

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 757 373

61 Int. Cl.:

A61K 39/00 (2006.01) A61K 38/00 (2006.01) A61P 33/14 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 29.05.2015 PCT/JP2015/065600

(87) Fecha y número de publicación internacional: 03.12.2015 WO15182754

(96) Fecha de presentación y número de la solicitud europea: 29.05.2015 E 15800403 (6)

(97) Fecha y número de publicación de la concesión europea: 30.10.2019 EP 3165235

(54) Título: Proteínas para su uso en el control de ácaros rojos

(30) Prioridad:

30.05.2014 JP 2014113479

Fecha de publicación y mención en BOPI de la traducción de la patente: 29.04.2020

(73) Titular/es:

NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY (100.0%) Kita 8-jyo Nishi 5-chome, Kita-ku Sapporo-shi, Hokkaido 060-0808, JP

(72) Inventor/es:

OHASHI KAZUHIKO; MURATA SHIRO; ISEZAKI MASAYOSHI; KONNAI SATORU; TANIGUCHI AYAKA Y HOJOH TAKUMI

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Proteínas para su uso en el control de ácaros rojos

5 Campo técnico

10

15

30

35

40

La presente invención se refiere a proteínas para su uso en un método para controlar los ácaros rojos (<u>Dermanyssus gallinae</u>), que son ectoparásitos que parasitan a animales domésticos, en particular a los pollos y a una proteína novedosa que se puede usar en este.

Antecedentes de la técnica

El daño resultante de la succión de sangre por los ácaros rojos es un problema importante en las granjas avícolas (particularmente de gallinas ponedoras de huevos) en el mundo. Los ácaros rojos hacen que disminuya la productividad de puesta de huevos de las gallinas, por ejemplo, debido a la anemia, una disminución en la tasa de puesta de huevos y una disminución en la respuesta inmunitaria de las gallinas como resultado de la succión de sangre. También se ha descrito que los ácaros rojos están involucrados en la transmisión de varios patógenos.

Los métodos actuales para el control de los ácaros rojos incluyen, por ejemplo, la limpieza a fondo de los gallineros y la pulverización de insecticidas. Sin embargo, dado que los ácaros rojos permanecen en huecos como las grietas en un gallinero aunque no succionan sangre, es difícil controlar por completo los ácaros rojos que permanecen en tales huecos mediante la limpieza o la pulverización química. Además, la pulverización química puede hacer que el medicamento químico permanezca en el producto y, además de eso, se asocia con un problema de generación de ácaros rojos resistentes al medicamento químico, como se ha descrito recientemente. Dado que los métodos actuales para el control de los ácaros rojos, en particular los que se realizan mediante pulverización química, tienen tales problemas, existe la necesidad de un nuevo método para controlar los ácaros rojos, además de la pulverización química.

Una vacuna contra los ácaros rojos es un medio prometedor como un método alternativo a la pulverización química para el control de los ácaros rojos. Con anterioridad ya se habían realizado investigaciones sobre el desarrollo de vacunas contra las garrapatas para las garrapatas ixódidas, que son ectoparásitos chupadores de sangre de animales domésticos, así como contra los ácaros rojos.

Las vacunas contra las garrapatas incluyen, por ejemplo, aquellas en las que una molécula que se inyecta de una garrapata en un hospedador se usa como antígeno de la vacuna, y aquellas en las que una molécula que se expresa en el tracto intestinal de una garrapata y está involucrada en el mantenimiento de la homeostasis en la garrapata se utiliza como antígeno de vacuna. En el primer caso, la función del factor que se ha inyectado de la garrapata en el hospedador es inhibida por una respuesta inmunitaria dentro del hospedador, de modo que se evita que la garrapata succione sangre y se pueda controlar. En este último caso, una sustancia inmunoactiva del hospedador que se ha introducido en la garrapata succionadora de sangre inhibe la función de la molécula objetivo dentro del cuerpo de la garrapata, de modo que la garrapata está controlada (Bibliografía no de patente 1 y 2). Una vacuna anti-garrapatas que pertenece al tipo anterior es TickGARD (marca registrada) PLUS, que está disponible comercialmente en Hoechst.

En los últimos años, también se han realizado investigaciones y desarrollos sobre vacunas contra los ácaros rojos.

Por ejemplo, se realizó una prueba con una vacuna en la cual se usan como antígenos las fracciones insolubles y solubles de ácaros rojos adultos (Bibliografía no de patente 3). También se ha descrito una prueba con una vacuna que mostró un cierto efecto, en la cual se usa como antígeno una proteína recombinante codificada por el gen identificado que se expresa en los ácaros rojos (Bibliografía no de patente 4 y 5). Además, siempre se han descrito moléculas que pueden ser antígenos candidatos para vacunas, tales como enzimas antioxidantes y enzimas metabolizadoras de fármacos en los ácaros rojos (Bibliografía no de patente 6 y 7).

Dado que las garrapatas ixódidas parasitan a un hospedador y continúan succionando la sangre del hospedador durante varios días, también son eficaces las vacunas que evitan que las garrapatas succionen la sangre como consecuencia de una respuesta inmunitaria dentro del hospedador. Por el contrario, el período de succión de sangre de los ácaros rojos es de cinco minutos a, como máximo, aproximadamente una hora, y por lo tanto, los ácaros rojos permanecen en los individuos de pollo solo durante períodos extremadamente cortos, en comparación con las garrapatas ixódidas. Por esta razón, como vacunas contra los ácaros rojos que se puede esperar que sean altamente efectivas en el control de los ácaros rojos, serían más ventajosas aquellas que controlan los ácaros rojos mediante una sustancia inmunoactiva de un hospedador introducida en el cuerpo del ácaro rojo succionador de sangre que las que controlan los ácaros rojos al inhibir la función de una molécula derivada de los ácaros rojos a través de una respuesta inmunitaria dentro del hospedador. Sin embargo, actualmente, no se ha encontrado un antígeno de vacuna eficaz que pueda controlar los ácaros rojos a través de dicho mecanismo.

Lista de citas

65

55

60

Bibliografías no de patente

Bibliografía no de patente 1: Onuma et al., Journal of Veterinary Medicine, 2004, Vol. 57, 753-757.

Bibliografía no de patente 2: Willadsen et al., Parasitology, 2004, Vol. 129, S367-S387.

Bibliografía no de patente 3: Wright et al., Exp. Appl. Acarol., 2009, Vol. 48, 81-91.

Bibliografía no de patente 4: Bartley et al., International Journal for Parasitology, 2009, Vol. 39, 447-456.

Bibliografía no de patente 5: Bartley et al., Parasitology, 2012, Vol. 139, 755-765.

Bibliografía no de patente 6: Isezaki et al., September 18, 2010, the 150th Japanese Society of Veterinary Science, presentation number C-52.

Bibliografía no de patente 7: Isezaki et al., September 15, 2012, the 154th Japanese Society of Veterinary Science, presentation number C-2.

Sumario de la invención

Problema técnico

15

10

5

La presente invención está definida por las reivindicaciones. La presente invención tiene como objetivo proporcionar el control de los ácaros rojos provocando una respuesta inmunitaria contra ellos en un animal doméstico para inhibir la función de la molécula objetivo dentro del cuerpo de los ácaros rojos, y un antígeno de vacuna y una vacuna contra los ácaros rojos que pueden usarse para ello.

20

25

30

40

Solución al problema

Los presentes inventores han revelado la expresión de genes que codifican proteínas novedosas características de los ácaros rojos mediante análisis de expresión génica, y han realizado la invención, cuyas realizaciones se exponen a continuación. La presente divulgación que comprende la invención se refiere a las proteínas reivindicadas para el uso en los siguientes métodos:

- (1) Un método para provocar una respuesta inmunitaria específica de los ácaros rojos en un animal doméstico, que comprende la etapa de administrar al animal doméstico una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1, una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2, y/o un equivalente inmunológico de la misma.
- (2) El método de acuerdo con (1), en el que el equivalente inmunológico es un fragmento polipeptídico de una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 o una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2).
- 35 (3) El método de acuerdo con (1), en el que el equivalente inmunológico es

una proteína que consiste en una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,

una proteína que consiste en una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,

una proteína que consiste en una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,

una proteína que consiste en una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2, o

un fragmento polipeptídico de la misma.

(4) El método de acuerdo con (1), en el que el equivalente inmunológico es una proteína de fusión que consiste en una secuencia de aminoácidos en la cual se añaden uno o más aminoácidos opcionales en el extremo N y/o C de la secuencia de aminoácidos de cualquiera de las siguientes:

50

55

60

65

la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,

una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,

una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,

la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,

una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,

una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,

o una secuencia de aminoácidos parcial de la misma.

(5) Una proteína que consiste en la secuencia de aminoácidos de cualquiera de a) a d) descritos a continuación, o un fragmento polipeptídico que consiste en una secuencia de aminoácidos parcial de la secuencia de aminoácidos de a) a c) descritos a continuación, en la que la proteína o el fragmento polipeptídico es un equivalente inmunológico de una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1:

- a) la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,
- b) una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,
- c) una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,
- d) una secuencia de aminoácidos en la cual se añaden uno o más aminoácidos opcionales en el extremo N y/o C de la secuencia de aminoácidos o una secuencia de aminoácidos parcial de cualquiera de a) a c).
- (6) Una proteína que consiste en la secuencia de aminoácidos de cualquiera de e) a h) descritos a continuación, o un fragmento polipeptídico que consiste en una secuencia de aminoácidos parcial de la secuencia de aminoácidos de e) a g) descritos a continuación, en la que la proteína o el fragmento polipeptídico es un equivalente inmunológico de una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2:
- e) la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,
 - f) una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,
 - g) una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,
- 20 h) una secuencia de aminoácidos en la cual se añaden uno o más aminoácidos opcionales en el extremo N y/o C de la secuencia de aminoácidos o una secuencia de aminoácidos parcial de cualquiera de e) a g).
 - (7) Un ácido nucleico que codifica la proteína o el fragmento polipeptídico de la misma como se define en (5) o (6).
 - (8) Un vector de expresión que comprende el ácido nucleico de acuerdo con (7).
- 25 (9) Una vacuna contra los ácaros rojos para su uso en un animal doméstico, que comprende la proteína o el fragmento polipeptídico como se define en (5) y/o (6), o el ácido nucleico como se define en (7) y/o el vector de expresión como se define en (8).

Efectos ventajosos de la invención

De acuerdo con la presente invención, se puede provocar una respuesta inmunitaria específica de los ácaros rojos en un animal doméstico, y los ácaros rojos se pueden controlar inhibiendo la función de la molécula objetivo dentro de los ácaros rojos que han succionado la sangre del animal doméstico.

35 Breve descripción de los dibujos

5

30

40

45

50

55

60

65

La Fig. 1 representa un alineamiento de las secuencias de aminoácidos de la catepsina L-2 del ácaro rojo (Dermanyssus gallinae) expuesta en la SEQ ID NO. 1 y de la catepsina L de varias especies de garrapatas y ácaros. En la figura, los triángulos en negro invertidos representan una secuencia de motivos característicos de la catepsina L.

La Fig. 2 representa un alineamiento de las secuencias de aminoácidos de la ferritina 2 del ácaro rojo (Dermanyssus gallinae) expuesta en la SEQ ID NO. 2 y de la ferritina 2 de varias especies de garrapatas y ácaros. La Fig. 3 representa una fotografía de un gel de SDS-PAGE de una proteína de fusión de la catepsina L-2 de Dermanyssus gallinae y del factor de activación derivado de Escherichia coli de un gel de SDS-PAGE de una proteína de fusión de ferritina 2 de Dermanyssus gallinae y del factor de activación derivado de Escherichia coli en el panel de la derecha.

La Fig. 4 representa una fotografía de un gel de SDS-PAGE de una proteína de fusión de una porción que contiene el sitio activo de la catepsina L-2 de Dermanyssus gallinae y un factor de activación derivado de Escherichia coli. La Fig. 5 representa una fotografía de electroforesis en gel de agarosa que muestra los resultados de la RT-PCR

- realizada utilizando ARN totales de tres muestras de ácaros Dermanyssus gallinae recogidos en diferentes granjas avícolas y una muestra de control de ácaros Ornithonyssus sylviarum como molde y los conjuntos de cebadores a) toc) diseñados para amplificar el ácido nucleico que codifica la catepsina L-2 de Dermanyssus gallinae. En el panel superior, los carriles 1 a 3 corresponden a muestras de D. gallinae, y el carril 4 corresponde a una muestra de O. sylviarum. El panel inferior es una representación esquemática que muestra la relación entre las ubicaciones de los cebadores de cada conjunto de cebadores y los fragmentos a amplificar con los conjuntos de cebadores.
- La Fig. 6 representa gráficos que muestran la tasa de mortalidad (el número de ácaros Dermanyssus gallinae muertos por succión de sangre en relación con el número de ácaros Dermanyssus gallinae que han succionado sangre) de los ácaros Dermanyssus gallinae que han succionado una sangre de prueba preparada a partir de pollos inmunizados con catepsina L-2 o ferritina 2 de Dermanyssus gallinae en las semanas 1 y 3 después de la succión de sangre.
 - La Fig. 7 representa gráficos que muestran la tasa de mortalidad (el número de ácaros Dermanyssus gallinae muertos por succión de sangre en relación con el número total de ácaros Dermanyssus gallinae que han succionado y que no han succionado sangre) de los ácaros Dermanyssus gallinae que han succionado una sangre de prueba preparada a partir de pollos inmunizados con catepsina L-2 o ferritina 2 de Dermanyssus gallinae durante un período de hasta 14 días después de la succión de sangre.

Descripción de realizaciones

25

30

35

40

45

60

65

La presente divulgación que comprende la invención se refiere a un método para provocar una respuesta inmunitaria específica de los ácaros rojos (Dermanyssus gallinae) en un animal doméstico, que comprende la etapa de administrar al animal doméstico una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1, una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2, y/o un equivalente inmunológico de la misma como se define por las reivindicaciones.

Se determinó que una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 es la catepsina L, un tipo de cisteína proteasa, basándose en una pluralidad de secuencias de motivos característicos contenidos en su secuencia de aminoácidos. En relación con esto, el ácido nucleico clonado en la presente invención (SEQ ID NO. 3) codifica una proteína que tiene una secuencia señal de 18 restos de aminoácidos añadidos en el extremo N de la secuencia de aminoácidos de SEQ ID NO. 1).

De los ácaros rojos, ya se ha clonado un gen que codifica la catepsina L (Bartley et al., Bibliografía no de patente 5, supra), y se ha registrado en GenBank (http://www.ncbi.nlm.nih.gov/genbank/) con el Número de acceso No. CCC33064.1. Sin embargo, la secuencia de aminoácidos codificada por la secuencia de bases de SEQ ID NO. 3 muestra solo una identidad del 30,6% con la del Número de acceso CCC33064.1. La identidad de una secuencia de aminoácidos en la memoria descriptiva significa el porcentaje de identidad de secuencia más alto obtenido mediante un alineamiento de secuencias para comparar usando un programa de software apropiado que habitualmente usan los expertos en la materia, como la búsqueda BLAST del NCBI (http://blast.ncbi.nlm.nih.gov/).

Se realizó una búsqueda de homología en GenBank utilizando la secuencia de aminoácidos codificada por la secuencia de bases de SEQ ID NO. 3 como una secuencia de consulta y se determinó que la catepsina L de Metaseiulus occidentalis (Número de acceso XP_003745143.1. SEQ ID NO. 5) tiene una identidad del 72,9 %, la catepsina L de Ixodes scapularis (Número de acceso XP_002403652.1, SEQ ID NO. 6) tiene una identidad del 51,8 % y la catepsina L de Rhipicephalus appendiculatus (Número de acceso AAO60045.1, SEQ ID NO. 7) tiene una identidad del 46,6 %, respectivamente con la secuencia de consulta. Sin embargo, no se detectaron secuencias de aminoácidos conocidas que mostraran una identidad mayor que las de estas secuencias en los miembros del orden Acari.

Basándose en estos resultados, se determinó que una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 era una catepsina L novedosa que se expresa específicamente en el ácaro rojo Dermanyssus gallinae. En lo sucesivo en el presente documento, la catepsina de la presente invención que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 se denomina catepsina L-2 y se abrevia como DgCatL-2, y la catepsina L de Dermanyssus gallinae conocida registrada con el Número de acceso CCC33064.1 se denomina catepsina L-1 y se abrevia como DgCatL-1.

Se determinó que una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 es la ferritina 2, que está involucrada en el transporte y almacenamiento de hierro, basándose en las secuencias de motivos característicos contenidos en su secuencia de aminoácidos. La ferritina es una proteína de almacenamiento de hierro que está ampliamente presente en especies que van desde los ácaros y las garrapatas hasta los animales mamíferos: se ha descrito que los ácaros y las garrapatas tienen ferritinas 1 y 2, mientras que los animales mamíferos tienen una ferritina correspondiente a la ferritina 1 de los ácaros y las garrapatas. La ferritina de la presente invención que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 es una proteína que corresponde a la ferritina 2. En relación con esto, el ácido nucleico que se ha clonado en la presente invención (SEQ ID NO. 4) codifica una proteína que tiene una secuencia señal de 18 restos de aminoácidos añadidos en el extremo N de la secuencia de aminoácidos de SEQ ID NO. 2).

Se realizó una búsqueda de homología en GenBank utilizando la secuencia de aminoácidos codificada por la secuencia de bases de SEQ ID NO. 4 como una secuencia de consulta y se determinó que la ferritina 2 de Metaseiulus occidentalis (Número de acceso XP_003737398.1. SEQ ID NO. 8) tiene una identidad del 59,0 %, la ferritina 2 de Ixodes ricinus (Número de acceso ACJ70653.1, SEQ ID NO. 9) tiene una identidad del 49,5 %, la ferritina 2 de Ixodes persulcatus (Número de acceso AGX01000.1, SEQ ID NO. 10) tiene una identidad del 49,5 %, y la ferritina 2 de Haemaphysalis longicornis (Número de acceso BAN13552.1, SEQ ID NO. 11) tiene una identidad del 48,2 %, respectivamente con la secuencia de consulta. Sin embargo, no se detectaron secuencias de aminoácidos conocidas que mostraran una identidad mayor que las de estas secuencias en los miembros del orden Acari.

Basándose en estos resultados, se determinó que una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 era una ferritina 2 novedosa que se expresa específicamente en el ácaro rojo Dermanyssus gallinae. En lo sucesivo en el presente documento, la ferritina 2 de la presente invención que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2. se abrevia como DgFER2.

Se supone que las DgCatL-2 y DgFER2 anteriormente descritas son cada una de ellas una proteína involucrada en la digestión y absorción de la sangre del hospedador que se ha incorporado en la sangre de un ácaro rojo. Se espera que la inhibición de la función de estas proteínas haga que la ingesta de nutrientes de los ácaros rojos sea insuficiente, de modo que los ácaros rojos pueden controlarse. Específicamente, se espera que induzca la producción dentro del

hospedador de varios materiales que exhiben una respuesta inmunitaria específica de DgCatL-2 o DgFER2, tales como anticuerpos específicos, linfocitos T citolíticos, linfocitos T cooperadores y linfocitos NKT, es decir, la provocación de una respuesta inmunitaria específica de Dermanyssus gallinae en el hospedador, permite controlar los ácaros rojos.

Además de DgCatL-2 y DgFER2, en la presente invención se pueden usar los equivalentes inmunológicos de las mismas. Un equivalente inmunológico como se usa en la presente invención significa una proteína o polipéptido inmunogénico que es capaz de provocar una respuesta inmunitaria específica de Dermanyssus gallinae dirigida a DgCatL-2 o DgFER2 como antígeno diana en un animal doméstico. Preferiblemente, los ejemplos preferibles y no limitantes de dicho equivalente inmunológico pueden incluir los siguientes b) a d) y f) a h).

15

20

25

30

35

40

45

50

55

60

- b) Una proteína que consiste en una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 (una proteína correspondiente a una variante de deleción o sustitución de DgCatL-2) o un fragmento polipeptídico de la misma.
- c) Una proteína que consiste en una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 (una proteína correspondiente a una variante de inserción de DgCatL-2) o un fragmento polipeptídico de la misma.
- d) Una proteína que consiste en una secuencia de aminoácidos en la cual se añade uno o más aminoácidos opcionales en el extremo N y/o C de la secuencia de aminoácidos de cualquiera de DgCatL-2 o las proteínas descritas en los b) o c) anteriores o fragmentos polipeptídicos de la misma (una proteína de fusión de DgCatL-2 o la proteína descrita en los b) o c) anteriores con otra proteína o polipéptido o una secuencia de etiqueta).
- f) Una proteína que consiste en una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 (una proteína correspondiente a una variante de deleción o sustitución de DgFER2) o un fragmento polipeptídico de la misma.
- g) Una proteína que consiste en una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 (una proteína correspondiente a una variante de inserción de DgFER2) o un fragmento polipeptídico de la misma.
- h) Una proteína que consiste en una secuencia de aminoácidos en la cual se añaden uno o más aminoácidos opcionales en el extremo N y/o C de la secuencia de aminoácidos de cualquiera de DgFER2 o las proteínas descritas en los f) o g) anteriores o fragmentos polipeptídicos de la misma (una proteína de fusión de DgFER2 o la proteína descrita en los apartados anteriores f) o g) con otra proteína o polipéptido o una secuencia de etiqueta).

Los ejemplos representativos de una secuencia de aminoácidos opcional que se agregará como una porción de las proteínas de fusión mencionadas anteriormente en la presente invención pueden incluir, aunque sin limitación, secuencias de etiqueta tales como DYKDDDDK y etiquetas de His, y secuencias de aminoácidos de proteínas, tales como el factor de activación de Escherichia coli, hemocianina de lapa californiana, hemaglutinina, c-myc, proteínas fluorescentes y glutatión S-transferasa.

En la presente divulgación que comprende la invención, DgCatL-2, DgFER2, y/o equivalentes inmunológicos de la misma, preferiblemente proteínas descritas en los b) a d), y f) a h) anteriores, se usan como un antígeno para provocar una respuesta inmunitaria de Dermanyssus gallinae en un hospedador. No se requiere necesariamente un equivalente inmunológico para retener la actividad proteasa de DgCatL-2 o la función de DgFER2 como una proteína de almacenamiento de hierro en la presente invención.

Por tanto, por ejemplo, en los equivalentes inmunológicos correspondientes a las variantes DgCatL-2 o DgFER2, no hay limitaciones particulares en el sitio de sustitución, deleción y/o inserción de aminoácidos, el tipo de restos de aminoácidos después de la mutación y las secuencias de aminoácidos a añadir excepto el porcentaje de identidad de secuencia. La secuencia de aminoácidos de una variante inmunológica equivalente tiene una identidad de al menos 80 % o más, o 90 % o más, además deseablemente 95 % o más, con la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 o 2. Los fragmentos polipeptídicos tienen no menos de 30 restos de aminoácidos.

Además, DgCatL-2, DgFER2 y sus equivalentes inmunológicos pueden modificarse con sustancias fluorescentes tales como FITC, agentes de reticulación y otras sustancias químicas conocidas, siempre que retengan la inmunogenicidad. La selección de las sustancias químicas con las que se pueden modificar las proteínas, y sus modificaciones pueden estar dentro de la capacidad normal de un experto en la materia.

DgCatL-2, DgFER2 y sus equivalentes inmunológicos en la presente invención pueden producirse usando procedimientos de recombinación genética conocidos o bien conocidos por los expertos en la materia. Dichos procedimientos de recombinación genética pueden llevarse a cabo utilizando los procedimientos descritos en una variedad de libros de texto y manuales, normalmente en Sambrook et al., Molecular Cloning: A Laboratory Manual, 3ª ed., Cold Spring Harbor Press (2001), y Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992), y los habitualmente utilizados por los expertos en la materia. Los kits o reactivos experimentales comercialmente disponibles pueden usarse de acuerdo con los protocolos de los fabricantes.

DgCatL-2, DgFER2 y sus equivalentes inmunológicos en la presente invención pueden producirse como proteínas recombinantes incorporando un ácido nucleico que contiene la secuencia de bases que codifica cada una de estas en un vector de expresión apropiado, y expresando el ácido nucleico en una célula hospedadora, mediante métodos de

ingeniería genética de uso común. El vector de expresión puede contener además cualquier secuencia de bases funcional para regular la transcripción y la expresión, como una secuencia promotora, una secuencia de operador, un sitio de unión al ribosoma, una señal de poliadenilación y un potenciador. Estas secuencias de bases funcionales pueden estar operativamente unidas al ácido nucleico descrito anteriormente.

Como se ha descrito anteriormente, en la presente invención, DgCatL-2, DgFER2 y sus equivalentes inmunológicos no son necesariamente necesarios para retener actividades fisiológicas, tales como actividad proteasa o una función como una proteína de almacenamiento de hierro. Por tanto, cuando estas proteínas son producidas por procedimientos de ingeniería genética, no se requiere que se expresen como proteínas que retienen la actividad fisiológica mencionada anteriormente. Por ejemplo, DgCatL-2, DgFER2 y sus equivalentes inmunológicos pueden producirse en forma de los llamados cuerpos de inclusión que pueden generarse cuando se expresa una proteína heteróloga utilizando Escherichia coli como célula hospedadora.

10

20

Las proteínas relativamente pequeñas, como los fragmentos polipeptídicos, se pueden sintetizar mediante métodos de síntesis química bien conocidos por los expertos en la materia, como los métodos Fmoc (fluorenilmetiloxicarbonilo) y tBoc (t-butiloxicarbonilo), o utilizando sintetizadores de péptidos disponibles comercialmente.

Además, DgCatL-2, DgFER2 y sus equivalentes inmunológicos pueden expresarse de manera recombinante con una secuencia señal añadida en el extremo N de cada uno de estos. Los ejemplos de una secuencia de señal incluyen las secuencias señal de la propia DgCatL-2 (SEQ ID NO. 24) y la propia DgFER2 (SEQ ID NO. 25), que se usan preferiblemente, aunque se puede usar una secuencia señal diferente según sea apropiado, dependiendo de la célula hospedadora que se utilizará.

Un método de la presente divulgación que comprende la invención para provocar una respuesta inmunitaria específica de los ácaros rojos en un animal doméstico comprende la etapa de administrar al animal doméstico una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1, una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2, y/o un equivalente inmunológico de la misma, es decir, DgCatL-2, DgFER2 y/o un equivalente inmunológico de las mismas como se describe anteriormente.

- 30 La presente invención se puede aplicar ampliamente a animales domésticos en los cuales se requiere el control de los ácaros rojos, y se aplica preferiblemente a aves de corral, tal como pollos, aves silvestres, patos domésticos, patos, gansos, gansos silvestres, pavos, pintadas, faisanes, faisanes dorados y codornices, particularmente pollos, incluidos para huevos, para alimento u ornamentales.
- Cuando se administran a un animal doméstico, DgCatL-2, DgFER2 y/o un equivalente inmunológico de las mismas se formula preferiblemente y se usa como formas unitarias apropiadas en combinación con excipientes, adyuvantes y otros componentes farmacéuticamente aceptables. Dicha formulación puede estar dentro de la habilidad normal de una persona experta en la materia. En cuanto a las vías de administración, se pueden seleccionar métodos adecuados dependiendo de las formas farmacéuticas y dichos métodos pueden incluir la administración de gotas oftálmicas, administración de gotas nasales, administración en aerosol, administración por atomización, administración en el agua de bebida, administración oral, administración mezclada con el alimento, administración en huevos, punción, inyección intramuscular, inyección subcutánea, y otros. Los métodos particularmente preferidos para la administración en la presente invención son punción, inyección intramuscular, inyección subcutánea, y otros.
- La provocación de la respuesta inmunitaria específica de Dermanyssus gallinae en un animal doméstico al que se le ha administrado DgCatL-2, DgFER2 y/o un equivalente inmunológico de las mismas puede confirmarse detectando la producción de, por ejemplo, un anticuerpo específico, linfocitos T citolíticos, linfocitos T cooperadores y linfocitos NKT que exhiben respuesta inmunitaria a DgCatL-2 o DgFER2, dentro del hospedador o en muestras de sangre periférica o líquido linfático recogido del hospedador. La detección de dicho anticuerpo o tipos de células puede estar dentro de la capacidad normal de una persona experta en la materia.

La presente invención también proporciona DgCatL-2, DgFER2 y un equivalente inmunológico de las mismas y ácidos nucleicos, vectores de expresión y células hospedadoras transformadas que codifican las mismas que se pueden usar en el método para provocar una respuesta inmunitaria específica de los ácaros rojos en un animal doméstico. Estas son útiles como vacunas que permiten provocar la respuesta inmunitaria específica de Dermanyssus gallinae en un hospedador. Los detalles de DgCatL-2, DgFER2 y un equivalente inmunológico de las mismas y los ácidos nucleicos, vectores de expresión y células hospedadoras, etc., y además, los métodos para producirlos, y otros, son como se ha descrito anteriormente, incluidos sus ejemplos preferidos. Un ácido nucleico o vector de expresión mencionado anteriormente, particularmente un vector de expresión que funciona dentro del cuerpo de las aves de corral, como los pollos, también se pueden usar como la llamada vacuna de ADN contra los ácaros rojos.

La capacidad de controlar los ácaros rojos a través de la respuesta inmunitaria específica de Dermanyssus gallinae provocada por la administración a un animal doméstico de DgCatL-2, DgFER2 y un equivalente inmunológico de las mismas como se describe en la presente invención puede evaluarse mediante métodos simples. Específicamente, se puede evaluar, por ejemplo, mediante un método que comprende preparar una sangre recogida de pollos criados durante un período de tiempo que es el generalmente requerido para inducir una respuesta inmunitaria después de la

administración de DgCatL-2, DgFER2 y un equivalente inmunológico de las mismas, permitiendo que los ácaros rojos chupen la sangre recogida y después determinando las muertes de los ácaros con el tiempo. En este método, dado que la piel de pollo es necesaria para la succión de sangre por los ácaros rojos, es preferible utilizar un sistema de succión de sangre artificial en el que se proporciona un trozo de piel de pollo como parte de una pared divisoria, la sangre se retiene para estar en contacto con la pared divisoria y los ácaros rojos se colocan en el lado opuesto de la pared divisoria, permitiendo así que los ácaros rojos chupen libremente la sangre a través de la pared divisoria. Tal sistema puede construirse dentro de la capacidad normal de una persona experta en la materia, y modificarse y usarse según sea apropiado.

10 La presente invención se describirá adicionalmente en detalle con referencia a los ejemplos que siguen.

Ejemplos

15

30

40

45

50

55

60

<Ejemplo 1> Clonación de DgCatL-2

1) Síntesis de ADNc

Se usaron procedimientos de rutina para sintetizar ADNc de la fracción de ARNm extraída de los cuerpos de ácaros Dermanyssus gallinae. Usando ADNc como molde, se utilizó el sistema 3' RACE para amplificar un gen que codifica la acetilcolinesterasa (Ace) de Dermanyssus gallinae con el kit 3' RACE (Sistema 3' RACE para la amplificación rápida de extremos de ADNc) de Life Technologies. La 1ª ronda de PCR se realizó usando un cebador F1 (SEQ ID NO. 12) diseñado para amplificar un gen que codifica la Ace y un cebador AUAP (un cebador contenido en el kit 5' RACE y 3' RACE (3' RACE / 5' RACE Sistema para la amplificación rápida de extremos de ADNc) de Life Technologies). Además, la PCR anidada se realizó utilizando los fragmentos de ADN amplificados como molde, y otro cebador F2 (SEQ ID NO. 13) diseñado para amplificar un gen que codifica la Ace y el cebador AUAP.

2) Secuenciación de fragmentos de ADN y búsqueda de homología

Se secuenció un fragmento de amplificación de 1,2 kbp obtenido mediante dos rondas de PCR, y se buscó la secuencia de aminoácidos codificada por este fragmento con BLAST para analizar la conservación de motivos o dominios característicos. El análisis reveló que en la secuencia de aminoácidos codificada, había tres motivos de secuencias de aminoácidos característicos de la familia de la catepsina L (que corresponden a las porciones indicadas por los triángulos negros invertidos en la Fig. 1).

35 3) Determinación de la secuencia de longitud completa

Utilizando la secuencia de bases obtenida, se usó el kit 5' RACE (Sistema 5' RACE para la amplificación rápida de extremos de ADNc) de Life Technologies para llevar a cabo la identificación con 5' RACE de un ADNc de longitud completa. La secuenciación del ADNc con un secuenciador de ADN determinó la secuencia de bases expuesta en la SEQ ID NO. 3, que codifica una proteína que tiene una secuencia señal de 18 aminoácidos añadidos en el extremo N de la secuencia de aminoácidos expuesta en la SEQ ID NO. 1.

Además, se realizó una búsqueda de homología con el programa BLAST en GenBank usando la secuencia de aminoácidos (incluida la secuencia señal) codificada por la secuencia de bases determinada como una secuencia de consulta. Los resultados de la búsqueda de homología con el programa BLAST revelaron que la catepsina L de Metaseiulus occidentalis (Número de acceso XP_003745143.1) tiene una identidad del 72,9 %, la catepsina L de Ixodes scapularis (Número de acceso XP_002403652.1) tiene una identidad del 51,8 % y la catepsina L de Rhipicephalus appendiculatus (Número de acceso AAO60045.1) tiene una identidad del 46,6 %, respectivamente con la secuencia de consulta. El resultado de un alineamiento de estas cuatro secuencias de aminoácidos se muestra en la Fig. 1. Por otro lado, la secuencia de consulta muestra solo una identidad del 30,6 % con la catepsina L derivada de Dermanyssus gallinae conocida (DgCatL-1, Número de acceso GenBank CCC33064.1).

A partir de lo anterior, se estableció que una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO 1 (DgCatL-2) es una proteína novedosa, que es diferente de la DgCatL-1 derivada de Dermanyssus gallinae conocida.

<Ejemplo 2> Clonación de DgFER2

1) Determinación de DgFER2 de longitud completa

Se usaron procedimientos de rutina para sintetizar ADNc de la fracción de ARNm extraída de los cuerpos de ácaros Dermanyssus gallinae. Se realizó la PCR usando ADNc como molde y cebadores F2 (SEQ ID NO. 14) y R2 (SEQ ID NO. 15) diseñados como referencia con las secuencias de bases de genes FER2 de la garrapata. Utilizando el fragmento amplificado, se utilizó la técnica 5' RACE y 3' RACE con los kits anteriormente mencionados de Life Technologies y la secuencia de longitud completa resultante se sometió a secuenciación. Además, se prepararon los cebadores F1 y R1 representados por las SEQ ID NOs. 16 y 17, respectivamente, basándose en la secuencia

determinada y se realizó la PCR utilizando los ADNc como molde. La secuenciación del fragmento de ADN amplificado determinó una secuencia de bases expuesta en la SEQ ID NO. 4, que codifica una proteína que tiene una secuencia señal de 18 aminoácidos añadidos en el extremo N de la secuencia de aminoácidos expuesta en la SEQ ID NO. 2.

2) Búsqueda de homología

10

15

30

35

55

60

Se realizó una búsqueda de homología en GenBank usando la secuencia de aminoácidos (incluida la secuencia señal) codificada por la secuencia de bases determinada como una secuencia de consulta. Los resultados de la búsqueda de homología revelaron que la ferritina 2 de Metaseiulus occidentalis (Número de acceso XP_003737398.1) tiene una identidad del 59,0 %, la ferritina 2 de Haemaphysalis longicornis (Número de acceso BAN13552.1) tiene una identidad del 48,2 %, la ferritina 2 de Ixodes ricinus (Número de acceso ACJ70653.1) tiene una identidad del 49,5 % y la ferritina 2 de Ixodes persulcatus (Número de acceso AGX01000.1) tiene una identidad del 49,5 %, respectivamente con la secuencia de consulta. A partir de estos resultados de la búsqueda de homología, se determinó que una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 es la FER2 de Dermanyssus gallinae. El resultado de un alineamiento de estas cinco secuencias de aminoácidos se muestra en la Fig. 2.

<Ejemplo 3> Producción de DgCatL-2 y DgFER2

Una secuencia de ADN que consiste en una secuencia de bases que codifica la secuencia de aminoácidos de SEQ ID NO. 1 determinada en el Ejemplo 1 se incorporó en pCold-TF (TaKaRa), un vector de expresión para células de Escherichia coli. Asimismo, una secuencia de ADN que consiste en una secuencia de bases que codifica la secuencia de aminoácidos de SEQ ID NO. 2 determinada en el Ejemplo 2 se incorporó en pCold-TF (TaKaRa). Estas recombinaciones genéticas permiten que DgCatL-2 y DgFER2 sin sus secuencias señal se expresen como proteínas de fusión con una chaperona de Escherichia coli, el factor de activación (TF; con un peso molecular de 48 kDa), que es una etiqueta solubilizante.

Después de que la expresión de cada gen recombinante fue inducida por choque frío, las proteínas de fusión se purificaron por cromatografía de afinidad contra la secuencia de la etiqueta His, y luego se sometieron a SDS-PAGE. En la Fig. 3 se muestra una fotografía que muestra un gel después de la electroforesis.

Además, para DgCatL-2, se incorporó una secuencia de ADN que codifica la secuencia de aminoácidos que va desde el aminoácido 314 hasta el extremo C de la SEQ ID NO. 1 en el vector descrito anteriormente, pCold-TF, para expresar una proteína de fusión de un fragmento peptídico que contiene el sitio del centro activo de DgCatL-2 y TF (Fig. 4). La proteína de fusión se purificó por cromatografía de afinidad contra la secuencia de la etiqueta His, y luego se sometió a SDS-PAGE. En la Fig. 4 se muestra una fotografía que muestra un gel después de la electroforesis.

<Ejemplo 4> Expresión de DgCatL-2 en ácaros Dermanyssus gallinae

Las fracciones de ARN totales se prepararon a partir de ácaros Dermanyssus gallinae recogidos en tres granjas avícolas diferentes. Se preparó el conjunto de cebadores a de un cebador directo que consiste en la secuencia de bases expuesta en la SEQ ID NO. 18 y un cebador inverso que consiste en la secuencia de bases expuesta en la SEQ ID NO. 19, el conjunto de cebadores b de un cebador directo que consiste en la secuencia de bases expuesta en la SEQ ID NO. 20 y un cebador inverso que consiste en la secuencia de bases expuesta en la SEQ ID NO. 21, y un conjunto de cebadores c de un cebador directo que consiste en la secuencia de bases expuesta en la SEQ ID NO. 22 y un cebador inverso que consiste en la secuencia de bases expuesta en la SEQ ID NO. 23 para realizar la RT-PCR utilizando los ARN totales como molde. Los resultados de la electroforesis en gel de agarosa de fragmentos amplificados se muestran en la Fig. 5.

Se detectaron fragmentos amplificados de tamaños esperados para cada una de las tres muestras de ácaros

Dermanyssus gallinae y para cada uno de los conjuntos de cebadores a a c. Paralelamente, la RT-PCR se realizó de
manera similar utilizando ARN total de los ácaros Ornithonyssus sylviarum como control, pero no se detectó ningún
fragmento amplificado.

<Ejemplo 5> Prueba de administración de la vacuna

1) Preparación de plasma inmunizado con proteína recombinante

Se disolvieron en tampón TF, y las proteínas de fusión de TF y CatL-2 (TF-CatL2), TF y un fragmento de péptido que contiene el sitio del centro activo de CatL-2 (TF-CatL2PD), y TF y DgFER2 (TF-FER2) que se habían purificado en el Ejemplo 3 para preparar sus respectivas soluciones de 0,25 mg/ml.

A 100 µl de cada una de las soluciones se le añadió el mismo volumen de ADYUVANTE GERBU (GERBU) y la mezcla se administró intraperitonealmente a pollos Boris Brown de 2 días (n = 2 a 4) a una dosis de 200 µl por pollo. El día de la primera inmunización se definió como el día 0. Dos semanas después de la primera inmunización, los pollos recibieron una inmunización adicional de manera similar a la primera inmunización, y se mantuvieron durante otras tres semanas. Los pollos inmunizados se sacrificaron por desangrado cardíaco con anestesia. La sangre

anticoagulada con heparina se centrifugó a 3.000 rpm durante 10 minutos, y el plasma resultante se almacenó a -80 °C. Por separado, se recogió sangre de pollos que no había sido succionada por los ácaros Dermanyssus gallinae, y se sometió a tratamiento de anticoagulación con heparina, se centrifugó a 3.000 rpm durante 10 minutos, y se extrajo el plasma para obtener el componente de células sanguíneas. El componente de células sanguíneas y el plasma que se había preparado a partir de los pollos inmunizados y almacenado se mezclaron para hacer un análisis de sangre.

Además, el abdomen de los pollos de la misma variedad fue despojado de plumas, y se extrajeron trozos de epidermis, se sumergieron en etanol y se almacenaron a 4 °C. Después del almacenamiento, el etanol se reemplazó con PBS, los trozos de epidermis se lavaron tres veces. Luego, se eliminó la grasa subcutánea de los trozos de epidermis, los cuales a continuación se cortaron hasta un tamaño de aproximadamente 2 cm cuadrados para evitar poros grandes, para preparar una lámina de epidermis de pollo.

2) Ensayo de alimentación in vitro

10

25

40

55

60

Los ácaros Dermanyssus gallinae mantenidos en condiciones de inanición en un tubo de 50 ml durante aproximadamente 3 semanas se añadieron a placas de Petri en hielo, y los ácaros activos se transfirieron a papeles de filtro y luego a tubos redondos de 5 ml con un tapón a presión de filtro celular (Falcon) junto con los respectivos papeles de filtro. Se estableció que el número de ácaros Dermanyssus gallinae en cada tubo era de 10 a 20 individuos de un total de deutoninfas y adultos. La abertura del tubo redondo se cubrió con la lámina de epidermis de pollo preparada en la sección 1) anterior, sobre la cual se colocó una jeringa truncada de 5 ml.

Se calentaron 2 ml de la muestra de sangre preparada en la sección anterior 1) hasta 37 °C y después se añadieron a la jeringa. El tubo se colocó en una gradilla en un estado ligeramente inclinado, y se dejó reposar en un recipiente de poliestireno espumado. El recipiente de poliestireno espumado se colocó en una incubadora controlada a 37 °C, de modo que la temperatura y la humedad en el recipiente se mantuvieron a 35 °C o más y a un 70 a 90 %, respectivamente. De esta manera, a los ácaros se les permitió succionar la sangre de prueba a través de la lámina de epidermis de pollo.

- 14 horas después de dejar el tubo en reposo, se descartó la sangre de prueba y solo se extrajo la jeringa. Los ácaros unidos a la lámina de epidermis de pollo se dejaron caer golpeando el fondo del tubo, se separó la lámina de epidermis de pollo y se cubrió el tubo con un tapón a presión del filtro celular. Se contó el número de ácaros cuyo abdomen se había vuelto rojo por la succión de sangre, y luego los ácaros se mantuvieron en el tubo durante otras tres semanas. El número de ácaros muertos por la succión de sangre se determinó en los puntos temporales de las semanas 1 y 3, y la tasa de mortalidad se calculó a partir del número de ácaros muertos por la succión de sangre, respecto al número total de ácaros que habían succionado la sangre. Los resultados se muestran en la Fig. 6.
 - 3) Se realizó una prueba del efecto de las vacunas de manera similar a las secciones 1) y 2) anteriores, excepto que se usaron pollos PNP/DO en lugar de pollos Boris Brown. En esta prueba, el número de ácaros muertos, independientemente de si habían chupado la sangre o no, se determinó diariamente durante un período de 14 días después de terminar la succión de sangre. Además, en el último día del experimento, se añadieron 2 ml de etanol al tubo, se fijaron los ácaros y se contó el número total de ácaros en el tubo en un microscopio estereoscópico. La tasa de mortalidad en los días respectivos se calculó a partir del número de ácaros muertos, respecto al número total de ácaros. Los resultados se muestran en la Fig. 7.
- 45 Como se muestra en las Figs. 6 y 7, se reveló que la sangre de los pollos inmunizados con cada una de las proteínas recombinantes tenía una actividad destructora de los ácaros Dermanyssus gallinae, y que la sangre de los pollos inmunizados con CatL-2 fue más efectiva para destruir los ácaros Dermanyssus gallinae que la de los pollos inmunizados con DgFER2.
- 50 Aplicabilidad industrial

Dado que tanto DgCatL-2 como DgFER2 son factores involucrados en la digestión y el almacenamiento de nutrientes en los ácaros rojos y que la inhibición de sus funciones tendría un gran efecto en su crecimiento y propagación, se puede esperar que DgCatL-2, DgFER2 y/o equivalentes inmunológicos de las mismas se pueden aplicar como antígenos candidatos para nuevas vacunas contra los ácaros rojos que no se han descrito hasta ahora.

LISTADO DE SECUENCIAS

- <110> National University Corporation Hokkaido University
- <120> Método para controlar ácaros rojos y las proteínas usadas en el mismo
- <130> P14014WO
- 65 <160> 25

	<170>	Paten	tln vei	rsión 3	5.5												
5	<210><211><211><212><213>	531 PRT	anyssı	us gall	inae												
	<400>	1															
		Val 1	Ser	Val	Pro	Arg 5	Gly	Ala	Pro	Glu	Phe 10	Pro	Pro	Ser	Tyr	Thr 15	Ala
		Ser	Gly	Tyr	Ile 20	Leu	Leu	Pro	Tyr	Cys 25	Glu	Leu	Arg	Glu	Pro 30	Phe	Thr
		Ala	Tyr	Tyr 35	Asp	Gly	Glu	Ser	Asp 40	Arg	Ser	Arg	Ile	Asp 45	Tyr	Tyr	Asp
		Gly	Glu 50	Met	Lys	Thr	Phe	Val 55	Gly	Lys	Ser	Gly	Thr 60	Phe	Lys	Val	Val
		Trp 65	Ser	Pro	Asn	Glu	Lys 70	Thr	His	Ile	Pro	Glu 75	Leu	Asn	Cys	Tyr	Glu 80
		Ala	Gly	Pro	Ala	Lys 85	Ser	Gln	Ser	Ile	Leu 90	Pro	Asp	Leu	Thr	Asn 95	Phe
		Thr	Phe	Val	Arg 100	Val	Glu	Pro	Cys	Glu 105	Thr	Asp	Ser	Thr	His 110	Ile	Val
		Lys	Pro	Leu 115	Leu	Arg	Gly	Ala	Asp 120	Lys	Cys	Tyr	Arg	Tyr 125	Glu	Lys	Lys
		Val	Asp 130	Asn	Phe	Gly	Arg	Val 135	Ser	Lys	Tyr	Thr	Phe 140	Trp	Ala	Ser	Gln
		Asp 145	Asp	Asp	Asn	Thr	Pro 150	Ile	Pro	Val	Arg	Tyr 155	Val	Met	Met	Gly	Tyr 160

Asp Ser Leu Leu Gly Ser His Phe Asp Lys Tyr Glu Val Val Tyr Thr 165 170 170

Asp	Tyr	Thr	Pro 180	Gly	Pro	Val	Glu	Asp 185	Asp	Leu	Phe	Gln	Val 190	Lys	Thr
Val	Ile	Asp 195	Lys	Glu	Cys	Thr	Ser 200	Phe	Pro	Ser	Pro	Pro 205	Gly	Val	Ser
Thr	Thr 210	His	Leu	Phe	Asn	Pro 215	Met	Ala	Glu	Phe	Ile 220	Asp	Glu	Lys	Asp
Ser 225	His	Val	His	Glu	His 230	Phe	Glu	His	Phe	Lys 235	Ser	Thr	His	Gly	Lys 240
Ala	Tyr	Gly	His	Gln 2 4 5	Ala	Glu	Glu	Ile	Ile 250	Arg	Lys	Asp	Asn	Phe 255	Arg
His	Asn	Gln	Arg 260	Phe	Val	Asn	Ser	Met 265	Asn	Arg	Arg	Asn	Leu 270	Ser	Tyr
Ala	Leu	Lys 275	Leu	Asn	His	Arg	Ala 280	Asp	Trp	Ser	Gln	Asp 285	Glu	Phe	Arg
Leu	Leu 290	Arg	Gly	Arg	Leu	Gln 295	Phe	Thr	Ser	Gln	Lys 300	Ser	Met	Ala	Arg
Glu 305	Phe	Pro	Lys	Glu	Gln 310	Tyr	Ser	Asp	Arg	Val 315	Glu	Pro	Asp	Tyr	Val 320
Asp	Trp	Arg	Leu	Glu 325	Gly	Ala	Val	Thr	Pro 330	Val	Lys	Asp	Gln	Ala 335	Val
Cys	Gly	Ser	Cys 340	Trp	Ser	Phe	Gly	Thr 345	Val	Gly	His	Ile	Glu 350	Gly	Ala
Tyr	Phe	A rg 355	Lys	Phe	Gly	Glu	Leu 360	Val	Arg	Phe	Ser	Glu 365	Gln	Gln	Leu
Val	A sp 370	Cys	Ser	Trp	Asn	Ala 375	Gly	Asn	Asp	Ala	Cys 380	Asp	Gly	Gly	Leu
Asp 385	Phe	Ile	Ala	Tyr	His 390	Tyr	Ile	Gln	Lys	Tyr 395	Gly	Leu	Ala	Ser	Asn 400
Asp	Gln	Tyr	Gly	Pro 405	Tyr	Arg	Gly	Ile	Asp 410	Gly	Lys	Cys	Lys	Asp 415	Leu
Glu	Ile	Ser	Asn 420	Lys	Pro	Ile	Ser	Thr 425	Leu	Lys	Gly	Tyr	Arg	Asn	Val

	Thr	Thr	Val 435	Glu	Asp	Leu	Arg	Lys 440	Ala	Leu	Ala	Phe	Val 445	Gly	Pro	Ile
	Ser	Val 450	Ser	Ile	Asp	Ala	Ser 455	Arg	Pro	Ser	Leu	Ser 460	Phe	Tyr	Ser	His
	Gly 465	Val	Tyr	Ser	Asp	Pro 470	Asp	Cys	Ser	Ser	Thr 475	Glu	Leu	Asp	His	Ser 480
	Val	Leu	Ala	Val	Gly 485	Tyr	Gly	Thr	Leu	His 490	Gly	Glu	Pro	Tyr	Trp 495	Leu
	Ile	Lys	Asn	Ser 500	Trp	Ser	Thr	Tyr	Trp 505	Gly	Asn	Asp	Gly	Tyr 510	Ile	Leu
	Ile	Ser	Gln 515	Lys	Asp	Asn	Met	Cys 520	Gly	Val	Ala	Ser	Gln 525	Ala	Thr	Tyr
	Val	Glu 530	Leu													
<210><211><211><212><213>	178 PRT	anyssı	us gall	inae												
		•	•													
<400>	2															
<400>		Gln	Asp	Asn	Ala 5	Thr	Pro	Ser	Gly	Asn 10	Thr	Asn	Lys	Tyr	Val 15	Leu
<400>	Arg 1				5					10				Tyr Leu 30	15	
<400>	Arg 1 Glu	Asp	Ser	Cys 20	5 Leu	Gly	Gly	Leu	Arg 25	10 Ala	Gln	Leu	Asn	Leu	15 Glu	Met
<400>	Arg 1 Glu His	Asp Ala	Ser Ser 35	Cys 20 Leu	5 Leu Leu	Gly Tyr	Gly Gln	Leu Gln 40	Arg 25 Met	10 Ala Ala	Gln Ala	Leu His	Asn Phe 45	Leu 30	15 Glu Ser	Met Asn
<400>	Arg 1 Glu His	Asp Ala Val 50	Ser Ser 35	Cys 20 Leu His	5 Leu Leu	Gly Tyr Gly	Gly Gln Phe 55	Leu Gln 40 Ala	Arg 25 Met Lys	Ala Ala Phe	Gln Ala Phe	Leu His Glu 60	Asn Phe 45 Lys	Leu 30 Asp	Glu Ser	Met Asn Asp
<400>	Arg 1 Glu His Gln Glu 65	Asp Ala Val 50	Ser Ser 35 Ala	Cys 20 Leu His	5 Leu Lys His	Gly Tyr Gly Ala	Gly Gln Phe 55 Lys	Leu Gln 40 Ala Lys	Arg 25 Met Lys	Ala Ala Phe	Gln Ala Phe Asn 75	Leu His Glu 60	Asn Phe 45 Lys	Leu 30 Asp	Glu Ser Ser	Met Asn Asp Arg

His Val Asn Asn Glu Leu His Leu Leu His Arg Thr Ala Asp Glu Asp 115 120 125

Cys Arg Asp Pro Gln Leu Gln Asp Phe Leu Glu Ser Asn Phe Leu Ser 130 135 140

Glu Gln Val Glu Ser Ile Ala Gln Ile Glu Arg Leu Ile Thr Asn Leu 145 150 155 160

Asn Lys Phe Gly Asp Val His Leu Gly Glu Tyr Phe Val Asn Lys Asp 165 170 175

Leu Leu

<210> 3

<211> 1650

<212> ADN

5

<213> Dermanyssus gallinae

<400> 3

atgttgatcc gctgcgttgt cacggctctt gcagccgtga cggttgtctc aggagtttc	eg 60
gtgccccgag gtgcgccaga gttcccgccg tcctacactg cgtcgggcta catcctcct	.g 120
ccgtactgtg agctgcgaga gccgttcacc gcctactacg atggtgaatc ggaccgatc	eg 180
cgtattgact attacgacgg cgagatgaag acattcgtcg gaaaatcagg cacgtttaa	ag 240
gttgtctggt cgcccaatga gaagacacat ataccggagc tgaactgcta cgaggccgg	ya 300
ccggctaaaa gccagagcat tttgccggac ctcaccaact tcaccttcgt tcgggtcga	ag 360
ccgtgcgaaa ccgattcgac gcacattgtc aagcccctgc tccgaggtgc tgacaaatg	JC 420
tatcgctatg agaagaaagt ggataacttc ggacgcgtct ccaagtacac gttctgggc	ec 480
tcacaggacg acgataacac cccaattccg gtacgctacg tcatgatggg ttacgactc	ea 540
ctcttgggat cgcacttcga caagtatgag gtcgtgtaca ccgactacac acccggacc	ec 600
gtcgaagatg acctcttcca agtcaagact gttattgaca aggaatgcac ttcgttccc	eg 660
tegeegeegg gegtgteeac tacceaectg tteaaccega tggeggagtt cattgacga	ıg 720
aaggattcgc acgtgcacga acacttcgag cacttcaaat cgacacacgg caaggcata	rc 780
ggccaccagg ccgaggagat catccgcaag gacaatttcc gccacaacca acgcttcgt	c 840
aattcgatga accgccgcaa cctttcgtac gcgctgaagc tcaaccaccg cgccgactg	ıg 900
agccaggacg agttcaggct gctccggggc cgtctacagt tcaccagcca gaagtcgat	g 960
gccagggagt tccccaagga acagtactcg gatcgcgtcg agccggacta cgtcgactg	ıg 1020
cgactcgagg gagccgtcac gccggtcaag gaccaggctg tgtgcgggtc gtgctggag	gc 1080
tttggcacgg tcggccacat cgaaggcgcc tacttccgca agttcggcga gctggtccg	jt 1140
tteteegage ageagetegt agaetgtteg tggaatgeeg geaacgatge etgegaegg	jt 1200
ggtctggact ttatcgccta ccactacatc cagaagtacg gactggccag caacgacca	na 1260
tacggaccct accgcggcat tgacggcaaa tgcaaggacc tggagatttc caacaagcc	
attagcacgc tgaaaggcta ccgaaacgtg accactgtgg aagacctccg caaggcgct	
gcgtttgtcg gccccatatc ggtgtcgatc gatgcatcaa ggccgtcgct cagcttcta	at 1440
tcgcatggag tctacagcga tccggactgc agttcgacgg aactcgacca ctccgtgct	c 1500
gctgttggct acggcacgct gcacggtgag ccgtactggc tcatcaagaa ctcgtggtc	c 1560
acgtactggg gcaacgacgg atacattctc atctcgcaga aggacaacat gtgcggcgt	t 1620
gcctcgcagg caacctacgt cgagctgtag	1650

<210> 4

<211> 591

<212> ADN

<213> Dermanyssus gallinae

<400> 4

atgaaacgtc tcgtctgcat cctcgtaccg ctgctcttcg cagctgtgct cgctcgccaa 60 gataatgcca ccccatcggg caatacgaac aaatacgtgc tcgaggacag ctgtctgggg 120 ggcttgcgag cccagttaaa cctcgagatg cacgcctcgc tcctctacca acagatggcc 180 gcacactttg actccaacca ggttgcccac aagggcttcg ctaagttctt cgagaagagt 240 tcggacgagg agcgtgagca cgcgaagaaa atcaccaact acattaacgc acgtggcggc 300 accateggee ateteaacgt acggatgeeg ageteeaact categggatae ggeaaaagag 360 420 gcccttcaag ccgccctagt cctcgagcat cacgtcaaca acgagttgca ccttctccac agaacggccg acgaggactg tcgtgatccc cagttgcagg acttcttaga gagcaacttc 480 ctcagcgagc aggtggaatc catcgctcag attgagcgtt tgataacgaa cctcaacaag 540 ttcggtgatg tgcatctcgg agaatacttt gtcaacaagg accttctcta g 591

5 <210> 5

<211> 553

<212> PRT

<213> Metaseiulus occidentalis

10 <400> 5

Met Leu Leu Arg Val Ile Pro Val Val Ala Leu Ala Ile Val Ser Val 1 5 10 15

Ala Gly Gly Pro Ala Asn Pro Arg Asp Ala Pro Val Phe Pro Pro Ala 20 25 30

Tyr Ala Ala Ser Gly Tyr Ile Leu Leu Pro Tyr Cys Glu Leu Arg Glu 35 40 45

Pro	Phe 50	Thr	Ala	Tyr	Tyr	Asp 55	Lys	Thr	Ala	Gly	Lys 60	Ser	Arg	Ile	Asp
Tyr 65	Tyr	Gly	Gly	Glu	Met 70	Lys	Thr	Phe	Gln	Ile 75	Ala	Gly	Glu	Thr	Gly 80
Gly	Ser	Tyr	Lys	Val 85	Val	Trp	Ser	Pro	Asn 90	Asn	Glu	Thr	His	Val 95	Pro
Glu	Gln	Asn	Cys 100	Tyr	Ala	Ala	Gly	Pro 105	Ala	Ala	Pro	Gln	Gly 110	Ile	Leu
Pro	Asp	Leu 115	Ser	Asp	Phe	Lys	Phe 120	Val	Arg	Thr	Glu	Ser 125	Cys	Phe	Thr
Asp	Thr 130	Ser	Thr	Leu	Leu	Asn 135	Thr	Leu	Leu	Ser	Asn 140	Ala	Ala	Lys	Cys
туг 145	Arg	Tyr	Glu	Asn	Thr 150	Val	Gln	Lys	Tyr	Asp 155	Arg	Val	Ser	Lys	Tyr 160
Val	Phe	Trp	Ala	Asn 165	Gln	Asp	Gly	Asp	Asn 170	Asn	Val	Ile	Pro	Val 175	Arg
Tyr	Met	Met	Met 180	Gly	Tyr	Asp	Ser	Leu 185	Leu	Gly	Ser	His	Phe 190	Asp	Lys
Tyr	Glu	Val 195	Ile	Tyr	Asp	Asp	Tyr 200	Thr	Pro	Gly	Pro	Val 205	Asp	Gly	Asp
Val	Phe 210	Asp	Val	Thr	Ser	Val 215	Ile	Asp	Lys	Pro	Cys 220	Thr	Asp	Phe	Pro
Ser 225	Pro	Pro	Gly	Gln	Ser 230	Val	Ser	His	Leu	Phe 235	Asn	Pro	Met	Lys	Glu 240
Phe	Val	His	His	Asp 245	Asp	Ser	His	Val	Asp 250	Glu	His	Phe	Ser	Asn 255	Phe
Lys	Asn	Glu	His 260	Gly	Lys	Ser	Tyr	Glu 265	His	Pro	Thr	Glu	Glu 270	Arg	Glu
Arg	Arg	His 275	Asn	Phe	His	His	Asn 280	Met	Arg	Phe	Val	Asn 285	Ser	Met	Asn
Arg	Arg	Asn	Leu	Ser	Phe	Ala	Leu	Lys	Leu	Asn	Asn	Arg	Ala	Asp	Trp

	290					295					300				
As n 305	Gln	Gly	Glu	Phe	Lys 310	Leu	Leu	Arg	Gly	A rg 315	Leu	Gln	Ser	Thr	Asn 320
Val	Lys	Ser	Ser	Ala 325	Glu	Asp	Phe	Pro	Lys 330	Glu	Lys	Phe	Glu	His 335	Arg
Thr	Val	Pro	Asp 340	Tyr	Val	Asp	Trp	Arg 345	Leu	Glu	Gly	Ala	Val 350	Thr	Pro
Val	Lys	Asp 355	Gln	Ala	Ile	Cys	Gly 360	Ser	Cys	Trp	Ser	Phe 365	Gly	Thr	Val
Gly	His 370	Ile	Glu	Gly	Gln	Tyr 375	Phe	Leu	Lys	His	Gly 380	Glu	Leu	Val	Arg
Phe 385	Ala	Glu	Gln	Gln	Leu 390	Val	Asp	Cys	Ser	Trp 395	Thr	Ser	Gly	Asn	Asp 400
Ala	Cys	Asp	Gly	Gly 405	Leu	Asp	Tyr	Val	Ala 410	Tyr	Asp	Tyr	Ile	Lys 415	Lys
Tyr	Gly	Leu	Ser 420	Ser	Asp	Ala	Gln	Tyr 425	Gly	Pro	Tyr	Arg	Gly 430	Ile	Asp
Gly	Lys	Cys 435	Lys	Asp	Val	Glu	Ile 440	Glu	Asn	Lys	Pro	Ile 445	Thr	Thr	Ile
Gln	Arg 450	Tyr	Tyr	Asn	Ile	Ser 455	Gly	Val	Glu	Asn	Leu 460	Arg	Lys	Ala	Ile
Ala 465	Phe	Val	Gly	Pro	Ile 470	Ser	Val	Ala	Ile	Asp 475	Ala	Ser	Arg	Pro	Ser 480
Leu	Ser	Phe	Tyr	Ala 485	His	Gly	Val	Tyr	Glu 490	Asp	Pro	Asp	Cys	Ser 495	Ser
Thr	Glu	Leu	Asp 500	His	Ala	Val	Leu	Ala 505	Val	Gly	Tyr	Gly	Val 510	Leu	His
Gly	Lys	Pro 515	Tyr	Trp	Leu	Ile	Lys 520	Asn	Ser	Trp	Ser	Thr 525	Tyr	Trp	Gly
Asn	Asp 530	Gly	Tyr	Ile	Leu	Ile 535	Ser	Gln	Lys	Asp	Asn 540	Met	Cys	Gly	Val

Ala Ser Thr Pro Thr Tyr Val Glu Leu 545 550

5	<210><211><211><212><213>	564 PRT	s scap	ularis													
	<400>	6															
		Met 1	Ser	Ser	Val	Leu 5	Cys	Gly	Trp	Leu	Tyr 10	Phe	Ala	Ala	Leu	Cys 15	Leu
		Gly	Gln	Glu	Arg 20	Pro	Glu	Trp	Gly	Asp 25	Val	Tyr	Lys	Val	Lys 30	Gly	Val
		Leu	Tyr	Leu 35	Pro	Tyr	Ala	Glu	Ile 40	Arg	Glu	Pro	Phe	Thr 45	Gly	Tyr	Phe
		Asp	Ala 50	Ser	Gln	Asn	Leu	Ser 55	Arg	Ile	Asp	Tyr	Tyr 60	Arg	Gly	Met	Val
		Gln 65	Thr	Ile	Gln	Val	Ala 70	Pro	Asp	Ala	Glu	Glu 75	Gly	Arg	Ser	Glu	Thr 80
		Pro	Tyr	Gly	Ala	Asn 85	Tyr	Lys	Ile	Ala	Tyr 90	Met	Pro	Asp	Lys	Glu 95	Thr
		Trp	Gln	Pro	Arg 100	Arg	Thr	Cys	Phe	Leu 105	Val	Asn	Gly	Thr	Ala 110	Asn	Asn
		Thr	Val	Pro 115	Leu	Gln	Ala	Val	Leu 120	Pro	Asp	Val	Thr	Ser 125	Phe	Glu	Phe
		Val	Arg 130	Gln	Glu	Ser	Cys	Trp 135	Glu	Gly	Thr	Thr	Ala 140	Val	Asp	Glu	Pro
		Ala 145	Glu	Arg	Ala	Ser	Cys 150	Glu	Arg	Phe	Gln	Leu 155	Val	Val	Thr	Asn	Glu 160
		Asn	Arg	Val	Ser	Lys 165	Tyr	Thr	Leu	Trp	Val 170	Ser	Arg	Asp	Gly	Gln 175	Gly

10

Arg Ala Val Pro Arg Arg Tyr Leu Met Met Gly Tyr Asn Thr Leu Leu

Gly Ser His Phe Asp Lys Tyr Glu Leu Ile Tyr His Gly Phe Ser Arg 195 200 205

185

Lys	Pro 210	Leu	Pro	Ser	Ser	Val 215	Phe	Asp	Ile	Thr	His 220	Leu	Ile	Asn	Glu
Thr 225	Cys	Arg	Arg	Phe	Pro 230	Gly	Pro	Gly	Ala	Glu 235	His	Leu	Ala	Leu	His 240
Ser	Pro	Met	Ala	Glu 245	Phe	Met	Asn	Gly	His 250	Asp	Ala	His	Met	His 255	Ser
Ala	Phe	Asp	Lys 260	Phe	Arg	Glu	Asp	His 265	Ser	Arg	Asp	Tyr	Gly 270	His	His
Thr	Glu	His 275	Glu	Arg	Arg	Arg	Asp 280	Ile	Phe	Arg	Gln	Asn 285	Leu	Arg	Phe
Ile	His 290	Ser	Thr	Asn	Arg	Ala 295	Asn	Arg	Gly	Tyr	Thr 300	Val	Lys	Val	Asn
His 305	Leu	Ala	Asp	Arg	Ser 310	Ser	Asp	Glu	Leu	Gly 315	Tyr	Leu	Arg	Gly	Arg 320
Leu	Gln	Ser	Arg	Ala 325	Pro	Thr	Asn	Ala	Leu 330	Pro	Phe	Pro	Lys	Asp 335	Arg
Phe	Ser	Ser	Asp 340	Leu	Pro	Asp	Tyr	Val 345	Asp	Trp	Arg	Leu	Tyr 350	Gly	Ala
Val	Thr	Pro 355	Val	Lys	Asp	Gln	Ala 360	Val	Cys	Gly	Ser	Cys 365	Trp	Ser	Phe
Gly	Thr 370	Val	Gly	Glu	Leu	Glu 375	Ala	Ala	Leu	Phe	Arg 380	Lys	Ala	Arg	Arg
Phe 385	Ser	Met	Phe	Thr	Gly 390	Lys	Leu	Thr	Arg	Leu 395	Ser	Glu	Gln	Gln	Leu 400
Val	Asp	Cys	Ser	Trp 405	Asn	Gln	Gly	Asn	Asn 410	Gly	Cys	Asp	Gly	Gly 415	Glu
Asp	Phe	Arg	Ala 420	Tyr	Glu	Tyr	Ile	Arg 425	Ala	His	Gly	Leu	Ala 430	Thr	Asp
Glu	Asp	Tyr 435	Gly	Ala	Tyr	Leu	Gly 440	Gln	Asp	Gly	Ile	Cys 445	His	Asp	Thr
Lys	Val 450	Asn	Ala	Thr	Val	Thr 455	Thr	Ile	Lys	Asn	Tyr 460	Ile	Asn	Val	Thr

	Asp 465	Lys	Glu	Ser	Leu	Gln 470	Lys	Ala	Leu	Ala	Asn 475	Val	Gly	Pro	Val	Ser 480
	Val	Ser	Ile	Asp	Ala 485	Ala	Val	Lys	Ala	Phe 490	Thr	Phe	Tyr	Ser	Asn 495	Gly
	Val	Phe	Tyr	Asp 500	Pro	Lys	Cys	Arg	Asn 505	Asp	Thr	Asp	Gly	Leu 510	Asp	His
	Ala	Val	Leu 515	Ala	Val	Gly	Tyr	Gly 520	Thr	Leu	Gln	Gly	Glu 525	Pro	Tyr	Trp
	Leu	Ile 530	Lys	Asn	Ser	Trp	Ser 535	Thr	Tyr	Trp	Gly	Asn 540	Asp	Gly	Tyr	Val
	Leu 545	Ile	Ser	Gln	Lys	Asp 550	Asn	Asn	Cys	Gly	Val 555	Ala	Ser	Gln	Gly	Thr 560
	Tyr	Val	Glu	Leu												
<210><211><211><212><213>	564 PRT	cephal	us app	pendic	ulatus											
<400>	7															
	Met 1	Met	Ara	His	Ala	Cvs	Ile	77-1		-						
			9		5	-		vai	Leu	10	Leu	Ser	Ile	Ala	Gly 15	Cys
	Leu	Ala			5 Leu	_				10					15	_
			Gln	Asp 20		Pro	Asp	Trp	Gly 25	10 Ser	Phe	Tyr	Lys	Val 30	15 Lys	Gly
	Val	Leu	Gln Tyr 35	Asp 20 Leu	Leu	Pro Tyr	Asp Ala	Trp Glu 40	Gly 25	10 Ser Arg	Phe Glu	Tyr Pro	Lys Phe 45	Val 30 Thr	15 Lys Gly	Gly Tyr
	Val Tyr	Leu Asp 50	Gln Tyr 35	Asp 20 Leu Thr	Leu Pro	Pro Tyr Asn	Asp Ala Thr 55	Trp Glu 40 Ser	Gly 25 Ile Arg	10 Ser Arg	Phe Glu Asp	Tyr Pro Tyr 60	Lys Phe 45 Tyr	Val 30 Thr	Lys Gly	Gly Tyr Met
	Val Tyr Val 65	Leu Asp 50	Gln Tyr 35 Ala	Asp 20 Leu Thr	Leu Pro Gln	Pro Tyr Asn Leu 70	Asp Ala Thr 55	Trp Glu 40 Ser	Gly 25 Ile Arg	10 Ser Arg Ile	Phe Glu Asp Pro 75	Tyr Pro Tyr 60	Lys Phe 45 Tyr	Val 30 Thr Asp	Lys Gly Gly Arg	Gly Tyr Met Arg

Asn	Ala	His 115	Leu	Phe	Pro	Leu	Gln 120	Asp	Val	Leu	Pro	Lys 125	Cys	Cys	Gly
Phe	Thr 130	Phe	Val	Arg	Arg	Glu 135	Ser	Cys	Trp	Phe	Gly 140	Asn	Asp	Asp	Ala
Val 145	Ala	His	Gln	Gly	Lys 150	Arg	His	Cys	Glu	Arg 155	Phe	Gln	Leu	Thr	Val 160
Pro	Thr	Arg	Asp	Arg 165	Val	Ser	Lys	Tyr	Thr 170	Leu	Trp	Val	Ser	Arg 175	Asp
Ser	Gln	Gly	Arg 180	Ala	Val	Pro	Arg	A rg 185	Tyr	Leu	Met	Arg	Gly 190	Tyr	Asn
Thr	Leu	Leu 195	Gly	Ser	His	Phe	Asp 200	Lys	Tyr	Glu	Val	Leu 205	Tyr	Tyr	Gly
Tyr	Ser 210	Arg	Asp	Pro	Val	Pro 215	Pro	Ser	Val	Phe	Asp 220	Val	Thr	Thr	Leu
Phe 225	Asn	Gly	Thr	Cys	Arg 230	Ser	Phe	Pro	Gly	Pro 235	Gly	Ala	Glu	Arg	Leu 240
Ala	Leu	His	Asn	Pro 245	Met	Ala	Glu	Phe	Leu 250	Gly	Asn	His	Asp	Gly 255	His
Thr	Lys	His	Ser 260	Phe	Glu	Asp	Phe	Lys 265	Glu	Thr	His	Lys	Arg 270	Thr	Tyr
Glu	Leu	Asp 275	Thr	Glu		Asp	_	_	Arg	Asp	Ile	Phe 285	_	Gln	Asn
Leu	Arg 290	Phe	Ile	Asp	Ser	Lys 295	Asn	Arg	Ala	Asn	Leu 300	Gly	Tyr	Asn	Leu
Ala 305	Val	Asn	His	Leu	Ala 310	Asp	Arg	Thr	Arg	Glu 315	Glu	Ile	Ser	Val	Leu 320
Arg	Gly	Arg	Leu	Gln 325	Ser	Lys	Asp	Gly	Ser 330	Ser	Arg	Ala	Glu	Pro 335	Phe
Pro	Arg	His	Arg 340	Phe	Thr	Ala	Lys	Leu 345	Pro	Asp	Gln	Ile	Asp 350	Trp	Arg
Pro	Tyr	Gly 355	Ala	Val	Thr	Pro	Val 360	Lys	Asp	Gln	Ala	Val	Cys	Gly	Ser

	Lys 385	Thr	Gly	Arg	Leu	Val 390	Arg	Leu	Ser	Glu	Gln 395	Gln	Leu	Val	Asp	Cys 400
	Ser	Trp	Asn	Asn	Gly 405	Asn	Asn	Gly	Cys	Asp 410	Gly	Gly	Glu	Asp	Phe 415	Arg
	Ala	Tyr	Glu	Tyr 420	Ile	Ala	Asp	His	Gly 425	Leu	Ala	Ser	Asp	Glu 430	Asp	Tyr
	Gly	Ala	Tyr 435	Ile	Gly	Gln	Asp	Gly 440	Val	Cys	His	Asp	Ser 445	Lys	Val	Asn
	Ser	Thr 450	Ile	Ser	Ser	Ile	Lys 455	Ser	Tyr	Val	Asn	Ile 460	Thr	Asn	Arg	Asp
	Asp 465	Leu	Pro	Thr	Ala	Leu 470	Ala	Asn	Val	Gly	Pro 475	Val	Ser	Val	Ser	Ile 480
	Asp	Ala	Ala	Leu	Arg 485	Ser	Phe	Ser	Phe	Tyr 490	Pro	Thr	Val	Ser	Ser 495	Met
	Ile	Pro	Thr	Ala 500	Ala	Met	Asp	Thr	Asp 505	Ser	Leu	Asp	His	Ser 510	Val	Leu
	Arg	Gln	Ser 515	Ala	Thr	Arg	Thr	Leu 520	Gln	Gly	Glu	Pro	Tyr 525	Trp	Gly	Val
	Lys	As n 530	Ser	Trp	Val	Tyr	Leu 535	Leu	Gly	Glu	Met	Met 540	Gly	Tyr	Val	Leu
	Ile 545	Ser	Pro	Lys	Gly	Thr 550	Thr	Thr	Gly	Gly	Val 555	Ala	Thr	Gln	Gly	Thr 560
	Tyr	Val	Glu	Leu												
<210> <211> <212> <213>	194 PRT	seiulus	occid	lentalis	S											
<400>	8															
	Met 1	Asn	Arg	Leu	Leu 5	Tyr	Ile	Val	Pro	Leu 10	Leu	Phe	Ala	Val	Val 15	Ser

	Ala	Arg	Leu	Asp 20	Asn	Asp	Val	Pro	Ser 25	Glu	Ser	Ser	Asn	Lys 30	Tyr	His
	Leu	His	Glu 35	Thr	Cys	Arg	Val	Ala 40	Leu	Gln	Asn	Gln	Ile 45	Asp	Arg	Glu
	Leu	His 50	Ala	Ser	Leu	Val	Tyr 55	Gln	Gln	Met	Ala	Ala 60	His	Phe	Glu	Asn
	Asn 65	Lys	Val	Ala	Arg	Lys 70	Gly	Phe	Ala	Lys	Phe 75	Phe	Met	Asp	Asn	Ser 80
	Asn	Glu	Glu	Arg	Asp 85	His	Ala	Gln	Lys	Leu 90	Ile	Ser	Tyr	Ile	Asn 95	Ser
	Arg	Gly	Gly	Thr 100	Ile	Ala	Ala	Phe	Arg 105	Val	Ser	Met	Pro	Lys 110	Asp	Thr
	Thr	Trp	Ala 115	Ser	Ala	Arg	Ala	Ala 120	Leu	Glu	Ser	Ala	Leu 125	Glu	Leu	Glu
	Ile	Glu 130	Val	Asn	Asn	Ala	Leu 135	His	Glu	Val	His	Gly 140	Lys	Ala	Glu	Arg
	Asp 145	Cys	Thr	Asp	Pro	Gln 150	Leu	Gln	Asp	Phe	Le u 155	Glu	Ala	Asn	Phe	Leu 160
	Asn	Glu	Gln	Val	Glu 165	Ser	Ile	Asp	Asn	Ile 170	His	Arg	Leu	Leu	Ala 175	Thr
	Leu	Asn	Gly	Met 180	Asp	Gln	Gly	Leu	Gly 185	Glu	Tyr	Leu	Val	Asn 190	Lys	Asp
	Leu	Gln														
<210><211><211><212><213>	196 PRT	s ricini	us													
<400>	9															
	Met 1	Lys	Gln	Phe	Val 5	Val	Ile	Leu	Ala	Leu 10	Ile	Gly	Ala	Ala	Thr 15	Ser
	Gly	Asn	Asn	Leu 20	Phe	Glu	Asn	Leu	Asp 25	Lys	Tyr	Pro	Leu	Gln 30	Asp	Glu

	Cys	Gln	Ala 35	Ala	Leu	Gln	Glu	His 40	Ile	Asn	Val	Glu	Met 45	His	Ala	Ser
	Leu	Val 50	Tyr	Met	Gln	Met	Ala 55	Ala	His	Phe	Asp	Asn 60	Asn	Lys	Val	Ala
	Arg 65	Lys	Gly	Phe	Ser	Thr 70	Phe	Phe	Ala	Glu	Asn 75	Ser	Lys	Glu	Glu	Arg 80
	Glu	His	Ala	Gln	Lys 85	Ile	Ile	Asp	Tyr	Ile 90	Asn	Lys	Arg	Gly	Ser 95	Thr
	Val	Ser	Leu	Val 100	Asn	Ile	Asp	Met	Pro 105	Leu	Ile	Thr	Thr	Trp 110	Lys	Ser
	Val	Leu	Gln 115	Ala	Leu	Arg	Asp	Ala 120	Ile	Ser	Leu	Glu	Asn 125	Lys	Val	Thr
	Asn	Lys 130	Leu	His	Ala	Val	His 135	Lys	Ile	Ala	Asp	Glu 140	Glu	Cys	Lys	Asp
	Pro 145	Gln	Leu	Met	Asp	Phe 150	Ile	Glu	Ser	Glu	Phe 155	Leu	Glu	Glu	Gln	Val 160
	Asn	Ser	Ile	Asp	Lys 165	Leu	Gln	Arg	Met	Ile 170	Thr	Val	Leu	Ser	Asn 175	Met
	Asp	Ser	Gly	Thr 180	Gly	Glu	Tyr	Leu	Leu 185	Asp	Arg	Glu	Leu	Leu 190	Gly	Asp
	Lys	Lys	Glu 195	Phe												
<210><211><211><212><213>	196 PRT	porci	ulcatus													
<213> <400>		persu	iicatus	•												
	Met 1	Lys	Gln	Phe	Val 5	Val	Leu	Leu	Ala	Leu 10	Ile	Gly	Ala	Ala	Thr 15	Ser
	Gly	Asn	Asn	Leu 20	Phe	Glu	Asn	Leu	Asp 25	Lys	Tyr	Pro	Leu	Gln 30	Asp	Glu
	Cys	Gln	Ala 35	Ala	Leu	Gln	Glu	His 40	Ile	Asn	Val	Glu	Met 45	His	Ala	Ser

	Leu	Val 50	Tyr	Met	Gln	Met	Ala 55	Ala	His	Phe	Asp	Asn 60	Asn	Lys	Val	Ala
	Arg 65	Lys	Gly	Phe	Ser	Thr 70	Phe	Phe	Ala	Glu	Asn 75	Ser	Lys	Glu	Glu	Arg 80
	Glu	His	Ala	Gln	Lys 85	Ile	Ile	Asp	Tyr	Ile 90	Asn	Lys	Arg	Gly	Ser 95	Thr
	Val	Ser	Leu	Val 100	Asn	Ile	Asp	Met	Pro 105	Leu	Ile	Thr	Thr	Trp 110	Lys	Ser
	Val	Leu	Gln 115	Ala	Leu	Arg	Asp	Ala 120	Ile	Ser	Leu	Glu	Asn 125	Lys	Val	Thr
	Asn	Lys 130	Leu	His	Ala	Val	His 135	Lys	Ile	Ala	Asp	Glu 140	Glu	Cys	Lys	Asp
	Pro 145	Gln	Leu	Met	Asp	Phe 150	Ile	Glu	Ser	Glu	Phe 155	Leu	Glu	Glu	Gln	Val 160
	Asn	Ser	Ile	Asp	Lys 165	Leu	Gln	Arg	Met	Ile 170	Thr	Val	Leu	Ser	Asn 175	Met
	Asp	Ser	Gly	Thr 180	Gly	Glu	Tyr	Leu	Leu 185	Asp	Arg	Glu	Leu	Leu 190	Gly	Asp
	Lys	Lys	Glu 195	Phe												
<210><211><211><212><213>	199 PRT	aphys	alis lo	ngicor	nis											
<400>	11															
	Met 1	Leu	Pro	Ile	Leu 5	Ile	Phe	Ala	Phe	Ala 10	Leu	Leu	Cys	Val	Ala 15	Ser
	Ala	Gly	Asn	Asn 20	Leu	Asn	Glu	Gln	Val 25	Asn	Gln	Asn	Lys	Tyr 30	Phe	Leu
	His	Asp	Arg 35	Cys	Arg	Leu	Gly	Leu 40	Gln	Glu	Gln	Ile	Asn 45	Ala	Glu	Leu
	His	Ala	Ser	Leu	Val	Tyr	Met	Gln	Met	Ala	Ala	Tyr	Leu	Gly	Asn	Asn

		Lys 65	Val	Ala	Arg	Ala	Gly 70	Phe	Ala	Arg	Phe	Phe 75	Ser	Asp	Gln	Ser	Ser 80
		Glu	Glu	Arg	Glu	His 85	Ala	Gln	Lys	Leu	Val 90	Asp	Tyr	Val	Asn	Leu 95	Arg
		Gly	Gly	Thr	Val 100	Ser	Asn	Val	Asn	Val 105	Asp	Met	Pro	Ala	Thr 110	Ala	Thr
		Trp	Met	Ser 115	Val	Leu	Asp	Thr	Leu 120	Gln	Ala	Ala	Leu	Ala 125	Leu	Glu	His
		Gln	Val 130	Thr	Asn	Arg	Leu	His 135	Gly	Leu	His	Ala	Leu 140	Ala	Ala	Asp	His
		Cys 145	Arg	Asp	Pro	Gln	Met 150	Thr	Asp	Phe	Leu	Glu 155	Gln	Glu	Phe	Leu	Ala 160
		Glu	Gln	Met	His	Ser 165	Ile	Asp	Lys	Leu	Gln 170	Arg	Leu	Ile	Thr	Gln 175	Leu
		Gln	Asn	Met	Asp 180	Thr	Gly	Leu	Gly	Glu 185	Phe	Leu	Leu	Asp	Arg 190	Glu	Leu
		Arg	Arg	Glu 195	Asp	Ser	Asp	Lys									
5	<210><211><211><212><213>	21 ADN	encia a	artificia	al												
10	<220> <223> Cebador de PCR																
10	<400> 12 tgggcctctg ggatcagctc g 21																
15	<210><211><211><212><213>	21 ADN	encia a	artificia	al												
20	<220> <223>	Ceba	dor de	PCR													
	<400> aatatco		gttcggc	egg c				21									
25	<210><211><211><212><213>	29 ADN	encia a	artificia	al												
30	<220> <221>	misc_	featur	e													

	<222> (6)(6) <223> d representa A, G o T	
5	<220> <221> misc_feature <222> (7)(7) <223> w representa A o T	
10	<220> <221> misc_feature <222> (8)(9) <223> s representa C o G	
15	<220> <221> misc_feature <222> (12)(12) <223> s representa C o G	
20	<220> <221> misc_feature <222> (10)(10) <223> y representa C o T	
25	<220> <221> misc_feature <222> (18)(18) <223> y representa C o T	
30	<220> <221> misc_feature <222> (25)(25) <223> h representa A, C o T	
35	<220> <221> misc_feature <222> (19)(19) <223> m representa A o C	
40	<220> <221> misc_feature <222> (21)(21) <223> r representa A o G	
45	<220> <221> misc_feature <222> (24(24) <223> r representa A o G	
50	<220> <223> Cebador de PCR	
	<400> 14 cacgcdwssy tsgthtaymw rcaratggc	29
55	<210> 15 <211> 24 <212> ADN <213> Secuencia artificial	
60	<220> <221> misc_feature <222> (2)(3) <223> r representa A o G	
65	<220> <221> misc_feature	

	<222> (6)(6) <223> s representa C o G	
5	<220> <221> misc_feature <222> (8)(8) <223> y representa C o T	
10	<220> <221> misc_feature <222> (9)(9) <223> s representa C o G	
15	<220> <221> misc_feature <222> (10)(11) <223> b representa C, G o T	
20	<220> <221> misc_feature <222> (15)(15) <223> v representa A, C o G	
25	<220> <221> misc_feature <222> (17)(17) <223> d representa A, G o T	
30	<220> <221> misc_feature <222> (21)(21) <223> r representa A o G	
35	<220> <223> Cebador de PCR	
	<400> 15 arraastysb bctcvadgaa rtcc	24
40	<210> 16 <211> 21 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador de PCR	
50	<400> 16 gtcaacacga acgcagcagc a	21
	<210> 17 <211> 21 <212> ADN <213> Secuencia artificial	
55	<220> <223> Cebador de PCR	
60	<400> 17 atctgcgcat ccagcgtcgt g	21
65	<210> 18 <211> 21 <212> ADN <213> Secuencia artificial	

	<220> <223> Cebador de PCR	
5	<400> 18 tattggtgct acaacaccgg c	21
10	<210> 19 <211> 21 <212> ADN <213> Secuencia artificial	
	<220> <223> Cebador de PCR	
15	<400> 19 gctggacagt attgtgacta t	21
20	<210> 20 <211> 21 <212> ADN <213> Secuencia artificial	
25	<220> <223> Cebador de PCR	
25	<400> 20 atgttgatcc gctgcgttgt c	21
30	<210> 21 <211> 21 <212> ADN <213> Secuencia artificial	
35	<220> <223> Cebador de PCR	
	<400> 21 ctacagctcg acgtaggttg c	21
40	<210> 22 <211> 21 <212> ADN <213> Secuencia artificial	
45	<220> <223> Cebador de PCR	
50	<400> 22 gtctggactt tatcgcctac c	21
50	<210> 23 <211> 21 <212> ADN <213> Secuencia artificial	
55	<220> <223> Cebador de PCR	
60	<400> 23 ttcggtagcc tttcagcgtg c	21
65	<210> 24 <211> 18 <212> PRT <213> Dermanyssus gallinae	

<400> 24

Met Leu Ile Arg Cys Val Val Thr Ala Leu Ala Ala Val Thr Val Val 1 5 10 15

Ser Gly

5 <210> 25

<211> 18 <212> PRT

<213> Dermanyssus gallinae

10 <400> 25

Met Lys Arg Leu Val Cys Ile Leu Val Pro Leu Leu Phe Ala Ala Val 1 5 10 15

Leu Ala

REIVINDICACIONES

- 1. Una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1, una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2, y/o un equivalente inmunológico de la misma, para su uso en la provocación de una respuesta inmunitaria específica de los ácaros rojos en un animal doméstico, en la que el equivalente inmunológico se selecciona de un grupo que consiste en los (b) a (j) descritos a continuación y que es capaz de provocar la respuesta inmunitaria específica de Dermanyssus gallinae;
- (b) una proteína que consiste en una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,
 - (c) una proteína que consiste en una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,
- (f) una proteína que consiste en una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,
 - (g) una proteína que consiste en una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,
 - (i) un fragmento polipeptídico de las proteínas que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 o SEQ ID NO. 2, o las proteínas de los (b) a (g) anteriores, en el que el fragmento polipeptídico tiene no menos de 30 restos de aminoácidos, y
- (j) una proteína que consiste en una secuencia de aminoácidos en la cual se añaden uno o más aminoácidos opcionales en el extremo N y/o C de la secuencia de aminoácidos de la SEQ ID NO. 1 o SEQ ID NO. 2, o cualquiera de las secuencias de aminoácidos definidas en los (b) a (i) anteriores.
 - 2. Una proteína que consiste en la secuencia de aminoácidos de cualquiera de a) a d) descritos a continuación, o un fragmento polipeptídico que consiste en una secuencia de aminoácidos parcial de la secuencia de aminoácidos de a) a c) descritos a continuación, en la que la proteína o el fragmento polipeptídico es capaz de provocar una respuesta inmunitaria específica de Dermanyssus gallinae y el fragmento polipeptídico tiene no menos de 30 restos de aminoácidos:
 - a) la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,

20

30

40

- b) una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,
 - c) una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,
 - d) una secuencia de aminoácidos en la cual se añaden uno o más aminoácidos opcionales en el extremo N y/o C de la secuencia de aminoácidos de cualquiera de a) a c) o una secuencia de aminoácidos parcial de la misma.
- 3. Una proteína que consiste en la secuencia de aminoácidos de cualquiera de e) a h) descritos a continuación, o un fragmento polipeptídico que consiste en una secuencia de aminoácidos parcial de la secuencia de aminoácidos de e) a g) descritos a continuación, en la que la proteína o el fragmento polipeptídico es capaz de provocar una respuesta inmunitaria específica de Dermanyssus gallinae y el fragmento polipeptídico tiene no menos de 30 restos de aminoácidos:
- e) la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,
 - f) una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 2.
 - g) una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,
 - h) una secuencia de aminoácidos en la cual se añaden uno o más aminoácidos opcionales en el extremo N y/o C de la secuencia de aminoácidos de cualquiera de e) a g) o una secuencia de aminoácidos parcial de la misma.
- 4. Un ácido nucleico que codifica la proteína o el fragmento polipeptídico de la misma como se define en la reivindicación 2 o la reivindicación 3.
 - 5. Un vector de expresión que comprende la molécula de ácido nucleico de acuerdo con la reivindicación 4.
- 65 6. Una vacuna para su uso en la provocación de una respuesta inmunitaria específica de los ácaros rojos en un animal doméstico, que comprende la proteína o el fragmento polipeptídico como se define en la reivindicación 2 y/o la

reivindicación 3 o el ácido nucleico como se define en la reivindicación 4 y/o el vector de expresión como se define en la reivindicación 5.

7. Proteínas seleccionadas del grupo que consiste en una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1, una proteína que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2, y/o equivalentes inmunológicos de la misma, para su uso en la provocación de una respuesta inmunitaria específica de los ácaros rojos en un animal doméstico, en la que el equivalente inmunológico se selecciona de un grupo que consiste en los (b) a (j) descritos a continuación y que es capaz de provocar la respuesta inmunitaria específica de Dermanyssus gallinae;

10

15

- (b) una proteína que consiste en una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,
- (c) una proteína que consiste en una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 1,
 - (f) una proteína que consiste en una secuencia de aminoácidos en la cual se eliminan o sustituyen de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,
- (g) una proteína que consiste en una secuencia de aminoácidos en la cual se insertan de uno a varios aminoácidos en la secuencia de aminoácidos expuesta en la SEQ ID NO. 2 y que tiene una identidad de al menos 80 % o más con la secuencia de aminoácidos expuesta en la SEQ ID NO. 2,
 - (i) un fragmento polipeptídico de las proteínas que consiste en la secuencia de aminoácidos expuesta en la SEQ ID NO. 1 o SEQ ID NO. 2, o las proteínas de los (b) a (g) anteriores, en el que el fragmento polipeptídico tiene no menos de 30 restos de aminoácidos, y
 - (j) una proteína que consiste en una secuencia de aminoácidos en la cual se añaden uno o más aminoácidos opcionales en el extremo N y/o C de la secuencia de aminoácidos de la SEQ ID NO. 1 o SEQ ID NO. 2, o cualquiera de las secuencias de aminoácidos definidas en los (b) a (i) anteriores.

FIG. 1

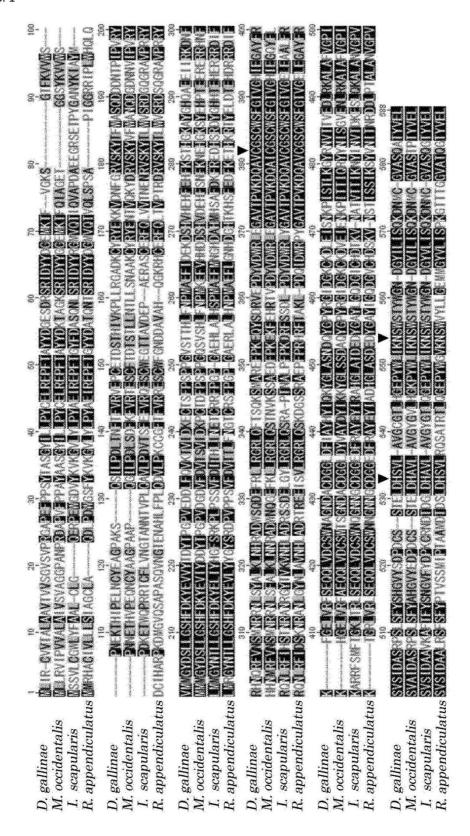


FIG. 2

FIG. 3

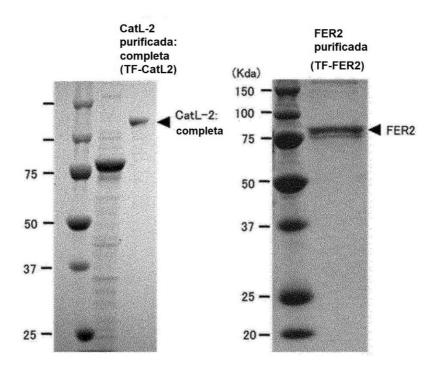


FIG. 4

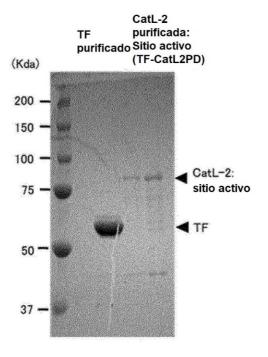


FIG. 5

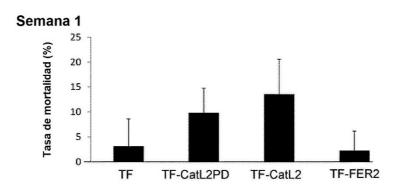



FIG. 6

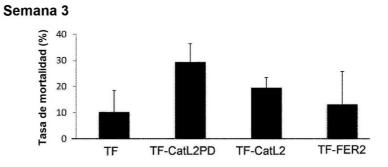
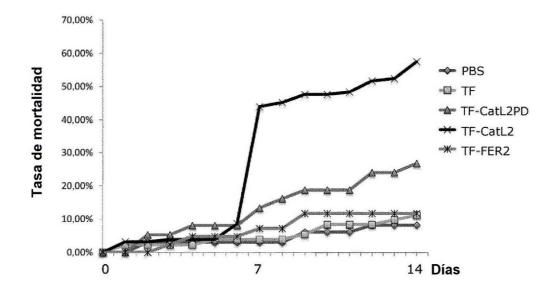



FIG. 7

