

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 748 232

51 Int. Cl.:

F04B 39/02 (2006.01) **F04B 39/06** (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(96) Fecha de presentación y número de la solicitud europea: 18.01.2017 E 17151956 (4)
(97) Fecha y número de publicación de la concesión europea: 14.08.2019 EP 3196462

(54) Título: Disposición de montaje de bomba de aceite en un compresor de refrigeración

(30) Prioridad:

19.01.2016 CN 201610254910

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **16.03.2020**

(73) Titular/es:

WHIRLPOOL S.A. (100.0%) Avenida das Nações Unidas 12.995 - 32° andar, Brooklin Novo 04578-000 São Paulo - SP, BR

(72) Inventor/es:

MANKE, ADILSON LUIZ y SACOMORI, DIEGO

(74) Agente/Representante:

DURAN-CORRETJER, S.L.P

DESCRIPCIÓN

Disposición de montaje de bomba de aceite en un compresor de refrigeración

5 Sector técnico de la invención

La presente solicitud hace referencia a una disposición de montaje de bomba de aceite para compresores de refrigeración. Una invención de este tipo tiene como objetivo proporcionar a dicho compresor una mejor utilización del espacio interior definido por el cuerpo envolvente del mismo, para permitir su miniaturización.

Estado de la técnica anterior

10

15

25

30

35

45

50

Según el conocimiento general disponible en el estado de la técnica, la mayoría de los compresores de refrigeración comprenden un cuerpo envolvente exterior que envuelve a varios componentes funcionales, tales como un mecanismo de compresión formado, básicamente, por un conjunto de pistón/cilindro, siendo desplazado el pistón por una biela que está conectada a un árbol excéntrico que está definido y se extiende desde un árbol de impulsión que gira junto con el rotor de un motor eléctrico, así como el propio motor eléctrico, definido, básicamente, por dicho rotor y un estátor.

Es conocido que un aspecto esencial para el buen funcionamiento de estos compresores consiste en la lubricación de las partes móviles (pistón, biela, árbol excéntrico, etc.) y/o de las superficies con las que colaboran. Esta lubricación está proporcionada, normalmente, mediante el bombeo de aceite lubricante provisto en el depósito de aceite (cárter) definido en el interior del cuerpo envolvente, en la parte inferior del mismo. Este aceite es bombeado para llegar a los componentes adecuados y, posteriormente, regresa al cárter por gravedad.

Asimismo, es conocido, en el estado de la técnica, que estas bombas de aceite (centrífugas o helicoidales) están formadas por el propio árbol de impulsión del compresor o acopladas al mismo, en el extremo inferior del mismo, y parcialmente sumergidas en el aceite lubricante contenido en el depósito. Adicionalmente, es bastante normal que los árboles de impulsión comprendan ranuras en la superficie exterior de los mismos, capaces de ayudar en el bombeo de aceite a los otros componentes móviles del compresor.

De manera más específica, las bombas de aceite de algunos modelos de compresores de refrigeración actuales comprenden una bomba helicoidal, formada por la interacción entre un pasador estacionario y una parte inferior hueca integrada o acoplada a dicho árbol de impulsión del motor eléctrico del compresor, proporcionada por el montaje concéntrico y ligeramente holgado del mismo, estando dispuesta en, por lo menos, uno de estos, una ranura helicoidal. Ejemplos bastante didácticos de este espíritu constructivo se destacan en los documentos de Patente BRP19201761, WO2005/047699, US6450785 y WO96/29516.

Este tipo de bomba permite elevar un gran caudal de aceite, incluso cuando el compresor funciona a bajas revoluciones, lo que es deseable, principalmente, cuando el compresor de refrigeración es del tipo de velocidad variable.

Con el fin de proporcionar soporte al pasador, existen varias disposiciones conocidas que utilizan varillas de sujeción, con un formato sustancialmente similar a una "U", que pasan sobre dicho pasador en uno de sus extremos y los anclan junto a una parte fija del bloque del cilindro o del motor eléctrico, tal como el estátor, o una cubierta protectora unida en la parte inferior a dicho estátor.

Dichas varillas de sujeción se identifican fácilmente en los documentos de Patente US6450785, JP20055337158 y BRPI0804302, así como en los documentos de Patente WO2005/047699 y WO96/29516.

No obstante, todos estos documentos tienen un inconveniente común, a saber, dicho formato similar a una "U" de las varillas de sujeción. Debido a esta configuración geométrica, tales varillas de sujeción tienden a ocupar demasiado espacio en el interior del cuerpo envolvente.

- En concreto, la varilla de sujeción dada a conocer por el documento de Patente BRPI0804302 está dispuesta de tal manera que evita la cubierta protectora del motor y/o los cabezales de sus bobinas eléctricas, con sus extremos alojados en asientos sustancialmente horizontales con el fin de definir un árbol de pivotamiento geométrico, perpendicular y coplanario con respecto al árbol de giro del rotor.
- Como consecuencia inconveniente de estos tipos de disposiciones de la técnica anterior (varilla con formato similar a una "U"), se menciona la posibilidad de que la varilla de sujeción colisione con el cuerpo envolvente del compresor, especialmente durante el transporte o durante los arranques (encendido) y detenciones (apagado) del compresor. La incidencia de estas colisiones es aún mayor cuando se reduce la distancia entre esta varilla de sujeción y el cuerpo envolvente, lo que tiende a suceder debido a la constante y actual miniaturización de los compresores de refrigeración.

ES 2 748 232 T3

En una situación aún más crítica, considerando los diferentes modelos de compresores, es posible que dicha distancia sea tan pequeña que incluso impida este tipo de solución.

Además, la "exposición" de tales varillas de sujeción, dada la curvatura de las mismas, puede conducir a una mayor probabilidad de errores de montaje, que surgen de posibles colisiones de dicha varilla de sujeción contra dispositivos de montaje o contra otros componentes interiores del compresor durante el proceso mecánico de introducción del kit en el interior de dicho cuerpo envolvente. Tal problema parece ser aún más crítico en el caso de la disposición descrita por el documento de Patente BRPI0804302, porque el contorno de la varilla se dispone alrededor de la cubierta protectora del motor y/o del cabezal de las bobinas.

A este respecto, el documento de Patente EP1605163 ya da a conocer una disposición de montaje de varillas de sujeción del pasador de la bomba helicoidal, en el que dicha varilla comprende un formato similar a dos curvas en "S" consecutivas, en cada uno de los lados derecho e izquierdo del pasador de la bomba (véanse las figuras 1 y/o 3 de este documento), montadas de tal manera que no sobresalen de la circunferencia (la proyección vertical) del estátor. Se debe observar que algunas de las varillas de sujeción de los documentos mencionados anteriormente no sobresalen de la circunferencia del estátor, independientemente de su formato.

De este modo, y a pesar de que algunas disposiciones de montaje de bomba de aceite helicoidal en compresores de refrigeración han demostrado ser, de alguna manera, funcionales hasta el día de hoy, se observa que todas ellas carecen de soluciones constructivas simples que puedan optimizar el espacio ocupado por la varilla de sujeción en el interior del cuerpo envolvente del compresor, garantizando un montaje adecuado del conjunto y el funcionamiento protector del motor eléctrico y, al mismo tiempo, que consistan en una solución de fabricación fácil y económica, manteniendo también el concepto definido en el documento de Patente BRPl0804302, en el que la varilla de sujeción tiene una parte unida a una de las partes del bloque del cilindro y el estátor, según un árbol de pivotamiento geométrico, perpendicular al árbol geométrico del giro del rotor y coplanario con respecto al mismo.

Objetivos de la invención

5

10

15

20

25

Por lo tanto, a la vista de todo lo anterior, el objetivo principal de la presente solicitud es dar a conocer una disposición de montaje de bomba de aceite en un compresor de refrigeración capaz de proporcionar al compresor una mejor utilización del espacio interior definido por el cuerpo envolvente de la misma, con el fin de permitir su miniaturización.

También es un objetivo de la presente solicitud que la disposición del montaje de la bomba de aceite en un compresor de refrigeración permita una buena precisión en la construcción de la misma, un montaje fácil y confiable y una fabricación fácil y económica, garantizando la adecuada lubricación de las partes de los compresores, incluso a una velocidad de rotación baja.

Además, un objetivo de la presente solicitud es que la disposición del montaje de bomba de aceite en un compresor de refrigeración defina con precisión, en el anclaje del mismo, un árbol de pivotamiento geométrico, perpendicular al árbol geométrico del giro del rotor y coplanario con respecto al mismo.

Características de la invención

De este modo, con el fin de alcanzar los objetivos y los efectos técnicos indicados anteriormente, la presente solicitud hace referencia a una disposición de montaje de bomba de aceite en un compresor de refrigeración, que comprende un cuerpo envolvente en el interior del cual está dispuesto un motor eléctrico que incluye un estátor que lleva una pluralidad de bobinas separadas circunferencialmente y un rotor conectado a un árbol de impulsión y un pasador interior dispuesto de manera concéntrica con respecto a dicho árbol de impulsión, en la que el árbol de impulsión colabora con el pasador para definir canales helicoidales que delimitan el trayecto del aceite lubricante cuando es bombeado debido a la revolución relativa entre dicho árbol de impulsión y el pasador. Asimismo, está dispuesta una varilla de sujeción capaz de anclar dicho pasador en una parte fija del motor eléctrico.

Según la presente invención, dicha varilla de sujeción se apoya, en la parte media de la misma, en el pasador y, en los extremos de la misma, en los respectivos asientos definidos en la parte fija del motor eléctrico, en el que dicha varilla de sujeción se extiende a través de espacios libres alineados de manera longitudinal con espacios definidos entre bobinas adyacentes. Los extremos de la varilla de sujeción están alojados en asientos por los lados interiores de la misma.

- Preferentemente, los asientos están definidos por salientes, diametralmente opuestos entre sí, que se extienden radialmente hacia el exterior desde una superficie exterior de una cubierta protectora del motor eléctrico. La cubierta protectora es polimérica y está fabricada mediante moldeo por inyección, y los salientes están formados a partir de, por lo menos, dos mitades adyacentes y opuestas.
- 65 Incluso, preferentemente, la longitud de la varilla de sujeción está completamente dispuesta en el interior de la circunferencia definida por la cubierta protectora y sus salientes.

Breve descripción de los dibujos

- Las características, ventajas y efectos técnicos de la presente solicitud, tal como se ha descrito anteriormente, serán comprendidos mejor por un experto en la materia, a partir de la siguiente descripción detallada, realizada a modo de ejemplo, y no como limitación, de realizaciones preferentes de la invención, y haciendo referencia a las figuras esquemáticas adjuntas, que:
- la figura 1 muestra una vista esquemática, en sección frontal, de un compresor de refrigeración según la técnica 10 anterior.
 - La figura 2 muestra una vista esquemática, en sección frontal, de un compresor de refrigeración según la realización preferente de la presente invención.
- 15 La figura 3 muestra, en detalle, el pasador de la bomba de aceite montado en la varilla de sujeción.
 - La figura 4 muestra una vista inferior de la disposición del montaje de bomba de aceite del compresor de refrigeración cerca del estátor del motor eléctrico, según la presente invención.
- La figura 5 muestra una vista frontal de la disposición del montaje de la bomba de aceite de un compresor de refrigeración en la cubierta protectora, según la realización preferente de la invención.
 - La figura 6 muestra una vista ampliada detallada de los asientos que definen el alojamiento de los extremos de la varilla de sujeción del pasador de la bomba de aceite, según la realización preferente de la disposición de montaje de la presente invención.

Descripción detallada de la invención

25

60

- Según las figuras esquemáticas mencionadas anteriormente, algunos ejemplos de posibles realizaciones de la disposición del montaje de la bomba de aceite en el compresor de refrigeración, objeto de la presente invención, se describirán con más detalle a continuación, pero simplemente de manera ilustrativa, no limitativa. Esto se debe a que la presente invención puede comprender diferentes detalles y aspectos técnicos, constructivos, estructurales y dimensionales, sin afectar con ello al presente alcance de protección.
- De este modo, tal como se muestra, la disposición del montaje de bomba de aceite en el compresor de refrigeración se aplica, preferentemente, a compresores de velocidad variable y de tamaño reducido, en la que este tipo de compresor comprende un cuerpo envolvente 10 en el interior del cual está dispuesto un motor eléctrico 20 que incluye un estátor 30, que lleva una pluralidad de bobinas 31 separadas circunferencialmente entre sí y un rotor 40 asociado a un árbol de impulsión 50 y un pasador 51 dispuesto de manera interna y concéntrica con respecto a dicho árbol de impulsión 50.
 - El árbol de impulsión 50 colabora con el pasador 51, para definir canales helicoidales 52 que delimitan el trayecto del aceite lubricante cuando se bombea debido a la revolución relativa entre el árbol de impulsión 50 y el pasador 51.
- Tales canales helicoidales 52 están definidos debido a la provisión de ranuras dispuestas en la superficie interior de la parte inferior del árbol de impulsión 50 o en la superficie exterior del pasador 51.
- Con el fin de anclar dicho pasador 51 en una parte fija 80 del motor eléctrico 20, se proporciona una varilla de sujeción 70, en la que dicha varilla de sujeción 70 está apoyada, en la parte media de la misma, en un orificio 53 dispuesto a continuación del pasador 51 y, en sus extremos 71, en los respectivos asientos 81 definidos en la parte fija 80 del motor eléctrico 20, estando alineados dichos extremos 71 con el árbol geométrico definido por dichos asientos 81.
- Tal orificio 53 puede ser un orificio pasante con respecto al propio pasador 51 o, preferentemente, puede estar definido por una empuñadura 54 que se extiende desde el extremo del pasador 51.
 - Se debe tener en cuenta que las bobinas 31, como es de conocimiento común de los expertos en la materia, pueden estar arrolladas en partes de alojamiento 32 separadas entre sí de manera circunferencial, definidas en el armazón de metal que conforma el núcleo del estátor 30.
 - De este modo, merece la pena señalar que entre las bobinas 31 adyacentes entre sí existen espacios 34 definidos en los que los espacios libres 33 están alineados de manera longitudinal, tal como se muestra en la figura 4.
- En este caso, merece la pena señalar que la dirección longitudinal hace referencia a la dirección principal del árbol de impulsión 50 y, además, que los espacios libres 33 pueden estar contenidos en los propios espacios 34, dependiendo del tamaño de las bobinas 31.

ES 2 748 232 T3

En concreto, según la presente invención, la varilla de sujeción 70 del pasador 51 se extiende a través de las bobinas 31, pasando por encima de los espacios libres 33 para permitir que los extremos 71 de la varilla de sujeción 70 se alojen en los asientos 81 por medio de la introducción de la misma a través de los lados interiores 82 de estos asientos 81. En otras palabras, los extremos 71 de la varilla de sujeción 70 se extienden radialmente hacia el interior, sobresaliendo hacia el cuerpo envolvente en los asientos 81.

5

25

30

35

40

50

55

Estas dos características, relacionadas con la disposición de la varilla de sujeción 70, es decir, la longitud de la varilla de fijación 70 a través de los espacios libres 33 y con sus extremos 71 introducidos por los lados interiores de los asientos 81, se muestran diferentes del estado de la técnica y tienen ventajas técnicas, ya que permiten optimizar la disposición espacial de los componentes interiores al cuerpo envolvente del compresor, garantizando las distancias eléctricas mínimas requeridas por las reglas, puesto que la varilla de sujeción 70 no necesita evitar el extremo inferior de la cubierta protectora 90.

- Aun preferentemente, la parte de fijación 80 del motor eléctrico 20 hace referencia, específicamente, a una cubierta protectora 90, en la que los asientos 81 están definidos por los salientes 92, diametralmente opuestos entre sí, que se extienden radialmente hacia el exterior desde una superficie exterior 91 de esta cubierta protectora 90.
- En consecuencia, es esencial que la longitud de la varilla de sujeción 70 se encuentre completamente dispuesta en el interior de la circunferencia (o proyección vertical del contorno) definida por la cubierta protectora 90 y sus salientes 92, de tal manera que se reduzca la "exposición" de la varilla de sujeción 70.
 - Más concretamente, es muy deseable que los extremos 71 de la varilla de sujeción 70 no se extiendan más allá de los salientes 92, para evitar un eventual contacto de estos extremos 71 con el cuerpo envolvente 10 del compresor o con cualquier otro elemento durante el proceso de montaje, dicho contacto podría "empujar" la varilla de sujeción 70 radialmente hacia el interior y provocar el desacoplamiento/desenganche de estos extremos 71 de los asientos 81.
 - Por lo tanto, la varilla de sujeción 70 tiene una geometría curvilínea, en la que cada una de las mitades de la misma se asemeja a la letra "S". Por lo tanto, se observa claramente un saliente/"exposición" menores de la varilla de sujeción 70 hacia/con respecto al cuerpo envolvente 10 del compresor, lo que permite aproximar el motor eléctrico 20 a este último.
 - En esta construcción concreta, incluso si se produce un eventual contacto/colisión del pasador 51 con la parte inferior del cuerpo envolvente 10 del compresor, ya sea durante el funcionamiento del mismo o durante el montaje del mismo, los extremos 71 de la varilla de sujeción 70 serán impulsados en la dirección radial desde el interior hacia el exterior, de tal manera que se introduzcan aún más en los asientos 81, minimizando cualquier riesgo de desenganche, a diferencia de lo que sucede en las soluciones de la técnica anterior, en las que los extremos 71 de la varilla de sujeción 70 están alojados en los asientos 81 desde su introducción por los lados exteriores de la misma, tal como en el objetivo del documento de Patente BRPI0804302.
 - La cubierta protectora 90, conocida asimismo ampliamente por los técnicos expertos en la materia, es polimérica y está fabricada mediante moldeo por inyección debido a las ventajas inherentes de este proceso con respecto a la precisión dimensional y al coste.
- Opcionalmente, los soportes específicos para estos asientos 81 se pueden acoplar al estátor 30 del motor eléctrico 20, con las mismas funcionalidades descritas anteriormente.
 - Cuando se considera un proceso de inyección de polímero para la fabricación de dicha cubierta protectora 90, y de tal manera que los asientos 81 estén definidos por los salientes 92 como propone la invención, generalmente es necesaria la utilización de cajones móviles en el molde de inyección.
 - Teniendo en cuenta que la utilización de estos cajones aumenta sustancialmente el precio final del producto, y con el fin de eliminar este problema, se prefiere que los salientes 92 se formen a partir de, por lo menos, dos mitades adyacentes y opuestas, con respecto a la concavidad de las mismas.
 - Este conjunto de mitades permite definir con precisión, hasta los asientos 81, un árbol geométrico longitudinal que tiene un diámetro equivalente al de un orificio tubular continuo.
- De este modo, y según uno de los objetivos de esta invención, se consigue una parte fija 80 (cubierta protectora 90) fácil de fabricar y de bajo coste que, no obstante, garantiza la existencia de un árbol de pivotamiento geométrico bien definido, hasta la varilla de sujeción 70, perpendicular y coplanario con respecto al árbol de giro del rotor.
- A la vista de lo anterior, se observa que la invención propuesta ahora da a conocer una solución que proporciona una mejor utilización del espacio interior definido por el cuerpo envolvente del mismo, para permitir su miniaturización, así como un montaje fácil y confiable y una fabricación fácil y económica, garantizando, además, la adecuada lubricación de los componentes móviles del compresor, incluso cuando funciona a bajas revoluciones.

ES 2 748 232 T3

Finalmente, es importante destacar que la presente descripción tiene el único propósito de describir, solamente a modo de ejemplo, una realización de la disposición del montaje de bomba de aceite en un compresor de refrigeración, según la presente invención. Por lo tanto, debería ser evidente para los expertos en la materia que son posibles varias modificaciones constructivas, variaciones y combinaciones de los elementos que realizan la misma función de manera sustancialmente igual para conseguir los mismos resultados, que están dentro del alcance de protección definido por las reivindicaciones adjuntas.

5

REIVINDICACIONES

1. Compresor de refrigeración, que comprende un montaje de bomba de aceite, que comprende un cuerpo envolvente (10) en el interior del cual está dispuesto un motor eléctrico (20), que incluye un estátor (30), que lleva una pluralidad de bobinas (31) separadas entre sí de manera circunferencial, y un rotor (40), asociado a un árbol de impulsión (50) y un pasador (51) dispuestos de manera interna y concéntrica con respecto a dicho árbol de impulsión (50);

5

10

15

- colaborando el árbol de impulsión (50) con el pasador (51) para definir canales helicoidales (52) que delimitan el trayecto (60) del aceite lubricante, cuando es bombeado debido a la revolución relativa entre el árbol de impulsión (50) y el pasador (51); y
- una varilla de sujeción (70), capaz de anclar dicho pasador (51) en una parte fija (80) del motor eléctrico (20); en el que dicha varilla de sujeción (70) está apoyada, en la parte media de la misma, en el pasador (51) y, en los extremos de la misma (71), en respectivos asientos (81) definidos en la parte fija (80) del motor eléctrico (20); estando **caracterizado** dicho compresor **por** el hecho de que:
- la varilla de sujeción (70) se extiende a través de espacios libres (33) dispuestos en la parte fija (80) del motor eléctrico (20), alineados de manera longitudinal con espacios (34) definidos entre bobinas (31) adyacentes; y los extremos (71) de la varilla de sujeción (70) están alojados en los asientos (81) por los lados interiores (82) de los mismos.
 - 2. Compresor de refrigeración, según la reivindicación 1, **caracterizado por** el hecho de que los asientos (81) están definidos por salientes (92), diametralmente opuestos entre sí, que se extienden radialmente hacia el exterior desde una superficie exterior (91) de una cubierta protectora (90) del motor eléctrico (20).
- 3. Compresor de refrigeración, según la reivindicación 2, **caracterizado por** el hecho de que la longitud de la varilla de sujeción (70) está completamente dispuesta en el interior de la circunferencia definida por la cubierta protectora (90) y los salientes (92) de la misma.
- 4. Compresor de refrigeración, según la reivindicación 2, **caracterizado por** el hecho de que la cubierta protectora (90) es polimérica y está fabricada mediante moldeo por inyección.
 - 5. Compresor de refrigeración, según la reivindicación 2, **caracterizado por** el hecho de que los salientes (92) están formados, por lo menos, por dos mitades adyacentes y opuestas.

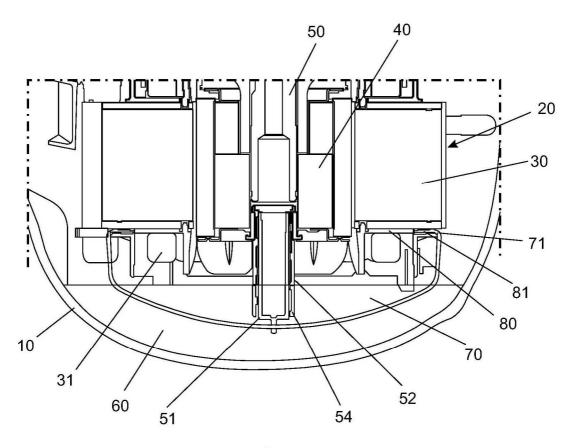


FIG.1

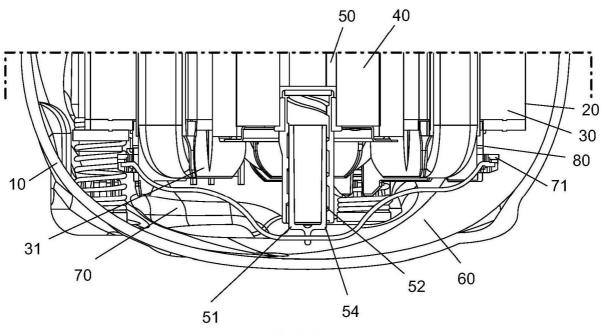


FIG.2

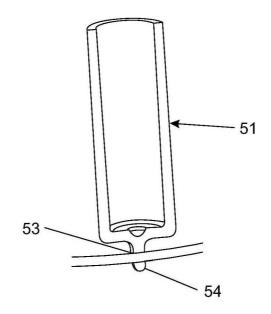


FIG.3

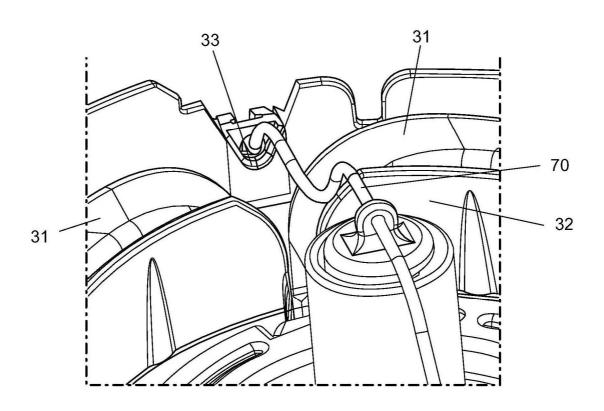


FIG.4

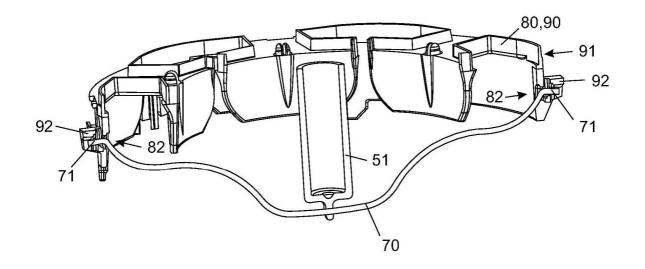


FIG.5

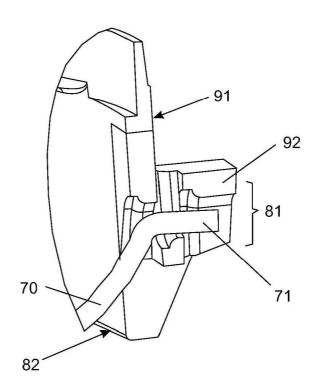


FIG.6

REFERENCIAS CITADAS EN LA DESCRIPCIÓN

Esta lista de referencias citada por el solicitante es únicamente para mayor comodidad del lector. No forman parte del documento de la Patente Europea. Incluso teniendo en cuenta que la compilación de las referencias se ha efectuado con gran cuidado, los errores u omisiones no pueden descartarse; la EPO se exime de toda responsabilidad al respecto.

Documentos de patentes citados en la descripción

- BR P19201761
- WO 2005047699 A
- US 6450785 B

5

• WO 9629516 A

- JP 20055337158 B
- WO 0804302 A
- EP 1605163 A