

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 748 381

(51) Int. CI.:

A61K 39/12 (2006.01) C07K 14/235 (2006.01) C07K 14/025 (2006.01)

(12) TRADUCCIÓN DE PATENTE EUROPEA

T3

24.01.2012 PCT/EP2012/051027 (86) Fecha de presentación y número de la solicitud internacional:

(87) Fecha y número de publicación internacional: 02.08.2012 WO12101112

(96) Fecha de presentación y número de la solicitud europea: 24.01.2012 E 12701110 (4)

(97) Fecha y número de publicación de la concesión europea: 03.07.2019 EP 2667890

(54) Título: Polipéptido(s) llevado(s) por CYAA y uso para inducir respuestas inmunitarias terapéuticas y profilácticas

(30) Prioridad:

24.01.2011 EP 11305069

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 16.03.2020

(73) Titular/es:

GENTICEL (100.0%) Rue Pierre et Marie Curie, Prologue Biotech, BP 31670 Labège, FR

(72) Inventor/es:

ESQUERRÉ, MICHAEL; MOMOT, MARIE; **GOUBIER, ANNE y** MISSERI, YOLANDE

(74) Agente/Representante:

ISERN JARA, Jorge

Observaciones:

Véase nota informativa (Remarks, Remarques o Bemerkungen) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Polipéptido(s) Ilevado(s) por CYAA y uso para inducir respuestas inmunitarias terapéuticas y profilácticas

5 Campo de la invención

10

15

20

25

30

35

40

45

50

55

60

65

La invención está dirigida a medios, basados en polipéptidos llevados por CyaA, para su uso en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) que es (a) consecutiva a la infección por una primera cepa de VPH seleccionada entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o (b) relacionada(s) con un tumor que expresa el antígeno MAGE-A3 diagnosticado en un hospedador mamífero en donde dicho tratamiento se realiza suscitando una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos contenidos en dicho(s) polipéptido(s) y en donde (a) los epítopos de dicho primer grupo provienen del antígeno E6 o E7 de una cepa de VPH seleccionada entre VPH16, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o respectivamente en (b) los epítopos de dicho primer grupo son de un antígeno tumoral MAGE-A3 y en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) en donde cuando dicha primera afección patológica es consecutiva a la infección por VPH como en (a), dicha segunda afección patológica es consecutiva a la infección por una segunda cepa de VPH diferente de la primera y dicha cepa de VPH diferente se selecciona entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o en donde dicha segunda afección determinada está relacionada con un tumor que expresa el antígeno MAGE-A3, en donde dicha segunda afección determinada está en el mismo hospedador mamífero y se suscita una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos contenidos en dicho(s) polipéptido(s) y en donde en dicho segundo grupo los epítopos provienen de un antígeno del segundo VPH seleccionado entre VPH16, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58, o respectivamente de un antígeno tumoral MAGE-A3, obteniéndose dichas respuestas inmunitarias después de la administración de dicho(s) polipéptido(s) llevado(s) por un vector en dicho hospedador, en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s) y en donde la secuencia de aminoácidos de dicho primer grupo de epítopos es diferente de la secuencia de aminoácidos de dicho segundo grupo de epítopos. En una realización particular, la invención está dirigida a dichos medios, basados en polipéptidos llevados por CyaA, para su uso (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) diagnosticada(s) en un hospedador mamífero, suscitando una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos contenidos en dicho(s) polipéptido(s), (ii) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) en el mismo hospedador mamífero, suscitando una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos contenidos en dicho(s) polipéptido(s) y (iii) en la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s) determinada(s), suscitando una respuesta inmunitaria de memoria de linfocitos T contra dicho primer grupo de epítopos contenidos en dicho(s) polipéptido(s), obteniéndose dichas respuestas inmunitarias después de la administración de dicho(s) polipéptido(s) llevado(s) por un vector en dicho hospedador, en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s).

Antecedentes de la invención

Una de las toxinas clave producidas por *Bordetella pertussis*, el patógeno responsable de la tos ferina, es su adenilato ciclasa (CyaA). Se demostró mediante un modelo murino que la bacteria requiere CyaA durante la fase temprana de la colonización pulmonar (Goodwin y Weiss 1990). CyaA exhibe un mecanismo único de invasión de células eucariotas al entregar de manera dedicada su dominio catalítico en el citosol celular (Simsova, Sebo et al. 2004). La CyaA desintoxicada y recombinante utilizada como vector de vacuna muestra la capacidad exquisita de dirigirse a las células presentadoras de antígeno (CPA) que expresan CD11b/CD18, como por ejemplo células dendríticas o células de Langerhans (Guermonprez et al. 2001). Estas CPA residentes son células innatas clave en el inicio de respuestas de linfocitos T específicos de antígeno siguiendo enfoques de inmunización intradérmica (Merad, Ginhoux et al. 2008). Después de la unión específica a CD11b + CPA, CyaA que lleva un antígeno vírico o tumoral puede entregar su carga antigénica de una manera dedicada (Preville, Ladant et al. 2005). Basándose en esta tecnología única, el solicitante ha desarrollado una vacuna bivalente en etapa clínica para curar pacientes infectados con VPH: ProCervix. ProCervix es una vacuna terapéutica bivalente preparada con una mezcla de dos vacunas de CyaA diferentes: una que incorpora la proteína E7 de VPH16 y la otra que lleva la proteína E7 de VPH18.

Las proteínas recombinantes que se construyen mediante la inserción de uno o más epítopos portadores de polipéptidos de antígenos de VPH en sitios permisivos de la proteína CyaA y su uso en composiciones farmacéuticas para el tratamiento o profilaxis de la infección por oncovirus se describen en el documento EP 1 576 967.

De hecho, las infecciones por el virus del papiloma humano (VPH) son generalmente duraderas y una respuesta inmunitaria comprometida del hospedador puede conducir al desarrollo de cáncer cervical, especialmente con VPH de alto riesgo como el VPH18 y el VPH16. Las oncoproteínas E7 del VPH se expresan a lo largo del ciclo replicativo del virus, convirtiéndolos así en objetivos elegidos para la inmunoterapia mediada por linfocitos T (Iwasaki 2010). Se ha demostrado que la inmunidad mediada por células B a las proteínas de la cápside viral es suficiente para una protección profiláctica contra la infección por VPH (Stanley 2010). Sin embargo, las inmunidades innatas y mediadas

por linfocitos T son críticas para curar a los pacientes que ya están infectados por el virus (Frazer 2009). Además, las vacunas profilácticas contra el VPH disponibles no son eficaces para tratar pacientes ya infectados con VPH y para curar la enfermedad, resaltando así la importancia de desarrollar vacunas terapéuticas que generen respuestas de linfocitos T específicos de antígeno contra antígenos de VPH (Trimble y Frazer 2009).

Las vacunas profilácticas se basan en el desarrollo de una inmunidad mediada por linfocitos B. Por el contrario, las vacunas terapéuticas tienen como objetivo desarrollar respuestas de los linfocitos T a CD4+ y CD8+ proinflamatorias fuertes y robustas para un tratamiento eficaz de la infección crónica (virus, bacterias, etc.) o de cáncer (Bachmann y Jennings 2010). Muchos estudios han descrito tanto en modelos de ratones como en pacientes humanos que la inducción de una inmunidad de linfocitos T específicos de antígeno puede correlacionarse con una protección contra las células enfermas, ya sea células infectadas o células tumorales (Pulendran, Li et al. 2010; Sallusto, Lanzavecchia et al. 2010). Midiendo los aspectos cualitativos y cuantitativos de la vacunación posterapéutica inducida por respuesta de linfocitos T a CD8+ en ratones portadores de tumores, es posible predecir el resultado terapéutico, es decir, la progresión o la regresión del tumor en animales individuales (Rosato, Zoso et al. 2006). Después de una vacunación terapéutica exitosa que conduce a una eliminación completa de las células enfermas, un aspecto clave de esta inmunoterapia sería su potencial para generar linfocitos T de memoria a largo plazo con el fin de proteger al paciente contra la infección secundaria por patógenos. Los linfocitos T de memoria se pueden clasificar en dos subconjuntos celulares principales: T_{ME} (Memoria efectora) y T_{MC} (Memoria central). T_{ME} son los primeros linfocitos T de memoria que se generan después de la fase de contracción clonal de la respuesta inmunitaria que se ajusta a la eliminación del patógeno. TME son CD62L CCR7 y preferentemente residen en tejidos periféricos, como la piel, intestino y pulmones, donde proporcionan una primera línea de defensa para el hospedador (Woodland y Kohlmeier 2009). Con el paso del tiempo, TME se diferencia progresivamente hacia un fenotipo de TMC: CD62L+ CCR7+. Estos linfocitos T se localizan preferentemente en órganos linfoides secundarios (Kaech, Hemby et al. 2002; Ahmed, Bevan et al. 2009). Sin embargo, ambos TME y TMC se encuentran en la circulación. Un aspecto crítico de la eficacia de la respuesta de memoria de CD8 es la velocidad a la que los linfocitos T CD8+ de memoria adquieren potencial lítico y, por lo tanto, eliminan las células infectadas tras una nueva infección por el mismo patógeno para evitar la propagación de la infección y, a su vez, el desarrollo de la enfermedad asociada. Se ha demostrado que los ratones, que han sido capaces de eliminar la infección aguda por el virus de la coriomeningitis linfocítica (LCMV) a través del desarrollo de las respuestas de linfocitos T CD8+ específicos de antígeno, también desarrolló linfocitos T CD8+ de memoria que pueden eliminar rápidamente las células infectadas (Barber et al., 2003).

Basándose en este conocimiento, los inventores han ampliado el enfoque de la vacunación terapéutica que implica la respuesta inmunitaria mediada por linfocitos T para idear un nuevo concepto de tratamiento terapéutico y profiláctico de afección(es) patológica(s) mediante la combinación de la administración de ingredientes activos en una composición inmunogénica multivalente diseñada que involucra epítopos vectorizados.

En particular, los inventores diseñaron vacunas terapéuticas multivalentes adecuadas para inducir, en un solo paciente, un tratamiento inmunoterapéutico contra una patología diagnosticada mientras se monta una respuesta profiláctica robusta contra antígenos o epítopos que no están relacionados con dicha patología tratada, y opcionalmente, se monta una respuesta protectora y preventiva contra la reaparición de dicha patología tratada.

De hecho, el uso de enfoques terapéuticos multivalentes basados en CyaA destaca el potencial de los polipéptidos llevados por CyaA para tratar y posiblemente erradicar una infección determinada o un cáncer a la vez que proporciona en el mismo paciente una fuerte respuesta inmunitaria, preferiblemente una respuesta de memoria de linfocitos T protectora, contra epítopos dirigidos contenidos en dicho(s) polipéptido(s) contra los cuales se busca una protección profiláctica, y opcionalmente, una respuesta protectora y preventiva contra la reaparición de dicha infección o cáncer determinados.

Breve descripción de los dibujos

5

10

15

20

25

30

35

40

45

50

Figura 1. Secuencia de proteína de la adenilato ciclasa (CyaA) de B. pertussis, B. parapertussis y B. bronquiseptica (SEQ ID NO: 1 a 3), y secuencia de nucleótidos de CyaA de B. pertussis, B. parapertussis y B. Bronquiseptica (SEQ ID NO: 4 a 6).

Figura 2. Alineamiento de proteínas de las proteínas CyaA de B. pertussis, B. parapertussis y B. Bronchiseptica.

Figura 3. Mapa esquemático de pkTRACE5 en el que se indican sitios de restricción relevantes y secuencias insertadas para CyaA-VPH16E7_{D30-42} (A) y para CyaA-VPH18E7_{D32-42} (B).

Figura 4. (A) Mapa esquemático de pTRACE5 en el que se indican sitios de restricción relevantes y secuencias insertadas para CyaA-CysOVA; (B) Mapa esquemático de pkTRACE5 en el que se indican sitios de restricción relevantes y secuencias insertadas para CyaA-MAGEA397-178/190-295. *MAGE-A3190-295 representa los restos 190 a 221 fusionados a los restos 242 a 295 de MAGE A3. Los números 97, 178, 190, 221, 242 y 295 indican la posición de los restos de aminoácidos de toda la secuencia de MAGE-A3; (C) Secuencia de proteína del vector CyaA-MAGEA3 (SEQ ID NO: 7). La secuencia de MAGEA3 está subrayada. Los sitios de restricción están en negrita: Nhel (AS), Kpnl (GT), Agel (TG) y Spel (TS).

Figura 5. La vacunación terapéutica con ProCervix adyuvado en el día 11 erradica los tumores inducidos por TC-1 sólidos establecidos. Al final de la monitorización: el grupo de ratones vacunados con PBS + Aldara™ muestra 3/10 ratones bajo regresión tumoral (A), El grupo de ratones vacunados con ProCervix 8 μg solo muestra 0/10 ratones bajo regresión tumoral (B). Los ratones vacunados con ProCervix adyuvado con Aldara ™ (Imiquimod tópico) (C) o PolyICLC (D) muestran 7/10 ratones bajo regresión tumoral.

Figura 6. La vacunación terapéutica con ProCervix adyuvado induce una alta tasa de supervivencia y un alto porcentaje de ratones sin tumores en el día 50. En el día 50, los ratones vacunados con ProCervix + Aldara™ o ProCervix + Poly-ICLC no muestran tumor (A). Con respecto a la tasa de supervivencia en el día 50: el 100 % y el 70 % de los ratones que recibieron el día 11 respectivamente ProCervix + Aldara™ y ProCervix + Poly-ICLC están vivos (B).

Figura 7. Sesenta días después de la vacunación terapéutica por ProCervix adyuvado, los ratones sin tumor exhiben linfocitos T CD8⁺ de memoria específicos de VPH16 E7₄₉₋₅₇ funcional y VPH18 E7_{AS43-49}. En el día 60, se inyectaron iv ratones sin tumor en los diferentes grupos con células diana impulsadas por CFSE^{hi} VPH16_{E749-57}, células diana no impulsadas por CFSEⁱⁿ y células diana impulsadas por CFSE^{lo} VPH18E7_{AS43-49} en una relación 1:1:1. Después de una noche, los ratones fueron sacrificados, se recogieron los bazos y la citotoxicidad específica de antígeno *in vivo* se midió mediante análisis FACS. Cada punto representa los resultados obtenidos de un ratón individual; los círculos abiertos representan el porcentaje de destrucción de las células diana impulsadas por VPH18 E7_{AS43-49} y los círculos negros representan el porcentaje de destrucción de células diana impulsadas por VPH16 E7₄₉₋₅₇. Las barras representan el valor medio para un grupo de ratones.

Figura 8. Esquema general de vacunación (D significa día); la tabla resume la naturaleza y el sitio de las inoculaciones y vacunas celulares (/: sin inoculación).

Figura 9. La vacunación terapéutica mediante las vacunas bivalentes CyaA adyuvadas con Aldara™ que incorporan el antígeno VPH16 E7 conduce a la eliminación del tumor sólido inducido por TC-1. El volumen de las células tumorales TC1 (mm³) fue seguido desde el día 0 (Do) hasta el día 100 (D₁₀₀), en el flanco derecho de 10 ratones por grupo. Los ratones del grupo 1 fueron vacunados con placebo, los ratones del grupo 2 fueron vacunados con Placebo + Aldara™, los ratones del grupo 3 fueron vacunados con CyaA-MAGEA397-178/190-295/CyaA-VPH16 E7 adyuvado con Aldara™, los ratones del grupo 4 fueron vacunados con CyaA-cysOVA/CyaA-VPH16 E7 adyuvado con Aldara™, y los ratones de los grupos 5 y 6 fueron vacunados con ProCervix adyuvado con Aldara™. El número a la derecha de cada gráfico corresponde al número asignado a cada ratón de cada grupo.

Figura 10. Los ratones que se han curado de un tumor inducido por TC1 con vacunación bivalente basada en CyaA están protegidos contra otra exposición tumoral no relacionada de una manera específica de antígeno. El volumen de las células tumorales B16 MAGE A3 (a y c) o de las células tumorales EG7-OVA (b y d) se siguió desde el día 60 (D₆₀) hasta el día 100 (D₁₀₀), en el flanco izquierdo de los ratones que han sobrevivido, en el día 60, a la exposición de TC1. El número a la derecha de cada gráfico corresponde al número previamente asignado a cada ratón en la exposición de TC1 (Figura 9).

Descripción detallada

5

10

15

20

25

30

45

50

55

60

65

La invención está dirigida a medios para su uso (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) que es (a) consecutiva a la infección por una primera cepa de VPH seleccionada entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o (b) relacionada(s) con un tumor que expresa el antígeno MAGE-A3 diagnosticado en un hospedador mamífero y (ii) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) en donde cuando dicha primera afección patológica es consecutiva a la infección por VPH como en (a), dicha segunda afección patológica es consecutiva a la infección por una segunda cepa de VPH diferente de la primera y dicha cepa de VPH diferente se selecciona entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o en donde dicha segunda afección determinada está relacionada con un tumor que expresa el antígeno MAGE-A3, en donde dicha segunda afección determinada se encuentra en el mismo hospedador mamífero, y (iii) opcionalmente en la prevención de la reaparición de dicha(s) primera(s) afección(es) patológica(s) determinada(s). La respuesta inmunitaria se obtiene (i) suscitando una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos contenidos en el (los) polipéptido(s) y en donde en (a) los epítopos de dicho primer grupo provienen del antígeno E6 o E7 de una cepa de VPH seleccionada entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o respectivamente en (b) los epítopos de dicho primer grupo provienen de un antígeno tumoral MAGE-A3 diseñado como principio(s) activo(s) para tratar dicha(s) afección(es) patológica(s) diagnosticada(s) y (ii) suscitando una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos contenidos en el (los) polipéptido(s) y en donde en dicho segundo grupo los epítopos provienen de un antígeno del segundo VPH seleccionado entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58, o respectivamente de un antígeno tumoral MAGE-A3, diseñado como principio(s) activo(s) para prevenir la aparición o el desarrollo de dicha(s) segunda(s) afección(es) determinada(s) y (iii) opcionalmente suscitando una respuesta inmunitaria de memoria de linfocitos T contra dicho primer grupo de epítopos para prevenir la reaparición de dicha(s) primera(s) afección(es) patológica(s) determinada(s), obteniéndose dichas respuestas inmunitarias después de la administración de dicho(s) polipéptido(s) llevado(s) por un vector en dicho hospedador, en donde dicha profilaxis contra la(s) segunda(s)

afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s) y en donde la secuencia de aminoácidos de dicho primer grupo de epítopos es diferente de la secuencia de aminoácidos de dicho segundo grupo de epítopos. Estos medios incluyen:

- (1) como principios activos, polipéptido(s) llevado(s) por un vector, en donde dicho vector que lleva el (los) polipéptido(s) consiste en una proteína CyaA o un fragmento de la misma adecuado para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero;
- 10 (2) una composición que comprende o que contiene dichos principios activos que incluyen una composición que comprende el (los) polipéptido(s) llevado(s) por un vector como se define en (1) en combinación con un excipiente o formulación farmacéuticamente aceptable; y

5

20

25

30

35

40

45

55

- (3) una composición que comprende un(os) primer(os) polipéptido(s) llevado(s) por un vector que contiene(n) dicho primer grupo de epítopos y un(os) segundo(s) polipéptido(s) llevado(s) por un vector separado(s) que contiene(n) dicho segundo grupo de epítopos.
 - Por lo tanto, en una primera realización, la invención se refiere a polipéptido(s) llevado(s) por un vector, en donde dicho vector que lleva el (los) polipéptido(s) consiste en una proteína CyaA o un fragmento de la misma adecuado para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, para su uso como se describe en las reivindicaciones (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) diagnosticada(s) en dicho hospedador mamífero suscitando una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos contenidos en dicho(s) polipéptido(s) y (ii) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) en el mismo hospedador mamífero suscitando una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos contenidos en dicho(s) polipéptido(s), y (iii) opcionalmente en la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s) determinada(s) suscitando una respuesta inmunitaria de memoria de linfocitos T contra dicho primer grupo de epítopos contenidos en dicho(s) polipéptido(s), obteniéndose dichas respuestas inmunitarias después de la administración de dicho(s) polipéptido(s) llevado(s) por un vector en dicho hospedador, en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s).
 - La invención también proporciona una composición que comprende, en combinación con un excipiente farmacéuticamente aceptable, un(os) polipéptido(s) llevado(s) por un vector, en donde dicho vector que lleva el (los) polipéptido(s) consiste en una proteína CyaA o un fragmento de la misma adecuado para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, para su uso como se describe en las reivindicaciones (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) diagnosticada(s) en dicho hospedador mamífero suscitando una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos contenidos en dicho(s) polipéptido(s) y (ii)) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) en el mismo hospedador mamífero suscitando una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos contenidos en dicho(s) polipéptido(s), y (iii) opcionalmente en la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s) determinada(s) suscitando una respuesta inmunitaria de memoria de linfocitos T contra dicho primer grupo de epítopos contenidos en dicho(s) polipéptido(s) obteniéndose dichas respuestas inmunitarias después de la administración de dicha composición en dicho hospedador, en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en el (los) polipéptido(s) llevado(s) por un vector de dicha composición administrada.

La invención también se refiere a una composición que comprende, opcionalmente en combinación con un excipiente farmacéuticamente aceptable:

- (a) un(os) primer(os) polipéptido(s) llevado(s) por un vector, en donde dicho primer vector que lleva el (los) polipéptido(s) consiste en una proteína CyaA o un fragmento de la misma adecuado para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, y en donde dicho primer grupo de epítopos está contenido en dicho(s) polipéptido(s) de dicho primer vector;
- (b) un(os) segundo(os) polipéptido(s) llevado(s) por un vector separado(s), en donde dicho segundo vector que lleva el (los) polipéptido(s) consiste en una proteína CyaA o un fragmento de la misma adecuado para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, y en donde dicho segundo grupo de epítopos está contenido en dicho(s) polipéptido(s) en dicho segundo vector; y
- (c) opcionalmente, uno o más polipéptido(s) llevado(s) por un vector adicional(es) distinto(s) de los de (a) y (b), para su uso como se divulga en las reivindicaciones en (i) el tratamiento inmunoterapéutico combinado contra patología asociada con dicho primer grupo de epítopos y (ii) el tratamiento de inmunoprofilaxis asociado con dicho segundo grupo de epítopos y (iii) opcionalmente la prevención contra la reaparición de dicha(s) primer(as) afección(es) patológica(s) determinada(s), en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en el (los) polipéptido(s) llevado(s) por un vector de dicha composición administrada.

En una realización específica, dicha composición con (a), (b) y (c) es para su uso como se divulga en las reivindicaciones (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) diagnosticada(s) en dicho hospedador mamífero suscitando una respuesta inmunitaria de linfocitos T contra el primer grupo de epítopos y (ii)) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) en el mismo hospedador mamífero suscitando una respuesta inmunitaria de memoria de linfocitos T contra el segundo grupo de epítopos contenidos en dicho(s) polipéptido(s), y (iii) opcionalmente en la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s) determinada(s) suscitando una respuesta inmunitaria de memoria de linfocitos T contra dicho primer grupo de epítopos contenidos en dicho(s) polipéptido(s), dichas respuestas inmunitarias se obtienen después de la administración de dicha composición en dicho hospedador.

El término "CyaA" significa una adenilato ciclasa (o adenilciclasa) de una especie de Bordetella, en particular una CyaA de Bordetella pertussis, Bordetella parapertussis o Bordetella bronchiseptica. La proteína adenilato ciclasa de Bordetella pertussis es una toxina de 1706 restos (SEQ ID NO: 1), que comprende un dominio catalítico N-terminal de 400 restos de aminoácidos y una parte C-terminal de 1306 restos. La parte C-terminal es responsable de la unión de la toxina a la membrana de la célula diana y el posterior suministro del resto catalítico al citosol de la célula diana. La secuencia de CyaA de Bordetella pertussis se proporciona en la Figura 1. La proteína CyaA de B. parapertussis de B. bronquiseptica tiene 1740 aminoácidos, y su secuencia respectiva (SEQ ID NO: 2 y SEQ ID NO: 3) se divulga en la Figura 1.

20

25

30

35

55

65

5

10

15

La expresión "Fragmento de CyaA" significa una parte de la proteína CyaA, opcionalmente abarcando todo o parte de la parte C-terminal de la proteína CyaA de longitud completa, siempre que dicho fragmento sea capaz de presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, es decir, que sea capaz de conducir a la inducción de respuesta(s) inmunitaria(s) específica(s) contra epítopos contenidos en el (los) polipéptido(s) llevado(s) por un vector o favorecer dicha respuesta. En particular, dicho fragmento de CyaA es capaz de unirse específicamente a las células que expresan CD11b y, opcionalmente, entregar dicho(s) polipéptido(s) al citosol de la célula. Dicho fragmento abarca una proteína CyaA que se ha truncado (deleción de los extremos N-terminal y/o C-terminal) o una proteína de longitud completa con deleción interna de resto(s) de aminoácidos. Por lo tanto, un fragmento particular de proteína CyaA según la invención consiste en los restos de aminoácidos 372 a 1706 de proteína CyaA de B. pertussis (truncamiento de los primeros 371 restos). Otro fragmento particular es la proteína CyaA de B. pertussis en donde se han eliminado los restos de aminoácidos 225 a 234, proporcionando así un fragmento de CyaA que consiste en los restos 1 a 224 y 235 a 1706 (deleción interna). El término "específicamente significa dentro del contexto de la presente invención que la adenilato ciclasa o su fragmento, cuando se usa como molécula vector, se dirige preferentemente a células que expresan CD11b, ofreciendo así medios para dirigirse al(a los) polipéptido(s) en la superficie de dichas células o dentro de dichas células de manera selectiva con respecto a otras células (que no expresan CD11b).

El término "CyaA" también abarca una proteína CyaA o sus fragmentos que se modifican, preferiblemente por una o más sustitución(es) de aminoácidos, inserción interna de aminoácidos o deleción interna de aminoácidos, para dar 40 lugar a un producto desintoxicado o no tóxico o un producto desprovisto de actividad enzimática (invasiva y citotóxica). Por lo tanto, dicha proteína CyaA (o sus fragmentos) no tiene actividad catalítica, pero la capacidad de presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, y opcionalmente la unión específica al receptor CD11b/CD18 y/o el proceso de translocación del dominio catalítico de la proteína CyaA original, no está(n) afectado(s). Un ejemplo de una proteína CyaA no tóxica bien conocida es una CyaA de Bordetella pertussis en la que 45 el dipéptido Leu-Gln se ha insertado en fase entre los restos Asp188 e lle189 (parte esencial del sitio catalítico). La ausencia de toxicidad o actividad enzimática de esta proteína CyaA (o sus fragmentos) se puede analizar como se describe en Ladant et al. (1992). La capacidad de la proteína CyaA (o sus fragmentos) para dirigirse a las células CD11b/CD18 se puede analizar especialmente de acuerdo con los métodos descritos en los documentos EP03291486 o WO02/22169. Además, la capacidad de la proteína CyaA (o sus fragmentos) para translocar el polipéptido antigénico 50 en el citosol de la célula diana se puede analizar aplicando el método descrito en el documento WO02/22169.

En una realización particular adicional, el término "CyaA" también abarca, la proteína CyaA (o sus fragmentos) que ha sido modificada por modificaciones postraduccionales, por ejemplo, por palmitoilación postraduccional de al menos uno de sus restos, en particular los dos restos internos de lisina (lisinas 860 y 983). Esta(s) modificación(es) postraduccional(es) pueden obtenerse mediante la coexpresión de los genes cyaA y cyaC. Por lo tanto, la proteína CyaA o un fragmento de la misma, dentro del (los) polipéptido(s) llevado(s) por un vector, puede ser una proteína CyaA o un fragmento de la misma que es el resultado de la coexpresión en una célula, especialmente en una célula recombinante, de los genes cyaA y cyaC.

60 El término "vector" o "molécula vector" utilizados en la presente solicitud abarca la proteína CyaA de longitud completa, o fragmentos de la misma, modificada o no, como se detalla en el presente documento.

Por "células que expresan CD11b", se hace referencia a las células que expresan el receptor CD11b/CD18 en su superficie (CD11b*). En particular, estas células son granulocitos/neutrófilos, macrófagos, linfocitos NK, subconjuntos de T CD8*, subconjuntos de linfocitos B, células de Langerhans, células dendríticas y células dendríticas mieloides.

La expresión "polipéptido(s) llevado(s) por un vector" significa que la proteína CyaA (o sus fragmentos) lleva al menos un polipéptido que es heterólogo con respecto a CyaA, en particular, que no es un fragmento de CyaA como se define en el presente documento, y especialmente no reacciona inmunológicamente de forma cruzada con CyaA. La expresión "al menos uno" significa un polipéptido o más, en particular, cualquiera de 1, 2, 3, 4, 5, 6, 7, 8, 9 o 10 polipéptido(s), preferiblemente 1, 2 o 3 polipéptido(s).

5

10

35

40

45

50

55

60

El término "lleva" abarca diversas estructuras que asocian la proteína CyaA o un fragmento de la misma de acuerdo con la presente invención y el (los) polipéptido(s). Dichas estructuras pueden obtenerse como resultado de:

- acoplamiento químico de al menos un(os) polipéptido(s) de acuerdo con la invención a CyaA o sus fragmentos. Los métodos para acoplar químicamente un polipéptido a CyaA o sus fragmentos son bien conocidos en la técnica y comprenden, por ejemplo, enlace(s) de disulfuro, preferiblemente usando sulfhidrilo activado con N-piridilsulfonilo. Dado que la proteína CyaA nativa no tiene restos de cisteína en su secuencia primaria, se introduce genéticamente un resto de cisteína en la proteína CyaA, en particular, en su dominio catalítico, preferiblemente en un sitio permisivo como se define a continuación (tal como la posición 235) o en uno de los extremos de CyaA; y
- 15 - enlace genético o fusión genética de al menos un(os) polipéptido(s) a CyaA o sus fragmentos. El enlace o fusión genético incluye la inserción genética del ácido nucleico que codifica al menos uno o más polipéptidos según la invención en fase en el ácido nucleico que codifica la proteína CyaA o fragmento de la misma (es decir, sin cambio del marco de la proteína CyaA), preferiblemente en la región del dominio catalítico de la proteína CyaA, dando como resultado una proteína recombinante. Por lo tanto, el o los polipéptidos al menos se pueden insertar en cualquier sitio 20 permisivo de la proteína CyaA (véase el documento WO 93/21324). Como se usa en el presente documento, el término "sitio permisivo" se refiere a un sitio donde el (los) polipéptido(s) puede(n) insertarse sin afectar sustancialmente a las propiedades funcionales deseadas de la adenilato ciclasa, es decir, sin afectar a la capacidad de la proteína CyaA para presentar dichos polipéptidos al sistema inmunitario del hospedador mamífero, en particular, sin afectar a la unión específica al receptor CD11b/CD18 y opcionalmente sin afectar al proceso de translocación del(de los) polipéptido(s) 25 al citosol de la célula diana. Los sitios permisivos de la adenilato ciclasa de Bordetella pertussis incluyen, pero sin limitación, restos 107-108 (Gly-His), 132-133 (Met-Ala), 137-138 (Val-Ala), 224-225 (Arg-Ala), 228-229 (Glu-Ala), 232-233 (Gly-Leu), 235-236 (Arg-Glu), 317-318 (Ser-Ala) y 335-336 (Gly-Gln) (Sebo et al., 1985; Glaser et al., 1988). Para otras especies de Bordetella, los sitios permisivos correspondientes se pueden definir mediante la comparación de secuencias y la determinación de los restos correspondientes (Figura 2). De acuerdo con otra realización, el enlace 30 genético también incluye la fusión del ácido nucleico que codifica al menos un(os) polipéptido(s) en uno y/u otros extremos de la proteína CyaA o sus fragmentos.
 - Cuando una proteína CyaA (o sus fragmentos) lleva más de un polipéptido, estos polipéptidos pueden ser llevados por acoplamiento químico, todos llevados por enlace genético (preferiblemente todos insertados genéticamente), o uno(s) de ellos es(son) llevado(s) por acoplamiento químico mientras que el (los) otro(s) es(son) llevado(s) por enlace genético. En una realización particular, cuando todos los polipéptidos se insertan genéticamente en CyaA, preferiblemente en sitios permisivos de CyaA, los polipéptidos se insertan en diferentes sitios, preferiblemente diferentes sitios permisivos. En otra realización, cuando todos los polipéptidos se insertan genéticamente en CyaA, preferiblemente en sitios permisivos de CyaA, los polipéptidos se insertan en el mismo sitio, preferiblemente en el mismo sitio permisivo.
 - El término "polipéptido" se refiere a una concatenación de aminoácidos, y tiene al menos 9 restos de aminoácidos y, en particular, tiene de 9 a 500 restos, de 9 a 200, de 9 a 100, de 9 a 50 restos, o de 30 o 50 a 500 o a 200 restos, o de 100 a 500 o de 100 a 200 restos de longitud. En la invención, el término "polipéptido" significa un polipéptido que es capaz, una vez llevado por la molécula vector, de inducir una respuesta inmunitaria, en particular, una respuesta inmunitaria de linfocitos T, contra el (los) epítopo(s) contenido(s) en este polipéptido. El (los) polipéptido(s) contenido(s) en la(s) molécula(s) vector pueden derivarse de un antígeno tumoral, es decir, un péptido expresado por tumor o células cancerosas, si el tumor es propio o inducido por un patógeno; el antígeno tumoral puede ser propio (en particular de origen humano) o del patógeno que induce el tumor.
 - El término "antígeno tumoral" abarca los siguientes grupos de antígenos tumorales, y el (los) polipéptido(s) contenido(s) en la(s) molécula(s) vector de la invención pueden elegirse en al menos uno de los siguientes grupos: (a) antígenos tumorales oncovíricos, (c) antígenos tumorales sobreexpresados/acumulados, expresados en una amplia variedad de tejidos normales y sobreexpresados en tumores, (d) antígenos específicos de tumor compartidos o antígenos de cáncer testicular, expresados en muchos tumores pero no en tejidos normales (incluida la familia BAGE, familia GAGE, familia MAGE, familia SAGE y familia XAGE), (e) antígenos tumorales de linaje restringido, (f) antígenos tumorales mutados, resultantes de mutaciones puntuales en genes que se expresan de manera ubicua; y (g) antígenos tumorales de diferenciación, expresados en el tejido normal de origen de los tumores pero que no son específicos del tumor.
 - En un aspecto de la presente divulgación, cuando se usa más de un polipéptido en una molécula de un solo vector para provocar una respuesta inmunoterapéutica o una molécula de un solo vector para obtener una respuesta inmunoprofiláctica, todos los polipéptidos se derivan de antígenos tumorales.
- 65 En otro aspecto de la divulgación, el (los) polipéptido(s) contenido(s) en la(s) molécula(s) del vector también o alternativamente pueden derivarse de un antígeno de patógeno, es decir, un antígeno que es producido por el

patógeno en el hospedador mamífero infectado, y posiblemente procesado en las células de dicho hospedador mamífero infectado o un componente de dicho patógeno. Ejemplos de antígenos patógenos son un antígeno bacteriano, un antígeno vírico, un antígeno fúngico o un antígeno parásito. En estos ejemplos, como una realización particular, se pueden distinguir los patógenos implicados en la tumorigénesis (oncopatógenos) y los patógenos que no están implicados en la tumorigénesis. Ejemplos de patógenos son los patógenos intracelulares, en particular patógenos que inducen respuesta(s) inmunitaria(s) de linfocitos T en su hospedador. Por lo tanto, el (los) polipéptido(s) puede(n) derivarse de, pero sin limitación, *Chlamydia, Plasmodium, Leishmania, Mycobacterium tuberculosis,* HIV, VPH, VHB, VHC, adenovirus, VEB, herpesvirus, virus HTLV.1 y CMV. En una realización particular, el (los) polipéptido(s) contenido(s) en la(s) molécula(s) vector puede(n) derivarse de una proteína de superficie del patógeno (como la proteína de envoltura del VIH) o derivarse de un polipéptido que interactúa con la maquinaria de la célula infectada (como E6 o E7 de VPH).

10

15

20

25

30

35

40

45

50

55

60

65

En una realización particular, cuando se usa más de una proteasa, en una sola molécula vector o en una combinación de vectores, todos los polipéptidos se derivan de antígenos de patógenos, posiblemente de distintos patógenos, géneros o especies.

De acuerdo con la divulgación, los polipéptidos contenidos en la(s) molécula(s) vector son todos derivados de antígenos bacterianos, son todos derivados de antígenos víricos, son todos derivados de antígenos fúngicos o son todos derivados de antígenos parásitos. En otra realización, los distintos polipéptidos contenidos en la(s) molécula(s) vector descrita(s) en el presente documento son derivados independientemente de un antígeno bacteriano, un antígeno vírico, un antígeno fúngico o un antígeno parásito. En otra realización, los polipéptidos, en una sola molécula vector o en una combinación de vectores, son derivados de un tumor y son derivados de un patógeno.

La expresión "derivado de", con respecto a un polipéptido llevado por una molécula vector, significa la proteína antigénica de longitud completa, o un fragmento de esta proteína antigénica, o un polipéptido sintético, no natural, lleva el (los) epítopo(s) que consiste(n) en varias partes de la proteína antigénica fusionada o un polipéptido sintético, no natural, que consiste en una o varias partes de varias proteínas fusionadas, siempre que el fragmento o el polipéptido sintético, no natural, es capaz de inducir, una vez llevado por la(s) molécula(s) vector, una respuesta inmunitaria, en particular, una respuesta inmunitaria de linfocitos T, contra un determinante antigénico contenido en este fragmento o polipéptido. De acuerdo con esta definición, el (los) polipéptido(s) llevado(s) por la(s) molécula(s) vector es o comprende un epítopo único, o es o comprende un grupo de epítopos. La expresión "grupo de epítopos" abarca al menos un epítopo, es decir, un epítopo o más, en particular entre 10 y 500 epítopos, entre 50 y 200 epítopos y entre 80 y 150 epítopos. En una realización particular, la expresión "grupo de epítopos" significa 1, 2, 3, 4, 5, 6, 7, 8, 9 o 10 epítopos. En una realización particular, el (los) polipéptido(s) llevado(s) por la(s) molécula(s) vector es o comprende un polipéptido, es decir, un polipéptido con al menos dos epítopos, en particular al menos dos epítopos de linfocitos T. Los epítopos de la presente invención son, ya sea lineales o conformacionales, preferiblemente lineales, y son cualquier secuencia de aminoácidos implicada en la inducción de una respuesta inmunitaria mediada por células, especialmente una respuesta inmunitaria de linfocitos T. En consecuencia, los epítopos en el (los) polipéptido(s) llevado(s) por un vector descritos en el presente documento incluyen aquellos que son procesados por CpA (células presentadoras de antígeno) en un hospedador, especialmente los epítopos T reconocidos en asociación con las moléculas CMH (complejo mayor de histocompatibilidad) de clase I, tales como epítopos cuyas células diana son los linfocitos T CD8+ o epítopos T reconocidos en asociación con moléculas de CMH de clase II, como aquellos cuyas células diana son linfocitos T CD4⁺. En una realización particular, el (los) polipéptido(s) también contienen epítopo(s) B implicado(s) en la respuesta humoral. En una realización particular, el (los) polipéptido(s) llevado(s) por la(s) molécula(s) vector consiste(n) o comprende(n) varios epítopos diferentes o varios idénticos.

De acuerdo con la invención, el (los) polipéptido(s) llevado(s) por un vector contienen al menos dos grupos diferentes de epítopos, es decir, un grupo de epítopos es capaz de provocar una respuesta inmunitaria de linfocitos T para permitir un tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) diagnosticada(s) en un hospedador mamífero, mientras que el segundo grupo de epítopos puede provocar una respuesta inmunitaria de memoria de linfocitos T para permitir la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) en el mismo hospedador mamífero. En una realización particular, el primer grupo de epítopos es opcionalmente capaz de provocar, además de una respuesta de linfocitos T que proporciona tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) diagnosticada(s) en un hospedador mamífero, una respuesta inmunitaria de memoria de linfocitos T contra dicho primer grupo de epítopos contenidos en dicho(s) polipéptido(s) para permitir la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s) determinada(s).

De acuerdo con la invención, en ausencia de dicho segundo grupo de epítopos en dicho(s) polipéptido(s) llevado(s) por un vector, no se observa la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s). Esto significa que el segundo grupo de epítopos como se define en este documento es necesario para obtener la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s).

En una realización particular, el segundo grupo de epítopos [en el (los) polipéptido(s) llevado(s) por un vector] es necesario y suficiente para obtener la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s); en esta realización, la contribución del único segundo grupo de epítopos, en la respuesta inmunitaria suscitada, es

suficiente para obtener la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s). En otras palabras, existe una relación causal entre la administración de dicho segundo grupo de epítopos y dicha respuesta profiláctica.

La divulgación también describe que, el segundo grupo de epítopos [en el (los) polipéptido(s) llevado(s) por un vector] es necesario para obtener la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s), pero no es suficiente o se beneficia de la contribución del primer grupo, lo que significa que la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) se obtiene después de una sinergia entre la respuesta inmunitaria suscitada contra el segundo grupo de epítopos y la respuesta inmunitaria suscitada contra el primer grupo de epítopos. En este último caso, la contribución de ambos grupos de epítopos es necesaria para obtener la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s).

La contribución necesaria del segundo grupo de epítopos en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) puede manifestarse comparando el efecto de la administración del(de los) polipéptido(s) llevado(s) por un vector de la invención en dicha(s) segunda(s) afección(es) patológica(s) determinada(s) [el término profilaxis se define a continuación] en los dos siguientes grupos de mamíferos, en particular, en los siguientes dos grupos de ratones: (1) mamíferos administrados con polipéptido(s) llevado(s) por un vector de la invención que no tienen un segundo grupo de epítopos como se define en la solicitud y (2) mamíferos administrados con polipéptido(s) llevado(s) por un vector de la invención que tienen un segundo grupo de epítopos como se define en la solicitud.

15

20

25

30

35

40

45

50

55

60

65

Como se entiende por la expresión "en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s)", se excluye que el primer grupo de epítopos como se define en el presente documento sea suficiente (es decir, solo) para obtener la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s).

Por lo tanto, la secuencia de aminoácidos del primer grupo de epítopos (o polipéptido(s) que consiste(n) en este primer grupo de epítopos) es diferente de la secuencia de aminoácidos del segundo grupo de epítopos (o polipéptido(s) que consisten en este segundo grupo de epítopos). El término "diferente" significa que ambas secuencias difieren en al menos el 50 %, al menos el 60 %, al menos el 70 %, al menos el 80 %, al menos el 90 % o al menos el 95 %, calculado sobre la longitud completa de la secuencia de los polipéptidos (alineación global calculada, por ejemplo, por el algoritmo de Needleman y Wunsch). En una definición alternativa o en una realización particular de dichas "diferentes secuencias", al menos el 50 %, al menos el 60 %, al menos el 70 %, al menos el 80 %, al menos el 90% de los epítopos del primer grupo tienen una secuencia que es diferente de la secuencia de los epítopos del segundo grupo. En una realización particular adicional, el primer y el segundo grupo de epítopos (o el (los) polipéptido(s) que consiste(n) en el primer grupo de epítopos y el (los) polipéptido(s) que consiste(n) en el segundo grupo de epítopos) no tienen una secuencia de epítopos en común. En una realización particular, la respuesta inmunitaria de linfocitos T obtenida contra el primer grupo de epítopos es eficaz contra la(s) afección(es) patológica(s) asociada(s) con dicho primer grupo de epítopos y no es eficaz o no específicamente eficaz contra una afección(es) patológica(s) asociada(s) con el segundo grupo de epítopos. Por lo tanto, en una realización particular, la respuesta inmunitaria de linfocitos T obtenida contra un grupo de epítopos es específica para este grupo, es decir, los linfocitos T involucrados en la respuesta inmunitaria contra este grupo de epítopos no reconoce el otro grupo de epítopos.

El (los) polipéptido(s) contiene(n) al menos un epítopo de cepas de VPH. Las cepas de VPH abarcan el género Alfapapilomavirus, Beta-papilomavirus, Gamma-papilomavirus, Delta-papilomavirus, Epsilon-papilomavirus, Zeta-Eta-papilomavirus, Theta-papilomavirus, lota-papilomavirus, Kappa-papilomavirus, Lambdapapilomavirus, Mu-papilomavirus, Nu-papilomavirus, Xi-papilomavirus, Omikron-papilomavirus y Pi-papilomavirus. En particular, los virus del papiloma tienen un tropismo humano, como las cepas del género Alfa-papilomavirus, Betapapilomavirus, Gamma-papilomavirus, Mu-papilomavirus o Nu-papilomavirus. El (los) polipéptido(s) más particular(es) contiene(n) al menos un epítopo de cepas de VPH del género Alfa-papilomavirus, especialmente la cepa de las especies de VPH 7 y 9 del género Alfa-papilomavirus (de Villiers et al. Virology 2004). Por lo tanto, en una realización de la presente invención, los polipéptidos contienen al menos un epítopo de especies de tipo altamente oncogénico de VPH seleccionadas entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58. Entre estas especies tipo, el VPH 18 y el VPH 16 son de particular interés. Los polipéptidos llevados por la(s) molécula(s) vector descrita(s) en el presente documento son de diferentes cepas de VPH o diferentes especies de tipo de VPH elegidas entre las descritas anteriormente. Según la invención, cualesquiera que sean las cepas de VPH o las especies de tipo VPH, los polipéptidos son derivados de las proteínas E6 o E7. En una realización particular, los polipéptidos llevados por la(s) molécula(s) descrita(s) en el presente documento son de la misma proteína de VPH pero de diferentes cepas de VPH o diferentes especies de tipo de VPH elegidas entre las descritas anteriormente. En una realización particular de la invención, la proteína E7 de VPH16 y la proteína E7 de VPH18 se usan para el diseño de polipéptidos. De acuerdo con una realización particular de la invención, una molécula vector lleva varios polipéptidos, preferiblemente por inserción genética, cada uno de ellos contiene o consiste en uno o varios epítopos de una o varias proteínas de VPH de al menos dos cepas de VPH distintas o dos especies de tipos de VPH distintos. Por lo tanto, una realización particular son polipéptidos llevados por un vector que consisten en una proteína CyaA o un fragmento de la misma que lleva un polipéptido o varios polipéptidos que abarcan epítopos derivados de la proteína E7 de las especies de tipo VPH, VPH16 y VPH18. En otra realización, la invención se refiere a una composición que comprende una primera

molécula vector que lleva un polipéptido o varios polipéptidos que abarcan epítopos derivados de la proteína E7 de VPH16 (los primeros polipéptidos llevados por un vector con un primer grupo de epítopos) y una molécula vector separada que lleva un polipéptido o varios polipéptidos que abarcan epítopos derivados de la proteína E7 de VPH18 (los polipéptidos llevados por un vector separados con un segundo grupo de epítopos). Cuando varios polipéptidos son llevados por una sola molécula vector, estos polipéptidos pueden consistir en diferentes fragmentos de la misma proteína, por ejemplo, de una proteína E7 o E6, que se insertan en diferentes sitios, en particular, sitios permisivos, de la molécula vector.

Por lo tanto, una composición utilizada dentro de la presente invención comprende un(os) polipéptido(s) llevado(s) por 10 un vector cuyo(s) polipéptido(s) se deriva(n) de la proteína E7 de VPH16 y un(os) polipéptido(s) llevado(s) por un vector, polipéptido(s) que se deriva(n) de la proteína E7 de VPH18. Un ejemplo de dicha composición comprende: (a) una primera molécula vector que lleva un primer polipéptido que es un fragmento que comprende los restos 1 a 29 o un fragmento que consiste en los restos 1 a 29 de E7 de VPH16 y que lleva un segundo polipéptido que es un fragmento que comprende los restos 43 a 98 o un fragmento que consiste en los restos 43 a 98 de la proteína E7 de 15 VPH16. En una realización preferida, el primer polipéptido son los primeros 29 restos de aminoácidos de VPH16-E7 y se inserta entre los codones 319 y 320 de CyaA, y el segundo polipéptido consta de los restos 43 a 98 de VPH16-E7 y se inserta entre los codones 224 y 235 de CyaA (ejemplificado en el vector pKTRACE5-VPH16E7₀₃₀₋₄₂); y (b) una molécula vector separada que lleva un primer polipéptido que es un fragmento que comprende los restos 1 a 31 de E7 de VPH18 o un fragmento que consiste en los restos 1 a 31 de E7 de VPH18, y un segundo polipéptido que es un fragmento que comprende los restos 43 a 105 de E7 de VPH18 o un fragmento que consiste en los restos 43 a 20 105 de E7 de VPH18. En una realización preferida, el primer polipéptido son los primeros 31 restos de aminoácidos de VPH18-E7 y se inserta entre los codones 319 y 320 de CyaA, y el segundo polipéptido consta de los restos 43 a 105 de VPH18-E7 y se inserta entre los codones 224 y 235 de CyaA (ejemplificado en el vector pKTRACE5-VPH18E7_{∆32-42}).

En otra realización, el (los) polipéptido(s) contiene(n) al menos un epítopo derivado del antígeno tumoral MAGE A3, tal como un polipéptido que consiste en los restos 97 a 178 de MAGE A3 (SEQ ID NO: 8), o tal como un polipéptido que consiste en los restos 190 a 221 fusionados a los restos 242 a 295 de MAGE A3 (SEQ ID NO: 9). En una realización particular, un(os) polipéptido(s) llevado(s) por un vector de la invención (o una composición que lo(s) contiene) consiste en una proteína CyaA, preferiblemente CyaA de B. *pertussis*, en la que dos polipéptidos derivados de MAGE A3 se han insertado en dos sitios diferentes. Tal(es) polipéptido(s) llevado(s) por un vector consiste en la CyaA de B. *pertussis*, en donde (1) se ha insertado un primer polipéptido que consiste en los restos 97 a 178 de MAGE A3 entre los codones 224 y 235 de CyaA y (2) se ha fusionado un segundo polipéptido que consiste en los restos 190 a 221 fusionados a los restos 242 a 295 de MAGE A3 insertado entre los codones 319 a 320 de CyaA. Un ejemplo particular de un vector CyaA-MAGE A3 se proporciona en la Figura 4C (SEQ ID NO: 7).

El (los) polipéptido(s) llevado(s) por un vector tal como se define en el presente documento, como tal o en una composición, se usa(n) para obtener en un mismo hospedador mamífero, especialmente en un hospedador humano, (i) un tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) diagnosticada(s) en dicho hospedador mamífero suscitando una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos contenidos en dicho (s) polipéptido(s) y (ii) la profilaxis contra una(s) segunda(s) afección(es) patológica(s) determinada(s) suscitando una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos contenidos en dicho(s) polipéptido(s), y (iii) opcionalmente la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s) determinada(s) suscitando una respuesta inmunitaria de memoria de linfocitos T contra dicho primer grupo de epítopos contenidos en dicho(s) polipéptido(s), obteniéndose dichas respuestas inmunitarias después de la administración de dicho(s) polipéptido(s) llevado(s) por un vector en dicho hospedador, en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s). El (los) polipéptido(s), como se define en el presente documento, llevado(s) por la(s) molécula(s) vector, se elige(n) de acuerdo con los grupos de epítopos que se buscan y se pueden clasificar de acuerdo con dos grupos:

- el primer grupo de epítopos se refiere a polipéptido(s) que se deriva(n) de un antígeno que se sabe que se expresa o presenta al sistema inmunitario en un hospedador mamífero infectado por un patógeno particular, desarrollando un tumor particular o presentándose con una primera afección patológica determinada, habiendo sido diagnosticado dicho hospedador mamífero con dicha infección particular, dicho tumor particular o dicha(s) primera(s) afección(es) patológica(s) determinada(s) antes de la administración del(de los) polipéptido(s) llevado(s) por un vector o composición definidos en el presente documento; y

- el segundo grupo de epítopos se refiere a polipéptido(s) que se deriva(n) de un antígeno que se sabe que se expresa o presenta al sistema inmunitario en un hospedador mamífero infectado por otro patógeno particular, desarrollando otro tipo particular de tumor o presentando una segunda afección patológica determinada, dicho hospedador mamífero que no está o no ha sido infectado por dicho otro patógeno particular, que no ha desarrollado dicho otro tipo particular de tumor o que no ha presentado dicha(s) segunda(s) afección(es) patológica(s) determinada(s) antes de la administración del(de los) polipéptido(s) llevado(s) por un vector o composición definidos en el presente documento.

La invención se basa en las observaciones de que:

5

25

30

35

40

45

50

55

60

(i) puede obtenerse un tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) diagnosticada(s) en un hospedador mamífero suscitando una respuesta inmunitaria de linfocitos T contra un primer

grupo de epítopos contenidos en polipéptidos llevados por una molécula vector;

(ii) la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) en el mismo hospedador mamífero puede obtenerse suscitando una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos contenidos en el (los) polipéptido(s); y

(iii) opcionalmente, la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s) determinada(s) puede(n) obtenerse suscitando una respuesta inmunitaria de memoria de linfocitos T contra dicho primer grupo de epítopos contenidos en dicho(s) polipéptido(s) llevado(s) por una molécula vector;

estando llevado dicho segundo grupo de epítopos por la misma molécula vector, o llevado por una molécula vector separada, y administrado en la misma composición y simultáneamente con la primera molécula vector.

10

15

20

25

30

35

40

45

50

55

60

65

5

Por tanto, la molécula vector tal como se define en el presente documento o en una composición, o las moléculas vector de una composición tal como se define en el presente documento lleva al menos un, preferiblemente uno, polipéptido que comprende un(os) epítopo(s) del primer grupo y al menos un polipéptido que comprende un(os) epítopo(s) del segundo grupo. La molécula vector tal como se define en el presente documento o en una composición o las moléculas vector de una composición como se define en el presente documento lleva(n) (a) un polipéptido que comprende un(os) epítopo(s) del primer grupo y al menos un polipéptido que comprende un(os) epítopo(s) del segundo grupo, (b) un polipéptido que comprende un(os) epítopo(s) del primer grupo y al menos un polipéptido que comprende epítopo(s) del segundo grupo seleccionado entre 1, 2, 3, 4, 5 o 6 polipéptidos, (c) al menos un polipéptido que comprende un(os) epítopo(s) del primer grupo seleccionado entre 2 o 3 polipéptidos y al menos un polipéptido que comprende un(os) epítopo(s) del primer grupo seleccionado(s) entre 2 o 3 polipéptidos y al menos un polipéptido que comprende un(os) epítopo(s) del primer grupo seleccionado(s) entre 2 o 3 polipéptidos y al menos un polipéptido que comprende un(os) epítopo(s) del segundo grupo seleccionado entre 1, 2, 3, 4, 5 o 6 polipéptidos.

Cuando un(os) polipéptido(s) llevado(s) por un vector se usa como tal o en una composición, el vector puede llevar un polipéptido que comprende un(os) epítopo(s) del primer grupo y un(os) epítopo(s) del segundo grupo, es decir, que dicho segundo grupo de epítopos está contenido en el mismo polipéptido que el primer grupo de epítopos.

En otra realización, dicho primer y segundo grupo de epítopos están contenidos en diferentes polipéptidos. El polipéptido que comprende un(os) epítopo(s) del primer grupo y el polipéptido que comprende un(os) epítopo(s) del segundo grupo pueden ser llevados por la misma molécula vector. En otra realización, el polipéptido que comprende un(os) epítopo(s) del segundo grupo pueden ser llevados por diferentes moléculas de vector e incluirse en una misma composición. Cuando una composición, que contiene un primer y un segundo polipéptido(s) llevado(s) por un vector separado(s), se usa, la primera molécula vector lleva al menos un polipéptido que comprende un(os) epítopo(s) del primer grupo, lo que significa que un polipéptido que comprende un(os) epítopo(s) del primer grupo como mínimo es llevado por dicha primera molécula vector. En la misma composición, la segunda molécula vector lleva al menos un polipéptido que comprende un(os) epítopo(s) del segundo grupo, lo que significa que un polipéptido que comprende un(os) epítopo(s) del segundo grupo como mínimo es llevado por dicha segunda molécula vector separada. Finalmente, opcional uno o más (por ejemplo, 1, 2, 3, 4, 5 o 6) polipéptido(s) llevado(s) por un vector también pueden incluirse en dicha composición, cualquiera que sea el grupo de epítopos contenidos en este/estos polipéptido(s) llevado(s) por un vector.

Por "respuesta inmunitaria", se entiende una respuesta inmunitaria mediada por células, especialmente una respuesta inmunitaria mediada por linfocitos T. En una realización particular, dicha respuesta inmunitaria mediada por linfocitos T es una respuesta inmunitaria citotóxica de CTL mediada por células, especialmente una respuesta inmunitaria CD8*. En el caso de polipéptidos derivados del antígeno tumoral, la respuesta inmunitaria es preferiblemente una respuesta inmunitaria citotóxica específica de tumor, que implica linfocitos citotóxicos específicos de tumor. En una realización particular, dicha respuesta inmunitaria mediada por linfocitos T es una respuesta inmunitaria CD4*, especialmente una respuesta inmunitaria de T-colaboradores. En una realización particular, la respuesta inmunitaria, en particular la(s) respuesta(s) inmunitaria(s) inducida(s) contra los epítopos del segundo grupo (como se define en el presente documento), después de la administración del(de los) polipéptido(s) llevado(s) por un vector o composición definidos en el presente documento, es una respuesta inmunitaria de linfocitos T de memoria. La expresión "respuesta inmunitaria" también puede abarcar, además de una respuesta inmunitaria mediada por células como se definió anteriormente, una respuesta inmunitaria humoral (producción de anticuerpos). Las respuestas inmunitarias descritas en la presente solicitud se obtienen después de la administración, en el hospedador, del(de los) polipéptido(s) llevado(s) por un vector de la invención, como tal o dentro de una composición.

La expresión "tratamiento inmunoterapéutico" se refiere al tratamiento de una(s) (primera(s)) afección(es) patológica(s) determinada(s) diagnosticada(s) en un hospedador mamífero, suscitando especialmente una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos contenidos en el (los) polipéptido(s) llevado(s) por la(s) molécula(s) vector administrada(s) como se define en el presente documento. El uso del(de los) polipéptido(s) llevado(s) por un vector o composición tal como se define en el presente documento tiene como objetivo mejorar las condiciones clínicas de un hospedador mamífero, que lo necesite, que ha sido diagnosticado como infectado por un patógeno o que padece un estado patológico, tal como un tumor, o tiene como objetivo la eliminación del agente u organismo causante de la enfermedad, o reducir dicho agente u organismo. En una situación de infección por patógenos, el tratamiento inmunoterapéutico da como resultado una disminución significativa en la carga de patógenos en el sitio de infección o en el sitio de replicación de este patógeno, en particular en el plasma o en la mucosa del hospedador, y posiblemente

da como resultado una carga de patógenos, como la carga de plasma, que es menos de lo que se puede detectar cuando se mide o, en la reducción del tamaño o el desarrollo del tumor, si lo hay.

La expresión "inmunoprofilaxis" o "profilaxis" se refiere a una respuesta que previene o protege contra la exposición, infección, aparición o el desarrollo de una(s) segunda(s) afección(es)patológicas determinada(s) o enfermedad o consecuencias clínicas de las mismas en el mismo hospedador mamífero suscitando especialmente una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos contenidos en el (los) polipéptido(s) llevado(s) por la(s) molécula(s) vector administrada(s) como se define en el presente documento. El uso del(de los) polipéptido(s) llevado(s) por un vector o composición tal como se define en el presente documento da como resultado una respuesta inmunitaria profiláctica contra una futura infección, futuros eventos malignos o enfermedades y, en consecuencia, previene la aparición de un estado patológico en dicho hospedador mamífero.

5

10

15

20

25

30

35

40

45

50

55

60

65

La eficacia de la respuesta para conferir profilaxis puede analizarse mediante la detección del marcador del estado patológico. En una realización particular, los criterios de eficacia se seleccionan para alcanzar relevancia estadística.

La expresión "prevención contra la reaparición" se refiere a la obtención de una respuesta inmunitaria para prevenir una nueva exposición futura, una nueva infección futura, una nueva aparición futura o un nuevo desarrollo futuro de la(s) primera(s) afección(s) patológica(s) determinada(s), afecciones que se han diagnosticado previamente y se han tratado después de la administración del(de los) polipéptido(s) llevado(s) por un vector o composición como se define en el presente documento.

La expresión "hospedador mamífero" abarca todos los mamíferos, en particular, primates y humanos (por ejemplo, un paciente).

Se entiende que, después de la(s) administración(es) del(de los) polipéptido(s) llevado(s) por un vector o composición tal como se define en el presente documento, tanto la respuesta inmunitaria de los linfocitos T contra un primer grupo de epítopos como la respuesta inmunitaria de la memoria de los linfocitos T contra un segundo grupo de epítopos y. opcionalmente, la respuesta contra dicho primer grupo de epítopos, se inducen en el mismo hospedador mamífero, dentro de una ventana de tiempo particular. Por lo tanto, la al menos una administración del(de los) polipéptido(s) llevado(s) por un vector o composición tal como se define en el presente documento conduce a la inducción de una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos y una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos y opcionalmente una respuesta inmunitaria de memoria de linfocitos T contra dicho primer grupo de epítopos, que puede manifestarse y/o medirse de 1 mes a 12 meses o más después de la administración (en particular a los 2, 3, 6, 9 o 12 meses), aunque los linfocitos T participan en una de estas o en ambas respuestas inmunitarias aún pueden manifestarse varios años después de la administración. La expresión "al menos una administración" o "administrando una vez" significa que el (los) polipéptido(s) llevado(s) por un vector o composición como se define en el presente documento se administra en el hospedador mamífero, especialmente el paciente, una o más, preferiblemente una o dos veces. Cada administración consiste en al menos un(os) polipéptido(s) llevado(s) por un vector, siempre que un primer grupo de epítopos y un segundo grupo de epítopos contenidos en al menos un(os) polipéptido(s) llevado(s) por al menos una(s) molécula(s) vector, con al menos un epítopo de dicho segundo grupo de epítopos, se administran al hospedador mamífero al mismo tiempo. Si es apropiado, la segunda y posibles administraciones posteriores (refuerzo principal) se llevan a cabo con el mismo polipéptido(s) llevado(s) por un vector o con la misma composición, con respecto al(a los) polipéptido(s), como la primera administración. Los experimentos informados a continuación muestran que un tratamiento y profilaxis inmunoterapéuticos, y opcionalmente, la prevención contra la reaparición, pueden obtenerse después de una única administración del(de los) polipéptido(s) llevado(s) por un vector o composición tal como se define en el presente documento.

La divulgación describe el (los) polipéptido(s) llevado(s) por un vector o composición tal como se define en el presente documento para su uso (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) consecutiva(s) a una infección por patógeno, en particular consecutiva(s) a una infección bacteriana o vírica, diagnosticada en un hospedador mamífero y (ii) en la profilaxis contra una(s) segunda(s) afección(es) patológica(s) consecutiva(s) a una infección por un patógeno diferente, en particular consecutiva(s) a una infección por una bacteria diferente o un virus diferente (o una cepa diferente de los mismos) y (iii) opcionalmente, en la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s), en donde dicha profilaxis contra dicha(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando el segundo grupo de epítopos unidos a dicho patógeno diferente (por ejemplo, diferentes bacterias o virus diferentes) no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s). En el caso particular de afección(es) patológica(s) consecutiva(s) a diferentes cepas de virus, especialmente cepas de VPH diferentes o especies de tipos de VPH diferentes, la invención se refiere al(a los) polipéptido(s) llevado(s) por un vector o composición tal como se define en el presente documento para su uso de acuerdo con las reivindicaciones (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) consecutiva(s) a la infección por un primer virus, primera cepa de VPH o primeras cepas de tipo de VPH, diagnosticados en un hospedador mamífero y (ii) en la profilaxis contra una(s) segunda(s) afección(es) patológica(s) consecutiva(s) a la infección por un segundo virus diferente, segunda cepa de VPH diferente o segunda cepa de tipo de VPH diferente, y (iii) opcionalmente en la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s), en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando el segundo grupo de epítopos se une a dicho segundo virus diferente, la segunda cepa diferente de

VPH o la segunda cepa diferente de tipo VPH no está contenida en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s). En una realización preferida, la invención se refiere a polipéptido(s) llevado(s) por un vector o composición tal como se define en el presente documento, que comprende un polipéptido derivado de la proteína E7 de VPH16 y un polipéptido derivado de la proteína E7 de VPH18, para su uso: (1) (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) consecutiva(s) a la infección por VPH16, diagnosticada(s) en un hospedador mamífero y (ii) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) consecutiva(s) a la infección por VPH18 y (iii) opcionalmente en la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s), en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando el polipéptido derivado de la proteína E7 de VPH18 no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s); o (2) (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) consecutiva(s) a la infección por VPH18, diagnosticada(s) en un hospedador mamífero y (ii) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) consecutiva(s) a la infección por VPH16 y (iii) opcionalmente, en la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s), en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando el polipéptido derivado de la proteína E7 de VPH16 no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s).

10

15

20

25

30

35

40

45

50

65

La divulgación describe el (los) polipéptido(s) llevado(s) por un vector o composición tal como se define en el presente documento para su uso (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) consecutiva(s) a las primeras células tumorales, diagnosticada(s) en un hospedador mamífero y (ii) en la profilaxis contra una(s) segunda(s) afección(es) patológicas consecutivas a segundas células tumorales, cuyo origen y/o histología es diferente de las primeras células tumorales, y (iii) opcionalmente, en la prevención contra la reaparición de dichas primeras afecciones patológicas, en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando el segundo grupo de epítopos unidos a dichas segundas células tumorales no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s).

La divulgación describe el (los) polipéptido(s) llevado(s) por un vector o composición tal como se define en el presente documento para su uso (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) consecutiva(s) a una infección por patógeno, en particular consecutiva(s) a una infección bacteriana o vírica, diagnosticada(s) en un hospedador mamífero y (ii) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) consecutiva(s) al desarrollo de células tumorales y (iii) opcionalmente en la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s), en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando el segundo grupo de epítopos unidos a dichas células tumorales no está contenido en dicho polipéptido(s) llevado(s) por un vector administrado(s).

La divulgación describe el (los) polipéptido(s) llevado(s) por un vector o composición tal como se define en el presente documento para su uso (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) consecutiva(s) al desarrollo de células tumorales, diagnosticada(s) en un hospedador mamífero y (ii) en la profilaxis contra una(s) segunda(s) afección(es) patológica(s) consecutiva(s) a una infección por patógeno, en particular consecutiva(s) a una infección bacteriana o vírica, y (iii) opcionalmente en la prevención contra la recurrencia de dicha(s) primera(s) afección(es) patológica(s), en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando el segundo grupo de epítopos unidos a dicho patógeno diferente (por ejemplo, diferentes bacterias o virus diferentes) no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s).

La divulgación describe un método para obtener en un mismo hospedador mamífero, (i) un tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) diagnosticada(s) en un hospedador mamífero, especialmente suscitando una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos, y (ii) la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s), especialmente suscitando una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos, en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector, comprendiendo dicho método administrar, al menos una vez, a dicho hospedador mamífero ya sea:

- (1) un(os) polipéptido(s) llevado(s) por un vector, en donde dicho vector que lleva el (los) polipéptido(s) consiste en una proteína CyaA o un fragmento de la misma adecuado para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, dicho primer grupo de epítopos y el segundo grupo de epítopos están contenidos en al menos un(os) polipéptido(s) llevado(s) por dicho vector, y al menos un epítopo de dicho segundo grupo de epítopos es diferente de los epítopos del primer grupo de epítopos;
- 60 (2) una composición que comprende el (los) polipéptido(s) llevado(s) por un vector como se define en (1) en combinación con un excipiente farmacéuticamente aceptable; o
 - (3) una composición que comprende (a) un(os) primer(os) polipéptido(s) llevado(s) por un vector en donde dicho primer vector que lleva el (los) polipéptido(s) consiste en una proteína CyaA o un fragmento de la misma adecuados para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, dicho primer grupo de epítopos está contenido en al menos un(os) polipéptido(s) llevado(s) por dicho primer vector y (b) un(os) segundo(s) polipéptido(s) llevado(s) por un vector separado(s) en donde dicha segunda molécula vector que lleva el (los)

polipéptido(s) consiste en una proteína CyaA o un fragmento de la misma adecuados para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, dicho segundo grupo de epítopos está contenido en al menos un(os) polipéptido(s) llevado(s) por dicho segundo vector.

Según la divulgación, se describe un método para obtener en un mismo hospedador mamífero, (i) un tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) diagnosticada(s) en un hospedador mamífero, especialmente suscitando una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos, (ii) la profilaxis contra una(s) segunda(s) afección(es) patológica(s) determinada(s), especialmente suscitando una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos y (iii) opcionalmente la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s) determinada(s), especialmente suscitando una respuesta inmunitaria de memoria de linfocitos T contra dicho primer grupo de epítopos, en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector, comprendiendo dicho método administrar al menos una vez a dicho paciente:

15

20

25

30

35

40

60

65

- (1) un(os) polipéptido(s) llevado(s) por un vector, en donde dicho vector que lleva el (los) polipéptido(s) consiste en una proteína CyaA o un fragmento de la misma adecuado para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, dicho primer grupo de epítopos y el segundo grupo de epítopos están contenidos en al menos un(os) polipéptido(s) llevado(s) por dicho vector, y al menos un epítopo de dicho segundo grupo de epítopos es diferente de los epítopos del primer grupo de epítopos;
- (2) una composición que comprende el (los) polipéptido(s) llevado(s) por un vector como se define en (1) en combinación con un excipiente farmacéuticamente aceptable; o
- (3) una composición que comprende (a) un(os) primer(os) polipéptido(s) llevado(s) por un vector en donde dicho primer vector que lleva el (los) polipéptido(s) consiste en una proteína CyaA o un fragmento de la misma adecuados para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, dicho primer grupo de epítopos está contenido en al menos un(os) polipéptido(s) llevado(s) por dicho primer vector y (b) un(os) segundo(s) polipéptido(s) llevado(s) por un vector separado(s) en donde dicha segunda molécula vector que lleva el (los) polipéptido(s) consiste en una proteína CyaA o un fragmento de la misma adecuados para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, dicho segundo grupo de epítopos está contenido en al menos un(os) polipéptido(s) llevado(s) por dicho segundo vector.
- Las composiciones como se definen en el presente documento pueden, en una realización particular, comprender un excipiente o formulación farmacéuticamente aceptable, o un diluyente fisiológicamente aceptable, que se elige entre agentes tampón, solución salina, solución salina tamponada con fosfato, dextrosa, glicerol, agua, etanol o similares y combinaciones de los mismos.
- Además, el (los) polipéptido(s) llevado(s) por un vector o la composición como se define en el presente documento como medio para obtener un tratamiento inmunoterapéutico y la profilaxis se puede combinar o mezclar con, o la composición como se define en el presente documento como medio para obtener un tratamiento inmunoterapéutico y la profilaxis puede comprender además, al menos un inmunopotenciador, como al menos un adyuvante, preferiblemente un adyuvante, y/o un tensioactivo y/o sustancias inmunomoduladoras (tales como citocinas o quimiocinas).
- Se conocen varios adyuvantes en la técnica e incluyen el adyuvante completo de Freund (ACF), adyuvante incompleto de Freund (AIF), montanide ISA (adyuvante de Seppic incompleto), péptidos de muramilo tales como dipéptido de muramilo (MDP) MDP-Lys (L18) (N^a-acetilomuramil-L-alanil-D-isoglutaminil-N^{mi}esteoroil-L-lisina), sulfato de zinc, hidróxido de hierro coloidal, fosfato de calcio o cloruro de calcio, CpG oligodesoxinucleótidos (CPG ODN) como CPG ODN 1826 y CPG ODN 2007, MF59, que es una emulsión de aceite en agua estabilizada con detergente que contiene 5 % de escualeno (p/v), 0,5 % de Tween® 80 (p/v) y 0,5 % de Span (p/v) en agua, Ligandos TLR4 (como MPL, GLA), ligandos TLR3 (como Hiltonol®), polisacáridos (como la inulina) y liposomas (como los liposomas catiónicos, ISCOM).
- El al menos un adyuvante se elige entre las moléculas que tienen la capacidad de activar la respuesta inmunitaria de los linfocitos T, en particular la respuesta de memoria de linfocitos T. Los adyuvantes preferidos son los que se unen o son agonistas de TLR (receptor similar a Toll) 3, 4, 7, 8 y/o 9 en células inmunes (como CPA). En una realización particular, el adyuvante es un ligando TLR (por sus siglas en inglés), en particular un ligando TLR seleccionado del grupo que consiste en ligandos TLR de clase 3, tal como poly-ICLC, ligandos TLR de clase 4, ligandos TLR de clase 9, tales como CpG y los ligandos TLR de la clase 7/8, como Imiquimod. Ejemplos de adyuvantes son Imiquimod vendido como una crema que contiene 5 % de Imiquimod (Aldara™) y Poly-ICLC vendido por Oncovir (Inc, WA, EE. UU.) Como Hiltonol®.
 - Mediante "combinado", se entiende que el (los) polipéptido(s) llevado(s) por un vector o la composición como se define en el presente documento y el inmunopotenciador se ponen en contacto con el hospedador, en diferentes momentos y/o por diferentes modos de administración, preferiblemente en el mismo sitio de contacto. En una realización particular, el (los) polipéptido(s) llevado(s) por un vector o la composición como se define en el presente documento se inyecta en el hospedador y el inmunopotenciador (tal como un adyuvante) se aplica tópicamente, por ejemplo, cutáneamente (sobre la piel), al hospedador. Por ejemplo, el (los) polipéptido(s) llevado(s) por un vector o la

composición como se define en el presente documento se inyecta en el hospedador y el inmunopotenciador (como un adyuvante) se aplica sobre la piel del hospedador después de la inyección, en el sitio de inyección. Por el contrario, "mezclado" significa que el (los) polipéptido(s) llevado(s) por un vector o la composición como se define en el presente documento y el inmunopotenciador están en la misma formulación cuando se administran.

Cabe destacar que en la presente solicitud, cuando un inmunopotenciador (como un adyuvante) se mezcla o combina con el (los) polipéptido(s) llevado(s) por un vector o la composición como se define en el presente documento, se usa el inmunopotenciador, al menos, cada vez que el (los) polipéptido(s) llevado(s) por un vector o la composición como se define para su uso de acuerdo con la invención se administra en el hospedador. En una realización particular, el (los) polipéptido(s) llevado(s) por un vector o la composición de la invención se administran dos veces, y se aplica el inmunopotenciador (mezclado o combinado, preferiblemente por vía cutánea), en el sitio de administración del (los) polipéptido(s) llevado(s) por un vector o la composición de la invención, en el día de cada administración. En otra realización particular, el (los) polipéptido(s) llevado(s) por un vector o la composición para su uso de acuerdo con la invención se administran dos veces, y se aplica el inmunopotenciador (mezclado o combinado, preferiblemente por vía cutánea), en el sitio de administración del (los) polipéptido(s) llevado(s) por un vector o la composición de la invención, en el día de cada administración y al día siguiente del día de cada administración. En una realización particular, el (los) polipéptido(s) llevado(s) por un vector o la composición de la invención se administración del (los) polipéptido(s) llevado(s) por un vector o la composición de la invención, en el día de cada administración y al día siguiente del día de cada administración y al día siguiente del día de cada administración y al día siguiente del día de cada administración y al día siguiente del día de cada administración.

El (los) polipéptido(s) llevado(s) por un vector como se define(n) en el presente documento o la composición como se define en el presente documento como medio para obtener un tratamiento inmunoterapéutico y la profilaxis y, opcionalmente, la prevención contra la reaparición, adicionalmente se puede(n) combinar o mezclar, en regímenes de administración, con otros compuestos activos adecuados para tratar la infección por patógenos, células tumorales o afecciones patológicas asociadas con esta infección o tumor, tales como compuestos activos antitumorales o antivíricos.

El (los) polipéptido(s) llevado(s) por un vector o las composiciones definidos en el presente documento pueden inyectarse en un paciente a través de diferentes vías: subcutánea (s.c.), intradérmica (i.d.), intramuscular (i.m.) o intravenosa (i.v.), administración oral y administración en la mucosa, especialmente administración o inhalación intranasal. En una realización particular, el (los) polipéptido(s) llevado(s) por un vector o composiciones definidos en el presente documento se administran por vía intradérmica.

En particular, el (los) polipéptido(s) llevado(s) por un vector o composiciones definidas en el presente documento, ya sea mezclados o combinados con al menos un inmunopotenciador o no, cualesquiera que sean las vías de administración, se administran en un sitio, independiente de la(s) (primera(s)) afección(es) patológica(s) determinada(s) diagnosticada(s) en el hospedador mamífero, es decir, para un tumor, en un sitio que no sea el del desarrollo del tumor (por ejemplo, que no sea la mucosa) y para un patógeno, en un sitio que no sea el sitio de replicación del patógeno.

El (los) polipéptido(s) llevado(s) por un vector o las composiciones definidos en el presente documento pueden estar en forma sólida (oblea, polvo, gélula, píldora, supositorio, comprimido de liberación rápida, comprimido gastrorresistente, comprimido de liberación retardada), una forma en polvo, preferiblemente después de la liofilización (forma liofilizada o forma en polvo liofilizado) que necesita reconstruirse, por ejemplo, con diluyente(s) antes de la inyección, o en forma líquida, como una solución inyectable o suspensión inyectable.

La cantidad de polipéptido(s) llevado(s) por un vector que se debe administrar (dosis) depende del sujeto a tratar, incluyendo considerar la afección del paciente, el estado del sistema inmunitario del individuo, la vía de administración y el tamaño del hospedador. Las dosis convencionales varían de 1 a 1200 µg, de 100 a 1000 µg, de 200 a 1000 µg, de 500 a 1000 µg. Se elige una dosis particular del grupo que consiste en 100, 200, 300, 400, 500, 600, 700, 800, 900 y 1000 µg. En otra realización, las dosis convencionales varían de 1 a 100 µg, de 1 a 50 µg y de 1 a 10 µg de polipéptido(s) llevado(s) por un vector. Estos ejemplos pueden ser modificados por un experto en la materia, dependiendo de las circunstancias.

Cada realización específica se puede combinar con cualquier realización particular.

Ejemplos

5

10

15

20

25

45

50

55

65

60 A. MATERIALES Y MÉTODOS

Ratones

Ratones hembra C57BL/6 de seis semanas de edad (H-2^{si}) se compran en Charles River Laboratories. Los ratones se alojan en condiciones sin patógenos con agua y alimentos *ad libitum*. Los procedimientos que involucran animales y su cuidado se ajustan a las pautas de Genticel que cumplen con las leyes y políticas nacionales e internacionales y

que son revisadas por el comité de ética local.

Líneas celulares tumorales

- 5 Las células tumorales TC-1 (cultivo de tejidos número uno) (Lin, Guarnieri et al. 1996) se prepararon por transformación de células de pulmón de ratón primarias C57BL/6 con oncogenes E6 y E7 de VPH16 y oncogén c-Ha-Ras humano activado. Las células utilizadas en este estudio se obtuvieron del ATCC. Los linfocitos TC1 se descongelan antes de cada experimento y luego se cultivan y expanden in vitro durante al menos 10 días antes de la inyección.
- 10 EG7, la línea celular murina de linfoma EL4 transfectada con OVA (antecedentes genéticos C57BL/6), se usan para inducir un tumor sólido que expresa la proteína ovoalbúmina. Este modelo se describe ampliamente y se usa como un modelo de tumor murino de cáncer (Schreiber, Deyev et al. 2009). Los linfocitos EG7 se descongelan antes de cada experimento y luego se cultivan y expanden in vitro durante al menos 10 días antes de la inyección.
- 15 Inoculación de células tumorales

En el día 0, los ratones C57BL/6 son inyectados con linfocitos TC-1 (0,5x106 células por ratón para VPH TUR008, 1x106 células por ratón para los otros estudios) diluidos en 100 µl de PBS 1X por vía subcutánea en el flanco. En algunos experimentos, los ratones se inyectan en el día 60 con células EG7 diluidas en 100 µl de PBS 1X a través de la vía subcutánea en el flanco.

Preparación del vector

20

45

50

55

60

65

- Construcción y purificación de CyaA-VPH16E7 Δ30-42 recombinante (C16-1) y CyaA-VPH18E7Δ32-42 (C18-1) (Figuras 25 3A y 3B) ya se describen en el documento EP1576967B1. Las dos masas finales de CyaA-VPH16E7∆30-42 (C16-1) y CyaA-VPH18E7_{\(\Delta\)2-42} (C18-1) se mezclaron en Genticel en una relación 1:1 para producir el ProCervix que luego se almacena a -80 °C en partes alícuotas.
- CyaA-CysOVA incorpora el epítopo restringido OVA₂₅₇₋₂₆₄ (SIINFEKL) H-2^b de la proteína ovoalbúmina (OVA). Se 30 codifica como BTpr 103, lote VPH043 Cova PB 8M purificado en Genticel. Este lote de CyaA-CysOVA se caracterizó por su inmunogenicidad en ratones en Genticel (resultados internos) (Figura 4).
 - el vector CyaA-MAGEA3_{97-178/190-295} (Figura 4C y SEQ ID NO: 7) abarca dos polipéptidos:
- 35 (1) el epítopo MAGE A397-178 insertado entre los restos 224 y 235 de CyaA de B. pertussis: LGDNQIMPKAGLLIIVLAIIAREGDCAPEEKIPKKLLTQHFVQENY LEYRQVPGSDPACYEFLWGPRALVETSYVKVLHHMVKISG (SEQ ID NO: 8); v
- (2) el epítopo MAGE-A3₁₉₀₋₂₉₅ correspondiente a los restos 190-221 fusionados a los restos 242-295 de la secuencia 40 MAGE insertado 319 320 A3, entre los CyaA: TFPDLESEFQAALSRKVAELVHFLLLKYRAREPVTKAEMLGSVVGN WQYFFPVIFSKASSSLQLVFGIELMEVDPIGHLYIF (SEQ ID NO:9).

Administración de vacunas

En el día 11, después de la medición tumoral, los ratones con tumores sólidos detectables se vacunan mediante inyección intradérmica (id) en la dermis de los oídos (se inyectan ambos oídos). En algunos experimentos, los ratones reciben una vacuna de dos inyecciones el día 11 y el día 39 después de la inoculación de células tumorales TC-1. En cuanto a ProCervix, a los ratones se les administró 5 µg de CyaA-VPH16E7. Δ30-42 y 5 µg de CyaA-VPH18E7Δ32-42.

Moléculas adyuvantes

Aldara™ es una formulación farmacéutica de una molécula que activa la inmunidad innata a través de una unión preferencial en TLR7 a las células inmunes como, por ejemplo, CPA. Esta molécula activa es Imiguimod, un pequeño compuesto sintético. Aldara™ se comercializa como una crema que contiene 5 % de Imiguimod en paquetes de uso de dosis única de 250 mg (12,5 mg de Imiquimod activo). La dosis que induce un efecto adyuvante para la vacunación de ratones con ProCervix es de 25 mg de Aldara™ por sitio de inmunización, por lo que, respectivamente, 1,25 mg de Imiquimod activo por sitio de inyección (50 mg para un ratón). Una aplicación tópica (cutánea) de Aldara™ se realiza en el día de la inmunización y 24 h después de la inmunización. Se preparan tubos individuales, cada uno contiene 25 mg de Aldara™ para su aplicación en la piel del oído (2 tubos para un ratón). Para evaluar con precisión la cantidad real de crema Aldara™ aplicada en cada sitio de inyección de ProCervix (correspondiente a cada oreja para un ratón individual); cada tubo Eppendorf se pesa antes y después del depósito de la crema en el interior. Después de la aplicación de la crema Aldara™ en la piel del oído, el peso de los tubos Eppendorf se reevalúa para calcular aproximadamente la cantidad de crema restregada en la piel. Para cada tubo, todo el contenido de la crema se

restriega durante al menos 15 segundos y hasta la penetración completa en la piel.

Poly-ICLC (agonista de TLR3) fue proporcionado por Oncovir (Inc, WA, EE. UU.) en frascos que contienen 1 ml de solución estéril opalescente de 2 mg/ml. El Poly-ICLC se deja en el recipiente original y se almacena a +4 °C. Poly-ICLC para inyección contiene 2 mg/ml de poly-IC estabilizado con 1,5 mg/ml de poli-L-lisina y 5 mg/ml de carboximetilcelulosa de sodio en solución de cloruro de sodio al 0,9 % y ajustado a pH 7,6-7,8 con hidróxido de sodio.

Medida tumoral

5

15

20

25

30

35

40

45

60

Se tienen en cuenta diferentes parámetros para evaluar el desarrollo tumoral en ratones:

- Tamaño tumoral: Los tumores se miden manualmente usando un calibrador dos veces por semana, comenzando 5 días después de la inoculación de las células tumorales y hasta el día 60. El volumen tumoral se calcula de la siguiente manera: volumen = (Largo x ancho²)/2;
 - -Supervivencia de ratones: Por razones éticas, los ratones que se desarrollan de manera anormalmente importante (tamaño límite: 2000 mm³) y/o tumores necróticos, o con movilidad alterada inducida por el tumor son sacrificados; y
 - Número de ratones sin tumor: Esta información indica cuándo la vacunación terapéutica ha inducido una regresión tumoral completa (ausencia de tumor palpable).

Medición de respuestas citototóxicas de memoria de linfocitos T CD8

El método para medir la citotoxicidad de linfocitos T CD8+ *in vivo* ha sido ampliamente descrito (Barchet, Oehen et al. 2000; Ingulli 2007). En resumen, los esplenocitos singénicos de ratones sin tratamiento previo se marcan con diferentes concentraciones de CFSE (éster succinimidílico de carboxifluoresceína, Molecular Probes Invitrogen) y se impulsan *in vitro* con péptidos restringidos con H-2b relevantes o se dejan sin impulsar. Tanto las poblaciones de células diana impulsadas con péptidos como sin impulsar se transfieren de forma adoptiva por vía intravenosa a hospedadores vacunados singénicos y la pérdida de las dianas impulsadas por péptidos se mide por citometría de flujo (BD FACSCalibur) en el bazo. El porcentaje de destrucción se estima a partir de la reducción en la relación del porcentaje de células diana impulsadas a células no impulsadas, corregido por la relación inicial (ver más abajo). Las preparaciones celulares se analizan mediante citometría de flujo antes de la inyección para verificar la carga de CFSE de las diferentes células diana y obtener valores de referencia (porcentaje real de cada población celular) para el cálculo de la destrucción *in vivo*. Las tres poblaciones de células diana se inyectan por vía intravenosa en una proporción 1:1:1 a cada ratón vacunado. El porcentaje de destrucción *in vivo* se calcula como se describe en otra parte con la siguiente fórmula (Barber, Wherry et al. 2003)

PORCENTAJE DE DESTRUCCIÓN = 100 - ([(% de péptido impulsado en vacunado)/(% de péptido impulsado antes de la inyección/)% no impulsado antes de la inyección))x100)

Ensayo ELISpot (inmunopuntos ligados a enzimas) de IFN-γ

Frecuencias de IFN-γ de E7₄₉₋₅₇ de VPH16 y E7_{AS43-49} de VPH18 que producen linfocitos T CD8⁺ específicos se evalúan en esplenocitos reestimulados *ex vivo* por un ensayo ELISpot de IFN-γ:

- Se realizan ensayos ELISpot en ratones individuales, no en bazo agrupado.
- Los ratones recibieron el día anterior a la infusión intravenosa de esplenocitos diana cargados con CFSE singénicos (debido al ensayo de destrucción *in vivo*, véase más arriba).

En resumen, los esplenocitos totales obtenidos de ratones vacunados se dejan sin estimular o se reestimulan durante 20 h a 37 °C, 5 % de CO2 con 1 μ g/ml de cada péptido como se describe a continuación:

- 1x10⁶ células/pocillo con el péptido E7₄₉₋₅₇ de VPH16 (epítopo relevante restringido con H-2^b)
- 1x10⁶ células/pocillo con OVA₂₅₇₋₂₆₄ (epítopo irrelevante restringido con H-2^b).
- 0,25x10⁶ células/pocillo con E7_{AS43-49} de VPH18 (epítopo relevante restringido con H-2^b).
- 50 La secreción de IFN-γ se controla mediante un ELISpot con base de sándwich revelado por BCIP/NBT usando estreptavidina-AKP. Los datos se analizaron en un Bioreader 5000-Pro S (Biosys).

Vacunas terapéuticas/profilácticas

55 El esquema terapéutico, detallado a continuación, se resume en la Figura 8.

En el día 0, se inocularon dos grupos de ratones (grupos 1 y 2) en el flanco derecho con linfocitos TC-1 ($1x10^6$ células por ratón). Después, los ratones recibieron dos vacunas, la primera en el día 11 y la segunda en el día 39, con Placebo (PBS 1X + urea) (grupo 1) o con Placebo + AldaraTM (grupo 2). Los grupos 1 y 2 son un control negativo.

En el día 0, se inocularon cuatro grupos de ratones (grupos 3 a 6) en el flanco derecho, con linfocitos TC-1 (1x10 ⁶ células por ratón) (grupos 3 a 6); entonces, los ratones recibieron dos vacunas, la primera en el día 11 y la segunda

17

en el día 39, con CyaA-MAGEA3_{97-178/190-295}/CyaA-VPH16 E7 (5 μg de cada vector basado en CyaA) en presencia de Aldara[™] (grupo 3), con CyaA-cysOVA/CyaA-VPH16 E7 (5 μg de cada vector basado en CyaA) en presencia de Aldara[™] (grupo 4) o con ProCervix adyuvado con Aldara[™] (grupos 5 y 6, como control positivo para la eliminación del tumor TC-1). El flanco derecho de estos ratones se controló hasta el día 100 (Figura 9). En el día 60, los ratones de supervivencia fueron inoculados con una segunda línea celular tumoral, ya sean las células tumorales B16 que expresan la proteína MAGE A3 (grupos 3 y 5) o las células tumorales EG7 (células singénicas malignas que expresan la proteína ovoalbúmina) (grupos 4 y 6). El flanco izquierdo de estos ratones se controló hasta el día 100.

Cuando se usa, se aplica tópicamente Aldara™ (cutáneamente), en el sitio de vacunación, en el día de la vacunación y al día siguiente a la vacunación (es decir, en los días 12 y 40).

B. RESULTADOS

10

15

20

25

30

35

40

45

50

55

60

65

Ratones portadores de tumores sólidos que expresan E7 de VPH16 vacunados por ProCervix muestran una alta tasa de regresión tumoral y una mejor supervivencia

Los ratones vacunados en el día 11 con PBS y que recibieron la aplicación de Aldara™ no mostraron inhibición del crecimiento tumoral con la excepción de 2 ratones de 10 que eliminaron completamente el tumor antes del día 50 (Figura 5A y 6A). Cuatro ratones estaban vivos en este grupo en el día 50 (Figura 6B; final de la monitorización del tamaño del tumor). No se incluyó ningún grupo tratado solo con PBS en este estudio y, por lo tanto, es difícil tener una idea clara del impacto de Aldara™ en comparación con la respuesta natural de los ratones contra el tumor. Sin embargo, es obvio que el efecto observado con Aldara™ solo es mucho más débil que los observados con ProCervix adyuvado con Aldara™ (véase más adelante). Esto indica que incluso si Aldara™ puede tener algún efecto por vecindad en la progresión del tumor, probablemente debido a la activación inmunitaria innata y los procesos inflamatorios resultantes (citocinas proinflamatorias, etc. (Schon y Schon 2008)), no es lo suficientemente potente como para usarse solo con este esquema terapéutico como tratamiento de tumores sólidos inducidos por VPH.

Los ratones vacunados en el día 11 con ProCervix sin adyuvante también mostraron crecimiento tumoral importante sin ratones sin tumor en el día 50 (Figura 5B y 6A). Solo dos ratones estaban vivos en el día 50 en este grupo (Figura 6B). La vacunación terapéutica con ProCervix adyuvado con Imiquimod tópico (Aldara™) indujo una regresión tumoral significativa (Figura 5D) que condujo a altas tasas de supervivencia (figura 6B) y una mayoría de ratones sin tumor al final del estudio (figura 6A). Para el grupo de ProCervix adyuvado con Aldara™, observamos un escape tumoral después de un período de control aparente (el tamaño disminuyó a menos de 50 mm³) en 3 ratones de 10. El escape ocurrió entre el día 30 y el día 40 con un crecimiento importante hasta el día 50. Este fenómeno podría deberse a mecanismos de escape desarrollados por tumores y, en este caso, se deben tener en cuenta los refinamientos del esquema terapéutico, pero es más probable debido a la pérdida de moléculas de MHC de clase I en la superficie de las células tumorales como se describió anteriormente para células TC-1 (Zwaveling, Ferreira Mota et al. 2002). La vacunación terapéutica con ProCervix adyuvado con poly-ICLC dio resultados comparables de regresión tumoral y tasa de supervivencia (Figura 5C y 6). Estos resultados muestran que la vacunación terapéutica de ratones que tienen tumores sólidos que expresan E7 de VPH16 con ProCervix, ya sea adyuvados con Poly-ICLC o Imiquimod tópico (Aldara™), produce un fuerte efecto terapéutico.

La vacuna terapéutica ProCervix promueve el desarrollo de CTL de memoria funcional específica para E7 de VPH16 y E7 de HVP18

Se describió por Rafi Ahmed y colaboradores en un modelo murino de infección vírica aguda con LCMV que los linfocitos T CD8⁺ de memoria pueden exhibir un potencial lítico rápido *in vivo (Barber, Wherry et al. 2003)*. Basándose en estas observaciones, los inventores decidieron investigar si los ratones que eliminaron completamente los tumores sólidos inducidos por TC-1, después de la administración de ProCervix en el día 11, muestran linfocitos T CD8⁺ de memoria específicos de antígeno funcionales después de la erradicación del tumor.

Con este fin, en el día 60 después de la inoculación de linfocitos TC-1, los ratones sin tumor restantes en cada grupo se transfirieron de forma adoptiva con esplenocitos singénicos cargados con CFSE para medir en paralelo la citotoxicidad *in vivo* (como se describió anteriormente en la sección Materiales y métodos) de los linfocitos T CD8⁺ de memoria contra los dos siguientes epítopos restringidos con H-2⁵: E7₄9-57 de VPH16 y E7₄S₄3-₄9 de VPH18. En los grupos de ratones vacunados con ProCervix adyuvados con Aldara™ o con Poly-ICLC, se tomaron 5 ratones sin tumor (seleccionados al azar en el grupo) para realizar el ensayo de destrucción *in vivo*. En todos los ratones probados, que han erradicado completamente el tumor, detectamos una fuerte citotoxicidad contra células diana impulsadas con E7₄9-57.de VPH16 (Figura 7). No se pueden observar diferencias entre los grupos. La detección de la respuesta citotóxica específica de VPH16E7 en placebo con el grupo vacunado con Aldara™ se debe al uso para esta prueba de los dos ratones sin tumor (todos los demás ratones estaban muertos debido a la excrecencia del tumor en el día 60). Estos datos indican que estos dos ratones han podido desarrollar una respuesta inmunitaria específica para E7 de VPH16 lo suficientemente fuerte como para eliminar los tumores sólidos inducidos por TC-1. Curiosamente, solo los ratones vacunados con ProCervix adyuvado también mostraron células diana impulsadas con VPH18E7. Estos datos son más informativos ya que los linfocitos TC-1 no expresan antígenos de VPH18, indicando así que la citotoxicidad específica de VPH18 informada solo se debió a los linfocitos T de memoria inducidos por la vacuna. De hecho, no se observó

citotoxicidad *in vivo* contra células diana impulsadas por VPH18E7 en ratones tratados únicamente con Aldara™ (Figura 7).

Tomados en conjunto, los datos de los inventores demuestran la exquisita eficacia de ProCervix para inducir, con una sola inyección, una respuesta de memoria dependiente de CD8 funcional contra los antígenos E7 de VPH16 y E7 de VPH18. Una vacuna ProCervix de una sola inyección puede inducir la diferenciación de un grupo de linfocitos T CD8⁺ de memoria específicos de antígeno que confieren a ratones vacunados, tanto una protección a largo plazo contra un exposición secundario con células injertadas singénicas que expresan E7 de VPH16 (antígeno expresado por tumores) y en paralelo una protección contra una nueva exposición con células injertadas singénicas que expresan E7 de VPH18 (antígeno que no se expresa por tumores y que solo se entrega por el vector CyaA-VPH18E7_{Δ32-42}).

5

10

25

45

60

65

La vacuna terapéutica bivalente de CyaA-VPH16E7_{\(\Delta\)0.42}|CyaA-MAGE A3 proporciona la erradicación de los tumores sólidos que expresan E7 de VPH16 y protección contra el desarrollo de tumores inducidos por MAGE-A3

Los ratones vacunados con CyaA-VPH16E7_{D30-42}/CyaA-MAGE A3 + Aldara como adyuvante transcutáneo (grupo 3) y los ratones vacunados con ProCervix adyuvado con Aldara (grupos 5 y 6) eliminaron los tumores sólidos inducidos por TC1 en 40 días: 9 de cada 10 ratones en el grupo 3 (Figura 9c); 8 de cada 10 ratones en el grupo 5 y 9 de cada 10 en el grupo 6 (Figura 9 e y f). La fuerte eliminación de los tumores se confirmó hasta el día 100. Por el contrario, los ratones que fueron vacunados con el placebo, con o sin adyuvante (grupo 1 y 2 respectivamente), ya que los controles negativos desarrollaron tumores sólidos inducidos por TC1: 9/10 ratones en el grupo 1 (Figura 9a) y 8/10 ratones en el grupo 2 (Figura 9b).

En el día 60, los ratones de supervivencia de los grupos 3 y 5 fueron inoculados, en su flanco izquierdo, con células tumorales B16 que expresan la proteína MAGE A3. Ninguno de los ratones, que fueron vacunados con CyaA-VPH16E7_{∆30-42}/CyaA-MAGE A3 en presencia de Aldara™ y que han eliminado los tumores inducidos por TC1, mostró desarrollo de tumor B16-MAGEA3 después de la exposición (0 de 9 ratones desarrollaron tumores B16-MAGEA3; Figura 10a), que indica que estos ratones estaban protegidos contra la exposición con tumores sólidos inducidos por B16-MAGE A3.

Por el contrario, los ratones vacunados con ProCervix adyuvado con Aldara™ y que han eliminado los tumores inducidos por TC1 desarrollan tumores B16-MAGEA3 (6 de 8 ratones desarrollaron tumores B16-MAGEA3; Figura 10c), que indica que Procervix (VPH16E7/VPH18E7) no confirió inmunidad de linfocitos T de memoria protectora contra la exposición por las células tumorales B16-MAGEA3. Por lo tanto, la protección contra el desarrollo de tumores inducidos por MAGE A3 observados en ratones del grupo 3 se logró como resultado de la inducción de una respuesta de memoria mediada por linfocitos T específicos de MAGE A3 en ratones vacunados con CyaA-MAGEA3, mientras que la respuesta de memoria mediada por linfocitos T provocada en ratones del grupo 5 se generó contra un antígeno (E7 de VPH18) que es irrelevante con respecto a la naturaleza de las células tumorales B16-MAGEA3.

En conclusión, estos experimentos demuestran que se puede usar CyaA bivalente, después de una administración, tanto para erradicar los linfocitos TC-1 (respuesta inmunitaria específica de VPH18E7) como para prevenir el desarrollo de células tumorales B16-MAGEA3 (respuesta de memoria mediada por linfocitos T específicos de MAGE A3). Además, los resultados obtenidos después del día 60 mostraron que el efecto profiláctico obtenido contra las células tumorales B16-MAGEA3 no perjudicó el efecto terapéutico obtenido contra los linfocitos TC-1 (erradicación de linfocitos TC1 hasta el día 100; figura 9c).

La vacuna terapéutica bivalente CyaA-VPH16E7_{∆30-42}/CyaA-cysOVA proporciona la erradicación de los tumores sólidos que expresan E7 de VPH16 y protección contra el desarrollo de tumores inducidos por EG7-OVA

Ratones vacunados con CyaA-VPH1 6E7_{∆30-42}/ CyaA-CysOVA en presencia de Aldara™ como adyuvante transcutáneo (grupo 4) y los ratones vacunados con ProCervix adyuvado con Aldara (grupo 5 y 6) eliminaron los tumores sólidos inducidos por TC1 en 40 días: 9 de cada 10 ratones en el grupo 4 (Figura 9d) y 8 de cada 10 ratones en el grupo 5 y 9 de cada 10 en el grupo 6 (Figura 9 e y f). La fuerte eliminación de los tumores se confirmó hasta el día 100. Por el contrario, los ratones que fueron vacunados con Placebo con o sin adyuvante (grupo 1 y 2 respectivamente), como controles negativos, desarrollaron tumores sólidos inducidos por TC1: 9/10 ratones en el grupo 1 (Figura 9a) y 8/10 ratones en el grupo 2 (Figura 9b).

En el día 60, los ratones de supervivencia de los grupos 4 y 6 fueron inoculados, en su flanco izquierdo, con células tumorales EG7-OVA (células singénicas malignas que expresan la proteína ovoalbúmina). En el grupo 6, el ratón 6004 desarrolló un tumor después del día 60 (Figura 9f), de modo que se inoculó con células tumorales EG7-OVA como los otros 9 ratones del grupo que no desarrollaron tumores. Ninguno de los ratones, que fueron vacunados con CyaA-VPH16E7_{Δ30-42}/CyaA-CysOVA en presencia de Aldara[™] y que han eliminado los tumores inducidos por TC1, mostraron desarrollo de tumor EG7-OVA después de la exposición (0 de 9 ratones desarrollaron tumores EG7-OVA; Figura 10b), demostrando que estos ratones estaban protegidos contra la exposición con células tumorales EG7-OVA. Por el contrario, los ratones que fueron vacunados con ProCervix adyuvado con Aldara[™] y que han eliminado los tumores inducidos por TC1 desarrollaron tumores EG7-OVA (8 de cada 10 ratones desarrollaron tumores EG7-OVA; Figura 10d), que indica que Procervix (VPH16E7/VPH18E7) no confirió inmunidad de linfocitos T de memoria

protectora contra la exposición por las células tumorales EG7-OVA. Por lo tanto, la protección contra el desarrollo de tumores sólidos inducidos por EG7-OVA observados en el grupo 4 se logró como resultado de la inducción de una respuesta de memoria mediada por linfocitos T específicos de OVA en ratones vacunados con CyaA-VPH16E7_{∆30-42}/CyaA-CysOVA, mientras que la respuesta de memoria mediada por linfocitos T suscitada en ratones del grupo 6 se generó contra un antígeno (VPH18 E7) que es irrelevante con respecto a la naturaleza de los tumores EG7-OVA.

En conclusión, estos experimentos demuestran que se puede usar CyaA bivalente, después de una administración, tanto para erradicar los linfocitos TC-1 (respuesta inmunitaria específica de VPH18E7) como para prevenir el desarrollo de tumores sólidos inducidos por EG7-OVA. Además, los resultados obtenidos después del día 60 mostraron que el efecto profiláctico obtenido contra las células tumorales EG7-OVA no perjudicó el efecto terapéutico obtenido contra los linfocitos TC-1 (erradicación de linfocitos TC1 hasta el día 100; figura 9d).

C. CONCLUSIÓN

10

25

30

35

- El concepto novedoso presentado en la presente solicitud, con la vacuna terapéutica bivalente ProCervix es, por una parte, tratar, por ejemplo, pacientes infectados por VPH16, erradicar la infección y, por otra parte, proporcionar respuestas de memoria mediadas por linfocitos T para los antígenos E7 de VPH16 y E7 de VPH18, estableciendo así para los pacientes vacunados con ProCervix una protección a largo plazo contra una posible reinfección por VPH16 y también contra una infección posterior por VPH18.
- 20
 Esto se confirmó con otras dos vacunas bivalentes (CyaA-VPH16E7_{Δ30-42}/CyaA-MAGE A3 y CyaA-VPH16E7_{Δ30-42}/CyaA-CysOVA) que se han mostrado, por una parte, para tratar ratones infectados por VPH16 (erradicación de linfocitos TC1) y, por otra parte, para proporcionar protección contra el desarrollo de tumores B16-MAGE A3 o tumores EG7-OVA respectivamente.
 - Utilizando un modelo preclínico murino de carcinoma cervical [células tumorales TC-1 (Lin, Guarnieri et al. 1996; Zwaveling, Ferreira Mota et al. 2002)], se demostró que la vacunación terapéutica de ratones con tumores que expresan E7 de VPH16 sólido con ProCervix se combinó con una molécula adyuvante [agonistas de TLR como Aldara™ (Johnston y Bystryn 2006; Heib, Becker et al. 2007; Schon y Schon 2008) o Poly-ICLC (Longhi, Trumpfheller et al. 2009)] conducen a una regresión tumoral eficaz.
 - Además, se demostró que la eliminación del tumor inducida por la vacuna puede correlacionarse con la presencia de respuestas de memoria de CTL específicos de E7 de VPH16 de larga duración en ratones que han erradicado completamente el tumor. Inesperadamente, también se evidenció que en estos ratones sin tumores, la vacuna terapéutica ProCervix genera, en paralelo, respuestas funcionales de memoria de CTL específicos de E7de VPH18. Tanto CTL de memoria E7 de VPH16 como E7 de VPH18 mostraron un potencial lítico *in vivo*.
- Las observaciones de que los polipéptidos llevados por CyaA pueden generar una(s) respuesta(s) preventiva(s) de memoria de linfocitos T contra un segundo grupo de epítopos en un hospedador mamífero (respuesta inmunitaria 40 profiláctica) mientras permiten generar un tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) diagnosticada(s) en dicho hospedador mamífero suscitando una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos, es sorprendente. De hecho, es bien sabido que existe competencia entre diferentes epítopos, ya sea con respecto al acceso a CPA, procesamiento y presentación por CPA y disponibilidad de citocinas. Este fenómeno conduce a una jerarquía de epítopos dominantes y subdominantes, y permite activar la 45 respuesta inmunitaria de los linfocitos T y suprimir otra(s) respuesta(s) inmunitaria(s) de los linfocitos T. Este fenómeno se esperaba en la situación actual donde los linfocitos T que reconocen el primer grupo de epítopos ya existen en el paciente antes de la administración de los polipéptidos llevados por un vector (ya que uno o algunos epítopos del primer grupo ya se han presentado al sistema inmunitario del hospedador), mientras que los linfocitos T nativos tienen que activarse con respecto al segundo grupo de epítopos. Curiosamente, la presente invención ha demostrado que, 50 en contraste con lo que se espera, la respuesta inmunitaria preventiva contra el segundo grupo de epítopos contenidos en un polipéptido llevado por CyaA no parece estar desfavorecida con respecto a la respuesta inmunitaria terapéutica contra el primer grupo de epítopos. Estos resultados significan que no se observa competencia entre la respuesta inmunitaria inducida contra el primer grupo de epítopos y la respuesta inmunitaria inducida contra el segundo grupo de epítopos. En consecuencia, los inventores han demostrado que el (los) polipéptido(s) llevado(s) por CyaA es/son 55 suficientemente eficaces para suscitar una respuesta inmunitaria de linfocitos T en un tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) diagnosticada(s) en un hospedador mamífero y para

60 BIBLIOGRAFÍA

Ahmed, R., M. J. Bevan, et al. (2009). "The precursors of memory: models and controversies". Nat Rev Immunol 9(9): 662-668.

suscitar una respuesta inmunitaria de memoria de linfocitos T en la profilaxis contra una(s) segunda(s) afección(es)

Bachmann, M.F. y G.T. Jennings (2010). "Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns".

Nat Rev Immunol 10(11): 787-796.

Barber, D.L., E. J. Wherry, et al. (2003). "Cutting edge: rapid *in vivo* killing by memory CD8 T cells". J Immunol 171(1):

patológica(s) determinada(s) en el mismo hospedador mamífero.

10

25

30

Barchet, W., S. Oehen et al. (2000). "Direct quantitation of rapid elimination of viral antigen-positive lymphocytes by antiviral CD8(+) T cells in vivo". Eur J Immunol 30(5): 1356-1363.

Frazer, I. H. (2009). "Interaction of human papillomaviruses with the host immune system: a well evolved relationship".

Virology 384(2): 410-414.

Goodwin, M. S. y A. A. Weiss (1990). "Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice". Infect Immun 58(10): 3445-3447.

Guermonprez et al. Journal of Experimental Medicine, 193(9), págs. 1035-1044, 2001 Heib, V., M. Becker et al. (2007). "Mast cells are crucial for early inflammation, migration of Langerhans cells, and CTL responses following topical application of TLR7 ligand in mice". Blood 110(3): 946-953.

Ingulli, E. (2007). "Tracing tolerance and immunity in vivo by CFSE-labeling of administered cells". Methods Mol Biol 380: 365-376.

Iwasaki, A. (2010). "Antiviral immune responses in the genital tract: clues for vaccines". Nat Rev Immunol 10(10): 699-

15 Johnston, D. y J. C. Bystryn (2006). "Topical imiquimod is a potent adjuvant to a weakly-immunogenic protein prototype vaccine". Vaccine 24(11): 1958-1965.

Kaech, S. M., S. Hemby, et al. (2002). "Molecular and functional profiling of memory CD8 T cell differentiation". Cell 111(6): 837-851.

Ladant et al. Journal of Biological Chemistry, 267(4): 2244-2250, 1992.

Lin, K. Y., F. G. Guarnieri, et al. (1996). "Treatment of established tumors with a novel vaccine that enhances major 20 histocompatibility class II presentation of tumor antigen". Cancer Res 56(1): 21-26.

Longhi, M. P., C. Trumpfheller, et al. (2009). "Dendritic cells require a systemic type I interferon response to mature and induce CD4⁺ Th1 immunity with poly IC as adjuvant". <u>J Exp Med</u> 206(7): 1589-1602. Merad, M., F. Ginhoux, et al. (2008). "Origin, homeostasis and function of Langerhans cells and other langerin-

expressing dendritic cells". Nat Rev Immunol 8(12): 935-947.

Preville, X., D. Ladant, et al. (2005). "Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein". Cancer Res 65(2): 641-649. Pulendran, B., S. Li, et al. (2010). "Systems vaccinology". Immunity 33(4): 516-529.

Rosato, A., A. Zoso, et al. (2006). "Predicting tumor outcome following cancer vaccination by monitoring quantitative and qualitative CD8⁺ T cell parameters". <u>J Immunol</u> 176(3): 1999-2006. Sallusto, F., A. Lanzavecchia, et al. (2010). "From vaccines to memory and back". <u>Immunity</u> 33(4): 451-463.

Schon, M. P. y M. Schon (2008). "TLR7 and TLR8 as targets in cancer therapy". Oncogene 27(2): 190-199. Schreiber, T. H., V. V. Deyev, et al. (2009). "Tumor-induced suppression of CTL expansion and subjugation by gp96-lg vaccination". Cancer Res 69(5): 2026-2033.

35 Simsova, M., P. Sebo, et al. (2004). "The adenylate cyclase toxin from Bordetella pertussis--a novel promising vehicle for antigen delivery to dendritic cells". Int J Med Microbiol 293(7-8): 571-576. Stanley, M. (2010). "Potential mechanisms for HPV vaccine-induced long-term protection". Gynecol Oncol 118(1 Supl):

Trimble, C. L. y I. H. Frazer (2009). "Development of therapeutic HPV vaccines". Lancet Oncol 10(10): 975-980.

40 Woodland, D. L. y J. E. Kohlmeier (2009). "Migration, maintenance and recall of memory T cells in peripheral tissues". Nat Rev Immunol 9(3): 153-161.

Zwaveling, S., S. C. Ferreira Mota, et al. (2002). "Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides". J Immunol 169(1): 350-358.

LISTADO DE SECUENCIAS 45

<110> GENTICEL

<120> POLIPÉPTIDO(S) LLEVADO(S) POR CYAA Y USO PARA INDUCIR RESPUESTAS INMUNITARIAS 50 TERAPÉUTICAS Y PROFILÁTICAS.

<130> B09250A - AD/LV/KN

<140> PCT/EP XXXXXX

<141> 2012-01-24

<150> EP 11305069.4 <151> 2011-01-24

60 <160>9

55

<170> PatentIn versión 3.5

<210> 1

65 <211> 1706

<212> PRT

<213> Bordetella pertussis / CyaA

<400> 1

Met Gln Gln Ser His Gln Ala Gly Tyr Ala Asn Ala Ala Asp Arg Glu

1 10 15

Ser Gly Ile Pro Ala Ala Val Leu Asp Gly Ile Lys Ala Val Ala Lys 20 25 30

Glu Lys Asn Ala Thr Leu Met Phe Arg Leu Val Asn Pro His Ser Thr 35 40 45

Ser Leu Ile Ala Glu Gly Val Ala Thr Lys Gly Leu Gly Val His Ala 50 55 60

Lys Ser Ser Asp Trp Gly Leu Gln Ala Gly Tyr Ile Pro Val Asn Pro 65 70 75 80

Asn Leu Ser Lys Leu Phe Gly Arg Ala Pro Glu Val Ile Ala Arg Ala 85 90 95

Asp Asn Asp Val Asn Ser Ser Leu Ala His Gly His Thr Ala Val Asp 100 105 110

Leu Thr Leu Ser Lys Glu Arg Leu Asp Tyr Leu Arg Gln Ala Gly Leu 115 120 125

Val Thr Gly Met Ala Asp Gly Val Val Ala Ser Asn His Ala Gly Tyr 130 135 140

Glu Gln Phe Glu Phe Arg Val Lys Glu Thr Ser Asp Gly Arg Tyr Ala

145					150					155					160
Val	Gln	Tyr	Arg	Arg 165	Lys	Gly	Gly	Asp	Asp 170	Phe	Glu	Ala	Val	Lys 175	Val
Ile	Gly	Asn	Ala 180	Ala	Gly	Ile	Pro	Leu 185	Thr	Ala	Asp	Ile	Asp 190	Met	Phe
Ala	Ile	Met 195	Pro	His	Leu	Ser	Asn 200	Phe	Arg	Asp	Ser	Ala 205	Arg	Ser	Ser
Val	Thr 210	Ser	Gly	Asp	Ser	Val 215	Thr	Asp	Tyr	Leu	Ala 220	Arg	Thr	Arg	Arg
Ala 225	Ala	Ser	Glu	Ala	Thr 230	Gly	Gly	Leu	Asp	Arg 235	Glu	Arg	Ile	Asp	Leu 240
Leu	Trp	Lys	Ile	Ala 245	Arg	Ala	Gly	Ala	Arg 250	Ser	Ala	Val	Gly	Thr 255	Glu
Ala	Arg	Arg	Gln 260	Phe	Arg	Tyr	Asp	Gly 265	Asp	Met	Asn	Ile	Gly 270	Val	Ile
Thr	Asp	Phe 275	Glu	Leu	Glu	Val	Arg 280	Asn	Ala	Leu	Asn	Arg 285	Arg	Ala	His
Ala	Val 290	Gly	Ala	Gln	Asp	Val 295	Val	Gln	His	Gly	Thr 300	Glu	Gln	Asn	Asn
Pro 305	Phe	Pro	Glu	Ala	Asp 310	Glu	Lys	Ile	Phe	Val 315	Val	Ser	Ala	Thr	Gly 320
Glu	Ser	Gln	Met	Leu 325	Thr	Arg	Gly	Gln	Leu 330	Lys	Glu	Tyr	Ile	Gly 335	Gln
			Glu 340					345					350		
Ala	Gly	Lys 355	Ser	Leu	Phe	Asp	360	Gly	Leu	Gly	Ala	Ala 365	Pro	Gly	Val
	370		Arg			375					380				
Ala 385	Ser	Pro	Gly	Leu	Arg 390	Arg	Pro	Ser	Leu	Gly 395	Ala	Val	Glu	Arg	Gln 400

As	p	Ser	Gly	Tyr	Asp 405	Ser	Leu	Asp	Gly	Val 410	Gly	Ser	Arg	Ser	Phe 415	Ser
Le	eu	Gly	Glu	Val 420	Ser	Asp	Met	Ala	Ala 425	Val	Glu	Ala	Ala	Glu 430	Leu	Glu
Me	et	Thr	Arg 435	Gln	Val	Leu	His	Ala 440	Gly	Ala	Arg	Gln	Asp 445	Asp	Ala	Glu
Pr		Gly 450	Val	Ser	Gly	Ala	Ser 455	Ala	His	Trp	Gly	Gln 460	Arg	Ala	Leu	Gln
G1	_	Ala	Gln	Ala	Val	Ala 470	Ala	Ala	Gln	Arg	Leu 475	Val	His	Ala	Ile	Ala 480
Le	u	Met	Thr	Gln	Phe 485	Gly	Arg	Ala	Gly	Ser 490	Thr	Asn	Thr	Pro	Gln 495	Glu
Al	.a	Ala	Ser	Leu 500	Ser	Ala	Ala	Val	Phe 505	Gly	Leu	Gly	Glu	Ala 510	Ser	Ser
Al	.a	Val	Ala 515	Glu	Thr	Val	Ser	Gly 520	Phe	Phe	Arg	Gly	Ser 525	Ser	Arg	Trp
Al		Gly 530	Gly	Phe	Gly	Val	Ala 535	Gly	Gly	Ala	Met	Ala 540	Leu	Gly	Gly	Gly
	.e	Ala	Ala	Ala	Val	Gly 550	Ala	Gly	Met	Ser	Leu 555	Thr	Asp	Asp	Ala	Pro 560
Al	.a	Gly	Gln	Lys	Ala 565	Ala	Ala	Gly	Ala	Glu 570	Ile	Ala	Leu	Gln	Leu 575	Thr
G1	·y	Gly	Thr	Val 580	Glu	Leu	Ala	Ser	Ser 585	Ile	Ala	Leu	Ala	Leu 590	Ala	Ala
Al	.a	Arg	Gly 595	Val	Thr	Ser	Gly	Leu 600	Gln	Val	Ala	Gly	Ala 605	Ser	Ala	Gly
Al		Ala 610	Ala	Gly	Ala	Leu	Ala 615	Ala	Ala	Leu	Ser	Pro 620	Met	Glu	Ile	Tyr
-	-y 25	Leu	Val	Gln	Gln	Ser 630	His	Tyr	Ala	Asp	Gln 635	Leu	Asp	Lys	Leu	Ala 640
G1	.n	Glu	Ser	Ser	Ala		Gly	Tyr	Glu	Gly	Asp	Ala	Leu	Leu	Ala	

Leu Tyr Arg Asp Lys Thr Ala Ala Glu Gly Ala Val Ala Gly Val Ser 660 665 670 Ala Val Leu Ser Thr Val Gly Ala Ala Val Ser Ile Ala Ala Ala Ala Ser Val Val Gly Ala Pro Val Ala Val Val Thr Ser Leu Leu Thr Gly 695 Ala Leu Asn Gly Ile Leu Arg Gly Val Gln Gln Pro Ile Ile Glu Lys 715 Leu Ala Asn Asp Tyr Ala Arg Lys Ile Asp Glu Leu Gly Gly Pro Gln Ala Tyr Phe Glu Lys Asn Leu Gln Ala Arg His Glu Gln Leu Ala Asn 745 Ser Asp Gly Leu Arg Lys Met Leu Ala Asp Leu Gln Ala Gly Trp Asn 755 760 Ala Ser Ser Val Ile Gly Val Gln Thr Thr Glu Ile Ser Lys Ser Ala 770 Leu Glu Leu Ala Ala Ile Thr Gly Asn Ala Asp Asn Leu Lys Ser Val 785 795 Asp Val Phe Val Asp Arg Phe Val Gln Gly Glu Arg Val Ala Gly Gln 805 Pro Val Val Leu Asp Val Ala Ala Gly Gly Ile Asp Ile Ala Ser Arg Lys Gly Glu Arg Pro Ala Leu Thr Phe Ile Thr Pro Leu Ala Ala Pro Gly Glu Glu Gln Arg Arg Thr Lys Thr Gly Lys Ser Glu Phe Thr 850 855 860 Thr Phe Val Glu Ile Val Gly Lys Gln Asp Arg Trp Arg Ile Arg Asp 865 Gly Ala Ala Asp Thr Thr Ile Asp Leu Ala Lys Val Val Ser Gln Leu Val Asp Ala Asn Gly Val Leu Lys His Ser Ile Lys Leu Asp Val Ile 900 905 910

- Gly Gly Asp Gly Asp Val Val Leu Ala Asn Ala Ser Arg Ile His 915 920 925
- Tyr Asp Gly Gly Ala Gly Thr Asn Thr Val Ser Tyr Ala Ala Leu Gly 930 935 940
- Arg Gln Asp Ser Ile Thr Val Ser Ala Asp Gly Glu Arg Phe Asn Val 945 950 955 960
- Arg Lys Gln Leu Asn Asn Ala Asn Val Tyr Arg Glu Gly Val Ala Thr 965 970 975
- Gln Thr Thr Ala Tyr Gly Lys Arg Thr Glu Asn Val Gln Tyr Arg His 980 985 990
- Val Glu Leu Ala Arg Val Gly Gln Leu Val Glu Val Asp Thr Leu Glu 995 1000 1005
- His Val Gln His Ile Ile Gly Gly Ala Gly Asn Asp Ser Ile Thr 1010 1015 1020
- Gly Asn Ala His Asp Asn Phe Leu Ala Gly Gly Ser Gly Asp Asp 1025 1030 1035
- Arg Leu Asp Gly Gly Ala Gly Asn Asp Thr Leu Val Gly Glu 1040 1045 1050
- Gly Gln Asn Thr Val Ile Gly Gly Ala Gly Asp Asp Val Phe Leu 1055 1060 1065
- Gln Asp Leu Gly Val Trp Ser Asn Gln Leu Asp Gly Gly Ala Gly 1070 1075 1080
- Val Asp Thr Val Lys Tyr Asn Val His Gln Pro Ser Glu Glu Arg 1085 1090 1095
- Leu Glu Arg Met Gly Asp Thr Gly Ile His Ala Asp Leu Gln Lys 1100 1110
- Gly Thr Val Glu Lys Trp Pro Ala Leu Asn Leu Phe Ser Val Asp 1115 1120 1125
- His Val Lys Asn Ile Glu Asn Leu His Gly Ser Arg Leu Asn Asp 1130 1135 1140
- Arg Ile Ala Gly Asp Asp Gln Asp Asn Glu Leu Trp Gly His Asp

	1145					1150					1155			
Gly	Asn 1160		Thr	Ile	Arg	Gly 1165		Gly	Gly	Asp	Asp 1170	Ile	Leu	Arg
Gly	Gly 1175		Gly	Leu		Thr 1180		Tyr	Gly	Glu	Asp 1185	_	Asn	Asp
Ile	Phe 1190	Leu	Gln	Asp	Asp	Glu 1195		Val	Ser	Asp	Asp 1200	Ile	Asp	Gly
Gly	Ala 1205	_	Leu	Asp	Thr	Val 1210		Tyr	Ser	Ala	Met 1215		His	Pro
Gly	Arg 1220		Val	Ala	Pro	His 1225	Glu	Tyr	Gly	Phe	Gly 1230	Ile	Glu	Ala
Asp	Leu 1235		Arg	Glu		Val 1240		Lys	Ala	Ser	Ala 1245		Gly	Val
Asp	Tyr 1250	Tyr	Asp	Asn	Val	Arg 1255	Asn	Val	Glu	Asn	Val 1260	Ile	Gly	Thr
Ser	Met 1265		Asp	Val	Leu	Ile 1270		Asp	Ala	Gln	Ala 1275	Asn	Thr	Leu
Met	Gly 1280		Gly	Gly	Asp	Asp 1285	Thr	Val	Arg	Gly	Gly 1290	Asp	Gly	Asp
Asp	Leu 1295		Phe	Gly	Gly	Asp 1300		Asn	Asp	Met	Leu 1305		Gly	Asp
Ala	Gly 1310		Asp	Thr	Leu	Tyr 1315	Gly	Gly	Leu	Gly	Asp 1320	Asp	Thr	Leu
Glu	Gly 1325	Gly	Ala	Gly	Asn	Asp 1330	Trp	Phe	Gly	Gln	Thr 1335	Gln	Ala	Arg
Glu	His 1340		Val	Leu	Arg	Gly 1345		Asp	Gly	Val	Asp 1350		Val	Asp
Tyr	Ser 1355	Gln	Thr	Gly	Ala	His 1360	Ala	Gly	Ile	Ala	Ala 1365	Gly	Arg	Ile
Gly	Leu 1370		Ile	Leu	Ala	Asp 1375		Gly	Ala	Gly	Arg 1380	Val	Asp	Lys

Gly 1385		Ala	Gly	Ser	Ser 1390		Tyr	Asp	Thr	Val 1395		Gly	Ile
Asn 1400	Val	Val	Gly	Thr	Glu 1405	Leu	Ala	Asp	Arg	Ile 1410	Thr	Gly	Asp
Gln 1415		Asn	Val		Arg 1420		Ala	Gly	Gly	Ala 1425	Asp	Val	Leu
Gly 1430		Glu	Gly		Asp 1435		Leu	Leu	Gly	Gly 1440		Gly	Asp
Gln 1445		Ser	Gly	Asp	Ala 1450		Arg	Asp	Arg	Leu 1455		Gly	Glu
Gly 1460	_	Asp	Trp		Phe 1465		Asp	Ala	Ala	Asn 1470	Ala	Gly	Asn
Leu 1475	Asp	Gly	Gly	Asp	Gly 1480	Arg	Asp	Thr	Val	Asp 1485	Phe	Ser	Gly
Gly 1490		Gly	Leu		Ala 1495		Ala	Lys		Val 1500	Phe	Leu	Ser
Gly 1505		Gly	Phe		Ser 1510		Met	Asp	Glu	Pro 1515	Glu	Thr	Ser
Val 1520		Arg	Asn	Ile	Glu 1525		Ala	Val	Gly	Ser 1530	Ala	Arg	Asp
Val 1535		Ile	Gly		Ala 1540	Gly	Ala	Asn	Val	Leu 1545	Asn	Gly	Leu
Gly 1550	Asn	Asp	Val	Leu	Ser 1555		Gly	Ala	Gly	Asp 1560	Asp	Val	Leu
Gly 1565		Glu	Gly	Ser	Asp 1570	Leu	Leu	Ser	Gly	Asp 1575	Ala	Gly	Asn
 Asp 1580		Phe	Gly	Gly	Gln 1585	Gly	Asp	Asp	Thr	Tyr 1590	Leu	Phe	Gly
Gly 1595		Gly	His	Asp	Thr 1600	Ile	Tyr	Glu	Ser	Gly 1605	Gly	Gly	His
Thr 1610	Ile	Arg	Ile	Asn	Ala 1615		Ala	Asp	Gln	Leu 1620	Trp	Phe	Ala

	Arg	Gln 162		y As	n As	p Le		1u 630	Ile	Arg	Ile	Leu	Gly 1635	Thr	Asp	Asp
	Ala	Leu 164		ır Va	al Hi	s As	-	rp 645	Tyr	Arg	Asp	Ala	Asp 1650	His	Arg	Val
	Glu	Ile 165		e Hi	s Al	a Al		sn 660	Gln	Ala	Val	Asp	Gln 1665	Ala	Gly	Ile
	Glu	Lys 167		u Va	ıl Gl	u Al		et 675	Ala	Gln	Tyr	Pro	Asp 1680	Pro	Gly	Ala
	Ala	Ala 168		a Al	a Pr	o Pr		la 690	Ala	Arg	Val	Pro	Asp 1695		Leu	Met
	Gln	Ser 170		u Al	a Va	ıl As		rp 705	Arg							
<210> 2 <211> 1 <212> P <213> B	740 RT	ella pa	ıraper	tussis	/ Cya	A										
<400> 2		•	•		,											
	Met 1	Leu	Asp	Val	Trp 5	Phe	Leu	Gl:	n Ly	s As		u Va	l Leu	Ser	Ala 15	Thr
	His	Arg	Leu	Arg 20	Arg	Cys	Glu	se:	r Va 25		n Se	r Th	r Thr	Tyr 30	Arg	Gln
	Ile	His	Met 35	Gln	Gln	Ser	His	G1:		a Gl	у Ту	r Al	a Asn 45	Ala	Ala	Asp
	Arg	Glu 50	Ser	Gly	Ile	Pro	Ala 55	Al	a Va	l Le	u As	p G1 60	y Ile	Lys	Ala	Val
	Ala 65	Lys	Glu	Lys	Asn	Ala 70	Thr	Le	u Me	t Ph	e Ar 75		u Val	Asn	Pro	His 80
	Ser	Thr	Ser	Leu	Ile 85	Ala	Glu	Gl:	y Va	1 Al 90		r Ly	s Gly	Leu	Gly 95	Val
	His	Ala	Lys	Ser	Ser	Asp	Trp	Gl:	y Le 10		n Al	a Gl	y Tyr	Ile		Val

Asn Pro Asn Leu Ser Lys Leu Phe Gly Arg Ala Pro Glu Val Ile Ala

Arg	Ala 130	Asp	Asn	Asp	Val	Asn 135	Ser	Ser	Leu	Ala	His 140	Gly	His	Thr	Ala
Val 145	Asp	Leu	Thr	Leu	Ser 150	Lys	Glu	Arg	Leu	Asp 155	Tyr	Leu	Arg	Gln	Ala 160
Gly	Leu	Val	Thr	Gly 165	Met	Ala	Asp	Gly	Val 170	Val	Ala	Ser	Asn	His 175	Ala
Gly	Tyr	Glu	Gln 180	Phe	Glu	Phe	Arg	Val 185	Lys	Glu	Thr	Ser	Asp 190	Gly	Arg
Tyr	Ala	Val 195	Gln	Tyr	Arg	Arg	Lys 200	Gly	Gly	Asp	Asp	Phe 205	Glu	Ala	Val
Lys	Val 210	Ile	Gly	Asn	Ala	Ala 215	Gly	Ile	Pro	Leu	Thr 220	Ala	Asp	Ile	Asp
Met 225	Phe	Ala	Ile	Met	Pro 230	His	Leu	Ser	Asn	Phe 235	Arg	Asp	Ser	Ala	Arg 240
Ser	Ser	Val	Thr	Ser 245	Gly	Asp	Ser	Val	Thr 250	Asp	Tyr	Leu	Ala	Arg 255	Thr
Arg	Arg	Ala	Ala 260	Ser	Glu	Ala	Thr	Gly 265	Gly	Leu	Asp	Arg	Glu 270	Arg	Ile
Asp	Leu	Leu 275	Trp	Lys	Ile	Ala	Arg 280	Ala	Gly	Ala	Arg	Ser 285	Ala	Val	Gly
Thr	Glu 290	Ala	Arg	Arg	Gln	Phe 295	Arg	Tyr	Asp	Gly	Asp 300	Met	Asn	Ile	Gly
Val 305	Ile	Thr	Asp	Phe	Glu 310	Leu	Glu	Val	Arg	Asn 315	Ala	Leu	Asn	Arg	Arg 320
Ala	His	Ala	Val	Gly 325	Ala	Gln	Asp	Val	Val 330	Gln	His	Gly	Thr	Glu 335	Gln
Asn	Asn	Pro	Phe 340	Pro	Glu	Ala	Asp	Glu 345	Lys	Ile	Phe	Val	Val 350	Ser	Ala
Thr	Gly	Glu 355	Ser	Gln	Met	Leu	Thr 360	Arg	Gly	Gln	Leu	Lys 365	Glu	Tyr	Ile
Gly	Gln	Gln	Arg	Gly	Glu	Gly	Tyr	Val	Phe	Tyr	Glu 380	Asn	Arg	Ala	Tyr

385	Val	Ala	Gly	Lys	390	Leu	Phe	Asp	Asp	Gly 395	Leu	Gly	Ala	Ala	400
Gly	Val	Pro	Gly	Gly 405	Arg	Ser	Lys	Ser	Ser 410	Pro	Asp	Val	Leu	Glu 415	Thr
Val	Pro	Ala	Ser 420	Pro	Gly	Leu	Arg	Arg 425	Pro	Ser	Leu	Gly	Ala 430	Val	Glu
Arg	Gln	Asp 435	Ser	Gly	Tyr	Asp	Ser 440	Leu	Asp	Gly	Val	Gly 445	Ser	Arg	Ser
Phe	Ser 450	Leu	Gly	Glu	Val	Ser 455	Asp	Met	Ala	Ala	Val 460	Glu	Ala	Ala	Glu
Leu 465	Glu	Met	Thr	Arg	Gln 470	Val	Leu	His	Ala	Gly 475	Ala	Arg	Gln	Asp	Asp 480
Ala	Glu	Pro	Gly	Val 485	Ser	Gly	Ala	Ser	Ala 490	His	Trp	Gly	Gln	Arg 495	Ala
Leu	Gln	Gly	Ala 500	Gln	Ala	Val	Ala	Ala 505	Ala	Gln	Arg	Leu	Val 510	His	Ala
		515					520					525	Asn		
	530					535					540		Gly		
545					550					555			Gly		560
				565					570				Ala	575	
			580					585					Thr 590		
		595					600					605	Ala		
	610		· · · · · · ·			615					620		Leu		
Ala	Ala	Ala	Arg	Gly	Val	Thr	Ser	Gly	Leu	Gln	Val	Ala	Gly	Ala	Ser

625					630					635					640
Ala	Gly	Ala	Ala	Ala 645	Gly	Ala	Leu	Ala	Ala 650	Ala	Leu	Ser	Pro	Met 655	Glu
Ile	Tyr	Gly	Leu 660	Val	Gln	Gln	Ser	His 665	Tyr	Ala	Asp	Gln	Leu 670	Asp	Lys
Leu	Ala	Gln 675	Glu	Ser	Ser	Ala	Tyr 680	Gly	Tyr	Glu	Gly	Asp 685	Ala	Leu	Leu
Ala	Gln 690	Leu	Tyr	Arg	Asp	Lys 695	Thr	Ala	Ala	Glu	Gly 700	Ala	Val	Ala	Gly
Val 705	Ser	Ala	Val	Leu	Ser 710	Thr	Val	Gly	Ala	Ala 715	Val	Ser	Ile	Ala	Ala 720
Ala	Ala	Ser	Val	Val 725	Gly	Ala	Pro	Val	Ala 730	Val	Val	Thr	Ser	Leu 735	Leu
Thr	Gly	Ala	Leu 740	Asn	Gly	Ile	Leu	Arg 745	Gly	Val	Gln	Gln	Pro 750	Ile	Ile
Glu	Lys	Leu 755	Ala	Asn	Asp	Tyr	Ala 760	Arg	Lys	Ile	Asp	Glu 765	Leu	Gly	Gly
Pro	Gln 770	Ala	Tyr	Phe	Glu	Lys 775	Asn	Leu	Gln	Ala	Arg 780	His	Glu	Gln	Leu
Ala 785	Asn	Ser	Asp	Gly	Leu 790	Arg	Lys	Met	Leu	Ala 795	Asp	Leu	Gln	Ala	Gly 800
Trp	Asn	Ala	Ser	Ser 805	Val	Ile	Gly	Val	Gln 810	Thr	Thr	Glu	Ile	Ser 815	Lys
Ser	Ala	Leu	Glu 820	Leu	Ala	Ala	Ile	Thr 825	Gly	Asn	Ala	Asp	Asn 830	Leu	Lys
Ser	Ala	Asp 835	Val	Phe	Val	Asp	Arg 840	Phe	Ile	Gln	Gly	Glu 845	Arg	Val	Ala
Gly	Gln 850	Pro	Val	Val	Leu	Asp 855	Val	Ala	Ala	Gly	Gly 860	Ile	Asp	Ile	Ala
Ser 865	Arg	Lys	Gly	Glu	Arg 870	Pro	Ala	Leu	Thr	Phe 875	Ile	Thr	Pro	Leu	Ala 880

- Ala Pro Gly Glu Glu Gln Arg Arg Thr Lys Thr Gly Lys Ser Glu 885 890 895
- Phe Thr Thr Phe Val Glu Ile Val Gly Lys Gln Asp Arg Trp Arg Ile 900 905 910
- Arg Asp Gly Ala Ala Asp Thr Thr Ile Asp Leu Ala Lys Val Val Ser 915 920 925
- Gln Leu Val Asp Ala Asn Gly Val Leu Lys His Ser Ile Lys Leu Glu 930 935 940
- Val Ile Gly Gly Asp Gly Asp Asp Val Val Leu Ala Asn Ala Ser Arg 945 950 955 960
- Ile His Tyr Asp Gly Gly Ala Gly Thr Asn Thr Val Ser Tyr Ala Ala 965 970 975
- Leu Gly Arg Gln Asp Ser Ile Thr Val Ser Ala Asp Gly Glu Arg Phe 980 985 990
- Asn Val Arg Lys Gln Leu Asn Asn Ala Asn Val Tyr Arg Glu Gly Val 995 1000 1005
- Ala Thr Gln Lys Thr Ala Tyr Gly Lys Arg Thr Glu Asn Val Gln 1010 1015 1020
- Tyr Arg His Val Glu Leu Ala Arg Val Gly Gln Leu Val Glu Val 1025 1030 1035
- Asp Thr Leu Glu His Val Gln His Ile Ile Gly Gly Ala Gly Asn 1040 1045 1050
- Asp Ser Ile Thr Gly Asn Ala His Asp Asn Phe Leu Ala Gly Gly 1055 1060 1065
- Ala Gly Asp Asp Arg Leu Asp Gly Gly Ala Gly Asn Asp Thr Leu 1070 1080
- Val Gly Gly Glu Gly His Asn Thr Val Val Gly Gly Ala Gly Asp 1085 1090 1095
- Asp Val Phe Leu Gln Asp Leu Gly Val Trp Ser Asn Gln Leu Asp 1100 1105 1110
- Gly Gly Ala Gly Val Asp Thr Val Lys Tyr Asn Val His Gln Pro 1115 1120 1125

Ser Glu		Arg	Leu	Glu	Arg 1135		Gly	Asp	Thr	Gly 1140	Ile	His	Ala
Asp Let		Lys	Gly	Thr	Val 1150		Lys	Trp	Pro	Ala 1155		Asn	Leu
Phe Ser		Asp	His	Val	Lys 1165		Ile	Glu	Asn	Leu 1170	His	Gly	Ser
Ser Leu 117		Asp	Ser	Ile	Ala 1180		Asp	Asp	Arg	Asp 1185	Asn	Glu	Leu
Trp Gly		Asp	Gly	Asn	Asp 1195		Ile	His	Gly	Arg 1200	Gly	Gly	Asp
Asp Ile		Arg	Gly	Gly	Leu 1210		Leu	Asp	Thr	Leu 1215	Tyr	Gly	Glu
Asp Gly		Asp	Ile	Phe	Leu 1225		Asp	Asp		Thr 1230	Val	Ser	Asp
Asp Ile		Gly	Gly	Ala	Gly 1240		Asp	Thr	Val	Asp 1245	Tyr	Ser	Ala
Met Ile 125		Ala	Gly	Lys	Ile 1255		Ala	Pro	His	Glu 1260	Tyr	Gly	Phe
Gly Ile		Ala	Asp		Ser 1270		Gly	Trp		Arg 1275	Lys	Ala	Ala
Arg Arg		Met	Gly	Tyr	туг 1285		Ser	Val	Arg	Ser 1290	Val	Glu	Asn
Val Ile		Thr	Ser	Met	Lys 1300	Asp	Val	Leu	Ile	Gly 1305	Asp	Ala	Gln
Ala Asr 131		Leu	Met	Gly	Gln 1315	Gly	Gly	Asp	Asp	Thr 1320	Val	Arg	Gly
Gly Asp 132	_	Asp	Asp	Leu	Leu 1330	Phe	Gly	Gly	Asp	Gly 1335	Asn	Asp	Met
Leu Tyr	_	Asp	Ala	Gly	Asn 1345	Asp	Thr	Leu	Tyr	Gly 1350	Gly	Leu	Gly
Asp Asp		Leu	Glu	Gly	Gly 1360	Ala	Gly	Asn	Asp	Trp 1365	Phe	Gly	Gln

Thr Pro Ala Arg Glu His Asp Val Leu Arg Gly Gly Ala Gly Val 1370 1375 Asp Thr Val Asp Tyr Ser Gln Ala Gly Ala His Ala Gly Val Ala 1390 Thr Gly Arg Ile Gly Leu Gly Ile Leu Ala Asp Leu Gly Ala Gly 1405 1400 Arg Val Asp Lys Leu Gly Glu Ala Gly Ser Ser Ala Tyr Asp Thr 1420 Val Ser Gly Ile Glu Asn Val Val Gly Thr Glu Leu Ala Asp Arg 1430 1435 Ile Thr Gly Asp Ala Gln Ala Asn Val Leu Arg Gly Ala Gly Gly 1445 1450 Ala Asp Val Leu Ala Gly Gly Glu Gly Asp Asp Val Leu Leu Gly 1460 1465 1470 Gly Glu Gly Asp Asp Gln Leu Ser Gly Asp Ala Gly Arg Asp Arg 1475 1480 1485 Leu Tyr Gly Glu Ala Gly Asp Asp Trp Phe Phe Gln Asp Ala Ala Asn Ala Gly Asn Leu Leu Asp Gly Gly Asp Gly Asn Asp Thr Val Asp Phe Ser Gly Pro Gly Arg Gly Leu Asp Ala Gly Ala Lys Gly 1525 Val Phe Leu Ser Leu Gly Lys Gly Phe Ala Ser Leu Met Asp Glu 1540 1535 1545 Pro Glu Thr Ser Asn Val Leu Arg His Ile Glu Asn Ala Val Gly 1550 1555 Ser Val Arg Asp Asp Val Leu Ile Gly Asp Ala Gly Ala Asn Val 1570 Leu Asn Gly Leu Ala Gly Asn Asp Val Leu Ser Gly Gly Ala Gly 1585 Asp Asp Val Leu Leu Gly Asp Glu Gly Ser Asp Leu Leu Ser Gly

		159	5					1600					160	5			
	Asp	Ala 161		y As	sn A	sp	Asp	Leu 1615		Gly	Gly	Gln	Gly 162		p As	p '	Thr
	Tyr	Leu 162		e G	Ly A	la	Gly	Tyr 1630		His	Asp	Thr	Ile 163		r Gl	u i	Ser
	Gly	Gly 164		у Н	is A	sp	Thr	Ile 1645		Ile	Asn	Ala	Gly 165		a As	p (Gln
	Leu	Trp		e Al	La A	rg	Gln	Gly 1660		Asp	Leu	Glu	Ile 166		g Il	.e :	Leu
	Gly	Thr 167		p As	sp A	la	Leu	Thr 1675		His	Asp	Trp	Tyr 168		g As	p i	Ala
	Asp	His 168		g Va	al G	lu	Ala	Ile 1690		Ala	Ala	Asn	Gln 169		a Il	.e i	Asp
	Pro	Ala 170		у I	Le G	lu	Lys	Leu 1705		Glu	Ala	Met	Ala 171		n Ty	r l	Pro
	Asp	Pro 171		y A	La A	la	Ala	Ala 1720		Pro	Pro	Ala	Ala 172		g Va	il 1	Pro
	Asp	Thr 173		eu Me	et G	ln	Ser	Leu 1735		Val	Asn	Trp	Arg 174				
<210> 3 <211> 1740 <212> PRT <213> Bord		brone	chise	ptica	/ Cya	Α											
<400> 3																	
	Met 1	Leu	Asp	Val	Trp 5	Ph	e Le	u Glr	Lys	Asp 10	Glu	Val	Leu	Ser	Ala 15	Th	r
	His	Arg	Leu	Arg 20	Arg	Су	s Gl	u Ser	Val 25	Gln	Ser	Thr	Thr	Tyr 30	Arg	G1	n
	Ile	His	Met 35	Gln	Gln	Se	r Hi	s Glr 40	Ala	Gly	Tyr	Ala	Asn 45	Ala	Ala	As	р
	Arg	Glu 50	Ser	Gly	Ile	Pr	o Al 55	a Ala	Val	Leu	Asp	Gly 60	Ile	Lys	Ala	Va	1
	Ala	Lys	Glu	Lys	Asn	Al	a Th	r Leu	Met	Phe	Arg	Leu	Val	Asn	Pro	Hi	s

5

65					70					75					80
Ser	Thr	Ser	Leu	Ile 85	Ala	Glu	Gly	Val	Ala 90	Thr	Lys	Gly	Leu	Gly 95	Val
His	Ala	Lys	Ser 100	Ser	Asp	Trp	Gly	Leu 105	Gln	Ala	Gly	Tyr	Ile 110	Pro	Val
Asn	Pro	Asn 115	Leu	Ser	Lys	Leu	Phe 120	Gly	Arg	Ala	Pro	Glu 125	Val	Ile	Ala
Arg	Ala 130	Asp	Asn	Asp	Val	Asn 135	Ser	Ser	Leu	Ala	His 140	Gly	His	Thr	Ala
Val 145	Asp	Leu	Thr	Leu	Ser 150	Lys	Glu	Arg	Leu	Asp 155	Tyr	Leu	Arg	Gln	Ala 160
Gly	Leu	Val	Thr	Gly 165	Met	Ala	Asp	Gly	Val 170	Val	Ala	Ser	Asn	His 175	Ala
Gly	Tyr	Glu	Gln 180	Phe	Glu	Phe	Arg	Val 185	Lys	Glu	Thr	Ser	Asp 190	Gly	Arg
Tyr	Ala	Val 195	Gln	Tyr	Arg	Arg	Lys 200	Gly	Gly	Asp	Asp	Phe 205	Glu	Ala	Val
Lys	Val 210	Ile	Gly	Asn	Ala	Ala 215	Gly	Ile	Pro	Leu	Thr 220	Ala	Asp	Ile	Asp
Met 225	Phe	Ala	Ile	Met	Pro 230	His	Leu	Ser	Asn	Phe 235	Arg	Asp	Ser	Ala	Arg 240
Ser	Ser	Val	Thr	Ser 245	Gly	Asp	Ser	Val	Thr 250	Asp	Tyr	Leu	Ala	Arg 255	Thr
Arg	Arg	Ala	Ala 260	Ser	Glu	Ala	Thr	Gly 265	Gly	Leu	Asp	Arg	Glu 270	Arg	Ile
		275	Trp				280					285			
	290		Arg			295					300				
Val 305	Ile	Thr	Asp	Phe	Glu 310	Leu	Glu	Val	Arg	Asn 315	Ala	Leu	Asn	Arg	Arg 320

Ala His Ala Val Gly Ala Gln Asp Val Val Gln His Gly Thr Glu Gln 325 330 Asn Asn Pro Phe Pro Glu Ala Asp Glu Lys Ile Phe Val Val Ser Ala Thr Gly Glu Ser Gln Met Leu Thr Arg Gly Gln Leu Lys Glu Tyr Ile Gly Gln Gln Arg Gly Glu Gly Tyr Val Phe Tyr Glu Asn Arg Ala Tyr 375 Gly Val Ala Gly Lys Ser Leu Phe Asp Asp Gly Leu Gly Ala Ala Pro Gly Val Pro Gly Gly Arg Ser Lys Ser Pro Asp Val Leu Glu Thr 405 410 Val Pro Ala Ser Pro Gly Leu Arg Arg Pro Ser Leu Gly Ala Val Glu 420 425 Arg Gln Asp Ser Gly Tyr Asp Ser Leu Asp Gly Val Gly Ser Arg Ser 435 440 Phe Ser Leu Gly Glu Val Ser Asp Met Ala Ala Val Glu Ala Ala Glu Leu Glu Met Thr Arg Gln Val Leu His Ala Gly Ala Arg Gln Asp Asp 470 Ala Glu Pro Gly Val Ser Gly Ala Ser Ala His Trp Gly Gln Arg Ala 485 490 Leu Gln Gly Ala Gln Ala Val Ala Ala Ala Gln Arg Leu Val His Ala Ile Ala Leu Met Thr Gln Phe Gly Arg Ala Gly Ser Thr Asn Thr Pro 515 520 Gln Glu Ala Ala Ser Leu Ser Ala Ala Val Phe Gly Leu Gly Glu Ala 535 Ser Ser Ala Val Ala Glu Thr Val Ser Gly Phe Phe Arg Gly Ser Ser Arg Trp Ala Gly Gly Phe Gly Val Ala Gly Gly Ala Met Ala Leu Gly 565 570

Gly	Gly	Ile	Ala 580	Ala	Ala	Val	Gly	Ala 585	Gly	Met	Ser	Leu	Thr 590	Asp	Asp
Ala	Pro	Ala 595	Gly	Gln	Lys	Ala	Ala 600	Ala	Gly	Ala	Glu	Ile 605	Ala	Leu	Gln
Leu	Thr 610	Gly	Gly	Thr	Val	Glu 615	Leu	Ala	Ser	Ser	Ile 620	Ala	Leu	Ala	Leu
Ala 625	Ala	Ala	Arg	Gly	Val 630	Thr	Ser	Gly	Leu	Gln 635	Val	Ala	Gly	Ala	Ser 640
Ala	Gly	Ala	Ala	Ala 645	Gly	Ala	Leu	Ala	Ala 650	Ala	Leu	Ser	Pro	Met 655	Glu
Ile	Tyr	Gly	Leu 660	Val	Gln	Gln	Ser	His 665	Tyr	Ala	Asp	Gln	Leu 670	Asp	Lys
Leu	Ala	Gln 675	Glu	Ser	Ser	Ala	Tyr 680	Gly	Tyr	Glu	Gly	Asp 685	Ala	Leu	Leu
Ala	Gln 690	Leu	Tyr	Arg	Asp	Lys 695	Thr	Ala	Ala	Glu	Gly 700	Ala	Val	Ala	Gly
Val 705	Ser	Ala	Val	Leu	Ser 710	Thr	Val	Gly	Ala	Ala 715	Val	Ser	Ile	Ala	Ala 720
Ala	Ala	Ser	Val	Val 725	Gly	Ala	Pro	Val	Ala 730	Val	Val	Thr	Ser	Leu 735	Leu
Thr	Gly	Ala	Leu 740	Asn	Gly	Ile	Leu	Arg 745	Gly	Val	Gln	Gln	Pro 750	Ile	Ile
Glu	Lys	Leu 755	Ala	Asn	Asp	Tyr	Ala 760	Arg	Lys	Ile	Asp	Glu 765	Leu	Gly	Gly
Pro	Gln 770	Ala	Tyr	Phe	Glu	Lys 775	Asn	Leu	Gln	Ala	Arg 780	His	Glu	Gln	Leu
Ala 785	Asn	Ser	Asp	Gly	Leu 790	Arg	Lys	Met	Leu	Ala 795	Asp	Leu	Gln	Ala	Gly 800
Trp	Asn	Ala	Ser	Ser 805	Val	Ile	Gly	Val	Gln 810	Thr	Thr	Glu	Ile	Ser 815	Lys
Ser	Ala	Leu	Glu 820		Ala	Ala	Ile	Thr 825	_	Asn	Ala	Asp	Asn 830		Lys

- Ser Ala Asp Val Phe Val Asp Arg Phe Ile Gln Gly Glu Arg Val Ala 835 840 845
- Gly Gln Pro Val Val Leu Asp Val Ala Ala Gly Gly Ile Asp Ile Ala 850 855 860
- Ser Arg Lys Gly Glu Arg Pro Ala Leu Thr Phe Ile Thr Pro Leu Ala 865 870 875 880
- Ala Pro Gly Glu Glu Gln Arg Arg Thr Lys Thr Gly Lys Ser Glu 885 890 895
- Phe Thr Thr Phe Val Glu Ile Val Gly Lys Gln Asp Arg Trp Arg Ile 900 905 910
- Arg Asp Gly Ala Ala Asp Thr Thr Ile Asp Leu Ala Lys Val Val Ser 915 920 925
- Gln Leu Val Asp Ala Asn Gly Val Leu Lys His Ser Ile Lys Leu Glu 930 935 940
- Val Ile Gly Gly Asp Gly Asp Asp Val Val Leu Ala Asn Ala Ser Arg 945 950 955 960
- Ile His Tyr Asp Gly Gly Ala Gly Thr Asn Thr Val Ser Tyr Ala Ala 965 970 975
- Leu Gly Arg Gln Asp Ser Ile Thr Val Ser Ala Asp Gly Glu Arg Phe $980 \hspace{1.5cm} 985 \hspace{1.5cm} 990$
- Asn Val Arg Lys Gln Leu Asn Asn Ala Asn Val Tyr Arg Glu Gly Val 995 1000 1005
- Ala Thr Gln Lys Thr Ala Tyr Gly Lys Arg Thr Glu Asn Val Gln 1010 1015 1020
- Tyr Arg His Val Glu Leu Ala Arg Val Gly Gln Leu Val Glu Val 1025 1030 1035
- Asp Thr Leu Glu His Val Gln His Ile Ile Gly Gly Ala Gly Asn 1040 1045 1050
- Asp Ser Ile Thr Gly Asn Ala His Asp Asn Phe Leu Ala Gly Gly 1055 1060 1065
- Ala Gly Asp Asp Arg Leu Asp Gly Gly Ala Gly Asn Asp Thr Leu

	1070					1075					1080			
Val	Gly 1085		Glu	Gly		Asn 1090		Val	Val	Gly	Gly 1095		Gly	Asp
Asp	Val 1100	Phe	Leu	Gln	Asp	Leu 1105		Val	Trp	Ser	Asn 1110	Gln	Leu	Asp
Gly	Gly 1115		Gly	Val		Thr 1120		Lys	Tyr	Asn	Val 1125	His	Gln	Pro
Ser	Glu 1130		Arg	Leu		Arg 1135		Gly	Asp	Thr	Gly 1140		His	Ala
Asp	Leu 1145		Lys	Gly	Thr	Val 1150		Lys	Trp	Pro	Ala 1155	Leu	Asn	Leu
Phe	Ser 1160		Asp	His		Lys 1165		Ile	Glu	Asn	Leu 1170	His	Gly	Ser
Ser	Leu 1175	Asn	Asp	Ser		Ala 1180	Gly	Asp	Asp	Arg	Asp 1185	Asn	Glu	Leu
Trp	Gly 1190		Asp	Gly		Asp 1195		Ile	His	Gly	Arg 1200	Gly	Gly	Asp
Asp	Ile 1205		Arg	Gly		Leu 1210		Leu	Asp	Thr	Leu 1215	Tyr	Gly	Glu
Asp	Gly 1220		Asp	Ile	Phe	Leu 1225		Asp	Asp	Glu	Thr 1230	Val	Ser	Asp
Asp	Ile 1235	Asp	Gly	Gly	Ala	Gly 1240		Asp	Thr	Val	Asp 1245	Tyr	Ser	Ala
Met	Ile 1250	His	Ala	Gly	Lys	Ile 1255		Ala	Pro	His	Glu 1260	Tyr	Gly	Phe
Gly	Ile 1265	Glu	Ala	Asp	Leu	Ser 1270	Glu	Gly	Trp	Val	Arg 1275	Lys	Ala	Ala
Arg	Arg 1280		Met	Asp	Tyr	Tyr 1285		Ser	Val	Arg	Ser 1290	Val	Glu	Asn
Val	Ile 1295		Thr	Ser	Met	Lys 1300		Val	Leu	Ile	Gly 1305	Asp	Ala	Gln

Ala	Asn 1310		Leu	Met	Gly	Gln 1315		Gly	Asp	Asp	Thr 1320		Arg	Gly
Gly	Asp 1325		Asp	Asp		Leu 1330		Gly	Gly	Asp	Gly 1335		Asp	Met
Leu	Tyr 1340		Asp	Ala	Gly	Asn 1345		Thr	Leu	Tyr	Gly 1350		Leu	Gly
Asp	Asp 1355		Leu	Glu	Gly	Gly 1360	Ala	Gly	Asn	Asp	Trp 1365	Phe	Gly	Gln
Thr	Pro 1370		Arg	Glu		Asp 1375		Leu	Arg	Gly	Gly 1380	Ala	Gly	Val
Asp	Thr 1385	Val	Asp	Tyr	Ser	Gln 1390		Gly	Ala	His	Ala 1395	Gly	Val	Ala
Thr	Gly 1400		Ile	Gly	Leu	Gly 1405		Leu	Ala	Asp	Leu 1410		Ala	Gly
Arg	Val 1415		Lys	Leu		Glu 1420		Gly	Ser	Ser	Ala 1425	Tyr	Asp	Thr
Val	Ser 1430		Ile	Glu	Asn	Val 1435		Gly	Thr	Glu	Leu 1440	Ala	Asp	Arg
Ile	Thr 1445		Asp	Ala	Gln	Ala 1450		Val	Leu	Arg	Gly 1455		Gly	Gly
Ala	Asp 1460	Val	Leu	Ala	Gly	Gly 1465	Glu	Gly	Asp	Asp	Val 1470	Leu	Leu	Gly
Gly	Asp 1475	Gly	Asp	Asp	Gln	Leu 1480	Ser	Gly	Asp	Ala	Gly 1485	Arg	Asp	Arg
Leu	Tyr 1490	_	Glu	Ala	Gly	Asp 1495		Trp	Phe	Phe	Gln 1500	Asp	Ala	Ala
Asn	Ala 1505	77344	Asn	Leu	Leu	Asp 1510	Gly	Gly	Asp	Gly	Asn 1515	Asp	Thr	Val
Asp	Phe 1520	Ser	Gly	Pro	Gly	Arg 1525	Gly	Leu	Asp	Ala	Gly 1530	Ala	Lys	Gly
Val	Phe 1535	Leu	Ser	Leu	Gly	Lys 1540	Gly	Phe	Ala	Ser	Leu 1545	Met	Asp	Glu

P	ro	Glu 1550		Ser	Asn	Val	Leu 1555		His	Ile	Glu	Asn 1560	Ala	Val	Gly
Se	er	Val 1565	Arg	Asp	Asp	Val	Leu 1570		Gly	Asp	Ala	Gly 1575	Ala	Asn	Val
Le	eu	Asn 1580		Leu	Ala	Gly	Asn 1585		Val	Leu	Ser	Gly 1590	Gly	Ala	Gly
As	sp	Asp 1595	Val	Leu	Leu	Gly	Asp 1600	Glu	Gly	Ser	Asp	Leu 1605	Leu	Ser	Gly
As	sp	Ala 1610	Gly	Asn	Asp	Asp	Leu 1615		Gly	Gly	Gln	Gly 1620	Asp	Asp	Thr
т	yr	Leu 1625	Phe	Gly	Ala	Gly	Tyr 1630	Gly	His	Asp	Thr	Ile 1635	Tyr	Glu	Ser
G:	ly	Gly 1640	Gly	His	Asp	Thr	Ile 1645	_	Ile	Asn	Ala	Gly 1650	Ala	Asp	Gln
Le	eu	Trp 1655	Phe	Ala	Arg	Gln	Gly 1660	Asn	Asp	Leu	Glu	Ile 1665	Arg	Ile	Leu
G	ly	Thr 1670		Asp	Ala	Leu	Thr 1675	Val	His	Asp	Trp	Tyr 1680	Arg	Asp	Ala
As	sp	His 1685	Arg	Val	Glu	Ala	Ile 1690		Ala	Ala	Asn	Gln 1695	Ala	Ile	Asp
Pi	ro	Ala 1700	Gly	Ile	Glu	Lys	Leu 1705	Val	Glu	Ala	Met	Ala 1710	Gln	Tyr	Pro
As	sp	Pro 1715	Gly	Ala	Ala	Ala	Ala 1720	Ala	Pro	Pro	Ala	Ala 1725	Arg	Val	Pro
As	sp	Thr 1730	Leu	Met	Gln	Ser	Leu 1735	Ala	Val	Asn	Trp	Arg 1740			
<210> 4 <211> 5121 <212> ADN <213> Bord	I	lla pertu	ussis /	gen c	le Cya	aА									
<400> 4															
atgcagca	at	cgcat	tcag	gc t	ggtt	acgo	a aac	gaag	gccg	acc	ggga	gtc t	ggca	tccc	c

gcagccgtac tcgatggcat caaggccgtg gcgaaggaaa aaaacgccac attgatgttc

cgcctggtca	acccccattc	caccagcctg	attgccgaag	gggtggccac	caaaggattg	180
ggcgtgcacg	ccaagtcgtc	cgattggggg	ttgcaggcgg	gctacattcc	cgtcaacccg	240
aatctttcca	aactgttcgg	ccgtgcgccc	gaggtgatcg	cgcgggccga	caacgacgtc	300
aacagcagcc	tggcgcatgg	ccataccgcg	gtcgacctga	cgctgtcgaa	agagcggctt	360
gactatctgc	ggcaagcggg	cctggtcacc	ggcatggccg	atggcgtggt	cgcgagcaac	420
cacgcaggct	acgagcagtt	cgagtttcgc	gtgaaggaaa	cctcggacgg	gcgctatgcc	480
gtgcagtatc	gccgcaaggg	cggcgacgat	ttcgaggcgg	tcaaggtgat	cggcaatgcc	540
gccggtattc	cactgacggc	ggatatcgac	atgttcgcca	ttatgccgca	tctgtccaac	600
ttccgcgact	cggcgcgcag	ttcggtgacc	agcggcgatt	cggtgaccga	ttacctggcg	660
cgcacgcggc	gggccgccag	cgaggccacg	ggcggcctgg	atcgcgaacg	catcgacttg	720
ttgtggaaaa	tcgctcgcgc	cggcgcccgt	tccgcagtgg	gcaccgaggc	gcgtcgccag	780
ttccgctacg	acggcgacat	gaatatcggc	gtgatcaccg	atttcgagct	ggaagtgcgc	840
aatgcgctga	acaggcgggc	gcacgccgtc	ggcgcgcagg	acgtggtcca	gcatggcact	900
gagcagaaca	atcctttccc	ggaggcagat	gagaagattt	tcgtcgtatc	ggccaccggt	960
gaaagccaga	tgctcacgcg	cgggcaactg	aaggaataca	ttggccagca	gcgcggcgag	1020
ggctatgtct	tctacgagaa	ccgtgcatac	ggcgtggcgg	ggaaaagcct	gttcgacgat	1080
gggctgggag	ccgcgcccgg	cgtgccgagc	ggacgttcga	agttctcgcc	ggatgtactg	1140
gaaacggtgc	cggcgtcacc	cggattgcgg	cggccgtcgc	tgggcgcagt	ggaacgccag	1200
gattccggct	atgacagcct	tgatggggtg	ggatcgcgat	cgttctcgtt	gggcgaggtg	1260
tccgacatgg	ccgccgtgga	agcggcggaa	ctggaaatga	cccggcaagt	cttgcacgcc	1320
ggggcgcggc	aggacgatgc	cgagccgggc	gtgagcggtg	cgtcggcgca	ctgggggcag	1380
cgggcgctgc	agggcgccca	ggcggtggcg	gcggcgcagc	ggctggttca	tgccattgcc	1440
ctgatgacgc	aattcggccg	ggccggttcc	accaacacgc	cgcaggaagc	ggcctcgttg	1500
tcggcggccg	tgttcggctt	gggcgaggcc	agcagcgccg	tggccgaaac	cgtgagcggt	1560
ttttccgcg	ggtcttcgcg	ctgggccggc	ggtttcggcg	tggctggcgg	cgcgatggcg	1620
ctgggaggcg	gcatcgccgc	ggccgttggc	gccgggatgt	cgttgaccga	tgacgcgccg	1680
gccggacaga	aggccgccgc	cggcgccgag	atcgcgctgc	agttgacagg	tggaacggtc	1740
gagctggctt	cttccatcgc	gttggcgctg	gccgcggcgc	gcggcgtgac	cagcggcttg	1800
caggtggccg	gggcgtcggc	cggggcggct	gccggcgcat	tggccgcggc	gctcagtccc	1860
atggagatct	acggcctggt	gcagcaatcg	cactatgcgg	atcagctgga	caagctggcg	1920
caggaatcga	gcgcatacgg	ttacgagggc	gacgccttgc	tggcccagct	gtatcgcgac	1980
aagacggccg	ccgagggcgc	cgtcgccggc	gtctccgccg	tcctgagcac	ggtgggggg	2040

gcggtgtcga	tcgccgcggc	ggccagcgtg	gtaggggccc	cggtggcggt	ggtcacttcc	2100
ttgctgaccg	gggctctcaa	cggcatcctg	cgcggcgtgc	agcagcccat	catcgaaaag	2160
ctggccaacg	attacgctcg	caagatcgac	gagctgggcg	ggccgcaagc	gtacttcgag	2220
aaaaacctgc	aggcgcgtca	cgaacaactg	gccaattcgg	acggcctacg	gaaaatgctg	2280
gccgacctgc	aggccggttg	gaacgccagc	agcgtgatcg	gggtgcagac	gacagagatc	2340
tccaagtcgg	cgctcgaact	ggccgccatt	accggcaacg	cggacaacct	gaaatccgtc	2400
gacgtgttcg	tggaccgctt	cgtccagggc	gagcgggtgg	ccggccagcc	ggtggtcctc	2460
gacgtcgccg	ccggcggcat	cgatatcgcc	agccgcaagg	gcgagcggcc	ggcgctgacg	2520
ttcatcacgc	cgctggccgc	gccaggagaa	gagcagcgcc	ggcgcacgaa	aacgggcaag	2580
agcgaattca	ccacattcgt	cgagatcgtg	ggcaagcagg	accgctggcg	catccgggac	2640
ggcgcggccg	acaccaccat	cgatctggcc	aaggtggtgt	cgcaactggt	cgacgccaat	2700
ggcgtgctca	agcacagcat	caaactggat	gtgatcggcg	gagatggcga	tgacgtcgtg	2760
cttgccaatg	cttcgcgcat	ccattatgac	ggcggcgcgg	gcaccaacac	ggtcagctat	2820
gccgccctgg	gtcgacagga	ttccattacc	gtgtccgccg	acggggaacg	tttcaacgtg	2880
cgcaagcagt	tgaacaacgc	caacgtgtat	cgcgaaggcg	tggctaccca	gacaaccgcc	2940
tacggcaagc	gcacggagaa	tgtccaatac	cgccatgtcg	agctggcccg	tgtcgggcaa	3000
ctggtggagg	tcgacacgct	cgagcatgtg	cagcacatca	tcggcggggc	cggcaacgat	3060
tcgatcaccg	gcaatgcgca	cgacaacttc	ctagccggcg	ggtcgggcga	cgacaggctg	3120
gatggcggcg	ccggcaacga	caccctggtt	ggcggcgagg	gccaaaacac	ggtcatcggc	3180
ggcgccggcg	acgacgtatt	cctgcaggac	ctgggggtat	ggagcaacca	gctcgatggc	3240
ggcgcgggcg	tcgataccgt	gaagtacaac	gtgcaccagc	cttccgagga	gcgcctcgaa	3300
cgcatgggcg	acacgggcat	ccatgccgat	cttcaaaagg	gcacggtcga	gaagtggccg	3360
gccctgaacc	tgttcagcgt	cgaccatgtc	aagaatatcg	agaatctgca	cggctcccgc	3420
ctgaacgacc	gcatcgccgg	cgacgaccag	gacaacgagc	tctggggcca	cgatggcaac	3480
gacacgatac	gcggccgggg	cggcgacgac	atcctgcgcg	gcggcctggg	cctggacacg	3540
ctgtatggcg	aggacggcaa	cgacatcttc	ctgcaggacg	acgagaccgt	cagcgatgac	3600
atcgacggcg	gcgcggggct	ggacaccgtc	gactactccg	ccatgatcca	tccaggcagg	3660
atcgttgcgc	cgcatgaata	cggcttcggg	atcgaggcgg	acctgtccag	ggaatgggtg	3720
cgcaaggcgt	ccgcgctggg	cgtggactat	tacgataatg	tccgcaatgt	cgaaaacgtc	3780
atcggtacga	gcatgaagga	tgtgctcatc	ggcgacgcgc	aagccaatac	cctgatgggc	3840
cagggcggcg	acgataccgt	gcgcggcggc	gacggcgatg	atctgctgtt	cggcggcgac	3900

ggcaacgaca	tgctgtatgg	cgacgccggc	aacgacaccc	tctacggggg	gctgggcgac	3960
gatacccttg	aaggcggcgc	gggcaacgat	tggttcggcc	agacgcaggc	gcgcgagcat	4020
gacgtgctgc	gcggcggaga	tggggtggat	accgtcgatt	acagccagac	cggcgcgcat	4080
gccggcattg	ccgcgggtcg	catcgggctg	ggcatcctgg	ctgacctggg	cgccggccgc	4140
gtcgacaagc	tgggcgaggc	cggcagcagc	gcctacgata	cggtttccgg	tatcgagaac	4200
gtggtgggca	cggaactggc	cgaccgcatc	acgggcgatg	cgcaggccaa	cgtgctgcgc	4260
ggcgcgggtg	gcgccgacgt	gcttgcgggc	ggcgagggcg	acgatgtgct	gctgggcggc	4320
gacggcgacg	accagctgtc	gggcgacgcc	ggacgcgatc	gcttgtacgg	cgaagccggt	4380
gacgactggt	tcttccagga	tgccgccaat	gccggcaatc	tgctcgacgg	cggcgacggc	4440
cgcgataccg	tggatttcag	cggcccgggc	cggggcctcg	acgccggcgc	aaagggcgta	4500
ttcctgagct	tgggcaaggg	gttcgccagc	ctgatggacg	aacccgaaac	cagcaacgtg	4560
ttgcgcaata	tcgagaacgc	cgtgggcagc	gcgcgtgatg	acgtgctgat	cggcgacgca	4620
ggcgccaacg	tcctcaatgg	cctggcgggc	aacgacgtgc	tgtccggcgg	cgctggcgac	4680
gatgtgctgc	tgggcgacga	gggctcggac	ctgctcagcg	gcgatgcggg	caacgacgat	4740
ctgttcggcg	ggcagggcga	tgatacttat	ctgttcgggg	tcgggtacgg	gcacgacacg	4800
atctacgaat	cgggcggcgg	ccatgacacc	atccgcatca	acgcgggggc	ggaccagctg	4860
tggttcgcgc	gccagggcaa	cgacctggag	atccgcattc	tcggcaccga	cgatgcactt	4920
accgtgcacg	actggtatcg	cgacgccgat	caccgggtgg	aaatcatcca	tgccgccaac	4980
caggcggtag	accaggcagg	catcgaaaag	ctggtcgagg	caatggcgca	gtatccggac	5040
cccggcgcgg	cggcggctgc	cccgccggcg	gcgcgcgtgc	cggacacgct	gatgcagtcc	5100
ctggctgtca	actggcgctg	a				5121

<210> 5

5

<211> 5223

<212> ADN

<213> Bordetella parapertussis / gen de CyaA

<400> 5

gtgctggatg tttggttctt gcagaaggat gaggttctga gcgctacaca ccggttgcgt 60
cggtgcgaat ccgttcaatc gactacttat cgacagatcc acatgcagca atcgcatcag 120
gctggttacg caaacgccgc cgaccgggag tctggcatcc ccgcagccgt actcgatggc 180
atcaaggccg tggcgaagga aaaaaacgcc acattgatgt tccgcctggt caacccccat 240
tccaccagcc tgattgccga aggggtggcc accaaaggat tgggcgtgca cgccaagtcg 300
tccgattggg ggttgcaggc gggctacatt cccgtcaacc cgaatcttc caaactgttc 360
ggccgtgcgc ccgaggtgat cgcgcgggcc gacaacgacg tcaacagcag cctggcgcat 420

ggccataccg	cggtcgacct	gacgctgtcg	aaagagcggc	ttgactatct	gcggcaagcg	480
ggcctggtca	ccggcatggc	cgatggcgtg	gtcgcgagca	accacgcagg	ctacgagcag	540
ttcgagtttc	gcgtgaagga	aacctcggac	gggcgctatg	ccgtgcagta	tcgccgcaag	600
ggcggcgacg	atttcgaggc	ggtcaaggtg	atcggcaatg	ccgccggtat	tccactgacg	660
gcggatatcg	acatgttcgc	catcatgccg	catctgtcca	acttccgcga	ctcggcgcgc	720
agttcggtga	ccagcggcga	ttcggtgacc	gattacctgg	cgcgcacgcg	gcgggccgcc	780
agcgaggcca	cgggcggcct	ggatcgcgaa	cgcatcgact	tgttgtggaa	aatcgctcgc	840
gccggcgccc	gttccgcagt	gggcaccgag	gcgcgtcgcc	agttccgcta	cgacggcgac	900
atgaatatcg	gcgtgatcac	cgatttcgag	ctggaagtgc	gcaatgcgct	gaacaggcgg	960
gcgcacgccg	tcggcgcgca	ggacgtggtc	cagcatggca	ctgagcagaa	caatcctttc	1020
ccggaggcag	atgagaagat	tttcgtcgta	tcggccaccg	gtgaaagcca	gatgctcacg	1080
cgcgggcaac	tgaaggaata	cattggccag	cagcgcggcg	agggctatgt	cttctacgag	1140
aaccgtgcat	acggcgtggc	ggggaaaagc	ctgttcgacg	atgggctggg	agccgcgccc	1200
ggcgtgccgg	gcggacgttc	gaagtcctcg	ccggatgtac	tggaaacggt	gccggcgtca	1260
cccggattgc	ggcggccgtc	gctgggcgca	gtggaacgcc	aggattccgg	ctatgacagc	1320
cttgatgggg	tgggatcgcg	atcgttctcg	ttgggcgagg	tgtccgacat	ggccgccgtg	1380
gaagcggcgg	aactggaaat	gacccggcaa	gtcttgcacg	ccggggcgcg	gcaggacgat	1440
gccgagccgg	gcgtgagcgg	tgcgtcggcg	cactgggggc	agcgggcgct	gcagggcgcc	1500
caggcggtgg	cggcggcgca	gcggctggtt	catgccattg	ccctgatgac	gcaattcggc	1560
cgggccggtt	ccaccaacac	gccgcaggaa	gcggcctcgt	tgtcggcggc	cgtgttcggc	1620
ttgggcgagg	ccagcagcgc	cgtggccgaa	accgtgagcg	gtttttccg	cgggtcttcg	1680
cgctgggccg	gcggtttcgg	cgtggctggc	ggcgcgatgg	cgctgggagg	cggcatcgcc	1740
gcggccgttg	gcgccgggat	gtcgttgacc	gatgacgcgc	cggccggaca	gaaggccgcc	1800
gtcggcgccg	agatcgcgct	gcagttgaca	ggtggaacgg	tcgagctggc	ttcttccatc	1860
gcgttggcgc	tggccgcggc	gcgcggcgtg	accagcggct	tgcaggtggc	gggggcgtcg	1920
gccggggcgg	ctgccggcgc	attggccgcg	gcgctcagtc	ccatggagat	ctacggcctg	1980
gtgcagcaat	cgcactatgc	ggatcagctg	gacaagctgg	cgcaggaatc	gagcgcatac	2040
ggttacgagg	gcgacgcctt	gctggcccag	ctgtatcgcg	acaagacggc	cgccgagggc	2100
gccgtcgccg	gcgtctccgc	cgtcctgagc	acggtggggg	cggcggtgtc	gatcgccgcg	2160
gcggccagcg	tggtaggcgc	cccggtggcg	gtggtcactt	ccttgttgac	cggggctctc	2220
aacggcatcc	tgcgcggcgt	gcagcagccc	atcatcgaaa	agctggccaa	tgattacgct	2280
cgcaagatcg	acgagctggg	cgggccgcaa	gcgtacttcg	agaaaaacct	gcaggcgcgt	2340

cacgaacaac tggccaattc	ggacggccta	cggaaaatgc	tggctgacct	gcaggccggg	2400
tggaacgcca gcagcgtgat	cggggtgcag	acgacagaga	tttccaagtc	ggcgctcgaa	2460
ctggccgcca ttaccggcaa	cgcggacaac	ctgaaatccg	ccgacgtgtt	cgtggaccgc	2520
ttcatccagg gcgagcgggt	ggccggccag	ccggtggtac	tcgacgtcgc	cgccggcggc	2580
atcgatatcg ccagccgcaa	gggcgagcgg	ccggcgctga	cgttcatcac	gccgctggcc	2640
gcgccaggag aagagcagcg	ccggcgcacg	aagacgggca	agagcgaatt	caccacattc	2700
gtcgagatcg tgggcaagca	ggaccgctgg	cgcatccggg	acggcgcggc	cgacaccacc	2760
atcgatctgg ccaaggtggt	gtcgcaactg	gtcgacgcca	atggcgtgct	caagcacagc	2820
atcaaactgg aggtgatcgg	cggagatggc	gatgatgtcg	tgcttgccaa	tgcttcgcgc	2880
atccattacg acggcggcgc	gggaaccaac	acggtcagct	atgccgccct	gggccgacag	2940
gattccatta ccgtgtccgc	cgacggggaa	cgtttcaacg	tgcgcaagca	gttgaacaac	3000
gccaacgtgt atcgcgaagg	cgtggctacc	cagaaaaccg	cctacggcaa	gcgcacggag	3060
aatgtccaat accgccatgt	cgagctggcc	cgtgtcgggc	aactggtgga	ggtcgacacg	3120
ctcgagcatg tgcagcacat	catcggcggg	gccggcaacg	attcgatcac	cggcaatgcg	3180
cacgacaact tcctggccgg	cggggcgggc	gacgacaggc	tggatggcgg	cgccggcaac	3240
gacacactgg tcggcggcga	gggccacaac	acggtcgtcg	gcggcgctgg	cgacgacgta	3300
ttcctgcagg acctgggggt	atggagcaac	cagctcgatg	gcggcgcggg	cgtcgatacc	3360
gtgaagtaca acgtgcacca	gccttccgag	gaacgcctcg	aacgcatggg	cgacacgggc	3420
atccatgccg atcttcaaaa	gggcacggtc	gagaagtggc	cggccctgaa	cctgttcagc	3480
gtcgaccatg tcaagaatat	cgagaatctg	cacggctcca	gcctgaacga	cagcatcgcc	3540
ggcgacgacc gggacaacga	gctctggggc	gacgatggca	acgacacgat	acacggccgg	3600
ggcggcgacg atatcctgcg	cggcggcctg	ggcctggaca	cgctgtatgg	cgaggacggc	3660
aacgacatct tcctgcagga	cgacgagacc	gtcagcgatg	acatcgacgg	cggcgcgggg	3720
ctggacaccg tcgactattc	cgccatgatc	catgcaggca	agatcgttgc	gccgcatgaa	3780
tacggcttcg ggatcgaggc	ggacctgtcc	gaagggtggg	tgcgcaaggc	ggcccggcgc	3840
ggcatgggct actacgacag	tgtccgcagt	gtcgaaaacg	tcatcggcac	gagcatgaag	3900
gatgtgctca tcggcgacgc	gcaagccaat	accctgatgg	gccagggcgg	cgacgatacc	3960
gtgcgcggcg gcgacggcga	tgatctgctg	ttcggcggcg	acggcaacga	catgctgtat	4020
ggagacgccg gcaacgacac	cctctacgga	gggctgggcg	acgataccct	tgaaggcggc	4080
gcgggcaacg attggttcgg	ccagacgccg	gcgcgcgagc	atgacgtgct	gcgcggcggg	4140
gctggggtgg ataccgtgga	ttacagccag	gcgggcgcgc	atgccggcgt	tgccacgggt	4200

cgcatcgggc	tgggtattct	ggcggacctg	ggcgccggcc	gcgtcgacaa	gctgggcgag	4260
gccggcagca	gcgcctacga	tacggtttcc	ggcatcgaaa	atgtggtggg	cacggaactg	4320
gccgaccgca	tcacgggcga	tgcgcaggcc	aacgtactgc	gcggcgcggg	tggtgccgac	4380
gtgcttgcgg	gcggcgaggg	cgacgatgtg	ctgctgggcg	gcgagggcga	tgaccagctg	4440
tcgggcgacg	ccggacgcga	ccgcttgtac	ggcgaagccg	gtgacgactg	gttcttccag	4500
gatgccgcca	atgccggcaa	tctgctcgac	ggtggtgacg	gcaacgatac	cgtggatttc	4560
agcggcccgg	gccggggcct	cgacgccggc	gcaaagggcg	tattcctgag	cctgggcaag	4620
gggttcgcca	gcctgatgga	cgaacccgaa	accagcaacg	tgttgcgcca	tatcgagaac	4680
gccgtgggca	gcgtgcgtga	tgacgtgctg	atcggcgacg	caggcgccaa	cgtcctcaat	4740
ggcctggcgg	gcaacgacgt	gttgtccggc	ggcgccggcg	acgatgtgct	gctgggcgac	4800
gagggctcgg	acctgctcag	cggcgatgcg	ggcaacgacg	atctgttcgg	cgggcagggc	4860
gatgatacct	atctgttcgg	ggccgggtac	ggacatgaca	cgatctacga	atcgggcggc	4920
ggccatgaca	ccatccgtat	caacgcgggg	gcggaccagc	tgtggtttgc	gcgccagggc	4980
aacgacctgg	agatccgcat	tcttggcacc	gacgatgcac	ttaccgtgca	cgactggtat	5040
cgcgacgccg	atcaccgggt	ggaagccatc	catgccgcca	accaggccat	agacccggcc	5100
ggcatcgaaa	agctggtcga	ggcaatggcg	cagtacccgg	accccggcgc	ggcggcggct	5160
gccccgccgg	cggcgcgcgt	gccggacacg	ctgatgcagt	ccctggctgt	caactggcgc	5220
tga						5223

<

5

<210> 6 <211> 5223

<212> ADN

<213> Bordetella bronchiseptica / gen de CyaA

<400> 6

gtgctggatg tttggttctt gcagaaggat gaggttctga gcgctacaca ccggttgcgt 60 cggtgcgaat ccgttcaatc gactacttat cgacagatcc acatgcagca atcgcatcag 120 gctggttacg caaacgccgc cgaccgggag tctggcatcc ccgcagccgt actcgatggc 180 240 atcaaggccg tggcgaagga aaaaaacgcc acattgatgt tccgcctggt caacccccat 300 tccaccagcc tgattgccga aggggtggcc accaaaggat tgggcgtgca cgccaagtcg tccgattggg ggttgcaggc gggctacatt cccgtcaacc cgaatctttc caaactgttc 360 ggccgtgcgc ccgaggtgat cgcgcgggcc gacaacgacg tcaacagcag cctggcgcat 420 ggccataccg cggtcgacct gacgctgtcg aaagagcggc ttgactatct gcggcaagcg 480 ggcctggtca ccggcatggc cgatggcgtg gtcgcgagca accacgcagg ctacgagcag 540 600 ttcgagtttc gcgtgaagga aacctcggac gggcgctatg ccgtgcagta tcgccgcaag

ggcggcgacg	atttcgaggc	ggtcaaggtg	atcggcaatg	ccgccggtat	tccactgacg	660
gcggatatcg	acatgttcgc	catcatgccg	catctgtcca	acttccgcga	ctcggcgcgc	720
agttcggtga	ccagcggcga	ttcggtgacc	gattacctgg	cgcgcacgcg	gcgggccgcc	780
agcgaggcca	cgggcggcct	ggatcgcgaa	cgcatcgact	tgttgtggaa	aatcgctcgc	840
gccggcgccc	gttccgcagt	gggcaccgag	gcgcgtcgcc	agttccgcta	cgacggcgac	900
atgaatatcg	gcgtgatcac	cgatttcgag	ctggaagtgc	gcaatgcgct	gaacaggcgg	960
gcgcacgccg	tcggcgcgca	ggacgtggtc	cagcatggca	ctgagcagaa	caatcctttc	1020
ccggaggcag	atgagaagat	tttcgtcgta	tcggccaccg	gtgaaagcca	gatgctcacg	1080
cgcgggcaac	tgaaggaata	cattggccag	cagcgcggcg	agggctatgt	cttctacgag	1140
aaccgtgcgt	acggcgtggc	ggggaaaagc	ctgttcgacg	atgggctggg	agccgcgccc	1200
ggcgtgccgg	gcggacgttc	gaagtcctcg	ccggatgtac	tggaaacggt	gccggcgtca	1260
cccggattgc	ggcggccgtc	gctgggcgca	gtggaacgcc	aggattccgg	ctatgacagc	1320
cttgatgggg	tgggatcgcg	atcgttctcg	ttgggcgagg	tgtccgacat	ggccgccgtg	1380
gaagcggcgg	aactggaaat	gacccggcaa	gtcttgcacg	ccggggcgcg	gcaggacgat	1440
gccgagccgg	gcgtgagcgg	tgcgtcggcg	cactgggggc	agcgggcgct	gcagggcgcc	1500
caggcggtgg	cggcggcgca	gcggctggtt	catgccattg	ccctgatgac	gcaattcggc	1560
cgggccggtt	ccaccaacac	gccgcaggaa	gcggcctcgt	tgtcggcggc	cgtgttcggc	1620
ttgggcgagg	ccagcagcgc	cgtggccgaa	accgtgagcg	gtttttccg	cgggtcttcg	1680
cgctgggccg	gcggtttcgg	cgtggctggc	ggcgcgatgg	cgctgggagg	cggcatcgcc	1740
gcggccgttg	gcgccgggat	gtcgttgacc	gatgacgcgc	cggccggaca	gaaggccgcc	1800
gccggcgccg	agatcgcgct	gcagttgaca	ggtggaacgg	tcgagctggc	ttcttccatc	1860
gcgttggcgc	tggccgcggc	gcgcggcgtg	accagcggct	tgcaggtggc	gggggcgtcg	1920
gccggggcgg	ctgccggcgc	attggccgcg	gcgctcagtc	ccatggagat	ctacggcctg	1980
gtgcagcaat	cgcactatgc	ggatcagctg	gacaagctgg	cgcaggaatc	gagcgcatac	2040
ggttacgagg	gcgacgcctt	gctggcccag	ctgtatcgcg	acaagacggc	cgccgagggc	2100
gccgtcgccg	gcgtctccgc	cgtcctgagc	acggtggggg	ctgcggtgtc	gatcgccgcg	2160
gcggccagcg	tggtaggcgc	cccggtggcg	gtggtcactt	ccttgttgac	cggggctctc	2220
aacggcatcc	tgcgcggcgt	gcagcagccc	atcatcgaaa	agctggccaa	tgattacgct	2280
cgcaagatcg	acgagctggg	cgggccgcaa	gcgtacttcg	agaaaaacct	gcaggcgcgt	2340
cacgaacaac	tggccaattc	ggacggccta	cggaaaatgc	tggccgacct	gcaggccggg	2400
tggaacgcca	gcagcgtgat	cggggtgcag	acgacagaga	tttccaagtc	ggcgctcgaa	2460
ctggccgcca	ttaccggcaa	cgcggacaac	ctgaaatccg	ccgacgtgtt	cgtggaccgc	2520

ttcatccagg	gcgagcgggt	ggccggccag	ccggtggtac	tcgacgtcgc	cgccggcggc	2580
atcgatatcg	ccagccgcaa	gggcgagcgg	ccggcgctga	cgttcatcac	gccgctggcc	2640
gcgccaggag	aagagcagcg	ccggcgcacg	aaaacgggca	agagcgaatt	caccacattc	2700
gtcgagatcg	tgggcaagca	ggaccgctgg	cgcatccggg	acggcgcggc	cgacaccacc	2760
atcgatctgg	ccaaggtggt	gtcgcaactg	gtcgacgcca	atggcgtgct	caagcacagc	2820
atcaaactgg	aggtgatcgg	cggagatggc	gatgatgtcg	tgcttgccaa	tgcttcgcgc	2880
atccattacg	acggcggcgc	gggaaccaac	acggtcagct	atgccgccct	gggccgacag	2940
gattccatta	ccgtgtccgc	cgacggggaa	cgtttcaacg	tgcgcaagca	gttgaacaac	3000
gccaacgtgt	atcgcgaagg	cgtggctacc	cagaaaaccg	cctacggcaa	gcgcacggag	3060
aatgtccaat	accgccatgt	cgagctggcc	cgtgtcgggc	aactggtgga	ggtcgacacg	3120
ctcgagcatg	tgcagcacat	catcggcggg	gccggcaacg	attcgatcac	cggcaatgcg	3180
cacgacaact	tcctggccgg	cggggcgggc	gacgacaggc	tggatggcgg	cgccggcaac	3240
gacacactgg	tcggcggcga	gggccacaac	acggtcgtcg	gcggcgctgg	cgacgacgta	3300
ttcctgcagg	acctgggggt	atggagcaac	cagctcgatg	gcggcgcggg	cgtcgatacc	3360
gtgaagtaca	acgtgcacca	gccttccgag	gaacgcctcg	aacgcatggg	cgacacgggc	3420
atccatgccg	atcttcaaaa	gggcacggtc	gagaagtggc	cggccctgaa	cctgttcagc	3480
gtcgaccatg	tcaagaatat	cgagaatctg	cacggctcca	gcctgaacga	cagcatcgcc	3540
ggcgacgacc	gggacaacga	gctctggggc	gacgatggca	acgacacgat	acacggccgg	3600
ggcggcgacg	atatcctgcg	cggcggcctg	ggcctggaca	cgctgtatgg	cgaggacggc	3660
aacgacatct	tcctgcagga	cgacgagacc	gtcagcgatg	acatcgacgg	tggcgcggga	3720
ctggacaccg	tcgactattc	cgccatgatc	catgcaggca	agatcgttgc	gccgcatgaa	3780
tacggcttcg	ggatcgaggc	ggacctgtcc	gaagggtggg	tgcgcaaggc	ggcccggcgc	3840
ggcatggact	actacgacag	tgtccgcagt	gtcgaaaacg	tcatcggcac	gagcatgaag	3900
gatgtgctca	tcggcgacgc	gcaagccaat	accctgatgg	gccagggcgg	cgacgatacc	3960
gtgcgcggcg	gcgacggcga	tgatctgctg	ttcggcggcg	acggcaacga	catgctgtat	4020
ggagacgccg	gcaacgacac	cctctacgga	gggctgggcg	acgataccct	tgaaggcggc	4080
gcgggcaacg	attggttcgg	ccagacgccg	gcgcgcgagc	atgacgtgct	gcgcggcggg	4140
gctggggtgg	ataccgtgga	ttacagccag	gcgggcgcgc	atgccggcgt	tgccacgggt	4200
cgcatcgggc	tgggtattct	ggcggacctg	ggcgccggcc	gcgtcgacaa	gctgggcgag	4260
gccggcagca	gcgcctacga	tacggtttcc	ggcatcgaaa	atgtggtggg	cacggaactg	4320
gccgaccgca	tcacgggcga	tgcgcaggcc	aacgtactgc	gcggcgcggg	tggcgccgac	4380

gtgcttgcgg	gcggcgaggg	cgacgatgtg	ctgctgggcg	gcgacggcga	cgaccagctg	4440
tcgggcgacg	ccggacgcga	ccgcttgtac	ggcgaagccg	gtgacgactg	gttcttccag	4500
gatgccgcca	atgccggcaa	tctgctcgac	ggtggtgacg	gcaacgatac	cgtggatttc	4560
agcggcccgg	gccggggcct	cgacgccggc	gcaaagggcg	tattcctgag	cctgggcaag	4620
gggttcgcca	gcctgatgga	cgaacccgaa	accagcaacg	tgttgcgcca	tatcgagaac	4680
gccgtgggca	gcgtgcgtga	tgacgtgctg	atcggcgacg	caggcgccaa	cgtcctcaat	4740
ggcctggcgg	gcaacgacgt	gctgtccggc	ggcgccggcg	acgatgtgct	gctgggcgac	4800
gagggctcgg	acctgctcag	cggcgatgcg	ggcaacgacg	atctgttcgg	cgggcagggc	4860
gatgatacct	atctgttcgg	ggccgggtac	ggacatgaca	cgatctacga	atcgggcggc	4920
ggccatgaca	ccatccgtat	caacgcgggg	gcggaccagc	tgtggtttgc	gcgccagggc	4980
aacgacctgg	agatccgcat	tcttggcacc	gacgatgcac	ttaccgtgca	cgactggtat	5040
cgcgacgccg	atcaccgggt	ggaagccatc	catgccgcca	accaggccat	agacccggcc	5100
ggcatcgaaa	agctggtcga	ggcaatggcg	cagtacccgg	accccggcgc	ggcggcggct	5160
gccccgccgg	cggcgcgcgt	gccggacacg	ctgatgcagt	ccctggctgt	caactggcgc	5220
tga						5223

<210> 7 <211> 1872 <212> PRT <213> Artificial

<220>

<223> CyaA - vector mage A3

10 <400> 7

Met Gln Gln Ser His Gln Ala Gly Tyr Ala Asn Ala Ala Asp Arg Glu 1 5 10 15

Ser Gly Ile Pro Ala Ala Val Leu Asp Gly Ile Lys Ala Val Ala Lys 20 25 30

Glu Lys Asn Ala Thr Leu Met Phe Arg Leu Val Asn Pro His Ser Thr 35 40 45

Ser Leu Ile Ala Glu Gly Val Ala Thr Lys Gly Leu Gly Val His Ala 50 60

Lys Ser Ser Asp Trp Gly Leu Gln Ala Gly Tyr Ile Pro Val Asn Pro 65 70 75 80

Asn Leu Ser Lys Leu Phe Gly Arg Ala Pro Glu Val Ile Ala Arg Ala 85 90 95

Asp	Asn	Asp	Val 100	Asn	Ser	Ser	Leu	Ala 105	His	Gly	His	Thr	Ala 110	Val	Asp
Leu	Thr	Leu 115	Ser	Lys	Glu	Arg	Leu 120	Asp	Tyr	Leu	Arg	Gln 125	Ala	Gly	Leu
Val	Thr 130	Gly	Met	Ala	Asp	Gly 135	Val	Val	Ala	Ser	Asn 140	His	Ala	Gly	Tyr
Glu 145	Gln	Phe	Glu	Phe	Arg 150	Val	Lys	Glu	Thr	Ser 155	Asp	Gly	Arg	Tyr	Ala 160
Val	Gln	Tyr	Arg	Arg 165	Lys	Gly	Gly	Asp	Asp 170	Phe	Glu	Ala	Val	Lys 175	Val
Ile	Gly	Asn	Ala 180	Ala	Gly	Ile	Pro	Leu 185	Thr	Ala	Asp	Leu	Gln 190	Ile	Asp
Met	Phe	Ala 195	Ile	Met	Pro	His	Leu 200	Ser	Asn	Phe	Arg	Asp 205	Ser	Ala	Arg
Ser	Ser 210	Val	Thr	Ser	Gly	Asp 215	Ser	Val	Thr	Asp	Tyr 220	Leu	Ala	Arg	Thr
Arg 225	Arg	Ala	Ser	Thr	Phe 230	Pro	Asp	Leu	Glu	Ser 235	Glu	Phe	Gln	Ala	Ala 240
Leu	Ser	Arg	Lys	Val 245	Ala	Glu	Leu	Val	His 250	Phe	Leu	Leu	Leu	Lys 255	Tyr
Arg	Ala	Arg	Glu 260	Pro	Val	Thr	Lys	Ala 265	Glu	Met	Leu	Gly	Ser 270	Val	Val
Gly	Asn	Trp 275	Gln	Tyr	Phe	Phe	Pro 280	Val	Ile	Phe	Ser	Lys 285	Ala	Ser	Ser
Ser	Leu 290	Gln	Leu	Val	Phe	Gly 295	Ile	Glu	Leu	Met	Glu 300	Val	Asp	Pro	Ile
Gly 305	His	Leu	Tyr	Ile	Phe 310	Gly	Thr	Arg	Ala	Arg 315	Leu	Lys	Leu	Leu	Trp 320
Lys	Ile	Ala	Arg	Ala 325	Gly	Ala	Arg	Ser	Ala 330	Val	Gly	Thr	Glu	Ala 335	Arg
Arg	Gln	Phe	Arg	Tyr	Asp	Gly	Asp	Met	Asn	Ile	Gly	Val	Ile	Thr	Asp

			340					345					350		
Phe	Glu	Leu 355	Glu	Val	Arg	Asn	Ala 360	Leu	Asn	Arg	Arg	Ala 365	His	Ala	Val
Gly	Ala 370	Gln	Asp	Val	Val	Gln 375	His	Gly	Thr	Glu	Gln 380	Asn	Asn	Pro	Phe
Pro 385	Glu	Ala	Asp	Glu	Lys 390	Ile	Phe	Val	Val	Ser 395	Ala	Thr	Gly	Leu	Gly 400
Asp	Asn	Gln	Ile	Met 405	Pro	Lys	Ala	Gly	Leu 410	Leu	Ile	Ile	Val	Leu 415	Ala
Ile	Ile	Ala	Arg 420	Glu	Gly	Asp	Cys	Ala 425	Pro	Glu	Glu	Lys	Ile 430	Pro	Lys
Lys	Leu	Leu 435	Thr	Gln	His	Phe	Val 440	Gln	Glu	Asn	Tyr	Leu 445	Glu	Tyr	Arg
Gln	Val 450	Pro	Gly	Ser	Asp	Pro 455	Ala	Cys	Tyr	Glu	Phe 460	Leu	Trp	Gly	Pro
Arg 465	Ala	Leu	Val	Glu	Thr 470	Ser	Tyr	Val	Lys	Val 475	Leu	His	His	Met	Val 480
Lys	Ile	Ser	Gly	Thr 485	Ser	Glu	Ser	Gln	Met 490	Leu	Thr	Arg	Gly	Gln 495	Leu
Lys	Glu	Tyr	Ile 500	Gly	Gln	Gln	Arg	Gly 505	Glu	Gly	Tyr	Val	Phe 510	Tyr	Glu
Asn	Arg	Ala 515	Tyr	Gly	Val	Ala	Gly 520	Lys	Ser	Leu	Phe	Asp 525	Asp	Gly	Leu
Gly	Ala 530	Ala	Pro	Gly	Val	Pro 535	Ser	Gly	Arg	Ser	Lys 540	Phe	Ser	Pro	Asp
Val 545	Leu	Glu	Thr	Val	Pro 550	Ala	Ser	Pro	Gly	Leu 555	Arg	Arg	Pro	Ser	Leu 560
Gly	Ala	Val	Glu	Arg 565	Gln	Asp	Ser	Gly	Tyr 570	Asp	Ser	Leu	Asp	Gly 575	Val
Gly	Ser	Arg	Ser 580	Phe	Ser	Leu	Gly	Glu 585	Val	Ser	Asp	Met	Ala	Ala	Val

Glu Ala Ala Glu Leu Glu Met Thr Arg Gln Val Leu His Ala Gly Ala 595 600 Arg Gln Asp Asp Ala Glu Pro Gly Val Ser Gly Ala Ser Ala His Trp 610 615 Gly Gln Arg Ala Leu Gln Gly Ala Gln Ala Val Ala Ala Ala Gln Arg 630 Leu Val His Ala Ile Ala Leu Met Thr Gln Phe Gly Arg Ala Gly Ser 650 Thr Asn Thr Pro Gln Glu Ala Ala Ser Leu Ser Ala Ala Val Phe Gly 665 Leu Gly Glu Ala Ser Ser Ala Val Ala Glu Thr Val Ser Gly Phe Phe Arg Gly Ser Ser Arg Trp Ala Gly Gly Phe Gly Val Ala Gly Gly Ala 690 695 700 Met Ala Leu Gly Gly Gly Ile Ala Ala Ala Val Gly Ala Gly Met Ser 705 Leu Thr Asp Asp Ala Pro Ala Gly Gln Lys Ala Ala Ala Gly Ala Glu Ile Ala Leu Gln Leu Thr Gly Gly Thr Val Glu Leu Ala Ser Ser Ile 740 745 Ala Leu Ala Leu Ala Ala Ala Arg Gly Val Thr Ser Gly Leu Gln Val Ala Gly Ala Ser Ala Gly Ala Ala Ala Gly Ala Leu Ala Ala Ala Leu Ser Pro Met Glu Ile Tyr Gly Leu Val Gln Gln Ser His Tyr Ala Asp 785 790 795 Gln Leu Asp Lys Leu Ala Gln Glu Ser Ser Ala Tyr Gly Tyr Glu Gly Asp Ala Leu Leu Ala Gln Leu Tyr Arg Asp Lys Thr Ala Ala Glu Gly Ala Val Ala Gly Val Ser Ala Val Leu Ser Thr Val Gly Ala Ala Val 835 840 845

Ser Ile Ala Ala Ala Ser Val Val Gly Ala Pro Val Ala Val Val

Thr Ser Leu Leu Thr Gly Ala Leu Asn Gly Ile Leu Arg Gly Val Gln 870 Gln Pro Ile Ile Glu Lys Leu Ala Asn Asp Tyr Ala Arg Lys Ile Asp Glu Leu Gly Gly Pro Gln Ala Tyr Phe Glu Lys Asn Leu Gln Ala Arg His Glu Gln Leu Ala Asn Ser Asp Gly Leu Arg Lys Met Leu Ala Asp Leu Gln Ala Gly Trp Asn Ala Ser Ser Val Ile Gly Val Gln Thr Thr 930 935 940 Glu Ile Ser Lys Ser Ala Leu Glu Leu Ala Ala Ile Thr Gly Asn Ala 945 950 Asp Asn Leu Lys Ser Val Asp Val Phe Val Asp Arg Phe Val Gln Gly 965 Glu Arg Val Ala Gly Gln Pro Val Val Leu Asp Val Ala Ala Gly Gly 985 Ile Asp Ile Ala Ser Arg Lys Gly Glu Arg Pro Ala Leu Thr Phe Ile 995 1000 1005 Thr Pro Leu Ala Ala Pro Gly Glu Glu Gln Arg Arg Thr Lys 1010 1015 1020 Thr Gly Lys Ser Glu Phe Thr Thr Phe Val Glu Ile Val Gly Lys 1025 1030 1035 Gln Asp Arg Trp Arg Ile Arg Asp Gly Ala Ala Asp Thr Thr Ile 1045 Asp Leu Ala Lys Val Val Ser Gln Leu Val Asp Ala Asn Gly Val 1055 1060 Leu Lys His Ser Ile Lys Leu Asp Val Ile Gly Gly Asp Gly Asp 1070 1075

Asp Val Val Leu Ala Asn Ala Ser Arg Ile His Tyr Asp Gly Gly

1090

1085

Ala	Gly 1100		Asn	Thr		Ser 1105		Ala	Ala	Leu	Gly 1110		Gln	Asp
Ser	Ile 1115		Val	Ser	Ala	Asp 1120	Gly	Glu	Arg	Phe	Asn 1125	Val	Arg	Lys
Gln	Leu 1130		Asn	Ala	Asn	Val 1135		Arg	Glu	Gly	Val 1140		Thr	Gln
Thr	Thr 1145		Tyr	Gly	_	Arg 1150		Glu	Asn		Gln 1155	_	Arg	His
Val	Glu 1160		Ala	Arg		Gly 1165		Leu	Val	Glu	Val 1170	_	Thr	Leu
Glu	His 1175		Gln	His	Ile	Ile 1180		Gly	Ala	Gly	Asn 1185	Asp	Ser	Ile
Thr	Gly 1190		Ala	His	Asp	Asn 1195		Leu	Ala	Gly	Gly 1200		Gly	Asp
Asp	Arg 1205		Asp	Gly		Ala 1210		Asn	Asp		Leu 1215		Gly	Gly
Glu	Gly 1220		Asn	Thr	Val	Ile 1225	Gly	Gly	Ala	Gly	Asp 1230	Asp	Val	Phe
Leu	Gln 1235		Leu	Gly		Trp 1240		Asn	Gln		Asp 1245		Gly	Ala
Gly	Val 1250		Thr	Val	Lys	Tyr 1255	Asn	Val	His	Gln	Pro 1260	Ser	Glu	Glu
Arg	Leu 1265		Arg	Met	Gly	Asp 1270	Thr	Gly	Ile	His	Ala 1275	Asp	Leu	Gln
Lys	Gly 1280	Thr	Val	Glu	Lys	Trp 1285	Pro	Ala	Leu	Asn	Leu 1290	Phe	Ser	Val
Asp	His 1295		Lys	Asn	Ile	Glu 1300	Asn	Leu	His	Gly	Ser 1305	Arg	Leu	Asn
Asp	Arg 1310		Ala	Gly	Asp	Asp 1315	Gln	Asp	Asn	Glu	Leu 1320	Trp	Gly	His
Asp	Gly	Asn	Asp	Thr	Ile	Arg	Gly	Arg	Gly	Gly	Asp	Asp	Ile	Leu

	1325					1330					1335			
Arg	Gly 1340		Leu	Gly	Leu	Asp 1345		Leu	Tyr		Glu 1350	Asp	Gly	Asn
Asp	Ile 1355	Phe	Leu	Gln	Asp	Asp 1360	Glu	Thr	Val	Ser	Asp 1365	Asp	Ile	Asp
Gly	Gly 1370		Gly	Leu		Thr 1375		Asp	Tyr	Ser	Ala 1380		Ile	His
Pro	Gly 1385		Ile	Val	Ala	Pro 1390		Glu	Tyr		Phe 1395		Ile	Glu
Ala	Asp 1400		Ser	Arg	Glu	Trp 1405		Arg	Lys	Ala	Ser 1410	Ala	Leu	Gly
Val	Asp 1415		Tyr	Asp	Asn	Val 1420		Asn	Val	Glu	Asn 1425	Val	Ile	Gly
Thr	Ser 1430	Met	Lys	Asp	Val	Leu 1435	Ile	Gly	Asp	Ala	Gln 1440	Ala	Asn	Thr
Leu	Met 1445		Gln	Gly	Gly	Asp 1450		Thr	Val		Gly 1455		Asp	Gly
Asp	Asp 1460		Leu	Phe	Gly	Gly 1465		Gly	Asn	Asp	Met 1470	Leu	Tyr	Gly
Asp	Ala 1475	Gly	Asn	Asp	Thr	Leu 1480	_	Gly	Gly	Leu	Gly 1485	Asp	Asp	Thr
Leu	Glu 1490	Gly	Gly	Ala	Gly	Asn 1495	Asp	Trp	Phe	Gly	Gln 1500	Thr	Gln	Ala
Arg	Glu 1505	His	Asp	Val	Leu	Arg 1510	Gly	Gly	Asp	Gly	Val 1515	Asp	Thr	Val
Asp	Tyr 1520		Gln	Thr	Gly	Ala 1525		Ala	Gly	Ile	Ala 1530	Ala	Gly	Arg
Ile	Gly 1535	Leu	Gly	Ile	Leu	Ala 1540	Asp	Leu	Gly	Ala	Gly 1545	Arg	Val	Asp
Lys	Leu 1550	Gly	Glu	Ala	Gly	Ser 1555		Ala	Tyr	Asp	Thr 1560	Val	Ser	Gly

Ile Glu 1565		Val	Val	Gly	Thr 1570		Leu	Ala		Arg 1575		Thr	Gly
Asp Ala 1580		Ala	Asn	Val	Leu 1585		Gly	Ala	_	Gly 1590		Asp	Val
Leu Ala 1595		Gly	Glu	Gly	Asp 1600		Val	Leu		Gly 1605		Asp	Gly
Asp Asp		Leu	Ser	Gly	Asp 1615		Gly	Arg		Arg 1620	Leu	Tyr	Gly
Glu Ala 1625	_	Asp	Asp	Trp	Phe 1630		Gln	Asp		Ala 1635		Ala	Gly
Asn Leu 1640		Asp	Gly	Gly	Asp 1645		Arg	Asp	Thr	Val 1650	Asp	Phe	Ser
Gly Pro 1655		Arg	Gly	Leu	Asp 1660		Gly	Ala		Gly 1665		Phe	Leu
Ser Leu 1670		Lys	Gly	Phe	Ala 1675		Leu	Met		Glu 1680	Pro	Glu	Thr
Ser Asn 1685		Leu	Arg	Asn	Ile 1690		Asn	Ala	Val	Gly 1695	Ser	Ala	Arg
Asp Asp		Leu	Ile	Gly	Asp 1705		Gly	Ala		Val 1710		Asn	Gly
Leu Ala 1715		Asn	Asp	Val	Leu 1720		Gly	Gly		Gly 1725		Asp	Val
Leu Leu 1730		Asp	Glu	Gly	Ser 1735	Asp	Leu	Leu	Ser	Gly 1740	Asp	Ala	Gly
Asn Asp	-	Leu	Phe	Gly	Gly 1750		Gly	Asp	Asp	Thr 1755	Tyr	Leu	Phe
Gly Val		Tyr	Gly	His	Asp 1765		Ile	Tyr	Glu	Ser 1770	Gly	Gly	Gly
His Asp		Ile	Arg	Ile	Asn 1780	Ala	Gly	Ala	Asp	Gln 1785	Leu	Trp	Phe
Ala Arg 1790		Gly	Asn	Asp	Leu 1795		Ile	Arg	Ile	Leu 1800	Gly	Thr	Asp

Asp Ala Leu Thr Val His Asp Trp Tyr Arg Asp Ala Asp His Arg 1805 Val Glu Ile Ile His Ala Ala Asn Gln Ala Val Asp Gln Ala Gly 1820 1825 Ile Glu Lys Leu Val Glu Ala Met Ala Gln Tyr Pro Asp Pro Gly 1835 1840 Ala Ala Ala Ala Pro Pro Ala Ala Arg Val Pro Asp Thr Leu Met Gln Ser Leu Ala Val Asn Trp Arg 1865 1870 <210>8 <211>86 <212> PRT <213> Artificial <220> <223> MAGE A3 97-178 <400> 8 Leu Gly Asp Asn Gln Ile Met Pro Lys Ala Gly Leu Leu Ile Ile Val 5 10 Leu Ala Ile Ile Ala Arg Glu Gly Asp Cys Ala Pro Glu Glu Lys Ile 20 25 Pro Lys Lys Leu Leu Thr Gln His Phe Val Gln Glu Asn Tyr Leu Glu 35 Tyr Arg Gln Val Pro Gly Ser Asp Pro Ala Cys Tyr Glu Phe Leu Trp 50 Gly Pro Arg Ala Leu Val Glu Thr Ser Tyr Val Lys Val Leu His His 65 70 75 Met Val Lys Ile Ser Gly <210> 9 <211>82 <212> PRT <213> Artificial <220> <223> MAGE A3 190-295*

5

10

15

20

<400> 9

Thr	Phe	Pro	Asp	Leu	Glu	Ser	Glu	Phe	Gln	Ala	Ala	Leu	Ser	Arg	Lys
1				5					10					15	

Val Ala Glu Leu Val His Phe Leu Leu Leu Lys Tyr Arg Ala Arg Glu 20 25 30

Pro Val Thr Lys Ala Glu Met Leu Gly Ser Val Val Gly Asn Trp Gln 35 40 45

Tyr Phe Phe Pro Val Ile Phe Ser Lys Ala Ser Ser Ser Leu Gln Leu 50 55 60

Val Phe Gly Ile Glu Leu Met Glu Val Asp Pro Ile Gly His Leu Tyr 65 70 75 80

Ile Phe

REIVINDICACIONES

1. Polipéptido(s) llevado(s) por un vector, en donde dicho vector que lleva el (los) polipéptido(s) consiste en una proteína adenilciclasa de una proteína CyaA de la especie *Bordetella* o un fragmento de la misma adecuados para presentar dicho(s) polipéptido(s) al sistema inmunitario en un hospedador mamífero, para su uso:

5

10

40

55

60

65

- (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) que es (a) consecutiva a la infección por una primera cepa de VPH seleccionada entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o (b) relacionado con un tumor que expresa el antígeno MAGE-A3 diagnosticado en dicho hospedador mamífero en donde dicho tratamiento se realiza suscitando una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos contenidos en dicho(s) polipéptido(s) y en donde (a) los epítopos de dicho primer grupo provienen de los antígenos E6 o E7 de una cepa de VPH seleccionada entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o respectivamente en (b) los epítopos de dicho primer grupo son de un antígeno tumoral MAGE-A3 y
- 15 (ii) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) en donde cuando dicha primera afección patológica es consecutiva a la infección por VPH como en (a), dicha segunda afección patológica es consecutiva a la infección por una segunda cepa de VPH diferente de la primera y dicho VPH diferente se selecciona entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o en donde dicha segunda afección determinada está relacionada con un tumor que expresa el antígeno MAGE-A3, en donde dicha segunda 20 afección patológica se encuentra en el mismo hospedador mamífero y se genera una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos contenidos en dicho(s) polipéptido(s) y en dicho segundo grupo los epítopos son de un antígeno del segundo VPH seleccionado entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o respectivamente de un antígeno tumoral MAGE-A3, obteniéndose dichas respuestas inmunitarias después de la administración de dicho(s) polipéptido(s) llevado(s) por un vector en 25 dicho hospedador, en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s) y en donde la secuencia de aminoácidos de dicho primer grupo de epítopo es diferente del aminoácido de dicho segundo grupo de epítopos.
- 30 2. El polipéptido llevado por un vector para su uso adicional de acuerdo con la reivindicación 1, (iii) en la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s) determinada(s), suscitando una respuesta inmunitaria de memoria de linfocitos T contra dicho primer grupo de epítopos contenidos en dicho(s) polipéptido(s).
- 3. El (los) polipéptido(s) llevado(s) por un vector para su uso de acuerdo con la reivindicación 1 o 2, en donde dicho segundo grupo de epítopos está contenido en el polipéptido que comprende el primer grupo de epítopos o en donde dicho primer y segundo grupos de epítopos están contenidos en diferentes polipéptidos.
 - 4. El (los) polipéptido(s) llevado(s) por un vector para su uso de acuerdo con la reivindicación 1 o 2, una molécula vector lleva todos los polipéptidos.
 - 5. Una composición que comprende, en combinación con un excipiente o formulación farmacéuticamente aceptable, al menos un polipéptido(s) llevado por un vector como se define en cualquiera de las reivindicaciones 1 a 4, para su uso:
- (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) determinada(s) que es (a) consecutiva a la infección por una primera cepa de VPH seleccionada entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o (b) relacionado con un tumor que expresa el antígeno MAGE-A3 diagnosticado en dicho hospedador mamífero en donde dicho tratamiento se realiza suscitando una respuesta inmunitaria de linfocitos T contra un primer grupo de epítopos contenidos en dicho(s) polipéptido(s) y en donde (a) los epítopos de dicho primer grupo provienen de los antígenos E6 o E7 de una cepa de VPH seleccionada entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o respectivamente en (b) los epítopos de dicho primer grupo son de un antígeno tumoral MAGE-A3 y
 - (ii) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) en donde cuando dicha primera afección patológica es consecutiva a la infección por VPH como en (a), dicha segunda afección patológica es consecutiva a la infección por una segunda cepa de VPH diferente de la primera y dicho VPH diferente se selecciona entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o en donde dicha segunda afección determinada está relacionada o en donde dicha segunda afección determinada está relacionada con un tumor que expresa el antígeno MAGE-A3, en donde dicha segunda afección patológica se encuentra en el mismo hospedador mamífero y se genera una respuesta inmunitaria de memoria de linfocitos T contra un segundo grupo de epítopos contenidos en dicho(s) polipéptido(s) y en donde en dicho segundo grupo los epítopos son de un antígeno del segundo VPH seleccionado entre VPH16, VPH18, VPH31, VPH33, VPH35, VPH45, VPH52 o VPH58 o respectivamente de un antígeno tumoral MAGE-A3, obteniéndose dichas respuestas inmunitarias después de la administración de dicha composición en dicho hospedador, en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando dicho segundo grupo de epítopos no está contenido en el (los) polipéptido(s) llevado(s) por un vector de dicha composición administrada y en donde la secuencia de aminoácidos de dicho primer grupo de epítopos es diferente del aminoácido de dicho segundo grupo

de epítopos, dicha composición comprende opcionalmente al menos un adyuvante, y opcionalmente compuestos activos antitumorales o antivíricos.

- 6. Una composición para su uso de acuerdo con la reivindicación 5, que comprende al menos dos polipéptidos llevados
 por un vector, en donde el primer grupo de epítopos está contenido en un primer polipéptido llevado por un vector y el segundo grupo de epítopos está contenido en un polipéptido llevado por un vector separado.
 - 7. La composición para su uso de acuerdo con la reivindicación 6, en donde dicho primer grupo de epítopos está contenido en polipéptidos separados llevados por dicho(s) primer(os) polipéptido(s) llevado(s) por un vector y/o el segundo grupo de epítopos está contenido en polipéptidos separados llevados por dicho(s) polipéptido(s) llevado(s) por un vector separado(s).

10

15

25

45

- 8. El (los) polipéptido(s) llevado(s) por un vector para su uso de acuerdo con una cualquiera de las reivindicaciones 1 a 4 o la composición de acuerdo con una cualquiera de las reivindicaciones 5 a 7, en donde dicha CyaA es una CyaA de la especie *Bordetella* que se origina de *Bordetella pertussis*, *Bordetella parapertussis* o *Bordetella bronchiseptica*.
 - 9. El (los) polipéptido(s) llevado(s) por un vector o la composición para su uso de acuerdo con una cualquiera de las reivindicaciones 1 a 8, en donde
- dicho fragmento de CyaA es capaz de unirse específicamente a las células que expresan CD11b y, opcionalmente, entregar dicho(s) polipéptido(s) al citosol celular, como un fragmento de CyaA de *B. pertussis* que consiste en los restos 1 a 224 y 235 a 1706 y/o
 - dicha proteína CyaA o fragmento de CyaA está desintoxicado, es no tóxico o carente de actividad enzimática, como una CyaA de B. pertussis en la que se inserta un dipéptido Leu-Gln en fase entre los restos 188 y 189.
 - 10. El polipéptido(s) llevado(s) por un vector o la composición de acuerdo con una cualquiera de las reivindicaciones 1 a 9, en donde dicho al menos uno, preferentemente todos, los polipéptidos son llevados por dicha proteína CyaA o fragmento de CyaA como resultado de la fusión genética.
- 30 11. El (los) polipéptido(s) llevado(s) por un vector o la composición para su uso de acuerdo con la reivindicación 10, en donde dicho al menos uno, preferentemente todos, los polipéptidos se insertan genéticamente en CyaA, en particular en sitios permisivos de CyaA.
- 12. Los polipéptidos llevados por un vector o la composición para su uso de acuerdo con la reivindicación 1 o 5, en donde dicho primer grupo de epítopos constituye un fragmento antigénico de la proteína E7 de VPH16, y el segundo grupo de epítopos constituye un fragmento antigénico de la proteína E7 de VPH18.
 - 13. La composición para su uso de acuerdo con una cualquiera de las reivindicaciones 8 a 11, que comprende:
- 40 (a) un primer polipéptido llevado por un vector que consiste en los primeros 29 restos de aminoácidos de VPH16-E7 insertados entre los codones 319 y 320 de CyaA, y los restos 43 a 98 de VPH16-E7 insertados entre los codones 224 y 235 de CyaA; y
 - (b) un polipéptido llevado por un vector separado que consiste en los primeros 31 restos de aminoácidos de VPH18-E7 insertados entre los codones 319 y 320 de CyaA y los restos 43 a 105 de VPH18-E7 insertados entre los codones 224 y 235 de CyaA.
 - 14. El (los) polipéptido(s) llevado(s) por un vector o la composición para su uso de acuerdo con la reivindicación 11, en donde dicho polipéptido llevado por un vector consiste en CyaA de B. *pertussis* en donde:
- 50 (1) un primer polipéptido que consiste en los restos 97 a 178 de MAGE A3 se ha insertado entre los codones 224 y 235 de CyaA; y
 - (2) un segundo polipéptido que consiste en los restos 190 a 221 fusionados a los restos 242 a 295 de MAGE A3 se ha insertado entre los codones 319 a 320 de CyaA.
- 55 15. El (los) polipéptido(s) llevado(s) por un vector o la composición para su uso de acuerdo con la reivindicación 12 o 13, para su uso:
- (1) (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) consecutiva(s) a la infección por VPH16, diagnosticada(s) en un hospedador mamífero y (ii) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) consecutiva(s) a la infección por VPH18 y (iii) opcionalmente en la prevención contra la reaparición de dicha(s) primera(s) afección(es) patológica(s), en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando el polipéptido derivado de la proteína E7 de VPH18 no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s); o
- (2) (i) en el tratamiento inmunoterapéutico de la(s) primera(s) afección(es) patológica(s) consecutiva(s) a la infección por VPH18, diagnosticada(s) en un hospedador mamífero y (ii) en la profilaxis contra la(s) segunda(s) afección(es) patológica(s) consecutiva(s) a la infección por VPH16 y (iii) opcionalmente, en la prevención contra la reaparición de

dicha(s) primera(s) afección(es) patológica(s), en donde dicha profilaxis contra la(s) segunda(s) afección(es) patológica(s) determinada(s) no se observa cuando el polipéptido derivado de la proteína E7 de VPH16 no está contenido en dicho(s) polipéptido(s) llevado(s) por un vector administrado(s).

B. pertussis [NP_879578.1]

MQQSHQAGYANAADRESGIPAAVLDGIKAVAKEKNATLMFRLVNPHSTSLIAEGVATKGLGVHAKSSDWG LQAGYIPVNPNLSKLFGRAPEVIARADNDVNSSLAHGHTAVDLTLSKERLDYLRQAGLVTGMADGVVASN HAGYEQFEFRVKETSDGRYAVQYRRKGGDDFEAVKVIGNAAGIPLTADIDMFAIMPHLSNFRDSARSSVT ${\tt SGDSVTDYLARTRAASEATGGLDRERIDLLWKIARAGARSAVGTEARRQFRYDGDMNIGVITDFELEVR}$ NALNRRAHAVGAQDVVQHGTEQNNPFPEADEKIFVVSATGESQMLTRGQLKEYIGQQRGEGYVFYENRAY GVAGKSLFDDGLGAAPGVPSGRSKFSPDVLETVPASPGLRRPSLGAVERQDSGYDSLDGVGSRSFSLGEV SDMAAVEAAELEMTRQVLHAGARQDDAEPGVSGASAHWGQRALQGAQAVAAAQRLVHAIALMTQFGRAGS TNTPQEAASLSAAVFGLGEASSAVAETVSGFFRGSSRWAGGFGVAGGAMALGGGIAAAVGAGMSLTDDAP AGQKAAAGAEIALQLTGGTVELASSIALALAAARGVTSGLQVAGASAGAAAGALAAALSPMEIYGLVQQS HYADQLDKLAQESSAYGYEGDALLAQLYRDKTAAEGAVAGVSAVLSTVGAAVSIAAAASVVGAPVAVVTS LLTGALNGILRGVQQPIIEKLANDYARKIDELGGPQAYFEKNLQARHEQLANSDGLRKMLADLQAGWNAS SVIGVQTTEISKSALELAAITGNADNLKSVDVFVDRFVQGERVAGQPVVLDVAAGGIDIASRKGERPALT FITPLAAPGEEQRRRTKTGKSEFTTFVEIVGKQDRWRIRDGAADTTIDLAKVVSQLVDANGVLKHSIKLD VIGGDGDDVVLANASRIHYDGGAGTNTVSYAALGRQDSITVSADGERFNVRKQLNNANVYREGVATQTTA YGKRTENVOYRHVELARVGOLVEVDTLEHVOHIIGGAGNDSITGNAHDNFLAGGSGDDRLDGGAGNDTLV GGEGONTVIGGAGDDVFLQDLGVWSNQLDGGAGVDTVKYNVHQPSEERLERMGDTGIHADLQKGTVEKWP ALNLFSVDHVKNIENLHGSRLNDRIAGDDQDNELWGHDGNDTIRGRGGDDILRGGLGLDTLYGEDGNDIF LQDDETVSDDIDGGAGLDTVDYSAMIHPGRIVAPHEYGFGIEADLSREWVRKASALGVDYYDNVRNVENV ${\tt IGTSMKDVLIGDAQANTLMGQGGDDTVRGGDGDDLLFGGDGNDMLYGDAGNDTLYGGLGDDTLEGGAGND}$ WFGQTQAREHDVLRGGDGVDTVDYSQTGAHAGIAAGRIGLGILADLGAGRVDKLGEAGSSAYDTVSGIEN VVGTELADRITGDAQANVLRGAGGADVLAGGEGDDVLLGGDGDDQLSGDAGRDRLYGEAGDDWFFQDAAN AGNLLDGGDGRDTVDFSGPGRGLDAGAKGVFLSLGKGFASLMDEPETSNVLRNIENAVGSARDDVLIGDA ${\tt GANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGNDDLFGGQGDDTYLFGVGYGHDTIYESGGGHDTITESGGGHDT}$ IRINAGADQLWFARQGNDLEIRILGTDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD PGAAAAAPPAARVPDTLMOSLAVNWR (SEQ ID NO:1)

B. parapertussis [NP_882677.1]

MLDVWFLOKDEVLSATHRLRRCESVOSTTYRQIHMQOSHQAGYANAADRESGIPAAVLDGIKAVAKEKNA TLMFRLVNPHSTSLIAEGVATKGLGVHAKSSDWGLQAGYIPVNPNLSKLFGRAPEVIARADNDVNSSLAH ${\tt GHTAVDLTLSKERLDYLRQAGLVTGMADGVVASNHAGYEQFEFRVKETSDGRYAVQYRRKGGDDFEAVKV}$ IGNAAGIPLTADIDMFAIMPHLSNFRDSARSSVTSGDSVTDYLARTRRAASEATGGLDRERIDLLWKIAR AGARSAVGTEARROFRYDGDMNIGVITDFELEVRNALNRRAHAVGAQDVVQHGTEQNNPFPEADEKIFVV SATGESOMLTRGOLKEYIGOORGEGYVFYENRAYGVAGKSLFDDGLGAAPGVPGGRSKSSPDVLETVPAS PGLRRPSLGAVERQDSGYDSLDGVGSRSFSLGEVSDMAAVEAAELEMTRQVLHAGARQDDAEPGVSGASA HWGQRALQGAQAVAAAQRLVHAIALMTQFGRAGSTNTPQEAASLSAAVFGLGEASSAVAETVSGFFRGSS ${\tt RWAGGFGVAGGAMALGGGIAAAVGAGMSLTDDAPAGQKAAVGAEIALQLTGGTVELASSIALALAAARGV}$ TSGLQVAGASAGAAAGALAAALSPMEIYGLVQQSHYADQLDKLAQESSAYGYEGDALLAQLYRDKTAAEG ${\tt AVAGVSAVLSTVGAAVSIAAAASVVGAPVAVVTSLLTGALNGILRGVQQPIIEKLANDYARKIDELGGPQ}$ AYFEKNLQARHEQLANSDGLRKMLADLQAGWNASSVIGVQTTEISKSALELAAITGNADNLKSADVFVDR FIQGERVAGQPVVLDVAAGGIDIASRKGERPALTFITPLAAPGEEQRRRTKTGKSEFTTFVEIVGKQDRW ${\tt RIRDGAADTTIDLAKVVSQLVDANGVLKHSIKLEVIGGDGDDVVLANASRIHYDGGAGTNTVSYAALGRQ}$ DSITVSADGERFNVRKQLNNANVYREGVATQKTAYGKRTENVQYRHVELARVGQLVEVDTLEHVQHIIGG AGNDSITGNAHDNFLAGGAGDDRLDGGAGNDTLVGGEGHNTVVGGAGDDVFLQDLGVWSNQLDGGAGVDT VKYNVHOPSEERLERMGDTGIHADLOKGTVEKWPALNLFSVDHVKNIENLHGSSLNDSIAGDDRDNELWG ${\tt DDGNDTIHGRGGDDILRGGLGLDTLYGEDGNDIFLQDDETVSDDIDGGAGLDTVDYSAMIHAGKIVAPHE}$ ${\tt YGFGIEADLSEGWVRKAARRGMGYYDSVRSVENVIGTSMKDVLIGDAQANTLMGQGGDDTVRGGDGDDLL}$ FGGDGNDMLYGDAGNDTLYGGLGDDTLEGGAGNDWFGOTPAREHDVLRGGAGVDTVDYSQAGAHAGVATG RIGLGILADLGAGRVDKLGEAGSSAYDTVSGIENVVGTELADRITGDAQANVLRGAGGADVLAGGEGDDV ${\tt LLGGEGDDQLSGDAGRDRLYGEAGDDWFFQDAANAGNLLDGGDGNDTVDFSGPGRGLDAGAKGVFLSLGK}$ ${\tt GFASLMDEPETSNVLRHIENAVGSVRDDVLIGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSG$ GNDDLFGGQGDDTYLFGAGYGHDTIYESGGGHDTIRINAGADQLWFARQGNDLEIRILGTDDALTVHDWY RDADHRVEAIHAANQAIDPAGIEKLVEAMAQYPDPGAAAAAPPAARVPDTLMQSLAVNWR (SEQ ID NO:2)

Fig. 1A

B. bronchiseptica [NP_886873.1]

MLDVWFLQKDEVLSATHRLRRCESVQSTTYRQIHMQQSHQAGYANAADRESGIPAAVLDGIKAVAKEKNA TLMFRLVNPHSTSLIAEGVATKGLGVHAKSSDWGLQAGYIPVNPNLSKLFGRAPEVIARADNDVNSSLAH GHTAVDLTLSKERLDYLRQAGLVTGMADGVVASNHAGYEQFEFRVKETSDGRYAVQYRRKGGDDFEAVKV ${\tt IGNAAGIPLTADIDMFAIMPHLSNFRDSARSSVTSGDSVTDYLARTRAASEATGGLDRERIDLLWKIAR}$ AGARSAVGTEARRQFRYDGDMNIGVITDFELEVRNALNRRAHAVGAQDVVQHGTEQNNPFPEADEKIFVV ${\tt SATGESQMLTRGQLKEYIGQQRGEGYVFYENRAYGVAGKSLFDDGLGAAPGVPGGRSKSSPDVLETVPAS}$ PGLRRPSLGAVERQDSGYDSLDGVGSRSFSLGEVSDMAAVEAAELEMTRQVLHAGARQDDAEPGVSGASA HWGQRALQGAQAVAAAQRLVHAIALMTQFGRAGSTNTPQEAASLSAAVFGLGEASSAVAETVSGFFRGSS RWAGGFGVAGGAMALGGGIAAAVGAGMSLTDDAPAGQKAAAGAEIALQLTGGTVELASSIALALAAARGV TSGLQVAGASAGAAAGALAAALSPMEIYGLVQQSHYADQLDKLAQESSAYGYEGDALLAQLYRDKTAAEG ${\tt AVAGVSAVLSTVGAAVSIAAAASVVGAPVAVVTSLLTGALNGILRGVQQPIIEKLANDYARKIDELGGPQ}$ AYFEKNLQARHEQLANSDGLRKMLADLQAGWNASSVIGVQTTEISKSALELAAITGNADNLKSADVFVDR FIQGERVAGQPVVLDVAAGGIDIASRKGERPALTFITPLAAPGEEQRRRTKTGKSEFTTFVEIVGKQDRW ${\tt RIRDGAADTTIDLAKVVSQLVDANGVLKHSIKLEVIGGDGDDVVLANASRIHYDGGAGTNTVSYAALGRQ}$ DSITVSADGERFNVRKQLNNANVYREGVATQKTAYGKRTENVQYRHVELARVGQLVEVDTLEHVQHIIGG AGNDSITGNAHDNFLAGGAGDDRLDGGAGNDTLVGGEGHNTVVGGAGDDVFLQDLGVWSNQLDGGAGVDT VKYNVHOPSEERLERMGDTGIHADLOKGTVEKWPALNLFSVDHVKNIENLHGSSLNDSIAGDDRDNELWG ${\tt DDGNDTIHGRGGDDILRGGLGLDTLYGEDGNDIFLQDDETVSDDIDGGAGLDTVDYSAMIHAGKIVAPHE}$ ${\tt YGFGIEADLSEGWVRKAARRGMDYYDSVRSVENVIGTSMKDVLIGDAQANTLMGQGGDDTVRGGDGDDLL}$ ${\tt FGGDGNDMLYGDAGNDTLYGGLGDDTLEGGAGNDWFGQTPAREHDVLRGGAGVDTVDYSQAGAHAGVATG}$ RIGLGILADLGAGRVDKLGEAGSSAYDTVSGIENVVGTELADRITGDAOANVLRGAGGADVLAGGEGDDV ${\tt LLGGDGDDQLSGDAGRDRLYGEAGDDWFFQDAANAGNLLDGGDGNDTVDFSGPGRGLDAGAKGVFLSLGK}$ ${\tt GFASLMDEPETSNVLRHIENAVGSVRDDVLIGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGANVLNGLAGNDVLSGGAGDDVLLGDAGANVLNGLAGNDVLSGGAGDDVLLGDAGANVLNGLAGNDVLSGGAGDDVLLGDAGANVLNGLAGNDVLSGGAGDDVLLGDAGANVLNGLAGNDVLSGGAGDDVLLGDAGANVLNGLAGNDVLSGGAGDDVLLGDAGANVLNGLAGNDVLSGGAGDDVLLGDAGANVLNGLAGNDVLSGGAGDDVLLGDAGANVLNGLAGNDVLSGGAGANVLNGLAGNDVLSGAGANVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGANVLNGLAGNDVLSGAGAN$ GNDDLFGGQGDDTYLFGAGYGHDTIYESGGGHDTIRINAGADQLWFARQGNDLEIRILGTDDALTVHDWY RDADHRVEAIHAANQAIDPAGIEKLVEAMAQYPDPGAAAAAPPAARVPDTLMQSLAVNWR (SEQ ID NO:3)

Fig. 1B

B. pertussis

ATGCAGCAATCGCATCAGGCTGGTTACGCAAACGCCGCCGACCGGAGTCTGGCATCCCCGCAGCCGTAC TCGATGGCATCAAGGCCGTGGCGAAGGAAAAAAACGCCACATTGATGTTCCGCCTGGTCAACCCCCATTC CACCAGCCTGATTGCCGAAGGGGTGGCCACCAAAGGATTGGGCGTGCACGCCAAGTCGTCCGATTGGGGG TTGCAGGCGGGCTACATTCCCGTCAACCCGAATCTTTCCAAACTGTTCGGCCGTGCGCCCGAGGTGATCG CGCGGGCCGACAACGACGTCAACAGCAGCCTGGCGCATGGCCATACCGCGGTCGACCTGACGCTGTCGAA AGAGCGGCTTGACTATCTGCGGCAAGCGGGCCTGGTCACCGGCATGGCCGATGGCGTGGTCGCGAGCAAC GCCGCAAGGGCGGCGACGATTTCGAGGCGGTCAAGGTGATCGGCAATGCCGCCGGTATTCCACTGACGGC GGATATCGACATGTTCGCCATTATGCCGCATCTGTCCAACTTCCGCGACTCGGCGCGCAGTTCGGTGACC AGCGGCGATTCGGTGACCGATTACCTGGCGCGCACGCGGGGGCCGCCAGCGAGGCCACGGGCGGCCTGG ATCGCGAACGCATCGACTTGTTGTGGAAAATCGCTCGCGCCGGCGCCCCGTTCCGCAGTGGGCACCGAGGC GCGTCGCCAGTTCCGCTACGACGGCGACATGAATATCGGCGTGATCACCGATTTCGAGCTGGAAGTGCGC ATCCTTTCCCGGAGGCAGATGAGAAGATTTTCGTCGTATCGGCCACCGGTGAAAGCCAGATGCTCACGCG CGGGCAACTGAAGGAATACATTGGCCAGCAGCGCGGCGAGGGCTATGTCTTCTACGAGAACCGTGCATAC GGCGTGGCGGGAAAAGCCTGTTCGACGATGGGCTGGGAGCCGCCCGGCCTGCCGAGCGGACGTTCGA AGTTCTCGCCGGATGTACTGGAAACGGTGCCGGCGTCACCCGGATTGCGGCGGCCGTCGCTGGGCGCAGT GGAACGCCAGGATTCCGGCTATGACAGCCTTGATGGGGTGGGATCGCGATCGTTCTCGTTGGGCGAGGTG TCCGACATGGCCGCCGTGGAAGCGGCGGAACTGGAAATGACCCGGCAAGTCTTGCACGCCGGGGCGCGGC AGGACGATGCCGAGCCGGGCGTGAGCGGTGCGTCGGCGCACTGGGGGCAGCGGGCGCTGCAGGGCGCCCCA ${\tt GGCGGTGGCGGCGCGCGGCTGGTTCATGCCATTGCCCTGATGACGCAATTCGGCCGGGCCGGTTCC}$ ACCAACACGCCGCAGGAAGCGGCCTCGTTGTCGGCGGCCGTGTTCGGCTTGGGCGAGGCCAGCAGCGCCG TGGCCGAAACCGTGAGCGGTTTTTTCCGCGGGTCTTCGCGCTGGGCCGGCGGTTTCGGCGTGGCTGGCGG CGCGATGGCGCTGGGAGGCGGCATCGCCGCGGCCGTTGGCGCCGGGATGTCGTTGACCGATGACGCGCCG GCCGGACAGAAGGCCGCCGCGCGCGCGAGATCGCGCTGCAGTTGACAGGTGGAACGGTCGAGCTGGCTT CTTCCATCGCGTTGGCGCTGGCCGCGCGCGCGTGACCAGCGGCTTGCAGGTGGCCGGGGCGTCGGC TGGCCCAGCTGTATCGCGACAAGACGGCCGCCGAGGGCGCCGTCGCCGCGTCTCCGCCGTCTCAGCAC GGTGGGGGCGGTGTCGATCGCCGCGGCGGCCAGCGTGGTAGGGGCCCCGGTGGCGGTGGTCACTTCC AGCGTGATCGGGGTGCAGACGACAGAGATCTCCAAGTCGGCGCTCGAACTGGCCGCCATTACCGGCAACG TTCATCACGCCGCTGGCCGCCAGGAGAAGAGCAGCGCCGCGCACGAAAACGGGCAAGAGCGAATTCA CCACATTCGTCGAGATCGTGGGCAAGCAGGACCGCTGGCGCATCCGGGACGGCGGCCGACACCACCAT CGATCTGGCCAAGGTGGTGTCGCAACTGGTCGACGCCAATGGCGTGCTCAAGCACAGCATCAAACTGGAT GTGATCGCCGGAGATGCCGATGACGTCGTGCTTGCCAATGCTTCGCCGCATCCATTATGACGGCGGCGCGCG GCACCAACACGGTCAGCTATGCCGCCTGGGTCGACAGGATTCCATTACCGTGTCCGCCGACGGGGAACG $\tt CGACAACTTCCTAGCCGGCGGGTCGGGCGACGACAGGCTGGATGGCGCCGGCAACGACACCCTGGTT$ GGAGCAACCAGCTCGATGGCGGCGCGGGGCGTCGATACCGTGAAGTACAACGTGCACCAGCCTTCCGAGGA GCGCCTCGAACGCATGGGCGACACGGGCATCCATGCCGATCTTCAAAAGGGCACGGTCGAGAAGTGGCCG GCATCGCCGGCGACCACGACAACGACCTCTGGGGCCACGATGGCAACGACACGATACGCGGCCGGGG ${\tt CCATGATCCATGCAGGCAGGATCGTTGCGCCGCATGAATACGGCTTCGGGATCGAGGCGGACCTGTCCAGGCTGAGACCAGGATCGAGGCGGACCTGTCCAGGATCGAGGCTGGAGATCGAGGCGGACCTGTCCAGGATCGAGGATCGAGGCGGACCTGTCCAGGATCGAGGAGATCGAGGATCGAGGATCGAGGATCGAGGATCGAGGATCGAGGATCGAGGATCGAGGATCGAGAGATCGAGAGATCGAGAGATCGAGAGATCGAGATCGAGATCGAGATCGAGATCGAGATCGAGATGAGATCGAGATCGAGATCGAGATCGAGATCGAGATCGAGATCGAGATCGAGATCGAGATCGAGAGATCGAGAGATCGAGATTCGAGATCAGATCAGATTCGAGATTCGAGATTCGAGA$ GGAATGGGTGCGCAAGGCGTCCGCGCTGGGCGTGGACTATTACGATAATGTCCGCAATGTCGAAAACGTC ATCGGTACGAGCATGAAGGATGTCCTCATCGGCGACGCCAAGCCAATACCCTGATGGGCCAGGCCGGCG ACGATACCGTGCGCGGCGACGGCGATGATCTGCTGTTCGGCGGCGACGGCAACGACATGCTGTATGG CGACGCCGGCAACGACACCCTCTACGGGGGGCTGGGCGACGATACCCTTGAAGGCGGCGCGGCAACGAT TGGTTCGGCCAGACGCAGGCGCGAGCATGACGTGCTGCGCGGGGGAGATGGGGTGGATACCGTCGATT

Fig. 1C

(B. pertussis/continuación)

ACAGCCAGACCGGCGCATGCCGGCATTGCCGCGGGTCGCATCGGGCTGGGCATCCTGGCTGACCTGGG $\tt CGCCGGCCGCGTCGACAAGCTGGGCGAGGCCGGCAGCAGCGCCTACGATACGGTTTCCGGTATCGAGAAC$ GTGGTGGCACGGACTGCCGACCGCATCACGGCGATGCGCAGGCCAACGTGCTGCGCGGCGGGGTG GCGCCGACGTGCTTGCGGGCGGCGAGGGCGACGATGTGCTGCTGGGCGGCGACGACGACCAGCTGTC GGGCGACGCCGGACGCGATCGCTTGTACGGCGAAGCCGGTGACGACTGGTTCTTCCAGGATGCCGCCAAT GCCGGCAATCTGCTCGACGGCGGCGACGGCCGCGATACCGTGGATTTCAGCGGCCCGGGCCGGGCCTCG CAGCAACGTGTTGCGCAATATCGAGAACGCCGTGGGCAGCGCGCGTGATGACGTGCTGATCGGCGACGCA GGCGCCAACGTCCTCAATGGCCTGGCGGGCAACGACGTGCTGTCCGGCGGCGCTGGCGACGATGTGCTGC TGGGCGACGAGGGCTCGGACCTGCTCAGCGGCGATGCGGGCAACGACGATCTGTTCGGCGGGCAGGGCGA TGATACTTATCTGTTCGGGGTCGGGTACGGGCACGACACGATCTACGAATCGGGCGGCCGCCATGACACC ${\tt ATCCGCATCAACGCGGGGGCGACCAGCTGTGGTTCGCGCGCCAGGGCAACGACCTGGAGATCCGCATTC}$ TGCCGCCAACCAGGCGTAGACCAGGCAGGCATCGAAAAGCTGGTCGAGGCAATGGCGCAGTATCCGGAC ACTGGCGCTGA (SEQ ID NO:4)

B. parapertussis

GTGCTGGATGTTTGGTTCTTGCAGAAGGATGAGGTTCTGAGCGCTACACCCGGTTGCGTCGGTGCGAAT ${\tt CCGTTCAATCGACTACTTATCGACAGATCCACATGCAGCAATCGCATCAGGCTGGTTACGCAAACGCCGC}$ CGACCGGGAGTCTGGCATCCCCGCAGCCGTACTCGATGGCATCAAGGCCGTGGCGAAGGAAAAAAACGCC ACATTGATGTTCCGCCTGGTCAACCCCCATTCCACCAGCCTGATTGCCGAAGGGGTGGCCACCAAAGGAT $\tt TGGGCGTGCACGCCAAGTCGTCCGATTGGGGGTTGCAGGCGGGCTACATTCCCGTCAACCCGAATCTTTC$ ${\tt CAAACTGTTCGGCCGTGCGCCCGAGGTGATCGCGCGGGCCGACAACGACGTCAACAGCAGCCTGGCGCAT}$ GGCCATACCGCGGTCGACCTGACGCTGTCGAAAGAGCGGCTTGACTATCTGCGGCAAGCGGGCCTGGTCA $\tt CCGGCATGGCCGATGGCTGGTCGCGAGCAACCACGCAGGCTACGAGCAGTTCGAGTTTCGCGTGAAGGA$ AACCTCGGACGGCGCTATGCCGTGCAGTATCGCCGCAAGGGCGGCGACGATTTCGAGGCGGTCAAGGTG ATCGGCAATGCCGCCGGTATTCCACTGACGGCGGATATCGACATGTTCGCCATCATGCCGCATCTGTCCA ${\tt GCCGGCGCCCGTTCCGCAGTGGGCACCGAGGCGCGTCGCCAGTTCCGCTACGACGGCGACATGAATATCG}$ $\tt GGACGTGGTCCAGCATGGCACTGAGCAGAACAATCCTTTCCCGGAGGCAGATGAGAAGATTTTCGTCGTA$ AGGGCTATGTCTTCTACGAGAACCGTGCATACGGCGTGGCGGGGAAAAGCCTGTTCGACGATGGGCTGGG AGCCGCGCCGGCGTGCCGGGCGGACGTTCGAAGTCCTCGCCGGATGTACTGGAAACGGTGCCGGCGTCA $\tt CCCGGATTGCGCCGCCGTCGCTGGCCGCAGTGGAACGCCAGGATTCCGGCTATGACAGCCTTGATGGGG$ GACCCGGCAAGTCTTGCACGCCGGGGCGCGGCAGGACGATGCCGAGCCGGGCGTGAGCGGTCGGCG $\tt CGTGTTCGGCTTGGGCGAGGCCAGCAGCGCCGTGGCCGAAACCGTGAGCGGTTTTTTCCGCGGGTCTTCG$ CGCTGGGCCGGCGGTTTCGGCGTGGCTGGCGGCGCGATGGCGCTGGGAGGCGCATCGCCGCGGCCGTTG GCGCCGGGATGTCGTTGACCGATGACGCGCCGGCCGGACAGAAGGCCGCCGTCGGCGCCGAGATCGCGCT ACCAGCGGCTTGCAGGTGGCGGGGGGCGCTCGGCCGGCGCGCTTTGGCCGCGCGCTCAGTC GCCGTCGCCGGCGTCTCCGCCGTCCTGAGCACGGTGGGGGCGGCGGTGTCGATCGCCGCGGCGGCCAGCG GCGTACTTCGAGAAAAACCTGCAGGCGCGTCACGAACAACTGGCCAATTCGGACGGCCTACGGAAAATGC $\tt TGGCTGACCTGCAGGCCGGGTGGAACGCCAGCAGCGTGATCGGGGTGCAGACGACAGAGATTTCCAAGTC$ $\tt GGCGCTCGAACTGGCCGCCATTACCGGCAACGCGGACAACCTGAAATCCGCCGACGTGTTCGTGGACCGC$ TTCATCCAGGGCGAGCGGTGGCCGGCCAGCCGGTGGTACTCGACGTCGCCGCCGGCGGCATCGATATCG CCGGCGCACGAAGACGGGCAAGAGCGAATTCACCACATTCGTCGAGATCGTGGGCAAGCAGGACCGCTGG

Fig. 1D

(B. parapertussis/continuación)

CGCATCCGGGACGCCGGCCGACACCACCATCGATCTGGCCAAGGTGGTGTCGCAACTGGTCGACGCCA $\tt ATGGCGTGCTCAAGCATCAAACTGGAGGTGATCGCGGAGATGGCGATGATGTCGTGCTTGCCAA$ TGCTTCGCGCATCCATTACGACGGCGCGCGGGAACCAACACGGTCAGCTATGCCGCCCTGGGCCGACAG GATTCCATTACCGTGTCCGCCGACGGGGAACGTTTCAACGTGCGCAAGCAGTTGAACAACGCCAACGTGT ATCGCGAAGGCGTGGCTACCCAGAAAACCGCCTACGGCAAGCGCACGGAGAATGTCCAATACCGCCATGT CGAGCTGGCCCGTGTCGGGCAACTGGTGGAGGTCGACACGCTCGAGCATGTGCAGCACATCATCGGCGGG GCCGGCAACGATTCGATCACCGGCAATGCGCACGACAACTTCCTGGCCGGCGGGGCGGCGACGACAGGC TGGATGGCGCCGGCAACGACACACTGGTCGGCGGCGAGGGCCACAACACGGTCGTCGGCGCGCTGG $\tt CGACGACGTATTCCTGCAGGACCTGGGGGTATGGAGCAACCAGCTCGATGGCGGCGCGGGGGTCGATACC$ GTGAAGTACAACGTGCACCAGCCTTCCGAGGAACGCCTCGAACGCATGGGCGACACGGGCATCCATGCCG ATCTTCAAAAGGGCACGGTCGAGAAGTGGCCGGCCCTGAACCTGTTCAGCGTCGACCATGTCAAGAATAT $\tt CGAGAATCTGCACGGCTCCAGCCTGAACGACAGCATCGCCGGCGACGACCGGGACAACGAGCTCTGGGGC$ GACGATGGCAACGACACGATACACGGCCGGGGCGGCGACGATATCCTGCGCGGCGGCCTGGGCCTGGACA CGCTGTATGGCGAGGACGGCAACGACATCTTCCTGCAGGACGACGACGACGTCAGCGATGACATCGACGG CGGCGCGGGGCTGGACACCGTCGACTATTCCGCCATGATCCATGCAGGCAAGATCGTTGCGCCGCATGAA ACTACGACAGTGTCCGCAGTGTCGAAAACGTCATCGGCACGAGCATGAAGGATGTGCTCATCGGCGACGC GCAAGCCAATACCCTGATGGGCCAGGGCGGCGACGATACCGTGCGCGGCGGCGACGGCGATGATCTGCTG ACGATACCCTTGAAGGCGCGCGGGCAACGATTGGTTCGGCCAGACGCCGGCGCGCGAGCATGACGTGCT CGCATCGGGCTGGGTATTCTGGCGGACCTGGGCGCCGCCGCGCGACAAGCTGGGCGAGGCCGGCAGCA GCGCCTACGATACGGTTTCCGGCATCGAAAATGTGGTGGGCACGGAACTGGCCGACCGCATCACGGGCGA CTGCTGGGCGGGGGGGGTGACCAGCTGTCGGGCGACGCCGGACGCGCTTGTACGGCGAAGCCG GTGACGACTGGTTCTTCCAGGATGCCGCCAATGCCGGCAATCTGCTCGACGGTGGTGACGGCAACGATAC CGTGGATTTCAGCGGCCCGGGCCGGGGCCTCGACGCCGGCGCAAAGGGCGTATTCCTGAGCCTGGGCAAG GGGTTCGCCAGCCTGATGGACGAACCCGAAACCAGCAACGTGTTGCGCCATATCGAGAACGCCGTGGGCA GTTGTCCGGCGGCGCCGGCGACGATGTGCTGCTGGCGACGAGGGCTCGGACCTGCTCAGCGGCGATGCG GGCAACGACGATCTGTTCGGCGGGCAGGGCGATGATACCTATCTGTTCGGGGCCGGGTACGGACATGACA $\tt CGATCTACGAATCGGGCGGCGGCCATGACACCATCCGTATCAACGCGGGGGCCGACCAGCTGTGGTTTGC$ ${\tt GCGCCAGGGCAACGACCTGGAGATCCGCATTCTTGGCACCGACGATGCACTTACCGTGCACGACTGGTAT}$ GCCGGACACGCTGATGCAGTCCCTGGCTGTCAACTGGCGCTGA (SEQ ID NO:5)

B. bronchiseptica

 $\tt GTGCTGGATGTTTGGTTCTTGCAGAAGGATGAGGTTCTGAGCGCTACACACCGGTTGCGTCGGTGCGAATGAGCTCTGAGCGCTACACACCGGTTGCGTCGGTGCGAATGAGCTCTGAGCGCTACACACCGGTTGCGTCGGTGCGAATGAGCGTTGCGTTGCGTTGCGTTGCGAATGAGCGCTACACACCGGTTGCGTTGCGTTGCGAATGAGCGTTGCGAATGAGCGTTGCGTTGCGTTGCGTTGCGTTGCGTTGCGAATGAGCGTTGCGAATGAGCGTTGCGTTGCGTTGCGTTGCGTTGCGAATGAGCGTTGCGTTGCGTTGCGTTGCGAATGAGCGTTGCGTTGCGTTGCGTTGCGAATGAGGTTCTGAGCGCTACACACCGGTTGCGTTGCGTTGCGAATGAGCGTTGCGAATGAGGTTCTGAGCGTTGCGAATGAATGAGAATGAATGAGAATGAATGAATGAATGAGAATGAATGAGAATG$ $\tt CCGTTCAATCGACTACTTATCGACAGATCCACATGCAGCAATCGCATCAGGCTGGTTACGCAAACGCCGC$ ACATTGATGTTCCGCCTGGTCAACCCCCATTCCACCAGCCTGATTGCCGAAGGGGTGGCCACCAAAGGAT $\tt TGGGCGTGCACGCCAAGTCGTCCGATTGGGGGTTGCAGGCGGGCTACATTCCCGTCAACCCGAATCTTTC$ ${\tt CAAACTGTTCGGCCGTGCGCCCGAGGTGATCGCGCGGGCCGACAACGACGTCAACAGCAGCCTGGCGCAT}$ GGCCATACCGCGGTCGACCTGACGCTGTCGAAAGAGCGGCTTGACTATCTGCGGCAAGCGGGCCTGGTCA ${\tt ATCGGCATGCCGCCGGTATTCCACTGACGGCGGATATCGACATGTTCGCCATCATGCCGCATCTGTCCACTGTCACTGTCCACTGTCACTGTCCACTGTCACTGTCACTGTCCACTGTC$ ACTTCCGCGACTCGGCGCGCAGTTCGGTGACCAGCGGCGATTCGGTGACCGATTACCTGGCGCGCACGCG GCCGGCGCCCGTTCCGCAGTGGCACCGAGGCGCGCCAGTTCCGCTACGACGCGACATGAATATCG $\tt GGACGTGGTCCAGCATGGCACTGAGCAGAACAATCCTTTCCCGGAGGCAGATGAGAAGATTTTCGTCGTA$ AGGGCTATGTCTTCTACGAGAACCGTGCGTACGGCGTGGCGGGAAAAGCCTGTTCGACGATGGGCTGGG

Fig. 1E

(B. bronchiseptica/continuación)

CCCGGATTGCGGCGGCCGTCGCTGGCCGCAGTGGAACGCCAGGATTCCGGCTATGACAGCCTTGATGGGG TGGGATCGCGATCGTTCTCGTTGGGCGAGGTGTCCGACATGGCCGCCGTGGAAGCGGCGGAACTGGAAAT GACCCGGCAAGTCTTGCACGCCGGGGCGCGGCAGGACGATGCCGAGCCGGGCGTGAGCGGTGCGTCGGCG CCCTGATGACGCAATTCGGCCGGGCCGGTTCCACCAACACGCCGCAGGAAGCGGCCTCGTTGTCGGCGGC CGTGTTCGGCTTGGCCAGCGCCAGCACCGCGCGTGGCCGAAACCGTGAGCGGTTTTTTTCCGCGGGTCTTCG CGCTGGGCCGGCGTTTCGGCGTGGCTGGCGCGCGATGGCGCTGGGAGGCGGCATCGCCGCCGCCGTTG GCGCCGGGATGTCGTTGACCGATGACGCCCCGGCCGGACAGAAGGCCGCCGCCGCCGCCGAGATCGCGCT ACCAGCGGCTTGCAGGTGGCGGGGGGCGTCGGCCGGGCGCGCTTTGGCCGCGCGCTCAGTC CCATGGAGATCTACGGCCTGGTGCAGCAATCGCACTATGCGGATCAGCTGGACAAGCTGGCGCAGGAATC GAGCGCATACGGTTACGAGGGCGACGCCTTGCTGGCCCAGCTGTATCGCGACAAGACGGCCGCCGAGGGC GCCGTCGCCGGCGTCTCCGCCGTCCTGAGCACGGTGGGGGCTGCGGTGTCGATCGCCGCGGCGGCCAGCG TGGTAGGCGCCCGGTGGCGGTGGTCACTTCCTTGTTGACCGGGGCTCTCAACGGCATCCTGCGCGGCGT GCGTACTTCGAGAAAAACCTGCAGGCGCGTCACGAACAACTGGCCAATTCGGACGGCCTACGGAAAATGC TGGCCGACCTGCAGGCCGGGTGGAACGCCAGCAGCGTGATCGGGGTGCAGACGACAGAGATTTCCAAGTC GGCGCTCGAACTGGCCGCCATTACCGGCAACGCGGACAACCTGAAATCCGCCGACGTGTTCGTGGACCGC TTCATCCAGGGCGAGCGGTGGCCGGCCGGCGGTGTTCCTCGACGTCGCCGCCGCCGCCGCCGCATCGATATCG CCAGCCGCAAGGGCGAGCGCCGCGCTGACGTTCATCACGCCGCTGGCCGCCAGGAGAAGAGCAGCG CGCATCCGGGACGGCCGGCCGACACCACCATCGATCTGGCCAAGGTGGTGTCGCAACTGGTCGACGCCA ATGGCGTGCTCAAGCACAGCATCAAACTGGAGGTGATCGGCGGAGATGGCGATGATGTCGTGCTTGCCAA TGCTTCGCGCATCCATTACGACGGCGCGCGGGAACCAACACGGTCAGCTATGCCGCCCTGGGCCGACAG GATTCCATTACCGTGTCCGCCGACGGGGAACGTTTCAACGTGCGCAAGCAGTTGAACAACGCCAACGTGT ATCGCGAAGGCGTGGCTACCCAGAAAACCGCCTACGGCAAGCGCACGGAGAATGTCCAATACCGCCATGT CGAGCTGGCCCGTGTCGGGCAACTGGTGGAGGTCGACACGCTCGAGCATGTGCAGCACATCATCGGCGGG CGACGACGTATTCCTGCAGGACCTGGGGGTATGGAGCAACCAGCTCGATGGCGGCGCGGGCGTCGATACC GTGAAGTACAACGTGCACCAGCCTTCCGAGGAACGCCTCGAACGCATGGGCGACACGGGCATCCATGCCG ATCTTCAAAAGGGCACGGTCGAGAAGTGGCCGGCCCTGAACCTGTTCAGCGTCGACCATGTCAAGAATAT GACGATGGCAACGACACGATACACGGCCGGGGCGGCGACGATATCCTGCGCGGCGGCCTGGGCCTGGACA CGCTGTATGGCGAGGACGGCAACGACATCTTCCTGCAGGACGACGACGACGTCAGCGATGACATCGACGG TGGCGCGGGACTGGACACCGTCGACTATTCCGCCATGATCCATGCAGGCAAGATCGTTGCGCCGCATGAA ACTACGACAGTGTCCGCAGTGTCGAAAACGTCATCGGCACGAGCATGAAGGATGTGCTCATCGGCGACGC GCGCGGCGGGGCTGGGTGGATACCGTGGATTACAGCCAGGCGGCGCGCATGCCGGCGTTGCCACGGGT CGCATCGGGCTGGGTATTCTGGCGGACCTGGGCGCCGCCGCCGCCACAAGCTGGGCGAGGCCGGCAGCA GCGCCTACGATACGGTTTCCGGCATCGAAAATGTGGTGGGCACGGAACTGGCCGACCGCATCACGGGCGA GGGTTCGCCAGCCTGATGGACGAACCCGAAACCAGCACGTGTTGCGCCATATCGAGAACGCCGTGGGCA GCGTGCGTGATGACGTGCTGATCGGCGACGCCCAACGTCCTCAATGGCCTGGCGGGCAACGACGT GCTGTCCGGCGGCGCCGGCGACGATGTGCTGCTGGGCGACGAGGGCTCGGACCTGCTCAGCGGCGATGCG GGCAACGACGATCTGTTCGGCGGGCAGGGCGATGATACCTATCTGTTCGGGGCCGGGTACGGACATGACA $\tt CGATCTACGAATCGGGCGGCGGCCATGACACCATCCGTATCAACGCGGGGGCGGACCAGCTGTGGTTTGC$ GCGCCAGGGCAACGACCTGGAGATCCGCATTCTTGGCACCGACGATGCACTTACCGTGCACGACTGGTAT GCCGGACACGCTGATGCAGTCCCTGGCTGTCAACTGGCGCTGA (SEQ ID NO:6)

Fig. 1F

parapertussis	${\tt MLDVWFLQKDEVLSATHRLRRCESVQSTTYRQIHMQQSHQAGYANAADRESGIPAAVLDG}$	
bronchiseptica	MLDVWFLQKDEVLSATHRLRRCESVQSTTYRQIHMQQSHQAGYANAADRESGIPAAVLDG	
pertussis	MQQSHQAGYANAADRESGIPAAVLDG	26

parapertussis	IKAVAKEKNATLMFRLVNPHSTSLIAEGVATKGLGVHAKSSDWGLQAGYIPVNPNLSKLF	120
bronchiseptica	IKAVAKEKNATLMFRLVNPHSTSLIAEGVATKGLGVHAKSSDWGLQAGYIPVNPNLSKLF	120
pertussis	IKAVAKEKNATLMFRLVNPHSTSLIAEGVATKGLGVHAKSSDWGLQAGYIPVNPNLSKLF	86

parapertussis	GRAPEVIARADNDVNSSLAHGHTAVDLTLSKERLDYLRQAGLVTGMADGVVASNHAGYEQ	180
bronchiseptica	GRAPEVIARADNDVNSSLAHGHTAVDLTLSKERLDYLRQAGLVTGMADGVVASNHAGYEQ	
pertussis	GRAPEVIARADNDVNSSLAHGHTAVDLTLSKERLDYLRQAGLVTGMADGVVASNHAGYEQ	
•	*********************************	
parapertussis	FEFRVKETSDGRYAVQYRRKGGDDFEAVKVIGNAAGIPLTADIDMFAIMPHLSNFRDSAR	240
bronchiseptica	FEFRVKETSDGRYAVQYRRKGGDDFEAVKVIGNAAGIPLTADIDMFAIMPHLSNFRDSAR	
pertussis	FEFRVKETSDGRYAVQYRRKGGDDFEAVKVIGNAAGIPLTADIDMFAIMPHLSNFRDSAR	
•	***************	
parapertussis	SSVTSGDSVTDYLARTRRAASEATGGLDRERIDLLWKIARAGARSAVGTEARRQFRYDGD	300
bronchiseptica	SSVTSGDSVTDYLARTRRAASEATGGLDRERIDLLWKIARAGARSAVGTEARROFRYDGD	
pertussis	SSVTSGDSVTDYLARTRRAASEATGGLDRERIDLLWKIARAGARSAVGTEARROFRYDGD	266

parapertussis	MNIGVITDFELEVRNALNRRAHAVGAQDVVQHGTEQNNPFPEADEKIFVVSATGESQMLT	360
bronchiseptica	MNIGVITDFELEVRNALNRRAHAVGAQDVVQHGTEQNNPFPEADEKIFVVSATGESQMLT	360
pertussis	MNIGVITDFELEVRNALNRRAHAVGAQDVVQHGTEQNNPFPEADEKIFVVSATGESQMLT	326

parapertussis	RGQLKEYIGQQRGEGYVFYENRAYGVAGKSLFDDGLGAAPGVPGGRSKSSPDVLETVPAS	420
bronchiseptica	RGQLKEYIGQQRGEGYVFYENRAYGVAGKSLFDDGLGAAPGVPGGRSKSSPDVLETVPAS	420
pertussis	RGQLKEYIGQQRGEGYVFYENRAYGVAGKSLFDDGLGAAPGVPSGRSKFSPDVLETVPAS	386

parapertussis	PGLRRPSLGAVERQDSGYDSLDGVGSRSFSLGEVSDMAAVEAAELEMTRQVLHAGARQDD	480
bronchiseptica	PGLRRPSLGAVERQDSGYDSLDGVGSRSFSLGEVSDMAAVEAAELEMTRQVLHAGARQDD	480
pertussis	PGLRRPSLGAVERQDSGYDSLDGVGSRSFSLGEVSDMAAVEAAELEMTRQVLHAGARQDD	446

parapertussis	AEPGVSGASAHWGQRALQGAQAVAAAQRLVHAIALMTQFGRAGSTNTPQEAASLSAAVFG	540
bronchiseptica	${\tt AEPGVSGASAHWGQRALQGAQAVAAAQRLVHAIALMTQFGRAGSTNTPQEAASLSAAVFG}$	540
pertussis	AEPGVSGASAHWGQRALQGAQAVAAAQRLVHAIALMTQFGRAGSTNTPQEAASLSAAVFG	506

parapertussis	LGEASSAVAETVSGFFRGSSRWAGGFGVAGGAMALGGGIAAAVGAGMSLTDDAPAGQKAA	600
bronchiseptica	${\tt LGEASSAVAETVSGFFRGSSRWAGGFGVAGGAMALGGGIAAAVGAGMSLTDDAPAGQKAA}$	600
pertussis	${\tt LGEASSAVAETVSGFFRGSSRWAGGFGVAGGAMALGGGIAAAVGAGMSLTDDAPAGQKAA}$	566

parapertussis	VGAEIALQLTGGTVELASSIALALAAARGVTSGLQVAGASAGAAAGALAAALSPMEIYGL	660
bronchiseptica	${\tt AGAEIALQLTGGTVELASSIALALAAARGVTSGLQVAGASAGAAAGALAAALSPMEIYGL}$	660
pertussis	${\tt AGAEIALQLTGGTVELASSIALALAAARGVTSGLQVAGASAGAAAGALAAALSPMEIYGL}$	626
	. *******************	
parapertussis	VQQSHYADQLDKLAQESSAYGYEGDALLAQLYRDKTAAEGAVAGVSAVLSTVGAAVSIAA	720
bronchiseptica	VQQSHYADQLDKLAQESSAYGYEGDALLAQLYRDKTAAEGAVAGVSAVLSTVGAAVSIAA	720
pertussis	${\tt VQQSHYADQLDKLAQESSAYGYEGDALLAQLYRDKTAAEGAVAGVSAVLSTVGAAVSIAA}$	686

Fig. 2A

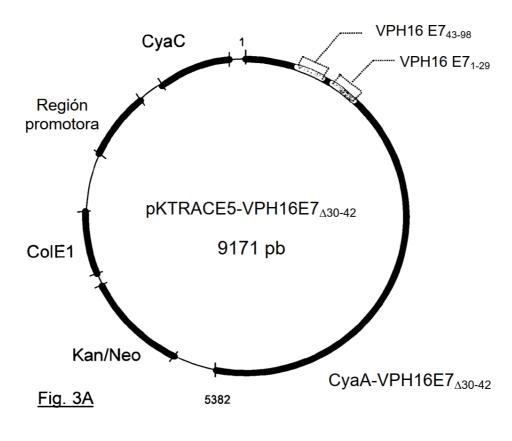
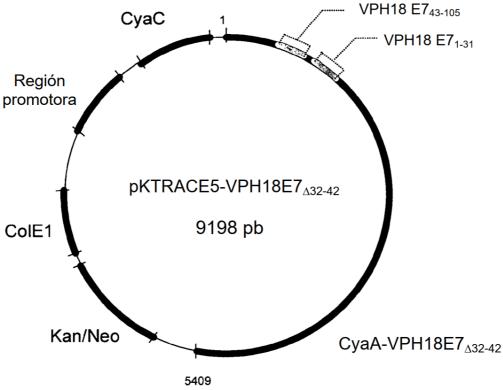
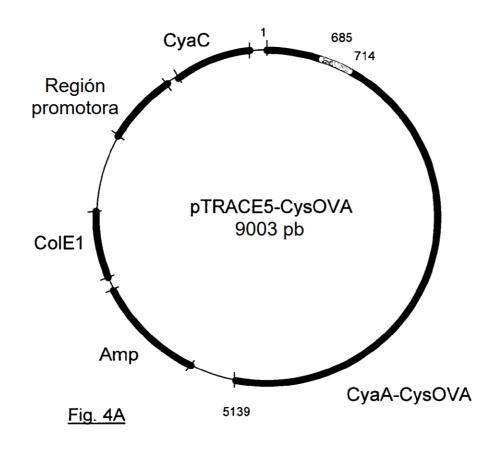
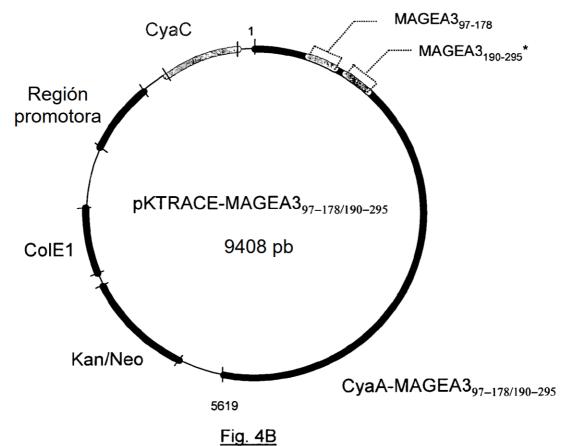

parapertussis bronchiseptica pertussis	AASVVGAPVAVVTSLLTGALNGILRGVQQPIIEKLANDYARKIDELGGPQAYFEKNLQAR AASVVGAPVAVVTSLLTGALNGILRGVQQPIIEKLANDYARKIDELGGPQAYFEKNLQAR AASVVGAPVAVVTSLLTGALNGILRGVQQPIIEKLANDYARKIDELGGPQAYFEKNLQAR	780
parapertussis bronchiseptica pertussis	HEQLANSDGLRKMLADLQAGWNASSVIGVQTTEISKSALELAAITGNADNLKSADVFVDR HEQLANSDGLRKMLADLQAGWNASSVIGVQTTEISKSALELAAITGNADNLKSADVFVDR HEQLANSDGLRKMLADLQAGWNASSVIGVQTTEISKSALELAAITGNADNLKSVDVFVDR ************************************	840
parapertussis bronchiseptica pertussis	FIQGERVAGQPVVLDVAAGGIDIASRKGERPALTFITPLAAPGEEQRRRTKTGKSEFTTF FIQGERVAGQPVVLDVAAGGIDIASRKGERPALTFITPLAAPGEEQRRRTKTGKSEFTTF FVQGERVAGQPVVLDVAAGGIDIASRKGERPALTFITPLAAPGEEQRRRTKTGKSEFTTF *:*********************************	900
parapertussis bronchiseptica pertussis	VEIVGKQDRWRIRDGAADTTIDLAKVVSQLVDANGVLKHSIKLEVIGGDGDDVVLANASR VEIVGKQDRWRIRDGAADTTIDLAKVVSQLVDANGVLKHSIKLEVIGGDGDDVVLANASR VEIVGKQDRWRIRDGAADTTIDLAKVVSQLVDANGVLKHSIKLDVIGGDGDDVVLANASR ************************************	960
parapertussis bronchiseptica pertussis	IHYDGGAGTNTVSYAALGRQDSITVSADGERFNVRKQLNNANVYREGVATQKTAYGKRTE IHYDGGAGTNTVSYAALGRQDSITVSADGERFNVRKQLNNANVYREGVATQKTAYGKRTE IHYDGGAGTNTVSYAALGRQDSITVSADGERFNVRKQLNNANVYREGVATQTTAYGKRTE	1020
parapertussis bronchiseptica pertussis	NVQYRHVELARVGQLVEVDTLEHVQHIIGGAGNDSITGNAHDNFLAGGAGDDRLDGGAGN NVQYRHVELARVGQLVEVDTLEHVQHIIGGAGNDSITGNAHDNFLAGGAGDDRLDGGAGN NVQYRHVELARVGQLVEVDTLEHVQHIIGGAGNDSITGNAHDNFLAGGSGDDRLDGGAGN **********************************	1080
parapertussis bronchiseptica pertussis	DTLVGGEGHNTVVGGAGDDVFLQDLGVWSNQLDGGAGVDTVKYNVHQPSEERLERMGDTG DTLVGGEGHNTVVGGAGDDVFLQDLGVWSNQLDGGAGVDTVKYNVHQPSEERLERMGDTG DTLVGGEGQNTVIGGAGDDVFLQDLGVWSNQLDGGAGVDTVKYNVHQPSEERLERMGDTG ******:**:***************************	1140
parapertussis bronchiseptica pertussis	IHADLQKGTVEKWPALNLFSVDHVKNIENLHGSSLNDSIAGDDRDNELWGDDGNDTIHGR IHADLQKGTVEKWPALNLFSVDHVKNIENLHGSSLNDSIAGDDRDNELWGDDGNDTIHGR IHADLQKGTVEKWPALNLFSVDHVKNIENLHGSRLNDRIAGDDQDNELWGHDGNDTIRGR ***********************************	1200
parapertussis bronchiseptica pertussis	GGDDILRGGLGLDTLYGEDGNDIFLQDDETVSDDIDGGAGLDTVDYSAMIHAGKIVAPHE GGDDILRGGLGLDTLYGEDGNDIFLQDDETVSDDIDGGAGLDTVDYSAMIHAGKIVAPHE GGDDILRGGLGLDTLYGEDGNDIFLQDDETVSDDIDGGAGLDTVDYSAMIHPGRIVAPHE ************************************	1260
parapertussis bronchiseptica pertussis	YGFGIEADLSEGWVRKAARRGMGYYDSVRSVENVIGTSMKDVLIGDAQANTLMGQGGDDT YGFGIEADLSEGWVRKAARRGMDYYDSVRSVENVIGTSMKDVLIGDAQANTLMGQGGDDT YGFGIEADLSREWVRKASALGVDYYDNVRNVENVIGTSMKDVLIGDAQANTLMGQGGDDT **********************************	1320
parapertussis bronchiseptica pertussis	VRGGDGDDLLFGGDGNDMLYGDAGNDTLYGGLGDDTLEGGAGNDWFGQTPAREHDVLRGG VRGGDGDDLLFGGDGNDMLYGDAGNDTLYGGLGDDTLEGGAGNDWFGQTPAREHDVLRGG VRGGDGDDLLFGGDGNDMLYGDAGNDTLYGGLGDDTLEGGAGNDWFGQTQAREHDVLRGG	1380
parapertussis bronchiseptica pertussis	AGVDTVDYSQAGAHAGVATGRIGLGILADLGAGRVDKLGEAGSSAYDTVSGIENVVGTEL AGVDTVDYSQAGAHAGVATGRIGLGILADLGAGRVDKLGEAGSSAYDTVSGIENVVGTEL DGVDTVDYSQTGAHAGIAAGRIGLGILADLGAGRVDKLGEAGSSAYDTVSGIENVVGTEL	1440

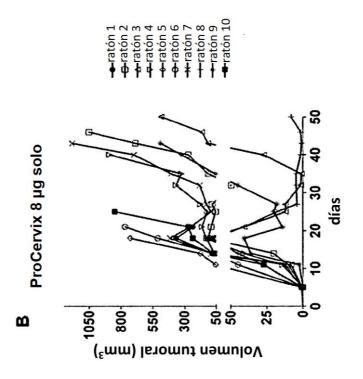
Fig. 2B

ES 2 748 381 T3

parapertussis bronchiseptica pertussis	ADRITGDAQANVLRGAGGADVLAGGEGDDVLLGGEGDDQLSGDAGRDRLYGEAGDDWFFQ ADRITGDAQANVLRGAGGADVLAGGEGDDVLLGGDGDDQLSGDAGRDRLYGEAGDDWFFQ ADRITGDAQANVLRGAGGADVLAGGEGDDVLLGGDGDDQLSGDAGRDRLYGEAGDDWFFQ ***********************************	1500
parapertussis bronchiseptica pertussis	DAANAGNLLDGGDGNDTVDFSGPGRGLDAGAKGVFLSLGKGFASLMDEPETSNVLRHIEN DAANAGNLLDGGDGNDTVDFSGPGRGLDAGAKGVFLSLGKGFASLMDEPETSNVLRHIEN DAANAGNLLDGGDGRDTVDFSGPGRGLDAGAKGVFLSLGKGFASLMDEPETSNVLRNIEN ***********************************	1560
parapertussis bronchiseptica pertussis	AVGSVRDDVLIGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGNDDLFGGQG AVGSVRDDVLIGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGNDDLFGGQG AVGSARDDVLIGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGNDDLFGGQG ****.******************************	1620
parapertussis bronchiseptica pertussis	DDTYLFGAGYGHDTIYESGGGHDTIRINAGADQLWFARQGNDLEIRILGTDDALTVHDWY DDTYLFGAGYGHDTIYESGGGHDTIRINAGADQLWFARQGNDLEIRILGTDDALTVHDWY DDTYLFGVGYGHDTIYESGGGHDTIRINAGADQLWFARQGNDLEIRILGTDDALTVHDWY	1680
parapertussis bronchiseptica pertussis	RDADHRVEAIHAANQAIDPAGIEKLVEAMAQYPDPGAAAAAPPAARVPDTLMQSLAVNWR RDADHRVEAIHAANQAIDPAGIEKLVEAMAQYPDPGAAAAAPPAARVPDTLMQSLAVNWR RDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPDPGAAAAAPPAARVPDTLMQSLAVNWR	1740

Fig. 2C


Fig. 3B

MOOSHOAGYANAADRESGIPAAVLDGIKAVAKEKNATLMFRLVNPHSTSL IAEGVATKGLGVHAKSSDWGLQAGYIPVNPNLSKLFGRAPEVIARADNDV NSSLAHGHTAVDLTLSKERLDYLRQAGLVTGMADGVVASNHAGYEQFEFR VKETSDGRYAVOYRRKGGDDFEAVKVIGNAAGIPLTADLOIDMFAIMPHL SNFRDSARSSVTSGDSVTDYLARTRRASTFPDLESEFQAALSRKVAELVH FLLLKYRAREPVTKAEMLGSVVGNWQYFFPVIFSKASSSLQLVFGIELME VDPIGHLYIFGTRARLKLLWKIARAGARSAVGTEARROFRYDGDMNIGVI TDFELEVRNALNRRAHAVGAODVVOHGTEONNPFPEADEKIFVVSATGLG DNQIMPKAGLLIIVLAIIAREGDCAPEEKIPKKLLTQHFVQENYLEYRQV PGSDPACYEFLWGPRALVETSYVKVLHHMVKISG**TS**ESOMLTRGQLKEYI GQQRGEGYVFYENRAYGVAGKSLFDDGLGAAPGVPSGRSKFSPDVLETVP ASPGLRRPSLGAVERODSGYDSLDGVGSRSFSLGEVSDMAAVEAAELEMT ROVLHAGARODDAEPGVSGASAHWGQRALQGAQAVAAAQRLVHAIALMTQ FGRAGSTNTPOEAASLSAAVFGLGEASSAVAETVSGFFRGSSRWAGGFGV AGGAMALGGGIAAAVGAGMSLTDDAPAGOKAAAGAEIALOLTGGTVELAS SIALALAAARGVTSGLOVAGASAGAAAGALAAALSPMEIYGLVQQSHYAD OLDKLAOESSAYGYEGDALLAOLYRDKTAAEGAVAGVSAVLSTVGAAVSI AAAASVVGAPVAVVTSLLTGALNGILRGVQQPIIEKLANDYARKIDELGG POAYFEKNLOARHEOLANSDGLRKMLADLOAGWNASSVIGVOTTEISKSA LELAAITGNADNLKSVDVFVDRFVQGERVAGQPVVLDVAAGGIDIASRKG ERPALTFITPLAAPGEEQRRRTKTGKSEFTTFVEIVGKQDRWRIRDGAAD TTIDLAKVVSQLVDANGVLKHSIKLDVIGGDGDDVVLANASRIHYDGGAG TNTVSYAALGRQDSITVSADGERFNVRKQLNNANVYREGVATQTTAYGKR TENVOYRHVELARVGQLVEVDTLEHVQHIIGGAGNDSITGNAHDNFLAGG SGDDRLDGGAGNDTLVGGEGONTVIGGAGDDVFLQDLGVWSNQLDGGAGV DTVKYNVHOPSEERLERMGDTGIHADLQKGTVEKWPALNLFSVDHVKNIE NLHGSRLNDRIAGDDQDNELWGHDGNDTIRGRGGDDILRGGLGLDTLYGE DGNDIFLODDETVSDDIDGGAGLDTVDYSAMIHPGRIVAPHEYGFGIEAD LSREWVRKASALGVDYYDNVRNVENVIGTSMKDVLIGDAQANTLMGQGGD DTVRGGDGDDLLFGGDGNDMLYGDAGNDTLYGGLGDDTLEGGAGNDWFGQ TOAREHDVLRGGDGVDTVDYSOTGAHAGIAAGRIGLGILADLGAGRVDKL GEAGSSAYDTVSGIENVVGTELADRITGDAQANVLRGAGGADVLAGGEGD DVLLGGDGDDQLSGDAGRDRLYGEAGDDWFFQDAANAGNLLDGGDGRDTV DFSGPGRGLDAGAKGVFLSLGKGFASLMDEPETSNVLRNIENAVGSARDD VLIGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGNDDLFGG QGDDTYLFGVGYGHDTIYESGGGHDTIRINAGADQLWFARQGNDLEIRIL GTDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPDPGAA AAAPPAARVPDTLMQSLAVNWR (SEQ ID NO:7)

Fig. 4C

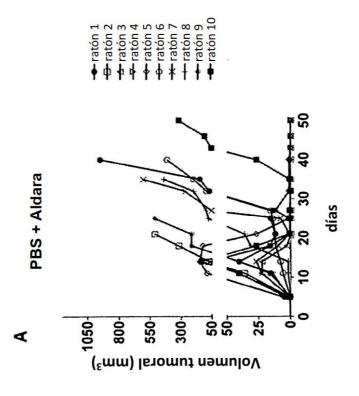
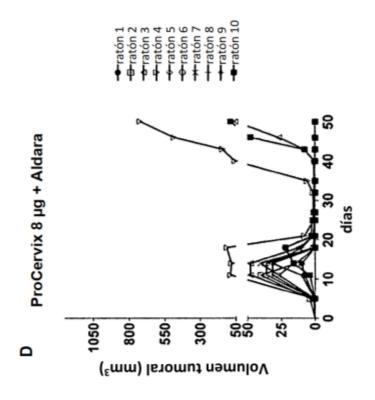
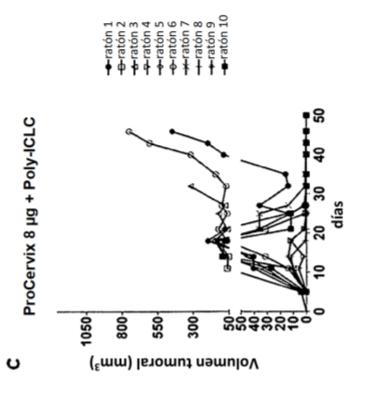
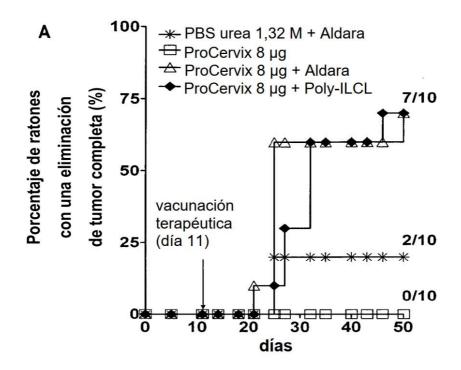





Fig. 5

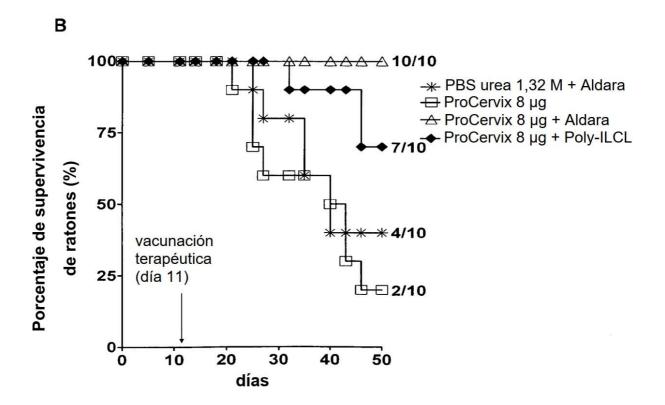


Fig. 6

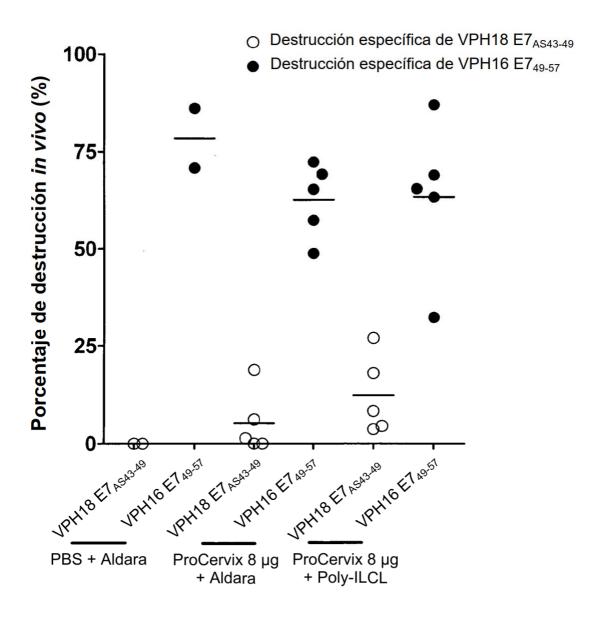


Fig. 7

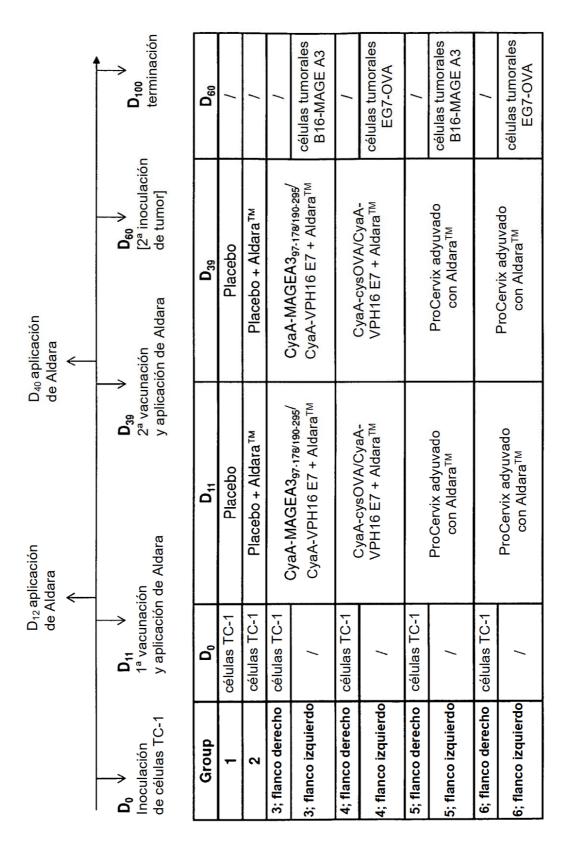


Fig. 8

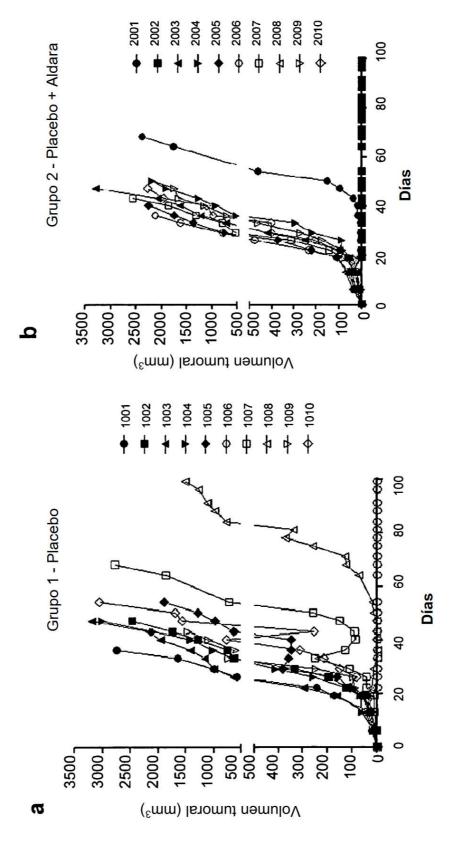
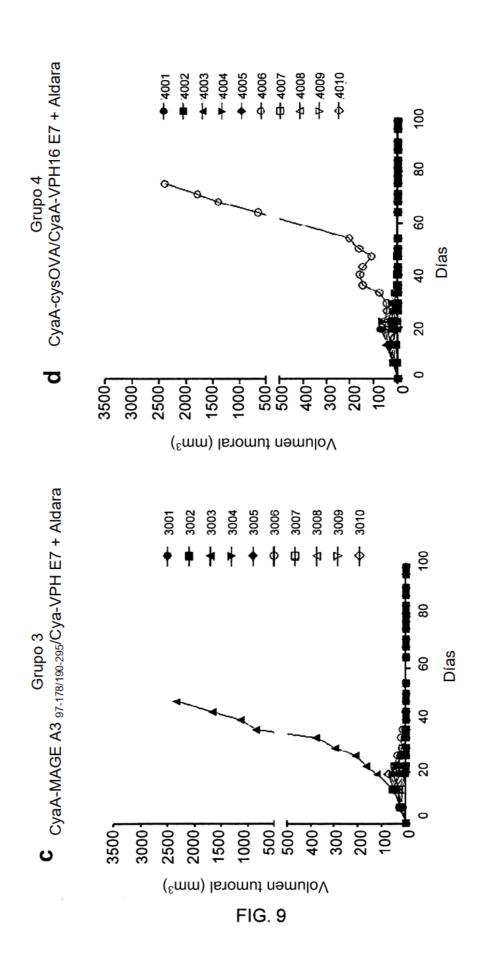
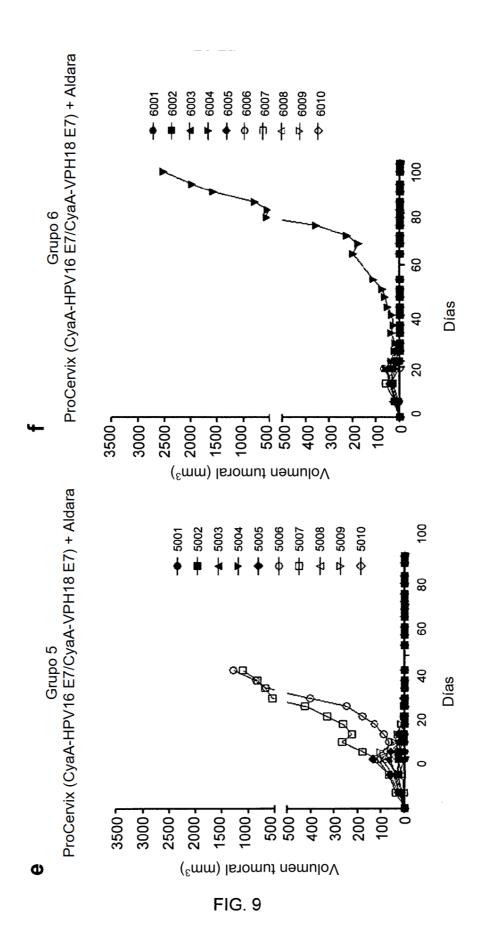




FIG. 9

84

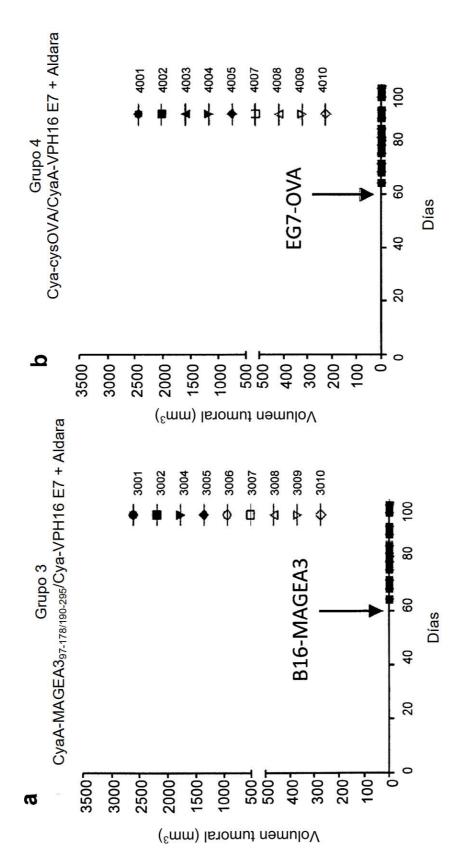


FIG. 10

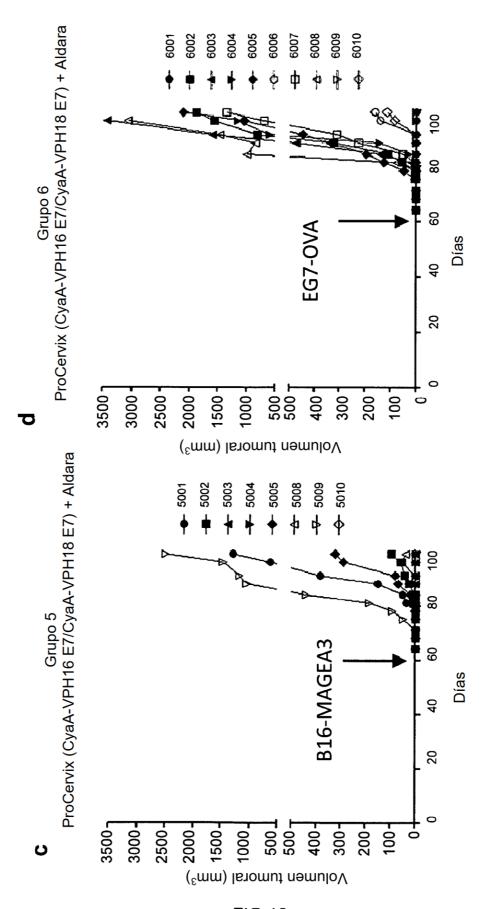


FIG.10