

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 753 854

51 Int. Cl.:

C07K 14/16 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 15.12.2016 PCT/EP2016/081159

(87) Fecha y número de publicación internacional: 22.06.2017 WO17102929

(96) Fecha de presentación y número de la solicitud europea: 15.12.2016 E 16822410 (3)

(97) Fecha y número de publicación de la concesión europea: 28.08.2019 EP 3390430

(54) Título: Antígenos del virus de la inmunodeficiencia humana, vectores, composiciones y métodos de uso de los mismos

(30) Prioridad:

15.12.2015 EP 15200138 17.10.2016 EP 16194124

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 14.04.2020

(73) Titular/es:

JANSSEN VACCINES & PREVENTION B.V. (100.0%) Archimedesweg 4 2333 CN Leiden, NL

(72) Inventor/es:

LANGEDIJK, JOHANNES, PETRUS, MARIA; CALLENDRET, BENOIT, CHRISTOPHE, STEPHAN; VAN MANEN, DANIELLE; KRARUP, ANDERS; STITZ, JÖRN; WEGMANN, FRANK y VELLINGA, JORT

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Antígenos del virus de la inmunodeficiencia humana, vectores, composiciones y métodos de uso de los mismos

5 Antecedentes de la invención

El virus de la inmunodeficiencia humana (VIH) afecta a millones de personas en todo el mundo y la prevención del VIH mediante una vacuna eficaz sigue siendo una prioridad fundamental, incluso en la época del uso generalizado del tratamiento antirretroviral. El VIH-1 es la cepa más común y patógena del virus, donde más del 90 % de los casos de VIH/SIDA corresponden a infecciones con el grupo M del VIH-1. El grupo M se subdivide a su vez en clados o subtipos. Idealmente, una vacuna eficaz sería capaz de provocar tanto respuestas celulares potentes como anticuerpos ampliamente neutralizantes capaces de neutralizar cepas del VIH-1 de diferentes clados.

La gran variabilidad genética del VIH-1 convierte el desarrollo de la vacuna contra el VIH-1 en un desafío sin precedentes. Con el fin de mejorar la cobertura de los posibles epítopos de los linfocitos T, y mejorar las respuestas celulares, se han descrito y desarrollado antígenos Gag, Pol y Env del VIH-1 "mosaico", derivados de las proteínas Antígeno específico de grupo (Gag), Polimerasa (Pol) y Envoltura (Env) del VIH, en un intento de proporcionar la máxima cobertura de posibles epítopos de linfocitos T (p. ej., Barouch et al, Nat Med 2010, 16: 319-323). Los antígenos mosaico tienen una longitud y estructura del dominio similares a los antígenos del VIH-1 de tipo silvestre, de origen natural.

Por ejemplo, los antígenos del VIH mosaico descritos y utilizados en las vacunas incluyen los descritos en Barouch et al, *supra*, y en el documento WO 2010/059732 tales como:

(a) antígenos mosaico Gag incluyendo:

- (a)(i) una primera secuencia de Gag mosaico ("mos1Gag") que tiene la secuencia de aminoácidos como la expuesta en el presente documento en la SEQ NO: 1, y
- (a)(ii) una segunda secuencia de Gag mosaico ("mos2Gag") que tiene la secuencia de aminoácidos como la expuesta en el presente documento en la SEQ NO: 2;

(b) antígenos mosaico Pol incluyendo:

- (b)(i) una primera secuencia de Pol mosaico ("mos1Pol") que tiene la secuencia de aminoácidos como la expuesta en el presente documento en la SEQ ID NO: 3, y
- (b)(ii) una segunda secuencia de Pol mosaico ("mos2Pol") que tiene la secuencia de aminoácidos como la expuesta en el presente documento en la SEQ ID NO: 4; y

(c) antígenos mosaico Env incluyendo:

- (c)(i) una primera secuencia de Env mosaico ("mos1Env") que tiene la secuencia de aminoácidos como la expuesta en el presente documento en la SEQ ID NO: 5, y
- (c)(ii) una segunda secuencia de Env mosaico ("mos2Env") que tiene la secuencia de aminoácidos como la expuesta en el presente documento en la SEQ ID NO: 6.

Las secuencias que codifican estos antígenos se han clonado en vectores, por ejemplo, tales como en vectores adenovíricos, por ejemplo, adenovirus recombinante de serotipo 26 (rAd26), y estos vectores recombinantes se utilizaron previamente como vacunas para generar respuestas inmunitarias contra los antígenos (véase p. ej., Barouch et al, *supra;* y el documento WO 2010/059732. Por ejemplo, las secuencias de los antígenos mosaico mos1Gag y mos1Pol se combinan normalmente en una proteína de fusión de Gag y Pol ("mos1GagPol"), cuya secuencia codificante se clona en un primer vector Ad26 ("rAd26.mos1GagPol"); y las secuencias de los antígenos mos2Gag y mos2Pol se combinan en otra proteína de fusión de Gag y Pol ("mos2GagPol"), cuya secuencia codificante se clona en un segundo vector Ad26 ("rAd26.mos2GagPol"). Las construcciones que codifican mos1Env y mos2Env se clonan normalmente en vectores Ad26 independientes ("rAd26.mos1Env" y "rAd26.mos2Env", respectivamente).

Un conjunto de tales antígenos mosaico como los descritos anteriormente proporciona una buena cobertura global de los aislados de VIH-1 del grupo M, donde los vectores rAd26 que codifican las secuencias de los antígenos 1 mosaico (p. ej., rAd26.mos1GagPol y rAd26.mos1Env) favorecen el clado B y los subtipos del VIH-1 CRF01 y los vectores rAd26 que codifican las secuencias de los antígenos 2 mosaico (p. ej., rAd26.mos2GagPol y rAd26.mos2Env) favorecen las cepas del clado C. Los antígenos Gag, Pol y Env del VIH-1 mosaico expresados en los vectores rAd26 se pueden utilizar para mejorar tanto la amplitud como la profundidad de las respuestas por linfocitos T específicos del antígeno en monos rhesus, sin comprometer el alcance de las respuestas celular y humoral cuando se comparan con los antígenos del VIH-1 de secuencia consenso o natural (Barouch et al, *supra*; y el documento WO 2010/059732.

65 Sin embargo, tras esfuerzos adicionales de desarrollo de los componentes de las vacunas descritas anteriormente, se observó que rAd26.mos2Env mostraba una expresión en la superficie celular y una respuesta inmunitaria no óptimas

2

40

10

15

20

25

30

35

45

55

60

en primates no humanos, pero además mostró una estabilidad genética no descrita hasta la fecha, inesperada e impredecible no óptima durante el proceso de fabricación en comparación con otros vectores rAd26, tales como rAd26.mos1Env. Así pues, las vacunas que contienen rAd26.mos2Env pueden dar como resultado respuestas inmunitarias no óptimas contra los subtipos del VIH-1 del Clado C, ya que el antígeno mosaico mos2Env favorece a las cepas del VIH-1 del clado C. En consecuencia, se necesita una alternativa al antígeno mos2Env en las vacunas contra el VIH que se pueda utilizar para inducir respuestas inmunitarias mejoradas contra el clado C del VIH-1.

Breve sumario de la invención

5

20

25

30

35

50

55

60

65

La invención se refiere a proteínas de la envoltura del virus de la inmunodeficiencia humana (VIH) sintéticas novedosas que tienen una expresión en la superficie celular y una estabilidad genética mejoradas en comparación con el antígeno mos2Env descrito previamente. La invención también se refiere a composiciones y métodos para utilizar tales proteínas de la envoltura del VIH sintéticas novedosas y/o sus secuencias codificantes para inducir mayores respuestas inmunitarias contra el VIH-1, en particular contra el clado C del VIH-1, preferiblemente cuando se utilizan combinadas con otros antígenos del VIH.

En un aspecto general, la invención se refiere a un ácido nucleico que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8, o la SEQ ID NO: 8 que tiene una o más mutaciones seleccionadas del grupo que consiste en (i) 1529P (es decir, una sustitución de lle por Pro en la posición 529 de la SEQ ID NO: 8), (ii) K480E (es decir, una sustitución de Lys por Glu en la posición 480 de la SEQ ID NO: 8) y (iii) una combinación de EK479-480RRRR (es decir, un reemplazo de Glu-Lys en las posiciones 479-480 de la SEQ ID NO: 8 por cuatro restos consecutivos de Arg), 1529P, A471C (es decir, una sustitución de Ala por Cys en la posición 471 de la SEQ ID NO: 8) y T575C (es decir, una sustitución de Thr por Cys en la posición 575 de la SEQ ID NO: 8). En una realización, la proteína de la envoltura del VIH sintética comprende además una secuencia señal, por ejemplo, una secuencia señal que tiene la secuencia de aminoácidos seleccionada del grupo que consiste en las SEQ ID NO: 9-12. En una realización, la secuencia señal tiene la secuencia de aminoácidos de la SEQ ID NO: 9

En ciertas realizaciones, la proteína de la envoltura del VIH sintética comprende además un dominio transmembrana, preferiblemente un dominio transmembrana que tiene la secuencia de aminoácidos de la SEQ ID NO: 13.

En ciertas realizaciones, la proteína de la envoltura de VIH sintética comprende además un fragmento de un dominio citoplasmático, preferiblemente un fragmento de un dominio citoplasmático que comprende la secuencia de aminoácidos de la SEQ ID NO: 14 o los aminoácidos 1-4 de esta (es decir, NRVR). En las realizaciones en las que la proteína de la envoltura del VIH sintética comprende además un dominio transmembrana y un fragmento de un dominio citoplasmático, se prefiere que la proteína comprenda también la secuencia de aminoácidos de la SEQ ID NO: 37, que está fusionada con el extremo carboxilo (extremo C) de la SEQ ID NO: 8 y el extremo amino (extremo N) de la región transmembrana.

En otra realización, la proteína de la envoltura del VIH sintética comprende un dominio de trimerización, por ejemplo, un dominio de trimerización que comprende la secuencia de aminoácidos de la SEQ ID NO: 15 (GCN4) o la SEQ ID NO: 16 (dominio foldon). En una realización preferida, el dominio de trimerización comprende la secuencia de aminoácidos de la SEQ ID NO: 15. Tales realizaciones con los dominios de trimerización son útiles para las proteínas de la envoltura del VIH sintéticas solubles (es decir, no unidas a la membrana) basadas en las secuencias del ectodominio proporcionadas en el presente documento, tales como la que comprende la secuencia de aminoácidos de la SEQ ID NO: 8, en la que el dominio de trimerización está localizado en el extremo C de la proteína de la envoltura del VIH sintética.

En otras realizaciones más, la proteína de la envoltura del VIH sintética comprende la SEQ ID NO: 8 con las siguientes mutaciones: EK479-480RRRR, I529P, A471C y T575C. La introducción de 6 restos de arginina consecutivos (las posiciones 478 y 481 de la secuencia natural de la SEQ ID NO: 8 ya son restos de Arg) da como resultado un sitio de escisión de furina más optimizado, de manera que se obtiene un ectodominio con un procesado (es decir, escindido) mejorado. Las tres mutaciones de I529P, A471C y T575C son conocidas como mutaciones SOSIP, en las que las dos últimas mutaciones dan como resultado la introducción de un posible puente disulfuro entre los restos de cisteína recién creados. En general, estas mutaciones pueden dar como resultado una proteína de la envoltura del VIH sintética soluble, trimerizada, sin que sea necesario un dominio de trimerización.

En una realización preferida, la invención se refiere a un ácido nucleico que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 17, la SEQ ID NO: 18 o los aa 1-686 de la SEQ ID NO: 19. Lo más preferiblemente, la proteína de la envoltura del VIH sintética codificada por el ácido nucleico comprende o está constituida por la secuencia de aminoácidos de la SEQ ID NO: 18.

En otro aspecto general, la invención se refiere a un vector que comprende un ácido nucleico que codifica una proteína de la envoltura del VIH sintética de acuerdo con una realización de la invención. En una realización, el vector es un vector vírico. En una realización preferida, el vector vírico es un vector adenovírico. En una realización preferida, el vector adenovírico es un vector de adenovirus 26.

Otro aspecto general de la invención se refiere a una composición, preferiblemente una composición de vacuna, que comprende una cantidad inmunogénicamente eficaz de un vector de acuerdo con una realización de la invención y un vehículo, donde el ácido nucleico que codifica la proteína de la envoltura del VIH sintética está ligado operativamente a una secuencia promotora. En una realización, la composición comprende un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18.

En otro aspecto general, la invención se refiere a una combinación de vacuna para inducir una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto que lo necesite. La combinación de vacuna comprende una primera composición que comprende una cantidad inmunogénicamente eficaz de un vector, preferiblemente un vector de adenovirus, más preferiblemente un vector de adenovirus 26, que codifica una proteína de la envoltura del VIH sintética que tiene la secuencia de aminoácidos de la SEQ ID NO: 18, una segunda composición que comprende una cantidad inmunogénicamente eficaz de un segundo vector, preferiblemente un segundo vector de adenovirus, más preferiblemente un segundo vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5 y, opcionalmente, al menos una composición adicional que comprende una cantidad inmunogénicamente eficaz de al menos uno seleccionado del grupo que consiste en un vector que codifica un polipéptido antigénico que tiene la secuencia de aminoácidos seleccionada del grupo que consiste en las SEQ ID NO: 1-4, 28 y 29, y un polipéptido que comprende una cantidad inmunogénicamente eficaz de un polipéptido antigénico del VIH aislado, incluyendo, aunque no de forma limitativa, un polipéptido que tiene los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 o un polipéptido que tiene los restos 30-724 de la SEQ ID NO: 36, en donde la primera composición, la segunda composición y la composición adicional opcional están presentes en la misma composición o en una o más composiciones diferentes.

Otro aspecto general más de la invención se refiere a métodos para inducir una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto que lo necesite, que comprende administrar al sujeto una composición o combinación de vacuna de acuerdo con una realización de la invención. La invención también se refiere a métodos para inducir una respuesta inmunitaria contra un VIH que comprende la sensibilización y refuerzo de la respuesta inmunitaria utilizando una composición o una combinación de vacuna de acuerdo con una realización de la invención.

Un aspecto adicional más de la invención se refiere a una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8, o la SEQ ID NO: 8 que tiene una o más mutaciones seleccionadas del grupo que consiste en (i) I529P, (ii) K480E, (iii) una combinación de EK479-480RRRR, I529P, A471C y T575C. En una realización, la proteína de la envoltura del VIH sintética comprende la SEQ ID NO: 8 con las mutaciones EK479-480RRRR, I529P, A471C y T575C. En otra realización, la proteína de la envoltura del VIH sintética comprende los restos 30-704 o 30-711 de la secuencia de aminoácidos de la SEQ ID NO: 18. En otra realización más, la proteína de la envoltura del VIH sintética comprende los restos 30-686 de la secuencia de aminoácidos de la SEQ ID NO: 19.

Otro aspecto de la invención se refiere a una célula, preferiblemente una célula aislada, que comprende un vector de acuerdo con una realización de la invención.

Breve descripción de varias vistas de los dibujos

El sumario anterior, así como la siguiente descripción detallada de la invención, se entenderán mejor al leerlos junto con los dibujos adjuntos. Se debe sobreentender que la invención no se limita a las realizaciones precisas que se muestran en los dibujos.

En los dibujos:

5

10

15

20

25

30

35

40

60

65

Las FIGS. 1A-1C son representaciones esquemáticas de la estructura de las proteínas de la envoltura del VIH; La FIG. 1A muestra una proteína de la envoltura del VIH completa; La FIG. 1B muestra la estructura de una proteína de la envoltura del VIH de una sola cadena soluble de acuerdo con una realización de la invención en la cual el dominio transmembrana (TM) está reemplazado por un dominio de trimerización GCN4 y el sitio de escisión de furina está mutado (sC4); La FIG. 1C muestra la estructura de una proteína de la envoltura del VIH unida a la membrana de acuerdo con una realización de la invención que comprende un dominio transmembrana y un fragmento de un dominio citoplasmático (C4D7);

La FIG. 2 muestra los niveles de expresión de la proteína de la envoltura sC1 soluble, que se basa en la secuencia del antígeno mosaico mos2Env con un dominio de trimerización C-terminal adicional y una proteína de la envoltura del VIH sintética soluble (sC4) de acuerdo con una realización de la invención; la expresión se midió mediante transferencia Western cuantitativa utilizando un anticuerpo policional contra gp120; los plásmidos que codifican sC1 o sC4 se expresaron de manera transitoria dos veces y cada transfección se cuantificó dos veces mediante densitometría; la proteína sC1 mostró unos niveles de expresión muy bajos en comparación con la proteína de la envoltura del VIH sintética sC4, que mostró unos niveles de expresión relativamente elevados;

Las FIGS. 3A y 3B muestran la unión de las proteínas de la envoltura del VIH sintéticas con el anticuerpo monoclonal 17b (mAb17b) en presencia (gris claro) y ausencia (gris oscuro) de CD4 soluble según se determina mediante un ensayo ELISA; La FIG. 3A muestra la unión de sC1; La FIG. 3B muestra la unión de sC4;

La FIG. 4 es una imagen de una transferencia Western a partir de una electroforesis en gel de poliacrilamida en condiciones nativas de la proteína sC1 y la proteína de la envoltura del VIH sintética sC4;

La FIG. 5 muestra los niveles de expresión en la superficie celular relativos de las proteínas de la envoltura del VIH sintéticas C1, C1D7, C4 y C4D7 unidas a la membrana mediante un análisis FACS de las células que expresan estas proteínas utilizando un anticuerpo policional anti-gp120 (GP120) y mediante la unión a los anticuerpos ampliamente neutralizantes PG9 (PG9) y PG16 (PG16) que presentan una dependencia de la estructura cuaternaria y que se unen preferiblemente al trímero de Env plegado correctamente;

La FIG. 6 es una representación gráfica de la estabilidad de los vectores de adenovirus que contienen secuencias que codifican proteínas de la envoltura del VIH sintéticas de la invención incluida la C4 completa (FLC4), C4D7 y sC4.después de múltiples pases víricos; los vectores de adenovirus 26 recombinante se generaron en células PER.C6; después de 3 pases iniciales para la transfección y la purificación de placas, se seleccionaron 5 placas y se aumentó de escala durante 10 pases en un formato T25, lo que dio como resultado un número de pases víricos total (npv) de 13; se muestra la estabilidad después de 3, 5, 10 y 13 npv según se determina mediante la reacción en cadena de la polimerasa (PCR) del casete del transgén E1; por ejemplo, 3/5 significa que de 5 placas examinadas 3 placas fueron estables y 5/5 significa que de 5 placas examinadas 5 placas fueron estables; y Las FIGS. 7A y 7B muestran los títulos de neutralización de los virus contra partículas víricas pseudotipadas de la envoltura del VIH-1 (PVE) en un ensayo de neutralización con células TZM-bl en conejos; los valores de la Cl₅₀ con una transformación log10 de los grupos a los que se administraron dosis elevadas del vector adenovírico se midieron frente a PVE VSV-G (control pegativo) y MW965 26 (Nivel 14 clado C) en las semanas 1 8 14 y 20 cada

con una transformación log10 de los grupos a los que se administraron dosis elevadas del vector adenovírico se midieron frente a PVE VSV-G (control negativo) y MW965.26 (Nivel 1A clado C) en las semanas 1,8, 14 y 20; cada punto representa el valor de la Cl₅₀ con una transformación log10 de un conejo individual, indicándose la media del grupo con una línea horizontal; HD: dilución más elevada examinada (línea continua superior); LD: dilución más baja examinada (línea continua inferior); LOB: límite de fondo, valor del percentil 95 de las muestras negativas recopiladas (línea discontinua); los valores log10 de la Cl₅₀ que superaron el umbral LD o HD se colocaron en la línea correspondiente; se realizó una comparación no paramétrica unidireccional con control utilizando el método de Dunn para una clasificación conjunta para cada punto temporal; las diferencias estadísticamente significativas se indican en los gráficos: * = P<0,05, ** = P<0,01, y *** = P<0,001; La FIG. 7A muestra los resultados con VSV-G (control negativo); y la FIG. 7B muestra los resultados con MW965.26 (Nivel 1A clado C).

Descripción detallada de la invención

5

10

15

20

25

30

35

40

55

60

65

A menos que se defina lo contrario, todos los términos científicos y técnicos utilizados en el presente documento tienen los mismos significados que los que normalmente conoce un experto habitual en la materia a la que pertenece esta invención. Por otro lado, ciertos términos utilizados en el presente documento tienen los significados que se exponen en la memoria descriptiva. Cabe destacar que tal como se usa en el presente documento y en las reivindicaciones adjuntas, las formas en singular "un", "una", y "el/la" incluyen la referencia en plural a menos que el contexto estipule claramente otra cosa.

Como se usa en el presente documento, "sujeto" significa cualquier animal, preferiblemente un mamífero, lo más preferiblemente un ser humano, al cual se administrará o se ha administrado un vector, composición o combinación de vacuna de acuerdo con las realizaciones de la invención. El término "mamífero" tal y como se usa en el presente documento, abarca cualquier mamífero. Los ejemplos de mamíferos incluyen, aunque no de forma limitativa, vacas, caballos, ovejas, cerdos, gatos, perros, ratones, ratas, conejos, cobayas, monos, seres humanos, etc., más preferiblemente, un ser humano.

La invención se refiere en general a proteínas de la envoltura del VIH sintéticas, ácidos nucleicos y vectores que codifican las proteínas de la envoltura del VIH sintéticas y métodos para inducir una respuesta inmunitaria contra el VIH con vectores que codifican las proteínas de la envoltura del VIH sintéticas o las proteínas de la envoltura del VIH sintéticas, solos o combinados con uno o más vectores adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales y/o combinados con uno o más polipéptidos antigénicos del VIH aislados adicionales.

El virus de la inmunodeficiencia humana (VIH) es un miembro del género Lentivirinae, que forma parte de la familia Retroviridae. Dos especies del VIH infectan a los seres humanos: VIH-1 y VIH-2. El VIH-1 es la cepa más común del virus VIH y se sabe que es más patógena que el VIH-2. Como se usa en el presente documento, la expresión "virus de la inmunodeficiencia humana" y el término "VIH" se refieren, aunque no de forma limitativa, al VIH-1 y VIH-2.

el VIH se clasifica en múltiples clados con un alto grado de divergencia genética. Como se usa en el presente documento, la expresión "clado del VIH" o "subtipo del VIH" se refiere a virus de la inmunodeficiencia humana relacionados clasificados de acuerdo con su grado de similitud genética. En la actualidad existen tres grupos de aislados del VIH-1: M, N y O. El grupo M (cepas principales) consiste en al menos diez clados, de la A a la J. El grupo O (otras cepas) puede consistir en un número similar de clados. El grupo N es un aislado del VIH-1 nuevo que no se ha clasificado ni en el grupo M ni en el O.

Como se usa en el presente documento, las expresiones "polipéptido antigénico del VIH", "proteína antigénica del VIH", e "inmunógeno del VIH" se refieren a un polipéptido capaz de inducir una respuesta inmunitaria, por ejemplo, una respuesta de tipo celular y/o humoral, contra el VIH en un sujeto. El polipéptido antigénico puede ser una proteína del VIH, un fragmento o un epítopo de esta, o una combinación de múltiples proteínas del VIH o porciones de estas,

que pueden inducir una respuesta inmunitaria o producir inmunidad, por ejemplo, inmunidad protectora, contra el VIH en un sujeto.

Preferiblemente, un polipéptido antigénico es capaz de provocar en un hospedador una respuesta inmunitaria protectora, por ejemplo, inducir una respuesta inmunitaria contra una infección o enfermedad vírica, y/o producir una inmunidad (es decir, vacunados) en un sujeto contra una infección o enfermedad vírica, que protege al sujeto contra la infección o enfermedad vírica. Por ejemplo, el polipéptido antigénico puede comprender una proteína o fragmentos de esta del virus de la inmunodeficiencia de simios (VIS) o de un VIH, tal como la proteína de la envoltura gp160 del VIS o del VIH, las proteínas de la matriz/cápside del VIS o del VIH y los productos de los genes *gag, pol* y *env*.

10

15

20

25

30

5

Un polipéptido antigénico del VIH puede ser cualquier antígeno o fragmento de este del VIH-1 o VIH-2. Ejemplos de antígenos del VIH incluyen, pero sin limitación, los productos de los genes *gag, pol*, y *env*, que codifican proteínas estructurales y enzimas esenciales. Los productos de los genes *Gag, pol* y *env* se sintetizan como poliproteínas, que son procesadas adicionalmente para obtener múltiples productos proteicos diferentes. El producto proteico primario del gen *gag* es la proteína estructural vírica, la poliproteína gag, que se procesa adicionalmente en los productos proteicos MA, CA, SP1, NC, SP2 y P6. El gen *pol* codifica enzimas víricas (Pol, polimerasa) y el producto proteico primario se procesa adicionalmente en los productos proteicos RT, RNasa H, IN y PR. El gen *env* codifica proteínas estructurales, específicamente glucoproteínas de la envoltura del virión. El producto proteico primario del gen *env* es gp160, que se procesa adicionalmente en gp120 y gp41. Otros ejemplos de antígenos del VIH incluyen las proteínas reguladoras de genes Tat y Rev; las proteínas complementarias Nef, Vpr, Vif y Vpu; las proteínas de la cápside, las proteínas de la nucleocápside y la proteína vírica p24.

En ciertas realizaciones, el polipéptido antigénico del VIH comprende un antígeno Gag, Env o Pol del VIH, o cualquier porción antigénica o epítopo o combinación de estos, preferiblemente un antígeno Gag, Env o Pol del VIH-1 o cualquier porción antigénica o epítopo o combinación de estos.

Los polipéptidos antigénicos del VIH también pueden ser antígenos del VIH mosaico. Como se usa en el presente documento, "antígeno mosaico" se refiere a una proteína recombinante ensamblada a partir de fragmentos de secuencias naturales. Los antígenos mosaico se parecen a los antígenos naturales, pero están optimizados para maximizar la cobertura de posibles epítopos de los linfocitos T que se observan en las secuencias naturales, lo que mejora la amplitud y cobertura de la respuesta inmunitaria. Los antígenos del VIH mosaico para su uso con la invención son preferiblemente los antígenos Gag, Pol y/o Env mosaico y, más preferiblemente, un antígeno Gag, Pol y/o Env del VIH-1 mosaico, Como se usa en el presente documento, "un antígeno Gag, Pol y/o Env mosaico" se refiere específicamente a un antígeno mosaico que comprende múltiples epítopos obtenidos a partir de una o más de las secuencias de las poliproteínas Gag, Pol y/o Env del VIH.

35

40

45

En una realización, un antígeno del VIH mosaico para su uso con la invención es un antígeno Gag del VIH mosaico con epítopos obtenidos a partir de las secuencias de los productos del gen gag (se proporcionan ejemplos en las SEQ ID NO: 1, 2); un antígeno Pol del VIH mosaico con epítopos obtenidos a partir de las secuencias de los productos del gen pol (se proporcionan ejemplos en las SEQ ID NO: 3, 4); o un antígeno Env del VIH mosaico con epítopos obtenidos a partir de las secuencias de los productos del gen env (se proporcionan ejemplos en las SEQ ID NO: 5, 6; los antígenos novedosos de la invención, p. ej. en las SEQ ID NO: 8, 17, 18, 19, también se pueden considerar antígenos Env del VIH mosaico). En ciertas realizaciones, un antígeno del VIH mosaico para su uso con la invención puede comprender una combinación de epítopos obtenidos a partir de secuencias de los productos de los genes gag, pol, y/o env. Los ejemplos ilustrativos y no limitantes incluyen los antígenos Env-Pol mosaico con epítopos obtenidos a partir de las secuencias de los productos de los genes gag y gol, antígenos Gag-Pol mosaico con epítopos obtenidos a partir de las secuencias de los productos de los genes gag y gol, antígenos Gag-Env mosaico con epítopos obtenidos a partir de las secuencias de los productos de los genes gag y gol, antígenos Gag-Env mosaico con epítopos obtenidos a partir de las secuencias de los productos de los genes gag y gol, gol,

50

55

Ejemplos de antígenos Gag, Pol y/o Env del VIH mosaico que se pueden usar en la invención incluyen los descritos en, por ejemplo, US20120076812; Barouch et al., Nat Med 2010, 16:319-323; y Barouch et al., Cell 155:1-9, 2013, todas las cuales se incorporan en el presente documento por referencia en su totalidad. Preferiblemente, los antígenos Gag, Pol y/o Env del VIH mosaico para su uso con la presente invención incluyen, aunque no de forma limitativa, mos1Gag (SEQ ID NO: 1), mos2Gag (SEQ ID NO: 2), mos1Pol (SEQ ID NO: 3), mos2Pol (SEQ ID NO: 4), mos1Env (SEQ ID NO: 5), mos2Env (SEQ ID NO: 6), mos1GagPol (SEQ ID NO: 28), mos2GagPol (SEQ ID NO: 29), y combinaciones de estos.

Como se usa en el presente documento, cada una de las expresiones "proteína de la envoltura del VIH", "proteína

60

65

env", y "Env" se refiere a una proteína que se expresa en la envoltura de un virión de un VIH y que permite a un VIH dirigirse y unirse a la membrana plasmática de las células infectadas por VIH, o un fragmento o un derivado de esta que puede inducir una respuesta inmunitaria o producir inmunidad contra el VIH en un sujeto que lo necesite. El gen env del VIH codifica la proteína precursora gp160, que es escindida proteolíticamente en dos glucoproteínas de la envoltura maduras, gp120 y gp41. La reacción de escisión está mediada por una proteasa de la célula hospedadora, la furina, en una secuencia sumamente conservada en los precursores glucoproteicos de la envoltura retrovírica. Más específicamente, gp160 trimeriza a (gp160)₃ y a continuación, experimenta la escisión en dos gp120 y gp41 asociadas

de manera no covalente. La entrada del virus está mediada posteriormente por un trímero de los heterodímeros gp120/gp41. Gp120 es el fragmento de unión del receptor y se une al receptor CD4 en una célula diana que tiene un receptor de este tipo, tal como, por ejemplo, un linfocito T cooperador. Gp41, que está unido a gp120 de manera no covalente, es el fragmento de fusión y proporciona la segunda etapa mediante la cual el VIH entra en la célula. Gp41 se encuentra en un principio enterrado en la envoltura vírica, pero cuando gp120 se une al receptor CD4, gp120 cambia su conformación lo que provoca que gp41 quede expuesto, de modo que puede facilitar la fusión con la célula hospedadora. Gp140 es el ectodominio no escindido de gp160 trimérico, es decir, (gp160)₃, que se ha utilizado como un sustituto para el estado nativo de la protuberancia vírica escindida.

- Según realizaciones de la invención, una "proteína de la envoltura del VIH" puede ser una proteína gp160, gp140, 10 gp120, gp41, combinaciones, fusiones, truncamientos o derivados de estos. Por ejemplo, una "proteína de la envoltura del VIH" puede incluir una proteína gp120 asociada de manera no covalente con una proteína gp41. También puede incluir una proteína gp140 trimérica estabilizada que puede tener o haberse modificado para incluir un dominio de trimerización que estabilice trímeros de gp140. Los ejemplos de dominios de trimerización incluyen, aunque no de 15 forma limitativa, el dominio de trimerización "foldon" de la fibritina T4; el dominio de trimerización de la superhélice obtenido a partir de GCN4; y la subunidad catalítica de la aspartato-transcarbamoilasa de E. coli como una etiqueta trimérica. Una "proteína de la envoltura del VIH" también puede ser una proteína de la envoltura del VIH truncada incluyendo, aunque no de forma limitativa, proteínas de la envoltura que comprenden un truncamiento C-terminal en el ectodominio (es decir, el dominio que se extiende en el espacio extracelular), un truncamiento en gp41, tal como un 20 truncamiento en el dominio transmembrana de gp41 o un truncamiento en el dominio citoplasmático de gp41. Una "proteína de la envoltura del VIH" puede además ser un derivado de una proteína de la envoltura del VIH de origen natural que tiene mutaciones en la secuencia, por ejemplo, en los sitios de escisión de furina, y/o las denominadas mutaciones SOSIP.
- Preferiblemente, una "proteína de la envoltura del VIH" es una "proteína de la envoltura del VIH sintética". Como se usa en el presente documento, la expresión "proteína de la envoltura del VIH sintética" se refiere a una proteína de la envoltura del VIH que no tiene un origen natural que está optimizada para inducir una respuesta inmunitaria o producir inmunidad contra una o más cepas del VIH de origen natural en un sujeto que lo necesite. Las proteínas Env del VIH mosaico son ejemplos de proteínas Env del VIH sintéticas y la invención proporciona antígenos Env del VIH sintéticos novedosos, por ejemplo, los comprendidos en las SEQ ID NO: 8, 17, 18, o 19.

Proteínas de la envoltura del VIH sintéticas y secuencias que codifican las mismas

40

45

50

55

60

65

Las realizaciones de la invención se refieren a proteínas de la envoltura del VIH sintéticas novedosas y moléculas de ácido nucleico que las codifican.

En una realización, la invención se refiere a una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8, o la SEQ ID NO: 8 que tiene una o más mutaciones seleccionadas del grupo que consiste en (i) I529P, (ii) K480E, y (iii) una combinación de EK479-480RRRR, I529P, A471C y T575C. La SEQ ID NO: 8 comprende una gp120 madura sintética y una gp41 truncada sintética sin la región transmembrana, ni el dominio citoplasmático. La SEQ ID NO: 8 es una secuencia que no tiene un origen natural que comprende una quimera de secuencias del antígeno mosaico mos2Env (SEQ ID NO: 6) y otras secuencias de proteínas de la envoltura del VIH. La secuencia del antígeno Env sintético novedoso que comprende la SEQ ID NO: 8 está optimizada para proporcionar una cobertura amplia y una respuesta de linfocitos T potenciada contra el clado C del VIH (en comparación con el antígeno mos2Env (SEQ ID NO: 6)). En ciertas realizaciones, se pueden añadir más aminoácidos a la SEQ ID NO: 8 o una de sus variantes definidas en el presente documento.

En ciertas realizaciones, la proteína de la envoltura del VIH sintética comprende además una secuencia señal. La proteína de la envoltura del VIH sintética se sintetiza con una secuencia señal que es escindida de la cadena polipeptídica naciente durante su transporte al lumen del retículo endoplasmático (RE). En principio, se podría utilizar cualquier secuencia señal conocida. Preferiblemente, se utiliza una secuencia señal Env del VIH o una variante de esta. En la técnica se han utilizado diferentes secuencias señal para proteínas Env del VIH (véase p. ej. el documento WO 2014/107744). En ciertas realizaciones, las secuencias señal comprenden la SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 o SEQ ID NO: 12. En una realización preferida, la secuencia señal comprende la SEQ ID NO: 9.

En ciertas realizaciones, la proteína de la envoltura del VIH sintética comprende además un dominio transmembrana. El dominio transmembrana ancla la proteína de la envoltura del VIH sintética a la membrana del RE y contribuye al ensamblaje de la membrana y a la función de la envoltura del VIH. Preferiblemente, el dominio transmembrana comprende la SEQ ID NO: 13.

En otra realización, la proteína de la envoltura del VIH sintética comprende una gp41 que tiene un dominio citoplasmático truncado. La gp41 tiene un dominio citoplasmático inusualmente largo en su extremo carboxilo, normalmente de aproximadamente 150 aminoácidos (Edwards et al., J. Virology, 2002, 76:2683-2691). Se ha descrito que el truncamiento del dominio citoplasmático induce la exposición de regiones conservadas en el ectodominio de la proteína Env del VIH-1 (*Id.*). El dominio citoplasmático truncado en una envoltura del VIH sintética de la invención puede variar desde uno hasta aproximadamente 140 aminoácidos, tal como 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40,

50, 60, 70, 80, 90, 100, 110, 120, 130, o 140 aminoácidos de un dominio citoplasmático completo. En ciertas realizaciones, el dominio citoplasmático truncado se obtiene a partir de los aminoácidos 704-862 de la SEQ ID NO: 17 (es decir, a partir del dominio citoplasmático de la molécula C4 de la invención), mediante un truncamiento después de un aminoácido dado hasta el extremo C. En una realización preferida, la proteína de la envoltura del VIH sintética comprende un dominio citoplasmático truncado que tiene de 1 a 10 restos de aminoácidos, más preferiblemente de 4 a 8 restos de aminoácidos y, lo más preferiblemente, 7 restos de aminoácidos de un dominio citoplasmático de gp41 del VIH. El dominio citoplasmático, o el fragmento de este, de una proteína de la envoltura del VIH sintética tiene una ubicación C- terminal respecto al dominio extracelular (ectodominio) y cuando la proteína de la envoltura del VIH sintética también comprende un dominio transmembrana, el dominio citoplasmático, o el fragmento de este, tiene una ubicación C-terminal respecto al dominio transmembrana. Véase, por ejemplo, las FIGS. 1A y 1C. En una realización particular, la proteína de la envoltura del VIH sintética comprende una gp41 con un dominio citoplasmático truncado que tiene la secuencia de aminoácidos de la SEQ ID NO: 14 o un fragmento de esta, tal como los restos 1-4 de esta (es decir, NRVR). Se han descrito y se podrían utilizar otros dominios citoplasmáticos truncados (p. ej. Schiernle et al., PNAS 1997; Abrahamyan et al., J Virol 2005).

15

20

25

30

35

40

45

10

En las realizaciones en las que la proteína de la envoltura del VIH sintética comprende además un dominio transmembrana y un fragmento de un dominio citoplasmático, se prefiere que la proteína comprenda también la secuencia de aminoácidos de la SEQ ID NO: 37, que contiene los restos 655-682 de la SEQ ID NO: 18, en donde la secuencia de aminoácidos de la SEQ ID NO: 37 está fusionada al extremo C de la SEQ ID NO: 8 y al extremo N del domino transmembrana.

En una realización particularmente preferida de la invención, la proteína de la envoltura del VIH sintética comprende además un dominio transmembrana, tal como el que tiene la secuencia de aminoácidos de la SEQ ID NO: 13, y un dominio citoplasmático truncado o un fragmento del dominio citoplasmático, tal como el que tiene la secuencia de aminoácidos de la SEQ ID NO: 14 o los restos 1-4 de la SEQ ID NO: 14 (es decir, NRVR). Lo más preferiblemente, la proteína de la envoltura del VIH sintética comprende o consiste en la secuencia de aminoácidos de la SEQ ID NO: 18,

con o sin la secuencia señal (es decir, los restos de aminoácidos 1-29 de la SEQ ID NO: 18).

En otra realización, la proteína de la envoltura del VIH sintética comprende un dominio de trimerización que sustituye a una región transmembrana Env. El dominio de trimerización aumenta la estabilidad de una estructura trimérica Env. Preferiblemente, la proteína de la envoltura del VIH sintética comprende un polipéptido gp140 que se modifica para incluir un dominio de trimerización que estabiliza trímeros de gp140. Los ejemplos de dominios de trimerización incluyen, aunque no de forma limitativa, el dominio de trimerización "foldon" de la fibritina T4, tal como el que comprende la secuencia de aminoácidos de la SEQ ID: 16; el dominio de trimerización de la superhélice obtenido a partir de GCN4, tal como el que comprende la secuencia de aminoácidos de la SEQ ID: 15; la subunidad catalítica de la aspartato transcarbamoilasa de E. coli como una etiqueta trimérica; o motivos de trimerización basados en la matrilina. Si está presente, el dominio de trimerización tiene normalmente una ubicación C-terminal respecto al dominio extracelular (véase la FIG. 1B). En ciertas realizaciones preferidas donde la proteína de la envoltura del VIH sintética comprende un dominio de trimerización, la proteína de la envoltura del VIH sintética comprende la secuencia de aminoácidos de la SEQ ID NO: 19, con o sin la secuencia señal (es decir, los restos de aminoácidos 1-29 de la SEQ ID NO: 19). Estas realizaciones con dominios de trimerización son principalmente útiles para las variantes de ectodominios solubles de la proteína de la envoltura del VIH sintética. En ciertas realizaciones de tales variantes solubles de la invención, es posible mutar el sitio de escisión de furina (p. ej., mutación de Lys en Glu en la posición 480 de la SEQ ID NO: 8) para inactivar este sitio de escisión, de manera que la proteína tenga una sola cadena; esto combina bien con un dominio de trimerización, especialmente con el dominio de trimerización GCN4 de la SEQ ID NO:

Las sin u

Las versiones alternativas de tales variantes de ectodominios solubles de la proteína de la envoltura del VIH sintética sin utilizar dominios de trimerización también son realizaciones de la invención y se pueden preparar a partir de la SEQ ID NO: 8 combinando mutaciones que optimicen el sitio de escisión de furina (reemplazando el dipéptido Gly-Lys en las posiciones 479-480 por cuatro restos de Arg) así como también las denominadas mutaciones SOSIP (mutación I>P en la posición 529, e introducción de un puente disulfuro entre las posiciones 471 y 575 reemplazando las respectivas Ala y Thr en esas posiciones en la SEQ ID NO: 8 con un resto de Cys cada una). Esto da lugar a una proteína que tiene la secuencia de aminoácidos de la SEQ ID NO: 8 con la siguiente combinación de mutaciones: EK479-480RRRR, I529P, A471C y T575C.

Una modificación posible para aumentar aún más el contenido trimérico de una proteína de la envoltura del VIH sintética de la invención (que comprende la SEQ ID NO: 8) es la modificación de IIe en Pro en la posición 529. Esta puede ser eficaz tanto para las variantes solubles como las unidas a la membrana.

60

65

55

Vectores

Otro aspecto general de la invención se refiere a vectores que comprenden ácido nucleico que codifica una proteína de la envoltura del VIH sintética. Según realizaciones de la invención, los vectores pueden comprender cualquiera de las proteínas de la envoltura del VIH sintéticas descritas en el presente documento. En una realización preferida de la invención, el vector comprende un ácido nucleico que codifica una proteína de la envoltura del VIH sintética que

comprende la secuencia de aminoácidos de la SEQ ID NO: 8, SEQ ID NO: 17, SEQ ID NO: 18, o SEQ ID NO: 19, y más preferiblemente SEQ ID NO: 18.

Según realizaciones de la invención, el ácido nucleico que codifica la proteína de la envoltura del VIH sintética está ligado operativamente a un promotor, lo que significa que el ácido nucleico está bajo el control de un promotor. El promotor puede ser un promotor homólogo (es decir, obtenido a partir de la misma fuente genética que el vector) o un promotor heterólogo (es decir, obtenido a partir de un vector o una fuente genética diferentes). Ejemplos de promotores adecuados incluyen el promotor del citomegalovirus (CMV) y el promotor del virus del sarcoma de Rous (RSV). Preferiblemente, el promotor está ubicado en dirección 5' respecto al ácido nucleico dentro de un casete de expresión. Un ejemplo de secuencia promotora de CMV que puede estar ligada operativamente al ácido nucleico que codifica la proteína de la envoltura del VIH sintética se muestra en la SEQ ID NO: 24.

5

10

15

20

45

50

60

65

Según realizaciones de la invención, un vector puede ser un vector de expresión. Los vectores de expresión incluyen, aunque no de forma limitativa, vectores para la expresión de proteínas recombinantes y un vector para la administración de ácido nucleico a un sujeto para la expresión en un tejido del sujeto, tal como un vector vírico. Los ejemplos de vectores víricos adecuados para su uso con la invención incluyen, pero no se limitan a vectores adenovíricos, vectores de virus adenoasociados, vectores del virus de la viruela, vectores MVA, vectores de virus entéricos, vectores del virus de la encefalitis equina de Venezuela, vectores del virus del bosque Semliki, vectores del virus del mosaico del tabaco, vectores lentivíricos, etc. El vector también puede ser un vector no vírico. Los ejemplos de vectores no víricos incluyen, pero sin limitación, plásmidos, cromosomas bacterianos artificiales, cromosomas de levadura artificiales, bacteriófagos, etc.

En determinadas realizaciones de la invención, el vector es un vector adenovírico. Un adenovirus de acuerdo con la invención pertenece a la familia de los Adenoviridae y preferiblemente es uno que pertenece al género Mastadenovirus.

Puede ser un adenovirus humano, pero también un adenovirus que infecte a otras especies, que incluyen, pero sin limitación, un adenovirus bovino (p. ej., adenovirus bovino 3, BAdV3), un adenovirus canino (p. ej., CAdV2), un adenovirus porcino (p. ej., PAdV3 o 5) o un adenovirus de simio (que incluye un adenovirus de monos y un adenovirus de simios, tal como un adenovirus de chimpancé o un adenovirus de gorila). Preferiblemente, el adenovirus es un adenovirus humano (HadV o AdHu) o un adenovirus de simio tal como un adenovirus de chimpancé o gorila (ChAd, AdCh o SAdV). En la invención, se entiende que es un adenovirus humano si se hace referencia a Ad sin indicar la especie, p. ej., la notación breve "Ad26" significa lo mismo que HadV26, que es el adenovirus humano de serotipo 26. Como también se usan en el presente documento, la notación "rAd" significa adenovirus recombinante, por ejemplo, "rAd26" se refiere a un adenovirus 26 humano recombinante.

Los estudios más avanzados se han realizado utilizando adenovirus humanos y, de acuerdo con ciertos aspectos de la invención, se prefieren adenovirus humanos. En determinadas realizaciones preferidas, un adenovirus recombinante de acuerdo con la invención está basado en un adenovirus humano. En realizaciones preferidas, el adenovirus recombinante está basado en un adenovirus humano del serotipo 5, 11,26, 34, 35, 48, 49, 50, 52, etc. De acuerdo con una realización particularmente preferida de la invención, un adenovirus es un adenovirus humano del serotipo 26.

40 Una ventaja de este serotipo es una baja seroprevalencia y/o títulos bajos de anticuerpos neutralizantes preexistentes en la población humana y la experiencia con su uso en sujetos humanos en ensayos clínicos.

Los adenovirus de simios por lo general también tienen una baja seroprevalencia y/o títulos bajos de anticuerpos neutralizantes preexistentes en la población humana y se ha publicado una cantidad significativa de investigaciones que utilizan vectores de adenovirus de chimpancé (p. ej., los documentos US6083716; WO 2005/071093; WO 2010/086189; WO 2010085984; Farina et al, 2001, J Virol 75: 11603-13 [13]; Cohen et al, 2002, J Gen Virol 83: 151-55 [69]; Kobinger et al, 2006, Virology 346: 394-401 [70]; Tatsis et al., 2007, Molecular Therapy 15: 608-17 [71]; véase también la revisión de Bangari y Mittal, 2006, Vaccine 24: 849-62 [72]; y la revisión de Lasaro y Ertl, 2009, Mol Ther 17: 1333-39 [73]). Por lo tanto, en otras realizaciones, el adenovirus recombinante de acuerdo con la invención está basado en un adenovirus de simio, por ejemplo, un adenovirus de chimpancé. En ciertas realizaciones, el adenovirus recombinante se basa en el adenovirus de simios de tipo 1, 7, 8, 21, 22, 23, 24, 25, 26, 27.1, 28.1, 29, 30, 31.1, 32, 33, 34, 35.1, 36, 37.2, 39, 40.1, 41.1, 42.1, 43, 44, 45, 46, 48, 49, 50 o SA7P.

Preferiblemente, el vector de adenovirus es un vector vírico recombinante deficiente en la replicación, tales como rAd26. rAd35. rAd48. rAd5HVR48. etc.

En una realización preferida de la invención, los vectores adenovíricos comprenden proteínas de la cápside procedentes de serotipos raros que incluyen Ad26. En la realización típica, el vector es un virus rAd26. Una "proteína de la cápside de adenovirus" se refiere a una proteína de la cápside de un adenovirus (p. ej., los vectores Ad26, Ad35, rAd48, rAd5HVR48) que están implicados en la determinación del serotipo y/o tropismo de un adenovirus particular. Las proteínas de la cápside normalmente incluyen las proteínas de la fibra, pentona y/o hexona. Como se usa en el presente documento una "proteína de la cápside" para un adenovirus particular, tal como una "proteína de la cápside de Ad26" puede ser, por ejemplo, una proteína de la cápside quimérica que incluye al menos una parte de una proteína de la cápside de Ad26. En ciertas realizaciones, la proteína de la cápside es una proteína de la cápside completa de Ad26. En ciertas realizaciones, la hexona, la pentona y la fibra son de Ad26.

Un experto habitual en la materia comprenderá que se pueden combinar elementos obtenidos a partir de múltiples serotipos en un único vector de adenovirus recombinante. Así pues, se puede producir un adenovirus quimérico que combina propiedades deseables de diferentes serotipos. Así pues, en algunas realizaciones, un adenovirus quimérico de la invención podría combinar la ausencia de inmunidad preexistente de un primer serotipo con características tales como la estabilidad térmica, ensamblaje, anclaje, rendimiento de producción, infección redirigida o mejorada, estabilidad del ADN en la célula diana y similares.

En ciertas realizaciones, el vector de adenovirus recombinante útil en la invención se obtiene principal o totalmente de Ad26 (es decir, el vector es rAd26). En algunas realizaciones, el adenovirus es deficiente en la replicación, p. ej., debido a que contiene una deleción en la región E1 del genoma. Para los adenovirus obtenidos a partir de adenovirus que no pertenecen al grupo C, tal como Ad26 o Ad35, es habitual intercambiar la secuencia codificante E4-orf6 del adenovirus por la E4-orf6 de un adenovirus del subgrupo C humano, tal como Ad5. Esto permite la propagación de tales adenovirus en líneas celulares complementarias muy conocidas que expresan los genes E1 de Ad5, tales como, por ejemplo, las células 293, células PER.C6 y similares (véase, p. ej., Havenga, et al., 2006, J Gen Virol 87: 2135-43; WO 03/104467). Sin embargo, tales adenovirus no serán capaces de replicarse en células no complementarias que no expresen los genes E1 de Ad5.

10

15

20

40

45

50

55

60

65

La preparación de vectores adenovíricos recombinantes es muy conocida en la técnica. La preparación de los vectores de rAd26 se describe, por ejemplo, en el documento WO 2007/104792 y en Abbink et al., (2007) Virol 81(9): 4654-63. Ejemplos de secuencias del genoma de Ad26 se encuentran en GenBank Acceso EF 153474 y en la SEQ ID NO: 1 del documento WO 2007/104792. Los ejemplos de vectores útiles para la invención incluyen, por ejemplo, los descritos en el documento WO2012/082918.

Normalmente, un vector útil en la invención se produce utilizando un ácido nucleico que comprende el genoma adenovírico recombinante completo (p. ej., un plásmido, cósmido o vector de baculovirus). Así pues, la invención también proporciona moléculas de ácido nucleico aislado que codifican los vectores adenovíricos de la invención. Las moléculas de ácido nucleico de la invención pueden estar en forma de ARN o en forma de ADN obtenido por clonación o producido sintéticamente. El ADN puede ser bicatenario o monocatenario.

Los vectores de adenovirus útiles en la invención son normalmente deficientes en la replicación. En estas realizaciones, el virus se vuelve deficiente en la replicación mediante la deleción o inactivación de regiones vitales para la replicación del virus, tales como la región E1. Las regiones pueden eliminarse o inactivarse sustancialmente, por ejemplo, insertando un gen de interés, tal como un gen que codifica una proteína de la envoltura del VIH sintética (normalmente ligado a un promotor) o un gen que codifica un polipéptido antigénico del VIH (normalmente ligado a un promotor) dentro de la región. En algunas realizaciones, los vectores de la invención pueden contener deleciones en otras regiones, tales como las regiones E2, E3 o E4, o inserciones de genes heterólogos ligados a un promotor dentro de una o más de estas regiones. Para los adenovirus mutados en E2 y/o E4, se utilizan generalmente líneas celulares complementarias E2 y/o E4 para generar adenovirus recombinantes. Las mutaciones en la región E3 del adenovirus no necesitan estar complementadas por la línea celular, ya que no se requiere E3 para la replicación.

Normalmente se utiliza una línea celular empaquetadora para producir cantidades suficientes de vectores de adenovirus para su uso en la invención. Una célula empaquetadora es una célula que comprende aquellos genes que han sido eliminados o inactivados en un vector deficiente en la replicación, permitiendo de esta manera que el virus se replique en la célula. Las líneas celulares empaquetadoras para los adenovirus con una deleción en la región E1 incluyen, por ejemplo, PER.C6, 911.293, y E1 A549.

De acuerdo con las realizaciones de la invención, y como se ha señalado anteriormente, cualquiera de las proteínas de la envoltura del VIH sintéticas descritas en el presente documento se pueden expresar en los vectores de la invención. Dada la degeneración del código genético, el experto es completamente consciente de que se pueden diseñar varias secuencias de ácido nucleico que codifiquen la misma proteína, de acuerdo con métodos totalmente rutinarios en la técnica. El ácido nucleico que codifica la proteína de la envoltura del VIH sintética puede opcionalmente tener los codones optimizados para garantizar una expresión adecuada en la célula hospedadora tratada (p. ej., humana). La optimización de codones es una tecnología ampliamente aplicada en la técnica. Algunos ejemplos no limitantes de secuencias que codifican una proteína de la envoltura del VIH sintética de la invención se proporcionan en las SEQ ID NO: 25, 26 y 27. Normalmente, el ácido nucleico que codifica la proteína de la envoltura del VIH sintética se clona en la región E1 y/o E3 del genoma adenovírico.

En una realización preferida de la invención, el vector es un vector de adenovirus y, más preferiblemente, un vector de rAd26, o lo más preferiblemente un vector de rAd26 con al menos una deleción en la región E1 del genoma adenovírico, p. ej., como el descrito en Abbink, J Virol, 2007. 81(9): p. 4654-63, que se incorpora en el presente documento por referencia.

La invención también proporciona células, preferiblemente células aisladas, que comprenden cualquiera de los vectores descritos en el presente documento. Las células se pueden utilizar para la producción de proteínas recombinantes o para la producción de partículas víricas.

Por lo tanto, las realizaciones de la invención también se refieren a un método para producir un polipéptido antigénico del VIH sintético. El método comprende transfectar una célula hospedadora con un vector de expresión que comprende ácido nucleico que codifica el polipéptido antigénico del VIH sintético ligado operativamente a un promotor, cultivar la célula transfectada en condiciones adecuadas para la expresión del polipéptido antigénico del VIH sintético y aislar el polipéptido antigénico del VIH sintético de la célula. El polipéptido antigénico del VIH sintético se puede aislar o recoger a partir de la célula mediante cualquier método conocido en la técnica incluida la cromatografía por afinidad, etc. Las técnicas utilizadas para la expresión de proteínas recombinantes serán evidentes para el experto en la materia en vista de la presente divulgación.

La invención también incluye un método para producir un vector que codifica un polipéptido antigénico del VIH sintético de la invención, comprendiendo el método cultivar una célula que comprende el vector, propagar y multiplicar el vector durante dicho cultivo y aislar el vector que codifica el polipéptido antigénico del VIH sintético de la invención a partir del cultivo de células, p. ej., de las células, del medio de cultivo o de ambos. El vector se puede purificar adicionalmente de acuerdo con métodos conocidos en la técnica.

En ciertas realizaciones, la invención proporciona un vector de acuerdo con una realización de la invención que comprende un ácido nucleico que codifica un polipéptido antigénico del VIH sintético y, en ciertas realizaciones ilustrativas, el ácido nucleico tiene una secuencia de nucleótidos seleccionada del grupo que consiste en la SEQ ID NO: 25, 26 y 27.

Composiciones

5

15

20

25

30

35

40

45

50

55

60

65

En otro aspecto general, la invención se refiere a una composición que comprende un vector que comprende un ácido nucleico que codifica una proteína de la envoltura del VIH sintética y un vehículo. Según realizaciones de la invención, cualquiera de los vectores descritos en el presente documento se pueden incluir en la composición. Preferiblemente, el vector es un vector vírico, más preferiblemente un vector de adenovirus y, aún más preferiblemente, un vector de adenovirus 26. En una realización preferida, una composición comprende un vector de adenovirus, preferiblemente un vector de adenovirus 26 que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8, la SEQ ID NO: 18, o la SEQ ID NO: 19, y más preferiblemente la secuencia de aminoácidos de la SEQ ID NO: 18.

En un aspecto, la invención proporciona una combinación de vacuna que comprende uno o más vectores juntos que comprenden secuencias de ácido nucleico que codifican (i) una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8 (p. ej., la SEQ ID NO: 18 o 19) y (ii) una segunda proteína de la envoltura del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5. Cada uno de los vectores puede estar en una composición independiente o se pueden combinar en una única composición. Se pretende que ambos ácidos nucleicos en el vector o vectores se administren a un sujeto, lo que dará como resultado una respuesta inmunitaria frente al VIH que es más amplia que la respuesta inmunitaria que se obtendría después de la administración de cualquiera de los vectores solos. Ambas secuencias de ácido nucleico pueden estar presentes en un único vector.

Según realizaciones de la invención, una composición comprende una cantidad inmunogénicamente eficaz de un vector, tal como un vector vírico. Como se usa en el presente documento, "cantidad inmunogénicamente eficaz" o "cantidad inmunológicamente eficaz" significa una cantidad de una composición suficiente para inducir una respuesta inmunitaria o efecto inmunitario deseados en un sujeto que lo necesite. En una realización, una cantidad inmunogénicamente eficaz significa una cantidad suficiente para inducir una respuesta inmunitaria en un sujeto que lo necesite. En otra realización, una cantidad inmunogénicamente eficaz significa una cantidad suficiente para producir inmunidad en un sujeto que lo necesite, por ejemplo, proporcionar un efecto protector contra una enfermedad tal como una infección vírica. Una cantidad inmunogénicamente eficaz puede variar dependiendo de varios factores, tales como el estado físico del sujeto, edad, peso, salud, etc.; la aplicación concreta, si se va a inducir una respuesta inmunitaria o proporcionar inmunidad protectora; el vector recombinante específico administrado; el inmunógeno o polipéptido antigénico codificado por el vector recombinante administrado; el polipéptido antigénico específico administrado; y la enfermedad particular, por ejemplo, infección vírica, para la cual se desea la inmunidad. El experto en la materia puede determinar fácilmente una cantidad inmunogénicamente eficaz en vista de la presente divulgación.

Como guía general, una cantidad inmunogénicamente eficaz cuando se utiliza haciendo referencia a un vector vírico recombinante tal como un vector adenovírico puede estar comprendida entre aproximadamente 10⁸ partículas víricas y aproximadamente 10¹² partículas víricas, por ejemplo 10⁸, 10⁹, 10¹⁰, 10¹¹, o 10¹² partículas víricas. Se puede administrar una cantidad inmunogénicamente eficaz en una única composición o en múltiples composiciones, tales como 1, 2, 3, 4, 5, 6, 7, 8, 9 o 10 (p. ej., comprimidos, cápsulas o composiciones inyectables), en donde la administración de las múltiples cápsulas o inyecciones proporciona globalmente al sujeto la cantidad inmunogénicamente eficaz. En general, cuando se utiliza haciendo referencia a un polipéptido, tal como un polipéptido antigénico aislado, una cantidad inmunogénicamente eficaz puede variar desde, p. ej., aproximadamente 0,3 a aproximadamente 3000 microgramos (µg), p. ej., 1-1000 µg, p. ej., 10-500 µg, p. ej., aproximadamente 10, 50, 100, 150, 200, 250, 300, 350, 400, 450 o 500 µg. Como un ejemplo no limitante, es posible combinar la administración del vector que codifica el antígeno Env del VIH sintético de la invención (que tiene la SEQ ID NO: 8) con la administración

de un polipéptido Env, p. ej., 250 µg de la proteína trimérica Env del Clado C del VIH que tiene los aminoácidos 30-708 de la SEQ ID NO: 7. También es posible administrar una cantidad inmunogénicamente eficaz a un sujeto y, posteriormente, administrar otra dosis de una cantidad inmunogénicamente eficaz al mismo sujeto, en un régimen denominado de sensibilización-refuerzo. Este concepto general de un régimen de sensibilización-refuerzo es muy conocido por el experto en el campo de las vacunas. Opcionalmente, se pueden añadir administraciones de refuerzo adicionales al régimen, según sea necesario.

Las composiciones de la invención comprenden además un vehículo. Un vehículo puede incluir uno o más excipientes farmacéuticamente aceptables tales como aglutinantes, disgregantes, agentes de hinchamiento, agentes de suspensión, agentes emulsionantes, agentes humectantes, lubricantes, saborizantes, edulcorantes, conservantes, colorantes, solubilizantes y agentes de recubrimiento. La naturaleza precisa del vehículo u otro material puede depender de la vía de administración, por ejemplo, intramuscular, subcutánea, oral, intravenosa, cutánea, intramucosal (p. ej., intestino), intranasal o intraperitoneal. Para las preparaciones inyectables líquidas, por ejemplo, suspensiones y soluciones, los vehículos y aditivos adecuados incluyen agua, glicoles, aceites, alcoholes, conservantes, agentes colorantes y similares. Para las preparaciones sólidas orales, por ejemplo, polvos, cápsulas, pastillas, cápsulas de gelatina y comprimidos, los vehículos y aditivos adecuados incluyen almidones, azúcares, diluyentes, agentes de granulación, lubricantes, aglutinantes, agentes disgregantes y similares. Para las mezclas de aerosoles/inhaladores nasales, la solución/suspensión acuosa puede comprender agua, glicoles, aceites, emolientes, estabilizantes, agentes humectantes, conservantes, aromatizantes, sabores y similares como vehículos y aditivos adecuados.

20

25

5

10

15

Las composiciones de la invención se pueden formular en cualquier materia adecuada para su administración a un sujeto para facilitar la administración y mejorar la eficacia, incluyendo, aunque no de forma limitativa, la administración oral (enteral) e inyecciones parenterales. Las inyecciones parenterales incluyen la inyección o perfusión intravenosa, inyección intraarterial, inyección subcutánea, inyección intramuscular e inyección intraarticular. Las composiciones de la invención también se pueden formular para otras vías de administración incluidas la administración transmucosal, ocular, rectal, implantes de acción prolongada, administración sublingual, debajo de la lengua, desde la mucosa oral para evitar la circulación portal, por inhalación o intranasal.

De acuerdo con determinadas realizaciones de la invención, una composición comprende una cantidad inmunogénicamente eficaz de un vector de adenovirus purificado o parcialmente purificado, tal como un vector de adenovirus 26, que comprende un ácido nucleico que codifica una proteína de la envoltura del VIH sintética de la invención. Dichas composiciones se pueden formular como una vacuna (también denominada como una "composición inmunogénica") de acuerdo con métodos muy conocidos en la técnica.

Las composiciones de la invención pueden comprender además opcionalmente un adyuvante para potenciar las respuestas inmunitarias. El término "adyuvante" y la expresión "estimulante inmunitario" se utilizan indistintamente en el presente documento y se definen como una o más sustancias que provocan la estimulación del sistema inmunitario. En este contexto, se utiliza un ayudante para potenciar una respuesta inmunitaria frente a los vectores que codifican proteínas de la envoltura del VIH sintéticas de la invención y/o polipéptidos antigénicos del VIH utilizados en combinación con vectores que codifican proteínas de la envoltura del VIH sintéticas de la invención.

Los adyuvantes adecuados para su uso con la invención deberían ser aquellos que son potencialmente seguros, bien tolerados y eficaces en las personas, tales como por ejemplo QS-21, Detox-PC, MPL-SE, MoGM-CSF, TiterMax-G, CRL-1005, GERBU, TERamide, PSC97B, Adjumer, PG-026, GSK-I, GcMAF, B-aletina, MPC-026, Adjuvax, CpG ODN, Betafectina, sales de aluminio (p. ej., AdjuPhos), Adjuplex, y MF59. Las proporciones óptimas de cada componente en la formulación se pueden determinar mediante técnicas muy conocidas por los expertos en la materia en vista de la presente divulgación.

En una realización preferida, el adyuvante es una sal de aluminio, tal como AdjuPhos.

50

45

Los expertos en la materia están muy familiarizados con la preparación y el uso de composiciones inmunogénicas. Las composiciones farmacéuticas líquidas incluyen, en general, un vehículo líquido tal como agua, vaselina, aceites animales o vegetales, aceite mineral o aceite sintético. También se puede incluir solución salina fisiológica, dextrosa u otra solución de sacáridos o glicoles tales como etilenglicol, propilenglicol o polietilenglicol.

55

60

Por ejemplo, el vector de adenovirus recombinante se puede conservar en el tampón que también se utiliza en el Adenovirus World Standard (Hoganson et al., 2002, Bioprocessing J 1: 43-8): Tris 20 mM pH 8, NaCl 25 mM, glicerol al 2,5 %. Otro tampón de formulación de adenovirus útil adecuado para la administración a seres humanos es Tris 20 mM, MgCl₂2 mM, NaCl 25 mM, sacarosa 10 % p/v, polisorbato-80 0,02 % p/v. Otro tampón de formulación que es adecuado para el adenovirus recombinante comprende tampón citrato 10-25 mM pH 5,9-6,2, 4-6 % (p/p) de hidroxipropil-beta-ciclodextrina (HBCD), NaCl 70-100 mM, 0,018-0,035 % (p/p) de polisorbato-80, y opcionalmente 0,3-0,45 % (p/p) de etanol. Obviamente, se pueden utilizar muchos otros tampones y existen varios ejemplos de formulaciones adecuadas para el almacenamiento y para la administración farmacéutica de vectores purificados.

Según realizaciones de la invención, se puede utilizar una composición de la invención junto con uno o más vectores adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales y/o uno o más polipéptidos

antigénicos del VIH aislados. Los vectores adicionales y/o polipéptidos antigénicos del VIH pueden estar presentes en la misma composición que comprende una proteína Env del VIH sintética de la invención. También pueden estar presentes en una o más composiciones diferentes que se pueden utilizar junto con una composición que comprende una proteína Env del VIH sintética de la invención en una combinación de vacuna. Preferiblemente, el vector o los vectores adicionales son vectores víricos, tales como vectores de adenovirus y, lo más preferiblemente, son vectores de adenovirus 26. El vector o los vectores adicionales pueden codificar cualquier polipéptido antigénico del VIH que identificarán los expertos en la materia en vista de la presente divulgación.

En una realización, una composición o una combinación de vacuna comprende además un segundo vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5. Una ventaja de tales realizaciones es una mayor amplitud de la respuesta inmunitaria (que abarca las cepas de los Clados B y C).

En otra realización, una composición o una combinación de vacuna de la invención comprende además un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 28 (mos1GagPol).

20

25

30

50

55

En otra realización, una composición o una combinación de vacuna de la invención comprende además un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 29 (mos2GagPol).

En una realización particular, una composición o una combinación de vacuna de la invención comprende además un segundo vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5 y uno o más vectores de adenovirus adicionales, preferiblemente vectores de adenovirus 26, que codifican uno o más polipéptidos antigénicos del VIH que comprenden la secuencia de aminoácidos seleccionada del grupo que consiste en la SEQ ID NO: 28 o la SEQ ID NO: 29. Por ejemplo, una composición o combinación de vacuna de acuerdo con una realización de la invención puede comprender cuatro vectores de adenovirus, preferiblemente vectores de adenovirus 26, donde un primer vector codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8 (p. ej., la SEQ ID NO: 18); un segundo vector que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5; un tercer vector que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 28; y un cuarto vector que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 29.

En algunas realizaciones, la composición o combinación de vacuna comprende además uno o más polipéptidos antigénicos del VIH aislados. Cualquier polipéptido antigénico del VIH que identifiquen los expertos en la materia en vista de la presente divulgación puede estar incluido además en una composición o combinación de vacuna de la invención, incluyendo, pero sin limitación, una proteína de la envoltura del VIH (p. ej., gp160, gp140, gp120 o gp41), preferiblemente una proteína gp140 trimérica estabilizada, tal como una proteína gp140 del clado C o del clado A estabilizada. En una realización preferida, el polipéptido antigénico del VIH aislado es una proteína gp140 trimérica del clado C del VIH estabilizada, tal como la que comprende los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 (los restos 1-29 de la SEQ ID NO: 7 están en la secuencia señal). Un polipéptido Env del VIH alternativo o adicional que se podría utilizar solo o además de la proteína gp140 del clado C, es una proteína trimérica Env mosaico, por ejemplo, que tiene la secuencia de aminoácidos tal como se divulga en los aminoácidos 30-724 de la SEQ ID NO: 36 (correspondiente a la SEQ ID NO: 2 del documento WO 2014/107744, los restos 1-29 de la SEQ ID NO: 36 están en la secuencia señal).

De acuerdo con una realización particular de la invención, una proteína antigénica del VIH puede ser una proteína de la envoltura del VIH sintética de la invención. Así pues, se puede utilizar una proteína de la envoltura sintética de la invención en forma aislada y/o purificada para inducir una respuesta inmunitaria o proporcionar una inmunidad protectora, etc. contra el VIH en un sujeto que lo necesite. Cualquiera de las proteínas de la envoltura sintética descritas en el presente documento que comprenden la secuencia de aminoácidos de la SEQ ID NO: 8 se puede utilizar como una proteína antigénica del VIH en forma aislada y/o purificada. En una realización preferida, cuando se utiliza en forma aislada como una proteína antigénica del VIH, la proteína de la envoltura sintética comprende los restos 30-711 de la secuencia de aminoácidos de la SEQ ID NO: 18 o los restos 30-686 de la secuencia de aminoácidos de la SEQ ID NO: 19 y, más preferiblemente, los restos 30-704 de la secuencia de aminoácidos de la SEQ ID NO: 18. El polipéptido antigénico del VIH aislado también puede comprender la SEQ ID NO: 8 con las siguientes mutaciones: EK479-480RRRR, I529P, A471C y T575C.

Las realizaciones de la invención también se refieren a composiciones o combinaciones de vacuna que comprenden una proteína de la envoltura del VIH sintética aislada que comprende la secuencia de aminoácidos de la SEQ ID NO: 8. Se puede utilizar cualquiera de las proteínas de la envoltura del VIH sintéticas descritas en el presente documento. En realizaciones en particular de la invención, la proteína de la envoltura del VIH sintética aislada comprende los restos 30-704 o 30-711 de la secuencia de aminoácidos de la SEQ ID NO: 18, los restos 30-686 de la secuencia de aminoácidos de la SEQ ID NO: 8 con las siguientes mutaciones: EK479-480RRRR, I529P, A471C y T575C. Tales composiciones o combinaciones de vacuna pueden comprender

además uno o más vectores de expresión, por ejemplo, vectores adenovíricos tales como vectores de adenovirus 26, que codifican uno o más polipéptidos antigénicos del VIH adicionales, tales como las proteínas de la envoltura del VIH sintéticas de la invención, u otras proteínas antigénicas del VIH tales como las expuestas en las SEQ ID NO: 4, 5, 7, 28 o 29 o fragmentos de estas.

5

10

La invención también se refiere a un método para producir una composición o combinación de vacuna de la invención. Según realizaciones de la invención, un método para producir una composición o una combinación comprende combinar un vector que comprende ácido nucleico que codifica la proteína de la envoltura del VIH sintética de la invención con un vehículo y opcionalmente uno o más vectores adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales y/o uno o más polipéptidos antigénicos del VIH aislados. El experto en la materia está familiarizado con las técnicas habituales utilizadas para preparar tales composiciones.

Vacuna y combinaciones de vacuna

15

20

Según realizaciones de la invención, una composición puede ser una vacuna. Como se usa en el presente documento, el término "vacuna" se refiere a una composición que comprende un vector de expresión, preferiblemente, un vector vírico, que codifica una proteína de la envoltura del VIH sintética de la invención que puede proporcionar inmunidad protectora o una respuesta inmunitaria protectora a un sujeto, o vacunar a un sujeto. Según realizaciones de la invención, tras la administración de la composición a un sujeto, el vector de expresión expresa la proteína de la envoltura del VIH sintética codificada y la proteína de la envoltura del VIH sintética expresada se presenta al sistema inmunitario del sujeto, induciéndose de esta manera la respuesta requerida para producir la inmunidad o para inducir una respuesta inmunitaria.

25

Así pues, en otro aspecto general, la invención proporciona una vacuna para inducir una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto. Según realizaciones de la invención, la vacuna comprende una composición que comprende una cantidad inmunogénicamente eficaz de un vector de expresión que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8 y preferiblemente la secuencia de aminoácidos de la SEQ ID NO: 18. Preferiblemente, el vector de expresión es un vector vírico, más preferiblemente un vector de adenovirus y, lo más preferiblemente, un vector de adenovirus 26.

30

Según realizaciones de la invención, "inducir una respuesta inmunitaria", cuando se utiliza haciendo referencia a los métodos y composiciones descritos en el presente documento, abarca proporcionar inmunidad protectora y/o vacunar a un sujeto contra una infección, tal como una infección por VIH, con fines profilácticos, así como también provocar una respuesta o efecto inmunitarios deseados contra una infección en un sujeto que los necesite, tal como una infección por VIH, con fines terapéuticos. Preferiblemente, los métodos de la invención tienen fines profilácticos, tales como proporcionar inmunidad protectora. La respuesta inmunitaria puede ser una respuesta inmunitaria celular y/o una respuesta inmunitaria humoral.

35

40

Como se usa en el presente documento, "inmunidad protectora" o "respuesta inmunitaria protectora" significa que el sujeto vacunado es capaz de controlar una infección con el agente patógeno contra el que se realizó la vacunación. Habitualmente, el sujeto que ha desarrollado una "respuesta inmunitaria protectora" desarrolla únicamente síntomas clínicos leves o moderados o ningún síntoma en absoluto. Habitualmente, un sujeto que tiene una "respuesta inmunitaria protectora" o "inmunidad protectora" contra un cierto agente no fallecerá como resultado de la infección con dicho agente.

45

Según realizaciones de la invención, las composiciones de vacuna pueden comprender además uno o más vectores adicionales, por ejemplo, vectores víricos, tales como vectores de adenovirus, preferiblemente vectores de adenovirus 26, que codifican uno o más polipéptidos antigénicos del VIH adicionales y/o uno o más polipéptidos antigénicos del VIH aislados. La proteína de la envoltura del VIH sintética, los vectores adicionales y/o uno o más polipéptidos antigénicos del VIH aislados se pueden formular en la misma composición o en una o más composiciones diferentes en la vacuna.

55

50

La invención también se refiere a combinaciones de vacuna para sensibilizar y reforzar una respuesta inmunitaria frente a uno o más clados del VIH en un sujeto que lo necesite utilizando uno o más vectores combinados con un polipéptido antigénico aislado. Así pues, en otro aspecto general, la invención proporciona una combinación de vacuna para inducir una respuesta inmunitaria contra un VIH en un sujeto. Según realizaciones de la invención, la combinación de vacuna comprende:

60

(i) una primera composición que comprende una cantidad inmunogénicamente eficaz de un vector de expresión que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8 o la SEQ ID NO: 8 que tiene una o más mutaciones seleccionadas del grupo que consiste en (a) I529P, (b) K480E, y (c) una combinación de EK479-480RRRR, I529P, A471C y T575C,y un vehículo; y (ii) una segunda composición que comprende una cantidad inmunogénicamente eficaz de un polipéptido antigénico

del VIH aislado y un vehículo,

65

en donde una de la primera y segunda composiciones se destina a la inmunización de sensibilización y la otra

composición se destina a la inmunización de refuerzo.

5

20

25

30

35

40

45

50

55

60

65

Según realizaciones de la invención, la combinación de vacuna comprende además opcionalmente una cantidad inmunogénicamente eficaz de uno o más vectores de expresión adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales. El vector o los vectores de expresión adicionales pueden estar incluidos en la primera composición o en la segunda composición, o el vector o los vectores de expresión adicionales pueden estar incluidos en una o más composiciones adicionales que se administrarán junto con la primera y/o la segunda composición.

Como se usa en el presente documento, los términos "cosuministro", "coadministración" o "administrado junto con" se refieren a la administración simultánea de dos o más componentes, tales como un vector de expresión vírico y un polipéptido antigénico aislado o múltiples vectores de expresión víricos. La "administración simultánea" puede ser la administración de los dos o más componentes al menos en el mismo día. Cuando dos componentes se "administran junto con", se pueden administrar en composiciones independientes de manera secuencial en un periodo de tiempo corto, tal como 24, 20, 16, 12, 8 o 4 horas o en 1 hora o menos o se pueden administrar en una única composición a la vez.

En las realizaciones particulares de una combinación de vacuna de la invención, la primera composición comprende un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18; y el polipéptido antigénico del VIH aislado comprende los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 o los restos 30-724 de la SEQ ID NO: 36. En una realización particular, la primera composición comprende además un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5. En otra realización particular, la primera composición comprende además uno o más vectores de adenovirus adicionales, preferiblemente vectores de adenovirus 26, que codifican uno o más polipéptidos antigénicos del VIH adicionales que comprenden las secuencias de aminoácidos seleccionadas del grupo que consiste en las SEQ ID NO: 28 y 29.

Otro aspecto general de la invención se refiere a un kit que comprende una combinación de vacuna de acuerdo con una realización de la invención.

Otras realizaciones de la proteína de la envoltura del VIH sintética, vectores de expresión, vectores de expresión adicionales, polipéptidos antigénicos del VIH codificados por los vectores de expresión y polipéptido antigénico del VIH aislado, etc. que se pueden utilizar en las combinaciones de vacuna de la invención se han analizado detalladamente anteriormente y en los ejemplos ilustrativos a continuación.

Método para inducir inmunidad protectora contra la infección por VIH

La invención también se refiere a un método para inducir una respuesta inmunitaria contra uno o más clados del VIH en un sujeto que lo necesite. Los métodos descritos en el presente documento incluyen métodos de sensibilización y refuerzo de una respuesta inmunitaria utilizando uno o más vectores de expresión en combinación con uno o más polipéptidos antigénicos aislados.

En un aspecto general, un método para inducir una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto comprende administrar al sujeto una composición que comprende una cantidad inmunogénicamente eficaz de un vector de expresión que comprende un ácido nucleico que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8. Se pueden utilizar cualquiera de las composiciones descritas en el presente documento en un método para inducir una respuesta inmunitaria contra el VIH en un sujeto. Preferiblemente, la composición comprende un vector de adenovirus, preferiblemente un vector de adenovirus 26, comprendiendo el vector un ácido nucleico que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18. La composición puede comprender además uno o más vectores adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales.

En otro aspecto general, un método para inducir una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto comprende:

- (i) administrar al sujeto una primera composición que comprende una cantidad inmunogénicamente eficaz de un vector de expresión que codifica una proteína de la envoltura del VIH mosaico que tiene la secuencia de aminoácidos de la SEQ ID NO: 8 o la SEQ ID NO: 8 que tiene una o más mutaciones seleccionadas del grupo que consiste en (a) I529P, (b) K480E, y (c) una combinación de EK479-480RRRR, I529P, A471C y T575C,y un vehículo:
- (ii) administrar al sujeto una segunda composición que comprende una cantidad inmunogénicamente eficaz de un polipéptido antigénico del VIH aislado y un vehículo; y
- (iii) opcionalmente, administrar al sujeto una cantidad inmunogénicamente eficaz de uno o más vectores de expresión adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales,

en donde las etapas (i) y (ii) se llevan a cabo en cualquier orden, siendo una de las etapas para la inmunización de sensibilización y la otra etapa para la inmunización de refuerzo. Según realizaciones de la invención, la cantidad eficaz, opcional del vector o de los vectores de expresión adicionales se administra junto con la primera composición o la segunda composición. En una realización preferida, la cantidad eficaz opcional del vector o los vectores de expresión adicionales se administra junto con la primera composición.

En una realización particular de un método para inducir una respuesta inmunitaria, la primera composición comprende un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8 y un segundo vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5; la segunda composición comprende un polipéptido antigénico del VIH aislado que tiene los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 o los restos 30-724 de la SEQ ID NO: 36; y el vector o los vectores de expresión adicionales son vectores de adenovirus, preferiblemente vectores de adenovirus 26, que codifican uno o más polipéptidos antigénicos del VIH adicionales que comprenden las secuencias de aminoácidos seleccionadas del grupo que consiste en las SEQ ID NO: 28 y 29; en donde la primera composición se administra al sujeto, junto con el vector o los vectores de expresión adicionales, una o más veces para la inmunización de sensibilización y la segunda composición se administra al sujeto una o más veces para la inmunización de refuerzo.

10

15

30

35

40

45

50

60

65

La administración de las composiciones inmunogénicas que comprenden los vectores de expresión y/o los polipéptidos antigénicos es normalmente intramuscular, intradérmica o subcutánea. Sin embargo, también se pueden contemplar otros modos de administración tales como la administración intravenosa, rectal, cutánea, oral, nasal, etc. La administración intramuscular de las composiciones inmunogénicas se puede conseguir utilizando una aguja para inyectar una suspensión de los vectores de expresión, p. ej., vectores de adenovirus, y/o polipéptidos antigénicos. Una alternativa es el uso de un dispositivo de inyección sin aguja para administrar la composición (utilizando, por ejemplo, Biojector™) o un polvo liofilizado que contiene la vacuna.

Para la inyección intramuscular, intravenosa, cutánea o subcutánea, o la inyección en el sitio de la dolencia, el vector estará en forma de una solución acuosa parenteralmente aceptable sin pirógenos y con un pH, isotonicidad y estabilidad adecuados. De manera análoga, el polipéptido antigénico aislado estará en forma de una solución parenteralmente aceptable con un pH, isotonicidad y estabilidad adecuados. Los expertos en la materia estarán capacitados para preparar soluciones adecuadas utilizando, por ejemplo, vehículos isotónicos tales como inyección de cloruro de sodio, inyección de Ringer, inyección de Ringer lactato. Pueden incluirse conservantes, estabilizantes, tampones, antioxidantes y/u otros aditivos, según sea necesario. También se puede emplear una formulación de liberación lenta.

Normalmente, la administración de las composiciones de vacuna de acuerdo con las realizaciones de la invención tendrá un objetivo profiláctico para generar una respuesta inmunitaria contra un antígeno del VIH antes de la infección o el desarrollo de los síntomas. En otras realizaciones, los vectores de expresión, por ejemplo, los vectores de adenovirus, y/o polipéptidos antigénicos del VIH se pueden administrar para una profilaxis posterior a la exposición.

Las composiciones inmunogénicas que contienen los vectores de expresión, por ejemplo, vectores de adenovirus, y/o polipéptidos antigénicos se administran a un sujeto, provocando una respuesta inmunitaria en el sujeto. Una cantidad de una composición suficiente para inducir una respuesta inmunitaria detectable se define como una "dosis inmunogénicamente eficaz" o "cantidad inmunogénicamente eficaz". En una realización típica de la invención, la respuesta inmunitaria es una respuesta inmunitaria protectora.

La cantidad real administrada, y la tasa y la pauta de administración, dependerán de la naturaleza y la gravedad de lo que se está tratando. La prescripción del tratamiento, por ejemplo, decisiones sobre la dosificación, etc., es responsabilidad de los médicos generalistas y otros médicos, o en un contexto veterinario del veterinario, y normalmente tiene en cuenta el trastorno que se va a tratar, el estado del paciente individual, el sitio de suministro, el método de administración y otros factores conocidos por los facultativos. Se pueden encontrar ejemplos de las técnicas y protocolos mencionados anteriormente en Remington's Pharmaceutical Sciences, 16ª edición, Osol, A. ed., 1980.

Después de la producción de vectores de adenovirus y la formulación opcional de tales partículas en composiciones, los vectores se pueden administrar a un individuo, especialmente a un ser humano u otro primate. El suministro a un mamífero no humano no necesita tener un fin terapéutico, sino que se puede utilizar en un contexto experimental, por ejemplo, en la investigación de los mecanismos de las respuestas inmunitarias a la proteína de la envoltura del VIH sintética expresada por los vectores de adenovirus de la invención.

En algunas realizaciones de los métodos divulgados, se utilizan uno o más vectores de adenovirus que codifican uno o más polipéptidos antigénicos del VIH para sensibilizar y provocar la respuesta inmunitaria. Se pueden utilizar uno o más polipéptidos antigénicos del VIH aislados junto con el vector o los vectores de adenovirus para la inmunización de sensibilización. La inmunización de sensibilización se puede administrar solo una vez, pero también se puede administrar opcionalmente múltiples veces, por ejemplo, la administración de sensibilización inicial en tiempo 0, seguida por otra administración de sensibilización aproximadamente 4-14 semanas, p. ej., 4, 5, 6, 7, 8, 9, 10, 11, 12,

13 o 14 semanas, o en cualquier momento intermedio, después de la administración de sensibilización inicial. Se pueden utilizar uno o más polipéptidos antigénicos del VIH aislados opcionalmente junto con uno o más adenovirus u otros vectores adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales para reforzar la respuesta inmunitaria. También se puede administrar una inmunización de refuerzo una o múltiples veces, por ejemplo, la primera aproximadamente 18-36, p. ej., 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 o 36 semanas, o en cualquier momento intermedio, después de la administración de sensibilización inicial, seguida por otra administración de refuerzo aproximadamente 36-52, p. ej., 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 o 60 semanas, o en cualquier momento intermedio, después de la administración de sensibilización inicial. Se hace un seguimiento de la respuesta inmunitaria inducida por la inmunización.

10

15

20

25

35

40

45

50

Las realizaciones de los métodos divulgados también contemplan pautas más cortas de sensibilización-refuerzo, lo que significa que la inmunización de refuerzo final se administra aproximadamente 22-26 semanas después de la administración de sensibilización inicial. La inmunización de sensibilización se puede administrar en la semana 0. La inmunización de refuerzo se puede administrar múltiples veces, por ejemplo, en primer lugar aproximadamente 7-9 semanas u 11-13 semanas o aproximadamente, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, o 14 semanas, o cualquier momento intermedio, después de la administración de sensibilización inicial, seguida por otra administración de refuerzo aproximadamente 22-26 semanas o aproximadamente 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, o 28 semanas, o cualquier momento intermedio, después de la administración de sensibilización inicial. En ciertas realizaciones, se administran uno o más polipéptidos antigénicos del VIH aislados junto con el vector o los vectores de adenovirus para la inmunización de sensibilización y/o refuerzo.

Los expertos en la materia comprenderán fácilmente que la pauta para las administraciones de sensibilización y refuerzo se puede ajustar en función de las respuestas inmunitarias medidas después de las administraciones. Por ejemplo, las composiciones de refuerzo se administran generalmente semanas o meses después de la administración de la composición de sensibilización, por ejemplo, aproximadamente 2-3 semanas o 4 semanas u 8 semanas o 16 semanas o 20 semanas o 24 semanas o 28 semanas o 30 semanas o 32 semanas o de uno a dos años después de la administración de la composición de sensibilización.

Según realizaciones de la invención, se puede administrar un adyuvante junto con el polipéptido antigénico del VIH aislado como parte de la inmunización de sensibilización y/o de refuerzo. Se puede utilizar cualquier adyuvante en vista de la presente divulgación, y en ciertas realizaciones el adyuvante es una sal de aluminio, tal como AdjuPhos.

En una realización preferida de la invención, los vectores de adenovirus utilizados en los métodos divulgados en el presente documento incluyen un vector de rAd26. Preferiblemente, un vector de rAd26 que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18 o la SEQ ID NO: 19), lo más preferiblemente la SEQ ID NO: 18, se utiliza para sensibilizar la respuesta inmunitaria, solo o en combinación con uno o más vectores de rAd26 adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales, tales como mos1Env que tiene la secuencia de aminoácidos de la SEQ ID NO: 5, y un polipéptido antigénico del VIH aislado, tal como el que comprende los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 o los restos 30-724 de la SEQ ID NO: 36, se utiliza para reforzar la respuesta inmunitaria o viceversa.

En una realización a modo de ejemplo, un vector de rAd26 que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18 se utiliza para sensibilizar la respuesta inmunitaria en combinación con un vector de rAd26 que codifica un polipéptido antigénico del VIH que tiene la secuencia de aminoácidos de la SEQ ID NO: 5. Uno o más vectores de rAd26 adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales que tienen las secuencias de aminoácidos seleccionadas del grupo que consiste en las SEQ ID NO: 1-4, 28 y 29 también se pueden administrar junto con los otros vectores de rAd26 para sensibilizar la respuesta inmunitaria. La administración de sensibilización en ciertas realizaciones se administra dos veces antes de que se administre cualquier inmunización de refuerzo. Un polipéptido antigénico del VIH aislado, tal como el que comprende los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 (preferiblemente), o el que comprende los restos 30-724 de la secuencia de aminoácidos de la SEQ ID NO: 36, o una combinación de al menos dos de tales polipéptidos antigénicos del VIH aislados, se administra a continuación para reforzar la respuesta inmunitaria y preferiblemente, se administra más de una vez. Preferiblemente, se administra además un ayudante con el polipéptido antigénico del VIH aislado en la inmunización de refuerzo.

55

60

65

En una realización particular, la respuesta inmunitaria se sensibiliza mediante la administración de cuatro antígenos del VIH codificados en los vectores adenovíricos, preferiblemente vectores de rAd26, siendo los cuatro antígenos codificados: (i) una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18, (ii) el polipéptido que tiene la secuencia de aminoácidos de la SEQ ID NO: 28 y (iv) el polipéptido que tiene la secuencia de aminoácidos de la SEQ ID NO: 29. Cada uno de estos cuatro antígenos puede estar codificado en un vector adenovírico independiente, preferiblemente un vector de rAd26, administrado con una dosis total de aproximadamente 1, 2, 3, 4, 5, 6, 7, 8, 9 o 10 x10¹⁰ partículas víricas (pv), p. ej., aproximadamente 5x10¹⁰ pv (para todos los vectores juntos). Los vectores pueden estar premezclados, p. ej., en una proporción de 1:1:1:1. La administración de sensibilización se puede repetir después de la administración de sensibilización inicial, p. ej., 8, 9, 10, 11, 12, 13, 14, 15 o 16 semanas después de la administración de sensibilización inicial. En esta realización, se refuerza una respuesta inmunitaria administrando la

misma vacuna con el vector adenovírico utilizada para la administración de sensibilización junto con una proteína Env gp140 del VIH aislada, p. ej., proteína gp140 del clado C (que comprende los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7), o la proteína gp140 mosaico (que comprende los restos 30-724 de la secuencia de aminoácidos de la SEQ ID NO: 36), o la proteína gp140 del clado C y la proteína gp140 mosaico, con una dosis total de aproximadamente 50-300 µg de proteína, 50, 100, 150, 200, 250 o 300 microgramos, o cualquier cantidad intermedia, de la proteína gp140 del clado C, o, p. ej., 50, 100, 150, 200, 250 o 300 microgramos, o cualquier cantidad intermedia, de una combinación de la proteína gp140 del clado C y la proteína gp140 mosaico (p. ej., en un proporción 1:1, ya sea mezcladas o administradas por separado). Preferiblemente, la proteína gp140 se administra junto con un adyuvante, p. ej., fosfato de aluminio. La administración del adenovirus más la proteína gp140 para reforzar la respuesta inmunitaria se puede realizar aproximadamente 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 o 30 semanas, o en cualquier momento intermedio, después de la administración de sensibilización inicial. La administración de refuerzo se puede repetir, p. ej., aproximadamente 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53 o 54 semanas, o cualquier momento intermedio, después de la administración de sensibilización inicial. Todas las administraciones de acuerdo con esta realización se realizan preferiblemente mediante la vía intramuscular.

Realizaciones

5

10

15

25

30

40

45

La realización 1 es un ácido nucleico que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8, o la SEQ ID NO: 8 que tiene una o más mutaciones seleccionadas del grupo que consiste en (i) I529P, (ii) K480E, y (iii) una combinación de EK479-480RRRR, I529P, A471C y T575C.

La realización 2 es un ácido nucleico de acuerdo con la realización 1, en donde la proteína de la envoltura del VIH sintética comprende además una secuencia señal, por ejemplo, una secuencia señal que comprende la secuencia de aminoácidos seleccionada del grupo que consiste en las SEQ ID NO: 9 a 12, preferiblemente la SEQ ID NO: 9. La realización 3 es un ácido nucleico de acuerdo con la realización 1 o 2, en donde la proteína de la envoltura del VIH sintética comprende además un dominio transmembrana, por ejemplo un dominio transmembrana que tiene la secuencia de aminoácidos de la SEQ ID NO: 13, preferiblemente la proteína de la envoltura del VIH sintética comprende además la SEQ ID NO: 37 que está fusionada con el extremo C de la SEQ ID NO: 8 y el extremo N del dominio transmembrana.

La realización 4 es un ácido nucleico de acuerdo con la realización 3, en donde la proteína de la envoltura de VIH sintética comprende además un fragmento de un dominio citoplasmático, preferiblemente un fragmento de un dominio citoplasmático que comprende la secuencia de aminoácidos de la SEQ ID NO: 14 o los restos de aminoácidos 1-4 de esta (es decir, NRVR).

La realización 5 es un ácido nucleico de una cualquiera de las realizaciones anteriores 1-4, en donde la proteína de la envoltura del VIH sintética comprende la secuencia de aminoácidos de la SEQ ID NO: 18.

La realización 6 es un ácido nucleico de acuerdo con la realización 1 o 2, en donde la proteína de la envoltura del VIH sintética (a) comprende además un dominio de trimerización seleccionado del grupo que consiste en GCN4, fibritina (dominio foldon), por ejemplo, un dominio de trimerización que tiene la secuencia de aminoácidos de la SEQ ID NO: 15 o la SEQ ID NO: 16, preferiblemente la SEQ ID NO: 15 o (b) comprende la SEQ ID NO: 8 con una

combinación de las siguientes mutaciones: EK479-480RRRR, I529P, A471C y T575C. La realización 7 es un ácido nucleico de acuerdo con la realización 6, en donde la proteína de la envoltura del VIH

sintética comprende la secuencia de aminoácidos de la SEQ ID NO: 19. La realización 8 es un ácido nucleico de acuerdo con la realización 5, en donde la proteína de la envoltura del VIH

sintética consiste en la secuencia de aminoácidos de la SEQ ID NO: 18. La realización 9 es un ácido nucleico de acuerdo con la realización 7, en donde la proteína de la envoltura del VIH

La realización 10 es un vector que comprende el ácido nucleico de una cualquiera de las realizaciones 1-9, en donde el ácido nucleico está ligado operativamente a una secuencia promotora.

La realización 11 es un vector de acuerdo con la realización 10 que es un vector vírico, preferiblemente un vector de adenovirus y más preferiblemente un vector de adenovirus 26.

sintética consiste en la secuencia de aminoácidos de la SEQ ID NO: 19.

La realización 12 es una célula aislada que comprende el vector de la realización 10 o la realización 11.

La realización 13 es una composición que comprende una cantidad inmunogénicamente eficaz del vector de la realización 10 o la realización 11 y un vehículo.

La realización 14 es una combinación de vacuna, que comprende una primera composición que comprende una cantidad inmunogénicamente eficaz de un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica una proteína de la envoltura del VIH sintética que tiene la secuencia de aminoácidos de la SEQ ID NO: 18, una segunda composición que comprende una cantidad inmunogénicamente eficaz de un segundo vector de adenovirus, preferiblemente un segundo vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5 y, opcionalmente, al menos una composición adicional que comprende una cantidad inmunogénicamente eficaz de al menos uno seleccionado del grupo que consiste en un vector que codifica un polipéptido antigénico que tiene la secuencia de aminoácidos seleccionada del grupo que consiste en las SEQ ID NO: 1-4, 28 y 29, y un polipéptido antigénico del VIH aislado que tiene los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 o los restos 30-724 de la secuencia de aminoácidos de la SEQ ID NO: 36, en donde la primera composición, la segunda composición y la composición adicional están presentes en la misma composición o en una o más composiciones diferentes.

La realización 15 es un método para inducir una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto que lo necesite, comprendiendo el método administrar al sujeto la composición de la realización 13 o la combinación de vacuna de la realización 14.

La realización 16 es una composición de la realización 13 o una combinación de vacuna de la realización 14, que comprende un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18, un segundo vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5, uno o más vectores de adenovirus adicionales que codifican uno o más polipéptidos antigénicos adicionales que comprenden la secuencia de aminoácido seleccionada del grupo que consiste en las SEQ ID NO: 1-4, 28 y 29, y un polipéptido antigénico del VIH aislado que comprende los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 o los restos 30-724 de la SEQ ID NO: 36, para su uso en la inducción de una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH).

5

10

20

30

45

55

60

y 29.

- La realización 17 es una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8, o la SEQ ID NO: 8 que tiene una o más mutaciones seleccionadas del grupo que consiste en (i) I529P, (ii) K480E, y (iii) una combinación de EK479-480RRRR, I529P, A471C y T575C.
 - La realización 18 es una proteína de la envoltura del VIH sintética de la realización 17, que comprende la secuencia de aminoácidos de la SEQ ID NO: 8 con una combinación de las mutaciones EK479-480RRRR, I529P, A471C y T575C, o los restos 30-704 de la secuencia de aminoácidos de la SEQ ID NO: 18 o los restos 30-686 de la SEQ ID NO: 19.
 - La realización 19 es una composición de la realización 13, que comprende además uno o más vectores de expresión adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales y/o uno o más polipéptidos antigénicos del VIH aislados.
- La realización 20 es una composición de la realización 13 que comprende un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica una proteína de la envoltura del VIH sintética que consiste en la secuencia de aminoácidos de la SEQ ID NO: 18.
 - La realización 21 es una composición de acuerdo con la realización 20 que comprende además un segundo vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5 y opcionalmente uno o más vectores de adenovirus adicionales, preferiblemente vectores de adenovirus 26, que codifican uno o más polipéptidos antigénicos del VIH adicionales que comprenden las secuencias de aminoácidos de las SEQ ID NO: 1-4, 28 y 29.
 - La realización 22 es un método para producir una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto que lo necesite, comprendiendo el método administrar al sujeto una composición de acuerdo con una cualquiera de las realizaciones 19, 20 o 21.
- La realización 23 es un método para producir una composición o una combinación de vacuna, que comprende combinar el vector de la realización 10 o la realización 11 con un vehículo y, opcionalmente, uno o más vectores adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales y/o uno o más polipéptidos antigénicos del VIH aislados en una o más composiciones, junto con un vehículo.
- La realización 24 es una combinación de vacuna para inducir una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto, que comprende:
 - (i) una primera composición que comprende una cantidad inmunogénicamente eficaz de un vector de expresión que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8 o la SEQ ID NO: 8 que tiene una o más mutaciones seleccionadas del grupo que consiste en (i) I529P, (ii) K480E, y (iii) una combinación de EK479-480RRRR, I529P, A471C y T575C,y un vehículo; y (ii) una segunda composición que comprende una cantidad inmunogénicamente eficaz de un polipéptido
 - (ii) una segunda composición que comprende una cantidad inmunogénicamente eficaz de un polipéptido antigénico del VIH aislado y un vehículo,
- en donde una de la primera y segunda composiciones se destina a la inmunización de sensibilización y la otra composición se destina a la inmunización de refuerzo, y
 - en donde la combinación de vacuna comprende además opcionalmente una cantidad inmunogénicamente eficaz de uno o más vectores de expresión adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales, y el vector o los vectores de expresión adicionales están incluidos en la primera o la segunda composición o una o más composiciones adicionales que se van a utilizar junto con la primera o la segunda composición.
 - La realización 25 es una combinación de vacuna de acuerdo con la realización 24, en donde la primera composición comprende un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18; el polipéptido antigénico del VIH aislado comprende los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 o los restos 30-724 de la SEQ ID NO: 36; y el vector o los vectores de expresión adicionales son vectores de adenovirus, preferiblemente vectores de adenovirus 26, que codifican uno o más polipéptidos antigénicos del VIH adicionales que comprenden las secuencias de aminoácidos seleccionadas del grupo que consiste en las SEQ ID NO: 1-5, 28
- La realización 26 es un método para inducir una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto que lo necesite, comprendiendo el método:

5

10

15

20

25

30

35

40

50

60

- (i) administrar al sujeto una primera composición que comprende una cantidad inmunogénicamente eficaz de un vector de expresión que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8 o la SEQ ID NO: 8 que tiene una o más mutaciones seleccionadas del grupo que consiste en (i) I529P, (ii) K480E, y (iii) una combinación de EK479-480RRRR, I529P, A471C y T575C,y un vehículo;
- (ii) administrar al sujeto una segunda composición que comprende una cantidad inmunogénicamente eficaz de un polipéptido antigénico del VIH aislado y un vehículo; y
- (iii) opcionalmente, administrar al sujeto una cantidad inmunogénicamente eficaz de uno o más vectores de expresión adicionales que codifican uno o más polipéptidos antigénicos del VIH adicionales,

en donde las etapas (i) y (ii) se llevan a cabo en cualquier orden, siendo una de las etapas para la inmunización de sensibilización y la otra etapa para la inmunización de refuerzo, y preferiblemente, la cantidad eficaz, opcional del vector o los vectores de expresión adicionales se administra junto con la primera composición.

- La realización 27 es un método de acuerdo con la realización 26, en donde la primera composición comprende un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica una proteína de la envoltura del VIH sintética que tiene la secuencia de aminoácidos de la SEQ ID NO: 18 y un segundo vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5; la segunda composición comprende un polipéptido antigénico del VIH aislado que tiene los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 o los restos 30-724 de la SEQ ID NO: 36; y el vector o los vectores de expresión adicionales opcionales son vectores de adenovirus, preferiblemente vectores de adenovirus 26, que codifican uno o más polipéptidos antigénicos del VIH adicionales que comprenden las secuencias de aminoácidos seleccionadas del grupo que consiste en las SEQ ID NO: 28 y 29; en donde la primera composición se administra al sujeto, opcionalmente junto con el vector o los vectores de expresión adicionales, una o más veces para la inmunización de sensibilización y la segunda composición se administra al sujeto una o más veces para la inmunización de refuerzo.
- La realización 28 es una proteína de la envoltura del VIH sintética que consiste en la secuencia de aminoácidos de la SEQ ID NO: 18 o la SEQ ID NO: 19, con o sin la secuencia señal.
- La realización 29 es una combinación de vacuna que comprende uno o más vectores juntos que comprenden secuencias de ácido nucleico que codifican (i) una primera proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8 y (ii) una segunda proteína de la envoltura del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5.
- La realización 30 es una combinación de vacuna de acuerdo con la realización 29, en donde la primera proteína de la envoltura del VIH sintética comprende la secuencia de aminoácidos de la SEQ ID NO: 18.

La realización 31 es una combinación de vacuna que comprende los siguientes componentes:

- (i) un vector de Ad26 que codifica una proteína de la envoltura del VIH sintética que consiste en la secuencia de aminoácidos de la SEQ ID NO: 18; y
- (i) un vector de Ad26 que codifica una proteína de la envoltura del VIH que consiste en la secuencia de aminoácidos de la SEQ ID NO: 5.

La realización 32 es una combinación de vacuna de acuerdo con la realización 31, que comprende además el siguiente componente:

- (iii) un vector de Ad26 que codifica antígenos del VIH que consiste en la secuencia de aminoácidos de la SEQ ID NO: 28.
- La realización 33 es una combinación de vacuna de acuerdo con la realización 31 o 32, que comprende además el siguiente componente:
 - (iv) un vector de Ad26 que codifica antígenos del VIH que consiste en la secuencia de aminoácidos de la SEQ ID NO: 29.
 - La realización 34 es una combinación de vacuna de acuerdo con una cualquiera de las realizaciones 31-33, que comprende además el siguiente componente:
 - (v) un polipéptido antigénico del VIH aislado que tiene los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 o los restos 30-724 de la secuencia de aminoácidos de la SEQ ID NO: 36, que comprende opcionalmente un adyuvante.
- La realización 35 es un método para inducir una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto humano que lo necesite, comprendiendo el método:
 - (a) administrar al sujeto: (i) un vector de rAd26 que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18; (ii) un vector de rAd26 que codifica un antígeno que comprende la secuencia de aminoácidos de la SEQ ID NO: 5; (iii) un vector de rAd26 que codifica un antígeno que comprende la secuencia de aminoácidos de la SEQ ID NO: 28; y (iv) un vector de rAd26 que codifica un antígeno que comprende la secuencia de aminoácidos de la SEQ ID NO: 29; preferiblemente en donde los vectores de rAd26 se administran en una proporción de aproximadamente 1:1:1:1 con una dosis total de aproximadamente 1-10x10¹⁰ partículas víricas (pv), p. ej., 5x10¹⁰ pv;
 - (b) repetir la etapa (a) aproximadamente 10-14 semanas, p. ej., 12 semanas después de la etapa (a);
- (c) administrar al sujeto: (i) un vector de rAd26 que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18; (ii) un vector de rAd26 que codifica un antígeno

que comprende la secuencia de aminoácidos de la SEQ ID NO: 5; (iii) un vector de rAd26 que codifica un antígeno que comprende la secuencia de aminoácidos de la SEQ ID NO: 28; (iv) un vector de rAd26 que codifica un antígeno que comprende la secuencia de aminoácidos de la SEQ ID NO: 29; (v) la proteína gp140 del VIH aislada que tiene la secuencia de los aminoácidos 30-708 de la SEQ ID NO: 7; y (vi) el adyuvante de tipo fosfato de aluminio; preferiblemente en donde los vectores de rAd26 se administran en una proporción de aproximadamente 1:1:1:1 con una dosis total de aproximadamente 1-10x10¹⁰ partículas víricas (pv), p ej., 5x10¹⁰ pv en donde la proteína gp140 del VIH aislada se administra con una dosis de aproximadamente 50-300 microgramos, p. ej., 250 microgramos; aproximadamente 20-28 semanas, p. ej., 24 semanas después de la etapa (a); y

(d) repetir la etapa (c) aproximadamente 42-54 semanas, p. ej., 48 semanas después de la etapa (a).

La realización 36 es un método para inducir una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto humano que lo necesite, comprendiendo el método:

(a) administrar al sujeto: (i) un vector de rAd26 que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18; (ii) un vector de rAd26 que codifica un antígeno que comprende la secuencia de aminoácidos de la SEQ ID NO: 5; (iii) un vector de rAd26 que codifica un antígeno que comprende la secuencia de aminoácidos de la SEQ ID NO: 28; y (iv) un vector de rAd26 que codifica un antígeno que comprende la secuencia de aminoácidos de la SEQ ID NO: 29; preferiblemente en donde los vectores de rAd26 se administran en una proporción de aproximadamente 1:1:1:1 con una dosis total de aproximadamente 1-10x10¹⁰ partículas víricas (pv), p. ej., 5x10¹⁰ pv;

(b) repetir la etapa (a) aproximadamente 10-14 semanas, p. ej., 12 semanas después de la etapa (a);

(c) administrar al sujeto: (i) un vector de rAd26 que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 18; (ii) un vector de rAd26 que codifica un antígeno que comprende la secuencia de aminoácidos de la SEQ ID NO: 5; (iii) un vector de rAd26 que codifica un antígeno que comprende la secuencia de aminoácidos de la SEQ ID NO: 28; (iv) un vector de rAd26 que codifica un antígeno que comprende la secuencia de aminoácidos de la SEQ ID NO: 29; (v) la proteína gp140 del VIH aislada que tiene la secuencia de los aminoácidos 30-708 de la SEQ ID NO: 7; (vi) la proteína gp140 del VIH aislada que tiene la secuencia de los aminoácidos 30-724 de la SEQ ID NO: 36; y (vii) el adyuvante de tipo fosfato de aluminio; preferiblemente en donde los vectores de rAd26 se administran en una proporción de aproximadamente 1:1:1:1 con una dosis total de aproximadamente 1-10x10¹⁰ partículas víricas (pv), p. ej., 5x10¹⁰ pv y en donde las proteínas gp140 del VIH aisladas se administran con una proporción de aproximadamente 1:1 con una dosis total de aproximadamente 50-300 microgramos, p. ej., 250 microgramos; aproximadamente 20-28 semanas, p. ej., 24 semanas después de la etapa (a); y

(d) repetir la etapa (c) aproximadamente 42-54 semanas, p. ej., 48 semanas después de la etapa (a).

Ejemplos

5

10

15

20

25

30

35

40

45

50

55

60

65

Ejemplo 1: Diseño de las secuencias de antígenos de la envoltura del VIH

Se diseñaron varias secuencias de antígenos de la envoltura del VIH que tenían similitud de secuencia con el antígeno del VIH mosaico mos2Env (SEQ ID NO: 6; descrito también previamente en el documento WO 2010/059732). Las secuencias unidas a la membrana, recién diseñadas, se basaron en (una combinación de) secuencias de tipo silvestre totalmente naturales de proteínas de la envoltura del VIH o una quimera de la secuencia de mos2Env y secuencias de proteínas de la envoltura del VIH de tipo silvestre. Además de las secuencias de proteínas de la envoltura completas (véase la FIG. 1A), también se diseñaron secuencias que tenían un truncamiento C-terminal del dominio citoplasmático (véase, por ejemplo, la FIG. 1C). Véase también p. ej., Schiernle et al., PNAS 1997; Abrahamyan et al., J Virol 2005); Edwards et al., J. Virology, 2002, 76:2683-2691. También se prepararon variantes solubles mediante un truncamiento C-terminal antes de la región transmembrana (TM), que fue reemplazada por un dominio de trimerización, tal como un dominio de trimerización GCN4 (véase, por ejemplo, la FIG. 1B). Estas variantes solubles se convirtieron además en una variante monocatenaria mediante la mutación del sitio de escisión de furina, inhibiendo así el procesamiento del dominio extracelular de la proteína de la envoltura para obtener las subunidades gp120 y gp41.

De todas las construcciones generadas y probadas, las construcciones basadas en C4 tenían las propiedades más óptimas, por ejemplo, una buena procesabilidad, plegado, inmunogenicidad, etc. y estas se seleccionaron para estudios adicionales. También se generaron una variante soluble de la construcción C4 que tenía un dominio de trimerización GCN4 en lugar del dominio transmembrana (sC4, FIG. 1B) y una variante que comprendía un fragmento de 7 aminoácidos del dominio citoplasmático (C4D7, FIG. 1C) y se examinaron en estudios adicionales. Las secuencias de aminoácidos de C4, sC4, y C4D7 se muestran en las SEQ ID NO: 17, 19, y 18, respectivamente. Las secuencias que codifican estas se muestran en las SEQ ID NO: 25, 27, y 26, respectivamente. La construcción C1 tiene una secuencia del dominio extracelular basada en la secuencia de mos2Env (SEQ ID NO: 6). También se generaron una variante soluble de la construcción C1 que tiene un dominio de trimerización GCN4 en lugar del dominio transmembrana (sC1) y una variante que comprende un fragmento de 7 aminoácidos del dominio citoplasmático (C1D7), similar a sC4 y C4D7 tal como se muestra en las FIGS. 1B y 1C, respectivamente. La construcción C1 y sus variantes se utilizaron en estudios adicionales a efectos de comparación, ya que están basadas esencialmente en la secuencia de mos2Env de la técnica anterior. Las secuencias de aminoácidos de C1, sC1, y C1D7 se muestran en

las SEQ ID NO: 31,30, y 32, respectivamente. Las secuencias de ácidos nucleicos que codifican estas se muestran en las SEQ ID NO: 34, 33, y 35, respectivamente. Otras construcciones que se examinaron resultaron ser menos óptimas que las basadas en la construcción C4 y no se utilizaron para un desarrollo adicional.

5 Ejemplo 2: Expresión y plegamiento de las proteínas de la envoltura del VIH sintéticas

Se midieron el nivel de expresión, plegamiento y expresión en la superficie celular de las proteínas de la envoltura del VIH sintéticas.

10 Niveles de expresión

15

25

30

35

50

55

60

65

Las células HEK293F se transfectaron de manera transitoria con un plásmido que codifica las proteínas de la envoltura del VIH sintéticas solubles sC1 y sC4 tal como se describen en el Ejemplo 1. Se midieron los niveles de expresión de la proteína soluble en el sobrenadante utilizando una transferencia Western cuantitativa (QWB). Los resultados se muestran en la FIG. 2. Los bajos niveles de expresión para sC1 (que corresponde esencialmente a mos2Env con un dominio transmembrana añadido) coinciden con los recientes conocimientos respecto a mos2Env de los autores. Tal como demuestran los resultados, la variante sC4 de la invención mostró unos niveles de expresión significativamente más elevados que la variante sC1 (control).

20 <u>Plegamiento de las proteínas</u>

Se examinó el plegamiento de las proteínas midiendo la unión de las proteínas de la envoltura del VIH sintéticas solubles a un anticuerpo (MAb 17b) que se sabe que se une al sitio de unión del correceptor de la proteína de la envoltura del VIH, que está expuesto únicamente después de la unión de CD4, mediante un ensayo inmunoabsorbente ligado a enzima (ELISA). En particular, se examinó la unión de sC4 purificada para determinar la unión a MAb 17b con una unión anterior de sC4 a CD4 y sin una unión anterior de sC4 a CD4. Se utilizó sC1 purificada como control. La unión de MAb17 a sC4 sin una unión anterior de CD4 a la proteína de la envoltura es una indicación de una proteína de la envoltura parcialmente desplegada o en un estado previo al inicio del cambio conformacional (es decir, una Env inestable que adopta la conformación "abierta" en ausencia de unión de CD4). Los resultados del ensayo ELISA se muestran en las FIGS. 3A y 3B.

Como se muestra en la FIG. 3B, sC4 muestra una fuerte unión a MAb 17b con una unión anterior a CD4, pero no hay una unión detectable a MAb 17b sin una unión anterior a CD4. Por el contrario, como se muestra en la FIG. 3A, sC1 mostró una unión a MAb 17 mucho menor tanto con unión anterior a CD4 como sin ella. Los resultados sugieren que sC4 tiene un patrón de plegamiento correcto, sin una exposición del sitio de unión del correceptor antes de la unión a CD4.

El plegamiento de las proteínas también se analizó mediante electroforesis en gel de poliacrilamida (PAGE) en condiciones nativas de sC1 y sC4 para evaluar la estructura cuaternaria de las variantes solubles de la proteína y la posible formación de puentes disulfuro incorrectos entre los protómeros. Después de la electroforesis en un gel en condiciones nativas, se detectó la proteína en el gel mediante un análisis de transferencia Western. Tal como muestran los resultados en la FIG. 4, la mayoría de sC4 está presente en un estado trimérico, que es la estructura cuaternaria correcta.

45 En conjunto, los resultados de los experimentos del plegamiento de proteínas demuestran que la proteína de la envoltura del VIH sintética soluble sC4 tiene el perfil de plegamiento deseado, que ha mejorado en comparación con el perfil de plegamiento del antígeno mos2Env existente (representado por sC1).

Expresión en la superficie celular

También se estudió la expresión en la superficie celular de las variantes unidas a la membrana de las proteínas de la envoltura del VIH C1 (completa), C4 (completa, véase la FIG. 1A), C1D7 y C4D7. Las células HEK293T se transfectaron de manera transitoria solamente con un plásmido que codifica eGFP (control negativo, CN) o con un plásmido que codifica eGFP junto con una construcción de expresión que codifica una variante de una proteína de la envoltura del VIH. Dos días después de la transfección, las células se sometieron a un análisis por clasificación celular activada por fluorescencia (FACS) tras la exposición a varios anticuerpos policlonales y monoclonales dirigidos contra gp120 y anticuerpos secundarios, y después se examinaron para determinar los niveles de expresión en la superficie celular de la proteína de la envoltura. Se evaluó la calidad de las variantes de la envoltura determinando los niveles de expresión globales utilizando un anticuerpo policlonal anti-gp120 y evaluando la unión relativa de los anticuerpos ampliamente neutralizantes PG9 y PG16, que presentan una dependencia de la estructura cuaternaria, y se unen preferiblemente al trímero de la envoltura plegado correctamente.

Los resultados de los experimentos de expresión en la superficie celular se muestran en la FIG. 5. Los niveles de expresión en la superficie de las variantes truncadas C1D7 y C4D7 según se midieron utilizando un anticuerpo antigp120, son mucho más elevados que los niveles de expresión en la superficie de sus homólogos completos, C1 y C4, respectivamente. Esto confirma que la deleción de 144 restos del extremo carboxi de Env incrementa los niveles de

expresión en la superficie de la envoltura. La construcción C4 completa de la invención también mostró una mejor unión a PG9 y PG16 en comparación con C1 completa, lo que sugiere que la secuencia de la envoltura C4 está plegada adecuadamente (es decir, un trímero) en la superficie celular.

Los resultados también demuestran que la variante C1D7, que es esencialmente Mos2Env con un dominio transmembrana añadido y 7 aminoácidos del dominio citoplasmático, se puede expresar en la superficie de células HEK293T. Esto contrasta con la construcción soluble en Ad26.mos2Env, que no se puede expresar con niveles detectables en la superficie cuando se transfecta a células A549. Sin embargo, la unión relativa a PG9 y PG16 es apenas detectable por encima del fondo, lo que sugiere que la secuencia de la envoltura C1D7 está plegada de manera deficiente y, probablemente, no está presente como un trímero intacto en la superficie celular.

En general, la variante de la envoltura C4D7 tiene el perfil de unión al anticuerpo más óptimo, con una expresión de gp120 mayor que la de su homólogo completo C4 y con un aumento en la unión a PG9 y PG16 de más de 15 veces en comparación con C1 y C1D7 (FIG. 5).

Ejemplo 3: Estabilidad de los vectores que codifican las secuencias de la envoltura del VIH

15

20

60

65

Trabajos previos en los laboratorios de los autores (no publicados) indicaron que los vectores de adenovirus 26 (Ad26) que codifican la secuencia del antígeno mos2Env mostraban unas proporciones PV/UI relativamente altas (lo que indica una calidad menor de los lotes de productos de adenovirus) y además que tales vectores mostraban problemas de estabilidad. En consecuencia, era importante examinar la estabilidad de las construcciones de las proteínas de la envoltura del VIH sintéticas de la invención en un contexto de adenovirus.

Se generaron vectores de Ad26 recombinantes (rAd26) que codifican las secuencias de antígenos del VIH de la invención C4, C4D7 y sC4 tal como se ha descrito anteriormente en el Ejemplo 1 en células PER.C6 (denominados respectivamente "rAd26.C4", "rAd26.C4D7", y "rAd26.sC4", respectivamente). Se recogieron clones del vector (placas) y se aumentó de escala para generar los lotes de investigación. Se aumentaron de escala como máximo 5 clones víricos (placas) hasta un formato T25 y se realizaron pases en serie durante 10 pases en un formato T25 (siendo los pases 1-3 las etapas de transfección y purificación de la placa, seguido de 10 pases en un formato T25, lo que dio como resultado un total de 13 pases). Se evaluó la estabilidad genética con un número de pases víricos (npv) de 3, 5, 10 y 13 mediante un ensayo de PCR del casete del transgén E1, seguido de secuenciación en npv 13. Los resultados se muestran en la FIG. 6.

Los vectores de rAd26 que codifican C4 completa (rAd26.C4) mostraron unas características de crecimiento deficientes, según se determinó por la ausencia de un efecto citopatógeno completo (CPE) en 2-3 días; inestabilidad genética, según se determina mediante las deleciones de la región del casete del transgén E1; o una combinación de estas (FIG. 6). Debido a las características de crecimiento deficientes y la inestabilidad genética observada, se dejó de considerar este vector que codifica C4 completa.

Por el contrario, para los vectores de rAd26 que codifican C4D7 (rAd26.C4D7) y sC4 (rAd26.sC4), todas las placas propagadas siguieron siendo genéticamente estables durante el transcurso del experimento (FIG. 6). Así pues, las construcciones de sC4 y C4D7 novedosas tuvieron un comportamiento mejor que la construcción de mos2Env original en lo que respecta a la estabilidad en un contexto de vector adenovírico. La estabilidad genética examinada hasta un npv 13 representa una propagación varios pases más allá de la utilizada en la preparación a escala industrial de los vectores.

Ejemplo 4: Expresión y antigenicidad in vivo de las secuencias de la envoltura del VIH en vectores de adenovirus

Se evaluaron la expresión y la antigenicidad de rAd26.C4D7 y rAd26.sC4 por separado o combinados con un vector de Ad26 recombinante que codifica mos1Env (SEQ ID NO: 5) (en lo sucesivo "rAd26.mos1 Env") en células A549 (línea celular humana) transducidas con un vector *in vitro* (datos no mostrados). Los análisis por citometría de flujo demostraron que todos los antígenos se expresaron en los cultivos celulares transducidos con 2x10⁴ partículas víricas (pv) de los antígenos de la envoltura solos como controles o con 1x10⁴ pv de 2 antígenos Env combinados mediante transducción de adenovirus. Todas las transducciones contuvieron adicionalmente dosis únicas (1x10⁴ pv) de vectores de adenovirus que codifican mos1GagPol ("rAd26.mos1GagPol") y mos2GagPol ("rAd26.mos2GagPol") (Barouch et al, Nat Med 2010, 16:319-323), de manera que las combinaciones de los vectores evaluadas mostraron las mismas proporciones relativas de los diferentes vectores adenovíricos como se pretendía para su uso preclínico y clínico. Preferiblemente, los vectores que codifican las proteínas de la envoltura del VIH sintéticas de la invención se combinan con los vectores que codifican los antígenos mos1GagPol y mos2GagPol para su uso clínico.

La combinación de rAd26.mos1 Env y rAd26.C4D7 generaba una cobertura máxima de los epítopos evaluados según se determina mediante la unión de anticuerpos monoclonales. En particular, la exposición del epítopo PG16, que fue debida a la transformación con Ad26.C4D7, resulta prometedor para su uso como una vacuna ya que PG16 representa un anticuerpo monoclonal ampliamente neutralizante que reconoce la región bucle V1/V2 de Env del VIH-1 (Walker et al., Science. 2009). Por lo tanto, la proteína de la envoltura del VIH sintética de la invención obtenida a partir de la secuencia de C4 aumenta la amplitud de la respuesta inmunitaria contra la proteína de la envoltura del VIH en

comparación con la respuesta inmunitaria generada únicamente con mos1Env. En el estudio RV144, se ha demostrado que las respuestas de anticuerpos inducidas por la vacuna dirigidos hacia la región de la proteína de la envoltura se correlacionan con la protección frente a la infección por VIH-1 (Haynes et al., N Engl J Med. 2012) y, por lo tanto, la proteína de la envoltura del VIH sintética de la invención es una candidata prometedora para incluirla en las pautas de vacunación contra el VIH.

Ejemplo 5: Inmunogenicidad de los vectores que codifican proteínas de la envoltura del VIH sintéticas

Se examinaron en conejos las secuencias de proteínas de la envoltura del VIH sintéticas de la invención en un contexto de vector de Ad26 para determinar si estas construcciones representaban una alternativa inmunogénica a la construcción rAd26.mos2Env.

La inmunogenicidad de un vector de adenovirus que codifica mos1Env (rAd26.mos1Env; SEQ ID NO: 5) se examinó solo y combinado con vectores de adenovirus que codifican las proteínas de la envoltura del VIH sintéticas de la invención (rAd26.C4D7 y rAd26.sC4; que comprenden la SEQ ID NO: 8, en particular las SEQ ID NO: 18 y 19, respectivamente). En todos los casos, también se administraron vectores de adenovirus 26 que codifican los antígenos mos1GagPol y mos2GagPol (rAd26.mos1GagPol [SEQ ID NO: 28] y rAd26.mos2GagPol [SEQ ID NO: 29], respectivamente. Más específicamente, se comparó la inmunogenicidad de rAd26.mos1Env solo (vacuna trivalente: rAd26.mos1GagPol, rAd26.mos2GagPol y rAd26.mos1Env) con la inmunogenicidad de rAd26.mos1Env en combinación con uno de rAd26.C4D7 o rAd26.sC4 (vacuna tetravalente: la administración de rAd26.mos1GagPol, rAd26.mos1GagPol, rAd26.mos1Env y rAd26.c4D7; o la administración de rAd26.mos1GagPol, rAd26.mos2GagPol, rAd26.mos1Env y rAd26.sC4). Esta comparación de la vacuna trivalente, que carece de cualquier vector que codifica las proteínas de la envoltura del VIH sintéticas de la invención, con la vacuna tretavalente, que contiene vectores que codifican las proteínas de la envoltura del VIH sintéticas de la invención, permite determinar si las proteínas de la envoltura del VIH de la invención contribuyen a la amplitud de la protección.

La administración se realizó en pautas de vacunación, en las que se administraron estos vectores de Ad26 las semanas 0 y 6 como una doble sensibilización y una proteína gp140 del clado C (como una proteína Env gp140 trivalente que tiene la SEQ ID NO: 7 sin la secuencia del péptido señal de los restos 1-29, véase también el documento WO 2010/042942) las semanas 12 y 18 como un doble refuerzo (véase p. ej., Barouch et al., 2015, Science 349: 320-324). La Tabla 1 describe las pautas de vacunación utilizadas para el presente estudio. rAd26.Vacío se refiere a un vector de control que carece de cualquier gen que codifica una secuencia para una proteína antigénica del VIH. Cada grupo contuvo seis conejos.

Tabla 1: Pautas de vacunación examinadas en el estudio de la inmunogenicidad en conejos

	Primera y seg	unda inmun	izaciones	Tercera y	cuarta inmui	nizaciones	N=
Grupo	adenovectores	Dosis (pv)	Dosis total (pv)	Refuerzo con proteína	Dosis (ug)	Adyuvante	
	rAd26.Mos1Env	2,5x10 ¹⁰					
1	rAd26.Mos1GagPol	1,25x10 ¹⁰	5x10 ¹⁰	GP140 (clado C)	10	AdjuPhos 250 μg	6
	rAd26.Mos2Gagpol rAd26.Mos1Env	1,25x10 ¹⁰					
	rAd26.Mos1Env	1,25x10 ¹⁰					
2	rAd26.C4D7	1,25x10 ¹⁰	5x10 ¹⁰	CD140 (alada C)	10	AdiuDhaa 250 ug	6
2	rAd26.Mos1GagPol	1,25x10 ¹⁰	5X 10.°	GP140 (clado C)	10	AdjuPhos 250 μg	0
	rAd26.Mos2Gagpol	1,25x10 ¹⁰					
	rAd26.Mos1Env	1,25x10 ¹⁰					
3	rAd26.sC4	1,25x10 ¹⁰	5x10 ¹⁰	GP140 (clado C)	10	AdiuDhaa 250 ug	6
3	rAd26.Mos1GagPol	1,25x10 ¹⁰	3810	GP 140 (Clado C)	10	AdjuPhos 250 μg	0
	rAd26.Mos2Gagpol	1,25x10 ¹⁰					
control	rAd26.Vacío	5x10 ¹⁰	5x10 ¹⁰	NA	0	AdjuPhos 250 μg	6

La comparación de la vacuna de Ad26 trivalente (que carece de los antígenos Env novedosos de la invención) con la vacuna de Ad26 tetravalente (que comprende los antígenos sC4 o C4D7 Env novedosos) permite examinar si los antígenos novedosos contribuyen a la amplitud de la protección. Se utilizó un ensayo de neutralización con células TZM-bl establecido [Montefiori DC. Methods Mol Biol 2009,485:395-405; Sarzotti-Kelsoe M et al., J Immunol Methods 2014,409:131-146] para medir la actividad neutralizante de los candidatos para la vacuna.

Los resultados se muestran en la Fig. 7 y se analizaron estadísticamente utilizando la vacuna trivalente (grupo 1 de la Tabla 1) como grupo de control y comparándola con cada una de las vacunas cuadrivalentes novedosas (grupos 2 y 3 de la Tabla 1).

24

40

45

5

10

15

20

25

30

En general, las adenoconstrucciones obtenidas a partir de C4 novedosas (es decir, que codifican las proteínas Env que comprenden la SEQ ID NO: 8, y que son una alternativa a mos2Env) fueron inmunogénicas después de dos inmunizaciones intramusculares homologas en conejos.

No se observó capacidad de neutralización de los sueros inmunológicos de conejo contra los pseudovirus del nivel 1B (no se muestran los datos), lo que no es inesperado ya que se sabe que tales virus resultan más difíciles de neutralizar.

La capacidad de neutralización de los pseudovirus de los sueros inmunológicos de conejo contra los virus de nivel 1A del clado B no se vio afectada por la adición de nuevos componentes (datos que no se muestran). Esto demuestra que el antígeno novedoso no interfirió de manera negativa con la inmunogenicidad del antígeno del clado B existente presente en la vacuna (aunque los nuevos componentes estuvieron dirigidos al clado C, no pudiendo excluirse a priori tal interferencia no deseable antes de haberla examinado).

La capacidad de neutralización de los pseudovirus de los sueros inmunológicos de conejo contra un virus del nivel 1A del clado C se vio significativamente potenciada en la inmunización con adeno que contiene C4D7 novedosa cuadrivalente (cuadrivalente, grupo 2) en comparación con la trivalente (que tiene únicamente mos1 Env) sola (grupo 1) (Fig 7 cuadro B). Además, la capacidad de neutralización de los pseudovirus de los sueros inmunológicos de conejo contra un virus del nivel 1A del clado C en la semana 8 se vio significativamente potenciada en la inmunización con adeno que contiene sC4 novedosa cuadrivalente (cuadrivalente, grupo 3) en comparación con la trivalente (que tiene únicamente mos1Env) sola (grupo 1) (Fig 7 cuadro B).

En conclusión, las construcciones C4D7 y sC4 codificadas en Ad26 fueron inmunogénicas y su adición aumentó la capacidad de unión y de neutralización de una vacuna que tiene mos1Env (principalmente clado B) como único componente Env codificado por Ad26, hacia las cepas del clado C (Fig 7B).

Ejemplo 6: Inmunogenicidad de las pautas de vacunación que incluyen los vectores que codifican proteínas de la envoltura del VIH sintéticas de la invención

Un estudio en conejos adicional evaluó la combinación del vector tetravalente Ad26.Mos4.HIV (que consiste en cuatro vectores adenovíricos: Ad26.Mos1GagPol [que codifica la SEQ ID NO: 28], Ad26.Mos2GagPol [que codifica la SEQ ID NO: 29], Ad26.Mos1Env [que codifica la SEQ ID NO: 5] y Ad26.Mos2SEnv [el nombre "C4D7" tal como se ha utilizado anteriormente también se refiere como "Mos2S"; este vector codifica la SEQ ID NO: 18 novedosa de acuerdo con la invención], en una mezcla 1:1:1:1 con una dosis total de 5x10⁹ pv), aplicada por vía intramuscular como inmunizaciones de doble sensibilización en las semanas 0 y 6, en combinación con refuerzos con la proteína Env del VIH-1 recombinante utilizando gp140 del clado C [que tiene la secuencia de los restos de aminoácidos 30-708 de la SEQ ID NO: 7], gp140 mosaico [que tiene la secuencia de los restos de aminoácidos 30-724 de la SEQ ID NO: 36] o la combinación de gp140 del clado C y gp140 mosaico, en las semanas 13 y 19. Estos refuerzos con proteína se aplicaron por vía intramuscular con una dosis total de 10 o 50 microgramos de proteína combinados con 250 mcg de adyuvante de tipo fosfato de aluminio formulado el día de la inmunización.

Los resultados indican que todas las pautas examinadas fueron inmunogénicas en todos los animales, induciendo títulos de anticuerpos elevados y una actividad de neutralización moderada contra los virus pseudotipados con Env del nivel 1. Si se utilizaba gp140 mosaico como antígeno vacuna, ya sea solo o combinado con gp140 del clado C, los títulos de ELISA específicos de gp140 mosaico y el reconocimiento de pseudovirus del Clado B aumentaron significativamente en la semana 15 en comparación con el grupo de referencia reforzado únicamente con gp140 del clado C. La magnitud del efecto global de la mejora fue moderada y mayor para el grupo reforzado con la combinación bivalente gp140 del clado C-gp140 mosaico en comparación con únicamente gp140 mosaico. En la semana 21 del estudio, estas diferencias desaparecieron y las respuestas inmunitarias medidas para las cohortes que recibieron los refuerzos bivalentes con gp140 del clado C-gp140 mosaico o los refuerzos monovalentes con gp140 del clado C fueron estadísticamente indistinguibles.

La pauta con la proteína bivalente mostró una inducción de títulos de ELISA y reconocimiento de pseudovirus del clado C comparables a la pauta de refuerzo solo con gp140 del clado C, lo que indica que la inclusión del inmunógeno relacionado con el clado B gp140 mosaico no tuvo un efecto negativo en la cobertura de los antígenos del clado C, a la vez que potenció significativamente la cobertura del clado B en la semana 15 del estudio.

Los datos confirman que el vector Ad26.Mos2SEnv que codifica un antígeno Env sintético de acuerdo con la invención se puede utilizar con éxito en las pautas de vacunación.

60 Referencias

10

25

30

35

40

45

50

55

- 1. Barouch et al, Nat Med 2010, 16: 319-323
- 2. WO 2010/059732
- 3. Schiernle et al., PNAS 94: 8640-8645, 1997
- 4. Abrahamyan et al., J Virol 79: 106-115, 2005
- 5. US20120076812

6. Barouch et al., Cell 155:1-9, 2013 7. Havenga, et al., 2006, J Gen Virol 87: 2135-43; 8. WO 03/104467 9. WO 2004/001032 5 10. WO 2007/104792 11. Abbink et al., (2007) Virol 81(9): 4654-63 12. Patente de los Estados Unidos n.º 7.270.811 13. Vogels et al., (2003) J Virol 77(15): 8263-71 14. WO 00/70071 15. WO2012/082918 10 16. Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, et al. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009,326:285-289. 17. Haynes BF, Gilbert PB, McElrath MJ, Zolla-Pazner S, Tomaras GD, Alam SM, et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N Engl J Med 2012,366:1275-1286. 18. Barouch et al. (2015) Science 349: 320-324 15 19. Montefiori DC. Measuring HIV neutralization in a luciferase reporter gene assay. Methods Mol Biol 2009.485:395-405. 20. Sarzotti-Kelsoe M, Bailer RT, Turk E, Lin CL, Bilska M, Greene KM, et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J Immunol Methods 20 2014,409:131-146. 21. Edwards et al., J. Virology, 2002, 76:2683-2691. LISTADO DE SECUENCIAS 25 <110> Janssen Vaccines & Prevention B.V. <120> Antígenos del virus de la inmunodeficiencia humana, vectores, composiciones y métodos de uso de los mismos 30 <130> 0265 EP P01 PRI <160> 37 <170> PatentIn versión 3.5 35 <210> 1 <211> 500 <212> PRT <213> Secuencia artificial 40 <220> <223> secuencia del antígeno mos1Gag mosaico

<400> 1

Met 1	Gly	Ala	Arg	Ala 5	Ser	Val	Leu	Ser	Gly 10	Gly	Glu	Leu	Asp	Arg 15	Trp
Glu	Lys	Ile	Arg 20	Leu	Arg	Pro	Gly	Gly 25	Lys	Lys	Lys	Tyr	Arg 30	Leu	Lys
His	Ile	Val 35	Trp	Ala	Ser	Arg	Glu 40	Leu	Glu	Arg	Phe	Ala 45	Val	Asn	Pro
Gly	Leu 50	Leu	Glu	Thr	Ser	Glu 55	Gly	Суз	Arg	Gln	Ile 60	Leu	Gly	Gln	Leu
Gln 65	Pro	Ser	Leu	Gln	Thr 70	Gly	Ser	Glu	Glu	Leu 75	Arg	Ser	Leu	Tyr	Asn 80
Thr	Val	Ala	Thr	Leu 85	Tyr	Cys	Val	His	Gln 90	Arg	Ile	Glu	Ile	Lys 95	Asp
Thr	Lys	Glu	Ala 100	Leu	Glu	Lys	Ile	Glu 105	Glu	Glu	Gln	Asn	Lys 110	Ser	Lys
Lys	Lys	Ala 115	Gln	Gln	Ala	Ala	Ala 120	Asp	Thr	Gly	Asn	Ser 125	Ser	Gln	Val
Ser	Gln 130	Asn	Tyr	Pro	Ile	Val 135	Gln	Asn	Ile	Gln	Gly 140	Gln	Met	Val	His
Gln 145	Ala	Ile	Ser	Pro	A rg 150	Thr	Leu	Asn	Ala	Trp 155	Val	Lys	Val	Val	Glu 160

Glu	Lys	Ala	Phe	Ser 165	Pro	Glu	Val	Ile	Pro 170	Met	Phe	Ser	Ala	Leu 175	Ser
Glu	Gly	Ala	Thr 180	Pro	Gln	Asp	Leu	Asn 185	Thr	Met	Leu	Asn	Thr 190	Val	Gly
Gly	His	Gln 195	Ala	Ala	Met	Gln	Met 200	Leu	Lys	Glu	Thr	Ile 205	Asn	Glu	Glu
Ala	A la 210	Glu	Trp	Asp	Arg	Val 215	His	Pro	Val	His	Ala 220	Gly	Pro	Ile	Ala
Pro 225	Gly	Gln	Met	Arg	Glu 230	Pro	Arg	Gly	Ser	Asp 235	Ile	Ala	Gly	Thr	Thr 240
Ser	Thr	Leu	Gln	Glu 245	Gln	Ile	Gly	Trp	Met 250	Thr	Asn	Asn	Pro	Pro 255	Ile
Pro	Val	Gly	Glu 260	Ile	Tyr	Lys	Arg	Trp 265	Ile	Ile	Leu	Gly	Leu 270	Asn	Lys
Ile	Val	Arg 275	Met	Tyr	Ser	Pro	Val 280	Ser	Ile	Leu	Asp	Ile 285	Arg	Gln	Gly
Pro	Lys 290	Glu	Pro	Phe	Arg	Asp 295	Tyr	Val	Asp	Arg	Phe 300	Tyr	Lys	Thr	Leu
Arg 305	Ala	Glu	Gln	Ala	Ser 310	Gln	Asp	Val	Lys	Asn 315	Trp	Met	Thr	Glu	Thr 320
Leu	Leu	Val	Gln	As n 325	Ala	Asn	Pro	Asp	Cys 330	Lys	Thr	Ile	Leu	Lys 335	Ala
Leu	Gly	Pro	Ala 340	Ala	Thr	Leu	Glu	Glu 3 4 5	Met	Met	Thr	Ala	Cys 350	Gln	Gly
Val	Gly	Gly 355	Pro	Gly	His	Lys	Ala 360	Arg	Val	Leu	Ala	Glu 365	Ala	Met	Ser
Gln	Val 370	Thr	Asn	Ser	Ala	Thr 375	Ile	Met	Met	Gln	Arg 380	Gly	Asn	Phe	Arg
As n 385	Gln	Arg	Lys	Thr	Val 390	Lys	Cys	Phe	Asn	Cys 395	Gly	Lys	Glu	Gly	His 400
Ile	Ala	Lys	Asn	Cys 405	Arg	Ala	Pro	Arg	Lys 410	Lys	Gly	Cys	Trp	Lys 415	Cys

	Gly	Lys	Glu	Gly 420	His	Gln	Met	Lys	Asp 425	Cys	Thr	Glu	Arg	Gln 430		Asn
	Phe	Leu	Gly 435	Lys	Ile	Trp	Pro	Ser 440	Asn	Lys	Gly	Arg	Pro 445	Gly	Asn	Phe
	Leu	Gln 450	Asn	Arg	Pro	Glu	Pro 4 55	Thr	Ala	Pro	Pro	Glu 460	Glu	Ser	Phe	Arg
	Phe 465	Gly	Glu	Glu	Thr	Thr 470	Thr	Pro	Ser	Gln	Lys 475	Gln	Glu	Pro	Ile	Asp 480
	Lys	Glu	Met	Tyr	Pro 485	Leu	Ala	Ser	Leu	Lys 490	Ser	Leu	Phe	Gly	Asn 495	Asp
	Pro	Ser	Ser	Gln 500												
<210> 2 <211> 4 <212> F <213> 3	191 PRT	ncia a	rtificia	I												
<220> <223> s	SACUA	ncia d	al antí	aeno i	m0e2(⊋aa m	neaire	2								
<400> 2		icia u	cı anıı	genon	110320	Jay III	Osaici	J								
	Met 1	: Gly	, Ala	Arg	Ala 5	Ser	Ile	Leu	Arg	Gly 10	Gly	Lys	Leu	Asp	Lys 15	Trp
	Glu	ı Lys	: Ile	Arg 20	Leu	Arg	Pro	Gly	Gly 25	Lys	Lys	His	Tyr	Met 30	Leu	Lys
	His	s Leu	ı Val 35	Trp	Ala	Ser	Arg	Glu 40	Leu	Glu	Arg	Phe	Ala 45	Leu	Asn	Pro
	Gly	7 Leu 50	ı Leu	Glu	Thr	Ser	Glu 55	Gly	Cys	Lys	Gln	Ile 60	Ile	Lys	Gln	Leu
	Glr 65	n Pro	Ala	Leu	Gln	Thr 70	Gly	Thr	Glu	Glu	Leu 75	Arg	Ser	Leu	Phe	Asn 80
	Thr	r Val	. Ala	Thr	Leu 85	Tyr	Cys	Val	His	Ala 90	Glu	Ile	Glu	Val	Arg 95	Asp
	Thi	. Lys	Glu	Ala 100		Asp	Lys	Ile	Glu 105	Glu	Glu	Gln	Asn	Lys 110	Ser	Gln

Gln	Lys	Thr 115	Gln	Gln	Ala	Lys	Glu 120	Ala	Asp	Gly	Lys	Val 125	Ser	Gln	Asn
Tyr	Pro 130	Ile	Val	Gln	Asn	Leu 135	Gln	Gly	Gln	Met	Val 140	His	Gln	Pro	Ile
Ser 145	Pro	Arg	Thr	Leu	Asn 150	Ala	Trp	Val	Lys	Val 155	Ile	Glu	Glu	Lys	Ala 160
Phe	Ser	Pro	Glu	Val 165	Ile	Pro	Met	Phe	Thr 170	Ala	Leu	Ser	Glu	Gly 175	Ala
Thr	Pro	Gln	Asp 180	Leu	Asn	Thr	Met	Leu 185	Asn	Thr	Val	Gly	Gly 190	His	Gln
Ala	Ala	Met 195	Gln	Met	Leu	Lys	Asp 200	Thr	Ile	Asn	Glu	Glu 205	Ala	Ala	Glu
Trp	Asp 210	Arg	Leu	His	Pro	Val 215	His	Ala	Gly	Pro	Val 220	Ala	Pro	Gly	Gln
Met 225	Arg	Glu	Pro	Arg	Gly 230	Ser	Asp	Ile	Ala	Gly 235	Thr	Thr	Ser	Asn	Leu 240
Gln	Glu	Gln	Ile	Ala 245	Trp	Met	Thr	Ser	Asn 250	Pro	Pro	Ile	Pro	Val 255	Gly
Asp	Ile	Tyr	Lys 260	Arg	Trp	Ile	Ile	Leu 265	Gly	Leu	Asn	Lys	Ile 270	Val	Arg
Met	Tyr	Ser 275	Pro	Thr	Ser	Ile	Leu 280	Asp	Ile	Lys	Gln	Gly 285	Pro	Lys	Glu
Pro	Phe 290	Arg	Asp	Tyr	Val	Asp 295	Arg	Phe	Phe	Lys	Thr 300	Leu	Arg	Ala	Glu
Gln 305	Ala	Thr	Gln	Asp	Val 310	Lys	Asn	Trp	Met	Thr 315	Asp	Thr	Leu	Leu	Val 320
Gln	Asn	Ala	Asn	Pro 325	Asp	Cys	Lys	Thr	Ile 330	Leu	Arg	Ala	Leu	Gly 335	Pro
Gly	Ala	Thr	Leu 340	Glu	Glu	Met	Met	Thr 345	Ala	Cys	Gln	Gly	Val 350	Gly	Gly
Pro	Ser	His 355	Lys	Ala	Arg	Val	Leu 360	Ala	Glu	Ala	Met	Ser 365	Gln	Thr	Asn

	Ser	Thr 370	Ile	Leu	Met	Gln	Arg 375	Ser	Asn	Phe	Lys	Gly 380	Ser	Lys	Arg	Ile
	Val 385	Lys	Cys	Phe	Asn	Cys 390	Gly	Lys	Glu	Gly	His 395	Ile	Ala	Arg	Asn	Cys 400
	Arg	Ala	Pro	Arg	Lys 405	Lys	Gly	Cys	Trp	Lys 410	Cys	Gly	Lys	Glu	Gly 415	His
	Gln	Met	Lys	Asp 420	Cys	Thr	Glu	Arg	Gln 425	Ala	Asn	Phe	Leu	Gly 430	Lys	Ile
	Trp	Pro	Ser 435	His	Lys	Gly	Arg	Pro 440	Gly	Asn	Phe	Leu	Gln 445	Ser	Arg	Pro
	Glu	Pro 450	Thr	Ala	Pro	Pro	Ala 455	Glu	Ser	Phe	Arg	Phe 460	Glu	Glu	Thr	Thr
	Pro 465	Ala	Pro	Lys	Gln	Glu 470	Pro	Lys	Asp	Arg	Glu 475	Pro	Leu	Thr	Ser	Leu 480
	Arg	Ser	Leu	Phe	Gly 485	Ser	Asp	Pro	Leu	Ser 490	Gln					
<210> 3 <211> 850 <212> PR <213> Sec	T	ia arti	ficial													
<220> <223> sec	cuenci	ia del	antíge	eno m	os1P	ol mos	saico									
<400> 3	Wo+	71-	Dwo	T10	con	Dwo	T10	C1	Th.∽	17	Dwo	val	T	T 011	Ta	Dwo
	1	AIA	PIO	116	5	PIO	116	GIU	1111	Val 10	PIO	Val	пур	теп	15	PIO
	Gly	Met	Asp	Gly 20	Pro	Arg	Val	Lys	Gln 25	Trp	Pro	Leu	Thr	Glu 30	Glu	Lys
	Ile	Lys	Ala 35	Leu	Thr	Ala	Ile	Cys 40	Glu	Glu	Met	Glu	Lys 45	Glu	Gly	Lys
	Ile	Thr 50	Lys	Ile	Gly	Pro	Glu 55	Asn	Pro	Tyr	Asn	Thr 60	Pro	Val	Phe	Ala
	Ile 65	Lys	Lys	Lys	Asp	Ser 70	Thr	Lys	Trp	Arg	Lys 75	Leu	Val	Asp	Phe	Arg 80

Glu	. Leu	Asn	Lys	Arg 85	Thr	Gln	Asp	Phe	Trp 90	Glu	Val	Gln	Leu	Gly 95	Ile
Pro	His	Pro	Ala 100	Gly	Leu	Lys	Lys	Lys 105	Lys	Ser	Val	Thr	Val 110	Leu	Ala
Val	. Gly	Asp 115	Ala	Tyr	Phe	Ser	Val 120	Pro	Leu	Asp	Glu	Gly 125	Phe	Arg	Lys
Туг	Thr 130	Ala	Phe	Thr	Ile	Pro 135	Ser	Thr	Asn	Asn	Glu 140	Thr	Pro	Gly	Ile
Arg 145	Tyr	Gln	Tyr	Asn	Val 150	Leu	Pro	Gln	Gly	Trp 155	Lys	Gly	Ser	Pro	Ala 160
Ile	Phe	Gln	Cys	Ser 165	Met	Thr	Arg	Ile	Leu 170	Glu	Pro	Phe	Arg	Ala 175	Lys
Asn	Pro	Glu	Ile 180	Val	Ile	Tyr	Gln	Tyr 185	Met	Ala	Ala	Leu	Туг 190	Val	Gly
Ser	Asp	Leu 195	Glu	Ile	Gly	Gln	His 200	Arg	Ala	Lys	Ile	Glu 205	Glu	Leu	Arg
Glu	His 210	Leu	Leu	Lys	Trp	Gly 215	Phe	Thr	Thr	Pro	Asp 220	Lys	Lys	His	Gln
Lys 225	Glu	Pro	Pro	Phe	Leu 230	Trp	Met	Gly	Tyr	Glu 235	Leu	His	Pro	Asp	Lys 240
Trp	Thr	Val	Gln	Pro 245	Ile	Gln	Leu	Pro	Glu 250	Lys	Asp	Ser	Trp	Thr 255	Val
Asn	a Asp	Ile	Gln 260	Lys	Leu	Val	Gly	Lys 265	Leu	Asn	Trp	Ala	Ser 270	Gln	Ile
Tyr	Pro	Gly 275	Ile	Lys	Val	Arg	Gln 280	Leu	Cys	Lys	Leu	Leu 285	Arg	Gly	Ala
Lys	Ala 290	Leu	Thr	Asp	Ile	Val 295	Pro	Leu	Thr	Glu	Glu 300	Ala	Glu	Leu	Glu
Leu 305	Ala	Glu	Asn	Arg	Glu 310	Ile	Leu	Lys	Glu	Pro 315	Val	His	Gly	Val	Tyr 320
Tyr	Asp	Pro	Ser	Lys 325	Asp	Leu	Ile	Ala	Glu 330	Ile	Gln	Lys	Gln	Gly 335	His

Asp	Gln	Trp	Thr 340	Tyr	Gln	Ile	Tyr	Gln 345	Glu	Pro	Phe	Lys	Asn 350	Leu	Lys
Thr	Gly	Lys 355	Tyr	Ala	Lys	Met	Arg 360	Thr	Ala	His	Thr	Asn 365	Asp	Val	Lys
Gln	Leu 370	Thr	Glu	Ala	Val	Gln 375	Lys	Ile	Ala	Met	Glu 380	Ser	Ile	Val	Ile
Trp 385	Gly	Lys	Thr	Pro	Lys 390	Phe	Arg	Leu	Pro	Ile 395	Gln	Lys	Glu	Thr	Trp 400
Glu	Thr	Trp	Trp	Thr 405	Asp	Tyr	Trp	Gln	Ala 410	Thr	Trp	Ile	Pro	Glu 415	Trp
Glu	Phe	Val	Asn 420	Thr	Pro	Pro	Leu	Val 425	Lys	Leu	Trp	Tyr	Gln 430	Leu	Glu
Lys	Asp	Pro 435	Ile	Ala	Gly	Val	Glu 440	Thr	Phe	Tyr	Val	Ala 445	Gly	Ala	Ala
Asn	Arg 450	Glu	Thr	Lys	Leu	Gly 455	Lys	Ala	Gly	Tyr	Val 460	Thr	Asp	Arg	Gly
Arg 465	Gln	Lys	Ile	Val	Ser 470	Leu	Thr	Glu	Thr	Thr 475	Asn	Gln	Lys	Thr	Ala 480
Leu	Gln	Ala	Ile	Tyr 485	Leu	Ala	Leu	Gln	Asp 490	Ser	Gly	Ser	Glu	Val 495	Asn
Ile	Val	Thr	Ala 500	Ser	Gln	Tyr	Ala	Leu 505	Gly	Ile	Ile	Gln	Ala 510	Gln	Pro
Asp	Lys	Ser 515	Glu	Ser	Glu	Leu	Val 520	Asn	Gln	Ile	Ile	Glu 525	Gln	Leu	Ile
Lys	Lys 530	Glu	Arg	Val	Tyr	Leu 535	Ser	Trp	Val	Pro	Ala 540	His	Lys	Gly	Ile
Gly 545	Gly	Asn	Glu	Gln	Val 550	Asp	Lys	Leu	Val	Ser 555	Ser	Gly	Ile	Arg	Lys 560
Val	Leu	Phe	Leu	Asp 565	Gly	Ile	Asp	Lys	Ala 570	Gln	Glu	Glu	His	Glu 575	Lys
Tyr	His	Ser	Asn 580	Trp	Arg	Ala	Met	Ala 585	Ser	Asp	Phe	Asn	Leu 590	Pro	Pro

Val	Val	Ala 595	Lys	Glu	Ile	Val	Ala 600	Ser	Cys	Asp	Gln	Cys 605	Gln	Leu	Lys
Gly	Glu 610	Ala	Met	His	Gly	Gln 615	Val	Asp	Cys	Ser	Pro 620	Gly	Ile	Trp	Gln
Leu 625	Ala	Cys	Thr	His	Leu 630	Glu	Gly	Lys	Ile	Ile 635	Leu	Val	Ala	Val	His
Val	Ala	Ser	Gly	Tyr 645	Ile	Glu	Ala	Glu	Val 650	Ile	Pro	Ala	Glu	Thr 655	Gly
Gln	Glu	Thr	Ala 660	Tyr	Phe	Ile	Leu	Lys 665	Leu	Ala	Gly	Arg	Trp 670	Pro	Val
Lys	Val	Ile 675	His	Thr	Ala	Asn	Gly 680	Ser	Asn	Phe	Thr	Ser 685	Ala	Ala	Val
Lys	Ala 690	Ala	Cys	Trp	Trp	Ala 695	Gly	Ile	Gln	Gln	Glu 700	Phe	Gly	Ile	Pro
Tyr 705	Asn	Pro	Gln	Ser	Gln 710	Gly	Val	Val	Ala	Ser 715	Met	Asn	Lys	Glu	Leu 720
Lys	Lys	Ile	Ile	Gly 725	Gln	Val	Arg	Asp	Gln 730	Ala	Glu	His	Leu	Lys 735	Thr
Ala	Val	Gln	Met 740	Ala	Val	Phe	Ile	His 745	Asn	Phe	Lys	Arg	Lys 750	Gly	Gly
Ile	Gly	Gly 755	Tyr	Ser	Ala	Gly	Glu 760	Arg	Ile	Ile	Asp	Ile 765	Ile	Ala	Thr
Asp	Ile 770	Gln	Thr	Lys	Glu	Leu 775	Gln	Lys	Gln	Ile	Ile 780	Lys	Ile	Gln	Asn
Phe 785	Arg	Val	Tyr	Tyr	A rg 790	Asp	Ser	Arg	Asp	Pro 795	Ile	Trp	Lys	Gly	Pro 800
Ala	Lys	Leu	Leu	Trp 805	Lys	Gly	Glu	Gly	Ala 810	Val	Val	Ile	Gln	Asp 815	Asn
Ser	Asp	Ile	Lys 820	Val	Val	Pro	Arg	Arg 825	Lys	Val	Lys	Ile	Ile 830	Lys	Asp
Tyr	Gly	Lys	Gln 835		Ala	Gly	Ala	_	Cys 40	Val	Ala	Gly	Arg	Gln 845	Asp

Glu Asp 850

<210> <211>	850															
<212> <213>		encia a	artificia	al												
<220> <223>	secue	encia d	lel ant	ígeno	mos2l	Pol mo	osaico									
<400>	4															
	Met 1	Ala	Pro	Ile	Ser 5	Pro	Ile	Glu	Thr	Val 10	Pro	Val	Lys	Leu	Lys 15	Pr
	Gly	Met	Asp	Gly 20	Pro	Lys	Val	Lys	Gln 25	Trp	Pro	Leu	Thr	Glu 30	Glu	Ly
	Ile	Lys	Ala 35	Leu	Val	Glu	Ile	Cys 40	Thr	Glu	Met	Glu	Lys 45	Glu	Gly	Lу
	Ile	Ser 50	Lys	Ile	Gly	Pro	Glu 55	Asn	Pro	Tyr	Asn	Thr 60	Pro	Ile	Phe	Al
	Ile 65	Lys	Lys	Lys	Asp	Ser 70	Thr	Lys	Trp	Arg	Lys 75	Leu	Val	Asp	Phe	Ar 80
	Glu	Leu	Asn	Lys	Arg 85	Thr	Gln	Asp	Phe	Trp 90	Glu	Val	Gln	Leu	Gly 95	Il
	Pro	His	Pro	Ala 100	Gly	Leu	Lys	Lys	Lys 105	Lys	Ser	Val	Thr	Val 110	Leu	Al
	Val	Gly	Asp 115	Ala	Tyr	Phe	Ser	Val 120	Pro	Leu	Asp	Glu	Asp 125	Phe	Arg	Lу
	Tyr	Thr 130	Ala	Phe	Thr	Ile	Pro 135	Ser	Ile	Asn	Asn	Glu 140	Thr	Pro	Gly	Il
	Arg 145	Tyr	Gln	Tyr	Asn	Val 150	Leu	Pro	Gln	Gly	Trp 155	Lys	Gly	Ser	Pro	Al 16
	Ile	Phe	Gln	Ser	Ser 165	Met	Thr	Lys	Ile	Leu 170	Glu	Pro	Phe	Arg	Lys 175	Gl
	Asn	Pro	Asp	Ile 180	Val	Ile	Tyr	Gln	Tyr 185	Met	Ala	Ala	Leu	Tyr 190	Val	Gl

Ser	Asp	Leu 195	Glu	Ile	Gly	Gln	His 200	Arg	Thr	Lys	Ile	Glu 205	Glu	Leu	Arg
Gln	His 210	Leu	Leu	Arg	Trp	Gly 215	Phe	Thr	Thr	Pro	Asp 220	Lys	Lys	His	Gln
Lys 225	Glu	Pro	Pro	Phe	Leu 230	Trp	Met	Gly	Tyr	Glu 235	Leu	His	Pro	Asp	Lys 240
Trp	Thr	Val	Gln	Pro 245	Ile	Val	Leu	Pro	Glu 250	Lys	Asp	Ser	Trp	Thr 255	Val
Asn	Asp	Ile	Gln 260	Lys	Leu	Val	Gly	Lys 265	Leu	Asn	Trp	Ala	Ser 270	Gln	Ile
Tyr	Ala	Gly 275	Ile	Lys	Val	Lys	Gln 280	Leu	Cys	Lys	Leu	Leu 285	Arg	Gly	Thr
Lys	Ala 290	Leu	Thr	Glu	Val	Val 295	Pro	Leu	Thr	Glu	Glu 300	Ala	Glu	Leu	Glu
Leu 305	Ala	Glu	Asn	Arg	Glu 310	Ile	Leu	Lys	Glu	Pro 315	Val	His	Gly	Val	Tyr 320
Tyr	Asp	Pro	Ser	Lys 325	Asp	Leu	Ile	Ala	Glu 330	Ile	Gln	Lys	Gln	Gly 335	Gln
Gly	Gln	Trp	Thr 340	Tyr	Gln	Ile	Tyr	Gln 345	Glu	Pro	Phe	Lys	Asn 350	Leu	Lys
Thr	Gly	Lys 355	Tyr	Ala	Arg	Met	Arg 360	Gly	Ala	His	Thr	Asn 365	Asp	Val	Lys
Gln	Leu 370	Thr	Glu	Ala	Val	Gln 375	Lys	Ile	Ala	Thr	Glu 380	Ser	Ile	Val	Ile
Trp 385	Gly	Lys	Thr	Pro	Lys 390	Phe	Lys	Leu	Pro	Ile 395	Gln	Lys	Glu	Thr	Trp 400
Glu	Ala	Trp	Trp	Thr 405	Glu	Tyr	Trp	Gln	Ala 410	Thr	Trp	Ile	Pro	Glu 415	Trp
Glu	Phe	Val	Asn 420	Thr	Pro	Pro	Leu	Val 425	Lys	Leu	Trp	Tyr	Gln 430	Leu	Glu
Lys	Glu	Pro	Ile	Val	Gly	Ala	Glu	Thr	Phe	Tyr	Val	Ala	Gly	Ala	Ala

		435					440					445			
Asn	Arg 450	Glu	Thr	Lys	Leu	Gly 455	Lys	Ala	Gly	Tyr	Val 460	Thr	Asp	Arg	Gly
Arg 465	Gln	Lys	Val	Val	Ser 470	Leu	Thr	Asp	Thr	Thr 475	Asn	Gln	Lys	Thr	Ala 480
Leu	Gln	Ala	Ile	His 485	Leu	Ala	Leu	Gln	Asp 490	Ser	Gly	Leu	Glu	Val 495	Asn
Ile	Val	Thr	Ala 500	Ser	Gln	Tyr	Ala	Leu 505	Gly	Ile	Ile	Gln	Ala 510	Gln	Pro
Asp	Lys	Ser 515	Glu	Ser	Glu	Leu	Val 520	Ser	Gln	Ile	Ile	Glu 525	Gln	Leu	Ile
Lys	Lys 530	Glu	Lys	Val	Tyr	Leu 535	Ala	Trp	Val	Pro	Ala 540	His	Lys	Gly	Ile
Gly 545	Gly	Asn	Glu	Gln	Val 550	Asp	Lys	Leu	Val	Ser 555	Arg	Gly	Ile	Arg	Lys 560
Val	Leu	Phe	Leu	Asp 565	Gly	Ile	Asp	Lys	A la 570	Gln	Glu	Glu	His	Glu 575	Lys
Tyr	His	Ser	A sn 580	Trp	Arg	Ala	Met	Ala 585	Ser	Glu	Phe	Asn	Leu 590	Pro	Pro
Ile	Val	Ala 595	Lys	Glu	Ile	Val	Ala 600	Ser	Cys	Asp	Lys	Cys 605	Gln	Leu	Lys
Gly	Glu 610	Ala	Ile	His	Gly	Gln 615	Val	Asp	Cys	Ser	Pro 620	Gly	Ile	Trp	Gln
Leu 625	Ala	Cys	Thr	His	Leu 630	Glu	Gly	Lys	Val	Ile 635	Leu	Val	Ala	Val	His 640
Val	Ala	Ser	Gly	Tyr 645	Ile	Glu	Ala	Glu	Val 650	Ile	Pro	Ala	Glu	Thr 655	Gly
Gln	Glu	Thr	Ala 660	Tyr	Phe	Leu	Leu	Lys 665	Leu	Ala	Gly	Arg	Trp 670	Pro	Val
Lys	Thr	Ile 675	His	Thr	Ala	Asn	Gly 680	Ser	Asn	Phe	Thr	Ser 685	Ala	Thr	Val

	Lys	Ala 690	Ala	Cys	Trp	Trp	Ala 695	Gly	Ile	Lys	Gln	Glu 700	Phe	Gly	Ile	Pro
	Tyr 705	Asn	Pro	Gln	Ser	Gln 710	Gly	Val	Val	Ala	Ser 715	Ile	Asn	Lys	Glu	Leu 720
	Lys	Lys	Ile	Ile	Gly 725	Gln	Val	Arg	Asp	Gln 730	Ala	Glu	His	Leu	Lys 735	Thr
	Ala	Val	Gln	Met 740	Ala	Val	Phe	Ile	His 745	Asn	Phe	Lys	Arg	Lys 750	Gly	Gly
	Ile	Gly	Glu 755	Tyr	Ser	Ala	Gly	Glu 760	Arg	Ile	Val	Asp	Ile 765	Ile	Ala	Ser
	Asp	Ile 770	Gln	Thr	Lys	Glu	Leu 775	Gln	Lys	Gln	Ile	Thr 780	Lys	Ile	Gln	Asn
	Phe 785	Arg	Val	Tyr	Tyr	Arg 790	Asp	Ser	Arg	Asp	Pro 795	Leu	Trp	Lys	Gly	Pro 800
	Ala	Lys	Leu	Leu	Trp 805	Lys	Gly	Glu	Gly	Ala 810	Val	Val	Ile	Gln	Asp 815	Asn
	Ser	Asp	Ile	Lys 820	Val	Val	Pro	Arg	Arg 825	Lys	Ala	Lys	Ile	Ile 830	Arg	Asp
	Tyr	Gly	Lys 835	Gln	Met	Ala	Gly	Asp 840	Asp	Cys	Val	Ala	Ser 845	Arg	Gln	Asp
	Glu	Asp 850														
<210> 5 <211> 68 <212> PF <213> Se	RT	cia art	ificial													
<220> <223> se	cuenc	ia del	antíg	eno m	nos1E	nv mc	saico									
<400> 5																
	Met 1	Arg	Val	Thr	Gly 5	Ile	Arg	Lys	Asn	Tyr 10	Gln	His	Leu	Trp	Arg 15	Trp
	Gly	Thr	Met	Leu 20	Leu	Gly	Ile	Leu	Met 25	Ile	Cys	Ser	Ala	Ala 30	Gly	Lys
	Leu	Trp	Val	Thr	Val	Tyr	Tyr	Gly	Val	Pro	Val	Trp	Lys	Glu	Ala	Thr

		35					40					45			
Thr	Thr 50	Leu	Phe	Cys	Ala	Ser 55	Asp	Ala	Lys	Ala	Tyr 60	Asp	Thr	Glu	Val
His 65	Asn	Val	Trp	Ala	Thr 70	His	Ala	Cys	Val	Pro 75	Thr	Asp	Pro	Asn	Pro 80
Gln	Glu	Val	Val	Leu 85	Glu	Asn	Val	Thr	Glu 90	Asn	Phe	Asn	Met	Trp 95	Lys
Asn	Asn	Met	Val 100	Glu	Gln	Met	His	Glu 105	Asp	Ile	Ile	Ser	Leu 110	Trp	Asp
Gln	Ser	Leu 115	Lys	Pro	Cys	Val	Lys 120	Leu	Thr	Pro	Leu	Cys 125	Val	Thr	Leu
Asn	Cys 130	Thr	Asp	Asp	Val	Arg 135	Asn	Val	Thr	Asn	Asn 140	Ala	Thr	Asn	Thr
Asn 145	Ser	Ser	Trp	Gly	Glu 150	Pro	Met	Glu	Lys	Gly 155	Glu	Ile	Lys	Asn	Cys 160
Ser	Phe	Asn	Ile	Thr 165	Thr	Ser	Ile	Arg	As n 170	Lys	Val	Gln	Lys	Gln 175	Tyr
Ala	Leu	Phe	Tyr 180	Lys	Leu	Asp	Val	Val 185	Pro	Ile	Asp	Asn	Asp 190	Ser	Asn
Asn	Thr	As n 195	Tyr	Arg	Leu	Ile	Ser 200	Суѕ	Asn	Thr	Ser	Val 205	Ile	Thr	Gln
Ala	Cys 210	Pro	Lys	Val	Ser	Phe 215	Glu	Pro	Ile	Pro	Ile 220	His	Tyr	Cys	Ala
Pro 225	Ala	Gly	Phe	Ala	Ile 230	Leu	Lys	Cys	Asn	Asp 235	Lys	Lys	Phe	Asn	Gly 240
Thr	Gly	Pro	Cys	Thr 245	Asn	Val	Ser	Thr	Val 250	Gln	Суѕ	Thr	His	Gly 255	Ile
Arg	Pro	Val	Val 260	Ser	Thr	Gln	Leu	Leu 265	Leu	Asn	Gly	Ser	Leu 270	Ala	Glu
Glu	Glu	Val 275	Val	Ile	Arg	Ser	Glu 280	Asn	Phe	Thr	Asn	Asn 285	Ala	Lys	Thr

Ile	Met 290	Val	Gln	Leu	Asn	Val 295	Ser	Val	Glu	Ile	Asn 300	Cys	Thr	Arg	Pro
Asn 305	Asn	Asn	Thr	Arg	Lys 310	Ser	Ile	His	Ile	Gly 315	Pro	Gly	Arg	Ala	Phe 320
Tyr	Thr	Ala	Gly	Asp 325	Ile	Ile	Gly	Asp	Ile 330	Arg	Gln	Ala	His	Cys 335	Asn
Ile	Ser	Arg	Ala 340	Asn	Trp	Asn	Asn	Thr 345	Leu	Arg	Gln	Ile	Val 350	Glu	Lys
Leu	Gly	Lys 355	Gln	Phe	Gly	Asn	Asn 360	Lys	Thr	Ile	Val	Phe 365	Asn	His	Ser
Ser	Gly 370	Gly	Asp	Pro	Glu	Ile 375	Val	Met	His	Ser	Phe 380	Asn	Cys	Gly	Gly
Glu 385	Phe	Phe	Tyr	Cys	Asn 390	Ser	Thr	Lys	Leu	Phe 395	Asn	Ser	Thr	Trp	Thr 400
Trp	Asn	Asn	Ser	Thr 405	Trp	Asn	Asn	Thr	Lys 410	Arg	Ser	Asn	Asp	Thr 415	Glu
Glu	His	Ile	Thr 420	Leu	Pro	Cys	Arg	Ile 425	Lys	Gln	Ile	Ile	Asn 430	Met	Trp
Gln	Glu	Val 435	Gly	Lys	Ala	Met	Tyr 440	Ala	Pro	Pro	Ile	Arg 445	Gly	Gln	Ile
Arg	Cys 450	Ser	Ser	Asn	Ile	Thr 455	Gly	Leu	Leu	Leu	Thr 460	Arg	Asp	Gly	Gly
Asn 465	Asp	Thr	Ser	Gly	Thr 470	Glu	Ile	Phe	Arg	Pro 475	Gly	Gly	Gly	Asp	Met 480
Arg	Asp	Asn	Trp	Arg 485	Ser	Glu	Leu	Tyr	Lys 490	Tyr	Lys	Val	Val	Lys 495	Ile
Glu	Pro	Leu	Gly 500	Val	Ala	Pro	Thr	Lys 505	Ala	Lys	Arg	Arg	Val 510	Val	Gln
Ser	Glu	Lys 515	Ser	Ala	Val	Gly	Ile 520	Gly	Ala	Val	Phe	Leu 525	Gly	Phe	Leu
Gly	Ala 530	Ala	Gly	Ser	Thr	Met 535	Gly	Ala	Ala	Ser	Met 540	Thr	Leu	Thr	Val

	Gln 5 4 5	Ala	Arg	Leu	Leu	Leu 550	Ser	Gly	Ile	Val	Gln 555	Gln	Gln	Asn	Asn	Leu 560
	Leu	Arg	Ala	Ile	Glu 565	Ala	Gln	Gln	His	Leu 570	Leu	Gln	Leu	Thr	Val 575	Trp
	Gly	Ile	Lys	Gln 580	Leu	Gln	Ala	Arg	Val 585	Leu	Ala	Val	Glu	Arg 590	Tyr	Leu
	Lys	Asp	Gln 595	Gln	Leu	Leu	Gly	Ile 600	Trp	Gly	Cys	Ser	Gly 605	Lys	Leu	Ile
	Cys	Thr 610	Thr	Thr	Val	Pro	Trp 615	Asn	Ala	Ser	Trp	Ser 620	Asn	Lys	Ser	Leu
	Asp 625	Lys	Ile	Trp	Asn	Asn 630	Met	Thr	Trp	Met	Glu 635	Trp	Glu	Arg	Glu	Ile 640
	Asn	Asn	Tyr	Thr	Ser 645	Leu	Ile	Tyr	Thr	Leu 650	Ile	Glu	Glu	Ser	Gln 655	Asn
	Gln	Gln	Glu	Lys 660	Asn	Glu	Gln	Glu	Leu 665	Leu	Glu	Leu	Asp	Lys 670	Trp	Ala
	Ser	Leu	Trp 675	Asn	Trp	Phe	Asp	Ile 680	Ser	Asn	Trp	Leu	Trp 685			
6 68 PF Se		cia art	ificial													
se	cuenc	ia del	antíg	eno m	nos2E	nv mo	saico									
6	Met	Arg	Val	Arg	Gly	Ile	Gln	Arg	Asn	Trp	Pro	Gln	Trp	Trp	Ile	Trp
	1				5					10					15	
	Gly	Ile	Leu	Gly 20	Phe	Trp	Met	Ile	Ile 25	Ile	Cys	Arg	Val	Met 30	Gly	Asn
	Leu	Trp	Val 35	Thr	Val	Tyr	Tyr	Gly 40	Val	Pro	Val	Trp	Lys 45	Glu	Ala	Lys
	Thr	Thr 50	Leu	Phe	Cys	Ala	Ser 55	Asp	Ala	Lys	Ala	Tyr 60	Glu	Lys	Glu	Val

<210> <211> <212>

<213>

<220> <223>

<400>

5

10

His 65	Asn	Val	Trp	Ala	Thr 70	His	Ala	Cys	Val	Pro 75	Thr	Asp	Pro	Asn	Pro 80
Gln	Glu	Met	Val	Leu 85	Glu	Asn	Val	Thr	Glu 90	Asn	Phe	Asn	Met	Trp 95	Lys
Asn	Asp	Met	Val 100	Asp	Gln	Met	His	Glu 105	Asp	Ile	Ile	Arg	Leu 110	Trp	Asp
Gln	Ser	Leu 115	Lys	Pro	Cys	Val	Lys 120	Leu	Thr	Pro	Leu	Cys 125	Val	Thr	Leu
Glu	Cys 130	Arg	Asn	Val	Arg	Asn 135	Val	Ser	Ser	Asn	Gly 140	Thr	Tyr	Asn	Ile
Ile 145	His	Asn	Glu	Thr	Tyr 150	Lys	Glu	Met	Lys	Asn 155	Cys	Ser	Phe	Asn	Ala 160
Thr	Thr	Val	Val	Glu 165	Asp	Arg	Lys	Gln	Lys 170	Val	His	Ala	Leu	Phe 175	Tyr
Arg	Leu	Asp	Ile 180	Val	Pro	Leu	Asp	Glu 185	Asn	Asn	Ser	Ser	Glu 190	Lys	Ser
Ser	Glu	Asn 195	Ser	Ser	Glu	Tyr	Tyr 200	Arg	Leu	Ile	Asn	Cys 205	Asn	Thr	Ser
Ala	Ile 210	Thr	Gln	Ala	Cys	Pro 215	Lys	Val	Ser	Phe	Asp 220	Pro	Ile	Pro	Ile
His 225	Tyr	Cys	Ala	Pro	Ala 230	Gly	Tyr	Ala	Ile	Leu 235	Lys	Cys	Asn	Asn	Lys 240
Thr	Phe	Asn	Gly	Thr 245	Gly	Pro	Cys	Asn	Asn 250	Val	Ser	Thr	Val	Gln 255	Cys
Thr	His	Gly	Ile 260	Lys	Pro	Val	Val	Ser 265	Thr	Gln	Leu	Leu	Leu 270	Asn	Gly
Ser	Leu	Ala 275	Glu	Glu	Glu	Ile	Ile 280	Ile	Arg	Ser	Glu	Asn 285	Leu	Thr	Asn
Asn	Ala 290	Lys	Thr	Ile	Ile	Val 295	His	Leu	Asn	Glu	Thr 300	Val	Asn	Ile	Thr
Cys 305	Thr	Arg	Pro	Asn	Asn 310	Asn	Thr	Arg	Lys	Ser 315	Ile	Arg	Ile	Gly	Pro 320

Gly	Gln	Thr	Phe	Tyr 325	Ala	Thr	Gly	Asp	Ile 330	Ile	Gly	Asp	Ile	Arg 335	Gln
Ala	His	Cys	Asn 340	Leu	Ser	Arg	Asp	Gly 345	Trp	Asn	Lys	Thr	Leu 350	Gln	Gly
Val	Lys	Lys 355	Lys	Leu	Ala	Glu	His 360	Phe	Pro	Asn	Lys	Thr 365	Ile	Asn	Phe
Thr	Ser 370	Ser	Ser	Gly	Gly	Asp 375	Leu	Glu	Ile	Thr	Thr 380	His	Ser	Phe	Asn
C ys 385	Arg	Gly	Glu	Phe	Phe 390	Tyr	Cys	Asn	Thr	Ser 395	Gly	Leu	Phe	Asn	Gly 400
Thr	Tyr	Met	Pro	Asn 405	Gly	Thr	Asn	Ser	Asn 410	Ser	Ser	Ser	Asn	Ile 415	Thr
Leu	Pro	Cys	Arg 420	Ile	Lys	Gln	Ile	Ile 425	Asn	Met	Trp	Gln	Glu 430	Val	Gly
Arg	Ala	Met 435	Tyr	Ala	Pro	Pro	Ile 440	Ala	Gly	Asn	Ile	Thr 445	Cys	Arg	Ser
Asn	Ile 450	Thr	Gly	Leu	Leu	Leu 455	Thr	Arg	Asp	Gly	Gly 460	Ser	Asn	Asn	Gly
Val 465	Pro	Asn	Asp	Thr	Glu 470	Thr	Phe	Arg	Pro	Gly 475	Gly	Gly	Asp	Met	Arg 480
Asn	Asn	Trp	Arg	Ser 485	Glu	Leu	Tyr	Lys	Tyr 490	Lys	Val	Val	Glu	Val 495	Lys
Pro	Leu	Gly	Val 500	Ala	Pro	Thr	Glu	Ala 505	Lys	Arg	Arg	Val	Val 510	Glu	Ser
Glu	Lys	Ser 515	Ala	Val	Gly	Ile	Gly 520	Ala	Val	Phe	Leu	Gly 525	Ile	Leu	Gly
Ala	Ala 530	Gly	Ser	Thr	Met	Gly 535	Ala	Ala	Ser	Ile	Thr 540	Leu	Thr	Val	Gln
Ala 545	Arg	Gln	Leu	Leu	Ser 550	Gly	Ile	Val	Gln	Gln 555	Gln	Ser	Asn	Leu	Leu 560
Arg	Ala	Ile	Glu	Ala 565	Gln	Gln	His	Met	Leu 570	Gln	Leu	Thr	Val	Trp 575	Gly

	Ile	Lys	Gln	Leu 580	Gln	Thr	Arg	Val	Leu 585	Ala	Ile	Glu	Arg	Tyr 590	Leu	Gln
	Asp	Gln	Gln 595	Leu	Leu	Gly	Leu	Trp 600	Gly	Cys	Ser	Gly	Lys 605	Leu	Ile	Cys
	Thr	Thr 610	Ala	Val	Pro	Trp	Asn 615	Thr	Ser	Trp	Ser	Asn 620	Lys	Ser	Gln	Thr
	Asp 625	Ile	Trp	Asp	Asn	Met 630	Thr	Trp	Met	Gln	Trp 635	Asp	Lys	Glu	Ile	Gly 640
	Asn	Tyr	Thr	Gly	Glu 645	Ile	Tyr	Arg	Leu	Leu 650	Glu	Glu	Ser	Gln	Asn 655	Gln
	Gln	Glu	Lys	Asn 660	Glu	Lys	Asp	Leu	Leu 665	Ala	Leu	Asp	Ser	Trp 670	Lys	Asn
	Leu	Trp	Asn 675	Trp	Phe	Asp	Ile	Thr 680	Asn	Trp	Leu	Trp				
<210> 7 <211> 70 <212> PF <213> Se	₹T	cia art	ificial													
<220> <223> trí	mero	de gp	140 d	el clac	lo C e	stabili	izado:	C97Z	'A012	-gp14	0-fold	on co	n muta	acione	es de e	escisión
<400> 7																
	Met 1	Arg	Val	Arg	Gly 5	Ile	Gln	Arg	Asn	Cys 10	Gln	His	Leu	Trp	Arg 15	Trp
	Gly	Thr	Leu	Ile 20	Leu	Gly	Met	Leu	Met 25	Ile	Cys	Ser	Ala	Ala 30	Glu	Asn
	Leu	Trp	Val 35	Gly	Asn	Met	Trp	Val 40	Thr	Val	Tyr	Tyr	Gly 45	Val	Pro	Val
	Trp	Thr 50	Asp	Ala	Lys	Thr	Thr 55	Leu	Phe	Cys	Ala	Ser 60	Asp	Thr	Lys	Ala
	Tyr 65	Asp	Arg	Glu	Val	His 70	Asn	Val	Trp	Ala	Thr 75	His	Ala	Cys	Val	Pro 80
	Thr	Asp	Pro	Asn	Pro 85	Gln	Glu	Ile	Val	Leu 90	Glu	Asn	Val	Thr	Glu 95	Asn

Phe F	Asn	Met	Trp 100	Lys	Asn	Asp	Met	Val 105	Asp	Gln	Met	His	Glu 110	Asp	Ile
Ile S	Ser	Leu 115	Trp	Asp	Gln	Ser	Leu 120	Lys	Pro	Cys	Val	Lys 125	Leu	Thr	Pro
Leu (Cys 130	Val	Thr	Leu	His	Cys 135	Thr	Asn	Ala	Thr	Phe 140	Lys	Asn	Asn	Val
Thr <i>A</i>	Asn	Asp	Met	Asn	Lys 150	Glu	Ile	Arg	Asn	Cys 155	Ser	Phe	Asn	Thr	Thr 160
Thr G	Glu	Ile	Arg	Asp 165	Lys	Lys	Gln	Gln	Gly 170	Tyr	Ala	Leu	Phe	Tyr 175	Arg
Pro A	Asp	Ile	Val 180	Leu	Leu	Lys	Glu	Asn 185	Arg	Asn	Asn	Ser	Asn 190	Asn	Ser
Glu T	Tyr	Ile 195	Leu	Ile	Asn	Cys	Asn 200	Ala	Ser	Thr	Ile	Thr 205	Gln	Ala	Cys
Pro I	Lys 210	Val	Asn	Phe	Asp	Pro 215	Ile	Pro	Ile	His	Tyr 220	Cys	Ala	Pro	Ala
Gly 1 225	Tyr	Ala	Ile	Leu	Lys 230	Cys	Asn	Asn	Lys	Thr 235	Phe	Ser	Gly	Lys	Gly 240
Pro C	Cys	Asn	Asn	Val 245	Ser	Thr	Val	Gln	Cys 250	Thr	His	Gly	Ile	Lys 255	Pro
Val V	Val	Ser	Thr 260	Gln	Leu	Leu	Leu	Asn 265	Gly	Ser	Leu	Ala	Glu 270	Lys	Glu
Ile I	Ile	Ile 275	Arg	Ser	Glu	Asn	Leu 280	Thr	Asp	Asn	Val	Lys 285	Thr	Ile	Ile
Val H	His 290	Leu	Asn	Lys	Ser	Val 295	Glu	Ile	Val	Cys	Thr 300	Arg	Pro	Asn	Asn
Asn 1	Thr	Arg	Lys	Ser	Met 310	Arg	Ile	Gly	Pro	Gly 315	Gln	Thr	Phe	Tyr	Ala 320
Thr G	Gly	Asp	Ile	Ile 325	Gly	Asp	Ile	Arg	Gln 330	Ala	Tyr	Cys	Asn	Ile 335	Ser
Gly S	Ser	Lys	Trp	Asn	Glu	Thr	Leu	Lys	Arg	Val	Lys	Glu	Lys	Leu	Gln

			340					345					350		
Glu	Asn	Tyr 355	Asn	Asn	Asn	Lys	Thr 360	Ile	Lys	Phe	Ala	Pro 365	Ser	Ser	Gly
Gly	Asp 370	Leu	Glu	Ile	Thr	Thr 375	His	Ser	Phe	Asn	Cys 380	Arg	Gly	Glu	Phe
Phe 385	Tyr	Cys	Asn	Thr	Thr 390	Arg	Leu	Phe	Asn	Asn 395	Asn	Ala	Thr	Glu	Asp 400
Glu	Thr	Ile	Thr	Leu 405	Pro	Cys	Arg	Ile	Lys 410	Gln	Ile	Ile	Asn	Met 415	Trp
Gln	Gly	Val	Gly 420	Arg	Ala	Met	Tyr	Ala 425	Pro	Pro	Ile	Ala	Gly 430	Asn	Ile
Thr	Cys	Lys 435	Ser	Asn	Ile	Thr	Gly 440	Leu	Leu	Leu	Val	Arg 445	Asp	Gly	Gly
Glu	Asp 450	Asn	Lys	Thr	Glu	Glu 455	Ile	Phe	Arg	Pro	Gly 460	Gly	Gly	Asn	Met
Lys 465	Asp	Asn	Trp	Arg	Ser 470	Glu	Leu	Tyr	Lys	Tyr 475	Lys	Val	Ile	Glu	Leu 480
Lys	Pro	Leu	Gly	Ile 485	Ala	Pro	Thr	Gly	Ala 490	Lys	Glu	Arg	Val	Val 495	Glu
Arg	Glu	Glu	Arg 500	Ala	Val	Gly	Ile	Gly 505	Ala	Val	Phe	Leu	Gly 510	Phe	Leu
Gly	Ala	Ala 515	Gly	Ser	Thr	Met	Gly 520	Ala	Ala	Ser	Leu	Thr 525	Leu	Thr	Val
Gln	Ala 530	Arg	Gln	Leu	Leu	Ser 535	Ser	Ile	Val	Gln	Gln 540	Gln	Ser	Asn	Leu
Leu 545	Arg	Ala	Ile	Glu	Ala 550	Gln	Gln	His	Met	Leu 555	Gln	Leu	Thr	Val	Trp 560
Gly	Ile	Lys	Gln	Leu 565	Gln	Thr	Arg	Val	Leu 570	Ala	Ile	Glu	Arg	Tyr 575	Leu
Lys	Asp	Gln	Gln 580	Leu	Leu	Gly	Ile	Trp 585	Gly	Cys	Ser	Gly	Lys 590	Leu	Ile

Cys Thr Thr Asn Val Pro Trp Asn Ser Ser Trp Ser Asn Lys Ser Gln 600

	Thr	_	Ile	Trp	Asn	Asn		Thr	Trp	Met	Glu		Asp	Arg	Glu	Ile
		610					615					620				
	Ser 625	Asn	Tyr	Thr	Asp	Thr 630	Ile	Tyr	Arg	Leu	Leu 635	Glu	Asp	Ser	Gln	Thr 640
	Gln	Gln	Glu	Lys	Asn 645	Glu	Lys	Asp	Leu	Leu 650	Ala	Leu	Asp	Ser	Trp 655	Lys
	Asn	Leu	Trp	Ser 660	Trp	Phe	Asp	Ile	Ser 665	Asn	Trp	Leu	Trp	Tyr 670	Ile	Lys
	Ser	Arg	Ile 675	Glu	Gly	Arg	Gly	Ser 680	Gly	Gly	Tyr	Ile	Pro 685	Glu	Ala	Pro
	Arg	Asp 690	Gly	Gln	Ala	Tyr	Val 695	Arg	Lys	Asp	Gly	Glu 700	Trp	Val	Leu	Leu
	Ser 705	Thr	Phe	Leu												
<210> 8 <211> 62 <212> PR <213> Se	RT	cia arti	ificial													
<220> <223> fra	gmen	to de	C4: g _l	o120-	gp41 1	trunca	ıda sir	n pépt	ido se	eñal y	domir	nio tra	nsme	mbrar	na	
<400> 8																
	Met 1	Gly	Asn	Leu	Trp 5	Val	Thr	Val	Tyr	Tyr 10	Gly	Val	Pro	Val	Trp 15	Lys
	Asp	Ala	Lys	Thr 20	Thr	Leu	Phe	Cys	Ala 25	Ser	Asp	Ala	Lys	Ala 30	Tyr	Glu
	Lys	Glu	Val 35	His	Asn	Val	Trp	Ala 40	Thr	His	Ala	Cys	Val 45	Pro	Thr	Asp
	Pro	Asn 50	Pro	Gln	Glu	Ile	Val 55	Leu	Gly	Asn	Val	Thr 60	Glu	Asn	Phe	Asn
	Met 65	Trp	Lys	Asn	Asp	Met 70	Val	Asp	Gln	Met	His 75	Glu	Asp	Ile	Ile	Ser 80

5

10

Leu	Trp	Asp	Ala	Ser 85	Leu	Glu	Pro	Cys	Val 90	Lys	Leu	Thr	Pro	Leu 95	Cys
Val	Thr	Leu	Asn 100	Cys	Arg	Asn	Val	Arg 105	Asn	Val	Ser	Ser	Asn 110	Gly	Thr
Tyr	Asn	Ile 115	Ile	His	Asn	Glu	Thr 120	Tyr	Lys	Glu	Met	Lys 125	Asn	Cys	Ser
Phe	As n 130	Ala	Thr	Thr	Val	Val 135	Glu	Asp	Arg	Lys	Gln 140	Lys	Val	His	Ala
Leu 145	Phe	Tyr	Arg	Leu	Asp 150	Ile	Val	Pro	Leu	Asp 155	Glu	Asn	Asn	Ser	Ser 160
Glu	Lys	Ser	Ser	Glu 165	Asn	Ser	Ser	Glu	Tyr 170	Tyr	Arg	Leu	Ile	Asn 175	Cys
Asn	Thr	Ser	Ala 180	Ile	Thr	Gln	Ala	Cys 185	Pro	Lys	Val	Ser	Phe 190	Asp	Pro
Ile	Pro	Ile 195	His	Tyr	Cys	Ala	Pro 200	Ala	Gly	Tyr	Ala	Ile 205	Leu	Lys	Cys
Asn	A sn 210	Lys	Thr	Phe	Asn	Gly 215	Thr	Gly	Pro	Cys	As n 220	Asn	Val	Ser	Thr
Val 225	Gln	Cys	Thr	His	Gly 230	Ile	Lys	Pro	Val	Val 235	Ser	Thr	Gln	Leu	Leu 240
Leu	Asn	Gly	Ser	Leu 245	Ala	Glu	Glu	Glu	Ile 250	Ile	Ile	Arg	Ser	Glu 255	Asn
Leu	Thr	Asn	Asn 260	Ala	Lys	Thr	Ile	Ile 265	Val	His	Leu	Asn	Glu 270	Thr	Val
Asn	Ile	Thr 275	Cys	Thr	Arg	Pro	As n 280	Asn	Asn	Thr	Arg	Lys 285	Ser	Ile	Arg
Ile	Gly 290	Pro	Gly	Gln	Thr	Phe 295	Tyr	Ala	Thr	Gly	Asp 300	Ile	Ile	Gly	Asp
Ile 305	Arg	Gln	Ala	His	Cys 310	Asn	Leu	Ser	Arg	Asp 315	Gly	Trp	Asn	Lys	Thr 320
Leu	Gln	Gly	Val	Lys 325	Lys	Lys	Leu	Ala	Glu 330	His	Phe	Pro	Asn	Lys 335	Thr

Ile	Lys	Phe	Ala 340	Pro	His	Ser	Gly	Gly 345	Asp	Leu	Glu	Ile	Thr 350	Thr	His
Thr	Phe	As n 355	Cys	Arg	Gly	Glu	Phe 360	Phe	Tyr	Суѕ	Asn	Thr 365	Ser	Asn	Leu
Phe	A sn 370	Glu	Ser	Asn	Ile	Glu 375	Arg	Asn	Asp	Ser	Ile 380	Ile	Thr	Leu	Pro
Cys 385	Arg	Ile	Lys	Gln	11e 390	Ile	Asn	Met	Trp	Gln 395	Glu	Val	Gly	Arg	Ala 400
Ile	Tyr	Ala	Pro	Pro 405	Ile	Ala	Gly	Asn	Ile 410	Thr	Cys	Arg	Ser	Asn 415	Ile
Thr	Gly	Leu	Leu 420	Leu	Thr	Arg	Asp	Gly 425	Gly	Ser	Asn	Asn	Gly 430	Val	Pro
Asn	Asp	Thr 435	Glu	Thr	Phe	Arg	Pro 440	Gly	Gly	Gly	Asp	Met 445	Arg	Asn	Asn
Trp	A rg 4 50	Ser	Glu	Leu	Tyr	Lys 455	Tyr	Lys	Val	Val	Glu 460	Val	Lys	Pro	Leu
Gly 465	Val	Ala	Pro	Thr	Glu 470	Ala	Lys	Arg	Arg	Val 475	Val	Glu	Arg	Glu	Lys 480
Arg	Ala	Val	Gly	Ile 485	Gly	Ala	Val	Phe	Leu 490	Gly	Ile	Leu	Gly	Ala 495	Ala
Gly	Ser	Thr	Met 500	Gly	Ala	Ala	Ser	Ile 505	Thr	Leu	Thr	Val	Gln 510	Ala	Arg
Gln	Leu	Leu 515	Ser	Gly	Ile	Val	Gln 520	Gln	Gln	Ser	Asn	Leu 525	Leu	Arg	Ala
Ile	Glu 530	Ala	Gln	Gln	His	Met 535	Leu	Gln	Leu	Thr	Val 540	Trp	Gly	Ile	Lys
Gln 545	Leu	Gln	Thr	Arg	Val 550	Leu	Ala	Ile	Glu	A rg 555	Tyr	Leu	Gln	Asp	Gln 560
Gln	Leu	Leu	Gly	Leu 565	Trp	Gly	Cys	Ser	Gly 570	Lys	Leu	Ile	Cys	Thr 575	Thr
Ala	Val	Pro	Trp 580	Asn	Thr	Ser	Trp	Ser 585	Asn	Lys	Ser	Gln	Thr 590	Asp	Ile

```
Trp Asp Asn Met Thr Trp Met Gln Trp Asp Lys Glu Ile Gly Asn Tyr
                        595
                                              600
                Thr Gly Glu Ile Tyr Arg Leu Leu Glu Glu Ser Gln Asn Gln Glu
                                         615
                                                              620
               Lys
                625
        <210>9
        <211> 29
        <212> PRT
 5
        <213> Secuencia artificial
        <220>
        <223> Secuencia señal
10
        <400> 9
             Met Arg Val Arg Gly Met Leu Arg Asn Trp Gln Gln Trp Trp Ile Trp
                                                       10
             Ser Ser Leu Gly Phe Trp Met Leu Met Ile Tyr Ser Val
        <210> 10
15
        <211> 29
        <212> PRT
        <213> Secuencia artificial
        <220>
20
        <223> Secuencia señal
        <400> 10
             Met Arg Val Thr Gly Ile Arg Lys Asn Tyr Gln His Leu Trp Arg Trp
                                                       10
             Gly Thr Met Leu Leu Gly Ile Leu Met Ile Cys Ser Ala
                           20
25
        <210> 11
        <211> 29
        <212> PRT
30
        <213> Secuencia artificial
        <220>
        <223> Secuencia señal
35
        <400> 11
             Met Arg Val Arg Gly Ile Gln Arg Asn Trp Pro Gln Trp Trp Ile Trp
                                                       10
                    Gly Ile Leu Gly Phe Trp Met Ile Ile Cys Arg Val
                                  20
40
        <210> 12
        <211> 29
        <212> PRT
        <213> Secuencia artificial
```

```
<220>
        <223> Secuencia señal
 5
        <400> 12
              Met Arg Val Arg Gly Ile Gln Arg Asn Cys Gln His Leu Trp Arg Trp
              Gly Thr Leu Ile Leu Gly Met Leu Met Ile Cys Ser Ala
        <210> 13
10
        <211> 22
        <212> PRT
        <213> Secuencia artificial
        <220>
15
        <223> dominio transmembrana
        <400> 13
              Ile Phe Ile Met Ile Val Gly Gly Leu Ile Gly Leu Arg Ile Ile Phe
                                                         10
              Ala Val Leu Ser Ile Val
                             20
20
        <210> 14
        <211> 7
        <212> PRT
        <213> Secuencia artificial
25
        <220>
        <223> región citoplasmática truncada
        <400> 14
30
                                    Asn Arg Val Arg Gln Gly Tyr
        <210> 15
        <211> 32
35
        <212> PRT
        <213> Secuencia artificial
        <223> dominio de trimerización GCN4
40
        <400> 15
                Met Lys Gln Ile Glu Asp Lys Ile Glu Glu Ile Leu Ser Lys Ile Tyr
                His Ile Glu Asn Glu Ile Ala Arg Ile Lys Lys Leu Ile Gly Glu Val
                                                    25
        <210> 16
45
        <211> 30
        <212> PRT
        <213> Secuencia artificial
```

<220> <223> dominio de trimerización foldon <400> 16 5 Gly Ser Gly Gly Tyr Ile Pro Glu Ala Pro Arg Asp Gly Gln Ala Tyr Val Arg Lys Asp Gly Glu Trp Val Leu Leu Ser Thr Phe Leu 20 25 <210> 17 <211>862 <212> PRT 10 <213> Secuencia artificial <220> <223> secuencia de C4 15 <400> 17 Met Arg Val Arg Gly Met Leu Arg Asn Trp Gln Gln Trp Trp Ile Trp Ser Ser Leu Gly Phe Trp Met Leu Met Ile Tyr Ser Val Met Gly Asn 25 Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Lys Asp Ala Lys 40 Thr Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala Tyr Glu Lys Glu Val His Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro Asn Pro Gln Glu Ile Val Leu Gly Asn Val Thr Glu Asn Phe Asn Met Trp Lys Asn Asp Met Val Asp Gln Met His Glu Asp Ile Ile Ser Leu Trp Asp

			100					105					110		
Ala	Ser	Leu 115	Glu	Pro	Cys	Val	Lys 120	Leu	Thr	Pro	Leu	Cys 125	Val	Thr	Leu
Asn	Cys 130	Arg	Asn	Val	Arg	Asn 135	Val	Ser	Ser	Asn	Gly 140	Thr	Tyr	Asn	Ile
Ile 145	His	Asn	Glu	Thr	Tyr 150	Lys	Glu	Met	Lys	Asn 155	Cys	Ser	Phe	Asn	A la 160
Thr	Thr	Val	Val	Glu 165	Asp	Arg	Lys	Gln	Lys 170	Val	His	Ala	Leu	Phe 175	Tyr
Arg	Leu	Asp	Ile 180	Val	Pro	Leu	Asp	Glu 185	Asn	Asn	Ser	Ser	Glu 190	Lys	Ser
Ser	Glu	As n 195	Ser	Ser	Glu	Tyr	Tyr 200	Arg	Leu	Ile	Asn	Cys 205	Asn	Thr	Ser
Ala	11e 210	Thr	Gln	Ala	Cys	Pro 215	Lys	Val	Ser	Phe	Asp 220	Pro	Ile	Pro	Ile
His 225	Tyr	Cys	Ala	Pro	Ala 230	Gly	Tyr	Ala	Ile	Leu 235	Lys	Cys	Asn	Asn	Lys 240
Thr	Phe	Asn	Gly	Thr 245	Gly	Pro	Cys	Asn	Asn 250	Val	Ser	Thr	Val	Gln 255	Cys
Thr	His	Gly	Ile 260	Lys	Pro	Val	Val	Ser 265	Thr	Gln	Leu	Leu	Leu 270	Asn	Gly
Ser	Leu	Ala 275	Glu	Glu	Glu	Ile	Ile 280	Ile	Arg	Ser	Glu	Asn 285	Leu	Thr	Asn
Asn	Ala 290	Lys	Thr	Ile	Ile	Val 295	His	Leu	Asn	Glu	Thr 300	Val	Asn	Ile	Thr
Cys 305	Thr	Arg	Pro	Asn	Asn 310	Asn	Thr	Arg	Lys	Ser 315	Ile	Arg	Ile	Gly	Pro 320
Gly	Gln	Thr	Phe	Tyr 325	Ala	Thr	Gly	Asp	11e 330	Ile	Gly	Asp	Ile	Arg 335	Gln
Ala	His	Cys	Asn 340	Leu	Ser	Arg	Asp	Gly 345	Trp	Asn	Lys	Thr	Leu 350	Gln	Gly

Val	Lys	Lys 355	Lys	Leu	Ala	Glu	His 360	Phe	Pro	Asn	Lys	Thr 365	Ile	Lys	Phe
Ala	Pro 370	His	Ser	Gly	Gly	Asp 375	Leu	Glu	Ile	Thr	Thr 380	His	Thr	Phe	Asn
Cys 385	Arg	Gly	Glu	Phe	Phe 390	Tyr	Cys	Asn	Thr	Ser 395	Asn	Leu	Phe	Asn	Glu 400
Ser	Asn	Ile	Glu	Arg 405	Asn	Asp	Ser	Ile	Ile 410	Thr	Leu	Pro	Cys	Arg 415	Ile
Lys	Gln	Ile	Ile 420	Asn	Met	Trp	Gln	Glu 425	Val	Gly	Arg	Ala	Ile 430	Tyr	Ala
Pro	Pro	Ile 435	Ala	Gly	Asn	Ile	Thr 440	Cys	Arg	Ser	Asn	Ile 445	Thr	Gly	Leu
Leu	Leu 450	Thr	Arg	Asp	Gly	Gly 455	Ser	Asn	Asn	Gly	Val 460	Pro	Asn	Asp	Thr
Glu 465	Thr	Phe	Arg	Pro	Gly 470	Gly	Gly	Asp	Met	Arg 475	Asn	Asn	Trp	Arg	Ser 480
Glu	Leu	Tyr	Lys	Tyr 485	Lys	Val	Val	Glu	Val 490	Lys	Pro	Leu	Gly	Val 495	Ala
Pro	Thr	Glu	Ala 500	Lys	Arg	Arg	Val	Val 505	Glu	Arg	Glu	Lys	Arg 510	Ala	Val
Gly	Ile	Gly 515	Ala	Val	Phe	Leu	Gly 520	Ile	Leu	Gly	Ala	Ala 525	Gly	Ser	Thr
Met	Gly 530	Ala	Ala	Ser	Ile	Thr 535	Leu	Thr	Val	Gln	Ala 540	Arg	Gln	Leu	Leu
Ser 545	Gly	Ile	Val	Gln	Gln 550	Gln	Ser	Asn	Leu	Leu 555	Arg	Ala	Ile	Glu	Ala 560
Gln	Gln	His	Met	Leu 565	Gln	Leu	Thr	Val	Trp 570	Gly	Ile	Lys	Gln	Leu 575	Gln
Thr	Arg	Val	Leu 580	Ala	Ile	Glu	Arg	Tyr 585	Leu	Gln	Asp	Gln	Gln 590	Leu	Leu
Gly	Leu	Trp 595	Gly	Cys	Ser	Gly	Lys 600	Leu	Ile	Cys	Thr	Thr 605	Ala	Val	Pro

Trp	Asn 610	Thr	Ser	Trp	Ser	Asn 615	Lys	Ser	Gln	Thr	Asp 620	Ile	Trp	Asp	Asn
Met 625	Thr	Trp	Met	Gln	Trp 630	Asp	Lys	Glu	Ile	Gly 635	Asn	Tyr	Thr	Gly	Glu 640
Ile	Tyr	Arg	Leu	Leu 645	Glu	Glu	Ser	Gln	Asn 650	Gln	Gln	Glu	Lys	Asn 655	Glu
Lys	Asp	Leu	Leu 660	Ala	Leu	Asp	Ser	Trp 665	Asn	Asn	Leu	Trp	Asn 670	Trp	Phe
Ser	Ile	Ser 675	Lys	Trp	Leu	Trp	Tyr 680	Ile	Lys	Ile	Phe	Ile 685	Met	Ile	Val
Gly	Gly 690	Leu	Ile	Gly	Leu	Arg 695	Ile	Ile	Phe	Ala	Val 700	Leu	Ser	Ile	Val
Asn 705	Arg	Val	Arg	Gln	Gly 710	Tyr	Ser	Pro	Leu	Ser 715	Leu	Gln	Thr	Leu	Thr 720
Gln	Asn	Pro	Gly	Gly 725	Leu	Asp	Arg	Leu	Gly 730	Arg	Ile	Glu	Glu	Glu 735	Gly
Gly	Glu	Gln	Asp 740	Lys	Asp	Arg	Ser	Ile 745	Arg	Leu	Val	Asn	Gly 750	Phe	Phe
Ala	Leu	Phe 755	Trp	Asp	Asp	Leu	A rg 760	Ser	Leu	Cys	Leu	Phe 765	Ser	Tyr	His
Arg	Leu 770	Arg	Asp	Phe	Ile	Leu 775	Ile	Val	Ala	Arg	Ala 780	Val	Glu	Leu	Leu
Gly 785	Arg	Ser	Ser	Leu	Arg 790	Gly	Leu	Gln	Arg	Gly 795	Trp	Glu	Ile	Leu	Lys 800
Tyr	Leu	Gly	Ser	Leu 805	Leu	Gln	Tyr	Trp	Gly 810	Leu	Glu	Leu	Lys	Lys 815	Ser
			820		-			825			Val		830	_	
Asp	Arg	Ile 835	Ile	Glu	Leu	Ile	Gln 840	Arg	Ile	Cys	Arg	Ala 845	Ile	Суз	Asn
Ile	Pro 850	Arg	Arg	Ile	Arg	Gln 855	Gly	Phe	Glu	Ala	Ala 860	Leu	Gln		

<210> 18 <211> 711 <212> PRT

5

	<213> S	ecuen	ıcia ar	tificial													
_	<220> <223> se	ecuen	cia de	C4D	7												
5	<400> 1	8															
		Met 1	Arg	Val	Arg	Gly 5	Met	Leu	Arg	Asn	Trp 10	Gln	Gln	Trp	Trp	Ile 15	Trp
		Ser	Ser	Leu	Gly 20	Phe	Trp	Met	Leu	Met 25	Ile	Tyr	Ser	Val	Met 30	Gly	Asn
		Leu	Trp	Val 35	Thr	Val	Tyr	Tyr	Gly 40	Val	Pro	Val	Trp	Lys 45	Asp	Ala	Lys
		Thr	Thr 50	Leu	Phe	Cys	Ala	Ser 55	Asp	Ala	Lys	Ala	Tyr 60	Glu	Lys	Glu	Val
		His 65	Asn	Val	Trp	Ala	Thr 70	His	Ala	Cys	Val	Pro 75	Thr	Asp	Pro	Asn	Pro 80
		Gln	Glu	Ile	Val	Leu 85	Gly	Asn	Val	Thr	Glu 90	Asn	Phe	Asn	Met	Trp 95	Lys
		Asn	Asp	Met	Val 100	Asp	Gln	Met	His	Glu 105	Asp	Ile	Ile	Ser	Leu 110	Trp	Asp
		Ala	Ser	Leu 115	Glu	Pro	Cys	Val	Lys 120	Leu	Thr	Pro	Leu	Cys 125	Val	Thr	Leu
		Asn	Cys 130	Arg	Asn	Val	Arg	Asn 135	Val	Ser	Ser	Asn	Gly 140	Thr	Tyr	Asn	Ile
		Ile 145	His	Asn	Glu	Thr	Tyr 150	Lys	Glu	Met	Lys	Asn 155	Cys	Ser	Phe	Asn	Ala 160
		Thr	Thr	Val	Val	Glu 165	Asp	Arg	Lys	Gln	Lys 170	Val	His	Ala	Leu	Phe 175	Tyr
		Arg	Leu	Asp	Ile 180	Val	Pro	Leu	Asp	Glu 185	Asn	Asn	Ser	Ser	Glu 190	Lys	Ser

Ser Glu Asn Ser Ser Glu Tyr Tyr Arg Leu Ile Asn Cys Asn Thr Ser 195 200 205

АТА	210	rnr	GIN	АІА	Cys	215	туs	vai	ser	Pne	220	Pro	тте	Pro	тте
His 225	Tyr	Cys	Ala	Pro	Ala 230	Gly	Tyr	Ala	Ile	Leu 235	Lys	Cys	Asn	Asn	Lys 240
Thr	Phe	Asn	Gly	Thr 245	Gly	Pro	Cys	Asn	Asn 250	Val	Ser	Thr	Val	Gln 255	Cys
Thr	His	Gly	Ile 260	Lys	Pro	Val	Val	Ser 265	Thr	Gln	Leu	Leu	Leu 270	Asn	Gly
Ser	Leu	Ala 275	Glu	Glu	Glu	Ile	Ile 280	Ile	Arg	Ser	Glu	As n 285	Leu	Thr	Asn
Asn	Ala 290	Lys	Thr	Ile	Ile	Val 295	His	Leu	Asn	Glu	Thr 300	Val	Asn	Ile	Thr
Cys 305	Thr	Arg	Pro	Asn	Asn 310	Asn	Thr	Arg	Lys	Ser 315	Ile	Arg	Ile	Gly	Pro 320
Gly	Gln	Thr	Phe	Tyr 325	Ala	Thr	Gly	Asp	Ile 330	Ile	Gly	Asp	Ile	Arg 335	Gln
Ala	His	Cys	Asn 340	Leu	Ser	Arg	Asp	Gly 345	Trp	Asn	Lys	Thr	Leu 350	Gln	Gly
Val	Lys	Lys 355	Lys	Leu	Ala	Glu	His 360	Phe	Pro	Asn	Lys	Thr 365	Ile	Lys	Phe
Ala	Pro 370	His	Ser	Gly	Gly	Asp 375	Leu	Glu	Ile	Thr	Thr 380	His	Thr	Phe	Asn
Cys 385	Arg	Gly	Glu	Phe		Tyr	Cys	Asn	Thr	Ser 395	Asn	Leu	Phe	Asn	Glu 400
Ser	Asn	Ile	Glu	Arg 405	Asn	Asp	Ser	Ile	Ile 410	Thr	Leu	Pro	Cys	Arg 415	Ile
Lys	Gln	Ile	Ile 420	Asn	Met	Trp	Gln	Glu 425	Val	Gly	Arg	Ala	Ile 430	Tyr	Ala
Pro	Pro	Ile 435	Ala	Gly	Asn	Ile	Thr 440	Cys	Arg	Ser	Asn	Ile 445	Thr	Gly	Leu
Leu	Leu 450	Thr	Arg	Asp	Gly	Gly 455	Ser	Asn	Asn	Gly	Val 460	Pro	Asn	Asp	Thr

Glu 465	Thr	Phe	Arg	Pro	Gly 470	Gly	Gly	Asp	Met	Arg 475	Asn	Asn	Trp	Arg	Ser 480
Glu	Leu	Tyr	Lys	Tyr 485	Lys	Val	Val	Glu	Val 490	Lys	Pro	Leu	Gly	Val 495	Ala
Pro	Thr	Glu	Ala 500	Lys	Arg	Arg	Val	Val 505	Glu	Arg	Glu	Lys	Arg 510	Ala	Val
Gly	Ile	Gly 515	Ala	Val	Phe	Leu	Gly 520	Ile	Leu	Gly	Ala	Ala 525	Gly	Ser	Thr
Met	Gly 530	Ala	Ala	Ser	Ile	Thr 535	Leu	Thr	Val	Gln	Ala 540	Arg	Gln	Leu	Leu
Ser 545	Gly	Ile	Val	Gln	Gln 550	Gln	Ser	Asn	Leu	Leu 555	Arg	Ala	Ile	Glu	Ala 560
Gln	Gln	His	Met	Leu 565	Gln	Leu	Thr	Val	Trp 570	Gly	Ile	Lys	Gln	Leu 575	Gln
Thr	Arg	Val	Leu 580	Ala	Ile	Glu	Arg	Tyr 585	Leu	Gln	Asp	Gln	Gln 590	Leu	Leu
Gly	Leu	Trp 595	Gly	Cys	Ser	Gly	Lys 600	Leu	Ile	Cys	Thr	Thr 605	Ala	Val	Pro
	610			Trp		615	-				620				
625				Gln	630					635					640
	_	_		Leu 645					650				-	655	
			660	Ala				665					670		
		675	_	Trp		_	680		_			685			
	690			Gly		695	Ile	Ile	Phe	Ala	Val 700	Leu	Ser	Ile	Val
Asn	Arg	Val	Arg	Gln 705	Gly	Tyr			710)					

<210> 19 <211> 704

5

<212> PRT

	<213> 3	Secue	ncia a	rtificia	l												
5	<220> <223> s	secuer	ncia de	- sC4													
J	<400>		iola a	001													
			Arg	Val	Arg	Gly 5	Met	Leu	Arg	Asn	Trp 10	Gln	Gln	Trp	Trp	Ile 15	Tr
		Ser	Ser	Leu	Gly 20	Phe	Trp	Met	Leu	Met 25	Ile	Tyr	Ser	Val	Met 30	Gly	Ası
		Leu	Trp	Val 35	Thr	Val	Tyr	Tyr	Gly 40	Val	Pro	Val	Trp	Lys 45	Asp	Ala	Lys
		Thr	Thr 50	Leu	Phe	Cys	Ala	Ser 55	Asp	Ala	Lys	Ala	Tyr 60	Glu	Lys	Glu	Val
		His 65	Asn	Val	Trp	Ala	Thr 70	His	Ala	Cys	Val	Pro 75	Thr	Asp	Pro	Asn	Pro 80
		Gln	Glu	Ile	Val	Leu 85	Gly	Asn	Val	Thr	Glu 90	Asn	Phe	Asn	Met	Trp 95	Lys
		Asn	Asp	Met	Val 100	Asp	Gln	Met	His	Glu 105	Asp	Ile	Ile	Ser	Leu 110	Trp	Ası
		Ala	Ser	Leu 115	Glu	Pro	Суѕ	Val	Lys 120	Leu	Thr	Pro	Leu	Cys 125	Val	Thr	Let
		Asn	Cys 130	Arg	Asn	Val	Arg	Asn 135	Val	Ser	Ser	Asn	Gly 140	Thr	Tyr	Asn	Ιlϵ
		Ile 145	His	Asn	Glu	Thr	Tyr 150	Lys	Glu	Met	Lys	As n 155	Cys	Ser	Phe	Asn	Ala 160
		Thr	Thr	Val	Val	Glu 165	Asp	Arg	Lys	Gln	Lys 170	Val	His	Ala	Leu	Phe 175	Туз
		Arg	Leu	Asp	Ile 180	Val	Pro	Leu	Asp	Glu 185	Asn	Asn	Ser	Ser	Glu 190	Lys	Sea

Ser Glu Asn Ser Ser Glu Tyr Tyr Arg Leu Ile Asn Cys Asn Thr Ser 195 200 205

Ala	Ile 210	Thr	Gln	Ala	Cys	Pro 215	Lys	Val	Ser	Phe	Asp 220	Pro	Ile	Pro	Ile
His 225	Tyr	Cys	Ala	Pro	Ala 230	Gly	Tyr	Ala	Ile	Leu 235	Lys	Суѕ	Asn	Asn	Lys 240
Thr	Phe	Asn	Gly	Thr 245	Gly	Pro	Cys	Asn	Asn 250	Val	Ser	Thr	Val	Gln 255	Cys
Thr	His	Gly	Ile 260	Lys	Pro	Val	Val	Ser 265	Thr	Gln	Leu	Leu	Leu 270	Asn	Gly
Ser	Leu	Ala 275	Glu	Glu	Glu	Ile	Ile 280	Ile	Arg	Ser	Glu	Asn 285	Leu	Thr	Asn
Asn	Ala 290	Lys	Thr	Ile	Ile	Val 295	His	Leu	Asn	Glu	Thr 300	Val	Asn	Ile	Thr
Cys 305	Thr	Arg	Pro	Asn	As n 310	Asn	Thr	Arg	Lys	Ser 315	Ile	Arg	Ile	Gly	Pro 320
Gly	Gln	Thr	Phe	Tyr 325	Ala	Thr	Gly	Asp	Ile 330	Ile	Gly	Asp	Ile	A rg 335	Gln
Ala	His	Cys	Asn 340	Leu	Ser	Arg	Asp	Gly 345	Trp	Asn	Lys	Thr	Leu 350	Gln	Gly
Val	Lys	Lys 355	Lys	Leu	Ala	Glu	His 360	Phe	Pro	Asn	Lys	Thr 365	Ile	Lys	Phe
Ala	Pro 370	His	Ser	Gly	Gly	Asp 375	Leu	Glu	Ile	Thr	Thr 380	His	Thr	Phe	Asn
Cys 385	Arg	Gly	Glu	Phe	Phe 390	Tyr	Cys	Asn	Thr	Ser 395	Asn	Leu	Phe	Asn	Glu 400
Ser	Asn	Ile	Glu	Arg 405	Asn	Asp	Ser	Ile	Ile 410	Thr	Leu	Pro	Суз	Arg 415	Ile
Lys	Gln	Ile	Ile 420	Asn	Met	Trp	Gln	Glu 425	Val	Gly	Arg	Ala	Ile 430	Tyr	Ala
Pro	Pro	Ile 435	Ala	Gly	Asn	Ile	Thr 440	Cys	Arg	Ser	Asn	Ile 445	Thr	Gly	Leu
Leu	Leu	Thr	Arg	Asp	Gly	Gly	Ser	Asn	Asn	Gly	Val	Pro	Asn	Asp	Thr

		450					455					460				
	Glu 465	Thr	Phe	Arg	Pro	Gly 470	Gly	Gly	Asp	Met	Arg 475	Asn	Asn	Trp	Arg	Ser 480
	Glu	Leu	Tyr	Lys	Tyr 485	Lys	Val	Val	Glu	Val 490	Lys	Pro	Leu	Gly	Val 495	Ala
	Pro	Thr	Glu	Ala 500	Lys	Arg	Arg	Val	Val 505	Glu	Arg	Glu	Glu	A rg 510	Ala	Val
	Gly	Ile	Gly 515	Ala	Val	Phe	Leu	Gly 520	Ile	Leu	Gly	Ala	Ala 525	Gly	Ser	Thr
	Met	Gly 530	Ala	Ala	Ser	Ile	Thr 535	Leu	Thr	Val	Gln	Ala 540	Arg	Gln	Leu	Leu
	Ser 545	Gly	Ile	Val	Gln	Gln 550	Gln	Ser	Asn	Leu	Leu 555	Arg	Ala	Ile	Glu	Ala 560
	Gln	Gln	His	Met	Leu 565	Gln	Leu	Thr	Val	Trp 570	Gly	Ile	Lys	Gln	Leu 575	Gln
	Thr	Arg	Val	Leu 580	Ala	Ile	Glu	Arg	Tyr 585	Leu	Gln	Asp	Gln	Gln 590	Leu	Leu
	Gly	Leu	Trp 595	Gly	Cys	Ser	Gly	Lys 600	Leu	Ile	Cys	Thr	Thr 605	Ala	Val	Pro
	Trp	Asn 610	Thr	Ser	Trp	Ser	Asn 615	Lys	Ser	Gln	Thr	Asp 620	Ile	Trp	Asp	Asn
	Met 625	Thr	Trp	Met	Gln	Trp 630	Asp	Lys	Glu	Ile	Gly 635	Asn	Tyr	Thr	Gly	Glu 640
	Ile	Tyr	Arg	Leu	Leu 645	Glu	Glu	Ser	Gln	Asn 650	Gln	Gln	Glu	Lys	Met 655	Lys
	Gln	Ile	Glu	Asp 660	Lys	Ile	Glu	Glu	Ile 665	Leu	Ser	Lys	Ile	Tyr 670	His	Ile
	Glu	Asn	Glu 675	Ile	Ala	Arg	Ile	Lys 680	Lys	Leu	Ile	Gly	Glu 685	Val	Gly	Ser
	Gly	Ala 690	Pro	Thr	Lys	Ala	Lys 695	Arg	Arg	Val	Val	Gln 700	Arg	Glu	Lys	Arg
20																

<210> 20 <211> 4050 <212> ADN <213> Secuencia artificial

<220>

5

<223> secuencia de nucleótidos que codifica mos1GagPol

<400> 20

atgggagcca gagccagcgt gctgtccgga ggggagctgg accgctggga gaagatcagg 60 ctgaggcctg gagggaagaa gaagtacagg ctgaagcaca tcgtgtgggc cagcagagag 120 180 ctggaacggt ttgccgtgaa ccctggcctg ctggaaacca gcgagggctg taggcagatt ctgggacagc tgcagcccag cctgcagaca ggcagcgagg aactgcggag cctgtacaac 240 300 accgtggcca ccctgtactg cgtgcaccag cggatcgaga tcaaggacac caaagaagcc 360 ctggaaaaga tcgaggaaga gcagaacaag agcaagaaga aagcccagca ggctgccgct 420 gacacaggca acagcagcca ggtgtcccag aactacccca tcgtgcagaa catccaggga cagatggtgc accaggccat cagccctcgg accctgaacg cctgggtgaa ggtggtggag 480 gaaaaggeet teageeetga ggtgateeee atgttetetg eeetgagega gggageeaca 540 600 ccccaggacc tgaacaccat gctgaacacc gtgggagggc accaggctgc catgcagatg ctgaaagaga caatcaacga ggaagctgcc gagtgggaca gggtccaccc agtgcacgct 660 ggacctatcg ctcctggcca gatgagagag cccagaggca gcgatattgc tggcaccacc 720 780 tccacactgc aggaacagat cggctggatg accaacaacc ctcccatccc tgtgggagag atctacaagc ggtggatcat tctgggactg aacaagatcg tgcggatgta cagccctgtg 840 agcatcctgg acatcaggca gggacccaaa gagcccttca gggactacgt ggaccggttc 900 960 tacaagaccc tgagagccga gcaggccagc caggacgtga agaactggat gaccgagaca ctgctggtgc agaacgccaa ccctgactgc aagaccatcc tgaaagccct gggacctgct 1020 gccaccctgg aagagatgat gacagcctgc cagggagtgg gaggacctgg ccacaaggcc 1080 agggtgctgg ccgaggccat gagccaggtg accaactctg ccaccatcat gatgcagaga 1140 1200 ggcaacttcc ggaaccagag aaagaccgtg aagtgcttca actgtggcaa agagggacac attgccaaga actgcagggc tcccaggaag aaaggctgct ggaagtgcgg aaaagaaggc 1260 1320 caccagatga aggactgcac cgagaggcag gccaacttcc tgggcaagat ctggcctagc aacaaqqqca qqcctqqcaa cttcctqcaq aacaqacccq aqcccaccqc tcctcccqaq 1380 gaaagcttcc ggtttggcga ggaaaccacc acccctagcc agaagcagga acccatcgac 1440 aaagagatgt accetetgge cageetgaag ageetgtteg geaacgaeee cageageeag 1500 atggctccca tcagcccaat cgagacagtg cctgtgaagc tgaagcctgg catggacgga 1560 cccagggtga agcagtggcc tctgaccgag gaaaagatca aagccctgac agccatctgc 1620

gaggaaatgg aaaaagaggg	caagatcacc	aagatcggac	ccgagaaccc	ctacaacacc	1680
cctgtgttcg ccatcaagaa	gaaagacagc	accaagtgga	ggaaactggt	ggacttcaga	1740
gagetgaaca ageggaeeca	ggacttctgg	gaggtgcagc	tgggcatccc	tcaccctgct	1800
ggcctgaaga aaaagaaaag	cgtgaccgtg	ctggctgtgg	gagatgccta	cttcagcgtg	1860
cctctggacg agggcttccg	gaagtacaca	gccttcacca	tccccagcac	caacaacgag	1920
acacctggca tcagatacca	gtacaacgtg	ctgcctcagg	gctggaaagg	cagccctgcc	1980
atcttccagt gcagcatgac	cagaatcctg	gaacccttca	gagccaagaa	ccctgagatc	2040
gtgatctacc agtatatggc	tgccctctac	gtgggcagcg	acctggaaat	cggacagcac	2100
agagccaaaa tcgaagaact	ccgcgagcac	ctgctgaagt	ggggattcac	cacccctgac	2160
aagaagcacc agaaagagcc	tecettectg	tggatgggct	acgagctgca	ccctgacaag	2220
tggaccgtgc agcccatcca	gctgccagag	aaggactcct	ggaccgtgaa	cgacatccag	2280
aaactggtcg gcaagctgaa	ctgggccagc	cagatctacc	ctggcatcaa	agtcagacag	2340
ctgtgtaagc tgctgagggg	agccaaagca	ctgaccgaca	tcgtgcctct	gacagaagaa	2400
gccgagctgg aactggccga	gaacagagag	atcctgaaag	aacccgtgca	cggagtgtac	2460
tacgacccct ccaaggacct	gattgccgag	atccagaaac	agggacacga	ccagtggacc	2520
taccagatct atcaggaacc	tttcaagaac	ctgaaaacag	gcaagtacgc	caagatgcgg	2580
acageceaca ecaaegaegt	gaagcagctg	accgaagccg	tgcagaaaat	cgccatggaa	2640
agcatcgtga tctggggaaa	gacacccaag	ttcaggctgc	ccatccagaa	agagacatgg	2700
gaaacctggt ggaccgacta	ctggcaggcc	acctggattc	ccgagtggga	gttcgtgaac	2760
accccacccc tggtgaagct	gtggtatcag	ctggaaaagg	accctatcgc	tggcgtggag	2820
acattctacg tggctggagc	tgccaacaga	gagacaaagc	tgggcaaggc	tggctacgtg	2880
accgacagag gcagacagaa	aatcgtgagc	ctgaccgaaa	ccaccaacca	gaaaacagcc	2940
ctgcaggcca tctatctggc	actgcaggac	agcggaagcg	aggtgaacat	cgtgacagcc	3000
agccagtatg ccctgggcat	catccaggcc	cagcctgaca	agagcgagag	cgagctggtg	3060
aaccagatca tcgagcagct	gatcaagaaa	gaacgggtgt	acctgagctg	ggtgccagcc	3120
cacaagggca tcggagggaa	cgagcaggtg	gacaagctgg	tgtccagcgg	aatccggaag	3180
gtgctgttcc tggacggcat	cgataaagcc	caggaagagc	acgagaagta	ccacagcaat	3240
tggagagcca tggccagcga	cttcaacctg	cctcccgtgg	tggccaaaga	aatcgtggcc	3300
agctgcgacc agtgccagct	gaaaggcgag	gccatgcacg	gacaggtgga	ctgctcccct	3360
ggcatctggc agctggcatg	cacccacctg	gaaggcaaga	tcattctggt	ggccgtgcac	3420
gtggccagcg gatacatcga	agccgaagtg	atccctgccg	agacagggca	ggaaacagcc	3480
tacttcatcc tgaagctggc	tggcagatgg	cctgtgaagg	tgatccacac	agccaacggc	3540

agcaacttca cctctgctgc	cgtgaaggct	gcctgttggt	gggctggcat	tcagcaggaa	3600
tttggcatcc cctacaatcc	ccagtctcag	ggagtggtgg	ccagcatgaa	caaagagctg	3660
aagaagatca tcggacaggt	cagggatcag	gccgagcacc	tgaaaactgc	cgtccagatg	3720
gccgtgttca tccacaactt	caagcggaag	ggagggatcg	gagggtactc	tgctggcgag	3780
cggatcatcg acatcattgc	caccgatatc	cagaccaaag	agctgcagaa	acagatcatc	3840
aagatccaga acttcagggt	gtactacagg	gacagcaggg	accccatctg	gaagggacct	3900
gccaagctgc tgtggaaagg	cgaaggagcc	gtcgtcatcc	aggacaacag	cgacatcaag	3960
gtggtgccca gacggaaggt	gaaaatcatc	aaggactacg	gcaaacagat	ggctggagcc	4020
gactgtgtcg ctggcaggca	ggacgaggac				4050

<210> 21

5

10

<211> 4023

<212> ADN

<213> Secuencia artificial

<220>

<223> secuencia de nucleótidos que codifica mos2GagPol

<400> 21

atgggagcca gagccagcat cctgcgagga gggaagctgg acaagtggga gaagatcagg 60 ctgaggcctg gagggaagaa acactacatg ctgaagcacc tggtctgggc cagcagagag 120 180 ctggaacggt ttgccctcaa tcctggcctg ctggaaacca gcgagggctg caagcagatc atcaagcagc tgcagcctgc cctgcagaca ggcaccgagg aactgcggag cctgttcaac 240 accytygcca ccctytacty cytycatycc gagatcyaay tyagygyacac caaagaaycc 300 ctggacaaga tcgaggaaga gcagaacaag agccagcaga aaacccagca ggccaaagaa 360 420 gccgacggca aggtctccca gaactacccc atcgtgcaga acctgcaggg acagatggtg caccagccca tcagccctcg gacactgaat gcctgggtga aggtgatcga ggaaaaggcc 480 540 ttcagccctg aggtgatccc catgttcaca gccctgagcg agggagccac accccaggac ctgaacacca tgctgaacac cgtgggaggg caccaggctg ccatgcagat gctgaaggac 600 660 accatcaacg aggaagctgc cgagtgggac aggctgcacc ctgtgcacgc tggacctgtg gctcctggcc agatgagaga gcccagaggc agcgatattg ctggcaccac ctccaatctg 720 780 caggaacaga tcgcctggat gaccagcaac cctcccatcc ctgtgggaga catctacaag cggtggatca tcctgggact gaacaagatc gtgcggatgt acagccctac ctccatcctg 840 gacatcaagc agggacccaa agagcctttc agggactacg tggaccggtt cttcaagacc 900 ctgagagccg agcaggccac ccaggacgtg aagaactgga tgaccgacac cctgctggtg 960 1020 cagaacgcca accetgactg caagaccate etgagageee tgggacetgg agecaccetg

gaagagatga	tgacagcctg	ccagggagtg	ggaggaccct	ctcacaaggc	tagggtgctg	1080
gccgaggcca	tgagccagac	caacagcacc	atcctgatgc	agcggagcaa	cttcaagggc	1140
agcaagcgga	tcgtgaagtg	cttcaactgt	ggcaaagagg	gacacattgc	cagaaactgt	1200
agggcaccca	ggaagaaagg	ctgctggaag	tgcggaaaag	aaggccacca	gatgaaggac	1260
tgcaccgaga	ggcaggccaa	cttcctgggc	aagatctggc	ctagccacaa	gggcagacct	1320
ggcaacttcc	tgcagagcag	acccgagccc	accgctcctc	cagccgagag	cttccggttc	1380
gaggaaacca	cccctgctcc	caagcaggaa	cctaaggaca	gagagcctct	gaccagcctg	1440
agaagcctgt	tcggcagcga	ccctctgagc	cagatggctc	ccatctcccc	tatcgagaca	1500
gtgcctgtga	agctgaagcc	tggcatggac	ggacccaagg	tgaaacagtg	gcctctgacc	1560
gaggaaaaga	tcaaagccct	ggtggagatc	tgtaccgaga	tggaaaaaga	gggcaagatc	1620
agcaagatcg	gacccgagaa	cccctacaac	acccctatct	tcgccatcaa	gaagaaagac	1680
agcaccaagt	ggaggaaact	ggtggacttc	agagagctga	acaagcggac	ccaggacttc	1740
tgggaggtgc	agctgggcat	ccctcaccct	gctggcctga	agaaaaagaa	aagcgtgacc	1800
gtgctggccg	tgggagatgc	ctacttcagc	gtgcctctgg	acgaggactt	cagaaagtac	1860
acagccttca	ccatccccag	catcaacaac	gagacacctg	gcatcagata	ccagtacaac	1920
gtgctgcctc	agggatggaa	gggctctcct	gcaatcttcc	agagcagcat	gaccaagatc	1980
ctggaaccct	tccggaagca	gaaccctgac	atcgtgatct	accagtacat	ggcagccctg	2040
tacgtcggca	gcgacctgga	aatcggacag	caccggacca	agatcgaaga	actcaggcag	2100
cacctgctgc	ggtggggatt	caccacccct	gacaagaagc	accagaaaga	gcctcccttc	2160
ctgtggatgg	gctacgagct	gcacccagac	aagtggaccg	tgcagcccat	cgtgctgcct	2220
gagaaggact	cctggaccgt	gaacgacatc	cagaaactgg	tcggcaagct	gaactgggcc	2280
agccagatct	acgctggcat	caaagtgaag	cagctgtgta	agctcctgag	aggcaccaaa	2340
gccctgaccg	aggtggtgcc	actgacagag	gaagccgagc	tggaactggc	cgagaacaga	2400
gagatcctga	aagaacccgt	gcacggagtg	tactacgacc	ccagcaagga	cctgattgcc	2460
gagatccaga	agcagggaca	gggacagtgg	acctaccaga	tctaccagga	acccttcaag	2520
aacctgaaaa	caggcaagta	cgccaggatg	aggggagccc	acaccaacga	cgtcaaacag	2580
ctgaccgaag	ccgtgcagaa	gatcgccacc	gagagcatcg	tgatttgggg	aaagacaccc	2640
aagttcaagc	tgcccatcca	gaaagagaca	tgggaggcct	ggtggaccga	gtactggcag	2700
gccacctgga	ttcccgagtg	ggagttcgtg	aacaccccac	ccctggtgaa	gctgtggtat	2760
cagctggaaa	aagaacccat	cgtgggagcc	gagacattct	acgtggctgg	agctgccaac	2820
agagagacaa	agctgggcaa	ggctggctac	gtgaccgaca	gaggcaggca	gaaagtggtg	2880
tccctgaccg	ataccaccaa	ccagaaaaca	gccctgcagg	ccatccacct	ggctctgcag	2940

gactctggcc	tggaagtgaa	catcgtgaca	gccagccagt	atgccctggg	catcattcag	3000
gcacagcctg	acaagagcga	gagcgagctg	gtgtctcaga	tcattgagca	gctgatcaag	3060
aaagaaaagg	tgtacctggc	ctgggtgcca	gcccacaagg	ggatcggagg	gaacgagcag	3120
gtggacaagc	tggtgtccag	gggcatccgg	aaggtgctgt	ttctggacgg	catcgacaaa	3180
gcccaggaag	agcacgagaa	gtaccacagc	aattggagag	ccatggccag	cgagttcaac	3240
ctgcctccca	tcgtggccaa	agaaatcgtg	gcctcttgcg	acaagtgcca	gctgaaaggc	3300
gaggccattc	acggacaggt	ggactgcagc	ccaggcatct	ggcagctggc	ctgcacccac	3360
ctggaaggca	aggtgatcct	ggtggccgtg	cacgtggcct	ctggatacat	cgaagccgaa	3420
gtgatccctg	ccgagacagg	ccaggaaaca	gcctacttcc	tgctgaagct	ggctggcagg	3480
tggcctgtga	aaaccatcca	cacagccaac	ggcagcaact	tcacctctgc	caccgtgaag	3540
gctgcctgtt	ggtgggctgg	cattaagcag	gaatttggca	tcccctacaa	ccctcagtct	3600
cagggagtgg	tggcctccat	caacaaagag	ctgaagaaga	tcatcggaca	ggtcagggat	3660
caggccgagc	atctgaaaac	agccgtccag	atggccgtgt	tcatccacaa	cttcaagcgg	3720
aagggaggga	tcggagagta	ctctgctggc	gagaggatcg	tggacattat	cgccagcgat	3780
atccagacca	aagaactgca	gaagcagatc	acaaagatcc	agaacttcag	ggtgtactac	3840
agggacagca	gagatcccct	gtggaaggga	cctgccaagc	tgctgtggaa	aggcgaagga	3900
gccgtcgtca	tccaggacaa	cagcgacatc	aaggtggtgc	ccagacggaa	ggccaagatc	3960
atcagagact	acggcaaaca	gatggctggc	gacgactgcg	tcgcctctag	gcaggacgag	4020
gac						4023

<210> 22

<211> 2055

<212> ADN

<213> Secuencia artificial

<220>

<223> secuencia de nucleótidos que codifica mos1Env

10

5

<400> 22

atgcgggtga ccggcatccg gaagaactac cagcacctgt ggcggtgggg caccatgctg 60 ctgggcatcc tgatgatttg ctctgccgcc ggaaagctgt gggtgaccgt gtactacggc 120 gtgcccgtgt ggaaagaggc caccaccacc ctgttctgcg ccagcgacgc caaggcctac 180 gacaccgagg tgcacaacgt gtgggccacc cacgcctgcg tgcccaccga ccccaacccc 240 caggaagtgg tcctggaaaa cgtgaccgag aacttcaaca tgtggaagaa caacatggtg 300 gagcagatgc acgaggacat catcagcctg tgggaccaga gcctgaagcc ctgcgtgaag 360 ctgaccccc tgtgcgtgac cctgaactgc accgacgacg tgcggaacgt gaccaacaac 420

gccaccaaca	ccaacagcag	ctggggcgag	cctatggaaa	agggcgagat	caagaactgc	480
agcttcaaca	tcaccacctc	catccggaac	aaggtgcaga	agcagtacgc	cctgttctac	540
aagctggacg	tggtgcccat	cgacaacgac	agcaacaaca	ccaactaccg	gctgatcagc	600
tgcaacacca	gcgtgatcac	ccaggcctgc	cccaaggtgt	ccttcgagcc	catccccatc	660
cactactgcg	cccctgccgg	cttcgccatc	ctgaagtgca	acgacaagaa	gttcaacggc	720
accggcccct	gcaccaacgt	gagcaccgtg	cagtgcaccc	acggcatccg	gcccgtggtg	780
tccacccagc	tgctgctgaa	cggcagcctg	gccgaggaag	aggtggtgat	cagaagcgag	840
aatttcacca	acaatgccaa	gaccatcatg	gtgcagctga	acgtgagcgt	ggagatcaac	900
tgcacccggc	ccaacaacaa	cacccggaag	agcatccaca	tcggccctgg	cagggccttc	960
tacacagccg	gcgacatcat	cggcgacatc	cggcaggccc	actgcaacat	cagccgggcc	1020
aactggaaca	acaccctgcg	gcagatcgtg	gagaagctgg	gcaagcagtt	cggcaacaac	1080
aagaccatcg	tgttcaacca	cagcagcggc	ggagaccccg	agatcgtgat	gcacagette	1140
aactgtggcg	gcgagttctt	ctactgcaac	agcaccaagc	tgttcaacag	cacctggacc	1200
tggaacaact	ccacctggaa	taacaccaag	cggagcaacg	acaccgaaga	gcacatcacc	1260
ctgccctgcc	ggatcaagca	gattatcaat	atgtggcagg	aggtcggcaa	ggccatgtac	1320
gcccctccca	tccggggcca	gatccggtgc	agcagcaaca	tcaccggcct	gctgctgacc	1380
cgggacggcg	gcaacgatac	cagcggcacc	gagatcttcc	ggcctggcgg	cggagatatg	1440
cgggacaact	ggcggagcga	gctgtacaag	tacaaggtgg	tgaagatcga	gcccctgggc	1500
gtggctccca	ccaaggccaa	gcggcgggtg	gtgcagagcg	agaagagcgc	cgtgggcatc	1560
ggcgccgtgt	ttctgggctt	cctgggagcc	gccggaagca	ccatgggagc	cgccagcatg	1620
accctgaccg	tgcaggcccg	gctgctgctg	tccggcatcg	tgcagcagca	gaacaacctg	1680
ctccgggcca	tcgaggccca	gcagcacctg	ctgcagctga	ccgtgtgggg	catcaagcag	1740
ctgcaggcca	gggtgctggc	cgtggagaga	tacctgaagg	atcagcagct	cctggggatc	1800
tggggctgca	gcggcaagct	gatctgcacc	accaccgtgc	cctggaacgc	cagctggtcc	1860
aacaagagcc	tggacaagat	ctggaacaat	atgacctgga	tggaatggga	gcgcgagatc	1920
aacaattaca	ccagcctgat	ctacaccctg	atcgaggaaa	gccagaacca	gcaggaaaag	1980
aacgagcagg	aactgctgga	actggacaag	tgggccagcc	tgtggaactg	gttcgacatc	2040
agcaactggc	tgtgg					2055

5

<210> 23

<211> 2052 <212> ADN

<213> Secuencia artificial

<223> secuencia de nucleótidos que codifica mos2Env

10

<400> 23

atgagagtgc	ggggcatcca	gcggaactgg	ccccagtggt	ggatctgggg	catcctgggc	60
ttttggatga	tcatcatctg	ccgggtgatg	ggcaacctgt	gggtgaccgt	gtactacggc	120
gtgcccgtgt	ggaaagaggc	caagaccacc	ctgttctgcg	ccagcgacgc	caaggcctac	180
gagaaagagg	tgcacaacgt	gtgggccacc	cacgcctgcg	tgcccaccga	ccccaacccc	240
caggaaatgg	tcctggaaaa	cgtgaccgag	aacttcaaca	tgtggaagaa	cgacatggtg	300
gaccagatgc	acgaggacat	catccggctg	tgggaccaga	gcctgaagcc	ctgcgtgaag	360
ctgacccccc	tgtgcgtgac	cctggaatgc	cggaacgtga	gaaacgtgag	cagcaacggc	420
acctacaaca	tcatccacaa	cgagacctac	aaagagatga	agaactgcag	cttcaacgcc	480
accaccgtgg	tggaggaccg	gaagcagaag	gtgcacgccc	tgttctaccg	gctggacatc	540
gtgcccctgg	acgagaacaa	cagcagcgag	aagtccagcg	agaacagctc	cgagtactac	600
cggctgatca	actgcaacac	cagcgccatc	acccaggcct	gccccaaggt	gtccttcgac	660
cccatcccca	tccactactg	cgcccctgcc	ggctacgcca	tcctgaagtg	caacaacaag	720
accttcaacg	gcaccggccc	ctgcaacaac	gtgagcaccg	tgcagtgcac	ccacggcatc	780
aagcccgtgg	tgtccaccca	gctgctgctg	aacggcagcc	tggccgagga	agagatcatc	840
atccggtccg	agaacctgac	caacaacgcc	aagaccatca	tcgtgcacct	gaatgagacc	900
gtgaacatca	cctgcacccg	gcccaacaac	aacacccgga	agagcatccg	gatcggccct	960
ggccagacct	tttacgccac	cggcgacatc	atcggcgaca	tccggcaggc	ccactgcaac	1020
ctgagccggg	acggctggaa	caagaccctg	cagggcgtga	agaagaagct	ggccgagcac	1080
ttccccaata	agaccatcaa	cttcaccagc	agcagcggcg	gagacctgga	aatcaccacc	1140
cacagcttca	actgcagggg	cgagttcttc	tactgcaata	cctccggcct	gttcaatggc	1200
acctacatgc	ccaacggcac	caacagcaac	agcagcagca	acatcaccct	gccctgccgg	1260
atcaagcaga	tcatcaatat	gtggcaggag	gtcggcaggg	ccatgtacgc	ccctcccatc	1320
gccggcaata	tcacctgccg	gtccaacatc	accggcctgc	tgctgaccag	ggacggcggc	1380
agcaacaacg	gcgtgcctaa	cgacaccgag	accttccggc	ctggcggcgg	agatatgcgg	1440
aacaactggc	ggagcgagct	gtacaagtac	aaggtggtgg	aggtgaagcc	cctgggcgtg	1500
gctcctaccg	aggccaagcg	gcgggtggtg	gagagcgaga	agagcgccgt	gggcatcggc	1560
gccgtgtttc	tgggcattct	gggagccgcc	ggaagcacca	tgggagccgc	cagcatcacc	1620
ctgaccgtgc	aggcccggca	gctgctgtcc	ggcatcgtgc	agcagcagag	caacctgctg	1680
agagccatcg	aggcccagca	gcacatgctg	cagctgaccg	tgtggggcat	caagcagctg	1740
cagacccggg	tgctggccat	cgagagatac	ctgcaggatc	agcagctcct	gggcctgtgg	1800

ggctgcagcg gcaagctgat ctgcaccacc gccgtgccct ggaacaccag ctggtccaac

1860

	aagagccaga ccgacatctg ggacaacatc	acctggatgc agtgggacaa agagatcggc	1920
	aactacaccg gcgagatcta caggctgctc	gaagagagcc agaaccagca ggaaaagaac	1980
	gagaaggacc tgctggccct ggacagctgg	aagaacctgt ggaactggtt cgacatcacc	2040
	aactggctgt gg		2052
5	<210> 24 <211> 829 <212> ADN <213> Secuencia artificial		
10	<220> <223> promotor de CMV utilizado para la expre-	sión de antígenos en vectores de Ad26	
10	<400> 24		
	tcaatattgg ccattagcca tattattcat	tggttatata gcataaatca atattggcta	60
	ttggccattg catacgttgt atccatatca	taatatgtac atttatattg gctcatgtcc	120
	aacattaccg ccatgttgac attgattatt	gactagttat taatagtaat caattacggg	180
	gtcattagtt catagcccat atatggagtt	ccgcgttaca taacttacgg taaatggccc	240
	gcctggctga ccgcccaacg acccccgcc	attgacgtca ataatgacgt atgttcccat	300
	agtaacgcca atagggactt tccattgacg	tcaatgggtg gagtatttac ggtaaactgc	360
	ccacttggca gtacatcaag tgtatcatat	gccaagtacg ccccctattg acgtcaatga	420
	cggtaaatgg cccgcctggc attatgccca	gtacatgacc ttatgggact ttcctacttg	480
	gcagtacatc tacgtattag tcatcgctat	taccatggtg atgcggtttt ggcagtacat	540
	caatgggcgt ggatagcggt ttgactcacg	gggatttcca agtctccacc ccattgacgt	600
	caatgggagt ttgttttggc accaaaatca	a acgggacttt ccaaaatgtc gtaacaactc	660
	cgccccattg acgcaaatgg gcggtaggcg	g tgtacggtgg gaggtctata taagcagagc	720
	tegtttagtg aacegteaga tegeetggag	g acgccatcca cgctgttttg acctccatag	780
	aagacaccgg gaccgatcca gcctccgcgg	g ccgggaacgg tgcattgga	829
15	<210> 25 <211> 2586 <212> ADN <213> Secuencia artificial		
20	<220> <223> secuencia de nucleótidos que codifica C4	1	
	<400> 25		
	atgagagtgc ggggcatgct gagaaactgg	cagcagtggt ggatctggtc cagcctgggc	60
	ttctggatgc tgatgatcta cagcgtgatc	ggcaacctgt gggtcaccgt gtactacggc	120
25	gtgcccgtgt ggaaggacgc caagaccacc	ctgttttgcg cctccgatgc caaggcctac	180

gagaaagagg	tgcacaacgt	ctgggccacc	cacgcctgtg	tgcccaccga	ccccaatccc	240
caggaaatcg	tcctgggcaa	cgtgaccgag	aacttcaaca	tgtggaagaa	cgacatggtc	300
gatcagatgc	acgaggacat	catctccctg	tgggacgcct	ccctggaacc	ctgcgtgaag	360
ctgacccctc	tgtgcgtgac	cctgaactgc	cggaacgtgc	gcaacgtgtc	cagcaacggc	420
acctacaaca	tcatccacaa	cgagacatac	aaagagatga	agaactgcag	cttcaacgct	480
accaccgtgg	tcgaggaccg	gaagcagaag	gtgcacgccc	tgttctaccg	gctggacatc	540
gtgcccctgg	acgagaacaa	cagcagcgag	aagtcctccg	agaacagctc	cgagtactac	600
agactgatca	actgcaacac	cagcgccatc	acccaggcct	gccccaaggt	gtccttcgac	660
cctatcccca	tccactactg	cgcccctgcc	ggctacgcca	tcctgaagtg	caacaacaag	720
accttcaatg	gcaccggccc	ctgcaacaat	gtgtccaccg	tgcagtgcac	ccacggcatc	780
aagcccgtgg	tgtctaccca	gctgctgctg	aacggcagcc	tggccgagga	agagatcatt	840
atcagaagcg	agaacctgac	caacaacgcc	aaaaccatca	tcgtccacct	gaacgaaacc	900
gtgaacatca	cctgtacccg	gcctaacaac	aacacccgga	agtccatccg	gatcggccct	960
ggccagacct	tttacgccac	cggcgatatt	atcggcgaca	tccggcaggc	ccactgcaat	1020
ctgagccggg	acggctggaa	caagacactg	cagggcgtca	agaagaagct	ggccgaacac	1080
ttccctaaca	agactatcaa	gttcgcccct	cactctggcg	gcgacctgga	aatcaccacc	1140
cacaccttca	actgtcgggg	cgagttcttc	tactgcaata	cctccaacct	gttcaacgag	1200
agcaacatcg	agcggaacga	cagcatcatc	acactgcctt	gccggatcaa	gcagattatc	1260
aatatgtggc	aggaagtggg	cagagccatc	tacgcccctc	caatcgccgg	caacatcaca	1320
tgccggtcca	atatcaccgg	cctgctgctc	accagagatg	gcggctccaa	caatggcgtg	1380
ccaaacgaca	ccgagacatt	cagacccggc	ggaggcgaca	tgcggaacaa	ttggcggagc	1440
gagctgtaca	agtacaaggt	ggtggaagtg	aagcccctgg	gcgtggcccc	taccgaggcc	1500
aagagaagag	tggtcgaacg	cgagaagcgg	gccgtgggaa	tcggagccgt	gtttctggga	1560
atcctgggag	ccgctggctc	taccatgggc	gctgcctcta	tcaccctgac	agtgcaggcc	1620
agacagctgc	tcagcggcat	cgtgcagcag	cagagcaacc	tgctgagagc	cattgaggcc	1680
cagcagcaca	tgctgcagct	gaccgtgtgg	ggcattaagc	agctccagac	acgggtgctg	1740
gccatcgaga	gatacctgca	ggatcagcag	ctcctgggcc	tgtggggctg	tagcggcaag	1800
ctgatctgta	ccaccgccgt	gccctggaat	acctcttgga	gcaacaagag	ccagaccgac	1860
atctgggaca	acatgacctg	gatgcagtgg	gacaaagaaa	tcggcaacta	taccggcgag	1920
atctatagac	tgctggaaga	gtcccagaac	cagcaggaaa	agaacgagaa	ggacctgctg	1980
gccctggatt	cttggaacaa	tctgtggaac	tggttcagca	tctccaagtg	gctgtggtac	2040

•	atcaagatct	tcatcatgat	cgtgggcggc	ctgatcggcc	tgcggatcat	ctttgccgtg	2100
•	ctgagcatcg	tgaaccgcgt	gcggcaggga	tacagccctc	tgagcctgca	gaccctgact	2160
•	cagaaccctg	gcggactgga	cagactgggc	cggattgagg	aagaaggcgg	cgagcaggac	2220
i	aaggatcgga	gcatcaggct	ggtcaacggc	ttcttcgctc	tgttttggga	cgacctgcgg	2280
i	agcctgtgcc	tgttcagcta	ccacagactg	cgggacttta	tcctgattgt	ggccagagcc	2340
•	gtcgaactgc	tggggagaag	ctctctgaga	ggcctgcagc	ggggctggga	gattctgaag	2400
1	tacctgggct	ccctgctgca	gtactggggc	ctggaactga	agaagtctgc	catcaatctg	2460
•	ctcgacacaa	tcgctattgc	cgtggccgaa	ggcaccgata	gaatcatcga	gctgatccag	2520
•	cggatctgcc	gggccatctg	caacatcccc	agacggatca	gacagggctt	cgaggccgct	2580
•	ctgcag						2586

<210> 26

<211> 2133

<212> ADN

<213> Secuencia artificial

<220>

<223> secuencia de nucleótidos que codifica C4D7

10

5

<400> 26

60 atgagagtgc ggggcatgct gagaaactgg cagcagtggt ggatctggtc cagcctgggc 120 ttctggatgc tgatgatcta cagcgtgatg ggcaacctgt gggtcaccgt gtactacggc 180 gtgcccgtgt ggaaggacgc caagaccacc ctgttttgcg cctccgatgc caaggcctac gagaaagagg tgcacaacgt ctgggccacc cacgcctgtg tgcccaccga ccccaatccc 240 caggaaatcg tcctgggcaa cgtgaccgag aacttcaaca tgtggaagaa cgacatggtc 300 360 gatcagatgc acgaggacat catctccctg tgggacgcct ccctggaacc ctgcgtgaag 420 ctgacccctc tgtgcgtgac cctgaactgc cggaacgtgc gcaacgtgtc cagcaacggc 480 acctacaaca tcatccacaa cgagacatac aaagagatga agaactgcag cttcaacgct accaccqtqq tcqaqqaccq qaaqcaqaaq qtqcacqccc tqttctaccq qctqqacatc 540 600 gtgcccctgg acgagaacaa cagcagcgag aagtcctccg agaacagctc cgagtactac 660 agactgatca actgcaacac cagcgccatc acccaggcct gccccaaggt gtccttcgac 720 cctatcccca tccactactg cgcccctgcc ggctacgcca tcctgaagtg caacaacaag 780 accttcaatg gcaccggccc ctgcaacaat gtgtccaccg tgcagtgcac ccacggcatc aagcccgtgg tgtctaccca gctgctgctg aacggcagcc tggccgagga agagatcatt 840 atcagaagcg agaacctgac caacaacgcc aaaaccatca tcgtccacct gaacgaaacc 900 960 gtgaacatca cctgtacccg gcctaacaac aacacccgga agtccatccg gatcggccct ggccagacct tttacgccac cggcgatatt atcggcgaca tccggcaggc ccactgcaat 1020

ctgagccggg acggctggaa	caagacactg	cagggggtga	agaagaaget	ggccgaacac	1080
ttccctaaca agactatcaa	gttcgcccct	cactctggcg	gcgacctgga	aatcaccacc	1140
cacaccttca actgtcgggg	cgagttcttc	tactgcaata	cctccaacct	gttcaacgag	1200
agcaacatcg agcggaacga	cagcatcatc	acactgcctt	gccggatcaa	gcagattatc	1260
aatatgtggc aggaagtggg	cagagccatc	tacgcccctc	caatcgccgg	caacatcaca	1320
tgccggtcca atatcaccgg	cctgctgctc	accagagatg	gcggctccaa	caatggcgtg	1380
ccaaacgaca ccgagacatt	cagacccggc	ggaggcgaca	tgcggaacaa	ttggcggagc	1440
gagctgtaca agtacaaggt	ggtggaagtg	aagcccctgg	gcgtggcccc	taccgaggcc	1500
aagagaagag tggtcgaacg	cgagaagcgg	gccgtgggaa	tcggagccgt	gtttctggga	1560
atcctgggag ccgctggctc	taccatgggc	gctgcctcta	tcaccctgac	agtgcaggcc	1620
agacagctgc tcagcggcat	cgtgcagcag	cagagcaacc	tgctgagagc	cattgaggcc	1680
cagcagcaca tgctgcagct	gaccgtgtgg	ggcattaagc	agctccagac	acgggtgctg	1740
gccatcgaga gatacctgca	ggatcagcag	ctcctgggcc	tgtggggctg	tagcggcaag	1800
ctgatctgta ccaccgccgt	gccctggaat	acctcttgga	gcaacaagag	ccagaccgac	1860
atctgggaca acatgacctg	gatgcagtgg	gacaaagaaa	tcggcaacta	taccggcgag	1920
atctatagac tgctggaaga	gtcccagaac	cagcaggaaa	agaacgagaa	ggacctgctg	1980
gccctggatt cttggaacaa	tctgtggaac	tggttcagca	tctccaagtg	gctgtggtac	2040
atcaagatct tcatcatgat	cgtgggcggc	ctgatcggcc	tgcggatcat	ctttgccgtg	2100
ctgagcatcg tgaaccgcgt	gcggcagggc	tac			2133

<210> 27 <211> 2112

<212> ADN

<213> Secuencia artificial

<220>

<223> secuencia de nucleótidos que codifica sC4

10 <400> 27

5

atgagagtgc ggggcatgct gagaaactgg cagcagtggt ggatctggtc cagcctgggc 60

ttctggatgc tgatgatcta cagcgtgatg ggcaacctgt gggtcaccgt gtactacggc 120

gtgcccgtgt ggaaggacgc caagaccacc ctgttttgcg cctccgatgc caaggcctac 180

gagaaagagg tgcacaacgt ctgggccacc cacgcctgtg tgcccaccga ccccaatccc 240

caggaaatcg tcctgggcaa cgtgaccgag aacttcaaca tgtggaagaa cgacatggtc 300

gatcagatgc acgaggacat catctccctg tgggacgcct ccctggaacc ctgcgtgaag 360

ctgacccctc tgtgcgtgac cctgaactgc cggaacgtgc gcaacgtgtc cagcaacggc 420

```
480
acctacaaca tcatccacaa cgagacatac aaagagatga agaactgcag cttcaacgct
accaccqtqq tcqaqqaccq qaaqcaqaaq qtqcacqccc tqttctaccq qctqqacatc
                                                                       540
                                                                       600
gtgccctgg acgagaacaa cagcagcgag aagtcctccg agaacagctc cgagtactac
agactgatca actgcaacac cagcgccatc acccaggcct gccccaaggt gtccttcgac
                                                                       660
                                                                       720
cctatcccca tccactactg cgcccctgcc ggctacgcca tcctgaagtg caacaacaag
                                                                       780
accttcaatg gcaccggccc ctgcaacaat gtgtccaccg tgcagtgcac ccacggcatc
                                                                       840
aagcccgtgg tgtctaccca gctgctgctg aacggcagcc tggccgagga agagatcatt
atcagaagcg agaacctgac caacaacgcc aaaaccatca tcgtccacct gaacgaaacc
                                                                       900
qtqaacatca cctqtacccq qcctaacaac aacacccqqa aqtccatccq qatcqqccct
                                                                       960
                                                                      1020
ggccagacct tttacgccac cggcgatatt atcggcgaca tccggcaggc ccactgcaat
                                                                      1080
ctgagccggg acggctggaa caagacactg cagggcgtca agaagaagct ggccgaacac
ttccctaaca agactatcaa gttcgcccct cactctggcg gcgacctgga aatcaccacc
                                                                      1140
                                                                      1200
cacaccttca actgtcgggg cgagttcttc tactgcaata cctccaacct gttcaacgag
                                                                      1260
agcaacatcg agcggaacga cagcatcatc acactgcctt gccggatcaa gcagattatc
aatatgtggc aggaagtggg cagagccatc tacgcccctc caatcgccgg caacatcaca
                                                                      1320
tgccggtcca atatcaccgg cctgctgctc accagagatg gcggctccaa caatggcgtg
                                                                      1380
                                                                      1440
ccaaacqaca ccgagacatt cagacccggc ggaggcgaca tgcggaacaa ttggcggagc
gagctgtaca agtacaaggt ggtggaagtg aagcccctgg gcgtggcccc taccgaggcc
                                                                      1500
aagagaagag tggtcgaacg cgaggaacgg gccgtgggaa tcggagccgt gtttctggga
                                                                      1560
                                                                      1620
atcctgggag ccgctggctc taccatgggc gctgcctcta tcaccctgac agtgcaggcc
                                                                      1680
agacagctgc tcagcggcat cgtgcagcag cagagcaacc tgctgagagc cattgaggcc
cagcagcaca tgctgcagct gaccgtgtgg ggcattaagc agctccagac acgggtgctg
                                                                      1740
gccatcgaga gatacctgca ggatcagcag ctcctgggcc tgtggggctg tagcggcaag
                                                                      1800
                                                                      1860
ctgatctgta ccaccgccgt gccctggaat acctcttgga gcaacaagag ccagaccgac
atctgggaca acatgacctg gatgcagtgg gacaaagaaa tcggcaacta taccggcgag
                                                                      1920
                                                                      1980
atctatagac tgctggaaga gtcccagaac cagcaggaaa agatgaagca gatcgaggac
                                                                      2040
aagatcgaag agattctgag caagatctac cacatcgaga acgagatcgc ccgcatcaag
                                                                      2100
aaactgatcg gcgaagtggg atccggcgct cccacaaagg ccaaaagacg ggtggtgcag
cgcgagaaac gc
                                                                      2112
```

<210> 28

<211> 1350

<212> PRT

<213> Secuencia artificial

<220>

<223> secuencia del antígeno mos1GagPol mosaico

10

5

<400> 28

Met 1	Gly	Ala	Arg	Ala 5	Ser	Val	Leu	Ser	Gly 10	Gly	Glu	Leu	Asp	Arg 15	Trp
Glu	Lys	Ile	Arg 20	Leu	Arg	Pro	Gly	Gly 25	Lys	Lys	Lys	Tyr	Arg 30	Leu	Lys
His	Ile	Val 35	Trp	Ala	Ser	Arg	Glu 40	Leu	Glu	Arg	Phe	Ala 45	Val	Asn	Pro
Gly	Leu 50	Leu	Glu	Thr	Ser	Glu 55	Gly	Cys	Arg	Gln	Ile 60	Leu	Gly	Gln	Leu
Gln 65	Pro	Ser	Leu	Gln	Thr 70	Gly	Ser	Glu	Glu	Leu 75	Arg	Ser	Leu	Tyr	Asn 80
Thr	Val	Ala	Thr	Leu 85	Tyr	Cys	Val	His	Gln 90	Arg	Ile	Glu	Ile	Lys 95	Asp
Thr	Lys	Glu	Ala 100	Leu	Glu	Lys	Ile	Glu 105	Glu	Glu	Gln	Asn	Lys 110	Ser	Lys
Lys	Lys	Ala 115	Gln	Gln	Ala	Ala	Ala 120	Asp	Thr	Gly	Asn	Ser 125	Ser	Gln	Val
Ser	Gln 130	Asn	Tyr	Pro	Ile	Val 135	Gln	Asn	Ile	Gln	Gly 140	Gln	Met	Val	His
Gln 145	Ala	Ile	Ser	Pro	A rg 150	Thr	Leu	Asn	Ala	Trp 155	Val	Lys	Val	Val	Glu 160
Glu	Lys	Ala	Phe	Ser 165	Pro	Glu	Val	Ile	Pro 170	Met	Phe	Ser	Ala	Leu 175	Ser
Glu	Gly	Ala	Thr 180	Pro	Gln	Asp	Leu	Asn 185	Thr	Met	Leu	Asn	Thr 190	Val	Gly
Gly	His	Gln 195	Ala	Ala	Met	Gln	Met 200	Leu	Lys	Glu	Thr	Ile 205	Asn	Glu	Glu
Ala	Ala 210	Glu	Trp	Asp	Arg	Val 215	His	Pro	Val	His	Ala 220	Gly	Pro	Ile	Ala

Pro Gly Gln Met Arg Glu Pro Arg Gly Ser Asp Ile Ala Gly Thr Thr

225					230					235					240
Ser	Thr	Leu	Gln	Glu 245	Gln	Ile	Gly	Trp	Met 250	Thr	Asn	Asn	Pro	Pro 255	Ile
Pro	Val	Gly	Glu 260	Ile	Tyr	Lys	Arg	Trp 265	Ile	Ile	Leu	Gly	Leu 270	Asn	Lys
Ile	Val	Arg 275	Met	Tyr	Ser	Pro	Val 280	Ser	Ile	Leu	Asp	Ile 285	Arg	Gln	Gly
Pro	Lys 290	Glu	Pro	Phe	Arg	Asp 295	Tyr	Val	Asp	Arg	Phe 300	Tyr	Lys	Thr	Leu
Arg 305	Ala	Glu	Gln	Ala	Ser 310	Gln	Asp	Val	Lys	Asn 315	Trp	Met	Thr	Glu	Thr 320
Leu	Leu	Val	Gln	Asn 325	Ala	Asn	Pro	Asp	Cys 330	Lys	Thr	Ile	Leu	Lys 335	Ala
Leu	Gly	Pro	Ala 340	Ala	Thr	Leu	Glu	Glu 3 4 5	Met	Met	Thr	Ala	Cys 350	Gln	Gly
Val	Gly	Gly 355	Pro	Gly	His	Lys	Ala 360	Arg	Val	Leu	Ala	Glu 365	Ala	Met	Ser
Gln	Val 370	Thr	Asn	Ser	Ala	Thr 375	Ile	Met	Met	Gln	Arg 380	Gly	Asn	Phe	Arg
Asn 385	Gln	Arg	Lys	Thr	Val 390	Lys	Cys	Phe	Asn	Cys 395	Gly	Lys	Glu	Gly	His 400
Ile	Ala	Lys	Asn	Cys 405	Arg	Ala	Pro	Arg	Lys 410	Lys	Gly	Cys	Trp	Lys 415	Суѕ
Gly	Lys	Glu	Gly 420	His	Gln	Met	Lys	Asp 425	Cys	Thr	Glu	Arg	Gln 430	Ala	Asn
Phe	Leu	Gly 435	Lys	Ile	Trp	Pro	Ser 440	Asn	Lys	Gly	Arg	Pro 445	Gly	Asn	Phe
Leu	Gln 450	Asn	Arg	Pro	Glu	Pro 455	Thr	Ala	Pro	Pro	Glu 460	Glu	Ser	Phe	Arg
Phe 465	Gly	Glu	Glu	Thr	Thr 470	Thr	Pro	Ser	Gln	Lys 475	Gln	Glu	Pro	Ile	Asp 480

Lys	Glu	Met	Tyr	Pro 485	Leu	Ala	Ser	Leu	Lys 490	Ser	Leu	Phe	Gly	Asn 495	Asp
Pro	Ser	Ser	Gln 500	Met	Ala	Pro	Ile	Ser 505	Pro	Ile	Glu	Thr	Val 510	Pro	Val
Lys	Leu	Lys 515	Pro	Gly	Met	Asp	Gly 520	Pro	Arg	Val	Lys	Gln 525	Trp	Pro	Leu
Thr	Glu 530	Glu	Lys	Ile	Lys	Ala 535	Leu	Thr	Ala	Ile	Cys 540	Glu	Glu	Met	Glu
Lys 5 4 5	Glu	Gly	Lys	Ile	Thr 550	Lys	Ile	Gly	Pro	Glu 555	Asn	Pro	Tyr	Asn	Thr 560
Pro	Val	Phe	Ala	Ile 565	Lys	Lys	Lys	Asp	Ser 570	Thr	Lys	Trp	Arg	Lys 575	Leu
Val	Asp	Phe	Arg 580	Glu	Leu	Asn	Lys	Arg 585	Thr	Gln	Asp	Phe	Trp 590	Glu	Val
Gln	Leu	Gly 595	Ile	Pro	His	Pro	Ala 600	Gly	Leu	Lys	Lys	Lys 605	Lys	Ser	Val
Thr	Val 610	Leu	Ala	Val	Gly	Asp 615	Ala	Tyr	Phe	Ser	Val 620	Pro	Leu	Asp	Glu
Gly 625	Phe	Arg	Lys	Tyr	Thr 630	Ala	Phe	Thr	Ile	Pro 635	Ser	Thr	Asn	Asn	Glu 640
Thr	Pro	Gly	Ile	Arg 645	Tyr	Gln	Tyr	Asn	Val 650	Leu	Pro	Gln	Gly	Trp 655	Lys
Gly	Ser	Pro	Ala 660	Ile	Phe	Gln	Cys	Ser 665	Met	Thr	Arg	Ile	Leu 670	Glu	Pro
Phe	Arg	Ala 675	Lys	Asn	Pro	Glu	Ile 680	Val	Ile	Tyr	Gln	Tyr 685	Met	Ala	Ala
Leu	Tyr 690	Val	Gly	Ser	Asp	Leu 695	Glu	Ile	Gly	Gln	His 700	Arg	Ala	Lys	Ile
Glu 705	Glu	Leu	Arg	Glu	His 710	Leu	Leu	Lys	Trp	Gly 715	Phe	Thr	Thr	Pro	Asp 720
Lys	Lys	His	Gln	Lys 725	Glu	Pro	Pro	Phe	Leu 730	Trp	Met	Gly	Tyr	Glu 735	Leu

His	Pro	Asp	Lys 740	Trp	Thr	Val	Gln	Pro 745	Ile	Gln	Leu	Pro	Glu 750	Lys	Asp
Ser	Trp	Thr 755	Val	Asn	Asp	Ile	Gln 760	Lys	Leu	Val	Gly	Lys 765	Leu	Asn	Trp
Ala	Ser 770	Gln	Ile	Tyr	Pro	Gly 775	Ile	Lys	Val	Arg	Gln 780	Leu	Cys	Lys	Leu
Leu 785	Arg	Gly	Ala	Lys	Ala 790	Leu	Thr	Asp	Ile	Val 795	Pro	Leu	Thr	Glu	Glu 800
Ala	Glu	Leu	Glu	Leu 805	Ala	Glu	Asn	Arg	Glu 810	Ile	Leu	Lys	Glu	Pro 815	Val
His	Gly	Val	Tyr 820	Tyr	Asp	Pro	Ser	Lys 825	Asp	Leu	Ile	Ala	Glu 830	Ile	Gln
Lys	Gln	Gly 835	His	Asp	Gln	Trp	Thr 840	Tyr	Gln	Ile	Tyr	Gln 845	Glu	Pro	Phe
Lys	A sn 850	Leu	Lys	Thr	Gly	Lys 855	Tyr	Ala	Lys	Met	Arg 860	Thr	Ala	His	Thr
As n 865	Asp	Val	Lys	Gln	Leu 870	Thr	Glu	Ala	Val	Gln 875	Lys	Ile	Ala	Met	Glu 880
Ser	Ile	Val	Ile	Trp 885	Gly	Lys	Thr	Pro	Lys 890	Phe	Arg	Leu	Pro	Ile 895	Gln
Lys	Glu	Thr	Trp 900	Glu	Thr	Trp	Trp	Thr 905	Asp	Tyr	Trp	Gln	Ala 910	Thr	Trp
Ile	Pro	Glu 915	Trp	Glu	Phe	Val	Asn 920	Thr	Pro	Pro	Leu	Val 925	Lys	Leu	Trp
Tyr	Gln 930	Leu	Glu	Lys	Asp	Pro 935	Ile	Ala	Gly	Val	Glu 940	Thr	Phe	Tyr	Val
Ala 945	Gly	Ala	Ala	Asn	A rg 950	Glu	Thr	Lys	Leu	Gly 955	Lys	Ala	Gly	Tyr	Val 960
Thr	Asp	Arg	Gly	Arg 965	Gln	Lys	Ile	Val	Ser 970	Leu	Thr	Glu	Thr	Thr 975	Asn
Gln	Lys	Thr	Ala 980	Leu	Gln	Ala	Ile	Tyr 985	Leu	Ala	Leu	Gln	Asp 990	Ser	Gly

- Gln Ala Gln Pro Asp Lys Ser Glu Ser Glu Leu Val Asn Gln Ile 1010 1015 1020
- Ile Glu Gln Leu Ile Lys Lys Glu Arg Val Tyr Leu Ser Trp Val 1025 1030 1035
- Pro Ala His Lys Gly Ile Gly Gly Asn Glu Gln Val Asp Lys Leu 1040 1045 1050
- Val Ser Ser Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile Asp 1055 1060 1065
- Lys Ala Gln Glu Glu His Glu Lys Tyr His Ser Asn Trp Arg Ala 1070 1075 1080
- Val Ala Ser Cys Asp Gln Cys Gln Leu Lys Gly Glu Ala Met His 1100 1105 1110
- Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Ala Cys Thr 1115 1120 1125
- His Leu Glu Gly Lys Ile Ile Leu Val Ala Val His Val Ala Ser 1130 1140
- Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu 1145 1150 1155
- Thr Ala Tyr Phe Ile Leu Lys Leu Ala Gly Arg Trp Pro Val Lys 1160 1165 1170
- Val Ile His Thr Ala Asn Gly Ser Asn Phe Thr Ser Ala Ala Val 1175 1180 1185
- Lys Ala Ala Cys Trp Trp Ala Gly Ile Gln Gln Glu Phe Gly Ile 1190 1195 1200
- Pro Tyr Asn Pro Gln Ser Gln Gly Val Val Ala Ser Met Asn Lys 1205 1210 1215
- Glu Leu Lys Lys Ile Ile Gly Gln Val Arg Asp Gln Ala Glu His

	Leu	Lys 1235		: Ala	a Val	L Glr	12		Ala	Val	Phe	Ile	His 1245		Phe	Lys
	Arg	Lys 1250		, Gl	7 Ile	e Gly	7 Gl: 12		ſyr	Ser	Ala	Gly	Glu 1260	_	Ile	Ile
	Asp	Ile 1265		Ala	a Thi	As <u>r</u>	9 Ile 12		Gln	Thr	Lys	Glu	Leu 1275		Lys	Gln
	Ile	Ile 1280		: Il€	e Glr	n Asr	n Phe 12		Arg	Val	Tyr	Tyr	Arg 1290	Asp	Ser	Arg
	Asp	Pro 1295		Tr	Lys	s Gly	Pro		Ala	Lys	Leu	Leu	Trp 1305		Gly	Glu
	Gly	Ala 1310		. Val	l Il€	e Glr	n As _i		Asn	Ser	Asp	Ile	Lys 1320		Val	Pro
	Arg	Arg 1325		val	Lys	s Ile	13:		ŗÀs	Asp	Tyr	Gly	Lys 1335		Met	Ala
	Gly	Ala 1340	_	Су:	s Val	L Ala	a Gl ₃	_	Arg	Gln	Asp	Glu	Asp 1350			
<210> 29 <211> 13 <212> PI <213> So	341 RT	cia art	ificial													
<220> <223> se	acuen	cia del	antícu	ano m	.oe2G	aaPol	moss	nico								
<400> 29		JIA UEI	antig	5110 11	10320	agi oi	111036	aico								
	Met 1	Gly	Ala	Arg	Ala 5	Ser	Ile	Leu	ı Ar	g G] 1(Ly L	rs Lei	ı Asp	Lys 15	Trp
	Glu	Lys	Ile	Arg 20	Leu	Arg	Pro	Gly	G1 25		s L	ys Hi	.s Tyı	Met 30	Leu	Lys
	His	Leu	Val 35	Trp	Ala	Ser	Arg	Glu 40	ı Le	u Gl	.u Aı	rg Pl	ne Ala 45	a Leu	. Asn	Pro
	Gly	Leu 50	Leu	Glu	Thr	Ser	Glu 55	Gly	, Су	s Ly	rs Gi	ln I] 60	e Ile	e Lys	Gln	Leu
	Gln 65	Pro	Ala	Leu	Gln	Thr 70	Gly	Thr	Gl	u Gl	u Le 75		g Sei	: Leu	Phe	Asn 80

Thr	Val	Ala	Thr	Leu 85	Tyr	Cys	Val	His	Ala 90	Glu	Ile	Glu	Val	Arg 95	Asp
Thr	Lys	Glu	Ala 100	Leu	Asp	Lys	Ile	Glu 105	Glu	Glu	Gln	Asn	Lys 110	Ser	Gln
Gln	Lys	Thr 115	Gln	Gln	Ala	Lys	Glu 120	Ala	Asp	Gly	Lys	Val 125	Ser	Gln	Asn
Tyr	Pro 130	Ile	Val	Gln	Asn	Leu 135	Gln	Gly	Gln	Met	Val 140	His	Gln	Pro	Ile
Ser 145	Pro	Arg	Thr	Leu	Asn 150	Ala	Trp	Val	Lys	Val 155	Ile	Glu	Glu	Lys	Ala 160
Phe	Ser	Pro	Glu	Val 165	Ile	Pro	Met	Phe	Thr 170	Ala	Leu	Ser	Glu	Gly 175	Ala
Thr	Pro	Gln	Asp 180	Leu	Asn	Thr	Met	Leu 185	Asn	Thr	Val	Gly	Gly 190	His	Gln
Ala	Ala	Met 195	Gln	Met	Leu	Lys	Asp 200	Thr	Ile	Asn	Glu	Glu 205	Ala	Ala	Glu
Trp	Asp 210	Arg	Leu	His	Pro	Val 215	His	Ala	Gly	Pro	Val 220	Ala	Pro	Gly	Gln
Met 225	Arg	Glu	Pro	Arg	Gly 230	Ser	Asp	Ile	Ala	Gly 235	Thr	Thr	Ser	Asn	Leu 240
Gln	Glu	Gln	Ile	Ala 245	Trp	Met	Thr	Ser	Asn 250	Pro	Pro	Ile	Pro	Val 255	Gly
Asp	Ile	Tyr	Lys 260	Arg	Trp	Ile	Ile	Leu 265	Gly	Leu	Asn	Lys	Ile 270	Val	Arg
Met	Tyr	Ser 275	Pro	Thr	Ser	Ile	Leu 280	Asp	Ile	Lys	Gln	Gly 285	Pro	Lys	Glu
Pro	Phe 290	Arg	Asp	Tyr	Val	Asp 295	Arg	Phe	Phe	Lys	Thr 300	Leu	Arg	Ala	Glu
Gln 305	Ala	Thr	Gln	Asp	Val 310	Lys	Asn	Trp	Met	Thr 315	Asp	Thr	Leu	Leu	Val 320
Gln	Asn	Ala	Asn	Pro	Asp	Cys	Lys	Thr	Ile	Leu	Arg	Ala	Leu	Gly	Pro

				325					330					335	
Gly	Ala	Thr	Leu 340	Glu	Glu	Met	Met	Thr 345	Ala	Cys	Gln	Gly	Val 350	Gly	Gly
Pro	Ser	His 355	Lys	Ala	Arg	Val	Leu 360	Ala	Glu	Ala	Met	Ser 365	Gln	Thr	Asn
Ser	Thr 370	Ile	Leu	Met	Gln	Arg 375	Ser	Asn	Phe	Lys	Gly 380	Ser	Lys	Arg	Ile
Val 385	Lys	Cys	Phe	Asn	Cys 390	Gly	Lys	Glu	Gly	His 395	Ile	Ala	Arg	Asn	Cys 400
Arg	Ala	Pro	Arg	Lys 405	Lys	Gly	Суѕ	Trp	Lys 410	Cys	Gly	Lys	Glu	Gly 415	His
Gln	Met	Lys	Asp 420	Cys	Thr	Glu	Arg	Gln 425	Ala	Asn	Phe	Leu	Gly 430	Lys	Ile
Trp	Pro	Ser 435	His	Lys	Gly	Arg	Pro 440	Gly	Asn	Phe	Leu	Gln 445	Ser	Arg	Pro
Glu	Pro 450	Thr	Ala	Pro	Pro	Ala 455	Glu	Ser	Phe	Arg	Phe 460	Glu	Glu	Thr	Thr
Pro 465	Ala	Pro	Lys	Gln	Glu 470	Pro	Lys	Asp	Arg	Glu 475	Pro	Leu	Thr	Ser	Leu 480
Arg	Ser	Leu	Phe	Gly 485	Ser	Asp	Pro	Leu	Ser 490	Gln	Met	Ala	Pro	Ile 495	Ser
Pro	Ile	Glu	Thr 500	Val	Pro	Val	Lys	Leu 505	Lys	Pro	Gly	Met	Asp 510	Gly	Pro
Lys	Val	Lys 515	Gln	Trp	Pro	Leu	Thr 520	Glu	Glu	Lys	Ile	Lys 525	Ala	Leu	Val
Glu	Ile 530	Cys	Thr	Glu	Met	Glu 535	Lys	Glu	Gly	Lys	Ile 540	Ser	Lys	Ile	Gly
Pro 545	Glu	Asn	Pro	Tyr	As n 550	Thr	Pro	Ile	Phe	Ala 555	Ile	Lys	Lys	Lys	As p 560
Ser	Thr	Lys	Trp	Arg 565	Lys	Leu	Val	Asp	Phe 570	Arg	Glu	Leu	Asn	Lys 575	Arg

Thr	Gln	Asp	Phe 580	Trp	Glu	Val	Gln	Leu 585	Gly	Ile	Pro	His	Pro 590	Ala	Gly
Leu	Lys	Lys 595	Lys	Lys	Ser	Val	Thr 600	Val	Leu	Ala	Val	Gly 605	Asp	Ala	Tyr
Phe	Ser 610	Val	Pro	Leu	Asp	Glu 615	Asp	Phe	Arg	Lys	Tyr 620	Thr	Ala	Phe	Thr
Ile 625	Pro	Ser	Ile	Asn	Asn 630	Glu	Thr	Pro	Gly	Ile 635	Arg	Tyr	Gln	Tyr	Asn 640
Val	Leu	Pro	Gln	Gly 645	Trp	Lys	Gly	Ser	Pro 650	Ala	Ile	Phe	Gln	Ser 655	Ser
Met	Thr	Lys	Ile 660	Leu	Glu	Pro	Phe	Arg 665	Lys	Gln	Asn	Pro	Asp 670	Ile	Val
Ile	Tyr	Gln 675	Tyr	Met	Ala	Ala	Leu 680	Tyr	Val	Gly	Ser	Asp 685	Leu	Glu	Ile
Gly	Gln 690	His	Arg	Thr	Lys	Ile 695	Glu	Glu	Leu	Arg	Gln 700	His	Leu	Leu	Arg
Trp 705	Gly	Phe	Thr	Thr	Pro 710	Asp	Lys	Lys	His	Gln 715	Lys	Glu	Pro	Pro	Phe 720
Leu	Trp	Met	Gly	Tyr 725	Glu	Leu	His	Pro	Asp 730	Lys	Trp	Thr	Val	Gln 735	Pro
Ile	Val	Leu	Pro 740	Glu	Lys	Asp	Ser	Trp 745	Thr	Val	Asn	Asp	Ile 750	Gln	Lys
Leu	Val	Gly 755	Lys	Leu	Asn	Trp	Ala 760	Ser	Gln	Ile	Tyr	Ala 765	Gly	Ile	Lys
Val	Lys 770	Gln	Leu	Cys	Lys	Leu 775	Leu	Arg	Gly	Thr	Lys 780	Ala	Leu	Thr	Glu
Val 785	Val	Pro	Leu	Thr	Glu 790	Glu	Ala	Glu	Leu	Glu 795	Leu	Ala	Glu	Asn	A rg 800
Glu	Ile	Leu	Lys	Glu 805	Pro	Val	His	Gly	Val 810	Tyr	Tyr	Asp	Pro	Ser 815	Lys
Asp	Leu	Ile	Ala 820	Glu	Ile	Gln	Lys	Gln 825	Gly	Gln	Gly	Gln	Trp 830	Thr	Tyr

Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala 835 840 Arg Met Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala 850 855 860 Val Gln Lys Ile Ala Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro 865 870 875 Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Ala Trp Trp Thr 885 890 Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr 905 Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val 915 920 Gly Ala Glu Thr Phe Tyr Val Ala Gly Ala Ala Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr Val Thr Asp Arg Gly Arg Gln Lys Val Val 950 Ser Leu Thr Asp Thr Thr Asn Gln Lys Thr Ala Leu Gln Ala Ile His Leu Ala Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Ala Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Lys Ser Glu Ser 995 1000 Glu Leu Val Ser Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys 1010 1015 Val Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn 1025 1030 1035 Glu Gln Val Asp Lys Leu Val Ser Arg Gly Ile Arg Lys Val Leu 1045

Phe Leu Asp Gly Ile Asp Lys Ala Gln Glu Glu His Glu Lys Tyr

His Ser Asn Trp Arg Ala Met Ala Ser Glu Phe Asn Leu Pro Pro

1060

Ile Val Ala Lys Glu Ile Val Ala Ser Cy	rs Asp Lys Cys Gln Leu
1085 1090	1095
Lys Gly Glu Ala Ile His Gly Gln Val As	sp Cys Ser Pro Gly Ile
1100 1105	1110
Trp Gln Leu Ala Cys Thr His Leu Glu Gl	y Lys Val Ile Leu Val
1115 1120	1125
Ala Val His Val Ala Ser Gly Tyr Ile Gl	u Ala Glu Val Ile Pro
1130 1135	1140
Ala Glu Thr Gly Gln Glu Thr Ala Tyr Ph	ne Leu Leu Lys Leu Ala
1145 1150	1155
Gly Arg Trp Pro Val Lys Thr Ile His Th	ar Ala Asn Gly Ser Asn
1160 1165	1170
Phe Thr Ser Ala Thr Val Lys Ala Ala Cy	vs Trp Trp Ala Gly Ile
1175 1180	1185
Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pr	co Gln Ser Gln Gly Val
1190 1195	1200
Val Ala Ser Ile Asn Lys Glu Leu Lys Ly	vs Ile Ile Gly Gln Val
1205 1210	1215
Arg Asp Gln Ala Glu His Leu Lys Thr Al	a Val Gln Met Ala Val
1220 1225	1230
Phe Ile His Asn Phe Lys Arg Lys Gly Gl	y Ile Gly Glu Tyr Ser
1235 1240	1245
Ala Gly Glu Arg Ile Val Asp Ile Ile Al	a Ser Asp Ile Gln Thr
1250 1255	1260
Lys Glu Leu Gln Lys Gln Ile Thr Lys Il	e Gln Asn Phe Arg Val
1265 1270	1275
Tyr Tyr Arg Asp Ser Arg Asp Pro Leu Tr	rp Lys Gly Pro Ala Lys
1280 1285	1290
Leu Leu Trp Lys Gly Glu Gly Ala Val Va	al Ile Gln Asp Asn Ser
1295 1300	1305
Asp Ile Lys Val Val Pro Arg Arg Lys Al	a Lys Ile Ile Arg Asp

			131	0				13	15				1	320			
		Tyr	Gly 132		s Gl	n Me	t Al	a Gl 13		sp A	.sp C	ys V		la 335	Ser	Arg	Gln
		Asp	Glu 134	As 0	р												
5	<210> 30 <211> 70 <212> P1 <213> S0)9 RT	cia art	tificial													
10	<220> <223> se	ecuenc	cia de	sC1													
10	<400> 30)															
		Met 1	Arg	Val	Arg	Gly 5	Ile	Gln	Arg	Asn	Trp 10	Pro	Gln	Trp	Trp	Ile 15	Trp
		Gly	Ile	Leu	Gly 20	Phe	Trp	Met	Ile	Ile 25	Ile	Cys	Arg	Val	Met 30	Gly	Asn
		Leu	Trp	Val 35	Thr	Val	Tyr	Tyr	Gly 40	Val	Pro	Val	Trp	Lys 45	Glu	Ala	Lys
		Thr	Thr 50	Leu	Phe	Cys	Ala	Ser 55	Asp	Ala	Lys	Ala	Tyr 60	Glu	Lys	Glu	Val
		His 65	Asn	Val	Trp	Ala	Thr 70	His	Ala	Cys	Val	Pro 75	Thr	Asp	Pro	Asn	Pro 80
		Gln	Glu	Met	Val	Leu 85	Glu	Asn	Val	Thr	Glu 90	Asn	Phe	Asn	Met	Trp 95	Lys
		Asn	Asp	Met	Val 100	Asp	Gln	Met	His	Glu 105	Asp	Ile	Ile	Arg	Leu 110	Trp	Asp
		Gln	Ser	Leu 115	Lys	Pro	Cys	Val	Lys 120	Leu	Thr	Pro	Leu	Cys 125	Val	Thr	Leu
		Glu	Cys 130	Arg	Asn	Val	Arg	Asn 135	Val	Ser	Ser	Asn	Gly 140	Thr	Tyr	Asn	Ile
		Ile 145	His	Asn	Glu	Thr	Tyr 150	Lys	Glu	Met	Lys	As n 155	Cys	Ser	Phe	Asn	Ala 160
		Thr	Thr	Val	Val	Glu 165	Asp	Arg	Lys	Gln	Lys 170	Val	His	Ala	Leu	Phe 175	Tyr

Arg	Leu	Asp	Ile 180	Val	Pro	Leu	Asp	Glu 185	Asn	Asn	Ser	Ser	Glu 190	Lys	Ser
Ser	Glu	Asn 195	Ser	Ser	Glu	Tyr	Tyr 200	Arg	Leu	Ile	Asn	Cys 205	Asn	Thr	Ser
Ala	Ile 210	Thr	Gln	Ala	Cys	Pro 215	Lys	Val	Ser	Phe	Asp 220	Pro	Ile	Pro	Ile
His 225	Tyr	Cys	Ala	Pro	Ala 230	Gly	Tyr	Ala	Ile	Leu 235	Lys	Cys	Asn	Asn	Lys 240
Thr	Phe	Asn	Gly	Thr 245	Gly	Pro	Cys	Asn	Asn 250	Val	Ser	Thr	Val	Gln 255	Cys
Thr	His	Gly	11e 260	Lys	Pro	Val	Val	Ser 265	Thr	Gln	Leu	Leu	Leu 270	Asn	Gly
Ser	Leu	Ala 275	Glu	Glu	Glu	Ile	11e 280	Ile	Arg	Ser	Glu	Asn 285	Leu	Thr	Asn
Asn	Ala 290	Lys	Thr	Ile	Ile	Val 295	His	Leu	Asn	Glu	Thr 300	Val	Asn	Ile	Thr
Суs 305	Thr	Arg	Pro	Asn	Asn 310	Asn	Thr	Arg	Lys	Ser 315	Ile	Arg	Ile	Gly	Pro 320
Gly	Gln	Thr	Phe	Tyr 325	Ala	Thr	Gly	Asp	11e 330	Ile	Gly	Asp	Ile	Arg 335	Gln
Ala	His	Суѕ	Asn 340	Leu	Ser	Arg	Asp	Gly 345	Trp	Asn	Lys	Thr	Leu 350	Gln	Gly
Val	Lys	Lys 355	Lys	Leu	Ala	Glu	His 360	Phe	Pro	Asn	Lys	Thr 365	Ile	Asn	Phe
Thr	Ser 370	Ser	Ser	Gly	Gly	Asp 375	Leu	Glu	Ile	Thr	Thr 380	His	Ser	Phe	Asn
Cys 385	Arg	Gly	Glu	Phe	Phe 390	Tyr	Cys	Asn	Thr	Ser 395	Gly	Leu	Phe	Asn	Gly 400
Thr	Tyr	Met	Pro	Asn 405	Gly	Thr	Asn	Ser	Asn 410	Ser	Ser	Ser	Asn	Ile 415	Thr
Leu	Pro	Cys	Arg	Ile	Lys	Gln	Ile	Ile	Asn	Met	Trp	Gln	Glu	Val	Gly

			420					425					430		
Arg	Ala	Met 435	Tyr	Ala	Pro	Pro	Ile 440	Ala	Gly	Asn	Ile	Thr 445	Cys	Arg	Ser
Asn	Ile 450	Thr	Gly	Leu	Leu	Leu 455	Thr	Arg	Asp	Gly	Gly 460	Ser	Asn	Asn	Gly
Val 465	Pro	Asn	Asp	Thr	Glu 470	Thr	Phe	Arg	Pro	Gly 475	Gly	Gly	Asp	Met	Arg 480
Asn	Asn	Trp	Arg	Ser 485	Glu	Leu	Tyr	Lys	Tyr 490	Lys	Val	Val	Glu	Val 495	Lys
Pro	Leu	Gly	Val 500	Ala	Pro	Thr	Glu	Ala 505	Lys	Arg	Arg	Val	Val 510	Glu	Arg
Glu	Glu	A rg 515	Ala	Val	Gly	Ile	Gly 520	Ala	Val	Phe	Leu	Gly 525	Ile	Leu	Gly
Ala	Ala 530	Gly	Ser	Thr	Met	Gly 535	Ala	Ala	Ser	Ile	Thr 540	Leu	Thr	Val	Gln
Ala 545	Arg	Gln	Leu	Leu	Ser 550	Gly	Ile	Val	Gln	Gln 555	Gln	Ser	Asn	Leu	Leu 560
Arg	Ala	Ile	Glu	Ala 565	Gln	Gln	His	Met	Leu 570	Gln	Leu	Thr	Val	Trp 575	Gly
Ile	Lys	Gln	Leu 580	Gln	Thr	Arg	Val	Leu 585	Ala	Ile	Glu	Arg	Tyr 590	Leu	Gln
Asp	Gln	Gln 595	Leu	Leu	Gly	Leu	Trp 600	Gly	Cys	Ser	Gly	Lys 605	Leu	Ile	Cys
Thr	Thr 610	Ala	Val	Pro	Trp	Asn 615	Thr	Ser	Trp	Ser	Asn 620	Lys	Ser	Gln	Thr
Asp 625	Ile	Trp	Asp	Asn	Met 630	Thr	Trp	Met	Gln	Trp 635	Asp	Lys	Glu	Ile	Gly 640
Asn	Tyr	Thr	Gly	Glu 645	Ile	Tyr	Arg	Leu	Leu 650	Glu	Glu	Ser	Gln	Asn 655	Gln
Gln	Glu	Lys	Met 660	Lys	Gln	Ile	Glu	Asp 665	Lys	Ile	Glu	Glu	Ile 670	Leu	Ser

Lys Ile Tyr His Ile Glu Asn Glu Ile Ala Arg Ile Lys Lys Leu Ile Gly Glu Val Gly Ser Gly Ala Pro Thr Lys Ala Lys Arg Arg Val Val 690 695 700 Gln Arg Glu Lys Arg 705 <210> 31 <211>867 <212> PRT <213> Secuencia artificial <220> <223> secuencia de C1 <400> 31 Met Arg Val Arg Gly Ile Gln Arg Asn Trp Pro Gln Trp Trp Ile Trp 10 Gly Ile Leu Gly Phe Trp Met Ile Ile Ile Cys Arg Val Met Gly Asn 20 Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Lys Glu Ala Lys 35 40 45 Thr Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala Tyr Glu Lys Glu Val 50 55 60 His Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro Asn Pro 70 65 Gln Glu Met Val Leu Glu Asn Val Thr Glu Asn Phe Asn Met Trp Lys 85 Asn Asp Met Val Asp Gln Met His Glu Asp Ile Ile Arg Leu Trp Asp 100 105 Gln Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val Thr Leu Glu Cys Arg Asn Val Arg Asn Val Ser Ser Asn Gly Thr Tyr Asn Ile 135 Ile His Asn Glu Thr Tyr Lys Glu Met Lys Asn Cys Ser Phe Asn Ala 150 155 Thr Thr Val Val Glu Asp Arg Lys Gln Lys Val His Ala Leu Phe Tyr

5

				165					170					175	
Arg	Leu	Asp	Ile 180	Val	Pro	Leu	Asp	Glu 185	Asn	Asn	Ser	Ser	Glu 190	Lys	Ser
Ser	Glu	As n 195	Ser	Ser	Glu	Tyr	Tyr 200	Arg	Leu	Ile	Asn	Cys 205	Asn	Thr	Ser
Ala	Ile 210	Thr	Gln	Ala	Cys	Pro 215	Lys	Val	Ser	Phe	Asp 220	Pro	Ile	Pro	Ile
His 225	Tyr	Cys	Ala	Pro	Ala 230	Gly	Tyr	Ala	Ile	Leu 235	Lys	Cys	Asn	Asn	Lys 240
Thr	Phe	Asn	Gly	Thr 245	Gly	Pro	Cys	Asn	A sn 250	Val	Ser	Thr	Val	Gln 255	Cys
Thr	His	Gly	Ile 260	Lys	Pro	Val	Val	Ser 265	Thr	Gln	Leu	Leu	Leu 270	Asn	Gly
Ser	Leu	Ala 275	Glu	Glu	Glu	Ile	Ile 280	Ile	Arg	Ser	Glu	Asn 285	Leu	Thr	Asn
Asn	Ala 290	Lys	Thr	Ile	Ile	Val 295	His	Leu	Asn	Glu	Thr 300	Val	Asn	Ile	Thr
Cys 305	Thr	Arg	Pro	Asn	Asn 310	Asn	Thr	Arg	Lys	Ser 315	Ile	Arg	Ile	Gly	Pro 320
Gly	Gln	Thr	Phe	Tyr 325	Ala	Thr	Gly	Asp	Ile 330	Ile	Gly	Asp	Ile	Arg 335	Gln
Ala	His	Cys	Asn 340	Leu	Ser	Arg	Asp	Gly 345	Trp	Asn	Lys	Thr	Leu 350	Gln	Gly
	-	355	_				360		Pro		_	365			
	370					375			Ile		380				
385	_				390	_	-		Thr	395					400
Thr	Tyr	Met	Pro	Asn 405	GTĀ	Thr	Asn	ser	Asn 410	ser	ser	ser	Asn	11e 415	Thr

Leu	Pro	Cys	Arg 420	Ile	Lys	Gln	Ile	Ile 425	Asn	Met	Trp	Gln	Glu 430	Val	Gly
Arg	Ala	Met 435	Tyr	Ala	Pro	Pro	Ile 440	Ala	Gly	Asn	Ile	Thr 445	Cys	Arg	Ser
Asn	Ile 450	Thr	Gly	Leu	Leu	Leu 455	Thr	Arg	Asp	Gly	Gly 460	Ser	Asn	Asn	Gly
Val 465	Pro	Asn	Asp	Thr	Glu 470	Thr	Phe	Arg	Pro	Gly 475	Gly	Gly	Asp	Met	Arg 480
Asn	Asn	Trp	Arg	Ser 485	Glu	Leu	Tyr	Lys	Tyr 490	Lys	Val	Val	Glu	Val 495	Lys
Pro	Leu	Gly	Val 500	Ala	Pro	Thr	Glu	Ala 505	Lys	Arg	Arg	Val	Val 510	Glu	Arg
Glu	Lys	Arg 515	Ala	Val	Gly	Ile	Gly 520	Ala	Val	Phe	Leu	Gly 525	Ile	Leu	Gly
Ala	A la 530	Gly	Ser	Thr	Met	Gly 535	Ala	Ala	Ser	Ile	Thr 540	Leu	Thr	Val	Gln
Ala	Arq	Gln	Leu	Leu	Ser	Glv	Tle	Va 1	G1 n	Gln	C1 ~	go.~	3	T 011	T.011
545	•				550	<u>,</u>		Vai	GIII	555	GIII	Ser	ASII	теп	560
					550					555				Trp 575	560
Arg	Ala	Ile	Glu	Ala 565	550 Gln	Gln	His	Met	Leu 570	555 Gln	Leu	Thr	Val	Trp	560
Arg	Ala Lys	Ile Gln	Glu Leu 580	Ala 565 Gln	550 Gln Thr	Gln Arg	His Val	Met Leu 585	Leu 570 Ala	555 Gln Ile	Leu Glu	Thr Arg	Val Tyr 590	Trp 575	560 Gly Gln
Arg Ile Asp	Ala Lys Gln	Ile Gln Gln 595	Glu Leu 580 Leu	Ala 565 Gln Leu	550 Gln Thr	Gln Arg Leu	His Val Trp 600	Met Leu 585 Gly	Leu 570 Ala Cys	555 Gln Ile Ser	Leu Glu Gly	Thr Arg Lys 605	Val Tyr 590 Leu	Trp 575 Leu	Gly Gln Cys
Arg Ile Asp	Ala Lys Gln Thr	Ile Gln Gln 595 Ala	Glu Leu 580 Leu Val	Ala 565 Gln Leu Pro	550 Gln Thr Gly	Gln Arg Leu Asn 615	His Val Trp 600	Met Leu 585 Gly Ser	Leu 570 Ala Cys	555 Gln Ile Ser	Leu Glu Gly Asn 620	Thr Arg Lys 605 Lys	Val Tyr 590 Leu Ser	Trp 575 Leu Ile	Gly Gln Cys
Arg Ile Asp Thr Asp 625	Ala Lys Gln Thr 610	Ile Gln 595 Ala Trp	Glu Leu 580 Leu Val	Ala 565 Gln Leu Pro	Gln Thr Gly Trp Met 630	Gln Arg Leu Asn 615	His Val Trp 600 Thr	Met Leu 585 Gly Ser	Leu 570 Ala Cys Trp	Ser Trp 635	Leu Glu Gly Asn 620	Thr Arg Lys 605 Lys	Val Tyr 590 Leu Ser	Trp 575 Leu Ile Gln	Gly Gln Cys Thr Gly 640

	Leu	Trp	Asn 675	Trp	Phe	Asp	Ile	Thr 680	Asn	Trp	Leu	Trp	Tyr 685	Ile	Lys	Ile
	Phe	Ile 690	Met	Ile	Val	Gly	Gly 695	Leu	Ile	Gly	Leu	A rg 700	Ile	Ile	Phe	Ala
	Val 705	Leu	Ser	Ile	Val	Asn 710	Arg	Val	Arg	Gln	Gly 715	Tyr	Ser	Pro	Leu	Ser 720
	Leu	Gln	Thr	Leu	Thr 725	Gln	Asn	Pro	Gly	Gly 730	Leu	Asp	Arg	Leu	Gly 735	Arg
	Ile	Glu	Glu	Glu 7 4 0	Gly	Gly	Glu	Gln	Asp 745	Lys	Asp	Arg	Ser	Ile 750	Arg	Leu
	Val	Asn	Gly 755	Phe	Phe	Ala	Leu	Phe 760	Trp	Asp	Asp	Leu	Arg 765	Ser	Leu	Cys
	Leu	Phe 770	Ser	Tyr	His	Arg	Leu 775	Arg	Asp	Phe	Ile	Leu 780	Ile	Val	Ala	Arg
	Ala 785	Val	Glu	Leu	Leu	Gly 790	Arg	Ser	Ser	Leu	Arg 795	Gly	Leu	Gln	Arg	Gly 800
	Trp	Glu	Ile	Leu	Lys 805	Tyr	Leu	Gly	Ser	Leu 810	Leu	Gln	Tyr	Trp	Gly 815	Leu
	Glu	Leu	Lys	Lys 820	Ser	Ala	Ile	Asn	Leu 825	Leu	Asp	Thr	Ile	A la 830	Ile	Ala
	Val	Ala	Glu 835	Gly	Thr	Asp	Arg	Ile 840	Ile	Glu	Leu	Ile	Gln 845	Arg	Ile	Cys
	Arg	Ala 850	Ile	Cys	Asn	Ile	Pro 855	Arg	Arg	Ile	Arg	Gln 860	Gly	Phe	Glu	Ala
	Ala 865	Leu	Gln													
<210> 3 <211> 7 <212> F <213> S	'16 PRT	ncia a	rtificia	I												
<220> <223> s	ecuer	ncia de	e C1D	7												
<400> 3	32															

5

Met 1	Arg	Val	Arg	Gly 5	Ile	Gln	Arg	Asn	Trp 10	Pro	Gln	Trp	Trp	Ile 15	Trp
Gly	Ile	Leu	Gly 20	Phe	Trp	Met	Ile	Ile 25	Ile	Cys	Arg	Val	Met 30	Gly	Asn
Leu	Trp	Val 35	Thr	Val	Tyr	Tyr	Gly 40	Val	Pro	Val	Trp	Lys 45	Glu	Ala	Lys
Thr	Thr 50	Leu	Phe	Cys	Ala	Ser 55	Asp	Ala	Lys	Ala	Tyr 60	Glu	Lys	Glu	Val
His 65	Asn	Val	Trp	Ala	Thr 70	His	Ala	Cys	Val	Pro 75	Thr	Asp	Pro	Asn	Pro 80
Gln	Glu	Met	Val	Leu 85	Glu	Asn	Val	Thr	Glu 90	Asn	Phe	Asn	Met	Trp 95	Lys
Asn	Asp	Met	Val 100	Asp	Gln	Met	His	Glu 105	Asp	Ile	Ile	Arg	Leu 110	Trp	Asp
Gln	Ser	Leu 115	Lys	Pro	Cys	Val	Lys 120	Leu	Thr	Pro	Leu	Cys 125	Val	Thr	Leu
Glu	Cys 130	Arg	Asn	Val	Arg	Asn 135	Val	Ser	Ser	Asn	Gly 140	Thr	Tyr	Asn	Ile
Ile 145	His	Asn	Glu	Thr	Tyr 150	Lys	Glu	Met	Lys	Asn 155	Cys	Ser	Phe	Asn	Ala 160
Thr	Thr	Val	Val	Glu 165	Asp	Arg	Lys	Gln	Lys 170	Val	His	Ala	Leu	Phe 175	Tyr
Arg	Leu	Asp	Ile 180	Val	Pro	Leu	Asp	Glu 185	Asn	Asn	Ser	Ser	Glu 190	Lys	Ser
Ser	Glu	Asn 195	Ser	Ser	Glu	Tyr	Tyr 200	Arg	Leu	Ile	Asn	Cys 205	Asn	Thr	Ser
Ala	Ile 210	Thr	Gln	Ala	Cys	Pro 215	Lys	Val	Ser	Phe	Asp 220	Pro	Ile	Pro	Ile
His 225	Tyr	Cys	Ala	Pro	Ala 230	Gly	Tyr	Ala	Ile	Leu 235	Lys	Cys	Asn	Asn	Lys 240
Thr	Phe	Asn	Gly	Thr 245	Gly	Pro	Cys	Asn	Asn 250	Val	Ser	Thr	Val	Gln 255	Cys

Thr	His	Gly	Ile 260	Lys	Pro	Val	Val	Ser 265	Thr	Gln	Leu	Leu	Leu 270	Asn	Gly
Ser	Leu	Ala 275	Glu	Glu	Glu	Ile	Ile 280	Ile	Arg	Ser	Glu	Asn 285	Leu	Thr	Asn
Asn	Ala 290	Lys	Thr	Ile	Ile	Val 295	His	Leu	Asn	Glu	Thr 300	Val	Asn	Ile	Thr
Cys 305	Thr	Arg	Pro	Asn	Asn 310	Asn	Thr	Arg	Lys	Ser 315	Ile	Arg	Ile	Gly	Pro 320
Gly	Gln	Thr	Phe	Tyr 325	Ala	Thr	Gly	Asp	Ile 330	Ile	Gly	Asp	Ile	Arg 335	Gln
Ala	His	Cys	Asn 340	Leu	Ser	Arg	Asp	Gly 345	Trp	Asn	Lys	Thr	Leu 350	Gln	Gly
Val	Lys	Lys 355	Lys	Leu	Ala	Glu	His 360	Phe	Pro	Asn	Lys	Thr 365	Ile	Asn	Phe
Thr	Ser 370	Ser	Ser	Gly	Gly	Asp 375	Leu	Glu	Ile	Thr	Thr 380	His	Ser	Phe	Asn
Cys 385	Arg	Gly	Glu	Phe	Phe 390	Tyr	Cys	Asn	Thr	Ser 395	Gly	Leu	Phe	Asn	Gly 400
Thr	Tyr	Met	Pro	Asn 405	Gly	Thr	Asn	Ser	Asn 410	Ser	Ser	Ser	Asn	Ile 415	Thr
Leu	Pro	Cys	Arg 420	Ile	Lys	Gln	Ile	Ile 425	Asn	Met	Trp	Gln	Glu 430	Val	Gly
Arg	Ala	Met 435	Tyr	Ala	Pro	Pro	Ile 440	Ala	Gly	Asn	Ile	Thr 445	Cys	Arg	Ser
Asn	Ile 450	Thr	Gly	Leu	Leu	Leu 455	Thr	Arg	Asp	Gly	Gly 460	Ser	Asn	Asn	Gly
Val 465	Pro	Asn	Asp	Thr	Glu 470	Thr	Phe	Arg	Pro	Gly 475	Gly	Gly	Asp	Met	Arg 480
Asn	Asn	Trp	Arg	Ser 485	Glu	Leu	Tyr	Lys	Tyr 490	Lys	Val	Val	Glu	Val 495	Lys
Pro	Leu	Gly	Val	Ala	Pro	Thr	Glu	Ala		Arg	Arg	Val	Val	Glu	Arg

	Glu	Lys	Arg 515	Ala	Val	Gly	Ile	Gly 520	Ala	Val	Phe	Leu	Gly 525	Ile	Leu	Gly
	Ala	Ala 530	Gly	Ser	Thr	Met	Gly 535	Ala	Ala	Ser	Ile	Thr 540	Leu	Thr	Val	Gln
	Ala 545	Arg	Gln	Leu	Leu	Ser 550	Gly	Ile	Val	Gln	Gln 555	Gln	Ser	Asn	Leu	Leu 560
	Arg	Ala	Ile	Glu	Ala 565	Gln	Gln	His	Met	Leu 570	Gln	Leu	Thr	Val	Trp 575	Gly
	Ile	Lys	Gln	Leu 580	Gln	Thr	Arg	Val	Leu 585	Ala	Ile	Glu	Arg	Tyr 590	Leu	Gln
	Asp	Gln	Gln 595	Leu	Leu	Gly	Leu	Trp 600	Gly	Cys	Ser	Gly	Lys 605	Leu	Ile	Cys
	Thr	Thr 610	Ala	Val	Pro	Trp	Asn 615	Thr	Ser	Trp	Ser	Asn 620	Lys	Ser	Gln	Thr
	Asp 625	Ile	Trp	Asp	Asn	Met 630	Thr	Trp	Met	Gln	Trp 635	Asp	Lys	Glu	Ile	Gly 640
	Asn	Tyr	Thr	Gly	Glu 645	Ile	Tyr	Arg	Leu	Leu 650	Glu	Glu	Ser	Gln	Asn 655	Gln
	Gln	Glu	Lys	As n 660	Glu	Lys	Asp	Leu	Leu 665	Ala	Leu	Asp	Ser	Trp 670	Lys	Asn
	Leu	Trp	Asn 675	Trp	Phe	Asp	Ile	Thr 680	Asn	Trp	Leu	Trp	Tyr 685	Ile	Lys	Ile
	Phe	Ile 690	Met	Ile	Val	Gly	Gly 695	Leu	Ile	Gly	Leu	Arg 700	Ile	Ile	Phe	Ala
	Val 705	Leu	Ser	Ile	Val	Asn 710	Arg	Val	Arg	Gln	Gly 715	Tyr				
<210> 33 <211> 21 <212> AE <213> Se	27 ON	cia art	tificial													
<220> <223> se	cuend	cia de	nucle	ótidos	s que (codific	ca sC1	l								

5

10

<400> 33

atgagagtgc	ggggcattca	gagaaactgg	ccccagtggt	ggatctgggg	catcctgggc	60
ttttggatga	tcattatctg	ccgcgtgatg	ggcaacctgt	gggtcaccgt	gtactacggc	120
gtgcccgtgt	ggaaagaggc	caagaccacc	ctgttctgcg	ccagcgacgc	caaggcctac	180
gagaaagagg	tgcacaacgt	ctgggccacc	cacgcctgtg	tgcccaccga	ccccaatccc	240
caggaaatgg	tcctggaaaa	cgtgaccgag	aacttcaaca	tgtggaagaa	cgacatggtg	300
gaccagatgc	acgaggacat	catccggctg	tgggaccaga	gcctgaagcc	ctgcgtgaag	360
ctgacccctc	tgtgcgtgac	cctggaatgc	cggaacgtgc	gcaacgtgtc	cagcaacggc	420
acctacaata	tcatccacaa	cgagacatac	aaagagatga	agaactgcag	cttcaacgct	480
accaccgtgg	tcgaggaccg	gaagcagaag	gtgcacgccc	tgttttaccg	gctggacatc	540
gtgcccctgg	acgagaacaa	cagcagcgag	aagtcctccg	agaacagctc	cgagtactac	600
agactgatca	actgcaacac	cagegeeate	acccaggcct	gccccaaggt	gtccttcgac	660
cctatcccca	tccactactg	cgcccctgcc	ggctacgcca	tcctgaagtg	caacaacaag	720
accttcaatg	gcaccggccc	ctgcaacaat	gtgtccaccg	tgcagtgcac	ccacggcatc	780
aagcccgtgg	tgtctaccca	gctgctgctg	aacggcagcc	tggccgagga	agagatcatc	840
atcagaagcg	agaacctgac	caacaacgcc	aagacaatca	tcgtccacct	gaacgaaacc	900
gtgaacatca	cctgtacccg	gcctaacaac	aacacccgga	agtccatccg	gatcggccct	960
ggccagacct	tttacgccac	cggcgatatt	atcggcgaca	tccggcaggc	ccactgcaat	1020
ctgagccggg	acggctggaa	caagacactg	cagggcgtca	agaagaagct	ggccgaacac	1080
ttccccaaca	aaaccatcaa	cttcaccage	tectetggeg	gcgacctgga	aatcaccacc	1140
cacagcttta	actgcagagg	cgagttcttc	tactgcaata	cctccggcct	gttcaatgga	1200
acctacatgc	ccaacgggac	caacagcaac	tccagcagca	atatcaccct	gccttgccgg	1260
atcaagcaga	ttatcaatat	gtggcaggaa	gtgggcagag	ctatgtacgc	ccctccaatc	1320
gccggcaaca	tcacatgcag	aagcaacatt	accggcctgc	tgctcaccag	ggacggcggc	1380
tctaacaatg	gcgtgccaaa	cgacaccgag	acattcagac	ccggcggagg	cgacatgcgg	1440
aacaattggc	ggagcgagct	gtacaagtac	aaggtggtgg	aagtgaagcc	cctgggcgtg	1500
gcccctaccg	aagccaagag	aagagtggtc	gaacgcgagg	aacgggccgt	gggcattgga	1560
gccgtgtttc	tgggaatcct	gggagccgct	ggcagcacca	tgggcgctgc	ctctatcaca	1620
ctgacagtgc	aggccagaca	gctcctgagc	ggcatcgtgc	agcagcagag	caacctgctg	1680
agagccatcg	aggcacagca	gcacatgctg	cagctgaccg	tgtggggcat	taagcagctc	1740
cagacacggg	tgctggccat	tgagagatac	ctgcaggatc	agcagctgct	cggcctgtgg	1800
ggctgtagcg	gcaagctgat	ctgtaccacc	gccgtgcctt	ggaacacctc	ctggtccaac	1860
aagagccaga	ccgacatctg	ggacaacatg	acctggatgc	agtgggacaa	agaaatcggc	1920

aactataccg gcgagatcta ccgactgctg gaagagtccc agaaccagca ggaaaagatg 1980
aagcagatcg aggacaagat cgaagagatt ctgagcaaaa tctaccacat cgagaacgag 2040
atcgcccgca tcaagaaact gatcggcgaa gtgggatccg gcgctcccac aaaggccaaa 2100
agacgggtgg tgcagcgcga gaaacgc 2127

<210> 34

<211> 2601

<212> ADN

<213> Secuencia artificial

<220>

<223> secuencia de nucleótidos que codifica C1

<400> 34

5

10

60 atgagagtgc ggggcattca gagaaactgg ccccagtggt ggatctgggg catcctgggc ttttggatga tcattatctg ccgcgtgatg ggcaacctgt gggtcaccgt gtactacggc 120 180 gtgcccgtgt ggaaagaggc caagaccacc ctgttctgcg ccagcgacgc caaggcctac gagaaagagg tgcacaacgt ctgggccacc cacgcctgtg tgcccaccga ccccaatccc 240 caggaaatgg tcctggaaaa cgtgaccgag aacttcaaca tgtggaagaa cgacatggtg 300 qaccaqatqc acqaqqacat catccqqctq tqqqaccaqa qcctqaaqcc ctqcqtqaaq 360 420 ctgacccctc tgtgcgtgac cctggaatgc cggaacgtgc gcaacgtgtc cagcaacggc acctacaata tcatccacaa cgagacatac aaagagatga agaactgcag cttcaacgct 480 accaccqtqq tcqaqqaccq qaaqcaqaaq qtqcacqccc tqttttaccq qctqqacatc 540 gtgcccctgg acgagaacaa cagcagcgag aagtcctccg agaacagctc cgagtactac 600 agactgatca actgcaacac cagcgccatc acccaggcct gccccaaggt gtccttcgac 660 cctatcccca tccactactg cgcccctgcc ggctacgcca tcctgaagtg caacaacaag 720 780 accttcaatg gcaccggccc ctgcaacaat gtgtccaccg tgcagtgcac ccacggcatc aagcccgtgg tgtctaccca gctgctgctg aacggcagcc tggccgagga agagatcatc 840 atcagaagcg agaacctgac caacaacgcc aagacaatca tcgtccacct gaacgaaacc 900 960 gtgaacatca cctgtacccg gcctaacaac aacacccgga agtccatccg gatcggccct ggccagacct tttacgccac cggcgatatt atcggcgaca tccggcaggc ccactgcaat 1020 ctgagccggg acggctggaa caagacactg cagggcgtca agaagaagct ggccgaacac 1080 ttccccaaca aaaccatcaa cttcaccagc tcctctggcg gcgacctgga aatcaccacc 1140 cacagettta actgeagagg egagttette tactgeaata eeteeggeet gtteaatgga 1200 acctacatgc ccaacgggac caacagcaac tccagcagca atatcaccct gccttgccgg 1260 atcaagcaga ttatcaatat gtggcaggaa gtgggcagag ctatgtacgc ccctccaatc 1320

gccggcaaca	tcacatgcag	aagcaacatt	accggcctgc	tgctcaccag	ggacggcggc	1380
		cgacaccgag				1440
cccaacaacg	gcgcgccaaa	cyacaccyay	acacccagac	ccggcggagg	cgacacgcgg	
aacaattggc	ggagcgagct	gtacaagtac	aaggtggtgg	aagtgaagcc	cctgggcgtg	1500
gcccctaccg	aagccaagag	aagagtggtc	gaacgcgaga	agcgggccgt	gggcattgga	1560
gccgtgtttc	tgggaatcct	gggagccgct	ggcagcacca	tgggcgctgc	ctctatcaca	1620
ctgacagtgc	aggccagaca	gctcctgagc	ggcatcgtgc	agcagcagag	caacctgctg	1680
agagccatcg	aggcacagca	gcacatgctg	cagctgaccg	tgtggggcat	taagcagctc	1740
cagacacggg	tgctggccat	tgagagatac	ctgcaggatc	agcagctgct	cggcctgtgg	1800
ggctgtagcg	gcaagctgat	ctgtaccacc	gccgtgcctt	ggaacacctc	ctggtccaac	1860
aagagccaga	ccgacatctg	ggacaacatg	acctggatgc	agtgggacaa	agaaatcggc	1920
aactataccg	gcgagatcta	ccgactgctg	gaagagtccc	agaaccagca	ggaaaagaac	1980
gagaaggacc	tgctggccct	ggacagctgg	aaaaatctgt	ggaattggtt	cgacatcacc	2040
aactggctgt	ggtacatcaa	gatcttcatc	atgatcgtgg	gcggcctgat	cggcctgcgg	2100
atcatctttg	ccgtgctgag	catcgtgaac	cgcgtgcggc	agggatacag	ccctctgagc	2160
ctgcagaccc	tgacccagaa	tccaggcgga	ctggatcggc	tgggccggat	tgaggaagaa	2220
ggcggcgagc	aggacaagga	ccgcagcatc	agactcgtga	acggcttctt	cgctctgttt	2280
tgggacgacc	tgcggagcct	gtgcctgttc	tcctaccaca	gactgcggga	ctttatcctg	2340
attgtggcca	gagccgtcga	gctgctgggc	agatcttctc	tgagaggcct	gcagcggggc	2400
tgggagattc	tgaagtacct	gggctccctg	ctgcagtatt	ggggcctgga	actgaagaag	2460
tccgccatca	atctgctcga	cacaatcgct	attgccgtgg	ccgaaggcac	cgacagaatc	2520
atcgagctga	tccagcggat	ctgccgggcc	atctgcaaca	tccccagacg	gatcagacag	2580
ggctttgaag	ccgccctcca	g				2601
:210> 35						
0445 0440						

<211> 2148

<212> ADN

<213> Secuencia artificial

<223> secuencia de nucleótidos que codifica C1D7

10

<400> 35

atgagagtgc ggggcattca gagaaactgg ccccagtggt ggatctgggg catcctgggc 60 ttttggatga tcattatctg ccgcgtgatg ggcaacctgt gggtcaccgt gtactacggc 120 gtgcccgtgt ggaaagaggc caagaccacc ctgttctgcg ccagcgacgc caaggcctac 180 gagaaagagg tgcacaacgt ctgggccacc cacgcctgtg tgcccaccga ccccaatccc 240 300 caggaaatgg tcctggaaaa cgtgaccgag aacttcaaca tgtggaagaa cgacatggtg

gaccagatgc	acgaggacat	catccggctg	tgggaccaga	gcctgaagcc	ctgcgtgaag	360
ctgacccctc	tgtgcgtgac	cctggaatgc	cggaacgtgc	gcaacgtgtc	cagcaacggc	420
acctacaata	tcatccacaa	cgagacatac	aaagagatga	agaactgcag	cttcaacgct	480
accaccgtgg	tcgaggaccg	gaagcagaag	gtgcacgccc	tgttttaccg	gctggacatc	540
gtgcccctgg	acgagaacaa	cagcagcgag	aagtcctccg	agaacagctc	cgagtactac	600
agactgatca	actgcaacac	cagcgccatc	acccaggcct	gccccaaggt	gtccttcgac	660
cctatcccca	tccactactg	cgcccctgcc	ggctacgcca	tcctgaagtg	caacaacaag	720
accttcaatg	gcaccggccc	ctgcaacaat	gtgtccaccg	tgcagtgcac	ccacggcatc	780
aagcccgtgg	tgtctaccca	gctgctgctg	aacggcagcc	tggccgagga	agagatcatc	840
atcagaagcg	agaacctgac	caacaacgcc	aagacaatca	tcgtccacct	gaacgaaacc	900
gtgaacatca	cctgtacccg	gcctaacaac	aacacccgga	agtccatccg	gateggeeet	960
ggccagacct	tttacgccac	cggcgatatt	atcggcgaca	tccggcaggc	ccactgcaat	1020
ctgagccggg	acggctggaa	caagacactg	cagggcgtca	agaagaagct	ggccgaacac	1080
ttccccaaca	aaaccatcaa	cttcaccagc	tcctctggcg	gcgacctgga	aatcaccacc	1140
cacagcttta	actgcagagg	cgagttcttc	tactgcaata	cctccggcct	gttcaatgga	1200
acctacatgc	ccaacgggac	caacagcaac	tccagcagca	atatcaccct	gccttgccgg	1260
atcaagcaga	ttatcaatat	gtggcaggaa	gtgggcagag	ctatgtacgc	ccctccaatc	1320
gccggcaaca	tcacatgcag	aagcaacatt	accggcctgc	tgctcaccag	ggacggcggc	1380
tctaacaatg	gcgtgccaaa	cgacaccgag	acattcagac	ccggcggagg	cgacatgcgg	1440
aacaattggc	ggagcgagct	gtacaagtac	aaggtggtgg	aagtgaagcc	cctgggcgtg	1500
gcccctaccg	aagccaagag	aagagtggtc	gaacgcgaga	agcgggccgt	gggcattgga	1560
gccgtgtttc	tgggaatcct	gggagccgct	ggcagcacca	tgggcgctgc	ctctatcaca	1620
ctgacagtgc	aggccagaca	gctcctgagc	ggcatcgtgc	agcagcagag	caacctgctg	1680
agagccatcg	aggcacagca	gcacatgctg	cagctgaccg	tgtggggcat	taagcagctc	1740
cagacacggg	tgctggccat	tgagagatac	ctgcaggatc	agcagctgct	cggcctgtgg	1800
ggctgtagcg	gcaagctgat	ctgtaccacc	gccgtgcctt	ggaacacctc	ctggtccaac	1860
aagagccaga	ccgacatctg	ggacaacatg	acctggatgc	agtgggacaa	agaaatcggc	1920
aactataccg	gcgagatcta	ccgactgctg	gaagagtccc	agaaccagca	ggaaaagaac	1980
gagaaggacc	tgctggccct	ggacagctgg	aaaaatctgt	ggaattggtt	cgacatcacc	2040
aactggctgt	ggtacatcaa	gatcttcatc	atgatcgtgg	gcggcctgat	cggcctgcgg	2100
atcatctttg	ccgtgctgag	catcgtgaac	cgcgtgcggc	agggctac		2148

<210> 36 <211> 724

	<212> PF <213> Se		cia ar	tificial													
5	<220> <223> se	ecuen	cia de	l tríme	ero de	Env r	nosaid	co									
	<400> 36	6															
		Met 1	Arg	Val	Arg	Gly 5	Ile	Gln	Arg	Asn	Cys 10	Gln	His	Leu	Trp	Arg 15	Trp
		Gly	Thr	Leu	Ile 20	Leu	Gly	Met	Leu	Met 25	Ile	Cys	Ser	Ala	Ala 30	Gly	Lys
		Leu	Trp	Val 35	Thr	Val	Tyr	Tyr	Gly 40	Val	Pro	Val	Trp	Lys 45	Glu	Ala	Thr
		Thr	Thr 50	Leu	Phe	Cys	Ala	Ser 55	Asp	Ala	Lys	Ala	Tyr 60	Asp	Thr	Glu	Val
		His 65	Asn	Val	Trp	Ala	Thr 70	His	Ala	Cys	Val	Pro 75	Thr	Asp	Pro	Asn	Pro 80
		Gln	Glu	Val	Val	Leu 85	Glu	Asn	Val	Thr	Glu 90	Asn	Phe	Asn	Met	Trp 95	Lys
		Asn	Asn	Met	Val 100	Glu	Gln	Met	His	Glu 105	Asp	Ile	Ile	Ser	Leu 110	Trp	Asp
		Gln	Ser	Leu 115	Lys	Pro	Суѕ	Val	Lys 120	Leu	Thr	Pro	Leu	Cys 125	Val	Thr	Let
		Asn	Cys 130	Thr	Asp	Asp	Val	Arg 135	Asn	Val	Thr	Asn	Asn 140	Ala	Thr	Asn	Thr
		As n 145	Ser	Ser	Trp	Gly	Glu 150	Pro	Met	Glu	Lys	Gly 155	Glu	Ile	Lys	Asn	Cys 160
		Ser	Phe	Asn	Ile	Thr 165	Thr	Ser	Ile	Arg	Asn 170	Lys	Val	Gln	Lys	Gln 175	Туг
		Ala	Leu	Phe	Tyr 180	Lys	Leu	Asp	Val	Val 185	Pro	Ile	Asp	Asn	Asp 190	Ser	Asr

Asn Thr Asn Tyr Arg Leu Ile Ser Cys Asn Thr Ser Val Ile Thr Gln 195 200 205

Ala	Cys 210	Pro	Lys	Val	Ser	Phe 215	Glu	Pro	Ile	Pro	Ile 220	His	Tyr	Cys	Ala
Pro 225	Ala	Gly	Phe	Ala	Ile 230	Leu	Lys	Cys	Asn	Asp 235	Lys	Lys	Phe	Asn	Gly 240
Thr	Gly	Pro	Cys	Thr 245	Asn	Val	Ser	Thr	Val 250	Gln	Cys	Thr	His	Gly 255	Ile
Arg	Pro	Val	Val 260	Ser	Thr	Gln	Leu	Leu 265	Leu	Asn	Gly	Ser	Leu 270	Ala	Glu
Glu	Glu	Val 275	Val	Ile	Arg	Ser	Glu 280	Asn	Phe	Thr	Asn	As n 285	Ala	Lys	Thr
Ile	Met 290	Val	Gln	Leu	Asn	Val 295	Ser	Val	Glu	Ile	Asn 300	Cys	Thr	Arg	Pro
Asn 305	Asn	Asn	Thr	Arg	Lys 310	Ser	Ile	His	Ile	Gly 315	Pro	Gly	Arg	Ala	Phe 320
Tyr	Thr	Ala	Gly	Asp 325	Ile	Ile	Gly	Asp	Ile 330	Arg	Gln	Ala	His	Cys 335	Asn
Ile	Ser	Arg	Ala 340	Asn	Trp	Asn	Asn	Thr 345	Leu	Arg	Gln	Ile	Val 350	Glu	Lys
Leu	Gly	Lys 355	Gln	Phe	Gly	Asn	As n 360	Lys	Thr	Ile	Val	Phe 365	Asn	His	Ser
Ser	Gly 370	Gly	Asp	Pro	Glu	Ile 375	Val	Met	His	Ser	Phe 380	Asn	Cys	Gly	Gly
Glu 385	Phe	Phe	Tyr	Cys	Asn 390	Ser	Thr	Lys	Leu	Phe 395	Asn	Ser	Thr	Trp	Thr 400
Trp	Asn	Asn	Ser	Thr 405	Trp	Asn	Asn	Thr	Lys 410	Arg	Ser	Asn	Asp	Thr 415	Glu
Glu	His	Ile	Thr 420	Leu	Pro	Cys	Arg	Ile 425	Lys	Gln	Ile	Ile	Asn 430	Met	Trp
Gln	Glu	Val 435	Gly	Lys	Ala	Met	Tyr 440	Ala	Pro	Pro	Ile	Arg 445	Gly	Gln	Ile
Arg	Cys 450	Ser	Ser	Asn	Ile	Thr 455	Gly	Leu	Leu	Leu	Thr 460	Arg	Asp	Gly	Gly

Asn Asp 465	Thr	Ser	Gly	Thr 470	Glu	Ile	Phe	Arg	Pro 475	Gly	Gly	Gly	Asp	Met 480
Arg Asp	Asn	Trp	Arg 485	Ser	Glu	Leu	Tyr	Lys 490	Tyr	Lys	Val	Val	Lys 495	Ile
Glu Pro	Leu	Gly 500	Val	Ala	Pro	Thr	Lys 505	Ala	Lys	Glu	Arg	Val 510	Val	Gln
Arg Glu	Glu 515	Arg	Ala	Val	Gly	Ile 520	Gly	Ala	Val	Phe	Leu 525	Gly	Phe	Leu
Gly Ala 530		Gly	Ser	Thr	Met 535	Gly	Ala	Ala	Ser	Met 540	Thr	Leu	Thr	Val
Gln Ala 545	Arg	Leu	Leu	Leu 550	Ser	Gly	Ile	Val	Gln 555	Gln	Gln	Asn	Asn	Leu 560
Leu Arg	Ala	Ile	Glu 565	Ala	Gln	Gln	His	Leu 570	Leu	Gln	Leu	Thr	Val 575	Trp
Gly Ile	. Lys	Gln 580	Leu	Gln	Ala	Arg	Val 585	Leu	Ala	Val	Glu	Arg 590	Tyr	Leu
Lys Asp	595	Gln	Leu	Leu	Gly	Ile 600	Trp	Gly	Cys	Ser	Gly 605	Lys	Leu	Ile
Cys Thr 610		Thr	Val	Pro	Trp 615	Asn	Ala	Ser	Trp	Ser 620	Asn	Lys	Ser	Leu
Asp Lys	Ile	Trp	Asn	Asn 630	Met	Thr	Trp	Met	Glu 635	Trp	Glu	Arg	Glu	Ile 640
Asn Asn	Tyr	Thr	Ser 645	Leu	Ile	Tyr	Thr	Leu 650	Ile	Glu	Glu	Ser	Gln 655	Asn
Gln Glr	Glu	Lys 660	Asn	Glu	Gln	Glu	Leu 665	Leu	Glu	Leu	Asp	Lys 670	Trp	Ala
Ser Leu	Trp 675	Asn	Trp	Phe	Asp	Ile 680	Ser	Asn	Trp	Leu	Trp 685	Tyr	Ile	Lys
Ser Arg		Glu	Gly	Arg	Gly 695	Ser	Gly	Gly	Tyr	Ile 700	Pro	Glu	Ala	Pro
Arg Asp 705	Gly	Gln	Ala	Tyr 710			Lys Phe		715	Glu	Trp	Val	Leu	Leu 720

REIVINDICACIONES

- 1. Un ácido nucleico que codifica una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8, o la SEQ ID NO: 8 que tiene una o más mutaciones seleccionadas del grupo que consiste en (i) I529P, (ii) K480E, y (iii) una combinación de EK479-480RRRR, I529P, A471C y T575C.
- 2. El ácido nucleico de la reivindicación 1, en donde la proteína de la envoltura del VIH sintética comprende además una secuencia señal, por ejemplo, una secuencia señal que comprende la secuencia de aminoácidos seleccionada del grupo que consiste en la SEQ ID NO: 9 a la SEQ ID NO: 12.
- 3. El ácido nucleico de la reivindicación 1 o 2, en donde la proteína de la envoltura del VIH sintética comprende además un dominio transmembrana, por ejemplo, un dominio transmembrana que comprende la SEQ ID NO: 13, preferiblemente la proteína de la envoltura del VIH sintética comprende además la SEQ ID NO: 37 fusionada con el extremo C de la SEQ ID NO: 8 y el extremo N del dominio transmembrana.
- 4. El ácido nucleico de la reivindicación 3, en donde la proteína de la envoltura de VIH sintética comprende además un fragmento de un dominio citoplasmático, preferiblemente un fragmento de un dominio citoplasmático que comprende la secuencia de aminoácidos de la SEQ ID NO: 14 o los restos 1-4 de esta.
- 5. El ácido nucleico de una cualquiera de las reivindicaciones anteriores 1-4, en donde la proteína de la envoltura del VIH sintética comprende la secuencia de aminoácidos de la SEQ ID NO: 18.
 - 6. El ácido nucleico de la reivindicación 1 o 2, en donde la proteína de la envoltura del VIH sintética: (a) comprende además un dominio de trimerización, por ejemplo, un dominio de trimerización que tiene la secuencia de aminoácidos de la SEQ ID NO: 15 o la SEQ ID NO: 16; o (b) comprende la SEQ ID, NO:8 que tiene una combinación de las mutaciones EK479-480RRRR, I529P, A471C y T575C.
 - 7. El ácido nucleico de la reivindicación 6, en donde la proteína de la envoltura del VIH sintética comprende la secuencia de aminoácidos de los restos 1-686 de la SEQ ID NO: 19.
 - 8. Un vector que comprende el ácido nucleico de una cualquiera de las reivindicaciones 1-7, en donde el ácido nucleico está ligado operativamente a una secuencia promotora.
 - 9. El vector de la reivindicación 8, que es un vector vírico, preferiblemente un vector de adenovirus.
 - 10. El vector de la reivindicación 9, en donde el vector de adenovirus es un vector de adenovirus del serotipo 26 (Ad26) humano.
 - 11. Una célula aislada que comprende el vector de una cualquiera de las reivindicaciones 8-10.
 - 12. Una composición que comprende una cantidad inmunogénicamente eficaz del vector de una cualquiera de las reivindicaciones 8-10 y un vehículo.
 - 13. Una combinación de vacuna, que comprende:

5

10

15

25

30

35

40

45

50

55

- (i) una primera composición que comprende una cantidad inmunogénicamente eficaz de un vector de adenovirus, preferiblemente un vector de adenovirus 26, que codifica una proteína de la envoltura del VIH sintética que tiene la secuencia de aminoácidos de la SEQ ID NO: 8, preferiblemente la SEQ ID NO: 18;
- (ii) una segunda composición que comprende una cantidad inmunogénicamente eficaz de un segundo vector de adenovirus, preferiblemente un segundo vector de adenovirus 26, que codifica un polipéptido antigénico del VIH que comprende la secuencia de aminoácidos de la SEQ ID NO: 5; y, opcionalmente
- (iii) al menos una composición adicional que comprende una cantidad inmunogénicamente eficaz de al menos un componente seleccionado del grupo que consiste en
- (iiia) un vector que codifica al menos un polipéptido antigénico que tiene la secuencia de aminoácidos seleccionada del grupo que consiste en las SEQ ID NO: 1-4, 28 y 29, y
 - (iiib) un polipéptido que comprende una cantidad inmunogénicamente eficaz de un polipéptido antigénico del VIH aislado que tiene los restos 30-708 de la secuencia de aminoácidos de la SEQ ID NO: 7 o los restos 30-724 de la SEQ ID NO: 36,
- en donde la primera composición, la segunda composición y la composición adicional están presentes en la misma composición o en una o más composiciones diferentes.
- 14. La composición de la reivindicación 12 o la combinación de vacuna de la reivindicación 13 para su uso en la inducción de una respuesta inmunitaria contra un virus de la inmunodeficiencia humana (VIH) en un sujeto que lo necesite.

15. Una proteína de la envoltura del VIH sintética que comprende la secuencia de aminoácidos de la SEQ ID NO: 8, o la SEQ ID NO: 8 que tiene una o más mutaciones seleccionadas del grupo que consiste en (i) I529P, (ii) K480E, y (iii) una combinación de EK479-480RRRR, I529P, A471C y T575C, preferiblemente, que comprende (i) la SEQ ID NO: 8 que tiene una combinación de las mutaciones EK479-480RRRR, I529P, A471C y T575C; (ii) los restos de aminoácidos 30-704 de la SEQ ID NO: 18, o (iii) los restos de aminoácidos 30-686 de la SEQ ID NO: 19.

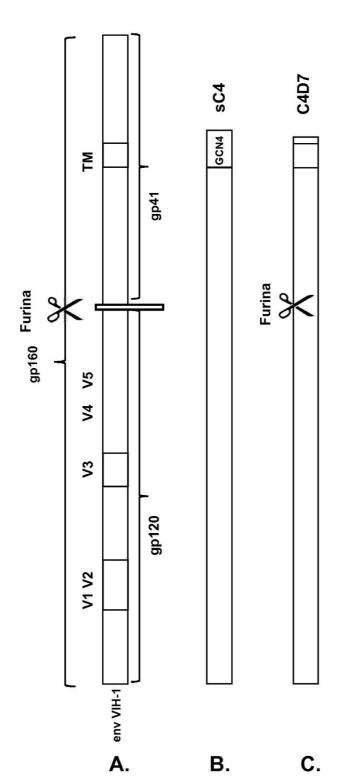


Fig. 1

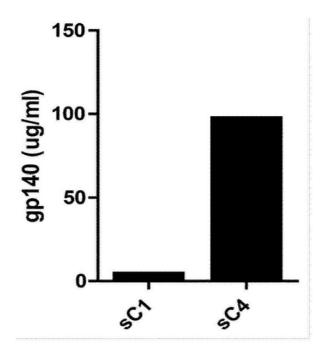
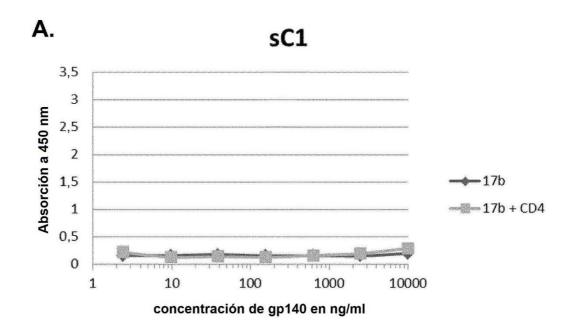



Fig. 2

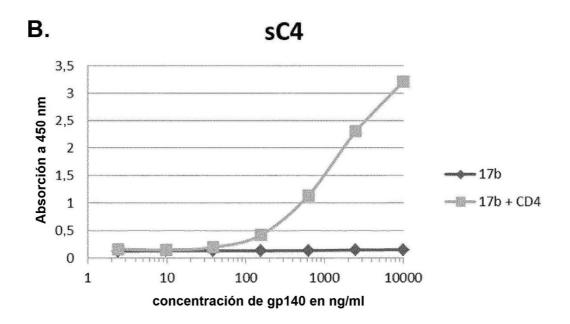


Fig. 3

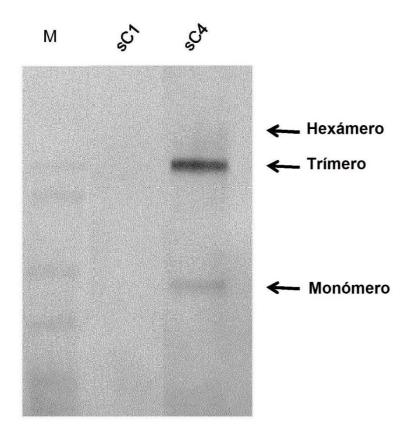


Fig. 4

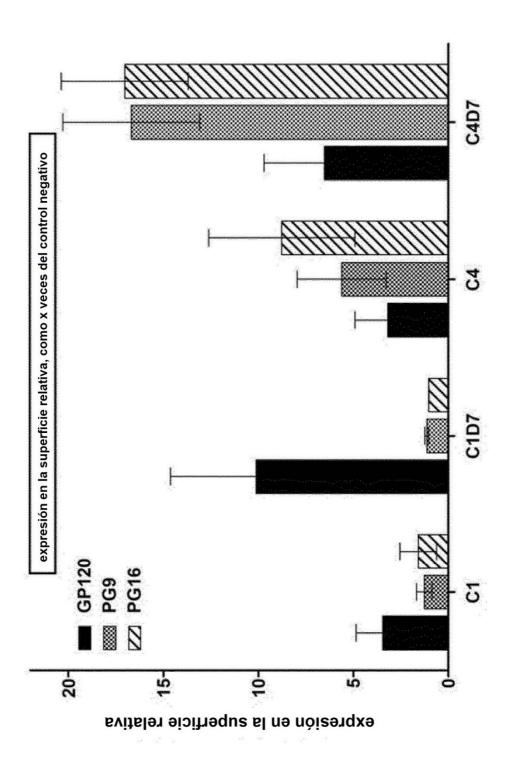


Fig. 5

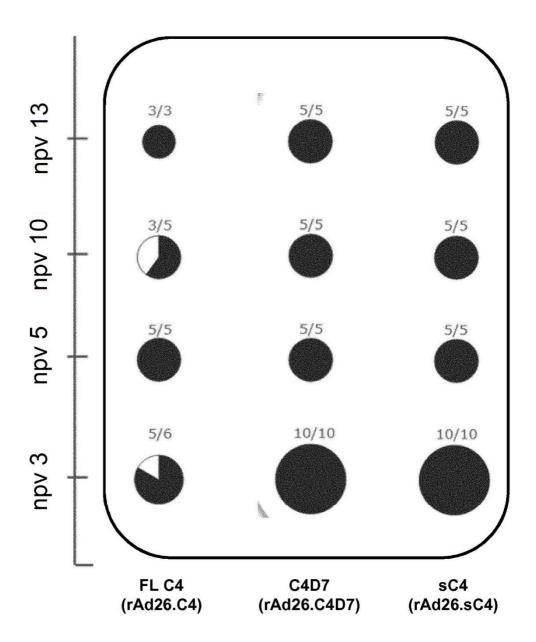
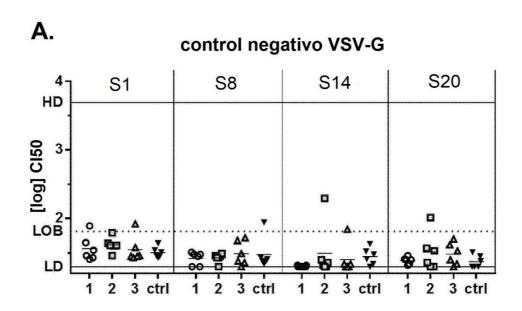
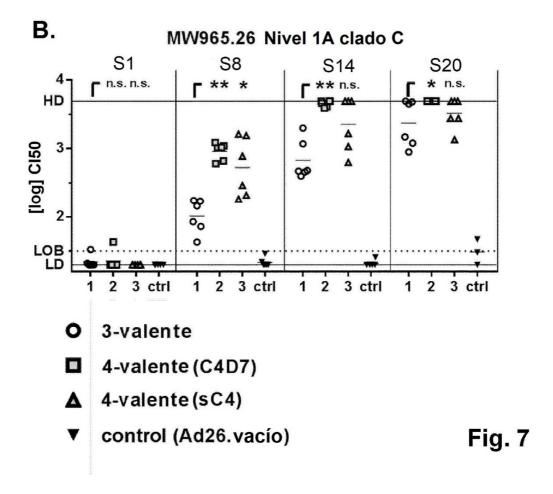




Fig. 6

