

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 763 001

(51) Int. CI.:

C12N 15/866 (2006.01)
A01K 67/033 (2006.01)
C12N 15/85 (2006.01)
A61M 5/20 (2006.01)
B01L 99/00 (2010.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 19.09.2016 PCT/EP2016/072143

(87) Fecha y número de publicación internacional: 23.03.2017 WO17046415

(96) Fecha de presentación y número de la solicitud europea: 19.09.2016 E 16766970 (4)

(97) Fecha y número de publicación de la concesión europea: 13.11.2019 EP 3350334

(54) Título: Expresión de proteínas recombinantes en pupas de Trichoplusia ni

(30) Prioridad:

17.09.2015 EP 15382451

Fecha de publicación y mención en BOPI de la traducción de la patente: **26.05.2020**

(73) Titular/es:

ALTERNATIVE GENE EXPRESSION, S.L. (100.0%) Centro empresarial Parque Cientifico y Technológico Universidad Politécnica de Madrid Campus de Montegancedo 28223 Pozuelo de Alarcón - Madrid, ES

(72) Inventor/es:

MARTÍNEZ ESCRIBANO, JOSÉ ÁNGEL; ALVARADO FRADUA, CARMEN; REYTOR SAAVEDRA, EDEL y CID FERNANDEZ, MIGUEL

(74) Agente/Representante:

MARTÍN BADAJOZ, Irene

DESCRIPCIÓN

Expresión de proteínas recombinantes en pupas de Trichoplusia ni

5 Campo de la invención

La presente invención puede incluirse en el campo de la biotecnología y cubre medios y métodos para aumentar la eficiencia de la expresión de proteínas recombinantes, en particular para la producción industrial de proteínas recombinantes en pupas de insectos, particularmente en pupas de *Trichoplusia ni* (*T. ni*), incluyendo su optimización. Además, la presente invención también se refiere a las pupas en sí que comprenden un baculovirus, pupas infectadas, transformadas, transducidas o transfectadas con baculovirus o bácmidos.

Estado de la técnica

10

- El sistema de vector de expresión de baculovirus (BEVS) es un método bien establecido para la producción de 15 proteínas recombinantes, por ejemplo, proteínas que van a usarse como vacunas, moléculas terapéuticas o reactivos de diagnóstico. Con su potencial de sobreexpresión y rápida velocidad de desarrollo, el BEVS es una de las elecciones más atractivas para producir proteínas recombinantes para cualquier propósito. El vector de baculovirus más empleado usado en la industria para la expresión de proteínas recombinantes se basa en el virus de la polihedrosis multinuclear de Autographa californica (AcMNPV) con células de insecto de Spodoptera frugiperda 20 9 (Sf9) o 21 (Sf21) como huéspedes de expresión adecuados (Nettleship, J.E., Assenberg, R., Diprose, J.M., Rahman-Huq, N., Owens, R.J. Recent advances in the production of proteins in insect and mammalian cells for structural biology. J. Struct. Biol. 2010, 172, 55-65), así como larvas de insecto de Trichoplusia ni (T. ni) como biofábricas vivas (Gomez-Casado E, Gomez-Sebastian S, Núñez MC, Lasa-Covarrubias R, Martínez-Pulgarín S, 25 Escribano JM. Insect larvae biofactories as a platform for influenza vaccine production. Protein Expr Purif. 79: 35-43. 2011). Dado que el BEVS se desarrolló en los años 80 (Smith, G.E., M.D. Summers y M.J. Fraser. 1983. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3: 2156-21 65), cientos de proteínas recombinantes, que oscilan desde enzimas citosólicas hasta proteínas unidas a membrana, se han producido con éxito en células de insecto infectadas con baculovirus.
 - Recientemente, se han descrito nuevos vectores de baculovirus. Por ejemplo, los documentos WO 2012/168493 y WO 2012/168492 describen elementos de ADN recombinante para la expresión de proteínas recombinantes en insectos y células de insecto.
- En todo el mundo, se producen aproximadamente 70.000 toneladas de seda al año en un proceso que convierte un sustrato de bajo valor, las hojas del árbol de la morera, en un producto basado en proteínas de alto valor: la seda. Los insectos son productores de proteínas altamente eficaces debido a su metabolismo acelerado.
- Los lepidópteros tales como *Bombyx mori* (*B. mori*, gusano de seda) o *T. ni* (oruga de la col), son dos de los insectos más usados en biotecnología. Crecen en tamaño aproximadamente 5000 veces en menos de 2 semanas y producen más de un kilómetro de seda por insecto de *B. mori*. Aunque una célula de una glándula de seda puede producir aproximadamente 80 µg de proteína/célula/día, los mejores sistemas de cultivo de células de mamífero sólo producen aproximadamente 50 pg de proteína/célula/día.
- Por consiguiente, los insectos como biofábricas vivas constituyen una alternativa prometedora a las células de insecto, tecnologías de fermentación convencionales y también a proteínas de origen vegetal debido a la versatilidad de producción, escalabilidad, posibilidad de automatización, eficiencia y velocidad de desarrollo. Por ejemplo, los insectos como biofábricas vivas evitan la necesidad de biorreactores para la expresión de proteínas en, por ejemplo, células de insecto. Los biorreactores son una barrera tecnológica y económica para producir proteínas recombinantes nuevas y existentes, dado que son ineficientes, costosos, tecnológicamente complejos (tardan varios años en construirse, son difíciles de validar, necesitan personal altamente cualificado para su manipulación, son propensos a contaminaciones y no son fiables). Además, se encuentran con el problema de la escalabilidad limitada.
- Las larvas de B. mori se han usado ampliamente como biofábricas vivas para la expresión de proteínas 55 recombinantes usando el sistema de vector de expresión de baculovirus (Wang, DN; Liu, JW; Yang, GZ; Zhang, WJ; Wu, XF. 2002. Cloning of anti-LPS factor cDNA from Tachypleus tridentatus, expression in Bombyx mori larvae and its biological activity in vitro. Molecular Biotechnology, 21(1), 1-7; Wu, XF; Kamei, K; Sato, H; Sato, S; Takano, R; Ichida, M; Mori, H; Hara, S. 2001. High-level expression of human acidic fibroblast growth factor and basic fibroblast growth factor in silkworm (Bombyx mori L.) using recombinant baculovirus. Protein Expression And Purification, 60 21(1), 192-200; Kulakosky, PC; Hughes, PR; Wood, HA. 1998. N-linked glycosylation of a baculovirus-expressed recombinant glycoprotein in insect larvae and tissue culture cells. Glycobiology, 8(7), 741-745; Suzuki, T; Kanaya, T; Okazaki, H; Ogawa, K; Usami, A; Watanabe, H; KadonoOkuda, K; Yamakawa, M; Sato, H; Mori, H; Takahashi, S; Oda, K. 1997. Efficient protein production using a Bombyx mori nuclear polyhedrosis virus lacking the ciysteine proteinase gene. Journal Of General Virology, 78, 3073-3080; Sumathy, S; Palhan, VB; Gopinathan, KP. 1996. Expression of human growth hormone in silkworm larvae through recombinant Bombyx mori nuclear polyhedrosis 65 virus. Protein Expression And Purification, 7(3), 262-268; U. Reis, B. Blum, B.U. von Specht, H. Domdey, J. Collins,

Antibody production in silkworm cells and silkworm larvae infected with a dual recombinant Bombyx mori nuclear polyhedrosis virus, Biotechnology (NY) 10 (1992) 910-912).

Las larvas de T. ni también se han usado para la expresión de proteínas recombinantes (Perez-Martin, E., Gomez-Sebastian, S., Argilaguet, J.M., Sibila, M., Fort, M., Nofrarias, M., Kurtz, S., Escribano, J.M., Segales, J., Rodriguez, F., 2010. Immunity conferred by an experimental vaccine based on the recombinant PCV2 Cap protein expressed in Trichoplusia ni-larvae. Vaccine 28 (11), 2340-2349); Gomez-Casado E, Gomez-Sebastian S, Núñez MC, Lasa-Covarrubias R, Martínez-Pulgarín S, Escribano JM. Insect larvae biofactories as a platform for influenza vaccine production, Protein Expr. Purif. 2011, 79: 35-43; Medin, JA; Hunt, L; Gathy, K; Evans, RK; Coleman, MS. 1990. Efficient, low-cost protein factories - expression of human adenosine-deaminase in baculovirus-infected insect larvae. Proceedings of the National Academy of Sciences of the United States of America, 87(7), 2760-2764; Shafer, AL; Katz, JB; Eernisse, KA. 1998. Development and validation of a competitive enzyme-linked immunosorbent assay for detection of type A influenza antibodies in avian sera. Avian Diseases, 42(1), 28-34; Cha, HJ; Pham, MQ; Rao, G; Bentley, WE. 1997. Expression of green fluorescent protein in insect larvae and its application for heterologous protein production. Biotechnology and Bioengineering, 56(3), 239-247; Burden, JP; Hails, RS; Windass, JD; Suner, MM; Cory, JS. 2000. Infectivity, speed of kill, and productivity of a baculovirus expressing the itch mite toxin txp-1 in second and fourth instar larvae of Trichoplusia ni. Journal of Invertebrate Pathology, 75(3), 226-236; Perez-Filgueira, D. M.; Resino-Talavan, P.; Cubillos, C.; Angulo, I.; Barderas, M. G.; Barcena, J.; Escribano, J. M.. 2007. Development of a low-cost, insect larvae-derived recombinant subunit vaccine against RHDV. Virology, 364(2), 422-430; Perez-Filgueira, D. A.; Gonzalez-Camacho, F.; Gallardo, C.; Resino-Talavan, P.; Blanco, E.; Gomez-Casado, E.; Alonso, C.; Escribano, J. M.. 2006. Optimization and validation of recombinant serological tests for African swine fever diagnosis based on detection of the p30 protein produced in Trichoplusia ni larvae. Journal of Clinical Microbiology, 44(9), 3114-3121; Hellers, M; Gunne, H; Steiner, H. 1991. Expression and posttranslational processing of preprocecropin-a using a baculovirus vector. European Journal of Biochemistry, 199(2), 435-439).

10

15

20

25

30

35

40

45

50

En el gusano de seda, estudios comparativos demostraron que, para la mayoría de proteínas, los rendimientos de expresión más altos se obtuvieron en larvas en lugar de en pupas (Akihiro Usami *et al* (Akihiro Usami, Seiji Ishiyama, Chiaki Enomoto, Hironobu Okazaki, Keiko Higuchi, Mashahiro Ikeda, Takeshi Yamamoto, Mutsumi Sugai, Yukiko Ishikawa, Yumiko Hosaka, Teruyuki Koyama, Yoneko Tobita, Syoko Ebihara, Toshiko Mochizuki, Yoshimi Asano y Hidekazu Nagaya, Comparison of recombinant protein expression in a baculovirus system in insect cells (Sf9) and silkworm, J. Biochem. 2011;149(2):219-227; Chazarra S, Aznar-Cervantes S, Sánchez-del-Campo L, Cabezas-Herrera J, Xiaofeng W, Cenis JL, Rodriguez-López JN, Purification and kinetic properties of human recombinant dihydrofolate reductase produced in Bombyx mori chrysalides, Appl Biochem Biotechnol. Noviembre de 2010;162(7):1834-46). Además, se ha descrito una disminución de la susceptibilidad de las pupas a la infección por baculovirus en gusanos de seda relacionada con la edad de las pupas (Journal of General Virology (1992), 73, 3195-320). Además, en las larvas, la infección del baculovirus se realiza generalmente por vía oral, en lugar de mediante inoculación (inyección) para la producción a gran escala. Las pupas no pueden infectarse por vía oral, de modo que hay que inyectarlas manualmente, lo cual es tedioso y requiere mucho tiempo. Además, las pupas de gusano de seda están cubiertas por un capullo grueso que ha de retirarse (manualmente) antes de que tenga lugar la inoculación del virus, lo que generalmente es un proceso tedioso.

Junto con el menor rendimiento de expresión de proteínas general en la pupa del gusano de seda y las dificultades en su manipulación, han conducido a una preferencia general del uso de larvas para la producción de proteínas recombinantes.

Pueden encontrarse desventajas similares en otros sistemas, tales como pupas de *Hyalophora cecropia*. La expresión de determinadas proteínas en pupas de *H. cecropia* es menor que en larvas de *T. ni* (Hellers, M. y Steiner, H.; Insect Biochem. Molec. Biol., vol. 22, Bo.1, págs. 35-39, 1992). Además, las polillas de *Hyalophora cecropia* son difíciles de criar, son estrictamente univoltinas (tienen una generación al año), tienen cantidades muy bajas de huevos por ciclo y tienen un capullo de alta densidad (el capullo grueso ha de retirarse (manualmente) antes de que tenga lugar la inoculación del virus, lo que generalmente es un proceso tedioso). Todas estas desventajas hacen de las pupas de *Hyalophora cecropia* un mal sistema para la expresión de proteínas recombinantes, en particular un sistema poco eficiente, escalable y automatizado para la expresión de proteínas recombinantes.

Existe la necesidad de sistemas más eficientes y fáciles de automatizar (escalar) para la expresión de proteínas recombinantes en insectos usando el BEVS, particularmente para la expresión industrial de proteínas recombinantes en insectos usando el BEVS.

Después de una investigación intensiva, los inventores de la presente invención han encontrado una solución al problema anterior, concretamente un sistema de expresión de proteínas en pupas que pertenecen al género *Trichoplusia*, que es más eficiente que la expresión en larvas y permite además una automatización (escalado) casi completa, que aumenta la eficiencia y reduce los costes asociados con la expresión de proteínas recombinantes, en particular a escala industrial.

Por tanto, la presente invención se refiere al uso de pupas (crisálidas), del género *Trichoplusia*, en combinación con vectores de baculovirus derivados del virus multicápside de la polihedrosis nuclear de *Autographa californica*

(AcMNPV), para producir proteínas recombinantes que van a usarse en diagnóstico, vacunas y tratamientos terapéuticos. El uso de pupas (crisálidas) de la especie Trichoplusia ni para la expresión de proteínas recombinantes, en particular el uso industrial de pupas (crisálidas) de la especie Trichoplusia ni para la expresión de proteínas recombinantes, no se ha comunicado aún.

Sumario de la invención

La invención a la que se refiere esta memoria descriptiva se expone en las reivindicaciones adjuntas a esta descripción.

La presente invención proporciona una pupa que comprende un baculovirus recombinante y/o un vector de transferencia/bácmido derivado del virus multicápside de la polihedrosis nuclear de Autographa californica (AcMNPV).

- 15 Además, la presente invención proporciona una pupa que comprende una secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE-1, IE-0 y/o fragmentos de las mismas que actúan como reguladores de la transcripción por encima de los niveles endógenos obtenidos durante la infección por baculovirus y una región homóloga recombinante (hr) ligada operativamente a cualquier promotor que es adecuado para dirigir la expresión de una proteína recombinante.
 - La invención también se refiere al uso de la pupa de la invención para la expresión de proteínas recombinantes.

Además, la presente invención proporciona un método para producir al menos una proteína recombinante que comprende las etapas de:

- (a) proporcionar una pupa;
- (b) inocular la pupa de la etapa (a) con un baculovirus recombinante derivado del virus multicápside de la polihedrosis nuclear de Autographa californica (AcMNPV);
- (c) incubar la pupa inoculada de la etapa (b) durante un periodo de tiempo suficiente para que se exprese la al menos una proteína recombinante;
- (d) obtener las pupas que comprenden la al menos una proteína recombinante;
- (e) opcionalmente, recoger la al menos una proteína recombinante; y
- (f) opcionalmente, purificar la al menos una proteína recombinante.
- 40 Además, se proporciona en el presente documento un método que puede automatizarse para reducir la manipulación para producir una pupa libre de seda que pertenece al orden Lepidoptera que comprende las etapas
 - (a) proporcionar una pupa contenida en un capullo;
 - (b) tratar la pupa contenida en un capullo, preferiblemente mediante un dispositivo especialmente diseñado, con una disolución de una sal de ácido hipocloroso, preferiblemente hipoclorito de sodio; y
 - (c) obtener una pupa libre de seda (y, opcionalmente, esencialmente desinfectada externamente).

Un método para producir un baculovirus recombinante que comprende las etapas de:

- (a) proporcionar una pupa:
- 55 (b) transfectar la pupa de la etapa (a) con un vector de transferencia/bácmido adecuado para producir un baculovirus recombinante derivado del virus multicápside de la polihedrosis nuclear de Autographa californica (AcMNPV);
- (c) incubar la pupa inoculada de la etapa (b) durante un periodo de tiempo suficiente para que se produzca el 60 baculovirus recombinante;
 - (d) obtener las pupas que comprenden el baculovirus recombinante;
 - (e) opcionalmente, recoger el baculovirus recombinante; y
 - (f) opcionalmente, purificar el baculovirus recombinante.

4

5

10

20

25

35

30

45

50

La presente divulgación también se refiere a un dispositivo que comprende una bomba de precisión, un brazo mecánico móvil y una(s) aguja(s) (retirable(s)) adecuada(s) para inyectar un fluido en una pupa que pertenece al orden *Lepidoptera*, preferiblemente a los géneros *Trichoplusia*, *Rachiplusia*, *Spodoptera*, *Heliothis*, *Manduca*, *Helicoverpa*, *Ascalapha* o *Samia*, más preferiblemente a los géneros *Trichoplusia*, *Rachiplusia*, *Spodoptera*, *Heliothis* o *Helicoverpa*, incluso más preferiblemente a las especies *Trichoplusia*, *ni*, *Rachiplusia nu*, *Spodoptera frugiperda*, *Heliothis virescens*, *Helicoverpa armigera*, *Helicoverpa zea*, *Manduca sexta*, *Ascalapha odorata* o *Sanda cynthia*.

Breve descripción de las figuras

10

20

35

50

65

Figura 1: Módulo de cría masiva de insectos de *T. ni* de un solo uso. Larvas que crecen en el módulo de cría de insectos en el quinto estadio del instar.

Figura 2: Comparación de capullos (parte izquierda de la imagen) y pupas libres de seda (parte derecha de la imagen) formados por los lepidópteros *Bombyx mori* y *Trichoplusia ni*.

Figura 3: Dispositivo semiautomático para la retirada de seda de los capullos de *T. ni*. Representación esquemática de la máquina que contiene dos recipientes y un brazo mecánico en el que está situado el módulo de cría de un solo uso. El primer recipiente contiene ácido hipocloroso y un sistema para proyectar el líquido a través de los módulos de cría que contienen los capullos (ayuda a disolver más eficazmente la seda que rodea a la pupa). El segundo recipiente es para lavar las pupas y pulveriza agua sobre las crisálidas. En la parte superior de este recipiente hay un sistema que dispensa aire para secar las pupas. Al final del proceso, las pupas están libres de seda y listas para usarse en la infección o para almacenarse refrigeradas hasta su uso.

Figura 4: Casetes de expresión de baculovirus usados para producir la proteína fluorescente verde (GFP). A) Casete de expresión convencional de baculovirus que usa el promotor de polihedrina (por ejemplo, SEQ ID NO: 23). B) Casete de expresión TB que comprende el ADNc de Ac-ie-01 que codifica para los transactivadores IE1 e IE0 expresados bajo el control del promotor de polihedrina; la secuencia potenciadora hr1 y el promotor quimérico p6.9-p10 que dirige la expresión de la GFP (por ejemplo, SEQ ID NO: 17 y una secuencia de ácido nucleico que codifica para GFP, por ejemplo, SEQ ID NO: 38).

Figura 5: Inoculación automática de pupas de *T. ni* mediante un robot que inyecta el baculovirus recombinante. A) Representación esquemática del robot de inoculación. B) Representación esquemática de una matriz de alveolo en la que se sitúan las pupas de insectos. Estos alveolos que contienen las pupas tienen una parte superior perforada y pueden apilarse facilitando el transporte de las pupas al laboratorio de producción y son compatibles con el robot de inoculación. En el mismo panel, una imagen de fotografía real del alveolo que contiene las pupas y con la parte superior. C) Representación esquemática de la inoculación de las pupas con una aguja conectada con el brazo robótico.

Figura 6: Análisis comparativo de los rendimientos de expresión de la proteína GFP en pupas infectadas usando un baculovirus convencional TB(-) (promotor de polihedrina, por ejemplo, SEQ ID NO: 23) o un baculovirus modificado con TB TB(+). A) Tinción con azul de Coomassie de una SDS-PAGE que resuelve extractos de proteína de pupas infectadas con el baculovirus TB(-) o TB(+). (-) corresponde a un extracto de una pupa de control no infectada. B) Cuantificación de los rendimientos de producción de GFP obtenidos en pupas infectadas por cada baculovirus analizado expresados en mg por g de biomasa de pupas.

Figura 7: Casetes de expresión de baculovirus usados para producir la proteína de la cápside del circovirus porcino tipo 2 (Cap) (por ejemplo, SEQ ID NO: 26) o la hemaglutinina (HA) del virus de la gripe (por ejemplo, SEQ ID NO: 30). A) Casete de expresión de baculovirus convencional que usa el promotor de polihedrina. B) Casete de expresión TB que comprende el ADNc de *Ac-ie-01* que codifica para los transactivadores IE1 e IE0 expresados bajo el control del promotor de polihedrina; la secuencia potenciadora *hr1* y el promotor quimérico *p6.9-p10* que dirige la expresión de las proteínas mencionadas anteriormente.

Figura 8: Análisis comparativo de los rendimientos de expresión de la proteína Cap (por ejemplo, SEQ ID NO: 26) en pupas infectadas usando un baculovirus convencional TB(-) (promotor de polihedrina, SEQ ID NO: 10, SEQ ID NO: 28) o un baculovirus modificado con TB TB(+) (por ejemplo, SEQ ID NO: 27 ó 29). A) Tinción con azul de Coomassie de una SDS-PAGE que resuelve extractos de proteína de pupas infectadas con el baculovirus TB(-) o TB(+). (-) corresponde a un extracto de una pupa de control no infectada. B) Cuantificación de los rendimientos de producción de Cap obtenidos en pupas infectadas por cada baculovirus analizado expresados en mg por g de biomasa de pupas.

Figura 9: Análisis comparativo de los rendimientos de expresión de la proteína HA (SEQ ID NO: 30) en pupas infectadas usando un baculovirus convencional TB(-) (promotor de polihedrina, SEQ ID NO: 10) o un baculovirus modificado con TB TB(+) (por ejemplo, SEQ ID NO: 31). A) Tinción con azul de Coomassie de una SDS-PAGE que resuelve extractos de proteína de pupas infectadas con el baculovirus TB(-) o TB(+). (-) corresponde a un extracto de una pupa de control no infectada. B) Cuantificación de los rendimientos de producción de HA obtenidos en pupas

infectadas por cada baculovirus analizado expresados en mg por g de biomasa de pupas.

Figura 10: Casete de expresión de baculovirus usado para producir la proteína GFP, Cap (SEQ ID NO: 26), HA (SEQ ID NO: 30) y VP60 a partir de virus de la enfermedad hemorrágica del conejo (RHDV, SEQ ID NO: 32 ó 33) en larvas y pupas de *T. ni*. Representación esquemática del casete de expresión TB que comprende el ADNc de *Ac-ie-01* que codifica para los transactivadores IE1 e IE0 expresados bajo el control del promotor de polihedrina; la secuencia potenciadora *hr1* y el promotor quimérico *p6.9-p10* que dirige la expresión de las proteínas mencionadas anteriormente.

- Figura 11: Análisis comparativo de los rendimientos de expresión de la proteína GFP en pupas y larvas infectadas. A) Tinción con azul de Coomassie de una SDS-PAGE que resuelve extractos de proteína de pupas infectadas (P) o larvas infectadas (L) con el baculovirus TB(+). (-) corresponde a un extracto de una pupa de control no infectada. B) Cuantificación de los rendimientos de producción de GFP obtenidos en pupas o larvas infectadas y expresados en mg por g de biomasa de insectos.
 - Figura 12: Análisis comparativo de los rendimientos de expresión de la proteína Cap en pupas y larvas infectadas. A) Tinción con azul de Coomassie de una SDS-PAGE que resuelve extractos de proteína de pupas infectadas (P) o larvas infectadas (L) con el baculovirus TB(+). (-) corresponde a un extracto de una pupa de control no infectada. B) Cuantificación de los rendimientos de producción de Cap obtenidos en pupas o larvas infectadas y expresados en mg por g de biomasa de insectos.
 - Figura 13: Análisis comparativo de los rendimientos de expresión de la proteína HA en pupas y larvas infectadas. A) Tinción con azul de Coomassie de una SDS-PAGE que resuelve extractos de proteína de pupas infectadas (P) o larvas infectadas (L) con el baculovirus TB(+). (-) corresponde a un extracto de una pupa de control no infectada. B) Cuantificación de los rendimientos de producción de HA obtenidos en pupas o larvas infectadas y expresados en mg por g de biomasa de insectos.
 - Figura 14: Análisis comparativo de los rendimientos de expresión de las proteínas VP60 de la cápside del RHDV (G1 y RHDVb) en pupas y larvas infectadas. A) Tinción con azul de Coomassie de una SDS-PAGE que resuelve extractos de proteína de pupas infectadas (P) o larvas infectadas (L) con el baculovirus TB(+). (-) corresponde a un extracto de una pupa de control no infectada. B) Cuantificación de los rendimientos de producción de proteínas de la cápside del RHDV obtenidos en pupas o larvas infectadas y expresados en mg por g de biomasas de insectos (L) con el baculovirus TB(+). (-) corresponde a un extracto de una pupa de control no infectada. B) Cuantificación de los rendimientos de producción de proteínas de la cápside del RHDV obtenidos en pupas o larvas infectadas y expresados en mg por g de biomasa de insectos.
 - Figura 15: VLP formadas después de la infección de pupas de *T. ni* por un baculovirus TB(+) que expresa la proteína VP60 del G1 de RHDV y RHDVb. Se procesaron extractos de pupas infectadas en los momentos de producción óptimos con cada baculovirus para la purificación de VLP. Se observaron las muestras mediante microscopía electrónica usando tinción negativa. La figura muestra las VLP a dos aumentos. Las VLP obtenidas con los dos baculovirus presentaron tamaños y formas idénticas. Las micrografías son representativas de los campos analizados.
- Figura 16: Ejemplo esquemático del procedimiento para obtener un inóculo de virus de pupas infectadas en ausencia de cultivos de células de insecto.
 - Figura 17: Ejemplo esquemático de procedimiento de procesamiento anterior y posterior para obtener una proteína recombinante purificada de pupas infectadas en tres etapas. A) Producción de crisálidas de *T. ni*, su manipulación y opcionalmente envío al destino final (por ejemplo, empresa farmacéutica) para la producción de proteínas recombinantes. B) Almacenamiento de las pupas, inoculación robótica con baculovirus recombinante usando el dispositivo de la presente invención, incubación y biomasa de insecto congelada, que puede almacenarse durante meses antes del procesamiento *in situ*, o que puede enviarse fácilmente a otras ubicaciones para proceder con el procesamiento posterior. C) Procesamiento posterior mediante medios convencionales de biomasa congelada, incluyendo homogeneización, filtración de flujo tangencial y purificación de proteínas.
 - Figura 18: Comparación de rendimientos de expresión de proteína Cap del circovirus porcino en células de insecto usando un baculovirus convencional y un baculovirus modificado mediante TopBac en células de insecto y en pupas de insectos.
- 60 Figura 19: Ejemplo esquemático de un procedimiento para obtener un inóculo de virus de pupas infectadas.
 - Figura 20: Ejemplo esquemático de un procedimiento de procesamiento posterior para obtener una proteína recombinante purificada de pupas infectadas.
- 65 Descripción detallada de la invención

20

25

30

35

40

50

Definiciones

5

25

30

50

55

60

Tal como se usa en el presente documento, "pupa" se refiere al estadio vital de algunos insectos que experimentan transformación. El estadio pupal se encuentra en insectos que experimentan una metamorfosis completa (insectos holometábolos). Estos insectos pasan por cuatro estadios vitales: embrión, larva, pupa e imago. La pupa de las mariposas también se denomina crisálida. Los insectos pueden proteger la pupa cubriéndola con un capullo, que es una cubierta hilada de seda que protege la pupa de muchos insectos.

- Tal como se usa en el presente documento, "baculovirus" se refiere a una familia de virus infecciosos para invertebrados, que infectan principalmente insectos y artrópodos. Un "baculovirus recombinante" ha introducido además ADN recombinante a través de, por ejemplo, recombinación homóloga o transposición. El baculovirus recombinante puede originarse a partir del virus multicápside de la polihedrosis nuclear de *Autographa californica* (AcMNPV).
- Tal como se usa en el presente documento, un "casete de expresión" comprende elementos de ADN recombinante que están implicados en la expresión de un determinado gen, tal como el gen en sí y/o elementos que controlan la expresión de este gen (por ejemplo, el promotor). Por ejemplo, un casete de expresión útil en la presente invención comprende los siguientes elementos de ADN recombinante:
- 20 1. una secuencia de ácido nucleico que permite la expresión de una proteína recombinante, tal como las proteínas recombinantes descritas a continuación en la presente memoria descriptiva, y preferiblemente secuencias de ácido nucleico que controlan su expresión (al menos un promotor); y
 - una secuencia de ácido nucleico que permite la expresión de reguladores de la transcripción de baculovirus, tales como IE-1 e IE-0, por encima de los niveles normales, es decir, endógenos, de dichos reguladores que se obtienen durante la infección por baculovirus de una célula de insecto o un insecto.

En algunas realizaciones, el casete de expresión comprende además una región homóloga potenciadora (hr), tal como hr1, ligada operativamente al promotor de dicha secuencia que codifica para la proteína recombinante. Los elementos de ADN recombinante que forman parte del casete de expresión de la invención pueden estar presentes en una única molécula de ácido nucleico. Los elementos de ADN recombinante que forman parte del casete de expresión pueden estar presentes en moléculas de ácido nucleico distintas. Preferiblemente, las moléculas de ácido nucleico distintas están presentes dentro de la misma célula.

- Tal como se usa en el presente documento, "ADN recombinante" se refiere a una forma de ADN artificial que se modifica por ingeniería genética a través de la combinación o inserción de una o más cadenas de ADN, combinando de ese modo ADN que no se produciría normalmente junto.
- Tal como se usa en el presente documento, "elemento de ADN recombinante" se refiere a un elemento funcional dentro del ADN recombinante, tal como un promotor, un potenciador o un gen.

Tal como se usa en el presente documento, "regulador de la transcripción" se refiere a una proteína reguladora que tiene la capacidad de modular la transcripción de genes específicos mediante, por ejemplo, la unión a regiones potenciadoras o represoras y/o el reclutamiento de proteínas adicionales que están implicadas en la transcripción.

IE-1 y su variante de corte y empalme IE-0 son reguladores de la transcripción que se expresan de manera endógena durante la infección por baculovirus. El nivel de expresión de las proteínas IE-1, IE-0 y/o fragmentos de las mismas puede determinarse tanto al nivel de ARNm como al nivel de proteína con métodos conocidos de manera convencional por el experto en la técnica, tales como PCR cuantitativa y análisis de inmunotransferencia de tipo Western.

Según la presente invención, IE-1, IE-0 y/o fragmentos de las mismas pueden expresarse de manera recombinante para aumentar el nivel total de estas proteínas por encima de niveles endógenos durante la infección por baculovirus. Esto puede lograrse a través de, por ejemplo, la introducción de copias adicionales del gen endógeno o la manipulación de la expresión del promotor del gen endógeno. Pueden introducirse copias adicionales de los genes endógenos como transgenes bajo el control de un promotor adecuado tal como *polh* o *pB2*₉.

- IE-1, IE-0 y fragmentos de las mismas pueden codificarse por los ácidos nucleicos de SEQ ID NO: 1 (también denominados *Ac-ie-01*) a SEQ ID NO: 5. SEQ ID NO: 1 es el ADNc de *Ac-ie-01* que codifica para tanto IE-1 como IE-0, SEQ ID NO: 2 es la secuencia codificante (CDS) de IE-1 y SEQ ID NO: 3 es la CDS de IE-0. SEQ ID NO: 4 y 5 son las CDS de los dominios *N*-terminales de IE-1 e IE-0, respectivamente, que conservan la actividad catalítica de regulador de la transcripción. Las proteínas que están codificadas por SEQ ID NO: 2-5 se representan mediante SEQ ID NO: 6-9, respectivamente.
- Las secuencias de ácido nucleico y aminoácidos a las que se hace referencia en la presente invención se distinguirán de otras secuencias de ácido nucleico y aminoácidos por su grado de identidad o similitud de secuencia, respectivamente, tal como se determina usando EMBOSS Needle con los parámetros por defecto

(http://www.ebi.ac.uk/Tools/psa/emboss needle/). Los métodos para la generación de tales variantes incluyen mutagénesis al azar o dirigida al sitio, mutagénesis de saturación de sitios, ensamblaje de fragmentos basado en PCR, intercambio de ADN, recombinación homóloga in vitro o in vivo y métodos de síntesis génica.

- 5 Tal como se usa en el presente documento, "variantes" son ácidos nucleicos o aminoácidos cuya secuencia de ácido nucleico o aminoácidos difiere en una o más posiciones de la secuencia original de ácido nucleico o aminoácidos, por lo cual las diferencias pueden ser adiciones, deleciones y/o sustituciones de ácidos nucleicos o residuos de aminoácido.
- 10 Tal como se usa en el presente documento, las "regiones homólogas", (hr), están compuestas por unidades repetidas de aproximadamente 70 pb con un palíndromo imperfecto de 30 pb cerca de su centro. Por ejemplo, se repiten regiones homólogas en ocho ubicaciones en el genoma de AcMNPV con de 2 a 8 repeticiones en cada lado. Se han implicado a las regiones homólogas tanto como potenciadores de la transcripción como orígenes de replicación de ADN de baculovirus. 15

Tal como se usa en el presente documento, "región potenciadora" se refiere a una secuencia de control, cuya unión por reguladores de la transcripción aumenta el nivel de transcripción de genes asociados.

Tal como se usa en el presente documento, "proteína recombinante" se refiere a una proteína que se origina a partir 20 de ADN recombinante. Tales proteínas pueden usarse para el beneficio de humanos y animales y pueden tener aplicación industrial, comercial o terapéutica.

Tal como se usa en el presente documento, "que están ligadas operativamente" se refiere a dos secuencias de ácido nucleico que están conectadas de manera que una influye en la otra en cuanto a, por ejemplo, regulación de la transcripción.

Tal como se usa en el presente documento, "promotor" se refiere a una secuencia de ADN a la que puede unirse ARN polimerasa para iniciar la transcripción. La secuencia puede contener además sitios de unión para diversas proteínas que regulan la transcripción, tales como factores de transcripción. La secuencia promotora puede estar compuesta de diferentes fragmentos de promotor (o bien fragmentos diferentes o bien iguales) que se ubican cerca en la secuencia de ADN y pueden separarse mediante ligadores o espaciadores. Tales promotores se denominan promotores quiméricos.

Tal como se usa en el presente documento, un "vector de transferencia" es un vector (concretamente una molécula 35 de ADN usada como vehículo para portar material genético) que permite la inserción de información genética en un genoma de baculovirus.

Tal como se usa en el presente documento, un "bácmido" se refiere a un constructo de plásmido que contiene la secuencia de ADN suficiente para generar un baculovirus cuando se transfecta en una célula o un insecto.

Tal como se usa en el presente documento, un "vector de clonación" se refiere a cualquier vector que es adecuado para la clonación, que implica generalmente la presencia de sitios de restricción, un origen de replicación para la propagación bacteriana y un marcador seleccionable.

45 El vector de clonación que puede usarse en el contexto de la presente invención contiene preferiblemente además de (i) la secuencia para la expresión por encima de los niveles endógenos de las proteínas IE-0, IE-1 y/o fragmentos de las mismas, (ii) una región homóloga recombinante (hr) ligada a (iii) un promotor adecuado para dirigir la expresión de una proteína recombinante. Por ejemplo, el vector de clonación puede comprender una secuencia de ácido nucleico que codifica para una proteína recombinante (también denominado "vector donador", concretamente 50 un vector de clonación que comprende un casete de expresión). Alternativamente, el vector de clonación carece de tal secuencia.

Tal como se usa en el presente documento, una "vacuna" puede definirse como una preparación biológica, que comprende preferiblemente una proteína recombinante que proporciona inmunidad adquirida activa a una enfermedad particular.

Tal como se usa en el presente documento, el término "aproximadamente" significa el valor indicado ± el 1% de su valor, o el término "aproximadamente" significa el valor indicado ± el 2% de su valor, o el término "aproximadamente" significa el valor indicado ± el 5% de su valor, el término "aproximadamente" significa el valor indicado ± el 10% de su valor, o el término "aproximadamente" significa el valor indicado ± el 20% de su valor, o el término "aproximadamente" significa el valor indicado ± el 30% de su valor; preferiblemente el término "aproximadamente" significa exactamente el valor indicado (± el 0%).

Descripción detallada

La presente divulgación proporciona una pupa que comprende un baculovirus recombinante y/o un vector de

8

40

25

30

55

60

transferencia/bácmido. La presente divulgación muestra sorprendentemente que la introducción de baculovirus recombinantes en pupas de insectos, y particularmente de secuencias que provocan la expresión de reguladores de la transcripción de baculovirus por encima de los niveles endógenos y opcionalmente la introducción de una secuencia de región homóloga potenciadora (*hr*), un promotor o una combinación de promotores, puede aumentar la producción de una proteína recombinante hasta niveles sin precedentes. Esto indica la utilidad de este sistema para la expresión de proteínas recombinantes *in vivo*, en particular para la producción industrial de proteínas recombinantes *in vivo*.

La presente divulgación proporciona una pupa que comprende un baculovirus recombinante y/o vector de transferencia y/o bácmido. El baculovirus recombinante y/o vector de transferencia y/o bácmido se deriva preferiblemente del virus multicápside de la polihedrosis nuclear de *Autographa californica* (AcMNPV). Preferiblemente, la pupa pertenece al orden *Lepidoptera*, preferiblemente a los géneros *Trichoplusia*, *Spodoptera*, *Heliothis*, *Manduca*, *Helicoverpa*, *Ascalapha* o *Samia*, preferiblemente a los géneros *Trichoplusia*, *Rachiplusia*, *Spodoptera*, *Heliothis* o *Helicoverpa*, más preferiblemente a las especies *Trichoplusia* ni, *Rachiplusia* nu, *Spodoptera frugiperda*, *Heliothis virescens*, *Helicoverpa armigera*, *Helicoverpa zea*, *Manduca sexta*, *Ascalapha odorata* o *Samia cynthia*. Incluso más preferiblemente, la pupa pertenece a la especie *Trichoplusia ni*. En un aspecto preferido, la pupa de la presente divulgación no pertenece a la especie *Bombyx mori*. En un aspecto preferido, la pupa de la presente divulgación no pertenece a la especia *Hyalophora cecropia*.

La pupa de la invención es una pupa que pertenece al género *Trichoplusia*, preferiblemente a la especie *Trichoplusia* ni, que comprende un baculovirus recombinante y/o un vector de transferencia/bácmido derivado del virus multicápside de la polihedrosis nuclear de *Autographa californica* (AcMNPV).

Las pupas de la invención, y en particular las pupas de T. ni, ofrecen varias ventajas para la expresión de proteínas 25 recombinantes, en particular en procesos automatizados y escalables. Por ejemplo, una pareja de polillas de T. ni puede tener alrededor de 1.000 huevos por ciclo. Además, el capullo producido por pupas de T. ni no es tan grueso como el capullo que cubre las pupas de otras especies (tales como, por ejemplo, Bombyx mori o Hyalophora cecropia), que hacen que las pupas de T. ni sean especialmente adecuadas para su uso en procesos de producción automatizados y escalables (producción industrial de proteínas recombinantes). Por consiguiente, las pupas de T. ni 30 infectadas con un baculovirus recombinante y/o un vector de transferencia y/o un bácmido preferiblemente derivado de virus multicápside de la polihedrosis nuclear de Autographa californica (AcMNPV) proporcionan un sistema eficiente, escalable y fácilmente automatizado para la producción de proteínas recombinantes. Ventajas adicionales de este sistema son su elevada productividad (hasta 20 veces más productivo que los biorreactores), el hecho de que es técnicamente sencillo, fácil de implementar y validar, sus costes reducidos (> 90% de reducción en inversiones fijas con respecto al uso de biorreactores), el menor coste de los bienes, tiempos de desarrollo cortos 35 (sistema de baculovirus), su alta eficiencia con proteínas difíciles de producir y la elevada calidad y seguridad de los productos producidos.

Los inventores de la presente solicitud encontraron sorprendentemente que la expresión de proteínas recombinantes en pupas, en particular en pupas que pertenecen al orden *Lepidoptera*, preferiblemente a los géneros *Trichoplusia*, *Rachiplusia*, *Spodoptera*, *Heliothis*, *Manduca*, *Helicoverpa*, *Ascalapha* o *Samia*, preferiblemente a los géneros *Trichoplusia*, *Rachiplusia*, *Spodoptera*, *Heliothis* o *Helicoverpa*, más preferiblemente a las especies *Trichoplusia* ni, *Rachiplusia* nu, *Spodoptera* frugiperda, *Heliothis* virescens, *Helicoverpa* armigera, *Helicoverpa* zea, *Manduca* sexta, *Ascalapha* odorata o *Samia* Cynthia, es comparable con e incluso mayor que la expresión en larvas.

45

50

55

60

65

La solicitud de patente publicada como WO 2012/168492 divulga baculovirus recombinantes y vectores de transferencia y bácmidos que pueden estar comprendidos en la pupa de la presente invención.

El baculovirus recombinante y/o vector de transferencia y/o bácmido comprendido en la pupa según la presente invención puede comprender preferiblemente un ADN recombinante. Por ejemplo, el baculovirus recombinante y/o vector de transferencia y/o bácmido comprendido en la pupa según la presente invención comprende una secuencia de ácido nucleico que codifica para una proteína recombinante, en el que la proteína recombinante se selecciona preferiblemente del grupo que consiste en vacuna monomérica de subunidades, vacuna multimérica de subunidades, partícula similar a virus, proteína terapéutica, anticuerpo, enzima, citocina, factor de coagulación de la sangre, anticoagulante, receptor, hormona, reactivos proteicos de diagnóstico y la proteína fluorescente verde (GFP), y/o en el que la proteína recombinante preferiblemente no es una proteína que producen de manera endógena las pupas, tal como se describirá a continuación. Por ejemplo, el baculovirus recombinante y/o vector de transferencia y/o bácmido comprendido en la pupa según la presente invención comprende una secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE-1, IE-0 y/o fragmentos de las mismas que actúan como reguladores de la transcripción por encima de los niveles endógenos obtenidos durante la infección por baculovirus (por ejemplo, la expresión por encima de los niveles endógenos puede obtenerse mediante la presencia, en el baculovirus recombinante, de una copia adicional de la secuencia de ácido nucleico que permite la expresión de las proteínas IE-1, IE-0 y/o fragmentos de las mismas). Preferiblemente, el baculovirus recombinante y/o vector de transferencia y/o bácmido comprendido en la pupa según la presente invención comprende además una región homóloga recombinante (hr) ligada operativamente a cualquier promotor adecuado para dirigir la expresión de una proteína recombinante.

El vector de transferencia que puede estar comprendido en la pupa de la presente invención contiene preferiblemente además de (i) la secuencia para la expresión por encima de los niveles endógenos de las proteínas IE-0, IE-1 y/o fragmentos de las mismas, (ii) una región homóloga recombinante (hr) ligada a (iii) un promotor adecuado para dirigir la expresión de una proteína recombinante. En un aspecto preferido, el vector de transferencia comprende una secuencia de ácido nucleico que codifica para dicha proteína recombinante, mientras que en otra realización preferida, el vector de transferencia carece de tal secuencia. En una realización preferida, el vector de transferencia es un bácmido.

El vector de transferencia y/o bácmido puede derivarse de cualquier sistema de expresión de baculovirus comercialmente disponible "Bac-to-Bac®" (invitrogen™), "BacPAK™" (Clontech™), "FlashBAC™" (Oxford Expression Technologies™), "BacuVance™" (GenScript™), "Bac-N-Blue DNA™" (invitrogen™), "BaculoDirect™" (invitrogen™), "BacVector®" 1000, 2000, 3000 (Novagen®), "DiamondBac™" (Sigma-Aldrich®) o "BaculoGold™" 10 (BD biosciences™). 15

La pupa de la presente divulgación (que pertenece preferiblemente al orden Lepidoptera, preferiblemente a los géneros Trichoplusia, Rachiplusia, Spodoptera, Heliothis, Manduca, Helicoverpa, Ascalapha o Samia, preferiblemente a los géneros Trichoplusia, Rachiplusia, Spodoptera, Heliothis o Helicoverpa, más preferiblemente a las especies Trichoplusia ni, Rachiplusia nu, Spodoptera frugiperda, Heliothis virescens, Helicoverpa armigera, Helicoverpa zea, Manduca sexta, Ascatapha odorata o Samia cynthia, o cualquier otro lepidóptero susceptible a infección por AcMNPV, incluso más preferiblemente al género Trichoplusia y a la especie Trichoplusia ni) puede comprender una secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE-1, IE-0 y/o fragmentos de las mismas que actúan como reguladores de la transcripción por encima de los niveles endógenos obtenidos durante la infección por baculovirus. Los elementos descritos anteriormente de ADN recombinante se introducen preferiblemente en la pupa mediante un baculovirus recombinante.

La secuencia de ácido nucleico que permite la expresión de las proteínas IE-1, IE-0 y/o fragmentos de las mismas que actúan como reguladores de la transcripción por encima de los niveles endógenos obtenidos durante la infección por baculovirus según la presente invención se selecciona preferiblemente del grupo que consiste en:

- (a) un ácido nucleico que contiene la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 1-5;
- (b) una secuencia de ácido nucleico que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 75%, más preferiblemente al menos el 80%, más preferiblemente al menos el 85%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 1-5 y que codifica para una proteína que puede actuar como regulador de la transcripción en un baculovirus recombinante:
- (c) una secuencia de ácido nucleico que codifica para un aminoácido que contiene la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9; y
- (d) una secuencia de ácido nucleico que codifica para una secuencia de aminoácidos que tiene una similitud de secuencia de al menos el 70%, preferiblemente al menos el 75%, más preferiblemente al menos el 80%, más preferiblemente al menos el 85%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9 que puede actuar como regulador de la transcripción en un baculovirus recombinante.

La secuencia de las variantes de SEQ ID NO: 1-5 es al menos el 70%, preferiblemente al menos el 75%, más preferiblemente al menos el 80%, más preferiblemente al menos el 85%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% idéntica a las secuencias de SEQ ID NO: 1-5.

La secuencia de las variantes de SEQ ID NO: 6-9 es al menos el 70%, preferiblemente al menos el 75%, más preferiblemente al menos el 80%, más preferiblemente al menos el 85%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% similar a las secuencias de SEQ ID NO: 6-9.

La pupa de la presente invención puede comprender además una secuencia de ácido nucleico y/o baculovirus recombinante y/o un vector de transferencia y/o un bácmido que comprende además una región homóloga recombinante (hr) ligada operativamente a cualquier promotor que es adecuado para dirigir la expresión de una proteína recombinante.

La región homóloga recombinante (hr) es preferiblemente la secuencia indicada en SEQ ID NO: 21 (hr1).

El promotor que dirige la expresión de dicha proteína recombinante se selecciona preferiblemente del grupo de ácidos nucleicos que comprende:

(a) un ácido nucleico que contiene la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 10-

10

55

20

25

30

35

40

45

50

60

- 14, preferiblemente indicada en cualquiera de SEQ ID NO: 11-13; y
- (b) una secuencia de ácido nucleico que puede actuar como promotor en un baculovirus recombinante y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 75%, más preferiblemente al menos el 80%, más preferiblemente al menos el 85%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 10-14, preferiblemente indicada en cualquiera de SEQ ID NO: 11-13.
- En una realización preferida, la secuencia de ácido nucleico que comprende combinaciones de promotores 10 recombinantes, secuencias que codifican para reguladores de la transcripción y regiones potenciadoras (las secuencias de ácido nucleico que están comprendidas en la pupa de la presente invención) se seleccionan del grupo que consiste en SEQ ID NO: 15-20.
- Los promotores recombinantes, las secuencias que codifican para reguladores de la transcripción y las regiones potenciadoras de la presente invención no necesitan formar parte de una única molécula, en su lugar, estas secuencias pueden formar parte de distintas moléculas siempre que estén ligadas operativamente, es decir, contenidas dentro de las mismas células dentro de la pupa.
- La pupa de la presente invención y/o el baculovirus recombinante y/o vector de transferencia y/o bácmido pueden comprender además una secuencia de ácido nucleico que codifica para una proteína recombinante. Esta secuencia de ácido nucleico está preferiblemente ligada operativamente a la secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE- 1, IE-0 y/o fragmentos de las mismas, y opcionalmente a una región homóloga (hr), habiéndose descrito estas secuencias anteriormente.
- 25 Preferiblemente, la proteína recombinante se selecciona del grupo que consiste en vacuna monomérica de subunidades, vacuna multimérica de subunidades, partícula similar a virus, proteína terapéutica, anticuerpo, enzima, citocina, factor de coagulación de la sangre, anticoagulante, receptor, hormona, reactivos proteicos de diagnóstico y proteína fluorescente verde (GFP).
- En una realización preferida, la proteína recombinante es una proteína de partícula similar a virus, que se selecciona preferiblemente del grupo que consiste en:
 - (a) proteína de la cápside del circovirus porcino, preferiblemente de circovirus porcino tipo 2 (por ejemplo, SEQ ID NO: 26),
 - (b) proteína VP1. VP3 o VP0 del virus de la enfermedad de pie v boca.
 - (c) proteínas VP1 y VP2 del parvovirus canino,
- (d) proteínas VP1 y VP2 del parvovirus porcino,
 - (e) proteína de la cápside (genogrupo I o II) del norovirus humano,
 - (f) proteína de la cápside del calicivirus,
 - (g) proteína L1 del virus del papiloma humano, preferiblemente del virus del papiloma humano 16,
 - (h) proteína E2 de la hepatitis E,
- 50 (i) proteínas VP1, VP2 y VP3 del virus de la enfermedad bursal infecciosa,
 - (j) proteínas codificadas por ORF2 de astrovirus,
 - (k) proteínas HA (por ejemplo, SEQ ID NO:30), NA y M1 del virus de la gripe,
 - (I) antígenos de superficie y núcleo de la hepatitis B,
 - (m) proteína VP60 del calicivirus del conejo, preferiblemente de RHDVb y RHDVG1 del virus de la enfermedad hemorrágica del conejo (por ejemplo, SEQ ID NO: 32 y 33),
 - (n) proteínas VP1 y VP2 del parvovirus humano.

Por ejemplo, la proteína recombinante puede ser:

• Proteína de la cápside del circovirus porcino, preferiblemente de circovirus porcino tipo 2, que está representada, por ejemplo, por la secuencia de aminoácidos de SEQ ID NO: 26 o codificada por la secuencia de ácido nucleico de

11

5

15

20

30

35

40

45

55

60

SEQ ID NO: 25.

5

15

20

30

40

50

- Proteína VP1, VP3 y VP0 del virus de la enfermedad de pie y boca (FMDV), cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
 - genoma completo de FMDV serotipo O: GenBank JX570650.1
 - genoma completo de FMDV serotipo A: GenBank HQ832592.1
- genoma completo de FMDV serotipo C: GenBank AY593810.1
 - genoma completo de FMDV serotipo SAT 1: GenBank AY593846.1
 - genoma completo de FMDV serotipo SAT 2: GenBank JX014256.1
 - genoma completo de FMDV serotipo ASIA 1: GenBank HQ631363.1.
 - Proteína VP1 y VP2 del parvovirus canino, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
 - gen de VP1 del parvovirus canino para la proteína VP1 de la cápside, cds parcial, cepa: 1887/f/3. GenBank: AB437434.1.
- gen de VP1 del parvovirus canino para la proteína VP1 de la cápside, cds parcial, cepa: 1887/M/2. GenBank: AB437433.1.
 - gen de VP2 del parvovirus canino, cds completa, cepa: HNI-2-13. GenBank: AB120724.1.
 - gen de VP2 del parvovirus canino, cds completa, cepa: HNI-3-4. GenBank: AB120725.1.
 - gen de VP2 del parvovirus canino, cds completa, cepa: HNI-3-11. GenBank: AB 120726.1.
 - gen de VP2 del parvovirus canino, cds completa, cepa: HNI-4-1. GenBank: AB120727.1.
- gen de VP2 del parvovirus canino, cds completa, cepa: HNI-1-18. GenBank: AB120728.1.
 - gen (VP2) de proteína VP2 del parvovirus canino, cds completa. GenBank: DQ354068.1.
 - gen de VP2 del parvovirus canino, cds completa, cepa: HCM-6. GenBank: AB120720.1.
 - gen de VP2 de aislado de Taichung del parvovirus canino, cds completa. GenBank: AY869724.1.
 - gen de VP2 del parvovirus canino, cds completa, cepa: HCM-8. GenBank: AB120721.1.
- proteínas VP1 y VP2 del parvovirus canino tipo 1: GenBank AB518883.1
 - VP1 y VP2 del parvovirus canino tipo 2a. GenBank: M24003.1
 - VP2 del parvovirus canino tipo 2b: GenBank FJ005265.1
 - VP2 del parvovirus canino tipo 2C: GenBank FJ005248.1
 - Proteína VP1 y VP2 del parvovirus porcino, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
 - Parvovirus porcino cepa 693a. GenBank: JN400519.1
 - Parvovirus porcino cepa 8a. GenBank: JN400517.1
- Proteína VP1 y VP2 del parvovirus humano, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
 - VP1 de parvovirus humano B19, cds completa. GenBank: AF264149.1
- aislado Vn115 NS1 (NS1) del parvovirus humano B19, proteína de 7,5 kDa (NS1), VP1 (VP1), proteína de 9,5 kDa (VP1) y genes VP2 (VP2), cds completa. GenBank: DQ357065.1

- genes VP1 (VP1) y VP2 (VP2) de aislado FoBe del virus B19, cds completa. GenBank: AY768535.1
- genes NS1 (NS1), VP1 (VP1) y VP2 (VP2) de aislado Br543 del virus B19, cds completa. GenBank: AY647977.1
- genes NS1, VP1 y VP2 de aislado VES065CSF del parvovirus humano 4, cds completa. GenBank: HQ593532.1
- gen NS1 de aislado VES085CSF del parvovirus humano 4, cds parcial; y genes VP1 y VP2, cds completa. Gen-Bank: HQ593531.1
- genes NS1, VP1 y VP2 del parvovirus humano B19 cepa BB-2, cds completa. GenBank: KF724387.1
- Proteína de la cápside (genogrupo I o II) del norovirus humano, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
 - virus de Norwalk: GenBank M87661, NP056821
 - virus de Southampton: GenBank L07418
- 20 virus de México: GenBank U22498

5

10

15

25

55

60

- virus de Seto: GenBank AB031013
- virus de Chiba: GenBank AB042808
- virus de Lordsdale: GenBank X86557
- virus de la Montaña Nevada: GenBank U70059
- 30 virus de Hawái: GenBank U07611
 - Proteína VP60 del virus de la enfermedad hemorrágica del conejo, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
- genoma completo de RHDV AST/89: GenBank: Z49271.2
 - genoma completo de RHDV N11: GenBank: KM878681.1
 - genoma completo de RHDV CBVal16; GenBank: KM979445.1
- 40 - SEQ ID NO: 32
 - SEQ ID NO: 33
- Proteína L1 del virus del papiloma humano, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
 - HPV 6: GenBank: JN252323.1
- 50 HPV 11: GenBank : JQ773411.1
 - HPV 16: GenBank DQ155283.1
 - HPV 18: GenBank FJ528600.1
 - Proteína E2 del virus de la hepatitis E, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
 - virus de la hepatitis E, secuencia de referencia de NCBI del genoma completo: NC 001434.1
 - gen de proteína de la cápside del aislado ITFAE11 de virus de la hepatitis porcina E. GenBank: JN861806.1
 - Proteínas VP1, VP2 y VP3 del virus de la enfermedad bursal infecciosa, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
 - gen de VP1 (VP1) del virus de la enfermedad bursal infecciosa, cds completa. GenBank: AY099457.1

- gen de VP1 de aislado PT del virus de la enfermedad bursal infecciosa, cds completa. GenBank: DQ679814.1
- gen de VP1 de aislado OE/G2 del virus de la enfermedad bursal infecciosa, cds completa. GenBank: DQ679813.1
 - gen de VP1 de aislado OA/G1 del virus de la enfermedad bursal infecciosa, cds completa. GenBank: DQ679812.1
- gen de VP1 de aislado HOL del virus de la enfermedad bursal infecciosa, cds completa. GenBank: DQ679811.1
 - gen de VP1 del virus de la enfermedad bursal infecciosa cepa TL2004, cds completa. GenBank: DQ118374.1
- gen de VP1 de aislado CA-K785 del virus de la enfermedad bursal infecciosa, cds completa. GenBank: JF907705.1
 - gen de VP1 de aislado D495 del virus de la enfermedad bursal infecciosa, cds completa. GenBank: JF907704.1
 - ARNm de VP1 del virus de la enfermedad bursal infecciosa cepa A-BH83, cds completa. GenBank: EU544149.1
 - gen de VP1 del virus de la enfermedad bursal infecciosa cepa Cro-Pa/98, cds completa. GenBank: EU184690.1
 - ARNm de VP2 del virus de la enfermedad bursal infecciosa, cds completa. GenBank: AY321509.1
- 25 genes VP2, VP3, VP4 del virus de la enfermedad bursal infecciosa, cds completa. GenBank: M97346.1
 - gen de VP2 del virus de la enfermedad bursal infecciosa, cds completa. GenBank: AF508177.1
- Proteína de la cápside del calicivirus, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
 - gen de proteína de la cápside del calicivirus felino, cds completa. GenBank: L09719.1

20

- gen de proteína de la cápside del calicivirus felino, cds completa. GenBank: L09718.1
- ARN del calicivirus humano HU/NLV/Wortley/90/UK para la proteína de la cápside (ORF2), cepa HU/NLV/Wortley/90/UK. GenBank: AJ277618.1
- ARN del calicivirus humano HU/NLV/Thistlehall/90/UK para la proteína de la cápside (ORF2), cepa 40 HU/NLV/Thistlehall/90/UK. GenBank: AJ277621.1
 - ARN del calicivirus humano HU/NLV/Valetta/95/Malta para la proteína de la cápside (ORF2), cepa HU/NLV/Valetta/95/Malta. GenBank: AJ277616.1
- gen de proteína de la cápside del calicivirus humano NLV/Stav/95/Nor, cds completa. GenBank: AF145709.1
 - gen de proteína de la cápside del calicivirus entérico bovino cepa Bo/CV500-OH/2002/US, cds completa. GenBank: AY549155.1
- gen de proteína de la cápside del calicivirus humano NLV/Mora/97/SE, cds completa. GenBank: AY081134.1
 - gen de proteína de la cápside del calicivirus humano NLV/Potsdam 196/2000/DE, cds completa. GenBank: AF439267.1
- gen de proteína de la cápside del calicivirus humano NLV/1581-01/SWE, cds completa. GenBank: AY247442.1
 - gen de proteína de la cápside del calicivirus humano Hu/NLV/GII/MD134-10/1987/US, cds completa. GenBank: AY030313.1
- Proteínas codificadas por ORF2 de astrovirus, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
 - gen de ORF1b de astrovirus porcino 4, cds parcial; y gen de ORF2, cds completa. GenBank: JX684071.1
- astrovirus MLB1 HK05, genoma completo. Secuencia de referencia de NCBI: NC 014320.1

- astrovirus boar/WBAstV-1/2011/HUN, genoma completo. Secuencia de referencia de NCBI: NC 016896.1
- astrovirus humano BF34, genoma completo. Secuencia de referencia de NCBI: NC_024472.1
- gen de ARN polimerasa dependiente de ARN (ORF1b) de astrovirus MLB1 cepa Hu/ITA/2007/PR326/MLB1, cds parcial; y gen de proteína de la cápside (ORF2), cds completa. GenBank: KF417713.1
 - genes de proteína no estructural (ORF1a) y proteína no estructural (ORF1b) de astrovirus humano 5 cepa Hu/Budapest/HUN5186/2012/HUN, cds parcial; y gen de proteína de la cápside (ORF2), cds completa. GenBank: KF157967.1.
 - gen de proteína de la cápside de aislado de Shanghai de astrovirus humano 1 (ORF2), cds completa. GenBank: FJ792842.1
- gen de ORF2 de astrovirus humano tipo 8 para proteína de la cápside. GenBank: Z66541.1
 - Proteínas HA, NA y M1 del virus de la gripe, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
- 20 SEQ ID NO: 30

10

- Gen HA del virus de la gripe A (A/duck/Chiba/25-51-14/2013(H7N1)) para hemaglutinina, cds completa. GenBank: AB813060.1
- ARNm de hemaglutinina (HA) de constructo sintético, cds completa. GenBank: DQ868374.1
 - gen de la hemaglutinina (HA) del virus de la gripe A (A/swine/Shandong/2/03(H5N1)), cds completa. GenBank: AY646424.1
- ADNc que codifica para HA de la gripe tipo A. GenBank: E01133.1
 - gen de NA del virus de la gripe A (A/swine/Korea/S452/2004(H9N2)), cds completa. GenBank: AY790307.1
- gen de neuraminidasa (NA) del virus de la gripe A (A/Thailand/2(SP-33)/2004(H5N1)), cds completa. GenBank: AY555152.3
 - Gen de NA del virus de la gripe A (A/swine/Binh Doung/02-16/2010(H1N2)) para neuraminidasa, cds completa. GenBank: AB628082.1
- gen de neuraminidasa (NA) del virus de la gripe A (A/chicken/Jalgaon/8824/2006(H5N1)), cds completa.
 GenBank: DQ887063.1
 - genes M2 y M1 del virus de la gripe A SC35M, cds completa. GenBank: DQ266100.1
- ARN de M1 y M2 del virus de la gripe tipo /Leningrad/134/47/57 (H2N2), cds completa. GenBank: M81582.1
 - genes M2 y M1 del virus de la gripe A SC35M, cds completa. GenBank: DQ266100.1
- genes M2, M1 del virus de la gripe A (A/Tochigi/2/2010(H1N1)) para la proteína de la matriz 2, proteína de la matriz 1, cds completa. GenBank: AB704481.1
 - Antígenos de superficie y núcleo de la hepatitis B, cuya secuencia se indica o puede derivarse, por ejemplo, de las siguientes secuencias:
- genes de proteína de prenúcleo y proteína de núcleo del virus de la hepatitis B cepa HBV248, cds completa. GenBank: KP857118.1
 - genes de proteína de prenúcleo y proteína de núcleo del virus de la hepatitis B cepa HBV401, cds completa. GenBank: KP857113.1
 - genes de proteína de prenúcleo y proteína de núcleo del virus de la hepatitis B cepa HBV403, cds completa. GenBank: KP857068.1
- gen S del virus de la hepatitis B para el antígeno de superficie de la hepatitis B, cds parcial, aislado: B0503327(PTK). GenBank: AB466596.1

Preferiblemente, la proteína recombinante no es una proteína producida de manera endógena por las pupas. Por ejemplo, la proteína recombinante no es una proteína producida de manera endógena por las pupas tales como pupas de la especie *Hyalophora cecropia*. Por ejemplo, la proteína recombinante no es cecropina A o atacina.

La pupa de la presente invención puede ser una pupa libre de seda, o puede estar dentro de un capullo de seda. Si la pupa no es una pupa libre de seda, el experto es consciente de métodos de retirada de la seda del capullo. Por ejemplo, la seda del capullo puede disolverse, preferiblemente con una disolución de una sal, preferiblemente una sal de ácido hipocloroso (HCIO), preferiblemente hipoclorito de sodio (NaCIO) (también denominada en la presente descripción "disolución que disuelve"). Este procedimiento puede automatizarse mediante un dispositivo específicamente diseñado, tal como se muestra en la figura 3.

Uso de la pupa de la presente invención para la expresión de proteínas recombinantes

La pupa de la presente invención, en cualquiera de sus variantes, puede usarse para la expresión de proteínas recombinantes. Por consiguiente, la presente invención proporciona el uso de la pupa de la presente invención para la expresión de proteínas recombinantes, preferiblemente las proteínas recombinantes detalladas anteriormente en esta memoria descriptiva.

Métodos para producir proteínas recombinantes de la presente invención

La presente invención también proporciona métodos para producir proteínas recombinantes (que, tal como ya se describió anteriormente, preferiblemente no son proteínas que se producen de manera endógena por las pupas). Por ejemplo, un método para proporcionar al menos una proteína recombinante según la presente invención comprende, o, alternativamente, consiste en, las siguientes etapas:

(a) proporcionar una pupa;

20

25

30

35

55

60

65

- (b) inocular la pupa de la etapa (a) con un baculovirus recombinante derivado del virus multicápside de la polihedrosis nuclear de *Autographa californica* (AcMNPV);
- (c) incubar la pupa inoculada de la etapa (b) durante un periodo de tiempo suficiente para que se exprese la al menos una proteína recombinante;
- (d) obtener las pupas que comprenden la al menos una proteína recombinante;
- (e) opcionalmente, recoger la al menos una proteína recombinante; y
- (f) opcionalmente, purificar la al menos una proteína recombinante.
- La pupa de etapa (a) del método anterior en cuanto a la invención se refiere es la pupa según la presente invención, tal como se describió en detalle anteriormente. La pupa de la etapa (a) más generalmente pertenece preferiblemente al orden Lepidoptera. Preferiblemente, la pupa pertenece al orden Lepidoptera, preferiblemente a los géneros Trichoplusia, Rachiplusia, Spodoptera, Heliothis, Manduca, Helicoverpa, Ascalapha o Samia, preferiblemente a los géneros Trichoplusia, Rachiplusia, Spodoptera, Heliothis o Helicoverpa, más preferiblemente a las especies
 Trichoplusia ni, Rachiplusia nu, Spodoptera frugiperda, Heliothis virescens, Helicoverpa armigera, Helicoverpa zea, Manduca sexta, Ascalapha odorata o Samia cynthia, incluso más preferiblemente a la especie Trichoplusia ni. Tal como ya se describió anteriormente, la pupa puede comprender una secuencia de ácido nucleico que permite la expresión de una proteína recombinante. Tal como ya se describió anteriormente, la pupa puede comprender una secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE-1, IE y/o fragmentos de las mismas que actúan como reguladores de la transcripción por encima de los niveles endógenos obtenidos durante la infección por baculovirus.

La pupa de etapa (a) anterior puede evolucionar de un huevo. Por ejemplo, la pupa de la etapa a) anterior puede evolucionar de huevo a pupa durante 15-18 días, por ejemplo, en cajas de cría reutilizables o de un solo uso especialmente diseñadas. La pupa de la etapa a) también puede proporcionarse ya en forma de una pupa.

Si la pupa de la etapa (a) anterior está dentro de un capullo, el método para producir proteínas recombinantes de la presente invención puede comprender además una etapa de retirar la seda del capullo de la pupa. Por ejemplo, la seda del capullo puede disolverse, preferiblemente con una disolución de una sal que comprende preferiblemente ácido hipocloroso (HCIO), preferiblemente hipoclorito de sodio (NaCIO), por ejemplo a concentraciones del 0,1% al 5% p/v, tal como el 0,1%, el 0,2%, el 0,5%, el 1%, el 3% o el 5% p/v. Por ejemplo, las pupas pueden sumergirse o pulverizarse con una disolución de hipoclorito de sodio a una concentración de desde el 0,1% hasta el 5% p/v. La disolución de la seda del capullo puede tardar desde varios segundos hasta varios minutos. La eliminación de la seda del capullo de la pupa de la etapa (a), cuando la pupa está dentro de un capullo, se realiza preferiblemente de forma semiautomatizada o automatizada (eliminación de seda robotizada). En este sentido, el hecho de que el capullo de algunas especies tales como *Hyalophora cecropia* o *Bombyx mori* sea un capullo grueso es una

desventaja respecto a otros géneros o especies (tal como el género *Trichoplusia*, en particular la especie *Trichoplusia ni*). Las pupas del género *Trichoplusia*, en particular la especie *Trichoplusia ni*, tienen un capullo que es menos denso en seda, y puede disolverse fácilmente. Esto representa una ventaja, dado que todo el proceso puede realizarse de forma automatizada o semiautomatizada, aumentando la eficiencia y reduciendo los costes globales.

5

El capullo puede retirarse en una máquina semiautomatizada que puede comprender un recipiente con la disolución que disuelve que va a aplicarse al capullo, preferiblemente con turbulencias de aire presurizado, para reducir el tiempo necesario para disolver el capullo de seda. Las pupas libres de seda pueden lavarse después en un recipiente de lavado para retirar trazas de la disolución que disuelve, y luego secarse con aire.

10

Por consiguiente, se prefieren pupas libres de seda, puesto que entonces, la etapa (b) es más fácil de realizar. Por consiguiente, las pupas con un capullo muy denso se prefieren menos. Por ejemplo, las pupas de *Bombyx mori* tienen un capullo muy denso, grueso y compacto, que no puede retirarse fácilmente mediante disolución con una disolución salina durante unos pocos minutos, tal como se describió anteriormente. Lo mismo es cierto para las pupas de *Hyalophora cecropia*. El capullo de *Bombyx mori* y/o las pupas de *Hyalophora cecropia* deben retirarse manualmente.

15

20

Por el contrario, las pupas de otras especies tales como *T. ni* comprenden un capullo que es menos denso en seda, y puede disolverse fácilmente tal como se describió anteriormente. Por tanto, estas pupas se prefieren para el método de producción de proteínas recombinantes de la presente invención, puesto que su capullo puede retirarse mediante procedimientos automáticos o semiautomáticos, facilitando el escalado para obtener pupas listas para inyectarse con un baculovirus recombinante (etapa (b)).

25

Después de retirar la seda del capullo, las pupas se lavan preferiblemente con agua, con el fin de retirar trazas de la disolución salina (por ejemplo, hipoclorito de sodio). Las pupas libres de seda pueden secarse posteriormente y almacenarse a una baja temperatura (por ejemplo, 4°C) antes de que la etapa (b) se lleve a cabo. Por ejemplo, las pupas libres de seda pueden almacenarse hasta 1 mes a baja temperatura (por ejemplo, 4°C) antes de que la etapa (b) se lleve a cabo.

30

La presente divulgación proporciona un método para producir una pupa libre de seda (preferiblemente una pupa libre de seda que pertenece al género *Lepidoptera*, preferiblemente la pupa de la presente invención), que comprende las etapas de:

35

(a) proporcionar una pupa (preferiblemente la pupa de la presente invención tal como se describió anteriormente) contenida en un capullo;

(b) tratar la pupa contenida en un capullo con una disolución de una sal, preferiblemente una disolución de una sal de ácido hipocloroso, preferiblemente hipoclorito de sodio, tal como se describió en detalle anteriormente; y

40

(c) obtener una pupa libre de seda (y preferiblemente desinfectada esencialmente).

45

50

de seda (concretamente, sin un capullo). La pupa esencialmente libre de seda de la divulgación preferiblemente no pertenece a la especie *Bombyx mori*. En un aspecto preferido, la pupa esencialmente libre de seda de la presente divulgación no pertenece a la especie *Hyalophora cecropia*. En un aspecto preferido, la pupa esencialmente libre de seda de la presente divulgación pertenece a los géneros *Trichoplusia*, *Rachiplusia*, *Spodoptera*, *Heliothis*, *Manduca*, *Helicoverpa*, *Ascalapha* o *Samia*, preferiblemente a los géneros *Trichoplusia*, *Rachiplusia*, *Spodoptera*, *Heliothis* o *Helicoverpa*. En un aspecto preferido, la pupa esencialmente libre de seda de la presente divulgación pertenece a las especies *Trichoplusia ni*, *Rachiplusia nu*, *Spodoptera frugiperda*, *Heliothis virescens*, *Helicoverpa armigera*, *Helicoverpa zea*, *Manduca sexta*, *Ascalapha odorata* o *Samia cynthia*, incluso más preferiblemente a la especie *Trichoplusia ni*.

Por tanto, la presente invención también proporciona la pupa de la presente invención que está esencialmente libre

55

La etapa (b) del método de la presente invención se refiere a la inoculación de la pupa de la etapa (a) con un baculovirus recombinante derivado del virus multicápside de la polihedrosis nuclear de *Autographa californica* (AcMNPV). Se han descrito en detalle anteriormente baculovirus recombinantes que pueden estar comprendidos en la pupa de la presente invención, y también se muestra un esquema a modo de ejemplo en la figura 4B. Por consiguiente, preferiblemente, en la etapa (b), la pupa de la presente invención se inocula con un baculovirus recombinante, con el fin de proporcionar una pupa según la presente invención, que comprende un baculovirus recombinante, tal como se describió anteriormente. La solicitud de patente publicada como WO2012/168492 divulga un baculovirus recombinante que puede inocularse a la pupa según la presente invención en la etapa (b) del método para producir proteínas recombinantes de la presente invención. El baculovirus recombinante comprende una secuencia de ácido nucleico que codifica para una proteína recombinante, preferiblemente una proteína recombinante seleccionada del grupo tal como se definió anteriormente en esta memoria descriptiva (casete de expresión).

65

Se prefieren pupas libres de seda, puesto que entonces la inoculación con el baculovirus recombinante es más fácil, y puede realizarse de manera automática o semiautomática, facilitando el escalado y la reproducibilidad del método.

- La inoculación del baculovirus recombinante según la etapa (b) puede realizarse mediante técnicas conocidas en la técnica para el experto. Tal como se define en el presente documento, "inoculación" se refiere a la introducción de una sustancia en el cuerpo, en este caso, la introducción de baculovirus recombinante en pupas. La inoculación también puede denominarse "inyección". Puesto que las larvas se inoculan con un baculovirus, este proceso también puede denominarse en la presente descripción "infección de las larvas con un baculovirus".
- 10 Preferiblemente, la inoculación se realiza inyectando en la pupa una cantidad específica de una disolución que comprende al menos un baculovirus. La inyección se realiza preferiblemente con una aquia, que perfora la pupa y dispensa una cantidad específica de una disolución que comprende el baculovirus dentro del cuerpo de la pupa. Esta etapa también puede automatizarse; las pupas pueden disponerse, por ejemplo, en una matriz o serie de alveolo, y un robot o dispositivo de inoculación (descrito a continuación) puede dispensar automáticamente el 15 baculovirus dentro de las pupas. Por ejemplo, la pupa puede disponerse en una matriz de alveolo (o serie), incluyendo la matriz una parte superior con un orificio en el centro, de modo que el robot o dispositivo de inoculación (que comprende una aguja, por ejemplo, en un brazo robótico) posiciona automáticamente la aguja en el alveolo, y la aquia accede a la pupa a través del orificio de la parte superior. La aquia penetra en el cuerpo de la pupa, por ejemplo, aproximadamente 1-5 milímetros, preferiblemente alrededor de 3 mm (esto también puede automatizarse) y 20 dispensa la disolución que comprende el baculovirus dentro de la pupa. El dispositivo o robot puede comprender una bomba de precisión que puede dispensar una cantidad exacta de baculovirus (por ejemplo, cantidades de aproximadamente 0,5-10 microlitros de una disolución que comprende el baculovirus, preferiblemente de aproximadamente 5 μl) en las pupas. El robot puede comprender un brazo que comprende una o más agujas que pueden inyectar el baculovirus en las pupas en posiciones precisas. Una vez se ha realizado esto, el robot deja el 25 alveolo, y, gracias a la parte superior de la matriz donde se disponen las pupas, la pupa se deja fácilmente sobre el alveolo de la matriz, y no se retira del mismo cuando el brazo del robot retira la aguja de la pupa, puesto que el orificio en la parte superior de la matriz es más pequeño que la pupa, de modo que sólo la aguja puede atravesarlo, por lo que la aguja se retira de la pupa y de la matriz de alveolo dejando la pupa en el mismo. Con esta disposición preferible, el proceso de inoculación es automático, rápido, eficaz y altamente reproducible (cada pupa recibe la 30 misma cantidad de disolución que comprende el baculovirus, con el mismo procedimiento). El robot puede tener varias aquias de inoculación (concretamente, aquias que pueden inocular o inyectar el baculovirus en las pupas en posiciones precisas) que pueden desmontarse, y pueden inocular baculovirus en las pupas a una velocidad de entre aproximadamente 3.000 y aproximadamente 10.000 pupas por hora.
- 35 Por ejemplo, se inocula una cantidad de más de aproximadamente 50 unidades formadoras de placas (UFP) de baculovirus en cada pupa. Por ejemplo, se inoculan aproximadamente 50, aproximadamente 100, aproximadamente 500, aproximadamente 1.000, aproximadamente 5.000, aproximadamente 10.000, aproximadamente 15.000, aproximadamente 20.000, aproximadamente 25.000, aproximadamente 30.000, aproximadamente 40.000, aproximadamente 50.000, aproximadamente 50.000, aproximadamente 75.000 o más UFP (incluso aproximadamente 1.000.000) en cada pupa. Por ejemplo, tal como ya se mencionó anteriormente, el baculovirus 40 está comprendido en una disolución, de modo que una determinada cantidad de una disolución que comprende baculovirus se inyecta en las pupas. Por ejemplo, la disolución puede ser medio de cultivo celular que comprende baculovirus. Por ejemplo, la disolución puede ser una disolución tamponada que comprende baculovirus, tal como una disolución de PBS 1x pH 7,4, PMSF 1 mM (inhibidor de proteasas) y DTT 5 mM que comprende baculovirus. 45 Por ejemplo, las pupas pueden inocularse con una cantidad de aproximadamente 0,5 - 10 μl de una disolución que comprende un baculovirus, tal como aproximadamente 0,5 µl, tal como aproximadamente 1-10 µl, tal como aproximadamente 1, aproximadamente 2, aproximadamente 3, aproximadamente 5, aproximadamente 7 o aproximadamente 10 μl. Por ejemplo, cada pupa recibe 0,5 - 10 μl de una disolución que comprende entre 50 y 1.000.000 UFP.

- Gracias a la automatización de la inoculación, el robot puede inocular aproximadamente 3.000 pupas por hora o más, tal como entre aproximadamente 3.000 y aproximadamente 10.000 pupas por hora. El robot es adecuado para suministrar un fluido en pupas proporcionadas en una matriz o serie.
- La etapa (c) del método de la presente invención comprende incubar la pupa inoculada de la etapa (b) durante un periodo de tiempo suficiente para que se exprese la al menos una proteína recombinante. Esta etapa de inoculación puede realizarse preferiblemente durante un periodo de tiempo de al menos aproximadamente 72 h, tal como aproximadamente 72 h, aproximadamente 100 h, aproximadamente 125 h, aproximadamente 150 h, aproximadamente 168 h o más (tras la inoculación). Preferiblemente, el tiempo de incubación es de aproximadamente 96-168 h tras la inoculación o aproximadamente 72-168 h tras la inoculación. La etapa de inoculación puede realizarse preferiblemente a una temperatura de aproximadamente a 22-28°C, preferiblemente en una incubadora sin ninguna necesidad de control de humedad o luz.
- Las pupas inoculadas (que se disponen preferiblemente en el alveolo de la matriz) pueden dejarse en el alveolo de la matriz durante el periodo de tiempo anterior (incubación). En otra realización, las pupas se retiran de la matriz y se colocan en cualquier otro sitio durante el tiempo de incubación, tal como bolsas o cualquier recipiente que permita la

transpiración (la incubación debe realizarse preferiblemente en un recipiente en el que haya un intercambio de gases no en un recipiente completamente cerrado).

El experto calcularía el tiempo de incubación y las condiciones de incubación requeridos para cada pupa y cada proteína recombinante basándose en experimentos previos, según la proteína que va a expresarse.

La etapa (d) del método de la presente invención comprende obtener las pupas que comprenden la al menos una proteína recombinante que se ha expresado durante la etapa de incubación (c). Las pupas que comprenden la al menos una proteína recombinante pueden recogerse de la matriz/serie (o lugar de incubación). Estas pupas que comprenden la al menos una proteína recombinante pueden almacenarse (congeladas o liofilizadas) para el procesamiento posterior. Por ejemplo, las pupas que comprenden la al menos una proteína recombinante pueden envasarse en un envase (preferiblemente a vacío). El envase que comprende las pupas puede almacenarse, transportarse y/o procesarse adicionalmente.

- La presente invención también proporciona un envase que comprende las pupas de la presente invención, en el que preferiblemente, las pupas comprenden al menos una proteína recombinante. Preferiblemente, las pupas se envasan a vacío, y el envase de la presente invención comprende, por tanto, pupas a vacío, que están, por ejemplo, congeladas o liofilizadas, para evitar la oxidación. Esto permite una manipulación más fácil y periodos de almacenamiento más largos.
- Las pupas obtenidas según la etapa (d) del método anterior también pueden congelarse y almacenarse para el procesamiento posterior. Por ejemplo, las pupas pueden congelarse inmediatamente después de recogerlas a aproximadamente -20°C, o a aproximadamente -80°C, hasta que se procesan adicionalmente. Por ejemplo, las pupas que comprenden la al menos una proteína recombinante pueden congelarse a una temperatura de, por ejemplo, entre aproximadamente -20°C y -70°C, hasta que se extraiga la proteína recombinante. Las pupas que comprenden la proteína recombinante pueden almacenarse congeladas durante largos periodos de tiempo, tales como, por ejemplo, durante más de 1 año.
- La etapa (e) (opcional) del método de la presente invención comprende, opcionalmente, recoger la al menos una proteína recombinante. El experto es consciente de métodos y protocolos para recoger la al menos una proteína recombinante comprendida en las pupas obtenidas en la etapa (d). Por supuesto, estos métodos y/o protocolos pueden depender de la naturaleza de la proteína recombinante que se ha expresado.
- Por ejemplo, la proteína puede extraerse homogeneizando las pupas (por ejemplo, en una máquina homogeneizadora o mezcladora homogeneizadora, tal como una homogeneizadora combinadora o una homogeneizadora de rotor-estator, durante al menos varios segundos/minutos), preferiblemente en presencia de un tampón de pH neutro, tampón que comprende preferiblemente antioxidantes (agentes reductores), inhibidores de la proteasa y detergentes apropiados. Por ejemplo, el tampón comprende aproximadamente 1-25 mM de un agente reductor y aproximadamente el 0,01%-2% (volumen/volumen) de un producto detergente. Preferiblemente, el tampón comprende además una mezcla de inhibidores de la proteasa.
 - Después de la homogeneización, los extractos pueden sonicarse y/o centrifugarse (por ejemplo, 15.000-20.000 G) para eliminar los residuos de insectos, y filtrarse.
- Por ejemplo, los medios de extracción (métodos y protocolos para recoger la al menos una proteína recombinante comprendida en las pupas) comprenden romper físicamente las pupas, centrifugaciones, etapas de filtración de flujo tangencial, sonicación, métodos cromatográficos y/o filtraciones por esterilización.
- En una realización preferida, la viscosidad del homogenado puede reducirse a través de su incubación (filtración) con una tierra de diatomeas (por ejemplo, Celite). Puede incluirse una etapa de precipitación de proteínas.
 - El extracto puede clarificarse a través de filtración de flujo tangencial, usando un filtro que está disponible para su selección por el experto según la naturaleza de la proteína recombinante. El tampón puede cambiarse mediante un proceso de diafiltración (por ejemplo, en el mismo dispositivo de filtración tangencial).
 - La etapa (f) (opcional) del método de la presente invención comprende, opcionalmente, purificar la al menos una proteína recombinante. El experto es consciente de técnicas de purificación de proteínas. Por ejemplo, la purificación puede lograrse mediante purificación por cromatografía, filtración o ultracentrifugación.
- Por tanto, puede obtenerse la proteína recombinante purificada. Un esquema de una realización de este método se muestra en la figura 17.
 - La proteína recombinante que puede obtenerse mediante el método de la presente invención tiene un alto grado de pureza, y puede usarse en vacunas, diagnóstico, cosméticos o en terapia.
 - Método para producir un baculovirus recombinante

10

20

55

La presente divulgación proporciona además un método para producir un baculovirus recombinante que comprende las etapas de:

5 (a) proporcionar una pupa,

10

15

30

35

60

- (b) transfectar la pupa de la etapa (a) con un vector de bácmido adecuado para producir un baculovirus recombinante derivado del virus multicápside de la polihedrosis nuclear de *Autographa californica* (AcMNPV);
- (c) incubar la pupa inoculada de la etapa (b) durante un periodo de tiempo suficiente para que se produzca el baculovirus recombinante;
- (d) obtener las pupas que comprenden el baculovirus recombinante;
- (e) opcionalmente, recoger el baculovirus recombinante; y
- (f) opcionalmente, purificar el baculovirus recombinante.
- Preferiblemente, la pupa proporcionada en la etapa (a) es una pupa libre de seda tal como se definió anteriormente. La pupa pertenece preferiblemente a los géneros *Trichoplusia*, *Rachiplusia*, *Spodoptera*, *Heliothis*, *Manduca*, *Helicoverpa*, *Ascalapha* o *Samia*, preferiblemente a los géneros *Trichoplusia*, *Rachiplusia*, *Spodoptera*, *Heliothis* o *Helicoverpa*, más preferiblemente a las especies *Trichoplusia ni*, *Rachiplusia nu*, *Spodoptera frugiperda*, *Heliothis virescens*, *Helicoverpa armigera*, *Helicoverpa zea*, *Manduca sexta*, *Ascalapha odorata* o *Samia cynthia*, incluso más preferiblemente a la especie *Trichoplusia ni*.
 - En la etapa (b), la pupa de la etapa (a) se transfecta con un vector de bácmido adecuado para producir un baculovirus recombinante derivado del virus multicápside de la polihedrosis nuclear de *Autographa californica* (AcMNPV).
 - Esta etapa (b) también puede denominarse "etapa de inoculación", puesto que puede realizarse de manera similar que la etapa (b) del método para producir una proteína recombinante descrita anteriormente (pero en lugar de inocular un baculovirus, se inocula un vector de bácmido), concretamente de manera automática o semiautomática, usando el dispositivo de la presente invención (también descrito a continuación). El dispositivo puede inocular en la pupa (que se coloca preferiblemente en el alveolo de una matriz, que comprende una tapa con orificios) una cantidad específica de una disolución que comprende el vector de transferencia y/o bácmido que va a inocularse a la pupa, por medio de invección con una aguja, tal como se describió anteriormente.
- El vector de bácmido puede generarse mediante procedimientos conocidos para el experto, por ejemplo, generando de manera secuencial un vector de clonación, un vector donador, un vector de transferencia y, finalmente, un vector de bácmido. Por ejemplo, la generación de un vector de bácmido se describe en la solicitud de patente publicada como WO 2014/086981.
- En una realización preferida, este vector de transferencia y/o bácmido comprende o alternativamente, consiste en, una secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE-1, IE-0 y/o fragmentos de las mismas que actúan como reguladores de la transcripción por encima de los niveles endógenos obtenidos durante la infección por baculovirus y una región homóloga recombinante (*hr*) ligada operativamente a cualquier promotor que es adecuado para dirigir la expresión de una proteína recombinante. Estas secuencias de ácido nucleico ya se han descrito anteriormente. Por ejemplo, la secuencia de ácido nucleico que permite la expresión de las proteínas IE-1, IE-0 y/o fragmentos de las mismas se selecciona preferiblemente del grupo que consiste en:
 - (a) un ácido nucleico que contiene la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 1-5;
- (b) una secuencia de ácido nucleico que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 75%, más preferiblemente al menos el 80%, más preferiblemente al menos el 85%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 1-5 y que codifica para una proteína que puede actuar como regulador de la transcripción en un baculovirus recombinante;
 - (c) una secuencia de ácido nucleico que codifica para un aminoácido que contiene la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9; y
 - (d) una secuencia de ácido nucleico que codifica para una secuencia de aminoácidos que tiene una similitud de secuencia de al menos el 70%, preferiblemente al menos el 75%, más preferiblemente al menos el 80%, más preferiblemente al menos el 85%, más preferiblemente al menos el 90% y lo más

preferiblemente al menos el 95% con la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9 que puede actuar como regulador de la transcripción en un baculovirus recombinante.

Además, el promotor que dirige la expresión de dicha proteína recombinante se selecciona preferiblemente del grupo de ácidos nucleicos que comprende:

- (a) un ácido nucleico que contiene la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 10-14, preferiblemente indicada en cualquiera de SEQ ID NO: 11-13; y
- (b) una secuencia de ácido nucleico que puede actuar como promotor en un baculovirus recombinante y que tiene una identidad de secuencia de al menos el 70%, preferiblemente al menos el 75%, más preferiblemente al menos el 80%, más preferiblemente al menos el 85%, más preferiblemente al menos el 90% y lo más preferiblemente al menos el 95% con la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 10-14, preferiblemente indicada en cualquiera de SEQ ID NO: 11-13.

La región homóloga recombinante (*hr*) es preferiblemente la secuencia indicada en SEQ ID NO: 21 (*hr1*). La secuencia de ácido nucleico que comprende combinaciones de promotor recombinante, secuencias que codifican para reguladores de la transcripción y regiones potenciadoras se seleccionan preferiblemente del grupo que comprende SEQ ID NO: 15-20.

Preferiblemente, el vector inoculado a las pupas es un bácmido.

La etapa (c) se refiere a la incubación de la pupa inoculada de la etapa (b) durante un periodo de tiempo suficiente para que se produzca el baculovirus recombinante. Por ejemplo, este periodo de tiempo para la pupa de *T. ni* puede ser desde aproximadamente 72 h hasta aproximadamente 7 días, según la dosis de virus y la temperatura. El experto puede calcular el periodo de tiempo suficiente para que se produzca el baculovirus recombinante.

Después, se obtienen las pupas que comprenden el baculovirus recombinante (etapa (d)). Las pupas que comprenden el baculovirus recombinante pueden almacenarse para procesamiento adicional. Por ejemplo, pueden envasarse a vacío, para reducir el proceso de oxidación y facilitan su manipulación y aumentar el tiempo de almacenamiento seguro. Por ejemplo, las pupas que comprenden el baculovirus recombinante pueden congelarse (por ejemplo, a de -20°C a -80°C) antes de que se procesen adicionalmente. Por ejemplo, las pupas que comprenden el baculovirus recombinante pueden liofilizarse antes de que se procesen adicionalmente.

35 Opcionalmente, el baculovirus recombinante puede recogerse y purificarse (etapas (e) y (f)).

Dispositivo de la presente divulgación

15

20

25

30

65

La presente divulgación también proporciona un dispositivo (también denominado en la presente invención robot)
que comprende una bomba de precisión, un brazo mecánico móvil y una aguja (desmontable) adecuada para
inyectar un fluido (preferiblemente una disolución que comprende baculovirus o vectores de bácmido) en una pupa
(preferiblemente a la pupa de la presente invención, que es preferiblemente una pupa libre de seda y que pertenece
preferiblemente al orden Lepidoptera, preferiblemente a los géneros Trichoplusia, Rachiplusia, Spodoptera,
Heliothis, Manduca, Helicoverpa, Ascalapha o Samia, preferiblemente a los géneros Trichoplusia ni, Rachiplusia, Rachiplusia,
Spodoptera, Heliothis o Helicoverpa, más preferiblemente a las especies Trichoplusia ni, Rachiplusia nu, Spodoptera
frugiperda, Heliothis virescens, Helicoverpa armigera, Helicoverpa zea, Manduca sexta, Ascalapha odorata o Samia
cynthia.

Tal como se describió en detalle anteriormente, la pupa puede proporcionarse preferiblemente en una matriz (o serie), concretamente la pupa se dispone en el alveolo de una matriz, de modo que el dispositivo puede ubicar fácilmente las pupas de manera automática. Preferiblemente, la matriz comprende una tapa, con orificios que son más pequeños que la pupa (concretamente las pupas no pueden atravesar los orificios).

El dispositivo puede comprender además un programa informático para definir la posición de la aguja (y/o la posición del brazo mecánico) y/o para calcular la distancia desde la punta (extremo) de la aguja hasta la pupa y/o la distancia de penetración de la aguja en la pupa y/o el volumen de líquido (preferiblemente una disolución que comprende baculovirus o vectores de bácmido) que va a inocularse en la pupa. Además, el dispositivo de la presente divulgación puede comprender además un programa informático para calcular el tiempo de inoculación y/o el tiempo entre diferentes inoculaciones en las pupas. El dispositivo puede comprender además una cámara para definir la posición de la aguja.

En un aspecto preferido, el fluido inyectado por el dispositivo de la presente divulgación comprende un baculovirus recombinante. En otro aspecto ,el fluido inyectado por el dispositivo de la presente invención comprende un vector de bácmido adecuado para producir un baculovirus recombinante derivado de AcMNPV, tal como se describió anteriormente en esta descripción.

El dispositivo de la presente divulgación es adecuado para realizar la etapa (b) del método para producir una proteína recombinante de la presente invención y la etapa (b) del método para proporcionar un baculovirus recombinante de la presente invención.

- 5 Por ejemplo, el dispositivo de la presente divulgación es adecuado para inyectar (inocular) en la pupa una cantidad de fluido que está en el intervalo de desde aproximadamente 0,5 hasta aproximadamente 10,0 μl, tal como aproximadamente 1, aproximadamente 2, aproximadamente 3, aproximadamente 5, aproximadamente 7 o aproximadamente 10 μl.
- Por ejemplo, la aguja comprendida en el dispositivo de la presente divulgación puede penetrar en la pupa una distancia de desde aproximadamente 1 hasta aproximadamente 4,5 mm, preferiblemente alrededor de 3 mm.

Por ejemplo, el dispositivo de la presente divulgación comprende varias agujas de inoculación desmontables, y puede inocular fluido (preferiblemente una disolución que comprende baculovirus o vectores de bácmido) a velocidades de entre aproximadamente 3.000 y 10.000 pupas por hora.

Por ejemplo, el fluido inyectado por el dispositivo de la presente divulgación comprende baculovirus, preferiblemente en una cantidad de desde 50 hasta 10⁶ UFP/dosis inyectada en cada pupa. Por ejemplo, el dispositivo de la presente divulgación inyecta (inocula) a cada pupa una cantidad de más de aproximadamente 50, o más de aproximadamente 100, o más de aproximadamente 500 unidades formadoras de placas (UFP) de baculovirus. Por ejemplo, se inoculan aproximadamente 50, aproximadamente 100, aproximadamente 300, aproximadamente 500, aproximadamente 1.000, aproximadamente 10.000, aproximadamente 15.000, aproximadamente 20.000, aproximadamente 20.000, aproximadamente 30.000, aproximadamente 40.000, aproximadamente 50.000, aproximadamente 100.000, aproximadamente 50.000 o más UFP en cada pupa, tal como aproximadamente 1.000.000 UFP.

El dispositivo de la presente divulgación comprende preferiblemente bombas de alta precisión que permiten que el dispositivo inocule el volumen deseado de fluido (preferiblemente una disolución que comprende baculovirus o vectores de bácmido) en las pupas con una alta precisión.

El dispositivo de la presente divulgación es adecuado para suministrar un fluido en pupas proporcionadas en una matriz o serie.

Preferiblemente, el dispositivo de la presente divulgación comprende además un programa informático para calcular el tiempo de inoculación y/o el tiempo entre inoculaciones en las pupas, que debe ser un tiempo suficiente para dispensar el líquido que contiene el baculovirus a cada pupa.

Preferiblemente, el dispositivo de la presente divulgación comprende además una cámara para definir la posición de la aguja.

La presente divulgación proporciona además un dispositivo para la retirada de seda (dispositivo de retirada de seda). Una representación esquemática de un ejemplo de dispositivo de retirada de seda de la presente invención se representa en la figura 3 (dispositivo semiautomático para la retirada de seda de los capullos de *T. ni*).

El dispositivo de retirada de seda de la presente divulgación (también denominado "máquina de retirada de seda") comprende al menos un recipiente que contiene una disolución que disuelve seda, tal como se explicó anteriormente. Por ejemplo, el recipiente comprende ácido hipocloroso. El primer recipiente puede comprender también preferiblemente un sistema para proyectar el líquido a través de los módulos de cría que contienen los capullos (ayuda a disolver más eficazmente la seda alrededor de la pupa). La disolución que disuelve se aplica preferiblemente al capullo con turbulencias de aire presurizado, para reducir el tiempo necesario para disolver el capullo de seda.

Preferiblemente, el dispositivo de retirada de seda de la presente divulgación comprende además un segundo recipiente, que es un recipiente de lavado y comprende y/o dispersa una disolución adecuada para retirar trazas de seda y disolución que disuelve seda de las pupas, tal como agua. La disolución (preferiblemente agua) se pulveriza preferiblemente sobre las crisálidas (pupas). Preferiblemente, en la parte superior de este recipiente, hay un sistema que dispensa aire para secar las pupas. Por consiguiente, después del lavado de las pupas, se secan preferiblemente con aire. Al final del proceso, las pupas están libres de seda y listas para infectarse o almacenarse (refrigeradas) hasta su uso.

Resumen de secuencias

15

20

25

30

35

40

55

60

SEQ ID NO:	Nombre:
1	ADNc de <i>Ac-ie-01</i> completo

2	Secuencia codificante de proteínas (CDS) de IE-1
	CDS de IE-0
3	
4	CDS del dominio N-terminal de IE-1
5	CDS del dominio N-terminal de IE-0
6	Proteína IE-1
7	Proteína IE-0
8	Proteína de dominio N-terminal de IE-1
9	Proteína de dominio N-terminal de IE-0
10	polh (promotor)
11	p10 (promotor)
12	pB2 ₉ p10 (promotor)
13	<i>p6.9p10</i> (promotor)
14	pB2 ₉ (promotor)
15	polhAc-ie-01/hr1p10
16	polhAc-ie-01/hr1pB29p10
17	polhAc-iee-01/hr1p6.9p10
18	pB2 ₉ Ac-ie-01/hr1p10
19	pB2 ₉ Ac-ie-01/hr1pB2 ₉ p10
20	pB2 ₉ Ac-ie-01/hr1p6.9p10
21	Potenciador de la región homóloga hr1
22	polhAc-ie-01
23	polhGFP
24	hr1pB29p10
25	ORF2 de circovirus porcino tipo 2
26	Proteína de la cápside (Cap) del circovirus porcino tipo 2
27	polhAc-ie-01/hrp6.9p10Cap (incluyendo la señal de poliadenilación del gen p10 después del gen Cap)
28	polhCap
29	polhAc-ie-01/hr1p6.9p10Cap
30	Proteína de hemaglutinina sin dominio transmembrana de un virus de la gripe H1, cepa PR8 (MelHAHis)
31	polhAc-ie-01/hrp6.9p10HA1 (incluyendo la señal de poliadenilación del gen p10 después del gen H1) (polhAc-ie-01/hr1p6.9p10MelHA)
32	VP60 de RHDV AST789 (genogrupo G1)
33	VP60 de RHDV N11 (genogrupo RHDVb)
34	polhAc-ie-01/hrp6.9p10VP60G1 (incluyendo la señal de poliadenilación del gen p10 después del gen H1)
35	polhAc-ie-01/hr1p6.9p10VP60RHDVb (incluyendo la señal de poliadenilación del gen p10 después del gen H1)
36	VP60 de RHDV AST789 (genogrupo G1) (secuencia de aminoácidos)
37	VP60 de RHDV N11 (genogrupo RHDVb) (secuencia de aminoácidos)
38	polhAc-ie-01/hr1p6.9p10GFP

Ejemplos

Ejemplo 1. Producción de pupas de T. ni

Se criaron larvas de insecto en cajas de cría reutilizables o de un solo uso que contenían varios cientos de larvas a las que se les permitió evolucionar durante 15-18 días de huevo a pupa (figura 1). A continuación, se sumergieron o pulverizaron las cajas de cría completas o pupas recogidas con una disolución de hipoclorito de sodio a concentraciones del 0,1% al 5% p/v para disolver las fibras de seda de los capullos. Se disolvió la seda en unos pocos minutos y luego se lavaron las pupas con agua para retirar trazas de hipoclorito. Se secaron posteriormente las pupas y se almacenaron a 4°C hasta la inoculación de baculovirus. Este proceso es más sencillo con respecto a la misma operación con capullos de *Bombyx mori* dada la menor densidad de las hebras de seda de lepidópteros de *T. ni*, tal como puede observarse en la figura 2. Los capullos de *Bombyx mori* requieren intervención manual para liberar las pupas, mientras que la seda de *T. ni* es fácil de disolver y retirar mediante procedimientos automáticos o semiautomáticos, facilitando el escalado de la obtención de pupas listas para inyectarse con un baculovirus recombinante para la producción de proteínas recombinantes.

5

10

15

20

25

30

45

50

55

Ejemplo 2. Baculovirus recombinantes dobles que contienen una secuencia potenciadora (hr1) ligada operativamente a un promotor quimérico (p6.9 y p10) y los factores de transactivación IE-1 e IE-0 sobreexpresados son altamente eficaces en la producción de proteínas recombinantes en pupas de insecto

Se comparó la expresión de proteína recombinante dirigida bajo el control de un promotor quimérico potenciada por la secuencia repetida homóloga de baculovirus *hr1* y transactivada por los factores IE-1 e IE-0 sobreexpresados en pupas de insecto (*T. ni*) con la obtenida usando un baculovirus convencional. Se clonó el gen codificante para la proteína fluorescente verde recombinante (GFP) en un baculovirus de AcMNPV convencional bajo el control del promotor de polihedrina mediante medios convencionales (figura 4A). También se generó otro baculovirus de AcMNPV modificado mediante el casete que contiene los elementos reguladores mencionados anteriormente (casete de expresión TB) que contenía el gen codificante de GFP (figura 4B). Se infectaron pupas con 50.000 UFP de cada baculovirus mediante un robot de inoculación (figura 5A), que comprende una bomba de precisión que puede dispensar cantidades de microlitros del inóculo de virus y un brazo robótico que puede inyectar el virus en posiciones precisas. Se distribuyeron las pupas en una matriz de alveolo con una parte superior con un orificio en el centro de cada alveolo (figura 5B). La aguja de inoculación (desmontable) accedió a las pupas a través del orificio y penetró en las pupas varios milímetros para inyectar el baculovirus (figura 5C). Se dispensó el virus recombinante contenido en de 0,5 a 10 microlitros (μl) en las pupas y durante la retracción de la aguja las pupas se retuvieron en el alveolo debido a la parte superior. Este robot de inoculación mostró una velocidad de inoculación de al menos 3.000 pupas por hora, al menos 6 veces más velocidad que la inoculación manual por un experto.

Después de un periodo de incubación tras la inoculación de 96-168 h, se recogieron las pupas y se extrajo la proteína en una máquina homogeneizadora en presencia de un tampón de pH neutro que contenía antioxidantes, inhibidores de la proteasa y detergentes no iónicos (por ejemplo, PBS1X pH 7,4 + ditiotreitol (DTT) 5 mM + fluoruro de fenilmetilsulfonilo (PMSF) 1 mM + Brij 35 al 0,1% + Sarkosyl al 0,5%. Se centrifugaron los extractos a 15.000-20.000 g y se filtraron. Se analizaron los extractos mediante electroforesis SDS-PAGE y se tiñeron los geles con azul de Coomassie (figura 6A). Los rendimientos de producción (expresados como miligramos por unidad de biomasa) de la proteína GFP producida por cada baculovirus en las pupas infectadas se calcularon mediante densitometría usando una curva de albúmina sérica bovina (BSA). Este análisis dio un aumento de alrededor de 5,6 veces de la productividad de GFP en pupas obtenidas mediante el baculovirus modificado genéticamente con el casete TB con respecto a la obtenida con el baculovirus convencional (concretamente un baculovirus que comprende, por ejemplo, el promotor de polihedrina sin ningún otro elemento regulador en el casete de expresión) (figura 6B).

Ejemplo 3. Expresión de diferentes proteínas mediante baculovirus modificados con TB en pupas de T. ni

Para analizar el beneficio de usar el casete de expresión TB (TopBac) (SEQ ID NO: 17) para la expresión de proteínas adicionales, se clonaron dos genes en el casete TB y se obtuvieron los baculovirus recombinantes correspondientes, así como baculovirus convencionales que expresan los genes bajo el control del promotor de polihedrina (polh) (figura 7). Los dos genes usados para obtener los baculovirus recombinantes eran aquellos que codifican para las proteínas Cap del circovirus porcino tipo 2 derivadas de la capa PCV2a GER3 (SEQ IS NO: 25 y 27) y la hemaglutinina del virus de la gripe (H1) derivada de la cepa de virus A/PR/8/34 (SEQ ID NO: 30 y 31). Los baculovirus TB(-) (concretamente un baculovirus convencional que incluye el promotor de polihedrina para expresar la proteína en el casete de expresión pero que no se modificó mediante el casete de expresión TopBac (TB)) y TB(+) resultantes se compararon para determinar su productividad en pupas de *T. ni* usando los mismos protocolos de infección y extracción de proteínas que los usados y descritos en el ejemplo 2.

La comparación de los rendimientos de producción (expresados como miligramos por unidad de biomasa) en pupas infectadas mediados por baculovirus convencionales (TB(-)) o modificados con TB (TB(+)) mostraron que para ambas proteínas el casete de expresión TB aumentó el rendimiento de producción. En el caso de la proteína Cap del circovirus porcino, un aumento de 2,79 veces en la producción de proteínas cuando se infectó la pupa con un baculovirus modificado con TB en comparación con una pupa infectada con baculovirus convencional (figura 8). Para la proteína HA del virus de la gripe, este aumento fue de 2,04 veces (figura 9). Estos resultados confirmaron que el casete TB aumenta significativamente la producción de proteínas recombinantes en pupas de *T. ni.*

Ejemplo 4. La producción de proteínas recombinantes en pupas de *T. ni* infectadas por baculovirus es más eficaz que en larvas

Se llevó a cabo la expresión comparativa de cinco proteínas recombinantes en baculovirus TB(+) en pupas y larvas de *T. ni.* Las proteínas expresadas fueron las siguientes: GFP (SEQ ID NO: 23), Cap (SEQ ID NO: 25), HA (SEQ ID NO: 30) y la VP60 (proteína de la cápside) de dos cepas de calicivirus hemorrágico del conejo (genogrupo 1 de RHDV y RHDVb; SEQ ID NO: 32 y 33) (figura 10). Se infectaron pupas y larvas con 50.000 UFP del baculovirus TB(+) correspondiente. Se recogieron los insectos infectados (larva y pupa) a las 96 h tras la infección. Se analizaron los extractos solubles de proteína mediante electroforesis SDS-PAGE teñida con azul de Coomassie (figuras 11A, 12A, 13A y 14A). Se cuantificaron las proteínas recombinantes mediante densitometría usando una curva de BSA y se expresaron los rendimientos de producción como miligramos por unidad de biomasa (figuras 11B, 12B, 13B y 14B). En todos los casos, las pupas expresaron mayores cantidades de proteína recombinante que las larvas, con razones crecientes de desde 1,06 hasta 3,64.

15 Ejemplo 5. Producción de partículas similares a virus (VLP) en pupas de *T. ni*

10

20

25

30

35

40

55

60

65

Para demostrar la producción de VLP en pupas infectadas, se procesaron extractos de proteína de pupas infectadas con el baculovirus TB(+) que expresaban la proteína VP60 de las dos cepas de calicivirus del conejo analizadas en el ejemplo 4 para la purificación de VLP. Se extrajeron las VLP de pupas infectadas a las 96 h tras la infección mediante centrifugación en presencia de detergentes (Sarkosyl al 2% (Sigma) y EDTA 5 mM (Sigma) en PBS (fosfato de sodio 0,2 M, NaCl 0,1 M, pH 6,0) e inhibidores de la proteasa (Complete®, Roche) y se incubaron durante la noche a 4°C. A continuación, se trataron con ADNasa I (Roche Diagnostics) durante 1 h a 37°C. Después de una centrifugación adicional (2.000 x g, 5 min), se sometieron los sobrenadantes a ultracentrifugación (131.453 x g; 2,5 h). Se extrajeron los sedimentos dos veces en Vertrel (Sigma) y se sometieron a una segunda ultracentrifugación (131.453 x g; 2,5 h). Finalmente, se resuspendieron los sedimentos en PBS 1X y se almacenaron a 4°C hasta el análisis.

Se analizaron los sedimentos mediante microscopía electrónica de transmisión realizada mediante medios convencionales. En resumen, se aplicaron VLP purificadas (aproximadamente 5 µI) a rejillas recubiertas con carbono sometidas a descarga luminiscente durante 2 min. Se tiñeron negativamente las células con acetato de uranilo acuoso al 2% (p/v). Se registraron micrografías con un microscopio EM 2000 Ex (JEOL, Japón). Tal como se muestra en la figura 14, se observaron VLP de la forma y el tamaño esperados correspondientes a RHDV, lo que demuestra que se lleva a cabo un plegamiento y autoensamblaje corregidos en los tejidos de pupas infectadas por baculovirus (figura 15).

Ejemplo 6. Producción de inóculo de virus en pupas de T. ni infectadas

Se cultivaron líneas celulares de *Spodoptera frugiperda* (*Sf*21 y *Sf*9) a 27°C en medio TNMFH (PAN Biotech GmbH, Alemania) con suero bovino fetal inactivado con calor al 10% (PAN Biotech GmbH) y gentamicina (50 μg/ml) (PAN Biotech GmbH). Se evaluaron la viabilidad y la densidad celular mediante tinción con azul de tripano. Se calculó la viabilidad celular basándose en el porcentaje de células vivas con respecto al número total de células a diversos tiempos tras la infección.

Las células *Sf*9, que se cultivaron en suspensión, se infectaron en frascos rotatorios (80 ml de medio de cultivo) a una densidad celular de 2x10⁶ células/ml. La viabilidad celular en el momento de la infección era >99% en suspensión. Se infectaron células *Sf*9 *in vitro* con baculovirus recombinantes a una multiplicidad de infección (MOI) de 0,01 a 0,1. Después de 72-96 h tras la infección, se recuperó el inóculo de virus a partir de los sobrenadantes después de la centrifugación. Se calculó el título de virus mediante un ensayo de unidades formadoras de placas (ufp), obteniendo títulos de virus entre 10⁷ y 10⁸ virus por ml.

Se usaron los virus para infectar pupas de *T. ni* con dosis que oscilaban desde 5 x 10² hasta 10⁴ ufp. Después de 3-7 días, se homogeneizaron las pupas para recoger el virus infeccioso en medios de cultivo celular o en un tampón de PBS específico que contenía DTT e inhibidor de la proteasa PMSF. Se centrifugaron homogenados de pupas para eliminar los residuos de pupas a 5.000 x g durante 30 min. Después, se filtró secuencialmente el sobrenadante que contenía el virus mediante un filtro de 0,45 y 0,22 micrómetros y se conservó la preparación de virus resultante mezclando con glicerol y luego pudo congelarse o liofilizarse. Se titularon las reservas de virus en larvas en el quinto instar de *T. ni* usando el método de Karber en concreto, DIL50 (dosis infecciosa de larvas 50). El significado estadístico de una dosis infecciosa calculada de esta manera es que una población de larvas infectada con una DI50 mostrará un 50% de individuos infectados. Se observaron las larvas durante al menos 96 h con el fin de detectar signos clínicos y para seguir su evolución hasta pupa. Los títulos típicos de virus estaban entre 10⁶ y 10⁸ ufp/ml de preparación de virus. Además, puede obtenerse un inóculo de baculovirus sin una generación de vector de baculovirus previa en cultivos celulares. Pueden transfectarse las pupas con un bácmido obtenido en bacterias mediante un procedimiento de transposición. La figura 16 representa el procedimiento general para obtener una reserva de virus en pupa mediante un sistema libre de células.

Ejemplo 7. Cultivo celular y virus

Se cultivaron las líneas celulares de *Spodoptera frugiperda Sf*21 o *Sf*9 en placas de cultivo tisular de 6 pocillos (1x10⁶ células/pocillo) en medio de insectos TNM-FH (Pan Biotech™, Alemania) que contenía suero bovino fetal inactivado con calor al 10% (Pan Biotech™, Alemania) a 27°C. Se obtuvieron baculovirus de AcMNPV recombinante mediante el sistema de expresión de baculovirus "Bac-to-Bac®" (invitrogen™, EE.UU.). Se generaron los diferentes vectores de transferencia TB(+) que contenían los elementos reguladores de ADN recombinante usando el plásmido pFastBac™-DUAL (invitrogen™). Se usaron estos vectores de transferencia para transfectar células *Sf*21 con Cellfectin® (invitrogen™, EE.UU.). Los baculovirus recombinantes resultantes de la infección de células *Sf*21 se hicieron pasar entonces dos veces en células y se titularon mediante el método de ensayo de placa. Los constructos génicos obtenidos de los casetes de expresión de baculovirus TB (+) se muestran esquemáticamente en las figuras 4, 7 y 10, que muestran las combinaciones de elementos reguladores genéticos implicados en la expresión de genes (*polhAc-ie-01/hr1p6.9p10*, SEQ ID NO: 17, más la secuencia del gen que codifica para la proteína deseada, por ejemplo, SEQ ID NO: 26, 30, 32 y 33). Se usaron los diferentes casetes de expresión para generar los baculovirus recombinantes usados en los ejemplos mostrados en las figuras 6, 8, 9, 11, 12, 13 y 14.

Ejemplo 8. Generación del vector de clonación

5

10

15

20

25

El vector de clonación es un pequeño trozo de ADN que contiene el casete de expresión de baculovirus TB(+) en el que puede insertarse un fragmento de ADN foráneo tratando el vehículo y el ADN foráneo con una enzima de restricción que crea la misma proyección, ligando entonces los fragmentos entre sí. Las características esenciales del vector de clonación son que debe incluir un sitio de clonación múltiple sintético (MCS) para facilitar la inserción de genes foráneos dirigidos en una orientación elegida, un marcador seleccionable, tal como una resistencia a antibiótico para permitir la selección de células transformadas positivamente, y un origen funcional de replicación (ORI) para la propagación en bacterias.

Ejemplo 9. Generación del vector donador que contiene el casete de expresión de baculovirus de la presente invención

Un vector donador consiste en un vector de clonación, por ejemplo, un plásmido pUC57, que contiene el casete de expresión de baculovirus, en el que se ha clonado un gen foráneo usando las enzimas de restricción apropiadas. Se 30 sintetizó el casete de expresión de baculovirus TB(+) usado ligando las siguientes secuencias de ADN: (i) el regulador de la transcripción de baculovirus que codifica para la secuencia de Ac-ie-01 (por ejemplo, SEQ ID NO: 1-5) hacia 3' de una secuencia de promotor, tal como el promotor polh (por ejemplo, SEQ ID NO: 10) y hacia 5' de la señal de poliadenilación de TK de VHS y (ii) en otro locus una secuencia potenciadora, por ejemplo, la región 35 homóloga hr1, hacia 5' de (iii) una secuencia de promotor, por ejemplo, p6.9p10 (por ejemplo, SEQ ID NO: 13), seguida por un sitio de clonación múltiple (MCS) para clonar el gen de interés y la señal de poliadenilación de p10 hacia 3' del MCS (figuras 4, 7 y 10). El casete de expresión de baculovirus está flanqueado por sitios de restricción específicos (por ejemplo, Bg1II y BstZ171 en el extremo 5'-terminal y Bg1 II y Sgf I en el extremo 3'-terminal) para facilitar la subclonación en un vector de transferencia de un sistema de generación de baculovirus comercial (basado en la transposición, por ejemplo, el sistema "Bac-to-Bac®" (invitrogen™) o basado en recombinación homóloga, por 40 ejemplo, "flashBAC™" (Oxford Expression Technologies™), "Baculogold™" (BD Biosciences™), "BacPAK6™" (Clontech™). "Bac-N-Blue DNA™" (invitrogen ™).

Se clonaron los genes foráneos codificantes en el MCS del vector de clonación usando los sitios de restricción Nco I y Spe I, generando los vectores de plásmido donador.

Ejemplo 10. Generación del vector de transferencia que contiene el casete de expresión de baculovirus de la presente invención

Se generó el vector de transferencia digiriendo un vector donador con *BstZ17*1 del sitio flanqueante en 5' y con *Xba* I, y clonándolo en el vector de transferencia pFastBac™1 que también se digirió con las mismas enzimas. En este caso, como resultado de la subclonación, la señal de poliadenilación de SV40 del casete de expresión de baculovirus se intercambia por la señal de poliadenilación de p10 del vector de transferencia. Aparte de esto, todos los elementos del casete de expresión se incluyen en el vector de transferencia pFastBac, sustituyendo el promotor *polh* y el MCS del vector de transferencia comercial original.

Ejemplo 11. Generación del vector de expresión de baculovirus que contiene el casete de expresión de baculovirus de la presente invención usando el sistema "Bac-to-Bac®"

Se usaron el vector de transferencia modificado pFastBac™1 y el casete de expresión de baculovirus TB(+) para generar el baculovirus recombinante usando el sistema de expresión de baculovirus "Bac-to-Bac®". Más específicamente, se usó el vector de transferencia modificado para transformar la cepa huésped de *E. coli* DH10Bac™ que contiene un vector lanzadera de baculovirus (bácmido) y un plásmido auxiliar, y permite la generación de un bácmido recombinante tras la transposición del casete de expresión. Se usaron entonces el ADN del bácmido recombinante que contenía el casete de expresión de baculovirus TB(+) de la presente invención y los diferentes genes codificantes foráneos para transfectar células de insecto, por ejemplo, células *Sf*21, usando

Cellfectin®. Además, se usó el bácmido para transfectar pupas de insectos. Se usaron pupas de *Trichoplusia ni* (oruga de la col) a una edad de 1 a 5 días para este experimento. 72 horas tras la transfección, se recogieron o procesaron las células o pupas y se obtuvo la primera generación de baculovirus recombinante. Este baculovirus recombinante pudo entonces amplificarse y/o titularse adicionalmente siguiendo protocolos convencionales. Pueden usarse procedimientos similares para generar baculovirus recombinante con otros vectores de transferencia proporcionados por BEVS comerciales.

Ejemplo 12. Infección de pupas de insectos

5

25

30

35

- Se usaron pupas de *Trichoplusia ni* (oruga de la col) a una edad de 1 a 5 días para todos los experimentos. El peso estándar de cada pupa era de aproximadamente 200-300 mg y se les inyectó a las pupas manualmente o mediante un robot específicamente diseñado de 1 a 10 µl de baculovirus recombinantes diluidos en medio de cultivo celular o PBS 1X para alcanzar el número de unidades formadoras de placas (UFP) por dosis seleccionado. Se recogieron las pupas a las 72-168 h tras la infección. Se congelaron las pupas recogidas inmediatamente para almacenarse a 20°C o -80°C hasta que se procesaron para la cuantificación de proteína recombinante. Se obtuvieron proteínas no desnaturalizadas, solubles totales (TSNDP) de pupas de *T. ni* congeladas infectadas por los baculovirus mediante homogeneización en presencia de un tampón de extracción usando una combinadora o una mezcladora homogeneizadora durante varios minutos.
- 20 Ejemplo 13. Procesamiento posterior de pupas de insectos

Se rompen las pupas congeladas mediante una homogeneizadora para obtener un extracto en bruto que contenía un agente reductor en una concentración de 1-25 mM, un detergente en una concentración del 0,01%-2% y una mezcla de inhibidores de la proteasa. La viscosidad del extracto en bruto se reduce mediante su incubación con una tierra de diatomeas durante un periodo de tiempo específico y luego se centrifuga para eliminar los residuos de insectos y se filtra para eliminar la tierra de diatomeas. A continuación, se clarifica el extracto a través de filtración de flujo tangencial usando un filtro apropiado según la naturaleza de la proteína recombinante. Finalmente, se realiza un proceso de diafiltración en el mismo dispositivo de filtración tangencial para cambiar el tampón antes de la purificación por cromatografía adicional. La figura 17 representa el procedimiento general para obtener un extracto de proteína recombinante soluble a partir de pupas infectadas por baculovirus.

<120> EXPRESIÓN DE PROTEÍNAS RECOMBINANTES EN PUPAS DE TRICHOPLUSIA NI

Lista de secuencias

<110> ALTERNATIVE GENE EXPRESSION S.L.

<130> 192120

40 <150> Documento EP15382451

<151> 17.09.2015

<160> 38

45 <170> PatentIn versión 3.5

<210> 1

<211> 1911

<212> ADN

50 <213> Virus de la polihedrosis nuclear de Autographa californica

<400> 1

atgatccgta	catccagcca	cgtcctgaac	gtccaagaaa	acatcatgac	ttccaactgt	60
gcttccagcc	cctactcctg	tgaggccact	tcagcctgcg	ctgaggccca	gcaactgcag	120
gtggacacag	gtggcgataa	gatcgtgaac	aaccaggtca	ccatgactca	aatcaacttc	180
aacgcttcct	acacctctgc	cagcactccc	tctcgtgcta	gcttcgacaa	ctcatactcg	240
gagttctgcg	acaagcaacc	taacgattac	ttgtcttact	acaaccaccc	aaccccggac	300
ggagctgata	ctgtcatctc	cgactctgaa	accgctgccg	ctagcaactt	cctcgcctca	360
gttaactcgc	tcactgacaa	cgatttggtg	gagtgtctgc	tcaagaccac	tgacaacctg	420
gaggaagctg	tgtcctctgc	ctactacagc	gagtcactcg	aacagccagt	ggtcgaacaa	480
ccctctccta	gctcagctta	ccacgccgag	tccttcgaac	actctgctgg	tgtcaaccag	540
ccgtcggcca	caggcaccaa	gaggaagttg	gacgagtacc	tggataactc	ccagggagtt	600
gtgggtcaat	tcaacaagat	caagttgaga	cctaagtaca	agaagagcac	catccagtca	660
tgcgctacac	tggaacaaac	catcaaccac	aacactaaca	tctgtacagt	ggcttccacc	720
caggagatca	ctcactactt	cacaaacgac	ttcgccccct	acctgatgag	gttcgacgat	780
aacgactaca	actcgaacag	attctccgat	cacatgtctg	aaaccggtta	ctacatgttc	840
gtcgttaaga	agtccgaggt	gaagcctttc	gaaatcatct	tcgccaagta	cgtctctaac	900
gtggtctacg	agtacacaaa	caactactac	atggttgaca	accgtgtgtt	cgttgtgacc	960
ttcgataaga	tccgcttcat	gatcagctac	aacctggtta	aggagactgg	catcgaaatc	1020
ccacactcac	aggacgtctg	caacgatgag	accgccgctc	aaaactgcaa	gaagtgtcac	1080
ttcgtggacg	tccaccacac	attcaaggcc	gctctgacct	cctacttcaa	cctcgatatg	1140
tactacgctc	agacaacctt	cgtgaccttg	ctgcaatcac	tcggcgagcg	taagtgtgga	1200
ttcctcttgt	cgaagttgta	cgagatgtac	caggacaaga	acctcttcac	tttgcccatc	1260

atgctgagcc	gcaaggaatc	aaacgagatc	gaaaccgcct	ctaacaactt	cttcgtctcg	1320
ccatacgttt	cccagatcct	caagtactcg	gagtccgtcc	aattcccgga	caaccctccc	1380
aacaagtacg	tcgttgataa	cctgaacctc	atcgtgaaca	agaagagcac	tctgacatac	1440
aagtactcgt	ccgtcgctaa	cctgctcttc	aacaactaca	agtaccacga	caacatcgct	1500
tctaacaaca	acgccgagaa	cctcaagaag	gtcaagaagg	aagacggaag	catgcacatc	1560
gttgagcagt	acttgactca	aaacgtcgat	aacgttaagg	gtcacaactt	catcgtgttg	1620
tccttcaaga	acgaggaaag	gctgaccatc	gctaagaaga	acaaggagtt	ctactggatc	1680
tctggcgaaa	tcaaggacgt	tgatgtgagc	caggtcatcc	aaaagtacaa	cagattcaag	1740
caccacatgt	tcgtgatcgg	caaggtcaac	cgtcgcgagt	caactacact	gcacaacaac	1800
ttgctgaagc	tcttggcctt	gatcctgcag	ggactggtgc	cactctccga	cgccatcaca	1860
ttcgccgagc	aaaagctcaa	ctgcaagtac	aagaagttcg	agttcaacta	a	1911
-040- 0						

<210> 2

<211> 1749

<212> ADN

<213> Virus de la polihedrosis nuclear de Autographa californica

atgactcaaa tcaacttcaa cgcttcctac acctctgcca gcactccctc tcgtgctagc 60 ttcgacaact catactcgga gttctgcgac aagcaaccta acgattactt gtcttactac 120 aaccacccaa ccccggacgg agctgatact gtcatctccg actctgaaac cgctgccgct 180 agcaacttcc tcgcctcagt taactcgctc actgacaacg atttggtgga gtgtctgctc 240 300 aagaccactg acaacctgga ggaagctgtg teetetgeet actacagega gteactegaa cagccagtgg tcgaacaacc ctctcctagc tcagcttacc acgccgagtc cttcgaacac 360 420 tctgctggtg tcaaccagcc gtcggccaca ggcaccaaga ggaagttgga cgagtacctg 480 gataactccc agggagttgt gggtcaattc aacaagatca agttgagacc taagtacaag 540 aagagcacca tccagtcatg cgctacactg gaacaaacca tcaaccacaa cactaacatc tgtacagtgg cttccaccca ggagatcact cactacttca caaacgactt cgcccctac 600 ctgatgaggt tcgacgataa cgactacaac tcgaacagat tctccgatca catgtctgaa 660 720 accggttact acatgttcgt cgttaagaag tccgaggtga agcctttcga aatcatcttc 780 gccaagtacg tctctaacgt ggtctacgag tacacaaaca actactacat ggttgacaac 840 cgtgtgttcg ttgtgacctt cgataagatc cgcttcatga tcagctacaa cctggttaag 900 gagactggca tcgaaatccc acactcacag gacgtctgca acgatgagac cgccgctcaa 960 aactgcaaga agtgtcactt cgtggacgtc caccacacat tcaaggccgc tctgacctcc tacttcaacc tcgatatgta ctacgctcag acaaccttcg tgaccttgct gcaatcactc 1020

ggcgagcgta	agtgtggatt	cctcttgtcg	aagttgtacg	agatgtacca	ggacaagaac	1080
ctcttcactt	tgcccatcat	gctgagccgc	aaggaatcaa	acgagatcga	aaccgcctct	1140
aacaacttct	tcgtctcgcc	atacgtttcc	cagatcctca	agtactcgga	gtccgtccaa	1200
ttcccggaca	accctcccaa	caagtacgtc	gttgataacc	tgaacctcat	cgtgaacaag	1260
aagagcactc	tgacatacaa	gtactcgtcc	gtcgctaacc	tgctcttcaa	caactacaag	1320
taccacgaca	acatcgcttc	taacaacaac	gccgagaacc	tcaagaaggt	caagaaggaa	1380
gacggaagca	tgcacatcgt	tgagcagtac	ttgactcaaa	acgtcgataa	cgttaagggt	1440
cacaacttca	tcgtgttgtc	cttcaagaac	gaggaaaggc	tgaccatcgc	taagaagaac	1500
aaggagttct	actggatctc	tggcgaaatc	aaggacgttg	atgtgagcca	ggtcatccaa	1560
aagtacaaca	gattcaagca	ccacatgttc	gtgatcggca	aggtcaaccg	tcgcgagtca	1620
actacactgc	acaacaactt	gctgaagctc	ttggccttga	tcctgcaggg	actggtgcca	1680
ctctccgacg	ccatcacatt	cgccgagcaa	aagctcaact	gcaagtacaa	gaagttcgag	1740
ttcaactaa						1749

<210> 3

5

<211> 1911

<212> ADN

<213> Virus de la polihedrosis nuclear de Autographa californica

atgatecgta catecageca egteetgaac gteeaagaaa acateatgae tteeaactgt 60 gettecagee cetacteetg tgaggeeact teageetgeg etgaggeeca geaactgeag 120 gtggacacag gtggcgataa gatcgtgaac aaccaggtca ccatgactca aatcaacttc 180 aacgetteet acacetetge cageacteee tetegtgeta gettegacaa eteatacteg 240 gagttetgeg acaagcaacc taacgattac ttgtettact acaaccaccc aaccceggac 300 ggagctgata ctgtcatctc cgactctgaa accgctgccg ctagcaactt cctcgcctca 360 gttaactcgc tcactgacaa cgatttggtg gagtgtctgc tcaagaccac tgacaacctg 420 480 gaggaagctg tgtcctctgc ctactacagc gagtcactcg aacagccagt ggtcgaacaa ccctctccta gctcagctta ccacgccgag tccttcgaac actctgctgg tgtcaaccag 540 ccgtcggcca caggcaccaa gaggaagttg gacgagtacc tggataactc ccagggagtt 600 660 gtgggtcaat tcaacaagat caagttgaga cctaagtaca agaagagcac catccagtca 720 tgcgctacac tggaacaaac catcaaccac aacactaaca tctgtacagt ggcttccacc 780 caggagatca ctcactactt cacaaacgac ttcgccccct acctgatgag gttcgacgat aacgactaca actcgaacag attctccgat cacatgtctg aaaccggtta ctacatgttc 840 900 gtcgttaaga agtccgaggt gaagcctttc gaaatcatct tcgccaagta cgtctctaac

gtggtctacg	agtacacaaa	caactactac	atggttgaca	accgtgtgtt	cgttgtgacc	960
ttcgataaga	tccgcttcat	gatcagctac	aacctggtta	aggagactgg	catcgaaatc	1020
ccacactcac	aggacgtctg	caacgatgag	accgccgctc	aaaactgcaa	gaagtgtcac	1080
ttcgtggacg	tccaccacac	attcaaggcc	gctctgacct	cctacttcaa	cctcgatatg	1140
tactacgctc	agacaacctt	cgtgaccttg	ctgcaatcac	tcggcgagcg	taagtgtgga	1200
ttcctcttgt	cgaagttgta	cgagatgtac	caggacaaga	acctcttcac	tttgcccatc	1260
atgctgagcc	gcaaggaatc	aaacgagatc	gaaaccgcct	ctaacaactt	cttcgtctcg	1320
ccatacgttt	cccagatcct	caagtactcg	gagtccgtcc	aattcccgga	caaccctccc	1380
aacaagtacg	tcgttgataa	cctgaacctc	atcgtgaaca	agaagagcac	tctgacatac	1440
aagtactcgt	ccgtcgctaa	cctgctcttc	aacaactaca	agtaccacga	caacatcgct	1500
tctaacaaca	acgccgagaa	cctcaagaag	gtcaagaagg	aagacggaag	catgcacatc	1560
gttgagcagt	acttgactca	aaacgtcgat	aacgttaagg	gtcacaactt	catcgtgttg	1620
tccttcaaga	acgaggaaag	gctgaccatc	gctaagaaga	acaaggagtt	ctactggatc	1680
tctggcgaaa	tcaaggacgt	tgatgtgagc	caggtcatcc	aaaagtacaa	cagattcaag	1740
caccacatgt	tcgtgatcgg	caaggtcaac	cgtcgcgagt	caactacact	gcacaacaac	1800
ttgctgaagc	tcttggcctt	gatcctgcag	ggactggtgc	cactctccga	cgccatcaca	1860
ttcgccgagc	aaaagctcaa	ctgcaagtac	aagaagttcg	agttcaacta	a	1911

<210> 4

<211> 666

<212> ADN

<213> Virus de la polihedrosis nuclear de Autographa californica

atgactcaaa tcaacttcaa cgcttcctac acctctgcca gcactccctc tcgtgctagc 60 ttcgacaact catactcgga gttctgcgac aagcaaccta acgattactt gtcttactac 120 aaccacccaa ccccggacgg agctgatact gtcatctccg actctgaaac cgctgccgct 180 agcaacttcc tcgcctcagt taactcgctc actgacaacg atttggtgga gtgtctgctc 240 aagaccactg acaacctgga ggaagctgtg teetetgeet actacagega gteactegaa 300 cagccagtgg tcgaacaacc ctctcctagc tcagcttacc acgccgagtc cttcgaacac 360 tctgctggtg tcaaccagcc gtcggccaca ggcaccaaga ggaagttgga cgagtacctg 420 480 gataactccc agggagttgt gggtcaattc aacaagatca agttgagacc taagtacaag 540 aagagcacca tccagtcatg cgctacactg gaacaaacca tcaaccacaa cactaacatc tgtacagtgg cttccaccca ggagatcact cactacttca caaacgactt cgcccctac 600 ctgatgaggt tcgacgataa cgactacaac tcgaacagat tctccgatca catgtctgaa 660 accggt 666

<210> 5 <211> 828 <212> ADN <213> Virus de	la polihedrosis n	uclear de <i>Autogr</i>	apha californica		
<400> 5 atgatccgta	catccagcca	cgtcctgaac	gtccaagaaa	acatcatgac tt	ccaactgt
gcttccagcc	cctactcctg	tgaggccact	tcagcctgcg	ctgaggccca gc	aactgcag
gtggacacag	gtggcgataa	gatcgtgaac	aaccaggtca	ccatgactca aa	tcaacttc
aacgcttcct	acacctctgc	cagcactccc	tctcgtgcta	gcttcgacaa ct	catactcg
gagttctgcg	acaagcaacc	taacgattac	ttgtcttact	acaaccaccc aa	ccccggac
ggagctgata	ctgtcatctc	cgactctgaa	accgctgccg	ctagcaactt cc	tcgcctca
gttaactcgc	tcactgacaa	cgatttggtg	gagtgtctgc	tcaagaccac tg	acaacctg
gaggaagctg	tgtcctctgc	ctactacagc	gagtcactcg	aacagccagt gg	tcgaacaa
ccctctccta	gctcagctta	ccacgccgag	tccttcgaac	actctgctgg tg	tcaaccag
ccgtcggcca	caggcaccaa	gaggaagttg	gacgagtacc	tggataactc cc	agggagtt
gtgggtcaat	tcaacaagat	caagttgaga	cctaagtaca	agaagagcac ca	tccagtca
tgcgctacac	tggaacaaac	catcaaccac	aacactaaca	tctgtacagt gg	cttccacc
caggagatca	ctcactactt	cacaaacgac	ttcgccccct	acctgatgag gt	tcgacgat
aacgactaca	actcgaacag	attctccgat	cacatgtctg	aaaccggt	
<210> 6 <211> 582 <212> PRT <213> Virus de	la polihedrosis n	uclear de <i>Autogr</i> a	apha californica		
<400> 6	- Tle 3ee D	ha 3an 31a	Con Man Mhn	Com 31a Com M	lha Dae
1	n lie Asn P 5	ne ASN AIA	10	Ser Ala Ser T	5
Ser Arg Al	a Ser Phe A 20	-	Tyr Ser Glu 25	Phe Cys Asp I	ys Gln
Pro Asn As 35	p Tyr Leu S	er Tyr Tyr 40	Asn His Pro	Thr Pro Asp G	ly Ala
Asp Thr Va	l Ile Ser A	sp Ser Glu 55	Thr Ala Ala	Ala Ser Asn P	he Leu
Ala Ser Va	l Asn Ser L 7		Asn Asp Leu	Val Glu Cys I	eu Leu 80

Lys	Thr	Thr	Asp	Asn 85	Leu	Glu	Glu	Ala	Val 90	Ser	Ser	Ala	Tyr	Tyr 95	Ser
Glu	Ser	Leu	Glu 100	Gln	Pro	Val	Val	Glu 105	Gln	Pro	Ser	Pro	Ser 110	Ser	Ala
Tyr	His	Ala 115	Glu	Ser	Phe	Glu	His 120	Ser	Ala	Gly	Val	Asn 125	Gln	Pro	Ser
Ala	Thr 130	Gly	Thr	Lys	Arg	Lys 135	Leu	Asp	Glu	Tyr	Leu 140	Asp	Asn	Ser	Gln
Gly 145	Val	Val	Gly	Gln	Phe 150	Asn	Lys	Ile	Lys	Leu 155	Arg	Pro	Lys	Tyr	Lys 160
Lys	Ser	Thr	Ile	Gln 165	Ser	Cys	Ala	Thr	Leu 170	Glu	Gln	Thr	Ile	Asn 175	His
Asn	Thr	Asn	Ile 180	Cys	Thr	Val	Ala	Ser 185	Thr	Gln	Glu	Ile	Thr 190	His	Tyr
Phe	Thr	Asn 195	Asp	Phe	Ala	Pro	Tyr 200	Leu	Met	Arg	Phe	Asp 205	Asp	Asn	Asp
Tyr	Asn 210	Ser	Asn	Arg	Phe	Ser 215	Asp	His	Met	Ser	Glu 220	Thr	Gly	Tyr	Tyr
225			Val	_	230					235					240
Ala	Lys	Tyr	Val	Ser 245	Asn	Val	Val	Tyr	Glu 250	Tyr	Thr	Asn	Asn	Tyr 255	Tyr
Met	Val	Asp	Asn 260	Arg	Val	Phe	Val	Val 265	Thr	Phe	Asp	Lys	11e 270	Arg	Phe
		275	Tyr				280					285			
	290		Val	_		295					300		_	_	_
305			Val		310					315					320
Tyr	Phe	Asn	Leu	Asp	Met	Tyr	Tyr	Ala	Gln	Thr	Thr	Phe	Val	Thr	Leu

				325					330					335	
Leu	Gln	Ser	Leu 340	Gly	Glu	Arg	Lys	Cys 345	Gly	Phe	Leu	Leu	Ser 350	Lys	Leu
Tyr	Glu	Met 355	Tyr	Gln	Asp	Lys	Asn 360	Leu	Phe	Thr	Leu	Pro 365	Ile	Met	Leu
Ser	A rg 370	Lys	Glu	Ser	Asn	Glu 375	Ile	Glu	Thr	Ala	Ser 380	Asn	Asn	Phe	Phe
Val 385	Ser	Pro	Tyr	Val	Ser 390	Gln	Ile	Leu	Lys	Tyr 395	Ser	Glu	Ser	Val	Gln 400
Phe	Pro	Asp	Asn	Pro 405	Pro	Asn	Lys	Tyr	Val 410	Val	Asp	Asn	Leu	Asn 415	Leu
Ile	Val	Asn	Lys 420	Lys	Ser	Thr	Leu	Thr 425	Tyr	Lys	Tyr	Ser	Ser 430	Val	Ala
Asn	Leu	Leu 435	Phe	Asn	Asn	Tyr	Lys 440	Tyr	His	Asp	Asn	Ile 445	Ala	Ser	Asn
Asn	Asn 450	Ala	Glu	Asn	Leu	Lys 455	Lys	Val	Lys	Lys	Glu 460	Asp	Gly	Ser	Met
His 465	Ile	Val	Glu	Gln	Tyr 470	Leu	Thr	Gln	Asn	Val 475	Asp	Asn	Val	Lys	Gly 480
His	Asn	Phe	Ile	Val 485		Ser	Phe		Asn 490		Glu	Arg	Leu	Thr 495	
Ala	Lys	Lys	Asn 500	Lys	Glu	Phe	Tyr	Trp 505	Ile	Ser	Gly	Glu	Ile 510	Lys	Asp
Val	Asp	Val 515	Ser	Gln	Val	Ile	Gln 520	Lys	Tyr	Asn	Arg	Phe 525	Lys	His	His
Met	Phe 530	Val	Ile	Gly	Lys	Val 535	Asn	Arg	Arg	Glu	Ser 540	Thr	Thr	Leu	His
Asn 545	Asn	Leu	Leu	Lys	Le u 550	Leu	Ala	Leu	Ile	Leu 555	Gln	Gly	Leu	Val	Pro 560
		_	Ala Glu	565			Ala	Glu	Gln 570	Lys	Leu	Asn	Cys	Lys 575	Tyr

<210> 7

<211> 636 <212> PRT <213> Virus de la polihedrosis nuclear de Autographa californica Met Ile Arg Thr Ser Ser His Val Leu Asn Val Gln Glu Asn Ile Met 10 Thr Ser Asn Cys Ala Ser Ser Pro Tyr Ser Cys Glu Ala Thr Ser Ala 20 25 Cys Ala Glu Ala Gln Gln Leu Gln Val Asp Thr Gly Gly Asp Lys Ile Val Asn Asn Gln Val Thr Met Thr Gln Ile Asn Phe Asn Ala Ser Tyr 50 55 Thr Ser Ala Ser Thr Pro Ser Arg Ala Ser Phe Asp Asn Ser Tyr Ser 70 75 80 Glu Phe Cys Asp Lys Gln Pro Asn Asp Tyr Leu Ser Tyr Tyr Asn His 85 90 Pro Thr Pro Asp Gly Ala Asp Thr Val Ile Ser Asp Ser Glu Thr Ala 100 105 Ala Ala Ser Asn Phe Leu Ala Ser Val Asn Ser Leu Thr Asp Asn Asp 115 120 Leu Val Glu Cys Leu Leu Lys Thr Thr Asp Asn Leu Glu Glu Ala Val 130 135 Ser Ser Ala Tyr Tyr Ser Glu Ser Leu Glu Gln Pro Val Val Glu Gln 145 150 155 Pro Ser Pro Ser Ser Ala Tyr His Ala Glu Ser Phe Glu His Ser Ala 165 Gly Val Asn Gln Pro Ser Ala Thr Gly Thr Lys Arg Lys Leu Asp Glu 180 Tyr Leu Asp Asn Ser Gln Gly Val Val Gly Gln Phe Asn Lys Ile Lys 195 200 205

	210		_,	-7-	_,0	215	501			0111	220	O,U			100
Glu 225	Gln	Thr	Ile	Asn	His 230	Asn	Thr	Asn	Ile	Cys 235	Thr	Val	Ala	Ser	Thr 240
Gln	Glu	Ile	Thr	His 245	Tyr	Phe	Thr	Asn	Asp 250	Phe	Ala	Pro	Tyr	Leu 255	Met
Arg	Phe	Asp	As p 260	Asn	Asp	Tyr	Asn	Ser 265	Asn	Arg	Phe	Ser	As p 270	His	Met
Ser	Glu	Thr 275	Gly	Tyr	Tyr	Met	Phe 280	Val	Val	Lys	Lys	Ser 285	Glu	Val	Lys
Pro	Phe 290	Glu	Ile	Ile	Phe	Ala 295	Lys	Tyr	Val	Ser	As n 300	Val	Val	Tyr	Glu
Tyr 305	Thr	Asn	Asn	Tyr	Tyr 310	Met	Val	Asp	Asn	Arg 315	Val	Phe	Val	Val	Thr 320
Phe	Asp	Lys	Ile	Arg 325	Phe	Met	Ile	Ser	Tyr 330	Asn	Leu	Val	Lys	Glu 335	Thr
Gly	Ile	Glu	Ile 340	Pro	His	Ser	Gln	Asp 345	Val	Суз	Asn	Asp	Glu 350	Thr	Ala
Ala	Gln	Asn 355	Cys	Lys	Lys	Суѕ	His 360	Phe	Val	Asp	Val	His 365	His	Thr	Phe
Lys	Ala 370	Ala	Leu	Thr	Ser	Tyr 375	Phe	Asn	Leu	Asp	Met 380	Tyr	Tyr	Ala	Gln
Thr 385	Thr	Phe	Val	Thr	Leu 390	Leu	Gln	Ser	Leu	Gly 395	Glu	Arg	Lys	Cys	Gly 400
Phe	Leu	Leu	Ser	Lys 405	Leu	Tyr	Glu	Met	Tyr 410	Gln	Asp	Lys	Asn	Leu 415	Phe
Thr	Leu	Pro	Ile 420	Met	Leu	Ser	Arg	Lys 425	Glu	Ser	Asn	Glu	Ile 430	Glu	Thr
Ala	Ser	Asn 435	Asn	Phe	Phe	Val	Ser 440	Pro	Tyr	Val	Ser	Gln 445	Ile	Leu	Lys
Tyr	Ser 450	Glu	Ser	Val	Gln	Phe 455	Pro	Asp	Asn	Pro	Pro 460	Asn	Lys	Tyr	Val

Val 465	Asp	Asn	Leu	Asn	Leu 470	Ile	Val	Asn	Lys	Lys 475	Ser	Thr	Leu	Thr	Tyr 480
Lys	Tyr	Ser	Ser	Val 485	Ala	Asn	Leu	Leu	Phe 490	Asn	Asn	Tyr	Lys	Tyr 495	His
Asp	Asn	Ile	Ala 500	Ser	Asn	Asn	Asn	Ala 505	Glu	Asn	Leu	Lys	Lys 510	Val	Lys
Lys	Glu	Asp 515	Gly	Ser	Met	His	Ile 520	Val	Glu	Gln	Tyr	Leu 525	Thr	Gln	Asn
Val	Asp 530	Asn	Val	Lys	Gly	His 535	Asn	Phe	Ile	Val	Leu 540	Ser	Phe	Lys	Asn
Glu 545	Glu	Arg	Leu	Thr	Ile 550	Ala	Lys	Lys	Asn	Lys 555	Glu	Phe	Tyr	Trp	Ile 560
Ser	Gly	Glu	Ile	Lys 565	Asp	Val	Asp	Val	Ser 570	Gln	Val	Ile	Gln	Lys 575	Tyr
Asn	Arg	Phe	Lys 580	His	His	Met	Phe	Val 585	Ile	Gly	Lys	Val	Asn 590	Arg	Arg
Glu	Ser	Thr 595	Thr	Leu	His	Asn	Asn 600	Leu	Leu	Lys	Leu	Leu 605	Ala	Leu	Ile
Leu	Gln 610	Gly	Leu	Val	Pro	Leu 615	Ser	Asp	Ala	Ile	Thr 620	Phe	Ala	Glu	Gln
Lys 625	Leu	Asn	Cys	Lys	Tyr 630	Lys	Lys	Phe	Glu	Phe 635	Asn				
<210><211><211><212><213>	222 PRT	de la	polihe	edrosis	s nucle	ar de	Autog	rapha	califor	rnica					
<400> Met 1		Gln	Ile	Asn 5	Phe	Asn	Ala	Ser	Tyr 10	Thr	Ser	Ala	Ser	Thr 15	Pro
Ser	Arg	Ala	Ser 20	Phe	Asp	Asn	Ser	Tyr 25	Ser	Glu	Phe	Cys	Asp 30	Lys	Gln
Pro	Asn	Asp 35	Tyr	Leu	Ser	Tyr	Tyr 40	Asn	His	Pro	Thr	Pro 45	Asp	Gly	Ala

Asp	Thr 50	Val	Ile	Ser	Asp	Ser 55	Glu	Thr	Ala	Ala	Ala 60	Ser	Asn	Phe	Leu
Ala 65	Ser	Val	Asn	Ser	Leu 70	Thr	Asp	Asn	Asp	Leu 75	Val	Glu	Cys	Leu	Leu 80
Lys	Thr	Thr	Asp	Asn 85	Leu	Glu	Glu	Ala	Val 90	Ser	Ser	Ala	Tyr	Tyr 95	Ser
Glu	Ser	Leu	Glu 100	Gln	Pro	Val	Val	Glu 105	Gln	Pro	Ser	Pro	Ser 110	Ser	Ala
Tyr	His	Ala 115	Glu	Ser	Phe	Glu	His 120	Ser	Ala	Gly	Val	Asn 125	Gln	Pro	Ser
Ala	Thr 130	Gly	Thr	Lys	Arg	Lys 135	Leu	Asp	Glu	Tyr	Leu 140	Asp	Asn	Ser	Gln
Gly 145	Val	Val	Gly	Gln	Phe 150	Asn	Lys	Ile	Lys	Leu 155	Arg	Pro	Lys	Tyr	Lys 160
Lys	Ser	Thr	Ile	Gln 165	Ser	Cys	Ala	Thr	Leu 170	Glu	Gln	Thr	Ile	Asn 175	His
Asn	Thr	Asn	Ile 180	Cys	Thr	Val	Ala	Ser 185	Thr	Gln	Glu	Ile	Thr 190	His	Tyr
Phe	Thr	Asn 195	Asp	Phe	Ala	Pro	Tyr 200	Leu	Met	Arg	Phe	Asp 205	Asp	Asn	Asp
	210	Ser	Asn	Arg	Phe	Ser 215	Asp	His	Met	Ser	Glu 220	Thr	Gly		
<210><211><211><212><213>	276 PRT	de la	polihe	drosis	nucle	ar de .	Autog	rapha	califor	nica					
<400> Met 1		Arg	Thr	Ser 5	Ser	His	Val	Leu	Asn 10	Val	Gln	Glu	Asn	Ile 15	Met
Thr	Ser	Asn	Cys 20	Ala	Ser	Ser	Pro	Tyr 25	Ser	Cys	Glu	Ala	Thr 30	Ser	Ala
Cys	Ala	Glu 35	Ala	Gln	Gln	Leu	Gln 40	Val	Asp	Thr	Gly	Gly 45	Asp	Lys	Ile

Val	Asn 50	Asn	Gln	Val	Thr	Met 55	Thr	Gln	Ile	Asn	Phe 60	Asn	Ala	Ser	Tyr
Thr 65	Ser	Ala	Ser	Thr	Pro 70	Ser	Arg	Ala	Ser	Phe 75	Asp	Asn	Ser	Tyr	Ser 80
Glu	Phe	Cys	Asp	Lys 85	Gln	Pro	Asn	Asp	Tyr 90	Leu	Ser	Tyr	Tyr	Asn 95	His
Pro	Thr	Pro	Asp 100	Gly	Ala	Asp	Thr	Val 105	Ile	Ser	Asp	Ser	Glu 110	Thr	Ala
Ala	Ala	Ser 115	Asn	Phe	Leu	Ala	Ser 120	Val	Asn	Ser	Leu	Thr 125	Asp	Asn	Asp
Leu	Val 130	Glu	Cys	Leu	Leu	Lys 135	Thr	Thr	Asp	Asn	Leu 140	Glu	Glu	Ala	Val
Ser 145	Ser	Ala	Tyr	Tyr	Ser 150	Glu	Ser	Leu	Glu	Gln 155	Pro	Val	Val	Glu	Gln 160
Pro	Ser	Pro	Ser	Ser 165	Ala	Tyr	His	Ala	Glu 170	Ser	Phe	Glu	His	Ser 175	Ala
Gly	Val	Asn	Gln 180	Pro	Ser	Ala	Thr	Gly 185	Thr	Lys	Arg	Lys	Leu 190	Asp	Glu
Tyr	Leu	Asp 195	Asn	Ser	Gln	Gly	Val 200	Val	Gly	Gln	Phe	Asn 205	Lys	Ile	Lys
Leu	Arg 210	Pro	Lys	Tyr	Lys	Lys 215	Ser	Thr	Ile	Gln	Ser 220	Cys	Ala	Thr	Leu
Glu 225	Gln	Thr	Ile	Asn	His 230	Asn	Thr	Asn	Ile	Cys 235	Thr	Val	Ala	Ser	Thr 240
Gln	Glu	Ile	Thr	His 245	Tyr	Phe	Thr	Asn	Asp 250	Phe	Ala	Pro	Tyr	Leu 255	Met
Arg	Phe	Asp	Asp 260	Asn	Asp	Tyr	Asn	Ser 265	Asn	Arg	Phe	Ser	Asp 270	His	Met
Ser	Glu	Thr 275	Gly												

<210> 10 <211> 128 <212> ADN

	<213> Virus de l	la polihedrosis nu	ıclear de <i>Autogra</i>	apha californica			
	<400> 10						
	atcatggaga	taattaaaat	gataaccatc	tcgcaaataa	ataagtattt	tactgttttc	60
	gtaacagttt	tgtaataaaa	aaacctataa	atattccgga	ttattcatac	cgtcccacca	120
5	tcgggcgc						128
	<210> 11 <211> 122 <212> ADN <213> Virus de	la polihedrosis nu	uclear de <i>Autogra</i>	apha californica			
10	<400> 11						
	atacggacct	ttaattcaac	ccaacacaat	atattatagt	taaataagaa	ttattatcaa	60
	atcatttgta	tattaattaa	aatactatac	tgtaaattac	attttattta	caatcactcg	120
	ac						122
15	<210> 12 <211> 571 <212> ADN <213> Secuenci	ia artificial					
20	<220> <223> Promotor	quimérico recon	nbinante				
	<400> 12 aaaaacatcg	attagggtga	ctgaaggtta	cattggggta	ggttatggtt	aatacgtaat	60
	ggtttaacac	caaaacgata	tcatggattt	tatataaggt	gtaataatat	ttttaatgag	120
	tggacgcgtc	gggtcaatgt	cctgcctatt	gacgtcataa	catattaggt	gattatatta	180
	aaaatagttt	aaactcaaat	attacttgca	agtttaagtt	tcatcataat	ctgatcataa	240
	gtttcaccca	aacagaaacc	aaaagcataa	ctatcgaata	tctttagctt	cccatgaaga	300
	aagattaccg	taaccatcac	taggatttta	tacgattgta	gaaaataaag	tattctcagt	360
	ctcttttcag	agcgctataa	aaaggggtgc	attctcggta	agagtacagt	tgaactcaca	420
	tcgagttaac	tccacgctgc	agtctcgaga	tacggacctt	taattcaacc	caacacaata	480
	tattatagtt	aaataagaat	tattatcaaa	tcatttgtat	attaattaaa	atactatact	540
	gtaaattaca	ttttatttac	aatcactcga	C			571
25	<210> 13 <211> 465 <212>ADN <213> Secuenci	ia artificial					
30	<220> <223> Promotor	quimérico recon	nbinante				
	∠100 <u>> 12</u>						

	ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	60
	atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	120
	tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	180
	aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	240
	acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	300
	attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	360
	aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	420
	taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgac		465
5	<210> 14 <211> 436 <212> ADN <213> Virus de	la polihedrosis nu	uclear de <i>Autogra</i>	apha californica			
	<400> 14 aaaaacatcg	attagggtga	ctgaaggtta	cattggggta	ggttatggtt	aatacgtaat	60
	ggtttaacac	caaaacgata	tcatggattt	tatataaggt	gtaataatat	ttttaatgag	120
	tggacgcgtc	gggtcaatgt	cctgcctatt	gacgtcataa	catattaggt	gattatatta	180
	aaaatagttt	aaactcaaat	attacttgca	agtttaagtt	tcatcataat	ctgatcataa	240
	gtttcaccca	aacagaaacc	aaaagcataa	ctatcgaata	tctttagctt	cccatgaaga	300
	aagattaccg	taaccatcac	taggatttta	tacgattgta	gaaaataaag	tattctcagt	360
	ctcttttcag	agcgctataa	aaaggggtgc	attctcggta	agagtacagt	tgaactcaca	420
10	tcgagttaac	tccacg					436
15	<210> 15 <211> 3163 <212> ADN <213> Secuenci	ia artificial					
13	<220> <223> Casete d	e expresión reco	mbinante				
	<400> 15 ttagttgaac	tcgaacttct	tgtacttgca	gttgagcttt	tgctcggcga	atgtgatggc	60
	gtcggagagt	ggcaccagtc	cctgcaggat	caaggccaag	agcttcagca	agttgttgtg	120
	cagtgtagtt	gactcgcgac	ggttgacctt	gccgatcacg	aacatgtggt	gcttgaatct	180
	gttgtacttt	tggatgacct	ggctcacatc	aacgtccttg	atttcgccag	agatccagta	240
	gaactccttg	ttcttcttag	cgatggtcag	cctttcctcg	ttcttgaagg	acaacacgat	300
	gaagttgtga	cccttaacgt	tatcgacgtt	ttgagtcaag	tactgctcaa	cgatgtgcat	360
20	gcttccgtct	tccttcttga	ccttcttgag	gttctcggcg	ttgttgttag	aagcgatgtt	420

gtcgtggtac ttgtagttgt	tgaagagcag	gttagcgacg	gacgagtact	tgtatgtcag	480
agtgctcttc ttgttcacga	tgaggttcag	gttatcaacg	acgtacttgt	tgggagggtt	540
gtccgggaat tggacggact	ccgagtactt	gaggatctgg	gaaacgtatg	gcgagacgaa	600
gaagttgtta gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
agtgaagagg ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
acgctcgccg agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatt	1920
gggtcatcta gattcgaaag	cggccgcgac	tagtgagctc	gtcgacgtag	gcctttgaat	1980
teegegeget teggaceggg	atccgcgccc	gatggtggga	cggtatgaat	aatccggaat	2040
atttataggt ttttttatta	caaaactgtt	acgaaaacag	taaaatactt	atttatttgc	2100
gagatggtta tcattttaat	tatctccatg	atctattaat	attccggagt	atacatcgat	2160
gttgacccca acaaaagatt	tataattaat	cataatcacg	aacaacaaca	agtcaatgaa	2220
acaaataaac aagttgtcga	taaaacattc	ataaatgaca	cagcaacata	caattcttgc	2280
ataataaaaa tttaaatgac	atcatatttg	agaataacaa	atgacattat	ccctcgattg	2340

tgttttacaa	gtagaattct	acccgtaaag	cgagtttagt	tttgaaaaac	aaatgacatc	2400
atttgtataa	tgacatcatc	ccctgattgt	gttttacaag	tagaattcta	tccgtaaagc	2460
gagttcagtt	ttgaaaacaa	atgagtcata	cctaaacacg	ttaataatct	tctgatatca	2520
gcttatgact	caagttatga	gccgtgtgca	aaacatgaga	taagtttatg	acatcatcca	2580
ctgatcgtgc	gttacaagta	gaattctact	cgtaaagcca	gttcggttat	gagccgtgtg	2640
caaaacatga	catcagctta	tgactcatac	ttgattgtgt	tttacgcgta	gaattctact	2700
cgtaaagcga	gttcggttat	gagccgtgtg	caaaacatga	catcagctta	tgagtcataa	2760
ttaatcgtgc	gttacaagta	gaattctact	cgtaaagcga	gttgaaggat	catatttagt	2820
tgcgtttatg	agataagatt	gaaagcacgt	gtaaaatgtt	tcccgcgcgt	tggcacaact	2880
atttacaatg	cggccaagtt	ataaaagatt	ctaatctgat	atgttttaaa	acacctttgc	2940
ggcccgagtt	gtttgcgtac	gtgactagcg	aagaagatgt	gtggaccgca	gaacagatag	3000
taaaacaaaa	ccctagtatt	ggagcaataa	tcgatgagct	catacggacc	tttaattcaa	3060
cccaacacaa	tatattatag	ttaaataaga	attattatca	aatcatttgt	atattaatta	3120
aaatactata	ctgtaaatta	cattttattt	acaatcactc	gac		3163

<210> 16

<211> 3656

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

5

<400> 16 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300 360 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 420 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 480 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 540 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 660 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 720

acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgo	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcago	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatco	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagetteet	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	togcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgato	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatt	1920
gggtcatcta	gattcgaaag	cggccgcgac	tagtgagctc	gtcgacgtag	gcctttgaat	1980
teegegeget	teggaeeggg	atccgcgccc	gatggtggga	cggtatgaat	aatccggaat	2040
atttataggt	ttttttatta	caaaactgtt	acgaaaacag	taaaatactt	atttatttgc	2100
gagatggtta	tcattttaat	tatctccatg	atctattaat	attccggagt	atacatcgat	2160
gttgacccca	acaaaagatt	tataattaat	cataatcacg	aacaacaaca	agtcaatgaa	2220
acaaataaac	aagttgtcga	taaaacattc	ataaatgaca	cagcaacata	caattcttgc	2280
ataataaaaa	tttaaatgac	atcatatttg	agaataacaa	atgacattat	ccctcgattg	2340
tgttttacaa	gtagaattct	acccgtaaag	cgagtttagt	tttgaaaaac	aaatgacatc	2400
atttgtataa	tgacatcatc	ccctgattgt	gttttacaag	tagaattcta	tccgtaaagc	2460
gagttcagtt	ttgaaaacaa	atgagtcata	cctaaacacg	ttaataatct	tctgatatca	2520
gcttatgact	caagttatga	gccgtgtgca	aaacatgaga	taagtttatg	acatcatcca	2580
ctgatcgtgc	gttacaagta	gaattctact	cgtaaagcca	gttcggttat	gagccgtgtg	2640

caaaacatga	catcagctta	tgactcatac	ttgattgtgt	tttacgcgta	gaattctact	2700
cgtaaagcga	gttcggttat	gagccgtgtg	caaaacatga	catcagctta	tgagtcataa	2760
ttaatcgtgc	gttacaagta	gaattctact	cgtaaagcga	gttgaaggat	catatttagt	2820
tgcgtttatg	agataagatt	gaaagcacgt	gtaaaatgtt	tcccgcgcgt	tggcacaact	2880
atttacaatg	cggccaagtt	ataaaagatt	ctaatctgat	atgttttaaa	acacctttgc	2940
ggcccgagtt	gtttgcgtac	gtgactagcg	aagaagatgt	gtggaccgca	gaacagatag	3000
taaaacaaaa	ccctagtatt	ggagcaataa	tcgatgagct	cgtcgacgta	ggcctttgaa	3060
ttccgcgcgc	ttcggaccgg	gatccaaaaa	catcgattag	ggtgactgaa	ggttacattg	3120
gggtaggtta	tggttaatac	gtaatggttt	aacaccaaaa	cgatatcatg	gattttatat	3180
aaggtgtaat	aatatttta	atgagtggac	gcgtcgggtc	aatgtcctgc	ctattgacgt	3240
cataacatat	taggtgatta	tattaaaaat	agtttaaact	caaatattac	ttgcaagttt	3300
aagtttcatc	ataatctgat	cataagtttc	acccaaacag	aaaccaaaag	cataactatc	3360
gaatatcttt	agcttcccat	gaagaaagat	taccgtaacc	atcactagga	ttttatacga	3420
ttgtagaaaa	taaagtattc	tcagtctctt	ttcagagcgc	tataaaaagg	ggtgcattct	3480
cggtaagagt	acagttgaac	tcacatcgag	ttaactccac	gctgcagtct	cgagatacgg	3540
acctttaatt	caacccaaca	caatatatta	tagttaaata	agaattatta	tcaaatcatt	3600
tgtatattaa	ttaaaatact	atactgtaaa	ttacatttta	tttacaatca	ctcgac	3656

<210> 17

<211> 3541

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

<400> 17 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300 360 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 420 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 480 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 540

~+ ~~~~~~	+ ~~~ ~~~ ~+	aaaaa+aa++	~~~~	~~~~~	~~~~~~	600
gcccgggaac	tggacggact	ccgagtactt	gaggatetgg	gaaacgtatg	gcgagacgaa	800
gaagttgtta	gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
agtgaagagg	ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagetteet	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980
cttcggaccg	ggateegege	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacatcg	atgttgaccc	2160
caacaaaaga	tttataatta	atcataatca	cgaacaacaa	caagtcaatg	aaacaaataa	2220
acaagttgtc	gataaaacat	tcataaatga	cacagcaaca	tacaattctt	gcataataaa	2280
aatttaaatg	acatcatatt	tgagaataac	aaatgacatt	atccctcgat	tgtgttttac	2340
aagtagaatt	ctacccgtaa	agcgagttta	gttttgaaaa	acaaatgaca	tcatttgtat	2400
aatgacatca	tcccctgatt	gtgttttaca	agtagaattc	tatccgtaaa	gcgagttcag	2460

ttttgaaaac	aaatgagtca	tacctaaaca	cgttaataat	cttctgatat	cagcttatga	2520
ctcaagttat	gagccgtgtg	caaaacatga	gataagttta	tgacatcatc	cactgatcgt	2580
gcgttacaag	tagaattcta	ctcgtaaagc	cagttcggtt	atgagccgtg	tgcaaaacat	2640
gacatcagct	tatgactcat	acttgattgt	gttttacgcg	tagaattcta	ctcgtaaagc	2700
gagttcggtt	atgagccgtg	tgcaaaacat	gacatcagct	tatgagtcat	aattaatcgt	2760
gcgttacaag	tagaattcta	ctcgtaaagc	gagttgaagg	atcatattta	gttgcgttta	2820
tgagataaga	ttgaaagcac	gtgtaaaatg	tttcccgcgc	gttggcacaa	ctatttacaa	2880
tgcggccaag	ttataaaaga	ttctaatctg	atatgtttta	aaacaccttt	gcggcccgag	2940
ttgtttgcgt	acgtgactag	cgaagaagat	gtgtggaccg	cagaacagat	agtaaaacaa	3000
aaccctagta	ttggagcaat	aatcgatgag	ctcgtcgacg	taggcctttg	aattccgcgc	3060
gcttcggacc	gggatcggta	ccaaattccg	ttttgcgacg	atgcagagtt	tttgaacagg	3120
ctgctcaaac	acatagatcc	gtacccgctc	agtcggatgt	attacaatgc	agccaatacc	3180
atgttttaca	cgactatgga	aaactatgcc	gtgtccaatt	gcaagttcaa	cattgaggat	3240
tacaataaca	tatttaaggt	gatggaaaat	attaggaaac	acagcaacaa	aaattcaaac	3300
gaccaagacg	agttaaacat	atatttggga	gttcagtcgt	cgaatgcaaa	gcgtaaaaaa	3360
tattaataag	gtaaaaatta	cagctacata	aattacacaa	tttaaactgc	agtctggaga	3420
tacggacctt	taattcaacc	caacacaata	tattatagtt	aaataagaat	tattatcaaa	3480
tcatttgtat	attaattaaa	atactatact	gtaaattaca	ttttatttac	aatcactcga	3540
c						3541
<210> 18						

<212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

5

ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 240 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420

gtcgtggtac	ttgtagttgt	tgaagagcag	gttagcgacg	gacgagtact	tgtatgtcag	480
agtgctcttc	ttgttcacga	tgaggttcag	gttatcaacg	acgtacttgt	tgggagggtt	540
gtccgggaat	tggacggact	ccgagtactt	gaggatctgg	gaaacgtatg	gcgagacgaa	600
gaagttgtta	gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
agtgaagagg	ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
acgctcgccg	agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag	gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt	tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc	ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg	ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg	aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagetteet	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagatgcatt	cgcgaggtac	cgagctcgaa	ttcactggcc	gtcgttttac	aacgtcgtga	1980
ctgggaaaac	cctggcgtta	cccaacttaa	tcgccttgca	gcacatcccc	ctttcgccag	2040
ctgctagcac	catggctcga	gcgtggagtt	aactcgatgt	gagttcaact	gtactcttac	2100
cgagaatgca	cccctttta	tagcgctctg	aaaagagact	gagaatactt	tattttctac	2160
aatcgtataa	aatcctagtg	atggttacgg	taatctttct	tcatgggaag	ctaaagatat	2220
tcgatagtta	tgcttttggt	ttctgtttgg	gtgaaactta	tgatcagatt	atgatgaaac	2280
ttaaacttgc	aagtaatatt	tgagtttaaa	ctatttttaa	tataatcacc	taatatgtta	2340

tgacgtcaat	aggcaggaca	ttgacccgac	gcgtccactc	attaaaaata	ttattacacc	2400
ttatataaaa	tccatgatat	cgttttggtg	ttaaaccatt	acgtattaac	cataacctac	2460
cccaatgtaa	ccttcagtca	ccctaatcga	tgtttttgta	tacatcgatg	ttgaccccaa	2520
caaaagattt	ataattaatc	ataatcacga	acaacaacaa	gtcaatgaaa	caaataaaca	2580
agttgtcgat	aaaacattca	taaatgacac	agcaacatac	aattcttgca	taataaaaat	2640
ttaaatgaca	tcatatttga	gaataacaaa	tgacattatc	cctcgattgt	gttttacaag	2700
tagaattcta	cccgtaaagc	gagtttagtt	ttgaaaaaca	aatgacatca	tttgtataat	2760
gacatcatcc	cctgattgtg	ttttacaagt	agaattctat	ccgtaaagcg	agttcagttt	2820
tgaaaacaaa	tgagtcatac	ctaaacacgt	taataatctt	ctgatatcag	cttatgactc	2880
aagttatgag	ccgtgtgcaa	aacatgagat	aagtttatga	catcatccac	tgatcgtgcg	2940
ttacaagtag	aattctactc	gtaaagccag	ttcggttatg	agccgtgtgc	aaaacatgac	3000
atcagcttat	gactcatact	tgattgtgtt	ttacgcgtag	aattctactc	gtaaagcgag	3060
ttcggttatg	agccgtgtgc	aaaacatgac	atcagcttat	gagtcataat	taatcgtgcg	3120
ttacaagtag	aattctactc	gtaaagcgag	ttgaaggatc	atatttagtt	gcgtttatga	3180
gataagattg	aaagcacgtg	taaaatgttt	cccgcgcgtt	ggcacaacta	tttacaatgc	3240
ggccaagtta	taaaagattc	taatctgata	tgttttaaaa	cacctttgcg	gcccgagttg	3300
tttgcgtacg	tgactagcga	agaagatgtg	tggaccgcag	aacagatagt	aaaacaaaac	3360
cctagtattg	gagcaataat	cgatgagctc	atacggacct	ttaattcaac	ccaacacaat	3420
atattatagt	taaataagaa	ttattatcaa	atcatttgta	tattaattaa	aatactatac	3480
tgtaaattac	attttattta	caatcactcg	ac			3512

<210> 19

<211> 4005 <212> ADN

<213> Secuencia artificial

<220>

<223> Casete de expresión recombinante

10

ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60
gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120
cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180
gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240
gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300
gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360

getteegtet teettettga	ccttcttgag	gttctcggcg	ttgttgttag	aagcgatgtt	420
gtcgtggtac ttgtagttgt	tgaagagcag	gttagcgacg	gacgagtact	tgtatgtcag	480
agtgctcttc ttgttcacga	tgaggttcag	gttatcaacg	acgtacttgt	tgggagggtt	540
gtccgggaat tggacggact	ccgagtactt	gaggatctgg	gaaacgtatg	gcgagacgaa	600
gaagttgtta gaggcggttt	cgatctcgtt	tgattccttg	cggctcagca	tgatgggcaa	660
agtgaagagg ttcttgtcct	ggtacatctc	gtacaacttc	gacaagagga	atccacactt	720
acgetegeeg agtgattgea	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg tagtaagaca	agtaatcgtt	aggttgcttg	tegeagaact	ccgagtatga	1680
gttgtcgaag ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagatgcatt cgcgaggtac	cgagctcgaa	ttcactggcc	gtcgttttac	aacgtcgtga	1980
ctgggaaaac cctggcgtta	cccaacttaa	tegeettgea	gcacatcccc	ctttcgccag	2040
ctgctagcac catggctcga	gcgtggagtt	aactcgatgt	gagttcaact	gtactcttac	2100
cgagaatgca ccccttttta	tagcgctctg	aaaagagact	gagaatactt	tattttctac	2160
aatcgtataa aatcctagtg	atggttacgg	taatctttct	tcatgggaag	ctaaagatat	2220
tcgatagtta tgcttttggt	ttctgtttgg	gtgaaactta	tgatcagatt	atgatgaaac	2280

ttaaacttgc aagtaatatt	tgagtttaaa	ctatttttaa	tataatcacc	taatatgtta	2340
tgacgtcaat aggcaggaca	ttgacccgac	gcgtccactc	attaaaaata	ttattacacc	2400
ttatataaaa tccatgatat	cgttttggtg	ttaaaccatt	acgtattaac	cataacctac	2460
cccaatgtaa ccttcagtca	ccctaatcga	tgtttttgta	tacatcgatg	ttgaccccaa	2520
caaaagattt ataattaatc	ataatcacga	acaacaacaa	gtcaatgaaa	caaataaaca	2580
agttgtcgat aaaacattca	taaatgacac	agcaacatac	aattcttgca	taataaaaat	2640
ttaaatgaca tcatatttga	gaataacaaa	tgacattatc	cctcgattgt	gttttacaag	2700
tagaattcta cccgtaaagc	gagtttagtt	ttgaaaaaca	aatgacatca	tttgtataat	2760
gacatcatcc cctgattgtg	ttttacaagt	agaattctat	ccgtaaagcg	agttcagttt	2820
tgaaaacaaa tgagtcatac	ctaaacacgt	taataatctt	ctgatatcag	cttatgactc	2880
aagttatgag ccgtgtgcaa	aacatgagat	aagtttatga	catcatccac	tgatcgtgcg	2940
ttacaagtag aattctactc	gtaaagccag	ttcggttatg	agccgtgtgc	aaaacatgac	3000
atcagcttat gactcatact	tgattgtgtt	ttacgcgtag	aattctactc	gtaaagcgag	3060
ttcggttatg agccgtgtgc	aaaacatgac	atcagcttat	gagtcataat	taatcgtgcg	3120
ttacaagtag aattctactc	gtaaagcgag	ttgaaggatc	atatttagtt	gcgtttatga	3180
gataagattg aaagcacgtg	taaaatgttt	cccgcgcgtt	ggcacaacta	tttacaatgc	3240
ggccaagtta taaaagattc	taatctgata	tgttttaaaa	cacctttgcg	gcccgagttg	3300
tttgcgtacg tgactagcga	agaagatgtg	tggaccgcag	aacagatagt	aaaacaaaac	3360
cctagtattg gagcaataat	cgatgagctc	gtcgacgtag	gcctttgaat	tccgcgcgct	3420
tcggaccggg atccaaaaac	atcgattagg	gtgactgaag	gttacattgg	ggtaggttat	3480
ggttaatacg taatggttta	acaccaaaac	gatatcatgg	attttatata	aggtgtaata	3540
atattttaa tgagtggacg	cgtcgggtca	atgtcctgcc	tattgacgtc	ataacatatt	3600
aggtgattat attaaaaata	gtttaaactc	aaatattact	tgcaagttta	agtttcatca	3660
taatctgatc ataagtttca	cccaaacaga	aaccaaaagc	ataactatcg	aatatcttta	3720
gcttcccatg aagaaagatt	accgtaacca	tcactaggat	tttatacgat	tgtagaaaat	3780
aaagtattct cagtctcttt	tcagagcgct	ataaaaaggg	gtgcattctc	ggtaagagta	3840
cagttgaact cacatcgagt	taactccacg	ctgcagtctc	gagatacgga	cctttaattc	3900
aacccaacac aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3960
taaaatacta tactgtaaat	tacattttat	ttacaatcac	tcgac		4005

<210> 20

5

<211> 3898

<212> ADN

<213> Secuencia artificial

<220> <223> Casete de expresión recombinante

5

<400> 20 60 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 120 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 180 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 480 540 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 660 gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa agtgaagagg ttettgteet ggtacatete gtacaaette gacaagagga atecacaett 720 780 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 840 900 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 960 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac 1020 gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac 1080 gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta 1140 gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa 1200 cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc 1260 cactgtacag atgttagtgt tgtggttgat ggtttgttcc agtgtagcgc atgactggat ggtgctcttc ttgtacttag gtctcaactt gatcttgttg aattgaccca caactccctg 1320 ggagttatcc aggtactcgt ccaacttcct cttggtgcct gtggccgacg gctggttgac 1380 1440 accagcagag tgttcgaagg actcggcgtg gtaagctgag ctaggagagg gttgttcgac 1500 cactggctgt tcgagtgact cgctgtagta ggcagaggac acagcttcct ccaggttgtc agtggtcttg agcagacact ccaccaaatc gttgtcagtg agcgagttaa ctgaggcgag 1560 gaagttgcta gcggcagcgg tttcagagtc ggagatgaca gtatcagctc cgtccggggt 1620 1680 tgggtggttg tagtaagaca agtaatcgtt aggttgcttg tcgcagaact ccgagtatga 1740 gttgtcgaag ctagcacgag agggagtgct ggcagaggtg taggaagcgt tgaagttgat

ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagatgcatt	cgcgaggtac	cgagctcgaa	ttcactggcc	gtcgttttac	aacgtcgtga	1980
ctgggaaaac	cctggcgtta	cccaacttaa	tcgccttgca	gcacatcccc	ctttcgccag	2040
ctgctagcac	catggctcga	gcgtggagtt	aactcgatgt	gagttcaact	gtactcttac	2100
cgagaatgca	cccctttta	tagcgctctg	aaaagagact	gagaatactt	tattttctac	2160
aatcgtataa	aatcctagtg	atggttacgg	taatctttct	tcatgggaag	ctaaagatat	2220
tcgatagtta	tgcttttggt	ttctgtttgg	gtgaaactta	tgatcagatt	atgatgaaac	2280
ttaaacttgc	aagtaatatt	tgagtttaaa	ctattttaa	tataatcacc	taatatgtta	2340
tgacgtcaat	aggcaggaca	ttgacccgac	gcgtccactc	attaaaaata	ttattacacc	2400
ttatataaaa	tccatgatat	cgttttggtg	ttaaaccatt	acgtattaac	cataacctac	2460
cccaatgtaa	ccttcagtca	ccctaatcga	tgtttttgta	tacatcgatg	ttgaccccaa	2520
caaaagattt	ataattaatc	ataatcacga	acaacaacaa	gtcaatgaaa	caaataaaca	2580
agttgtcgat	aaaacattca	taaatgacac	agcaacatac	aattcttgca	taataaaaat	2640
ttaaatgaca	tcatatttga	gaataacaaa	tgacattatc	cctcgattgt	gttttacaag	2700
tagaattcta	cccgtaaagc	gagtttagtt	ttgaaaaaca	aatgacatca	tttgtataat	2760
gacatcatcc	cctgattgtg	ttttacaagt	agaattctat	ccgtaaagcg	agttcagttt	2820
tgaaaacaaa	tgagtcatac	ctaaacacgt	taataatctt	ctgatatcag	cttatgactc	2880
aagttatgag	ccgtgtgcaa	aacatgagat	aagtttatga	catcatccac	tgatcgtgcg	2940
ttacaagtag	aattctactc	gtaaagccag	ttcggttatg	agccgtgtgc	aaaacatgac	3000
atcagcttat	gactcatact	tgattgtgtt	ttacgcgtag	aattctactc	gtaaagcgag	3060
ttcggttatg	agccgtgtgc	aaaacatgac	atcagcttat	gagtcataat	taatcgtgcg	3120
ttacaagtag	aattctactc	gtaaagcgag	ttgaaggatc	atatttagtt	gcgtttatga	3180
gataagattg	aaagcacgtg	taaaatgttt	cccgcgcgtt	ggcacaacta	tttacaatgc	3240
ggccaagtta	taaaagattc	taatctgata	tgttttaaaa	cacctttgcg	gcccgagttg	3300
tttgcgtacg	tgactagcga	agaagatgtg	tggaccgcag	aacagatagt	aaaacaaaac	3360
cctagtattg	gagcaataat	cgatgagctc	gtcgacgtag	gcctttgaat	tccgcgcgct	3420
tcggaccggg	atcggtacca	aattccgttt	tgcgacgatg	cagagttttt	gaacaggctg	3480
ctcaaacaca	tagatccgta	cccgctcagt	cggatgtatt	acaatgcagc	caataccatg	3540
ttttacacga	ctatggaaaa	ctatgccgtg	tccaattgca	agttcaacat	tgaggattac	3600

	aataacatat	ttaaggtgat	ggaaaatatt	aggaaacaca	gcaacaaaaa	ttcaaacgac	3660
	caagacgagt	taaacatata	tttgggagtt	cagtcgtcga	atgcaaagcg	taaaaaatat	3720
	taataaggta	aaaattacag	ctacataaat	tacacaattt	aaactgcagt	ctggagatac	3780
	ggacctttaa	ttcaacccaa	cacaatatat	tatagttaaa	taagaattat	tatcaaatca	3840
	tttgtatatt	aattaaaata	ctatactgta	aattacattt	tatttacaat	cactcgac	3898
5	<210> 21 <211> 881 <212> ADN <213> Virus de l	la polihedrosis nu	ıclear de <i>Autogra</i>	pha californica			
	<400> 21 atcgatgttg	accccaacaa	aagatttata	attaatcata	atcacgaaca	acaacaagtc	60
	aatgaaacaa	ataaacaagt	tgtcgataaa	acattcataa	atgacacagc	aacatacaat	120
	tcttgcataa	taaaaattta	aatgacatca	tatttgagaa	taacaaatga	cattatccct	180
	cgattgtgtt	ttacaagtag	aattctaccc	gtaaagcgag	tttagttttg	aaaaacaaat	240
	gacatcattt	gtataatgac	atcatcccct	gattgtgttt	tacaagtaga	attctatccg	300
	taaagcgagt	tcagttttga	aaacaaatga	gtcataccta	aacacgttaa	taatcttctg	360
	atatcagctt	atgactcaag	ttatgagccg	tgtgcaaaac	atgagataag	tttatgacat	420
	catccactga	tcgtgcgtta	caagtagaat	tctactcgta	aagccagttc	ggttatgagc	480
	cgtgtgcaaa	acatgacatc	agcttatgac	tcatacttga	ttgtgtttta	cgcgtagaat	540
	tctactcgta	aagcgagttc	ggttatgagc	cgtgtgcaaa	acatgacatc	agcttatgag	600
	tcataattaa	tcgtgcgtta	caagtagaat	tctactcgta	aagcgagttg	aaggatcata	660
	tttagttgcg	tttatgagat	aagattgaaa	gcacgtgtaa	aatgtttccc	gcgcgttggc	720
	acaactattt	acaatgcggc	caagttataa	aagattctaa	tctgatatgt	tttaaaacac	780
	ctttgcggcc	cgagttgttt	gcgtacgtga	ctagcgaaga	agatgtgtgg	accgcagaac	840
10	agatagtaaa	acaaaaccct	agtattggag	caataatcga	t		881
15	<210> 22 <211> 2124 <212> ADN <213> Secuenci	a artificial					
10	<220> <223> Construc	to de ADN recom	binante que fusio	ona el ADNc de A	Ac-ie-01 con el pi	romotor polh	
	<400> 22 atcatggaga	taattaaaat	gataaccatc	tcgcaaataa	ataagtattt	tactgttttc	60
	gtaacagttt	tgtaataaaa	aaacctataa	atattccgga	ttattcatac	cgtcccacca	120
20	tcgggcgcgg	atcccggtcc	gaagcgcgcg	gaattcaaag	gcctacgtcg	acgagctcac	180

tagtcgcggc	cgctttcgaa	tctagataga	tctatgatcc	gtacatccag	ccacgtcctg	240
aacgtccaag	aaaacatcat	gacttccaac	tgtgcttcca	gcccctactc	ctgtgaggcc	300
acttcagcct	gcgctgaggc	ccagcaactg	caggtggaca	caggtggcga	taagatcgtg	360
aacaaccagg	tcaccatgac	tcaaatcaac	ttcaacgctt	cctacacctc	tgccagcact	420
ccctctcgtg	ctagcttcga	caactcatac	tcggagttct	gcgacaagca	acctaacgat	480
tacttgtctt	actacaacca	cccaaccccg	gacggagctg	atactgtcat	ctccgactct	540
gaaaccgctg	ccgctagcaa	cttcctcgcc	tcagttaact	cgctcactga	caacgatttg	600
gtggagtgtc	tgctcaagac	cactgacaac	ctggaggaag	ctgtgtcctc	tgcctactac	660
agcgagtcac	tcgaacagcc	agtggtcgaa	caaccctctc	ctagctcagc	ttaccacgcc	720
gagtccttcg	aacactctgc	tggtgtcaac	cagccgtcgg	ccacaggcac	caagaggaag	780
ttggacgagt	acctggataa	ctcccaggga	gttgtgggtc	aattcaacaa	gatcaagttg	840
agacctaagt	acaagaagag	caccatccag	tcatgcgcta	cactggaaca	aaccatcaac	900
cacaacacta	acatctgtac	agtggcttcc	acccaggaga	tcactcacta	cttcacaaac	960
gacttcgccc	cctacctgat	gaggttcgac	gataacgact	acaactcgaa	cagattctcc	1020
gatcacatgt	ctgaaaccgg	ttactacatg	ttcgtcgtta	agaagtccga	ggtgaagcct	1080
ttcgaaatca	tcttcgccaa	gtacgtctct	aacgtggtct	acgagtacac	aaacaactac	1140
tacatggttg	acaaccgtgt	gttcgttgtg	accttcgata	agatccgctt	catgatcagc	1200
tacaacctgg	ttaaggagac	tggcatcgaa	atcccacact	cacaggacgt	ctgcaacgat	1260
gagaccgccg	ctcaaaactg	caagaagtgt	cacttcgtgg	acgtccacca	cacattcaag	1320
gccgctctga	cctcctactt	caacctcgat	atgtactacg	ctcagacaac	cttcgtgacc	1380
ttgctgcaat	cactcggcga	gcgtaagtgt	ggattcctct	tgtcgaagtt	gtacgagatg	1440
taccaggaca	agaacctctt	cactttgccc	atcatgctga	gccgcaagga	atcaaacgag	1500
atcgaaaccg	cctctaacaa	cttcttcgtc	tcgccatacg	tttcccagat	cctcaagtac	1560
tcggagtccg	tccaattccc	ggacaaccct	cccaacaagt	acgtcgttga	taacctgaac	1620
ctcatcgtga	acaagaagag	cactctgaca	tacaagtact	cgtccgtcgc	taacctgctc	1680
ttcaacaact	acaagtacca	cgacaacatc	gcttctaaca	acaacgccga	gaacctcaag	1740
aaggtcaaga	aggaagacgg	aagcatgcac	atcgttgagc	agtacttgac	tcaaaacgtc	1800
gataacgtta	agggtcacaa	cttcatcgtg	ttgtccttca	agaacgagga	aaggctgacc	1860
atcgctaaga	agaacaagga	gttctactgg	atctctggcg	aaatcaagga	cgttgatgtg	1920
agccaggtca	tccaaaagta	caacagattc	aagcaccaca	tgttcgtgat	cggcaaggtc	1980
a a coot cooo	agtgaagtag	actocacaac	aacttootoa	aggtattaga	cttgatcctg	2040

	cagggactgg	tgccactctc	cgacgccatc	acattcgccg	agcaaaagct	caactgcaag	2100
	tacaagaagt	tcgagttcaa	ctaa				2124
5	<210> 23 <211> 911 <212> ADN <213> Secuenci	a artificial					
10	<220> <223> Construct	to de ADN recom	binante que fusio	ona el ADNc de 0	GFP cDNA con e	promotor polh	
10	<400>23 atcatggaga	taattaaaat	gataaccatc	tcgcaaataa	ataagtattt	tactgttttc	60
	gtaacagttt	tgtaataaaa	aaacctataa	atattccgga	ttattcatac	cgtcccacca	120
	tegggegegg	atccaaggcc	actagtgcgg	ccgctctgca	gtctcgagca	tgcggtacca	180
	agcttgaatt	catggtgagc	aagggcgagg	agctgttcac	cggggtggtg	cccatcctgg	240
	tcgagctgga	cggcgacgta	aacggccaca	agttcagcgt	gtccggcgag	ggcgagggcg	300
	atgccaccta	cggcaagctg	accctgaagt	tcatctgcac	caccggcaag	ctgcccgtgc	360
	cctggcccac	cctcgtgacc	accctgacct	acggcgtgca	gtgcttcagc	cgctaccccg	420
	accacatgaa	gcagcacgac	ttcttcaagt	ccgccatgcc	cgaaggctac	gtccaggagc	480
	gcaccatctt	cttcaaggac	gacggcaact	acaagacccg	cgccgaggtg	aagttcgagg	540
	gcgacaccct	ggtgaaccgc	atcgagctga	agggcatcga	cttcaaggag	gacggcaaca	600
	tcctggggca	caagctggag	tacaactaca	acagccacaa	cgtctatatc	atggccgaca	660
	agcagaagaa	cggcatcatg	gtgaacttca	agatccgcca	caacatcgag	gacggcagcg	720
	tgcagctcgc	cgaccactac	cagcagaaca	ccccatcgg	cgacggcccc	gtgctgctgc	780
	ccgacaacca	ctacctgagc	acccagtccg	ccctgagcaa	agaccccaac	gagaagcgcg	840
	atcacatggt	cctgctggag	ttcgtgaccg	ccgccgggat	cactctcggc	atggacgagc	900
	tgtacaagta	a					911
15	<210> 24 <211> 1502 <212> ADN <213> Secuenci	a artificial					
20	<220> <223> hr1pB2(9)p10					
	<400> 24 atcgatgttg	accccaacaa	aagatttata	attaatcata	atcacgaaca	acaacaagtc	60
	aatgaaacaa	ataaacaagt	tgtcgataaa	acattcataa	atgacacagc	aacatacaat	120
	+a++aa>+>>	+	224424244	+ > + + + + + > + > + >	+	astt staaat	100

cgattgtgtt	ttacaagtag	aattctaccc	gtaaagcgag	tttagttttg	aaaaacaaat	240
gacatcattt	gtataatgac	atcatcccct	gattgtgttt	tacaagtaga	attctatccg	300
taaagcgagt	tcagttttga	aaacaaatga	gtcataccta	aacacgttaa	taatcttctg	360
atatcagctt	atgactcaag	ttatgagccg	tgtgcaaaac	atgagataag	tttatgacat	420
catccactga	tcgtgcgtta	caagtagaat	tctactcgta	aagccagttc	ggttatgagc	480
cgtgtgcaaa	acatgacatc	agcttatgac	tcatacttga	ttgtgtttta	cgcgtagaat	540
tctactcgta	aagcgagttc	ggttatgagc	cgtgtgcaaa	acatgacatc	agcttatgag	600
tcataattaa	tcgtgcgtta	caagtagaat	tctactcgta	aagcgagttg	aaggatcata	660
tttagttgcg	tttatgagat	aagattgaaa	gcacgtgtaa	aatgtttccc	gcgcgttggc	720
acaactattt	acaatgcggc	caagttataa	aagattctaa	tctgatatgt	tttaaaacac	780
ctttgcggcc	cgagttgttt	gcgtacgtga	ctagcgaaga	agatgtgtgg	accgcagaac	840
agatagtaaa	acaaaaccct	agtattggag	caataatcga	tgagctcgtc	gacgtaggcc	900
tttgaattcc	gcgcgcttcg	gaccgggatc	caaaaacatc	gattagggtg	actgaaggtt	960
acattggggt	aggttatggt	taatacgtaa	tggtttaaca	ccaaaacgat	atcatggatt	1020
ttatataagg	tgtaataata	tttttaatga	gtggacgcgt	cgggtcaatg	tcctgcctat	1080
tgacgtcata	acatattagg	tgattatatt	aaaaatagtt	taaactcaaa	tattacttgc	1140
aagtttaagt	ttcatcataa	tctgatcata	agtttcaccc	aaacagaaac	caaaagcata	1200
actatcgaat	atctttagct	tcccatgaag	aaagattacc	gtaaccatca	ctaggatttt	1260
atacgattgt	agaaaataaa	gtattctcag	tctcttttca	gagcgctata	aaaaggggtg	1320
cattctcggt	aagagtacag	ttgaactcac	atcgagttaa	ctccacgctg	cagtctcgag	1380
atacggacct	ttaattcaac	ccaacacaat	atattatagt	taaataagaa	ttattatcaa	1440
atcatttgta	tattaattaa	aatactatac	tgtaaattac	attttattta	caatcactcg	1500
ac						1502
<210> 25 <211> 702 <212> ADN <213> Circovirus	s porcino tipo 2					
<400> 25	caaggagggg	tttccgcaga	спаапасасс	acccccacsa	ccatcttggc	60
		ctggctcgtc				120
		ccgcctctcc				180
		_				
		ggcggtggac				240
cccccgggag	gggggaccaa	caaaatctct	ataccctttg	aatactacag	aataagaaag	300

gttaaggttg	aattctggcc	ctgctcccca	atcacccagg	gtgacagggg	agtgggctcc	360
actgctgtta	ttctagatga	taactttgta	acaaaggcca	cagccctaac	ctatgacccc	420
tatgtaaact	actcctcccg	ccatacaatc	ccccaaccct	tctcctacca	ctcccgttac	480
ttcacaccca	aacctgtact	ggatagaact	attgattact	tccagccaaa	caacaaaaaa	540
aatcagcttt	ggctgaggct	acaaacctct	gcaaatgtag	accacgtagg	cctcggcact	600
gcgttcgaaa	acagtaaata	cgaccaggac	tacaatatcc	gtgtaaccat	gtatgtacaa	660
ttcagagaat	ttaatcttaa	agacccccca	cttaaaccct	aa		702
<210> 26 <211> 233 <212> PRT <213> Circovirus	s porcino tipo 2					
:400>26 Met Thr Tyr Pro Arg Arg Arg Phe Arg Arg Arg Arg His Arg Pro Arg						

1 5 10 15

5

Ser His Leu Gly Gln Ile Leu Arg Arg Pro Trp Leu Val His Pro 20 25 30

Arg His Arg Tyr Arg Trp Arg Lys Asn Gly Ile Phe Asn Thr Arg 35 40 45

Leu Ser Arg Thr Phe Gly Tyr Thr Val Lys Ala Thr Thr Val Thr Thr 50 60

Pro Ser Trp Ala Val Asp Met Met Arg Phe Asn Ile Asn Asp Phe Val 65 70 75 80

Pro Pro Gly Gly Gly Thr Asn Lys Ile Ser Ile Pro Phe Glu Tyr Tyr 85 90 95

Arg Ile Arg Lys Val Lys Val Glu Phe Trp Pro Cys Ser Pro Ile Thr 100 105 110

Gln Gly Asp Arg Gly Val Gly Ser Thr Ala Val Ile Leu Asp Asp Asn 115 120 125

Phe Val Thr Lys Ala Thr Ala Leu Thr Tyr Asp Pro Tyr Val Asn Tyr 130 135 140

Ser Ser Arg His Thr Ile Pro Gln Pro Phe Ser Tyr His Ser Arg Tyr 145 150 155 160

Phe Thr Pro Lys Pro Val Leu Asp Arg Thr Ile Asp Tyr Phe Gln Pro

165	170	175

Asn Asn Lys Lys Asn Gln Leu Trp Leu Arg Leu Gln Thr Ser Ala Asn 180 185 190

Val Asp His Val Gly Leu Gly Thr Ala Phe Glu Asn Ser Lys Tyr Asp 195 200 205

Gln Asp Tyr Asn Ile Arg Val Thr Met Tyr Val Gln Phe Arg Glu Phe 210 215 220

Asn Leu Lys Asp Pro Pro Leu Lys Pro 225 230

<210> 27

<211> 4550

<212> ADN

<213> Secuencia artificial

<220>

<223> polhAc-ie-01/hrp6.9p10Cap-p10

10

<400> 27 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 120 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 240 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 300 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 360 gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 480 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 540 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 600 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 660 gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 720 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag 780 gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 840 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat 900 gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac 960 gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac 1020 1080 gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta

gtaaccggtt	tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg	tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag	atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980
cttcggaccg	ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940

acatatattt gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	3060
aacccaacac aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3120
taaaatacta tactgtaaat	tacattttat	ttacaatcac	tcgacctcga	gatgacgtat	3180
ccaaggaggc gtttccgcag	acgaagacac	cgcccccgca	gccatcttgg	ccagateete	3240
cgccgccgcc cctggctcgt	ccacccccgc	caccgttacc	gctggagaag	gaaaaatggc	3300
atcttcaaca cccgcctctc	ccgcaccttc	ggatatactg	tcaaggctac	cacagtcaca	3360
acgccctcct gggcggtgga	catgatgaga	tttaatatta	acgactttgt	tcccccggga	3420
ggggggacca acaaaatctc	tatacccttt	gaatactaca	gaataagaaa	ggttaaggtt	3480
gaattetgge eetgeteeee	aatcacccag	ggtgacaggg	gagtgggctc	cactgctgtt	3540
attctagatg ataactttgt	aacaaaggcc	acagccctaa	cctatgaccc	ctatgtaaac	3600
tactcctccc gccatacaat	cccccaaccc	ttctcctacc	actcccgtta	cttcacaccc	3660
aaacctgtac tggatagaac	tattgattac	ttccagccaa	acaacaaaaa	aaatcagctt	3720
tggctgaggc tacaaacctc	tgcaaatgta	gaccacgtag	gcctcggcac	tgcgttcgaa	3780
aacagtaaat acgaccagga	ctacaatatc	cgtgtaacca	tgtatgtaca	attcagagaa	3840
tttaatctta aagacccccc	acttaaaccc	taaccatgga	agcttatgaa	tcgtttttaa	3900
aataacaaat caattgtttt	ataatattcg	tacgattctt	tgattatgta	ataaaatgtg	3960
atcattagga agattacgaa	aaatataaaa	aatatgagtt	ctgtgtgtat	aacaaatgct	4020
gtaaacgcca caattgtgtt	tgttgcaaat	aaacccatga	ttatttgatt	aaaattgttg	4080
ttttctttgt tcatagacaa	tagtgtgttt	tgcctaaacg	tgtactgcat	aaactccatg	4140
cgagtgtata gcgagctagt	ggctaacgct	tgccccacca	aagtagattc	gtcaaaatcc	4200
tcaatttcat caccctcctc	caagtttaac	atttggccgt	cggaattaac	ttctaaagat	4260
gccacataat ctaataaatg	aaatagagat	tcaaacgtgg	cgtcatcgtc	cgtttcgacc	4320
atttccgaaa agaactcggg	cataaactct	atgatttctc	tggacgtggt	gttgtcgaaa	4380
ctctcaaagt acgcagtcag	gaacgtgcgc	gacatgtcgt	cgggaaactc	gcgcggaaac	4440
atgttgttgt aaccgaacgg	gtcccatagc	gccaaaacca	aatctgccag	cgtcaataga	4500
atgagcacga tgccgacaat	ggagctggct	tggatagcga	ttcgagttaa		4550

<210> 28

10

<211> 836 <212> ADN 5

<213> Secuencia artificial

<220>

<223> polhCap

<400> 28						
	taattaaaat	gataaccatc	tcgcaaataa	ataagtattt	tactgttttc	60
gtaacagttt	tgtaataaaa	aaacctataa	atattccgga	ttattcatac	cgtcccacca	120
tcgggcgcgg	atccatgacg	tatccaagga	ggcgtttccg	cagacgaaga	caccgccccc	180
gcagccatct	tggccagatc	ctccgccgcc	gcccctggct	cgtccacccc	cgccaccgtt	240
accgctggag	aaggaaaaat	ggcatcttca	acacccgcct	ctcccgcacc	ttcggatata	300
ctgtcaaggc	taccacagtc	acaacgccct	cctgggcggt	ggacatgatg	agatttaata	360
ttaacgactt	tgttcccccg	ggaggggga	ccaacaaaat	ctctataccc	tttgaatact	420
acagaataag	aaaggttaag	gttgaattct	ggccctgctc	cccaatcacc	cagggtgaca	480
ggggagtggg	ctccactgct	gttattctag	atgataactt	tgtaacaaag	gccacagccc	540
taacctatga	cccctatgta	aactactcct	cccgccatac	aatcccccaa	cccttctcct	600
accactcccg	ttacttcaca	cccaaacctg	tactggatag	aactattgat	tacttccagc	660
caaacaacaa	aaaaaatcag	ctttggctga	ggctacaaac	ctctgcaaat	gtagaccacg	720
taggcctcgg	cactgcgttc	gaaaacagta	aatacgacca	ggactacaat	atccgtgtaa	780
ccatgtatgt	acaattcaga	gaatttaatc	ttaaagaccc	cccacttaaa	ccctaa	836
<210> 20						

5 <211> 38

<211> 3873 <212> ADN

<213> Secuencia artificial

<220>

10 <223> polhAc-ie-01/hr1p6.9p10Cap

<400> 29 60 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 120 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 180 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 240 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 300 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 360 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat 420 getteegtet teettettga eettettgag gtteteggeg ttgttgttag aagegatgtt gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 480 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 540 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 600 gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 660 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 720

acgctcgccg agtgattgca	gcaaggtcac	gaaggttgtc	tgagcgtagt	acatatcgag	780
gttgaagtag gaggtcagag	cggccttgaa	tgtgtggtgg	acgtccacga	agtgacactt	840
cttgcagttt tgagcggcgg	tctcatcgtt	gcagacgtcc	tgtgagtgtg	ggatttcgat	900
gccagtctcc ttaaccaggt	tgtagctgat	catgaagcgg	atcttatcga	aggtcacaac	960
gaacacacgg ttgtcaacca	tgtagtagtt	gtttgtgtac	tcgtagacca	cgttagagac	1020
gtacttggcg aagatgattt	cgaaaggctt	cacctcggac	ttcttaacga	cgaacatgta	1080
gtaaccggtt tcagacatgt	gatcggagaa	tctgttcgag	ttgtagtcgt	tatcgtcgaa	1140
cctcatcagg tagggggcga	agtcgtttgt	gaagtagtga	gtgatctcct	gggtggaagc	1200
cactgtacag atgttagtgt	tgtggttgat	ggtttgttcc	agtgtagcgc	atgactggat	1260
ggtgctcttc ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattegaa ageggeegeg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980
cttcggaccg ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata agtttatgac	atcatccact	gatcgtgcgt	tacaagtaga	attctactcg	2400
taaagccagt tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt tgaaggatca	tatttagttg	catttataaa	ataagattga	aagcacgtgt	2640

aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940
acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	3060
aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3120
taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgacctcga	gatgacgtat	3180
ccaaggaggc	gtttccgcag	acgaagacac	cgccccgca	gccatcttgg	ccagatcctc	3240
cgccgccgcc	cctggctcgt	ccacccccgc	caccgttacc	gctggagaag	gaaaaatggc	3300
atcttcaaca	cccgcctctc	ccgcaccttc	ggatatactg	tcaaggctac	cacagtcaca	3360
acgccctcct	gggcggtgga	catgatgaga	tttaatatta	acgactttgt	tcccccggga	3420
ggggggacca	acaaaatctc	tatacccttt	gaatactaca	gaataagaaa	ggttaaggtt	3480
gaattctggc	cctgctcccc	aatcacccag	ggtgacaggg	gagtgggctc	cactgctgtt	3540
attctagatg	ataactttgt	aacaaaggcc	acagccctaa	cctatgaccc	ctatgtaaac	3600
tactcctccc	gccatacaat	ccccaaccc	ttctcctacc	actcccgtta	cttcacaccc	3660
aaacctgtac	tggatagaac	tattgattac	ttccagccaa	acaacaaaaa	aaatcagctt	3720
tggctgaggc	tacaaacctc	tgcaaatgta	gaccacgtag	gcctcggcac	tgcgttcgaa	3780
aacagtaaat	acgaccagga	ctacaatatc	cgtgtaacca	tgtatgtaca	attcagagaa	3840
tttaatctta	aagacccccc	acttaaaccc	taa			3873
<210> 30 <211> 1632 <212> ADN <213> Cepa PR	8 del virus de la ç	gripe				
<400> 30 atgaaattct	tagtcaacgt	tgcccttgtt	tttatggtcg	tatacatttc	ttacatctat	60

5

gcggatcctg acacaatatg tataggctac catgcgaaca attcaaccga cactgttgac 120 acagtactcg agaagaatgt gacagtgaca cactctgtta acctgctcga agacagccac 180 aacggaaaac tatgtagatt aaaaggaata gccccactac aattggggaa atgtaacatc 240 300 gccggatggc tcttgggaaa cccagaatgc gacccactgc ttccagtgag atcatggtcc tacattgtag aaacaccaaa ctctgagaat ggaatatgtt atccaggaga tttcatcgac 360 tatgaggagc tgagggagca attgagctca gtgtcatcat tcgaaagatt cgaaatattt 420

480

120

180

240

300

cccaaagaaa gctcatggcc caaccacaac acaaacggag taacggcagc atgctcccat

gaggggaaaa	gcagttttta	cagaaatttg	ctatggctga	cggagaagga	gggctcatac	540
ccaaagctga	aaaattctta	tgtgaacaaa	aaagggaaag	aagtccttgt	actgtggggt	600
attcatcacc	cgcctaacag	taaggaacaa	cagaatctct	atcagaatga	aaatgcttat	660
gtctctgtag	tgacttcaaa	ttataacagg	agatttaccc	cggaaatagc	agaaagaccc	720
aaagtaagag	atcaagctgg	gaggatgaac	tattactgga	ccttgctaaa	acccggagac	780
acaataatat	ttgaggcaaa	tggaaatcta	atagcaccaa	tgtatgcttt	cgcactgagt	840
agaggctttg	ggtccggcat	catcacctca	aacgcatcaa	tgcatgagtg	taacacgaag	900
tgtcaaacac	ccctgggagc	tataaacagc	agtctccctt	accagaatat	acacccagtc	960
acaataggag	agtgcccaaa	atacgtcagg	agtgccaaat	tgaggatggt	tacaggacta	1020
aggaacactc	cgtccattca	atccagaggt	ctatttggag	ccattgccgg	ttttattgaa	1080
gggggatgga	ctggaatgat	agatggatgg	tatggttatc	atcatcagaa	tgaacaggga	1140
tcaggctatg	cagcggatca	aaaaagcaca	caaaatgcca	ttaacgggat	tacaaacaag	1200
gtgaacactg	ttatcgagaa	aatgaacatt	caattcacag	ctgtgggtaa	agaattcaac	1260
aaattagaaa	aaaggatgga	aaatttaaat	aaaaaagttg	atgatggatt	tctggacatt	1320
tggacatata	atgcagaatt	gttagttcta	ctggaaaatg	aaaggactct	ggatttccat	1380
gactcaaatg	tgaagaatct	gtatgagaaa	gtaaaaagcc	aattaaagaa	taatgccaaa	1440
gaaatcggaa	atggatgttt	tgagttctac	cacaagtgtg	acaatgaatg	catggaaagt	1500
gtaagaaatg	ggacttatga	ttatcccaaa	tattcagaag	agtcaaagtt	gaacagggaa	1560
aaggtagatg	gagtgaaatt	ggaatcaatg	gggatctatc	agatttctag	acatcaccac	1620
caccatcact	aa					1632
<210> 31 <211> 10273 <212> ADN <213> Secuenci	a artificial					
<220> <223> polhAc-ie	-01/hr1p6.9p10M	1elHA				
<400> 31 ttctctgtca	cagaatgaaa	atttttctgt	catctcttcg	ttattaatgt	ttgtaattga	60

5

10

ctgaatatca acgcttattt gcagcctgaa tggcgaatgg gacgcgccct gtagcggcgc

attaagcgcg gcgggtgtgg tggttacgcg cagcgtgacc gctacacttg ccagcgccct

agegeeeget cetttegett tetteeette etttetegee aegttegeeg gettteeeeg

tcaagctcta aatcgggggc tccctttagg gttccgattt agtgctttac ggcacctcga

ccccaaaaaa cttgattagg	gtgatggttc	acgtagtggg	ccatcgccct	gatagacggt	360
ttttcgccct ttgacgttgg	agtccacgtt	ctttaatagt	ggactcttgt	tccaaactgg	420
aacaacactc aaccctatct	cggtctattc	ttttgattta	taagggattt	tgccgatttc	480
ggcctattgg ttaaaaaatg	agctgattta	acaaaaattt	aacgcgaatt	ttaacaaaat	540
attaacgttt acaatttcag	gtggcacttt	tcggggaaat	gtgcgcggaa	cccctatttg	600
tttatttttc taaatacatt	caaatatgta	tccgctcatg	agacaataac	cctgataaat	660
gcttcaataa tattgaaaaa	ggaagagtat	gagtattcaa	catttccgtg	tcgcccttat	720
tccctttttt gcggcatttt	gccttcctgt	ttttgctcac	ccagaaacgc	tggtgaaagt	780
aaaagatgct gaagatcagt	tgggtgcacg	agtgggttac	atcgaactgg	atctcaacag	840
cggtaagatc cttgagagtt	ttcgccccga	agaacgtttt	ccaatgatga	gcacttttaa	900
agttctgcta tgtggcgcgg	tattatcccg	tattgacgcc	gggcaagagc	aactcggtcg	960
ccgcatacac tattctcaga	atgacttggt	tgagtactca	ccagtcacag	aaaagcatct	1020
tacggatggc atgacagtaa	gagaattatg	cagtgctgcc	ataaccatga	gtgataacac	1080
tgcggccaac ttacttctga	caacgatcgg	aggaccgaag	gagctaaccg	cttttttgca	1140
caacatgggg gatcatgtaa	ctcgccttga	tcgttgggaa	ccggagctga	atgaagccat	1200
accaaacgac gagcgtgaca	ccacgatgcc	tgtagcaatg	gcaacaacgt	tgcgcaaact	1260
attaactggc gaactactta	ctctagcttc	ccggcaacaa	ttaatagact	ggatggaggc	1320
ggataaagtt gcaggaccac	ttctgcgctc	ggcccttccg	gctggctggt	ttattgctga	1380
taaatctgga gccggtgagc	gtgggtctcg	cggtatcatt	gcagcactgg	ggccagatgg	1440
taagccctcc cgtatcgtag	ttatctacac	gacggggagt	caggcaacta	tggatgaacg	1500
aaatagacag atcgctgaga	taggtgcctc	actgattaag	cattggtaac	tgtcagacca	1560
agtttactca tatatacttt	agattgattt	aaaacttcat	ttttaattta	aaaggatcta	1620
ggtgaagatc ctttttgata	atctcatgac	caaaatccct	taacgtgagt	tttcgttcca	1680
ctgagcgtca gaccccgtag	aaaagatcaa	aggatettet	tgagatcctt	tttttctgcg	1740
cgtaatctgc tgcttgcaaa	caaaaaaacc	accgctacca	gcggtggttt	gtttgccgga	1800
tcaagagcta ccaactcttt	ttccgaaggt	aactggcttc	agcagagcgc	agataccaaa	1860
tactgtcctt ctagtgtagc	cgtagttagg	ccaccacttc	aagaactctg	tagcaccgcc	1920
tacatacctc gctctgctaa	tcctgttacc	agtggctgct	gccagtggcg	ataagtcgtg	1980
tcttaccggg ttggactcaa	gacgatagtt	accggataag	gcgcagcggt	cgggctgaac	2040
ggggggttcg tgcacacagc	ccagcttgga	gcgaacgacc	tacaccgaac	tgagatacct	2100
acagcgtgag cattgagaaa	gcgccacgct	tcccgaaggg	agaaaggcgg	acaggtatcc	2160
ggtaagcggc agggtcggaa	caggagagcg	cacgagggag	cttccagggg	gaaacgcctg	2220

gtatctttat	agtcctgtcg	ggtttcgcca	cctctgactt	gagcgtcgat	ttttgtgatg	2280
ctcgtcaggg	gggcggagcc	tatggaaaaa	cgccagcaac	gcggcctttt	tacggttcct	2340
ggccttttgc	tggccttttg	ctcacatgtt	ctttcctgcg	ttatcccctg	attctgtgga	2400
taaccgtatt	accgcctttg	agtgagctga	taccgctcgc	cgcagccgaa	cgaccgagcg	2460
cagcgagtca	gtgagcgagg	aagcggaaga	gcgcctgatg	cggtattttc	tccttacgca	2520
tctgtgcggt	atttcacacc	gcagaccagc	cgcgtaacct	ggcaaaatcg	gttacggttg	2580
agtaataaat	ggatgccctg	cgtaagcggg	tgtgggcgga	caataaagtc	ttaaactgaa	2640
caaaatagat	ctaaactatg	acaataaagt	cttaaactag	acagaatagt	tgtaaactga	2700
aatcagtcca	gttatgctgt	gaaaaagcat	actggacttt	tgttatggct	aaagcaaact	2760
cttcattttc	tgaagtgcaa	attgcccgtc	gtattaaaga	ggggcgtggc	caagggcatg	2820
gtaaagacta	tattcgcggc	gttgtgacaa	tttaccgaac	aactccgcgg	ccgggaagcc	2880
gatctcggct	tgaacgaatt	gttaggtggc	ggtacttggg	tcgatatcaa	agtgcatcac	2940
ttcttcccgt	atgcccaact	ttgtatagag	agccactgcg	ggatcgtcac	cgtaatctgc	3000
ttgcacgtag	atcacataag	caccaagcgc	gttggcctca	tgcttgagga	gattgatgag	3060
cgcggtggca	atgccctgcc	tccggtgctc	gccggagact	gcgagatcat	agatatagat	3120
ctcactacgc	ggctgctcaa	acctgggcag	aacgtaagcc	gcgagagcgc	caacaaccgc	3180
ttcttggtcg	aaggcagcaa	gcgcgatgaa	tgtcttacta	cggagcaagt	tcccgaggta	3240
atcggagtcc	ggctgatgtt	gggagtaggt	ggctacgtct	ccgaactcac	gaccgaaaag	3300
atcaagagca	gcccgcatgg	atttgacttg	gtcagggccg	agcctacatg	tgcgaatgat	3360
gcccatactt	gagccaccta	actttgtttt	agggcgactg	ccctgctgcg	taacatcgtt	3420
gctgctgcgt	aacatcgttg	ctgctccata	acatcaaaca	tcgacccacg	gcgtaacgcg	3480
cttgctgctt	ggatgcccga	ggcatagact	gtacaaaaaa	acagtcataa	caagccatga	3540
aaaccgccac	tgcgccgtta	ccaccgctgc	gttcggtcaa	ggttctggac	cagttgcgtg	3600
agcgcatacg	ctacttgcat	tacagtttac	gaaccgaaca	ggcttatgtc	aactgggttc	3660
gtgccttcat	ccgtttccac	ggtgtgcgtc	acccggcaac	cttgggcagc	agcgaagtcg	3720
aggcatttct	gtcctggctg	gcgaacgagc	gcaaggtttc	ggtctccacg	catcgtcagg	3780
cattggcggc	cttgctgttc	ttctacggca	aggtgctgtg	cacggatctg	ccctggcttc	3840
aggagatcgg	tagacctcgg	ccgtcgcggc	gcttgccggt	ggtgctgacc	ccggatgaag	3900
tggttcgcat	cctcggtttt	ctggaaggcg	agcatcgttt	gttcgcccag	gactctagct	3960
atagttctag	tggttggcct	acgtacccgt	agtggctatg	gcagggcttg	ccgccccgac	4020
gttggctgcg	agccctgggc	cttcacccga	acttgggggt	tggggtgggg	aaaaggaaga	4080

aacgcgggcg	tattggtccc	aatggggtct	cggtggggta	tcgacagagt	gccagccctg	4140
ggaccgaacc	ccgcgtttat	gaacaaacga	cccaacaccc	gtgcgtttta	ttctgtcttt	4200
ttattgccgt	catagcgcgg	gttccttccg	gtattgtctc	cttccgtgtt	tcagttagcc	4260
tcccccatct	cccggtaccg	catgctatgc	atcagctggc	acgacaggtt	tcccgactgg	4320
aaagcgggca	gtgagcgcaa	cgcaattaat	gtgagttagc	tcactcatta	ggcaccccag	4380
gctttacact	ttatgcttcc	ggctcgtatg	ttgtgtggaa	ttgtgagcgg	ataacaattt	4440
cacacaggaa	acagctatga	ccatgattac	gccaagcttg	catgcaggcc	tctgcagtcg	4500
acgggcccgg	gatccgatga	cccaatacta	gtttagttga	actcgaactt	cttgtacttg	4560
cagttgagct	tttgctcggc	gaatgtgatg	gcgtcggaga	gtggcaccag	tccctgcagg	4620
atcaaggcca	agagcttcag	caagttgttg	tgcagtgtag	ttgactcgcg	acggttgacc	4680
ttgccgatca	cgaacatgtg	gtgcttgaat	ctgttgtact	tttggatgac	ctggctcaca	4740
tcaacgtcct	tgatttcgcc	agagatccag	tagaactcct	tgttcttctt	agcgatggtc	4800
agcctttcct	cgttcttgaa	ggacaacacg	atgaagttgt	gacccttaac	gttatcgacg	4860
ttttgagtca	agtactgctc	aacgatgtgc	atgcttccgt	cttccttctt	gaccttcttg	4920
aggttctcgg	cgttgttgtt	agaagcgatg	ttgtcgtggt	acttgtagtt	gttgaagagc	4980
aggttagcga	cggacgagta	cttgtatgtc	agagtgctct	tcttgttcac	gatgaggttc	5040
aggttatcaa	cgacgtactt	gttgggaggg	ttgtccggga	attggacgga	ctccgagtac	5100
ttgaggatct	gggaaacgta	tggcgagacg	aagaagttgt	tagaggcggt	ttcgatctcg	5160
tttgattcct	tgcggctcag	catgatgggc	aaagtgaaga	ggttcttgtc	ctggtacatc	5220
tcgtacaact	tcgacaagag	gaatccacac	ttacgctcgc	cgagtgattg	cagcaaggtc	5280
acgaaggttg	tctgagcgta	gtacatatcg	aggttgaagt	aggaggtcag	agcggccttg	5340
aatgtgtggt	ggacgtccac	gaagtgacac	ttcttgcagt	tttgagcggc	ggtctcatcg	5400
ttgcagacgt	cctgtgagtg	tgggatttcg	atgccagtct	ccttaaccag	gttgtagctg	5 4 60
atcatgaagc	ggatcttatc	gaaggtcaca	acgaacacac	ggttgtcaac	catgtagtag	5520
ttgtttgtgt	actcgtagac	cacgttagag	acgtacttgg	cgaagatgat	ttcgaaaggc	5580
ttcacctcgg	acttcttaac	gacgaacatg	tagtaaccgg	tttcagacat	gtgatcggag	5640
aatctgttcg	agttgtagtc	gttatcgtcg	aacctcatca	ggtagggggc	gaagtcgttt	5700
gtgaagtagt	gagtgatctc	ctgggtggaa	gccactgtac	agatgttagt	gttgtggttg	5760
atggtttgtt	ccagtgtagc	gcatgactgg	atggtgctct	tcttgtactt	aggtctcaac	5820
ttgatcttgt	tgaattgacc	cacaactccc	tgggagttat	ccaggtactc	gtccaacttc	5880
ctcttggtgc	ctgtggccga	cggctggttg	acaccagcag	agtgttcgaa	ggactcggcg	5940
tggtaagctg	agctaggaga	gggttgttcg	accactggct	gttcgagtga	ctcgctgtag	6000

taggcagagg	acacagcttc	ctccaggttg	tcagtggtct	tgagcagaca	ctccaccaaa	6060
tcgttgtcag	tgagcgagtt	aactgaggcg	aggaagttgc	tagcggcagc	ggtttcagag	6120
toggagatga	cagtatcagc	teegteeggg	gttgggtggt	tgtagtaaga	caagtaatcg	6180
ttaggttgct	tgtcgcagaa	ctccgagtat	gagttgtcga	agctagcacg	agagggagtg	6240
ctggcagagg	tgtaggaagc	gttgaagttg	atttgagtca	tggtgacctg	gttgttcacg	6300
atcttatcgc	cacctgtgtc	cacctgcagt	tgctgggcct	cagcgcaggc	tgaagtggcc	6360
tcacaggagt	aggggctgga	agcacagttg	gaagtcatga	tgttttcttg	gacgttcagg	6420
acgtggctgg	atgtacggat	catagatcta	tctagattcg	aaagcggccg	cgactagtga	6480
gctcgtcgac	gtaggccttt	gaattccgcg	cgcttcggac	cgggatccgc	gcccgatggt	6540
gggacggtat	gaataatccg	gaatatttat	aggtttttt	attacaaaac	tgttacgaaa	6600
acagtaaaat	acttatttat	ttgcgagatg	gttatcattt	taattatctc	catgatctat	6660
taatattccg	gagtatacct	acccgtaaag	cgagtttagt	tttgaaaaac	aaatgacatc	6720
atttgtataa	tgacatcatc	ccctgattgt	gttttacaag	tagaattcta	tccgtaaagc	6780
gagttcagtt	ttgaaaacaa	atgagtcata	cctaaacacg	ttaataatct	tctgatatca	6840
gcttatgact	caagttatga	gccgtgtgca	aaacatgaga	taagtttatg	acatcatcca	6900
ctgatcgtgc	gttacaagta	gaattctact	cgtaaagcca	gttcggttat	gagccgtgtg	6960
caaaacatga	catcagctta	tgactcatac	ttgattgtgt	tttacgcgta	gaattctact	7020
cgtaaagcga	gttcggttat	gagccgtgtg	caaaacatga	catcagctta	tgagtcataa	7080
ttaatcgtgc	gttacaagta	gaattctact	cgtaaagcga	gttgaaggat	catatttagt	7140
tgcgtttatg	agataagatt	gaaagcacgt	gtaaaatgtt	tccgagctcg	tcgacgtagg	7200
cctttgaatt	ccgcgcgctt	cggaccggga	tcggtaccaa	attccgtttt	gcgacgatgc	7260
agagtttttg	aacaggctgc	tcaaacacat	agatccgtac	ccgctcagtc	ggatgtatta	7320
caatgcagcc	aataccatgt	tttacacgac	tatggaaaac	tatgccgtgt	ccaattgcaa	7380
gttcaacatt	gaggattaca	ataacatatt	taaggtgatg	gaaaatatta	ggaaacacag	7440
caacaaaaat	tcaaacgacc	aagacgagtt	aaacatatat	ttgggagttc	agtcgtcgaa	7500
tgcaaagcgt	aaaaaatatt	aataaggtaa	aaattacagc	tacataaatt	acacaattta	7560
aactgcagtc	tggagatacg	gacctttaat	tcaacccaac	acaatatatt	atagttaaat	7620
aagaattatt	atcaaatcat	ttgtatatta	attaaaatac	tatactgtaa	attacatttt	7680
atttacaatc	actcgacctc	gacatgaaat	tcttagtcaa	cgttgccctt	gtttttatgg	7740
tcgtatacat	ttcttacatc	tatgcggatc	ctgacacaat	atgtataggc	taccatgcga	7800
acaattcaac	cgacactgtt	gacacagtac	tcgagaagaa	tgtgacagtg	acacactctg	7860

ttaacctgct cgaagacagc	cacaacggaa	aactatgtag	attaaaagga	atagccccac	7920
tacaattggg gaaatgtaac	atcgccggat	ggctcttggg	aaacccagaa	tgcgacccac	7980
tgcttccagt gagatcatgg	tcctacattg	tagaaacacc	aaactctgag	aatggaatat	8040
gttatccagg agatttcatc	gactatgagg	agctgaggga	gcaattgagc	tcagtgtcat	8100
cattcgaaag attcgaaata	tttcccaaag	aaagctcatg	gcccaaccac	aacacaaacg	8160
gagtaacggc agcatgctcc	catgagggga	aaagcagttt	ttacagaaat	ttgctatggc	8220
tgacggagaa ggagggctca	tacccaaagc	tgaaaaattc	ttatgtgaac	aaaaaaggga	8280
aagaagteet tgtaetgtgg	ggtattcatc	acccgcctaa	cagtaaggaa	caacagaatc	8340
tctatcagaa tgaaaatgct	tatgtctctg	tagtgacttc	aaattataac	aggagattta	8400
ccccggaaat agcagaaaga	cccaaagtaa	gagatcaagc	tgggaggatg	aactattact	8460
ggaccttgct aaaacccgga	gacacaataa	tatttgaggc	aaatggaaat	ctaatagcac	8520
caatgtatgc tttcgcactg	agtagaggct	ttgggtccgg	catcatcacc	tcaaacgcat	8580
caatgcatga gtgtaacacg	aagtgtcaaa	cacccctggg	agctataaac	agcagtctcc	8640
cttaccagaa tatacaccca	gtcacaatag	gagagtgccc	aaaatacgtc	aggagtgcca	8700
aattgaggat ggttacagga	ctaaggaaca	ctccgtccat	tcaatccaga	ggtctatttg	8760
gagccattgc cggttttatt	gaagggggat	ggactggaat	gatagatgga	tggtatggtt	8820
atcatcatca gaatgaacag	ggatcaggct	atgcagcgga	tcaaaaaagc	acacaaaatg	8880
ccattaacgg gattacaaac	aaggtgaaca	ctgttatcga	gaaaatgaac		8940
ccattaacgg gattacaaac				attcaattca	89 4 0 9000
	aacaaattag	aaaaaaggat	ggaaaattta	attcaattca aataaaaaag	
cagctgtggg taaagaattc	aacaaattag	aaaaaaggat ataatgcaga	ggaaaattta attgttagtt	attcaattca aataaaaaag ctactggaaa	9000
cagctgtggg taaagaattc	aacaaattag atttggacat catgactcaa	aaaaaaggat ataatgcaga atgtgaagaa	ggaaaattta attgttagtt tctgtatgag	attcaattca aataaaaaag ctactggaaa aaagtaaaaa	9000 9060
cagctgtggg taaagaattc ttgatgatgg atttctggac atgaaaggac tctggatttc	aacaaattag atttggacat catgactcaa aaagaaatcg	aaaaaaggat ataatgcaga atgtgaagaa gaaatggatg	ggaaaattta attgttagtt tctgtatgag ttttgagttc	attcaattca aataaaaaag ctactggaaa aaagtaaaaa taccacaagt	9000 9060 9120
cagctgtggg taaagaattc ttgatgatgg atttctggac atgaaaggac tctggatttc gccaattaaa gaataatgcc	aacaaattag atttggacat catgactcaa aaagaaatcg agtgtaagaa	aaaaaaggat ataatgcaga atgtgaagaa gaaatggatg atgggactta	ggaaaattta attgttagtt tctgtatgag ttttgagttc tgattatccc	attcaattca aataaaaaag ctactggaaa aaagtaaaaa taccacaagt aaatattcag	9000 9060 9120 9180
cagctgtggg taaagaattc ttgatgatgg atttctggac atgaaaggac tctggatttc gccaattaaa gaataatgcc gtgacaatga atgcatggaa	aacaaattag atttggacat catgactcaa aaagaaatcg agtgtaagaa gaaaaggtag	aaaaaaggat ataatgcaga atgtgaagaa gaaatggatg atgggactta atggagtgaa	ggaaaattta attgttagtt tctgtatgag ttttgagttc tgattatccc attggaatca	attcaattca aataaaaaag ctactggaaa aaagtaaaaa taccacaagt aaatattcag atggggatct	9000 9060 9120 9180 9240
cagctgtggg taaagaattc ttgatgatgg atttctggac atgaaaggac tctggatttc gccaattaaa gaataatgcc gtgacaatga atgcatggaa aagagtcaaa gttgaacagg	aacaaattag atttggacat catgactcaa aaagaaatcg agtgtaagaa gaaaaggtag caccaccatc	aaaaaaggat ataatgcaga atgtgaagaa gaaatggatg atgggactta atggagtgaa actaaccatg	ggaaaattta attgttagtt tctgtatgag ttttgagttc tgattatccc attggaatca gaagcttatg	attcaattca aataaaaaag ctactggaaa aaagtaaaaa taccacaagt aaatattcag atggggatct aatcgttttt	9000 9060 9120 9180 9240 9300
cagctgtggg taaagaattc ttgatgatgg atttctggac atgaaaggac tctggatttc gccaattaaa gaataatgcc gtgacaatga atgcatggaa aagagtcaaa gttgaacagg atcagattc tagacatcac	aacaaattag atttggacat catgactcaa aaagaaatcg agtgtaagaa gaaaaggtag caccaccatc ttataatatt	aaaaaaggat ataatgcaga atgtgaagaa gaaatggatg atgggactta atggagtgaa actaaccatg cgtacgattc	ggaaaattta attgttagtt tctgtatgag ttttgagttc tgattatccc attggaatca gaagcttatg tttgattatg	attcaattca aataaaaaag ctactggaaa aaagtaaaaa taccacaagt aaatattcag atggggatct aatcgttttt taataaaatg	9000 9060 9120 9180 9240 9300 9360
cagctgtggg taaagaattc ttgatgatgg atttctggac atgaaaggac tctggatttc gccaattaaa gaataatgcc gtgacaatga atgcatggaa aagagtcaaa gttgaacagg atcagatttc tagacatcac aaaataacaa atcaattgtt	aacaaattag atttggacat catgactcaa aaagaaatcg agtgtaagaa gaaaaggtag caccaccatc ttataatatt aaaaatataa	aaaaaaggat ataatgcaga atgtgaagaa gaaatggatg atgggactta atggagtgaa actaaccatg cgtacgattc aaaatatgag	ggaaaattta attgttagtt tctgtatgag ttttgagttc tgattatccc attggaatca gaagcttatg tttgattatg	attcaattca aataaaaaag ctactggaaa aaagtaaaaa taccacaagt aaatattcag atggggatct aatcgttttt taataaaatg ataacaaatg	9000 9060 9120 9180 9240 9300 9360 9420
cagctgtggg taaagaattc ttgatgatgg atttctggac atgaaaggac tctggatttc gccaattaaa gaataatgcc gtgacaatga atgcatggaa aagagtcaaa gttgaacagg atcagattc tagacatcac aaaataacaa atcaattgtt tgatcattag gaagattacg	aacaaattag atttggacat catgactcaa aaagaaatcg agtgtaagaa gaaaaggtag caccaccatc ttataatatt aaaaatataa tttgttgcaa	aaaaaaggat ataatgcaga atgtgaagaa gaaatggatg atgggactta atggagtgaa actaaccatg cgtacgattc aaaatatgag ataaaccat	ggaaaattta attgttagtt tctgtatgag ttttgagttc tgattatccc attggaatca gaagcttatg tttgattatg tttgattatg ttctgtgtgt gattattga	attcaattca aataaaaaag ctactggaaa aaagtaaaaa taccacaagt aaatattcag atggggatct aatcgtttt taataaaatg ataacaaatg ttaaaattgt	9000 9060 9120 9180 9240 9300 9360 9420 9480
cagctgtggg taaagaatto ttgatgatgg atttctggac atgaaaggac tctggatttc gccaattaaa gaataatgcc gtgacaatga atgcatggaa aagagtcaaa gttgaacagg atcagatttc tagacatcac aaaataacaa atcaattgtt tgatcattag gaagattacg ctgtaaacgc cacaattgtg	aacaaattag atttggacat catgactcaa aaagaaatcg agtgtaagaa gaaaaggtag caccaccatc ttataatatt aaaaatataa tttgttgcaa aatagtgtgt	aaaaaaggat ataatgcaga atgtgaagaa gaaatggatg atgggactta atggagtgaa actaaccatg cgtacgattc aaaatatgag ataaacccat tttgcctaaa	ggaaaattta attgttagtt tctgtatgag ttttgagttc tgattatccc attggaatca gaagcttatg tttgattatg ttctgtgtgt gattatttga cgtgtactgc	attcaattca aataaaaaag ctactggaaa aaagtaaaaa taccacaagt aaatattcag atggggatct aatcgtttt taataaaatg ataacaaatg ttaaaattgt ataaactcca	9000 9060 9120 9180 9240 9300 9360 9420 9480 9540
cagctgtggg taaagaattc ttgatgatgg atttctggac atgaaaggac tctggatttc gccaattaaa gaataatgcc gtgacaatga atgcatggaa aagagtcaaa gttgaacagg atcagattc tagacatcac aaaataacaa atcaattgtt tgatcattag gaagattacg ctgtaaacgc cacaattgtg tgttttcttt gttcatagac	aacaaattag atttggacat catgactcaa aaagaaatcg agtgtaagaa gaaaaggtag caccaccatc ttataatatt aaaaatataa tttgttgcaa aatagtgtgt	aaaaaaggat ataatgcaga atgtgaagaa gaaatggatg atgggactta atggagtgaa actaaccatg cgtacgattc aaaatatgag ataaacccat tttgcctaaa cttgccccac	ggaaaattta attgttagtt tctgtatgag ttttgagttc tgattatccc attggaatca gaagcttatg tttgattatg ttctgtgtgt gattatttga cgtgtactgc caaagtagat	attcaattca aataaaaaag ctactggaaa aaagtaaaaa taccacaagt aaatattcag atgggatct aatcgtttt taataaaatg ataacaaatg ttaaaattgt ataaactcca tcgtcaaaat	9000 9060 9120 9180 9240 9300 9360 9420 9480 9540

ccatttccga	aaagaactcg	ggcataaact	ctatgatttc	tctggacgtg	gtgttgtcga	9840
aactctcaaa	gtacgcagtc	aggaacgtgc	gcgacatgtc	gtcgggaaac	tcgcgcggaa	9900
acatgttgtt	gtaaccgaac	gggtcccata	gcgccaaaac	caaatctgcc	agcgtcaata	9960
gaatgagcac	gatgccgaca	atggagctgg	cttggatagc	gattcgagtt	aacctaggag	10020
atccgaacca	gataagtgaa	atctagttcc	aaactatttt	gtcattttta	attttcgtat	10080
tagcttacga	cgctacaccc	agttcccatc	tattttgtca	ctcttcccta	aataatcctt	10140
aaaaactcca	tttccacccc	tcccagttcc	caactatttt	gtccgcccac	agcggggcat	10200
ttttcttcct	gttatgtttt	taatcaaaca	tcctgccaac	tccatgtgac	aaaccgtcat	10260
cttcggctac	ttt					10273

<210> 32

<211> 2074

<212> ADN

<213> Virus de la enfermedad hemorrágica del conejo AST789

atggagggca aagcccgcac agcgccgcaa ggcgaagcag caggcactgc caccacagca 60 tcagtccctg gaaccacaac cgatggcatg gaccccggcg ttgtggccac taccagcgtg 120 180 gtcactgcag agaattcatc cgcatcgatt gcaacggcag ggattggcgg accaccccaa caggtggacc aacaagagac atggagaacg aacttttatt ataatgacgt tttcacttgg 240 tcagtcgcgg atgcccctgg cagcatactt tacaccgttc aacattctcc acagaacaac 300 360 ccattcacag ccgtgctgag ccagatgtat gctggctggg ctggtggcat gcagtttcgc ttcatagttg ccggatcggg tgtgtttggt gggcggttgg ttgcggccgt gataccaccg 420 ggcatcgaga ttggaccagg gctggaggtc aggcaattcc cccatgttgt catcgacgct 480 540 cgttcacttg aacctgtcac catcaccatg ccagacttgc gtcccaacat gtaccatcca actggtgacc ctggccttgt tcccacacta gtccttagtg tttataacaa cctcatcaac 600 ccgtttggtg ggtccaccag cgcaatccag gtgacagtgg aaacaaggcc aagtgaagat 660 720 tttgagttcg tgatgattcg agcccctcc agcaagactg ttgactcaat ttcacccgca ggcctcctca cgaccccagt cctcactggg gttggcaatg acaacaggtg gaatggccaa 780 atagtgggac tgcaaccagt acctggaggg ttctctacgt gcaacaggca ttggaacttg 840 900 aatggcagca catatggctg gtcaagcccc cggtttgccg acattgacca tcgaagaggc 960 agtgcaagtt accctggatc caacgcaacc aacgtgcttc agttttggta tgccaatgct 1020 gggtctgcaa tcgacaatcc catctcccag gttgcaccag acggctttcc tgatatgtcg ttcgtgccct ttaacggccc tggcattcca gccgcggggt gggtcggatt tggtgcaatc 1080 1140 tggaacagta acagcggtgc ccccaacgtt acgactgtgc aggcttatga gttaggtttt

gccactgggg	caccaggcaa	cctccagccc	accaccaaca	cttcaggttc	acagactgtc	1200
gccaagtcca	tatatgccgt	ggtaactggc	acagcccaaa	accccgccgg	attgtttgtg	1260
atggcctcgg	gtgttatctc	caccccaagt	gccaacgcca	tcacatacac	gccccaacca	1320
gacagaattg	taaccacacc	cggcactcct	gccgctgcac	ctgtgggtaa	gaacacaccc	1380
atcatgttcg	cgtctgtcgt	caggcgcacc	ggtgacgtca	acgccacagc	tgggtcagct	1440
aacgggaccc	agtacggcac	aggctctcaa	ccactgccag	taacaattgg	actttcgctc	1500
aacaactact	cgtcagcact	tatgcccgga	cagtttttcg	tttggcagtt	aacctttgca	1560
tctggtttca	tggagattgg	tttaagtgtg	gacgggtatt	tttatgcagg	aacaggagcc	1620
tcaaccacac	tcattgactt	gactgaactc	attgacgtac	gccctgtggg	acccaggcca	1680
tccaagagca	cactcgtgtt	caacctgggg	ggcacagcca	atggcttttc	ttatgtctga	1740
attcatcgga	ctgggacttg	caggtgccag	cgttttgagc	aatgcattgc	tccgcaggca	1800
agagctgcaa	ctacaaagac	aagctttgga	gaatgggttg	gttttgaaag	ccgaccaatt	1860
aggtaggtta	ggttttaatc	caaatgaagt	taagaatgtg	attgtaggta	atagttttag	1920
tagtaatgtt	agattaagta	atatgcataa	tgatgctagt	gtagttaatg	cttataatgt	1980
gtataatcct	gccagcaatg	gcatcagaaa	gaaaattaag	agtttgaata	atagtgttaa	2040
gatttataac	accactgggg	agtccagtgt	ttaa			2074

<210> 33

<211> 1740

<212> ADN

<213> Virus de la enfermedad hemorrágica del conejo N11

atggagggta aagccagaac ggcgtcgcaa ggagaaaccg caggaacagc tacaaccgca 60 agcgtgccag gaacaacaac cgatggaatg gaccctggtg tggtggcaac cacttccgtt 120 gtgacaacgg agaacgcatc tacctcaatc gccactgcag gaattggtgg ccctccccag 180 caagtggatc agcaagaaac atggaggacg aacttctact acaacgacgt tttcacctgg 240 agggtggggg atgctcctgg taacatcctg tacaccgtgc agcactcgcc tcaaaacaac 300 cccttcactg ctgtcctctc ccagatgtac gccggctggg caggtggtat gcaattcagg 360 420 ttcatcgtcg ccggttcagg cgttttcggc ggaagactcg tggctgccgt cattccaccg ggcatcgaga ttggaccggg tttggaagtg aggcagttcc cacacgtcgt tatcgacgcc 480 agatecetgg agectgteae aattacgatg ceagatttge geeegaacat gtaceateet 540 accggcaacc ccggattggt cccaactttg gttctgtcag tgtacaacaa cctgatcaac 600 cccttcggtg gcagtacctc ggctattcag gttaccgtgg agactcgccc tagtgaggac 660 720 ttcgaattcg tcatgatccg tgcccctcc agcaagactg ttgactccat tagcccggca

gatctgctca	ccactcctgt	gttgacaggc	gtcggaacgg	ataaccgctg	gaacggagaa	780
atcgtgggtc	tgcagcctgt	ccccggaggt	ttcagcacat	gcaaccgtca	ctggaacctc	840
aacggctcta	ccttcggatg	gtcttcacca	cgcttcgcag	cgatcgacca	tgatcgtggt	900
aacgctagct	accctggcag	ttcgtccagc	aacgtgctgg	agttgtggta	cgcctctgca	960
ggttcagctg	ccgacaaccc	catctctcag	attgctccgg	acggtttccc	tgatatgtcc	1020
ttcgtcccct	tcagcggcac	aacggtgcca	acagctggtt	gggtcggctt	cggcggaatc	1080
tggaactctt	caaacggagc	gcccttcgtc	accactgttc	aagcttacga	actgggtttc	1140
gcgactggcg	ctccatcaaa	cccacagccg	acaacgacca	ctagtggtgc	ccaaatcgtt	1200
gcaaagtcga	tttacggagt	ggctacaggt	atcaaccagg	cgacggctgg	actgttcgtt	1260
atggcgagtg	gtgtgatctc	gacccctaac	agttcggcta	ttacctacac	tcctcaaccc	1320
aacaggatcg	tgaacgcacc	aggaacacct	gcagctgctc	ccatcggaaa	aaacacgcca	1380
attatgttcg	cttccgtggt	ccgccgtact	ggcgacatca	acgccgaagc	aggctctaca	1440
aacggaacgc	agtacggtgc	tggctcacaa	ccactgccgg	tcacagttgg	actgagtctc	1500
aacaactact	ccagcgctct	gatgccagga	cagttcttcg	tgtggcaact	caacttcgct	1560
tccggtttca	tggagttggg	cctgagcgtc	gacggatact	tctacgccgg	aaccggtgcg	1620
tctgctactc	tcatcgactt	gtcagaactg	gtcgatatta	ggcctgttgg	tcctagaccc	1680
agcacgagca	ctctggtcta	caacttgggc	ggcactacta	acggattctc	atacgtctaa	1740

<210> 34

<211> 5249

<212> ADN

<213> Secuencia artificial

<220>

<223> polhAc-ie-01/hr1p6.9p10CVP60 G1 (AST89)

10

5

<400> 34 agttgaactc gaacttcttg tacttgcagt tgagcttttg ctcggcgaat gtgatggcgt 60 120 cggagagtgg caccagtccc tgcaggatca aggccaagag cttcagcaag ttgttgtgca gtgtagttga ctcgcgacgg ttgaccttgc cgatcacgaa catgtggtgc ttgaatctgt 180 tgtacttttg gatgacctgg ctcacatcaa cgtccttgat ttcgccagag atccagtaga 240 actccttgtt cttcttagcg atggtcagcc tttcctcgtt cttgaaggac aacacgatga 300 360 agttgtgacc cttaacgtta tcgacgtttt gagtcaagta ctgctcaacg atgtgcatgc 420 ttccgtcttc cttcttgacc ttcttgaggt tctcggcgtt gttgttagaa gcgatgttgt 480 cgtggtactt gtagttgttg aagagcaggt tagcgacgga cgagtacttg tatgtcagag tgctcttctt gttcacgatg aggttcaggt tatcaacgac gtacttgttg ggagggttgt 540

ccgggaattg gacggactcc q	gagtacttga	ggatctggga	aacgtatggc	gagacgaaga	600
agttgttaga ggcggtttcg a	atctcgtttg	attccttgcg	gctcagcatg	atgggcaaag	660
tgaagaggtt cttgtcctgg t	tacatctcgt	acaacttcga	caagaggaat	ccacacttac	720
gctcgccgag tgattgcagc a	aaggtcacga	aggttgtctg	agcgtagtac	atatcgaggt	780
tgaagtagga ggtcagagcg ç	gccttgaatg	tgtggtggac	gtccacgaag	tgacacttct	840
tgcagttttg agcggcggtc t	tcatcgttgc	agacgtcctg	tgagtgtggg	atttcgatgc	900
cagtctcctt aaccaggttg t	tagctgatca	tgaagcggat	cttatcgaag	gtcacaacga	960
acacacggtt gtcaaccatg t	tagtagttgt	ttgtgtactc	gtagaccacg	ttagagacgt	1020
acttggcgaa gatgatttcg a	aaaggcttca	cctcggactt	cttaacgacg	aacatgtagt	1080
aaccggtttc agacatgtga t	tcggagaatc	tgttcgagtt	gtagtcgtta	tcgtcgaacc	1140
tcatcaggta gggggcgaag t	tcgtttgtga	agtagtgagt	gatctcctgg	gtggaagcca	1200
ctgtacagat gttagtgttg t	tggttgatgg	tttgttccag	tgtagcgcat	gactggatgg	1260
tgctcttctt gtacttaggt o	ctcaacttga	tcttgttgaa	ttgacccaca	actccctggg	1320
agttatccag gtactcgtcc a	aacttcctct	tggtgcctgt	ggccgacggc	tggttgacac	1380
cagcagagtg ttcgaaggac t	tcggcgtggt	aagctgagct	aggagagggt	tgttcgacca	1440
ctggctgttc gagtgactcg c	ctgtagtagg	cagaggacac	agcttcctcc	aggttgtcag	1500
tggtcttgag cagacactcc a	accaaatcgt	tgtcagtgag	cgagttaact	gaggcgagga	1560
agttgctagc ggcagcggtt t	tcagagtcgg	agatgacagt	atcagctccg	tccggggttg	1620
ggtggttgta gtaagacaag t	taatcgttag	gttgcttgtc	gcagaactcc	gagtatgagt	1680
tgtcgaagct agcacgagag o	ggagtgctgg	cagaggtgta	ggaagcgttg	aagttgattt	1740
gagtcatggt gacctggttg t	ttcacgatct	tatcgccacc	tgtgtccacc	tgcagttgct	1800
gggcctcagc gcaggctgaa q	gtggcctcac	aggagtaggg	gctggaagca	cagttggaag	1860
tcatgatgtt ttcttggacg t	ttcaggacgt	ggctggatgt	acggatcata	gatctatcta	1920
gattcgaaag cggccgcgac t	tagtgagctc	gtcgacgtag	gcctttgaat	tccgcgcgct	1980
teggaceggg ateegegeee ç	gatggtggga	cggtatgaat	aatccggaat	atttataggt	2040
ttttttatta caaaactgtt a	acgaaaacag	taaaatactt	atttatttgc	gagatggtta	2100
tcattttaat tatctccatg a	atctattaat	attccggagt	atacctaccc	gtaaagcgag	2160
tttagttttg aaaaacaaat q	gacatcattt	gtataatgac	atcatcccct	gattgtgttt	2220
tacaagtaga attctatccg t	taaagcgagt	tcagttttga	aaacaaatga	gtcataccta	2280
aacacgttaa taatcttctg a	atatcagctt	atgactcaag	ttatgagccg	tgtgcaaaac	2340
atgagataag tttatgacat o	catccactga	tcgtgcgtta	caagtagaat	tctactcgta	2400
aagccagttc ggttatgagc o	cgtgtgcaaa	acatgacatc	agcttatgac	tcatacttga	2460

ttgtgtttta	cgcgtagaat	tctactcgta	aagcgagttc	ggttatgagc	cgtgtgcaaa	2520
acatgacatc	agcttatgag	tcataattaa	tcgtgcgtta	caagtagaat	tctactcgta	2580
aagcgagttg	aaggatcata	tttagttgcg	tttatgagat	aagattgaaa	gcacgtgtaa	2640
aatgtttccg	agctcgtcga	cgtaggcctt	tgaattccgc	gcgcttcgga	ccgggatcgg	2700
taccaaattc	cgttttgcga	cgatgcagag	tttttgaaca	ggctgctcaa	acacatagat	2760
ccgtacccgc	tcagtcggat	gtattacaat	gcagccaata	ccatgtttta	cacgactatg	2820
gaaaactatg	ccgtgtccaa	ttgcaagttc	aacattgagg	attacaataa	catatttaag	2880
gtgatggaaa	atattaggaa	acacagcaac	aaaaattcaa	acgaccaaga	cgagttaaac	2940
atatatttgg	gagttcagtc	gtcgaatgca	aagcgtaaaa	aatattaata	aggtaaaaat	3000
tacagctaca	taaattacac	aatttaaact	gcagtctgga	gatacggacc	tttaattcaa	3060
cccaacacaa	tatattatag	ttaaataaga	attattatca	aatcatttgt	atattaatta	3120
aaatactata	ctgtaaatta	cattttattt	acaatcactc	gacctcgaga	taaatatgga	3180
gggcaaagcc	cgcacagcgc	cgcaaggcga	agcagcaggc	actgccacca	cagcatcagt	3240
ccctggaacc	acaaccgatg	gcatggaccc	cggcgttgtg	gccactacca	gcgtggtcac	3300
tgcagagaat	tcatccgcat	cgattgcaac	ggcagggatt	ggcggaccac	cccaacaggt	3360
ggaccaacaa	gagacatgga	gaacgaactt	ttattataat	gacgttttca	cttggtcagt	3420
cgcggatgcc	cctggcagca	tactttacac	cgttcaacat	tctccacaga	acaacccatt	3480
cacagccgtg	ctgagccaga	tgtatgctgg	ctgggctggt	ggcatgcagt	ttcgcttcat	3540
agttgccgga	tcgggtgtgt	ttggtgggcg	gttggttgcg	gccgtgatac	caccgggcat	3600
cgagattgga	ccagggctgg	aggtcaggca	attcccccat	gttgtcatcg	acgctcgttc	3660
acttgaacct	gtcaccatca	ccatgccaga	cttgcgtccc	aacatgtacc	atccaactgg	3720
tgaccctggc	cttgttccca	cactagtcct	tagtgtttat	aacaacctca	tcaacccgtt	3780
tggtgggtcc	accagcgcaa	tccaggtgac	agtggaaaca	aggccaagtg	aagattttga	3840
gttcgtgatg	attcgagccc	cctccagcaa	gactgttgac	tcaatttcac	ccgcaggcct	3900
cctcacgacc	ccagtcctca	ctggggttgg	caatgacaac	aggtggaatg	gccaaatagt	3960
gggactgcaa	ccagtacctg	gagggttctc	tacgtgcaac	aggcattgga	acttgaatgg	4020
cagcacatat	ggctggtcaa	gcccccggtt	tgccgacatt	gaccatcgaa	gaggcagtgc	4080
aagttaccct	ggatccaacg	caaccaacgt	gcttcagttt	tggtatgcca	atgctgggtc	4140
tgcaatcgac	aatcccatct	cccaggttgc	accagacggc	tttcctgata	tgtcgttcgt	4200
gccctttaac	ggccctggca	ttccagccgc	ggggtgggtc	ggatttggtg	caatctggaa	4260
cagtaacagc	ggtgccccca	acgttacgac	tgtgcaggct	tatgagttag	gttttgccac	4320

tggggcacca	ggcaacctcc	agcccaccac	caacacttca	ggttcacaga	ctgtcgccaa	4380
gtccatatat	gccgtggtaa	ctggcacagc	ccaaaacccc	gccggattgt	ttgtgatggc	4440
ctcgggtgtt	atctccaccc	caagtgccaa	cgccatcaca	tacacgcccc	aaccagacag	4500
aattgtaacc	acacccggca	ctcctgccgc	tgcacctgtg	ggtaagaaca	cacccatcat	4560
gttcgcgtct	gtcgtcaggc	gcaccggtga	cgtcaacgcc	acagctgggt	cagctaacgg	4620
gacccagtac	ggcacaggct	ctcaaccact	gccagtaaca	attggacttt	cgctcaacaa	4680
ctactcgtca	gcacttatgc	ccggacagtt	tttcgtttgg	cagttaacct	ttgcatctgg	4740
tttcatggag	attggtttaa	gtgtggacgg	gtatttttat	gcaggaacag	gagcctcaac	4800
cacactcatt	gacttgactg	aactcattga	cgtacgccct	gtgggaccca	ggccatccaa	4860
gagcacactc	gtgttcaacc	tggggggcac	agccaatggc	ttttcttatg	tctgaattca	4920
tcggactggg	acttgcaggt	gccagcgttt	tgagcaatgc	attgctccgc	aggcaagagc	4980
tgcaactaca	aagacaagct	ttggagaatg	ggttggtttt	gaaagccgac	caattaggta	5040
ggttaggttt	taatccaaat	gaagttaaga	atgtgattgt	aggtaatagt	tttagtagta	5100
atgttagatt	aagtaatatg	cataatgatg	ctagtgtagt	taatgcttat	aatgtgtata	5160
atcctgccag	caatggcatc	agaaagaaaa	ttaagagttt	gaataatagt	gttaagattt	5220
ataacaccac	tggggagtcc	agtgtttaa				5249

<210> 35

<211> 4918

<212> ADN

<213> Secuencia artificial

<220>

<223> polhAc-ie-01/hr1p6.9p10CVP60 RHDVb (N11)

10

5

<400> 35 agttgaactc gaacttcttg tacttgcagt tgagcttttg ctcggcgaat gtgatggcgt 60 cggagagtgg caccagtccc tgcaggatca aggccaagag cttcagcaag ttgttgtgca 120 gtgtagttga ctcgcgacgg ttgaccttgc cgatcacgaa catgtggtgc ttgaatctgt 180 tgtacttttg gatgacctgg ctcacatcaa cgtccttgat ttcgccagag atccagtaga 240 actccttgtt cttcttagcg atggtcagcc tttcctcgtt cttgaaggac aacacgatga 300 360 agttgtgacc cttaacgtta tcgacgtttt gagtcaagta ctgctcaacg atgtgcatgc 420 ttccgtcttc cttcttgacc ttcttgaggt tctcggcgtt gttgttagaa gcgatgttgt 480 cgtggtactt gtagttgttg aagagcaggt tagcgacgga cgagtacttg tatgtcagag 540 tgctcttctt gttcacgatg aggttcaggt tatcaacgac gtacttgttg ggagggttgt 600 ccgggaattg gacggactcc gagtacttga ggatctggga aacgtatggc gagacgaaga agttgttaga ggcggtttcg atctcgtttg attccttgcg gctcagcatg atgggcaaag 660

tgaagaggtt	cttgtcctgg	tacatctcgt	acaacttcga	caagaggaat	ccacacttac	720
gctcgccgag	tgattgcagc	aaggtcacga	aggttgtctg	agcgtagtac	atatcgaggt	780
tgaagtagga	ggtcagagcg	gccttgaatg	tgtggtggac	gtccacgaag	tgacacttct	840
tgcagttttg	agcggcggtc	tcatcgttgc	agacgtcctg	tgagtgtggg	atttcgatgc	900
cagtctcctt	aaccaggttg	tagctgatca	tgaagcggat	cttatcgaag	gtcacaacga	960
acacacggtt	gtcaaccatg	tagtagttgt	ttgtgtactc	gtagaccacg	ttagagacgt	1020
acttggcgaa	gatgatttcg	aaaggcttca	cctcggactt	cttaacgacg	aacatgtagt	1080
aaccggtttc	agacatgtga	tcggagaatc	tgttcgagtt	gtagtcgtta	tcgtcgaacc	1140
tcatcaggta	gggggcgaag	tcgtttgtga	agtagtgagt	gatctcctgg	gtggaagcca	1200
ctgtacagat	gttagtgttg	tggttgatgg	tttgttccag	tgtagcgcat	gactggatgg	1260
tgctcttctt	gtacttaggt	ctcaacttga	tcttgttgaa	ttgacccaca	actccctggg	1320
agttatccag	gtactcgtcc	aacttcctct	tggtgcctgt	ggccgacggc	tggttgacac	1380
cagcagagtg	ttcgaaggac	tcggcgtggt	aagctgagct	aggagagggt	tgttcgacca	1440
ctggctgttc	gagtgactcg	ctgtagtagg	cagaggacac	agcttcctcc	aggttgtcag	1500
tggtcttgag	cagacactcc	accaaatcgt	tgtcagtgag	cgagttaact	gaggcgagga	1560
agttgctagc	ggcagcggtt	tcagagtcgg	agatgacagt	atcagctccg	tccggggttg	1620
ggtggttgta	gtaagacaag	taatcgttag	gttgcttgtc	gcagaactcc	gagtatgagt	1680
tgtcgaagct	agcacgagag	ggagtgctgg	cagaggtgta	ggaagcgttg	aagttgattt	1740
gagtcatggt	gacctggttg	ttcacgatct	tategeeace	tgtgtccacc	tgcagttgct	1800
gggcctcagc	gcaggctgaa	gtggcctcac	aggagtaggg	gctggaagca	cagttggaag	1860
tcatgatgtt	ttcttggacg	ttcaggacgt	ggctggatgt	acggatcata	gatctatcta	1920
gattcgaaag	cggccgcgac	tagtgagctc	gtcgacgtag	gcctttgaat	tccgcgcgct	1980
tcggaccggg	atccgcgccc	gatggtggga	cggtatgaat	aatccggaat	atttataggt	2040
ttttttatta	caaaactgtt	acgaaaacag	taaaatactt	atttatttgc	gagatggtta	2100
tcattttaat	tatctccatg	atctattaat	attccggagt	atacctaccc	gtaaagcgag	2160
tttagttttg	aaaaacaaat	gacatcattt	gtataatgac	atcatcccct	gattgtgttt	2220
tacaagtaga	attctatccg	taaagcgagt	tcagttttga	aaacaaatga	gtcataccta	2280
aacacgttaa	taatcttctg	atatcagctt	atgactcaag	ttatgagccg	tgtgcaaaac	2340
atgagataag	tttatgacat	catccactga	tcgtgcgtta	caagtagaat	tctactcgta	2400
aagccagttc	ggttatgagc	cgtgtgcaaa	acatgacatc	agcttatgac	tcatacttga	2460
ttgtgtttta	cgcgtagaat	tctactcgta	aagcgagttc	ggttatgagc	cgtgtgcaaa	2520

acatgacatc agcttatgag	tcataattaa	tcgtgcgtta	caagtagaat	tctactcgta	2580
aagcgagttg aaggatcata	tttagttgcg	tttatgagat	aagattgaaa	gcacgtgtaa	2640
aatgtttccg agctcgtcga	cgtaggcctt	tgaattccgc	gcgcttcgga	ccgggatcgg	2700
taccaaattc cgttttgcga	cgatgcagag	tttttgaaca	ggctgctcaa	acacatagat	2760
ccgtacccgc tcagtcggat	gtattacaat	gcagccaata	ccatgtttta	cacgactatg	2820
gaaaactatg ccgtgtccaa	ttgcaagttc	aacattgagg	attacaataa	catatttaag	2880
gtgatggaaa atattaggaa	acacagcaac	aaaaattcaa	acgaccaaga	cgagttaaac	2940
atatatttgg gagttcagtc	gtcgaatgca	aagcgtaaaa	aatattaata	aggtaaaaat	3000
tacagctaca taaattacac	aatttaaact	gcagtctgga	gatacggacc	tttaattcaa	3060
cccaacacaa tatattatag	ttaaataaga	attattatca	aatcatttgt	atattaatta	3120
aaatactata ctgtaaatta	cattttattt	acaatcactc	gacctcgaga	taaatatgga	3180
gggtaaagcc agaacggcgt	cgcaaggaga	aaccgcagga	acagctacaa	ccgcaagcgt	3240
gccaggaaca acaaccgatg	gaatggaccc	tggtgtggtg	gcaaccactt	ccgttgtgac	3300
aacggagaac gcatctacct	caatcgccac	tgcaggaatt	ggtggccctc	cccagcaagt	3360
ggatcagcaa gaaacatgga	ggacgaactt	ctactacaac	gacgttttca	cctggagcgt	3420
ggcggatgct cctggtaaca	tcctgtacac	cgtgcagcac	tcgcctcaaa	acaacccctt	3480
cactgctgtc ctctcccaga	tgtacgccgg	ctgggcaggt	ggtatgcaat	tcaggttcat	3540
cgtcgccggt tcaggcgttt	tcggcggaag	actcgtggct	gccgtcattc	caccgggcat	3600
cgagattgga ccgggtttgg	aagtgaggca	gttcccacac	gtcgttatcg	acgccagatc	3660
cctggagcct gtcacaatta	cgatgccaga	tttgcgcccg	aacatgtacc	atcctaccgg	3720
caaccccgga ttggtcccaa	ctttggttct	gtcagtgtac	aacaacctga	tcaacccctt	3780
cggtggcagt acctcggcta	ttcaggttac	cgtggagact	cgccctagtg	aggacttcga	3840
attcgtcatg atccgtgccc	cctccagcaa	gactgttgac	tccattagcc	cggcagatct	3900
gctcaccact cctgtgttga	caggcgtcgg	aacggataac	cgctggaacg	gagaaatcgt	3960
gggtctgcag cctgtccccg	gaggtttcag	cacatgcaac	cgtcactgga	acctcaacgg	4020
ctctaccttc ggatggtctt	caccacgctt	cgcagcgatc	gaccatgatc	gtggtaacgc	4080
tagctaccct ggcagttcgt	ccagcaacgt	gctggagttg	tggtacgcct	ctgcaggttc	4140
agctgccgac aaccccatct	ctcagattgc	tccggacggt	ttccctgata	tgtccttcgt	4200
ccccttcagc ggcacaacgg	tgccaacagc	tggttgggtc	ggcttcggcg	gaatctggaa	4260
ctcttcaaac ggagcgccct	tcgtcaccac	tgttcaagct	tacgaactgg	gtttcgcgac	4320
tggcgctcca tcaaacccac	agccgacaac	gaccactagt	ggtgcccaaa	tcgttgcaaa	4380
gtcgatttac ggagtggcta	caggtatcaa	ccaggcgacg	gctggactgt	tcgttatggc	4440

gagtggtgtg atctcgaccc	ctaacagttc	ggctattacc	tacactcctc	aacccaacag	4500
gatcgtgaac gcaccaggaa	cacctgcagc	tgctcccatc	ggaaaaaaca	cgccaattat	4560
gttcgcttcc gtggtccgcc	gtactggcga	catcaacgcc	gaagcaggct	ctacaaacgg	4620
aacgcagtac ggtgctggct	cacaaccact	gccggtcaca	gttggactga	gtctcaacaa	4680
ctactccagc gctctgatgc	caggacagtt	cttcgtgtgg	caactcaact	tcgcttccgg	4740
tttcatggag ttgggcctga	gcgtcgacgg	atacttctac	gccggaaccg	gtgcgtctgc	4800
tactctcatc gacttgtcag	aactggtcga	tattaggcct	gttggtccta	gacccagcac	4860
gagcactctg gtctacaact	tgggcggcac	tactaacgga	ttctcatacg	tctaataa	4918

<210> 36

<211> 579

<212> PRT

<213> Virus de la enfermedad hemorrágica del conejo AST89

<400> 36

Met Glu Gly Lys Ala Arg Thr Ala Pro Gln Gly Glu Ala Ala Gly Thr 1 5 10 15

Ala Thr Thr Ala Ser Val Pro Gly Thr Thr Thr Asp Gly Met Asp Pro 20 25 30

Gly Val Val Ala Thr Thr Ser Val Val Thr Ala Glu Asn Ser Ser Ala 35 40 45

Ser Ile Ala Thr Ala Gly Ile Gly Gly Pro Pro Gln Gln Val Asp Gln 50 55 60

Gln Glu Thr Trp Arg Thr Asn Phe Tyr Tyr Asn Asp Val Phe Thr Trp 65 70 75 80

Ser Val Ala Asp Ala Pro Gly Ser Ile Leu Tyr Thr Val Gln His Ser 85 90 95

Pro Gln Asn Asn Pro Phe Thr Ala Val Leu Ser Gln Met Tyr Ala Gly
100 105 110

Trp Ala Gly Gly Met Gln Phe Arg Phe Ile Val Ala Gly Ser Gly Val
115 120 125

Phe Gly Gly Arg Leu Val Ala Ala Val Ile Pro Pro Gly Ile Glu Ile 130 135 140

Gly Pro Gly Leu Glu Val Arg Gln Phe Pro His Val Val Ile Asp Ala 145 150 155 160

Arg	Ser	Leu	Glu	Pro 165	Val	Thr	Ile	Thr	Met 170	Pro	Asp	Leu	Arg	Pro 175	Asn
Met	Tyr	His	Pro 180	Thr	Gly	Asp	Pro	Gly 185	Leu	Val	Pro	Thr	Leu 190	Val	Leu
Ser	Val	Tyr 195	Asn	Asn	Leu	Ile	Asn 200	Pro	Phe	Gly	Gly	Ser 205	Thr	Ser	Ala
Ile	Gln 210	Val	Thr	Val	Glu	Thr 215	Arg	Pro	Ser	Glu	Asp 220	Phe	Glu	Phe	Val
Met 225	Ile	Arg	Ala	Pro	Ser 230	Ser	Lys	Thr	Val	Asp 235	Ser	Ile	Ser	Pro	Ala 240
Gly	Leu	Leu	Thr	Thr 245	Pro	Val	Leu	Thr	Gly 250	Val	Gly	Asn	Asp	Asn 255	Arg
Trp	Asn	Gly	Gln 260	Ile	Val	Gly	Leu	Gln 265	Pro	Val	Pro	Gly	Gly 270	Phe	Ser
Thr	Cys	Asn 275	Arg	His	Trp	Asn	Leu 280	Asn	Gly	Ser	Thr	Tyr 285	Gly	Trp	Ser
Ser	Pro 290	Arg	Phe	Ala	Asp	Ile 295	Asp	His	Arg	Arg	Gly 300	Ser	Ala	Ser	Tyr
Pro 305	Gly	Ser	Asn	Ala	Thr 310	Asn	Val	Leu	Gln	Phe 315	Trp	Tyr	Ala	Asn	Ala 320
Gly	Ser	Ala	Ile	Asp 325	Asn	Pro	Ile	Ser	Gln 330	Val	Ala	Pro	Asp	Gly 335	Phe
Pro	Asp	Met	Ser 340	Phe	Val	Pro	Phe	Asn 345	Gly	Pro	Gly	Ile	Pro 350	Ala	Ala
Gly	Trp	Val 355	Gly	Phe	Gly	Ala	Ile 360	Trp	Asn	Ser	Asn	Ser 365	Gly	Ala	Pro
Asn	Val 370	Thr	Thr	Val	Gln	A la 375	Tyr	Glu	Leu	Gly	Phe 380	Ala	Thr	Gly	Ala
Pro 385	Gly	Asn	Leu	Gln	Pro 390	Thr	Thr	Asn	Thr	Ser 395	Gly	Ser	Gln	Thr	Val 400
Ala	Lys	Ser	Ile	Tyr	Ala	Val	Val	Thr	Gly	Thr	Ala	Gln	Asn	Pro	Ala

				405					410					415	
Gly	Leu	Phe	Val 420	Met	Ala	Ser	Gly	Val 425	Ile	Ser	Thr	Pro	Ser 430	Ala	Asn
Ala	Ile	Thr 435	Tyr	Thr	Pro	Gln	Pro 440	Asp	Arg	Ile	Val	Thr 445	Thr	Pro	Gly
Thr	Pro 450	Ala	Ala	Ala	Pro	Val 455	Gly	Lys	Asn	Thr	Pro 460	Ile	Met	Phe	Ala
Ser 465	Val	Val	Arg	Arg	Thr 470	Gly	Asp	Val	Asn	Ala 475	Thr	Ala	Gly	Ser	Ala 480
Asn	Gly	Thr	Gln	Tyr 485	Gly	Thr	Gly	Ser	Gln 490	Pro	Leu	Pro	Val	Thr 495	Ile
Gly	Leu	Ser	Leu 500	Asn	Asn	Tyr	Ser	Ser 505	Ala	Leu	Met	Pro	Gly 510	Gln	Phe
Phe	Val	Trp 515	Gln	Leu	Thr	Phe	Ala 520	Ser	Gly	Phe	Met	Glu 525	Ile	Gly	Leu
Ser	Val 530	Asp	Gly	Tyr	Phe	Tyr 535	Ala	Gly	Thr	Gly	Ala 540	Ser	Thr	Thr	Leu
Ile 545	Asp	Leu	Thr	Glu	Leu 550	Ile	Asp	Val	Arg	Pro 555	Val	Gly	Pro	Arg	Pro 560
Ser	Lys	Ser	Thr	Leu 565	Val	Phe	Asn	Leu	Gly 570	Gly	Thr	Ala	Asn	Gly 575	Phe
Ser	Tyr	Val													
<210><211><211><212><213>	> 579 > PRT	s de la	enferr	medad	I hemo	orrágic	a del d	conejo	N11						
<400> Met 1		Gly	Lys	Ala 5	Arg	Thr	Ala	Ser	Gln 10	Gly	Glu	Thr	Ala	Gly 15	Thr
Ala	Thr	Thr	Ala 20	Ser	Val	Pro	Gly	Thr 25	Thr	Thr	Asp	Gly	Met 30	Asp	Pro
Glv	Val	Val	Ala	Thr	Thr	Ser	Val	Val	Thr	Thr	Glu	Asn	Ala	Ser	Thr

		35					40					45			
Ser	Ile 50	Ala	Thr	Ala	Gly	Ile 55	Gly	Gly	Pro	Pro	Gln 60	Gln	Val	Asp	Gln
Gln 65	Glu	Thr	Trp	Arg	Thr 70	Asn	Phe	Tyr	Tyr	Asn 75	Asp	Val	Phe	Thr	Trp 80
Ser	Val	Ala	Asp	Ala 85	Pro	Gly	Asn	Ile	Leu 90	Tyr	Thr	Val	Gln	His 95	Ser
Pro	Gln	Asn	Asn 100	Pro	Phe	Thr	Ala	Val 105	Leu	Ser	Gln	Met	Tyr 110	Ala	Gly
Trp	Ala	Gly 115	Gly	Met	Gln	Phe	Arg 120	Phe	Ile	Val	Ala	Gly 125	Ser	Gly	Val
Phe	Gly 130	Gly	Arg	Leu	Val	Ala 135	Ala	Val	Ile	Pro	Pro 140	Gly	Ile	Glu	Ile
Gly 145	Pro	Gly	Leu	Glu	Val 150	Arg	Gln	Phe	Pro	His 155	Val	Val	Ile	Asp	Ala 160
Arg	Ser	Leu	Glu	Pro 165	Val	Thr	Ile	Thr	Met 170	Pro	Asp	Leu	Arg	Pro 175	Asn
Met	Tyr	His	Pro 180	Thr	Gly	Asn	Pro	Gly 185	Leu	Val	Pro	Thr	Leu 190	Val	Leu
Ser	Val	Tyr 195	Asn	Asn	Leu	Ile	Asn 200	Pro	Phe	Gly	Gly	Ser 205	Thr	Ser	Ala
Ile	Gln 210	Val	Thr	Val	Glu	Thr 215	Arg	Pro	Ser	Glu	Asp 220	Phe	Glu	Phe	Val
Met 225	Ile	Arg	Ala	Pro	Ser 230	Ser	Lys	Thr	Val	Asp 235	Ser	Ile	Ser	Pro	Ala 240
Asp	Leu	Leu	Thr	Thr 245	Pro	Val	Leu	Thr	Gly 250	Val	Gly	Thr	Asp	Asn 255	Arg
Trp	Asn	Gly	Glu 260	Ile	Val	Gly	Leu	Gln 265	Pro	Val	Pro	Gly	Gly 270	Phe	Ser
Thr	Cys	Asn 275	Arg	His	Trp	Asn	Leu 280	Asn	Gly	Ser	Thr	Phe 285	Gly	Trp	Ser

Ser	Pro 290	Arg	Phe	Ala	Ala	Ile 295	Asp	His	Asp	Arg	Gly 300	Asn	Ala	Ser	Tyr
Pro 305	Gly	Ser	Ser	Ser	Ser 310	Asn	Val	Leu	Glu	Leu 315	Trp	Tyr	Ala	Ser	Ala 320
Gly	Ser	Ala	Ala	Asp 325	Asn	Pro	Ile	Ser	Gln 330	Ile	Ala	Pro	Asp	Gly 335	Phe
Pro	Asp	Met	Ser 340	Phe	Val	Pro	Phe	Ser 345	Gly	Thr	Thr	Val	Pro 350	Thr	Ala
Gly	Trp	Val 355	Gly	Phe	Gly	Gly	11e 360	Trp	Asn	Ser	Ser	Asn 365	Gly	Ala	Pro
Phe	Val 370	Thr	Thr	Val	Gln	Ala 375	Tyr	Glu	Leu	Gly	Phe 380	Ala	Thr	Gly	Ala
Pro 385	Ser	Asn	Pro	Gln	Pro 390	Thr	Thr	Thr	Thr	Ser 395	Gly	Ala	Gln	Ile	Val 400
Ala	Lys	Ser	Ile	Tyr 405	Gly	Val	Ala	Thr	Gly 410	Ile	Asn	Gln	Ala	Thr 415	Ala
Gly	Leu	Phe	Val 420	Met	Ala	Ser	Gly	Val 425	Ile	Ser	Thr	Pro	Asn 430	Ser	Ser
Ala	Ile	Thr 435	Tyr	Thr	Pro	Gln	Pro 440	Asn	Arg	Ile	Val	Asn 445	Ala	Pro	Gly
Thr	Pro 450	Ala	Ala	Ala	Pro	Ile 455	-	Lys		Thr		Ile	Met	Phe	Ala
Ser 465	Val	Val	Arg	Arg	Thr 470	Gly	Asp	Ile	Asn	Ala 475	Glu	Ala	Gly	Ser	Thr 480
Asn	Gly	Thr	Gln	Tyr 485	Gly	Ala	Gly	Ser	Gln 490	Pro	Leu	Pro	Val	Thr 495	Val
Gly	Leu	Ser	Leu 500	Asn	Asn	Tyr	Ser	Ser 505	Ala	Leu	Met	Pro	Gly 510	Gln	Phe
Phe	Val	Trp 515	Gln	Leu	Asn	Phe	Ala 520	Ser	Gly	Phe	Met	Glu 525	Leu	Gly	Leu
Ser	Val 530	Asp	Gly	Tyr	Phe	Tyr 535	Ala	Gly	Thr	Gly	Ala 540	Ser	Ala	Thr	Leu

Ile Asp Leu Ser Glu Leu Val Asp Ile Arg Pro Val Gly Pro Arg Pro 545 550 555 560

Ser Thr Ser Thr Leu Val Tyr Asn Leu Gly Gly Thr Thr Asn Gly Phe 565 570 575

Ser Tyr Val

<210> 38

<211> 3891

<212> ADN

<213> Secuencia artificial

<220>

<223> polhAc-ie-01/hr1p6.9p10GFP

10

5

<400> 38 ttagttgaac tcgaacttct tgtacttgca gttgagcttt tgctcggcga atgtgatggc 60 gtcggagagt ggcaccagtc cctgcaggat caaggccaag agcttcagca agttgttgtg 120 cagtgtagtt gactcgcgac ggttgacctt gccgatcacg aacatgtggt gcttgaatct 180 240 gttgtacttt tggatgacct ggctcacatc aacgtccttg atttcgccag agatccagta 300 gaactccttg ttcttcttag cgatggtcag cctttcctcg ttcttgaagg acaacacgat 360 gaagttgtga cccttaacgt tatcgacgtt ttgagtcaag tactgctcaa cgatgtgcat gcttccgtct tccttcttga ccttcttgag gttctcggcg ttgttgttag aagcgatgtt 420 gtcgtggtac ttgtagttgt tgaagagcag gttagcgacg gacgagtact tgtatgtcag 480 agtgctcttc ttgttcacga tgaggttcag gttatcaacg acgtacttgt tgggagggtt 540 gtccgggaat tggacggact ccgagtactt gaggatctgg gaaacgtatg gcgagacgaa 600 660 gaagttgtta gaggcggttt cgatctcgtt tgattccttg cggctcagca tgatgggcaa 720 agtgaagagg ttcttgtcct ggtacatctc gtacaacttc gacaagagga atccacactt 780 acgctcgccg agtgattgca gcaaggtcac gaaggttgtc tgagcgtagt acatatcgag 840 gttgaagtag gaggtcagag cggccttgaa tgtgtggtgg acgtccacga agtgacactt 900 cttgcagttt tgagcggcgg tctcatcgtt gcagacgtcc tgtgagtgtg ggatttcgat gccagtctcc ttaaccaggt tgtagctgat catgaagcgg atcttatcga aggtcacaac 960 gaacacacgg ttgtcaacca tgtagtagtt gtttgtgtac tcgtagacca cgttagagac 1020 gtacttggcg aagatgattt cgaaaggctt cacctcggac ttcttaacga cgaacatgta 1080 gtaaccggtt tcagacatgt gatcggagaa tctgttcgag ttgtagtcgt tatcgtcgaa 1140 1200 cctcatcagg tagggggcga agtcgtttgt gaagtagtga gtgatctcct gggtggaagc cactgtacag atgttagtgt tgtggttgat ggtttgttcc agtgtagcgc atgactggat 1260

ggtgctcttc	ttgtacttag	gtctcaactt	gatcttgttg	aattgaccca	caactccctg	1320
ggagttatcc	aggtactcgt	ccaacttcct	cttggtgcct	gtggccgacg	gctggttgac	1380
accagcagag	tgttcgaagg	actcggcgtg	gtaagctgag	ctaggagagg	gttgttcgac	1440
cactggctgt	tcgagtgact	cgctgtagta	ggcagaggac	acagcttcct	ccaggttgtc	1500
agtggtcttg	agcagacact	ccaccaaatc	gttgtcagtg	agcgagttaa	ctgaggcgag	1560
gaagttgcta	gcggcagcgg	tttcagagtc	ggagatgaca	gtatcagctc	cgtccggggt	1620
tgggtggttg	tagtaagaca	agtaatcgtt	aggttgcttg	tcgcagaact	ccgagtatga	1680
gttgtcgaag	ctagcacgag	agggagtgct	ggcagaggtg	taggaagcgt	tgaagttgat	1740
ttgagtcatg	gtgacctggt	tgttcacgat	cttatcgcca	cctgtgtcca	cctgcagttg	1800
ctgggcctca	gcgcaggctg	aagtggcctc	acaggagtag	gggctggaag	cacagttgga	1860
agtcatgatg	ttttcttgga	cgttcaggac	gtggctggat	gtacggatca	tagatctatc	1920
tagattcgaa	agcggccgcg	actagtgagc	tcgtcgacgt	aggcctttga	attccgcgcg	1980
cttcggaccg	ggatccgcgc	ccgatggtgg	gacggtatga	ataatccgga	atatttatag	2040
gtttttttat	tacaaaactg	ttacgaaaac	agtaaaatac	ttatttattt	gcgagatggt	2100
tatcatttta	attatctcca	tgatctatta	atattccgga	gtatacctac	ccgtaaagcg	2160
agtttagttt	tgaaaaacaa	atgacatcat	ttgtataatg	acatcatccc	ctgattgtgt	2220
tttacaagta	gaattctatc	cgtaaagcga	gttcagtttt	gaaaacaaat	gagtcatacc	2280
taaacacgtt	aataatcttc	tgatatcagc	ttatgactca	agttatgagc	cgtgtgcaaa	2340
acatgagata	agtttatgac	atcatccact	gategtgegt	tacaagtaga	attctactcg	2400
taaagccagt	tcggttatga	gccgtgtgca	aaacatgaca	tcagcttatg	actcatactt	2460
gattgtgttt	tacgcgtaga	attctactcg	taaagcgagt	tcggttatga	gccgtgtgca	2520
aaacatgaca	tcagcttatg	agtcataatt	aatcgtgcgt	tacaagtaga	attctactcg	2580
taaagcgagt	tgaaggatca	tatttagttg	cgtttatgag	ataagattga	aagcacgtgt	2640
aaaatgtttc	cgagctcgtc	gacgtaggcc	tttgaattcc	gcgcgcttcg	gaccgggatc	2700
ggtaccaaat	tccgttttgc	gacgatgcag	agtttttgaa	caggctgctc	aaacacatag	2760
atccgtaccc	gctcagtcgg	atgtattaca	atgcagccaa	taccatgttt	tacacgacta	2820
tggaaaacta	tgccgtgtcc	aattgcaagt	tcaacattga	ggattacaat	aacatattta	2880
aggtgatgga	aaatattagg	aaacacagca	acaaaaattc	aaacgaccaa	gacgagttaa	2940
acatatattt	gggagttcag	tcgtcgaatg	caaagcgtaa	aaaatattaa	taaggtaaaa	3000
attacagcta	cataaattac	acaatttaaa	ctgcagtctg	gagatacgga	cctttaattc	3060
aacccaacac	aatatattat	agttaaataa	gaattattat	caaatcattt	gtatattaat	3120

taaaatacta	tactgtaaat	tacattttat	ttacaatcac	tcgacctcga	gatggtgagc	3180
aagggcgagg	agctgttcac	cggggtggtg	cccatcctgg	tcgagctgga	cggcgacgta	3240
aacggccaca	agttcagcgt	gtccggcgag	ggcgagggcg	atgccaccta	cggcaagctg	3300
accctgaagt	tcatctgcac	caccggcaag	ctgcccgtgc	cctggcccac	cctcgtgacc	3360
accetgacet	acggcgtgca	gtgcttcagc	cgctaccccg	accacatgaa	gcagcacgac	3420
ttcttcaagt	ccgccatgcc	cgaaggctac	gtccaggagc	gcaccatctt	cttcaaggac	3480
gacggcaact	acaagacccg	cgccgaggtg	aagttcgagg	gcgacaccct	ggtgaaccgc	3540
atcgagctga	agggcatcga	cttcaaggag	gacggcaaca	tcctggggca	caagctggag	3600
tacaactaca	acagccacaa	cgtctatatc	atggccgaca	agcagaagaa	cggcatcatg	3660
gtgaacttca	agatccgcca	caacatcgag	gacggcagcg	tgcagctcgc	cgaccactac	3720
cagcagaaca	ccccatcgg	cgacggcccc	gtgctgctgc	ccgacaacca	ctacctgagc	3780
acccagtccg	ccctgagcaa	agaccccaac	gagaagcgcg	atcacatggt	cctgctggag	3840
ttcgtgaccg	ccgccgggat	cactctcggc	atggacgagc	tgtacaagta	a	3891

REIVINDICACIONES

1. Pupa que comprende un baculovirus recombinante y/o un bácmido derivado del virus multicápside de la polihedrosis nuclear de Autographa californica (AcMNPV), en la que la pupa pertenece al género 5 Trichoplusia. 2. Pupa según la reivindicación 1, en la que el baculovirus recombinante y/o el bácmido comprenden una secuencia de ácido nucleico que codifica para una proteína recombinante. 10 3. Pupa según una cualquiera de las reivindicaciones 1 ó 2, en la que el baculovirus y/o el bácmido comprenden una secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE-1, IE-0 y/o fragmentos de las mismas que actúan como reguladores de la transcripción por encima de los niveles endógenos obtenidos durante la infección por baculovirus y una región homóloga recombinante (hr) ligada operativamente a cualquier promotor que es adecuado para 15 dirigir la expresión de una proteína recombinante, en la que la secuencia de ácido nucleico que permite la expresión de las proteínas IE-1, IE-0 y/o fragmentos de las mismas se selecciona del grupo que consiste en: 20 (a) un ácido nucleico que contiene la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 1-5; (b) una secuencia de ácido nucleico que tiene una identidad de secuencia de al menos el 70% con la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 1-5 y que codifica para una proteína que puede actuar como regulador de la transcripción en un baculovirus recombinante; 25 (c) una secuencia de ácido nucleico que codifica para un aminoácido que contiene la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9; y 30 (d) una secuencia de ácido nucleico que codifica para una secuencia de aminoácidos que tiene una similitud de secuencia de al menos el 70% con la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9 que puede actuar como regulador de la transcripción en un baculovirus recombinante. 35 4. Pupa que comprende una secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE-1, IE-0 y/o fragmentos de las mismas que actúan como reguladores de la transcripción por encima de los niveles endógenos obtenidos durante la infección por baculovirus y una región homóloga recombinante (hr) ligada operativamente a cualquier promotor que es adecuado para dirigir la expresión de una proteína recombinante, en la que la pupa pertenece al género Trichoplusia, 40 en la que la secuencia de ácido nucleico que permite la expresión de las proteínas IE-1, IE-0 y/o fragmentos de las mismas se selecciona del grupo que consiste en: (a) un ácido nucleico que contiene la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 1-5; 45 (b) una secuencia de ácido nucleico que tiene una identidad de secuencia de al menos el 70% con la secuencia de nucleótidos indicada en cualquiera de SEQ ID NO: 1-5 y que codifica para una proteína que puede actuar como regulador de la transcripción en un baculovirus recombinante; 50 (c) una secuencia de ácido nucleico que codifica para un aminoácido que contiene la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9; y (d) una secuencia de ácido nucleico que codifica para una secuencia de aminoácidos que tiene 55 una similitud de secuencia de al menos el 70% con la secuencia de aminoácidos indicada en cualquiera de SEQ ID NO: 6-9 que puede actuar como regulador de la transcripción en un baculovirus recombinante. 5. Pupa según una cualquiera de las reivindicaciones 2 a 4, en la que el promotor que dirige la expresión de 60 dicha proteína recombinante se selecciona del grupo de ácidos nucleicos que comprende:

NO: 10-14; y

65

(a) un ácido nucleico que contiene la secuencia de nucleótidos indicada en cualquiera de SEQ ID

(b) una secuencia de ácido nucleico que puede actuar como promotor en un baculovirus recombinante y que tiene una identidad de secuencia de al menos el 70% con la secuencia de

nucleótidos indicada en cualquiera de SEQ ID NO: 10-14; y/o

en la que la región homóloga recombinante (hr) es la secuencia indicada en SEQ ID NO: 21 (hr1).

- 5 6. Pupa según una cualquiera de las reivindicaciones 2 a 5, en la que la secuencia de ácido nucleico que comprende combinaciones de promotores recombinantes, secuencias que codifican para reguladores de la transcripción y regiones potenciadoras se seleccionan del grupo que comprende SEQ ID NO: 15-20.
- 7. Pupa según una cualquiera de las reivindicaciones 3 a 6, en la que la pupa comprende además una secuencia de ácido nucleico que codifica para una proteína recombinante.
 - 8. Uso de la pupa según una cualquiera de las reivindicaciones 1 a 7, para la expresión de proteínas recombinantes.
- 15 9. Método para producir al menos una proteína recombinante que comprende las etapas de:
 - (a) proporcionar una pupa;
 - (b) inocular la pupa de la etapa (a) con un baculovirus recombinante derivado del virus multicápside de la polihedrosis nuclear de *Autographa californica* (AcMNPV);
 - (c) incubar la pupa inoculada de la etapa (b) durante un periodo de tiempo suficiente para que se exprese la al menos una proteína recombinante; y
 - (d) obtener las pupas que comprenden la al menos una proteína recombinante,

en el que la pupa pertenece al género Trichoplusia.

- Método según la reivindicación 9, en el que el baculovirus recombinante comprende una secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE-1, IE-0 y/o fragmentos de las mismas que actúan como reguladores de la transcripción por encima de los niveles endógenos obtenidos durante la infección por baculovirus y una región homóloga recombinante (*hr*) ligada operativamente a cualquier promotor que es adecuado para dirigir la expresión de una proteína recombinante, en el que la secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE-1, IE-0 y/o fragmentos de las mismas que actúan como reguladores de la transcripción por encima de los niveles endógenos obtenidos durante la infección por baculovirus y la región homóloga recombinante (*hr*) ligada operativamente a cualquier promotor que es adecuado para dirigir la expresión de una proteína recombinante son según las reivindicaciones 3 y/o 4;
- en el que, opcionalmente, la secuencia de ácido nucleico que comprende combinaciones de promotores recombinantes, secuencias que codifican para reguladores de la transcripción y regiones potenciadoras se seleccionan del grupo que comprende SEQ ID NO: 15-20.
- 11. Método según una cualquiera de las reivindicaciones 9 a 10, en el que la pupa comprende además una secuencia de ácido nucleico que codifica para una proteína recombinante.
 - 12. Método según la reivindicación 9, en el que la pupa de la etapa (a) es una pupa libre de seda;
 - en el que, opcionalmente, la pupa libre de seda se obtiene o puede obtenerse a través de un método para producir una pupa libre de seda, que comprende las etapas de:
 - (a) proporcionar una pupa contenida en un capullo de seda;
 - (b) tratar el capullo de seda que contiene una pupa con una disolución de una sal de ácido hipocloroso; y
 - (c) obtener una pupa libre de seda y desinfectada externamente.
 - 13. Método para producir un baculovirus recombinante que comprende las etapas de:
 - (a) proporcionar una pupa libre de seda que pertenece al género Trichoplusia;
 - (b) transfectar la pupa de la etapa (a) con un bácmido adecuado para producir un baculovirus recombinante derivado del virus multicápside de la polihedrosis nuclear de *Autographa californica* (AcMNPV);

88

60

50

55

20

25

65

- (c) incubar la pupa inoculada de la etapa (b) durante un periodo de tiempo suficiente para que se produzca el baculovirus recombinante; γ
- (d) obtener las pupas que comprenden el baculovirus recombinante.
- 5 14. Método según la reivindicación 13, en el que el bácmido adecuado para producir un baculovirus recombinante derivado del virus multicápside de la polihedrosis nuclear de Autographa californica (AcMNPV) comprende o alternativamente, consiste en, una secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE-1, IE-0 y/o fragmentos de las mismas 10 que actúan como reguladores de la transcripción por encima de los niveles endógenos obtenidos durante la infección por baculovirus y una región homóloga recombinante (hr) ligada operativamente a cualquier promotor que es adecuado para dirigir la expresión de una proteína recombinante, en el que la secuencia de ácido nucleico que permite la expresión por encima de los niveles endógenos de las proteínas IE-1, IE-0 y/o fragmentos de las mismas que actúan como reguladores de la transcripción por encima de los niveles 15 endógenos obtenidos durante la infección por baculovirus y la región homóloga recombinante (hr) ligada operativamente a cualquier promotor que es adecuado para dirigir la expresión de una proteína recombinante son según las reivindicaciones 3 y/o 4;
- en el que, opcionalmente, la secuencia de ácido nucleico que comprende combinaciones de promotores recombinantes, secuencias que codifican para reguladores de la transcripción y regiones potenciadoras se seleccionan del grupo que comprende SEQ ID NO: 15-20.
- Uso de un dispositivo que comprende una bomba de precisión, un brazo mecánico móvil y una aguja adecuada para inyectar un fluido en una pupa
 - para inocular una pupa que pertenece al género *Trichoplusia* con un baculovirus recombinante derivado del virus multicápside de la polihedrosis nuclear de *Autographa californica* (AcMNPV);
- en el que, opcionalmente, el dispositivo comprende además un programa informático para definir la posición de la aguja y/o para calcular la distancia desde la aguja hasta la pupa y/o la distancia de penetración de la aguja en la pupa y/o el volumen de líquido que va a inocularse en la pupa.

Figura 1

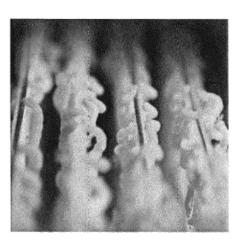
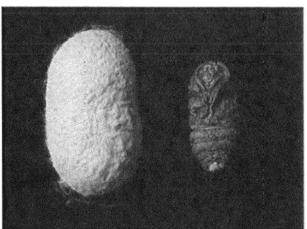
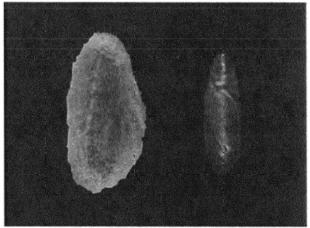




Figura 2

Bombyx mori

Trichoplusia ni

Figura 3

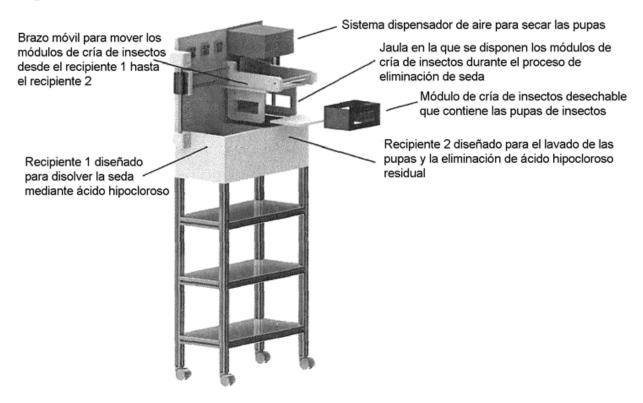


Figura 4

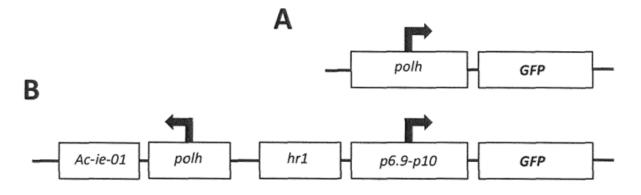
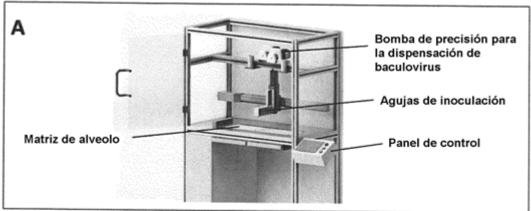
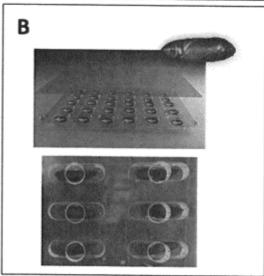




Figura 5

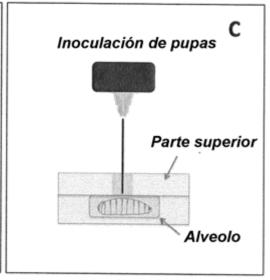
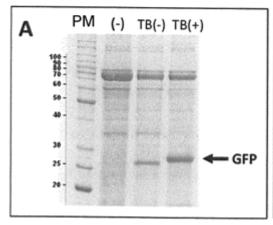



Figura 6

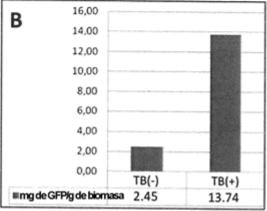


Figura 7

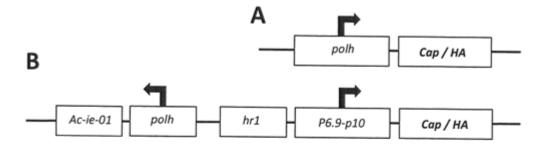
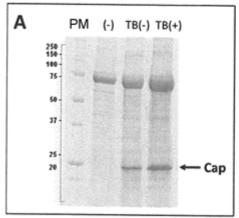



Figura 8

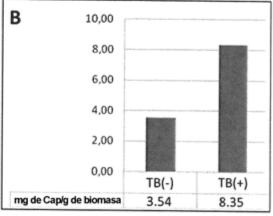
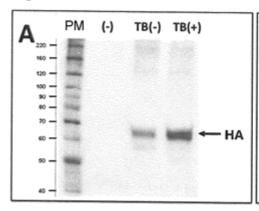



Figura 9

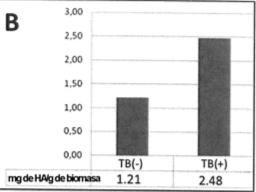


Figura 10

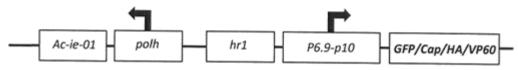
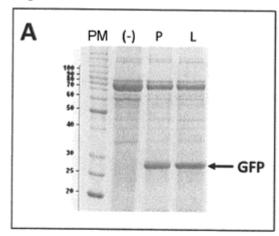



Figura 11

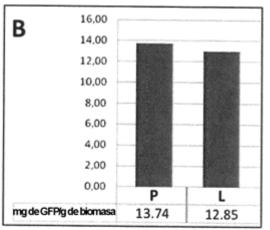
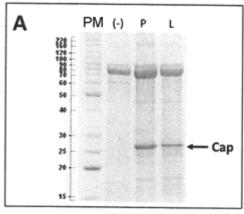



Figura 12

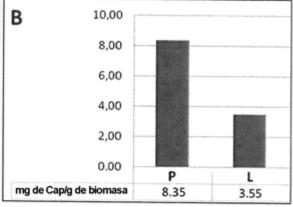
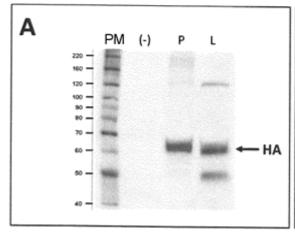



Figura 13

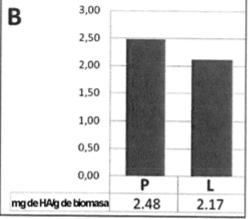
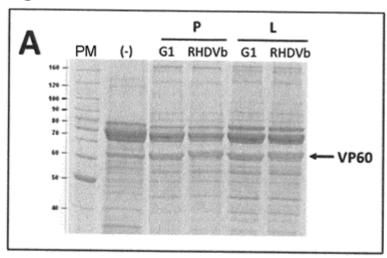
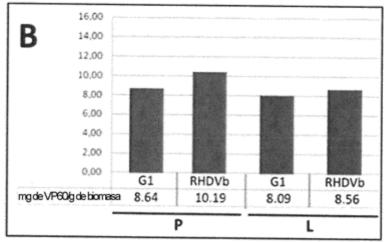
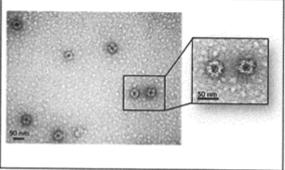
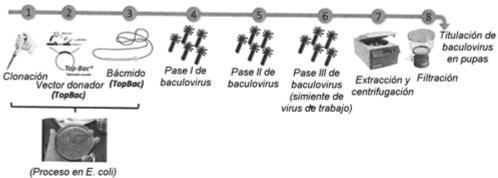



Figura 14






Figura 15

VLP RHDV G1 200,000 X VLP RHDVb 200,000 X

Figura 16

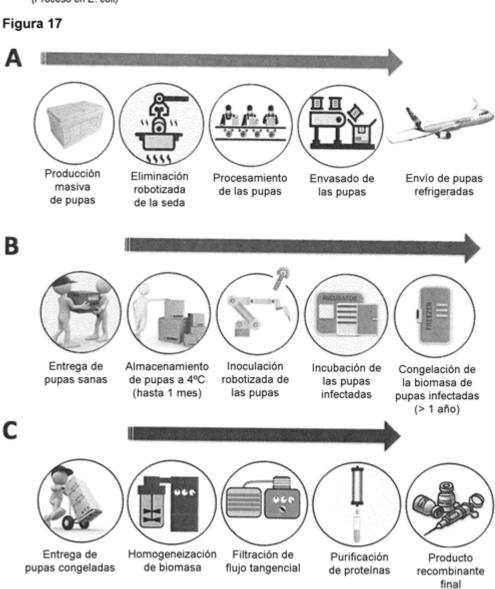


Figura 18

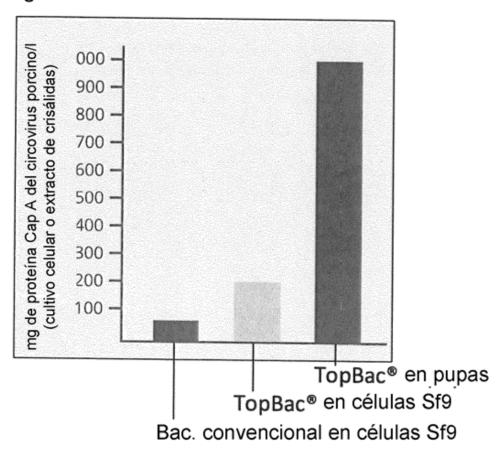


Figura 19

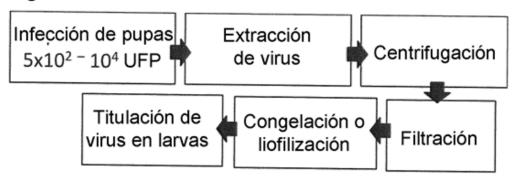
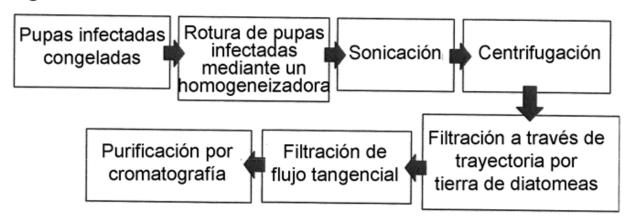



Figura 20

