

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 760 004

51 Int. Cl.:

C07K 14/435 (2006.01)
A61K 39/008 (2006.01)
A61K 39/00 (2006.01)
G01N 33/68 (2006.01)
C12N 15/12 (2006.01)
C07K 16/18 (2006.01)
A61P 33/02 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- Fecha de presentación y número de la solicitud europea: 06.05.2009 E 15154516 (7)
 Fecha y número de publicación de la concesión europea: 10.07.2019 EP 2899203
 - (54) Título: Vacuna contra Leishmania utilizando un inmunnógeno salival de mosca de la arena
 - (30) Prioridad:

08.05.2008 US 51635 P 30.09.2008 US 101345 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 12.05.2020 (73) Titular/es:

BOEHRINGER INGELHEIM ANIMAL HEALTH USA INC. (50.0%)
3239 Satellite Boulevard, Bldg. 500
Duluth, GA 30096, US y
GOV'T OF THE USA AS REPRESENTED BY THE
SECRETARY OF THE DEPARTMENT OF HEALTH
AND HUMAN SERVICES (50.0%)

(72) Inventor/es:

FISCHER, LAURENT BERNARD; VALENZUELA, JESUS G.; RIBEIRO, JOSE y KAMHAWI, SHADEN

(74) Agente/Representante:

SALVÀ FERRER, Joan

DESCRIPCIÓN

Vacuna contra Leishmania utilizando un inmunnógeno salival de mosca de la arena

5 Esta solicitud reivindica el beneficio de la solicitud provisional de Estados Unidos No. de Serie 61/051.635 presentada el 8 de mayo de 2008, y la solicitud provisional de Estados Unidos No. de serie 61/101.345 presentada el 30 de septiembre de 2008, que hacen referencia a la Solicitud Internacional No. PCT/US2003/034453 titulada Polipéptidos de Lutzomyia longipalpis y procedimientos de uso presentada el 29 de octubre de 2003, que reivindica prioridad de la solicitud provisional No. 60/422.301, presentada el 29 de octubre del 2002.

Todos los documentos citados o mencionados en este documento ("documentos citados en el presente documento"), y todos los documentos citados o referenciados en documentos citados en el presente documento, junto con cualquiera de instrucciones de fabricante, descripciones, especificaciones de producto, y hojas de productos para cualquiera de los productos mencionados en este documento se pueden emplear en la práctica de la invención.

CAMPO

La presente invención se refiere a formulaciones para la lucha contra las infecciones por *Leishmania* en 20 caninos. Específicamente, la presente descripción proporciona vectores que contienen y expresan *in vivo* o *in vitro* antígenos salivales de *Lu. Longipalpis* de la mosca de la arena que provocan una respuesta inmunitaria en animales o humanos contra *Leishmania*, incluyendo composiciones que comprenden dichos vectores, procedimientos de vacunación contra la *Leishmania* y kits para usar con tales procedimientos y composiciones.

25 ANTECEDENTES DE LA INVENCIÓN

La *Leishmania*sis es una enfermedad parasitaria importante y grave que afecta a los seres humanos, caninos (perros, lobos, zorros, coyotes, chacales), y, en menor grado, felinos (leones, tigres, gatos domésticos, gatos salvajes, otros gatos grandes, y otros felinos incluyendo guepardos y lince).

Los subgéneros *Leishmania* y Viannia se agrupan en complejos de especies y subespecies basándose en similitudes moleculares, bioquímicas e inmunológicas. Hay varias formas de la enfermedad nombradas por su presentación clínica, incluyendo *Leishmania*sis cutánea, mucocutánea o visceral. Cada una de estas formas de la enfermedad es causada por diferentes especies de moscas de la arena que se encuentran en diferentes regiones del mundo. La *Leishmania*sis cutánea de los seres humanos se asocia con miembros de complejos de L. aethiopica, L. major y L. tropica en el Viejo Mundo y complejos de L. mexicana y L. braziliensis en el Nuevo Mundo. La *Leishmania*sis visceral es causada por L. donovani y L. infautum en las regiones del Viejo Mundo, mientras que L chagasi es el principal responsable de la enfermedad visceral en el Nuevo Mundo. Debido a que L. infantum es el agente primario asociado con la leishmaniosis canina, las infecciones en perros a menudo son consideradas como 40 viscerales, a pesar de que tienden a producir una enfermedad visceral y cutánea.

El agente de la *Leishmania*sis visceral es un parásito protozoario y pertenece al complejo de *Leishmania* donovani. Este parásito se distribuye ampliamente en los países templados y subtropicales del sur de Europa, África, Asia, América del Sur y América Central (Desjeux P. et al.). *Leishmania infantum donovani (L. infantum)* es responsable de la enfermedad felina y canina en el sur de Europa, África y Asia. En América del Sur y América Central, el agente es *Leishmania donovani chagasi (L. chagasi*), que está estrechamente relacionado con *L. infantum*. En los seres humanos, el agente es *Leishmania donovani donovani (L. donovani*), que también está relacionado con *L. infantum* y *L. chagasi*.

50 Las moscas de la arena del género Phlebotomus (Viejo Mundo) y Lutzomyia (Nuevo Mundo) son los vectores principales responsables de la transmisión de la enfermedad. Actualmente estos son los únicos vectores conocidos capaces de propagación; pulgas, garrapatas y otros artrópodos no han demostrado ser vectores competentes. Sin embargo, se han contraído casos raros de *Leishmania*sis a través del intercambio de sangre o fluidos corporales, el contacto directo y al menos un caso de transmisión congénita. La importancia de las moscas de arena nativas está todavía por determinar, pero podría estar relacionada con la dosis infecciosa del organismo. Sin embargo, en los últimos años, y en ausencia de vectores conocidos, se ha producido una incidencia abrumadora de *Leishmania*sis en las perreras Foxhound través de los Estados Unidos. Todavía no se sabe cómo se produjo la transmisión de la enfermedad o cómo esta enfermedad se mantiene en estos perros porque las moscas de arena infectadas no han sido reportadas en los Estados Unidos. Sin embargo, ciertas especies de Lutzomyia (L. shannoni), que se 60 encuentran a lo largo del este de los Estados Unidos y hasta el norte de Nueva Jersey, se consideran un vector potencialmente competentes para L. mexicana. *Phlebotomus ariasi (P. ariasi) y Phlebotomus perniciosus (P. perniciosus), Phlebotomus neglectus (P. neglectus)* son los portadores más comunes en el sur de Europa, África y Asia, mientras que *Lutzomyia longipalpis (Lu. Longipalpis)* es el portador más común en América del sur y Centroamérica.

65

La leishmaniosis es una enfermedad lentamente progresiva que puede tardar hasta 7 años en convertirse en

clínicamente evidente (McConkey SE et al.; Slappendel RJ et al.). Incluso entonces, los signos son con frecuencia inespecíficos y raramente se considera un diagnóstico de *Leishmania*. Los perros se infectan con más frecuencia con L. infantum (complejo de L. donovani), que es responsable de la enfermedad viscerotrópica en personas. Sin embargo, hasta el 90% de los perros infectados se presentan con lesiones viscerales y cutáneas (Slappendel RJ et 5 al.). Por otro lado, muchos perros aparecen resistentes de forma natural a este parásito y pueden permanecer asintomáticos a pesar de la infección conocida (Grosjean NL et al.). Se estima que sólo el 10% de los perros que residen en áreas endémicas en realidad a desarrollar la enfermedad clínica (Lindsay DS et al.). Esta menor incidencia de la enfermedad clínica se atribuye a una predisposición genética de ciertos perros para desarrollar una respuesta inmunitaria mediada por células más protectoras que una respuesta humoral (Lindsay DS et al.) McConkey SE et al., Slappendel RJ, et al.). Además, se ha descrito que hasta el 20% de los perros infectados puede desarrollar una respuesta inmunitaria adecuada y espontáneamente se recuperan de la enfermedad clínica (McConkey SE et al.). En los animales que desarrollan una respuesta humoral, IgG1 parece que se correlaciona con la enfermedad clínica mientras que los perros asintomáticos tienen niveles de anticuerpos IgG2 más altos (Lindsay et al.).

15

Algunos de los signos clínicos descritos con más frecuencia de *Leishmania*sis incluyen apatía, fatiga e intolerancia al ejercicio junto con la anorexia y la pérdida de peso que finalmente culminan como enfermedad de desgaste (McConkey SE et al.). Estos signos pueden estar acompañados o no de fiebre, linfadenopatía local o generalizada (90%) y/o hepatoesplenomegalia (Grosjean NL et al., Lindsay DS et al., McConkey SE et al., Martínez-Subiela S et al.). La afectación articular también es bastante común y puede presentarse como cojera con articulaciones hinchadas o simplemente como un modo de andar rígido. Los hallazgos menos comunes incluyen lesiones oculares (<5%), diarrea crónica (30%) y uñas largas quebradizas deformadas (20%) referidas como onicogrifosis (Lindsay DS et al., Slappendel RJ et al.). Las lesiones cutáneas están presentes en hasta el 89% de los perros infectados, con o sin signos evidentes de afectación visceral. Las lesiones por la *Leishmania*sis cutánea pueden aparecer en cualquier parte del cuerpo, pero los sitios más comunes son los que están expuestas al medio ambiente y, por tanto, son más susceptibles a las picaduras de las moscas de la arena. La pápula inicial da lugar rápidamente a una úlcera. La *Leishmania*sis Viseral es invariablemente fatal si no se trata rápidamente. La *Leishmania*sis visceral afecta a los órganos internos del cuerpo, específicamente el bazo y el hígado.

30 Los perros son considerados el principal reservorio de *Leishmania*sis. La enfermedad se caracteriza por la evolución crónica de signos víscero-cutáneos que aparecen en menos del 50% de los animales infectados (Lanotte G. et al.). Los perros asintomáticos y sintomáticos con anticuerpos detectables pueden ser infecciosos (Molina R. et al.; Courtenay O. et al.). Los gatos también pueden ser portadores de los parásitos de protozoos y por lo tanto se consideran reservorios potenciales secundarios.

35

Debido a una serie de factores, las opciones de tratamiento para la *Leishmania*sis en perros y la respuesta a la terapia son limitadas a lo sumo. Por alguna razón no definida, la *Leishmania*sis visceral es más difícil de tratar en perros que en los seres humanos. Ninguna opción de tratamiento es 100% eficaz en la limpieza de la infección parasitaria y la enfermedad clínica a menudo vuelve a aparecer con el cese de la terapia (Lindsay DS et al.). En áreas endémicas, el régimen de tratamiento más común ha sido una combinación de alopurinol con un compuesto de antimonio pentavalente, tal como antimonita de meglumina o estibogluconato de sodio (Lindsay DS et al., Slappendel RJ et al.). Sin embargo, en los últimos años este protocolo ha perdido el favor debido a la creciente resistencia del parásito al fármaco así como los efectos secundarios adversos asociados con estos compuestos (Lindsay DS et al.). Para limitar aún más las opciones de tratamiento, Pentostam® (estibogluconato de sodio) es el único compuesto de antimonio disponible en los Estados Unidos y su distribución está regulada por los Centros para el Control y Prevención de Enfermedades (CDC) en Atlanta, GA (DS Lindsay et al.).

Se han intentado otros protocolos, pero no han demostrado ser más eficaces en la limpieza de la infección parasitaria o en la prevención de la recaída clínica. Además, cada protocolo está asociado con efectos adversos potenciales. La anfotericina B se une a esteroles y altera la permeabilidad de membrana celular pero es nefrotóxico (Lindsay DS et al.). Cuando se administra parenteralmente, la paramomicina actúa sinérgicamente con compuestos de antimonio que causan niveles más altos del compuesto de antimonio durante períodos más largos de tiempo, pero también es nefrotóxico y actualmente no se recomienda para el uso clínico (Lindsay DS et al.). El isetionato de pentamidina es eficaz contra la *Leishmania*sis, pero requiere al menos 15 inyecciones intramusculares y es bastante doloroso (Lindsay DS et al.). Ketoconazol, miconazol, fluconazol e itraconazol son medicamentos orales que pueden ser útiles para contener la enfermedad, pero que son de coste prohibitivo y llevan el riesgo de resistencia a los medicamentos en el tratamiento de pacientes sintomáticamente. En resumen, los diversos regímenes de tratamiento para la *Leishmania*sis en perros se han investigado, pero no son 100% eficaces; las recaídas son la regla más que la excepción. En última instancia, el médico veterinario se enfrenta al dilema de tratar los brotes sintomáticos de la *Leishmania*sis en perros en riesgo de desarrollar cepas resistentes a los medicamentos de este parásito dentro de los Estados Unidos.

La detección masiva de perros seropositivos, seguido de sacrificio y/o tratamiento con fármacos, o la aplicación en masa de collares impregnados de deltametrina se desmostró que tenía un impacto en la reducción de la prevalencia de la leishmaniosis humana y canina en áreas endémicas del sur de Europa, África, y Asia (Maroli M. et al. Mazloumi Gavgani A.S. et al.), aunque se ha debatido la eficacia de la eliminación de los caninos seropositivos (Dietze R. et

al.; Moreira Jr. ED et al.). Estas medidas de control se consideran inaceptables, caras o no eficaces (Gradoni L. et al.).

- Los modelos matemáticos utilizados para comparar la eficacia de diversas herramientas para el control de 5 *Leishmania*sis sugieren que una vacuna canina puede ser el procedimiento más práctico y eficaz (Dye C). Por lo tanto, el desarrollo de vacunas capaces de proteger a los caninos de la *Leishmania*sis y/o para prevenir la progresión de la enfermedad en los animales infectados es altamente deseable para la implementación de los programas de control de la *Leishmania*sis, así como para la comunidad veterinaria (Gradoni L. et al.).
- 10 Las investigaciones anteriores han tratado de identificar procedimientos de diagnóstico y tratamiento de *Leishmania* a través de, por ejemplo, la administración de polipéptidos antigénicos (véase, por ejemplo, WO 2004/039958 y US 2006/051364). Sin embargo, hasta la fecha, no hay vacuna disponible para el tratamiento de la *Leishmania*. Los vectores y formulaciones de vacuna de la presente descripción cumplen esta necesidad en la técnica.
- 15 La cita o identificación de cualquier documento en esta solicitud no es una admisión de que tal documento está disponible como técnica anterior para la presente invención.

CARACTERÍSTICAS DE LA INVENCIÓN

- 20 La presente invención se refiere a una vacuna de administración de sensibilización y una vacuna de administración de refuerzo para usar en la protección de un sujeto de la *Leishmania*sis y/o prevención de la progresión de la enfermedad en un sujeto infectado, en el que el sujeto es un canino,
- en el que las vacunas se formulan para la administración en un régimen de administración de sensibilizaciónrefuerzo que comprende una administración de sensibilización con la vacuna de administración de sensibilización 25 seguida de una administración de refuerzo con la vacuna de administración de refuerzo,
 - en el que dicha vacuna de administración de sensibilización comprende, en un vehículo, diluyente o excipiente farmacéutica o veterinariamente aceptable, un vector de expresión que contiene un polinucleótido para expresar, *in vivo*, un polipéptido salival de *Lu. Longipalpis*, y
- dicha vacuna de administración de refuerzo comprende, en un vehículo, diluyente o excipiente farmacéutica o 30 veterinariamente aceptable, el mismo polipéptido salival de *Lu. Longipalpis*,
 - en la que el polipéptido salival de Lu. Longipalpis es un polipéptido LJM17,
 - en la que el polinucleótido codifica un polipéptido que tiene al menos un 80% de identidad de secuencia con un polipéptido que tiene la secuencia como se expone en la SEQ ID NO: 5, 7, 15, o 17; o el polinucleótido tiene al menos un 70% de identidad de secuencia con un polinucleótido que codifica un polipéptido que tiene la secuencia
- 35 como se expone en la SEQ ID NO: 5, 7, 15, o 17; o el polinucleótido tiene al menos un 70% de identidad de secuencia con un polinucleótido que tiene la secuencia como se expone en SEQ ID NO: 6, 8, 16, 18, 21, 90, o 91; y en la que el polipéptido de *Lu. Longipalpis* comprende una secuencia de aminoácidos que tiene al menos un 80% de identidad de secuencia con un polipéptido que tiene la secuencia como se expone en SEQ ID NO: 5, 7, 15, o 17.
- 40 Un objetivo de esta descripción puede ser uno cualquiera o todos de proporcionar vectores o virus recombinantes, así como procedimientos para la fabricación de dichos virus, y proporcionar composiciones y/o vacunas, así como procedimientos para el tratamiento y profilaxis de la infección por *Leishmania*.
- En el presente documento se describe un vector recombinante, tal como un virus recombinante, por ejemplo, un 45 poxvirus recombinante, que contiene y expresa al menos una molécula de ácido nucleico exógeno y, la al menos una molécula de ácido nucleico exógena puede comprender una molécula de ácido nucleico que codifica un inmunógeno o epítopo de interés de proteínas salivales de vectores de la mosca de la arena de *Lu. Longipalpis*.
- En el presente documento se describe un vector recombinante, tal como un virus recombinante, por ejemplo, un 50 poxvirus recombinante, que contiene y expresa al menos una molécula de ácido nucleico exógeno y, la al menos una molécula de ácido nucleico exógeno puede comprender polipéptidos salivales de *Lu. Longipalpis* y/o variantes o fragmentos de los mismos.

Estas vacunas pueden prevenir la difusión y/o la replicación del parásito en un huésped.

- La descripción proporciona además composiciones inmunológicas (o inmunogénicas) o composiciones de vacuna que comprenden dicho vector de expresión o el producto o productos de expresión de dicho vector de expresión.
- La descripción proporciona además procedimientos para inducir una respuesta inmunológica (o inmunogénica) o de 60 protección contra *Leishmania*, así como procedimientos para prevenir o tratar *Leishmania* o un estado o estados patológicos causados por *Leishmania*, que comprende administrar el vector de expresión o un producto de expresión del vector de expresión, o una composición que comprende el vector de expresión, o una composición que comprende un producto de expresión del vector de expresión.
- 65 La descripción también se refiere a productos de expresión de virus, así como anticuerpos generados a partir de los productos de expresión o la expresión de los mismos *in vivo* y usos para dichos productos y anticuerpos, por

ejemplo, en aplicaciones de diagnóstico.

Estas y otras realizaciones se describen o son evidentes a partir de y están abarcadas por la siguiente descripción detallada.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

5

La siguiente descripción detallada, proporcionada a modo de ejemplo, y que no pretende limitar la invención a realizaciones específicas descritas, puede entenderse conjuntamente con las figuras que se acompañan, 10 incorporadas aquí por referencia, en las que:

La Figura 1 muestra la secuencia de ácido nucleico de una cadena del plásmido pVR2001 LJM17 (SEQ ID NO: 9), en el que los dos sitios de restricción BamHI están en negrita, la secuencia que codifica el péptido señal tPA está subrayada y la secuencia que codifica LJM17 está en negrita y mayúsculas.

La Figura 2 muestra la secuencia de ácido nucleico de una cadena del plásmido pVR2001 LJL143 (SEQ ID NO: 10), 15 en el que los dos sitios de restricción BamHI están en negrita, la secuencia que codifica el péptido señal tPA está subrayada y la secuencia que codifica LJL143 está en negrita y mayúsculas.

La Figura 3 muestra un mapa del vector donante, pALVAC C3 H6p-LJM17, que tiene 5737 pares de bases.

La figura 4 ilustra el vector de expresión de la viruela de canario vCP2390, para cadena complementarias directa e inversa (SEQ ID NO: 93 y SEQ ID NO: 92). SEQ ID NO: 93 representa la cadena de vector vCP2390 que contiene el

20 polinucleótido LJM17 optimizado en codones en la dirección que codifica el polipéptido LJM17 (SEQ ID NO: 5). La Figura 5 muestra un mapa del vector donante, pALVAC C3 H6p-LJL143, que tiene 5400 pares de bases.

La Figura 6 ilustra el vector de expresión de la viruela de canario vCP2389 con su inserto que codifica LJL143 y proporciona la secuencia de nucleótidos de una cadena del vector de expresión (SEq ID NO: 94).

La figura 7 ilustra anticuerpos anti-IgG para LJM17 y LJL143, la absorbancia medida a 405 nm, en perros vacunados 25 y de control, desde un día antes de la administración V1 a dos semanas después de la administración V5.

La Figura 8 ilustra la secreción de interferón gamma (pg/ml) de PBMC de perros correspondiente a los 5 grupos, 2 semanas después de la 5^a inmunización (administración V5). Las PBMC se estimularon mediante SGH (2 pares), LJL143 (4 μg), LJM17 (4 μg), ConA (4 μg) o no estimulado por medio (med).

La Figura 9 muestra un esquema de un ensayo de destrucción *in vitro* incluyendo los resultados, expresados en 30 porcentaje de macrófagos infectados (NT: sin tratamiento, LPS: lipopolisacárido, ConA: concavalina A).

La Figura 10 muestra las biopsias de perros vacunados y de control, en los sitios de picadura de mosca de la arena, teñidas con hematoxilina/eosina (H & E), tinción de Luna, azul de toluidina y procedimientos inmunohistoquímicos para CD3 y los marcadores de macrófagos/monocitos (MAC).

La Figura 11 muestra la secuencia de ácido nucleico de una cadena del plásmido pNBO002 (SEQ ID NO: 19), en el 35 que los dos sitios de restricción BamHI están en negrita, la secuencia que codifica el péptido señal tPA está subrayada y la secuencia que codifica LJM17 está en negrita y mayúsculas.

La Figura 12 muestra un mapa del plásmido vector pNBO002 con su inserto que codifica LJM17, que tiene 6247 pares de bases.

La Figura 13 muestra la secuencia de ácido nucleico de una cadena del plásmido pNBO003 (SEQ ID NO: 20), en el 40 que los dos sitios de restricción BamHI están en negrita, la secuencia que codifica el péptido señal tPA está subrayada y la secuencia que codifica LJL143 está en negrita y mayúsculas.

La Figura 14 muestra un mapa del plásmido vector pNBO003 con su inserto que codifica LJL143, que tiene 5899 pares de bases.

La Figura 15 muestra las secuencias de proteínas de LJL143 y LJM17 de L. longipalpis.

45 La Figura 16 muestra las secuencias de ADN de LJL143 y LJM17 de L. longipalpis.

La Figura 17 muestra las tablas de identidad de secuencia.

La Figura 18 muestra la SEQ ID NO asignada a cada ADN y polipéptido.

La figura 19 es un conjunto de gráficos e imágenes que demuestran la inmunidad anti-saliva en perros expuestos a las picaduras de la mosca de la arena *Lu. Longipalpis*. La figura 19A es un conjunto de gráficos que muestran la

50 cinética temprana de títulos de anticuerpos IgG, IgG2, e IgG1 anti-*Lu. Longipalpis* en perros expuestos. La figura 19B es un gráfico de una reacción de hipersensibilidad de tipo retardado en un perro representativo a lo largo de experimentos de exposición. La figura 19C es un conjunto de imágenes de un análisis histológico H/E realizado en biopsias por punción de la piel antes de la exposición (E0), 47 h después de la primera exposición (E1), 48 h después de la segunda exposición (E2) y 48 h después de la tercera exposición (E3) a picaduras de moscas de la

arena. La figura 19D es un conjunto de imágenes que caracterizan la población inflamatoria a las 48 h después de la tercera exposición (E3) a las picaduras de moscas de arena con inmunohistoquímica para los linfocitos T CD3+ y macrófagos y tinción de Luna para eosinófilos.

La Figura 20 es un conjunto de gráficos e imágenes que demuestran un ensayo de cribado antígeno inverso de ADNc en los perros.

60 La Figura 21 es un conjunto de gráficos e imágenes que demuestran un ensayo de cribado de antígeno inverso de proteína en los perros.

La Figura 22 es un conjunto de dos gráficos que demuestran la producción de interferón γ de células mononucleares de sangre periférica (PBMCs) de perros vacunados después de la estimulación con la proteína salival recombinante. La Figura 23 es un conjunto de cuatro gráficos de barras que demuestra un ensayo de destrucción *in vitro* para

65 Leishmania chagasi por PBMC de perros inmunizados (NT, ningún tratamiento; Ly, linfocitos).

DESCRIPCIÓN DETALLADA

20

60

A menos que se indique lo contrario, los términos técnicos se usan de acuerdo con el uso convencional. Las definiciones de términos comunes en biología molecular pueden encontrarse en Benjamin Lewin, Genes V. 5 publicado por Oxford University Press, 1994 (ISBN 0-19-854287-9); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, publicado por Blackwell Science Ltd., 1994 (ISBN 0-632-02182-9); y Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, publicado por VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8). Los términos singulares "un", "una" y "el/la" incluyen los referentes plurales a menos que el contexto indique claramente lo contrario. Del mismo modo, la palabra "o" pretende incluir "y" a menos que el contexto indique claramente lo contrario. La palabra "o" significa cualquier miembro de una lista en particular y también incluye cualquier combinación de los miembros de esa lista.

Se observa en esta descripción y en las reivindicaciones y/o párrafos adjuntas, el término "polipéptido de *Lu. Longipalpis* salival", "polipéptido de *Lu. Longipalpis* ", o "polipéptido salival" se utilizan indistintamente, el término "polinucleótido de *Lu. Longipalpis* salival", "polinucleótido de *Lu. Longipalpis*", o "polinucleótido salival" se usan de manera intercambiable.

Los términos "polipéptido" y "proteína" se utilizan indistintamente en este documento para referirse a un polímero de residuos de aminoácidos consecutivos.

El término "ácido nucleico", "nucleótido", y "polinucleótido" se refieren a ARN o ADN y sus derivados, tales como los que contienen cadenas principales modificadas. Se debe entender que la descripción proporciona polinucleótidos que comprenden secuencias complementarias a las descritas en el presente documento. Los polinucleótidos de acuerdo con la descripción pueden prepararse de diferentes maneras (por ejemplo, mediante síntesis química, mediante clonación de genes, etc.) y pueden adoptar diversas formas (por ejemplo, lineal o ramificado, de cadena simple o doble, o un híbrido de las mismas, cebadores, sondas, etc.).

El término "gen" se utiliza ampliamente para referirse a cualquier segmento de polinucleótido asociado con una función biológica. Por lo tanto, los genes o polinucleótidos incluyen intrones y exones como en la secuencia genómica, o sólo las secuencias de codificación como en ADNc, tal como un marco de lectura abierto (ORF), partiendo del codón de iniciación (codón de metionina) y terminando con una señal de terminación (codón de parada). Los genes y polinucleótidos también pueden incluir regiones que regulan su expresión, tal como el inicio de la transcripción, traducción y terminación de la transcripción. Por lo tanto, también se incluyen promotores y regiones de unión a ribosomas (en general, estos elementos reguladores se encuentran aproximadamente entre 60 y 250 nucleótidos en dirección 5' del codón de inicio de la secuencia codificante o gen; Doree SM et al.; Pandher K et al.; Chung JY et al), terminadores de la transcripción (en general el terminador se encuentra dentro de aproximadamente 50 nucleótidos en dirección 3' del codón de parada de la secuencia codificante o gen; Ward, CK et al). Un gen o polinucleótido también se refiere a un fragmento de ácido nucleico que expresa ARNm o ARN funcional, o codifica una proteína específica, y que incluye secuencias reguladoras.

El término "polipéptido inmunogénico" o "fragmento inmunogénico", tal como se usa en el presente documento, se refiere a un polipéptido o un fragmento de un polipéptido que comprende un motivo específico de alelo, un epítopo u otra secuencia de forma que el polipéptido o el fragmento se unirán a una molécula de MHC e inducirán una respuesta de linfocito T citotóxico ("CTL") y/o una respuesta de células B (por ejemplo, producción de anticuerpos), y/o respuesta de linfocitos T auxiliares y/o una respuesta de hipersensibilidad de tipo retardado (DTH) contra el antígeno del que se deriva el polipéptido inmunogénico o el fragmento inmunogénico. Una respuesta DTH es una reacción inmunitaria en la que la activación de macrófagos dependiente de células T e inflamación causan lesión de tejido. Una reacción de DTH a la inyección subcutánea de antígeno se utiliza a menudo como un ensayo para la inmunidad mediada por células.

Por definición, un epítopo es un determinante antigénico que es inmunológicamente activo en el sentido de que una vez administrado al huésped, es capaz de evocar una respuesta inmunitaria del tipo humoral (células B) y/o tipo celular (células T). Estos son grupos químicos particulares o secuencias de péptidos en una molécula que son antigénicos. Un anticuerpo se une específicamente a un epítopo antigénico particular en un polipéptido. Ejemplos específicos, no limitativos, de un epítopo incluyen una secuencia de tetrapéptido a pentapéptido en un polipéptido, una secuencia de triglicósido a pentaglicósido en un polisacárido. En el animal la mayoría de los antígenos presentarán varios o incluso muchos determinantes antigénicos simultáneamente. Dicho polipéptido también puede ser calificado como un polipéptido inmunogénico y el epítopo puede identificarse tal como se describe adicionalmente.

Un componente biológico "aislado" (tal como un ácido nucleico o proteína u orgánulo) se refiere a un componente que se ha separado o purificado sustancialmente de otros componentes biológicos en la célula del organismo en el que se produce el componente de forma natural, por ejemplo, otros ADN y ARN cromosómicos y extracromosómicos, proteínas y orgánulos. Los ácidos nucleicos y proteínas que han sido "aislados" incluyen ácidos nucleicos y proteínas purificados mediante procedimientos de purificación estándar. El término también abarca ácidos nucleicos y proteínas preparados mediante tecnología recombinante, así como la síntesis química.

El término "purificado", tal como se usa en el presente documento no requiere pureza absoluta; más bien, se entiende como un término relativo. Así, por ejemplo, una preparación de polipéptido purificado es uno en el que el polipéptido está más enriquecido que el polipéptido está en su medio natural. Una preparación de polipéptido se purifica sustancialmente de tal manera que el polipéptido representa en varias formas de realización al menos 60%, al menos 70%, al menos 80%, al menos 90%, al menos 95%, o al menos 98%, del contenido total de polipéptido de la preparación. Lo mismo se aplica a los polinucleótidos. Los polipéptidos descritos en este documento se pueden purificar mediante cualquiera de los medios conocidos en la técnica.

10 Un polinucleótido recombinante es uno que tiene una secuencia que no es de origen natural o tiene una secuencia que se fabrica mediante una combinación artificial de dos segmentos separados de otro modo de la secuencia. Esta combinación artificial a menudo se logra mediante síntesis química o, más comúnmente, mediante la manipulación artificial de segmentos aislados de ácidos nucleicos, por ejemplo, mediante técnicas de ingeniería genética. En una realización, un polinucleótido recombinante codifica una proteína de fusión.

En el presente documento se describen polipéptidos de especies de moscas de arena *Lu. Longipalpis*. En el presente documento se describe un polipéptido que tiene una secuencia como se expone en SEQ ID NO: 1, 3, 5, 7, 11, 13, 15, 17, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, o 87, y un variante o fragmento de las mismas.

Tal como se usa en el presente documento, el término "homólogos" incluye ortólogos, análogos y parálogos. El término "análogos" se refiere a dos polinucleótidos o polipéptidos que tienen la misma función o similar, pero que han evolucionado por separado en organismos no relacionados. El término "ortólogos" se refiere a dos polinucleótidos o polipéptidos de diferentes especies, pero que han evolucionado a partir de un gen ancestral común por especiación. Normalmente, los ortólogos codifican polipéptidos que tienen las mismas funciones o similares. El término "parálogos" se refiere a dos polinucleótidos o polipéptidos que están relacionados por duplicación dentro de un genoma. Los parálogos usualmente tienen diferentes funciones, pero estas funciones pueden estar relacionadas. Los análogos, ortólogos y parálogos de un polipéptido salival de tipo salvaje pueden diferir del polipéptido salival de tipo salvaje por modificaciones posteriores a la traducción, por diferencias en la secuencia de aminoácidos, o por ambas. En particular, un homólogo para su uso según la invención mostrará generalmente al menos el 80-85%, 85-90%, 90-95% o 95%, 96%, 97%, 98%, 99% de identidad de secuencia, con toda o parte de las secuencias de polipéptidos o polinucleótidos salivales de tipo salvaje, y mostrará una función similar.

En el presente documento se describe un polipéptido que tiene al menos 70%, al menos 75%, al menos 80%, al menos 85%, al menos 95%, 96%, 97%, 98% o 99% de identidad de secuencia con un polipéptido que tiene una secuencia como la expuesta en las SEQ ID NO: 1, 3, 5, 7, 11, 13, 15, 17, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, o 87.

En el presente documento se describen fragmentos y variantes de polipéptidos de *L. longipalpis* identificados 40 anteriormente (SEQ ID NO: 1, 3, 5, 7, 11, 13, 15, 17, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, o 87), que fácilmente se pueden preparar por un experto en la técnica usando técnicas de biología molecular bien conocidas.

Las variantes son polipéptidos homólogos que tienen una secuencia de aminoácidos con al menos 75%, 80%, 85%, 45 90%, 95%, 96%, 97%, 98%, o 99% de identidad con la secuencia de aminoácidos tal como se expone en la SEQ ID NO: 1, 3, 5, 7, 11, 13, 15, 17, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, o 87.

Las variantes incluyen variantes alélicas. El término "variante alélica" se refiere a un polinucleótido o un polipéptido que contiene polimorfismos que conducen a cambios en las secuencias de aminoácidos de una proteína y que existen dentro de una población natural (por ejemplo, una especie o variedad de virus). Tales variaciones alélicas naturales pueden dar lugar típicamente al 1-5% de la variación en un polinucleótido o un polipéptido. Las variantes alélicas pueden identificarse por secuenciación de la secuencia de ácido nucleico de interés en un conjunto de diferentes especies, que puede llevarse a cabo fácilmente utilizando sondas de hibridación para identificar el mismo locus genético del gen en estas especies. Cualquiera y todas de dichas variaciones de ácido nucleico y los polimorfismos o variaciones de aminoácidos resultantes que son el resultado de la variación alélica natural y que no alteran la actividad funcional del gen de interés, se pretende que estén dentro del alcance de la descripción.

Una variante es cualquier polipéptido secretado de saliva de *Lu. Longipalpis*, capaz de inducir en animales, tales como perros, vacunados con este polipéptido, una respuesta inmunitaria basada en células específica caracterizada por la secreción de interferón gamma (IFN-gamma) tras la estimulación por compuestos de extracto de glándula salival de *Lu. Longipalpis*. Dicha secreción de IFN-gamma puede demostrarse utilizando metodología in vitro (es decir inmunoensayo Qnantikine® de R & D Systems Inc. (número de catálogo # CAIF00); Djoba Siawaya JF et al.).

65 Tal como se utiliza en el presente documento, el término "derivado" o "variante" se refiere a un polipéptido, o un ácido nucleico que codifica un polipéptido, que tiene una o más variaciones conservativas de aminoácidos u otras

modificaciones menores, tales que (1) el polipéptido correspondiente tiene una función sustancialmente equivalente en comparación con el polipéptido de tipo salvaje o (2) un anticuerpo generado contra el polipéptido es inmunorreactivo con el polipéptido de tipo salvaje. Estas variantes o derivados incluyen polipéptidos que tienen modificaciones menores de las secuencias de aminoácidos primarias del polipéptido de *Lu. longipalpis* que pueden 5 dar lugar a péptidos que tienen una actividad sustancialmente equivalente en comparación con el polipéptido homólogo sin modificar. Tales modificaciones pueden ser deliberadas, como mediante mutagénesis dirigida al sitio, o pueden ser espontáneas. El término "variante" contempla además deleciones, adiciones y sustituciones en la secuencia, siempre que el polipéptido funcione para producir una respuesta inmunológica tal como se define en el presente documento.

10

El término "variación conservativa" indica el reemplazo de un residuo de aminoácido por otro residuo biológicamente similar, o la sustitución de un nucleótido en una secuencia de ácido nucleico de tal manera que el residuo de aminoácido codificado no cambia o es otro residuo biológicamente similar. A este respecto, las sustituciones particularmente preferidas serán generalmente de naturaleza conservativa, es decir, aquellas sustituciones que 15 tienen lugar dentro de una familia de aminoácidos. Por ejemplo, los aminoácidos se dividen generalmente en cuatro familias: (1) ácidos - aspartato y glutamato; (2) básicos - lisina, arginina, histidina; (3) no polares - alanina, valina, leucina, isoleucina, prolina, fenilalanina, metionina, triptófano; y (4) polares sin carga - glicina, asparagina, glutamina, cistina, serina, treonina, tirosina. La fenilalanina, el triptófano y la tirosina se clasifican a veces como aminoácidos aromáticos. Los ejemplos de variaciones conservativas incluyen la sustitución de un resto hidrófobo, tal como 20 isoleucina, valina, leucina o metionina por otro residuo hidrófobo, o la sustitución de un residuo polar por otro residuo polar, tal como la sustitución de arginina por lisina, ácido glutámico por ácido aspártico, o glutamina por asparagina, y similares; o una sustitución conservativa similar de un aminoácido con un aminoácido estructuralmente relacionado que no tendrá un efecto importante sobre la actividad biológica. Las proteínas que tienen sustancialmente la misma secuencia de aminoácidos que la molécula de referencia, pero que poseen sustituciones de aminoácidos menores 25 que no afectan sustancialmente a la inmunogenicidad de la proteína están, por lo tanto, dentro de la definición del polipéptido de referencia. Todos los polipéptidos producidos por estas modificaciones se incluyen en el presente documento. El término "variación conservativa" también incluye el uso de un aminoácido sustituido en lugar de un aminoácido parental no sustituido siempre que los anticuerpos producidos contra el polipéptido sustituido también inmunorreaccionen con el polipéptido no sustituido.

30

Un fragmento inmunogénico de un polipéptido de *Lu. Longipalpis* incluye al menos 8, 10, 15, o 20 aminoácidos consecutivos, al menos 21 aminoácidos, al menos 23 aminoácidos, al menos 25 aminoácidos, o al menos 30 aminoácidos de un polipéptido de *L. longipalpis* que tiene una secuencia tal como se expone en SEQ ID NO: 1, 3, 5, 7, 11, 13, 15, 17, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, o 87, o variantes de los mismos. En otra realización, un fragmento de un polipéptido de *Lu. Longipalpis* incluye un epítopo antigénico específico que se encuentra en un polipéptido de *Lu. Longipalpis* de longitud completa.

Los procedimientos para determinar los fragmentos de polipéptido y epítopo tal como, generando bibliotecas de 40 péptidos solapantes (Henner B. et al.), Pepscan (Geysen RM et al, 1984; Geysen HM et al, 1985; Van der Zee R. et al.; Geysen HM) y algoritmos (de Groot A. et al.; Hoop T. et al.; Parker K. et al.), son conocidos en la técnica.

En general, los anticuerpos se unen específicamente a un epítopo antigénico particular. Ejemplos específicos, no limitativos, de los epítopos incluyen una secuencia de tetrapéptido a pentapéptido en un polipéptido, una secuencia de triglicósido a pentaglicósido en un polisacárido. En los animales, la mayoría de los antígenos presentarán varios o incluso muchos determinantes antigénicos simultáneamente. Preferentemente, cuando el epítopo es un fragmento de proteína de una molécula más grande, tendrá sustancialmente la misma actividad inmunológica que la proteína total.

50 Un polinucleótido para usar de acuerdo con la invención codifica un polipéptido de la mosca de la arena *Lu. Longipalpis*, tal como un polinucleótido que codifica un polipéptido que tiene una secuencia, tal como se expone en SEQ ID NO: 5, 7, 15 o 17.

En aún otro aspecto, un polinucleótido para usar de acuerdo con la invención codifica un polipéptido que tiene al 55 menos 70%, al menos 75%, al menos 80%, al menos 85%, al menos 90%, al menos 95%, 96%, 97%, 98% o 99% de identidad de secuencia con un polipéptido que tiene una secuencia, tal como se expone en SEQ ID NO: 5, 7, 15 o 17.

En otro aspecto, un polinucleótido para usar de acuerdo con la invención tiene una secuencia de nucleótidos, tal 60 como se expone en SEQ ID NO: 6, 8, 16, 18, 21, 90, o 91.

En aún otro aspecto, un polinucleótido para usar de acuerdo con la invención tiene al menos 70%, al menos 75%, al menos 80%, al menos 85%, al menos 95%, al menos 95%, al menos 95%, 96%, 97%, 98% o 99% de identidad de secuencia con uno de un polinucleótido que tiene una secuencia, tal como se expone en SEQ ID NO: 6, 8, 16, 18, 65 21, 90, o 91.

Estos polinucleótidos pueden incluir secuencias de ADN, ADNc y ARN que codifican un polipéptido de *Lu. Longipalpis*. Se entiende que todos los polinucleótidos que codifican un polipéptido de *Lu. Longipalpis* también están incluidos en el presente documento, siempre que codifiquen un polipéptido con la actividad reconocida, tal como la unión a un anticuerpo que reconoce el polipéptido, la inducción de una respuesta inmunitaria al polipéptido o un 5 efecto sobre la supervivencia de *Leishmania* cuando se administran a un sujeto expuesto al parásito o que experimenta una disminución de un signo o síntoma de infección por *Leishmania*.

Los polinucleótidos de la descripción incluyen secuencias que son degeneradas como resultado del código genético, por ejemplo, el uso de codones optimizados para un huésped específico. Tal como se usa en el presente 10 documento, "optimizado" se refiere a un polinucleótido que se modifica mediante ingeniería genética para incrementar su expresión en una especie determinada. Para proporcionar polinucleótidos optimizados que codifican polipéptidos salivales, la secuencia de ADN del gen de la proteína salival se puede modificar para 1) comprender codones preferidos por genes altamente expresados en una especie particular; 2) comprender un contenido de A + T o G + C en la composición de bases de nucleótidos con el hallado sustancialmente en dicha especie: 3) formar una 15 secuencia de iniciación de dicha especie; o 4) eliminar secuencias que causan la desestabilización, la poliadenilación inapropiada, la degradación y terminación de ARN, o que forman horquillas de estructura secundaria o sitios de corte y empalme de ARN. El aumento de la expresión de proteína salival en dicha especie se puede lograr mediante la utilización de la frecuencia de distribución del uso de codones en eucariotas y procariotas, o en una especie particular. El término "frecuencia de uso del codón preferido" se refiere a la preferencia exhibida por una 20 célula huésped específica en el uso de codones de nucleótidos para especificar un aminoácido determinado. Hay 20 aminoácidos naturales, la mayoría de los cuales son especificados por más de un codón. Por lo tanto, todas las secuencias de nucleótidos degeneradas están incluidas en la descripción siempre que la secuencia de aminoácidos del polipéptido salival de Lu. Longipalpis codificada por la secuencia de nucleótidos no esté funcionalmente alterada.

25 La identidad de secuencia entre dos secuencias de aminoácidos puede establecerse por el "blast" por parejas de NCBI (Centro Nacional de Información Biotecnológica) y la matriz BLOSUM62 utilizando los parámetros estándar (véase, por ejemplo, el algoritmo BLAST o BLASTX disponible en el servidor del "Centro Nacional de Información Biotecnológica" (NCBI, Bethesda, Md., EE.UU.), así como en Altschul et al.; y por lo tanto, este documento habla de utilizar el algoritmo o el BLAST o BLASTX y la matriz BLOSUM62 mediante el término "blasts").

La identidad de secuencia entre dos secuencias de nucleótidos también se puede determinar utilizando el programa "Align" de Myers y Miller, ("Optimal Alignments in Linear Space", CABIOS 4, 11-17, 1988) y disponible en NCBI, así como el mismo u otros programas disponibles a través de Internet en los sitios de la misma, tales como el sitio de NCBI.

Alternativa o adicionalmente, el término "identidad", por ejemplo, con respecto a una secuencia de nucleótidos o aminoácidos, puede indicar una medida cuantitativa de homología entre dos secuencias. El porcentaje de homología de secuencias puede calcularse como: $(N_{ref} - N_{dif})^* + 100/N_{ref}$, en la que N_{dif} es el número total de residuos no idénticos en las dos secuencias cuando se alinean y en la que N_{ref} es el número de residuos en una de las 40 secuencias. Por lo tanto, la secuencia de ADN AGTCAGTC tendrá una identidad de secuencia del 75% con la secuencia AATCAATC $(N_{ref} = 8; N_{dif} = 2)$.

Alternativa o adicionalmente, la "identidad" con respecto a secuencias puede referirse al número de posiciones con nucleótidos o aminoácidos idénticos dividido por el número de nucleótidos o aminoácidos en la más corta de las dos secuencias, en la que la alineación de las dos secuencias puede determinarse de acuerdo con el algoritmo de Wilbur y Lipman (Wilbur y Lipman), por ejemplo, usando un tamaño de ventana de 20 nucleótidos, una longitud de palabra de 4 nucleótidos y una penalización por hueco de 4, y se pueden realizar convenientemente un análisis asistido por ordenador y la interpretación de la datos de la secuencia, incluyendo la alineación, utilizando programas disponibles comercialmente (por ejemplo, Intelligenetics™ Suite, Intelligenetics Inc. CA). Cuando las secuencias de ARN se dice que son similares o que tienen un grado de identidad u homología de secuencia con secuencias de ADN, la timidina (T) en la secuencia de ADN se considera igual a uracilo (U) en la secuencias de ARN. Por lo tanto, las secuencias de ARN están dentro del alcance de la invención y pueden derivarse de secuencias de ADN, considerándose la timidina (T) en la secuencia de ADN igual a uracilo (U) en las secuencias de ARN.

55 La identidad de secuencia o similitud de secuencia de dos secuencias de aminoácidos, o la identidad de secuencia entre dos secuencias de nucleótidos se pueden determinar utilizando el paquete de software Vector NTI (Invitrogen, 1600 Faraday Ave., Carlsbad, CA).

Ventajosamente, la identidad u homología de secuencia, tal como una identidad u homología de secuencia de 60 aminoácidos, pueden determinarse usando el programa BlastP (Altschul et al.) disponible en NCBI, así como el mismo u otros programas disponibles a través de Internet en los sitios de la misma, tales como el sitio de NCBI.

Los siguientes documentos proporcionan algoritmos para comparar la identidad u homología relativa de secuencias, y adicional o alternativamente con respecto a lo anterior, las enseñanzas de estas referencias pueden utilizarse para determinar el porcentaje de homología o identidad: Needleman SB y Wunsch CD; Smith TF y Waterman MS; Smith TF, Waterman MS y Sadler JR; Feng DF y Dolittle RF; Higgins DG y Sharp PM; Thompson JD, Higgins DG y Gibson

TJ; y, Devereux J, Haeberlie P y Smithies O. Y, sin demasiada experimentación, el experto puede consultar muchos otros programas o referencias para determinar el porcentaje de homología.

Los polinucleótidos de *Lu. Longipalpis* pueden incluir un ADN recombinante que se incorpora en un vector, en un 5 plásmido o virus de replicación autónoma, o en el ADN genómico de un procariota o eucariota, o que existe como una molécula separada (por ejemplo, un ADNc) independiente de otras secuencias.

Los vectores recombinantes descritos en el presente documento pueden incluir un polinucleótido que codifica un polipéptido, una variante del mismo o un fragmento del mismo. Los vectores recombinantes pueden incluir plásmidos 10 y vectores virales y se pueden usar para la expresión in vitro o in vivo. Los vectores recombinantes pueden incluir además un péptido señal. Los péptidos señal son de cadenas peptídicas cortas (3-60 aminoácidos de longitud) que dirigen el transporte posterior a la traducción de una proteína (que se sintetiza en el citosol) a ciertos orgánulos, tales como el núcleo, la matriz mitocondrial, retículo endoplásmico, cloroplasto, apoplasto y peroxisoma. Típicamente, los polipéptidos de Lu. Longipalpis salivales naturales, tales como las proteínas LJM17 y LJL143, pueden traducirse 15 como precursores, que tienen una secuencia de péptido señal N-terminal y un dominio de proteína "madura". El péptido señal puede escindirse rápidamente tras la traducción. La secuencia señal puede ser la secuencia natural de la proteína salival o un péptido señal de una proteína secretada, por ejemplo, el péptido señal de la proteína de activador del plasminógeno tisular (tPA), en particular el tPA humano (S. Friezner Degen et al.; R. Rickles et al.; D. Berg. et al.), o el péptido señal del factor de crecimiento similar a la insulina 1 (IGF1), en particular el IGF1 equina (K. 20 Otte et al.), el IGF1 canino (P. Delafontaine et al.), el IGF1 felino (WO03/022886), el IGF1 bovino (S. Lien et al.), el IGF1 porcino (M. Muller et al.), el IGF1 de pollo (Y. Kajimoto et al.), el IGF1 de pavo (GenBank número de acceso AF074980). El péptido señal de IGF1 puede ser natural u optimizado que puede conseguirse mediante la eliminación de los sitios de corte y empalme crípticos y/o mediante la adaptación del uso de codones. Tras la traducción, el polipéptido no procesado se puede escindir en un sitio de escisión para dar lugar al polipéptido maduro. El sitio de 25 escisión puede predecirse utilizando el procedimiento de Von Heijne (1986).

Un plásmido que puede incluir una unidad de transcripción de ADN, por ejemplo una secuencia de ácido nucleico que le permite replicarse en una célula huésped, tal como un origen de replicación (procariota o eucariota). Un plásmido también puede incluir uno o más genes marcadores seleccionables y otros elementos genéticos conocidos on la técnica. Las formas circulares y lineales de plásmidos están abarcados en la presente descripción.

En un aspecto adicional, la vacuna para usar según la invención comprende un vector de expresión *in vivo* que comprende una secuencia de polinucleótidos, que contiene y expresa *in vivo* en un huésped los polipéptidos de *Lu. Longipalpis* salivales.

Un vector de expresión *in vivo* puede incluir cualquier unidad de transcripción que contiene un polinucleótido o un gen de interés y los elementos esenciales para su expresión *in vivo*. Estos vectores de expresión pueden ser plásmidos o vectores virales recombinantes. Para la expresión *in vivo*, el promotor puede ser de origen viral o celular. En una realización, el promotor puede ser el promotor temprano de citomegalovirus (CMV) (promotor CMV-40 IE), el promotor temprano o tardío del virus SV40 o el promotor LTR del virus del sarcoma de Rous, un promotor de un gen del citoesqueleto, tal como el promotor de desmina (Kwissa M et al.) o el promotor de actina (Miyazaki J. et al.). Cuando varios genes están presentes en el mismo plásmido, se pueden proporcionar en la misma unidad de transcripción o en diferentes unidades.

45 Tal como se utiliza en el presente documento, el término "plásmido" puede incluir cualquier unidad de transcripción de ADN que comprende un polinucleótido de acuerdo con la invención y los elementos necesarios para su expresión in vivo en una célula o células del huésped o diana deseada; y, en este sentido, cabe indicar que un plásmido circular, superenrollado o no superenrollado, así como una forma lineal, pretenden estar dentro del alcance de la invención. Los plásmidos también pueden comprender otros elementos reguladores de la transcripción, tales como,
50 por ejemplo, secuencias de estabilización de tipo intrón. En varias realizaciones, los plásmidos pueden incluir el primer intrón de CMV-IE (WO 89/01036), el intrón II del gen de beta-globina de conejo (van Ooyen et al.), la secuencia señal de la proteína codificada por el activador del plasminógeno tisular (tPA; Montgomery et al.), y/o una señal de poliadenilación (poliA), en particular la poliA del gen de la hormona de crecimiento bovino (bGH) (US 5.122.458) o la polyA del gen de beta-globina de conejo o del virus SV40.

En el presente documento se describe una composición de vacuna que comprende: a) un vector de expresión *in vivo*, en el que el vector comprende un polinucleótido que codifica uno o más polipéptidos seleccionados del grupo que consiste en un polipéptido salival de *Lu. Longipalpis*, una variante o fragmento del polipéptido salival de *Lu. Longipalpis*, y una mezcla de los mismos; y b) un vehículo, diluyente o excipiente farmacéuticamente aceptable.

En el presente documento se describe una composición de vacuna que comprende: a) un primer vector de expresión in vivo, en el que el vector comprende un polinucleótido que codifica uno o más polipéptidos seleccionados del grupo que consiste en un polipéptido salival de Lu. Longipalpis, una variante o fragmento del polipéptido salival de Lu. Longipalpis, y una mezcla de los mismos; b) un segundo vector de expresión in vivo, en el que el vector comprende un polinucleótido que codifica uno o más polipéptidos seleccionados del grupo que consiste en un polipéptido salival de Lu. Longipalpis, una variante o fragmento del polipéptido salival de Lu. Longipalpis, y una mezcla de los

mismos; y c) un vehículo, diluyente o excipiente farmacéutica o veterinariamente aceptable.

[0070] El término "composición de vacuna" o "vacuna" comprende cualquier composición, una vez que se ha inyectado a un huésped, incluyendo caninos, felinos y seres humanos, que protege al huésped de la *Leishmania*sis cutánea y/o *Leishmania*sis visceral, y/o que puede prevenir la implantación del parásito, y/o que puede prevenir la progresión de la enfermedad en sujetos infectados, y/o que puede limitar la difusión de parásitos fugitivos a los órganos internos, y/o que pueda evitar o captación límite parásito por una mosca de la arena durante una harina de sangre en un perro vacunado. Esto se puede lograr tras la vacunación según la presente invención a través de la inducción de la secreción de citoquinas, en particular la secreción de IFN-gamma (como ejemplo de un procedimiento de medición de la secreción de IFN-gamma, el inmunoensayo Quantikine de R & D Systems Inc. (número de catálogo # CAIF00) podría ser utilizado (Djoba Siawaya JF et al.)).

Los vehículos o excipientes de uso farmacéuticamente aceptables son convencionales. Remington's Pharmaceutical Sciences por EW Martin, Mack Publishing Co., Easton, PA, 15ª Edición (1975), describe composiciones y formulaciones adecuadas para la administración farmacéutica de los polipéptidos, plásmidos, vectores virales descritos en el presente documento. En general, la naturaleza del vehículo o excipiente dependerá del modo de administración que se utiliza. Por ejemplo, las formulaciones parenterales normalmente comprenden fluidos inyectables que incluyen fluidos farmacéutica y fisiológicamente aceptables, tales como agua, solución salina fisiológica, soluciones salinas equilibradas, dextrosa acuosa, glicerol o similares como un vehículo. Para las composiciones sólidas (por ejemplo, formas de pastilla liofilizada, polvo, píldora, comprimido o cápsula), los vehículos o excipientes sólidos no tóxicos convencionales pueden incluir, por ejemplo, grados farmacéuticos de manitol, lactosa, almidón o estearato de magnesio. Además de vehículos o excipientes biológicamente neutros, las composiciones inmunogénicas a administrar pueden contener también cantidades menores de sustancias auxiliares no tóxicas, tales como agentes humectantes o emulsionantes, conservantes y agentes de tamponamiento de pH y similares, por ejemplo acetato de sodio o monolaurato de sorbitán.

Las vacunas de acuerdo con la presente invención pueden incluir vectores que codifican cualquier polinucleótido de acuerdo con la presente invención, tal como se describe anteriormente.

30 Se pueden realizar múltiples inserciones en el mismo vector utilizando diferentes sitios de inserción o utilizando el mismo sitio de inserción. Cuando se utiliza el mismo sitio de inserción, cada inserto de polinucleótido, que puede ser cualquier polinucleótido de la presente invención mencionado anteriormente, se puede insertar bajo el control del mismo y/o diferentes promotores. La inserción se puede realizar cola a cola, cabeza a cabeza, cola a cabeza o cabeza a cola. Los elementos IRES (sitio interno de entrada al ribosoma, véase el documento EP 0.803.573)35 también se pueden utilizar para separar y para expresar múltiples insertos unidos operativamente al mismo y/o diferentes promotores.

En una realización, un vector de expresión para usar según la invención comprende un polinucleótido mencionado anteriormente. El vector de expresión puede ser un vector de expresión *in vivo* o un vector de expresión *in vitro*.

Los vectores de expresión *in vivo* para usar de acuerdo con la invención incluyen cualquier plásmido (EP-A2-1001025; Chaudhuri P) que contiene y expresa *in vivo* en un huésped, el polinucleótido o gen de polipéptido salival de *Lu. Longipalpis*, variante del mismo o fragmento del mismo y los elementos necesarios para su expresión *in vivo*.

- 45 En un ejemplo específico no limitativo, el plásmido pVR1020 o pVR1012 (VI CAL Inc.; Luke C. et al.; Hartikka J. et al.), pVR2001-TOPA (o pVR2001-TOPO) (Oliveira F. et al.) o pAB110 (US 6.852.705) se puede utilizar como un vector para la inserción de una secuencia de polinucleótidos. El plásmido pVR1020 se deriva de pVR1012 y contiene la secuencia señal de tPA humano. El pVR1020 es un esqueleto del plásmido disponible de Vical, Inc., (San Diego, CA) que se ha utilizado previamente, véase, por ejemplo, las Patentes de Estados Unidos Nos. 6.451.769 y 7.078.507. Tal como se describe en Oliveira et al., el plásmido pVR2001-TOPO (o pVR2001-TOPA) es pVR1020 modificado por la adición de topoisomerasas que flanquean el sitio de clonación y contienen la codificación y expresión de un péptido señal de secreción, por ejemplo, péptido señal de activador del plasminógeno tisular (tPA), que aumenta la probabilidad de producir una proteína secretada, (véase la Figura 1 en Oliveira F. et al.).
- Cada plásmido puede comprender o contener o consistir esencialmente en, un polinucleótido antes mencionado, unido operativamente a un promotor o bajo el control de un promotor o dependiente de un promotor, en el que el promotor puede estar ventajosamente adyacente al polinucleótido para el que se desea la expresión. En general, es ventajoso emplear un promotor fuerte que es funcional en células eucariotas. Un ejemplo de un promotor útil puede ser el promotor de citomegalovirus temprano inmediato (CMV-IE) de origen humano o murino, o puede tener opcionalmente otro origen, tal como de rata o conejillo de indias. El promotor CMV-IE puede comprender la parte del promotor real, que puede o no estar asociado con la parte potenciadora. Se puede hacer referencia a los documentos EP 260 148, EP 323 597, US 5.168.062, 5.385.839, y 4.968.615, así como al documento WO 87/03905. El promotor CMV-IE puede ser ventajosamente un CMV-IE humano (Boshart M. et al.) o CMV-IE murino. En términos más generales, el promotor puede tener un origen viral o un origen celular. Un fuerte promotor temprano/tardío del CMV-IE que puede emplearse útilmente en la práctica de la invención es el promotor temprano/tardío del virus SV40 o el promotor LTR del virus del sarcoma de Rous. Un fuerte promotor celular que

puede emplearse útilmente en la práctica de la invención es el promotor de un gen del citoesqueleto, tal como el promotor de desmina (Kwissa M. et al.), o el promotor de actina (Miyazaki J. et al.). Los subfragmentos funcionales de estos promotores, es decir, porciones de estos promotores que mantienen actividad promotora adecuada, se incluyen dentro de la presente invención, por ejemplo los promotores de CMV-IE truncados según los documentos
5 WO 98/00166 o US 6.156.567 y se pueden usar en la práctica de la invención. Un promotor útil en la práctica de la invención, por consiguiente, puede incluir derivados y/o subfragmentos de un promotor de longitud completa que mantienen una actividad promotora adecuada y por lo tanto, funcionan como promotor, y que pueden tener ventajosamente la actividad del promotor que es sustancialmente similar a la del promotor real o de longitud completa del que se deriva el derivado o subfragmento, por ejemplo, similar a la actividad de los promotores CMV-IE
10 truncados de la patente US 6.156.567 en comparación con la actividad de promotores de CMV-IE de longitud completa. Por lo tanto, un promotor de CMV-IE en la práctica de la invención puede comprender o consistir esencialmente en o consistir en la porción de promotor del promotor de longitud completa y/o la porción potenciadora del promotor de longitud completa, así como derivados y/o subfragmentos de los mismos.

15 Ventajosamente, los plásmidos comprenden o consisten esencialmente en otros elementos de control de expresión. Es especialmente ventajoso incorporar una secuencia o secuencias de estabilización, por ejemplo, secuencia o secuencias de intrón, por ejemplo, el primer intrón del hCMV-IE (WO 89/01036), el intrón II del gen de β-globina de conejo (van Ooyen et al.). En cuanto a la señal de poliadenilación (poliA) para los plásmidos y vectores virales distintos de poxvirus, puede hacerse utilizarse la señal de poli (A) del gen de hormona de crecimiento bovina 20 (bGH) (véase el documento US 5.122.458), o la señal de poli (A) del gen de β-globina de conejo o la señal de poli (A) del virus SV40.

En una realización de la presente invención, el vector plásmido para usar de acuerdo con la invención es pVR2001 que comprende el polinucleótido LJM17, tal como se describe en el ejemplo 1 en el presente documento.

25

En el presente documento se describe el plásmido vector es pR2001 que comprende el polinucleótido LJL143, tal como se describe en el ejemplo 2 en el presente documento.

En otra realización de la presente invención, el plásmido vector para usar de acuerdo con la invención es pNBO002, 30 tal como se describe en el ejemplo 10 en este documento.

En el presente documento se describe el plásmido vector pNBO003, tal como se describe en el ejemplo 10 en este documento.

- 35 De manera más general, la presente descripción abarca vectores de expresión *in vivo* que incluyen cualquier vector viral recombinante que contiene un polinucleótido o gen que codifica uno o más inmunógenos salivales de *Lu. Longipalpis* y/o variantes o fragmentos de los mismos, incluyendo todos los elementos necesarios para su expresión *in vivo*.
- 40 Dichos vectores virales recombinantes podrían seleccionarse entre, por ejemplo, los poxvirus, especialmente virus de la viruela aviar, tales como virus de la viruela en aves de corral o virus de la viruela del canario. En una realización, el virus de la viruela en aves de corral es un TROVAC (véase el documento WO 96/40241). En otra realización, el vector de la viruela del canario es un ALVAC. El uso de estos vectores virales recombinantes y la inserción de polinucleótidos o genes de interés se describen completamente en el documento US 5.174.993; US 5.505.941 y US 5.766.599 para la viruela en aves de corral, y US 5.756.103 de la viruela del canario. Se podría utilizar más de un sitio de inserción dentro del genoma viral para la inserción de múltiples genes de interés.

En una realización, el vector viral es un adenovirus, tal como un adenovirus humano (HAV) o un adenovirus canino (CAV).

50 En otra realización, el vector viral es un adenovirus humano, específicamente un adenovirus de serotipo 5, hecho incompetente para la replicación mediante una deleción en la región E1 del genoma viral, en especial desde aproximadamente el nucleótido 459 hasta aproximadamente el nucleótido 3510 por referencia a la secuencia de hAd5 descrita en Genbank con el número de acceso M73260 y en la publicación de referencia Chroboczek et al, 55 1992. El adenovirus suprimido se propaga en células 293 que expresan El (Graham et al., 1977) o células PER, especialmente PER.C6 (Falloux et al., 1998). El adenovirus humano puede adicional o alternativamente eliminarse en la región E3, especialmente desde aproximadamente el nucleótido 28592 hasta aproximadamente el nucleótido 30470. La deleción en la región de El se puede realizar en combinación con una deleción en la región E3 (véase, por ejemplo Shriver et al.; Graham et al.; Ilan et al.; las patentes de Estados Unidos nº 6.133.028 y 6.692.956; Tripathy et 60 al.; Tapnell; Danthinne et al.; Berkner; Berkner et al.; Chavier et al). Los sitios de inserción pueden ser los locus (regiones) E1 y/o E3 eventualmente después de una supresión parcial o completa de las regiones E1 y/o E3. Ventajosamente, cuando el vector de expresión es un adenovirus, el polinucleótido que va a expresarse se introduce bajo el control de un promotor funcional en células eucariotas, tal como un promotor fuerte, de manera ventajosa un promotor del gen temprano inmediato de citomegalovirus (promotor de CMV-IE), especialmente la 65 región potenciadora/promotora desde aproximadamente el nucleótido -734 hasta aproximadamente el nucleótido +7 en Boshart et al., o la región potenciadora/promotora del vector pCl de promotor Promega Corp. El promotor de

CMV-IE es ventajosamente de origen murino o humano. El promotor del factor de elongación 1α también se puede utilizar. Un promotor específico de músculo también se puede utilizar (Li et al.). Promotores fuertes también se discuten en este documento en relación con vectores plasmídicos. En una realización, una secuencia de corte y empalme puede estar situada en dirección 3' de la región potenciadora/promotora. Por ejemplo, el intrón 1 aislado 5 del gen de CMV-IE (Stenberg et al.), el intrón aislado del gen de β-globina de conejo o humano, especialmente el intrón 2 del gen de β-globina, el intrón aislado del gen de inmunoglobulina, una secuencia de corte y empalme del gen temprano de SV40 o la secuencia de intrón quimérica aislada a partir del vector pCI de Promege Corp. Se pueden insertar una secuencia de poli (A) y una secuencia de terminación en dirección 3' del polinucleótido a expresar, por ejemplo, un gen de la hormona de crecimiento bovina, especialmente desde aproximadamente el nucleótido 2339 hasta aproximadamente el nucleótido 2550 en el Genbank bajo el número de acceso BOVGHRH, un gen β-globina de conejo o una señal de poliadenilación de gen tardíos de SV40.

En otra realización, el vector viral es un adenovirus canino, especialmente un CAV-2 (véase, por ejemplo, Fischer et al.; patentes de Estados Unidos nº 5.529.780 y 5.688.920; WO 95/14102). Para CAV, los sitios de inserción pueden estar en la región E3 y/o en la región situada entre la región E4 y la región ITR derecha (véanse las Patentes de Estados Unidos Nos. 6.090.393 y 6.156.567). En una realización, el inserto está bajo el control de un promotor, tal como un promotor del gen temprano inmediato de citomegalovirus (promotor de CMV-IE) o un promotor ya descrito para un vector de adenovirus humano. Se pueden insertar una secuencia de poli (A) y una secuencia de terminación en dirección 3' del polinucleótido a expresar, por ejemplo, un gen de la hormona de crecimiento bovina o o una señal de poliadenilación del gen β-globina de conejo.

En otra realización, el vector viral es un virus del herpes, tal como un virus del herpes canino (CHV) o un virus del herpes felino (FHV). Para CHV, los sitios de inserción pueden estar en el gen de timidina quinasa, en el ORF3, o en el ORF de UL43 (véase el documento US 6.159.477). En una realización, el polinucleótido que va a expresarse se introduce bajo el control de un promotor funcional en células eucariotas, ventajosamente un promotor de CMV-IE (murino o humano). Se pueden insertar una secuencia de poli(A) y secuencia de terminador en dirección 3' del polinucleótido a expresar, por ejemplo, hormona de crecimiento bovina o una señal de poliadenilación del gen de β-globina de conejo.

30 Para los vectores recombinantes basados en un vector de poxvirus, se pueden utilizar un virus vaccinia o un virus vaccinia atenuado, (por ejemplo, MVA, una cepa Ankara modificada obtenida después de más de 570 pasajes de la cepa de la vacuna Ankara en fibroblastos de embriones de pollo; ver Stickl y Hochstein-Mintzel; Sutter et al.; disponible como ATCC VR-1508; o NYVAC, véase la patente de Estados Unidos No. US 5.494.807 y la Patente de Estados Unidos Nº 5.494.807 que describen la construcción de NYVAC, así como las variaciones de NYVAC con 35 ORF adicionales eliminados de la cepa Copenhagen del genoma del virus vaccinia, así como la inserción de moléculas de ácidos nucleicos codificantes heterólogas en los sitios de este recombinante, y también, el uso de promotores emparejados; véase también WO 96/40241), un virus de la viruela aviar o un virus de la viruela aviar atenuado (por ejemplo, viruela aviar del canario, viruela aviar, "dovepox", viruela de la paloma, viruela de codorniz, ALVAC o TROVAC; véase, por ejemplo, las Patentes de Estados Unidos nº 5.505.941, 5.494.807). El virus de la 40 viruela de canario atenuado se describe en US 5.756.103 (ALVAC) y el documento WO 01/05934. También se hace referencia a US 5.766.599 que se refiere a la cepa de la viruela aviar atenuada TROVAC. Se hace referencia a la viruela del canario disponible en la ATCC bajo el número de acceso VR-111. Numerosas cepas de vacunación del virus de la viruela aviar también están disponibles, por ejemplo, la cepa DIFTOSEC TC comercializada por Merial y la vacuna NOBILIS VARIOLE comercializada por Intervet. Para obtener información sobre el procedimiento utilizado 45 para generar recombinantes del mismo y cómo administrar recombinantes del mismo, el experto en la materia puede referirse documentos citados en la presente memoria y al documento WO 90/12882, por ejemplo, en cuanto al virus vaccinia, se hace mención de las Patentes de Estados Unidos Nos. 4.769.330, 4.722.848, 4.603.112, 5.110.587, 5.494.807 y 5.762.938, entre otras; en cuanto a la viruela aviar, se hace mención de las Patentes de Estados Unidos Nos. 5.174.993, 5.505.941 y 5.766.599, entre otras; en cuanto a la viruela del canario, se hace mención de la 50 patente de Estados Unidos Nº 5.756.103, entre otras. Cuando el vector de expresión es un virus vaccinia, el sitio o sitios de inserción para el polinucleótido o los polinucleótidos a expresar son ventajosamente en el gen o el sitio de inserción de la timidina quinasa (TK), el gen o sitio de inserción de la hemaglutinina (HA), la región que codifica el cuerpo de inclusión del tipo A (ATI); véanse también los documentos citados en este documento, especialmente los relacionados con virus vaccinia. En el caso de la viruela del canario, ventajosamente el sitio o sitios de inserción son 55 ORF (s) C3, C5 y/o C6; véanse también los documentos citados aquí, especialmente aquellos relativos al virus de la viruela del canario. En el caso de la viruela aviar, ventajosamente el sitio o sitios de inserción son ORFs F7 y/o F8; véanse también los documentos citados aquí, especialmente aquellos relativos al virus de la viruela aviar. El sitio o sitios de inserción para el virus MVA son ventajosamente como en varias publicaciones, incluyendo Carroll MW et al.; Stittelaar KJ et al.; Sutter G. et al.; y, en este sentido también se indica que el genoma de MVA completo se 60 describe en Antoine G., Virology, que permite que el experto en la técnica use otros sitios de inserción u otros promotores. Ventajosamente, el polinucleótido que se expresa se inserta bajo el control de un promotor de virus de la viruela específico, por ejemplo, el promotor de vaccinia de 7,5 kDa (Cochran et al), el promotor de vaccinia I3L (Riviere et al.), el promotor de vaccinia HA (Shida), el promotor de la viruela de vaca ATI (Funahashi et al.), el

En una realización adicional, el vector viral recombinante para uso de acuerdo con la invención es el virus

promotor de vaccinia H6 (Taylor J. et al.; Guo P. et al. J.; Perkus M. et al.), entre otros.

recombinante de viruela del canario ALVAC vCP2390-SEQ ID NO: 6, que expresa el polipéptido salival LJM17 de *Lu. longipalpis*, tal como se describe en el ejemplo 3.

En una realización adicional, el vector viral recombinante para uso de acuerdo con la invención es el virus MVA recombinante MVA-LJL17, que expresa el polipéptido salival LJM17 de *Lu. Longipalpis*, tal como se describe en el ejemplo 5.

En el presente documento se describe que el vector viral recombinante es el virus de la viruela del canario ALVAC recombinante vCP2389-SEQ ID NO: 2, que expresa el polipéptido salival LJL143 de *Lu. Longipalpis*, tal como se 10 describe en el ejemplo 4.

En el presente documento se describe que el vector viral recombinante es el virus de la viruela del canario ALVAC recombinante vCP2389, que expresa el polipéptido salival LJL143 de *Lu. Longipalpis*, tal como se describe en el ejemplo 12.

En una realización adicional, el vector viral recombinante para uso de acuerdo con la invención es el virus de viruela del canario ALVAC recombinante vCP2390, que expresa el polipéptido salival LJM17 de *Lu. Longipalpis*, tal como se describe en el ejemplo 11.

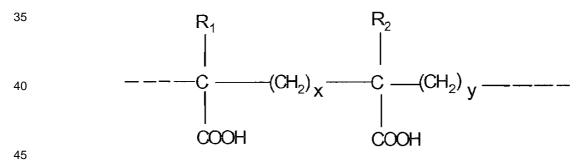
20 En el presente documento se describe que el vector viral recombinante es el virus MVA recombinante MVA-LJL143, que expresa el polipéptido LJL143 salival de *Lu. Longipalpis*, tal como se describe en el ejemplo 6.

15

Cualquiera de los polinucleótidos descritos aquí puede expresarse in vitro por transferencia de ADN o vectores de expresión en una célula huésped adecuada. La célula huésped puede ser procariota o eucariota. El término "célula 25 huésped" también incluye cualquier progenie de la célula huésped sujeto. Los procedimientos de transferencia estable, que significan que el polinucleótido foráneo se mantiene continuamente en la célula huésped, son conocidos en la técnica. Las células huésped pueden incluir bacterias (por ejemplo, Escherichia coli), levaduras, células de insectos y células de vertebrados. Los procedimientos para expresar secuencias de ADN en células eucariotas son bien conocidos en la técnica. Como procedimiento para la expresión in vitro, se pueden usar vectores de baculovirus 30 recombinantes (por ejemplo, Autographa California Virus Polihedrosis Nuclear (AcNPV)) con los ácidos nucleicos descritos en este documento. Por ejemplo, los promotores de polihedrina se pueden utilizar con células de insectos (por ejemplo, células de Spodoptera frugiperda, como células Sf9 disponibles en la ATCC bajo el número de acceso CRL 1711, o células Sf21) (ver por ejemplo, Smith et al.; Pennock et al.; Vialard y et al.; Verne A.; O'Reilly et al.; Kidd I.M. y Emery V.C.; EP 0370573; EP 0265785, US 4745051). Para la expresión, se puede utilizar el paquete 35 BaculoGold Starter (Cat # 21001K) de Pharmingen (Becton Dickinson). Como procedimiento para la expresión in vitro, se puede utilizar E. coli recombinante con un vector. Por ejemplo, cuando se clona en sistemas bacterianos, pueden usarse promotores inducibles, tales como el promotor de arabinosa, pL del bacteriófago lambda, plac, ptrp, ptac (promotor híbrido ptrp-lac) y similares. La transformación de una célula huésped con ADN recombinante puede llevarse a cabo mediante técnicas convencionales que son bien conocidas para los expertos en la técnica. Cuando 40 el huésped es procariota, tal como E. coli, las células competentes que son capaces de la captación de ADN se pueden preparar a partir de células recogidas después de la fase de crecimiento exponencial y tratarse posteriormente mediante el procedimiento de CaCl2 usando procedimientos bien conocidos en la técnica. Alternativamente, se pueden utilizar MgCl2 o RbCl. La transformación también puede llevarse a cabo mediante electroporación. Cuando el huésped es un eucariota, se pueden utilizar procedimientos de transducción de 45 ADN, tales como coprecipitados con fosfato de calcio, procedimientos mecánicos convencionales, tales como microinyección, electroporación, inserción de un plásmido encerrado en liposomas, o vectores de virus. Las células eucariotas también pueden cotransformarse con secuencias de polinucleótidos de L. longipalpis, y una segunda molécula de ADN exógeno que codifica un fenotipo seleccionable, tal como el gen de la timidina quinasa del herpes simple. Otro procedimiento es usar un vector viral eucariota (ver anteriormente), tal como un virus herpes o 50 adenovirus (por ejemplo, adenovirus canino 2), para transducir de forma transitoria células eucariotas y expresar la proteína (Gluzman EA). Además, se puede utilizar un agente de transfección, tal como dioleoil-fosfatidil-etanolamina (DOPE).

El aislamiento y purificación de polipéptido expresado recombinantemente pueden llevarse a cabo mediante medios convencionales que incluyen cromatografía preparativa (por ejemplo, exclusión por tamaño, intercambio iónico, afinidad), precipitación selectiva y ultra-filtración. Los ejemplos de técnicas del estado de la técnica que se pueden utilizar, pero sin limitación, se pueden encontrar en "Protein Purification Applications", segunda edición, editado por Simon Roe y disponible en Oxford University Press. Dicho polipéptido expresado de forma recombinante es parte de la presente descripción. Los procedimientos para la producción de cualquier polipéptido de acuerdo con la presente descripción, tal como se describe anteriormente, incluyen el uso de un vector de expresión recombinante que comprende un polinucleótido de acuerdo con la descripción y de una célula huésped.

Las vacunas que contienen vectores virales recombinantes para usar de acuerdo con la invención pueden liofilizarse, de manera ventajosa con un estabilizante. La liofilización puede realizarse de acuerdo con procedimientos de liofilización convencionales bien conocidos. Los estabilizadores farmacéutica o veterinariamente aceptables pueden ser carbohidratos (por ejemplo, sorbitol, manitol, lactosa, sacarosa, glucosa, dextrano, trehalosa),


glutamato de sodio (Tsvetkov T et al.; Israeli E et al.), proteínas, tales como peptona, albúmina, lactoalbúmina o caseína, proteína que contiene agentes, tales como leche desnatada (Mills CK et al.; Wolff E et al.), y tampones (por ejemplo tampón fosfato, tampón fosfato de metal alcalino). Puede utilizarse un adyuvante para hacer solubles las preparaciones liofilizadas.

Cualquier composición de vacuna para usar de acuerdo con la invención también pueden contener ventajosamente uno o más adyuvantes.

Las vacunas basadas en plásmidos pueden formularse con lípidos catiónicos, ventajosamente con DMRIE (N-(210 hidroxietil)-N,N-dimetil-2,3-bis(tetradeciloxi)-1-propanamonio; WO96/34109) y, ventajosamente, en asociación con un lípido neutro, por ejemplo DOPE (dioleoil-fosfatidil-etanolamina; Behr J.P.), con el fin de formar DMRIE-DOPE. En una realización, la mezcla se produce de manera extemporánea, y antes de su administración, es ventajoso esperar de aproximadamente 10 min a aproximadamente 60 min, por ejemplo, aproximadamente 30 min, para la complejación apropiada de la mezcla. Cuando se utiliza DOPE, la relación molar de DMRIE/DOPE puede ser de 15 95/5 a 5/95 y es ventajosamente 1/1. La relación en peso de plásmido/DMRIE o DMRIE-adyuvante DOPE es, por ejemplo, de 50/1 a 1/10, de 10/1 a 1/5 o de 1/1 a 1/2.

Opcionalmente se puede añadir una citoquina a la composición, especialmente GM-CSF o citoquinas que inducen Th1 (por ejemplo IL12). Estas citoquinas se pueden añadir a la composición como un plásmido que codifica la 20 proteína de citoquinas. En una realización, las citoquinas son de origen canino, por ejemplo, GM-CSF canino cuya secuencia del gen ha sido depositada en la base de datos GenBank (número de acceso 849738). Esta secuencia se puede utilizar para crear dicho plásmido de una manera similar a lo que se hizo en el documento WO 00/77210.

La vacuna basada en vector viral recombinante se puede combinar con fMLP (N-formil-metionil-leucil-fenilalanina; US 6.017.537) y/o adyuvante de carbómero (Phameuropa Vol 8, No. 2, junio de 1996.). Los expertos en la técnica también puede hacer referencia a US 2,909,462, que describe dichos polímeros acrílicos reticulados con un compuesto polihidroxilado que tiene al menos 3 grupos hidroxilo, ventajosamente no más de 8, estando los átomos de hidrógeno de al menos tres hidroxilos reemplazados por radicales alifáticos insaturados que tienen al menos 2 átomos de carbono. Por ejemplo, los radicales son los que contienen de 2 a 4 átomos de carbono, por ejemplo 30 grupos vinilo, alilo y otros grupos etilénicamente insaturados. Los radicales insaturados pueden en sí mismos contener otros sustituyentes, tales como metilo. Los productos que se venden bajo el nombre Carbopol® (BF Goodrich, Ohio, Estados Unidos) son apropiados. Los productos son reticulados con una alil sacarosa o con alil pentaeritritol. Entre ellos, se pueden citar ventajosamente Carbopol® 974P, 934P y 971P.

Entre los copolímeros de anhídrido maleico y derivado alquenilo, los copolímeros EMA® (Monsanto) que son copolímeros de anhídrido maleico y etileno, lineales o reticulados, por ejemplo, reticulados con divinil éter, son ventajosos. Se puede hacer referencia a J. Fields et al.

Los polímeros de ácido acrílico o metacrílico y los copolímeros EMA® están formados, por ejemplo, de unidades básicas de la fórmula siguiente en la que:

- R₁ y R₂, que son idénticos o diferentes, representan H o CH₃
- -x = 0 o 1, preferiblemente x = 1
- 55 y = 1 o 2, con x + y = 2

50

Para los copolímeros EMA®, x = 0 e y = 2. Para los carbómeros, x = y = 1.

La disolución de estos polímeros en agua conduce a una solución ácida, que se neutraliza, ventajosamente hasta pH fisiológico, a fin de proporcionar la solución adyuvante en la que se incorpora la vacuna en sí. Los grupos carboxilo del polímero están por tanto parcialmente en forma COO⁻. En una realización, se prepara una solución de adyuvante, especialmente de carbómero (Pharmeuropa, vol. 8, Nº 2, junio de 1996), en agua destilada, de manera ventajosa en presencia de cloruro de sodio, estando la solución obtenida en un pH ácido. Esta solución madre se diluye mediante su adición a la cantidad deseada (para obtener la concentración final deseada), o una parte sustancial de la misma, de agua cargada con NaCl, ventajosamente solución salina fisiológica (NaCl 9 g/l) todas a la vez en varias porciones con una neutralización concomitante o subsiguiente (pH 7,3 a 7,4), ventajosamente con

NaOH. Esta solución a pH fisiológico se utiliza para la mezcla con la vacuna, que puede almacenarse especialmente en forma liofilizada, líquida o congelada.

La concentración de polímero en la composición de vacuna final puede ser de 0,01% a 2% p/v, de 0,06 a 1% p/v, o 5 de 0,1 a 0,6% p/v.

La vacuna de subunidades se puede combinar con adyuvantes, como emulsios de aceite-en-agua, agua-en-aceite-en agua a base de aceite mineral y/o aceite vegetal y tensioactivos no iónicos, tales como copolímeros de bloque, Tween®, Span®. Tales emulsiones se describen, en particular, en la página 147 de "Vaccine Design – The Subunit and Adjuvant Approach", Pharmaceutical Biotechnology, 1995, o emulsiones de TS, en particular, la emulsión TS6, y emulsiones LF, en particular, emulsión LF2 (tanto para emulsiones TS como emulsiones LF, véase el documento WO 04/024027). Otros adyuvantes adecuados son, por ejemplo, vitamina E, saponinas y Carbopol® (Noveon; véase WO 99/51269; WO 99/44633), hidróxido de aluminio o fosfato de aluminio ("Vaccine Design – The Subunit and Adjuvant Approach", Pharmaceutical Biotechnology, vol. 6, 1995), adyuvantes biológicos (es decir, C4b, especialmente C4b murino (Ogata R T et al.) o C4b equino, GM-CSF, en particular, GM-CSF equino (US 6645740)), toxinas (es decir, toxinas del cólera CTA o CTB, toxinas termolábiles de Escherichia coli LTA o LTB (Olsen CW et al.; Fingerut E et al.; Zurbriggen R et al. Peppoloni S et al.), y CpG (es decir, CpG # 2395 (ver Jurk M et al.), CpG # 2142 (ver SEQ ID NO: 890 en el documento EP 1221955)).

20 La vacuna también puede contener o comprender uno o más antígenos de *Leishmania*, por ejemplo, proteína de membrana kinetoplástida 11 (KMP11).

Los antígenos de *Leishmania* KMP11 derivan de, por ejemplo, *L. infantum* o *L. chagasi*. KMP11 es una proteína de membrana de superficie altamente conservada presente en todos los miembros de la familia Kinetoplastidae, y se expresa diferencialmente en formas amastigote y promastigote de *Leishmania* (Jardim A. et al.; Jardim A. et al.; Berberich C. et al.). La secuencia de ácido nucleico del gen y la secuencia de aminoácidos de la proteína KMP11 de *Leishmania* están disponibles en bases de datos públicas, en particular como *L. infantum* en la base de datos GenBank bajo los números de acceso X95627y X95626. La secuencia de ácido nucleico de *L. donovani* también está disponible de la base de datos GenBank, en particular, bajo el número de acceso S77039.

El estado de la técnica con respecto a KMP11, vectores que expresan KMP11 y las vacunas se resumen mejor en la solicitud de patente WO 08/064181. Una vacuna basada en un plásmido que comprende pVR1020 KMP11 se describe en el ejemplo 1 y la vacuna basada en vectores de virus de viruela del canario que comprende vCP2350 se describe en el ejemplo 3. El documento WO 08/064181 también proporciona información sobre adyuvantes, 35 formulación, dosis y vías de administración.

Los polipéptido KMP11 y variantes o fragmentos de los mismos pueden ser producidos, aislados y purificados de la misma forma establecida para la expresión *in vitro* de polipéptidos salivales de la mosca de arena.

- 40 En una realización, la vacuna para su uso según la presente invención comprende, además, vectores que comprenden me polinucleótido de KMP11 que codifica el polipéptido KMP11 y/o sus fragmentos o variantes de *Leishmania*. Dicha vacuna contiene un polipéptido salival de *Lu. Longipalpis* que incluye: un polipéptido que tiene al menos 70%, al menos 75%, al menos 80%, al menos 85%, al menos 90%, al menos 95%, 96%, 97%, 98% o 99% de identidad de secuencia con un polipéptido que tiene una secuencia tal como se expone en SEQ ID NO: 5, 7, 15, o 17; o un polinucleótido que codifica un polipéptido salival de *Lu. Longipalpis* que tiene al menos 70%, al menos 75%, al menos 80%, al menos 85%, al menos 90%, al menos 95%, 96%, 97%, 98% o 99% de identidad de secuencia con un polipéptido que tiene al menos 90%, al menos 95%, 96%, 97%, 98% o 99% de identidad de secuencia con un polipéptido que tiene al menos 90%, al menos 95%, 96%, 97%, 98% o 99% de identidad de secuencia con un polipéptido que tiene al menos 90%, al menos 95%, 96%, 97%, 98% o 99% de identidad de secuencia con un polipéptido que tiene una secuencia con un polipéptido q
- al menos 80%, al menos 85%, al menos 90%, al menos 95%, 96%, 97%, 98% o 99% de identidad de secuencia con un polipéptido que tiene una secuencia tal como se expone en SEQ ID NO: 5, 7, 15, o 17; o un polinucleótido que tiene al menos 70%, al menos 75%, al menos 80%, al menos 85%, al menos 90%, al menos 95%, 96%, 97%, 98% o 99% con un polinucleótido que tiene una secuencia tal como se expone en SEQ ID NO: 6, 8, 16, 18, 21, 90 o 91.

La vacuna para el uso de acuerdo con la invención puede comprender polipéptidos LJMI7 salivales de *Lu. Longipalpis* y/o variantes de los mismos, tal como se describen en el presente documento, y/o vectores que comprenden el polinucleótido que codifica el polipéptido LJM17 de *Lu. Longipalpis* y/o variantes del mismo, tal como se describen en el presente docuento, y/o vectores que comprenden el polinucleótido KMP11 que codifica el polipéptido KMP11 y/o fragmentos o variantes del mismo de *Leishmania*. Por ejemplo, los vectores para LJM17 pueden seleccionarse del grupo que consiste en pVR2001 LJM17, pNBO002, vCP2390, vCP2390-SEQ ID N0: 6 y MVA-LJM17. Los vectores para KMP11 se pueden seleccionar del grupo que consiste en pVR1020 KMP11 y vCP2350. En una realización, la vacuna comprende plásmidos pVR2001 LJM17 y pVR1020 KMP11. En otra realización, la vacuna comprende vectores vCP2390 y vCP2350. En aún otra realización, la vacuna comprende plásmidos pNBO002 y pVR1020 KMP11. En aún otra realización, la vacuna comprende vCP2390-SEQ ID N0: 6 y vCP2350.

En el presente documento se describe la vacuna que comprende polipéptidos LJL143 salivales de *Lu. Longipalpis* y/o variantes o fragmentos de los mismos, y/o vectores que comprenden el polinucleótido que codifica el polipéptido 65 LJL143 de *Lu. longipalpis* y/o variantes o fragmentos del mismo, y/o vectores que comprenden el polinucleótido que codifica los polipéptidos KMP11 de *Leishmania* y/o variantes o fragmentos de los mismos. Por ejemplo, los vectores

para LJL143 pueden seleccionarse del grupo que consiste en pVR2001 LJL143, pNBO003, vCP2389, vCP2389-SEQ ID NO: 2 y MVA-LJL143. Los vectores para KMP11 pueden seleccionarse del grupo que consiste en pVR1020 KMP11 y vCP2350. En una realización, la vacuna comprende plásmidos pVR2001 LJL143 y pVR1020 KMP11. En otra realización, la vacuna comprende vectores vCP2389 y vCP2350. En aún otra realización, la vacuna comprende 5 plásmidos pNBO003 y pVR1020 KMP11. En aún otra realización, la vacuna comprende vectores vCP2389-SEQ ID NO: 2 y vCP2350.

En otra realización particular, la vacuna para su uso según la invención comprende al menos uno de polipéptidos LJM17 salivales de *Lu. Longipalpis*, variantes de los mismos, tal como se describen en el presente documento, o vectores que comprenden el polinucleótido que codifica el polipéptido LJM17 de *Lu. Longipalpis* y del mismo, tal como se describe en el presente documento, y puede comprender adicionalmente polipéptidos LJL143 salivales de *Lu. Longipalpis* y/o variantes o fragmentos de los mismos, y/o vectores que comprenden el polinucleótido LJL143 que codifica el polipéptido LJL143 de *Lu. longipalpis* y/o variantes o fragmentos del mismo, y/o polipéptidos KMP11 de *Leishmania* y/o variantes o fragmentos de los mismos, y/o vectores que comprenden el polinucleótido o gen de 15 KMP11. Por ejemplo, los vectores para LJL143 pueden seleccionarse del grupo que consiste en pVR2001 LJL143, pNBO003, vCP2389, vCP2389-SEQ ID N0: 2 y MVA-LJL143. Los vectores para L1MJ7 pueden seleccionarse del grupo que consiste en pVR2001 LJM17, pNBO002, vCP2390, vCP2390-SEQ ID NO: 6 y MVA-LJM17. Los vectores para KMP11 pueden seleccionarse del grupo que consiste en pVR1020 KMP11 y vCP2350. En una realización, la vacuna comprende plásmidos pVR2001 LJL143, pVR2001 LJM17 y pVR1020 KMP11. En otra realización, la vacuna comprende vectores vCP2389, vCP2390 y vCP2350. En aún otra realización, la vacuna comprende plásmidos pNBO003, pNBO002 y pVR1020 KMP11. En otra realización, la vacuna comprende vCP2389-SEQ ID NO: 2, vCP2390-SEQ ID NO: 6 y vectores vCP2350.

La vacuna puede también estar asociada con al menos un antígeno de *Leishmania*, por ejemplo *Leishmania* 25 inactivada.

En una realización particular, la cepa de *Leishmania* puede ser *Leishmania infantum*, y/o *Leishmania braziliensis*. En una realización preferida, la cepa de *Leishmania* puede ser *Leishmania braziliensis*.

30 Estas cepas de *Leishmania* se pueden inactivar por procedimientos químicos o físicos. Los procedimientos químicos son de manera destacada BPL, formaldehído. Los procedimientos físicos pueden ser de manera destacada sonicación. Un procedimiento para la inactivación de *Leishmania* para su uso en una vacuna se describe en R. Cordeiro Giunchetti et al., Vaccine, 2007. Los promastigotes se cultivan en medio NNN/LIT durante 6 a 14 días, pero más preferiblemente 10 días, hasta que se consigue la diferenciación entre la forma procíclica de promastigote y la forma metacíclica de promastigote en base de una observación microscópica. El cultivo a continuación se puede recoger por centrifugación (2000 xg, 20 minutos, 4 °C). Cuando sea aplicable, el sobrenadante se descarta y la biomasa se lava tres veces en tampón de solución salina. Tanto si el cultivo se aclara como si no, la suspensión de promastigotes (es decir, cultivo en bruto o promastigote resuspendido en tampón de solución salina después de la centrifugación) posteriormente se altera mediante tratamiento con ultrasonidos utilizando una potencia de 10 a 40 375W, pero más preferiblemente de 40 W, durante 1 minuto, a 0 °C. El volumen del lote para este tratamiento es de entre 5 y 150 ml, preferiblemente de 30 ml. Después del tratamiento, el lisado se puede almacenar a -80 °C.

La formulación de vacuna se puede preparar a partir del concentrado de proteína que se obtiene después de la lisis celular. La cantidad de proteína de lisado celular que puede usarse para la vacunación de un canino es de 45 aproximadamente 50 μg a aproximadamente 2000 μg, preferiblemente de aproximadamente 50 μg a aproximadamente 600 μg. La concentración de proteína se determina de acuerdo con el procedimiento de Lowry.

La vacuna contra *Leishmania* inactivada se puede combinar con adyuvantes, como los descritos anteriormente para las vacunas de subunidades.

En una realización, la vacuna para usar según la invención comprende polipéptidos salivales de *Lu. Longipalpis* y/o variantes o fragmentos de los mismos, y/o vectores que comprenden el polinucleótido salival de *Lu. Longipalpis* y/o variantes o fragmentos de los mismos, y/o *Leishmania* inactivada. Dicha vacuna contiene el polipéptido salival de *Lu. Longipalpis* incluyendo un polipéptido que tiene al menos 70%, al menos 75%, al menos 80%, al menos 85%, al menos 90%, al menos 95%, 96%, 97%, 98% o 99% de identidad de secuencia con un polipéptido que tiene una secuencia como se expone en SEQ ID NO: 5, 7, 15, o 17; o el polinucleótido que codifica un polipéptido salival de *Lu. Longipalpis* que tiene al menos 70%, al menos 80%, al menos 85%, al menos 95%, 96%, 97%, 98% o 99% de identidad de secuencia con un polipéptido que tiene una secuencia como se expone en SEQ ID NO: 5, 7, 15, o 17; o el polinucleótido tiene al menos 70%, al menos 75%, al menos 80%, al menos 85%, al menos 80%, al menos 85%, al menos 85%, al menos 85%, al menos 80%, al menos 85%, al menos 80%, al menos 85%, al menos 80%, al menos 80%, al menos 80%, al menos 85%, 810 NO: 5, 7, 15, o 17; o el polinucleótido tiene al menos 70%, al menos 75%, al menos 80%, al menos 85%, 810 NO: 5, 7, 15, o 17; o el polinucleótido tiene al menos 70%, al menos 80%, al menos 80%,

En una realización particular, la vacuna para su uso según la invención comprende polipéptidos salival LJM17 de *Lu. Longipalpis* y/o variantes o fragmentos de los mismos, y/o vectores que comprenden el polinucleótido LJM17 y/o variantes o fragmentos de los mismos, y/o *Leishmania* inactivada. Por ejemplo, los vectores para LJM17 pueden seleccionarse entre el grupo que consiste en pVR2001 LJM17, pNBO002, vCP2390, vCP2390-SEQ ID NO: 6 y

MVA-LJM17, y se pueden combinar con *Leishmania* inactivado seleccionado del grupo que consiste en *Leishmania* infantum y/o *Leishmania braziliensis* inactivados sonicados. Por ejemplo, en una realización, la vacuna comprende el vector vCP2390 y *Leishmania braziliensis* inactivado sonicado. En otra realización, la vacuna comprende el vector vCP2390-SEQ ID NO: 6 y *Leishmania braziliensis* inactivado sonicado.

En el presente documento se describe que la vacuna comprende polipéptidos salival LJL143 de Lu. Longipalpis y/o variantes o fragmentos de los mismos, y/o vectores que comprenden el polinucleótido LJL143 y/o variantes o fragmentos del mismo, y/o Leishmania inactivada. Por ejemplo, los vectores para LJL143 pueden ser seleccionados del grupo que consiste en pVR2001 LJL143, pNBO003, vCP2389, vCP2389-SEQ ID NO: 2 y MVA-LJL143. La 10 Leishmania inactivada puede ser seleccionado del grupo que consiste en Leishmania infantum y/o Leishmania braziliensis inactivadas sonicadas. Por ejemplo, en una realización, la vacuna comprende el vector vCP2389 y Leishmania braziliensis inactivada sonicada. En otra realización, la vacuna comprende el vector vCP2389-SEQ ID NO: 2 y Leishmania braziliensis inactivada sonicada. En otra realización particular, la vacuna para su uso según la invención comprende al menos uno de polipéptidos salivales LJM17 de Lu. Longipalpis y/o variantes de los mismos 15 como se describen en el presente documento y/o vectores que comprenden el polinucleótido LJM17 y/o variantes del mismo como se describe en el presente documento, y puede comprender adicionalmente polipéptidos salivales LJL143 de Lu. Longipalpis y/o variantes o fragmentos de los mismos, y/o vectores que comprenden el polinucleótido LJL143 y/o variantes o fragmentos del mismo, y/o Leishmania inactivada. Por ejemplo, los vectores podrían ser seleccionados para LJL143 del grupo que consiste en pVR2001 LJL143, pNBO003, vCP2389, vCP2389-8EQ ID NO: 20 2 y MVA-LJL143. Para LJM17, los vectores pueden ser seleccionados del grupo que consiste en pVR2001 LJM17, pNBO002, vCP2390, vCP2390-SEC 15 ID NO: 6 y MVA-LJM17. La Leishmania inactivada puede ser seleccionada del grupo que consiste en Leishmania infantum y/o Leishmania braziliensis inactivada sonicada. En una realización, la vacuna comprende los vectores de vCP2389 y vCP2390 y Leishmania braziliensis inactivada sonicada. En otra realización, la vacuna comprende los vectores vCP2389-SEQ ID NO: 2 y vCP2390-SEQ ID NO: 6 y Leishmania 25 braziliensis inactivada sonicada.

La presente invención se refiere a composiciones de vacuna descritas en este documento para su uso en la vacunación de un animal canino contra *Leishmania*.

30 El huésped es un animal canino (por ejemplo, perros, perras, perritos, zorros, chacales y lobos).

Las vías de administración pueden ser, por ejemplo, intramuscular (IM) o intradérmica (ID) o transdérmica (TD) o subcutánea (SC). Los medios de administración pueden ser, por ejemplo, una jeringa con una aguja, o un aparato sin aguja, o una jeringa con una aguja acoplada a tratamiento con electrotransferencia (ET), o un aparato sin aguja acoplada a tratamiento con ET.

Otro aspecto de la descripción se refiere al uso de una vacuna basada en un plásmido de acuerdo con la presente descripción para la administración a *Leishmania*, un huésped, en el que esta administración está acoplada al tratamiento ET. La administración de una vacuna basada en plásmido es ventajosamente intramuscular. El medio de 40 administración es, por ejemplo, una jeringa y una aguja. Una o varias inyecciones pueden administrarse sucesivamente. En el caso de varias inyecciones, se pueden llevar a cabo con de 2 a 6 semanas de diferencia, por ejemplo, alrededor de 3 semanas de diferencia. En una realización, se administra adicionalmente un refuerzo semi-anual o un refuerzo anual.

45 Para las vacunas basadas en plásmidos, las rutas ventajosas de administración pueden ser ID o IM. Esta administración puede ser a través del uso de una jeringa con una aguja o con un aparato sin aguja como Dermojet o Biojector (Bioject, Oregon, EE.UU.) o Vetjet™ (Merial) o Vitajet™ (Bioject Inc.), véase el documento US 2006/0034867. La dosificación puede ser de 50 μg hasta 500 μg por plásmido. Cuando se añade DMRIE-DOPE, se pueden utilizar 100 μg por plásmido. Cuando se utilizan GM-CSF caninos u otras citoquinas, el plásmido que codifica esta proteína puede estar presente en una dosis de aproximadamente 200 μg a aproximadamente 500 μg y puede ser ventajosamente de 200 μg. El volumen de dosis puede ser de entre 0,01 ml y 0,5 ml, por ejemplo, 0,25 ml. La administración puede estar provista de múltiples puntos de inyección.

Alternativamente, las vacunas basadas en plásmidos pueden administrarse por vía IM acopladas a tratamiento de electrotransferencia (ET). El tratamiento ET puede realizarse utilizando un aparato para electrotransferencia y las especificaciones del fabricante (es decir, generador G250 Sphergen (Sphergen SARL, Evry Genopole, Francia); sistema de electroporación de ADN MedPulser® (Innovio Biomedical Corporation, San Diego, California, EE.UU.)). En una realización, el aparato para electrotransferencia tiene un campo unipolar. La intensidad de campo puede ser de aproximadamente 50 a aproximadamente 250 V/cm, de aproximadamente 50 a aproximadamente 200 V/cm, o de aproximadamente 50 a aproximadamente 175 V/cm. La duración de pulso puede ser de aproximadamente 1 a aproximadamente 50 ms, o de aproximadamente 25 ms. La frecuencia puede ser de aproximadamente 1 a aproximadamente 1 a aproximadamente 15 Hz. El intervalo entre pulsos puede ser de aproximadamente 1 a 1000 ms, o de aproximadamente 1 a aproximadamente 200 ms. El número de pulsos puede ser de 1 a 20, o de 5 a 10. La intensidad intratisular puede ser ventajosamente de hasta aproximadamente 2 A. La distancia entre los electrodos puede ser de aproximadamente 0,2 a aproximadamente 1 cm, o de aproximadamente 0,2 a aproximadamente 0,5 cm.

Para las vacunas basadas en vectores virales recombinantes, las vías de administración pueden ser, ventajosamente, SC o IM o TD o ID. Esta administración puede hacerse mediante una jeringa con una aguja o con un aparato sin aguja como Dermojet o Biojector (Bioject, Oregon, EE.UU.) o Vetjet™ (Merial) o Vitajet™ (Bioject 5 Inc.). La dosis puede ser de aproximadamente 10³ ufp a aproximadamente 109 ufp por vector virus de la viruela recombinante. Cuando el vector es un virus de viruela del canario, la dosificación puede ser, por ejemplo, de aproximadamente 10⁵ ufp a aproximadamente 10⁵ ufp, o de aproximadamente 10⁶ ufp a aproximadamente 10⁶ ufp. El volumen de dosis puede ser de aproximadamente 0,01 ml a 0,2 ml, y es ventajosamente de 0,1 ml. La administración puede comprender múltiples puntos de inyección.

Para la vía IM el volumen de la vacuna proporcionada puede ser de 0,2 a 2 ml, en particular de aproximadamente 0,5 a 1 ml. Las mismas dosis se utilizan para cualquiera de los vectores para usar según la presente invención.

Para las vacunas de subunidades, la vía de administración puede ser, ventajosamente, a través de SC o IM o TD o ID. Esta administración puede hacerse mediante una jeringa con una aguja o con un aparato sin aguja como Dermojet o Biojector (Bioject, Oregon, EE.UU.) o Veljet TM (Merial) o Vitajet TM (Bioject Inc.). La dosis puede ser de aproximadamente 50 a aproximadamente 500 μg, en particular de aproximadamente 50 a aproximadamente 150 μg, y más particularmente de aproximadamente 50 a aproximadamente 100 μg. El volumen de la vacuna de subunidades proporcionada es de 0.2 a 2 ml. en particular de aproximadamente 0.5 a 1 ml.

Se describe en el presente documento una estrategia de vacuna, que se basa en un régimen de administración de sensibilización-refuerzo, donde la administración de sensibilización y la administración o administraciones de refuerzo utilizan una composición que comprende un excipiente, diluyente o vehículo farmacéutica o veterinariamente aceptable, y un vector de expresión in vivo que comprende una secuencia de polinucleótidos, que 25 contiene y expresa el polipéptido salival de *Lu. Longipalpis* y/o variantes o fragmentos del mismo.

En el presente documento se describe el uso de vectores de expresión *in vivo* en un régimen de administración de sensibilización-refuerzo, que comprende una administración de sensibilización de una vacuna que comprende un vehículo, diluyente o excipiente farmacéutica o veterinariamente aceptable, un vector de expresión *in vivo* que 30 contiene una secuencia de polinucleótidos para expresar, *in vivo*, polipéptidos salivales de *Lu. Longipalpis y/o* variantes o fragmentos de los mismos, seguido por una administración de refuerzo de una vacuna que comprende un vehículo o excipiente farmacéutica o veterinariamente aceptable, un vector de expresión *in vivo* que contiene una secuencia de polinucleótido para expresar, *in vivo*, polipéptidos de *Lu. Longipalpis* de la mosca de la arenay/o variantes o fragmentos de los mismos, como se describió anteriormente, para proteger a un huésped de la 35 leishmaniasis y/o para prevenir la progresión de la enfermedad en huéspedes infectados.

Un régimen de sensibilización-refuerzo comprende al menos una administración de sensibilización y al menos una administración de refuerzo usando al menos un polipéptido común y/o variantes o fragmentos del mismo. La vacuna utilizada en la administración de sensibilización puede ser de naturaleza diferente de las utilizadas una vacuna de refuerzo posterior. La administración de sensibilización puede comprender una o más administraciones. Del mismo modo, la administración de refuerzo puede comprender una o más administraciones.

Las vías de administración, las dosis y los volúmenes se describen como anteriormente en el presente documento.

- 45 Las administraciones de sensibilización-refuerzo pueden llevarse a cabo ventajosamente con de 2 a 6 semanas de diferencia, por ejemplo, alrededor de 3 semanas de diferencia. De acuerdo con una realización, también se prevé un refuerzo semianual o un refuerzo anual, de forma ventajosa usando la vacuna basada en vector viral. Los animales tienen ventajosamente al menos 6 a 8 semanas de vida en el momento de la primera administración.
- 50 En el presente documento se describe que el régimen de administración de sensibilización-refuerzo comprende al menos una administración de sensibilización de una vacuna basada en un plásmido de acuerdo con la presente descripción y al menos una administración de refuerzo de una vacuna basada en vector viral recombinante de acuerdo con la presente descripción.
- 55 En una realización particular, el régimen de administración de sensibilización-refuerzo comprende al menos una administración de sensibilización basada en un vector viral recombinante para su uso según la presente invención y al menos una administración de refuerzo de una vacuna de subunidades para el uso de acuerdo con la presente invención.
- 60 En el presente documento se describe que el régimen de administración de sensibilización-refuerzo comprende al menos una administración de sensibilización de una vacuna basada en vector viral recombinante de acuerdo con la presente descripción y al menos una administración de refuerzo de una vacuna basada en un plásmido de acuerdo con la presente descripción.
- 65 En el presente documento se describe que la presente descripción se refiere a un procedimiento de vacunación de un sujeto susceptible de *Leishmania* que comprende un régimen de administración de sensibilización-refuerzo en el

que dicho regimiento comprende una administración de sensibilización de una vacuna que comprende, en un vehículo, diluyente o excipiente farmacéutica o veterinariamente aceptable, un plásmido que contiene un polinucleótido para expresar, *in vivo*, un polipéptido salival de *Lu. Longipalpis*, una variante o fragmento del polipéptido salival de *Lu. longipalpis*, o una mezcla de los mismos, seguido por una administración de refuerzo de una vacuna que comprende, en un vehículo o excipiente farmacéutica o veterinariamente aceptable, un vector recombinante viral que comprende un polinucleótido para expresar, *in vivo*, el mismo polipéptido o polipéptidos salivales de *Lu. longipalpis*, variante de los mismos, fragmento de los mismos, para proteger al sujeto de la *Leishmania*sis y/o para prevenir la progresión de la enfermedad en sujetos infectados.

- 10 En el presente documento se describe que la presente descripción se refiere a un procedimiento de vacunación de un sujeto susceptible de *Leishmania* que comprende un régimen de administración de sensibilización-refuerzo en el que dicho regimiento comprende una administración de sensibilización de una vacuna que comprende, en un vehículo, diluyente o excipiente farmacéutica o veterinariamente aceptable, un vector recombinante viral que comprende un polinucleótido para expresar, *in vivo*, un polipéptido salival de *Lu. Longipalpis*, una variante o fragmento del polipéptido salival de *Lu. Longipalpis*, o una mezcla de los mismos, seguido por una administración de refuerzo de una vacuna que comprende, en un vehículo o excipiente farmacéutica o veterinariamente aceptable, un plásmido que contiene un polinucleótido para expresar, *in vivo*, el mismo polipéptido o polipéptidos salivales de *Lu. longipalpis*, variante de los mismos, fragmento de los mismos, para proteger al sujeto de la *Leishmania*sis y/o para prevenir la progresión de la enfermedad en sujetos infectados.
- En una realización, la presente invención se refiere a un procedimiento de vacunación de un animal canino susceptible a *Leishmania* que comprende un régimen de administración de sensibilización-refuerzo en el que dicho regimiento comprende una administración de sensibilización de una vacuna que comprende, en un vehículo, diluyente o excipiente farmacéutica o veterinariamente aceptable, un vector recombinante viral que comprende un polinucleótido para expresar, *in vivo*, un polipéptido salival de *Lu. Longipalpis*, una variante del polipéptido salival de *Lu. Longipalpis*, o una mezcla de los mismos, seguido por una administración de refuerzo de una vacuna que comprende, en un vehículo o excipiente farmacéutica o veterinariamente aceptable, el mismo polipéptido o polipéptidos salivales de *Lu. Longipalpis*, variante de los mismos, para proteger el canino de *Leishmania*sis y/o para prevenir la progresión de la enfermedad en un canino infectado.
- En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención puede comprender adicionalmente al menos una administración de refuerzo de una vacuna basada en vectores vCP2390 o vCP2390-SEQ ID NO: 6.
- 35 En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención puede comprender adicionalmente al menos una administración de refuerzo de una vacuna basada en vectores vCP2389 o vCP2389-SEQ ID NO: 2.
- En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención 40 comprende al menos una administración de sensibilización de una vacuna basada en un plásmido pVR2001 LJL143 y pVR2001 LJM17, y puede comprender adicionalmente al menos una administración de refuerzo de una vacuna basada en vectores vCP2389 o vCP2390.
- En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención 45 comprende al menos una administración de sensibilización de una vacuna basada en un plásmido pNBO003 y pNBO002, y puede comprender adicionalmente al menos una administración de refuerzo de vacuna basada en vectores vCP2389- SEQ ID NO: 2 y vCP2390-SEQ ID NO: 6.
- En aún otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención puede comprender adicionalmente al menos una administración de refuerzo de una vacuna basada en vectores MVA-LJM17.
 - En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención puede comprender adicionalmente al menos una administración de refuerzo de una vacuna basada en vector MVA-LJL143.

55

- En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención comprende al menos un administración de una vacuna de sensibilización basada en un plásmido pVR2001 LJL143 y pVR2001 LJM17, y al menos una administración de refuerzo de una vacuna a base de vectores MVA-LJLI43 y MVA-LJM17.
- En aún otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención comprende al menos un administración de sensibilización de una vacuna basada en un plásmido pNBO003 y pNBO002, y puede comprender adicionalmente al menos una administración de refuerzo de una vacuna basada en los vectores MVA-LJL143 y MVA-LJM17.
 - En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención

comprende al menos una administración de sensibilización de una vacuna basada en vectores vCP2390 o vCP2390-SEQ ID NO: 6 y al menos una administración de refuerzo de una vacuna de subunidades del polipéptido LJM17.

En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención puede 5 comprender adicionalmente al menos una administración de refuerzo de una vacuna de subunidades del polipéptido LJL143.

En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención comprende al menos una administración de sensibilización de vacuna basada en los vectores vCP2389 o vCP2389-10 SEQ ID NO: 2 y vCP2390 o vCP2390-SEQ ID NO: 6, y al menos una administración de refuerzo de una vacuna de subunidades del polipéptido LJLJ 43 y el polipéptido LJM17.

En aún otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención comprende al menos una administración de sensibilización de una vacuna basada en el vector MVA-LJM17, y al menos una administración de refuerzo de una vacuna de subunidades del polipéptido LJM17.

En el presente documento se describe que el régimen de administración de sensibilización-refuerzo comprende al menos una administración de sensibilización de una vacuna basada en el vector MVA-LJL143, y al menos una administración de refuerzo de una vacuna de subunidades del polipéptido LJL143.

En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención comprende al menos una administración de sensibilización de una vacuna basada en los vectores MVA-LJLJ43 y MVA-LJM17, y al menos una administración de refuerzo de una vacuna de subunidades del polipéptido LJL143 y el polipéptido LJM17.

20

En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención puede comprender adicionalmente al menos una administración de refuerzo de una vacuna basada en un plásmido pVR2001 LJM17 o pNBO002.

30 En otra realización, el régimen de administración de sensibilización-refuerzo para uso según la invención puede comprender adicionalmente al menos una administración de refuerzo de una vacuna basadas en los plásmidos LJL143 pVR2001 o pNBO003.

En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención 35 comprende al menos una administración de sensibilización de una vacuna basada en vectores vCP2389 y vCP2390, y puede comprender adicionalmente al menos una administración de refuerzo de una vacuna basada en los plásmidos pVR2001 LJLI43 y pVR2001 LJMI7.

En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención 40 comprende al menos una administración de sensibilización de una vacuna basada en vectores vCP2389-SEQ ID NO: 2 y vCP2390-SEQ ID NO: 6 y puede además comprender al menos una administración de refuerzo de una vacuna basada en los plásmidos pNBO003 y pNBO002.

En el presente documento se describe que el régimen de administración de sensibilización-refuerzo comprende al 45 menos una administración de sensibilización de una vacuna basada en el vector MVA-LJM17 y al menos una administración de refuerzo de una vacuna basada en los plásmidos pVR2001 LJM17 o pNBO002.

En el presente documento se describe que el régimen de administración de sensibilización-refuerzo comprende al menos una administración de sensibilización de una vacuna basada en el vector MVA-LJL143, y al menos una 50 administración de refuerzo de una vacuna basada en los plásmidos pVR2001 LJL143 o pNBO003.

En otra realización, el régimen de administración de sensibilización-refuerzo para su uso según la invención comprende al menos una administración de sensibilización de una vacuna basada en vectores MVA-LJL143 y MVA-LJM17, y puede comprender adicionalmente al menos una administración de refuerzo de una vacuna basada en los plásmidos pNBO003 y pNBO002.

Otro aspecto de la presente invención se refiere a un kit para la vacunación de sensibilización-refuerzo de acuerdo con la presente descripción. El kit puede comprender al menos dos viales: un primer vial que contiene una vacuna para la vacunación de sensibilización de acuerdo con la presente descripción y un segundo vial que contiene una 60 vacuna para la vacunación de refuerzo de acuerdo con la presente descripción. El kit puede contener ventajosamente primeros o segundos viales adicionales para vacunaciones de sensibilización adicionales o vacunaciones de refuerzo adicionales.

En una realización, el kit puede comprender dos viales, uno que contiene una vacuna basada en plásmido para la 65 vacunación de sensibilización de acuerdo con la presente descripción, el otro vial que contiene una vacuna basada en vector viral recombinante para la vacunación de refuerzo de acuerdo con la presente descripción.

En el presente documento se describe que el kit puede comprender dos viales, uno que contiene una vacuna basada en vector viral recombinante para la vacunación de sensibilización de acuerdo con la presente descripción, el otro vial que contiene una vacuna de subunidades para la vacunación de refuerzo de acuerdo con la presente 5 descripción.

En otra realización, el kit puede comprender dos viales, uno que contiene una vacuna basada en vector viral recombinante para la vacunación de sensibilización de acuerdo con la presente descripción, el otro vial que contiene una vacuna basada en plásmido para la vacunación de refuerzo de acuerdo con la presente descripción.

10

15

Se da a conocer en el presente documento que los individuos que experimentan una conversión de la respuesta DTH anti-*Leishmania* también tienen un aumento en los anticuerpos contra proteínas salivales de *Lu. Longipalpis*. Así, la presencia o ausencia de anticuerpos contra proteínas salivales de *Lu. Longipalpis* puede ser utilizado para determinar si un sujeto tiene una infección por *Leishmania*.

En el presente documento se da a conocer un procedimiento para el diagnóstico de la infección con *Leishmania* mediante la detección de la presencia de anticuerpos que se unen específicamente uno o más polipéptidos que tienen una secuencia de aminoácidos como se expone en SEQ ID NO: 1, 3, 5, 7, 11, 13, 15, 17, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, o 87, o un polipéptido que tiene al menos 80%, al menos 90%, al menos 95%, o al menos 99% de homología con uno de estos polipéptidos, una variante conservativa, un homólogo o un fragmento inmunogénico de uno de estos polipéptidos. El procedimiento puede utilizar un solo polipéptido de *Lu. Longipalpis* o una combinación de estos polipéptidos. En determinados ejemplos, el procedimiento de diagnóstico detecta anticuerpos que se unen específicamente a al menos 3, 6 ó 10 de estos polipéptidos, o fragmentos inmunogénicos de los mismos.

En el presente documento se describe que uno o más polipéptidos de *Lu. Longipalpis* pueden estar unidos a un sustrato sólido. Por ejemplo, el polipéptido de *Lu. Longipalpis* que tiene una secuencia de aminoácidos como se expone en SEQ ID NO: 1, 3, 5, 7, 11, 13, 15, 17, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, o 87 se puede unir al sustrato. Uno o más de estos polipéptidos se pueden unir al sustrato, por ejemplo al menos 3, 6, o 10 de estos polipéptidos, o un fragmento inmunogénico de los mismos. En un ejemplo, uno o más polipéptidos que tienen una secuencia como se expone en SEQ ID NO: 1, 3, 5, 7, 11, 13, 15, 17, 25, 33, 39, 47, o 77 se pueden unir al sustrato. En otro ejemplo, uno o más de polipéptidos de *Lu. Longipalpis* que tienen una secuencia como se expone en SEQ ID NO: 1, 3, 5, 7, 11, 13, 15, 17, o 57 pueden unirse al sustrato. En un ejemplo específico, no limitativo, por lo menos seis polipéptidos de *Lu. Longipalpis* se unen 35 a un sustrato sólido, en el que cada uno de los polipéptidos comprende una secuencia de aminoácidos como se expone en SEQ ID NO: 25, SEQ ID NO: 1 (o 3, o 11, o 13), SEQ ID NO: 5 (o 7, o 15, o 17), SEQ ID NO: 47, SEQ ID NO: 73, o SEQ ID NO: 77, o un fragmento inmunogénico de los mismos. En otro ejemplo específico, no limitativo, al menos tres polipéptidos de *Lu. Longipalpis* se unen a un sustrato sólido, en el que cada uno de los polipéptidos comprende una secuencia de aminoácidos como se expone en SEQ ID NO: 5, o un fragmento inmunogénico de los mismos.

En el presente documento se describe que dos o más (por ejemplo al menos 3, 6, o 10) polipéptidos de *Lu. Longipalpis* (o fragmentos inmunogénicos de los mismos) se aplican a un sustrato sólido, por ejemplo como una serie de "puntos", tales como en un ensayo de "transferencia de puntos". En el presente documento se describe que 45 dos o más polipéptidos de *Lu. Longipalpis* se aplican a un sustrato, tal como en un conjunto lineal. En el presente documento se describe que polipéptidos de *Lu. Longipalpis* se aplican a una membrana en una matriz de dos dimensiones. De esta manera, se evalúa la presencia de anticuerpos contra más de un polipéptido de *Lu. Longipalpis*. Cada polipéptido de *Lu. Longipalpis* puede ser aplicado directamente a la superficie de una membrana en un solo puntos o en una combinación de puntos.

El sustrato sólido puede ser una perla de poliestireno, una membrana, un chip o una placa. Puede utilizarse un sustrato de plástico o vidrio. En el presente documento se describe una membrana que se utiliza que se compone de materiales porosos, tales como nylon, nitrocelulosa, acetato de celulosa, fibras de vidrio, y otros polímeros porosos. La superficie de un soporte sólido puede ser activada por procesos químicos que causan la unión covalente del polipéptido al soporte. Sin embargo, puede utilizarse cualquier otro procedimiento adecuado para la inmovilización de un polipéptido a un soporte sólido, incluyendo, sin limitación, interacciones iónicas, interacciones hidrófobas, interacciones covalentes y similares. Una vez que el polipéptido se aplica al sustrato, el sustrato puede ponerse en contacto con una sustancia, tal como una solución que contiene proteína, que satura no específicamente los sitios de unión sobre la misma. Ejemplos específicos, no limitativos, de una solución que contiene proteína 60 incluyen una solución producida a partir de leche en polvo o albúmina de suero, tal como albúmina de suero bovino.

A continuación, se añade una muestra (por ejemplo, suero, sangre, plasma, orina, semen, saliva, esputo, fluido lacrimal, fluido linfático) al sustrato, y la muestra y el sustrato combinados se incuban durante un tiempo suficiente para permitir la unión específica. La unión específica de anticuerpos a los polipéptidos de *Lu. Longipalpis* descritos en el presente documento, se detecta entonces usando cualquier medio conocido para un experto en la técnica. Se describe en el presente documento que se utiliza un anticuerpo secundario marcado para detectar los anticuerpos

que se unen específicamente a los polipéptidos de Lu. Longipalpis. La etiqueta puede ser una etiqueta de radio (por ejemplo, 1251), un marcador enzimático (por ejemplo, fosfatasa alcalina o peroxidasa de rábano picante), o un marcador fluorescente (por ejemplo, isotiocianato de fluoresceína). Los sistemas de detección para estas etiquetas son conocidos para un experto en la técnica. La unión de la muestra, o un componente de la muestra, al polipéptidos 5 de Lu. Longipalpis, como se indica por la presencia del marcador, indica infección con Leishmania.

En el presente documento se describe que la muestra se adsorbe sobre un sustrato sólido que contiene sitios de unión para los polipéptidos, tales como moléculas de anticuerpos. En el presente documento se describe que el sustrato sólido es una perla de poliestireno, un chip, una membrana o una placa. El sustrato se pone en contacto 10 después con una sustancia, tal como una solución que contiene proteína que satura no específicamente los sitios de unión sobre la misma. El sustrato se lava a continuación con un tampón. Una solución de uno o más polipéptidos de Lu. Longipalpis se añade a continuación a las muestras unidas. En el presente documento se describe que el polipéptido de Lu. Longipalpis está marcado directamente. El marcaje del polipéptido de Lu. Longipalpis puede ser provocada por el uso de cualquier marcador, tal como mediante la incorporación de un isótopo o un grupo radiactivo. 15 o mediante el acoplamiento de este componente a una enzima, un colorante, por ejemplo un resto cromóforo o un grupo fluorescente. Las enzimas de uso son aquellas que pueden determinarse colorimétricamente, espectrofotométricamente, o fluorimétricamente. Ejemplos de enzimas no limitantes para su uso en la presente descripción incluyen enzimas del grupo de las oxidorreductasas, tales como la catalasa, peroxidasa, glucosa oxidasa, beta-glucuronidasa, beta-D-glucosidasa, beta-D-galactosidasa, ureasa y galactosa oxidasa. Después de 20 que el polipéptido de Lu longipalpis polipéptido marcado se incuba con el sustrato sólido, cualquier polipéptido de Lu. Longipalpis marcado no unido se elimina mediante lavado. El polipéptido de Lu. Longipalpis marcado unido se detecta mediante un ensayo apropiado. La unión del polipéptido de Lu longipalpis marcado a la muestra, o a un componente de la muestra, es indicativo de la infección con Leishmania.

25 En general, las etapas de incubación utilizadas en la realización de los procedimientos se pueden realizar de una manera conocida, tal como mediante la incubación a temperaturas entre aproximadamente 4 °C y aproximadamente 25 °C, durante aproximadamente 30 minutos a aproximadamente 48 horas. Los lavados se pueden incluir con una solución acuosa tal como un tampón, donde el tampón es de aproximadamente pH 6 a aproximadamente pH 8, tal como usando una disolución salina isotónica de un pH de aproximadamente 7.

Los ensayos de unión competitiva son también de uso en la detección de la infección por Leishmania. Un experto en la técnica, dados los polipéptidos de Lu. Longipalpis descritos en el presente documento, será fácilmente capaz de diseñar ensayos adicionales, tales como ensayos de unión competitiva, de uso en la detección de infección por Leishmania.

35 En el presente documento se describe que los polipéptidos de Lu. Longipalpis descritos en este documento pueden ser incluidos en un kit de prueba de diagnóstico. Por ejemplo, un kit de prueba de diagnóstico para detectar una infección por Leishmania incluye un sustrato sólido que tiene aplicado sobre el mismo uno o más polipéptidos de Lu. Longipalpis descritos en el presente documento. En el presente documento se describe que el kit incluye 40 instrucciones escritas y/o un recipiente que incluye una cantidad específica de anticuerpos marcados a las inmunoglobulinas, tales como IgG o IgM, o anticuerpos secundarios marcados que se unen a los anticuerpos de una especie de interés. Por ejemplo, los anticuerpos marcados pueden proporcionarse que específicamente detectan inmunoglobulinas de perro o humanas. Los anticuerpos marcados pueden ser marcados con fluorescencia, marcados enzimáticamente, o radiomarcados. Los anticuerpos marcados utilizados en los kits de prueba descritos 45 anteriormente se pueden envasar en cualquier solución o forma liofilizada adecuada para la reconstitución.

En el presente documento se describe que el kit de ensayo incluye una cantidad específica de uno o más polipéptidos de Lu. Longipalpis descritos en el presente documento en un recipiente, e instrucciones escritas. En un ejemplo, el polipéptido de Lu. Longipalpis está marcado directamente. En otro ejemplo, el uno o más polipéptidos de 50 Lu. Longipalpis no está marcado. Si el polipéptido de Lu. Longipalpis no está marcado, un recipiente también puede estar incluido con un reactivo de detección que se une específicamente al polipéptido de Lu. Longipalpis, tal como un anticuerpo monoclonal marcado. El kit también puede incluir opcionalmente un sustrato sólido para la unión de la

55 El proceso y el kit de prueba descritos anteriormente para la detección de anticuerpos para los polipéptidos de Lu. Longipalpis descritos en este documento pueden ser utilizados en muchas aplicaciones, incluyendo, pero no limitado a, la detección de infección por Leishmania en un sujeto usando los procedimientos descritos en este documento. Los ensayos y kits descritos en este documento se pueden usar para detectar la eficacia de un tratamiento terapéutico a un sujeto.

En el presente documento se describe que las pruebas y kits descritos en este documento también pueden ser utilizados para evaluar una infección primaria con Leishmania o para predecir la recuperación de la infección por Leishmania mediante la toma de un fluido corporal de un sujeto infectado, por ejemplo en diversos momentos después de la infección, y la aplicación de los procedimientos de detección descritos anteriormente.

La presente invención se describirá a continuación adicionalmente a modo de los siguientes ejemplos no limitativos.

23

60

30

65

EJEMPLOS

- Sin más elaboración, se cree que un experto en la técnica puede, utilizando las descripciones anteriores, poner en práctica de la presente invención en su extensión más completa. Los siguientes ejemplos detallados deben interpretarse como meramente ilustrativos, y no son limitaciones de la descripción precedente en forma alguna. Los expertos en la técnica reconocerán rápidamente las variaciones apropiadas de los procedimientos tanto en cuanto a reactivos como a las condiciones y técnicas de reacción.
- 10 La construcción de insertos de ADN, plásmidos y vectores virales recombinantes se llevó a cabo utilizando las técnicas estándar de biología molecular descritas por J. Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2ª edición, Cold Spring Harbor Laboratory Cold Spring Harbor, Nueva York, 1989). Todos los fragmentos de restricción utilizados para la presente descripción se aislaron usando el kit "Geneclean" (BIO 101 Inc., La Jolla, Calif.).
- 15 EJEMPLO 1: Construcción del plásmido pVR2001 LJM17 que expresa el polipéptido salival LJM17 de Lu. Longipalpis

El polinucleótido que codifica polipéptido LJM17 de *Lu. longipalpis* se sintetiza y tiene la secuencia descrita en SEQ ID NO: 8 que contiene la cola de poli (A). El fragmento LJM17 se amplifica por PCR y se clona en el sitio de 20 clonación TOPO del plásmido donante pVR2001-TOPA (también denominado pVR2001-TOPO). El plásmido resultante, pVR2001 LJM17, por lo tanto, contiene y expresa un nucleótido que codifica un promotor capaz de dirigir la expresión en una célula de mamífero, un péptido líder para facilitar la secreción/liberación de una secuencia de la proteína procariota de una célula de mamífero, LJM17, topoisomerasas que flanquean el ADN que codifica LJM17, así como una secuencia de terminación.

La secuencia de ácido nucleico de una cadena del plásmido pVR2001 LJM17 se describe en SEQ ID NO: 9 y en la Figura 1, en la que los sitios BamHI están en posiciones [4-9] y [5051-5056], la secuencia de nucleótidos que codifica el péptido señal de tPA está en la posición [4976-5062] y la secuencia de nucleótidos que codifica LJM17 está en la posición [5063-6247].

EJEMPLO 2: Construcción del plásmido pVR2001 LJL143que expresa el polipéptido salival LJL143 de *Lu. Longipalpis*

El polinucleótido que codifica el polipéptido LJL143 de *Lu. longipalpis* se sintetiza y tiene la secuencia descrita en 35 SEQ ID NO: 4 que contiene la cola de poli (A). El fragmento LJL143 se amplifica mediante PCR y se clona en el sitio de clonación TOPO del plásmido pVR2001-TOPA, tal como se describe en el ejemplo 1, para generar el plásmido pVR2001 LJL143.

La secuencia de ácido nucleico de una cadena del plásmido pVR2001 LJL143 se describe en SEQ ID NO: 10 y en la 40 Figura 2, en la que sitios BamHI están en las posiciones [4-9] y [5051-5056], la secuencia de nucleótidos que codifica el péptido señal de tPA está en la posición [4976-5062] y la secuencia de nucleótidos que codifica LJL143 está en la posición [5063-5899].

EJEMPLO 3: Construcción de un vector de virus de viruela del canario ALVAC que expresa el polipéptido 45 salival LJM17 de *Lu. Longipalpis*

Para una discusión y los ejemplos del plásmido pALVAC, y el locus C3, véase, por ejemplo, las Patentes de Estados Unidos N° 5.756.103.; 5.833.975; y 6.780.407. La secuencia del promotor H6 del virus vaccinia ha sido descrita previamente (véase, por ejemplo, Taylor et al.; Taylor et al.).

- El polinucleótido que codifica el polipéptido LJM17 de *Lu. longipalpis* se sintetiza y tiene la secuencia descrita en SEQ ID NO: 6. Este polinucleótido se liga a continuación al plásmido donante pALVAC C3 H6p que da lugar a pALVAC C3 H6p-LJM17 que contiene 5737 pares de bases (Figura 3).
- 55 Para generar vCP2390-SEQ ID NO: 6, el plásmido pALVAC C3 H6p-LJM17 se linealizó con la enzima de restricción Notl. Los fragmentos linealizados se transfectaron individualmente en células CEF primarias infectadas con ALVAC utilizando el procedimiento de precipitación con fosfato de calcio (véase, Panicali et al.; Piccini et al.). Después de 24 h, se recogieron las células transfectadas, se sonicaron y se usaron para el cribado de virus recombinante.
- 60 Las placas recombinantes se criban basándose en el procedimiento de hibridación por elevación de placas usando una sonda específica de LJM17 de *Lu. longipalpis* que está marcada con peroxidasa de rábano picante de acuerdo con el protocolo del fabricante (Amersham Cat # RPN-3001). Después de tres rondas secuenciales de purificación en placa, se generan los recombinantes mediante la confirmación de la hibridación como 100% positivo para el inserto de LJM17 de *Lu. Longipalpis* y 100% negativo para el ORF de C3.

Se selecciona una única placa de la tercera ronda de purificación en placa y se expande para obtener soluciones

24

madre de P1 (60 mm), P2 (matraces T75) y P3 (botellas de rodillos) para amplificar vCP2390-SEQ ID NO: 6. El fluido de cultivo de células infectadas de las botellas de rodillos se recoge y se concentra para producir una solución madre de virus.

5 El constructo se secuencia para confirmar las secuencias del inserto LJM17 de *Lutzomyia longipalpis* y los brazos izquierdo y derecho de C3 alrededor del inserto de LM17 de *Lutzomyia longipalpis* en vCP2390-SEQ ID NO: 6.

10

15

EJEMPLO 4: Construcción de un vector de virus de viruela del canario ALVAC que expresa el polipéptido salival LJL143 de *Lu. Longipalpis*

El polinucleótido que codifica el polipéptido LJL143 de *Lu. longipalpis* se sintetiza y tiene la secuencia descrita en SEQ ID NO: 2. Esta secuencia a continuación se liga a un plásmido donante pALVAC C3 H6p. El plásmido resultante, pALVAC C3 H6p-LJL143 comprende 5400 pares de bases (Figura 5) y se secuencia para confirmar la secuencia de ácido nucleico (SEQ ID NO: 2) del gen de LJL143.

Para generar vCP2389-SEQ ID NO: 2, el plásmido pALVAC C3 H6p-LJL143 se linealiza con la enzima de restricción Notl. Los fragmentos linealizados se transfectan individualmente en células CEF primarias infectadas con ALVAC utilizando el procedimiento de precipitación con fosfato de calcio (véase, Panicali et al.; Piccini et al.). Después de 24 h, se recogien las células transfectadas, se sonican y se usan para el cribado de virus recombinante.

Las placas recombinantes se criban basándose en el procedimiento de hibridación por elevación de placas usando una sonda específica de LJL143 de *Lu. longipalpis* que está marcada con peroxidasa de rábano picante de acuerdo con el protocolo del fabricante (Amersham Cat # RPN-3001). Después de tres rondas secuenciales de purificación en placa, se generan los recombinantes mediante la confirmación de hibridación como 100% positivo para el inserto 25 LJL143 de *Lu. Longipalpis* y 100% negativo para el ORF de C3.

Se selecciona una única placa de la tercera ronda de purificación en placa y se expande para obtener soluciones madre de P1 (60 mm), P2 (matraces T75) y P3 (botellas de rodillos) para amplificar vCP2389-SEQ ID NO: 2. El fluido de cultivo de células infectadas de las botellas de rodillos se recoge y se concentra para producir una solución madre de virus.

El constructo se secuencia para confirmar las secuencias del inserto LJL143 de *Lutzomyia longipalpis* y los brazos izquierdo y derecho de C3 alrededor del inserto de LJL143 de *Lutzomyia longipalpis* en vCP2389-SEQ ID NO: 2.

35 EJEMPLO 5: Construcción de un vector MVA que expresa el polipéptido salival LJM17 de Lu. Longipalpis

MVA es una cepa Ankara modificada obtenida después de más de 570 pasajes de la cepa de la vacuna Ankara sobre fibroblastos de embrión de pollo (véase Stickl y Hochstein-Mintzel; Sutter et al.) disponible como ATCC VR-1508. Su adaptación a estas células causó la escisión de 6 regiones que no son esenciales para su desarrollo y su ciclo infeccioso sobre este tipo de células (desaparición de aproximadamente 15% del genoma viral; Meyer et al). El material genético exógeno se puede insertar en cualquiera de estas regiones de escisión. En el contexto de la presente descripción, se inserta material genético exógeno en escisiones II y III que se encuentran usando los fragmentos de restricción HindIII N y A respectivamente (Altenburger et al.).

45 La modificación del virus MVA recombinante que expresa LJM17 se realiza como se ha descrito previamente en Staib C. et al., con la excepción de que el fragmento de ADN de 723 pares de bases que contiene el ORF de gfp se sustituye por el fragmento de ADN de 1239 pares de bases que codifica el antígeno LJM17 (SEQ ID NO: 6), generando MVA-LJM17.

50 EJEMPLO 6: Construcción de un vector MVA que expresa el polipéptido salival LJL143 de Lu. Longipalpis

La construcción del virus MVA recombinante que expresa LJL143 se realiza como se ha descrito previamente en Staib C. et al., con la excepción de que el fragmento de ADN de 723 pares de bases que contiene el ORF de gfp se sustituye por el fragmento de ADN de 906 pares de bases que codifica el antígeno LJL143 (SEQ ID NO: 2), 55 generando MVA-LJL143.

EJEMPLO 7: Expresión de proteína salival de Lu. Longipalpis in vitro

Los plásmidos de expresión que contienen antígenos salivales de *Lu. Longipalpis* etiquetados con His codificados por ADNc derivado de los plásmidos pVR2001 LJM17 (véase el ejemplo 1) y pVR2001 LJL143 (véase el Ejemplo 2) se construyen y se transfectan en células HEK-293F. Los sobrenadantes recogidos a las 72 h se analizan por cromatografía HPLC utilizando columna de níquel y fracciones de HPLC con gradiente de imidazol positivas para la proteína salival recombinante con un motivo 6x His en su C-terminal se prueban con sueros policionales de ratones previamente inmunizados con los correspondientes plásmidos de ADNc originales. Las proteínas recombinantes son 65 probadas mediante SDS-PAGE y transferencia de Western, se dividen en alícuotas en PBS y se almacenan a -70 °C.

La vacuna de subunidades que comprende LJM17 se denomina aquí como rLJM17. La vacuna se prepara combinando 100 μg de proteína recombinante purificada LJM17 con 300 μg del adyuvante CpG # 2142 en EMULSIGEN® al 20% (laboratorios MVP) (para CpG # 2142, véase SEQ ID NO: 890 en el documento EP-B1-5 1.221.955).

La vacuna de subunidades que comprende LJL143 se denomina aquí como rLJL143. La vacuna se prepara combinando 100 μ g de proteína recombinante LJL143 purificada con 300 μ g del adyuvante CpG # 2142 en EMULSIGEN® al 20%.

EJEMPLO 8: Vacunación de perros contra la leishmaniasis

10

25 perros (beagles hembras de 1-2 años de edad) se dividieron aleatoriamente en 5 grupos de 5 perros cada uno. Todos los perros de los grupos 1 a 4 son vacunados en D0 (V1) por vía intradérmica (ID) en el pabellón auditivo 15 utilizando una jeringa y una aguja con 500 μg de plásmido pVR2001 LJM17 purificado (ejemplo 1) que expresa LJM17 (grupos 1 y 2) o plásmido pVR2001 LJL143 (ejemplo 2) que expresa LJL143 (grupos 3 y 4).

Los perros del grupo 1 y el grupo 3 se refuerzan en D14 (V2) y D28 (V3) con 500 μg de los mismos plásmidos utilizados para V1 por la vía transdérmica (TD) en la parte superior interna de ambas patas traseras utilizando el 20 dispositivo de administración sin aguja VetJet TM (Merial). Los perros del grupo 1 y el grupo 3 se reforzaron adicionalmente en D42 (V4) con 500 μg de los mismos plásmidos por la ruta intramuscular acoplada a electroporación (ET/IM) en el lado externo de ambos muslos utilizando el dispositivo y tecnología Sphergen (parámetros: 88V, T1 = 20, T2 = 80, 10).

- 25 Los perros de los grupos 2 y 4 se refuerzan en D14 (V2) y D28 (V3) con 500 μg de los mismos plásmidos utilizados para V1 por la vía IM acoplada a electroporación (ET/IM) como se describe anteriormente. Los perros de los grupos 2 y 4 se refuerzan adicionalmente en D42 (V4) por vía ID en el pabellón auditivo como se describió anteriormente con las vacunas de subunidades (véase el Ejemplo 7) rLJM17 (grupo 2) o rLJL143 (grupo 4), respectivamente.
- 30 Todos los perros de los grupos 1 y 2 reciben un refuerzo de la vacuna final en D192 (V5) por vía IM en el cuadriceps izquierdo usando 10⁸ ufp de un virus de la viruela del canario recombinante vCP2390 (Ejemplo 3) que expresa LJM17. Todos los perros de los grupos 3 y 4 reciben un refuerzo de la vacuna final en D192 (V5) por vía IM en el cuádriceps izquierdo usando 10⁸ ufp de un virus de la viruela del canario recombinante vCP2389 (ejemplo 4) que expresa LJL143.

Los perros del grupo 5 se vacunan con 500 μg del plásmido parental purificado pVR2001 que no expresa el antígeno en D0 por ID, D14 por TD, D28 por TD y D42 por ET/IM y reciben una dosis de refuerzo final en D192 por la ruta IM utilizando 10⁸ ufp de un virus de la viruela del canario recombinante de control (PurevaxTM).

40 EJEMPLO 9: Construcción del plásmido pNBO002 que expresa el polipéptido salival LJM17 de *Lu. Longipalpis*

La secuencia de ácido nucleico que codifica el polipéptido LJM17 de Lu. longipalpis se sintetizó y tiene la secuencia descrita en SEQ ID NO: 18 que contiene la cola de poli (A). El fragmento LJM17 se amplificó por PCR y se clonó en 45 el sitio de clonación TOPO del plásmido donante pVR2001-TOPA como se describe en el ejemplo 1, para generar el plásmido pNBO002.

La secuencia de ácido nucleico de una cadena del plásmido pNBO002 se describe en SEQ ID NO: 19 y en la Figura 11, en el que sitios BamHl están en las posiciones [1819-1824] y [3019-3024], la secuencia de nucleótidos que 50 codifica el péptido señal de tPA está en la posición [1744-1830] y la secuencia de nucleótidos que codifica LJM17 está en la posición [1831-3015]. El mapa del plásmido pNBO002 se muestra en la Figura 12.

pNBO002 es análogo a pVR2001 LJM17. En este caso, este constructo y el constructo del ejemplo 1 son identificables por la secuencia de ácido nucleico de sus insertos, SEQ ID NO: 18 y SEQ ID NO: 8, respectivamente.

EJEMPLO 10: Construcción del plásmido pNBO003que expresa el polipéptido salival LJL143 de *Lu. Longipalpis*

La secuencia de ácido nucleico que codifica el LJL143 de *Lu. Longipalpis* se sintetizó y tiene la secuencia descrita en SEQ ID NO: 14, que contiene la cola de poli (A). El fragmento LJL143 se amplificó por PCR y se clonó en el sitio de clonación TOPO del plásmido pVR2001-TOPA, como se describe en el ejemplo 1, para generar el plásmido pNBO003.

La secuencia de ácido nucleico de una cadena del plásmido pNBO003 se describe en SEQ ID NO: 20 y en la Figura 65 13, en la que sitios BamHl están en las posiciones [1819-1824] y [2671-2676], la secuencia de nucleótidos que

codifica el péptido señal de tPA está en la posición [1744-1830] y la secuencia de nucleótidos que codifica LJL143 está en la posición [1831-2667]. El mapa del plásmido pNBO003 se muestra en la Figura 14.

pNBO003 es análogo a pVR2001 LJL143. En este caso, este constructo y el constructo del ejemplo 2 son 5 identificables por la secuencia de ácido nucleico de sus insertos, SEQ ID NO: 14 y SEQ ID NO: 4, respectivamente.

EJEMPLO 11: Construcción de un vector de virus de viruela del canario ALVAC que expresa el polipéptido salival LJM17 de *Lu. Longipalpis*

10 Para la discusión y ejemplos del plásmido pALVAC y el locus C3, ver por ejemplo, patentes de Estados Unidos Nº 5.756.103.; 5.833.975; y 6.780.407. La secuencia del promotor H6 del virus vaccinia ha sido descrita previamente (véase, por ejemplo, Taylor et al.; Taylor et al.; Guo et al.).

La secuencia de ácido nucleico que codifica el polipéptido LJM17 de *Lu. Longipalpis* se sintetizó y tiene la secuencia 15 descrita en SEQ ID NO: 6. Esta secuencia se optimizó en codones para la expresión en mamíferos por Geneart GmbH (Regensburg, Alemania), resultando en la secuencia descrita en SEQ ID NO: 91, que codifica el polipéptido LJM17 (SEQ ID NO: 5).

Esta secuencia de codones optimizados se ligó al plásmido donante pALVAC C3 H6p para generar pALVAC C3 H6p-LJM17 que contiene 5737 pares de bases (Figura 3). El plásmido resultante, pALVAC C3 H6p-LJM17, se secuenció y se confirmó que contenía la secuencia de ácido nucleico (SEQ ID NO: 91) del gen de LJM17.

Para generar vCP2390, el plásmido pALVAC C3 H6p-LJM17 se linealizó con la enzima de restricción Notl. Los fragmentos linealizados se transfectaron individualmente en células CEF primarias infectadas con ALVAC utilizando el procedimiento de precipitación con fosfato de calcio descrito previamente (Panicali et al.; Piccini et al.). Después de 24 h, se recogieron las células transfectadas, se sonicaron y se usaron para el cribado de virus recombinante.

Las placas recombinantes se cribaron basándose en el procedimiento de hibridación por elevación de placas usando una sonda específica de LJM17 sintética de *Lu. Longipalpis* que se marcó con peroxidasa de rábano picante de 30 acuerdo con el protocolo del fabricante (Amersham Cat # RPN-3001). Después de tres rondas secuenciales de purificación en placa, los recombinantes se generaron y se confirmaron por hibridación como 100% positivos para el inserto LJM17 sintético y 100% negativo para el ORF de C3.

Se seleccionó una única placa de la tercera ronda de purificación de placas y se amplió para obtener soluciones 35 madre P1 (60 mm), P2 (matraces T75), P3 (botellas de rodillos) para amplificar vCP2390. El fluido de cultivo de células infectadas de las botellas de rodillos se recogió y se concentró para producir la solución madre de virus.

El constructo se secuenció para confirmar las secuencias del inserto LJM17 optimizado en codones y los brazos izquierdo y derecho de C3 alrededor del inserto LJM17 optimizados en codones en vCP2390.

El vector vCP2390 se ilustra en la Figura 4. Las secuencias de ácidos nucleicos para ambas cadenas de vCP2390 se describen en la Figura 4.

40

55

60

EJEMPLO 12: Construcción de un vector de virus de viruela del canario ALVAC que expresa el polipéptido 45 salival LJL143 de *Lu. Longipalpis*

La secuencia de ácido nucleico que codifica el LJL143 de *Lu. Longipalpis* se sintetizó y tiene la secuencia descrita en SEQ ID NO: 2. Esta secuencia se optimizó en codones para la expresión en mamíferos por Geneart GmbH (Regensburg, Alemania), resultando en la secuencia descrita en SEQ ID NO: 22, que codifica la proteína LJL143 50 (SEQ ID NO: 1).

Esta secuencia de codones optimizados se ligó al plásmido donante pALVAC C3 H6p dando lugar a pALVAC C3 H6p-LJL143 que contiene 5400 pares de bases (Figura 5), que se secuenció y se confirmó que contenía la secuencia de ácido nucleico (SEQ ID NO: 22) del gen de LJL143.

Para generar vCP2389, el plásmido pALVAC C3 H6p-LJL143 se linealizó con la enzima de restricción Notl. Los fragmentos linealizados se transfectaron individualmente en células CEF primarias infectadas con ALVAC utilizando el procedimiento de precipitación con fosfato de calcio (véase, Panicali et al.; Piccini et al.). Después de 24 h, se recogieron las células transfectadas, se sonicaron y se usaron para el cribado de virus recombinante.

Las placas recombinantes se cribaron basándose en el procedimiento de hibridación por elevación de placas usando una sonda específica de LJL143 sintética de *Lu. Longipalpis* que se marcó con peroxidasa de rábano picante de acuerdo con el protocolo del fabricante (Amersham Cat # RPN-3001). Después de tres rondas secuenciales de purificación en placa, los recombinantes se generaron y se confirmaron por hibridación como 100% positivos para el 65 inserto LJL143 sintético y 100% negativo para el ORF de C3.

Se seleccionó una única placa de la tercera ronda de purificación de placas y se amplió para obtener soluciones madre P1 (60 mm), P2 (matraces T75), P3 (botellas de rodillos) para amplificar vCP2389. El fluido de cultivo de células infectadas de las botellas de rodillos se recogió y se concentró para producir la solución madre de virus.

5 Después de la secuenciación, los resultados mostraron que la secuencia del inserto LJL143 sintético y los brazos izquierdo y derecho de C3 alrededor del inserto LJL143 sintético en vCP2389 fueron correctos.

El vector vCP2389 se ilustra en la Figura 6.

10 Ejemplo 13: Expresión de proteína salival de Lu. Longipalpis in vitro

Los plásmidos de expresión que contienen antígenos salivales de *Lu. Longipalpis* etiquetados con His codificados por ADNc derivados de los plásmidos pNBO002 (véase el ejemplo 9) y pNBO003 (véase el Ejemplo 10) se construyeron y se transfectaron en células HEK-293F. Los sobrenadantes recogidos a las 72 h se analizaron por cromatografía HPLC utilizando columna de níquel y gradiente de imidazol. Las fracciones de HPLC positivas para la proteína salival recombinante con un motivo 6x His en su C-terminal se probaron con sueros policionales de ratones previamente inmunizados con los correspondientes plásmidos de ADNc originales. Las proteínas recombinantes se probaron mediante SDS-PAGE y transferencia de Western, se dividieron en alícuotas en PBS y se almacenaron a -70 °C.

20 La vacuna subunidades que comprende LJM17 se denomina aquí como rLJM17. La vacuna se prepara combinando 100 μg de proteína LJM17recombinante purificada con 300 μg del adyuvante CpG # 2142 en EMULSIGEN® al 20% (laboratorios MVP) (para CpG # 2142, véase SEQ ID NO: 890 en el documento EP 1221955).

25 La vacuna de subunidades que comprende LJL143 se denomina aquí como rLJL143. La vacuna se prepara combinando 100 μg de proteína LJL143 recombinante purificada con 300 μg del adyuvante CpG # 2142 en EMULSIGEN® al 20%.

EJEMPLO 14: Vacunación de perros contra la leishmaniasis

30
25 perros (beagles hembras de 1-2 años de edad) se dividieron al azar en 5 grupos de 5 perros cada uno. Todos los perros de los grupos 1 a 4 fueron vacunados en D0 (V1) por vía intradérmica (ID) en el pabellón de la oreja utilizando una jeringa y una aguja con 500 μg de plásmido pNBO002 purificado (ejemplo 9) que expresa antígenos de LJM17 (grupos 1 y 2) o plásmido pNBO003 (ejemplo 10) que expresa antígenos de LJL143 (grupos 3 y 4), 35 respectivamente.

Los perros del grupo 1 y el grupo 3 fueron reforzados en D14 (V2) y D28 (V3) con 500 μg de los mismos plásmidos utilizados para V1 por la vía transdérmica (TD) en la parte superior interna de ambas patas traseras utilizando el dispositivo de administración sin aguja VetJetTM (Merial). Los perros del grupo 1 y el grupo 3 fueron reforzados 40 adicionalmente en D42 (V4) con 500 μg de los mismos plásmidos por la ruta intramuscular acoplada a electroporación (ET/IM) en el lado externo de ambos muslos utilizando el dispositivo y tecnología Sphergen (parámetros: 88V, T1 = 20, T2 = 80, 10).

Los perros de los grupos 2 y 4 fueron reforzados en D14 (V2) y D28 (V3) con 500 μg de los mismos plásmidos utilizados para V1 por la vía IM acoplada a electroporación (ET/IM), tal como se describe anteriormente. Los perros de los grupos 2 y 4 fueron reforzados adicionalmente en D42 (V4) por vía ID en el pabellón de la oreja, tal como se describió anteriormente, con vacunas de subunidades (véase el Ejemplo 13) rLJM17 (grupo 2) o rLJL143 (grupo 4), respectivamente.

50 Todos los perros de los grupos 1 y 2 recibieron una dosis de refuerzo de vacuna final a D192 (V5) por vía IM en el cuádriceps izquierdo usando 10⁸ ufp de un virus de la viruela del canario recombinante vCP2390 (ejemplo 11, que tiene la SEQ ID NO: 21 como inserto) que expresa LJM17. Todos los perros de los grupos 3 y 4 recibieron una dosis de refuerzo final de vacuna en D192 (V5) por vía IM en el cuádriceps izquierdo usando 10⁸ ufp de un virus de la viruela del canario recombinante vCP2389 (ejemplo 12, que tiene la SEQ ID NO: 22 como inserto) que expresa 55 LJL143.

Los perros del grupo 5 se vacunaron con 500 μg del plásmido parental purificado VR2001 que no expresa el antígeno en D0 mediante ID, D14 mediante TD, D28 mediante TD y D42 mediante ET/IM y recibieron una dosis de refuerzo final en D192 por vía IM utilizando 10⁸ ufp de un virus de la viruela del canario recombinante de control 60 (PurevaxTM).

La inmunidad humoral específica y significativa a ambos LJM17 y LJL143 se evidenció mediante ELISA en los perros vacunados (ver Figura 7). Placas de 96 pocillos (Maxisorp™, Nunc) se recubrieron durante la noche a 4 ° C con la proteína rLJM17 (2 μg/ml) o rLJL143 (2 μg/ml). Se añadió sucesivamente suero de perro a las placas por 65 triplicado a una dilución de 1/50 con IgG anti-perro de conejo AffiniPure conjugada con fosfatasa alcalina (Jackson

ImmunoResearch) a 1/5000 y p-nitrofenilfosfato (Sigma). Se midió la absorbancia a 405 nm utilizando un Spectramax Plus (Molecular Devices).

Los títulos de anticuerpos significativos persistieron hasta 6 meses después de la administración V4. El refuerzo de 5 vCP (V5) recordó las respuestas de anticuerpos específicos en los perros vacunados de manera eficiente. Las respuestas anamnésicas después de vCP establecieron la expresión de LJL143 y LJM17 de vCP2389 y vCP2390, respectivamente, y la capacidad de los vectores para reforzar las respuestas inmunitarias humorales *in vivo*.

Las PBMC de perros tomadas 2 semanas después de la administración V5 se estimularon por 2 pares de 10 homogeneizado de glándula salival (SGH), LJL143 (4 μg), y LJM17 (4 μg), o por ConA (4 μg). Las PBMC que eran no estimuladas por medio (med) sirvieron como controles. La producción de IFN-gamma se evaluó mediante la medición de los niveles de secreción de IFN-gamma en el medio a las 72 horas (Quantikine ELISA; R & D Systems).

Los resultados se ilustran en la figura 8. La adición de proteínas LJM17 o LJL143 recombinantes purificadas causó que las PBMC de perros vacunados con LJM17 o LJL143 aumentaran la secreción de IFN-gamma. No se evidenció un aumento de la secreción de IFN-gamma cuando las PBMC estaban en presencia de medio de control (MED).

La adición de ConA o SGH a PBMC de perros vacunados con LJM17 o LJL143 también causó un aumento de la secreción de IFN-gamma. En particular, el antígeno LJM17 causó respuestas de INF-gamma muy fuertes en los animales del grupo 2 (1800 pg/ml), y también causó una fuerte respuesta en animales del grupo 1 (200 pg/ml). El antígeno LJL143 también causó respuestas de INF-gamma muy fuertes en los animales de los grupos 3 y 4, con más de 2.000 pg/ml, que fueron comparables a los resultados observados cuando las PBMCs se estimularon por ConA.

25 2 semanas después de la administración V5, se aislaron PBMC de dos perros que habían sido vacunados con LJM17 y LJL143. Se estimularon linfocitos de células T autólogas (5.10⁶ células) con 25 μg de LJM17 recombinante, 25 μg de LJL143 recombinante, ο 4 μg de ConA. Las células fueron incubadas a continuación en presencia de macrófagos infectados por amastigotes de *Leishmania chagasi* (infectados en una relación 5:1). Los lipopolisacáridos (LPS) y las células T no estimuladas (NT, sin tratamiento) sirvieron como controles. Las células se 30 evaluaron para la eficiencia de destrucción que se midió mediante una reducción significativa en el porcentaje de macrófagos infectados (Figura 9).

Los linfocitos estimulados con LJM17 recombinante o LJL143 recombinante fueron citotóxicos a los macrófagos como a los linfocitos que habían sido estimulados por el mitógeno no específico ConA.

Los perros vacunados con LJL143 y LJM17 y de control perros fueron equipados con un dispositivo de collar Velcro. El dispositivo de collar Velcro se preparó mediante la disposición de veinte *Lu. Longipalpis* hembra de 6 días de vida no infectado en un dispositivo de plexiglás 10 mm de grosor que contenía un tornillo asegurado y una malla de nylon en uno de sus lados de modo que las moscas de arena fueron capaces de sondar a través de la malla. El dispositivo se mantuvo a 25 °C antes de la exposición para limitar la condensación y fue entonces fijado firmemente a un collar Velcro durante 10 minutos en el vientre rasurado de perros vacuandos con LJL143 y LJM17 y de control. Los perros estuvieron sin restricciones a lo largo del tiempo de exposición. Se tomaron biopsias con punezones de 4 mm o 6 mm de piel (Acuderm) del vientre de perros anestesiados 48 horas después de las picaduras de moscas de arena.

Las biopsias se almacenaron en formaldehído tamponado neutro (10% de formalina) y a continuación se procesaron de forma rutinaria para la tinción con hematoxilina/eosina (H & E), de Luna, azul de Toludina y procedimientos de inmunohistoquímica para CD3 y los marcadores de macrófagos/monocitos (Mac). La Figura 10 proporciona los resultados inmunohistoquímicos de sitios de picadura de la mosca de arena. La infiltración celular inmune específica 50 (manchas más oscuras en las imágenes) se observa en los perros vacunados, mientras que no se observó infiltración en los perros de control.

EJEMPLO 15: Vacunación de perros con proteínas salivales LJL143 y LJM17 producen una respuesta inmune protectora que mató amastigotes de *Leishmania* chagasi *in vitro*.

En este estudio, las proteínas salivales de *Lu. Longipalpis* fueron probadas para determinar si son inmunogénicas en perros. Además, las proteínas salivales de *Lu. Longipalpis* fueron identificadas que pueden producir una respuesta inmunitaria celular protectora y matan Leishmania infantum en un ensayo *in vitro*.

60 Para identificar estos componentes salivales, se desarrolló un ensayo de cribado de antígeno inverso *in vivo* de alto rendimiento basado en ADN. Este cribado identificó dos antígenos fuertes inductores de DTH de las 35 proteínas más abundantes en las glándulas salivales de *Lu. Longipalpis*. Estos datos fueron validados con proteínas recombinantes, lo que dio lugar a la confirmación del potencial inductor de DTH de las proteínas salivales LJM17 (SEQ ID NO: 5) y LJL143 (SEQ ID NO: 1) de *Lu. Longipalpis*. Además, las células mononucleares de sangre periférica de perros vacunados con LJL143 y LJM17 produjeron interferón (IFN)-γ tras la estimulación con las proteínas recombinantes salivales y, más en particular, la estimulación de estas células con las proteínas

recombinantes dio como resultado la muerte de Leishmania infantum *in vitro*. Estas moléculas representan, por tanto, fuertes candidatos para ser utilizados como vacuna para controlar Leishmania infantum en perros.

Material y procedimientos

5

Perros: se colocaron perros beagles de 1-2 años de edad hembra (Marshall Farms) en las instalaciones de animales del NIH, Bethesda, EE.UU., siguiendo las directrices del Comité de Cuidado de Animales y del Usuario. Fueron animales bien alimentados en estudio constante de problemas de salud por un veterinario y todos habían recibido las vacunas de rutina. No se administraron tratamientos ectoparásitos durante los últimos cuatro meses antes de 10 experimentos de exposición a la mosca de arena.

Moscas de la arena: se criaron Lutzomyia longipalpis, cepa Jacobina, usando como alimento larval una mezcla de heces de conejo fermentadas y comida de conejo. A las moscas de la arena adultos se les ofreció un hisopo de algodón que contenía 20% de sacarosa, pero murieron de inanición de azúcar de 24 horas antes de los experimentos de exposición. Algunas hembras se utilizaron para la disección de las glándulas salivales a los 4-7 días después de la aparición y se prepararon homogeneizados de las glándulas salivales (SGH) como se ha descrito anteriormente.

Exposición a las picaduras de moscas de arena: se colocaron Lu. Longipalpis hembra de seis días de vida en un 20 dispositivo de plexiglás 10 mm de grosor. El dispositivo contenía un tornillo asegurado y una malla de nylon en uno de sus lados para que mosca de la arena sondee a través la misma. El dispositivo se mantuvo a 25 °C antes de la exposición para limitar la condensación y estaba firmemente unido con un collar de Velcro en el cuello afeitado de los perros durante 20 minutos. Los perros no tuvieron restricciones a lo largo del tiempo de exposición.

25 Cribado de antígeno inverso (RAS): Se anestesiaron perros preexpuestos a las picaduras de moscas de arena y se inyectaron por vía intradérmica con plásmidos de ADN o proteínas recombinantes. Los sitios de inyección estaban separados uno de otro por 15 mm. Para plásmidos de ADN, las moléculas se codificaron y se reagruparon de forma aleatoria para cada perro antes de la inyección en el vientre. El código fue roto sólo después de completar las mediciones de induración y eritema. Para el ADN-RAS, se inyectaron 38 muestras en un volumen total de 40 μl, 30 incluyendo PBS, 1 par de SGH de *Lu. Longipalpis* diluido en PBS, y 20 μg de vector de control y los 35 plásmidos de ADN recombinante, diluidos en PBS, que codifican proteínas salivales individuales de *Lu. Longipalpis*. Para la proteína-RAS, se inyectaron 5 muestras por duplicado (40 μl), incluyendo PBS, 1 par de SGH de *Lu. Longipalpis* diluido en PBS, y 3 proteínas recombinantes salivales de *Lu. Longipalpis* (300 ng). La medición de los diámetros de induración y eritema se realizó 48 horas después de la inyección intradérmica de las muestras.

25

para controlar la cantidad de ARN.

Histología y PCR en tiempo real en biopsias por punción de la piel: se tomaron biopsias por punción de la piel de 4 mm o 6 mm (Acuderm) del cuello o el vientre de perros anestesiados y se dividieron en dos mitades iguales. Una mitad se almacenó en formaldehído neutro tamponado (10% de formalina) y a continuación se procesaron rutinariamente para la tinción con hematoxilina/eosina, de una, azul de Toludina, y procedimientos inmunohistoquímicos para CD3 y los marcadores de macrófagos/monocitos. La otra mitad, almacenada en RNAlater (Sigma), se utilizó para la extracción de ARN (Agencourt® RNAdvance™ Tissue, Beckman Coulter). El ARN se transcribió de forma inversa (Transcriptor first strand ADNc synthesis, Roche) y se usó para PCR en tiempo real usando el LightCycler 480 (Roche), conjunto de cebadores (0,2 μM de concentración final) y sondas marcadas por duplicado FAM TAMRA hasta un total de 15 μl por reacción por triplicado. Los cebadores y sondas para IL4, IL12, TGF-β, IFN-γ y GAPDH caninos ueron descritas anteriormente (Breathnach et al.). Las condiciones de amplificación, la adquisición, análisis de curva de fusión y la curva estándar se realizaron como se ha descrito previamente (Breathnach et al.). Los niveles de expresión del gen de interés se normalizaron a los niveles de GAPDH endógeno

50 *ADNc recombinante*: A partir de una biblioteca de ADNc (ver arriba), las 35 moléculas más abundantes de glándulas salivales de *Lu. longipalpis* se seleccionaron y su ADNc se clonó en el vector pVR2001-TOPO mediante técnicas de clonación estándar. Los plásmidos se prepararon usando GenElute™ Megaprep de plásmidos libre de endotoxinas (Sigma), se limpiaron con agua ultrapura utilizando Centricon® Plus-20 (Millipore) y se eluyeron en PBS. El control de calidad de los 35 plásmidos purificados incluyó mediciones de endotoxina, análisis de perfil de restricción y secuenciación. Los plásmidos de ADN salival purificados se filtraron de forma estéril y se almacenaron a -70 °C.

Proteínas recombinantes: los plásmidos de expresión que contenían antígenos salivalesde Lu. Longipalpis etiquetados con His que codifican ADNc derivado de los plásmidos de ADN salivales parentales se construyeron como se ha descrito (Oliveira et al.) y se transfectaron en células HEK-293F. Los sobrenadantes recogidos a las 72 h se sometieron a cromatografía HPLC usando una columna de níquel y gradiente de imidazol. Las fracciones de HPLC positivas para la proteína salival recombinante con un motivo 6x His en su C-terminal fueron probados con sueros policionales de ratones previamente inmunizados con los correspondientes plásmidos de ADNc originales. Las proteínas recombinantes se analizaron mediante SDS-PAGE y transferencia de Western, se dividió en alícuotas en PBS y se almacenaron a -70 °C.

65

Virus de la viruela de canario recombinantes: Dos virus de la viruela del canario derivados de vectores de ALVAC

que expresan respectivamente los antígenos LJL143 (vCP2389) o LJM17 (vCP2390) se generaron utilizando procedimientos estándar y validados mediante la secuenciación del ADN viral, RT-PCR sobre ARNm de las células infectadas y transferencia Western de los sobrenadantes de las células infectadas. Se utilizó la vacuna del moquillo de hurón Purevax™ (Merial) como control de las inyecciones de virus de viruela del canario.

Inmunización de perros con vacunas salivales: 25 perros se dividieron aleatoriamente en 5 grupos de 5 perros cada uno. Todos los perros de los grupos 1 a 4 fueron vacunados en D0 (V1) por vía intradérmica (ID) en el pabellón auditivo utilizando una jeringa y una aquja con 500 µg de plásmido purificado que expresa los antígenos LJM17 (grupos 1 y 2) o LJL143 (grupos 3 y 4), respectivamente. Los perros del grupo 1 y el grupo 3 fueron se reforzaron en 10 D14 (V2) y D28 (V3) con 500 μg de los mismos plásmidos utilizados para V1 por ruta transdérmica (TD) en la parte superior interna de ambas patas traseras utilizando el dispositivo de administración sin aquia VetJet™ (Merial). Los perros del grupo 1 y el grupo 3 se reforzaron adicionalmente a D42 (V4) con 500 µg de los mismos plásmidos por vía intramuscular (IM) acoplada a la electroporación en la cara externa de ambos muslos utilizando el dispositivo y la tecnología Sphergen (parámetros: 88V, T1 = 20, T2 = 80, 10). Los perros de los grupos 2 y 4 se reforzaron en D14 15 (V2) y D28 (V3) con 500 µg de los mismos plásmidos utilizados para V1 por la vía IM acoplada a electroporación, tal como se describe anteriormente. Los perros de los grupos 2 y 4 se reforzaron adicionalmente a D42 (V4) con 100 µg de proteína recombinante purificada mencionada anteriormente LJM17 (rLJM17) (grupo 2) o LJL143 (rLJL143) (grupo 4) en asociación con 300 μg de CpG ODN en EMULSIGEN® (laboratorios MVP) al 20% por vía ID en el pabellón auditivo, tal como se describió anteriormente. Todos los perros de los grupos 1 a 4 recibieron una dosis de 20 refuerzo de vacuna final a D192 (V5) por vía IM en el cuádriceps izquierdo usando 108 ufp de un virus de viruela de canario recombinante vCP2390 y vCP2389 que expresan respectivamente los antígenos LJM17 (grupos 1 y 2) o LJL143 (grupos 3 y 4). Los perros de grupo 5 fueron vacunados en D0, D14, D28 y D42 con 500 µg de plásmido parental VR2001 purificado que no expresa el antígeno y recibieron una dosis de refuerzo final en D192 por la vía IM usando 108 ufp de un virus de la viruela de canario recombinante de control (Purevax™).

ELISA: se recubrieron placas de 96 pocillos (Maxisorp™, Nunc) durante la noche a 4° C con SGH de *Lu. Longipalpis* (5 pares/ml), proteína rLJM17 (2 μg/ml) o rLJL143 (2 μg/ml). Se añadieron sucesivamente a las placas suero de perro por triplicado a una dilución de 1/50, IgG anti-perro de conejo AffiniPure conjugada con fosfatasa alcalina (Jackson ImmunoResearch) a 1/5000 y p-nitrofenilfosfato (Sigma). La absorbancia a 405 nm se midió utilizando un 30 Spectramax Plus (Molecular Devices). La producción de IFN-γ en sobrenadantes de las células se midió después de 72 h (Quantikine ELISA; R & D Systems) después de la estimulación con SGH (1 o 2 pares), conA (4 μg), rLJM17 (2 o 10 μg) o rLJL143 (2 o 10 μg).

Actividad anti-Leishmania: macrófagos derivados de monocitos caninos se prepararon utilizando procedimientos estándar. Se tomaron células T autólogas T (5x10⁶ células) a partir del cultivo después de 1 semana, se estimularon con SGH de *Lu. Longipalpis* (2 pares), conA (4 μg), rLJM17 (25 μg) o rLJL143 (25 μg), y se volvieron a poner en presencia de macrófagos infectados por *L. infantum* infectados en una proporción de 5:1. La actividad anti-*Leishmania* se evaluó por los cambios en los porcentajes de células infectadas y el número de amastigotes por macrófago después de un examen microscópico de preparaciones teñidas con Giemsa.

Picaduras de moscas de la arena Lutzomyia longipalpis inducen una fuerte respuesta de hipersensibilidad de tipo retardado en los perros

En modelos de roedores, la inmunidad celular que se caracteriza por una respuesta de hipersensibilidad de tipo 45 retardado (DTH) Th1 a proteínas salivales de la mosca de la arena, protegen los animales de la leishmaniasis cutánea y visceral. No hay información relacionada con la presencia y naturaleza de la inmunidad celular a la saliva de la mosca de arena en los perros, los principales reservorios de leishmaniasis visceral causada por Leishmania infantum (chagasi) en Europa y América Latina. Por lo tanto, la cinética inicial de la inmunidad anti-saliva en perros después de la exposición a las picaduras de Lutzomyia longipalpis, se investigó el vector de Leishmania infantum 50 chagasi en América Latina. Siete de nueve beagles mostraron anticuerpos anti-saliva específicos una semana después de la tercera exposición a las picaduras (Fig. 19A). Aparte de un solo perro, estos animales mostraron una respuesta de anticuerpos IgG2 fuerte en ausencia de IgG1 (Fig. 19A). Un perro mostró una respuesta de anticuerpos IgG2/IgG1 mixta. Para investigar si los perros expuestos a las picaduras de moscas de arena desarrollan una respuesta DTH, se midió la induración de la piel en el lugar de la picadura hasta 96 horas después de cada 55 exposición. Después de la segunda exposición a las picaduras de moscas de arena, se observó una pequeña induración en los 7 perros que produjeron niveles significativos de anticuerpos IgG de Lu. longipalpis (Fig. 19B). Esta se caracterizó por un eritema localizado, hinchazón y, finalmente, engrosamiento de la piel. La intensidad y duración de la induración observada se incrementó significativamente después de la tercera exposición durando hasta 96 horas después de las picaduras de moscas de arena (Fig. 19B). Esta induración no se observó después de la 60 primera exposición en animales sin tratar (Fig. 19B). Los análisis histológicos del sitio de induración muestran una mínima inflamación que se caracteriza por linfocitos perivasculares dispersos y neutrófilos raras dentro de la dermis superficial 48 horas después de la primera y segunda exposición (Fig. 19C). Se observó un aumento drástico en el infiltrado celular 48 horas después de la tercera exposición. Esto se caracterizó por un engrosamiento prominente de la epidermis y la presencia de infiltrados multifocales de células inflamatorias que consisten de linfocitos, macrófagos 65 y eosinófilos (Fig. 19D). Basado en el tiempo de la reacción, así como la naturaleza del infiltrado, se concluyó que la

saliva de la mosca de arena induce una reacción de hipersensibilidad de tipo retardado en la piel de los perros después de exposiciones repetidas.

Proteínas salivales de Lutzomyia longipalpis que inducen una DTH en perros

5 Se investigaron las moléculas salivales de Lu. longipalpis que son responsables de la generación de una respuesta DTH en los perros. Las transcripciones que codifican las 35 proteínas secretadas más abundantes a partir de las glándulas salivales de esta especie se identificaron anteriormente. La identificación de candidatos capaces de inducir una respuesta inmune celular de un gran número de antígenos en animales grandes, como los perros, es 10 prohibitiva en términos de coste y espacio. Para superar este obstáculo, se desarrolló un procedimiento de cribado de antígeno inverso que consistía en la exposición de un número mínimo de los perros (cinco) a las picaduras de moscas de la arena y la inyección de cada animal con hasta 38 muestras (35 plásmidos de ADN que codifican las proteínas salivales y tres controles) (Fig. 20A). De los 35 plásmidos de ADN inyectados, sólo 4 (LJM17, LJM11, LJL143 y LJL138) indujeron un eritema significativo en más de 3 perros, 48 horas después de la estimulación (Fig. 15 20B) y sólo 2 plásmidos de ADN (LJL143 y LJM17) produjeron una fuerte induración en 3 perros, 48 horas después de la estimulación (Fig. 20B). La mayoría de los plásmidos inyectados no produjeron un eritema significativo o induración (Fig. 20B) y la inyección de PBS y control de vector vacío indujo un eritema mínimo en el sitio de inyección en comparación con LJM17 y LJL143 (Fig. 20C). La especificidad y la reactividad de los plásmidos de ADN inyectados se muestran en la figura. 20D. En base a estos resultados LJM17 y LJL143 se eligieron para análisis 20 adicional. LJL143 y LJM17 indujeron la producción de citoquinas indicativas de un entorno de Th1 en el sitio de inyección, incluyendo IL-12 e IFN-γ (Fig. 20E). Las secciones histológicas tomadas 48 horas después de la estimulación muestran que LJL143 y LJM17 reclutan linfocitos y macrófagos en el sitio de la inyección indicativo de una respuesta clásica de hipersensibilidad de tipo retardado (DTH) (Fig. 20F). Para validar la especificidad de este enfoque, se prepararon LJL143, LJM17 y LJM111 altamente purificadas solubles, entre varias otras proteínas 25 recombinantes salivales (Fig. 21A). Las proteínas recombinantes LJL143 y LJM17 reprodujeron la respuesta DTH observada tras la inyección de sus respectivos plásmidos de ADN (Fig. 21B y 21C), incluyendo el reclutamiento de linfocitos y macrófagos al sitio de la inyección (Fig. 21D).

Perros inmunizados con LJL143 y LJM17 producen IFN-γ específica a las proteínas salivales recombinantes.

Los perros (5 por grupo) fueron inmunizados con plásmidos de ADN que codifican LJL143, LJM17 o plásmido de ADN de control, una sensibilización-refuerzo con las respectivas proteínas salivales recombinantes y una inmunización final con el virus de la viruela del canario que expresa las proteínas salivales respectivas (Tabla 1). Las PBMC de perros inmunizados se estimularon con hasta 4 ug de su respectiva proteína recombinante, ConA y 1 par de homogeneizado de glándulas salivales (SGH). Los perros vacunados con LJL143 produjeron niveles significativos de IFN-γ cinco semanas después de la cuarta vacunación y antes de la inyección de la viruela de canario (Fig. 22A). Más importante aún, la proteína LJL143 nativa presente en 1 par de homogeneizado de glándula salival fue capaz de generar una respuesta similar en perros vacunados cm LJL143 (Fig. 22A). Los perros vacunados con LJM17 produjeron un niveles considerablemente menores de IFN-γ en comparación con perros vacunados con 40 LJL143 (Fig. 22A). Un perfil similar se observó dos semanas después de la vacunación de viruela del canario, donde las PBMC de perros vacunados con LJL143 produjeron dos veces más IFN-γ en comparación con su estado pre-pox (Fig. 22B).

Tabla 1

1	_
4	:

30

Grupo	Antígeno	D0 (V1)	D14 (V2)	D28 (V3)	D42 (V4)	D192 (V5)
1	LJM17	ID-ADNc	TD-ADNc	TD-ADNc	IM/ET-ADNc	IM-vCP
2	LJM17	ID-ADNc	IM/ET-ADNc	IM/ET-ADNc	ID-proteína	IM-vCP
3	LJL143	ID-ADNc	TD-ADNc	TD-ADNc	IM/ET-ADNc	IM-vCP
4	LJL143	ID-ADNc	IM/ET-ADNc	IM/ET-ADNc	ID-proteína	IM-vCP
5	control	ID-ADNc	TD-ADNc	TD-ADNc	IM/ET-ADNc	IM-vCP

Vacunación con LJL143 y LJM17 genera una respuesta inmune protectora que mata amastigotes de Leishmania chagasi in vitro.

50 Macrófagos infectados de PBMC de dos perros vacunados con LJM17 y LJL143 mataron de manera eficiente amastigotes de Leishmania chagasi después de la adición de linfocitos autólogos estimulados con proteínas recombinantes LJM17 y LJL143, respectivamente (Fig. 23). La eficiencia de destrucción se midió mediante una reducción significativa en el porcentaje de macrófagos infectados (Fig. 23A), así como en el número de amastigotes por macrófagos (Fig. 23B). Este efecto de destrucción fue comparable al observado tras la adición del mitógeno no específico ConA (Fig. 23).

EJEMPLO 16: Producción de una respuesta inmune en perros

Doce perros de aproximadamente tres años de edad con la inmunidad natural contra Leishmaniasis se inyectan a

través de una vía intradérmica (ID) en la parte posterior después del afeitado, con 100 μ g de cada plásmido individual suspendido en 100 μ l de PBS. Cada plásmido se inyecta en un punto diferente. Los puntos están separados por al menos 3 cm para evitar la interferencia entre las respuestas de DTH. El control negativo (100 μ l de tampón) también se inocula por vía ID.

5

La respuesta DTH se evalúa 72 horas después de la inyección mediante la medición del diámetro más grande de la zona de tumefacción de la piel. Los resultados se expresan como el valor promedio de la zona de tumefacción para todos los perros y como un porcentaje de perros que tienen una respuesta DTH positiva. Una DTH positiva es un diámetro del área de tumefacción mayor que o igual a 4 mm a las 72 horas después de la inyección.

10

- En un segundo estudio, 10 perros sin tratar de 4 a 6 meses de edad se inmunizan mediante inyección ID en 10 puntos (100 μl por punto) en la oreja derecha con un conjunto de plásmidos que codifican un polipéptido de *Lu. Longipalpis*, 100 μg para cada uno suspendido en 1000 μl de PBS. En el día 21, los perros se inyectan en 10 puntos (100 μl por punto) en la oreja izquierda y en 10 puntos (100 μl por punto) en el vientre con un conjunto de plásmidos,
- 15 100 μg para cada uno suspendido en 2000 μl de PBS. Todos los perros se estimularon en el día 35 mediante la inoculación por vía ID en la parte posterior (después del afeitado), con 100 μg de cada plásmido individual suspendido en 100 μl de PBS. Cada plásmido se inyecta en un punto diferente. Los puntos están separados por al menos 3 cm para evitar interferencias. Como control negativo, 100 μl de tampón se inoculan por vía intradérmica. La respuesta DTH se evalúa 72 horas después del estímulo, midiendo el diámetro más grande del área de tumefacción
- 20 de la piel. Los resultados se expresan como el valor promedio de la zona de tumefacción para todos los perros y como un porcentaje de perros que tienen una respuesta DTH positiva. Una DTH positiva es un diámetro del área tumefacción mayor o igual de 4 mm a las 72 horas después de la inyección.

Los resultados de este estudio muestran que los plásmidos pueden inducir una inmunidad celular en los perros después de la inyección, una inmunidad celular revelada por una respuesta DTH. La variación del nivel de respuesta DTH puede ser mediante la variación de la expresión del inserto.

Referencias

- 30 1. Adler and Theodor, Ann. Trop. Med. Parasitol. 20:109, 192 6
 - 2. Altenburger et al., 1989, Arch. Virol. 105, 15-27
 - 3. Altschul et al. J. Mol. Biol. 1990. 215. 403-410
 - 4. Altschul et al., Nucl. Acids Res. 25, 3389-3402
 - 5. Antoine G., Virology, 1998, 244, 365-396
- 35 6. Bairoch, Nucleic Acids Res. 19 (Suppl.):2241,1991
 - 7. Barral et al., Am J Trop Med Hyg 62:740-5, 200
 - 8. Behr J. P., Bioconjugate Chemistry, 1994: 5: 382-389
 - 9. Berberich C. et al., Biochim. Biophys. Acta, 1998, 1442: 230-7
 - 10. Boshart M. et al., Cell, 1985, 41, 521-530
- 40 11. Boshart M. et al., Cen 41:521-530, 1985
 - 12. Breathnach et al., Vet Dermatol 2006, 17:313-21
 - 13. Carroll M. W. et al., Vaccine, 1997, 15 (4), 387-394
 - 14. Charlab et al., Proc Natl Acad Sci USA 96:15155-60, 1999
 - 15. Chaudhuri P Res. Vet. Sci. 2001, 70(3), 255-6
- 45 16. Chung J Y et al., FEMS Microbiol letters 1998, 166: 289-296
 - 17. Cochran et al., J. Virology, 1985, 54, 30-35
 - 18. D. Berg. et al Biochem. Biophys. Res. Commun. 1991, 179, 1289-1296
 - 19. De Groot A. et al., Nature Biotechnology, 1999, 17, 533-561
 - 20. Desjeux P., Trans. R. Soc. Trop. Med. Hyg., 2001, 95: 239-43
- 50 21. Devereux J, Haeberlie P and Smithies O, "A comprehensive set of sequence analysis program for the VAX," Nucl. Acids Res., 12: 387-395 (1984)
 - 22. Dietze R. et al., Clin. Infect. Dis., 1997, 25: 1240-2
 - 23. Djoba Siawaya JF et al., PLoS ONE, 2008, 3(7), e2535
 - 24. Doree S M et al., J. Bacteriol. 2001, 183(6): 1983-9
- 55 25. Dye C., Am. J. Trop. Med. Hyg., 1996, 55: 125-30
 - 26. Feng DF and Dolittle RF, "Progressive sequence alignment as a prerequisite to correct phylogenetic trees," J. ofMolec. Evol., 25:351-360 (1987)
 - 27. Fingerut E et al., Vaccine, 2005, 23(38): 4685-4696
 - 28. Funahashi et al., J. Gen. Virol., 1988, 69, 35-47
- 60 29. Geysen H. M. et al., Proc. Nat. Acad. Sci. USA, 1984, 81 (13), 3998-4002
 - 30. Geysen H. M. et al., Proc. Nat. Acad. Sci. USA, 1985, 82 (1), 178-182
 - 31. Geysen H. M., Southeast Asian J. Trop. Med. Public Health, 1990, 21 (4), 523-533
 - 32. Gradoni L. et al., Vaccine, 2005, 23: 5245-51
 - 33. Grosjean NL et al., Lindsay DS et al., McConkey SE et al., Martínez-Subiela S, Tecles F, Eckersall PD, Cerón JJ:
- 65 Serum concentrations of acute phase proteins in dogs with leishmaniasis. Vet Rec 150:241-244, 2002

- 34. Grosjean NL, Vrable RA, Murphy AJ, Mansfield LS: Seroprevalence of antibodies against Leishmania spp among dogs in the United States. J Am Vet Med Assoc 222:603-606, 2003
- 35. Guo P. et al. J. Virol., 1989, 63, 4189-4198
- 36. Hartikka J. et al., Human Gene Therapy, 1996, 7, 1205-1217
- 5 37. Hemmer B. et al., Immunology Today, 1998, 19 (4), 163-168
 - 38. Henikoff et al., Bioinformatics 15:471, 1999
 - 39. Higgins DG and Sharp PM, "Fast and sensitive multiple sequence alignment on a microcomputer," CABIOS, 5: 151-153 (1989)
 - 40. Hoop T. et al., Mol. Immunol. 1983, 20(4), 483-489
- 10 41. Immonogenicity of a killed Leishmania vaccine with Saponin adjuvant in dogs", R. Cordeiro Giunchetti et al., Vaccine, 2007, 25: 7674-7686
 - 42. Israeli E et al., Cryobiology 1993, 30(5): 519-23
 - 43. J. Fields et al., Nature, 186: 778-780, 4 June 1960
 - 44. J. Mol. Biol. 48:444-453 (1970)
- 15 45. J. Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989
 - 46. Jardim A. et al., Biochem. J., 1995, 305: 307-13
 - 47. Jardim A. et al., Biochem. J., 1995, 305: 315-20
 - 48. Jeanmougin et al., Trends Biochem. Sci. 23:403, 1998
- 20 49. Jurk M et al., Immunobiology 2004, 209(1-2): 141-154
 - 50. K. Otte et al. Gen. Comp. Endocrinol. 1996, 102(1), 11-15
 - 51. Kidd I. M. & Emery V.C., "The use of baculoviruses as expression; vectors," Applied Biochemistry and Biotechnology 42:37-159, 1993
 - 52. Kwissa M. et al., Vaccine, 2000, 18, 2337-2344
- 25 53. Lanotte G. et al., Ann. Parasitol. Hum. Comp., 1979, 54: 277-95
 - 54. Lindsay DS, Zajac AM, Barr SC: Leishmaniasis in American Foxhounds: An Emerging Zoonosis? Compend Cont Educ Pract Vet 24:304-312, 2002
 - 55. Luke C. et al., Journal of Infectious Diseases, 1997, 175, 91-97
 - 56. Muller M. et al. Nucleic Acids Res. 1990, 18(2), 364
- 30 57. Maniatis et al., Molecular Cloning: a Laboratory Manuel, Cold Spring Harbor Laboratory, 1982
 - 58. Maroli M. et al., Med. Vet. Entomol., 2001, 15: 358-63
 - 59. Martínez-Subiela S, Tecles F, Eckersall PD, Cerón JJ: Serum concentrations of acute phase proteins in dogs with leishmaniasis. Vet Rec 150:241-244, 2002
 - 60. Mazloumi Gavgani A.S. et al., Lancet, 2002, 360: 374-9
- 35 61. McConkey SE, López A, Shaw D, Calder J: Leishmanial polyarthritis in a dog. Canine Vet J 43:607-609, 2002
 - 62. Melanby, Nature. 158, 554-555.13, 1946
 - 63. Meyer et al., 1991, J. Gen. Virol. 72, 1031-1038
 - 64. Mills C K et al., Cryobiology 1988, 25(2): 148-52
 - 65. Miyazaki J. et al., Gene, 1989, 79, 269-277
- 40 66. Molina R. et al., Trans. R. Soc. Trop. Med. Hyg., 1994, 88: 491-3; Courtenay O. et al., J. Infect. Dis., 2002, 186: 1314-20
 - 67. Montgomery et al., Cell. Mol. Biol. 43:285-292, 1997
 - 68. Moreira Jr. E.D. et al., Vet. Parasitol., 2004, 122: 245-52
 - 69. Nielsen et al., Protein Eng. 10: 1, 1997
- 45 70. Ogata R T et al., J. Biol. Chem. 1989, 264(28): 16565-16572
 - 71. Oliveira F. et al. Vaccine (2006) 24: 374-90
 - 72. Olsen C W et al., Vaccine, 1997, 15(10): 1149-1156
 - 73. Optimal Alignments in Linear Space", CABIOS 4, 11-17, 1988
 - 74. O'Reilly et al., "Baculovirus expression vectors, A laboratory manual," New York Oxford, Oxford University Press,
- 50 1994
 - 75. P. Delafontaine et al. Gene 1993, 130, 305-306
 - 76. Pandher K et al., Infect. Imm. 1998, 66(12): 5613-9
 - 77. Panicali et al., Proc. Natl Acad Sci USA, 1982, 79: 4927-4931
 - 78. Parker K. et al., Immunol. Res. 1995, 14(1), 34-57
- 55 79. Piccini et al., Methods Enzymol., 1987, 153: 545-563
 - 80. Pasleau et al., Gene 38:227-232, 1985
 - 81. Pennock et al., Mol. Cell Biol. 4: 399-406, 1994
 - 82. Peppoloni S et al., Expert Rev Vaccines, 2003, 2(2): 285-293
 - 83. Perkus M. et al., J. Virol., 1989, 63, 3829-3836
- 60 84. Phameuropa Vol. 8, No. 2, June 1996
 - 85. Pharmaceutical Biotechnology, 1995, volume 6, edited by Michael F. Powell and Mark J. Newman, Plenum Press, New York and Lond on
 - 86. Piccini et al., Methods Enzymol., 1987, 153: 545-563
 - 87. Ribeiro et al., Insect Biochem. 19:409-412, 1989
- 65 88. Rickles R. et al J. Biol. Chem. 1988, 263, 1563-1569
 - 89. Riviere et al., J. Virology, 1992, 66, 3424-3434

```
90. S. Friezner Degen et al J. Biol. Chem. 1996, 261, 6972-6985
   91. S. Lien et al. Mamm. Genome 2000, 11(10), 877-882
   92. Shida, Virology, 1986, 150, 451-457
   93. Slappendel RJ, Ferrer L. In: Greene CE: Infectious Diseases of the Dog and Cat. WB Saunders Co, Philadelphia,
 5 1998, pp. 450-458
   94. Smith et al., Mol. Cell Biol. 3:2156-2165, 1983
   95. Smith TF and Waterman MS, "Comparison of Bio-sequences," Advances in Applied Mathematics 2:482-489
   96. Smith TF, Waterman MS and Sadler JR, "Statistical characterization of nucleic acid sequence functional
10 domains," Nucleic Acids Res., 11:2205-2220 (1983)
   97. Soares et al., J. Immunol. 160:1811-6, 1998
   98. Staib C. et al., Biotechniques, 2000, 28(6): 1137-42, 1144-6, 1148
   99. Stickl & Hochstein-Mintzel, Munch. Med. Wschr., 1971, 113, 1149-1153
   100. Stittelaar K. J. et al., J. Virol., 2000, 74 (9), 4236-4243;
15 101. Sutter et al., Proc. Natl. Acad. Sci. U.S.A., 1992, 89, 10847-10851
   102. Sutter G. et al., 1994, Vaccine, 12 (11), 1032-1040
   103. Taylor et al. Vaccine. 6: 497-503, 1988a
   104. Taylor et al. Vaccine. 6: 504-508, 1988b
   105. Taylor J. et al., Vaccine, 1988, 6, 504-508
20 106. Thompson JD, Higgins DG and Gibson TJ, "ClusterW: improving the sensitivity of progressive multiple
   sequence alignment through sequence weighing, positions-specific gap penalties and weight matrix choice," Nucleic
   Acid Res., 22:4673-480, 1994
   107. Titus and Ribeiro, Parasitol Today 6:157-159, 1990
   108. Tsvetkov T et al., Cryobiology 1983, 20(3): 318-23
25 109. Vaccine Design, The subunit and adjuvant approach", Pharmaceutical Biotechnology, vol. 6, Edited by Michael
   F. Powell and Mark J. Newman, 1995, Plenum Press New York
   110. Valenzuela et al., J. Exp. Med. 194:331-42, 2001
   111. Van der Zee R. et al., Eur. J. Immunol., 1989, 19 (1), 43-47
   112. van Ooyen et al., Science, 1979, 206, 337-344
30 113. Verne A., Virology- 167:56 71, 1988
   114. Vialard et al., J. Virol. 64:37-50, 1990
   115. VICAL Inc.; Luke C. et al., Journal of Infectious Diseases, 1997, 175, 91-97
   116. Von Heijne (1986), Nucleic Acid Research, 14; 4683-4691
   117. Ward C K et al., Infect. Imm. 1998, 66(7): 3326-36
35 118. Wilbur and Lipman, 1983 PNAS USA 80:726
   119. Wolff E et al., Cryobiology 1990, 27(5): 569-75
   120. Y. Kajimoto et al. Mol. Endocrinol. 1989, 3(12), 1907-1913
   121. Zurbriggen R et al., Expert Rev Vaccines, 2003, 2(2): 295-304
40 LISTADO DE SECUENCIAS
   110> Merial Limited
             THE GOVERNMENT OF THE UNITED STATES OF AMERICA AS
             REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF HEALTH AND
             HUMAN SERVICES
             Fischer, Laurent
             Valenzuela, Jesus
   <120> Vacuna contra la Leishmania utilizando inmunógenos salivares de la
50 mosca de la arena
   <130>
            MER 08-111PCT
   <150>
            61/051,635
55 <151>
            2008-05-08
   <150>
             61/101,345
             2008-09-30
   <151>
60 <160>
```

45

<170> PatentIn version 3.5

```
<210> 1
  <211> 301
  <212> PRT
5 <213> Lutzomyia longipalpis
  <400> 1
  Met Asn Ser Ile Asn Phe Leu Ser Ile Val Gly Leu Ile Ser Phe Gly
                                       10
                                                            15
  Phe Ile Val Ala Val Lys Cys Asp Gly Asp Glu Tyr Phe Ile Gly Lys
10
                                   25
  Tyr Lys Glu Lys Asp Glu Thr Leu Phe Phe Ala Ser Tyr Gly Leu Lys
                               40
                                                    45
  Arg Asp Pro Cys Gln Ile Val Leu Gly Tyr Lys Cys Ser Asn Asn Gln
      50
15 Thr His Phe Val Leu Asn Phe Lys Thr Asn Lys Lys Ser Cys Ile Ser
                                           75
  Ala Ile Lys Leu Thr Ser Tyr Pro Lys Ile Asn Gln Asn Ser Asp Leu
  Thr Lys Asn Leu Tyr Cys Gln Thr Gly Gly Ile Gly Thr Asp Asn Cys
20
               100
                                   105
                                                        110
  Lys Leu Val Phe Lys Lys Arg Lys Arg Gln Ile Ala Ala Asn Ile Glu
          115
                               120
                                                   125
  Ile Tyr Gly Ile Pro Ala Lys Lys Cys Ser Phe Lys Asp Arg Tyr Ile
                           135
      130
                                               140
25 Gly Ala Asp Pro Leu His Val Asp Ser Tyr Gly Leu Pro Tyr Gln Phe
  145
                       150
                                           155
  Asp Gln Glu His Gly Trp Asn Val Glu Arg Tyr Asn Ile Phe Lys Asp
                                       170
                                                            175
                   165
  Thr Arg Phe Ser Thr Glu Val Phe Tyr His Lys Asn Gly Leu Phe Asn
30
              180
                                   185
                                                        190
  Thr Gln Ile Thr Tyr Leu Ala Glu Glu Asp Ser Phe Ser Glu Ala Arg
          195
                               200
                                                   205
  Glu Ile Thr Ala Lys Asp Ile Lys Lys Lys Phe Ser Ile Ile Leu Pro
      210
                           215
                                               220
35 Asn Glu Glu Tyr Lys Arg Ile Ser Phe Leu Asp Val Tyr Trp Phe Gln
                       230
                                           235
  Glu Thr Met Arg Lys Lys Pro Lys Tyr Pro Tyr Ile His Tyr Asn Gly
                   245
                                       250
  Glu Cys Ser Asn Glu Asn Lys Thr Cys Glu Leu Val Phe Asp Thr Asp
40
               260
                                   265
                                                       270
  Glu Leu Met Thr Tyr Ala Leu Val Lys Val Phe Thr Asn Pro Glu Ser
                               280
  Asp Gly Ser Arg Leu Lys Glu Glu Asp Leu Gly Arg Gly
45
  <210> 2
  <211> 906
  <212> ADN
50 <213> Lutzomyia longipalpis
  <400> 2
                                                                          60
  atgaattcga ttaatttcct atcaatagtt ggtttaatca gttttggatt cattgttgca
  gtaaagtgtg atggtgatga atatttcatt ggaaaataca aagaaaaaga tgagacactg
                                                                         120
  ttttttgcaa gctacggcct aaagagggat ccttgccaaa ttgtcttagg ctacaaatgc
                                                                         180
55 tcaaacaatc aaacccactt tgtgcttaat tttaaaacca ataagaaatc ctgcatatca
                                                                         240
  gcaattaagc tgacttctta cccaaaaatc aatcaaaact cggatttaac taaaaatctc
                                                                         300
  tactgccaaa ctggaggaat aggaacagat aactgcaaac ttgtcttcaa gaaacgtaaa
                                                                         360
  agacaaatag cagctaatat tgaaatctac ggcattccag cgaagaaatg ttccttcaag
                                                                         420
  gategttaca ttggagetga tecaetecae gtegatteet atgggettee gtateagttt
                                                                         480
60 gatcaggaac atggatggaa tgtggaacga tataacattt tcaaagacac aagattttcc
                                                                         540
```

```
acagaagttt tctaccacaa aaatggttta tttaacaccc aaataactta tttggctgaa
                                                                        600
  gaagattcct tctctgaagc tcgagagatt actgcgaagg atattaagaa gaagttttca
                                                                        660
  attattttgc ccaatgaaga gtataagagg attagtttct tggacgttta ttggttccag
                                                                        720
  gagactatgc gaaaaaagcc taaatatccc tacattcact acaatggaga atgcagcaat
                                                                        780
5 gagaataaaa cttgtgaact tgtctttgac accgatgaac taatgaccta cgcccttgtt
                                                                        840
                                                                        900
  aaagtettta etaateetga gagtgatgga tetaggetea aagaagagga tttgggaaga
  ggataa
                                                                        906
  <210>
         3
10 <211> 278
  <212> PRT
  <213> Lutzomyia longipalpis
  <400> 3
  Asp Gly Asp Glu Tyr Phe Ile Gly Lys Tyr Lys Glu Lys Asp Glu Thr
  Leu Phe Phe Ala Ser Tyr Gly Leu Lys Arg Asp Pro Cys Gln Ile Val
                                   25
  Leu Gly Tyr Lys Cys Ser Asn Asn Gln Thr His Phe Val Leu Asn Phe
                               40
20 Lys Thr Asn Lys Lys Ser Cys Ile Ser Ala Ile Lys Leu Thr Ser Tyr
                           55
                                               60
  Pro Lys Ile Asn Gln Asn Ser Asp Leu Thr Lys Asn Leu Tyr Cys Gln
                       70
                                           75
  Thr Gly Gly Ile Gly Thr Asp Asn Cys Lys Leu Val Phe Lys Lys Arg
25
                  85
                                       90
  Lys Arg Gln Ile Ala Ala Asn Ile Glu Ile Tyr Gly Ile Pro Ala Lys
              100
                                   105
                                                       110
  Lys Cys Ser Phe Lys Asp Arg Tyr Ile Gly Ala Asp Pro Leu His Val
          115
                               120
                                                   125
30 Asp Ser Tyr Gly Leu Pro Tyr Gln Phe Asp Gln Glu His Gly Trp Asn
      130
                           135
                                               140
  Val Glu Arg Tyr Asn Ile Phe Lys Asp Thr Arg Phe Ser Thr Glu Val
                       150
                                           155
  Phe Tyr His Lys Asn Gly Leu Phe Asn Thr Gln Ile Thr Tyr Leu Ala
                  165
                                       170
  Glu Glu Asp Ser Phe Ser Glu Ala Arg Glu Ile Thr Ala Lys Asp Ile
              180
                                  185
                                                       190
  Lys Lys Lys Phe Ser Ile Ile Leu Pro Asn Glu Glu Tyr Lys Arg Ile
          195
                               200
                                                   205
40 Ser Phe Leu Asp Val Tyr Trp Phe Gln Glu Thr Met Arg Lys Lys Pro
                           215
                                               220
  Lys Tyr Pro Tyr Ile His Tyr Asn Gly Glu Cys Ser Asn Glu Asn Lys
                       230
                                           235
  Thr Cys Glu Leu Val Phe Asp Thr Asp Glu Leu Met Thr Tyr Ala Leu
                                       250
                  245
  Val Lys Val Phe Thr Asn Pro Glu Ser Asp Gly Ser Arg Leu Lys Glu
              260
                                   265
  Glu Asp Leu Gly Arg Gly
          275
50
  <210> 4
  <211> 837
  <212> ADN
  <213> Lutzomyia longipalpis
55 <400> 4
  gatggtgatg aatatttcat tggaaaatac aaagaaaaag atgagacact gttttttgca
                                                                         60
  agctacggcc taaagaggga tccttgccaa attgtcttag gctacaaatg ctcaaacaat
                                                                        120
  caaacccact ttgtgcttaa ttttaaaacc aataagaaat cctgcatatc agcaattaag
                                                                        180
  ctgacttctt acccaaaaat caatcaaaac tcggatttaa ctaaaaatct ctactgccaa
                                                                        240
60 actggaggaa taggaacaga taactgcaaa cttgtcttca agaaacgtaa aagacaaata
                                                                        300
```

420

480

540

600

660

720 780

837

```
gcagctaata ttgaaatcta cggcattcca gcgaagaaat gttccttcaa ggatcgttac
  attggagctg atccactcca cgtcgattcc tatgggcttc cgtatcagtt tgatcaggaa
  catggatgga atgtggaacg atataacatt ttcaaagaca caagattttc cacagaagtt
  ttctaccaca aaaatggttt atttaacacc caaataactt atttggctga agaagattcc
5 ttctctgaag ctcgagagat tactgcgaag gatattaaga agaagttttc aattattttg
  cccaatgaag agtataagag gattagtttc ttggacgttt attggttcca ggagactatg
  cgaaaaaagc ctaaatatcc ctacattcac tacaatggag aatgcagcaa tgagaataaa
  acttgtgaac ttgtctttga caccgatgaa ctaatgacct acgcccttgt taaagtcttt
  actaatcctg agagtgatgg atctaggctc aaagaagagg atttgggaag aggataa
10
  <210> 5
  <211> 412
  <212> PRT
  <213> Lutzomyia longipalpis
  Met Arg Phe Phe Phe Val Phe Leu Ala Ile Val Leu Phe Gln Gly Ile
  His Gly Ala Tyr Val Glu Ile Gly Tyr Ser Leu Arg Asn Ile Thr Phe
                                  25
20 Asp Gly Leu Asp Thr Asp Asp Tyr Asn Pro Lys Phe Asn Ile Pro Thr
                              40
                                                   45
  Gly Leu Ala Val Asp Pro Glu Gly Tyr Arg Leu Phe Ile Ala Ile Pro
                          55
  Arg Arg Lys Pro Lys Val Pro Tyr Thr Val Ala Glu Leu Asn Met Val
                      70
                                          75
  Met Asn Pro Gly Phe Pro Val Glu Arg Ala Pro Ser Phe Glu Lys Phe
                                      90
                  85
  Lys Lys Phe Asn Gly Glu Gly Lys Lys Asp Leu Val Asn Val Tyr Gln
              100
                                  105
                                                      110
30 Pro Val Ile Asp Asp Cys Arg Arg Leu Trp Val Leu Asp Ile Gly Lys
                              120
          115
                                                  125
  Val Glu Tyr Thr Gly Gly Asp Ala Asp Gln Tyr Pro Lys Gly Lys Pro
                          135
                                              140
  Thr Leu Ile Ala Tyr Asp Leu Lys Lys Asp His Thr Pro Glu Ile His
                      150
                                          155
  Arg Phe Glu Ile Pro Asp Asp Leu Tyr Ser Ser Gln Val Glu Phe Gly
                  165
                                      170
  Gly Phe Ala Val Asp Val Val Asn Thr Lys Gly Asp Cys Thr Glu Ser
              180
                                  185
                                                      190
40 Phe Val Tyr Leu Thr Asn Phe Lys Asp Asn Ser Leu Ile Val Tyr Asp
                              200
                                                  205
          195
  Glu Thr Gln Lys Lys Ala Trp Lys Phe Thr Asp Lys Thr Phe Glu Ala
                          215
                                              220
  Asp Lys Glu Ser Thr Phe Ser Tyr Ser Gly Glu Glu Gln Met Lys Tyr
                      230
                                          235
  Lys Val Gly Leu Phe Gly Ile Ala Leu Gly Asp Arg Asp Glu Met Gly
                  245
                                      250
  His Arg Pro Ala Cys Tyr Ile Ala Gly Ser Ser Thr Lys Val Tyr Ser
                                  265
50 Val Asn Thr Lys Glu Leu Lys Thr Glu Asn Gly Gln Leu Asn Pro Gln
                              280
  Leu His Gly Asp Arg Gly Lys Tyr Thr Asp Ala Ile Ala Leu Ala Tyr
                          295
                                              300
  Asp Pro Glu His Lys Val Leu Tyr Phe Ala Glu Ser Asp Ser Arg Gln
                      310
                                          315
  Val Ser Cys Trp Asn Val Asn Met Glu Leu Lys Pro Asp Asn Thr Asp
                  325
                                      330
  Val Ile Phe Ser Ser Ala Arg Phe Thr Phe Gly Thr Asp Ile Leu Val
              340
                                  345
                                                      350
60 Asp Ser Lys Gly Met Leu Trp Ile Met Ala Asn Gly His Pro Pro Val
```

```
360
  Glu Asp Gln Glu Lys Ile Trp Lys Met Arg Phe Val Asn Arg Lys Ile
                           375
                                               380
  Arg Ile Met Lys Val Asp Thr Glu Arg Val Phe Lys Tyr Ser Arg Cys
                       390
                                           395
  Asn Pro Asn Tyr Lys Pro Pro Lys Glu Ile Glu Val
                  405
  <210> 6
10 <211> 1239
  <212> ADN
  <213> Lutzomyia longipalpis
  atgaggttct tctttgtttt ccttgccatc gtcctttttc aagggatcca cggagcttat
                                                                         60
                                                                        120
15 gtggaaatag gatattetet gagaaatatt acattegatg gattggatac agatgaetae
                                                                        180
  aatccaaagt tcaacattcc aacgggtttg gcagttgatc ccgaaggata taggctcttc
  atagccatcc caaggagaaa gccaaaggtt ccctacactg tggctgaact gaatatggtc
                                                                        240
  atgaatcccg gatttcccgt cgagagagct ccgagctttg agaaattcaa aaaattcaat
  ggcgagggca aaaaggatct tgttaatgtg tatcagccag tcattgatga ttgtcgtcgt
20 ctttgggtgc ttgacattgg gaaggtggaa tacaccggtg gtgatgctga tcaatatccc
                                                                        420
  aaaggaaagc ctaccctaat tgcctacgac ctcaagaagg atcatactcc ggaaattcat
                                                                        480
  cgatttgaaa ttccagacga tctctatagc tcacaagttg aatttggtgg atttgccgtt
                                                                        540
  gatgttgtta acacgaaagg agactgtacg gagtcatttg tctacctgac caatttcaag
                                                                        600
  gataactctc taattgtcta cgatgagaca caaaagaaag cttggaaatt cacagataaa
                                                                        660
                                                                        720
25 acatttgaag ctgataagga atccacgttc tcctactcgg gagaggaaca aatgaagtac
                                                                        780
  aaagteggte tttttgggat agetetgggt gatagggatg aaatggggea tegteetgee
                                                                        840
  tgctacatcg ctgggagtag caccaaagtc tacagtgtta acactaaaga actcaaaaca
                                                                        900
  gagaatggtc agttaaatcc tcagcttcac ggtgatcgtg gaaagtacac agatgcaatt
                                                                        960
  gccctagcct acgatcctga gcataaagtc ctctactttg ctgaatccga cagcaggcag
30 gtgtcctgtt ggaatgtaaa tatggagcta aaaccagaca atacggatgt gatcttctct
                                                                       1020
                                                                       1080
  agtgcccgtt ttacttttgg aacggatatt ttggttgata gcaagggaat gctgtggata
  atggctaatg gacatccacc agtagaggat caagagaaga tttggaagat gagattcgta
                                                                       1140
  aaccggaaga tccgtattat gaaagtggat acggaacgtg ttttcaaata ttcacgctgc
                                                                       1200
  aatccaaatt ataagccccc aaaggaaatt gaagtttga
                                                                       1239
35
  <210> 7
  <211> 394
  <212> PRT
  <213> Lutzomyia longipalpis
40 < 400 > 7
  Ala Tyr Val Glu Ile Gly Tyr Ser Leu Arg Asn Ile Thr Phe Asp Gly
                                      10
  Leu Asp Thr Asp Asp Tyr Asn Pro Lys Phe Asn Ile Pro Thr Gly Leu
45 Ala Val Asp Pro Glu Gly Tyr Arg Leu Phe Ile Ala Ile Pro Arg Arg
  Lys Pro Lys Val Pro Tyr Thr Val Ala Glu Leu Asn Met Val Met Asn
                           55
  Pro Gly Phe Pro Val Glu Arg Ala Pro Ser Phe Glu Lys Phe Lys Lys
                      70
                                           75
  Phe Asn Gly Glu Gly Lys Lys Asp Leu Val Asn Val Tyr Gln Pro Val
                                       90
                  85
  Ile Asp Asp Cys Arg Arg Leu Trp Val Leu Asp Ile Gly Lys Val Glu
                                  105
              100
                                                       110
55 Tyr Thr Gly Gly Asp Ala Asp Gln Tyr Pro Lys Gly Lys Pro Thr Leu
                              120
  Ile Ala Tyr Asp Leu Lys Lys Asp His Thr Pro Glu Ile His Arg Phe
                          135
                                               140
  Glu Ile Pro Asp Asp Leu Tyr Ser Ser Gln Val Glu Phe Gly Gly Phe
60 145
                      150
                                           155
```

```
Ala Val Asp Val Val Asn Thr Lys Gly Asp Cys Thr Glu Ser Phe Val
                                       170
                   165
  Tyr Leu Thr Asn Phe Lys Asp Asn Ser Leu Ile Val Tyr Asp Glu Thr
                                   185
5 Gln Lys Lys Ala Trp Lys Phe Thr Asp Lys Thr Phe Glu Ala Asp Lys
          195
                               200
  Glu Ser Thr Phe Ser Tyr Ser Gly Glu Glu Gln Met Lys Tyr Lys Val
                           215
  Gly Leu Phe Gly Ile Ala Leu Gly Asp Arg Asp Glu Met Gly His Arg
                       230
                                           235
  Pro Ala Cys Tyr Ile Ala Gly Ser Ser Thr Lys Val Tyr Ser Val Asn
                   2.45
                                       250
  Thr Lys Glu Leu Lys Thr Glu Asn Gly Gln Leu Asn Pro Gln Leu His
                                   265
                                                        270
15 Gly Asp Arg Gly Lys Tyr Thr Asp Ala Ile Ala Leu Ala Tyr Asp Pro
                               280
  Glu His Lys Val Leu Tyr Phe Ala Glu Ser Asp Ser Arg Gln Val Ser
                           295
                                               300
  Cys Trp Asn Val Asn Met Glu Leu Lys Pro Asp Asn Thr Asp Val Ile
20 305
                       310
                                           315
  Phe Ser Ser Ala Arg Phe Thr Phe Gly Thr Asp Ile Leu Val Asp Ser
                   325
                                       330
                                                           335
  Lys Gly Met Leu Trp Ile Met Ala Asn Gly His Pro Pro Val Glu Asp
               340
                                   345
25 Gln Glu Lys Ile Trp Lys Met Arg Phe Val Asn Arg Lys Ile Arg Ile
                               360
                                                   365
          355
  Met Lys Val Asp Thr Glu Arg Val Phe Lys Tyr Ser Arg Cys Asn Pro
                           375
                                               380
  Asn Tyr Lys Pro Pro Lys Glu Ile Glu Val
30 385
                       390
  <210> 8
  <211> 1185
  <212> ADN
35 <213> Lutzomyia longipalpis
  <400> 8
  gcttatgtgg aaataggata ttctctgaga aatattacat tcgatggatt ggatacagat
                                                                          60
  gactacaatc caaagttcaa cattccaacg ggtttggcag ttgatcccga aggatatagg
                                                                         120
  ctcttcatag ccatcccaag gagaaagcca aaggttccct acactgtggc tgaactgaat
                                                                         180
40 atggtcatga atcccggatt tcccgtcgag agagctccga gctttgagaa attcaaaaaa
                                                                         240
  ttcaatggcg agggcaaaaa ggatcttgtt aatgtgtatc agccagtcat tgatgattgt
                                                                         300
                                                                         360
  cgtcgtcttt gggtgcttga cattgggaag gtggaataca ccggtggtga tgctgatcaa
  tatcccaaag gaaagcctac cctaattgcc tacgacctca agaaggatca tactccggaa
                                                                         480
  attcatcgat ttgaaattcc agacgatctc tatagctcac aagttgaatt tggtggattt
                                                                         540
45 gccgttgatg ttgttaacac gaaaggagac tgtacggagt catttgtcta cctgaccaat
  ttcaaggata actctctaat tgtctacgat gagacacaaa agaaagcttg gaaattcaca
  gataaaacat ttgaagctga taaggaatcc acgttctcct actcgggaga ggaacaaatg
                                                                         660
  aagtacaaag teggtetttt tgggataget etgggtgata gggatgaaat ggggcategt
                                                                         720
  cctgcctgct acatcgctgg gagtagcacc aaagtctaca gtgttaacac taaagaactc
                                                                         780
50 aaaacagaga atggtcagtt aaatcctcag cttcacggtg atcgtggaaa gtacacagat
                                                                         840
  gcaattgccc tagcctacga tcctgagcat aaagtcctct actttgctga atccgacagc
                                                                         900
  aggcaggtgt cctgttggaa tgtaaatatg gagctaaaac cagacaatac ggatgtgatc
                                                                         960
  ttctctagtg cccgttttac ttttggaacg gatattttgg ttgatagcaa gggaatgctg
                                                                        1020
  tggataatgg ctaatggaca tccaccagta gaggatcaag agaagatttg gaagatgaga
                                                                        1080
55 ttcgtaaacc ggaagatccg tattatgaaa gtggatacgg aacgtgtttt caaatattca
                                                                        1140
  cgctgcaatc caaattataa gcccccaaag gaaattgaag tttga
                                                                        1185
         9
  <210>
  <211> 6247
```

60 <212> ADN

```
<213> artificial
  <220>
  <223> secuencia de ácido nucleico de una cadena del plásmido pVR2001 LJM17
  <400> 9
5 aagggatcca gatctgctgt gccttctagt tgccagccat ctgttgtttg cccctcccc
                                                                        60
  gtgccttcct tgaccctgga aggtgccact cccactgtcc tttcctaata aaatgaggaa
                                                                       120
  180
                                                                       240
  agcaaggggg aggattggga agacaatagc aggcatgctg gggatgcggt gggctctatg
                                                                       300
  ggtacccagg tgctgaagaa ttgacccggt tcctcctggg ccagaaagaa gcaggcacat
10 ccccttctct gtgacacacc ctgtccacgc ccctggttct tagttccagc cccactcata
                                                                       360
  ggacactcat agctcaggag ggctccgcct tcaatcccac ccgctaaagt acttggagcg
                                                                       420
  gtctctccct ccctcatcag cccaccaaac caaacctagc ctccaagagt gggaagaaat
                                                                       480
  taaagcaaga taggctatta agtgcagagg gagagaaaat gcctccaaca tgtgaggaag
                                                                       540
  taatgagaga aatcatagaa tttcttccgc ttcctcgctc actgactcgc tgcgctcggt
                                                                       600
15 cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga
                                                                       660
                                                                       720
  atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg
  taaaaaggcc gcgttgctgg cgtttttcca taggctccgc cccctgacg agcatcacaa
                                                                       780
                                                                       840
  aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt
                                                                       900
  tccccctgga agctccctcg tgcgctctcc tgttccgacc ctgccgctta ccggatacct
20 gtccgccttt ctcccttcgg gaagcgtggc gctttctcaa tgctcacgct gtaggtatct
                                                                       960
  cagtteggtg taggtegtte getecaaget gggetgtgtg caegaacece cegtteagee
                                                                      1020
  cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt
                                                                      1080
  atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc
                                                                      1140
  tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat
                                                                      1200
25 ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa
                                                                      1260
  acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa
                                                                      1320
  aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga
                                                                      1380
  aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct
                                                                      1440
  tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga
                                                                      1500
30 cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc
                                                                      1560
                                                                      1620
  catagttgcc tgactccggg ggggggggc gctgaggtct gcctcgtgaa gaaggtgttg
                                                                      1680
  ctgactcata ccaggcctga atcgccccat catccagcca gaaagtgagg gagccacggt
                                                                      1740
  tgatgagagc tttgttgtag gtggaccagt tggtgatttt gaacttttgc tttgccacgg
                                                                     1800
  aacggtctgc gttgtcggga agatgcgtga tctgatcctt caactcagca aaagttcgat
35 ttattcaaca aagccgccgt cccgtcaagt cagcgtaatg ctctgccagt gttacaacca
                                                                      1860
  attaaccaat tctgattaga aaaactcatc gagcatcaaa tgaaactgca atttattcat
                                                                      1920
  atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag gagaaaactc
                                                                     1980
  accgaggcag ttccatagga tggcaagatc ctggtatcgg tctgcgattc cgactcgtcc
                                                                      2040
  aacatcaata caacctatta atttcccctc gtcaaaaata aggttatcaa gtgagaaatc
                                                                      2100
40 accatgagtg acgactgaat ccggtgagaa tggcaaaaagc ttatgcattt ctttccagac
                                                                      2160
  ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa ccaaaccgtt
                                                                      2220
  attcattcgt gattgcgcct gagcgagacg aaatacgcga tcgctgttaa aaggacaatt
                                                                      2280
  acaaacagga atcgaatgca accggcgcag gaacactgcc agcgcatcaa caatattttc
                                                                      2340
  acctgaatca ggatattctt ctaatacctg gaatgctgtt ttcccggggga tcgcagtggt
                                                                      2400
45 gagtaaccat gcatcatcag gagtacggat aaaatgcttg atggtcggaa gaggcataaa
                                                                      2460
  ttccgtcagc cagtttagtc tgaccatctc atctgtaaca tcattggcaa cgctaccttt
                                                                      2520
  gccatgtttc agaaacaact ctggcgcatc gggcttccca tacaatcgat agattgtcgc
                                                                      2580
  acctgattgc ccgacattat cgcgagccca tttataccca tataaatcag catccatgtt
                                                                      2640
  ggaatttaat cgcggcctcg agcaagacgt ttcccgttga atatggctca taacacccct
                                                                      2700
50 tgtattactg tttatgtaag cagacagttt tattgttcat gatgatatat ttttatcttg
                                                                      2760
  tgcaatgtaa catcagagat tttgagacac aacgtggctt tcccccccc cccattattg
                                                                      2820
  aagcatttat cagggttatt gtctcatgag cggatacata tttgaatgta tttagaaaaa
                                                                      2880
  taaacaaata ggggttccgc gcacatttcc ccgaaaagtg ccacctgacg tctaagaaac
                                                                      2940
  cattattatc atgacattaa cctataaaaa taggcgtatc acgaggccct ttcgtctcgc
                                                                      3000
55 gcgtttcggt gatgacggtg aaaacctctg acacatgcag ctcccggaga cggtcacagc
                                                                      3060
  ttgtctgtaa gcggatgccg ggagcagaca agcccgtcag ggcgcgtcag cgggtgttgg
                                                                      3120
  cgggtgtcgg ggctggctta actatgcggc atcagagcag attgtactga gagtgcacca
                                                                      3180
  tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa taccgcatca gattggctat
                                                                      3240
  tggccattgc atacgttgta tccatatcat aatatgtaca tttatattgg ctcatgtcca
                                                                      3300
60 acattaccgc catgttgaca ttgattattg actagttatt aatagtaatc aattacgggg
                                                                      3360
```

```
tcattagttc atagcccata tatggagttc cgcgttacat aacttacggt aaatggcccg
                                                                      3420
  cctggctgac cgcccaacga ccccgccca ttgacgtcaa taatgacgta tgttcccata
                                                                      3480
  gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc
                                                                      3540
  cacttggcag tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac
                                                                      3600
5 ggtaaatggc ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg
                                                                      3660
  cagtacatct acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc
                                                                      3720
  aatgggcgtg gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc
                                                                      3780
                                                                      3840
  aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc
                                                                      3900
  gccccattga cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct
10 cgtttagtga accgtcagat cgcctggaga cgccatccac gctgttttga cctccataga
                                                                      3960
  agacaccggg accgatccag cctccgcggc cgggaacggt gcattggaac gcggattccc
                                                                      4020
  cgtgccaaga gtgacgtaag taccgcctat agagtctata ggcccacccc cttggcttct
                                                                      4080
  tatgcatgct atactgtttt tggcttgggg tctatacacc cccgcttcct catgttatag
                                                                      4140
  gtgatggtat agcttagcct ataggtgtgg gttattgacc attattgacc actcccctat
                                                                      4200
15 tggtgacgat actttccatt actaatccat aacatggctc tttgccacaa ctctctttat
                                                                      4260
  tggctatatg ccaatacact gtccttcaga gactgacacg gactctgtat ttttacagga
  tggggtctca tttattattt acaaattcac atatacaaca ccaccgtccc cagtgcccgc
  agtttttatt aaacataacg tgggatctcc acgcgaatct cgggtacgtg ttccggacat
                                                                      4440
                                                                      4500
  gggctcttct ccggtagcgg cggagcttct acatccgagc cctgctccca tgcctccagc
20 gactcatggt cgctcggcag ctccttgctc ctaacagtgg aggccagact taggcacagc
                                                                      4560
  acgatgccca ccaccaccag tgtgccgcac aaggccgtgg cggtagggta tgtgtctgaa
                                                                      4620
  aatgageteg gggageggge ttgcaceget gaegeatttg gaagaettaa ggeageggea
                                                                      4680
  gaagaagatg caggcagctg agttgttgtg ttctgataag agtcagaggt aactcccgtt
                                                                      4740
  gcggtgctgt taacggtgga gggcagtgta gtctgagcag tactcgttgc tgccgcgcgc
                                                                      4800
                                                                      4860
25 gccaccagac ataatagctg acagactaac agactgttcc tttccatggg tcttttctca
  cgtcaccgtc gtcgaccaga gctgagatcc tacaggagtc cagggctgga gagaaaacct
                                                                      4920
                                                                      4980
  ctgcgaggaa agggaaggag caagccgtga atttaaggga cgctgtgaag caatcatgga
                                                                      5040
  tgcaatgaag agagggctct gctgtgtgct gctgctgtgt ggagcagtct tcgtttcgcc
                                                                      5100
  cagcggtacc ggatccaccc ttgcttatgt ggaaatagga tattctctga gaaatattac
30 attcgatgga ttggatacag atgactacaa tccaaagttc aacattccaa cgggtttggc
                                                                      5160
  agttgatccc gaaggatata ggctcttcat agccatccca aggagaaagc caaaggttcc
                                                                      5220
                                                                      5280
  ctacactgtg gctgaactga atatggtcat gaatcccgga tttcccgtcg agagagctcc
                                                                      5340
  gagctttgag aaattcaaaa aattcaatgg cgagggcaaa aaggatcttg ttaatgtgta
                                                                      5400
  tcagccagtc attgatgatt gtcgtcgtct ttgggtgctt gacattggga aggtggaata
35 caccggtggt gatgctgatc aatatcccaa aggaaagcct accctaattg cctacgacct
                                                                      5460
  caagaaggat catactccgg aaattcatcg atttgaaatt ccagacgatc tctatagctc
                                                                      5520
  acaagttgaa tttggtggat ttgccgttga tgttgttaac acgaaaggag actgtacgga
                                                                      5580
  gtcatttgtc tacctgacca atttcaagga taactctcta attgtctacg atgagacaca
                                                                      5640
  aaagaaagct tggaaattca cagataaaac atttgaagct gataaggaat ccacgttctc
                                                                      5700
40 ctactcggga gaggaacaaa tgaagtacaa agtcggtctt tttgggatag ctctgggtga
                                                                      5760
  tagggatgaa atggggcatc gtcctgcctg ctacatcgct gggagtagca ccaaagtcta
                                                                      5820
  cagtgttaac actaaagaac tcaaaacaga gaatggtcag ttaaatcctc agcttcacgg
                                                                      5880
  tgatcgtgga aagtacacag atgcaattgc cctagcctac gatcctgagc ataaagtcct
                                                                      5940
  ctactttgct gaatccgaca gcaggcaggt gtcctgttgg aatgtaaata tggagctaaa
                                                                      6000
45 accagacaat acggatgtga tcttctctag tgcccgtttt acttttggaa cggatatttt
                                                                      6060
  ggttgatagc aagggaatgc tgtggataat ggctaatgga catccaccag tagaggatca
                                                                      6120
  agagaagatt tggaagatga gattcgtaaa ccggaagatc cgtattatga aagtggatac
                                                                      6180
  ggaacgtgtt ttcaaatatt cacgctgcaa tccaaattat aagcccccaa aggaaattga
                                                                      6240
  agtttga
                                                                      6247
50
  <210> 10
  <211> 5899
  <212> ADN
  <213> artificial
55 <220>
  <223> secuencia de ácido nucleico de una cadena del plásmido pVR2001 LJL143
  <400> 10
  aagggatcca gatctgctgt gccttctagt tgccagccat ctgttgtttg cccttcccc
                                                                        60
  gtgccttcct tgaccctgga aggtgccact cccactgtcc tttcctaata aaatgaggaa
                                                                       120
180
```

```
agcaaggggg aggattggga agacaatagc aggcatgctg gggatgcggt gggctctatg
                                                                        240
  ggtacccagg tgctgaagaa ttgacccggt tcctcctggg ccagaaagaa gcaggcacat
                                                                        300
  ccccttctct gtgacacacc ctgtccacgc ccctggttct tagttccagc cccactcata
                                                                        360
  ggacactcat agctcaggag ggctccgcct tcaatcccac ccgctaaagt acttggagcg
                                                                        420
 5 gtctctccct ccctcatcag cccaccaaac caaacctagc ctccaagagt gggaagaaat
                                                                        480
                                                                        540
  taaagcaaga taggctatta agtgcagagg gagagaaaat gcctccaaca tgtgaggaag
  taatgagaga aatcatagaa tttcttccgc ttcctcgctc actgactcgc tgcgctcggt
                                                                        600
  cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga
                                                                        660
                                                                        720
  atcaggggat aacgcaggaa agaacatgtg agcaaaaaggc cagcaaaagg ccaggaaccg
                                                                        780
10 taaaaaggcc gcgttgctgg cgtttttcca taggctccgc ccccctgacg agcatcacaa
  aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt
                                                                        840
  tccccctgga agctccctcg tgcgctctcc tgttccgacc ctgccgctta ccggatacct
                                                                        900
  gtccgccttt ctcccttcgg gaagcgtggc gctttctcaa tgctcacgct gtaggtatct
                                                                        960
  cagttcggtg taggtcgttc gctccaagct gggctgtgtg cacgaacccc ccgttcagcc
                                                                       1020
15 cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt
                                                                       1080
  atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc
                                                                       1140
                                                                       1200
  tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat
  ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa
                                                                       1260
  acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa
                                                                       1320
20 aaaaggatet caagaagate etttgatett ttetaegggg tetgaegete agtggaaega
                                                                       1380
  aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct
                                                                       1440
  tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga
                                                                       1500
  cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc
                                                                       1560
  catagttgcc tgactccggg ggggggggc gctgaggtct gcctcgtgaa gaaggtgttg
                                                                       1620
25 ctgactcata ccaggcctga atcgccccat catccagcca gaaagtgagg gagccacggt
                                                                       1680
                                                                       1740
  tgatgagagc tttgttgtag gtggaccagt tggtgatttt gaacttttgc tttgccacgg
                                                                       1800
  aacggtctgc gttgtcggga agatgcgtga tctgatcctt caactcagca aaagttcgat
                                                                       1860
  ttattcaaca aagccgccgt cccgtcaagt cagcgtaatg ctctgccagt gttacaacca
                                                                       1920
  attaaccaat tctgattaga aaaactcatc gagcatcaaa tgaaactgca atttattcat
30 atcaggatta tcaataccat atttttgaaa aagccgtttc tgtaatgaag gagaaaactc
                                                                       1980
  accgaggcag ttccatagga tggcaagatc ctggtatcgg tctgcgattc cgactcgtcc
                                                                       2040
                                                                       2100
  aacatcaata caacctatta atttcccctc gtcaaaaata aggttatcaa gtgagaaatc
                                                                       2160
  accatgagtg acgactgaat ccggtgagaa tggcaaaagc ttatgcattt ctttccagac
  ttgttcaaca ggccagccat tacgctcgtc atcaaaatca ctcgcatcaa ccaaaccgtt
                                                                       2220
35 attcattcgt gattgcgcct gagcgagacg aaatacgcga tcgctgttaa aaggacaatt
                                                                       2280
  acaaacagga atcgaatgca accggcgcag gaacactgcc agcgcatcaa caatattttc
                                                                       2340
  acctgaatca ggatattctt ctaatacctg gaatgctgtt ttcccgggga tcgcagtggt
                                                                       2400
  gagtaaccat gcatcatcag gagtacggat aaaatgcttg atggtcggaa gaggcataaa
                                                                       2460
  ttccgtcagc cagtttagtc tgaccatctc atctgtaaca tcattggcaa cgctaccttt
                                                                       2520
40 gccatgtttc agaaacaact ctggcgcatc gggcttccca tacaatcgat agattgtcgc
                                                                       2580
  acctgattgc ccgacattat cgcgagccca tttataccca tataaatcag catccatgtt
                                                                       2640
  ggaatttaat cgcggcctcg agcaagacgt ttcccgttga atatggctca taacacccct
                                                                       2700
  tgtattactg tttatgtaag cagacagttt tattgttcat gatgatatat ttttatcttg
                                                                       2760
  tgcaatgtaa catcagagat tttgagacac aacgtggctt tcccccccc cccattattg
                                                                       2820
                                                                       2880
45 aagcatttat cagggttatt gtctcatgag cggatacata tttgaatgta tttagaaaaa
  taaacaaata ggggttccgc gcacatttcc ccgaaaagtg ccacctgacg tctaagaaac
                                                                       2940
  cattattatc atgacattaa cctataaaaa taggcgtatc acgaggccct ttcgtctcgc
                                                                       3000
  gcgtttcggt gatgacggtg aaaacctctg acacatgcag ctcccggaga cggtcacagc
                                                                       3060
  ttgtctgtaa gcggatgccg ggagcagaca agcccgtcag ggcgcgtcag cgggtgttgg
                                                                       3120
50 cgggtgtcgg ggctggctta actatgcggc atcagagcag attgtactga gagtgcacca
                                                                       3180
  tatgcggtgt gaaataccgc acagatgcgt aaggagaaaa taccgcatca gattggctat
                                                                       3240
  tggccattgc atacgttgta tccatatcat aatatgtaca tttatattgg ctcatgtcca
                                                                       3300
  acattaccgc catgttgaca ttgattattg actagttatt aatagtaatc aattacgggg
                                                                       3360
  tcattagttc atagcccata tatggagttc cgcgttacat aacttacggt aaatggcccg
                                                                       3420
55 cctggctgac cgcccaacga ccccgccca ttgacgtcaa taatgacgta tgttcccata
                                                                       3480
  gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc
                                                                       3540
  cacttggcag tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac
                                                                       3600
  ggtaaatggc ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg
                                                                       3660
  cagtacatct acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc
                                                                       3720
60 aatgggcgtg gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc
                                                                       3780
```

```
aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc
                                                                        3840
  gccccattga cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct
                                                                        3900
  cgtttagtga accgtcagat cgcctggaga cgccatccac gctgttttga cctccataga
                                                                        3960
  agacaccggg accgatccag cctccgcggc cgggaacggt gcattggaac gcggattccc
                                                                        4020
5 cgtgccaaga gtgacgtaag taccgcctat agagtctata ggcccacccc cttggcttct
                                                                        4080
  tatgcatgct atactgtttt tggcttgggg tctatacacc cccgcttcct catgttatag
                                                                        4140
  gtgatggtat agcttagcct ataggtgtgg gttattgacc attattgacc actcccctat
                                                                        4200
  tggtgacgat actttccatt actaatccat aacatggctc tttgccacaa ctctctttat
                                                                        4260
  tggctatatg ccaatacact gtccttcaga gactgacacg gactctgtat ttttacagga
                                                                        4320
10 tggggtctca tttattattt acaaattcac atatacaaca ccaccgtccc cagtgcccgc
                                                                        4380
  agtttttatt aaacataacg tgggatctcc acgcgaatct cgggtacgtg ttccggacat
                                                                        4440
  gggetettet eeggtagegg eggagettet acateegage eetgeteeca tgeeteeage
                                                                        4500
  gactcatggt cgctcggcag ctccttgctc ctaacagtgg aggccagact taggcacagc
                                                                        4560
  acgatgccca ccaccaccag tgtgccgcac aaggccgtgg cggtagggta tgtgtctgaa
                                                                        4620
                                                                        4680
15 aatgageteg gggageggge ttgeaceget gaegeatttg gaagaettaa ggeageggea
                                                                        4740
  gaagaagatg caggcagctg agttgttgtg ttctgataag agtcagaggt aactcccgtt
                                                                        4800
  gcggtgctgt taacggtgga gggcagtgta gtctgagcag tactcgttgc tgccgcgcgc
  gccaccagac ataatagctg acagactaac agactgttcc tttccatggg tcttttctca
                                                                        4860
  cgtcaccgtc gtcgaccaga gctgagatcc tacaggagtc cagggctgga gagaaaacct
                                                                        4920
20 ctgcgaggaa agggaaggag caagccgtga atttaaggga cgctgtgaag caatcatgga
                                                                        4980
  tgcaatgaag agagggetet getgtgtget getgetgtgt ggageagtet tegtttegee
                                                                        5040
  cagcggtacc ggatccaccc ttgatggtga tgaatatttc attggaaaat acaaagaaaa
                                                                        5100
  agatgagaca ctgttttttg caagctacgg cctaaagagg gatccttgcc aaattgtctt
                                                                        5160
  aggctacaaa tgctcaaaca atcaaaccca ctttgtgctt aattttaaaa ccaataagaa
                                                                        5220
25 atcctgcata tcagcaatta agctgacttc ttacccaaaa atcaatcaaa actcggattt
                                                                        5280
  aactaaaaat ctctactgcc aaactggagg aataggaaca gataactgca aacttgtctt
                                                                        5340
                                                                        5400
  caagaaacgt aaaagacaaa tagcagctaa tattgaaatc tacggcattc cagcgaagaa
  atgttccttc aaggatcgtt acattggagc tgatccactc cacgtcgatt cctatgggct
                                                                        5460
  tccgtatcag tttgatcagg aacatggatg gaatgtggaa cgatataaca ttttcaaaga
                                                                        5520
30 cacaagattt tccacagaag ttttctacca caaaaatggt ttatttaaca cccaaataac
                                                                        5580
                                                                        5640
  ttatttggct gaagaagatt ccttctctga agctcgagag attactgcga aggatattaa
  gaagaagttt tcaattattt tgcccaatga agagtataag aggattagtt tcttggacgt
                                                                        5700
  ttattggttc caggagacta tgcgaaaaaa gcctaaatat ccctacattc actacaatgg
                                                                        5760
  agaatgcagc aatgagaata aaacttgtga acttgtcttt gacaccgatg aactaatgac
                                                                        5820
35 ctacgccctt gttaaagtct ttactaatcc tgagagtgat ggatctaggc tcaaagaaga
                                                                        5880
  ggatttggga agaggataa
                                                                        5899
  <210> 11
  <211> 301
40 <212> PRT
  <213> Lutzomyia longipalpis
  Met Asn Ser Ile Asn Phe Leu Ser Ile Val Gly Leu Ile Ser Phe Gly
                                       10
45 Phe Ile Val Ala Val Lys Cys Asp Gly Asp Glu Tyr Phe Ile Gly Lys
                                   25
  Tyr Lys Glu Lys Asp Glu Thr Leu Phe Phe Ala Ser Tyr Gly Leu Lys
                                                   45
                               40
  Arg Asp Pro Cys Gln Ile Val Leu Gly Tyr Lys Cys Ser Asn Asn Gln
                           55
                                               60
  Thr His Phe Val Leu Asn Phe Lys Thr Asn Lys Lys Ser Cys Ile Ser
                                           75
                       70
  Ala Ile Lys Leu Thr Ser Tyr Pro Lys Ile Asn Gln Asn Ser Asp Leu
                                       90
                  85
55 Thr Arg Asn Leu Tyr Cys Gln Thr Gly Gly Ile Gly Thr Asp Asn Cys
               100
                                   105
                                                       110
  Lys Leu Val Phe Lys Lys Arg Lys Arg Gln Ile Ala Ala Asn Ile Glu
                               120
                                                   125
          115
  Ile Tyr Gly Ile Pro Ala Lys Lys Cys Ser Phe Lys Asp Arg Tyr Ile
60
      130
                           135
                                               140
```

```
Gly Ala Asp Pro Leu His Val Asp Ser Tyr Gly Leu Ser Tyr Gln Phe
  145
                       150
                                           155
  Asp Gln Glu His Gly Trp Asn Leu Glu Arg Asn Asn Ile Phe Lys Asp
                                       170
                  165
5 Thr Arg Phe Ser Thr Glu Val Phe Tyr His Lys Asn Gly Leu Phe Asn
                                   185
                                                       190
  Thr Gln Ile Thr Tyr Leu Ala Glu Glu Asp Ser Phe Ser Glu Ala Arg
                               200
                                                   205
  Glu Ile Thr Ala Lys Asp Ile Lys Lys Phe Ser Ile Ile Leu Pro
                           215
                                               220
  Asn Glu Glu Tyr Lys Arg Ile Ser Phe Leu Asp Val Tyr Trp Phe Gln
                       230
                                           235
  Glu Thr Met Arg Lys Lys Pro Lys Tyr Pro Tyr Ile His Tyr Asn Gly
                                       250
15 Glu Cys Ser Asn Glu Asn Lys Thr Cys Glu Leu Val Phe Asp Thr Asp
                                   265
                                                       270
  Glu Leu Met Thr Tyr Ala Leu Val Lys Val Phe Thr Asn Pro Glu Ser
                               280
  Asp Gly Ser Arg Leu Lys Glu Glu Asp Leu Gly Arg Gly
20
                           295
  <210> 12
  <211>
         906
  <212>
         ADN
25 <213> Lutzomyia longipalpis
  <400> 12
  atgaattcga ttaatttcct atcaatagtt ggtttaatca gttttggatt cattgttgca
                                                                         60
  gtaaagtgtg atggtgatga atatttcatt ggaaaataca aagaaaaaga tgagacactg
                                                                        120
                                                                        180
  ttttttgcaa gctacggcct aaagagggat ccttgccaga ttgtcttagg ctacaaatgc
                                                                        240
30 tcaaacaatc aaacccactt tgtgcttaat tttaaaacca ataagaaatc ctgcatatca
  gcaattaagc tgacttctta cccaaaaatc aatcaaaact cggatttaac tagaaatctc
                                                                        300
  tactgccaaa ctggaggaat aggaacagat aactgcaaac ttgtcttcaa gaaacgtaaa
                                                                        360
  agacaaatag cagctaatat tgaaatctac ggcattccag cgaagaaatg ttccttcaag
                                                                        420
  gategttaca ttggagetga tecaeteeac gtegatteet atgggettte gtateagttt
                                                                        480
35 gatcaggaac atggatggaa tttggaacga aataacattt tcaaagacac aagattttcc
                                                                        540
  acagaagttt tctaccacaa aaatggttta tttaacaccc aaataactta tttggctgaa
                                                                        600
  gaagattcct tctctgaagc tcgagagatt actgcgaagg atattaagaa gaagttttca
                                                                        660
  attattttgc ccaatgaaga gtataagagg attagtttct tggacgttta ttggttccag
                                                                        720
  gagactatgc gaaaaaagcc taaatatccc tacattcact acaatggaga atgcagcaat
                                                                        780
40 gagaataaaa cttgtgaact tgtctttgac accgatgaac taatgaccta cgcccttgtt
                                                                        840
  aaagtettta etaateetga gagtgatgga tetaggetea aagaagagga tttgggaaga
                                                                        900
                                                                        906
  ggataa
  <210> 13
45 <211>
        278
  <212>
        PRT
  <213> Lutzomyia longipalpis
  <400> 13
  Asp Gly Asp Glu Tyr Phe Ile Gly Lys Tyr Lys Glu Lys Asp Glu Thr
                                       10
  Leu Phe Phe Ala Ser Tyr Gly Leu Lys Arg Asp Pro Cys Gln Ile Val
                                   25
  Leu Gly Tyr Lys Cys Ser Asn Asn Gln Thr His Phe Val Leu Asn Phe
                               40
55 Lys Thr Asn Lys Lys Ser Cys Ile Ser Ala Ile Lys Leu Thr Ser Tyr
                           55
  Pro Lys Ile Asn Gln Asn Ser Asp Leu Thr Arg Asn Leu Tyr Cys Gln
                                           75
                      70
  Thr Gly Gly Ile Gly Thr Asp Asn Cys Lys Leu Val Phe Lys Lys Arg
60
                                       90
                  85
```

```
Lys Arg Gln Ile Ala Ala Asn Ile Glu Ile Tyr Gly Ile Pro Ala Lys
              100
                                   105
                                                       110
  Lys Cys Ser Phe Lys Asp Arg Tyr Ile Gly Ala Asp Pro Leu His Val
                               120
5 Asp Ser Tyr Gly Leu Ser Tyr Gln Phe Asp Gln Glu His Gly Trp Asn
                           135
  Leu Glu Arg Asn Asn Ile Phe Lys Asp Thr Arg Phe Ser Thr Glu Val
                      150
                                           155
  Phe Tyr His Lys Asn Gly Leu Phe Asn Thr Gln Ile Thr Tyr Leu Ala
                                       170
  Glu Glu Asp Ser Phe Ser Glu Ala Arg Glu Ile Thr Ala Lys Asp Ile
                                   185
  Lys Lys Lys Phe Ser Ile Ile Leu Pro Asn Glu Glu Tyr Lys Arg Ile
                               200
                                                   205
          195
15 Ser Phe Leu Asp Val Tyr Trp Phe Gln Glu Thr Met Arg Lys Lys Pro
                           215
  Lys Tyr Pro Tyr Ile His Tyr Asn Gly Glu Cys Ser Asn Glu Asn Lys
                       230
                                           235
  Thr Cys Glu Leu Val Phe Asp Thr Asp Glu Leu Met Thr Tyr Ala Leu
                  245
                                       250
  Val Lys Val Phe Thr Asn Pro Glu Ser Asp Gly Ser Arg Leu Lys Glu
                                   265
  Glu Asp Leu Gly Arg Gly
          275
25
  <210> 14
  <211> 837
  <212> ADN
  <213> Lutzomyia longipalpis
30 <400> 14
  gatggtgatg aatatttcat tggaaaatac aaagaaaaag atgagacact gttttttgca
                                                                         60
                                                                        120
  agctacggcc taaagaggga tccttgccag attgtcttag gctacaaatg ctcaaacaat
  caaacccact ttgtgcttaa ttttaaaacc aataagaaat cctgcatatc agcaattaag
                                                                        180
  ctgacttctt acccaaaaat caatcaaaac tcggatttaa ctagaaatct ctactgccaa
                                                                        240
35 actggaggaa taggaacaga taactgcaaa cttgtcttca agaaacgtaa aagacaaata
                                                                        300
  gcagctaata ttgaaatcta cggcattcca gcgaagaaat gttccttcaa ggatcgttac
                                                                        360
  attggagctg atccactcca cgtcgattcc tatgggcttt cgtatcagtt tgatcaggaa
                                                                        420
  catggatgga atttggaacg aaataacatt ttcaaagaca caagattttc cacagaagtt
                                                                        480
  ttctaccaca aaaatggttt atttaacacc caaataactt atttggctga agaagattcc
                                                                        540
40 ttctctgaag ctcgagagat tactgcgaag gatattaaga agaagttttc aattattttg
                                                                        600
  cccaatgaag agtataagag gattagtttc ttggacgttt attggttcca ggagactatg
                                                                        660
  cgaaaaaagc ctaaatatcc ctacattcac tacaatggag aatgcagcaa tgagaataaa
                                                                        720
                                                                        780
  acttgtgaac ttgtctttga caccgatgaa ctaatgacct acgcccttgt taaagtcttt
                                                                        837
  actaatcctg agagtgatgg atctaggctc aaagaagagg atttgggaag aggataa
45
  <210>
        15
  <211>
        412
  <212> PRT
  <213> Lutzomyia longipalpis
50 <400> 15
  Met Arg Phe Phe Phe Val Phe Leu Ala Ile Val Leu Phe Gln Gly Ile
                                       10
  His Gly Ala Tyr Val Glu Ile Gly Tyr Ser Leu Arg Asn Ile Thr Phe
              20
                                   25
55 Asp Gly Leu Asp Thr Asp Asp Tyr Asn Pro Lys Phe Asn Ile Pro Thr
                               40
  Gly Leu Ala Val Asp Pro Glu Gly Tyr Arg Leu Phe Ile Ala Ile Pro
                           55
  Arg Arg Lys Pro Lys Val Pro Tyr Thr Val Ala Glu Leu Asn Met Val
                       70
                                           75
```

```
Met Asn Pro Gly Phe Pro Val Glu Arg Ala Pro Ser Phe Glu Lys Phe
                                       90
  Lys Lys Phe Asn Gly Glu Gly Lys Lys Asp Leu Val Asn Val Tyr Gln
               100
                                   105
5 Pro Val Ile Asp Asp Cys Arg Arg Leu Trp Val Leu Asp Ile Gly Lys
                               120
  Val Glu Tyr Thr Gly Gly Asp Ala Asp Gln Tyr Pro Lys Gly Lys Pro
                           135
                                               140
  Thr Leu Ile Ala Tyr Asp Leu Lys Lys Asp His Thr Pro Glu Ile His
                       150
                                           155
  Arg Phe Glu Ile Pro Asp Asp Leu Tyr Ser Ser Gln Val Glu Phe Gly
                                       170
  Gly Phe Ala Val Asp Val Val Asn Thr Lys Gly Asp Cys Thr Glu Ser
                                   185
                                                        190
               180
15 Phe Val Tyr Leu Thr Asn Phe Lys Asp Asn Ser Leu Ile Val Tyr Asp
           195
                               200
  Glu Thr Gln Lys Lys Ala Trp Lys Phe Thr Asp Lys Thr Phe Glu Ala
                           215
  Asp Lys Glu Ser Thr Phe Ser Tyr Ser Gly Glu Glu Gln Met Lys Tyr
20 225
                       230
                                           235
  Lys Val Gly Leu Phe Gly Ile Ala Leu Gly Asp Arg Asp Glu Met Gly
                   245
                                       250
  His Arg Pro Ala Tyr Tyr Ile Ala Gly Ser Ser Thr Lys Val Tyr Ser
                                   265
                                                        270
               260
25 Val Asn Thr Lys Glu Leu Lys Thr Glu Asn Gly Gln Leu Asn Pro Gln
          275
                               280
                                                   285
  Leu His Gly Asp Arg Gly Lys Tyr Thr Asp Ala Ile Ala Leu Ala His
                           295
                                               300
  Asp Pro Glu His Lys Val Leu Tyr Phe Ala Glu Ser Asp Ser Arg Gln
30 305
                       310
                                           315
  Val Ser Cys Trp Asn Val Asp Met Glu Leu Lys Pro Asp Asn Thr Asp
                   325
                                       330
  Val Ile Phe Ser Ser Ala Arg Phe Thr Phe Gly Thr Asp Ile Leu Val
               340
                                   345
35 Asp Ser Lys Gly Met Leu Trp Ile Met Ala Asn Gly His Pro Pro Val
          355
                               360
  Glu Asp Gln Glu Lys Ile Trp Lys Met Arg Phe Val Asn Arg Lys Ile
                           375
                                               380
  Ser Ile Met Lys Val Asp Thr Glu Arg Val Phe Lys Tyr Ser Arg Cys
40 385
                       390
                                           395
  Asn Pro Asn Tyr Lys Pro Pro Lys Glu Ile Glu Val
                   405
  <210>
         16
45 <211>
         1239
  <212> ADN
  <213> Lutzomyia longipalpis
  <400> 16
  atgaggttct tctttgtttt ccttgccatc gtcctttttc aagggatcca cggagcttat
50 gtggaaatag gatattetet gagaaatatt acattegatg gattggatac agatgaetae
  aatccaaagt tcaacattcc aacgggtttg gcagttgatc ccgaaggata taggctcttc
                                                                         180
  atagccatcc caaggagaaa gccaaaggtt ccctacactg tggctgaact gaatatggtc
                                                                         240
  atgaatcccg gatttcccgt cgagagagct ccgagctttg agaaattcaa aaaattcaat
                                                                         300
  ggcgagggca aaaaggatct tgttaatgtg tatcagccag tcattgatga ttgtcgtcgt
                                                                         360
55 ctttgggtgc ttgacattgg gaaggtggaa tacaccggtg gtgatgctga tcaatatccc
                                                                         420
  aaaggaaagc ctaccctaat tgcctacgac ctcaagaagg atcatactcc ggaaattcat
                                                                         480
  cgatttgaaa ttccagacga tctctatagc tcacaagttg aatttggtgg atttgccgtt
                                                                         540
  gatgttgtta acacgaaagg agactgtacg gagtcatttg tctacctgac caatttcaag
                                                                         600
  gataactctc taattgtcta cgatgagaca caaaagaaag cttggaaatt tacagataaa
                                                                         660
60 acatttgaag ctgataagga atccacgttc tcctactcgg gagaggaaca aatgaagtac
                                                                         720
```

840

900

960

1020

1080

1140

1200

1239

```
aaagttggtc tttttgggat agctctgggt gatagggatg aaatggggca tcgtcctgcc
  tactatatcg ctgggagtag caccaaagtc tacagtgtta acactaaaga actcaaaaca
  gagaatggtc agttaaatcc tcagcttcac ggtgatcgtg gaaagtacac ggatgcaatt
  gccctagccc acgatcctga gcataaagtc ctctactttg ctgaatccga cagcaggcag
5 gtgtcctgtt ggaatgtaga tatggagcta aaaccagaca atacggatgt gatcttctct
  agtgcccgtt ttacttttgg aacggatatt ttggttgata gcaagggaat gctgtggata
  atggctaatg gacatccacc agtagaggat caagagaaga tttggaagat gagattcgta
  aaccggaaga tcagtattat gaaagtggat acggaacgtg tattcaaata ttcacgctgc
  aatccaaatt ataagccccc gaaagaaatt gaagtttga
10
  <210> 17
  <211> 394
  <212> PRT
  <213> Lutzomyia longipalpis
15 <400> 17
  Ala Tyr Val Glu Ile Gly Tyr Ser Leu Arg Asn Ile Thr Phe Asp Gly
                                       10
  Leu Asp Thr Asp Asp Tyr Asn Pro Lys Phe Asn Ile Pro Thr Gly Leu
                                  25
20 Ala Val Asp Pro Glu Gly Tyr Arg Leu Phe Ile Ala Ile Pro Arg Arg
                              40
  Lys Pro Lys Val Pro Tyr Thr Val Ala Glu Leu Asn Met Val Met Asn
                           55
  Pro Gly Phe Pro Val Glu Arg Ala Pro Ser Phe Glu Lys Phe Lys Lys
                      70
                                           75
  Phe Asn Gly Glu Gly Lys Lys Asp Leu Val Asn Val Tyr Gln Pro Val
                                      90
                  85
  Ile Asp Asp Cys Arg Arg Leu Trp Val Leu Asp Ile Gly Lys Val Glu
              100
                                  105
                                                       110
30 Tyr Thr Gly Gly Asp Ala Asp Gln Tyr Pro Lys Gly Lys Pro Thr Leu
                              120
          115
                                                   125
  Ile Ala Tyr Asp Leu Lys Lys Asp His Thr Pro Glu Ile His Arg Phe
                          135
                                              140
  Glu Ile Pro Asp Asp Leu Tyr Ser Ser Gln Val Glu Phe Gly Gly Phe
                      150
                                          155
  Ala Val Asp Val Val Asn Thr Lys Gly Asp Cys Thr Glu Ser Phe Val
                  165
                                      170
                                                          175
  Tyr Leu Thr Asn Phe Lys Asp Asn Ser Leu Ile Val Tyr Asp Glu Thr
              180
                                  185
                                                      190
40 Gln Lys Lys Ala Trp Lys Phe Thr Asp Lys Thr Phe Glu Ala Asp Lys
                              200
                                                   205
          195
  Glu Ser Thr Phe Ser Tyr Ser Gly Glu Glu Gln Met Lys Tyr Lys Val
                          215
  Gly Leu Phe Gly Ile Ala Leu Gly Asp Arg Asp Glu Met Gly His Arg
                                          235
                      230
  Pro Ala Tyr Tyr Ile Ala Gly Ser Ser Thr Lys Val Tyr Ser Val Asn
                  245
                                       250
  Thr Lys Glu Leu Lys Thr Glu Asn Gly Gln Leu Asn Pro Gln Leu His
                                  265
50 Gly Asp Arg Gly Lys Tyr Thr Asp Ala Ile Ala Leu Ala His Asp Pro
                              280
  Glu His Lys Val Leu Tyr Phe Ala Glu Ser Asp Ser Arg Gln Val Ser
                          295
                                              300
  Cys Trp Asn Val Asp Met Glu Leu Lys Pro Asp Asn Thr Asp Val Ile
                      310
                                           315
  Phe Ser Ser Ala Arg Phe Thr Phe Gly Thr Asp Ile Leu Val Asp Ser
                                       330
                                                           335
                  325
  Lys Gly Met Leu Trp Ile Met Ala Asn Gly His Pro Pro Val Glu Asp
              340
                                  345
                                                      350
60 Gln Glu Lys Ile Trp Lys Met Arg Phe Val Asn Arg Lys Ile Ser Ile
```

```
360
  Met Lys Val Asp Thr Glu Arg Val Phe Lys Tyr Ser Arg Cys Asn Pro
                          375
                                               380
  Asn Tyr Lys Pro Pro Lys Glu Ile Glu Val
5 385
                       390
  <210> 18
  <211> 1185
  <212> ADN
10 <213> Lutzomyia longipalpis
  <400> 18
  gcttatgtgg aaataggata ttctctgaga aatattacat tcgatggatt ggatacagat
                                                                         60
  gactacaatc caaagttcaa cattccaacg ggtttggcag ttgatcccga aggatatagg
                                                                        120
  ctcttcatag ccatcccaag gagaaagcca aaggttccct acactgtggc tgaactgaat
                                                                        180
15 atggtcatga atcccggatt tcccgtcgag agagctccga gctttgagaa attcaaaaaa
                                                                        240
                                                                        300
  ttcaatggcg agggcaaaaa ggatcttgtt aatgtgtatc agccagtcat tgatgattgt
                                                                        360
  cgtcgtcttt gggtgcttga cattgggaag gtggaataca ccggtggtga tgctgatcaa
                                                                        420
  tatcccaaag gaaagcctac cctaattgcc tacgacctca agaaggatca tactccggaa
                                                                        480
  attcatcgat ttgaaattcc agacgatctc tatagctcac aagttgaatt tggtggattt
20 gccgttgatg ttgttaacac gaaaggagac tgtacggagt catttgtcta cctgaccaat
                                                                        540
  ttcaaggata actctctaat tgtctacgat gagacacaaa agaaagcttg gaaatttaca
                                                                        600
  gataaaacat ttgaagctga taaggaatcc acgttctcct actcgggaga ggaacaaatg
                                                                        660
  aagtacaaag ttggtctttt tgggatagct ctgggtgata gggatgaaat ggggcatcgt
                                                                        720
  cctgcctact atatcgctgg gagtagcacc aaagtctaca gtgttaacac taaagaactc
                                                                        780
25 aaaacagaga atggtcagtt aaatcctcag cttcacggtg atcgtggaaa gtacacggat
                                                                        840
  gcaattgccc tagcccacga tcctgagcat aaagtcctct actttgctga atccgacagc
                                                                        900
  aggcaggtgt cctgttggaa tgtagatatg gagctaaaac cagacaatac ggatgtgatc
                                                                        960
                                                                       1020
  ttctctagtg cccgttttac ttttggaacg gatattttgg ttgatagcaa gggaatgctg
  tggataatgg ctaatggaca tccaccagta gaggatcaag agaagatttg gaagatgaga
                                                                       1080
30 ttcgtaaacc ggaagatcag tattatgaaa gtggatacgg aacgtgtatt caaatattca
                                                                       1140
  cgctgcaatc caaattataa gcccccgaaa gaaattgaag tttga
                                                                       1185
  <210> 19
  <211> 6247
35 <212> ADN
  <213> Artificial
  <220>
  <223> secuencia de ácido nucleico de una cadena del plásmido pNBO002
  <400> 19
40 ttggctattg gccattgcat acgttgtatc catatcataa tatgtacatt tatattggct
                                                                         60
  catgtccaac attaccgcca tgttgacatt gattattgac tagttattaa tagtaatcaa
                                                                        120
  ttacggggtc attagttcat agcccatata tggagttccg cgttacataa cttacggtaa
                                                                        180
  atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata atgacgtatg
                                                                        240
  ttcccatagt aacgccaata gggactttcc attgacgtca atgggtggag tatttacggt
                                                                        300
45 aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc cctattgacg
                                                                        360
  tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta tgggactttc
                                                                        420
  ctacttggca gtacatctac gtattagtca tcgctattac catggtgatg cggttttggc
                                                                        480
  agtacatcaa tgggcgtgga tagcggtttg actcacgggg atttccaagt ctccacccca
                                                                        540
  ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg ggactttcca aaatgtcgta
                                                                        600
50 acaactccgc cccattgacg caaatgggcg gtaggcgtgt acggtgggag gtctatataa
                                                                        660
  gcagagctcg tttagtgaac cgtcagatcg cctggagacg ccatccacgc tgttttgacc
                                                                        720
  tccatagaag acaccgggac cgatccagcc tccgcggccg ggaacggtgc attggaacgc
                                                                        780
  ggattccccg tgccaagagt gacgtaagta ccgcctatag agtctatagg cccacccct
                                                                        840
  tggcttctta tgcatgctat actgtttttg gcttggggtc tatacacccc cgcttcctca
                                                                        900
55 tgttataggt gatggtatag cttagcctat aggtgtgggt tattgaccat tattgaccac
                                                                        960
  tcccctattg gtgacgatac tttccattac taatccataa catggctctt tgccacaact
                                                                       1020
  ctctttattg gctatatgcc aatacactgt ccttcagaga ctgacacgga ctctgtattt
                                                                       1080
  ttacaggatg gggtctcatt tattatttac aaattcacat atacaacacc accgtcccca
                                                                       1140
                                                                       1200
  gtgcccgcag tttttattaa acataacgtg ggatctccac gcgaatctcg ggtacgtgtt
60 coggacatgg getettetee ggtageggeg gagettetae atcegagece tgeteceatg
                                                                       1260
```

```
cctccagcga ctcatggtcg ctcggcagct ccttgctcct aacagtggag gccagactta
  ggcacagcac gatgcccacc accaccagtg tgccgcacaa ggccgtggcg gtagggtatg
                                                                      1380
  tgtctgaaaa tgagctcggg gagcgggctt gcaccgctga cgcatttgga agacttaagg
                                                                      1440
  cagcggcaga agaagatgca ggcagctgag ttgttgtgtt ctgataagag tcagaggtaa
                                                                      1500
5 ctcccgttgc ggtgctgtta acggtggagg gcagtgtagt ctgagcagta ctcgttgctg
                                                                      1560
                                                                      1620
  ccgcgcgcgc caccagacat aatagctgac agactaacag actgttcctt tccatgggtc
  ttttctcacg tcaccgtcgt cgaccagagc tgagatccta caggagtcca gggctggaga
                                                                      1680
  gaaaacctct gcgaggaaag ggaaggagca agccgtgaat ttaagggacg ctgtgaagca
                                                                      1740
  atcatggatg caatgaagag agggctctgc tgtgtgctgc tgctgtgtgg agcagtcttc
                                                                      1800
10 gtttcgccca gcggtaccgg atccaccctt gcttatgtgg aaataggata ttctctgaga
                                                                      1860
  aatattacat tcgatggatt ggatacagat gactacaatc caaagttcaa cattccaacg
                                                                      1920
  ggtttggcag ttgatcccga aggatatagg ctcttcatag ccatcccaag gagaaagcca
                                                                      1980
  aaggttccct acactgtggc tgaactgaat atggtcatga atcccggatt tcccgtcgag
                                                                      2040
  agagctccga gctttgagaa attcaaaaaa ttcaatggcg agggcaaaaa ggatcttgtt
                                                                      2100
15 aatgtgtatc agccagtcat tgatgattgt cgtcgtcttt gggtgcttga cattgggaag
                                                                      2160
                                                                      2220
  gtggaataca ccggtggtga tgctgatcaa tatcccaaag gaaagcctac cctaattgcc
  tacgacctca agaaggatca tactccggaa attcatcgat ttgaaattcc agacgatctc
  tatagctcac aagttgaatt tggtggattt gccgttgatg ttgttaacac gaaaggagac
  tgtacggagt catttgtcta cctgaccaat ttcaaggata actctctaat tgtctacgat
                                                                      2400
20 gagacacaaa agaaagcttg gaaatttaca gataaaacat ttgaagctga taaggaatcc
                                                                      2460
  acgttctcct actcgggaga ggaacaaatg aagtacaaag ttggtctttt tgggatagct
                                                                      2520
  ctgggtgata gggatgaaat ggggcatcgt cctgcctact atatcgctgg gagtagcacc
                                                                      2580
  aaagtctaca gtgttaacac taaagaactc aaaacagaga atggtcagtt aaatcctcag
                                                                      2640
  cttcacggtg atcgtggaaa gtacacggat gcaattgccc tagcccacga tcctgagcat
                                                                      2700
                                                                      2760
25 aaagteetet aetttgetga ateegacage aggeaggtgt eetgttggaa tgtagatatg
  gagctaaaac cagacaatac ggatgtgatc ttctctagtg cccgttttac ttttggaacg
                                                                      2820
                                                                      2880
  gatattttgg ttgatagcaa gggaatgctg tggataatgg ctaatggaca tccaccagta
                                                                      2940
  gaggatcaag agaagatttg gaagatgaga ttcgtaaacc ggaagatcag tattatgaaa
                                                                      3000
  gtggatacgg aacgtgtatt caaatattca cgctgcaatc caaattataa gcccccgaaa
30 gaaattgaag tttgaaaggg atccagatct gctgtgcctt ctagttgcca gccatctgtt
                                                                      3060
  gtttgcccct ccccgtgcc ttccttgacc ctggaaggtg ccactcccac tgtcctttcc
                                                                      3120
                                                                      3180
  taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat tctggggggt
                                                                      3240
  ggggtgggc agcacagcaa gggggaggat tgggaagaca atagcaggca tgctggggat
  gcggtgggct ctatgggtac ccaggtgctg aagaattgac ccggttcctc ctgggccaga
                                                                      3300
35 aagaagcagg cacatcccct tctctgtgac acaccctgtc cacgcccctg gttcttagtt
                                                                      3360
  ccagccccac tcataggaca ctcatagctc aggagggctc cgccttcaat cccacccgct
                                                                      3420
  3480
  agagtgggaa gaaattaaag caagataggc tattaagtgc agagggagag aaaatgcctc
                                                                      3540
  caacatgtga ggaagtaatg agagaaatca tagaatttct tccgcttcct cgctcactga
                                                                      3600
40 ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca gctcactcaa aggcggtaat
                                                                      3660
  acggttatcc acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca
                                                                      3720
  aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgccccc
                                                                      3780
                                                                      3840
  tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata
                                                                      3900
  aagataccag gegttteece etggaagete eetegtgege teteetgtte egaeeetgee
45 gcttaccgga tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcaatgctc
                                                                      3960
  acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga
                                                                      4020
  acceccegtt cagecegace getgegeett ateeggtaac tategtettg agtecaacce
                                                                      4080
  ggtaagacac gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag
                                                                      4140
  gtatgtaggc ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag
                                                                      4200
50 gacagtattt ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag
                                                                      4260
  ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca
                                                                      4320
                                                                      4380
  gattacgcgc agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga
                                                                      4440
  cgctcagtgg aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat
  cttcacctag atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga
                                                                      4500
                                                                      4560
55 gtaaacttgg tetgacagtt accaatgett aatcagtgag geacetatet cagegatetg
  tctatttcgt tcatccatag ttgcctgact ccgggggggg ggggcgctga ggtctgcctc
                                                                      4620
  gtgaagaagg tgttgctgac tcataccagg cctgaatcgc cccatcatcc agccagaaag
                                                                      4680
                                                                      4740
  tgagggagcc acggttgatg agagctttgt tgtaggtgga ccagttggtg attttgaact
                                                                      4800
  tttgctttgc cacggaacgg tctgcgttgt cgggaagatg cgtgatctga tccttcaact
60 cagcaaaagt tegatttatt caacaaagee geegteeegt caagteageg taatgetetg
                                                                      4860
```

```
ccagtgttac aaccaattaa ccaattctga ttagaaaaac tcatcgagca tcaaatgaaa
                                                                       4920
  ctgcaattta ttcatatcag gattatcaat accatatttt tgaaaaaagcc gtttctgtaa
                                                                       4980
  tgaaggagaa aactcaccga ggcagttcca taggatggca agatcctggt atcggtctgc
                                                                       5040
  gattccgact cgtccaacat caatacaacc tattaatttc ccctcgtcaa aaataaggtt
                                                                       5100
\mathbf{5} atcaagtgag aaatcaccat gagtgacgac tgaatccggt gagaatggca aaagcttatg
                                                                       5160
                                                                       5220
  cattlettle cagactigtt caacaggeca gecattaege tegteateaa aateactege
                                                                       5280
  atcaaccaaa ccgttattca ttcgtgattg cgcctgagcg agacgaaata cgcgatcgct
                                                                       5340
  gttaaaagga caattacaaa caggaatcga atgcaaccgg cgcaggaaca ctgccagcgc
                                                                       5400
  atcaacaata ttttcacctg aatcaggata ttcttctaat acctggaatg ctgttttccc
10 ggggatcgca gtggtgagta accatgcatc atcaggagta cggataaaat gcttgatggt
                                                                       5460
  cggaagaggc ataaattccg tcagccagtt tagtctgacc atctcatctg taacatcatt
                                                                       5520
  ggcaacgcta cctttgccat gtttcagaaa caactctggc gcatcgggct tcccatacaa
                                                                       5580
  togatagatt gtogcacotg attgcccgac attatogcga gcccatttat acccatataa
                                                                       5640
  atcagcatcc atgttggaat ttaatcgcgg cctcgagcaa gacgtttccc gttgaatatg
                                                                       5700
15 gctcataaca ccccttgtat tactgtttat gtaagcagac agttttattg ttcatgatga
                                                                       5760
                                                                       5820
  tatattttta tcttgtgcaa tgtaacatca gagattttga gacacaacgt ggctttcccc
                                                                       5880
  cccccccat tattgaagca tttatcaggg ttattgtctc atgagcggat acatatttga
                                                                       5940
  atgtatttag aaaaataaac aaataggggt tccgcgcaca tttccccgaa aagtgccacc
                                                                       6000
  tgacgtctaa gaaaccatta ttatcatgac attaacctat aaaaataggc gtatcacgag
20 gccctttcgt ctcgcgcgtt tcggtgatga cggtgaaaac ctctgacaca tgcagctccc
                                                                       6060
  ggagacggtc acagcttgtc tgtaagcgga tgccgggagc agacaagccc gtcagggcgc
                                                                       6120
  gtcagcgggt gttggcgggt gtcggggctg gcttaactat gcggcatcag agcagattgt
                                                                       6180
  actgagagtg caccatatgc ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg
                                                                       6240
  catcaga
                                                                       6247
25
  <210> 20
  <211> 5899
  <212> ADN
  <213> Artificial
30 <220>
  <223> secuencia de ácido nucleico de una cadena del plásmido pNBO003
  <400> 20
  ttggctattg gccattgcat acgttgtatc catatcataa tatgtacatt tatattggct
                                                                         60
                                                                        120
  catgtccaac attaccgcca tgttgacatt gattattgac tagttattaa tagtaatcaa
35 ttacggggtc attagttcat agcccatata tggagttccg cgttacataa cttacggtaa
                                                                        180
  atggcccgcc tggctgaccg cccaacgacc cccgcccatt gacgtcaata atgacgtatg
                                                                        240
  ttcccatagt aacgccaata gggactttcc attgacgtca atgggtggag tatttacggt
                                                                        300
  aaactgccca cttggcagta catcaagtgt atcatatgcc aagtacgccc cctattgacg
                                                                        360
  tcaatgacgg taaatggccc gcctggcatt atgcccagta catgacctta tgggactttc
                                                                        420
40 ctacttggca gtacatctac gtattagtca tcgctattac catggtgatg cggttttggc
                                                                        480
  agtacatcaa tgggcgtgga tagcggtttg actcacgggg atttccaagt ctccacccca
                                                                        540
  ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg ggactttcca aaatgtcgta
                                                                        600
  acaactccgc cccattgacg caaatgggcg gtaggcgtgt acggtgggag gtctatataa
                                                                        660
                                                                        720
  gcagagctcg tttagtgaac cgtcagatcg cctggagacg ccatccacgc tgttttgacc
45 tocatagaag acaccgggac cgatccagcc tccgcggccg ggaacggtgc attggaacgc
                                                                        780
                                                                        840
  ggattccccg tgccaagagt gacgtaagta ccgcctatag agtctatagg cccacccct
  tggcttctta tgcatgctat actgtttttg gcttggggtc tatacacccc cgcttcctca
                                                                        900
  tgttataggt gatggtatag cttagcctat aggtgtgggt tattgaccat tattgaccac
                                                                        960
  tcccctattg gtgacgatac tttccattac taatccataa catggctctt tgccacaact
                                                                       1020
50 ctctttattg gctatatgcc aatacactgt ccttcagaga ctgacacgga ctctgtattt
                                                                       1080
  ttacaggatg gggtctcatt tattatttac aaattcacat atacaacacc accgtcccca
                                                                       1140
                                                                       1200
  gtgcccgcag tttttattaa acataacgtg ggatctccac gcgaatctcg ggtacgtgtt
  ccggacatgg gctcttctcc ggtagcggcg gagcttctac atccgagccc tgctcccatg
                                                                       1260
  cctccagcga ctcatggtcg ctcggcagct ccttgctcct aacagtggag gccagactta
                                                                       1320
55 ggcacagcac gatgcccacc accaccagtg tgccgcacaa ggccgtggcg gtagggtatg
                                                                       1380
  tgtctgaaaa tgagctcggg gagcgggctt gcaccgctga cgcatttgga agacttaagg
                                                                       1440
  cagcggcaga agaagatgca ggcagctgag ttgttgtgtt ctgataagag tcagaggtaa
                                                                       1500
                                                                       1560
  ctcccgttgc ggtgctgtta acggtggagg gcagtgtagt ctgagcagta ctcgttgctg
                                                                       1620
  ccgcgcgcgc caccagacat aatagctgac agactaacag actgttcctt tccatgggtc
60 ttttctcacg tcaccgtcgt cgaccagagc tgagatccta caggagtcca gggctggaga
                                                                       1680
```

```
gaaaacctct gcgaggaaag ggaaggagca agccgtgaat ttaagggacg ctgtgaagca
                                                                      1740
  atcatggatg caatgaagag agggctctgc tgtgtgctgc tgctgtgtgg agcagtcttc
                                                                      1800
  gtttcgccca gcggtaccgg atccaccctt gatggtgatg aatatttcat tggaaaatac
                                                                      1860
  aaagaaaaag atgagacact gttttttgca agctacggcc taaagaggga tccttgccag
                                                                      1920
5 attgtcttag gctacaaatg ctcaaacaat caaacccact ttgtgcttaa ttttaaaacc
                                                                      1980
                                                                      2040
  aataagaaat cctgcatatc agcaattaag ctgacttctt acccaaaaat caatcaaaac
  tcggatttaa ctagaaatct ctactgccaa actggaggaa taggaacaga taactgcaaa
                                                                      2100
  cttgtcttca agaaacgtaa aagacaaata gcagctaata ttgaaatcta cggcattcca
                                                                      2160
  gcgaagaaat gttccttcaa ggatcgttac attggagctg atccactcca cgtcgattcc
                                                                      2220
10 tatgggcttt cgtatcagtt tgatcaggaa catggatgga atttggaacg aaataacatt
                                                                      2280
  ttcaaagaca caagattttc cacagaagtt ttctaccaca aaaatggttt atttaacacc
                                                                      2340
  caaataactt atttggctga agaagattcc ttctctgaag ctcgagagat tactgcgaag
                                                                      2400
  gatattaaga agaagttttc aattattttg cccaatgaag agtataagag gattagtttc
                                                                      2460
  ttggacgttt attggttcca ggagactatg cgaaaaaagc ctaaatatcc ctacattcac
                                                                      2520
15 tacaatggag aatgcagcaa tgagaataaa acttgtgaac ttgtctttga caccgatgaa
                                                                      2580
  ctaatgacct acgcccttgt taaagtcttt actaatcctg agagtgatgg atctaggctc
                                                                      2700
  aaagaagagg atttgggaag aggataaaag ggatccagat ctgctgtgcc ttctagttgc
                                                                      2760
  cagccatctg ttgtttgccc ctcccccgtg ccttccttga ccctggaagg tgccactccc
  actgtccttt cctaataaaa tgaggaaatt gcatcgcatt gtctgagtag gtgtcattct
                                                                      2820
20 attctggggg gtggggtggg gcagcacagc aagggggagg attgggaaga caatagcagg
                                                                      2880
  catgctgggg atgcggtggg ctctatgggt acccaggtgc tgaagaattg acccggttcc
                                                                      2940
  tcctgggcca gaaagaagca ggcacatccc cttctctgtg acacaccctg tccacgcccc
                                                                      3000
  tggttcttag ttccagcccc actcatagga cactcatagc tcaggagggc tccgccttca
                                                                      3060
  3120
                                                                      3180
25 acctagcctc caagagtggg aagaaattaa agcaagatag gctattaagt gcagagggag
                                                                      3240
  agaaaatgcc tccaacatgt gaggaagtaa tgagagaaat catagaattt cttccgcttc
                                                                      3300
  ctcgctcact gactcgctgc gctcggtcgt tcggctgcgg cgagcggtat cagctcactc
                                                                      3360
  aaaggcggta atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc
                                                                      3420
  aaaaggccag caaaaggcca ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag
30 gctccgcccc cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc
                                                                      3480
  gacaggacta taaagatacc aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt
                                                                      3540
                                                                      3600
  tecgaceetg eegettaceg gatacetgte egeetttete eettegggaa gegtggeget
                                                                      3660
  ttctcaatgc tcacgctgta ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg
  ctgtgtgcac gaaccccccg ttcagcccga ccgctgcgcc ttatccggta actatcgtct
                                                                      3720
35 tgagtccaac ccggtaagac acgacttatc gccactggca gcagccactg gtaacaggat
                                                                      3780
  tagcagagcg aggtatgtag gcggtgctac agagttcttg aagtggtggc ctaactacgg
                                                                      3840
  ctacactaga aggacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa
                                                                      3900
  aagagttggt agctcttgat ccggcaaaca aaccaccgct ggtagcggtg gtttttttgt
                                                                      3960
  ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc
                                                                      4020
40 tacggggtct gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt
                                                                      4080
  atcaaaaagg atcttcacct agatcctttt aaattaaaaa tgaagtttta aatcaatcta
                                                                      4140
  aagtatatat gagtaaactt ggtctgacag ttaccaatgc ttaatcagtg aggcacctat
                                                                      4200
  ctcagcgatc tgtctatttc gttcatccat agttgcctga ctccgggggg ggggggcct
                                                                      4260
  gaggtctgcc tcgtgaagaa ggtgttgctg actcatacca ggcctgaatc gccccatcat
                                                                      4320
45 ccagccagaa agtgagggag ccacggttga tgagagcttt gttgtaggtg gaccagttgg
                                                                      4380
  tgattttgaa cttttgcttt gccacggaac ggtctgcgtt gtcgggaaga tgcgtgatct
                                                                      4440
  gatectteaa eteageaaaa gttegattta tteaacaaag eegeegteee gteaagteag
                                                                      4500
  cgtaatgete tgccagtgtt acaaccaatt aaccaattet gattagaaaa acteategag
                                                                      4560
  catcaaatga aactgcaatt tattcatatc aggattatca ataccatatt tttgaaaaag
                                                                      4620
50 ccgtttctgt aatgaaggag aaaactcacc gaggcagttc cataggatgg caagatcctg
                                                                      4680
  gtatcggtct gcgattccga ctcgtccaac atcaatacaa cctattaatt tcccctcgtc
                                                                      4740
  aaaaataagg ttatcaagtg agaaatcacc atgagtgacg actgaatccg gtgagaatgg
                                                                      4800
  caaaagctta tgcatttctt tccagacttg ttcaacaggc cagccattac gctcgtcatc
                                                                      4860
  aaaatcactc gcatcaacca aaccgttatt cattcgtgat tgcgcctgag cgagacgaaa
                                                                      4920
55 tacgcgatcg ctgttaaaag gacaattaca aacaggaatc gaatgcaacc ggcgcaggaa
                                                                      4980
  cactgccagc gcatcaacaa tattttcacc tgaatcagga tattcttcta atacctggaa
                                                                      5040
  tgctgttttc ccggggatcg cagtggtgag taaccatgca tcatcaggag tacggataaa
                                                                      5100
                                                                      5160
  atgettgatg gteggaagag geataaatte egteageeag tttagtetga ceateteate
                                                                      5220
  tgtaacatca ttggcaacgc tacctttgcc atgtttcaga aacaactctg gcgcatcggg
60 cttcccatac aatcgataga ttgtcgcacc tgattgcccg acattatcgc gagcccattt
                                                                      5280
```

```
atacccatat aaatcagcat ccatgttgga atttaatcgc ggcctcgagc aagacgtttc
                                                                       5340
  ccqttqaata tqqctcataa caccccttqt attactqttt atqtaaqcaq acaqttttat
                                                                       5400
  tgttcatgat gatatatttt tatcttgtgc aatgtaacat cagagatttt gagacacaac
                                                                       5460
  gtggctttcc cccccccc attattgaag catttatcag ggttattgtc tcatgagcgg
                                                                       5520
5 atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca catttccccg
                                                                       5580
  aaaagtgcca cctgacgtct aagaaaccat tattatcatg acattaacct ataaaaatag
                                                                       5640
  gcgtatcacg aggccctttc gtctcgcgcg tttcggtgat gacggtgaaa acctctgaca
                                                                       5700
  catgcagctc ccggagacgg tcacagcttg tctgtaagcg gatgccggga gcagacaagc
                                                                       5760
                                                                       5820
  ccgtcagggc gcgtcagcgg gtgttggcgg gtgtcggggc tggcttaact atgcggcatc
10 agagcagatt gtactgagag tgcaccatat gcggtgtgaa ataccgcaca gatgcgtaag
                                                                       5880
  gagaaaatac cgcatcaga
                                                                       5899
  <210> 21
  <211> 1239
15 <212> ADN
  <213> Artificial
  <220>
  <223> secuencia de ácidos nucleicos optimizada en codones para la expresión
  en mamífero (proteína LJM17 no procesada de Lutzomyia longipalpis)
20 <400> 21
  tcacacttcg attictttgg ggggcttgta gttggggttg caccggctgt acttgaacac
                                                                         60
  ccgctcggtg tccaccttca tgatccggat cttccggttc acgaaccgca tcttccagat
                                                                        120
  cttttcctgg tcctccacgg gggggtggcc gttggccatg atccacagca tgcccttgct
                                                                        180
  gtccaccagg atgtcggtgc cgaaggtgaa ccgggcgctg ctgaagatca cgtcggtgtt
                                                                        240
                                                                        300
25 gtcgggette agttecatgt teaegtteca geaggacaee tgeeggetgt egetetegge
                                                                        360
  gaagtacagc accttgtgct cggggtcgta ggccagggca atggcgtcgg tgtacttgcc
                                                                        420
  ccggtcgccg tgcagctggg ggttcagctg gccgttctcg gttttcagct ctttggtatt
                                                                        480
  cacgetgtac accttggtgc tgctgccggc gatgtagcag gcgggcctgt ggcccatctc
                                                                        540
  gtcccggtcg cccagggcga tgccgaacag gcccactttg tacttcatct gttcctcgcc
30 gctgtagctg aaggtgctct ctttgtcggc ctcgaaggtc ttgtcggtga acttccaggc
                                                                        600
  cttcttctgg gtctcgtcgt acacgatcag gctgttgtcc ttgaagttgg tcaggtacac
                                                                        660
                                                                        720
  gaagctctcg gtgcagtcgc ccttggtgtt caccacgtcc acggcaaagc cgccgaactc
                                                                        780
  cacctggctg ctgtacaggt cgtcggggat ctcgaaccgg tggatctcgg gggtgtggtc
                                                                        840
  cttcttcagg tcgtaggcga tcagggtggg cttgcccttg gggtactggt cggcgtcgcc
35 gcctgtgtac tccaccttgc cgatgtccag cacccacagc cgcctgcagt cgtcgatcac
                                                                        900
  gggctggtac acgttcacca ggtctttctt gccctcgccg ttaaacttct tgaacttctc
                                                                        960
  gaagctgggg gccctctcca cggggaagcc ggggttcatc accatgttca gctcggccac
                                                                       1020
  ggtgtagggc accttgggct tccgcctggg gatggcgatg aacagccggt agccctcggg
                                                                       1080
  gtccacggcc aggccggtgg ggatgttgaa cttggggttg tagtcgtcgg tgtccaggcc
                                                                       1140
40 gtcgaaggtg atgttccgca ggctgtagcc gatctccacg taggcgccgt ggatgccctg
                                                                       1200
  gaacagcacg atggccagga acacgaagaa gaaccgcat
                                                                       1239
  <210> 22
  <211> 906
45 <212> ADN
  <213> Artificial
  <223> secuencia de ácidos nucleicos optimizada en codones para la expresión
  en mamífero (proteína LJL143 no procesada de Lutzomyia longipalpis)
  atgaacagca tcaactttct gagcatcgtg ggcctgatca gcttcggctt catcgtggcc
                                                                         60
  gtgaagtgcg acggcgacga gtacttcatc ggcaagtaca aagagaagga cgagaccctg
                                                                        120
  ttcttcgcca gctacggcct gaagcgggac ccctgccaga tcgtgctggg ctacaagtgc
                                                                        180
  agcaacaacc agacccactt cgtgctgaac ttcaagacca acaagaagag ctgcatcagc
                                                                        240
55 gccatcaagc tgaccagcta ccccaagatc aaccagaaca gcgacctgac caagaacctg
                                                                        300
  tactgccaga ccggcggcat cggcaccgac aactgcaagc tggtgttcaa gaagcggaag
                                                                        360
  cggcagatcg ccgccaacat cgagatctac ggcatccccg ccaagaagtg cagcttcaag
                                                                        420
                                                                        480
  gaccggtaca tcggcgccga ccccctgcac gtggactcct acggcctgcc ctaccagttc
  gaccaggaac acggctggaa cgtcgagcgg tacaacatct tcaaggacac ccggttcagc
                                                                        540
60 accgaggtgt tctaccacaa gaacggcctg ttcaacaccc agatcaccta cctggccgaa
                                                                        600
```

5	atca gaaa gaga	atcct accat accae gtgtt	igc (igc (aga (ccaad ggaag cctgd	cgago gaago cgaao	ga at cc ca ct gg	acaa aagta gtgtt	agcgg acccd cgad	g ato c tao c aco	cagct catco cgaco	tcc cact gagc	tgga acaa tgat	acgto acggo tgaco	gta (cga (cta (ctggt gtgct cgcc	tcagc tccag ccaac ctggtg ggcagg
10	<210 <211 <212 <213	L> 2 2> I	23 271 PRT Lutzo	omyia	a lor	ngipa	alpis	5								
	<400)> 2	23													
15	Met 1	Leu	Gln	Ile	Lys 5	His	Leu	Leu	Ile	Phe 10	Val	Gly	Leu	Leu	Val 15	Val
20	Val	Asn	Ala	Gln 20	Ser	Asn	Tyr	Cys	Lys 25	Gln	Glu	Ser	Cys	Ser 30	Ser	Gly
25	Gly	Val	Glu 35	Arg	Pro	His	Ile	Gly 40	Cys	Lys	Asn	Ser	Gly 45	Asp	Phe	Ser
	Glu	Thr 50	Cys	Ser	Gly	Asp	Ala 55	Glu	Ile	Val	Lys	Met 60	Asp	Lys	Lys	Lys
30	Gln 65	Asn	Leu	Leu	Val	Lys 70	Met	His	Asn	Arg	Leu 75	Arg	Asp	Arg	Phe	Ala 80
35	Arg	Gly	Ala	Val	Pro 85	Gly	Phe	Ala	Pro	Ala 90	Ala	Lys	Met	Pro	Met 95	Leu
40	Lys	Trp	Asn	Asp 100	Glu	Leu	Ala	Lys	Leu 105	Ala	Glu	Tyr	Asn	Val 110	Arg	Thr
45	Cys	Lys	Phe 115	Ala	His	Asp	Lys	Cys 120	Arg	Ala	Ile	Asp	Val 125	Cys	Pro	Tyr
	Ala	Gly 130	Gln	Asn	Leu	Ala	Gln 135	Met	Met	Ser	Tyr	Pro 140	Thr	His	Arg	Asp
50	Leu 145	Asn	Tyr	Val	Leu	Lys 150	Asn	Leu	Thr	Arg	Glu 155	Trp	Phe	Trp	Glu	Tyr 160
55	Arg	Trp	Ala	Lys	Gln 165	Ser	Gln	Leu	Asp	Asn 170	Tyr	Val	Gly	Gly	Pro 175	Gly
60	Lys	Asp	Asn	Lys 180	Gln	Ile	Gly	His	Phe 185	Thr	Ala	Phe	Val	His 190	Glu	Lys

5	Thr	Asp	Lys 195	Val	Gly	Cys	Ala	Ile 200	Ala	Arg	Phe	Thr	Asn 205	Glu	His	Asn		
	Phe	Lys 210	Glu	Thr	Leu	Leu	Ala 215	Cys	Asn	Tyr	Cys	Tyr 220	Thr	Asn	Met	Met		
10	Lys 225	Glu	Arg	Ile	Tyr	Thr 230	Gln	Gly	Lys	Pro	Cys 235	Ser	Gln	Cys	Gln	Ser 240		
15	Lys	Lys	Cys	Gly	Pro 245	Val	Tyr	Lys	Asn	Leu 250	Cys	Asp	Pro	Ser	Glu 255	Lys		
20	Val	Asp	Pro	Thr 260	Pro	Asp	Val	Leu	Lys 265	Gln	Trp	Lys	His	Gly 270				
25	<210 <211 <212 <213	L> 9 2> A	24 905 ADN Lutz	omyia	a lor	ngipa	alpis	5										
00	<400 agtt		24 gag	cttti	tggto	ca t	tttad	cgtga	ı tgi	tgca	aaat	taaa	acato	ctt	ctgat	tttt	-g	60
30	tggg	gatt	gct	cgtgg	gttgt	ct aa	atgca	acaga	ı gca	aatta	actg	caaa	acagg	gaa	tcgt	gctca	at 1	L20
	cggg	gaggt	tgt	tgaga	agaco	CC C	atatt	gggt	gca	aaaaa	actc	tgga	agatt	tt	tccga	aaact	et 1	L80
35	gcto	ccgga	aga	tgcag	gaaat	t g	ttaag	gatgg	g aca	aagaa	agaa	gcag	gaaco	ctc	cttg	gaaa	aa 2	240
	tgca	acaat	tcg (cctga	agaga	at ag	gatt	tgata	gtg	ggtgo	cagt	gcca	aggtt	ttt :	gcac	cagct	ig 3	300
	cgaa	aat	gcc a	aatgo	cttaa	aa t	ggaad	cgate	g aad	ctggo	ccaa	att	ggcag	gag	tacaa	acgto	ga 3	360
40	gaad	gtg	caa a	attt	gccca	ac ga	ataaa	atgco	gcg	gcaat	tga	tgt	ctgc	ccc	tatgo	ctgga	ac 4	120
	agaa	atcta	agc	tcaaa	atgat	tg to	cctat	ccta	a cc	catc	gaga	tcta	aaact	tat (gttc	taag	ga 4	180
45	atct	caca	aag g	ggaat	tggtt	ta tạ	gggag	gtaca	ı gat	gggg	ctaa	gcaa	atcto	cag	cttga	ataat	it 5	540
	acgt	gggt	tgg '	tcct	gggaa	aa ga	acaa	caaac	aaa	attgg	gaca	ttto	cacas	gct	tttgi	zgcat	ig 6	500
	agaa	aaaca	aga (caaag	gttgg	ga t	gcgct	tatag	g cto	cgatt	tac	aaat	gago	cac a	aatti	taag	gg 6	560
50	agad	ccct	cct a	agcti	tgcaa	ac ta	actgo	ctaca	a cga	aatat	tgat	gaag	ggaga	agg (atcta	acac	gc 7	720
	aggg	gaaaa	acc	ttgti	tcaca	ag t	gtcag	gagca	a aaa	aagto	gtgg	gcca	agtct	cac a	aagaa	accts	gt 7	780
55	gtga	atcct	ttc :	ggaga	aaggt	it ga	atcca	aacto	c ct	gatgt	cct	taag	gcaat	gg (aagca	atgga	aa 8	340
	aatg	gatta	att a	aagct	tcact	it ca	aaat	gtttc	c caa	atcca	aaaa	aaaa	aaaaa	aaa a	aaaaa	aaaaa	aa 9	900
60	aaaa	aa															ç	905

5	<210 <211 <212 <213	L> 2>	25 159 PRT Lutz	omyia	a lom	ngipa	alpis	5										
	<400)>	25															
10		Leu	ı Leu	Arg	Ser 5	Leu	Phe	Val	Leu	Phe 10	Leu	Ile	Phe	Leu	Thr 15	Phe		
15	Cys	Asn	ı Ala	Glu 20	Glu	Glu	Leu	Ile	Glu 25	Arg	Lys	Leu	Thr	Gly 30	Lys	Thr		
	Ile	Туг	Ile 35	Ser	Thr	Ile	Lys	Leu 40	Pro	Trp	Phe	Gln	Ala 45	Leu	Asn	His		
20	Cys	Val 50	. Lys	Asn	Gly	Tyr	Thr 55	Met	Val	Ser	Ile	Lys 60	Thr	Phe	Glu	Glu		
25	Asn 65	Lys	Glu	Leu	Leu	Lys 70	Glu	Leu	Lys	Arg	Val 75	Ile	Arg	Thr	Glu	Asp 80		
30	Thr	Glr	ı Val	Trp	Ile 85	Gly	Gly	Leu	Lys	His 90	His	Gln	Phe	Ala	Asn 95	Phe		
35	Arg	Trp	Val	Ser 100	Asp	Gly	Ser	His	Val 105	Ala	Thr	Ala	Ser	Gly 110	Tyr	Thr		
	Asn	Trp	Ala 115	Pro	Gly	Glu	Pro	Ala 120	Asp	Ser	Phe	Tyr	Tyr 125	Asp	Gln	Phe		
40	Cys	Met	: Ala	Met	Leu	Phe	Arg 135	Lys	Asp	Gly	Ala	Pro 140	Trp	Asp	Asp	Leu		
45	Asn 145	Cys	: Trp	Val	Lys	Asn 150	Leu	Phe	Val	Cys	Glu 155	Lys	Arg	Asp	Asp			
50	<210 <211 <212 <213	L> 2>	26 617 ADN Lutz	omyia	a lor	ngipa	alpis	5										
55	<400 tttt		26 Jaaa	aacat	ttc	ct to	gtgag	gttaa	a ata	agtto	ggta	aatt	caaat	cca a	agaga	aatgtt		60
	gctt	cgt	tcc	ttgt	tgt	tc ti	tttt	ctaat	t ttt	ctta	aaca	ttct	gcaa	acg (ctgag	ggaaga	-	120
60	actt	tatt	gag a	agaaa	agtta	aa ca	aggaa	aaaa	c gat	ctat	tatc	tcaa	acaat	caa a	agctt	tccgtg	-	180

	gtto	ccaag	gct (cttaa	atcat	t gt	igtta	aaaaa	tgg	gctac	caca	atgg	gtgto	caa	ttaag	gacat	t	240
	tgaa	agaga	aat a	aaaga	aacto	cc tt	caaag	gaact	caa	aaagg	ggtg	atta	ıggad	cag a	aagat	acaca	a	300
5	agtt	tgga	att <u>s</u>	ggagg	gaata	ca aa	acato	catca	att	tgca	aaac	tttc	gtts	agg .	taago	gatg	g	360
	aago	ccac	gta g	gcaad	cagct	it ca	agggt	cacac	c caa	attgg	ggcc	ccas	1999	agc (cagct	gatt	С	420
10	ctto	ctatt	tac g	gatca	aattt	t go	catgo	gcgat	gtt	gtto	caga	aaag	gacgg	gcg (ctccs	gtggg	a	480
	tgat	ttga	aat t	tgttg	gggtt	a ag	gaato	ctttt	tgt	ttgt	gag	aaac	gaga	atg a	attga	agagg	С	540
	tatt	tttt	gtt a	atcto	cacco	gt tt	tgtt	gaat	aaa	aaaag	gaag	aaga	aaga	aca a	aaaaa	aaaaa	a	600
15	aaaa	aaaa	aaa a	aaaaa	aaa													617
20	<210 <211 <212 <213	L> : 2> I	27 304 PRT Lutzo	omyia	a lor	ngipa	alpis	5										
	<400)> 2	27															
25	Met 1	Lys	Leu	Leu	Gln 5	Ile	Ile	Phe	Ser	Leu 10	Phe	Leu	Val	Phe	Phe 15	Pro		
30	Thr	Ser	Asn	Gly 20	Ala	Leu	Thr	Gly	Asn 25	Glu	Ser	Ala	Ala	Asn 30	Ala	Ala		
35	Pro	Leu	Pro 35	Val	Val	Leu	Trp	His 40	Gly	Met	Gly	Asp	Ser 45	Cys	Cys	Phe		
	Pro	Phe 50	Ser	Leu	Gly	Ser	Ile 55	Lys	Lys	Leu	Ile	Glu 60	Gln	Gln	Ile	Pro		
40	Gly 65	Ile	His	Val	Val	Ser 70	Leu	Lys	Ile	Gly	Lys 75	Ser	Leu	Ile	Glu	Asp 80		
45	Tyr	Glu	Ser	Gly	Phe 85	Phe	Val	His	Pro	Asp 90	Lys	Gln	Ile	Gln	Glu 95	Val		
50	Cys	Glu	Ser	Leu 100	Gln	Asn	Asp	Leu	Thr 105	Leu	Ala	Asn	Gly	Phe 110	Asn	Ala		
55	Ile	Gly	Phe 115	Ser	Gln	Gly	Ser	Gln 120	Phe	Leu	Arg	Gly	Leu 125	Val	Gln	Arg		
	Cys	Ser 130	Ser	Ile	Gln	Val	Arg 135	Asn	Leu	Ile	Ser	Ile 140	Gly	Gly	Gln	His		

	Gln 145	Gly	Val	Phe	Gly	Leu 150	Pro	Tyr	Cys	Pro	Ser 155	Leu	Ser	Arg	Lys	Thr 160	
5	Cys	Glu	Tyr	Phe	Arg 165	Lys	Leu	Leu	Asn	Tyr 170	Ala	Ala	Tyr	Glu	Lys 175	Trp	
10	Val	Gln	Lys	Leu 180	Leu	Val	Gln	Ala	Thr 185	Tyr	Trp	His	Asp	Pro 190	Leu	Asn	
15	Glu	Asp	Ala 195	Tyr	Arg	Thr	Gly	Ser 200	Thr	Phe	Leu	Ala	Asp 205	Ile	Asn	Asn	
	Glu	Arg 210	Gln	Ile	Asn	Asn	Asp 215	Tyr	Ile	Asn	Asn	Ile 220	Arg	Lys	Leu	Asn	
20	Arg 225	Phe	Val	Met	Val	Lys 230	Phe	Leu	Asn	Asp	Ser 235	Met	Val	Gln	Pro	Ile 240	
25	Glu	Ser	Ser	Phe	Phe 245	Gly	Phe	Tyr	Ala	Pro 250	Gly	Thr	Asp	Thr	Glu 255	Val	
30	Leu	Pro	Leu	Lys 260	Gln	Ser	Lys	Ile	Tyr 265	Leu	Glu	Asp	Arg	Leu 270	Gly	Leu	
35	Gln	Ser	Val 275	Pro	Ile	Asp	Tyr	Leu 280	Glu	Cys	Gly	Gly	Asp 285	His	Leu	Gln	
	Phe	Thr 290	Lys	Glu	Trp	Phe	Ile 295	Lys	Phe	Ile	Ile	Pro 300	Tyr	Leu	Lys	Gln	
40	<210 <211 <212	L> 1	28 L273 ADN														
45	<400)> 2	28	omyia													
																tttat	60 120
50							_		_				-			tttgt	180
	cac	gctca	agt a	agcat	ctto	ca ag	ggtgg	gtaag	g aaa	aaaat	tgaa	acto	cctgo	caa a	atcat	cttct	240
55	ctct	ctto	cct g	ggtct	tttt	ia a	cgaco	ctcaa	a atg	gggg	ccct	gaco	cggaa	aat 9	gaaag	gtgcag	300
	caaa	atgca	agc t	taaat	tgco	ct gt	cgto	cctgt	ggo	cacgg	ggat	gggd	cgatt	cct 1	tgcts	gctttc	360
60	cctt	cagt	ttt g	gggaa	agcat	ta aa	aaaaa	attaa	a ttg	gaaca	aaca	aatt	cate	ggg a	attca	atgttg	420

	ttagcctg	aa a	aattg	gaaa	g to	ctctc	cattg	g agg	gacta	atga	aagt	ggat	tt t	ttgt	tcatc		480
	cagacaag	ca a	aatto	agga	a gt	ttgt	gagt	cac	ettea	agaa	cgat	ctaa	ıca (ctcgc	caaatg		540
5	gattcaat	gc a	aattg	gatt	t to	ctcas	gggta	gto	cagtt	cct	gcga	ıggto	ett g	gtgca	acgat		600
	gttcttct	at a	acaag	gtaag	g aa	atcto	cattt	cca	attgg	gagg	acas	gcato	aa g	ggggt	ttttg		660
10	gtctgccc	ta t	tgtc	cttc	g tt	gago	cagaa	ı aga	actts	gcga	atac	ttta	ıga a	aagct	cctga		720
10	attatgca	gc t	tatg	gaaaa	a to	gggta	acaga	aac	ctcct	tagt	tcaa	igcca	icc t	tacts	gcatg		780
	atcctcta	aa t	gagg	gatgc	a ta	atcgg	gactg	gaa	agcac	cttt	cctt	gcts	gat a	ataaa	ataatg		840
15	agagacaa	at o	caata	atga	c ta	atatt	aata	ata	attcs	ggaa	gcta	aato	gt 1	ttgt	gatgg		900
	taaagttc	ct d	caacg	gacag	c at	ggtt	cago	: caa	attga	aatc	tagt	ttct	tt g	ggatt	ctacg		960
20	ctccagga	ac t	tgata	caga	a gt	tctc	ccat	taa	aaca	aaag	caag	gattt	at t	tgga	agatc	1	020
20	gtttggga	.ct t	caat	cagt	a co	gata	agatt	ato	ctaga	aatg	cgga	ıggaç	gat o	cattt	gcaat	1	080
	ttacaaaa	ga a	atggt	tcat	a aa	agttt	atca	ı tac	cccta	atct	gaag	gcaat	aa g	gagct	gcaat	1	140
25	gtaattga	tt a	aaaaa	atgt	t aa	accat	ttca	ı gga	atgat	tgg	gtga	accc	ctt a	aaaaa	tataa	1	200
	atgaaaaa	at a	ataca	aaag	a aa	ataaa	atttt	tat	atto	gatc	ccac	aaaa	aa a	aaaaa	aaaaa	1	260
30	aaaaaaaa	aa a	aaa													1	273
35	<211> 1 <212> P		omyia	ı lon	gipa	alpis	5										
40	Met Arg 1	Asn	Phe	Ala [°] 5	Val	Val	Ser	Leu	Ala 10	Val	Ala	Val	Leu	Leu 15	Phe		
45	Cys Ala	Trp	Pro 20	Ile .	Asn	Ala	Glu	Asp 25	Asn	Glu	Glu	Val	Gly 30	Lys	Ala		
	Arg Glu	Lys 35	Arg	Gly :	Leu	Lys	Asp 40	Ala	Met	Glu	His	Phe 45	Lys	Asn	Gly		
50	Phe Lys 50	Glu	Leu	Thr	Lys	Asp 55	Phe	Lys	Leu	Pro	Ser 60	Leu	Pro	Ser	Leu		
55	Pro Gly 65	Phe	Gly		Lys 70	Pro	Glu	Ser	Gly	Ser 75	Ser	Glu	Asp	Ser	Gly 80		
60	Asp Lys	Thr	Glu	Asp '	Thr	Ser	Gly	Ser	Lys 90	Asp	Asp	Gln	Ser	Lys 95	Asp		

	Asn	Thr	Val	Glu	Glu	Ser												
5				100														
10	<210 <211 <212 <213	L> 4 2> A	30 466 ADN Lutzo	omyia	a lor	ngipa	alpis	5										
	<400 ggat		30 cca t	tatg	ggccg	gg gg	gcagt	taat	c ago	ccaca	aatt	taat	caaaa	atg a	aggaa	actt	tg	60
15	ctgt	agto	cag t	ttag	gccgt	t go	ctgto	cctgo	c tct	tcts	gtgc	atgg	gccta	ata a	aatgo	cggaa	ag	120
	ataa	atgaa	aga a	agtts	ggaaa	ag go	cgaga	agaaa	a aaa	agagg	gctt	aaaa	agac	gca a	atgga	aaca	ct	180
20	tcaa	aaaat	tgg a	attta	aagga	ag ct	gaca	aaagg	g act	ttaa	aact	tcca	aagco	ctt (ccaag	gtct	tc	240
20	ctgg	gatt	tgg t	caaaa	aagco	ct ga	aatct	tggaa	a gtt	ctga	aaga	ttct	ggag	gat a	aaaa	ctgag	3 9	300
	atac	ccagt	tgg a	atcta	aagga	ac ga	accaa	atcaa	a agg	gataa	atac	ggto	cgaag	gaa 1	tctta	aagaa	aa	360
25	ggcs	gcaaa	ata <u>q</u>	gctat	tttt	ca aa	agtgg	gcgaa	a tgt	ttct	ttc	ttta	atct	gaa a	ataaa	atat	tt	420
	ttaa	aacct	ttt d	cgaaa	accaa	aa aa	aaaa	aaaa	a aaa	aaaa	aaaa	aaaa	aaa					466
30	<210 <211 <212 <213	L> 2 2> I	31 247 PRT Lutzo	omyia	a lor	ngipa	alpis	5										
35	<400)> 3	31															
	Met 1	Asn	Phe	Leu	Leu 5	Lys	Ile	Phe	Ser	Leu 10	Leu	Cys	Leu	Cys	Gly 15	Leu		
40	Gly	Tyr	Ser	Trp 20	Gln	Asp	Val	Arg	Asn 25	Ala	Asp	Gln	Thr	Leu 30	Trp	Ala		
45	Tyr	Arg	Ser 35	Cys	Gln	Lys	Asn	Pro 40	Glu	Asp	Lys	Asp	His 45	Val	Pro	Gln		
50	Trp	Arg 50	Lys	Phe	Glu	Leu	Pro 55	Asp	Asp	Glu	Lys	Thr 60	His	Cys	Tyr	Val		
55	Lys 65	Cys	Val	Trp	Thr	Arg 70	Leu	Gly	Ala	Tyr	Asn 75	Glu	Asn	Glu	Asn	Val 80		
	Phe	Lys	Ile	Asp	Val 85	Ile	Thr	Lys	Gln	Phe 90	Asn	Glu	Arg	Gly	Leu 95	Glu		

	Val	Pro	Ala	Gly 100	Leu	Asp	Gln	Glu	Leu 105	Gly	Gly	Ser	Thr	Asp 110	Gly	Thr		
5	Cys	Lys	Ala 115	Val	Tyr	Asp	Lys	Ser 120	Met	Lys	Phe	Phe	Lys 125	Ser	His	Phe		
10	Met	Asp 130	Phe	Arg	Asn	Ala	Tyr 135	Tyr	Ala	Thr	Tyr	Asp 140	Gly	Ser	Asp	Glu		
15	Trp 145	Phe	Ser	Lys	Asn	Pro 150	Asp	Val	Lys	Pro	Lys 155	Gly	Thr	Lys	Val	Ser 160		
	Glu	Tyr	Cys	Lys	Asn 165	Lys	Asp	Asp	Gly	Asp 170	Cys	Lys	His	Ser	Cys 175	Ser		
20	Met	Tyr	Tyr	Tyr 180	Arg	Leu	Ile	Asp	Glu 185	Asp	Asn	Leu	Val	Ile 190	Pro	Phe		
25	Ser	Asn	Leu 195	Pro	Asp	Tyr	Pro	Glu 200	Asp	Lys	Leu	Glu	Glu 205	Cys	Arg	Asn		
30	Glu	Ala 210	Lys	Ser	Ala	Asn	Glu 215	Cys	Lys	Ser	Ser	Val 220	Ile	Tyr	Gln	Cys		
35	Leu 225	Glu	Asn	Ala	Asp	Lys 230	Ser	Ala	Leu	Asp	Ala 235	Ser	Leu	Asn	Ile	Leu 240		
	Asp	Glu	Phe	Ser	Gly 245	Arg	Tyr											
40	<210 <211 <212	L> 9	32 955 ADN															
45	<213		Lutzo	omyia	a lor	ngipa	alpis	5										
	<400 actt		32 gat t	ttttg	gttta	aa go	caaaa	atgaa	a ctt	cctt	gttg	aaaa	attt	cct (ctttg	gctctg	6	0
50	tctc	ctgtg	gga d	ctggg	ggtat	it ca	atggo	cagga	a tgt	gaga	aaat	gccg	gatca	aaa (ccct	ctgggc	12	0
50	gtat	agat	cg t	tgcca	aaaag	ga at	cct	gaaga	a taa	aggat	cac	gtad	cctca	aat 9	ggagg	gaagtt	18	0
	cgaa	attad	ccc g	gacga	atgaa	aa ag	gacto	catto	g cta	acgto	caag	tgcg	gtate	gga (cgcgt	ttggg	24	0
55	agct	taca	aat g	gaaaa	atgaa	aa at	gtti	tcaa	a aat	tgat	gtc	atta	actaa	agc a	aattt	taatga	30	0
	acgt	ggc	cta <u>s</u>	gaagt	tccs	gg ct	ggad	cttga	a tca	aagaa	attg	ggt	ggtto	cta (cagat	ggaac	36	0
60	ttgo	caaag	gca g	gttta	acgat	ta aa	atcca	atgaa	a gtt	cctt	caaa	tcto	cattt	ta 1	tggad	ctttag	42	0

	gaat	gct	tac 1	tacgo	caact	t at	gac	ggtto	tga	atgaa	atgg	ttta	agcaa	aga a	accct	gatgt		480
	aaaa	accg	aaa g	ggaad	caaaa	ag tt	tccs	gaata	cts	gcaaa	aaat	aaag	gatga	atg g	gagat	tgcaa	Ļ	540
5	acat	tcc	tgc a	agtat	tgtac	ct ac	ctaco	cgctt	aat	cgat	gaa	gaca	actt	ag t	tatt	ccgtt		600
	cago	caac	tta d	cctga	actat	ca ad	cgaag	gataa	ı gct	cgas	ggaa	tgca	aggaa	atg a	aagco	caagtc	!	660
10	cgca	aaat	gag 1	tgcaa	aatca	at ct	gtta	atcta	ı tca	agtgt	ttg	gaaa	atgo	egg a	ataag	gtcagc	!	720
10	ttta	agac	gcg 1	tcttt	zgaat	ta ta	actc	gatga	gtt	ttct	gga	agat	atta	aaa a	acaaa	actgga	L	780
	taaa	aaaa	ctt a	aggco	caaco	ct at	gatt	cgaa	ctt	acga	attt	tgaa	actte	gaa a	attca	atgtgc	!	840
15	ttta	aacc	tat 1	tgtco	ccact	a gg	gaaga	aaaaa	tco	catat	ttg	gtga	atgtt	aa a	actat	ttttg	ī	900
	aacc	ctct	tca a	aaata	aaaca	aa tt	ttca	aaaaa	aaa	aaaaa	aaaa	aaaa	aaaaa	aaa a	aaaaa	a		955
20	<210 <211 <212 <213	L> :	33 325 PRT Lutzo	omyia	a lor	ngipa	alpis	5										
25	<400)>	33															
	Met 1	Phe	Leu	Lys	Trp 5	Val	Val	Cys	Ala	Phe 10	Ala	Thr	Val	Phe	Leu 15	Val		
30	Gly	Val	Ser	Gln 20	Ala	Ala	Pro	Pro	Gly 25	Val	Glu	Trp	Tyr	His 30	Phe	Gly		
35	Leu	Ile	Ala 35	Asp	Met	Asp	Lys	Lys 40	Ser	Ile	Ala	Ser	Asp 45	Lys	Thr	Thr		
40		Asn 50	Ser					Asp					Asn	Thr	Lys	Thr		
45	Asp 65	Gln	Tyr	Ile	Tyr	Val 70	Arg	Ser	Arg	Val	Lys 75	Lys	Pro	Val	Ser	Thr 80		
	Arg	Tyr	Gly	Phe	Lys 85	Gly	Arg	Gly	Ala	Glu 90	Leu	Ser	Glu	Ile	Val 95	Val		
50	Phe	Asn	Asn	Lys 100	Leu	Tyr	Thr	Val	Asp 105	Asp	Lys	Ser	Gly	Ile 110	Thr	Phe		
55	Arg	Ile	Thr 115	Lys	Asp	Gly	Lys	Leu 120	Phe	Pro	Trp	Val	Ile 125	Leu	Ala	Asp		
60	Ala	Asp	Gly	Gln	Arg	Pro	Asp	Gly	Phe	Lys	Gly	Glu	Trp	Ala	Thr	Ile		

5	Lys 145	Asp	Asp	Thr	Ile	Tyr 150	Val	Gly	Ser	Thr	Gly 155	Met	Leu	Lys	Phe	Thr 160	
	Ser	Ser	Leu	Trp	Val 165	Lys	Lys	Ile	Thr	Lys 170	Asp	Gly	Val	Val	Thr 175	Ser	
10	His	Asp	Trp	Thr 180	Asp	Lys	Tyr	Arg	Lys 185	Ile	Leu	Lys	Ala	Leu 190	Asn	Met	
15	Pro	Asn	Gly 195	Phe	Val	Trp	His	Glu 200	Ala	Val	Thr	Trp	Ser 205	Pro	Phe	Arg	
20	Lys	Gln 210	Trp	Val	Phe	Met	Pro 215	Arg	Lys	Cys	Ser	Arg 220	His	Pro	Phe	Ser	
25	Gln 225	Glu	Leu	Glu	Glu	Arg 230	Thr	Gly	Cys	Asn	Lys 235	Ile	Val	Thr	Ala	Asp 240	
00	Glu	Asn	Phe	Asn	Asp 245	Ile	Gln	Val	Ile	His 250	Ile	Gln	Asp	Gln	Pro 255	Tyr	
30	Asn	Leu	Ala	Ser 260	Gly	Phe	Ser	Ser	Phe 265	Arg	Phe	Ile	Pro	Gly 270	Thr	Lys	
35	Asn	Glu	Arg 275	Leu	Leu	Ala	Leu	Arg 280	Thr	Val	Glu	Gln	Glu 285	Asp	Gln	Val	
40	Lys	Thr 290	Trp	Ala	Val	Val	Met 295	Asp	Met	Lys	Gly	Thr 300	Val	Leu	Met	Tyr	
45	Glu 305	Lys	Glu	Leu	Tyr	Asp 310	Glu	Lys	Phe	Glu	Gly 315	Leu	Ala	Phe	Phe	Gly 320	
	Gly	Ile	Lys	Lys	Asn 325												
50	<210 <211 <212 <213	L> 1 2> 1	34 1071 ADN Lutzo	omyia	a loi	ngipa	alpis	5									
55	<400 aaag		34 agt a	agtga	agaat	ig ti	ttati	caagt	gg <u>g</u>	gttgt	ttg	tgct	ttttg	gcg a	actgt	tattaa	60
60	ttgt	tgg	ggt g	gagto	caggo	ca go	CCCC	accgg	g ggg	gttga	aatg	gtat	cact	ttt g	ggtct	tgattg	120

	ctgatat	gga	caaaa	aaatc	c at	cgcg	gagto	g aca	aaaa	ccac	cttt	caaca	agc g	gtcct	aaag	a 180
	tcgatga	aatt	gcgc	cacaa	c ad	caaaa	aacgg	g ato	caata	acat	ttat	gtgo	cgt a	agtc	gagtg	a 240
5	agaagc	ccgt	ttcca	acgag	g ta	atggg	gttca	a aag	ggac	gcgg	tgc	ggaat	tg t	tagga	aatt	g 300
	ttgtctt	caa	caata	aaact	t ta	acaca	agtts	g ato	gataa	aatc	tgga	aatta	acg t	ttccg	gcata	a 360
10	cgaaaga	acgg	aaaad	ctctt	c co	cgtgg	ggtta	ı tto	ctcg	caga	tgc	gate	gga (cagc	gaccc	g 420
10	atggctt	taa	gggtg	gaatg	g go	ctaca	aatta	agg	gatga	atac	aato	ctate	gtt g	ggato	ctacg	g 480
	ggatgct	caa	gttca	acttc	a to	ccctt	tggg	g tga	aagaa	agat	cac	gaaag	gat <u>s</u>	ggcgt	tgtt	a 540
15	cgagtca	acga	ttgga	actga	t aa	aatao	ccgaa	aga	attct	caa	agct	ctaa	aac a	atgco	caaat	g 600
	gttttgt	ctg	gcato	gaggc	t gt	tacs	gtggt	cto	ccatt	cag	gaag	gcaat	gg g	gtctt	catg	с 660
20	cgagaaa	agtg	ctcaa	aggca	t co	cctto	ctcac	agg	gaact	cga	agaa	acgca	aca g	gggtg	gcaat	a 720
20	aaatagt	gac	ggcag	gatga	g aa	attto	caacc	g aca	attca	aagt	tatt	caca	att o	caaga	atcag	c 780
	catataa	attt	agctt	ctgg	t tt	cctct	tcct	tco	cgctt	tat	tcct	ggta	acg a	aaaa	atgaa	a 840
25	gacttct	cgc	cttga	aggac	a gt	cagag	gcagg	g aag	gatca	aggt	taaa	actt	gg g	gctgt	tggtc	a 900
	tggatat	gaa	aggaa	acagt	t ct	gate	gtacs	g aaa	aagga	aact	ttat	gac	gaa a	aaatt	cgaa	g 960
30	gtttag	catt	cttts	ggtgg	t at	taaa	aaaga	att	taatt	tgt	tcca	agaag	gat t	tttag	gatga	a 1020
30	ataataa	aatt	ttatt	tcat	t tt	taaaa	aaaaa	a aaa	aaaa	aaaa	aaaa	aaaa	aaa a	a		1071
35	<210><211><211><212><213>	35 160 PRT Lutz	omyia	a long	gipa	alpis	5									
40	<400>	35														
40	Met Ala	a Leu	Lys	Phe 3	Leu	Pro	Val	Leu	Leu 10	Leu	Ser	Cys	Phe	Ala 15	Met	
45	Ser Thi	a Ala	Leu 20	Gln '	Val	Thr	Glu	Lys 25	Glu	Leu	Ser	Asp	Gly 30	Lys	Lys	
5 0	Tle Phe	e Ile	Ser	Lys '	Val	Glu	Leu 40	Asn	Trp	Phe	Glu	Ala 45	Leu	Asp	Phe	
50		35														
55	Cys Ile	35	a Arg	Gly :	Leu	Thr 55		Leu	Ser	Ile	Lys 60	Ser	Ala	Lys	Glu	

	Lys	Lys	Leu	Ala	His 85	Val	Trp	Thr	Gly	Gly 90	Ile	Arg	His	Ser	Gln 95	Asp		
5	Lys	Tyr	Phe	Arg 100	Trp	Ile	Asn	Asp	Gly 105	Thr	Lys	Val	Val	Lys 110	Arg	Val		
10	Tyr	Thr	Asn 115	Trp	Phe	Thr	Gly	Glu 120	Pro	Asn	Asn	Gly	Tyr 125	Trp	Lys	Asp		
15	Glu	Phe 130	Cys	Leu	Glu	Ile	Tyr 135	Tyr	Lys	Thr	Glu	Glu 140	Gly	Lys	Trp	Asn		
	Asp 145	Asp	Lys	Cys	His	Val 150	Lys	His	His	Phe	Val 155	Cys	Gln	Glu	Lys	Lys 160		
20	<210 <211 <212	L> (36 548 ADN															
25	<213	3> 1	Lutzo	omyia	a lor	ngipa	alpis	5										
	<400 cgcg		36 gcg t	tcgad	ccga	ca ga	aaggg	ggtag	g ttt	gtag	gaga	actt	tgag	gtt (ctaaa	aggaaa		60
30	ttct	caag	gaa g	gaaaa	atati	cc aa	aaagt	caaag	g aat	ggcg	gttg	aagt	ttct	tc (cggtt	tctcct	-	120
30	tcta	aagct	tgc t	ttcg	caat	ga go	cacgg	gcact	aca	aagtt	tact	gaga	aagga	aac t	tttct	tgatgg	=	180
	gaaa	aaaga	atc t	ttcat	tata	ca aa	agttg	gagct	aaa	actgg	gttc	gaag	gctct	tg a	attto	ctgtat	2	240
35	ccat	cgt	ggt (cttac	cgtt	gc to	ctcaa	attaa	a ato	ccgcc	caag	gaaa	aatgt	tag a	acgta	aacaaa	3	300
	agca	aatto	cgg g	gctga	aatt	ga at	ttttg	gatto	c aaa	agaaa	attg	gcto	catgt	igt g	ggact	zggagg	3	360
40	tatt	cgc	cat a	agtca	aagat	ta ag	gtatt	tccs	g ttg	ggata	aaat	gate	ggaad	cta a	aagtt	tgttaa	4	420
	acga	agtct	tac a	accaa	attgg	gt to	cact	ggaga	a aco	caaat	taat	ggtt	tact	gga a	aggat	tgaatt	4	480
	ttgt	ctg	gaa a	attta	actat	ta aa	aacc	gaaga	a agg	ggaag	gtgg	aatg	gatga	ata a	aatgt	cacgt	Ţ	540
45	gaag	gcato	cat t	tttgt	tatgt	cc aa	agaaa	aagaa	a ata	aaatt	gat	tgat	ttttg	gtt 1	tgcts	gatttg	(500
	cagt	tcag	gaa t	ttgaa	aaago	cc aa	aaaa	aaaaa	a aaa	aaaaa	aaaa	aaaa	aaaa	a.			(548
50	<210		37															
	<211 <212 <213	2> 1	161 PRT Lutzo	omyia	a lor	ngipa	alpis	5										
55	<400)> (37															
60	Met 1	Ala	Phe	Ser	Asn 5	Thr	Leu	Phe	Val	Leu 10	Phe	Val	Ser	Phe	Leu 15	Thr		

	Phe	Cys	Gly	Ala 20	Asp	Gln	Thr	Leu	Ile 25	Glu	Lys	Glu	Leu	Thr 30	Gly	Arg	
5	Thr	Val	Tyr 35	Ile	Ser	Lys	Ile	Lys 40	Leu	Asn	Trp	Asn	Asp 45	Ala	Phe	Asp	
10	Tyr	Cys 50	Ile	Arg	Asn	Gly	Leu 55	Thr	Phe	Ala	Lys	Ile 60	Lys	Ser	Ala	Glu	
15	Glu 65	Asn	Thr	Glu	Leu	Ser 70	Glu	Lys	Leu	Lys	Thr 75	Val	Ile	Arg	Thr	Glu 80	
20	Glu	Phe	Gln	Val	Trp 85	Ile	Gly	Gly	Ile	Glu 90	His	His	Gln	Asp	Ser 95	Ser	
	Phe	Arg	Trp	Val 100	Ser	Asp	Ser	Gln	Pro 105	Ile	Thr	Asn	Lys	Leu 110	Gly	Tyr	
25	Lys	Tyr	Thr 115	Asn	Trp	Asn	Thr	Gly 120	Glu	Pro	Thr	Asn	Tyr 125	Gln	Asn	Asn	
30	Glu	Tyr 130	Cys	Leu	Glu	Ile	Leu 135	Phe	Arg	Lys	Glu	Asp 140	Gly	Lys	Trp	Asn	
35	Asp 145	Phe	Pro	Cys	Ser	Ala 150	Arg	His	His	Phe	Val 155	Cys	Glu	Lys	Arg	Thr 160	
	Lys																
40																	
45		L> ! 2> <i>I</i>		omyia	a lor	ngipa	alpis	5									
	<400 aata		38 ctt d	caaaa	acgto	ct aa	agaat	tggct	t tto	cagca	aaca	cttt	tattt	gt	tctt	ttgtg	61
50	agtt	tttt	taa d	cgttt	tgtg	gg cg	gctga	atcas	g aca	actta	attg	agaa	aggaa	att a	aacc	ggaaga	120
	acto	gttta	ata t	tata	caaaa	at ta	aagct	taaat	t tgg	gaacg	gatg	cctt	cgat	ta	ctgca	atccgc	180
55	aats	ggcct	tca d	ccttt	tgcta	aa ga	attaa	aatca	ı gct	gaag	gaaa	acad	ccgaa	act :	gagt	gagaaa	24
- •	ctca	aaga	cag t	tcatt	cgta	ac gg	gagga	agttt	caa	agttt	egga	ttgg	gaggo	cat	tgaad	catcat	30
	caag	gacag	gtt (cctto	ccgct	g gg	gtaag	gcgac	tco	ccaad	ccaa	taad	ccaad	caa	attgg	ggctac	36
60	aaat	acad	raa :	actaa	raata	פר כי	raaa	addd	aca	aatt	acc	222	caad	าตล	atatt	actta	42

	gaaatattat		tat	tccggaagga			gatg	gaaaa	tgg	tggaatgatt			ttccctgcag			tgcaagacat		
E	catt	ttg	ttt 🤉	gtgaa	aaaa	ag aa	acaaa	aataa	ı aat	gaag	gaaa	atgt	gatt	tt	ccttt	ggttg	540	
5	aagaataaaa ttctgttgaa aaaaaaaaaa aaaaaaaaaa														586			
10	<210 <211 <211 <211	l> : 2> :	39 105 PRT Lutz	omyia	a lor	ngipa	alpis	5										
	<400)>	39															
15	Met 1	Gln	Asn	Phe	Leu 5	Leu	Val	Ser	Leu	Ala 10	Leu	Ala	Ala	Leu	Met 15	Leu		
20	Cys	Ala	Glu	Ala 20	Lys	Pro	Tyr	Asp	Phe 25	Pro	Leu	Tyr	Gln	Asp 30	Leu	Ile		
25	Gln	Gly	Val 35	Ile	Gln	Arg	Glu	Ser 40	Gln	Ala	Glu	Arg	Glu 45	Lys	Arg	Ser		
30	Pro	Asn 50	Glu	Asp	Tyr	Glu	Lys 55	Gln	Phe	Gly	Asp	Ile 60	Val	Asp	Gln	Ile		
	Lys 65	Glu	Ile	Ser	Phe	Asn 70	Val	Met	Lys	Met	Pro 75	His	Phe	Gly	Ser	Ser 80		
35	Asp	Asp	Asn	Arg	Asp 85	Asp	Gly	Glu	Tyr	Val 90	Asp	His	His	Tyr	Gly 95	Asp		
40	Glu	Asp	Asp		Asp			His	Tyr 105									
45	<210 <211 <212 <213	1> 2>	40 457 ADN Lutz	omyia	a lor	ngipa	alpis	6										
50	<400 att		40 ttg	tgttt	caaca	aa aa	acaag	gaatg	g cag	gaact	tcc	tttt	tagtt	ctc	cttgg	gcttta	60	
	gct	gcct	taa	tgcta	atgtg	gc cg	gaago	caaag	g ccg	gtac	gatt	ttco	cgctt	ta	tcagg	gactta	120	
55	atto	cagg	gcg	ttatt	cago	cg cg	gaaag	gtcaa	ı gct	gaga	aggg	agaa	agaga	aag	cccca	aatgag	180	
gactatgaga agcaatttgg ggatattgtt gatcaaatta ag									agga	aaatt	cag	tttca	aatgtc	240				
	atga	aaaa	tgc (cccat	ttttg	gg aa	agcto	ctgat	gat	taato	cgtg	atga	atggo	cga	gtac	gttgat	300	
60	cato	catt	atg 🤉	gtgad	gaag	ga to	gatc	gtgat	: tat	tatgatcatt			actaaatact acttgctcct					

gctgaatgac ttgaaggaat catttttttg caaaaatatc catcaa									caaat	ta '	ttgaa	attaat	420				
5	aaag	gttg	caa a	aaaa	aaaa	aa aa	aaaa	aaaa	a aaa	aaaa	a						457
10	<210 <211 <212 <213	11> 157 12> PRT															
	<400)>	41														
15		Lys	Phe	Tyr	Ile 5	Phe	Gly	Val	Phe	Leu 10	Val	Ser	Phe	Leu	Ala 15	Leu	
20	Cys	Asn	Ala	Glu 20	Asp	Tyr	Asp	Lys	Val 25	Lys	Leu	Thr	Gly	Arg 30	Thr	Val	
	Tyr	Ile	Ser 35	Arg	Ser	Lys	Ala	Pro 40	Trp	Phe	Thr	Ala	Leu 45	Asp	Asn	Cys	
25	Asn	Arg 50	Arg	Phe	Thr	Phe	Ala 55	Met	Ile	Lys	Ser	Gln 60	Lys	Glu	Asn	Glu	
30	Glu 65	Leu	Thr	Asn	Ala	Leu 70	Leu	Ser	Val	Ile	Lys 75	Ser	Asp	Glu	Glu	Asn 80	
35	Val	Trp	Ile	Gly	Gly 85	Leu	Arg	His	Asp	Leu 90	Asp	Asp	Tyr	Phe	Arg 95	Trp	
40	Ile	Ser	Phe	Gly 100	Thr	Ala	Leu	Ser	Lys 105	Thr	Ser	Tyr	Thr	Asn 110	Trp	Ala	
	Pro	Lys	Glu 115	Pro	Thr	Gly	Arg	Pro 120	His	Arg	Thr	Gln	Asn 125	Asp	Glu	Phe	
45	Cys	Met 130	Gln	Met	Ser	Phe	Lys 135	Asp	Gly	Gly	Lys	Trp 140	Ser	Asp	Asn	Thr	
50	Cys 145	Trp	Arg	Lys	Arg	Leu 150	Tyr	Val	Cys	Glu	Lys 155	Arg	Asp				
55	<210 <211 <212 <213	l> 2>	42 596 ADN Lutz	omyia	a lor	ngipa	alpis	5									
60	<400 gttt		42 gaa	tttc	tttca	at c	tcagt	cctt	c gat	cttt	cttt	aaa	caaat	caa ·	tgaag	gtttta	60

	tatt	tttt	gga	gtttt	cate	gg to	gagct	ttct	tgo	catta	atgc	aato	gctga	agg a	attat	gataa	
5	agta	aaaa	ctt	actg	gaaga	ıa ct	gttt	cacat	cto	ccaga	atca	aagg	gatad	cgt (ggtto	cacagc	
J	ttta	agaca	aat	tgtaa	atcgt	it ta	acgct	tcac	c ctt	cgc	catg	atca	aagto	ctc a	agaag	ggagaa	
	tgaa	agago	cta	acaaa	atgcg	gc tt	ttaa	agtgt	aat	taaa	atct	gac	gaaga	aaa a	atgtt	tggat	
10	tgga	aggto	ctt	aggca	acgat	c to	ggato	gacta	a ctt	ccgt	tgg	atta	agttt	tg g	gaact	gcatt	
	gtca	aaaga	act	tcgta	acaco	a at	tggg	gaaa	c aaa	aggaa	accc	acas	ggaag	ggc (cccat	agaac	
15	tcaa	aatg	gat	gaatt	ctgo	a to	gcaaa	atgto	c ttt	caaa	agat	ggtg	ggcaa	aat 9	ggagt	gataa	
.0	caco	etgtt	gg	cgtaa	aacgt	t to	gtace	gtttg	g tga	aaaag	gcgt	gatt	aaat	caa a	aggaa	cactg	
	ccaa	atgaa	ata	ttgggcaatt			tgagagaaat			taaattaaaa			aaaa	aaa a	aaaaa	ıa	
20																	
25	<210 <211 <212 <213	-> 2 2> I	13 295 PRT Lutz	omyia	a lor	ngipa	alpis	5									
	<400)> 4	13														
30	Met 1	Ile	Lys	Glu	Val 5	Phe	Ser	Leu	Ala	Leu 10	Leu	Val	Ala	Leu	Ala 15	Gln	
35	Cys	Ala	Asn	Glu 20	Ile	Pro	Ile	Asn	Arg 25	Gln	Gly	Lys	Asp	Tyr 30	Pro	Val	
40	Pro	Ile	Ile 35	Asp	Pro	Asn	Lys	Ser 40	Ser	Ser	Asp	Asp	Tyr 45	Phe	Asp	Asp	
	Arg	Phe 50	Tyr	Pro	Asp	Ile	Asp 55	Asp	Glu	Gly	Ile	Ala 60	Glu	Ala	Pro	Lys	
45	Asp 65	Asn	Arg	Gly	Lys	Ser 70	Arg	Gly	Gly	Gly	Ala 75	Ala	Gly	Ala	Arg	Glu 80	
50	Gly	Arg	Leu	Gly	Thr 85	Asn	Gly	Ala	Lys	Pro 90	Gly	Gln	Gly	Gly	Thr 95	Arg	
55	Pro	Gly	Gln	Gly 100	Gly	Thr	Arg	Pro	Gly 105	Gln	Gly	Gly	Thr	Arg 110	Pro	Gly	
60	Gln	Gly	Gly 115	Thr	Arg	Pro	Gly	Gln 120	Gly	Gly	Thr	Arg	Pro 125	Gly	Gln	Gly	

	Arg	Thr 130	Lys	Pro	Ala	Gln	Gly 135	Thr	Thr	Arg	Pro	Ala 140	Gln	Gly	Thr	Arg	
5	Asn 145	Pro	Gly	Ser	Val	Gly 150	Thr	Lys	Glu	Ala	Gln 155	Asp	Ala	Ser	Lys	Gln 160	
10		Gln	Gly	Lys	Arg		Pro	Gly	Gln	Val		Gly	Lys	Arg	Pro		
					165					170					175		
15	Gln	Ala	Asn	Ala 180	Pro	Asn	Ala	Gly	Thr 185	Arg	Lys	Gln	Gln	Lys 190	Gly	Ser	
20	Arg	Gly	Val 195	Gly	Arg	Pro	Asp	Leu 200	Ser	Arg	Tyr	Lys	Asp 205	Ala	Pro	Ala	
	Lys	Phe 210	Val	Phe	Lys	Ser	Pro 215	Asp	Phe	Ser	Gly	Glu 220	Gly	Lys	Thr	Pro	
25	Thr 225	Val	Asn	Tyr	Phe	Arg 230	Thr	Lys	Lys	Lys	Glu 235	His	Ile	Val	Thr	Arg 240	
30	Gly	Ser	Pro	Asn	Asp 245	Glu	Phe	Val	Leu	Glu 250	Ile	Leu	Asp	Gly	Asp 255	Pro	
35	Thr	Gly	Leu	Gly 260	Leu	Lys	Ser	Glu	Thr 265	Ile	Gly	Lys	Asp	Thr 270	Arg	Leu	
40	Val	Leu	Glu 275	Asn	Pro	Asn	Gly	Asn 280	Ser	Ile	Val	Ala	Arg 285	Val	Lys	Ile	
	Tyr	Lys 290	Asn	Gly	Tyr	Ser	Gly 295										
45	<210 <211 <212 <213	L> 9 2> <i>1</i>	44 989 ADN Lutzo	omyia	a lor	ngipa	alpis	5									
50	<400		44														
	acta	aaago	cgt (ctcad	ccgaa	aa to	caggg	gaaaa	a tga	attaa	agga	agtt	ttct	ct (ctggd	ctctac	6
55	ttgt	ggc	ctt g	ggca	cagt	gt go	ctaat	tgaaa	a tco	cctat	taa	tcgt	cagg	ggg a	aaaga	attatc	12
																gcttct	18
	acco	ctgat	tat t	tgat	gatga	ag gg	gcata	agcts	g agg	gctco	ctaa	ggat	taata	agg g	ggaaa	aatccc	24
60	gtgg	gtggt	tgg t	gcgg	gctg	gc go	caaga	agaag	g gta	aggtt	agg	tac	gaat	ggg g	gctaa	accgg	30

	gtca	agggt	tgg a	aacta	agaco	a gg	gacag	gggtg	g gaa	actag	ggcc	agga	acago	ggt g	ggaad	ctaggc	3	360
5	cago	gtcag	ggg 1	tggaa	actag	gg co	caggt	cago	ggtg	ggaad	ctag	acct	gggg	caa g	ggtag	gaacta	4	120
J	agco	ctgct	ca g	gggaa	actac	ct as	ggcca	agcto	agg	ggaad	ctag	aaat	ccas	gga '	tcggt	tggta	4	180
	cgaa	aagaa	agc (ccago	gatgo	g to	caaaa	acaas	ggto	caagg	gtaa	aaga	aaggo	cca 🤉	gggca	agttg	į	540
10	gtgg	gtaaa	aag a	accas	ggaca	aa go	caaat	gcto	c cta	aatgo	cagg	cact	agaa	aag (caaca	agaaag	6	500
	gcag	gtaga	agg (cgtts	ggaag	gg co	ctgat	ctat	cg(cgcta	acaa	agat	gcco	cct 9	gctaa	aattcg	6	560
45	tttt	caaa	atc 1	tacas	gattt	c ag	gtgga	agaag	g gca	aaaa	ctcc	aact	gtaa	aat	tactt	tagaa	-	720
15	cgaa	agaag	gaa g	ggago	cacat	t gt	gaco	ccgts	g gta	agtco	ctaa	tgat	gaat	tt (gttct	ggaga	-	780
	ttct	cgat	gg g	ggato	ccaac	et gg	ggctt	ggad	taa	aagag	gtga	aaco	catas	ggc a	aaaga	atacgc	8	340
20	gttt	tagts	gct g	ggaga	aatco	ct aa	atgga	aaatt	c cca	atcgt	ggc	tcgt	gtta	aag a	atcta	acaaga	9	900
	acgg	gttat	tc a	aggat	gaag	ga ag	gaaat	cctt	t tga	attto	ccc	ccc	cccct	ct	tcctt	taaaa	9	960
05	ttca	aacat	caa 1	taaaa	aaaaa	aa aa	aaaaa	aaaa									9	989
25	.01.0		4.5															
	<210 <211	L> 1	45 148															
30	<212 <213		PRT Lutzo	omyia	a lor	ngipa	alpis	5										
	<400)> 4	45															
		Asn	Ser	Val		Thr	Leu	Ile	Leu		Leu	Leu	Phe	Ala		Phe		
35	1				5					10					15			
	Leu	Leu	Val	Lys	Arg	Ser	Gln	Ala		Leu	Pro	Ser	Asp		Ser	Ile		
40				20					25					30				
	Cys	Val		Asn	Leu	Val	Leu		Thr	Gly	Arg	Thr		Glu	Glu	Ser		
45			35					40					45					
45	Glu		Phe	Pro	Asp	Ile		Asn	Val	Lys	Asn		Lys	Arg	Val	Tyr		
		50					55					60						
50		Val	Cys	Thr	Asp		Asp	Ala	Val	Asp		Lys	Phe	Tyr	Ile			
	65					70					75					80		
	Phe	Asp	Met	Asn		Leu	Ser	Gly	Pro		Tyr	Pro	Glu	Glu		Ile		
55					85					90					95			
	Leu	Arg	Glu	Ser	Thr	Val	Thr	Tyr		Gln	Ile	Tyr	Glu		Met	Thr		
60				100					105					110				

	Thr Glu Thr Thr Glu Thr Lys Lys Pro Lys Lys Pro Lys Asn Ser 115 120 125	
5	Lys Thr Asp Asp Pro Pro Ala Ile Arg Pro Gly Phe Ser Phe Arg Asn 130 135 140	
10	Ser Ile Ser Val 145	
15	<210> 46 <211> 826 <212> ADN <213> Lutzomyia longipalpis	
20	<400> 46 gtcttttcct gagtgtttca ttaacaaaat gaattcagta aacactttaa ttttaactct	60
	tctatttgca attttttat tagtgaaaag gtctcaggct tttcttccat ctgacccaag	120
	tatctgtgtt aaaaatttag tattggatac aggaaggact tgtgaggaaa gtgaatattt	180
25	tccggatatc aagaacgtta aaaatggaaa aagagtttac attgtctgca ctgattcaga	240
	tgcagttgat tataaatttt atatttgttt cgatatgaat cgtctttctg gaccaccgta	300
30	tcctgaggaa gaaatccttc gtgaatcaac ggtaacttat gcccaaattt atgagctgat	360
	gactacggaa accactgaaa ccaaaaagcc aaaaaagaaa ccaaagaatt caaaaacgga	420
	cccagaccct ccagcaattc gtccaggatt ttcatttaga aattcaattt ctgtttaatt	480
35	ttacaattta ttttgaaaga aaaatgatat ttcgaaatat tctatacaaa aaaacaacag	540
	ttataaaacg aaaattcaat catttcaatg agaaaactta gtcttgagta aggtttattc	600
40	accacccgac gccacgctat ggtgaataat tttctttatt caccacatca aaatgacggc	660
	ttataaactt caacaaatag tttggaaaat acatttctaa ctaatgcaat gtttacttaa	720
	aatcacttta caaattcacg catttgagat gcaacaaata tatacaattc aacgatataa	780
45	actttccaca aggaaaactt tcaaccaaaa aaaaaaaaaa	826
	acceccaca aggadaacee ecaaccaaaa aaaaaaaaa aaaaaa	020
50	<210> 47 <211> 397 <212> PRT <213> Lutzomyia longipalpis	
	<400> 47	
55	Met Lys Leu Phe Phe Phe Leu Tyr Thr Phe Gly Leu Val Gln Thr Ile 1 5 10 15	
60	Phe Gly Val Glu Ile Lys Gln Gly Phe Lys Trp Asn Lys Ile Leu Tyr	

				20					25					30		
5	Glu	Gly	Asp 35	Thr	Ser	Glu	Asn	Phe 40	Asn	Pro	Asp	Asn	Asn 45	Ile	Leu	Thr
10	Ala	Phe 50	Ala	Tyr	Asp	Pro	Glu 55	Ser	Gln	Lys	Leu	Phe 60	Leu	Thr	Val	Pro
	Arg 65	Lys	Tyr	Pro	Glu	Thr 70	Met	Tyr	Thr	Leu	Ala 75	Glu	Val	Asp	Thr	Glu 80
15	Lys	Asn	Ser	Phe	Glu 85	Ser	Gly	Asp	Thr	Ser 90	Pro	Leu	Leu	Gly	Lys 95	Phe
20	Ser	Gly	His	Glu 100	Thr	Gly	Lys	Glu	Leu 105	Thr	Ser	Val	Tyr	Gln 110	Pro	Val
25	Ile	Asp	Glu 115	Cys	His	Arg	Leu	Trp 120	Val	Val	Asp	Val	Gly 125	Ser	Val	Glu
30	Arg	Asn 130	Ser	Asp	Gly	Thr	Glu 135	Gly	Gln	Pro	Glu	His 140	Asn	Pro	Thr	Leu
	Val 145	Ala	Tyr	Asp	Leu	Lys 150	Glu	Ala	Asn	Tyr	Pro 155	Glu	Val	Ile	Arg	Tyr 160
35	Thr	Phe	Pro	Asp	Asn 165	Ser	Ile	Glu	Lys	Pro 170	Thr	Phe	Leu	Gly	Gly 175	Phe
40	Ala	Val	Asp	Val 180	Val	Lys	Pro	Asp	Glu 185	Cys	Ser	Glu	Thr	Phe 190	Val	Tyr
45	Ile	Thr	Asn 195	Phe	Leu	Thr	Asn	Ala 200	Leu	Ile	Val	Tyr	Asp 205	His	Lys	Asn
50	Lys	Asp 210	Ser	Trp	Thr	Val	Gln 215	Asp	Ser	Thr	Phe	Gly 220	Pro	Asp	Lys	Lys
	Ser 225	Lys	Phe	Asp	His	Asp 230	Gly	Gln	Gln	Tyr	Glu 235	Tyr	Glu	Ala	Gly	Ile 240
55	Phe	Gly	Ile	Thr	Leu 245	Gly	Glu	Arg	Asp	Asn 250	Glu	Gly	Asn	Arg	Gln 255	Ala
60	Tur	Tur	T.011	Val	Δla	Ser	Ser	Thr	Lwg	T.A11	Иiс	Ser	Tlo	Δan	Thr	Tag

				260					265					270				
5	Glu	Leu	Lys 275	Gln	Lys	Gly	Ser	Lys 280	Val	Asn	Ala	Asn	Tyr 285	Leu	Gly	Asp		
10	Arg	Gly 290	Glu	Ser	Thr	Asp	Ala 295	Ile	Gly	Leu	Val	Tyr 300	Asp	Pro	Lys	Thr		
	Lys 305	Thr	Ile	Phe	Phe	Val 310	Glu	Ser	Asn	Ser	Lys 315	Arg	Val	Ser	Cys	Trp 320		
15	Asn	Thr	Gln	Glu	Thr 325	Leu	Asn	Lys	Asp	Lys 330	Ile	Asp	Val	Ile	Tyr 335	His		
20	Asn	Ala	Asp	Phe 340	Ser	Phe	Gly	Thr	Asp 345	Ile	Ser	Ile	Asp	Ser 350	Gln	Asp		
25	Asn	Leu	Trp 355	Phe	Leu	Ala	Asn	Gly 360	Leu	Pro	Pro	Leu	Glu 365	Asn	Ser	Asp		
30	Lys	Phe 370	Val	Phe	Thr	Lys	Pro 375	Arg	Tyr	Gln	Ile	Phe 380	Lys	Val	Asn	Ile		
	Gln 385	Glu	Ala	Ile	Ala	Gly 390	Thr	Lys	Cys	Glu	Lys 395	Asn	Leu					
35	<210 <211 <212	L> 1	18 1325 ADN															
40	<213	3> I	Lutz	omyia	a lor	ngipa	alpis	5										
	<400 atca		18 aaa a	aggca	agcag	gc ac	caato	gaagt	tat	tttt	ctt	tctt	taca	act 1	tttgg	gtctag	3	60
45	tcca	aaac	gat 1	ttttg	ggagt	a ga	aaatt	caaac	aag	gatt	taa	atgg	gaata	aaa a	atcct	ttat	3 ;	120
45	aggg	gcgat	cac a	atcag	gaaaa	ac tt	caat	ccas	g ata	acaa	acat	cctt	cacgg	gct 1	tttgo	gtac	3 ;	180
	atco	ctgag	gag	tcaga	aaact	c tt	ccta	aacts	g tco	ccgas	ggaa	atat	caac	gaa a	actat	gtac	a :	240
50	cttt	ggca	aga a	agttg	gatac	et ga	agaaa	aaatt	ctt	ttga	aatc	ggga	agata	act 1	tacad	gctc	C :	300
	ttgg	gaaaa	att (cagt	ggtca	at ga	aaact	ggga	a aag	gaact	tac	atca	agttt	tat (cagco	agtt	a :	360
55	tcga	atgaa	atg 1	tcato	cgtct	t to	gggtt	gtts	g ato	gttgg	gatc	agta	agaad	cgt a	aacto	cagac	3 .	420
	gcac	cagaa	agg i	tcago	ccaga	aa ca	ataat	ccta	a cco	cttgt	ggc	gtad	cgato	ctc a	aaaga	agcc	a '	480
	acta	atcct	iga a	agtta	attcs	gt ta	acaco	gtttc	c ccs	gataa	attc	catt	gaga	aag (cccac	cattt	C .	540
60	taac	ataaa	att 1	tacco	attaa	at at	tata	aaaq	cac	ataa	aata	caqt	gaaa	act 1	tttat	ctac	a	600

	tcac	caaa	ctt	cctca	accaa	ac go	ccct	catas	g tat	cacga	atca	taag	gaata	aag	gacto	cctgga	6	60
5	cggt	acaa	aga	ttcaa	acttt	it g	gacca	agata	a aaa	aagto	caaa	gttt	gaco	cac	gatgg	gacaac	7	20
J	agta	atgaa	ata	cgaag	gcago	ga at	tctto	cggga	ı tta	accct	tgg	agag	gagag	gat a	aacga	aaggaa	7	80
	atc	gtcaa	agc	gtact	tattt	a gi	tagca	aagta	a gta	accaa	aact	tcad	cagca	atc a	aacad	ccaaag	8	40
10	aact	gaag	gca	aaaag	ggaag	gc aa	aagtt	taats	g caa	aatta	attt	ggga	agato	cgt :	ggtga	aatcca	9	00
	ccga	atgco	cat	aggct	ttagt	it ta	acgat	ccaa	a aaa	accaa	aaac	tato	cttct	tc :	gttga	agtcaa	9	60
45	atag	gcaaa	aag	agtat	tcats	gc t	ggaat	cacco	agg	gaaad	cact	aaad	caagg	gat a	aaaat	tgatg	10	20
15	taat	ctat	tca	caat	gcaga	ac t	tttco	ctttg	g gaa	acaga	atat	atc	gatt	gat a	agtca	aggata	10	80
	attt	gtgg	gtt	cctag	gcaaa	at g	gactt	ccac	c cto	ctgga	aaaa	ttct	igata	aaa	tttgt	cttta	11	40
20	caaa	agcca	acg	ttato	caaat	ta ti	tcaaa	agtca	a aca	attca	aaga	agca	aatto	gct (ggaad	ctaaat	12	00
	gtga	aaaag	gaa	tctt	taaca	aa at	tgaaa	acttt	gta	agaaa	aaat	acat	taata	atc	tgaat	caaaaa	12	60
25	gtca	ataaa	atg	tacca	ataaa	aa aa	aaaaa	aaaaa	a aaa	aaaa	aaaa	aaaa	aaaa	aaa a	aaaaa	aaaaaa	13	20
25	aaaa	aa															13	25
30	<210 <211 <212 <213 <400	> 1 2> 8>	49 350 PRT Lutz 49	omyia	a lor	ngipa	alpis	5										
	Met 1	Thr	Phe	Leu	Ile 5	Ile	Leu	Gly	Ala	Phe 10	Leu	Leu	Val	Gln	Ile 15	Ile		
40	Thr	Ala	Ser	Ala 20	Leu	Gly	Leu	Pro	Glu 25	Gln	Phe	Lys	Gly	Leu 30	Glu	Asp		
45	Leu	Pro	Lys 35	Lys	Pro	Leu	Ala	Glu 40	Thr	Tyr	Tyr	His	Glu 45	Gly	Leu	Asn		
50	Asp	Gly 50	Lys	Thr	Asp	Glu	Met 55	Val	Asp	Ile	Phe	Lys 60	Ser	Leu	Ser	Asp		
	Glu 65	Phe	Lys	Phe	Ser	Asp 70	Glu	Asn	Leu	Asp	Val 75	Gly	Glu	Glu	Lys	Asn 80		
55	Tyr	Lys	Lys	Arg	Asp 85	Ile	Thr	Gln	Asn	Ser 90	Val	Ala	Arg	Asn	Phe 95	Leu		
60	Ser	Asn	Val	Lys	Gly	Ile	Pro	Ser	Met	Pro	Ser	Leu	Pro	Ser	Met	Pro		

				100					105					110		
5	Ser	Met	Pro 115	Ser	Ile	Pro	Ser	Leu 120	Trp	Ser	Ser	Gln	Thr 125	Gln	Ala	Ala
10	Pro	Asn 130	Thr	Ala	Leu	Ala	Leu 135	Pro	Glu	Ser	Asp	Tyr 140	Ser	Leu	Leu	Asp
	Met 145	Pro	Asn	Ile	Val	Lys 150	Asn	Phe	Leu	Lys	Glu 155	Thr	Arg	Asp	Leu	Tyr 160
15	Asn	Asp	Val	Gly	Ala 165	Phe	Leu	Lys	Ala	Ile 170	Thr	Glu	Ala	Leu	Thr 175	Asn
20	Arg	Ser	Ser	Ser 180	Ser	Gln	Leu	Leu	Ser 185	Ser	Pro	Met	Val	Ser 190	Thr	Asn
25	Lys	Thr	Lys 195	Glu	Phe	Ile	Arg	Asn 200	Glu	Ile	Gln	Lys	Val 205	Arg	Lys	Val
30	Arg	Asn 210	Phe	Val	Gln	Glu	Thr 215	Leu	Gln	Lys	Ile	Arg 220	Asp	Ile	Ser	Ala
	Ala 225	Ile	Ala	Lys	Lys	Val 230	Lys	Ser	Ser	Glu	Cys 235	Leu	Ser	Asn	Leu	Thr 240
35	Asp	Ile	Lys	Gly	Leu 245	Val	Ser	Asp	Gly	Ile 250	Asn	Cys	Leu	Lys	Glu 255	Lys
40	Phe	Asn	Asp	Gly 260	Lys	Arg	Ile	Ile	Leu 265	Gln	Leu	Tyr	Asn	Asn 270	Leu	Leu
45	Lys	Gly	Leu 275	Lys	Ile	Pro	Asn	Asp 280	Leu	Met	Val	Glu	Leu 285	Lys	Lys	Cys
50	Asp	Thr 290	Asn	Gln	Asn	Asn	Thr 295	Leu	Gly	Arg	Ile	Ile 300	Cys	Tyr	Phe	Leu
	Thr 305	Pro	Leu	Gln	Leu	Glu 310	Lys	Glu	Gln	Ile	Leu 315	Leu	Pro	Val	Glu	Phe 320
55	Ile	Lys	Arg	Ile	Leu 325	Glu	Leu	Thr	His	Tyr 330	Phe	Ser	Thr	Met	Lys 335	Glu
60	Asp	Leu	Ile	Asn	Cys	Gly	Ile	Thr	Thr	Ile	Ala	Ser	Ile	Thr		

5	<210><211><211><212><213>	50 1275 ADN Lutz	s zomyia longi	ipalpis				
10	<400> ctttaaa	50 agca	aaaattttgt	gggaaaggaa	gttacccgga	gatgacgttt	ctaattatac	60
	ttggtgd	catt	tctccttgtt	caaattatta	cagcttcagc	tttaggattg	cctgaacagt	120
4.5	ttaaagg	gttt	agaggattta	cctaaaaaac	ctttggcaga	gacttattat	cacgaaggat	180
15	tgaatga	atgg	aaaaacggat	gaaatggtgg	atattttaa	aagtcttagc	gatgaattta	240
	aattcag	gtga	tgaaaattta	gatgttggtg	aggagaaaaa	ttacaagaaa	cgtgatataa	300
20	cccaaaa	attc	agtggcaagg	aacttcctat	caaacgtaaa	gggaattcct	tcaatgccat	360
	cactccc	cttc	aatgccttca	atgccatcaa	ttccttcact	ttggtcaagt	cagacacagg	420
05	cggcaco	caaa	taccgcactt	gcccttcctg	aatctgatta	ttcccttcta	gatatgccga	480
25	atattgt	gaa	aaatttccta	aaggaaacaa	gagacctcta	taacgatgtt	ggagcttttc	540
	ttaaggo	caat	tacagaagct	ttaacaaata	gatcttcatc	atctcaactt	ctttcctccc	600
30	caatggt	gag	cacgaataaa	accaaagaat	ttattcggaa	tgaaatacaa	aaagtccgaa	660
	aagtgag	gaaa	tttcgtccag	gaaactcttc	agaaaatccg	agacatttct	gctgctattg	720
25	ccaaaaa	aggt	aaaatcatca	gaatgtctgt	ccaatcttac	ggacatcaaa	ggacttgtat	780
35	cagacgg	gaat	taattgttta	aaggaaaaat	tcaatgatgg	aaaacgaatt	atcctgcaat	840
	tgtacaa	ataa	tttactaaaa	ggactcaaaa	ttccaaatga	cctaatggtt	gaattgaaga	900
40	aatgtga	atac	aaatcaaaac	aatactttgg	gaagaataat	ctgttatttt	ttgacaccat	960
	tgcaact	zgga	aaaagaacaa	attcttctac	ctgtagaatt	tataaagcgc	attcttgaat	1020
45	taaccca	acta	cttttccaca	atgaaagaag	atcttatcaa	ctgtggcatc	acaacgattg	1080
45	catccat	tac	gtaaaaaatg	gaaaaatgtg	ccggtgaaat	gcttgaaatc	accaaagaaa	1140
	tttcato	cgca	aataacagtt	ccagaataac	caaattttaa	tgattacttc	tcaaggaaaa	1200
50	tactaco	caaa	aggcattaat	taaaacgatg	ttttttataa	acaatgtaag	aaaaaaaaa	1260
	aaaaaaa	aaaa	aaaaa					1275
55	<210><211><212><213>	51 60 PRT Lutz	zomyia longi	ipalpis				
60	<400>	51						

	Met 1	Leu	Lys	Ile	Val 5	Leu	Phe	Leu	Ser	Val 10	Leu	Ala	Val	Leu	Val 15	Ile	
5	Cys	Val	Ala	Ala 20	Met	Pro	Gly	Ser	Asn 25	Val	Pro	Trp	His	Ile 30	Ser	Arg	
10	Glu	Glu	Leu 35	Glu	Lys	Leu	Arg	Glu 40	Ala	Arg	Lys	Asn	His 45	Lys	Ala	Leu	
15	Glu	Lys 50	Ala	Ile	Asp	Glu	Leu 55	Ile	Asp	Lys	Tyr	Leu 60					
20	<210 <211 <212 <213	L> 4 2> A	52 413 ADN Lutzo	omyia	a lor	ngipa	alpis	5									
25		taato														tttgg	60
				_		_										ttcac aggcaa	120
30																aacgg	240
					-											caaaat	300
	cagt	ctga	ata t	tttt	ttaa	at tt	gaaa	aaaa	a tat	tgaa	aaat	ttta	aacta	att t	tgtga	aattt	360
35	aaat	caaat	caa a	agaat	igtca	ag aa	agcaa	aaaa	a aaa	aaaa	aaaa	aaaa	aaaa	aaa a	aaa		413
	<210 <211 <212 <213	L> 1 2> 1		omyia	a lor	ngipa	alpis	5									
45	<400)> [53														
	Met 1	Lys	Phe	Ser	Cys 5	Pro	Val	Phe	Val	Ala 10	Ile	Phe	Leu	Leu	Cys 15	Gly	
50	Phe	Tyr	Arg	Val 20	Glu	Gly	Ser	Ser	Gln 25	Cys	Glu	Glu	Asp	Leu 30	Lys	Glu	
55	Glu	Ala	Glu 35	Ala	Phe	Phe	Lys	Asp 40	Cys	Asn	Glu	Ala	Lys 45	Ala	Asn	Pro	
60	Gly	Glu 50	Tyr	Glu	Asn	Leu	Thr 55	Lys	Glu	Glu	Met	Phe 60	Glu	Glu	Leu	Lys	

	Glu Tyr Gly Val Ala Asp Thr Asp Met Glu 65 70	1 Thr Val Tyr Lys Leu Val 75 80
5	5 Glu Glu Cys Trp Asn Glu Leu Thr Thr Thr 85 90	r Asp Cys Lys Arg Phe Leu 95
10	10 Glu Glu Ala Glu Cys Phe Lys Lys Asr 100 105	n Ile Cys Lys Tyr Phe Pro 110
15	Asp Glu Val Lys Leu Lys Lys Lys 15 120	
20	<210> 54 <211> 428 20 <212> ADN <213> Lutzomyia longipalpis	
25	<400> 54 aattttcacc atgaagtttt cttgcccagt tttcgt 25	ttgca attttccttt tgtgcggatt 60
	ttatcgtgtt gaggggtcat cacaatgtga agaaga	attta aaagaagaag ctgaagcttt 120
	ctttaaggat tgcaatgaag caaaagccaa tcctg	gtgaa tacgagaatc tcaccaaaga 180
30	30 agaaatgttt gaagaattga aagaatatgg agttgo	ctgac acagacatgg agacagttta 240
	caaacttgtg gaagaatgtt ggaatgaatt aacaac	caacg gattgtaaga gatttctcga 300
35	agaggctgaa tgcttcaaga agaagaatat ttgtaa	aatat ttcccagatg aagtgaaatt 360
	gaagaagaaa taaattttta gcttgaaaaa aaaaaa	aaaaa aaaaaaaaaa aaaaaaaaaa 420
	aaaaaaaa	428
40	<210> 55 <211> 572 <212> PRT <213> Lutzomyia longipalpis	
45	45 <400> 55	
50	Met Leu Phe Phe Leu Asn Phe Phe Val Leu 1 5 10 50	ı Val Phe Ser Ile Glu Leu 15
	Ala Leu Leu Thr Ala Ser Ala Ala Ala Glu 20 25	a Asp Gly Ser Tyr Glu Ile 30
55	55 Ile Ile Leu His Thr Asn Asp Met His Ala 35 40	a Arg Phe Asp Gln Thr Asn 45
60	60 Ala Gly Ser Asn Lys Cys Gln Glu Lys Asr	o lag The Ala Ser Lag Cag

		50					55					60				
5	Tyr 65	Gly	Gly	Phe	Ala	Arg 70	Val	Ser	Thr	Met	Val 75	Lys	Lys	Phe	Arg	Glu 80
10	Glu	Asn	Gly	Ser	Ser 85	Val	Leu	Phe	Leu	Asn 90	Ala	Gly	Asp	Thr	Tyr 95	Thr
	Gly	Thr	Pro	Trp 100	Phe	Thr	Leu	Tyr	Lys 105	Glu	Thr	Ile	Ala	Thr 110	Glu	Met
15	Met	Asn	Ile 115	Leu	Arg	Pro	Asp	Ala 120	Ala	Ser	Leu	Gly	Asn 125	His	Glu	Phe
20	Asp	Lys 130	Gly	Val	Glu	Gly	Leu 135	Val	Pro	Phe	Leu	Asn 140	Gly	Val	Thr	Phe
25	Pro 145	Ile	Leu	Thr	Ala	Asn 150	Leu	Asp	Thr	Ser	Gln 155	Glu	Pro	Thr	Met	Thr
30	Asn	Ala	Lys	Asn	Leu 165	Lys	Arg	Ser	Met	Ile 170	Phe	Thr	Val	Ser	Gly 175	His
	Arg	Val	Gly	Val 180	Ile	Gly	Tyr	Leu	Thr 185	Pro	Asp	Thr	Lys	Phe 190	Leu	Ser
35	Asp	Val	Gly 195	Lys	Val	Asn	Phe	Ile 200	Pro	Glu	Val	Glu	Ala 205	Ile	Asn	Thr
40	Glu	Ala 210	Gln	Arg	Leu	Lys	Lys 215	Glu	Glu	Asn	Ala	Glu 220	Ile	Ile	Ile	Val
45	Val 225	Gly	His	Ser	Gly	Leu 230	Ile	Lys	Asp	Arg	Glu 235	Ile	Ala	Glu	Lys	Cys 240
50	Pro	Leu	Val	Asp	Ile 245	Ile	Val	Gly	Gly	His 250	Ser	His	Thr	Phe	Leu 255	Tyr
	Thr	Gly	Ser	Gln 260	Pro	Asp	Arg	Glu	Val 265	Pro	Val	Asp	Val	Tyr 270	Pro	Val
55	Val	Val	Thr 275	Gln	Ser	Ser	Gly	Lys 280	Lys	Val	Pro	Ile	Val 285	Gln	Ala	Tyr
60	Cys	Phe	Thr	Lys	Tyr	Leu	Gly	Tyr	Phe	Lys	Val	Thr	Ile	Asn	Gly	Lys

		290					295					300				
5	Gly 305	Asn	Val	Val	Gly	Trp 310	Thr	Gly	Gln	Pro	Ile 315	Leu	Leu	Asn	Asn	Asn 320
10	Ile	Pro	Gln	Asp	Gln 325	Glu	Val	Leu	Thr	Ala 330	Leu	Glu	Lys	Tyr	Arg 335	Glu
	Arg	Val	Glu	Asn 340	Tyr	Gly	Asn	Arg	Val 345	Ile	Gly	Val	Ser	Arg 350	Val	Ile
15	Leu	Asn	Gly 355	Gly	His	Thr	Glu	Cys 360	Arg	Phe	His	Glu	Cys 365	Asn	Met	Gly
20	Asn	Leu 370	Ile	Thr	Asp	Ala	Phe 375	Val	Tyr	Ala	Asn	Val 380	Ile	Ser	Thr	Pro
25	Met 385	Ser	Thr	Asn	Ala	Trp 390	Thr	Asp	Ala	Ser	Val 395	Val	Leu	Tyr	Gln	Ser 400
30	Gly	Gly	Ile	Arg	Ala 405	Pro	Ile	Asp	Pro	Arg 410	Thr	Ala	Ala	Gly	Ser 415	Ile
	Thr	Arg	Leu	Glu 420	Leu	Asp	Asn	Val	Leu 425	Pro	Phe	Gly	Asn	Ala 430	Leu	Tyr
35	Val	Val	Lys 435	Val	Pro	Gly	Asn	Val 440	Leu	Arg	Lys	Ala	Leu 445	Glu	His	Ser
40	Val	His 450	Arg	Tyr	Ser	Asn	Thr 455	Ser	Gly	Trp	Gly	Glu 460	Phe	Pro	Gln	Val
45	Ser 465	Gly	Leu	Lys	Ile	Arg 470	Phe	Asn	Val	Asn	Glu 475	Glu	Ile	Gly	Lys	Arg 480
50	Val	Lys	Ser	Val	Lys 485	Val	Leu	Cys	Ser	Asn 490	Cys	Ser	Gln	Pro	Glu 495	Tyr
	Gln	Pro	Leu	Arg 500	Asn	Lys	Lys	Thr	Tyr 505	Asn	Val	Ile	Met	Asp 510	Ser	Phe
55	Met	Lys	Asp 515	Gly	Gly	Asp	Gly	Tyr 520	Ser	Met	Phe	Lys	Pro 525	Leu	Lys	Ile
60	Ile	Lys	Thr	Leu	Pro	Leu	Gly	Asp	Ile	Glu	Thr	Val	Glu	Ala	Tyr	Ile

	530		535		540		
5	Glu Lys Me		le Phe Pro 2	Ala Val Glu 555	Gly Arg Ile	e Thr Val 560	
10	Leu Gly Gl	y Leu Gln Ly 565	ys Ser Asp (Glu Asp Trp 570	His		
	<210> 56 <211> 1839 <212> ADN <213> Lute	9 zomyia long:	ipalpis				
	<400> 56 agttgcaaga	atttcttcat	tgcgttaaga	tgttgtttt	ccttaacttt	tttgtgctgg	60
20	tgttcagcat	agaactggcg	ttgttaacag	catcagcagc	agcagaagac	ggcagctatg	120
	agatcataat	tcttcacacc	aatgatatgc	acgcgcgttt	tgatcaaacc	aatgctggaa	180
25	gcaacaaatg	ccaagaaaaa	gacaagattg	cttccaaatg	ctacggagga	tttgcaagag	240
23	tttcaacaat	ggtgaaaaaa	ttccgagaag	aaaatggcag	cagtgtcttg	ttcttgaatg	300
	ctggtgacac	gtatacaggt	accccatggt	ttaccctcta	caaggagacc	attgcaacgg	360
30	agatgatgaa	catccttcgt	ccagatgcag	cctcactggg	aaatcatgaa	ttcgacaaag	420
	gagtagaagg	actcgtgcca	ttcctcaatg	gtgtcacctt	ccctatttta	acagcgaatt	480
35	tggacacttc	tcaagagcca	acaatgacca	atgctaaaaa	tctcaaacgc	tcaatgattt	540
33	ttacggtttc	cgggcacaga	gttggtgtaa	ttggctacct	aacgcctgat	acaaaattcc	600
	tctcggacgt	tggtaaagtt	aattttattc	cggaagttga	agccatcaat	acggaagcac	660
40	agcgtctgaa	gaaagaggaa	aatgccgaaa	taatcatcgt	tgttggacat	tcagggttga	720
	taaaagatcg	agaaattgca	gagaaatgcc	cactggttga	cataattgtt	ggaggacatt	780
45	cacacacatt	cctctacaca	ggaagtcagc	ctgatcgtga	ggttcctgta	gacgtttatc	840
45	ctgttgttgt	gacccaatcc	agtgggaaga	aagttccaat	tgttcaagcc	tattgcttta	900
	caaagtattt	ggggtacttt	aaagtgacga	tcaacggaaa	aggaaatgtt	gtgggatgga	960
50	ctgggcagcc	aattctcctt	aataacaaca	ttccccaaga	tcaggaagtt	ctcactgctc	1020
	ttgaaaagta	cagagaacgc	gtggaaaact	atggaaatcg	cgtaattgga	gtttcccgtg	1080
	taattctcaa	tggggggcat	actgaatgtc	gtttccatga	atgcaatatg	ggtaatctca	1140
55	tcacggacgc	ttttgtgtat	gccaatgtaa	tcagtacacc	aatgagtacg	aatgcctgga	1200
	cagatgcaag	tgttgttctg	tatcaaagtg	gtggcattcg	tgccccaatt	gatcctcgta	1260
60	ccgcggcagg	gagcatcaca	cgcctcgagt	tggacaatgt	tctaccattt	gggaatgcac	1320

	tgtacgtcgt aaaagttcct gggaatgtct tacgcaaagc tttggaacat tcagttcatc	1380
5	gatactccaa cacttcggga tggggagaat ttccacaagt ttcggggcta aagattcgtt	1440
3	ttaacgtcaa tgaagaaatt ggaaaacgcg taaagtccgt taaagttctc tgtagcaatt	1500
	gctctcaacc tgaataccaa ccactgagaa ataaaaaaac ttacaacgtt atcatggaca	1560
10	gttttatgaa ggatggaggt gatgggtata gcatgttcaa gcccttgaag atcatcaaga	1620
	ccctcccact gggagatatt gaaacagtag aagcttatat tgagaaaatg ggccccattt	1680
15	tcccagcagt cgagggaagg atcactgttc ttgggggact tcaaaaatca gatgaggatt	1740
.0	ggcattagaa acatcctgga cgttatggaa agaataaaag aaggatcata gaaaaaaaaa	1800
	aaaaaaaaat aaaaaaaaaa aaaaaaaaaa aaaaaaa	1839
20	<210> 57 <211> 86 <212> PRT <213> Lutzomyia longipalpis	
25	<400> 57	
30	Met Lys Gln Ile Leu Leu Ile Ser Leu Val Val Ile Leu Ala Val Leu 1 5 10 15	
	Ala Phe Asn Val Ala Glu Gly Cys Asp Ala Thr Cys Gln Phe Arg Lys 20 25 30	
35	Ala Ile Glu Asp Cys Lys Lys Lys Ala Asp Asn Ser Asp Val Leu Gln 35 40 45	
40	Thr Ser Val Gln Thr Thr Ala Thr Phe Thr Ser Met Asp Thr Ser Gln 50 55 60	
45	Leu Pro Gly Asn Asn Val Phe Lys Ala Cys Met Lys Glu Lys Ala Lys 65 70 75 80	
50	Glu Phe Arg Ala Gly Lys 85	
55	<210> 58 <211> 419 <212> ADN <213> Lutzomyia longipalpis	
-	<400> 58 gtcagtgatc tgataagtta ttaaaatgaa gcaaatcctt ctaatctctt tggtggtgat	60
60	tettgeegtg ettgeettea atgttgetga gggetgtgat geaacatgee aatttegeaa	120

	agcc	ata	gaa	gact	gcaag	ga ag	gaagg	gegga	a taa	atago	gat	gttt	tgca	aga	CLLCI	gtaca	a	T80
5	aaca	act	gca	acatt	caca	at ca	aatgg	gatac	c ato	ccaa	acta	ccts	ggaaa	ata	atgto	cttcaa	а	240
Ū	agca	itgc	atg	aagga	agaag	gg ct	caagg	gaatt	tag	gggca	agga	aagt	caaga	aga	ttgag	ggaaaa	Э	300
	ttgt	agc	cga	agaga	agaag	gg aa	aggaa	aagto	c cca	atatt	ttg	ttts	gttaa	att	gtaac	gaati	t	360
10	ttgc	gaa	aaa	aataa	aaata	at ta	atgca	actco	c aaa	aaaa	aaaa	aaaa	aaaaa	aaa	aaaaa	aaaaa		419
15	<210 <211 <212 <213	.> !>	59 84 PRT Lutz	omyia	a lor	ngipa	alpis	5										
	<400)>	59															
20	Met 1	Asn	Val	Leu	Phe 5	Val	Ser	Phe	Thr	Leu 10	Thr	Ile	Leu	Leu	Leu 15	Cys		
25	Val	Lys	Ala	Arg 20	Pro	Glu	Asp	Phe	Val 25	Ala	Leu	Gln	Asp	Gln 30	Ala	Asn		
30	Phe	Gln	Lys 35	Cys	Leu	Glu	Gln	Tyr 40	Pro	Glu	Pro	Asn	Gln 45	Ser	Gly	Glu		
	Val	Leu 50	Ala	Cys	Leu	Lys	Lys 55	Arg	Glu	Gly	Ala	Lys 60	Asp	Phe	arg	Glu		
35	Lys 65	Arg	Ser	Leu	Asp	Asp 70	Ile	Glu	Gly	Thr	Phe 75	Gln	Glu	Ser	Gly	Asn 80		
40	Leu	Trp	Gly	Ala														
45	<210 <211 <212 <213	.> !> .		omyia	a lor	ngipa	alpis	5										
50	<400 tatt			aatto	ctgtg	gt aa	aatg	gaac <u>c</u>	g tto	ctttt	cgt	gtct	ittea	acg	ctcac	caatto	C	60
	ttct	tct	ctg	tgtta	aaggo	ca co	ggcca	agaag	g att	tcgt	cagc	tctt	cagg	gat	caago	ctaati	t	120
55	tcca	ıgaa	atg	cctc	gaaca	aa ta	atcca	agaad	c caa	aatca	aatc	tgga	agaag	gtt	cttgo	egtge	C	180
-	tcaa	ıgaa	gcg	cgaag	ggtgo	cc aa	aagat	ttcc	999	gaaaa	agag	gago	cctgg	gat	gacat	agaag	3	240
	ggac	ttt	cca	agagt	ctgg	ga aa	atcto	ctggg	g gtg	gcata	agga	agct	caga	agg	actto	ctaato	C	300
60	aato	tgt	gag	aagag	gaaco	cc aa	acggo	ctaga	a gaa	aaatt	taa	ggaa	aaata	aaa	gaaat	taat	3	360

	aago	catt	aaa a	aaaa	aaaaa	aa aa	aaaa	aaaa	a aaa	aaaa	aaaa	aaaa	aaaa	aaa a	aaaa	aaaaaa	420
5	aaaa	aaaa	aa														429
10	<210 <211 <212 <213	L> 2> :	61 626 PRT Lutzo	omyia	a lor	ngipa	alpis	3									
	<400)>	61														
15		Lys	Ile	Thr	Val 5	Ile	Leu	Phe	Thr	Gly 10	Phe	Thr	Ile	Ala	Leu 15	Val	
20	Ser	Ser	Ala	Val 20	Leu	Lys	Lys	Asn	Gly 25	Glu	Thr	Ile	Glu	Glu 30	Glu	Glu	
	Val	Arg	Ala 35	Glu	Gln	Arg	Leu	Arg 40	Glu	Ile	Asn	Glu	Glu 45	Leu	Asp	Arg	
25	Arg	Lys 50	Asn	Ile	Asn	Thr	Val 55	Ala	Ala	Trp	Ala	Tyr 60	Ala	Ser	Asn	Ile	
30	Thr 65	Glu	Val	Asn	Leu	Lys 70	Asn	Met	Asn	Asp	Val 75	Ser	Val	Glu	Thr	Ala 80	
35	Lys	Tyr	Tyr	Lys	Glu 85	Leu	Ala	Ser	Glu	Leu 90	Lys	Gly	Phe	Asn	Ala 95	Lys	
40	Glu	Tyr	Lys	Ser 100	Glu	Asp	Leu	Lys	Arg 105	Gln	Ile	Lys	Lys	Leu 110	Ser	Lys	
	Leu	Gly	Tyr 115	Ser	Ala	Leu	Pro	Ser 120	Glu	Lys	Tyr	Lys	Glu 125	Leu	Leu	Glu	
45	Ala	Ile 130	Thr	Trp	Met	Glu	Ser 135	Asn	Tyr	Ala	Lys	Val 140	Lys	Val	Cys	Ser	
50	Tyr 145	Lys	Asp	Pro	Lys	Lys 150	Cys	Asp	Leu	Ala	Leu 155	Glu	Pro	Glu	Ile	Thr 160	
55	Glu	Ile	Leu	Ile	Lys 165	Ser	Arg	Asp	Pro	Glu 170	Glu	Leu	Lys	Tyr	Tyr 175	Trp	
60	Lys	Gln	Trp	Tyr 180	Asp	Lys	Ala	Gly	Thr 185	Pro	Thr	Arg	Glu	Ser 190	Phe	Asn	

	Lys	Tyr	Val 195	Gln	Leu	Asn	Arg	Glu 200	Ala	Ala	Lys	Leu	Asp 205	Gly	Phe	Tyr
5	Ser	Gly 210	Ala	Glu	Ser	Trp	Leu 215	Asp	Glu	Tyr	Glu	Asp 220	Glu	Thr	Phe	Glu
10	Lys 225	Gln	Leu	Glu	Asp	Ile 230	Phe	Ala	Gln	Ile	Arg 235	Pro	Leu	Tyr	Glu	Gln 240
15	Leu	His	Ala	Tyr	Val 245	Arg	Phe	Lys	Leu	Arg 250	Glu	Lys	Tyr	Gly	Asn 255	Asp
20	Val	Val	Ser	Glu 260	Lys	Gly	Pro	Ile	Pro 265	Met	His	Leu	Leu	Gly 270	Asn	Met
	Trp	Gly	Gln 275	Thr	Trp	Ser	Glu	Val 280	Ala	Pro	Ile	Leu	Val 285	Pro	Tyr	Pro
25	Glu	Lys 290	Lys	Leu	Leu	Asp	Val 295	Thr	Asp	Glu	Met	Val 300	Lys	Gln	Gly	Tyr
30	Thr 305	Pro	Ile	Ser	Met	Phe 310	Glu	Lys	Gly	Asp	Glu 315	Phe	Phe	Gln	Ser	Leu 320
35	Asn	Met	Thr	Lys	Leu 325	Pro	Lys	Thr	Phe	Trp 330	Glu	Tyr	Ser	Ile	Leu 335	Glu
40	Lys	Pro	Gln	Asp 340	Gly	Arg	Glu	Leu	Ile 345	Cys	His	Ala	Ser	Ala 350	Trp	Asp
	Phe	Tyr	Thr 355	Lys	Asp	Asp	Val	Arg 360	Lys	Gln	Cys	Thr	Arg 365	Val	Thr	Met
45	Asp	Gln 370	Phe	Phe	Thr	Ala	His 375	His	Glu	Leu	Gly	His 380	Ile	Gln	Tyr	Tyr
50	Leu 385	Gln	Tyr	Gln	His	Leu 390	Pro	Ser	Val	Tyr	Arg 395	Glu	Gly	Ala	Asn	Pro 400
55	Gly	Phe	His	Glu	Ala 405	Val	Gly	Asp	Val	Leu 410	Ser	Leu	Ser	Val	Ser 415	Ser
60	Pro	Lys	His	Leu 420	Glu	Lys	Val	Gly	Leu 425	Leu	Lys	Asp	Phe	Lys 430	Phe	Asp

	Glu	Glu	Ser 435	Gln	Ile	Asn	Gln	Leu 440	Leu	Asn	Leu	Ala	Leu 445	Asp	Lys	Met	
5	Ala	Phe 450	Leu	Pro	Phe	Ala	Tyr 455	Thr	Ile	Asp	Lys	Tyr 460	Arg	Trp	Gly	Val	
10	Phe 465	Arg	Gly	Glu	Ile	Ser 470	Pro	Ser	Glu	Tyr	Asn 475	Cys	Lys	Phe	Trp	Glu 480	
15	Met	Arg	Ser	Tyr	Tyr 485	Gly	Gly	Ile	Glu	Pro 490	Pro	Ile	Ala	Arg	Ser 495	Glu	
20	Ser	Asp	Phe	Asp 500	Pro	Pro	Ala	Lys	Tyr 505	His	Ile	Ser	Ser	Asp 510	Val	Glu	
	Tyr	Leu	Arg 515	Tyr	Leu	Val	Ser	Phe 520	Ile	Ile	Gln	Phe	Gln 525	Phe	His	Gln	
25	Ala	Val 530	Cys	Gln	Lys	Thr	Gly 535	Gln	Phe	Val	Pro	Asn 540	Asp	Pro	Glu	Lys	
30	Thr 545	Leu	Leu	Asn	Cys	Asp 550	Ile	Tyr	Gln	Ser	Ala 555	Glu	Ala	Gly	Asn	Ala 560	
35	Phe	Lys	Glu	Met	Leu 565	Lys	Leu	Gly	Ser	Ser 570	Lys	Pro	Trp	Pro	Asp 575	Ala	
40	Met	Glu	Ile	Leu 580	Thr	Gly	Gln	Arg	Lys 585	Met	Asp	Ala	Ser	Ala 590	Leu	Ile	
	Glu	Tyr	Phe 595	Arg	Pro	Leu	Ser	Glu 600	Trp	Leu	Gln	Lys	Lys 605	Asn	Lys	Glu	
45	Leu	Gly 610	Ala	Tyr	Val	Gly	Trp 615	Asp	Lys	Ser	Thr	Lys 620	Cys	Val	Lys	Asn	
50	Val 625	Ser															
55	<210 <211 <212 <213	L> 2 2> 1	52 2121 ADN Lutzo	omyia	a lor	ngipa	alpis	5									
60	<400 gtat		52 aag t	tatca	attca	aa gt	cgaat	catt	gg g	ctcc	gtaa	tttg	gtaca	aaa a	agaaa	aaaaa	60

	agttgataaa	atcatgaaaa	tcactgtgat	tttattcacg	ggatttacaa	ttgccctcgt	120
5	gagtagtgct	gtgcttaaga	aaaacggtga	aactattgaa	gaagaagaag	taagagctga	180
J	gcaacgactt	agagagatca	atgaggaact	tgatcgtagg	aagaatatca	atactgtagc	240
	cgcttgggct	tatgcatcca	atattactga	ggtcaatctc	aagaacatga	atgatgtgtc	300
10	ggttgaaacc	gcgaaatact	acaaggaact	tgcatctgaa	ttgaagggat	tcaatgccaa	360
	ggaatacaag	agtgaggatc	tgaagagaca	aattaagaag	ctaagcaagt	tgggatatag	420
15	tgctttacca	tctgagaagt	ataaggagct	tttggaagct	atcacatgga	tggaatcgaa	480
15	ttatgcaaaa	gtgaaagttt	gctcatacaa	ggatccaaag	aaatgtgatt	tagcacttga	540
	acctgaaatt	acggaaatcc	ttattaaaag	tcgagatcct	gaggaactta	aatattattg	600
20	gaaacaatgg	tacgacaaag	ctggcacacc	aactcgagag	agttttaata	agtatgtaca	660
	actaaatcgt	gaagcagcga	aattggatgg	attttattcg	ggtgcagaat	cttggcttga	720
25	tgaatatgaa	gatgagacat	ttgagaaaca	acttgaggat	atcttcgccc	aaattcgccc	780
20	actgtacgag	caactccatg	cttatgttag	attcaagctg	agggaaaagt	atggaaatga	840
	cgttgtttcg	gagaaaggtc	ccattccaat	gcatctcttg	gggaacatgt	ggggtcaaac	900
30	gtggagtgaa	gttgccccaa	ttttagtccc	ataccccgaa	aagaagctcc	tcgatgttac	960
	cgatgagatg	gttaagcagg	gatacacacc	aatttctatg	tttgaaaaag	gagacgaatt	1020
35	tttccaaagc	ttgaatatga	cgaaacttcc	aaaaaccttc	tgggagtaca	gtattttgga	1080
00	aaaaccccaa	gatggtaggg	aattgatctg	ccatgcaagt	gcatgggact	tctatacaaa	1140
	ggatgatgta	aggattaaac	agtgtaccag	agttacaatg	gatcaattct	tcacggctca	1200
40	tcatgagctt	ggtcacattc	aatattattt	gcaatatcaa	catttgccga	gtgtttacag	1260
	agaaggtgcc	aatccaggct	ttcacgaggc	tgttggggat	gttctctctc	tttcggtatc	1320
45	aagtcctaaa	catttggaaa	aagttggttt	gcttaaagac	ttcaaatttg	atgaagaatc	1380
.0	ccagataaat	caacttctaa	atttagctct	ggataaaatg	gcattcctcc	catttgccta	1440
	taccattgat	aaatatcgct	ggggtgtgtt	tcggggtgaa	atttcgccgt	ctgagtacaa	1500
50	ttgcaaattt	tgggaaatgc	gttcctacta	tggtggtata	gaaccaccaa	ttgcacgttc	1560
	tgagagtgat	tttgatccac	cagcaaaata	tcatatttca	tcggatgttg	agtacctcag	1620
55	gtatttggtt	tccttcatta	ttcagttcca	attccatcaa	gctgtgtgcc	aaaagactgg	1680
-5	tcagttcgta	ccgaatgatc	cggagaagac	tcttctaaat	tgtgacatct	accagagtgc	1740
	tgaggctggt	aatgccttca	aagaaatgct	caaattggga	tcctcaaaac	catggccaga	1800
60	tacaatacaa	attettacee	aacaaaacaa	aatooatoot	totocattaa	ttgagtagtt	1860

	ccgtccactc agtgagtggt tgcagaagaa gaataaggaa ctaggagctt atgttggctg	1920
5	ggacaaatct actaagtgtg tcaaaaacgt cagttaattt tttgtgagcc ctaaaaaata	1980
Э	ttcataacat ttcaatatga caaaatatat gattttcgtg aaaactaagc atgagtaagt	2040
	tttttttgtg aatttttagc agtttcattt cagaataaac gtcaaatttt taaaaaaaaa	2100
10	aaaaaaaaaa aaaaaaaaa a	2121
15	<210> 63 <211> 42 <212> PRT <213> Lutzomyia longipalpis	
	<400> 63	
20	Met Lys Thr Phe Ala Leu Ile Phe Leu Ala Leu Ala Val Phe Val Leu 1 5 10 15	
25	Cys Ile Asp Gly Ala Pro Thr Phe Val Asn Leu Leu Asp Asp Val Gln 20 25 30	
30	Glu Glu Val Glu Val Asn Thr Tyr Glu Pro 35 40	
35	<210> 64 <211> 463 <212> ADN <213> Lutzomyia longipalpis	
	<400> 64	
	tcagttagtt gactaacaaa ccacaataga gacactaaaa tgaagacatt cgccttaatc	60
40	ttcttggctc ttgctgtttt tgtgctctgc attgacggag ctccaacttt tgtgaattta	120
	ctggacgacg tacaggaaga ggtagaagtt aatacgtatg agccttagga agaaaatgtt	180
45	tgaggagttt caggcagagg cagagctttc ccagagaggg agcttttgcc ttgctgtaga	240
	tttttaaaaa tgaatcaatt tgattggagc aattacgcta tatttgtggg aatatttttg	300
	aattaaaaac taattatgga aattaatata taattttcag aatttcaata aattcatcaa	360
50	aattgtatta attaaaaaat attgtatgaa attcccaata aaagctttca aattaaaaaa	420
	aaaaaaaaaa aaaaaaaaaa aaaaaaaaaaa aaa	463
55	<210> 65 <211> 139 <212> PRT <213> Lutzomyia longipalpis	
60	<400> 65	

	Met 1	Asn	His	Leu	Cys 5	Phe	Ile	Ile	Ile	Ala 10	Leu	Phe	Phe	Leu	Val 15	Gln	
5	Gln	Ser	Leu	Ala 20	Glu	His	Pro	Glu	Glu 25	Lys	Cys	Ile	Arg	Glu 30	Leu	Ala	
10	Arg	Thr	Asp 35	Glu	Asn	Cys	Ile	Leu 40	His	Cys	Thr	Tyr	Ser 45	Tyr	Tyr	Gly	
15	Phe	Val 50	Asp	Lys	Asn	Phe	Arg 55	Ile	Ala	Lys	Lys	His 60	Val	Gln	Lys	Phe	
20	Lys 65	Lys	Ile	Leu	Val	Thr 70	Phe	Gly	Ala	Val	Pro 75	Lys	Lys	Glu	Lys	Lys 80	
	Lys	Leu	Leu	Glu	His 85	Ile	Glu	Ala	Cys	Ala 90	Asp	Ser	Ala	Asn	Ala 95	Asp	
25	Gln	Pro	Gln	Thr 100	Lys	Asp	Glu	Lys	Cys 105	Thr	Lys	Ile	Asn	Lys 110	Tyr	Tyr	
30	Arg	Cys	Val 115	Val	Asp	Gly	Lys	Ile 120	Leu	Pro	Trp	Asn	Ser 125	Tyr	Ala	Asp	
35	Ala	Ile 130	Ile	Lys	Phe	Asp	Lys 135	Thr	Leu	Asn	Val						
40	<210 <211 <212 <213	L> ! 2> <i>I</i>	56 579 ADN Lutzo	omyia	a lor	ngipa	alpis	5									
45	<400 ggc		66 atg g	gccgg	gggat	ta ga	aactt	taatt	gtt	igtta	aaaa	tgaa	atcad	ctt 🤉	gtgct	ttatt	60
																aatgt	120
-0																actac	180
50																aaatc	240
																attgag acaaaa	300 360
55																acaaaa	420
														_		aaaaaa	480
60		-														tgaat	540

	taad	cgcti	taa t	igcta	atati	ta aa	aaaa	aaaa	a aaa	aaaa	aaa						579
5	<210 <211 <212 <213	L> 4 2> I	67 446 PRT Lutzo	omyia	a loi	ngipa	alpis	5									
10	<400)> (67														
	Met 1	Lys	Ile	Ile	Phe 5	Leu	Ala	Ala	Phe	Leu 10	Leu	Ala	Asp	Gly	Ile 15	Trp	
15	Ala	Ala	Glu	Glu 20	Pro	Ser	Val	Glu	Ile 25	Val	Thr	Pro	Gln	Ser 30	Val	Arg	
20	Arg	His	Ala 35	Thr	Pro	Lys	Ala	Gln 40	Asp	Ala	Arg	Val	Gly 45	Ser	Glu	Ser	
25	Ala	Thr 50	Thr	Ala	Pro	Arg	Pro 55	Ser	Glu	Ser	Met	Asp 60	Tyr	Trp	Glu	Asn	
30	Asp 65	Asp	Phe	Val	Pro	Phe 70	Glu	Gly	Pro	Phe	Lys 75	Asp	Ile	Gly	Glu	Phe 80	
	Asp	Trp	Asn	Leu	Ser 85	Lys	Ile	Val	Phe	Glu 90	Glu	Asn	Lys	Gly	Asn 95	Ala	
35	Ile	Leu	Ser	Pro 100	Leu	Ser	Val	Lys	Leu 105	Leu	Met	Ser	Leu	Leu 110	Phe	Glu	
40	Ala	Ser	Ala 115	Ser	Gly	Thr		Thr 120	Gln	His	Gln	Leu	Arg 125	Gln	Ala	Thr	
45	Pro	Thr 130	Ile	Val	Thr	His	Tyr 135	Gln	Ser	Arg	Glu	Phe 140	Tyr	Lys	Asn	Ile	
50	Phe 145	Asp	Gly	Leu	Lys	Lys 150	Lys	Ser	Asn	Asp	Tyr 155	Thr	Val	His	Phe	Gly 160	
	Thr	Arg	Ile	Tyr	Val 165	Asp	Gln	Phe	Val	Thr 170	Pro	Arg	Gln	Arg	Tyr 175	Ala	
55	Ala	Ile	Leu	Glu 180	Lys	His	Tyr	Leu	Thr 185	Asp	Leu	Lys	Val	Glu 190	Asp	Phe	

 $60~{
m Ser}$ Lys Ala Lys Glu Thr Thr Gln Ala Ile Asn Ser Trp Val Ser Asn

			195					200					205			
5	Ile	Thr 210	Asn	Glu	His	Ile	Lys 215	Asp	Leu	Val	Lys	Glu 220	Glu	Asp	Val	Gln
10	Asn 225	Ser	Val	Met	Leu	Met 230	Leu	Asn	Ala	Val	Tyr 235	Phe	Arg	Gly	Leu	Trp 240
	Arg	Lys	Pro	Phe	Asn 245	Arg	Thr	Leu	Pro	Leu 250	Pro	Phe	His	Val	Ser 255	Ala
15	Asp	Glu	Ser	Lys 260	Thr	Thr	Asp	Phe	Met 265	Leu	Thr	Asp	Gly	Leu 270	Tyr	Tyr
20	Phe	Tyr	Glu 275	Ala	Lys	Glu	Leu	Asp 280	Ala	Lys	Ile	Leu	Arg 285	Ile	Pro	Tyr
25	Lys	Gly 290	Lys	Gln	Tyr	Ala	Met 295	Thr	Val	Ile	Leu	Pro 300	Asn	Ser	Lys	Ser
30	Gly 305	Ile	Asp	Ser	Phe	Val 310	Arg	Gln	Ile	Asn	Thr 315	Val	Leu	Leu	His	Arg 320
	Ile	Lys	Trp	Leu	Met 325	Asp	Glu	Val	Glu	Cys 330	Arg	Val	Ile	Leu	Pro 335	Lys
35	Phe	His	Phe	Asp 340	Met	Thr	Asn	Glu	Leu 345	Lys	Glu	Ser	Leu	Val 350	Lys	Leu
40	Gly	Ile	Ser 355	Gln	Ile	Phe	Thr	Ser 360	Glu	Ala	Ser	Leu	Pro 365	Ser	Leu	Ala
45	Arg	Gly 370	Gln	Gly	Val	Gln	Asn 375	Arg	Leu	Gln	Val	Ser 380	Asn	Val	Ile	Gln
50	Lys 385	Ala	Gly	Ile	Ile	Val 390	Asp	Glu	Lys	Gly	Ser 395	Thr	Ala	Tyr	Ala	Ala 400
	Ser	Glu	Val	Ser	Leu 405	Val	Asn	Lys	Phe	Gly 410	Asp	Asp	Glu	Phe	Val 415	Met
55	Phe	Asn	Ala	Asn 420	His	Pro	Phe	Leu	Phe 425	Thr	Ile	Glu	Asp	Glu 430	Thr	Thr
60	Gly	Ala	Ile	Leu	Phe	Thr	Gly	Lys	Val	Val	Asp	Pro	Thr	Gln		

		435		440		445		
5	<212> A	8 651 DN utzomyia	longi	ipalpis				
10	<222> (isc_featu 1636)(1 es a, c,	636)	o t				
15	<400> 6	-						60
					cgtgattgtg			60
					ccacaatgaa			120
20	ttctacta	gc ggatgg	tatt	tgggctgctg	aagaaccttc	agtggaaatt	gtaacaccac	180
	aatcagtg	cg gagaca	.cgct	acgccaaaag	cccaggacgc	gagggtagga	agtgaatccg	240
25	caacaaca	gc accaag	acca	agtgaatcaa	tggattactg	ggagaatgat	gatttcgtcc	300
	catttgag	gg tccatt	caag	gatattggag	aattcgactg	gaacctttcg	aagatcgttt	360
	ttgaggaa	aa caaagg	taat	gccatcttgt	cgccactctc	tgtgaagcta	ctaatgagtt	420
30	tgctcttc	ga ggccag	tgcg	tcaggtacct	tgacccagca	ccaactcaga	caagccactc	480
	ccaccatc	gt caccca	.ctat	cagtctcgag	aattttacaa	gaatatcttt	gacggtctca	540
0.5	agaaaaag	ag taacga	.ctac	acggttcact	ttggtacgag	aatctacgtg	gatcagtttg	600
35	tgacgcct	cg ccagag	atat	gctgccattt	tggagaagca	ttatctgact	gatctcaaag	660
	ttgaggac	tt ctcgaa	.ggca	aaagaaacaa	ctcaggcaat	caatagttgg	gtgtcaaaca	720
40	tcacaaat	ga gcacat	aaag	gatctcgtga	aggaggaaga	tgttcagaat	tcagttatgc	780
	tcatgctt	aa tgcagt	ctac	ttccgcggac	tctggcgcaa	gcctttcaat	cgtacactcc	840
	cactgccc	tt ccacgt	gagc	gctgatgagt	ccaagacgac	tgattttatg	ctaaccgatg	900
45	ggctctac	ta cttcta	.cgag	gcaaaggaat	tggatgctaa	gatcctcaga	attccttaca	960
	aaggtaaa	ca atacgc	aatg	actgtgatct	taccaaattc	caagagtggc	attgatagct	1020
50	ttgtgcgt	ca gattaa	.cacg	gtcctcctgc	acaggattaa	gtggttgatg	gatgaagtgg	1080
					ttgacatgac			1140
					catcagaggc			1200
55					tgtctaatgt			1260
00					ctgcgtcaga			1320
υU	itggagat	ya tgagtt	cgtc	atgttcaacg	ctaatcatcc	attcctcttt	acaattgagg	1380

	acga	aaaco	cac o	cggcg	gcaat	cc ct	tattt	cacgg	g gaa	aaagt	cgt	cgat	ccca	acg (caata	agggaa	1440
_	tgaa	aaago	cat t	ttcat	cgta	at ac	caact	tttt	ttt	taat	taa	ttat	tcct	ca 1	ttgaa	aggaca	1500
5	ttaa	ataga	agc a	atctt	cctca	ag ga	aaggo	cacto	c cts	gactt	tatt	ttta	actaa	aat 9	gtgat	ccttg	1560
	gaca	acata	aaa a	aaaaa	acago	ct gt	tactt	tcta	a ctt	ttta	ataa	tata	acgao	cca 1	tatt	gtgag	1620
10	gaaa	aaaa	aaa a	aaaa	anaaa	aa aa	aaaa	aaaaa	a a								1651
15	<210 <211 <212 <213	L>	59 L66 PRT Lutzo	omyia	a lor	ngipa	alpis	5									
	<400)> (59														
20	Met 1	Arg	Phe	Leu	Leu 5	Leu	Ala	Phe	Ser	Val 10	Ala	Leu	Val	Leu	Ser 15	Pro	
25	Thr	Phe	Ala	Lys 20	Pro	Gly	Leu	Trp	Asp 25	Ile	Val	Thr	Gly	Ile 30	Asn	Asp	
30	Met	Val	Lys 35	Asn	Thr	Ala	Asn	Ala 40	Leu	Lys	Asn	Arg	Leu 45	Thr	Thr	Ser	
	Val	Thr 50	Leu	Phe	Thr	Asn	Thr 55	Ile	Thr	Glu	Ala	Ile 60	Lys	Asn	Ala	Asn	
35	Ser 65	Ser	Val	Ser	Glu	Leu 70	Leu	Gln	Gln	Val	Asn 75	Glu	Thr	Leu	Thr	Asp 80	
40	Ile	Ile	Asn	Gly	Val 85	Gly	Gln	Val	Gln	Ser 90	Ala	Phe	Val	Asn	Ser 95	Ala	
45	Gly	Asn	Val	Val 100	Val	Gln	Ile	Val	Asp 105	Ala	Ala	Gly	Asn	Val 110	Leu	Glu	
50	Val	Val	Val 115	Asp	Glu	Ala	Gly	Asn 120	Ile	Val	Glu	Val	Ala 125	Gly	Thr	Ala	
	Leu	Glu 130	Thr	Ile	Ile	Pro	Leu 135	Pro	Gly	Val	Val	Ile 140	Gln	Lys	Ile	Ile	
55	Asp 145	Ala	Leu	Gln	Gly	Asn 150	Ala	Gly	Thr	Thr	Ser 155	Asp	Ser	Ala	Ser	Ser 160	
60	Thr	Val	Pro	Gln	Gln	Ser											

5	<210 <211 <212 <213	L> 2> 1	70 739 ADN Lutz	omyia	a lor	ngipa	alpis	5										
10	<400 tcag		70 agc	agatt	ttca	aa go	ctaaa	agaaa	a ctt	caact	caag	atgo	cgatt	ccc ·	ttctt	ttgg	jC	60
	ctto	ctcc	gtt	gcttt	tggts	gc tt	tcad	ccaa	c att	caac	caaa	ccag	ggtct	tt (gggad	catto	jt	120
	aact	ggt	att	aatga	atato	gg ta	aaaa	aatao	c tgo	cgaat	gca	ctca	aaaaa	atc 9	gtcta	acaa	ıc	180
15	ttct	gtg	aca	ttatt	caca	aa at	cacca	atcad	c cga	aagct	tata	aaaa	aatgo	caa a	attct	tctg	jt	240
	ttcs	ggaa	ctc	cttca	agcaa	ag to	caat	gaaad	c cct	tac	ggat	atta	attaa	atg 9	gtgta	aggac	a	300
20	agto	gcag	agt	gcctt	tgtg	ga at	tcag	gctgg	g aaa	atgt	igtt	gtg	caaat	tg	ttgat	gaag	JC	360
	tgga	aaat	gtt	ttgga	aagtt	g tt	tgttg	gatga	a ggo	ctgga	aaat	atc	gtgga	agg .	tagct	ggaa	ıc	420
	agca	attg	gaa	actat	catt	cc ca	actgo	cccgg	g tgt	tagt	gatt	caga	aagat	caa ·	ttgat	gcto	et	480
25	ccaa	agga	aat	gcagg	ggact	ta ca	atcgg	gatto	c ago	cttca	atca	act	gtgco	CCC a	aacaa	atctt	a	540
	acta	acaa	ccg	caat	gatgt	t gt	cctt	caac	g gag	gaatt	ttt	aaat	ttga	aat a	atcaa	aaato	CC	600
30	aaga	atga	aat	attca	agatt	t tt	ccaat	ccaat	t atg	gatad	cgaa	att	tgaa	aat '	tatt	ttcc	g	660
	acta	aaag	caa	tttgt	caaaa	ig ga	aaaa	ccaaa	a taa	aatat	ttg	aaat	tgta	aaa 🤉	gaaaa	aaaaa	ıa	720
35	aaaa	aaaa	aaa	aaaaa	aaaaa	ì												739
40	<210 <211 <212 <213	L>	71 109 PRT Lutz 71	omyia	a lor	ngipa	alpis	5										
		_		Tyr	Ser	Cve	T.011	Val	T.011	Val	Λla	т1Б	Dhe	T. 211	T.011	Λla		
45		Vai	цуб	ıyı	5	СУБ	пси	Vai	ПСИ	10	AIG	110	THE	пси	15	AΙα		
50	Gly	Pro	Tyr	Gly 20	Val	Val	Gly	Ser	Cys 25	Glu	Asn	Asp	Leu	Thr 30	Glu	Ala		
	Ala	Lys	Tyr 35	Leu	Gln	Asp	Glu	Cys 40	Asn	Ala	Gly	Glu	Ile 45	Ala	Asp	Glu		
55	Phe	Leu 50	Pro	Phe	Ser	Glu	Glu 55	Glu	Val	Gly	Glu	Ala 60	Leu	Ser	Asp	Lys		
60	Pro	Glu	Asn	Val	Gln	Glu	Val	Thr	Asn	Ile	Val	Arg	Gly	Cys	Phe	Glu		

	65			70				75					80	
5	Ala Glu	Gln A	la Lys 85	Glu H	His Gly	Lys	Cys 90	Glu	Arg	Phe	Ser	Ala 95	Leu	
10	Ser Gln		yr Ile 00	Glu I	Lys Asn	Leu 105	Cys	Gln	Phe	Phe				
15	<211> <212>	72 447 ADN Lutzom	yia lom	ngipal	lpis									
	<400> atatcaa	72 ttt ta	tcatcat	ig gtg	gaagtac	t cgt	igtet	tgt	tctt	gttg	gca a	atttt	tcttc	60
20	tggccgg	acc ct	acggcgt	t gta	aggttct	t gtg	gagaa	atga	ccts	gacas	gag g	gccgc	caagt	120
	atcttca	aga tg	aatgcaa	at gca	aggtgaa	a ttg	gcaga	atga	attt	ctac	ccc t	tctc	tgaag	180
05	aagaagt	ggg tg	aagcatt	g ago	cgacaaa	c cag	gaaaa	acgt	gcas	ggaag	gtc a	accaa	catcg	240
25	tgagagg	atg ct	ttgaago	ct gaa	acaagcc	a aag	gagca	atgg	aaaa	atgts	gaa a	agatt	ttccg	300
	ctttgag	tca at	gctacat	t gaa	aaagaat	t tat	igtca	att	ctto	ctaaa	aat a	atttt	gaaga	360
30	aaagtta	tga at	gaaaatt	t tct	gaaatt	t tgt	tgca	aaaa	atat	tataa	aat t	gccc	aatta	420
	aaaaaaa	aaa aa	aaaaaaa	aa aaa	aaaaa									447
35	<211> <212> :	73 115 PRT Lutzom	yia lor	ngipal	lpis									
40	<400>	73												
	Met Lys 1	Phe Pl	he Tyr 5	Leu 1	Ile Phe	Ser	Ala 10	Ile	Phe	Phe	Leu	Ala 15	Asp	
45	Pro Ala	Leu Va		Cys S	Ser Glu	Asp 25	Cys	Glu	Asn	Ile	Phe 30	His	Asp	
50	Asn Ala	Tyr Lo	eu Leu	Lys I	Leu Asp 40	Cys	Glu	Ala	Gly	Arg 45	Val	Asp	Pro	
55	Val Glu 50	Tyr A	sp Asp		Ser Asp 55	Glu	Glu	Ile	Tyr 60	Glu	Ile	Thr	Val	
60	Asp Val	Gly V	al Ser	Ser (Glu Asp	Gln	Glu	Lys 75	Val	Ala	Lys	Ile	Ile 80	

	Arg	Glu	Cys	Ile	Ala 85	Gln	Val	Ser	Thr	Gln 90	Asp	Cys	Thr	Lys	Phe 95	Ser	
5	Glu	Ile	Tyr	Asp 100	Cys	Tyr	Met	Lys	Lys 105	Lys	Ile	Cys	Asn	Tyr 110	Tyr	Pro	
10	Glu	Asn	Met 115														
15	<210 <211 <212 <213	-> 4 2> 2	74 496 ADN Lutzo	omyia	a lor	ngipa	alpis	5									
20	<400 agtt		74 ttt 1	tcato	catga	aa gt	tctt	cctac	ttg	gattt	tct	ctgo	caatt	ett (ctttc	tggct	60
	gato	cctg	ctt 1	tggto	caagt	g t	caga	aggat	. tgt	gaga	aata	tttt	tcat	ga d	caato	gcgtac	120
	ctco	cttaa	aat 1	tggat	tgtg	ga ag	gcagg	gaagg	gtt	gato	cctg	ttga	aatao	cga d	cgata	atttcg	180
25	gato	gaaga	aaa 1	tatat	tgaaa	at aa	acggt	cgat	gtt	ggag	gttt	cato	ctgag	gga (ccago	gagaaa	240
	gtts	gcgaa	aaa 1	taata	aaggg	ga gt	gcat	tgca	caa	agttt	caa	cgca	aagat	tg d	cacga	aattt	300
30	tcag	gaaat	ttt a	atgat	tgtt	ta ca	atgaa	agaag	aaa	aatct	igta	atta	attat	ccc t	tgaaa	atatg	360
	taaa	aaaa	aaa 1	ttatt	tatt	t at	tataa	aaaaa	ata	ataag	ggat	taaa	aatct	ct t	tatto	gattgt	420
	aaaa	aatg	gaa 1	taata	attga	aa go	caaaa	aatta	aag	gcate	gaaa	caag	gacca	aaa a	aaaaa	aaaaa	480
35	aaaa	aaaa	aaa a	aaaaa	аа												496
40	<210 <211 <212 <213	-> 4 2>]	75 409 PRT Lutzo	omyia	a lor	ngipa	alpis	5									
15	<400)> '	75														
45	Met 1	His	Leu	Gln	Leu 5	Asn	Leu	Cys	Ala	Ile 10	Leu	Leu	Ser	Val	Leu 15	Asn	
50	Gly	Ile	Gln	Gly 20	Ala	Pro	Lys	Ser	Ile 25	Asn	Ser	Lys	Ser	Cys 30	Ala	Ile	
55	Ser	Phe	Pro 35	Glu	Asn	Val	Thr	Ala 40	Lys	Lys	Glu	Pro	Val 45	Tyr	Leu	Lys	
60	Pro	Ser 50	Asn	Asp	Gly	Ser	Leu 55	Ser	Thr	Pro	Leu	Gln 60	Pro	Ser	Gly	Pro	

	Phe 65	Val	Ser	Leu	Lys	Ile 70	Gly	Glu	Ser	Leu	Ala 75	Ile	Phe	Cys	Pro	Gly 80
5	Asp	Gly	Lys	Asp	Val 85	Glu	Thr	Ile	Thr	Cys 90	Asn	Thr	Asn	Phe	Asp 95	Leu
10	Ala	Ser	Tyr	Ser 100	Cys	Asn	Lys	Ser	Thr 105	Ser	Thr	Asp	Thr	Ile 110	Glu	Thr
15	Glu	Glu	Val 115	Cys	Gly	Gly	Ser	Gly 120	Lys	Val	Tyr	Lys	Val 125	Gly	Phe	Pro
20	Leu	Pro 130	Ser	Gly	Asn	Phe	His 135	Ser	Ile	Tyr	Gln	Thr 140	Cys	Phe	Asp	Lys
	Lys 145	Asn	Leu	Thr	Pro	Leu 150	Tyr	Ser	Ile	His	Ile 155	Leu	Asn	Gly	Gln	Ala 160
25	Val	Gly	Tyr	His	Leu 165	Lys	His	Thr	Arg	Gly 170	Ser	Phe	Arg	Thr	Asn 175	Gly
30	Ile	Tyr	Gly	Lys 180	Val	Asn	Ile	Asp	Lys 185	Leu	Tyr	Lys	Thr	Gln 190	Ile	Glu
35	Lys	Phe	Asn 195	Lys	Leu	Phe	Gly	Pro 200	Lys	Gln	Thr	Phe	Phe 205	Arg	Arg	Pro
40	Leu	Asn 210	Phe	Leu	Ser	Arg	Gly 215	His	Leu	Ser	Pro	Glu 220	Val	Asp	Phe	Thr
	Phe 225	Arg	Arg	Glu	Gln	His 230	Ala	Thr	Glu	Met	Tyr 235	Ile	Asn	Thr	Ala	Pro 240
45	Gln	Tyr	Gln	Ser	Ile 245	Asn	Gln	Gly	Asn	Trp 250	Leu	Arg	Val	Glu	Asn 255	His
50	Val	Arg	Asp	Leu 260	Ala	Lys	Val	Leu	Gln 265	Lys	Asp	Ile	Thr	Val 270	Val	Thr
55	Gly	Ile	Leu 275	Gly	Ile	Leu	Arg	Leu 280	Lys	Ser	Lys	Lys	Ile 285	Glu	Lys	Glu
60	Ile	Tyr 290	Leu	Gly	Asp	Asp	Val 295	Ile	Ala	Val	Pro	Ala 300	Met	Phe	Trp	Lys

	Ala 305	Val	Phe	Asp	Pro	Gln 310	Lys	Gln	Glu	Ala	Ile 315	Val	Phe	Val	Ser	Ser 320		
5	Asn	Asn	Pro	His	Val 325	Lys	Thr	Phe	Asn	Pro 330	Asn	Cys	Lys	Asp	Val 335	Cys		
10	Ala	Gln	Ala	Gly 340	Phe	Gly	Asn	Asp	Asn 345	Leu	Glu	Tyr	Phe	Ser 350	Asn	Tyr		
15	Ser	Ile	Gly 355	Leu	Thr	Ile	Cys	Cys 360	Lys	Leu	Glu	Glu	Phe 365	Val	Lys	Arg		
20	Asn	Lys 370	Ile	Ile	Leu	Pro	Lys 375	Glu	Val	Asn	Asn	Lys 380	Asn	Tyr	Thr	Lys		
	Lys 385	Leu	Leu	Lys	Phe	Pro 390	Lys	Thr	Arg	Asn	Lys 395	Glu	Gly	Asp	Lys	Lys 400		
25	Val	Val	Arg	Lys	Arg 405	Ala	Lys	Gly	Ala									
30	<210 <211 <212 <213	L> 1 2> 1	76 1281 ADN Lutz	omyia	a lor	ngipa	alpis	5										
35	<400 tcaa		76 aac a	aatgo	cacct	ig ca	aatto	gaatt	tgt	-gcg(ctat	tcto	cctt	cg :	gtact	taaatg		60
	gaat	tcag	ggg (cgct	cccaa	aa ag	gtat	caatt	caa	aaato	cctg	cgca	aatct	ccc	tttc	cggaga	1	20
40	atgt	aacg	ggc i	taaga	aagga	ag co	cagt	gtact	t tga	aaac	catc	aaat	gate	ggc	tcatt	tgagta	1	80
	CCCC	cccta	aca 🤉	gccaa	agtgg	gg c	catt	tgtaa	a gto	ctcaa	aaat	tgga	agaat	ct	cttg	caatct	2	40
45	tcts	gtcca	agg f	tgat	ggaaa	ag ga	acgta	agaga	a caa	attad	cgtg	caat	cacaa	aat	ttcga	atttag	3	00
	ctto	catat	tc 9	gtgca	aacaa	ag ag	gcaca	atcaa	a cgg	gatad	ccat	tgaa	aacg	gaa g	gaagt	ttgcg	3	60
	gagg	gaagt	tgg a	aaaag	gtgta	ac aa	aagtt	tggtt	t tto	ccgct	gcc	ctct	ggga	aat	ttcca	attcaa	4	20
50	tcta	accaa	aac 9	gtgt	tttga	at aa	agaaa	aaato	c tca	acaco	ctct	ctad	ctcaa	att	cacat	ttctca	4	80
	atgg	gtcaa	agc 1	tgttg	ggata	at ca	acct	caago	c aca	acaag	gagg	aago	cttt	cgt a	accaa	atggta	5	40
55	tcta	acggg	gaa a	agtca	aacat	t ga	ataaa	actct	aca	aagad	cgca	aatt	gaga	aaa	ttcaa	acaaac	6	0 0
-	tttt	cggo	ccc f	taaad	caaac	ca ti	tttt	ccgta	a gad	cccct	caa	tttt	cctat	ca	cgtg	gacact	6	60
	taag	gccc	cga a	agtgg	gactt	it a	catto	ccgta	a ggg	gaaca	aaca	tgca	aacgg	gaa (atgta	acatta	7	20
60	acac	cagca	acc a	acagt	tacca	aa to	caatt	taato	aag	ggaaa	attg	gcta	acgt	gtt 9	gaaaa	atcacg	7	80

	tgag	gggat	cct o	cgcaa	aaagt	ct ct	gcag	gaagg	g aca	ataad	cagt	cgtt	acgg	gga a	atttt	gggga	8	4 C
5	tact	tcgg	gtt <u>s</u>	gaaga	agtaa	ag aa	aaata	agaga	a aag	gaaat	cta	ttta	aggag	gat g	gacgt	taattg	9	00
J	ccgt	acca	agc a	aatgt	tate	gg aa	aggct	gttt	ttg	gacco	ctca	aaaa	acaag	gaa g	gcaat	tgtct	9	60
	ttgt	ttc	ctc a	aaata	aatco	CC Ca	acgto	gaaga	a cct	ttaa	atcc	caad	ctgca	aag g	gatgt	tatgcg	10	20
10	ctca	agct	egg a	atttg	gggaa	at ga	ataat	ctts	g aat	attt	cctc	caat	tatt	cct a	attgg	gtctga	10	8 C
	ctat	ttgt	tg d	caaac	cttga	ag ga	aattt	igtta	a aaa	agaaa	ataa	aata	aatto	cta d	cccaa	aagaag	11	4 C
15	taaa	ataad	caa a	aaact	cacao	cc aa	aaaaa	actco	tta	agtt	tcc	taaa	acaa	aga a	aacaa	aggagg	12) C
. 0	gaga	ataag	gaa g	ggtgg	gtace	gt aa	agcgo	cgcca	a aag	ggago	cata	aata	attaa	aac g	gaaaa	aaaaaa	12	5 C
	aaaa	aaaa	aaa a	aaaa	aaaa	aa a											12	31
20 25	<210 <211 <212 <213	> 1 2> 8>	77 160 PRT Lutzo	omyia	a lor	ngipa	alpis	5										
30	Met 1	Asn	Leu	His	Leu 5	Ala	Ile	Ile	Leu	Phe 10	Val	Ser	Tyr	Phe	Thr 15	Leu		
	Ile	Thr	Ala	Thr 20	Asp	Leu	Ile	Glu	Lys 25	Glu	Leu	Ser	Asp	Cys 30	Lys	Lys		
35	Ile	Phe	Ile 35	Ser	Lys	Ala	Glu	Leu 40	Thr	Trp	Phe	Gln	Ala 45	Leu	Asp	Phe		
40	Cys	Thr 50	Glu	Gln	Asn	Leu	Thr 55	Leu	Leu	Ser	Ile	Lys 60	Ser	Ala	Arg	Glu		
45	Asn 65	Asp	Glu	Val	Thr	Lys 70	Ala	Val	Arg	Ala	Glu 75	Val	His	Leu	Pro	Asp 80		
50	Thr	Lys	Lys	Ser	His 85	Ile	Trp	Leu	Gly	Gly 90	Ile	Arg	Tyr	Asp	Gln 95	Asp		
	Lys	Asp	Phe	Arg 100	Trp	Ile	Ser	Asp	Gly 105	Thr	Thr	Val	Thr	Lys 110	Thr	Val		
55	Tyr	Ile	Asn 115	Trp	Tyr	Gln	Gly	Glu 120	Pro	Asn	Gly	Gly	Arg 125	Tyr	Gln	Lys		
30	Glu	Phe	Cvs	Met	Glu	Leu	Tvr	Phe	Lvs	Thr	Pro	Ala	Glv	Gln	Trp	Asn		

	130					135					140						
5	Asp Asp 145	Ile	Cys	Thr	Ala 150	Lys	His	His	Phe	Ile 155	Cys	Gln	Glu	Lys	Lys 160		
10	<211> 6 <212> A	78 571 ADN Lutzo	omyia	a lon	gipa	alpis	5										
15	<400> 7	18 gat a	aaaat	tttc	t tt	tcaa	aactt	tto	ctttt	taaa	gaaa	aaato	ctt (caaaa	aagtt	ta	60
	aaatgaat	tt g	gcaco	cttgc	g at	tato	cctct	ttg	gtgag	gtta	cttc	cacac	ctg a	atcad	ctgct	ta :	120
	cggatcta	at t	gaaa	agga	.a ct	ttct	gatt	gca	aaaa	agat	ctto	catct	ccc a	aaggo	ctgag	gc :	180
20	taacttgg	gtt d	ccaag	gctct	.c ga	attto	ctgta	ı ccs	gaaca	aaaa	ccta	aactt	tg (ctctc	caatt	ta :	240
	aatccgcc	cg g	ggaaa	atga	t ga	aggto	gacta	aag	gcagt	tcg	agct	gagg	gtt (catct	tcca	ag :	300
0.5	acacaaag	gaa g	gtctc	cacat	t to	ggcto	cggag	g gta	attc	gtta	tgat	caag	gac a	aagga	attto	cc :	360
25	gttggata	ag d	cgate	ggaac	a ac	ctgtt	acga	ı aga	acagt	cta	cato	caatt	ag .	tacca	aagga	ag '	420
	aaccaaat	gg t	ggga	aggta	.C Ca	aaaag	ggaat	ttt	gtat	gga	atte	gtact	tt a	aaaad	ctcca	ag 4	480
30	ctggtcaa	atg g	gaatg	gatga	t at	ttgt	cacag	g caa	aagca	atca	tttt	tatat	gt (cagga	agaaa	aa !	540
	aataaatt	ga a	attgt	tcat	g to	gtctt	tggc	ggt:	gcga	aagg	tata	aatto	cag g	gttga	acgao	ca (600
0.5	taaattga	att t	ttct	ttca	t ta	aagaa	aata	ı aag	ggctt	gaa	ttta	ataaa	aaa a	aaaaa	aaaa	aa (660
35	aaaaaaaa	ıaa a	a													(671
40	<211> 1 <212> P	PRT	omyia	a lon	gipa	alpis	5										
45	<400> 7	19															
40	Met Asn 1	Leu	Pro	Leu 5	Ala	Ile	Ile	Leu	Phe 10	Val	Ser	Tyr	Phe	Thr 15	Leu		
50	Ile Thr	Ala	Ala 20	Asp	Leu	Thr	Glu	Lys 25	Glu	Leu	Ser	Asp	Gly 30	Lys	Lys		
55	Ile Phe	Ile 35	Ser	Lys	Ala	Glu	Leu 40	Ser	Trp	Phe	Asp	Ala 45	Leu	Asp	Ala		
60	Cys Thr 50	Glu	Lys	Asp	Leu	Thr 55	Leu	Leu	Thr	Ile	Lys 60	Ser	Ala	Arg	Glu		

5	Asn 65	Glu	Glu	Val	Thr	Lys 70	Ala	Val	Arg	Ala	Glu 75	Val	His	Leu	Pro	Asp 80	
J	Thr	Lys	Lys	Ser	His 85	Ile	Trp	Leu	Gly	Gly 90	Ile	Arg	Tyr	Asp	Gln 95	Asp	
10	Lys	Asp	Phe	Arg 100	Trp	Ile	Ser	Asp	Gly 105	Thr	Thr	Val	Thr	Lys 110	Thr	Val	
15	Tyr	Ile	Asn 115	Trp	Tyr	Gln	Gly	Glu 120	Pro	Asn	Gly	Gly	Arg 125	Tyr	Gln	Lys	
20	Glu	Phe 130	Cys	Met	Glu	Leu	Tyr 135	Phe	Lys	Thr	Pro	Ala 140	Gly	Gln	Trp	Asn	
	Asp 145	Asp	Ile	Cys	Thr	Ala 150	Lys	His	His	Phe	Ile 155	Cys	Gln	Glu	Lys	Lys 160	
25	<210 <211 <212	-> (30 572 ADN														
30	<213		Lutzo	omyia	a lor	ngipa	alpis	5									
	<400 gtto		30 gat a	aaaat	tttt	ct tt	tcaa	aactt	t tto	ctttt	taaa	gaaa	aaato	ctt (caaaa	agtta	60
25	aaat	gaat	ttt g	gaaa	cttgo	cg at	tato	cctct	t ttg	gtgag	gtta	ctto	cacao	ctg a	atcad	ctgctg	120
35	cgga	atcta	aac t	tgaaa	aagga	aa ct	ttct	tgats	g gca	aaaa	agat	ctto	catct	CCC a	aaggo	ctgagc	180
	taag	gttgg	gtt (cgate	gatat	cc ga	atgco	ctgta	a ccg	gaaaa	aaga	ccta	aactt	tg (ctcac	caatta	240
40	aato	ccgc	ccg g	ggaaa	aatga	ag ga	aagto	gacta	a aag	gcagt	tcg	agct	gagg	gtt (catct	tccag	300
	acac	caaag	gaa g	gtcto	cacat	it t <u>s</u>	ggcto	cggag	g gta	attc	gtta	tgat	caag	gac a	aagga	atttcc	360
45	gttg	ggata	aag d	cgate	ggaad	ca ad	ctgtt	cacga	a aga	acagt	cta	cato	caatt	gg 1	tacca	aaggag	420
	aaco	caaat	.gg t	tggga	aggta	ac ca	aaaag	ggaat	t ttt	gtat	gga	att	gtact	tt a	aaaa	ctccag	480
	ctgg	gtcaa	atg g	gaat	gatga	at at	ttgt	cacag	g caa	aagca	atca	tttt	tatat	igt (cagga	agaaaa	540
50	aata	aatt	tga a	attgt	tcat	tg tg	gtctt	tggc	c ggt	gega	aagg	tata	aatto	cag g	gttga	acgaca	600
	taaa	attga	att t	tttct	ttca	at ta	aagaa	aaata	a aag	ggctt	gaa	ttta	agcaa	aaa a	aaaaa	aaaaaa	660
55	aaaa	aaaa	aaa a	aa													672
60	<210 <211 <212 <213	-> : 2> I	31 399 PRT Lutzo	omyia	a lor	ngipa	alpis	5									

	<400)> {	31													
5		Lys	Val	Phe	Phe 5	Ser	Ile	Phe	Thr	Leu 10	Val	Leu	Phe	Gln	Gly 15	Thi
10	Leu	Gly	Ala	Asp 20	Thr	Gln	Gly	Tyr	Lys 25	Trp	Lys	Gln	Leu	Leu 30	Tyr	Asr
	Asn	Val	Thr 35	Pro	Gly	Ser	Tyr	Asn 40	Pro	Asp	Asn	Met	Ile 45	Ser	Thr	Ala
15	Phe	Ala 50	Tyr	Asp	Ala	Glu	Gly 55	Glu	Lys	Leu	Phe	Leu 60	Ala	Val	Pro	Arg
20	Lys 65	Leu	Pro	Arg	Val	Pro 70	Tyr	Thr	Leu	Ala	Glu 75	Val	Asp	Thr	Lys	Asr 80
25	Ser	Leu	Gly	Val	Lys 85	Gly	Lys	His	Ser	Pro 90	Leu	Leu	Asn	Lys	Phe 95	Sei
30	Gly	His	Lys	Thr 100	Gly	Lys	Glu	Leu	Thr 105	Ser	Ile	Tyr	Gln	Pro 110	Val	Ile
	Asp	Asp	Cys 115	Arg	Arg	Leu	Trp	Val 120	Val	Asp	Ile	Gly	Ser 125	Val	Glu	Туг
35	Arg	Ser 130	Arg	Gly	Ala	Lys	Asp 135	Tyr	Pro	Ser	His	Arg 140	Pro	Ala	Ile	Val
40	Ala 145	Tyr	Asp	Leu	Lys	Gln 150	Pro	Asn	Tyr	Pro	Glu 155	Val	Val	Arg	Tyr	Ту1 160
45	Phe	Pro	Thr	Arg	Leu 165	Val	Glu	Lys	Pro	Thr 170	Tyr	Phe	Gly	Gly	Phe 175	Ala
50	Val	Asp	Val	Ala 180	Asn	Pro	Lys	Gly	Asp 185	Cys	Ser	Glu	Thr	Phe 190	Val	Туг
	Ile	Thr	Asn 195	Phe	Leu	Arg	Gly	Ala 200	Leu	Phe	Ile	Tyr	Asp 205	His	Lys	Lys
55	Gln	Asp 210	Ser	Trp	Asn	Val	Thr 215	His	Pro	Thr	Phe	Lys 220	Ala	Glu	Arg	Pro

60 Thr Lys Phe Asp Tyr Gly Gly Lys Glu Tyr Glu Phe Lys Ala Gly Ile

	225					230					235					240	
5	Phe	Gly	Ile	Thr	Leu 245	Gly	Asp	Arg	Asp	Ser 250	Glu	Gly	Asn	Arg	Pro 255	Ala	
10	Tyr	Tyr	Leu	Ala 260	Gly	Ser	Ala	Ile	Lys 265	Val	Tyr	Ser	Val	Asn 270	Thr	Lys	
	Glu	Leu	Lys 275	Gln	Lys	Gly	Gly	Lys 280	Leu	Asn	Pro	Glu	Leu 285	Leu	Gly	Asn	
15	Arg	Gly 290	Lys	Tyr	Asn	Asp	Ala 295	Ile	Ala	Leu	Ala	Tyr 300	Asp	Pro	Lys	Thr	
20	Lys 305	Val	Ile	Phe	Phe	Ala 310	Glu	Ala	Asn	Thr	Lys 315	Gln	Val	Ser	Cys	Trp 320	
25	Asn	Thr	Gln	Lys	Met 325	Pro	Leu	Arg	Met	Lys 330	Asn	Thr	Asp	Val	Val 335	Tyr	
30	Thr	Ser	Ser	Arg 340	Phe	Val	Phe	Gly	Thr 345	Asp	Ile	Ser	Val	Asp 350	Ser	Lys	
	Gly	Gly	Leu 355	Trp	Phe	Met	Ser	Asn 360	Gly	Phe	Pro	Pro	Ile 365	Arg	Lys	Ser	
35	Glu	Lys 370	Phe	Lys	Tyr	Asp	Phe 375	Pro	Arg	Tyr	Arg	Leu 380	Met	Arg	Ile	Met	
40	Asp 385	Thr	Gln	Glu	Ala	Ile 390	Ala	Gly	Thr	Ala	Cys 395	Asp	Met	Asn	Ala		
45	<210 <211 <212 <213	L> 1 2> 1	32 1429 ADN Lutzo	omyia	a lor	ngipa	alpis	5									
50	<400 ttga		32 gaa g	gcago	cagca	aa t <u>q</u>	gaaag	gtgtt	t ttt	ctca	aatt	ttta	acgct	cg t	tccto	cttcca	60
	aggg	gacco	ctt g	ggago	cggat	ca ct	caag	ggata	a taa	aatgg	gaag	caat	tgct	ct a	acaat	taatgt	120
	taca	accas	gga t	ccta	acaat	ca ag	ggata	aatat	gat	cagt	acg	gctt	ttgo	cct a	acgat	gctga	180
55	gggt	gaaa	aaa d	ctctt	ccta	ag ct	gtco	ccaas	g gaa	igtta	accc	agag	gttco	gt a	ataca	attggc	240
	ggaa	agtgg	gat a	acaaa	agaat	ta gt	ctt	ggtgt	t taa	aggga	aaaa	catt	caco	gt t	tactt	taacaa	300
60	atto	cagto	ggg (cacaa	aaact	g gg	gaagg	gaact	aac	catca	aatc	tato	cagco	ag t	ttatt	tgatga	360

	ttgtcgtcgc	ctttgggtgg	ttgatattgg	ttccgtggaa	tategeteaa gaggtgeeaa	a 420
5	agactacccg	agtcatcgtc	ctgcaattgt	tgcgtacgac	ctaaagcaac caaactacco	480
J	cgaagttgtt	cgatactatt	tccccacaag	attagtggag	aagccaacat atttcggtgg	540
	atttgccgtt	gatgttgcaa	acccaaaggg	ggattgtagt	gaaacttttg tctacattac	600
10	aaacttcctc	aggggagctc	tctttatata	cgatcataag	aagcaggatt cgtggaatgt	660
	aactcatccc	accttcaaag	cagaacgacc	cactaaattt	gattacggcg gaaaggaata	a 720
15	tgaattcaaa	gccggaattt	tcggaattac	tctcggagat	cgagacagtg aaggcaatcg	780
10	tccagcttac	tacttagccg	gaagtgccat	caaagtctac	agcgtcaaca cgaaagaact	840
	taagcagaag	ggtggaaagc	tgaatccgga	gcttcttgga	aaccgcggga agtacaacga	a 900
20	tgccattgcc	ctagcttacg	atcccaaaac	taaagttatc	ttctttgctg aggccaacac	960
	aaagcaagta	tcctgctgga	acacacagaa	aatgccactg	aggatgaaga ataccgacgt	1020
25	agtctacact	agttctcgct	ttgtctttgg	aacggacatt	tcggttgata gcaagggcgg	1080
23	cctctggttc	atgtctaacg	gctttccgcc	tataaggaaa	tcagaaaaat tcaaatatga	a 1140
	cttcccacgc	taccgtctaa	tgaggatcat	ggacacacag	gaagcaattg ccggaactgo	1200
30	ttgcgatatg	aatgcataaa	agttaatttt	caacccaaga	agaagaccta aagaggcttt	1260
	tccaggcttt	gatgcaggag	aggtggttat	caacgcaaaa	tcagctattg ttgtatgagg	g 1320
35	aggagaaatt	attgattctg	aattctataa	aaaaaattta	atttgtgaaa tatttggcaa	a 1380
00	taataaatta	attgaattac	aaaaaaaaa	aaaaaaaaa	aaaaaaaa	1429
40	<210> 83 <211> 170 <212> PRT <213> Lut	zomyia long:	ipalpis			
45	<400> 83					
.0	Met Gln Se	r Lys Ile Le 5	eu Ser Phe V	Val Leu Phe 10	Thr Leu Ser Leu Gly 15	
50	Tyr Val Le	u Gly Glu Tì 20		Asn Ala Lys 25	Val Lys Gly Ala Thr 30	
55	Ser Tyr Se.	r Thr Thr A	sp Ala Thr 1 40	Ile Val Ser	Gln Ile Ala Phe Val 45	
ൈ	Thr Glu Pho	e Ser Leu G	lu Cys Ser <i>I</i> 55	Asn Pro Gly	Ser Glu Lys Ile Ser 60	

	Leu 65	Phe	Ala	Glu	Val	Asp 70	Gly	Lys	Ile	Thr	Pro 75	Val	Ala	Met	Ile	Gly 80		
5	Asp	Thr	Thr	Tyr	Gln 85	Val	Ser	Trp	Asn	Glu 90	Glu	Val	Asn	Lys	Ala 95	Arg		
10	Ser	Gly	Asp	Tyr 100	Ser	Val	Lys	Leu	Tyr 105	Asp	Glu	Glu	Gly	Tyr 110	Gly	Ala		
15	Val	Arg	Lys 115	Ala	Gln	Arg	Ser	Gly 120	Glu	Glu	Asn	Lys	Val 125	Lys	Pro	Leu		
20	Ala	Thr 130	Val	Val	Val	Arg	His 135	Pro	Gly	Thr	Tyr	Thr 140	Gly	Pro	Trp	Phe		
	Asn 145	Ser	Glu	Ile	Leu	Ala 150	Ala	Gly	Leu	Ile	Ala 155	Val	Val	Ala	Tyr	Phe 160		
25	Ala	Phe	Ser	Thr	Arg 165	Ser	Lys	Ile	Leu	Ser 170								
30	<210 <211 <212 <213	L> [2>]	34 712 ADN Lutzo	omyia	a lor	ngipa	alpis	5										
35	<400 tcto		34 ggt t	taaca	attgt	ig aa	agtta	atcgg	g acg	gtgga	ccgg	ttto	ctatt	itc 1	ttttg	gcaaaa	a.	60
	atgo	cagto	caa a	aaatt	ccttt	c tt	tcgt	cctt	tto	cacct	tat	cctt	gggg	ta t	tgttt	tgggt	5	120
40	gaaa	acato	gct (caaat	igcta	aa gg	gttaa	aggga	a gct	cacct	ctt	atto	ccaca	ac g	ggat	gccaca	a	180
	att	gtaag	gcc a	aaatt	gaat	t to	gtgad	ctgaa	a tto	ctcct	tgg	aats	gctca	aaa †	taats	ggatco		240
45	gaga	aaaat	ct d	cccta	attts	gc to	gaagt	cgat	ggd	caaaa	atta	ctco	ctgtt	gc (catga	atcggg	J	300
40	gata	accad	cct a	accas	ggtga	ag ct	ggaa	atgaa	a gag	ggtta	aata	aggo	ctaga	ag 1	tggtg	gactac	C	360
	agto	gtgaa	agc t	tgtad	cgate	ga ag	gaagg	gatac	gga	agcas	gtac	gcaa	agct	ca g	gagat	caggt	-	420
50	gaag	gagaa	aca a	aggto	caaac	cc ac	ctago	caaco	gtt	gtts	gttc	gaca	atcca	agg a	aacat	cacact	;	480
	ggad	ccat	ggt t	tcaat	tccs	ga aa	atcct	cgca	a gct	ggto	ctca	ttgo	ctgtt	gt 1	tgcct	acttt	;	540
55	gctt	tctc	caa d	cgcga	aagca	aa aa	attct	ttcc	c taa	aagag	gacg	cago	catga	aaa †	tttca	acaaaa	ì	600
55	aaat	caaaa	aac a	aaatt	caag	gt ca	atcaa	accat	gto	ctctt	tgg	cact	caga	act 9	gttt	ctgtga	ì	660
	aata	acaaa	act a	attat	ttaa	ac aa	aaaa	aaaaa	a aaa	aaaa	aaaa	aaaa	aaaa	aaa a	aa			712

F	<210><211><211><212><213>	85 73 PRT Lutzor	myia]	longipa	alpis	3									
5	<400>	85													
10	Met Val	Ser I	Ile Le 5	eu Leu	Ile	Ser	Leu	Ile 10	Leu	Asn	Leu	Leu	Val 15	Phe	
	Tyr Ala	_	Ala Ar 20	rg Pro	Leu	Glu	Asp 25	Ile	Ser	Ser	Asp	Leu 30	Ser	Pro	
15	Asp Tyr	Tyr 1	Ile Th	nr Glu	Gly	Tyr 40	Asp	Gly	Val	Lys	Glu 45	Lys	Arg	Glu	
20	Ile Glu 50	ı Leu V	Val Pr	ro Val	Thr 55	Phe	Gly	Ile	Phe	Asn 60	Ile	His	Thr	Thr	
25	Pro Ala	a Pro A	Arg Il	le Thr 70	Phe	Glu	Trp								
30	<210><211><211><212><213>	86 379 ADN Lutzor	myia]	longipa	alpis	3									
35	<400> attccca	86 acaa ga	aagcto	gcta aa	atgg	gtgto	aat	tcts	ıtta	atct	cctt	ga t	tctt	aattt	60
	gttggtt	itto ta	atgcta	aaag ct	agac	cact	aga	agac	catc	tcgt	caga	itc t	tttcc	cctga	120
	ttattac														180
40	tgtgaca														240
	gtaaaaa														300 360
45	aaaaaaa				acya	iacci		lacad	laaa	aaac	iccai		Jaaac	iaaaaa	379
	aaaaaaa	iada ac	addadd	add .											3,7
50	<210><211><212><213>	87 76 PRT Lutzor	myia]	longipa	alpis	3									
EE	<400>	87													
55	Met Lys 1	s Leu I	Phe Cy 5	ys Leu	Ile	Phe	Val	Val 10	Phe	Val	Ala	Leu	Glu 15	Val	
60	Cys Ile	e Glu 1	Thr Va	al Lys	Ala	Met	Glu	Ala	Thr	Glu	Glu	Ile	Ser	Val	

		20	2	25	30		
5	Lys Leu Gln 35	Asp Asp Al	a Asn Glu I 40	Pro Asp Asp	Ser Leu Asp 45	Leu Asp	
10	Glu Gly Leu 50	Pro Asp Al	a Phe Asp (55	Glu Asp Tyr	Asn Asn Glr 60	n Ala Glu	
	Tyr Lys Pro 65	Asn Pro Ar 70		Tyr Arg Arg 75	Arg		
15 20	<210> 88 <211> 526 <212> ADN <213> Lutz	omyia longi	palpis				
	<400> 88 cactattcat	tggaagattt	attaacttca	agatgaaatt	attttgttta	atttttgttg	60
25	tgtttgttgc	tttagaagtc	tgtatagaga	ccgtgaaagc	tatggaagca	acggaggaga	120
23	tatctgtaaa	attgcaagat	gatgcgaatg	aacctgatga	ctctctggat	ttagacgaag	180
	gtcttcctga	tgcattcgat	gaggactata	ataatcaggc	tgagtacaag	ccgaatccta	240
30	gaggggacta	cagaagacga	taattaatat	aaattcagga	aaacactcta	aaaatttcca	300
	attgactcta	ctttaaacga	tttaatacct	acctacacta	aataccatat	gcaataatta	360
35	tgttttaatt	atttagtgca	agatctacta	gtttcagttc	atattttggg	actttcccgc	420
33	ctttctctcg	atggaaaaat	gattttacgg	attcttaatt	ttcattgtac	agagttaata	480
	aaacaattga	aagcaattaa	aaaaaaaaa	aaaaaaaaaa	aaaaaa		526
40	<210> 89 <211> 1021 <212> ADN <213> Lutz	omyia longi	palpis				
45	<400> 89 cttctttgga	tttattgagt	gattaacagg	aaattagctg	aagaaatgaa	ttcgattaat	60
	ttcctatcaa	tagttggttt	aatcagtttt	ggattcattg	ttgcagtaaa	gtgtgatggt	120
50	gatgaatatt	tcattggaaa	atacaaagaa	aaagatgaga	cactgttttt	tgcaagctac	180
	ggcctaaaga	gggatccttg	ccaaattgtc	ttaggctaca	aatgctcaaa	caatcaaacc	240
55	cactttgtgc	ttaattttaa	aaccaataag	aaatcctgca	tatcagcaat	taagctgact	300
	tcttacccaa	aaatcaatca	aaactcggat	ttaactaaaa	atctctactg	ccaaactgga	360
60	ggaataggaa	cagataactg	caaacttgtc	ttcaagaaac	gtaaaagaca	aatagcagct	420

	aatattgaaa	tctacggcat	tccagcgaag	aaatgttcct	tcaaggatcg	ttacattgga	480
	gctgatccac	tccacgtcga	ttcctatggg	cttccgtatc	agtttgatca	ggaacatgga	540
5	tggaatgtgg	aacgatataa	cattttcaaa	gacacaagat	tttccacaga	agttttctac	600
	cacaaaaatg	gtttatttaa	cacccaaata	acttatttgg	ctgaagaaga	ttccttctct	660
10	gaagctcgag	agattactgc	gaaggatatt	aagaagaagt	tttcaattat	tttgcccaat	720
10	gaagagtata	agaggattag	tttcttggac	gtttattggt	tccaggagac	tatgcgaaaa	780
	aagcctaaat	atccctacat	tcactacaat	ggagaatgca	gcaatgagaa	taaaacttgt	840
15	gaacttgtct	ttgacaccga	tgaactaatg	acctacgccc	ttgttaaagt	ctttactaat	900
	cctgagagtg	atggatctag	gctcaaagaa	gaggatttgg	gaagaggata	aatcttctta	960
20	ataaaaaaaa	gttctgtaag	aaaatattgt	tcaataaatt	aaaaaaaaa	aaaaaaaaa	1020
20	a						1021
25	<210> 90 <211> 1409 <212> ADN <213> Lutz	e Zomyia longi	ipalpis				
30	<400> 90 agtcagtgtt	aatgaagaaa	ttgcaattat	gaggttcttc	tttgttttcc	ttgccatcgt	60
	cctttttcaa	gggatccacg	gagcttatgt	ggaaatagga	tattctctga	gaaatattac	120
0.5	attcgatgga	ttggatacag	atgactacaa	tccaaagttc	aacattccaa	cgggtttggc	180
35	agttgatccc	gaaggatata	ggctcttcat	agccatccca	aggagaaagc	caaaggttcc	240
	ctacactgtg	gctgaactga	atatggtcat	gaatcccgga	tttcccgtcg	agagagctcc	300
40	gagctttgag	aaattcaaaa	aattcaatgg	cgagggcaaa	aaggatcttg	ttaatgtgta	360
	tcagccagtc	attgatgatt	gtcgtcgtct	ttgggtgctt	gacattggga	aggtggaata	420
45	caccggtggt	gatgctgatc	aatatcccaa	aggaaagcct	accctaattg	cctacgacct	480
40	caagaaggat	catactccgg	aaattcatcg	atttgaaatt	ccagacgatc	tctatagctc	540
	acaagttgaa	tttggtggat	ttgccgttga	tgttgttaac	acgaaaggag	actgtacgga	600
50	gtcatttgtc	tacctgacca	atttcaagga	taactctcta	attgtctacg	atgagacaca	660
	aaagaaagct	tggaaattca	cagataaaac	atttgaagct	gataaggaat	ccacgttctc	720
55	ctactcggga	gaggaacaaa	tgaagtacaa	agtcggtctt	tttgggatag	ctctgggtga	780
	tagggatgaa	atggggcatc	gtcctgcctg	ctacatcgct	gggagtagca	ccaaagtcta	840
	cagtgttaac	actaaagaac	tcaaaacaga	gaatggtcag	ttaaatcctc	agcttcacgg	900
60	taataataa	aadtacacac	atocaattoo	cctaccctac	gatectgage	ataaadtoot	960

	ctactttgct	gaatccgaca	gcaggcaggt	gtcctgttgg	aatgtaaata	tggagctaaa	1020
5	accagacaat	acggatgtga	tcttctctag	tgcccgtttt	acttttggaa	cggatatttt	1080
5	ggttgatagc	aagggaatgc	tgtggataat	ggctaatgga	catccaccag	tagaggatca	1140
	agagaagatt	tggaagatga	gattcgtaaa	ccggaagatc	cgtattatga	aagtggatac	1200
10	ggaacgtgtt	ttcaaatatt	cacgctgcaa	tccaaattat	aagcccccaa	aggaaattga	1260
	agtttgagac	acaggaaaaa	gctcaatttt	caacaagaat	ttgatcttaa	tctgaatacc	1320
15	ctaaagtctg	tcaaagaatt	tcatattatt	tgaaaaccaa	taaattgatt	aattttccga	1380
15	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa				1409
20		e Zomyia longi	ipalpis				
	<400> 91 atgcggttct	tcttcgtgtt	cctggccatc	gtgctgttcc	agggcatcca	cggcgcctac	60
25	gtggagatcg	gctacagcct	gcggaacatc	accttcgacg	gcctggacac	cgacgactac	120
	aaccccaagt	tcaacatccc	caccggcctg	gccgtggacc	ccgagggcta	ccggctgttc	180
30	atcgccatcc	ccaggcggaa	gcccaaggtg	ccctacaccg	tggccgagct	gaacatggtg	240
	atgaaccccg	gcttccccgt	ggagagggcc	cccagcttcg	agaagttcaa	gaagtttaac	300
35	ggcgagggca	agaaagacct	ggtgaacgtg	taccagcccg	tgatcgacga	ctgcaggcgg	360
55	ctgtgggtgc	tggacatcgg	caaggtggag	tacacaggcg	gcgacgccga	ccagtacccc	420
	aagggcaagc	ccaccctgat	cgcctacgac	ctgaagaagg	accacacccc	cgagatccac	480
40	cggttcgaga	tccccgacga	cctgtacagc	agccaggtgg	agttcggcgg	ctttgccgtg	540
	gacgtggtga	acaccaaggg	cgactgcacc	gagagcttcg	tgtacctgac	caacttcaag	600
45	gacaacagcc	tgatcgtgta	cgacgagacc	cagaagaagg	cctggaagtt	caccgacaag	660
	accttcgagg	ccgacaaaga	gagcaccttc	agctacagcg	gcgaggaaca	gatgaagtac	720
	aaagtgggcc	tgttcggcat	cgccctgggc	gaccgggacg	agatgggcca	caggcccgcc	780
50	tgctacatcg	ccggcagcag	caccaaggtg	tacagcgtga	ataccaaaga	gctgaaaacc	840
	gagaacggcc	agctgaaccc	ccagctgcac	ggcgaccggg	gcaagtacac	cgacgccatt	900
55	gccctggcct	acgaccccga	gcacaaggtg	ctgtacttcg	ccgagagcga	cagccggcag	960
	gtgtcctgct	ggaacgtgaa	catggaactg	aagcccgaca	acaccgacgt	gatcttcagc	1020
	agcgcccggt	tcaccttcgg	caccgacatc	ctggtggaca	gcaagggcat	gctgtggatc	1080
60	atggccaacg	gccacccccc	cgtggaggac	caggaaaaga	tctggaagat	gcggttcgtg	1140

	aaccggaaga	tccggatcat	gaaggtggac	accgagcggg	tgttcaagta	cagccggtgc	1200
5	aaccccaact	acaagccccc	caaagaaatc	gaagtgtga			1239
10	<210> 92 <211> 4995 <212> ADN <213> Lutz	5 zomyia long:	ipalpis				
	<400> 92	tagatagatt	attact at a	tagatgagta		taggagtata	60
4.5			gttagttctg				
15			tcctaaaata	_	_	_	120
	aattcagcaa	tttctctatt	atcatgataa	tgattaatac	acagcgtgtc	gttattttt	180
20	gttacgatag	tatttctaaa	gtaaagagca	ggaatcccta	gtataataga	aataatccat	240
	atgaaaaata	tagtaatgta	catatttcta	atgttaacat	atttataggt	aaatccagga	300
	agggtaattt	ttacatatct	atatacgctt	attacagtta	ttaaaaatat	acttgcaaac	360
25	atgttagaag	taaaaaagaa	agaactaatt	ttacaaagtg	ctttaccaaa	atgccaatgg	420
	aaattactta	gtatgtatat	aatgtataaa	ggtatgaata	tcacaaacag	caaatcggct	480
30	attcccaagt	tgagaaacgg	tataatagat	atatttctag	ataccattaa	taaccttata	540
50	agcttgacgt	ttcctataat	gcctactaag	aaaactagaa	gatacataca	tactaacgcc	600
	atacgagagt	aactactcat	cgtataacta	ctgttgctaa	cagtgacact	gatgttataa	660
35	ctcatctttg	atgtggtata	aatgtataat	aactatatta	cactggtatt	ttatttcagt	720
	tatatactat	atagtattaa	aaattatatt	tgtataatta	tattattata	ttcagtgtag	780
	aaagtaaaat	actataaata	tgtatctctt	atttataact	tattagtaaa	gtatgtacta	840
40	ttcagttata	ttgttttata	aaagctaaat	gctactagat	tgatataaat	gaatatgtaa	900
	taaattagta	atgtagtata	ctaatattaa	ctcacatttg	actaattagc	tataaaaacc	960
45	cctagtcaat	aaaaactcga	gtcatcacac	ttcgatttct	ttggggggct	tgtagttggg	1020
	gttgcaccgg	ctgtacttga	acacccgctc	ggtgtccacc	ttcatgatcc	ggatcttccg	1080
	gttcacgaac	cgcatcttcc	agatcttttc	ctggtcctcc	acgggggggt	ggccgttggc	1140
50	catgatccac	agcatgccct	tgctgtccac	caggatgtcg	gtgccgaagg	tgaaccgggc	1200
	gctgctgaag	atcacgtcgg	tgttgtcggg	cttcagttcc	atgttcacgt	tccagcagga	1260
55			cggcgaagta				1320
			tgccccggtc				1380
			tattcacgct				1440
60		agululugg	Lactuacyct	Judacetty	Jegergerge	Jysyatyta	7440

	gcaggcgggc	ctgtggccca	tctcgtcccg	gtcgcccagg	gcgatgccga	acaggcccac	1500
	tttgtacttc	atctgttcct	cgccgctgta	gctgaaggtg	ctctctttgt	cggcctcgaa	1560
5	ggtcttgtcg	gtgaacttcc	aggccttctt	ctgggtctcg	tcgtacacga	tcaggctgtt	1620
	gtccttgaag	ttggtcaggt	acacgaagct	ctcggtgcag	tcgcccttgg	tgttcaccac	1680
40	gtccacggca	aagccgccga	actccacctg	gctgctgtac	aggtcgtcgg	ggatctcgaa	1740
10	ccggtggatc	tcgggggtgt	ggtccttctt	caggtcgtag	gcgatcaggg	tgggcttgcc	1800
	cttggggtac	tggtcggcgt	cgccgcctgt	gtactccacc	ttgccgatgt	ccagcaccca	1860
15	cagccgcctg	cagtcgtcga	tcacgggctg	gtacacgttc	accaggtctt	tcttgccctc	1920
	gccgttaaac	ttcttgaact	tctcgaagct	gggggccctc	tccacgggga	agccggggtt	1980
20	catcaccatg	ttcagctcgg	ccacggtgta	gggcaccttg	ggcttccgcc	tggggatggc	2040
20	gatgaacagc	cggtagccct	cggggtccac	ggccaggccg	gtggggatgt	tgaacttggg	2100
	gttgtagtcg	tcggtgtcca	ggccgtcgaa	ggtgatgttc	cgcaggctgt	agccgatctc	2160
25	cacgtaggcg	ccgtggatgc	cctggaacag	cacgatggcc	aggaacacga	agaagaaccg	2220
	cattacgata	caaacttaac	ggatatcgcg	ataatgaaat	aatttatgat	tatttctcgc	2280
30	tttcaattta	acacaaccct	caagaacctt	tgtatttatt	ttcacttttt	aagtatagaa	2340
30	taaagaagct	ctaattaatt	aacgagcaga	tagtctcgtt	ctcgccctgc	ctgatgacta	2400
	attaattaac	ccctagttaa	tcaaataaaa	agcatacaag	ctattgcttc	gctatcgtta	2460
35	caaaatggca	ggaattttgt	gtaaactaag	ccacatactt	gccaatgaaa	aaaatagtag	2520
	aaaggatact	attttaatgg	gattagatgt	taaggttcct	tgggattata	gtaactgggc	2580
40	atctgttaac	ttttacgacg	ttaggttaga	tactgatgtt	acagattata	ataatgttac	2640
10	aataaaatac	atgacaggat	gtgatatttt	tcctcatata	actcttggaa	tagcaaatat	2700
	ggatcaatgt	gatagatttg	aaaatttcaa	aaagcaaata	actgatcaag	atttacagac	2760
45	tatttctata	gtctgtaaag	aagagatgtg	ttttcctcag	agtaacgcct	ctaaacagtt	2820
	gggagcgaaa	ggatgcgctg	tagttatgaa	actggaggta	tctgatgaac	ttagagccct	2880
50	aagaaatgtt	ctgctgaatg	cggtaccctg	ttcgaaggac	gtgtttggtg	atatcacagt	2940
	agataatccg	tggaatcctc	acataacagt	aggatatgtt	aaggaggacg	atgtcgaaaa	3000
	caagaaacgc	ctaatggagt	gcatgtccaa	gtttaggggg	caagaaatac	aagttctagg	3060
55	atggtattaa	taagtatcta	agtatttggt	ataatttatt	aaatagtata	attataacaa	3120
	ataataaata	acatgataac	ggtttttatt	agaataaaat	agagataata	tcataatgat	3180
60	atataatact	tcattaccag	aaatgagtaa	tggaagactt	ataaatgaac	tgcataaagc	3240

	tataaggtat	agagatataa	atttagtaag	gtatatactt	aaaaaatgca	aatacaataa	3300
	cgtaaatata	ctatcaacgt	ctttgtattt	agccgtaagt	atttctgata	tagaaatggt	3360
5	aaaattatta	ctagaacacg	gtgccgatat	tttaaaatgt	aaaaatcctc	ctcttcataa	3420
	agctgctagt	ttagataata	cagaaattgc	taaactacta	atagattctg	gcgctgacat	3480
10	agaacagata	cattctggaa	atagtccgtt	atatatttct	gtatatagaa	acaataagtc	3540
10	attaactaga	tatttattaa	aaaaaggtgt	taattgtaat	agattctttc	taaattatta	3600
	cgatgtactg	tatgataaga	tatctgatga	tatgtataaa	atatttatag	attttaatat	3660
15	tgatcttaat	atacaaacta	gaaattttga	aactccgtta	cattacgcta	taaagtataa	3720
	gaatatagat	ttaattagga	tattgttaga	taatagtatt	aaaatagata	aaagtttatt	3780
20	tttgcataaa	cagtatctca	taaaggcact	taaaaataat	tgtagttacg	atataatagc	3840
20	gttacttata	aatcacggag	tgcctataaa	cgaacaagat	gatttaggta	aaaccccatt	3900
	acatcattcg	gtaattaata	gaagaaaaga	tgtaacagca	cttctgttaa	atctaggagc	3960
25	tgatataaac	gtaatagatg	actgtatggg	cagtccctta	cattacgctg	tttcacgtaa	4020
	cgatatcgaa	acaacaaaga	cacttttaga	aagaggatct	aatgttaatg	tggttaataa	4080
20	tcatatagat	accgttctaa	atatagctgt	tgcatctaaa	aacaaaacta	tagtaaactt	4140
30	attactgaag	tacggtactg	atacaaagtt	ggtaggatta	gataaacatg	ttattcacat	4200
	agctatagaa	atgaaagata	ttaatatact	gaatgcgatc	ttattatatg	gttgctatgt	4260
35	aaacgtctat	aatcataaag	gtttcactcc	tctatacatg	gcagttagtt	ctatgaaaac	4320
	agaatttgtt	aaactcttac	ttgaccacgg	tgcttacgta	aatgctaaag	ctaagttatc	4380
40	tggaaatact	cctttacata	aagctatgtt	atctaatagt	tttaataata	taaaattact	4440
40	tttatcttat	aacgccgact	ataattctct	aaataatcac	ggtaatacgc	ctctaacttg	4500
	tgttagcttt	ttagatgaca	agatagctat	tatgataata	tctaaaatga	tgttagaaat	4560
45	atctaaaaat	cctgaaatag	ctaattcaga	aggttttata	gtaaacatgg	aacatataaa	4620
	cagtaataaa	agactactat	ctataaaaga	atcatgcgaa	aaagaactag	atgttataac	4680
50	acatataaag	ttaaattcta	tatattcttt	taatatcttt	cttgacaata	acatagatct	4740
30	tatggtaaag	ttcgtaacta	atcctagagt	taataagata	cctgcatgta	tacgtatata	4800
	tagggaatta	atacggaaaa	ataaatcatt	agcttttcat	agacatcagc	taatagttaa	4860
55	agctgtaaaa	gagagtaaga	atctaggaat	aataggtagg	ttacctatag	atatcaaaca	4920
	tataataatg	gaactattaa	gtaataatga	tttacattct	gttatcacca	gctgttgtaa	4980
60	cccagtagta	taaag					4995

5	<210><211><212><213>	93 4995 ADN Lutz	s zomyia longi	ipalpis				
	<400> ctttata	93 icta	ctgggttaca	acagctggtg	ataacagaat	gtaaatcatt	attacttaat	60
10	agttcca	ıtta	ttatatgttt	gatatctata	ggtaacctac	ctattattcc	tagattctta	120
	ctctctt	tta	cagctttaac	tattagctga	tgtctatgaa	aagctaatga	tttattttc	180
45	cgtatta	att	ccctatatat	acgtatacat	gcaggtatct	tattaactct	aggattagtt	240
15	acgaact	tta	ccataagatc	tatgttattg	tcaagaaaga	tattaaaaga	atatatagaa	300
	tttaact	tta	tatgtgttat	aacatctagt	tctttttcgc	atgattcttt	tatagatagt	360
20	agtcttt	tat	tactgtttat	atgttccatg	tttactataa	aaccttctga	attagctatt	420
	tcaggat	ttt	tagatatttc	taacatcatt	ttagatatta	tcataatagc	tatcttgtca	480
25	tctaaaa	agc	taacacaagt	tagaggcgta	ttaccgtgat	tatttagaga	attatagtcg	540
25	gcgttat	aag	ataaaagtaa	ttttatatta	ttaaaactat	tagataacat	agctttatgt	600
	aaaggag	ıtat	ttccagataa	cttagcttta	gcatttacgt	aagcaccgtg	gtcaagtaag	660
30	agtttaa	ıcaa	attctgtttt	catagaacta	actgccatgt	atagaggagt	gaaaccttta	720
	tgattat	aga	cgtttacata	gcaaccatat	aataagatcg	cattcagtat	attaatatct	780
35	ttcattt	cta	tagctatgtg	aataacatgt	ttatctaatc	ctaccaactt	tgtatcagta	840
33	ccgtact	tca	gtaataagtt	tactatagtt	ttgtttttag	atgcaacagc	tatatttaga	900
	acggtat	cta	tatgattatt	aaccacatta	acattagatc	ctctttctaa	aagtgtcttt	960
40	gttgttt	cga	tatcgttacg	tgaaacagcg	taatgtaagg	gactgcccat	acagtcatct	1020
	attacgt	tta	tatcagctcc	tagatttaac	agaagtgctg	ttacatcttt	tcttctatta	1080
45	attaccg	gaat	gatgtaatgg	ggttttacct	aaatcatctt	gttcgtttat	aggcactccg	1140
40	tgattta	ıtaa	gtaacgctat	tatatcgtaa	ctacaattat	ttttaagtgc	ctttatgaga	1200
	tactgtt	tat	gcaaaaataa	acttttatct	attttaatac	tattatctaa	caatatccta	1260
50	attaaat	cta	tattcttata	ctttatagcg	taatgtaacg	gagtttcaaa	atttctagtt	1320
	tgtatat	taa	gatcaatatt	aaaatctata	aatattttat	acatatcatc	agatatctta	1380
55	tcataca	ıgta	catcgtaata	atttagaaag	aatctattac	aattaacacc	tttttttaat	1440
JJ	aaatato	tag	ttaatgactt	attgtttcta	tatacagaaa	tatataacgg	actatttcca	1500
	gaatgta	itct	gttctatgtc	agcgccagaa	tctattagta	gtttagcaat	ttctgtatta	1560
60	tctaaac	taq	cagctttatg	aaqaqqaqqa	tttttacatt	ttaaaatatc	ggcaccgtgt	1620

	tctagtaata	attttaccat	ttctatatca	gaaatactta	cggctaaata	caaagacgtt	1680
5	gatagtatat	ttacgttatt	gtatttgcat	tttttaagta	tataccttac	taaatttata	1740
3	tctctatacc	ttatagcttt	atgcagttca	tttataagtc	ttccattact	catttctggt	1800
	aatgaagtat	tatatatcat	tatgatatta	tctctatttt	attctaataa	aaaccgttat	1860
10	catgttattt	attatttgtt	ataattatac	tatttaataa	attataccaa	atacttagat	1920
	acttattaat	accatcctag	aacttgtatt	tcttgccccc	taaacttgga	catgcactcc	1980
15	attaggcgtt	tcttgttttc	gacatcgtcc	tccttaacat	atcctactgt	tatgtgagga	2040
13	ttccacggat	tatctactgt	gatatcacca	aacacgtcct	tcgaacaggg	taccgcattc	2100
	agcagaacat	ttcttagggc	tctaagttca	tcagatacct	ccagtttcat	aactacagcg	2160
20	catcctttcg	ctcccaactg	tttagaggcg	ttactctgag	gaaaacacat	ctcttcttta	2220
	cagactatag	aaatagtctg	taaatcttga	tcagttattt	gctttttgaa	attttcaaat	2280
25	ctatcacatt	gatccatatt	tgctattcca	agagttatat	gaggaaaaat	atcacatcct	2340
25	gtcatgtatt	ttattgtaac	attattataa	tctgtaacat	cagtatctaa	cctaacgtcg	2400
	taaaagttaa	cagatgccca	gttactataa	tcccaaggaa	ccttaacatc	taatcccatt	2460
30	aaaatagtat	cctttctact	attttttca	ttggcaagta	tgtggcttag	tttacacaaa	2520
	attcctgcca	ttttgtaacg	atagcgaagc	aatagcttgt	atgcttttta	tttgattaac	2580
35	taggggttaa	ttaattagtc	atcaggcagg	gcgagaacga	gactatctgc	tcgttaatta	2640
33	attagagctt	ctttattcta	tacttaaaaa	gtgaaaataa	atacaaaggt	tcttgagggt	2700
	tgtgttaaat	tgaaagcgag	aaataatcat	aaattatttc	attatcgcga	tatccgttaa	2760
40	gtttgtatcg	taatgcggtt	cttcttcgtg	ttcctggcca	tcgtgctgtt	ccagggcatc	2820
	cacggcgcct	acgtggagat	cggctacagc	ctgcggaaca	tcaccttcga	cggcctggac	2880
45	accgacgact	acaaccccaa	gttcaacatc	cccaccggcc	tggccgtgga	ccccgagggc	2940
45	taccggctgt	tcatcgccat	ccccaggcgg	aagcccaagg	tgccctacac	cgtggccgag	3000
	ctgaacatgg	tgatgaaccc	cggcttcccc	gtggagaggg	cccccagctt	cgagaagttc	3060
50	aagaagttta	acggcgaggg	caagaaagac	ctggtgaacg	tgtaccagcc	cgtgatcgac	3120
	gactgcaggc	ggctgtgggt	gctggacatc	ggcaaggtgg	agtacacagg	cggcgacgcc	3180
55	gaccagtacc	ccaagggcaa	gcccaccctg	atcgcctacg	acctgaagaa	ggaccacacc	3240
JÜ	cccgagatcc	accggttcga	gateceegae	gacctgtaca	gcagccaggt	ggagttcggc	3300
	ggctttgccg	tggacgtggt	gaacaccaag	ggcgactgca	ccgagagctt	cgtgtacctg	3360
60	accaacttca	aggacaacag	cctgatcgtg	tacgacgaga	cccagaagaa	ggcctggaag	3420

	ttcaccgaca	agaccttcga	ggccgacaaa	gagagcacct	tcagctacag	cggcgaggaa	3480
5	cagatgaagt	acaaagtggg	cctgttcggc	atcgccctgg	gcgaccggga	cgagatgggc	3540
J	cacaggcccg	cctgctacat	cgccggcagc	agcaccaagg	tgtacagcgt	gaataccaaa	3600
	gagctgaaaa	ccgagaacgg	ccagctgaac	ccccagctgc	acggcgaccg	gggcaagtac	3660
10	accgacgcca	ttgccctggc	ctacgacccc	gagcacaagg	tgctgtactt	cgccgagagc	3720
	gacagccggc	aggtgtcctg	ctggaacgtg	aacatggaac	tgaagcccga	caacaccgac	3780
15	gtgatcttca	gcagcgcccg	gttcaccttc	ggcaccgaca	tcctggtgga	cagcaagggc	3840
	atgctgtgga	tcatggccaa	cggccacccc	cccgtggagg	accaggaaaa	gatctggaag	3900
	atgcggttcg	tgaaccggaa	gatccggatc	atgaaggtgg	acaccgagcg	ggtgttcaag	3960
20	tacagccggt	gcaaccccaa	ctacaagccc	cccaaagaaa	tcgaagtgtg	atgactcgag	4020
	tttttattga	ctaggggttt	ttatagctaa	ttagtcaaat	gtgagttaat	attagtatac	4080
25	tacattacta	atttattaca	tattcattta	tatcaatcta	gtagcattta	gcttttataa	4140
20	aacaatataa	ctgaatagta	catactttac	taataagtta	taaataagag	atacatattt	4200
	atagtatttt	actttctaca	ctgaatataa	taatataatt	atacaaatat	aatttttaat	4260
30	actatatagt	atataactga	aataaaatac	cagtgtaata	tagttattat	acatttatac	4320
	cacatcaaag	atgagttata	acatcagtgt	cactgttagc	aacagtagtt	atacgatgag	4380
35	tagttactct	cgtatggcgt	tagtatgtat	gtatcttcta	gttttcttag	taggcattat	4440
	aggaaacgtc	aagcttataa	ggttattaat	ggtatctaga	aatatatcta	ttataccgtt	4500
	tctcaacttg	ggaatagccg	atttgctgtt	tgtgatattc	atacctttat	acattatata	4560
40	catactaagt	aatttccatt	ggcattttgg	taaagcactt	tgtaaaatta	gttctttctt	4620
	ttttacttct	aacatgtttg	caagtatatt	tttaataact	gtaataagcg	tatatagata	4680
45	tgtaaaaatt	acccttcctg	gatttaccta	taaatatgtt	aacattagaa	atatgtacat	4740
	tactatattt	ttcatatgga	ttatttctat	tatactaggg	attcctgctc	tttactttag	4800
	aaatactatc	gtaacaaaaa	ataacgacac	gctgtgtatt	aatcattatc	atgataatag	4860
50	agaaattgct	gaattgattt	acaaagttat	tatctgtatc	agatttattt	taggatacct	4920
	actacctacg	ataattatac	tcgtatgcta	tacgttactg	atctacagaa	ctaacaatgc	4980
55	atctaatata	tctga					4995

<211> 5040 <212> ADN 60 <213> Lutzomyia longipalpis

<210> 94

	<400> 94						
	cgagtccttc	taacactgtg	gtttattggc	tggaataaaa	ggataaagac	acctatactg	60
5	attcattttc	atctgtcaac	gtttctctaa	gagattcata	ggtattatta	ttacatcgat	120
	ctagaagtct	aataactgct	aagtatatta	ttggatttaa	cgcgctataa	acgcatccaa	180
10	aacctacaaa	tataggagaa	gcttctctta	tgaaacttct	taaagcttta	ctcttactat	240
10	tactactcaa	aagagatatt	acattaatta	tgtgatgagg	catccaacat	ataaagaaga	300
	ctaaagctgt	agaagctgtt	atgaagaata	tcttatcaga	tatattagat	gcattgttag	360
15	ttctgtagat	cagtaacgta	tagcatacga	gtataattat	cgtaggtagt	aggtatccta	420
	aaataaatct	gatacagata	ataactttgt	aaatcaattc	agcaatttct	ctattatcat	480
20	gataatgatt	aatacacagc	gtgtcgttat	tttttgttac	gatagtattt	ctaaagtaaa	540
20	gagcaggaat	ccctagtata	atagaaataa	tccatatgaa	aaatatagta	atgtacatat	600
	ttctaatgtt	aacatattta	taggtaaatc	caggaagggt	aatttttaca	tatctatata	660
25	cgcttattac	agttattaaa	aatatacttg	caaacatgtt	agaagtaaaa	aagaaagaac	720
	taattttaca	aagtgcttta	ccaaaatgcc	aatggaaatt	acttagtatg	tatataatgt	780
30	ataaaggtat	gaatatcaca	aacagcaaat	cggctattcc	caagttgaga	aacggtataa	840
50	tagatatatt	tctagatacc	attaataacc	ttataagctt	gacgtttcct	ataatgccta	900
	ctaagaaaac	tagaagatac	atacatacta	acgccatacg	agagtaacta	ctcatcgtat	960
35	aactactgtt	gctaacagtg	acactgatgt	tataactcat	ctttgatgtg	gtataaatgt	1020
	ataataacta	tattacactg	gtattttatt	tcagttatat	actatatagt	attaaaaatt	1080
40	atatttgtat	aattatatta	ttatattcag	tgtagaaagt	aaaatactat	aaatatgtat	1140
40	ctcttattta	taacttatta	gtaaagtatg	tactattcag	ttatattgtt	ttataaaagc	1200
	taaatgctac	tagattgata	taaatgaata	tgtaataaat	tagtaatgta	gtatactaat	1260
45	attaactcac	atttgactaa	ttagctataa	aaacccgggt	taattaatta	gtcatcaggc	1320
	agggcgagaa	cgagactatc	tgctcgttaa	ttaattagag	cttctttatt	ctatacttaa	1380
50	aaagtgaaaa	taaatacaaa	ggttcttgag	ggttgtgtta	aattgaaagc	gagaaataat	1440
00	cataaattat	ttcattatcg	cgatatccgt	taagtttgta	tcgtaatgaa	cagcatcaac	1500
	tttctgagca	tcgtgggcct	gatcagcttc	ggcttcatcg	tggccgtgaa	gtgcgacggc	1560
55	gacgagtact	tcatcggcaa	gtacaaagag	aaggacgaga	ccctgttctt	cgccagctac	1620
	ggcctgaagc	gggacccctg	ccagatcgtg	ctgggctaca	agtgcagcaa	caaccagacc	1680
60	cacttcgtgc	tgaacttcaa	gaccaacaag	aagagctgca	tcagcgccat	caagctgacc	1740
50							

	agctacccca	agatcaacca	gaacagcgac	ctgaccaaga	acctgtactg	ccagaccggc	1800
	ggcatcggca	ccgacaactg	caagctggtg	ttcaagaagc	ggaagcggca	gatcgccgcc	1860
5	aacatcgaga	tctacggcat	ccccgccaag	aagtgcagct	tcaaggaccg	gtacatcggc	1920
	gccgaccccc	tgcacgtgga	ctcctacggc	ctgccctacc	agttcgacca	ggaacacggc	1980
10	tggaacgtcg	agcggtacaa	catcttcaag	gacacccggt	tcagcaccga	ggtgttctac	2040
10	cacaagaacg	gcctgttcaa	cacccagatc	acctacctgg	ccgaagagga	cagcttcagc	2100
	gaggcccggg	agatcaccgc	caaggacatc	aagaagaagt	tcagcatcat	cctgcccaac	2160
15	gaggaataca	agcggatcag	cttcctggac	gtgtactggt	tccaggaaac	catgcggaag	2220
	aagcccaagt	acccctacat	ccactacaac	ggcgagtgct	ccaacgagaa	caagacctgc	2280
20	gaactggtgt	tcgacaccga	cgagctgatg	acctacgccc	tggtgaaggt	gttcaccaac	2340
20	cccgagagcg	acggcagccg	gctgaaagaa	gaggacctgg	gcaggggctg	atgactcgag	2400
	tttttattga	ctagttaatc	aaataaaaag	catacaagct	attgcttcgc	tatcgttaca	2460
25	aaatggcagg	aattttgtgt	aaactaagcc	acatacttgc	caatgaaaaa	aatagtagaa	2520
	aggatactat	tttaatggga	ttagatgtta	aggttccttg	ggattatagt	aactgggcat	2580
30	ctgttaactt	ttacgacgtt	aggttagata	ctgatgttac	agattataat	aatgttacaa	2640
00	taaaatacat	gacaggatgt	gatattttc	ctcatataac	tcttggaata	gcaaatatgg	2700
	atcaatgtga	tagatttgaa	aatttcaaaa	agcaaataac	tgatcaagat	ttacagacta	2760
35	tttctatagt	ctgtaaagaa	gagatgtgtt	ttcctcagag	taacgcctct	aaacagttgg	2820
	gagcgaaagg	atgcgctgta	gttatgaaac	tggaggtatc	tgatgaactt	agagccctaa	2880
40	gaaatgttct	gctgaatgcg	gtaccctgtt	cgaaggacgt	gtttggtgat	atcacagtag	2940
.0	ataatccgtg	gaatcctcac	ataacagtag	gatatgttaa	ggaggacgat	gtcgaaaaca	3000
	agaaacgcct	aatggagtgc	atgtccaagt	ttagggggca	agaaatacaa	gttctaggat	3060
45	ggtattaata	agtatctaag	tatttggtat	aatttattaa	atagtataat	tataacaaat	3120
	aataaataac	atgataacgg	tttttattag	aataaaatag	agataatatc	ataatgatat	3180
50	ataatacttc	attaccagaa	atgagtaatg	gaagacttat	aaatgaactg	cataaagcta	3240
	taaggtatag	agatataaat	ttagtaaggt	atatacttaa	aaaatgcaaa	tacaataacg	3300
	taaatatact	atcaacgtct	ttgtatttag	ccgtaagtat	ttctgatata	gaaatggtaa	3360
55	aattattact	agaacacggt	gccgatattt	taaaatgtaa	aaatcctcct	cttcataaag	3420
	ctgctagttt	agataataca	gaaattgcta	aactactaat	agattctggc	gctgacatag	3480
60	aacagataca	ttctggaaat	agtccgttat	atatttctgt	atatagaaac	aataagtcat	3540

	taactagata	tttattaaaa	aaaggtgtta	attgtaatag	attctttcta	aattattacg	3600
	atgtactgta	tgataagata	tctgatgata	tgtataaaat	atttatagat	tttaatattg	3660
5	atcttaatat	acaaactaga	aattttgaaa	ctccgttaca	ttacgctata	aagtataaga	3720
	atatagattt	aattaggata	ttgttagata	atagtattaa	aatagataaa	agtttatttt	3780
10	tgcataaaca	gtatctcata	aaggcactta	aaaataattg	tagttacgat	ataatagcgt	3840
10	tacttataaa	tcacggagtg	cctataaacg	aacaagatga	tttaggtaaa	accccattac	3900
	atcattcggt	aattaataga	agaaaagatg	taacagcact	tctgttaaat	ctaggagctg	3960
15	atataaacgt	aatagatgac	tgtatgggca	gtcccttaca	ttacgctgtt	tcacgtaacg	4020
	atatcgaaac	aacaaagaca	cttttagaaa	gaggatctaa	tgttaatgtg	gttaataatc	4080
20	atatagatac	cgttctaaat	atagctgttg	catctaaaaa	caaaactata	gtaaacttat	4140
20	tactgaagta	cggtactgat	acaaagttgg	taggattaga	taaacatgtt	attcacatag	4200
	ctatagaaat	gaaagatatt	aatatactga	atgcgatctt	attatatggt	tgctatgtaa	4260
25	acgtctataa	tcataaaggt	ttcactcctc	tatacatggc	agttagttct	atgaaaacag	4320
	aatttgttaa	actcttactt	gaccacggtg	cttacgtaaa	tgctaaagct	aagttatctg	4380
30	gaaatactcc	tttacataaa	gctatgttat	ctaatagttt	taataatata	aaattacttt	4440
00	tatcttataa	cgccgactat	aattctctaa	ataatcacgg	taatacgcct	ctaacttgtg	4500
	ttagcttttt	agatgacaag	atagctatta	tgataatatc	taaaatgatg	ttagaaatat	4560
35	ctaaaaatcc	tgaaatagct	aattcagaag	gttttatagt	aaacatggaa	catataaaca	4620
	gtaataaaag	actactatct	ataaaagaat	catgcgaaaa	agaactagat	gttataacac	4680
40	atataaagtt	aaattctata	tattctttta	atatctttct	tgacaataac	atagatctta	4740
10	tggtaaagtt	cgtaactaat	cctagagtta	ataagatacc	tgcatgtata	cgtatatata	4800
	gggaattaat	acggaaaaat	aaatcattag	cttttcatag	acatcagcta	atagttaaag	4860
45	ctgtaaaaga	gagtaagaat	ctaggaataa	taggtaggtt	acctatagat	atcaaacata	4920
	taataatgga	actattaagt	aataatgatt	tacattctgt	tatcaccagc	tgttgtaacc	4980
50	cagtagtata	aagtgatttt	attcaattac	gaagataaac	attaaatttg	ttaacagata	5040

REIVINDICACIONES

- Vacuna de administración de sensibilización y una vacuna de administración de refuerzo para su uso en la protección de un sujeto de la leishmaniasis y/o la prevención de progresión de la enfermedad en un sujeto infectado,
 en la que el sujeto es un animal canino,
 - en la que las vacunas se formulan para la administración en un régimen de administración de sensibilizaciónrefuerzo que comprende una administración de sensibilización con la vacuna de administración de sensibilización seguida de una administración de refuerzo con la vacuna de administración de refuerzo,
- en la que dicha vacuna de administración de sensibilización comprende, en un vehículo, diluyente o excipiente 10 farmacéutica o veterinariamente aceptable, un vector de expresión que contiene un polinucleótido para expresar, *in vivo*, un polipéptido salival de *Lu. Longipalpis*, y
 - dicha vacuna de administración de refuerzo comprende, en un vehículo o excipiente farmacéutica o veterinariamente aceptable, el mismo polipéptido salival de *Lu. Longipalpis*,
 - en la que el polipéptido salival de Lu. Longipalpis es un polipéptido LJM17,
- 15 en la que el polinucleótido codifica un polipéptido que tiene al menos 80% de identidad de secuencia con un polipéptido que tiene la secuencia como se expone en la SEQ ID NO: 5, 7, 15, o 17; o el polinucleótido tiene al menos 70% de identidad de secuencia con un polinucleótido que codifica un polipéptido que tiene la secuencia como se expone en la SEQ ID NO: 5, 7, 15, o 17; o el polinucleótido tiene al menos 70% de identidad de secuencia con un polinucleótido que tiene la secuencia como se expone en SEQ ID NO: 6, 8, 16, 18, 21, 90, o 91; y
- 20 en la que el polipéptido de *Lu. Longipalpis* comprende una secuencia de aminoácidos que tiene al menos 80% de identidad de secuencia con un polipéptido que tiene la secuencia como se expone en SEQ ID NO: 5, 7, 15, o 17.
 - 2. Vacuna de administración de sensibilización y vacuna de administración de refuerzo para usar según la reivindicación 1, en la que el vector de expresión es un vector viral recombinante o un plásmido.
- 3. Vacuna de administración de sensibilización y vacuna de administración de refuerzo para usar según la reivindicación 1, en la que el vector de expresión se selecciona del grupo que consiste en pVR2001-TOPO, pVR2001-TOPA, pVR1020, pVR1012, pAB110, ALVAC, TROVAC, MVA, y el vector de baculovirus.
- 30 4. Vacuna de administración de sensibilización y vacuna de administración de refuerzo para usar según la reivindicación 1, en la que el vector se selecciona del grupo que consiste en pVR2001 LJM17 mostrado como SEQ ID NO: 9, vCP2390 mostrado como SEQ ID NO: 93, MVA-LJM17, pNBO002 mostrado como SEQ ID NO: 19, vCP2390-SEQ ID NO: 6, y mezclas de los mismos.
- 35 5. Vacuna de administración de sensibilización y vacuna de administración de refuerzo para usar, según la reivindicación 1, en la que el vector de expresión es un vector ALVAC que comprende la SEQ ID NO: 21 o 91.
- 6. Vacuna de administración de sensibilización y vacuna administración de refuerzo para usar según la reivindicación 1, en la que la secuencia de polinucleótido está optimizada en codones para el huésped de modo que 40 la secuencia de aminoácidos del polipéptido de *Lu. Longipalpis* codificado por la secuencia de polinucleótidos está funcionalmente inalterada.
 - 7. Vacuna de administración de sensibilización y vacuna de administración de refuerzo para usar según cualquiera de las reivindicaciones anteriores, en la que el animal canino es un perro.

45

Figura 1 (1/2)

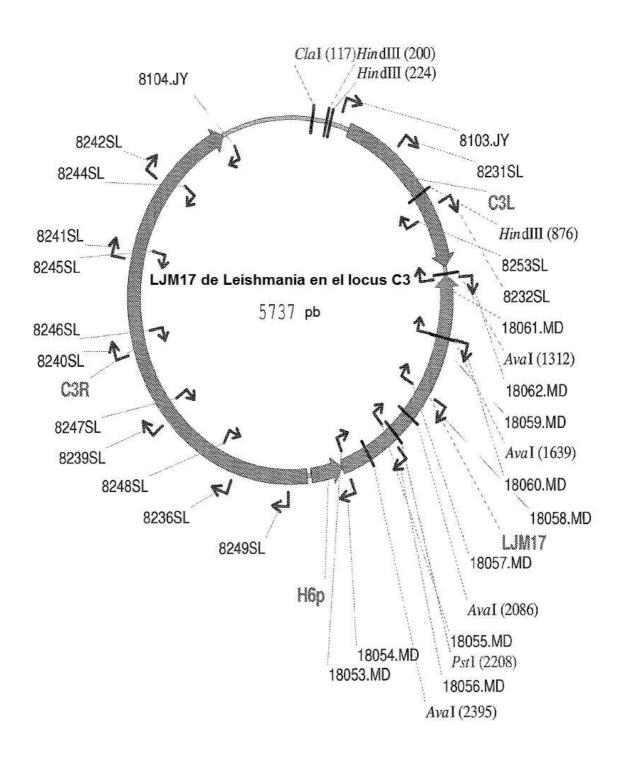
(pVR2001 LJM17: SEQ ID NO:9)

ggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattcta ttctggggggtggggtggggcagcacagcaaggggaggattgggaagacaatagcaggcatgctggggatgcggtg ctgtgacacaccctgtccacgcccctggttcttagttccagccccactcataggacactcatagctcaggagggctc cqccttcaatcccacccqctaaagtacttggagcggtctctccctcctcatcagcccaccaaaccaaacctagcct ccaaqaqtqqqaaqaaattaaaqcaaqataqqctattaaqtqcaqaqqqqaqaaaatqcctccaacatqtqagqaa qtaatgaqaaatcatagaatttcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcgcga gcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagc aaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctccgccccctgacgagcat cacaaaaat cgacgct caagt cagaggt ggcgaaacccgacaggact at aaagat accaggcgtt tccccctqqaaqctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaaq cqtqqcqctttctcaatqctcacqctqtaqqtatctcaqttcqqtqtaqqtcqttcqctccaagctqggctqtqtqc ${\tt acgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgac}$ ttatcqccactggcaqcaqccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaa qtgqtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaa a a a gag t t g g t a g c t c t t g a t c c g g c a a a c a a c c a c c g c t g g t a g c g g t t t t t t t g t t t g c a a g c a g c a g a t t t g c a gacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacggggtctgacgctcagtggaacgaaaactc acgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagtttta aatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcg ttgtaggtggaccagttggtgattttgaacttttgctttgccacggaacggtctgcgttgtcgggaagatgcgtgat ctgatccttcaactcagcaaaagttcgatttattcaacaaagccgccgtcccgtcaagtcagcgtaatgctctgcca gtgttacaaccaattaaccaattctgattagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcag gattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggcagttccataggatg gcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaat tgcgcctgagcgagacgaaatacgcgatcgctgttaaaaggacaattacaaacaggaatcgaatgcaaccggcgcag gaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatgctgttttcccgg ggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattcc gtcagccagtttagtctgaccatctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactc tggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcccgacattatcgcgagcccatttatacc catataaatcagcatccatgttggaatttaatcgcggcctcgagcaagacgtttcccgttgaatatggctcataaca ccccttgtattactgtttatgtaagcagacagttttattgttcatgatgatatatttttatcttgtgcaatgtaaca $\tt gcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacct$ gacqtctaaqaaaccattattatcatgacattaacctataaaaataggcgtatcacgaggccctttcgtctcgcgcg tttcggtqatqacggtqaaaacctctgacacatgcagctcccggagacggtcacagcttgtctgtaagcggatgccg ggagcagacaagcccgtcagggcgcgtcagcgggtgttggcgggtgtcgggcttgacttaactatgcggcatcagag caqattqtactqaqaqtqcaccatatqcqqtqtqaaataccqcacagatqcqtaaggagaaaataccqcatcagatt qqctattqqccattqcatacqttqtatccatatcataatatqtacatttatattqqctcatqtccaacattaccqcc atqttqacattgattattqactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagt tecgegttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatg acgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgccca cttggcagtacatcaagtgtatcatatgccaagtacgcccctattgacgtcaatgacggtaaatggcccgcctggc attatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatg gtgatgeggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccat tgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattga cgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtttagtgaaccgtcagatcgcctgg

Figura 1 (2/2)

agacgccatccacqctgttttqacctccataqaaqacaccqqgaccqatccaqcctccqcqqccqqqaacqqtqcat tqqaacqcqqattccccqtqccaaqaqtqacqtaaqtaccqcctataqaqtctataqqcccacccccttqqcttctt atgcatgctatactgtttttggcttggggtctatacacccccgcttcctcatgttataggtgatggtatagcttagc ctataggtgtgggttattgaccattattgaccactcccctattggtgacgatactttccattactaatccataacat qqctctttqccacaactctctttattqqctatatqccaatacactqtccttcaqaqactqacacqqactctqtattt taaacataacqtqqqatctccacqcqaatctcqqqtacqtqttccqqacatqqqctcttctccqqtaqcqqqqqq $\verb|ttctacatccgagccctgctcccatgcctccagcgactcatggtcgctcggcagctccttgctcctaacagtggagg|$ ccaqacttaqqcacaqcacqatqcccaccaccaccaqtqtqccqcacaagqccqtqqcqqtaqqqtatqtqtctqaa ctgaqttgttgttgttgttataagaqtcagaqgtaactcccgttgcqgtgctgttaacggtggaqqqcagtgtaqtct gagcagtactcgttqctqccqcqcqccaccaqacataataqctqacaqactaacaqactqttcctttccatqqqt cttttctcacqtcaccqtcqtcqaccaqaqctqaqatcctacaqqaqtccaqqqctgqaqaaaacctctqcqaqq aaagggaaggagcaagccgtgaatttaagggacgctgtgaagcaatcatggatgcaatgaagagagggctctgctgt gtgctgctgctgtgtggagcagtcttcgtttcgcccagcggtaccggatccacccttGCTTATGTGGAAATAGGATA TTCTCTGAGAAATATTACATTCGATGGATTGGATACAGATGACTACAATCCAAAGTTCAACATTCCAACGGGTTTGG CAGTTGATCCCGAAGGATATAGGCTCTTCATAGCCATCCCAAGGAGAAAGCCAAAGGTTCCCTACACTGTGGCTGAA CTGAATATGGTCATGAATCCCGGATTTCCCGTCGAGAGAGCTCCGAGCTTTGAGAAAATTCAAAAAATTCAATGGCGA GGGCAAAAAGGATCTTGTTAATGTGTATCAGCCAGTCATTGATGATTGTCGTCGTCTTTTGGGTGCTTGACATTGGGA AGGTGGAATACACCGGTGGTGATGCTGATCAATATCCCAAAGGAAAGCCTACCCTAATTGCCTACGACCTCAAGAAG GATCATACTCCGGAAATTCATCGATTTGAAATTCCAGACGATCTCTATAGCTCACAAGTTGAATTTGGTGGATTTGC CGTTGATGTTGTTAACACGAAAGGAGACTGTACGGAGTCATTTGTCTACCTGACCAATTTCAAGGATAACTCTCTAA TTGTCTACGATGAGACACAAAAGAAAGCTTGGAAATTCACAGATAAAACATTTGAAGCTGATAAGGAATCCACGTTC TCCTACTCGGGAGAGAACAAATGAAGTACAAAGTCGGTCTTTTTGGGATAGCTCTGGGTGATAGGGATGAAATGGG GCATCGTCCTGCCTGCTACATCGCTGGGAGTAGCACCAAAGTCTACAGTGTTAACACTAAAGAACTCAAAACAGAGA ATGGTCAGTTAAATCCTCAGGTTCACGGTGATCGTGGAAAGTACACAGATGCAATTGCCCTAGCCTACGATCCTGAG CAATACGGATGTGATCTTCTCTAGTGCCCGTTTTACTTTTGGAACGGATATTTTGGTTGATAGCAAGGGAATGCTGT GGATAATGGCTAATGGACATCCACCAGTAGAGGATCAAGAGAGATTTGGAAGATGAGATTCGTAAACCGGAAGATC CGTATTATGAAAGTGGATACGGAACGTGTTTTCAAATATTCACGCTGCAATCCAAATTATAAGCCCCCCAAAGGAAAT TGAAGTTTGA

Figura 2 (1/2)


(pVR2001 LJL143: SEQ ID NO:10)

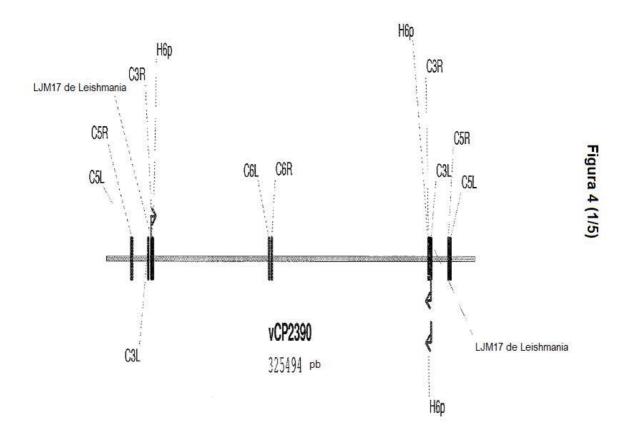

ggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagtaggtgtcattcta ttctggggggtggggtggggcagcacagcaaggggggggattgggaagacaatagcaggcatgctggggatgcggtg ctgtgacacaccctgtccacgcccctggttcttagttccagccccactcataggacactcatagctcaggagggctc gtaatgagagaaatcatagaatttcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcga gcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagc aaaaqqccaqcaaaaqqccaggaaccgtaaaaaqqccqcqttgctgqcgtttttccataggctccgccccctgacq agcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccaggcgtttccccct qqaaqctccctcqtqcqctctcctqttccqaccctqccqcttaccggatacctqtccgcctttctcccttcgggaaq cgtggcgctttctcaatgctcacgctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgc acgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgac ttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaa gtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccagttaccttcggaa acgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaaattaaaatgaagtttta aatcaatctaaaqtatatatqqqtaaacttqqtctqacaqttaccaatqcttaatcaqtqqqqcacctatctcaqcq ttgtaggtggaccagttggtgattttgaacttttgctttgccacggaacggtctgcgttgtcgggaagatgcgtgat ctgatccttcaactcagcaaaagttcgatttattcaacaaagccgccgtcccgtcaagtcagcgtaatgctctgcca gtgttacaaccaattaaccaattctgattagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcag gattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggcagttccataggatg qcaaqatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaat aaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagcttatgcatttcttcc tgcgcctgagcgagacgaaatacgcgatcgctgttaaaaggacaattacaaacaggaatcgaatgcaaccggcgcag qaacactqccaqcqcatcaacaatattttcacctqaatcaqqatattcttctaatacctqgaatqctgttttcccqq $\verb|ggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattcc||$ gtcagccagtttagtctgaccatctcatctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactc ${\tt tggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcccgacattatcgcgagcccatttatacc}$ catataaatcaqcatccatgttggaatttaatcqcqqcctcqaqcaagacgtttcccgttgaatatggctcataaca ccccttgtattactgtttatgtaagcagacagttttattgttcatgatgatatatttttatcttgtgcaatgtaaca gcggatacatatttgaatgtatttagaaaataaacaaataggggttccgcgcacatttcccccgaaaagtgccacct gacgtctaagaaaccattattatcatgacattaacctataaaaataggcgtatcacgaggccctttcgtctcgcgcg tttcggtgatgacggtgaaaacctctgacacatgcagctcccggagacggtcacagcttgtctgtaagcggatgccg ggagcagacaagcccgtcagggcgcgtcagcgggtgttggcgggtgtcggggttggcttaactatgcggcatcagag cagattqtactqaqaqtqcaccatatqcqqtqtgaaataccqcacagatqcqtaagqagaaaataccqcatcagatt ggctattggccattgcatacgttgtatccatatcataatatgtacatttatattggctcatgtccaacattaccgcc atgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagt tccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatg acgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaagtacgcccctattgacgtcaatgacggtaaatggcccgcctggc attatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatg $\tt gtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccccat$ tgacqtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattga $\verb|cgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctcgtttagtgaaccgtcagatcgcctgg|$

Figura 2 (2/2)

agacgccatccacgctgttttgacctccatagaagacaccgggaccgatccagcctccgcggccgggaacgqtqcat tggaacgcggattccccgtgccaagagtgacgtaagtaccgcctatagagtctataggcccacccccttggcttctt atgcatgctatactgtttttggcttggggtctatacacccccgcttcctcatgttataggtgatggtatagcttagc ctataggtgtgggttattgaccattattgaccactcccctattggtgacgatactttccattactaatccataacat qqctctttqccacaactctctttattqqctatatqccaatacactqtccttcaqaqactqacacqqactctqtattt taaacataacqtqqqatctccacqcqaatctcqqqtacqtqttccqqacatqqqctcttctccqqtaqcqqqqqqaqc ttctacatccgagccctgctcccatgcctccagcgactcatggtcgctcggcagctccttgctcctaacagtggagg ccagacttaggcacagcacgatgcccaccaccaccagtgtgccgcacaaggccgtggcggtagggtatgtqtctqaa aatgagctcggqqagcqqqcttqcaccgctqacqcatttqqaagacttaaqqcagcqqcaqaagaaqatqcaqqcaq ctgagttgttgttgttgttataagagtcagaggtaactcccgttgcggtgctgttaacggtggagggcagtgtagtct gagcagtactcgttgctgccgcqcqcccaccagacataatagctgacagactaacagactqttcctttccatqqqt etttteteacqteaccqteqteqaecaqaqetqaqatectacaqqaqtecaqqqctqqaqaqaaaacctetqcqaqq aaagggaaggagcaagccgtgaatttaagggacgctgtgaagcaatcatggatgcaatgaagagagggctctgctgt gtgctgctgctgtgtggagcagtcttcgtttcgcccagcggtacc**ggatcc**accctt**GATGGTGATGAATATTTCAT** TGGAAAATACAAAGAAAAAGATGAGACACTGTTTTTTGCAAGCTACGGCCTAAAGAGGGATCCTTGCCAAATTGTCT TAGGCTACAAATGCTCAAACAATCAAACCCACTTTGTGCTTAATTTTAAAACCAATAAGAAATCCTGCATATCAGCA ATTAAGCTGACTTCTTACCCAAAAATCAATCAAAACTCGGATTTAACTAAAAATCTCTACTGCCAAACTGGAGGAAT AGGAACAGATAACTGCAAACTTGTCTTCAAGAAACGTAAAAGACAAATAGCAGCTAATATTGAAATCTACGGCATTC CAGCGAAGAAATGTTCCTTCAAGGATCGTTACATTGGAGCTGATCCACTCCACGTCGATTCCTATGGGCTTCCGTAT CAGTTTGATCAGGAACATGGAATGTGGAACGATATAACATTTTCAAAGACACAAGATTTTCCACAGAAGTTTT CTACCACAAAAATGGTTTATTTAACACCCAAATAACTTATTTGGCTGAAGAAGATTCCTTCTCTGAAGCTCGAGAGA TTACTGCGAAGGATATTAAGAAGAAGTTTTCAATTATTTTGCCCAATGAAGAGTATAAGAGGATTAGTTTCTTGGAC GTTTATTGGTTCCAGGAGACTATGCGAAAAAAGCCTAAATATCCCTACATTCACTACAATGGAGAATGCAGCAATGA GAATAAAACTTGTGAACTTGTCTTTGACACCGATGAACTAATGACCTACGCCCTTGTTAAAGTCTTTACTAATCCTG AGAGTGATGGATCTAGGCTCAAAGAAGAGGATTTGGGAAGAGGATAA

Figura 3

Figura 4 (2/5)

vCP2390 (LJM17 de Leishmania sintético en H6p de C3 de ALVAC) (SEQ ID NO: 92)

[1-940]: brazo izquierdo de C3 [2224-2409]: promotor H6

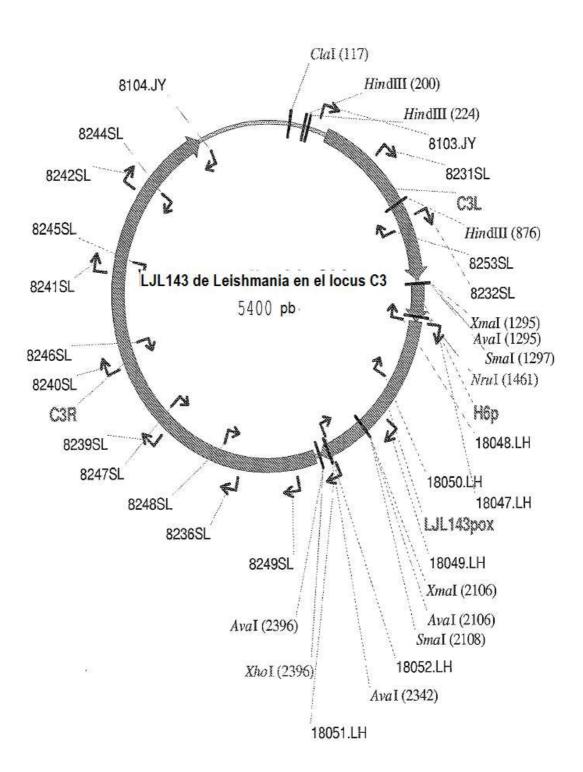
[982-2223]: LJM17 de Leishmania [2433-4995]: brazo derecho de C3

TCAGATATATTAGATGCATTGTTAGTTCTGTAGATCAGTAACGTATAGCATACGAGTATA 1 ATTATOGTAGGTAGTAGGTATCCTAAAATAAATCTGATACAGATAATAACTTTGTAAATC 61 AATTCAGCAATTTCTCTATTATCATGATAATGATTAATACACAGGGTGTCGTTATTTTTT 121 181 GTTACGATAGTATTCTAAAGTAAAGAGCAGGAATCCCTAGTATAATAGAAATAATCCAT atgaaraatatagtaatgtacatatttctaatgttaacatatttataggtaaatccagga 241 AGGGTAATTTTTACATATCTATATACGCTTATTACAGTTATTAAAAATATACTTGCAAAC 301 atottagaagtaaaaagaagaactaatttacaaagtgctttaccaaatgccaatgg 361 arattacttagtatctatataatgtataaaggtatgaatatcacaaacagcaaatcggct 421 481 attoccaagttgagaaacggtafartagafatatttctagafaccatfaataaccffata 541 ATACGAGAGTAACTACTCATCGTATAACTACTGTTGCTAACAGTGACACTGATGTTATAA 601 CTCATCTTTGATGTGCTATAAATGTATAATAACTATATTACACTGGTATTTTATTTCAGT 661 721 AAAGTAAAATACTATAAATATOTATCTCTTATTTAHAACTTATTAGTAAAGTATGTACTA 781 TTCAGTTATATTGTTTTATAAAGCTAAATGCTACTAGATTGATATAAATGAATATGTAA 841 TARTTAGTAATGTAGTATACTAATATTAACTCACATTTGACTAATTAGCTATAAAAACC 901 961 GTTGCACCGGCTGTACTTGAACACCCGCTCGGTGTCCACCTTCATGATCCGGATCTTCCG 1021 GTTCACGAACCGCATCTTCCAGATCTTTTCCTGGTCCTCCACGGGGGGGTGGCCGTTGGC 1081 1141 CATGATCCACAGCATGCCCTTGCTGTCCACCAGGATGTCGGTGCCGAAGGTGAACCGGGC 1201 GCTGCTGAAGATCACGTCGGTGTTGTCGGGCTTCAGTTCCATGTTCACGTTCCAGCAGGA CACCTGCCGGCTGTCGCTCTCGGCGAAGTACAGCACCTTGTGCTCGGGGTCGTAGGCCAG 1261 1321 - GGCAATGGCGTCGGTGTACTTGCCCCGGTCGCCGTGCAGCTGGGGGTTCAGCTGGCCGTT CTCGGTTTTCAGCTCTTTGGTATTCACGCTGTACACCTTGGTGCTGCTGCCGGCGATGTA 1381 GCAGGCGGGCCTGTGGCCCATCTCGTCCCGGTCGCCCAGGGCGATGCCGAACAGGCCCAC 1441 TTTGTACTTCATCTGTTCCTCGCCGCTGTAGCTGAAGGTGCTCTCTTTGTCGGCCTCGAA 1501 GGTCTTGTCGGTGAACTTCCAGGCCTTCTTCTGGGTCTCGTCGTCACACGATCAGGCTGTT 1561 GTCCTTGAAGTTGGTCAGGTACACGAAGCTCTCGGTGCAGTCGCCCTTGGTGTTCACCAC 1621 OTCCACGGCAAAGCCGCCGAACTCCACCTGGCTGCTGTACAGGTCGTCGGGGATCTCGAA 1681 CCGCTGGATCTCGGGGGTGTGGTCCTTCTTCAGGTCGTAGGCGATCAGGTGGGCTTGCC 1741 CTTGGGGTACTGGTCGGCGTCGCCGCTGTGTACTCCACCTTGCCGATGTCCAGCACCCA 1801 1861 GCCGTTAAACTTCTTGAACTTCTCGAAGCTGGGGGCCCTCTCCACGGGGAAGCCGGGGTT 1921 CATCACCATCTTCAGCTCGCCCACGGTGTAGAGCACCTTGGGCTTCCGCCTGGGGATGGC 1981 GATGAACAGCCGGTAGCCCTCGGGGTCCACGGCCGGGCCGGTGGGGATGTTGAACTTGGG 2041 CTTGTAGTCCTCGGTGTCCAGGCCGTCGAAGGTGATGTTCCGCAGGCTGTAGCCGATCTC 2101 CACGTAGGCGCCGTGGATGCCCTGGAACAGCACGATGGCCAGGAACACGAAGAACCG 2161 CATTACGATACAACTTAACGGATATCGCGATAATGAAATAATTTATGATTATTTCTCGC 2221 2281 TRANGANGCTCTARTTARCTARCGRGCAGATAGTCTCGTTCTCGCCCTGCCTGATGACTA 2341 ATTAATTAACCCCTAGTTAATCAAATAAAAAGCATACAAGCTATTGCTTCGCTATCGTTA 2401 CAAAATGGCAGGAATTTTGTGTAAACTAAGCCACATACTTGCCAATGAAAAAATAGTAG 2461 2521 AAAGGATACTATTTAATGGGATTAGATGTTAAGGTTCCTTGGGATTATAGTAACTGGGC **ATCTGTTAACTTTTACGACGTTAGGTTAGATACTGATGTTACAGATTATAATAATGTTAC** 2581 2641 <u>AATAAATTACATGACAGGATGTGATATTTTTCCTCATATAACTCTTGGAATAGCAAATAT</u> GGATCAATGTGATAGATTTGAAAATTTCAAAAAGCAAATAACTGATCAAGATTTACAGAC 2701

Figura 4 (3/5)

2761	TATTTCTATAGTCTGTAAAGAAGAGATGTGTTTTCCTCAGAGTAACGCCTCTAAACAGTT
2821	GGGAGCGAAAGGATGCGCTGTAGTTATGAAACTGGAGGTATCTGATGAACTTAGAGCCCT
2881	AAGAAATGTTCTGCTGAATGCGGTACCCTGTTCGAAGGACGTGTTTGGTGATATCACAGT
2941	AGATAATCCGTGGAATCCTCACATAACAGTAGGATATGTTAAGGAGGACGATGTCGAAAA
3001	CAAGAAACGCCTAATGGAGTGCATGTCCAAGTTTAGGGGGCAAGAAATACAAGTTCTAGG
3061	ATGGTATTAATAAGTATCTAAGTATTTGGTATAATTTATTAAATAGTATAATTATAACAA
3121	ATAATAAATAACATGATAACGGTTTTTATTAGAATAAARTAGAGATAATATCATAATGAT
3181	ATATAATAOTTCATTACCAGAATGAGTAATGGAAGACTTATAAATGAACTGCATAAAGC
3241	TATAAGGTATAGAGATATAARTTTAGTAAGGTATATACTTAAAAAATGCAAATACAATAA
3301	CGTAAATATACTATCAACGTCTTTGTATTTAGCCGTAAGTATTTCTGATATAGAAATGGT
3361	ARARTTATTACTAGAACACGGTGCCGATATTTTAAAATGTAAAAATCCTCCTCTTCATAA
3421	AGCTGCTAGTTTAGATAATACAGAAATTGCTAAACTACTAATAGATTCTGGCGCTGACAT
3481	AGRACAGATACATTCTGGAAATAGTCCGTTATATATTTCTGTATATAGAAACAATAAGTC
3541	ATTAACTAGATATTTATTAAAAAAAGGTGTTAATTGTAATAGATTCTTTCT
3601	CGATGTACTGTATGATAAGATATCTGATGATATGTATAAAATATTTATAGATTTTAATAT
3661	TGATCTTAATATACAAACTAGAAATTTTGAAACTCCGTTACATTACGCTATAAAGTATAA
3721	GAATATAGATTTAATTAGGATATTGTTAGATAATAGTATTAAAATAGATAAAAGTTTATT
3781	TTTGCRTAAACAGTATCTCATAAAGGCACTTAAAAATAATTGTAGTTACGATATAATAGC
3841	GTTACTTATAAATCRCGGAGTGCCTATAAACGAACAAGATGATTTAGGTAAAACCCCATT
3901	ACATCATTCGGTAATTAATAGAAGAAAAGATGTAACAGCACTTCTGTTAAATCTAGGAGC
3961	TGATATAAACGTAATAGATGACTGTATGGGCAGTCCCTTACATTACGCTGTTTCACGTAA
4021	CGRTATCGARACAACAAGACACTTTTAGAAAGAGGATCTAATGTTAATGTGGTTAATAA
4081	TCATATAGATACCGTTCTAAATATAGCTGTTGCATCTAAAAACAAAC
4141	attactgaagtacggtactgatacaaagttggtaggattagataaacatgttattcacat
4201	AGCTATAGAAATGAAAGATATTAATATACTGAATGCGATCTTATTATATGGTTGCTATGT
4261	AAACGTCTATAATCATAAAGGTTTCACTCCTCTATACATGGCAGTTAGTT
4321	AGAATTTOTTAAACTCTTACTTGACCACGGTGCTTACGTAAATGCTAAAGCTAAGTTATC
4381	TGGAAATACTCCTTTACATAAAGCTATGTTATCTAATAGTTTTAATAATATAAAATTACT
4441	TTTATCTTATAACGCCGACTATAATTCTCTAAATAATCACGGTAATACGCCTCTAACTTG
4501	TGTTAGCTTTTTAGATGACAAGATAGCTATTATGATAATATCTAAAATGATGTTAGAAAT
4561	ATCTAAAAATCCTGAAATAGCTAATTCAGAAGGTTTTATAGTAAACATGGAACATATAAA
4621	CAGTAATAAAAGACTACTATCTATAAAAGAATCATGCGAAAAAGAACTAGATGTTATAAC
4681	ACATATAAAGTTAAATTCTATATATCTTTAATATCTTTCTT
4741	TATGGTAAAGTTCGTAACTAATCCTAGAGTTAATAAGATACCTGCATGTATACGTATATA
4801	TAGGGAATTAATACGGAAAAATAARTCATTAGCTTTTCATAGACATCAGCTAATAGTTAA
4861	AGCTGTAAAAGAGAGTAAGAATCTAGGAATAATAGGTAGG
4921	TATAATAATGGAACTATTAAGTAATAATGATTACATTCTGTTATCACCAGCTGTTGTAA
4981	CCCAGTAGTATAAAG

Figura 4 (4/5)


vCP2390 (LJM17 de Leishmania (codificante) sintético en H6p de C3 de ALVAC (SEQ ID NO: 93)

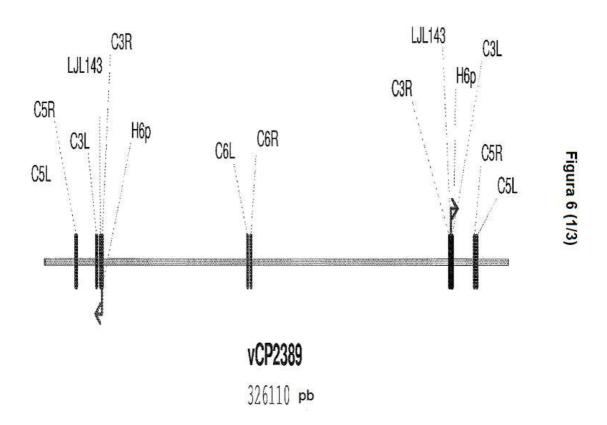

```
1 ctttatacta ctgggttaca acagctggtg ataacagaat gtaaatcatt attacttaat
  61 agttccatta ttatatgttt gatatctata ggtaacctac ctattattcc tagattctta
 121 ctctctttta cagctttaac tattagctga tgtctatgaa aagctaatga tttattttc
 181 cgtattaatt ccctatatat acgtatacat gcaggtatct tattaactct aggattagtt
 241 acqaacttta ccataagatc tatgttattg tcaagaaaga tattaaaaga atatatagaa
 301 tttaacttta tatgtgttat aacatctagt tctttttcgc atgattcttt tatagatagt
 361 agtettttat taetgtttat atgtteeatg tttaetataa aacettetga attagetatt
 421 tcaggatttt tagatatttc taacatcatt ttagatatta tcataatagc tatcttgtca
 481 tctaaaaagc taacacaagt tagaggcgta ttaccgtgat tatttagaga attatagtcg
 541 gcgttataag ataaaagtaa ttttatatta ttaaaactat tagataacat agctttatgt
 601 aaaggagtat ttccagataa cttagcttta gcatttacgt aagcaccgtg gtcaagtaag
 661 agtittaacaa attotgitti catagaacta actgccatgi atagaggagi gaaaccttta
 721 tgattataga cgtttacata gcaaccatat aataagatcg cattcagtat attaatatct
 781 ttcatttcta tagctatgtg aataacatgt ttatctaatc ctaccaactt tgtatcagta
 841 ccgtacttca gtaataagtt tactatagtt ttgtttttag atgcaacagc tatatttaga
 901 acggtatcta tatgattatt aaccacatta acattagatc ctctttctaa aagtgtcttt
 961 gttgtttcga tatcgttacg tgaaacagcg taatgtaagg gactgcccat acagtcatct
1021 attacgttta tatcagctcc tagatttaac agaagtgctg ttacatcttt tcttctatta
1081 attaccqaat gatgtaatqq qqttttacct aaatcatctt qttcqtttat aqqcactccq
1141 tgatttataa gtaacgctat tatatcgtaa ctacaattat ttttaagtgc ctttatgaga
1201 tactqtttat qcaaaaataa acttttatct attttaatac tattatctaa caatatccta
1261 attaaatcta tattcttata ctttataqcq taatqtaacq qaqtttcaaa atttctaqtt
1321 tgtatattaa qatcaatatt aaaatctata aatattttat acatatcatc agatatctta
1381 tcatacagta catcgtaata atttagaaag aatctattac aattaacacc tttttttaat
1441 aaatatctag ttaatgactt attgtttcta tatacagaaa tatataacgg actatttcca
1501 gaatgtatet gttetatgte agegeeagaa tetattagta gtttageaat ttetgtatta
1561 totaaactag cagotttatg aagaggagga tttttacatt ttaaaatato ggcacogtgt
1621 totaqtaata attttaccat ttotatatca qaaatactta cqqctaaata caaaqacqtt
1681 gatagtatat ttacgttatt gtatttgcat tttttaagta tataccttac taaatttata
1741 tetetatace ttatagettt atgeagttea tttataagte tteeattact catttetggt
1801 aatgaagtat tatatatcat tatgatatta tototatttt attotaataa aaaccqttat
1861 catgttattt attatttgtt ataattatac tatttaataa attataccaa atacttagat
1921 acttattaat accatectag aacttgtatt tettgeecee taaacttgga catgeactee
1981 attaggcgtt tettgttttc gacategtee teettaacat atectaetgt tatgtgagga
2041 ttccacggat tatctactgt gatatcacca aacacgtcct tcgaacaggg taccgcattc
2101 agcagaacat ttcttagggc tctaagttca tcagatacct ccagtttcat aactacagcg
2161 catcetticg ctcccaactg tttagaggcg ttactctgag gaaaacacat ctcttcttta
2221 cagactatag aaatagtotg taaatottga toagttattt gotttttgaa attttcaaat
2281 ctatcacatt gatccatatt tgctattcca agagttatat gaggaaaaat atcacatcct
2341 gtcatgtatt ttattgtaac attattataa tctgtaacat cagtatctaa cctaacgtcg
2401 taaaagttaa cagatgccca qttactataa tcccaaggaa ccttaacatc taatcccatt
2461 aaaatagtat cotttctact attttttca ttggcaagta tgtggcttag tttacacaaa
2521 attectgeca ttttgtaacg atagcgaage aatagcttgt atgcttttta tttgattaac
2581 taggggttaa ttaattagtc atcaggcagg gcgagaacga gactatctgc tcgttaatta
2641 attaqaqctt ctttattcta tacttaaaaa qtqaaaataa atacaaaqqt tcttqaqqqt
2701 tgtgttaaat tgaaagcgag aaataatcat aaattattte attatcgcga tatccgttaa
2761 gtttgtatcg taatgeggtt ettettegtg tteetggeea tegtgetgtt eeagggeate
2821 cacqqcqct acqtqqaqat cqqctacaqc ctqcqqaaca tcaccttcqa cqqcctqqac
2881 accgacgact acaaccccaa gttcaacatc cccaccggcc tggccgtgga ccccgagggc
2941 taccggctgt tcatcgccat ccccaggcgg aagcccaagg tgccctacac cgtggccgag
```

Figura 4 (5/5)

```
3001 ctgaacatgg tgatgaaccc cggcttcccc gtggagaggg cccccagctt cgagaagttc
3061 aagaagttta acggcgaggg caagaaagac ctggtgaacg tgtaccagcc cgtgatcgac
3121 gactgcaggc ggctgtgggt gctggacatc ggcaaggtgg agtacacagg cggcgacgcc
3181 gaccagtacc ccaagggcaa gcccaccctg atcgcctacg acctgaagaa ggaccacacc
3241 cccgagatcc accggttcga gatccccgac gacctgtaca gcagccaggt ggagttcggc
3301 ggctttgccg tggacgtggt gaacaccaag ggcgactgca ccgagagctt cgtgtacctg
3361 accaacttca aggacaacag cotgatogtg tacgacgaga cocagaagaa ggcotggaag
3421 ttcaccgaca agaccttcga ggccgacaaa gagagcacct tcagctacag cggcgaggaa
3481 cagatgaagt acaaagtggg cctgttcggc atcgccctgg gcgaccggga cgagatgggc
3541 cacaggeeg cetgetacat egeeggeage ageaceaagg tgtacagegt gaataceaaa
3601 gagetgaaaa cegagaaegg ceagetgaac ceceagetge aeggegaeeg gggeaagtae
3661 accgacgoca ttgccctggc ctacgacccc gagcacaagg tgctgtactt cgccgagagc
3721 gacageegge aggtgteetg etggaaegtg aacatggaae tgaageeega caacacegae
3781 gtgatettea geagegeeeg gtteacette ggeaeegaea teetggtgga eageaaggge
3841 atgctqtqqa tcatqqccaa cqqccacccc cccqtqqaqq accaqqaaaa qatctqqaaq
3901 atgcgqttcg tgaaccqqaa gatccqqatc atgaagqtgg acaccqagcg ggtgttcaag
3961 tacagooggt gcaaccocaa ctacaagooc cocaaagaaa togaagtgtg atgactogag
4021 tttttattga ctaggggttt ttatagctaa ttagtcaaat gtgagttaat attagtatac
4081 tacattacta atttattaca tattcattta tatcaatcta gtagcattta gcttttataa
4141 aacaatataa ctgaatagta catactttac taataagtta taaataagag atacatattt
4201 atagtatttt actttctaca ctgaatataa taatataatt atacaaatat aatttttaat
4261 actatatagt atataactga aataaaatac cagtgtaata tagttattat acatttatac
4321 cacatcaaag atgagttata acatcagtgt cactgttagc aacagtagtt atacgatgag
4381 tagttactct cgtatggcgt tagtatgtat gtatcttcta gttttcttag taggcattat
4441 aggaaacqtc aagcttataa ggttattaat ggtatctaga aatatatcta ttataccgtt
4501 totcaacttg ggaatageeg atttgetgtt tgtgatatte atacetttat acattatata
4561 catactaagt aatttccatt ggcattttgg taaagcactt tgtaaaatta gttctttctt
4621 ttttacttct aacatgtttg caagtatatt tttaataact gtaataagcg tatatagata
4681 tgtaaaaatt acccttcctg gatttaccta taaatatgtt aacattagaa atatgtacat
4741 tactatattt ttcatatgga ttatttctat tatactaggg attcctgctc tttactttag
4801 aaatactatc gtaacaaaaa ataacgacac gctgtgtatt aatcattatc atgataatag
4861 agaaattgct gaattgattt acaaagttat tatctgtatc agatttattt taggatacct
4921 actacctacg ataattatac tcgtatgcta tacgttactg atctacagaa ctaacaatgc
4981 atctaatata tctga
```

FIGURE 5

Figura 6 (2/3)

vCP2389 (LJL143 de Leishmania sintético en H6p de C3 de ALVAC) (SEQ ID NO: 94)

[336-1275]: brazo izquierdo de C3

[1300-1485]: promotor H6

[1486-2388]: LJL143 de Leishmania [2422-4993]: brazo derecho de C3

1 CGAGTCCTTCTAACACTGTGGTTTATTGGCTGGAATAAAAGGATAAAGACACCTATACTG 61 ATTCATTTTCATCTGTCAACGTTTCTCTAAGAGATTCATAGGTATTATTATTACATCGAT CTAGAAGTCTAATAACTGCTAAGTATATTATTGGATTTAACGCGCTATAAACGCATCCAA 121 AACCTACAAATATAGGAGAAGCTTCTCTTATGAAACTTCTTAAAGCTTTACTCTTACTAT 181 TACTACTCAAAAGAGATATTACATTAATTATGTGATGAGGCATCCAACATATAAAGAAGA 241 **CTAAAGCTGTAGAAGCTGTTATGAAGAATATCTTA**TCAGATATATTAGATGCATTGTTAG 301 361 TTOTGTRGATCAGTRACGTATAGCATACGAGTATAATTATCGTAGGTAGTAGGTATCCTA AAATARATCTGATACAGATAATARCTTTGTARATCAATTCRGCAATTTCTCTATTATCAT 421 GATAATGATTAATACACAGCGTGTCGTTATTTTTTTGTTACGATAGTATTTCTAAAGTAAA 481 541 GAGCAGGAATCCCTAGTATARTAGAAATAATCCATATGAAAAATATAGTAATGTACATAT 601 TTCTRATGTTRACRYATTTRYRGGTRARTCCAGGREGGGTRATTTTTACATRTCTATATA 661 CCCTTATTACAGTTATTAAAAATATACTTGCAAACATGTTAGAAGTAAAAAAGAAGAAC TRATTTTACAAAGTGCTTTACCAAAATGCCAATGGRAATTACTTAGTATGTATATATGT 721 ATARAGGTATGAATATCACAAACAGCAAATCGGCTATTCCCAAGTTGAGAAACGGTATAA 781 TAGATATATTCTAGATACCATTAATAACCTTATAAGCTTGACGTTTCCTATAATGCCTA 841 901 CTAAGAAAACTAGAAGATACATACATACTAACGCCATACGAGAGTAACTACTCATCGTAT 961 AACTACTGTTGCTAACAGTGACACTGATGTTATAACTCATCTTTGATGTGGTATAAATGT ATANTARCTATATTACACTGGTATTTTATTTCAGTTATATACTATATAGTATTAAAAATT 1021 1081 ATATTTOTATAATTATATTATATTATATTCAGTGTAGAAAGTAAAATACTATAAATATGTAT CTOTTATTATAACITATTAGTAAAGTATOTACTATTOAGTTATATTGTTTTATAAAAGC 1141 1201 TARATOCTAC/AGATTGATATA ATGARTATGTAATAATTAGTAATGTAGTATACTAAT 1261 ATTARCTCACATTT@ACTAATTAGCTATAAAAACCCGGGTTAATTAATTAGTCATCAGGC AGGGCGAGACGAGACTRICTGCTCCTTAATTARTTAGAGCTICTTTATTCTATACTTAA 1321 aragygalataaatacaaaggttcttgaggyffgtgttaaattgaaagcgagalataat 1381 1441 CATABATTATTCATEATOGCGATATCCGTTRAGTTTGTATCGTAATGAACAGCATCABC TTTCTGAGCATCGTGGGCCTGATCAGCTTCGGCTTCATCGTGGCCGTGAAGTGCGACGGC 1501 GACGAGTACTTCATCGGCAAGTACAAGAGGACGAGGACCCTGTTCTTCGCCAGCTAC 1561 GGCCTGRAGCGGGRCCCCTGCCAGATCGTGCTGGGCTACAAGTGCAGCAACAACCAGACC 1621 CACTTCGTGCTGAACTTCAAGACCAACAAGAAGAGCTGCATCAGCGCCATCAAGCTGACC 1681 1741 AGCTACCCAAGATCAACCAGAACAGCGACCTGACCAAGAACCTGTRCTGCCAGACCGGC GGCATOGGCACCGACAACTGCAAGCTGGTGTTCAAGAAGCGGAAGCGGCAGATCGCCGCC 1801 1861 AACATCGAGATCTACGGCATCCCCGCCAAGAAGTGCAGCTTCAAGGACCGGTACATCGGC GCCGACCCCTGCACGTGGACTCCTACGGCCTGCCCTACCAGTTCGACCAGGAACACGGC 1921 TGGAACGTCGAGGGGTACAACATCTTCAAGGACACCGGGTTCAGCACCGAGGTGTTCTAC 1981 CACAASAACGGCCTGTTCAACACCCAGATCACCTGCCGAAGAGGGCAGCTTCAGC 2041 2101 GAGGCCCGGGAGATCACCGCCAAGGACATCAAGAAGAAGTTCAGCATCATCCTGCCCAAC GAGGAATACAAGCGGATCAGCTTCCTGGACGTGTACTGGTTCCAGGAAACCATGCGGAAG 2161 AAGCCCAAGTACCCCTACATCCACTACAACGGCGAGTGCTCCAACGAGAACAAGACCTGC 2221 GAACTGGTGTTCGACACCGACGAGGTGTTCATCACCTACGCCCTGGTGAAGGTGTTCACCAAC 2281 2341 CCCGAGAGCGACGGCAGCCGGCTGAAAGAAGACGACCTGGGCAGGGCTGATGACTCGAG 2401 TTTTTATTGACTAGTTAATCAAATAAAAAGCATACAAGCTATTGCTTCGCTATCGTTACA AAATGGCAGGAATTTTGTGTAAACTAAGCCACATACTTGCCAATGAAAAAAATAGTAGAA 2461 AGGATACTATTTTAATGGGATTAGATGTTAAGGTTCCTTGGGATTATAGTAACTGGGCAT 2521 2581 CTGTTAACTTTTACGACGTTAGGTTAGATACTGATGTTACAGATTATAATAATGTTACAA 2641 TAAAATACATGACAGGATGTGATATTTTTCCTCATATAACTCTTGGAATAGCAAATATGG 2701 ATCAATGTGATAGATTTGAAAATTTCAAAAAGCAAATAACTGATCAAGATTTACAGACTA TTTCTATAGTCTGTAAAGAAGAGATGTTTTCCTCAGAGTAACGCCTCTAAACAGTTGG 2761

Figura 6 (3/3)

GAGCGARAGGATGCGCTGTAGTTATGAAACTGGAGGTATCTGATGAACTTAGAGCCCTAA 2821 GAAATGTTCTGCTGAATGCGGTACCCTGTTCGAAGGACGTGTTTGGTGATATCACAGTAG 2881 ataxtocotggatoctcacataacagtaggatatgttaaggaggacgatgtcgaaaaca 2941 AGAAACGCCTRATGGAGTGCATGTCCAAGTTTAGGGGGCAAGAAATACAAGTTCTAGGAT 3001 GGTATTAATAAGTATCTAAGTATTTGGTATAATTTATTAATAGTATAATTATAACAAAT 3061 **AATAAATAACATGATAACGGTTTTTATTAGAATAAAATAGAGATAATATCATAATGATAT** 3121 ATAATACTTCATTACCAGAAATGAGTAATGGAAGACTTATAAATGAACTGCATAAAGCTA 3181 TAAGGTATAGAGATATAAATTTAGTAAGGTATATACTTAAAAAATGCAAATACAATAACG 3241 TAAATATACTATCAACGTCTTTGTATTTAGCCGTAAGTATTTCTGATATAGAAATGGTAA 3301 ARTTATTACTAGAACACGGTGCCGATATTTTAAAATGTAAAAATCCTCCTCTTCATAAAG 3361 CTGCTAGTTTAGATAATACAGAAATTGCTAAACTACTAATAGATTCTGGCGCTGACATAG 3421 AACAGATACATTCTGGAAATAGTCCGTTATATATTTCTGTATATAGAAACAATAAGTCAT 3481 3541 ATGTACTGTATGATAAGATATCTGATGATATGTATAAAATATTTATAGATTTTAATATTG 3601 ATCTTAATATACAAACTAGAAATTTTGAAACTCCGTTACATTACGCTATAAAGTATAAGA 3661 ATATAGATTTAATTAGGATATTGTTAGATAATAGTATTAAAATAGATAAAAGTTTATTTT 3721 TGCATAAACAGTATCTCATAAAGGCACTTAAAAATAATTGTAGTTACGATATAATAGCGT 3781 TACTTATRAATCACGGAGTGCCTATAAACGAACRAGATGATTTAGGTAARACCCCATTAC 3841 ATCATTCGGTAATTAATAGAAGARAAGATGTAACAGCACTTCTGTTAAATCTAGGAGCTG 3901 ATATAARCGTAATAGATGACTGTATGGGCAGTCCCTTACATTACGCTGTTTCACGTAACG 3961 ATATCGARACAACRAGACACTTTTAGAAAGAGGGATCTAATGTTAATGTGGTTAATAATC 4021 ATATAGATACCGTTCTAAATATAGCTGTTGCATCTAAAAACAAAACTATAGTAAACTAT 4081 4141 TACTGARGTACGGTACTGATACARAGTTGGTAGGATTAGATAAACATGTTATTCACATAG CTATEGRAATGAAGATATTATATACTGAATGCGATCTTATTATATGGTTGCTATGTAA 4201 4261 ARTTTGTTARACTCTTACTTGACCACGGTGCTTACGTAAATGCTAAAGCTAAGTTATCTG 4321 GRARTACTCCTTTACATAARGCTATGTTATCTAATAGTTTTAATAATATAAAATTACTTT 4381 TATCTTATAACGCCGACTATAATTCTCTAAATAATCACGGTAATACGCCTCTAACTTGTG 4441 TTAGCTTTTTAGATGACAAGATAGCTATTATGATAATATCTAAAATGATGTTAGAAATAT 4501 CTAAAAATCCTGAAATAGCTAATTCAGAAGGTTTTATAGTAAACATGGAACATATAAACA 4561 GTAATRAAGACTACTATCTATAAAGAATCATGCGAAAAGAACTAGATGTTATAACAC 4621 ATATRAAGTTAAATTCTATATATTCTTTTAATATCTTTCTTGACAATAACATAGATCTTA 4681 4741 GGGAATTAATACGGAAAAATAAATCATTAGCTTTTCATAGACATCAGCTAATAGTTAAAG 4801 CTGTAAAAGAGAGTAAGAATCTAGGAATAATAGGTAGGTTACCTATAGATATCAAACATA 4861 TRATAATGGRACTATTAAGTAATAATGATTTACATTCTGTTATCACCAGCTGTTGTAACC 4921 CAGTAGTATAAACTGATTTTATTCAATTACGAAGATAAACATTAAATTTGTTAACAGATA 4981

Figura 7

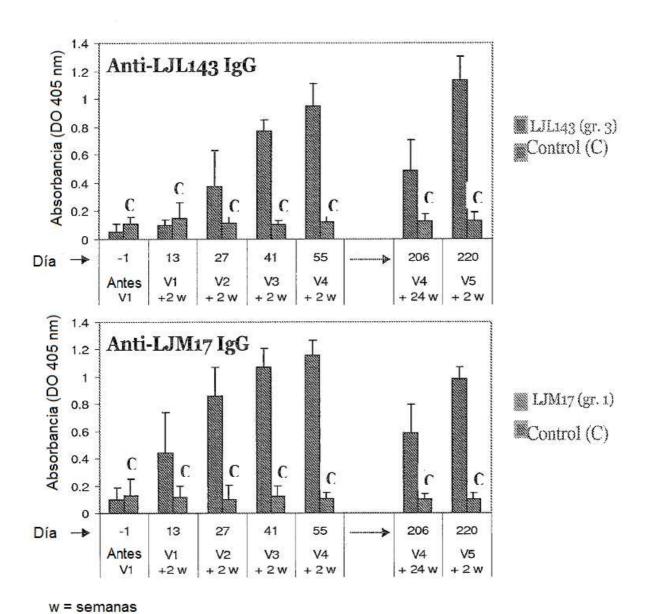


Figura 8

Medición de IFN-gamma secretado a las 72 h - PBMC de perros dos semanas después de la 5ª inmunización, estimulada por SGH (2 pares)/LJL143 (4 ug)/LJM17 (4 ug)/ConA (4 ug), o no estimulada por medio (med)

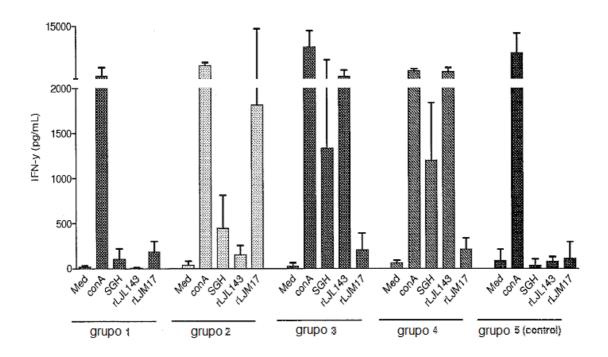
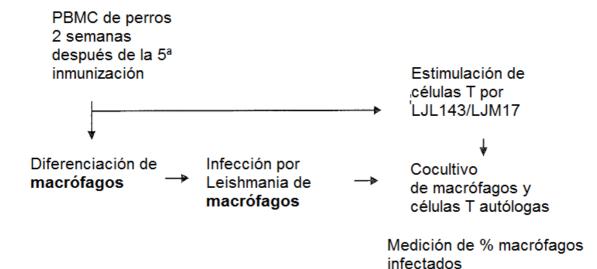
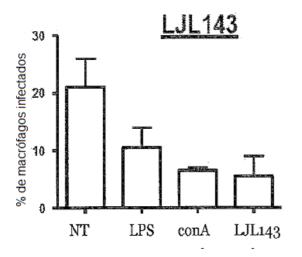




Figura 9

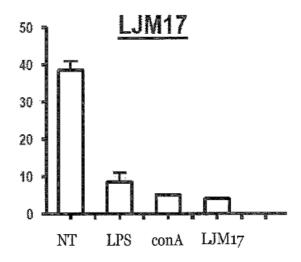
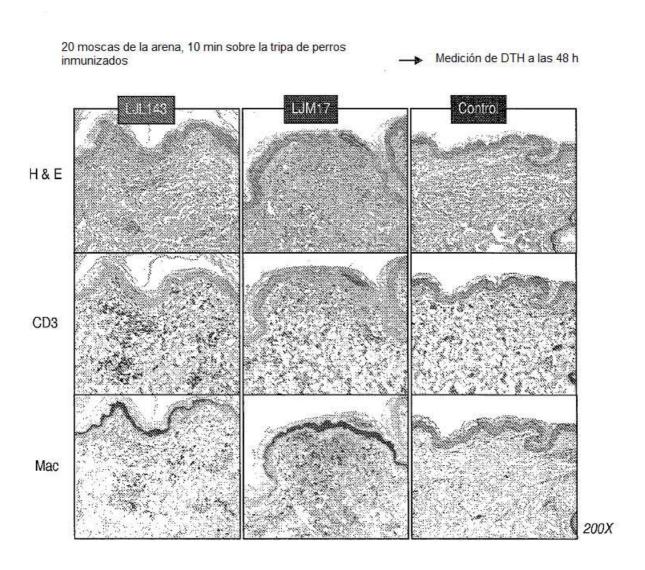
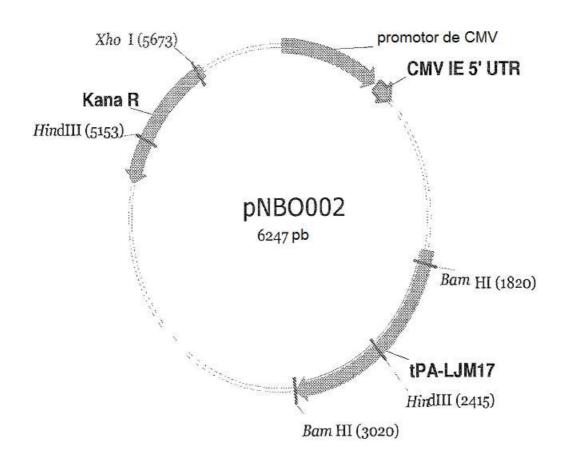



Figura 10

Figura 11 (1/2)


(pNBO002: SEQ ID NO:19)

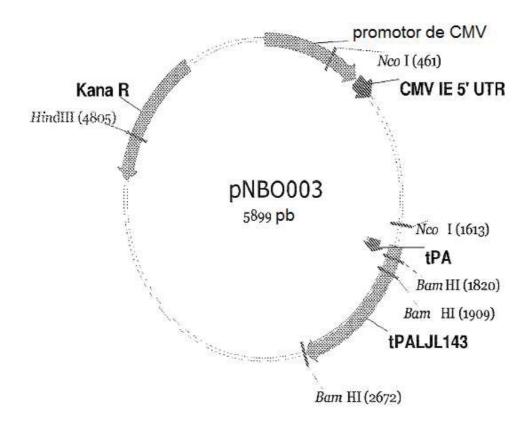
 ${\tt ttggctattggccattgcatacgttgtatccatatcataatatgtacatttatattggctcatgtccaacattaccg}$ ccatqttgacattgattattgactagttattaatagtaatcaattacqqqqtcattagttcataqcccatatatqqa gttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataa tgacqtatqttcccataqtaacqccaataqqqactttccattgacqtcaatqqqtqqaqtatttacqqtaaactqcc cacttqqcaqtacatcaaqtqtatcatatqccaaqtacqccccctattqacqtcaatqacqqtaaatqqcccqcctq gcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattacca tggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccaccc attgacqtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccatt gacgcaaatgggcggtaggcgtgtacggtgggaggtctatataaagcagagctcgtttagtgaaccgtcagatcgcct attqqaacqeqqattccccqtqccaaqagtgacqtaaqtaccqcctataqaqtctataqqcccacccccttgqcttc ttatgcatgctatactgtttttqqcttqqggtctatacacccccgcttcctcatgttataqqtqatqqtatagctta $\tt gcctataggtgtgggttattgaccattattgaccactcccctattggtgacgatactttccattactaatccataac$ atggctctttgccacaactctctttattggctatatgccaatacactgtccttcagagactgacacggactctgtat attaaacataacgtgggatctccacgcgaatctcgggtacgtgttccggacatgggctcttctcccggtagcggcga gettetacatecqagecetgeteccatgeetecaqeqacteatgqteqeteqgeagetecttqctectaacagtgqa ggccagacttaggcacagcacgatgcccaccaccagtgtgccgcacaaggccgtggcggtagggtatgtgtctg aaaatgagctcggggagcgggcttgcaccgctgacgcatttggaagacttaaggcagcggcagaagaagatgcaggc agctgagttgttgttgttctgataagagtcagaggtaactcccgttgcggtgctgttaacggtggagggcagtgtagt ctgagcagtactcgttgctgccgcgcgccaccagacataatagctgacagactaacagactgttcctttccatgg gtcttttctcacgtcaccgtcgtcgaccagagctgagatcctacaggagtccagggctggagagaaaacctctgcga qqaaaggqaaqgaqcaaqccqtqaatttaagqqacqctqtqaaqcaatcatqqatqcaatqaaqaqaqqqctctqct gtgtgctgctgctgtgtggagcagtcttcgtttcgcccagcggtaccggatccacccttGCTTATGTGGAAATAGGA TATTCTCTGAGAAATATTACATTCGATGGATTGGATACAGATGACTACAATCCAAAGTTCAACATTCCAACGGGTTT GGCAGTTGATCCCGAAGGATATAGGCTCTTCATAGCCATCCCAAGGAAAGCCAAAGGTTCCCTACACTGTGGCTG AACTGAATATGGTCATGAATCCCGGATTTCCCGTCGAGAGAGCTCCGAGCTTTGAGAAAATTCAAAAAATTCAATGGC GAGGGCAAAAAGGATCTTGTTAATGTGTATCAGCCAGTCATTGATGATGTCGTCGTCTTTTGGGTGCTTGACATTGG GAAGGTGGAATACACCGGTGGTGATGCTGATCAATATCCCAAAGGAAAGCCTACCCTAATTGCCTACGACCTCAAGA AGGATCATACTCCGGAAATTCATCGATTTGAAATTCCAGACGATCTCTATAGCTCACAAGTTGAATTTGGTGGATTT GCCGTTGATGTTGTTAACACGAAAGGAGACTGTACGGAGTCATTTGTCTACCTGACCAATTTCAAGGATAACTCTCT AATTGTCTACGATGAGACACAAAAGAAAGCTTGGAAATTTACAGATAAAACATTTGAAGCTGATAAGGAATCCACGT TCTCCTACTCGGGAGGGAACAAATGAAGTACAAAGTTGGTCTTTTTGGGATAGCTCTGGGTGATAGGGATGAAATG GGGCATCGTCCTGCCTACTATATCGCTGGGAGTAGCACCAAAGTCTACAGTGTTAACACTAAAGAACTCAAAACAGA GAATGGTCAGTTAAATCCTCAGCTTCACGGTGATCGTGGAAAGTACACGGATGCAATTGCCCTAGCCCACGATCCTG AGCATAAAGTCCTCTACTTTGCTGAATCCGACAGCAGCCAGGTGTCCTGTTGGAATGTAGATATGGAGCTAAAACCA GACAATACGGATGTGATCTTCTCTAGTGCCCGTTTTACTTTTGGAACGGATATTTTGGTTGATAGCAAGGGAATGCT GTGGATAATGGCTAATGGACATCCACCAGTAGAGGATCAAGAGAAGATTTGGAAGATGAGATTCGTAAACCGGAAGA TCAGTATTATGAAAGTGGATACGGAACGTGTATTCAAATATTCACGCTGCAATCCAAATTATAAGCCCCCGAAAGAA ATTGAAGTTTGAaagggatccaqatctgctgtgccttctagttgccaqccatctgttgtttgcccctcccccgtqcc ttccttgaccctggaaggtgccactcccactgtcctttcctaataaaatgaggaaattgcatcgcattgtctgagta ggtgtcattctattctggggggtggggtggggcagcacagcaagggggaggattgggaagacaatagcaggcatgct ggggatgcggtgggctctatgggtacccaggtgctgaagaattgacccqgttcctcctgqgccagaaagaagcaggc a cateccettetetgtgacacaccetgtccaegeccetggttettagttccagecccaetcataggacactcatagecaaacctagcctccaagagtgggaagaaattaaagcaagataggctattaagtgcagagggagagaaaatgcctcca acatgtgaggaaqtaatgagagaaatcatagaatttcttccqcttcctcqctcactgactcqctgcgctcgqtcqtt cggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaaa gaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggctcc gccccctgacgagcatcacaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaagataccag gegtttecccetggaagetecetegtgegeteteetgtteegaceetgeegettaceggatacetgteegeetttet

Figura 11 (2/2)

cccttcgggaagcgtggcgctttctcaatgctcacgctgtaggtatctcagttcggtgtagqtcgttcqctccaaqc tqqqctqtqtqcacqaacccccqttcaqcccqaccqctqcqccttatccqqtaactatcqtcttqaqtccaacccq agagttcttgaagtggtggcctaactacggctacactagaaggacagtatttggtatctgcgctctgctgaagccag aaqcaqcaqattacqcqcaqaaaaaaaqqatctcaaqaaqatcctttqatcttttctacqqqqtctqacqctcaqtq qaacqaaaactcacqttaaqqqattttqqtcatqaqattatcaaaaaqqatcttcacctaqatccttttaaattaaa aatqaaqttttaaatcaatctaaaqtatatatqqqtaaacttqqtctqacaqttaccaatqcttaatcaqtqaqqca aagatgcgtgatctgatccttcaactcagcaaaagttcgatttattcaacaaagccgccgtcccgtcaagtcaqcqt aatgctctgccagtgttacaaccaattaaccaattctgattagaaaaactcatcgagcatcaaatgaaactgcaatt tattcatatcaggattatcaataccatatttttgaaaaaqccgtttctgtaatgaaggagaaaactcaccgaggcag ttccataggatggcaagatcctggtatcggtctgcgattccqactcgtccaacatcaatacaacctattaatttccc ctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagcttat qcatttctttccaqacttqttcaacaqqccaqccattacqctcqtcatcaaaatcactcqcatcaaccaaaccqtta ttcattcgtgattgcgcctgagcgagacgaaatacgcgatcgctgttaaaaaggacaattacaaacaggaatcgaatg caaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaatg ctqttttcccqqqqatcqcaqtqqtqaqtaaccatqcatcatcaqqqqtacqqataaaatqcttqatqqtcqqaaqa ggcataaattccgtcagccagtttagtctgaccatctcatctgtaacatcattggcaacgctacctttgccatgttt cagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcccgacattatcgcqaq cccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctcgagcaagacgtttcccgttgaata tggctcataacaccccttgtattactgtttatgtaagcagacagttttattgttcatgatgatatatttttatcttg attgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccga aaagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaataggcgtatcacgaggccctt tegtetegegegttteggtgatgaeggtgaaaacetetgaeacatgeageteeeggagaeggteaeagettgtetgt aaqcqqatqccqqqaqacaqcccqtcaqqqcqcqtcaqcqgqtqttqqcgqqtqtcqqqcttaactat gcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgcacagatgcgtaaggagaaaata ccgcatcaga

Figura 12

Figura 13 (1/2)


(pNBO003: SEQ ID NO:20)

ttggctattggccattgcatacgttgtatccatatcataatatgtacatttatattggctcatgtccaacattaccg ccatgttgacattgattattgactagttattaatagtaatcaattacggggtcattagttcatagcccatatatgga gttccgcgttacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacqtcaataa tgacgtatgttcccatagtaacgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcc cacttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctg gcattatgcccagtacatgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattacca tggtgatgeggttttggcagtacatcaatgggegtggatageggtttgactcaeggggattteeaagteteeaeeeeattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccatt gacgcaaatgggcggtaggcgtgtacggtgggaggtctatataaagcagagctcgtttagtgaaccgtcagatcgcct qqaqacqccatccacqctqttttqacctccataqaaqacaccqqqaccqatccaqcctccqcqqqaacqqtqc attggaacgcggattccccgtgccaagagtgacgtaaqtaccgcctatagagtctataggcccacccccttggcttc ttatqcatqctatactqtttttqqcttqqqqtctatacacccccqcttcctcatqttataqqtqatqqtataqctta qcctataggtqtqqqttattqaccattattqaccactcccctattqqtqacqatactttccattactaatccataac atggctctttgccacaactctctttattggctatatgccaatacactgtccttcagagactgacacggactctqtat attaaacataacgtgggatctccacgcgaatctcgggtacgtgttccggacatgggctcttctcccggtagcggcgga qcttctacatccgagccctgctcccatqcctccagcgactcatgqtcqctcggcagctccttqctcctaacaqtqqa ggccagacttaggcacagcacgatgcccaccaccagtgtgccgcacaaggccgtggcggtagggtatgttttt aaaatgagctcggggagcgggcttgcaccgctgacgcatttggaagacttaaggcagcggcagaagaagatgcaggc agetgagttgttgttgttctgataagagtcagaggtaactcccgttgcggtgctgttaacggtggagggcagtgtagt ctgagcagtactcgttgctgccgcgcgccaccagacataatagctgacagactaacagactgttcctttccatgg qtcttttctcacqtcaccqtcqtcqaccaqaqctqaqatcctacaqqaqtccaqqqqctqqaqaaaacctctqcqa ggaaagggaaggagcaagccgtgaatttaagggacgctgtgaagcaatcatggatgcaatgaagagaggctctgct gtgtgctgctgctgtgtggagcagtcttcgtttcgcccagcggtaccggatccacccttGATGGTGATGATATTTC ATTGGAAAATACAAAGAAAAAGATGAGACACTGTTTTTTGCAAGCTACGGCCTAAAGAGGGATCCTTGCCAGATTGT CTTAGGCTACAAATGCTCAAACAATCAAACCCACTTTGTGCTTAATTTTAAAACCAATAAGAAATCCTGCATATCAG CAATTAAGCTGACTTCTTACCCAAAAATCAATCAAAACTCGGATTTAACTAGAAATCTCTACTGCCAAACTGGAGGA ATAGGAACAGATAACTGCAAACTTGTCTTCAAGAAACGTAAAAGACAAATAGCAGCTAATATTGAAATCTACGGCAT TCCAGCGAAGAAATGTTCCTTCAAGGATCGTTACATTGGAGCTGATCCACCTCCACGTCGATTCCTATGGGCTTTCGT ATCAGTTTGATCAGGAACATGGATGGAATTTGGAACGAAATAACATTTTCAAAGACACAAGATTTTCCACAGAAGTT TTCTACCACAAAAATGGTTTATTTAACACCCAAATAACTTATTTGGCTGAAGAAGATTCCTTCTCTGAAGCTCGAGA GATTACTGCGAAGGATATTAAGAAGAAGTTTTCAATTATTTTGCCCAATGAAGAGTATAAGAGGATTAGTTTCTTGG ACGTTTATTGGTTCCAGGAGACTATGCGAAAAAAGCCTAAATATCCCTACATTCACTACAATGGAGAATGCAGCAAT GAGAATAAAACTTGTGAACTTGTCTTTGACACCGATGAACTAATGACCTACGCCCTTGTTAAAGTCTTTACTAATCC TGAGAGTGATCTAGGCTCAAAGAAGAGGATTTGGGAAGAGGATAAaaqqqqatccaqatctqctqttqccttcta caagqqqqaqqattqqqaaqacaataqcaggcatqctqqqqqatqcqqtqqqctctatqqqtacccaqqtqctqaaqa attgaccoggttcctcctgggccagaaagaagcaggcacatccccttctctgtgacacaccctgtccacgcccctgg taggctattaagtgcaqagggagagaaaatgcctccaacatgtgaggaagtaatgagagaaatcataqaatttcttccgcttcctcgctcactgactcgctgcgctcgqtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaa tacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgt aaaaaggccgcgttgctggcgtttttccataggctccgccccctgacgagcatcacaaaaatcgacgctcaagtca gaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttc cgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcaatgctcacqctgt aggtateteagtteggtgtaggtegttegeteeaagetgggetgtgtgeaegaaceeeeegtteageeegaeegetg cgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagcactggta acaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactaga aggacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaa

Figura 13 (2/2)

acaaaccaccgctggtagcggtggttttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaag atcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagatta ttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttg cctgactccgggggggggggcgctgaggtctgcctcgtgaagaaggtgttgctgactcataccaggcctgaatcgc cccatcatccagccagaaagtgagggagccacggttgatgagagctttgttgttaggtggaccagttggtgattttga acttttgctttgccacggaacggtctgcgttgtcgggaagatgcgtgatctgatccttcaactcagcaaaagttcga tttattcaacaaaqccqccqtcccqtcaaqtcaqcqtaatqctctqccaqtqttacaaccaattaaccaattctqat taqaaaaactcatcgagcatcaaatqaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaag ccqtttctgtaatgaaggagaaaactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgattc cgactcgtccaacatcaatacaacctattaatttcccctcgtcaaaaataaggttatcaagtqagaaatcaccatga gtqacqactgaatccggtqaqaatqqcaaaagcttatqcatttctttccaqacttgttcaacaqqccaqccattacq cgctgttaaaaggacaattacaaacaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattt tcacctgaatcaggatattcttctaatacctggaatgctgttttcccgggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccatctcat ctgtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcga tagattgtcgcacctgattgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatt taatcgcggcctcgagcaagacgtttcccgttgaatatggctcataacaccccttgtattactgtttatgtaagcag acagttttattgttcatgatgatatatttttatcttgtgcaatgtaacatcagagattttgagacacaacgtggctt tccccccccccattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaa aaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtctaagaaaccattattatcatga cattaacctataaaaataggcgtatcacgaggccctttcgtctcgcgcqtttcggtgatgacggtgaaaacctctga cacatgcagctcccggagacggtcacagcttgtctgtaagcggatgccgggagcagacaagcccgtcagggcgcgtc agcgggtgttggcgggtgtcgggctggcttaactatgcggcatcagagcagattgtactgagagtgcaccatatgc ggtgtgaaataccgcacagatgcgtaaggagaaaataccgcatcaga

Figura 14

Figura 15 (1/2)

Proteína LJL143 no procesada (SEQ ID NO: 1)

MNSINFLSIVGLISFGFIVAVKCDGDEYFIGKYKEKDETLFFASYGLKRDPCQIVLGYKCSNNQTHFVLNFKTNKKS CISAIKLTSYPKINQNSDLTKNLYCQTGGIGTDNCKLVFKKRKRQIAANIEIYGIPAKKCSFKDRYIGADPLHVDSY GLPYQFDQEHGWNVERYNIFKDTRFSTEVFYHKNGLFNTQITYLAEEDSFSEAREITAKDIKKKFSIILPNEEYKRI SFLDVYWFOETMRKKPKYPYIHYNGECSNENKTCELVFDTDELMTYALVKVFTNPESDGSRLKEEDLGRG

Proteína LJL143 madura (SEQ ID NO: 3)

DGDEYFIGKYKEKDETLFFASYGLKRDPCQIVLGYKCSNNQTHFVLNFKTNKKSCISAIKLTSYPKINQNSDLTKNL
YCQTGGIGTDNCKLVFKKRKRQIAANIEIYGIPAKKCSFKDRYIGADPLHVDSYGLPYQFDQEHGWNVERYNIFKDT
RFSTEVFYHKNGLFNTQITYLAEEDSFSEAREITAKDIKKKFSIILPNEEYKRISFLDVYWFQETMRKKPKYPYIHY
NGECSNENKTCELVFDTDELMTYALVKVFTNPESDGSRLKEEDLGRG

Proteína LJM17 no procesada (SEQ ID NO: 5)

MRFFFVFLAIVLFQGIHGAYVEIGYSLRNITFDGLDTDDYNPKFNIPTGLAVDPEGYRLFIAIPRRKPKVPYTVAEL
NMVMNPGFPVERAPSFEKFKKFNGEGKKDLVNVYQPVIDDCRRLWVLDIGKVEYTGGDADQYPKGKPTLIAYDLKKD
HTPEIHRFEIPDDLYSSQVEFGGFAVDVVNTKGDCTESFVYLTNFKDNSLIVYDETQKKAWKFTDKTFEADKESTFS
YSGEEQMKYKVGLFGIALGDRDEMGHRPACYIAGSSTKVYSVNTKELKTENGQLNPQLHGDRGKYTDAIALAYDPEH
KVLYFAESDSRQVSCWNVNMELKPDNTDVIFSSARFTFGTDILVDSKGMLWIMANGHPPVEDQEKIWKMRFVNRKIR
IMKVDTERVFKYSRCNPNYKPPKEIEV

Proteína LJM17 madura SEQ ID NO: 7)

AYVEIGYSLRNITFDGLDTDDYNPKFNIPTGLAVDPEGYRLFIAIPRRKPKVPYTVAELNMVMNPGFPVERAPSFEK
FKKFNGEGKKDLVNVYQPVIDDCRRIWVLDIGKVEYTGGDADQYPKGKPTLIAYDLKKDHTPEIHRFEIPDDLYSSQ
VEFGGFAVDVVNTKGDCTESFVYLTNFKDNSLIVYDETQKKAWKFTDKTFEADKESTFSYSGEEQMKYKVGLFGIAL
GDRDEMGHRPACYIAGSSTKVYSVNTKELKTENSQLNPQLHGDRGKYTDAIALAYDPEHKVLYFAESDSRQVSCWNV
NMELKPDNTDVIFSSARFTFGTDILVDSKGMLWIMANGHPPVEDQEKIWKMRFVNRKIRIMKVDTERVFKYSRCNPN
YKPPKEIEV

Proteína LJL143 no procesada (SEQ ID NO: 11)

MNSINFLSIVGLISFGFIVAVKCDGDEYFIGKYKEKDETLFFASYGLKRDPCQIVLGYKCSNNQTHFVLNFKTNKKS
CISAIKLTSYPKINQNSDLTRNLYCQTGGIGTDNCKLVFKKRKRQIAANIEIYGIPAKKCSFKDRYIGADPLHVDSY
GLSYQFDQEHGWNLERNNIFKDTRFSTEVFYHKNGLFNTQITYLAEEDSFSEAREITAKDIKKKFSIILPNEEYKRI
SFLDVYWFOETMRKKPKYPYIHYNGECSNENKTCELVFDTDELMTYALVKVFTNPESDGSRLKEEDLGRG

Figura 15 (2/2)

Proteina LJL143 madura (SEQ ID NO: 13)

DGDEYFIGKYKEKDETLFFASYGLKRDPCQIVLGYKCSNNQTHFVLNFKTNKKSCISAIKLTSYPKINQNSDLTRNL
YCQTGGIGTDNCKLVFKKRKRQIAANIEIYGIPAKKCSFKDRYIGADPLHVDSYGLSYQFDQEHGWNLERNNIFKDT
RFSTEVFYHKNGLFNTQITYLAEEDSFSEAREITAKDIKKKFSIILPNEEYKRISFLDVYWFQETMRKKPKYPYIHY
NGECSNENKTCELVFDTDELMTYALVKVFTNPESDGSRLKEEDLGRG

Proteína LJM17 no procesada SEQ ID NO: 15)

MRFFFVFLAIVLFQGIHGAYVEIGYSLRNITFDGLDTDDYNPKFNIPTGLAVDPEGYRLFIAIPRRKPKVPYTVAEL
NMVMNPGFPVERAPSFEKFKKFNGEGKKDLVNVYQPVIDDCRRLWVLDIGKVEYTGGDADQYPKGKPTLIAYDLKKD
HTPEIHRFEIPDDLYSSQVEFGGFAVDVVNTKGDCTESFVYLTNFKDNSLIVYDETQKKAWKFTDKTFEADKESTFS
YSGEEQMKYKVGLFGIALGDRDEMGHRPAYYIAGSSTKVYSVNTKELKTENGQLNPQLHGDRGKYTDAIALAHDPEH
KVLYFAESDSRQVSCWNVDMELKPDNTDVIFSSARFTFGTDILVDSKGMLWIMANGHPPVEDQEKIWKMRFVNRKIS
IMKVDTERVFKYSRCNPNYKPPKEIEV

Proteína LJM17 madura (SEQ ID NO: 17)

AYVEIGYSLRNITFDGLDTDDYNPKFNIFTGLAVDPEGYRLFIAIPRRKPKVPYTVAELNMVMNPGFPVERAPSFEK
FKKFNGEGKKDLVNVYQPVIDDCRRIWVLDIGKVEYTGGDADQYPKGKPTLIAYDLKKDHTPEIHRFEIPDDLYSSQ
VEFGGFAVDVVNTKGDCTESFVYLTNFKDNSLIVYDETQKKAWKFTDKTFEADKESTFSYSGEEQMKYKVGLFGIAL
GDRDEMGHRPAYYIAGSSTKVYSVNTKELKTENSQLNPQLHGDRGKYTDAIALAHDPEHKVLYFAESDSRQVSCWNV
DMELKPDNTDVIFSSARFTFGTDILVDSKGMLWIMANGHPPVEDQEKIWKMRFVNRKISIMKVDTERVFKYSRCNPN
YKPPKEIEV

Figura 16 (1/5)

Polinucleótido que codifica la proteína LJL143 no procesada (SEQ ID NO: 2)

Polinucleótido que codifica la proteína LJL143 madura (SEQ ID NO: 4)

Figura 16 (2/5)

Polinucleótido que codifica la proteína LJM17 no procesada (SEQ ID NO: 6)

ATGAGGTTCTTCTTTGTTTTCCTTGCCATCGTCCTTTTTCAAGGGATCCACGGAGCTTATGTGGAAATAGGATATTC TCTGAGAAATATTACATTCGATGGATTGGATACAGATGACTACAATCCAAAGTTCAACATTCCAACGGGTTTGGCAG TTGATCCCGAAGGATATAGGCTCTTCATAGCCATCCCAAGGAAAAGCCAAAGGTTCCCTACACTGTGGCTGAACTG AATATGGTCATGAATCCCGGATTTCCCGTCGAGAGAGCTCCGAGCTTTGAGAAAATTCAAAAAATTCAATGGCGAGGG CAAAAAGGATCTTGTTAATGTGTATCAGCCAGTCATTGATGATGTCGTCGTCTTTGGGTGCTTGACATTGGGAAGG TGGAATACACCGGTGGTGATGCTGATCAATATCCCAAAGGAAAGCCTACCCTAATTGCCTACGACCTCAAGAAGGAT CATACTCCGGAAATTCATCGATTTGAAATTCCAGACGATCTCTATAGCTCACAAGTTGAATTTGGTGGATTTGCCGT TGATGTTGTTAACACGAAAGGAGACTGTACGGAGTCATTTGTCTACCTGACCAATTTCAAGGATAACTCTCTAATTG TCTACGATGAGACACAAAAGAAAGCTTGGAAATTCACAGATAAAACATTTGAAGCTGATAAGGAATCCACGTTCTCC TACTCGGGAGAGGAACAAATGAAGTACAAAGTCGGTCTTTTTGGGATAGCTCTGGGTGATAGGGATGAAATGGGGCA TCGTCCTGCCTGCTACATCGCTGGGAGTAGCACCAAAGTCTACAGTGTTAACACTAAAGAACTCAAAACAGAGAATG GTCAGTTAAATCCTCAGCTTCACGGTGATCGTGGAAAGTACACAGATGCAATTGCCCTAGCCTACGATCCTGAGCAT AAAGTCCTCTACTTTGCTGAATCCGACAGCAGCAGGTGTCCTGTTGGAATGTAAATATGGAGCTAAAACCAGACAA TACGGATGTGATCTTCTCTAGTGCCCGTTTTACTTTTGGAACGGATATTTTGGTTGATAGCAAGGGAATGCTGTGGA TAATGCCTAATGGACATCCACCAGTAGAGGATCAAGAGAAGATTTGGAAGATGCGGTAAACCGGAAGATCCGT ATTATGAAAGTGGATACGGAACGTGTTTTCAAATATTCACGCTGCAATCCAAATTATAAGCCCCCAAAGGAAATTGA **AGTTTGA**

Polinucleótido que codifica la proteína LJM17 madura (SEQ ID NO: 8)

GCTTATGTGGAAATAGGATATTCTCTGAGAAATATTACATTCGATGGATTGGATACAGATGACTACAATCCAAAGTT CAACATTCCAACGGGTTTGGCAGTTGATCCCGAAGGATATAGGCTCTTCATAGCCATCCCAAGGAGAAAGCCAAAGG TTCCCTACACTGTGGCTGAACTGAATATGGTCATGAATCCCGGATTTCCCGTCGAGAGAGCTCCGAGCTTTGAGAAA TTCAAAAAATTCAATGGCGAGGGCAAAAAGGATCTTGTTAATGTGTATCAGCCAGTCATTGATGATGTCGTCGTCT TTGGGTGCTTGACATTGGGAAGGTGGAATACACCGGTGGTGATGCTGATCAATATCCCAAAGGAAAGCCTACCCTAA TTGCCTACGACCTCAAGAAGGATCATACTCCGGAAATTCATCGATTTGAAATTCCAGACGATCTCTATAGCTCACAA GTTGAATTTGGTGGATTTGCCGTTGATGTTGATCACGGAAAGGAGACTGTACGGAGTCATTTGTCTACCTGACCAA CTGATAAGGAATCCACGTTCTCCTACTCGGGAGAGGAACAAATGAAGTACAAAGTCGGTCTTTTTGGGATAGCTCTG GGTGATAGGGATGAAATGGGGCATCGTCCTGCCTGCTACATCGCTGGGAGTAGCACCAAAGTCTACAGTGTTAACAC TAAAGAACTCAAAACAGAGAACGGTCAGTTAAATCCTCAGGTTCACGGTGATCGTGGAAAGTACACAGATGCAATTG AATATGGAGCTAAAACCAGACAATACGGATGTGATCTTCTCTAGTGCCCGTTTTACTTTTGGAACGGATATTTTGGT TGATAGCAAGGGAATGCTGTGGATAATGGCTAATGGACATCCACCAGTAGAGGATCAAGAGAAGATTTGGAAGATGA GATTCGTAAACCGGAAGATCCGTATTATGAAAGTGGATACGGAACGTGTTTTCAAATATTCACGCTGCAATCCAAAT TATAAGCCCCCAAAGGAAATTGAAGTTTGA

Figura 16 (3/5)

Polinucleótido que codifica la proteína LJL143 no procesada (SEQ ID NO: 12)

Polinucleótido que codifica la proteína LJL143 madura (SEQ ID NO: 14)

Figura 16 (4/5)

Polinucleótido que codifica la proteína LJM17 no procesada (SEQ ID NO 16)

ATGAGGTTCTTCTTTGTTTTCCTTGCCATCGTCCTTTTTCAAGGGATCCACGGAGCTTATGTGGAAATAGGATATTC TCTGAGAAATATTACATTCGATGGATTGGATACAGATGACTACAATCCAAAGTTCAACATTCCAACGGGTTTGGCAG TTGATCCCGAAGGATATAGGCTCTTCATAGCCATCCCAAGGAGAAAGCCAAAGGTTCCCTACACTGTGGCTGAACTG AATATGGTCATGAATCCCGGATTTCCCGTCGAGAGAGCTCCGAGCTTTGAGAAAATTCAAAAAATTCAATGGCGAGGG CAAAAAGGATCTTGTTAATGTGTATCAGCCAGTCATTGATGATTGTCGTCGTCTTTGGGTGCTTGACATTGGGAAGG TGGAATACACCGGTGGTGATGCTGATCAATATCCCAAAGGAAAGCCTACCCTAATTGCCTACGACCTCAAGAAGGAT CATACTCCGGAAATTCATCGATTTGAAATTCCAGACGATCTCTATAGCTCACAAGTTGAATTTGGTGGATTTGCCGT TGATGTTGTTAACACGAAAGGAGACTGTACGGAGTCATTTGTCTACCTGACCAATTTCAAGGATAACTCTCTAATTG TCTACGATGAGACACAAAAGAAAGCTTGGAAATTTACAGATAAAACATTTGAAGCTGATAAGGAATCCACGTTCTCC TACTCGGGAGAGAACAAATGAAGTACAAAGTTGGTCTTTTTGGGATAGCTCTGGGTGATAGGGATGAAATGGGGCCA TCGTCCTGCCTACTATATCGCTGGGAGTAGCACCAAAGTCTACAGTGTTAACACTAAAGAACTCAAAACAGAGAATG GTCAGTTAAATCCTCAGCTTCACGGTGATCGTGGAAAGTACACGGATGCAATTGCCCTAGCCCACGATCCTGAGCAT AAAGTCCTCTACTTTGCTGAATCCGACAGCAGGCAGGTGTCCTGTTGGAATGTAGATATGGAGCTAAAACCAGACAA TACGGATGTGATCTTCTCTAGTGCCCGTTTTACTTTTGGAACGGATATTTTGGTTGATAGCAAGGGAATGCTGTGGA TAATGGCTAATGGACATCCACCAGTAGAGGATCAAGAGAAGATTTGGAAGATGAGATTCGTAAACCGGAAGATCAGT AGTTTGA

Polinucleótido que codifica la proteína LJM17 madura (SEQ ID NO 18)

CAACATTCCAACGGGTTTGGCAGTTGATCCCGAAGGATATAGGCTCTTCATAGCCATCCCAAGGAGAAAGCCAAAGG TTCCCTACACTGTGGCTGAACTGAATATGGTCATGAATCCCGGATTTCCCGTCGAGAGAGCTCCGAGCTTTGAGAAA TTCAAAAAATTCAATGGCGAGGGCAAAAAGGATCTTGTTAATGTGTATCAGCCAGTCATTGATGATGTCGTCGTCT TTGGGTGCTTGACATTGGGAAGGTGGAATACACCGGTGGTGATGCTGATCAATATCCCAAAGGAAAGCCTACCCTAA TTGCCTACGACCTCAAGAAGGATCATACTCCGGAAATTCATCGATTTGAAATTCCAGACGATCTCTATAGCTCACAA GTTGAATTTGGTGGATTTGCCGTTGATGTTATCACGGAAAGGAGACTGTACGGAGTCATTTGTCTACCTGACCAA CTGATAAGGAATCCACGTTCTCCTACTCGGGAGAGGAACAAATGAAGTTCAAAGTTGGTCTTTTTGGGATAGCTCTG GGTGATAGGGATGAAATGGGGCATCGTCCTGCCTACTATATCGCTGGGAGTAGCACCAAAGTCTACAGTGTTAACAC TAAAGAACTCAAAACAGAGAATGGTCAGTTAAATCCTCAGCTTCACGGTGATCGTGGAAAGTACACGGATGCAATTG GATATGGAGCTAAAACCAGACAATACGGATGTGATCTTCTCTAGTGCCCGTTTTACTTTTGGAACGGATATTTTGGT TGATAGCAAGGGAATGCTGTGGATAATGGCTAATGGACATCCACCAGTAGAGGATCAAGAGAAGATTTGGAAGATGA GATTCGTAAACCGGAAGATCAGTATTATGAAAGTGGATACGGAACGTGTATTCAAATATTCACGCTGCAATCCAAAT TATAAGCCCCCGAAAGAAATTGAAGTTTGA

Figura 16 (5/5)

Secuencia de ADN de LJM17 no procesada optimizada en codones (SEQ ID NO: 91)

atgcggttcttcttcgtgttcctggccatcgtgctgttccagggcatccacggcgcctacgtggagatcggctacag cctgcggaacatcaccttcgacggcctggacaccgacgactacaaccccaagttcaacatccccaccggcctggccg tqqaccccqaqqqctaccqqctqttcatcqccatccccaggcqqaagcccaaqqtqccctacaccgtqqccgagctq aacatqqtqatqaaccccqqcttccccqtqgaqaqqqcccccaqcttcqaqaaqttcaagaaqtttaacqqcqagqq caagaaagacctggtgaacgtgtaccagcccgtgatcgacgactgcaggcggctgtggggtgctggacatcggcaagg tggagtacacaggcggcgacgccgaccagtaccccaagggcaagcccaccctgatcgcctacgacctgaagaaggac cacacccccqaqatccaccqqttcqaqatccccqacqacctqtacagcaqccaggtggagttcgqcqgctttgccqt ggacgtggtgaacaccaagggcgactgcaccgagagcttcgtgtacctgaccaacttcaaggacaacagcctgatcg tgtacgacgagacccagaagaaggcctggaagttcaccgacaagaccttcgaggccgacaaagagagcaccttcagc tacagoggogaggaacagatgaagtacaaagtgggcctqttcggcatcgccctgggcgaccgggacgagatgggcca caggcccqcctqctacatcqccqqcagcagcaccaaggtqtacagcgtgaataccaaagagctgaaaaccgagaacg gccagctgaacccccagctgcaccggcgaccggggcaagtacaccgacgccattgccctggcctacgaccccgagcac aaggtgctgtacttcgccgagagcgacagccggcaggtgtcctgctggaacgtgaacatggaactgaagcccgacaa caccqacqtqatcttcaqcaqcqcccqqttcaccttcqqcaccqacatcctqqtgqacaqcaaqqqcatqctqtqqa tcatggccaacggccaccccccgtggaggaccaggaaaagatctggaagatgcggttcgtgaaccggaagatccgg atcatqaaqqtqqacaccqaqcqqqtqttcaaqtacaqccqqttgcaaccccaactacaagccccccaaaqaaaatcqa agtgtga

Figura 17

Tabla 1. Porcentaje de identidad de secuencia de aminoácidos global entre LJL143 y LJM17 maduras

	SEQ ID NO: 3 (LJL143)	SEQ ID NO: 7 (LJM17)	SEQ ID NO: 13 (LJL143)	SEQ ID NO: 17 (LJM17)
SEQ ID NO: 3	100	20	98	20
SEQ ID NO: 7		100	20	99
SEQ ID NO: 13			100	20
SEQ ID NO: 17				100

Tabla 2. Porcentaje de identidad de secuencia de aminoácidos global entre LJL143 y LJM17 no procesadas

5

10

	SEQ ID NO: 1 (LJL143)	SEQ ID NO: 5 (LJM17)	SEQ ID NO: 11 (LJL143)	SEQ ID NO: 15 (LJM17)
SEQ ID NO: 1	100	19	98	19
SEQ ID NO: 5		100	19	99
SEQ ID NO: 11			100	19
SEQ ID NO: 15				100

Tabla 3. Porcentaje de identidad de secuencia de aminoácidos global entre polinucleótidos que codifican LJL143 y LJM17 maduras

SEQ ID NO:	4 (LJL143)	8 (LJM17)	14 (LJL143)	18 (LJM17)	22 (LJL143)	91 (LJM17)
4	100	36	99	47	74	43
8		100	47	99	44	76
14			100	47	78	43
18				100	44	75
22					100	51
91						100

Tabla 4. Porcentaje de identidad de secuencia de aminoácidos global entre polinucleótidos que codifican LJL143 y LJM17 no procesadas

15					•				
	SEQ ID	2	6	12(LJL143)	16	89	90	91 (LJM17	91 (LJL143
	NO:	(LJL143)	(LJM17)		(LJM17)	(LJL143)	(LJM17)	de codones	de codones
								optimizados)	optimizados)
	2	100	46	99	46	100	47	43	73
	6		100	47	99	45	100	76	46
	12			100	46	99	48	43	73
	16				100	45	99	76	45
	89					100	47	43	73
	90						100	76	46
	21							100	48
	22								100

El porcentaje de identidad de secuencia entre dos secuencias de ácido nucleico o polipéptido se determina usando el paquete de software Vector NTI 11.0 (PC) (Invitrogen, 1600 Faraday Ave., Carlsbad, CA). Se usan una penalización de abertura de hueco de 15 y una penalización de extensión de hueco de 6,66 para determinar el porcentaje de identidad de dos ácidos nucleicos. Se usan una penalización de abertura de hueco de 10 y una penalización de extensión de hueco de 0,1 para determinar el porcentaje de identidad de dos polipéptidos. EL porcentaje de identidad se calculó en base a la secuencia más corta.

Figura 18 (1/2)

SEQ ID NO	tipo	nombre	SEQ ID NO	SEQ ID NO
			Correspondiente en 61/101,345	Correspondiente en
1	PRT	Protoína I II 142 na procesada	61/101,345	61/051,635 15
2	ADN	Proteína LJL143 no procesada ADN de LJL143 no procesada	2	10
3	PRT	Proteína LJL143 madura	3	
	ADN	ADN de LJL143 madura		
4			4	00
5	PRT	Proteína LJM17 no procesada	5	23
6	ADN	ADN de LJM17 no procesada	6	
7 8	PRT	Proteína LJM17 madura	7	
	ADN	ADN de LJM17 madura	8	
9	PRT	Plásmido pVR2001 LJM17	9	
10	ADN	Plásmido pVR2001 LJL143	10	
11	PRT	Proteína LJL143 no procesada	11	
12	ADN	ADN de LJL143 no procesada	12	
13	PRT	Proteína LJL143 madura	13	
14	ADN	ADN de LJL143 madura	14	
15	PRT	Proteína LJM17 no procesada	15	
16	ADN	ADN de LJM17 no procesada	16	
17	PRT	Proteína LJM17 madura	17	
18	ADN	ADN de LJM17 madura	18	
19	ADN	Plásmido pNB002	19	
20	ADN	Plásmido pNB003	20	
21	ADN	ADN de LJM17 no procesada	21	
		optimizada en codones (cadena		
		complementaria inversa)		
22	ADN	ADN de LJL143 no procesada	22	
		optimizada en codones		
23	PRT	Proteína LJL34		1
24	ADN	ADN de LJL34		2
25	PRT	Proteína LJL18		3
26	ADN	ADN de LJL18		4
27	PRT	Proteína LJS193		5
28	ADN	ADN de LJS193		6
29	PRT	Proteína LJS201		7
30	ADN	ADN de LJS201		8
31	PRT	Proteína LJL13		9
32	ADN	ADN de LJL13		10
33	PRT	Proteína LJL23		11
34	ADN	ADN de LJL23		12
35	PRT	Proteína LJM10		13
36	ADN	ADN de LJM10		14
37	PRT	Proteína LJS142		17
38	ADN	ADN de LJS142		18
39	PRT	Proteína LJL17		19
40	ADN	ADN de LJL17		20
41	PRT	Proteína LJM06		21
42	ADN	ADN de LJM06		22
43	PRT	Proteína LJL04		25
44	ADN	ADN de LJL04		26
45	PRT	Proteína LJM114		27
46	ADN	ADN de LJM114		28
47	PRT	Proteína LJM111		29
	1 1 1 1			
48	ADN	ADN de LJM111		30

Figura 18 (2/2)

	1		
50	ADN	ADN de LJM78	32
51	PRT	Proteína LJS238	33
52	ADN	ADN de LJS238	34
53	PRT	Proteína LJS169	35
54	ADN	ADN de LJS169	36
55	PRT	Proteína LJL11	37
56	ADN	ADN de LJL11	38
57	PRT	Proteína LJS08	39
58	ADN	ADN de LJS08	40
59	PRT	Proteína LJS105	41
60	ADN	ADN de LJS105	42
61	PRT	Proteína LJL09	43
62	ADN	ADN de LJL09	44
63	PRT	Proteína LJL38	45
64	ADN	ADN de LJL38	46
65	PRT	Proteína LJM04	47
66	ADN	ADN de LJM04	48
67	PRT	Proteína LJM26	49
68	ADN	ADN de LJM26	50
69	PRT	Proteína LJS03	51
70	ADN	ADN de LJS03	52
71	PRT	Proteína LJS192	53
72	ADN	ADN de LJS192	54
73	PRT	Proteína LJM19	55
74	ADN	ADN de LJM19	56
75	PRT	Proteína LJL138	57
76	ADN	ADN de LJL138	58
77	PRT	Proteína LJL15	59
78	ADN	ADN de LJL15	60
79	PRT		61
80	ADN	Proteína LJL91	62
81	PRT	ADN de LJL91	
		Proteína LJM11	63
82	ADN	ADN de LJM11	64
83	PRT	Proteína LJS138	65
84	ADN	ADN de LJS138	66
85	PRT	Proteína LJL124	67
86	ADN	ADN de LJL124	68
87	PRT	Proteína LJL35	69
88	ADN	ADN de LJL35	70
89	ADN	ADN de LJL143	16
90	ADN	ADN de LJM17	24
91	ADN	ADN de LJM17 no procesada	
		optimizada en codones	
92	ADN	vCP2390	
93	ADN	vCP2390 (que contiene LJM17 en la dirección de codificación)	
94	ADN	vCP2389	
•		•	_ · L

Figura 19

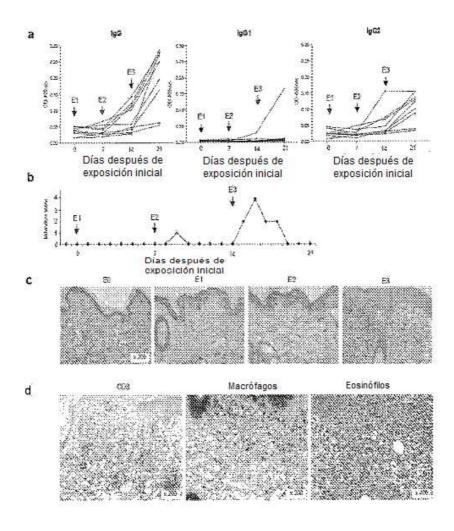


Figura 20

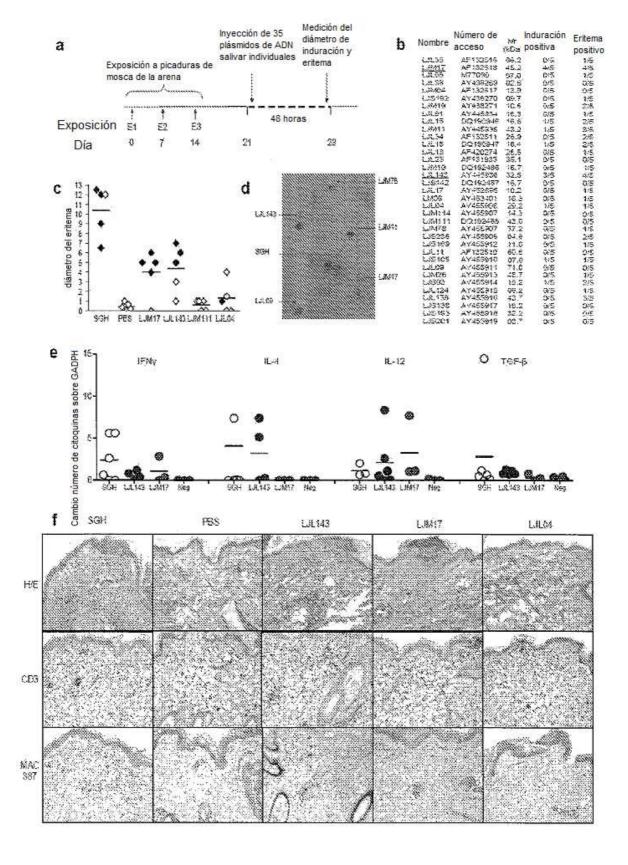


Figura 21

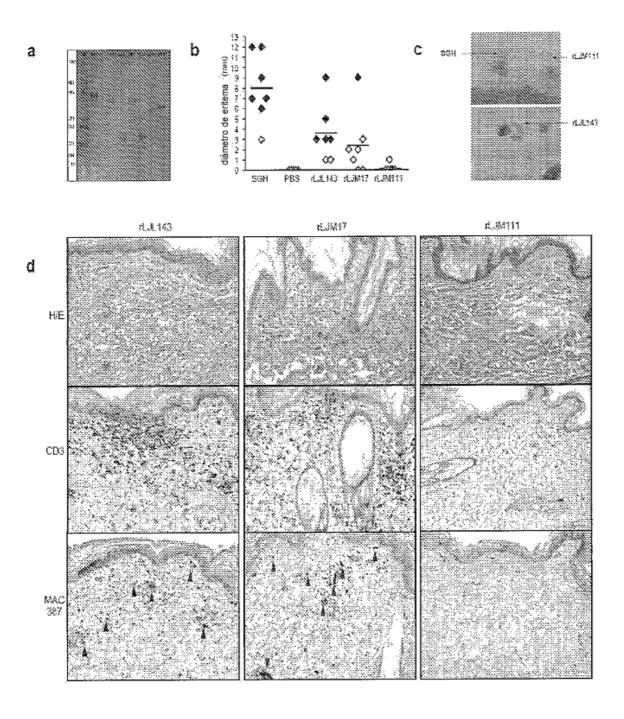
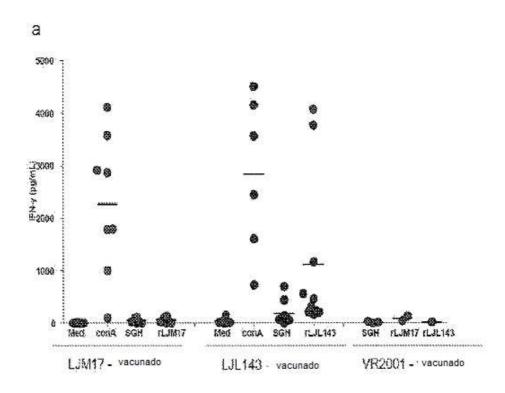



Figura 22

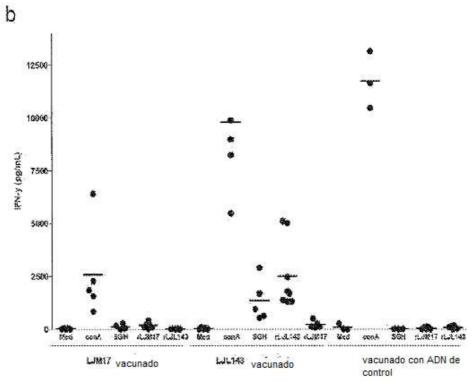
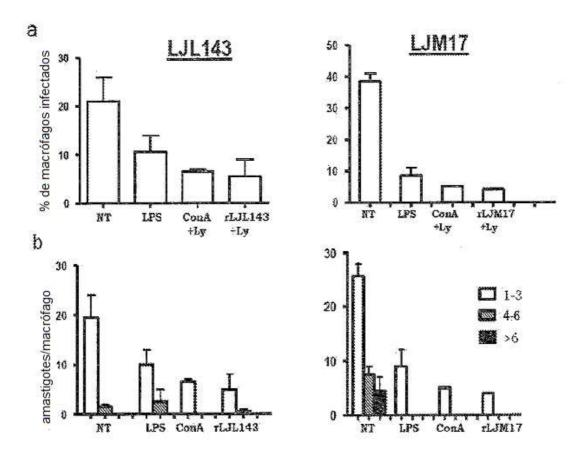



Figura 23

