

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 761 567

51 Int. Cl.:

C12Q 1/6881 (2008.01) C12Q 1/6827 (2008.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 12.08.2015 PCT/EP2015/068601

(87) Fecha y número de publicación internacional: 18.02.2016 WO16023962

96 Fecha de presentación y número de la solicitud europea: 12.08.2015 E 15750052 (1)

(97) Fecha y número de publicación de la concesión europea: 02.10.2019 EP 3180442

(54) Título: Detección de alelos basada en consenso

(30) Prioridad:

13.08.2014 GB 201414350

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 20.05.2020

(73) Titular/es:

PROGENIKA BIOPHARMA, S.A. (100.0%) Parque Technológico de Bizkaia, Edificio 504 48160 Derio, Bizkaia, ES

(72) Inventor/es:

OCHOA, JORGE; ARTETA, DAVID; ILLESCAS, MARÍA JOSÉ; LÓPEZ, MONICA; STEF, MARIANNE; TEJEDOR, DIEGO y MARTÍNEZ, ANTONIO

(74) Agente/Representante:

VALLEJO LÓPEZ, Juan Pedro

Observaciones:

Véase nota informativa (Remarks, Remarques o Bemerkungen) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Detección de alelos basada en consenso

5 Campo de la invención

10

15

20

40

45

55

60

65

La invención se refiere a métodos para la detección basada en secuenciación de nueva generación de alelos en loci genéticos altamente homólogos, por ejemplo RHD/RHCE. También se describen productos, en particular, cebadores específicos de secuencia consenso y kits para su uso en tales métodos.

Antecedentes de la invención

La secuenciación de ADN por el método dideoxi de Sanger se basa en un solo evento de detección en cada posición de un grupo generalmente homogéneo de moléculas de ADN. De este evento, se realiza una identificación cualitativa de presencia/ausencia para cada uno de los cuatro nucleótidos (A, C, G, T) en cada posición en el segmento de ADN. Por lo tanto, la secuenciación de Sanger no es una técnica cuantitativa.

La secuenciación de ADN por métodos de nueva generación, por otro lado, se basa en múltiples eventos de detección en cada posición, correspondiéndose cada evento con una sola molécula de ADN en el grupo. De la multiplicidad de eventos, se puede calcular la abundancia relativa de cada uno de los cuatro nucleótidos en cada posición en el segmento de ADN. Por lo tanto, la secuenciación de nueva generación permite una medición cuantitativa de secuencias particulares en un conjunto heterogéneo de moléculas de ADN.

La secuenciación del ADN es el estándar de oro en el diagnóstico molecular de enfermedades genéticas y en la detección de variantes alélicas de relevancia clínica, como las que codifican antígenos de leucocitos, eritrocitos y plaquetas humanas. Un desafío para la secuenciación precisa del ADN es presentado por genes altamente homólogos, como el sistema de antígeno leucocitario humano (HLA), los conjuntos RHD-RHCE, o GYPA-GYPB-GYPE codificantes de antígeno de eritrocitos.

La discriminación entre los genes homólogos se logra comúnmente mediante el uso de cebadores diseñados para unirse a secuencias específicas de genes. En algunas regiones genéticas, sin embargo, no hay secuencias específicas de genes disponibles, o están ubicadas demasiado separadas para permitir el desarrollo de ensayos de amplificación estándar. Estos hechos plantean un desafío importante para la secuenciación en general, y para la secuenciación de nueva generación en particular, dadas las limitaciones de longitud a las que están sujetos los segmentos de ADN legibles.

Hemker et al., 1999, Blood, Vol. 94, N.º 12, págs. 4337-4342, describe el análisis de *DAR*, una nueva variante de RHD que involucra los exones 4, 5 y 7, a menudo en relación con *ceAR*, una nueva variante de RHCE que se encuentra con frecuencia en los negros africanos. El análisis de ADN genómico implicó entre otros, la secuenciación de Sanger, las amplificaciones de cebador específicas de alelo por PCR, el polimorfismo de longitud de fragmento de restricción y el análisis por transferencia de Southern.

Ringquist et al., 2013, PLoS ONE, Vol. 8, N.º 3, e59835, describe la agrupación y alineación de secuencias polimórficas para el genotipado de *HLA-DRB1*.

Stabentheiner et al., 2011, Vol. 100, págs. 381-388, describe el genotipado de RHD mediante la secuenciación de nueva generación empleando cebadores específicos de exón solo para RHD.

Bentley, et al., 2009, Tissue Antigens, Vol. 74, págs. 393-403, describe el genotipado de HLA de alta resolución y alto rendimiento mediante secuenciación de nueva generación.

Por consiguiente, sigue existiendo la necesidad de métodos adicionales para la amplificación de loci genéticos altamente homólogos y una secuenciación fiable y/o la detección de alelos de los mismos. Es un objetivo de la presente invención abordar estas y otras necesidades.

Sumario de la invención

Los presentes inventores han demostrado la amplificación de loci genéticos altamente homólogos usando cebadores específicos de secuencia consenso, tal como se describe en el presente documento, seguido por la alineación de secuencias con secuencias de referencia para resolver los loci genéticos altamente homólogos y la detección de alelos utilizando la secuenciación de nueva generación (NGS, del inglés *next-generation sequencing*). La presente invención, como se define en las reivindicaciones, por lo tanto, proporciona una manera de permitir la secuenciación de regiones con secuencias ampliamente separadas o sin secuencias de genes específicos mediante el uso de cebadores que se unen a secuencias consenso dentro del conjunto de genes homólogos, tal como se define en las reivindicaciones. Dado que el número de posiciones de consenso suele ser mayor que el número de posiciones específicas de genes, esto también facilita el diseño del cebador y cumplimiento con los requisitos de longitud del

segmento. Un desafío presente por el uso de cebadores que se unen a secuencias consenso es una pérdida de especificidad, como resultado de la amplificación simultánea de todos los genes dentro del conjunto. Sin embargo, los presentes inventores han descubierto que el desafío presentado por la pérdida de especificidad mencionada anteriormente puede superarse en gran medida explotando la naturaleza cuantitativa de la secuenciación de nueva generación y el conocimiento existente sobre secuencias específicas de genes y alelos. De manera específica, los alelos presentes en una muestra para cada uno de los genes en un conjunto de alta homología se pueden determinar a partir de (1) las secuencias particulares detectadas en cada posición polimórfica, (2) su proporción relativa, y (3) su combinación en todo el segmento genético. Mientras que (1) y (3) se comparten con la secuenciación de Sanger, (2) es exclusivo de la secuenciación de nueva generación. Los ejemplos descritos en el presente documento demuestran un genotipo y un tipo de sangre fiables que se identifican para un intervalo de muestras basadas en secuenciación multiplex de nueva generación sequida de análisis de datos.

Por consiguiente, en un primer aspecto, la presente invención proporciona un método para genotipar alelos en al menos un conjunto de loci genéticos homólogos, que comprende:

(i) proporcionar una muestra que contiene ADN que incluye dicho al menos un conjunto de loci genéticos homólogos, en donde dicho conjunto de loci genéticos homólogos comprende:

(a) el gen RHD y el gen RHCE que codifican el antígeno eritrocitario; o

10

15

20

25

30

35

40

45

50

55

(b) dos o más genes del sistema del antígeno leucocitario humano (HLA); o

(c) dos de más de los genes que codifican la glucoforina seleccionados del gen GYPA, el gen GYPB y el gen GYPE;

(ii) realizar la amplificación por PCR de regiones de dicho conjunto de loci genéticos homólogos usando cebadores específicos de secuencia consenso, en donde dichos cebadores específicos de secuencia consenso se unen a secuencias consenso que son comunes a dichos genes de conjunto de loci genéticos homólogos (a), (b) o (c); generando así un conjunto de productos de amplificación;

(iii) secuenciar una pluralidad de dichos productos de amplificación para determinar la proporción relativa de cada nucleótido en cada posición en una lectura de secuenciación;

(iv) realizar una alineación de secuencia entre los resultados de lectura de secuencia de (iii) y al menos una secuencia de referencia, cuya secuencia de referencia se corresponde con uno de los genes en dicho conjunto de loci genéticos homólogos; y

(v) realizar una identificación de genotipo del alelo o alelos en dicha muestra basada en la proporción relativa de cada nucleótido en cada una de una pluralidad de posiciones discriminantes en dicha alineación.

En algunos casos, de acuerdo con este y otros aspectos de la presente invención, el conjunto de loci genéticos homólogos comprende (a) el gen RHD y el gen RHCE que codifican el antígeno eritrocitario; o (b) dos o más de los genes del sistema de antígeno leucocitario humano (HLA); o (c) dos de más de los genes que codifican la glucoforina seleccionados del gen GYPA, el gen GYPB y el gen GYPE. Los genes primero y segundo en estos conjuntos de loci genéticos presentan un alto grado de identidad de secuencia, por ejemplo, como resultado de un evento de duplicación génica ancestral. En ciertos casos, el primer gen tiene al menos el 90 %, al menos el 95 % o al menos el 97 % de identidad de secuencia de nucleótidos con el segundo gen. Los conjuntos de loci genéticos homólogos son los genes RHD-RHCE, los genes del sistema del antígeno leucocitario humano (HLA); y los genes que codifican la glucoforina *GypA-GypB-GypE*. En algunos casos, el conjunto de loci genéticos homólogos comprende el gen RHD humano de la SEQ ID NO: 25 y el gen RHCE humano de la SEQ ID NO: 26 (o uno de los haplotipos de RHCE ce, Ce, cE o CE, respectivamente). En los casos en los que el conjunto de loci genéticos homólogos comprende el gen *RHD* y el gen *RHCE*, la al menos una secuencia de referencia puede comprender:

(i) al menos un exón o un intrón del gen RHD de la SEQ ID NO: 25 o el complemento inverso del mismo;

(ii) al menos un exón o un intrón del gen *RHCE* de la SEQ ID NO: 26 o de uno de los haplotipos de RHCE ce, Ce, cE o CE, respectivamente o el complemento inverso del mismo;

(iii) al menos una de las secuencias del exón 1 de RHD como se muestra en la SEQ ID NO: 27, las secuencias del exón 1 de *RHCE* tal como se muestra en las SEQ ID NO: 28-31, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 1 de RHCE como se muestra en la SEQ ID NO: 32 o el complemento inverso de la misma:

(iv) al menos una de la secuencia del exón 2 de RHD como se muestra en la SEQ ID NO: 33, las secuencias del exón 2 de *RHCE* tal como se muestra en las SEQ ID NO: 34-37, siendo los haplotipos de RHCE ce, Ce, CE o CE, respectivamente, y/o la secuencia consenso del exón 2 de RHCE como se muestra en la SEQ ID NO: 38 o el complemento inverso de la misma;

(v) al menos una de las secuencias del exón 3 de RHD como se muestra en la SEC ID NO: 39, las secuencias del exón 3 de RHCE tal como se muestra en las SEQ ID NO: 40-43, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 3 de RHCE como se muestra en la SEQ ID NO: 44 o el complemento inverso de la misma;

(vi) al menos una de las secuencias del exón 4 de RHD como se muestra en la SEQ ID NO: 45, las secuencias del exón 4 de *RHCE* tal como se muestra en las SEQ ID NO: 46-49, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 4 de RHCE como se muestra en la SEQ ID NO: 50 o el

complemento inverso de la misma;

5

25

35

40

(vii) al menos una de las secuencias del exón 5 de RHD como se muestra en la SEQ ID NO: 51, las secuencias del exón 5 de *RHCE* tal como se muestra en las SEQ ID NO: 52-55, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 5 de RHCE como se muestra en la SEQ ID NO: 56 o el complemento inverso de la misma;

- (viii) al menos una de las secuencias del exón 6 de RHD tal como se muestra en la SEQ ID NO: 87, las secuencias del exón 6 de *RHCE* tal como se muestra en las SEQ ID NO: 88-91, siendo los haplotipos de RHCE ce, Ce, CE o CE, respectivamente, y/o la secuencia consenso del exón 6 de RHCE como se muestra en la SEQ ID NO: 92 o el complemento inverso de la misma;
- (ix) al menos una de las secuencias del exón 7 de RHD como se muestra en la SEQ ID NO: 93, las secuencias del exón 7 de RHCE tal como se muestra en las SEQ ID NO: 94-97, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 7 de RHCE como se muestra en la SEQ ID NO: 98 o el complemento inverso de la misma;
- (x) al menos una de la secuencia del exón 8 de RHD como se muestra en la SEQ ID NO: 99, las secuencias del exón 8 de *RHCE* tal como se muestra en las SEQ ID NO: 100-103, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 8 de RHCE como se muestra en la SEQ ID NO: 104 o el complemento inverso de la misma;
- (xi) al menos una de las secuencias del exón 9 de RHD tal como se muestra en la SEQ ID NO: 105, las secuencias del exón 9 de RHCE tal como se muestra en las SEQ ID NO: 106-109, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 9 de RHCE como se muestra en la SEQ ID NO: 110 o el complemento inverso de la misma;
 - (xii) al menos una de las secuencias del exón 10 de RHD tal como se muestra en la SEQ ID NO: 111, las secuencias del exón 10 de *RHCE* tal como se muestra en las SEQ ID NO: 112-115, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 10 de RHCE como se muestra en la SEQ ID NO: 116 o el complemento inverso de la misma; y/o
 - (xiii) al menos una de las secuencias del intrón 2 de RHD como se muestra en la SEQ ID NO: 117, las secuencias del intrón 2 de *RHCE* tal como se muestra en las SEQ ID NO: 118-121, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, o el complemento inverso del mismo.
- La secuencia de referencia puede incluir al menos 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 o 100 nucleótidos aguas arriba y/o aguas abajo de dicho exón o dicho intrón. En algunos casos, la secuencia de referencia comprende solo la porción de secuencia de exón indicada en negrita en las Figuras 16-20 y 21-26, respectivamente. En otros casos, la secuencia de referencia incluye parte (por ejemplo, el 25 %, el 50 % o el 75 %) de o toda la secuencia intrónica flanqueante aguas arriba y/o aguas abajo indicada sin negrita de las Figuras 16-20 y 21-26, respectivamente.
 - En ciertos casos de acuerdo con este y otros aspectos de la presente invención, dicha al menos una secuencia de referencia comprende al menos dos secuencias de referencia, que incluye: (i) al menos un exón o un intrón del gen *RHD* de la SEQ ID NO: 25 o el complemento inverso del mismo (por ejemplo, una de las SEQ ID NO: 27, 33, 39, 45, 51, 87, 93, 99, 105, 111 o 117); y (ii) al menos un exón o un intrón de una secuencia del gen RHCE, tal como de la SEQ ID NO: 26, (por ejemplo, una de las SEQ ID NO: 28-32, 34-38, 40-44, 46-50, 52-56, 88-92, 94-98, 100-104, 106-110, 112-116 o 118-121) o el complemento inverso de las mismas.
- En ciertos casos de acuerdo con este y otros aspectos de la presente invención, la pluralidad de posiciones discriminantes en dicha alineación se selecciona de las posiciones establecidas en la Tabla 2, la Tabla 11 y la Tabla 13. La identidad de las bases que pueden detectarse en cada una de dichas posiciones discriminantes también se indica en la Tabla 2, la Tabla 11 y la Tabla 13, como son los genotipos correspondientes. Por ejemplo, la posición 48 del exón 1 es G/C polimórfico.
- Los presentes inventores han descubierto que los cebadores de secuencia consenso particulares tal como se definen en el presente documento pueden amplificar segmentos de genes RHD y RHCE (por ejemplo, el exón 1 de RHD y de RHCE) y encontrar uso en los métodos de la presente invención. Por consiguiente, en ciertos casos del método del primer aspecto de la invención, cada uno de dichos cebadores específicos de secuencia consenso comprende o consiste en una secuencia de nucleótidos seleccionada del grupo que consiste en:

RHex01 F1	TCCCTCAAGCCCTCAAGTAG	(SEQ ID NO: 3)
RHex01 F2	TGTTGGAGAGAGGGGTGATG	(SEQ ID NO: 4)
RHex01 F3	CTGCACAGAGACGGACACAG	(SEQ ID NO: 5)
RHex01 R1 RHex01 R2	CCCTGCTATTTGCTCCTGTG AAAGGAACATCTGTGCCCCT	(SEQ ID NO: 6) (SEQ ID NO: 7)
RHex02 F1	CCCTTCCAGCTGCCATTTAG	(SEQ ID NO: 8)

ES 2 761 567 T3

	(continuación)	
RHex02 F2	AAATCTCGTCTGCTTCCCCC	(SEQ ID NO: 9)
RHex02 R1	AAGTGATCCAGCCACCATCC	(SEQ ID NO: 10)
RHex02 R2	GTCCATTCCCTCTATGACCC	(SEQ ID NO: 11)
RHex03 F1	AGGTGCCCAACAGTGTTTGT	(SEQ ID NO: 12)
RHex03 F2	TGAGTGAGAGGCATCCTTCC	(SEQ ID NO: 13)
RHex03 R1	TTTGGCCCTTTTCTCCCAGG	(SEQ ID NO: 14)
RHDex03 R2 RHCEex03 R3	GAAACCCCACCAAATGGAGC	(SEQ ID NO: 15) (SEQ ID NO: 16)
KINGEEXUS KS	GAAGCCCCACCAAATGGAGC	(SEQ ID NO. 10)
RHex04 F1	GGCTTCAAGTCACACCTCCT	(SEQ ID NO: 17)
RHex04 F2	CAGAGGATGCCGACACTCAC	(SEQ ID NO: 18)
RHex04 R1 RHex04 R2	CCATTCTGCTCAGCCCAAGT	(SEQ ID NO: 19)
RHEXU4 RZ	CAGCCAGAGCCTTTTCTGAG	(SEQ ID NO: 20)
RHex05 F1	CAGCCCTAGGATTCTCATCC	(SEQ ID NO: 21)
RHex05 F2	AGCAGGAGTGTGATTCTGGC	(SEQ ID NO: 22)
RHex05 R1		(SEQ ID NO: 23)
RHex05 R2	CTGTTAGACCCAAGTGCTGC TGGGGAGGGGCATAAATATG	(SEQ ID NO: 24)
1110/100 112	TOCOCAGOGOATAATATO	(024 15 110: 21)
RHex06 F1	GGTCACTTGCAGCAAGATGG	(SEQ ID NO: 59)
RHex06 F2	ACCTTGCTTCCTTTACCCAC	(SEQ ID NO: 60)
RHex06 R1		(SEQ ID NO: 61)
RHex06 R2	TGGCCTTCAGCCAAAGCAGA CTAATGCAGCTGTGCACTGC	(SEQ ID NO: 62)
	01,41100,10010100,10100	(,
RHex07 F1	TGTGTGAAAGGGGTGGGTAG	(SEQ ID NO: 63)
RHex07 F2	GTCTCACCTGCCAATCTGCT	(SEQ ID NO: 64)
RHex07 R1		(SEQ ID NO: 65)
RHex07 R2	GTTGGAGGGGAGTGTTAAGG CCAGCTAAGGACTCTGCACA	(SEQ ID NO: 66)
1110/01/12	CONGCIANGGACICIGOACA	(024 15 140. 00)
RHex08 F1	ATGGCACTACTGACACCGAC	(SEQ ID NO: 67)
RHex08 F2	TTGTCCCTGATGACCTCTGC	(SEQ ID NO: 68)
RHex08 R1		(SEQ ID NO: 69)
RHex08 R2	TGTCCTGGCAATGGTGGAAG GCACATAGACATCCAGCCAC	(SEQ ID NO: 70)
	SCHONINGHOUNGOONG	(== 0.70,70)
RHex09 F1	AGCTGGTCCAGGAATGACAG	(SEQ ID NO: 71)

ES 2 761 567 T3

RHex09 F2 RHex09 F3	(continuación) GTGGGAGAAAAAGGATTTCTGTTGAGA TCTTGAGATTAAAAATCCTGTGCTCCA	(SEQ ID NO: 72) (SEQ ID NO: 73)
RHex09 R1	AGTTCATGCACTCAAAATCTATCACGT	(SEQ ID NO: 74)
RHex09 R2	CCTGCAATGCTCCTTACTCC	(SEQ ID NO: 75)
RHex10 F1	GGCTGTTTCAAGAGATCAAGCC	(SEQ ID NO: 76)
RHex10 F2	TCAGTATGTGGGTTCATCTGCA	(SEQ ID NO: 77)
RHex10 R1	AGGCAACAGTGAGAGGAAGTTG	(SEQ ID NO: 78)
RHex10 R2	TGCTGTCATGAGCGTTTCTCAC	(SEQ ID NO: 79)
RHin2 F1	CTTGTGCCACTTGACTTGGGACTG	(SEQ ID NO: 80)
RHin2 F2	CTGTTTTGAGTCCCTTCAGGGGAG	(SEQ ID NO: 81)
RHin2 F3	CTCACATACTGATAACTTAGCAAATGGC	(SEQ ID NO: 82)
RHin2 R1 RHin2 R2 RHin2 R3 RHCEin2 R4	GATCACTTGAGCCCAGGAGGC TTAACTCAGGAGGCTGAGGTGG CTGAGGTGGGAGGATCACTTGAG AAATTAGCCGGGCATGGTAGCAG	(SEQ ID NO: 83) (SEQ ID NO: 84) (SEQ ID NO: 85) (SEQ ID NO: 86)

o una variante de una de dichas secuencias 3-24 y 59-86 que no tiene más de uno, dos o tres cambios de nucleótidos por sustitución, adición o deleción. Las variantes de los cebadores de las SEQ ID NO: 3-24 y 59-86 pueden, en particular, comprender nucleótidos adicionales en el extremo 5' y/o 3', que prolonga la secuencia del cebador para incluir la secuencia contigua adyacente a la porción de la secuencia genómica de RHD y RHCE con la que dicho cebador de una de las SEQ ID NO: 3-24 y 59-86 hibrida. Además, o como alternativa, una variante del cebador puede truncarse en el extremo 5' y/o 3', por ejemplo, para ser 1, 2 o 3 nucleótidos más corto en longitud.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, uno o más de los cebadores específicos de secuencia consenso pueden comprender además un marcador o adaptador. Por ejemplo, el cebador puede comprender un marcador o adaptador de secuenciación de nueva generación, por ejemplo, en su extremo 5'. En ciertos casos, uno o más de los cebadores específicos de secuencia consenso comprenden un marcador de secuenciación de nueva generación con la secuencia ACACTCTTTCCCTACACGACGCTCTTCCGATCT (SEQ ID NO: 1).

15

20

El marcador de la SEQ ID NO: 1 puede estar en el extremo 5' de un cebador directo, como un cebador directo de una o más de las SEQ ID NO: 3-5, 8-9, 12-13, 17-18, 21-22, 59-60, 63-64, 67-68, 71-73, 76-77 y 80-82. Como alternativa, o adicionalmente, uno o más de los cebadores específicos de secuencia consenso pueden comprender un marcador de secuenciación de nueva generación con la secuencia GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (SEQ ID NO: 2). El marcador de la SEQ ID NO: 2 puede estar en el extremo 5 'de un cebador inverso, como un cebador inverso de una o más de las SEQ ID NO: 6-7, 10-11, 14-16, 19-20, 23-24, 61-62, 65-66, 69-70, 74-75, 78-79 y 83-86.

En otros casos, de acuerdo con el método de este y otros aspectos de la presente invención, uno o más de los 25 cebadores específicos de secuencia consenso pueden comprender además un marcador y/o adaptador. Por ejemplo, el cebador puede comprender un marcador o adaptador de secuenciación de nueva generación, por ejemplo, en su extremo 5'. En ciertos casos, uno o más cebadores específicos de secuencia consenso comprenden secuenciación de nueva generación ACACTCTTTCCCTACCTGTAAAACGACGGCCAGT (SEQ ID NO: 57). Él marcador de la SEQ ID NO: 1 o 57 puede 30 estar en el extremo 5' de un cebador directo como un cebador directo de una o más de las SEQ ID NO: 3-5, 8-9, 12-13, 17-18, 21-22, 59-60, 63-64, 67-68, 71-73, 76-77 y 80-82. Como alternativa, o adicionalmente, uno o más de los cebadores específicos de secuencia consenso pueden comprender un marcador de secuenciación de nueva generación con la secuencia GGTTGCTCGCCAGGAAACAGCTATGACC (SEQ ID NO: 58). El marcador de la SEQ ID NO: 2 o 58 puede estar en el extremo 5' de un cebador inverso, como un cebador inverso de una o más de las 35 SEQ ID NO: 6-7, 10-11, 14-16, 19-20, 23-24, 61-62, 65-66, 69-70, 74-75, 78-79 y 83-86.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, el método comprende secuenciar cada uno de los exones 1, 2, 3, 4 y 5 del gen *RHD* y cada uno de los exones 1, 2, 3, 4 y 5 del gen *RHCE*. Como alternativa, o adicionalmente, de acuerdo con el método de este y otros aspectos de la presente invención, el método puede comprender secuenciar cada uno de los exones 6, 7, 8, 9 y 10 y el intrón 2 del gen *RHCE*.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, el método comprende clasificar la muestra en términos de su genotipo RHD/RHCE. En ciertos casos, el genotipo se selecciona del grupo que consiste en:

```
(a) CE (exones 1-2)-DD(exones 3-9)-CE(exón 10);
         (b) DDCcEe;
         (c) DdCCee;
         (d) ddCcEe:
         (e) DdCcee(exones 1-2)-ddCcee(exones 3-9)-DD(exón 10);
15
         (f) ddCcee:
         (g) DDCcEe:
         (h) DdccEe;
         (i) ddccee;
         (j) DDCCee:
20
         (k) DdCcee;
         (I) ddCCee;
         (m) DDccEE; y
         (n) D?ccEe.
25
```

En algunos casos, el genotipo es diferente de cualquiera de los genotipos (a) a (n). La clasificación de la muestra como de uno de dichos genotipos se realiza normalmente basándose en la proporción relativa de cada nucleótido en cada una de dicha pluralidad de posiciones discriminantes en dicha alineación. Preferentemente, la clasificación del genotipo de la muestra se realiza basándose en los criterios establecidos en las Tablas 2, 6, 8, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30 y/o 31.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, el método comprende además determinar el tipo de sangre de la muestra en función del genotipo. En ciertos casos, el tipo de sangre de la muestra se selecciona del grupo que consiste en:

```
35
          (i) RHD+, tipo Cw;
          (ii) RHD+, CcEe;
          (iii) wDt3, Cce;
          (iv) RHD*DIIIa-het:
40
          (v) Ce, RHD+;
          (vi) DAR-hem;
          (vii) r's;
          (viii) Ce, RHD+;
          (ix) rr;
45
          (x) R1R1;
          (xi) R1r;
          (xii) r'r';
          (xiii) R2R2;
          (xiv) Pseudogen/-; y
50
          (xv) DVI tipo 1/-
```

10

30

55

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, la muestra se clasifica como que tiene un alelo de tipo sanguíneo seleccionado del grupo que consiste en: RHD*r's; tipo RHD * r 's; RHD*r's Tipo 1; RHD*r's Tipo 2; RHD * DIIIa; RHD*DIIIa IVS3+3100G; RHD*DIII_FN; RHD*DIVa-2; RHD*DIVa; RHD*DIII-tipo4; RHD * DI-II-tipo6; RHD*DIII-tipo7; RHD*DIII-tipo8; RHCE*ce*1006T; RHCE*ce*1006C; RHCE*ce733G; RH-CE*ce48C,733G,1025T; RHCE*ce48C,697G,733G; RHCE*ce340T,733G; y RHCE*ce48C,733G,748A, basado en el genotipo de la muestra en una o más posiciones polimórficas en el gen RHD y/o el gen RHCE.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, el método comprende obtener el número de lecturas que abarcan las bases de referencia y el número de lecturas que abarcan bases alternativas después de la alineación para su uso en dicha identificación de genotipo.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, el método comprende definir un límite para la proporción de lecturas que abarcan las bases de referencia frente a las lecturas que abarcan las bases alternativas para la identificación de la variante.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, el método comprende obtener el número de lecturas que abarcan las bases directas de referencia, el número de lecturas que abarcan las bases inversas de referencia, el número de lecturas que abarcan las bases directas alternativas y el número de lecturas que abarcan las bases inversas alternativas para su uso en la identificación del genotipo.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, el método comprende además calcular un puntaje de calidad de mapeo para cada alineación de secuencia y/o un puntaje de calidad de mapeo general para una pluralidad de dichos alineamientos de secuencia. En ciertos casos, el puntaje de calidad de mapeo para cada alineación de secuencia y/o dicho puntaje de calidad de mapeo general para dicha pluralidad de alineamientos de secuencia debe ser al menos 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 o al menos 30 unidades de Puntuación de Phred para que dicha identificación de genotipo sea considerada fiable.

10

30

35

40

45

50

55

60

65

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, se realiza una etapa previa al proceso antes de dicha alineación de secuencia para mejorar la calidad de la alineación. En ciertos casos, la etapa previa al proceso comprende excluir lecturas de secuencia más cortas que 10, 20, 30, 40, 50, 60, 70 o más cortas que 76 nucleótidos. En ciertos casos, la etapa previa al proceso incluye lecturas de secuencia de recorte, por ejemplo, eliminar 1, 2, 3, 4 o 5 nucleótidos del extremo 5' y/o 3' de cada lectura de secuenciación.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, el método comprende además realizar un paso de control de calidad para evaluar la calidad de las lecturas de secuenciación antes de realizar dicha alineación de secuencia, y en donde evaluar la calidad de cada lectura de secuenciación directa y/o inversa comprende determinar uno o más parámetros seleccionados del grupo que consiste en: Por calidad de secuencia base, Por puntuación de calidad de secuencia, Por contenido de secuencia base, Por contenido de bases GC, Por contenido de GC en secuencia, Por contenido de bases de N, Distribución de longitud de secuencia, Nivel de duplicación de secuencia, Secuencias sobrerrepresentadas y contenido de Kmer.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, la alineación de cada secuencia se realiza utilizando un algoritmo como la coincidencia exacta del alineador Burrows-Wheeler (BWA MEM).

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, el método comprende además evaluar uno o más de dichos alineamientos de secuencia para determinar al menos un parámetro seleccionado del grupo que consiste en: cobertura, frecuencia variante, identificación de calidad media del genotipo, calidad de mapeo y calidad de identificación. En ciertos casos, el umbral mínimo de cobertura se establece en 10X, 15X, 20X, 25X o 30X. En ciertos casos, la frecuencia mínima variante para identificar a un genotipo alternativo es del 2 %, 5 %, 10 %, 15 %, 20 % o 30 %. En ciertos casos, la identificación de calidad promedio del genotipo es de al menos 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 o 35 unidades de puntuación de Phred. En ciertos casos, la calidad del mapeo es de al menos 15, 16, 17, 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29 o 30 unidades de puntuación de Phred. En ciertos casos, la calidad de la identificación es de al menos 15, 16, 17, 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29 o 30 unidades de puntuación de Phred.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, los criterios de umbral pueden establecerse de tal manera que para definir una identificación homocigótica, un mínimo del 50 %, 60 %, 70 %, 80 %, 90 %, 95 % o el 99 % de las lecturas deben admitir el alelo identificado. Como alternativa, o adicionalmente, los criterios de corte pueden establecerse de tal manera que para definir una identificación heterocigótica, entre el 30 % y el 70 %, entre el 35 % y el 65 %, entre 40% y 60%, o entre 45% y 55% de las lecturas deben admitir el alelo alternativo. Como alternativa, o adicionalmente, los criterios de corte pueden establecerse de modo que, para definir una llamada hemicigótica, entre el 15 % y el 45 %, entre el 20 % y el 40 %, entre el 20 % y el 35 %, o entre el 25 % y el 35 % de las lecturas deben admitir el alelo identificado.

En algunos casos, de acuerdo con el método de este y de otros aspectos de la presente invención, la cobertura se evalúa independientemente para la alineación de hebras directas e inversas, y en donde la proporción de cobertura de directo frente a inverso está entre 0,6 y 1,4, entre 0,7 y 1,3, entre 0,8 y 1,2, o entre 0,85 y 1,15.

De acuerdo con este y otros aspectos de la presente invención, la muestra se obtiene preferentemente o se ha obtenido previamente de un sujeto humano. En algunos casos, el sujeto se está sometiendo o es candidato para, la transfusión de sangre o trasplante de médula ósea. En algunos casos, el sujeto tiene drepanocitosis (SCD, del inglés sickle cell disease) o talasemia mayor. En algunos casos, el sujeto tiene ascendencia no caucásica. En algunos casos, el sujeto tiene ascendencia africana.

De acuerdo con este y otros aspectos de la presente invención, la muestra puede ser cualquier muestra biológica adecuada de la cual es posible obtener ácido nucleico, particularmente ADN genómico, para su uso en una reacción de PCR. Las muestras adecuadas incluyen cualquier material de origen corporal (líquido, sólido o aspirado) como sangre, cabello, células de la mejilla y células de la piel.

De acuerdo con este y otros aspectos de la presente invención, la muestra puede someterse a uno o más tratamientos para extraer un ácido nucleico antes o como parte de dicha amplificación por PCR.

De acuerdo con este y otros aspectos de la presente invención, el método puede comprender además llevar a cabo análisis serológicos en una muestra de sangre obtenida del sujeto. Esto puede ser particularmente útil para corroborar o aclarar una predicción de fenotipo realizada. La combinación de la predicción del tipo de sangre basada en el genotipo con una predicción basada en la serología puede ser útil, por ejemplo, para mejorar la precisión o resolver resultados ambiguos. Sin embargo, también se contempla específicamente en el presente documento que el método de este y otros aspectos de la presente invención puede no comprender la realización de análisis serológicos. Eliminar la necesidad de realizar análisis serológicos proporciona ahorros considerables en términos de tiempo, coste y/o recursos.

También se desvela en el presente documento una pluralidad de cebadores para la amplificación por PCR de uno o más segmentos del gen RHD y del gen RHCE, en donde la secuencia de nucleótidos de cada cebador de dicha pluralidad comprende o consiste en una secuencia de nucleótidos seleccionada del grupo que consiste en:

RHex01 F1	TCCCTCAAGCCCTCAAGTAG	(SEQ ID NO: 3)
RHex01 F2	TGTTGGAGAGAGGGGGTGATG	(SEQ ID NO: 4)
RHex01 F3	CTGCACAGAGACGGACACAG	(SEQ ID NO: 5)
RHex01 R1	CCCTGCTATTTGCTCCTGTG	(SEQ ID NO: 6)
RHex01 R2	AAAGGAACATCTGTGCCCCT	(SEQ ID NO: 7)
RHex02 F1	CCCTTCCAGCTGCCATTTAG	(SEQ ID NO: 8)
RHex02 F2	AAATCTCGTCTGCTTCCCCC	(SEQ ID NO: 9)
RHex02 R1	AAGTGATCCAGCCACCATCC	(SEQ ID NO: 10)
RHex02 R2	GTCCATTCCCTCTATGACCC	(SEQ ID NO: 11)
RHex03 F1	AGGTGCCCAACAGTGTTTGT	(SEQ ID NO: 12)
RHex03 F2	TGAGTGAGAGGCATCCTTCC	(SEQ ID NO: 13)
RHex03 R1	TTTGGCCCTTTTCTCCCAGG	(SEQ ID NO: 14)
RHDex03 R2	GAAACCCCACCAAATGGAGC	(SEQ ID NO: 15)
RHCEex03 R3	GAAGCCCCACCAAATGGAGC	(SEQ ID NO: 16)
RHex04 F1	GGCTTCAAGTCACACCTCCT	(SEQ ID NO: 17)
RHex04 F2	CAGAGGATGCCGACACTCAC	(SEQ ID NO: 18)
RHex04 R1	CCATTCTGCTCAGCCCAAGT	(SEQ ID NO: 19)
RHex04 R2	CAGCCAGAGCCTTTTCTGAG	(SEQ ID NO: 20)
RHex05 F1	CAGCCCTAGGATTCTCATCC	(SEQ ID NO: 21)
RHex05 F2	AGCAGGAGTGTGATTCTGGC	(SEQ ID NO: 22)
RHex05 R1	CTGTTAGACCCAAGTGCTGC	(SEQ ID NO: 23)
RHex05 R2	TGGGGAGGGGCATAAATATG	(SEQ ID NO: 24),
RHex06 F1	GGTCACTTGCAGCAAGATGG	(SEQ ID NO: 59)
RHex06 F2	ACCTTGCTTCCTTTACCCAC	(SEQ ID NO: 60)
RHex06 R1	TGGCCTTCAGCCAAAGCAGA	(SEQ ID NO: 61)
RHex06 R2	CTAATGCAGCTGTGCACTGC	(SEQ ID NO: 62)
RHex07 F1	TGTGTGAAAGGGGTGGGTAG	(SEQ ID NO: 63)
RHex07 F2	GTCTCACCTGCCAATCTGCT	(SEQ ID NO: 64)
RHex07 R1	GTTGGAGGGGAGTGTTAAGG	(SEQ ID NO: 65)
RHex07 R2	CCAGCTAAGGACTCTGCACA	(SEQ ID NO: 66)

ES 2 761 567 T3

RHex08 F1 RHex08 F2	(continuación) ATGGCACTACTGACACCGAC TTGTCCCTGATGACCTCTGC	(SEQ ID NO: 67) (SEQ ID NO: 68)
RHex08 R1	TGTCCTGGCAATGGTGGAAG	(SEQ ID NO: 69)
RHex08 R2	GCACATAGACATCCAGCCAC	(SEQ ID NO: 70)
RHex09 F1	AGCTGGTCCAGGAATGACAG	(SEQ ID NO: 71)
RHex09 F2	GTGGGAGAAAAAGGATTTCTGTTGAGA	(SEQ ID NO: 72)
RHex09 F3	TCTTGAGATTAAAAATCCTGTGCTCCA	(SEQ ID NO: 73)
RHex09 R1	AGTTCATGCACTCAAAATCTATCACGT	(SEQ ID NO: 74)
RHex09 R2	CCTGCAATGCTCCTTACTCC	(SEQ ID NO: 75)
RHex10 F1	GGCTGTTTCAAGAGATCAAGCC	(SEQ ID NO: 76)
RHex10 F2	TCAGTATGTGGGTTCATCTGCA	(SEQ ID NO: 77)
RHex10 R1	AGGCAACAGTGAGAGGAAGTTG	(SEQ ID NO: 78)
RHex10 R2	TGCTGTCATGAGCGTTTCTCAC	(SEQ ID NO: 79)
RHin2 F1	CTTGTGCCACTTGACTTGGGACTG	(SEQ ID NO: 80)
RHin2 F2	CTGTTTTGAGTCCCTTCAGGGGAG	(SEQ ID NO: 81)
RHin2 F3	CTCACATACTGATAACTTAG CAAATG G C	(SEQ ID NO: 82)
RHin2 R1 RHin2 R2 RHin2 R3 RHCEin2 R4	GATCACTTGAGCCCAGGAGGC TTAACTCAGGAGGCTGAGGTGG CTGAGGTGGGAGGATCACTTGAG AAATTAGCCGGGCATGGTAGCAG	(SEQ ID NO: 83) (SEQ ID NO: 84) (SEQ ID NO: 85) (SEQ ID NO: 86)

o es una variante de una de dichas secuencias 3-24 y 59-86 que no tiene más de uno, dos o tres cambios de nucleótidos por sustitución, adición o deleción. En algunos casos, los cebadores pueden ser como se definen de acuerdo con el primer aspecto de la invención.

Las variantes de los cebadores de las SEQ ID NO: 3-24 y 59-86 pueden, en particular, comprender nucleótidos adicionales en el extremo 5' y/o 3', que prolonga la secuencia del cebador para incluir la secuencia contigua adyacente a la porción de la secuencia genómica de RHD y RHCE con la que dicho cebador de una de las SEQ ID NO: 3-24 y 59-86 hibrida. Además, o como alternativa, una variante del cebador puede truncarse en el extremo 5' y/o 3', por ejemplo, para ser 1, 2 o 3 nucleótidos más corto en longitud.

10

20

En algunos casos, uno o más de los cebadores específicos de secuencia consenso pueden comprender además un marcador o adaptador. Por ejemplo, el cebador puede comprender un marcador o adaptador de secuenciación de nueva generación, por ejemplo, en su extremo 5'. En ciertos casos, uno o más cebadores específicos de secuencia consenso comprenden un marcador de secuenciación de nueva generación con la secuencia ACACTCTTTCCCTACACGACGCTCTTCCGATCT(SEQ ID NO: 1). El marcador de la SEQ ID NO: 1 puede estar en el extremo 5' de un cebador directo, como un cebador directo de una o más de las SEQ ID NO: 3-5, 8-9, 12-13, 17-18, 21-22, 59-60, 63-64, 67-68, 71-73, 76-77 y 80-82. Como alternativa, o adicionalmente, uno o más de los cebadores específicos de secuencia consenso pueden comprender un marcador de secuenciación de nueva generación con la secuencia GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (SEQ ID NO: 2). El marcador de la SEQ ID NO: 2 puede estar en el extremo 5 'de un cebador inverso, como un cebador inverso de una o más de las SEQ ID NO: 6-7, 10-11, 14-16, 19-20, 23-24, 61-62, 65-66, 69-70, 74-75, 78-79 y 83-86.

25 En algunos casos, tras la adición del marcador de secuenciación de nueva generación, se pueden añadir adaptadores. Estos adaptadores se añaden utilizando una secuencia de cebador directo que comprende el marcador de secuencia de nueva generación, así como una secuencia de adaptador, tal como

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT (SEQ ID NO: 122) y/o una secuencia de cebador inverso CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTC (SEQ ID NO: 123) que contiene un código de barras de 8 nucleótidos añadido para la identificación del paciente (indicado como XXXXXXXX en la SEQ ID NO: 123).

35 Los cebadores de secuencia incluyen los de secuenciación directa

ES 2 761 567 T3

ACACTCTTTCCCTACACGACGCTCTTCCGATCT (SEQ ID NO: 124), secuenciación inversa GTGACTGGAGTTCAGACGTGTCTCCGATCT (SEQ ID NO: 125), y secuenciación de índice AGATCGGAAGACACGTCTGAACTCCAGTCAC (SEQ ID NO: 126).

En otros casos, uno o más de los cebadores específicos de secuencia consenso pueden comprender además un marcador o adaptador. Por ejemplo, el cebador puede comprender un marcador o adaptador de secuenciación de nueva generación, por ejemplo, en su extremo 5'. En ciertos casos, uno o más cebadores específicos de secuencia consenso comprenden un marcador de secuenciación de nueva generación con la secuencia TGTAAAACGACGGCCAGT (SEQ ID NO: 57). El marcador de la SEQ ID NO: 57 puede estar en el extremo 5' de un cebador directo, como un cebador directo de una o más de las SEQ ID NO: 3-5, 8-9, 12-13, 17-18, 21-22, 59-60, 63-64, 67-68, 71-73, 76-77 y 80-82.

Como alternativa, o adicionalmente, uno o más de los cebadores específicos de secuencia consenso pueden comprender un marcador de secuenciación de nueva generación con la secuencia CAGGAAACAGCTATGACC (SEQ ID NO: 58). El marcador de la SEQ ID NO: 58 puede estar en el extremo 5 'de un cebador inverso, como un cebador inverso de una o más de las SEQ ID NO: 6-7, 10-11, 14-16, 19-20, 23-24, 61-62, 65-66, 69-70, 74-75, 78-79 y 83-86. Tras la adición del marcador de secuenciación de nueva generación, los adaptadores se añaden usando una secuencia de cebador directo

15

25

30

35

40

45

55

20 AATGATACGCGACCACCGAGATCTACACTCTTTCCCTACCTGTAAAACGACGGCCAGT (SEQ ID NO: 127) y un cebador inverso CAAGCAGAAGACGGCATACGAGATXXXXXXXXGGTTGCTCGCCAGGAAACAGCTATGACC (SEQ ID NO: 128) gue contiene un cédigo de barras de 8 nucleótidos añadido para la identificación del paciente (indicado como

que contiene un código de barras de 8 nucleótidos añadido para la identificación del paciente (indicado como XXXXXXXXX en la SEQ ID NO: 128).

aquellos Los cebadores secuenciación incluyen para secuenciación directa de la ACACTCTTTCCCTACCTGTAAAACGACGGCCAGT (SEQ ID NO: 129), secuenciación inversa GGTTGCTCGCCAGGAAACAGCTATGACC (SEQ ID NO: 130), secuenciación índice GGTCATAGCTGTTTCCTGGCGAGCAACC (SEQ ID NO: 131).

En algunos casos, la pluralidad de cebadores comprende al menos un cebador directo y al menos un cebador inverso. En casos particulares, la pluralidad de cebadores comprende al menos un par de cebadores seleccionados del grupo que consiste en:

- (i) un cebador directo del exón 1 seleccionado de las SEQ ID NO: 3-5, y un cebador inverso del exón 1 seleccionado de las SEQ ID NO: 6 y 7;
 - (ii) un cebador directo del exón 2 seleccionado de las SEQ ID NO: 8 y 9, y un cebador inverso del exón 2 seleccionado de las SEQ ID NO: 10 y 11;
 - (iii) un cebador directo del exón 3 seleccionado de las SEQ ID NO: 12 y 13, y un cebador inverso del exón 3 seleccionado de las SEQ ID NO: 14-16;
 - (iv) un cebador directo del exón 4 seleccionado de las SEQ ID NO: 17 y 18, y un cebador inverso del exón 4 seleccionado de las SEQ ID NO: 19 y 20;
 - (v) un cebador directo del exón 5 seleccionado de las SEQ ID NO: 21 y 22, y un cebador inverso del exón 5 seleccionado de las SEQ ID NO: 23 y 24. En casos particulares, el par de cebadores es distinto del cebador directo de la SEQ ID NO: 5 en combinación con el cebador inverso de la SEQ ID NO: 6;
 - (vi) un cebador directo del exón 6 seleccionado de las SEQ ID NO: 59 y 60, y un cebador inverso del exón 6 seleccionado de las SEQ ID NO: 61 y 62;
 - (vii) un cebador directo del exón 7 seleccionado de las SEQ ID NO: 63 y 64, y un cebador inverso del exón 7 seleccionado de las SEQ ID NO: 65 y 66;
- 50 (viii) un cebador directo del exón 8 seleccionado de las SEQ ID NO: 67 y 68, y un cebador inverso del exón 8 seleccionado de las SEQ ID NO: 69 y 70;
 - (ix) un cebador directo del exón 9 seleccionado de las SEQ ID NO: 71-73, y un cebador inverso del exón 9 seleccionado de las SEQ ID NO: 74 y 75;
 - (x) un cebador directo del exón 10 seleccionado de las SEQ ID NO: 76 y 77, y un cebador inverso del exón 10 seleccionado de las SEQ ID NO: 78 y 79;
 - (xi) un cebador directo del intrón 2 seleccionado de las SEQ ID NO: 80-82, y un cebador inverso de intrón 2 seleccionado de las SEQ ID NO: 83-86;

En algunos casos, al menos uno de los cebadores comprende además un marcador de secuenciación de nueva generación y/o comprende además un marcador detectable (por ejemplo, un marcador fluorescente), un nucleótido biotinilado, o una porción de ácido nucleico bloqueado (LNA). En particular, los cebadores pueden, en algunos casos, ser otros que no sean un fragmento de una secuencia de nucleótidos natural. Como será evidente para el experto en la materia, los cebadores que tienen una o más bases no naturales (por ejemplo, un análogo de base d5SICS y dNaM) y/o una cadena principal modificada (por ejemplo, ARN sustituido con 2'-O-metilo, ácido nucleico bloqueado (LNA), el BNA (del inglés *Bridged Nucleic Acid*, ácido nucleico en puente) o el ácido nucleico morfolino) son estructuralmente distintos de los fragmentos de la secuencia de nucleótidos natural.

Los cebadores pueden ser ADN o ARN. Preferentemente, los cebadores son cebadores de ADN.

Los cebadores encuentran un uso particular de acuerdo con los métodos de la invención.

También se describe un kit para evaluar el tipo de sangre de un sujeto, comprendiendo dicho kit:

una pluralidad de cebadores como se describe anteriormente;

opcionalmente, uno o más reactivos de amplificación por PCR y/o uno o más reactivos de secuenciación de nueva generación.

También se describe un sistema para determinar el tipo de sangre de un sujeto, comprendiendo el sistema:

un kit tal como se describe anteriormente; y

al menos un detector dispuesto para detectar una señal de un amplicón marcado de forma detectable producido por amplificación por PCR realizada en ADN obtenido de dicho sujeto; al menos un controlador en comunicación con el al menos un detector, estando el controlador programado con

instrucciones legibles por ordenador para transformar dicha señal en una secuencia de nucleótidos predicha. Normalmente, el sistema tiene la forma de una plataforma de secuenciación de nueva generación, en la que el detector está dispuesto para detectar la señal de un terminador reversible marcado con fluorescencia unido a dNTP a medida que se agregan a un polinucleótido en crecimiento ("secuenciación por síntesis").

En algunos casos, el controlador está programado con instrucciones legibles por ordenador para preparar una alineación entre dicha secuencia de nucleótidos predicha y una secuencia de referencia para un gen RHCE.

En algunos casos, el controlador está programado con instrucciones legibles por ordenador para determinar el genotipo de dicha muestra basándose en la proporción relativa de cada nucleótido en cada una de una pluralidad de posiciones discriminantes en dicha alineación.

En algunos casos, el controlador está programado con instrucciones legibles por ordenador para transformar el genotipo de dicha muestra en haplotipos de tipo sanguíneo predichos, y opcionalmente, transformar dichos haplotipos de tipo sanguíneo predichos en un fenotipo de tipo sanguíneo predicho.

También se describe el uso de una pluralidad de cebadores del segundo aspecto de la invención en la preparación de una biblioteca de secuenciación.

También se describe el uso de una pluralidad de cebadores como se describe anteriormente, un kit como se describe anteriormente o un sistema como se describe anteriormente en un método de secuenciación. En algunos casos, el uso es en un método de secuenciación de nueva generación, tal como secuenciación por síntesis o secuenciación Illumina®.

También se describe el uso de una pluralidad de cebadores como se describe anteriormente, un kit como se describe anteriormente o un sistema como se describe anteriormente en un método del primer aspecto de la invención.

En un segundo aspecto, la presente invención proporciona un método de emparejamiento de sangre, comprendiendo el método:

Ilevar a cabo el método del primer aspecto de la invención en una muestra receptora de un sujeto receptor que necesita sangre de donante y en una muestra donante de un posible sujeto donante; comparar los alelos de tipo sanguíneo presentes en la muestra receptora con los presentes en el sujeto donante y determinando así la compatibilidad del sujeto receptor para recibir sangre del posible sujeto donante.

En algunos casos, el método de acuerdo con el segundo aspecto de la invención puede llevarse a cabo para una pluralidad de sujetos receptores y una pluralidad de posibles sujetos donantes, por ejemplo, para ayudar a detectar la compatibilidad en un servicio de donación de sangre/transfusión de sangre.

A continuación, la invención se describirá con mayor detalle, a modo de ejemplo y no de limitación, haciendo referencia a los dibujos adjuntos. Para los expertos en la materia serán evidentes varias modificaciones y variaciones equivalentes cuando reciban la presente divulgación. Por consiguiente, las realizaciones a modo de ejemplo expuestas de la invención se consideran como ilustrativas y no limitantes.

Descripción de las figuras

65

5

10

20

25

30

40

La Figura 1 muestra una imagen de gel de agarosa que demuestra productos de amplificación por PCR de

ES 2 761 567 T3

cebadores del exón 1. Carril 1 - marcador de 100 pb; carril 2 - Ex01 F1R1; carril 3 - Ex01 F1R2; carril 4 - Ex01 F2R1; carril 5 - Ex01 F2R2; carril 6 - Ex01 F3R1; carril 7 - Ex01 F3R2. Todas las combinaciones de cebadores distintas de Ex01 F3R1 del carril 6 mostraron una amplificación exitosa del exón 1.

La **Figura 2** muestra una imagen de gel de agarosa que demuestra productos de amplificación por PCR de cebadores del exón 1 (repetición) y cebadores del exón 2. Carril 1 - marcador de 100 pb; carril 2 - Ex01 F3R1 (muestra 1); carril 3 - Ex01 F3R1 (muestra 2); carril 4 - Ex02 F1R1; carril 5 - Ex02 F1R2; carril 6 - Ex02 F2R1; carril 7 - Ex02 F2R2. Todas las combinaciones de cebadores que no sean las repeticiones de Ex01 F3R1 de los carriles 2 y 3 mostraron una amplificación exitosa.

15

20

25

- La **Figura 3** muestra una imagen de gel de agarosa que demuestra productos de amplificación por PCR de cebadores del exón 3. Carril 1 marcador de 100 pb; carril 2 Ex03 F1R1; carril 3 Ex03 F1R2; carril 4 Ex03 F1R3; carril 5 Ex03 F2R1; carril 6 Ex03 F2R2; carril 7 Ex03 F3R3. Todas las combinaciones de cebadores mostraron una amplificación exitosa del exón 3.
- La **Figura 4** muestra una imagen de gel de agarosa que demuestra productos de amplificación por PCR de cebadores del exón 4. Carril 1 marcador de 100 pb; carril 2 Ex04 F1R1; carril 3 Ex04 F1R2; carril 4 Ex04 F2R1; carril 5 Ex04 F2R2. Todas las combinaciones de cebadores mostraron una amplificación exitosa del exón 4.
- La **Figura 5** muestra una imagen de gel de agarosa que demuestra productos de amplificación por PCR de cebadores del exón 5. Carril 1 marcador de 100 pb; carril 2 Ex05 F1R1; carril 3 Ex05 F1R2; carril 4 Ex05 F2R1; carril 5 Ex05 F2R2. Todas las combinaciones de cebadores mostraron una amplificación exitosa del exón 5.
- La **Figura 6** muestra un electroferograma que ilustra la detección del alelo heterocigótico en la posición 48 del exón 1 (véase el doble pico, encerrado en un círculo) discriminando entre RHD y el alelo C de RHCE en una muestra con el genotipo DDCCee. La secuencia de la muestra es: TGTCCGGCGCTGCCCTCTGSGCCCTAACACTGGAAGCA (SEQ ID NO: 132).
- La **Figura 7** muestra un electroferograma que ilustra la detección de la posición homocigótica 48 del exón 1 de RHCE (véase el pico G en un círculo) en una muestra con el genotipo ddccee. La secuencia de la muestra es: CCGGCGCTGCCTGCCCCTCTGGGCCCTAACACTGGAAG (SEQ ID NO: 133).
- La **Figura 8** muestra un electroferograma que ilustra la detección de las posiciones heterocigóticas 201 y 203 del exón 2 (véase los picos en un círculo) discriminando entre RHD y el alelo c de RHCE en una muestra con el genotipo DDCCee. La secuencia de la muestra es: GGGCTTCCTCACCTCRARTTTCCGGAGACACAGCTGGAGCA (SEQ ID NO: 134).
- La **Figura 9** muestra un electroferograma que ilustra la detección de las posiciones homocigóticas 201 y 203 del exón 2 de RHCE (véase los picos en círculo) en una muestra con el genotipo ddccee. La secuencia de la muestra es: GGCTTCCTCACCTCAAATTTCCGGAGACACAG CTG GAG C AG (SEQ ID NO: 135).
- La **Figura 10** muestra un electroferograma que ilustra la detección de las posiciones heterocigóticas 380 y 383 en el exón 3 (véase los picos en un círculo) discriminando entre RHD y RHCE en una muestra con el genotipo DDCCee. La secuencia de la muestra es: CGGTGCTGATCTC AGYGGRTGCTGTCTTGGGGAAGGTC (SEQ ID NO: 136).
- La **Figura 11** muestra un electroferograma que ilustra la detección de las posiciones homocigóticas 380 y 383 del exón 3 de RHCE (véase los picos en círculo) en una muestra con el genotipo ddccee. La secuencia de la muestra es: GGTGCTGATCTCAGCGGGTGCTGTCTTGGGGAA (SEQ ID NO: 137).
- La **Figura 12** muestra un electroferograma que ilustra la detección de las posiciones heterocigóticas 577, 594 y 602 del exón 4 (véase los picos en un círculo) discriminando entre RHD y RHCE en una muestra con el genotipo DDCCee. La secuencia de la muestra es: GCCTCTACCCRAGGGAACGGAGGATAAWGATCAGASAGCAACG (SEQ ID NO: 138).
- La **Figura 13** muestra un electroferograma que ilustra la detección de las posiciones homocigóticas 577, 594 y 602 del exón 4 de RHCE (véase picos en círculo) en una muestra con el genotipo ddccee. La secuencia de la muestra es: GCCTGCCAAAGCCTCTACCCAAGGGAACGGAGGATAAT GATCAGAGAGCAAC (SEQ ID NO: 139).
- La **Figura 14** muestra un electroferograma que ilustra la detección de la posición heterocigótica 712, 733, 744 del exón 5 (véase los picos en un círculo) discriminando entre RHD y RHCE en una muestra con el genotipo DDCCee. La secuencia de la muestra es: GAATGCCRTGTT CAACACCTACTATGCTSTAGCAGTCAGYGTGGTGA (SEQ ID NO: 140).

La **Figura 15** muestra un electroferograma que ilustra la detección de las posiciones homocigóticas 712, 733, 744 del exón 5 de RHCE (véase los picos en un círculo) en una muestra con el genotipo ddccee. La secuencia de la muestra es: GAAGAATGCCATGTTCAACACCTACTATGCTCTAGCAGT CAGTGTGGTGACA (SEQ ID NO: 141).

5

10

20

45

- La **Figura 16A-B** muestra una secuencia de alineación del exón 1 (en negrita), así como posiciones intrónicas aguas arriba y aguas abajo (sin negrita), para RHD (SEQ ID NO: 27), Alelos del gen RHCE RHCE*ce (SEQ ID NO: 28), RHCE*cE (SEQ ID NO: 39), RHCE*CE (SEQ ID NO: 30) y RHCE*CE (SEQ ID NO: 31), y la secuencia consenso para RHCE (SEQ ID NO: 32). Los nucleótidos idénticos se indican con un asterisco. Los huecos se indican con un guión. Los números al final de las filas indican, para el último nucleótido en dicha fila, su posición en el alineamiento, así como su posición exónica (entre paréntesis).
- La **Figura 17A-B** muestra una secuencia de alineación del exón 2 (en negrita), así como posiciones intrónicas aguas arriba y aguas abajo (sin negrita), para RHD (SEQ ID NO: 33), los alelos del gen RHCE RHCE*ce (SEQ ID NO: 34), RHCE*cE (SEQ ID NO: 35), RHCE*CE (SEQ ID NO: 36) y RHCE*CE (SEQ ID NO: 37), y la secuencia consenso para RHCE (SEQ ID NO: 38). Los nucleótidos idénticos se indican con un asterisco. Los huecos se indican con un guión. Los números al final de las filas indican, para el último nucleótido en dicha fila, su posición en el alineamiento, así como su posición exónica (entre paréntesis).
- La **Figura 18A-B** muestra una secuencia de alineación del exón 3 (en negrita), así como posiciones intrónicas aguas arriba y aguas abajo (sin negrita), para RHD (SEQ ID NO: 39), los alelos del gen RHCE RHCE*ce (SEQ ID NO: 40), RHCE*cE (SEQ ID NO: 41), RHCE*Ce (SEQ ID NO: 42) y RHCE*CE (SEQ ID NO: 43), y la secuencia consenso para RHCE (SEQ ID NO: 44). Los nucleótidos idénticos se indican con un asterisco. Los huecos se indican con un guión. Los números al final de las filas indican, para el último nucleótido en dicha fila, su posición en el alineamiento, así como su posición exónica (entre paréntesis).
- La **Figura 19A-B** muestra una secuencia de alineación del exón 4 (en negrita), así como posiciones intrónicas aguas arriba y aguas abajo (sin negrita), para RHD (SEQ ID NO: 45), los alelos del gen RHCE RHCE*ce (SEQ ID NO: 46), RHCE*cE (SEQ ID NO: 47), RHCE*Ce (SEQ ID NO: 48) y RHCE*CE (SEQ ID NO: 49), y la secuencia consenso para RHCE (SEQ ID NO: 50). Los nucleótidos idénticos se indican con un asterisco. Los huecos se indican con un guión. Los números al final de las filas indican, para el último nucleótido en dicha fila, su posición en el alineamiento, así como su posición exónica (entre paréntesis).
- La **Figura 20A-B** muestra una secuencia de alineación del exón 5 (en negrita), así como posiciones intrónicas aguas arriba y aguas abajo (sin negrita), para RHD (SEQ ID NO: 51), los alelos del gen RHCE RHCE*ce (SEQ ID NO: 52), RHCE*cE (SEQ ID NO: 53), RHCE*Ce (SEQ ID NO: 54) y RHCE*CE (SEQ ID NO: 55), y la secuencia consenso para RHCE (SEQ ID NO: 56). Los nucleótidos idénticos se indican con un asterisco. Los huecos se indican con un guión. Los números al final de las filas indican, para el último nucleótido en dicha fila, su posición en el alineamiento, así como su posición exónica (entre paréntesis).
 - La **Figura 21A-B** muestra una secuencia de alineación del exón 6 (en negrita), así como posiciones intrónicas aguas arriba y aguas abajo (sin negrita), para RHD (SEQ ID NO: 87), los alelos del gen RHCE RHCE*ce (SEQ ID NO: 88), RHCE*cE (SEQ ID NO: 98), RHCE*CE (SEQ ID NO: 90) y RHCE*CE (SEQ ID NO: 91), y la secuencia consenso para RHCE (SEQ ID NO: 92). Los nucleótidos idénticos se indican con un asterisco. Los huecos se indican con un guión. Los números al final de las filas indican, para el último nucleótido en dicha fila, su posición en el alineamiento, así como su posición exónica (entre paréntesis).
- La **Figura 22A-B** muestra una secuencia de alineación del exón 7 (en negrita), así como posiciones intrónicas aguas arriba y aguas abajo (sin negrita), para RHD (SEQ ID NO: 93), los alelos del gen RHCE RHCE*ce (SEQ ID NO: 94), RHCE*cE (SEQ ID NO: 95), RHCE*Ce (SEQ ID NO: 96) y RHCE*CE (SEQ ID NO: 97), y la secuencia consenso para RHCE (SEQ ID NO: 98). Los nucleótidos idénticos se indican con un asterisco. Los huecos se indican con un guión. Los números al final de las filas indican, para el último nucleótido en dicha fila, su posición en el alineamiento, así como su posición exónica (entre paréntesis).
 - La **Figura 23A-B** muestra una secuencia de alineación del exón 8 (en negrita), así como posiciones intrónicas aguas arriba y aguas abajo (sin negrita), para RHD (SEQ ID NO: 99), los alelos del gen RHCE RHCE*ce (SEQ ID NO: 100), RHCE*cE (SEQ ID NO: 101), RHCE*Ce (SEQ ID NO: 102) y RHCE*CE (SEQ ID NO: 103), y la secuencia consenso para RHCE (SEQ ID NO: 104). Los nucleótidos idénticos se indican con un asterisco. Los huecos se indican con un guión. Los números al final de las filas indican, para el último nucleótido en dicha fila, su posición en el alineamiento, así como su posición exónica (entre paréntesis).
- La **Figura 24A-B** muestra una secuencia de alineación del exón 9 (en negrita), así como posiciones intrónicas aguas arriba y aguas abajo (sin negrita), para RHD (SEQ ID NO: 105), los alelos del gen RHCE RHCE*ce (SEQ ID NO: 106), RHCE*cE (SEQ ID NO: 107), RHCE*CE (SEQ ID NO: 108) y RHCE*CE (SEQ ID NO: 109), y la secuencia consenso para RHCE (SEQ ID NO: 110). Los nucleótidos idénticos se indican con un asterisco. Los

huecos se indican con un guión. Los números al final de las filas indican, para el último nucleótido en dicha fila, su posición en el alineamiento, así como su posición exónica (entre paréntesis).

La **Figura 25A-B** muestra una secuencia de alineación del exón 10 (en negrita), así como posiciones intrónicas aguas arriba y aguas abajo (sin negrita), para RHD (SEQ ID NO: 111), los alelos del gen RHCE RHCE*ce (SEQ ID NO: 112), RHCE*CE (SEQ ID NO: 113), RHCE*Ce (SEQ ID NO: 114) y RHCE*CE (SEQ ID NO: 115), y la secuencia consenso para RHCE (SEQ ID NO: 116). Los nucleótidos idénticos se indican con un asterisco. Los huecos se indican con un guión. Los números al final de las filas indican, para el último nucleótido en dicha fila, su posición en el alineamiento, así como su posición exónica (entre paréntesis).

10

5

La **Figura 26A-B** muestra una alineación de secuencia del inserto de 109 pares de bases (en negrita), así como las posiciones intrónicas aguas arriba y aguas abajo (no en negrita) en el intrón 2, para RHD (SEQ ID NO: 117), los alelos del gen RHCE RHCE*ce (SEQ ID NO: 118), RHCE*cE (SEQ ID NO: 119), RHCE*Ce (SEQ ID NO: 120) y RHCE*CE (SEQ ID NO: 121). Los nucleótidos idénticos se indican con un asterisco. Los huecos se indican con un guión. Los números al final de las filas indican, para el último nucleótido en dicha fila, su posición en la alineación.

20

15

La **Figura 27** muestra una imagen de gel de agarosa que demuestra los productos de amplificación por PCR de los exones 6 a 10 con diferentes combinaciones de cebadores. Todas las combinaciones de cebadores mostraron una amplificación exitosa.

La **Figura 28** muestra una imagen de gel de agarosa que demuestra los productos de amplificación por PCR del intrón 2 con diferentes combinaciones de cebadores. Todas las combinaciones de cebadores mostraron una amplificación exitosa.

25

30

Descripción detallada de la invención

La presente invención encuentra uso en la determinación de alelos en conjuntos de genes altamente homólogos tal como se define en las reivindicaciones, tales como los genes clínicamente relevantes RHD y RHCE que codifican antígenos sanguíneos. La invención proporciona un método para genotipar alelos como se establece en la reivindicación 1.

Ve ur 35 tip

Ventajosamente, el método de la presente invención puede comprender además genotipar una muestra obtenida de un sujeto humano en una o más posiciones en el intrón 7 del gen *RHD* y/o en el intrón 7 del gen *RHCE*. La tipificación de la sangre utilizando polimorfismos de intrón 7 se describe en el documento WO2012/171990. La tipificación de sangre mediante el uso de una combinación de polimorfismos en el gen *RHD* y/o el gen RHCE se describe en los documentos US2012/0172239 y EP2471949.

40

El antígeno del grupo sanguíneo Rh D está codificado por el gen *RHD*, que comprende 10 exones. La secuencia completa del gen *RHD* está disponible en la secuencia de referencia del NCBI: N.º NG_007494.1, GI:171184448, (SEQ ID NO: 25). Los exones 1-5 y 6-10 del gen *RHD*, y el intrón 2 tienen las secuencias en negrita en las Figuras 16-20 y 21-26.

50

45

El antígeno del grupo sanguíneo Rh C está codificado por el gen RHCE, que comprende 10 exones. La secuencia completa del gen RHCE está disponible en la secuencia de referencia del NCBI: NG_009208.2, GI:301336136, (SEQ ID NO: 26). Una secuencia actualizada del gen RHCE está disponible en: NG_009208.3. los alelos génicos del gen RHCE RHCE*ce, RHCE*Ce, RHCE*cE y RHCE*CE tienen las secuencias de nucleótidos del exón expuestas en las Figuras 16-20 y 21-26 (exones 1-5 y 6-10, e intrón 2, respectivamente). Las secuencias consenso de RHCE de los exones 1-5 y 6-10 también se muestran en las Figuras 16-20 y 21-26, respectivamente.

55

El término "muestra", como se usa en el presente documento, pretende abarcar cualquier material (sólido, líquido o aspirado) obtenido directa o indirectamente de un sujeto, tal como un sujeto humano, en el que se encuentra el conjunto de loci genéticos de interés. En particular, el término "muestra" incluye cualquier fluido biológico como la sangre, plasma, orina, saliva, líquido cefalorraquídeo y líquido intersticial, cualquier materia sólida, tal como tejido, hueso y cabello, cualquier célula o extracto celular, cualquier línea celular derivada, tal como una línea de células tumorales inmortalizadas y una línea de células madre, un extracto de cualquiera de los tipos de muestra anteriores, tal como tejido fijado o embebido en parafina. En determinadas realizaciones preferidas, la muestra es un extracto de ADN genómico humano, opcionalmente amplificado y/o purificado.

60

65

Tal como se emplea en la presente memoria, el término "genotipado" pretende abarcar cualquier método para determinar la identidad del nucleótido en una posición particular tal como una posición polimórfica en un locus especificado. Por lo tanto, el genotipado incluye la identificación de uno o ambos alelos de un gen particular. El genotipado puede emplear cualquiera de varias técnicas, que incluyen, pero sin limitación, hibridación específica de alelo, PCR específica de alelo, secuenciación de todo o parte de un gen. Preferentemente, el genotipado se lleva a cabo de acuerdo con el método del primer aspecto de la invención.

A menos que se especifique otra cosa, todas las secuencias de ácido nucleico, tales como secuencias de cebadores, se exponen en el presente documento en el sentido 5' a 3'. Por lo tanto, por ejemplo, la secuencia del cebador TCCCTCAAGCCCTCAAGTAG (SEQ ID NO: 3) puede escribirse igualmente como 5'-TCCCTCAAGCCCTCAAGTAG-3' (SEQ ID NO: 3).

Tal como se describe en el presente documento, ciertos alelos de tipo sanguíneo son menos comunes y se denominan normalmente "variantes" (por ejemplo RHD^*r^s). Los alelos variantes del tipo de sangre en algunos casos se denominan en el presente documento simplemente como "variantes del tipo de sangre".

10 Ejemplos

15

20

25

30

35

Ejemplos

Para los siguientes ejemplos, se eligieron dos genes relacionados con el sistema de grupo sanguíneo Rh humano: los genes RHD y RHCE. Estos genes, que están dispuestos en tándem, son parálogos estructurales que son resultado de una duplicación de un gen ancestral común. Ambos genes son muy similares (idénticos en el 97 % de su secuencia), conteniendo cada uno 10 exones y abarcando aproximadamente 75 kb. Estos genes codifican las proteínas RhD y RhCE altamente polimórficas y antigénicas, que difieren en más de 30 aminoácidos. RHD codifica el antígeno D y RHCE codifica los antígenos antitéticos C y c, y E y e, en varias combinaciones (ce, cE, Ce o CE). Existen decenas de antígenos del sistema Rh adicionales además de estas cinco principales.

Los antígenos C y c son codominantes y están codificados por alelos (formas alternativas) del gen RHCE. Por lo tanto, si ambos alelos están presentes (uno en cada cromosoma), ambos antígenos se expresan en los glóbulos rojos. Los antígenos E y e también son codominantes y están codificados por alelos del gen RHCE. Sin embargo, la mayoría de los individuos D negativos se deben a la eliminación del gen RHD (aunque hay excepciones, incluida la no expresión debido a mutaciones puntuales, indeles o reordenamientos con RHCE). Los antígenos C y c difieren en cuatro aminoácidos: uno codificado por el exón 1 y tres codificados por el exón 2. Además, el antígeno C difiere de c y D debido a una inserción de 109 pares de bases en el intrón 2. Los antígenos E y e difieren en un aminoácido codificado por el exón 5. Además, el exón 2 se comparte entre RHD y RHCE en el caso de los alelos RHCE*Ce y RHCE*CE. Los exones 8 y 10 se comparten entre RHD y todos los alelos RHCE. De hecho, la transferencia de exones entre RHD y RHCE, creando genes híbridos, se sabe que ocurre en ambas direcciones.

Durante todo el texto, los antígenos se denominan D, C, c, E y e. Los dos genes mencionados se denominan RHD y RHCE. Los alelos del gen RHCE se designan como RHCE*ce, RHCE*Ce, RHCE*cE y RHCE*CE. Las proteínas se denominan RhD y RhCE o, si se designan de acuerdo con los antígenos específicos que llevan, como Rhce, RhCe, RhCE o RhCE.

Ejemplo 1 - Amplificación de loci homólogos usando cebadores específicos de secuencia consenso

40 Los cebadores adecuados para la secuenciación de nueva generación (NGS) y específicos para la secuencia de consenso entre los genes RHD y RHCE se diseñaron para los exones 1 a 5, y se probaron las amplificaciones correctas del producto de ambos genes usando diferentes combinaciones de cebadores, tanto en reacciones uniplex como multiplex. Las amplificaciones se probaron en ocho muestras diferentes, incluidos los tipos de grupos sanguíneos Rh raros:

Tabla 1 - Tipo de sangre de las muestras

Muestra	Tine de consus
wuestra	Tipo de sangre
Muestra 1	RHD+, Tipo Cw
Muestra 2	RHD+, CcEe
Muestra 3	wDt3, Cce
Muestra 4	RHD*DIlla-het
Muestra 5	Ce, RHD+
Muestra 6	DAR-hem
Muestra 7	r's
Muestra 8	Ce, RHD+

Todos los cebadores consistieron en una porción de marcador de NGS en su extremo 5 'y una porción específica de secuencia. En este ejemplo, los marcadores utilizados fueron:

- para cebadores directos: ACACTCTTTCCCTACACGACGCTCTTCCGATCT (SEQ ID NO: 1)
- para cebadores inversos: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT (SEQ ID NO: 2)

Las porciones específicas de secuencia consenso fueron:

50

ES 2 761 567 T3

Cebadores directos del exón 1 de RH RHex01 F1 RHex01 F2 RHex01 F3 Cebadores inversos	TCCCTCAAGCCCTCAAGTAG TGTTGGAGAGAGGGGTGATG CTGCACAGAGACGGACACAG	SEQ ID NO 3 4 5
RHex01 R1	CCCTGCTATTTGCTCCTGTG	6
RHex01 R2	AAAGGAACATCTGTGCCCCT	7
Cebadores directos del exón 2 de RH RHex02 F1 RHex02 F2 Cebadores inversos RHex02 R1	CCCTTCCAGCTGCCATTTAG	8 9 10
RHex02 R2	AAGTGATCCAGCCACCATCC	11
RHexU2 R2	GTCCATTCCCTCTATGACCC	11
Cebadores directos del exón 3 de RH		
RHex03 F1	AGGTGCCCAACAGTGTTTGT	12
RHex03 F2	TGAGTGAGAGGCATCCTTCC	13
Cebadores inversos RHex03 R1		14
RHDex03 R2	TTTGGCCCTTTTCTCCCAGG	15
RHCEex03 R3	GAAACCCCACCAAATGGAGC	15 16
KHCEEXUS KS	GAAGCCCCACCAAATGGAGC	10
Cebadores directos del exón 4 de RH		
RHex04 F1	GGCTTCAAGTCACACCTCCT	17
RHex04 F2	CAGAGGATGCCGACACTCAC	18
Cebadores inversos		19
RHex04 R1 RHex04 R2	CCATTCTGCTCAGCCCAAGT	19 20
KHEXU4 KZ	CAGCCAGAGCCTTTTCTGAG	20
Cebadores directos del exón 5 de RH		
RHex05 F1	CAGCCCTAGGATTCTCATCC	21
RHex05 F2	AGCAGGAGTGTGATTCTGGC	22
Cebadores inversos		00
RHex05 R1	CTGTTAGACCCAAGTGCTGC	23
RHex05 R2	TGGGGAGGGCATAAATATG	24

La PCR se realizó en reacciones de 10 µl usando las siguientes condiciones:

Kapa HotStart ReadyMix (2X) $5,0~\mu$ I ADN molde (20 ng/ul) $1,4~\mu$ I Cebador directo (10 ng/ul) $1,2~\mu$ I Cebador inverso (10 ng/ul) $1,2~\mu$ I dH2O $1,2~\mu$ I

95 °C	3 min	
95 °C	15 s	
60 °C	15 s	38 ciclos
72 °C	30 s	
4 °C	infinito	

Los productos de PCR se procesaron en geles de agarosa para confirmar las amplificaciones (Figs. 1-5). Excepto por una combinación de cebadores para el Exón 1 (RHex01 F3 y RHex01 R1), todas las demás combinaciones de cebadores presentaron amplificaciones exitosas.

⁵

Ejemplo 2 - Identificación de productos amplificados del Ejemplo 1

10

15

Este ejemplo muestra que los productos de amplificación que utilizan diferentes combinaciones de cebadores que se muestran en el ejemplo 1 corresponden de hecho a ambos genes (RHD y RHCE). En otras palabras, las regiones homólogas de ambos genes se amplificaron al mismo tiempo mediante cebadores específicos de secuencia consenso.

Los productos de amplificación se purificaron y se secuenciaron por Sanger en un analizador genético ABI PRISM® 3730XL de acuerdo con los procedimientos convencionales. Las muestras se habían caracterizado completamente previamente por su fenotipo y genotipo de grupo sanguíneo Rh. Por lo tanto, para cada exón, se identificaron con éxito las posiciones discriminatorias entre ambos genes. La Tabla 2 muestra dichas posiciones para dos muestras (genotipos DDCCee y ddccee). Si ambos genes hubieran sido amplificados por el mismo conjunto de cebadores, los electroferogramas para dichas muestras deberían mostrar picos dobles (heterocigotos) en dichas posiciones (Figs. 6-15).

Tabla 2 - Posiciones polimórficas

Tabla 2 - Posiciones polimórficas Exón Genotipo Posición discriminatoria Bases a detectar				
Exón			Posición discriminatoria	Bases a detectar
1		CCee	48	G, C
	dd	dd ccee		G
			150	T, C
			178	A, C
	DD	CCee	201	G, A
			203	G, A
2			307	T, C
2			150	С
			178	C
	dd	ccee	201	Α
			203	Α
			307	С
			361	T, A
	-	00	380	T, C
	DD	CCee	383	A, G
•			455	A, C
3			361	A
	dd	ccee	380	С
			383	G
			455	С
		DD CCee	505	G, T
			509	T, A
			514	A, T
	DD		544	A, G
			577	T, A
			594	G, C
			602	G, T
4			505	C
			509	G
		dd ccee	514	T
	dd		544	A
	du Coee	577	A	
			594	T
			602	G
			002	9

Exón	Genotip	00	Posición discriminatoria	Bases a detectar
			667	T, G
			676	G
			697	G, C
	DD	CCee	712	G, A
	טט	CCee	733	G, C
		ccee	744	C, T
			787	G, A
5			800	A, T
3			667	G
			676	G
			697	С
	dd		712	Α
	dd CCC		733	С
			744	Т
			787	Α
			800	Т

En todos los casos, los electroferogramas mostraron picos dobles en las posiciones discriminatorias correspondientes, indicando que las regiones homólogas de ambos genes habían sido amplificadas y secuenciadas simultáneamente (Figs. 6-15).

Ejemplo 3 - análisis informático de lecturas de secuenciación RHD/RHCE

Las lecturas de secuencias simuladas de secuencias teóricas de exón de los genes RHD y RHCE que serían generados por los cebadores presentados anteriormente se crearon usando ART (versión art_Illumina Q). Las lecturas de extremos pareados de Illumina se crearon con los siguientes parámetros: longitud = 200 nucleótidos, cobertura = 40 lecturas, tamaño medio del fragmento = 230 nucleótidos, desviación de tamaño promedio = 10. La configuración predeterminada se utilizó para las tasas de inserción y deleción: tasa de inserción de primera lectura = 0,00009, tasa de deleción = 0,00011, tasa de inserción de segunda lectura = 0,00015, tasa de eliminación de segunda lectura = 0,00023. Los archivos se generaron en el formato de datos sin tratar estándar de las tecnologías NGS (formato .fastq) que incluía valores de calidad para cada lectura de extremos pareados creada.

Las secuencias se alinearon con el gen RHD (SeqRef del gen NG_007494.1; SEQ ID NO: 25) y RHCE (SeqRef del gen NGG_009208.2; SEQ ID NO: 26), la última con mutaciones correspondientes a un haplotipo ce. La alineación se realizó utilizando el programa informático Burrows-Wheeler Aligner con longitud de semilla = 45 nucleótidos y dos desajustes en la semilla. Los archivos de alineación se generaron en formato BAM, que luego se indexaron con el programa informático SAMTools. Luego se utilizaron tres programas informáticos diferentes para extraer las variantes RHD y RHCE: SAMTools, Shore y VarScan. Se evaluó la cobertura y la calidad de mapeo para todos los exones. El programa informático IGV se usó para la visualización de alineamientos de ambos genes frente a una referencia que incluía ambos genes.

Los resultados se resumen en la Tabla 3. a continuación:

Tabla 3 - Resumen de resultados, por exón

Exón	Resumen de alineación
1	Lecturas generadas de RHD alineadas exclusivamente con su referencia. Aproximadamente el 5 % de las lecturas generadas a partir de las variantes RHCE alineadas con RHD con una calidad de mapeo cercana a 0.
2	Lecturas generadas de RHD alineadas exclusivamente con su referencia. En este exón, el alelo C de RHCE tiene una secuencia idéntica a RHD y estas lecturas se alinearon a RHD que RHCE. La cobertura final detectada para RHCE en este exón no estaba equilibrada con RHD. Lecturas correspondientes al alelo c alineadas exclusivamente con la referencia RHCE.
3	Lecturas generadas de RHD alineadas exclusivamente con su referencia. Lecturas generadas a partir de variantes de RHCE alineadas exclusivamente con la referencia RHCE.
4	Lecturas generadas de RHD alineadas exclusivamente con su referencia. Lecturas generadas a partir de variantes de RHCE alineadas exclusivamente con la referencia RHCE.

20

Exón	Resumen de alineación
5	Lecturas generadas de RHD alineadas exclusivamente con su referencia. Lecturas generadas a partir de variantes de RHCE alineadas exclusivamente con la referencia RHCE.
6	Lecturas generadas desde RHD alineadas con su referencia casi exclusivamente, a excepción del 5% que se alineó con RHCE con una calidad de mapeo cercana a 0. Lecturas generadas desde RHCE alineadas con la referencia de RHCE casi exclusivamente, a excepción del 6,5 % de las lecturas de RHCE que se alinearon con la referencia de RHD con una calidad de mapeo cercana a 0.
7	Lecturas generadas de RHD alineadas exclusivamente con su referencia. Lecturas generadas a partir de variantes de RHCE alineadas exclusivamente con la referencia RHCE.
8	Lecturas generadas de RHD y RHCE (C, c, E, y combinaciones de e) alineadas indiscriminadamente con ambos genes con un valor de calidad de mapeo bajo.
9	Lecturas generadas de RHD alineadas exclusivamente con su referencia. Lecturas generadas a partir de variantes de RHCE alineadas exclusivamente con la referencia RHCE.
10	Lecturas generadas de RHD y RHCE (C, c, E, y combinaciones de e) alineadas indiscriminadamente con ambos genes con un valor de calidad de mapeo bajo.

CONCLUSIÓN

Las variantes se alinearon correctamente y se asignaron con éxito a los genes RHD o RHCE correspondientes utilizando parámetros estándar conocidos en la materia. Solo una proporción muy baja de las lecturas se asignó al gen incorrecto, como en el caso de los exones 1 y 6. En todos los casos, esto se detectó mediante valores bajos de calidad de mapeo y no tuvo ningún efecto en la determinación correcta de las secuencias de ambos genes. Asimismo, las lecturas con valores de baja calidad se pueden filtrar fácilmente del análisis para hacerlas discutibles.

De manera similar, las asignaciones no resueltas fueron producidas para lecturas de exones 8, 10 y algunas lecturas (aquellas para el alelo idéntico a RHD) del exón 2. Estos exones no muestran suficientes posiciones discriminatorias entre ambos genes, y esto fue nuevamente detectado correctamente por el análisis, mostrando valores de calidad de mapeo bajos o cobertura desequilibrada, alertando de la situación. De nuevo, filtrar las lecturas con valores de baja calidad evitaría cualquier asignación incorrecta de secuencia no detectada.

Ejemplo 4 - NGS de los exones 1 a 5 de los genes RHD y RHCE de cebadores específicos de secuencia consenso de muestras de genotipo conocido

Se generaron bibliotecas y se realizaron NGS, usando cebadores específicos de secuencia consenso para los exones 1 a 5 en una reacción multiplex, para diez muestras de referencia de genotipo conocido para evaluar la corrección del método de genotipado. Estas muestras habían sido caracterizadas previamente y presentaban los siguientes genotipos:

Tabla 4 - Genotipos de las muestras A-J:

Muestra	Genotipo
Muestra A	CE (exones 1-2)-DD (exones 3-9)-CE (exón 10)
Muestra B	DDCcEe
Muestra C	DdCCee
Muestra D	ddCcEe
Muestra E	DdCcee (exones 1-2)-ddCcee (exones 3-9)-DD (exón 10)
Muestra F	ddCcee
Muestra G	DDCcEe
Muestra H	DdccEe
Muestra I	Ddccee
Muestra J	DDCCee

25

15

Las reacciones de secuenciación múltiple se realizaron en PCR de dos etapas (PCR1 y PCR2), siguiendo procedimientos convencionales. Las condiciones para la PCR1 fueron:

	Mezcla de cebador (1 uM)
I	RHex01-F1-OHBCM0620-RHex01-R2-OHBCM0634
ĺ	RHex02-F2-OHBCM0624-RHex02-R1-OHBCM0635

Mezcla de cebador (1 uM)
RHex03-F2-OHBCM0628-RHex03-R1-OHBCM0640
RHex04-F1-OHBCM0629-RHex04-R1-OHBCM0643
RHex05-F1-OHBCM0631-RHex05-R1-OHBCM0645

Reactivo	Vol por muestra (ul)		
Mezcla Múltiple	7,5		
Mezcla de cebador	4		
H2O	0,5		
ADN molde (20 ng/ul)	3		

Ciclado		
95 °C	15 min	
95 °C	45 s	
61 °C	60 s	23 ciclos
72 °C	90 s	
72 °C	10 min	

5 Las condiciones para PCR2 fueron las mismas que para PCR1, sustituyendo los cebadores por una mezcla equimolar de cada cebador inverso (que contiene índices de Agilent para secuenciación de NGS) y OHBCM0657, y ciclando 15 en lugar de 23 veces.

Las bibliotecas así creadas se purificaron utilizando perlas AMPure®XP, se cuantificaron con Qubit® 2.0 y se pusieron en marcha con reactivos MiSeq v.2, todo según las instrucciones del fabricante.

Análisis de datos

25

30

35

Se usó el programa informático FastQC para determinar estadísticas básicas sobre la calidad de cada lectura de muestra (directa e inversa), incluyendo calidad de secuencia por base, puntuaciones de calidad por secuencia, Por contenido de secuencia base, Por contenido de bases GC, Por contenido de GC en secuencia, Por contenido de bases de N, Distribución de longitud de secuencia, Niveles de duplicación de secuencia, Secuencias sobrerrepresentadas y contenido de Kmer.

20 Se utilizó el programa informático Trimmomatic para eliminar lecturas con menos de 76 nucleótidos. Las lecturas se recortaron en 2 pb en su extremo 3' con la herramienta de corte Fastx del programa informático FASTX-toolkit.

Las secuencias se alinearon utilizando el algoritmo de coincidencia exacta máxima de Burrows-Wheeler Aligner (BWA MEM) del programa informático BWA contra un archivo de referencia (secuencias múltiples en formato fasta) que incluía solo las secuencias de referencia de los cinco exones más 50 pb aguas arriba y aguas abajo de dichos exones. Los resultados se presentan para una alineación frente a una referencia del gen RHD (NG007494.1; SEQ ID NO: 25) (exones 1-5; SEQ ID NOS: 27, 33, 39, 45 y 51, respectivamente) y una secuencia consenso para 4 alelos (RHCE*ce, RHCE*ce, RHCE*cE y RHCE*CE) del gen RHCE (NG009208.2) (exones 1-5; SEQ ID NOS: 32, 38, 44, 50 y 56, respectivamente). Los archivos de alineación se generaron en formato BAM, incluida información tal como el indicador bit a bit, la posición de alineación, la calidad de mapeo, la cadena CIGAR extendida y calidad de consulta. En este ejemplo de análisis, los resultados de la alineación se ordenaron con el programa informático Picard Tools y se indexaron con el programa informático SAMTools. El archivo bam ordenado-indexado se analizó para generar un resumen de alineación para cada posición, incluida la información de alineación y de pares de bases en cada posición cromosómica, como el indicador bit a bit, la calidad de mapeo, la calidad de consulta, el nombre del cromosoma, las coordenadas, la base de referencia, la base alternativa, la cantidad de lecturas que cubren el sitio, las bases de lectura, las calidades de la base y las calidades del mapeo, formando un archivo pileup formateado usando el programa informático SAMTools.

Se usó el programa informático VarScan para analizar el archivo pileup formateado, obtener genotipos en cada posición de secuencia y extraer variantes de RHD y RHCE. En esta etapa, los SNP e INDEL se detectan utilizando los parámetros disponibles en el programa informático. En este caso, la cobertura mínima se estableció en 15X, frecuencia mínima de variante para identificar a un genotipo alternativo por encima del 5 %, e identificación de calidad promedio de genotipo de 30 unidades de puntuación de Phred.

45 El archivo pileup resultante de la alineación también se analizó para evaluar la identificación de bases, la cobertura y la calidad de mapeo en cada posición de nucleótidos en la secuencia de referencia. Valores de alineación estándar como la cobertura en la cadena directa, la cobertura en cadena inversa, la cobertura total y la calidad del mapeo se

registraron e interpretaron.

Se diseñó un método de selección donde se establecieron los criterios de corte, tal como sigue. Para definir identificaciones homocigóticas, un mínimo del 70% de las lecturas deben haber apoyado el alelo identificado. Para definir identificaciones heterocigóticas, entre el 30 y el 70% de las lecturas totales deben haber apoyado el alelo alternativo. Además de esto, la calidad del mapeo y la calidad de las identificaciones deberían haber estado por encima de las 20 unidades de puntuación de Phred. Cuando la cobertura se evalúa de forma independiente para la alineación de cadena directa o inversa, las lecturas que respaldan la identificación también tuvieron que expresar criterios definidos, como tener una relación de cobertura de directa frente a inversa de entre 0,7 y 1,35.

10

Los resultados esperados y observados se pueden ver en las Tablas 5-8 (véase a continuación).

Ejemplo 5 - Amplificación de loci homólogos usando cebadores específicos de secuencia consenso

Los cebadores adecuados para la secuenciación de nueva generación (NGS) y específicos para la secuencia de consenso entre los genes RHD y RHCE se diseñaron para los exones 6 a 10 y el intrón 2, y se analizaron las amplificaciones correctas del producto de ambos genes usando diferentes combinaciones de cebadores en reacciones uniplex. Las amplificaciones se ensayaron con una muestra:

20

Tabla 9 - Tipo de sangre de las muestras

Muestra	Genotipo	
Muestra 1	D/cc	

Las porciones específicas de secuencia consenso fueron:

RHex06 F1	GGTCACTTGCAGCAAGATGG	(SEQ ID NO: 59)
RHex06 F2	ACCTTGCTTCCTTTACCCAC	(SEQ ID NO: 60)
RHex06 R1	TGGCCTTCAGCCAAAGCAGA	(SEQ ID NO: 61)
RHex06 R2	CTAATGCAGCTGTGCACTGC	(SEQ ID NO: 62)
RHex07 F1	TGTGTGAAAGGGGTGGGTAG	(SEQ ID NO: 63)
RHex07 F2	GTCTCACCTGCCAATCTGCT	(SEQ ID NO: 64)
RHex07 R1	GTTGGAGGGGAGTGTTAAGG	(SEQ ID NO: 65)
RHex07 R2	CCAGCTAAGGACTCTGCACA	(SEQ ID NO: 66)
RHex08 F1	ATGGCACTACTGACACCGAC	(SEQ ID NO: 67)
RHex08 F2	TTGTCCCTGATGACCTCTGC	(SEQ ID NO: 68)
RHex08 R1	TGTCCTGGCAATGGTGGAAG	(SEQ ID NO: 69)
RHex08 R2	GCACATAGACATCCAGCCAC	(SEQ ID NO: 70)
RHex09 F1	AGCTGGTCCAGGAATGACAG	(SEQ ID NO: 71)
RHex09 F2	GTGGGAGAAAAAGGATTTCTGTTGAGA	(SEQ ID NO: 72)
RHex09 F3	TCTTGAGATTAAAAATCCTGTGCTCCA	(SEQ ID NO: 73)
RHex09 R1	AGTTCATGCACTCAAAATCTATCACGT	(SEQ ID NO: 74)
RHex09 R2	CCTGCAATGCTCCTTACTCC	(SEQ ID NO: 75)
RHex10 F1	GGCTGTTTCAAGAGATCAAGCC	(SEQ ID NO: 76)
RHex10 F2	TCAGTATGTGGGTTCATCTGCA	(SEQ ID NO: 77)
RHex10 R1	AGGCAACAGTGAGAGGAAGTTG	(SEQ ID NO: 78)
RHex10 R2	TGCTGTCATGAGCGTTTCTCAC	(SEQ ID NO: 79)
RHin2 F1	CTTGTGCCACTTGACTTGGGACTG	(SEQ ID NO: 80)
RHin2 F2	CTGTTTTGAGTCCCTTCAGGGGAG	(SEQ ID NO: 81)
RHin2 F3	CTCACATACTGATAACTTAGCAAATGGC	C(SEQ ID NO: 82)

RHin2 R1	GATCACTTGAGCCCAGGAGGC	(SEQ ID NO: 83)
RHin2 R2	TTAACTCAGGAGGCTGAGGTGG	(SEQ ID NO: 84)
RHin2 R3	CTGAGGTGGGAGGATCACTTGAG	(SEQ ID NO: 85)
RHCEin2 R4	AAATTAGCCGGGCATGGTAGCAG	(SEQ ID NO: 86)

La PCR se realizó en reacciones de 15 µl usando las siguientes condiciones:

Kit Qiagen Multiplex (2X) ADN molde (20	7,5 μl 3,5 μl
ng/ul) Mezcla de cebador	1,0 µl
dH2O	3,0 µl

95 °C	15 min		
95 °C	45 s		
60 °C	64 s	23 ciclos	
72 °C	90 s		
72 °C	10 min		
4 °C	infinito		

Los productos de PCR para la muestra 1 se procesaron en geles de agarosa para confirmar las amplificaciones (Fig. 27-28).

10 Ejemplo 6 - NGS de los exones 1 a 10 de los genes RHD y RHCE de cebadores específicos de secuencia consenso de muestras de genotipo conocido

Se generaron bibliotecas y se realizaron NGS, usando cebadores específicos de secuencia consenso para los exones 1 a 10 y el intrón 2 en dos reacciones multiplex, para siete muestras de referencia de genotipo conocido para evaluar la corrección del método de genotipado. Estas muestras habían sido caracterizadas previamente y presentaban los siguientes genotipos:

Tabla 10 - Tipo de sangre de las muestras

na re ripe as sangre as las massi				
Genotipo				
ddccee				
DccEe				

Tabla 11 - Posiciones polimórficas

Exón	Posición	Bases esperadas por genotipo			
EXOII	Posicion	D	Ce	сE	ce
1	i01 + 18	Α	С	С	С
	c.150	Т	Т	С	С
	c.178	Α	Α	С	С
2	c.201	G	G	Α	Α
	c.203	G	G	Α	Α
	c.307	Т	Т	С	С
	i02-13	C	Τ	Т	Τ
	i02-8	T	Α	Α	Α
3	c.361	Т	Α	Α	Α
3	c.380	Т	С	С	С
	c.383	Α	G	G	G
	c.455	Α	С	С	С

5

20

			s esperada	s por ger	notipo
Exón	Posición	D	Ce	cE	ce
	i03-48	deleción	T	T	T
	c.505	Α	C	C	C
	c.509	Т	G	G	G
	c.513	A	T	T	T
4	c.544	T	A	A	A
	c.577	G	Α	Α	Α
	c.594	A	T	T	T
	c.602	C	G	G	G
	c.667	T	G	G	G
	c.676	G	G	C	G
	c.697	G	C	C	C
	c.712	G	A	A	A
5	c.733	G	C	C	C
	c.744	C	T	T	T
	c.787	G	A	A	A
	c.800	A	T	T	T
	c.916	G	A	A	A
	c.932	A	G	G	G
	i06+21	C	T	T	T
6	i06+22	C	G	G	G
	i06+23	T	C	C	C
	i06+24	C	T	T	T
	c.941	G	Ť	Ť	T
	c.968	C	A	A	A
	c.974	G	T	T	T
	c.979	A	G	G	G
	c.985	G	C	C	C
	c.986	G	A	A	A
	c.989	A	C	C	C
7	c.992	A	T	T	T
,	c.1025	T	C	C	C
	c.1048	G	C	C	C
	c.1053	C	T	T	T
	c.1057	G	T	T	T
	c.1059	A	G	G	G
	c.1060	G	A	A	A
	c.1061	C	A	A	A
	i08-75	deleción	C	C	C
	i08-74	deleción	A	A	A
	i08-67	С	T	T	T
9	c.1170	T	C	C	C
	c.1170	A	T	T	T
	i09+62	A	G	G	G
Intrón 2	100102	Ausente	Presente	Ausente	Ausente
muon Z		/Tubelile	1 10361116	/ Tubelile	, luscille

Se prepararon multiplex con las siguientes combinaciones de cebadores:

Región	Mezcla m	ultiplex A	Mezcla m	ultiplex B
	DIRECTO (FW)	INVERSO (RV)	DIRECTO (FW)	INVERSO (RV)
Exón 1	F3	R1	F2	R2
Exón 2	F2	R2	F1	R1
Exón 3	F3	R1	F2	R3
Exón 4	F1	R1	F2	R2
Exón 5	F2	R1	F1	R2

Región	Mezcla m	ultiplex A	Mezcla m	ultiplex B
	DIRECTO (FW)	INVERSO (RV)	DIRECTO (FW)	INVERSO (RV)
Exón 6	F2	R2	F1	R1
Exón 7	F1	R1	F2	R2
Exón 8	F1	R1	F2	R2
Exón 9	F3	R2	F1	R1
Exón 10	F1	R1	F2	R2
Intrón 2	F3	R8	F2	R3

Las reacciones de secuenciación múltiple se realizaron en PCR de dos etapas (PCR1 y PCR2), siguiendo procedimientos convencionales. Las condiciones para la PCR1 fueron:

 Reactivo
 Vol por muestra (ul)

 Mezcla Qiagen Multiplex
 7,5

 Mezcla de cebador
 1

 H20
 3

 ADN molde (20 ng/ul)
 3,5

Ciclad	lo	
95 °C	15 min	
95 °C	-	
61 °C	60 s	23 ciclos
72 °C	90 s	
72 °C	10 min	

Las condiciones para PCR2 fueron las mismas que para PCR1, sustituyendo los cebadores por una mezcla equimolar de cada cebador inverso (que contiene índices de Agilent para la secuenciación de NGS) y un cebador directo, y ciclando 10 en lugar de 23 veces.

Las bibliotecas así creadas se purificaron utilizando la placa de normalización SequalPrep, se cuantificaron con Qubit® 2.0 y se pusieron en marcha con reactivos MiSeq v.3, todo según las instrucciones del fabricante.

15 Análisis de datos

20

25

30

35

40

5

Se usó el programa informático FastQC para determinar estadísticas básicas sobre la calidad de cada lectura de muestra (directa e inversa), incluyendo calidad de secuencia por base, puntuaciones de calidad por secuencia, Por contenido de secuencia base, Por contenido de bases GC, Por contenido de GC en secuencia, Por contenido de bases de N, Distribución de longitud de secuencia, Niveles de duplicación de secuencia, Secuencias sobrerrepresentadas y contenido de Kmer.

Se utilizó el programa informático Trimmomatic para eliminar lecturas con menos de 76 nucleótidos. Las lecturas se recortaron en 2 pb en su extremo 3' con la herramienta de corte Fastx del programa informático FASTX-toolkit.

Las secuencias se alinearon utilizando el algoritmo de coincidencia exacta máxima de Burrows-Wheeler Aligner (BWA MEM) del programa informático BWA contra un archivo de referencia (secuencias múltiples en formato fasta) que incluía solo las secuencias de referencia de los cinco exones más 50 pb aguas arriba y aguas abajo de dichos exones. Los resultados se presentan para una alineación frente a una referencia del gen RHD (NG007494.1; SEQ ID NO: 25)(exones 1-10 e intrón 2; SEQ ID NOS: 27, 33, 39, 45, 51, 87, 93, 99, 105, 111 y 117, respectivamente) y la secuencia del gen RHCE (NG009208.2) (exones 1-10 e intrón 2; SEQ ID NOS: 28, 34, 40, 46,52, 88, 94, 100, 106, 112 y 120, respectivamente). Los archivos de alineación se generaron en formato BAM, incluida información tal como el indicador bit a bit, la posición de alineación, la calidad de mapeo, la cadena CIGAR extendida y calidad de consulta. En este ejemplo de análisis, los resultados de la alineación se ordenaron con el programa informático Picard Tools y se indexaron con el programa informático SAMTools. El archivo bam ordenado-indexado se analizó para generar un resumen de alineación para cada posición, incluida la información de alineación y de pares de bases en cada posición cromosómica, como el indicador bit a bit, la calidad de mapeo, la calidad de consulta, el nombre del cromosoma, las coordenadas, la base de referencia, la base alternativa, la cantidad de lecturas que cubren el sitio, las bases de lectura, las calidades de la base y las calidades del mapeo, formando un archivo pileup formateado usando el programa informático SAMTools.

Se usó el programa informático VarScan para analizar el archivo pileup formateado, obtener genotipos en cada posición de secuencia y extraer variantes de RHD y RHCE. En esta etapa, los SNP e INDEL se detectan utilizando

los parámetros disponibles en el programa informático. En este caso, la cobertura mínima se estableció en 15X, frecuencia mínima de variante para identificar a un genotipo alternativo por encima del 5 %, e identificación de calidad promedio de genotipo de 30 unidades de puntuación de Phred.

- El archivo pileup resultante de la alineación también se analizó para evaluar la identificación de bases, la cobertura y la calidad de mapeo en cada posición de nucleótidos en la secuencia de referencia. Valores de alineación estándar como la cobertura en la cadena directa, la cobertura en cadena inversa, la cobertura total y la calidad del mapeo se registraron e interpretaron.
- Se diseñó un método de selección donde se establecieron los criterios de corte, tal como sigue. Para definir identificaciones homocigóticas, un mínimo del 70% de las lecturas deben haber apoyado el alelo identificado. Para definir identificaciones heterocigóticas, entre el 30 y el 70% de las lecturas totales deben haber apoyado el alelo alternativo. Además de esto, la calidad del mapeo y la calidad de las identificaciones deberían haber estado por encima de las 20 unidades de puntuación de Phred. Cuando la cobertura se evalúa de forma independiente para la alineación de cadena directa o inversa, las lecturas que respaldan la identificación también tuvieron que expresar criterios definidos, como tener una relación de cobertura de directa frente a inversa de entre 0,7 y 1,35. Los resultados esperados y observados se pueden ver en las Tablas 14-21 y 31.

Ejemplo 7 - NGS de los exones 1 a 10 de los genes RHD y RHCE de cebadores específicos de secuencia consenso de muestras de genotipo conocido

Se generaron bibliotecas y se realizaron NGS, usando cebadores específicos de secuencia consenso para los exones 1 a 10 y el intrón 2 en dos reacciones multiplex, para seis muestras de referencia de genotipo conocido para evaluar la corrección del método de genotipado. Estas muestras habían sido caracterizadas previamente y presentaban los siguientes genotipos:

Tabla 12 - Tipo de sangre de las muestras

Muestra	Genotipo
Muestra 1	DDCCee
Muestra 2	ddccee
Muestra 3	ddCcee
Muestra 4	ddCcEe
Muestra 5	DCcee
Muestra 6	ddccee

Tabla 13 - Posiciones polimórficas

Exón	Posición	Bases	esperada	s por ger	notipo
EXOII	POSICIOII	D	Ce	сE	ce
1	i01 + 18	Α	O	O	С
	c.150	Т	Т	С	С
	c.178	Α	Α	С	С
2	c.201	G	G	Α	Α
	c.203	G	G	Α	Α
	c.307	Т	T	С	С
	i02-13	С	Т	Т	Т
	i02-8	Т	Α	Α	Α
3	c.361	Т	Α	Α	Α
3	c.380	T	С	С	С
	c.383	Α	G	G	G
	c.455	Α	O	O	С
	i03-48	deleción	T	Т	Т
	c.505	Α	O	O	С
	c.509	Т	G	G	G
4	c.513	Α	Т	Т	Т
4	c.544	Т	Α	Α	Α
	c.577	G	Α	Α	Α
	c.594	Α	Т	Т	Т
	c.602	С	G	G	G

(continuación)

F., 4.,	Daalaláa	Bases esperadas por genoti			
Exón	Posición	D	Ce	cE	ce
	c.667	Т	G	G	G
	c.676	G	G	С	G
	c.697	G	С	С	С
5	c.712	G	Α	Α	Α
5	c.733	G	С	С	С
	c.744	С	Т	Т	Т
	c.787	G	Α	Α	Α
	c.800	Α	Т	Т	Т
	c.916	G	Α	Α	Α
	c.932	Α	G	G	G
	i06+21	С	Т	Т	Т
6	i06+22	С	G	G	G
	i06+23	Т	С	С	С
	i06+24	С	Т	Т	Т
	c.941	G	Т	Т	Т
	c.968	С	Α	Α	Α
	c.974	G	Т	Т	Т
	c.979	Α	G	G	G
	c.985	G	С	С	С
	c.986	G	Α	Α	Α
	c.989	Α	С	С	С
7	c.992	Α	Т	Т	Т
	c.1025	Т	С	С	С
	c.1048	G	С	С	С
	c.1053	С	Т	Т	Т
	c.1057	G	Т	T	Т
	c.1059	Α	G	G	G
	c.1060	G	Α	Α	Α
	c.1061	С	Α	Α	Α
	i08-75	deleción	С	С	С
	i08-74	deleción	Α	Α	Α
_	i08-67	С	Т	Т	Т
9	c.1170	Т	С	С	С
	c.1193	Α	Т	Т	Т
	i09+62	Α	G	G	G
Intrón 2		Ausente	Presente	Ausente	Ausente
		•			

Se prepararon multiplex con las siguientes combinaciones de cebadores:

Región	Mezcla m	ultiplex A	Mezcla m	ultiplex B
	DIRECTO (FW)	INVERSO (RV)	DIRECTO (FW)	INVERSO (RV)
Exón 1	F3	R1	F2	R2
Exón 2	F2	R2	F1	R1
Exón 3	F3	R1	F2	R3
Exón 4	F1	R1	F2	R2
Exón 5	F2	R1	F1	R2
Exón 6	F2	R2	F1	R1
Exón 7	F1	R1	F2	R2
Exón 8	F1	R1	F2	R2
Exón 9	F3	R2	F1	R1
Exón 10	F1	R1	F2	R2
Intrón 2	F3	R8	F2	R3

5

Las reacciones de secuenciación múltiple se realizaron en PCR de dos etapas (PCR1 y PCR2), siguiendo procedimientos convencionales. Las condiciones para la PCR1 fueron:

Reactivo	Vol por muestra (ul)
Mezcla Qiagen Multiplex	7,5
Mezcla de cebador	1
H20	3
ADN molde (20 ng/ul)	3,5

Ciclado		
95 °C	15 min	
95 °C	45 s	
61 °C	60 s	23 ciclos
72 °C	90 s	
72 °C	10 min	

Las condiciones para PCR2 fueron las mismas que para PCR1, sustituyendo los cebadores por una mezcla equimolar de cada cebador inverso (que contiene índices de Agilent para la secuenciación de NGS) y un cebador directo, y ciclando 10 en lugar de 23 veces.

Las bibliotecas así creadas se purificaron utilizando la placa de normalización SequalPrep, se cuantificaron con Qubit® 2.0 y se pusieron en marcha con reactivos MiSeq v.3, todo según las instrucciones del fabricante.

Análisis de datos

10

15

25

30

35

40

50

Se usó el programa informático FastQC para determinar estadísticas básicas sobre la calidad de cada lectura de muestra (directa e inversa), incluyendo calidad de secuencia por base, puntuaciones de calidad por secuencia, Por contenido de secuencia base, Por contenido de bases GC, Por contenido de GC en secuencia, Por contenido de bases de N, Distribución de longitud de secuencia, Niveles de duplicación de secuencia, Secuencias sobrerrepresentadas y contenido de Kmer.

Se utilizó el programa informático Trimmomatic para eliminar lecturas con menos de 76 nucleótidos. Las lecturas se recortaron en 2 pb en su extremo 3' con la herramienta de corte Fastx del programa informático FASTX-toolkit.

Las secuencias se alinearon utilizando el algoritmo de coincidencia exacta máxima de Burrows-Wheeler Aligner (BWA MEM) del programa informático BWA contra un archivo de referencia (secuencias múltiples en formato fasta) que incluía solo las secuencias de referencia de los cinco exones más 50 pb aguas arriba y aguas abajo de dichos exones. Los resultados se presentan para una alineación frente a una referencia del gen RHD (NG007494.1; SEQ ID NO: 25)(exones 1-10 e intrón 2; SEQ ID NOS: 27, 33, 39, 45, 51, 87, 93, 99, 105, 111 y 117, respectivamente) y la secuencia del gen RHCE (NG009208.2) (exones 1-10 e intrón 2; SEQ ID NOS: 28, 34, 40, 46,52, 88, 94, 100, 106, 112 y 120, respectivamente). Los archivos de alineación se generaron en formato BAM, incluida información tal como el indicador bit a bit, la posición de alineación, la calidad de mapeo, la cadena CIGAR extendida y calidad de consulta. En este ejemplo de análisis, los resultados de la alineación se ordenaron con el programa informático Picard Tools y se indexaron con el programa informático SAMTools. El archivo bam ordenado-indexado se analizó para generar un resumen de alineación para cada posición, incluida la información de alineación y de pares de bases en cada posición cromosómica, como el indicador bit a bit, la calidad de mapeo, la calidad de consulta, el nombre del cromosoma, las coordenadas, la base de referencia, la base alternativa, la cantidad de lecturas que cubren el sitio, las bases de lectura, las calidades de la base y las calidades del mapeo, formando un archivo pileup formateado usando el programa informático SAMTools.

Se usó el programa informático VarScan para analizar el archivo pileup formateado, obtener genotipos en cada posición de secuencia y extraer variantes de RHD y RHCE. En esta etapa, los SNP e INDEL se detectan utilizando los parámetros disponibles en el programa informático. En este caso, la cobertura mínima se estableció en 15X, frecuencia mínima de variante para identificar a un genotipo alternativo por encima del 5 %, e identificación de calidad promedio de genotipo de 30 unidades de puntuación de Phred.

El archivo pileup resultante de la alineación también se analizó para evaluar la identificación de bases, la cobertura y la calidad de mapeo en cada posición de nucleótidos en la secuencia de referencia. Valores de alineación estándar como la cobertura en la cadena directa, la cobertura en cadena inversa, la cobertura total y la calidad del mapeo se registraron e interpretaron.

Se diseñó un método de selección donde se establecieron los criterios de corte, tal como sigue. Para definir identificaciones homocigóticas, un mínimo del 70% de las lecturas deben haber apoyado el alelo identificado. Para definir identificaciones heterocigóticas, entre el 30 y el 70% de las lecturas totales deben haber apoyado el alelo alternativo. Además de esto, la calidad del mapeo y la calidad de las identificaciones deberían haber estado por encima de las 20 unidades de puntuación de Phred. Cuando la cobertura se evalúa de forma independiente para la

alineación de cadena directa o inversa, las lecturas que respaldan la identificación también tuvieron que expresar criterios definidos, como tener una relación de cobertura de directa frente a inversa de entre 0,7 y 1,35.

Los resultados esperados y observados se pueden ver en las Tablas 22-29 y 31.

5

10

15

20

25

30

35

40

45

50

55

60

65

En tres ejemplos (4, 6 y 7), varias combinaciones de la SEQ ID NO: 3-24 y 59-86 se evaluaron para ensayar la precisión de la detección de alelos en los genes altamente homólogos RHD y RHCE a través de la secuenciación de nueva generación. Las regiones amplificadas por el método tienen posiciones de nucleótidos discriminantes entre RHD, RHCE*CE, RHCE*CE, RHCE*ce y RHCE*cE. Luego se analizaron estas posiciones para determinar si permiten un cálculo de la proporción de alelos presentes en cada gen, y, por lo tanto, la determinación del genotipo correcto de una muestra. Las posiciones discriminantes se dan en los exones 1, 2, 3, 4, 5, 6, 7 y 9. Además, también se evaluó una región en el intrón 2 que presenta un inserto de 109 pares de bases en la determinación del genotipo de RHCE C mayúscula. En los ejemplos, el método también se probó para ver si es capaz de representar todas las bases contenidas en las regiones codificantes, así como el inserto en el intrón 2 que es útil para la tipificación de la sangre.

En las Tablas 14 a 31, la base de referencia y la base detectada aparece en la columna "Mutación en referencia con la región codificante". Por ejemplo, en la Tabla 14, para la cual la secuencia de referencia es el gen RHD, la secuencia de referencia tiene una T en la posición c.150 en el exón 2, mientras que la variante detectada (la mutación en referencia a la región codificante) es una C (señalada por el símbolo ">"). Los valores documentados para cada posición se calculan dividiendo el número de lecturas que admiten la variante dentro del número total de lecturas. En las Tablas 5 a 8, el formato cambia levemente para documentar el cálculo mencionado anteriormente como un porcentaje. Las mutaciones para cada alelo RHCE y RHD se resumen en la columna "Sitios polimórficos" solo para las posiciones de la región codificante. Estas posiciones se consideran estables para discriminar entre RHD, RHCE*Ce, RH-CE*CE, RHCE*ce y RHCE*cE.

La relación alélica esperada se calcula basándose en la existencia de ninguno, uno o dos alelos de RHD y ninguno, uno o dos alelos de RHCE. Por ejemplo, en la Tabla 14, la muestra con el genotipo "ddccee" no tiene el gen de RHD y dos alelos del genotipo c minúscula y e minúscula para RHCE. Cuando las secuencias de NGS de esta muestra se asignan al RHD de referencia, se detectarán las posiciones con una variante diferente a la referencia. Para esta muestra, todas las variantes esperadas (Tabla 15) cuando se alinean con RHD son el 100 % del gen RHCE porque se elimina RHD. Por otro lado, cuando se alinea con la referencia de RHCE (Tablas 18 y 19), no hay variantes esperadas porque la secuencia de la muestra es idéntica a la secuencia de referencia. En el caso del intrón 2, las proporciones se calculan en función del número de lecturas que se alinearon con la secuencia de referencia dentro de la suma de lecturas que se alinearon con RHCE y RHD.

En el ejemplo 4, se evaluaron un total de 24 posiciones de nucleótidos discriminantes entre RHD y RHCE para los exones 1 a 5 de los genes RH para cada muestra y secuencia de referencia. En dicho ejemplo, la suma de las posiciones de nucleótidos (24 por muestra) para todas las muestras evaluadas (7) usando dos secuencias de referencia asciende a 336. La concordancia entre las relaciones alélicas observadas y esperadas para el total de posiciones de nucleótidos evaluadas para la combinación de cebadores usados en el Ejemplo 4 es del 100 %.

En los Ejemplos 6 y 7, se evaluaron un total de 50 posiciones de nucleótidos discriminantes entre RHD y RHCE para los exones 1 a 10 de los genes RH para la mezcla de cebadores A y 52 para la mezcla de cebadores B. En dichos ejemplos, la suma de las posiciones de nucleótidos (50 para la mezcla de cebadores A y 52 para la mezcla de cebadores B por muestra) para todas las muestras evaluadas (13) usando dos secuencias de referencia asciende a 1300 para la mezcla de cebadores A y 1352 para la mezcla de cebadores B. La concordancia entre y las relaciones alélicas esperadas para la combinación de cebadores usados en los Ejemplos 6 y 7 es del 96 % para la mezcla de cebadores A y del 90 % para la mezcla de cebadores B.

La conclusión, por lo tanto, es que, a través del análisis de datos de tres ejemplos, se confirmó que las regiones secuenciadas por el método abarcan todas las regiones codificantes de los diez exones y el inserto de 109 pares de bases en el intrón 2 de los genes RH (RHD y RHCE), permitiendo la tipificación de sangre del grupo. La aplicación de cebadores específicos de secuencia consenso permite la amplificación homogénea de los dos genes y, en este sentido, lo convierte en un método cuantitativo que permite la predicción del genotipo.

La precisión de esta predicción de genotipo puede reducirse en muestras con grandes reordenamientos de secuencia, pero aun así, la precisión más baja esperada de la invención es del 90 %. Estos ejemplos muestran que mediante el uso de combinaciones de la SEQ ID NO: 3-24 y 59-86, los genes homólogos pueden ser genotipados simultáneamente.

Los ejemplos demuestran que el método permite la secuenciación simultánea de los genes RHD y RHCE y el correcto genotipado de las posiciones variantes para asignar la proporción o la relación alélica de cada gen. En este sentido, el método supera las limitaciones de las pruebas serológicas y la secuenciación de Sanger en la tipificación sanguínea. Además, el método es de alto rendimiento, lo cual es ventajoso en el entorno clínico para la tipificación de grandes cantidades de muestras de sangre.

Tabla 5 - RHCE

Res	ultad	los ol	bteni	dos	basa	ados en aná	lisis						
Sit	ios p	Ce	órfic CE	os D	Ex	Posición exónica	CE (exón 1)-DD (exones 2- 9)-CE (exón 10)	ddCcEe	DdCcee (exones 1-2)- ddCcee (exones 3-9) - DD (exón 10)	ddCcee	DDCcEe	ddccee	DDCCee
С	С	Т	Т	Т		150	99 % de T	51 % de C 48 % de T	34 % de C 65 % de T	52 % de C 47 % de T	25 % de C 74 % de T	99 % de C	99 % de T
С	С	Α	Α	Α		178	99 % de A	48 % de A 51 % de C	34 % de C 65 % de A	47 % de A 52 % de C	25 % de C 74 % de A	99 % de C	99 % de A
Α	Α	G	G	G	2	201	99 % de G	50 % de A 49 % de G	35 % de A 66 % de G	51 % de A 49 % de G	25 % de A 74 % de G	99 % de A	99 % de G
Α	Α	G	G	G		203	99 % de G	50 % de A 49 % de G	33 % de A 65 % de G	50 % de A 49 % de G	25 % de A 74 % de G	99 % de A	99 % de G
С	С	Т	Т	Т		307	99 % de T	51 % de C 49 % de T	34 % de C 65 % de T	50 % de C 49 % de T	25 % de C 74 % de T	99 % de C	99 % de T
Α	Α	Α	Α	Т		361	99 % de T				48 % de T		49 % de T
С	С	С	С	Т	١	380	99 % de T				48 % de T		49 % de T
G	G	G	G	Α	3	383	99 % de A				48 % de A		49 % de A
С	С	С	С	Α		455	99 % de A				48 % de A		49 % de A
С	С	С	С	Α		505	99 % de A	No se	No se	No se	52 % de A	No se	52 % de A
G	G	G	G	Т		509	99 % de T	identifican	identifican	identifican	52 % de T	identifican variantes	52 % de T
Т	Т	Т	Т	Α		514	99 % de A	variantes (no se detectan	variantes (no se detectan	variantes (no se detectan	53 % de A	(no se	52 % de A
Α	Α	Α	Α	Т	4	544	99 % de T	variantes)	variantes)	variantes)	53 % de T	detectan variantes)	52 % de T
Α	Α	Α	Α	G		577	99 % de G				53 % de G		52 % de G
Т	Т	Т	Т	Α		594	99 % de A				52 % de A		51 % de A
G	G	G	G	С		602	99 % de C				53 % de C		52 % de C
G	G	G	G	Т		667	99 % de T				50 % de T		51 % de T
G	С	G	С	G		676	100 % de G	50 % de C 50 % de G	99 % de G	99 % de G	25 % de C 74 % de G	99 % de G	99 % de G
С	С	С	С	G		697	99 % de G				50 % de G		51 % de G
Α	Α	Α	Α	G	5	712	99 % de G	No se	No se	No se	50 % de G	No se	52 % de G
O	С	С	С	G	ľ	733	99 % de G	identifican	identifican	identifican	50 % de G	identifican variantes	51 % de G
Т	Т	Т	Т	С		744	99 % de C	variantes (no se detectan	variantes (no se detectan	variantes (no se detectan	50 % de C	(no se	51 % de C
Α	Α	Α	Α	G		787	99 % de G	variantes)	variantes)	variantes)	52 % de G	detectan variantes)	53 % de G
Т	Т	Т	Т	Α		800	99 % de A				50 % de A	,	51 % de A

Tabla 6 - RHCE

5

Resultados esperados basados en genotipos conocidos Sitios polimórficos (exón 1)-**DdCcee** DD (exones 1-2)-Posición ddCcEe ddCcee ddCcee **DDCcEe DDCCee** Ex (exones ddccee CE D exónica Се се cЕ 2-9)-CE (exones 3-9)-(exón DD (exón 10) 10) 50 % de C 50 % 100 % de 33.3 % de C 50 % de C 25 % de C 100 % С С Т Т Т 150 100 % de C de T 66,6 % de T 50 % de T 75 % de T de T 100 % de 50 % de C 50 % 33,3 % de C 100 % 50 % de A 25 % de C С 100 % de C С Α Α Α 178 66,6 % de A 50 % de C 75 % de A de A de A 100 % de 50 % de A 50 % 100 % 33,3 % de A 50 % de A 25 % de A G Α Α G G 2 201 100 % de A G 66,6 % de G 50 % de G 75 % de G de G de G 100 % de 50 % de A 50 % 33,3 % de A 50 % de A 25 % de A 100 % G G G Α Α 203 100 % de A G de G 66,6 % de G 50 % de G 75 % de G de G 100 % de 50 % de C 50 % 33,3 % de C 50 % de C 25 % de C 100 % С С Т Т Т 307 100 % de C de T 66,6 % de T 50 % de T 75 % de T de T 100 % de 50 % de 361 Α Α Α Т 50 % de T Α 100 % de RHD RHD RHD RHD 50 % de С С С С Т 380 50 % de T delecionado, no delecionado, no delecionado, delecionado, no 3 100 % de se esperan se esperan no se esperan se esperan 50 % de G G G 383 G Α 50 % de A identificaciones identificaciones identificaciones identificaciones Α 100 % de 50 % de С С С С 455 50 % de A Α

100 % de G

RHD

delecionado, no

se esperan

identificaciones

CE (exón 1)-

DD

(exones 2-9)-CE

(exón 10) 100 % de

A 100 % de

100 % de

100 % de

100 % de

G 100 % de

100 % de

100 % de

100 % de

G

100 % de

G

100 % de

G

100 % de

G 100 % de

С

100 % de

G 100 % de 50 % de C 50 %

de G

RHD

delecionado, no

se esperan

identificaciones

Posición

exónica

505

509

514

544

577

594

602

667

676

697

712

733

744

787

800

Ex

100 % de G

RHD

delecionado,

no se esperan

identificaciones

50 % de T

50 % de G

50 % de A

50 % de C

50 % de T

25 % de C 75 % de G

50 % de G

50 % de G

50 % de G

50 % de C

50 % de G

50 % de A

DDCCee

50 % de

A 50 % de

100 %

de G

50 % de

50 % de

G 50 % de

G 50 % de

С

50 % de

50 % de

Α

100 % de G

RHD

delecionado, no

se esperan

identificaciones

Tabla 7	' - RHD
---------	---------

TITITA

Sitios polimórficos

cE Ce

TIT

A A

се

c | c | c | c

G G G G

Т

Α

AAAAG

TTTTA

G G G G C

G G G G T

G C G C G

c | c | c | c | G

c | c | c | c

TTTT

AAAAA

A A A G

CE

т

D

Α

Α

Т

4

5

G

С

G

		- 1												
Res	ultad	os ol	oteni	dos	basado	s en anális	is							
Sit	ios p	olim	órfic	os			CE (exón 1)-		DdCcee (exones 1-2)-			ddccee	DDCCee	
се	сE	Се	CE	D	Exón	Posición exónica	DD (exones 2-9)-CE (exón 10)	ddCcEe	ddCcee (exones 3-9)- DD (exón 10)	ddCcee	DDCcEe			
С	С	Т	Т	Т		150		51 % de C	34 % de C	52 % de C	25 % de C	99 % de C		
O	С	Α	Α	Α	178 2 201 203	178		51 % de C	34 % de C	51 % de C	24 % de C	99 % de C	No se identifican	
Α	Α	Ŋ	G	G		2	201		50 % de A	33 % de A	50 % de A	24 % de A	99 % de A	variantes (no se
Α	Α	G	G	G		203		50 % de A	33 % de A	50 % de A	24 % de A	99 % de A	detectan variantes)	
С	С	Т	Т	Т		307		50 % de C	34 % de C	50 % de C	24 % de C	99 % de C		
Α	Α	Α	Α	Т	3	361		99 % de A	99 % de A	99 % de A	51 % de A	99 % de A	49 % de A	
С	С	С	С	Т		380	No se	99 % de C	99 % de C	99 % de C	51 % de C	99 % de C	50 % de C	
G	G	G	G	Α		383	identifican variantes (no	99 % de G	99 % de G	99 % de G	51 % de G	99 % de G	50 % de G	
С	С	O	С	Α		455	se detectan	99 % de C	99 % de C	99 % de C	51 % de C	99 % de C	49 % de C	
С	С	С	С	Α		505	variantes)	99 % de C	99 % de C	99 % de C	46 % de C	99 % de C	47 % de C	
G	G	Ŋ	G	Т		509		99 % de G	99 % de G	99 % de G	46 % de G	99 % de G	47 % de G	
Т	Т	Т	Т	Α		514		99 % de T	99 % de T	99 % de T	46 % de T	99 % de T	47 % de T	
Α	Α	Α	Α	Т	4	544		99 % de A	99 % de A	99 % de A	46 % de A	99 % de A	47 % de A	
Α	Α	Α	Α	G		577		99 % de A	99 % de A	99 % de A	46 % de A	99 % de A	47 % de A	
Т	Т	Т	Т	Α		594		99 % de T	99 % de T	99 % de T	46 % de T	99 % de T	47 % de T	
G	G	G	G	С		602		99 % de G	99 % de G	99 % de G	46 % de G	99 % de G	47 % de G	

Sit	Sitios polimórficos				CE (exón 1)-		DdCcee						
се	E	Се	CE	D	Exón	Posición exónica	DD (exones 2-9)-CE (exón 10)	ddCcEe	(exones 1-2)- ddCcee (exones 3-9)- DD (exón 10)	ddCcee	DDCcEe	ddccee	DDCCee
Т	Т	Т	Т	G		667		99 % de G	99 % de G	99 % de G	49 % de G	99 % de G	48 % de G
G	С	G	С	G		676		49 % de C	Sin identificación	Sin identificación	25 % de C	Sin identificaci ón	Sin identificación
С	O	C	С	G		697		99 % de C	99 % de C	99 % de C	49 % de C	99 % de C	48 % de C
Α	Α	Α	Α	G	5	712		99 % de A	99 % de A	99 % de A	49 % de A	99 % de A	47 % de A
С	С	С	С	G		733		99 % de C	99 % de C	99 % de C	49 % de C	99 % de C	48 % de C
Т	Т	Т	Т	С		744		99 % de T	99 % de T	99 % de T	49 % de T	99 % de T	48 % de T
Α	Α	Α	Α	G		787		99 % de A	99 % de A	99 % de A	47 % de A	99 % de A	46 % de A
Т	Т	Т	Т	Α		800		99 % de T	99 % de T	99 % de T	48 % de T	99 % de T	47 % de T

Tabla 8 - RHD

Res	ultad	os es	spera	idos	basad	os en el ge	notipo conocido						
									DdCasa				
Ce	cE	Ce	órfic CE	D D	Exón	Posición exónica	CE (exón 1)- DD (exones 2- 9)-CE (exón 10)	ddCcEe	DdCcee (exones 1-2)- ddCcee (exones 3-9)- DD (exón 10)	ddCcee	DDCcEe	ddccee	DDCCee
С	С	Т	Т	Т		150		50 % de C	33,3 % de C	50 % de C	25 % de C	100 % de C	
С	O	Α	Α	Α		178		50 % de C	33,3 % de C	50 % de C	25 % de C	100 % de C	
Α	Α	G	G	G	2	201		50 % de A	33,3 % de A	50 % de A	25 % de A	100 % de A	No se esperan identificaciones
Α	Α	G	G	G		203		50 % de A	33,3 % de A	50 % de A	25 % de A	100 % de A	
С	С	Т	Т	Т		307		50 % de C	33,3 % de C	50 % de C	25 % de C	100 % de C	
Α	Α	Α	Α	Т		361		100 % de A	100 % de A	100 % de A	50 % de A	100 % de A	50 % de A
С	С	O	O	Т	3	380		100 % de C	100 % de C	100 % de C	50 % de C	100 % de C	50 % de C
G	G	G	G	Α	3	383		100 % de G	100 % de G	100 % de G	50 % de G	100 % de G	50 % de G
С	С	С	С	Α		455		100 % de C	100 % de C	100 % de C	50 % de C	100 % de C	50 % de C
С	С	C	О	Α		505		100 % de C	100 % de C	100 % de C	50 % de C	100 % de C	50 % de C
G	G	G	G	Т		509		100 % de G	100 % de G	100 % de G	50 % de G	100 % de G	50 % de G
Т	Т	Т	Т	Α	514 4 544 577	514	RHCE delecionado,	100 % de T	100 % de T	100 % de T	50 % de T	100 % de T	50 % de T
Α	Α	Α	Α	Т		544	no se esperan identificaciones	100 % de A	100 % de A	100 % de A	50 % de A	100 % de A	50 % de A
Α	Α	Α	Α	G		577		100 % de A	100 % de A	100 % de A	50 % de A	100 % de A	50 % de A
Т	Т	Т	Т	Α		594		100 % de T	100 % de T	100 % de T	50 % de T	100 % de T	50 % de T
G	G	G	G	С		602		100 % de G	100 % de G	100 % de G	50 % de G	100 % de G	50 % de G
Т	Т	Т	Т	G		667		100 % de T	100 % de T	100 % de T	50 % de T	100 % de T	50 % de T
G	С	G	С	G		676		50 % de C	No se esperan identificaciones	No se esperan identificaciones	25 % de C	No se esperan identificaciones	No se esperan identificaciones
С	С	С	С	G		697		100 % de C	100 % de C	100 % de C	50 % de C	100 % de C	50 % de C
Α	Α	Α	Α	G	5	712		100 % de A	100 % de A	100 % de A	50 % de A	100 % de A	50 % de A
С	С	С	С	G		733		100 % de C	100 % de C	100 % de C	50 % de C	100 % de C	50 % de C
Т	Т	Т	Т	С		744		100 % de T	100 % de T	100 % de T	50 % de T	100 % de T	50 % de T
Α	Α	Α	Α	G		787		100 % de A	100 % de A	100 % de A	50 % de A	100 % de A	50 % de A
Т	Т	Т	Т	Α		800		100 % de T	100 % de T	100 % de T	50 % de T	100 % de T	50 % de T

Tabla 14. Genotipos observados frente a la secuencia de referencia RHD (SEQ NO: 25) usando la combinación de cebadores de la mezcla A.

	Mutación en	COIII	binacion de (Genotipos	<u>. </u>		
Exón	referencia a la región codificante	ddccee	DDCCee	DdCcee	ddCCee	DDccEE	ddccee	D?ccEe
1	c.148+18A>C	1,00	0,48	0,64	1,00	0,48	0,65	0,66
	c.150T>C	1,00	0,00	0,35	0,00	0,57	0,75	0,70
	c.178A>C	1,00	0,00	0,35	0,00	0,56	0,73	0,69
2	c.201G>A	1,00	0,00	0,32	0,00	0,54	0,72	0,68
	c.203G>A	1,00	0,00	0,32	0,00	0,53	0,72	0,67
	c.307T>C	1,00	0,00	0,32	0,00	0,54	0,73	0,68
	c.336-13C>T	1,00	0,45	0,55	1,00	0,43	0,61	0,60
	c.336-8T>A	1,00	0,44	0,54	1,00	0,43	0,61	0,59
3	c.361T>A	1,00	0,46	0,57	1,00	0,46	0,63	0,61
	c.380T>C	1,00	0,47	0,56	1,00	0,46	0,63	0,61
	c.383A>G	1,00	0,47	0,57	1,00	0,46	0,64	0,62
	c.455A>C	1,00	0,47	0,57	1,00	0,46	0,63	0,62
	c.487-48insT	1,00	0,50	0,65	1,00	0,51	0,73	1,00
	c.505A>C	1,00	0,51	0,66	1,00	0,52	0,74	1,00
	c.509T>G	1,00	0,50	0,65	1,00	0,51	0,73	1,00
4	c.514A>T	1,00	0,51	0,66	1,00	0,51	0,74	1,00
	c.544T>A	1,00	0,51	0,66	1,00	0,52	0,74	1,00
	c.577G>A	1,00	0,50	0,65	1,00	0,52	0,73	1,00
	c.594A>T	1,00	0,51	0,65	1,00	0,52	0,74	1,00
	c.602C>G	1,00	0,51	0,65	1,00	0,52	0,74	1,00
	c.667T>G	1,00	0,50	0,67	1,00	0,49	1,00	1,00
	c.676G>C	0,00	0,00	0,00	0,00	0,49	0,00	0,65
	c.697G>C	1,00	0,50	0,67	1,00	0,49	0,65	1,00
5	c.712G>A	1,00	0,50	0,67	1,00	0,49	0,65	1,00
	c.733G>C	1,00	0,50	0,67	1,00	0,49	0,65	1,00
	c.744C>T	1,00	0,50	0,67	1,00	0,49	0,65	1,00
	c.787G>A	1,00	0,49	0,67	1,00	0,49	0,65	1,00
	c.800A>T	1,00	0,50	0,67	1,00	0,49	0,65	1,00
	c.916G>A	1,00	0,50	0,67	1,00	0,50	0,67	0,66
	c.932A>G	1,00	0,50	0,67	1,00	0,50	0,67	0,67
6	c.939+21C>T	1,00	0,50	0,67	1,00	0,49	0,67	0,66
	c.939+22C>G c.939+23T>C	1,00 0,99	0,50 0,51	0,67 0,67	1,00 0,99	0,49 0,50	0,67 0,67	0,66 0,66
	c.939+24C>T	1,00	0,51	0,67	0,99	0,30	0,67	0,66
	c.941G>T		0,50	0,67		0,49	0,64	0,65
	c.941G>1	1,00 1,00	0,50	0,62	1,00 1,00	0,30	0,63	0,64
	c.974G>T	1,00	0,50	0,61	1,00	0,49	0,63	0,64
	c.979A>G	1,00	0,50	0,62	1,00	0,49	0,63	0,64
	c.985G>C	1,00	0,50	0,62	1,00	0,50	0,64	0,65
	c.986G>A	1,00	0,50	0,62	1,00	0,50	0,63	0,64
	c.989A>C	1,00	0,50	0,62	1,00	0,30	0,63	0,64
7	c.992A>T	1,00	0,50	0,62	1,00	0,49	0,63	0,64
	c.1025T>C	1,00	0,50	0,62	1,00	0,50	0,64	0,65
	c.1048G>C	1,00	0,50	0,62	1,00	0,50	0,64	0,64
	c.1053C>T	1,00	0,50	0,62	1,00	0,50	0,63	0,64
	c.1057G>T	0,99	0,49	0,61	0,99	0,49	0,63	0,64
	c.1059A>G	0,99	0,50	0,62	1,00	0,50	0,63	0,64
	c.1060G>A	1,00	0,50	0,62	1,00	0,49	0,63	0,64
	c.1061C>A	1,00	0,50	0,62	1,00	0,50	0,64	0,65
	c.1170T>C	1,00	0,51	0,65	1,00	0,46	0,36	0,67
9	c.1193A>T	1,00	0,52	0,66	1,00	0,47	0,37	0,68
	c.1227+62A>G	1,00	0,50	0,65	1,00	0,46	0,36	0,67
	5.1221 · 02A- 0	1,00	3,00	5,00	1,00	J 0,70	3,50	5,01

Tabla 15. Genotipos esperados basados en genotipo, secuencia de referencia RHD (SEQ NO: 25) usando la combinación de cebadores de la mezcla A.

	NA 1 17	CO	mbinación de			•		
Cyán	Mutación en			T	Genotipos	T	1	
Exón	referencia a la región codificante	ddccee	DDCCee	DdCcee	ddCCee	DDccEE	ddccee	D?ccEe
1	c.148+18A>C	1,00	0,50	0,67	1,00	0,50	0,67	0,67
•	c.150T>C	1,00	0,00	0,33	0,00	0,50	0,67	0,67
	c.178A>C	1,00	0,00	0,33	0,00	0,50	0,67	0,67
2	c.201G>A	1,00	0,00	0,33	0,00	0,50	0,67	0,67
_	c.203G>A	1,00	0,00	0,33	0,00	0,50	0,67	0,67
	c.307T>C	1,00	0,00	0,33	0,00	0,50	0,67	0,67
	c.336-13C>T	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.336-8T>A	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.361T>A	1,00	0,50	0,67	1,00	0,50	0,67	0,67
3	c.380T>C	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.383A>G	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.455A>C	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.487-48insT	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.505A>C	1,00	0,50	0,67	1,00	0,50	0,67	1,00
	c.509T>G	1,00	0,50	0,67	1,00	0,50	0,67	1,00
	c.514A>T	1,00	0,50	0,67	1,00	0,50	0,67	1,00
4	c.544T>A	1,00	0,50	0,67	1,00	0,50	0,67	1,00
	c.577G>A	1,00	0,50	0,67	1,00	0,50	0,67	1,00
	c.594A>T	1,00	0,50	0,67	1,00	0,50	0,67	1,00
	c.602C>G	1,00	0,50	0,67	1,00	0,50	0,67	1,00
	c.667T>G	1,00	0,50	0,67	1,00	0,50	1,00	1,00
	c.676G>C	0,00	0,00	0,00	0,00	0,50	0,00	0,67
	c.697G>C	1,00	0,50	0,67	1,00	0,50	0,67	1,00
	c.712G>A	1,00	0,50	0,67	1,00	0,50	0,67	1,00
5	c.733G>C	1,00	0,50	0,67	1,00	0,50	0,67	1,00
	c.744C>T	1,00	0,50	0,67	1,00	0,50	0,67	1,00
	c.787G>A	1,00	0,50	0,67	1,00	0,50	0,67	1,00
	c.800A>T	1,00	0,50	0,67	1,00	0,50	0,67	1,00
	c.916G>A	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.932A>G	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.939+21C>T	1,00	0,50	0,67	1,00	0,50	0,67	0,67
6	c.939+22C>G	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.939+23T>C	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.939+24C>T	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.941G>T	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.968C>A	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.974G>T	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.979A>G	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.985G>C	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.986G>A	1,00	0,50	0,67	1,00	0,50	0,67	0,67
7	c.989A>C	1,00	0,50	0,67	1,00	0,50	0,67	0,67
7	c.992A>T	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.1025T>C	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.1048G>C	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	C.10530T	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.1057G>T	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.1059A>G	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.1060G>A	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	C.10610A	1,00	0,50	0,67	1,00	0,50	0,67	0,67
9	c.1170T>C	1,00	0,50	0,67	1,00	0,50	0,67	0,67
9	c.1193A>T	1,00	0,50	0,67	1,00	0,50	0,67	0,67
	c.1227+62A>G	1,00	0,50	0,67	1,00	0,50	0,67	0,67

Tabla 16. Genotipos observados frente a la secuencia de referencia RHD (SEQ NO: 25) usando la combinación de cebadores de la mezcla B.

	1	Combinaci	ión de cebac					
Exón	Mutación en referencia a	<u> </u>	5500		Genotipos			T 50 E
	la región codificante	ddccee	DDCCee	DdCcee	ddCCee	DDccEE	ddccee	D?ccEe
1	c.148+18A>C	1	0,48	0,65	1	0,52	0,64	0,65
	c.150T>C	1	0	0,33	0	0,53	0,68	0,71
	c.178A>C	1	0	0,33	0	0,53	0,69	0,71
2	c.201G>A	1	0	0,33	0	0,53	0,68	0,7
	c.203G>A	1	0	0,32	0	0,53	0,68	0,7
	c.307T>C	1	0	0,33	0	0,53	0,68	0,7
	c.336-13C>T	1	0,51	0,64	1	0,56	0,67	0,66
	c.336-8T>A	1	0,51	0,64	1	0,56	0,67	0,66
3	c.361T>A	1	0,51	0,64	1	0,56	0,67	0,66
	c.380T>C	1	0,51	0,64	1	0,56	0,68	0,66
	c.383A>G	1	0,51	0,64	1	0,56	0,68	0,66
	c.455A>C	1	0,51	0,65	1	0,56	0,67	0,66
	c.505A>C	1	0,5	0,65	1	0,49	0,71	1
	c.509T>G	1	0,5	0,65	1	0,49	0,71	1
	c.514A>T	1	0,5	0,65	1	0,49	0,71	1
4	c.544T>A	1	0,5	0,65	1	0,49	0,71	1
	c.577G>A	1	0,5	0,65	1	0,49	0,71	1
	c.594A>T	1	0,51	0,65	1	0,49	0,72	1
	c.602C>G	1	0,5	0,66	1	0,49	0,71	1
	c.667T>G	1	0,55	0,76	1	0,68	1	1
	c.676G>C	0	0	0	0	0,67	0	0,66
	c.697G>C	1	0,55	0,76	1	0,67	0,75	1
_	c.712G>A	1	0,55	0,76	1	0,67	0,75	1
5	c.733G>C	1	0,55	0,76	1	0,68	0,76	1
	c.744C>T	1	0,55	0,76	1	0,68	0,75	1
	c.787G>A	1	0,51	0,73	1	0,65	0,72	1
	c.800A>T	1	0,54	0,76	1	0,68	0,75	1
	c.916G>A	1	0,52	0,64	1	0,5	0,64	0,67
	c.932A>G	1	0,51	0,64	1	0,5	0,64	0,67
	c.939+21C>T	0,99	0,5	0,63	1	0,49	0,63	0,66
6	c.939+22C>G	0,99	0,49	0,62	1	0,48	0,63	0,65
	c.939+23T>C	0,97	0,5	0,62	0,98	0,49	0,63	0,66
	c.939+24C>T	0,99	0,49	0,62	0,99	0,48	0,62	0,65
	c.941G>T	1	0,48	0,63	1	0,49	0,62	0,66
	c.968C>A	1	0,48	0,63	1	0,49	0,62	0,66
	c.974G>T	1	0,48	0,63	1	0,48	0,62	0,66
	c.979A>G	1	0,48	0,63	1	0,49	0,62	0,66
	c.985G>C	1	0,48	0,63	1	0,49	0,62	0,66
	c.986G>A	1	0,48	0,63	1	0,48	0,62	0,66
	c.989A>C	1	0,48	0,63	1	0,48	0,62	0,66
7	c.992A>T	1	0,48	0,63	1	0,49	0,62	0,66
	c.1025T>C	1	0,48	0,63	1	0,48	0,62	0,66
	c.10251>C	1	0,48	0,63	1	0,49	0,62	
	C.1048G>C	1						0,66
			0,48	0,63	1	0,49	0,62	,
	c.1057G>T	0,99	0,48	0,62	1	0,48	0,62	0,65
	c.1059A>G	1	0,48	0,63	1	0,49	0,62	0,66
	c.1060G>A	1	0,48	0,62	1	0,48	0,61	0,65
	C.10610A	1	0,48	0,63	1	0,48	0,62	0,65
9	c.1154-81_1154-80insAC	0,98	0,50	0,64	0,98	0,49	0,34	0,67
	c.1154-67C>T	1	0,51	0,66	1	0,5	0,35	0,68
	c.1170T>C	1	0,51	0,65	1	0,5	0,35	0,67
	c.1193A>T	1	0,51	0,66	1	0,51	0,35	0,68

Tabla 17. Genotipos esperados basados en genotipos, secuencia de referencia RHD (SEQ NO: 25) usando la combinación de cebadores de la mezcla B.

1		Combinaci	on de cebac					
Exón	Mutación en referencia a la región codificante	ddccee	DDCCee		Genotipos	DDooFF	ddaaaa	D2ccEc
4				DdCcee	ddCCee	DDccEE	ddccee	D?ccEe
1	c.148+18A>C	1	0,5	0,67	1	0,5	0,67	0,67
	c.150T>C	1	0	0,33	0	0,5	0,67	0,67
_	c.178A>C	1	0	0,33	0	0,5	0,67	0,67
2	c.201G>A	1	0	0,33	0	0,5	0,67	0,67
	c.203G>A	1	0	0,33	0	0,5	0,67	0,67
	c.307T>C	1	0	0,33	0	0,5	0,67	0,67
	c.336-13C>T	1	0,5	0,67	1	0,5	0,67	0,67
	c.336-8T>A	1	0,5	0,67	1	0,5	0,67	0,67
3	c.361T>A	1	0,5	0,67	1	0,5	0,67	0,67
	c.380T>C	1	0,5	0,67	1	0,5	0,67	0,67
	c.383A>G	1	0,5	0,67	1	0,5	0,67	0,67
	c.455A>C	1	0,5	0,67	1	0,5	0,67	0,67
	c.505A>C	1	0,5	0,67	1	0,5	0,67	1,00
	c.509T>G	1	0,5	0,67	1	0,5	0,67	1,00
	c.514A>T	1	0,5	0,67	1	0,5	0,67	1,00
4	c.544T>A	1	0,5	0,67	1	0,5	0,67	1,00
	c.577G>A	1	0,5	0,67	1	0,5	0,67	1,00
	c.594A>T	1	0,5	0,67	1	0,5	0,67	1,00
	c.602C>G	1	0,5	0,67	1	0,5	0,67	1,00
	c.667T>G	1	0,5	0,67	1	0,5	1	1,00
	c.676G>C	0	0	0	0	0,5	0	0,67
	c.697G>C	1	0,5	0,67	1	0,5	0,67	1,00
_	c.712G>A	1	0,5	0,67	1	0,5	0,67	1,00
5	c.733G>C	1	0,5	0,67	1	0,5	0,67	1,00
	c.744C>T	1	0,5	0,67	1	0,5	0,67	1,00
	c.787G>A	1	0,5	0,67	1	0,5	0,67	1,00
	c.800A>T	1	0,5	0,67	1	0,5	0,67	1,00
	c.916G>A	1	0,5	0,67	1	0,5	0,67	0,67
	c.932A>G	1	0,5	0,67	1	0,5	0,67	0,67
	c.939+21C>T	1	0,5	0,67	1	0,5	0,67	0,67
6	c.939+22C>G	1	0,5	0,67	1	0,5	0,67	0,67
	c.939+23T>C	1	0,5	0,67	1	0,5	0,67	0,67
	c.939+24C>T	1	0,5	0,67	1	0,5	0,67	0,67
	c.941G>T	1	0,5	0,67	1	0,5	0,67	0,67
	c.968C>A	1	0,5	0,67	1	0,5	0,67	0,67
	c.974G>T	1	0,5	0,67	1	0,5	0,67	0,67
	c.979A>G	1	0,5	0,67	1	0,5	0,67	0,67
	c.985G>C	1	0,5	0,67	1	0,5	0,67	0,67
	c.986G>A	1	0,5	0,67	1	0,5	0,67	0,67
	c.989A>C	1	0,5	0,67	1	0,5	0,67	0,67
7	c.992A>T	1	0,5	0,67	1	0,5	0,67	0,67
	c.1025T>C	1	0,5	0,67	1	0,5	0,67	0,67
	c.1048G>C	1	0,5	0,67	1	0,5	0,67	0,67
	c.1053C>T	1	0,5	0,67	1	0,5	0,67	0,67
	c.1057G>T	1	0,5	0,67	1	0,5	0,67	0,67
	c.1059A>G	1	0,5	0,67	1	0,5	0,67	0,67
	c.1060G>A	1	0,5	0,67	1	0,5	0,67	0,67
	C.10610A	1	0,5	0,67	1	0,5	0,67	0,67
	c.1154-81 1154-80insAC	1	0,5	0,67	1	0,5	0,67	0,67
9	c.1154-81_1154-80INSAC c.1154-67C>T	1	0,5	0,67	1	0,5	0,67	0,67
	c.1170T>C	1	0,5	0,67	1	0,5	0,67	0,67
	c.1193A>T	1	0,5	0,67	1	0,5	0,67	0,67

Tabla 18. Genotipos observados frente a la secuencia de referencia RHCE (SEQ NO: 26) usando la combinación de cebadores de la mezcla A.

	Mutación en	COIIID	inacion de c		Genotipos	<u> </u>		
Exón	referencia a la región codificante	ddccee	DDCCee	DdCcee	ddCCee	DDccEE	ddccee	D?ccEe
1	c.148+18C>A	0,00	0,53	0,36	0,00	0,52	0,35	0,34
	c.150C>T	0,00	1,00	0,67	1,00	0,45	0,27	0,32
	c.178C>A	0,00	1,00	0,67	1,00	0,45	0,28	0,32
2	c.201A>G	0,00	1,00	0,68	1,00	0,46	0,28	0,32
	c.203A>G	0,00	1,00	0,68	1,00	0,46	0,28	0,32
	c.307C>T	0,00	1,00	0,68	1,00	0,46	0,27	0,32
	c.336-13T>C	0,00	0,54	0,44	0,00	0,55	0,37	0,39
	c.336-8A>T	0,00	0,53	0,44	0,00	0,55	0,37	0,39
3	c.361A>T	0,00	0,53	0,44	0,00	0,54	0,37	0,39
3	c.380C>T	0,00	0,53	0,43	0,00	0,54	0,36	0,39
	c.383G>A	0,00	0,53	0,43	0,00	0,54	0,36	0,38
	c.455C>A	0,00	0,53	0,43	0,00	0,54	0,36	0,38
	c.487-48delT	0,00	0,49	0,34	0,00	0,49	0,27	0,00
	c.505C>A	0,00	0,49	0,34	0,00	0,48	0,25	0,00
	c.509G>T	0,00	0,50	0,35	0,00	0,49	0,27	0,00
4	c.514T>A	0,00	0,49	0,34	0,00	0,48	0,26	0,00
4	c.544A>T	0,00	0,49	0,35	0,00	0,48	0,26	0,00
	c.577A>G	0,00	0,50	0,35	0,00	0,48	0,26	0,00
	c.594T>A	0,00	0,48	0,34	0,00	0,47	0,23	0,00
	c.602G>C	0,00	0,49	0,34	0,00	0,48	0,24	0,00
	c.667G>T	0,00	0,50	0,33	0,00	0,51	0,00	0,00
	c.676G>C	0,00	0,00	0,00	0,00	0,49	0,00	0,65
	c.697C>G	0,00	0,50	0,33	0,00	0,51	0,35	0,00
5	c.712A>G	0,00	0,50	0,33	0,00	0,51	0,35	0,00
5	c.733C>G	0,00	0,50	0,33	0,00	0,51	0,35	0,00
	c.744T>C	0,00	0,50	0,33	0,00	0,51	0,35	0,00
	c.787A>G	0,00	0,52	0,34	0,00	0,52	0,36	0,00
	c.800T>A	0,00	0,51	0,33	0,00	0,51	0,35	0,00
	c.916A>G	0,00	0,50	0,33	0,00	0,51	0,33	0,34
	c.932G>A	0,00	0,50	0,33	0,00	0,51	0,33	0,34
6	c.939+21T>C	0,00	0,49	0,33	0,00	0,50	0,33	0,33
U	c.939+22G>C	0,00	0,49	0,33	0,00	0,50	0,33	0,33
	c.939+23C>T	0,00	0,48	0,32	0,00	0,50	0,32	0,33
	c.939+24T>C	0,00	0,50	0,33	0,00	0,51	0,33	0,34
	c.941T>G	0,00	0,50	0,38	0,00	0,50	0,36	0,35
	c.968A>C	0,00	0,50	0,38	0,00	0,50	0,36	0,36
	c.974T>G	0,00	0,50	0,38	0,00	0,50	0,37	0,36
	c.979G>A	0,00	0,50	0,38	0,00	0,50	0,36	0,36
	c.985C>G	0,00	0,50	0,38	0,00	0,50	0,36	0,36
	c.986A>G	0,00	0,50	0,38	0,00	0,50	0,36	0,36
7	c.989C>A	0,00	0,50	0,38	0,00	0,50	0,36	0,36
,	c.992T>A	0,00	0,50	0,38	0,00	0,50	0,36	0,36
	c.1025C>T	0,00	0,50	0,38	0,00	0,50	0,36	0,35
	c.1048C>G	0,00	0,50	0,38	0,00	0,50	0,36	0,36
	c.1653T>C	0,00	0,50	0,38	0,00	0,50	0,36	0,36
	c.1057T>G	0,00	0,50	0,38	0,00	0,50	0,36	0,35
	c.1D59G>A	0,00	0,49	0,37	0,00	0,49	0,36	0,35
	c.1060A>G	0,00	0,51	0,38	0,00	0,51	0,37	0,36
	c.1061A>C	0,00	0,50	0,38	0,00	0,51	0,37	0,36
9	c.1170C>T	0,00	0,49	0,35	0,00	0,54	0,64	0,33
	c.1193T>A	0,00	0,49	0,35	0,00	0,54	0,64	0,33
	c.1227+62G>A	0,00	0,49	0,35	0,00	0,54	0,64	0,33

Tabla 19. Genotipos esperados basados en genotipo, secuencia de referencia RHCE (SEQ NO: 26) usando la combinación de cebadores de la mezcla A.

	Mutación en	CO	mbinación de					
Exón	referencia a la			'	Genotipos	<u> </u>		
LXOII	región codificante	ddccee	DDCCee	DdCcee	ddCCee	DDccEE	ddccee	D?ccEe
1	c.148+18C>A	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.150C>T	0,00	1,00	0,67	1,00	0,50	0,33	0,33
	c.178C>A	0,00	1,00	0,67	1,00	0,50	0,33	0,33
2	c.201A>G	0,00	1,00	0,67	1,00	0,50	0,33	0,33
	c.203A>G	0,00	1,00	0,67	1,00	0,50	0,33	0,33
	c.307C>T	0,00	1,00	0,67	1,00	0,50	0,33	0,33
	c.336-13T>C	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.336-8A>T	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.361A>T	0,00	0,50	0,33	0,00	0,50	0,33	0,33
3	c.380C>T	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.383G>A	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.455C>A	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.487-48delT	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.505C>A	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.509G>T	0,00	0,50	0,33	0,00	0,50	0,33	0,00
4	c.514T>A	0,00	0,50	0,33	0,00	0,50	0,33	0,00
4	c.544A>T	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.577A>G	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.594T>A	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.602G>C	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.667G>T	0,00	0,50	0,33	0,00	0,50	0,00	0,00
	c.676G>C	0,00	0,00	0,00	0,00	0,50	0,00	0,67
5	c.697C>G	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.712A>G	0,00	0,50	0,33	0,00	0,50	0,33	0,00
"	c.733C>G	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.744T>C	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.787A>G	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.800T>A	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.916A>G	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.932G>A	0,00	0,50	0,33	0,00	0,50	0,33	0,33
6	c.939+21T>C	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.939+22G>C	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.939+23C>T	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.939+24T>C	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.941T>G	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.968A>C	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.974T>G	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.979G>A	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.985C>G	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.986A>G	0,00	0,50	0,33	0,00	0,50	0,33	0,33
7	c.989C>A	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.992T>A c.1025C>T	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.1025C>1 c.1048C>G	0,00	0,50	0,33	0,00	0,50	0,33	0,33 0,33
	c.1048C>G c.1053T>C	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.10531>C c.1057T>G	0,00	0,50 0,50	0,33 0,33	0,00 0,00	0,50 0,50	0,33 0,33	0,33
	c.105712G	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.1060A>G	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.1061A>C	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.1170C>T	0,00	0,50	0,33	0,00	0,50	0,33	0,33
9	c.1193T>A	0,00	0,50	0,33	0,00	0,50	0,67	0,33
	c.1227+62G>A	0,00	0,50	0,33	0,00	0,50	0,67	0,33
<u></u>	0.1221 TO2G2A	0,00	0,50	0,33	0,00	0,50	0,07	0,33

Tabla 20. Genotipos observados frente a la secuencia de referencia RHCE (SEQ NO: 26) usando la combinación de cebadores de la mezcla B.

	M. tasića sa vetevencia s	Combinaci	on de cebac					
Exón	Mutación en referencia a la región codificante	ddccee	DDCCee	DdCcee	Genotipos ddCCee	DDccEE	ddccee	D?ccEe
1								
I	c.148+18C>A c.150C>T	0,00	0,52 1,00	0,34	0,00	0,48 0,47	0,36 0,32	0,35 0,29
			· · · · · · · · · · · · · · · · · · ·	0,67	1,00			
0	c.178C>A	0,00	1,00	0,67	1,00	0,47	0,31	0,29
2	c.201A>G	0,00	1,00	0,67	1,00	0,47	0,32	0,30
	c.203A>G	0,00	1,00	0,68	1,00	0,47	0,32	0,30
	c.307C>T	0,00	1,00	0,67	1,00	0,47	0,32	0,30
	c.336-13T>C	0,00	0,50	0,36	0,00	0,45	0,33	0,35
	c.336-8A>T	0,00	0,50	0,36	0,00	0,45	0,33	0,34
3	c.361A>T	0,00	0,50	0,36	0,00	0,44	0,33	0,35
	c.380C>T	0,00	0,50	0,36	0,00	0,44	0,33	0,34
	c.383G>A	0,00	0,50	0,36	0,00	0,44	0,32	0,34
	c.455C>A	0,00	0,50	0,36	0,00	0,44	0,33	0,34
	c.505C>A	0,00	0,50	0,35	0,00	0,51	0,28	0,00
	c.509G>T	0,00	0,50	0,35	0,00	0,51	0,29	0,00
	c.514T>A	0,00	0,50	0,35	0,00	0,51	0,29	0,00
4	c.544A>T	0,00	0,50	0,35	0,00	0,51	0,29	0,00
	c.577A>G	0,00	0,50	0,35	0,00	0,51	0,29	0,00
	c.594T>A	0,00	0,49	0,35	0,00	0,51	0,28	0,00
	c.602G>C	0,00	0,49	0,34	0,00	0,51	0,29	0,00
	c.667G>T	0,00	0,45	0,24	0,00	0,32	0,00	0,00
	c.676G>C	0,00	0,00	0,00	0,00	0,67	0,00	0,66
	c.697C>G	0,00	0,45	0,24	0,00	0,33	0,25	0,00
5	c.712A>G	0,00	0,45	0,24	0,00	0,33	0,25	0,00
Ü	c.733C>G	0,00	0,45	0,24	0,00	0,32	0,24	0,00
	c.744T>C	0,00	0,45	0,24	0,00	0,32	0,25	0,00
	c.787A>G	0,00	0,49	0,27	0,00	0,35	0,28	0,00
	c.800T>A	0,00	0,46	0,24	0,00	0,32	0,24	0,00
	c.916A>G	0,00	0,48	0,36	0,00	0,50	0,36	0,33
	c.932G>A	0,00	0,49	0,36	0,00	0,50	0,36	0,33
6	c.939+21T>C	0,00	0,46	0,34	0,00	0,48	0,34	0,31
Ü	c.939+22G>C	0,00	0,47	0,35	0,00	0,49	0,35	0,32
	c.939+23C>T	0,00	0,46	0,34	0,00	0,47	0,34	0,31
	c.939+24T>C	0,00	0,47	0,35	0,00	0,49	0,35	0,32
	c.941T>G	0,00	0,52	0,37	0,00	0,51	0,38	0,34
	c.968A>C	0,00	0,52	0,37	0,00	0,51	0,38	0,34
	c.974T>G	0,00	0,52	0,37	0,00	0,52	0,38	0,34
	c.979G>A	0,00	0,52	0,37	0,00	0,51	0,38	0,34
	c.985C>G	0,00	0,52	0,37	0,00	0,51	0,38	0,34
	c.986A>G	0,00	0,52	0,37	0,00	0,52	0,38	0,34
7	c.989C>A	0,00	0,52	0,37	0,00	0,51	0,38	0,34
,	c.992T>A	0,00	0,52	0,37	0,00	0,52	0,38	0,34
	c.1025C>T	0,00	0,52	0,37	0,00	0,51	0,38	0,34
	c.1048C>G	0,00	0,52	0,37	0,00	0,52	0,38	0,34
	c.1053T>C	0,00	0,52	0,37	0,00	0,51	0,38	0,34
	c.1057T>G	0,00	0,52	0,37	0,00	0,51	0,38	0,34
	c.1059G>A	0,00	0,51	0,37	0,00	0,51	0,37	0,34
	c.1060A>G	0,00	0,52	0,37	0,00	0,51	0,38	0,35
	c.1061A>C	0,00	0,52	0,37	0,00	0,51	0,38	0,34
	c.1154-82_1154-81delAC	0,00	0,49	0,34	0,00	0,50	0,65	0,32
9	c.1154-67T>C	0,00	0,49	0,34	0,00	0,50	0,65	0,32
i	c.1170C>T	0,00	0,49	0,35	0,00	0,50	0,65	0,33
	c.1193T>A	0,00	0,49	0,34	0,00	0,49	0,65	0,32

Tabla 21. Genotipos esperados basados en genotipos, secuencia de referencia RHCE (SEQ NO: 26) usando la combinación de cebadores de la mezcla B.

		a combina	cion de ceba					
Exón	Mutación en referencia a la región codificante	ddccee	DDCCee	DdCcee	Genotipos ddCCee	DDccEE	ddccee	D?ccEe
1	c.148+18C>A	0,00	0,50	0,33	0,00	0,50	0,33	0,33
'	c.150C>T	0,00	1,00	0,67	1,00	0,50	0,33	0,33
	c.178C>A	0,00	1,00	0,67	1,00	0,50	0,33	0,33
2	c.201A>G	0,00	1,00	0,67	1,00	0,50	0,33	0,33
_	c.203A>G	0,00	1,00	0,67	1,00	0,50	0,33	0,33
	c.307C>T	0,00	1,00	0,67	1,00	0,50	0,33	0,33
	c.336-13T>C	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.336-8A>T	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.361A>T	0,00	0,50	0,33	0,00	0,50	0,33	0,33
3	c.380C>T	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.383G>A	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.455C>A	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.505C>A	0,00	0,50	0,33	0,00	0,50	0,33	0,00
				0,33	0,00			
	c.509G>T	0,00	0,50 0,50			0,50	0,33	0,00
4	c.514T>A	0,00	0,50	0,33 0,33	0,00	0,50	0,33	0,00
4	c.544A>T	0,00				0,50	0,33	
	c.577A>G	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.594T>A	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.602G>C	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.667G>T	0,00	0,50	0,33	0,00	0,50	0,00	0,00
	c.676G>C	0,00	0,00	0,00	0,00	0,50	0,00	0,67
	c.697C>G	0,00	0,50	0,33	0,00	0,50	0,33	0,00
5	c.712A>G	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.733C>G	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.744T>C	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.787A>G	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.800T>A	0,00	0,50	0,33	0,00	0,50	0,33	0,00
	c.916A>G c.932G>A	0,00	0,50 0,50	0,33 0,33	0,00	0,50 0,50	0,33	0,33 0,33
				0,33				
6	c.939+21T>C	0,00	0,50		0,00	0,50	0,33	0,33
	c.939+22G>C c.939+23C>T	0,00	0,50	0,33 0,33	0,00	0,50	0,33 0,33	0,33 0,33
			0,50			0,50		
	c.939+24T>C c.941T>G	0,00	0,50	0,33 0,33	0,00	0,50 0,50	0,33	0,33 0,33
	c.968A>C		0,50					
	c.974T>G	0,00	0,50 0,50	0,33 0,33	0,00	0,50 0,50	0,33 0,33	0,33 0,33
	c.9741>G	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.985C>G	0,00		0,33	0,00	0,50		
			0,50 0,50	0,33			0,33	0,33
	c.986A>G c.989C>A	0,00		0,33	0,00	0,50	0,33 0,33	0,33
7		0,00	0,50	0,33	0,00	0,50		0,33
	c.992T>A c.1025C>T	0,00	0,50	0,33	0,00	0,50 0,50	0,33	0,33
	c.1048C>G		0,50 0,50	0,33		0,50		0,33 0,33
		0,00		<u> </u>	0,00	1	0,33	
	c.1053T>C	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.1057T>G	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.1059G>A	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.1060A>G	0,00	0,50	0,33	0,00	0,50	0,33	0,33
	c.1061A>C	0,00	0,50	0,33	0,00	0,50	0,33	0,33
9	c.1154-82_1154-81delAC	0,00	0,50	0,33	0,00	0,50	0,67	0,33
	c.1154-67T>C	0,00	0,50	0,33	0,00	0,50	0,67	0,33
	c.1170C>T	0,00	0,50	0,33	0,00	0,50	0,67	0,33
	c.1193T>A	0,00	0,50	0,33	0,00	0,50	0,67	0,33

Tabla 22. Genotipos observados frente a la secuencia de referencia RHD (SEQ NO: 25) usando la combinación de cebadores de la mezcla A.

	combinación de cebadores de la mezcla A. Mutación en Genotipos						
Exón	referencia a la región		1				
LXOII	codificante	DDCCee	ddCcEe	ddCcee	ddccee	ddccee	Dccee
1	c.148+18A>C	0,49	1,00	1,00	1,00	1,00	0,46
	c.150T>C	0,00	0,51	0,51	1,00	1,00	0,28
	c.178A>C	0,00	0,51	0,52	1,00	1,00	0,28
2	c.201G>A	0,00	0,51	0,51	1,00	1,00	0,28
	c.203G>A	0,00	0,50	0,50	1,00	1,00	0,27
	c.307T>C	0,00	0,51	0,51	1,00	1,00	0,28
	c.336-13C>T	0,55	1,00	1,00	1,00	1,00	0,52
	c.336-8T>A	0,55	1,00	1,00	1,00	1,00	0,52
3	c.361T>A	0,54	1,00	1,00	1,00	1,00	0,52
3	c.380T>C	0,55	1,00	1,00	1,00	1,00	0,52
	c.383A>G	0,56	1,00	1,00	1,00	1,00	0,53
	c.455A>C	0,55	1,00	1,00	1,00	1,00	0,52
	c.487-48_487-47insT	0,51	1,00	1,00	1,00	1,00	0,49
	c.505A>C	0,51	1,00	1,00	1,00	1,00	0,50
	c.509T>G	0,50	1,00	1,00	1,00	1,00	0,48
4	c.514A>T	0,51	1,00	1,00	1,00	1,00	0,49
4	c.544T>A	0,51	1,00	1,00	1,00	1,00	0,49
	c.577G>A	0,49	1,00	1,00	1,00	1,00	0,48
	c.594A>T	0,53	1,00	1,00	1,00	1,00	0,51
	c.602C>G	0,50	1,00	1,00	1,00	1,00	0,49
	c.667T>G	0,45	1,00	1,00	1,00	1,00	0,47
	c.676G>C	0,00	0,50	0,00	0,00	0,00	0,00
	c.697G>C	0,45	1,00	1,00	1,00	1,00	0,47
5	c.712G>A	0,45	1,00	1,00	1,00	1,00	0,46
3	c.733G>C	0,45	1,00	1,00	1,00	1,00	0,47
	c.744C>T	0,45	1,00	1,00	1,00	1,00	0,47
	c.787G>A	0,42	1,00	1,00	1,00	1,00	0,43
	c.800A>T	0,44	1,00	1,00	1,00	1,00	0,46
	c.916G>A	0,48	1,00	1,00	1,00	1,00	0,49
	c.932A>G	0,48	1,00	1,00	1,00	1,00	0,49
6	c.939+21C>T	0,47	0,99	0,99	0,99	0,99	0,48
	c.939+22C>G	0,45	0,98	0,97	0,98	0,98	0,47
	c.939+23T>C	0,47	0,94	0,94	0,95	0,94	0,49
	c.939+24C>T	0,45	0,97	0,97	0,97	0,98	0,45
	c.941G>T	0,44	1,00	1,00	1,00	1,00	0,43
	c.968C>A	0,45	1,00	1,00	1,00	1,00	0,43
	c.974G>T	0,44	1,00	1,00	1,00	1,00	0,43
	c.979A>G	0,45	1,00	1,00	1,00	1,00	0,43
	c.985G>C	0,44	1,00	1,00	1,00	1,00	0,43
	c.986G>A	0,44	1,00	1,00	1,00	1,00	0,43
7	c.989A>C	0,44	1,00	1,00	1,00	1,00	0,43
	c.992A>T	0,45	1,00	1,00	1,00	1,00	0,43
	c.1025T>C	0,45	1,00	1,00	1,00	1,00	0,43
	c.1048G>C	0,44	1,00	1,00	1,00	1,00	0,43
	c.1053C>T	0,44	1,00	1,00	1,00	1,00	0,43
	c.1057G>T	0,44	0,99	0,99	0,99	0,99	0,42
	c.1059A>G	0,46	0,99	0,99	0,99	0,99	0,45
	c.1060G>A	0,42	1,00	1,00	1,00	1,00	0,41
	c.1061C>A	0,43	0,99	1,00	1,00	1,00	0,42
9	c.1170T>C	0,50	1,00	1,00	1,00	1,00	0,50
	c.1193A>T	0,51	1,00	1,00	1,00	1,00	0,51
	c.1227+62A>G	0,51	1,00	1,00	1,00	1,00	0,50

Tabla 23. Genotipos esperados basados en genotipo, secuencia de referencia RHD (SEQ NO: 25) usando la combinación de cebadores de la mezcla A.

		Jinibinaoion at	e cebadores (
Exón	Mutación en referencia a la región codificante	DDCCee	ddCcEe	Genotip ddCcee	ddccee	ddccee	Dccee
1	c.148+18A>C	0,50	1,00	1,00	1,00	1,00	0,67
·	c.150T>C	0,00	0,50	0,50	1,00	1,00	0,33
	c.178A>C	0,00	0,50	0,50	1,00	1,00	0,33
2	c.201G>A	0,00	0,50	0,50	1,00	1,00	0,33
_	c.203G>A	0,00	0,50	0,50	1,00	1,00	0,33
	c.307T>C	0,00	0,50	0,50	1,00	1,00	0,33
	c.336-13C>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.336-8T>A	0,50	1,00	1,00	1,00	1,00	0,67
	c.361T>A	0,50	1,00	1,00	1,00	1,00	0,67
3	c.380T>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.383A>G	0,50	1,00	1,00	1,00	1,00	0,67
	c.455A>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.487-48 487-47insT	0,50	1,00	1,00	1,00	1,00	0,67
	c.505A>C	0,50	1,00	1,00	1,00	1,00	0,67
	c. 509T>G	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.514A>T	0,50	1,00	1,00	1,00	1,00	0,67
4	c.544T>A	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.577G>A	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.594A>T	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.602C>G	0,50	1,00	1,00	1,00	1,00	0,67
	c.667T>G	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.676G>C	0,00	0,50	0,00	0,00	0,00	0,00
ł	c.697G>C	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.712G>A	0,50	1,00	1,00	1,00	1,00	0,67
5	c.733G>C	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.744C>T	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.787G>A	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.800A>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.916G>A	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.932A>G	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.939+21C>T	0,50		1,00	1,00	1,00	0,67
6	c.939+21C>1	0,50	1,00 1,00	1,00	1,00	1,00	0,67
ł	c.939+23T>C	0,50	1,00	1,00	1,00	1,00	0,67
ŀ	c.939+24C>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.941G>T	0,50	1,00	1,00	1,00	1,00	0,67
ŀ	c.968C>A	0,50	1,00	1,00	1,00	1,00	0,67
ł	c.974G>T	0,50	1,00	1,00	1,00	1,00	0,67
ŀ	c.979A>G	0,50	1,00	1,00	1,00	1,00	0,67
ŀ	c.985G>C	0,50	1,00	1,00	1,00	1,00	0,67
ŀ	c.986G>A	0,50	1,00	1,00	1,00	1,00	0,67
ŀ	c.989A>C	,	·				
7	c.989A>C c.992A>T	0,50 0,50	1,00 1,00	1,00	1,00	1,00	0,67
		0,50	1,00	1,00	1,00	1,00 1,00	0,67
	c.1025T>C	· · · · · · · · · · · · · · · · · · ·		1,00	1,00		0,67
	c.1048G>C c.1053C>T	0,50	1,00 1,00	1,00	1,00	1,00	0,67
	c.1053C>1 c.1057G>T	0,50 0,50	1,00	1,00	1,00	1,00	0,67
				1,00	1,00	1,00	0,67
	c.1059A>G	0,50	1,00	1,00	1,00	1,00	0,67
	c.1060G>A	0,50	1,00	1,00	1,00	1,00	0,67
	c.1061C>A	0,50	1,00	1,00	1,00	1,00	0,67
9	c.1170T>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.1193A>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.1227+62A>G	0,50	1,00	1,00	1,00	1,00	0,67

Tabla 24. Genotipos observados frente a la secuencia de referencia RHD (SEQ NO: 25) usando la combinación de cebadores de la mezcla B.

	1	ombination (de Cebadores				1
Exón	Mutación en referencia a la región codificante	DDCCee	ddCcEe	Genoti ddCcee	pos ddccee	ddccee	Dccee
1	c.148+18A>C	0,51	1,00	1,00	0,99	0,99	0,49
- 1	c.150T>C	0,00	0,51	0,52	1,00	1,00	0,49
		0,00		0,52			0,28
0	c.178A>C	•	0,52		1,00	1,00	,
2	c.201G>A	0,00	0,50	0,51	1,00	1,00	0,27
	c.203G>A	0,00	0,49	0,50	1,00	1,00	0,26
	c.307T>C	0,00	0,48	0,47	0,99	1,00	0,25
	c.336-13C>T	0,63	1,00	1,00	1,00	1,00	0,66
	c.336-8T>A	0,64	1,00	1,00	1,00	1,00	0,67
3	c.361T>A	0,62	1,00	1,00	1,00	1,00	0,66
	c.380T>C	0,64	1,00	1,00	1,00	1,00	0,67
	c.383A>G	0,64	1,00	1,00	1,00	1,00	0,67
	c.455A>C	0,62	1,00	1,00	1,00	1,00	0,66
	c.505A>C	0,50	1,00	1,00	1,00	1,00	0,50
	c.509T>G	0,50	1,00	1,00	1,00	1,00	0,49
	c.514A>T	0,50	1,00	1,00	1,00	1,00	0,50
4	c.544T>A	0,50	1,00	1,00	1,00	1,00	0,50
	c.577G>A	0,49	1,00	1,00	1,00	1,00	0,49
	c.594A>T	0,51	1,00	1,00	1,00	1,00	0,50
	c.602C>G	0,50	1,00	1,00	1,00	1,00	0,50
	c.667T>G	0,48	1,00	1,00	1,00	1,00	0,59
	c.676G>C	0,00	0,49	0,00	0,00	0,00	0,00
	c.697G>C	0,49	1,00	1,00	1,00	1,00	0,60
_	c.712G>A	0,49	1,00	1,00	1,00	1,00	0,59
5	c.733G>C	0,50	1,00	1,00	1,00	1,00	0,61
	c.744C>T	0,50	1,00	1,00	1,00	1,00	0,61
	c.787G>A	0,41	1,00	1,00	1,00	1,00	0,52
	c.800A>T	0,48	1,00	1,00	1,00	1,00	0,59
	c.916G>A	0,49	1,00	1,00	1,00	1,00	0,50
	c.932A>G	0,51	1,00	1,00	1,00	1,00	0,51
_	c.939+21C>T	0,41	0,99	0,98	0,99	0,99	0,42
6	c.939+22C>G	0,38	0,98	0,97	0,97	0,97	0,39
	c.939+23T>C	0,43	0,94	0,93	0,91	0,92	0,44
	c.939+24C>T	0,38	0,98	0,98	0,97	0,97	0,41
	c.941G>T	0,45	1,00	1,00	1,00	1,00	0,45
	c.968C>A	0,45	1,00	1,00	1,00	1,00	0,45
	c.974G>T	0,45	1,00	1,00	1,00	1,00	0,44
	c.979A>G	0,45	1,00	1,00	1,00	1,00	0,45
	c.985G>C	0,45	1,00	1,00	1,00	1,00	0,45
	c.986G>A	0,46	1,00	1,00	1,00	1,00	0,45
	c.989A>C	0,45	1,00	1,00	1,00	1,00	0,44
7	c.992A>T	0,45	1,00	1,00	1,00	1,00	0,44
	c.1025T>C	0,45	1,00	1,00	1,00	1,00	0,45
	c.1048G>C	0,45	1,00	1,00	1,00	1,00	0,45
	c.1053C>T	0,45	1,00	1,00	1,00	1,00	0,46
	c.1057G>T	0,44	0,99	0,99	0,99	0,99	0,44
	c.1059A>G	0,44	0,99	0,99	0,99	1,00	0,44
	c.1060G>A	0,44	1,00	1,00	1,00	1,00	0,43
	c.1061C>A	0,44					
			1,00	1,00	1,00	1,00	0,45
9	c.1154-81_1154-80insAC	0,47	0,98	0,98	0,98	0,98	0,48
	c.1154-67C>T	0,48	1,00	1,00	1,00	1,00	0,49
	c.1170T>C	0,47	1,00	1,00	1,00	1,00	0,47
	c.1193A>T	0,50	1,00	1,00	1,00	1,00	0,51

Tabla 25. Genotipos esperados basados en genotipos, secuencia de referencia RHD (SEQ NO: 25) usando la combinación de cebadores de la mezcla B.

		Join Dillacion ac	cepadores de				1
Exón	Mutación en referencia a la región codificante	DDCCee	ddCcEe	Genotipos ddCcee	ddccee	ddccee	Dccee
1	c.148+18A>C	0,50	1,00	1,00	1,00	1,00	0,67
<u>'</u>	c.150T>C	0,00	0,50	0,50		,	0,87
		0,00	0,50	0,50	1,00	1,00	0,33
2	c.178A>C	· · · · · · · · · · · · · · · · · · ·	· ·	0,50	1,00	1,00	
2	c.201G>A	0,00	0,50		1,00	1,00	0,33
	c.203G>A	0,00	0,50	0,50	1,00	1,00	0,33
	c.307T>C	0,00	0,50	0,50	1,00	1,00	0,33
	c.336-13C>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.336-8T>A	0,50	1,00	1,00	1,00	1,00	0,67
3	c.361T>A	0,50	1,00	1,00	1,00	1,00	0,67
	c.380T>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.383A>G	0,50	1,00	1,00	1,00	1,00	0,67
	c.455A>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.505A>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.509T>G	0,50	1,00	1,00	1,00	1,00	0,67
	c.514A>T	0,50	1,00	1,00	1,00	1,00	0,67
4	c.544T>A	0,50	1,00	1,00	1,00	1,00	0,67
	c.577G>A	0,50	1,00	1,00	1,00	1,00	0,67
	c.594A>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.602C>G	0,50	1,00	1,00	1,00	1,00	0,67
	c.667T>G	0,50	1,00	1,00	1,00	1,00	0,67
	c.676G>C	0,00	0,50	0,00	0,00	0,00	0,00
	c.697G>C	0,50	1,00	1,00	1,00	1,00	0,67
5	c.712G>A	0,50	1,00	1,00	1,00	1,00	0,67
3	c.733G>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.744C>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.787G>A	0,50	1,00	1,00	1,00	1,00	0,67
	c.800A>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.916G>A	0,50	1,00	1,00	1,00	1,00	0,67
	c.932A>G	0,50	1,00	1,00	1,00	1,00	0,67
6	c.939+21C>T	0,50	1,00	1,00	1,00	1,00	0,67
U	c.939+22C>G	0,50	1,00	1,00	1,00	1,00	0,67
	c.939+23T>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.939+24C>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.941G>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.968C>A	0,50	1,00	1,00	1,00	1,00	0,67
	c.974G>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.979A>G	0,50	1,00	1,00	1,00	1,00	0,67
	c.985G>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.986G>A	0,50	1,00	1,00	1,00	1,00	0,67
7	c.989A>C	0,50	1,00	1,00	1,00	1,00	0,67
7	c.992A>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.1025T>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.1048G>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.1053C>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.1057G>T	0,50	1,00	1,00	1,00	1,00	0,67
	c.1059A>G	0,50	1,00	1,00	1,00	1,00	0,67
	c.1060G>A	0,50	1,00	1,00	1,00	1,00	0,67
	c.1061C>A	0,50	1,00	1,00	1,00	1,00	0,67
	c.1154-81 1154-80insAC	0,50	1,00	1,00	1,00	1,00	0,67
9	c.1154-67C>T	0,50	1,00	1,00	1,00	1,00	0,67
ı	c.1170T>C	0,50	1,00	1,00	1,00	1,00	0,67
	c.1193A>T	0,50	1,00	1,00	1,00	1,00	0,67
	0.1130///21	0,00	1,00	1,00	1,00	1,00	0,07

Tabla 26. Genotipos observados frente a la secuencia de referencia RHCE (SEQ NO: 26) usando la combinación de cebadores de la mezcla A.

	Mutación en	combinac	ión de cebador	Genotipos			
Exón	referencia a la			1			
	región codificante	DDCCee	ddCcEe	ddCcee	ddccee	ddccee	Dccee
1	c.148+18C>A	0,51	0,00	0,00	0,00	0,00	0,54
	c.150C>T	1,00	0,49	0,49	0,00	0,00	0,72
	c.178C>A	1,00	0,49	0,48	0,00	0,00	0,72
2	c.201A>G	1,00	0,49	0,49	0,00	0,00	0,72
	c.203A>G	1,00	0,50	0,50	0,00	0,00	0,73
	c.307C>T	1,00	0,48	0,48	0,00	0,00	0,71
	c.336-13T>C	0,45	0,00	0,00	0,00	0,00	0,48
	c.336-8A>T	0,45	0,00	0,00	0,00	0,00	0,48
3	c.361A>T	0,46	0,00	0,00	0,00	0,00	0,48
3	c.380C>T	0,45	0,00	0,00	0,00	0,00	0,48
	c.383G>A	0,43	0,00	0,00	0,00	0,00	0,47
	c.455C>A	0,44	0,00	0,00	0,00	0,00	0,48
	c.487-48delT	0,49	0,00	0,00	0,00	0,00	0,51
	c.505C>A	0,49	0,00	0,00	0,00	0,00	0,50
	c.509G>T	0,50	0,00	0,00	0,00	0,00	0,52
4	c.514T>A	0,49	0,00	0,00	0,00	0,00	0,51
4	c.544A>T	0,49	0,00	0,00	0,00	0,00	0,51
	c.577A>G	0,51	0,00	0,00	0,00	0,00	0,51
	c.594T>A	0,47	0,00	0,00	0,00	0,00	0,48
	c.602G>C	0,50	0,00	0,00	0,00	0,00	0,51
	c.667G>T	0,55	0,00	0,00	0,00	0,00	0,53
	c.676G>C	0,00	0,50	0,00	0,00	0,00	0,00
	c.697C>G	0,55	0,00	0,00	0,00	0,00	0,53
5	c.712A>G	0,55	0,00	0,00	0,00	0,00	0,54
	c.733C>G	0,55	0,00	0,00	0,00	0,00	0,53
	c.744T>C	0,55	0,00	0,00	0,00	0,00	0,53
	c.787A>G	0,58	0,00	0,00	0,00	0,00	0,57
	c.800T>A	0,56	0,00	0,00	0,00	0,00	0,54
	c.916A>G	0,52	0,00	0,00	0,00	0,00	0,51
	c.932G>A	0,51	0,00	0,00	0,00	0,00	0,51
6	c.939+21T>C	0,49	0,00	0,00	0,00	0,00	0,48
	c.939+22G>C	0,51	0,00	0,00	0,00	0,00	0,49
	c.939+23C>T	0,47	0,00	0,00	0,00	0,00	0,46
	c.939+24T>C	0,52	0,00	0,00	0,00	0,00	0,51
	c.941T>G	0,55	0,00	0,00	0,00	0,00	0,57
	c.968A>C	0,55	0,00	0,00	0,00	0,00	0,57
	c.974T>G	0,56	0,00	0,00	0,00	0,00	0,57
	c.979G>A	0,55	0,00	0,00	0,00	0,00	0,57
	c.985C>G	0,56	0,00	0,00	0,00	0,00	0,57
	c.986A>G	0,56	0,00	0,00	0,00	0,00	0,57
7	c.989C>A	0,56	0,00	0,00	0,00	0,00	0,57
	c.992T>A	0,55	0,00	0,00	0,00	0,00	0,57
	c.1025C>T	0,55	0,00	0,00	0,00	0,00	0,57
	c.1048C>G	0,55	0,00	0,00	0,00	0,00	0,57
	c.1053T>C	0,55	0,00	0,00	0,00	0,00	0,57
	c.1057T>G c.1059G>A	0,55 0,52	0,00	0,00	0,00	0,00	0,56
	c.1059G>A c.1060A>G		0,00	0,00	0,00	0,00	0,54
	c.1060A>G c.1061A>C	0,56 0,56	0,00	0,00	0,00	0,00	0,58 0,57
					0,00		
9	c.1170C>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.1193T>A c.1227+62G>A	0,49 0,49	0,00	0,00	0,00	0,00	0,49 0,50
	0.1221702G2A	0,49	0,00	0,00	0,00	0,00	0,50

Tabla 27. Genotipos esperados basados en genotipo, secuencia de referencia RHCE (SEQ NO: 26) usando la combinación de cebadores de la mezcla A.

	,	combinaci	ón de cebado				
	Mutación en			Genoti	oos		_
Exón	referencia a la región codificante	DDCCee	ddCcEe	ddCcee	ddccee	ddccee	Dccee
1	c.148+18C>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.150C>T	1,00	0,50	0,50	0,00	0,00	0,50
	c.178C>A	1,00	0,50	0,50	0,00	0,00	0,50
2	c.201A>G	1,00	0,50	0,50	0,00	0,00	0,50
	c.203A>G	1,00	0,50	0,50	0,00	0,00	0,50
	c.307C>T	1,00	0,50	0,50	0,00	0,00	0,50
	c.336-13T>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.336-8A>T	0,50	0,00	0,00	0,00	0,00	0,50
_	c.361A>T	0,50	0,00	0,00	0,00	0,00	0,50
3	c.380C>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.383G>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.455C>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.487-48delT	0,50	0,00	0,00	0,00	0,00	0,50
	c.505C>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.509G>T	0,50	0,00	0,00	0,00	0,00	0,50
4	c.514T>A	0,50	0,00	0,00	0,00	0,00	0,50
4	c.544A>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.577A>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.594T>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.602G>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.667G>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.676G>C	0,00	0,50	0,00	0,00	0,00	0,00
	c.697C>G	0,50	0,00	0,00	0,00	0,00	0,50
5	c.712A>G	0,50	0,00	0,00	0,00	0,00	0,50
]	c.733C>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.744T>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.787A>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.800T>A	0,50	0,00	0,00	0,00	0,00	0,50
ļ	c.916A>G	0,50	0,00	0,00	0,00	0,00	0,50
ļ	c.932G>A	0,50	0,00	0,00	0,00	0,00	0,50
6	c.939+21T>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.939+22G>C	0,50	0,00	0,00	0,00	0,00	0,50
ļ	c.939+23C>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.939+24T>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.941T>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.968A>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.974T>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.979G>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.985C>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.986A>G	0,50	0,00	0,00	0,00	0,00	0,50
7	c.989C>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.992T>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.1025C>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.1048C>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.1053T>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.105TF>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.1059G>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.1060A>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.1061A>C	0,50	0,00	0,00	0,00	0,00	0,50
9	c.1170C>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.1193T>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.1227+62G>A	0,50	0,00	0,00	0,00	0,00	0,50

Tabla 28. Genotipos observados frente a la secuencia de referencia RHCE (SEQ NO: 26) usando la combinación de cebadores de la mezcla B.

		mbinación de	Cepadores				
Exón	Mutación en referencia a	DDCCoo	440.5	Genoti		ddaaaa	Dooro
	la región codificante	DDCCee	ddCcEe	ddCcee	ddccee	ddccee	Dccee
1	c.148+18C>A	0,49	0,00	0,00	0,00	0,00	0,50
	c.150C>T	1,00	0,49	0,48	0,00	0,00	0,72
	c.178C>A	1,00	0,48	0,47	0,00	0,00	0,71
2	c.201A>G	1,00	0,50	0,48	0,00	0,00	0,73
	c.203A>G	1,00	0,51	0,50	0,00	0,00	0,74
	c.307C>T	0,99	0,50	0,50	0,00	0,00	0,72
	c.336-13T>C	0,37	0	0	0,00	0,00	0,34
	c.336-8A>T	0,36	0	0	0,00	0,00	0,33
3	c.361A>T	0,37	0	0	0,00	0,00	0,34
	c.380C>T	0,36	0	0	0,00	0,00	0,33
	c.383G>A	0,36	0	0	0,00	0,00	0,33
	c.455C>A	0,38	0	0	0,00	0,00	0,34
	c.505C>A	0,50	0	0	0,00	0,00	0,50
	c.509G>T	0,50	0	0	0,00	0,00	0,51
	c.514T>A	0,50	0	0	0,00	0,00	0,50
4	c.544A>T	0,50	0	0	0,00	0,00	0,50
	c.577A>G	0,51	0	0	0,00	0,00	0,51
	c.594T>A	0,49	0	0	0,00	0,00	0,50
	c.602G>C	0,50	0	0	0,00	0,00	0,50
	c.667G>T	0,52	0	0	0,00	0,00	0,41
	c.676G>C	0,00	0,49	0	0,00	0,00	0,00
	c.697C>G	0,51	0	0	0	0	0,40
_	c.712A>G	0,51	0	0	0	0	0,41
5	c.733C>G	0,50	0	0	0	0	0,39
	c.744T>C	0,50	0	0	0	0	0,39
	c.787A>G	0,57	0	0	0	0	0,47
	c.800T>A	0,51	0	0	0	0	0,39
	c.916A>G	0,51	0	0	0	0	0,50
	c.932G>A	0,49	0	0	0	0	0,49
	c.939+21T>C	0,39	0	0	0	0	0,40
6	c.939+22G>C	0,43	0	0	0	0	0,44
	c.939+23C>T	0,36	0	0	0	0	0,37
	c.939+24T>C	0,42	0	0	0	0	0,42
	c.941T>G	0,54	0	0	0	0	0,55
	c.968A>C	0,55	0	0	0	0	0,55
	c.974T>G	0,55	0	0	0	0	0,56
	c.979G>A	0,54	0	0	0	0	0,55
	c.985C>G	0,55	0	0	0	0	0,55
	c.986A>G	0,54	0	0	0	0	0,55
	c.989C>A	0,55	0	0	0	0	0,56
7	c.992T>A	0,55	0	0	0	0	0,56
	c.1025C>T	0,55	0	0	0	0	0,55
	c.1048C>G	0,55	0	0	0	0	0,55
	c.1053T>C	0,55	0	0	0	0	0,53
	c.1057T>G	0,55	0	0	0	0	0,55
	c.10571>G	0,53	0	0	0	0	0,53
	c.1060A>G	0,55	0	0	0	0	0,55
	c.1061A>C	0,55	0	0	0	0	0,55
	c.1154-82 1154-81delAC	0,55	0	0	0	0	· ·
9	c.1154-82_1154-81deiAC	0,52	0	0	0	0	0,51 0,51
Э							· ·
	c.1170C>T	0,53	0	0	0	0	0,53
	c.1193T>A	0,50	0	0	0	0	0,50

Tabla 29. Genotipos esperados basados en genotipos, secuencia de referencia RHCE (SEQ NO: 26) usando la combinación de cebadores de la mezcla B.

	Mutación en referencia a	a combinación	de cebadore	Genotip			
Exón	la región codificante	DDCCee	ddCcEe	ddCcee	ddccee	ddccee	Dccee
1	c.148+18C>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.150C>T	1,00	0,50	0,50	0,00	0,00	0,50
	c.178C>A	1,00	0,50	0,50	0,00	0,00	0,50
2	c.201A>G	1,00	0,50	0,50	0,00	0,00	0,50
	c.203A>G	1,00	0,50	0,50	0,00	0,00	0,50
	c.307C>T	1,00	0,50	0,50	0,00	0,00	0,50
	c.336-13T>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.336-8A>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.361A>T	0,50	0,00	0,00	0,00	0,00	0,50
3	c.380C>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.383G>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.455C>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.505C>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.509G>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.514T>A	0,50	0,00	0,00	0,00	0,00	0,50
4	c.544A>T	0,50	0,00	0,00	0,00	0,00	0,50
-	c.577A>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.594T>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.602G>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.667G>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.676G>C	0,00	0,50	0,00	0,00	0,00	0,00
İ	c.697C>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.712A>G	0,50	0,00	0,00	0,00	0,00	0,50
5	c.733C>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.744T>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.787A>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.800T>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.916A>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.932G>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.939+21T>C	0,50	0,00	0,00	0,00	0,00	0,50
6	c.939+22G>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.939+23C>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.939+24T>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.941T>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.968A>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.974T>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.979G>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.985C>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.986A>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.989C>A	0,50	0,00	0,00	0,00	0,00	0,50
7	c.992T>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.1025C>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.1048C>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.1053T>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.1057T>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.1059G>A	0,50	0,00	0,00	0,00	0,00	0,50
	c.1060A>G	0,50	0,00	0,00	0,00	0,00	0,50
	c.1061A>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.1154-82 1154-81delAC	0,50	0,00	0,00	0,00	0,00	0,50
9	c.1154-6TF>C	0,50	0,00	0,00	0,00	0,00	0,50
	c.1170C>T	0,50	0,00	0,00	0,00	0,00	0,50
	c.1193T>A	0,50	0,00	0,00	0,00	0,00	0,50
	0.11301/A	0,00	0,00	0,00	0,00	0,00	0,50

Tabla 30. Genotipos observados y esperados para el intrón 2 frente a secuencias de referencia RHD (SEQ ID NO: 117) y RHCE (SEQ ID NO: 120)

Mezcla de	Constina	Obser	•	Esperado		
cebador	Genotipo	RHCEin2	RHDin2	RHCEin2	RHDin2	
	ddccee	0,00	1,00	0,00	1,00	
	DDCCee	0,44	0,56	0,50	0,50	
	DdCcee	0,29	0,71	0,33	0,67	
Α	ddCCee	1,00	0,00	1,00	0,00	
	DDccEE	0,00	1,00	0,00	1,00	
	ddccee	0,00	1,00	0,00	1,00	
	D?ccEe	0,00	1,00	0,00	1,00	
	ddccee	0,00	1,00	0,00	1,00	
	DDCCee	0,29	0,71	0,50	0,50	
	DdCcee	0,23	0,77	0,33	0,67	
В	ddCCee	1,00	0,00	1,00	0,00	
	DDccEE	0,00	1,00	0,00	1,00	
	ddccee	0,00	1,00	0,00	1,00	
	D?ccEe	0,00	1,00	0,00	1,00	

Tabla 31. Genotipos observados y esperados para el intrón 2 frente a secuencias de referencia RHD (SEQ ID NO: 117) y RHCE (SEQ ID NO: 120)

NO: 117) y RICE (SEQ ID NO: 120)							
Mezcla de	Constina	Observado		Espe	rado		
cebador	Genotipo	RHCEin2	RHDin2	RHCEin2	RHDin2		
	DDCCee	0,42	0,58	0,5	0,5		
	ddccee	0,00	1,00	0	1		
Α	DdCcee	0,19	0,81	0,33	0,67		
A	ddCcee	0,31	0,69	0,25	0,75		
	ddCcEe	0,29	0,71	0,25	0,75		
	ddccee	0,00	1,00	0	1		
	DDCCee	0,25	0,75	0,5	0,5		
	ddccee	0,00	1,00	0	1		
	DdCcee	0,12	0,88	0,33	0,67		
	ddCcee	0,31	0,69	0,25	0,75		
	ddCcEe	0,32	0,68	0,25	0,75		
В	ddccee	0,00	1,00	0	1		

LISTADO DE SECUENCIAS <110> Progenika Biopharma S.A. 5 <120> Detección de alelos basada en consenso <130> CSC/FP7138084 <150> GB 1414350.7 10 <151> 13/08/2014 <160> 141 <170> PatentIn versión 3.3 15 <210> 1 <211> 33 <212> ADN <213> Secuencia artificial 20 <220> <223> Secuencia sintética: Marcador de secuenciación de nueva generación 25 33 acactettte cetacaegae getetteega tet <210> 2 <211> 34 <212> ADN 30 <213> Secuencia artificial <223> Secuencia sintética: Marcador de secuenciación de nueva generación 35 <400> 2 34 gtgactggag ttcagacgtg tgctcttccg atct <210> 3 <211> 20 40 <212> ADN <213> Secuencia artificial <223> Secuencia sintética: Secuencia consenso - cebador específico 45 <400> 3 tccctcaagc cctcaagtag 20 <210> 4 <211> 20 50 <212> ADN <213> Secuencia artificial <220> 55 <223> Secuencia sintética: Secuencia consenso - cebador específico <400> 4 20 tgttggagag aggggtgatg 60 <210> 5 <211> 20 <212> ADN <213> Secuencia artificial 65 <220> <223> Secuencia sintética: Secuencia consenso - cebador específico

	<400> 5 ctgcacagag acggacacag	20
5	<210> 6 <211> 20 <212> ADN <213> Secuencia artificial	
10	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
15	<400> 6 ccctgctatt tgctcctgtg	20
	<210> 7 <211> 20 <212> ADN <213> Secuencia artificial	
20	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
25	<400> 7 aaaggaacat ctgtgcccct	20
30	<210> 8 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
35	<400> 8 cccttccagc tgccatttag	20
40	<210> 9 <211> 20 <212> ADN <213> Secuencia artificial	
45	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
43	<400> 9 aaatctcgtc tgcttccccc	20
50	<210> 10 <211> 20 <212> ADN <213> Secuencia artificial	
55	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
	<400> 10 aagtgatcca gccaccatcc	20
60	<210> 11 <211> 20 <212> ADN <213> Secuencia artificial	
65	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	

	<400> 11 gtccattccc tctatgaccc	20
5	<210> 12 <211> 20 <212> ADN <213> Secuencia artificial	
10	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
15	<400> 12 aggtgcccaa cagtgtttgt	20
00	<210> 13 <211> 20 <212> ADN <213> Secuencia artificial	
20	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
25	<400> 13 tgagtgagag gcatcettee	20
30	<210> 14 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
35	<400> 14 tttggccctt ttctcccagg	20
40	<210> 15 <211> 20 <212> ADN <213> Secuencia artificial	
45	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
40	<400> 15 gaaaccccac caaatggagc	20
50	<210> 16 <211> 20 <212> ADN <213> Secuencia artificial	
55	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
	<400> 16 gaagccccac caaatggagc	20
60	<210> 17 <211> 20 <212> ADN <213> Secuencia artificial	
65	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	

	<400> 17 ggcttcaagt cacacctcct	20
5	<210> 18 <211> 20 <212> ADN <213> Secuencia artificial	
10	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
15	<400> 18 cagaggatgc cgacactcac	20
00	<210> 19 <211> 20 <212> ADN <213> Secuencia artificial	
20	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
25	<400> 19 ccattctgct cagcccaagt	20
30	<210> 20 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
35	<400> 20 cagccagagc cttttctgag	20
40	<210> 21 <211> 20 <212> ADN <213> Secuencia artificial	
45	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
40	<400> 21 cagccctagg attctcatcc	20
50	<210> 22 <211> 20 <212> ADN <213> Secuencia artificial	
55	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
	<400> 22 agcaggagtg tgattctggc	20
60	<210> 23 <211> 20 <212> ADN <213> Secuencia artificial	
65	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	

	<400> 23 ctgttagacc caagtgctgc 20	
5	<210> 24 <211> 20	
	<212> ADN <213> Secuencia artificial	
10	<220>	
	<223> Secuencia sintética: Secuencia consenso - cebador específico	
	<400> 24	
15	tggggaggg cataaatatg 20	
	<210> 25	
	<211> 64956	
	<212> ADN	
20	<213> Homo sapiens	
20	<400> 25	
	gacaccccag ccacgccaag ccgggaagte cccgcctcct ggagctgaac ccgccctct	60
	cccagaggtg gagctgcggg gggcgggaac aggcacggag aaaataaaca agactaaaaa	120
	gtcctgagta gcgctgtgtg gccgcaaacc tgaacccacc ttttgcacca cgcgggaccc	180

ggcacgcttc	ctgccaccca	cccctgagag	ggctgcgcgg	ccgaccccag	tactagaaaa	240
cactcgtcac	ctcaatcaag	acgggtacga	aggccaacgg	acgccttcct	ttagaacgct	300
cagcacacag	agcaacttct	cacgcctact	ctcaaatggc	gtactccaaa	ctagcactcc	360
cgacgtccag	ctgtgaaccc	agagcggcgg	aaagcccctg	aacccagcgc	ccgggcatgc	420
gcagacgcgt	tgttgtggtg	ggcgtggctc	cctccggacc	cggcgccccg	ccctccgccc	480
cgtgtccgca	tgcgcgactg	agccgcgggg	gtggtactgc	tgcatccggg	tgtctgaaga	540
tccgatgaaa	taacatatgc	aaaatgattg	ggtccgtgat	tggcattcca	gaaatggtag	600
ctgttattca	gccaacaaat	atttattgag	cacctactat	ggacttccct	ggtgctgagg	660
atacaacagc	aaccacagca	gtcaaaagtc	cctgtcttca	tgttgctcag	attctcatag	720
gggaaagcaa	ataatgaaca	aatacacggc	cgggcgcagt	ggctcacgcc	tgtaatccca	780
gtactttgcg	aggccaaggt	gggcaagtca	cctgaggtca	ggagttcgag	accagactag	840
ccaacgtggt	gaaaccctgt	cactactaaa	aatacaaaaa	ttagcgcggt	gtggtggctc	900
atgcctgtag	tcccagctac	ttgggaggct	gaggaaggag	aatcgcttga	acctaaaagg	960
cagaagttgc	aatgagccaa	gatcgtgcca	ctgcattcca	gcctgggtga	cagagtactc	1020
cgtctaaaaa	aaaaacctaa	atacacaagt	aaaaatatag	acctcgtcag	atgctagtaa	1080
gtgctgtgaa	ggaaactaaa	aggggaacac	aaggaaccct	tgtcaagggg	agaagaaagg	1140
ggagttgatg	ctgtcctttt	aaatagggca	gtcagaggcc	gggcacagtg	gttcacacct	1200
ataatcccag	cactttggga	ggttgaggtg	ggtggatcac	ttgaggtcag	gagttcaaga	1260
ccagcctggc	caacctggtg	aaatcctgtc	tctactaaaa	aaacaaaaac	tagccgggtg	1320
tggtatcacg	cgcctataat	cccagctact	cgggaggctg	aggcgggaga	atcacttgaa	1380
cctgggaggt	ggaggttgca	gtgagccgag	attgtgccat	tgcagtccag	cctaggcaac	1440
aagagcaaaa	cttcatctca	aaaaaaaaa	aaaaaatagg	gcagtcaggg	aaaactttcc	1500
tgagaagggg	atggtggagg	atccagggag	gtgaggtggg	gagcaagcca	gtacagttgt	1560
tccttgactt	tcgatggggt	tatgtcctga	taaagccatg	gtaagtagga	aatattgtaa	1620
gtcaaaaatg	catttaatac	atctaaccta	cggaacatca	tagcttagtc	tcacctacct	1680
taaacatgct	tagaacactt	acattagcct	acagttgggc	aaaatcctct	aacacaaagc	1740
ctattttatg	ataaagtatt	gaatatctca	tgtaatgtac	tgagtactgt	acggaaagtg	1800
aaagacggag	tggtgggatg	ggaactctaa	gcgcggcttc	cactgcatgt	gtgttgcttt	1860
cgcgccatca	taaagttgaa	aagcgttaag	tcaaaccatc	gtacgtcgga	ggccatctgt	1920
atctggtagg	aggagtgttt	cagacagaga	gaacagcagg	tgcacagagt	gctttttcc	1980
cagcatttta	ttatgaaaaa	tttcaaacat	ctaccaaaaa	aagttgaaag	acttgtacag	2040
tgaaaagcca	tacatctcac	agctagaatc	aacaattaac	attttactgt	atttggtttt	2100

tgacttatct	atcctagatc	ccttgtgctt	tctgtagcag	gtgacctgcc	ttgaagattt	2160
aaagacagaa	tatcaggaaa	tgtagtcaga	aaatggggcc	ttttataaga	gtcagagggg	2220
aagagcaaaa	cctctgcttt	tgacaaatct	gttgggagag	gccaactgca	gggatacctc	2280
ccttttttaa	tgaaagcatt	tctgttctgc	gaggagcggg	atcctcttgt	caagcagtca	2340
gtccctgctg	cttccttact	ggggcaggat	caggacgcac	agggatttgg	agtgccttgg	2400
aaccaaccac	cacccacgcc	gtttgccagc	tggtaaacat	gcccatcagg	tccgggggtt	2460
ggcattgcct	ggacatcttt	agtgttcatc	ttgctgacat	ctggtgccct	cgggcaggta	2520
ggtgcagttg	gctgcctggt	ttacagagct	tgtactgggc	ccaggttagc	agaggtcaca	2580
tccatttatc	ccactgcgca	gaggagttcc	ttctcaggaa	acccagttta	taagaagtac	2640
tgactgccag	aaatagagca	gaaatgagaa	ccaggaggca	attgtgagag	gaatggagac	2700
ttctgacctc	tggggattgg	ggtaccctcc	cccttaattg	ctgttggggt	agcagagggc	2760
ttagaagccc	atgttcctag	acttttagaa	ttggaagaag	acttagaagt	aatctaggct	2820
gggggtcccc	aacccccagg	ctgtggcccg	ttaggaacct	gaccgcacag	catgagggat	2880
aggccagcga	gcactaccgc	ctgagctccg	cctcctgtca	gatcagcagc	ggcattagat	2940
tctcataggg	gcacaaaccc	tattgggaac	cgcgcatgag	agggatctag	gttgcgtgct	3000
ccttaggaga	atctaactaa	tgcctgatga	tctgaggtgg	aacagtttca	tccccaaacc	3060
atccctccaa	cctcaccccg	gtccatggaa	aaattgtctt	ttacaaaacc	cgtccctggt	3120
gccaaaaagc	ttggggaccc	ctgatctagg	ctacagttaa	gtggtcaaac	acccaggtcc	3180
tgaagttagg	ctgcctgggt	ttaaatccca	gctctactgc	ttactagccc	tgtgaccttg	3240
agcaagtcac	ttagtttttc	tgtgcctcag	ttcactcatt	tgtaataaat	cctaatagta	3300
cccatcccag	tgtcatgaac	taagttcata	tatgtaaagt	acttagaatg	gtgcctagca	3360
agtacttaat	aacagttagc	tctgaaaatg	tataaagcaa	aattaaccaa	tgttttagtg	3420
gtttgcagcc	aactttttc	tatgcgtgtg	ctaacatatt	attttataag	agtgggaata	3480
tattgtacat	gctgttatat	aacttgcttt	ttcactaaac	agtctatcct	ctgtgtcagt	3540
tttgataaaa	gcgttttcct	cttgcttttc	ctgcatatgt	tcagaaccat	catattggta	3600
gcaagtttca	tgtcctgtag	ttttcttaac	caaccccctg	ctagtggaca	tttaggttag	3660
tctcagtttt	ttccttctgt	aaataaagct	gcactgagca	agaagtgact	gatgccaagt	3720
gactagatga	ccttaggtat	gacctctctg	ggtcttggtt	tcttggtcta	aaaacaaaat	3780
gacaggattc	gactgggtga	ttaaaatctc	ctctgatcta	cataggaatt	gttttcaaga	3840
catttctgca	ttcctctagt	gacagggtgc	tcactacctc	atgagtattt	cagtggacaa	3900
ctgtaatggt	caataaagta	tccactttcc	acctccctgc	agctcctggc	cctggcttta	3960

ttctctgggg	ctccacacat	tcagtttaca	ctcagtggcc	agtggctggg	accattgtag	4020
aaaataagga	aactccaatt	ccttccttct	tttcttcctc	tttcatctct	tcctccctct	4080
ctacatccct	ctctctctc	cttccttcct	cgacacttac	catgtaccag	accttctgcc	4140
aggcacatgg	atgggagcac	aggggaagtt	ggctgcaggg	ttagaactaa	gtcccaagcc	4200
ccctaaagct	catgccaggg	gactggactg	tccagtactg	agggatgggg	atgctgaggc	4260
tggtggcctt	cctcaaatgc	actgtagtgc	cccaggcaga	gtcctgggct	gccctgtgag	4320
gaggtgacca	gaggtagagc	aacttcaccc	taaggctgga	tcaggatccc	ctccaggttt	4380
ttactagagc	caaacccaca	tctcctttct	cttctgccac	cccccttaa	aatgcttaga	4440
aacacataga	tttaaataca	aattcaaatg	taagtaattt	caactgtgta	actatgagga	4500
gtcagttcta	cgtgggtcct	atctgtatcc	tccccagggc	tcagctccat	tctttgcttt	4560
cattcattct	cattcaatac	attgttgtta	agagctcact	gggtgccctc	tctgtcatgt	4620
agtaaggttt	taaaaagaaa	gcctcttctg	agcttcagtt	tccttattca	taaaatagga	4680
gtattgatcc	attccttgct	tttcttacaa	ggatatgctg	aagatgactg	aagtacagag	4740
taaagaagga	ttatgtttgg	gtgtcaaagg	aatagaatgc	cctctttcaa	actgagcaca	4800
gcaggaacct	gtaacaggaa	cacagcaact	tgttgaatga	atgacaatat	tggaaaacat	4860
acatttcctc	ccctccccat	catagtccct	ctgcttccgt	gttaactcca	tagagaggcc	4920
agcacaacca	gccttgcagc	ctgagataag	gcctttggcg	ggtgtctccc	ctatcgctcc	4980
ctcaagccct	caagtaggtg	ttggagagag	gggtgatgcc	tggtgctggt	ggaacccctg	5040
cacagagacg	gacacaggat	gagctctaag	tacccgcggt	ctgtccggcg	ctgcctgccc	5100
ctctgggccc	taacactgga	agcagctctc	attctcctct	tctattttt	tacccactat	5160
gacgcttcct	tagaggatca	aaaggggctc	gtggcatcct	atcaaggtga	gagttcattg	5220
gaaaagtggt	cacaggagca	aatagcaggg	gcaggggcgg	gggaggcctg	tggttctcca	5280
ggggcacaga	tgttcctttc	tacaaaatcc	caaggaaaaa	gattccccca	tcttcttccg	5340
tagattgcac	cgaaattcag	ccaacaatgt	aagctttcct	ttagaagcag	cctgggcatg	5400
ccctcttctg	tgaagcctgc	cttgattttt	cagcacagtg	agaggcatcc	tctttggtgt	5460
tcctcaaatt	ccctctacca	aatggtcttc	ataattctct	gcttctctgc	ttccccttct	5520
ctctcctcag	tggcaaggaa	tttttttatt	tttatagatt	taggggatac	aagtgcagct	5580
atcttatgca	agcaatttca	tgttgttggg	tttttggttt	ttgtttcctt	tttgtggcct	5640
ctcgctcatt	tcttatttct	ttttgaggca	gggtctcact	ctgttgccca	ggctgaagtg	5700
cagtggcatg	atcatggttc	actgcagcct	tgacctccta	gtctcaagca	atcttcccac	5760
ctcagcctcc	caagaagctg	ggaccacagg	agggcaccac	catgcctggc	taatttttt	5820
tttttttt	tttggtagag	atgtgggtct	ccctgtgttt	cccagactgg	tctcaaactc	5880

ctggacacaa	gcgatcctcc	agcctcagtc	tcccaaagtg	ctggaattac	aggcgtgaag	5940
cactgtgccc	agctctcttg	ctcatatcta	tactagtttt	cttttggaag	cttcagcctg	6000
ttgctacccc	ccacccccac	ccccaccgac	cccagctttc	ttctcactta	ggggctggga	6060
agtctgcatg	ctgtctataa	atccagaacc	agaaggtatg	gctgaagggg	agggtaggat	6120
gatggttatt	ttatattcag	ctaaaaatat	tcccagactg	tgatgagaca	actgtaaata	6180
agacagatgt	ccacaatggt	gtgactttgc	tttttaaaa	atattgaaat	gagtttcagg	6240
catctcagtg	ggctgatagg	ttgttgataa	tagacagggc	ctccttgaag	aatgtccctg	6300
agacaaagtt	gaagcttgag	cctggttgag	tccttgcttg	ttcctaggtt	gatatgaacg	6360
gctagttaac	tggaagcaaa	gagaagtcat	cctgggggcc	atggcagtga	caagtaggac	6420
ttagggaggg	aagcccttat	accatttaag	gtgctggccc	agagaggagc	cttcagtgac	6480
agacaaacaa	gagctggcac	aattttaatt	cacttcaatt	tactctaatt	catttcaatc	6540
caatacaatt	caatgcattc	cattcattca	accatgtatg	acatccaatg	tgggatccag	6600
actcatgatg	attagagctg	atatttatga	gcacttacta	tgtaccaggc	actattctac	6660
atgctttaca	ttgaaccctc	acaataaccc	aatgaggtgg	gtactattat	gatcttcgtt	6720
tttcatatga	ggaaactagg	catatggatg	ttgagtaatt	tgcccacggt	cgctcagcta	6780
gcaatagcac	agcgtattta	aatttagcca	ccctggattt	agtttcctta	cacttaacca	6840
ttatgcatca	tggccccatt	ttacagtggg	cttgagtctt	tgtcatataa	cccagtaggt	6900
tagcagccac	tattccaacc	ctgtagattg	actctagggt	ccatgttctt	tacccctgca	6960
ccgtgctact	aacgtaggta	caaaatgtcc	tcagaaactc	actttatacg	gaagctcaga	7020
ggagggtcca	caacccaggc	aggggagacg	atggtgtcag	gggagggagg	tgactgccca	7080
gccaggtctt	gaaggctcag	taggaattac	ctgtgggaca	aaggagggtc	atccaagtga	7140
gggcacagtg	ggtgccatgg	cgtgcacaca	caatagagca	gactgagcct	gggcttaaca	7200
ttgcattgcc	ctggagccta	aaaggggaaa	caaagggccg	ggcgacgtgg	ctcacgcctg	7260
taatcccggc	acattgggag	gccaaggctg	gagaatcacc	tgaggttagg	agttcgagac	7320
cagcctggcc	aacatggcaa	aaccgcatct	ctactaaaat	tataaaaact	ggctgggtgt	7380
ggtggcacac	gtctataatc	cgagctactt	gggaggccat	tacactccag	cctgggcgcc	7440
agagtgagac	ttcatctcaa	aaaaccaaac	aacaaaaaca	acaacaagaa	caacaaaaa	7500
acaaagagga	gagcagggac	tgggtgtggt	gactcatgcc	tgtaatccca	aacactttgg	7560
gagaccaagg	caggcagatc	acctgaggtc	aggagttcga	gaccagcctg	gccaacatgg	7620
taaaaccctg	tctctactaa	aaatacaaaa	attagccgga	tgtggtggca	cgtgcctgta	7680
gtcccagctg	cttgggaagc	tgagggagga	gaattgcttg	aacccaggag	gcagaggttg	7740

ctgagctgag	aacatgccac	tgcactccac	cctgggtgac	agagtgggac	tctgtctgaa	7800
aaaaataata	gtaataaata	aaaataaaga	gggaagcagc	gggtggcaga	ctcactgggc	7860
tgcatacgaa	gtttggcttc	agtctgaggt	ccgaatagta	aacagcagcg	agacaagttt	7920
gggtttgggt	catggaggaa	gccatgccag	ggctggtgtt	gggcacaggg	aaaggggcat	7980
ggcttgagac	accagaccag	cgtggaggct	gtagtgtagt	attgacctga	ggacttcaac	8040
attctgatgg	tgtacacacg	attttttgag	catgtaccat	ggttatatat	tacactttaa	8100
gtattacttt	aagtattact	acattaatat	attttgtatg	ttacaataaa	tacatacaaa	8160
ttaggaaaat	tgaaagagat	caaaatgaaa	tatataatat	tttcaaatta	ctaatcataa	8220
tggtgtcaat	ctccaggcag	ggtccattgc	tacagttgac	gatagtggat	gaaaattcac	8280
tcctcagagt	cttcttgata	atttgaaatt	gtcttgattg	acttgtcaga	tctgattaga	8340
tcaacatgtt	ttaaatctcg	aatgtgactg	acagcttgta	cgaggagaag	tttcactctg	8400
ccttttccct	tttgttcact	tgactgccat	tatttctatg	cttccaatct	gtgtttttct	8460
gcacgagttg	gttaagccat	tacttcattt	tgtgaaagtt	tgttgagtta	aacttaggta	8520
acttaatctg	tcaatccact	taattgaatt	cagtcctggt	aaactataat	agattattca	8580
aacctgccaa	ttctaaaaag	acattttgag	acaatcagga	aatctgaata	tagcatgaat	8640
atcttacgat	atacaaggat	tattgttaat	tttgttaggt	atgataaaag	catggtgggt	8700
tgtttttgtt	tttgttttt	aagtctccat	ctgttagaga	ggcacattga	aatggcatga	8760
tatctggggt	ttgcttttat	gccagaaaaa	agaaaaagta	cagaaggatt	atagaaacaa	8820
gattggtctc	atgtgacaat	catcagagtt	tggagatggg	cacgtagggt	catcgtgctg	8880
ttctctctgt	tttcgtatat	gctttaaaag	ttctgtaata	gttaattaaa	aaaaaaaaa	8940
aacaccctgg	ctgagcattt	agggaggcca	agtggggagg	atcgcttaaa	ccaaggagtt	9000
caagacgagc	ctaggaaaca	tagggagacc	ccccccatc	tctaaaaaaa	aaaaaaaaa	9060
aaaaaacttt	aaaatttaac	ccagtgtggt	ggcacatgcc	tatagtccca	gctactcagt	9120
aggctgaggt	gagaggcttg	cttgagcctg	ggagcttgag	gctgcagtgg	gacgggattg	9180
taccacttca	ctccagcatg	ggcgacagag	caagaccctg	tctcaaaaaa	aataaaaata	9240
tttgaggtga	agcgaggctg	taataacaaa	tttaaaaata	taaataaaac	ataaaggctg	9300
ggtgtagtgg	ctcacgcctg	taatcccagc	actttgggag	gccaaagcag	gcagatcacg	9360
aggtctggag	atggagacca	tcctggctaa	cacgatgaaa	ccccatctct	accaaaaata	9420
caaaaaaatt	agccgggtgt	ggtggcgggt	gcctgtagtc	ccagctactt	gggaggctga	9480
ggcaggagaa	tggcgtgaac	ccaggaggcg	gagctttcag	tgagctgaga	ttacgccact	9540
gcactccagc	ctgggcaaca	gagcgagact	ccgtctaaaa	aaaaatgaaa	ataaaaataa	9600
atgaaacata	aaaccctgcc	attagttgca	atatgaagaa	tatagagaaa	tgcatatcaa	9660

atccttctca	ttggaccaat	attcccttag	ggcaccttcc	aaagctagga	gactcaaggc	9720
tgtatgacat	cctgagcaag	tgaggggtgg	cttctgggtg	aatctgaata	ttaaatattt	9780
gcagaattga	aaacttcaca	aagtaccttt	agagatagaa	tagcctagat	ccatgtttct	9840
caaagtgtgg	tccccagacc	tgctgcctca	gcatctcctg	gaaatttagt	agaaatgcag	9900
attctcaggc	cctaggccag	acctactgat	cagaagctct	gggcctgggg	cccagcagtc	9960
tgtgttttca	caagccctct	tggtgattct	tctgtgcatg	aaagttcgag	aattcctgga	10020
gctagactga	ttcaaatctt	gcctctgtat	cttagagacc	ttgggcagat	tagtcaacct	10080
ctttctgcct	ctgtttctac	ttctgtcaga	ggatgatagt	acttgtttca	ttaagttgtt	10140
gaaaggataa	atgaattgac	acacataaag	agtattagct	tttattatca	aaagcttttt	10200
ttttgagaca	gagttttgct	cttattgccc	aggggagtgc	agtggtgcga	tcttggctca	10260
ccgcaacctc	cacctcccag	gttcaagtaa	ttctcctgcc	tcagcctccc	gagtagctgg	10320
gattacaggc	atgcgccacc	acgcccggct	aattttgtat	ttttagtaga	gatggggttt	10380
ctccatgttg	gtgaggctgg	tctcgaactc	ccaacctcag	gtgatgcacc	cgccttggcc	10440
tcccaaagtg	ctgggattac	aggcgtgagc	caccgcgcct	ggcccaaaag	ctttaatttc	10500
ttaattttt	aaataaaata	aataaaacta	gaattgcttg	ttttcttcca	gctaccctgg	10560
tgattgtatt	gagcattttc	tggggtgtgt	gttctttgct	gtaatgacta	ctggtctgga	10620
tgacctgtga	tgagaccaga	tgggcagggg	cagtggagga	gattctagag	atatttagga	10680
gataagtcag	ctgtacttga	tgaaaagagt	ggggagttaa	ggctggctgc	agatgtatga	10740
tttggcatag	agaggtgcca	gttcctgaga	tgagagacag	aaggggaggg	acaggttgtg	10800
aggatgaatg	aacaatgata	tgttcattct	gggcttggag	ttaaggggcc	tatgatatgc	10860
ttaggggaag	cagagagtat	caattaccta	ttgctgcata	acagccaccc	caaacttagt	10920
ggcttaaaat	agtaaccttt	taatttactc	atgatcatga	ttctgtggtg	caacaactgg	10980
gctgggttca	gctgggcagt	tcttctgtta	gtttcaccca	gggtcattca	tgcatctgca	11040
gtttggggtg	ggatggcctc	agatgacctc	attcacgtgt	ttggcagttg	gtgattcact	11100
gggggccatt	actgtaacaa	tcgcctacca	ggcagagctt	ccctaaggct	tccaaactag	11160
gagactatcc	tgggtcctgt	gctgtggata	ccactcagtc	ccccatcccc	accccatatt	11220
cctcaaaggc	agagagaggg	gctactagaa	gacagaggag	ttttcccagt	gacatgtaaa	11280
cactccaaac	cctggcacct	tccacactgc	agctttggtc	tgcccctttg	ggaaatctct	11340
gtttttcttc	ccaggctgct	ggaggggtga	gagtcgccgg	tagagtagag	gctgtgggcg	11400
aggaggtggc	ggcctcctga	ggctgcagtg	gtctttccag	gcagcagtgg	gagcacaggg	11460
tggaggtcaa	ccctagagcc	tgggagagtg	aagctgggtg	tgacttcaga	gctgttggtg	11520

ctgaagtttc tgcaggco	ag aaggagggg	aagagtggga	gggggcgcag	atccagaatc	11580
acggaggcag ctgaccgg	gag gaggcagctg	cccaagggga	tggactcaga	aggccaaagt	11640
gctgttatcc aaacgaac	tc tttgcaagtg	gtctctttgc	aacaggcctg	ggggagagca	11700
gtcttgccta aagtcaca	cc gctaatcagc	ggccggcacg	gggtaacagt	tactaacact	11760
cactacgtac ccaatgct	gg gcgaagtgac	ttgcatgagc	cagcgagctc	aatgctcatg	11820
gcaatcetet gageaget	.gg cattgtttca	tctcaatttt	acageteagg	aagctgggac	11880
acagaggaag agccaggo	tc tgaacactga	caacctgatt	gagagaccca	cactgttcat	11940
caccgttacg ctatatat	gc tgtatagaaa	ggcaggatgg	cataatggtt	aaacctaggt	12000
aggtagggtt tgaatcct	cc tgctaccatt	tactagetet	gtgacttgga	ctagttatag	12060
cacctctctg tgcctccc	tt tccccatctc	taaaatgggg	ataataaatc	gtacctccta	12120
cctgaggctg ttgtgggc	ta agtctgtaag	gcacgtagaa	cagtgcctgg	aacgtggggt	12180
actgtctatc tgtgtgcc	tg ctgttacaac	aatggtgagt	attgccttat	ctctcgctgc	12240
tgaactacca ggttagac	tt ctttctgcaa	gtcatgaggc	tttcataaac	ttttcctgaa	12300
ggctttccgt agaatgta	ca attecectet	gggtccaggc	atgggcgccc	gggtagcaca	12360
tecaettett ateaecee	tg aacaccttag	agcccatcag	cttatcaaac	cagcagctga	12420
tgtgagtgca gagcagac	tg tgagaggtgg	aggctgatac	cagtgaggat	gctccaagct	12480
gggacccagc cctgaagc	gg gagcccagat	aatggatggg	tggaaatggg	cctggagccc	12540
aggagaagtg ggaggatg	ag ggggcagggg	gaggagaagc	ctgaaatcaa	atgttatttc	12600
ctgaccagtt tggggtgc	at gagetetgte	aacagctcat	ggaaactgct	gccctaattt	12660
catcttgttg gctgaggc	ac aatteetete	tcagggacag	tgtagagcct	tggggaggaa	12720
ggccctgagc gcgtatac	ct ggaatcaggg	aatcgggatc	aggggcagca	gctgtgccca	12780
ataaagcccc cacccagg	at cctctgactt	cctcatctct	tttttttt	ttttgagctg	12840
cagteteact etgteate	ca ggctggagta	cagtggtgcg	atctcggctc	actgcaacct	12900
cagcettetg ggtteaag	gcg attctcctgc	ctcagcctcc	tgagtagctg	ggattacagg	12960
catgegeeae catgeeag	gc taattttgt	atttttagta	gagacggggt	ttcaccatgt	13020
tggccaggct ggtctcaa	ac teetgaette	aagtgatctg	cccacctcag	cctcccaaag	13080
tgctaggatt acagacat	aa gccactgtgc	ctggcctttt	tttttttt	ttttttgtaa	13140
acagggtctc cctctgtc	ac ccaggctgct	ggagtgtagt	ggtgtgaccg	cagctcactg	13200
cagcettaac ettetage	rca caagccatco	tcctacctca	ccctcctgag	tagctgggac	13260
tacaggcact cgccacca	cg cccaagtaat	tttgtatttt	ttgtagagac	aaggtcttgc	13320
tatgttgcct aggctggt	ct tgaactcctc	agctcaagca	atcctccctc	cttggcctcc	13380
caaagtgctg ggattgtg	rct gggattacag	gtgtgagcca	ccatacctgg	tctgacttcc	13440

taatctttag	ggccccaact	ctgcccttat	ccaggcaact	ctcctctccc	catcttccac	13500
taacttcttt	ggaatattcc	agagctgtaa	aagccttaga	gagtatcaag	tccaactcct	13560
atgtgttaca	gacagggaaa	ctgaggccta	aagagggtaa	tggacttgcc	taagatcact	13620
tagtgaggtg	agagaagaaa	gagctagaga	cagcctagcc	tgtgcaagga	catagttcca	13680
ggcattcaga	gctgggctct	gctgccggca	tgtttggggc	ctggtagtta	gttcactgct	13740
gaactaccag	gttagatttt	ctttctccaa	gttgtggagc	tttcataaac	ttttcctgaa	13800
ggtcttcctt	acaatgtaca	attctcctct	gggcccggtc	atgagcgccc	ctcacaggct	13860
ctctctggtc	cccttctgta	aaatgagagg	aaaatggaag	aattgctcta	ctcatggaat	13920
cttcaataag	tctgggccct	atgcatatag	cattgctaca	aaatggcaga	tgcactttaa	13980
caatcgtgtt	taataaaagg	ttggatttgc	atatctgaag	tggggcatgc	agtctccaac	14040
tgaacacaag	cctcactgct	cccgcatgtg	cactgcacct	tcatatacat	atttcctgct	14100
tggctcctga	gggaatttga	gtaatcccaa	gaggaacccc	tgtagaaaat	gtcccctggc	14160
cacacacccc	cattcctaag	gatgcaagca	ggagatagaa	acattccctg	cacctccctc	14220
cttgttgtca	gaagaagtgc	aaagagttga	atccttccta	atgcccactt	ctcacccacg	14280
ccccaaatcc	ccaggtccca	tggaggtcct	tgggggcctc	ctatatcctg	gtggtgtcag	14340
gttgatttgg	aaatgtcagt	gtcctccctt	gtcctctctg	gcagaccctg	ggtatgtgta	14400
tgtttcaatg	gaagtgaatt	taaatgtact	ttataaatca	aagacttttt	ctgagacttt	14460
ggagagttcc	agtaatgaga	gcttctcatt	gttatcaagg	ccagggctgg	agaccagtgg	14520
caggtgagtt	cctattgctg	tgattgtcat	gatgatgttg	atgaacagtc	actatttatt	14580
gagcgttctc	catgtgccag	tcactgtact	aaacattatt	tcctttggat	ttcccagaaa	14640
cctctcaggt	gggtctaatt	acccttattc	agctgataag	gaaagtaagc	aacttacaag	14700
accacagggc	tatgaagtgg	aaacacataa	attgatattt	cattttattt	atttatttat	14760
tttgagacag	agtctcactg	tgtcgcccag	gctggagtgc	agtggtgcgg	tctcagctca	14820
ctgcaacctc	tgcctcccgg	gttcaagcga	ttctcctgcc	tgcctcccga	gtagctggga	14880
ttacaggtgc	ccaccaccac	atccagctaa	tttttttgta	attttagtag	agacggggtt	14940
tcaccatgtt	ggccaggcta	gtctcgaact	gctgacttca	tgatctgccc	acctcatcct	15000
cctaaattgg	tatctttata	tgtccaaaag	agtcaactgg	tggcaattta	gtgaggttta	15060
atctaatagg	aaatgataga	gctgggatcg	aacagagcca	tgtgaactca	aaacctatgc	15120
ttccccttcc	acctttttga	aaaacattgt	ctaggctggg	cacgatggct	catgcctgta	15180
atcccagcac	tttgggagac	ggaggtgggt	ggattacatg	aggtcaggag	ttcgagacca	15240
gcttggccaa	aaattagcca	ggcgtggtgg	cgcgcgcctg	tggttcccac	tgaagcacag	15300

gaggctgaag cacaagaato	acttgaaccc	gggaggtgga	ggttgcagcg	agccgagatc	15360
gcaccactgc actccaacct	gggcaacaga	gagactctgt	ctcgaaaaaa	aaaaattgtc	15420
tacatgctgg ttgcagaaaa	tttaaacact	aaaactaaaa	aagtaaaaca	cctcccaaac	15480
ttagagacaa tattaatgad	ggaaaaaaaa	ttcttcaaga	tctctctc	tccagtcatt	15540
tattcatgtg cgaaaacagt	tggtgattat	tgataaaata	gcttttagag	tttggagcaa	15600
ttatgtgcat tacatataco	atttgattct	ggcaacctaa	tgaaggagta	tgatcatttc	15660
ccctatttaa cagacaagaa	caagaagagg	gagggcagat	ggtgtggtag	tctaaggcac	15720
aggctccagc agattatcta	ggtgtaaatc	ttggctgtag	gccaggccct	gtggctcatg	15780
tctgtaatcc catcacttto	ggaaaccgag	gtgggcagat	cacttgaggt	caggagttcg	15840
agaccagctt ggccaacata	gcgaaacccc	ttctctatta	aaaatacaaa	aattagccgg	15900
gcacggtggc aggcacctgt	aatcccagct	acttgggagg	ctgaggcagg	agaatcactt	15960
gaacccagga ggcagaggtt	gcagtgagcc	aagatcttgc	cactgtactc	cagcctgggt	16020
gacgagtgaa actctatcto	gatattaaaa	aaaaaaatct	tagctctacc	caccggggca	16080
agttacgtaa cgcctctgt	g ccttggtttt	catatctgta	aaatggtgac	agtaacagca	16140
cccacgtcaa agtgtggttg	, tgagaacgaa	acaagatagt	ctatgtaaag	tgattaaaac	16200
agcgtaggca catggtaaad	gcttaggaaa	tgtaggctgt	tataaagctc	agagatgtta	16260
agtaactaga tcaagatcad	acagttagag	ggtgccagag	tcctgatttg	aacccaagtt	16320
tgtctcgttc tggagctcaa	gctgctaacc	ctttttcaaa	actggaatta	aaccaaagtg	16380
ctcaccctcc gctttgctgg	gcccctccct	gccctcaggt	gcgtctcttc	cactcacctg	16440
ccacagcagc ctctgctcag	ggtctgagac	cgggaaaggt	gagggctacc	caggtggccc	16500
tgatgttttc tgccagccag	g ctcaccaggt	ccctcgcagc	aggcggcaaa	gggagggagg	16560
tttgctgtga agattatgt	gttcccaaca	acaagagcgc	tgggcctatc	tctgccctct	16620
cttttctgtg tgtcctggga	caagtcactt	ggcttctgtg	gcttcatttt	ctcatgtgcc	16680
cagccagggg gttggcccto	atatgcaata	acagcagcaa	tgacctttac	tgagtgtcca	16740
tgtgcgtcaa gcacgtgtg	tttacacttg	ttcttattat	taggtttaat	aatagaataa	16800
ttgccacatt tactgagcad	tcattatggg	ccaggccctg	ccctaagtgc	ttaattagct	16860
ttagctcctc taatcctta	cttatcccca	cacggcatgt	tatgttatcc	ccattattca	16920
gttgagaaca ttgaggctca	a aagaggcaaa	gtaacttgac	caaatacttg	taaacgatct	16980
tgcatgcccc ttccagctg	catttagtaa	gactctaatt	tcataccacc	ctaaatctcg	17040
tetgettece cetegtect	ctcgccatct	ccccaccgag	cagttggcca	agatctgacc	17100
gtgatggcgg ccattggct	gggcttcctc	acctcgagtt	tccggagaca	cagctggagc	17160
agtgtggcct tcaacctct	catgctggcg	cttggtgtgc	agtgggcaat	cctgctggac	17220

ggcttcctga	gccagttccc	ttctgggaag	gtggtcatca	cactgttcag	gtattgggat	17280
ggtggctgga	tcacttctgg	gtcatagagg	gaatggaccc	cgaaaggaca	ggttccagaa	17340
gatctgggat	attgccccct	ctctgtctag	caccagtgct	gtgcaatatt	taggacatcc	17400
ttatactaaa	agattattca	ttgtttaaaa	ttcaaattaa	ctgggcatcc	tgtattttac	17460
tggacagccc	tactccgtgt	atcacaagga	atccaggcct	acattcctcc	tgcatccttt	17520
ctttcctgtt	attgtcgatt	atgattttgt	aaagttacat	aatcaatata	agtttatgga	17580
aaacgtaaga	aggaaacacg	ttagacagag	agaaatagac	atgccacacc	tagagagaca	17640
ttctattttt	tttttttt	ttgagacgga	gtttcacttt	tgttgcccag	gctggagtgc	17700
aatggcgcta	tctcggcaca	ccacaacctc	agccttctgg	gttcaagcga	ttctcctgcc	17760
tcagccgcct	gagtagctgg	gattacaggc	atgtgccacc	gcgcctggct	gattttgtat	17820
ttttagtaga	gatagggttt	ctccgtgttg	gtcaggctag	tctcaaactc	ctgacctcag	17880
gtgatccgcc	cgcctcggcc	tcccaaagtg	ctgggattac	agacatgagc	caccgcgtcc	17940
agcctgagag	acattctctt	gaaaagaaag	gactttcagc	cccctaatgc	tgctagacaa	18000
taaatagcca	tgcctttatt	ttcattaaat	tacctgtgct	ttgtttacat	gcatttgtgt	18060
gaaatgctaa	gaaccatcac	aactaatgta	tggtgccaga	agtcagaata	gttgttacct	18120
gggcaggagg	tggatattga	ttaggaagga	acacaaaata	accgcatggg	gtgcagaaaa	18180
tgttctctat	gttcacctgg	gtgatgatta	cacatcaagc	tatacacgtt	ttaaaagggc	18240
attggcactt	aataggagga	agtaggctaa	atttttcct	gaaacattgt	tttgttttgt	18300
tcaaacctct	gaatccctgt	gctgcccaga	tgatggtaaa	cgtcatccta	ggcatcttag	18360
ggacctctca	aggccattcc	agcctcccct	tctaagaccc	tgctaaacct	ctgggcactg	18420
ctgttaaaca	tttctctatg	agccaggaac	tgtgctgagc	actccacaaa	tattattttg	18480
tttaactctt	ccgggtaggg	atctaacctg	gtatacaggt	aaggaagtgg	aagctcagag	18540
agggcaaggc	acttgcctag	ggccacacag	ctaagtggtg	gagatggctc	caactttta	18600
ttataacctt	ttccacatgc	tccagagtgc	tcagaacatg	aaacacagtc	tagccagctc	18660
ccgattggcc	ctggagggaa	aaaactttat	atattttct	tttttaaaag	gtttagaggc	18720
tgggcatggt	ggttcacacc	tgtaatccca	gtacttttgg	gaaccgaggt	gggcagatca	18780
cttgagccca	gaagtttaag	accagcctga	ctaacacagt	gagatcctgt	ctctgcagaa	18840
aatagaaaaa	tcagctaggc	gtggtggtgt	gcacccacag	tcccagctac	ttgggaggct	18900
gaggcaggag	gatcacctga	acccagtgag	gttgaggctg	agtgagccat	gatcgtgcca	18960
cttcactcca	gcctggacaa	cagagtgaga	ccctgtctca	aaaaacagtt	ttaggggccg	19020
ggcgcagtgg	ttcatgcctg	taatcccagc	actttgggag	gccaaggcgg	ggggatcatg	19080

aggtcaggag ato	cgagacca	tcctggctaa	ctcggagaaa	ccctgtctct	actaaaaata	19140
caaaaaatta gc	cgggcgtg	gtggtgggcg	cctgtagtcc	cagccactcg	ggaggctgag	19200
gcaggagaat gg	cgtgaacc	cgggaggcgg	agtttgcagt	gaaccgagat	ggtgccactg	19260
cactccagcc tg	ggtgacag	agcgagactc	cgtctcaaaa	aaaaaaaca	aaaacagttt	19320
taggccaggc gc	ggtggttc	atgcctgtaa	tcctagtact	ttaggaggcc	tagcaggtgg	19380
attacctgag gto	caggagtc	cgagaccaac	ctgagcaaca	tggtgaaatc	ctgtctctac	19440
taaaaacaca aa	aattagct	gggtgtggcg	gcaggcacct	gtaatcccag	ctacttggga	19500
ggctgaggca gg	cgaatcac	ttgaacccgg	gaggcggagg	ctatagtgag	ccgagatcgc	19560
accattgcac tg	tagcctgg	gcgacagagt	gaggctctgt	ctcaaaaaca	aaacaaaaca	19620
aaaacagtct at	gagttaat	tcccaccaga	attcaataca	cacacgcaca	catgcacgca	19680
tacacacact gto	gtccacct	gggaagtgac	aaagggcacc	ctgggggatt	tcaaatggtg	19740
gtggccctgg tt	tggtgttg	ctgccttagc	ttaaggtcac	accagccttc	agcctcctgc	19800
cccacagtct ago	ggatgata	ccctcatctg	atgtccacag	ggacctgttt	gttcttgact	19860
caatctagaa ag	acgagaag	ggagagaagt	cactcgcagc	ctgagtgaac	tcccctgccc	19920
cacccctgac tg	cttggatc	cccctagggg	tgacccctgc	tgaaactggc	tccttcctga	19980
ccggttcccg tc	agggctgt	gctgatgggt	ggtgcccagg	cctgcccctg	gggacggggt	20040
actctccctt gg	caacactc	cagcttgtgc	cacttgactt	gggactgatt	tggttctgtt	20100
ttgagtccct tc	aggggagg	ggcctatctt	attcaacgtt	gttgtttgtt	ttcctcacat	20160
actgataact ta	gcaaatgg	ctattggagc	aaaaatgaaa	ataaacggaa	ctctgaagtg	20220
ggatgtttta aa	attttatt	tatttttta	gagacagggt	cttgctctgt	tgcccagtct	20280
ggagtgcagt gg	tacaatca	tagctcattg	cagcctgtgc	ctcctgggct	caagtgatcc	20340
toccacctca go	ctcctgag	ttaaattttt	ttacaggcgc	ctgctaccat	gccctgctaa	20400
tttttgtatt tt	tagtagac	aaggggtttc	accaggtggg	tcaggttggt	ctggaactcc	20460
cgacctcaag tg	atccacct	gcctaggcct	cccaaagtac	tgggattaca	ggcgtgagcc	20520
actgtgtcca gc	ctaaaact	gtttttgaga	cagggtctca	ctctgttgtc	caggctggag	20580
tgaagtggca tg	ttcatggc	tcactcagcc	tcaacctcac	tgggttcagg	tgatcctcct	20640
gcctcagcct cc	caagtagc	tgggactgtg	ggtgcacacc	accacgccta	gctgattttt	20700
ctattttctg ca	gagacagg	acctcactgt	gttgctcagg	ctggtctcaa	actcctgggc	20760
tcaagtgatc tg	cccacctc	ggctctgaaa	agtactggaa	ttacagcctc	ctgagtagct	20820
gagaccacag gc	acacacca	ccacacctag	ctttttttt	ttttgctttt	tgtagagatg	20880
gagtctcact at	gttgccca	ggctggtctc	aaactccagg	ccttaagcaa	tcctcccacc	20940
tcagcctccc aaa	agtgcgaa	gattacaggt	gtgagccacc	attcctggcc	ttaaaagtgt	21000

gatatttta	atgtattttg	aaatctgcag	gactctccct	agaagataat	agcaataacc	21060
aactccttta	ttgtgcttga	cgtatatcaa	ctcactttgc	ccttaccgtg	gctccagagg	21120
cattgggtcc	accttataaa	tggaggcacc	aaggcacaga	gtgattaaat	aaattgccca	21180
ggatcacaca	gccagaaagt	gtctgagtca	agattccagc	ccaggcagcc	tagacctgag	21240
agcacgctcc	taaccactgc	acatcactgt	cttagcacct	cctcagcaca	aactggccct	21300
tgaggaatga	aataccgccg	ccggcacaca	cgctcctgag	ttaagccttt	gtcaatgaaa	21360
tgaacaccca	cttaaaagga	ataacctgtc	caggcacgat	ggaacattga	gtaacccctt	21420
attctaaatt	cctggtccct	gtaagactcc	ttccccatgc	ccttgccctt	ttctgacctt	21480
cccctaaagt	ccttgaggct	taagcgggca	tagtctgcag	caaacactgg	ggaagctgag	21540
tccagacttc	agagcacagg	ctttggatct	aggccagctg	gatttgaacc	tcacatttgt	21600
gatcagctgg	catgactgtt	tccaaaaagt	ccattttaat	cctctacgtg	accctctgta	21660
aaatgggata	ctgaatggtg	agctagcacg	attttacaga	gagtgaattt	tttttgtgtg	21720
tgtgtgaggc	agtettaete	tgttgcccag	gctggagtgc	agtggtgcag	tctcggccca	21780
ctgaaacctc	tgcctcccgg	gttcaagcga	ctgccatgcc	tcagcctcga	gagtggctgg	21840
gattacaagc	atgcaccacc	atgcccgggt	aatttttgta	tttttagttg	agacagagtt	21900
tcaccatgtt	ggccaggcca	ctcttgaacc	cctggcctca	agtgatccac	ctgccttggc	21960
ctcccaaagt	gctgggagta	caggcatgag	ccactgcacc	cagccttata	gggttaaaat	22020
ttaaaagagg	tgatgctgtt	acaagcctgt	tttacaaaat	gctcttataa	taaatcatta	22080
tcatcactgt	tgctgtggtt	gtagcatcat	catcattaac	tcccagaggg	aggagggagt	22140
ctcagagcaa	gctgctcagg	ggagactgga	tgtccatgga	ttgtccagct	cagtaccact	22200
tcctccagga	agtecteect	gataagtcca	gtcagcatca	ccctctcctt	ccaatgaacc	22260
ccactagcct	tgtgatatca	cagatattct	tagttgacag	gctcatggtg	tagcctgtct	22320
agatcataag	tacatttttt	tttttttgg	atcataagta	tcttcaagac	caaaataatt	22380
ttctactcct	gagcatgctc	attggtcaaa	ggaaggaagg	aatcataata	gcgttaataa	22440
ggctagcgtc	ttttcagaag	ttggttcttt	gtgccagtct	tggtgctaga	cacaccgata	22500
ggaagaatac	tccttcacat	ccccaggaca	ccaacatggg	atacgtttga	tcatcattct	22560
taatttgcag	aaggagaaat	aggctcagtg	agatgaaata	gccactccag	tggcaaggct	22620
gggactggaa	gccgggcttg	tcctgattcc	aaatccagtt	tctttccact	gccacggaga	22680
cggagagaag	ggacagtggc	cccagatggg	gatggggtga	ctggatgtgg	gcaggcctgc	22740
gggggaagag	tgccctctgt	tgagcatccg	aatgatggca	gcagaaaaga	agactgggca	22800
gaatcccagt	tatcagatcc	cctgagggaa	cagtcacccc	gatcaccctc	agtcagatga	22860

gtgtgtgtag atcaatgcct	catagatgaa	ggcactgagg	cacagagtgg	ttaagtcatc	22920
tgccagacca catggctcag	ggtgcagagg	ccaccttaac	gggagaagag	atggtcactc	22980
cactctgcag catcagcgcc	caggtgggta	gaaatcttgt	cttctattcc	cacagaaagt	23040
aggtgcccaa cagtgtttgt	tgaaagaatg	aatgaatgaa	tgaatgaatg	aatgaatgag	23100
tgagaggcat ccttccttct	cagtcgtcct	ggctctccct	ctctccccca	gtattcggct	23160
ggccaccatg agtgctttgt	cggtgctgat	ctcagtggat	gctgtcttgg	ggaaggtcaa	23220
cttggcgcag ttggtggtga	tggtgctggt	ggaggtgaca	gctttaggca	acctgaggat	23280
ggtcatcagt aatatcttca	acgtgagtca	tggtgctggg	aggagggacc	tgggagaaaa	23340
gggccaaaag ctccatttgg	tggggtttcc	agggttttga	aaaataaaga	caacctgtaa	23400
tcccagctac ttgggaggtt	gaggagggaa	gatcacttga	ggccaggagt	ttgagaccag	23460
cctgggcatc atagcaagat	cctcatctct	aaaaagtaat	tttttctaaa	ttatccagtt	23520
gtggtggcat gcacctgtag	tctcagttac	tcaggaggct	gaggtgtgag	ttggaaggat	23580
tgtttgagcc caggagttag	ggaccgagct	gggcaacata	gcaagacctc	atctctaaat	23640
aaataggtag gtggatagac	agatagatag	atagacagac	agacagacag	acagacaggc	23700
tgggtacagt ggctcacacc	tgtaatccca	gcactttggg	aggccaagga	gggcagatca	23760
cctgaggtca ggagttcaag	accagcctgg	tcaacatggg	ggaacctcat	ctctactaaa	23820
aatacaaaat ttagctgggc	atggtggcag	gcgcctgtaa	tcccagctac	tcaggaggct	23880
gaggcaagag aatcgcttga	acccgagagg	tggaggttgc	agtgaaccga	gatcgcgcca	23940
ttgcactgca gcctggggga	caagagcaag	acttcatctc	aaatttaaaa	taaagaaaaa	24000
agaaaagaaa agattgatag	atagatagat	atccaaatga	gtttacaaaa	atgtggtctg	24060
tgcaaatgtt taaacacaac	aaaccaatgc	ctttaactac	tacagtataa	tcctgtagga	24120
ttgtgctatt catgatataa	ttatggttat	ataaaagtaa	ttaattctca	gagcctcacc	24180
agcagtgggt ccagcaagtt	tgtacagcca	gcatcttctt	tcagtcagtg	cgtgtcagta	24240
actgcatatg tcctctcatt	gggagagcct	gtcgaaagtc	taaatttgaa	ggcagctgtg	24300
aaggtaaggc caatccaaat	ggctctccca	gatcctctgc	tgtaaccctg	accctgagtg	24360
aggacatage caacetteee	atctcatagg	tgagaaagct	gatgcctgga	gaggggaagg	24420
gactgcccaa gatcacatag	caagatagtg	gcagaaccca	agcgagaacc	cacagttcca	24480
gcctggctta gaagaaagtg	cactggactt	ggagtcaaag	gctggggttt	gcatcccagc	24540
tctgccataa atccctgtgt	gactctgggc	aatttaacct	cttagagctt	tagtttcttc	24600
atctgtaata tgagggtagc	agtactacca	catagggttt	tgagggagta	attgaattaa	24660
tcacatgaga tgatgcatgt	ttacaaaaaa	aagcatgaag	cccctttact	gtgcctcagt	24720
gtcccaaagg actttggatt	ttactctgag	aaatacaggg	agaactaggg	agtgttgggc	24780

agaggagagc	catgatctga	cttatgtttt	aagatactct	ggcttctggg	ttcagaaaag	24840
actgaagggg	caagagagga	agcaggtgga	gaccagagcg	gcagtgattg	ccatcatcca	24900
gactcagact	aggacaatag	ctgtgagagt	gatgggaagt	ggttggatcc	tgactgtatt	24960
ttaatagcag	aattgacagg	atttgctgat	agactgcacg	tggggtggga	gagggtcaag	25020
atgacttcaa	ggttctcatc	tggcacaact	cagcggctgc	tggtgccatt	tactgagatg	25080
gggaatgttg	gggtgggata	gatctgggag	ggaaaaccca	gagttcagtg	tcgaatgtgg	25140
tagcgttagg	gttaaggttg	ggggagggg	ggtagagatg	tgtatgaaac	atcccagtgg	25200
agacactgaa	tggagatgta	caagtctgaa	gcttagtgga	aaggttaggg	ctagggatat	25260
aaatttggga	gttgttacaa	tacagatggt	gtttaaagcc	atgagaccca	aggagatcac	25320
tcaggagtga	ggataaagag	agatgggaag	aagtctgagg	actgagtcct	agaacaccct	25380
gcattttaga	ggggggacat	gtgtaagagc	cagcaaagga	gacagaattg	tgcttggaga	25440
ggcaggagga	agcccaggag	agcgtgaggt	cctggaaggc	aaggaaagag	agggccccag	25500
gtgggctgaa	tgctgctgag	aggtcaagtc	ggatgagggc	tgggaagtag	ccattggatt	25560
tggccaggag	accttggcat	gcatggttgt	agaggaggat	gaaggcaaca	gcctggcttg	25620
actgattcaa	gagcaggaga	tgagaaagtg	gagacagcat	gcaggggcag	ctctgccaag	25680
gactttgcta	taaaggggaa	cagagaaatg	gaggagaagc	aggagggcaa	taatccgata	25740
gagaggaaaa	atctgatgat	acagaagaga	gatgaactgc	aagagtcaag	cctttgagtt	25800
ggaaagcagg	agtgggattt	tgagcactga	tacctttagg	ccgatgcagg	gacagttcat	25860
ctttttttt	tttttataca	acattttatt	taaaaaaatt	attttcatag	aatacatttt	25920
cacattagag	attcccattg	tgcggaaata	acaatttatt	acttatagtt	ttatatttgt	25980
ggacagattg	ttttagaaca	agtagaatac	atttgagaat	taaatctcag	tttacaatgg	26040
ataatatttt	gatatgtctc	tggggaaact	tgcccttaaa	tggaacttct	gtatcttcag	26100
aagcactcca	agcgtttctt	cctaggattt	agaaatttat	aatatgagat	agcagcattt	26160
cctaatttta	aaatttccct	agtatatgta	accatcagta	ggtggtatct	actgactaga	26220
gagggaagtt	tttgaaaatt	aaacactgtc	taattttctg	caaagttttt	attcatgaat	26280
taagagtatt	tccctttgtc	cattattccc	aaggcaaata	tggaaatttg	atcatgtact	26340
aatcataata	aagctggatt	ctctttaaga	gattgagaaa	ttaaaaggca	aaagctgata	26400
tatcatgttt	agttatattg	tgagtcttat	aagaagctgg	gaggcaaccc	cattaactca	26460
ccagaataca	gaactcagtc	tcacaactta	gatataattc	ctctcaaacc	ttttcctcaa	26520
agattaaatt	ctgaaaataa	tcttgtgatt	aagagaagaa	ggctgtccac	caatgggctt	26580
atctgttatt	tcttccttat	tgtgagctta	atggcatgac	aaagcagagg	caaagaggca	26640

tacatcaatt	cttcaaagta	ggaagtcaaa	aaggtcagag	cttccacagc	atggcaacag	26700
ctttgcagat	gcccacatcg	tgatagttga	aatagcaaag	cccagcaaag	gttaaagctg	26760
aaaatgccaa	aagccctgcc	ttggcagctt	tctgcgaggc	atccccatga	acataatcag	26820
taacaacttg	tccaaggccc	cagtgaccat	gaagagtgag	ggctgcagcc	agggaatagt	26880
ccgtcgcaga	gcaaggattc	aaataagcag	ccggaagcag	acccgggagc	aaaacactga	26940
caaccctctc	gctagtccag	tggagagatg	cagccttgga	gccagaatgg	tggctcggtg	27000
acaagtgtat	gtgctgcact	ccacaccatt	ctgggatagg	tcggtcctga	agaaatgctg	27060
agatatgagc	aggtctgacc	actggagttc	gcagcaacag	agctcggcct	ccttgggcac	27120
cgcaaacggc	actcagcctc	cagggaaccg	ccatctcgtt	cctgaggcgg	agagttcatc	27180
ttaacgagag	aaatggcagg	gactgtgaat	aggccggcag	atttggtggc	gggtgccaca	27240
ggttcagtct	cctgcaggga	gaggagaaaa	tgccttacta	attccttgta	ttttctcaga	27300
gaaacaagag	gcaccgtcat	cagcctcatg	tgagggtggg	aaggagggat	ggggtttgcg	27360
gagagggaaa	gtgtggtatg	gtcatctgtg	ggagtggaag	agagtgagag	ggctgcaggg	27420
gtgcagcggg	actgcaggct	ggcaccaggg	tccctagggc	ttgtagttgg	tggaaagtgc	27480
atcagtgacc	agggctgtgt	gcagctgctc	caggcaggtg	tggaagaagc	agagttgaac	27540
ttgcccagcc	tggagtgctg	cccagagtga	gcccaaagcc	caggggagac	cagagatggg	27600
gctgtttgca	aaggaggaag	tataacagta	gcccacaaaa	tctgagctgg	ttaagaaagg	27660
agagagagtg	aaaatgggga	gcccagcctg	gcagcctggg	tacacatctc	agctcaaccc	27720
acactagctg	aatccatttg	ggccccttcg	ttgacctctc	tgtgcctcag	tttccctatc	27780
tatagaatgg	ggataagaat	aaggctactt	cctagggctg	ttgtgaggat	tgaacaagtg	27840
accgaacact	tgttcaattt	tgaacactgt	tctaaagcat	ttaggacagt	gcctggcatg	27900
gggtaagtgt	tgcggcagtg	ctgttatttt	catcatcacc	attgttctca	ggctgcgttg	27960
attggagctg	ctgaagggag	gcaatttaag	gaagtgagcc	ggacagatag	gaggtggtgg	28020
tggttatcag	gtgcgatgct	tgaaactgag	gcttcggagg	caacagttac	tggtaatgac	28080
aaggtctaag	gcttgacagt	gggtggcaga	agtgtaacgc	agggaaagag	acgagcggtc	28140
aaggagccga	gagggaagga	gttgggtgga	ctaagatcat	ttgtggaaga	atgatggaga	28200
gaaaggctga	agggcagggg	ctgacatcat	cagtgaccaa	gaggcggccg	ggaggctgag	28260
accacagcaa	gaaagggaga	gtgtgatggc	atcttcttca	agggagctgg	ggatgtttgg	28320
ggtggaaaaa	agaacaatgg	tctgggaggg	aatatgggaa	atttttttt	tttttttt	28380
tttttttt	gagatggagt	ttcgctgttg	tcatccaggc	tggattgcaa	tgttgcaatc	28440
ttggctcact	gcaacttctg	ccttccaggt	tcaagtgatt	ctcctgtctc	agcttcccga	28500
gtagctgaga	ttacaggcac	acaccaccac	gcctggctta	cttttgtatt	tttagtagag	28560

acggagtttt gccatgttg	g ccaggctggt	ctcaaactcc	tgacctcagg	tgatccaccc	28620
gccttggcct cccaaagtg	tgggattaga	ggtgtgagcc	accgcgccca	gcctggaagt	28680
ttgtatttat taatttttg	g ttgtcttcat	ctgtgtatgt	gactttaacc	cctaaatact	28740
tcagtgtaca tttcttttt	ttttttttt	tgagacagag	tcttgctcca	tcaatcaccc	28800
aggctggagt gcggtggtg	gatctcggct	cactgcaacc	teegeeteet	ggattcaagc	28860
aattcttgtg cctcaccct	c ccgagtagct	gggattaggg	gcatgccacc	atgcccagtt	28920
aatttttgta tttttagta	g agatggagtt	tcaccatatt	ggccaggctg	gtcttgagct	28980
cctggcctca gttgatcca	c ctgtctcagc	ctcccaaatt	gctgagatta	caggcgtggg	29040
ccaccataac cggcctcag	gtatatttct	gatgcagttg	ggttctgtat	cccctccaa	29100
tctcatctcg aattgtaate	cccacgtgtt	gagggcatga	cctcgtggga	ggtgattgga	29160
tcacaggggt ggtttcccc	atgctgttct	tgtgacagtg	agtgggtttt	caggagagct	29220
gatggtttga aagtgtggc	a cttcctctct	ctctttctct	ctctctctca	cctgacacca	29280
cgtaagatgt gccttgctt	c cctttcacct	tccaccatga	ttgtaagttt	cctgaggcct	29340
ccccggccat gccaaactg	gagtcaattc	agcctctttt	gtttataaat	tacgcagtct	29400
caggaagtat ctttatagc	a gtgtgaaaac	agactaacac	aatttcctaa	aacaagggga	29460
cattctctta cataacctt	tttcagttaa	caaaaatgag	aaattgacat	tgatatatta	29520
tgattacctt attctcatt	caccaatttt	ctcaataata	tcttttctag	aaaaaaatat	29580
atattttttg tggtcgagga	a ttacatcttg	catttagttc	tcatgtctta	ttaaattcca	29640
tcaatctgga gcagtttct	catctttctt	tatctttcat	gaccttgaca	tgttttgaag	29700
tttcgagcca gttcttttg	agaatgtggg	tttgtctgct	gttcctcatg	attagattgt	29760
gggtatgcat ttttggtag	g aattotocaa	gagccgtgtg	tgcccttctt	agtatatcat	29820
atcagaagac atgctatca	a tttgccccat	tactgggtgt	gttaactgtg	atcattgggt	29880
taagatggta cctgccagga	a tcttccactg	caaagttact	attttcccct	ttgtaattaa	29940
taaacatctt gtgaggaga	aatttcctat	agaaatcctg	ttgatcatcc	aactttcacc	30000
cactgatttt agtgttcat	gattetteee	tgaataaatt	agtactataa	taattgccaa	30060
tggtggtttt ctaattcca	ctttccttca	gtagttggca	ttcttctgta	aggaaaagct	30120
ttcgcttctc tgttcatcc	a ctcatctatg	tacttattta	tatcaccatg	ggctcctgga	30180
ttccggttta cacacttcc	a ttttctgcct	tttctctctg	cttaatataa	ggattaatga	30240
gaactccctg attcccagga	a agaaaatgtc	agcagagctt	tcttaggcgg	aatgaagaga	30300
attcagtgta agaaccata	a aggtgtatct	gtgtagtatg	gacagtttta	aaaaacaaac	30360
aaacacaaag aacctccaa	g ggcaggaggt	gctgccagac	tcaggagggc	actagaactg	30420

gctatgagaa	gccactgaga	tcccaggtag	tctgtgctct	ccatcttttg	gctcttattc	30480
tctccgtaca	tctaacatct	ctgtacacca	gctttctctt	tagcgaaaaa	cgtgtcccct	30540
ccacccaccc	atccacctcc	acttgttcct	gcatttctat	gtcccagatc	ctgcagaaaa	30600
caactctttt	ctctcagtta	gtctcaattc	tgtagtccag	ggagagagaa	tctgatcagt	30660
cccctgggtc	atttttccac	tctggtccaa	gcagctacag	ctggcatggg	aaatagttca	30720
cacagtaaaa	acatggctgt	caagaagagg	agtaaatttc	agaggcagaa	cactccctgt	30780
gagcccgaac	ctcttcctgc	tttgttgcag	tcttcataac	gattgcttta	aaagactgca	30840
ttgatataac	atcatctctc	ttctctgcat	ctttgacttg	ctagcttaac	tggtctagag	30900
gagggcttag	cactgatttt	gagtattcat	tttcctcaaa	acttcaattc	agcctgggtt	30960
tcttcagcag	gagggcccgg	gggaaccaga	gccagggacc	agagtcattt	cagtgcacca	31020
gctcaagaaa	tgaatattcc	aggccaagaa	tccccaagtg	ttcttcctga	actccttcct	31080
ggtggagttc	aaagagatga	aaaacacaag	cccgcttttc	agttcttatc	aggaaactgc	31140
atagactttc	ctctttatgt	atgactgagg	gctttttacc	atcatttgtt	cccttcacaa	31200
atatttattt	ggtatttact	atataccagg	gactcttgtg	gcagtggaaa	atacaactct	31260
catggaacgt	ctgttccaga	aggaaagact	gccaataaac	aataaaatag	gcaaaagata	31320
tagcatgtta	gagagtggta	agtaccacag	ataaaaatga	aatggagaaa	agaaacacga	31380
aaagttgggg	agagaggata	actgtttgag	agggtggcca	ggggcagctt	catcttatca	31440
agagggtgat	tttttgagta	cagacctgaa	ggtaacgagt	gcacaagcca	tatgggtacc	31500
tgagaacagc	ggcagaacaa	tggcagggtg	ctgggagggc	tgtttaccag	ccacgctgtt	31560
tagaattgtc	agcacatggt	gataaaaaaa	aaaaaaaaa	aaaaaaaaca	ggctgggagc	31620
agtggctcat	gcctgtaatc	ccagcgcttt	gggaggccaa	ggcggatgga	tcacttgagg	31680
tcaggagttc	gagaccaggc	tggggaacat	ggtgaaaccc	cgtctctact	aaaaatacaa	31740
aaattagccg	ggcacggtgg	tgggtgcctg	taatcccagc	tacttgggag	gctgaagcag	31800
gagaatcgct	tgaacccaac	gggtggaggt	tgcagtgagc	caagatggca	ccagtgcact	31860
ctagcctggc	gacagagtga	gactccgtct	caaaaataaa	taaataaata	aatacaaata	31920
aaaagcagac	agacttttta	gttggcttta	gaattcttag	acaccctcta	cagacaaggc	31980
accccgattg	cttgcaccca	gggtggacta	ctccctccac	cctgcccttg	ttacaccctg	32040
gctgggggtc	agcatttcag	gcagctgaat	gacccaaagt	gggaacacgc	tagtgggttt	32100
gaggatgagc	aagtggagga	gggcaatagg	aggtgacgcc	cgagaggtca	ggtgagagtg	32160
gatcctgcag	ggtcgtggca	agaacctgga	ccttgacttt	gagtgacatg	ggagccgctg	32220
gaggcttctg	agcagaggag	taacatgatc	tgacttgcat	tttattttat	ttatttattt	32280
gacgcagtgt	cactctgtcg	ctgaagctgg	agtgcagtgg	cgacatctca	gctcactata	32340

gcctccgcct	cccaggttcc	agtgaatctc	ctgcatcagc	ctcccaggta	gataggatta	32400
caagcaagca	tcaccacgcc	tggctaattt	ttgtatttt	agtagagaca	gggttttgcc	32460
atgttggcca	ggctggtatc	gaactcctga	cctcaggtga	tccacccacc	tcagcctccc	32520
aaagtgctgg	gattacaggc	aaaattagaa	tatatctaga	atttcctgaa	gaccttagtt	32580
tggtattata	agaagtctgg	ttgcttcatg	ttgcaaaatt	tatatcactc	atcactcccg	32640
cagagttaaa	attccgctga	gaagtaggaa	tcagtgaggt	gcgtgtccat	gtgggtttt	32700
gccacaccta	agtgaacctt	ggtcaaaagc	atataagagc	tactgatagg	ccgggtgtgg	32760
tggctcatgc	ctgtaatctc	agcactttgg	gagggaagga	tctcttgagc	ccaggagttc	32820
aagaccagcc	tgagcaacat	agcaagattc	catctttaca	caaaatttaa	aaattggcca	32880
ggcatggttg	tacattcctg	taatcccagc	tactcaggag	gctgaggtgg	gaggattgct	32940
tgagcctggg	agttggagac	tacagtgagc	tgtggccaca	ccactgcact	ccagcttgag	33000
caatggagca	agactctgtc	tcaaaaaaaa	aaaaaaagg	ccaggcgcag	tggctcatgc	33060
ctgtaatccc	agcactttgg	gaggccgagg	cgggtggatc	gcctgaggtc	aggagtttga	33120
gaccagcctg	gcaaacacgg	tgaaacccca	tctctactaa	aaatacaaaa	ttagcccagc	33180
gtagtggcgc	atgcctgtaa	tcccagctac	tagggaagct	gaggcaggag	aatcgcgtga	33240
acctgggagg	caaatgttcc	agtgagccga	gatcgtgcca	ttgcactcca	gcctgggcag	33300
agcctgctgg	gttgggctgg	gtaagctctg	aacaccagtc	tcatggcttc	aagtcacacc	33360
tcctaagtga	agctctgaac	tttctccaag	gactatcagg	gcttgccccg	ggcagaggat	33420
gccgacactc	actgctctta	ctgggtttta	ttgcagacag	actaccacat	gaacatgatg	33480
cacatctacg	tgttcgcagc	ctattttggg	ctgtctgtgg	cctggtgcct	gccaaagcct	33540
ctacccgagg	gaacggagga	taaagatcag	acagcaacga	tacccagttt	gtctgccatg	33600
ctgggtaagg	acaaggtggg	gtgagtggtc	tcctacttgg	gctgagcaga	atggctcaga	33660
aaaggctctg	gctgaaaaaa	tatacatact	ttaccaagtt	cccctgggtg	tctgaagccc	33720
ttccatcatg	attcatttct	ttgagtagtg	tttgctaaat	tcataccttt	gaattaagca	33780
cttcacagag	caggttcagg	aggcctgggg	tatgcagatt	tcaaccctct	tggcctttgt	33840
ttccttgtct	gtaaaatgtg	gttagctggt	atcagcttga	gagctcggag	gggagacgtg	33900
acttccccat	ctaactctaa	gtgacaaggc	tgagactctc	cagccctagg	attctcatcc	33960
aaaacccctc	gaggctcaga	cctttggagc	aggagtgtga	ttctggccaa	ccaccctctc	34020
tggcccccag	gcgccctctt	cttgtggatg	ttctggccaa	gtttcaactc	tgctctgctg	34080
agaagtccaa	tcgaaaggaa	gaatgccgtg	ttcaacacct	actatgctgt	agcagtcagc	34140
gtggtgacag	ccatctcagg	gtcatccttg	gctcaccccc	aagggaagat	cagcaaggtg	34200

agcagggcgc	tgcccttggg	cagcacttgg	gtctaacagg	actagcacac	atatttatgc	34260
ccctccccac	cccagggcca	gcgtgggttg	ggagagggca	tgccgggtgg	tggagctgtg	34320
cctgcctcta	cagtggagct	ctaggtagaa	tgctgggtgg	tcacagtggg	cctgggactc	34380
aggagactgt	ccagtgatca	aaggctttct	gggggtagtg	attaaatcca	tccatgctaa	34440
catgaaacag	acctcagttt	gaaccccatt	tctgctagtt	gctaaagtca	gtcaccatga	34500
gcgagagtca	gcagcaacag	actagactag	aattagccag	cctctctctt	cccccaaca	34560
aatttcaaga	atggaaccat	cagaatcaga	agtagagaag	tatgtgacac	tagccatgtg	34620
gctctggtca	agccacttca	acgttttgag	tctcagtggc	ctcatctgta	aagtgggaat	34680
taagagatgg	tgcatgtaaa	gtgcttaacg	gggagtaaat	ggtaggcaaa	cattagctgc	34740
tgctattagt	aaagagagac	gatggtgtgt	gtgagtcttg	tgggcagaga	tgggtgagag	34800
gggagacaaa	acaagttctc	atgatgatgg	gggaaggggc	tccagctggt	ggtgtcggag	34860
ggaagtctgg	acagaccagt	ggtggggctc	gggtgggagg	cactgggggg	gctggagtgg	34920
aaagaatgtg	gccacagatg	acagcttcac	agcagaattc	agtgctaaga	ggaagtgagt	34980
ggccatgagt	tccatggtga	cagaaagtct	aagacaccca	gcaaggcagg	agtgggtgtc	35040
aactcaggga	agcccagagg	ctaatcctag	gtgagagctg	agggtgtcag	ataagagcaa	35100
ggcaaggctc	cggttctgga	gcagtgaagg	acatagcaga	gctatgaccc	aggaacaagg	35160
cccagcttat	tgaaactggg	cccagtcaca	cagggtggca	caggcaccaa	gtagccaata	35220
ataataataa	aaacaataac	aatgatttgt	gtctactggg	catttattca	tgttctatgc	35280
cagacactgg	gctaagagct	ttatatgtgg	aaactcattt	aatccttaca	ataaccttat	35340
gaagaaggta	catccaaaac	cccattcttc	taggccaggt	gcagtggctc	acacctgtaa	35400
tcccaatatt	ttgggaggct	gaggcaagag	gattggttga	ggccaggagt	tcaagaccag	35460
cccaggcaac	atagcaagac	cctgtctcta	aaaaataaaa	caaaaaccca	ttcttcccgc	35520
tgcccaggga	cacaccacta	atgagtgtga	tgggtgccta	ggatgctgag	cacctggact	35580
tcccagctca	ttccctaaat	gctgcacaat	cagggtaact	gtgccctgag	cctaagaggc	35640
agtagtgagc	tggcccatca	tgtccactga	tgaaggacac	gtagccccaa	cacaggggag	35700
aagtggtttc	aggatcagca	aagcagggag	gatgttacag	ggttgccttg	ttcccagcgt	35760
gctggtcact	tgcagcaaga	tggtgttctc	tctctacctt	gcttccttta	cccacacgct	35820
atttctttgc	agacttatgt	gcacagtgcg	gtgttggcag	gaggcgtggc	tgtgggtacc	35880
tcgtgtcacc	tgatcccttc	tccgtggctt	gccatggtgc	tgggtcttgt	ggctgggctg	35940
atctccgtcg	ggggagccaa	gtacctgccg	gtaagaaact	agacaactaa	cctcctctgc	36000
tttggctgaa	ggccagcagg	acgctgggac	ctgatgggcc	actgtgcagt	gcacagctgc	36060
attaggcagg	tgtcggcgca	ttctcttatt	ggcttcaacg	cctagtgagg	gatccatcct	36120

ggctcggtgg	cgcatttgtt	aagatgctcg	ggagcaggtg	gcagaaccca	tttgagcttg	36180
cttgggcatt	ggggagaatt	tgttatcagg	ctactggggt	gtcacagaac	tcaaggacag	36240
ggactggagt	gttgtgggga	gccccgaagc	ccctgtttta	cttctttctt	tgcttttcct	36300
gaatatctgc	tttattctta	ctctatagac	atgcttcctc	ctctttcacc	ccacattgtg	36360
gggtgtagtc	ttttgcttca	agaaagcagc	ctggtggatg	gaatctcttg	gccccaatcc	36420
caaattctct	ggagaagggg	ctctttggtt	taacttggat	aatgttgtct	tcagctgggg	36480
gtgggcacat	cgtgcatatg	tggctgctgc	cggggaacca	cgtggatgat	gtgagaggag	36540
cagcacccag	aagagggagt	gctgggctga	tggtccaggt	cgtgtccact	tctgattgtt	36600
taattcttct	tctaagtgga	tggatctttc	tccaatactc	agcaaatcct	gatcgttcca	36660
gaatacttca	ttatagccaa	ttggttataa	tgtgcttctc	taagagaaat	atttagggac	36720
aacaaatctt	catgggtttg	aagacttgat	ggaggaaaaa	ggagtagatt	ttcgaaggct	36780
ggatttggat	gaacaggggc	tattcaggga	gtgcattcca	acctaaaatt	aggaaaaact	36840
ggctgggcgc	agtggctcac	gcgctttggg	aggccgaggc	gggcagatgg	cctgaggtca	36900
ggagttcaag	accagcctgg	ccaacatggt	gaaacccatc	tctactaaaa	gtacaaaaat	36960
tagccaggca	tggtggcggg	cacctgtcat	cttagcgact	caggaggctg	agacacgaga	37020
atcacttgaa	cctgggagac	agagcttgca	gtgagctgaa	atcgtgccat	ggcactccag	37080
cctgggcgac	agaacaagac	tctgtcttaa	aaaaaaaaa	agtggtttat	atacagagtg	37140
gaatattatt	tagccataaa	aagaatgaaa	tcctgtcatt	tgcagcaaca	tggatggaac	37200
tggaggtaat	taaaaaataa	aattaaataa	ggaaaaacgt	atcaatactt	cgattaacca	37260
aaaccagggc	aaatctgatt	ttcatctttg	caaggggaac	aaatttcttt	tatctcctct	37320
ggctttgaaa	ccctgaaatg	aaaggaggaa	gggcagaaaa	aagaacacat	agcaagttat	37380
catcagtctc	agcgcccatc	gcattccctg	agcttgtttc	cttgacttca	tcactggcag	37440
gactattcaa	aaatgattcg	ctcattcatt	catatattca	ttcattcatc	attccttcat	37500
tcaacacata	cgttttaaca	ctcatcttgc	ttttcaagct	atagtttagt	gagcgaaatg	37560
gatacacaca	atacagtgtg	agaacagcaa	gagggcacat	ctgagctagc	ctgggatggg	37620
tctggaaatg	cttcctggag	cagaggaaac	ggttgacagc	caagtgttga	cagagaagta	37680
gtattagcca	ggcagagaca	tggggaatgt	attccaggca	gaaggcacag	tgtgtatgaa	37740
agcttattgt	taagaagagt	gtgtggccca	accaggaaac	agacattcta	aaggcatagg	37800
gtccacccag	gagcatggtg	gacccagatc	cctgaaagat	gggaggtgct	caggcacact	37860
tcctgggcta	gttgaggagt	ctggatattt	atttatttat	ttatttattt	atttatttat	37920
ttattgagac	agagtctcat	tctgtcaccc	aggctggagt	gcagtggtgc	aatctcagct	37980

ES 2 761 567 T3

cactgcaacc	tccacctcct	gggttcaagt	gattctccta	cctcagcctc	ctgagtagct	38040
gggattacag	gtgcccacca	ccatgcctgg	ctaattttcg	tgtgtgtatg	tattttgttg	38100
ttgttgttgt	tgttgttgtt	gttgttgttg	agacggtgtc	tcgctctttt	gcccaggctg	38160
gagtgcagtg	gcgccatctc	agcttactgc	aagctccgcc	tcccgggttc	acaccattct	38220
cctgcctcag	cctcctgagt	agctgggtct	acaggcgccc	accaccacgc	ccagctaatt	38280
ttttgtgttt	ttagtagaga	cggggtttca	ccatgttggc	cctgctggtc	ttgaactccc	38340
gacttcaggt	gatccaccca	tgtcggcctc	ccaaagtgct	gggattacag	gcatgagcca	38400
ccgtgcccaa	cctggatttt	tattctgaag	actaataggg	attctaagga	aggaaccagc	38460
ctgattgaat	ttgcatatgt	gtccacatct	gctggctcac	ggctgtgtgg	gaggctgagt	38520
gatggggagg	aaggattact	gagtagggat	ctgaaggtgt	ggcctcatgc	tttctttcta	38580
accagctgtg	ttgtctttgg	gatggtgctt	aaatttgggc	tagaccagtg	ggtcttggtc	38640
accccccagg	ggacatctta	caatgtctgg	aggcgttctt	ggttgacaca	gtggggtgag	38700
ggctgctact	ggcagctcgt	ggggagagac	cagggatgct	gcttaacatc	ctacagtaca	38760
cagggcagcc	cccaccacaa	ggaattatca	gctgaaattg	tgaacagtgt	ctacactaga	38820
cccttgctac	tcatagtgtg	gtccgtagac	cagcagcatt	ggcatcacct	gggaccttgt	38880
tagaaatgct	gttagacccc	accccacatc	cactaaagcc	agctcttcat	ttcaacaaac	38940
tccccgatga	tgtgagtgca	cattcaagtc	tgagaagggc	ttctttgagg	tgagccttag	39000
tgcccatccc	cctttggtgg	ccccggatac	caagggtgtg	tgaaaggggt	gggtagggaa	39060
tatgggtctc	acctgccaat	ctgcttataa	taacacttgt	ccacaggggt	gttgtaaccg	39120
agtgctgggg	attccccaca	gctccatcat	gggctacaac	ttcagcttgc	tgggtctgct	39180
tggagagatc	atctacattg	tgctgctggt	gcttgatacc	gtcggagccg	gcaatggcat	39240
gtgggtcact	gggcttaccc	cccatcccct	taacactccc	ctccaactca	ggaagaaatg	39300
tgtgcagagt	ccttagctgg	ggcgtgtgca	ctcggggcca	ggtgctcagt	aggcttcggt	39360
gaatatttgt	tggctgattt	attcagaaat	tctgtccagc	ccctaccttg	gatggattta	39420
tcacctctcc	aggccacctc	ttctttccaa	atagggccac	ctaggtatag	accaaagaca	39480
cgaaatcttt	tgtgatccca	caaacacaga	gcaggtcaaa	taggcccaag	ccaattgaga	39540
ctgtggttca	ggtcgtgatg	cagagctttg	ctgtggacgt	gctcccactg	cgtactagct	39600
gggcatgtgg	cttaaccttt	ctcagcctca	gtcgccccat	tgtaaatgga	gataatgata	39660
ctatctcccc	tcacaggact	gttgggatgc	tactggattt	aataagctaa	tgcagggaca	39720
tgctaagcac	aacccatccc	tgaggcccag	agaggggtgg	gccttggctg	aggtctcact	39780
gcgaggtggg	aatgtgggcc	tccagaccag	aggtaggtcc	tgtggcccct	agacagtgga	39840
cagcaatggt	cagtttgaca	caccagagcc	ctagccatta	cttcctggat	gttgtgtgaa	39900

tattttctgg	acatggctta	tataaaatga	aaaagtgaat	tgggcacgat	acagggatag	39960
atttttagag	atgaactggt	agcatgatga	taatcatatt	cactgataac	atttactact	40020
gttattgact	gctttaaaag	tgttgggcat	tgtgctagaa	accattatat	gcattatctc	40080
cttgaattct	cacaaccgcc	tactgaggta	ttctcagact	ctaagaaatg	agatttaaga	40140
gaagttatct	gcccaaggtc	actcggctgg	aacctggctg	taaaaatggc	tgaagcaggt	40200
gatgaggagc	tgatgcgttt	ggacgtgtct	cagagaaatc	atggaggcgc	tgcggttcct	40260
accggttctt	ggatgccttc	tacagagaca	accatagccc	caaattatag	ggatcacata	40320
tcagtgggtg	agacatcctt	gcttgggatg	aggaggggat	gagctgtgtg	aagcaaggcg	40380
cctctgtgat	gggttccagt	gatgtgtctg	ccactgtctt	aataactgtg	caattctaag	40440
cagaaccttt	cctgtctctg	ggcctgagag	ttcccctctg	aaagatgagg	acttgaccta	40500
gcaaggtcct	actcacatgc	ctgtagagaa	caggcagggg	aagttagaaa	aaaaaaaag	40560
ccagtgaagg	aagggagctc	ttcagcttgc	acccatcatc	acagtgcagg	gacccaggct	40620
cagtgttgcc	agatccaatg	acttctcaag	agctcaaaat	ctagagtttt	gcatgtgctc	40680
tcccaagtac	tggcagaaaa	ttcaagattg	ttagtaacac	tgtgtggcta	aattctgctt	40740
gtgggctgcc	tagattccca	attctgtgat	tctgtggttc	tctggaagca	ttggttctcc	40800
acagcacctg	catcacttgg	aaacttgtta	gaaatgcaag	ccctacctac	ggccccaccc	40860
cagacctacc	cagttagaaa	tctgggggtg	ggacctatca	gtccatgttt	gaacaagccc	40920
cacaagtgtt	ctcttgcaag	ctcaagtttt	agaaccactg	acctatagcc	aaaaaagaaa	40980
aagccaatca	gtggttttct	ggtaaaggat	taacttaaca	aactggcttt	ccaagaaaat	41040
aaagccttga	ttggtagcac	ttgcaatttc	tatggtacaa	acgcttcccg	catgactgag	41100
ttcaagctgt	caaggagaca	tcactataca	tggacttggg	aagagatgag	aacaatcagc	41160
ccactgagcc	tatgggaact	ggctccagca	catccctgca	agtcaactct	catcagggtg	41220
agtgagttga	ggaccaagaa	gcagttatcc	tcttgccttt	gcaggaccca	ggcaaaggga	41280
agggcatagt	gacagtgatg	atctctcttc	cggaagtctt	tggtttgctg	agagtaaaag	41340
gcgtgggctt	caccagtggt	gaagccagtc	atgcagcctt	agtcctggta	ctgaaactct	41400
ctaaatctca	gttttctatc	tgtaaaatgg	gaaaataaga	cctatgtcac	agggttgctg	41460
tgcagattta	gcaacagaac	atagccccgt	tctttatgat	gactgatgct	gcatccgtat	41520
gaggacatct	ctatgtaatg	gaaagatgga	gagaggatta	agcgcaaagt	cacaacactt	41580
aatgggaact	gtggattagc	tacttggtgg	cattgggcaa	gtcagttgac	tttgcattaa	41640
ttccacaaac	aatatttccc	aatttcctat	tcagatgagc	atatgtgatt	gagtcagatg	41700
ctgtgatcag	aaccaggatg	gagcatttcc	cacaaactgt	gggatttta	agtaatggga	41760

ES 2 761 567 T3

aggcacactg aaatggcact	gaatcatgca	gttgcagata	ctcttttca	attctcagtc	41820
ctttgattac gtcagggaga	aaagaaagtc	cccacttggc	ctgagaatct	ctgcaccctt	41880
ctagctcttg ttaaccactc	ttttgaatag	cagagaaaac	ctcagactgc	catatctggg	41940
agagatttta gcaacatttt	gttttcattg	tatctctttt	tacagctacc	tcccatttcc	42000
cttctatttc aagctagtaa	ctcagttttc	ttttaaattc	aattatttaa	atgtaaaaat	42060
aagtctattt ggagaaaaaa	aattttaata	gcatctctgg	aatgccagta	tggctaaatt	42120
catgaatgtt gtcctcaaat	gctgaaatct	gggaagcatc	tggccaagct	ttgtggacag	42180
gcctgcctag tttgaatccc	aagagccacc	cagtccaagc	cacaaaacat	tggaattctt	42240
ggttcacttc cctaacctga	acttgccctc	tgtgaaatag	ggacactaat	agctcactca	42300
cagggctgct gtgaggacat	gtgttgagct	gagggtctcg	ccaggggaga	ccctgtgcag	42360
ggagactgtt atcatggtga	tggatttctg	cttcattcat	ttcttttcc	agacagcatc	42420
atatagaatg agttgtgggg	tggcagtcag	caggtttggg	tttatcctct	attctgccac	42480
ttattactta aaaaaacccc	aaaaaaccca	acttatatag	tataagctat	atccagaaaa	42540
gtgcaaatat catacaagta	ccatttgatg	aatcttctga	tatccccaca	taaccaacac	42600
ccagaacctc ttcttgtctc	attccaggat	aaccactaac	ctgacttcta	acagcatcag	42660
tcagttttgt ctgtttttgt	acattatata	tgtgatggtt	tgaatgtgtc	ccccaaattt	42720
catgtgctgg aaacttaatc	cttcaattca	tatgttgatg	gtttttggag	gaagggcctt	42780
tgggaagtaa ttaggattag	ataaggtcat	ggggtgaggt	atgatggcac	tggtgactta	42840
taagaagaga aagagaaatc	tgagctggca	tgctcttgcc	ctctcactgt	gtgatgactt	42900
ctccatgtca tgatgcagca	agaaggccct	caccagatgg	tggcaccatg	cttttggact	42960
tcccagcctc tagaactgtg	agctaaatca	atttatttc	tttataatca	cccagtttga	43020
tattttgtca tagcaacaga	atatggacaa	agaaagaaaa	ttaatgcaag	aagtagagtt	43080
tttactgtaa cagattcctg	aaaatgtgga	agtggctttg	gaactgggtg	atgggaatag	43140
gttggaagag ttttgaggag	caggctagaa	aaagcctgta	ttgtcaagaa	tggagcatta	43200
tgccaggcac ggtgtctcag	gcttataatc	ccagcacttt	gggaggccaa	agcaggtgga	43260
tcacctgagg tcaggagttc	gagaccagcc	tagctaacat	ggtgaaacgc	tgtttctacc	43320
aaaaatacaa aaaattagct	gggcgtggtg	gcgcacacct	gtaatctcag	ctactcagga	43380
ggctgaagca ggagaatcac	ttgaacccag	gaggcagagg	ttgcagtgag	ctgagatcgt	43440
gctattgcac tccagcttgg	gcaacaagag	caaaactcca	tctcaaaaaa	aaaaaaaag	43500
aaagaaaaag aatggagcat	taaagacagt	tctgcagttc	tggtgagggc	ttaaaggaag	43560
accccagaac tagggaaagt	ctggaacttc	ttaatggtta	ctgaagtcgt	tgagatcaga	43620
gtgctgatag aaatatggct	ggtaaaggcc	attctgatga	ggtctcagat	agaactgaag	43680

aaccacgtgt	tggaaactgg	agcaaaggtc	atcctttta	taaagaagca	aagatcttag	43740
ctgaactttt	tctgtgccag	agtcatttat	ggaaggcaga	aaatctgtag	gtcagccatg	43800
ttgtagggaa	tgaaagaaca	ttttcagctg	agaacactga	gagtgtgaca	caactaccga	43860
ctgataagaa	aactagtaca	cataaattag	ccaggcgtgg	tggtgggcgc	ctgtattccc	43920
agctacctgg	gaggctgagg	caggagaatg	gcatgaaccc	gggaggcaga	gcttgcagtg	43980
agccaagatc	gcgccactgc	actccagcct	gggcgacaga	gcaaaactcc	gtctcaaaaa	44040
gaaaaaaaa	aggaagaaag	aaaattagta	cacatagaac	aaagccagag	gctgttcatc	44100
aggacaaggg	agaaaaactc	caaagccatt	tcagagatct	tcaagactgc	ccctcccatt	44160
actggcccag	agctctaaga	gggcagaatg	gtttggaatg	accagctgct	gcccagggct	44220
gccttgggtc	tctgctcccc	acatttctgg	tgcagcattc	ctcagccatc	ccagctgtgg	44280
ttcaggtggc	cacaggtgtg	atgtggaagg	taaaagtcat	aaaccttggc	agcatacaca	44340
tggcactaat	tttgcaggtg	tgcagaatgc	aaaagctgag	ggggcatgcc	ttcttccacc	44400
tacatttcaa	agggtgctgt	gaacagccac	cccagagagc	ccctagtaga	gcagggtcta	44460
gtggagctac	aagggtgggg	ccaccgccaa	gaccccagaa	tggtagagct	atcatagtgc	44520
aatgccagct	tgggagaact	gcaggcatga	gactccaacc	tgtgcgaagt	gcaacatggg	44580
cagaacccag	caaaaccaca	ggggcagagc	tccccgaagc	ttcgggggtc	caaattccat	44640
agtgtgtcca	ggaggtggca	cacagagtaa	aagatcattc	tgaaggttta	aggtttaatg	44700
ttgttttcta	tgttgggttt	tgtactttcc	tggaaccagt	tacccttttt	cccttgcctc	44760
tttttccttt	tagaatggga	atgtctgtcc	tatgcctgtt	ccactgttgt	attttggaag	44820
tcaataactt	gttttgactt	tacaggctta	cagccagagg	gaatctccca	tagaatgaat	44880
tgtaccttaa	gtctcaccca	catctgattt	agatgagacc	atggactttg	gaattttgag	44940
ttggtgctgg	aacaagttaa	gactttgggg	gttgtctaag	tgtggtgttt	catgcctgta	45000
atcccagtga	tttgggaggt	tgaggtggga	ggattgcttg	agcccaggag	ctcaagacca	45060
gcctgggcaa	catagtgaga	cctgtctcta	caaaaaataa	aaataaaaaa	attagccagg	45120
tattgtggca	tatacctgta	attctagcta	ctcaggaggc	tgaggtgaga	ggatcacttg	45180
agcccaggag	tttgaggctg	cagtgagcta	tggtcgtgcc	actgcattcc	agccagggca	45240
acagagtgag	actctgtctc	tacaaataaa	attaaataaa	cttagctgga	tatggtggca	45300
cacatctgta	gtcctagcta	ctcaggaggc	tgagacagga	ggattacttg	agccaaggag	45360
tttgaggctg	cagtgagcta	tgatcatgcc	actgcattcc	agcctggatg	atagagcaaa	45420
atcccatctc	taaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaacttt	agtgctattg	45480
gaatgaattt	tgcatgtaag	aaggacatgc	attttggggg	ctggggcagg	atgctgtggt	45540

ttgaatgcat	ccctcaaatt	tcatgtgttg	gaaacttaat	ctccaaattc	atatgttgat	45600
gaaattggag	gtgaagcctt	tgggaggtaa	ctaggattag	ataaagtcat	cagggtgggg	45660
cccctatgat	gagactggtg	gcttacaaga	ggaagagaga	actgagctga	catgctcttg	45720
ccctcttgcc	atgtgatacc	ctctgccatg	taatggcagg	cacagcaaga	aggtcctcaa	45780
cagatgccag	cagcatgttc	ttggacttcc	cagcctccag	aaccatgagc	tatatatact	45840
tattttacaa	attacccatt	ctgtggtatt	ctgttatagc	aatagaaaat	gaactgagat	45900
aatatacatg	gaatcataca	gtaagtctgt	gcttttgtat	gcttctttta	ctcaacattg	45960
tagttgtgag	attcatccag	gttgttaagc	attgctgtac	cctttttcca	ctgggatata	46020
gtgttctgtc	atgcttgggt	cttaatttat	aaaggtgact	gagtggcatt	ttcttccagt	46080
attattggaa	ggaaagtttt	gttgttcaca	gttcccctgt	aaacaagagg	cagaacacgt	46140
catgcagggc	cacacaaaac	tgtatcatcc	agggaccagg	cagcagaaag	agaggggaa	46200
ctgggactat	gcctttatga	aaaagagtgg	tgggagagta	actgggtgag	ggcatccact	46260
aatgggcagg	aagtgaaaac	acatatgtta	gaatttgtag	ctgaggggtt	tataatatga	46320
gtttcctatg	cctgagaaag	ctgacttgca	agaaaatgag	ataaacaact	ttggccatta	46380
gtgtggccct	gtcataaatg	aatgccagat	aggcaaatag	agaatctaag	aaaagatagt	46440
tggaacaagt	gttccattgt	gtgaatgcag	cagaatttat	ttatccatta	ttgaggagga	46500
tttgggtagt	ttccagtttg	gagctattat	gaatattcta	gtattgctcc	tatgaacatt	46560
ctagcacttt	tatttttgga	gcacacgaat	gcacttctgt	tgattatatg	cctagaagtg	46620
aaattgttga	attatacagt	attcacacag	tcagctttag	tggctactgc	taaacaattt	46680
tctctagtag	tttgcgccaa	tctaatcacc	agtagtgtat	agaagctcct	tttactccac	46740
attttgccaa	cacttggtgt	tttccttctt	tttgattagt	catttagcaa	tcaaacctat	46800
tgtttacatt	ttgatatctc	caataactaa	ctaaatggag	cacttttaat	atgctttttg	46860
gacagttgaa	tatcttttct	tgtgaaatgt	ctattcaagt	tagtttgccc	attttctatt	46920
gtggtgttct	gtcttttct	tattgatttg	taggaattcc	ttacgtatcc	tggatatgaa	46980
tcccactttg	tgcgttacct	ttttccttct	ttctttcttt	ttgaaacaga	gtctccttct	47040
gtcacccagg	ctggaatgca	gtggcgctat	ctcagcccac	tacaacctct	gcctcccagc	47100
ttcaagcaat	tctcatactt	catectectg	agtagcttag	attacaggcg	catgccacca	47160
tgcccagcta	acttctgtat	agacaaaata	atttttggta	gagacagggt	tttgccatgt	47220
tggacaggct	gatcttggac	tcctggcctc	aactttggcc	caccttggcc	tcccaaagtg	47280
ccaggattac	aggtgtgagc	caccatgccc	agcccacctt	ttactttctt	aatggtgtct	47340
tttgaacaag	agaggttctt	aattttaata	tagcccaatt	tatcattgtt	ccctttatgt	47400
ttagttcttt	tatgtccttt	ttaagaattt	ttgcagccag	cgcggtggct	cacacctgta	47460

atcccagcac	tttgggaggc	tgaggctggc	ggatcacaag	gtcaagagat	cgagatcatc	47520
ctggccaaca	tggtgaagcc	ctgtgcctac	taaaaataca	aaaaattagc	tgggcgttgt	47580
ggctcttgcc	tgtagtctca	gctactcggg	aggctgagat	cacgccactg	cactccagcc	47640
tggtgacaca	gcaagactcc	atctcaaaaa	aaaattttt	ttgcaaggtc	atgcatatgt	47700
ccccctgatt	tttttcctaa	aaatcactta	ttattagatc	aatgaattga	gtaattgact	47760
acattttca	gtcattcaac	aaatatttcc	ctgaggtttt	gataacctga	actgtgtttg	47820
gagctgggga	ggaagcaaac	tattgaagat	atacaaagat	ggcaaagatg	agggcctgga	47880
gcttgccaca	cggaaggggg	gatggctgcc	tgaatggttg	ggcaggtagt	tgttgacatc	47940
tgcactccct	acatgagcag	cagggtggca	actctttta	tctttttaat	ttatttttct	48000
tttctttctt	tcttttttt	tttttgagat	ggagtctcgc	tgtgttgccc	aggctggagt	48060
gcagtggcgt	gatctcagct	cactgcaaac	tccacctccc	aggttcacgc	cgttctcctg	48120
cctcagcctc	ctgagtagct	gggactacag	gcgcctgcca	ccactcccgg	ctaatgtttt	48180
gtatttttag	tagagaaggg	gtttcactgt	gttagccagg	atggtctcca	tctcctgacc	48240
tcatgatctg	cccgcctcgg	cctcccaaag	tgtggggatt	acaggtgtga	gccaccacac	48300
ccggccttaa	tttattttc	tagtctgcag	gtaattcttt	ttaattctct	ccactctcct	48360
atgatcttat	gaggtaggga	ctgtcattat	ttctcccact	ttataatgaa	caatcagtaa	48420
agacagggaa	gataaccaaa	tgacatacaa	ggtggggtcc	accccatgag	gctgcaggct	48480
tggagctttg	ctttgtctta	aaaatgagaa	catgagctgc	ccacctgttg	agacaagaaa	48540
caggaaaggc	ttaaaaaact	ggcttgttat	gtacaactat	ccgtggggct	gcagtgaacg	48600
ggctggcagt	gcccaggtgc	aggctgaacc	ctgggacaat	cacattcagc	atccaagggc	48660
ccccgtaata	gcttaatgtt	tgaattgaac	ccctggggtt	gccttgaagg	agagaggtcg	48720
tggaagtatg	ttcaaggggt	agggatgggc	aggggagatg	ggtctgaaag	ccaagctcta	48780
ccccacccac	cttgccccaa	gagaaataga	accttcatct	ttaattgcct	aacgagaaaa	48840
ctggggctgg	ccagatgtgg	tggctcatgt	ctgtaatccc	agcactttgg	gaggccgagg	48900
cgggcagatc	acttgaggtc	aggagttcga	gatcaccctg	gtcaacatgg	tgaaaccccg	48960
tctctattaa	taatacaaaa	attatccagg	tatggtggcg	catgcctgta	gtcccagcta	49020
cttgaggcac	aagaatcgct	tgaacctggg	ggacagaggt	tgcagtgagc	cgaccactgc	49080
actccagtct	ggacgacaga	gtgagactcc	atctcacaaa	caaaaacaga	aaaaaaaaa	49140
aaaaaaagag	agagagagaa	aactggaggc	tctgagaggt	tgagggactt	gcccagggtc	49200
ttgcagctag	taagtgacag	agctgggact	tgagcttggg	ttttctgact	cctggtctgg	49260
ttcattatcc	atgaggtgct	gggaactaaa	ataagccaca	atcttggaat	ctccgtcgcc	49320

tccctccctc	ccacatgtct	gcgtggcttt	ttgggaaaat	gccaggggaa	tgtaccagcc	49380
agggagagga	cccttgtttt	cctcatggcc	cttcctggca	atggcactac	tgacaccgac	49440
agtccttttt	gtccctgatg	acctctgctg	cctgatgccc	aagtgaccac	ctctgctttg	49500
tcatttctag	gattggcttc	caggtcctcc	tcagcattgg	ggaactcagc	ttggccatcg	49560
tgatagctct	cacgtctggt	ctcctgacag	gtcagtgtga	ggccaccttt	cttccaccat	49620
tgccaggaca	cagcacccac	gtccagagcg	caccctgccg	tgtggctgga	tgtctatgtg	49680
ccccatctcc	ttccctgagg	atcacataat	ttcagaattg	gaaaggttct	tagaggtcac	49740
ctgctgctaa	tgtggactgt	gaggccaggg	cagggaaggg	acatccctga	ggttataagt	49800
agggtgagtg	gcaacgttgc	agacttttga	acccagggct	ggtgatcaca	ctcagttttg	49860
cacagaagcc	cgagaaaatc	cttacaccca	aaagcctacc	ttttatttct	gaggacaccc	49920
ataatactat	tttattcaac	agatatttat	tcaatatcca	ctatgagcca	ggcactgggg	49980
acacagcagt	gagcaaaaca	aattccctga	ccccatggaa	ttgaccttct	agtgggggaa	50040
ggtattagca	ataaatagac	aaataagtgt	ctactacgcc	agatgggaag	aagtggctgt	50100
gaagacagag	caaactagag	aaacatagag	tcaatgtggg	atggggtgtt	cttttagggg	50160
ggtggtcagg	gaaagcttat	ctgagtagtt	agcttttaag	cagagacccc	aatgaagagg	50220
agggagatat	gcgatgcatt	tagttagggg	aagaacattc	catgaaaata	ggatagcaag	50280
tgcaaaggcc	ctgagacagc	agcatgcttt	gtgtgttgag	ggaacagtaa	ggagaccagt	50340
gtggttggtg	tgaatggagt	gagaaggagc	agcaggggtt	gagggcagaa	tggtagtgag	50400
gagcaggccc	ttataaaaga	tgggaagcca	ctggagatct	ttcaacaaag	gggaaaagta	50460
tgtttctgtt	cttgcaataa	aatagaacag	caaaaaatct	aggggagttg	ctaattagcc	50520
agttttactt	atatgccagg	tgaaaatatg	tggctaggtg	cagtggctca	tacctgtaat	50580
tgcagcagtt	tgggagaccg	aagtgggcag	atcatctgag	atcaggattc	aagaccagca	50640
tggccaacat	ggtgaaaccc	catctctact	aaaaattaaa	aaataagcca	ggcgtggtgt	50700
tggatcccag	ctacttggga	ggctgaggca	gtagaattgc	ttgaacccgg	gaggcagagg	50760
ttgcagtgag	ccgagactct	gtctaaaaaa	aaagaaaaaa	agaaaataca	cattcaggcc	50820
aggtgcagtg	gctcacgcct	gtaatcccag	cactttggga	ggctgagaca	ggtagatcac	50880
ttgaggtcag	gagttcgaga	ccagcctgac	caacatggca	aaaccctgtc	tctaccagaa	50940
atacaaaaat	tagccaggcg	tggtggcgtg	tgcctgtagt	cccagctact	ggggaggctg	51000
aagtagggga	atggcttgac	cccaggaggt	ggaggttata	gtgagtcgag	gttgcaccac	51060
tgccctccag	cctaggtgac	agagtgagac	tgtctcaaaa	aaaaaagaaa	gaaaatatac	51120
attccatcca	gaactgttca	cctttattct	acaagcaaac	atcttttatt	ggttagacac	51180
ccatatatgt	gtccctaagc	aggaggtgaa	tgccaaataa	gagacaaatg	gcgtaagaca	51240

ctatgagttg	tgtgacgttg	ggcatgtcac	tttactccct	ctgagccttg	gttagcttct	51300
ctgtaaaatg	aaaggattat	ggtaactaag	ctggcttcct	tccagcttta	acaaactgta	51360
tggaggtact	ttttggagtt	acctgggtaa	tttttgagtg	tgagattggc	tagaattgct	51420
ttaatatacc	atgtctggcc	ttagcttttt	gcagagtctt	tgtgaagaag	cagaggcgga	51480
gtagcgttaa	ttccgtaagt	taacgttcag	ttcgtggcag	ctggcaatcc	aaccctggga	51540
aaggctgccg	gatttagcaa	aaatgcaagg	tgtctgtttt	taaatttgaa	atgaattggg	51600
tatcctgcat	tttatttggc	aaccctgtcc	tgggactcac	actattcact	gttatcactg	51660
gtatgttcaa	agtggtgctg	acttgccctc	tgtcttgcaa	agtaccagga	ggtcttttct	51720
tattcttcac	tggagtcaaa	aaagagaata	gaggaaaaga	caatcatatt	gttcctttaa	51780
gagttaagac	caacaagttt	tcttctttac	atgttgtttt	tgacatgagc	aaactggtga	51840
ttaaaaacaa	cttgggtggc	tcatacttgt	aatcccagca	ccttgggaag	ctgaggtggg	51900
agaatagctt	gaggccagga	gttcaagcca	gggcaacata	gtgagacccc	atctctacaa	51960
aagatacaaa	aattagccag	gcgtggtggt	acacctgtag	tcccagctgc	tctggaggct	52020
gagatgggag	gatcagttga	gcttgggagg	cagaagttgc	agtgagctga	gatcatgcca	52080
ctgcactcca	gcctggacaa	cagagcaaga	ccctgtctca	aaaaaggaaa	caaaacaact	52140
tggacaatgg	aagggggaaa	aagttcctca	agcagccaaa	attgcaccaa	atggactccc	52200
agaagacaag	catttaattt	gttaattgag	ccctctatgg	gcctgtctgt	atttatttaa	52260
gaaacaatcc	tatcaagcat	agttattggg	tttctcagcc	caggtagatt	agaaatagca	52320
gattagaggt	gggctaggtt	tctagaggta	aagtacacca	gcagaagtta	gaagtgaaag	52380
caaagagcct	aacagaggaa	gagaaattct	tttttttc	tttttttaga	cgcagttttg	52440
ctcttgttgc	ccaggctgga	gtgcaatggc	gctatctcgg	ctcactacaa	cctcagcctc	52500
ctgggttcaa	gtgattctcc	tgcctcagcc	tcccgagtag	ctgggattac	aggcatgcac	52560
caccacaccc	ggctaatttt	gtatttttag	tagagacagg	gtttctccat	gttggtcatg	52620
ctggtctcga	actcctgacc	tcaggtgatc	cgcccacctt	ggcctcccaa	agtgctggga	52680
ttacagggat	aagccactgc	gaccggccga	caaattctta	aaactggaca	caagaacaca	52740
aaacgcttgg	gctgctgaga	gattagaaca	acaaccctcc	acagctacac	accttttcca	52800
cgttatatgg	cacgttataa	gtgggtgttc	ctagtgatgg	ttctgatttt	ttttaaaaaa	52860
agtctaaata	tgtttaatgt	tgtctcagaa	gacaaaatat	attttagaca	gatattcctc	52920
agtgatgagt	aagcctcagc	tatctggaaa	attcatgcag	gcgccagaga	tcgttactga	52980
gtaattcaag	ctaactgcgt	catgctggtt	gtaccctgca	tgccaatatc	agctaaaagc	53040
agcaccacga	aagggaaata	cgaatctcac	taagcactcg	cccattcttg	ttaacgacac	53100

tggaactgat	catccttaat	aatacacaga	taaatctatc	aggagcattt	ccttgcttcc	53160
tgtgaaagga	agcactcatt	ccatgtgtcc	tgtgaaattc	atccaacttc	aggaagctgg	53220
aggaatacat	atggccaagc	tatctgggca	gagagtagac	agggaatgga	ggttgggcac	53280
agtggctcac	acctgtaatc	gcagccattt	agaaggcaaa	ggcgggcaga	tcacttgagc	53340
tcaggtgttc	aagaccagcc	tgggcaacat	ggctaagtcc	tgtctctgca	aaaaatacca	53400
aaaactgagc	tggatatggt	agcacacacc	tgtggtccca	gctacttggg	aggctgaggt	53460
gggagggttg	cttgaccccg	ggagtttgag	gctgcaatga	gctgtgattg	tgccactgca	53520
ctccagcctg	gataacagaa	tgagactctg	tcccaaaaat	aaaaaataaa	atcaaagaca	53580
cttaaaaaga	tggggaaaag	gaaggacagg	cacttaagca	agttataagc	tactttccta	53640
actacacaag	tggaatctta	agctgaggtt	cccaggagtt	gactggagcc	agagaagaca	53700
gacctatagg	agcacccaat	tggagtcacc	ctccatagta	gcccatatgt	cttacatgga	53760
tcagctttcg	tggggccctt	ttactccatc	tggggaaggg	cgtcagatct	gtggctctca	53820
tgtactgctc	agtacactgc	cattcccagt	tcttttttc	aaaaaaaaa	aaaaaatgtc	53880
tacagaatcg	gccaggtgtg	gtggctcatg	cctgtaatac	tagcactttg	gaaggctgag	53940
gtgggtggat	cacctgaggt	cgggagttcg	agaccagcct	ggccaacatg	gtgaaactcc	54000
atctctacta	aaaaaaaaa	aaaaaaaaa	attagctgga	tgtggtggca	ggcgcctata	54060
atctcagcta	cttgggaggc	tgaggcagga	taatcgcttg	aacctgggag	gcagaggctg	54120
cagtgagccg	agatcacgcc	attgtactcc	agcctgggcg	atagagtgag	actctgtctc	54180
aaaataaata	aaataaaata	aaataaaata	aaataaaata	ggctacagaa	ttaagctggt	54240
ccaggaatga	cagggcttcc	atttatttgt	ctttcaattg	tgggagaaaa	aggatttctg	54300
ttgagatact	gtcgttttga	cacacaatat	ttcgattaat	cttgagatta	aaaatcctgt	54360
gctccaaatc	ttttaacatt	aaattatgca	tttaaacagg	tttgctccta	aatcttaaaa	54420
tatggaaagc	acctcatgag	gctaaatatt	ttgatgacca	agttttctgg	aaggtaagat	54480
ttttcaccta	ttaacgtgat	agattttgag	tgcatgaact	taaaaacata	cctgagtata	54540
tatgttgact	tgctgtttat	gagtaaaaca	aaaacaaaaa	tggagtaagg	agcattgcag	54600
gaggaactag	aggagaaaca	aatccatgat	atgcatgtgt	gtgggggagg	gtggcgggga	54660
ggtggtaaag	gtcaccattt	ccctgatacc	tcaaattcat	tcagagtcag	ggatgagaca	54720
gctttcactg	gccacacttc	ccctccccct	atctgcagtc	ctcagcgtag	ccaaatagtc	54780
tgacatgcgg	gtgacagaac	cccacaatgc	aaaagctgga	agaaacctca	agccttggag	54840
tccaacccct	tttttgacag	atgctaagag	tggagacatg	acttatcaag	atcttacaac	54900
tggctgggca	cggtggctca	cgcctgtgat	cccagcactt	tgggaggctg	aggtggggcg	54960
atcacctgag	gccaggagtt	cgagaccagc	ctggccaacg	tgtcgaaacc	ccatctctac	55020

taaaaataca	aaagttagct	gggtgtggtg	gcacatgcct	gtaatcccag	ttactcagga	55080
ggctgaggca	ggagaatcac	ttgaacctgg	gaagcgaagt	ttgcagtgat	ctgagatcat	55140
gccactgcac	tccagcctgg	gtgacagagc	gagactttgc	ctcaaaaaca	aaacaaaaca	55200
attgtacata	tttaaagtgt	tgtaaccaag	tgagttacag	agaaacacca	cactttgagc	55260
ctaattcagg	agtcctttat	tagccggcga	cctagagacg	actagtgctc	aaaattctct	55320
cggccccaaa	gaaggggcta	gattttcttt	tataccttgg	tttagaaagg	ggagcgggaa	55380
ttgagctgaa	gcaatcttac	agaagtaaaa	caggcaaaaa	agttaaaaag	acaaatggtt	55440
acaggaaaac	aaacagttcc	aggtgcagga	gctttaaagc	catcacaagg	tgacaggtgc	55500
gggggctctg	ggtgctatct	gccggacaca	aacgcagggg	cactagagta	ctatcacccg	55560
ggcaaattcc	tgggaactgc	ggacacagct	tgccacagta	ccttatcagc	taattgcact	55620
ctttgatgtg	ctgggagtca	gcttgcacaa	gttaagtcct	tgaggaaggg	ggtgggtaag	55680
gagcccttaa	cgtcttgcaa	atgaaggagc	cgaatggaat	ccctccggct	ttcttagcta	55740
agagagagtc	aatcaagtta	atacaagtta	gggtatcaca	aaagtatata	atttgataca	55800
ttttaacgta	tttatacact	gaagagacca	tcaccaccat	caagacaagg	agcacaccca	55860
tcacttccac	acacttcctc	ctgctccttt	gaaattcctc	cctccctacc	cacctggtcc	55920
cacccaaagg	caaccactga	actactttct	gtcactaagg	tttgcatttt	ctgtaatttt	55980
tttgtttgag	acagggtctc	actccgccac	ccacaccgta	atgcagtggc	accatcatgg	56040
ctcactgtag	cctcaacctc	cccaggctca	ggagatcctc	cccctcagc	ctcctgagta	56100
gctaggacca	caggtgtagg	ccaccatggc	aggctaattt	ttgtattttt	ttgtagagat	56160
ggggtttcac	cgtattacct	aggctggtct	cgaactcatg	ggttcaagca	atcctcctgc	56220
cttggcctct	caaagtgctg	ggattatagg	catgagccac	tgtgcccagc	cctctgtaat	56280
gttacacaaa	gggaatcatg	cagcacgtac	tgcccttggt	ctggcttctt	ttgctcagca	56340
tgattattct	gagaatcatc	cgtgttgttg	cgtgtaactg	acttcatcag	cttctctctg	56400
cagctgtcag	ctcttggctt	ctcccaacag	ccaatctctc	tttatcccct	gcaagtgttc	56460
ttgcctattt	agcagaatca	aggtactcta	tcgaaaagac	tcggaaaatt	ggtttaatct	56520
attcattcat	tcctcaggta	tttatcgaat	aactattcta	taccaagtac	tatgctaatc	56580
aaccaaggac	agcacaaaca	ggagaaatct	ccagctcagt	cacttgagtt	gcaataaata	56640
tttgctggat	aggtcaggtg	cagtggctca	cacttgtaat	cccagcactt	tggggattac	56700
tgagacggga	ggatctcttg	agcccaggag	gccaaggctg	cagagaacca	tgatcatgcc	56760
actgcactcc	agcctgggtg	acagagtgag	atcctgtctc	tgaaaaaaaa	tatttgctgg	56820
ataaattaag	gaaatctgac	gaaccccatc	agtagccatt	gcagcaacag	gtaaactaga	56880

acgagtgtga	atttggaatg	aggaaacccg	atgttggcca	tcattctgta	atgtcatgta	56940
ttatgtaatg	tattatatat	taatgtatgt	attatgtagg	caagttcctt	gacctctctc	57000
actggtaaca	taagagtagt	aatctttgtg	ctacttcact	gggttatttt	aaagatcaag	57060
tgaggtaata	atgtctgtaa	caacattctg	taaaatgcaa	accgccacat	gaatgtgaaa	57120
gtttattact	agggatttag	ccaaccacaa	gggaatgtgt	gagcataaga	gctatcatat	57180
tgcaagccta	cagtttctga	ttttgtgcta	ggtgcttttc	cacattacct	gattttatcc	57240
tcacaacagc	cctgcataaa	agtaagtatg	tcgcccaggt	gcggtggctc	atgcctataa	57300
tcccagcact	ttgggagccc	gaggtgggca	aatcacttga	gatcaggagt	ttgaaaccag	57360
cctggtcaac	gtggtgcaac	cctgtctcta	ctaaaaatac	aaaaaaaaat	tagacaggcg	57420
tggtggtgga	tgcctgtaat	cccagctact	tgggaagctg	aggcaggaga	atggcttgag	57480
cccgggagat	ggagattgca	gtgagatgag	attgcgccac	tgcactccag	cctgggtgac	57540
agagcaaggc	tatgtctcaa	aagagaaaaa	aaaagtaagt	atctcagtct	tgaagatgat	57600
gaaatggagg	cctagagaga	ttaagtaact	tgcccaaaat	gacagaacta	atgcatagaa	57660
aagaagaaat	gtgatgtctt	ttggctccaa	agacacccca	catatgcgtt	ggttacagtt	57720
actagagaaa	agttattcca	ccccacccc	acccccagaa	atcttctgac	ttgttttctc	57780
gcagttgagt	aggaccattt	attcggcagt	gtaccattct	cagcttgcag	ttgaaagcca	57840
aatatccatt	aaagaggcaa	ggatgcaaac	ttgctaagct	gataaatcca	ggggtgattt	57900
tttttttt	tgcaaaccat	ccaacaagac	attttaaata	ctcattgaat	ttcatagaac	57960
tgactgccag	gattggaaag	acattaaagc	cagctcagcc	actgcctcgc	tggttggcca	58020
gaccacgcct	ggcacttctg	ggagggagca	ctcaccaccc	cccaagggca	cccatctcat	58080
cctccgaagg	tttatgaaaa	tgcactcatc	atttgctaat	tcattccact	acgtgtatta	58140
cctaatttgt	gacacgatgt	gaagtaccag	agagataatt	ctaaataaaa	tatagttatg	58200
ggtctcaagg	agccagatat	gctaatctcc	tatcctcctg	cagtttacag	tggtcctcac	58260
cagatactta	tttacaaaaa	ttcagtttat	tatttatttt	tttgagacag	agtcttgctc	58320
tatagctcag	gctagagtgt	aatggtgtga	tctcggctca	cttcaacctc	tgcctcccag	58380
gttcaagtga	ttctcctgcc	tcaacctccc	aagtagctgg	gactacaggc	acctgccacc	58440
acggctaatt	tttggagttt	tagtagagac	agggtttcac	cacgttggcc	aggctggcct	58500
cgaactcctg	acctcaggtg	atctgcccac	atcagcctcc	caaaatgttg	ggattacagg	58560
cgtgagccac	catgcccggc	caaaacttca	gtttataaca	caatctttca	cgtgtcttct	58620
gctttcatta	aaagaataga	cagttccctt	ctttatttca	gtttaataaa	ccatggattt	58680
tatttcatgc	tttgcaaaac	acaagggctc	actgacatgc	acttcttaaa	ctaattctgg	58740
ctggtcgcct	gtaattccag	cactttggga	ggctgaggcc	gacagatcac	ttcaagtcag	58800

gagttcaaga	ccagcctggc	caatatggtg	aaaccacgtc	tctaccaaaa	atataaaaaa	58860
ttagccaggt	gtggtggtgc	gtgactataa	tcccagctac	tcaggggcct	gaggcagaaa	58920
aatcacttga	acccgggagg	cggaggttac	agtgagctga	gatcgcgcca	ctgcactcca	58980
gcctgggcga	cagagtgaga	ctctgtctca	aaaaataaat	aaatacaaat	aatgtaaaat	59040
acgaaacaag	caatcctggc	agtagctgct	ggaatgagag	gagggagagg	tcatagggag	59100
gtcggggaca	atggagcatg	gagttgtgtt	ggatttggct	aagcagcagg	aagtgcaagg	59160
cattccaagc	aagaggaggg	gggcaggtgg	ggagcatctg	caagaacaga	agcagcatga	59220
gcaacctggc	tcggcagtgt	gtgaaaaggc	tgaaaggtgg	ctagagccac	ttcaatttca	59280
tccttcaggc	aaatgggaaa	ttcccaaagg	tttgagtggg	gaagcaatgc	ctacaatgaa	59340
agtttgagag	tgaagcagag	tgatcgaatt	aagcatgtag	gccgagttct	gaaataactg	59400
caatgtgctg	aagatcatcc	attggcttct	gaatgagtat	ttgcagttta	tttttaaaa	59460
tgattttatt	gccaagaaag	ataaacacta	ctgttttggt	acaaaaacat	aacaaaatgt	59520
gttgagtccc	tcttgctgtt	ttacgcgaag	ttttaaaaat	ctactcttgt	cacagtggta	59580
tcacccctac	ttctgatttc	aaataaatgt	tctagagaca	cagtaagggc	ccaacaaacg	59640
cttgttcaac	aacacaagga	gagccagctt	ttaaagtagg	aaaacaggcc	gggcgccgtg	59700
gctcacacct	gtaatcccaa	cactttggga	ggctgaggtg	ggcagatcac	ttgaggtcag	59760
gagttcaaga	acagcttggc	caacatggtg	aaaccctgtc	tctactaaaa	acacaaacat	59820
tagccaggcg	tggtggtgca	caccagtagt	cccagctatt	caggaggctg	aggcaggaaa	59880
atggcttgaa	ctggggaggc	agtggttgca	gtgagccgag	atcgtgccac	tgcactccag	59940
cctgggggac	agagggagac	tccatctcaa	aataaaacaa	aacaaaacca	aatcatacaa	60000
aaacattagc	tgggtgtggt	ggtgcatacc	tgtaatccca	gctacttggg	aagctgaggc	60060
agaattactt	gaacccctgg	ggggaggttg	cagtgagctg	agatcttgcc	actacactcc	60120
agcctgggca	acagagtgag	gagactctgt	ctcaaaaaat	atatatatta	aaaaaaagaa	60180
aaaaaaaagt	aaactaggaa	aacacatcag	cagcctgcca	acagactccc	ctagcctcgg	60240
tgagggccag	tgttctggga	ggcagatctg	aattctagtc	ctagttcacc	cactggcagg	60300
ctggtgccct	tgggcaggtc	gcttctctgg	ggctcagttt	cttcctctat	aaaatgagat	60360
caaatcccat	gttctaagag	tttgtgctct	ggagtcagac	agatctgggt	tctaccactg	60420
ccagctctgt	gatcttgtag	cttcagtctc	gtcatctgac	atggagataa	cagtaactgt	60480
ctcactgtgt	tgttagggtt	taaaggagat	aatgtatgtg	aaatgttagc	aaacaagtgt	60540
tagctaccct	gatttccggt	ttcagagttc	tgtggtccca	gtttatgcca	catgcagtga	60600
cgttgtatgg	taggctgtgg	tgtggcacca	cttcagaact	cagcgcatgc	acagcttgca	60660

gaagagaagg	ccagaggaga	cctaagaagg	ctcttcgaac	acttgaaaga	ccggcatgta	60720
ggccgggcgc	agtgactcac	gcctgtaatc	ccagcagttt	tggaggtcga	ggcgggtgga	60780
tcacctgagt	ttgggagttt	gataccagcc	tgaccaacaa	ggtgaaaccc	cgtctctact	60840
aaaaaataca	aacattagct	gggcatggtg	gcgggtgcct	gtaatcccag	ctactccggt	60900
ggttgaggca	gaattgcttg	aacccgggag	gcagaggttg	cagtgagctg	agattgcatc	60960
actgcactcc	agcctgagac	aagagcgaaa	ctccatctca	aacaaaacaa	acaaccaacc	61020
aaacaaaacc	aaaaaaaaa	ctggcatgta	gaagaaaaat	actttttctc	tacacttctc	61080
caaagaattt	aactaggccc	aggggaggtg	cagtataaat	ttctaacaat	ctcaactgtc	61140
tgccaaatgg	aatgagctac	ttcatatggc	agtagtgagt	cctctgtctt	tggaggcatt	61200
caaataaaag	ccagatggcc	atttatcaac	aatccatgta	aaacgttaga	tgaaataaaa	61260
cctatatatc	caagatctct	tccaattcag	attttatgaa	agaatttcta	aggtctttgt	61320
aatgagacat	ttaggctgtt	tcaagagatc	aagccaaaat	cagtatgtgg	gttcatctgc	61380
aataaaaatg	tttgttttgc	ttttacagtt	tcctcatttg	gctgttggat	tttaagcaaa	61440
agcatccaag	aaaaacaagg	cctgttcaaa	aacaagacaa	cttcctctca	ctgttgcctg	61500
catttgtacg	tgagaaacgc	tcatgacagc	aaagtctcca	atgttcgcgc	aggcactgga	61560
gtcagagaaa	atggagttga	atcctttctc	tgccactctt	tgaggagaat	ctcaccattt	61620
attatgcact	gtagaataca	acaataaaat	acagccatgt	accacataac	aacatcttgg	61680
taaacaacag	actgcatata	tgatggtggt	catccagtaa	gctaaggtta	atttattatt	61740
attccttgtt	tttttttt	tttttttt	tttgagatgt	agtcttactc	tgtcacccag	61800
gctagagtgc	aatggcacca	tcttggctca	ctgcaacctc	tacctcctgg	gttcaagcaa	61860
atctcctgcc	tcagcctcca	aagtagctgg	gattacaggc	acccaccaca	tctggctaat	61920
tttttgtatt	tttagtaaag	atggggtttc	accatgttgg	ccaggctgat	ctcaaactcc	61980
tgacctcaag	tgatctgccc	gcctcggcct	cccaaagtgc	tggaaccaca	ggcctgagcc	62040
actgtgccca	gccttgtttg	cttttttaac	agataacagt	gtgctcatag	aaactgcttt	62100
gacatgactg	caatcatgtg	cttcatagaa	acttaattag	attataccac	tagagtcttc	62160
agatttttat	acttttttt	tttgaaacgg	agtctcactc	tgtcaccagg	ctggagtgca	62220
gtgccgcaat	ctcggctcac	tgcaacctcc	gcctcccagg	ttcaagcaat	tctcctgcct	62280
cagcctcccg	agtagctgga	attacaagtg	cgcactacca	cacccagcta	atttttgcat	62340
ttttacttga	cagggtttca	ccatgttggc	taggatagtt	tcaccaggat	ctcttggcct	62400
catgatcagc	ctgcctcggc	ctcccaaagt	gctgggatta	caggtgtgag	ccaccgtgcc	62460
cagcctatac	ttcccttttt	gaataccatt	tggtgttttg	aagaattaac	agctttgtga	62520
acgtggcagt	gcttgtgatt	caggcttcca	ttgagaccaa	ggggagaacc	tggttgcagg	62580

acaaacagac	ggacagcgtg	tggcagtgtt	taaatgctct	tctgaaggct	gatacgacag	62640
ctctctgtgc	actgattgca	tatgcatccc	aagattatat	tattgttttc	tactgctatg	62700
tgtcacactt	tgccaaacag	gatgtggaaa	atgaataagc	ggttttctta	ggcacttctt	62760
aacagacaat	tggtcaaaat	gaactccatt	gcttaagaaa	cacataaaca	ccatttagtc	62820
actgaacata	gctatatgta	tggttgttac	tatgggaaat	cttgttttgc	caattttctt	62880
tgaaaattct	ggcagaccaa	ggttcttttt	gtttacataa	tacttgaaaa	ataaaaatga	62940
acaagctaac	aaactaccaa	gttttcactt	acataaatgt	agttgcatac	agaaaatgtg	63000
actgtgaatt	aatttttcta	ggacttttaa	actataagca	ctatttgcac	aaaagagaac	63060
caatctatca	attacaaact	cacataattt	tacagatttt	ttttttccta	cacagcacat	63120
aaaacagaag	gaatttgaag	ccaccctcca	aacacagggg	aaggaggctg	tgtgtatatc	63180
ctcattgtct	ttcacattct	aaggtggttc	cactcagtga	ctgaaatcct	taagcgttgt	63240
attagtctgc	ttgggctacc	ataacagcag	cttaaactgt	tgtttagcca	ctcagactta	63300
aacaacagaa	atttatttcc	ttatagttct	ggaggctgga	agttcaaggt	gccggcaagg	63360
ttggtttctg	gtgagacctc	tctccctgtc	ttgcagatgg	ctgcctcctc	cctgtgtcct	63420
catagagcct	gtcttctgct	tttacacttc	tggtgtcatc	ttccttttt	tttttttt	63480
tttttttt	ttgagacaga	gtctcgctct	atcgcccagg	ctggagtgca	gtggcccgat	63540
ggatctcggc	tcactgcaac	ctctgcctcc	caggttcaag	caattctcct	gcctcagcct	63600
cccaagtagc	tgggactaca	ggtgcccacc	atcatgcctg	gctaattttt	gtatttttag	63660
tagagacagg	gtttcaccat	attggccagg	ctggtctcga	actcctgacc	ttgtcatctg	63720
cctgcctcgg	cctcccaaag	tgctaggatt	acaggcgtga	gccaccgcac	ccggcctctt	63780
cctcttctta	taaggacacc	agtcctatta	gattagggct	ccaccctcat	aacctcattt	63840
gaccttaact	attatttctt	taaagcacct	atttccaaat	atagtcactt	taggggttag	63900
ggcttcaaaa	gatgaatctg	agggagctca	attcagtaaa	tagcagtagt	cattaatgga	63960
caatgtatac	aaagataatt	tcgtgattac	tgtccttatg	cataaacgtc	ctcagtgttc	64020
cactgcgttt	atccagattt	agtatcacaa	agactttgct	ctgagaaaaa	tgtgattttt	64080
tttttttt	ttttttgaga	cagagtcttg	ctctgtcacc	caggatggag	tgcagtggtg	64140
caatctcggc	tcactgaaac	ctccgcctcc	caggttcacg	ccattctcct	gcctcaatct	64200
cccgagtagc	tgggactaca	ggcgtccgcc	aagatgccca	gctaattttt	tttttttt	64260
ttttttttga	gacggagtct	cgctctgtta	cccaggctgg	agtgcagtgg	cgcgatctcg	64320
gctcactgca	agctccgcct	cccgggttca	cgccattctc	ctgcctcagc	ctccggagta	64380
gctgggacta	caggcgcccg	ccactacgcc	cggctaactt	ttttgtattt	ttagtagaga	64440

ES 2 761 567 T3

cggggtttca ccatgttagc caggatggtc tcaatctcct gacctcgtga tccacctgcc 64500 tcagcctccc aaagtgctgg gattacaggc atgagccacc gcgcccagca gattttttt 64560 tttttttttg agatggagtc ttgctctgtt gcccaacctg gagtgcagtg ttatgattt 64620 ggctcactgc aacctctacc atgttcaagc gattctccca cctctgcctc ccgtgtagct 64680 gggatcacag gcacacgcca ccacacctag ctactttttg tatttttagt agaaatgggg 64740 tttcaccatg ttggccagga tggtcccgaa ctcctgacct caagtgatcc tcctgcctcg 64800 gccttccaaa gtgctgggat tacaggtgtg agccactgtg cctggccaaa aatgtgattt 64860 cttatttccc acattgccaa ttccatttca attaactata atagctatgt ctattgagca 64920 ctcaagcgta ttctagaaac tgttcctgat tctggg

<210> 26

5

<211> 65624

<212> ADN

<213> Homo sapiens

<400> 26

60 accettggcg tggacacatt tccagggagg gaccggagga cctcctacct cattggtcac 120 tgccagtgac tgagcttgac tcaggtagga gggcatggca ggtattctca gggagtctgg 180 tgtttacaga aaagtcatga ttacacgtga aagctgtggg ctccctggct tgattcacca cacctgcagg aagcctggct gctcagacca gcacgccgtg gacatagcac cacttgctca 240 300 gcttcatttc cgtaactcag gctgccaggc ctgctgacaa attttcacgt ttgtaataac 360 cctgtgagga gaccagagta catcttactt gactcataag gaaattgaga ctgggtgatt tagtaacttg ggaggcagaa ttgcaaagtg attagcaaca caagccatgg tgtcagatgg 420 atctgggtta ggtcccacct ctgccgttta ttagctgtgt ggctttgggt actcacgcca 480 cctctctgag cagcagtttc ctcttttgta agcgtaatga tgcctacact cacaggcttg 540 agaggaagat ccgatgaaat agcatatgca aaatgattgg ttccgtgctt ggcattccag 600 660 aaatggtagc tgttattcag ccaacaaata tttattgagc acctactatg gacttccctg gtgctgagga tacaacagca accacagcag tcaaaagtcc ctgtctttat gttgctcaga 720 ttctcatagg ggaaagcaga taatgaacaa atacacggcc agacgcagtg gctcacgcct 780 gtaatcccag tactttgcga ggccaaggtg ggcaagtcac ctgaggtcag gagttcgaga 840 900 ccagcctagc caacatggtg aaaccctgtc actactaaaa atacaaaaat tagcgcagtg 960 tggtggctca tgcctgtagt cccagctact tgggaggctg aggaaggaga atcgcttgaa cctaaaaggc agaagttgca atgagccaag atcgtgccac tgcattccag cctgggtgac 1020 agagtactcc atctaaaaaa aaaacctaaa tacacaagta aaaatataga cttcgtcaga 1080 1140 tgctagtaag tgctgtgaag gaaactaaaa ggggaacaca aggaaccctt gtcaagggga

10

gcagaaaggg	gagttgatgc	tgtcctttta	aatagggcaa	tcagaggcca	ggcacagtgg	1200
ctcacactta	taatcccagc	actttgggag	ttcgaggcag	gtggatcact	tgaggtcagg	1260
agttcaagac	cagccaggcc	aatgtggtga	aaccctgtct	ctactaaaac	tacaaaaact	1320
agccaggtgt	ggtatcgcgt	gcctataatc	ccagctactc	gggaggctga	ggcgggagaa	1380
tcgcttgaac	ctgggaggcg	gaggttgcag	tgagccgaga	ttgtgccatt	gcagtccagc	1440
ctgggcaaca	agagcaaaac	ttcatctaaa	aaaaaacac	agcaaaaaag	ggcagtcagg	1500
gaaaacttcc	ctgagaaggg	gatggtggag	tacagatcca	gggaggtgag	gtggggagca	1560
agccagtaca	gttgttcctt	gactttcgat	gaggttatgt	cctgataaag	ccatggtaag	1620
taggaaatat	tgtaagtcaa	aaatgcattt	aatacaccta	acctacggaa	catcatagct	1680
tagtgtcacc	taccttaaac	atgcttagaa	cgcttacatt	agcctacggt	tgggcaaaat	1740
catctaacac	aaagcctatt	ttatgataaa	gtattgaata	tctcatgtaa	tgtactgagt	1800
actgtacgga	aagtgaaaga	cggagtggtg	ggatgggaac	tctaagcacg	gcttccactg	1860
catgtgtgtt	gctttcgcgc	catcataaag	ttgaaaagcg	ttaagtcaaa	ccaccgtacg	1920
tcggaggcca	tctgtatctg	gtaggaggag	tgtttcagac	agagagaaca	gcaggtgcaa	1980
tagagtgctt	ttttcccagc	attttattat	gaaaaatttc	aaacatctac	caaaaaagt	2040
tgaaagactt	gtacggtgaa	aagccataca	tctcacagct	agaatcaaca	attaacattt	2100
tactgtattt	ggtttttgac	ttatctatcc	tagatccctt	gtgctttctg	tagcaggtga	2160
cctgccttga	agatttaaag	acagaatatc	gggaaatgta	gtcagaaaat	ggggcctttt	2220
ataagagtca	gaggggaaga	gcaaaaactc	tgctttcgag	aaatctgtcg	ggagaggcca	2280
actgcaggga	tacctccctt	ttttaatgaa	agcatttctg	ttctgcgagg	agcgggatcc	2340
tcttgtcaag	cagtcagtcc	ctgctgcttc	cttactgggg	caggatcagg	acgcacaggg	2400
atttggagtg	ccttggaacc	aaccaccacc	cacgctgttt	gccagctggt	aaacatgcct	2460
gtcaggtcta	ggggttggca	ttgcctggaa	atctttagtg	ttcatcttgc	tgacatctgg	2520
tgccctcggg	taggtaggtg	cagttggctg	cctggtttac	agagcttgta	ctgggcccag	2580
gttagcaggg	gtcacatccc	tttatcccac	tgtgcagggg	agttccttct	caggaaaccc	2640
agtttataag	aagtactgac	tgccagaaat	agagcagaga	tcagaaccag	gaggcaattg	2700
tgagaggaat	ggagacttct	gacctctggg	gattggggta	ccctccccct	taattgctgt	2760
tggggtagca	gagggcttag	aagcccatgt	tcctagactt	ttagaattgg	aagaagactt	2820
agaagtaatc	taggctgggg	gtccccaacc	cccaggctgt	ggcccgttag	gaacctgacc	2880
gcacagcatg	aggggtaggc	cagcgagcac	taccgcctga	gctccgcctc	ctgtcagatc	2940
agcagcggca	ttagattctc	acaggggcac	aaaccctatt	gggaaccgcg	catgagaggg	3000
atctaggttg	cgtgctcctt	aggagaatct	aactaatgcc	tgatgatctg	aggtggaaca	3060

gtttcatccc	cacaccatcc	ctccaacctc	accccggtcc	atggaaaaat	tgtcttctac	3120
aaaacccgtc	cctggtgcca	aataggttgg	ggacccctga	tctaggctac	agttaagtgg	3180
tcaaacaccc	aggtcctgaa	gttaggctgc	ctgggtttaa	atcccagctc	tactgcttac	3240
tagccctgtg	accttgagca	agtcacttag	tttttctgtg	cctcagttta	ctcatttgta	3300
ataaaagctt	aatagtaccc	atcccagtgt	catgaactaa	gttcatatat	gtaaagtgct	3360
tagaatggtg	cctagcaagt	acttagtaac	agttagctct	gaaaatgtat	aaagcaaaat	3420
taaccaatgt	tttagtggtt	tgcagccaac	ttttttctat	gcgtgtgcta	acatattatt	3480
ttataagagt	gggaatatat	tgtacatgct	gttatataac	ttgctttttc	actaaacagt	3540
ctatcctctg	tgtcagtttt	gataaaagcg	ttttcctctt	gcttttcctg	catatgttca	3600
gaaccatcat	attggtagca	agtttcatgt	cctgcagttt	tcttaaccaa	cccctgcta	3660
gcggacattt	aggttagtct	cagtttttc	cttctgtaaa	taaagctgca	ctgagcaaga	3720
agtgaccgat	gccaagtgac	tagatgacct	taggtatgac	ctctctgggt	cttggtttct	3780
tggtctaaaa	acaaaatgac	aggattcgac	tgggtgatta	aaatctcctc	tgatctacat	3840
aggaattgtt	ttcaagacat	ttctgcattc	ctctagtgac	agggtgctca	ctacctcatg	3900
agtatttcag	tggacaactg	taatggtcaa	taaagtatcc	actttccacc	ttccacttcc	3960
ctgtagctcc	tggccctggc	tttattctct	ggggctccac	acattcagtt	tacactcagt	4020
ggccagtggc	tggggccatt	gtagaaaatg	aggaaactcc	aattccttcc	ttctttctt	4080
cctctttcat	cccttcctcc	ctccctacat	ccctctctct	cttccttcct	tccttgacac	4140
ttaccatgta	ccagaccttc	tgccaggcac	atggatggga	gcacagttcc	gggaagttgg	4200
ctgcagggtt	agaactaagt	cccaagcccc	gtaaagctca	tgccagggga	ctggactgtc	4260
cagtactgag	ggatggggat	gctgaggctg	gtggccttcc	tcagatgcac	tgtagtgccc	4320
caggcagagt	cctgggctgc	cctgtgagga	ggtgaccaga	ggtagagcaa	cttcacccta	4380
aggctggatc	aggatcccct	ccaggttttt	actagagcca	aacccacatc	tcctttctct	4440
tctgccaccc	ccccttaaaa	tgcttagaaa	cacatagatt	taaatacaag	ttcaaatgta	4500
agtaatttca	actgtgtaac	tatgaggagt	caattctacg	tgggtcctat	ctgtatcctc	4560
cccagggctc	agctccattc	tttgctttca	ttcattctca	ttcaatacat	tgttgttaag	4620
agctcactgg	gtgccctctc	tgtcatgtag	taaggtttta	aaaagaaagc	ctcttctgag	4680
cttcagtttc	cttatttata	aaataggagt	attgatccgt	tccttgcttt	tcttacaagg	4740
atatgctgaa	gatgactgaa	gtacagagta	aagaaggatt	atgtttgggt	gtcaaaggaa	4800
tagaatgccc	tctttcaaac	tgagcacagc	aggaacctgt	aacaggaaca	cagcaacttg	4860
ttgaatgaat	gacaatattg	gaaaacatac	atttcctccc	ctccccatca	tagtccctct	4920

gcttccgtgt	taactccata	gacaggccag	cacagccagc	cttgcagcct	gagataaggc	4980
ctttggcggg	tgtctcccct	atcgctccct	caagccctca	agtaggtgtt	ggagagaggg	5040
gtgatgcctg	gtgctggtgg	aacccctgca	cagagacgga	cacaggatga	gctctaagta	5100
cccgcggtct	gtccggcgct	gcctgcccct	ctgggcccta	acactggaag	cagctctcat	5160
tctcctcttc	tatttttta	cccactatga	cgcttcctta	gaggatcaaa	aggggctcgt	5220
ggcatcctat	caaggtgaga	gttcattgga	acagtggtca	caggagcaaa	tagcaggggc	5280
aggggcgggg	gaggcctatg	gttctccagg	ggcacagatg	ttcctttcta	caaaatcccg	5340
aggaaaagat	tcccccatct	tcttccgtag	attgcaccga	aattcagtca	acaatgtaag	5400
ctttccttta	gaagcagcct	gggcatgccc	tcttctgtga	agcctgcctt	gatttttcag	5460
cacagtgaga	ggcatcctct	ttggtgttcc	tcaaattccc	tctaccaaat	ggtcttcata	5520
attctctgct	tctctgcttc	cccttctctc	tccttagtgg	caaggatttt	ttttatttt	5580
atagatttag	gggatacaag	tgcagctagc	ttatgcaagc	aatttcatgt	tgttgggttt	5640
tcgggttttg	tttccttttt	gtggcctctc	gctcatttct	tatttctttt	tgagacaggg	5700
tctcactctg	ttgcccaggc	tgaagtgcag	tggcatgatc	atggttcact	gcagccttga	5760
cctcctagtc	tcaagcaatc	ttcccacctc	agcctcccaa	gaagctggga	ccacaggagg	5820
gcaccaccat	gcctggctaa	atttttttt	ttttttggta	gagatgtggg	tctccctgtg	5880
tttcccagac	tggtctcaaa	ctcctggaca	caagcgatcc	tccagcctca	gtctcccaaa	5940
gtgctggaat	tacaggcgtg	aagcactgtg	cccagctctc	ttgctcatat	ctatactagt	6000
tttcttttgg	aagcttcagc	ctgttgctac	ccccacccc	cacccccacc	gaccccagct	6060
ttcttctcac	ttaggggctg	ggaagtctgc	atgctgtcta	taaatccaga	accagaaggt	6120
atggctgaag	gggagggtag	gatgatggtt	attttatatt	cagctaaaaa	tattcccaga	6180
ctgtgatgag	acaactgtaa	ataagacaga	tgtccacaat	ggtgtgactt	tgctttttta	6240
aaaatattga	aatgagtttc	aggcatctca	gtgggctgat	aggttgttga	taatggacag	6300
ggcctccttg	aagaatgtcc	ctgagacaaa	gttgaagctt	gagcctggtt	gagtgcttgc	6360
ttgttcctag	gttgatatga	acggctagtt	aactggaagc	aaagagaagt	catcctgggg	6420
gccatggcag	tgacaagtag	gacttaggga	gggaagccct	tataccattt	aaggtgctgg	6480
cccagagagg	agccttcagt	gacagacaaa	caagagctgg	cacaatttta	attcatttca	6540
atttacttta	attcatttca	atccaataca	attcaatgca	ttccattcat	tcaaccatgt	6600
atgacatcca	atgtgggatc	cagacacatg	atgattagaa	ctgatattta	tgagcactta	6660
ctatgtacca	ggcactattc	tacatgcttt	acattgaacc	ctcacaataa	cccaatgagg	6720
tgggtactat	tatgatcttc	gtttttcata	tgaggaaact	aggcatatgg	atgttgagta	6780
atttgcccaa	ggtcgctcag	ctagcaatag	cacagcgtat	ttaaatttag	ccaccctgga	6840

tttagtttcc	ttacacttaa	ccattatgca	tcatggcccc	attttacagt	ggcgttgagt	6900
catttgtcat	ataacccagt	aggtgtagca	gccactattc	caaccctgta	gattgactct	6960
agggtccatg	ttctttaccc	ctgcaccgtg	ctactaacgt	aggtacaaaa	tgtcctcaga	7020
aactcacttt	atatggaagc	tcagaggagg	gtccacaacc	caggcagggg	agacgatggt	7080
gtcaggggag	gcttctggag	ggaggtgcct	gcccagccag	ctcttgaagg	ctcagtagga	7140
attacctgtg	ggacaaaggc	gggtcatcca	agtgagggca	cagtgggtgc	cattgcgtgt	7200
gcacacacta	gagcagactg	agcttgggct	taacattgca	ttgccctgta	gcctaaaaag	7260
agaagcaagg	ggctgggcga	ggtagctgac	acctgtaatc	ccagcacttt	gggaggccaa	7320
ggctggagaa	tcacctgagg	ttaggagttc	aagaccagcc	tggccaacat	ggcaaaaccc	7380
catctctact	aaaattataa	aaactagccg	ggtgtggtgg	cacacgtctg	taatcccagc	7440
tacttgggag	gccattacac	tccagcctgg	gcgacagagc	aagacttcat	ctcaaaaaac	7500
caaacaaaaa	caacaacaac	aacaaaaaac	aaagaggaga	gcagggactg	ggtgtggtgg	7560
ctcatgcctg	taatcccaaa	cactttggga	ggccaaggcg	ggcagatcac	ctgaggtcag	7620
gagttcgaga	ccagcctggc	ccatatggtg	aaaccctgtc	tctactaaaa	atacaaaaat	7680
tagccggatg	tggtggcacg	tgcctgtagt	cccagctgct	tgggaagctg	agggaggaga	7740
attgcttgaa	cccaggaggt	agaggtagct	gagctgagaa	tacgccactg	cactccagcc	7800
tgggtgacag	agtgggactc	tgtctgaaaa	aaataatagt	aataaataaa	aataaacagg	7860
gaagcagtgg	gtggtagact	cactgggctg	catacggagt	ttggcttcag	tctgaggtcc	7920
gaatagtaaa	caggagcgcg	acaagtttgg	gtttgggtca	tggcggatgc	catgccaggg	7980
ctggtgttgg	gcacagggga	aggggcatgg	cttgagacac	aagaccagcg	tggaggctgt	8040
agtgtagtat	tgacccgagg	gcttcaacct	tctgatggtg	tacacaccat	tttttgagca	8100
tgtaccatgg	ttatatgtta	cactttaagt	attactacat	taatatattt	tgtatgttat	8160
aataaataca	tacaaattag	gaaaattgaa	agagatcaga	atgaaatata	taatattttc	8220
aaattactaa	tcataatggt	gtcaatctcc	aggcagggtc	cattgctaca	gttgacgata	8280
gtggatgaaa	attcactcct	cagagtcttc	ttgataattt	gaaattgtct	tgattgactt	8340
gtcagatctg	attagatcga	cattttttaa	atctcgaatg	tgactgacag	cttgtacaag	8400
gagaagtttc	actctgcctt	tcctttttgt	tcacttgact	gccattattt	ctctgcttcc	8460
aatctgtgtt	tttctgcacg	agttggttaa	gccattactt	cattttgtga	aagtttgttg	8520
agttaaactt	aggtaactta	atctgtcaat	ccacttaatt	gaattcagtc	ctggtaaact	8580
ataatagatt	attcaaacct	gccaattcta	aaaagacatt	ttgagacaat	caggaaatct	8640
gaatatagca	tgaatatctt	acgatataca	aggattattg	ttaattttgt	taggtatgat	8700

aaaagcatgg	tgggttttt	ttttgttttt	gttttttaag	gctctatctg	ttagagaggc	8760
acattgaaat	ggcatgatat	ctggggtttg	ctttcatacc	agaaaaaaga	aaaagtagag	8820
aaggattata	gaaacaagat	tggtctcatg	tgacaatcat	cagagtttgg	agatgggcac	8880
gtagggtcat	cgtgctgttc	tctctgtttt	catatatgct	ttgaaagttc	tgtaatagtt	8940
aattaaaaaa	aaaaaaaca	ccctggctga	gcacttaggg	aggccaagtg	gggaggattg	9000
cttaaaccaa	gaagttcaag	accagcctag	gaaacatagg	gagacccccc	cccgccatct	9060
ctaaaaaaaa	aaaaaaaaa	ctgtaaaatt	taacccagtg	tggtggcaca	tgcctgtagt	9120
cccagctact	cagtaggctg	aggtgagagg	cttgcttgag	cctgggagct	tgaggctgca	9180
gtgggacggg	attgtaccac	ttcactccag	catgggcgac	agagcaagac	cctgtctcaa	9240
aaaaaaatga	aaatatttga	ggtgaagcga	gactgtaata	acaaatttaa	aaatataaat	9300
aaaacataaa	ggctgggtgc	ggtggctcac	gcctgtaatc	ccagcacttt	gggaggccaa	9360
ggcaggcaga	tcacgaggtc	tggagatgga	gaccatcctg	gctaacatga	tgaaacccca	9420
tctctactaa	aaatacaaaa	aattagctgg	gtatggtggc	gggtgcctgt	agtcccagct	9480
acttgggagg	ctgaggcagg	agaatggcgt	gaacccagga	ggcggagctt	tcagtgagct	9540
gagattacac	cactgcactc	cagcctgggc	aacagggcga	gactccatct	caaaaaaaaa	9600
atgaaaataa	aaataaataa	aacataaaac	cctgccatta	gttgcaacat	gaagaatata	9660
gagaaatgcg	tatcaaatcc	ttctcattgg	accaatattc	ccttagggca	ccttccaaag	9720
ctaggagact	caaggctgta	tgacatcctg	agcaagtgag	gggtggcttc	tgggtgaatc	9780
tgaatattaa	atatttgcag	aattgaaaac	ttcacaaagt	acctttagag	atagaatagc	9840
ctagatccat	gtttctcaaa	gtgtggtccc	cagacctgct	gcctcagcat	ctcctggaaa	9900
tttagtagaa	atgcagattc	tcaggcccta	ggccagacct	actgatcaga	agctctgggc	9960
ctggggccca	gcaatctgtg	ttttcacaag	ccctctgggt	gattcttctg	tgcgtgaaag	10020
ttcgagaatt	cctggagcta	gactgattca	aatcttgcct	ctgtatctta	gagaccttgg	10080
gcagattagt	caacctcttt	ctgcctctgt	ttctacttct	gtcagaggat	gatagtactt	10140
gtttcattaa	gttgttgaaa	ggataaatga	attgacacac	ataaagagta	ttagctttta	10200
ttatcaaaag	ctttttttt	ttgagacaga	gttttgctct	tattgcccag	gggagtgcag	10260
tggtgcgatc	ttggctcacc	gcaacctccg	cctcccaggt	tcaagtaatt	ctcctgcctc	10320
agcctcccga	gtagctggga	ttacaggcat	gcgccaccac	gcccggctaa	ttttgtattt	10380
ttagtagaga	cggggtttct	ccatgttggt	caggctggtc	tcgaactccc	aacctcaggt	10440
gatccacccg	cctcggcctc	ccaaagtgct	gggattacag	gcgtgagcca	ccatgcctgg	10500
cccaaaagct	ttaatttctt	aatttttaa	ataaaataaa	taaaactaga	attgcttgtt	10560
ttcttccagc	taccctggtg	attgtattga	gcattttctg	gggtgtgtgt	tctttgctgt	10620

aatgactact ggtctggatg	acctgtgatg	agaccagatg	ggcaggggca	gtggaggaga	10680
ttctagagat atttaggaga	taaagtcagc	tgtacttgat	gaaaagagtg	gggagttaag	10740
actggctgca gatgtatgat	ttggcataga	gaggtgccag	ttcctgaggt	gagagacaga	10800
aggggaggga caggttgtga	ggatgaatga	acaatgatat	gttcattctg	ggcttggagt	10860
taaggggcct atgatatgct	taggggaagc	agagagtatc	aattacctat	tgctgcataa	10920
cagccacccc aaacttagtg	gcttaaaata	gcaacctttt	aatttactca	tgatcatgat	10980
tctgtggtgc aacaactggg	ctgggttcag	ctgggcagtt	cttctgttag	tttcacccag	11040
ggtcattcat gcatctgcag	tttggggtgg	gatggcctca	gatgacctca	ttcacatgtt	11100
tggcaattgg tgattcactg	ggggccatta	ctgtaacaat	cgcctaccag	gcagagcttc	11160
cctaaggcta ccaaactggg	agactatcct	gggtcctgtg	ctgtggatac	cactcagtcc	11220
cccatcccca ccccatactc	ctcaaaggca	gagagagggg	ctactagaag	acagaggagt	11280
tttcccagtg acatgtaaac	actccaaacc	ctggcacctt	ccacactgca	gctttggtct	11340
gcccctttgg gaaatctctg	tttttcttcc	caggctgctg	gaggggtgag	agtcgccggt	11400
agagtagagg ctgtgggcga	ggaggtggcg	gcctcctgag	gctgcagtgg	tctttccagg	11460
cagcagtggg agcacagggt	ggaggtcaac	cctagagcct	gggggagtga	agctggttct	11520
gccttcagag ctcttggtgc	tgaagtttct	gcaggccaga	gggaggggca	agagtgggag	11580
ggggtgcaga tccagaatca	cagaggcagc	tgaccggagg	aggcagctgc	ccaaggggat	11640
ggactcagaa ggccaaagtg	ctgttatcca	aacgaactct	ttgcaagtgg	tctctttgca	11700
acaggcctgg gggagagcag	tcttgcctaa	agtcacaccg	ctaatcagcg	gccggcacgg	11760
ggtaacagtt actaacactc	actacgtacc	caatgctggg	caaagtgact	tgcatgagcc	11820
agcgagctca atgctcatgg	caatcctctg	agcagctggc	attgtttcat	ctcaatttta	11880
cagctcagga agctgggaca	cagaggaaga	gccaggctct	gaacactgac	aacctgattg	11940
agagacccac actgttcatc	accgttacgc	tatatatgct	gtatagaaag	gcaggatggc	12000
ataatggtta aacctaggta	ggtagggttt	gaatcctcct	gctaccattt	actagctctg	12060
tgacttggac tagttatagc	acctctctgt	gcctcccttt	cccctctct	aaaatgggga	12120
taataaatcg tacctcctac	ctgaggctgt	tgtgggctaa	gtctgtaagg	cacgtagaac	12180
agtgcctgga acgtggggta	ctgtctatct	gtgtgcctgc	tgttacaaca	atggtgagta	12240
ttgccttatc tctcgctgct	gaactaccag	gttagacttc	tttctgcaag	tcatgaggct	12300
ttcataaact tttcctgaag	gctttccgta	gaatgtacaa	ttcccctctg	ggcccaggca	12360
tgggcgcccg ggtaggacat	ccacttctta	tcacccctga	acaccttaga	gcccatcagc	12420
ttatcaaacc agcagctgat	gtgagtgcag	agcagactgt	gagaggtgga	ggctgatacc	12480

agtgaggatg	ctccaagctg	ggacccagcc	ctgaagcggg	agcccagata	atggacgggt	12540
ggaaatgggc	ctggagccca	agagaggtgg	gaggatgagg	gggcaggggg	aggagaagcc	12600
tgaaatcaaa	tgttatttcc	tgaccagttt	ggggtgcatg	agctctgtca	acagctcatg	12660
gaaactgctg	ccctaatttc	atcttgttgg	ctgaggcaca	attcctctct	cagggacagt	12720
gtagagcctt	ggggaggaag	gccctgagcg	catatacctg	gaatcaggga	atcgggatca	12780
ggggcagcag	ctgtgcccga	taaagccccc	acccaggatc	ctctgacttc	ctcatctctc	12840
ttttttttg	agccggagtc	tcactctgtc	atccaggctg	gagtacagtg	gtgcgatctc	12900
ggctcactgc	aacctcagcc	ttctgggttc	aagcgattct	cctgcctcag	cctcctgagt	12960
agctgggatt	acaggcatgc	gccaccatgc	caggctaatt	ttgtattttt	agtagagacg	13020
ggatttcacc	atgttggcca	ggctggtctc	aaactcctga	cttcaagtga	tctgcccacc	13080
tcagcctccc	aaagtgctag	gattacaggc	ataagccact	gtgcccggcc	tttttttt	13140
tttttttt	ttttttaaa	aaaagggtct	ccctctgtcg	cctaggctgc	tggagtatag	13200
tgatgtgatc	gtggctcact	gcagccttaa	ccttctaggc	acaagccatc	ctcccacctc	13260
accctcctga	gtagctggga	ctacaggcac	ttgccaccac	gcccaagtaa	ttttgtattt	13320
tttgtagaga	caaggtcttg	ctatgttgcc	taggctggtc	ttgaactcct	cagctcaagc	13380
aatcctcctt	ccttggcctc	ccaaagtgct	gggattacag	gtgtgagcca	ccacacctgg	13440
tctgacttcc	taatctttag	ggccccaact	ctgcccttat	ccaggcaact	ctcctctccc	13500
catcttccac	taacttcttt	ggaatattcc	agagctgtaa	aagccttaga	gagtatcaag	13560
tccaactcct	atgtgttaca	gacagggaaa	ctgaggccta	aagagggtaa	tggacttgcc	13620
taagatcgct	tagtgaggtg	agagaagaaa	gagctagaga	cagcctagcc	tgtgcaagga	13680
catagttcca	ggcattcaga	gctgcgctct	gctgccggca	tgtttggggc	ctggtagtta	13740
gttcactgct	gaactaccag	gttagatttt	ctttctccaa	gttgtggggc	tttcataaac	13800
ttttcctgaa	ggtcttcctt	acaatgtaca	attctcctct	gggcccggtc	atgagcgccc	13860
ctcacaggct	ctctctggtc	cccttctgta	aaatgagagg	aaaatggaag	aattgctcta	13920
ctcatggaat	cttcaataag	tctggaccct	atgcatatag	cattgctaca	aaatggcaga	13980
tgcactttaa	caatcgtgtt	taataaaagg	ttggatttgc	atatctgaag	tggggcatgc	14040
agtctccaac	tgaacacaag	cctcactgct	cccacatgtg	cactgcacct	tcatatacat	14100
atttcctgct	tggctcctga	gggaatttga	gtaatcccaa	gaggaacccc	tgtagaaaat	14160
gtcccctggt	cacacacccc	cattcctaag	gatgcaagca	ggagatagaa	acattccctg	14220
cacctccctc	cttgctgtca	gaagaagtgc	aaagagttga	atccttccta	atgcccactt	14280
ctcacccacg	ccccaaatcc	ccaggtcccg	tggaggtcct	tgggggtctc	ctatatcctg	14340
gtggtgtcag	gttgatttgg	aaatgtcagt	gtcctccctt	gtcctctctg	gcagaccctg	14400

ggtgtgtgta	cgtttcaatg	gaagtgaatt	taaatgtact	ttataaatca	aagacttttt	14460
ctgagacttt	ggagagttcc	agtaatgaga	gcttctcatt	gttatcaaag	ccagggctgg	14520
agaccagtgg	caggtgagtt	cctattgctg	tgattgtcat	gatgatgttg	atgaacagcc	14580
actatttatt	gagtgttctc	catgtgctag	gcactgtact	aaacattatt	tccttcggat	14640
gtcccagaaa	cctctcaggt	ggctctaatt	acccttattc	tgttgataag	gaaagtaagc	14700
aacttagaag	accacagggc	tatgaagttg	aaacacgtaa	attgatattt	tattttattt	14760
atttatttat	ttatttattt	tgagacagag	tctcactgtg	tcgcccaggc	tggagtgcag	14820
tggtgcggtc	tcagctcact	gcaacctccg	cctcctgggt	tcaagcgatt	ctcctgcctc	14880
agcctcccga	gtagctggga	ttacaggtgc	ccgccaccac	atccagctaa	tttttttgta	14940
attttagtag	agacggggtt	tcaccatgtt	ggccaggcta	gtctcgaact	gctgacctca	15000
tgatctgccc	acctcatcct	cctaaattgg	tatttttata	tgtccaaaag	agtcaactgg	15060
tggcaattta	gtgaggttta	atctaatagg	aaatgataga	gctgggatcg	aacagagcta	15120
tgtgaactca	aaacctatgc	ttccccttcc	accttttcga	aaaacattgt	ctaggctggg	15180
cacggtggct	catgcctgta	atcccagcac	tttgggagac	ggaggtgggt	ggattacatg	15240
aggtcaggag	ttcgagacca	gcttggccaa	aaattagcca	ggcgtggtgg	tgcgcgcctg	15300
tggttcccac	tgaagcacag	gaggctgaag	cacaagaatc	acttgaaccc	gggaggcaga	15360
ggttgcagca	aaccgagatc	gcaccactgc	actccaacct	gggtaacaga	gagactctgt	15420
ctcgaaaaaa	aaaaaattgt	ctacatgctg	gttgcagaaa	atttaaacac	taaaactaaa	15480
aaagtaaaac	atctcccaaa	gttagagaca	atattcatga	tgggaaaaaa	aaaattcttc	15540
aagatttctc	tctctccagt	catttattca	tgtgcgaaaa	cagttggtga	ttattgataa	15600
gaagagggag	ggcagatggt	gtggtagtcc	aaggcacagg	ctccagcaga	ttatctaggt	15660
ttaaatcttg	gctgtaggcc	aggccctgtg	gctcatgtct	gtaatcccat	cactttggga	15720
aaccgaggtg	ggcagatcac	ttgaggtcag	gagtttgaga	ccagcttggc	caacatagtg	15780
aaaccccttc	tctattaaaa	atacaaaaat	tagccgggca	cggtggtggg	cacctgtaat	15840
cccagctact	tgggaggctg	atgcaggaga	atcacttgaa	cccaggaggc	agaggttgca	15900
gtgagccaag	atctcgccac	tgtactccag	cctgggtgac	aagagtgaaa	ctctatctca	15960
aaattaaaaa	aaaaaaatct	tagctctacc	caccggggca	agttacataa	cgcctctgtg	16020
ccttggtttt	catatctgta	aaatggtgac	agtaacagca	cccatgtcaa	agtgtggttg	16080
tgagaacgaa	acaagatagt	ctatgtaaag	tgattaaaac	agcgtaggca	catggtaaac	16140
gcttaggaaa	tgtaggctgt	tataaagctc	agagatgtta	agtaactaga	tcaagaccac	16200
acagttagag	agtgccacag	tcttgatttg	aacccaaatt	tgtctcgttc	tggagctcaa	16260

gctgctaacc	ctttttcaaa	actggaatta	aaccaaagtg	ctcaccctcc	gctttgctgg	16320
gcccctccct	gccctcaggt	gcatctcttc	cactcacctg	ccacagcagc	ctctgctcag	16380
ggtctgagac	tgggaaaggt	gagggctacc	caggtggccc	tgatgttttc	tgccagccag	16440
ctcaccaggt	ccctcgcagc	aggcggcaaa	gggagggagg	tttgctgtga	agattatgtg	16500
gttcccaaca	acaagagcac	tgggcctatc	tctgccctct	cttttctgtg	tgtcctggga	16560
caagtcactt	ggcttctgtg	gctttatttt	ctcatgtgcc	cagccagggg	gttggccctc	16620
atatgcaata	acagcagcaa	tgacctttac	tgagtgtcca	tgtgcatcaa	gcacgtgtac	16680
tttacacttg	ttcttattat	taggtttaat	aatagaataa	ttgccacatt	tactgagcac	16740
tcattatggg	ccaggccctg	ccctaagtgc	ttaattagct	ttagctcctc	taatccttac	16800
cttatcccca	cacggcatgt	tatgttatcc	ccattattca	gttgagaaca	ttgaggctca	16860
aagaggcaaa	gtaacttgac	caaatacttg	taaacgatct	tgcatgcccc	ttccagctgc	16920
catttagtaa	gactctaatt	tcataccacc	ctaaatctcg	tctgcttccc	cctcctcctt	16980
ctcaccatct	ccccaccgag	cagtcggcca	agatctgacc	gtgatggcgg	cccttggctt	17040
gggcttcctc	acctcaaatt	tccggagaca	cagctggagc	agtgtggcct	tcaacctctt	17100
catgctggcg	cttggtgtgc	agtgggcaat	cctgctggac	ggcttcctga	gccagttccc	17160
tcctgggaag	gtggtcatca	cactgttcag	gtattgggat	ggtggctgga	tcacttctgg	17220
gtcatagagg	gaatggaccc	cgaaaggaca	ggttccagaa	gatctgggat	attgccccct	17280
ctctgtctag	caccagtgct	gtgcaatatt	taggacatcc	ttatgctaaa	agattattca	17340
ttgtttaaaa	ttcaaattta	actgggcatc	ctgtatttta	ctggacagcc	ctactctgtg	17400
tatcacaagg	aatccaggcc	tacattcctc	ctgcatcctt	tctttcctgt	tattgtcgat	17460
tatgattttg	taaagttaca	taatcagtat	aagtttatgg	aaaacgtaag	aaggaaacac	17520
gttagacaga	gagaaataga	catgccacac	ctagagagac	attctatttt	tttttttct	17580
tttttgagac	ggagtttcgc	ttttgttgcc	caggctggag	tgcaatggcg	ctatctcggc	17640
acaccacaac	ctcagccttc	tgggttcaag	cgattctcct	gcctcagcct	cctgagtagc	17700
tgggattata	ggcatgtgcc	accacacctg	gctgattttg	tatttttagt	agagataggg	17760
tttctctgtg	ttggtcaggc	tagtctcaaa	ctcctgacct	caggtgaccg	gcctgcctcg	17820
gcctcccaaa	gtgctgggat	tacaggcatg	agccaccgcg	tccagcctga	gagacattct	17880
cttgaaaaga	aaggactttc	agccccctaa	agctactaga	caagaaatag	ccatgccttt	17940
attttcatta	aattacctgt	gctttgttta	gatgcctttg	tgtgaaatgc	taagaaccat	18000
cacaactaat	gtatggtgcc	agaagtcaga	atagtggtta	cctgggcagg	aggtggatat	18060
tgattaggaa	ggaacacaaa	atagccccat	ggggtgcaga	aaatgttctc	tgtgttcacc	18120
tgggtgatga	ttacacatca	agctatacac	attttaaaag	ggcattggca	cttaatagaa	18180

ggaactaggc	taaattttt	cctgaaacat	tgttttgttt	tgttcaaacc	tctgaatctc	18240
tcagctcccc	agatgatggt	aaacgtcatc	ctaggcatct	tagggacctc	tcaaggcctc	18300
tcaaggccat	tccagcctcc	ccttctaaga	ccctgctaaa	cctctgggca	ctgctgttaa	18360
acatttctct	atgagccagg	aactgtgctg	agcactccac	aaatattatt	ttgtttaact	18420
cttccaggta	gggatctaac	ctggtataca	ggtaaggaag	tggaagctca	gagagggcaa	18480
ggcacttgcc	tagggccaca	cagctaagtg	gtggagatgg	ctctaacttt	tttttataac	18540
cttttccaca	tgctccagag	tggtcagaac	atgaaacaca	gtctagccag	ctcctgactg	18600
gccctagagg	aaaaaaactg	tatgtatttt	tctttttaa	aaggtttaga	ggctgggcat	18660
ggtggttcac	gcctgtaatc	ccagtacttt	tgggagctga	ggtgggcaga	tcacttgagc	18720
ccaggagttt	gagaccagcc	tgagcaacgc	agtgagaccc	tgtctctgca	gaaaatagaa	18780
aaatcagcta	ggcgtggtgg	tgtgcaccca	cagtcccagc	tacttgggag	gctgaggcag	18840
gaggatcacc	tgaacccagt	gaggctgagg	ctgagtgagc	catgatcgtg	ccactttact	18900
ccagcctgga	caacagagtg	agaccctgtc	tcaaaaaaca	gttttagggg	ccgggcgcgg	18960
tggctcatgc	ctgtaatccc	agcactttgg	gaggtggggg	tgggcagatc	atgaggtcag	19020
gagatggaga	ccatcctggc	taactcggag	aaaccctgtc	tcgactaaac	atacaaaaaa	19080
ttagctgggc	gtggtggcgg	gcgcctgtag	tcccagccac	tcgggaggct	gaggcaggag	19140
aatggcgtga	accttggagg	cggagtttgc	agtgagccga	gatcgtgcca	ctgcactcta	19200
gcctgggcga	cagagcgaga	ctctgtctca	aaaaaaaaa	aaccaaaaac	aacagtttta	19260
ggccaggcgc	ggtggttcat	gcctgtaatc	ctagtacttt	aggaggccta	gacagatgga	19320
ttacctgagg	tcaggagttc	gagaccgacc	tgagcaacat	ggtgaaatcc	tgtctctact	19380
aaaaacacaa	aaattagctg	ggcattgtgg	caggcacctg	taatcccagc	tacttgggag	19440
gctgaggcag	gcgaatcact	tgaacccggg	aggcggaggc	tatagtgagc	cgagatcgcg	19500
ccattgcact	gtagcctggg	cgacagagtg	aggctccgtc	tcaaaaacaa	aacaaacaa	19560
aaaccatctt	agagttaatt	cccaccggga	ttcaatacac	acacacacac	acacacacac	19620
acgcacgcac	gcacgcacgc	ccgcatacac	acactgcatc	cacctggaaa	gtgacaaagg	19680
gcaccctggg	gggaattcaa	atggtggtgg	ccctggtttg	gtgttgctgc	cttagcttaa	19740
ggtcacacca	gccttcagcc	tcctgcccca	cagtctaggg	ctgctccctt	catctgatgt	19800
ccacagggac	ctgttcattc	ttgactcaat	ccaggaagat	gagaagggag	agaagtcact	19860
cgcagcctga	gtgaactccc	ttgctccacc	cctgactgct	tggatccccc	taggggtgac	19920
ccctgctgaa	actggctcct	tcctgaccgg	ttcccgtcag	ggctgtgctg	atgggtggtg	19980
cccaggcctg	cccctgggga	cggggtactc	tcccttggca	acactccagc	ttgtgccact	20040

tgacttggga	ctgatttggt	tctgttttga	gtcccttcag	gggagggcc	tatcttattc	20100
aacgttgttg	tttgttttcc	tcacatactg	ataacttagc	aaatggctat	tggaacaaaa	20160
atgaaaataa	atggaaccct	gaagtgggat	gttttaaatt	tttatttatt	atttttttag	20220
agacagggtc	ttgctctgtt	gcccagtctg	gagtgcagtg	gtacaatcat	agctcactgc	20280
agcctctgcc	tcctgggctc	aagtgatcct	cccacctcag	cctcctgagt	taaattttt	20340
tacagacgcc	tgctaccatg	cccggctaat	ttttgtgttt	ttagtagaga	cggggtttca	20400
ccaggtgggt	caggttggtc	tcgaactcct	gacctcaagt	gatccacccg	cctaggcctc	20460
ccaaagtact	gggattacag	gcgtgagcca	ctgtgcccgg	cctaaaactg	tgtttgagac	20520
agggtctcac	tctgttgtcc	aggctggagt	gaagtggcat	gttcatggct	cactcagcct	20580
cagcctcact	gggttcaggt	gatcctcctg	cctcagcctc	ctaagtagct	gggactatgg	20640
gtgcacacca	ccacgcctag	ctgatttttc	tgtcttctgc	agagacagga	cctcactgtg	20700
ttgctcaggc	tggtctcaaa	ctcctgggct	caagtgatct	gcccacctcg	gctccgaaaa	20760
gtactggaat	tacagcctcc	tgagtagctg	agaccacagg	cacacaccac	cacgcctagc	20820
tttttttt	tttttttgc	tttttgtaga	gatggagtct	cactatgttg	cccaggctgg	20880
tctcaaactc	caggccttaa	gcaatcctcc	cacctcagcc	tcccaaagtg	ctaagattac	20940
aggtgtgagc	caccattcct	ggccttaaaa	gtgtgatatt	tttaatgtat	tttgaaatct	21000
gcaggactct	ccctagaaga	taatagcaat	aaccaactcc	tttattgtgc	ttgacgtata	21060
tcaactcact	ttgcccttac	cgtggctcca	gaggcattgg	gtccacctta	taaatggagg	21120
caccaaggca	cagagtgatt	aaataagttg	cccaggatca	cacagccaga	aagtgtctga	21180
gtcaagattc	cagcccaggc	agcctagacc	tgagagcacg	ctcctaacca	ctgcacatca	21240
ctgtcttagc	acctcctcag	cacaaactgg	cccttgagga	atgaaatacc	gccgccggca	21300
cacacgctcc	tgagttaagc	ctttgtcaat	gaaatgaaca	cccacttaaa	aggaataacc	21360
tgtccaggca	cgatggaaca	ttgaataacc	ccttattcta	aattcctggt	ccctgtaaga	21420
ctccttcccc	atgcccttgc	ccttttatga	ccttccccta	aagtccttga	ggcttaagcg	21480
ggcatagtct	gcagcaaaca	ctggggaagc	tgagtccaga	cttcagagca	caggctttgg	21540
atctaggcca	gctggatttg	aacctcacat	ttgtgatcag	ctggcatgac	tgtttccaaa	21600
aagtccattt	taatcctcta	cgtgaccctc	tgtaaaatgg	ggatactgaa	cggtgagcta	21660
gcacgatttt	acagagagtg	aattttttt	tttttttt	tttgtgagac	agagtcttac	21720
tctgtcgccc	aggctggagt	gcagtggtgc	aatctcggct	gactgcaacc	tctgcctccc	21780
gggttcaagc	gactgccatg	cctcagcctc	gagagtggct	gggattacaa	gcatgcacca	21840
ccatgcccgg	gtaatttttg	tatttttagt	tgagacagag	tttcaccatg	ttggccaggc	21900
cactcttgaa	cccctggcct	caagtgatcc	acctgccttg	gcctcccaaa	gtgctgggag	21960

tacaggcatg	agccactgcg	cccagcctta	tagggttaaa	atttaaaaga	ggtgatgctg	22020
ttacaagcct	gttttacaaa	atgctcttat	aataaatcat	tatcatcact	gttgctgtgg	22080
ttgtagcatc	atcatcatta	actcccagag	ggaggaggga	gtctcagagc	aagctgctca	22140
ggggagactg	gatgtccatg	gattgtccag	ctcagtacca	cttcctccag	gaagtcctcc	22200
ctgataagtc	cagtcagcat	caccctctcc	ttccaatgaa	ccccactagc	cttgtgatat	22260
cacagatatt	cttagttgac	aggctcatgg	tgtatgtagc	ctgtctagat	cataagtaca	22320
tttttttt	ttttggatca	taagaacctt	caagaccaaa	ataattttct	cctcctgagc	22380
atgctcattg	gtcaagggaa	ggaaggaatc	gtaatagtgt	taataaggct	agtgtctttt	22440
caggagttgg	ttctttgtgc	cagtcttggt	gctagacaca	ccgataggaa	gaatactcct	22500
tcacatcccc	aggacaccaa	catgggatac	gtttgatcat	cattcttaat	ttgcagaagg	22560
agaaataggc	tcagtgagat	gaaatagcca	ctccagtggc	aaggctggga	ctggaagccg	22620
ggcttgtcct	gattccaaat	ccagtttctt	tccactgcca	cggagaggga	gagaagggac	22680
agtggcccca	gatgaggatg	gggtgactgg	atgtgggcag	gcctgcgggg	gaagagtgcc	22740
ctctgttgag	catccgaatg	atggcagcag	aaaagaagac	tgggcagaat	cccagttatc	22800
agatcccctg	agggaacagt	caccccgatc	accctcagtc	agatgagtgt	gtgtagatca	22860
atgcctcata	gatgaaggca	ctgaggcaca	gagtggttaa	gtcatctgcc	agaccacatg	22920
gctcagggtg	cagaggccac	cttaacggga	gaagagatgg	tcactccact	ctgcagcatc	22980
agcgcccagg	tgggtagaaa	tcttgtcttc	tatttccaca	gaaagtaagg	tgcccaacag	23040
tgtttgttga	atgaatgaat	gaatgaatga	atgagtgaga	ggcatccttc	cttctcagtc	23100
atcctggctc	tccttctcac	ccccagtatt	cggctggcca	ccatgagtgc	tatgtcggtg	23160
ctgatctcag	cgggtgctgt	cttggggaag	gtcaacttgg	cgcagttggt	ggtgatggtg	23220
ctggtggagg	tgacagcttt	aggcaccctg	aggatggtca	tcagtaatat	cttcaacgtg	23280
agtcatggtg	ctgggaggag	ggacctggga	gaaaagggcc	aaaagctcca	tttggtgggg	23340
cttccggggt	tttgaaaaat	aaagacaacc	tgtaatccca	gctacttggg	aggttgagga	23400
gggaagatca	cttgaggcca	ggagtttgag	acccgcctgg	gcatcatagc	aagatcctca	23460
tctctaaaaa	gtaattttt	ctaaattatc	cagttgtggt	ggcatgcacc	tgtagtgtca	23520
gttactcagg	aggctgaggt	gtgagttgga	aggattgctt	gagcccagga	gttagagatg	23580
aacctgggca	atatagcaag	acctcatctc	taaataaata	ggtaggtgga	tagatagata	23640
gatagataga	tagatagata	gatagacaga	cagacagaca	gacagacaga	cagacaggct	23700
gggtacagtg	gctcacacct	gtaatcccag	cactttggga	ggccaaggag	ggcagatcac	23760
ctgaggtcag	gagttcaaga	ccagcctggt	caacatgggg	gaacctcatc	tctactaaaa	23820

atacaaaatt	tagctgcgca	tggtggcagg	tgcctgtaat	cccagctact	caggaggctg	23880
aggcaagaga	atcgcttgaa	cccggagggt	ggaggttgca	gtgaactgag	atcgcgccat	23940
tgcactgcag	cctgggggac	aagagcaaga	cttcatctcc	aataaaaaaa	aaagaaaaaa	24000
gaaaagaaaa	gattgataga	tagatagata	cccaaatgag	gttacaaaag	tgtggtctgt	24060
gcaaatgttt	aaacacaaca	aaccagtgcc	tttaactact	acagtataat	cctgtaggat	24120
tgtgctattc	atgatgtaat	tatggttgta	taaaagtaat	taattctcag	agcctcacca	24180
gcagtgggtc	cagcaagttt	gtacagccag	catcttcttt	cagtcagtgc	gtgtcagtaa	24240
ctgcacatgt	cctctcattg	ggagagcctg	tcgaaagtct	aagtttgaag	gcagctgtga	24300
aggtaaggcc	aatccaaatg	gctctcccag	ctcctctgct	gtaaccctga	ccctgagtga	24360
ggacatagcc	aaccttccca	tctcataggt	gagaaggctg	atgcctggag	aggggaaggg	24420
actgcccaag	atcacatagc	aagatagtgg	cagaacccaa	gcgagaaccc	acagttccag	24480
cctggcttag	aagaaagtgc	actggacttg	gagtcaaagg	ctggggtgtg	catcccagct	24540
ctgccataaa	tccctgtgtg	actctgggca	atttaacctc	ttagagcttt	agtttcttcg	24600
tctgtaatat	gagggtagca	gtactaccac	atagggtttt	gagggagtaa	ttgaattaat	24660
cacatgaaat	gatgcacgtt	tacaaaaaaa	agcatgaagc	ccctttactg	tgcctcagta	24720
tcccaaagga	ctttggattt	actctgagaa	atacagggag	aactagggag	tgttgggcag	24780
aggagagcta	tgatctgact	tatgttttaa	gatactctgg	cttctgggtt	cagaaaagac	24840
tgaaggggca	agagaggaag	caggtggaga	ccagagcagc	agtgatggcc	atcatccaga	24900
ctcagactag	gacaatagct	gtgagggtgg	tgggaagtga	ttggatcctg	actatatttt	24960
aatagcagaa	ttgacaggat	ttgctgatag	actgcacgtg	gggtgggaga	gggtcaagat	25020
gacttcaagg	ttctcatctg	gcacaactca	gcagctgctg	gtgccattta	ctgagatggg	25080
gaacattggg	gtgggataga	tctgggaggg	aaaacccaga	gttcagtgtc	gaatgtggta	25140
gcgttagggt	taaggttggg	gcgggtagag	atgtgtatga	aacatcccag	tggagacact	25200
gaatggagat	gtacaagtct	gaagcttagt	ggaaaggtta	gggctaggga	tataaatttg	25260
ggagttgtta	caatacagat	ggtgtttaaa	gccatgagac	ccaaggagat	cactcaggag	25320
tgaggataaa	gagagatggg	aagaagtctg	aggactgagt	cctagaacac	cctgcatttt	25380
agaggggga	catgtgtaag	agccagcaaa	ggagacagaa	ttgtgcttgg	agaggcagga	25440
ggaagcccag	gagagcgtga	ggtcctggaa	ggcaaggaaa	gagagggccc	caggtgggct	25500
gaatgctgct	gagaggtcaa	gtcggatgag	ggctgggaag	tagccattgg	atttgacaag	25560
gagaccttgg	catgcatggt	tgtagaggag	gatgaaggca	aaagcctggc	ttgactgatt	25620
caagagcagg	agatgagaaa	gtggagacag	catgcagggg	cagccctgcc	aaggactttg	25680
ctctaaaggg	gaacagagaa	atggaggaga	agcaggaggg	caataatccg	atagagagga	25740

aaaatctgat	gatacagaag	agagatgaac	tgcaagagtc	aagcctttga	gttggaaagc	25800
aggagtggga	ttttgagcac	tgataccttt	aggccgatgc	agggacagtt	catcttttt	25860
aaaattatta	ttattataca	acattttatt	taaaaattta	ttttcacaga	atacattttc	25920
acattagaga	ttcccattgt	gcgaaaataa	caatttatta	cttatagttt	tatatttgtg	25980
gacagattgt	tttagaacaa	gtagaataca	tttgagaatt	aaatctcagt	ttacaatggg	26040
taatattttg	atacgtctat	ggggaaactt	gcccttaaat	ggaacttctg	tatcttcaga	26100
agcactccaa	gcgtttcttc	ctaggattta	gaaatttata	atatgagata	tcagcatttc	26160
ctaattttaa	aatttcccta	gtatatgtaa	ccatcggtag	gtggtatcta	ccgactagag	26220
agggaagttt	ttgaaaatta	aacactgtct	aattttctgc	aaagttttta	ttcatgaatt	26280
aagagtattt	cccttagtcc	attattccca	aggcaaatat	ggaagtttga	tcatatgcta	26340
atcatactaa	agctggattc	tctttaagag	attgagaaat	taaaaggcaa	aagctgatat	26400
atcatgttta	gttatactgt	gagtcttata	agaagctggg	aggcaacccc	attaactcac	26460
cagaatacag	aactcagtct	cacaacttaa	atataattcc	tctcaaacct	tttcctcaaa	26520
gttaaattct	gaaaataatc	ttgtgattaa	gagaagaagg	ctgtccacca	atggacttat	26580
ctgttatttc	ttccttattg	tgagcttaat	ggcatgacaa	agcagaggca	aagaggcata	26640
catcaattct	tcaaagtagg	aagtcaaaaa	ggtcagagct	tccacagcat	ggcaacagct	26700
ttgcagatgc	ccacatcgtg	atagttgaaa	tagcaaagcc	cagcaaaggt	taaagctgaa	26760
aatgccaaaa	gccctgcctt	ggcagctttc	tgcgaggcat	ccccatgaac	atagtcagta	26820
acaacttgtc	caaggcccca	gtgaccatga	agagtgaggg	ctgcagccag	ggaatagtcc	26880
gtcgcagagc	aaggattcaa	ataagcagcc	ggaagcagac	ccgggagcaa	aacactgaca	26940
accctctcgc	tagtccagtg	gagagatgca	gccttggagc	cagaatggtg	gctcggtgac	27000
aagtgtatgt	gctgcactcc	acaccattct	gggataggtc	ggtcctgaag	aaatgctgag	27060
atatgagcag	gtctgaccac	tggagttcgc	agcaacagag	ctcggcctcc	ttgggcaccg	27120
caaacggcac	tcagcctcca	gagaaccgcc	atctcgttcc	tgaggcggag	agttcatctt	27180
aacgagagaa	atggcaggga	ctgtgaatag	gccggcagat	ttggtggcgg	gtgccacagg	27240
ttcagtctcc	tgcagggaga	ggagaaaatg	ccttactaat	tccttgtatt	ttctcagaga	27300
aacaagaggc	accgtcatca	gcctcatgtg	agggtgggaa	ggagggatgg	ggtttgcgga	27360
gagggaaagt	gtggtatggt	catctgtggg	agtggaagag	agtgagaggg	ctgcaggggt	27420
gcagcgggac	tgcaggctgg	caccagggtc	cctagggctt	gtagttggtg	gaaagtgcat	27480
cagtgaccag	ggctgtgtgc	agctgctcca	ggcaggtgtg	gaagaagcag	agttgaactt	27540
gcccagcctg	gagtgctgcc	cagagtgagc	ccaaagccca	agggagacca	gagatggggc	27600

aaaatctgat	gatacagaag	agagatgaac	tgcaagagtc	aagcctttga	gttggaaagc	25800
aggagtggga	ttttgagcac	tgataccttt	aggccgatgc	agggacagtt	catcttttt	25860
aaaattatta	ttattataca	acattttatt	taaaaattta	ttttcacaga	atacattttc	25920
acattagaga	ttcccattgt	gcgaaaataa	caatttatta	cttatagttt	tatatttgtg	25980
gacagattgt	tttagaacaa	gtagaataca	tttgagaatt	aaatctcagt	ttacaatggg	26040
taatattttg	atacgtctat	ggggaaactt	gcccttaaat	ggaacttctg	tatcttcaga	26100
agcactccaa	gcgtttcttc	ctaggattta	gaaatttata	atatgagata	tcagcatttc	26160
ctaattttaa	aatttcccta	gtatatgtaa	ccatcggtag	gtggtatcta	ccgactagag	26220
agggaagttt	ttgaaaatta	aacactgtct	aattttctgc	aaagttttta	ttcatgaatt	26280
aagagtattt	cccttagtcc	attattccca	aggcaaatat	ggaagtttga	tcatatgcta	26340
atcatactaa	agctggattc	tctttaagag	attgagaaat	taaaaggcaa	aagctgatat	26400
atcatgttta	gttatactgt	gagtcttata	agaagctggg	aggcaacccc	attaactcac	26460
cagaatacag	aactcagtct	cacaacttaa	atataattcc	tctcaaacct	tttcctcaaa	26520
gttaaattct	gaaaataatc	ttgtgattaa	gagaagaagg	ctgtccacca	atggacttat	26580
ctgttatttc	ttccttattg	tgagcttaat	ggcatgacaa	agcagaggca	aagaggcata	26640
catcaattct	tcaaagtagg	aagtcaaaaa	ggtcagagct	tccacagcat	ggcaacagct	26700
ttgcagatgc	ccacatcgtg	atagttgaaa	tagcaaagcc	cagcaaaggt	taaagctgaa	26760
aatgccaaaa	gccctgcctt	ggcagctttc	tgcgaggcat	ccccatgaac	atagtcagta	26820
acaacttgtc	caaggcccca	gtgaccatga	agagtgaggg	ctgcagccag	ggaatagtcc	26880
gtcgcagagc	aaggattcaa	ataagcagcc	ggaagcagac	ccgggagcaa	aacactgaca	26940
accctctcgc	tagtccagtg	gagagatgca	gccttggagc	cagaatggtg	gctcggtgac	27000
aagtgtatgt	gctgcactcc	acaccattct	gggataggtc	ggtcctgaag	aaatgctgag	27060
atatgagcag	gtctgaccac	tggagttcgc	agcaacagag	ctcggcctcc	ttgggcaccg	27120
caaacggcac	tcagcctcca	gagaaccgcc	atctcgttcc	tgaggcggag	agttcatctt	27180
aacgagagaa	atggcaggga	ctgtgaatag	gccggcagat	ttggtggcgg	gtgccacagg	27240
ttcagtctcc	tgcagggaga	ggagaaaatg	ccttactaat	tccttgtatt	ttctcagaga	27300
aacaagaggc	accgtcatca	gcctcatgtg	agggtgggaa	ggagggatgg	ggtttgcgga	27360
gagggaaagt	gtggtatggt	catctgtggg	agtggaagag	agtgagaggg	ctgcaggggt	27420
gcagcgggac	tgcaggctgg	caccagggtc	cctagggctt	gtagttggtg	gaaagtgcat	27480
cagtgaccag	ggctgtgtgc	agctgctcca	ggcaggtgtg	gaagaagcag	agttgaactt	27540
gcccagcctg	gagtgctgcc	cagagtgagc	ccaaagccca	agggagacca	gagatggggc	27600

tgtttgcaaa ggaggaagta	taacagtagc	ccacaaaatc	tgagctggtt	aagaaaggag	27660
agagagtgaa aatggggagc	ccagcctggc	agcctgggta	cacatctcag	ctcaacccac	27720
actagctgaa tccatttggg	ccccttcgtt	gacctctctg	tgcctcagtt	tccctatcta	27780
tagaatgggg ataagaataa	ggctacttcc	tagggctgtt	gtgaggattg	aacaagtgac	27840
cgaacacttg ttcaattttg	aatactgttc	taaagcattt	aggacagtgc	ctggcatggg	27900
gtaagtgttg cggcagtgct	gttattttca	tcatcaccat	tgttctcagg	ctgcgttgat	27960
tggagctgct gaagggaggc	aatttaagga	agtgagccgg	acagatagga	ggtggtggtg	28020
gttatcaggt gcgatgcttg	aaactgaggc	ttcggaggca	acagttactg	gtaatgacaa	28080
ggtctaaggc ttgacagtgg	gtggcagaag	tgtaacgcag	ggaaagagac	gagcggtcaa	28140
ggagccgaga gggaaggagt	tgggtggact	aagatcattt	gtggaagaat	gatggagaga	28200
aaggctgaag ggcaggaact	gacatcatca	gtgaccaagg	ggcggccagg	aggctgagac	28260
cgcagcaaga aagggagagt	gtgatggcat	cttcttcaag	ggagctgggg	atgtttgggg	28320
tggaaaaaag aacaatggtc	tgggagggaa	tatgggaagt	tttttttt	tttttcagat	28380
ggagtttcgc tgttgtcacc	caggctggat	ggcaatgttg	caatctcggc	tcactgcaac	28440
ctctgccttc caggttcaag	tgattctcct	gtctcagctt	cccgagtagc	tgagattaca	28500
ggcacacacc accacgcctg	gcttactttt	gtatttttag	tagagacgga	gttttgccat	28560
gttggccagg ctggtctcaa	actcctgacc	tcaggtgatc	cacccgcctt	ggcctcccaa	28620
agtgctggga ttagaggtgt	gagccaccgc	gcccagcctg	gaagtttgta	tttattaatt	28680
tttggttgtc ttcatctgtg	tatgtgactt	taacccctaa	atacttcagt	gtacatttct	28740
ttttttttt tttttttt	tgagacagag	tcttgctcca	tcacccaggc	tggagtgcag	28800
tggtgtgatc tcggctcact	gcaacctccg	cctcctggat	tcaagcaatt	cttgtgcctc	28860
accctcccga gtagctggga	ttaggggcat	gccaccatgc	ccagttaatt	tttgtatttt	28920
tagtagagat ggagtttcac	catattggcc	aggctggtct	tgagctcctg	gcctcagttg	28980
atccacctgt ctcagcctcc	caaattgctg	agattacagg	cgtgggccac	cataaccggc	29040
ctcagtgtat atttctgatg	cagttgggtt	ctgtatcccc	ctccaatctc	atctcgaatt	29100
gtaatctcca cgtgttgagg	gcaggacctt	gtgggaggtg	atgggatcac	aggggtggtt	29160
tcccccatgc tgttcttgtg	acagtgagtg	ggttttcagg	agagctgatg	gtttgaaagt	29220
gtggcacttc ctctctctct	ttctctctct	ctctcacctg	ccaccacgta	agatgtgcct	29280
tgcttccctt tcaccttcca	ccatgattgt	aagtttcctg	aggcctctcc	ggccatgcca	29340
aactgtgagt caattcagcc	tcttttgttt	ataaattacg	cagtctcagg	aagtatcttt	29400
atagcagtgt gaaaacagac	taacacaatt	tcctaaaaca	aggggacatt	ctcttacata	29460
accattgttc agttaacaaa	aatgagaaat	tgacattgat	atattatgat	taccttattc	29520

tcatttcacc	aatttttca	ataatatcct	ttctagaaaa	aaatacatat	tttttgtggt	29580
cgaggattac	atcttgcatt	tagttctcat	gtcttattaa	attccatcaa	tctggaacag	29640
tttcttcatc	tttctttatc	tttcatgacc	ttgacatgtt	ttgaagtttc	gagccagttc	29700
ttttgtagaa	tgtgggtttg	tctgctgttc	ctcatgatta	gattgtgggt	atgcattttt	29760
ggtaggaatt	ctccaagagc	cgtgtgtgcc	cttcttagta	tatcatatca	gaagacatgc	29820
tatcaatttg	ccccattact	gggtgtgtta	actgtgatca	ttgggttaag	atggtacctg	29880
ccaggatctt	ccactgcaaa	gttactattt	tcccctttgt	aattaataaa	catcttgtga	29940
ggagataatt	tcctatagaa	atcctgttga	tcatccaact	ttcacccact	gattttagtg	30000
ttcattgatt	cttccctgaa	taaattagta	ctataataat	tgccaatggt	ggttttctaa	30060
ttccatcttt	ccttcaatag	ttggcattct	cctgtaagga	aaagctttcg	cttctctgtt	30120
catccactca	tctatgtatt	tgtttatatt	accatggact	cctggattcc	ggtttacaca	30180
cttccatttt	ctgccttttc	tctctgctta	atataaggat	taatgagaac	tccctgattc	30240
ccaggaagaa	aatgtcacca	gagctttctt	aggtggaatg	aagagaattc	agtgtaagaa	30300
ccataaaggt	gtatctgtgt	agtatggaca	gttttaaaaa	acaaacaaac	aaaaagaacc	30360
tccaagggca	ggaagtgctg	ccagactcag	gagggcacta	gaactgacta	tgagaagcca	30420
ctgagatccc	aggtagtctg	tgctctccat	cttttggctc	tgattctctc	tgtacatcta	30480
acatctctgt	acaccagctt	tctctttagc	gaaaaacgtg	tcccctccac	ccacccatcc	30540
acctccactt	gttcctgcat	ttctatgtcc	cagatcctgc	agaaaacaac	tcttttctct	30600
cagttagtct	caattctgta	gtccagggag	agagaatctg	atcagtcccc	tgggtcattt	30660
ttccactctg	gtccaagcag	ctacagctgg	catgggaaat	agttcacaca	gtaaaaacat	30720
ggctgtcaag	aagaggagta	aatttcagag	gcagaacact	ccctgtgagc	ccgaacctct	30780
tcctgctttg	ttgcagtctt	cataacgatt	gctttaaaag	actgcattga	tataacatca	30840
tctctcttct	ctgcatcttt	gacttgctag	cttaactggt	ctagaggagg	gcttagcact	30900
gattttcagt	attcattttc	ctcaaaactt	caattcagcc	tgggtttctt	cagcaggagg	30960
gctcggggga	accagagcca	gggaccagag	tcatttcagt	gcaccagctc	aagaaatgaa	31020
tattccaggc	caagaatccc	caagtgttct	ttctgaagtc	cttcctggtg	gagctcaaag	31080
agatgaaaaa	cgcaagcccg	cttttcagtt	cttatcagga	aactgcatag	actttcctct	31140
ttatgtatga	ctgagggctt	tttaccatca	tttgttcact	tcacagatat	ttatttggta	31200
tttactatat	accaggcact	cttgtggcag	tggaaaatac	aactctcgtg	gaacatctgt	31260
tccagaagga	aagactgcca	ataagcaata	aaataggcaa	aagatatagc	atgttagaga	31320
gtggtaagta	ccacagagaa	aaataaaatg	gagaaaagaa	acacgaaaag	ttggggagag	31380

aggacaactg	tttgaggggg	tggccagggg	cagcttcatc	tcatcaaggg	ggtgattttt	31440
tttgagtaca	gacctgaagg	taacgagtgc	acaagccaca	tgggtacctg	agaacagcgg	31500
cagaacaatg	gcagggtgct	gggagggcta	tttaccaccc	atgctgttta	gaattgtcag	31560
cacatggtga	taaaaaaaaa	aataggctgg	gtgcggtggc	tcatgcctgt	aatcccagcg	31620
ctttgggagg	ccaaggcgga	tggatcactt	gaggtcagga	gttcgagacc	aggctgggga	31680
acatggtgaa	accccgtctc	tactaaaaat	acaaaaatta	gccgggcaca	gtggtgggcg	31740
cctgtaatcc	cagctacatg	ggaggctgaa	gcaggagaat	cgcttgaacc	cagtgggtga	31800
agtttgcagt	gagccaagat	ggcaccactg	cactccagcc	tggcgacaga	gcgagactcc	31860
gtctcaaaaa	taaataaata	aataaataaa	aataaaaagc	agacagactt	tttagttggc	31920
tttagaattg	ttagacaccc	tctgcagaca	aggcaccccg	attgcttgca	cccagggtgg	31980
actactccct	ccatcctgcc	cttgttacac	cctggctggg	ggtcagcatt	tcaggcagct	32040
gaatgaccca	aagtgggaac	acgctagtgg	gtttgaggat	gagcaagtgg	aggagtgcaa	32100
taggaggtga	cgcccgagag	gtcaggtgag	agtggatcct	gcagggtcgt	ggcaagaacc	32160
tggaccttga	ctttgagtga	catgggagcc	gctggaggct	tctgagcaga	ggagtaacat	32220
gatctgactt	gcattttatt	ttatttattt	atttgacgca	gtctcactct	gtcgccgaag	32280
ctggagtgca	gtggcgccat	ctcagctcac	tacagcctct	gcctcccagg	ttccagtgaa	32340
tctcctgcct	cagcctccca	ggtagatggg	attacaagca	agcatcacca	cgcctggcta	32400
atttttgtat	ttttagtaga	gacagggttt	tgccatgttg	gccaggctgg	tatcgaactc	32460
ctgacctcag	gtgatccacc	cacctcagcc	tcccaaagtg	ctgagattac	aggcttgagc	32520
caccacgccc	ggcctgactt	gcattttaac	agggtcactc	tgtctgctgt	gtggagaaca	32580
gtccgcagga	agacaagggt	ggaaatgggg	agaccagtta	ggaggttact	gtaacaattt	32640
ggggtagcgg	tgatggtggc	ttaaaccaag	atggggtcag	tgggaaatgg	tgctaaaaat	32700
cctgccaatt	ctgggtattt	ttagaaagca	cagctgacag	ctttctccag	tagcccacta	32760
aataagttat	gaagcattac	taaaatgtga	tagtcatgat	gcaaaattag	aatatatcta	32820
gaatctcccg	aagaccttag	tttggtatta	caagaagtct	ggttgcttca	tgttgcaaaa	32880
tttatatcac	tcatcactcc	tgcagagtta	aaattccgct	gagaagtagg	aatcagtgaa	32940
gtgcgtgtcc	atgtgggttt	ttgccacacc	taagtgaacc	ttggtcaaaa	gcatataaga	33000
gctactgata	ggccgggcgt	ggtggctcat	gcctgtaatc	tcagcacttt	gggagggaag	33060
gatctcttga	gcccaggagt	tcgagaccag	cctgagcaac	atagtgagat	tccatcttta	33120
cacaaaattt	aaaaattggc	caggcatggt	tgtgcactcc	tgtaatccca	gctacttagg	33180
aggctgaggt	gggaggattg	cttgagcctg	ggagttggag	actacagtga	gctgtggcca	33240
caccactgca	ctccagcttg	agcaatggag	caagactctg	tctcaaaaaa	aaaaaaaaa	33300

aaaaaaaaa	gaggccgggc	acagtggctc	atgcctgtaa	tcccagcact	ttgggaggcc	33360
gaggcgggtg	gatcgcctga	ggtcaggagt	ttgagaccag	cctggcaaac	acggtgaaac	33420
cccatctcta	ctaaaaatac	aaaattagcc	cagcgtagtg	gcgcatgcct	gtaatcccag	33480
ctactaggga	agctgaggca	ggagaatcgc	gtgaacctgg	gaggcaaatg	ttccagtgag	33540
ccgagatcgt	gccattgcac	tccagcctgg	gcaaagcctg	ctgggttggg	ctgggtaagc	33600
tctgaacacc	agtctcgtgg	cttcaagtca	cacctcctaa	gtgaagctct	gaactttctc	33660
caaggaccat	cagggctttc	ccctgggcag	aggatgccga	cactcactgc	tcttactggg	33720
ttttattgca	gacagactac	cacatgaacc	tgaggcactt	ctacgtgttc	gcagcctatt	33780
ttgggctgac	tgtggcctgg	tgcctgccaa	agcctctacc	caagggaacg	gaggataatg	33840
atcagagagc	aacgataccc	agtttgtctg	ccatgctggg	taaggacaag	gtggggtgag	33900
tggtctcata	cttgggctga	gcagaatggc	tcagaaaagg	ctctggctga	aaaaatctcc	33960
ctcctttacc	aacttcccct	gggtgtctga	agcccttcca	tcatgattca	cttctttgag	34020
tagtgtttgc	taaattcata	cctttgaatt	aagcacttcc	ttttagggac	ctctcttcat	34080
taatatccac	tagaaaggag	agactcatta	tgtgtgagtt	tcaataagtt	tatccaatcc	34140
ctttgttttc	aactgaaagg	agggaaacgg	acaagtgaag	aaggtagggc	ccaggagtga	34200
aggaacaagg	gtgggaatag	taataatgtt	gtactttgaa	aatctactgg	gaaaatgatg	34260
aacttagact	gctgggagag	gctaatagaa	aatcgggcag	tgagcttgat	agtaggcaaa	34320
ggactatcag	gccacggggt	caagttaaag	cagcacattc	attaaaaaaa	aaaaaataag	34380
cgtttgggcc	aggcgtggtg	gctcaagcct	gtaatcccag	cactttggga	ggccaaggtg	34440
ggtggatcac	ctgaggtcag	gagttcgaga	ccagcctggc	caacagggcg	aaaccccatc	34500
tctactaaaa	atacaaacaa	atcagctggg	catggtggtg	cacgcctgta	atcccagcta	34560
cttgggaggc	tgaggcagga	gaatcttttg	aatccaggtg	gtggaggttg	cagtgagcca	34620
agatcgcgcc	actgcactcc	agcctgggca	acagagcaag	agtccatctc	aattaaaaag	34680
aaaaaaaaat	taaaataagc	atttgaccat	cacagagcag	gttcaggagg	cctggggtat	34740
gcagatttca	accctcttgg	cctttgtttc	cttgtctgta	aaatgtggtt	agctggtatc	34800
agcttgagag	ctcggagggg	agacgtgact	tccccatcta	actctaagtg	acaaggctga	34860
gactctccag	ccctaggatt	ctcatccaaa	acccctcgag	gctcagacct	ttggagcagg	34920
agtgtgattc	tggccaacca	ccctctctgg	cccccaggcg	ccctcttctt	gtggatgttc	34980
tggccaagtg	tcaactctgc	tctgctgaga	agtccaatcc	aaaggaagaa	tgccatgttc	35040
aacacctact	atgctctagc	agtcagtgtg	gtgacagcca	tctcagggtc	atccttggct	35100
cacccccaaa	ggaagatcag	catggtgagc	agggcgctgc	ccttgggcag	cacttgggtc	35160

taacaggact	agcacacata	tttatgcccc	tccccacccc	agggccagcg	tgggttggga	35220
gagggcatgc	cgggtggtgg	agctgtgcct	gcctctacag	tggagctcta	ggaagaatgc	35280
tgggtggtca	cagggggcct	gggactcagg	agactgtcca	gtgatcaaag	gctttctggg	35340
gggagtgatt	aaatccatcc	atgctaacat	gaaacagacc	tgagtttgaa	ccccgtttct	35400
gctagttgct	caagtcagtc	accatgagcg	agagtcagca	gcaacagact	agactagaat	35460
tagccagcct	ctctcttccc	cccaacaaat	ttcaagaatg	gaaccatcag	aatcagaagt	35520
agagaagtat	gtgacactag	ccatgtggct	ctggtcaagc	cacttcaacg	ttttgagtct	35580
cagtggcctc	atctgtaaag	tgagaattaa	gagatggtgc	atgtaaagtg	cttaacgggg	35640
agtaaatggt	aggcaaacat	tagctgctgc	tattagtaca	gagagacaat	ggtgtgtgtg	35700
agtcttgtgg	gcagagatgg	gtgagagggg	agacaaaaca	agttctcatg	atgatggggg	35760
cagggggtcc	agctggtggt	gtcggaggga	agtctggaca	gaccagtggt	ggggctcggg	35820
tgggaggcac	tgggggggct	ggagtggaaa	gaatgtggcc	acagatgaca	gcttcacagc	35880
agaattcagt	gctaagagga	agtgagtggc	catgagttcc	atggtgacag	aaagtctaag	35940
acacctagca	aggcaggagt	gggtgtcagc	tcagggaagc	tcagaggcta	aacctaggtg	36000
agagctgagg	gtgtcagata	agagcaaggc	aaggctccgg	ttctggagta	gtgaaggaca	36060
tagcagagct	ataacccagg	aacaaggccc	agcttattgg	aactgggacc	agtcacacag	36120
ggtggcacag	gcaccaagta	gccaataata	ataataaaaa	caataacaat	gatttatgtc	36180
tattgggcat	ttattcatgt	tctatgccag	acactggact	aagagcttta	tatgtggaaa	36240
ctcatttaat	ccttacaata	accttatgaa	gaaggtacat	ccaaaacccc	attcttctag	36300
gccaggtgca	gtggctcaca	cctgtaatcc	caatattttg	gaaagctgag	gcaagaggat	36360
tggttgaggc	caggagttca	agaccagccc	aggcaacata	gcaagaccct	gtctctaaaa	36420
aataaaacaa	aaacccattc	ttcccgctgt	ccagggacac	accactaatg	agtgtgatgg	36480
gtgcctagga	tgctgagcac	ctggacttcc	cagctcattc	cctaaatgct	gcacaatcag	36540
ggtaactgtg	ccctgagcct	aagaggcagt	agtgagctgg	cccaccgtgt	ccactgatga	36600
aggacacgta	gccccaacac	aggggagagg	tggtttcagg	atcagcaaag	cagggaggat	36660
gttacagggt	tgccttgttc	ccagcgtgct	ggtcacttgc	agcaagatgg	tgttctctct	36720
ctaccttgct	tcctttaccc	acacgctatt	tctttgcaga	cttatgtgca	cagtgcggtg	36780
ttggcaggag	gcgtggctgt	gggtacctcg	tgtcacctga	tcccttctcc	gtggcttgcc	36840
atggtgctgg	gtcttgtggc	tgggctgatc	tccatcgggg	gagccaagtg	cctgccggta	36900
agaaactaga	caactaatgc	tctctgcttt	ggctgaaggc	cagcaggacg	ctgggacctg	36960
atgggccact	gtgcagtgca	cagctgcatt	aggcaggtgt	tggtgcattc	tcttattggc	37020
ttcaacgcct	agcgagggat	ccatcctggc	tcggtggcac	atttgttaag	atgctgggga	37080

gcaggtggca	gaacccattt	gagcttgctt	gggcactggg	gagaatttgt	taccaggcta	37140
caggggtgtc	acagaactca	aggacaggga	ctggagtgtt	gtggggagcc	cagaagcccc	37200
tgttttactt	ctttctttgc	ttttcctgaa	tatctgcttt	attcttactc	tatagacctg	37260
cttcctcctc	tttcacccca	cattgtgggg	tgtagtcttt	tgcttcaaga	aagcagcctg	37320
gtggatggaa	tctcttggcc	ccaatcccaa	attctctgga	gaaggggctc	tttggtttaa	37380
cttggataat	gttgtcttca	gctgggggtg	ggcacatcgt	gcatatgtgg	ctgctgccgg	37440
ggaaccacgt	ggatgatgtg	agaggagcag	cacccagaag	agggagtgct	gggctgatgg	37500
tccaggtcgt	gtccacttct	gattgtttaa	ttcttcttct	aagtggatgg	atctttctcc	37560
aatactcagc	aaatcctgat	cgttccagaa	tacttcatta	tagccaattg	gttataatgt	37620
gcttctctaa	gagaaatatt	tagggacaac	aaatcttcat	gggtttgaag	acttgatgga	37680
ggaaaaagga	gtagattttc	gaaggctgga	tttggatgaa	caggggctat	tcagggagtg	37740
cattccaacc	taaaattagg	aaaaactggc	tgggcgcagt	ggctcacgcg	ctttgggagg	37800
ccgaggcggg	cagatggcct	gaggtcagga	gttcaagacc	agcctggcca	acatggtgaa	37860
accatctcta	ctaaaagtac	aaaaattagc	caggcgtggt	ggcgggcacc	tgtcatctta	37920
gctactcagg	aggctgagat	gcgagaatca	cttgaacctg	ggagacagag	cttgcagtga	37980
gccgaaattg	cgccactgca	ctccagcctg	ggcgacagaa	caagactctg	tcttaaaaaa	38040
aaaaaagtgt	tttatataca	gagtggaata	ttatttagcc	ataaaaagaa	tgaaatcctg	38100
tcatttgcag	caacatggat	ggaactggag	gtcattaaaa	aataaaataa	aataaataag	38160
gaaaaacgta	tcaatacttc	gattgaccaa	aaccagggca	aatctgattt	tcatctttgc	38220
aaggggaaca	aatttctttt	atctcctctg	gctttgaaac	cctgaaatga	aaggaggaag	38280
ggcagaaaaa	agaacacata	gcaagttacc	atcaggctca	gcgcccatcg	cattccctga	38340
gcttgtttcc	ttgacttcat	cactggcagg	actattcaaa	aatgattccc	tcattcattc	38400
atatattcat	tcattcatca	ttccttcatt	caacacatac	gttttaacac	tcatcttgct	38460
tttcaagcta	tagtttagtg	agcgaaatgg	atacacagaa	tacagtgtga	gaacagctac	38520
agggcacatc	tgagctagcc	tgggatgggt	ccggaaatgc	ttcctggagc	agaggaaacg	38580
gttgacagcc	aagtgttgac	agagaagtag	tattagccag	gcagagacat	ggggaatgta	38640
ttccaggcag	aaggcacagt	gtgtatgaaa	gcttattggt	aagaagagtg	tgtggcccaa	38700
ccaggaaaca	gacattctga	aggcataggg	tccacccagg	agcatggtga	acccagatcc	38760
ctgaaagatg	ggaggtgctc	aggcacactt	cctgggctag	ttgaggggtc	tggattttta	38820
tttacttatt	tttttattta	ttgagacaga	gtctcgttct	gtcacccagg	ctggagtgca	38880
gtggtgcaat	ctcagctcac	tgcaacctcc	acctcctggg	ttcaagtgat	tctcctacct	38940

cagcctcctg	agtagctggg	attacaggtg	cccaccacca	tgcctggcta	atttgtgtgt	39000
gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	tttgttgttg	ttgttgttgt	tgagacggtg	39060
tctcgctctt	ttgcccaggc	tggagtgcag	tggcgccatc	ttggcttact	gcaagctctg	39120
cctcccgggt	tcacaccatt	ctcctgcctc	agcctcctga	gtagctggga	ctacaggcgc	39180
cctccaccac	gcccagctaa	ttttttgtgt	ttttagtaga	gacggggttt	cgccatgttg	39240
gccatgctgg	tcttgaactc	ttgacttcag	gtgatccacc	cacgttggcc	tcccaaagtg	39300
ctgggattac	aggcatgagc	caccgtgccc	gacctggatt	tttattctga	agactaatgg	39360
ggatcctaag	gaaggaacca	gcctgactga	atttgcatat	gtgtccacat	ctgctggctc	39420
atggctgtgt	gggaggctga	gtgatgggga	ggaaggatta	ctgagtaggg	atctagaggt	39480
gtggcctcat	gctttctttc	taaccagctg	tgttgtcttt	gggatggtgc	ttaaatttgg	39540
gctagaccag	tgggtcttgg	tcacccccca	ggggacatct	gacaatgtct	ggaggcgttc	39600
ttggttgaca	cagtggggtg	agggctgcta	ctggcagctc	gtggggagag	accaggaatg	39660
atgcttaaca	tcctacagtg	cacagggcag	cccccatcac	aaggaattat	cagctgaaat	39720
tgtgaatagt	gcctacacta	gacccttgct	actcatagtg	tggtccgtag	atgagcagca	39780
ttggcatcac	ctgggacctt	gttagaaatg	ctcttagacc	ccaccccaca	tccactaaag	39840
ccagctcttc	atttcaacaa	actccccatt	gatgtgagta	cacattcaag	tctgagaagg	39900
gcttctttga	ggtgagcctt	agtgcccatc	cccatttggt	ggcgccggat	accaagggtg	39960
tgtgaaaggg	gtgggtaggg	aatatgggtc	tcacctgcca	atctgcttat	aataacactt	40020
gtccacaggt	gtgttgtaac	cgagtgctgg	ggattcacca	catctccgtc	atgcactcca	40080
tcttcagctt	gctgggtctg	cttggagaga	tcacctacat	tgtgctgctg	gtgcttcata	40140
ctgtctggaa	cggcaatggc	atgtgggtca	ctgggcttac	ccccatccc	cttaacactc	40200
ccctccaact	caggaagaaa	tgtgtgcaga	gtccttagct	ggggcgtgtg	cactcggggc	40260
caggtgctca	gtaggcttcg	gtgaatattt	gttggctgat	ttattcagaa	attatgtcca	40320
gcccctacct	tggatggatt	tatcacctct	ccaggccacc	tcttctttcc	aaataggacc	40380
acctaggtat	agaccaaaga	cacgaaatct	tctgtgaccc	cacaaacaca	gagcaggtca	40440
aataggccca	agccaattga	gactgtggtt	caggtcgtga	tgcagagctt	tgctgtggac	40500
gtgctcccac	tgcgtactag	ctgggcatgc	ggcttaacct	ttctcagcct	cagtcgcccc	40560
cttgtaaatg	gagataagga	tactatctcc	cctcacaggg	ctgttgggat	gctactggat	40620
ttaataagct	aatgcaggga	catgctaagc	acaacccatc	cctgaggccc	agagaagggt	40680
gggcctcggc	tgaggtctca	ctgtgaggtg	ggaatgtggg	cctccagacc	agaggtaggt	40740
cctgtggccc	ctagacagtg	gacagcaatg	gtcagtttga	cacaccagag	ccctagccat	40800
tacttcctgg	atgttgtgtg	aatattttct	ggacatggct	tatataaaat	gaaaaagtga	40860

attgggcacg	atatagggat	agatttttag	agatgaactg	atagcatgat	gataatcata	40920
ttcactgata	acatttacta	ctgttattga	ctgctttaaa	agtgttgggc	attgtgctag	40980
aaaccattat	atgcattatc	tccttgaatt	ctcacaaccg	cctactgagg	tattctcaga	41040
ctctaagaaa	tgagatttaa	gagaagttat	ctgcccaagg	tcacccggct	ggaacctggc	41100
tgtaaaaatg	gctgaagcag	gtgatgagga	gctgatgtgt	ttggacgtgt	ctcagagaaa	41160
tcatggaggc	gctggggttc	cttccggttc	ttggatgcct	tctacagaga	caaccatagc	41220
cccaaattat	agggatcaca	tatcagtggg	tgagacatcc	ttgcttggga	tgaggagggg	41280
atgagctgtg	tgaagcaagg	tgcctctgta	atgggttcca	gtgatgtgtc	tgccactgtc	41340
ttaataactg	tgcaattcta	agcagaacct	ttcctgtctc	tgggcctgag	agttcccctc	41400
tgtaagatga	ggacttgacc	tagcaaggtc	ctactcagat	gcctgtagag	aacaggcagg	41460
ggaagttaga	aaaaaaaaa	gccagtgaag	gaagggagct	cttcagcttg	cacccaccat	41520
cacagtgcag	ggacccaggc	tcagtgttgc	cagatccaat	gacttctcaa	gagctcaaaa	41580
tctagagttt	tgcatgtgct	ctcccaagta	ctggcagaaa	attcaagatt	gttagtaaca	41640
ctgtgtggct	aaattctgct	tgtgggctgc	ctagattccc	aattctgtga	ttctgtggtt	41700
ctctggaagc	attggttctc	cacagcacct	gcatcacttg	gaaacttgtt	agaaatgcaa	41760
gccctaccta	cggccccacc	ccagacctac	ccagttagaa	atctgggggt	gggacctatc	41820
agtccatgtt	tgaacaagcc	ccacaagtgt	tctcttgcaa	gctcaagttt	tagaaccact	41880
gacctatagc	caaaaaagaa	aaagccaatc	agtggtttgc	tggtagagga	ttaacttaac	41940
aactggcttt	ccatgaaaat	aaagccttga	ttggtagcac	ttgcaatttc	tatggtacaa	42000
acgcttccca	catgactgag	ttcaagctat	caaggagacg	tcactgcaca	tggacttggg	42060
aagagatgag	aacaatcagc	ccactgagcc	tatgggaact	ggctccagca	catccctgca	42120
agtcaactct	catcagggtg	agtgagttga	ggaccaagaa	gcagttatcc	tcttgccttt	42180
gcaggaccca	ggcaaaggga	agggcatagt	gacagtgatg	atctctcttc	cggaagtctt	42240
tggtttgctg	agagtaaaag	gcgtgggctt	caccagtggt	gaagccagtc	atgcagcctt	42300
agtcctggta	ctcaaactcc	ctaaatctca	gttttctatc	tgtaaaatgg	gaaaataagt	42360
cctatgtcac	agggttgctg	tgcagattta	gcaatagaac	atagccccgt	tctttatgat	42420
gactgatgct	gcatcagtat	ggggacatct	ctatgtaatg	gaaagatgga	gagaggatta	42480
agtgcaaagt	cacagcactt	aatgggaact	gtggattagc	tacttggtgg	cattgggcaa	42540
gtcagttgac	tttgcattaa	ttccacaaac	aatatttccc	aatttcctat	tcagatgagc	42600
atatgtgact	gagtcagatg	ctgtgatcag	agccaggatg	gagcatttcc	cacaaactgt	42660
gggatttta	agtgatggga	aggcacactg	aaatggcatt	gaatcatgca	gttgcagata	42720

ctcttttca attctcact	a atttaattaa	atcacccaca	222722277	cccacttaga	42780
ctctttttca attctcagt					
ctgagaatct ctgcaccct	: ctagetettg	ttaaccactc	ttttgaatag	cagagaaaac	42840
ctcagactgc catatctgg	g agagatttta	gcaacatttt	gttttcattg	tatctctttt	42900
tacagctacc tcccatttc	c cttctatttc	aagctagtaa	cacagttttc	ttttaaattc	42960
atttatttaa atgtaaaaa	aagtctattt	ggagaaaaaa	aatttttaat	agcatctctg	43020
gaatgccagt atggctaaa	tcatgaatgt	tgtcctcaaa	tgctgaaatc	tgggaagcat	43080
ctggccaagc tttgtggac	a ggccttccta	gtttgaatcc	caagagccac	tcattccgag	43140
ccacaaaaca ttggaattc	tggttcactt	ccctaacctg	aacttgtcct	ctgtgaaata	43200
gggacattaa tagctcact	c acagggctgc	tgtgaggaca	tgtgttgagc	tgagggtctg	43260
gccaggggag accctgtgc	a gggagactgt	tatcatggtg	atggatttct	gcttcattca	43320
tttctttttc cagacagca	catatagaat	gagttgtggg	gtggcagtca	gcaggtttgg	43380
gtttatcctc tattctgcc	a cttattactt	aaaaaaaaa	acccaactta	tatagtataa	43440
gctatatcca gaaaagtgc	a aatatcatac	aagtaccatt	tgatgaatct	tctgatatcc	43500
ccacataacc aacacccag	a acctcttctt	gtctcattcc	aggataacca	ctaacctgac	43560
ttctaacagc atcagtcag	tttgtctgtt	tttgtacatt	atatatgtga	tggtttgaat	43620
gtgtccccca aatttcatg	gctagaaact	taatccttca	attcatatgt	tgatgctatt	43680
tggaggaagg gcctttggg	a agtaattagg	attagataag	gtcatggggt	gaggtatgat	43740
ggcactggtg acttataag	a agagaaagag	aaatctgagc	tggcatgctc	ttgccctctc	43800
accgtgtgat gacttctcc	a tgtcatgatg	cagcaagaag	gccctcacca	gatggtggca	43860
ccatgctttt ggacttccc	a gcctctagaa	ctgtgagcta	aatcaattta	ttttctttat	43920
aatcacccag tttgatatt	tgtcatagca	acagaatatg	gacaaagaaa	gaaaattaat	43980
gcaagaagta gagttttta	c tgtaacagat	tcctgaaaat	gtggaagtgg	ctttggaact	44040
gggtgatggg aataggttg	g aagagttttg	aggagcaggc	tagaaaaagc	ctgtattgtc	44100
aagaatggag cattaggcc	a ggcacggtgg	ctcagactta	taatcccagc	actttgggag	44160
gccaaagcag gtggatcac	c tgaggtcagg	agttcgagac	cagcctggct	aacatggtga	44220
aacgctgttt ctaccaaaa	a tacaaaaaat	tagctgggca	ctctggcgca	cacctgtaat	44280
cccagctact caggaggct	g aagcaggaga	atcacttgaa	cccaggaggc	agaggttgca	44340
gtgagctgag atcgtgcta	tgcactccag	cttgggcaac	aagagcaaaa	ctccaactca	44400
aaaaaaaaaa aaaaagaaa	a agaaaaagaa	tggagcatta	aagacagttc	tacagttctg	44460
gtgagggctt aaaagaaga	c cccagaacta	gggaaagtct	ggaacttctt	aatggttact	44520
gaagtcgttg agatcagaa	gctgatagaa	atgtggctgg	tgaaggccat	tctgatgagg	44580
tctcagatgg aactgaaga	a ccacgtgttg	gaaactggag	caaaggtcat	cctttttata	44640

aagaagcaaa	gatcttagct	gaactttgtc	tgtgccagag	tcatttatgg	aaagcagaaa	44700
atccgtaggt	cacccatgtt	gtagagaatg	aaagaacatt	ttcagctgag	aaaactgaga	44760
gtgtgaccaa	gctaccgatt	gataagaaaa	ctagtacaca	taaattagcc	aggcgtggtg	44820
gtgggcgcct	gtagtcccag	ctacatggga	ggctgaggca	ggagaatggc	atgaacccgg	44880
gaggcagagc	ttgcagtgag	ccgagatcgc	gccactgcac	tccagcctgg	gcgacaaagc	44940
gagactccat	ctcaaaaaaa	aaaaaaaaa	aaaggaagaa	agaaaattag	tacacataga	45000
acaaagccag	aggctgttca	tcaggacaag	ggagaaaaac	tccaaagcca	tttcagagat	45060
cttcaagact	gcccctccca	ttactggccc	agagctctaa	gagggcagaa	tggtttggaa	45120
tgaccagctg	ctgcccaggg	ctgccttggg	tctctgctcc	ccacatttct	ggtgcagcat	45180
tcctcagcca	tcccagctgt	ggttcaagtg	gccacaggtg	tgatgtggaa	ggtaaaagtc	45240
ataaaccttg	gcagcataca	catggcacta	attttgcagg	tgtgcagaat	gcaaaagctg	45300
agggggcatg	ccttctccca	cctacatttc	aaagggtgct	gtgaacggcc	accccagaga	45360
gcccctagta	gagcaaggtc	tagtggagct	acaagggtgg	ggccaccgcc	aagaccccag	45420
aatggtagag	ctatcatagt	gcaatgccag	cttgggagaa	ctgcaggcat	gagactccaa	45480
cctgtgcgaa	gtgcaacatg	ggcagaaccc	agcaaaacca	caggggcaga	gctccccgaa	45540
gcttcggggg	tccaaattcc	atagtgtgtc	caggaggtgg	cacacagagt	aaaagatcat	45600
tctgaaggtt	taaggtttaa	tgttgttttc	tatgttgggt	tttgtacttt	cctggaacca	45660
gttacccttt	ttcccttgcc	tctttttcct	tttagaatgg	gaatgtctgt	cctatgcctg	45720
ttccactgtt	gtattttgga	agtcaataac	ttgttttgac	tttacaggct	tacagccaga	45780
gggaatctcc	catagaatga	attgtacctt	aagtctcacc	cacatctgat	ttagatgaga	45840
ccatggactt	tggaattttg	agttggtgct	ggaacaagtt	aagactttgg	gggttgtcta	45900
agtgtggtgt	ttcatgcctg	taatcccagt	gatttgggag	gctgaggtgg	gaggattgct	45960
tgagcccagg	agttcaagac	cagcctaggc	aacatagtga	gacctgtctc	tacaaaaata	46020
aaaataaaaa	gttagccagg	tattgtggca	tgtgcctgta	attctagcta	ctcaggaggc	46080
tgaggtgaga	ggatcacttg	agcccaggag	tttgaggctg	cagtgagcta	tggtcgtgcc	46140
actgcattcc	agccagggca	acagagtgag	actctgtctc	tacaaataag	attaaataaa	46200
cgtagctgga	gatggtggca	cacgtctgta	gtcctagcta	ctcaggaggc	tgagacagga	46260
ggattacttg	agccaaggag	tttgaggctg	cagtgagcta	tgatcatgcc	actgcattcc	46320
agcctggatg	atagagcaaa	atcccatctt	taaaaaaaaa	aaaaaaaaa	aaaaaatat	46380
atatatatat	atatatatat	atatatatat	atatatatat	actttggtgc	tattgggatg	46440
aattttgcat	gtacgaagga	catgcatttt	gggggctggg	gcagaatgct	atggtttgaa	46500

tgcatccctc	aaatttcatg	tgttggagac	ttaatctcca	aattcatatg	ttgatgaaat	46560
tggaggtgaa	gcctttggga	ggtaactagg	attagataaa	gtcatcaggg	tggggcccct	46620
atgatgagac	tggtggctta	caagaggaag	agagacctga	gctgacatgc	tcttgccctc	46680
ttgccatgtg	ataccctctg	ccatgttatg	gcacagcaag	aaggtcctca	acagatgcca	46740
gcagcatgct	cttagacttc	ccagcctcca	gaaccatgag	ctatatataa	ttattttata	46800
aattacccat	tctgtggtat	tctgttatag	caacagaaag	tgaactgaga	taatatacat	46860
ggaatcatac	agtaagtctg	tgcttttgta	tgcttctttt	actcaacatt	gtagttgtga	46920
gattcatcca	ggttgttaag	cattgctgta	cttttttcc	actgggatat	agtgttctgt	46980
catgcttggg	tcttaattta	taaaggtgac	tgagtggcat	tttcttccag	tattattgga	47040
aggaaagttt	tgttgttcac	agttcccctg	taaaaaagag	gcagaacacg	tcttgcaggg	47100
ccacacaaaa	ctgtgtcatc	cagggaccag	gcagcagaaa	gagagggga	actgggccta	47160
tgcctttatg	aaaaagagtg	gtgggagagt	aactgggtga	gggcatccac	taatgggcag	47220
gaagtgaaaa	cacatatgtt	ggaatttgta	gctgaggggt	ttataatatg	agtttcccat	47280
gcctgagaaa	gctgacttgc	aagaaaacga	gataaacaac	tttggccatt	agtgtggccc	47340
tgtcataaat	gaatgccgga	tagacaaatc	gagaatctaa	gaaaagatag	ttggaacaag	47400
tgttccattg	tgtgaatgca	gcagaattta	tttatccatt	attgaggagg	atttgggtag	47460
tttccagttt	ggagctatta	tgaatattct	agtattgctc	ctctgaacat	tctagcactt	47520
ttgtttttgg	agcacacgaa	tgcacttctg	ttgattatat	gcctagaagt	gaaattgttg	47580
agttatacag	tattcacaca	gtcagcctta	gtggctactg	ctaaacagtt	ttctctagta	47640
gtttgcgcca	atctaatcac	cagtagtgta	tagaagctcc	ttttactcca	cattttgtta	47700
acacttggtg	ttttccttct	ttttgattag	tcatttagca	gtgaaaccta	ttttttacat	47760
tttgatatct	ccaataacta	actaaatgga	gcacttttaa	tatgcttttt	ggacagttga	47820
atatctttc	ttgtgaaatg	tctattcaag	ttagtttgcc	cattttctat	tgtggtgttc	47880
tgtcttttc	ttattgattt	taggaattcc	ttacatatcc	tggatatgaa	tcccactatg	47940
tggcttacct	ttttccttct	ttctttttga	aacagagtct	ccttctgtca	cccaggctgg	48000
aatgcagtgg	cgctatctca	gctcactaca	acctctgcct	cccaggttca	agcaattctc	48060
atacttcagc	ctcctgagta	gcttagatta	caggtgcatg	ccaccatgcc	caccgaattt	48120
ttgtatagac	aaaataattt	ttggtagaga	cagggttttg	ccatgttggc	caggctgatc	48180
ttgaatccta	gcctcaactt	tggcccacct	tggcctccca	aagtgccagg	attacaggtg	48240
tgagccacca	tgcccagccc	accttttact	ttcttaatgg	tgtcttttga	acaaggaggt	48300
tcttaatttt	aatatagccc	aatttatcat	tgttcccttt	atgcttagtt	cttttatgtc	48360
ctgtttaaga	atttttgcag	ccagctcggt	ggctcacacc	tgtaatccca	gcactttggg	48420

aggctgaggc	tggcagatca	caaggtcaag	agatcgagat	catcctggcc	aacatggtga	48480
aaccctgtcc	ttactaaaaa	tacaaaaaat	tagctgggcg	ttgtggctct	tgcctgtagt	48540
ctcagctact	cgggaggctg	agatcacgcc	actgcactcc	agcctggtga	cacagcaaga	48600
ctccatctaa	aaaaaaaga	aatttgcaag	gtcatgcata	tgtccccctg	aattttttc	48660
taaaaatcac	ttaattttag	atcaatgaat	tgagtaattg	actccatttt	tcagtcattc	48720
aacaaacatt	tccctgaggt	tttgataacc	tgaactgtgt	ttggagctgg	ggaggaagca	48780
aactattgaa	tatatacaaa	gatggcaaag	atgagggcct	ggagcttgcc	acacggaagg	48840
ggggatggct	gcctgaatgg	ttgggcaggt	agttgttgac	atctgcactc	cctacaagag	48900
cagcagggtg	gcaactcttt	ttatctttt	aatttattt	tcttttctct	ttttttttg	48960
agatggagtc	ttgctctgtt	gcccaggctg	gagtgcagtg	gcgtgatctc	agctcactgc	49020
aaactccacc	tcctgggttc	acaccgttct	cctgcctcag	cctcctgagt	agctgggact	49080
gcaggcacct	gccaccactc	ccggctaatg	ttttgtattt	ttagtagaga	aggggtttca	49140
ctgtgttagc	caggatggtc	tccatctcct	gacctcatga	tccacccgcc	teggeeteee	49200
aaagtgcggg	gattacaggt	gtgagccacc	acacccggcc	ttaatttatt	tttctagtct	49260
gcaggtaatt	ctttttaatt	ctctccactc	tcctatgatc	ttatgaggta	gggactgtga	49320
ttatttctcc	cactttataa	tgaacaatca	gtaaagacag	ggaagataac	caaatgacat	49380
acaaggtggg	gtccacccca	tgaggctgca	ggcttggagc	tttcctttgt	cttaaaaatg	49440
agaacatgag	ctgcccacct	gttgagacaa	gaaataggaa	aggcttaaaa	aactggcttg	49500
ttgtgtacaa	ctatccgtgg	ggctgcagtg	aacgggctgg	cagtgcccag	gtgcatgctg	49560
aaccctggga	caatcacatt	cagcatccag	gggcccccgt	aatagcttaa	tgtttgaatt	49620
gaacccctgg	ggttgccttg	aaggagagag	atcctggaag	tatgttcaag	gggtagggat	49680
gggcagggga	gatgggtctg	aaagccaagc	tctaccccac	ccaccttgcc	ccaagagaaa	49740
tagaaccttc	atctttaatt	gcctaacgag	aaaactgggg	ctggccagat	gtggtggctc	49800
atgtctgtaa	tcccagcaat	ttgggaggcc	aaggcgggca	gatcacttga	ggtcaggagt	49860
tcgagttcag	cctggtcaac	atggtgaaac	cccgtctcta	ttaataatac	aaaaattatc	49920
caggtatggt	ggcgcatgcc	tgtagtccca	gctacttgag	gcacaagaat	cgcttgaacc	49980
tgggggacag	aggttgcagt	gagccgacca	ctgcactcca	gtctggacga	cagagtgaga	50040
ctccatctca	caaacaaaaa	cagaaaaaaa	aaaaaaaaa	agagagagag	agaaaactgg	50100
aggctctgag	aggttaaagg	acttgcccag	ggtcttgcag	ctagtaagtg	acagagctgg	50160
gacttgagct	tgggttttct	gactcctggt	ctggttcatt	atccatgagg	tgctgggaac	50220
taaaataagc	cacaatcttg	gaatctccgt	cgcctccctc	cctcccacat	gtctgcgtgg	50280

ctttttggga	aaatgccagg	ggaatgtacc	agccagggag	aggacccttg	ttttcctcat	50340
ggcccttcct	ggcaatggca	ctactgacac	cgacagtcct	ttttgtccct	gatgacctct	50400
gctgcctgat	gcccaagtga	ccacctctgc	tttgtcattt	ctaggattgg	cttccaggtc	50460
ctcctcagca	ttggggaact	cagcttggcc	atcgtgatag	ctctcacgtc	tggtctcctg	50520
acaggtcagt	gtgaggccac	ctttcttcca	ccattgccag	gacacagcac	ccacgtccag	50580
agcgcaccct	gccgtgtggc	tggatgtcta	tgtgccccat	ctccttccct	gaggatcaca	50640
taatttcaga	attggaaagg	ttcttagagg	tcacctgctg	ctaatgtgga	ctgtgaggcc	50700
agggcaggga	agggacatcc	ctgaggttat	aagtagggtg	agtggcaacg	ttgcagactt	50760
ttgaacccag	ggctggtgat	cacactcagt	tttgcacaga	agcccgagaa	aatccttaca	50820
cccaaaagcc	taccttttat	ttctgaggac	acccataata	ctattttatt	caacagatat	50880
ttattcaata	tccactatga	gccaggcact	ggggacacag	cagtgagcaa	aacaaattcc	50940
ctgaccccat	ggaattgacc	ttctagtggg	ggaaggtatt	agcaataaat	agacaaataa	51000
gtgtctacta	cgccagatgg	gaagaagtgg	ctgtgaagac	agagcaaact	agagaaacat	51060
agagtcaatg	tgggatgggg	tgttctttta	ggggggtggt	cagggaaagc	ttatctgagt	51120
agttagcttt	taagcagaga	ccccaatgaa	gaggaggag	atatgcgatg	catttagtta	51180
ggggaagaac	attccatgaa	aataggatag	caagtgcaaa	ggccctgaga	cagcagcatg	51240
ctttgtgtgt	tgagggaaca	gtaaggagac	cagtgtggtt	ggtgtgaatg	gagtgagaag	51300
gagcagcagg	ggttgagggc	agaatggtag	tgaggagcag	gcccttataa	aagatgggaa	51360
gccactggag	atctttcaac	aaaggggaaa	agtatgtttc	tgttcttgca	atacaataga	51420
aaagcaaaaa	atctagggga	gttgctaatt	agccagtttt	acttatatgc	caggtgaaaa	51480
tatgtggcta	ggtgcagtgg	ctcatacctg	taattgcagc	agtttgggag	accgaagtgg	51540
gcagatcatc	tgaggtcagg	attcaagacc	agcctggcca	acatggtgaa	accctgtctc	51600
tactaaaaat	taaaaaatta	gccaggcgtg	gtggtgggca	cctgtaatcc	cagctacttg	51660
ggaggctgag	gcaggagaat	tgcttaaacc	cgggaggcag	aggttgcagt	gggccgagac	51720
tctgtctaaa	aaaaaaagaa	aatacacatt	caggccaggc	acagtggctc	acgcctgtaa	51780
tcccagcact	ttgggaggct	gaggcaggta	gatcacctga	ggtcaggagt	tcgagaccag	51840
cctgaccaac	atgggaaaac	cctgtctctg	ccagaaatac	aaaaattagc	caggcgtggt	51900
ggtgtgtgcc	tgtagtccca	gctactcggg	aggctgaagt	aggggaatgg	cttgacccca	51960
ggaggtggag	gttatagtga	gccaaggttg	caccagccta	ggtgacagag	tgagactgtc	52020
tcaaaaaaaa	aaaaaagaaa	gaaaatatac	attccatcca	gaacttgtta	ttctacaagc	52080
aaacatcttt	tattggttag	acacccatat	atgtgtccct	aagcaggagg	tggatgccaa	52140
ataagagaca	aatggcgtaa	gacactatga	gttgtgtggt	gacattgggc	atgtcacttc	52200

actccctctg	agccttggtt	agcttctctg	taaaatgaaa	ggattatggt	aactaagctg	52260
gcttccttcc	agctttaaca	aactgtatgg	aggtacattt	tggagttact	tgggtaattt	52320
ttgagtgtga	gattggctag	aattgcttta	atataccaat	gtctggcctt	agcttttggc	52380
agagtctgtg	tgaagaagca	gaggcggagt	agagttaatt	ccgtaagtta	acgttcagtt	52440
cgtggcagct	ggcaatccaa	ccctgggaaa	ggctgccgga	tttagcaaaa	atgcaaggtg	52500
tctgttttta	aattcgcaat	gaattgggta	tcctgcattt	tatttggcaa	ccctgtcctg	52560
ggactcacac	tattcactgt	tatcactggt	atattcgaag	tggtgctgac	ttgccctctg	52620
tcttgcaaag	tacccggggg	tcttttctta	tgcttcactg	gagtcaaaaa	agagaataga	52680
ggaaaagaca	atcatattgt	tcctttaaga	gttaagacca	acaagctttc	ttctttacat	52740
gttgtttttg	acatgagcaa	actggtgatt	aaaaacaact	tgggtggctc	atacttgtaa	52800
tcccagcact	ttggaaagct	gaggtgggag	aatagcttga	ggccaggagt	tcaagccagg	52860
gcaatcctat	agtgagaccc	catctctaca	aaagatacaa	aaattagcca	ggtgtggtgg	52920
tacacctgta	gtcccagctg	ctccggaggc	tgagatggga	ggatcagttg	agcttgggag	52980
gcagaagttg	cagtgagctg	agatcgtgcc	actgcactcc	agcctggaca	acagagcaag	53040
accctgtctc	aaaaaaggaa	acaaaacaac	ttggacaatg	gaagggggag	aaagttcctc	53100
aagaagccaa	aattgcacca	aatggactcc	cagaagccaa	gcatttaact	tgttaattga	53160
gccctctgtg	ggcctgtcta	tacttattta	aggaacaatc	ctatcaagca	tagttattgg	53220
gtttctcagc	ccaggtagat	tagaaatagc	agattagagg	tgggctaggt	ttctagaggt	53280
aaagtacacc	agcagaagtt	agaagtgaaa	gcaaagagcc	taacagagga	agagaaattc	53340
tttttttt	ttttagacgg	agttttgctc	ttgttgccca	ggctggagtg	caatggcgct	53400
atctcggctc	aacgcaacct	ccgcctcctg	ggttcaagtg	attctcctgc	ctcagcctcc	53460
tgagtagctg	ggattacagg	catgcaccac	cacgcccggc	taattttgta	tttttagtag	53520
agacagggtt	tctccatgtt	ggtcatgctg	gtctcgaact	cctgacctca	ggtgatccgc	53580
ccaccttggc	ctcccaaagt	gctgggatta	caggcataag	ccactgtgcc	cggccaacaa	53640
attcttaaaa	ctggacacaa	gaacacaaaa	cgcttgggct	gctgagagat	tagaccaaca	53700
accctccacg	gctacaaacc	ttttccacgt	tatatggcac	gttataagtg	ggtgttccta	53760
gtgatggttc	tgatttttt	tttaaaaagt	ctaaatatgt	ttaatgttgt	ctcagaagac	53820
aaaatatatt	ttagacagat	attcctcagt	gatgagtaag	cctcagctat	ctggaaaatt	53880
catgcaggcg	ccagagatca	ttactgagta	attcaagcta	ataactgcgt	catgctggtt	53940
gtaccctgca	tgccaatatc	tgctaaaagc	agcaccacga	aagggaaata	cgaatctcac	54000
taagcactca	cccattcttg	ttaacgacac	tggaactgat	catccttaat	aatacacaga	54060

tettettete aaaaaaaaa aaattetta agaaagaa agaaccaa tegagacaga 54600 cccaagagtt gactgagac agaagaagaa gacaataagaa agaaagaaagaa agaaagaaagaa agaaagaaagaa acattaaga agaaagaaagaa agaagaagaa agaaagaa							
gagagtagac agggaatgga ggttgggcac agtggctcac acctgtaatt gcagcccttt 54240 agaaggcaaa ggcggagga tcacttgagc tcaggtgttc aagaccagcc tgggcacact 54300 ggctaaaccc cgtctctgca aaaaatacaa aaaaatgagc tgggtatggt agcacacact 54360 tgtggtccca gctacttggg aggctgaggt ggggggttg cttgtgcctg ggagtttgag 54420 gctgcaatga gctgtgattg tgccactgca ctccagcctg gataacagaa tgagaccctg 54480 ttccaaaaat aaaaaataaa atcaaagaca cttaaaaaga tggggaaaag gaaggacagg 54540 cacttaagca agttataagc tactttccta actacacaag tgggaatctta agctgaggtt 54600 cccaggagtt gactggagcc aggagaagaca gacctatagg agcaccaac tggagtcgcc 54660 ctccatagta gcccatatgt cttacatgga tcagcttcg tggggcctt ctactccgtc 54720 tggggaaggg cgtcaqatct gtggctctca tgtactgctc gtggggcctt ctactccgtc 54720 tggggaaggg cgtcaqatct gtggctctca tgtactgctc agtacactgc cattcccagt 54780 tctttttttc aaaaaaaaa aaattgttta cagaatcgc cgggtgtggt ggcttatgcc 54840 tataatacta gcaatttgga aggctgaggt gggtggatca cctgaggtca ggagttcaga 54900 accagcctgg ccaacatggt gaaaccccat cctactaaaa aaaaaaaaaa	taaatctatc	aggagcattt	ccttgcttcc	tgtgaaagga	agtactcatt	ccatgtgtcc	54120
agaaggcaaa ggcggcaga tcacttgagc tcaggtgttc aagaccagcc tgggcaacat 54300 ggctaaaccc cgtctctgca aaaaatacaa aaaaatagc tgggtatggt agcacacact 54360 tgtggtccca gctacttggg aggctgaggt ggggggttg cttgtgcctg ggagtttgag 54420 gctgcaatga gctgtgattg tgccactgca ctccagcctg gataacagaa tgagaccctg 54480 ttccaaaaat aaaaataaa atcaaagaca cttaaaaaga tggggaaaag gaaggacagg 54540 cacttaagca agttataagc tactttccta actacacaag tggaatctta agctgaggtt 54600 cccaggagtt gactggagc agagaagaca gacctatagg agcaccaac tggagtcgc 54660 ctccatagta gcccatatgt cttacatgga tcagcttcg tggggcctt ctactccgtc 54720 tggggaaggg cgtcagatct gtggctctca tgtactgct gtgggcctt ctactccgtc 54720 tggggaaggg cgtcagatct gtggctctca tgtactgct agtacactgc cattcccagt 54780 tcttttttc aaaaaaaaaa aaattgttta cagaatcgc cgggtgtggt ggcttatgcc 54840 tataatacta gcaatttgga aggctgaggt gggtggatca cctgaggtca ggagttcgag 54900 accagctgg ccaacatggt gaaaccccat cctactaaaa aaaaaaaaaa	tgtgaaattc	agccagcttc	gggaagctgg	aggaatacat	atggccaagc	tacctgggca	54180
ggctaaaccc cgtctctgca aaaaatacaa aaaaatgagc tgggtatggt agcacacact 54360 tgtggtccca gctacttggg aggctgagt gggggggttg cttgtgcctg ggagtttgag 54420 gctgcaatga gctgtgattg tgccactgca ctccagcctg gataacagaa tgagaccctg 54480 ttccaaaaat aaaaaataaa atcaaagaca cttaaacaag tgggatctta agctgaggtt 54600 cccaggagtt gactgaggcc agagaagaca gacctatagg agcacccaac tggagtcgcc 54660 ctccatagta gcccatatgt cttacatgga tcagcttcg tggggccctt ctactccgc 54720 tggggaaggg cgtcagatct gtgggctctca tgtactgctc agtacactgc cattcccagt 54780 tctttttttc aaaaaaaaaa aaattgttta cagaatcggc cgggtgtggt ggcttatgcc 54840 tataatacta gcaatttgga aggctgaggt gggtggatca cctgaggtca ggagttcgag 54900 accaqcctgg ccaacatggt gaaccccat cctactaaaa aaaaaaaaa aaatagttta cagaatcggc cgggtgtggt ggcttatgcc 54860 gctggatgtg gtggaggag cgcacacatggt gaaccccat cctactaaaa aaaaaaaaaa	gagagtagac	agggaatgga	ggttgggcac	agtggctcac	acctgtaatt	gcagcccttt	54240
tytgytccca gctacttygg aggctyaggt gggggggttg cttgtgcctg ggagttgag 54420 gctgcaatga gctgtgattg tgccactgca ctccaqcctg gataacagaa tgagaccctg 54480 ttccaaaaat aaaaataaa atcaaagaca cttaaaaaga tggggaaaag gaaggacagg 54540 cacttaagca agttataagc tactttccta actacacaag tggaatctta agctgaggtt 54600 cccaggagtt gactggagcc agagaagaca gacctatagg agcacccaac tggagtcgcc 54660 ctccatagta gcccatatgt cttacatgga tcagctttcg tggggccctt ctactccgtc 54720 tgggggaaggg cgtcagatct gtgggtctca tgtactgctc agtacactgc cattcccagt 54780 tcttttttt aaaaaaaaaa aaattgttta cagaatcggc cgggtgtggt ggcttatgcc 54840 tataaatacta gcaatttgga aggctgaggt gggtggatca cctgaggtca ggagttcgag 54900 accagcctgg ccaacatggt gaaaccccat cctactaaaa aaaaaaaaaa	agaaggcaaa	ggcgggcaga	tcacttgagc	tcaggtgttc	aagaccagcc	tgggcaacat	54300
gctgcaatga gctgtgattg tgccactgca ctccagcctg gataacagaa tgagacctg 54480 ttccaaaaat aaaaataaa atcaaagaca cttaaaaaga tgggaaaag gaaggacagg 54540 cacttaagca agttataagc tactttccta actacacaag tggaatctta agctgaggtt 54600 cccaggagtt gactggagcc agagaagaca gacctatagg agcacccaac tggagtcgcc 54660 ctccatagta gcccatatgt cttacatgga tcagctttcg tggggccctt ctactccgtc 54720 tggggaaggg cgtcagatct gtgggctctca tgtactgctc agtacactgc cattcccagt 54780 tctttttttc aaaaaaaaaa aaattgttta cagaatcggc cgggtgtggt ggcttatgcc 54840 tataatacta gcaatttgga aggctgaggt gggtgatca cctgaaggtca ggagttcgag 54900 accagcctgg ccaacatggt gaaaccccat cctactaaaa aaaaaaaaa aaaaaaatta 54960 gctggatgtg gtggcaggc cctataatct tagctacttg ggaggctgag gcaggagaat 55020 cgcttgaacc tgggaggcag aggctgcagt gagccgagat catgccacgg tactccagcc 55080 tgggtgatag agtggagcag attaagctgg tccaggaata aaaataaaat	ggctaaaccc	cgtctctgca	aaaaatacaa	aaaaatgagc	tgggtatggt	agcacacact	54360
ttccaaaaat aaaaataaa atcaaagaca cttaaaaaga tggggaaaag gaaggacagg 54540 cacttaagca agttataagc tactttccta actacacaag tggaatctta agctgaggtt 54600 cccaggagtt gactggagcc agagaagaca gacctatagg agcaccaac tggagtcgcc 54660 ctccatagta gcccatatgt cttacatgga tcagctttcg tggggccctt ctactcccgtc 54720 tggggaaggg cgtcagatct gtggctctca tgtactgctc agtacactgc cattcccagt 54780 tcttttttc aaaaaaaaaa aaattgttta cagaatcggc cgggtgtggt ggcttatgcc 54840 tataatacta gcaatttgga aggctgaggt gggtggatca cctgaggtca ggagttcgag 54900 accagcctgg ccaacatggt gaaaccccat cctactaaaa aaaaaaaaa aaaaaaatta 54960 gctggatgtg gtggcaggc cctataatct tagctacttg ggaggctgag gcaggagaat 55020 cgcttgaacc tgggaggcag aggctgcagt gagccgagat catgccacgc 55080 tgggtgatag agtgagact tgtctcaaaa taaataaaat aaaataaaat	tgtggtccca	gctacttggg	aggctgaggt	ggggggttg	cttgtgcctg	ggagtttgag	54420
cacttaagca agttataagc tactttecta actacacaag tggaatetta agetgaggtt 54600 cecaggagtt gactggagce agagaagaca gacetatagg ageacecaac tggagtegee 54660 ctecatagta geceatatgt ettacatgga teagettteg tggggecett etacteegte 54720 tggggaaggg egteagatet gtgggetetea tgtactgete agtacactge catteccagt 54780 tettttttte aaaaaaaaaa aaattgttta cagaategge egggtgtgt ggettatgee 54840 tataatacta geaatttgga aggetgaggt gggtggatea eetgaggtea ggagttegag 54900 accageetgg ecaacatggt gaaaceccat eetactaaaa aaaaaaaaaa aaaaaaatta 54960 getggatgtg gtgggagge eetataatet tagetacttg ggaggetgag geaggagaat 55020 egettgaace tggggaggag aggetgeagt gageeggagt eatgeeacgg tacteeagee 55080 tgggtgatag agtgagace tgteteaaaa taaataaaat aaaataaaat 55140 aaaataaaaa agtetacaga attaagetgg tecaggaatg acaggegete eatttattg 55200 tettteaatt gtgggagaaa aaggattee gttgagacae tgtegtttg acacacacaa 55260 tattttgat aatettgaga ttaaaaatee tgtggeteeaa atetttaac attaaattat 55320 geatttaaac aggtttgete etaaateeta aaaataggaa ageaceteat gtggetaaat 55380 attttgata acttaaaaac atacetegg atattetea etattaaegt gatagattt 55440 gagtgeatga acttaaaaac ataceteggt atatatgtg acttgetgtt tatgagtaaa 55500 acaaaaaacaa aaatggagta aggaggaga gaggtggta agggtggaa acaaateeat 55560 gatatgeatg tgtggggg agggtggag gagggtggta aaggteacea tteeectee 55680 getatetgea gteeteageg tageeaaata gtttgacatg egggtgacag acceegeaa 55740 tgeaaaaget ggaagaaace teaageettg gagteeaace cettttttga eagageta 55800 gagggggaga atgacettae aagatettae aagteetaa eetteeggg tagaegagg gaggtggaa acceegeaa 55740 tgeaaaaget ggaagaaace teaageettg gagteeaace cettttttga eagageetg 55860 gagggggaga atgacettae aagatettae aagteetaa eagagggagg gagggggggggg	gctgcaatga	gctgtgattg	tgccactgca	ctccagcctg	gataacagaa	tgagaccctg	54480
cccaggagtt gactggagcc agagaagaca gacctatagg agcaccaac tggagtcgcc 54660 ctccatagta gcccatatgt cttacatgga tcagctttcg tggggcctt ctactccgtc 54720 tggggaaggg cgtcagatct gtggctctca tgtactgctc agtacactgc cattcccagt 54780 tcttttttc aaaaaaaaaa aaattgttta cagaatcggc cgggtgggt ggcttatgcc 54840 tataatacta gcaatttgga aggctgaggt gggtggatca cctgaggtca ggagttcgag 54900 accagcctgg ccaacatggt gaaaccccat cctactaaaa aaaaaaaaaa	ttccaaaaat	aaaaaataaa	atcaaagaca	cttaaaaaga	tggggaaaag	gaaggacagg	54540
ctccatagta gcccatatgt cttacatgga tcagctttcg tggggccctt ctactccgtc 54720 tggggaaggg cgtcagatct gtggctctca tgtactgctc agtacactgc cattcccagt 54780 tctttttttc aaaaaaaaaa aaattgttta cagaatcggc cgggtgtggt ggcttatgcc 54840 tataatacta gcaatttgga aggctgaggt gggtgatca cctgaggtca ggagttcgag 54900 accagcctgg ccaacatggt gaaaccccat cctactaaaa aaaaaaaaa aaaaaaatta 54960 gctggatgtg gtggcaggc cctataatct tagctacttg ggaggctgag gcaggagaaa 55020 cgcttgaacc tgggaggcag aggctgcagt gagccgagat catgccacgg tactccagcc 55080 tgggtgatag agtgagact tgtctcaaaa taaataaaat aaaataaaat	cacttaagca	agttataagc	tactttccta	actacacaag	tggaatctta	agctgaggtt	54600
tggggaaggg cgtcagatct gtggctctca tgtactgctc agtacactgc cattcccagt 54780 tctttttttc aaaaaaaaaa aaattgttta cagaatcggc cgggtgtggt ggcttatgcc 54840 tataatacta gcaatttgga aggctgaggt gggtggatca cctgaggtca ggagttcgag 54900 accagcctgg ccaacatggt gaaaccccat cctactaaaa aaaaaaaaa aaaaaaatta 54960 gctggatgtg gtggcaggcg cctataatct tagctacttg ggaggctgag gcaggagaat 55020 cgcttgaacc tgggaggcag aggctgcagt gagccgagat catgccacgg tactccagcc 55080 tgggtgatag agtgagact tgtctcaaaa taaataaaat aaaataaaat	cccaggagtt	gactggagcc	agagaagaca	gacctatagg	agcacccaac	tggagtcgcc	54660
tottttttt aaaaaaaaa aaattgttta cagaatcggc cgggtgtggt ggcttatgcc 54840 tataatacta gcaatttgga aggctgagt gggtggatca cctgaggtca ggagttcgag 54900 accagcctgg ccaacatggt gaaaccccat cctactaaaa aaaaaaaaa aaaaaaatta 54960 gctggatgtg gtggcaggcg cctataatct tagctacttg ggaggctgag gcaggagaat 55020 cgcttgaacc tgggaggcag aggctgcagt gagccgagat catgccacgg tactccagcc 55080 tgggtgatag agtgagactc tgtctcaaaa taaataaaat aaaataaaat	ctccatagta	gcccatatgt	cttacatgga	tcagctttcg	tggggccctt	ctactccgtc	54720
tataatacta gcaatttgga aggctgaggt gggtggatca cctgaggtca ggagttcgag 54900 accagcctgg ccaacatggt gaaaccccat cctactaaaa aaaaaaaaa aaaaaaata 54960 gctggatgtg gtggcaggc cctataatct tagctacttg ggaggctgag gcaggagaat 55020 cgcttgaacc tgggaggcag aggctgcagt gagccgagat catgccacgg tactccagcc 55080 tgggtgatag agtgagactc tgtctcaaaa taaataaaat aaaataaaat	tggggaaggg	cgtcagatct	gtggctctca	tgtactgctc	agtacactgc	cattcccagt	54780
accagcctgg ccaacatggt gaaaccccat cctactaaaa aaaaaaaaa aaaaaaatta 54960 gctggatgtg gtggcaggcg cctataatct tagctacttg ggaggctgag gcaggagaat 55020 cgcttgaacc tgggaggcag aggctgcagt gagccgagat catgccacgg tactccagcc 55080 tgggtgatag agtgagactc tgtctcaaaa taaataaaat aaaataaaat	tcttttttc	aaaaaaaaa	aaattgttta	cagaatcggc	cgggtgtggt	ggcttatgcc	54840
gctggatgtg gtggcaggcg cctataatct tagctacttg ggaggctgag gcaggagaat 55020 cgcttgaacc tgggaggcag aggctgcagt gagccgagat catgccacgg tactccagcc 55080 tgggtgatag agtgagactc tgtctcaaaa taaataaaat aaaataaaat	tataatacta	gcaatttgga	aggctgaggt	gggtggatca	cctgaggtca	ggagttcgag	54900
cgcttgaacc tgggaggcag aggctgcagt gagccgagat catgccacgg tactccagcc 55080 tgggtgatag agtgagactc tgtctcaaaa taaataaaat aaaataaaat	accagcctgg	ccaacatggt	gaaaccccat	cctactaaaa	aaaaaaaaa	aaaaaatta	54960
tgggtgatag agtgagactc tgtctcaaaa taaataaaat aaaataaaat	gctggatgtg	gtggcaggcg	cctataatct	tagctacttg	ggaggctgag	gcaggagaat	55020
aaaataaaat agtotacaga attaagotgg tocaggaatg acagggogte catttatttg 55200 totttcaatt gtgggagaaa aaggatttot gttgagacac tgtcgttttg acacacacaa 55260 tattttgatt aatottgaga ttaaaaatoc tgtgotccaa atottttaac attaaattat 55320 gcatttaaac aggtttgoto otaaatotca aaatatggaa agcacotcat gtggotaaat 55380 attttgatga ccaagtttto tggaaggtaa gatttttcac otattaacgt gatagatttt 55440 gagtgoatga acttaaaaac atacotgggt atatatgttg acttgotgtt tatgagtaaa 55500 acaaaaacaa aaatggagta aggagcattg caggaggaac tagaggagaa acaaatocat 55600 gatatgoatg tgtgtggggg agggtgggg ggaggtggta aaggtcacca tttcoctgat 55620 acotcaaatt cattcagagt cagggatgga acagotttca otggocacac ttcocotoco 55680 gotatotgoa gtcotcagog tagocaaata gtttgacatg ogggtgacag aacoccgcaa 55740 tgcaaaagot ggaagaaaco tcaagocttg gagtcoaaco cottttttga cagatgotaa 55800 gagtggagac atgacttato aagatottac aactggotgg gcacggtggc tgacgoctgt 55860 aatoccagca otttgggagg ctgaggtggg gcgatcacot gaggocagga gttcgagaco 55920	cgcttgaacc	tgggaggcag	aggctgcagt	gagccgagat	catgccacgg	tactccagcc	55080
tctttcaatt gtgggagaaa aaggattct gttgagacac tgtcgttttg acacacacaa 55260 tattttgatt aatcttgaga ttaaaaatcc tgtgctccaa atcttttaac attaaattat 55320 gcatttaaac aggtttgctc ctaaatctca aaatatggaa agcacctcat gtggctaaat 55380 attttgatga ccaagttttc tggaaggtaa gatttttcac ctattaacgt gatagatttt 55440 gagtgcatga acttaaaaac atacctgggt atatatgttg acttgctgtt tatgagtaaa 55500 acaaaaacaa aaatggagta aggagcattg caggaggaac tagaggagaa acaaatccat 55560 gatatgcatg tgtgtggggg agggtggcgg ggaggtggta aaggtcacca tttccctgat 55620 acctcaaatt cattcagagt cagggatgag acagctttca ctggccacac ttcccctccc 55680 gctatctgca gtcctcagcg tagccaaata gtttgacatg cgggtgacag aaccccgcaa 55740 tgcaaaagct ggaagaaacc tcaagccttg gagtccaacc ccttttttga cagatgctaa 55800 gagtggagac atgacttatc aagatcttac aactggctgg gcacggtggc tgacgcctgt 55860 aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	tgggtgatag	agtgagactc	tgtctcaaaa	taaataaaat	aaaataaaat	aaaataaaat	55140
tattttgatt aatcttgaga ttaaaaatcc tgtgctccaa atcttttaac attaaattat 55320 gcatttaaac aggtttgctc ctaaatctca aaatatggaa agcacctcat gtggctaaat 55380 attttgatga ccaagttttc tggaaggtaa gattttcac ctattaacgt gatagatttt 55440 gagtgcatga acttaaaaac atacctgggt atatatgttg acttgctgtt tatgagtaaa 55500 acaaaaacaa aaatggagta agggtggcgg ggaggtggta aaggtcacca tttccctgat 55600 gatatgcatg tgtgtggggg agggtggcgg ggaggtggta aaggtcacca tttccctgat 55620 acctcaaatt cattcagagt cagggatgag acagctttca ctggccacac ttcccctccc 55680 gctatctgca gtcctcagcg tagccaaata gtttgacatg cgggtgacag aaccccgcaa 55740 tgcaaaagct ggaagaaacc tcaagccttg gagtccaacc ccttttttga cagatgctaa 55800 gagtggaga atgacttatc aagatcttac aactggctgg gcacggtggc tgacgcctgt 55860 aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	aaaataaaat	agtctacaga	attaagctgg	tccaggaatg	acagggcgtc	catttatttg	55200
gcatttaaac aggtttgctc ctaaatctca aaatatggaa agcacctcat gtggctaaat 55380 attttgatga ccaagttttc tggaaggtaa gattttcac ctattaacgt gatagatttt 55440 gagtgcatga acttaaaaac atacctgggt atatatgttg acttgctgtt tatgagtaaa 55500 acaaaaacaa aaatggagta aggagcattg caggaggaac tagaggagaa acaaatccat 55560 gatatgcatg tgtgtgggg agggtggcg ggaggtggta aaggtcacca tttccctgat 55620 acctcaaatt cattcagagt cagggatgag acagcttca ctggccacac ttcccctccc 55680 gctatctgca gtcctcagcg tagccaaata gtttgacatg cgggtgacag aaccccgcaa 55740 tgcaaaagct ggaagaaacc tcaagccttg gagtccaacc ccttttttga cagatgctaa 55800 gagtggagac atgacttatc aagatcttac aactggctgg gcacggtggc tgacgcctgt 55860 aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	tctttcaatt	gtgggagaaa	aaggatttct	gttgagacac	tgtcgttttg	acacacacaa	55260
attttgatga ccaagttttc tggaaggtaa gattttcac ctattaacgt gatagatttt 55440 gagtgcatga acttaaaaac atacctgggt atatatgttg acttgctgtt tatgagtaaa 55500 acaaaaacaa aaatggagta aggagcattg caggaggaac tagaggagaa acaaatccat 55560 gatatgcatg tgtgtggggg agggtggcgg ggaggtggta aaggtcacca tttccctgat 55620 acctcaaatt cattcagagt cagggatgag acagctttca ctggccacac ttcccctccc 55680 gctatctgca gtcctcagcg tagccaaata gtttgacatg cgggtgacag aaccccgcaa 55740 tgcaaaagct ggaagaaacc tcaagccttg gagtccaacc ccttttttga cagatgctaa 55800 gagtggagac atgacttatc aagatcttac aactggctgg gcacggtggc tgacgcctgt 55860 aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	tattttgatt	aatcttgaga	ttaaaaatcc	tgtgctccaa	atcttttaac	attaaattat	55320
gagtgcatga acttaaaaac atacctgggt atatatgttg acttgctgtt tatgagtaaa 55500 acaaaaacaa aaatggagta aggagcattg caggaggaac tagaggagaa acaaatccat 55560 gatatgcatg tgtgtggggg agggtggcgg ggaggtggta aaggtcacca tttccctgat 55620 acctcaaatt cattcagagt cagggatgag acagctttca ctggccacac ttcccctccc 55680 gctatctgca gtcctcagcg tagccaaata gtttgacatg cgggtgacag aaccccgcaa 55740 tgcaaaagct ggaagaaacc tcaagccttg gagtccaacc ccttttttga cagatgctaa 55800 gagtggagac atgacttatc aagatcttac aactggctgg gcacggtggc tgacgcctgt 55860 aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	gcatttaaac	aggtttgctc	ctaaatctca	aaatatggaa	agcacctcat	gtggctaaat	55380
acaaaaacaa aaatggagta aggagcattg caggaggaac tagaggagaa acaaatccat 55560 gatatgcatg tgtgtggggg agggtggcgg ggaggtggta aaggtcacca tttccctgat 55620 acctcaaatt cattcagagt cagggatgag acagctttca ctggccacac ttcccctccc 55680 gctatctgca gtcctcagcg tagccaaata gtttgacatg cgggtgacag aaccccgcaa 55740 tgcaaaagct ggaagaaacc tcaagccttg gagtccaacc ccttttttga cagatgctaa 55800 gagtggagac atgacttatc aagatcttac aactggctgg gcacggtggc tgacgcctgt 55860 aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	attttgatga	ccaagttttc	tggaaggtaa	gatttttcac	ctattaacgt	gatagatttt	55440
gatatgcatg tgtgtggggg agggtggcgg ggaggtggta aaggtcacca tttccctgat 55620 acctcaaatt cattcagagt cagggatgag acagctttca ctggccacac ttcccctccc 55680 gctatctgca gtcctcagcg tagccaaata gtttgacatg cgggtgacag aaccccgcaa 55740 tgcaaaagct ggaagaaacc tcaagccttg gagtccaacc cctttttga cagatgctaa 55800 gagtggagac atgacttatc aagatcttac aactggctgg gcacggtggc tgacgcctgt 55860 aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	gagtgcatga	acttaaaaac	atacctgggt	atatatgttg	acttgctgtt	tatgagtaaa	55500
acctcaaatt cattcagagt cagggatgag acagctttca ctggccacac ttcccctccc 55680 gctatctgca gtcctcagcg tagccaaata gtttgacatg cgggtgacag aaccccgcaa 55740 tgcaaaagct ggaagaaacc tcaagccttg gagtccaacc ccttttttga cagatgctaa 55800 gagtggagac atgacttatc aagatcttac aactggctgg gcacggtggc tgacgcctgt 55860 aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	acaaaaacaa	aaatggagta	aggagcattg	caggaggaac	tagaggagaa	acaaatccat	55560
gctatctgca gtcctcagcg tagccaaata gtttgacatg cgggtgacag aaccccgcaa 55740 tgcaaaagct ggaagaaacc tcaagccttg gagtccaacc ccttttttga cagatgctaa 55800 gagtggagac atgacttatc aagatcttac aactggctgg gcacggtggc tgacgcctgt 55860 aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	gatatgcatg	tgtgtggggg	agggtggcgg	ggaggtggta	aaggtcacca	tttccctgat	55620
tgcaaaagct ggaagaaacc tcaagccttg gagtccaacc ccttttttga cagatgctaa 55800 gagtggagac atgacttatc aagatcttac aactggctgg gcacggtggc tgacgcctgt 55860 aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	acctcaaatt	cattcagagt	cagggatgag	acagctttca	ctggccacac	ttcccctccc	55680
gagtggagac atgacttatc aagatcttac aactggctgg gcacggtggc tgacgctgt 55860 aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	gctatctgca	gtcctcagcg	tagccaaata	gtttgacatg	cgggtgacag	aaccccgcaa	55740
aatcccagca ctttgggagg ctgaggtggg gcgatcacct gaggccagga gttcgagacc 55920	tgcaaaagct	ggaagaaacc	tcaagccttg	gagtccaacc	ccttttttga	cagatgctaa	55800
	gagtggagac	atgacttatc	aagatcttac	aactggctgg	gcacggtggc	tgacgcctgt	55860
agectggeca aegtgteaaa aeeccatete taetaaaaat acaaaagtta getgggegtg 55980	aatcccagca	ctttgggagg	ctgaggtggg	gcgatcacct	gaggccagga	gttcgagacc	55920
	agcctggcca	acgtgtcaaa	accccatctc	tactaaaaat	acaaaagtta	gctgggcgtg	55980

gtagcacatg	cctgtaatcc	cagttactca	ggaggctgag	gcaagagaat	cgcttgaaat	56040
caggaggcag	aggttgcagt	gagctgagat	tgcgccactg	cactccagcc	tgggtgacaa	56100
gagctgacac	tctgtctcaa	aaaaaaaaa	aaaaaaaaa	aattcttaca	gtgtgtgagt	56160
atccaggctg	agtcctgaac	acagctcttg	ataaatgata	acaagcaggc	acaaaaaaat	56220
tgtagtacag	gagtctgagg	tcacttagca	aagggacata	aagttcaaac	agctcagcag	56280
ctgctgaggg	tcccgtgtta	cattgtagca	tttgttgttg	tgactgggct	agaaagaagg	56340
tgaagaaggt	tggagctcac	tecetgeete	ccctcccact	ctcctccctt	tgacctacac	56400
tcatagttca	cgcagcactc	tgatgtgtcc	ccttaggcca	tcctctagtc	aatgctgtgg	56460
gtaggctgga	ccagcaggga	ccagtattgt	cacagcaagt	ccaggccaac	agtggtcagg	56520
ctgctgcccg	gtgttgtgcc	tttgtgagtg	gcagatccaa	gaccggaacc	caggccttct	56580
gagtcccagg	ccaatgcttg	ccccacccag	catccaagat	gttgctcact	aaagagacag	56640
agaagcagcc	ttattatggg	cctggacacc	tgtgcatgag	gggtcaagca	gagaggacct	56700
ggggagagac	cctgcccctt	cttttccttc	tccttcctct	cctttctctt	cttcttcctc	56760
ttcaaatagc	tttttgaggt	gtaactggca	tacaatcaat	tgtacatatt	taggctgggt	56820
atggtggctc	acgcctgtaa	tcccagcact	ttgggaggcc	aaggcgggtg	gatcacttga	56880
ggtcaggagt	ttgagaccag	cctgggcaac	ccggtgaaac	cccgtctcca	ctaaaactac	56940
aaaaattagc	caggcgtggt	ggcagctgcc	tgtaatcccg	gctactcggg	aggctgaggc	57000
aggagaatca	cttgaacctg	ggaagcgaag	tttgcagtga	tctgagatca	tgccactgca	57060
ctccagcctg	ggtgacagag	cgagactttg	cctcaaaaac	aaaacaaaac	aattgtacat	57120
atttaaagtg	ttgtaaccaa	gtgagttaca	gagaaacacc	acactttgag	cctaattcag	57180
gagtccttta	ttagccggcg	acctagagac	gactagtgct	caaaattctc	tcggccccaa	57240
agaaggggct	agattttctt	ttataccttg	gtttagaaag	gggagggga	attgagctga	57300
agcaatctta	cagaagtaaa	acaggcaaaa	aagttaaaaa	gacaaatggt	tacaggaaaa	57360
caaacagttc	caggtgcagg	agctttaaag	ccatcacaag	gtgacaggtg	cgggggctct	57420
gggtgctatc	tgccggacac	aaacgcaggg	gcactagagt	actatcaccc	gggcaaattc	57480
ctgggaactg	cggacacagc	ttgccacagt	accttatcag	ctaattgcac	tctttgatgt	57540
gctgggagtc	agcttgcaca	agttaagtcc	ttgaggaagg	gggtgggtaa	ggagccctta	57600
acgtcttgca	aatgaaggag	ccgaatggaa	tccctccggc	tttcttagct	aagagagagt	57660
caatcaagtt	aatacaagtt	agggtatcac	aaaagtatat	aatttgatac	attttaacgt	57720
atttatacac	tgaagagacc	atcaccacca	tcaagacaag	gagcacaccc	atcacttcca	57780
cacacttcct	cctgctcctt	tgaaattcct	cccttcctac	ccacctggtc	ccacccaaag	57840

gcaaccactg aactactttc	tgtcactaag	gtttgcgttt	tctgtaattt	ttttgtttga	57900
gacagggtct cactccgcca	cccacaccgt	aatgcagtgg	caccatcatg	actcactgta	57960
gcctcaacct ccccaggctc	aggagatcct	ccccctcag	cctcctgagt	agctaggacc	58020
acaggtgtag gccaccatgg	caggctaatt	tttgtatttt	tttgtagaga	tggggtttca	58080
ccgtattacc taggctggtc	tcgaactcat	gggttcaagc	aatcctcctg	ccttggcctc	58140
tcaaagtgct gggattatag	gcatgagcca	ctgtgcccag	ccctctgtaa	tgttacacaa	58200
agggaatcat gcagcacgta	ctgcccttgg	tctggcctct	tttgctcagc	atgattattc	58260
tgagaatcat ccgtgttgtt	gcgtgtaact	gacttcatca	gcttctctct	gcagctgtca	58320
gctcttggct tctcccaaca	gccaatctct	ctttatcccc	tgcaagtgtt	cttgcctatt	58380
tagcagaatc aaggtactct	atcgaaaaga	ctcggaaaat	tggtttaatc	tattcattca	58440
ttcctcaggt atttatcgaa	taactattct	ataccaagta	ctatgctaat	caaccaagga	58500
cagcacaaac aggagaaatc	tccagctcag	tcacttgagt	tgcaataaat	atttgctgga	58560
taggtcaggt gcagtggctc	acacttgtaa	tcccagcact	ttggggatta	ctgagacggg	58620
aggatctctt gagcccagga	ggccaaggct	gcagagaacc	atgatcatgc	cactgcactc	58680
cagcctgggt gacagagtga	gatcctgtct	ctgaaaaaaa	atatttgctg	gataaattaa	58740
ggaaatctga cgaaccccat	cagtagccat	tgcagcaaca	ggtaaactag	aacgagtgtg	58800
aatttggaat gaggaaaccc	gatgttggcc	atcattctgt	aatgtcatgt	attatgtaat	58860
gtattatata ttaatgtatg	tattatgtag	gcaagttcct	tgacctctct	cactggtaac	58920
ataagagtag taatctttgt	gctacttcac	tgggttattt	caaagatcaa	gtgaggtaat	58980
aatgtctgta acaacattct	gtaaaatgca	aaccgccaca	tgaatgtgaa	agtttattac	59040
tagggattta gccaaccaca	agggaatgtg	tgagcataag	agctatcata	ttgcaagcct	59100
acagtttctg attttgtgct	aggtgctttt	ccacattacc	tgattttatc	ctcacaacag	59160
tcctgcataa aagtaagtat	gtcgcccagg	tgcggtggct	catgcctata	atcccagcac	59220
tttgggagcc cgaggtgggc	aaatcacttg	agatcaggag	tttgaaacca	gcctggtcaa	59280
cgtggtgcaa ccctgtctct	actaaaaata	caaaaaaaaa	ttagacaggc	gtggtggtgg	59340
atgeetgtaa teecagetae	ttgggaagct	gaggcaggag	aatggcttga	gcccgggaga	59400
tggagattgc agtgagatga	gattgcgcca	ctgcactcca	gcctgggtga	cagagcaagg	59460
ctatgtctca aaagagaaaa	aaaaagtaag	tatctcagtc	ttgaagatga	tgaaatggag	59520
gcctagagag attaagtaac	ttgcccaaaa	tgacagaact	aatgcataga	aaagaagaaa	59580
tgtgatgtct tttggctcca	aagacacccc	acatatgcgt	tggttacagt	tactagagaa	59640
aagttattcc acccccaccc	cacccccaga	aatcttctga	cttgttttct	cgcagttgag	59700
taggaccatt tattcggcag	tgtaccattc	tcagcttgca	gttgaaagcc	aaatatccat	59760

taaagaggca	aggatgcaaa	cttgctaagc	tgataaatcc	aggggtgatt	tttttttt	59820
ttgcaaacca	tccaacaaga	cattttaaat	actcattgaa	tttcatagaa	ctgactgcca	59880
ggattggaaa	gacattaaag	ccagctcagc	cactgcctcg	ctggttggcc	agaccacgcc	59940
tggcacttct	gggagggagc	actcaccacc	ccccaagggc	acccatctca	tcctccgaag	60000
gtttatgaaa	atgcactcat	catttgctaa	ttcattccac	tacgtgtatt	acctaatttg	60060
tgacacgatg	tgaagtacca	gagagataat	tctaaataaa	atatagttat	gggtctcaag	60120
gagccagata	tgctaatctc	ctatcctcct	gcagtttaca	gtggtcctca	ccagatactt	60180
atttacaaaa	attcagttta	ttatttattt	ttttgagaca	gagtcttgct	ctatagctca	60240
ggctagagtg	taatggtgtg	atctcggctc	acttcaacct	ctgcctccca	ggttcaagtg	60300
attctcctgc	ctcaacctcc	caagtagctg	ggactacagg	cacctgccac	cacggctaat	60360
ttttggagtt	ttagtagaga	cagggtttca	ccacgttggc	caggctggcc	tcgaactcct	60420
gacctcaggt	gatctgccca	catcagcctc	ccaaaatgtt	gggattacag	gcgtgagcca	60480
ccatgcccgg	ccaaaacttc	agtttataac	acaatctttc	acgtgtcttc	tgctttcatt	60540
aaaagaatag	acagttccct	tctttatttc	agtttaataa	accatggatt	ttatttcatg	60600
ctttgcaaaa	cacaagggct	cactgacatg	cacttcttaa	actaattctg	gctggtcgcc	60660
tgtaattcca	gcactttggg	aggctgaggc	cgacagatca	cttcaagtca	ggagttcaag	60720
accagcctgg	ccaatatggt	gaaaccacgt	ctctaccaaa	aatataaaaa	attagccagg	60780
tgtggtggtg	cgtgactata	atcccagcta	ctcaggggcc	tgaggcagaa	aaatcacttg	60840
aacccgggag	gcggaggtta	cagtgagctg	agatcgcgcc	actgcactcc	agcctgggcg	60900
acagagtgag	actctgtctc	aaaaaataaa	taaatacaaa	taatgtaaaa	tacgaaacaa	60960
gcaatcctgg	cagtagctgc	tggaatgaga	ggagggagag	gtcataggga	ggtcggggac	61020
aatggagcat	ggagttgtgt	tggatttggc	taagcagcag	gaagtgcaag	gcattccaag	61080
caagaggagg	ggggcaggtg	gggagcatct	gcaagaacag	aagcagcatg	agcaacctgg	61140
ctcggcagtg	tgtgaaaagg	ctgaaaggtg	gctagagcca	cttcaatttc	atccttcagg	61200
caaatgggaa	attcccaaag	gtttgagtgg	ggaagcaatg	cctacaatga	aagtttgaga	61260
gtgaagcaga	gtgatcgaat	taagcatgta	ggccgagttc	tgaaataact	gcaatgtgct	61320
gaagatcatc	cattggcttc	tgaatgagta	tttgcagttt	atttttaaa	atgattttat	61380
tgccaagaaa	gataaacact	actgttttgg	tacaaaaaca	taacaaaatg	tgttgagtcc	61440
ctcttgctgt	tttacgcgaa	gttttaaaaa	tctactcttg	tcacagtggt	atcaccccta	61500
cttctgattt	caaataaatg	ttctagagac	acagtaaggg	cccaacaaac	gcttgttcaa	61560
caacacaagg	agagccagct	tttaaagtag	gaaaacaggc	cgggcgccgt	ggctcacacc	61620

tgtaatccca	acactttggg	aggctgaggt	gggcagatca	cttgaggtca	ggagttcaag	61680
aacagcttgg	ccaacatggt	gaaaccctgt	ctctactaaa	aacacaaaca	ttagccaggc	61740
gtggtggtgc	acaccagtag	tcccagctat	tcaggaggct	gaggcaggaa	aatggcttga	61800
actggggagg	cagtggttgc	agtgagccga	gatcgtgcca	ctgcactcca	gcctggggga	61860
cagagggaga	ctccatctca	aaataaaaca	aaacaaaacc	aaatcataca	aaaacattag	61920
ctgggtgtgg	tggtgcatac	ctgtaatccc	agctacttgg	gaagctgagg	cagaattact	61980
tgaacccctg	gggggaggtt	gcagtgagct	gagatcttgc	cactacactc	cagcctgggc	62040
aacagagtga	ggagactctg	tctcaaaaaa	tatatatatt	aaaaaaaaga	aaaaaaaag	62100
taaactagga	aaacacatca	gcagcctgcc	aacagactcc	cctagcctcg	gtgagggcca	62160
gtgttctggg	aggcagatct	gaattctagt	cctagttcac	ccactggcag	gctggtgccc	62220
ttgggcaggt	cgcttctctg	gggctcagtt	tcttcctcta	taaaatgaga	tcaaatccca	62280
tgttctaaga	gtttgtgctc	tggagtcaga	cagatctggg	ttctaccact	gccagctctg	62340
tgatcttgta	gcttcagtct	cgtcatctga	catggagata	acagtaactg	tctcactgtg	62400
ttgttagggt	ttaaaggaga	taatgtatgt	gaaatgttag	caaacaagtg	ttagctaccc	62460
tgatttccgg	tttcagagtt	ctgtggtccc	agtttatgcc	acatgcagtg	acgttgtatg	62520
gtaggctgtg	gtgtggcacc	acttcagaac	tcagcgcatg	cacagcttgc	agaagagaag	62580
gccagaggag	acctaagaag	gctcttcgaa	cacttgaaag	accggcatgt	aggccgggcg	62640
cagtgactca	cgcctgtaat	cccagcagtt	ttggaggtcg	aggcgggtgg	atcacctgag	62700
tttgggagtt	tgataccagc	ctgaccaaca	aggtgaaacc	ccgtctctac	taaaaaatac	62760
aaacattagc	tgggcatggt	ggcgggtgcc	tgtaatccca	gctactccgg	tggttgaggc	62820
agaattgctt	gaacccggga	ggcagaggtt	gcagtgagct	gagattgcat	cactgcactc	62880
cagcctgaga	caagagcgaa	actccatctc	aaacaaaaca	aacaaccaac	caaacaaaac	62940
caaaaaaaa	actggcatgt	agaagaaaaa	tactttttct	ctacacttct	ccaaagaatt	63000
taactaggcc	caggggaggt	gcagtataaa	tttctaacaa	tctcaactgt	ctgccaaatg	63060
gaatgagcta	cttcatatgg	cagtagtgag	tcctctgtct	ttggaggcat	tcaaataaaa	63120
gccagatggc	catttatcaa	caatccatgt	aaaacgttag	atgaaataaa	acctatatat	63180
ccaagatctc	ttccaattca	gattttatga	aagaatttct	aaggtctttg	taatgagaca	63240
tttaggctgt	ttcaagagat	caagccaaaa	tcagtatgtg	ggttcatctg	caataaaaat	63300
gtttgttttg	cttttacagt	ttcctcattt	ggctgttgga	ttttaagcaa	aagcatccaa	63360
gaaaaacaag	gcctgttcaa	aaacaagaca	acttcctctc	actgttgcct	gcatttgtac	63420
gtgagaaacg	ctcatgacag	caaagtctcc	ttatgtataa	tgaaacaagg	tcagagacag	63480
atttgatatt	aaaaaattaa	agactaaaaa	cttagtttaa	gagtcaattt	aataagttta	63540

aaataaatgt	ttagtttcat	taggatgatg	ctatcaatat	tttcttggtt	acagacacat	63600
tattaaagtt	ttgggttaat	tttattgaca	attcttaaga	ttctttctca	tgcttaataa	63660
agcatgctac	tcagttaact	cttgtctaca	tcagcaaagc	agataataca	aaacaggaaa	63720
attacaaatc	actgatactt	agtccttgtg	ggaatcatgc	ttttctccca	gcagttttac	63780
aaggtggctg	gcattccctg	agcatattct	gaattgcact	gtggggaaag	aggttgtgct	63840
cagttgtagg	gtgggggat	gcactgcctg	aggattaaaa	aactagttct	gtgaccgtga	63900
ggaagtcgtt	taaatttcca	tggtctgttc	cctcctatgt	gaaaagagaa	ggtgggcttc	63960
aacctctaag	atcttctcca	gttttcacat	tttatggact	tttgtagaaa	aaacatcagg	64020
agttcatgtg	ggatgacagc	aagtcatttc	tttgaggaga	gtcttgatca	ccaggcaata	64080
ttcacagtgt	agagactgtc	agatgaccat	ggctagcatg	gaaatgagac	ccacacattt	64140
aaatcaccca	gcaaatattc	cgaaggctaa	ttgtagcaca	ttttatgaaa	gacatttcaa	64200
actgtggtcc	tgaagagtgt	atcccatctt	gcagaggtgg	ggagcctggg	gggacaagag	64260
ttctgaagag	gaagagacaa	caagagttcc	cagtagctaa	tgtttgtcat	tctagttgac	64320
cgtgctggtc	tattaggcta	gtggttcagt	acacagatga	aatgcaacat	ggaacccagt	64380
ttattatcag	aacaactaca	aagaaattgt	cccctgtcta	agactggagt	gtcaagtctc	64440
tgcccttttt	tcctttcctt	caatggtgga	tgtggagtga	ctgtgcatcc	caccagaacc	64500
acgtgtcatg	gctgagtcac	atcttcctgc	ccttggaatg	agaggcacag	cggaagacct	64560
tcccatggaa	gggacacagg	gagcctggtg	gctggaccat	ggtgcttctc	tcttccaaca	64620
cgtccactca	ccccttggga	gaccctcaaa	agccagttac	attacatgtt	cacagaattt	64680
ttggtaaaag	taaataccaa	ttatagtgag	gaagaatttt	gaccacggaa	tattttaaaa	64740
actaaaaaat	gtttatattt	catttaacat	ttgacacaga	agagaccaca	tttgaataaa	64800
cacattaaat	cttcagagca	ctttcattgt	ggttttggac	ctcagatatg	acaaatactt	64860
acattgacaa	atccataatt	tcttttgtaa	tttcttttta	tttttacaaa	ttataccatg	64920
ataaaatttg	acaaaaatta	ttcatgtgaa	agtttcctct	aacattttat	aagttaatca	64980
agtgcatacc	acaatagatt	tttggttgtt	gtttaggtgt	tctcgtgatt	ttagtattac	65040
acaactttaa	gctgagacta	cactcagaaa	taagtttaga	aaatggcatt	acaaaaggtt	65100
gggagtgagc	agtaaaaaaa	caaacaaacc	catgcagggc	tgttgtgctg	tgggaaatca	65160
gatgtgttca	ctgccataag	tcttcagtgc	ggccaaactt	aaaaaccagc	cctctgtgaa	65220
taaaacaaga	aatatcacat	gactccctga	atttgagaaa	agagtatgtg	agatttcgag	65280
aatggtgtga	aacaaacaac	gaagaataat	tgatgagttg	tagaagaaat	tttggtacga	65340
aatgtatcaa	aacagaaact	gatcattcta	aggtagtgaa	ttcttccatt	atgttcaact	65400

	gtgctattaa c	caccatatt	cccaacaacc	ttaactttca	agtactgaat	acacatgtga	65460
	cttttaaaaa g	ttaccagtg	tttactatgt	aaccattata	tgtctgattt	tttttttt	65520
	ttttgagaca g	agtcttgct	ctgtcgccca	ggctggagtg	cagtggcgtg	atctcggctc	65580
	actgcaagct c	tgcctcccg	ggttcatgcc	attctcctgc	ctct		65624
5	<210> 27 <211> 332 <212> ADN <213> Homo sapie	ens					
	<400> 27						
	ttggagagag	gggtgatgcc	tggtgctggt	ggaacccctg	cacagagacg	gacacaggat	60
	gagctctaag	tacccgcggt	ctgtccggcg	ctgcctgccc	ctctgggccc	taacactgga	120
	agcagctctc	attctcctct	tctattttt	tacccactat	gacgcttcct	tagaggatca	180
	aaaggggctc	gtggcatcct	atcaaggtga	gagttcattg	gaaaagtggt	cacaggagca	240
	aatagcaggg	gcaggggcgg	gggaggcctg	tggttctcca	ggggcacaga	tgttcctttc	300
10	tacaaaatcc	caaggaaaaa	gattccccca	tc			332
15	<210> 28 <211> 384 <212> ADN <213> Homo sapie	ens					
	<400> 28						
	caagccctca	agtaggtgtt	ggagagaggg	gtgatgcctg	gtgctggtgg	aacccctgca	60
	cagagacgga	cacaggatga	gctctaagta	cccgcggtct	gtccggcgct	gcctgcccct	120
	ctgggcccta	acactggaag	cagctctcat	tctcctcttc	tatttttta	cccactatga	180
	cgcttcctta	gaggatcaaa	aggggctcgt	ggcatcctat	caaggtgaga	gttcattgga	240
	acagtggtca	caggagcaaa	tagcaggggc	aggggcgggg	gaggcctatg	gttctccagg	300
	ggcacagatg	ttcctttcta	caaaatcccg	aggaaaagat	tccccatct	tcttccgtag	360
20	attgcaccga	aattcagtca	acaa				384
20	<210> 29 <211> 384 <212> ADN <213> Homo sapie	ens					
25	<400> 29						

	caagccctca	agtaggtgtt	ggagagaggg	gtgatgcctg	gtgctggtgg	aacccctgca	60
	cagagacgga	cacaggatga	gctctaagta	cccgcggtct	gtccggcgct	gcctgcccct	120
	ctgggcccta	acactggaag	cagctctcat	tctcctcttc	tatttttta	cccactatga	180
	cgcttcctta	gaggatcaaa	aggggctcgt	ggcatcctat	caaggtgaga	gttcattgga	240
	acagtggtca	caggagcaaa	tagcaggggc	aggggcgggg	g gaggcctato	g gttctccagg	300
	ggcacagatg	ttcctttcta	caaaatcccg	aggaaaagat	tcccccatct	tcttccgtag	360
	attgcaccga	aattcagtca	acaa				384
5	<210> 30 <211> 384 <212> ADN <213> Homo sap	oiens					
10	<400> 30						
. •	caagccctca	agtaggtgtt	ggagagaggg	gtgatgcctg	gtgctggtgg	aacccctgca	60
	cagagacgga	cacaggatga	gctctaagta	cccgcggtct	gtccggcgct	gcctgcccct	120
	ctgcgcccta	acactggaag	cagctctcat	tctcctcttc	tatttttta	cccactatga	180
	cgcttcctta	gaggatcaaa	aggggctcgt	ggcatcctat	caaggtgaga	gttcattgga	240
	acagtggtca	caggagcaaa	tagcaggggc	aggggcgggg	gaggcctatg	gttctccagg	300
	ggcacagatg	ttcctttcta	caaaatcccg	aggaaaagat	tccccatct	tcttccgtag	360
	attgcaccga	aattcagtca	acaa				384
15	<210> 31 <211> 384 <212> ADN <213> Homo sap	oiens					
	<400> 31						
	caagccctca	agtaggtgtt	ggagagaggg	gtgatgcctg	gtgctggtgg	aacccctgca	60
	cagagacgga	cacaggatga	gctctaagta	cccgcggtct	gtccggcgct	gcctgcccct	120
	ctgcgcccta	acactggaag	cagctctcat	teteetette	tatttttta	cccactatga	180
	cgcttcctta	gaggatcaaa	aggggctcgt	ggcatcctat	caaggtgaga	gttcattgga	240
	acagtggtca	caggagcaaa	tagcaggggc	aggggcgggg	gaggcctatg	gttctccagg	300
	ggcacagatg	ttcctttcta	caaaatcccg	aggaaaagat	tcccccatct	tcttccgtag	360
20	attgcaccga	aattcagtca	acaa				384
25	<210> 32 <211> 384 <212> ADN <213> Secuencia	a artificial					
	<220>						

	<223> RHCE_consensus_ex01	
	<400> 32	
	caagccctca agtaggtgtt ggagagaggg gtgatgcctg gtgctggtgg aacccctgca	60
	cagagacgga cacaggatga gctctaagta cccgcggtct gtccggcgct gcctgcccct	120
_	ctgsgcccta acactggaag cagctctcat tctcctcttc tattttttta cccactatga	180
5	cgcttcctta gaggatcaaa aggggctcgt ggcatcctat caaggtgaga gttcattgga	240
	acagtggtca caggagcaaa tagcaggggc agggcgggg gaggcctatg gttctccagg	300
	ggcacagatg ttcctttcta caaaatcccg aggaaaagat tcccccatct tcttccgtag	360
	attgcaccga aattcagtca acaa	384
10	<210> 33 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 33	
	tettgcatge ceettecage tgccatttag taagacteta atttcatace accetaaate	60
	togtotgott coccotogto ottotogoca totococaco gagoagttgg coaagatotg	120
	accgtgatgg cggccattgg cttgggcttc ctcacctcga gtttccggag acacagctgg	180
	agcagtgtgg ccttcaacct cttcatgctg gcgcttggtg tgcagtgggc aatcctgctg	240
	gacggcttcc tgagccagtt cccttctggg aaggtggtca tcacactgtt caggtattgg	300
	gatggtggct ggatcacttc tgggtcatag agggaatgga ccccgaaagg acaggttcca	360
15	gaagatctgg gatattgccc cctctctgtc tagcaccagt	400
20	<210> 34 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 34	
	tottgcatgo coottocago tgccatttag taagactota atttcataco accotaaato	60
	togtotgott coccotocto ottotoacca totoccoacc gagcagtogg ccaagatotg	120
	accgtgatgg cggcccttgg cttgggcttc ctcacctcaa atttccggag acacagctgg	180
	agcagtgtgg ccttcaacct cttcatgctg gcgcttggtg tgcagtgggc aatcctgctg	240
	gacggettee tgagecagtt eceteetggg aaggtggtea teacactgtt eaggtattgg	300
	gatggtggct ggatcacttc tgggtcatag agggaatgga ccccgaaagg acaggttcca	360
25	gaagatetgg gatattgeee eetetetgte tageaceagt	400
20	<210> 35 <211> 400	

127

<212> ADN <213> Homo sapiens <400> 35 5 tettgeatge ceetteeage tgeeatttag taagacteta attteatace accetaaate 60 tegtetgett ecceetecte etteteacea tetececace gageagtegg ceaagatetg 120 accgtgatgg cggcccttgg cttgggcttc ctcacctcaa atttccggag acacagctgg 180 240 agcagtgtgg ccttcaacct cttcatgctg gcgcttggtg tgcagtgggc aatcctgctg 300 gacggcttcc tgagccagtt ccctcctggg aaggtggtca tcacactgtt caggtattgg gatggtggct ggatcacttc tgggtcatag agggaatgga ccccgaaagg acaggttcca 360 400 gaagatctgg gatattgccc cctctctgtc tagcaccagt <210> 36 10 <211> 400 <212> ADN <213> Homo sapiens <400> 36 15 tettgeatge ecetteeage tgecatttag taagacteta attteatace accetaaate 60 tegtetgett ecceetecte ettetegeea tetececace gageagttgg ecaagatetg 120 acceptgatgg cggccattgg cttgggcttc ctcacctcga gtttccggag acacagctgg 180 agcagtgtgg ccttcaacct cttcatgctg gcgcttggtg tgcagtgggc aatcctgctg 240 gacggcttcc tgagccagtt cccttctggg aaggtggtca tcacactgtt caggtattgg 300 gatggtggct ggatcacttc tgggtcatag agggaatgga ccccgaaagg acaggttcca 360 400 gaagatctgg gatattgccc cctctctgtc tagcaccagt <210> 37 <211> 400 20 <212> ADN <213> Homo sapiens <400> 37 tcttgcatgc cccttccagc tgccatttag taagactcta atttcatacc accctaaatc 60 120 tegtetgett eccetteete ettetegeea tetececaee gageagttgg ecaagatetg accgtgatgg cggccattgg cttgggcttc ctcacctcga gtttccggag acacagctgg 180 agcagtgtgg ccttcaacct cttcatgctg gcgcttggtg tgcagtgggc aatcctgctg 240 300 gacggcttcc tgagccagtt cccttctggg aaggtggtca tcacactgtt caggtattgg 360 gatggtggct ggatcacttc tgggtcatag agggaatgga ccccgaaagg acaggttcca 400 gaagatctgg gatattgccc cctctctgtc tagcaccagt

25

_	<210> 38 <211> 400 <212> ADN <213> Secuencia	a artificial					
5	<220> <223> RHCE_co	nsensus_ex02					
10	<400> 38						
10	tcttgcatgc	cccttccagc	tgccatttag	taagactcta	atttcataco	c accctaaatc	60
	tcgtctgctt	ccccctcctc	cttctcrcca	tctccccacc	gagcagtygg	ccaagatctg	120
	accgtgatgg	cggccmttgg	cttgggcttc	ctcacctcra	rtttccggag	acacagctgg	180
	agcagtgtgg	ccttcaacct	cttcatgctg	gcgcttggtg	tgcagtgggc	aatcctgctg	240
	gacggcttcc	tgagccagtt	ccctyctggg	aaggtggtca	tcacactgtt	caggtattgg	300
	gatggtggct	ggatcacttc	tgggtcatag	agggaatgga	ccccgaaagg	acaggttcca	360
	gaagatctgg	gatattgccc	cctctctgtc	tagcaccagt			400
15	<210> 39 <211> 400 <212> ADN <213> Homo sap	oiens					
	<400> 39						
20	tcccacagaa	agtaggtgcc	caacagtgtt	tgttgaaaga	atgaatgaat	gaatgaatga	60
	atgaatgaat	gagtgagagg	catccttcct	tctcagtcgt	cctggctctc	cctctctccc	120
	ccagtattcg	gctggccacc	atgagtgctt	tgtcggtgct	gatctcagtg	gatgctgtct	180
	tggggaaggt	caacttggcg	cagttggtgg	tgatggtgct	ggtggaggtg	acagctttag	240
	gcaacctgag	gatggtcatc	agtaatatct	tcaacgtgag	tcatggtgct	gggaggaggg	300
	acctgggaga	aaagggccaa	aagctccatt	tggtggggtt	tccagggttt	tgaaaaataa	360
	agacaacctg	taatcccagc	tacttgggag	gttgaggagg			400
25	<210> 40 <211> 400 <212> ADN <213> Homo sap	oiens					
	<400> 40						

	ttgtcttcta tttccacaga aagtaaggtg cccaacagtg tttgttgaat gaatgaatga	60
	atgaatgaat gagtgagagg catcetteet teteagteat eetggetete etteteacee	120
	ccagtattcg gctggccacc atgagtgcta tgtcggtgct gatctcagcg ggtgctgtct	180
	tggggaaggt caacttggcg cagttggtgg tgatggtgct ggtggaggtg acagctttag	240
	gcaccctgag gatggtcatc agtaatatct tcaacgtgag tcatggtgct gggaggaggg	300
	acctgggaga aaagggccaa aagctccatt tggtggggct tccggggttt tgaaaaataa	360
	agacaacctg taatcccagc tacttgggag gttgaggagg	400
5	<210> 41 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 41	
10	ttgtcttcta tttccacaga aagtaaggtg cccaacagtg tttgttgaat gaatgaatga	60
	atgaatgaat gagtgagagg catcetteet teteagteat eetggetete etteteacee	120
	ccagtattcg gctggccacc atgagtgcta tgtcggtgct gatctcagcg ggtgctgtct	180
	tggggaaggt caacttggcg cagttggtgg tgatggtgct ggtggaggtg acagctttag	240
	gcaccctgag gatggtcatc agtaatatct tcaacgtgag tcatggtgct gggaggaggg	300
	acctgggaga aaagggccaa aagctccatt tggtggggct tccggggttt tgaaaaataa	360
	agacaacctg taatcccagc tacttgggag gttgaggagg	400
15	<210> 42 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 42	
	ttgtcttcta tttccacaga aagtaaggtg cccaacagtg tttgttgaat gaatgaatga	60
	atgaatgaat gagtgagagg catcetteet teteagteat eetggetete etteteacee	120
	ccagtattcg gctggccacc atgagtgcta tgtcggtgct gatctcagcg ggtgctgtct	180
	tggggaaggt caacttggcg cagttggtgg tgatggtgct ggtggaggtg acagctttag	240
	gcaccctgag gatggtcatc agtaatatct tcaacgtgag tcatggtgct gggaggaggg	300
	acctgggaga aaagggccaa aagctccatt tggtggggct tccggggttt tgaaaaataa	360
20	agacaacctg taatcccagc tacttgggag gttgaggagg	400
25	<210> 43 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 43	

	ttgtcttcta	tttccacaga	aagtaaggtg	cccaacagtg	tttgttgaat	gaatgaatga	60
	atgaatgaat	gagtgagagg	catccttcct	tctcagtcat	cctggctctc	cttctcaccc	120
	ccagtattcg	gctggccacc	atgagtgcta	tgtcggtgct	gatctcagcg	ggtgctgtct	180
	tggggaaggt	caacttggcg	cagttggtgg	tgatggtgct	ggtggaggtg	acagctttag	240
	gcaccctgag	gatggtcatc	agtaatatct	tcaacgtgag	tcatggtgct	gggaggaggg	300
	acctgggaga	aaagggccaa	aagctccatt	tggtggggct	tccggggttt	tgaaaaataa	360
	agacaacctg	taatcccagc	tacttgggag	gttgaggagg			400
5	<210> 44 <211> 400 <212> ADN <213> Secuencia	artificial					
	<220> <223> RHCE_cor	nsensus_ex03					
10	<400> 44						
	ttgtcttcta	tttccacaga	aagtaaggtg	cccaacagtg	tttgttgaat	gaatgaatga	60
	atgaatgaat	gagtgagagg	catccttcct	tctcagtcat	cctggctctc	cttctcaccc	120
	ccagtattcg	gctggccacc	atgagtgcta	tgtcggtgct	gatctcagcg	ggtgctgtct	180
	tggggaaggt	caacttggcg	cagttggtgg	tgatggtgct	ggtggaggtg	acagctttag	240
	gcaccctgag	gatggtcatc	agtaatatct	tcaacgtgag	tcatggtgct	gggaggaggg	300
	acctgggaga	aaagggccaa	aagctccatt	tggtggggct	tccggggttt	tgaaaaataa	360
	agacaacctg	taatcccagc	tacttgggag	gttgaggagg			400
15	<210> 45 <211> 400 <212> ADN <213> Homo sapi	iens					
20	<400> 45						
	aacaccagtc	tcatggcttc	aagtcacacc	tcctaagtga	agctctgaac	tttctccaag	60
	gactatcagg	gcttgccccg	ggcagaggat	gccgacactc	actgctctta	ctgggtttta	120
	ttgcagacag	actaccacat	gaacatgatg	cacatctacg	tgttcgcagc	ctattttggg	180
	ctgtctgtgg	cctggtgcct	gccaaagcct	ctacccgagg	gaacggagga	taaagatcag	240
	acagcaacga	tacccagttt	gtctgccatg	ctgggtaagg	acaaggtggg	gtgagtggtc	300
	tcctacttgg	gctgagcaga	atggctcaga	aaaggctctg	gctgaaaaaa	tctccctcct	360
	ttaccaagtt	cccctgggtg	tctgaagccc	ttccatcatg			400
25	<210> 46 <211> 400 <212> ADN <213> Homo sapi	iens					

	<400> 46						
	acaccagtct	cgtggcttca	agtcacacct	cctaagtgaa	gctctgaact	ttctccaagg	60
	accatcaggg	ctttcccctg	ggcagaggat	gccgacactc	actgctctta	ctgggtttta	120
	ttgcagacag	actaccacat	gaacctgagg	cacttctacg	tgttcgcagc	ctattttggg	180
	ctgactgtgg	cctggtgcct	gccaaagcct	ctacccaagg	gaacggagga	taatgatcag	240
	agagcaacga	tacccagttt	gtctgccatg	ctgggtaagg	acaaggtggg	gtgagtggtc	300
	tcatacttgg	gctgagcaga	atggctcaga	aaaggctctg	gctgaaaaaa	tctccctcct	360
_	ttaccaactt	cccctgggtg	tctgaagccc	ttccatcatg			400
5	<210> 47 <211> 400 <212> ADN <213> Homo sap	iens					
10	<400> 47						
	acaccagtct	cgtggcttca	agtcacacct	cctaagtgaa	gctctgaact	ttctccaagg	60
	accatcaggg	ctttcccctg	ggcagaggat	gccgacactc	actgctctta	ctgggtttta	120
	ttgcagacag	actaccacat	gaacctgagg	cacttctacg	tgttcgcagc	ctattttggg	180
	ctgactgtgg	cctggtgcct	gccaaagcct	ctacccaagg	gaacggagga	taatgatcag	240
	agagcaacga	tacccagttt	gtctgccatg	ctgggtaagg	acaaggtggg	gtgagtggtc	300
	tcatacttgg	gctgagcaga	atggctcaga	aaaggctctg	gctgaaaaaa	tctccctcct	360
	ttaccaactt	cccctgggtg	tctgaagccc	ttccatcatg			400
15	<210> 48 <211> 400 <212> ADN <213> Homo sap	iens					
20	<400> 48						40
						ttctccaagg	60
						a ctgggtttta	120
						ctattttggg	180
						taatgatcag	240
						g gtgagtggtc	300
						a teteceteet	360
	ttaccaactt	cccctgggtg	tetgaageee	ttccatcatg	i		400
25	<210> 49 <211> 400 <212> ADN						

	<213> Homo sapi	ens					
	<400> 49						
	acaccagtct	cgtggcttca	agtcacacct	cctaagtgaa	gctctgaact	ttctccaagg	60
	accatcaggg	ctttcccctg	ggcagaggat	gccgacactc	actgctctta	ctgggtttta	120
	ttgcagacag	actaccacat	gaacctgagg	cacttctacg	tgttcgcagc	ctattttggg	180
	ctgactgtgg	cctggtgcct	gccaaagcct	ctacccaagg	gaacggagga	taatgatcag	240
	agagcaacga	tacccagttt	gtctgccatg	ctgggtaagg	acaaggtggg	gtgagtggtc	300
	tcatacttgg	gctgagcaga	atggctcaga	aaaggctctg	gctgaaaaaa	tctccctcct	360
5	ttaccaactt	cccctgggtg	tctgaagccc	ttccatcatg			400
10	<210> 50 <211> 400 <212> ADN <213> Secuencia	artificial					
	<220> <223> RHCE_cor	nsensus_ex04					
15	<400> 50						
	acaccagtct	cgtggcttca	agtcacacct	cctaagtgaa	gctctgaact	ttctccaagg	60
	accatcaggg	ctttcccctg	ggcagaggat	gccgacactc	actgctctta	ctgggtttta	120
	ttgcagacag	actaccacat	gaacctgagg	cacttctacg	tgttcgcagc	ctattttggg	180
	ctgactgtgg	cctggtgcct	gccaaagcct	ctacccaagg	gaacggagga	taatgatcag	240
	agagcaacga	tacccagttt	gtctgccatg	ctgggtaagg	acaaggtggg	gtgagtggtc	300
	tcatacttgg	gctgagcaga	atggctcaga	aaaggctctg	gctgaaaaaa	tctccctcct	360
	ttaccaactt	cccctgggtg	tctgaagccc	ttccatcatg			400
20	<210> 51 <211> 410 <212> ADN <213> Homo sapi	ens					
25	<400> 51						
20	ctctaagtga	caaggctgag	actctccagc	cctaggattc	tcatccaaaa	cccctcgagg	60
	ctcagacctt	tggagcagga	gtgtgattct	ggccaaccac	cctctctggc	ccccaggcgc	120
	cctcttcttg	tggatgttct	ggccaagttt	caactctgct	ctgctgagaa	gtccaatcga	180
	aaggaagaat	gccgtgttca	acacctacta	tgctgtagca	gtcagcgtgg	tgacagccat	240
	ctcagggtca	tccttggctc	acccccaagg	gaagatcagc	aaggtgagca	gggcgctgcc	300
	cttgggcagc	acttgggtct	aacaggacta	gcacacatat	ttatgcccct	ccccacccca	360
	gggccagcgt	gggttgggag	agggcatgcc	gggtggtgga	gctgtgcctg		410

	<211> 400 <212> ADN <213> Homo sapiens	
5	<400> 52	
	ctctaagtga caaggctgag actctccagc cctaggattc tcatccaaaa cccctcgagg	60
	ctcagacctt tggagcagga gtgtgattct ggccaaccac cctctctggc ccccaggcgc	120
	cctcttcttg tggatgttct ggccaagtgt caactctgct ctgctgagaa gtccaatcca	180
	aaggaagaat gccatgttca acacctacta tgctctagca gtcagtgtgg tgacagccat	240
	ctcagggtca tccttggctc acccccaaag gaagatcagc atggtgagca gggcgctgcc	300
	cttgggcage acttgggtet aacaggaeta geacacatat ttatgeeeet eeccaceeca	360
	gggccagcgt gggttgggag agggcatgcc gggtggtgga	400
10	<210> 53 <211> 400 <212> ADN <213> Homo sapiens	
15	<400> 53	
15	ctctaagtga caaggctgag actctccagc cctaggattc tcatccaaaa cccctcgagg	60
	ctcagacctt tggagcagga gtgtgattct ggccaaccac cctctctggc ccccaggcgc	120
	cctcttcttg tggatgttct ggccaagtgt caactctcct ctgctgagaa gtccaatcca	180
	aaggaagaat gccatgttca acacctacta tgctctagca gtcagtgtgg tgacagccat	240
	ctcagggtca tccttggctc acccccaaag gaagatcagc atggtgagca gggcgctgcc	300
	cttgggcagc acttgggtct aacaggacta gcacacatat ttatgcccct ccccacccca	360
	gggccagcgt gggttgggag agggcatgcc gggtggtgga	400
20	<210> 54 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 54	
	ctctaagtga caaggctgag actctccagc cctaggattc tcatccaaaa cccctcgagg	60
	ctcagacctt tggagcagga gtgtgattct ggccaaccac cctctctggc ccccaggcgc	120
	cctcttcttg tggatgttct ggccaagtgt caactctgct ctgctgagaa gtccaatcca	180
	aaggaagaat gccatgttca acacctacta tgctctagca gtcagtgtgg tgacagccat	240
	ctcagggtca teettggete acceecaaag gaagateage atggtgagea gggegetgee	300
	cttgggcagc acttgggtct aacaggacta gcacacatat ttatgcccct ccccacccca	360
25	gggccagcgt gggttgggag agggcatgcc gggtggtgga	400

<210> 55

	<211> 400 <212> ADN <213> Homo sapiens	
5	<400> 55	
	ctctaagtga caaggctgag actctccagc cctaggattc tcatccaaaa cccctcgagg	60
	ctcagacctt tggagcagga gtgtgattct ggccaaccac cctctctggc ccccaggcgc	120
	cctcttcttg tggatgttct ggccaagtgt caactctcct ctgctgagaa gtccaatcca	180
	aaggaagaat gccatgttca acacctacta tgctctagca gtcagtgtgg tgacagccat	240
	ctcagggtca tccttggctc acccccaaag gaagatcagc atggtgagca gggcgctgcc	300
	cttgggcagc acttgggtct aacaggacta gcacacatat ttatgcccct ccccacccca	360
	gggccagcgt gggttgggag agggcatgcc gggtggtgga	400
10	<210> 56 <211> 400 <212> ADN <213> Secuencia artificial	
15	<220> <223> RHCE_consensus_ex5	
	<400> 56	
	ctctaagtga caaggctgag actctccagc cctaggattc tcatccaaaa cccctcgagg	60
	ctcagacctt tggagcagga gtgtgattct ggccaaccac cctctctggc ccccaggcgc	120
	cctcttcttg tggatgttct ggccaagtgt caactctsct ctgctgagaa gtccaatcca	180
	aaggaagaat gccatgttca acacctacta tgctctagca gtcagtgtgg tgacagccat	240
	ctcagggtca tccttggctc acccccaaag gaagatcagc atggtgagca gggcgctgcc	300
	cttgggcage acttgggtet aacaggaeta geacacatat ttatgeeeet eeceaceeea	360
20	gggccagcgt gggttgggag agggcatgcc gggtggtgga	400
25	<210> 57 <211> 34 <212> ADN <213> Secuencia artificial <220> <223> Secuencia sintética: Marcador de secuenciación de nueva generación	
30	<400> 57 acactctttc cctacctgta aaacgacggc cagt 34	
35	<210> 58 <211> 28 <212> ADN <213> Secuencia artificial	
	<220> <223> Secuencia sintética: Marcador de secuenciación de nueva generación	
40	<400> 58	

	ggttgctcgc caggaaacag ctatgacc	28
5	<210> 59 <211> 20 <212> ADN <213> Secuencia artificial	
10	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico <400> 59 ggtcacttgc agcaagatgg	20
15	<210> 60 <211> 20 <212> ADN <213> Secuencia artificial	
20	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
	<400> 60 accttgcttc ctttacccac	20
25	<210> 61 <211> 20 <212> ADN <213> Secuencia artificial	
30	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
35	<400> 61 tggccttcag ccaaagcaga <210> 62 <211> 20 <212> ADN <213> Secuencia artificial	20
40	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
45	<400> 62 ctaatgcagc tgtgcactgc	20
50	<210> 63 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
55	<400> 63 tgtgtgaaag gggtgggtag	20
60	<210> 64 <211> 20 <212> ADN <213> Secuencia artificial	
65	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico <400> 64	

	gtctcacctg ccaatctgct	20
5	<210> 65 <211> 20 <212> ADN <213> Secuencia artificial	
10	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
	<400> 65 gttggagggg agtgttaagg	20
15	<210> 66 <211> 20 <212> ADN <213> Secuencia artificial	
20	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
	<400> 66 ccagctaagg actctgcaca	20
25	<210> 67 <211> 20 <212> ADN <213> Secuencia artificial	
30	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
25	<400> 67 atggcactac tgacaccgac	20
35	<210> 68 <211> 20 <212> ADN <213> Secuencia artificial	
40	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
45	<400> 68 ttgtccctga tgacctctgc	20
50	<210> 69 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
55	<400> 69 tgtcctggca atggtggaag	20
60	<210> 70 <211> 20 <212> ADN <213> Secuencia artificial	
65	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
00	<400> 70	

	gcacatagac atccagccac	20
5	<210> 71 <211> 20 <212> ADN <213> Secuencia artificial	
10	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico <400> 71 agctggtcca ggaatgacag	20
15	<210> 72 <211> 27 <212> ADN <213> Secuencia artificial	
20	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
	<400> 72 gtgggagaaa aaggatttct gttgaga	27
25	<210> 73 <211> 27 <212> ADN <213> Secuencia artificial	
30	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
35 40	<400> 73 tcttgagatt aaaaatcctg tgctcca <210> 74 <211> 27 <212> ADN <213> Secuencia artificial	27
	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
45	<400> 74 agttcatgca ctcaaaatct atcacgt <210> 75	27
50	<211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
55	<400> 75 cctgcaatgc tccttactcc	20
60	<210> 76 <211> 22 <212> ADN <213> Secuencia artificial	
65	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico <400> 76	

	ggctgtttca agagatcaag cc	22
5	<210> 77 <211> 22 <212> ADN <213> Secuencia artificial	
10	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
10	<400> 77 tcagtatgtg ggttcatctg ca	22
15	<210> 78 <211> 22 <212> ADN <213> Secuencia artificial	
20	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
	<400> 78 aggcaacagt gagaggaagt tg	22
25	<210> 79 <211> 22 <212> ADN <213> Secuencia artificial	
30	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
35	<400> 79 tgctgtcatg agcgtttctc ac	22
	<210> 80 <211> 24 <212> ADN <213> Secuencia artificial	
40	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
45	<400> 80 cttgtgccac ttgacttggg actg	24
50	<210> 81 <211> 24 <212> ADN <213> Secuencia artificial	
	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
55	<400> 81 ctgttttgag tcccttcagg ggag	24
60	<210> 82 <211> 28 <212> ADN <213> Secuencia artificial	
C.F.	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
65	<400> 82	

	ctcacatact gataacttag caaatggc	28
5	<210> 83 <211> 21 <212> ADN <213> Secuencia artificial	
40	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
10	<400> 83 gatcacttga gcccaggagg c	21
15	<210> 84 <211> 22 <212> ADN <213> Secuencia artificial	
20	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
	<400> 84 ttaactcagg aggctgaggt gg	22
25	<210> 85 <211> 23 <212> ADN <213> Secuencia artificial	
30	<220> <223> Secuencia sintética: Secuencia consenso - cebador específico	
25	<400> 85 ctgaggtggg aggatcactt gag	23
35	<210> 86 <211> 23 <212> ADN	
40	<213> Secuencia artificial <220>	
	<223> Secuencia sintética: Secuencia consenso - cebador específico	
45	<400> 86 aaattagccg ggcatggtag cag	23
50	<210> 87 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 87	

	agtggtttca	a ggatcagcaa	agcagggagg	atgttacagg	gttgccttgt	tcccagcgtg	60
	ctggtcactt	gcagcaagat	ggtgttctct	ctctaccttg	cttcctttac	ccacacgcta	120
	tttctttgca	a gacttatgtg	cacagtgcgg	tgttggcagg	aggcgtggct	gtgggtacct	180
	cgtgtcacct	gatecettet	ccgtggcttg	ccatggtgct	gggtcttgtg	gctgggctga	240
	tctccgtcg	g gggagccaag	tacctgccgg	taagaaacta	gacaactaac	ctcctctgct	300
	ttggctgaaq	g gccagcagga	cgctgggacc	tgatgggcca	ctgtgcagtg	cacagctgca	360
	ttaggcaggt	gtcggcgcat	tctcttattg	gcttcaacgc			400
5	<210> 88 <211> 400 <212> ADN <213> Homo sap	piens					
	<400> 88						
	ggtggtttca	ggatcagcaa	agcagggagg	atgttacagg	gttgccttgt	tcccagcgtg	60
	ctggtcactt	gcagcaagat	ggtgttctct	ctctaccttg	cttcctttac	ccacacgcta	120
	tttctttgca	gacttatgtg	cacagtgcgg	tgttggcagg	aggcgtggct	gtgggtacct	180
	cgtgtcacct	gatcccttct	ccgtggcttg	ccatggtgct	gggtcttgtg	gctgggctga	240
	tctccatcgg	gggagccaag	tgcctgccgg	taagaaacta	gacaactaat	gctctctgct	300
	ttggctgaag	gccagcagga	cgctgggacc	tgatgggcca	ctgtgcagtg	cacagetgea	360
10	ttaggcaggt	gttggtgcat	tctcttattg	gcttcaacgc			400
15	<210> 89 <211> 400 <212> ADN <213> Homo sap	piens					
	<400> 89						
	ggtggtttca	ggatcagcaa	agcagggagg	atgttacagg	gttgccttgt	tcccagcgtg	60
	ctggtcactt	gcagcaagat	ggtgttctct	ctctaccttg	cttcctttac	ccacacgcta	120
	tttctttgca	gacttatgtg	cacagtgcgg	tgttggcagg	aggcgtggct	gtgggtacct	180
	cgtgtcacct	gatcccttct	ccgtggcttg	ccatggtgct	gggtcttgtg	gctgggctga	240
	tctccatcgg	gggagccaag	tgcctgccgg	taagaaacta	gacaactaat	gctctctgct	300
	ttggctgaag	gccagcagga	cgctgggacc	tgatgggcca	ctgtgcagtg	cacagctgca	360
20	ttaggcaggt	gttggtgcat	tctcttattg	gcttcaacgc			400
25	<210> 90 <211> 400 <212> ADN <213> Homo sap	oiens					
	<400> 90						

	ggtggtttca	ggatcagcaa	agcagggagg	atgttacag	g gttgccttg	t tcccagcgtg	60
	ctggtcactt	gcagcaagat	ggtgttctct	ctctacctt	g cttccttta	c ccacacgcta	120
	tttctttgca	gacttatgtg	cacagtgcgg	tgttggcag	g aggcgtggc	t gtgggtacct	180
	cgtgtcacct	gatcccttct	ccgtggcttg	ccatggtgc	t gggtcttgt	g gctgggctga	240
	tctccatcgg	gggagccaag	tgcctgccgg	taagaaacta	a gacaactaa	t gctctctgct	300
	ttggctgaag	gccagcagga	cgctgggacc	tgatgggcc	a ctgtgcagt	g cacagctgca	360
	ttaggcaggt	gttggtgcat	tctcttattg	gcttcaacg	c		400
5	<210> 91 <211> 400 <212> ADN <213> Homo sap	iens					
10	<400> 91						
10	ggtggtttca	ggatcagcaa	agcagggagg	atgttacagg	gttgccttgt t	cccagcgtg	60
	ctggtcactt	gcagcaagat	ggtgttctct	ctctaccttg	cttcctttac c	cacacgcta	120
	tttctttgca	gacttatgtg	cacagtgcgg	tgttggcagg	aggegtgget g	gtgggtacct	180
	cgtgtcacct	gatcccttct	ccgtggcttg	ccatggtgct	gggtcttgtg c	gctgggctga	240
	tctccatcgg	gggagccaag	tgcctgccgg	taagaaacta	gacaactaat c	getetetget	300
	ttggctgaag	gccagcagga	cgctgggacc	tgatgggcca	ctgtgcagtg c	cacagctgca	360
	ttaggcaggt	gttggtgcat	tctcttattg	gcttcaacgc			400
15	<210> 92 <211> 400 <212> ADN <213> Secuencia	a artificial					
20	<220> <223> RHCE_co	nsensus_exOβ					
20	<400> 92						
	ggtggtttca	ggatcagcaa	agcagggagg	atgttacagg	gttgccttgt	tcccagcgtg	60
	ctggtcactt	gcagcaagat	ggtgttctct	ctctaccttg	cttcctttac	ccacacgcta	120
	tttctttgca	gacttatgtg	cacagtgcgg	tgttggcagg	aggcgtggct	gtgggtacct	180
	cgtgtcacct	gatcccttct	ccgtggcttg	ccatggtgct	gggtcttgtg	gctgggctga	240
	tctccatcgg	gggagccaag	tgcctgccgg	taagaaacta	gacaactaat	gctctctgct	300
	ttggctgaag	gccagcagga	cgctgggacc	tgatgggcca	ctgtgcagtg	cacagctgca	360
25	ttaggcaggt	gttggtgcat	tctcttattg	gcttcaacgc			400
	<210> 93 <211> 400 <212> ADN						

<213> Homo sapiens

	<400> 93	
	gaagggette tttgaggtga geettagtge eeateeeest ttggtggeee eggataceaa	60
	gggtgtgtga aaggggtggg tagggaatat gggtctcacc tgccaatctg cttataataa	120
	cacttgtcca caggggtgtt gtaaccgagt gctggggatt ccccacagct ccatcatggg	180
	ctacaacttc agcttgctgg gtctgcttgg agagatcatc tacattgtgc tgctggtgct	240
	tgataccgtc ggagccggca atggcatgtg ggtcactggg cttacccccc atccccttaa	300
	cactcccctc caactcagga agaaatgtgt gcagagtcct tagctggggc gtgtgcactc	360
5	ggggccaggt gctcagtagg cttcggtgaa tatttgttgg	400
10	<210> 94 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 94	
	agaagggett etttgaggtg ageettagtg eccatececa tttggtggeg eggataceaa	60
	gggtgtgtga aaggggtggg tagggaatat gggtctcacc tgccaatctg cttataataa	120
	cacttgtcca caggtgtgtt gtaaccgagt gctggggatt caccacatct ccgtcatgca	180
	ctccatcttc agcttgctgg gtctgcttgg agagatcacc tacattgtgc tgctggtgct	240
	tcatactgtc tggaacggca atggcatgtg ggtcactggg cttacccccc atccccttaa	300
	cactcccctc caactcagga agaaatgtgt gcagagtcct tagctggggc gtgtgcactc	360
45	ggggccaggt gctcagtagg cttcggtgaa tatttgttgg	400
15	<210> 95 <211> 400 <212> ADN <213> Homo sapiens	
20	<400> 95	
	agaagggett etttgaggtg ageettagtg eccateceea tttggtggeg eggataeeaa	60
	gggtgtgtga aaggggtggg tagggaatat gggtctcacc tgccaatctg cttataataa	120
	cacttgtcca caggtgtgtt gtaaccgagt gctggggatt caccacatct ccgtcatgca	180
	ctccatcttc agcttgctgg gtctgcttgg agagatcacc tacattgtgc tgctggtgct	240
	tcatactgtc tggaacggca atggcatgtg ggtcactggg cttacccccc atccccttaa	300
	cactcccctc caactcagga agaaatgtgt gcagagtcct tagctggggc gtgtgcactc	360
25	ggggccaggt gctcagtagg cttcggtgaa tatttgttgg	400
-	<210> 96 <211> 400 <212> ADN <213> Homo sapiens	

	<400> 96						
	agaagggctt	ctttgaggtg	agccttagtg	cccatcccca	tttggtggcg	cggataccaa	60
	gggtgtgtga	aaggggtggg	tagggaatat	gggtctcacc	tgccaatctg	cttataataa	120
	cacttgtcca	caggtgtgtt	gtaaccgagt	gctggggatt	caccacatct	ccgtcatgca	180
	ctccatcttc	agcttgctgg	gtctgcttgg	agagatcacc	tacattgtgc	tgctggtgct	240
	tcatactgtc	tggaacggca	atggcatgtg	ggtcactggg	cttaccccc	atccccttaa	300
	cactcccctc	caactcagga	agaaatgtgt	gcagagtcct	tagctggggc	gtgtgcactc	360
	ggggccaggt	gctcagtagg	cttcggtgaa	tatttgttgg			400
10	<210> 97 <211> 400 <212> ADN <213> Homo sapio	ens					
		ctttgaggtg	agccttagtg	cccatcccca	tttggtggcg	cggataccaa	60
	gggtgtgtga	aaggggtggg	tagggaatat	gggtctcacc	tgccaatctg	cttataataa	120
	cacttgtcca	caggtgtgtt	gtaaccgagt	gctggggatt	caccacatct	ccgtcatgca	180
	ctccatcttc	agcttgctgg	gtctgcttgg	agagatcacc	tacattgtgc	tgctggtgct	240
	tcatactgtc	tggaacggca	atggcatgtg	ggtcactggg	cttaccccc	atccccttaa	300
	cactcccctc	caactcagga	agaaatgtgt	gcagagtcct	tagctggggc	gtgtgcactc	360
	ggggccaggt	gctcagtagg	cttcggtgaa	tatttgttgg			400
15	<210> 98 <211> 400 <212> ADN <213> Secuencia	artificial					
20	<220> <223> RHCE_con	sensus_ex07					
	<400> 98						
	agaagggctt	ctttgaggtg	agccttagtg	cccatcccca	tttggtggcg	cggataccaa	60
	gggtgtgtga	aaggggtggg	tagggaatat	gggtctcacc	tgccaatctg	cttataataa	120
25	cacttgtcca	caggtgtgtt	gtaaccgagt	gctggggatt	caccacatct	ccgtcatgca	180
20	ctccatcttc	agcttgctgg	gtctgcttgg	agagatcacc	tacattgtgc	tgctggtgct	240
	tcatactgtc	tggaacggca	atggcatgtg	ggtcactggg	cttacccccc	atccccttaa	300
	cactcccctc	caactcagga	agaaatgtgt	gcagagtcct	tagctggggc	gtgtgcactc	360
	ggggccaggt	gctcagtagg	cttcggtgaa	tatttgttgg			400

<210> 99

	<211> 400 <212> ADN <213> Homo sapiens	
5	<400>99	
	ttgggaaaat gccaggggaa tgtaccagcc agggagagga cccttgtttt cctcatggcc	60
	cttcctggca atggcactac tgacaccgac agtccttttt gtccctgatg acctctgctg	120
	cctgatgccc aagtgaccac ctctgctttg tcatttctag gattggcttc caggtcctcc	180
	tcagcattgg ggaactcagc ttggccatcg tgatagctct cacgtctggt ctcctgacag	240
	gtcagtgtga ggccaccttt cttccaccat tgccaggaca cagcacccac gtccagagcg	300
	caccctgccg tgtggctgga tgtctatgtg ccccatctcc ttccctgagg atcacataat	360
	ttcagaattg gaaaggttct tagaggtcac ctgctgctaa	400
10	<210> 100 <211> 400 <212> ADN <213> Homo sapiens	
15	<400> 100	
10	ttgggaaaat gccaggggaa tgtaccagcc agggagagga cccttgtttt cctcatggcc	60
	cttcctggca atggcactac tgacaccgac agtccttttt gtccctgatg acctctgctg	120
	cctgatgccc aagtgaccac ctctgctttg tcatttctag gattggcttc caggtcctcc	180
	tcagcattgg ggaactcagc ttggccatcg tgatagctct cacgtctggt ctcctgacag	240
	gtcagtgtga ggccaccttt cttccaccat tgccaggaca cagcacccac gtccagagcg	300
	caccctgccg tgtggctgga tgtctatgtg ccccatctcc ttccctgagg atcacataat	360
	ttcagaattg gaaaggttct tagaggtcac ctgctgctaa	400
20	<210> 101 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 101	
	ttgggaaaat gccaggggaa tgtaccagcc agggagagga cccttgtttt cctcatggcc	60
	cttcctggca atggcactac tgacaccgac agtccttttt gtccctgatg acctctgctg	120
25	cctgatgccc aagtgaccac ctctgctttg tcatttctag gattggcttc caggtcctcc	180
	tcagcattgg ggaactcagc ttggccatcg tgatagctct cacgtctggt ctcctgacag	240
	gtcagtgtga ggccaccttt cttccaccat tgccaggaca cagcacccac gtccagagcg	300
	caccetgeeg tgtggetgga tgtetatgtg ecceatetee tteeetgagg ateacataat	360
	ttcagaattg gaaaggttct tagaggtcac ctgctgctaa	400
	<210> 102 <211> 400	

	<212> ADN <213> Homo sapiens	
	<400> 102	
5	ttgggaaaat gccaggggaa tgtaccagcc agggagagga cccttgtttt cctcatggcc	60
	cttcctggca atggcactac tgacaccgac agtccttttt gtccctgatg acctctgctg	120
	cctgatgccc aagtgaccac ctctgctttg tcatttctag gattggcttc caggtcctcc	180
	tcagcattgg ggaactcagc ttggccatcg tgatagctct cacgtctggt ctcctgacag	240
	gtcagtgtga ggccaccttt cttccaccat tgccaggaca cagcacccac gtccagagcg	300
	caccetgeeg tgtggetgga tgtetatgtg ecceatetee tteeetgagg ateacataat	360
	ttcagaattg gaaaggttct tagaggtcac ctgctgctaa	400
10	<210> 103 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 103	
	ttgggaaaat gccaggggaa tgtaccagcc agggagagga cccttgtttt cctcatggcc	60
	cttcctggca atggcactac tgacaccgac agtccttttt gtccctgatg acctctgctg	120
	cctgatgccc aagtgaccac ctctgctttg tcatttctag gattggcttc caggtcctcc	180
	tcagcattgg ggaactcagc ttggccatcg tgatagctct cacgtctggt ctcctgacag	240
	gtcagtgtga ggccaccttt cttccaccat tgccaggaca cagcacccac gtccagagcg	300
	caccctgccg tgtggctgga tgtctatgtg ccccatctcc ttccctgagg atcacataat	360
15	ttcagaattg gaaaggttct tagaggtcac ctgctgctaa	400
20	<210> 104 <211> 400 <212> ADN <213> Secuencia artificial	
	<220> <223> RHCE_consensus_exOδ	
25	<400> 104	
	ttgggaaaat gccaggggaa tgtaccagcc agggagagga cccttgtttt cctcatggcc	60
	cttcctggca atggcactac tgacaccgac agtccttttt gtccctgatg acctctgctg	120
	cctgatgccc aagtgaccac ctctgctttg tcatttctag gattggcttc caggtcctcc	180
	tcagcattgg ggaactcagc ttggccatcg tgatagctct cacgtctggt ctcctgacag	240
	gtcagtgtga ggccaccttt cttccaccat tgccaggaca cagcacccac gtccagagcg	300
	caccctgccg tgtggctgga tgtctatgtg ccccatctcc ttccctgagg atcacataat	360
	ttcagaattg gaaaggttct tagaggtcac ctgctgctaa	400

5	<210> 105 <211> 400 <212> ADN <213> Homo sap	oiens					
	<400> 105						
	tggtccagga	atgacagggc	ttccatttat	ttgtctttca	attgtgggag	aaaaaggatt	60
	tctgttgaga	tactgtcgtt	ttgacacaca	atatttcgat	taatcttgag	attaaaaatc	120
	ctgtgctcca	aatcttttaa	cattaaatta	tgcatttaaa	caggtttgct	cctaaatctt	180
	aaaatatgga	aagcacctca	tgaggctaaa	tattttgatg	accaagtttt	ctggaaggta	240
	agatttttca	cctattaacg	tgatagattt	tgagtgcatg	aacttaaaaa	catacctgag	300
	tatatatgtt	gacttgctgt	ttatgagtaa	aacaaaaaca	aaaatggagt	aaggagcatt	360
	gcaggaggaa	ctagaggaga	aacaaatcca	tgatatgcat			400
10	<210> 106 <211> 400 <212> ADN <213> Homo sap	iens					
15	<400> 106						
	gtccaggaat	gacagggcgt	ccatttattt	gtctttcaat	tgtgggagaa	aaaggatttc	60
	tgttgagaca	ctgtcgtttt	gacacacaca	atattttgat	taatcttgag	attaaaaatc	120
	ctgtgctcca	aatcttttaa	cattaaatta	tgcatttaaa	caggtttgct	cctaaatctc	180
	aaaatatgga	aagcacctca	tgtggctaaa	tattttgatg	accaagtttt	ctggaaggta	240
	agatttttca	cctattaacg	tgatagattt	tgagtgcatg	aacttaaaaa	catacctggg	300
	tatatatgtt	gacttgctgt	ttatgagtaa	aacaaaaaca	aaaatggagt	aaggagcatt	360
	gcaggaggaa	ctagaggaga	aacaaatcca	tgatatgcat			400
20	<210> 107 <211> 400 <212> ADN <213> Homo sap	iens					
25	<400> 107						
	gtccaggaat	gacagggcgt	ccatttattt	gtctttcaat	tgtgggagaa	aaaggatttc	60

	tgitgagada digitgitti gadadadada atattitgat taatditgag attaaaaatd	120
	ctgtgctcca aatcttttaa cattaaatta tgcatttaaa caggtttgct cctaaatctc	180
	aaaatatgga aagcacctca tgtggctaaa tattttgatg accaagtttt ctggaaggta	240
	agatttttca cctattaacg tgatagattt tgagtgcatg aacttaaaaa catacctggg	300
	tatatatgtt gacttgctgt ttatgagtaa aacaaaaaca aaaatggagt aaggagcatt	360
	gcaggaggaa ctagaggaga aacaaatcca tgatatgcat	400
5	<210> 108 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 108	
	gtccaggaat gacagggcgt ccatttattt gtctttcaat tgtgggagaa aaaggatttc	60
	tgttgagaca ctgtcgtttt gacacacaca atattttgat taatcttgag attaaaaatc	120
	ctgtgctcca aatcttttaa cattaaatta tgcatttaaa caggtttgct cctaaatctc	180
	aaaatatgga aagcacctca tgtggctaaa tattttgatg accaagtttt ctggaaggta	240
	agatttttca cctattaacg tgatagattt tgagtgcatg aacttaaaaa catacctggg	300
	tatatatgtt gacttgctgt ttatgagtaa aacaaaaaca aaaatggagt aaggagcatt	360
10	gcaggaggaa ctagaggaga aacaaatcca tgatatgcat	400
15	<210> 109 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 109	
	gtccaggaat gacagggcgt ccatttattt gtctttcaat tgtgggagaa aaaggatttc	60
	tgttgagaca ctgtcgtttt gacacacaca atattttgat taatcttgag attaaaaatc	120
	ctgtgctcca aatcttttaa cattaaatta tgcatttaaa caggtttgct cctaaatctc	180
	aaaatatgga aagcacctca tgtggctaaa tattttgatg accaagtttt ctggaaggta	240
	agatttttca cctattaacg tgatagattt tgagtgcatg aacttaaaaa catacctggg	300
	tatatatgtt gacttgctgt ttatgagtaa aacaaaaaca aaaatggagt aaggagcatt	360
	gcaggaggaa ctagaggaga aacaaatcca tgatatgcat	400
20 25	<210> 110 <211> 400 <212> ADN <213> Secuencia artificial	
	<220>	

	<223> RHCE_c	onsensus_ex09					
	<400> 110						
	gtccaggaat	gacagggcgt	ccatttattt	gtctttcaat	tgtgggagaa	aaaggatttc	60
	tgttgagaca	ctgtcgtttt	gacacacaca	atattttgat	taatcttgag	attaaaaatc	120
	ctgtgctcca	aatctttaa	cattaaatta	tgcatttaaa	caggtttgct	cctaaatctc	180
	aaaatatgga	aagcacctca	tgtggctaaa	tattttgatg	accaagtttt	ctggaaggta	240
	agatttttca	cctattaacg	tgatagattt	tgagtgcatg	aacttaaaaa	catacctggg	300
	tatatatgtt	gacttgctgt	ttatgagtaa	aacaaaaaca	aaaatggagt	aaggagcatt	360
5	gcaggaggaa	ctagaggaga	aacaaatcca	tgatatgcat			400
10	<210> 111 <211> 400 <212> ADN <213> Homo sa	piens					
	<400> 111						
	ttatcaacaa	tccatgtaaa	acgttagatg	aaataaaacc	tatatatcca	agatctcttc	60
	caattcagat	tttatgaaag	aatttctaag	gtctttgtaa	tgagacattt	aggctgtttc	120
	aagagatcaa	gccaaaatca	gtatgtgggt	tcatctgcaa	taaaaatgtt	tgttttgctt	180
	ttacagtttc	ctcatttggc	tgttggattt	taagcaaaag	catccaagaa	aaacaaggcc	240
	tgttcaaaaa	caagacaact	tcctctcact	gttgcctgca	tttgtacgtg	agaaacgctc	300
	atgacagcaa	agtctccaat	gttcgcgcag	gcactggagt	cagagaaaat	ggagttgaat	360
	cctttctctg	ccactctttg	aggagaatct	caccatttat			400
15	<210> 112 <211> 400 <212> ADN <213> Homo sa	piens					
20	<400> 112						
	ttatcaacaa	tccatgtaaa	acgttagatg	aaataaaacc	tatatatcca	agatctcttc	60
	caattcagat	tttatgaaag	aatttctaag	gtctttgtaa	tgagacattt	aggctgtttc	120
	aagagatcaa	gccaaaatca	gtatgtgggt	tcatctgcaa	taaaaatgtt	tgttttgctt	180
	ttacagtttc	ctcatttggc	tgttggattt	taagcaaaag	catccaagaa	aaacaaggcc	240
	tgttcaaaaa	caagacaact	tcctctcact	gttgcctgca	tttgtacgtg	agaaacgctc	300
	atgacagcaa	agtctcctta	tgtataatga	aacaaggtca	gagacagatt	tgatattaaa	360
	aaattaaaga	ctaaaaactt	agtttaagag	tcaatttaat			400
25	<210> 113						

	<211> 400 <212> ADN <213> Homo sapiens	
5	<400> 113	
	ttatcaacaa tccatgtaaa acgttagatg aaataaaacc tatatatcca agatctcttc	60
	caattcagat tttatgaaag aatttctaag gtctttgtaa tgagacattt aggctgtttc	120
	aagagatcaa gccaaaatca gtatgtgggt tcatctgcaa taaaaatgtt tgttttgctt	180
	ttacagtttc ctcatttggc tgttggattt taagcaaaag catccaagaa aaacaaggcc	240
	tgttcaaaaa caagacaact teeteteact gttgeetgea tttgtaegtg agaaacgete	300
	atgacagcaa agtctcctta tgtataatga aacaaggtca gagacagatt tgatattaaa	360
	aaattaaaga ctaaaaactt agtttaagag tcaatttaat	400
10	<210> 114 <211> 400 <212> ADN <213> Homo sapiens	
15	<400> 114	
15	ttatcaacaa tccatgtaaa acgttagatg aaataaaacc tatatatcca agatctcttc	60
	caattcagat tttatgaaag aatttctaag gtctttgtaa tgagacattt aggctgtttc	120
	aagagatcaa gccaaaatca gtatgtgggt tcatctgcaa taaaaatgtt tgttttgctt	180
	ttacagtttc ctcatttggc tgttggattt taagcaaaag catccaagaa aaacaaggcc	240
	tgttcaaaaa caagacaact teeteteact gttgeetgea tttgtaegtg agaaacgete	300
	atgacagcaa agtctcctta tgtataatga aacaaggtca gagacagatt tgatattaaa	360
	aaattaaaga ctaaaaactt agtttaagag tcaatttaat	400
20	<210> 115 <211> 400 <212> ADN <213> Homo sapiens	
	<400> 115	
	ttatcaacaa tccatgtaaa acgttagatg aaataaaacc tatatatcca agatctcttc	60
	caattcagat tttatgaaag aatttctaag gtctttgtaa tgagacattt aggctgtttc	120
	aagagatcaa gccaaaatca gtatgtgggt tcatctgcaa taaaaatgtt tgttttgctt	180
	ttacagtttc ctcatttggc tgttggattt taagcaaaag catccaagaa aaacaaggcc	240
	tgttcaaaaa caagacaact teeteteact gttgeetgea tttgtaegtg agaaacgete	300
	atgacagcaa agtctcctta tgtataatga aacaaggtca gagacagatt tgatattaaa	360
25	aaattaaaga ctaaaaactt agtttaagag tcaatttaat	400
	<210> 116 <211> 400 <212> ADN	

	<213> Secuenci	a artificial					
_	<220> <223> RHCE_co	onsensus_exlO					
5	<400> 116						
	ttatcaacaa	tccatgtaaa	acgttagatg	aaataaaacc	tatatatcca	agatctcttc	60
	caattcagat	tttatgaaag	aatttctaag	gtctttgtaa	tgagacattt	aggctgtttc	120
	aagagatcaa	gccaaaatca	gtatgtgggt	tcatctgcaa	taaaaatgtt	tgttttgctt	180
	ttacagtttc	ctcatttggc	tgttggattt	taagcaaaag	catccaagaa	aaacaaggcc	240
	tgttcaaaaa	caagacaact	tcctctcact	gttgcctgca	tttgtacgtg	agaaacgctc	300
	atgacagcaa	agtctcctta	tgtataatga	aacaaggtca	gagacagatt	tgatattaaa	360
	aaattaaaga	ctaaaaactt	agtttaagag	tcaatttaat			400
10	<210> 117 <211> 305 <212> ADN <213> Homo sa	piens					
15	<400> 117						
	ctgttttgag	tcccttcagg	ggaggggcct	atcttattca	acgttgttgt	ttgttttcct	60
	cacatactga	taacttagca	aatggctatt	ggagcaaaaa	tgaaaataaa	cggaactctg	120
	aagtgggatg	ttttaaaatt	ttatttttt	tagagacagg	gtcttgctct	gttgcccagt	180
	ctggagtgca	gtggtacaat	catagctcat	tgcagcctgt	gcctcctggg	ctcaagtgat	240
	cctcccacct	cagcctcctg	agttaaattt	ttttacaggc	gcctgctacc	atgccctgct	300
	aattt						305
20	<210> 118 <211> 308 <212> ADN <213> Homo sa	piens					
25	<400> 118						
20	ctgttttgag	tcccttcagg	ggaggggcct	atcttattca	acgttgttct	ttgttttcct	60
	cacatactga	taacttagca	aatggctatt	ggaacaaaaa	tgaaaataaa	cggaaccctg	120
	aagtgggatg	ttttaaattt	ttatttattt	ttttagagac	agggtcttgc	tctgttgccc	180
	agtctggagt	gcagtggtac	aatcatagct	cattgcagcc	tctgcctcct	gggctcaagt	240
	gatcctccca	cctcagcctc	ctgagttaaa	ttttttaca	gacgcctgct	accatgcccg	300
	gctaattt						308
30	<210> 119 <211> 308 <212> ADN						

	<213> Homo sapiens	
	<400> 119	
	ctgttttgag tcccttcagg ggaggggcct atcttattca acgttgttct ttgttttcct	60
	cacatactga taacttagca aatggctatt ggaacaaaaa tgaaaataaa cggaaccctg	120
	aagtgggatg ttttaaattt ttatttattt ttttagagac agggtcttgc tctgttgccc	180
	agtctggagt gcagtggtac aatcatagct cactgcagcc tctgcctcct gggctcaagt	240
	gatectecca ecteagecte etgagttaaa ttttttaca gaegeetget accatgeeeg	300
5	gctaattt	308
10	<210> 120 <211> 417 <212> ADN <213> Homo sapiens	
	<400> 120	
	ctgttttgag tcccttcagg ggagggcct atcttattca acgttgttct ttgttttcct	60
	cacatactga taacttagca aatggctatt ggaacaaaaa tgaaaataaa cggaaccctg	120
	aagtgggatg ttttaaattt ttatttattt ttttagagac agggtcttgc tctgttgccc	180
	agtotggagt gcagtggtac aatcatagct cattgctata gcttaaggac tcacctggca	240
	gcaacaccaa accagggcca ccaccatttg aaatccccca gggtgccctt tgtcacttcc	300
	cagtggtaca atcatagete actgeageet etgeeteetg ggeteaagtg atecteecae	360
15	ctcagcctcc tgagttaaat ttttttacag acgcctgcta ccatgcccgg ctaattt	417
20	<210> 121 <211> 417 <212> ADN <213> Homo sapiens	
	<400> 121	
	ctgttttgag tcccttcagg ggaggggcct atcttattca acgttgttct ttgttttcct	60
	cacatactga taacttagca aatggctatt ggaacaaaaa tgaaaataaa cggaaccctg	120
	aagtgggatg tittaaatti tiattiatti tittagagac agggtciigc tcigiigccc	180
	agtotggagt goagtggtac aatoatagot cattgotata gottaaggac toacotggoa	300
	gcaacaccaa accagggcca ccaccatttg aaatccccca gggtgccctt tgtcacttcc	360
	cagtggtaca atcatagete actgeageet etgeeteetg ggeteaagtg atceteeeac	417
	ctcagcctcc tgagttaaat ttttttacag acgcctgcta ccatgcccgg ctaattt	417
25	<210> 122 <211> 58 <212> ADN <213> Secuencia artificial	

	<220> <223> Secuencia sintética: Secuencia de cebador directo	
5	<400> 122 aatgatacgg cgaccaccga gatctacact ctttccctac acgacgctct tccgatct	58
	<210> 123 <211> 60	
10	<212> ADN <213> Secuencia artificial	
	<220> <223> Secuencia sintética: Secuencia de cebador inverso, que contiene u añadido para la identificación del paciente.	n código de barras de 8 nucleótidos
15	<220> <221> misc_feature <222> (25)(32)	
20	<223> Código de barras de 8 nucleótidos añadido para la identificación del p	paciente.
	<400> 123 caagcagaag acggcatacg agatnnnnn nngtgactgg agttcagacg tgtgctcttc	60
25	<210> 124 <211> 33 <212> ADN <213> Secuencia artificial	
30	<220> <223> Secuencia sintética: Cebador de secuenciación directa	
	<400> 124 acactettte cetacaegae getetteega tet	33
35	<210> 125 <211> 34 <212> ADN <213> Secuencia artificial	
40	<220> <223> Secuencia sintética: Cebador de secuenciación inversa	
45	<400> 125 gtgactggag ttcagacgtg tgctcttccg atct	34
	<210> 126 <211> 34 <212> ADN	
50	<213> Secuencia artificial <220>	
	<223> Secuencia sintética: Cebador de secuenciación de índice	
55	<400> 126 agatcggaag agcacacgtc tgaactccag tcac	34
60	<210> 127 <211> 59 <212> ADN <213> Secuencia artificial	
50	<220> <223> Secuencia sintética: Secuencia de cebador directo	
65	<400> 127	50

5	<210> 128 <211> 60 <212> ADN <213> Secuencia artificial	
10	<220> <223> Secuencia sintética: Secuencia de cebador inverso, que contiene un añadido para la identificación del paciente. <220> <221> misc_feature	código de barras de 8 nucleótidos
15	<222> (25)(32) <223> Código de barras de 8 nucleótidos añadido para la identificación del pad	ciente.
	<400> 128 caagcagaag acggcatacg agatnnnnnn nnggttgctc gccaggaaac agctatgacc	60
20	<210> 129 <211> 34 <212> ADN <213> Secuencia artificial	
25	<220> <223> Secuencia sintética: Cebador de secuenciación directa	
	<400> 129 acactettte cetacetgta aaacgaegge eagt	34
30	<210> 130 <211> 28 <212> ADN <213> Secuencia artificial	
35	<220> <223> Secuencia sintética: Cebador de secuenciación inversa	
40	<400> 130 ggttgctcgc caggaaacag ctatgacc <210> 131 <211> 28	28
45	<212> ADN <213> Secuencia artificial	
	<220> <223> Secuencia sintética: Cebador de secuenciación de índice	
50	<400> 131 ggtcatagct gtttcctggc gagcaacc	28
55	<210> 132 <211> 43 <212> ADN <213> Homo sapiens	
55	<400> 132 tgtccggcgc tgcctgcccc tctgsgccct aacactggaa gca	43
60	<210> 133 <211> 38 <212> ADN <213> Homo sapiens	
65	<400> 133 ccggcgctgc ctgcccctct gggccctaac actggaag	38

5	<210> 134 <211> 41 <212> ADN <213> Homo sapiens	
	<400> 134 gggcttcctc acctcrartt tccggagaca cagctggagc a	41
10	<210> 135 <211> 41 <212> ADN <213> Homo sapiens	
15	<400> 135 ggcttcctca cctcaaattt ccggagacac agctggagca g	41
20	<210> 136 <211> 38 <212> ADN <213> Homo sapiens	
25	<400> 136 cggtgctgat ctcagyggrt gctgtcttgg ggaaggtc	38
	<210> 137 <211> 33 <212> ADN <213> Homo sapiens	
30	<400> 137 ggtgctgatc tcagcgggtg ctgtcttggg gaa	33
35	<210> 138 <211> 43 <212> ADN <213> Homo sapiens	
40	<400> 138 gcctctaccc ragggaacgg aggataawga tcagasagca acg	43
45	<210> 139 <211> 52 <212> ADN <213> Homo sapiens	
	<400> 139 gcctgccaaa gcctctaccc aagggaacgg aggataatga tcagagagca ac	52
50	<210> 140 <211> 47 <212> ADN <213> Homo sapiens	
55	<400> 140 gaatgccrtg ttcaacacct actatgctst agcagtcagy gtggtga	47
60	<210> 141 <211> 52 <212> ADN <213> Homo sapiens	
65	<400> 141 gaagaatgcc atgttcaaca cctactatgc tctagcagtc agtgtggtga ca	52

REIVINDICACIONES

- 1. Un método para genotipar alelos en al menos un conjunto de loci genéticos homólogos, que comprende:
- (i) proporcionar una muestra que contiene ADN que incluye dicho al menos un conjunto de loci genéticos homólogos, en donde dicho conjunto de loci genéticos homólogos comprende:
 - (a) el gen RHD y el gen RHCE que codifican el antígeno eritrocitario; o
 - (b) dos o más genes del sistema del antígeno leucocitario humano (HLA); o
- (c) dos de más de los genes que codifican la glucoforina seleccionados del gen GYPA, el gen GYPB y el gen GYPE:
 - (ii) realizar la amplificación por PCR de regiones de dicho conjunto de loci genéticos homólogos usando cebadores específicos de secuencia consenso, en donde dichos cebadores específicos de secuencia consenso se unen a secuencias consenso que son comunes a dichos genes de conjunto de loci genéticos homólogos (a), (b) o (c):
 - generando así un conjunto de productos de amplificación;

5

15

25

35

55

- (iii) secuenciar una pluralidad de dichos productos de amplificación para determinar la proporción relativa de cada nucleótido en cada posición en una lectura de secuenciación;
- 20 (iv) realizar una alineación de secuencia entre los resultados de lectura de secuencia de (iii) y al menos una secuencia de referencia, correspondiéndose dicha secuencia de referencia con uno de los genes en dicho conjunto de loci genéticos homólogos; y
 - (v) realizar una identificación de genotipo del alelo o alelos en dicha muestra basada en la proporción relativa de cada nucleótido en cada una de una pluralidad de posiciones discriminantes en dicha alineación.
 - 2. El método de acuerdo con la reivindicación 1, en donde el conjunto de loci genéticos homólogos comprende el gen RHD y el gen RHCE, y en donde dicha al menos una secuencia de referencia comprende:
 - (i) al menos un exón o un intrón del gen RHD de la SEQ ID NO: 25 o el complemento inverso del mismo;
- 30 (ii) al menos un exón o un intrón del gen RHCE de la SEQ ID NO: 26 o de uno de los haplotipos de RHCE ce, Ce, cE o CE, respectivamente o el complemento inverso del mismo;
 - (iii) al menos una de la secuencia del exón 1 de RHO como se muestra en la SEQ ID NO: 27, las secuencias del exón 1 de RHCE tal como se muestra en las SEQ ID NO: 28-31, siendo los haplotipos de RHCE ce, Ce, CE o CE, respectivamente, y/o la secuencia consenso del exón 1 de RHCE como se muestra en la SEQ ID NO: 32 o el complemento inverso de la misma:
 - (iv) al menos una de la secuencia del exón 2 de RHO como se muestra en la SEQ ID NO: 33, las secuencias del exón 2 de RHCE tal como se muestra en las SEQ ID NO: 34-37, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 2 de RHCE como se muestra en la SEQ ID NO: 38 o el complemento inverso de la misma;
- (v) al menos una de la secuencia del exón 3 de RHO como se muestra en la SEQ ID NO: 39, las secuencias del exón 3 de RHCE tal como se muestra en las SEQ ID NO: 40 43, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 3 de RHCE como se muestra en la SEQ ID NO: 44 o el complemento inverso de la misma;
- (vi) al menos una de la secuencia del exón 4 de RHO como se muestra en la SEQ ID NO: 45, las secuencias del exón 4 de RHCE tal como se muestra en las SEQ ID NO: 46-49, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 4 de RHCE como se muestra en la SEQ ID NO: 50 o el complemento inverso de la misma;
- (vii) al menos una de las secuencias del exón 5 de RHO como se muestra en la SEQ ID NO: 51, las secuencias del exón 5 de RHCE tal como se muestra en las SEQ ID NO: 52-55, siendo los haplotipos de RHCE ce, Ce, cE o
 CE, respectivamente, y/o la secuencia consenso del exón 5 de RHCE como se muestra en la SEQ ID NO: 56 o el complemento inverso de la misma;
 - (viii) al menos una de la secuencia del exón 6 de RHO como se muestra en la SEQ ID NO: 87, las secuencias del exón 6 de RHCE como se muestra en las SEQ ID NO: 88-91, siendo los haplotipos de RHCE ce, Ce, CE o CE, respectivamente, y/o la secuencia consenso del exón 6 de RHCE como se muestra en la SEQ ID NO: 90 o el complemento inverso de la misma:
 - (ix) al menos una de las secuencias del exón 7 de RHO como se muestra en la SEQ ID NO: 93, las secuencias del exón 7 de RHCE tal como se muestra en las SEQ ID NO: 94-97, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 7 de RHCE como se muestra en la SEQ ID NO: 98 o el complemento inverso de la misma;
- 60 (x) al menos una de la secuencia del exón 8 de RHO como se muestra en la SEQ ID NO: 99, las secuencias del exón 8 de RHCE tal como se muestra en las SEQ ID NO: 100-103, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 8 de RHCE como se muestra en la SEQ ID NO: 104 o el complemento inverso de la misma;
- (xi) al menos una de la secuencia del exón 9 de RHO como se muestra en la SEQ ID NO: 105, las secuencias del exón 9 de RHCE tal como se muestra en las SEQ ID NO: 106-109, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 9 de RHCE como se muestra en la SEQ ID NO: 110

o el complemento inverso de la misma;

5

15

50

55

60

- (xii) al menos una de las secuencias del exón 10 de RHD tal como se muestra en la SEQ ID NO: 111, las secuencias del exón 10 de RHCE tal como se muestra en las SEQ ID NO: 112-115, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, y/o la secuencia consenso del exón 10 de RHCE como se muestra en la SEQ ID NO: 116 o el complemento inverso de la misma; y/o
- (xiii) al menos una de la secuencia del intrón 2 de RHO como se muestra en la SEQ ID NO: 117, las secuencias de intrón 2 de RHCE como se muestra en las SEQ ID NO: 118-121, siendo los haplotipos de RHCE ce, Ce, cE o CE, respectivamente, o el complemento inverso del mismo.
- 3. El método de acuerdo con la reivindicación 2, en donde dicha al menos una secuencia de referencia comprende al menos dos secuencias de referencia, que incluye:
 - (i) al menos un exón o un intrón del gen RHD de la SEQ ID NO: 25 o el complemento inverso del mismo, por ejemplo, una secuencia de exón de RHO seleccionada de cualquiera de las SEQ ID NO: 27, 33, 39, 45, 51, 87, 93, 99, 105, 111 y 117; y
 - (ii) al menos un exón o un intrón de una secuencia del gen RHCE, tal como de la SEQ ID NO: 26, por ejemplo, una secuencia del exón RHCE seleccionada de cualquiera de las SEQ ID NO: 28-32, 34-38, 40-44, 46-50, 52-56, 88-92, 94-98, 100-104, 106-110, 112-116 y 118-121 o el complemento inverso del mismo.
- 4. El método de acuerdo con la reivindicación 2 o la reivindicación 3, en donde dicha pluralidad de posiciones discriminantes en dicha alineación se selecciona de las posiciones establecidas en cualquiera de las Tablas 2, 11 y 13.
- 5. El método de acuerdo con una cualquiera de las reivindicaciones 2 a 4, en donde el método comprende secuenciar cada uno de los exones 1, 2, 3, 4, 5, 6, 7, 8, 9 y 10 del gen RHD y cada uno de los exones 1, 2, 3, 4, 5, 6, 7, 8, 9 y 10 del gen RHCE.
 - 6. El método de acuerdo con una cualquiera de las reivindicaciones 2 a 5, en donde el método comprende además:
- 30 (i) clasificar la muestra como de un genotipo seleccionado del grupo que consiste en CE(exones 1-2)-DD(exones 3-9)-CE (exón 10), DDCcEe, DdCCee, ddCcEe, DdCcee(exones 1-2)-ddCcee(exones 3-9)-DD(exón 10), ddCcee, DDCcEe, DdccEe, DdccEe, DdCcee, DdCcee, ddCCee, DDccEE y D?ccEe, basado en la proporción relativa de cada nucleótido en cada una de dicha pluralidad de posiciones discriminantes de dicha alineación; y/o
- (ii) determinar el tipo de sangre de la muestra basado en el genotipo, en donde opcionalmente el tipo de sangre se selecciona del grupo que consiste en: RHD+, tipo Cw; RHD+, CcEe; wDt3, Cce; RHD*DIlla-het; Ce, RHD+; DAR-hem; r's; Ce, RHD+; rr; R1R1; R1r; r'r'; R2R2; Pseudogén/-; y DVI tipo 1/-; en donde opcionalmente el alelo de tipo sanguíneo se selecciona del grupo que consiste en: RHD*r's; tipo RHD*r's; RHD*r's Tipo 1; RHD*r's Tipo 2; RHD*DIlla; RHD*DIlla IVS3+3100G; RHD*DIll_FN; RHD*DIVa-2; RHD*DIVa; RHD*DI-II-tipo4; RHD*DIII-tipo6; RHD*DIII-tipo7; RHD*DIII-tipo8; RHCE*ce\$1006T;
- 40 *RHCE*ce*\$1006C; RHCE*ce733G; RHCE*ce48C,733G,1025T; RHCE*ce48C, 697G, 733G; RHCE*ce340T, 733G; y RHCE*ce48C, 733G, 748A.
 - 7. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde el método comprende
- 45 (i) obtener el número de lecturas que abarcan las bases de referencia y el número de lecturas que abarcan bases alternativas después de la alineación para su uso en dicha identificación del genotipo:
 - (ii) definir un umbral para la proporción de lecturas que abarcan las bases de referencia frente a las lecturas que abarcan las bases alternativas para la identificación de variantes;
 - (iii) obtener el número de lecturas que abarcan las bases directas de referencia, el número de lecturas que abarcan las bases inversas de referencia, el número de lecturas que abarcan las bases directas alternativas y el número de lecturas que abarcan las bases inversas alternativas para su uso en la identificación del genotipo;
 - (iv) calcular un puntaje de calidad de mapeo para cada alineación de secuencia y/o un puntaje de calidad de mapeo general para una pluralidad de dichos alineamientos de secuencia, en donde dicho puntaje de calidad de mapeo para cada alineación de secuencia y/o dicho puntaje de calidad de mapeo general para dicha pluralidad de alineamientos de secuencia debe ser al menos 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 o al
- menos 30 unidades de Puntuación de Phred para que dicha identificación de genotipo sea considerada fiable.

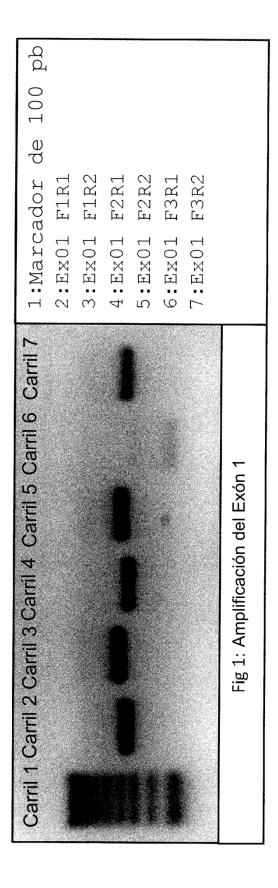
 8. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde se realiza una etapa previa

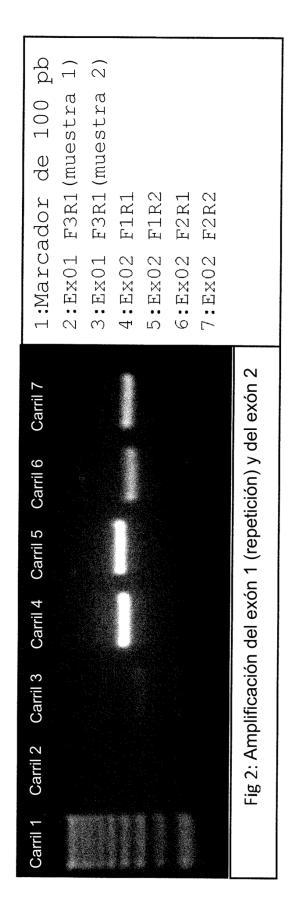
al proceso antes de dicha alineación de secuencia para mejorar la calidad de la alineación, que comprende:

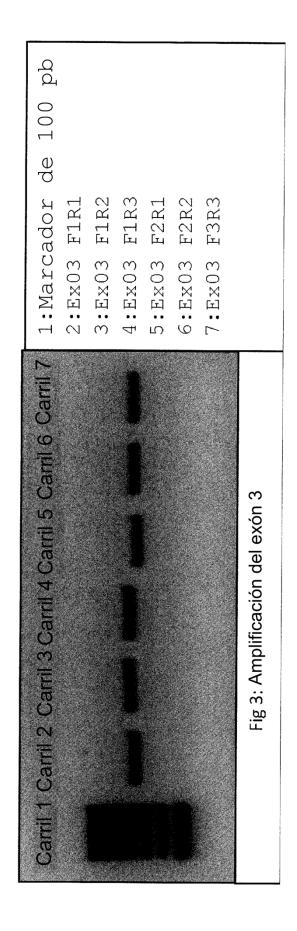
- (i) excluir lecturas de secuencia más cortas de 10, 20, 30, 40, 50, 60, 70 o más cortas de 76 nucleótidos;
- (ii) recortar lecturas de secuencia, en donde dicho recorte comprende eliminar 1, 2, 3, 4 o 5 nucleótidos del extremo 5' y/o 3' de cada lectura de secuenciación.
- 9. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde el método comprende además realizar una etapa de control de calidad para evaluar la calidad de las lecturas de secuenciación antes de

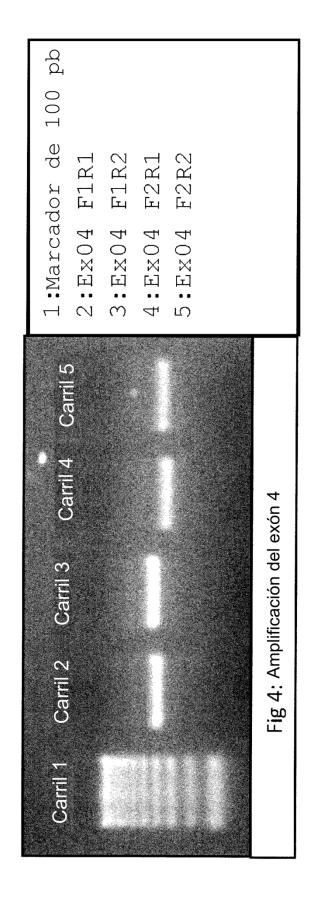
realizar dicha alineación de secuencia, y en donde evaluar la calidad de cada lectura de secuenciación directa y/o inversa comprende determinar uno o más parámetros seleccionados del grupo que consiste en:

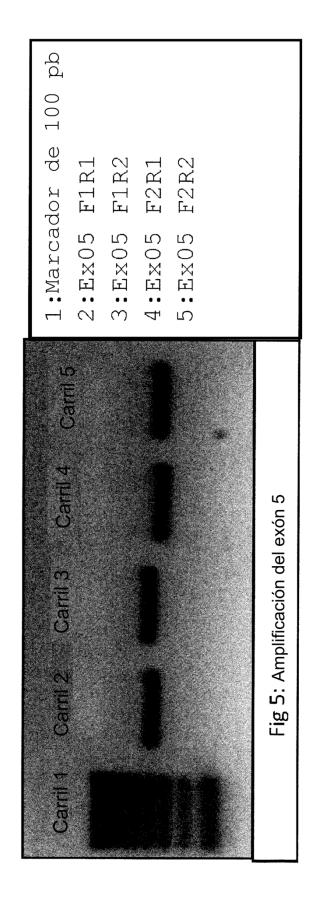
- (i) por calidad de secuencia de bases;
- (ii) por puntuación de calidad de secuencia;
- (iii) por contenido de secuencia de bases;
- (iv) por contenido de bases GC;
- (v) por contenido de GC en secuencia;
- (vi) por contenido de bases de N;
- 10 (vii) distribución de longitud de secuencia;
 - (viii) nivel de duplicación de secuencia;
 - (ix) secuencias sobrerrepresentadas;
 - (x) Contenido de Kmer.

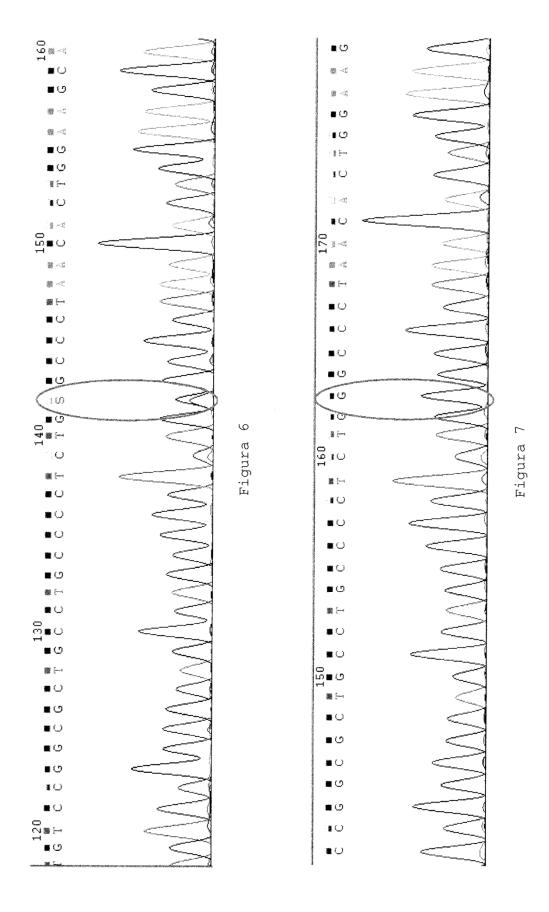

5

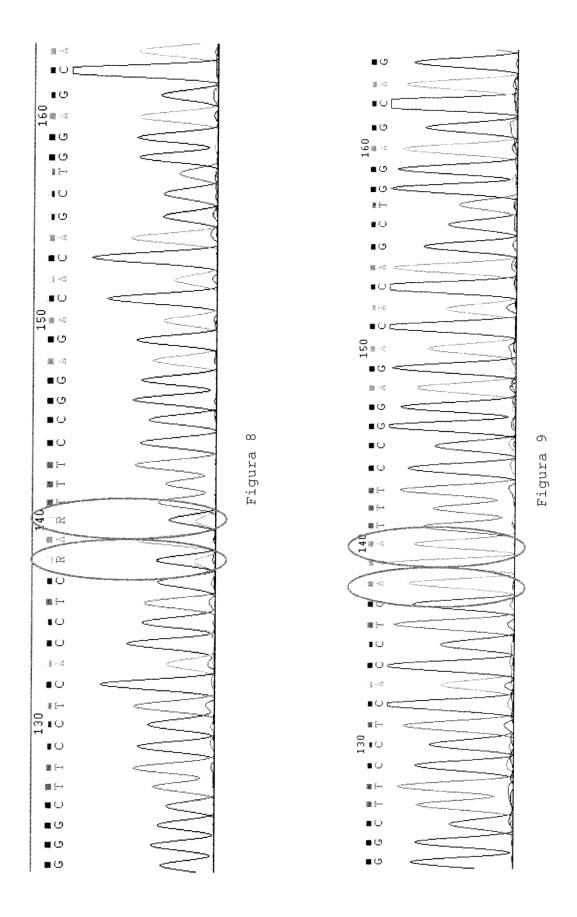

25

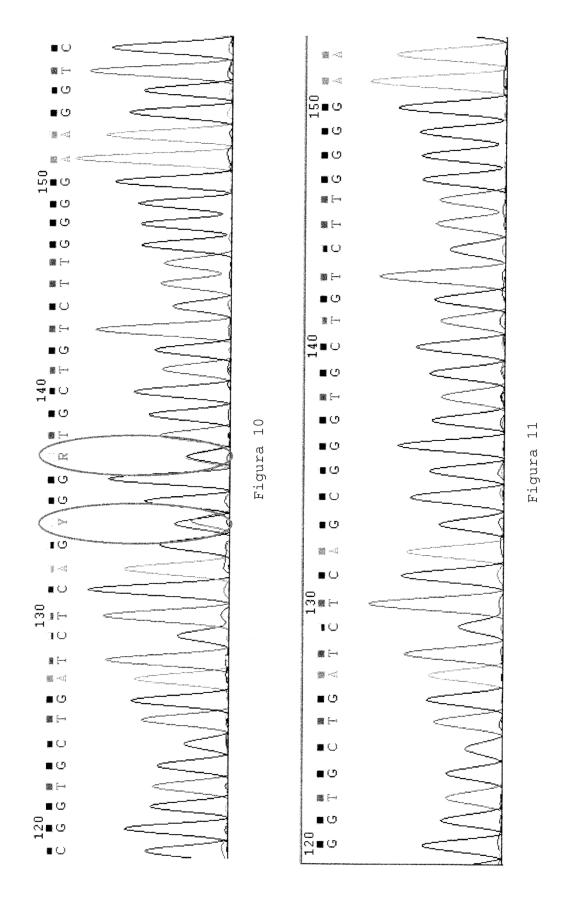

35

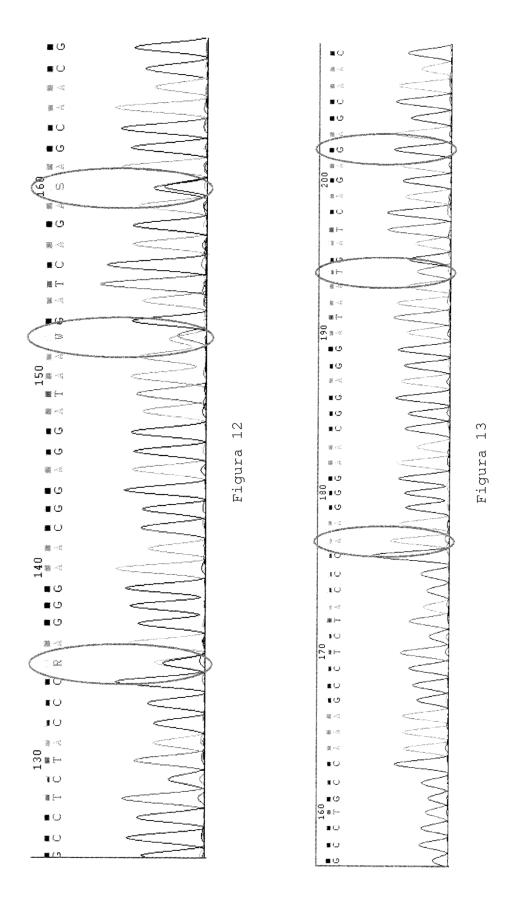

- 15. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde el método comprende además evaluar uno o más de dichos alineamientos de secuencia para determinar al menos un parámetro seleccionado del grupo que consiste en:
 - (i) cobertura, en donde el umbral de cobertura mínima se establece en 10X, 15X, 20X, 25X o 30X;
- 20 (ii) frecuencia variante, en donde la frecuencia mínima variante para identificar a un genotipo alternativo es del 2 %, 5 %, 10 %, 15 %, 20 % o 30 %;
 - (iii) identificación de calidad media del genotipo, en donde la identificación de calidad media del genotipo es al menos 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 o 35 unidades de puntuación de Phred;
 - (iv) calidad de mapeo, en donde la calidad del mapeo es de al menos 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 o 30 unidades de puntuación de Phred;
 - (v) calidad de la identificación, en donde la calidad de la identificación es de al menos 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 o 30 unidades de puntuación de Phred.
- 11. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde los criterios de umbral se establecen de manera que para definir:
 - (i) una identificación homocigótica, un mínimo del 50 %, 60 %, 70 %, 80 %, 90 %, 95 % o el 99 % de las lecturas deben admitir el alelo identificado;
 - (ii) una identificación heterocigótica, entre el 30 % y el 70 %, entre el 35 % y el 65 %, entre el 40 % y el 60 %, o entre el 45 % y el 55 % de las lecturas deben admitir el alelo alternativo;
 - (iii) una identificación hemicigótica, entre el 15 % y el 45 %, entre el 20 % y el 40 %, entre el 20 % y el 35 %, o entre el 25 % y el 35 % de las lecturas deben admitir el alelo identificado.
- 12. El método de acuerdo con una cualquiera de las reivindicaciones anteriores, en donde la cobertura se evalúa independientemente para la alineación de hebras directas e inversas, y en donde la proporción de cobertura de directo frente a inverso está entre 0,6 y 1,4, entre 0,7 y 1,3, entre 0,8 y 1,2, o entre 0,85 y 1,15.
 - 13. Un método de emparejamiento de sangre, comprendiendo el método:
- 45 (i) llevar a cabo el método de acuerdo con una cualquiera de las reivindicaciones 1 a 12 en una muestra receptora de un sujeto receptor que necesite sangre de donante y en una muestra donante de un posible sujeto donante:
 - (ii) comparar los alelos de tipo sanguíneo presentes en la muestra receptora con los presentes en el sujeto donante y determinar así la compatibilidad del sujeto receptor para recibir sangre del posible sujeto donante.

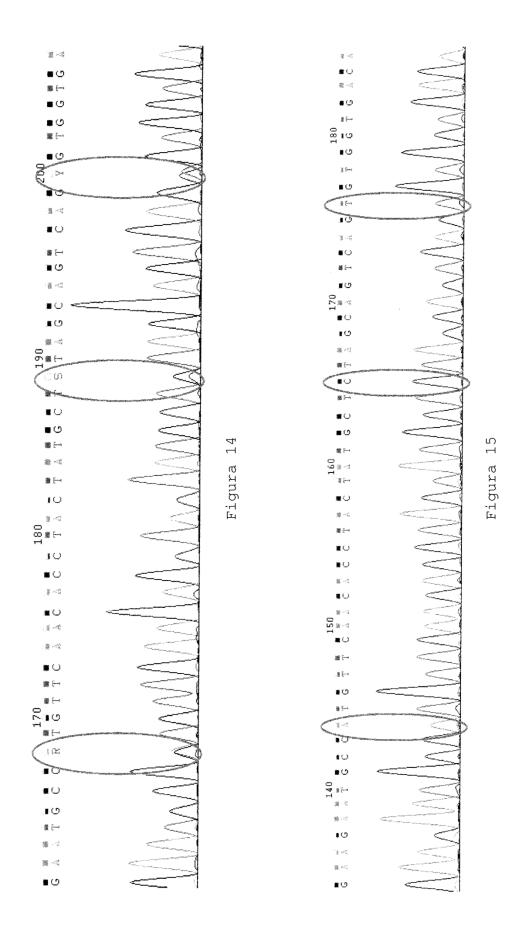

50











42 60 60 60 60 60	102 (44) 120 120 120 120 120	162 (104) 180 180 180 180 180	222 (164) 240 240 240 240 240
TTGGAGGGGGTGATGCCTGGTGGAGCCCTGCAACCCCTGCAACCCCTGCAACCCCTGCAAACCCCTGCAAAAAAAA	CAGAGACGGACACAGGATGAGCTCTAAGTACCGGGGTCTGTCCGGCGCTGCCTGC	CTGGGCCCTAACACTGGAAGCAGCTCTCATTCTCCTTTTTTTT	CGCTTCCTTAGAGGATCAAAAGGGGCTCGTGGCATCCTATCAAGGTGAGTTCATTGGA CGCTTCCTTAGAGGATCAAAAGGGGCTCGTGGCATCCTATCAAGGTGAGTTCATTGGA CGCTTCCTTAGAGGATCAAAAGGGGCTCGTGGCATCCTATCAAGGTGAGAGTTCATTGGA CGCTTCCTTAGAGGATCAAAAGGGGCTCGTGGCATCCTATCAAGGTGAGAGTTCATTGGA CGCTTCCTTAGAGGATCAAAAGGGGCTCGTGGCATCCTATCAAGGTGAGAGTTCATTGGA CGCTTCCTTAGAGGATCAAAAGGGGCTCGTGGCATCCTATCAAGGTGAGGTTCATTGGA CGCTTCCTTAGAGGATCAAAAGGGGCTCGTGGCATCCTATCAAGGTGAGGTTCATTGGA CGCTTCCTTAGAGGATCAAAAAGGGGCTCGTGGCATCCTATCAAGGTGAGGTTCATTGGA CGCTTCCTTAGAGGATCAAAAAAAGGGGCTCGTGGCATCCTATCAAGGTGAGGTTCATTGGA CGCTTCCTTAGAGGATCAAAAAAAAAA
RHD_ex01 RHCE_ce_ex01 RHCE_cE_ex01 RHCE_Ce_ex01 RHCE_CE_ex01 RHCE_CC_ex01	RHD_ex01 RHCE_ce_ex01 RHCE_CE_ex01 RHCE_Ce_ex01 RHCE_Ce_ex01 RHCE_Ce_ex01	RHD_ex01 RHCE_ce_ex01 RHCE_cE_ex01 RHCE_Ce_ex01 RHCE_CE_ex01 RHCE_CC ex01	RHD_ex01 RHCE_ce_ex01 RHCE_CE_ex01 RHCE_Ce_ex01 RHCE_Ce_ex01 RHCE_Ce_ex01

Figura 16A

CCAGG 282 CCAGG 300 CCAGG 300 CCAGG 300 CCAGG 300	 CGTAG 360 CGTAG 360 CGTAG 360 CGTAG 360	
GCGGGGAGGCCTGTGGTTCT GCGGGGGAGGCCTATGGTTCT GCGGGGGAGGCCTATGGTTCT GCGGGGGAGGCCTATGGTTCT GCGGGGGAGGCCTATGGTTCT GCGGGGGAGGCCTATGGTTCT	AAAAGATTCCCCCATC AAAGATTCCCCCATCTTCTTC AAAGATTCCCCCATCTTCTTC AAAGATTCCCCCATCTTCTTC AAAGATTCCCCCATCTTCTTC AAAGATTCCCCCATCTTCTTC AAAGATTCCCCCATCTTCTTC	(SEQ ID NO: 27) (SEQ ID NO: 28) (SEQ ID NO: 29) (SEQ ID NO: 30) (SEQ ID NO: 31)
3666CAGG6 3666CAGG6 3666CAGG6 3666CAGG6	CCCCAAGGA CCCCGAGGA CCCCGAGGA CCCCGAGGA	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
AAAGTGGTCACAGGAGCAAATAGCAGGGGGGGGGGGGGG	GGCACAGATGTTCCTTTCTACAAATCCCAAGGAAAAGATTCCCCCCATC	ATTGCACCGAAATTCAGTCAACAA ATTGCACCGAAATTCAGTCAACAA ATTGCACCGAAATTCAGTCAACAA ATTGCACCGAAATTCAGTCAACAA ATTGCACCGAAATTCAGTCAACAA
RHD_ex01 RHCE_ce_ex01 RHCE_CE_ex01 RHCE_Ce_ex01 RHCE_Ce_ex01 RHCE_CE_ex01	RHD_ex01 RHCE_ce_ex01 RHCE_CE_ex01 RHCE_Ce_ex01 RHCE_CE_ex01 RHCE_CE_ex01	RHD_ex01 RHCE_ce_ex01 RHCE_CE_ex01 RHCE_Ce_ex01 RHCE_CE_ex01 RHCE_CE_ex01 RHCE_CE_consenso_ex01

	(162)	(222)	(282)
090000000000000000000000000000000000000	120 120 120 120 120 120	180 180 180 180 180	240 240 240 240 240 240
TCTTGCATGCCCCTTCCAGCTGCCATTTAGTAAGACTCTAATTTCATACCACCCTAAATC TCTTGCATGCCCCTTCCAGCTGCCATTTAGTAAGACTCTAATTTCATACCACCCTAAATC TCTTGCATGCCCCTTCCAGCTGCCATTTAGTAAGACTCTAATTTCATACCACCCTAAATC TCTTGCATGCCCCTTCCAGCTGCCATTTAGTAAGACTCTAATTTCATACCACCCTAAATC TCTTGCATGCCCCTTCCAGCTGCCATTTAGTAAGACTCTAATTTCATACCACCCTAAATC TCTTGCATGCCCCTTCCAGCTGCCATTTAGTAAGACTCTAATTTCATACCACCCTAAATC ************	TCGTCTGCTTCCCCCTCGTCCTTCTCGCCATCTCCCCACCGAGCAGTTGGCCAAGATCTG TCGTCTGCTTCCCCCTCCTTCTCACCATCTCCCCCACCGAGCAGTTGGCCAAGATCTG TCGTCTGCTTCCCCCTCCTTCTCACCATCTCCCCACCGAGCAGTTGGCCAAGATCTG TCGTCTGCTTCCCCCTCCTTCTCGCCATCTCCCCACCGAGCAGATCTG TCGTCTGCTTCCCCCTCCTTCTCTCGCCATCTCCCCACCGAGCAGATCTG TCGTCTGCTTCCCCCTCCTTCTCGCCATCTCCCCACCGAGCAGATCTG TCGTCTGCTTCCCCCTCCTTCTCCCCATCTCCCCACCGAGCAGATCTG **********************************	ACCGTGATGGCGCCCATTGGCTTGGGCTTCCTCACCTCGAGTTTCCGGAGACACAGCTGG ACCGTGATGGCGCCCTTGGCTTGG	AGCAGTGTGGCCTTCAACCTCTTCATGCTGGCGCTTGGTGTGCAGTGGGCAATCCTGCTG AGCAGTGTGGCCTTCAACCTCTTCATGCTGGCGCTTGGTGTGCAGTGGGCCAATCCTGCTG AGCAGTGTGGCCTTCAACCTCTTCATGCTGGCGCTTGGTGTGCAGTGGGCCAATCCTGCTG AGCAGTGTGGCCTTCAACCTCTTCATGCTGGCGCTTGGTGTGCAGTGGGCCAATCCTGCTG AGCAGTGTGGCCTTCAACCTCTTCATGCTGGCGCTTGGTGTGCAGTGGGCCAATCCTGCTG AGCAGTGTGGGCCTTCAACCTCTTCATGCTGGCGCTTGGTGTGCAGTGGGCCAATCCTGCTG ACCAGTGTGGCCTTCAACCTCTTCATGCTGCCGCGTTGGTGTGCAGTGGGCCAATCCTGCTG ACCAGTGTGGCCTTCAACCTCTTCATGCTGCCGCTTGGTGTGCAGTGGGCCAATCCTGCTG A************************************
RHCE_ce_ex02 RHCE_ce_ex02 RHCE_cE_ex02 RHCE_Ce_ex02 RHCE_CE_ex02 RHCE_CE_ex02	RHD_ex02 RHCE_ce_ex02 RHCE_cE_ex02 RHCE_Ce_ex02 RHCE_CE_ex02 RHCE_CE_ex02 RHCE_CE_ex02	RHD_ex02 RHCE_ce_ex02 RHCE_cE_ex02 RHCE_Ce_ex02 RHCE_CE_ex02 RHCE_CE_ex02	RHD_ex02 RHCE_ce_ex02 RHCE_CE_ex02 RHCE_Ce_ex02 RHCE_CE_ex02 RHCE_CC ex02 RHCE_CONSenso_ex02

Figura 17A

171

RHD_ex02	GACGGCTTCCTGAGCCAGTTCCCTTCTGGGAAGGTGGTCATCACACTGTTCAGGTATTGG	ACACTGTTCAG GTATTGG	300
RHCE_ce_ex02	GACGGCTTCCTGAGCCAGTTCCCTCGGAAGGTGGTCATCACACTGTTCAGGTATTGG	ACACTGTTCAGGTATTGG	300
RHCE_CE_ex02	GACGGCTTCCTGAGCCAGTTCCCTCCGGAAGGTGGTCATCACACTGTTCAGGTATTGG	ACACTGTTCAG GTATTGG	300
RHCE_Ce_ex02	GACGCCTTCCTGAGCCAGTTCCCTTCTGGGAAGGTGGTCATCACACTGTTCAGGTATTGG	ACACTGTTCAGGTATTGG	300
RHCE CE ex02	GACGCCTTCCTGAGCCAGTTCCCTTCTGGGAAGGTGGTCATCACACTGTTCAGGTATTGG	ACACTGTTCAGGTATTGG	300
RHCE_consenso_ex02	GACGGCTTCCTGAGCCAGTTCCCTYCTGGGAAGGTGGTCATCACACTGTTCAGGTATTGG	ACACTGTTCAG GTATTGG ********************************	300
RHD_ex02	GATGGTGGCTGGATCACTTCTGGGTCATAGAGGGAATGGACCCCGAAAGGACAGGTTCCA	CCGAAAGGACAGGTTCCA	360
RHCE_ce_ex02	GATGGTGGCTGGATCACTTCTGGGTCATAGAGGGAATGGACCCCGAAAGGACAGGTTCCA	CCGAAAGGACAGGTTCCA	360
RHCE_CE_ex02	GATGGTGGCTGGATCACTTCTGGGTCATAGAGGGAATGGACCCCGAAAGGACAGGTTCCA	CCGAAAGGACAGGTTCCA	360
RHCE_Ce_ex02	GATGGTGGCTGGATCACTTCTGGGTCATAGAGGGAATGGACCCCGAAAGGACAGGTTCCA	CCGAAAGGACAGGTTCCA	360
RHCE CE ex02	GATGGTGGCTGGATCACTTCTGGGTCATAGAGGGAATGGACCCCGAAAGGACAGGTTCCA	CCGAAAGGACAGGTTCCA	360
RHCE_consenso_ex02	GATGGTGGCTGGATCACTTCTGGGTCATAGAGGGAATGGACCCCCGAAAGGACAGGTTCCA	CCGAAAGGACAGGTTCCA	360
	************************	***********	
RHD_ex02	GAAGATCTGGGATATTGCCCCCTCTCTGTCTAGCACCAGT	400 (SEQ ID NO: 3	33)
RHCE_ce_ex02	GAAGATCTGGGATATTGCCCCCTCTCTGTCTAGCACCAGT	400 (SEQ ID NO: 3	4)
RHCE_CE_ex02	GAAGATCTGGGATATTGCCCCCTCTCTGTCTAGCACCAGT	400 (SEQ ID NO: 3	5)
RHCE_Ce_ex02	GAAGATCTGGGATATTGCCCCCTCTCTGTCTAGCACCAGT	400 (SEQ ID NO: 3	36)
RHCE CE ex02	GAAGATCTGGGATATTGCCCCCTCTCTGTCTAGCACCAGT	400 (SEQ ID NO: 3	(7)
RHCE_consenso_ex02	GAAGATCTGGGATATTGCCCCCTCTCTGTCTAGCACCAGT	400 (SEQ ID NO: 3	38)

41 41 41 41 41 88 88 88 88 88	108 108 108 108 108	168 (379) 168 168 168 168	228 (439) 228 228 228 228 228
TCCCACAGAAAGTAGGTGCCCAACAGTGTTTGTTGAAAGAATGAAT	ATGAATGAATGAATGAATGAGTGAGGGGCATCCTTCCTTC	TCCCTCTCTCCCCCAGTATTCGGCTGGCCACCATGAGTGCTTTGTCGGTGCTGATCTCAG TCCTTCTCACCCCCAGTATTCGGCTGGCCACCATGAGTGCTATGTCGGTGCTGATCTCAG TCCTTCTCACCCCCAGTATTCGGCTGGCCACCATGAGTGCTATGTCGGTGCTGATCTCAG TCCTTCTCACCCCCAGTATTCGGCTGGCCACCATGAGTGCTATGTCGGTGCTGATCTCAG TCCTTCTCCACCCCCAGTATTCGGCTGGCCACCATGAGTGCTATGTCGGTGCTGATCTCAG TCCTTCTCCACCCCCAGTATTCGGCTGGCCACCATGAGTGCTATGTCGGTGCTGATCTCAG TCCTTCTCCACCCCCAGTATTCGGCTGGCCACCATGAGTGCTATGTCGGTGCTGATCTCAG *** *** **** ***********************	<pre>TGGATGCTGTCTTGGGGAAGGTCAACTTGGCCGCAGTTGGTGGTGATGGTGGTGGTGGTGGAGG CGGGTGCTGTCTTGGGGAAGGTCAACTTGGCGCAGTTGGTGGTGATGGTGTGGTGGTGGAGG CGGGTGCTGTCTTGGGGAAGGTCAACTTGGCGCAGTTGGTGGTGGTGGTGCTGGTGGAGG CGGGTGCTGTCTTGGGGAAGGTCAACTTGGCGCAGTTGGTGGTGGTGGTGCTGGTGGTGGAGG CGGGTGCTGTCTTGGGGAAGGTCAACTTGGCGCAGTTGGTGGTGGTGGTGCTGGTGGAGG CGGGTGCTGTCTTGGGGAAGGTCAACTTGGCCCAGTTGGTGGTGGTGGTGCTGGTGGAGG CGGGTGCTGTCTTGGGGAAGGTCAACTTGGCCCAGTTGGTGGTGGTGGTGCTGGTGGAGG</pre>
RHD_ex03 RHCE_ce_ex03 RHCE_CE_ex03 RHCE_Ce_ex03 RHCE_Ce_ex03 RHCE_CE_ex03 RHCE_Consenso_ex03	RHD_ex03 RHCE_ce_ex03 RHCE_CE_ex03 RHCE_Ce_ex03 RHCE_CE_ex03 RHCE_CONSenso_ex03	RHD_ex03 RHCE_ce_ex03 RHCE_cE_ex03 RHCE_Ce_ex03 RHCE_CE_ex03 RHCE_CE_ex03 RHCE_consenso_ex03	RHD_ex03 RHCE_ce_ex03 RHCE_cE_ex03 RHCE_Ce_ex03 RHCE_CE_ex03 RHCE_CE_ex03

Figura 18A

RHD ex03	TGACAGCTTTAGGCAACCTGAGGATGGTCATCAGTAATATCTTCAACGTGAGTCATGGTG	288
RHCE_ce_ex03	TGACAGCTTTAGGCACCCTGAGGATGGTCATCAGTAATATCTTCAACGTGAGTCATGGTG	288
RHCE_CE_ex03	TGACAGCTTTAGGCACCCTGAGGATGGTCATCAGTAATATCTTCAACGTGAGTCATGGTG	288
RHCE_Ce_ex03	TGACAGCTTTAGGCACCCTGAGGATGGTCATCAGTAATATCTTCAACGTGAGTCATGGTG	288
RHCE CE ex03	TGACAGCTTTAGGCACCCTGAGGATGGTCATCAGTAATATCTTCAACGTGAGTCATGGTG	288
RHCE_consenso_ex03	TGACAGCTTTAGGCACCCTGAGGATGGTCATCAGTAATATCTTCAACGTGAGTCATGGTG	288

RHD_ex03	CTGGGAGGACCTGGGAGAAAAGGGCCCAAAAGCTCCATTTGGTGGGGTTTCCAGGGT	348
RHCE_ce_ex03	CTGGGAGGAGGACCTGGGAGAAAAGGGCCAAAAGCTCCATTTGGTGGGGCTTCCGGGGT	348
RHCE_CE_ex03	CTGGGAGGAGGGACCTGGGAGAAAAGGGCCCAAAAGCTCCATTTGGTGGGGCTTCCGGGGT	348
RHCE_Ce_ex03	CTGGGAGGAGGGACCTGGGAGAAAAGGGCCCAAAAGCTCCATTTGGTGGGGCTTCCGGGGT	348
RHCE CE ex03	CTGGGAGGAGCGTGGGAGAAAAGGGCCCAAAAGCTCCATTTGGTGGGGCTTCCGGGGT	348
RHCE_consenso_ex03	CTGGGAGGAGGACCTGGGAGAAAAGGGCCCAAAAGCTCCATTTGGTGGGGCTTCCGGGGT	348
	**** **** *****************************	
RHD_ex03	TTTGAAAAATAAAGACAACCTGTAATCCCAGCTACTTGGGAGGTTGAGGAGG 400	(SEQ ID NO: 39)
RHCE_ce_ex03	TITGAAAAATAAAGACAACCIGTAAICCCAGCIACTIGGGAGGIIGAGGAGG 400	(SEQ ID NO: 40)
RHCE_CE_ex03	TITGAAAAAIAAAGACAACCIGIAAICCCAGCIACIIGGGAGGIIGAGGAGG 400	(SEQ ID NO: 41)
RHCE_Ce_ex03	TTTGAAAAATAAAGACAACCTGTAATCCCAGCTACTTGGGAGGTTGAGGAGG 400	(SEQ ID NO: 42)
RHCE CE ex03	TITGAAAAAIAAAGACAACCIGTAAICCCAGCIACTIGGGAGGIIGAGGAGG 400	(SEQ ID NO: 43)
RHCE_consenso_ex03	TITGAAAAATAAAGACAACCIGTAAICCCAGCIACTIGGGAGGTIGAGGAGG 400	(SEQ ID NO: 44)
1	***************************************	

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	119 119 119 119	179 (539) 179 179 179 179	239 (599) 239 239 239 239 239
AACACCAGICTCATGGCTTCAAGTCACCCTCCTAAGTGAAGCTCTGAACTTTCTCCAAG -ACACCAGICTCGTGGCTTCAAGTCACCCTCCTAAGTGAAGCTCTGAACTTTCTCCAAG -ACACCAGICTCGTGGCTTCAAGTCACCTCCTAAGTGAAGCTCTGAACTTTCTCCAAG -ACACCAGTCTCGTGGCTTCAAGTCACCTCCTAAGTGAAGCTCTGAACTTTCTCCAAG -ACACCAGTCTCGTGGCTTCAAGTCACCCTCCTAAGTGAAGCTCTGAACTTTCTCCAAG -ACACCAGTCTCGTGGCTTCAAGTCACACCTCCTAAGTGAAGCTCTGAACTTTCTCCAAG -ACACCAGTCTCGTGGCTTCAAGTCACACCTCCTAAGTGAAGCTCTGAACTTTCTCCAAG **********************************	GACTATCAGGGCTTGC-CCCGGGCAGAGGATGCCGACACTCACTGCTCTTACTGGGTTTT GACCATCAGGGCTTTCCCCTGGGCAGGGATGCCGACACTCACT	ATTGCAGACAGACTACCACTGAACATGATGCACATCTACGTGTTCGCAGCCTATTTTGG ATTGCAGACAGACTACCACTGAGGCACTTCTACGTGTTCGCAGCCTATTTTGG ATTGCAGACAGACTACCACATGAACCTGAGGCACTTCTACGTGTTCGCAGCCTATTTTTGG ATTGCAGACACTACCACATGAACCTGAGGCACTTCTACGTGTTCGCAGCCTATTTTTGG ATTGCAGACAGACTACCACATGAACCTGAGGCACTTCTACGTGTTCGCAGCCTATTTTTGG ATTGCAGACAGACTACCACATGAACCTGAGGCACTTCTACGTGTTCGCAGCCTATTTTGG ATTGCAGACAGACTACCACTGAGGCACTTCTACGTGTTCGCAGCCTATTTTGG *******************************	GCTGTCTGTGGCCTGCTGCCAAAGCCTCTACCCGAGGGAACGGAGGATAAAGATCA GCTGACTGTGGCCTGCTGCCAAAGCCTCTACCCAAGGGAACGGAGGATAATGATCA GCTGACTGTGGCCTGCTGCCAAAGCCTCTACCCAAGGGAACGGAGGATAATGATCA GCTGACTGTGGCCTGCTGCCAAAGCCTCTACCCAAGGGAACGGAGGATAATGATCA GCTGACTGTGGCCTGCTGCCAAAGCCTCTACCCAAGGGAACGGAGGATAATGATCA GCTGACTGTGGCCTGCTGCCAAAGCCTCTACCCAAGGGAACGGAGGATAATGATCA GCTGACTGTGGCCTGCTGCCAAAGCCTCTACCCAAGGGAACGGAGGATAATGATCA A*** ********************************
RHD_ex04 RHCE_ce_ex04 RHCE_CE_ex04 RHCE_Ce_ex04 RHCE_CE_ex04 RHCE_CCE_ex04	RHD_ex04 RHCE_ce_ex04 RHCE_CE_ex04 RHCE_Ce_ex04 RHCE_CE_ex04 RHCE_CE_ex04 RHCE_consenso_ex04	RHD_ex04 RHCE_ce_ex04 RHCE_CE_ex04 RHCE_Ce_ex04 RHCE_CE_ex04 RHCE_CE_ex04	RHD_ex04 RHCE_ce_ex04 RHCE_CE_ex04 RHCE_Ce_ex04 RHCE_Ce_ex04 RHCE_CC ex04 RHCE_consenso_ex04

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	45) 46) 47) 48) 50)
36T 36T 36T 36T 56T 56T	D D D D D *	ID NO:
GGGTGAGTCGGGTGGGTCGGGTGAGTCGGGTGAGTCGGGGGGGG	AATCTCCCI AATCTCCCI AATCTCCCI AATCTCCCI AATCTCCCI	(SEQ 11) (SEQ 11) (SEQ 11) (SEQ 11) (SEQ 11) (SEQ 11)
CAAGGTG CAAGGTG CAAGGTG CAAGGTG CAAGGTG CAAGGTG	CTGAAAA CTGAAAA CTGAAAA CTGAAAA CTGAAAA	400 400 400 400 400
GACAGCAACGATACCCAGTTTGTCTGCCATGCTGGGGTAAGGACAAGGTGGGGGTGGTGGT GAGAGCAACGATACCCAGTTTGTCTGCCATGCTGGGTAAGGACAAGGTGGGGGTGGT GAGAGCAACGATACCCAGTTTGTCTGCCATGCTGGGTAAGGACAAGGTGGGTG	CTCCTACTTGGGCTGAGCAGAATGGCTCAGAAAAGGCTCTGGCTGAAAAAATCTCCCTCC	TTTACCAAGTTCCCCTGGGTGTCTGAAGCCCTTCCATCATG TTTACCAACTTCCCCTGGGTGTCTGAAGCCCTTCCATCATG TTTACCAACTTCCCCTGGGTGTCTGAAGCCCTTCCATCATG TTTACCAACTTCCCCTGGGTGTCTGAAGCCCTTCCATCATG TTTACCAACTTCCCCTGGGTGTCTGAAGCCCTTCCATCATG TTTACCAACTTCCCCTGGGTGTCTGAAGCCCTTCCATCATG
RHD_ex04 RHCE_ce_ex04 RHCE_CE_ex04 RHCE_CE_ex04 RHCE_CE_ex04 RHCE_CE_ex04 RHCE_CConsenso_ex04	RHD_ex04 RHCE_ce_ex04 RHCE_CE_ex04 RHCE_Ce_ex04 RHCE_CE_ex04 RHCE_CCE_ex04 RHCE_CCONSenSO_ex04	RHD_ex04 RHCE_ce_ex04 RHCE_CE_ex04 RHCE_Ce_ex04 RHCE_CE_ex04 RHCE_CCE_ex04

000000	120 (638) 120 120 120 120	180 (698) 180 180 180 180	240 (758) 240 240 240 240
CTCTAAGTGACAAGGCTGAGACTCTCCAGCCCTAGGATTCTCATCCAAAACCCCTCGAGG CTCTAAGTGACAAGGCTGAGACTCTCCAGCCCTAGGATTCTCATCCAAAACCCCTCGAGG CTCTAAGTGACAAGGCTGAGACTCTCCAGCCCTAGGATTCTCATCCAAAACCCCTCGAGG CTCTAAGTGACAAGGCTGAGACTCTCCAGCCCTAGGATTCTCATCCAAAACCCCTCGAGG CTCTAAGTGACAAGGCTGAGACTCTCCAGCCCTAGGATTCTCATCCAAAACCCCTCGAGG CTCTAAGTGACAAGGCTGAGACTCTCCAGCCCTAGGATTCTCATCCAAAACCCCTCGAGG CTCTAAGTGACAAGGCTGAGACTCTCCAGCCCTAGGATTCTCATCCAAAACCCCTCGAGG **********************************	CTCAGACCTTTGGAGCAGGAGTGTGATTCTGGCCAACCACCTCTCTGGCCCCCAGGCGC CTCAGACCTTTGGAGCAGGAGTGTGATTCTGGCCAACCACCCTCTCTGGCCCCCAGGCGC CTCAGACCTTTGGAGCAGGAGTGTGATTCTGGCCAACCACCCTCTCTGGCCCCCAGGCGC CTCAGACCTTTGGAGCAGGAGTGTGATTCTGGCCAACCACCCTCTTTGGCCCCCAGGCGC CTCAGACCTTTGGAGCAGGAGTGTGATTCTGGCCCAACCACCCTCTTTGGCCCCCAGGCGC CTCAGACCTTTGGAGCAGGAGTGTGATTCTGGCCCAACCACCCTCTTGGCCCCCAGGCGC CTCAGACCTTTGGAGCAGGAGTGTGATTCTGGCCCAACCACCCTCTTTGGCCCCCAGGCGC CTCAGACCTTTGGAGCAGGAGTGTGATTCTGGCCCAACCACCCTCTTTGGCCCCCAGGCGC CTCAGACCTTTGGAGCAGGAGTGTCATTCTGGCCCAACCACCCTCTTTGGCCCCCAGGCGC CTCAGACCTTTGGAGCAGGAGTGTAAA*************	CCTCTTCTTGTGGATGTTCTGGCCAAGTTTCAACTCTGCTCTGCTGAGAAGTCCAATCGA CCTCTTCTTGTGGATGTTCTGGCCAAGTGTCAACTCTGCTCTGCTGAGAAGTCCAATCCA CCTCTTCTTGTGGATGTTCTGGCCAAGTGTCAACTCTCTCT	AAGGAAGAATGCCGTGTTCAACACCTACTATGCTGTAGCAGTCAGCGTGGTGACAGCCAT AAGGAAGAATGCCATGTTCAACACCTACTATGCTCTAGCAGTCAGT
RHD_ex05 RHCE_ce_ex05 RHCE_CE_ex05 RHCE_Ce_ex05 RHCE_CE_ex05 RHCE_CE_ex05	RHD_ex05 RHCE_ce_ex05 RHCE_CE_ex05 RHCE_Ce_ex05 RHCE_CE_ex05 RHCE_CE_consenso_ex5	RHD_ex05 RHCE_ce_ex05 RHCE_CE_ex05 RHCE_Ce_ex05 RHCE_CE_ex05 RHCE_CE_ex05	RHD_ex05 RHCE_ce_ex05 RHCE_CE_ex05 RHCE_Ce_ex05 RHCE_CE_ex05 RHCE_CE_ex05

RHD_ex05 RHCE_ce_ex05 RHCE_CE_ex05	CTCAGGGTCATCCTTGGCTCACCCCCAAGGGAAGATCAGCAAGGTGAGCAGGGGCGCTGCC CTCAGGGTCATCCTTGGCTCACCCCCAAAGGAAGATCAGCATGGTGAGCAGGGGGCGCTGCC CTCAGGGTCATCCTTGGCTCACCCCCAAAGGAAGATCAGCATGGTGAGCAGGGGCGCTGCC		
RHCE_Ce_ex05 RHCE_CE_ex05	CTCAGGGTCATCCTTGGCTCACCCCAAAGGAAGATCAGCATGGTGAGCAGGGCGCTGCC CTCAGGGTCATCCTTGGCTCACCCCCAAAGGAAGATCAGCATGGTGAGCAGGGGGGGCTGCC	300 300 300	
RHCE_consenso_ex5	CTCAGGGTCATCCTTGGCTCACCCCCAAAGGAAGATCAGCATGGTGAGCAGGGCGCTGCC *****************************		
RHD_ex05	CTTGGGCACCTTGGGTCTAACAGGACTAGCACACATATTTATGCCCCTCCCACCCA	CCACCCA 360	
RHCE_ce_ex05	CTTGGGCAGCACTTGGGTCTAACAGGACTAGCACACATATTTATGCCCCTCCCCACCCA	CCACCCA 360	
RHCE_cE_ex05	CTTGGGCAGCACTTGGGTCTAACAGGACTAGCACACATATTTATGCCCCTCCCCACCCA	CCACCCA 360	
RHCE_Ce_ex05	CTTGGGCAGCACTTGGGTCTAACAGGACTAGCACACATATTTATGCCCCTCCCCACCCCA	CCACCCCA 360	
RHCE_CE_ex05	CTTGGGCAGCACTTGGGTCTAACAGGACTAGCACACATATTTATGCCCCTCCCCACCCA	CCACCCA 360	
RHCE_consenso_ex5	CTTGGGCAGCACTTGGGTCTAACAGGACTAGCACATATTTATGCCCCTCCCCACCCA	CCACCCCA 360	
RHD_ex05	GGGCCAGCGTGGGTTGGGAGAGGCATGCCGGGTGGTGGAGCTGTGCCTG	410 (SEQ ID NO:	51)
RHCE_ce_ex05	GGCCCAGCGTGGGAGAGGGCATGCCGGGTGGTGGA	400 (SEQ ID NO:	52)
RHCE_CE_ex05	GGGCCAGCGTGGGTTGGGAGGGCATGCCGGGTGGTGGA	400 (SEQ ID NO:	53)
RHCE_Ce_ex05	GGGCCAGCGTGGGTTGGGAGAGGGCATGCCGGGTGGTGGA	400 (SEQ ID NO:	54)
RHCE_CE_ex05	GGGCCAGCGTGGGTTGGGAGGGCATGCCGGGTGGTGGA	400 (SEQ ID NO:	55)
RHCE_consenso_ex5	GGGCCAGCGTGGGAGAGGGCATGCCGGGTGGA	400 (SEQ ID NO:	: 56)

Figura 20B

11G 60 60 60 60 60 60 60 60 60 60 60 60 60	TA 120 TA 120 TA 120 TA 120 TA 120 TA 120	* U U U U U U U U U U U U U U U U U U U	GA 240 GA 240 GA 240 GA 240 GA 240
GGTGGTTTCAGGATCAGCAAAGCAGGGAGGATGTTACAGGGTTGCCTTGTTCCCAGCGTG GGTGGTTTCAGGATCAAAGCAGGGAGGATGTTACAGGGTTGCCTTGTTCCCAGCGTG GGTGGTTTCAGGATCAGCAAAGCAGGGAGGATGTTACAGGGTTGCCTTGTTCCCAGCGTG GGTGGTTTCAGGATCAGCAAAGCAGGGAGGATGTTACAGGGTTGCCTTGTTCCCAGCGTG GGTGGTTTCAGGATCAGCAAAGCAGGGAGGATGTTACAGGGTTGCCTTGTTCCCAGCGTG AGTGGTTTCAGGATCAGCAAAGCAGGGAGGATGTTACAGGGTTGCCTTGTTCCCAGCGTG A***********************************	CTGGTCACTTGCAGCAAGATGGTGTTCTCTCTCTACCTTGCTTCCTTTACCCCACGCTA CTGGTCACTTGCAGCAAGATGGTGTTCTCTCTCTACCTTGCTTCCTTTACCCCACGCTA CTGGTCACTTGCAGCAAGATGGTGTTCTCTCTCTTACCTTCCTT	TTTCTTTGCAGACTTATGTGCACAGTGCGGTGTTGGCAGGAGGCGTGGCTGTGGGTACCT TTTCTTTGCAGACTTATGTGCACAGTGCGGTGTTGGCAGGAGGCGTGGCTGTGGGTACCT TTTCTTTGCAGACTTATGTGCACAGTGCGGTGTTGGCAGGAGGCGTGGCTGTGGGTACCT TTTCTTTGCAGACTTATGTGACACAGTGCGGTGTTGGCAGGAGGCGTGGCTGTGGGTACCT TTTCTTTGCAGACTTATGTGCACAGTGCGGTGTTGGCAGAGAGCGTGGGTGCGGTACCT TTTCTTTGCAGACTTATGTGCACAGTGCGGTGTTGGCAGAGAGCGTGGGTACCT TTTCTTTGCAGACTTATGTGCACAGTGCGGTGTTGGCAGAGAGGCGTGGGGTACCT *********************************	CGTGTCACCTGATCCCTTCTCCGTGGCTTGCCATGGTGCTGGGTCTTGTGGCTGGGCTGA CGTGTCACCTGATCCCTTCTCCGTGGCTTGCCATGGTGCTGGGTCTTGTGGCTGGGCTGA CGTGTCACCTGATCCCTTCTCCGTGGCTTGCCATGGTGCTGGGTCTTGTGGCTGGGCTGA CGTGTCACCTGATCCCTTCTCCGTGGCTTGCCATGGTGCTGGGTCTTGTGGCTGGGCTGA CGTGTCACCTGATCCCTTCTCCGTGGCTTGCCATGGTGCTGGGTCTTGTGGCTGGGCTGA CGTGTCACCTGATCCCTTCTCCGTGGCTTGCCATGGTGCTGGGTCTTGTGGCTGGGCTGA CGTGTCACCTGATCCCTTCTCCGTGGCTTGCCATGGTGCTGGGTCTTGTGGCTGGGCTGA
RHCE_ce_ex06 RHCE_ce_ex06 RHCE_Ce_ex06 RHCE_CE_ex06 RHCE_consenso_ex06 RHCE_consenso_ex06	RHCE_ce_ex06 RHCE_cE_ex06 RHCE_Ce_ex06 RHCE_CE_ex06 RHCE_consenso_ex06 RHD_ex06	RHCE_CE_ex06 RHCE_CE_ex06 RHCE_Ce_ex06 RHCE_CE_ex06 RHCE_CONSenSO_ex06 RHCE_consenSO_ex06	RHCE_ce_ex06 RHCE_cE_ex06 RHCE_Ce_ex06 RHCE_CE_ex06 RHCE_CE_ex06 RHCE_consenso_ex06 RHD_ex06

RHCE_ce_ex06 RHCE_ce_ex06 RHCE_Ce_ex06 RHCE_CE_ex06 RHCE_CC_ex06	TCTCCATCGGGGGAGCCAAGTGCCTGCCGGTAAGAAACTAGACAACTAATGCTCTCTGCT TCTCCATCGGGGGAGCCAAGTGCCTGCCGGTAAGAAACTAGACAACTAATGCTCTCTGCT TCTCCATCGGGGAGCCAAGTGCCTGCCGGTAAGAACTAGACAACTAATGCTCTCTGCT TCTCCATCGGGGAGCCAAGTGCCTGCCGGTAAGAACTAGACAACTAATGCTCTCTGCT TCTCCATCGGGGAGCCAAGTGCCTGCCGGTAAGAAACTAGACAACTAATGCTCTCTGCT TCTCCATCGGGGGAGCCAAGTGCCTGCCGGTAAGAAACTAGACAACTAATGCTCTCTGCT	CAACTAATGCTCTCT CAACTAATGCTCTCT CAACTAATGCTCTCT CAACTAATGCTCTCT	GCT GCT GCT	300 300 300 300
RHD_ex06	TCTCCGTCGGGGGGGCCAAGTACCTGCCGGTAAGAACTAGACAACTAACCTCCTCTGCT **** ********************************	CAACTAACCTCCTCTGCT *******	****	300
RHCE_ce_ex06	TIGGCTGAAGGCCAGCAGGACGCTGGACCTGATGGGCCACTGTGCAGTGCACAGCTGCA	GTGCAGTGCACAGCT	IGCA	360
RHCE_cE_ex06	TTGGCTGAAGGCCAGCAGGACGCTGGGACCTGATGGGCCACTGTGCAGTGCACAGCTGCA	GTGCAGTGCACAGCT	IGCA	360
RHCE_Ce_ex06	TTGGCTGAAGGCCAGCAGGACGCTGGACCTGATGGGCCACTGTGCAGTGCACAGCTGCA	GTGCAGTGCACAGCT	IGCA	360
RHCE_CE_ex06	TTGGCTGAAGGCCAGCAGGACGCTGGGACCTGATGGGCCACTGTGCAGTGCACAGCTGCA	GTGCAGTGCACAGCT	IGCA	360
RHCE_consenso_ex06	TTGGCTGAAGGCCAGCAGGACGCTGGACCTGATGGGCCACTGTGCAGTGCACAGCTGCA	GTGCAGTGCACAGCT	IGCA	360
RHD_ex06	TTGGCTGAAGGCCAGCAGGACGCTGGGACCTGATGGGCCACTGTGCAGTGCACAGCTGCACACACA	GTGCAGTGCACAGCT *********	IGCA	360
RHCE_ce_ex06	TTAGGCAGGTGTTGGTGCATTCTCTTATTGGCTTCAACGC	400 (SEQ 1	ID NO:	88)
RHCE_CE_ex06	TTAGGCAGGTGTTGGTGCATTCTCTTATTGGCTTCAACGC	400 (SEQ]	ID NO:	(68
RHCE_Ce_ex06	TTAGGCAGGTGTTGGTGCATTCTCTTATTGGCTTCAACGC	400 (SEQ]	ID NO:	(06
RHCE_CE_ex06	TTAGGCAGGTGTTGGTGCATTCTCTTATTGGCTTCAACGC	400 (SEQ]	ID NO:	91)
RHCE_consenso_ex06	TTAGGCAGGTGTTGCTTCTTTATTGGCTTCAACGC	400 (SEQ]	ID NO:	92)
RHD_ex06	TTAGGCAGGTGTCGCCGCATTCTCTTATTGGCTTCAACGC	400 (SEQ]	ID NO:	7)

Figura 21B

	119 119 119 119	179 179 179 179 179	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AGAAGGCTTCTTTGAGGTGAGCCTTAGTGCCCATCCCCATTTGGTG-GCGCGGATACCA AGAAGGGCTTCTTTGAGGTGAGCCTTAGTGCCCATCCCCATTTGGTG-GCGCGGATACCA AGAAGGGCTTCTTTGAGGTGAGCCTTAGTGCCCATCCCCATTTGGTG-GCGCGGATACCA AGAAGGGCTTCTTTGAGGTGAGCCTTAGTGCCCATCCCCATTTGGTG-GCGCGGATACCA AGAAGGGCTTCTTTGAGGTGAGCCTTAGTGCCCATCCCCATTTGGTG-GCGCGGATACCA -GAAGGGCTTCTTTGAGGTGAGCCTTAGTGCCCATCCCCATTTGGTG-GCGCGGATACCA -GAAGGGCTTCTTTGAGGTGAGCCTTAGTGCCCATCCCCCTTTGGTGGCCCCGGATACCA *********************************	AGGGTGTGTGAAAGGGGTAGGGAATATGGGTCTCACCTGCCAATCTGCTTATAATA AGGGTGTGTGAAAGGGGTAGGGAATATGGGTCTCACCTGCCAATCTGCTTATAATA AGGGTGTGTGTGAAAGGGGTAGGGAATATGGGTCTCACCTGCCAATCTGCTTATAATA AGGGTGTGTGTGAAAGGGGTAGGGAATATGGGTCTCACCTGCCAATCTGCTTATAATA AGGGTGTGTGAAAGGGGTAGGGAATATGGGTCTCACCTGCCAATCTGCTTATAATA AGGGTGTGTGAAAGGGGTGGGTAGGGAATATGGGTCTCACCTGCCAATCTGCTTATAATA AGGGTGTGTGAAAGGGGTGGGTAGGGAATATGGGTCTCACCTGCCCAATCTGCTTATAATA ******************************	ACACTTGTCCACAGGTGTTGTAACCGAGTGCTGGGGATTCACCACATCTCCGTCATGC ACACTTGTCCACAGGTGTTGTAACCGAGTGCTGGGGATTCACCACATCTCCGTCATGC ACACTTGTCCACAGGTGTTGTAACCGAGTGCTGGGGATTCACCACATCTCCGTCATGC ACACTTGTCCACAGGTGTTGTAACCGAGTGCTGGGGATTCACCACATCTCCGTCATGC ACACTTGTCCACAGGTGTTGTAACCGAGTGCTGGGGATTCACCACATCTCCGTCATGC ACACTTGTCCACAGGTGTTGTAACCGAGTGCTGGGGATTCACCACATCTCCGTCATGC ACACTTGTCCACAGGGGTTTGTAACCGAGTGCTGGGGATTCCCCACATCATGG A**********************************	ACTCCATCTTCAGCTTGCTGGGTCTGCAGAGAGATCACCTACATTGTGCTGCTGGTGC ACTCCATCTTCAGCTTGCTGGGTCTGCTTGGAGAGATCACCTACATTGTGTGCTGCTGGTGC ACTCCATCTTCAGCTTGCTGGGTCTGCTTGGAGAGATCACCTACATTGTGCTGCTGGTGC ACTCCATCTTCAGCTTGCTGGGTCTGCTTGGAGAGATCACCTACATTGTGCTGCTGGTGC ACTCCATCTTCAGCTTGCTGGGTCTGCTTGGAGAGATCACCTACATTGTGCTGCTGGTGC GCTACAACTTCAGCTTGCTGGGTCTGCTTGGAGAGATCACCTACATTGTGCTGCTGGTGC GCTACAACTTCAGCTTGCTGGGTCTTGGAGAGATCATCTACATTGTGCTGCTGGTGC ** ** *******************************
RHCE_ce_ex07 RHCE_cE_ex07 RHCE_Ce_ex07 RHCE_CE_ex07 RHCE_Cce_ex07 RHCE_consenso_ex07 RHD_ex07	RHCE_ce_ex07 RHCE_cE_ex07 RHCE_Ce_ex07 RHCE_CE_ex07 RHCE_CE_ex07 RHCE_consenso_ex07 RHCE_consenso_ex07	RHCE_ce_ex07 RHCE_cE_ex07 RHCE_Ce_ex07 RHCE_CE_ex07 RHCE_CCE_ex07 RHCE_consenso_ex07 RHD_ex07	RHCE_ce_ex07 RHCE_cE_ex07 RHCE_Ce_ex07 RHCE_CE_ex07 RHCE_CCE_ex07 RHCE_consenso_ex07 RHCE_consenso_ex07

RHCE_ce_ex07 RHCE_cE_ex07 RHCE_Ce_ex07	TTCATACTGTCTGGAACGGCAATGGCATGTGGGTCACTGGGCTTACCCCCCCATCCCCTTA TTCATACTGTCTGGAACGGCAATGGCATGTGGGTCACTGGGCTTACCCCCCCATCCCCTTA TTCATACTGTCTGGAACGGCAATGGCATGTGGGTCACTGGGCTTACCCCCCCATCCCCTTA	TACCCCCATCCCTTA TACCCCCATCCCTTA TACCCCCCATCCCCTTA	2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
RHCE CE ex07 RHCE_consenso_ex07	TTCATACTGTCTGGAACGGCAATGGCATGTGGGTCACTGGGCTTACCCCCCATCCCCTTA TTCATACTGTCTGGAACGGCAATGGCCATGTGGGTCACTGGGCTTACCCCCCCATCCCCTTA	TACCCCCCATCCCCTTA TACCCCCCATCCCCTTA	299
RHD_ex07	TTGATACCGTCGGAGCCGCAATGGCATGTGGGTCACTGGGCTTACCCCCCATCCCCTTA ** *** *** * * * *******************	TACCCCCCATCCCCTTA ************	299
RHCE_ce_ex07	ACACTCCCCTCCAACTCAGGAAGAAATGTGTGCAGAGTCCTTAGCTGGGGGCGTGTGCACT	AGCTGGGGCGTGTGCACT	359
RHCE_CE_ex07	ACACTCCCCTCCAACTCAGGAAGAAATGTGTGCAGAGTCCTTAGCTGGGGGGGTGTGCACT	AGCTGGGGCGTGTGCACT	359
RHCE_Ce_ex07	ACACTCCCCTCCAACTCAGGAAGAAATGTGTGCAGAGTCCTTAGCTGGGGGGGTGTGCACT	GCTGGGGCGTGTGCACT	359
RHCE CE ex07	ACACTCCCCTCCAACTCAGGAAGAAATGTGTGCAGAGTCCTTAGCTGGGGGGGTGTGCACT	GCTGGGGCGTGTGCACT	359
RHCE_consenso_ex07	ACACTCCCCTCCAACTCAGGAAGAAATGTGTGCAGAGTCCTTAGCTGGGGGGGTGTGCACT	GCTGGGGCGTGTGCACT	359
RHD_ex07	ACACTCCCCTCCAACTCAGGAAGAAATGTGTGCAGAGTCCTTAGCTGGGGGGGTGTGCACT	GCTGGGGCGTGTGCACT	359
	********************	***********	
RHCE_ce_ex07	CGGGGCCAGGTGCTCAGTAGGCTTCGGTGAATATTTGTTGG	400 (SEQ ID NO: 94)	_
RHCE_CE_ex07	CGGGGCCAGGIGCICAGIAGGCTICGGIGAATAITIGIIGG	400 (SEQ ID NO: 95)	~
RHCE_Ce_ex07	CGGGGCCAGGTGCTCAGTAGGCTTCGGTGAATATTTGTTGG	400 (SEQ ID NO: 96)	_
RHCE CE ex07	CGGGGCCAGGIGCICAGIAGGCIICGGIGAAIAITIGIIGG	400 (SEQ ID NO: 97)	_
RHCE_consenso_ex07	CGGGGCCAGGTGCTCAGTAGGCTTCGGTGAATATTTGTTGG	400 (SEQ ID NO: 98)	<u> </u>
RHD_ex07	CGGGGCCAGGIGCTCAGIAGGCTTCGGIGAATATTTGTTGG	400 (SEQ ID NO: 93)	_

Figura 22B

		1
RHCE_ce_ex08 RHCE_cE_ex08	TTGGGAAAATGCCAGGGAATGTACCAGGGAGGAGGACCCTTGTTTTCCTCATGGCC TTGGGAAAATGCCAGGGGAATGTACCAGGGGAGGAGGACCCTTGTTTTCCTCATGGCC	09
RHCE_Ce_ex08	TIGGGAAAAIGCCAGGGGAAIGTACCAGGCAGGGAGGACCCTIGITITCCTCAIGGCC	09
RHCE CE CAUS RHCE CONSENSO ex08	TIGGGAAAAIGCCAGGGGAAIGIACCAGCCAGGGAGAGGACCCIIGIIIIICCICAIGGCC	09
1	TTGGGAAAATGCCAGGGGAATGTACCAGCCAGGGAGGACCCTTGTTTTCCTCATGGCC	09

RHCE_ce_ex08	CTTCCTGGCAATGGCACTACTGACACCGACAGTCCTTTTTTGTCCCTGATGACCTCTGCTG	120
RHCE_CE_ex08	CTTCCTGGCAATGGCACTACTGACACCGACAGTCCTTTTTGTCCCTGATGACCTCTGCTG	120
RHCE_Ce_ex08	CTTCCTGGCAATGGCACTACTGACACCGACAGTCCTTTTTGTCCCTGATGACCTCTGCTG	120
	CTICCTGGCAATGGCACTACTGACACCGACAGTCCTTTTTTGTCCCTGATGACCTCTGCTG	120
RHCE_consenso_ex08	CTICCTGGCAATGGCACTACTGACACCGACAGTCCTTTTTGTCCCTGATGACCICTGCTG	120
RHD_ex08	CTTCCTGGCAATGGCACTACTGACACCGACAGTCCTTTTTTGTCCCTGATGACCTCTGCTG	120

RHCE_ce_ex08	CCIGAIGCCCAAGIGACCACCICIGCIIIGICAIIICTAG GAIIGGCIICCAGGICCICC	180
RHCE_CE_ex08	CCTGATGCCCAAGTGACCACCTCTGCTTTGTCATTTCTAGGATTGGCTTCCAGGTCCTCC	180
RHCE_Ce_ex08	CCTGATGCCCAAGTGACCACCTCTGCTTTGTCATTTCTAG GATTGGCTTCCAGGTCCTCC	180
RHCE CE ex08	CCTGATGCCCAAGTGACCACCTCTGCTTTGTCATTTCTAG GATTGGCTTCCAGGTCCTCC	180
RHCE_consenso_ex08	CCTGATGCCCCAAGTGACCACCTCTGCTTTGTCATTTCTAG GATTGGCTTCCAGGTCCTCC	180
RHD_ex08	CCTGATGCCCAAGTGACCACCTCTGCTTTGTCATTTCTAG GATTGGCTTCCAGGTCCTCC	180

RHCE_ce_ex08	TCAGCATTGGGGAACTCAGCTTGGCCATCGTGATAGCTCTCACGTCTGGTCTCCTGACAG	240
RHCE_CE_ex08	TCAGCATTGGGGAACTCAGCTTGGCCATCGTGATAGCTCTCACGTCTGGTCTCCTGACAG	240
RHCE_Ce_ex08	TCAGCATTGGGGAACTCAGCTTGGCCATCGTGATAGCTCTCACGTCTGGTCTCCTGACAG	240
RHCE CE ex08	TCAGCATTGGGGAACTCAGCTTGGCCATCGTGATAGCTCTCACGTCTGGTCTCCTGACAG	240
RHCE_consenso_ex08	TCAGCATTGGGGAACTCAGCTTGGCCATCGTGATAGCTCTCACGTCTGGTCTCCTGACAG	240
RHD ex08	TCAGCATTGGGGAACTCAGCTTGGCCATCGTGATAGCTCTCACGTCTGGTCTCCTGACAG	240

RHCE_CE_EXU8 RHCE_CE_EX08 RHCE_CE_EX08 RHCE_CE_EX08 RHCE_CONSENSO_EX08 RHD_EX08	GTCAGTGTGAGGCCACCTTTCTTCCACCATTGCCAGGACACAGCACCCACGTCCAGAGCG GTCAGTGTGAGGCCACCTTTCTTCCACCATTGCCAGGACACACCACCCCACGTCCAGAGCG GTCAGTGTGAGGCCACCTTTCTTCCACCATTGCCAGGACACAGCACCCCACGTCCAGAGCG GTCAGTGTGAGGCCACCTTTCTTCCACCATTGCCAGGACACAGCACCCCACGTCCAGAGCG GTCAGTGTGAGGCCACCTTTCTTCCACCATTGCCAGGACACAGCACCCCACGTCCAGAGCG GTCAGTGTGAGGCCACCTTTCTTCCACCATTGCCAGGACACAGCACCCCACGTCCAGAGCG GTCAGTGTGAGGCCACCTTTCTTCCACCATTGCCAGGACACAGCACCCCACGTCCAGAGCG CTCAGTGTGAGGCCACCTTTCTTCCACCATTGCCAGGGACACAGCACCCCACGTCCAGAGCG *******************************	SCACCCACGTCCAGAGCG SCACCCACGTCCAGAGCG SCACCCACGTCCAGAGCG SCACCCACGTCCAGAGCG SCACCCACGTCCAGAGCG SCACCCACGTCCAGAGCG SCACCACGTCCAGAGCG SCACCCACGTCCAGAGCG	3000
RHCE_ce_ex08 RHCE_cE_ex08 RHCE_Ce_ex08 RHCE_CE_ex08 RHCE_Consenso_ex08 RHD_ex08	CACCCTGCCGTGTGGCTGGATGTCTATGTGCCCCATCTCCCTTCCCTGAGGATCACATAAT CACCCTGCCGTGTGGCTGGATGTCTATGTGCCCCATCTCCTTCCCTGAGGATCACATAAT CACCCTGCCGTGTGGCTGGATGTCTATGTGCCCCATCTCCTTCCCTGAGGATCACATAAT CACCCTGCCGTGTGGCTGGATGTCTATGTGCCCCATCTCCTTCCCTGAGGATCACATAAT CACCCTGCCGTGTGGCTGGATGTCTATGTGCCCCATCTCCTTCCCTGAGGATCACATAAT CACCCTGCCGTGTGGCTGGATGTCTATGTGCCCCATCTCCTTCCCTGAGGATCACATAAT CACCCTGCCGTGTGGCTGATGTCTATGTGCCCCATCTCCTTCCCTGAGGATCACATAAT *****************************	CCCTGAGGATCACATAAT CCCTGAGGATCACATAAT CCCTGAGGATCACATAAT CCCTGAGGATCACATAAT CCCTGAGGATCACATAAT CCCTGAGGATCACATAAT	360 360 360 360 360
RHCE_ce_ex08 RHCE_cE_ex08 RHCE_Ce_ex08 RHCE_CE_ex08 RHCE_CE_ex08 RHCE_consenso_ex08 RHD_ex08	TTCAGAATTGGAAAGGTTCTTAGAGGTCACCTGCTGCTAA TTCAGAATTGGAAAGGTTCTTAGAGGTCACCTGCTGCTAA TTCAGAATTGGAAAGGTTCTTAGAGGTCACCTGCTGCTAA TTCAGAATTGGAAAGGTTCTTAGAGGTCACCTGCTGCTAA TTCAGAATTGGAAAGGTTCTTAGAGGTCACCTGCTGCTAA	400 (SEQ ID NO: 400 (SEQ ID NO:	100) 101) 102) 102) 103) 104)

Figura 23B

RHCE_ce_ex09 RHCE_CE_ex09 RHCE_Ce_ex09 RHCE_CC_ex09 RHCE_consenso_ex09 RHD_ex09 RHCE_ce_ex09	GTCCAGGAATGACAGGCCGTCCATTTATTTGTCTTTCAATTGTGGGAGAAAAAGGATTGTCCAGGAATGACAGGGCGTCCATTTATTTGTCTTTCAATTGTGGGAGAAAAAGGATTGTCCAGGAATGACAGGGCGTCCATTTATTTGTCTTTCAATTGTGGGAGAAAAAGGATTGTCCAGGAATGACAGGGCGTCCATTTATTTGTCTTTCAATTGTGGGAGAAAAAGGATTGTCCAGGAATGACAGGGCGTCCATTTATTTGTCTTTCAATTGTGGGAGAAAAAGGATT TGGTCCAGGAATGACAGGGCTTCCATTTATTTGTTTCAATTGTGGGAGAAAAAGGATT TGGTCCAGGAATGACAGGGCTTCCATTTATTTGTTTTCAATTGTGGGAGAAAAAGGATT ******************	
RHCE_CE_ex09 RHCE_CE_ex09 RHCE_CE_ex09 RHCE_CCE_ex09 RHCE_consenso_ex09 RHD_ex09	TCIGTTGAGACACTGTCGTTTTGACACACAATATTTTGATTAATCTTGAGATTAAAAA TCTGTTGAGACACTGTCGTTTTGACACACACAATATTTTGATTAATCTTGAGATTAAAAA TCTGTTGAGACACTGTCGTTTTGACACACACAATATTTTGATTAATCTTGAGATTAAAAA TCTGTTGAGACACTGTCGTTTTGACACACACAATATTTTGATTAATCTTGAGATTAAAAA TCTGTTGAGACACTGTCGTTTTGACACACACAATATTTTGATTAATCTTGAGATTAAAAA TCTGTTGAGATACTGTCGTTTTGACACACAATATTTCGATTAATCTTGAGATTAAAAA **************************	118 118 118 118 118
RHCE_ce_ex09 RHCE_cE_ex09 RHCE_Ce_ex09 RHCE_CE_ex09 RHCE_cc_ex09 RHCE_consenso_ex09 RHCE_consenso_ex09	TCCTGTGCTCCAAATCTTTTAACATTTATGCATTTAAACAGGTTTGCTCCTAAATC TCCTGTGCTCCCAAATCTTTTAACATTAAATTATGCATTTAAACAGGTTTGCTCCTAAATC TCCTGTGCTCCCAAATCTTTTAACATTAAATTATGCATTTAAACAGGTTTGCTCCTAAATC TCCTGTGCTCCAAATCTTTTAACATTAAATTATGCATTTAAACAGGTTTGCTCCTAAATC TCCTGTGCTCCAAATCTTTTAACATTAAATTATGCATTTAAACAGGTTTGCTCCTAAATC TCCTGTGCTCCAAATCTTTTAACATTAAATTATGCATTTAAACAGGTTTGCTCCTAAATC TCCTGTGCTCCAAATCTTTTAACATTAAATTATGCATTTAAACAGGTTTGCTCCTAAATC ****************************	178 178 178 178 178
RHCE_CE_ex09 RHCE_CE_ex09 RHCE_Ce_ex09 RHCE_CE_ex09 RHCE_CConsenso_ex09 RHCE_consenso_ex09 RHD_ex09	TCAAAATATGGAAAGCACCTCATGTGGCTAAATATTTTGATGACCAAGTTTTCTGGAAGG TCAAAATATGGAAAGCACCTCATGTGGCTAAATATTTTGATGACCAAGTTTTCTGGAAGG TCAAAATATGGAAAGCACCTCATGTGGCTAAATATTTTGATGACCAAGTTTTCTGGAAGG TCAAAATATGGAAAGCACCTCATGTGGCTAAATATTTTGATGACCAAGTTTTCTGGAAGG TCAAAATATGGAAAGCACCTCATGTGGCTAAATATTTTGATGACCAAGTTTTCTGGAAGG TTAAAATATGGAAAGCACCTCATGTGGCTAAATATTTTGATGACCAAGTTTTCTGGAAGG TTAAAATATGGAAAGCACCTCATGAGCCTAAATATTTTGATGACCAAGTTTTCTGGAAGG	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

RHCE_ce_ex09	TAAGATTTTTCACCTATTAACGTGATAGATTTTGAGTGCATGAACTTAAAAACATACCTG	298
RHCE_CE_ex09	TAAGATTTTTCACCTATTAACGTGATAGATTTTGAGTGCATGAACTTAAAAACATACCTG	298
RHCE_Ce_ex09	TAAGATTTTTCACCTATTAACGTGATAGATTTTGAGTGCATGAACTTAAAAACATACCTG	298
RHCE CE ex09	TAAGATTTTTCACCTATTAACGTGATAGATTTTGAGTGCATGAACTTAAAAACATACCTG	298
RHCE_consenso_ex09	TAAGATTTTTCACCTATTAACGTGATAGATTTTGAGTGCATGAACTTAAAAACATACCTG	298
RHD_ex09	TAAGATTTTTCACCTATTAACGTGATAGATTTTTGAGTGCATGAACTTAAAAACATACCTG	298

RHCE_ce_ex09	GGTATATATGTTGACTTGCTGTTTATGAGTAAAACAAAAAAAA	358
RHCE_cE_ex09	GGTATATGTTGACTTGCTGTTTATGAGTAAAAAAAAAAA	358
RHCE_Ce_ex09	GGTATATATGTTGACTTGCTGTTTATGAGTAAAAAAAAAA	358
RHCE CE ex09	GGTATATATGTTGACTTGCTGTTTATGAGTAAAAAAAAAA	358
RHCE_consenso_ex09	GGTATATATGTTGACTTGCTGTTTATGAGTAAAAAAAAAA	358
RHD_ex09	AGTATATATGTTGACTTGCTGTTTATGAGTAAAAAAAAAA	358

RHCE_ce_ex09	TIGCAGGAGGAACTAGAGGAGAAACAAAICCAIGATAIGCAI 400 (SEQ ID NO:	106)
RHCE_cE_ex09	TTGCAGGAGGAACTAGAGGAGAAACAAATCCATGATATGCAT 400 (SEQ ID NO:	107)
RHCE_Ce_ex09	TTGCAGGAGGAACTAGAGGAGAAACAAATCCATGATATGCAT 400 (SEQ ID NO:	108)
RHCE CE ex09	TTGCAGGAGGAACTAGAGGAGAAACAAATCCATGATATGCAT 400 (SEQ ID NO:	109)
RHCE_consenso_ex09	TTGCAGGAGGAACTAGAGGAGAAACAAATCCATGATATGCAT 400 (SEQ ID NO:	110)
RHD_ex09	TIGCAGGAGGAACTAGAGGAGAAACAAAICCAIGAIAIGCAI 400 (SEQ ID NO:	105)

Figura 24B

RHCE_ce_ex10 RHCE_ce_ex10 RHCE_Ce_ex10 RHCE_Ce_ex10 RHCE_consenso_ex10 RHD_ex10	TTATCAACAATCCATGTAAAACGTTAGATGAAATAAAACCTATATATCCAAGATCTTTC TTATCAACAATCCATGTAAAACGTTAGATGAAATAAAACCTATATATCCAAGATCTCTTC TTATCAACAATCCATGTAAAACGTTAGATGAAATAAAACCTATATATA	000000
RHCE_ce_ex10 RHCE_cE_ex10 RHCE_Ce_ex10 RHCE_CE_ex10 RHCE_consenso_ex10 RHCE_consenso_ex10	CAATTCAGATTTTATGAAAGAATTTCTAAGGTCTTTGTAATGAGACATTTAGGCTGTTTC CAATTCAGATTTTATGAAAGAATTTCTAAGGTCTTTGTAATGAGACATTTAGGCTGTTTC CAATTCAGATTTTATGAAAGAATTTCTAAGGTCTTTGTAATGAGACATTTAGGCTGTTTC CAATTCAGATTTTATGAAAGAATTTCTAAGGTCTTTGTAATGAGACATTTAGGCTGTTTC CAATTCAGATTTTATGAAAGAATTTCTAAGGTCTTTGTAATGAGACATTTAGGCTGTTTC CAATTCAGATTTTATGAAAGAATTTCTAAGGTCTTTGTAATGAGACATTTAGGCTGTTTC CAATTCAGATTTTATGAAAGAATTTCTAAGGTCTTTGTAATGAGACATTTAGGCTGTTTC ******************************	120 120 120 120 120
RHCE_ce_ex10 RHCE_cE_ex10 RHCE_Ce_ex10 RHCE_CE_ex10 RHCE_consenso_ex10 RHCE_consenso_ex10	AAGAGATCAAGCCAAAATCAGTATGTGGGTTCATCTGCAATAAAAATGTTTGTT	180 180 180 180 180
RHCE_ce_ex10 RHCE_cE_ex10 RHCE_Ce_ex10 RHCE_CE_ex10 RHCE_CC ex10 RHCE_consenso_ex10 RHD_ex10	TTACAG TTTCCTCATTTGGCTGTTGGATTTTAA GCAAAAGCATCCAAGAAAAACAAGGCC TTACAG TTTCCTCATTTGGCTGTTGGATTTTAA GCAAAAGCATCCAAGAAAAACAAGGCC TTACAG TTTCCTCATTTGGCTGTTGGATTTTAA GCAAAAAGCATCCAAGAAAAAAGGCC TTACAG TTTCCTCATTTGGCTGTTGGATTTTAA GCAAAAGCATCCAAGAAAAAAGGCC TTACAG TTTCCTCATTTGGCTGTTGGATTTTAA GCAAAAAGCATCCAAGAAAAAAAGGCC TTACAG TTTCCTCATTTGGCTGTTGGATTTTAA GCAAAAAGCATCCAAGAAAAAAAAGGCC	2 2 2 2 2 4 0 2 4 0 0 2 4 0 0 0 4 4 0 0 0 4 0 0 0 4 0 0 0 0

Figura 25A

300 300 300 300 300 400 400 400 400	A 360 A 360 A 360 A 360 A 360 A 360	NO: 112) NO: 113) NO: 114) NO: 115) NO: 116)
TGAGAAACGCT TGAGAAACGCT TGAGAAACGCT TGAGAAACGCT TGAGAAACGCT	TTGATATTAA TTTGATATTAA TTTGATATTAA TTTGATATTAA TTTGATATTAA	(SEQ ID (SEQ I
TTGTACG: TTGTACG: TTGTACG: TTGTACG: TTGTACG:	AGACAGAT AGACAGAT AGACAGAT AGACAGAT AGACAGAT AGAGAAA	4 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TGTTCAAAAACAAGACAACTTCCTCTCACTGTTGCCTGCATTTGTACGTGAGAAACGCTC TGTTCAAAAACAAGACAACTTCCTCTCACTGTTGCCTGCATTTGTACGTGAGAAACGCTC TGTTCAAAAACAAGACAACTTCCTCTCACTGTTGCCTGCATTTGTACGTGAGAAACGCTC TGTTCAAAAACAAGACAACTTCCTCTCACTGTTGCCTGCATTTGTACGTGAGAAACGCTC TGTTCAAAAACAAGACAACTTCCTCTCACTGTTGCCTGCATTTGTACGTGAGAAACGCTC TGTTCAAAAACAAGACAACTTCCTCTCACTGTTGCCTGCATTTGTACGTGAGAAACGCTC TGTTCAAAAACAAGACAACTTCCTCTCACTGTTGCCTGCATTTGTACGTGAGAAACGCTC **********************************	ATGACAGCAAAGTCTCCTTATGTATAATGAAACAAGGTCAGAGACAGATTTGATATTAAA ATGACAGCAAAGTCTCCTTATGTATAATGAAACAAGGTCAGAGACAGATTTGATATTAAA ATGACAGCAAAGTCTCCTTATGTATAATGAAACAAGGTCAGAGACAGATTTGATATTAAA ATGACAGCAAAGTCTCCTTATGTATAATGAAACAAGGTCAGAGACAGATTTGATATTAAA ATGACAGCAAAGTCTCCTTATGTATAATGAAACAAGGTCAGAGACAGATTTGATATTAAA ATGACAGCAAAGTCTCCTTATGTATAATGAAACAGGTCAGAGACAGATTTGATATTAAA ATGACAGCAAAGTCTCCAATGTTCGCGCAGGCACTGGAGTTGAAAAAGGACAAAATGGAGTTGAAT ************************	AAATTAAAGACTAAAAACTTAGTTTAAGAGTCAATTTAAT AAATTAAAGACTAAAAACTTAGTTTAAGAGTCAATTTAAT AAATTAAAGACTAAAAACTTAGTTTAAGAGTCAATTTAAT AAATTAAAGACTAAAAACTTAGTTTAAGAGTCAATTTAAT AAATTAAAGACTAAAAACTTAGTTTAAGAGTCAATTTAAT CCTTTCTCTGCCACTCTTGAGGAAATCTCACTTTAT
RHCE_ce_ex10 RHCE_CE_ex10 RHCE_Ce_ex10 RHCE_CE_ex10 RHCE_Consenso_ex10 RHD_ex10	RHCE_ce_ex10 RHCE_cE_ex10 RHCE_Ce_ex10 RHCE_CE_ex10 RHCE_consenso_ex10 RHD_ex10	RHCE_ce_ex10 RHCE_cE_ex10 RHCE_Ce_ex10 RHCE_CE_ex10 RHCE_consenso_ex10 RHCE_consenso_ex10

Igura 25B

RHCE_ce_in2 RHCE_cE_in2 RHCE_Ce_in2 RHCE_CE_in2 RHCE_CE_in2	CTGTTTTGAGTCCCTTCAGGGGGGGCCTATCTTATTCAACGTTGTTTTTTCT CTGTTTTGAGTCCCTTCAGGGGGGGGGCCTATCTTATTCAACGTTGTTTTTTCT CTGTTTTGAGTCCCTTCAGGGGGGGCCTATCTTATTCAACGTTGTTCTTTTTTTCT CTGTTTTGAGTCCCTTCAGGGGGGCCCTATCTTATTCAACGTTGTTCTTTTTTTCT CTGTTTTGAGTCCCTTCAGGGGGGCCTATCTTATTCAACGTTGTTCTTTTTTCT CTGTTTTGAGTCCCTTCAGGGGGGCCTATCTTATTCAACGTTGTTTTTTCT **************************	09
RHCE_ce_in2 RHCE_ce_in2 RHCE_Ce_in2 RHCE_CE_in2 RHD_in2	CACATACTGATAACTTAGCAAATGGCTATTGGAACAAAATGAAAATAAACGGAACCCTG CACATACTGATAACTTAGCAAATGGCTATTGGAACAAAAATGAAAATAAACGGAACCCTG CACATACTGATAACTTAGCAAATGGCTATTGGAACAAAAATGAAAATAAACGGAACCCTG CACATACTGATAACTTAGCAAATGGCTATTGGAACAAAAAATGAAAATAAACGGAACCCTG CACATACTGATAACTTAGCAAATGGCTATTGGAACAAAAAAAA	120 120 120 120 120
RHCE_ce_in2 RHCE_ce_in2 RHCE_ce_in2 RHCE_CE_in2 RHCE_in2	AAGTGGGATGTTTTAAATTTTTATTTTTTTAGAGACAGGGTCTTGCTCTGTTGCCC AAGTGGGATGTTTTAATTTTTTTTTT	180 180 180 180 177
RHCE_ce_in2 RHCE_ce_in2 RHCE_Ce_in2 RHCE_CE_in2 RHD_in2	AGTCTGGAGTGCAGTGGTACATCATAGCTCA	212 212 240 240 209
RHCE_ce_in2 RHCE_cE_in2 RHCE_Ce_in2 RHCE_CE_in2 RHCE_CE_in2	GCAACACCAAAACCAGGGCCACCATTTGAAATCCCCCAGGGTGCCCTTTGTCACTTCC GCAACACCAAAACCAGGGCCACCATTTGAAATCCCCCCAGGGTGCCCTTTGTCACTTCC	212 212 300 300 209

	(SEQ ID NO: 118) (SEQ ID NO: 119) (SEQ ID NO: 120) (SEQ ID NO: 121) (SEQ ID NO: 117)
251	308
251	308
360	417
360	417
248	305
TTGCAGCCTCTGCGCCTCGGGCTCAGGTGATCCTCCCAC	CTCAGCCTCCTGAGTTAAATTTTTTACAGACGCCTGCTACCATGCCCGGCTAAATTT CTCAGCCTCCTGAGTTAAATTTTTTTACAGACGCCTGCTACCATGCCCGGCTAATTT CTCAGCCTCCTGAGTTAAATTTTTTTACAGACGCCTGCTACCATGCCGGGCTAATTT CTCAGCCTCCTGAGTTAAATTTTTTTTACAGACGCCTGCTACCATGCCGGGCTAATTT
RHCE_ce_in2	RHCE_ce_in2

Figura 26B

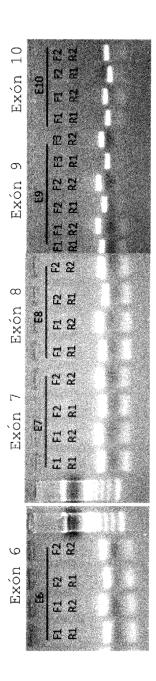
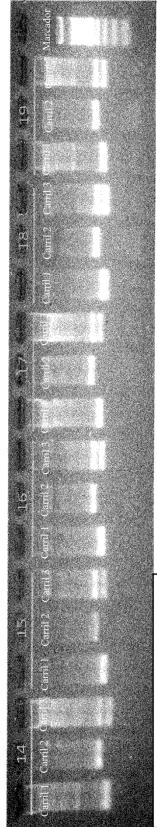



Figura 27. Amplificación de los Exones 6 a 10

Combinaciones de cebadores para el Intrón 2

Reacción 14: F3R6 Reacción 15: F2R6 Reacción 16: F1R3 Reacción 17: F1R4 Reacción 18: F3R8 Reacción 19: F2R4

Genotipos Carril 1: D/cc Carril 2: dd/CC

Carril 3: DD/CC

Figura 28. Amplificación del Intrón 2