipo se puede usar en un sistema de calefacción y/o refrigeración doméstica.

- El documento US 3.938.553 describe una válvula que tiene un cuerpo de válvula, una cavidad de válvula, una primera abertura y una segunda abertura con un miembro de válvula posicionado de manera giratoria dentro de la cavidad de válvula. Para proporcionar un sello entre el miembro de válvula y la cavidad de válvula la superficie exterior del miembro de válvula tiene una primera ranura, en la que se retiene un primer miembro de sellado, y una segunda ranura, en la que se recibe un segundo miembro de sellado.
- 20 Un inconveniente de esta válvula es que el ensamblaje de la válvula puede ser considerado como que requiere mucho tiempo y/o es complejo.

El documento US 6.138.628 A1 describe una válvula que tiene un rotor de válvula dispuesto en una carcasa de válvula en donde un miembro de sellado de una única pieza se inserta dentro de una disposición de ranura que tiene dos partes de ranura circunferenciales y axiales formadas dentro del rotor de válvula. La válvula se usa en un sistema de múltiples tomas de aire para un motor de combustión interna.

Además, el documento WO2014/138786A1 describe una válvula giratoria para su uso en un sistema de calentamiento según el preámbulo de la reivindicación 1.

Compendio de la invención

Es un objetivo de la presente invención superar los inconvenientes anteriormente descritos.

- 30 Este y otros objetivos que resultarán evidentes a partir del siguiente compendio y descripción se conseguirán mediante una válvula de control de fluidos según las reivindicaciones adjuntas.
 - Según la presente invención se proporciona el uso de una válvula de control de líquidos según la reivindicación 1, comprendiendo la válvula de control una carcasa de válvula con una cámara de válvula que tiene al menos dos puertos de válvula distribuidos alrededor de una pared de cámara circunferencial de la cámara de válvula, un rotor de válvula, que se dispone de manera giratoria dentro de dicha cámara de válvula y comprende una parte de bloqueo y un paso de flujo, en donde el rotor de válvula se puede hacer girar entre una posición cerrada, en la que uno de dichos al menos dos puertos de válvula es bloqueado mediante dicha parte de bloqueo, y una primera posición abierta, en la que el paso de flujo del rotor de válvula permite la comunicación de fluido entre dicho al menos dos puertos de válvula, una disposición de ranura formada en el rotor de válvula, y un miembro de sellado que se configura para ser recibido en la disposición de ranura y moverse junto con el rotor de válvula, en donde el miembro de sellado se forma como una pieza única y comprende una parte de sellado, que se configura para rodear dicha parte de bloqueo, y al menos una primera parte de anclaje que sobresale de un lado de dicha parte de sellado y que se configura para sujetar el miembro de sellado al rotor de válvula.
- Cuando se instala en la disposición de ranura el miembro de sellado proporciona un sellado entre el rotor de válvula y la pared de cámara alrededor de la parte de bloqueo del rotor de válvula. El miembro de sellado de una única pieza proporciona un sellado de confianza entre el rotor de válvula y la pared de cámara de la carcasa de válvula. El miembro de sellado evita así la fuga de la válvula. Por tanto, se puede proporcionar una válvula giratoria libre de fugas de una manera eficiente en coste. Además, ya que el miembro de sellado se forma como una pieza única, se puede instalar en la disposición de ranura de una manera fácil.
- La primera parte de anclaje, que asegura que el miembro de sellado se mantenga en el sitio, está íntegramente formada con la parte de sellado. La parte de anclaje se configura por tanto para mantener el miembro de sellado en el lugar. Por tanto, la parte de anclaje "bloquea" el miembro de sellado al rotor de válvula para que el miembro de sellado gire junto con el rotor de válvula.

Tras la instalación del miembro de sellado la parte de anclaje se estira. La parte de anclaje del miembro de sellado sobresale de la parte de sellado. Esto tiene la ventaja de que se consigue una instalación muy fiable del miembro de sellado en la disposición de ranura.

El miembro de sellado, que comprende una parte de sellado y una parte de anclaje, se configura por tanto con el rotor de válvula. Por tanto, la disposición de ranura del miembro de sellado se configura para evitar el movimiento relativo entre el miembro de sellado y el rotor de válvula. Tras la rotación del rotor de válvula el miembro de sellado se mueve, junto con el rotor de válvula, en relación a la pared de la cámara.

Según la invención la primera parte de anclaje comprende al menos un anclaje para acoplarse con una parte de dicha disposición de ranura. Esto tiene la ventaja de que permite una instalación muy sencilla. Además, se consigue una instalación muy robusta y fiable del miembro de sellado.

Según la invención dicho al menos un anclaje se dispone en un extremo libre de dicha parte de anclaje.

Según una realización dicho al menos un anclaje se configura para acoplarse con un hueco, tal como, por ejemplo, un hueco circular, elíptico o con forma de T, de dicha disposición de ranura.

Según una realización dicho al menos un anclaje es circular, elíptico o con forma de T.

15 Según una realización dicha primera parte de anclaje comprende al menos dos anclajes.

Según una realización la primera parte de anclaje comprende un primer miembro alargado, tal como una tira elástica, que tiene en un extremo libre de la misma un anclaje para mantener el miembro de sellado en su lugar en la disposición de ranura. Preferiblemente, la primera parte de anclaje comprende además un segundo miembro alargado, tal como una tira elástica, que tiene en un extremo libre de la misma un anclaje para mantener el miembro de sellado en su lugar en la disposición de ranura.

Según una realización dicho miembro de sellado tiene forma de escalera.

10

20

45

Según una realización el miembro de sellado comprende una segunda parte de anclaje que sobresale de un lado opuesto de dicha parte de sellado, que se proporciona para una instalación muy robusta y fiable del miembro de sellado en la disposición de ranura del miembro de sellado.

25 Según una realización dicha segunda parte de anclaje comprende un anclaje para el acoplamiento con una parte de dicha disposición de ranura.

Según una realización dicha segunda parte de anclaje comprende al menos un anclaje para el acoplamiento con dicha disposición de ranura.

Según una realización dicha primera parte de anclaje comprende un primer anclaje dispuesto en un primer extremo libre de la misma y un segundo anclaje dispuesto en un segundo extremo libre de la misma, y dicha segunda parte de anclaje comprende una primera disposición de anclaje en un primer extremo libre de la misma y un segundo anclaje dispuesto en un segundo extremo libre del mismo.

Según una realización dicha primera parte de anclaje comprende al menos dos anclajes.

Según una realización el miembro de sellado se forma a partir de un material elastomérico. El miembro de sellado se mantiene después en la ranura del miembro de sellado debido a la elasticidad inherente del miembro de sellado elástico.

Según una realización el miembro de sellado comprende dos miembros laterales paralelos y al menos dos miembros intermedios que se extienden entre éstos. Los miembros intermedios conectan los miembros laterales los unos con los otros. Dicho miembro de sellado con forma de escalera es muy fácil de instalar.

40 Según una realización el miembro de sellado comprende dos miembros laterales paralelos y al menos tres miembros intermedios que se extienden entre éstos.

Según una realización dicha carcasa de válvula tiene al menos tres puertos de válvula, en donde el rotor de válvula es giratorio entre una posición cerrada, en la que dicha parte de bloqueo del rotor de válvula evita un flujo de fluido a través de la válvula, y una primera posición abierta, en la que el paso de flujo del rotor de válvula permite la comunicación de fluido entre al menos dos de dichos puertos de válvula.

Según una realización la válvula de control de fluido es una válvula de tres vías.

Según una realización la válvula de control de fluido es una válvula de cuatro vías.

Según una realización la válvula de control de fluido tiene dos puertos de entrada y un puerto de salida.

Según una realización la válvula de control de fluido tiene tres puertos de entrada y un puerto de salida.

Estos y otros aspectos de la invención serán evidentes y dilucidados con referencia a las reivindicaciones y las realizaciones descritas de aquí en adelante.

Breve descripción de los dibujos

La invención no se describirá en más detalle con referencia a los dibujos esquemáticos adjuntos, en los cuales:

5 La Figura 1 muestra, en una vista en perspectiva ampliada, una válvula de control de fluido según una realización de la presente descripción.

La Figura 2a-b muestra un rotor de válvula de la válvula de control de fluido mostrada en la Figura 1.

La Figura 3 muestra un miembro de sellado de la válvula de control de fluido mostrada en la Figura 1.

Las Figura 4a-b ilustran la instalación de un miembro de sellado en una disposición de ranura del miembro de sellado del rotor de válvula de la válvula de control de fluido en la Figura 1.

La Figura 5 muestra, en una vista en perspectiva ampliada, una válvula de control de fluido según una segunda realización de la presente descripción.

Descripción de las realizaciones preferidas

45

50

- La Figura 1 ilustra una válvula 1 de control de fluido. La válvula 1 de control de fluido se muestra en una vista ampliada para facilitar la ilustración de las diferentes características de la misma. La válvula 1 de control de fluido está destinada a controlar el flujo de líquido en un sistema de tuberías y se puede usar por ejemplo para controlar el flujo de líquido en un sistema de calefacción y/o refrigeración en un edificio. La válvula 1 de control de fluido se puede conectar como una válvula de mezclado para mezclar flujos de fluido, como una válvula de desvío o una válvula combinada de mezclado y desvío.
- La válvula 1 de control de fluido comprende una carcasa 3, que define una cámara 5 de válvula cilíndrica circular, un rotor 7 y un eje 9 operativo para operar el rotor 7. El eje 9 operativo se configura para estar conectado a un tirador para el control manual de la válvula, o a un controlador electrónico para el control automático de la válvula. Con este fin se le da forma al rotor 7 para acoplarse de manera no giratoria con un controlador del eje 9 operativo. El rotor 7 es giratorio alrededor de un eje 10 central de rotor.
- La cámara 5 de válvula comprende cuatro puertos 11, 13, 15, 17 distribuidos alrededor de una pared 19 de la cámara circunferencial y cuatro conductos 21, 23, 25, 27 de conexión. Cada uno de los cuatro conductos 21, 23, 25, 27 de conexión, que se disponen a igual altura alrededor de la pared 19 de la cámara circunferencial, se conectan de manera fluida a la cámara 5 de válvula mediante uno de los cuatro puertos 11, 13, 15, 17 respectivos. El primer puerto 11 y el conducto 21 de conexión asociado se sitúan opuestos al tercer puerto 15 y el conducto 25 de conexión asociado y el segundo puerto 13 y el conducto 23 de conexión asociado se sitúan opuestos al cuarto puerto 17 y el conducto 27 de conexión asociado. El tamaño de todos los cuatro puertos 11, 13, 15, 17 es tal que las partes intactas de la pared 19 de la cámara circunferencial se mantengan alrededor de todos los cuatro puertos 11, 13, 15, 17. En esta realización cada uno de los puertos 13, 15, y 17 forman un puerto de entrada y el primer puerto 11 forma un puerto de salida.
- El rotor 7 comprende una primera parte 29 de bloqueo, una segunda parte 31 de bloqueo y un paso 33 de flujo. Cada una de entre la primera y la segunda partes 29, 31 de bloqueo es capaz de bloquear las posibles rutas de fluido a través de la válvula 1. El paso 33 de flujo, que tiene una entrada y una salida, se dispone entre las partes 29, 31 de bloqueo y permite la comunicación de fluido a través del rotor 7 de válvula. La entrada del paso de flujo está formada mediante una primera abertura 35 lateral, ilustrada en la Figura 2b, del rotor 7 de válvula y la salida del paso de flujo se forma mediante una segunda abertura 37 lateral, ilustrada en la Figura 2a, del rotor 7 de válvula.

El rotor 7 se asienta de manera giratoria dentro de la cámara 5 de la carcasa 3 de válvula y es giratorio alrededor del eje 10 central del rotor entre diferentes posiciones de operación para controlar el flujo de fluido a través de la válvula 1. Tal como se ilustra en la Figura 1 la forma general del rotor 7 es cilíndrica circular. Un nivel 39 superior del rotor 7 tiene una ranura 41, con la forma para acoplarse de manera no giratoria con un controlador del eje 9 de operación para permitir el control manual o automático de la válvula 1 girando el rotor 7 de manera tal que las aberturas 11, 13, 15, 17 de la disposición de cuatro puertos estén total o parcialmente abiertas o cerradas.

El rotor 7 de válvula comprende un miembro de sellado en forma de un miembro 43 de sellado elástico.

La Figura 2a y la Figura 2b muestran diferentes lados del rotor 7 de válvula sin el miembro 43 de sellado para facilitar la ilustración de ciertas características del rotor 7 de válvula. Una disposición 45 de ranura del miembro de sellado se forma en el rotor 7 de válvula. La disposición 45 de ranura del miembro de sellado se adapta para recibir el miembro 43 de sellado. Con este fin la disposición 45 de ranura del miembro de sellado comprende varias partes 45a, 45b, 45c, de ranura, cada una de las cuales se adapta para recibir una parte del miembro 43 de sellado. En esta realización la disposición 45 de ranura del miembro de sellado comprende una primera parte 45a de ranura circunferencial, una segunda parte 45b de ranura circunferencia y cuatro partes 45c de ranura axiales.

El rotor 7 se dispone para entrar en contacto de manera hermética con la pared 19 de cámara circunferencial y para cerrar al menos uno de los puertos 11, 13, 15, 17 de válvula. En la posición de rotor de válvula ilustrada en la Figura 1 el segundo puerto 13, esto es uno de los puertos de entrada de la válvula 1, es cerrado mediante la primera parte 29 de bloqueo del rotor 7 de válvula y el cuarto puerto 17, esto es otro de los puertos de entrada de la válvula 1, es cerrado por la segunda parte 31 de bloqueo del rotor 7 de válvula, mientras el paso 33 de flujo del rotor 7 de válvula permite la comunicación de fluido entre el tercer puerto 15, esto es uno de los puertos de entrada de la válvula 1, y el primer puerto 11, esto es el puerto de salida de la válvula 1.

Tal y como se menciona de aquí en adelante, el rotor 7 de válvula comprende un paso 33 de flujo para la comunicación de fluido a través de éste, un paso 33 de flujo el cual tiene una entrada 35, ilustrada en la Figura 2b y una salida 37, ilustrada en la Figura 2a. Tal como se muestra en la Figura 2a y en la Figura 2b el tamaño de la entrada 35 de paso de flujo es mayor que la salida 37 de paso de flujo.

10

15

20

35

40

45

La Figura 3 muestra el miembro 43 de sellado. El miembro 43 de sellado, que se forma como una pieza única, se configura para ser recibido en la disposición 45 de ranura del miembro de sellado formada en el rotor 7 de válvula y moverse junto con ésta. Con este fin el miembro 43 de sellado comprende dos miembros 43a, 43b laterales paralelos, cada uno de los cuales se configura para ser recibido en una respectiva parte 45a, 45b de ranura de la ranura 45 del miembro de sellado, y miembros 43c intermedios que se extienden entre los miembros 43a, 43b laterales paralelos y se configuran para ser recibidos en una ranura 45c axial respectiva de la ranura 45 del miembro de sellado. Los miembros 43c intermedios conectan por tanto los miembros 43a, 43b laterales paralelos los unos con los otros. El miembro 43 de sellado tiene por tanto forma de escalera. La distancia entre los miembros 43c intermedios esto es entre los "escalones", del miembro 43 de sellado con forma de escalera corresponde a la distancia entre las partes 45c axiales de la disposición 45 de ranura del miembro de sellado. Además, la distancia entre los miembros 43a, 43b laterales del miembro 43 de sellado corresponde a la distancia entre las partes 45a, 45b de ranura circunferenciales de la disposición 45 de ranura del miembro de sellado. El miembro 43 de sellado y la ranura 45 del miembro de sellado son por tanto de forma complementaria.

El miembro 43 de sellado con forma de escalera forma por tanto una primera parte 47, que se configura para rodear la primera parte 29 de bloqueo del rotor 7 de válvula, una segunda parte 49, que se configura para rodear la entrada 35 de paso de flujo, y una tercera parte 51, que se configura para rodear la segunda parte 31 de bloqueo del rotor 7 de válvula. Por tanto, cuando el miembro 43 de sellado se recibe en la ranura 45 del miembro de sellado la primera parte 47 de miembro de sellado rodea la primera parte 29 de bloqueo del rotor 7 de válvula, la segunda parte 49 de miembro de sellado rodea la entrada 35 de paso de flujo del rotor 7 de válvula y la tercera parte 51 del miembro de sellado rodea la segunda parte 31 de bloqueo del rotor 7 de válvula.

Por tanto, cada una de entre la primera, la segunda y la tercera partes 47, 49, 51 del miembro de sellado forman una parte de sellado. De manera adicional, cada una de entre la primera y la tercera partes 47, 49 del miembro de sellado forman una parte de anclaje, esto es una parte que asegura que el miembro 43 de sellado se mantiene en posición durante el uso de la válvula 1. La primera, segunda y tercera partes 47, 49, 51 de sellado se forman de manera integral las unas con las otras.

El miembro 43 de sellado se forma preferiblemente a partir de material elastomérico, tal como, por ejemplo, el EPDM.

Con referencia a las Figura 4a-b la instalación del miembro 43 de sellado en la disposición 45 de ranura del rotor 7 de válvula de la válvula 1 de control de fluido se explicará de aquí en adelante.

La Figura 4a muestra un estado de ensamblaje intermedio en el que una parte 43c de miembro de sellado axial del miembro 43 de sellado se ha colocado en una parte 45c de ranura axial de la disposición 45 de ranura del miembro de sellado. El miembro 43 de sellado se estira entonces ligeramente y se "enrolla" en el rotor 7 de válvula, tal como se ilustra mediante la flecha A en la Figura 4b, a una posición instalada, ilustrada en la Figura 4b. Tras la instalación del miembro 43 de sellado cada una de las partes 47, 49 de anclaje se estira para sujetar el miembro 43 de sellado al rotor 7 de válvula.

En la posición instalada el miembro 43 de sellado es recibido en la disposición 45 de ranura del miembro de sellado. El miembro 43 de sellado se mantiene en la disposición 45 de ranura del miembro de sellado debido a la elasticidad inherente del miembro 43 de sellado.

La Figura 5 ilustra, en una vista ampliada, una válvula 101 de control de fluido según una segunda realización de la presente descripción. La válvula 101 de control de fluido está destinada a controlar el flujo de líquido en un sistema de tuberías y se puede usar por ejemplo para controlar el flujo de líquido en un sistema de calefacción y/o refrigeración en un edificio. La válvula 101 de control de fluido se puede conectar como una válvula de mezclado para mezclar flujos de fluido, como una válvula de desvío o como una válvula combinada de mezclado y desvío.

La válvula 101 de control de fluido comprende una carcasa 103, que define una cámara 105 de válvula cilíndrica circular, un rotor 107 y un eje 109 de operación para operar el rotor 107. El eje 109 de operación se configura para estar conectado a un tirador para el control manual de la válvula, o a un controlador electrónico para el control

automático de la válvula. Con este fin se da forma al rotor 107 para acoplarse de manera no giratoria con un controlador del eje 109 de operación. El rotor 107 es giratorio alrededor del eje 110 central del rotor.

La cámara 105 de válvula comprende tres puertos 111, 113, 115 de válvula distribuidos alrededor de una pared 119 de cámara circunferencial y tres conductos 121, 123, 125 de conexión. Cada uno de los cuatro conductos 121, 123, 125, de conexión que se disponen a iguales alturas alrededor de la pared 119 de cámara circunferencial, está conectado de forma fluida a la cámara 105 de válvula mediante uno respectivo de los tres puertos 111, 113, 115. A modo de ejemplo, en esta realización cada uno de los puertos 113, 115 forman un puerto de entrada y el primer puerto 111 forma un puerto de salida.

El rotor 107 comprende una parte 129 de bloqueo, que es capaz de bloquear posibles rutas de fluido a través de la válvula 101, y un paso 133 de flujo que permite la comunicación de fluido a través de la válvula 101.

10

15

20

30

35

40

45

50

55

El rotor 107 se asienta de manera giratoria dentro de la cámara 105 de la carcasa 103 de la válvula y es giratorio alrededor del eje 110 central del rotor entre las diferentes posiciones de operación para controlar el flujo de fluido a través de la válvula 101. La forma general del rotor 107 es cilíndrica circular. Un nivel 139 superior del rotor 107 tiene una ranura 141, conformado para acoplarse de manera no giratoria con un controlador del eje 109 de operación para permitir el control manual o automático de la válvula 101 rotando el rotor 107 de manera tal que los tres puertos 111, 113, 115 de válvula estén abiertos total o parcialmente o cerrados.

El rotor 107 de válvula comprende un miembro de sellado en la forma de un miembro 143 de sellado elástico.

Se forma una disposición 145 de ranura de miembro de sellado en el rotor 107 de válvula, disposición 145 de ranura que se adapta para recibir el miembro 143 de sellado. Con este fin la disposición 145 de ranura del miembro de sellado comprende varias partes 145a, 145b de ranura, cada una de las cuales se adapta para recibir una parte del miembro 143 de sellado. En esta realización la disposición 145 de ranura del miembro de sellado comprende una primera parte 145a de ranura circunferencial, una segunda parte 145b de ranura circunferencial y dos partes de ranura axiales (no mostradas).

El rotor 107 se dispone para entrar en contacto de sellado con la pared 119 de cámara circunferencial y para cerrar uno de los puertos 111, 113, 115 de válvula. En la posición de rotor de válvula ilustrada en la Figura 5 el primer puerto 111, esto es el puerto de salida de la válvula 101 se cierra mediante la parte 129 de bloqueo del rotor 107 de válvula. El flujo de fluido a través de la válvula 101 se bloquea por tanto cuando el rotor 107 de válvula asuma la posición ilustrada en la Figura 5.

El miembro 143 de sellado, que se forma como una pieza única, se configura para ser recibido en la disposición 145 de ranura del miembro de sellado formada en el rotor 107 de válvula y moverse junto con ésta. Con este fin el miembro 143 de sellado comprende dos miembros 143a, 143b laterales paralelos, cada uno de los cuales se configura para ser recibido en una parte 145a, 145b de ranura respectiva de la ranura 145 del miembro de sellado, y los miembros 143c intermedios que se extienden entre los miembros 143a, 143b laterales paralelos y se configuran para ser recibidos en una ranura axial respectiva (no mostrada) de la disposición 145 de ranura del miembro de sellado. Los miembros 143c intermedios por tanto conectan los miembros 143a, 143b laterales paralelos los unos con los otros. El miembro 143 de sellado tiene por tanto forma de escalera. La distancia entre los miembros 43c intermedios, esto es entre los "escalones", del miembro 143 de sellado con forma de escalera corresponde a la distancia entre las partes axiales de la disposición 145 de ranura del miembro de sellado. Además, la distancia entre los miembros 143a, 143b laterales del miembro 143 de sellado corresponde a la distancia entre las partes 145a, 145b de ranura circunferenciales de la disposición 145 de ranura del miembro de sellado. El miembro 143 de sellado y la disposición 145 de ranura del miembro de sellado.

El miembro 143 de sellado comprende una primera parte en forma de una parte 147 de sellado, que se configura para rodear la parte 129 de bloqueo del rotor 7 de válvula. Por tanto, cuando el miembro 143 de sellado es recibido en la disposición 145 de ranura del miembro de sellado la primera parte 147 del miembro de sellado rodea la parte 129 de bloqueo del rotor 107 de válvula.

El miembro 143 de sellado comprende además una segunda parte, en forma de una primera parte 149 de anclaje elástica, y una tercera parte, en la forma de una segunda parte 151 de anclaje elástica, partes 149, 151 de anclaje cada una de las cuales se configura principalmente para asegurar el miembro 143 de sellado al rotor 107 de válvula. Por tanto, las partes de anclaje se configuran para mantener el miembro de sellado en el sitio. Con este fin cada una de entre la primera y segunda partes 149, 151 de anclaje comprenden dos anclajes 149a, 149b y 151a, 151b, respectivamente.

La primera parte 149 de anclaje comprende un primer miembro alargado que tiene un extremo libre en el que se dispone el primer anclaje 149a de la primera parte 149 de anclaje y el segundo miembro alargado que tiene un extremo libre en que se dispone el segundo anclaje 149b de la primera parte 149 de anclaje. Además, la segunda parte 151 de anclaje comprende un primer miembro alargado que tiene un extremo libre en el que se dispone el primer anclaje 151a de la segunda parte 151 de anclaje y un segundo miembro alargado que tiene un extremo libre en el que se dispone el segundo anclaje 151b de la segunda parte 151 de anclaje.

Cada una de la primera y segunda partes 149, 151 de anclaje comprenden por tanto dos miembros alargados, cada uno de los cuales se dispone en un extremo libre del mismo con un anclaje.

Tal como se ilustra en la Figura 5 la disposición 145 de ranura del miembro de sellado del rotor 107 de válvula comprende cuatro huecos, en la forma de huecos circulares, cada uno de los cuales se configura para recibir uno respectivo de los anclajes 149a, 149b, 151a, 151b del miembro 143 de sellado.

5

15

30

Tal como se ilustra en la Figura 5 la primera parte 149 de anclaje sobresale de un lado 153 de la parte 147 de sellado del miembro 143 de sellado y la segunda parte 151 de anclaje sobresale del lado 155 opuesto de la parte 147 de sellado del miembro 143 de sellado, lo que asegura una instalación robusta del miembro 143 de sellado. Cada una de las partes 149, 151 de anclaje se forma de manera íntegra con la parte 147 de sellado.

La instalación del miembro 143 de sellado en la ranura 145 de anillo de sellado del rotor 107 de válvula de la válvula 101 de control de fluido es llevada a cabo de una manera similar a la explicada anteriormente con referencia a las Figura 4a-b.

Al ajustar el miembro 143 de sellado en la disposición 145 de ranura del miembro de sellado del cuerpo 107 del rotor de válvula, las partes 149, 151 de anclaje elásticas del miembro 143 de sellado se estiran por tanto ligeramente, lo que asegura una instalación robusta del miembro 143 de sellado. Tras la instalación del miembro 143 de sellado cada una de las partes 147, 149 de anclaje se estira por tanto para sujetar el miembro 143 de sellado al rotor 107 de válvula.

En la posición instalada el miembro 143 de sellado se recibe en la disposición 145 de ranura del miembro de sellado. Por tanto, cada uno de los anclajes 149a, 149b, 151a, 151b es recibido en un respectivo hueco de la disposición 145 de ranura del miembro de sellado y se acopla en éste. El miembro 143 de sellado se mantiene en la disposición 145 de ranura del miembro de sellado debido a la elasticidad inherente del miembro 143 de sellado elástico. El miembro 143 de sellado se forma preferiblemente a partir de material elastomérico, tal como, por ejemplo, el EPDM.

Se apreciará que son posibles numerosas variantes de las realizaciones descritas anteriormente dentro del alcance de las reivindicaciones adjuntas.

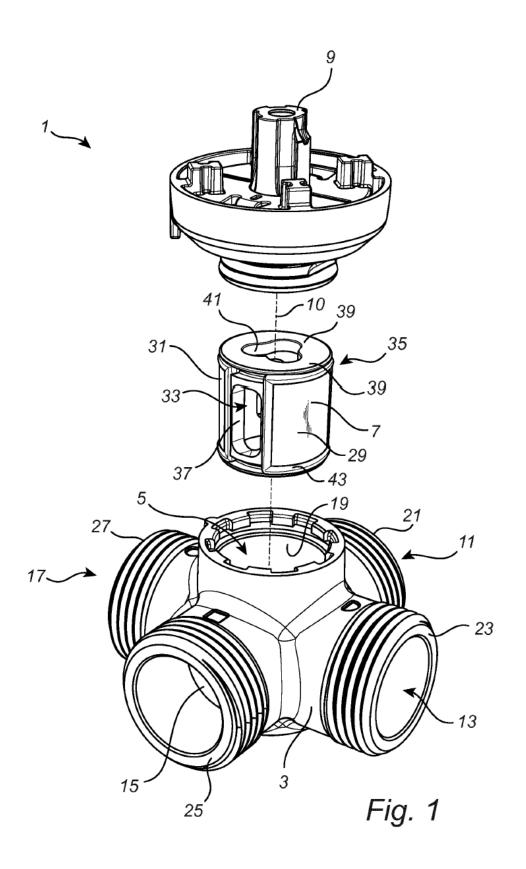
Las realizaciones descritas anteriormente se refieren a válvulas de fluido en forma de válvulas de mezclado. Sin embargo, la invención no se limita a válvulas de fluido de ese tipo, sino que se puede aplicar a válvulas de cierre y desvío también.

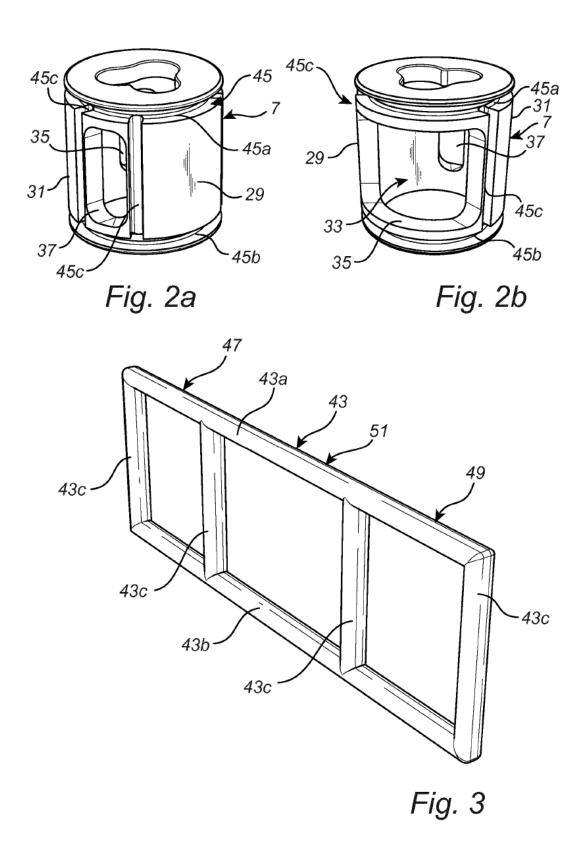
Además, las realizaciones descritas anteriormente se refieren a válvulas de fluido que tienes tres o cuatro puertos de válvula. Sin embargo, la invención no se limita a válvulas de fluido de ese tipo, sino que se puede aplicar a válvulas que tienen dos puertos de válvula, tales como una válvula de cierre de dos vías, o válvulas que tienen más de cuatro puertos de válvula.

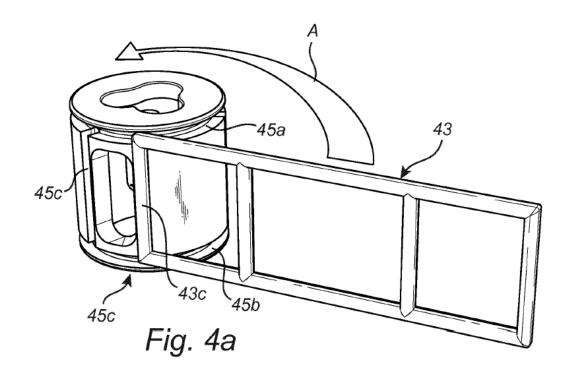
REIVINDICACIONES

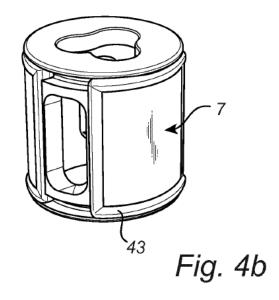
- 1. El uso de una válvula de control de líquido para controlar el flujo de líquido en un sistema de calefacción y/o refrigeración en un edificio, comprendiendo dicha válvula
- una carcasa (3; 103) de válvula con una cámara (5; 105) de válvula que tiene al menos dos puertos (11, 13, 15, 17; 111, 113, 115) de válvula distribuidos alrededor de una pared de cámara circunferencial (19; 119) de la cámara (5; 105) de válvula.
 - un rotor (7; 107) de válvula, que se dispone de manera giratoria dentro de dicha cámara (5; 105) de válvula y comprende al menos una parte (29, 31; 129) de bloqueo y un paso (33; 133) de flujo,
- en donde el rotor (7; 107) de válvula es giratorio entre una posición cerrada, en la que uno de dichos al menos dos puertos (11, 13, 15, 17; 111, 113, 115) está bloqueado por dicha parte (29; 31; 129) de bloqueo, y una primera posición, en la que el paso (33; 133) de fluido del rotor (7; 107) de válvula permite la comunicación de fluido entre dichos al menos dos puertos (11, 13, 15, 17; 111, 113, 115) de válvula,
 - una disposición (45; 145) de ranura formada en el rotor (7; 107) de válvula, y

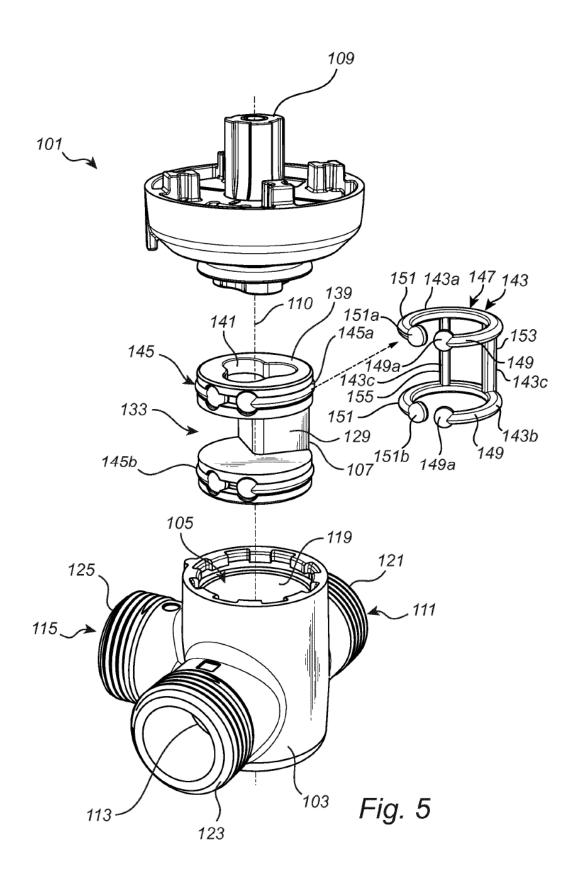
20


30


50


- un miembro (43; 143) de sellado elástico que se configura para ser recibido en la disposición (45; 145) de ranura y moverse junto con el rotor (7; 107) de válvula, caracterizado por que
 - dicha disposición (45; 145) de ranura comprende al menos dos partes (45a, 45b; 145a, 145b) y al menos dos partes (45c) de ranura, y
 - el miembro de sellado (43; 143) se forma como una pieza única y comprende una parte (51; 147) de sellado, que se configura para rodear dicha parte (29, 31; 129) de bloqueo, y al menos una primera parte de anclaje (47; 149, 151) que sobresale de un lado (153) de dicha parte (51; 147) de sellado y que se configura para sujetar el miembro (43; 143) de sellado al rotor (7; 107) de válvula, comprendiendo dicha primera parte (47; 149, 151) de anclaje al menos un anclaje (43c; 149a, 151a, 151b) que se dispone en un extremo libre del mismo para acoplarse con una parte (45c) de dicha disposición (45; 145) de ranura.
- 2. El uso de una válvula de control de líquido según la reivindicación 1, en donde dicha disposición (145) de ranura comprende un hueco, tal como un hueco circular, elíptico o con forma de T.
 - 3. El uso de una válvula de control de líquido según cualquiera de las reivindicaciones anteriores, en donde dicha primera parte (149) de anclaje comprende al menos dos anclajes (149a, 149b).
 - 4. El uso de una válvula de control de líquido según cualquiera de las reivindicaciones anteriores, en donde el miembro (43; 143) de sellado comprende una segunda parte de anclaje (49; 151) que sobresale desde un lado (155) opuesto a dicha parte (51; 147) de sellado.
 - 5. El uso de una válvula de control de líquido según la reivindicación 4, en donde dicha segunda parte (151) de anclaje comprende al menos un anclaje (151a, 151b) para acoplarse con una parte de dicha disposición (145) de ranura.
- 6. El uso de una válvula de control de líquido según cualquiera de las reivindicaciones 4-5, en donde dicha primera parte (149) de anclaje comprende una primera ancla (149a) dispuesta en un primer extremo del mismo y una segunda ancla (149b) dispuesta en un segundo extremo del mismo, y en donde dicha parte (151) de anclaje comprende una primera ancla (151a) dispuesta en un primer extremo del mismo y una segunda ancla (151b) dispuesta en un segundo extremo del mismo.
- 7. El uso de una válvula de control de líquido según cualquiera de las reivindicaciones anteriores, en donde el miembro (43; 143) de sellado se forma a partir de un material elastomérico.
 - 8. El uso de una válvula de control de líquido según cualquiera de las reivindicaciones anteriores, en donde el miembro (43; 143) de sellado comprende dos miembros (43a, 43b; 143a, 143b) paralelos y al menos dos miembros (43c; 143c) intermedios que se extienden entre éstos.
- 9. El uso de una válvula de control de líquido según cualquiera de las reivindicaciones anteriores, en donde el miembro (43) de sellado comprende dos miembros (43a, 43b) paralelos y al menos tres miembros (43c) intermedios que se extienden entre éstos.
 - 10. El uso de una válvula de control de líquido según cualquiera de las reivindicaciones anteriores, en donde dicha carcasa (3; 103) de válvula tiene al menos tres puertos (11, 13, 15, 17; 111, 113, 115) de válvula, y en donde el rotor (7; 107) de válvula es giratorio entre una posición cerrada, en la que dicha parte (29, 31; 129) de bloqueo del rotor (7; 107) de válvula evita un flujo de fluido a través de la válvula, y una primera posición abierta, en la que el paso (33; 133) de flujo del rotor (7; 107) de válvula permite la comunicación de fluido entre al menos dos de dichos puertos (11, 13, 15, 17; 111, 113, 115) de válvula.


- 11. El uso de una válvula de control de líquido según la reivindicación 10, en donde la válvula de control de fluido tiene dos puertos (113, 115) de entrada y un puerto (111) de salida.
- 12. El uso de una válvula de control de líquido según la reivindicación 10, en donde la válvula de control de fluido tiene tres puertos (13, 15, 17) de entrada y un puerto (11) de salida.


5

