

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 748 694

51 Int. Cl.:

C07D 471/10 (2006.01) C07D 471/20 (2006.01) A61K 31/435 (2006.01) A61K 31/438 (2006.01) A61P 25/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 20.11.2015 PCT/EP2015/002332

(87) Fecha y número de publicación internacional: 26.05.2016 WO16078770

(96) Fecha de presentación y número de la solicitud europea: 20.11.2015 E 15801329 (2)

(97) Fecha y número de publicación de la concesión europea: 03.07.2019 EP 3221314

(54) Título: Compuestos de espiroisoquinolin-1,4'-piperidina con actividad multimodal contra el dolor

(30) Prioridad:

21.11.2014 EP 14382465

Fecha de publicación y mención en BOPI de la traducción de la patente: 17.03.2020

(73) Titular/es:

ESTEVE PHARMACEUTICALS, S.A. (100.0%) Passeig de la Zona Franca, 109, 4ª Planta 08038 Barcelona, ES

(72) Inventor/es:

ALMANSA-ROSALES, CARMEN; GARCÍA-LÓPEZ, MÓNICA y CAAMAÑO-MOURE, ANA-MARÍA

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Compuestos de espiroisoguinolin-1,4'-piperidina con actividad multimodal contra el dolor

Campo de la invención

10

15

20

25

30

35

50

55

La presente invención se refiere a compuestos con actividad farmacológica dual contra tanto el receptor sigma (σ) como el receptor opioide μ (MOR o receptor opioide μ) y más particularmente a derivados de espiroisoquinolin-1,4'-piperidina que presentan esta actividad farmacológica, a procedimientos para preparar tales compuestos, a composiciones farmacéuticas que los comprenden y a su uso en terapia, en particular para el tratamiento del dolor.

Antecedentes de la invención

El control adecuado del dolor constituye un reto importante, debido a que los tratamientos disponibles en la actualidad en muchos casos proporcionan únicamente mejoras moderadas, lo cual hace que muchos pacientes no experimenten alivio [Turk DC, Wilson HD, Cahana A. Treatment of chronic non-cancer pain. *Lancet* 377, 2226-2235 (2011)]. El dolor afecta a una gran proporción de la población con una prevalencia estimada de aproximadamente un 20% y su incidencia, en particular en el caso del dolor crónico, es cada vez mayor debido al envejecimiento de la población. Además, el dolor está claramente relacionado con enfermedades concomitantes, tales como la depresión, la ansiedad y el insomnio, las cuales producen pérdidas asociadas con la productividad y cargas socioeconómicas importantes [Goldberg DS, McGee SJ. Pain as a global public health priority. *BMC Public Health*. 11, 770 (2011)]. Las terapias contra el dolor existentes incluyen fármacos antiinflamatorios no esteroides (AINE), agonistas opioides, bloqueadores de los canales de calcio y antidepresivos, pero distan de ser idóneas en lo que respecta a su índice de seguridad. Todas ellas presentan una eficacia limitada y diversos efectos secundarios que imposibilitan su uso, especialmente en los estados crónicos.

Tal como se ha mencionado anteriormente, se dispone de pocas clases de terapias para el tratamiento del dolor y los opioides se encuentran entre los más eficaces, especialmente a la hora de tratar estados de dolor intenso. Actúan a través de tres tipos diferentes de receptores opioides (mu, kappa y gamma), los cuales son receptores acoplados a proteínas G transmembrana (GPCR, por sus siglas en inglés). No obstante, la principal acción analgésica se atribuye a la activación del receptor opioide µ (MOR). Sin embargo, la administración general de agonistas de MOR está limitada debido a sus importantes efectos secundarios tales como estreñimiento, depresión respiratoria, tolerancia, emesis y dependencia física [Meldrum, M.L. (Ed.). Opioids and Pain Relief: A Historical Perspective. Progress in Pain Research and Management, Vol 25, IASP Press, Seattle, 20031, Además, los agonistas de MOR no son idóneos para tratar el dolor crónico según indica la efectividad reducida de la morfina contra afecciones de dolor crónico. Esto ha sido demostrado especialmente para las afecciones de dolor crónico de origen neuropático o inflamatorio, en comparación con su elevada potencia contra el dolor agudo. El descubrimiento de que el dolor crónico puede provocar una reducción de MOR puede ofrecer una base molecular para la relativa carencia de eficacia de la morfina en los casos de tratamiento a largo plazo [Dickenson, A.H., Suzuki, R. Opioids in neuropathic pain: Clues from animal studies. Eur J Pain 9, 113-6 (2005)]. Es más, el tratamiento prolongado con morfina puede provocar tolerancia a sus efectos analgésicos, muy probablemente debido a la reducción de MOR inducida por el tratamiento, su internalización y otros mecanismos reguladores. Como consecuencia de esto, el tratamiento a largo plazo puede generar incrementos sustanciales de la dosis con el fin de mantener un alivio del dolor satisfactorio desde un punto de vista clínico, pero el estrecho margen terapéutico de los agonistas de MOR al final provoca efectos secundarios inaceptables y un cumplimiento bajo por parte del paciente.

40 El receptor sigma-1 (σ₁) se descubrió hace 35 años y al principio se asignó a un subtipo nuevo de la familia de opioides, pero posteriormente y basándose en los estudios de los enantiómeros de SKF-10,047, se estableció su naturaleza independiente. El primer vínculo del receptor σ1 con la analgesia fue establecido por Chien y Pasternak [Chien CC, Pasternak GW. Sigma antagonists potentiate opioid analgesia in rats. Neurosci. Lett. 190, 137-9 (1995)], quienes lo describieron como un sistema antiopioide endógeno, basándose en el descubrimiento de que los agonistas del receptor σ₁ contrarrestaban la analgesia mediada por el receptor opioide, mientras que los antagonistas del receptor σ₁, tales como el haloperidol, la fomentaban.

Muchas pruebas preclínicas adicionales han indicado que el receptor σ_1 desempeña una función clara en el tratamiento del dolor [Zamanillo D, Romero L, Merlos M, Vela JM. Sigma 1 receptor: A new therapeutic target for pain. *Eur. J. Pharmacol*, 716, 78-93 (2013)]. El desarrollo de ratones con el receptor σ_1 desactivado, los cuales no muestran ningún fenotipo obvio y perciben estímulos sensoriales de forma normal, fue un hito clave en esta labor. Se observó que en las afecciones fisiológicas las respuestas de los ratones con el receptor σ_1 desactivado a estímulos mecánicos y térmicos no se podían diferenciar de las de los ratones genéticamente intactos pero se demostró que presentaban una resistencia mucho mayor a desarrollar comportamientos debidos al dolor que los ratones genéticamente intactos cuando se tenía en cuenta la hipersensibilidad. Por consiguiente, en los ratones con el receptor σ_1 desactivado la capsaicina no indujo hipersensibilidad mecánica, se redujeron ambas fases del dolor inducido por formalina y se atenuaron fuertemente la hipersensibilidad al frío y mecánica tras la ligadura parcial del nervio ciático o tras el tratamiento con paclitaxel, que son modelos de dolor neuropático. Muchas de estas acciones se confirmaron utilizando antagonistas del receptor σ_1 y propiciaron la promoción de un compuesto, S1RA, a ensayos clínicos para el tratamiento

de diferentes estados de dolor. El compuesto S1RA ejerció una reducción sustancial del dolor neuropático y del estado anhedónico tras una lesión nerviosa (es decir, afecciones de dolor neuropático) y, tal como se ha demostrado en un modelo de autoadministración instrumental, los ratones con lesiones nerviosas, pero que no eran ratones sometidos a una intervención simulada, adquirieron la respuesta instrumental para obtenerlo (supuestamente para conseguir aliviar el dolor), lo cual indica que el antagonismo del receptor σ_1 alivia el dolor neuropático y también hace frente a algunas enfermedades concomitantes (es decir, la anhedonia, un síntoma fundamental de la depresión) relacionadas con estados de dolor.

El dolor es de naturaleza multimodal, debido a que en casi todos los estados de dolor participan diversos mediadores, vías de señalización y mecanismos moleculares. Por consiguiente, las terapias monomodales no consiguen proporcionar un alivio completo del dolor. En la actualidad, la combinación de las terapias existentes es una práctica clínica habitual y se están realizando numerosos esfuerzos centrados en evaluar la mejor combinación de fármacos disponibles en ensayos clínicos [Mao J, Gold MS, Backonja M. Combination drug therapy for chronic pain: a call for more clinical studies. *J. Pain* 12, 157-166 (2011)]. Por consiguiente, se necesitan con urgencia agentes terapéuticos innovadores para satisfacer esta necesidad médica no cubierta.

Tal como se ha mencionado previamente, los opioides se encuentran entre los analgésicos más potentes pero también son responsables de diversos efectos secundarios, los cuales limitan considerablemente su uso.

Por lo tanto, sigue siendo necesario descubrir compuestos que presenten una actividad farmacológica mejorada o alternativa en el tratamiento del dolor, que sean eficaces y además presenten la selectividad deseada, y que tengan unas propiedades de "accesibilidad farmacológica" satisfactorias, es decir, unas propiedades farmacéuticas satisfactorias relacionadas con la administración, la distribución, el metabolismo y la excreción.

Así pues, el problema técnico se puede formular por lo tanto como el descubrimiento de compuestos que presenten una actividad farmacológica mejorada o alternativa en el tratamiento del dolor.

En vista de los resultados existentes de las terapias y prácticas clínicas disponibles en la actualidad, la presente invención ofrece una solución combinando en un solo compuesto la unión a dos receptores diferentes relevantes para el tratamiento del dolor. Esto se ha conseguido principalmente proporcionando los compuestos de acuerdo con la invención que se unen tanto al receptor opioide μ como al receptor opioide σ_1 .

Compendio de la invención

5

10

20

25

30

En esta invención, se ha identificado una familia de derivados de espiroisoquinolin-1,4'-piperidina estructuralmente diferentes que presentan una actividad farmacológica dual frente tanto al receptor sigma (σ) como al receptor opioide μ , por lo tanto, se resuelve el problema anterior de identificación de tratamientos del dolor mejorados o alternativos proporcionando tales compuestos duales.

La invención se refiere en un aspecto a un compuesto de fórmula general (I) como se define además a continuación, el cual tiene actividad dual que se une al receptor sigma-1 y al receptor opioide μ para su uso en el tratamiento del dolor.

Debido a que esta invención tiene como objetivo proporcionar un compuesto o una serie de compuestos químicamente relacionados que actúen como ligandos duales del receptor σ_1 y el receptor opioide μ , es una realización muy preferida que el compuesto tenga una unión expresada como K_i que sea preferentemente < 1000 nM para ambos receptores, más preferentemente < 500 nM, incluso más preferentemente < 100 nM.

La invención se refiere en un aspecto principal a un compuesto de fórmula general (I),

$$R_3$$
 R_4 R_4 R_4 R_4 R_4 R_4 R_4 R_4 R_4 R_5 R_5 R_5 R_5 R_5 R_2

donde R₁, R₂, R₃, R_{3"}, R_{3"}, R₄, R_{4"} R_{5'} R_{5'}, X y n son como se definen a continuación en la descripción detallada.

Descripción detallada de la invención

25

30

5 La invención se refiere a una familia de derivados de espiroisoquinolin-1,4'-piperidina estructuralmente diferentes que presentan una actividad farmacológica dual frente tanto al receptor sigma (σ) como al receptor opioide μ, por lo tanto, se resuelve el problema anterior de identificación de tratamientos del dolor mejorados o alternativos proporcionando tales compuestos duales.

La invención se refiere en un aspecto a un compuesto con actividad dual que se une al receptor σ_1 y al receptor opioide u para su uso en el tratamiento del dolor.

Debido a que esta invención tiene como objetivo proporcionar un compuesto o una serie de compuestos químicamente relacionados que actúen como ligandos duales del receptor σ_1 y el receptor opioide μ , es una realización preferida que el compuesto tenga una unión expresada como K_i que sea preferentemente < 1000 nM para ambos receptores, más preferentemente < 500 nM, incluso más preferentemente < 100 nM.

15 El solicitante ha descubierto sorprendentemente que el problema en el que se basa la presente invención se puede resolver utilizando una estrategia analgésica equilibrada multimodal en la que se combinan dos actividades sinérgicas diferentes en un único fármaco (es decir, ligandos duales que son bifuncionales y se unen al receptor opioide μ y al receptor σ₁), de este modo se incrementa la analgesia opioide a través de la activación de σ₁ sin incrementar los efectos secundarios no deseables. Esto respalda el valor terapéutico de un compuesto dual MOR/receptor σ₁, de modo que el componente de unión al receptor σ₁ actúe como adyuvante intrínseco del componente de unión a MOR.

Esta solución ofrecía la ventaja de que los dos mecanismos se complementan el uno al otro con el fin de tratar el dolor y el dolor crónico utilizando dosis necesarias menores y mejor toleradas basándose en el fomento de la analgesia pero evitando los eventos adversos de los agonistas del receptor opioide µ.

Un compuesto dual que es capaz de unirse tanto al receptor opioide μ como al receptor σ_1 presenta un potencial terapéutico muy valioso ya que proporciona una analgesia excepcional (incrementada en comparación con la potencia del componente opioide solo) con un perfil de efectos secundarios reducido (un mayor margen de seguridad en comparación con el del componente opioide solo) frente a las terapias opioides existentes.

Convenientemente, los componentes duales de acuerdo con la presente invención presentarían además una o más de las siguientes funcionalidades: antagonismo del receptor σ_1 y agonismo del receptor opioide μ . Cabe destacar, sin embargo, que ambas funcionalidades "antagonismo" y "agonismo" también se subdividen según su efecto en subfuncionalidades como agonismo parcial o agonismo inverso. Por consiguiente, las funcionalidades del compuesto dual se deben tener en cuenta dentro de un margen relativamente amplio.

Un antagonista de uno de los receptores nombrados bloquea o reduce las respuestas mediadas por los agonistas. Las subfuncionalidades conocidas son antagonistas neutros o agonistas inversos.

Un agonista de uno de los receptores nombrados incrementa la actividad del receptor por encima de su nivel basal. Las subfuncionalidades conocidas son agonistas totales o agonistas parciales.

Además, los dos mecanismos se complementan el uno al otro ya que los agonistas de MOR solamente son marginalmente eficaces en el tratamiento del dolor neuropático, mientras que los antagonistas del receptor σ_1 presentan efectos excepcionales en modelos de dolor neuropático preclínicos. Así pues, el componente del receptor σ_1 aporta acciones analgésicas únicas en el dolor resistente a opioides. Por último, la estrategia dual presenta ventajas claras frente a los agonistas de MOR en el tratamiento del dolor crónico, ya que se necesitarían dosis menores y mejor toleradas basándose en el fomento de la analgesia pero no de los eventos adversos de los agonistas de MOR.

Otra ventaja del uso de ligandos múltiples diseñados es que existe un menor riesgo de que se produzcan interacciones entre diferentes fármacos en comparación con los cócteles o fármacos multicomponente, lo cual supone que las propiedades farmacocinéticas sean más simples y que se produzca menos variabilidad entre los pacientes. Además, esta estrategia puede mejorar el cumplimiento por parte del paciente y aumentar la aplicación terapéutica en lo que respecta a los fármacos monomecanísticos, ya que hace frente a etiologías más complejas. También se contempla como un modo para mejorar el producto de I+D obtenido utilizando la estrategia de "un fármaco-una diana", que ha sido cuestionada durante los últimos años [Bornot A, Bauer U, Brown A, Firth M, Hellawell C, Engkvist O. Systematic Exploration of Dual-Acting Modulators from a Combined Medicinal Chemistry and Biology Perspective. *J. Med. Chem*, 56, 1197-1210 (2013)].

En un aspecto particular, la presente invención se refiere a compuestos de fórmula general (I):

$$R_3$$
 R_4 R_5 R_5 R_5 R_5 R_5 R_5 R_6 R_7

donde

20

25

30

5

10

15

n es 1;

 R_1 es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilarilo sustituir, alquila

donde R_6 y R_6 se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, arilo sustituido o sin sustituir o alquilarilo sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir o alquilcicloalquilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir y alquilheterociclilo sustituido o sin sustituir;

 R_2 es hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, alquilarilo sustituir o alquilheterociclilo sustituido o sin sustituir:

ES 2 748 694 T3

en la que el alquilo, alquileno o alquinilo en R_2 , si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre $-OR_{12}$, halógeno, -CN, haloalquilo, haloalcoxi, $-SR_{12}$, $-S(O)R_{12}$ y $-S(O)_2R_{12}$;

y en la que R_{12} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir y alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir;

- 5 X se selecciona entre $-CR_xR_{x^-}$, $-CR_xOR_{14'}$, $-CR_xR_xNR_{7^-}$, $-CR_xR_xO_-$, $-CR_xR_xNR_7C(O)_-$, $-C(O)_-$, -C(O)
 - donde R_7 se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir y Boc;
 - R_x se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, $-C(O)OR_{14}$, $-C(O)NR_{14}R_{14'}$, $-NR_{14}C(O)R_{14'}$ y $-NR_{14}R_{14''}$;
 - R_x se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;
 - como alternativa, si X es - CR_xR_{x-} , R_x y R_x pueden formar, junto con el átomo de carbono al que están unidos, un heterociclilo sustituido o sin sustituir, o un cicloalquilo sustituido o sin sustituir;
- 15 R₁₄, R₁₄, y R₁₄, se seleccionan independientemente entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, alquinilo C₂₋₆ sin sustituir;
 - y en la que R_{14} se selecciona entre hidrógeno, alquilo C_{1^-6} sin sustituir, alquenilo C_{2^-6} sin sustituir, alquinilo C_{2^-6} sin sustituir y -Boc;
- R₃ se selecciona entre hidrógeno, halógeno, -R₉, -OR₉, -NO₂, -NR₉R_{9"}, -NR₉C(O)R₉, NC(O)OR₉, -NR₉S(O)₂R_{9'}, S(O)₂NR₉R_{9'}, -NR₉C(O)NR₉R_{9'}, -S(O)R₉, -S(O)₂R₉, CN, haloalquilo, haloalcoxi, -C(O)OR₉, -C(O)NR₉R_{9'}, -OCH₂CH₂OH, -NR₉S(O)₂NR₉R_{9"}, -OCOR₉ y C(CH₃)₂OR₉;
 - $R_{3''}$ y $R_{3'''}$ se seleccionan independientemente entre hidrógeno, halógeno, $-R_9$, $-OR_9$, $-NO_2$, $-NR_9R_{9''}$, $-NR_9C(O)R_{9'}$, $-NC(O)OR_9$, $-NR_9S(O)_2R_{9'}$, $-S(O)_2NR_9R_{9'}$, $-NR_9C(O)NR_9R_{9'}$, $-S(O)_2R_9$,
- 25 en la que R_9 , R_9 y R_9 , se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y acetilo sin sustituir;
 - y donde $R_{9^{m}}$ se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;
 - R_4 se selecciona entre hidrógeno, $-OR_{13}$, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, $-C(O)OR_{13}$, $-C(O)NR_{13}R_{13}$, $-NR_{13}C(O)R_{13}$, $-NR_{13}R_{13}$, $-NR_{$
 - $R_{4'}$ se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;
 - donde R₁₃, R₁₃ y R₁₃ se seleccionan independientemente entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, alquinilo C₂₋₆ sin sustituir;
 - y donde R_{13} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;
 - R_5 y $R_{5'}$ se seleccionan independientemente entre hidrógeno, o alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;
- opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.
 - En una realización, se aplica la siguiente condición:

10

30

35

- cuando X es CR_xR_x entonces R₂ no puede ser alquilarilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir ni alquilheterociclilo sustituido o sin sustituir.
 - En el contexto de esta invención, se sobreentiende que el término "alquilo" se refiere a hidrocarburos saturados lineales o ramificados, que pueden no estar sustituidos o estar sustituidos una o varias veces. Este término abarca, p. ej., -CH₃

y -CH₂-CH₃. En estos radicales, alquilo $C_{1\cdot2}$ representa alquilo C1 o C2, alquilo $C_{1\cdot3}$ representa alquilo C1, C2 o C3, alquilo $C_{1\cdot4}$ representa alquilo C1, C2, C3 o C4, alquilo $C_{1\cdot5}$ representa alquilo C1, C2, C3, C4, o C5, alquilo $C_{1\cdot6}$ representa alquilo C1, C2, C3, C4, C5, C6 o C7, alquilo $C_{1\cdot6}$ representa alquilo C1, C2, C3, C4, C5, C6 o C7, alquilo $C_{1\cdot6}$ representa alquilo C1, C2, C3, C4, C5, C6, C7 o C8, alquilo $C_{1\cdot10}$ representa alquilo C1, C2, C3, C4, C5, C6, C7, C8, C9 o C10 y alquilo $C_{1\cdot10}$ representa alquilo C1, C2, C3, C4, C5, C6, C7, C8, C9 o C10 y alquilo $C_{1\cdot10}$ representa alquilo C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17 o C18. Los radicales alquilo son preferentemente metilo, etilo, propilo, metiletilo, butilo, 1-metilpropilo, 2-metilpropilo, 1,1-dimetiletilo, pentilo, 1,1-dimetilpropilo, 1,2-dimetilpropilo, 2,2-dimetilpropilo, hexilo, 1-metilpropilo, si están sustituidos también CHF₂, CF₃ o CH₂OH, etc. Preferentemente, se sobreentiende que en el contexto de esta invención el término "alquilo" se refiere a alquilo $C_{1\cdot6}$ como metilo, etilo, propilo, butilo, pentilo o hexilo; más preferentemente se refiere a alquilo $C_{1\cdot6}$ como metilo, etilo, propilo, butilo, pentilo o hexilo; más preferentemente se refiere a alquilo $C_{1\cdot6}$ como metilo, etilo, propilo, butilo, pentilo o hexilo; más preferentemente se refiere a alquilo $C_{1\cdot6}$ como metilo, etilo, propilo, butilo, pentilo o hexilo;

5

10

15

20

25

30

35

40

55

Se sobreentiende que el término "alquenilo" se refiere a hidrocarburos insaturados lineales o ramificados, que pueden no estar sustituidos o estar sustituidos una o varias veces. Este término abarca grupos como, p. ej., -CH=CH-CH $_3$. Los radicales alquenilo son preferentemente vinilo (etenilo), alilo (2-propenilo). Preferentemente, en el contexto de esta invención el término "alquenilo" se refiere a alquenilo C_{2-10} o alquenilo C_{2-8} como etileno, propileno, butileno, pentileno, hexileno, heptileno u octileno; o se refiere a alquenilo C_{2-6} como etileno, propileno, butileno, pentileno o hexileno; o se refiere a alquenilo C_{2-4} como etileno, propileno o butilenos.

Se sobreentiende que el término "alquinilo" se refiere a hidrocarburos insaturados lineales o ramificados, que pueden no estar sustituidos o estar sustituidos una o varias veces. Abarca grupos tales como, p. ej., -C=C-CH₃ (1-propinilo). Preferentemente, en el contexto de esta invención el término "alquinilo" se refiere a alquinilo C_{2-10} o alquinilo C_{2-8} como etino, propino, butino, pentino, hexino, heptino u octino; o se refiere a alquinilo C_{2-6} como etino, propino, butino, pentino o hexino; o se refiere a alquinilo C_{2-4} como etino, propino, butino, pentino o hexino.

En el contexto de esta invención, se sobreentiende que el término "cicloalquilo" se refiere a hidrocarburos cíclicos (sin un heteroátomo en el anillo) saturados o insaturados (pero no aromáticos), que pueden no estar sustituidos o estar sustituidos una o varias veces. Además, cicloalquilo $C_{3.4}$ representa cicloalquilo C_3 o C_4 , cicloalquilo $C_{3.5}$ representa cicloalquilo C_3 , C_4 o C_5 , cicloalquilo $C_{3.6}$ representa cicloalquilo C_3 , C_4 , C_5 o C_6 , cicloalquilo $C_{3.7}$ representa cicloalquilo C_3 , C_4 , C_5 , C_6 , C_7 o C_8 , cicloalquilo $C_{4.5}$ representa cicloalquilo C_4 , C_5 , C_6 , C_7 o C_8 , cicloalquilo $C_{4.5}$ representa cicloalquilo C_4 , C_5 , C_6 , C_7 , cicloalquilo $C_{4.6}$ representa cicloalquilo C_4 , C_5 , C_6 , C_7 , cicloalquilo $C_{5.7}$ representa cicloalquilo C_5 , C_6 o C_7 , cicloalquilo $C_{5.6}$ representa cicloalquilo C_5 o C_6 y cicloalquilo $C_{5.7}$ representa cicloalquilo C_5 , C_6 o C_7 . Algunos ejemplos son ciclopropilo, 2-metilciclopropilo, ciclopropilmetilo, ciclobutilo, ciclopentilo, ciclopentil

En conexión con alquilo, alquenilo, alquinilo y O-alquilo, a menos que se defina de otro modo, se sobreentiende que el término "sustituido" en el contexto de esta invención se refiere al reemplazo de al menos un radical hidrógeno en un átomo de carbono por halógeno (F, Cl, Br, I), -NRcRc···, -SRc, -S(O)Rc, -S(O)2Rc, -ORc, -C(O)ORc, -CN, -C(O)NRcRc··, haloalquilo, haloalcoxi u -O(alquilo C_{1-4}) que puede no estar sustituido o estar sustituido con uno o más de entre -ORc o halógeno (F, Cl, I, Br), siendo Rc uno de entre R₁₀, R₁₁ o R₁₂, (siendo Rc uno de entre R_{11'}, R_{12'} o R_{10'}; siendo Rc uno de entre R_{11''} o R_{12''} o R_{10'}; siendo Rc uno de entre R_{11''} o R_{12''} o R_{10'}; siendo Rc uno de entre R_{11''} presentes simultáneamente en la Fórmula I, estos pueden ser idénticos o diferentes.

En conexión con alquilo, alquenilo, alquinilo y O-alquilo, a menos que se defina de otro modo, se sobreentiende que el término "sustituido" en el contexto de esta invención se refiere al reemplazo de al menos un radical hidrógeno en un átomo de carbono por halógeno (F, Cl, Br, I), -SR_c, -S(O)R_c, -S(O)R_c, -OR_c, -C(O)OR_c, -CN, -C(O)NR_cR_{c'}, haloalquilo, haloalcoxi u -O(alquilo C₁₋₄) que puede no estar sustituido o estar sustituido con uno o más de entre -OR_c o halógeno (F, Cl, I, Br), siendo R_c uno de entre R₁₀, R₁₁ o R₁₂, (siendo R_{c'} uno de entre R_{11'}, R_{12'} o R_{10'}; siendo R_{c''} uno de entre R_{11''}, R_{12''} o R_{10'}; siendo R_{c''} uno de entre R_{11''} o R_{12'''}), donde R₁-R_{14'''} son como se han definido en la descripción y donde, cuando hay diferentes radicales R₁-R_{14'''} presentes simultáneamente en la Fórmula I, estos pueden ser idénticos o diferentes.

Es posible que haya más de un reemplazo en la misma molécula y también en el mismo átomo de carbono con sustituyentes idénticos o diferentes. Esto incluye, por ejemplo, que se reemplacen 3 hidrógenos en el mismo átomo de C, como en el caso de CF₃, o en posiciones diferentes de la misma molécula, como en el caso de, p. ej., -CH(OH)-CH=CH-CHCl₂.

En el contexto de esta invención, se sobreentiende que el término "haloalquilo" se refiere a un alquilo que está sustituido una o varias veces con un halógeno (seleccionado entre F, Cl, Br, I). Este término abarca, p. ej., -CH $_2$ Cl, -CH $_2$ F, -CHCl $_2$, -CHF $_2$, -CCl $_3$, -CF $_3$ y -CH $_2$ -CHCl $_2$. En el contexto de esta invención, se sobreentiende que el término "haloalquilo" se refiere preferentemente a alquilo C $_{1-4}$ sustituido con halógeno que representa alquilo C1, C2, C3 o C4

sustituido con halógeno. Los radicales alquilo sustituidos con halógeno son, por lo tanto, preferentemente, metilo, etilo, propilo y butilo. Los ejemplos preferidos incluyen -CH₂CI, -CH₂F, -CHCl₂, -CHF₂ y -CF₃.

En el contexto de esta invención, se sobreentiende que el término "haloalcoxi" se refiere a un O-alquilo que está sustituido una o varias veces con un halógeno (seleccionado entre F, Cl, Br, I). Este término abarca, p. ej., -OCH₂Cl, -OCH₂F, -OCHCl₂, -OCH₂, -OCCl₃, -OCF₃ y -OCH₂-CHCl₂. En el contexto de esta invención, se sobreentiende que el término "haloalquilo" se refiere preferentemente a -O(alquilo C₁₋₄) sustituido con halógeno que representa alcoxi C1, C2, C3 o C4 sustituido con halógeno. Los radicales alquilo sustituidos con halógeno son, por lo tanto, preferentemente, O-metilo, O-etilo, O-propilo y O-butilo. Los ejemplos preferidos incluyen -OCH₂Cl, -OCH₂F, -OCHCl₂, -OCHF₂ y -OCF₃.

De la forma más preferida, en conexión con alquilo, alquenilo, alquinilo u O-alquilo, se sobreentiende que el término "sustituido" en el contexto de esta invención se refiere a que cualquier alquilo, alquenilo, alquinilo u O-alquilo que esté sustituido estará sustituido con uno o más de entre halógeno (F, Cl, Br, I), -ORc, -CN, haloalquilo, haloalcoxi u -O(alquilo C₁₋₄) que puede no estar sustituido o estar sustituido con uno o más de entre -ORc o halógeno (F, Cl, I, Br), siendo Rc uno de entre R₁₁, R₁₂ o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂ o R₁₀; siendo Rc uno de entre R₁₁, R₁₂ o R₁₀; siendo Rc uno de entre R₁₁, R₁₂ o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀; siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂, o R₁₀, (siendo Rc uno de entre R₁₁, R₁₂

Se sobreentiende que el término "arilo" se refiere a sistemas anulares con al menos un anillo aromático pero sin heteroátomos ni siquiera en solo uno de los anillos. Algunos ejemplos son fenilo, naftilo, fluorantenilo, fluorenilo, tetralinilo o indanilo, en particular los radicales 9*H*-fluorenilo o antracenilo, que pueden no estar sustituidos o estar sustituidos una o varias veces. Más preferentemente, se sobreentiende en el contexto de esta invención que el término "arilo" se refiere a fenilo, naftilo o antracenilo, preferentemente se refiere a fenilo.

20

25

30

35

40

45

50

55

En el contexto de esta invención, se sobreentiende que el término "alquilarilo" se refiere a un grupo arilo (remítase más arriba) que está conectado con otro átomo a través de un alquilo C₁₋₆ (remítase más arriba) que puede ser lineal o ramificado y que puede no estar sustituido o estar sustituido una o varias veces. Preferentemente, se sobreentiende que el término "alquilarilo" se refiere a un grupo arilo (remítase más arriba) que está conectado a otro átomo a través de 1-4 grupos (-CH₂-). De la forma más preferida, alquilarilo se refiere a bencilo.

En el contexto de esta invención, se sobreentiende que el término "alquilheterociclilo" se refiere a un grupo heterociclilo que está conectado con otro átomo a través de un alquilo C_{1-6} (remítase más arriba) que puede ser lineal o ramificado y que puede no estar sustituido o estar sustituido una o varias veces. Preferentemente, se sobreentiende que el término "alquilheterociclilo" se refiere a un grupo heterociclilo (remítase más arriba) que está conectado a otro átomo a través de 1-4 grupos (- CH_2 -). De la forma más preferida, alquilheterociclilo se refiere a - CH_2 -piridina.

En el contexto de esta invención, se sobreentiende que el término "alquilcicloalquilo" se refiere a un grupo cicloalquilo que está conectado con otro átomo a través de un alquilo C_{1-6} (remítase más arriba) que puede ser lineal o ramificado y que puede no estar sustituido o estar sustituido una o varias veces. Preferentemente, se sobreentiende que el término "alquilcicloalquilo" se refiere a un grupo cicloalquilo (remítase más arriba) que está conectado a otro átomo a través de 1-4 grupos (- CH_2 -). De la forma más preferida, alquilcicloalquilo se refiere a - CH_2 -ciclopropilo.

Se sobreentiende que un radical o grupo heterociclilo (también denominado heterociclilo posteriormente en la presente) se refiere a sistemas anulares heterocíclicos, con al menos un anillo saturado o insaturado que contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo. Un grupo heterocíclico también puede estar sustituido una o varias veces. Los ejemplos incluyen heterociclilos no aromáticos tales como tetrahidropirano, oxazepano, morfolina, piperidina, pirrolidina, así como también heteroarilos tales como furano, benzofurano, tiofeno, benzotiofeno, pirrol, piridina, pirimidina, pirazina, quinolina, isoquinolina, ftalazina, benzotiazol, indol, benzotriazol, carbazol y quinazolina. Los subgrupos dentro de los heterociclilos como se interpretan en la presente incluyen heteroarilos y heterociclilos no aromáticos.

- el heteroarilo (siendo equivalente a radicales heteroaromáticos o heterociclilos aromáticos) es un sistema anular heterocíclico aromático de uno o más anillos, de los cuales al menos un anillo aromático contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente, es un sistema anular heterocíclico aromático de uno o dos anillos, de los cuales al menos un anillo aromático contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre furano, benzofurano, tiofeno, benzotiofeno, pirrol, piridina, pirimidina, pirazina, quinolina, isoquinolina, ftalazina, benzotiazol, indol, benzotriazol, carbazol, quinazolina, imidazol, pirazol, oxazol, tiofeno y benzimidazol;
- el heterociclilo no aromático es un sistema anular heterocíclico de uno o más anillos, de los cuales al menos un anillo, no siendo entonces este o estos anillos aromáticos, contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente, es un sistema anular heterocíclico de uno o dos anillos, de los cuales uno o ambos anillos, no siendo entonces este anillo o los dos anillos aromáticos, contiene/n uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepam, pirrolidina, piperidina, piperazina, tetrahidropirano, morfolina, indolina, oxopirrolidina, benzodioxano, especialmente es benzodioxano, morfolina, tetrahidropirano, piperidina,

oxopirrolidina y pirrolidina.

5

10

Preferentemente, en el contexto de esta invención el término "heterociclilo" se define como un sistema anular heterocíclico de uno o más anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo. Preferentemente, se trata de un sistema anular heterocíclico de uno o dos anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo.

Los ejemplos preferidos de heterociclilos incluyen oxazepano, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, pirimidina, piperidina, benzofurano, bencimidazol, indazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol, oxopirrolidina, pirimidina, benzodioxano, carbazol y quinazolina, especialmente es piridina, pirazina, indazol, benzodioxano, tiazol, benzotiazol, morfolina, tetrahidropirano, pirazol, imidazol, piperidina, tiofeno, indol, bencimidazol, pirrolo[2,3-b]piridina, benzoxazol, oxopirrolidina, pirimidina, oxazepano y pirrolidina. Puede también ser tiomorfolino.

En el contexto de esta invención, se sobreentiende que el término "oxopirrolidina" se refiere a pirrolidin-2-ona.

En conexión con los heterocicilos (heteroarilos) aromáticos, heterocicilos no aromáticos y cicloalquilos, donde un sistema anular no cae dentro de dos o más de las definiciones de ciclo anteriores simultáneamente, entonces el sistema anular se define primero como el heterocicilio aromático (heteroarilo) si al menos un anillo aromático contiene un heteroátomo. Si ningún anillo aromático contiene un heteroátomo, entonces el sistema anular se define como un heteroátomo. Si ningún anillo no aromático contiene un heteroátomo, entonces el sistema anular se define como un arilo si contiene al menos un ciclo arilo. Si no hay arilo presente, entonces el sistema anular se define como un cicloalquilo si al menos un hidrocarburo cíclico no aromático está presente.

Preferentemente, el arilo es un arilo monocíclico.

Preferentemente, el heterociclico no aromático es un heterociclilo no aromático monocíclico.

Preferentemente, el cicloalquilo es un cicloalquilo monocíclico.

- 25 En conexión con arilo (que incluye alquilarilo), cicloaquilo (que incluye alquilcicloalquilo) o heterociclilo (que incluye alquilheterociclilo), se sobreentiende que el término "sustituido", a menos que se defina de otro modo, se refiere a una o más sustituciones del sistema anular del arilo o alquilarilo, cicloalquilo o alquilcicloalquilo, heterociclilo o $NR_cS(O)_2R_{c'} \ , \ =O, \ -OCH_2CH_2OH, \ -NR_cC(O)NR_cR_{c''}, \ -S(O)_2NR_cR_{c'}, \ -NR_cS(O)_2NR_cR_{c''}, \ haloalquilo, \ haloalcoxi, \ -SR_c, \ -NR_cS(O)_2NR_cR_{c''}, \ haloalquilo, \ haloalcoxi, \ -SR_cR_cR_{c''}, \ -NR_cS(O)_2NR_cR_{c''}, \ haloalquilo, \ haloalcoxi, \ haloalcoxi,$ 30 $S(O)R_c, \ -S(O)_2R_c \ o \ C(CH_3)OR_c; \ NR_cR_{c'''}, \ siendo \ R_c \ y \ R_{c'''} \ independientemente \ o \ bien \ H \ o \ un \ alquilo \ C_{1-6} \ saturado \ o \ c'''$ insaturado, lineal o ramificado, sustituido o sin sustituir; un alquilo C₁₋₆ saturado o insaturado, lineal o ramificado, sustituido o sin sustituir; un -O-(alquilo C₁₋₆) (alcoxi) saturado o insaturado, lineal o ramificado, sustituido o sin sustituir; un -S-(alguilo C₁₋₆) saturado o insaturado, lineal o ramificado, sustituido o sin sustituir, un grupo -C(O)-(alguilo C₁₋₆) saturado o insaturado, lineal o ramificado, sustituido o sin sustituir; un grupo -C(O)-O-(alquilo C₁₋₆) saturado o insaturado, lineal o ramificado, sustituido o sin sustituir; un arilo o alquilarilo sustituido o sin sustituir; un cicloalquilo o 35 alquilcicloalquilo sustituido o sin sustituir; un heterociclilo o alquilheterociclilo sustituido o sin sustituir, siendo R_c uno de entre R_{11} , R_{12} o R_8 , (siendo $R_{c'}$ uno de entre $R_{11'}$, $R_{12'}$ o R_8 ; siendo $R_{c''}$ uno de entre $R_{11''}$, $R_{12''}$ o R_8 ; siendo $R_{c''}$ uno de entre $R_{11''}$, $R_{12''}$ o R_8), donde R_1 - $R_{14'''}$ son como se han definido en la descripción y donde, cuando hay diferentes radicales R₁-R₁₄⁻⁻ presentes simultáneamente en la Fórmula I, estos pueden ser idénticos o diferentes.
- De la forma más preferida, en conexión con arilo (que incluye alquilarilo), cicloaquilo (que incluye alquilcicloalquilo) o heterociclilo (que incluye alquilheterociclilo), se sobreentiende que el término "sustituido" en el contexto de esta invención se refiere a que cualquier arilo, cicloalquilo y heterociclilo que esté sustituido estará sustituido (también en un alquilarilo, alquilcicloalquilo o alquilheterociclilo) con uno o más de entre halógeno (F, Cl, Br, I), -Rc, -ORc, -CN, -NO2, -NRcRc, NRcC(O)Rc, -NRcS(O)2Rc, =O, haloaquilo, haloalcoxi o C(CH3)ORc, -O(alquilo C1.4) que no está sustituido o está sustituido con uno o más de entre ORc o halógeno (F, Cl, I, Br), -CN o alquilo -C1.4 que no está sustituido o está sustituido con uno o más de entre ORc o halógeno (F, Cl, I, Br), siendo Rc uno de entre R11, R12 o R8, (siendo Rc uno de entre R11, R12 o R8; siendo Rc uno de entre R11, R12 o R8, (siendo R1-R14, son como se han definido en la descripción y donde, cuando hay diferentes radicales R1-R14, presentes simultáneamente en la Fórmula I, estos pueden ser idénticos o diferentes.
- Además de las sustituciones mencionadas anteriormente, en conexión con cicloalquilo (que incluye alquilcicloalquilo) o heterociclilo (que incluye alquilheterociclilo), a saber heterociclilo no aromático (que incluye alquilheterociclilo no aromático), se sobreentiende que el término "sustituido", a menos que se defina de otro modo, se refiere a la sustitución del sistema anular del cicloalquilo o alquilcicloalquilo, heterociclilo no aromático o alquilheterociclilo no aromático con

u =0.

5

35

40

45

50

55

La expresión "grupo saliente" se refiere a un fragmento molecular que se queda con un par de electrones en una escisión heterolítica de un enlace. Los grupos salientes pueden ser aniones o moléculas neutras. Los grupos salientes aniónicos comunes son haluros tales como CI-, Br- y I-, y ésteres de tipo sulfonato tales como tosilato (TsO-) o mesilato.

Se debe sobreentender que el término "sal" se refiere a cualquier forma del compuesto activo utilizada de acuerdo con la invención en la que este asume una forma iónica o está cargado y está acoplado con un contraión (un catión o anión) o está en solución. Este término también incluye complejos del compuesto activo con otras moléculas e iones, en particular complejos a través de interacciones iónicas.

- En el contexto de esta invención, la expresión "sal fisiológicamente aceptable" se refiere a cualquier sal que es tolerada fisiológicamente (en la mayoría de los casos quiere decir que no es tóxica especialmente la toxicidad no es provocada por el contraión) si se utiliza de forma adecuada para un tratamiento, especialmente si se utiliza en seres humanos y/o mamíferos o se aplica a estos.
- Estas sales fisiológicamente aceptables se pueden formar con cationes o bases y, en el contexto de esta invención, se sobreentiende que se refieren a sales de al menos uno de los compuestos utilizados de acuerdo con la invención, normalmente un ácido (desprotonado), como anión con al menos un catión, preferentemente inorgánico, que sea tolerado fisiológicamente, especialmente si se utiliza en seres humanos y/o mamíferos. Las sales de los metales alcalinos y los metales alcalinotérreos son particularmente preferidas y también aquéllas con NH₄, pero en particular las sales de (mono)- o (di)sodio, (mono)- o (di)potasio, magnesio o calcio.
- Las sales fisiológicamente aceptables también se pueden formar con aniones o ácidos y, en el contexto de esta invención, se sobreentiende que se refieren a sales de al menos uno de los compuestos utilizados de acuerdo con la invención como catión con al menos un anión que sea tolerado fisiológicamente, especialmente si se utiliza en seres humanos y/o mamíferos. Esta expresión también incluye en particular, en el contexto de esta invención, la sal formada con un ácido tolerado fisiológicamente, es decir, sales del compuesto activo particular con ácidos orgánicos o inorgánicos que sean tolerados fisiológicamente, especialmente si se utilizan en seres humanos y/o mamíferos. Los ejemplos de sales toleradas fisiológicamente de ácidos particulares son sales de: ácido clorhídrico, ácido bromhídrico, ácido sulfúrico, ácido metanosulfónico, ácido fórmico, ácido acético, ácido oxálico, ácido succínico, ácido málico, ácido tartárico, ácido mandélico, ácido fumárico, ácido láctico o ácido cítrico.
- Los compuestos de la invención pueden estar presentes en forma cristalina o en forma de compuestos libres como una base o ácido libre.

Se sobreentiende que cualquier compuesto que sea un solvato de un compuesto de acuerdo con la invención, como un compuesto de acuerdo con la fórmula general I definida anteriormente, también queda contemplado por el alcance de la divulgación. Los métodos de solvatación por lo general son conocidos en la técnica. Los solvatos adecuados son solvatos farmacéuticamente aceptables. Se debe sobreentender que el término "solvato" de acuerdo con esta invención se refiere a cualquier forma del compuesto activo de acuerdo con la invención en la que este compuesto esté unido mediante un enlace no covalente a otra molécula (muy probablemente un disolvente polar) . Los ejemplos especialmente preferidos incluyen hidratos y alcoholatos, como metanolatos o etanolatos.

Se sobreentiende que cualquier compuesto que sea un profármaco de un compuesto de acuerdo con la invención, como un compuesto de acuerdo con la fórmula general I definida anteriormente, también queda contemplado por el alcance de la invención. El término "profármaco" se utiliza en su sentido más amplio y abarca aquellos derivados que se convierten *in vivo* en los compuestos de la invención. Tales derivados serán obvios para los expertos en la técnica e incluyen, dependiendo de los grupos funcionales presentes en la molécula y sin carácter limitante, los siguientes derivados de los compuestos de la presente: ésteres, ésteres de aminoácidos, ésteres fosfato, ésteres sulfonato de sales metálicas, carbamatos y amidas. Los expertos en la técnica estarán familiarizados con ejemplos de métodos muy conocidos para producir un profármaco de un compuesto activo determinado y estos se pueden consultar, p. ej., en Krogsgaard-Larsen y col. "Textbook of Drug design and Discovery" Taylor & Francis (abril de 2002).

A menos que se especifique lo contrario, también se pretende que los compuestos de la invención incluyan compuestos que difieren únicamente en la presencia de uno o más átomos enriquecidos isotópicamente. Por ejemplo, los compuestos con las estructuras de la presente salvo por el reemplazo de un hidrógeno por un deuterio o tritio, o el reemplazo de un carbono por un carbono enriquecido en ¹³C o ¹⁴C o de un nitrógeno por nitrógeno enriquecido en ¹⁵N quedan contemplados por el alcance de esta invención.

Los compuestos de fórmula (I) así como sus sales o solvatos de los compuestos se encuentran preferentemente en una forma farmacéuticamente aceptable o sustancialmente pura. La expresión "forma farmacéuticamente aceptable" quiere decir que, *inter alia*, tiene un nivel farmacéuticamente aceptable de pureza con la exclusión de los aditivos farmacéuticos normales, tales como diluyentes y portadores, y sin incluir ningún material considerado tóxico en niveles posológicos normales. Los niveles de pureza para la sustancia farmacológica son preferentemente superiores a un 50%, más preferentemente superiores a un 70% y, de la forma más preferida, superiores a un 90%. En una realización

preferida, es superior a un 95% del compuesto de fórmula (I) o de sus sales. Esto también se aplica a sus solvatos o profármacos.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde n es 1;

R₁ es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilarilo sustituido o sin sustituir, alquilheterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, $-C(O)R_6$, $-C(O)CH_2OR_6$, $-C(O)CH_2OC(O)R_6$, $-C(O)OR_6$, $-C(O)NR_6R_6$ o $-S(O)_2R_6$;

donde R_6 y R_6 se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, arilo sustituido o sin sustituir o alquilarilo sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir o alquilcicloalquilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir o alquilheterociclilo sustituido y sin sustituir;

donde dicho cicloalquilo, arilo o heterociclilo en R_1 o R_6 , también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre halógeno, - R_{11} , - OR_{11} , - OR_{11

además, el cicloalquilo o heterociclilo no aromático en R_1 o R_6 , también en alquilcicloalquilo y alquilheterociclilo, si está sustituido, también puede estar sustituido con

20 u =O;

15

donde el alquilo, alquileno o alquinilo en R_1 o R_6 , si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre $-OR_{11}$, halógeno, -CN, haloalquilo, haloalcoxi, $-SR_{11}$, $-S(O)R_{11}$ y $-S(O)_2R_{11}$;

donde R_{11} , R_{11} y R_{11} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir;

y donde R_{11} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

 R_2 es hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, alquilarilo sustituido o sin sustituir o alquilheterociclilo sustituido o sin sustituir.

donde dicho cicloalquilo, arilo o heterociclilo en R_2 , también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre halógeno, $-R_{12}$, $-OR_{12}$, $-NO_2$, $-NR_{12}R_{12^{m}}$, $NR_{12}C(0)R_{12}$, $-NR_{12}S(0)_2R_{12}$, $-S(0)_2NR_{12}R_{12}$, $-NR_{12}C(0)NR_{12}R_{12}$, $-S(0)_2R_{12}$, $-S(0)_2R$

además, el cicloalquilo o heterociclilo no aromático en R₂, también en alquilcicloalquilo y alquilheterociclilo, si está sustituido, también puede estar sustituido con

u <u>=O</u>;

35

40

45

donde el alquilo, alquileno o alquinilo en R_2 , si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre - OR_{12} , halógeno, -CN, haloalquilo, haloalcoxi,- SR_{12} ,- $S(O)R_{12}$ y - $S(O)_2R_{12}$;

donde R_{12} , R_{12} y R_{12} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir;

y donde R_{12} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquenilo C_{2-6} sin sustituir y -Boc;

X se selecciona entre - $CR_xR_{x^-}$, - $CR_xOR_{14'}$, - $CR_xR_xNR_{7^-}$, - $CR_xR_xNR_7C(O)$ -, -C(O)-, -C(O)-, -C(O)NR₇-, - $CR_xR_xC(O)$ NR₇- y -C(O)NR₇-CR_xR_x-;

donde R_7 se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y Boc;

 R_x se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, $-C(O)OR_{14}$, $-C(O)NR_{14}R_{14}$, $-NR_{14}C(O)R_{14}$ y $-NR_{14}R_{14}$;

 R_x se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;

como alternativa, si X es $-CR_xR_{x-}$, R_x y R_x pueden formar, junto con el átomo de carbono al que están unidos, un heterociclilo sustituido o sin sustituir, o un cicloalquilo sustituido o sin sustituir;

 R_{14} , $R_{14'}$ y $R_{14''}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y acetilo sin sustituir;

y donde R_{14} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

 R_3 se selecciona entre hidrógeno, halógeno, $-R_9$, $-OR_9$, $-NO_2$, $-NR_9R_{9'''}$, $-NR_9C(O)R_9$, $-NC(O)OR_9$, $-NR_9S(O)_2R_9$, $-S(O)_2NR_9R_{9''}$, $-NR_9C(O)NR_9R_{9''}$, $-S(O)R_9$, $-S(O)_2R_9$, -CN, haloalquilo, haloalcoxi, $-C(O)OR_9$, $-C(O)NR_9R_{9'}$, $-OCH_2CH_2OH$, $-NR_9S(O)_2NR_9R_{9''}$, $-OCOR_9$ y $-OCOR_9$ y

 $R_{3'}$, $R_{3''}$ y $R_{3'''}$ se seleccionan independientemente entre hidrógeno, halógeno, $-R_9$, $-OR_9$, $-NO_2$, $-NR_9R_{9'''}$, $-NR_9C(O)R_{9'}$, $-NC(O)OR_9$, $-NR_9S(O)_2R_{9'}$, $-S(O)_2R_9R_{9''}$, $-NR_9C(O)NR_9R_{9''}$, $-SR_9$, $-S(O)R_9$, $-S(O)_2R_9$, -CN, haloalquilo, haloalcoxi, $-C(O)OR_9$, $-C(O)NR_9R_{9''}$, $-OCH_2CH_2OH$, $-NR_9S(O)_2NR_9R_{9''}$, $-OCOR_9$ y $-C(CH_3)_2OR_9$;

donde R_9 , R_9 y R_9 se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquenilo C_{2-6} sin sustituir y acetilo sin sustituir;

y donde R_{9} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

 R_4 se selecciona entre hidrógeno, -OR₁₃, alquilo C₁₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir, alquinilo C₂₋₆ sustituido o sin sustituir, -C(O)OR₁₃, -C(O)NR₁₃R₁₃, -NR₁₃C(O)R₁₃, -NR₁₃R₁₃, -NR₁₃R₁₃, -NC(O)OR₁₃ y heterociclilo sustituido o sin sustituir;

 R_{4} se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;

donde R_{13} , R_{13} y R_{13} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir;

y donde $R_{13^{\cdots}}$ se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

 R_5 y $R_{5'}$ se seleccionan independientemente entre hidrógeno, o alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;

donde el alquilo, alquileno o alquinilo, distintos de los definidos en R_1 , R_2 o R_6 , si están sustituidos, están sustituidos con uno o más sustituyentes seleccionados entre -OR₁₀, halógeno, -CN, haloalquilo, haloalcoxi, -SR₁₀,-S(O)R₁₀ y - S(O)₂R₁₀;

donde R_{10} y R_{10} se seleccionan independientemente entre hidrógeno, alquilo $C_{1\text{-}6}$ sin sustituir, alquenilo $C_{2\text{-}6}$ sin sustituir y alquinilo $C_{2\text{-}6}$ sin sustituir;

donde el arilo, heterociclilo o cicloalquilo, también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, distintos de los definidos en R₁, R₂ o R₆, si están sustituidos, están sustituidos con uno o más sustituyentes seleccionados entre halógeno, -R₈, -OR₈, -NO₂, -NR₈R_{8"}, NR₈C(O)R_{8'}, -NR₈C(O)R_{8'}, -S(O)₂R₈, -S(O)₂R₈R_{8'}, -NR₈C(O)NR_{8'}R_{8''}, -SR₈, -S(O)R₈, S(O)₂R₈, -CN, haloalquilo, haloalcoxi, -C(O)OR₈, -C(O)NR₈R_{8'}, -OCH₂CH₂OH, -NR₈S(O)₂NR₈R_{8''} y C(CH₃)₂OR₈; además, donde el cicloalquilo o heterociclilo no aromático, distintos de los definidos en R₁, R₂ o R₆, también en alquilcicloalquilo y alquilheterociclilo, si están sustituidos, también pueden estar sustituidos con

45

50

5

10

15

20

25

30

35

40

u =0;

donde R_8 , $R_{8'}$ y $R_{8''}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, arilo sin sustituir, alquilarilo sin sustituir, cicloalquilo sin sustituir y alquilcicloalquilo sin sustituir, heterociclilo sin sustituir y alquilheterociclilo sin sustituir;

y donde R_{8} " se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos

correspondientes.

5

10

15

30

35

40

45

50

En una realización opcional, el compuesto conforme con la invención de fórmula general I es un compuesto en donde el alquilarilo es un grupo arilo conectado a otro átomo a través de 1 a 4 grupos -CH2-.

En una realización opcional, el compuesto conforme con la invención de fórmula general I es un compuesto en donde el alquilheterociclilo es un grupo heterociclilo conectado a otro átomo a través de 1 a 4 grupos -CH2-.

En una realización opcional, el compuesto conforme con la invención de fórmula general I es un compuesto en donde el alquilcicloalquilo es un grupo cicloalquilo conectado a otro átomo a través de 1 a 4 grupos -CH2-.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R_1 es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilarilo sustituido o sin sustituir, alquilheterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, $-C(O)R_6$, $-C(O)CH_2OR_6$, $-C(O)CH_2OC(O)R_6$, $-C(O)OR_6$, $-C(O)NR_6R_6$, $-C(O)NR_6R_6$; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un

racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización más el compuesto de acuerdo con la invención de fórmula general I es un compuesto en la que R_1 es alquilo C_{1^-6} sustituido o sin sustituir, alquilarilo sustituido o sin sustituir, alquil-heterociclilo sustituido o sin sustituir, $-C(O)NR_6R_6$, $-C(O)R_6$ o $-S(O)_2R_6$;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización adicional, el compuesto conforme con la invención de la fórmula general I es un compuesto en donde R_1 es un alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} , alquinilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilarilo sustituido o sin sustituir; alquilheterociclilo sustituido o sin sustituir o alquil-cicloalquilo sustituido o sin sustituir;

opcionalmente en la forma de uno de los esteroisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en la forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla, o su sal correspondiente o su solvato correspondiente.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R_1 es $-C(O)R_6$, $-C(O)CH_2OR_6$, $-C(O)CH_2OC(O)R_6$, $-C(O)NR_6R_6$; o $-S(O)_2R_6$;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R_1 es $-C(O)R_6$ o $-S(O)_2R_6$:

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R_1 es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir o alquinilo C_{2-6} sustituido o sin sustituir; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R₁ es alguilo C₁₋₆ sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R_1 es cicloalquilo C_{1-6} sustituido o sin sustituir, arilo sustituido o sin sustituir o heterociclilo sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

5 En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R₁ es alquilarilo sustituido o sin sustituir, alquilheterociclilo sustituido o sin sustituir o alquilciclociclilo sustituido o sin sustituir:

10

15

25

30

40

45

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R_2 es hidrógeno, alquilo $C_{1^{-6}}$ sustituido o sin sustituir, alquenilo $C_{2^{-6}}$ sustituido o sin sustituir, alquinilo $C_{2^{-6}}$ sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, alquilarilo sustituir o alquilheterociclilo sustituido o sin sustituir; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

20 En una realización adicional, el compuesto conforme con la invención de la fórmula general I es un compuesto en donde

 R_2 es hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir o alquilarilo sustituido o sin sustituir; opcionalmente en la forma de uno de los esteroisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en la forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en una relación de mezcla, o su sal correspondiente, o un solvato correspondiente del mismo.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R_2 es hidrógeno, sustituido o sin sustituir alquilo C_{1^-6} , sustituido o sin sustituir alquinilo C_{2^-6} , sustituido o sin sustituir alquinilo C_{2^-6} , sustituido o sin sustituir cicloalquilo, arilo sustituido o sin sustituir o heterociclilo sustituido o sin sustituir; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R₂ es hidrógeno, alquilo C₁₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir o alquinilo C₂₋₆ sustituido o sin sustituir

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R_2 es cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir o heterociclilo sustituido o sin sustituir; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización adicional, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde R_2 es alquilcicloalquilo sustituido o sin sustituir, alquilarilo sustituido o sin sustituir o alquilheterociclilo sustituido o sin sustituir;

50 opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde

X se selecciona entre -CR_xR_x-, -CR_xOR₁₄-, -CR_xR_xNR7-, -CR_xR_x'O-, -CR_xR_xNR₇C(O)-, -C(O)-, -C(O)-, -C(O)NR₇-, -CR_xR_xC(O)NR₇- y -C(O)NR₇-CR_xR_x-;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o

diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

5 X se selecciona entre $-CR_xR_x$; $-CR_xOR_{14'}$, $-CR_xR_xNR_{7-}$, $-NR_7CR_xR_{x^-}$, $-CR_xR_xO-$, $-OCR_xR_{x^-}$, $-CR_xR_xNR_7C(O)-$, $NR_7C(O)CR_xR_{x^-}$, -C(O)-, $-CR_xR_xC(O)-$, -C(O)O-, $-C(O)NR_7-$, $-NR_7C(O)-$, $-CR_xR_xC(O)NR_7-$ y $-C(O)NR_7CR_xR_x$;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

X se selecciona entre - $CR_xR_{x^-}$, - CR_xOR_{14} . - $CR_xR_xC(O)NR_{7^-}$, - $CR_xR_xNR_{7^-}$, - CR_xR_xO -, - $CR_xR_x-NR_{7}C(O)$ -, - $C(O)NR_{7^-}$ y - $CR_xR_xC(O)NR_{7^-}$

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

20 En otra realización preferida del compuesto conforme con la invención de la fórmula general I es un compuesto en donde

X es -CR_xR_xNR₇- o -CR_xR_xO-;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

X es - $CR_xR_{x'}$ -;

10

15

35

40

30 opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

X es -CR_xOR_{14'}-;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla, o una sal correspondiente de los mismos o un solvato correspondiente de de los mismos.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I es un compuesto en la que

 \dot{X} es -C(O)-, -CR_xR_x C(O)- o -C(O)O-;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

X se selecciona entre -CR_xR_x-NR₇C(O)-, -C(O)NR₇-, -CR_xR_x, C(O)NR₇- y -C(O)NR₇-CR_xR_x; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

55 En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

Rx se selecciona entre hidrógeno, alquilo C₁₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir,

alquinilo C_{2^-6} sustituido o sin sustituir, $-C(O)OR_{14}$, $-C(O)NR_{14}R_{14'}$, $-NR_{14}C(O)R_{14'}$ y $-NR_{14}R_{14''}$;

 R_x . se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;

como alternativa si X es -CR_xR_x- R_x y R_x pueden forman, junto con el átomo de carbono al que están unidos, un heterociclilo sustituido o sin sustituir o un cicloalguilo sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

10 En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I es un compuesto en la que

X es CR_xOR_{14'} y

5

20

25

30

35

 $R_{14'}$ se selecciona entre hidrógeno, alquilo C_{1^-6} sin sustituir, alquenilo C_{2^-6} sin sustituir, alquenilo C_{2^-6} sustituir o acetilo sin sustituir;

R_x se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I es un compuesto en la que

 R_x se selecciona entre hidrógeno, sustituido o sin sustituir alquilo C_{1^-6} , alquenilo C_{2^-6} sustituido o sin sustituir, alquinilo C_{2^-6} sustituido o sin sustituir, $-C(O)OR_{14}$, $-C(O)NR_{14}R_{14}$, $-NR_{14}C(O)R_{14}$, y $-NR_{14}R_{14^{m}}$, preferentemente R_x se selecciona entre hidrógeno, alquilo C_{1^-6} , $-C(O)OR_{14}$, $-C(O)NR_{14}R_{14}$, $-NR_{14}C(O)R_{14^{m}}$, y $-NR_{14}R_{14^{m}}$; más preferentemente R_x se selecciona entre hidrógeno y alquilo C_{1^-6} sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_x se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir, preferentemente R_x se selecciona a partir de hidrógeno y alquilo C_{1-6} sustituido o sin sustituir:

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

- 40 En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde
 - como alternativa, si X es - $CR_xR_{x^-}$, R_x y $R_{x'}$ pueden formar, junto con el átomo de carbono al que están unidos, un heterociclilo sustituido o sin sustituir, o un cicloalquilo sustituido o sin sustituir;
- opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

R_x se selecciona entre hidrógeno, alquilo C₁₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir, alquinilo C₂₋₆ sustituido o sin sustituir, -C(O)OR₁₄, -C(O)NR₁₄R₁₄, -NR₁₄C(O)R₁₄, y-NR₁₄R₁₄, -NR₁₄C(O)R₁₄, y-NR₁₄R₁₄, -NR₁₄C(O)R₁₄, y-NR₁₄R₁₄, -NR₁₄C(O)R₁₄, y-NR₁₄R₁₄, opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

ES 2 748 694 T3

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I es un compuesto en la que

 R_x se selecciona entre -C(O)OR₁₄, -C(O)NR₁₄R₁₄' y -NR₁₄C(O)R₁₄'',

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto conforme con la invención de la fórmula general I, se trata de un compuesto en donde

R₃ se selecciona a partir de hidrógeno, halógeno , -R₉, -OR₉, -NO₂, -NR₉R_{9"}, -NR₉C(O)R₉, - NC(O)OR₉, -NR₉S(O)₂R₉, -S(O)₂NR₉R_{9"}, -NR₉C(O)NR₉·R_{9"}, -S(O)R₉, -S(O)₂R₉, - CN, haloalquilo, haloalcoxi, -C(O)OR₉, -C(O)NR₉R_{9'}, -OCH₂CH₂OH, -NR₉S(O)₂NR_{9"}, -OCOR₉ y C(CH₃)₂OR₉;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

R₃ se selecciona entre hidrógeno, halógeno y -OR₉;

5

15

25

30

40

50

55

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I es un compuesto en la que

 $\begin{array}{l} \dot{R}_{3'},\ R_{3''}\ y\ R_{3'''}\ se\ seleccionan\ independientemente\ entre\ hidrógeno,\ halógeno,\ -R_9,\ -OR_9,\ -NO_2,\ -NR_9R_{9''},\ -NR_9C(O)R_{9'},\ -NC(O)OR_9,\ -NO_2,\ -NR_9R_{9''},\ -NR_9C(O)NR_9R_{9''},\ -SR_9,\ -S(O)_2R_9,\ -CN,\ haloalquilo,\ haloalcoxi,\ -C(O)OR_9,\ -C(O)NR_9R_{9'},\ -OCH_2CH_2OH,\ -NR_9S(O)_2NR_{9''},\ -OCOR_9\ y\ C(CH_3)_2OR_9; \end{array}$

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I es un compuesto en la que

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I es un compuesto en la que

R₄ se selecciona entre hidrógeno, -OR₁₃, alquilo C₁₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir, -C(O)OR₁₃, -C(O)NR₁₃R_{13''}, -NR₁₃C(O)R₁₃, -NR₁₃R_{13''}, -NC(O)OR₁₃ y heterociclilo sustituido o sin sustituir:

 $R_{4'}$ se selecciona entre hidrógeno o alquilo C_{1^-6} sustituido o sin sustituir, alquenilo C_{2^-6} sustituido o sin sustituir y alquinilo C_{2^-6} sustituido o sin sustituir;

en la que R_{13} , R_{13} y R_{13} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir y alquinilo C_{2-6} sin sustituir;

y en la que $R_{13^{"}}$ se selecciona entre hidrógeno, alquilo C_{1^-6} sin sustituir, alquenilo C_{2^-6} sin sustituir, alquinilo C_{2^-6} sin sustituir y -Boc;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto

donde

10

15

30

45

50

55

 R_4 se selecciona entre hidrógeno, $-OR_{13}$, alquilo $C_{1.6}$ sustituido o sin sustituir, alquenilo $C_{2.6}$ sustituido o sin sustituir, alquenilo $C_{2.6}$ sustituido o sin sustituir, $-C(O)OR_{13}$, $-C(O)NR_{13}R_{13'}$, $-NR_{13}C(O)R_{13'}$, $-NR_{13}R_{13'''}$, $-NC(O)OR_{13}$ y heterociclilo sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

R₄ se selecciona entre hidrógeno y alquilo C₁₋₆ sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto conforme con la invención de la fórmula general I, se trata de un compuesto en donde

 R_4 se selecciona entre hidrógeno o alquilo C_{1-6} , alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir:

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

R_{4'} se selecciona entre hidrógeno y alquilo C₁₋₆ sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto conforme con la invención de la fórmula general I, se trata de un compuesto en donde

 R_5 y R_5 se seleccionan independientemente a partir de hidrógeno o alquilo C_{1-6} sustituido o sin sustituir alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

R₅ y R_{5'} se seleccionan independientemente entre hidrógeno y alquilo C₁₋₆ sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_5 y R_5 se seleccionan independientemente entre hidrógeno, alquilo C_{1^-6} sustituido o sin sustituir, alquenilo C_{2^-6} sustituido o sin sustituir, alquinilo C_{2^-6} sustituido o sin sustituir o alquilarilo sustituido o sin sustituir o alquilarilo sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir o alquilcicloalquilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir y alquilheterociclilo sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_6 y $R_{6'}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir y heterociclilo sustituido o sin sustituir;

ES 2 748 694 T3

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

- 5 En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde
 - R_7 se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir y Boc;
- opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

15 R_7 se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir y Boc;

30

35

40

45

55

- opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.
- 20 En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde
 - R_8 , R_8 ' y R_8 '' se seleccionan independientemente entre hidrógeno, alquilo C_{1^-6} sin sustituir, alquenilo C_{2^-6} sin sustituir, arilo sin sustituir, alquilarilo sin sustituir, cicloalquilo sin sustituir y alquilcicloalquilo sin sustituir, heterociclilo sin sustituir y alquilheterociclilo sin sustituir;
- y en la que R_{8} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y Boc;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

- R_8 , R_8 ' y R_8 " se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir, alquilarilo sin sustituir, cicloalquilo sin sustituir y alquilcicloalquilo sin sustituir, heterociclilo sin sustituir y alquilheterociclilo sin sustituir; preferentemente R_8 , R_8 ' y R_8 " se seleccionan independientemente a partir de hidrógeno, alquilo C_{1-6} sin sustituir, arilo sin sustituir, alquilarilo sin sustituir, cicloalquilo sin sustituir y alquilcicloalquilo sin sustituir, heterociclilo sin sustituir y alquilheterociclilo sin sustituir.
- opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I es un compuesto en la que

- $R_{8"}$ se selecciona entre hidrógeno, alquilo C_{1^-6} sin sustituir, alquenilo C_{2^-6} sin sustituir, alquinilo C_{2^-6} sin sustituir y Boc, preferentemente $R_{8"}$ se selecciona entre hidrógeno y alquilo C_{1^-6} sin sustituir;
 - opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.
- 50 En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde
 - R_9 , $R_{9'}$ y $R_{9''}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir y acetilo sin sustituir;
 - y en la que R_{9"} se selecciona entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, alquinilo C₂₋₆ sin sustituir y -Boc;

ES 2 748 694 T3

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

5 En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

10

20

30

35

45

55

 R_{9} , R_{9} ' y R_{9} " se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir y acetilo sin sustituir; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

R₉, R_{9'} y R_{9''} se seleccionan independientemente entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, preferentemente R₉, R_{9'} y R_{9''} se selecciona independientemente entre hidrógeno, alquilo C₁₋₆ sin sustituir y acetilo sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_{9} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y Boc; preferentemente R_{9} se selecciona entre hidrógeno y alquilo C_{1-6} sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_{10} y R_{10} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir; alquenilo C_{2-6} sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

R₁₀ y R_{10′} se seleccionan independientemente entre hidrógeno y alquilo C₁₋₆ sin sustituir;

40 opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_{11} , $R_{11'}$ t $R_{11'}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir;

y en la que R_{11} " se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_{11} , $R_{11^{\circ}}$ y $R_{11^{\circ}}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir,

alquinilo C₂₋₆ sin sustituir;

5

10

20

30

40

50

55

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

R₁₁, R₁₁, y R₁₁, y R₁₁, se seleccionan independientemente entre hidrógeno y alquilo C₁₋₆ sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

R₁₁" se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C2-6 sin sustituir, alquinilo C2-6 y Boc, preferentemente R_{11} " se selecciona entre hidrógeno y alquilo C_{1-6} ;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_{12} , R_{12} ' y R_{12} " se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir y alquenilo C_{2-6} sin sustituir; alquinilo C_{2-6} sin sustituir;

y en la que $R_{12^{"}}$ se selecciona entre hidrógeno, alquilo $C_{1.6}$ sin sustituir, alquenilo $C_{2.6}$ sin sustituir y -Boc; preferentemente $R_{11^{"}}$ se selecciona entre de hidrógeno y alquilo $C_{1.6}$ sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_{12} , $R_{12'}$ y $R_{12''}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir; alquinilo C_{2-6} sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

R₁₂, R_{12'} y R_{12''} se seleccionan independientemente entre hidrógeno y alquilo C₁₋₆ sin sustituir; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos

45 correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_{12^m} se selecciona entre hidrógeno, alquilo $C_{1\text{-}6}$ sin sustituir, alquenilo $C_{2\text{-}6}$ sin sustituir, alquinilo $C_{2\text{-}6}$ sin sustituir y -Boc, preferentemente R_{12^m} se selecciona entre hidrógeno y alquilo $C_{1\text{-}6}$ sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

R₁₃, R₁₃ y R₁₃ se selecciona independientemente entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin

sustituir y alquinilo C₂₋₆ sin sustituir;

15

30

45

50

y en la que R_{13} " se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

10 R₁₃, R_{13''} y R_{13''} se seleccionan independientemente entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, preferentemente R₁₃, R_{13'} y R_{13''} se seleccionan independientemente entre hidrógeno y alquilo C₁₋₆:

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 $R_{13^{"'}}$ se selecciona entre hidrógeno, alquilo $C_{1\text{-}6}$ sin sustituir, alquenilo $C_{2\text{-}6}$ sin sustituir, alquinilo $C_{2\text{-}6}$ sin sustituir y - Boc, preferentemente $R_{13^{"'}}$ se selecciona entre hidrógeno, alquilo $C_{1\text{-}6}$ sin sustituir y -Boc; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

25 En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_{14} , R_{14} ' y R_{14} '' se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir y acetilo sin sustituir;

y en la que R_{14} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

35 En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 R_{14} , $R_{14'}$ y $R_{14''}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquenilo C_{2-6} sin sustituir y acetilo sin sustituir, preferentemente R_{14} , $R_{14'}$ y $R_{14''}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir y acetilo sin sustituir;

40 opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 $R_{14^{""}}$ se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y - Boc, preferentemente $R_{14^{""}}$ se selecciona entre hidrógeno y alquilo C_{1-6} ;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

X es - CR_xR_x , - $CR_xOR_{14'}$, - $CR_xR_xNR_{7'}$ o CR_xR_xO -, y

55 R_1 es $-C(O)R_6$ o $-S(O)_2R_6$;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un

racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

X es $-CR_xR_{x'}$ $-CR_xOR_{14'}$, $-CR_xR_xNR_{7'}$ o CR_xR_xO -, y

 R_1 s alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, preferentemente R_1 es alquilo C_{1-6} sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

15 X es - $CR_xR_{x'}$, - $CR_xOR_{14'}$; - $CR_xR_xNR_7$ - o CR_xR_xO -, y

R₁ es alquilarilo sustituido o sin sustituir, alquilheterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir:

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

X es -C(O)NR₇- y

5

20

30

35

40

R₁ es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir; preferentemente R₁ es alquilo C_{1-6} sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvato correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

X es -C(O)-,

 R_1 es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, preferentemente R_1 es alquilo C_{1-6} sustituido o sin sustituir, y

R₂ es heterociclilo sustituido o sin sustituir, donde el heterociclilo contiene, al menos, un nitrógeno unido al grupo carbonilo en X;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

X es $-CR_xR_{x'}$ - o $-CR_xOR_{14'}$; y

R2 es hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, o heterociclilo sustituido o sin sustituir, preferentemente R_2 es hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir o heterociclilo sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

55 X es $-CR_xR_{x'}$ - o $-CR_xOR_{14'}$;

 R_2 es hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir o heterociclilo sustituido o sin sustituir, preferentemente R_2 es hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir o heterociclilo sustituido o sin sustituir;

60 y

 R_1 es -C(O) R_6 o -S(O) $_2$ R_6 ;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida del compuesto de acuerdo con la invención de fórmula general I, se trata de un compuesto donde

 $R_1 \ es \ alquilo \ C_{1-6} \ sustituido \ o \ sin \ sustituir, \ alquenilo \ C_{2-6} \ sustituido \ o \ sin \ sustituir, \ alquinilo \ C_{2-6} \ sustituido \ o \ sin \ sustituir, \ alquinilo \ C_{2-6} \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ sustituir, \ alquilarilo \ sustituido \ o \ sin \ s$

el alquilo es alquilo C_{1-6} como metilo, etilo, propilo, butilo, pentilo o hexilo;

v/o

5

10

el alquilo C₁₋₆ se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo o 2metilpropilo, más preferentemente el alquilo C₁₋₆ es metilo o etilo;

el alquenilo C_{2-6} se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno; v/o

20 el alquinilo C₂₋₆ se selecciona preferentemente a partir de etino, propino, butino, pentino o hexino;

el arilo se selecciona entre fenilo, naftilo o antraceno; preferentemente es naftilo y fenilo; más preferentemente es fenilo;

y/o

- el heterociclilo es un sistema anular heterocíclico de uno o más anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema anular heterocíclico de uno o dos anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepano, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, pirimidina, piperidina, piperazina, benzofurano, bencimidazol, indazol, benzotiazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol, oxopirrolidina, pirimidina, benzodioxolano, benzodioxano, carbazol y quinazolina, más preferentemente el heterociclo es tiazol; y/o
- del cicloalquilo es cicloalquilo C_{3-8} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo o ciclohexilo; preferentemente es cicloalquilo C_{3-7} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o ciclohexilo; más preferentemente es cicloalquilo C_{3-6} como ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo;
- R_2 es hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, alquilarilo sustituir o alquilheterociclilo sustituido o sin sustituir; donde
 - el alquilo es alquilo C_{1-6} como metilo, etilo, propilo, butilo, pentilo, hexilo, v/o
- el alquilo C₁₋₆ se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C₁₋₆ es metilo, etilo, propilo, isopropilo, isoputilo, isopentilo o 3-pentanilo;

el alquenilo C₂₋₆, se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno;

50 y/o

el alquinilo C_{2-6} se selecciona preferentemente a partir de etino, propino, butino, pentino o hexino; y/o

el arilo se selecciona entre fenilo, naftilo o antraceno; preferentemente es fenilo;

el heterocicillo es un sistema anular heterocíclico de uno o más anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema anular heterocíclico de uno o dos anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepano, pirrolidina, imidazol, tetrazol, pirrolidina, promitinal de la constitución de la constitución de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo;

60 piperidina, piperazina, benzofurano, bencimidazol, indazol, benzotiazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol, oxopirrolidina, pirimidina, benzodioxolano, benzodioxano, carbazol y quinazolina, más preferentemente el heterociclo es piridina, piperidina, morfolina, tetrahidropirano, oxazepano o pirrolidina;

y/o

el cicloalquilo es cicloalquilo C_{3-8} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo, ciclohexilo o ciclohexilo; preferentemente es cicloalquilo C_{3-7} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o ciclohexilo; más preferentemente es cicloalquilo C_{3-6} como ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo; más preferentemente el cicloalquilo es ciclopropilo;

y/o

5

10

15

 R_x se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, $-C(O)OR_{14}$, $-C(O)NR_{14}R_{14'}$, $-NR_{14}C(O)R_{14'}$ y $-NR_{14}R_{14''}$;

 R_x se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;

como alternativa, si X es - CR_xR_x , R_x y R_x pueden formar, junto con el átomo de carbono al que están unidos, un heterociclilo sustituido o sin sustituir, o un cicloalquilo sustituido o sin sustituir; donde

el alquilo C_{1-6} se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C_{1-6} es metilo;

el alquenilo C₂₋₆, se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno; y/o

el alquinilo C₂₋₆ se selecciona preferentemente entre etino, propino, butino, pentino o hexino; y/o

- el heterociclilo es un sistema de anillo heterocíclico de uno o más anillos saturados o insaturados del cual al menos un anillo contiene uno o más heteroátomos entre el grupo que consiste en nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema de anillo heterocíclico de uno o dos anillos saturados o insaturados de los cuales al menos un anillo contiene uno o más heteroátomos entre el grupo que consiste en nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepan, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, pirmidina, piperazina, hezzofurano, henzofiazol, indazol, henzofiazol, tiazol, henzofiazol, despretiazol, henzofiazol, henzofiazo
- piperidina, piperazina, benzofurano, benzoimidazol, indazol, benzotiazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol oxopirrolidina, pirimidina, benzodioxolano, benzodioxano, carbazol y quinazolina, más preferentemente el heterociclo es piridina o tetrahidropirano, y/o
- 30 el cicloalquilo es cicloalquilo C_{3-8} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, o ciclohexilo, o ciclohexilo; preferentemente es cicloalquilo C_{3-7} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o ciclohexilo; más preferentemente entre cicloalquilo C_{3-6} como ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo; más preferentemente el cicloalquilo es ciclopropilo o ciclohexilo; y/o

 $R_3 \text{ se selecciona entre hidrógeno, halógeno, } -R_9, -OR_9, -NO_2, -NR_9R_{9''}, -NR_9C(O)R_9, -NC(O)OR_9, -NR_9S(O)_2R_9, -S(O)_2NR_9R_{9''}, -NR_9C(O)NR_9R_{9''}, -SR_9, -S(O)R_9, -S(O)_2R_9, -CN, haloalquilo, haloalcoxi, -C(O)OR_9, -C(O)NR_9R_9, -OCH_2CH_2OH, -NR_9S(O)_2NR_9R_{9''}, -OCOR_9 y C(CH_3)_2OR_9, y/o$

- $R_{3'}$, $R_{3''}$ y $R_{3'}$ se seleccionan independientemente entre hidrógeno, halógeno, $-R_{9}$, $-OR_{9}$, $-NO_{2}$, $-NR_{9}R_{9''}$, $-NR_{9}C(O)R_{9'}$, $-NC(O)OR_{9}$, $-NR_{9}S(O)_{2}R_{9'}$, $-S(O)_{2}NR_{9}R_{9'}$, $-NR_{9}C(O)NR_{9}R_{9''}$, $-SR_{9}$, $-S(O)R_{9}$, $-S(O)_{2}R_{9}$, -CN, haloalquilo, haloalcoxi, $-C(O)OR_{9}$, $-C(O)NR_{9}R_{9'}$, $-OCH_{2}CH_{2}OH$, $-NR_{9}S(O)_{2}NR_{9}R_{9''}$, $-OCOR_{9}$, y $-C(CH_{3})_{2}OR_{9}$;
- 40 en las que el alquilo es alquilo C_{1-6} como metilo, etilo, propilo, butilo, pentilo o hexilo;

y/o

el alquilo C₁₋₆ se selecciona preferentemente entre metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo;

y/o

50

55

el alquenilo C₂₋₆, se selecciona preferentemente entre etileno, propileno, butileno, pentileno o hexileno;

el alquinilo C2-6 se selecciona preferentemente entre etino, propino, butino, pentino o hexino; y/o

 R_4 se selecciona entre hidrógeno, $-OR_{13}$, alquilo C_{1^-6} sustituido o sin sustituir, alquenilo C_{2^-6} sustituido o sin sustituir, alquinilo C_{2^-6} sustituido o sin sustituir, $-C(O)OR_{13}$, $-C(O)NR_{13}R_{13'}$, $-NR_{13}C(O)R_{13}$, $-NR_{13}R_{13''}$, $-NC(O)OR_{13}$ y heterociclilo sustituido o sin sustituir;

 $R_{4'}$ se selecciona entre hidrógeno o alquilo C_{1^-6} sustituido o sin sustituir, alquenilo C_{2^-6} sustituido o sin sustituir y alquinilo C_{2^-6} sustituido o sin sustituir; en la que

el alquilo C_{1^-6} se selecciona preferentemente entre metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C_{1^-6} es metilo;

el alquenilo C_{2-6} , se selecciona preferentemente entre etileno, propileno, butileno, pentileno o hexileno; y/o el alquinilo C_{2-6} se selecciona preferentemente a partir de etino, propino, butino, pentino o hexino; y/o

el heterociclilo es un sistema anular heterocíclico de uno o más anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema anular heterocíclico de uno o dos anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepano, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, pirimidina, piperidina, piperazina, benzofurano, bencimidazol, indazol, benzotiazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol, oxopirrolidina, pirimidina, benzodioxolano, benzodioxano, carbazol y quinazolina;

v/o

5

 $m R_5$ y $m R_5$ ' se seleccionan independientemente entre hidrógeno, o alquilo $m C_{1-6}$ sustituido o sin sustituir, alquenilo $m C_{2-6}$ sustituido o sin sustituir y alquinilo $m C_{2-6}$ sustituido o sin sustituir;

el alquilo C₁₋₆ se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo es metilo;

el alquenilo C_{2-6} , se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno; y/o

el alquinilo C_{2-6} se selecciona preferentemente a partir de etino, propino, butino, pentino o hexino;

v/o

 R_6 y R_6 se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir o alquilarilo sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir o alquilcicloalquilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir y alquilheterociclilo sustituido o sin sustituir; donde

el alquilo es alquilo C_{1-6} como metilo, etilo, propilo, butilo, pentilo o hexilo;

y/o

el alquilo C_{1-6} se selecciona preferiblemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo es metilo, etilo o isopropilo;

25 y/c

20

35

40

50

60

el alquenilo C_{2-6} , se selecciona preferiblemente a partir de etileno, propileno, butileno, pentileno o hexileno;

y/o

el alquinilo C_{2-6} se selecciona preferiblemente a partir de etino, propino, butino, pentino o hexino; v/o

30 el arilo se selecciona entre fenilo, naftilo o antraceno, preferentemente es fenilo;

y/o

el heterociclilo es un sistema anular heterocíclico de uno o más anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema anular heterocíclico de uno o dos anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepano, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, piperidina, piperazina, benzofurano, bencimidazol, indazol, benzotiazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol, oxopirrolidina, pirimidina, benzodioxolano, benzodioxano, carbazol y quinazolina, más preferentemente el heterociclo es furano;

el cicloalquilo es cicloalquilo C_{3-8} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo o cicloheptilo; preferentemente es cicloalquilo C_{3-7} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o cicloheptilo; más preferentemente es cicloalquilo C_{3-6} como ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo;

45 y/o

 R_7 se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir y Boc; donde

el alquilo C_{1-6} se selecciona preferiblemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo es metilo, etilo, propilo, isopropilo, isobutilo o 3-pentanilo;

y/o

el alquenilo C₂₋₆, se selecciona preferiblemente a partir de etileno, propileno, butileno, pentileno o hexileno;

el alquinilo C_{2.6} se selecciona preferiblemente a partir de etino, propino, butino, pentino o hexino;

55 v/d

 R_8 , R_8 y R_8 se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, arilo sin sustituir, alquilarilo sin sustituir, cicloalquilo sin sustituir y alquilcicloalquilo sin sustituir, heterociclilo sin sustituir y alquilheterociclilo sin sustituir;

 $R_{8^{"}}$ se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc; donde

el alquilo es alquilo C_{1-6} como metilo, etilo, propilo, butilo, pentilo o hexilo;

v/o

ES 2 748 694 T3

el alquilo C_{1-6} se selecciona preferiblemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo;

v/o

el alquenilo $C_{2\text{-}6}$, se selecciona preferiblemente a partir de etileno, propileno, butileno, pentileno o hexileno;

5 y/c

el alquinilo C_{2-6} se selecciona preferiblemente a partir de etino, propino, butino, pentino o hexino;

v/o

el arilo se selecciona entre fenilo, naftilo o antraceno;

v/n

- el heterociclilo es un sistema anular heterocíclico de uno o más anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema anular heterocíclico de uno o dos anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepano, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, pirimidina, piperidina, piperazina, benzofurano, bencimidazol, indazol, benzotiazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol, oxopirrolidina, pirimidina, benzodioxolano, benzodioxano, carbazol y quinazolina;
- y/o el cicloalquilo es cicloalquilo C_{3-8} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo o ciclooctilo; preferentemente es cicloalquilo C_{3-7} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o ciclohexilo; más preferentemente es cicloalquilo C_{3-6} como ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo; y/o
 - R_9 , $R_{9'}$ y $R_{9''}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquenilo C_{2-6} sin sustituir y acetilo sin sustituir;
 - donde $R_{9^{m}}$ se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc; donde
 - el alquilo C₁₋₆ se selecciona preferiblemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo es metilo;

30 y/o

25

- el alquenilo C_{2-6} , se selecciona preferiblemente a partir de etileno, propileno, butileno, pentileno o hexileno; v/o
- el alquinilo C₂₋₆ se selecciona preferiblemente a partir de etino, propino, butino, pentino o hexino;

//0

- R_{10} y R_{10} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir; alquenilo C_{2-6} sin sustituir; donde
 - el alquilo C_{1-6} se selecciona preferiblemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo;

40 y/c

- el alquenilo C_{2-6} , se selecciona preferiblemente a partir de etileno, propileno, butileno, pentileno o hexileno; v/o
- el alquinilo C₂₋₆ se selecciona preferiblemente a partir de etino, propino, butino, pentino o hexino; v/o
- 45 R₁₁, R_{11'} y R_{11''} se seleccionan independientemente entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir; alquenilo C₂₋₆ sin sustituir;
 - $R_{11^{\cdots}}$ se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y Boc; donde
- el alquilo C_{1-6} se selecciona preferiblemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo es metilo;
 - el alquenilo C_{2-6} , se selecciona preferiblemente a partir de etileno, propileno, butileno, pentileno o hexileno; v/o
 - el alquinilo C₂₋₆ se selecciona preferiblemente a partir de etino, propino, butino, pentino o hexino;

55 y/c

- R_{12} , R_{12} , R_{12} y R_{12} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir; alquinilo C_{2-6} sin sustituir;
- R_{12}^{\dots} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y Boc; donde
- 60 el alquilo C₁₋₆ se selecciona preferiblemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo es metilo;

y/o

el alquenilo C₂₋₆, se selecciona preferiblemente a partir de etileno, propileno, butileno, pentileno o hexileno; y/o

el alquinilo C₂₋₆ se selecciona preferiblemente a partir de etino, propino, butino, pentino o hexino;

5 y/o

- R_{13} , R_{13} ' y R_{13} '' se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir; y alquinilo C_{2-6} sin sustituir;
- R_{13} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y Boc; donde
- el alquilo C₁₋₆ se selecciona preferentemente entre metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo;

v/o

- el alquenilo C_{2-6} , se selecciona preferentemente entre etileno, propileno, butileno, pentileno o hexileno; y/o el alquinilo C_{2-6} se selecciona preferentemente entre etino, propino, butino, pentino o hexino; y/o
- R₁₄, R₁₄, y R₁₄, se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir;
 - R_{14^m} se selecciona entre hidrógeno, alquilo C_{1^-6} sin sustituir, alquenilo C_{2^-6} sin sustituir, alquinilo C_{2^-6} sin sustituir y Boc; en la que
 - el alquilo C₁₋₆ se selecciona preferiblemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo;

v/o

- el alquenilo C_{2-6} , se selecciona preferiblemente a partir de etileno, propileno, butileno, pentileno o hexileno; y/o
- el alquinilo C₂₋₆ se selecciona preferiblemente a partir de etino, propino, butino, pentino o hexino;

25 y/c

20

- X es $-CR_xR_x$; $-CR_xOR_{14'}$, $-CR_xR_xNR_{7'}$, $-CR_xR_xO_{7'}$, $-CR_xR_xNR_7C(0)_{7'}$, $-C(0)_{7'}$, $-C(0)_{7'}$, $-C(0)_{7'}$, $-C(0)_{7'}$, $-CR_xR_xC(0)_{7'}$, $-CR_xR_xC(0)_{7'}$, $-CR_xR_xC(0)_{7'}$, $-CR_xR_xC(0)_{7'}$, $-CR_xR_xC(0)_{7'}$, $-CR_xR_xC(0)_{7'}$, $-CR_xC_xC(0)_{7'}$, -C
- opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.
 - En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde en R₁ tal como se ha definido en cualquiera de las realizaciones.
- el alquilo es alquilo C₁₋₆ como metilo, etilo, propilo, butilo, pentilo o hexilo;

y/o

- el alquilo C₁₋₆ se selecciona preferiblemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo o 2-metilpropilo, más preferentemente el alquilo es metilo o etilo;
- 40 el alquenilo C₂₋₆, se selecciona preferiblemente a partir etileno, propileno, butileno, pentileno o hexileno;
 - el alquinilo C_{2-6} se selecciona preferiblemente a partir etino, propino, butino, pentino o hexino;
- el arilo se selecciona entre fenilo, naftilo o antraceno; preferentemente es naftilo y fenilo; más preferentemente es fenilo;

y/o

- el heterociclilo es un sistema anular heterocíclico de uno o más anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema anular heterocíclico de uno o dos anillos saturados o insaturados, de los cuales al
- menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepano, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, piperidina, benzofurano, bencimidazol, indazol, benzotiazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, isoquinolina, fitalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol, oxopirrolidina, pirimidina,
- 55 benzodioxolano, benzodioxano, carbazol y quinazolina, más preferentemente el heterociclo es tiazol; y/o
 - el cicloalquilo es cicloalquilo C_{3-8} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo, ciclohexilo o ciclohexilo; preferentemente es cicloalquilo C_{3-7} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o ciclohexilo; más preferentemente es cicloalquilo C_{3-6} como ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo;
- opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde

en R₂ tal como se ha definido en cualquiera de las realizaciones,

el alquilo es alquilo C₁₋₆ como metilo, etilo, propilo, butilo, pentilo o hexilo;

el alquilo C₁₋₆ se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C₁₋₆ es metilo, etilo, propilo, isopropilo, isobutilo, isopentilo o 3-pentanilo;

5

el alquenilo C₂₋₆ se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno;

10 el alquinilo C₂₋₆ se selecciona preferentemente a partir de como etino, propino, butino, pentino o hexino;

el arilo se selecciona entre fenilo, naftilo o antraceno; preferentemente es fenilo;

y/o

- el heterociclilo es un sistema anular heterocíclico de uno o más anillos saturados o insaturados, de los cuales al menos 15 un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema anular heterocíclico de uno o dos anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepano, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, pirimidina, piperidina, piperazina, benzofurano, bencimidazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, 20 isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol, oxopirrolidina, pirimidina, benzodioxolano, benzodioxano, carbazol y quinazolina, más preferentemente el heterociclo es piridina, piperidina, morfolina, tetrahidropirano, oxazepano o pirrolidina; y/o
- 25 el cicloalquilo es cicloalquilo C₃₋₈ como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo preferentemente es cicloalquilo C₃₋₇ como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o cicloheptilo; más preferentemente es cicloalquilo C₃₋₆ como ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo; más preferentemente el cicloalquilo es ciclopropilo;
- opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o 30 diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde en R_x o R_x tal como se han definido en cualquiera de las realizaciones,

35 el alquilo C₁₋₆ se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C₁₋₆ es metilo;

el alquenilo C₂₋₆ se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno; y/o

40 el alquinilo C₂₋₆ se selecciona preferentemente a partir de como etino, propino, butino, pentino o hexino;

el heterociclilo es un sistema anular heterocíclico de uno o más anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema anular heterocíclico de uno o dos anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepano, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, pirimidina, piperidina, piperazina, benzofurano, bencimidazol, indazol, benzotiazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3b]piridina, quinolina, isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol, oxopirrolidina, pirimidina, benzodioxolano, benzodioxano, carbazol y quinazolina, más preferentemente el heterociclo es piridina o tetrahidropirano:

45

50

55

60

el cicloalquilo es cicloalquilo C₃₋₈ como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo preferentemente es cicloalquilo C₃₋₇ como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o cicloheptilo; más preferentemente es cicloalquilo C₃₋₆ como ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo; más preferentemente el cicloalquilo es ciclopropilo o ciclohexilo;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con general formula I el compuesto es un compuesto, en la

en R₃, R_{3'}, P_{3"} o R_{3"} como se define en cualquiera de las realizaciones,

el alquilo es alquilo C_{1^-6} como metilo, etilo, propilo, butilo, pentilo o hexilo;

y/o

el alquilo C₁-6 se selecciona preferentemente entre metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo;

5 v/o

25

30

el alquenilo C_{2-6} se selecciona preferentemente entre etileno, propileno, butileno, pentileno o hexileno; v/o

el alquinilo C₂₋₆ se selecciona preferentemente entre etino, propino, butino, pentino o hexino;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde en R₄ o R₄ tal como se han definido en cualquiera de las realizaciones,

el alquilo C₁₋₆ se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C₁₋₆ es metilo;

el alquenilo C_{2-6} se selecciona preferentemente entre etileno, propileno, butileno, pentileno o hexileno; v/o

el alquinilo C_{2-6} se selecciona preferentemente a partir de como etino, propino, butino, pentino o hexino; y/o

el heterociclilo es un sistema de anillo heterocíclico de uno o más anillos saturados o insaturados de los cuales al menos un anillo contiene uno o más heteroátomos entre el grupo que consiste en nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema de anillo heterocíclico de uno o dos anillos saturados o insaturados de los cuales al menos un anillo contiene uno o más heteroátomos entre el grupo que consiste en nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepan, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, pirimidina, piperidina, piperazina, benzofurano, benzoimidazol, indazol, benzotiazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol oxopirrolidina, pirimidina. benzodioxolano, benzodioxano, carbazol y quinazolina;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde en R_5 o $R_{5"}$ tal como se han definido en cualquiera de las realizaciones.

el alquilo C_{1-6} se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C_{1-6} es metilo;

el alquenilo C₂₋₆ se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno; v/o

el alquinilo C_{2-6} se selecciona preferentemente a partir de como etino, propino, butino, pentino o hexino; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un

racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde en R_6 tal como se ha definido en cualquiera de las realizaciones,

el alquilo es alquilo C₁₋₆ como metilo, etilo, propilo, butilo, pentilo o hexilo;

50 y/o

el alquilo C_{1-6} se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C_{1-6} es metilo, etilo o isopropilo; y/o

el alquenilo C₂₋₆ se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno;

55 v/o

el alquinilo C_{2-6} se selecciona preferentemente a partir de como etino, propino, butino, pentino o hexino; y/o

el arilo se selecciona entre fenilo, naftilo o antraceno, preferentemente es fenilo;

el heterociclilo es un sistema anular heterocíclico de uno o más anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema anular heterocíclico de uno o dos anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo, más preferentemente se selecciona entre oxazepano, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, piperidina, piperazina, benzofurano, bencimidazol, indazol, benzotiazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol, oxopirrolidina, pirimidina, benzodioxolano, benzodioxano, carbazol y quinazolina, más preferentemente el heterociclo es furano; y/o

el cicloalquilo es cicloalquilo C_{3-8} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo, ciclohexilo, ciclohexilo o ciclohexilo; preferentemente es cicloalquilo C_{3-7} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o ciclohexilo; más preferentemente es cicloalquilo C_{3-6} como ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde en R₇ tal como se ha definido en cualquiera de las realizaciones, el alquilo C₁₋₆ se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-

metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C_{1-6} es metilo, etilo, propilo, isopropilo, isobutilo o 3-pentanilo;

20 y/o

10

el alquenilo C₂₋₆ se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno; v/o

el alquinilo C₂₋₆ se selecciona preferentemente a partir de como etino, propino, butino, pentino o hexino;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde en R₈, R_{8"}, O R_{8"} tal como se han definido en cualquiera de las realizaciones,

el alquilo es alquilo C₁₋₆ como metilo, etilo, propilo, butilo, pentilo o hexilo;

y/o

30

el alquilo C_{1-6} se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo;

v/o

el alquenilo C₂₋₆ se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno;

el alquinilo C₂₋₆ se selecciona preferentemente a partir de como etino, propino, butino, pentino o hexino;

el arilo se selecciona entre fenilo, naftilo o antraceno;

40 y/o

45

50

55

el heterociclilo es un sistema anular heterocíclico de uno o más anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo; preferentemente es un sistema anular heterocíclico de uno o dos anillos saturados o insaturados, de los cuales al menos un anillo contiene uno o más heteroátomos del grupo constituido por nitrógeno, oxígeno y/o azufre en el anillo,

más preferentemente se selecciona entre oxazepano, pirrolidina, imidazol, oxadiazol, tetrazol, piridina, pirimidina, piperidina, piperazina, benzofurano, bencimidazol, indazol, benzotiazol, benzodiazol, tiazol, benzotiazol, tetrahidropirano, morfolina, indolina, furano, triazol, isoxazol, pirazol, tiofeno, benzotiofeno, pirrol, pirazina, pirrolo[2,3-b]piridina, quinolina, isoquinolina, ftalazina, benzo-1,2,5-tiadiazol, indol, benzotriazol, benzoxazol, oxopirrolidina, pirimidina, benzodioxolano, benzodioxano, carbazol y quinazolina; y/o

el cicloalquilo es cicloalquilo C_{3-8} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo, ciclohexilo o cicloheptilo; preferentemente es cicloalquilo C_{3-7} como ciclopropilo, ciclobutilo, ciclopentilo, ciclohexilo o cicloheptilo; más preferentemente es cicloalquilo C_{3-6} como ciclopropilo, ciclobutilo, ciclopentilo o ciclohexilo;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde en R_o R_o, o R_o, o R_o, tal como se han definido en cualquiera de las realizaciones.

60 el alquilo C_{1-6} se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metiloropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C_{1-6} es metilo;

ES 2 748 694 T3

el alquenilo C_{2-6} se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno; y/o

el alquinilo C₂₋₆ se selecciona preferentemente entre etino, propino, butino, pentino o hexino;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con general formula I el compuesto es un compuesto, en la que

10 en R₁₀ o R₁₀ como se definen en cualquiera de las realizaciones.

el alquilo C_{1^-6} se selecciona preferentemente entre metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo;

v/o

el alquenilo C₂₋₆ se selecciona preferentemente entre etileno, propileno, butileno, pentileno o hexileno; y/o

el alquinilo C₂₋₆ se selecciona preferentemente a partir de como etino, propino, butino, pentino o hexino; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

20 En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde en R₁₁, R_{11'}, R_{11''} tal como se han definido en cualquiera de las realizaciones, el alquilo C₁₋₆ se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C₁₋₆ es metilo;

v/o

30

el alquenilo C₂₋₆ se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno;

el alquinilo C₂₋₆ se selecciona preferentemente entre etino, propino, butino, pentino o hexino;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma of una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con general formula I el compuesto es un compuesto, en la

en R₁₂, R₁₂, R₁₂ o R₁₂ como se define en cualquiera de las realizaciones,

el alquilo C₁₋₆ se selecciona preferentemente entre metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo, más preferentemente el alquilo C₁₋₆ es metilo;

el alquenilo C_{2-6} se selecciona preferentemente entre etileno, propileno, butileno, pentileno o hexileno; y/o el alquinilo C_{2-6} se selecciona preferentemente a partir de como etino, propino, butino, pentino o hexino;

40 opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde en R_{13} , R_{13} , R_{13} , R_{13} , o R_{13} , tal como se han definido en cualquiera de las realizaciones,

el alquilo C_{1-6} se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-metilpropilo, isopentilo o 3-pentanilo;

el alquenilo C₂₋₆ se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno;

50 y/o

45

55

el alquinilo $C_{2\cdot 6}$ se selecciona preferentemente a partir de como etino, propino, butino, pentino o hexino; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde en R_{14} , R_{14} , R_{14} , R_{14} , R_{14} al como se han definido en cualquiera de las realizaciones, el alquilo C_{1-6} se selecciona preferentemente a partir de metilo, etilo, propilo, butilo, pentilo, hexilo, isopropilo, 2-

metilpropilo, isopentilo o 3-pentanilo;

60 y/d

el alquenilo C_{2-6} se selecciona preferentemente a partir de etileno, propileno, butileno, pentileno o hexileno; y/o

el alquinilo C₂₋₆ se selecciona preferentemente a partir de como etino, propino, butino, pentino o hexino;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización preferida de la invención de acuerdo con la fórmula general I, el compuesto es un compuesto donde X es $-CR_xR_x$; $-CR_xOR_{14'}$, $-CR_xR_xNR_{7-}$, $-CR_xR_xNR_{7-}$, $-CR_xR_xNR_{7-}$, -C(O)-, -C(O)-, -C(O)NR₇₋, $-CR_xR_xC(O)$ NR₇₋ o -C(O)NR₇CR_xR_x; preferentemente X es $-CR_xR_x$; $-CR_xOR_{14'}$, $-CR_xR_xNR_{7-}$, $-CR_xR_xO$ -, $-CR_xR_xNR_{7-}$ C(O)-, -C(O)NR₇₋ o $-CR_xR_xC(O)$ NR₇₋:

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización preferida

 R_1 es un grupo sustituido o sin sustituir seleccionado entre metilo, etilo, bencilo, $-CH_2$ -tiazol, $-S(O)_2$ -metilo, $-C(O)CF_3$, $-C(O)CH_2OC(O)CH_3$, acetilo, -C(O)-furano, -C(O)-isopropilo, -C(O)-etilo, $-C(O)CH_2OCH_3$, $-C(O)CH_3$, -C(O)C, -C(O)C, -C(O)C, -C(O)

20 En otra realización preferida

10

15

R₁ es metilo sustituido o sin sustituir, acetilo sustituido o sin sustituir, -CH₂CH₂OH sustituido o sin sustituir o CH₂CF₃ sustituido o sin sustituir.

En una realización muy preferida

R₁ es metilo sustituido o sin sustituir o acetilo sustituido o sin sustituir.

25 En una realización preferida

R₂ es un grupo sustituido o sin sustituir seleccionado entre hidrógeno, metilo, etilo, propilo, isopropilo, isobutilo, isopentilo, 3-pentanilo, ciclopropilo, -CH₂-ciclopropilo, fenilo, bencilo, piridina, pirimidina, piperidina, morfolina, tiomorfolina, tetrahidropirano, oxazepano y pirrolidina.

En una realización preferida

R₂ es hidrógeno, metilo sustituido o sin sustituir, etilo sustituido o sin sustituir, isopropilo sustituido o sin sustituir, isobutilo sustituido o sin sustituido o sin sustituido o sin sustituida o no sustituida, pirimidina sustituida o no sustituida, piperidina sustituida o no sustituida, morfolina sustituida o no sustituida, tiomorfolina sustituida o no sustituida o no sustituida o no sustituida o no sustituida.

En otra realización preferida

R₂ es hidrógeno, metilo sustituido o sin sustituir, etilo sustituido o sin sustituir, isopropilo sustituido o sin sustituir, fenilo sustituido o sin sustituir, piridina sustituida o no sustituida o no sustituida o no sustituida o no sustituida.

En una realización preferida

R₃ es hidrógeno, cloro, hidroxilo, metoxi sustituido o sin sustituir u -O-acetilo sustituido o sin sustituir.

40 En otra realización preferida

R₃ es hidrógeno o hidroxilo.

En una realización preferida particular R₃ es hidrógeno.

En una realización preferida particular

45 $R_{3'}$, $R_{3''}$ y $R_{3'''}$ son todos hidrógeno.

En otra realización preferida particular

R₃ es hidrógeno o hidroxilo, mientras que R₃, R₃, y R₃, son hidrógeno.

En otra realización preferida particular

 R_3 , $R_{3'}$, $R_{3''}$ y $R_{3'''}$ son todos hidrógeno.

50 En una realización preferida

R₄ es hidrógeno o metilo sustituido o sin sustituir.

En otra realización preferida

R₄ es hidrógeno.

En una realización preferida

R₄, es hidrógeno o metilo sustituido o sin sustituir.

En otra realización preferida

5 R₄, es hidrógeno.

En otra realización preferida particular

R₄ y R₄ son ambos hidrógeno.

En una realización preferida

R₅ es hidrógeno o metilo sustituido o sin sustituir.

10 En otra realización preferida

R₅ es hidrógeno.

En una realización preferida

R_{5'} es hidrógeno.

En otra realización preferida particular

15 R_5 y $R_{5'}$ son ambos hidrógeno.

En una realización preferida

 R_6 y R_6 se seleccionan en forma independiente a partir de **hidrógeno**, metilo sustituido o sin sustituir, etilo sustituido o sin sustituir, isopropilo sustituido o sin sustituir, -CH₂OCH₃ sustituido o sin sustituir, -CH₂OH sustituido o sin sustituir y furasin sustituir o sin sustituir.

20 En otra realización preferida

 R_6 es hidrógeno, metilo sustituido o sin sustituir, etilo sustituido o sin sustituir, isopropilo sustituido o sin sustituir, -CF₃, -CH₂OCH₃ sustituido o sin sustituir, -CH₂OH sustituido o sin sustituir o furasin sustituir o sin sustituir

En otra realización preferida

R₆ es metilo sustituido o sin sustituir.

25 En otra realización preferida

R_{6'} es hidrógeno o etilo sustituido o sin sustituir.

En otra realización preferida

R_{6'} es etilo sustituido o sin sustituir.

En otra realización preferida

30 R₆ es hidrógeno mientras que R₆ es etilo sustituido o sin sustituir.

En una realización preferida

 R_7 es hidrógeno, metilo sustituido o sin sustituir, etilo sustituido o sin sustituir, propilo sustituido o sin sustituir, isopropilo sustituido o sin sustituir, isopropilo sustituir, isopropilo

En una realización preferida

35 R₇ es metilo sustituido o sin sustituir, etilo sustituido o sin sustituir o isopropilo sustituido o sin sustituir.

En una realización preferida

R₇ es metilo sustituido o sin sustituir.

En otra realización preferida

R₉ es hidrógeno, metilo sustituido o sin sustituir o acetilo sin sustituir.

40 En otra realización preferida

R₁₁ es hidrógeno o metilo sustituido o sin sustituir.

En otra realización preferida

R₁₂ es hidrógeno o metilo sustituido o sin sustituir.

En otra realización preferida

45 R_{12} , R_{12} o R_{12} son todos hidrógeno.

En otra realización preferida

R₁₂[,] es hidrógeno.

En otra realización preferida

R_{12"} es hidrógeno.

En otra realización preferida

R₁₂ y R₁₂ son ambos hidrógeno.

5 En otra realización preferida

R₁₂ es metilo sustituido o sin sustituir y R₁₂ es hidrógeno.

En otra realización preferida

R₁₄ es hidrógeno o acetilo sin sustituir.

En otra realización preferida

10 R₁₄ es hidrógeno.

En otra realización preferida

R₁₄' es hidrógeno o acetilo sin sustituir.

En otra realización preferida

R₁₄, es hidrógeno.

15 En una realización preferida

R_x es hidrógeno o un metilo sustituido o sin sustituir.

En una realización preferida

R_x es hidrógeno.

En una realización preferida

20 R_x es hidrógeno o un metilo sustituido o sin sustituir, mientras que R_x es hidrógeno.

En una realización preferida

R_x y R_x son ambos hidrógeno.

En una realización preferida

R_x y R_x' forman, junto con el átomo de carbono al que están unidos, un grupo sustituido o sin sustituir seleccionado entre tetrahidropirano, piridina, ciclopropilo o ciclohexilo.

En una realización preferida

X es -CR_xOR_{14'} v

 R_x es hidrógeno o un metilo sustituido o sin sustituir, preferentemente hidrógeno, mientras que R_{14} es hidrógeno o acetilo, preferentemente hidrógeno.

30 En otra realización preferida

35 donde

25

 R_7 es hidrógeno, metilo sustituido o sin sustituir, etilo sustituido o sin sustituir, propilo sustituido o sin sustituir, isopropilo sustituido o sin sustituir, isobutilo sustituido o sin sustituir o -Boc.

En otra realización preferida

X es -CH₂O- sustituido o sin sustituir, -C(O)-, -C(O)NR₇- o -CH₂- sustituido o sin sustituir;

40 donde

R₇ es hidrógeno, metilo sustituido o sin sustituir, etilo sustituido o sin sustituir, propilo sustituido o sin sustituir, isopropilo sustituido o sin sustituir, isopropilo sustituido o sin sustituir.

En una realización particular

el halógeno es flúor, cloro, yodo o bromo.

45 En una realización particular

el halógeno es flúor o cloro.

En una realización adicional preferida, los compuestos de fórmula general I se seleccionan entre

ES 2 748 694 T3

EJ.	Nombre químico
1	1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
2	2-metil-1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)propan-1-ona
3	furan-2-il(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)metanona
4	1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)propan-1-ona
5	2-metoxi-1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
6	2-(benciloxi)-1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
7	1-(6-metoxi-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
8	1-(1'-(2-morfolinoetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
9	1-(1'-((tetrahidro-2 <i>H</i> -piran-4-il)metil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
10	1-(1'-(2-(metil(fenil)amino)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
11	1-(1'-(2-isopropoxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
12	1-(1'-isobutil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
13	1-(1'-(ciclohexilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
14	1-(1'-(2-(piperidin-1-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
15	1-(1'-isopentil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
16	1-(1'-(2-(bencil(metil)amino)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
17	1-(1'-(piridin-2-ilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
18	1-(1'-(2-(piridin-2-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
19	1-(1'-(2-(piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
20	1-(1'-(2-fenoxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
21	1-(1'-(2-(piridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
22	3-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)- <i>N,N</i> -dimetilpropanamida
23	1-(1'-(2-(6-(trifluorometil)piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
24	1-(1'-(2-etoxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
25	1-(1'-(2-(2-(trifluorometil)piridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
26	1-(1'-(2-(3-fluoropiridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
27	1-(1'-(2-(5-cloropiridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
28	4-(2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)picolinonitrilo
29	1-(1'-(2-(5-fluoropiridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
30	1-(1'-(2-(ciclopropilmetoxi)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
31	1-(1'-(2-isobutoxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
32	1-(1'-(2-(benciloxi)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona

EJ.	Nombre químico				
33	1-(1'-(ciclopropilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona				
34	2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-morfolinoetanona				
35	3-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)- <i>N</i> -metil- <i>N</i> -fenilpropanamida				
36	1-(1'-(3-(trifluorometoxi)fenetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona				
37	2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etilcarbamato de <i>terc</i> -butilo				
38	N-(3-(2-(2-acetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)fenil)acetamida				
39	acetato de 2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-feniletilo				
40	1-(1'-(2-hidroxi-2-feniletil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona				
41	1-(1'-(2-hidroxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona				
42	1-(1'-(2-(piridin-2-iloxi)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona				
43	1-(1'-(2-(piridin-3-iloxi)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona				
44	1-(1'-(2-(piridin-4-iloxi)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona				
45	N-(4-(2-(2-acetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)piridin-2-il)acetamida				
46	2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil(metil)carbamato de <i>terc</i> -butilo				
47	1-(1'-(2-(metilamino)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona				
48	N-(2-(2-acetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)-N-metilbenzamida				
49	acetato de 2-acetil-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-6-ilo				
50	1-(6-hidroxi-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona				
51	1-(6-cloro-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona				
52	2-hidroxi-1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona				
53	2-(metilsulfonil)-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]				
54	2-metil-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]				
55	6-metoxi-2-metil-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]				
56	N,N-dietil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida				
57	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(1,4-oxazepan-4-il)etanona				
58	1-(4-fluoropiperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona				
59	1-(4-(2-hidroxipropan-2-il)piperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona				
60	1-(4-metoxipiperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona				
61	1-(4,4-difluoropiperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona				
62	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(6-azaespiro[2.5]octan-6-il)etanona				
63	2-etil-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]				
64	2-((1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)metil)tiazol				
Ц					

EJ.	Nombre químico
65	4-(2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)morfolina
66	1'-(ciclohexilmetil)-2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
67	2-metil-1'-((tetrahidro-2 <i>H</i> -piran-4-il)metil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
68	N,N-dimetil-3-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)propanamida
69	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-feniletanona
70	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-morfolinoetanona
71	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(piperidin-1-il)etanona
72	N-metil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)-N-fenilacetamida
73	N,N-dimetil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
74	2-metil-1'-(2-(tetrahidro-2 <i>H</i> -piran-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
75	2-metil-1'-(2-(piridin-2-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
76	2-metil-1'-(2-(piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
77	1'-(2-metoxietil)-2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
78	1'-(2-isopropoxietil)-2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
79	2-metil-1'-(2-(piperidin-1-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
80	4-(2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)morfolin-3-ona
81	N-metil-3-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)-N-fenilpropanamida
82	2-metil-1'-(piridin-2-ilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
83	2-metil-1'-(piridin-4-ilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
84	2-metil-1'-(piridin-3-ilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
85	2-metil-1'-(3-nitrofenetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
86	1-(4-fluoropiperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)propan-1-ona
87	N-isobutil-N-metil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
88	1-(3,3-difluoropiperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona
89	N-etil-N-isopropil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
90	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(pirrolidin-1-il)etanona
91	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(4-(trifluorometil)piperidin-1-il)etanona
92	1-(3,3-difluoropirrolidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona
93	N-bencil-N-metil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
94	(S)-1-(3-fluoropirrolidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona
95	(R)-1-(3-fluoropirrolidin-1-il)-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona
96	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(piridin-3-il)etanol

EJ.	Nombre químico
97	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(piridin-2-il)etanol
98	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(piridin-4-il)etanol
99	(R)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(piridin-4-il)etanol
100	(S)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(piridin-4-il)etanol
101	N-(ciclopropilmetil)-N-etil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
102	N,N-diisopropil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
103	N-isopropil-N-metil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
104	N-etil-N-isobutil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
105	N-etil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)- <i>N</i> -propilacetamida
106	N-ciclopropil-N-etil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
107	N-isopropil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)- <i>N</i> -propilacetamida
108	N-isopropil-N-(2-metoxietil)-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
109	N-etil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-N-(pentan-3-il)acetamida
110	N-isobutil-N-isopropil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
111	N-metil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-N-(pentan-3-il)acetamida
112	N-(ciclopropilmetil)-N-metil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida
113	1-(3-fluoropiridin-4-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etanol
114	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(4-metilpiperidin-1-il)etanona
115	1-((2S,6R)-2,6-dimetilmorfolino)-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona
116	N-metil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)-N-(piridin-2-ilmetil)acetamida
117	3-(2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)anilina
118	N-(3-(2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)fenil)metanosulfonamida
119	N-(3-(2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)fenil)acetamida
120	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-feniletanol
121	2-metil-1'-(2-(piridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
122	2'-(2-metoxietil)-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
123	2-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanol
124	2-(2-metoxietil)-1'-(2-(piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
125	2-(1'-(2-(piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanol
126	2-(2-(2-hidroxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(piperidin-1-il)etanona
127	2-(1'-(2-(5-fluoropiridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanol
128	2-(1'-(2-(5-(trifluorometil)piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanol

(continuación)

EJ.	Nombre químico
129	2-(1'-(2-(piridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanol
130	2-(1'-(2-(3-fluoropiridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanol
131	2-metil-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-6-ol
132	2,2,2-trifluoro-1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona
133	1'-fenetil-2-(2,2,2-trifluoroetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
134	1-morfolino-2-(2-(2,2,2-trifluoroetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona
135	1-(piperidin-1-il)-2-(2-(2,2,2-trifluoroetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona
136	1'-(2-(piridin-4-il)etil)-2-(2,2,2-trifluoroetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
137	1'-(2-(piridin-3-il)etil)-2-(2,2,2-trifluoroetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]
138	1-(piperidin-1-il)-2-(2,4,4-trimetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

5 En una realización incluso muy preferida los compuestos de la fórmula general I también se seleccionan a partir de (y pueden también agregarse a la lista anterior de la cual los compuestos de la fórmula general I se seleccionan).

142	(R)-1-(3-fluoropiridin-4-il)-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etanol
143	(S)-1-(3-fluoropiridin-4-il)-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etanol
144	N-etil-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-isopropilacetamida
145	1-(4,4-difluoropiperidin-1-il)-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
146	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(piridin-4-il)etanol
147	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-morfolinoetanona
148	4-(2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)morfolina
149	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(1,1-dioxo-tiomorfolin-4-il)etanona
150	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(4-fluoropiperidin-1-il)etanona
151	1-(3,3-difluoropiperidin-1-il)-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
152	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-metil-N-(pentan-3-il)acetamida
153	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-N,N-dimetilacetamida
154	N-ciclopropil-N-etil-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
155	N,N-dietil-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
156	1-(4,4-difluoropiperidin-1-il)-2-(2-metilospiro[isoindolina-1,4'-piperidina]-1'-il)etanona
157	N-etil-N-isopropil-2-(2-metilospiro[isoindolina-1,4'-piperidina]-1'-il)acetamida
158	N-etil-1'-(2-(piridin-4-il)etil)-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-2-carboxamida

(continuación)

159	1'-(2-(Pirimidin-5-il)etil)-2-(2,2,2-trifluoroetil)-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]
160	2-(2-(2-Metil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etilamino)etanol

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

5 En otra realización muy preferida, el compuesto de acuerdo con la invención de fórmula general I es un compuesto en la que

X es, $-CR_xR_{x'}$. $-CR_xR_{x'}NR_{7}$ - o $CR_xR_{x'}O$ -, y

 R_1 es $-C(O)R_6$ o $-S(O)_2R_6$,

15

20

el compuesto se ejemplifica en los ejemplos 1-53 y 132;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier relación de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización muy preferida, el compuesto de acuerdo con la invención de fórmula general I, es un compuesto en la que

X es, $-CR_xR_{x'}$, $-CR_xOR_{14'}$, $-CR_xR_xNR_{7'}$, o $CR_xR_{x'}O$ -, y

 R_1 es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir sustituido o sin sustituir alquinilo C_{2-6}

el compuesto se ejemplifica en los ejemplos 54, 55, 63, 65-67, 74-80, 82-85, 96-100, 113, 117-125, 127-131, 133, 136 y 137:

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

25 En otra realización muy preferida, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde

X es $-CR_xR_{x'}$, $-CR_xOR_{14'}$, $-CR_xR_xNR_{7'}$ o $CR_xR_{x'}O$ - y

R₁ es alquilarilo sustituido o sin sustituir, alquilheterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir:

30 estando ilustrado el compuesto en el ejemplo 64;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

35 En otra realización muy preferida, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde

X es -C(O)NR₇- y

 R_1 es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, estando ilustrado el compuesto en los ejemplos 56, 68, 72, 73, 81, 87, 89, 93, 101-112 y 116;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización muy preferida, el compuesto de acuerdo con la invención de fórmula general I es un compuesto donde

X es -C(O)-.

45

50

 R_1 es alquillo C_{1-6} sustituido o sin sustituir, alquenillo C_{2-6} sustituido o sin sustituir, alquinillo C_{2-6} sustituido o sin sustituir, v

R₂ es heterociclilo sustituido o sin sustituir, donde el heterociclilo contiene, al menos, un nitrógeno unido al grupo carbonilo en X:

estando ilustrado el compuesto en los ejemplos 57-62, 70, 71, 86, 88, 90-92, 94, 95, 114, 115, 126, 134, 135, 138; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos

correspondientes.

5

10

15

20

35

En una realización preferida del compuesto de acuerdo con la invención de fórmula general I,

 R_1 es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilarilo sustituido o sin sustituir, alquilheterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, $-C(O)R_6$, $-C(O)CH_2OR_6$, $-C(O)CH_2OR_6$, $-C(O)CR_6$, $-C(O)NR_6R_6$ o $-S(O)_2R_6$;

donde R_6 y R_6 se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, arilo sustituido o sin sustituir o alquilarilo sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir o alquilcicloalquilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir y alquilheterociclilo sustituido o sin sustituir;

donde dicho cicloalquilo, arilo o heterociclilo en R_1 o R_6 , también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre halógeno, - R_{11} , - OR_{11} , - OR_{11

además, el cicloalquilo o heterociclilo no aromático en R_1 o R_6 , también en alquilcicloalquilo y alquilheterociclilo, si está sustituido, también puede estar sustituido con

u =0:

donde el alquilo, alquileno o alquinilo en R₁ o R₆, si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre -OR₁₁, halógeno, -CN, haloalquilo, haloalcoxi,-SR₁₁,-S(O)R₁₁ y -S(O)₂R₁₁;

donde R_{11} , R_{11} y R_{11} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir;

y donde R_{11} " se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización de la invención del compuesto de fórmula general I,

R₂ es hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, alquilarilo sustituir o alquilheterociclilo sustituido o sin sustituir;

donde dicho cicloalquilo, arilo o heterociclilo en R_2 , también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre halógeno, $-R_{12}$, $-OR_{12}$, $-NO_2$, $-NR_{12}R_{12}$, $-NR_{12}R_{1$

además, el cicloalquilo o heterociclilo no aromático en R2, también en alquilcicloalquilo y alquilheterociclilo, si está sustituido, también puede estar sustituido con

40 u <u>=O</u>;

donde el alquilo, alquileno o alquinilo en R_2 , si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre $-OR_{12}$, halógeno, -CN, haloalquilo, haloalcoxi, $-SR_{12}$, $-S(O)_2R_{12}$;

donde R_{12} , R_{12} y R_{12} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir;

45 y donde $R_{12^{"}}$ se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización de la invención del compuesto de fórmula general I, el alquilo, alquileno o alquinilo, distintos de los definidos en R_1 , R_2 o R_6 , si están sustituidos, están sustituidos con uno o más sustituyentes seleccionados entre - OR_{10} , halógeno, -CN, haloalquilo, haloalcoxi,- SR_{10} ,- $S(O)R_{10}$ y - $S(O)_2R_{10}$; donde R_{10} y R_{10} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización de la invención de fórmula general I,

el arilo, heterociclilo o cicloalquilo, también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, distintos de los definidos en R₁, R₂ o R₆, si están sustituidos, están sustituidos con uno o más sustituyentes seleccionados entre halógeno, -R₈, -OR₈, -NO₂, -NR₈R_{8"}, NR₈C(O)R₈, -NR₈S(O)₂R₈, -S(O)₂NR₈R_{8"}, -NR₈C(O)NR₈, R_{8"}, -S(O)₂R₈, -CN, haloalquilo, haloalcoxi, -C(O)OR₈, -C(O)NR₈R_{8"}, -OCH₂CH₂OH, -NR₈S(O)₂NR_{8"}R_{8"} y C(CH₃)₂OR₈; además, donde el cicloalquilo o heterociclilo no aromático, distintos de los definidos en R₁, R₂ o R₆, también en alquilcicloalquilo y alquilheterociclilo, si están sustituidos, también pueden estar sustituidos con

u =0;

25

30

35

40

45

50

donde R_8 , $R_{8'}$ y $R_{8''}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir, arilo sin sustituir, alquilarilo sin sustituir, cicloalquilo sin sustituir y alquilcicloalquilo sin sustituir, heterociclilo sin sustituir y alquilheterociclilo sin sustituir;

y donde R_{8} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización preferida del compuesto de acuerdo con la invención de fórmula general I y en relación con R_1 o R_6 de cualquiera de las realizaciones previas,

el cicloalquilo, arilo o heterociclilo en R_1 o R_6 , también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre halógeno, $-R_{11}$, $-OR_{11}$, $-OR_{11}$, $-NO_2$, $-NR_{11}R_{11"}$, $NR_{11}C(O)R_{11'}$, $-NR_{11}S(O)_2R_{11'}$, $-S(O)_2NR_{11}R_{11'}$, $-NR_{11}C(O)NR_{11'}R_{11''}$, $-SR_{11}$, $-S(O)R_{11}$, $S(O)_2R_{11}$, -CN, haloalquilo, haloalcoxi, $-C(O)OR_{11}$, $-C(O)NR_{11}R_{11'}$, $-OCH_2CH_2OH$, $-NR_{11}S(O)_2NR_{11'}R_{11''}$ y $C(CH_3)_2OR_{11}$;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización preferida del compuesto de acuerdo con la invención de fórmula general I y en relación con R_1 o R_6 de cualquiera de las realizaciones previas,

el cicloalquilo o heterociclilo no aromático en R₁ o R₆, también en alquilcicloalquilo y alquilheterociclilo, si está sustituido, también puede estar sustituido con

u =0;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización preferida del compuesto de acuerdo con la invención de fórmula general I y en relación con R_1 o R_6 de cualquiera de las realizaciones previas,

el alquilo, alquileno o alquinilo en R₁ o R₆, si está sustituido, está sustituido con uno o más sustituyentes seleccionados

entre -OR₁₁, halógeno, -CN, haloalquilo, haloalcoxi,-SR₁₁,-S(O)R₁₁ y -S(O)₂R₁₁;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización preferida del compuesto de acuerdo con la invención de fórmula general I y en relación con R_2 de cualquiera de las realizaciones previas,

el cicloalquilo, arilo o heterociclilo en R_2 , también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre halógeno, $-R_{12}$, $-OR_{12}$, $-NO_2$, $-NR_{12}R_{12}$ ", $NR_{12}C(O)R_{12}$, $-NR_{12}S(O)_2R_{12}$, $-S(O)_2NR_{12}R_{12}$ ", $-NR_{12}C(O)NR_{12}R_{12}$ ", $-SR_{12}$, $-S(O)R_{12}$, $-S(O)R_$

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización preferida del compuesto de acuerdo con la invención de fórmula general I y en relación con R_2 de cualquiera de las realizaciones previas,

el cicloalquilo o heterociclilo no aromático en R₂, también en alquilcicloalquilo y alquilheterociclilo, si está sustituido, también puede estar sustituido con

u =0:

5

10

15

20

25

30

35

40

45

50

55

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización preferida del compuesto de acuerdo con la invención de fórmula general I y en relación con R_2 de cualquiera de las realizaciones previas,

el alquilo, alquileno o alquinilo en R_2 , si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre - OR_{12} , halógeno, -CN, haloalquilo, haloalcoxi,- SR_{12} ,- $S(O)R_{12}$ y - $S(O)_2R_{12}$;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización preferida del compuesto de acuerdo con la invención de fórmula general I y en relación con los alquilos distintos de los definidos en R_1 , R_2 o R_6 de cualquiera de las realizaciones previas, el alquilo, alquileno o alquinilo, distintos de los definidos en R_1 , R_2 o R_6 , si están sustituidos, están sustituidos con uno o más sustituyentes seleccionados entre -OR $_{10}$, halógeno, -CN, haloalquilo, haloalcoxi,-SR $_{10}$,-S(O)R $_{10}$ y -S(O) $_2$ R $_{10}$; opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o

racemato o en forma de una mezcia de al menos dos de los estereolsomeros, preferentemente enantiomeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes

En una realización preferida del compuesto de acuerdo con la invención de fórmula general I y en relación con el arilo, heterociclilo y cicloalquilo distintos de los definidos en R_1 , R_2 o R_6 de cualquiera de las realizaciones previas,

el arilo, heterociclilo o cicloalquilo, también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, distintos de los definidos en R₁, R₂ o R₆, si están sustituidos, están sustituidos con uno o más sustituyentes seleccionados entre halógeno, -R₈, -OR₈, -NO₂, -NR₈R_{8"}, NR₈C(O)R₈, -NR₈S(O)₂R₈, -S(O)₂NR₈R_{8"}, -NR₈C(O)NR₈, -S(O)₂R₈, -CN, haloalquilo, haloalcoxi, -C(O)OR₈, -C(O)NR₈R₈, -OCH₂CH₂OH, -NR₈S(O)₂NR₈, R_{8"} y C(CH₃)₂OR₈;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización preferida del compuesto de acuerdo con la invención de fórmula general I y en relación con el heterociclilo y cicloalquilo distintos de los definidos en R_1 , R_2 o R_6 de cualquiera de las realizaciones previas, el cicloalquilo o heterociclilo no aromático, distintos de los definidos en R_1 , R_2 o R_6 , también en alquilcicloalquilo y alquilheterociclilo, si están sustituidos, también pueden estar sustituidos con

u =0;

5

10

15

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización de la invención de fórmula general I,

el halógeno es flúor, cloro, yodo o bromo;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización muy preferida de la invención de fórmula general I, el halógeno es flúor o cloro

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una realización de la invención de fórmula general I, el haloalquilo es -CF₃;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En otra realización de la invención de fórmula general I,

25 el haloalcoxi es -OCF₃;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

- 30 Debido a que esta invención tiene por objetivo proporcionar un compuesto o una serie de compuestos relacionados químicamente que actúen como ligandos duales del receptor σ_1 y el receptor opioide μ , es una realización muy preferida aquella en la que se seleccionan compuestos que actúan como ligandos duales del receptor σ_1 y el receptor opioide μ , y especialmente los compuestos con una unión expresada como Ki que sea preferentemente < 1000 nM para ambos receptores, más preferentemente < 500 nM, incluso más preferentemente < 100 nM.
- Además se desvelan compuestos de fórmula general (XV) y fórmula general (Va) y esta divulgación se denomina en la presente DIVULGACIÓN A.

Una primera realización de la DIVULGACIÓN A es un compuesto de fórmula general (XV) o (Va):

40 donde

n es 0 o 1;

R₂ es hidrógeno, alquilo C₁₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir, alquinilo C₂₋₆ sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, alquilarilo sustituido o sin sustituir o alquilheterociclilo sustituido o sin sustituir;

5

donde dicho cicloalquilo, arilo o heterociclilo en R₂, también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre halógeno, -R₁₂, -OR₁₂, -NO₂, $-NR_{12}R_{12}",\ NR_{12}C(O)R_{12},\ -NR_{12}S(O)_2R_{12}',\ -S(O)_2NR_{12}R_{12}',\ -NR_{12}C(O)NR_{12}'R_{12}",\ -SR_{12},\ -S(O)R_{12},\ S(O)_2R_{12},\ -CN,$ haloalquilo, haloalcoxi, -C(O)OR₁₂, -C(O)NR₁₂R₁₂, -OCH₂CH₂OH, -NR₁₂S(O)₂NR₁₂R₁₂, y C(CH₃)₂OR₁₂;

10

además, el cicloalquilo o heterociclilo no aromático en R2, también en alquilcicloalquilo y alquilheterociclilo, si está sustituido, también puede estar sustituido con

u <u>=0</u>;

donde el alquilo, alquileno o alquinilo en R2, si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre -OR₁₂, halógeno, -CN, haloalquilo, haloalcoxi, -NR₁₂R₁₂, -SR₁₂, -S(O)R₁₂ y -S(O)₂R₁₂;

15

donde R₁₂, R₁₂ y R₁₂ se seleccionan independientemente entre hidrógeno, halógeno, acetilo sin sustituir, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, alquinilo C₂₋₆ sin sustituir;

y donde R_{12"} se selecciona entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, alquinilo C₂₋₆ sin sustituir y -Boc;

20

X se selecciona entre un enlace, -CR_xR_{x'}, -CR_xOR_{14'}, -CR_xR_xNR₇-, -O-, -CR_xR_xO-, -CR_xR_xNR₇C(O)-, -C(O)-, - $CR_xR_xC(O)$ -, -C(O)O-, $-C(O)NR_7$ -, $-CR_xR_xC(O)NR_7$ - y $-C(O)NR_7CR_xR_x$ -;

donde R₇ se selecciona entre hidrógeno, alquilo C₁₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir, alquinilo C₂₋₆ sustituido o sin sustituir y Boc;

R_x se selecciona entre hidrógeno, alquilo C₁₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, $-C(O)OR_{14}$, $-C(O)NR_{14}R_{14'}$, $-NR_{14}C(O)R_{14'}$ y $-NR_{14}R_{14''}$;

25

R_x se selecciona entre hidrógeno, alquilo C₁₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir y alquinilo C₂₋₆ sustituido o sin sustituir;

R₁₄, R₁₄, y R₁₄, se seleccionan independientemente entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, alquinilo C₂₋₆ sin sustituir y acetilo sin sustituir;

30

y donde R₁₄ se selecciona entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, alquinilo C₂₋ 6 sin sustituir y -Boc;

 $R_3 \text{ se selecciona entre hidrógeno, halógeno, } -R_9, -OR_9, -NO_2, -NR_9R_{9'''}, -NR_9C(O)R_{9'}, -NC(O)OR_9, -NR_9S(O)_2R_{9'}, -NC_{9'}, -S(O)_2NR_9R_{9'}$, $-NR_9C(O)NR_9R_{9''}$, $-SR_9$, $-S(O)R_9$, $-S(O)_2R_9$, -CN, haloalquilo, haloalcoxi, $-C(O)OR_9$, $-C(O)OR_$ $C(O)NR_9R_{9'}$, - OCH_2CH_2OH , - $NR_9S(O)_2NR_9R_{9''}$, - $OCOR_9$ y $C(CH_3)_2OR_9$;

35

R_{3'}, R_{3''} y R_{3'''} se seleccionan independientemente entre hidrógeno, halógeno, -R₉, -OR₉, -NO₂, -NR₉R_{9'''}, - $NR_9C(O)R_{9'}, -NC(O)OR_{9}, -NR_9S(O)_2R_{9'}, -S(O)_2NR_9R_{9'}, -NR_9C(O)NR_9R_{9''}, -SR_{9}, -S(O)R_{9}, -S(O)_2R_{9}, -CN_{9}, -C$ $haloalquilo,\ haloalcoxi,\ -C(O)OR_9,\ -C(O)NR_9R_9,\ -\ OCH_2CH_2OH,\ -NR_9S(O)_2NR_9R_9,\ -\ OCOR_9\ y\ C(CH_3)_2OR_9;$

donde R₉, R₉ y R₉, se seleccionan independientemente entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, alquinilo C₂₋₆ sin sustituir y acetilo sin sustituir;

y donde R_{9"} se selecciona entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, alquinilo C₂₋ 6 sin sustituir y -Boc;

40

 $R_4 \ se \ selecciona \ entre \ hidrógeno, \ -OR_{13}, \ alquilo \ C_{1\text{-}6} \ sustituido \ o \ sin \ sustituir, \ alquenilo \ C_{2\text{-}6} \ sustituido \ o \ sin$ sustituir, alquinilo C_{2-6} sustituido o sin sustituir, $-C(O)OR_{13}$, $-C(O)NR_{13}R_{13'}$, $-NR_{13}C(O)R_{13}$, $-NR_{13}R_{13''}$, $-NR_$ NC(O)OR₁₃ y heterociclilo sustituido o sin sustituir;

R_{4'} se selecciona entre hidrógeno, alquilo C₁₋₆ sustituido o sin sustituir, alquenilo C₂₋₆ sustituido o sin sustituir y alquinilo C₂₋₆ sustituido o sin sustituir;

45

donde R₁₃, R₁₃, y R₁₃, se seleccionan independientemente entre hidrógeno, alquilo C₁₋₆ sin sustituir,

alquenilo C₂₋₆ sin sustituir, alquinilo C₂₋₆ sin sustituir;

y donde R_{13} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

 R_5 y $R_{5'}$ se seleccionan independientemente entre hidrógeno, o alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;

donde el alquilo, alquileno o alquinilo, distintos de los definidos en R_2 , si están sustituidos, están sustituidos con uno o más sustituyentes seleccionados entre -OR₁₀, halógeno, -CN, haloalquilo, haloalcoxi, -NR₁₀R₁₀, -SR₁₀, -S(O)R₁₀ y -S(O)₂R₁₀;

donde R_{10} y R_{10} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir y alquinilo C_{2-6} sin sustituir;

donde el arilo, heterociclilo o cicloalquilo, también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, distintos de los definidos en R_2 , si están sustituidos, están sustituidos con uno o más sustituyentes seleccionados entre halógeno, $-R_8$, $-OR_8$, $-NO_2$, $-NR_8R_{8''}$, $NR_8C(O)R_8$, $-NR_8C(O)R_8$, $-S(O)_2NR_8R_{8'}$, $-NR_8C(O)NR_8R_{8''}$, $-SR_8$, $-S(O)_2R_8$, -S(O

además, donde el cicloalquilo o heterociclilo no aromático, distintos de los definidos en R_1 , R_2 o R_6 , también en alquilcicloalquilo y alquilheterociclilo, si están sustituidos, también pueden estar sustituidos con

u =0;

5

10

15

20

30

donde R_8 , R_8 y R_8 se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, arilo sin sustituir, alquilarilo sin sustituir, cicloalquilo sin sustituir y alquilcicloalquilo sin sustituir, heterociclilo sin sustituir y alquilheterociclilo sin sustituir;

y donde $R_{8}^{...}$ se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc,

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

Las definiciones generales de alquilo, alquenilo, alquinilo, arilo, alquilarilo, cicloalquilo, alquilcicloalquilo, heterociclilo y alquilheterociclilo, así como también las definiciones generales sobre su patrón de sustitución que se han expuesto anteriormente, también se aplican a la DIVULGACIÓN A, si no se define de otro modo a continuación.

En una segunda realización de la DIVULGACIÓN A, el compuesto de acuerdo con la primera realización de la DIVULGACIÓN A es un compuesto de acuerdo con cualquiera de las fórmulas generales XV o Va

$$R_{3}$$
 R_{4} R_{5} R_{5

35

donde

5

10

20

25

30

n es 1

 R_2 es hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, alquilarilo sustituido o sin sustituir o alquilheterociclilo sustituido o sin sustituir;

donde dicho cicloalquilo, arilo o heterociclilo en R₂, también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre halógeno, -R₁₂, -OR₁₂, haloalquilo y haloalcoxi;

donde el alquilo, alquileno o alquinilo en R₂, si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre -OR₁₂ y halógeno;

X se selecciona entre un enlace, -CR_xR_{x'}, -CR_xR_xNR₇-, -O-, -CR_xR_xO- y -C(O)-;

donde R₇ se selecciona entre hidrógeno, alquilo C₁₋₄ sustituido o sin sustituir;

R_x se selecciona entre hidrógeno, alquilo C₁₋₄ sustituido o sin sustituir;

 $R_{x'}$ se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir;

15 R₃ es hidrógeno;

R_{3'}, R_{3''} y R_{3'''} son hidrógeno;

R₄ se selecciona entre hidrógeno, alquilo C₁₋₄ sustituido o sin sustituir;

R_{4'} se selecciona entre hidrógeno, alquilo C₁₋₄ sustituido o sin sustituir;

R₅ y R₅ son hidrógeno;

donde el alquilo, alquileno o alquinilo, distintos de los definidos en R₂, si están sustituidos, están sustituidos con uno o más sustituyentes seleccionados entre -OR₁₀ y halógeno;

donde R₁₀ se selecciona entre hidrógeno y alquilo C₁₋₆ sin sustituir;

donde el arilo, heterociclilo o cicloalquilo, también en alquilarilo, alquilcicloalquilo y alquilheterociclilo, distintos de los definidos en R_2 , si están sustituidos, están sustituidos con uno o más sustituyentes seleccionados entre halógeno, $-R_8$, $-OR_8$, haloalquilo y haloalcoxi;

donde R₈ se selecciona entre hidrógeno y alquilo C₁₋₆ sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En una tercera realización de la DIVULGACIÓN A, el compuesto de acuerdo con la primera o la segunda realización de la DIVULGACIÓN A es un compuesto de acuerdo con la fórmula general XV

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

5 En una cuarta realización de la DIVULGACIÓN A, el compuesto de acuerdo con la primera o la segunda realización de la DIVULGACIÓN A es un compuesto de acuerdo con la fórmula general Va

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

En lo sucesivo, se utiliza la frase "compuesto de la invención". Esta frase se debe interpretar como cualquier compuesto de acuerdo con la invención según se ha descrito anteriormente de acuerdo con la fórmula general I.

- Los compuestos de la invención representados por la fórmula (I) descrita anteriormente pueden incluir enantiómeros dependiendo de la presencia de centros quirales o isómeros dependiendo de la presencia de enlaces múltiples (p. ej., *Z, E*). Los enantiómeros, diastereoisómeros o isómeros independientes y sus mezclas quedan contemplados por el alcance de la presente invención. Esto también se aplica a los compuestos de la DIVULGACIÓN A.
- En general, los procedimientos se describen a continuación en la parte experimental. Los materiales de partida se pueden adquirir de proveedores comerciales o se pueden preparar mediante métodos convencionales.

Un aspecto preferido de la invención se refiere también a un procedimiento para producir un compuesto de acuerdo con la fórmula I. En este procedimiento, también se describe el procedimiento de producción de los compuestos de la DIVULGACIÓN A, los cuales, en la mayoría de los casos, actúan como intermedios en el procedimiento para producir un compuesto de acuerdo con la fórmula I.

25 En una realización particular se encuentra un procedimiento para producir un compuesto de acuerdo con la fórmula I,

donde n, X, R_1 , R_2 , R_3 , R_3 , R_3 , R_3 , R_4 , R_4 , R_5 y R_5 son como se han definido en la descripción anterior, donde dicho procedimiento comprende hacer reaccionar un compuesto de fórmula IX con un reactivo adecuado de fórmula Xa-d, utilizando diferentes condiciones dependiendo de la naturaleza del reactivo,

30

donde

n, R_1 , R_2 , R_3 , R_3 , R_3 , R_3 , R_3 , R_4 y R_4 son como se han definido anteriormente en la descripción,

Xa es WCR₅R₅'XR₂,

Xb es $O=CR_5R_5XR_2$,

 $Xc es CR_5R_5 = CR_xR_2$

Xd es CR₅R₅ OCR_xR₂; y

W es un grupo saliente.

En otra realización se encuentra un procedimiento para producir un compuesto de acuerdo con la fórmula I,

$$R_3$$
 R_4 R_4 R_4 R_5 R_5 R_5 R_6 R_2 (I)

10

15

5

donde n, X, R_1 , R_2 , R_3 , R_3 , R_3 , R_3 , R_4 , R_4 , R_5 y R_5 son como se han definido anteriormente en la descripción, donde dicho procedimiento comprende

hacer reaccionar un compuesto de fórmula XII con un agente reductor, en un disolvente adecuado, a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo,

donde n, X, R₁, R₂, R₃, R₃, R₃, R₃, R₄ y R₄ son como se han definido anteriormente en la descripción.

En otra realización se encuentra un procedimiento para producir un compuesto de acuerdo con la fórmula I,

donde n, X, R_1 , R_2 , R_3 , R_3 , R_3 , R_3 , R_4 , R_4 , R_5 y R_5 son como se han definido anteriormente en la descripción, donde dicho procedimiento comprende

5 hacer reaccionar un intermedio XIV con Xa-d y a continuación hacerlo reaccionar con VIIa-h,

donde

n, R₁, R₂, R₃, R_{3''}, R_{3'''}, R₄ y R_{4'} son como se han definido en la descripción anterior,

10 $Xa es WCR_5R_5XR_2$,

Xb es O=CR₅R₅'XR₂,

Xc es CR₅R₅'=CR_xR₂,

Xd es CR₅R₅ OCR_xR₂;

VIIa es R₁=O,

15 VIIb es R₁W,

VIIc es R₆COW,

VIId es (R₆CO)₂,

VIIe es R₆SO₂W,

VIIf es R₆NCO,

20 VIIg es R₆NSO,

VIIh es R6COOW y

W es un grupo saliente.

En otra realización se encuentra un procedimiento para producir un compuesto de acuerdo con la fórmula I,

25

30

donde n, X, R_{1} , R_{2} , R_{3} , $R_{3''}$, $R_{3'''}$, R_{4} , R_{5} y $R_{5'}$ son como se han definido anteriormente en la descripción, donde dicho procedimiento comprende

transformar el intermedio XV mediante la reducción con un agente reductor, en un disolvente adecuado, a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo, seguida de la reacción con VIIa-h en condiciones adecuadas o, en el caso donde R₁ sea alquilo, el orden de los pasos se puede invertir y el compuesto I se puede obtener mediante la reacción del intermedio XV con VIIb en condiciones adecuadas seguida de

la reducción con un agente reductor, en un disolvente adecuado, a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo,

5 donde

15

n, X, R₁, R₂, R₃, R_{3'}, R_{3''}, R_{3''}, R₄, R₄, R₅ y R_{5'} son como se han definido anteriormente en la descripción,

VIIa es R₁=O,

VIIb es R₁W,

VIIc es R6COW,

10 VIId es $(R_6CO)_2$,

VIIe es R₆SO₂W,

VIIf es R₆NCO,

VIIg es R₆NSO,

VIII es R₆COOW y

W es un grupo saliente.

En otra realización se encuentra un procedimiento para producir un compuesto de acuerdo con la fórmula I,

donde n, X, R_1 , R_2 , R_3 , R_3 , R_3 , R_3 , R_4 , R_4 , R_5 y R_5 son como se han definido anteriormente en la descripción, donde dicho procedimiento comprende

en el caso en que R₃, R_{3''} o R_{3'''} sea un grupo electrodonante, el compuesto I también se puede preparar mediante la reacción de un compuesto de fórmula VI con un compuesto de fórmula XVI en un disolvente adecuado, a una temperatura adecuada, preferentemente comprendida entre 80 y 120 °C, seguida de la reacción con VIIa-h.

$$R_3$$
 R_4 R_4 R_5 NH_2 NH_2

donde

25

n, R₁, R₂, R₃, R_{3'}, R_{3''}, R_{3'''}, R₄, R_{4'}, R₅ y R_{5'} son como se han definido anteriormente en la descripción,

VIIa es R₁=O,

VIIb es R₁W,

30 VIIc es R₆COW,

VIId es (R₆CO)₂,

VIIe es R₆SO₂W, VIIf es R₆NCO, VIIg es R₆NSO, VIIh es R₆COOW y W es un grupo saliente.

5

En una realización particular, se utiliza un compuesto de Fórmula (II),

para preparar compuestos de Fórmula (I),

donde n, R₃, R_{3''}, R_{3'''}, R₄ y R_{4'} son como se han definido anteriormente en la descripción.

En otra realización particular, se utiliza un compuesto de Fórmula (IV),

para preparar compuestos de Fórmula (I),

donde n, R₃, R_{3"}, R_{3"}, R₄ y R₄ son como se han definido anteriormente en la descripción y P es un grupo protector.

En una realización particular, se utiliza un compuesto de Fórmula (V)

para preparar compuestos de Fórmula (I),

donde n, R₃, R_{3''}, R_{3'''}, R₄ y R_{4'} son como se han definido anteriormente en la descripción y P es un grupo protector.

En una realización particular, se utiliza un compuesto de Fórmula (VI)

para preparar compuestos de Fórmula (I),

donde n, R₃, R_{3'}, R_{3''}, R_{3'''}, R₄ y R_{4'} son como se han definido anteriormente en la descripción.

En una realización particular, se utiliza un compuesto de Fórmula (XIII)

para preparar compuestos de Fórmula (I), donde n, R₃, R_{3''}, R_{3'''}, R₄ y R_{4'} son como se han definido anteriormente en la descripción.

En una realización particular, se utiliza un compuesto de Fórmula (VIII)

para preparar compuestos de Fórmula (I), donde n, R₃, R_{3''}, R_{3'''}, R₄ y R_{4'} son como se han definido anteriormente en la descripción y P es un grupo protector.

En una realización particular, se utiliza un compuesto de Fórmula (XIV)

para preparar compuestos de Fórmula (I), donde n, R_{3,} R_{3'',} R_{3''',} R₄ y R_{4'} son como se han definido anteriormente en la descripción.

En una realización particular, se utiliza un compuesto de Fórmula (XV)

para preparar compuestos de Fórmula (I), donde n, R₃, R_{3''}, R_{3''}, R₄, R₄, R₅ y R_{5'} son como se han definido anteriormente en la descripción.

En una realización particular, se utiliza un compuesto de Fórmula (XII)

para preparar compuestos de Fórmula (I),

5 donde n, R₁, R₂, R₃, R₃, R₃, R₃, R₄ y R₄ son como se han definido anteriormente en la descripción.

En una realización particular, se utiliza un compuesto de Fórmula (IX)

para preparar compuestos de Fórmula (I),

15

20

25

30

35

donde n, R₁, R₃, R_{3'}, R_{3''}, R_{3'''}, R₄ y R_{4'} son como se han definido anteriormente en la descripción.

Los productos de reacción obtenidos se pueden purificar, si se desea, mediante métodos convencionales, tales como cristalización y cromatografía. Cuando los procedimientos descritos anteriormente para la preparación de los compuestos de la invención producen mezclas de estereoisómeros, estos isómeros se pueden separar mediante técnicas convencionales tales como cromatografía preparativa. Si hay centros quirales, los compuestos se pueden preparar en forma racémica o se pueden preparar los enantiómeros individuales ya sea mediante síntesis enantioespecífica o mediante resolución.

Una forma farmacéuticamente aceptable preferida de un compuesto de la invención es la forma cristalina, incluida dicha forma en una composición farmacéutica. En el caso de las sales y también los solvatos de los compuestos de la invención, los restos de disolvente e iónicos adicionales también deben ser atóxicos. Los compuestos de la invención pueden presentar diferentes formas polimórficas, se pretende que la invención contemple todas estas formas.

Otro aspecto de la invención se refiere a una composición farmacéutica que comprende un compuesto de acuerdo con la invención según se ha descrito anteriormente de acuerdo con la fórmula general I, o uno de sus estereoisómeros o sales farmacéuticamente aceptables, y un portador, adyuvante o vehículo farmacéuticamente aceptable. La presente invención proporciona por tanto composiciones farmacéuticas que comprenden un compuesto de esta invención, o uno de sus estereoisómeros o sales farmacéuticamente aceptables, junto con un portador, adyuvante o vehículo farmacéuticamente aceptable, para su administración a un paciente. Todo esto también se aplica a los compuestos de la DIVULGACIÓN A, los cuales también se podrían formular en una composición farmacéutica.

Los ejemplos de composiciones farmacéuticas incluyen cualquier composición sólida (comprimidos, pastillas, cápsulas, gránulos, etc.) o líquida (soluciones, suspensiones o emulsiones) para la administración oral, tópica o parenteral.

En una realización preferida, las composiciones farmacéuticas se encuentran en forma oral, ya sea sólida o líquida. Las formas farmacéuticas adecuadas para la administración oral pueden ser comprimidos, cápsulas, jarabes o soluciones y pueden contener excipientes convencionales conocidos en la técnica tales como aglutinantes, por ejemplo, sirope, goma arábiga, gelatina, sorbitol, goma de tragacanto o polivinilpirrolidona; rellenos, por ejemplo, lactosa, azúcar, almidón de maíz, fosfato de calcio, sorbitol o glicina; lubricantes de compresión, por ejemplo, estearato de magnesio; desintegrantes, por ejemplo, almidón, polivinilpirrolidona, glicolato sódico de almidón o celulosa microcristalina; o agentes humectantes farmacéuticamente aceptables tales como laurilsulfato de sodio.

Las composiciones orales sólidas se pueden preparar mediante métodos convencionales de mezcla, relleno o

compresión. Se pueden utilizar operaciones de mezcla reiteradas para distribuir el principio activo por todas aquellas composiciones que empleen grandes cantidades de rellenos. Tales operaciones son convencionales en la técnica. Los comprimidos se pueden preparar, por ejemplo, mediante granulación por vía húmeda o en seco y opcionalmente se pueden recubrir de acuerdo con métodos muy conocidos en la práctica farmacéutica habitual, en particular con un recubrimiento entérico.

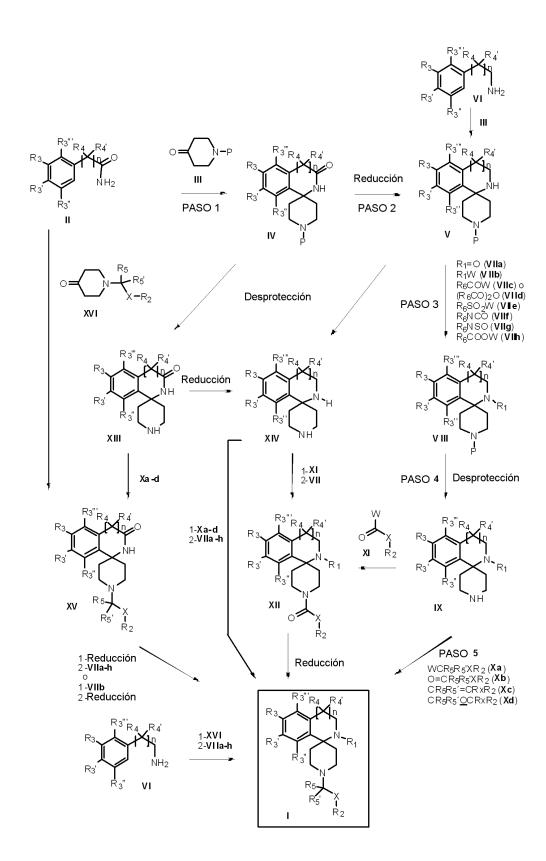
Las composiciones farmacéuticas también se pueden adaptar para la administración parenteral, por ejemplo, como soluciones, suspensiones o productos liofilizados estériles en la forma farmacéutica unitaria adecuada. Se pueden utilizar excipientes adecuados tales como agentes espesantes, tamponantes o surfactantes.

Las formulaciones mencionadas se prepararán utilizando métodos estándar tales como aquellos descritos o a los que se hace referencia en las Farmacopeas españolas y estadounidenses, y en textos de referencia similares.

La administración de los compuestos o las composiciones de la presente invención se puede realizar mediante cualquier procedimiento adecuado tal como infusión intravenosa, preparados orales, y administración intraperitoneal e intravenosa. Se prefiere la administración oral debido a la conveniencia para el paciente y el carácter crónico de las enfermedades que se han de tratar.

- Por lo general, la cantidad eficaz administrada de un compuesto de la invención dependerá de la eficacia relativa del compuesto seleccionado, la gravedad del trastorno que se esté tratando y el peso del paciente. Sin embargo, los compuestos activos normalmente se administrarán una o más veces al día, por ejemplo, 1, 2, 3 o 4 veces al día, estando las dosis diarias totales típicas comprendidas en el intervalo de 0.1 a 1000 mg/kg/día.
- Los compuestos y las composiciones de esta invención se pueden utilizar con otros fármacos para proporcionar una terapia combinada. Los otros fármacos pueden formar parte de la misma composición o se pueden proporcionar como una composición independiente que se puede administrar al mismo tiempo o en un momento diferente.
 - Otro aspecto de la invención se refiere al uso de un compuesto de la invención o uno de sus isómeros o sales farmacéuticamente aceptables en la elaboración de un medicamento.
- Otro aspecto de la invención se refiere a un compuesto de la invención según se ha descrito anteriormente de acuerdo con la fórmula general I, o uno de sus isómeros o sales farmacéuticamente aceptables, para su uso como medicamento para el tratamiento del dolor. Preferentemente, el dolor es dolor de medio a intenso, dolor visceral, dolor crónico, dolor debido al cáncer, migraña, dolor inflamatorio, dolor agudo o dolor neuropático, alodinia o hiperalgesia. Esto puede incluir alodinia mecánica o hiperalgesia térmica. Todo esto se aplica a los compuestos de la REALIZACIÓN A y, por lo tanto, se aplica a su uso como medicamento para el tratamiento del dolor.
- Otro aspecto de la invención se refiere al uso de un compuesto de la invención en la elaboración de un medicamento para el tratamiento o la profilaxis del dolor.
 - En una realización preferida, el dolor se selecciona entre dolor de medio a intenso, dolor visceral, dolor crónico, dolor debido al cáncer, migraña, dolor inflamatorio, dolor agudo o dolor neuropático, alodinia o hiperalgesia, también se incluyen preferentemente la alodinia mecánica o hiperalgesia térmica.
- Otro aspecto de esta invención se refiere a un procedimiento para tratar o prevenir el dolor, donde dicho procedimiento comprende administrar a un paciente que necesite este tipo de tratamiento una cantidad terapéuticamente eficaz de un compuesto según se ha definido anteriormente o una de sus composiciones farmacéuticas. Entre los síndromes de dolor que se pueden tratar se encuentra el dolor de medio a intenso, dolor visceral, dolor crónico, dolor debido al cáncer, migraña, dolor inflamatorio, dolor agudo o dolor neuropático, alodinia o hiperalgesia, considerando que esto podría incluir también la alodinia mecánica o hiperalgesia térmica.

La presente invención se ilustra a continuación con ayuda de ejemplos.


Ejemplos:

5

Parte experimental general (métodos y equipo para la síntesis y el análisis)

Se describe un procedimiento de 5 pasos para la preparación de los compuestos de fórmula general (I) que parte de una amida de fórmula general II, según se muestra en el Esquema 1, donde R₁, R₂, R₃, R_{3''}, R_{3''}, R₄, R₄, R₅, R_{5'}, R₆ y X tienen los significados que se han definido anteriormente para un compuesto de fórmula (I), W representa un grupo saliente tal como cloro o bromo y P representa un grupo protector adecuado tal como bencilo.

Esquema 1:

El procedimiento de 5 pasos se lleva a cabo como se describe a continuación:

<u>Paso 1</u>: Se prepara un compuesto de fórmula IV tratando un compuesto de fórmula II con una cetona de fórmula III, en un disolvente adecuado tal como el ácido polifosfórico, a una temperatura adecuada, preferentemente comprendida entre $80 \text{ y } 120 \,^{\circ}\text{C}$.

5

<u>Paso 2</u>: Se prepara un compuesto de fórmula V haciendo reaccionar un compuesto de fórmula IV con un agente reductor tal como borano, en un disolvente adecuado tal como tolueno, a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo, preferentemente a la temperatura de reflujo.

Se pueden utilizar otros agentes reductores alternativos tales como hidruro de aluminio y litio, en un disolvente adecuado tal como THF, a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo, preferentemente a temperatura ambiente.

Los compuestos de fórmula V, en los que algunos de los grupos R₃-R₃--- son un grupo electrodonante, también se pueden preparar haciendo reaccionar un compuesto de fórmula VI con un compuesto de fórmula III en las condiciones descritas en el Paso 1.

10 <u>Paso 3</u>: Se prepara un compuesto de fórmula VIII haciendo reaccionar un compuesto de fórmula V con cualquiera de los reactivos VIIa-VIIh con el fin de introducir cualquiera de los grupos presentes como R₁. Por lo tanto:

15

20

35

55

La reacción de aminación reductiva entre un compuesto de fórmula V y un compuesto de fórmula VIIa se lleva a cabo en presencia de un reactivo reductor, preferentemente triacetoxiborohidruro de sodio, en un disolvente prótico, preferentemente metanol, a una temperatura adecuada, preferentemente temperatura ambiente. Como alternativa, la reacción se puede llevar a cabo en un disolvente aprótico, preferentemente tetrahidrofurano o dicloroetano, en presencia de un ácido, preferentemente ácido acético.

La reacción de alquilación entre un compuesto de fórmula V (o una sal adecuada tal como trifluoroacetato o clorhidrato) y un compuesto de fórmula VIIb se lleva a cabo en un disolvente adecuado, tal como acetonitrilo, diclorometano, 1,4-dioxano o dimetilformamida, preferentemente en acetonitrilo; en presencia de una base inorgánica tal como K₂CO₃ o Cs₂CO₃, o una base orgánica tal como trietilamina o diisopropiletilamina, preferentemente K₂CO₃; a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo, preferentemente con calentamiento o, como alternativa, las reacciones se pueden llevar a cabo en un reactor de microondas. Adicionalmente, se puede utilizar un agente activante tal como Nal.

La reacción de acilación entre un compuesto de fórmula V (o una sal adecuada tal como trifluoroacetato o clorhidrato) y un compuesto de fórmula VIIc se lleva a cabo en un disolvente adecuado, tal como acetonitrilo, diclorometano o mezclas acetato de etilo-agua; en presencia de una base orgánica tal como trietilamina o diisopropiletilamina o una base inorgánica tal como K₂CO₃; y a una temperatura adecuada, preferentemente comprendida entre -78 °C y temperatura ambiente.

Como alternativa, la reacción de acilación se puede llevar a cabo mediante la reacción con un anhídrido de fórmula VIId, en un disolvente adecuado tal como diclorometano; en presencia de una base orgánica tal como piridina a una temperatura adecuada, preferentemente la temperatura de reflujo.

La reacción de sulfonilación entre un compuesto de fórmula V (o una sal adecuada tal como trifluoroacetato o clorhidrato) y un compuesto de fórmula VIIe se puede llevar a cabo en un disolvente adecuado, tal como dicloroetano o diclorometano; en presencia de una base orgánica tal como piridina y una cantidad catalítica de DMAP a una temperatura adecuada, preferentemente la temperatura de reflujo.

La formación de un derivado de tipo urea o tiourea mediante la reacción entre un compuesto de fórmula V (o una sal adecuada tal como trifluoroacetato o clorhidrato) y un compuesto de fórmula VIIf o VIIg, respectivamente, en un disolvente adecuado tal como tolueno, a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo, preferentemente a la temperatura de reflujo.

- La reacción de carbamoilación entre un compuesto de fórmula V (o una sal adecuada tal como trifluoroacetato o clorhidrato) y un compuesto de fórmula VIIh se lleva a cabo en un disolvente adecuado, tal como acetonitrilo, diclorometano o mezclas acetato de etilo-agua; en presencia de una base orgánica tal como trietilamina o diisopropiletilamina o una base inorgánica tal como K₂CO₃, a una temperatura adecuada, preferentemente comprendida entre -78 °C y temperatura ambiente.
- Paso 4: Se prepara un compuesto de fórmula IX desprotegiendo un compuesto de fórmula VIII. Si el grupo protector es bencilo, la desprotección se lleva a cabo con hidrógeno a una presión comprendida entre 1 y 10 bar, en un disolvente adecuado tal como metanol o etanol, opcionalmente en presencia de un ácido tal como ácido acético o clorhídrico, a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo, preferentemente a temperatura ambiente.
- 50 <u>Paso 5</u>: Los compuestos de fórmula I se preparan haciendo reaccionar un compuesto de fórmula IX con un reactivo adecuado de fórmula Xa-d, utilizando diferentes condiciones dependiendo de la naturaleza del reactivo. Por lo tanto:

La reacción de alquilación entre un compuesto de fórmula IX (o una sal adecuada tal como trifluoroacetato o clorhidrato) y un compuesto de fórmula Xa se lleva a cabo en un disolvente adecuado, tal como acetonitrilo, diclorometano, 1,4-dioxano o dimetilformamida, preferentemente en acetonitrilo; en presencia de una base inorgánica

tal como K_2CO_3 o Cs_2CO_3 , o una base orgánica tal como trietilamina o diisopropiletilamina, preferentemente K_2CO_3 ; a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo, preferentemente con calentamiento o, como alternativa, las reacciones se pueden llevar a cabo en un reactor de microondas. Adicionalmente, se puede utilizar un agente activante tal como NaI.

- La reacción de aminación reductiva entre un compuesto de fórmula IX y un compuesto de fórmula Xb se lleva a cabo en presencia de un reactivo reductor, preferentemente triacetoxiborohidruro de sodio, en un disolvente prótico, preferentemente metanol, a una temperatura adecuada, preferentemente temperatura ambiente. Como alternativa, la reacción se puede llevar a cabo en un disolvente aprótico, preferentemente tetrahidrofurano o dicloroetano, en presencia de un ácido, preferentemente ácido acético.
- La reacción entre un compuesto de fórmula IX y un derivado vinílico de fórmula Xc se lleva a cabo en presencia de un disolvente prótico, preferentemente etanol, a una temperatura adecuada, preferentemente la temperatura de reflujo.
 - La reacción entre un compuesto de fórmula IX y un derivado de tipo epóxido de fórmula Xd se lleva a cabo en un disolvente adecuado tal como tolueno, a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo, preferentemente a la temperatura de reflujo.
- 15 Como alternativa, la transformación de un compuesto de fórmula IX en un compuesto de fórmula I se puede efectuar en un procedimiento de dos pasos, que implica la acilación de IX con un compuesto de fórmula XI para obtener un compuesto de fórmula XII, el cual se reduce posteriormente. La reacción de acilación se puede llevar a cabo utilizando condiciones de acoplamiento de amidas tales como EDC/HOBT/DIPEA en un disolvente adecuado tal como DMF a una temperatura adecuada, preferentemente temperatura ambiente. La reacción de reducción se puede llevar a cabo como se ha descrito en el Paso 2.
 - El procedimiento descrito en los Pasos 1-5 representa la ruta más general para la preparación de los compuestos de fórmula I. Como alternativa, el orden de los diferentes pasos se puede intercambiar, según se describe en el Esquema 1. El compuesto IV se puede desproteger para obtener XIII, en las condiciones descritas en el Paso 4, y a continuación se puede reducir para proporcionar XIV, en las condiciones descritas en el Paso 2. A su vez, XIV se puede obtener al desproteger V en las condiciones descritas en el Paso 4. El intermedio XIV se puede transformar en el compuesto I final mediante la reacción con Xa-d, en las condiciones descritas en el Paso 5, seguida de la reacción con VIIa-h en las condiciones descritas en el Paso 3. Como alternativa, el compuesto XIII se puede hacer reaccionar, en las condiciones descritas en el Paso 5, con los reactivos Xa-d, para proporcionar el intermedio XV, el cual se puede obtener a su vez mediante la reacción directa de II con las cetonas XVI convenientemente funcionalizadas. El intermedio XV se puede transformar en el compuesto I final por reducción, en las condiciones descritas en el Paso 2, seguida de la reacción con VIIa-h en las condiciones descritas en el Paso 3. En el caso en que R₁ sea alquilo, el orden de los pasos se puede invertir y el compuesto I se puede obtener mediante la reacción del intermedio XV con VIIb en las condiciones descritas en el Paso 3, seguida de la reducción en las condiciones descritas en el Paso 2.

25

30

- Además, en el caso en que alguno de los grupos R₃-R₃⁻⁻ sea un grupo electrodonante, el compuesto I también se puede preparar mediante la reacción de un compuesto de fórmula VI con un compuesto de fórmula XVI en las condiciones descritas en el Paso 1, seguida de la reacción con VIIa-h en las condiciones descritas en el Paso 3.
 - Además, en el caso en que n = 0, los compuestos de fórmula IV se pueden obtener mediante la ruta expuesta en el Esquema 2.
- La reacción de un derivado imínico XVIII con un derivado de yodo XVII se lleva a cabo en presencia de una base tal como trietilamina, en un disolvente apolar tal como tolueno, para obtener los derivados de yodo XIX.
 - La ciclación de un compuesto de fórmula XIX para obtener un compuesto de fórmula XX se lleva a cabo en condiciones catalizadas con paladio tales como utilizando acetato de paladio en presencia de trifenilfosfina y una base, tal como carbonato de potasio y cloruro de tetrabutilamonio, en un disolvente apolar adecuado tal como acetonitrilo, a una temperatura adecuada tal como la de reflujo del disolvente.
- La desprotección de un compuesto de fórmula XX para obtener un compuesto de fórmula XXI se lleva a cabo en ácido trifluoroacético a la temperatura de refluio.
 - La reducción de un compuesto de fórmula XXI para obtener un compuesto de fórmula XXII se lleva a cabo utilizando un agente reductor adecuado tal como triacetoxiborohidruro de sodio, en presencia de un ácido orgánico tal como ácido acético, en un disolvente adecuado tal como acetonitrilo, a temperatura ambiente.
- La protección de un compuesto de fórmula XXII para obtener un compuesto de fórmula IVa se lleva a cabo en condiciones adecuadas dependiendo del grupo protector utilizado. A modo de ejemplo, cuando P es un grupo bencilo, la protección se lleva a cabo en condiciones de aminación reductiva utilizando benzaldehído en presencia de un agente reductor, preferentemente triacetoxiborohidruro de sodio, en un disolvente prótico, preferentemente metanol, a una temperatura adecuada, preferentemente temperatura ambiente.

Esquema 2:

Adicionalmente, los grupos funcionales presentes en cualquiera de las posiciones se pueden interconvertir utilizando reacciones conocidas por los expertos en la técnica. Algunos ejemplos de estas transformaciones son la reducción del grupo carbonilo de las amidas en R_1 para obtener derivados alquílicos en R_1 , la transformación de un grupo metoxi en un grupo hidroxilo, la acilación de un amino o alcohol para obtener derivados de tipo acilamino o aciloxi, la reducción de un grupo nitro para obtener un grupo amino, etc.

Los compuestos de fórmula II, III, VI, VII, X, XVI, XVII o XVIII, donde R_1 , R_2 , R_3 , R_3 , R_3 , R_3 , R_3 , R_4 , R_4 , R_5 , R_5 , R_6 , X y P tienen los significados que se han definido anteriormente, se pueden adquirir de proveedores comerciales o se pueden preparar mediante métodos convencionales descritos en la bibliografía.

Ejemplos

5

10

En los ejemplos se utilizan las siguientes abreviaturas:

ACN: acetonitrilo

AcOH: ácido acético

15 Boc: terc-butoxicarbonilo

DCM: diclorometano

DEA: dietilamina

DIPEA: diisopropiletilamina

DMAP: dimetilaminopirimidina

20 DMF: dimetilformamida

DMSO: sulfóxido de dimetilo

EDC: N-(3-dimetilaminopropil)-N'-etilcarbodiimida

Eq: equivalente

EtOH: etanol

25 EJ.: ejemplo

h: hora/s

HPLC: cromatografía líquida de alta resolución

IPA: isopropanol

LDA: diisopropilamiduro de litio

MeOH: metanol

MS: espectrometría de masas

5 Min: minutos

Cuant.: cuantitativo

t_R: tiempo de retención

t.a.: temperatura ambiente

Sat.: saturado

10 m.p.: material de partida

TEA: trietilamina

TFA: ácido trifluoroacético

THF: tetrahidrofurano

Para determinar los espectros de HPLC-MS, se utilizaron los siguientes métodos:

- A: Columna XBridge C18 3.5 µm, 2.1x50 mm; tasa de flujo: 0.3 ml/min; A: ACN:MeOH (1:1); B: agua; C: acetato de amonio 100 mM, pH 7; gradiente A:B:C: 2 min en 10:85:5 + desde 10:85:5 hasta 95:0:5 en 6 min + 7 min en 95:0:5
 - B: Columna SunFire C18 3.5 μm, 2.1x100 mm; tasa de flujo: 0.3 ml/min; A: ACN:MeOH (1:1); B: agua; C: acetato de amonio 100 mM, pH 7; gradiente A:B:C: 3 min en 10:85:5 + desde 10:85:5 hasta 95:0:5 en 17 min + 10 min en 95:0:5.
 - B1: Columna SunFire C18 5 μm, 2.1x50 mm; tasa de flujo: 0.3 ml/min; A: ACN:MeOH (1:1); B: agua; C: acetato de amonio 100 mM, pH 7; gradiente A:B:C: 2 min en 10:85:5 + desde 10:85:5 hasta 95:0:5 en 6 min + 7 min en 95:0:5.
 - C: Columna Symmetry C18 $3.5 \mu m$, 2.1x100 mm; tasa de flujo: 0.3 ml/min; A: ACN:MeOH (1:1); B: agua; C: acetato de amonio 100 mM, pH 7; gradiente A:B:C: 3 min en 10:85:5 + desde 10:85:5 hasta 95:0:5 en 17 min + 10 min en 95:0:5
 - D: Columna XTerra MS C18 $3.5 \mu m$, 2.1x100 mm; tasa de flujo: 0.3 ml/min; A: ACN:MeOH (1:1); B: agua; C: acetato de amonio 100 mM, pH 9 (NH₄OH); gradiente A:B:C: 3 min en 10:85:5 + desde 10:85:5 hasta 95:0:5 en 17 min + 10 min en 95:0:5.
- E: Columna Kinetex C18 5 μm, 2.1x150 mm; tasa de flujo: 0.35 ml/min; A: ACN:MeOH (1:1); B: agua; C: acetato de amonio 100 mM, pH 7; gradiente A:B:C: 5 min en 5:90:5 + desde 5:90:5 hasta 95:0:5 en 15 min + 10 min en 95:0:5
 - F: Columna: Xbridge C_{18} XP 30 x 4.6 mm, 2.5 µm; flujo: 2.0 ml/min; gradiente: NH₄HCO₃ pH 8 : ACN (95:5)---0.5min---(95:5)---6.5min---(0:100)---1min---(0:100). Muestra disuelta con una concentración de aprox. 1 mg/ ml en NH₄HCO₃ pH 8/ ACN
- H: Columna: Aqcuity UPLC BEH C18 2.1x50 mm 1.7 μm; tasa de flujo: 0.61 ml/min; A: NH₄HCO₃ 10mM; B: ACN; gradiente: 0.3 min en un 98% de A, desde un 98% de A hasta un 5% de A en 2.52 min, 1.02 min en un 5% de A, desde un 5% de A hasta un 98% de A en 0.34 min, 0.57 min en un 98% de A.
 - I: Columna: Gemini-NX 30 x 4,6 mm, 3um; temperatura: 40 °C; flujo: 2.0 ml/min; gradiente: NH_4HCO_3 pH 8 : ACN (95:5)---0,5min---(95:5)---6,5min---(0:100)--1min---(0:100).

40

20

25

Síntesis de los intermedios

5

10

15

Intermedio 1A. 1'-Bencil-2H-espiro[isoquinolin-1,4'-piperidin]-3(4H)-ona.

Una mezcla de 2-fenilacetamida (10 g, 73.98 mmol), 1-bencilpiperidin-4-ona (21 g, 110.97 mmol) y PPA (200 g) se agitó a 100 °C durante 24 h. Se añadió 1-bencilpiperidin-4-ona (7 g, 36.99 mmol) adicional y la mezcla de reacción se agitó a 100 °C hasta que se consiguió una conversión completa (3 días, se comprobó por análisis de HPLC). Se enfrió hasta 50 °C y se vertió lentamente sobre $H_2O/hielo$ (600 g). Se añadió una solución acuosa de NaOH al 36% (100 ml) hasta obtener un pH = 7-8. La mezcla se agitó durante 10 min y la fase acuosa se extrajo con DCM. Las fases orgánicas combinadas se secaron con Na_2SO_4 , se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en gel de sílice (30 \rightarrow 40% de acetona/hexanos), para obtener 21.21 g de un sólido, el cual se suspendió en MeOH/Et₂O (20%, 60 ml), se filtró y se eluyó con Et₂O, para obtener el compuesto del título como un sólido amarillo (14.53 g, 64% de rendimiento).

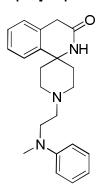
HPLC-MS (Procedimiento A): t_R, 8.66 min; ESI+-MS m/z, 307.3 (M+1).

Este procedimiento se utilizó para la preparación de los intermedios 1B-1C empleando los materiales de partida adecuados:

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
1B	O NH	1'-fenetil-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-3(4 <i>H</i>)-ona	В	15,45	321,3
1C	NH N N	1'-(2-morfolinoetil)-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-3(4 <i>H</i>)-ona	С	10,7	330,2

Intermedio 1D. 1'-((Tetrahidro-2*H*-piran-4-il)metil)-2*H*-espiro[isoquinolin-1,4'-piperidin]-3(4*H*)-ona.

a) 2H-Espiro[isoquinolin-1,4'-piperidin]-3(4H)-ona.


Se añadió 1'-bencil-2H-espiro[isoquinolin-1,4'-piperidin]-3(4H)-ona (intermedio 1A, 5.06 g, 16.51 mmol) a una suspensión de Pd(OH) $_2$ (2.39 g, 20% de Pd, 48.40% de H $_2$ O p/p, 1.65 mmol) y AcOH (94 µl, 1.65 mmol) en MeOH (90 ml). La suspensión se agitó en atmósfera de H $_2$ durante 19 h. La mezcla de reacción se filtró a través de Celite, se lavó con MeOH y se concentró, para proporcionar 2H-espiro[isoquinolin-1,4'-piperidin]-3(4H)-ona (3.49 g, 98% de rendimiento).

HPLC-MS (Procedimiento D): t_R, 14.13 min; ESI+-MS m/z, 217.1 (M+1).

b) 1'-((Tetrahidro-2*H*-piran-4-il)metil)-2*H*-espiro[isoquinolin-1,4'-piperidin]-3(4*H*)-ona.

Se añadió AcOH (118 ml, 2.07 mmol) a una solución del compuesto anterior (50 mg, 0.23 mmol) y tetrahidro-2*H*-piran-4-carbaldehído (52 mg, 0.46 mmol) en DCM (10 ml). La mezcla se agitó a t.a. durante 20 h y se añadió NaB(OAc)₃H (97 mg, 0.46 mmol). La solución se agitó hasta que se consiguió una conversión completa (20 h, análisis de TLC), se vertió sobre una solución acuosa saturada de NaHCO₃ (15 ml) y se extrajo con DCM. Las fases orgánicas combinadas se secaron con Na₂SO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (4% de MeOH/DCM), para obtener el compuesto del título (61 mg, 85% de rendimiento). HPLC-MS (Procedimiento A): t_R, 6.98 min; ESI⁺-MS *m/z*, 315.2 (M+1).

Intermedio 1E: 1'-(2-(Metil(fenil)amino)etil)-2H-espiro[isoquinolin-1,4'-piperidin]-3(4H)-ona.

Se añadió *N*-2-bromoetil-*N*-metilanilina (235.4 mg, 1.10 mmol) a una suspensión de 2*H*-espiro[isoquinolin-1,4'-piperidin]-3(4*H*)-ona (obtenida en la síntesis del intermedio 1D, paso a, 200 mg, 0.92 mmol) y K₂CO₃ (381 mg, 2.76 mmol) en ACN (8 ml). La mezcla de reacción se calentó a reflujo durante 20 h y se enfrió hasta t.a., se vertió sobre H₂O (10 ml) y se extrajo con EtOAc. Las fases orgánicas combinadas se lavaron con H₂O, se secaron con Na₂SO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (fase móvil: MeOH/DCM), para obtener el compuesto del título (268.7 mg, 70% de rendimiento).

25 HPLC-MS (Procedimiento A): t_R, 8.91 min; ESI⁺-MS *m*/z, 350.2 (M+1).

Este procedimiento se utilizó para la preparación de los intermedios 1F-1U empleando los agentes alquilantes adecuados:

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
1F	O NH NH	1'-(2-isopropoxietil)- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	А	7,59	303,1
1G	O NH	1'-isobutil-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-3(4 <i>H</i>)-ona	Α	7,90	286,9
1H	O NH N	1'-(ciclohexilmetil)- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	Α	8,93	313,2
11	O H Z Z	1'-(2-(piperidin-1- il)etil)-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	А	6,75	328,1

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
1J	O NH	1'-isopentil-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-3(4 <i>H</i>)-ona	А	7,90	286,9
1K	O NH NH	1'-(2- (bencil(metil)amino) etil)-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	Α	8,10	363,8
1L	O NH NH	1'-(piridin-2-ilmetil)- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	С	13,21	307,8
1M		1'-(2-(piridin-2- il)etil)-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	Α	7,26	321,9

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
1N	O NH Z Z Z	1'-(2-(piridin-3- il)etil)-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	А	7,23	322,1
10	O NH NH	1'-(2-fenoxietil)-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-3(4 <i>H</i>)-ona	B1	8,62	337,2
1P*	NH NO ₂	1'-(3-nitrofenetil)- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	-	-	-
1Q	O NH N O	1'-(2-(benciloxi)etil)- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	F	364	351,1

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
1R	O NH	1'-(ciclopropilmetil)- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	F	2,85	271,1
18	O NH P F F	1'-(3- (trifluorometoxi)fene til)-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	F	4,46	405,1
1T	O NH	1'-(2-(6- (trifluorometil)piridin -3-il)etil)-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	F	3,63	390,1

(continuación)

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
1U	O NH NH O	1'-(2-oxo-2-feniletil)- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]- 3(4 <i>H</i>)-ona	F	3,39	335,1

Intermedio 1P*: RMN- 1 H: (CDCl₃, 500 MHz, δ): 8.14 (sa, 1H, ArH); 8.09 (d, J= 7.7 Hz, 1H, ArH); 7.56 (d, J= 7.7 Hz, 1H, ArH); 7.48 (t, J= 7.7 Hz, 1H, ArH); 7.39 (d, J= 7.7 Hz, 1H, ArH); 7.29 (m, 2H, ArH); 7.17 (d, J= 7.7 Hz, 1H, ArH); 6.41 (sa, 1H, NH); 3.66 (s, 2H, CH₂); 3.01-2.93 (m, 4H, CH₂); 2.72 (d, J= 7.7 Hz, 2H, CH₂); 2.38 (d, J= 12.0 Hz, 2H, CH₂); 2.25 (m, 2H, CH₂); 1.84 (m, 2H, CH₂).

Intermedio 2A. 6-Metoxi-1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

Se añadió 1-fenetilpiperidin-4-ona (3.09 g, 15 mmol) lentamente a una solución de 2-(3-metoxifenil)etanamina (2 g, 13 mmol) en ácido fosfórico (12 ml) y la mezcla de reacción se calentó a reflujo durante 16 horas. A continuación, se enfrió hasta t.a., se vertió cuidadosamente sobre agua/hielo y se diluyó con diclorometano. La mezcla se basificó utilizando una solución concentrada de hidróxido de sodio y se extrajo con diclorometano. Las fases orgánicas combinadas se secaron con Na₂SO₄, se filtraron y se concentraron a sequedad, para obtener el compuesto del título (3.5 g, 79% de rendimiento).

HPLC-MS (Procedimiento H): t_R, 1.78 min; ESI+-MS m/z, 350.2 (M+1).

5

10

Intermedio 2B. 1'-Bencil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

Una solución de BH₃·SMe₂ en tolueno (10 M, 5.8 ml, 61.22 mmol) se añadió a una solución de 1'-bencil-2*H*-espiro[isoquinolin-1,4'-piperidin]-3(4*H*)-ona (intermedio 1A, 9.38 g, 30.61 mmol) en tolueno (120 ml) y la mezcla de

reacción se calentó a reflujo durante 17 h. Se enfrió hasta t.a., se añadió una solución acuosa de HCl al 10% (19 ml) y la suspensión se agitó durante 5 min. Se añadió MeOH (75 ml) y la mezcla se agitó durante 45 min a la temperatura de reflujo. Después de enfriar hasta t.a., la mezcla se vertió sobre NaOH (solución acuosa al 10%, pH 9-10) y se extrajo con DCM. Las fases orgánicas combinadas se secaron con Na₂SO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en gel de sílice (3 \rightarrow 10% de MeOH/DCM y 2 \rightarrow 10% de MeOH/DCM), para obtener el compuesto del título (6.8 g, 69% de rendimiento). HPLC-MS (Procedimiento A): t_R, 8.38 min; ESI⁺-MS m/z, 292.7 (M+1).

Este procedimiento se utilizó para la preparación de los intermedios 2C-2V:

5

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2C	NH	1'-(2-feniletil)-3,4-dihidro- 2 <i>H</i> -espiro[isoquinolin-1,4'- piperidina]	В	9,55	307,1
2D	NH N Z O	4-(2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1' il)etil)morfolina	А	6,75	316,2
2E	NH N	1'-((tetrahidro-2 <i>H</i> -piran-4-il)metil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]	А	6,97	301,0

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2F		N-(2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)- <i>N</i> -metilanilina	A	8,92	335,9
2G	Z Z O	1'-(2-isopropoxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]	Α	7,62	289,1
2H	NH	1'-isobutil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]	А	7,30	258,8
21	NH	1'-(ciclohexilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]	А	8,42	298,7

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2J	NH	1'-(2-(piperidin-1-il)etil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	А	7,02	314,0
2K	NH Z	1'-isopentil-3,4-dihidro- 2 <i>H</i> -espiro[isoquinolin-1,4'- piperidina]	А	7,71	272,9
2L	E Z Z Z	N-bencil-2-(3,4-dihidro- 2H-espiro[isoquinolin-1,4'- piperidin]-1'-il)-N- metiletanamina	А	8,39	350,2
2M	Z Z Z	1'-(piridin-2-ilmetil)-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	С	14,76	293,9

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2N	Z Z Z	1'-(2-(piridin-2-il)etil)-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	A	7,36	308,1
20	NH NH	1'-(2-(piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]	A	7,27	308,3
2P	NH NH NH	1'-(2-fenoxietil)-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	А	8,61	323,2
2Q	NH N NO ₂	1'-(3-nitrofenetil)-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	А	8,54	351,9

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2R	NH N	1'-(2-(benciloxi)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]	F	3,93	337,2
28	NH	1'-(ciclopropilmetil)-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	F	2,84	257,1
2T	NH NO FF	1'-(3- (trifluorometoxi)fenetil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	F	4,81	391,1
2U	NH Z F F	1'-(2-(6- (trifluorometil)piridin-3- il)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	F	3,97	376,0

(continuación)

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2V	NH OH	2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-feniletanol	L	3,57	323,1

Intermedio 2W. 1'-(2-(Piridin-4-il)etil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

a) 3,4-Dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

- Se añadió 1'-bencil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina] (intermedio 2B, 1.27 g, 4.34 mmol) a una suspensión de Pd(OH)₂ (629 g, 20% de Pd, 48.40% de H₂O p/p, 0.434 mmol) y AcOH (25 μl, 0.434 mmol) en MeOH (15 ml). La suspensión se agitó en atmósfera de H₂ (globo) durante 24 h. La mezcla de reacción se filtró a través de Celite, se lavó con MeOH y se concentró, para proporcionar 3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina] como un sólido blanquecino (895 g, 98% de rendimiento).
- 10 HPLC-MS (Procedimiento E): t_R, 3.25 min; ESI⁺-MS *m/z*, 203.2 (M+1).

b) 1-(3,4-Dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)-2-(piridin-4-il)etanona.

Se añadieron HOBt (33% de H_2O p/p, 1.0 g, 5.00 mmol), EDC (1.47 g, 7.70 mmol) y DIPEA (2.0 ml, 11.7 mmol) a una solución de clorhidrato del ácido piridin-4-ilacético (601 mg, 3.46 mmol) en DMF (10 ml). La mezcla se agitó a t.a. durante 10 min y se añadió una solución del compuesto obtenido en el paso a, (795 mg, 3.85 mmol) en DMF (8 ml). La mezcla de reacción se agitó a t.a. durante 21 h, el disolvente se concentró y el residuo se purificó mediante cromatografía flash a media presión (MeOH/ H_2O), para proporcionar 1-(3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)-2-(piridin-4-il)etanona como un aceite amarillo (465 mg, 42% de rendimiento). HPLC-MS (Procedimiento E): t_R , 14.34 min; ESI*-MS m/z, 322.1 (M+1).

c) Compuesto del título.

15

Se añadió una solución de LiAlH₄ (1.0 M en THF, 1.05 ml, 1.05 mmol) a 0 °C a una solución del compuesto anterior (226 mg, 0.703 mmol) en THF (14 ml). Se permitió que la mezcla de reacción alcanzara la t.a. y se agitó a esta temperatura durante 2.5 h. La mezcla se enfrió hasta 0 °C, se añadieron H₂O (35 ml), NaOH (solución acuosa al 15%, 35 ml) y H₂O (105 ml) y la suspensión se agitó a 0 °C durante 10 min. La mezcla se filtró y se lavó con EtOAc y EtOH. El filtrado se concentró y el residuo crudo se purificó mediante cromatografía flash a media presión (MeOH/H₂O), para obtener 1'-(2-(piridin-4-il)etil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin] como un sólido blanco (59 mg, 26% de

rendimiento).

HPLC-MS (Procedimiento E): t_R, 13.96 min; ESI+-MS m/z, 307.8 (M+1).

Intermedio 2X. 2-(3,4-Dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-morfolinoetanona.

- 5 Una mezcla de 3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina] (obtenida en la síntesis del intermedio 2W, paso a, 88 mg, 0.43 mmol), 4-(cloroacetil)morfolina (0.06 ml, 0.45 mmol) y K₂CO₃ (150 mg, 1.09 mmol) en ACN (5 ml) se agitó a temperatura ambiente durante toda la noche. Se diluyó con agua y se extrajo con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera, se secaron con MgSO₄, se filtraron y se concentraron a sequedad, para obtener el compuesto del título (121 g, 84% de rendimiento).
- 10 HPLC-MS (Procedimiento F): t_R , 2.85 min; ESI⁺-MS m/z, 330.2 (M+1).

Este procedimiento se utilizó para la preparación de los ejemplos 2Y-2AM empleando los materiales de partida adecuados:

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2Y	NH N	3-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)- <i>N</i> -metil- <i>N</i> -fenilpropanamida	F	3,53	364,2
2Z	NH N N	4-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)- <i>N,N</i> -dimetilbutanamida	F	2,57	316,1

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2AA	NH NH NN Boc	2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etilcarbamato de <i>terc</i> -butilo	F	3,62	346,1
2AB	NH N OEt	1'-(2-etoxietil)-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	F	2,94	275,2
2AC	NH NH N	1'-(2-(5-fluoropiridin-3- il)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina] (*)	F	3,37	326,2
2AD	NH	1'-(2- (ciclopropilmetoxi)etil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina] (*)	F	3,40	301,2

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2AE	NH NO	1'-(2-isobutoxietil)-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina] (*) (**)	F	3,87	303,2
2AF	NH NN NN NN	2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)- <i>N,N</i> -dietilacetamida (*)	F	3,39	316,2
2AG	NH N O N O N O	2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(1,4-oxazepan-4-il)etanona (*)	F	2,94	344,2
2AH	NH NH NH NH NH NH NH NH NH NH NH NH NH N	2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(4-fluoropiperidin-1-il)etanona (*)	F	3,39	346,2

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2AI	NH ON OH	2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(4-(2-hidroxipropan-2-il)piperidin-1-il)etanona (*)	F	3,19	386,2
2AJ	NH N N O N O	2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(4-metoxipiperidin-1-il)etanona (*)	F	3,24	358,2
2AK	NH ON PF	1-(4,4-difluoropiperidin- 1-il)-2-(3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-1'-il)etanona (*)	F	3,69	364,2
2AL	NH ON N	2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(6-azaespiro[2.5]octan-6-il)etanona (*)	F	3,97	354,2

(continuación)

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2AM	H N N C	1'-(2-(5-cloropiridin-3- il)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina] (*) (**)	F	3,67	342,2

^(*) La mezcla de reacción se calentó a reflujo.

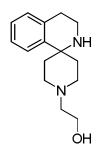
Intermedio 2AN. 3-(3,4-Dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)-*N,N*-dimetilpropanamida.

Una mezcla de 3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina] (obtenida en la síntesis del intermedio 2W, paso a, 100 mg, 0.49 mmol) y *N*,*N*-dimetilacrilamida (0.08 ml, 0.75 mmol) en etanol (1 ml) se calentó a 95 °C en un tubo sellado durante toda la noche. Se concentró a sequedad y el residuo crudo se purificó mediante cromatografía flash en SiO₂ (fase móvil: mezclas de MeOH/DCM de polaridad cada vez mayor), para obtener el compuesto del título (59 mg, 39% de rendimiento).

HPLC-MS (Procedimiento F): t_R, 2.55 min; ESI+-MS m/z, 302.1 (M+1).

Se utilizó un procedimiento similar para la preparación de los intermedios 2AO-2AR empleando los materiales de partida adecuados y llevando a cabo la reacción a 120 °C en 2-metoxietanol en lugar de etanol:

^(**) Se utilizó DIPEA como base en lugar de K2CO3.


EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
2AO	NH N NH ₂	4-(2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)piridin-2-amina	F	2,86	323,0
2AP	NH N CF ₃	1'-(2-(2- (trifluorometil)piridin-4- il)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	F	4,01	376,2
2AQ	Z E	1'-(2-(3-fluoropiridin-4- il)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	F	3,34	326,2
2AR	NH CN CN	4-(2-(3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)picolinonitrilo	F	3,45	333,2

Intermedio 2AS. 3-[2-(3,4-Dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil]fenilamina.

Se añadió 1'-(3-nitrofenetil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina] (intermedio 2Q, 132 mg, 0.38 mmol) a una suspensión de Pd/C (67 mg, 10% de Pd p/p, 63% de H_2O p/p, 0.04 mmol) en MeOH (10 ml) y la mezcla se agitó a t.a. en atmósfera de H_2 (globo) durante 1 h. La mezcla de reacción se filtró a través de Celite, se lavó con MeOH y se concentró. El residuo crudo se suspendió en hexanos, se filtró y se diluyó con hexanos. El sólido recolectado se secó con un vacío elevado para proporcionar el compuesto del título como un sólido amarillo pálido (103 mg, 84% de rendimiento).

HPLC-MS (Procedimiento C): t_R, 12.80 min; ESI+-MS m/z, 322.1 (M+1).

Intermedio 2AT. 2-(3,4-Dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etanol.

10

15

25

5

a) 1'-(2-((Tetrahidro-2H-piran-2-il)oxi)etil)-2H-espiro[isoquinolin-1,4'-piperidin]-3(4H)-ona.

Se añadió 2-(2-bromoetoxi)tetrahidro-2H-pirano (464 mg, 2.22 mmol) a una suspensión de 2H-espiro[isoquinolin-1,4'-piperidin]-3(4H)-ona (obtenida en la síntesis del intermedio 1D, paso a, 400 mg, 1.85 mmol) y K_2CO_3 (767 mg, 5.55 mmol) en ACN (10 ml). La mezcla de reacción se calentó a reflujo durante toda la noche. Se enfrió hasta t.a., se diluyó con agua y se extrajo con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera, se secaron con MgSO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (fase móvil: mezclas de MeOH/DCM de polaridad cada vez mayor) para obtener 1'-(2-((tetrahidro-2H-piran-2-il)oxi)etil)-2H-espiro[isoquinolin-1,4'-piperidin]-3(4H)-ona (300 mg, 47% de rendimiento). HPLC-MS (Procedimiento F): t_R , 3.11 min; ESI⁺-MS m/z, 345.2 (M+1).

20 b) 2-(3,4-Dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etanol.

Se añadió una solución de BH₃·SMe₂ en tolueno (10 M, 0.26 ml, 2.57 mmol) a una solución del compuesto obtenido en el paso a (295 mg, 0.86 mmol) en tolueno anhidro (5 ml) y la mezcla de reacción se calentó a reflujo durante toda la noche. Se enfrió hasta t.a., se añadió MeOH (5 ml) y la suspensión se concentró a sequedad. Se añadieron MeOH (6 ml) y *N,N'*-dimetiletilendiamina (0.46 ml, 4.2 mmol) y la mezcla se agitó durante 5 h a la temperatura de reflujo. Después de enfriar hasta t.a., se diluyó con agua y DCM, las fases se separaron y las fases orgánicas combinadas se secaron con MgSO₄, se filtraron y se concentraron para obtener el compuesto del título (210 mg, rendimiento cuantitativo).

HPLC-MS (Procedimiento F): t_R, 2.21 min; ESI⁺-MS *m/z*, 247.1 (M+1).

Intermedio 2AU. 1'-Fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-6-ol.

Se añadió HBr (8.8 ml, solución en AcOH al 33%, 155 mmol) a una solución de 6-metoxi-1'-fenetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina] (intermedio 2A, 1.6 g, 5 mmol) en AcOH (30 ml) y la mezcla de reacción se sometió a condiciones de irradiación de microondas durante 30 min a 150 °C. Se permitió que la mezcla se enfriara hasta t.a. y se evaporó el disolvente al vacío. El residuo obtenido de este modo se neutralizó con NaHCO₃ y se extrajo con acetato de etilo. Las fases orgánicas combinadas se secaron con Na₂SO₄, se filtraron y se evaporaron al vacío para proporcionar el compuesto del título (1.65 g, rendimiento cuantitativo). HPLC-MS (Procedimiento H): t_R, 1.51 min; ESI⁺-MS *m/z*, 323.2 (M+1).

Intermedio 2AV. 2-(3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-etil-N-isopropilacetamida

10

Siguiendo un procedimiento similar a aquel descripto en la síntesis del intermedio 2X, el intermedio del título se obtuvo como un aceite (rendimiento 16 %).

HPLC-MS (Procedimiento H): Ret, 1,73 min; ESI+-MS m/z, 330,3 (M+1).

Intermedio 2AW. 2-(3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(piridin-4-il)etanol

15

20

Una solución de 3,4-dihidro-2*H*-espiro[isoquinolina-1,4'-piperidina] (obtenida en la síntesis del intermedio 2W paso a, 144 mg, 0,7 mmol) y 4-(oxiran-2-il)piridina (86 mg, 0,7 mmol) en EtOH se agitó a temperatura ambiente durante toda la noche. Luego, se evaporó el solvente bajo presión reducida y el crudo se absorbió directamente en gel de sílice y se purificó por cromatografía flash (fase móvil: DCM/MeOH), para proporcionar el compuesto del título (38 mg, rendimiento 16%).

HPLC-MS (Procedimiento H): Ret, 1,30 min; ESI+-MS m/z, 325,3 (M+1).

Intermedio 3A. 1-(1'-Bencil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-2-il)-2-metoxietanona

A una solución de 1'-(bencil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina (intermedio 2B, 600 mg, 2.06 mmol) en DCM (12 ml), se añadieron cloruro de metoxiacetilo (1.34 g, 12.35 mmol) y piridina (1.5 ml, 18.6 mmol). La mezcla de reacción se calentó a reflujo durante 24 h. Se añadió agua y la mezcla se extrajo dos veces con DCM. Las fases orgánicas combinadas se lavaron con NaOH 1 N, se secaron con Na₂SO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en gel de sílice (fase móvil: DCM/MeOH), para obtener el compuesto del título como un aceite naranja (609 mg, 81% de rendimiento).

HPLC-MS (Procedimiento F): t_R, 4.08 min; ESI⁺-MS *m/z*, 365.2 (M+1).

Se utilizó un procedimiento similar para la preparación del intermedio 3B empleando los materiales de partida adecuados:

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
3B	N OAC	acetato de 2-(1'-bencil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)-2-oxoetilo	F	4,07	393,2

Intermedio 3C. 1'-Bencil-2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

5

10

15

20

Se añadió formaldehído (solución acuosa al 37%, 4.3 ml, 56.90 mmol) a una solución de 1'-bencil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina] (intermedio 2B, 1.04 g, 3.22 mmol) en MeOH (25 ml). La mezcla de reacción se agitó a t.a. durante 22 h, se añadió NaBH(OAc)₃ (1.88 g, 8.89 mmol) y la mezcla se agitó a t.a. durante 24 h. La mezcla de reacción se vertió lentamente sobre una solución acuosa saturada de NaHCO₃, el disolvente se concentró y el residuo se diluyó con DCM. La fase orgánica se lavó con una solución acuosa saturada de NaHCO₃, una solución acuosa saturada de NaCl y H_2O , se secó con Na_2SO_4 , se filtró y se concentró. El aceite resultante se purificó mediante cromatografía flash en SiO_2 (15 \rightarrow 50% de acetona/hexanos), para proporcionar el compuesto del título como un sólido blanco (810 mg, 74% de rendimiento).

HPLC-MS (Procedimiento B): t_R, 16.55 min; ESI+-MS m/z, 307.0 (M+1).

Intermedio 3D. 1'-Bencil-2-(2-metoxietil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

Se añadió una solución de BH₃·SMe₂ (10 M, 125 μl, 1.25 mmol) a una solución de 1-(1'-bencil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)-2-metoxietanona (intermedio 3A, 302 mg, 0.828 mmol) en tolueno (15 ml). La mezcla de reacción se calentó hasta reflujo y se agitó a esta temperatura durante 1 h. Se enfrió hasta t.a., se añadió HCl (solución acuosa al 10%, 1 ml) y la suspensión se agitó a t.a. durante 10 min. Se añadió MeOH (5 ml), la mezcla se calentó a reflujo y se agitó a esta temperatura durante 40 min. Se enfrió hasta t.a., se vertió sobre NaOH (solución acuosa al 10%, 10 ml) y se extrajo con DCM (3x20 ml). Las fases orgánicas combinadas se secaron con Na₂SO₄ (anhidro), se filtraron y se concentraron, para obtener el compuesto del título como un aceite amarillo (234 g, 81% de rendimiento).

HPLC-MS (Procedimiento E): t_R, 9.72 min; ESI+-MS m/z, 351.1 (M+1).

10

15

20

25

30

Intermedio 3E. 2-(1'-Bencil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-2-il)etanol.

Se añadió una solución de BH₃·THF en THF (1 M, 12 ml, 12 mmol) a una solución de acetato de 2-(1'-bencil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)-2-oxoetilo (intermedio 3B, 0.2 g, 0.52 mmol) en THF (20 ml) y la mezcla de reacción se calentó a reflujo durante 18 h. Se enfrió hasta t.a., se añadieron una solución de HCl 1 M y metanol y la mezcla se calentó a reflujo durante 1 h. Después de enfriar hasta t.a., se ajustó el pH de la mezcla hasta pH 9-10 con NaOH 1 N y se extrajo con DCM. Las fases orgánicas combinadas se secaron con MgSO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (fase móvil: mezclas de MeOH/DCM de polaridad cada vez mayor) para obtener el compuesto del título (0.85 g, 81% de rendimiento). HPLC-MS (Procedimiento F): t_R, 3.78 min; ESI⁺-MS *m*/z, 337.2 (M+1).

Intermedio 3F. 1',2-Dibencil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

Se añadió bromuro de bencilo (41 μ l, 0.34 mmol) a una solución de 1'-bencil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina] (intermedio 2B, 100 mg, 0.34 mmol) y K₂CO₃ (94.5 mg, 0.68 mmol) en ACN (50 ml) y la mezcla de reacción se calentó a 50 °C durante 48 h. Después de volver a enfriar hasta t.a., el disolvente se evaporó a presión reducida y el crudo se absorbió directamente sobre gel de sílice con la ayuda de acetato de etilo. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (ciclohexano/AcOEt, 90:10). Tras una purificación adicional mediante HPLC semipreparativa de fase inversa, se obtuvo el compuesto del título (51.5 mg, 39.4% de rendimiento). HPLC-MS (Procedimiento H): t_R , 1.98 min; ESI+-MS m/z, 383 (M+1).

Intermedio 3G. 1-(1'-Bencil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)-2,2,2-trifluoroetanona

A una solución de 1'-(bencil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina (intermedio 2B, 400 mg, 1.37 mmol) en DCM (20 ml), se añadieron anhídrido trifluoroacético (2.87 g, 13.7 mmol) y piridina (1.1 ml, 13.7 mmol). La mezcla de reacción se calentó a reflujo durante 24 h. Se añadió una solución saturada de NaHCO₃ y la mezcla de reacción se extrajo con DCM. Las fases orgánicas combinadas se secaron con MgSO₄, se filtraron y se evaporaron al vacío para obtener el compuesto del título (378 g, 71% de rendimiento). HPLC-MS (Procedimiento F): t_R, 5.33 min; ESI⁺-MS *m/z*, 389.1 (M+1).

Intermedio 3H. 1'-Bencil-2-(2,2,2-trifluoroetil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina]

Siguiendo un procedimiento similar al descrito para el intermedio 3D, pero partiendo del intermedio 3G, se obtuvo el compuesto del título.

HPLC-MS (Procedimiento F): t_R, 5.52 min; ESI+-MS m/z, 375.2 (M+1).

5

10

15

20

25

Intermedio 3I. 1'-Bencil-4,4-dimetil-2H-espiro[isoquinolin-1,4'-piperidin]-3(4H)-ona.

Se añadió NaH (dispersión al 60% en aceite mineral, 78 mg, 1.9 mmol) a una solución de 1'-bencil-2*H*-espiro[isoquinolin-1,4'-piperidin]-3(4*H*)-ona (intermedio 1A, 0.3 g, 0.98 mmol) en DMF (3 ml). La mezcla se agitó a t.a. durante 30 min, a continuación se añadió yodometano (60 ml, 0.98 mmol) y la mezcla de reacción se agitó a t.a. durante toda la noche. Se añadió una solución saturada de NaHCO₃ y se extrajo con acetato de etilo. Las fases orgánicas combinadas se secaron con MgSO₄, se filtraron y se evaporaron. El residuo se purificó mediante cromatografía flash en C₁₈ (fase móvil: gradiente desde NH₄HCO₃ acuoso hasta ACN) para obtener el compuesto del título (102 mg, 31% de rendimiento).

HPLC-MS (Procedimiento F): t_R, 4.17 min; ESI+-MS m/z, 335.2 (M+1).

Intermedio 3J. 1'-Bencil-4,4-dimetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 2B, pero partiendo del intermedio 3I (240 mg, 0.71 mmol), se obtuvo el compuesto del título (212 mg, 66% de rendimiento). HPLC-MS (Procedimiento F): t_R, 4.96 min; ESI⁺-MS *m/z*, 321.1 (M+1).

Intermedio 3K. 1'-Bencil-2,4,4-trimetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 2C, pero partiendo del intermedio 3J (202 mg, 0.63 mmol), se obtuvo el compuesto del título (147 mg, 70% de rendimiento). HPLC-MS (Procedimiento F): t_R, 5.53 min; ESI⁺-MS *m/z*, 335.2 (M+1).

Intermedio 3L. 1'-Bencil-2-etil-3,4-dihidro-2*H*-espiro[isoquinolina-1,4'-piperidina]

Siguiendo un procedimiento similar a aquel descripto en la síntesis del intermedio 3C pero con acetaldehído como reactivo, el intermedio del título se obtuvo como un aceite (rendimiento 43%). HPLC-MS (Procedimiento H): Ret, 2,43 min; ESI*-MS m/z, 321 (M+1).

Intermedio 4A. 1'-Bencilespiro[isoindolin-1,4'-piperidin]-3-ona.

5

10

15

20

a) 2-Yodo-N-(4-metoxibencil)-N-(1-Boc-1,2,3,6-tetrahidropiridin-4-il)benzamida.

Se añadió 1-Boc-piperidin-4-ona (10.04 g, 50.39 mmol) a una solución de 1-(4-metoxifenil)metanamina (6.91 g, 50.39 mmol) en tolueno (120 ml). La reacción se calentó a reflujo (Dean-Stark) durante 20.5 h, se permitió que alcanzara la t.a. y se concentró, para obtener el intermedio imínico como un aceite amarillo. La imina se utilizó en el siguiente paso sin purificación adicional.

Se añadió lentamente cloruro de 2-yodobenzoílo recién preparado (40.31 mmol) en tolueno (160 ml) a una solución del intermedio imínico (50.39 mmol) y $\rm Et_3N$ (13.5 ml, 96.74 mmol) en tolueno (60 ml). La mezcla de reacción se calentó hasta 80 °C y se agitó a esta temperatura durante 20 h. Se permitió que la solución resultante alcanzara la t.a., se concentró el disolvente, el residuo crudo se disolvió en $\rm EtOAc$ (200 ml), se lavó con $\rm NaCl$ (solución acuosa saturada, 2x250 ml) y $\rm H_2O$ (1x250 ml). La fase orgánica se secó con $\rm Na_2SO_4$, se filtró y se concentró. El residuo crudo se purificó mediante cromatografía flash en $\rm SiO_2$ (30% de acetona/hexanos), para obtener el compuesto del título como un sólido amarillo (17 mg, 55% de rendimiento).

25 HPLC-MS (Procedimiento B1): t_R, 10.46 min; ESI⁺-MS *m/z*, 549.1 (M+1).

b) 1'-Boc-2-(4-metoxibencil)-2',3'-dihidro-1'H-espiro[isoindol-1,4'-piridin]-3(2H)-ona.

Se añadió $Pd(OAc)_2$ (1.92 g, 2.85 mmol) a una suspensión del compuesto obtenido el paso a (15.64 g, 20.34 mmol), PPh_3 (1.49 g, 5.70 mmol), K_2CO_3 (7.88 g, 57.02 mmol) y TBACI (7.92 g, 28.51 mmol) en ACN (200 ml). La mezcla de reacción se calentó a reflujo y se permitió que reaccionara durante 24 h. Se enfrió hasta t.a., se filtró a través de Celite,

se lavó con EtOAc (300 ml) y se concentró. El residuo se diluyó con H_2O (250 ml) y se extrajo con EtOAc (2x200 ml). Las fases orgánicas combinadas se secaron con Na_2SO_4 , se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO_2 (20% de acetona/hexanos y 15% de acetona/hexanos), para obtener el compuesto del título como un sólido amarillo (9,0 mg, 97% de rendimiento). HPLC-MS (Procedimiento B1): t_B , 10.37 min; ESI^+ -MS m/z, 221.2 (M+1).

c) 2',3'-Dihidro-1'H-espiro[isoindol-1,4'-piridin]-3(2H)-ona.

Una suspensión del compuesto obtenido en el paso b (2.15 g, 4.73 mmol) en TFA (30 ml) se calentó a reflujo y se agitó a esta temperatura durante 3 días en un tubo sellado. Se permitió que la mezcla de reacción alcanzara la t.a. y se concentró el disolvente. El residuo crudo se diluyó con H_2O (30 ml), se ajustó el pH hasta 10 con NaOH (solución acuosa al 10%) y se extrajo con DCM (5x50 ml). Las fases orgánicas combinadas se secaron con Na_2SO_4 , se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO_2 (MeOH/ H_2O), para obtener el compuesto del título como un sólido blanquecino (335 mg, 35% de rendimiento). HPLC-MS (Procedimiento A): t_R , 5.85 min; ESI+MS m/z, 201.2 (M+1).

d) Espiro[isoindol-1,4'-piperidin]-3(2H)-ona.

Se añadió NaBH(OAc)₃ (856 mg, 4.05 mmol) a una suspensión enfriada a 0 °C del compuesto obtenido en el paso c (326 mg, 1.62 mmol) y AcOH (5 ml) en ACN (5 ml). Se permitió que la mezcla de reacción alcanzara la t.a., se agitó a esta temperatura durante 3 h y se vertió lentamente sobre NaHCO₃ (solución acuosa saturada, 20 ml). Se ajustó el pH de la mezcla hasta 8-9 con NaOH (solución acuosa al 36%) y se extrajo con DCM (5x20 ml) y *n*-BuOH (2x15 ml). Las fases orgánicas combinadas se secaron con Na₂SO₄, se filtraron y se concentraron, para obtener el compuesto del título como un sólido blanquecino (360 mg, rendimiento cuantitativo). El residuo crudo se sometió al siguiente paso sin purificación.

HPLC-MS (Procedimiento B1): t_R, 5.61 min; ESI+-MS m/z, 203.1 (M+1).

e) Compuesto del título.

5

10

Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 3C, pero partiendo del compuesto obtenido en el paso d y utilizando benzaldehído en lugar de formaldehído, se obtuvo el compuesto del título como un sólido blanco (1.0 g, 62% de rendimiento).

HPLC-MS (Procedimiento B): t_R, 15.46 min; ESI+-MS m/z, 293.1 (M+1).

Intermedio 4B. 1'-Bencil-2-metilespiro[isoindolin-1,4'-piperidina].

30 a) 1'-Bencilespiro[isoindol-1,4'-piperidina

Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 2B, pero partiendo del intermedio 4A, se obtuvo el compuesto del título como un aceite blanquecino (190 mg, 56% de rendimiento). HPLC-MS (Procedimiento D): t_R, 15.63 min; ESI⁺-MS *m/z*, 279.2 (M+1).

b) Compuesto del título.

Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 3C, pero partiendo del compuesto obtenido en el paso a, se obtuvo el compuesto del título como un sólido blanquecino (90% de rendimiento). HPLC-MS (Procedimiento B): t_R, 16.92 min; ESI⁺-MS m/z, 293.2 (M+1).

Intermedio 4C. 2-Metil-1'-fenetilespiro[isoindolin-1,4'-piperidin]-3-ona.

a) 1'-(2-Feniletil)espiro[isoindol-1,4'-piperidin]-3(2H)-ona.

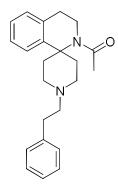
Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 4A, pasos a y b, pero partiendo de 1-(2-feniletil)piperidin-4-ona en lugar de 1-boc-piperidin-4-ona, se obtuvo el compuesto del título como un sólido amarillo (15% de rendimiento en cuatro pasos).

HPLC-MS (Procedimiento B1): t_R, 8.68 min; ESI⁺-MS m/z, 306.9 (M+1).

b) Compuesto del título.

5

10


15

Se añadió NaH (suspensión al 60% en aceite mineral, 22 mg, 0.561 mmol) a una solución enfriada a 0 °C del compuesto obtenido en el paso a (86 mg, 0.281 mmol) en THF (5 ml). Se permitió que la mezcla de reacción alcanzara la t.a., se agitó a esta temperatura durante 10 min y se añadió Mel (22ml, 0.351 mmol). La mezcla de reacción se agitó a t.a. hasta que se consiguió una conversión completa (3 h). La mezcla se vertió sobre H₂O (5 ml) y se extrajo con EtOAc (4x10 ml). Las fases orgánicas combinadas se secaron con Na₂SO₄ (anhidro), se filtraron y se concentraron. El residuo crudo (100 mg) se purificó mediante cromatografía flash en SiO₂ (5.5% de MeOH/DCM) para obtener un aceite, el cual se suspendió en hexanos (2 ml), para proporcionar el compuesto del título como un sólido blanquecino (25 mg, 28% de rendimiento).

HPLC-MS (Procedimiento B): t_R, 17.32 min; ESI+-MS m/z, 321.3 (M+1).

Síntesis de los ejemplos

Ejemplo 1. 2-Metil-1-(1'-fenetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etan-1-ona.

Se añadió cloruro de acetilo (91 ml, 1.27 mmol) a una solución de 1'-(2-feniletil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina (intermedio 2C, 300 mg, 0.98 mmol) y K₂CO₃ (405 mg, 2.93 mmol) en ACN (15 ml). La reacción se agitó a temperatura ambiente hasta que se consiguió una conversión completa (2.5 h). Se añadió agua y la mezcla se extrajo con EtOAc (2 x 20 ml). Las fases orgánicas combinadas se secaron con Na₂SO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en gel de sílice (3% de MeOH/DCM), para obtener el compuesto del título como un sólido blanco (283 mg, 83% de rendimiento).

HPLC-MS (Procedimiento D): t_R, 16.83 min; ESI⁺-MS *m/z*, 349.0 (M+1).

Ejemplo 2. 2-Metil-1-(1'-fenetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)propan-1-ona.

Siguiendo un procedimiento similar al utilizado en el ejemplo 1, pero utilizando cloruro de isobutirilo en lugar de cloruro de acetilo, se obtuvo el compuesto del título como un aceite (77% de rendimiento). HPLC-MS (Procedimiento B): t_R , 17.61 min; ESI $^+$ -MS m/z, 377.2 (M+1).

5 Este procedimiento se utilizó para la preparación de los ejemplos 3-7 empleando los materiales de partida adecuados:

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
3		furan-2-il(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)metanona	В	17,68	401,2
4	N C C C C C C C C C C C C C C C C C C C	1-(1'-fenetil-3,4-dihidro- 2 <i>H</i> -espiro[isoquinolin- 1,4'-piperidin]-2- il)propan-1-ona	В	16,18	363,2
5	N CO	2-metoxi-1-(1'-fenetil- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	В	18,78	455,2

(continuación)

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
6		2-(benciloxi)-1-(1'- fenetil-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	В	15,08	379,2
7		1-(6-metoxi-1'-fenetil- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	π	1,79	379,3

Ejemplo 8. 1-[1'-(2-Morfolin-4-il-etil)-3,4-dihidroespiro[isoquinolin-1,4'-piperidin]-2-il]-etanona.

Se añadió cloruro de acetilo (51 μ l, 0.718 mmol) a una solución de 4-(2-(3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)morfolina (intermedio 2D, 0.598 mmol) y DIPEA (0.205 ml, 1.20 mmol) en DCM (3 ml). La mezcla de reacción se agitó a t.a. durante 20 h, se vertió sobre H_2O y se extrajo con DCM. Las fases orgánicas combinadas se secaron con Na_2SO_4 , se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en gel de sílice (8 \rightarrow 10% de MeOH/DCM), para obtener el compuesto del título como un aceite amarillo (78 mg, 36% de rendimiento).

HPLC-MS (Procedimiento C): t_R, 10.71 min; ESI+-MS m/z, 358.0 (M+1).

10

Este procedimiento se utilizó para la preparación de los ejemplos 9-31 partiendo de los ejemplos correspondientes.

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
9		1-(1'-((tetrahidro-2 <i>H</i> -piran-4-il)metil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona	C	11,64	343,1
10		1-(1'-(2- (metil(fenil)amino)etil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	С	15,67	378,1
11		1-(1'-(2-isopropoxietil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	D	15,76	331,2
12	N O N O	1-(1'-isobutil-3,4-dihidro- 2 <i>H</i> -espiro[isoquinolin- 1,4'-piperidin]-2- il)etanona	D	14,41	301,2

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
13		1-(1'-(ciclohexilmetil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	О	16,64	341,2
14		1-(1'-(2-(piperidin-1- il)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	О	13,91	356,1
15	N O	1-(1'-isopentil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	D	15,29	314,8
16		1-(1'-(2- (bencil(metil)amino)etil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	О	15,67	392,0

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
17		1-(1'-(piridin-2-ilmetil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	D	13,73	336,1
18		1-(1'-(2-(piridin-2-il)etil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	D	13,57	350,0
19	>=0 	1-(1'-(2-(piridin-3-il)etil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	D	13,63	350,0
20		1-(1'-(2-fenoxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona	O	14,71	365,1

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
21		1-(1'-(2-(piridin-4-il)etil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	D	13,87	350,2
22		3-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)- <i>N</i> , <i>N</i> -dimetilpropanamida	Ψ	2,67	344,2
23		1-(1'-(2-(6- (trifluorometil)piridin-3- il)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	F	4,08	418,0
24		1-(1'-(2-etoxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona	F	3,07	317,2

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
25	P P P P P P P P P P P P P P P P P P P	1-(1'-(2-(2- (trifluorometil)piridin-4- il)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	F	4,05	418,2
26		1-(1'-(2-(3-fluoropiridin- 4-il)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	F	3,42	368,2
27		1-(1'-(2-(5-cloropiridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona	F	3,74	384,2
28		4-(2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)picolinonitrilo	F	3,52	375,2

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
29		1-(1'-(2-(5-fluoropiridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanona	F	3,38	368,2
30		1-(1'-(2- (ciclopropilmetoxi)etil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	F	3,37	343,2
31		1-(1'-(2-isobutoxietil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	F	3,91	345,2

Ejemplo 32. 1-(1'-(2-(Benciloxi)etil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona.

Se añadió Ac_2O (39 µl, 4.1 mmol) a una solución de 1'-(2-(benciloxi)etil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina] (intermedio 2R, 140 mg, 0.41 mmol) y piridina (33 µl, 4.1 mmol) en DCM (3 ml), y la mezcla de reacción se calentó a reflujo durante toda la noche. La mezcla se vertió sobre una solución acuosa saturada de NaHCO₃ y la fase acuosa se extrajo con DCM. Las fases orgánicas combinadas se secaron con MgSO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (fase móvil: DCM/MeOH), para obtener el compuesto del título (62 mg, 39% de rendimiento). HPLC-MS (Procedimiento F): t_R , 3.86 min; ESI⁺-MS m/z, 379.2 (M+1).

Este procedimiento se utilizó para la preparación de los ejemplos 33-37 partiendo de los ejemplos correspondientes.

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
33		1-(1'-(ciclopropilmetil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	F	2,83	299,2
34		2-(2-acetil-3,4-dihidro- 2 <i>H</i> -espiro[isoquinolin- 1,4'-piperidin]-1'-il)-1- morfolinoetanona	F	2,94	372,2
35		3-(2-acetil-3,4-dihidro- 2 <i>H</i> -espiro[isoquinolin- 1,4'-piperidin]-1'-il)- <i>N</i> - metil- <i>N</i> - fenilpropanamida	F	3,51	406,2

(continuación)

EJ.	Estructura	Nombre químico	Procedimiento	Tiempo de ret. (min)	MS (M+H)
36	Z F	1-(1'-(3- (trifluorometoxi)fenetil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	Η	4,81	433,0
37	N O N Boc	2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etilcarbamato de <i>terc</i> -butilo	F	3,70	388,2

Ejemplo 38. N-{3-[2-(2-Acetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil]fenil}acetamida.

Se añadió cloruro de acetilo (113 ml, 1.58 mmol) a una solución de 3-[2-(3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil]fenilamina (intermedio 2AS, 51 mg, 0.143 mmol) y DIPEA (82 ml, 0.48 mmol) en DCM (5 ml). La mezcla de reacción se agitó a t.a. durante 5 días, se vertió sobre una solución acuosa saturada de NaHCO $_3$ (10 ml) y se extrajo con DCM. Las fases orgánicas combinadas se secaron con Na $_2$ SO $_4$, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO $_2$ ($2 \rightarrow 5\%$ de MeOH/DCM) y se suspendió en hexanos, para proporcionar el compuesto del título como un sólido blanco (40 mg, 69% de rendimiento). HPLC-MS (Procedimiento C): t_R , 12.67 min; ESI $^+$ -MS m/z, 406.1 (M+1).

Ejemplo 39. Acetato de 2-(2-acetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-feniletilo

5

Siguiendo el procedimiento descrito en el ejemplo 8, pero utilizando el intermedio 2V como material de partida y 2.2 equivalentes de cloruro de acetilo, se obtuvo el compuesto del título. HPLC-MS (Procedimiento F): t_R, 4.22 min; ESI⁺-MS *m*/z, 407.1 (M+1).

Ejemplo 40. 1-(1'-(2-Hidroxi-2-feniletil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona.

5

10

15

Una solución de hidróxido de litio monohidratado (25.7 mg, 0.61 mmol) en agua (1 ml) se añadió a una solución de acetato de 2-(2-acetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-feniletilo (ejemplo 39, 83 mg, 0.20 mmol) en THF (1 ml). La mezcla se agitó a temperatura ambiente durante toda la noche. Se diluyó con agua y se extrajo con DCM. Las fases orgánicas combinadas se secaron con MgSO₄, se filtraron y se concentraron a sequedad. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (fase móvil: mezclas de MeOH/DCM de polaridad cada vez mayor), para obtener el compuesto del título (19 mg, 27% de rendimiento). HPLC-MS (Procedimiento F): t_R, 3.66 min; ESI⁺-MS *m/z*, 365.1 (M+1).

Ejemplo 41. 1-(1'-(2-Hidroxietil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona.

a) Acetato de 2-(2-acetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etilo.

Siguiendo el procedimiento descrito en el ejemplo 8, utilizando el intermedio 2AT como material de partida, se obtuvo el compuesto del título.

HPLC-MS (Procedimiento F): t_R , 3.06 min; ESI+-MS m/z, 331.0 (M+1).

20 b) 1-(1'-(2-Hidroxietil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona.

Siguiendo el procedimiento descrito en el ejemplo 40, pero utilizando el compuesto obtenido en el paso a como material de partida, se obtuvo el compuesto del título.

HPLC-MS (Procedimiento F): t_R, 2.33 min; ESI+-MS *m*/z, 289.0 (M+1).

Ejemplo 42. 1-(1'-(2-(Piridin-2-iloxi)etil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona.

Una mezcla del compuesto obtenido en el ejemplo 41 (55 mg, 0.19 mmol), Cs₂CO₃ (93 mg, 0.28 mmol), Cul (1 mg, 0.009 mmol), batofenantrolina (0.006 mg, 0.02 mmol) y 2-yodopiridina (0.035 ml, 0.19 mmol) en tolueno anhidro (1 ml) se calentó en atmósfera de argón a 110 °C durante toda la noche. Se añadió una segunda ronda de reactivos y la mezcla se agitó de nuevo a 110 °C durante toda la noche para conseguir que la reacción se completara. Se permitió que la mezcla de reacción se enfriara hasta la t.a., se diluyó con EtOAc, se filtró sobre un lecho de celite y finalmente se concentró a sequedad. El residuo crudo se purificó mediante cromatografía flash en C₁₈ (fase móvil: gradiente desde NH₄HCO₃ acuoso (pH 8) hasta ACN) para obtener el compuesto del título (36 mg, 52% de rendimiento). HPLC-MS (Procedimiento F): t_R, 3.53 min; ESI⁺-MS m/z, 366.2 (M+1).

10 Este procedimiento se utilizó para la preparación de los ejemplos 43-44 empleando 3-yodopiridina y 4-yodopiridina, respectivamente, en lugar de 2-yodopiridina:

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
43		1-(1'-(2-(piridin-3- iloxi)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	F	3,22	366,2
44		1-(1'-(2-(piridin-4- iloxi)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanona	F	3,6	366,2

Ejemplo 45. 1N-(4-(2-(2-acetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)piridin-2-il)acetamida.

Siguiendo el procedimiento descrito en el ejemplo 8, pero utilizando el intermedio 2AO como material de partida y 3 equivalentes de cloruro de acetilo, se obtuvo *N*-acetil-*N*-(4-(2-(2-acetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)piridin-2-il)acetamida como un producto crudo. Una solución de este compuesto peracetilado (43 mg, 096 mmol) en THF (3 ml) se trató con amoníaco concentrado (0.02 ml, 0.29 mmol) a temperatura ambiente durante 6 h. La mezcla se diluyó con agua y DCM. Las fases orgánicas combinadas se secaron con MgSO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (fase móvil: mezclas de MeOH/DCM de polaridad cada vez mayor), para obtener el compuesto del título (24 mg, 62% de rendimiento). HPLC-MS (Procedimiento F): t_R, 3.11 min; ESI⁺-MS *m/z*, 407.2 (M+1).

10 Ejemplo 46. 2-(2-Acetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil(metil)carbamato de *terc*-butilo.

A una disolución del ejemplo 37 (181 g, 0,47 mmol) en DMF anhidro (3 ml), se añadió NaH (31 mg, al 60% p en aceite mineral, 0.71 mmol) a t.a. La mezcla de reacción se agitó a t.a. durante 30 min, a continuación se añadió yodometano (0.032 ml, 0.51 mmol) y la suspensión resultante se agitó a t.a. durante 4 h. Se añadió más NaH (16 mg, al 60% p en aceite mineral, 0.35 mmol) y más yodometano (0.01 ml, 0.17 mmol) y la mezcla de reacción se agitó a t.a. durante 6 h más. Se añadió agua lentamente y se extrajo tres veces con DCM. Las fases orgánicas se combinaron, se lavaron con salmuera, se secaron con MgSO₄, se filtraron y se concentraron a sequedad. El residuo se purificó mediante cromatografía flash en C_{18} (fase móvil: gradiente desde NH_4HCO_3 acuoso (pH 8) hasta ACN) para obtener el compuesto del título (63 mg, 34% de rendimiento).

HPLC-MS (Procedimiento F): t_R, 4.06 min; ESI+-MS m/z, 402.2 (M+1).

5

15

20

Ejemplo 47. 1-(1'-(2-(Metilamino)etil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona.

Se añadió ácido trifluoroacético (0.12 ml, 1.5 mmol) a una solución de 2-(2-acetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil(metil)carbamato de *terc*-butilo (ejemplo 46, 63 mg, 0.15 mmol) en DCM (3 ml) y la mezcla de reacción se agitó a t.a. durante 4 h. Se evaporó el disolvente a sequedad para obtener el compuesto del título (118 mg, rendimiento cuant.).

HPLC-MS (Procedimiento F): t_R, 2.48 min; ESI+-MS m/z, 302.2 (M+1).

Ejemplo 48. N-(2-(2-Acetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)-N-metilbenzamida.

Se añadió cloruro de benzoílo (0.025 ml, 0.19 mmol) a 0 °C a una solución de 1-(1'-(2-(metilamino)etil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona (ejemplo 47, 118 mg, 0.15 mmol) y TEA (0.205 ml, 1.20 mmol) en DCM (3 ml), y la mezcla de reacción se agitó a t.a. durante toda la noche. A continuación, se diluyó con una sol. sat. de NaHCO₃ y se extrajo con DCM. Las fases orgánicas combinadas se secaron con MgSO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en C₁₈ (fase móvil: gradiente desde NH₄HCO₃ acuoso (pH 8) hasta ACN) para obtener el compuesto del título (13 mg, 21% de rendimiento). HPLC-MS (Procedimiento F): t_R, 3.52 min; ESI*-MS *m*/z, 406.2 (M+1).

10 Ejemplo 49. Acetato de 2-acetil-1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-6-ilo.

En un tubo de reacción para microondas, se introdujo 1'-fenetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-6-ol (intermedio 2AU, 1.27 g, 3.9 mmol) y se disolvió en anhídrido acético (18 ml). La mezcla de reacción se sometió a condiciones de irradiación de microondas durante 10 min a 120 °C. Después de enfriar hasta t.a., se añadió una solución acuosa saturada de NaHCO₃ y la mezcla de reacción se extrajo tres veces con DCM. Las fases orgánicas combinadas se lavaron con agua, se secaron con Na₂SO₄, se filtraron y se evaporaron al vacío para proporcionar el compuesto del título (1.37 g, rendimiento cuantitativo).

HPLC-MS (Procedimiento H): t_R, 1.77 min; ESI⁺-MS *m*/*z*, 407.3 (M+1).

Ejemplo 50. 1-(6-Hidroxi-1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona.

20

25

15

5

A una solución de acetato de 2-acetil-1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-6-ilo (ejemplo 49, 1.6 g, 4 mmol) en metanol (25 ml), se añadió K_2CO_3 (613 mg, 4 mmol) y la mezcla de reacción se agitó a 0 °C durante 2 horas. El disolvente se evaporó a sequedad y el residuo se repartió en DCM y agua dos veces. Las fases orgánicas combinadas se lavaron con agua, se secaron con Na_2SO_4 , se filtraron y se evaporaron al vacío. El residuo crudo se purificó mediante cromatografía flash en SiO_2 , con un gradiente desde DCM hasta metanol:DCM (85:15), para obtener el compuesto del título como un sólido beis (967 mg, 67%).

HPLC-MS (Procedimiento H): t_R , 1.53 min; $\dot{E}SI^+$ -MS m/z, 365.3 (M+1).

Ejemplo 51. 1-(6-Cloro-1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona.

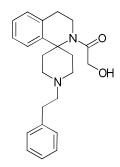
a) Trifluorometanosulfonato de 2-acetil-1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-6-ilo.

Una solución de 1-(6-hidroxi-1'-fenetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona (ejemplo 50, 250 mg, 0.69 mmol) y trietilamina (134 ml, 0.96 mmol) en DCM (8 ml) se enfrió hasta 0 °C y se añadió gota a gota cloruro de trifluorometanosulfonilo (160 ml, 1.5 mmol). Se permitió que la solución alcanzara la t.a. y se agitó durante toda la noche. La mezcla de reacción se vertió sobre agua y se separaron las fases. La fase acuosa se extrajo adicionalmente con DCM. Las fracciones orgánicas combinadas se lavaron con una solución de NaOH 2 N y a continuación con salmuera. La fase orgánica se secó con Na₂SO₄ y se eliminó el disolvente para proporcionar el compuesto del título como un aceite crudo (334 mg), el cual se utilizó en el siguiente paso sin purificación adicional.

b) Compuesto del título.

5

10


15

20

25

En un tubo de reacción para microondas, se creó una atmósfera de argón y se introdujeron el compuesto obtenido en el paso a (70 mg, 0.14 mmol), Pd₂(dba)₃ (5.1 mg, 0.006 mmol), tBuBrettPhos (5.5 mg, 0.011 mol), CsF (43 mg, 0.28 mmol) y tolueno (2 ml). El tubo de reacción se selló y se sometió a condiciones de irradiación de microondas durante 1 h a 160 °C. Después de enfriar de nuevo hasta t.a., se evaporó el disolvente a presión reducida y el crudo se absorbió directamente sobre gel de sílice con la ayuda de acetato de etilo. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (gradiente desde DCM hasta metanol:DCM (90:10)) y a continuación se purificó mediante HPLC semipreparativa de fase inversa (X-Bridge C18, 5 mm, MeCN/ NH₄HCO₃ 10 mM, flujo de 20ml/ min, t.a.) para obtener el compuesto del título (2.5 mg, 5%) como un aceite transparente. HPLC-MS (Procedimiento H): t_R, 2.04 min; ESI⁺-MS m/z, 383.1 (M+1).

Ejemplo 52. 2-Hidroxi-1-(1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona.

Se añadió una solución de BBr₃ (1.0 M en DCM, 4.1 ml, 4.1 mmol) a una solución enfriada hasta -40 °C de 2-metoxi-1-(1'-fenetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona (ejemplo 5, 155 mg, 0.409 mmol) en DCM (10 ml). Se permitió que la mezcla de reacción alcanzara la t.a. y se agitó a esta temperatura durante 18 h. La mezcla de reacción se vertió sobre H₂O y se extrajo con DCM. Las fases orgánicas combinadas se lavaron con una solución acuosa saturada de NaHCO₃, se secaron con Na₂SO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (DCM/MeOH/NH₄OH 97:3:1) y se suspendió en Et₂O, para obtener el compuesto del título como un sólido blanco (100 mg, 67% de rendimiento).

30 HPLC-MS (Procedimiento B): t_R, 13.98 min; ESI⁺-MS *m/z*, 365.2 (M+1).

Ejemplo 53. 2-(Metilsulfonil)-1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

Se añadió cloruro de metanosulfonilo (0.380 ml, 4.89 mmol) a una suspensión de 1'-(2-feniletil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina] (intermedio 2C, 150 mg, 0.489 mmol), DMAP (12 mg, 0.097 mmol) y piridina (0.395 ml, 4.89 mmol) en DCE (15 ml). La mezcla de reacción se calentó hasta 70 °C y se agitó a esta temperatura durante 4 días en un tubo sellado. Se permitió que la mezcla de reacción alcanzara la t.a., se vertió sobre H_2O y se extrajo con DCM. Las fases orgánicas combinadas se lavaron con una solución acuosa de ácido cítrico al 10%, se secaron con Na_2SO_4 , se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO_2 (AcOEt/MeOH/NH₄OH 95:5:1 \rightarrow 90:10:1) y HPLC preparativa, para proporcionar el compuesto del título como un sólido marrón pálido (17 mg, 9% de rendimiento).

HPLC-MS (Procedimiento B): t_R, 15.05 min; ESI⁺-MS m/z, 385.1 (M+1).

Ejemplos 54-62.

5

10

Siguiendo un procedimiento similar al utilizado en la preparación del Intermedio 3C, pero utilizando los materiales de partida adecuados, se obtuvieron los ejemplos 54-62:

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
54		2-metil-1'-fenetil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	В	16,52	321,3
55		6-metoxi-2-metil-1'- fenetil-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	Ξ	2,05	351,3

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
56		N,N-dietil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida	F	3,89	330,2
57		2-(2-metil-3,4-dihidro- 2 <i>H</i> -espiro[isoquinolin- 1,4'-piperidin]-1'-il)-1- (1,4-oxazepan-4- il)etanona	F	3,29	358,2
58	Z Z L	1-(4-fluoropiperidin-1-il)- 2-(2-metil-3,4-dihidro- 2 <i>H</i> -espiro[isoquinolin- 1,4'-piperidin]-1'- il)etanona	F	3,79	360,2
59		1-(4-(2-hidroxipropan-2- il)piperidin-1-il)-2-(2- metil-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-1'-il)etanona	F	3,44	400,3

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
60		1-(4-metoxipiperidin-1- il)-2-(2-metil-3,4-dihidro- 2 <i>H</i> -espiro[isoquinolin- 1,4'-piperidin]-1'- il)etanona	F	3,61	372,2
61	N P F F	1-(4,4-difluoropiperidin- 1-il)-2-(2-metil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-1'-il)etanona	F	4,13	378,2
62		2-(2-metil-3,4-dihidro- 2H-espiro[isoquinolin- 1,4'-piperidin]-1'-il)-1-(6- azaespiro[2.5]octan-6- il)etanona	F	4,42	368,2

Ejemplo 63. 2-Etil-1'-fenetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina].

Se añadieron NaBH(OAc)₃ (329 mg, 1.55 mmol), acetaldehído (87 ml, 1.55 mmol) y AcOH (88 ml, 1.55 mmol) a una solución de 1'-(2-feniletil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin] (intermedio 2C, 238 mg, 0.776 mmol) en DCE (3 ml). La mezcla de reacción se calentó mediante irradiación de microondas (120 °C, 2x45 min), se permitió que alcanzara la t.a., se vertió sobre una solución acuosa saturada de NaHCO₃ y se extrajo con DCM. Las fases orgánicas combinadas se secaron con Na₂SO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (EtOAc/MeOH/NH₄OH 98:2:1 \rightarrow 95:5:1), para obtener el compuesto del título como un aceite amarillo (180 mg, 69% de rendimiento).

HPLC-MS (Procedimiento B): t_R, 17.20 min; ÉSI+-MS m/z, 335.2 (M+1).

5

10 Este procedimiento se utilizó para la preparación del ejemplo 64, empleando 2-tiazolcarboxaldehído en lugar de acetaldehído:

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
64	S N N N N N N N N N N N N N N N N N N N	2-((1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)metil)tiazol	F	4,97	404,2

Ejemplo 65. 4-(2-(2-Metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)morfolina.

a) 2-Metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

Se añadió 1'-bencil-2-metil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina] (intermedio 3C, 1.04 g, 3.39 mmol) a una suspensión de Pd(OH)₂ (532 g, 18.50% de Pd, 48.40% de H₂O p/p, 0.339 mmol) y AcOH (19 μl, 0.339 mmol) en MeOH (15 ml). La suspensión se agitó en atmósfera de H₂ (globo) durante 19 h. La mezcla de reacción se filtró a través de Celite, se lavó con MeOH y se concentró. El aceite resultante se purificó mediante cromatografía flash en SiO₂ (DCM/MeOH/NH₄OH 90:10:1→80:20:1), para proporcionar el compuesto del título como un sólido blanco (705 mg, 96% de rendimiento).

HPLC-MS (Procedimiento B): t_R, 10.63 min; ESI+-MS m/z, 217.0 (M+1).

b) 4-(2-(2-Metil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)morfolina.

A una suspensión de K₂CO₃ (449 mg, 3.25 mmol) y el compuesto obtenido en el paso a (469 mg, 2.17 mmol) en ACN (25 ml), se añadió 4-(2-cloroetil)morfolina (487 mg, 3.25 mmol). La mezcla de reacción se calentó a reflujo durante 4.5 h y se enfrió hasta t.a. La mezcla se vertió sobre H₂O y la fase acuosa se extrajo con EtOAc. Las fases orgánicas combinadas se lavaron con H₂O, se secaron con Na₂SO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO₂ (DCM/MeOH/NH₄OH 95:5:1→90:10:1), para obtener el compuesto del título como un sólido blanco (414 mg, 69% de rendimiento).

HPLC-MS (Procedimiento D): t_R, 16.89 min; ESI+-MS m/z, 330.1 (M+1).

10

Este procedimiento se utilizó para la preparación de los ejemplos 66-112 empleando los agentes alquilantes adecuados.

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
66		1'-(ciclohexilmetil)-2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]	В	20,32	313,1
67		2-metil-1'-((tetrahidro- 2 <i>H</i> -piran-4-il)metil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidina]	D	16,76	315,4
68		N,N-dimetil-3-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida	D	13,17	316,2
69		2-(2-metil-3,4-dihidro- 2 <i>H</i> -espiro[isoquinolin- 1,4'-piperidin]-1'-il)-1- feniletanona	С	15,92	335,1

EJ.	Estructura	Nombre químico	Procedimiento	tR (min)	MS (M+H)
70		2-(2-metil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'-il)-1- morfolinoetanona	D	13,8	344,1
71		2-(2-metil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'-il)-1- (piperidin-1- il)etanona	С	14,67	342,2
72		N-metil-2-(2-metil- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'-il)- <i>N</i> - fenilacetamida	С	15,42	364,1
73		N,N-dimetil-2-(2- metil-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'- il)acetamida	D	13,51	302,2

EJ.	Estructura	Nombre químico	Procedimiento	tR (min)	MS (M+H)
74		2-metil-1'-(2- (tetrahidro-2 <i>H</i> -piran- 4-il)etil)-3,4-dihidro- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidina]	В	13,05	329,2
75		2-metil-1'-(2-(piridin- 2-il)etil)-3,4-dihidro- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidina]	О	15,43	322,2
76		2-metil-1'-(2-(piridin- 3-il)etil)-3,4-dihidro- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidina]	В	13,58	322,2
77		1'-(2-metoxietil)-2- metil-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidina]	D	14,02	275,3

EJ.	Estructura	Nombre químico	Procedimiento	tR (min)	MS (M+H)
78		1'-(2-isopropoxietil)- 2-metil-3,4-dihidro- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidina]	D	15,31	303,1
79		2-metil-1'-(2- (piperidin-1-il)etil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidina]	D	15,24	328,1
80		4-(2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)morfolin-3-ona	D	13,41	344,0
81		N-metil-3-(2-metil- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'-il)- <i>N</i> - fenilpropanamida	С	14,98	378,2

EJ.	Estructura	Nombre químico	Procedimiento	tR (min)	MS (M+H)
82		2-metil-1'-(piridin-2- ilmetil)-3,4-dihidro- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidina]	О	15,26	308,2
83		2-metil-1'-(piridin-4-ilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidina]	D	14,73	308,2
84		2-metil-1'-(piridin-3- ilmetil)-3,4-dihidro- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidina]	D	15,66	308,2
85	N N NO ₂	2-metil-1'-(3- nitrofenetil)-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidina]	-	-	-

EJ.	Estructura	Nombre químico	Procedimiento	tR (min)	MS (M+H)
86*	N N N N N F	1-(4-fluoropiperidin- 1-il)-2-(2-metil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'- il)propan-1-ona	F	3,94	374,2
87		N-isobutil-N-metil-2- (2-metil-3,4-dihidro- 2H- espiro[isoquinolin- 1,4'-piperidin]-1'- il)acetamida	F	4,08	344,2
88	N N N N N N	1-(3,3- difluoropiperidin-1-il)- 2-(2-metil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'- il)etanona	F	4,01	378,2
89		N-etil-N-isopropil-2- (2-metil-3,4-dihidro- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'- il)acetamida	F	4,10	344,2

EJ.	Estructura	Nombre químico	Procedimiento	tR (min)	MS (M+H)
90		2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(pirrolidin-1-il)etanona	F	3,37	328,2
91	N F F	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(4-(trifluorometil)piperidin-1-il)etanona	F	4,36	410,2
92	N N N F	1-(3,3- difluoropirrolidin-1-il)- 2-(2-metil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'- il)etanona	F	3,69	364,2
93		N-bencil-N-metil-2- (2-metil-3,4-dihidro- 2H- espiro[isoquinolin- 1,4'-piperidin]-1'- il)acetamida	F	4,32	378,2

EJ.	Estructura	Nombre químico	Procedimiento	tR (min)	MS (M+H)
94	O Z F	(S)-1-(3- fluoropirrolidin-1-il)-2- (2-metil-3,4-dihidro- 2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'- il)etanona	F	3,31	346,2
95	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	(R)-1-(3- fluoropirrolidin-1-il)-2- (2-metil-3,4-dihidro- 2H- espiro[isoquinolin- 1,4'-piperidin]-1'- il)etanona	F	3,31	346,2
96		2-(2-metil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'-il)-1- (piridin-3-il)etanol	F	3,20	338,2
97		2-(2-metil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'-il)-1- (piridin-2-il)etanol	F	3,28	338,2

EJ.	Estructura	Nombre químico	Procedimiento	tR (min)	MS (M+H)
98	HO N	2-(2-metil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'-il)-1- (piridin-4-il)etanol	F	3,31	338,2
99*	HO N	(<i>R</i>)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(piridin-4-il)etanol	Н	1,59	338,2
100*	HO _{in.}	(S)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(piridin-4-il)etanol	Н	1,59	338,2
101	O N	N-(ciclopropilmetil)- N-etil-2-(2-metil-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'- il)acetamida	Н	1,97	356,2

EJ.	Estructura	Nombre químico	Procedimiento	tR (min)	MS (M+H)
102		N,N-diisopropil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida	Н	2,17	358,3
103		N-isopropil-N-metil-2- (2-metil-3,4-dihidro- 2H- espiro[isoquinolin- 1,4'-piperidin]-1'- il)acetamida	Н	1,77	330,3
104	N O N	N-etil-N-isobutil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida	Н	2,06	358,3
105	O N	N-etil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)- <i>N</i> -propilacetamida	Н	1,91	344,2

EJ.	Estructura	Nombre químico	Procedimiento	tR (min)	MS (M+H)
106		N-ciclopropil-N-etil-2- (2-metil-3,4-dihidro- 2H- espiro[isoquinolin- 1,4'-piperidin]-1'- il)acetamida	Н	1,73	342,3
107		N-isopropil-2-(2- metil-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'-il)- <i>N</i> - propilacetamida	Н	1,08	358,3
108		N-isopropil-N-(2-metoxietil)-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida	Н	1,83	374,3
109		N-etil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)- <i>N</i> -(pentan-3-il)acetamida	Н	2,22	372,3

EJ.	Estructura	Nombre químico	Procedimiento	tR (min)	MS (M+H)
110		N-isobutil-N-isopropil-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetamida	Н	2,24	372,3
111		N-metil-2-(2-metil- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'-il)- <i>N</i> - (pentan-3- il)acetamida	Н	2,06	358,3
112		N-(ciclopropilmetil)- N-metil-2-(2-metil- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin- 1,4'-piperidin]-1'- il)acetamida	Н	1,80	342,3

^{*}Ejemplo 86. RMN- 1 H (CDCl₃, 250 MHz) δ : 8.11-8.06 (m, 2H, ArH); 7.58 (d, J = 8.0 Hz, 1H, ArH); 7.47 (t, J = 8.1 Hz, 1H, ArH); 7.34-7.05 (m, 4H, ArH); 3.19 (t, J = 6.4 Hz, 2H, CH₂); 3.05-2.56 (m, 10H, CH₂); 2.31 (s, 3H, CH3); 2.07 (m, 4H, CH₂).

Ejemplo 113. 1-(3-Fluoropiridin-4-il)-2-(2-metil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etanol.

^{*}Ejemplos 99 y 100. Obtenidos mediante HPLC preparativa quiral a partir del ejemplo 98: columna: Chiralcel IC; temperatura: ambiente; flujo: 10 ml/min; fase móvil: *n*-heptano/(EtOH + 0.33% de DEA) 70/30 v/v.

A una solución de 3-fluoro-4-(oxiran-2-il)piridina (190 mg, 1.36 mmol) en etanol (20 ml), se añadió 2-metil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina] (obtenida en la síntesis del ejemplo 65, paso a, 300 mg, 1.38 mmol). La mezcla de reacción se calentó a reflujo durante toda la noche. A continuación, se añadió 3-fluoro-4-(oxiran-2-il)piridina adicional (546 mg, 2.82 mmol) y la reacción se calentó a reflujo durante toda la noche. A continuación, la mezcla se concentró a sequedad y el residuo crudo se purificó mediante cromatografía flash en SiO₂ (DCM/MeOH 100:0→90:10), para obtener el compuesto del título (125 mg, 25% de rendimiento).
HPLC-MS (Procedimiento H): t_R, 1.70 min; ESI⁺-MS *m/z*, 356.2 (M+1).

Este procedimiento se utilizó como una preparación alternativa de los ejemplos 96-98.

5

15

25

Ejemplo 114. 2-(2-Metil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(4-metilpiperidin-1-il)etanona.

a) 2-(3,4-Dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetato de etilo.

Una mezcla de 3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina] (obtenida en la síntesis del intermedio 2W, paso a, 750 mg, 3.71 mmol), bromoacetato de etilo (0.35 ml, 3.16 mmol), DIPEA (1.4 ml, 7.9 mmol) y yoduro de sodio (241 mg, 1.58 mmol) en ACN (8 ml) se calentó a 80 °C en un tubo sellado durante 24 h. Se diluyó con agua y se extrajo con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera, se secaron con MgSO₄, se filtraron y se concentraron. El crudo se purificó mediante cromatografía flash en SiO₂ (fase móvil: mezclas de MeOH/DCM de polaridad cada vez mayor), para obtener el compuesto del título (343 mg, 45% de rendimiento). HPLC-MS (Procedimiento F): t_R, 3.14 min; ESI⁺-MS *m/z*, 289.1 (M+1).

20 b) 2-(2-Metil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)acetato de etilo.

Se añadió formaldehído (solución acuosa al 37%, 1.6 ml, 21.0 mmol) a una solución del compuesto obtenido en el paso a (343 mg, 1.19 mmol) en MeOH (10 ml). La mezcla de reacción se agitó a t.a. durante 22 h, se añadió NaBH(OAc)₃ (701 g, 3.28 mmol) y la mezcla se agitó a t.a. durante 24 h. Se añadió más formaldehído y más NaBH(OAc)₃ en un segundo ciclo de la reacción para conseguir que se completara la reacción. La mezcla de reacción se vertió lentamente sobre una solución acuosa saturada de NaHCO₃, se concentró el disolvente y el residuo se diluyó con DCM. La fase orgánica se lavó con una solución acuosa saturada de NaHCO₃, salmuera y H₂O, se secó con MgSO₄, se filtró y se concentró. El residuo se purificó mediante cromatografía flash en C₁₈ (fase móvil: gradiente desde NH₄HCO₃ acuoso (pH 8) hasta ACN) para obtener el compuesto del título (150 mg, 41% de rendimiento). HPLC-MS (Procedimiento F): t_R, 3.94 min; ESI⁺-MS m/z, 303.2 (M+1).

30 c) Ácido 2-(2-metil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)acético.

Una solución de hidróxido de litio monohidratado (62 mg, 1.49 mmol) en agua (2 ml) se añadió a una solución del compuesto obtenido en el paso b (150 mg, 0.50 mmol) en THF (2 ml). La mezcla se agitó a temperatura ambiente

durante 4 h. Se diluyó con agua, se ajustó el pH hasta 5 con una solución de HCl 1 N y se extrajo con DCM. Las fases orgánicas combinadas se secaron con MgSO₄, se filtraron y se concentraron a sequedad para obtener el compuesto del título como un producto crudo (136 mg, rendimiento cuantitativo).

HPLC-MS (Procedimiento F): t_R, 2.44 min; ESI⁺-MS m/z, 275.1 (M+1).

5 d) Compuesto del título.

10

15

Se añadieron HOBt (40 mg, 0.29 mmol), EDC.HCl (57 Mg, 0.29 mmol) y *N*-metilmorfolina (0.14 ml, 1.24 mmol) a una solución del compuesto obtenido en el paso c (68 mg, 0.25 mmol) en DMF (2 ml). La mezcla se agitó a t.a. durante 30 min, a continuación se añadió 4-metilpiperidina (0.03 ml, 0.25 mmol) y se agitó a t.a. durante toda la noche. La mezcla de reacción se diluyó con una solución acuosa saturada de NaHCO₃ y se extrajo con EtOAc. Las fases orgánicas combinadas se secaron con MgSO₄, se filtraron y se concentraron. El residuo se purificó mediante cromatografía flash en C₁₈ (fase móvil: gradiente desde NH₄HCO₃ acuoso (pH 8) hasta ACN) para obtener 2-(2-metil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(4-metilpiperidin-1-il)etanona (30 mg, 34% de rendimiento). HPLC-MS (Procedimiento F): t_R, 4.36 min; ESI⁺-MS *m*/z, 356.2 (M+1).

Este procedimiento se utilizó para la preparación de los ejemplos 115-116 haciendo reaccionar el compuesto obtenido en el ejemplo 114c con las aminas adecuadas:

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
115		1-((2S,6R)-2,6- dimetilmorfolino)-2-(2- metil-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-1'-il)etanona	F	3,79	372,2
116		N-metil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-1'-il)- <i>N</i> -(piridin-2-ilmetil)acetamida	F	3,45	379,2

Ejemplo 117. 3-[2-(2-Metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil]fenilamina.

Siguiendo un procedimiento similar al descrito en el intermedio 2AS, pero partiendo del compuesto obtenido en el ejemplo 85, se obtuvo el compuesto del título como un sólido amarillo pálido (62% de rendimiento). HPLC-MS (Procedimiento B): t_R, 14.00 min; ESI⁺-MS *m/z*, 336.1 (M+1).

Ejemplo 118. *N-*(3-(2-(2-Metil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil)fenil) metanosulfonamida.

Se añadió cloruro de metanosulfonilo (17 ml, 0.22 mmol) a una solución enfriada a 0 °C de 3-[2-(2-metil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil]fenilamina (ejemplo 117, 66 mg, 0.20 mmol) en piridina (0.70 ml). Se permitió que la mezcla de reacción alcanzara la t.a. y se agitó a esta temperatura durante 4 h. La mezcla se vertió sobre una solución acuosa saturada de NaHCO₃ y se extrajo con DCM. Las fases orgánicas combinadas se secaron con Na₂SO₄, se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO₂ ($1\rightarrow10\%$ de MeOH/DCM) y se suspendió en hexanos, para proporcionar el compuesto del título como un sólido amarillo (38 mg, 47% de rendimiento).

HPLC-MS (Procedimiento C): t_R, 14.28 min; ESI+-MS m/z, 414.0 (M+1).

5

10

25

15 Ejemplo 119. N-{3-[2-(2-Metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)etil]fenil}acetamida.

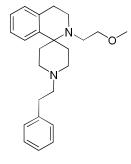
Siguiendo un procedimiento similar al descrito en el ejemplo 38, pero partiendo del compuesto obtenido en el ejemplo 117, se obtuvo el compuesto del título como un sólido blanco (91% de rendimiento). HPLC-MS (Procedimiento C): t_R, 14.04 min; ESI⁺-MS *m/z*, 378.1 (M+1).

20 Ejemplo 120. 2-(2-Metil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-feniletanol.

Se añadió óxido de estireno (34 ml, 0.30 mmol) a una solución de 2-metil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina] (obtenida en la síntesis del ejemplo 65, paso a, 65 mg, 0.30 mmol) en tolueno (3 ml). La mezcla de reacción se calentó hasta 115 °C y se agitó a esta temperatura durante 16 h en un tubo sellado. Se enfrió hasta temperatura ambiente, se concentró el disolvente y el residuo se purificó mediante cromatografía flash en SiO₂

(DCM/MeOH/NH₄OH 98:2:1 \rightarrow 90:10:1 y EtOAc/hexanos/NH₄OH 30:70:1 \rightarrow 80:20:1) y se suspendió en hexanos, para obtener el compuesto del título como un sólido blanco (27 mg, 27% de rendimiento). HPLC-MS (Procedimiento C): t_R , 14.80 min; ESI⁺-MS m/z, 336.9 (M+1).

Ejemplo 121. 2-Metil-1'-(2-(piridin-4-il)etil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

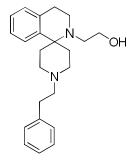

a) 2-Metil-1'-(piridin-4-ilacetil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 2W, paso a, pero partiendo del compuesto obtenido en el ejemplo 65a, se obtuvo el compuesto del título como un sólido blanco (63% de rendimiento). HPLC-MS (Procedimiento A): t_R, 8.29 min; ESI⁺-MS *m/z*, 336.2 (M+1).

10 b) Compuesto del título.

Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 2W, paso c, pero partiendo del compuesto obtenido en el paso a, se obtuvo el compuesto del título como un sólido blanco (74% de rendimiento). HPLC-MS (Procedimiento D): t_R, 15.63 min; ESI⁺-MS *m/z*, 322.0 (M+1).

Ejemplo 122. 2'-(2-Metoxietil)-1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].


15

20

5

Se añadió una solución de LiAlH₄ (1.0 M en THF, 0.6 ml, 0.60 mmol) a una solución enfriada hasta -10 °C de 2-metoxi-1-(1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona (ejemplo 5, 230 mg, 0.60 mmol) en THF (10 ml). La mezcla de reacción se agitó a esta temperatura durante 5 h, se permitió que alcanzaran la t.a. y se agitó a esta temperatura durante 15 h. La mezcla de reacción se enfrió hasta 0 °C, se añadieron H_2O (33 ml), NaOH (solución acuosa al 15%, 23 ml) y H_2O (69 ml) y la suspensión se agitó a 0 °C durante 10 min. La mezcla se filtró y se lavó con EtOAc. El filtrado se lavó con H_2O y la fase orgánica se secó con H_2SO_4 , se filtró y se concentró. El residuo crudo se purificó mediante HPLC preparativa y se suspendió en H_2O_4 (hexanos, para obtener el compuesto del título como un sólido de color crema (81 mg, 37% de rendimiento). HPLC-MS (Procedimiento B): H_2O_4 (H_2O_4).

25 Ejemplo 123. 2-(1'-Fenetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanol.

Se añadió HBr (solución acuosa al 48%, 35 ml, 0.315 mmol) a una suspensión de 2-(2-metoxietil)-1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina] (ejemplo 122, 23 mg, 0.063 mmol) en H_2O (200 ml). La mezcla de reacción se calentó a reflujo durante 24 h, se permitió que alcanzara la t.a. y se concentró. El residuo se vertió sobre H_2O y se extrajo con DCM. Las fases orgánicas combinadas se secaron con Na_2SO_4 , se filtraron y se concentraron. El residuo crudo se purificó mediante cromatografía flash en SiO_2 (DCM/MeOH/NH $_4OH$ 95:5:1) y se suspendió en hexanos, para obtener el compuesto del título como un sólido de color crema (12 mg, 50% de rendimiento). HPLC-MS (Procedimiento B): t_R , 13.85 min; ESI^+ -MS m/z, 351.4 (M+1).

Ejemplo 124. 2-(2-Metoxietil)-1'-(2-(piridin-3-il)etil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

a) 2-(2-Metoxietil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidina].

Se añadió 1'-bencil-2-(2-metoxietil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina] (intermedio 3D, 181 mg, 0.52 mmol) a una suspensión de Pd(OH)₂ (84 g, 18.50% de Pd, 48.40% de H₂O p/p, 0.052 mmol) y AcOH (3 μ l, 0.052 mmol) en MeOH (10 ml). La suspensión se agitó en atmósfera de H₂ (globo) durante 17 h. La mezcla de reacción se filtró a través de Celite, se lavó con MeOH y se concentró, para proporcionar el compuesto del título como un aceite amarillo (248 mg, rendimiento cuantitativo). HPLC-MS (Procedimiento E): t_R , 7.88 min; ESI+-MS m/z, 260.8 (M+1).

b) Compuesto del título.

15

25

Siguiendo un procedimiento similar al descrito en el ejemplo 65b, pero partiendo del compuesto obtenido en el paso a, se obtuvo el compuesto del título como un sólido blanco.

20 HPLC-MS (Procedimiento E): t_R, 8.80 min; ESI⁺-MS *m/z*, 366.3 (M+1).

Ejemplo 125. 2-[1'-(2-Piridin-3-il-etil)-3,4-dihidroespiro[isoquinolin-1,4'-piperidin]-2-il]-etanol.

Siguiendo un procedimiento similar al descrito en el ejemplo 123, pero partiendo del compuesto obtenido en el ejemplo 124, se obtuvo el compuesto del título como un sólido blanco (41% de rendimiento). HPLC-MS (Procedimiento E): t_R, 13.88 min; ESI⁺-MS *m/z*, 352.3 (M+1).

Ejemplo 126. 2-(2-(2-Hidroxietil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)-1-(piperidin-1-il)etanona.

a) 2-(3,4-Dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanol.

Se añadió 2-(1'-bencil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-2-il)etanol (intermedio 3E, 61 mg, 0.18 mmol) a una suspensión de Pd(OH)₂ (30 mg, 20% de Pd, 50% de H₂O p/p) y 2 gotas de AcOH en MeOH (2.5 ml). La suspensión se agitó en 3 bar de H₂ durante 18 h. La mezcla de reacción se filtró a través de Celite, se lavó con MeOH y se concentró a sequedad para proporcionar el compuesto del título (64 mg, rendimiento cuant.). HPLC-MS (Procedimiento F): t_R , 2.39 min; ESI⁺-MS m/z, 247.2 (M+1).

b) Compuesto del título.

Se añadió 2-cloro-1-(piperidin-1-il)etanona (34 mg, 0.21 mmol) a una mezcla del compuesto obtenido en el paso a (44 mg, 0.18 mmol), K₂CO₃ (74 mg, 0.54 mmol) y Nal (16 mg, 0.11 mmol) en ACN (1 ml). La mezcla de reacción se agitó en atmósfera de N₂ a 80 °C durante toda la noche. Después de enfriar hasta t.a., se diluyó con agua y se extrajo con EtOAc. Las fases orgánicas combinadas se lavaron con salmuera, se secaron con MgSO₄, se filtraron y se concentraron. El crudo se purificó mediante cromatografía flash en SiO₂ (fase móvil: mezclas de MeOH/DCM de polaridad cada vez mayor), para obtener el compuesto del título (31 mg, 47% de rendimiento).

HPLC-MS (Procedimiento F): t_R, 3.56 min; ESI*-MS *m/z*, 372.2 (M+1).

Este procedimiento se utilizó para la preparación de los ejemplos 127-129 partiendo del compuesto obtenido en el ejemplo 126a y empleando un agente alquilante adecuado.

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
127	OH NO	2-(1'-(2-(5-fluoropiridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolin-1,4'-piperidin]-2-il)etanol	F	3,27	370,2
128	OH Z Z Z Z E E E	2-(1'-(2-(5- (trifluorometil)piridin-3- il)etil)-3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanol	F	3,86	420,2

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
129	OH NO	2-(1'-(2-(piridin-4-il)etil)- 3,4-dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-2-il)etanol	F	3,08	352,2

Ejemplo 130. 2-(1'-(2-(3-Fluoropiridin-4-il)etil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidin]-2-il)etanol.

En un tubo sellado, se disolvió 2-(1'-bencil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanol (ejemplo 126a, 42 mg, 0.17 mmol) en 2-metoxietanol (1 ml). Se añadieron DIPEA (90 ml, 0.51 mmol) y 3-fluoro-4-vinilpiridina (47 mg, 0.38 mmol) y la mezcla de reacción se calentó a 120 °C durante toda la noche. Se eliminó el disolvente y el crudo se purificó mediante cromatografía flash en C₁₈ (fase móvil: gradiente desde NH₄HCO₃ acuoso (pH 8) hasta ACN) y a continuación mediante cromatografía flash en SiO₂ (fase móvil: mezclas de MeOH/DCM de polaridad cada vez mayor), para obtener el compuesto del título (2.2 mg, 3% de rendimiento).

HPLC-MS (Procedimiento F): t_R, 3.30 min; ESI⁺-MS *m/z*, 370.2 (M+1).

10 Ejemplo 131. 2-Metil-1'-fenetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-6-ol.

5

15

Se añadió HBr (1.8 ml, solución en AcOH al 33%, 31 mmol) a una solución de 6-metoxi-2-metil-1'-fenetil-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina] (ejemplo 55, 400 mg, 1.06 mmol) en AcOH (6 ml) y la mezcla de reacción se sometió a condiciones de irradiación de microondas durante 30 min a 150 °C. Después de enfriar, el disolvente se evaporó al vacío y el residuo se neutralizó con NaHCO $_3$ y se extrajo con acetato de etilo. Las fases orgánicas combinadas se secaron con Na $_2$ SO $_4$, se filtraron y se evaporaron al vacío. El residuo crudo se purificó mediante cromatografía flash en SiO $_2$ (ciclohexano/AcOEt, 85:15) para obtener el compuesto del título como un sólido amarillo (46 mg, 12% de rendimiento).

HPLC-MS (Procedimiento H): t_R, 1.68 min; ESI⁺-MS m/z, 337.2 (M+1).

20 Ejemplo 132. 2,2,2-Trifluoro-1-(1'-fenetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-2-il)etanona.

A una solución de 1'-(2-feniletil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina (intermedio 2C, 112 mg, 0.36 mmol) en DCM (5 ml), se añadieron anhídrido trifluoroacético (0.510 ml, 3.65 mmol) y piridina (0.300 ml, 3.65 mmol), y la mezcla se calentó a reflujo durante 24 h. Se añadió una solución saturada de NaHCO₃ y se extrajo con DCM. Las fases orgánicas combinadas se secaron con MgSO₄, se filtraron y se evaporaron al vacío para obtener el compuesto del título (147 g, rendimiento cuant.).

HPLC-MS (Procedimiento F): t_R, 5.25 min; ESI+-MS m/z, 403.1 (M+1).

Ejemplo 133. 1'-Fenetil-2-(2,2,2-trifluoroetil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

Siguiendo un procedimiento similar al descrito en el ejemplo 122, pero partiendo del compuesto obtenido en el ejemplo 132 (147 mg, 0.36 mmol), se obtuvo el compuesto del título (82 mg, 58% de rendimiento).

HPLC-MS (Procedimiento F): t_R, 5.54 min; ESI*-MS *m/z*, 389.2 (M+1).

Ejemplo 134. 1-Morfolino-2-(2-(2,2,2-trifluoroetil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona.

a) 2-(2,2,2-Trifluoroetil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina].

Se añadió 1'-bencil-2-(2,2,2-trifluoroetil)-3,4-dihidro-2H-espiro[isoquinolin-1,4'-piperidina] (intermedio 3H, 242 mg, 0.65 mmol) a una suspensión de Pd(OH) $_2$ (30 mg, 20% de Pd, 50% de H $_2$ O p/p) y una solución de HCl 1.25 M en EtOH (1 ml, 1.30 mmol) en MeOH (5 ml). La suspensión se agitó en 3 bar de H $_2$ durante 18 h. La mezcla de reacción se filtró a través de Celite, se lavó con MeOH y se concentró a sequedad para proporcionar el compuesto del título (181 mg, 78% de rendimiento).

HPLC-MS (Procedimiento F): t_R, 3.31 min; ESI⁺-MS m/z, 285.1 (M+1).

b) Compuesto del título.

Siguiendo un procedimiento similar al descrito en el ejemplo 126b, pero partiendo del compuesto obtenido en el paso a (62 mg, 0.17 mmol) y 2-cloro-1-morfolinoetanona (30 ml, 0.21 mmol), se obtuvo 1-morfolino-2-(2-(2,2,2-trifluoroetil)-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona (26 mg, 36% de rendimiento).

15

20

25

5

HPLC-MS (Procedimiento F): t_R , 4.24 min; ESI+-MS m/z, 412.2 (M+1).

Este procedimiento se utilizó para la preparación de los ejemplos 135-137, partiendo del compuesto obtenido en el ejemplo 134, paso a, y empleando un agente alquilante adecuado.

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
135	N CF ₃	1-(piperidin-1-il)-2-(2- (2,2,2-trifluoroetil)-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidin]-1'-il)etanona	F	4,88	410,2
136	N CF ₃	1'-(2-(piridin-4-il)etil)-2- (2,2,2-trifluoroetil)-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	F	4,45	390,2
137	N CF ₃	1'-(2-(piridin-3-il)etil)-2- (2,2,2-trifluoroetil)-3,4- dihidro-2 <i>H</i> - espiro[isoquinolin-1,4'- piperidina]	F	4,45	390,2

Ejemplo 138. 1-(Piperidin-1-il)-2-(2,4,4-trimetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona.

Siguiendo un procedimiento similar al descrito en el ejemplo 65, paso a, pero partiendo del intermedio 3K (147 mg, 0.44 mmol), se obtuvo el compuesto del título (107 mg, rendimiento cuant.). HPLC-MS (Procedimiento F): t_R, 3.22 min; ESI*-MS *m*/z, 254.2 (M+1).

b) Compuesto del título.

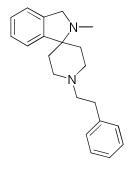
5 Siguiendo un procedimiento similar al descrito en el ejemplo 65, paso b, pero partiendo del compuesto obtenido en el paso a (107 mg, 0.44 mmol), se obtuvo 1-(piperidin-1-il)-2-(2,4,4-trimetil-3,4-dihidro-2*H*-espiro[isoquinolin-1,4'-piperidin]-1'-il)etanona (109 mg, 67% de rendimiento).

HPLC-MS (Procedimiento F): ts. 4.70 min: ESI⁺-MS *m/z*. 370.2 (M+1).

Ejemplo 139. (no parte de la invención) 1-(1'-Fenetilespiro[isoindolin-1,4'-piperidin]-2-il)etanona.

a) 1'-(2-Feniletil)-2,3-dihidroespiro[isoindol-1,4'-piperidina].

Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 2B, pero partiendo del compuesto obtenido en la síntesis del intermedio 4 C, paso a, se obtuvo el compuesto del título como un sólido blanquecino (82% de rendimiento).


15 HPLC-MS (Procedimiento B1): t_R, 8.51 min; ESI+-MS *m*/z, 293.1 (M+1).

b) Compuesto del título.

10

Siguiendo un procedimiento similar al descrito en el ejemplo 1, pero partiendo del compuesto obtenido en el paso a, se obtuvo el compuesto del título como un sólido blanquecino (65% de rendimiento). HPLC-MS (Procedimiento B): t_R, 16.56 min; ESI⁺-MS *m*/z, 335.2 (M+1).

20 Ejemplo 140. (no parte de la invención) 2-Metil-1'-fenetilespiro[isoindolin-1,4'-piperidina].

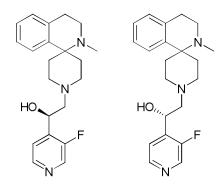
Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 3C, pero partiendo del compuesto obtenido en el ejemplo 139a, se obtuvo el compuesto del título como un sólido amarillo (53% de rendimiento). HPLC-MS (Procedimiento B): t_R. 16.57 min; ESI⁺-MS *m/z*, 307.2 (M+1).

Como alternativa, el compuesto del ejemplo 140 se puede obtener mediante la reducción del intermedio 4C en las condiciones descritas para la preparación del intermedio 2B.

Ejemplo 141. (no parte de la invención) 2-Metil-1'-((tetrahidro-2*H*-piran-4-il)metil)espiro[isoindolin-1,4'-piperidina].

a) 2-Metil-2,3-dihidroespiro[isoindol-1,4'-piperidina]

Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 1D, paso a, pero partiendo del intermedio 4B, se obtuvo el compuesto del título como un aceite amarillo (rendimiento cuant.).


5 HPLC-MS (Procedimiento B1): t_R, 13.06 min; ESI⁺-MS *m/z*, 203.1 (M+1).

b) Compuesto del título.

Siguiendo un procedimiento similar al descrito en la síntesis del intermedio 3C, pero partiendo del compuesto obtenido en el paso a y utilizando tetrahidro-2*H*-piran-4-carbaldehído en lugar de formaldehído, se obtuvo el compuesto del título como un aceite amarillo (28% de rendimiento).

10 HPLC-MS (Procedimiento D): t_R, 14.77 min; ESI⁺-MS *m/z*, 301.1 (M+1).

Ejemplos 142, (R)-1-(3-fluoropiridin-4-il)-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etanol y 143, (S)-1-(3-fluoropiridin-4-il)-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etanol

Los ejemplos 142 y 143.se obtuvieron por HPLC preparativa quiral del ejemplo 113: Columna: Chiralcel IC; Temperatura: ambiente; Caudal: 10 ml/min; Fase móvil: n-Heptano/(EtOH + 0,33%DEA) 90/10 v/v.

Ejemplo 142. HPLC-MS (Procedimiento H): Ret, 1,75 min; ESI+-MS m/z, 356,3 (M+1).

Ejemplo 143. HPLC-MS (Procedimiento H): Ret, 1,75 min; ESI+-MS m/z, 356,3 (M+1).

Los Ejemplos 144, 145 y 146 se prepararon conforme con el procedimiento descripto en el Ejemplo 63, usando los compuestos intermedios 2AV, 2AK y 2AW respectivamente, como materiales de partida:

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
144		N-etil-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-isopropilacetamida	H	2,16	358,3

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
145	N N F F	1-(4,4-difluoropiperidin-1-il)-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona	H	2,05	392,3
146	N OH	2-(2-etil-3,4-dihidro-2H- espiro[isoquinolina-1,4'- piperidina]-1'-il)-1-(piridin-4- il)etanol	Н	1,72	352,3

Los ejemplos 147 a 155 se prepararon conforme con el procedimiento descripto en el Ejemplo 65, con el compuesto intermedio 3L como material de partida en el paso a y agente alquilantes adecuados en el paso b.

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
147		2-(2-etil-3,4-dihidro-2H- espiro[isoquinolina-1,4'- piperidina]-1'-il)-1- morfolinoetanona	Н	1,67	358,2

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
148		4-(2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)morfolina	H	1,6	344,2
149		2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(1,1-dioxotiomorfolin-4-il)etanona	H	1,9	406,3
150	Z Z Z F	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(4-fluoropiperidin-1-il)etanona	H	2,2	374,3
151	N N N N N N N N N N N N N N N N N N N	1-(3,3-difluoropiperidin-1-il)-2- (2-etil-3,4-dihidro-2H- espiro[isoquinolina-1,4'- piperidina]-1'-il)etanona	Н	2,48	392,3

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
152		2-(2-etil-3,4-dihidro-2H- espiro[isoquinolina-1,4'- piperidina]-1'-il)-N-metil-N- (pentan-3-il)acetamida	Н	2,25	372,2
153		2-(2-etil-3,4-dihidro-2H- espiro[isoquinolina-1,4'- piperidina]-1'-il)-N,N- dimetilacetamida	Н	1,6	316,2
154		N-ciclopropil-N-etil-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida	Н	1,91	356,3
155		N,N-dietil-2-(2-etil-3,4-dihidro- 2H-espiro[isoquinolina-1,4'- piperidina]-1'-il)acetamida	Н	2,32	344,3

Los **ejemplos 156** y **157** (**no parte de la invención**) se prepararon conforme con el procedimiento de alquilación descripto en el Ejemplo 65 paso b, con el compuesto obtenido en el ejemplo 141 paso a como material de partida y agentes alquilantes adecuados.

EJ.	Estructura	Nombre químico	Procedimiento	t _R (min)	MS (M+H)
156	O N F	1-(4,4-difluoropiperidin-1-il)-2-(2-metilospiro[isoindolina-1,4'-piperidina]-1'-il)etanona	E	15,6	364
157		N-etil-N-isopropil-2-(2-metilospiro[isoindolina-1,4'-piperidina]-1'-il)acetamida	Ш	16,2	330,3

Ejemplo 158. N-etil-1'-(2-(piridin-4-il)etil)-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-2-carboxamida

Se agregaron trietilamina (0,095 ml, 0,68 mmol) y etil isocianato (0,027 ml, 0,34 mmol) a una solución de 1'-(2-(piridin-4-il)etil)-3,4-dihidro-2*H*-espiro[isoquinolina-1,4'-piperidina] (compuesto intermedio 2W, 70 mg, 0,23 mmol) en DCM (2 ml), enfriado previamente a 0 °C. La reacción se agitó a temperatura ambiente durante toda la noche. Se agregó de manera adicional trietilamina y etil isocianato y la mezcla se agitó a temperatura ambiente durante toda la noche. Este procedimeinto se repitió hasta que se logró la conversion total. Luego se concentró hasta sequedad. El residuo bruto se purificó mediante cromatografía flash en C₁₈ (fase móvil: gradiente acuoso NH₄HCO₃ (pH 8) a acetonitrilo) para proporcionar el compuesto del título como un sólido blanco (14 mg, rendimiento 16%). HPLC-MS (Procedimiento I): Ret, 3,06 min; ESI+-MS m/z, 379,2 (M+1).

5

10

Ejemplo 159. 1'-(2-(Pirimidin-5-il)etil)-2-(2,2,2-trifluoroetil)-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]

El compuesto del título se preparó conforme con el procedimiento descripto en el Ejemplo 134. HPLC-MS (Procedimiento F): Ret, 4,28 min; ESI⁺-MS *m*/z, 392,2 (M+1).

Ejemplo 160. 2-(2-Metil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etilamino)etanol

5

10

15

25

Se disolvieron 2-metil-3,4-dihidro-2*H*-espiro[isoquinolina-1,4'-piperidina] (compuesto obtenido en el ejemplo 65 paso a, 268 mg, 1.23 mmol) y 2-(aziridin-1-il)etanol (43 µl, 0,49 mmol) en diclorometano en un vial de procedimientos. La reacción se agitó durante algunos minutos y luego el solvente se retiró con una corriente de nitrógeno. Se agregó Amberlyst (6 mg), se selló el vial con septo y la mezcla de reacción se sometió a radiación durante 3 horas a 100° C. Después de volver a enfriar a temperatura ambiente, la reacción se diluyó con diclorometano, y se agregó NaHCO₃. Las fases se separaron y la fase acuosa se extrajo adicionalmente con DCM. Luego se basificó la fase acuosa con una solución de NaOH y luego se extrajo dos veces con DCM. Las fracciones orgánicas combinadas se secaron sobre sulfato de sodio, se filtraron y el solvente de removió para proporcionar el producto bruto que se purificó bajo HPLC preparativa (Columna X-Bridge C18, H2O+ 0,05% ácido fórmico: ACN + 0,05% ácido fórmico de (98:2 a 5:95), caudal 20 ml/min, temperatura ambiente).

HPLC-MS (Procedimiento H): Ret, 1,23 min; ESI $^+$ -MS m/z, 304,2 (M+1).

Tabla de Ejemplos con unión al receptor opioide μ y al receptor σ1:

ACTIVIDAD BIOLÓGICA

Estudio farmacológico

20 Ensayo de un radioligando del receptor σ_1 humano

Para investigar las propiedades de unión de los compuestos de prueba al receptor σ_1 humano, se utilizaron membranas HEK-293 transfectadas y [3 H](+)-pentazocina (Perkin Elmer, NET-1056) como radioligando. El ensayo se llevó a cabo con 7 µg de una suspensión de las membranas y [3 H](+)-pentazocina 5 nM en ausencia o presencia de tampón o de Haloperidol 10 µM para la unión total y no específica, respectivamente. El tampón de unión contenía Tris-HCl 50 mM a un pH de 8. Las placas se incubaron a 37 $^\circ$ C durante 120 minutos. Después del periodo de incubación, la mezcla de reacción se transfirió a continuación a placas MultiScreen HTS, FC (Millipore), se filtró y las placas se lavaron 3 veces con Tris-HCl 10 mM enfriado con hielo (pH de 7.4). Los filtros se secaron y se llevó a cabo el recuento con una eficacia de aproximadamente un 40% en un contador de centelleo MicroBeta (Perkin-Elmer) utilizando un cóctel líquido de centelleo EcoScint.

30 Ensayo de un radioligando del receptor opioide μ humano

Para investigar las propiedades de unión de los compuestos de prueba al receptor opioide mu humano, se utilizaron membranas de células CHO-K1 transfectadas y [3 H]-DAMGO (Perkin Elmer, ES-542-C) como radioligando. El ensayo se llevó a cabo con 20 µg de una suspensión de las membranas y [3 H]-DAMGO 1 nM en ausencia o presencia de

tampón o de Naloxona 10 μ M para la unión total y no específica, respectivamente. El tampón de unión contenía Tris-HCl 50 mM y MgCl₂ 5 mM a un pH de 7.4. Las placas se incubaron a 27 °C durante 60 minutos. Después del periodo de incubación, la mezcla de reacción se transfirió a continuación a placas MultiScreen HTS, FC (Millipore), se filtró y las placas se lavaron 3 veces con Tris-HCl 10 mM enfriado con hielo (pH de 7.4). Los filtros se secaron y se llevó a cabo el recuento con una eficacia de aproximadamente un 40% en un contador de centelleo MicroBeta (Perkin-Elmer) utilizando un cóctel líquido de centelleo EcoScint.

Resultados:

5

10

Debido a que esta invención tiene por objetivo proporcionar un compuesto o una serie de compuestos relacionados químicamente que actúen como ligandos duales del receptor σ_1 y el receptor opioide μ , es una realización muy preferida aquella en la que se seleccionan compuestos que actúan como ligandos duales del receptor σ_1 y el receptor opioide μ , y especialmente los compuestos con una unión expresada como K_i que sea preferentemente < 1000 nM para ambos receptores, más preferentemente < 500 nM, incluso más preferentemente < 100 nM.

Se ha adoptado la siguiente escala para representar la unión al receptor σ_1 y al receptor opioide μ expresada como K_i :

```
15 + Tanto K_i-\mu como K_i-\sigma_1 >= 500 nM
++ Una K_i <500 nM mientras que la otra K_i es >=500 nM
+++ Tanto K_i-\mu como K_i-\sigma_1 < 500 nM
++++ Tanto K_i-\mu como K_i-\sigma_1 < 100 nM
```

Todos los compuestos preparados en la presente solicitud exhiben unión al receptor σ_1 y el receptor opioide μ , en particular se observan los siguientes resultados de unión:

EJ.	unión dual a μ y σ ₁
1	+++
2	+++
3	+++
4	+++
5	+++
6	+++
7	+++
8	+++
9	++
10	++++
11	+++
12	++
13	+++
14	+
15	+++
16	+++
17	++
18	++
19	+++
20	++

21 +++ 22 + 23 ++ 24 ++ 25 +++ 26 +++ 27 +++ 28 +++ 30 +++ 31 +++ 32 ++ 33 + 34 + 35 ++ 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 + 51 +++++	EJ.	unión dual a μ y σ ₁
23 ++ 24 ++ 25 +++ 26 +++ 27 +++ 28 +++ 29 +++ 30 +++ 31 +++ 32 ++ 33 + 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 50 + 51 +++++	21	+++
24 ++ 25 +++ 26 +++ 27 +++ 28 +++ 29 +++ 30 +++ 31 +++ 32 ++ 33 + 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 + 51 +++++	22	+
25	23	++
26 +++ 27 +++ 28 +++ 29 +++ 30 +++ 31 +++ 32 ++ 33 + 34 + 35 ++ 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 + 51 +++++	24	++
27 +++ 28 +++ 29 +++ 30 +++ 31 +++ 32 ++ 33 + 34 + 35 ++ 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 + 51 +++++	25	+++
28 +++ 29 +++ 30 +++ 31 +++ 32 ++ 33 + 34 + 35 ++ 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 + 51 +++++	26	+++
29 +++ 30 +++ 31 +++ 32 ++ 33 + 34 + 35 ++ 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 + 51 +++++	27	+++
30 +++ 31 +++ 32 ++ 33 + 34 + 35 ++ 36 +++ 37 + 38 +++ 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 50 + 51 +++++	28	+++
31 +++ 32 ++ 33 + 34 + 35 ++ 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 50 + 51 +++++	29	+++
32 ++ 33 + 34 + 35 ++ 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 + 51 ++++	30	+++
33 + 34 + 35 ++ 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 + 51 +++++	31	+++
34 + 35 ++ 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 + 51 +++++	32	++
35 ++ 36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 + 51 ++++	33	+
36 +++ 37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 + 51 +++++	34	+
37 + 38 +++ 39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 +	35	++
38	36	+++
39 + 40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 +	37	+
40 ++ 41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 +	38	+++
41 + 42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 +	39	+
42 ++ 43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 +	40	++
43 ++ 44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 +	41	+
44 ++ 45 ++ 46 + 47 + 48 ++ 49 + 50 +	42	++
45 ++ 46 + 47 + 48 ++ 49 + 50 +	43	++
46 + 47 + 48 ++ 49 + 50 + 51 ++++	44	++
47 + 48 ++ 49 + 50 + 51 ++++	45	++
48 ++ 49 + 50 + 51 ++++	46	+
49 + 50 + 51 ++++	47	+
50 + 51 ++++	48	++
51 ++++	49	+
	50	+
	51	++++
52 ++	52	++

EJ.	unión dual a μ y σ ₁
53	++++
54	++++
55	++++
56	+++
57	++
58	+++
59	+
60	++
61	+++
62	++++
63	++++
64	+++
65	+++
66	+++
67	++
68	+++
69	+++
70	+++
71	+++
72	++
73	++
74	+++
75	+++
76	+++
77	++
78	+++
79	+++
80	+
81	++
82	+++
83	++
84	+++
L	

EJ.	unión dual a μ y σ ₁
85	+
86	++
87	++
88	++
89	+++
90	++
91	+++
92	++
93	++++
94	++
95	++
96	++
97	++
98	+++
99	+++
100	+++
101	+++
102	++
103	+++
104	++
105	++
106	+++
107	++
108	++
109	++
110	+
111	+++
112	+++
113	+++
114	+++
115	+
116	++

	unión dual a μ y σ ₁
117	++++
118	++++
119	+++
120	+++
121	+++
122	+++
123	++++
124	+
125	+++
126	++
127	+++
128	+++
129	++
130	+++
131	++++
132	+
133	++++
134	++
135	++
136	+++
137	+++
138	+
139	++
140	+++
141	++
142	+++
143	+++
144	+++
145	+++
146	++
	+++
148	++

EJ.	unión dual a μ y σ ₁
149	++
150	+++
151	+++
152	++
153	++
154	+++
155	+++
156	+
157	+
158	++
159	++
160	+

REIVINDICACIONES

1. Un compuesto de fórmula general (I):

$$R_3$$
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_2
(I)

5 en la que

10

20

25

30

35

n es 0 o 1

 R_1 es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilarilo sustituido o sin sustituir, alquilheterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, R_1 000 sin sustituir, R_2 1000 sin sustituir, R_3 1000 sin sustituir, R_4 1000 sin sustituir, R_5 1000 sin sust

sustituir, $-C(O)R_6$, $-C(O)CH_2OR_6$, $-C(O)CH_2OC(O)R_6$, $-C(O)OR_6$, $-C(O)NR_6R_6$ o $-S(O)_2R_6$; en la que R_6 y R_6 se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, arilo sustituido o sin sustituir o alquilarilo sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir o alquilarilo sustituido o sin sustituir y alquilheterociclilo sustituido o sin sustituir;

R₂ es hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, cicloalquilo sustituido o sin sustituir, arilo sustituido o sin sustituir, heterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir, alquilarilo sustituido o sin sustituir o alquilheterociclilo sustituido o sin sustituir;

en la que el alquilo, alquileno o alquinilo en R_2 , si está sustituido, está sustituido con uno o más sustituyentes seleccionados entre $-OR_{12}$, halógeno, -CN, haloalquilo, haloalcoxi, $-SR_{12}$, $-S(O)R_{12}$ y $-S(O)_2R_{12}$;

y en la que R_{12} se selecciona de hidrógeno, alquilo C_{1-6} sin sustituir, y alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir;

X se selecciona entre $-CR_xR_{x^-}$, $-CR_xOR_{14'}$, $-CR_xR_xNR_{7^-}$, $-CR_xR_xO_-$, $-CR_xR_xNR_7C(O)_-$, $-C(O)_-$

en las que R_7 se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y Boc;

 $R_x \ se \ selecciona \ entre \ hidrógeno, \ alquilo \ C_{1-6} \ sustituido \ o \ sin \ sustituir, \ alquenilo \ C_{2-6} \ sustituido \ o \ sin \ sustituir, \ alquenilo \ C_{2-6} \ sustituido \ o \ sin \ sustituir, \ -C(O)OR_{14}, \ -C(O)NR_{14}R_{14'}, \ -NR_{14}C(O)R_{14'} \ y \ -NR_{14}R_{14''};$

 R_x se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;

como alternativa, si X es - $CR_xR_{x^-}$, R_x y R_x pueden formar, junto con el átomo de carbono al que están unidos, un heterociclilo sustituido o sin sustituir, o un cicloalquilo sustituido o sin sustituir;

 R_{14} , R_{14} , R_{14} se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y acetilo sin sustituir;

y en las que R₁₄⁻⁻⁻ se selecciona entre hidrógeno, alquilo C₁₋₆ sin sustituir, alquenilo C₂₋₆ sin sustituir, alquinilo C₂₋₆ sin sustituir y -Boc;

R₃ se selecciona entre hidrógeno, halógeno, -R₉, -OR₉, -NO₂, -NR₉R_{9"}, -NR₉C(O)R_{9"}, -NC(O)OR₉, -NR₉S(O)₂R_{9"}, -

 $S(O)_2NR_9R_{9'}$, $-NR_9C(O)NR_9R_{9''}$, $-SR_9$, $-S(O)R_9$, $-S(O)_2R_9$, -CN, haloalquilo, haloalcoxi, $-C(O)OR_9$, $-C(O)NR_9R_{9'}$, $-OCH_2CH_2OH$, $-NR_9S(O)_2NR_9R_{9''}$, $-OCOR_9$ y $C(CH_3)_2OR_9$;

 $R_{3'}$, $R_{3''}$ y $R_{3'''}$ se seleccionan independientemente entre hidrógeno, halógeno, $-R_9$, $-OR_9$, $-NO_2$, $-NR_9R_{9''}$, $-NR_9C(O)R_{9'}$, $-NC(O)OR_9$, $-NR_9S(O)_2R_{9'}$, $-S(O)_2NR_9R_{9'}$, $-NR_9C(O)NR_9R_{9''}$, $-SR_9$, $-S(O)_2R_9$, $-S(O)_2R$

en las que R_9 , R_9 , y $R_{9^{\circ}}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y acetilo sin sustituir;

y en las que R_{9} se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

10 R_4 se selecciona entre hidrógeno, $-OR_{13}$, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, $-C(O)OR_{13}$, $-C(O)NR_{13}R_{13}$, $-NR_{13}C(O)R_{13}$, $-NR_{13}R_{13}$, $-NC(O)OR_{13}$ y heterociclilo sustituido o sin sustituir;

 $R_{4'}$ se selecciona entre hidrógeno, alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;

en las que R_{13} , $R_{13'}$ y $R_{13''}$ se seleccionan independientemente entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir y alquinilo C_{2-6} sin sustituir;

y en las que R_{13} " se selecciona entre hidrógeno, alquilo C_{1-6} sin sustituir, alquenilo C_{2-6} sin sustituir, alquinilo C_{2-6} sin sustituir y -Boc;

 R_5 y $R_{5'}$ se seleccionan independientemente entre hidrógeno, o alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir y alquinilo C_{2-6} sustituido o sin sustituir;

opcionalmente en forma de uno de los estereoisómeros, preferentemente enantiómeros o diastereómeros, un racemato o en forma de una mezcla de al menos dos de los estereoisómeros, preferentemente enantiómeros y/o diastereómeros, en cualquier proporción de mezcla, o una de sus sales correspondientes, o uno de sus solvatos correspondientes.

- 25 2. Un compuesto de acuerdo con la reivindicación 1, en el que R_1 es $-C(O)R_6$ o $-S(O)_2R_6$.
 - 3. Un compuesto de acuerdo con la reivindicación 1, en el que R_1 es alquilo $C_{1\mbox{-}6}$ sustituido o sin sustituir.
 - 4. Un compuesto de acuerdo con las reivindicaciones 1-3, en el que
- 30 X se selecciona entre $CR_xR_xNR_7$ -, $CR_xR_xNR_7C(O)$ -, -C(O)-, -C(O)O-, - $C(O)NR_7$ -, - $CH_2C(O)NR_7$ -, - CR_xR_x O- y $C(O)NR_7CR_xR_x$
 - 5. Un compuesto de acuerdo con las reivindicaciones 1-3, en el que

X es - $CR_xR_{x'}$, - $CR_xOR_{14'}$, - $CR_xR_xNR_{7'}$ o $CR_xR_{x'}O$ -, y

 R_1 es $-C(O)R_6$ o $-S(O)_2R_6$.

5

20

35 6. Un compuesto de acuerdo con la reivindicación 1, en el que

 $X \text{ es -}CR_x\dot{R}_{x',}$ - $CR_xOR_{14'}$, - $CR_xR_xNR_{7'}$ o $CR_xR_{x'}O$ -, y

 R_1 es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir.

7. Un compuesto de acuerdo con la reivindicación 1, en el que

X es - $CR_x\dot{R}_{x'}$, - $CR_xOR_{14'}$, - $CR_xR_xNR_{7'}$ o $CR_xR_{x'}O$ -, y

- 40 R₁ es alquilarilo sustituido o sin sustituir, alquilheterociclilo sustituido o sin sustituir, alquilcicloalquilo sustituido o sin sustituir.
 - 8. Un compuesto de acuerdo con la reivindicación 1, en el que

X es -C(O)NR₇- y

 R_1 es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir.

9. Un compuesto de acuerdo con la reivindicación 1, en el que

X es -C(O)-,

 R_1 es alquilo C_{1-6} sustituido o sin sustituir, alquenilo C_{2-6} sustituido o sin sustituir, alquinilo C_{2-6} sustituido o sin sustituir, v

R₂ es heterociclilo sustituido o sin sustituir, en el que el heterociclilo contiene, al menos, un nitrógeno unido al grupo carbonilo en X.

10. Un compuesto de acuerdo con la reivindicación 9, en el que R_1 es -C(O) R_6 o -S(O) $_2R_6$.

11. Compuesto conforme con cualquiera una de las reivindicaciones 1 a 10 que se selecciona a partir de la siguiente lista:

1	1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
2	2-metil-1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)propan-1-ona
3	furan-2-il(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)metanona
4	1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)propan-1-ona
5	2-metoxi-1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
6	2-(benciloxi)-1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
7	1-(6-metoxi-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
8	1-(1'-(2-morfolinoetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
9	1-(1'-((tetrahidro-2H-piran-4-il)metil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
10	1-(1'-(2-(metil(fenil)amino)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
11	1-(1'-(2-isopropoxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
12	1-(1'-isobutil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
13	1-(1'-(ciclohexilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
14	1-(1'-(2-(piperidin-1-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
15	1-(1'-isopentil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
16	1-(1'-(2-(bencil(metil)amino)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
17	1-(1'-(piridin-2-ilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
18	1-(1'-(2-(piridin-2-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
19	1-(1'-(2-(piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
20	1-(1'-(2-fenoxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
21	1-(1'-(2-(piridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
22	3-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-N,N-dimetilpropanamida
23	1-(1'-(2-(6-(trifluorometil)piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
24	1-(1'-(2-etoxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
25	1-(1'-(2-(2-(trifluorometil)piridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
26	1-(1'-(2-(3-fluoropiridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
27	1-(1'-(2-(5-cloropiridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
28	4-(2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)picolinonitrilo
29	1-(1'-(2-(5-fluoropiridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
30	1-(1'-(2-(ciclopropilmetoxi)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
31	1-(1'-(2-isobutoxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
32	1-(1'-(2-(benciloxi)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona

33	1-(1'-(ciclopropilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
34	2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-morfolinoetanona
35	3-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-metil-N-fenilpropanamida
36	1-(1'-(3-(trifluorometoxi)fenetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
37	2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etilcarbamato de <i>terc</i> -butilo
38	N-(3-(2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)fenil)acetamida
39	acetato de 2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-fenilotilo
40	1-(1'-(2-hidroxi-2-fenilotil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
41	1-(1'-(2-hidroxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
42	1-(1'-(2-(piridin-2-iloxi)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
43	1-(1'-(2-(piridin-3-iloxi)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
44	1-(1'-(2-(piridin-4-iloxi)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
45	N-(4-(2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)piridin-2-il)acetamida
46	2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etil(metil)carbamato de <i>terc</i> -butilo
47	1-(1'-(2-(metilamino)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
48	N-(2-(2-acetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)-N-metilbenzamida
49	acetato de 2-acetil-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-6-ilo
50	1-(6-hidroxi-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
51	1-(6-cloro-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
52	2-hidroxi-1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
53	2-(metilsulfonil)-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
54	2-metil-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
55	6-metoxi-2-metil-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
56	N,N-dietil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
57	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(1,4-oxazepan-4-il)etanona
58	1-(4-fluoropiperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
59	1-(4-(2-hidroxipropan-2-il)piperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
60	1-(4-metoxipiperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
61	1-(4,4-difluoropiperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
62	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(6-azaespiro[2.5]octan-6-il)etanona
63	2-etil-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
64	2-((1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)metil)tiazole
65	4-(2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)morfolina

66	1'-(ciclohexilmetil)-2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
67	2-metil-1'-((tetrahidro-2H-piran-4-il)metil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
68	N,N-dimetil-3-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)propanamida
69	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-fenilotanona
70	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-morfolinoetanona
71	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(piperidin-1-il)etanona
72	N-metil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-fenilacetamida
73	N,N-dimetil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
74	2-metil-1'-(2-(tetrahidro-2H-piran-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
75	2-metil-1'-(2-(piridin-2-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
76	2-metil-1'-(2-(piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
77	1'-(2-metoxietil)-2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
78	1'-(2-isopropoxietil)-2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
79	2-metil-1'-(2-(piperidin-1-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
80	4-(2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)morfolin-3-ona
81	N-metil-3-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-fenilpropanamida
82	2-metil-1'-(piridin-2-ilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
83	2-metil-1'-(piridin-4-ilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
84	2-metil-1'-(piridin-3-ilmetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
85	2-metil-1'-(3-nitrofenetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
86	1-(4-fluoropiperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)propan-1-ona
87	N-isobutil-N-metil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
88	1-(3,3-difluoropiperidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
89	N-etil-N-isopropil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida,
90	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(pirrolidin-1-il)etanona
91	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(4-(trifluorometil)piperidin-1-il)etanona
92	1-(3,3-difluoropirrolidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
93	N-bencil-N-metil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
94	(S)-1-(3-fluoropirrolidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
95	(R)-1-(3-fluoropirrolidin-1-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
96	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(piridin-3-il)etanol
97	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(piridin-2-il)etanol
98	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(piridin-4-il)etanol

99	(R)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(piridin-4-il)etanol
100	(S)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(piridin-4-il)etanol
101	N-(ciclopropilmetil)-N-etil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
102	N,N-diisopropil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
103	N-isopropil-N-metil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
104	N-etil-N-isobutil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
105	N-etil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-propilacetamida
106	N-ciclopropil-N-etil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
107	N-isopropil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-propilacetamida
108	N-isopropil-N-(2-metoxietil)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
109	N-etil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-(pentan-3-il)acetamida
110	N-isobutil-N-isopropil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
111	N-metil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-(pentan-3-il)acetamida
112	N-(ciclopropilmetil)-N-metil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
113	1-(3-fluoropiridin-4-il)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanol
114	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(4-metilpiperidin-1-il)etanona
115	1-((2S,6R)-2,6-dimetilmorfolino)-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
116	N-metil-2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-(piridin-2-ilmetil)acetamida
117	3-(2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)anilina
118	N-(3-(2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)fenil)metanesulfonamida
119	N-(3-(2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)fenil)acetamida
120	2-(2-metil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-fenilotanol
121	2-metil-1'-(2-(piridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
122	2-(2-metoxietil)-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
123	2-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanol
124	2-(2-metoxietil)-1'-(2-(piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
125	2-(1'-(2-(piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanol
126	2-(2-(2-hidroxietil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(piperidin-1-il)etanona
127	2-(1'-(2-(5-fluoropiridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanol
128	2-(1'-(2-(5-(trifluorometil)piridin-3-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanol
129	2-(1'-(2-(piridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanol
130	2-(1'-(2-(3-fluoropiridin-4-il)etil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanol
131	2-metil-1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidin]-6-ol

132	2,2,2-trifluoro-1-(1'-fenetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-2-il)etanona
133	1'-fenetil-2-(2,2,2-trifluoroetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
134	1-morfolino-2-(2-(2,2,2-trifluoroetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
135	1-(piperidin-1-il)-2-(2-(2,2,2-trifluoroetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
136	1'-(2-(piridin-4-il)etil)-2-(2,2,2-trifluoroetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
137	1'-(2-(piridin-3-il)etil)-2-(2,2,2-trifluoroetil)-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]
138	1-(piperidin-1-il)-2-(2,4,4-trimetil-3,4-dihidro-2 <i>H</i> -espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
142	(R)-1-(3-fluoropiridin-4-il)-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etanol
143	(S)-1-(3-fluoropiridin-4-il)-2-(2-metil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etanol
144	N-etil-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-isopropilacetamida
145	1-(4,4-difluoropiperidin-1-il)-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
146	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(piridin-4-il)etanol
147	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-morfolinoetanona
148	4-(2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etil)morfolina
149	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(1,1-dioxo-tiomorfolin-4-il)etanona
150	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-1-(4-fluoropiperidin-1-il)etanona
151	1-(3,3-difluoropiperidin-1-il)-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etanona
152	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-N-metil-N-(pentan-3-il)acetamida
153	2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)-N,N-dimetilacetamida
154	N-ciclopropil-N-etil-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
155	N,N-dietil-2-(2-etil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)acetamida
156	1-(4,4-difluoropiperidin-1-il)-2-(2-metilospiro[isoindolina-1,4'-piperidina]-1'-il)etanona
157	N-etil-N-isopropil-2-(2-metilospiro[isoindolina-1,4'-piperidina]-1'-il)acetamida
158	N-etil-1'-(2-(piridin-4-il)etil)-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-2-carboxamida
159	1'-(2-(Pirimidin-5-il)etil)-2-(2,2,2-trifluoroetil)-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]
160	2-(2-(2-Metil-3,4-dihidro-2H-espiro[isoquinolina-1,4'-piperidina]-1'-il)etilamino)etanol

12. Uso de un compuesto de Fórmula (II), (IV), (V), (VI), (VIII), (IX), (XII), (XIV) o (XV),

para preparar compuestos de Fórmula (I),

- 5 en las que n, R₃, R_{3''}, R_{3'''}, R₄ y R_{4'} son como se han definido en las reivindicaciones previas y P es un grupo protector.
 - 13. Un procedimiento para la preparación de un compuesto de Fórmula (I),

$$R_3$$
 R_4 R_4 R_4 R_4 R_5 R_5 R_5 R_6 R_2 R_2

- en la que n, X, R₁, R₂, R₃, R₃, R₃, R₃, R₄, R₅ y R₅ son como se han definido en las reivindicaciones precedentes, en el que dicho procedimiento comprende
 - a) hacer reaccionar un compuesto de fórmula IX con un reactivo adecuado de fórmula Xa-d, utilizando diferentes condiciones dependiendo de la naturaleza del reactivo,

en la que

n, R₁, R₂, R₃, R_{3'}, R_{3''}, R_{3'''}, R₄ y R_{4'} son como se han definido en las reivindicaciones previas,

Xa es WCR₅R₅'XR₂,

Xb es $O=CR_5R_5$ 'XR₂,

 $Xc es CR_5R_5 = CR_xR_2$,

Xd es CR₅R₅ OCR_xR₂; y

W es un grupo saliente,

0

5

10

15

b) hacer reaccionar un compuesto de fórmula XII con un agente reductor, en un disolvente adecuado, a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo,

$$R_3$$
" R_4 R_4

en la que

 $n,\,R_{1,}\,R_{2,}\,R_{3,}\,R_{3'',}\,R_{3''',}\,R_{4}\,y\,R_{4'}\,son\,como\,se\,han\,definido\,en\,las\,reivindicaciones\,previas,$

c) hacer reaccionar un intermedio XIV con Xa-d y a continuación hacerlo reaccionar con VIIa-h,

en la que 20

n, R₁, R₂, R₃, R_{3'}, R_{3''}, R_{3''}, R₄ y R_{4'} son como se han definido en las reivindicaciones previas,

Xa es WCR₅R₅'XR₂,

Xb es OCR₅R_{5'}XR₂,

 $Xc es CR_5R_5 = CR_xR_2$,

25 Xd es CR₅R₅·OCR_xR₂;

VIIa es R₁=O,

VIIb es R₁W,

VIIc es R6COW,

VIId es (R₆CO)₂,

30 VIIe es R₆SO₂W,

VIIf es R₆NCO,

VIIg es R₆NSO, VIIh es R₆COOW y W es un grupo saliente,

0

5

10

d) transformar el intermedio XV mediante la reducción con un agente reductor, en un disolvente adecuado, a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo, seguida de la reacción con VIIa-h en condiciones adecuadas o, en el caso en la que R₁ sea alquilo, el orden de los pasos se puede invertir y el compuesto I se puede obtener mediante la reacción del intermedio XV con VIIb en condiciones adecuadas seguida de la reducción con un agente reductor, en un disolvente adecuado, a una temperatura adecuada comprendida entre la temperatura ambiente y la temperatura de reflujo,

$$R_3$$
 R_4 R_4 R_4 R_5 R_5 R_7 R_8 R_9 R_9 R_9 R_9 R_9 R_9

en la que

n, X, R₁, R₂, R₃, R_{3'}, R_{3''}, R_{3''}, R₄, R₄, R₅ y R_{5'} son como se han definido en las reivindicaciones previas,

15 VIIa es $R_1=0$,

VIIb es R₁W,

VIIc es R6COW,

VIId es (R₆CO)₂,

VIIe es R₆SO₂W,

VIII es R₆NCO,

VIII es R₆NSO,

VIIh es R6COOW y

W es un grupo saliente,

0

20

e) en el caso en que R₃, R_{3''}, R_{3''} o R_{3'''} sea un grupo electrodonante, el compuesto I también se puede preparar mediante la reacción de un compuesto de fórmula VI con un compuesto de fórmula XVI en un disolvente adecuado, a una temperatura adecuada, preferentemente comprendida entre 80 y 120 °C, seguida de la reacción con VIIa-h,

$$R_3$$
 R_4 R_4 R_4 R_5 R_5 R_5 R_7 R_7

30 en las que

35

n, R₁, R₂, R₃, R_{3''}, R_{3'''}, R₄, R₄, R₅ y R_{5'} son como se han definido en las reivindicaciones previas,

VIIa es R₁=O,

VIIb es R₁W,

VIIc es R6COW,

VIId es (R₆CO)₂,

VIIe es R₆SO₂W,

VIIf es R₆NCO,

VIIg es R₆NSO

VIIh es R₆COOW y

40 W es un grupo saliente.

- 14. Una composición farmacéutica que comprende un compuesto según se ha definido en cualquiera de las reivindicaciones 1-11, o una de sus sales farmacéuticamente aceptables, y un portador, adyuvante o vehículo farmacéuticamente aceptable.
- 15. Un compuesto según se ha definido en cualquiera de las reivindicaciones 1-11 para su uso como medicamento; preferentemente para su uso como medicamento para el tratamiento del dolor, especialmente el dolor de medio a intenso, dolor visceral, dolor crónico, dolor debido al cáncer, migraña, dolor inflamatorio, dolor agudo o dolor neuropático, alodinia o hiperalgesia.