

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 761 645

61 Int. Cl.:

H01Q 19/19 (2006.01) H01Q 5/47 (2015.01) H01Q 1/28 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 19.12.2016 PCT/EP2016/081811

(87) Fecha y número de publicación internacional: 22.06.2017 WO17103286

(96) Fecha de presentación y número de la solicitud europea: 19.12.2016 E 16810438 (8)

(97) Fecha y número de publicación de la concesión europea: 23.10.2019 EP 3391466

(54) Título: Antena de reflector doble y sistema de antenas relacionado para su uso a bordo de satélites con órbita terrestre baja para enlace descendente de datos de alto rendimiento y/o para telemetría, seguimiento y comando

(30) Prioridad:

18.12.2015 EP 15425110

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 20.05.2020

(73) Titular/es:

THALES ALENIA SPACE ITALIA S.P.A. CON UNICO SOCIO (100.0%) Via Saccomuro, 24 00131 Roma, IT

(72) Inventor/es:

MIZZONI, ROBERTO; RAVANELLI,RODOLFO y CAMPANA, PAOLO

74 Agente/Representante:

ARIAS SANZ, Juan

DESCRIPCIÓN

Antena de reflector doble y sistema de antenas relacionado para su uso a bordo de satélites con órbita terrestre baja para enlace descendente de datos de alto rendimiento y/o para telemetría, seguimiento y comando

Campo técnico de la invención

5

10

15

25

30

35

40

45

50

55

60

La presente invención se refiere, en general, a una antena de reflector doble y un sistema de antenas relacionado para su uso a bordo de un satélite o plataforma espacial para enlace descendente de datos (DDL) y/o para telemetría, seguimiento y comando (TT&C).

En particular, la presente invención se refiere a una antena de reflector doble para su uso a bordo de satélites con órbita terrestre baja (LEO) para DDL de alto rendimiento o para TT&C, y a un sistema de antenas integrado tanto para DDL como TT&C.

Antecedentes de la técnica

Habitualmente, satélites con órbita terrestre baja (LEO) orbitan a una altura de la Tierra que varía aproximadamente entre 400 y 800 km, generalmente se equipan con sistemas de observación de la Tierra, tal como radares de apertura sintética (SAR) y/o instrumentos ópticos, y se configuran para transmitir datos detectados remotamente a estaciones terrestres por medio de antenas de microondas. La transmisión desde satélites LEO a estaciones terrestres de datos detectados remotamente mediante sistemas de observación de la Tierra incorporados se denomina generalmente como enlace descendente de datos (DDL) y antenas usadas para esta función se conocen generalmente como antenas DDL.

Además, estaciones terrestres especiales, habitualmente llamadas estaciones de Telemetría, Seguimiento y Control (TT&C), se usan para supervisar y controlar la operación de satélites LEO. En términos generales, estaciones TT&C reciben datos de telemetría desde satélites LEO para supervisar la operación de los mismos, y transmitir comandos a satélites LEO para controlar la operación de los mismos y clasificar señales para rastrear dichos satélites. Por lo tanto, satélites LEO necesitan equiparse también con antenas TT&C para intercambio de datos TT&C.

Como se conoce, satélites LEO actuales están equipados con dos antenas separadas para DDL y TT&C, respectivamente. Este hecho provoca problemas de instalación, especialmente a bordo de satélites LEO equipados con grandes antenas y/o apéndices (tal como paneles solares, brazos, soportes, instrumentos, etc.), ya que tanto antenas DDL como TT&C requieren un campo de visión muy grande.

Hoy en día, todos los satélites LEO europeos para observación de la Tierra usan bandas S y X casi exclusivamente para TT&C y DDL (como se conoce ampliamente, la banda S se define como la porción de microondas del espectro electromagnético que incluye frecuencias que oscilan desde 2 a 4 GHz, mientras que la banda X se define como la porción de microondas del espectro electromagnético que incluye frecuencias que oscilan aproximadamente de 7 a 12 GHz), pero estas bandas cada vez están más congestionadas debido a su uso masivo. Por esta razón, recientemente se ha asignado una porción de banda K (como se conoce ampliamente, la banda K se define como la porción de microondas del espectro electromagnético que incluye frecuencias que oscilan desde 18 a 27 GHz) para DDL para aumentar capacidad de rendimiento de enlace descendente de satélites LEO, en el que dicha nueva porción de banda K asignada para DDL incluye frecuencias que oscilan de 25,5 a 27 GHz.

Adicionalmente, se ha propuesto una nueva asignación de frecuencia de banda X para TT&C por la Unión Internacional de Telecomunicaciones (ITU) en la Conferencia Mundial de Radiocomunicaciones 2015 (WRC-15) en relación con el Servicio de Exploración de la Tierra por Satélite (EESS), incluyendo el intervalo de frecuencia 7190-7250 MHz para el enlace ascendente TT&C. Esta nueva asignación de enlace ascendente puede usarse en combinación con la asignación de EESS existente del intervalo de frecuencia 8025-8400 MHz para el enlace descendente TT&C.

Como se conoce, antenas TT&C actuales que operan en banda S o X se basan normalmente en antenas de tipo hélice o antenas bicónicas, mientras soluciones actuales para DDL fijo en banda X desde satélites LEO principalmente emplean hélices o bocinas coaxiales parásitas. En esta conexión, vale la pena indicar que antenas de tipo alambre (es decir, soluciones basadas en hélices o alambre) no son aplicables a la nueva porción de banda K asignada para DDL debido a problemas tecnológicos y capacidad de manejo de potencia limitada (en particular, debido a problemas térmicos y descarga en corona). Además, soluciones de tipo bocina coaxial parásita para DDL están limitadas en la actualidad por un nivel bajo de discriminación de polarización cruzada, muy por encima del nivel aceptable para reutilización de frecuencia de polarización dual (es decir, mayor de discriminación de polarización cruzada de 20 dB).

En la actualidad se conocen sistemas de doble antena. Por ejemplo, el documento US 2005/099350 A1 divulga un sistema de antenas de foco en anillo multibanda, que incluye:

• un primer y un segundo reflector principal, teniendo cada uno una superficie conformada de revolución alrededor de un eje de puntería común de la antena;

- un primer alimentador de RF que es un sistema de tipo radiación regresiva para alimentar el primer reflector principal en una primera banda de frecuencia;
- un segundo alimentador de RF coaxial con el primer alimentador de RF para alimentar el segundo reflector principal
 en una segunda banda de frecuencia desplazada espectralmente de la primera banda de frecuencia;
- en el que una porción del segundo alimentador de RF pasa a través de un primer subreflector del alimentador de radiación regresiva, y el segundo alimentador de RF se termina a una distancia del primer subreflector para iluminar un segundo subreflector.

Además, el documento US 2015/340767 A1 divulga una antena dual que comprende un reflector principal, un subreflector, una hélice y una antena de alimentación; en la que:

- la antena de alimentación se coloca para recibir radiación reflejada por el subreflector y/o emitir radiación hacia el subreflector:
- la hélice se adapta para emitir radiación hacia y/o recibir radiación reflejada del reflector principal; y
- el subreflector se coloca entre el reflector principal y la hélice.

Adicionalmente, el documento EP 1 004 151 A2 divulga un sistema de antena que comprende un reflector principal y un elemento de alimentación para radiar o interceptar ondas electromagnéticas; en el que:

- el elemento de alimentación comprende un tubo de guía de ondas, un subreflector con ranuras o corrugaciones circulares y una unión dieléctrica en el espacio entre dicho subreflector y un extremo de dicho tubo de guía de ondas; y
 - el reflector principal tiene forma de paraboloide de foco de anillo.

25 Objeto y sumario de la invención

15

40

45

50

60

65

Un objeto general de la presente invención es el de proporcionar una tecnología de antena innovadora para su uso a bordo de un satélite o una plataforma espacial para DDL y/o TT&C.

30 Más en particular, un objeto específico de la presente invención es el de proporcionar un único sistema de antenas que integra tanto una antena DDL como una antena TT&C, de tal forma que limita obstáculos a bordo de satélites y plataformas espaciales, en particular a bordo de satélites LEO.

Estos y otros objetos se consiguen mediante la presente invención en que se refiere a un sistema de antena, como se define en las reivindicaciones adjuntas.

En particular, la presente invención se refiere a un sistema de antena diseñado para instalarse a bordo de un satélite o plataforma espacial y que comprende una primera antena y una segunda antena, en el que dicha segunda antena se alinea coaxialmente con, y se dispone encima de, la primera antena.

La primera antena es una primera antena de reflector doble que comprende un primer reflector principal y un primer subreflector dispuestos coaxialmente, y enfrentados, entre sí. La primera antena comprende además un primer alimentador coaxial, que se dispone coaxialmente con el primer reflector principal, el primer subreflector y la segunda antena, y que incluye un conductor exterior y un primer conductor interior que se disponen coaxialmente, y están separados, entre sí.

El primer alimentador coaxial se configura para alimentarse con primeras señales de microondas de enlace descendente a transmitirse por la primera antena, y para radiar dichas primeras señales de microondas de enlace descendente a través de una primera abertura de alimentación, que se ubica de forma central con respecto al primer reflector principal y que da en el primer subreflector. El primer conductor interior sobresale coaxialmente y hacia fuera desde la primera abertura de alimentación hasta el primer subreflector y se acopla rígidamente a dicho primer subreflector soportando de este modo dicho primer subreflector.

Se proporciona una línea de transmisión en el primer conductor interior para alimentar la segunda antena con segundas señales de microondas de enlace descendente a transmitirse por dicha segunda antena.

La segunda antena es una segunda antena de reflector doble que comprende un segundo reflector principal y un segundo subreflector dispuestos coaxialmente, y enfrentados, entre sí. El segundo reflector principal se dispone encima del primer subreflector.

La primera antena se configura para operar en banda X para telemetría, seguimiento y comando (TT&C), resultando de este modo en que las primeras señales de microondas de enlace descendente son señales de enlace descendente TT&C que tienen frecuencias comprendidas dentro de la banda X. El primer alimentador coaxial se configura también para recibir a través de la primera abertura de alimentación, y para permitir propagación de, señales de microondas de enlace ascendente que son señales de enlace ascendente TT&C recibidas por la primera antena y que tienen frecuencias comprendidas dentro de la banda X.

La segunda antena se configura para operar en banda K para enlace descendente de datos (DDL), resultando de este modo en que las segundas señales de microondas de enlace descendente son señales DDL que tienen frecuencias comprendidas dentro de la banda K.

Breve descripción de los dibujos

Para una mejor comprensión de la presente invención, realizaciones preferidas, que se conciben puramente como ejemplos no limitantes, se describirán ahora con referencia a los dibujos adjuntos (no a escala), en los que:

10

15

5

- La Figura 1 ilustra esquemáticamente una antena de reflector doble para su uso a bordo de satélites LEO para DDL o TT&C de acuerdo con una realización de un primer aspecto de la presente invención;
- Las Figuras 2-4 muestran un primer sistema de antenas integrado para su uso a bordo de satélites LEO tanto para DDL como TT&C de acuerdo con una primera realización preferida de un segundo aspecto de la presente invención;
- Las Figuras 5 y 6 muestran patrones de radiación relacionados con el primer sistema de antenas integrado mostrado en las Figuras 2-4:
- Las Figuras 7 y 8 muestran un segundo sistema de antenas integrado para su uso a bordo de satélites LEO tanto para DDL como TT&C de acuerdo con una segunda realización preferida del segundo aspecto de la presente invención; y
- La Figura 9 muestra un sistema de antenas integrado ilustrativo para su uso a bordo de satélites LEO tanto para DDL como TT&C

Descripción detallada de realizaciones preferidas de la invención

25

30

20

El siguiente análisis se presenta para habilitar que un experto en la materia realice y use la invención. Serán fácilmente evidentes para los expertos en la materia diversas modificaciones a las realizaciones, sin alejarse del alcance de la presente invención según se reivindica. Por lo tanto, la presente invención no pretende limitarse a las realizaciones mostradas y descritas, sino que se le otorgará el alcance más amplio consistente con los principios y características divulgados en este documento y definidos en las reivindicaciones adjuntas.

Un primer aspecto de la presente invención se refiere a una antena de reflector doble diseñada para instalarse a bordo de satélites y plataformas espaciales, en particular satélites LEO, para DDL en la banda X o K o para TT&C en la banda X.

35

En esta conexión se hace referencia a la Figura 1, que muestra una vista en sección transversal esquemática de una antena de reflector doble (indicada en su conjunto mediante 1) para su uso a bordo de satélites LEO para DDL o TTC de acuerdo con una realización de dicho primer aspecto de la presente invención.

La antena de reflector doble 1 se diseña para operar en la banda X o K y comprende un reflector principal 11 y un subreflector 12, que se disponen coaxialmente, y enfrentándose, entre sí, y que se conforman (es decir, perfilan) para proporcionar, en uso, una cobertura de DDL o TT&C predefinida con respecto a la superficie de la Tierra.

Convenientemente, el reflector principal 11 y el subreflector 12 están centrados en, y tienen, cada uno, una respectiva simetría rotacional con respecto a uno y el mismo eje de simetría.

La antena de reflector doble 1 comprende además un alimentador coaxial, que se dispone coaxialmente con el reflector principal 11 y el subreflector 12 y que incluye un conductor exterior 13 y un conductor interior 14 (en particular, conductores de microondas exteriores e interiores 13 y 14).

50

Dicho conductor exterior 13 está internamente hueco y finaliza con una abertura de alimentación 15, que se ubica de forma central con respecto al reflector principal 11 y da en el subreflector 12 (es decir, se dispone en frente de dicho subreflector 12). Convenientemente, el conductor exterior 13 tiene una forma tubular (o cilíndrica), y la abertura de alimentación 15 es una abertura circular.

55

El conductor interior 14 se extiende axialmente dentro del conductor exterior 13 y está separado de dicho conductor exterior 13, en el que un hueco de aire está presente entre dichos conductores exteriores e interiores 13 y 14. Además, dicho conductor interior 14 sobresale axialmente, hacia fuera y ortogonalmente desde la abertura de alimentación 15 hasta una porción central del subreflector 12, y se acopla/conecta rígidamente a dicha porción central del subreflector 12, soportando de este modo dicho subreflector 12.

60

Convenientemente, el conductor interior 14 puede ser una estructura de metal con forma cilíndrica y rígida acoplada/conectada rígida y eléctricamente a, y soportando rígidamente, el subreflector 12.

65 Preferentemente, el alimentador coaxial es una guía de ondas coaxial circular.

Más preferentemente, el alimentador coaxial es una guía de ondas coaxial circular diseñada para alimentarse con, para permitir propagación de y para radiar dos modos coaxiales en cuadratura. Más preferentemente, dichos dos modos coaxiales en cuadratura son modos TE11x y TE11y.

La arquitectura de la antena de reflector doble 1 tiene varias mejoras sustanciales con respecto a otros sistemas de antena conocidos que se basan en ópticas de doble superficie reflectora, tal como la solución conocida en la bibliografía como "Axial Displaced Ellipse" (ADE) (a este respecto, puede hacerse referencia a, por ejemplo, J.R. Bergmann, F.J.S. Moreira, *An omnidirectional ADE reflector antenna*, Microwave and Optical Technology Letters, Vol. 40, Edición 3, Febrero de 2004).

En particular, las diferencias entre la antena de reflector doble 1 y una antena ADE típica son:

- el conductor interior 14 se prolonga axialmente desde la abertura de alimentación 15 para sostener rígidamente el subreflector 12 y, por lo tanto, sin necesidad de radomo o puntales para soportar dicho subreflector 12;
- el subreflector 12 se autoconecta a tierra debido a la conexión eléctrica con el conductor interior 14, evitando de este modo cualquier problema de descarga electrostática (ESD);
 - la distancia entre el reflector principal 11 y el subreflector 12 es preferentemente menor que una longitud de onda, conduciendo a un conjunto acoplado electromagnético fuerte (proporcionando un diseño que no se basa en óptica geométrica);
- convenientemente, las superficies reflectoras del reflector principal 11 y el subreflector 12 son superficies moduladas (corrugadas y/o conformadas) y, por lo tanto, no son superficies analíticas según el diseño ADE;
 - Preferentemente, la alimentación coaxial directa de la antena de reflector doble 1 se basa en dos modos coaxiales en cuadratura (es decir, TE11x y TE11y) y no en modos diferentes (TEM o TM01/TE01), obteniendo de este modo niveles bajos de polarización cruzada y haciendo más fácil la fabricación de antenas.

25

30

15

- Adicionalmente, un segundo aspecto de la presente invención se refiere a un sistema de antenas integrado para su uso a bordo de satélites y plataformas espaciales, en particular satélites LEO, cuyo sistema de antenas integrado incluye dos antenas dispuestas una encima de otra, una para DDL y la otra para TT&C; en el que la antena inferior es una antena de reflector doble diseñada de acuerdo con el primer aspecto de la presente invención; en el que se proporciona (es decir, dispone o formado) una línea de transmisión (tal como una guía de ondas coaxial circular/cuadrada/rectangular, o un cable coaxial, o una guía de ondas circular/cuadrada/rectangular) en el conductor interior del alimentador coaxial de la antena inferior de reflector doble para alimentar la antena superior; y en el que las antenas inferior y superior se alinean coaxialmente para obtener una configuración muy compacta.
- Por lo tanto, el segundo aspecto de la presente invención da a conocer integrar una antena DDL y una antena TT&C en un único sistema de antenas, permitiendo de este modo coubicar dichas ambas antenas a bordo de satélites LEO y, por lo tanto, proporcionando una solución que es particularmente ventajosa en esos escenarios en los que espacio a bordo de satélites LEO está fuertemente limitado por la presencia de otras antenas/apéndices.
- Para un mejor entendimiento del segundo aspecto de la presente invención, las Figuras 2, 3 y 4 muestran un primer sistema de antenas integrado (indicado en su conjunto mediante 2) para su uso a bordo de satélites LEO tanto para DDL como TTC de acuerdo con una primera realización preferida de dicho segundo aspecto de la presente invención. En particular, la Figura 2 es una vista en sección transversal esquemática de dicho primer sistema de antenas integrado 2, mientras que la Figura 3 y 4 son vistas en perspectiva y laterales del mismo.

45

- En detalle, el primer sistema de antenas integrado 2 incluye una antena TT&C 21 y una antena DDL 22, en el que dicha antena DDL 22 se dispone encima de, y se alinea coaxialmente con, dicha antena TT&C 21.
- Las antenas TT&C y DDL 21 y 22 son antenas de reflector doble diseñadas para operar, respectivamente, en la banda 50 X y en la banda K.
 - En particular, la antena TT&C 21 comprende un primer reflector principal 211 y un primer subreflector 212, que se disponen coaxialmente, y enfrentándose, entre sí, y que se conforman (es decir, perfilan) para proporcionar, en uso, una cobertura TT&C predefinida con respecto a la superficie de la Tierra.

- La antena DDL 22 comprende un segundo reflector principal 221 y un segundo subreflector 222, que se disponen coaxialmente, y enfrentándose, entre sí, y que se conforman (es decir, perfilan) para proporcionar, en uso, una cobertura de DDL predefinida con respecto a la superficie de la Tierra.
- 60 El primer reflector principal y subreflector 211, 212 y el segundo reflector principal y subreflector 221, 222 se disponen coaxialmente entre sí, en el que el segundo reflector principal 221 se ubica encima de (es decir, sobre) una parte trasera del primer subreflector 212.
- Convenientemente, el primer reflector principal y subreflector 211, 212 y el segundo reflector principal y subreflector 221, 222 están centrados en, y tienen, cada uno, una respectiva simetría rotacional con respecto a uno y el mismo eje

de simetría.

5

20

30

40

45

50

65

Convenientemente, la proyección de la antena (superior) DDL 22 no excede el tamaño del primer subreflector 212, resultando de este modo en que la antena (inferior) TT&C 21 tiene campo de visión amplio y libre de obstáculos para TT&C.

Convenientemente, el primer subreflector 212 puede hacerse como una primera superficie reflectante formada en una porción inferior de una estructura de interfaz con forma de disco coaxial con las antenas TT&C y DDL 21 y 22, y el segundo reflector principal 221 puede hacerse como una segunda superficie reflectante formada en una porción superior de dicha estructura de interfaz con forma de disco, en el que dicha porción superior se ubica en o sobre dicha porción inferior de dicha estructura de interfaz con forma de disco, y en el que dichas porciones superior e inferior de dicha estructura de interfaz con forma de disco dan en (es decir, se ubican en frente de) el segundo subreflector 222 y el primer reflector principal 211, respectivamente.

- Preferentemente, el primer reflector principal 211 y el primer subreflector 212 se perfilan para un patrón de antena TT&C de banda X (hasta semi-ángulo de 95°) en el espectro de frecuencia ITU ampliado de 7,19-8,4 GHz, mientras que la antena DDL 22 se diseña para proporcionar un patrón de isoflujo de cobertura amplia de DDL en la banda K en polarización cruzada baja dentro de un campo de visión de +/-63°, que es típico para un satélite que orbita a 600 km de la Tierra.
 - El primer sistema de antenas integrado 2 comprende además un conductor exterior 23, un conductor intermedio 24 y un conductor interior 25 (en particular, conductores de microondas exterior, intermedio e interior 23, 24, 25).
- El conductor exterior 23 está hueco internamente, se diseña para alimentarse internamente, a través de un puerto de entrada/salida TT&C 231, con señales de enlace descendente TT&C de banda X a transmitirse por la antena TT&C 21, y finaliza con una abertura de alimentación TT&C 232, que se ubica de forma central con respecto al primer reflector principal 211 y da en el primer subreflector 212 (es decir, se dispone en frente de dicho primer subreflector 212), en el que dicho puerto de entrada/salida TT&C 231 y dicha abertura de alimentación TT&C 232 se ubican, respectivamente, en un primer extremo y en un segundo extremo de dicho conductor exterior 23.
 - Convenientemente, el conductor exterior 23 tiene una forma tubular (o cilíndrica), y la abertura de alimentación TT&C 232 es una abertura circular.
- El conductor intermedio 24 es una estructura hueca internamente y rígida, se diseña para alimentarse internamente, a través de un puerto de entrada de DDL 241, con señales DDL de banda K a transmitirse por la antena DDL 22, e incluye:
 - una parte inferior que se extiende coaxialmente (al menos en parte) dentro del conductor exterior 23 hasta la abertura de alimentación TT&C 232 y que está separada de dicho conductor exterior 23, en el que un primer hueco de aire está presente entre dicho conductor exterior 23 y dicha porción inferior del conductor intermedio 24; y
 - una porción superior que
 - sobresale coaxialmente, hacia fuera y ortogonalmente desde la abertura de alimentación TT&C 232 hasta una porción central del primer subreflector 212,
 - se acopla/conecta rígidamente a dicha porción central del primer subreflector 212 soportando de este modo dicho primer subreflector 212, y
 - se extiende también sobre dicho primer subreflector 212 hasta el segundo reflector principal 221, finalizando con una abertura de alimentación de DDL 242, que se ubica de forma central con respecto al segundo reflector principal 221 y da en el segundo subreflector 222 (es decir, se dispone en frente de dicho segundo subreflector 222).

El puerto de entrada de DDL 241 y la abertura de alimentación de DDL 242 se ubican, respectivamente, en un primer extremo y en un segundo extremo del conductor intermedio 24.

55 Convenientemente, también el conductor intermedio 24 tiene una forma tubular (o cilíndrica), y la abertura de alimentación de DDL 242 es una abertura circular.

El conductor interior 25 es una estructura rígida e incluye:

- una parte inferior que se extiende axialmente dentro del conductor intermedio 24 hasta la abertura de alimentación de DDL 242 y que está separada de dicho conductor intermedio 24, en el que un segundo hueco de aire está presente entre dicho conductor intermedio 24 y dicha porción inferior del conductor interior 25; y
 - una porción superior que sobresale axialmente, hacia fuera y ortogonalmente desde la abertura de alimentación de DDL 242 hasta una porción central del segundo subreflector 222, y se acopla/conecta rígidamente a dicha porción central del segundo subreflector 222 soportando de este modo dicho segundo subreflector 222.

Convenientemente, el conductor interior 25 puede ser una estructura de metal con forma cilíndrica y rígida acoplada/conectada rígida y eléctricamente a, y soportando rígidamente, el segundo subreflector 222.

El conductor exterior 23, la porción inferior del conductor intermedio 24 y el primer hueco de aire definen (o forman) un primer alimentador coaxial (preferentemente, una guía de ondas coaxial circular) diseñada para permitir que:

5

10

15

20

25

35

65

- las señales de enlace descendente TT&C de banda X se propaguen desde el puerto de entrada/salida TT&C 231
 hasta la abertura de alimentación TT&C 232; y
- señales de enlace ascendente TT&C de banda X recibidas por la antena TT&C 21 se propaguen desde dicha abertura de alimentación TT&C 232 hasta dicho puerto de entrada/salida TT&C 231.

El conductor intermedio 24, la porción inferior del conductor interior 25 y el segundo hueco de aire definen (o forman) un segundo alimentador coaxial (preferentemente, una guía de ondas coaxial circular) diseñada para permitir que las señales DDL de banda K se propaguen desde el puerto de entrada de DDL 241 hasta la abertura de alimentación de DDL 242.

Preferentemente, el segundo alimentador coaxial es una guía de ondas coaxial circular diseñada para alimentarse con, para permitir propagación de, y para radiar dos modos coaxiales en cuadratura. Más preferentemente, dichos dos modos coaxiales en cuadratura son modos TE11x y TE11y.

Las principales ventajas técnicas del primer sistema de antenas integrado 2 sobre una antena ADE típica son:

- la integración coaxial de la antena DDL de reflector doble superior 22 encima de la antena TT&C de reflector doble inferior 21, en el que el conductor exterior 23 se usa para alimentar coaxialmente la antena TT&C de reflector doble inferior 21, el conductor intermedio 24 se usa para soportar rígidamente el primer subreflector 212 (por lo tanto, sin necesidad de radomo o puntales) y para alimentar coaxialmente la antena DDL de reflector doble superior 22, y el conductor interior 25 se usa para soportar rígidamente el segundo subreflector 222 (por lo tanto, de nuevo sin necesidad de radomo o puntales);
- el primer y segundo subreflectores 212 y 222 se autoconectan a tierra debido a la conexión eléctrica con los conductores intermedio e interior 24 y 25, respectivamente, evitando de este modo cualquier problema de descarga electroestática (ESD);
 - la distancia entre el primer reflector principal 211 y el primer subreflector 212 y la distancia entre el segundo reflector principal 221 y el segundo subreflector 222 son preferentemente menores que una longitud de onda, conduciendo a dos conjuntos acoplados electromagnéticos fuertes (proporcionando un diseño que no se basa en óptica geométrica);
 - convenientemente, las superficies reflectoras del primer y segundo reflectores principales 211 y 221 y del primer y segundo subreflectores 212 y 222 son superficies moduladas (corrugadas y/o conformadas) y, por lo tanto, no son superficies analíticas como de acuerdo con diseño ADE;
- preferentemente, la alimentación coaxial directa de la antena DDL de reflector doble superior 22 se basa en dos modos coaxiales en cuadratura (es decir, TE11x y TE11y) y no en modos diferenciales (TEM o TM01/TE01), obteniendo de este modo niveles bajos de polarización cruzada y haciendo más fácil la fabricación de antenas.

Las Figuras 5 y 6 muestran patrones de radiación relacionados con el primer sistema de antenas integrado 2. En particular, la Figura 5 muestra patrones de radiación de copolarización y polarización cruzada de la antena TT&C de reflector doble de banda X inferior 21 en el intervalo de frecuencia de 7190-7250 MHz de enlace ascendente TT&C y en el intervalo de frecuencia de 8025-8400 MHz de enlace descendente TT&C, mientras que la Figura 6 muestra patrones de copolarización y polarización cruzada de radiación de la antena DDL de reflector doble de banda K superior 22 en el intervalo de frecuencia de 25,5-27,0 GHz de DDL.

50 Como se muestra en la Figura 6, la antena DDL 22 exhibe una figura alta de discriminación de polarización cruzada, permitiendo de este modo reutilización de polarización.

Las antenas de reflector doble TT&C y DDL 21 y 22 tienen un diseño similar y pueden considerarse como una evolución nueva e innovadora de la bocina coaxial parásita descrita en R. Ravanelli et al. *"Multi-Objective Optimization of XBA Sentinel Antenna"*, Actas de la 5ª Conferencia Europea de Antenas y Propagación (EUCAP), Roma, 1-15 de abril de 2011.

De hecho, de forma diferente de la solución de acuerdo con "*Multi-Objective Optimization of XBA Sentinel Antenna*", las antenas DDL y TT&C de reflector doble 21 y 22 se caracterizan por la arquitectura coaxial de soporte de subreflector y alimentación anteriormente descrita en detalle.

Además, la antena TT&C de reflector doble 21 (en particular, el primer reflector principal 211 y subreflector 212) y la antena de reflector doble DDL 22 (en particular, el segundo reflector principal 221 y subreflector 222) se perfilan numéricamente para proporcionar, cada una, la ganancia deseada sobre cobertura, en el que la antena superior DDL de reflector doble 22 proporciona también discriminación de polarización cruzada alta, tiene pérdidas bajas y no

proporciona ningún obstáculo a la antena inferior TT&C de reflector doble 21, con acoplamiento hacia atrás insignificante hacia el primer reflector principal 211.

- De acuerdo con una realización alternativa, un radomo puede usarse convenientemente, en lugar del conductor interior 25, para soportar el segundo subreflector 222. En este caso, la antena DDL 22 se alimenta a través de una abertura de guía de ondas circular más grande por encima del corte excitado por dos modos en cuadratura de guía de ondas circular fundamentales TE11x y TE11y.
- Las Figuras 7 y 8 muestran un segundo sistema de antenas integrado (indicado en su conjunto mediante 3) para su uso a bordo de satélites LEO tanto para DDL como TTC de acuerdo con una segunda realización preferida de dicho segundo aspecto de la presente invención. En particular, la Figura 7 es una vista en sección transversal esquemática de dicho segundo sistema de antenas integrado 3, mientras que la Figura 8 es una vista en perspectiva de una antena superior de dicho segundo sistema de antenas integrado 3.
- 15 En detalle, el segundo sistema de antenas integrado 3 incluye una antena TT&C 31 y una antena DDL 32, en el que dicha antena DDL 32 se dispone encima de, y se alinea coaxialmente con, dicha antena TT&C 31.
 - Las antenas TT&C y DDL 31 y 32 son antenas de reflector doble diseñadas para operar, respectivamente, en la banda X y en la banda K.
 - En particular, la antena TT&C 31 comprende un primer reflector principal 311 y un primer subreflector 312, que se disponen coaxialmente, y enfrentándose, entre sí, y que se conforman (es decir, perfilan) para proporcionar, en uso, una cobertura TT&C predefinida con respecto a la superficie de la Tierra.
- La antena DDL 32 comprende un segundo reflector principal 321 y un segundo subreflector 322, que se disponen coaxialmente, y enfrentándose, entre sí, y que se conforman (es decir, perfilan) para proporcionar, en uso, una cobertura de DDL predefinida con respecto a la superficie de la Tierra.
- El primer reflector principal y subreflector 311, 312 y el segundo reflector principal y subreflector 321, 322 se disponen coaxialmente entre sí, en el que el segundo reflector principal 321 se ubica encima de (es decir, sobre) una parte trasera del primer subreflector 312.
 - Convenientemente, el primer reflector principal y subreflector 311, 312 y el segundo reflector principal y subreflector 321, 322 están centrados en, y tienen, cada uno, una respectiva simetría rotacional con respecto a uno y el mismo eje de simetría.
 - Convenientemente, la proyección de la antena (superior) DDL 32 no excede el tamaño del primer subreflector 312, resultando de este modo en que la antena (inferior) TT&C 31 tiene campo de visión amplio y libre de obstáculos para TT&C.
 - Convenientemente, el primer subreflector 312 puede hacerse como una primera superficie reflectante formada en una porción inferior de una estructura de interfaz con forma de disco coaxial con las antenas TT&C y DDL 31 y 32, y el segundo reflector principal 321 puede hacerse como una segunda superficie reflectante formada en una porción superior de dicha estructura de interfaz con forma de disco, en el que dicha porción superior se ubica en o sobre dicha porción inferior de dicha estructura de interfaz con forma de disco, y en el que dichas porciones superior e inferior de dicha estructura de interfaz con forma de disco dan en (es decir, se ubican en frente de) el segundo subreflector 322 y el primer reflector principal 311, respectivamente.
- El segundo sistema de antenas integrado 3 comprende además un conductor exterior 33 y un conductor interior 34 (en particular, conductores de microondas exteriores e interiores 33, 34).
 - El conductor exterior 33 está hueco internamente, se diseña para alimentarse internamente, a través de un puerto de entrada/salida TT&C 331, con señales de enlace descendente TT&C de banda X a transmitirse por la antena TT&C 31, y finaliza con una abertura de alimentación TT&C 332, que se ubica de forma central con respecto al primer reflector principal 311 y da en el primer subreflector 312 (es decir, se dispone en frente de dicho primer subreflector 312); en el que dicho puerto de entrada/salida TT&C 331 y dicha abertura de alimentación TT&C 332 se ubican, respectivamente, en un primer extremo y en un segundo extremo de dicho conductor exterior 33.
- Convenientemente, el conductor exterior 33 tiene una forma tubular (o cilíndrica), y la abertura de alimentación TT&C 332 es una abertura circular.
 - El conductor interior 34 es una estructura hueca internamente y rígida, se diseña para alimentarse internamente, a través de un puerto de entrada de DDL 341, con señales DDL de banda K a transmitirse por la antena DDL 32, e incluye:
 - una parte inferior que se extiende coaxialmente (al menos en parte) dentro del conductor exterior 33 hasta la

8

65

20

35

40

45

abertura de alimentación TT&C 332 y que está separada de dicho conductor exterior 33, en el que un hueco de aire está presente entre dicho conductor exterior 33 y dicha porción inferior del conductor interior 34; y

• una porción superior que

5

15

- sobresale coaxialmente, hacia fuera y ortogonalmente desde la abertura de alimentación TT&C 332 hasta una porción central del primer subreflector 312, y
- finaliza con una porción de transición escalonada 342 que se acopla/conecta rígidamente a dicha porción central del primer subreflector 312 soportando de este modo dicho primer subreflector 312.
- 10 Convenientemente, también el conductor interior 34 tiene una forma tubular (o cilíndrica).

El primer sistema de antenas integrado 3 comprende además una estructura dieléctrica, que incluye:

- una parte inferior 351 que se extiende axialmente desde la porción de transición escalonada 342 del conductor interior 34, sobre el primer subreflector 312 hasta el segundo reflector principal 321; y
- una porción superior 352 que sobresale coaxialmente y hacia fuera desde dicho segundo reflector principal 321 hasta el segundo subreflector 322 y que se acopla/conecta rígidamente a dicho segundo subreflector 322 soportando de este modo este último.
- Preferentemente, dicha porción superior 352 de la estructura dieléctrica tiene forma de cono y el segundo subreflector 322 es un subreflector metálico pulverizado (más preferentemente, un subreflector de aluminio pulverizado) dispuesto encima de, y soportado por, dicha porción superior con forma de cono 352 de la estructura dieléctrica.
- El conductor exterior 33, la porción inferior del conductor interior 34 y el hueco de aire entre los mismos definen (o forman) un primer alimentador de tipo coaxial (preferentemente, una guía de ondas coaxial circular) diseñada para permitir que:
 - las señales de enlace descendente TT&C de banda X se propaguen desde el puerto de entrada/salida TT&C 331 hasta la abertura de alimentación TT&C 332; y
- señales de enlace ascendente TT&C de banda X recibidas por la antena TT&C 31 se propaguen desde dicha abertura de alimentación TT&C 332 hasta dicho puerto de entrada/salida TT&C 331.

El conductor interior 34 y la estructura dieléctrica definen (o forman) un segundo alimentador diseñado para permitir que las señales DDL de banda K se propaguen desde el puerto de entrada de DDL 341 hasta el segundo subreflector 35 322.

Preferentemente, el conductor interior 34 es una guía de ondas circular diseñada para alimentarse con y para permitir propagación de dos modos en cuadratura de guía de ondas circular fundamentales TE11x y TE11y.

El segundo sistema de antenas integrado 3 y también la configuración de acuerdo con la realización alternativa anteriormente mencionada del primer sistema de antenas integrado 2 que emplea un radomo para soportar el subreflector DDL superior 222 permiten alcanzar rendimiento de discriminación de polarización cruzada ligeramente mayor que el primer sistema de antenas integrado 2 ilustrado en las Figuras 2-4, pero requiere estar protegido contra ESD y mecánicamente es menos adecuado para sostener cargas laterales en lanzamiento.

La Figura 9 muestra un sistema de antenas integrado ilustrativo (indicado en su conjunto mediante 4) para su uso a bordo de satélites LEO para TT&C y DDL.

En particular, el sistema de antenas integrado 4 es compatible con bandas de frecuencia de ITU estándar actuales para servicios TT&C y DDL, e incluye una antena DDL de reflector doble de banda X 41 diseñada de acuerdo con el primer aspecto de la presente invención, y una antena helicoidal TT&C de banda S/X 42 (es decir, una antena helicoidal diseñada para operar en la banda S o X), que se dispone encima de, y coaxialmente alineada con, dicha antena DDL de reflector doble de banda X 41; en el que el conductor interior del alimentador coaxial (preferentemente, una guía de ondas coaxial circular) de dicha antena DDL de reflector doble de banda X 41 está hueco internamente, y un cable coaxial de radiofrecuencia (RF) se dispone dentro de dicho conductor interior para alimentar la antena helicoidal TT&C de banda S/X 42.

Convenientemente, el subreflector de la antena DDL de reflector doble de banda X 41 se hace como una primera superficie reflectora formada en una porción inferior de una estructura de interfaz con forma de disco 43 que es coaxial con dicha antena DDL de reflector doble de banda X 41 y dicha antena helicoidal TT&C de banda S/X 42, en el que dicha antena helicoidal TT&C de banda S/X 42 se dispone en una porción superior de dicha estructura de interfaz con forma de disco 43 (ubicándose dicha porción superior en o sobre dicha porción inferior de la estructura de interfaz con forma de disco 43, y dicha porción inferior y, por lo tanto, dando dicho subreflector en el reflector principal 411 de la antena DDL de reflector doble de banda X 41).

De nuevo convenientemente, el cable coaxial RF se extiende axialmente dentro del conductor interior del alimentador

9

65

coaxial de la antena de reflector doble DDL de banda X 41 y también sobre el subreflector de la misma, a través de la estructura de interfaz con forma de disco 43 hasta la antena helicoidal TT&C de banda S/X 42, y se conecta a dicha antena helicoidal TT&C de banda S/X 42 para:

- alimentar dicha antena helicoidal TT&C de banda S/X 42 con señales de enlace descendente TT&C de banda S/X a transmitir; y
 - recibir señales de enlace ascendente TT&C de banda S/X recibidas por dicha antena helicoidal TT&C de banda S/X 42.
- 10 Preferentemente, el reflector principal y el subreflector de la antena DDL de reflector doble de banda X 41 se perfilan para proporcionar un patrón de radiación de isoflujo en discriminación de polarización cruzada alta.

Para TT&C de banda S, también puede usarse convenientemente una antena de parche en lugar de la antena helicoidal 42. En su lugar, para TT&C de banda X, puede usarse convenientemente un radiador de abertura de guía de ondas o una antena de parche en lugar de la antena helicoidal 42.

Las ventajas del segundo aspecto de la presente invención están inmediatamente claras a partir de lo anterior.

En particular, vale la pena remarcar que ninguna de las soluciones de antena actualmente conocidas para satélites 20 LEO proporcionan un sistema de antenas integrado que realiza una función DDL y TT&C combinada con coberturas DDL y TT&C libres de obstáculos.

Más en detalle, una ventaja importante del sistema de antenas DDL y TT&C integrado de acuerdo con el segundo aspecto de la presente invención es la mínima interferencia recíproca entre las dos antenas DDL y TT&C integradas, y la fácil y única asignación/instalación a bordo de una nave espacial/satélite considerando los campos de visión de gran cobertura requeridos para las funciones DDL y TT&C (cerca del hemisferio). De hecho, el sistema de antenas DDL y TT&C integrado de acuerdo con el segundo aspecto de la presente invención, mediante la integración de las funciones DDL y TT&C en un único conjunto de antena, permite minimizar problemas de instalación e interferencia a bordo de satélites LEO. En particular, la explotación del sistema de antenas DDL y TT&C integrado de acuerdo con el segundo aspecto de la presente invención es particularmente ventajosa a bordo de satélites pequeños (o plataformas espaciales pequeñas) equipadas con grandes antenas/apéndices que limitan enormemente campos de visión disponibles para servicios DDL y TT&C.

Una ventaja adicional del sistema de antenas DDL y TT&C integrado de acuerdo con el segundo aspecto de la presente invención es que el diseño de antena DDL se caracteriza por alta pureza de polarización, permitiendo reutilización de frecuencia del espectro con alta velocidad de transmisión de datos a la Tierra. En particular, el sistema de antenas DDL y TT&C integrado de acuerdo con el segundo aspecto de la presente invención aumenta la capacidad de transmisión de carga útil de DDL a través de reutilización de polarización del especto de microondas asignado gracias a la capacidad de discriminación de polarización alta de la antena DDL (específicamente, gracias a la alta discriminación de polarización alcanzable entre polarización circular dextrógira (RHCP) y polarización circular levógira (LHCP)).

Una ventaja adicional es la compatibilidad de tecnología con alta potencia, y migración de mayor frecuencia/bandas más grandes. En particular, el sistema de antenas DDL y TT&C integrado de acuerdo con el segundo aspecto de la presente invención es compatible con actuales y futuros espectros asignados a los servicios DDL y TT&C.

45

En conclusión, es evidente que pueden realizarse numerosas modificaciones y variantes a la presente invención, perteneciendo todas al alcance de la invención, como se definen en las reivindicaciones adjuntas.

REIVINDICACIONES

- 1. Sistema de antenas (2, 3) diseñado para instalarse a bordo de un satélite o plataforma espacial y que comprende una primera antena (21, 31) y una segunda antena (22, 32), en el que dicha segunda antena (22, 32) se alinea coaxialmente con, y se dispone encima de, la primera antena (21, 31);
- en el que la primera antena (21, 31) es una primera antena de reflector doble que comprende un primer reflector principal (211, 311) y un primer subreflector (212, 312) dispuestos coaxialmente, y enfrentados, entre sí;
- comprendiendo la primera antena (21, 31) además un primer alimentador coaxial, que se dispone coaxialmente con el primer reflector principal (211, 311), el primer subreflector (212, 312) y la segunda antena (22, 32), y que incluye un conductor exterior (23, 33) y un primer conductor interior (24, 34) que se disponen coaxialmente, y están separados, entre sí;
 - en el que el primer alimentador coaxial se configura para alimentarse con primeras señales de microondas de enlace descendente a transmitirse por la primera antena (21, 31), y para radiar dichas primeras señales de microondas de enlace descendente a través de una primera abertura de alimentación (232, 332), que se ubica de forma central con respecto al primer reflector principal (211, 311) y que se configura para radiar en el primer subreflector (212, 312);
 - en el que el primer conductor interior (24, 34) sobresale coaxialmente y hacia fuera desde la primera abertura de alimentación (232, 332) hasta el primer subreflector (212, 312) y se acopla rígidamente a dicho primer subreflector (212, 312) soportando de este modo dicho primer subreflector (212, 312);

15

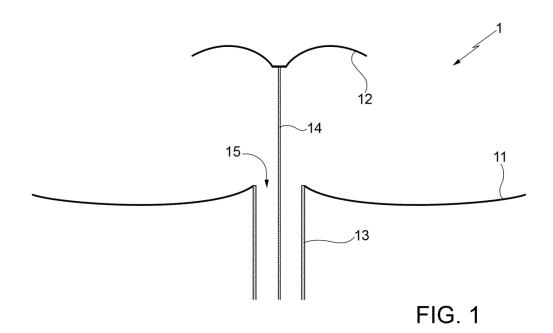
35

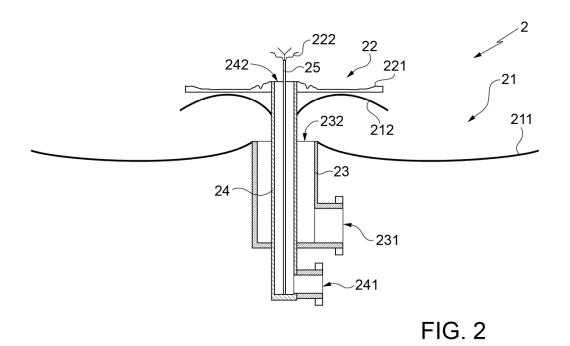
- en el que se proporciona una línea de transmisión en el primer conductor interior (24, 34) para alimentar la segunda 20 antena (22, 32) con segundas señales de microondas de enlace descendente a transmitirse por dicha segunda antena (22, 32);
 - en el que la segunda antena (22, 32) es una segunda antena de reflector doble que comprende un segundo reflector principal (221, 321) y un segundo subreflector (222, 322) dispuestos coaxialmente, y enfrentados, entre sí; caracterizado porque el segundo reflector principal (221, 321) se dispone encima del primer subreflector (212, 312);
- en el que la primera antena (21, 31) se configura para operar en banda X para telemetría, seguimiento y comando, resultando de este modo en que las primeras señales de microondas de enlace descendente son señales de enlace descendente de telemetría, seguimiento y comando que tienen frecuencias comprendidas dentro de la banda X; en el que el primer alimentador coaxial se configura adicionalmente para recibir a través de la primera abertura de
- alimentación (232, 332), y para permitir propagación de, señales de microondas de enlace ascendente que son señales de enlace ascendente de telemetría, seguimiento y comando recibidas por la primera antena (21, 31) y que tienen frecuencias comprendidas dentro de la banda X;
 - y en el que la segunda antena (22, 32) se configura para operar en banda K para enlace descendente de datos, resultando de este modo en que las segundas señales de microondas de enlace descendente son señales de enlace descendente de datos que tienen frecuencias comprendidas dentro de la banda K.
 - 2. El sistema de antenas de la reivindicación 1, en el que el primer reflector principal (211, 311) y el primer subreflector (212, 312) están separados entre sí por una primera distancia más pequeña que una primera longitud de onda mínima dada del primer enlace descendente y señales de microondas de enlace ascendente;
- y en el que el segundo reflector principal (221, 321) y el segundo subreflector (222, 322) están separados entre sí por 40 una segunda distancia más pequeña que una segunda longitud de onda mínima dada de las segundas señales de microondas de enlace descendente.
 - 3. El sistema de antenas de acuerdo con la reivindicación 1 o 2, en el que el conductor exterior (23) está internamente hueco y finaliza con la primera abertura de alimentación (232);
- en el que el primer conductor interior (24) está hueco internamente e incluye una primera porción, que se extiende coaxialmente dentro del conductor exterior (23) hasta la primera abertura de alimentación (232) y está separado del conductor exterior (23);
 - en el que un primer hueco de aire está presente entre el conductor exterior (23) y la primera porción del primer conductor interior (24);
- en el que el conductor exterior (23), la primera porción del primer conductor interior (24) y el primer hueco de aire definen el primer alimentador coaxial;
 - en el que el primer conductor interior (24) también incluye una segunda porción que:
- se extiende desde la primera porción de dicho primer conductor interior (24), sobresaliendo coaxialmente y hacia fuera desde la primera abertura de alimentación (232) hasta una porción central del primer subreflector (212);
 - se acopla rígida y eléctricamente a dicha porción central del primer subreflector (212), resultando de este modo en que dicho primer subreflector (212) se soporta por dicho primer conductor interior (24) y también se autoconecta a tierra; y
- se extiende también sobre dicho primer subreflector (212) hasta el segundo reflector principal (221), finalizando con una segunda abertura de alimentación (242), que se ubica de forma central con respecto al segundo reflector principal (221) y que se configura para radiar en el segundo subreflector (222);
 - comprendiendo el sistema de antenas (2) además un segundo conductor interior (25), que incluye una primera porción que se extiende axialmente dentro del primer conductor interior (24) hasta la segunda abertura de alimentación (242) y que está separado del primer conductor interior (24):
 - en el que un segundo hueco de aire está presente entre el primer conductor interior (24) y la primera porción del

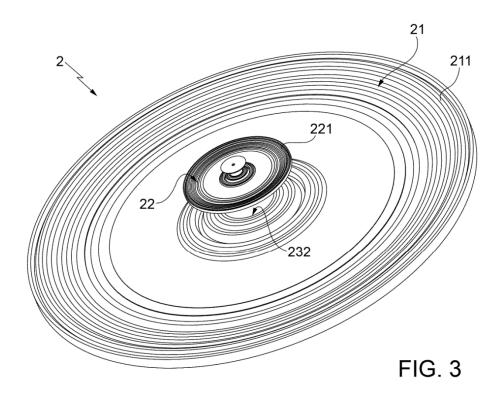
segundo conductor interior (25);

30

45


50


en el que el primer conductor interior (24), la primera porción del segundo conductor interior (25) y el segundo hueco de aire definen la línea de transmisión, resultando de este modo en que dicha línea de transmisión es un segundo alimentador coaxial;


- 5 en el que el segundo conductor interior (25) también incluye una segunda porción que:
 - se extiende desde la primera porción de dicho segundo conductor interior (25), sobresaliendo axialmente y hacia fuera desde la segunda abertura de alimentación (242) hasta una porción central del segundo subreflector (222);
 v
- se acopla rígida y eléctricamente a dicha porción central del segundo subreflector (222), resultando de este modo en que dicho segundo subreflector (222) se soporta por dicho segundo conductor interior (25) y también se autoconecta a tierra.
- 4. El sistema de antenas de acuerdo con la reivindicación 1 o 2, en el que el conductor exterior (33) está internamente hueco y finaliza con la primera abertura de alimentación (332):
 - en el que el primer conductor interior (34) está hueco internamente e incluye una primera porción, que se extiende coaxialmente dentro del conductor exterior (33) hasta la primera abertura de alimentación (332) y está separado del conductor exterior (33);
- en el que un primer hueco de aire está presente entre el conductor exterior (33) y la primera porción del primer 20 conductor interior (34);
 - en el que el conductor exterior (33), la primera porción del primer conductor interior (34) y el primer hueco de aire definen el primer alimentador coaxial;
 - en el que el primer conductor interior (34) también incluye una segunda porción que:
- se extiende desde la primera porción de dicho primer conductor interior (34), sobresaliendo coaxialmente y hacia fuera desde la primera abertura de alimentación (332) hasta una porción central del primer subreflector (312); y
 - finaliza con una porción de transición escalonada (342) que se acopla rígida y eléctricamente a dicha porción central del primer subreflector (312), resultando de este modo en que dicho primer subreflector (312) se soporta por dicho primer conductor interior (34) y también se autoconecta a tierra;

comprendiendo el sistema de antenas (3) además una estructura dieléctrica, que incluye:

- una primera porción (351) que se extiende axialmente desde la porción de transición escalonada (342) del primer conductor interior (34), sobre el primer subreflector (312) hasta el segundo reflector principal (321); y
- una segunda porción (352) que se extiende desde la primera porción (351) de dicha estructura dieléctrica que sobresale coaxialmente y hacia fuera desde el segundo reflector principal (321) hasta el segundo subreflector (322), acoplándose rígidamente dicha segunda porción (352) de dicha estructura dieléctrica al segundo subreflector (322) soportando de este modo dicho segundo subreflector (322);
- 40 y en el que el primer conductor interior (34) y la estructura dieléctrica definen la línea de transmisión.
 - 5. El sistema de antenas de la reivindicación 4, en el que la segunda porción (352) de la estructura dieléctrica tiene forma de cono, y en el que el segundo subreflector (322) es un subreflector metálico pulverizado dispuesto encima de, y soportado por, dicha segunda porción con forma de cono (352) de la estructura dieléctrica.
 - 6. El sistema de antenas de la reivindicación 5, en el que el segundo subreflector (322) es un subreflector de aluminio pulverizado.
 - 7. Satélite que comprende el sistema de antenas (2, 3) de acuerdo con cualquier reivindicación anterior.
 - 8. Plataforma espacial que comprende el sistema de antenas (2, 3) según cualquiera de la reivindicación 1-6.

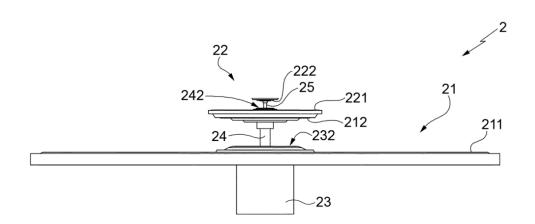


FIG. 4

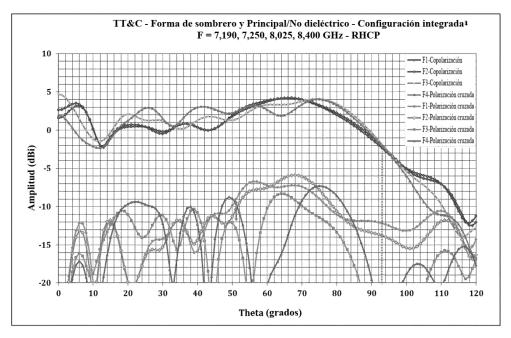


FIG. 5

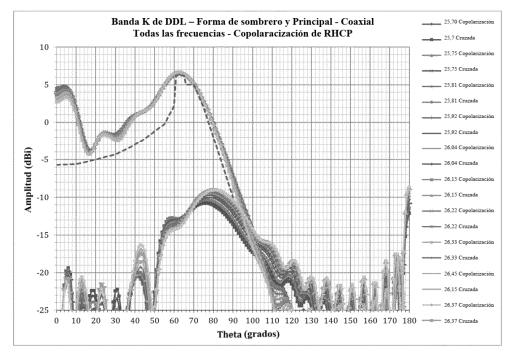


FIG. 6

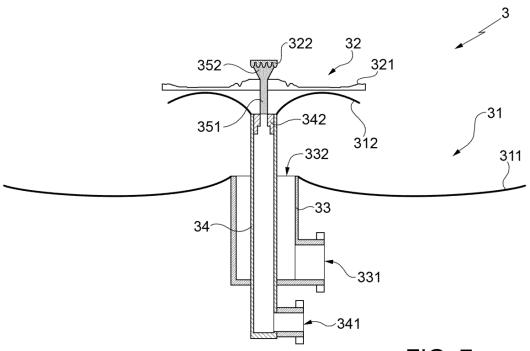


FIG. 7

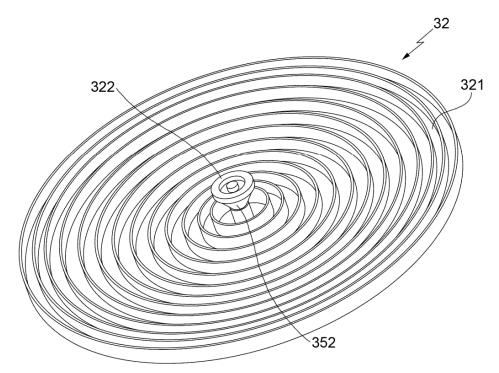
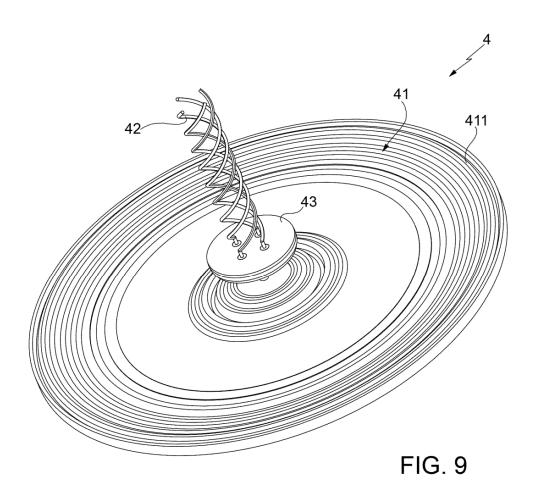



FIG. 8

