

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 763 115

51 Int. Cl.:

C23C 2/02 (2006.01)
C23C 2/06 (2006.01)
C23C 2/14 (2006.01)
C23C 2/26 (2006.01)
C23C 2/30 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 09.01.2017 PCT/EP2017/050308

(87) Fecha y número de publicación internacional: 14.09.2017 WO17153063

(96) Fecha de presentación y número de la solicitud europea: 09.01.2017 E 17700503 (0)

(97) Fecha y número de publicación de la concesión europea: 02.10.2019 EP 3400317

(54) Título: Instalación para la galvanización en caliente y procedimiento de galvanización en caliente para la producción a gran escala

(30) Prioridad:

09.03.2016 DE 102016002783 16.03.2016 DE 102016104855 12.04.2016 DE 102016106662

45) Fecha de publicación y mención en BOPI de la traducción de la patente: 27.05.2020

(73) Titular/es:

FONTAINE HOLDINGS NV (100.0%) Centrum Zuid 2037 3530 Houthalen , BE

(72) Inventor/es:

PINGER, THOMAS y BAUMGÜRTEL, LARS

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Instalación para la galvanización en caliente y procedimiento de galvanización en caliente para la producción a gran escala

La presente invención se refiere al campo técnico de la galvanización de componentes a base de hierro o que contienen hierro, en particular componentes a base de acero o que contienen acero (componentes de acero), para la industria del automóvil o vehículos de motor, por medio de la galvanización en caliente (galvanización por inmersión en caliente).

En particular, la presente invención se refiere a una instalación y a un procedimiento para la galvanización en caliente (galvanización por inmersión en caliente) de componentes de vehículo (es decir, componentes de vehículo a base de hierro o que contienen hierro, componentes de vehículo a base de acero o que contienen acero (componentes de acero)), para galvanizar en caliente a gran escala una pluralidad de componentes de vehículo idénticos o similares en funcionamiento discontinuo (el denominado galvanizado por piezas).

10

15

20

25

30

50

55

Los componentes metálicos de cualquier tipo a base de material que contiene hierro, en particular los componentes a base de acero, a menudo requieren una protección eficaz contra la corrosión, dependiendo de la aplicación. En particular, los componentes a base de acero para vehículos (automotores), tales como por ejemplo, automóviles, camiones, vehículos de servicio, etc., requieren una protección eficaz contra la corrosión, que también resista exposiciones a largo plazo.

A este respecto, es una práctica conocida proteger los componentes a base de acero contra la corrosión mediante la galvanización (recubrimiento con zinc). En el galvanizado, se dota al acero de una capa generalmente delgada de zinc para proteger el acero de la corrosión. Para ello se pueden emplear diversos procedimientos de galvanización para galvanizar componentes de acero, es decir, para recubrirlos con un recubrimiento metálico de zinc, entre los cuales se puede mencionar en particular el galvanizado en caliente (también conocido como galvanizado por inmersión en caliente), el galvanizado por pulverización (pulverización a la llama con alambre de zinc), el galvanizado por difusión (galvanizado Sherard), el electrogalvanizado (galvanizado electrolítico), el galvanizado no electrolítico por medio de recubrimientos de escamas de zinc y también el galvanizado mecánico. Existen grandes diferencias entre los procedimientos de galvanización mencionados anteriormente, en particular con respecto a la implementación del procedimiento, pero también con respecto a la naturaleza y las propiedades de las capas de zinc o los recubrimientos de zinc producidos.

Probablemente el procedimiento más importante para la protección contra la corrosión del acero mediante recubrimientos metálicos de zinc, es el galvanizado en caliente (galvanizado por inmersión en caliente). Para ello, el acero se sumerge de forma continua (por ejemplo, bobina y alambre) o por partes (por ejemplo, componentes) a temperaturas de aproximadamente 450°C a 600°C en un tanque calentado con zinc fundido (punto de fusión del zinc: 419,5°C), para que se forme en la superficie del acero una capa de aleación resistente a base de hierro y zinc y por encima una capa de zinc puro adherida muy firmemente.

En el caso de una galvanización en caliente, se distingue entre el galvanizado discontinuo por piezas (véase, por ejemplo, UNE EN ISO 1461) y el galvanizado continuo de flejes (UNE EN 10143 y UNE EN 10346). Tanto el galvanizado por piezas como el galvanizado de flejes son procedimientos normalizados o estandarizados. El acero galvanizado de flejes es un producto preliminar o intermedio (producto semiacabado), que se procesa después de la galvanización, en particular, mediante conformado, estampado, recorte, etc., mientras que los componentes que se protegerán mediante una galvanización por piezas, se fabrican primero por completo y solo después se galvanizan en caliente (por lo que los componentes están totalmente protegidos contra la corrosión). El galvanizado por piezas y el galvanizado de flejes también difieren en cuanto al espesor de la capa de zinc, lo que da como resultado diferentes duraciones de la protección. El espesor de la capa de zinc de láminas galvanizadas de flejes suele ser de 20 a 25 micrómetros como máximo, mientras que el espesor de la capa de zinc de las piezas de acero galvanizado por piezas suele oscilar entre 50 y 200 micrómetros e incluso más.

El galvanizado en caliente proporciona una protección contra la corrosión tanto activa como pasiva. La protección pasiva es proporcionada por el efecto barrera del recubrimiento de zinc. La protección activa contra la corrosión se debe al efecto catódico del recubrimiento de zinc. En comparación con los metales más nobles de la serie electroquímica, tales como el hierro, el zinc sirve como un ánodo sacrificial que protege el hierro subyacente de la corrosión hasta que el propio zinc se corroe por completo.

En el denominado galvanizado por piezas según la norma UNE EN ISO 1461, el galvanizado en caliente se lleva a cabo en su mayoría sobre componentes y construcciones de acero más grandes. Para ello, las piezas en bruto a base de acero o las piezas de trabajo completadas (componentes) se sumergen en el baño de zinc fundido después de un pretratamiento. En particular, la inmersión permite que se alcancen fácilmente incluso las superficies internas, las soldaduras y las áreas de difícil acceso de las piezas de trabajo o los componentes que se van a galvanizar.

El galvanizado en caliente convencional se basa en particular en la inmersión de componentes de hierro o acero en una masa fundida de zinc con formación de un recubrimiento de zinc o un revestimiento de zinc sobre la superficie de los componentes. Con el fin de garantizar la adhesión, la integridad y la uniformidad del recubrimiento de zinc,

generalmente se requiere de antemano una preparación cuidadosa de la superficie de los componentes que se van a galvanizar, lo que generalmente implica desengrasar con un lavado posterior, posteriormente un decapado ácido seguido de un lavado y finalmente un tratamiento con fundente (es decir, el denominado mordentado) con una operación de secado posterior.

La secuencia del proceso habitual en el galvanizado por piezas convencional por medio de una galvanización en caliente, es generalmente la siguiente. En el caso de galvanización por piezas de componentes idénticos o similares (por ejemplo, producción en serie de componentes de vehículo) por razones de economía del proceso y eficacia económica, por lo general se combinan o bien se agrupan los componentes durante todo el procedimiento (en particular, por medio de un transportador de mercancías común, diseñado por ejemplo, como una viga transversal o un soporte, o un dispositivo fijador o de sujeción común para una pluralidad de estos componentes idénticos o similares). Para este fin, se fija una pluralidad de componentes al transportador de mercancías a través de medios de fijación, tales como eslingas o alambres de sujeción, o similares. Posteriormente, los componentes en estado agrupado se conducen a través del transportador de mercancías a las etapas o estadios de tratamiento posteriores.

En primer lugar, las superficies de los componentes agrupados se someten a un desengrasado con el fin de eliminar los residuos de grasa y aceite, en donde se emplean agentes desengrasantes utilizados usualmente en forma de agentes desengrasantes acuosos alcalinos o ácidos. Después de la limpieza en el baño desengrasante, generalmente se continúa con un lavado, por lo general por inmersión en un baño de agua, con el fin de evitar el arrastre de los agentes desengrasantes con el material de galvanizado a la etapa de decapado posterior del procedimiento, siendo esto especialmente importante en particular en el caso de cambiar de un desengrase alcalino a un decapado ácido.

Esto viene seguido por un tratamiento con decapante (decapado), que en particular sirve para la eliminación de impurezas características, tales como óxido y escamas, de la superficie del acero. El decapado generalmente se lleva a cabo en ácido clorhídrico diluido, en donde la duración del procedimiento de decapado depende, entre otras cosas, del estado de contaminación (por ejemplo, el grado de oxidación) del material galvanizado y de la concentración de ácido y la temperatura del baño de decapado. Con el fin de evitar o minimizar el arrastre de ácido residual y/o sal residual con el material de la galvanización, generalmente se realiza una operación de lavado (etapa de lavado) después del tratamiento de decapado.

25

30

35

40

45

50

55

60

Posteriormente se realiza lo que se denomina mordentado (tratamiento con fundente), en donde la superficie de acero previamente desengrasada y decapada, se pone en contacto con lo que se denomina un fundente, que por lo general es una solución acuosa de cloruros inorgánicos, más frecuentemente con una mezcla de cloruro de zinc (ZnCl₂) y cloruro de amonio (NH₄Cl). Por un lado, una función del fundente es llevar a cabo una última purificación fina intensiva de la superficie del acero antes de la reacción de la superficie del acero con el zinc fundido, y disolver la capa de óxido de la superficie de zinc y también evitar una nueva oxidación de la superficie del acero antes del procedimiento de galvanización. Por otro lado, el fundente aumenta la capacidad de humectación entre la superficie del acero y el zinc fundido. Después del tratamiento con fundente, generalmente se lleva a cabo un secado con el fin de generar una película sólida de fundente sobre la superficie del acero y eliminar el agua adherida para evitar reacciones posteriores no deseadas (especialmente la formación de vapor de agua) en el baño de inmersión en zinc líquido.

Los componentes tratados previamente en la forma que se ha indicado anteriormente, se galvanizan en caliente a continuación mediante una inmersión en el fundido de zinc líquido. En el caso de una galvanización en caliente con zinc puro, el contenido en zinc de la masa fundida de acuerdo con la norma UNE EN ISO 1461, es de al menos un 98,0% en peso. Después de la inmersión del material galvanizado en el zinc fundido, este permanece en el baño de zinc fundido durante un período de tiempo suficiente, en particular hasta que el material galvanizado ha adoptado su temperatura y está cubierto con una capa de zinc. Por lo general, la superficie del fundido de zinc se limpia para retirar en particular óxidos, ceniza de zinc, residuos de fundente y similares, antes de que el material galvanizado se extraiga entonces de nuevo del fundido de zinc. El componente galvanizado en caliente se somete de este modo a continuación a un proceso de enfriamiento (por ejemplo, al aire o en un baño de agua). Finalmente, se retiran los medios de sujeción del componente, tales como por ejemplo, eslingas, alambres de sujeción o similares. Después del proceso de galvanización, generalmente tiene lugar un acabado posterior o un tratamiento posterior a veces laborioso. En este caso, se retiran en la medida de lo posible los residuos en exceso del baño de zinc, particularmente lo que se denominan bordes por goteo de la solidificación del zinc en los bordes, y además los residuos de óxido o ceniza que se adhieren al componente.

Un criterio para la calidad de una galvanización en caliente es el espesor del recubrimiento de zinc en µm (micrómetros). La norma UNE EN ISO 1461 especifica los valores mínimos de los espesores de recubrimiento requeridos, que se permiten, dependiendo del espesor del material, en el caso de una galvanización por piezas. En la práctica, los espesores de capa son significativamente más altos que los espesores de capa mínimos especificados en UNE EN ISO 1461. En general, los recubrimientos de zinc producidos mediante galvanización por piezas, tienen un espesor en el intervalo de 50 a 200 micrómetros e incluso más.

En el proceso de galvanización, se forma un recubrimiento de capas de aleación de hierro/zinc de composición diversa sobre la parte de acero, como resultado de una difusión mutua entre el zinc líquido y la superficie de acero.

Al extraer los objetos galvanizados en caliente, una capa de zinc, también denominada capa de zinc puro, permanece adherida a la capa de aleación más superior, teniendo esa capa de zinc una composición que corresponde a la del fundido de zinc. Debido a las altas temperaturas durante la inmersión en caliente, se forma inicialmente de ese modo una capa relativamente frágil basada en una aleación (cristales mixtos) entre hierro y zinc sobre la superficie del acero, y solo por encima de la misma se forma la capa de zinc puro. Aunque la capa de aleación de hierro/zinc relativamente frágil mejora la fuerza de adhesión al material base, también impide la conformabilidad del acero galvanizado. Mayores contenidos en silicio en el acero, del tipo que se usa en particular para el denominado calmado del acero durante su producción, conducen a una mayor reactividad entre el fundido de zinc y el material base y, en consecuencia, un fuerte crecimiento de la capa de aleación de hierro/zinc. De esta manera, se forman espesores de capa total relativamente altos. Aunque esto permite un período de protección contra la corrosión muy largo, sin embargo, también con el aumento del espesor de la capa de zinc aumenta consecuentemente el riesgo de que la capa se pueda desprender bajo una carga mecánica, en particular efectos locales abruptos, y se altere el efecto de protección contra la corrosión.

10

15

20

25

30

35

40

45

50

55

60

Con el fin de contrarrestar el problema descrito anteriormente de una aparición de la capa de aleación de hierro/zinc gruesa y quebradiza de rápido crecimiento, y también para permitir espesores de capa más bajos junto con una alta protección contra la corrosión durante la galvanización, a partir de la técnica anterior se conoce añadir además aluminio al fundido de zinc o al baño de zinc líquido. Por ejemplo, mediante la adición de un 5% en peso de aluminio a un fundido de zinc líquido, se produce una aleación de zinc/aluminio que tiene una temperatura de fusión más baja que el zinc puro. Al usar un fundido de zinc/aluminio (fundido de Zn/Al) o un baño de zinc/aluminio líquido (baño de Zn/Al), por un lado, se pueden lograr espesores de capa significativamente más bajos con una protección fiable contra la corrosión (generalmente inferiores a 50 micrómetros); por otro lado, no hay una formación de la capa de aleación de hierro/estaño frágil, ya que el aluminio - sin pretender estar ligado a ninguna teoría particular - forma inicialmente por así decirlo una capa barrera sobre la superficie del acero del componente en cuestión, sobre la cual se deposita a continuación la capa de zinc real. Por lo tanto, los componentes galvanizados en caliente pueden formarse fácilmente con un fundido de zinc/aluminio, pero, sin embargo, tienen mejores propiedades de protección contra la corrosión a pesar del espesor de capa significativamente menor, en comparación con la galvanización en caliente convencional con un fundido de zinc prácticamente exento de aluminio. Una aleación de zinc/aluminio utilizada en un baño de galvanización en caliente muestra propiedades de fluidez mejoradas en comparación con el zinc puro. Además, los recubrimientos de zinc producidos mediante una galvanización en caliente realizada con tales aleaciones de zinc/aluminio, tienen una mayor resistencia a la corrosión (que es de dos a seis veces mejor que la del zinc puro), mejor conformabilidad y mejor capacidad de barnizado que los recubrimientos de zinc formados a partir de zinc puro. Además, con esta tecnología también se pueden producir recubrimientos de zinc exentos de plomo.

Un procedimiento de ese tipo para la galvanización en caliente usando un fundido de zinc/aluminio o usando un baño de galvanización en caliente de zinc/aluminio, se conoce, por ejemplo, a partir del documento WO 2002/042512 A1 y las publicaciones relacionadas con esa familia de patentes (p. ej., los documentos EP 1 352 100 B1, DE 601 24 767 T2 y US 2003/0219543 A1). También se describe en el mismo fundentes adecuados para la galvanización en caliente por medio de baños de fundido de zinc/aluminio, ya que las composiciones de fundente para los baños de galvanización en caliente de zinc/aluminio son diferentes de las de la galvanización en caliente convencional con zinc puro. Con el procedimiento que se describe en el mismo, los recubrimientos de protección contra la corrosión se pueden producir con espesores de capa muy bajos (generalmente muy por debajo de 50 micrómetros y por lo general en el intervalo de 2 a 20 micrómetros) y con un peso muy bajo, junto con una rentabilidad elevada, por lo que el procedimiento descrito en el mismo se emplea comercialmente con la denominación de procedimiento microZINQ®.

En el caso de una galvanización en caliente por piezas de componentes en baños de fundido de zinc/aluminio, en particular, en el caso de una galvanización en caliente por piezas a gran escala de una gran cantidad de componentes idénticos o similares (por ejemplo, galvanización en caliente por piezas a gran escala de componentes de vehículo o de la industria automovilística), debido a la más difícil capacidad de humectación del acero con el fundido de zinc/aluminio, así como el bajo espesor de los recubrimientos de zinc o revestimientos de zinc, existe un problema en particular al someter los componentes idénticos o similares a condiciones de operación y secuencias operativas del proceso idénticas en una secuencia de proceso económico, en particular al implementar de manera fiable y reproducible un galvanizado en caliente de alta precisión, de una forma que permite integridades dimensionales idénticas para todos los componentes idénticos o similares. Esto se consigue en la técnica anterior, además de con un tratamiento previo complejo, especialmente con la selección de fundentes específicos, en particular esto se consigue por lo general mediante un control especial del proceso durante el proceso de galvanización, tal como por ejemplo, tiempos de inmersión prolongados de los componentes en el fundido de zinc/aluminio, ya que solo de esa manera se garantiza que no se produzcan defectos en los recubrimientos de zinc relativamente delgados o que no haya regiones sin recubrir o recubiertas de forma incompleta.

Para que una secuencia de proceso en la galvanización en caliente por piezas conocida de componentes idénticos o similares, especialmente en el caso de galvanización en caliente por piezas a gran escala, sea económica y para garantizar una secuencia de proceso idéntica, en la técnica anterior una variedad de componentes idénticos o similares que se van a galvanizar se reúnen o agrupan sobre un transportador de mercancías común o uno similar, por ejemplo, y se conducen en estado agrupado a través de las etapas individuales del procedimiento, y en

particular el baño de galvanización.

10

15

20

25

30

45

50

Sin embargo, la galvanización en caliente por piezas conocida tiene varias desventajas. Si los artículos en el transportador de mercancías están sujetos en dos o varias capas, y especialmente si el movimiento de inmersión del transportador de mercancías es el mismo que el movimiento de extracción, los componentes y/o las regiones de los componentes no permanecen inevitablemente durante el mismo tiempo en el fundido de zinc. Esto da como resultado diferentes tiempos de reacción entre el material de los componentes y el fundido de zinc y, en consecuencia, diferentes espesores de la capa de zinc sobre los componentes. Además, en el caso de componentes con alta sensibilidad a la temperatura, en particular en el caso de aceros de alta resistencia y resistencia ultra alta, tales como por ejemplo, para aceros de resorte, componentes de chasis y carrocerías, y piezas conformadas endurecidas por prensado, las diferencias en los tiempos de residencia en el fundido de zinc afectan a las características mecánicas del acero. Con el fin de garantizar unas características definidas de los componentes, es vital que se observen parámetros operativos definidos para cada componente individual.

Además, al extraer los componentes del fundido de zinc, se produce inevitablemente el escurrimiento del zinc y el goteo desde los bordes y los ángulos de los componentes. Esto crea protuberancias de zinc en el componente. La eliminación posterior de esas protuberancias de zinc, lo que generalmente se realiza de forma manual, representa un factor de coste significativo, especialmente cuando se trata de una galvanización de grandes cantidades de piezas y/o si los requisitos de tolerancia que se deben observar son exigentes. En el caso de un transportador de mercancías completamente cargado, generalmente no es posible llegar a todos los componentes y retirar individualmente las protuberancias de zinc directamente en el punto de galvanización. Por lo general, los componentes galvanizados después de la galvanización deben retirarse del transportador de mercancías y se deben examinar uno a uno manualmente y realizar un acabado posterior, lo cual es muy costoso.

Además, en el caso de una galvanización en caliente por piezas conocida, el movimiento de inmersión y extracción (emersión) del transportador de mercancías dentro y fuera del baño de galvanización, tiene lugar en el mismo lugar. La aparición inevitable de ceniza de zinc en el proceso, como un producto de reacción del fundente y el fundido de zinc, después de la inmersión de los componentes, que se acumula sobre la superficie del baño de zinc, hace que sea absolutamente necesario, antes de la extracción, eliminar la ceniza de zinc de la superficie mediante una retirada o lavado, para evitar que se adhiera a los componentes galvanizados al extraerlos, para crear la menor contaminación posible sobre el componente galvanizado. En vista del gran número de componentes en el baño de zinc y en vista de la accesibilidad igualmente mala de las superficies del baño de galvanizado, la eliminación de la ceniza de zinc de la superficie del baño generalmente resulta una operación muy complicada, y en algunos casos problemática. Por un lado, al retirar la ceniza de zinc de la superficie del baño de galvanización se produce un retraso en el proceso con una reducción de la productividad en el mismo momento y, por otro lado, existe una fuente de defectos en relación con la calidad de la galvanización de los componentes individuales.

En última instancia, en la galvanización en caliente por piezas conocida, los contaminantes y las protuberancias de zinc permanecen en los componentes galvanizados, y se deben eliminar mediante un trabajo manual posterior. Ese trabajo posterior suele ser muy costoso y lento. A este respecto, debe tenerse en cuenta que el trabajo posterior no solo significa limpieza o reparación, sino que también incluye, en particular, una inspección visual. Debido al proceso, todos los componentes tienen un riesgo de adherencia de contaminantes o de que estén presentes protuberancias de zinc que se tienen que retirar. En consecuencia, todos los componentes deben inspeccionarse individualmente. Solo esa inspección, sin ninguna etapa posterior de trabajo que pueda ser necesaria, representa un costo muy alto, especialmente en el sector de la producción a gran escala con un número muy elevado de componentes que se deben inspeccionar y unos requisitos de calidad muy elevados.

Los problemas mencionados anteriormente surgen en particular en relación con la producción a gran escala de componentes de vehículo. Con estos componentes, que se producen en grandes cantidades, es muy importante cumplir con los valores característicos exactamente especificados. A este respecto, una galvanización en caliente defectuosa tiene consecuencias a largo plazo.

El documento WO 95/04607 A1 se refiere a un procedimiento para la galvanización en caliente de componentes de acero, en el que se aplica un fundente sobre la superficie de los componentes de acero, en donde los componentes se calientan previamente en una atmósfera no reductora para secar el fundente y para introducir una energía térmica adicional.

Además, el documento US 6 277 443 B1 se refiere a un procedimiento discontinuo para galvanizar componentes de acero, en el que los recubrimientos de zinc tienen poco o nada de plomo, en donde los componentes se limpian, se decapan y se lavan y se sumergen en una solución de fundente caliente y luego se secan, antes de introducirlos en el baño de galvanización que presenta una aleación de zinc fundida.

Adicionalmente, el documento US 1 935 087 A se refiere a un dispositivo para aplicar una capa protectora sobre componentes metálicos, como tuberías de acero, en donde los componentes se sumergen en un baño de galvanización y se recubren con zinc y a continuación se retiran del baño de galvanización.

Además, el documento US 2003/219543 A1 se refiere a un fundente y a un baño fundente para la galvanización en

caliente, así como a un procedimiento y un baño de galvanización en caliente para galvanizar en caliente una pieza de hierro o acero, en donde la composición del fundente es de 60 a 80% en peso de cloruro de zinc, de 7 a 20% en peso de cloruro de amonio, de 2 a 20% en peso de un modificador de fundente el cual comprende al menos un metal alcalino o alcalinotérreo, y 0,1 a 5% en peso de al menos un compuesto procedente de NiCl₂, CoCl₂ y MnCl₂, y de 0,1 a 1,5% en peso de al menos un compuesto procedente de PbCl₂, SnCl₂, BiCl₃ y SbCl₃.

Finalmente, el documento US 3 639 142 A se refiere a un procedimiento de galvanización en caliente para componentes de acero alargados, en donde los componentes de acero alargados se tratan previamente y se sumergen en el baño de galvanización agrupados por medio de un transportador de mercancías en forma de gancho.

El problema subyacente a la presente invención es, por lo tanto, proporcionar una instalación o un procedimiento para galvanizar por piezas componentes de vehículo a base de hierro o que contienen hierro, en particular componentes de vehículo (componentes de acero) a base de acero o que contienen acero mediante una galvanización en caliente (galvanización por inmersión en caliente) en un fundido de zinc/aluminio (es decir, en un baño de zinc/aluminio líquido) para la galvanización en caliente a gran escala de una pluralidad de componentes de vehículo idénticos o similares, en donde los inconvenientes descritos anteriormente de la técnica anterior se deben evitar al menos en gran medida o al menos disminuir.

En particular, se proporciona una instalación o un procedimiento de este tipo, que permiten una economía de proceso mejorada y una secuencia de proceso más eficaz, en particular más flexible en comparación con las instalaciones o procedimientos convencionales de galvanización en caliente.

Para resolver el problema descrito anteriormente, la presente invención propone, de acuerdo con un <u>primer</u> aspecto de la presente invención: una instalación para la galvanización en caliente según la reivindicación 1; otras características adicionales, especialmente características particulares y/o ventajosas, de la instalación de acuerdo con la invención son objeto de las reivindicaciones dependientes relacionadas.

Además, la presente invención se refiere, de acuerdo con un <u>segundo</u> aspecto de la presente invención: a un procedimiento para galvanizar en caliente según la reivindicación del procedimiento independiente; otras características adicionales, especialmente características particulares y/o ventajosas, del procedimiento de acuerdo con la invención son objeto de las reivindicaciones del procedimiento relacionadas.

A partir de las siguientes realizaciones se entiende que las características, realizaciones, ventajas y similares, que se exponen a continuación con respecto solo a un aspecto de la invención, con el fin de evitar repeticiones, también se aplican por supuesto con respecto a los otros aspectos de la invención correspondientes, sin que sea necesaria ninguna mención especial de ello.

Para todos los datos relativos o porcentuales basados en el peso indicados a continuación, especialmente los datos relativos a cantidades o al peso, debe observarse además que en el contexto de la presente invención deben ser seleccionados por una persona experta de tal manera que en total, incluidos todos los componentes o ingredientes, especialmente como se definen más adelante, siempre suman 100% o 100% en peso; esto, sin embargo, es evidente para una persona experta.

En cualquier caso, el experto puede desviarse de los intervalos indicados a continuación, dependiendo de la aplicación o del caso individual, si es necesario, sin apartarse del alcance de la presente invención.

Además, es el caso que todos los datos de valores o parámetros o similares mencionados a continuación se pueden discernir o determinar en principio utilizando procedimientos de determinación estandarizados o bien normalizados, o explícitamente establecidos o de otro modo, con los métodos de determinación o medición conocidos por sí mismos por el experto en esa materia.

Dicho esto, la presente invención se definirá con detalle a continuación.

30

35

La invención se refiere a una instalación para la galvanización en caliente de componentes de vehículo para una galvanización en caliente a gran escala de una pluralidad de componentes de vehículo idénticos o similares con un dispositivo de galvanizado en caliente para galvanizar en caliente los componentes de vehículo y con un baño de galvanización que contiene una aleación de zinc/aluminio en forma fundida,

en donde se proporciona un dispositivo transportador con al menos un transportador de mercancías para transportar un grupo de componentes de vehículo que se van a fijar al transportador de mercancías,

en donde se proporciona un dispositivo de aplicación de fundente para aplicar un fundente sobre la superficie de los componentes de vehículo,

en donde se proporciona un dispositivo de manipulación para conducir, sumergir y extraer un componente de vehículo aislado en el baño de galvanización que contiene una aleación de zinc/aluminio en forma fundida del dispositivo de galvanización en caliente y

en donde el dispositivo de manipulación tiene al menos un medio de manipulación dispuesto entre el dispositivo de aplicación de fundente y el dispositivo de galvanización en caliente,

en donde el medio de manipulación está diseñado de tal manera que retira uno de los componentes de vehículo del grupo de componentes de vehículo y luego lo conduce al dispositivo de galvanización en caliente para una galvanización en caliente aislada y

en donde el medio de manipulación está configurado de tal manera que un componente de vehículo aislado se sumerge en una región de inmersión del baño de galvanización, después se desplaza desde la región de inmersión hacia una región de extracción adyacente y posteriormente se extrae en la región de extracción.

Por consiguiente, de acuerdo con el procedimiento, la invención se refiere a un procedimiento para galvanizar en caliente componentes de vehículo empleando una aleación de zinc/aluminio fundido para galvanizar en caliente a gran escala una pluralidad de componentes de vehículo idénticos o similares,

10

15

25

30

35

40

45

50

55

en donde los componentes de vehículo se fijan en estado agrupado junto con una pluralidad de componentes de vehículo adicionales a un transportador de mercancías de un dispositivo transportador,

en donde los componentes de vehículo están provistos de un fundente en su superficie, en donde los componentes de vehículo se someten a una galvanización en caliente en un baño de galvanización que comprende una aleación de zinc/aluminio fundido,

en donde en la galvanización en caliente, los componentes de vehículo se conducen en estado aislado al baño de galvanización, se sumergen en el mismo y a continuación se extraen del mismo,

en donde la galvanización en caliente se realiza sobre un componente de vehículo en estado aislado y

en donde un componente de vehículo en estado aislado se sumerge en una región de inmersión del baño de galvanización, después se desplaza desde la región de inmersión a una región de extracción adyacente y posteriormente se extrae en la región de extracción.

Como resultado, la invención se diferencia del estado de la técnica en que, en el contexto de una galvanización en caliente a gran escala, los componentes de vehículo que se van a galvanizar se conducen en estado aislado al baño de galvanización de la aleación de zinc/aluminio. Esto, que a primera vista parece una medida de producción a gran escala poco económica y que retrasa el proceso en comparación con una galvanización agrupada o simultánea de una pluralidad de componentes de vehículo, se ha encontrado que sorprendentemente es particularmente preferida para la producción de componentes de vehículo galvanizados en caliente de alta precisión.

Debido a aspectos económicos, la solución de acuerdo con la invención se ha refrenado inicialmente, ya que en el caso del proceso de galvanización por piezas conocido de la técnica anterior, dependiendo del tamaño y el peso, en algunos casos, varios cientos de componentes de vehículo se suspenden en un transportador de mercancías y se galvanizan juntos al mismo tiempo. Un aislamiento de los componentes de vehículo del transportador de mercancías antes de la galvanización y una galvanización en estado aislado aumenta de este modo en primer lugar la duración del propio proceso de galvanización.

Sin embargo, en relación con la invención, se ha reconocido que es necesaria una manipulación dirigida y optimizada en el proceso de galvanizado real, especialmente para los componentes de vehículo, en particular aquellos que están hechos a base de aceros de resistencia alta y resistencia muy alta que son sensibles a la temperatura. En el caso de una galvanización individual en relación con la instalación de acuerdo con la invención o el procedimiento de acuerdo con la invención, se puede garantizar sin duda que los componentes de vehículo están sujetos cada uno a parámetros operativos idénticos. Especialmente para aceros de resortes o para componentes de chasis y carrocería a base de aceros de resistencia alta y muy alta, tales como por ejemplo, piezas conformadas endurecidas por presión, esto desempeña un papel importante. Mediante la separación de los componentes de vehículo que se van a galvanizar, es posible que los tiempos de reacción entre el acero y el fundido de zinc sean los mismos en cada caso. Esto finalmente da como resultado un espesor constante de la capa de zinc. Además, como resultado de la galvanización, los valores característicos de los componentes de vehículo están influenciados de manera idéntica, ya que la invención garantiza que los componentes de vehículo estén expuestos cada uno a parámetros operativos idénticos.

Otra ventaja significativa de la invención es el resultado del hecho de que durante la separación de acuerdo con la invención, cada componente de vehículo se puede manipular y tratar con precisión, por ejemplo, mediante movimientos especiales de rotación y dirección del componente de vehículo cuando se extrae del fundido. Como resultado, el coste de un acabado posterior se puede reducir significativamente o incluso en algunos casos se puede evitar por completo. Además, la invención ofrece la posibilidad de que las adherencias de ceniza de zinc se puedan reducir significativamente y, a veces, incluso se eviten. Esto es posible porque el procedimiento de acuerdo con la invención se puede controlar de modo que un componente de vehículo que se va a galvanizar, en estado aislado, después de la inmersión se aleja del punto de inmersión y se desplaza hacia una ubicación alejada del punto de inmersión. Esto viene seguido por la extracción. Si bien la ceniza de zinc se eleva en la región del sitio de inmersión

y se encuentra en la superficie del sitio de inmersión, en el lugar de la extracción existe poco o ningún residuo de ceniza de zinc. Gracias a esta técnica especial, las adherencias de ceniza de zinc se pueden reducir significativamente o hasta evitar.

En el contexto de la presente invención, se ha encontrado que teniendo en cuenta que el acabado posterior que en parte ya no es necesario en el caso de la invención, el tiempo total de producción en la preparación de componentes de vehículo galvanizados se puede incluso reducir, en comparación con la técnica anterior, por lo que la invención proporciona finalmente una mayor productividad, en particular debido a que el acabado posterior manual que se tiene que realizar en la técnica anterior, consume mucho tiempo.

Otra ventaja basada en una instalación de galvanización individual, es que el tanque de galvanización no tiene que ser más ancho y profundo, sino que solo se necesita un tanque de galvanización estrecho. Esto reduce por tanto la superficie del baño de galvanización, que se puede proteger mejor de esta manera, de modo que las pérdidas por radiación se pueden reducir significativamente.

Como resultado, mediante la invención con la galvanización aislada se obtienen componentes de vehículo con mayor calidad y pureza en la superficie, en donde los componentes de vehículo han sido expuestos como tales en cada caso a condiciones de proceso idénticas y por lo tanto poseen las mismas características de componente. También en términos económicos, la invención ofrece ventajas económicas sobre la técnica anterior, ya que el tiempo de producción puede reducirse hasta en un 20%, teniendo en cuenta que el acabado posterior ya no es necesario o, a veces es muy limitado.

15

30

35

40

45

50

55

De acuerdo con el dispositivo, la instalación de acuerdo con la invención, comprende además del dispositivo de galvanización en caliente y el dispositivo de manipulación, una serie de dispositivos adicionales que están aguas arriba y/o aguas abajo del dispositivo de galvanización en caliente o del galvanizado en caliente. De acuerdo con la invención, la instalación de acuerdo con la invención, comprende un dispositivo transportador y un dispositivo de aplicación de fundente y, opcionalmente, también un dispositivo desengrasante y/o un dispositivo de acabado de la superficie y/o al menos un dispositivo de lavado y/o un dispositivo de secado y/o un dispositivo de enfriamiento rápido y/o un dispositivo de tratamiento posterior. Los dispositivos mencionados anteriormente se abordarán con mayor detalle a continuación.

El dispositivo transportador comprende al menos un transportador de mercancías para conducir o transportar un componente de vehículo o un grupo de componentes de vehículo que se van a fijar al transportador de mercancías. Además, el dispositivo transportador también puede tener una pluralidad de medios de transporte con transportadores de mercancías idénticos o de diseño diferente, en cada uno de los cuales se puede sujetar un componente de vehículo aislado o un grupo de componentes de vehículo. El dispositivo transportador se proporciona por tanto para transportar un componente de vehículo aislado y/o un grupo de componentes de vehículo a los dispositivos individuales mencionados anteriormente, en particular el dispositivo desengrasante y/o el dispositivo de acabado de la superficie, en particular el dispositivo de decapado y/o el dispositivo de aplicación de fundente y/o el dispositivo de secado. Además, el dispositivo transportador también se puede proporcionar y diseñar para conducir o transportar componentes de vehículo en estado aislado o agrupado al dispositivo de enfriamiento y/o al dispositivo de acabado posterior.

Además, la instalación de acuerdo con la invención comprende preferiblemente un dispositivo desengrasante para desengrasar los componentes de vehículo. El dispositivo desengrasante se puede proporcionar básicamente de manera descentralizada, es decir, no tiene que estar necesariamente en el mismo compartimento o edificio que los otros dispositivos mencionados anteriormente. Sin embargo, un dispositivo desengrasante descentralizado también forma parte de la instalación de acuerdo con la invención. En el dispositivo desengrasante, los componentes de vehículo se pueden desengrasar como un grupo, es decir, en estado agrupado, o también en estado aislado. El transporte de los componentes de vehículo al dispositivo desengrasante y fuera del mismo se realiza preferiblemente a través del dispositivo transportador mencionado anteriormente.

Además, la instalación de acuerdo con la invención comprende preferiblemente un dispositivo de acabado de la superficie para un tratamiento químico, en particular químico húmedo y/o mecánico de la superficie de los componentes de vehículo. En particular, el dispositivo de acabado de la superficie está diseñado como un dispositivo de decapado para decapar las superficies de los componentes de vehículo. El decapado de los componentes de vehículo puede tener lugar en estado aislado o agrupado. El transporte de los componentes de vehículo en estado aislado o agrupado al dispositivo de tratamiento de la superficie y fuera del mismo se realiza preferiblemente a través del dispositivo transportador mencionado anteriormente.

Además, la instalación de acuerdo con la invención comprende un dispositivo de aplicación de fundente para la aplicación de fundente a la superficie de los componentes de vehículo. La aplicación de fundente a los componentes de vehículo se puede realizar en estado aislado de los componentes de vehículo o también en estado agrupado con una pluralidad de otros componentes de vehículo simultáneamente. El transporte o el traslado de los componentes de vehículo, ya sea en estado aislado o agrupado, al dispositivo de aplicación de fundente y fuera del mismo, se lleva a cabo preferiblemente a través del dispositivo transportador, en donde los componentes de vehículo, aislados o agrupados, se fijan entonces al transportador de mercancías del dispositivo transportador.

Además, la instalación de acuerdo con la invención comprende preferiblemente un dispositivo de secado después del dispositivo de aplicación de fundente, de modo que el fundente se seca después de aplicarlo a la superficie de los componentes de vehículo. De esta forma, se evita que se produzca una entrada de líquido desde la solución de fundente en el baño de galvanización.

5 En particular, la instalación de acuerdo con la invención está diseñada de tal manera que los dispositivos mencionados anteriormente están dispuestos en el siguiente orden con respecto a la dirección del proceso:

10

15

20

40

45

50

55

- el dispositivo desengrasante proporcionado opcionalmente de forma descentralizada para desengrasar los componentes de vehículo en estado aislado o agrupado de los componentes de vehículo,
- el dispositivo de tratamiento de la superficie, en particular el dispositivo de decapado, para el tratamiento químico de la superficie, en particular químico húmedo y/o mecánico de los componentes de vehículo, preferiblemente para el decapado de las superficies de los componentes de vehículo en estado aislado o agrupado de los componentes de vehículo,
- el dispositivo de aplicación de fundente para la aplicación de fundente a la superficie de los componentes de vehículo en estado aislado o agrupado de los componentes de vehículo,
- el dispositivo de secado para secar el fundente aplicado a la superficie de los componentes de vehículo y
- el dispositivo de galvanizado en caliente para galvanizar en caliente los componentes de vehículo en estado aislado.

En la invención, es posible que después de una agrupación inicial de los componentes a través o sobre el transportador de mercancías, se realice la separación después del tratamiento de la superficie o después de la aplicación del fundente.

De acuerdo con el dispositivo, la separación de los componentes del transportador de mercancías a través del dispositivo de manipulación, se proporciona después del desengrasado o después del tratamiento de la superficie, en particular el decapado, o después de la aplicación de fundente.

En pruebas realizadas desde el aspecto de costes frente a beneficios, se ha encontrado que es más apropiado que los componentes se aíslen del transportador de mercancías después de la aplicación del fundente, por lo tanto, el dispositivo de manipulación se ubica entre el dispositivo de aplicación de fundente y el dispositivo de galvanizado en caliente. En esta configuración de la invención, el desengrasado, el tratamiento de la superficie y la aplicación del fundente tienen lugar en estado agrupado de los componentes, mientras que solo la galvanización se realiza en estado aislado.

De acuerdo con el dispositivo, se proporciona de acuerdo con la invención que el dispositivo de manipulación comprenda al menos un medio de manipulación dispuesto entre el dispositivo de aplicación de fundente y el dispositivo de galvanizado en caliente. Este medio de manipulación está diseñado de tal manera que toma uno de los componentes de vehículo del grupo de componentes de vehículo y luego lo conduce al dispositivo de galvanizado en caliente para una galvanización en caliente individual. El medio de manipulación puede por lo tanto tomar o retirar el componente de vehículo directamente del transportador de mercancías, o tomar el componente de vehículo del grupo de componentes de vehículo que ya han sido depositados por el transportador de mercancías.

En una realización alternativa de la instalación de acuerdo con la invención y el procedimiento asociado, se proporciona que el medio de manipulación está diseñado de tal manera que toma uno de los componentes de vehículo del grupo de componentes de vehículo, pero no conduce el componente de vehículo retirado directamente a la galvanización. El medio de manipulación puede entregar el componente de vehículo retirado del grupo de componentes de vehículo, por ejemplo, a un sistema transportador que pertenece al dispositivo de manipulación, por ejemplo, un transportador de mercancías o una pista monorraíl, a través del cual el componente de vehículo aislado se galvaniza entonces en estado aislado. En última instancia, se proporciona de acuerdo con la instalación en esta realización que el dispositivo de manipulación tenga al menos dos medios de manipulación, a saber, un primer medio de manipulación que realiza la separación de los componentes de vehículo desde el grupo de componentes de vehículo, y al menos un segundo medio de manipulación, por ejemplo, a modo de un sistema transportador, que conduce a continuación el componente de vehículo aislado a través del baño de galvanización.

El medio de manipulación está diseñado de tal manera que un componente de vehículo aislado se sumerge en una región de inmersión del baño, a continuación se traslada desde la región de inmersión a una región de extracción adyacente y posteriormente se extrae en la región de extracción. Como se ha indicado anteriormente, en la superficie de la región de inmersión se produce ceniza de zinc como un producto de reacción del fundente con el zinc fundido. Como resultado del movimiento del componente de vehículo sumergido en el zinc fundido desde la región de inmersión hasta la región de extracción, existe poca o ninguna ceniza de zinc en la superficie de la región de extracción. De esta manera, la superficie del componente de vehículo galvanizado extraído permanece exenta o al menos sustancialmente exenta de adherencias de ceniza de zinc. Se entiende que la región de inmersión es adyacente a la región de extracción, se trata de regiones del baño de galvanización que están separadas

espacialmente y, en particular, no se superponen.

30

35

40

45

50

55

En una configuración preferida del concepto de la invención mencionada anteriormente, además, se proporciona que después de la inmersión, el componente de vehículo permanece en la región de inmersión del baño de galvanización, al menos el tiempo necesario hasta que termina el tiempo de reacción entre la superficie del componente de vehículo y la aleación de zinc/aluminio del baño de galvanización. De esta manera, se garantiza que la ceniza de zinc, que se mueve hacia arriba dentro de la masa fundida, se extiende solo a la superficie de la región de inmersión. Posteriormente, el componente de vehículo se puede trasladar a la región de extracción, que está esencialmente exenta de ceniza de zinc, y se puede extraer allí.

En pruebas que se han llevado a cabo en relación con la invención, se ha descubierto que es conveniente que el componente de vehículo permanezca entre un 20% y 80%, preferiblemente al menos un 50%, de la duración de la galvanización en la región de inmersión y solo posteriormente se traslade a la región de extracción. En términos de una instalación técnica, esto significa que el dispositivo de manipulación o el o los medios de manipulación asociados están diseñados, si es necesario, adaptados entre sí, mediante un control apropiado para que el orden del procedimiento mencionado anteriormente pueda llevarse a cabo sin problemas.

Particularmente, en el caso de componentes de vehículo a base de aceros sensibles a la temperatura y en el caso de requisitos específicos del cliente para componentes de vehículo con propiedades de producto lo más idénticas posibles, se proporciona de acuerdo con la instalación y el procedimiento que el medio de manipulación o el dispositivo de manipulación está diseñado de tal manera que todos los componentes de vehículo en estado aislado se conducen de manera idéntica, en particular con un movimiento idéntico, a una disposición idéntica y/o con un tiempo idéntico, a través del baño de galvanización. Finalmente, esto se puede lograr fácilmente mediante un control correspondiente del dispositivo de manipulación o de al menos un medio de manipulación asociado. Debido a la manipulación idéntica, los componentes de vehículo idénticos, es decir, los componentes de vehículo que se componen en cada caso del mismo material y que tienen en cada caso la misma forma, tienen las mismas propiedades de producto en cada caso. Estas incluyen no solo espesores idénticos de la capa de zinc, sino también características idénticas de los componentes de vehículo galvanizados, ya que estos se han guiado de manera idéntica a través del baño de galvanización.

Además, una ventaja proporcionada por la invención como resultado de la separación, de acuerdo con la instalación y el procedimiento, es que las protuberancias de zinc se pueden evitar fácilmente. Para este fin, se proporciona de acuerdo con la instalación, un dispositivo de escurrido después de la región de extracción, en donde en una configuración preferida de este concepto de la invención, el medio de manipulación o el dispositivo de manipulación está diseñado de tal manera que después de la extracción todos los componentes de vehículo en estado aislado se conducen para que pasen por el dispositivo de escurrido para escurrir el zinc líquido de una manera idéntica. En una configuración alternativa, que también se puede realizar en combinación con el dispositivo de escurrido, se proporciona que todos los componentes de vehículo en estado aislado se muevan de una manera idéntica después de la extracción, de modo que se eliminen los bordes por goteo de zinc líquido, en particular mediante goteo y/o se extiendan uniformemente sobre las superficies del componente de vehículo.

De este modo, a través de la invención es posible finalmente conducir cada componente de vehículo aislado de una forma definida no solo a través del baño de galvanización, sino también a una posición específica, por ejemplo, una posición inclinada del componente de vehículo, y trasladarlo para hacerlo pasar por uno o más escurridores y/o que cada componente de vehículo se mueva mediante movimientos rotacionales y/o de dirección específicos después de la extracción, de un modo tal que se eviten al menos sustancialmente las protuberancias de zinc.

Además, la instalación de acuerdo con la invención comprende preferiblemente una pluralidad de dispositivos de lavado, opcionalmente con una pluralidad de etapas de lavado. Por lo tanto, se proporciona preferiblemente un dispositivo de lavado después del dispositivo desengrasante y/o después del dispositivo de tratamiento de la superficie. Los dispositivos de lavado individuales aseguran en última instancia que los agentes desengrasantes utilizados en el dispositivo desengrasante o los agentes de tratamiento de la superficie utilizados en el dispositivo de tratamiento de la superficie, no se arrastren a la siguiente etapa del procedimiento.

En el caso de un desarrollo preferido de la invención, se proporciona un dispositivo de enfriamiento, en particular un dispositivo de enfriamiento rápido, después del dispositivo de galvanización en caliente, en donde el componente de vehículo se enfría o se enfría rápidamente después de la galvanización en caliente.

Además, se puede proporcionar un dispositivo de tratamiento posterior, en particular después del dispositivo de enfriamiento. El dispositivo de tratamiento posterior se utiliza en particular para la pasivación, sellado o coloración de los componentes de vehículo galvanizados. Sin embargo, la etapa de tratamiento posterior también puede incluir, por ejemplo, el acabado posterior, en particular la eliminación de impurezas y/o la eliminación de protuberancias de zinc. Sin embargo, como se ha indicado anteriormente, la etapa de acabado posterior en la invención se reduce considerablemente y, a veces, incluso es innecesaria, en comparación con el procedimiento conocido en la técnica anterior.

Además, en la invención se proporciona de acuerdo con la instalación y/o el procedimiento, que el zinc y el aluminio

del baño de galvanización estén en una relación en peso de zinc/aluminio en el intervalo de 55-99,999:0,001-45, preferiblemente de 55-99,97:0,03-45, especialmente de 60-98:2-40, preferiblemente de 70-96:4-30. Alternativa o adicionalmente, el baño de galvanización tiene la siguiente composición, en la cual los datos del peso se basan en el baño de galvanización y la suma de todos los componentes de la composición da como resultado un 100% en peso:

- (i) zinc, en particular en cantidades en el intervalo de 55 a 99,999% en peso, preferiblemente de 60 a 98% en peso,
 - (ii) aluminio, en particular en cantidades en el intervalo de 0,1 al 45% en peso, preferiblemente de 2 a 40% en peso.
- (iii) opcionalmente silicio, en particular en cantidades en el intervalo de 0,0001 a 5% en peso, preferiblemente de 0,001 a 2% en peso;
 - (iv) opcionalmente al menos un ingrediente adicional y/u opcionalmente al menos una impureza, en particular del grupo de metales alcalinos tales como sodio y/o potasio, metales alcalinotérreos tales como calcio y/o magnesio y/o metales pesados tales como cadmio, plomo, antimonio, bismuto, en particular en cantidades totales en el intervalo de 0,0001 a 10% en peso, preferiblemente de 0,001 a 5% en peso.
- 15 En relación con pruebas llevadas a cabo, se ha descubierto que en el caso de baños de zinc con la composición indicada anteriormente, es posible conseguir recubrimientos muy delgados y muy homogéneos sobre el componente de vehículo, que también satisfacen los requisitos elevados en relación con la calidad de los componentes de vehículo en la ingeniería de vehículos.
- Alternativa o adicionalmente, el fundente tiene la siguiente composición, en la cual los datos del peso se basan en el fundente y la suma de todos los componentes de la composición da como resultado un 100% en peso:
 - (i) cloruro de zinc (ZnCl₂), en particular en cantidades en el intervalo de 50 a 95% en peso, preferiblemente de 58 a 80% en peso;
 - (ii) cloruro de amonio (NH_4CI), en particular en cantidades en el intervalo de 5 a 50% en peso, preferiblemente de 7 a 42% en peso;
- 25 (iii) opcionalmente al menos una sal de metal alcalino y/o alcalinotérreo, preferiblemente cloruro de sodio y/o cloruro de potasio, en particular en cantidades totales en el intervalo de 1 a 30% en peso, preferiblemente de 2 a 20% en peso;
 - (iv) opcionalmente al menos un cloruro metálico, preferiblemente un cloruro de metal pesado, preferentemente seleccionado a partir del grupo de cloruro de níquel (NiCl₂), cloruro de manganeso (MnCl₂), cloruro de plomo (PbCl₂), cloruro de cobalto (CoCl₂), cloruro de estaño (SnCl₂), cloruro de antimonio (SbCl₃) y/o cloruro de bismuto (BiCl₃), en particular en cantidades totales en el intervalo de 0,0001 a 20% en peso, preferiblemente de 0,001 a 10% en peso;
 - (v) opcionalmente al menos un aditivo adicional, preferiblemente un agente humectante y/o un tensioactivo, en particular en cantidades en el intervalo de 0,001 a 10% en peso, preferiblemente de 0,01 a 5% en peso.
- Alternativa o adicionalmente, se proporciona que el dispositivo de aplicación de fundente, en particular el baño de fundente del dispositivo de aplicación de fundente contiene el fundente preferiblemente en solución acuosa, en particular en cantidades y/o concentraciones del fundente en el intervalo de 200 a 700 g/l, en particular de 350 a 550 g/l, preferiblemente de 500 a 550 g/l, y/o que el fundente se usa preferiblemente como una solución acuosa, en particular con cantidades y/o concentraciones del fundente en el intervalo de 200 a 700 g/l, en particular de 350 a 550 g/l, preferiblemente de 500 a 550 g/l.
 - En pruebas con un fundente con la composición y/o concentración mencionadas anteriormente, en particular en relación con la aleación de zinc/aluminio descrita anteriormente, se ha descubierto que se obtienen espesores de capa muy bajos, en particular menores de 20 µm, estando esto asociado a un peso menor y costes reducidos. Especialmente en el sector de los vehículos, estos son criterios esenciales.
- Otras características, ventajas y aplicaciones posibles de la presente invención, se harán evidentes a partir de la siguiente descripción de realizaciones ejemplares basadas en las figuras y a partir de las propias figuras. En este caso, todas las características descritas y/o ilustradas, solas o en cualquier combinación, constituyen la materia objeto de la presente invención, independientemente de su resumen en las reivindicaciones o su referencia de dependencia.
- 50 Se muestra en:

5

30

- la Fig. 1 una secuencia esquemática de las etapas individuales del procedimiento de acuerdo con la invención,
- la Fig. 2 una representación esquemática de una instalación de acuerdo con la invención y de la secuencia del

procedimiento de acuerdo con la invención en una etapa del procedimiento,

5

10

15

20

30

35

40

- la Fig. 3 una representación esquemática de una instalación de acuerdo con la invención y de la secuencia del procedimiento de acuerdo con la invención en una etapa adicional del procedimiento y
- la Fig. 4 una representación esquemática de una instalación de acuerdo con la invención y de la secuencia del procedimiento de acuerdo con la invención en una etapa adicional del procedimiento.

En la Fig. 1, se representa esquemáticamente una secuencia del procedimiento de acuerdo con la invención en una instalación 1 de acuerdo con la invención. En este contexto, debe señalarse que el esquema de la secuencia mostrada se trata de un procedimiento posible de acuerdo con la invención, pero que etapas individuales del procedimiento también se pueden omitir o proporcionar en un orden diferente al mostrado y descrito a continuación. Además, se pueden proporcionar etapas adicionales del procedimiento. Además, es el caso que no todas las etapas del procedimiento se deben proporcionar básicamente en una instalación 1 centralizada. También es posible una realización descentralizada de algunas etapas individuales del procedimiento.

En el esquema de la secuencia que se muestra en la Fig. 1, la etapa A designa la entrega y el depósito de los componentes de vehículo 2 que se van a galvanizar en un punto de conexión. Los componentes de vehículo 2 ya están tratados mecánicamente en la superficie en el presente ejemplo, en particular con chorro de arena. Esto es posible pero no necesario.

En la etapa B, los componentes de vehículo 2 se unen con el transportador de mercancías 7 de un dispositivo transportador 3 para formar un grupo de componentes de vehículo 2. En parte, los componentes de vehículo 2 también están unidos entre sí y, por lo tanto, solo indirectamente con el transportador de mercancías 7. También es posible que el transportador de mercancías 7 tenga una cesta, un bastidor o similar, en el que se colocan los componentes de vehículo 2.

En la etapa C, tiene lugar un desengrasado de los componentes de vehículo 2. En este caso, se utilizan agentes desengrasantes 11 alcalinos o ácidos para eliminar los residuos de grasa y aceite de los componentes 2.

En la etapa D, se proporciona un lavado, en particular con agua, de los componentes de vehículo 2 desengrasados.

De esta manera se retiran por lavado los residuos del agente desengrasante 11 de los componentes de vehículo 2.

En la etapa E del procedimiento se produce un decapado de las superficies de los componentes de vehículo 2, es decir, un tratamiento superficial químico húmedo. El decapado se lleva a cabo generalmente en ácido clorhídrico diluido.

La etapa E viene seguida por la etapa F, que a su vez es un lavado, en particular con agua, para evitar que el agente de decapado se arrastre a las etapas posteriores del procedimiento.

Los componentes de vehículo 2 que se van a galvanizar, limpios y decapados correspondientes, aún ensamblados en forma de grupo en el transportador de mercancías 4, se someten a un mordentado, a saber un tratamiento con fundente. El tratamiento con fundente en la etapa H también se lleva a cabo a su vez en una solución acuosa de fundente. Después de un tiempo de permanencia suficiente en el fundente 23, el transportador de mercancías 7 con los componentes de vehículo 2 se somete a un secado en la etapa I para producir una película de fundente sólida en la superficie de los componentes de vehículo 2 y eliminar el agua adherida.

En la etapa J del procedimiento, los componentes de vehículo 2 previamente ensamblados como un grupo, se aíslan, es decir, se retiran del grupo y posteriormente se tratan adicionalmente en estado aislado. El aislamiento puede tener lugar retirando los componentes de vehículo 2 individualmente del transportador de mercancías 7 o también de modo que en primer lugar el transportador de mercancías 7 deposita el grupo de componentes de vehículo 2 y los componentes de vehículo 2 se retiran individualmente del grupo.

Después del aislamiento en la etapa J, a continuación los componentes de vehículo 2 se galvanizan en caliente en la etapa K. Para este fin, los componentes de vehículo 2 se sumergen cada uno individualmente en un baño de galvanización 28 y después de un tiempo de permanencia predeterminado, se extraen de nuevo.

- La galvanización en la etapa K del procedimiento viene seguida por el goteo del zinc todavía líquido en la etapa L. El goteo se lleva a cabo, por ejemplo, moviendo el componente de vehículo 2 galvanizado en estado aislado, a lo largo de uno o varios escurridores de un dispositivo de escurrido o mediante movimientos pivotantes y giratorios predeterminados del componente de vehículo 2, lo que conduce o bien al goteo o a una distribución uniforme del zinc sobre la superficie del componente de vehículo.
- 50 Posteriormente, el componente de vehículo galvanizado se enfría rápidamente en la etapa M.

El enfriamiento rápido en la etapa M del procedimiento viene seguido por un tratamiento posterior en la etapa N, que puede ser, por ejemplo, una pasivación, un sellado o un recubrimiento orgánico o inorgánico del componente de vehículo 2 galvanizado. Sin embargo, el tratamiento posterior también incluye un posible acabado posterior del componente de vehículo 2.

Debe señalarse expresamente que en el caso de realizaciones a modo de ejemplo no mostradas, es fácilmente posible que el procedimiento descrito anteriormente también se lleve a cabo de un modo tal que un componente de vehículo 2 aislado o un pequeño grupo en forma de algunos componentes de vehículo, por ejemplo, dos o tres componentes de vehículo, recorran todo el proceso en estado aislado sin que durante el proceso se realice una agrupación o tratamiento agrupado de los componentes de vehículo. Por lo tanto, es posible que el componente de vehículo 2 al comienzo del procedimiento se recoja del dispositivo transportador 3 y se conduzca a través de las etapas individuales del procedimiento hasta trasladarlo a un dispositivo de manipulación 31 y se conduzca a la etapa de galvanizado en caliente. Después de la galvanización en caliente, el componente de vehículo galvanizado se puede conducir a través del dispositivo de manipulación 31 o, a su vez, del dispositivo transportador 3, al dispositivo de enfriamiento 29 y/o al dispositivo de tratamiento posterior 30.

10

15

30

35

40

50

55

Alternativamente, es posible que al comienzo de toda la secuencia del proceso, primero se transporte un grupo de componentes de vehículo 2 a través del dispositivo transportador 3 y se aísle el componente de vehículo después del desengrasado y el lavado asociado y/o el tratamiento de la superficie y el lavado asociado, después de lo cual los componentes de vehículo 2 en estado aislado se conducen a través del proceso en curso al menos hasta incluir la galvanización en caliente. Posteriormente, el componente de vehículo 2 ya galvanizado, se puede procesar adicionalmente en estado aislado o agrupar nuevamente y someter a un procesamiento adicional en estado agrupado.

En las Figs. 2 a 4, se muestra esquemáticamente una realización a modo de ejemplo de una instalación 1 de acuerdo con la invención.

En las Figs. 2 a 4, en una representación esquemática se muestra una realización de una instalación 1 de acuerdo con la invención para el galvanizado en caliente o por inmersión en caliente de componentes de vehículo 2. La instalación 1 está destinada a la galvanización en caliente de una pluralidad de componentes de vehículo 2 idénticos, en una operación discontinua, la denominada galvanización por piezas. De acuerdo con la invención, la instalación 1 está diseñada y es adecuada para la galvanización en caliente de componentes de vehículo 2 a gran escala. La galvanización a gran escala se refiere a una galvanización, en la que se galvanizan sucesivamente más de 100, en particular más de 1000 y preferiblemente más de 10.000 componentes de vehículo 2 idénticos, sin que se produzca a la vez una galvanización de los componentes de vehículo 2 de diferente forma y tamaño.

La instalación 1 comprende un dispositivo transportador 3 para trasladar o para transportar simultáneamente una pluralidad de componentes de vehículo 2, que están unidos formando un grupo. En el presente caso, el dispositivo transportador 3 es una vía de grúa con una guía de raíl 4, sobre la cual se puede desplazar un carro 5 con un mecanismo de elevación. Un transportador de mercancías 7 está conectado con el carro 5 a través de un cable de elevación 6. El transportador de mercancías 7 se utiliza para sujetar y asegurar los componentes de vehículo 2. La conexión de los componentes de vehículo 2 con el transportador de mercancías 7 se realiza generalmente en un punto de conexión 8 de la instalación, en el que se agrupan los componentes de vehículo 2 para unirse al transportador de mercancías 7.

El punto de conexión 8, se conecta con un dispositivo desengrasante 9. El dispositivo desengrasante 9 comprende un tanque desengrasante 10 en el que se encuentra un agente desengrasante 11. El agente desengrasante 11 puede ser ácido o básico. El dispositivo desengrasante 9 se conecta con un dispositivo de lavado 12, que tiene un tanque de lavado 13 con agente de lavado 14 ubicado en el mismo. El agente de lavado 14 en el presente caso es agua. Aguas abajo del dispositivo de lavado 12, es decir, en la dirección del procedimiento, hay un dispositivo de tratamiento de superficie diseñado como un dispositivo de decapado 15 para el tratamiento superficial químico húmedo de los componentes de vehículo 2. El dispositivo de decapado 15 comprende un tanque de decapado 16 con un agente de decapado 17 ubicado en el mismo. El agente de decapado 17 en el presente caso es ácido clorhídrico diluido.

Después del dispositivo de decapado 15, se proporciona de nuevo un dispositivo de lavado 18 con un tanque de lavado 19 y un agente de lavado 20 ubicado en el mismo. El agente de lavado 20 es de nuevo agua.

En la dirección del procedimiento, detrás del dispositivo de lavado 18, se encuentra un dispositivo de aplicación de fundente 21 que comprende un tanque de fundente 22 y un fundente 23 ubicado en el mismo. En una realización preferida, el fundente contiene cloruro de zinc (ZnCl₂) en una cantidad de 58 a 80% en peso y cloruro de amonio (NH₄Cl) en una cantidad de 7 a 42% en peso. Además, opcionalmente en una pequeña cantidad, también hay sales de metales alcalinos y/o alcalinotérreos, y, opcionalmente, en una cantidad comparativamente reducida adicional, un cloruro de metal pesado. Además, si es necesario, también puede haber un agente humectante en pequeñas cantidades. Se entiende que los datos de cifras en peso anteriores se basan en el fundente 23 y la suma de todos los componentes de la composición constituye un 100% en peso. Además, el fundente 23 se encuentra en solución acuosa, en una concentración en el intervalo de 500 a 550 g/l.

Cabe señalar que los dispositivos 9, 12, 15, 18 y 21 mencionados anteriormente pueden tener en principio cada uno una pluralidad de tanques. Estos tanques individuales, pero también los tanques descritos anteriormente, están dispuestos en forma de cascada uno detrás de otro.

El dispositivo aplicador de fundente 21, se conecta con un dispositivo de secado 24 para eliminar el agua adherida de la película de fundente, que se encuentra en la superficie de los componentes de vehículo 2.

Además, la instalación 1 tiene un dispositivo de galvanización en caliente 25, en el que los componentes de vehículo 2 se galvanizan en caliente. El dispositivo de galvanización en caliente 25 comprende un tanque de galvanización 26, opcionalmente con una carcasa 27 provista en el lado superior. En el tanque de galvanización 26 se encuentra un baño de galvanización 28 que contiene una aleación de zinc/aluminio. Específicamente, el baño de galvanizado tiene de 60 a 98% en peso de zinc y de 2 a 40% en peso de aluminio. Además, si es apropiado, se proporcionan pequeñas cantidades de silicio y opcionalmente en proporciones más reducidas, una pequeña cantidad de metales alcalinos y/o alcalinotérreos así como metales pesados. Se entiende que los datos de las cifras en peso mencionados anteriormente se basan en el baño de galvanización 28 y la suma de todos los componentes de la composición constituye un 100% en peso.

10

15

20

35

40

45

50

55

En la dirección del procedimiento, después del dispositivo de galvanización en caliente 25, se encuentra un dispositivo de enfriamiento 29 que se proporciona para enfriar rápidamente los componentes de vehículo 2 después de la galvanización en caliente. Finalmente, después del dispositivo de enfriamiento 29, se proporciona un dispositivo de tratamiento posterior 30, en el que los componentes de vehículo 2 galvanizados en caliente pueden ser tratados posteriormente y/o acabados posteriormente.

Entre el dispositivo de secado 24 y el dispositivo de galvanización en caliente 25 se encuentra un dispositivo de manipulación 31, que se proporciona para conducir, sumergir y extraer de forma automática un componente de vehículo 2 aislado del transportador de mercancías 7 en el baño de galvanización 28 del dispositivo de galvanización en caliente 25. El dispositivo de manipulación 31 tiene en una realización a modo de ejemplo que se muestra, un medio de manipulación 32 para manipular los componentes de vehículo 2, a saber, para retirar un componente de vehículo 2 del grupo de componentes de vehículo 2 y para conducir los componentes de vehículo 2 agrupados del transportador de mercancías 7 y para conducir, sumergir y extraer el componente de vehículo 2 aislado en el baño de galvanización 28.

Para el aislamiento, entre el medio de manipulación 32 y el dispositivo de secado 24 se encuentra un punto de transferencia 33 en el que los componentes de vehículo 2 se depositan o, en particular, en estado de suspensión, se retiran o se aíslan del transportador de mercancías 7 y por lo tanto del grupo. Para este fin, el medio de manipulación 32 está diseñado preferiblemente de manera que sea móvil en la dirección del punto de transferencia 33 y para alejarse del mismo, y/o sea móvil en la dirección del dispositivo de galvanización 25 y para alejarse del mismo.

Además, el medio de manipulación 32 está diseñado de tal manera que traslada un componente de vehículo 2 aislado sumergido en el baño de galvanización 28 desde la región de inmersión a una región de extracción adyacente y luego lo extrae en la región de extracción. La región de inmersión y la región de extracción están separadas entre sí, por lo que no se corresponden entre sí. En particular, las dos regiones no se solapan. En este caso, el movimiento desde la región de inmersión a la región de extracción no tiene lugar hasta que ha transcurrido un período de tiempo predeterminado, es decir, después de completar el tiempo de reacción del fundente 23 con la superficie de cada uno de los componentes de vehículo 2 que se van a galvanizar.

Además, el dispositivo de manipulación 31 de forma central y/o los medios de manipulación 32 de forma local, poseen un dispositivo de control, mediante el cual el movimiento del medio de manipulación 32 tiene lugar de tal manera que todos los componentes de vehículo 2 aislados son conducidos por los transportadores de mercancías 7 con un movimiento idéntico, en una disposición idéntica y durante un tiempo idéntico a través del baño de galvanización 28.

No se representa que por encima del baño de galvanización 28 y todavía dentro de la carcasa 27, se encuentra un escurridor de un dispositivo de escurrido no mostrado, que se proporciona para escurrir el zinc líquido. Además, el medio de manipulación 32 también se puede controlar a través del dispositivo de control asociado, de modo que un componente de vehículo 2 que ya se ha galvanizado, todavía se traslada dentro de la carcasa 27, por ejemplo, mediante movimientos rotacionales correspondientes, de modo que el exceso de zinc se elimine por goteo y/o alternativamente se extienda de manera uniforme sobre la superficie del componente de vehículo.

Las Figs. 2 a 4 muestran diferentes estados durante el funcionamiento de la instalación 1. La Fig. 2 muestra un estado en el que una multiplicidad de componentes de vehículo 2 que se van a galvanizar se depositan en el punto de conexión 8. Por encima del grupo de componentes de vehículo 2 está el transportador de mercancías 7. Después de que el transportador de mercancías 7 desciende, los componentes de vehículo 2 se unen al transportador de mercancías 7. En la realización a modo de ejemplo, los componentes de vehículo 2 están dispuestos en capas. En este caso, todos los componentes de vehículo 2 se pueden unir al transportador de mercancías 7. Pero también es posible que solo la capa superior de los componentes de vehículo 2 esté unida al transportador de mercancías 7, mientras que la capa siguiente esté unida a la capa anterior respectiva. También es posible que el grupo de componentes de vehículo 2 esté dispuesto en un bastidor de tipo cesta o similar.

En la Fig. 3, el grupo de componentes de vehículo 2 se sitúa por encima del dispositivo de decapado 15. Las etapas

C y D, a saber, el desengrase y el lavado, ya se han realizado.

En la Fig. 4, el grupo de componentes de vehículo 2 se ha depositado en el punto de transferencia 33. El carro 5 está regresando al punto de conexión 8, en el que ya se encuentran nuevos componentes de vehículo 2 que se van a galvanizar como grupo. Del grupo de componentes de vehículo 2 depositados en el punto de transferencia 33, ya se ha retirado un componente de vehículo 2 a través del medio de manipulación 32, que se encuentra justo antes de ser conducido al dispositivo de galvanización en caliente 25.

Lista de símbolos de referencia:

1	Instalación	18	Dispositivo de lavado
2	Componente de vehículo	19	Tanque de lavado
3	Dispositivo transportador	20	Agente de lavado
4	Guía de raíl	21	Dispositivo de aplicación de fundente
5	Carro	22	Tanque de fundente
6	Cable de elevación	23	Fundente
7	Transportador de mercancías	24	Dispositivo de secado
8	Punto de conexión	25	Dispositivo de galvanización en caliente
9	Dispositivo desengrasante	26	Tanque de galvanización
10	Tanque desengrasante	27	Carcasa
11	Agente desengrasante	28	Baño de galvanización
12	Dispositivo de lavado	29	Dispositivo de enfriamiento
13	Tanque de lavado	30	Dispositivo de tratamiento posterior
14	Agente de lavado	31	Dispositivo de manipulación
15	Dispositivo de decapado	32	Medio de manipulación
16	Tanque de decapado	33	Punto de transferencia
17	Agente decapante		

REIVINDICACIONES

- 1. Instalación (1) para la galvanización en caliente de componentes de vehículo (2) para la galvanización en caliente a gran escala de una pluralidad de componentes de vehículo (2) idénticos o similares
- con un dispositivo de galvanización en caliente (25) para la galvanización en caliente de los componentes de vehículo (2) y con un baño de galvanización (28) que comprende una aleación de zinc/aluminio fundido,
 - en donde se proporciona un dispositivo transportador (3), con al menos un transportador de mercancías (7) para transportar un grupo de componentes de vehículo (2) que se van a fijar al transportador de mercancías (7),
 - en donde se proporciona un dispositivo de aplicación de fundente (21) para la aplicación de fundente sobre la superficie de los componentes de vehículo (2),
- 10 caracterizada por que
 - se proporciona un dispositivo de manipulación (31) para conducir, sumergir y extraer un componente de vehículo (2) aislado en el baño de galvanización que comprende una aleación de zinc/aluminio fundida (28) del dispositivo de galvanización en caliente (27) y
- el dispositivo de manipulación (31) comprende al menos un medio de manipulación (32) dispuesto entre el dispositivo de aplicación de fundente (21) y el dispositivo de galvanización en caliente (25),
 - en donde el medio de manipulación (32) está diseñado de tal manera que retira uno de los componentes de vehículo (2) del grupo de componentes de vehículo (2) y a continuación lo conduce al dispositivo de galvanización en caliente (25) para una galvanización en caliente individual y
- en donde el medio de manipulación (32) está diseñado de tal manera que un componente de vehículo (2) aislado se 20 sumerge en una región de inmersión del baño de galvanización (28), después se desplaza desde la región de inmersión a una región de extracción adyacente y posteriormente se extrae en la región de extracción.
 - 2. Instalación según la reivindicación 1,

caracterizada por que

se proporciona un dispositivo desengrasante (9) para desengrasar los componentes de vehículo (2); y/o

- 25 se proporciona un dispositivo de tratamiento de la superficie para el tratamiento químico y/o mecánico de la superficie de los componentes de vehículo (2).
 - 3. Instalación según la reivindicación 1 o 2,

caracterizada por que

- se proporciona el aislamiento de los componentes de vehículo (2) desde el transportador de mercancías (7) por medio del dispositivo de manipulación (31) después del desengrasado o después del tratamiento de la superficie o después de la aplicación de fundente.
 - 4. Instalación según una de las reivindicaciones precedentes,

caracterizada por que

- el medio de manipulación (32) está diseñado de tal manera que todos los componentes de vehículo (2) aislados del transportador de mercancías (7) son conducidos de manera idéntica a través del baño de galvanización (28).
 - 5. Instalación según una de las reivindicaciones precedentes,

caracterizada por que

se proporciona un dispositivo de escurrido después de la región de extracción del baño de galvanización (28); y/o

- el medio de manipulación (32) está diseñado de tal manera que todos los componentes de vehículo aislados del transportador de mercancías (7) se desplazan de manera idéntica después de la extracción de tal manera que se eliminan los bordes por goteo.
 - 6. Instalación según una de las reivindicaciones precedentes,

caracterizada por que

se proporciona al menos un dispositivo de lavado (12, 18); y/o

se proporciona un dispositivo de secado (24) después del dispositivo de aplicación de fundente (21); y/o

se proporciona un dispositivo de enfriamiento (29) después del dispositivo de galvanización en caliente (25); y/o

se proporciona un dispositivo de tratamiento posterior (30) después del dispositivo de galvanización en caliente (25) y eventualmente después del dispositivo de enfriamiento (29) opcional.

 7. Procedimiento para la galvanización en caliente de componentes de vehículo (2) utilizando una aleación de zinc/aluminio fundido para la galvanización en caliente a gran escala de una pluralidad de componentes de vehículo (2) idénticos o similares,

en donde los componentes de vehículo (2) en estado agrupado, junto con una pluralidad de componentes de vehículo (2) adicionales, se fijan a un transportador de mercancías (7) de un dispositivo transportador (3),

10 en donde se proporciona un fundente sobre la superficie de los componentes de vehículo (2),

en donde los componentes de vehículo (2) se someten a una galvanización en caliente en un baño de galvanización (28) que comprende una aleación de zinc/aluminio fundido,

caracterizado por que

durante la galvanización en caliente, los componentes de vehículo (2) se conducen en estado aislado al baño de galvanización (28), se sumergen en el mismo y a continuación se extraen del mismo,

la galvanización en caliente se realiza en estado aislado del componente de vehículo (2), y

un componente de vehículo (2) en estado aislado se sumerge en una región de inmersión del baño de galvanización (28), a continuación se traslada desde la región de inmersión a una región de extracción adyacente y posteriormente se extrae en la región de extracción.

20 8. Procedimiento según la reivindicación 7,

caracterizado por que

los componentes de vehículo (2) se someten a un desengrasado; y/o

los componentes de vehículo (2) se someten a un tratamiento químico y/o mecánico de la superficie antes de la galvanización en caliente.

9. Procedimiento según la reivindicación 7 u 8,

caracterizado por que

los componentes de vehículo (2) se lavan después del desengrasado y/o después del tratamiento de la superficie; y/o

el componente de vehículo (2) se enfría después de la galvanización en caliente; y/o

- 30 el componente de vehículo (2) se trata posteriormente después de la galvanización en caliente.
 - 10. Procedimiento según una de las reivindicaciones de procedimiento precedentes,

caracterizado por que

el componente de vehículo (2) en estado aislado se desplaza desde la región de inmersión a la región de extracción solo después de completar el tiempo de reacción del fundente (23) con la aleación de zinc/aluminio, y/o

- todos los componentes de vehículo (2) en estado aislado son conducidos de manera idéntica a través del baño de galvanización (28).
 - 11. Procedimiento según una de las reivindicaciones de procedimiento precedentes,

caracterizado por que

todos los componentes de vehículo (2) en estado aislado después de la extracción, se hacen pasar de manera idéntica a través de un dispositivo de escurrido para escurrir la aleación líquida de zinc/aluminio; y/o

todos los componentes de vehículo (2) en estado aislado se trasladan de manera idéntica después de la extracción de tal manera que se eliminan los bordes por goteo de la aleación líquida de zinc/aluminio.

12. Procedimiento según una de las reivindicaciones de procedimiento precedentes,

caracterizado por que

todas las etapas de procedimiento siguientes posteriores a la galvanización en caliente se realizan en estado aislado del componente de vehículo (2).

13. Procedimiento según una de las reivindicaciones 7 a 12, en particular utilizando una instalación (1) según las reivindicaciones 1 a 6,

caracterizado por que

el baño de galvanización (28) contiene zinc y aluminio en una relación en peso de zinc/aluminio en el intervalo de 55-99,999:0,001-45, preferiblemente en el intervalo de 55-99,97:0,03-45, particularmente en el intervalo de 60-98:2-40, preferiblemente en el intervalo de 70-96:4-30.

10

5

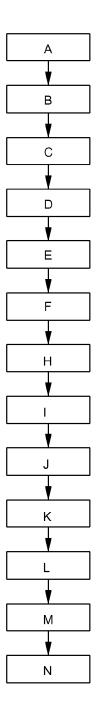
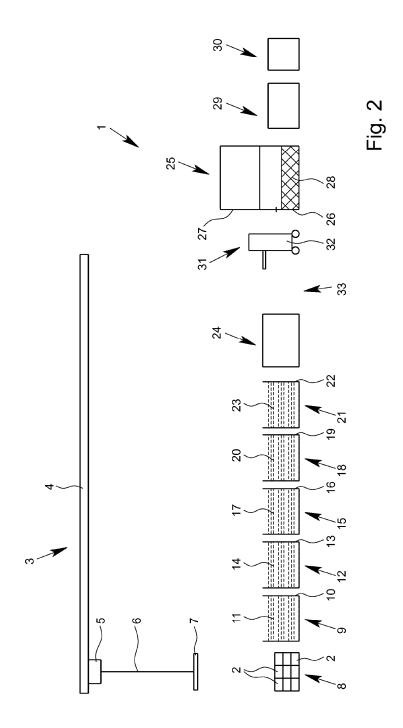
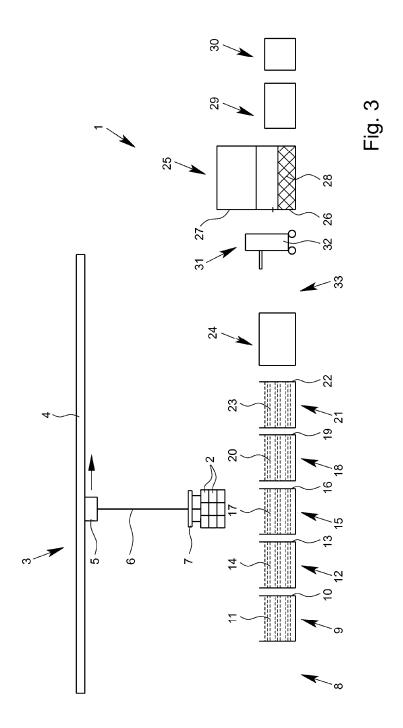
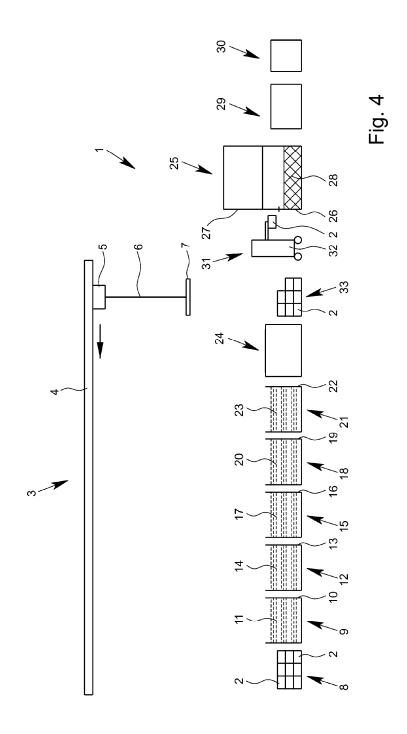





Fig. 1

