

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 762 575

(2006.01)

(2006.01)

51 Int. Cl.:

A01K 43/00 A01K 45/00

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 08.09.2014 PCT/US2014/054546

(87) Fecha y número de publicación internacional: 19.03.2015 WO15038471

96 Fecha de presentación y número de la solicitud europea: 08.09.2014 E 14767260 (4)

(97) Fecha y número de publicación de la concesión europea: 23.10.2019 EP 3043639

(54) Título: Aparato de inyección de huevos de forma selectiva, y procedimiento asociado

(30) Prioridad:

10.09.2013 US 201361875814 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **25.05.2020**

(73) Titular/es:

ZOETIS SERVICES LLC (100.0%) 10 Sylvan Way Parsippany, NJ 07054, US

(72) Inventor/es:

SCHNUPPER, MICHAEL GLENN; KARIMPOUR, RAMIN; ZELMER, THOMAS; REES, DANIEL SCOTT y EDWARDS, STEVEN JAY

(74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Aparato de inyección de huevos de forma selectiva, y procedimiento asociado

Campo técnico

La presente divulgación se refiere, en general, a dispositivos y sistemas de inyección de huevos. Más particularmente, la presente divulgación se refiere a un sistema de inyección de huevos de aves capaz de inyectar selectivamente los huevos contenidos dentro de una bandeja o contenedor.

Antecedentes

5

10

15

20

25

30

35

40

50

55

Varios sistemas de procesamiento mecánicos de huevos se utilizan para procesar los huevos de aves en un criadero de aves de corral. Tales sistemas de procesamiento mecánicos de huevos pueden incluir, por ejemplo, un sistema de transferencia para transferir huevos de una bandeja asociada con una preincubadora (comúnmente referido como una "bandeja") a un contenedor asociado con una incubadora de eclosión (comúnmente referido como una "cesta de eclosión"). En otros casos, un ejemplo de tales sistemas de procesamiento mecánicos de huevos puede incluir un sistema de retirada de huevos para retirar ciertos huevos de las bandejas. En algunos casos, tales sistemas de procesamiento mecánicos de huevos pueden combinar las características del sistema de transferencia y el sistema de retirada de huevos. Otro ejemplo más de tales sistemas de procesamiento mecánicos de huevos puede incluir un sistema de inyección in ovo para inyectar una sustancia de tratamiento en los huevos. Por último, otro ejemplo de tales sistemas de procesamiento mecánicos de huevos puede incluir un sistema de muestreo para la retirada de un material de muestra de los huevos para su análisis.

Por lo general, los huevos entran en cualquiera de estos sistemas de procesamiento mecánicos de huevos en bandejas para huevos. En cualquier momento durante o antes del procesamiento por los sistemas de procesamiento mecánicos de huevos, los huevos pueden ser sometidos a un procedimiento de examen al trasluz, que puede ser un proceso manual o automatizado. El procedimiento de examen al trasluz identifica o clasifica de otra manera los huevos de acuerdo con un esquema de clasificación predeterminado (generalmente, viables o no viables). Durante el examen manual de los huevos, los huevos pueden ser marcados físicamente (por ejemplo, con un marcador) por un trabajador de acuerdo con el esquema de clasificación o tratados de otro modo (por ejemplo, retirados de la bandeja) por el trabajador de acuerdo a la clasificación. En los sistemas automáticos de inspección visual, cada huevo puede recibir un estado de clasificación y una señal de clasificación correspondiente que se puede transferir a un sistema de controlador (o al sistema de procesamiento mecánico de huevos) para el procesamiento apropiado de los mismos. Por ejemplo, el sistema de examen al trasluz de los huevos puede identificar los huevos dentro de una bandeja como que son viables o no viables. El sistema de examen al trasluz de los huevos puede entonces transmitir esa información de clasificación a un sistema de retirada de huevos de tal manera que todos los huevos clasificados como no viables son retirados de la bandeja.

Los huevos procesados dentro de tales sistemas de procesamiento mecánicos de huevos pueden incluir los huevos que se clasifican como no viables (es decir, los huevos no contienen un embrión viable de acuerdo con el sistema de mirado de los huevos), que puede ser además subclasificados como, por ejemplo, huevos estériles, podridos o muertos. En este sentido, los huevos no viables pueden transferir material biológico no deseable a los componentes del sistema de procesamiento de huevos durante la interacción mecánica con el mismo. Tal material biológico transferido a los componentes del sistema de procesamiento mecánico de huevos puede entonces ser transferido al siguiente huevo que interactúa con el mismo componente respectivo durante el posterior procesamiento de la siguiente bandeja. Es decir, mediante la interacción con los huevos no viables, existe el potencial de que los componentes del sistema de procesamiento mecánico de huevos faciliten la transferencia del material biológico de los huevos no viables a los huevos viables. Además, en algunos casos, los huevos pueden volverse presurizados debido a la acumulación de bacterias dentro de los mismos de manera que cualquier contacto con los mismos puede causar que el huevo explote (denominado "explosivo").

45 El documento US 5900929 describe un aparato de inyección de huevos en el que la entrega selectiva de una sustancia de tratamiento puede completarse mediante el control individual de agujas de inyección o punzones de cáscara de huevo, de modo que los punzones y/o las agujas no entren en aquellos huevos identificados como no adecuados.

Por consiguiente, sería deseable proporcionar un sistema de inyección de huevos capaz de dirigir selectivamente la interacción de sus componentes con los huevos contenidos dentro de una bandeja de huevos, ya sea en una manera de acoplamiento o de no acoplamiento a fin de controlar la interacción con los huevos no deseados. Además, sería deseable proporcionar un procedimiento asociado que facilite la interacción selectiva de los componentes mecánicos de un sistema de inyección de huevos con los huevos, de acuerdo con un esquema de clasificación de huevos.

Breve sumario

Las necesidades anteriores y otras son satisfechas por los aspectos de la presente divulgación que, de acuerdo con un aspecto, proporciona un aparato de inyección de huevos que tiene un cabezal de procesamiento de huevos de acuerdo con la reivindicación 1. Una pluralidad de dispositivos de inyección de huevos está operativamente acoplada con el cabezal de procesamiento de huevos de manera que sea capaz de moverse en una dirección sustancialmente

vertical de ese modo. Cada dispositivo de inyección de huevos tiene un extremo configurado para interactuar con un huevo de ave. Cada dispositivo de inyección de huevos es capaz de ser retenido selectivamente en una de una posición de no-contacto y una posición de contacto durante una secuencia de procesamiento de tal manera que un primer subconjunto de los dispositivos de inyección de huevos está en la posición de no-contacto mientras que tiene simultáneamente un segundo subconjunto de dispositivos de inyección de huevos en la posición de contacto.

En el presente documento también se desvela un procedimiento de inyección de huevos de forma selectiva. El procedimiento comprende retraer una pluralidad de dispositivos de inyección de huevos que se encuentran en alineación con una pluralidad de huevos de aves. El procedimiento además comprende fijar un primer subconjunto de los dispositivos de procesamiento en una posición de no-contacto. El procedimiento comprende además avanzar un segundo subconjunto de los dispositivos de inyección de huevos para acoplar respectivos huevos de aves alineados con el mismo. El procedimiento comprende además fijar el segundo subconjunto de dispositivos de inyección de huevos en una posición de contacto. El procedimiento comprende además el procesamiento de los huevos de aves acoplados con el segundo subconjunto de dispositivos de inyección de huevos.

En consecuencia, en el presente documento se proporciona un aparato de inyección de huevos (100), que comprende: un cabezal (200) de procesamiento de huevos; y una pluralidad de dispositivos de inyección (300) acoplados operativamente con el cabezal (200) de procesamiento de huevos para poder de moverse en una dirección sustancialmente vertical, teniendo cada dispositivo de inyección (300) un extremo configurado para contactar un huevo de ave, caracterizado porque; cada dispositivo de inyección (300) está alineado con un huevo de ave respectivo y puede mantenerse selectivamente en una de una posición de no-contacto y en una posición de contacto durante una secuencia de procesamiento de modo que un primer subconjunto de los dispositivos de inyección (300) esté en la posición de no-contacto mientras que simultáneamente tiene un segundo subconjunto de los dispositivos de inyección (300) en la posición de contacto para inyectar una sustancia de tratamiento.

Además, en el presente documento también se describe un procedimiento para inyectar selectivamente huevos de aves, comprendiendo el procedimiento: retraer una pluralidad de dispositivos de inyección (300) alineados con una pluralidad de huevos de aves; asegurar un primer subconjunto de los dispositivos de inyección (300) en una posición de no-contacto; avanzar un segundo subconjunto de los dispositivos de inyección (300) para acoplar los respectivos huevos de aves alineados con ellos; asegurar el segundo subconjunto de dispositivos de inyección (300) en una posición de contacto; e inyectar una sustancia de tratamiento en los huevos de aves acoplados con el segundo subconjunto de dispositivos de inyección (300).

Por lo tanto, los diversos aspectos de la presente divulgación proporcionan ventajas, como se detalla de otra manera en el presente documento.

Breve descripción de los dibujos

5

10

25

40

55

Habiendo así descrito diversas realizaciones de la presente divulgación en términos generales, se hará ahora referencia a los dibujos adjuntos, que no están necesariamente dibujados a escala, y en los que:

- La figura 1 es una vista lateral de un sistema de inyección de huevos capaz de implementar un acoplamiento selectivo con una pluralidad de huevos de aves, de acuerdo con un aspecto de la presente divulgación;
 - La figura 2 es una vista esquemática en perspectiva de un cabezal de procesamiento de huevos, de acuerdo con un aspecto de la presente divulgación;
 - Las figuras 3-5 son vistas esquemáticas en sección transversal de los componentes de un cabezal de procesamiento de huevos, que ilustran aspectos de acoplamiento seleccionables de la presente divulgación;
 - La figura 6 es una vista en perspectiva en sección del cabezal de procesamiento de huevos de la figura 2, que ilustra el conjunto de cabezal de transferencia que levanta los huevos de la bandeja;
 - La figura 7 es una vista en perspectiva de un dispositivo de bloqueo para uso con un cabezal de procesamiento de huevos, de acuerdo con un aspecto de la presente divulgación;
- La figura 8 es una vista esquemática en sección transversal del dispositivo de bloqueo de la figura 7;
 - La figura 9 es una vista en despiece del dispositivo de bloqueo de la figura 7;
 - La figura 10 es una vista en perspectiva en sección esquemática del cabezal de procesamiento de huevos de la figura 2, que ilustra una pluralidad de dispositivos de inyección operativamente acoplada con dispositivos de bloqueo respectivos;
- 50 La figura 11 es una vista ampliada de los dispositivos de inyección y bloqueo de la figura 10;
 - La figura 12 es una vista esquemática en sección transversal de una combinación de un dispositivo de transferencia y de inyección para su uso con un cabezal de procesamiento de huevos, de acuerdo con un aspecto de la presente divulgación;
 - La figura 13 es una vista esquemática en perspectiva de un cabezal de procesamiento de huevos que tiene cilindros seleccionables, de acuerdo con un aspecto de la presente divulgación; y
 - La figura 14 es una vista despiezada del cabezal de procesamiento de huevos de la figura 13.

Descripción detallada de la divulgación

Varios aspectos de la presente divulgación se describirán ahora con más detalle a continuación con referencia a los

dibujos adjuntos, en los que se muestran algunos, pero no todos los aspectos de la divulgación. De hecho, esta divulgación puede ser realizada de muchas formas diferentes y no debe interpretarse como limitada a los aspectos establecidos en este documento; más bien, se proporcionan estos aspectos para que esta divulgación satisfaga los requisitos legales aplicables. Números iguales se refieren a elementos similares.

- La figura 1 ilustra un aparato de inyección de huevos 100. De acuerdo con este aspecto particular mostrado, el aparato de inyección de huevos 100 es capaz de inyectar, y, en algunos casos, transferir, los huevos de acuerdo con diversos aspectos de la presente divulgación. Aspectos de la presente divulgación, sin embargo, no se limitan al aparato de inyección de huevos 100 ilustrado, que se muestra como un aparato de inyección de huevos. En algunos casos, el aparato de procesamiento de huevos 100 puede ser capaz tanto de la inyección como de la transferencia de los huevos. En otros casos, el aparato de procesamiento de huevos 100 puede ser un aparato eliminador de huevos capaz de retirar los huevos identificados como que tienen una cierta clasificación. Además, en todavía otros casos, el aparato de procesamiento de huevos 100 puede ser un aparato de transferencia de huevos utilizado para transferir huevos desde una bandeja de la preincubadora 20 (una llamada "bandeja") a una bandeja de incubadora de eclosión (una denominada" cesta de eclosión").
- 15 Como se muestra en la figura 1, el aparato de inyección de huevos 100 puede estar adaptado particularmente para uso en la inyección de los huevos colocados en la bandeja 20, que incluye una pluralidad de receptáculos para la recepción individual y el mantenimiento de los huevos en una orientación generalmente vertical. Ejemplos de bandejas comerciales 20 adecuadas incluyen, pero no se limitan a, una bandeja "CHICKMASTER 54", una bandeja "JAMESWAY 42" y una bandeja "JAMESWAY 84" (en cada caso, el número indica el número de huevos transportados por la bandeja). Utilizando el aparato 100 de inyección de huevos, los huevos pueden ser inyectados con una sustancia de tratamiento cuando se encuentra por debajo de un cabezal de procesamiento de huevos 200.
 - Según algunos aspectos, el aparato de inyección de huevos 100 puede incluir un bastidor 110 y un conjunto transportador 112 proporcionado para mover las bandejas 20 de forma automatizada a través del aparato de inyección de huevos 100 a una posición de inyección. El conjunto transportador 112 puede incluir un sistema de carril de guía configurado para recibir y guiar a las bandejas 20 a la posición de inyección. El conjunto transportador 112 puede incluir además elementos apropiados de parada, sensores, correas, bucles sin fin, motores, etc. para la indexación y posicionamiento de forma adecuada de las bandejas 20 dentro del aparato de inyección de huevos 100. En algunos casos, las bandejas 20 pueden ser avanzadas manualmente a través el aparato de inyección de huevos 100.

25

- Los huevos que entran en el aparato de inyección de huevos 100 por medio de la bandeja 20 pueden tener diferentes 30 características de clasificación. Por ejemplo, las bandejas 20 pueden incluir huevos que son clasificables en base a la viabilidad, contenido de patógenos, análisis genético, o combinaciones de los mismos. Como tales, esos huevos se pasan a través de un sistema clasificador de huevos 115 para generar una clasificación para cada huevo que contenido en la bandeja 20. Estos huevos pueden ser clasificados como viables o no viables (es decir, aquellos huevos que no contienen un embrión viable de acuerdo con el sistema clasificador de huevos 115), en el que los huevos no viables 35 pueden además subclasificarse como, por ejemplo, huevos infértiles, podridos, o muertos. Sistemas clasificadores de huevos ejemplares pueden ser capaces de clasificar los huevos mediante el uso de, por ejemplo, técnicas de examen al trasluz (opacidad, infrarrojos, NIR, etc.), técnicas de ensayo de muestras, u otros procedimientos, procesos o técnicas de clasificación conocidos y adecuados. Después de la clasificación, los huevos pueden ser procesados en consecuencia utilizando un aparato de inyección de huevos 100 apropiado. El procesamiento de los huevos puede 40 referirse a la inyección, retirada, transferencia, o combinaciones de los mismos. Por ejemplo, en algunos casos, el aparato de inyección de huevos 100 puede ser capaz de inyectar un huevo y extraer el mismo huevo desde la bandeja 20.
- En este sentido, los aspectos de la presente divulgación se refieren a las capacidades del aparato de inyección de huevos 100 para acoplar o contactar selectivamente huevos contenidos dentro de las bandejas 20 de acuerdo con estas clasificaciones. De esta manera, se les puede permitir que los huevos pasen a través de uno o más aparatos de inyección de huevos 100 sin contacto. Dicho tratamiento puede ser particularmente ventajoso cuando la bandeja 20 contiene uno o más huevos que se han presurizado debido a la acumulación de bacterias. La prevención de contacto de los componentes asociados con el aparato de inyección de huevos 100 con cualquier tipo de huevo puede reducir la incidencia de los huevos explosivos (que explotan) o transferencia de materia bacteriana.
- De acuerdo con aspectos de la presente divulgación, el aparato de inyección de huevos 100 puede ser configurado para acoplar o contactar selectivamente los huevos de acuerdo con un esquema de retención seleccionable. En este sentido, el aparato de inyección de huevos 100 puede ser capaz de acoplar selectivamente los huevos dentro de la bandeja 20 que tiene diversas características de clasificación. Por ejemplo, los huevos acoplados (contactados) pueden ser identificados como que tienen un estado de clasificación viable (vivo), definiendo de este modo un primer subconjunto de huevos, mientras que los huevos no acoplados (no contactados) se identifican como que tienen un estado de clasificación no viable (no vivo), definiendo de este modo un segundo subconjunto de huevos, o un primer subconjunto de huevos no fértiles (llamados "claros") y un segundo subconjunto de todos los demás huevos en la bandeja 20 no identificados como no fértiles. Como tal, el aparato de inyección de huevos 100 puede ser capaz de acoplar o contactar selectivamente con los subconjuntos de los huevos contenidos dentro de la bandeja 20 de acuerdo con el estado de clasificación para cada huevo. Por ejemplo, los huevos viables (vivos) pueden ponerse en contacto de tal manera que se puede producir una secuencia de inyección, mientras que los huevos no viables (no vivos) no se

contactan o son acoplados de otra forma por los componentes del aparato de inyección de huevos 100. En otros casos, los huevos viables (vivos) pueden ser contactados y acoplados para la transferencia desde la bandeja 20 a una cesta de eclosión, mientras que los huevos no viables (no vivos) no se contactan y se mantienen en la bandeja 20 para moverse a lo largo de una dirección de procesamiento por el conjunto transportador 112. Como tal, los aspectos de la presente divulgación facilitan ventajosamente el procesamiento flexible de los huevos mediante el acoplamiento seleccionable de los mismos de acuerdo con la clasificación.

Como se muestra en la figura 1, el aparato de inyección de huevos 100 puede incluir un cabezal de procesamiento de huevos 200 acoplado al bastidor 110 y configurado para moverse verticalmente para interactuar con los huevos contenidos dentro de la bandeja 20 cuando en una posición de procesamiento de debajo del cabezal de procesamiento de huevos 200. El cabezal de procesamiento de huevos 200 puede ser accionado neumáticamente para moverse verticalmente para facilitar la interacción con los huevos en la bandeja 20. En algunos casos, el cabezal de procesamiento de huevos 200 puede bajarse y subirse neumáticamente utilizando un cilindro de transferencia (no mostrado) en comunicación de fluido con un sistema neumático, tal como se conoce por los expertos en la técnica, junto con ejes de guía 130 para guiar el cabezal de procesamiento de huevos 200. En algunos casos, el cabezal de procesamiento de huevos 200 puede ser capaz de un movimiento lateral fuera del conjunto transportador 112 y/o la posición de procesamiento.

10

15

20

25

30

35

40

45

50

55

60

El cabezal de procesamiento de huevos 200 puede incluir una pluralidad de dispositivos de inyección de huevos capaces de interactuar, acoplar, o contactar selectivamente de otro modo los huevos en la bandeja 20. Como se muestra particularmente en la figura 3, el dispositivo de inyección de huevos puede ser un dispositivo de inyección 300 capaz de inyectar una sustancia de tratamiento en un óvulo, que también podría ser utilizado como un dispositivo de muestreo. Los dispositivos de invección de huevos pueden incluir el dispositivo de invección 300, un dispositivo removedor de huevos (figura 13), un dispositivo de transferencia de huevos (figura 13), un dispositivo de muestreo, o una combinación de dispositivo de inyección y de transferencia (figura 12). Los dispositivos de inyección 300 pueden incluir componentes neumáticos adecuados para el funcionamiento de una aquia 302 y/o secuencia de invección de punzón. Es decir, se suministra una presión apropiada o se extrae vacío usando componentes neumáticos de tal manera que una aguja y/o punzón se puede hacer avanzar para perforar el huevo, con la aguja y/o punzón (utilizado para perforar un orificio en el huevo antes de la inserción de la aguja 302) y luego ser retirado una vez que se ha completado la inyección de una sustancia de tratamiento. Como se muestra en las figuras 2-5, los dispositivos de inyección 300 pueden incluir válvulas de entrada configuradas para conectarse de manera fluida a una fuente neumática capaz de operar el dispositivo de inyección. El accionamiento de los dispositivos de inyección puede ser controlado comúnmente o controlado selectivamente de tal manera que las agujas ya sea avancen siempre fuera de una carcasa o avancen selectivamente, según se determine por el estado de clasificación asociado con un respectivo huevo.

Como se muestra en las figuras 3-5, el cabezal de procesamiento de huevos 200 puede incluir una placa de sujeción 220 y una placa de elevación 240. De acuerdo con algunos aspectos, la placa de sujeción 220 puede ser fijada con respecto al cabezal de procesamiento de huevos 200 de tal manera que la placa de sujeción 220 solo se mueve cuando el cabezal de procesamiento de huevos se mueve. Además, la placa de sujeción 220 puede estar configurada para permanecer estacionaria durante una secuencia de procesamiento de huevos. Por ejemplo, cuando el cabezal de procesamiento de huevos 200 desciende a su posición más baja, la placa de sujeción puede permanecer en esa posición hasta que se complete la secuencia de procesamiento de huevos. La placa de sujeción 220 puede definir una pluralidad de orificios 222 para recibir los dispositivos de inyección 300. Los dispositivos de inyección 300 están dimensionados para permitir el movimiento vertical y axial dentro de los orificios 222 de tal manera que los dispositivos de inyección 300 puedan "flotar". Esto también permite a los dispositivos de inyección 300 inclinarse para localizar un huevo que puede estar verticalmente fuera del centro dentro de la bandeja 20. La placa de sujeción 220 se puede usar para selectivamente asegurar, sujetar, o fijar de otra manera los dispositivos de inyección 300 a la placa de sujeción 200 en varios puntos a lo largo de cada dispositivo de inyección 300.

La placa de elevación 240 puede operar en conjunción con la placa de sujeción 220 para facilitar las características seleccionables de acoplamiento o seleccionables de contacto de la presente divulgación. La placa de elevación 240 puede ser separada de la placa de sujeción 220 de una manera sustancialmente paralela y es movible con respecto a la misma, como se ilustra en las figuras 3-5. La placa de elevación 240 puede definir una pluralidad de aberturas 242 para recibir los dispositivos de inyección 300. Cada dispositivo de inyección 300 puede incluir un reborde 304 (figura 2) que interactúa con la placa de elevación 240 para mover los dispositivos de inyección 300 verticalmente (sustancialmente perpendiculares con respecto a la dirección de procesamiento de huevos) en cualquier dirección con el mismo de tal manera que los dispositivos de inyección 300 puede ascender y descender independientemente del movimiento del cabezal de procesamiento de huevos 200 de esta manera, la placa de elevación 240 se puede usar para mover los dispositivos de inyección 300 a diversas posiciones dentro de los orificios 222 de la placa de sujeción 220. La elevación de la placa 240 se puede mover utilizando los mecanismos adecuados, como neumáticos, hidráulicos, u otros medios similares para mover las estructuras. Los dispositivos de inyección 300 están dimensionados para permitir el movimiento vertical y axial dentro de las aberturas 242 de tal manera que los dispositivos de inyección 300 pueden "flotar". Esto también permite que los dispositivos de inyección 300 se inclinen para localizar un huevo que puede estar verticalmente fuera del centro dentro de la bandeja 20.

Como se muestra en las figuras 6-11, una pluralidad de dispositivos de bloqueo 400 puede formar parte de o de otro

modo fijarse a la placa de sujeción 220. Los dispositivos de bloqueo 400 son capaces de asegurar los dispositivos de inyección 300 a la placa de sujeción 220 de manera fija. A este respecto, cada dispositivo de inyección 300 puede ser fijado en varios puntos a lo largo de un eje longitudinal del mismo en la placa de sujeción 220. Cada dispositivo de bloqueo 400 puede ser accionado individualmente de tal manera que los dispositivos de bloqueo 400 son controlables por separado, de forma individual, y selectivamente.

5

10

15

20

25

30

45

50

55

60

De acuerdo con un aspecto, el dispositivo de bloqueo 400 puede funcionar neumáticamente para asegurar el dispositivo de inyección 300 a la placa de sujeción 220. En algunos casos, el dispositivo de bloqueo 400 puede incluir un elemento hinchable 450 utilizado para asegurar un dispositivo de invección 300 respectivo de la placa de sujeción 220. El elemento hinchable 450 puede incluir una vejiga 402 que coopera con un elemento de cuerpo rígido 404 de tal manera que la vejiga 402 se puede inflar para asegurar un dispositivo de inyección 300 respectivo a la placa de sujeción 220. En este sentido, la vejiga 402 puede definir un canal abierto 406 configurado para acoplarse con un canal interior 408 del elemento de cuerpo rígido 404 para definir un canal de aire 410. El aire presurizado se puede suministrar al canal de aire 410 a través de un conector 412 que se utiliza para conectar el dispositivo de bloqueo 400 y el canal de aire 410 a una fuente de aire a presión (no mostrado). El aire presurizado infla la vejiga 402 y expande una pared interior 430 de la vejiga 402 radialmente hacia el interior de manera que sea capaz de sujetar un dispositivo de inyección 300 respectivo dispuesto dentro de la misma. Elementos de carcasa primero y segundo 414, 416 pueden cooperar para contener el elemento hinchable 450 y proporcionar al dispositivo de bloqueo 400 una forma adecuada para acoplar operativamente la placa de sujeción 220, en el que sujetadores apropiados 418 pueden utilizarse para asegurar juntos los elementos de carcasa primero y segundo 414, 416. Al menos una porción del dispositivo de bloqueo 400 puede estar situada o asentada dentro de los orificios 222 de la placa de sujeción 220, y se mantienen en posición mediante mecanismos de sujeción apropiados. Un elemento de sellado (por ejemplo, una junta tórica) 420 puede ser proporcionado para ayudar con el posicionamiento del dispositivo de bloqueo 400 dentro del orificio 222. Mientras que los componentes del elemento hinchable 450 y la carcasa se muestran como sustancialmente anulares, la presente divulgación no está limitada a tales configuraciones. Además, en algunos casos, la vejiga 402 puede no ser completamente formada como un anillo anular. Es decir, en algunos casos, los extremos de la vejiga 402 podrán terminar de manera que formen una forma de C.

Las figuras 1 y 3-5 ilustran una secuencia de operaciones para un aparato de inyección de huevos ejemplar 100. En el aparato de inyección de huevos ejemplar 100, una pluralidad de huevos 5 se clasifican utilizando el sistema clasificador de huevos 115 empleando medición de la luz (dispositivo de mirado), en el que la luz se transmite a través de un huevo y se evalúa por un detector de luz. Los huevos 5 se pueden identificar, por ejemplo, ya sea en vivos o no vivos. Los detectores de luz u otro mecanismo de detección pueden estar operativamente conectados directamente a un controlador 150 (que puede ser un microprocesador u otra circuitería programable o no programable), o a otro controlador capaz de transmitir la información al controlador 150 de tal manera que el controlador 150 recibe el estado de clasificación indirectamente.

Como se muestra en la figura 1, el conjunto transportador 112 mueve los huevos 5 almacenados en la bandeja 20 pasando el sistema clasificador de huevos 115 de manera que cada huevo 5 pasa a través del mismo de tal manera que los datos (estado de clasificación de huevos) pueden ser generados para cada huevo 5. Los datos recogidos por el sistema clasificador de huevos 115 pueden proporcionarse al controlador 150 (u otro controlador) para el procesamiento y almacenamiento de datos asociados con cada huevo 5. El controlador 150 puede entonces ser capaz de generar una señal de retención seleccionable para enviar a los dispositivos de bloqueo 400 de modo que dispositivos individuales de inyección 300 (o subconjuntos de los dispositivos de inyecciones) por separado están asegurados a la placa de fijación 220 en diversas posiciones (de contacto o de no-contacto) de acuerdo con el estado de clasificación para cada huevo sobre la base de los datos recogidos por el sistema clasificador de huevos 115.

Como se muestra en la figura 1, la bandeja 20 de huevos puede ser transportada a la posición de inyección debajo del cabezal de procesamiento de huevos 200. En algunos casos, el cabezal de procesamiento de huevos 200 puede ser capaz de procesar múltiples bandejas 20 a la vez. Antes de que la bandeja (o bandejas) 20 esté posicionada debajo del cabezal 200 de procesamiento de huevos, el cabezal de procesamiento de huevos 200 se puede bajar hasta una posición totalmente descendida predeterminada de tal manera que la placa de sujeción 220 también está en su posición completamente descendida y estacionaria, como se muestra en la figura 3. Se entenderá, sin embargo, que en algunos casos el cabezal de procesamiento de huevos 200 y la placa de sujeción 220 pueden fijarse en una posición predeterminada en la que el único movimiento asociado con el cabezal de procesamiento de huevos 200 es el de la placa de elevación 240, utilizando medios neumáticos, hidráulicos, etc. apropiados. Como se muestra en la figura 3, los dispositivos de inyección 300a, 300b, y 300c están en una posición totalmente descendida sin huevos debajo del mismo y sin los respectivos dispositivos de bloqueo 400 que se accionan de tal manera que los dispositivos de inyección 300 puedan ser retraídos.

Como se muestra en la figura 4, los dispositivos de inyección 300a, 300b, y 300c se elevan a una posición completamente retraída. En este punto, la información sobre el estado de clasificación de huevos por cada huevo 5 en la próxima bandeja 20 está siendo transportada a los dispositivos de bloqueo 400 y/o los componentes asociados con los mismos de tal manera que los dispositivos de bloqueo 400 pueden asegurar los dispositivos de inyección 300 asociados con los huevos no vivos en una posición de no-contacto. Es decir, los dispositivos de bloqueo 400 asociados con los huevos no vivos se presurizan para inflar el elemento hinchable 450 sobre el dispositivo de inyección 300b de tal manera que el dispositivo de inyección 300 se fija y se evita que descienda más. Después de que los huevos 5 se

mueven debajo del cabezal de procesamiento de huevos 200, como se muestra en la figura 5, la placa de elevación 240 se baja a un rango máximo de tal manera que los huevos 5 identificados como vivos se ponen en contacto (posición de contacto) por los dispositivos de inyección 300. Por ejemplo, como se muestra en la figura 5, los huevos 5 asociados con los dispositivos de inyección 300a y 300c han sido identificados como vivos y, como tales, los dispositivos de bloqueo 400 asociados con los dispositivos de inyección 300a y 300c no se accionan de tal manera que los dispositivos de inyección 300a y 300c pueden bajarse para contactar con los huevos 5 respectivos.

Mientras tanto, el dispositivo de bloqueo 400 asociado con el dispositivo de inyección 300b se acciona debido a la identificación asociada con el mismo huevo 5 como no vivo de tal manera que el dispositivo de inyección 300b está fijado en una posición de no-contacto y la placa de elevación 240 desciende sin bajar el dispositivo de inyección 300b. Debido a que los dispositivos de inyección 300 se les permite flotar, la posición de contacto puede ser diferente para huevos de diferente tamaño, como se muestra en la figura 5 con respecto a los dispositivos de inyección 300a y 300c. Una vez que los dispositivos de inyección 300a y 300c han llegado a la posición de contacto, los dispositivos de bloqueo 400 asociados con dispositivos de inyección 300a y 300c son accionados para bloquear los dispositivos de inyección 300a y 300c en la posición antes de una secuencia de inyección. Después de que se produce la secuencia de inyección, el cabezal de procesamiento de huevos 200 puede ser elevado y la bandeja de huevos 20 es transportada fuera de debajo del cabezal de procesamiento de huevos 200. Los dispositivos de inyección 300 están listos para el posicionamiento. De esta manera, como se describe anteriormente en detalle, los dispositivos de inyección de huevos son capaces de acoplar selectivamente los huevos de una bandeja 20 en una posición de contacto o de no-contacto de acuerdo con la clasificación.

10

15

20

25

30

35

40

45

50

55

60

En algunos casos, como se muestra en la figura 5, la aguja 302 y/o punzón pueden ser accionados para cada dispositivo de inyección 300 independientemente del estado de clasificación del huevo. En este sentido, los dispositivos de inyección 300 asociados con los huevos no vivos deben estar asegurados con la placa de fijación 220 a una distancia predeterminada diseñada para permitir la holgura entre el huevo y la aguja en carrera máxima de la misma tal que la aguja 302 no entre en contacto con el huevo 5. En algunos casos, los dispositivos de inyección 300 pueden estar configurados para recibir el estado de clasificación de huevos de forma tal que las agujas 302 y/o punzones pueden ser accionados también de forma selectiva.

Como se muestra en las figuras 10 y 12, el dispositivo de inyección 300 también puede incluir una copa de vacío 380 configurada para encerrar herméticamente una porción superior del huevo de manera que el huevo puede ser levantado cuando se aplica un vacío. La realización mostrada en las figuras 10 y 12 es una combinación del dispositivo de inyección y transferencia 600 en el que el huevo puede ser levantado desde la bandeja 20 y luego se inyecta con una sustancia de tratamiento a través de la aguja 302, que se extiende a través de un orificio central (no mostrado) en la copa de vacío 380. En otros casos, el dispositivo de inyección y transferencia 600 puede inyectar un huevo primero y luego retirar el huevo de la bandeja 20. De cualquier manera, el dispositivo de inyección y transferencia 600 puede ser incorporado en el mecanismo seleccionable descrito en este documento de tal manera que el dispositivo de inyección y transferencia 600 es capaz de inyectar y retirar de forma seleccionable en una manera de contacto/de nocontacto.

Según otro aspecto de la presente divulgación, como se muestra en las figuras 13 y 14, el cabezal de procesamiento de huevo 200 puede ser un cabezal para la retirada de huevos 900 capaz de retirar los huevos de las bandejas 20 para el descarte o transferencia. El cabezal de procesamiento de huevos 200 puede ser accionado neumáticamente para moverse verticalmente para facilitar la interacción con los huevos en la bandeja 20. En algunos casos, el cabezal de procesamiento de huevos 200 puede ser bajado y elevado neumáticamente utilizando un cilindro de transferencia 120 en comunicación fluida con un sistema neumático, como es conocido por los expertos en la técnica, junto con ejes de guía 130 para guiar el cabezal de procesamiento de huevos 200 en algunos casos, el procesamiento de huevos de cabezal 200 puede ser capaz de movimiento lateral fuera del conjunto transportador 112 y/o la posición de procesamiento.

En algunos casos, los dispositivos de inyección de huevos se pueden controlar selectivamente usando cilindros controlados neumáticamente. Por ejemplo, una pluralidad de dispositivos de transferencia o retirada 500 (solo se muestra uno para mayor claridad) puede estar configurada para acoplar selectivamente los huevos respectivos de tal manera que solo aquellos huevos identificados como un primer subconjunto (por ejemplo, como vivo o viable) de los huevos se ponen en contacto para la retirada o transferencia desde la bandeja 20 en tales casos, un segundo subconjunto (por ejemplo, no vivo o no viable) de los huevos puede permanecer en la bandeja 20 sin entrar en contacto con cualquiera de los dispositivos de transferencia/retirada 500.

Como se muestra en la figura 13, el dispositivo de transferencia/retirada 500 puede estar operativamente acoplado con un colector 700 del cabezal 200 de procesamiento de huevos. En algunos casos, el dispositivo de transferencia/retirada 500 puede estar en comunicación de fluido con el colector 700 de tal manera que el dispositivo de transferencia/retirada 500 comúnmente pueden recibir un vacío o presión de aire negativa para la elevación de los huevos en relación de contacto con el dispositivo de transferencia/retirada 500 para la retirada desde la bandeja 20. El colector 700 puede formarse usando placas opuestas 720, 740 y paredes laterales 745 acopladas para formar una cámara 750 capaz de ser hermética para mantener un vacío. Las placas 720, 740 y las paredes laterales 745 se pueden asegurar, junto con cualquier medio de fijación adecuado, incluyendo, por ejemplo, cierres, abrazaderas 755,

ES 2 762 575 T3

vínculos, tornillos y elementos de fijación. Las placas opuestas 720, 740 pueden incluir aberturas alineadas 760 para recibir los dispositivos de transferencia/retirada 500 a través de las mismas. Uno o más espaciadores 770 pueden proporcionar la estructura de soporte entre las placas opuestas 720, 740.

Un dispositivo soplador de vacío 800 puede estar en comunicación de fluido con el colector 700 para suministrar presión de aire negativa al mismo para facilitar la retirada de los huevos desde la bandeja 20 usando el dispositivo de transferencia/retirada 500. En algunos casos, el dispositivo soplador de vacío 800 puede ser también capaz de proporcionar presión de aire positiva al colector 700 para facilitar o ayudar a una liberación común de todos los huevos en contacto con los dispositivos de transferencia/retirada 500. Es decir, el dispositivo soplador de vacío 800 puede ser capaz de cambiar entre el suministro de presión de aire negativa y presión del aire positiva al colector 700 (y todos los dispositivos de transferencia/retirada 500) a fin de lograr una acción deseada. Mientras que la simple retirada del vacío sería suficiente para liberar los huevos de los dispositivos de transferencia/retirada 500, al menos algo de presión de aire positiva se puede aplicar de manera deseable para asegurar que los huevos son liberados desde los dispositivos de transferencia/retirada 500 de una manera consistente y controlable. El dispositivo soplador de vacío 800 puede estar en comunicación de fluido con el colector 700 utilizando tubos u otros medios de conexión de fluidos adecuados.

El vacío puede ser generado por el dispositivo soplador de vacío 800 tal que los huevos 5 sean succionados contra el dispositivo de transferencia/retirada 500. El colector 700 puede ser elevado y bajado mediante un cilindro de transferencia o por otros medios tales como los descritos anteriormente con respecto al cabezal de procesamiento de huevos 200 de tal manera que los huevos 5 se eliminan y levantan de la bandeja 20. Una vez retirados de la bandeja 20, los huevos 5 pueden subir, bajar o ser liberados (de forma selectiva o no selectiva) por el cabezal de procesamiento de huevos 200 en diversas maneras, secuencias, o pasos de acuerdo con un esquema de procesamiento deseado implementado en el aparato de inyección de huevos 100.

Cada dispositivo de transferencia/retirada 500 puede incluir un cilindro 550 de control neumático capaz de avanzar y retroceder un elemento de elevación 560 entre una posición de contacto y de no-contacto. Similar al proceso descrito previamente, cada cilindro 550 es capaz de recibir una señal que indica el estado de clasificación de huevo de los huevos respectivos en la bandeja 20 de tal manera que los cilindros 550 se puede accionar selectivamente, de ese modo solo facilitando el acoplamiento o el contacto de ciertos elementos de elevación 560 con respectivos huevos. Al accionar selectivamente los cilindros, la interacción de los componentes del dispositivo de transferencia/retirada 500 con huevos no vivos o de otro modo no deseados se pueden evitar ventajosamente.

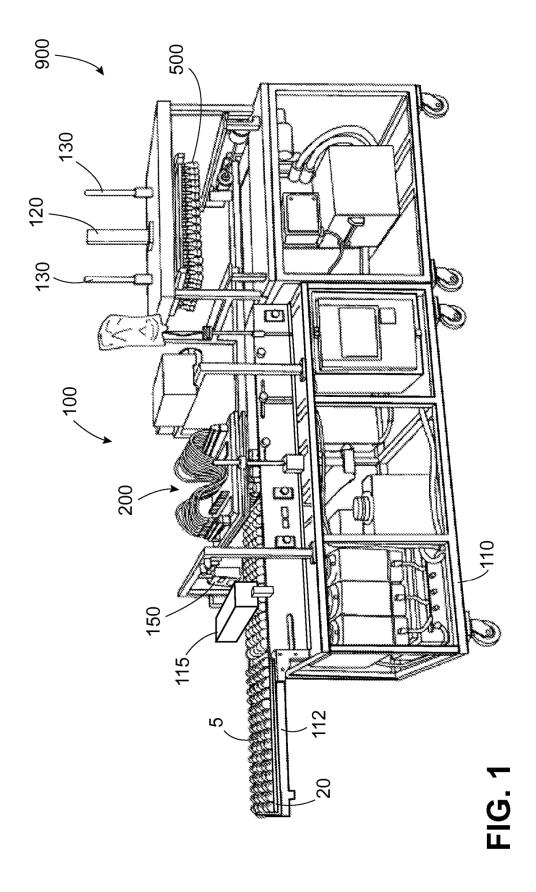
Según un aspecto de la presente divulgación, el cabezal de procesamiento de huevos 200 y los componentes 30 asociados de las figuras 1 a 12 pueden usarse en combinación con el cabezal de procesamiento de huevos 200 que se ilustra en las figuras 13 y 14 para proporcionar un sistema que tiene un módulo capaz de eliminar huevos, otro módulo capaz de inyectar, y otro módulo capaz de transferir huevos. De esta manera, es concebible que un módulo de retirada de huevos pueda eliminar primero un primer subconjunto de los huevos (por ejemplo, huevos infértiles/claros) desde la bandeja 20 de un modo seleccionable de contacto/de no-contacto de tal manera que ciertos 35 huevos en la bandeja 20 no son contactados. Luego, los huevos pueden ser transportados a un módulo de inyección de huevos capaz de inyectar un segundo subconjunto de los huevos (por ejemplo, huevos vivos), según la clasificación, sin contactar con un tercer subconjunto de los huevos (por ejemplo, explosivos) identificados por el sistema clasificador de huevos 115. A continuación, los huevos pueden ser transportados a un módulo de transferencia de huevos en el que el segundo subconjunto de huevos previamente identificado se transfiere desde la bandeja 20 a una cesta de 40 eclosión, mientras que el tercer subconjunto de huevos previamente identificado permanece en la bandeja 20 sin tocar tal que este tercera subconjunto se mueve a través del sistema sin entrar en contacto con los componentes o dispositivos de inyección de huevos de los mismos. Tal sistema puede reducir ventajosamente la transferencia de bacterias entre una bandeja y otra, dado que cada una avanza a lo largo de una corriente de procesamiento.

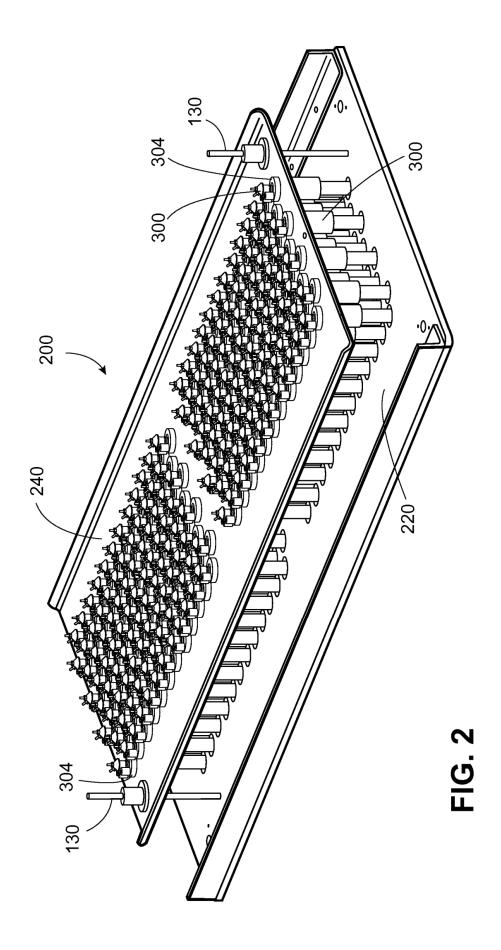
Muchas modificaciones y otros aspectos de la presente divulgación expuesta en este documento vendrán a la mente a un experto en la técnica a la que pertenece esta divulgación teniendo el beneficio de las enseñanzas presentadas en las descripciones anteriores y los dibujos asociados. Por lo tanto, se debe entender que la presente divulgación no se limita a los aspectos específicos divulgados y que las modificaciones y otros aspectos están destinados a ser incluidos dentro del alcance de las reivindicaciones adjuntas. Aunque se emplean términos específicos en el presente documento, se usan únicamente en un sentido genérico y descriptivo y no con fines de limitación.

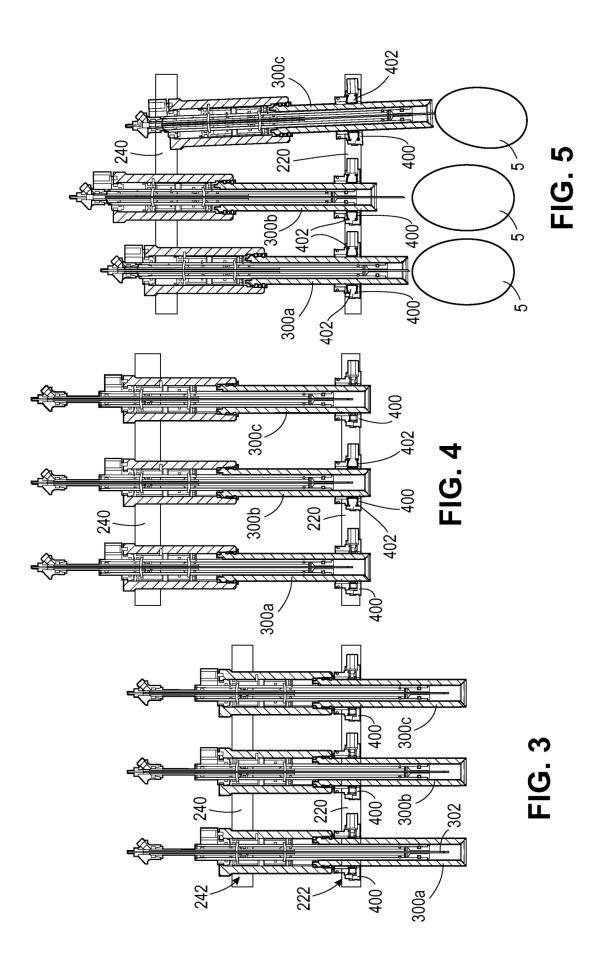
50

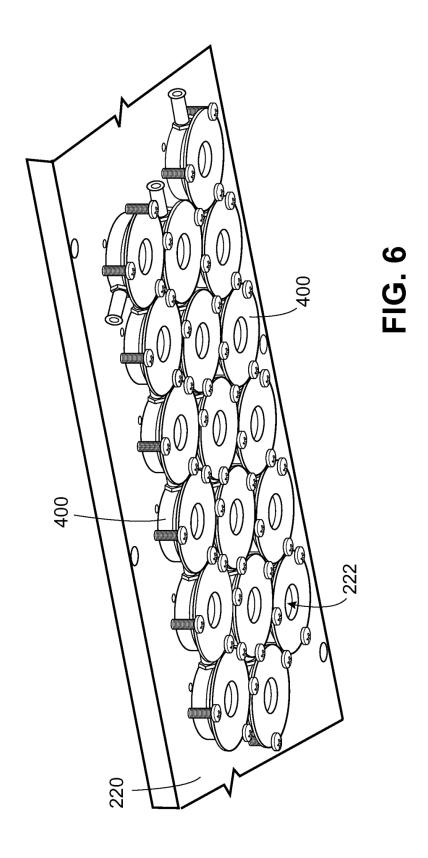
25

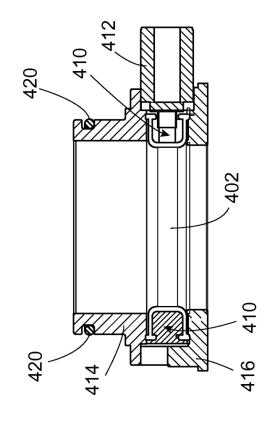
REIVINDICACIONES

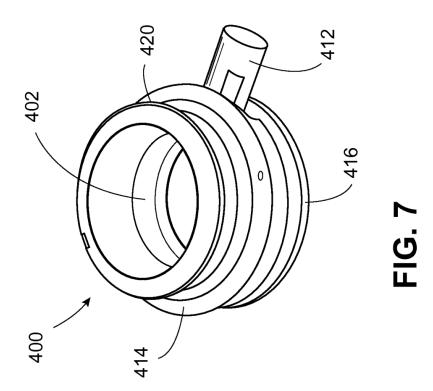

- 1. Un aparato (100) de inyección de huevos, que comprende:
 - un cabezal (200) de procesamiento de huevos; y


5


30


35


- una pluralidad de dispositivos (300) de inyección acoplada operativamente con el cabezal (200) de procesamiento de huevos, de manera que sea capaz de moverse en una dirección sustancialmente vertical de este modo, teniendo cada dispositivo (300) de inyección un extremo configurado para ponerse en contacto con un huevo de ave y teniendo además una aguja (302) y/o un punzón configurada/o para perforar el huevo de ave, caracterizado porque:
- cada dispositivo (300) de inyección es capaz de alinearse con un huevo de ave respectivo y capaz de acoplar selectivamente el huevo de modo que el dispositivo de inyección quede retenido selectivamente en una de entre una posición de no-contacto y una posición de contacto durante una secuencia de procesamiento, de tal manera que un primer subconjunto de los extremos de los dispositivos (300) de inyección está en la posición de no-contacto mientras que simultáneamente un segundo subconjunto de los extremos de los dispositivos (300) de inyección está en la posición de contacto para inyectar una sustancia de tratamiento.
- 2. Un aparato (100) de inyección de huevos de acuerdo con la reivindicación 1, en el que el cabezal (200) de procesamiento de huevos tiene una placa de sujeción (220) que define una pluralidad de orificios (222) para recibir los dispositivos (300) de inyección, estando configurada la placa de sujeción (220) para asegurar selectivamente el extremo de cada dispositivo (300) de inyección en una de entre la posición de no-contacto y la posición de contacto.
- 3. Un aparato (100) de inyección de huevos de acuerdo con la reivindicación 2, que comprende además una pluralidad de dispositivos de bloqueo (400) anulares configurados para ser asentados dentro de los orificios de la placa de sujeción (220), estando cada dispositivo de bloqueo (400) anular configurado para asegurar individualmente el extremo de un dispositivo (300) de inyección respectivo en una de entre la posición de no-contacto y la posición de contacto durante una secuencia de inyección.
- 4. Un aparato (100) de inyección de huevos de acuerdo con la reivindicación 3, en el que cada dispositivo de bloqueo (400) comprende una válvula neumática en comunicación con un sistema de suministro de aire positivo, estando la válvula neumática configurada para facilitar el bloqueo de los dispositivos (300) de inyección neumáticamente.
 - 5. Un aparato (100) de inyección de huevos de acuerdo con la reivindicación 4, en el que cada dispositivo de bloqueo (400) comprende un elemento (404) de cuerpo rígido que coopera con una vejiga (402) para formar un canal de aire (410), de modo que la vejiga (402) sea capaz de ser hinchada neumáticamente para asegurar los dispositivos de bloqueo (400) en las posiciones de no-contacto y de contacto.
 - 6. Un aparato (100) de inyección de huevos de acuerdo con la reivindicación 1, que comprende además un sistema (115) clasificador de huevos configurado para clasificar un huevo de ave como uno acoplable y no acoplable, estando el sistema (115) clasificador de huevos en una de una comunicación directa e indirecta con los dispositivos (300) de inyección a fin de instruir el posicionamiento de cada dispositivo (300) de inyección en una de las posiciones de nocontacto y de contacto durante la secuencia de inyección.



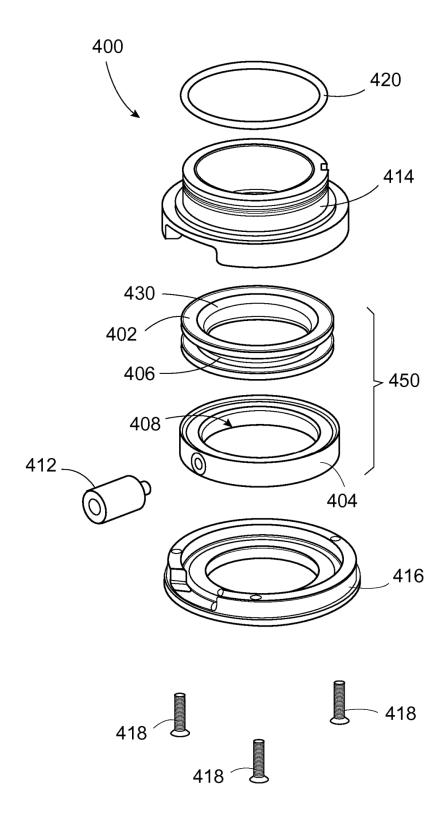
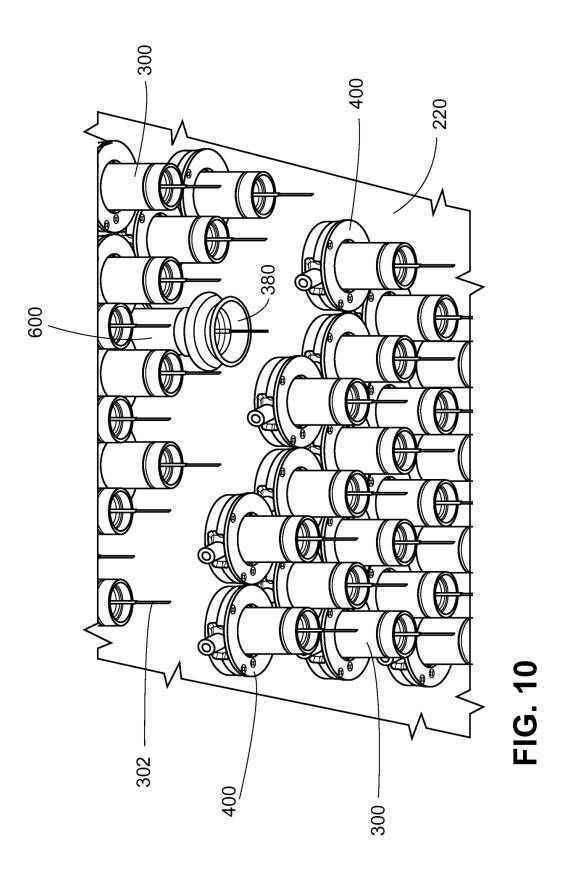
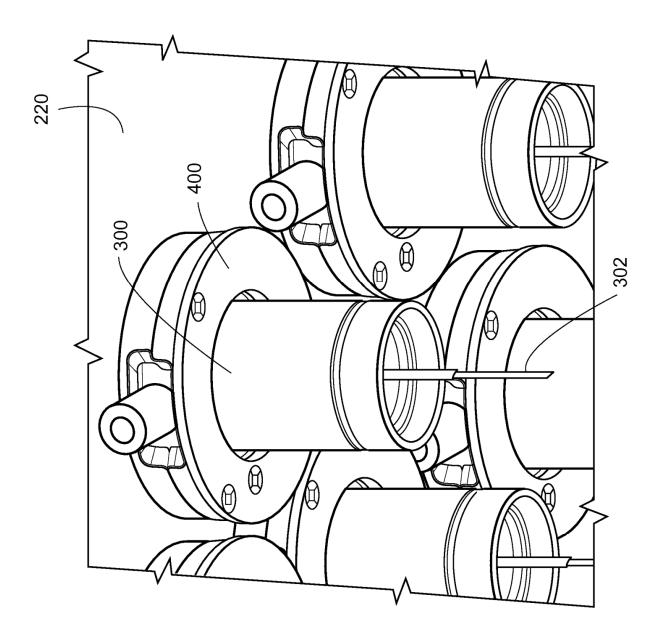




FIG. 9

16

FIG. 11

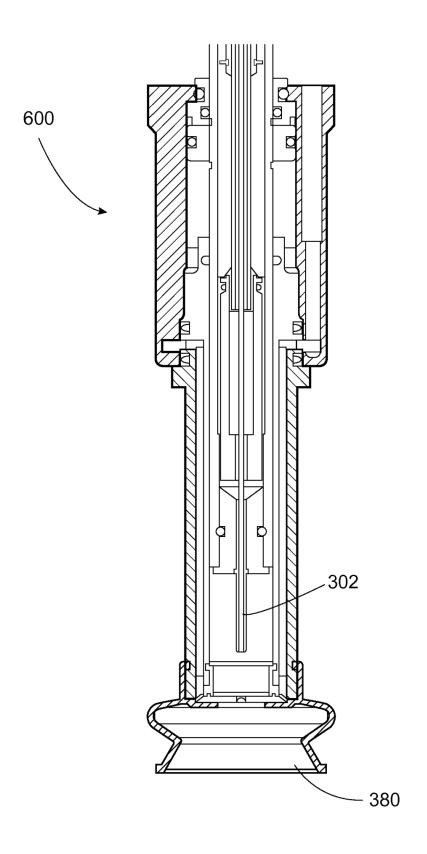
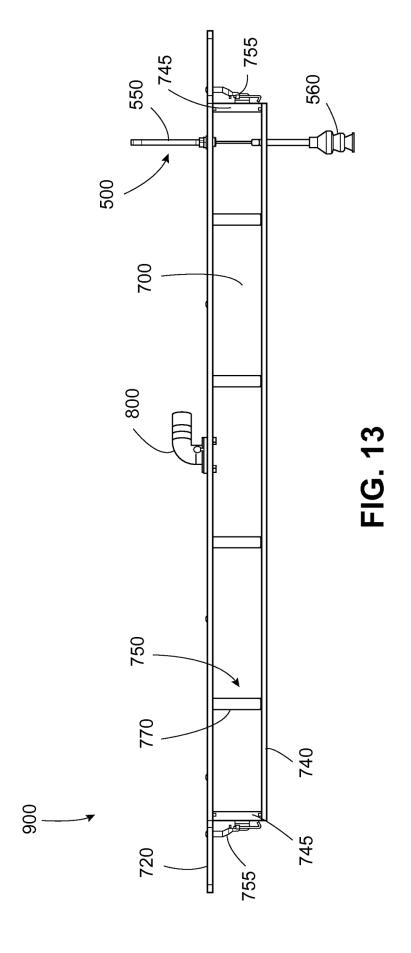
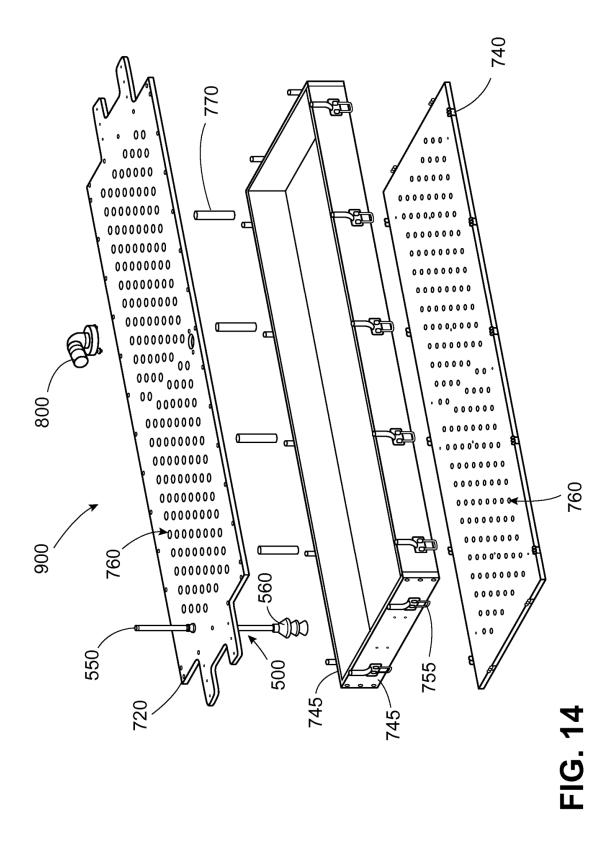




FIG. 12

