

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 758 798

51 Int. Cl.:

A61F 2/915 (2013.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 06.10.2010 PCT/IB2010/002731

(87) Fecha y número de publicación internacional: 14.04.2011 WO11042810

96) Fecha de presentación y número de la solicitud europea: 06.10.2010 E 10798585 (5)

(97) Fecha y número de publicación de la concesión europea: 04.09.2019 EP 2485688

(54) Título: Implante vascular biorreabsorbible que tiene tensiones distribuidas homogéneamente bajo una carga radial

(30) Prioridad:

06.10.2009 US 249010 P

Fecha de publicación y mención en BOPI de la traducción de la patente: 06.05.2020 (73) Titular/es:

SAHAJANAND MEDICAL TECHNOLOGIES PRIVATE LIMITED (100.0%) Sahajanand Estate, Wakharia Wadi, Near Dabholi Char Rasta, Ved Road, Surat Gujarat- 395 004, IN

(72) Inventor/es:

VAN DER LEEST, MACHIEL

(74) Agente/Representante:

SALVÀ FERRER, Joan

DESCRIPCIÓN

Implante vascular biorreabsorbible que tiene tensiones distribuidas homogéneamente bajo una carga radial

5 Campo técnico

10

[0001] La presente descripción se refiere generalmente a un dispositivo vascular implantable para tratamiento terapéutico intervencionista o cirugía vascular, y más particularmente, a un armazón polimérico biorreabsorbible que exhibe una distribución de tensión homogénea tanto en una configuración contraída como expandida.

Antecedentes de la invención

[0002] La técnica y la ciencia de la terapia intervencionistas y la cirugía han progresado continuamente hacia el tratamiento de defectos y enfermedades internas mediante el uso de incisiones cada vez más pequeñas o el acceso
 15 a través de la vasculatura o aberturas corporales para reducir el traumatismo tisular que rodea el sitio de tratamiento. Un aspecto importante de dichos tratamientos implica la colocación percutánea de endoprótesis o armazones en un sitio (o sitios) de tratamiento dado.

[0003] Las endoprótesis se introducen típicamente dentro de un vaso en una configuración contraída y a continuación se expanden cuando se colocan en el vaso para mantener la permeabilidad del vaso. La expansión de la endoprótesis se basa en la memoria (es decir, puede autoexpandirse), en la deformación (es decir, expansión con balón), o una combinación de ambos. Las endoprótesis que se expanden utilizando técnicas basadas en la deformación incluyen áreas de tensiones concentradas en áreas predeterminadas para controlar la deformación. Por ejemplo, las endoprótesis expandibles con balón tienen áreas de alta tensión en las bisagras para facilitar el engarce 25 controlado y la posterior expansión.

[0004] Como resultado de esta construcción, sin embargo, cuando se aplican, las tensiones son las más altas en estas áreas, tal como en el estado expandido bajo carga radial desde el vaso o las aberturas corporales. En el caso de endoprótesis o armazones poliméricos, estas áreas de tensión concentrada pueden estar sujetas a deformación debido a las propiedades viscoelásticas del material polimérico, lo que conduce a efectos no deseados y perjudiciales para la endoprótesis (es decir, contracción o retroceso de la endoprótesis).

[0005] El documento US 2008/0065195 describe una endoprótesis con un patrón particular que comprende una pluralidad de bandas serpentinas donde al menos una banda serpentina comprende un patrón repetitivo de tres puntales de banda y a continuación cinco puntales de banda que se extienden entre las vueltas conectadas a medida que se atraviesa la banda serpentina. El documento WO 2007/105067 se refiere a una endoprótesis típicamente compuesta por un patrón geométrico intrincado de elementos circunferenciales y que se extienden longitudinalmente. El documento US 6.190.406 se refiere a una endoprótesis hecho de un material superelástico tal como Nitinol, que presenta distensiones distribuidas uniformemente, y el documento US2002/0058988 se refiere a una endoprótesis metálica diseñada para tener una resistencia y radiopacidad óptimas. El documento WO99/65418 se refiere a una prótesis endovascular que incluye una endoprótesis principal y una endoprótesis de anclaje separada unida a la endoprótesis principal mediante la unión de puntales.

Resumen de la invención

45

55

65

[0006] La invención se define por las reivindicaciones adjuntas. Según un aspecto descrito en esta invención, un implante vascular biorreabsorbible para implantación en un lumen corporal tiene una estructura tubular que comprende uno o más elementos de soporte anulares. Cada uno de los uno o más elementos de soporte anulares incluye una pluralidad de puntales interconectados por una región de bisagra. Cada uno de la pluralidad de puntales también incluye una sección intermedia. El implante vascular está compuesto por al menos un material viscoelástico que permite la transición del implante vascular entre una configuración contraída y una configuración expandida. Cada una de la pluralidad de puntales y la región de bisagra define una sección transversal. El momento de inercia aumenta desde la sección intermedia hacia la región de bisagra para alojar la transición y resistir una carga radial aplicada al implante vascular en la configuración expandida.

Breve descripción de los dibujos

[0007] Las anteriores y otras características de la presente invención serán evidentes para los expertos en la técnica a la que se refiere la presente invención tras la lectura de la siguiente descripción con referencia a los dibujos 60 adjuntos, donde:

La Fig. 1A es una ilustración esquemática que muestra un implante vascular biorreabsorbible en una configuración expandida y construido según un aspecto de la presente invención;

la Fig. 1B es una ilustración esquemática que muestra una porción ampliada del implante vascular (Fig. 1A) en una configuración contraída;

ES 2 758 798 T3

- la Fig. 2A es una ilustración esquemática que muestra una porción del implante vascular en la Fig. 1A;
- la Fig. 2B es una ilustración esquemática que muestra una porción ampliada (rectángulo de líneas discontinuas) del implante vascular en la Fig. 2A;
- la Fig. 2C es una ilustración esquemática que muestra una porción ampliada (círculo de líneas discontinuas) del implante vascular en la Fig. 2A;
 - la Fig. 2D es una vista en sección transversal tomada a lo largo de la Línea 2D-2D en la Fig. 2C;
 - La Fig. 2E es una vista en sección transversal tomada a lo largo de la línea 2E-2E en la Fig. 2C;
 - la Fig. 3A es una ilustración esquemática que muestra una vista lateral ampliada de una región de bisagra del implante vascular en la Fig. 1A;
- la Fig. 3B es una ilustración esquemática que muestra una carga (flecha) que se aplica a una porción de la región de bisagra en la Fig. 3A:
 - la Fig. 3C es una ilustración esquemática que muestra un diagrama de cuerpo libre de la región de bisagra en la Fig. 3B:
 - la Fig. 4A es una ilustración esquemática que muestra un armazón convencional que tiene regiones de bisagra cónicas:
 - la Fig. 4B es una ilustración esquemática que muestra una vista lateral ampliada de una región de bisagra del armazón en la Fig. 4A:
 - la Fig. 4C es una ilustración esquemática que muestra una carga (flecha) que se aplica a una porción de la región de bisagra en la Fig. 4B;
- 20 la Fig. 4D es una ilustración esquemática que muestra un diagrama de cuerpo libre de la región de bisagra en la Fig. 4C;
 - la Fig. 5A es una ilustración esquemática que muestra otro armazón convencional que tiene regiones de bisagra y secciones intermedias de puntal con secciones transversales de igual tamaño;
- la Fig. 5B es una ilustración esquemática que muestra una vista lateral ampliada de una región de bisagra del armazón en la Fig. 5A;
 - la Fig. 5C es una ilustración esquemática que muestra una carga (flecha) que se aplica a una porción de la región de bisagra en la Fig. 5B;
 - la Fig. 5D es una ilustración esquemática que muestra un diagrama de cuerpo libre de la región de bisagra en la Fig. 5C;
- la Fig. 6 es una curva de tensión frente a deformación para el implante vascular en las Figs. 1A-B a partir de la cual se pueden leer las tensiones y límites elásticos máximos. Las endoprótesis se sumergieron en agua a 37 °C y se comprimieron radialmente después de 2 minutos en tres ciclos consecutivos con un probador radial RCM-60-WB de MPT Europe (Mulderspark 9-1, 9351 NR Leek, Países Bajos). Durante el primer ciclo (Curva A), se aplicó una reducción del 15 % de diámetro. Durante el segundo ciclo (Curva B), se aplicó una reducción adicional del
- 35 15 % del diámetro. Durante el segundo ciclo (Curva C), el diámetro de la endoprótesis se redujo a 1,7 mm. Como se puede ver, la endoprótesis volvió a su diámetro inicial después del primer ciclo y, después del segundo ciclo, la endoprótesis se deformaba plásticamente;
 - las Figs. 7A-B son una serie de imágenes OCT que muestran un implante vascular biorreabsorbible de la presente invención perfectamente opuesto a una pared arterial y que proporciona un soporte radial claro a la misma;
- la Fig. 8 es una fotografía ampliada que muestra la rotura de un puntal transversal del implante vascular biorreabsorbible en las Figs. 7A-B después de la implantación en vasculatura porcina durante 30 días; y las Figs. 9A-B son una serie de diapositivas de patología que muestran una buena biocompatibilidad del implante vascular biorreabsorbible en las Figs. 7A-B después de la implantación en la vasculatura porcina durante 30 días.

45 **Descripción detallada**

15

- [0008] A menos que se defina de otro modo, todos los términos técnicos usados en esta invención tienen el mismo significado que entiende comúnmente un experto en la técnica a la que pertenece la presente invención.
- 50 **[0009]** En el contexto de la presente invención, el término "sujeto" puede referirse a cualquier organismo de sangre caliente incluyendo, pero sin limitación, seres humanos, cerdos, ratas, ratones, perros, cabras, ovejas, caballos, monos, simios, conejos, vacas, etc.
- [0010] Como se usa en esta invención, el término "polímero biorreabsorbible" puede referirse a un polímero cuyos subproductos de degradación pueden bioasimilarse o excretarse a través de vías naturales en el cuerpo de un sujeto.
- [0011] Como se usa en esta invención, el término "engarzado" puede referirse a un procedimiento que implica presionar radialmente sobre un implante vascular para permitir una disminución en el diámetro del implante vascular 60 sin afectar sustancialmente a los componentes estructurales del implante vascular (por ejemplo, la pared o los puntales).
- [0012] Como se usa en esta invención, el término "polímero degradable" puede referirse a un polímero que se descompone en monómeros y oligómeros cuando se coloca en el cuerpo de un sujeto o en una solución acuosa y se 65 mantiene en condiciones de temperatura, osmolalidad, pH, etc., que imitan los medios fisiológicos, preferentemente

sin implicar degradación enzimática para minimizar el riesgo de desencadenar el sistema de defensa antígenoanticuerpo del sujeto.

[0013] Como se usa en esta invención, el término "forma y diámetro predeterminados finales" puede referirse
 5 al diámetro, longitud, diseño y grosor de pared deseados de un implante vascular que se ha desplegado en un lumen corporal.

[0014] Como se usa en esta invención, el término "retroceso negativo" puede referirse a una disminución no deseada en el diámetro de un implante vascular expandido.

[0015] Como se usa en esta invención, el término "retroceso positivo" puede referirse a un aumento en el diámetro de un implante vascular que se ha educado para tener un diámetro final deseado pero que no se ha expandido completamente al diámetro final deseado.

15 **[0016]** Como se usa en esta invención, los términos "temperatura de transición vítrea" y "Tg" pueden referirse a la temperatura a la que un polímero cambia de un estado vítreo a un estado gomoso y viceversa.

[0017] Como se usa en esta invención, el término "retroceso relacionado con la relajación" puede referirse al cambio lento en las dimensiones de un implante vascular debido a un reordenamiento lento dependiente del tiempo de las conformaciones moleculares según un comportamiento ya conocido de los materiales poliméricos viscoelásticos. Dicho reordenamiento se debe en parte a una carga estática o dinámica permanente que conduce lentamente al material polimérico que comprende un implante vascular a un equilibrio termodinámico.

[0018] La presente invención se refiere generalmente a un dispositivo vascular implantable para tratamiento terapéutico intervencionista o cirugía vascular, y más particularmente, a un armazón polimérico biorreabsorbible o endoprótesis que exhibe una distribución de tensión homogénea tanto en una configuración contraída como expandida. Como representantes de un aspecto de la presente invención, las Figs. 1A-B ilustran un implante vascular biorreabsorbible 10 que comprende uno o más elementos de soporte anulares 12 para su implantación en un lumen corporal. El uno o más elementos de soporte anulares 12 comprenden una pluralidad de puntales 14, cada uno de los cuales incluye una sección intermedia 16 y una región de bisagra 18. A diferencia de los implantes vasculares expandibles con balón de la técnica anterior (por ejemplo, endoprótesis), que incluyen áreas predeterminadas de alta tensión (por ejemplo, en las bisagras), el implante vascular 10 de la presente invención exhibe una resistencia radial mejorada en una configuración expandida y en condiciones de carga dinámica (por ejemplo, cuando se expande en un lumen corporal, durante el engarce, o en un lumen corporal pulsátil). La resistencia radial se mejora al difundir y limitar las tensiones máximas para evitar el arrastre debido a la carga radial de alta frecuencia. Como consecuencia, la deformación se distribuye o absorbe más uniformemente desde la sección intermedia 16 de los puntales 14 hasta el área de momento más alta.

I. Implantes vasculares biorreabsorbibles

10

40

55

[0019] Un aspecto descrito en esta invención incluye un implante vascular biorreabsorbible 10 que comprende uno o más elementos de soporte anulares 12. El implante vascular 10 puede comprender cualquier elemento, dispositivo o aparato que tenga una estructura sustancialmente tubular y que sea capaz de implantarse en un lumen corporal. Como se describe en más detalle a continuación, el implante vascular 10 está compuesto por al menos un 45 material viscoelástico que permite la transición del implante vascular entre una configuración contraída y una configuración expandida.

[0020] En un ejemplo, el implante vascular 10 puede comprender un armazón. Los ejemplos no limitantes de armazones pueden incluir elementos de soporte, elementos plegables, elementos expandibles, elementos 50 distensibles, estructuras sólidas, estructuras de malla, dispositivos trenzados, estructuras porosas, puntales, membranas, vejigas, dispositivos tipo paraguas, nervaduras, radios, marcos y combinaciones de los mismos. Los armazones pueden estar completamente cubiertos, parcialmente cubiertos o sin cubrir. Los armazones cubiertos pueden comprender esqueletos que están parcial o totalmente cubiertos por membranas, telas, películas, capas múltiples y/o revestidos.

[0021] En otro ejemplo descrito en esta invención, el armazón puede comprender una endoprótesis.

[0022] Como se muestra en la Fig. 1, el implante vascular 10 comprende uno o más elementos de soporte anulares 12. Cuando el implante vascular 10 comprende dos elementos de soporte anulares 12, al menos un puntal transversal 20 puede cruzar los elementos de soporte anulares. El al menos un puntal transversal 20 puede estar hecho del mismo o diferente material viscoelástico que uno o más elementos de soporte anulares 12. El al menos un puntal transversal 20 puede tener una velocidad de degradación o reabsorción que es más lenta, más rápida o igual que la velocidad de degradación o reabsorción del uno o más elementos de soporte anulares 12. Por ejemplo, el al menos un puntal transversal 20 puede tener una velocidad de degradación o reabsorción de aproximadamente 90 o más días, aproximadamente 60 días o aproximadamente 30 o menos días.

[0023] El implante vascular 10 puede incluir cualquier número de puntales transversales 20. Para dotar al implante vascular 10 de una mejor flexibilidad cuando se implanta en una vasculatura tortuosa, por ejemplo, puede ser deseable incluir menos puntales transversales 20 para que el implante vascular pueda adaptarse a la forma de la vasculatura tras la degradación (por ejemplo, desmantelamiento o rotura) o la reabsorción de los puntales transversales en un periodo de tiempo más corto. Se apreciará que la inclusión u omisión de puntales transversales 20 como parte del implante vascular 10 dependerá de la aplicación particular para la cual está destinado el implante vascular, y que el periodo de tiempo para la degradación o resorción dependerá del grado del material utilizado para formar los puntales transversales, la forma de la sección transversal de los puntales transversales, la anatomía de la vasculatura, y el número de puntales transversales. Además, se apreciará que los puntales transversales 20 pueden tener cualquier tamaño y forma adecuados distintos de la configuración en forma de varilla mostrada en las Figs. 2A-C.

[0024] Cada uno de los uno o más elementos de soporte anulares 12 incluye un primer extremo 22, un segundo extremo 24 y un canal 26 (Fig. 1A) que se extiende entre los extremos. Como se ha indicado anteriormente, cada uno de los uno o más elementos de soporte anulares 12 (Figs. 2A-C) también comprende una pluralidad de puntales 14 interconectados por una región de bisagra 18. Cada uno de la pluralidad de puntales 14 y la región de bisagra 18 define una sección transversal. La sección transversal de cada uno de los puntales 14 y la región de bisagra 18 puede ser rectangular, circular, ovoide, cuadrada, o cualquier otra forma deseada.

[0025] En un ejemplo descrito en esta invención, cada uno de los puntales 14 (Figs. 2A-E) incluye una sección intermedia 16 que define un ancho Ws, y cada una de las regiones de bisagra 18 define un ancho Wh. Como se muestra en la Fig. 2A, un primer elemento de soporte anular 12' comprende una serie de puntales en forma de V repetitivos 14 conectados por regiones de bisagra 18, y un segundo elemento de soporte anular 12" comprende una serie de puntales en forma de V repetitivos también conectados por regiones de bisagra. Se apreciará que cada uno de los puntales 14 que comprende el elemento o elementos de soporte anulares 12 puede tener una configuración idéntica o diferente (por ejemplo, forma y tamaño), dependiendo de la aplicación prevista del implante vascular 10.

[0026] Cada uno de los elementos de soporte anulares 12 incluye una pluralidad de celdas 28 definidas por los puntales 14 y las regiones de bisagra 18. Las celdas 28 permiten engarzar el implante vascular 10 desde un diámetro mayor (es decir, la configuración expandida) hasta un diámetro menor (es decir, la configuración contraída) sin alterar sustancialmente la construcción de los puntales transversales 20 o los elementos de soporte anulares 12. Dichas celdas 28 pueden formarse mediante técnicas de procesamiento estándar, tales como moldeo, corte por láser, grabado o fotolitografía. Cada elemento de soporte anular 12 puede incluir un número deseado de celdas 28. Por ejemplo, cada elemento de soporte anular 12 puede incluir de aproximadamente 4 a aproximadamente 15 celdas 28, y puede ser preferentemente de aproximadamente 5 a aproximadamente 6 celdas.

[0027] La presente invención se puede entender mejor haciendo referencia a las Figs. 3A-C. Como se ve en las Figs. 3A-C, el ancho Ws de al menos una parte de cada uno de los puntales 14 es menor que el ancho Wh de cada 40 una de las regiones de bisagra 18. Por ejemplo, el ancho Ws en la sección intermedia 16 puede ser de aproximadamente 150 μm o mayor, y el ancho Wh de la región de bisagra 18 puede ser de aproximadamente 250 μm o mayor. En un ejemplo de la presente invención, el ancho Ws en la sección intermedia 16 puede ser de aproximadamente 160 μm, y el ancho Wh en la región de bisagra 18 puede ser de aproximadamente 300 μm.

45 **[0028]** El ancho Wh puede estrecharse sustancialmente de manera continua desde la región de bisagra 18 hasta la sección intermedia 16 de cada uno de los puntales 14. El efecto de este estrechamiento es causar un aumento en el momento de inercia desde la sección intermedia 16 hacia la región de bisagra 18 para resistir una carga radial o su componente derivado tangencialmente aplicado al implante vascular 10 (es decir, en la configuración expandida). En otras palabras, el efecto será una mayor resistencia a la deformación en las regiones de bisagra 18 (es decir, donde los momentos de flexión son altos), y hacer que la deformación por tensión general sea más uniforme. En consecuencia, la distribución homogénea de las tensiones en uno o más elementos de soporte anulares 12 asegura que la resistencia radial derivada tangencialmente y la resistencia mecánica del implante vascular 10 no se vean comprometidas cuando el implante vascular se expande y a continuación se somete a una carga radial.

55 **[0029]** La reducción ideal del ancho es una función compleja, impulsada por los esfuerzos para mantener constante el radio de flexión. Por ejemplo, la flexión de una viga rectangular está controlada por la fórmula:

$1/R = 12FL/(ETW^3);$

- 60 donde R es el radio de curvatura de la región de bisagra 18, F es la fuerza aplicada, L la distancia desde el punto final, E es el módulo de Young, T es el grosor del puntal 14, y W el ancho del puntal. Por lo tanto, como guía, el ancho del puntal W debería variar como la raíz cúbica de la distancia desde uno de los extremos del puntal 14. Es decir, en cualquier punto a lo largo de la sección intermedia 16 del puntal 14, el ancho W debería ser proporcional a la raíz cúbica de la distancia desde uno de los extremos al que está más cercano el punto.
- 65 Sin embargo, cualquier conicidad, incluso una simple reducción lineal cónica en el ancho W aún representaría una

mejora significativa sobre un puntal de ancho constante. Debido a que los puntales 14 son más anchos en sus regiones de bisagra 18, el implante vascular general 10 puede manejar mayores fuerzas de compresión y expansión. Por lo tanto, el implante vascular 10 puede manejar mayores tensiones de fatiga, lo que puede dar como resultado un implante vascular más duradero y más fuerte.

[0030] En un intento por minimizar la tensión máxima experimentada por las regiones de bisagra 18, la presente invención utiliza una geometría estructural que distribuye la tensión a las áreas de los puntales 14 (por ejemplo, la sección intermedia 16) que son menos susceptibles a fallos que otras. Por ejemplo, una de las áreas más vulnerables de las estructuras de endoprótesis convencionales es el radio de la parte interior de las bisagras a medida que la endoprótesis se expande. Entonces, estos radios interiores de las bisagras son normalmente el área con el mayor nivel de tensión en dichas estructuras de endoprótesis.

[0031] Las Figs. 4A-D y las Figs. 5A-D ilustran ejemplos de estructuras de endoprótesis convencionales 30 y 32, respectivamente. Como se muestra en las Figs. 4A-D, ciertas estructuras de endoprótesis convencionales 30 incluyen bisagras cónicas 34 que tienen un ancho Wh que es menor que el ancho Ws de la sección intermedia 36 del puntal 38. Tal configuración de endoprótesis es desventajosa, ya que el momento de inercia aumentará desde la bisagra 34 a la sección intermedia 36 tras la aplicación de una carga radial y, por lo tanto, aumentará las tensiones en la bisagra. De manera similar, como se muestra en las Figs. 5A-D, otras estructuras de endoprótesis convencionales 32 incluyen bisagras 40 y secciones intermedias de puntal 42 que tienen anchos Wh y W que son iguales. Tal configuración de endoprótesis es desventajosa ya que el momento de inercia permanecerá constante desde la bisagra 40 hasta la sección intermedia 42 tras la aplicación de una carga radial, produciendo así una distribución de tensión no homogénea en toda la estructura de la endoprótesis 32.

[0032] Otros ejemplos de estructuras de endoprótesis convencionales se divulgan en la Patente de EE.UU. N.º 5.190.406 de Duerig y col., la Patente de EE.UU. N.º 7.753.948 de Roeder et al. (en lo sucesivo en el presente documento, "Roeder I"), la Solicitud de Patente de EE.UU. N.º de Serie 11/454.303 publicada como US2007021824 A1 de Roeder y col. (en lo sucesivo en el presente documento, "Roeder II"). Duerig indica endoprótesis autoexpandibles que exhiben deformaciones distribuidas uniformemente y están hechas de materiales superelásticos, tal como Nitinol. Roeder I indica endoprótesis autoexpandibles con tensiones distribuidas uniformemente, que se pueden mover a una configuración contraída y colocar en una vaina, lo que se requiere para mantener la endoprótesis en un estado contraído para la administración intravascular. Roeder I también indica que las endoprótesis están hechas de polímeros viscoelásticos. Roeder II indica endoprótesis autoexpandibles que pueden alojar grandes cantidades de deformación, sin daño permanente, en un estado contraído. Roeder II también indica que las endoprótesis están hechas de materiales elásticos, no elásticos y superelásticos (por ejemplo, Nitinol), pero no enseña que las endoprótesis están hechas de polímeros viscoelásticos.

[0033] Como se ha apreciado anteriormente, una de las ventajas de la presente invención es que la tensión se distribuye más uniformemente a través del implante vascular 10 tras la aplicación de una carga radial. En particular,
40 los niveles de tensión pueden redistribuirse lejos de las regiones de bisagra 18 y distribuirse a lo largo de los puntales 14, tal como en o cerca de la sección intermedia 16 de cada uno de los puntales. Como resultado, los niveles máximos de tensión en las regiones de bisagra 18 pueden reducirse.

[0034] Otra ventaja de la presente invención es que al distribuir de manera homogénea las tensiones a través del implante vascular 10, se puede aumentar la vida de fatiga del implante vascular. La vida de fatiga puede ser una preocupación con las estructuras de endoprótesis tradicionales ya que las endoprótesis permanecen ligeramente comprimidas por la pared de la arteria u otra estructura de tejido incluso después de la implantación. Esta compresión introduce una tensión operativa en la estructura de la endoprótesis. Debido a que el corazón de un sujeto típicamente hace que las arterias del sistema vascular se expandan y se contraigan con cada latido cardíaco, una endoprótesis implantada normalmente se expande y se contrae una pequeña cantidad cada vez que el corazón late. En las estructuras de endoprótesis convencionales, esto puede causar un fallo por fatiga en las bisagras de la estructura de la endoprótesis, ya que los ciclos de tensión operativa se concentran en las bisagras. Por el contrario, el implante vascular 10 de la presente invención puede reducir el riesgo de fallo en las curvas o bisagras al minimizar los niveles de tensión operativa.

[0035] Todo o solo una parte del implante vascular 10 puede formarse a partir de al menos un material viscoelástico. Los materiales viscoelásticos, como se describen en esta invención, pueden incluir uno cualquiera o una combinación de materiales que exhiben características tanto viscosas como elásticas cuando experimentan deformación. Un comportamiento viscoso se caracteriza por la variación lineal del flujo de corte y la deformación con el tiempo cuando se aplica una tensión, y por la ausencia de memoria del estado inicial. Un material elástico se deforma instantáneamente cuando se estira y con la misma rapidez vuelve a su estado original una vez que se elimina la tensión. Un material viscoelástico puede exhibir comportamientos viscosos y/o elásticos dependiendo de la temperatura y la velocidad de deformación. En el caso de los polímeros viscoelásticos, la elasticidad suele ser el

resultado del estiramiento de enlaces a lo largo de planos cristalográficos en un sólido ordenado o la falta de tiempo 65 para que las estructuras macromoleculares se deformen (es decir, por debajo de la temperatura de transición vítrea o

a alta velocidad, velocidad de deformación), mientras que la viscosidad es el resultado de movimientos de partes de macromoléculas y/o de macromoléculas y/o de una estructura macromolecular (por encima de la temperatura de transición vítrea o a baja velocidad, velocidad de deformación). En el caso de dispositivos poliméricos implantables, el comportamiento de tensión-deformación depende de la posición de la transición vítrea con respecto a la temperatura corporal. El material o materiales viscoelásticos usados para formar el implante vascular 10 descrito en esta invención tienen elementos de ambas de estas propiedades y, como tales, exhiben deformación dependiente del tiempo.

[0036] En un ejemplo descrito en esta invención, el implante vascular 10 puede formarse a partir de uno o una combinación de materiales viscoelásticos, tales como polímeros degradables y biorreabsorbibles (por ejemplo, 10 polímeros termoplásticos). El implante vascular 10 puede formarse a partir de un polímero degradable y biorreabsorbible que tiene una temperatura de transición vítrea (Tg) de aproximadamente 32 °C <Tg <100 °C y, más particularmente, aproximadamente 35 °C <Tg <68 °C. Por ejemplo, el implante vascular 10 puede formarse a partir de uno o más polímeros degradables y biorreabsorbibles (por ejemplo, un polímero o polímeros termoplásticos) que tienen un intervalo de temperatura de trabajo bajo (por ejemplo, una Tg de aproximadamente 37 °C) ya que algunos 15 materiales (por ejemplo, acero) pueden exhibir algo de viscoelasticidad a altas temperaturas.

[0037] El polímero o polímeros que forman el implante vascular 10 pueden ser un homopolímero o un copolímero formado a partir de una capa delgada de uno o más polímeros biorreabsorbibles amorfos, es decir, los polímeros no son cristalinos a temperatura ambiente. Los polímeros utilizados para formar el implante vascular 10 no generan residuos cristalinos tras la degradación *in vivo*, y pueden o no estar reticulados. Se puede usar la reticulación ligera, por ejemplo, si las características térmicas y viscoelásticas que permiten la educación, el engarzado y el despliegue del implante vascular 10 se mantienen suficientemente.

[0038] Los ejemplos de polímeros que pueden usarse para formar el implante vascular 10 descrito en esta invención pueden incluir, pero sin limitación, ácido poliláctico, ácido poliglicólico, policaprolactona y sus copolímeros asociados, policarbonatos, poliortoésteres, polianhídrido, olidioxanona y polihidroxibutirato, poliamidas, poliuretanos, poliureas, polifeteres, polisacáridos, poliaminas, polifosfatos, polifosfonatos, polisulfonatos, polisulfonamidas, polifosfacenos, polinorbomeno y copolímeros de polinorbomeno, mezclas de poliborneno con KRATON® (elastómero termoplástico) y polietileno, elastómeros de copolímero de bloque estirénico (por ejemplo, estireno-butadieno), polimetilmetacrilato (PMMA), polietileno, poliisopreno, policaprolactona y copolímeros de policaprolactona, copolímeros de ácido poliláctico, copolímeros de ácido poliglicólico, polienos, nylons, policicloocteno (PCO), acetato de polivinilo (PVAc), fluoruro de polivinilideno (PVDF), mezclas de acetato de polivinilo/fluoruro de polivinilidina (PVAc/PVDF), mezclas, derivados, copolímeros, y/o combinaciones de los mismos.

[0039] En un ejemplo descrito en esta invención, el implante vascular 10 puede formarse a partir de estereocopolímeros a base de ácido láctico (copolímeros de PLAx compuestos por unidades L y D, donde X es el porcentaje de unidades de L-lactilo) (55 <Tg <60), copolímeros de ácidos láctico y glicólico (PLAxGAy, donde X es el porcentaje de unidades de L-lactilo, Y es el porcentaje de unidades de glicolilo, y la Tg del copolímero está por encima de aproximadamente 45 °C), y poli(ácido láctico-co-glicólico-co-glucónico), donde los grupos OH de las unidades de gluconilo pueden estar más o menos sustituidas (pLAxGayGLz, donde X es el porcentaje de unidades de L-lactilo, Y es el porcentaje de unidades de glicolilo, y Z es el porcentaje de unidades de gluconilo de tal forma que la Tg del terpolímero esté por encima de aproximadamente 45 °C).

45 **[0040]** En otro ejemplo descrito en esta invención, el implante vascular 10 puede formarse a partir de un estereocopolímero de ácido poliláctico producido a partir de L y DL lactidas. El polímero se designa en esta invención como "PLAX", donde X representa el porcentaje de las unidades de ácido L-láctico en la mezcla de monómeros utilizados para preparar las lactidas. X puede estar en el intervalo de aproximadamente 2 a aproximadamente 98 y, por ejemplo, de aproximadamente 20 a aproximadamente 80.

[0041] En aún otro ejemplo descrito en esta invención, el implante vascular 10 puede formarse a partir de un copolímero de ácido poliláctico y ácido glicólico producido a partir de L y DL lactidas y glicólidos. El polímero se designa en esta invención como "PLAXGAY", donde Y representa el porcentaje de unidades de ácido glicólico en la mezcla de monómeros utilizados para preparar los copolímeros. Los copolímeros no contienen unidades de repetición de glicolilo ya que se sabe que dichas unidades son más inflamatorias que las unidades de repetición de lactilo. Los polímeros se pueden preparar usando metal de Zn o lactato de Zn como iniciador. Para garantizar buenas propiedades mecánicas iniciales del implante vascular 10, el peso molecular del copolímero puede estar por encima de aproximadamente 20.000 daltons y, por ejemplo, aproximadamente 100.000 daltons o más. La polidispersidad, I = Pm/Mn, puede ser inferior a aproximadamente 2, y no debe reflejar en gran medida la presencia de oligómeros de bajo peso molecular menores de aproximadamente 2.000 daltons (según se determina, por ejemplo, por cromatografía de exclusión por tamaño).

II. Educar y engarzar el implante vascular biorreabsorbible

65 [0042] El implante vascular 10 descrito en esta invención puede formarse mediante técnicas estándar, tales

como extrusión, moldeo, hilado, moldeo por inyección, corte por láser, combinaciones de las mismas, o cualquier otra técnica de procesamiento que transforme el polímero o polímeros viscoelásticos en un dispositivo hueco que tenga una estructura tubular. El implante vascular 10 formado por uno cualquiera o una combinación de estos procedimientos puede configurarse para tener una configuración predeterminada final (por ejemplo, forma, longitud, grosor, diámetro) que se adapte a la aplicación para la que se utilizará el implante vascular. Por ejemplo, el implante vascular 10 puede preformarse a un diámetro inicial y a continuación calentarse a una temperatura igual o superior a la temperatura de transición vítrea seleccionada. El implante vascular 10 puede entonces engarzarse (por ejemplo, usando medios mecánicos y/o enfriamiento) a un perfil contraído más pequeño adecuado para su administración a un lumen corporal. Después, el implante vascular 10 puede enfriarse y, antes de la implantación, ensamblarse en un catéter guía (no mostrado) u otro sistema de administración (por ejemplo, un balón). Un análisis más detallado de los procedimientos que pueden usarse para formar el implante vascular 10 descrito en la Publicación PCT N.º WO2005/096992 A1.

[0043] El implante vascular 10 puede formularse para transportar y administrar una diversidad de materiales o agentes terapéuticos, siempre que estos materiales o agentes no formen una solución sólida con el polímero o polímeros viscoelásticos y no actúen como un plastificante que altere significativamente la funcionalidad del implante. Los materiales o agentes pueden depositarse en la superficie exterior o interior del implante vascular 10 ya sea por impacto o por acoplamiento químico. Dichos materiales o agentes pueden incluir productos farmacéuticos, agentes farmacéuticamente activos, fármacos, agentes genéticos, agentes no genéticos y células. Se puede emplear una amplia diversidad de agentes terapéuticos junto con la presente invención, incluidos los utilizados para el tratamiento de una amplia diversidad de enfermedades y afecciones (es decir, la prevención de una enfermedad o afección, la reducción o eliminación de síntomas asociados con un enfermedad o afección, o la eliminación sustancial o completa de una enfermedad o afección), tal como enfermedades cardiovasculares y cáncer.

III. <u>Procedimientos para determinar tiempos y temperaturas para educar y engarzar el implante vascular</u> 25 <u>biorreabsorbible</u>

[0044] Las temperaturas y los tiempos adecuados para educar al implante vascular 10 descrito en esta invención, y desarrollar así un implante vascular que sea resistente a un retroceso negativo, se pueden evaluar engarzando primero el implante vascular en un catéter con balón. El balón se infla a continuación para iniciar la expansión del implante vascular 10. El balón se retira y el implante vascular 10 se almacena a aproximadamente 37 °C. Mientras está almacenado, el implante vascular 10 puede aumentar de diámetro debido a las propiedades de retroceso positivo del implante vascular. Si el implante vascular 10 exhibe poco o ningún retroceso negativo cuando se almacena en estas condiciones durante un periodo de aproximadamente 4 a 6 semanas (por ejemplo, el tiempo estimado para que una pared de la arteria se recupere de la angioplastia PTC), los tiempos y temperaturas empleados para educar al implante vascular 10 son apropiados. En aquellos casos donde el implante vascular 10 exhibe una pequeña cantidad de retroceso, el implante vascular se puede educar a un diámetro ligeramente mayor que el diámetro predeterminado final para compensar la pequeña cantidad de retroceso negativo.

[0045] Las temperaturas y los tiempos para engarzar el implante vascular 10 a un diámetro reducido pueden evaluarse permitiendo que el catéter de balón montado en el implante vascular permanezca aproximadamente a temperatura ambiente o a la temperatura de almacenamiento. Si el implante vascular engarzado 10 permanece contraído en el diámetro pequeño correspondiente al balón desinflado en estas condiciones, los tiempos y temperaturas que se emplean durante el engarce son apropiados. La optimización de las propiedades mecánicas impartidas del implante vascular 10 (por ejemplo, retroceso positivo) se puede lograr almacenando el producto terminado a una temperatura ambiente por debajo de aproximadamente 20 °C. Por ejemplo, el producto terminado puede refrigerarse de aproximadamente 6 °C a aproximadamente 8 °C.

IV. Despliegue del implante vascular biorreabsorbible

Después de formar el implante vascular 10 descrito en esta invención, el implante vascular puede implantarse en un lumen corporal para tratar cualquiera o una combinación de enfermedades o afecciones (por ejemplo, estenosis o una placa vulnerable). Los ejemplos de lúmenes o pasos corporales donde se puede implantar el implante vascular 10 incluyen el tracto gastrointestinal (por ejemplo, conductos biliares, colon, duodeno), esófago, tráquea, bronquios, tracto urinario (por ejemplo, uretra, próstata, uréteres), sistemas del conducto pancreático, intestino, conductos oculares, trompas de Falopio y tubos espermáticos, y vasculatura, tal como arterias y venas (por ejemplo, arterias femeroilíacas, arteria carótida, arterias vertebrobasilares, arterias renales, vasos sanguíneos coronarios, vasos sanguíneos periféricos, vasos sanguíneos intracraneales, etc.).

[0047] El implante vascular 10 descrito en esta invención puede desplegarse mediante una diversidad de procedimientos. Por ejemplo, el implante vascular 10 puede introducirse en el lumen o paso corporal usando un catéter guía, por ejemplo, y después puede avanzar a un sitio objetivo dentro del lumen corporal (por ejemplo, el sitio de estenosis o una placa vulnerable). El diámetro y la colocación del implante vascular 10 se pueden determinar por cualquier procedimiento. Por ejemplo, parte o la totalidad del implante vascular 10 puede recubrirse o envolverse con un material radiopaco para permitir la visualización en tiempo real del implante vascular durante la implantación. Un 65 ejemplo de tal material radiopaco puede incluir oro, que no es irritante, es sustancialmente no alérgico, ofrece una alta

visibilidad fluoroscópica en una capa muy delgada, y se cree que disminuye la formación de trombos.

[0048] En un ejemplo descrito en esta invención, el implante vascular 10 puede incluir al menos dos marcadores (no mostrados) dispuestos para que el diámetro del implante vascular pueda determinarse en tiempo real. Los
 5 marcadores se pueden aplicar al implante vascular 10 de varias maneras, tal como una cinta que se engarza en un puntal del implante vascular y/o un recubrimiento de metal pesado parcialmente pulverizado. Como se describe más adelante, los marcadores pueden ayudar a determinar si el implante vascular 10 se ha expandido adecuadamente y si el diámetro del implante vascular ha aumentado o disminuido en un momento dado.

10 [0049] Las modalidades de imagen utilizadas para detectar los marcadores son conocidas en la técnica y pueden incluir rayos X, imágenes por resonancia magnética (IRM) e imágenes de ultrasonido. Los marcadores pueden usarse para rastrear la ubicación del implante vascular 10 a medida que transcurre a través del cuerpo del sujeto, lo que ayuda en gran medida a determinar si el implante vascular está transcurriendo por la ruta correcta a través del sujeto. Además, esto ayuda a colocar el implante vascular 10 en el sitio correcto dentro del lumen corporal.

[0050] Se apreciará que el implante vascular 10 puede incluir, como alternativa, al menos tres marcadores. El uso de al menos tres marcadores permite determinar la ubicación tridimensional del implante vascular 10 en cualquier momento durante la implantación. Esta característica asegura que el implante vascular 10 no tenga movimiento de rotación dentro del lumen corporal, lo que puede ocurrir si el diámetro externo del diámetro vascular es menor que el diámetro interno del lumen corporal donde se coloca el implante vascular. El movimiento de rotación del implante vascular 10 dentro del lumen corporal se ve desfavorecido porque puede aumentar la turbidez del flujo sanguíneo y, por lo tanto, la trombogénesis. En el caso de que se detecte movimiento de rotación durante la implantación del implante vascular 10, se entenderá que el diámetro del implante vascular debería entonces aumentarse apropiadamente.

[0051] Después de que el implante vascular 10 se coloca en el sitio objetivo dentro del lumen corporal, el implante vascular puede expandirse en su forma predeterminada final. El implante vascular 10 puede expandirse usando una cualquiera o una combinación de técnicas conocidas, tales como a través de un balón, fluido de inflado y/o el calor corporal del sujeto. Por ejemplo, el implante vascular 10 se puede expandir usando una combinación de expansión sostenida con balón y recuperación de memoria (es decir, a medida que se alcanza la Tg seleccionada de la endoprótesis) como se describe en la Solicitud de Patente de EE.UU. N.º de Serie 12/282.738 publicada como el documento US2009099639 A1.

[0052] El retroceso positivo lento y sostenido, basado en memoria, del implante vascular 10 previene o mitiga la expansión incontrolada y excesiva del implante vascular, lo que puede causar daño al tejido en el sitio objetivo. Además, dado que el material o materiales viscoelásticos del implante vascular 10 exhiben deformación dependiente del tiempo, el despliegue lento y sostenido del implante vascular evita las grietas y fisuras típicamente asociadas con el despliegue de armazones o endoprótesis poliméricas. Durante y después de la expansión, las tensiones que se distribuyen de manera homogénea en todo el implante vascular 10 aseguran que la resistencia radial y la resistencia mecánica del implante no se vean comprometidas, evitando o mitigando de este modo los efectos no deseados o perjudiciales para la endoprótesis (es decir, contracción o retroceso de la endoprótesis). En consecuencia, el implante vascular desplegado 10 no solo exhibe una mayor rigidez radial para mantener el retroceso arterial elástico, sino que también evita el aplastamiento al mitigar o impedir tensiones por encima del límite elástico.

45 **[0053]** El siguiente ejemplo es solo para fines ilustrativos y no pretende limitar el alcance de las reivindicaciones que se adjuntan a la presente.

<u>Ejemplo</u>

- 50 **[0054]** Se implantó en la vasculatura coronaria de 32 cerdos, 16 cerdos domésticos y 16 minicerdos 2 endoprótesis biorreabsorbibles (como se ilustra esquemáticamente en las Figs. 1 A-2E) por cerdo. Todas las endoprótesis se administraron a sus respectivos sitios objetivo y se desplegaron adecuadamente siguiendo las instrucciones apropiadas. Los cerdos domésticos se sacrificaron a los 28 días y los minicerdos a los 90 días.
- 55 **[0055]** Un mes después de la implantación de la endoprótesis, el porcentaje de restenosis fue inferior al 50 %, con una pérdida medida de lumen tardía promedio de aproximadamente 0,6 mm. Como se puede apreciar en las Figs. 7A-B, las endoprótesis se opusieron perfectamente a la pared de la arteria a los 30 días y a los 90 días, demostrando así un soporte radial evidente.
- 60 **[0056]** Además, algunas endoprótesis se explantaron y se procesaron a través de un protocolo de digestión enzimática. La fuerza radial residual se midió en las endoprótesis recuperadas. Como se muestra en la Fig. 8, se demostró la rotura de la unión en una de las endoprótesis recuperadas. La resistencia radial y la rigidez a los 30 días no fueron inferiores en comparación con los valores previos a la implantación. Además, el análisis histológico demostró una buena biocompatibilidad de las endoprótesis a los 30 días (Figs. 9A-B).
- 65 La histología se realizó por CBSET, 500 Patriot Way, Lexington, MA 02421, EE.UU.

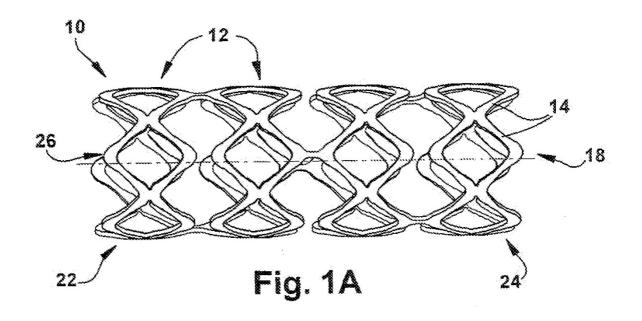
ES 2 758 798 T3

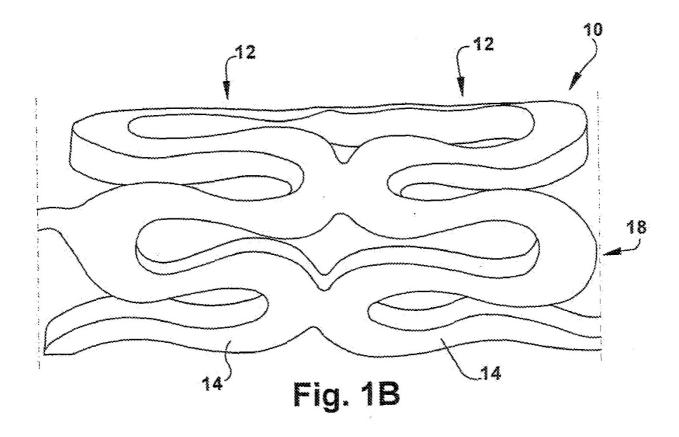
[0057] A partir de la descripción anterior de la invención, los expertos en la técnica percibirán mejoras, cambios y modificaciones. Dichas mejoras, cambios y modificaciones están dentro de la habilidad de la técnica.

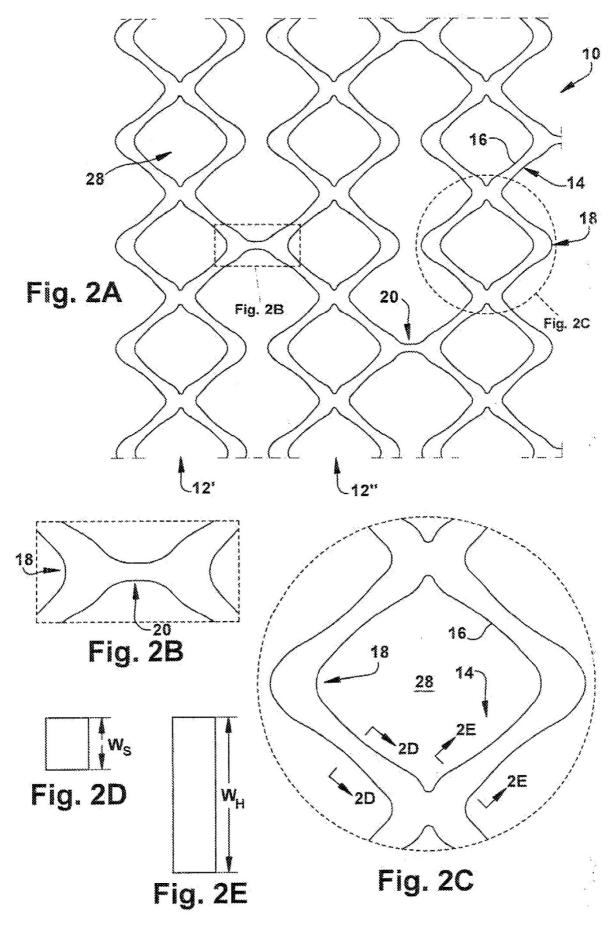
REIVINDICACIONES

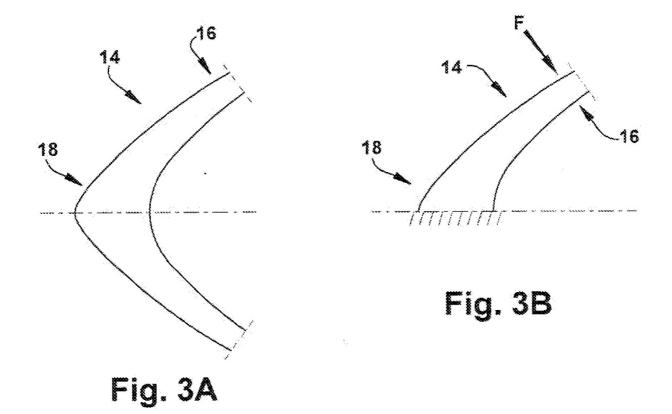
1. Un implante vascular de ácido poliláctico biorreabsorbible (PLA) que tiene una estructura tubular y que se implanta en un lumen corporal, comprendiendo dicho implante vascular:

5


10


20


- dos o más elementos de soporte anulares (12), incluyendo cada uno de dichos elementos de soporte anulares una pluralidad de puntales (14) interconectados por una región de bisagra (18), teniendo cada región de bisagra un ancho e incluyendo cada puntal una sección intermedia (16) que tiene un ancho; donde el ancho de dicha región de bisagra es mayor que el ancho de dicha sección intermedia, **caracterizado porque** una pluralidad de celdas (28) está definida por los puntales y las regiones de bisagra; y donde el implante vascular comprende además - al menos un puntal transversal (20) que corta dos elementos de soporte anulares;


donde el ancho de cada puntal (14) se estrecha sustancialmente de forma continua desde cada una de dichas regiones de bisagra a cada una de dichas secciones intermedias;

- 15 donde dicho implante vascular de PLA permite la transición de dicho implante vascular entre una configuración contraída y una configuración expandida, definiendo cada uno de dicha pluralidad de puntales y dicha región de bisagra una sección transversal; y
 - donde el momento de inercia aumenta desde cada sección intermedia hacia cada región de bisagra para alojar dicha transición y resistir una carga radial aplicada a dicho implante vascular en la configuración expandida.
 - 2. El implante vascular de PLA biorreabsorbible de la reivindicación 1, donde dicho implante vascular es un armazón.
- 3. El implante vascular de PLA biorreabsorbible de la reivindicación 1, donde dicho implante vascular es 25 una endoprótesis.
 - 4. El implante vascular de PLA biorreabsorbible de la reivindicación 1, donde la sección transversal define un ancho.
- 30 5. El implante vascular de PLA biorreabsorbible de la reivindicación 1, donde el ancho de cada uno de dichos al menos un puntal transversal es menor que el ancho de dicha región de bisagra.
- 6. El implante vascular de PLA biorreabsorbible de la reivindicación 1, donde dicho al menos un puntal transversal se rompe en menos de aproximadamente 90 días después de la implantación de dicho implante vascular 35 en el lumen corporal.
 - 7. El implante vascular de PLA biorreabsorbible de la reivindicación 1, donde dicho polímero de PLA es ácido poli-DL-láctico.

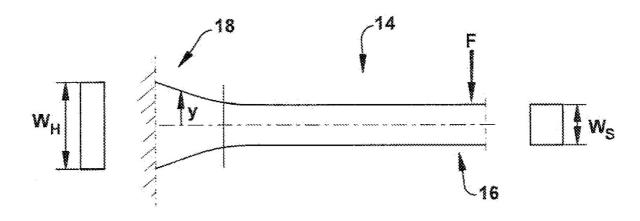
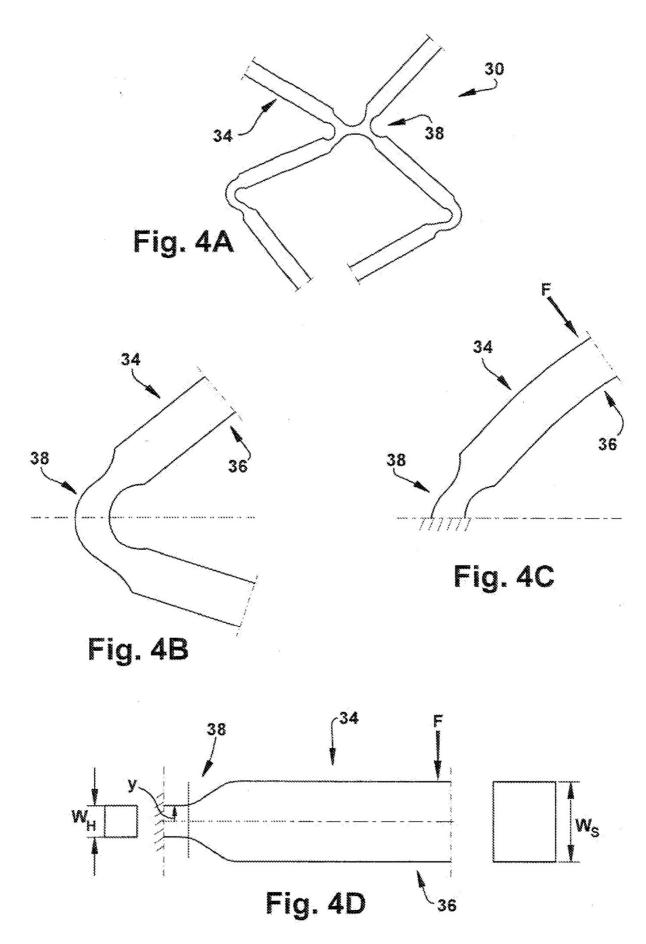
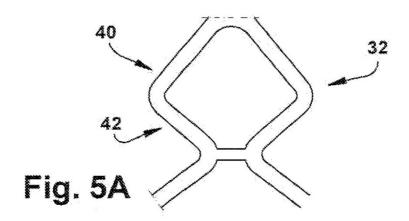
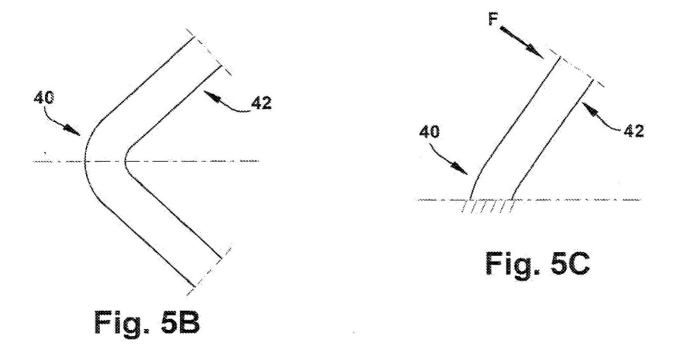





Fig. 3C



Fig. 5D

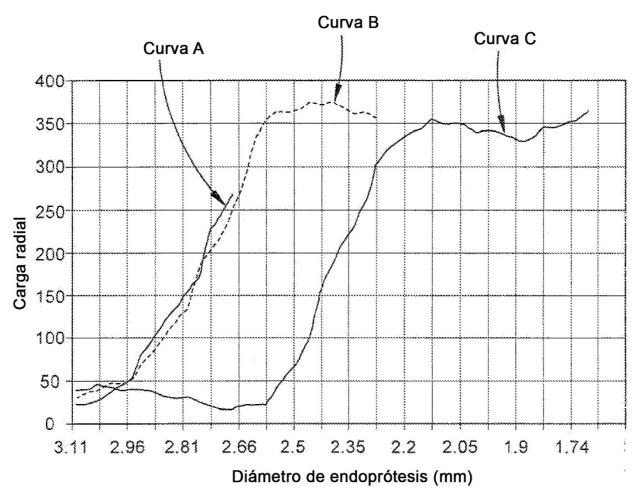
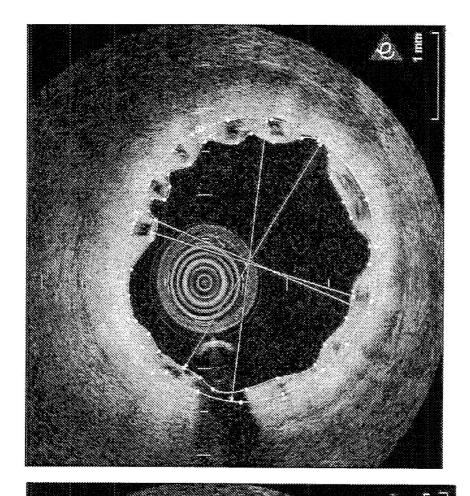



Fig. 6

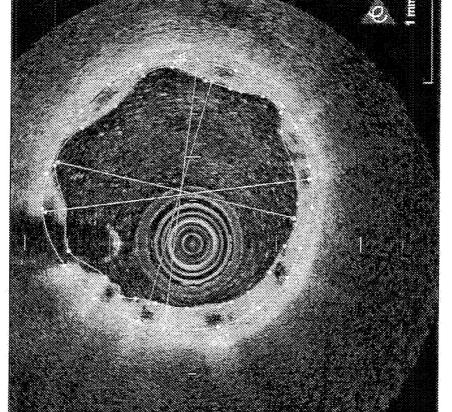
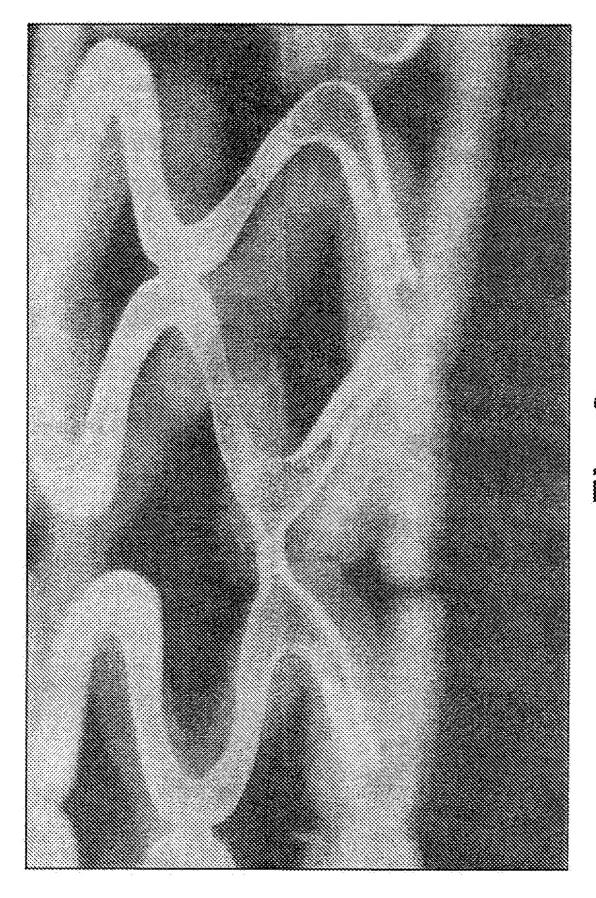



Fig. 7A

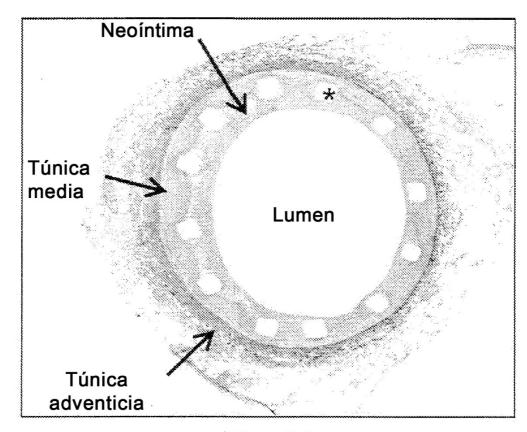


Fig. 9A

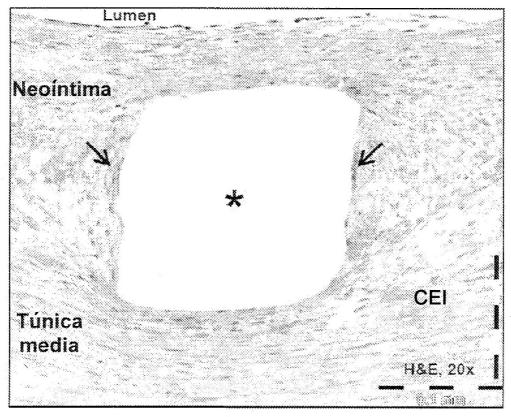


Fig. 9B