

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11 Número de publicación: 2 763 551

51 Int. Cl.:

A61K 48/00 (2006.01) C07K 14/755 (2006.01) C12N 9/64 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 15.04.2016 PCT/US2016/027931

(87) Fecha y número de publicación internacional: 20.10.2016 WO16168728

(96) Fecha de presentación y número de la solicitud europea: 15.04.2016 E 16720253 (0)

(97) Fecha y número de publicación de la concesión europea: 06.11.2019 EP 3283126

(54) Título: Promotores y vectores recombinantes para la expresión de proteínas en el hígado y uso de los mismos

(30) Prioridad:

16.04.2015 US 201562148696 P 06.08.2015 US 201562202133 P 01.09.2015 US 201562212634 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 29.05.2020 (73) Titular/es:

EMORY UNIVERSITY (50.0%) 1599 Clifton Road, NE 4th Floor Atlanta, GA 30322, US y CHILDREN'S HEATLHCARE OF ATLANTA, INC. (50.0%)

(72) Inventor/es:

DOERING, CHRISTOPHER, B.; SPENCER, TRENT, H. y BROWN, HARRISON, C.

(74) Agente/Representante:

PONS ARIÑO, Ángel

DESCRIPCIÓN

Promotores y vectores recombinantes para la expresión de proteínas en el hígado y uso de los mismos

5 Campo de la divulgación

La presente invención se refiere a promotores y vectores recombinantes de expresión transgénica, así como a moléculas de ácidos nucleicos recombinantes que codifican nuevos factores de coagulación.

10 Antecedentes

Las mutaciones en el gen del factor de coagulación VIII (fVIII) dan como resultado una proteína disminuida o defectuosa del factor de coagulación (fVIII) que da lugar a la hemofilia A, que se caracteriza por un sangrado incontrolado. La hemofilia B se asocia de manera similar con el factor de coagulación IX (fIX). El tratamiento de la hemofilia A generalmente implica una infusión intravenosa de varias semanas de por vida de producto de fVIII derivado de plasma humano o recombinante. Debido al alto coste, menos del 30% de la población mundial con hemofilia A recibe esta forma de tratamiento. Además, alrededor del 25 % de los pacientes tratados con productos de reemplazo de fVIII desarrollan anticuerpos neutralizantes que hacen que el tratamiento futuro sea ineficaz. Por lo tanto, existe la necesidad de identificar terapias mejoradas.

20

25

35

65

15

Las terapias génicas se basan generalmente en virus genéticamente modificados diseñados para suministrar transgenes funcionales al paciente para que sus propias células puedan biosintetizar las proteínas carentes o defectuosas. Se han realizado avances clínicos usando vectores de virus adenoasociados recombinantes (rAAV) para la expresión de flX en el hígado; sin embargo, el uso de rAAV para la expresión de fVIII en pacientes con hemofilia A ha sido un desafío debido a la biosíntesis ineficaz de fVIII humano (hfVIII). Los vectores víricos adenoasociados recombinantes (rAAV) producen cápsides que tienen un espacio limitado para encapsular ácidos nucleicos. El FVIII es una glicoproteína grande, y las secuencias de rAAV necesarias para codificar y expresar fVIII generalmente exceden la capacidad de empaquetamiento de la cápside.

30 Sumario

En el presente documento se divulgan realizaciones de una nueva molécula de ácido nucleico recombinante que comprende un promotor que se ha optimizado para tener una longitud mínima y promover la expresión de proteínas específicas de tejido. En la invención, el promotor es un promotor específico de hígado que promueve sustancialmente más expresión de proteínas en el hígado y en las células hepáticas que en otros tipos de tejidos. En algunas realizaciones, el promotor puede incluirse en un vector vírico (tal como un vector de virus adenoasociado) en combinación operativa con una secuencia del ácido nucleico heterólogo que codifica una proteína de interés para promover la expresión de la proteína de interés, por ejemplo en tejido y/o células del hígado.

40 Por lo tanto, la invención proporciona una molécula de ácido nucleico recombinante que comprende un promotor específico de hígado que comprende un primer elemento de respuesta de no más de 160 nucleótidos de longitud que comprende: un sitio de unión al factor de transcripción (TF, por sus siglas en inglés) HNF1a que comprende o que consiste en los nucleótidos 1-12 de la SEQ ID NO: 4, un sitio de unión al TF HNF1-1 que comprende o que consiste en los nucleótidos 16-23 de la SEQ ID NO: 4, un sitio de unión al TF HNF4 que comprende o que consiste en los 45 nucleótidos 26-36 de la SEQ ID NO: 4, un sitio de unión al TF HNF3a que comprende o que consiste en los nucleótidos 39-45 de la SEQ ID NO: 4, un sitio de unión al TF HNF1-2 que comprende o que consiste en los nucleótidos 48-62 de la SEQ ID NO: 4, un sitio de unión al TF HNF3-2 que comprende o que consiste en los nucleótidos 65-71 de la SEQ ID NO: 4, un sitio de unión al TF HP1 que comprende o que consiste en los nucleótidos 75-87 de la SEQ ID NO: 4, una caja TATA que comprende o que consiste en los nucleótidos 108-114 de la SEQ ID NO: 4, y un Sitio de Inicio de 50 la Transcripción que comprende o que consiste en los nucleótidos 116-146 de la SEQ ID NO: 4. El primer elemento de respuesta es de no más de 160 nucleótidos de longitud (tal como no más de 150 nucleótidos de longitud, tal como de 146 nucleótidos de longitud).

En algunas realizaciones, el primer elemento de respuesta comprende, de 5' a 3', el sitio de unión al TF HNF1a, el sitio de unión al TF HNF1-1, el sitio de unión al TF HNF4, el sitio de unión al TF HNF3a, el sitio de unión al TF HNF3-2, el sitio de unión al TF HNF3-2, el sitio de unión al TF HNF3-2, el sitio de unión al TF HP1, la caja TATA y el Sitio de Inicio de la Transcripción (TSS, por sus siglas en inglés).

En algunas realizaciones, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 4 (HCB), o una secuencia al menos un 90 % idéntica a la misma.

En algunas realizaciones, la molécula de ácido nucleico recombinante puede comprender un promotor que comprende el primer elemento de respuesta de la invención, y puede comprender además un segundo elemento de respuesta. El segundo elemento de respuesta puede comprender, por ejemplo, un elemento de respuesta HSh (por ejemplo, que comprende o que consiste en la secuencia de nucleótidos establecida como la SEQ ID NO: 111, o una secuencia al

menos un 90 % idéntica a la misma), un elemento de respuesta 5'HS (por ejemplo, que comprende o que consiste en la secuencia de nucleótidos establecida como los nucleótidos 6-32 de la SEQ ID NO: 111, o una secuencia al menos un 90 % idéntica a la misma), o un elemento de respuesta 3'HS (por ejemplo, que comprende o que consiste en la secuencia de nucleótidos establecida como los nucleótidos 44-68 de la SEQ ID NO: 111, o una secuencia al menos un 90 % idéntica a la misma).

En algunas realizaciones, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como una de las SEQ ID NO: 102 (HSh-HCB), SEQ ID NO: 104 (5'HSh-HCB), o SEQ ID NO: 103 (3'HSh-HCB), o una secuencia al menos un 90 % idéntica a una de las SEQ ID NO: 102 (HSh-HCB), SEQ ID NO: 104 (5'HSh-HCB), o SEQ ID NO: 103 (3'HSh-HCB). En aspectos adicionales de la presente divulgación, una molécula de ácido nucleico recombinante puede comprender un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como una de las SEQ ID NO: 5 (shortABP-HPI-God-TSS), SEQ ID NO: 7 (ABP-HP1-God-TSS), SEQ ID NO: 105 (HSh-SynO-TSS), SEQ ID NO: 106 (sHS-SynO-TSS), SEQ ID NO: 107 (Agro), SEQ ID NO: 108 (HS-SynO-TSS), SEQ ID NO: 5 (shortABP-HP1-God-TSS), SEQ ID NO: 7 (ABP-HP1-God-TSS), SEQ ID NO: 105 (HSh-SynO-TSS), SEQ ID NO: 106 (sHS-SynO-TSS), SEQ ID NO: 107 (Agro), SEQ ID NO: 108 (HS-SynO-TSS), o SEQ ID NO: 112 (HNF1-Short-ABPExact-SynO-TSS), SEQ ID NO: 107 (Agro), SEQ ID NO: 108 (HS-SynO-TSS), o SEQ ID NO: 112 (HNF1-Short-ABPExact-SynO-TSS).

En algunas realizaciones, el promotor de la invención puede incluirse en un vector, tal como un vector vírico (por ejemplo, un vector de virus adenoasociado). En algunas realizaciones, el promotor se incluye en el vector en combinación operativa con una secuencia del ácido nucleico heterólogo que codifica una proteína de interés para promover la expresión de la proteína de interés, por ejemplo en tejido y/o células del hígado. En algunas realizaciones, la proteína de interés puede ser un factor de coagulación, tal como fVIII o fIX o una variante de los mismos, tal como una variante de fVIII que comprende los dominios A1, A2, A3, C1 y C2 de fVIII, con los dominios A2 y A3 unidos por un enlazador peptídico y deleción del dominio B de fVIII. En algunas realizaciones, la proteína de interés puede ser una variante de fVIII y la molécula de ácido nucleico heterólogo puede comprender o consistir en la secuencia del ácido nucleico establecida como la SEQ ID NO: 2, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 125, o SEQ ID NO: 126, o una secuencia del ácido nucleico al menos un 90 % idéntica a la SEQ ID NO: 2, SEQ ID NO: 11, SEQ ID NO: 12, S

En algunas realizaciones, el vector puede ser un vector AAV recombinante que comprende un genoma que comprende una molécula de ácido nucleico que codifica cualquiera de los promotores específicos de hígado de la invención (tal como el promotor HCB, SEQ ID NO: 4) operativamente unido a una molécula de ácido nucleico heterólogo que codifica una variante de fVIII, en donde la molécula de ácido nucleico heterólogo comprende o consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 2, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 125, o SEQ ID NO: 126, o una secuencia del ácido nucleico al menos un 90 % idéntica a la SEQ ID NO: 2, SEQ ID NO: 11, SEQ ID NO: 12, SEQ

En algunas realizaciones, el vector puede ser un vector AAV recombinante que comprende un genoma que comprende una molécula de ácido nucleico que codifica cualquiera de los promotores específicos del hígado de la invención (tal como el promotor HCB, SEQ ID NO: 4) operativamente unido a una molécula de ácido nucleico heterólogo que codifica una variante de fIX, en donde la molécula de ácido nucleico heterólogo comprende o consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 124, o SEQ ID NO: 127, o una secuencia del ácido nucleico al menos un 90 % idéntica a la SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 124 o SEQ ID NO: 127. En varias de tales realizaciones, el genoma de AAV recombinante (de 5 'a 3' ITR) no tiene más de 5,1,5,0,4,9,4,8,4,7,4,6 o 4,5 kb de longitud.

La invención también proporciona un vector o composición de la invención para su uso en un método para inducir la coagulación de la sangre en un sujeto que lo necesite. El método comprende administrar al sujeto una cantidad terapéuticamente eficaz de un vector (tal como un vector AAV) que codifica un factor de coagulación como se describe en el presente documento. En algunas realizaciones, el sujeto es un sujeto con un trastorno de la coagulación, tal como hemofilia A o hemofilia B. En algunas realizaciones, el trastorno de la coagulación es hemofilia A y al sujeto se le administra un vector que comprende una molécula de ácido nucleico que codifica una proteína con actividad de fVIII. En otras realizaciones, el trastorno de la coagulación es hemofilia B y al sujeto se le administra un vector que comprende una molécula de ácido nucleico que codifica una proteína con actividad de fIX.

Las características y ventajas anteriores y otras de la presente divulgación serán más evidentes a partir de la siguiente descripción detallada de varias realizaciones que procede con referencia a las figuras adjuntas.

Breve descripción de las figuras

65

10

15

20

25

30

45

50

55

60

Las FIG. 1A y 1B ilustran una alineación de secuencia de los dominios A1 y A3 para ortólogos humanos y porcinos

de la proteína variante ET3 de fVIII. (FIG. 1A) Alineación de la secuencia del dominio A1 para la variante ET3 humana (secuencia superior, SEQ ID NO: 13) y porcina (secuencia media, SEQ ID NO: 14) de fVIII. La secuencia inferior muestra restos idénticos. Se muestran las alineaciones de la secuencia de aminoácidos para el péptido señal (barra N-terminal), el dominio ácido de cadena pesada (barra C-terminal), el fVIII humano (arriba) y ET3 (abajo). Los enlaces disulfuro se señalan por las líneas que conectan los restos de cisteína. Los lugares donde bien la secuencia humana, ET3 o ambas secuencias codifican un sitio de unión por glicosilación ligada a N (N-X-S/T) se delinean con un recuadro. (FIG. 1B) Alineación de la secuencia del dominio A3 para la variante ET3 humana (secuencia superior, SEQ ID NO: 15) y porcina (secuencia media, SEQ ID NO: 16) de fVIII. La secuencia inferior muestra restos idénticos. Se muestran las alineaciones de la secuencia de aminoácidos para el péptido de activación (barra), fVIII humano (arriba) y ET3 (abajo). Los enlaces disulfuro se señalan por las líneas que conectan los restos de cisteína. Los lugares donde bien el humano, ET3 o ambas secuencias codifican un sitio de unión por glicosilación ligada a N (N-X-S/T) se delinean con un recuadro.

Las FIG. 2A-2C muestra tablas de preferencia codónica específica de hígado, humana completa y mieloide.

La **FIG. 3A** muestra datos de expresión *in vitro* en células HepG2 que indican que la optimización de codones específicos de hígado mejora la expresión para las variantes HSQ y ET3 de la proteína fVIII.

La **FIG. 3B** muestra datos *in vivo* para HSQ y ET3 con codones optimizados que indican una mayor expresión de fVIII después de la inyección hidrodinámica de un vector AAV que codifica variantes con codones de hígado optimizados de la proteína HSQ y ET3 fVIII en ratones.

La FIG. 4 ilustra vectores AAV que codifican variantes de fVIII.

La **FIG. 5** muestra datos de expresión *in vitro* en células HepG2 que indican que la optimización de codones específicos de hígado, pero no la optimización de codones específicos mieloides, mejora la expresión de las variantes HSQ y ET3 de la proteína fVIII en las células de hígado.

La **FIG. 6** muestra datos de expresión *in vitro* en células HepG2 que indican que la optimización de codones específicos de hígado, pero no la optimización de codones específicos mieloides, mejora la expresión de las variantes HSQ y ET3 de la proteína fVIII en las células de hígado.

La **FIG. 7** muestra datos de expresión *in vitro* en células HepG2 que indican que la optimización de codones específicos de hígado, pero no la optimización de codones específicos humanos, mejora la expresión de la proteína fIX en células de hígado.

La FIG. 8 ilustra promotores que comprenden un potenciador ABP o un potenciador ABP acortado (shortABP).

Las FIG. 9A y 9B muestran datos sobre el uso de vectores AAV que contienen los promotores indicados para la expresión de fVIII. (FIG. 9A) Datos de expresión *in vitro* en células HepG2. (FIG. 9B) Expresión *in vivo* de fVIII después de la inyección hidrodinámica de un vector AAV.

La **FIG. 10** ilustra secuencias de elementos de respuesta y componentes de los elementos de respuesta indicados. **Las FIG. 11A y 11B** ilustran secuencias promotoras y componentes de los promotores indicados.

Las FIG. 12A y 12B muestran datos sobre el uso de vectores AAV que contienen los promotores indicados para la expresión de fVIII. (FIG. 12A) Datos de expresión *in vitro* en células HepG2. (FIG. 12B) Expresión *in vivo* de fVIII después de la inyección hidrodinámica de un vector AAV.

La FIG. 13 ilustra secuencias promotoras y componentes de los promotores indicados.

Las FIG. 14A y 14B muestran datos sobre el uso de vectores AAV que contienen los promotores indicados para la expresión de fVIII. (FIG. 14A) Datos de expresión *in vitro* en células HepG2. (FIG. 14B) Expresión *in vivo* de fVIII después de la inyección hidrodinámica de un vector AAV.

Las FIG. 15 y 16 muestran diagramas esquemáticos que ilustran la estructura de potenciadores específicos de hígado (FIG. 15) y promotores que incluyen los potenciadores específicos de hígado (FIG. 16).

La **FIG.** 17 muestra datos de ensayos *in vitro* relacionados con el uso de vectores AAV que contienen los promotores indicados para la expresión de fVIII en células HepG2.

La FIG. 18 ilustra unos vectores AAV que codifican una variante de fVIII.

La **FIG. 19** es un gráfico que muestra que la transducción de ratones con el vector AAV2-HCB-ET3-LCO-NCG-SpA (SEQ ID NO: 130) que codifica ET3 con codones de hígado optimizados con motivos CpG eliminados conduce a un aumento significativo de la actividad de fVIII en ratones transducidos.

Descripción detallada

5

10

15

25

40

45

50

55

60

65

Existe la necesidad de desarrollar una estrategia de transferencia de genes segura y eficaz para el tratamiento de la hemofilia, tal como hemofilia A y B, y hemofilia adquirida. En el contexto de las terapias génicas para el tratamiento de la hemofilia A, varios obstáculos han dificultado el desarrollo del uso de un vector vírico adenoasociado como vehículo de suministro génico, tal como la capacidad limitada de empaquetamiento de ADN del virus adenoasociado para el transgén de fVIII grande y la biosíntesis ineficaz de fVIII humano. En el presente documento se informa de un sistema de suministro de transgenes basado en AAV que utiliza mejoras para la expresión de fVIII en el contexto de la transferencia de genes por AAV dirigidos al hígado. Estos incluyen: 1) El uso de una secuencia de nucleótidos codificante que tiene una preferencia de uso de codones mejorada para la célula hepática humana en comparación con la secuencia de nucleótidos de origen natural de fVIII; 2) Optimización del uso de codones para eliminar los dinucleótidos 5'-CG-3' y otros motivos de ADN de acción en cis dañinos, por ejemplo, sitios de corte y empalme crípticos, cajas TATA, señal terminal, estructura secundaria de ARNm, señales prematuras de poliA, motivos de inestabilidad de ARN, sitios internos de unión al ribosoma; y 3) promotores dirigidos al hígado de tamaño mínimo para reducir el tamaño del transgén para que pueda usarse en el entorno de tamaño limitado del sistema de vectores víricos adenoasociados. Las mejoras pueden generalizarse para la expresión mejorada de cualquier transgén de AAV. En

algunas realizaciones, el vector AAV suministra una expresión eficaz de fVIII a dosis víricos que no se predice que causen toxicidad en seres humanos.

En algunas realizaciones, estas mejoras también se pueden aplicar a fIX, especialmente para diseños de vectores fIX autocomplementarios. Los diseños autocomplementarios tienen la mitad de la capacidad de empaquetamiento que los diseños monocatenarios, por lo que las limitaciones de tamaño de los vectores (~ 2,4kb) se convierten en una preocupación incluso para fIX.

5

25

30

35

40

45

50

65

El trabajo previo sugirió que el tratamiento de ratones con deficiencia en fVIII (hemofilia A) con un vector AAV que codifica una forma modificada de fVIII (dominio B eliminado) denominada ET3 a dosis de vector que varían de 5x10¹¹-2x10¹³ pv/ kg podría corregir teóricamente su deficiencia de fVIII y fenotipo hemorrágico (véase Brown et al., "Bioengineered Factor FVIII Enables Long-Term Correction of Murine Hemophilia A Following Liver-Directed Adeno-Associated Viral Vector Delivery", Molecular Therapy - Methods and Clinical Development. 1:14036, 2014). Sin embargo, debido al genoma de gran tamaño de ET3, el vector sufría una baja fabricación de títulos y una heterogeneidad sustancial entre partículas. El gran tamaño del genoma ET3-AAV con codones optimizados seguía siendo incompatible con el empaquetamiento eficaz del vector vírico. Para los vectores AVV, se prefiere un tamaño de genoma de AAV de no más de 4,7-5,0 kb para obtener un mayor rendimiento y consistencia que los genomas que exceden de 5,0kb. La secuencia codificante de ET3 con el dominio B eliminado es de 4,4 kb. Sin embargo, con la adición de los elementos de control vírico y regulador necesarios, los genomas de fVIII ET3-AAV excedieron sustancialmente la capacidad de empaquetamiento.

Por primera vez se divulga en el presente documento un genoma fVIII (ET3 u otra variante con dominio B eliminado) -AAV de menos de 5,0 kb de longitud que se desarrolló para permitir tanto la expresión mejorada de fVIII (o variante del mismo) como un empaquetamiento vírico eficaz. Se siguieron múltiples etapas para reducir el tamaño del genoma de AAV a niveles aceptables. Por ejemplo, se utilizó un enfoque de ensamblaje del sitio de unión al factor de transcripción combinatorio para crear un conjunto de promotores específicos de hígado que varían en tamaño. Estos promotores representan una reducción de tamaño del 30-90 % sobre los promotores específicos de hígado utilizados actualmente, tal como HLP y HCR-hAAT, que varían en tamaño de 250 a más de 700 bases. Algunos de estos promotores impulsan niveles de expresión y especificidad transgénica comparables o mejores a los observados con HLP y HCR-hAAT.

Una barrera importante para el desarrollo de terapias clínicas exitosas basadas en la transferencia de genes es la disponibilidad de elementos genéticos de origen natural o sintéticos capaces de expresión funcional, y a menudo dirigida o restringida por el tipo celular, en el contexto de un casete de ácido nucleico suministrado por vectores (véase, por ejemplo, Papadakis et al., "Promoters and control elements: designing expression cassettes for gene therapy", Curr Gene Ther., 4(1):89-113, 2004). En general, se cree que los promotores existentes naturalmente han sido perfeccionados por la evolución para impulsar la expresión finamente sintonizada a través de la combinación de múltiples secuencias reguladoras en cis. En la mayoría de los organismos vivos, y especialmente en eucariotas con grandes tamaños de genoma, no parece haber una fuerza impulsora para limitar el tamaño del promotor y, por lo tanto, la mayoría de los promotores endógenos se extienden en cientos, y más a menudo miles, de pares de bases de ADN (pb). Debido a su tamaño, estos promotores de genes naturales endógenos generalmente no son susceptibles de inclusión en productos de terapia génica debido a limitaciones de tamaño.

Los promotores víricos endógenos, por otro lado, han evolucionado para poseer una eficacia de fuerza y tamaño que los hace atractivos para su uso en tecnologías de transferencia de genes. Los ejemplos más destacados incluyen el promotor temprano inmediato (IE, por sus siglas en inglés) de citomegalovirus (CMV), el promotor tardío principal de adenovirus (Ad), el promotor del virus simio 40 (SV40) y la repetición terminal larga (LTR por sus siglas en inglés) del virus de la leucemia murina de Moloney (MoMLV). Cada uno de estos promotores puede impulsar la transcripción de alto nivel de transgenes heterólogos exógenos en una variedad de tipos de células eucariotas. Sin embargo, de manera no sorprendente, las células eucariotas han desarrollado mecanismos de defensa celular para detectar e inactivar eficazmente (es decir, silenciar) los promotores víricos y, por lo tanto, estos promotores funcionan más eficazmente en sistemas modelo de cultivo celular que las aplicaciones de terapia génica *in vivo*.

Por estas razones, ha habido un interés significativo en el desarrollo de promotores sintéticos, ya sea genéricos (véase, por ejemplo, Juven-Gershon et al., "Rational design of a super core promoter that enhances gene expression", Nat Methods, 3(11):917-22, 2006; Schlabach et al., "Synthetic design of strong promoters". PNAS, 2010;107(6):2538-43, 2010), o adaptados a aplicaciones específicas de terapia génica, incluidas la hemofilia A y B (véase, por ejemplo, McIntosh et al., "Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant", Blood, 121(17):3335-44, 2013; Nair et al., "Computationally designed liver-specific transcriptional modules and hyperactive factor IX improve hepatic gene therapy", Blood, 123(20):3195-9, 2014).

El conocimiento de los promotores y las mejoras sigue siendo limitado y actualmente no es posible diseñar por ordenador un promotor óptimo con ninguna confianza. Estudios como los descritos por Juven-Gershon y Kadonaga han avanzado en la definición de diseños optimizados de promotores centrales, como su Super Core Promoter 1 (SCP1) y son informativos en el campo. Sin embargo, como se muestra en los promotores descritos en los ejemplos ene I presente documento, que no contienen una gran similitud con SCP1 en el dominio del promotor central, estas

secuencias no son necesarias para una función promotora fuerte, al menos en el contexto de aplicaciones de terapia génica dirigida al hígado (véase también, Juven-Gershon et al., "Rational design of a super core promoter that enhances gene expression", Nat Methods, 3(11):917-22, 2006).

5 El desarrollo del promotor más genérico se ha centrado en lograr un equilibrio óptimo de potencia transcripcional con un tamaño mínimo. En el campo del diseño de promotores dirigidos al hígado, el uso de enfoques de diseño racional por McIntosh et al. y Nair et al. (supra) condujo a la identificación de promotores para su uso en enfoques de terapia génica con AAV-fVIII y AAV-fIX. Sin embargo, a pesar del extenso estudio, ambos grupos describen diseños de promotores que son significativamente más grandes (≥ 252 pb) y no más (o menos) potentes que los descritos en el presente documento, tal como la SEQ ID NO: 4 (HCB). De hecho, dados los intentos previos para optimizar el diseño de promotores, fue particularmente sorprendente identificar promotores tales como los descritos en el presente documento que son más pequeños que los promotores de la técnica anterior (tal como el promotor HLP), pero potencia equivalente o mejorada para impulsar la transcripción, particularmente en el contexto de aplicaciones de terapia génica in vivo.

I. Términos

15

20

25

30

45

A menos que se indique otra cosa, los términos técnicos se usan según su uso convencional. Pueden encontrarse definiciones de términos comunes sobre biología molecular en Benjamin Lewin, Genes V, publicado por Oxford University Press, 1994 (ISBN 0-19-854287-9); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, publicado por Blackwell Science Ltd., 1994 (ISBN 0-632-02182-9); y Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, publicado por VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8).

Para facilitar la revisión de las diversas realizaciones de la divulgación, se proporcionan las siguientes explicaciones de términos específicos:

5' y/o 3': Se dice que las moléculas de ácido nucleico (tal como el ADN y el ARN) tienen "extremos 5" y "extremos 3" porque los mononucleótidos se hacen reaccionar para formar polinucleótidos de manera tal que el fosfato 5' de un anillo de pentosa mononucleotídico esté unido al oxígeno 3' de su vecino en una dirección a través de un enlace fosfodiéster. Por lo tanto, un extremo de un polinucleótido lineal se denomina "extremo 5 " cuando su fosfato 5' no está unido al oxígeno 3'de un anillo de pentosa mononucleotídico. El otro extremo de un polinucleótido se denomina "extremo 3" cuando su oxígeno 3' no está unido a un fosfato 5' de otro anillo de pentosa mononucleotídico. A pesar de que un fosfato 5' de un anillo de pentosa mononucleotídico está unido al oxígeno 3' de su vecino, también se puede decir que una secuencia interna de un ácido nucleico tiene extremos 5 'y 3'.

En una molécula de ácido nucleico lineal o circular, los elementos internos discretos se denominan "cadena arriba" o 5' de los elementos "cadena abajo" o 3'. Con respecto al ADN, esta terminología refleja que la transcripción procede en una dirección de 5' a 3' a lo largo de una cadena de ADN. Los elementos promotores y potenciadores, que transcriben directamente un gen unido, generalmente se localizan 5' o cadena arriba de la región codificante. Sin embargo, los elementos potenciadores pueden ejercer su efecto incluso cuando se localizan 3' del elemento promotor y de la región codificante. Las señales de terminación de la transcripción y de poliadenilación se encuentran a 3' o cadena abajo de la región codificante.

Virus Adenoasociados (AVV): Un virus pequeño, defectuoso en la replicación, sin envoltura que infecta a los seres humanos y algunas otras especies de primates. No se sabe que el AAV cause enfermedad y provoca una respuesta inmunitaria muy leve. Los vectores de terapia génica que utilizan AAV pueden infectar tanto las células en división como las quiescentes y pueden persistir en un estado extracromosómico sin integrarse en el genoma de la célula hospedadora. Estas características hacen que AAV sea un vector vírico atractivo para terapia génica. Actualmente hay 11 serotipos reconocidos de AAV (AAV1-11).

Administración/Administrar: Proporcionar o dar a un sujeto un agente, tal como un agente terapéuticos (por ejemplo, un AVV recombinante), mediante cualquier vía eficaz. Las vías de administración ejemplares incluyen, aunque sin limitación, inyección (tal como subcutánea, intramuscular, intradérmica, intraperitoneal e intravenosa), vía oral, intraductal, sublingual, rectal, transdérmica, intranasal, vaginal y por inhalación.

Ensayo de Tiempo de Sangrado: Un análisis utilizado para medir la cantidad de tiempo que tarda la sangre de un sujeto en coagularse. Se coloca un manguito de presión arterial en la parte superior del brazo y se infla. Se hacen dos incisiones en la parte inferior del brazo. Estas tienen aproximadamente 10 mm (menos de 1/2 pulgada) de largo y 1 mm de profundidad (solo lo suficientemente profundo como para causar un sangrado mínimo). El manguito de presión arterial se desinfla inmediatamente. El papel secante se hace tocar los cortes cada 30 segundos hasta que se detiene el sangrado. Se registra el tiempo que tardan los cortes en detener el sangrado. En individuos normales, no hemofílicos, el sangrado se detiene en aproximadamente uno a diez minutos y puede variar de un laboratorio a otro, dependiendo de cómo se mida el ensayo. Por el contrario, los hemofílicos graves que tienen menos del 1 % de los niveles normales del factor de coagulación apropiado tienen un tiempo de coagulación de la sangre total mayor de 60 minutos. En ratones, el tiempo de sangrado se analiza seccionando la punta de la cola y tocando periódicamente con un papel secante hasta que se forme un coágulo en la punta de la cola. El tiempo normal de sangrado es entre 2-4 minutos. Por el contrario, los ratones hemofílicos que tienen menos del 1 % de los niveles normales del factor de

coagulación apropiado tienen un tiempo de sangrado de más de 15 minutos.

10

15

20

25

45

50

55

60

ADNc (AND complementario): Un fragmento de ADN que carece de segmentos internos no codificantes (intrones) y secuencias reguladoras que determinan la transcripción. El ADNc se sintetiza en el laboratorio por transcripción inversa del ARN mensajero extraído de las células. El ADNc también puede contener regiones no traducidas (UTR por sus siglas en inglés) que son responsables del control traduccional en la molécula de ARN correspondiente.

Trastorno de la coagulación: Un término general para una amplia gama de problemas médicos que conducen a una mala coagulación de la sangre y sangrado continuo. Los médicos también se refieren a los trastornos de la coagulación por términos como, por ejemplo, coagulopatía, sangrado anormal y trastornos hemorrágicos. Los trastornos de la coagulación incluyen cualquier defecto congénito, adquirido o inducido que dé como resultado un sangrado anormal (o patológico). Los ejemplos incluyen, aunque sin limitación, trastornos de coagulación insuficiente o hemostasia, tal como hemofilia A (una deficiencia en fVIII), hemofilia B (una deficiencia en fIX), hemofilia C (una deficiencia en el Factor XI), otras deficiencias en factores de coagulación (tal como Factor VII o fXIII), niveles anormales de inhibidores de factores de coagulación, trastornos plaquetarios, trombocitopenia, deficiencia de vitamina K y enfermedad de von

Algunos trastornos de coagulación están presentes al nacer y en algunos casos son trastornos hereditarios. Ejemplos específicos incluyen, pero sin limitación: hemofilia A, hemofilia B, deficiencia de proteína C y enfermedad de Von Willebrand. Algunos trastornos de la coagulación se desarrollan durante determinadas enfermedades (tal como la deficiencia de vitamina K, enfermedad hepática grave) o tratamientos (tal como el uso de fármacos anticoagulantes o el uso prolongado de antibióticos).

Factor de coagulación: Incluye cualquier proteína que promueva la hemostasia adecuada. En una realización, un factor de coagulación es fVIII o fIX, o una variante o fragmento de los mismos que conserva su actividad hemostática, por ejemplo, como se mide usando un ensayo APTT o un ensayo de tiempo de sangrado. En algunas realizaciones, cuando se administra en una cantidad terapéuticamente eficaz, el factor de coagulación aumenta la hemostasia en un sujeto que padece un trastorno de la coagulación, tal como hemofilia.

Factor de Coagulación VIII (fVIII): El fVIII es una proteína necesaria para la coagulación eficaz de la sangre y funciona en la coagulación como cofactor en la activación del factor X por fIX. Una concentración de aproximadamente 100 ng/ml para fVIII en la sangre se considera en el intervalo normal. La deficiencia de fVIII está asociada con la hemofilia A, y pueden producirse formas graves de la enfermedad cuando un sujeto tiene menos del 1 % de la cantidad normal de fVIII (es decir, menos de aproximadamente 1 ng de fVIII por ml de sangre). El fVIII se sintetiza como una proteína precursora de cadena sencilla de 2351 aminoácidos, que se procesa proteolíticamente. El gen del factor VIII humano (186.000 pares de bases) consta de 26 exones que varían en tamaño de 69 a 3.106 pb e intrones de hasta 32,4 kilobases (kb). Ejemplos de secuencias del ácido nucleico y proteína fVIII están disponibles públicamente (por ejemplo, véanse los números de acceso de Genbank: K01740, M14113 y E00527). En el presente documento se proporcionan variantes de fVIII que conservan la actividad de fVIII para la coagulación de la sangre pero se reducen en tamaño, tal como las variantes de fVIII que carecen del dominio B de fVIII. Variantes de fVIII ejemplares incluyen las variantes HSQ y ET3.

Factor de Coagulación IX (fIX): fIX es una proteína dependiente de la vitamina K necesaria para la coagulación eficaz de la sangre, y funciona en la coagulación como un activador del factor X. Una concentración de aproximadamente 1-5 μg/ml de fIX en la sangre se considera en el intervalo normal. La deficiencia de fIX está asociada con la hemofilia B, y se producen casos graves cuando la concentración de fIX es inferior a aproximadamente el 1 % de la concentración normal de fIX (es decir, inferior a aproximadamente 0,01-0,05 μg de fIX por ml de sangre). Las secuencias del ácido nucleico y proteína fX están disponibles públicamente (por ejemplo, véanse Kurachi et al., 1982. Proc. Natl. Acad. Sci. U.S.A. 79(21):6461-4; Números de acceso de GenBank: J00136, XM045316, K02402, J00137 y M11309.

Codones optimizados: Un ácido nucleico "con codones optimizados" se refiere a una secuencia de ácido nucleico que se ha alterado de tal manera que los codones son óptimos para la expresión en un sistema particular (tal como una especie o grupo de especies particulares). Por ejemplo, una secuencia de ácido nucleico puede optimizarse para la expresión en células de mamífero o en una especie de mamífero particular (tal como las células humanas). La optimización de codones no altera la secuencia de aminoácidos de la proteína codificada.

El término "codones de aminoácidos específicos de hígado" se refiere a codones que se utilizan de manera diferencial representados en genes altamente expresados dentro del hígado humano en comparación con el uso de codones de toda la región codificante del genoma humano. Una estrategia que usa una cantidad máxima de codones de aminoácidos específicos de hígado busca evitar los codones que están subrepresentados, por ejemplo, debido a las bajas cantidades de ARNt con coincidencia de codones en las células del hígado que dan como resultado una traducción de proteínas más lenta.

Control: Un patrón de referencia. El control puede ser una muestra de control negativo obtenida de un paciente sano.

En otros casos, el control es una muestra de control positivo obtenida de un paciente diagnosticado con hemofilia. En aún otros casos, el control es un control histórico o un valor de referencia patrón o un intervalo de valores (tal como

una muestra de control previamente probada, tal como un grupo de pacientes con hemofilia A con pronóstico o resultado conocido, o un grupo de muestras que representan valores basales o normales).

Una diferencia entre una muestra de prueba y un control puede ser un aumento o, por el contrario, una disminución. La diferencia puede ser una diferencia cualitativa o una diferencia cuantitativa, por ejemplo, una diferencia estadísticamente significativa. En algunos ejemplos, una diferencia es un aumento o disminución, en relación con un control, de al menos aproximadamente un 5 %, tal como al menos aproximadamente un 10 %, al menos aproximadamente un 20 %, al menos aproximadamente un 30 %, al menos aproximadamente un 40 %, al menos aproximadamente un 50 %, al menos aproximadamente un 70 %, al menos aproximadamente un 80 %, al menos aproximadamente un 100 %, al menos aproximadamente un 150 %, al menos aproximadamente un 200 %, al menos aproximadamente un 250 %, al menos aproximadamente un 300 %, al menos aproximadamente un 400 %, al menos aproximadamente un 500 % o más del 500 %.

10

25

30

40

45

65

ADN (ácido desoxirribonucleico): El ADN es un polímero de cadena larga que comprende el material genético de la mayoría de los organismos vivos (algunos virus tienen genes que comprenden ácido ribonucleico (ARN)). Las unidades que se repiten en los polímeros de ADN son cuatro nucleótidos diferentes, cada uno de los cuales comprende una de las cuatro bases, adenina (A), guanina (G), citosina (C) y timina (T) unidas a un azúcar desoxirribosa al cual se fija un grupo fosfato. Los tripletes de nucleótidos (denominados codones) codifican para cada aminoácido en un polipéptido, o para una señal de parada. El término codón también se usa para las secuencias correspondientes (y complementarias) de tres nucleótidos en el ARNm en el que se transcribe la secuencia de ADN.

A menos que se especifique lo contrario, cualquier referencia a una molécula de ADN está destinada a incluir el complemento inverso de esa molécula de ADN. Excepto cuando el texto en el presente documento necesite una hebra simple, las moléculas de ADN, aunque escritas para representar solamente una hebra simple, abarcan ambas hebras de una molécula de ADN bicatenario. Por lo tanto, una referencia a la molécula de ácido nucleico que codifica una proteína específica, o un fragmento de la misma, abarca tanto la cadena en sentido como su complemento inverso. Por ejemplo, es apropiado generar sondas o cebadores a partir de la secuencia del complemento inverso de las moléculas de ácido nucleico divulgadas.

Potenciador: Una secuencia de ácido nucleico que aumenta la velocidad de transcripción al aumentar la actividad de un promotor.

Flanqueante: Cerca o al lado de, también, incluyendo adyacente, por ejemplo, en un polinucleótido lineal o circular, tal como una molécula de ADN.

Gen: Una secuencia de un ácido nucleico, generalmente una secuencia de ADN, que comprende secuencias de control y codificantes necesarias para la transcripción de un ARN, ya sea un ARNm o no. Por ejemplo, un gen puede comprender un promotor, uno o más potenciadores o silenciadores, una secuencia de un ácido nucleico que codifica un ARN y/o un polipéptido, secuencias reguladoras cadena abajo y, posiblemente, otras secuencias de los ácidos nucleicos involucradas en la regulación de la expresión de un ARNm.

Como es bien conocido en la técnica, la mayoría de los genes eucariotas contienen tanto exones como intrones. El término "exón" se refiere a una secuencia de un ácido nucleico encontrada en el ADN genómico que se predice bioinformáticamente y/o se confirma experimentalmente que contribuye a una secuencia contigua a un transcrito de ARNm maduro. El término "intrón" se refiere a una secuencia de un ácido nucleico encontrada en el ADN genómico que se predice y/o confirma que no contribuye a un transcrito de ARNm maduro, sino que se "corta y empalma" durante el procesamiento de la transcripción.

Terapia génica: La introducción de una molécula de ácido nucleico heterólogo en una o más células receptoras, en donde la expresión del ácido nucleico heterólogo en la célula receptora afecta la función de la célula y produce un efecto terapéutico en un sujeto. Por ejemplo, la molécula heteróloga de ácido nucleico puede codificar una proteína, que afecta la función de la célula receptora.

Hemofilia: Un trastorno de la coagulación de la sangre causado por una actividad deficiente del factor de coagulación, que disminuye la hemostasia. Las formas graves se producen cuando la concentración del factor de coagulación es inferior a aproximadamente el 1 % de la concentración normal del factor de coagulación en un sujeto normal. En algunos sujetos, la hemofilia se debe a una mutación genética que da como resultado una expresión alterada de un factor de coagulación. En otros, la hemofilia es un trastorno autoinmunitario, denominado hemofilia adquirida, en el
 que los anticuerpos que se generan contra un factor de coagulación en un sujeto provocan una disminución de la hemostasia.

La hemofilia A es el resultado de una deficiencia del fVIII de coagulación funcional, mientras que la hemofilia B es el resultado de una deficiencia del fIX de coagulación funcional. Estas afecciones que se deben a una mutación genética son causadas por un rasgo recesivo hereditario ligado al sexo con el gen defectuoso ubicado en el cromosoma X, y esta enfermedad, por lo tanto, generalmente se encuentra solo en varones. La gravedad de los síntomas puede variar

con esta enfermedad, y las formas graves se hacen evidentes desde el principio. El sangrado es el sello distintivo de la enfermedad y generalmente se produce cuando se circuncida a un bebé varón. Otras manifestaciones hemorrágicas aparecen cuando el bebé se vuelve capaz de desplazarse. Los casos leves pueden pasar desapercibidos hasta más adelante en la vida cuando se producen en respuesta a una cirugía o trauma. El sangrado interno puede producirse en cualquier lugar, y es común el sangrado en las articulaciones.

Hemostasia: Detención de sangre hemorrágica por formación de coágulos sanguíneos. El tiempo de coagulación de la sangre es el tiempo que tarda la sangre periférica en coagularse utilizando un ensayo de tiempo de tromboplastina parcial activado (APTT) o midiendo el tiempo de sangrado. En una realización particular, el tiempo de coagulación de la sangre disminuye al menos un 50 %, por ejemplo, al menos un 60 %, al menos un 70 %, al menos un 75 %, al menos un 80 %, al menos un 90 %, al menos un 95 %, al menos un 98 %, al menos un 99 % o incluso aproximadamente un 100 % (es decir, el tiempo de coagulación sanguínea es similar al observado para un sujeto normal) en comparación con el tiempo de coagulación sanguínea del sujeto antes de la administración de un vector terapéutico que codifica el factor de coagulación apropiado como se describe en el presente documento. En otra realización más, el tiempo de coagulación sanguínea en el sujeto afectado se corrige de aproximadamente el 50 % de un sujeto normal, a aproximadamente el 95 %, por ejemplo, aproximadamente el 100 %, después de la administración oral de una cantidad terapéuticamente eficaz del factor de coagulación apropiado. Como se usan en el presente documento, "aproximadamente" se refiere a más o menos el 5 % de un valor de referencia. Por lo tanto, aproximadamente el 50 % se refiere de 47,5 % a 52,5 %.

10

15

20

55

60

65

Intrón: Un tramo de ADN dentro de un gen que no contiene información codificante para una proteína. Los intrones se eliminan antes de la traducción de un ARN mensajero.

- 25 **Repetición terminal invertida (ITR):** Secuencias simétricas del ácido nucleico en el genoma de virus adenoasociados necesarias para una replicación eficaz. Las secuencias ITR se encuentran en cada extremo del genoma de ADN de AAV. Las ITR sirven como los orígenes de replicación para la síntesis de ADN vírico y son componentes en *cis* esenciales para generar vectores integradores de AAV.
- Aislado: Un componente biológico "aislado" (tal como una molécula de ácido nucleico, proteína, virus o célula) se ha separado o purificado sustancialmente de otros componentes biológicos en la célula o en el tejido del organismo, o en el propio organismo, en el que el componente se produce naturalmente, tal como otros ADN y ARN cromosómicos y extracromosómicos, proteínas y células. Las moléculas de ácido nucleico y las proteínas que se han "aislado" incluyen los purificados por métodos de purificación convencionales. El término también abarca moléculas de ácido nucleico y proteínas preparados por expresión recombinante en una célula hospedadora, así como moléculas de ácido nucleico y proteínas sintetizados químicamente.
- Moléculas de ácido nucleico: Una forma polimérica de nucleótidos, que puede incluir cadenas de ARN, ADNc, ADN genómico tanto en sentido como antisentido y formas sintéticas y polímeros mixtos de los anteriores. Un nucleótido se refiere a un ribonucleótido, desoxinucleótido o una forma modificada de cualquier tipo de nucleótido. La expresión "molécula de ácido nucleico" como se usa en el presente documento es sinónimo de "ácido nucleico" y "polinucleótido". Una molécula de ácido nucleico suele tener al menos 10 bases de longitud, a menos que se especifique otra cosa. El término incluye formas de ADN monocatenarias y bicatenarias. Un polinucleótido puede incluir bien uno o ambos nucleótidos de origen natural y modificados unidos entre sí por enlaces nucleotídicos de origen natural y/o no de origen natural. "ADNc" se refiere a un ADN que es complementario o idéntico a un ARNm, en forma monocatenaria o bicatenaria. "Codificación" se refiere a la propiedad inherente de secuencias específicas de nucleótidos en un polinucleótido, tal como un gen, un ADNc o un ARNm, para servir como plantillas para la síntesis de otros polímeros y macromoléculas en procesos biológicos que tienen una secuencia definida de nucleótidos (es decir, ARNr, ARNt y ARNm) o una secuencia definida de aminoácidos y las propiedades biológicas resultantes de los mismos.
 - **Nucleótido:** Este término incluye, aunque sin limitación, un monómero que incluye una base unida a un azúcar, tal como una pirimidina, purina o análogos sintéticos de las mismas, o una base unida a un aminoácido, tal como en un ácido nucleico peptídico (PNA). Un nucleótido es un monómero en un polinucleótido. Una secuencia de nucleótidos se refiere a la secuencia de bases en un polinucleótido.
 - **Unido operativamente:** Una primera secuencia de un ácido nucleico está operativamente unida con una segunda secuencia de un ácido nucleico cuando la primera secuencia de un ácido nucleico se coloca en una relación funcional con la segunda secuencia de un ácido nucleico. Por ejemplo, un promotor está unido operativamente a una secuencia codificante si el promotor afecta la transcripción o expresión de la secuencia codificante. Por lo general, las secuencias de ADN unidas operativamente son contiguas y, cuando es necesario unir dos regiones codificantes de proteínas, en el mismo marco de lectura.
 - **ORF** (marco de lectura abierto): Una serie de tripletes de nucleótidos (codones) que codifican aminoácidos. Estas secuencias son generalmente traducibles en un péptido.
 - Transportadores farmacéuticamente aceptables: Los transportadores farmacéuticamente aceptables para su uso

son convencionales. Remington's Pharmaceutical Sciences, por E. W. Martin, Mack Publishing Co., Easton, PA, 19^a edición, 1995, describe composiciones y formulaciones adecuadas para el suministro farmacéutico de los vectores divulgados.

En general, la naturaleza del transportador dependerá del modo particular de administración que se emplee. Por ejemplo, las formulaciones parenterales generalmente comprenden líquidos inyectables que incluyen líquidos farmacéuticamente y fisiológicamente aceptables tales como agua, solución salina fisiológica, soluciones salinas equilibradas, dextrosa acuosa, glicerol o similares como vehículo. Para las composiciones sólidas (por ejemplo, formas en polvo, píldora, comprimido o cápsula), los transportadores sólidos no tóxicos convencionales pueden incluir, por ejemplo, grados farmacéuticos de manitol, lactosa, almidón y estearato de magnesio. Además de transportadores 10 bilógicamente neutros, las composiciones farmacéuticas (tales como las composiciones de vectores) a administrar pueden contener cantidades menores de sustancias auxiliares no tóxicas, tales como agentes humectantes o emulsionantes, conservantes y agentes tamponadores del pH y similares, por ejemplo, acetato de sodio o monolaurato de sorbitán. En realizaciones particulares, el transportador adecuado para la administración a un sujeto puede ser estéril y/o estar suspendido o contenido en una forma de dosificación unitaria que contiene una o más dosis medidas 15 de la composición adecuada para inducir la respuesta inmunitaria deseada. También puede ir acompañado de medicamentos para su uso con fines de tratamiento. La forma de dosificación unitaria puede ser, por ejemplo, en un vial sellado que contiene contenido estéril o una jeringa para inyección en un sujeto, o liofilizado para su posterior solubilización y administración o en una dosificación de liberación controlada o sólida.

Polipéptido: Cualquier cadena de aminoácidos, independientemente de la longitud o la modificación postraduccional (p. ej., glucosilación o fosforilación). "Polipéptido" se aplica a los polímeros de aminoácidos, incluidos los polímeros de aminoácidos de origen natural y polímeros de aminoácidos de origen no natural, así como en los que uno o más restos de aminoácidos es un aminoácido no natural, por ejemplo, un mimético químico artificial de un aminoácido de origen natural correspondiente. Un "resto" se refiere a un aminoácido o mimético de aminoácido incorporado en un polipéptido por un enlace amida o un mimético de enlace amida. Un polipéptido tiene un extremo amino terminal (N-terminal) y un extremo carboxilo terminal (C-terminal). "Polipéptido" se usa indistintamente con péptido o proteína, y se usa en el presente documento para referirse a un polímero de restos de aminoácidos.

20

25

45

50

55

- 30 **Prevenir, tratar o mejorar una enfermedad:** Prevenir "una enfermedad (tal como la hemofilia) se refiere a inhibir el desarrollo completo de una enfermedad. "Tratar" se refiere a una intervención terapéutica que mejora un signo o síntoma de una enfermedad o afección patológica después de haber comenzado a desarrollarse. Mejorar "se refiere a la reducción en el número o la gravedad de los signos o síntomas de una enfermedad.
- Promotor: Una región de ADN que dirige/inicia la transcripción de un ácido nucleico (por ejemplo, un gen). Un promotor incluye secuencias de un ácido nucleico necesarias cerca del sitio de inicio de la transcripción. Generalmente, los promotores se localizan cerca de los genes que transcriben. Un promotor también incluye opcionalmente elementos potenciadores o represores distales que pueden ubicarse hasta varios miles de pares de bases desde el sitio de inicio de la transcripción. Un promotor específico de tejido es un promotor que dirige/inicia la transcripción principalmente en un solo tipo de tejido o célula. Por ejemplo, un promotor específico de hígado es un promotor que dirige/inicia la transcripción en el tejido hepático en un grado sustancialmente mayor que otros tipos de tejidos.

Proteína: Una molécula biológica expresada por un gen u otro ácido nucleico codificante (por ejemplo, un ADNc) y compuesta de aminoácidos.

Purificado: El término "purificado" no requiere pureza absoluta; si no que, se concibe como un término relativo. Por lo tanto, por ejemplo, un péptido, proteína, virus u otro compuesto activo purificado es uno que está aislado total o parcialmente de proteínas y otros contaminantes asociados naturalmente. En determinadas realizaciones, la expresión "sustancialmente purificado" se refiere a un péptido, proteína, virus u otro compuesto activo que ha sido aislado de una célula, medio de cultivo celular u otra preparación en bruto y sometido a fraccionamiento para eliminar varios componentes de la preparación inicial, tales como proteínas, residuos celulares y otros componentes.

Recombinante: Una molécula de ácido nucleico recombinante es aquella que tiene una secuencia que no es de origen natural, por ejemplo, incluye una o más sustituciones, eliminaciones o inserciones en ácidos nucleicos, y/o tiene una secuencia que está hecha por una combinación artificial de dos segmentos de secuencia separados de otra manera. Esta combinación artificial se puede lograr mediante síntesis química o, más habitualmente, mediante la manipulación artificial de segmentos aislados de ácidos nucleicos, por ejemplo, mediante técnicas de ingeniería genética.

Un virus recombinante es uno que incluye un genoma que incluye una molécula de ácido nucleico recombinante.

Como se usan en el presente documento, "AAV recombinante" se refiere a una partícula de AAV en la que se ha empaquetado una molécula de ácido nucleico recombinante (tal como una molécula de ácido nucleico recombinante que codifica un factor de coagulación).

Una proteína recombinante es aquella que tiene una secuencia que no es de origen natural o tiene una secuencia que está hecha por una combinación artificial de dos segmentos de secuencia separados de otra manera. En varias realizaciones, una proteína recombinante está codificada por un ácido nucleico heterólogo (por ejemplo, recombinante)

que se ha introducido en una célula hospedadora, tal como una célula bacteriana o eucariota, o en el genoma de un virus recombinante.

Elemento de respuesta (RE): Una secuencia de ADN incluida en un promotor al que uno o más factores de transcripción pueden unirse y conferir un aspecto de control de la expresión génica.

5

10

15

20

25

30

35

40

45

50

55

Identidad de secuencia: La identidad o similitud más secuencias de los ácidos nucleicos o dos o más secuencias de aminoácidos, se expresa en términos de identidad o similitud entre las secuencias. La identidad de secuencia puede medirse en términos de porcentaje de identidad; cuanto mayor sea el porcentaje, más idénticas son las secuencias. La similitud de secuencia puede medirse en términos de porcentaje de similitud (que tiene en cuenta sustituciones de aminoácidos conservativas); cuanto mayor sea el porcentaje, más similares son las secuencias. Los homólogos y ortólogos de secuencias de los ácidos nucleicos o de aminoácidos poseen un grado relativamente alto de identidad/similitud de secuencia cuando se alinean usando métodos convencionales. Esta homología es más significativa cuando las proteínas o ADNc ortólogos proceden de especies que están más estrechamente relacionadas (tales como secuencias humanas y de ratón), en comparación con especímenes más remotamente relacionados (tales como secuencias humanas y de *C. elegans*).

Los métodos de alineación de secuencias para la comparación son bien conocidos en la técnica. Se describen diversos programas y algoritmos de alineación en: Smith & Waterman, Adv. Appl. Math. 2:482, 1981; Needleman & Wunsch, J. Mol. Biol. 48:443, 1970; Pearson & Lipman, Proc. Natl. Acad. Sci. USA 85:2444, 1988; Higgins & Sharp, Gene, 73:237-44, 1988; Higgins & Sharp, CABIOS 5:151-3, 1989; Corpet et al., Nuc. Acids Res. 16:10881-90, 1988; Huang et al. Computer Appls. in the Biosciences 8, 155-65, 1992; y Pearson et al., Meth. Mol. Bio. 24:307-31, 1994. Altschul et al., J. Mol. Biol. 215:403-10, 1990, presenta una consideración detallada de métodos de alineación de secuencias y cálculos de homología.

La Basic Local Alignment Search Tool (BLAST) del NCBI (Altschul y col., J. Mol. Biol. 215:403-10, 1990) está disponible a partir de varias fuentes, entre los que se incluye el Centro Nacional de Información Biológica (NCBI) y en internet, para su uso en conexión con los programas de análisis de secuencias blastp, blastn, blastx, blastn y tblastx. Puede encontrarse información adicional en la página web del NCBI.

Como se usan en el presente documento, referencia a "al menos un 90 % de identidad" se refiere a "al menos un 90 %, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 96 %, al menos un 97 %, al menos un 98 %, al menos un 99 % o incluso al menos un 100 % de identidad" con una secuencia de referencia especificada.

Sujeto: Organismos vertebrados multicelulares vivos, una categoría que incluye mamíferos humanos y no humanos.

Sintético: Producido por medios artificiales en un laboratorio, por ejemplo, un ácido nucleico sintético puede sintetizarse químicamente en un laboratorio.

Caja TATA: Una secuencia de ADN que se encuentra en la región promotora de un gen que puede unirse mediante la proteína de unión a TATA y el factor de transcripción II D durante el desenrollado y unión de ADN por la ARN polimerasa II. Una secuencia de caja TATA generalmente incluye una secuencia TATAAA y a menudo incluye nucleótidos de adenina 3' adicionales. Se proporciona una secuencia de caja TATA ejemplar como los nucleótidos 108-114 de la SEQ ID NO: 4.

Cantidad terapéuticamente eficaz: Una cantidad de un agente farmacéutico o terapéutico especificado (por ejemplo, un AAV recombinante) suficiente para lograr un efecto deseado en un sujeto, o en una célula, que se está tratando con el agente. La cantidad eficaz del agente dependerá de varios factores, incluyendo, pero sin limitación, el sujeto o las células a tratar, y la forma de administración de la composición terapéutica.

Factor de transcripción (TF): Una proteína que se une a secuencias de ADN específicas y, por lo tanto, controla la transferencia (o transcripción) de información genética del ADN al ARN. Los TF realizan esta función solos o con otras proteínas en un complejo, promoviendo (como activador) o bloqueando (como represor) el reclutamiento de ARN polimerasa (la enzima que realiza la transcripción de información genética de ADN a ARN) para genes específicos. Las secuencias de ADN específicas a las que se une un TF se conocen como elemento de respuesta (RE) o elemento regulador. Otros nombres incluyen elemento en cis y elemento regulador transcripcional de acción en cis.

Los factores de transcripción interactúan con sus sitios de unión usando una combinación de fuerzas electrostáticas (de las cuales los enlaces de hidrógeno son un caso especial) y de Van der Waals. Debido a la naturaleza de estas interacciones químicas, la mayoría de los factores de transcripción se unen al ADN de una manera específica de secuencia. Sin embargo, no todas las bases en el sitio de unión al factor de transcripción pueden interactuar realmente con el factor de transcripción. Además, algunas de estas interacciones pueden ser más débiles que otras. Por lo tanto, muchos factores de transcripción no se unen a una sola secuencia, sino que son capaces de unir un subconjunto de secuencias estrechamente relacionadas, cada una con una fuerza de interacción diferente.

Por ejemplo, aunque el sitio de unión consenso para la proteína de unión a TATA (TBP) es TATAAAA; sin embargo, el factor de transcripción de TBP también puede unir secuencias similares como TATATAT o

TATATAA

5

10

15

20

25

30

35

Los factores de transcripción (TF) se clasifican en función de muchos aspectos. Por ejemplo, las estructuras secundarias, terciarias y cuaternarias de la proteína estructuran la secuencia y las propiedades de unión al ADN, la interacción con la doble hélice del ADN y el metal y otras características de unión. La base de datos JASPAR y TRANSFAC (TRANSFAC® 7.0 Public 2005) son dos bases de datos de factores de transcripción basadas en la web, sus sitios de unión probados experimentalmente y genes regulados.

HNF1a: También denominado caja homeótica A de HNF1 A o HNF1, la proteína HNF1a es un factor de transcripción necesario para la expresión de varios genes específicos de hígado. HNF1a forma un homodímero que se une a secuencias promotoras particulares. Los sitios de unión de TF HNF1a ejemplares incluyen el sitio de unión al TF "HNF1a" proporcionado como los nucleótidos 1-12 de la SEQ ID NO: 4, el sitio de unión al TF "HNF1-1" proporcionado como los nucleótidos 16-23 de la SEQ ID NO: 4, y el sitio de unión al TF "HNF1-2" proporcionado como los nucleótidos 48-62 de la SEQ ID NO: 4. (Véanse, por ejemplo, PubMed Gene ID NO. 6927; Chi et al., "Diabetes mutations delineate an atypical POU domain in HNF-1alpha", Mol. Cell., 10:1129-1137, 2002; y Rose et al., "Structural basis of dimerization, coactivator recognition and MODY3 mutations in HNF-1alpha", Nat. Struct. Biol. 7:744-748, 2000).

HNF3a: Un factor de transcripción necesario para la expresión de varios genes específicos de hígado. HNF3a se une a secuencias promotoras particulares. Se proporciona un sitio de unión al TF HNF3a ejemplar como los nucleótidos 39-45 de la SEQ ID NO: 4. Se proporciona un sitio de unión al TF HNF3-2 ejemplar como los nucleótidos 65-71 de la SEQ ID NO: 4. (véase, por ejemplo, Laganiere et al., "Location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response", Proc. Natl. Acad. Sci. U.S.A. 102:11651-11656, 2005; Williamson et al., "BRCA1 and FOXA1 proteins coregulate the expression of the cell cycle-dependent kinase inhibitor p27(Kip1)", Oncogene 25:1391-1399, 2006; Lupien et al., "FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription", Cell 132:958-970, 2008; Song et al., "Role of Foxa1 in regulation of bcl2 expression during oxidative-stress-induced apoptosis in A549 type II pneumocytes", Cell Stress Chaperones, 14:417-425, 2009); and Malik et al., "Histone deacetylase 7 and FoxA1 in estrogen-mediated repression of RPRM", Mol. Cell. Biol. 30:399-412, 2010).

HNF4: Un factor de transcripción necesario para la expresión de varios genes específicos de hígado. HNF4 se une a secuencias promotoras particulares. Se proporciona un sitio de unión al TF HNF4 ejemplar como los nucleótidos 26-36 de la SEQ ID NO: 4. (Véanse, por ejemplo, Wang et al., " Hepatocyte nuclear factor-4α interacts with other hepatocyte nuclear factors in regulating transthyretin gene expression", FEBS J., 277(19):4066-75, 2010).

HP1: Un factor de transcripción necesario para la expresión de varios genes específicos de hígado. HP1 se une a secuencias promotoras particulares. Se proporciona un sitio de unión al TF HP1 ejemplar como los nucleótidos 75-87 de la SEQ ID NO: 4. (Véanse, por ejemplo, Schorpp et al., "Hepatocyte-specific promoter element HP1 of the Xenopus albumin gene interacts with transcriptional factors of mammalian hepatocytes", J Mol Biol., 202(2):307-20, 1988)

40 20, 1988)

Sitio de Inicio de Transcripción: La ubicación donde comienza la transcripción en el extremo 5 'de una secuencia génica. Se proporciona un Sitio de Inicio de Transcripción ejemplar como los nucleótidos 116-146 de la SEQ ID NO:

45

50

55

Cantidad terapéuticamente eficaz: La cantidad de agente, tal como un vector AAV recombinante divulgado que codifica un factor de coagulación, que es suficiente para prevenir, tratar (incluida la profilaxis), reducir y/o mejorar los síntomas y/o las causas subyacentes de un trastorno o enfermedad, por ejemplo para prevenir, inhibir y/o tratar la hemofilia. Por ejemplo, esta puede ser la cantidad necesaria para inhibir o prevenir la replicación vírica o para alterar de manera medible los síntomas externos de la enfermedad o afección.

En un ejemplo, una respuesta deseada es reducir el tiempo de coagulación en un sujeto (tal como un sujeto con hemofilia), por ejemplo, medido usando un ensayo de tiempo de sangrado. El tiempo de coagulación no necesita ser completamente restaurado al de los sujetos sanos normales sin hemofilia para que el método sea eficaz. Por ejemplo, la administración de una cantidad terapéuticamente eficaz de un vector (tal como un vector que codifica fVIII) como se divulga en el presente documento puede disminuir el tiempo de coagulación (u otro síntoma de la hemofilia) en una cantidad deseada, por ejemplo, al menos 20 %, al menos un 30 %, al menos un 40 %, al menos un 50 %, al menos un 60 %, al menos un 70 %, al menos un 80 %, al menos un 90 %, al menos un 95 %, al menos un 98 %, al menos un 100 % o más, en comparación con un control adecuado.

60

65

Se entiende que para obtener una respuesta terapéutica a la enfermedad o afección puede necesitarse múltiples administraciones del agente. Por lo tanto, una cantidad terapéuticamente eficaz abarca una dosis fraccionaria que contribuye en combinación con administraciones anteriores o posteriores para lograr un resultado terapéutico en el paciente. Por ejemplo, se puede administrar una cantidad terapéuticamente eficaz de un agente en una dosis única o en varias dosis, por ejemplo diariamente, durante un ciclo de tratamiento. Sin embargo, la cantidad terapéuticamente eficaz puede depender del sujeto a tratar, la gravedad y el tipo de la afección a tratar, y la forma de administración. Se

puede empaquetar una forma de dosificación unitaria del agente en una cantidad terapéutica, o en múltiplos de la cantidad terapéutica, por ejemplo, en un vial (por ejemplo, con una tapa perforable) o una jeringa que tiene componentes estériles.

Vector: Un vector es una molécula de ácido nucleico que permite la inserción de ácido nucleico extraño sin alterar la capacidad del vector para replicarse y/o integrarse en una célula hospedadora. Un vector puede incluir secuencias de un ácido nucleico que le permiten replicarse en una célula hospedadora, tal como un origen de replicación. Un vector también puede incluir uno o más genes marcadores seleccionables y otros elementos genéticos. Un vector de expresión es un vector que contiene las secuencias reguladoras necesarias para permitir la transcripción y traducción del gen o genes insertados. En algunas realizaciones en el presente documento, el vector es un vector de virus adenoasociado (AAV). En algunas realizaciones, el vector es un vector gamma retrovírico, un vector lentivírico o un vector adenovírico.

A menos que se indique lo contrario, todos los términos técnicos y científicos utilizados en el presente documento tienen el mismo significado que el que entiende comúnmente una persona normalmente experta en la técnica a la cual pertenece la presente divulgación. Los términos en singular "un", "uno", "una", y "el/la" incluyen las referencias en plural a menos que el contexto dicte claramente lo contrario. "Que comprende A o B" significa que incluye A, o B, o A y B. Se entiende además que todos los tamaños de bases o los tamaños de aminoácidos, y todos los valores de pesos moleculares o masas moleculares, proporcionados para los ácidos nucleicos o polipéptidos son aproximados, y se proporcionan para la descripción. Aunque los métodos y materiales similares o equivalentes a los descritos en el presente documento pueden usarse en la práctica o prueba de la presente divulgación, a continuación se describen métodos y materiales adecuados. En caso de conflicto, prevalecerá la presente memoria descriptiva, incluidas las explicaciones de términos. Además, los materiales, métodos y ejemplos son solamente ilustrativos y no pretenden ser limitantes.

II. Promotores Optimizados para la Transcripción Dirigida al Hígado

15

20

25

30

En el presente documento, se proporcionan nuevos promotores para promover la transcripción en tejido y/o células del hígado. Como se analiza en el Ejemplo 2, los nuevos promotores se diseñaron usando un enfoque iterativo que finalmente identificó varias secuencias promotoras que proporcionan niveles de transcripción inesperadamente altos (como se analiza midiendo la actividad de la proteína expresada), y son sustancialmente más cortas que las secuencias promotoras anteriores, como la secuencia promotora HLP.

En la invención, se proporciona una molécula de ácido nucleico recombinante que comprende un promotor que comprende un primer elemento de respuesta que comprende un conjunto de sitios de unión a factores de transcripción (TF), que incluyen: un sitio de unión al TF HNF1a, un sitio de unión al TF HNF1-1, un sitio de unión al TF HNF3a, un sitio de unión al TF HNF3-2, un sitio de unión al TF HP1, una caja TATA; y un Sitio de Inicio de la Transcripción. Estos son los sitios de unión al factor de transcripción incluidos en el promotor HCB.

En la invención, el primer elemento de respuesta puede comprender una secuencia de nucleótidos que no tiene más de 160 nucleótidos de longitud (tal como no más de 150 nucleótidos de longitud, tal como de 146 nucleótidos de longitud).

En la invención, el sitio de unión al TF HNF1a comprende o consiste en los nucleótidos 1-12 de la SEQ ID NO: 4; el sitio de unión al TF HNF1-1 comprende o consiste en los nucleótidos 16-23 de la SEQ ID NO: 4; el sitio de unión al TF HNF4 comprende o consiste en los nucleótidos 26-36 de la SEQ ID NO: 4; el sitio de unión al TF HNF1a comprende o consiste en los nucleótidos 39-45 de la SEQ ID NO: 4; el sitio de unión al TF HNF1-2 comprende o consiste en los nucleótidos 48-62 de la SEQ ID NO: 4; el sitio de unión al TF HNF3-2 comprende o consiste en los nucleótidos 65-71 de la SEQ ID NO: 4; el sitio de unión al TF HP1 comprende o consiste en los nucleótidos 75-87 de la SEQ ID NO: 4; la caja TATA comprende o consiste en los nucleótidos 108-114 de la SEQ ID NO: 4; y el Sitio de Inicio de la Transcripción (TSS) comprende o consiste en los nucleótidos 116-146 de la SEQ ID NO: 4.

En algunas realizaciones, el primer elemento de respuesta comprende, de 5' a 3', el sitio de unión al TF HNF1a, el sitio de unión al TF HNF1-1, el sitio de unión al TF HNF1-2, el sitio de unión al TF HNF3-2, el sitio de unión al TF HP1, la caja TATA y el Sitio de Inicio de la Transcripción (TSS, por sus siglas en inglés).

En algunas realizaciones, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 4 (HCB), o una secuencia al menos un 90 % (tal como, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunas realizaciones, la molécula de ácido nucleico recombinante puede comprender un promotor que comprende el primer elemento de respuesta como se analiza anteriormente, y puede comprender además un segundo elemento de respuesta.

En algunas realizaciones, el segundo elemento de respuesta puede comprender un elemento de respuesta HSh. Por ejemplo, un elemento de respuesta HSh que comprende o que consiste en la secuencia de nucleótidos establecida como la SEQ ID NO: 111, o una secuencia de al menos un 90 % (tal como al menos 91%, al menos 92%, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunas realizaciones, el segundo elemento de respuesta puede comprender un elemento de respuesta 5'HS. Por ejemplo, un elemento de respuesta 5'HS que comprende o que consiste en la secuencia de nucleótidos establecida como los nucleótidos 6-32 de SEQ ID NO: 111, o una secuencia al menos un 90 % (tal como al menos 91%, al menos 92%, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

10

15

35

40

45

50

55

60

65

En algunas realizaciones, el segundo elemento de respuesta puede comprender un elemento de respuesta 3'HS. Por ejemplo, un elemento de respuesta 3'HS que comprende o que consiste en la secuencia de nucleótidos establecida como los nucleótidos 44-68 de SEQ ID NO: 111, o una secuencia al menos un 90 % (tal como al menos 91%, al menos 92%, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunas realizaciones, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 102 (HSh-HCB), o una secuencia al menos un 90 % (tal como, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunas realizaciones, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 104 (5'HSh-HCB), o una secuencia al menos un 90 % (tal como, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunas realizaciones, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 103 (3'HSh-HCB),

En algunos aspectos de la divulgación, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 7 (ABP-HP1-God-TSS), o una secuencia al menos un 90 % (tal como, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunos aspectos de la divulgación, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 105 (HSh-SynO-TSS), o una secuencia al menos un 90 % (tal como, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunos aspectos de la divulgación, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 106 (sHS-SynO-TSS), o una secuencia al menos un 90 % (tal como, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunos aspectos de la divulgación, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 107 (Agro), o una secuencia al menos un 90 % (tal como, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunos aspectos de la divulgación, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 108 (HS-SynO-TSS), o una secuencia al menos un 90 % (tal como, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunos aspectos de la divulgación, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 112 (HNF1-ShortABPExact-SynO-TSS-Int), o una secuencia al menos un 90 % (tal como, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunos aspectos de la divulgación, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 5 (shortABP-HP1-GodTSS), o una secuencia al menos un 90 % (tal como, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

En algunos aspectos de la divulgación, la molécula de ácido nucleico recombinante comprende un promotor que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 7 (ABP-HP1-God-TSS), o una secuencia al menos un 90 % (tal como, al menos un 91 %, al menos un 92 %, al menos un 93 %, al menos un 94 %, al menos un 95 %, al menos un 98 % o al menos un 99 %) idéntica a la misma.

Los promotores divulgados pueden utilizarse en cualquier situación en la que se desee la transcripción específica del hígado. En varias realizaciones, cualquiera de los promotores de la invención puede incluirse en un vector (tal como un vector AAV) para métodos de terapia génica en los que se desea la expresión específica de hígado de un transgén, tal como la expresión específica de hígado de un factor de coagulación como se divulga en el presente documento.

III. Moléculas de Ácido Nucleico Recombinante que Codifican Factores de Coaquiación

El sistema de coagulación de la sangre es una cascada proteolítica. Los factores de coagulación sanguínea están presentes en el plasma como un zimógeno, en otras palabras, en forma inactiva, que al activarse sufre una escisión proteolítica para liberar el factor activo de la molécula precursora. El objetivo final es producir trombina. La trombina convierte el fibrinógeno en fibrina, que forma un coágulo.

El factor X es la primera molécula de la vía común y se activa mediante un complejo de moléculas que contienen flX activado, fVIII, calcio y fosfolípidos que se encuentran sobre la superficie de las plaquetas. El FVIII es activado por la trombina, y facilita la activación del factor X por flXa. FVIII, contiene múltiples dominios (A1-A2-B-ap-A3-C1-C2) y circula en la sangre en forma inactiva unido al factor von Willebrand (VWF, por sus siglas en inglés). El dominio C2 está implicado en la unión de fVIII a VWF. La trombina escinde el fVIII causando disociación con el VWF, conduciendo, finalmente a la formación de fibrina a través del flX. La hemofilia A congénita está asociada con mutaciones genéticas en el gen fVIII y da como resultado una coagulación alterada debido a niveles de fVIII circulantes inferiores a lo normal. La hemofilia B se asocia de manera similar con mutaciones genéticas en el gen fIX.

Los límites del dominio FVIII se refieren a la numeración de la secuencia de aminoácidos de fVIII humano como sigue; restos 1-19 (Secuencia Señal), 20-391 (A1), 392-759 (A2), 760-1667 (B), 1668-1708 (ap), 1709-2038 (A3), 2039-2191 (C1) y 2192-2351 (C2) (véase Gitschier et al., Nature, 1984, 312, 326-330) de la SEQ ID NO: 1:

 ${\tt MQIELSTCFFLCLLRFCFSATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKTLFVEFTDHLF}$ NIAKPRPPWMGLLGPTIQAEVYDTVVITLKNMASHPVSLHAVGVSYWKASEGAEYDDQTSQREKEDDKVFPGGSHTYV WQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQTLHKFILLFAVFDEGKSWHSETKNS LMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSVYWHVIGMGTTPEVHSIFLEGHTFLVRNHRQASLEISPITF LTAQTLLMDLGQFLLFCHISSHQHDGMEAYVKVDSCPEEPQLRMKNNEEAEDYDDDLTDSEMDVVRFDDDNSPSFIQI RSVAKKHPKTWVHYIAAEEEDWDYAPLVLAPDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGIL GPLLYGEVGDTLLIIFKNQASRPYNIYPHGITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSDPR CLTRYYSSFVNMERDLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQRFLPNPAGVQLED PEFQASNIMHSINGYVFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKHKMVYEDTLTLFPFSGETVFMSME NPGLWILGCHNSDFRNRGMTALLKVSSCDKNTGDYYEDSYEDISAYLLSKNNAIEPRSFSQNSRHPSTRQKQFNATTI PENDIEKTDPWFAHRTPMPKIQNVSSSDLLMLLRQSPTPHGLSLSDLQEAKYETFSDDPSPGAIDSNNSLSEMTHFRP QLHHSGDMVFTPESGLQLRLNEKLGTTAATELKKLDFKVSSTSNNLISTIPSDNLAAGTDNTSSLGPPSMPVHYDSQL DTTLFGKKSSPLTESGGPLSLSEENNDSKLLESGLMNSQESSWGKNVSSTESGRLFKGKRAHGPALLTKDNALFKVSI SLLKTNKTSNNSATNRKTHIDGPSLLIENSPSVWQNILESDTEFKKVTPLIHDRMLMDKNATALRLNHMSNKTTSSKN MEMVQQKKEGP1PPDAQNPDMSFFKMLFLPESARWIQRTHGKNSLNSGQGPSPKQLVSLGPEKSVEGQNFLSEKNKVV VGKGEFTKDVGLKEMVFPSSRNLFLTNLDNLHENNTHNQEKKIQEEIEKKETLIQENVVLPQIHTVTGTKNFMKNLFL LSTRQNVEGSYDGAYAPVLQDFRSLNDSTNRTKKHTAHFSKKGEEENLEGLGNQTKQIVEKYACTTRISPNTSQQNFV TQRSKRALKQFRLPLEETELEKRIIVDDTSTQWSKNMKHLTPSTLTQIDYNEKEKGAITQSPLSDCLTRSHSIPQANR SPLPIAKVSSFPSIRPIYLTRVLFQDNSSHLPAASYRKKDSGVQESSHFLQGAKKNNLSLAILTLEMTGDQREVGSLG TSATNSVTYKKVENTVLPKPDLPKTSGKVELLPKVHIYOKDLFPTETSNGSPGHLDLVEGSLLOGTEGAIKWNEANRP GKVPFLRVATESSAKTPSKLLDPLAWDNHYGTQIPKEEWKSQEKSPEKTAFKKKDTILSLNACESNHAIAAINEGQNK PEIEVTWAKQGRTERLCSQNPPVLKRHQREITRTTLQSDQEEIDYDDTISVEMKKEDFDIYDEDENQSPRSFQKKTRH YFIAAVERLWDYGMSSSPHVLRNRAQSGSVPQFKKVVFQEFTDGSFTQPLYRGELNEHLGLLGPYIRAEVEDNIMVTF RNQASRPYSFYSSLISYEEDQRQGAEPRKNFVKPNETKTYFWKVQHHMAPTKDEFDCKAWAYFSDVDLEKDVHSGLIG $\verb|PLLVCHTNTLNPAHGRQVTVQEFALFFTIFDETKSWYFTENMERNCRAPCNIQMEDPTFKENYRFHAINGYIMDTLPG|$ LVMAQDQRIRWYLLSMGSNENIHSIHFSGHVFTVRKKEEYKMALYNLYPGVFETVEMLPSKAGIWRVECLIGEHLHAG MSTLFLVYSNKCQTPLGMASGHIRDFQITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQ GARQKFSSLYISQFIIMYSLDGKKWQTYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLRME LMGCDLNSCSMPLGMESKAISDAQITASSYFTNMFATWSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGV TTQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGKVKVFQGNQDSFTPVVNSLDPPLLTRYLRIHPQSWVHQIALRM EVLGCEAQDLY

Como se analiza en el Ejemplo 1, las secuencias de nucleótidos de ADNc que codifican las variantes de fVIII ET3 y HSQ se mejoraron implementando una preferencia de uso de codones específicos para la célula hepática humana en

15

10

15

20

5

30

25

comparación con la secuencia de nucleótidos de origen natural que codifica la secuencia sin codones optimizados correspondiente para un ser humano. También se realizaron cambios adicionales para mejorar la eficacia de la traducción, tal como la optimización del contenido en GC, estructura secundaria de ARNm, sitios de PoliA prematuros, motivo de inestabilidad de ARN, energía libre estable de ARNm, sitios chi internos, motivos de inestabilidad de ARN, sitios de unión a ribosomas, sitios de corte y empalme crípticos, islas CpG negativas, secuencia SD, cajas TATA y señales terminales crípticas.

Además, se eliminaron los motivos de ADN de CpG porque pueden conducir a la metilación y silenciamiento de genes. Véase Bird, DNA methylation and the frequency of CpG in animal DNA, 1980, Nucleic Acids Res, 8: 1499-1504. Los codones se sustituyeron con la alternativa humana/hepática más utilizada que no dio como resultado la formación de un dinucleótido 5'-CG-3' en la secuencia. La eliminación de CpG también puede reducir cualquier respuesta inmunitaria a un vector, incluido el transgén modificado, potenciando la seguridad y la eficacia del vector. Véase J Clin Invest. 2013, 123(7):2994-3001, titulado "CpG-depleted adeno-associated virus vectors evade immune detection".

10

35

40

45

65

ET3 es un fVIII híbrido con el dominio B eliminado (BDD) que contiene dominios humanos y porcinos, es decir, la secuencia (A1 y A3 porcinos, véanse las FIG. 1A y 1B) con un enlazador en el dominio B eliminado. ET3 utiliza una secuencia enlazadora OL derivada de una secuencia porcina de 24 aminoácidos, es decir, la secuencia SFAQNSRPPSASAPKPPVLRRHQR (SEQ ID NO: 23) derivada de la porcina. HSQ es una variante de fVIII humano en donde la proteína fVIII humana BDD se sustituye con un enlazador SQ, SFSQNPPVLKRHQR (SEQ ID NO: 22) derivado humano de 14 aminoácidos. La secuencia de aminoácidos de HSQ se proporciona como la SEQ ID NO: 3. Tanto HSQ como ET3 contienen la secuencia de reconocimiento RHQR (SEQ ID NO: 24) para la secuencia de procesamiento PACE/furina para el dominio B.

Como se analiza en el Ejemplo 1, la secuencia de nucleótidos que codifica ET3 tenía codones optimizados para la expresión en hígado humano. Se proporciona una secuencia de ET3 con codones de hígado optimizados ejemplar como la SEQ ID NO: 12. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende la secuencia de nucleótidos establecida como la SEQ ID NO: 12, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma. Adicionalmente, se eliminaron los motivos CpG dentro de la secuencia de ET3 con codones optimizados, para proporcionar la secuencia de ET3 con codones de hígado optimizados con CpG eliminados establecida como la SEQ ID NO: 11. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende la secuencia de nucleótidos establecida como la SEQ ID NO: 11, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.

Como se analiza en el Ejemplo 1, la secuencia de nucleótidos que codifica HSQ tenía codones optimizados para la expresión en hígado humano. Adicionalmente, se eliminaron los motivos CpG dentro de la secuencia de HSQ con codones optimizados, para proporcionar la secuencia de HSQ con codones de hígado optimizados con CpG eliminados establecida como la SEQ ID NO: 2. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende la secuencia de nucleótidos establecida como la SEQ ID NO: 2, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.

Adicionalmente, las secuencias de nucleótidos que codifican ET3 y HSQ se optimizaron para la expresión en células mieloides. Se proporciona una secuencia de ET3 con codones mieloides optimizados con CpG eliminados ejemplar como la SEQ ID NO: 125. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende la secuencia de nucleótidos establecida como la SEQ ID NO: 125, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma. Se proporciona una secuencia de HSQ con codones mieloides optimizados con CpG eliminados ejemplar como la SEQ ID NO: 126. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende la secuencia de nucleótidos establecida como la SEQ ID NO: 126, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.

En aspectos adicionales de la presente divulgación, se proporcionan variantes de secuencias codificantes de fIX que están diseñadas para altos niveles de expresión cuando el transgén se expresa por el hígado, que es el tejido diana de muchas estrategias de terapia génica dirigidas a fIX. Para crear esta secuencia codificante, se utiliza una estrategia de optimización de codones dirigida al hígado.

Como se analiza en el Ejemplo 1, la secuencia de nucleótidos que codifica para fIX se optimizó implementando una preferencia de uso de codones específicos para la célula hepática humana en comparación con la secuencia de nucleótidos de origen natural que codifica la secuencia correspondiente sin optimización de condones para un ser humano. También se realizaron cambios adicionales para mejorar la eficacia de la Traducción, tal como la optimización del contenido en GC, estructura secundaria de ARNm, sitios de PoliA prematuros, motivo de inestabilidad de ARN, energía libre estable de ARNm, sitios chi internos, motivos de inestabilidad de ARN, sitios de unión a ribosomas, sitios de corte y empalme crípticos, islas CpG negativas, secuencia SD, cajas TATA y señales terminales crípticas.

Además de ajustar preferencia de uso de codones, las secuencias resultantes se modifican adicionalmente para eliminar los motivos CpG que pueden inhibir la expresión eficaz del transgén. Adicionalmente, en algunos aspectos, la molécula de ácido nucleico flX recombinante puede codificar flX con la mutación K5A (Darrel Stafford collagen binding mutation, Gui et al. Blood. 2002, 100(1): 153-8). En determinados aspectos, la molécula de ácido nucleico de

fIX recombinante puede codificar fIX con la mutación R338L (mutación de Padua), que es una ganancia de origen natural de mutación de la función que se ha demostrado que mejora la actividad específica de fIX en 8 veces. Las variantes de secuencia se crearon adicionalmente para reflejar dos polimorfismos principales de fIX en el resto 148, que incluyen alanina o treonina. En algunos aspectos, estas secuencias de fIX pueden injertarse en AAV dirigidos al hígado como diseños transgénicos monocatenarios o bicatenarios autocomplementarios.

En el Ejemplo 1, se analizan secuencias del ácido nucleico recombinante ejemplares que codifican proteínas fVIII o fIX, o variantes de las mismas, que se modifican para la expresión específica de tejido.

- 10 La SEQ ID NO: 12 proporciona una secuencia de ET3con codones de hígado optimizados ejemplar. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 12, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.
- 15 La SEQ ID NO: 11 proporciona una secuencia de ET3 con codones de hígado optimizados con CpG eliminados ejemplar. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 11, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.
- 20 La SEQ ID NO: 2 proporciona una secuencia de HSQ con codones de hígado optimizados con CpG eliminados ejemplar. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 2, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.
- La SEQ ID NO: 125 proporciona una secuencia de ET3 con codones mieloides optimizados con CpG eliminados ejemplar. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 125, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.
- 30 La SEQ ID NO: 126 proporciona una secuencia de HSQ con codones mieloides optimizados con CpG eliminados ejemplar. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 125, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.
- En el Ejemplo 1, se analizan secuencias del ácido nucleico recombinante ejemplares que codifican proteínas fIX, o variantes de las mismas, que se modifican para la expresión específica de tejido.
- La SEQ ID NO: 124 proporciona una secuencia de fIX con codones de hígado optimizados ejemplar con mutaciones Padua/Malmo y sin CpG. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 124, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.
- La SEQ ID NO: 8 proporciona una secuencia de fIX con codones de hígado optimizados ejemplar sin CpG y que codifica modificaciones A582. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 8, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.
- La SEQ ID NO: 9 proporciona una secuencia de fIX con codones de hígado optimizados ejemplar sin CpG y que incluye modificaciones Padua y A582. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 9, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.
- La SEQ ID NO: 10 proporciona una secuencia de fIX con codones de hígado optimizados ejemplar con mutaciones Padua/Malmo y sin CpG. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 10, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.
- La SEQ ID NO: 127 proporciona una secuencia de fIX con codones humanos optimizados ejemplar con mutaciones Padua/Malmo y sin CpG. En algunos aspectos de la divulgación, se proporciona una molécula de ácido nucleico recombinante que comprende o que consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 127, o una secuencia al menos un 90 % (tal como al menos un 95 %) idéntica a la misma.
- Cualquiera de las moléculas de ácidos nucleicos recombinantes analizadas anteriormente que codifican una proteína fVIII o fIX, o una variante de las mismas, puede incluirse en un vector (tal como un vector AAV) como se describe en el presente documento para realizaciones donde es de interés la expresión de una proteína fVIII o FIX o variante de las mismas.

En algunos aspectos de la divulgación, se proporciona una proteína aislada que comprende una secuencia de aminoácidos codificada por una de las SEQ ID NO: 8, 9 o 10, tal como las secuencias de aminoácidos establecidas como las SEQ ID NO: 17-18 a continuación. En algunos aspectos de la divulgación, se proporciona una proteína aislada que comprende una secuencia de aminoácidos establecida como la SEQ ID NO: 17, o una secuencia de aminoácidos al menos un 90 % (tal como al menos un 95 %) idéntica a la misma que tiene actividad fIX. En algunos aspectos de la divulgación, se proporciona una proteína aislada que comprende una secuencia de aminoácidos establecida como la SEQ ID NO: 18, o una secuencia de aminoácidos al menos un 90 % (tal como al menos un 95 %) idéntica a la misma que tiene actividad fIX. En algunos aspectos de la divulgación, se proporciona una proteína aislada que comprende una secuencia de aminoácidos establecida como la SEQ ID NO: 19, o una secuencia de aminoácidos al menos un 90 % (tal como al menos un 95 %) idéntica a la misma que tiene actividad fIX.

La SEQ ID NO: 8 codifica la secuencia de aminoácidos establecida como la SEQ ID NO: 17:

10

15

20

40

MQRVNMIMAESPGLITICLLGYLLSAECTVFLDHENANKILNRPKRYNSGKLEEFVQGNLERECMEEKCSFEEAREVF ENTERTTEFWKQYVDGDQCESNPCLNGGSCKDDINSYECWCPFGFEGKNCELDVTCNIKNGRCEQFCKNSADNKVVCS CTEGYRLAENQKSCEPAVPFPCGRVSVSQTSKLTRAEAVFPDVDYVNSTEAETILDNITQSTQSFNDFTRVVGGEDAK PGQFPWQVVLNGKVDAFCGGSIVNEKWIVTAAHCVETGVKITVVAGEHNIEETEHTEQKRNVIRIIPHHNYNAAINKY NHDIALLELDEPLVLNSYVTPICIADKEYTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVDRATCLRSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHVTEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWIKEKTKLT

La SEQ ID NO: 9 codifica la secuencia de aminoácidos establecida como la SEQ ID NO: 18:

MQRVNMIMAESPGLITICLLGYLLSAECTVFLDHENANKILNRPKRYNSGKLEEFVQGNLERECMEEKCSFEEAREVF ENTERTTEFWKQYVDGDQCESNPCLNGGSCKDDINSYECWCPFGFEGKNCELDVTCNIKNGRCEQFCKNSADNKVVCS CTEGYRLAENQKSCEPAVPFPCGRVSVSQTSKLTRAEAVFPDVDYVNSTEAETILDNITQSTQSFNDFTRVVGGEDAK PGQFPWQVVLNGKVDAFCGGSIVNEKWIVTAAHCVETGVKITVVAGEHNIEETEHTEQKRNVIRIIPHHNYNAAINKY NHDIALLELDEPLVLNSYVTPICIADKEYTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVDRATCLLSTKFTI YNNMFCAGFHEGGRDSCQGDSGGPHVTEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWIKEKTKLT

La SEQ ID NO: 10 codifica la secuencia de aminoácidos establecida como la SEQ ID NO: 19:

 $\label{thm:more} $$\operatorname{MQRVNMIMAESPGLITICLLGYLLSAECTVFLDHENANKILNRPKRYNSGKLEEFVQGNLERECMEEKCSFEEAREVF$$ ENTERTTEFWKQYVDGDQCESNPCLNGGSCKDDINSYECWCPFGFEGKNCELDVTCNIKNGRCEQFCKNSADNKVVCS$$ CTEGYRLAENQKSCEPAVPFPCGRVSVSQTSKLTRAETVFPDVDYVNSTEAETILDNITQSTQSFNDFTRVVGGEDAK$$ PGQFPWQVVLNGKVDAFCGGSIVNEKWIVTAAHCVETGVKITVVAGEHNIEETEHTEQKRNVIRIIPHHNYNAAINKY NHDIALLELDEPLVLNSYVTPICIADKEYTNIFLKFGSGYVSGWGRVFHKGRSALVLQYLRVPLVDRATCLLSTKFTIYNNMFCAGFHEGGRDSCQGDSGGPHVTEVEGTSFLTGIISWGEECAMKGKYGIYTKVSRYVNWIKEKTKLT$

Los ácidos nucleicos ejemplares pueden prepararse mediante técnicas de clonación, o pueden generarse sintéticamente. Se conocen ejemplos de técnicas apropiadas de clonación y secuenciación, e instrucciones suficientes para dirigir a los expertos a través de muchos ejercicios de clonación (véase, p. ej., Sambrook et al. (Molecular Cloning: A Laboratory Manual, 4ª Ed, Cold Spring Harbor, Nueva York, 2012) y Ausubel et al. (In Current Protocols in Molecular Biology, John Wiley and Sons, Nueva York, a través del suplemento 104, 2013). La información del producto de los fabricantes de reactivos biológicos y equipos experimentales también proporciona información útil. Dichos fabricantes incluyen SIGMA Chemical Company (Saint Louis, MO), R&D Systems (Minneapolis, MN), Pharmacia Amersham (Piscataway, NJ), CLONTECH Laboratories, Inc. (Palo Alto, CA), Chem Genes Corp., Aldrich Chemical Company (Milwaukee, WI), Glen Research, Inc., GIBCO BRL Life Technologies, Inc. (Gaithersburg, MD), Fluka Chemica-Biochemika Analytika (Fluka Chemie AG, Buchs, Switzerland), Invitrogen (Carlsbad, CA), y Applied Biosystems (Foster City, CA), así como muchas otras fuentes comerciales conocidas por un experto.

Los ácidos nucleicos también se pueden preparar por métodos de amplificación. Los métodos de amplificación incluyen la reacción en cadena de la polimerasa (PCR), la reacción en cadena de la ligasa (LCR), el sistema de amplificación basado en la transcripción (TAS), el sistema de replicación de secuencias autosostenida (3SR). Los expertos en la materia conocen bien una amplia variedad de métodos de clonación, células hospedadoras y metodologías de amplificación *in vitro*.

IV. Vectores Recombinantes y Aplicaciones de Terapia Génica

Las secuencias de los ácidos nucleicos y promotores divulgadas en el presente documento son útiles en la producción de vectores (tales como vectores rAAV), y también son útiles como vectores de suministro antisentido, vectores de terapia génica o vectores de vacuna. En determinadas realizaciones, la invención proporciona vectores de suministro de genes que contienen las secuencias de los ácidos nucleicos de la invención. En algunas realizaciones, el vector seleccionado puede suministrarse a un sujeto por cualquier método adecuado, incluyendo inyección intravenosa,

transducción ex vivo, transfección, electroporación, suministro en liposomas, técnicas de fusión de membranas, microgránulos recubiertos con ADN de alta velocidad, infección vírica o fusión de protoplastos, para introducir un transgén en el sujeto.

En determinados aspectos, la divulgación se refiere a partículas de virus, por ejemplo, cápsides, que contienen las secuencias de los ácidos nucleicos que codifican los promotores y las proteínas divulgados en el presente documento. Las partículas víricas, las cápsides y los vectores recombinantes son útiles en el suministro de un gen heterólogo u otras secuencias de los ácidos nucleicos a una célula diana. Los ácidos nucleicos se pueden utilizar fácilmente en una variedad de sistemas de vectores, cápsides y células hospedadoras. En determinadas realizaciones, los ácidos nucleicos están en vectores contenidos dentro de una cápside que comprende proteínas de protección terminal, incluidas las proteínas de la cápside de AAV vp1, vp2, vp3 y las regiones hipervariables.

En determinadas realizaciones, los ácidos nucleicos de la invención pueden ser parte de cualquier elemento genético (vector) que se pueda suministrar a una célula hospedadora, por ejemplo, ADN desnudo, un plásmido, fago, transposón, cósmido, episoma, una proteína en un vehículo de suministro no vírico (por ejemplo, un transportador basado en lípidos), virus, etc. que transfieren las secuencias portadas sobre los mismos.

En determinadas realizaciones, un vector puede ser un vector basado en lentivirus (que contiene genes o secuencias lentivíricos), por ejemplo, que tiene secuencias de los ácidos nucleicos derivadas de pseudotipos VSVG o GP64 o de ambos. En determinadas realizaciones, las secuencias de los ácidos nucleicos derivadas de los pseudotipos VSVG o GP64 pueden ser al menos uno o dos o más genes o fragmentos de genes de más de 1000, 500, 400, 300, 200, 100, 50 o 25 nucleótidos continuos o secuencias de nucleótidos con más de 50, 60, 70, 80, 90, 95 o 99 % de identidad con el gen o fragmento.

La invención también proporciona un vector o composición de la invención para el uso de un método para inducir la coagulación de la sangre en un sujeto que lo necesite. El método comprende administrar al sujeto una cantidad terapéuticamente eficaz del vector (tal como un vector AAV) que codifica un factor de coagulación como se describe en el presente documento. En algunas realizaciones, el sujeto es un sujeto con un trastorno de la coagulación, tal como hemofilia A o hemofilia B. En algunas realizaciones, el trastorno de la coagulación es hemofilia A y al sujeto se le administra un vector que comprende una molécula de ácido nucleico que codifica una proteína con actividad de fVIII. En otras realizaciones, el trastorno de la coagulación es hemofilia B y al sujeto se le administra un vector que comprende una molécula de ácido nucleico que codifica una proteína con actividad de fIX.

En algunas realizaciones, las secuencias de los ácidos nucleicos y promotores de la invención son útiles en la producción de vectores AAV. El AAV pertenece a la familia *Parvoviridae* y al género *Dependovirus*. El AAV es un virus pequeño sin envoltura que empaqueta un genoma de ADN lineal de cadena sencilla. Las cadenas de ADN de AAV tanto en sentido como antisentido se empaquetan en cápsides de AAV con la misma frecuencia.

El genoma de AAV se caracteriza por dos repeticiones terminales invertidas (ITR) que flanquean dos marcos de lectura 40 abiertos (ORF). En el genoma de AAV2, por ejemplo, los primeros 125 nucleótidos de la ITR son un palíndromo, que se pliega sobre sí mismo para maximizar el emparejamiento de bases y forma una estructura de horquilla en forma de T. Las otras 20 bases de la ITR, llamadas secuencia D, permanecen sin emparejar. Las ITR son secuencias de acción en cis importantes para la replicación del ADN del AAV; la ITR es el origen de la replicación y sirve como cebador para la síntesis de la segunda cadena por la ADN polimerasa. El ADN bicatenario formado durante esta síntesis, que se 45 llama monómero de forma replicante, se usa para una segunda ronda de replicación autocebadora y forma un dímero de forma replicante. Estos intermedios de doble cadena se procesan mediante un mecanismo de desplazamiento de cadena, lo que da como resultado un ADN de cadena sencilla que se usa para el empaquetamiento y un ADN de bicatenario que se usa para la transcripción. Ubicados dentro de la ITR se encuentran los elementos de unión a Rep y un sitio de resolución terminal (TRS). Estas características son utilizadas por la proteína reguladora vírica Rep 50 durante la replicación de AAV para procesar los intermedios bicatenarios. Además de su papel en la replicación del AAV, la ITR también es esencial para el empaquetamiento del genoma del AAV, transcripción, regulación negativa en condiciones no permisivas y la integración específica de sitio (Daya y Berns, Clin Microbiol Rev 21 (4): 583-593, 2008).

El ORF izquierdo del AAV contiene el gen Rep, que codifica cuatro proteínas: Rep78, Rep 68, Rep52 y Rep40. El ORF derecho contiene el gen Cap, que produce tres proteínas de la cápside vírica (VP1, VP2 y VP3). La cápside del AAV contiene 60 proteínas de la cápside vírica dispuestas en una simetría icosaédrica. VP1, VP2 y VP3 están presentes en una relación molar 1:1:10 (Daya y Berns, Clin Microbiol Rev 21 (4): 583-593, 2008).

Los vectores AAV generalmente contienen un casete de expresión transgénica entre las ITR que reemplaza los genes rep y cap. Las partículas del vector se producen por la cotransfección de células con un plásmido que contiene el genoma del vector y una construcción de empaquetamiento/auxiliar que expresa las proteínas rep y cap en trans. Durante la infección, los genomas de los vectores AAV ingresan al núcleo celular y pueden persistir en múltiples estados moleculares. Un resultado común es la conversión del genoma de AAV a un episoma circular de doble cadena mediante síntesis de la segunda cadena o apareamiento con la cadena complementaria.

65

En el contexto de los vectores AAV, los vectores divulgados tienen generalmente un genoma recombinante que

```
comprende la siguiente estructura:
(5'ITR de AAV) - (promotor) - (transgén) - (3' ITR de AAV)
```

10

Como se analiza anteriormente, estos vectores AAV recombinantes contienen un casete de expresión transgénica entre las ITR que reemplaza los genes rep y cap. Las partículas de vector se producen, por ejemplo, mediante la cotransfección de células con un plásmido que contiene el genoma del vector recombinante y una construcción de empaquetamiento/auxiliar que expresa las proteínas rep y cap en trans. Por ejemplo, en algunos aspectos, el vector AAV recombinante puede tener un genoma con una estructura establecida como una de:

```
(5' ITR de AAV) - (HCB) - (transgén) - (3' ITR de AAV)
          (5' ITR de AAV) - (HCB) - (fVIII) - (3' ITR de AAV)
          (5' ITR de AAV) - (HCB) - (fVIII-dominio B eliminado) - (3' ITR de AAV)
          ()5' ITR de AAV) - (HCB) - (ET3) - (3' ITR de AAV)
          (5' ITR de AAV) - (HCB) - (ET3, Seq 12) - (3' ITR de AAV)
          (5' ITR de AAV) - (HCB) - (ET3, Seq 11) - (3' ITR de AAV)
15
          (5' ITR de AAV) - (HCB) - (HSQ) - (3' ITR de AAV)
          (5' ITR de AAV) - (HCB) - (HSQ, Sèq_2) - (3' ITR de AAV)
          (5' ITR de AAV) - (HCB) - (fIX) - (3' ITR de AAV)
          (5' ITR de AAV) - (HCB) - (flx, Seq_124) - (3' ITR de AAV)
          (5' ITR de AAV) - (HCB) - (fIX, Seq_8) - (3' ITR de AAV)
20
          (5' ITR de AAV) - (HCB) - (fIX, Seq 9) - (3' ITR de AAV)
          (5' ITR de AAV) - (HCB) - (fIX, Seq_10) - (3' ITR de AAV)
          (5' ITR de AAV) - (HSh-HCB) - (transgén) - (3' ITR de AAV)
          (5' ITR de AAV) - (HSh-HCB) - (fVIII) - (3' ITR de AAV)
(5' ITR de AAV) - (HSh-HCB) - (fVIII-dominio B eliminado) - (3' ITR de AAV)
25
          (5' ITR de AAV) - (HSh-HCB) - (ET3) - (3' ITR de AAV)
          (5' ITR de AAV) - (HSh-HCB) - (ET3, Seq 12) - (3' ITR de AAV)
          (5' ITR de AAV) - (HSh-HCB) - (ET3, Seq_11) - (3' ITR de AAV)
          (5' ITR de AAV) - (HSh-HCB) - (HSQ) - (3' ITR de AAV)
          (5' ITR de AAV) - (HSh-HCB) - (HSQ, Seq_2) - (3' ITR de AAV)
(5' ITR de AAV) - (HSh-HCB) - (fIX) - (3' ITR de AAV)
30
          (5' ITR de AAV) - (HSh-HCB) - (fIX, Seq_124) - (3' ITR de AAV)
          (5' ITR de AAV) - (HSh-HCB) - (fIX, Seq 8) - (3' ITR de AAV)
          (5' ITR de AAV) - (HSh-HCB) - (fIX, Seq 9) - (3' ITR de AAV)
35
          (5' ITR de AAV) - (HSh-HCB) - (fIX, Seq_10) - (3' ITR de AAV)
          (5' ITR de AAV) - (5'HSh-HCB) - (transgén) - (3' ITR de AAV)
          (5' ITR de AAV) - (5'HSh-HCB) - (fVIII-dominio B eliminado) - (3' ITR de AAV)
          (5' ITR de AAV) - (5'HSh-HCB) - (ET3) - (3' ITR de AAV)
          (5' ITR de AAV) - (5'HSh-HCB) - (ET3, Seq_12) - (3' ITR de AAV)
40
          (5' ITR de AAV) - (5'HSh-HCB) - (ET3, Seg 11) - (3' ITR de AAV)
          (5' ITR de AAV) - (5'HSh-HCB) - (HSQ) - (3' ITR de AAV)
          (5' ITR de AAV) - (5'HSh-HCB) - (HSQ, Seq_2) - (3' ITR de AAV)
          (5' ITR de AAV) - (5'HSh-HCB) - (fIX) - (3' ITR de AAV)
          (5' ITR de AAV) - (5'HSh-HCB) - (fIX, Sèq_124) - (3' ITR de AAV)
45
          (5' ITR de AAV) - (5'HSh-HCB) - (fIX, Seq_8) - (3' ITR de AAV)
          (5' ITR de AAV) - (5'HSh-HCB) - (fIX, Seq 9) - (3' ITR de AAV)
          (5' ITR de AAV) - (5'HSh-HCB) - (fIX, Seq 10) - (3' ITR de AAV)
          (5' ITR de AAV) - (3'HSh-HCB) - (transgén) - (3' ITR de AAV)
          (5' ITR de AAV) - (3'HSh-HCB) - (fVIII) - (3' ITR de AAV)
          (5' ITR de AAV) - (3'HSh-HCB) - (fVIII-dominio B eliminado) - (3' ITR de AAV)
50
          (5' ITR de AAV) - (3'HSh-HCB) - (ET3) - (3' ITR de AAV)
          (5' ITR de AAV) - (3'HSh-HCB) - (ET3, Seq 12) - (3' ITR de AAV)
          (5' ITR de AAV) - (3'HSh-HCB) - (ET3, Seg 11) - (3' ITR de AAV)
          (5' ITR de AAV) - (3'HSh-HCB) - (HSQ) - (3' ITR de AAV)
          (5' ITR de AAV) - (3'HSh-HCB) - (HSQ, Seq_2) - (3' ITR de AAV)
55
          (5' ITR de AAV) - (3'HSh-HCB) - (fIX) - (3' ITR de AAV)
          (5' ITR de AAV) - (3'HSh-HCB) - (fIX, Seq 124) - (3' ITR de AAV)
          (5' ITR de AAV) - (3'HSh-HCB) - (fIX, Seq_8) - (3' ITR de AAV)
          (5' ITR de AAV) - (3'HSh-HCB) - (fIX, Seq_9) - (3' ITR de AAV)
60
          (5' ITR de AAV) - (3'HSh-HCB) - (fIX, Seq_10) - (3' ITR de AAV)
          (5' ITR de AAV) - (ABP-HP1-God-TSS) - (transgèn) - (3' ITR de AAV)
          (5' ITR de AAV) - (ABP-HPI-God-TSS) - (fVIII) - (3' ITR de AAV)
          (5' ITR de AAV) - (ABP-HP1-God-TSS) - (fVIII-dominio B eliminado) - (3' ITR de AAV) (5' ITR de AAV) - (ABP-HP1-God-TSS) - (ET3) - (3' ITR de AAV)
          (5' ITR de AAV) - (ABP-HP1-God-TSS) - (ET3, Seq_12) - (3' ITR de AAV)
65
          (5' ITR de AAV) - (ABP-HP1-God-TSS) - (ET3, Seq 11) - (3' ITR de AAV)
```

```
(5' ITR de AAV) - (ABP-HP1-God-TSS) - (HSQ) - (3' ITR de AAV)
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (HSQ, Seq 2) - (3' ITR de AAV)
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (fIX) - (3' ITR de AAV)
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (fIX, Seq_124) - (3' ITR de AAV)
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (fIX, Seq_8) - (3' ITR de AAV) (5' ITR de AAV) - (ABP-HP1-God-TSS) - (fIX, Seq_9) - (3' ITR de AAV)
 5
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (fIX, Seq_10) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (transgén) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (fVIII) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (fVIII-dominio B eliminado) - (3' ITR de AAV)
10
           (5' ITR de AAV) - (HSh-SynO-TSS) - (ET3) - (3' ITR de AAV)
(5' ITR de AAV) - (HSh-SynO-TSS) - (ET3, Seq_12) - (3' ITR de AAV)
(5' ITR de AAV) - (HSh-SynO-TSS) - (ET3, Seq_11) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (HSQ) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (HSQ, Seq 2) - (3' ITR de AAV)
15
           (5' ITR de AAV) - (HSh-SynO-TSS) - (fIX) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (fIX, Seq_124) - (3' ITR de AAV)
(5' ITR de AAV) - (HSh-SynO-TSS) - (fIX, Seq_8) - (3' ITR de AAV)
(5' ITR de AAV) - (HSh-SynO-TSS) - (fIX, Seq_9) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (fIX, Seq_10) - (3' ITR de AAV)
20
           (5' ITR de AAV) - (sHS-SynO-TSS) - (transgén) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS-SynO-TSS) - (fVIII) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (fVIII-dominio B eliminado) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (ET3) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (ET3, Seq_12) - (3' ITR de AAV)
25
           (5' ITR de AAV) - (sHS -SynO-TSS) - (ET3, Seq_11) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (HSQ) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (HSQ, Seq_2) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (fIX) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (fIX, Seq_124) - (3' ITR de AAV) (5' ITR de AAV) - (sHS -SynO-TSS) - (fIX, Seq_8) - (3' ITR de AAV)
30
           (5' ITR de AAV) - (sHS -SynO-TSS) - (fIX, Seq 9) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (fIX, Seq_10) - (3' ITR de AAV)
35
      El transgén puede estar flanqueado por secuencias reguladoras tales como una secuencia Kozak 5' y/o una señal de
       poliadenilación 3'. Por ejemplo, en algunos casos, el vector AAV recombinante puede tener un genoma con una
       estructura establecida como una de:
           (5' ITR de AAV) - (HCB) - (Kozak) - (transgén) - (señal de poliA) - (señal de poliA) - (3' ITR de AAV)
40
           (5' ITR de AAV) - (HCB) - (Kozak) - (fVIII) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HCB) - (Kozak) - (fVIII-dominio B eliminado) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HCB) - (Kozak) - (ET3) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HCB) - (Kozak) - (ET3, Seq_12) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HCB) - (Kozak) - (ET3, Seq_11) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HCB) - (Kozak) - (HSQ) - (señal de poliA) - (3' ITR de AAV)
45
           (5' ITR de AAV) - (HCB) - (Kozak) - (HSQ, Seq_2) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HCB) - (Kozak) - (fIX) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HCB) - (Kozak) - (fIX, Sèq_124) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HCB) - (Kozak) - (fIX, Seq_8) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HCB) - (Kozak) - (fIX, Seq_9) - (señal de poliA) - (3' ITR de AAV) (5' ITR de AAV) - (HCB) - (Kozak) - (fIX, Seq_10) - (señal de poliA) - (3' ITR de AAV)
50
           (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (transgén) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (fVIII) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (fVIII-dominio B eliminado) - (señal de póliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (ET3) - (señal de poliA) - (3' ITR de AAV)
55
           (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (ET3, Seq_12) - (señal de poliA) - (3' ITR de AAV) (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (ET3, Seq_11) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (HSQ) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (HSQ, Seq_2) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (fIX) - (señal de poliA) - (3' ITR de AAV)
60
           (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (fIX, Sèq_124) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (fIX, Seq_8) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (fIX, Seq_9) - (señal de poliA) - (3' ITR de AAV) (5' ITR de AAV) - (HSh-HCB) - (Kozak) - (fIX, Seq_10) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (transgén) - (señal de poliA) - (3' ITR de AAV)
65
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (fVIII) - (señal de poliA) - (3' ITR de AAV)
```

```
(5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (fVIII-dominio B eliminado) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (ET3) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (ET3, Seq_12) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (ET3, Seq_11) - (señal de poliA) - (3' ITR de AAV)
 5
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (HSQ) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (HSQ, Seq_2) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (fIX) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (fIX, Seq_124) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (flX, Seq_8) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (flX, Seq_9) - (señal de poliA) - (3' ITR de AAV)
10
           (5' ITR de AAV) - (5'HSh-HCB) - (Kozak) - (fIX, Seq_10) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (transgén) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (fVIII) - (séñal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (fVIII-dominio B eliminado) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (ET3) - (señal de poliA) - (3' ITR de AAV)
15
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (ET3, Seq_12) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (ET3, Seq_11) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (HSQ) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (HSQ, Seq_2) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (fIX) - (señal de poliA) - (3' ITR de AAV)
20
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (fIX, Seq_124) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (fIX, Seq_8) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (fIX, Seq_9) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (3'HSh-HCB) - (Kozak) - (fIX, Seq_10) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (Transgèn) - (señal de poliA) - (3' ITR de AAV)
25
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (fVIII) - (séñal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (fVIII-dominio B eliminado) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (ET3) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (ET3, Seq_12) - (señal de poliA) - (3' ITR de AAV)
          (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (ET3, Seq_11) - (señal de poliA) - (3' ITR de AAV) (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (HSQ) - (señal de poliA) - (3' ITR de AAV) (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (HSQ, Seq_2) - (señal de poliA) - (3' ITR de AAV)
30
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (fIX) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (fIX, Seq_124) - (señal de poliA) - (3' ITR de AAV)
35
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (fIX, Seq_8) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (fIX, Seq_9) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (ABP-HP1-God-TSS) - (Kozak) - (fIX, Seq_10) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (transgén) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (fVIII) - (séñal de poliA) - (3' ITR de AAV)
40
           (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (fVIII-dominio B eliminado) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (ET3) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (ET3, Seq_12) - (señal de poliA) - (3' ITR de AAV)
          (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (ET3, Seq_11) - (señal de poliA) - (3' ITR de AAV) (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (HSQ) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (HSQ, Seq_2) - (señal de poliA) - (3' ITR de AAV)
45
           (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (fIX) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (fIX, Seq_124) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (fIX, Seq_8) - (señal de poliA) - (3' ÌTR de AAV)
          (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (fIX, Seq_9) - (señal de poliA) - (3' ITR de AAV) (5' ITR de AAV) - (HSh-SynO-TSS) - (Kozak) - (fIX, Seq_10) - (señal de poliA) - (3' ITR de AAV) (5' ITR de AAV) - (sHS-SynO-TSS) - (Kozak) - (transgén) - (señal de poliA) - (3' ITR de AAV)
50
           (5' ITR de AAV) - (sHS-SynO-TSS) - (Kozak) - (fVIII) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (Kozak) - (fVIII-dominio B eliminado) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (Kozak) - (ET3) - (señal de poliA) - (3' ITR de AAV)
55
           (5' ITR de AAV) - (sHS -SynO-TSS) - (Kozak) - (ET3, Seq_12) - (señal de poliA) - (3' ITR de AAV)
          (5' ITR de AAV) - (sHS -SynO-TSS) - (Kozak) - (ET3, Seq_11) - (señal de poliA) - (3' ITR de AAV) (5' ITR de AAV) - (sHS -SynO-TSS) - (Kozak) - (HSQ) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (Kozak) - (HSQ, Sèq_2) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (Kozak) - (fIX) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (Kozak) - (fIX, Seq_124) - (señal de poliA) - (3' ITR de AAV)
60
           (5' ITR de AAV) - (sHS -SynO-TSS) - (Kozak) - (fIX, Seq_8) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (Kozak) - (fIX, Seq_9) - (señal de poliA) - (3' ITR de AAV)
           (5' ITR de AAV) - (sHS -SynO-TSS) - (Kozak) - (fIX, Seq 10) - (señal de poliA) - (3' ITR de AAV)
```

Las ITR de AAV, y otros componentes de AAV seleccionados descritos en el presente documento, pueden seleccionarse fácilmente entre cualquier serotipo de AAV, incluyendo, sin limitación, AAV1, AAV2, AAV3, AAV4, AAV5,

AAV6, AAV7, AAV8, AAV9 y variantes de función de los mismos. Estas ITR u otros componentes de AAV pueden aislarse fácilmente utilizando técnicas disponibles para los expertos en la materia a partir de un serotipo de AAV. Dicho AAV puede aislarse u obtenerse de fuentes académicas, comerciales o públicas (por ejemplo, la American Type Culture Collection, Manassas, Va.). De manera alternativa, las secuencias de AAV pueden obtenerse a través de medios sintéticos u otros medios adecuados por referencia a secuencias publicadas como las que están disponibles en la bibliografía o en bases de datos tales como, por ejemplo, GenBank, PubMed o similares.

En algunas realizaciones, el vector puede ser un vector AAV recombinante que comprende un genoma que comprende una molécula de ácido nucleico que codifica cualquiera de los promotores específicos de hígado de la invención (tal como el promotor HCB, SEQ ID NO: 4) operativamente unido a una molécula de ácido nucleico heterólogo que codifica una variante de fVIII, en donde la molécula de ácido nucleico heterólogo comprende o consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 2, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 125, o SEQ ID NO: 126, o una secuencia del ácido nucleico al menos un 90 % idéntica a la SEQ ID NO: 2, SEQ ID NO: 11, SEQ ID NO: 12, SEQ

10

15

20

25

30

35

55

En algunas realizaciones, el vector puede ser un vector AAV recombinante que comprende un genoma que comprende una molécula de ácido nucleico que codifica cualquiera de los promotores específicos del hígado de la invención (tal como el promotor HCB, SEQ ID NO: 4) operativamente unido a una molécula de ácido nucleico heterólogo que codifica una variante de fIX, en donde la molécula de ácido nucleico heterólogo comprende o consiste en la secuencia del ácido nucleico establecida como la SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 124, o SEQ ID NO: 127, o una secuencia del ácido nucleico al menos un 90 % idéntica a la SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 124 o SEQ ID NO: 127. En varias de tales realizaciones, el genoma de AAV recombinante (de 5 'a 3' ITR) no tiene más de 5,1, 5,0, 4,9, 4,8, 4,7, 4,6 o 4,5 kb de longitud.

El AAV es actualmente uno de los virus más utilizados para terapia génica. Aunque el AAV infecta a los seres humanos y a algunas otras especies de primates, no se sabe que cause enfermedad y provoca una respuesta inmunitaria muy leve. Los vectores de terapia génica que utilizan AAV pueden infectar tanto las células en división como las quiescentes y persisten en un estado extracromosómico sin integrarse en el genoma de la célula hospedadora. Debido a las características ventajosas del AAV, la presente divulgación contempla el uso del AAV para las moléculas de ácidos nucleicos recombinantes y los métodos divulgados en el presente documento.

El AAV posee varias características deseables para un vector de terapia génica, incluida la capacidad de unirse y entrar en las células diana, ingresar al núcleo, la capacidad de expresarse en el núcleo durante un período prolongado de tiempo y baja toxicidad. Sin embargo, el pequeño tamaño del genoma del AAV limita el tamaño del ADN heterólogo que se puede incorporar. Para minimizar este problema, se han construido vectores AAV que no codifican Rep ni el elemento de eficacia de integración (IEE, por sus siglas en inglés). Las ITR se conservan ya que son señales en *cis* requeridas para el empaquetamiento (Daya y Berns, Clin Microbiol Rev 21 (4): 583-593, 2008).

- 40 Se conocen métodos para producir rAAV adecuados para terapia génica (véase, por ejemplo, las Solicitudes de Patente de EE. UU. N.º 2012/0100606; 2012/0135515; 2011/0229971; y 2013/0072548; y Ghosh et al., Gene Ther 13(4):321-329, 2006), y pueden utilizarse con las moléculas de ácidos nucleicos recombinantes y los métodos divulgados en el presente documento.
- En algunas realizaciones, los ácidos nucleicos de la invención son parte de un casete de expresión o transgén. Véase por ejemplo, la publicación de solicitud de Patente de Estados Unidos 20150139953. El casete de expresión se compone de un transgén y secuencias reguladoras, por ejemplo, por ejemplo un promotor y repeticiones terminales invertidas (ITR) del AVV 5 'y 3'. En una realización deseable, se utilizan las ITR del serotipo 2 u 8 del AAV. Sin embargo, se pueden seleccionar ITR de otros serotipos adecuados. Un casete de expresión se empaqueta generalmente en una proteína de la cápside y se suministra a una célula hospedadora seleccionada.

En algunos aspectos, la divulgación proporciona un método para generar un virus adenoasociado (AAV) recombinante que tiene una cápside de serotipo del AAV, o una porción de la misma. Tal método implica el cultivo de una célula hospedadora que contiene una secuencia del ácido nucleico que codifica una proteína de la cápside del serotipo de virus adenoasociados (AAV); un gen rep funcional; un casete de expresión compuesto por repeticiones terminales invertidas (ITR) de AAV y un transgén; y suficiente funciones auxiliares para permitir el empaquetamiento del casete de expresión en la proteína de la cápside del AAV. Véase por ejemplo, la publicación de solicitud de Patente de Estados Unidos 20150139953.

Los componentes para el cultivo en la célula hospedadora para empaquetar un casete de expresión de AAV en una cápside de AAV pueden proporcionarse a la célula hospedadora en trans. De manera alternativa, uno o más de los componentes (por ejemplo, casete de expresión, secuencias rep, secuencias cap y/o funciones auxiliares) pueden proporcionarse mediante una célula hospedadora estable que se ha modificado por ingeniería para contener uno o más de los componentes requeridos utilizando métodos conocidos por los expertos en la materia. De forma más adecuada, dicha célula hospedadora estable contendrá los componente(s) bajo el control de un promotor inducible. Sin embargo, los componente(s) requeridos pueden estar bajo el control de un promotor constitutivo. En otra alternativa

más, una célula hospedadora estable seleccionada puede contener componente(s) seleccionados bajo el control de un promotor constitutivo y otros componente(s) seleccionados bajo el control de uno o más promotores inducibles. Por ejemplo, se puede generar una célula hospedadora estable que deriva de células 293 (que contienen funciones E1 auxiliares bajo el control de un promotor constitutivo), pero que contiene las proteínas rep y/o cap bajo el control de promotores inducibles. Un experto en la materia puede generar otras células hospedadoras estables adicionales.

5

10

15

20

25

30

35

40

45

50

55

60

65

En algunas realizaciones, la invención se refiere a vectores recombinantes que comprenden una secuencia del ácido nucleico del promotor específico de hígado de la invención en combinación operativa con el transgén. El transgén es una secuencia de un ácido nucleico, heteróloga a las secuencias del vector que flanquean el transgén, que codifica una proteína u otro producto de interés. La secuencia codificante del ácido nucleico está operativamente unida a componentes reguladores de una manera que permite la transcripción, traducción y/o expresión transgénica en una célula hospedadora.

Un transgén típico es una secuencia que codifica un producto que es útil en biología y medicina, tales como proteínas, péptidos, ARN, enzimas, mutantes negativos dominantes o ARN catalíticos. Las moléculas de ARN deseables incluyen ARNm, ARNt, ARNbc, ARN ribosómico, ARN catalíticos, ARNip, microARN, ARN de horquilla pequeña, ARN de corte y empalme en trans y ARN antisentido. Un ejemplo de una secuencia de ARN útil es una secuencia que inhibe o extingue la expresión de una secuencia del ácido nucleico dirigida en el animal tratado. Generalmente, las secuencias diana adecuadas incluyen dianas oncológicas y enfermedades víricas.

El transgén puede usarse para corregir o mejorar las deficiencias genéticas, que pueden incluir deficiencias en las que los genes normales se expresan a niveles inferiores a los normales o deficiencias en las que el producto génico funcional no se expresa. Un tipo preferido de secuencia transgénica codifica una proteína o polipéptido terapéutico que se expresa en una célula hospedadora. La divulgación además contempla el uso de múltiples transgenes, por ejemplo, para corregir o mejorar un defecto genético causado por una proteína de múltiples subunidades. En determinadas situaciones, se puede usar un transgén diferente para codificar cada subunidad de una proteína, o para codificar diferentes péptidos o proteínas. Esto es deseable cuando el tamaño del ADN que codifica la subunidad de la proteína es grande, por ejemplo, para una inmunoglobulina, el factor de crecimiento derivado de plaquetas o una proteína distrofina. Para que la célula produzca la proteína de múltiples subunidades, se infecta una célula con el virus recombinante que contiene cada una de las diferentes subunidades. De manera alternativa, diferentes subunidades de una proteína pueden estar codificadas por el mismo transgén. En este caso, un solo transgén incluye el ADN que codifica cada una de las subunidades, con el ADN de cada subunidad separado por un sitio interno de entrada al ribosoma (IRES). Esto es deseable cuando el tamaño del ADN que codifica cada una de las subunidades y las regiones de control reguladoras en cis tal como un promotor, intrón, señal de poliA, es pequeño, por ejemplo, el tamaño total del ADN que codifica las subunidades y los IRES y las regiones de control regulador en cis es menor de cinco kilobases. Como alternativa a un IRES, el ADN puede estar separado por secuencias que codifican un péptido 2A, que se autoescinde en un evento postraduccional. Véanse, por ejemplo, M. L. Donnelly, et al., J. Gen. Virol., 78(Pt 1):13-21 (Enero de 1997); Furler, S., et al, Gene Ther., 8(11):864-873 (Junio de 2001); Klump H., et al., Gene Ther., 8(10):811-817 (Mayo de 2001). En determinadas realizaciones, los rAAV que portan los transgenes o subunidades deseados se administran conjuntamente para permitirles concatamerizar in vivo para formar un genoma de vector único. En dicha una realización, un primer AAV puede portar un casete de expresión que expresa un solo transgén y un segundo AAV puede portar un casete de expresión que expresa un transgén diferente para la coexpresión en la célula hospedadora. Sin embargo, el transgén seleccionado puede codificar cualquier producto biológicamente activo

El casete de expresión se puede portar en cualquier vector adecuado, por ejemplo, un plásmido, que se suministra a una célula hospedadora. Los plásmidos útiles en la presente divulgación pueden modificarse por ingeniería de modo que sean adecuados para la replicación y, opcionalmente, la integración en células procariotas, células de mamífero o ambas. Estos plásmidos (u otros vectores que portan la 5' ITR de AAV-molécula heteróloga-3' ITR) contienen secuencias que permiten la replicación del casete de expresión en eucariotas y/o procariotas y marcadores de selección para estos sistemas. Preferentemente, La molécula que porta el casete de expresión se transfecta en la célula, donde puede existir de forma transitoria. De manera alternativa, el casete de expresión (que porta la 5' ITR de AAV-molécula heteróloga-3' ITR) puede integrarse de manera estable en el genoma de la célula hospedadora, ya sea cromosómicamente o como un episoma. En determinadas realizaciones, el casete de expresión puede estar presente en múltiples copias, opcionalmente en concatámeros cabeza a cabeza, cabeza a cola o cola a cola. Se conocen técnicas de transfección adecuadas y se pueden utilizar fácilmente para suministrar el casete de expresión a la célula hospedadora.

u otro producto, por ejemplo, un producto deseable para estudio.

Por lo general, cuando se suministra el vector que comprende el casete de expresión por transfección, pueden ajustarse el vector y las cantidades relativas de ADN del vector a las células hospedadoras, teniendo en cuenta factores tales como el vector seleccionado, el método de suministro y las células hospedadoras seleccionadas. Además del casete de expresión, la célula hospedadora contiene las secuencias que impulsan la expresión de la proteína de la cápside del AAV en la célula hospedadora y las secuencias rep del mismo serotipo que el serotipo de las ITR del AAV encontrados en el casete de expresión, o de un serotipo de complemento cruzado. Aunque las moléculas que proporcionan rep y cap pueden existir en la célula hospedadora de forma transitoria (es decir, a través de la transfección), se prefiere que una o ambas proteínas rep y cap y el (los) promotor(es) que controlan su expresión

se expresen de manera estable en la célula hospedadora, por ejemplo, como un episoma o por integración en el cromosoma de la célula hospedadora.

La célula hospedadora de empaquetamiento generalmente también contiene funciones auxiliares para empaquetar el rAAV de la divulgación. Opcionalmente, estas funciones pueden suministrarse por un herpesvirus. De manera más deseable, las funciones auxiliares necesarias se proporcionan cada una de una fuente de adenovirus de primates humanos o no humanos, tal como las descritas anteriormente y/o están disponibles en una variedad de fuentes, incluida la American Type Culture Collection (ATCC), Manassas, Va. (EE.UU). Las funciones auxiliares deseadas, se pueden proporcionar utilizando cualquier medio que permita su expresión en una célula.

10

15

20

25

55

60

65

La introducción en la célula hospedadora del vector se puede lograr por cualquier medio conocido en la técnica o como se divulga anteriormente, incluyendo transfección, infección, electroporación, suministro en liposomas, técnicas de fusión de membranas, microgránulos recubiertos con ADN de alta velocidad, infección vírica o fusión de protoplastos, entre otros. Uno o más de los genes adenovíricos pueden integrarse de manera estable en el genoma de la célula hospedadora, expresarse de manera estable como episomas o expresarse de manera transitoria. Todos los productos génicos pueden expresarse de manera transitoria, en un episoma o integrarse de manera estable, o algunos de los productos génicos pueden expresarse de manera estable mientras que otros se expresan de manera transitoria. Además, los promotores para cada uno de los genes adenovíricos pueden seleccionarse independientemente de un promotor constitutivo, un promotor inducible o un promotor adenovírico natural. Los promotores pueden estar regulados por un estado fisiológico específico del organismo o la célula (es decir, por el estado de diferenciación o en células en replicación o quiescentes) o por factores añadidos exógenamente, por ejemplo.

La introducción de las moléculas (como plásmidos o virus) en la célula hospedadora se puede lograr utilizando técnicas conocidas por el experto en la materia. En una realización preferida, se usan técnicas de transfección convencionales, por ejemplo, transfección o electroporación con CaPO₄, y/o infección por vectores híbridos de adenovirus/AAV en líneas celulares tales como la línea celular de riñón embrionario humano HEK 293 (una línea celular de riñón humano que contiene genes E1 de adenovirus funcionales que proporcionan proteínas E1 de acción en trans).

Un experto en la materia comprenderá fácilmente que las técnicas de AAV pueden adaptarse para su uso en estos y otros sistemas de vectores víricos para el suministro de genes *in vitro*, *ex vivo* o *in vivo*. En determinadas realizaciones, la divulgación contempla el uso de ácidos nucleicos y vectores divulgados en el presente documento en una variedad de sistemas de vectores rAAV y no rAAV. Tales sistemas de vectores pueden incluir, por ejemplo, lentivirus, retrovirus, poxvirus, virus vaccinia y sistemas adenovíricos, entre otros.

35 Se contempla que las partículas víricas, los ácidos nucleicos y los vectores divulgados en el presente documento sean útiles para una variedad de propósitos, incluido el suministro de moléculas terapéuticas para la expresión génica de proteínas terapéuticas.

Las proteínas terapéuticas codificadas por los ácidos nucleicos (p. ej., operativamente en combinación con los 40 promotores) informadas en el presente documento incluyen las utilizadas para el tratamiento de la hemofilia, incluida la hemofilia B (incluyendo el fIX) y la hemofilia A (incluyendo el fVIII y sus variantes, tal como la cadena ligera y cadena pesada del heterodímero y con el dominio B eliminado; Patente de Estados Unidos N.º 6.200.560 y Patente de Estados Unidos N.º 6.221.349). El gen del Factor VIII codifica 2351 aminoácidos y la proteína tiene seis dominios, designados desde el extremo amino al carboxilo terminal como A1-A2-B-A3-C1-C2 [Wood et al, Nature, 312:330 (1984); Vehar et 45 al., Nature 312:337 (1984); y Toole et al, Nature, 342:337 (1984)]. El fVIII humano se procesa dentro de la célula para producir un heterodímero que comprende principalmente una cadena pesada que contiene los dominios A1, A2 y B y una cadena ligera que contiene los dominios A3, C1 y C2. Tanto el polipéptido de cadena única como el heterodímero circulan en el plasma como precursores inactivos, hasta que se activan mediante la escisión por trombina entre los dominios A2 y B, que libera el dominio B y da como resultado una cadena pesada que consiste en los dominios A1 y 50 A2. El dominio B se elimina en la forma procoagulante activada de la proteína. Adicionalmente, en la proteína natural, dos cadenas polipeptídicas ("a" y "b"), que flanquean el dominio B, están unidas a un catión de calcio divalente.

Una opción de tratamiento para un paciente diagnosticado con hemofilia A es la administración exógena de fVIII recombinante, a veces denominada terapia de reemplazo de fVIII. En algunos pacientes, esta terapia puede conducir al desarrollo de anticuerpos que se unen a la proteína fVIII administrada. Posteriormente, los conjugados unidos fVIII-anticuerpo, generalmente conocidos como inhibidores, interfieren o retrasan la capacidad de fVIII para causar la coagulación sanguínea. Los autoanticuerpos inhibitorios también se producen a veces espontáneamente en un sujeto que no está genéticamente en riesgo de tener hemofilia, denominada hemofilia adquirida. Los ensayos de anticuerpos inhibitorios se realizan generalmente antes del tratamiento exógeno con fVIII para determinar si la terapia anticoagulante será eficaz.

Históricamente, se ha utilizado un "ensayo Bethesda" para cuantificar la dosificación inhibitoria de la concentración de anticuerpos de unión a fVIII. En el ensayo, se preparan diluciones en serie de plasma de un paciente, por ejemplo, antes de someterse a cirugía, y cada dilución se mezcla con un volumen igual de plasma normal como fuente de fVIII. Después de incubar durante un par de horas, se miden las actividades de fVIII en cada una de las mezclas diluidas. Tener concentraciones de inhibidor de anticuerpos que evitan la actividad de coagulación de fVIII después de múltiples

diluciones repetidas indica un mayor riesgo de sangrado incontrolado. Se cree que es poco probable que los pacientes con títulos de inhibidores después de aproximadamente diez diluciones respondan a infusiones exógenas de fVIII para detener el sangrado. Un título Bethesda se define como el valor recíproco de la dilución que da como resultado una inhibición del 50 % de la actividad de FVIII presente en el plasma humano normal. Un título Bethesda superior a 10 se considera el umbral de respuesta a la terapia de reemplazo de FVIII.

En determinadas realizaciones, la invención se refiere a una partícula vírica o cápside que comprende un vector de la invención que comprende un ácido nucleico que codifica un factor de coagulación sanguínea como se divulga en el presente documento para usar en métodos para inducir la coagulación sanguínea, comprendiendo dicho método administrar una cantidad eficaz a un sujeto que lo necesite.

10

35

40

45

50

55

60

65

En determinadas realizaciones, el sujeto es diagnosticado con hemofilia A o B o hemofilia adquirida o es poco probable que responda a infusiones exógenas de fVIII.

En algunas realizaciones, la invención se refiere a un vector vírico adenoasociado (AAV) que codifica fIX humano como el vehículo de suministro génico para su uso en métodos de transferencia génica para el tratamiento de la hemofilia B. Si bien varias de estas terapias génicas basadas en AAV para la hemofilia B se han incorporado en ensayos clínicos en seres humanos, se han visto obstaculizadas por la baja expresión de la proteína terapéutica, fIX de coagulación, después de la administración del virus, lo que da como resultado solamente una corrección parcial de la enfermedad. La toxicidad del vector AAV limita la dosis del virus que puede administrarse de manera segura. Para una transición exitosa a una terapia clínicamente viable, un vector debe proporcionar una expresión eficaz de fIX a dosis víricas por debajo del umbral de toxicidad.

El tratamiento de pacientes con inhibidores de fVIII también se ha logrado mediante métodos de inducción de tolerancia inmunitaria (ITI, por sus siglas en inglés) que generalmente implican la infusión diaria de fVIII hasta que disminuyen los niveles de inhibidor/anticuerpo circulante. Sin embargo, un 20-30 % de los pacientes no se vuelven tolerantes después de una terapia de inducción de tolerancia inmunitaria (ITI). La persistencia de los inhibidores de fVIII se asocia con riesgos de morbilidad y mortalidad aumentados. En determinados aspectos, la divulgación se refiere a métodos de inducción de tolerancia inmunitaria que comprenden administrar una cantidad eficaz de un vector o una cápside como se divulga en el presente documento a un sujeto que lo necesite.

En algunas realizaciones, las proteínas terapéuticas codificadas por los ácidos nucleicos (p. ej., operativamente en combinación con promotores) indicadas en el presente documento comprenden los primeros 57 pares de bases de la cadena pesada de fVIII que codifica la secuencia señal de 10 aminoácidos, así como la secuencia de poliadenilación de beta globina humana o la secuencia de poliadenilación de la hormona de crecimiento (hGH). En realizaciones alternativas, los dominios A1 y A2, así como 5 aminoácidos del extremo N del dominio B y/u 85 aminoácidos del extremo C del dominio B, así como los dominios A3, C1 y C2. En otras realizaciones más, los ácidos nucleicos que codifican la cadena pesada y la cadena ligera de fVIII se proporcionan en un único ácido nucleico separado por 42 ácidos nucleicos que codifican 14 aminoácidos del dominio B. Véase la patente de EE.UU. n.º 6.200.560.

Como se usan en el presente documento, una cantidad terapéuticamente eficaz es una cantidad de vector AAV que produce cantidades suficientes de fVIII para disminuir el tiempo que tarda la sangre de un sujeto en coagularse. Por lo general, los hemofílicos graves que tienen menos del 1 % de los niveles normales de fVIII tienen un tiempo de coagulación de la sangre total de más de 60 minutos en comparación con aproximadamente 10 minutos para los no hemofílicos.

La presente divulgación no se limita a ninguna secuencia específica de fVIII o fIX u otra proteína indicada en el presente documento. Se han aislado y generado muchas formas naturales y recombinantes de fVIII. Se pueden encontrar ejemplos de formas de origen natural y recombinantes de fVII en la bibliografía científica y de patentes que incluye, patente de los EE.UU. n.º 5.563.045, patente de los EE.UU. n.º 5.451.521, patente de los EE.UU. n.º 5.422.260, patente de los EE.UU. n.º 5.004.803, patente de los EE.UU. n.º 4.757.006, patente de los EE.UU. n.º 5.661.008, patente de los EE.UU. n.º 5.789.203, patente de los EE.UU. n.º 5.681.746, patente de los EE.UU. n.º 5.595.886, patente de los EE.UU. n.º 5.045.455, patente de los EE.UU. n.º 5.668.108, patente de los EE.UU. n.º 5.693.499, patente de los EE.UU. n.º 5.587.310, patente de los EE.UU. n.º 5.171.844, patente de los EE.UU. n.º 5.149.637, patente de los EE.UU. n.º 5.112.950, patente de los EE.UU. n.º 4.886.876, el documento WO 94/11503, el documento WO 87/07144, el documento WO 92/16557, el documento WO 91/09122, el documento WO 97/03195, el documento WO 96/21035, el documento WO 91/07490, el documento EP 0 672 138, el documento EP 0 270 618, el documento EP 0 182 448, el documento EP 0 162 067, el documento EP 0 786 474, el documento EP 0 503 862, el documento EP 0 506 757, el documento EP 0 874 057, el documento EP 0 795 021, el documento EP 0 670 332, el documento EP 0 506 754, el documento EP 0 232 112, el documento EP 0 160 457, Sanberg et al., Int. Congress of the World Fed. Of Hemophilia (1992), y Lind et al., Eur. J. Biochem., 232:19 (1995).

Además, la divulgación no se limita al fVIII humano. De hecho, se pretende que la presente divulgación abarque fVIII de animales que no sean humanos, incluidos, entre otros, animales de compañía (por ejemplo, canino, felinos y equinos), ganado (por ejemplo, bovinos, caprinos y ovinos), animales de laboratorio, mamíferos marinos, grandes felinos, etc.

Los vectores AAV pueden contener un ácido nucleico que codifica fragmentos de fVIII que en sí mismo no es biológicamente activo, sin embargo, cuando se administra al sujeto mejora o restaura el tiempo de coagulación de la sangre. Por ejemplo, la proteína fVIII comprende dos cadenas polipeptídicas: una cadena pesada y una cadena ligera separadas por un dominio B que se escinde durante el procesamiento. La transducción conjunta de células receptoras con las cadenas pesada y ligera de FVIII conducen a la expresión de fVIII biológicamente activo. La administración de solamente la cadena defectuosa se contempla en pacientes porque la mayoría de los hemofílicos contienen una mutación o deleción en una sola de las cadenas (p. ej., cadena pesada o ligera).

10 Por lo tanto, en determinadas realizaciones, la divulgación se refiere a vectores de la invención que tienen ácidos nucleicos que codifican una cadena ligera que contiene los dominios A3, C1 y C2 o una cadena pesada que consiste en los dominios A1 y A2.

Descripción adicional de vectores recombinantes y modalidades terapéuticas

15

25

45

50

55

60

Los vectores recombinantes divulgados en el presente documento (por ejemplo, un vector AAV recombinante) se pueden usar en varias aplicaciones terapéuticas diferentes, dependiendo de la proteína de interés codificada por el vector recombinante.

- 20 En determinados aspectos, los usos son para el tratamiento de la hemocromatosis hereditaria (HH), un trastorno importante de sobrecarga de hierro, enfermedad de Wilson, un trastorno genético de sobrecarga de cobre y deficiencia de alfa1-antitripsina (α1-AT). En determinados aspectos, la proteína es alfa1-antitripsina humana (α1-AT, Registro: P01009.3), proteína HFE (Registro NP_000401.1 o Q30201) o proteína hepática ATP7B (registro P35670.4) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.
 - En determinados aspectos, el uso es para el tratamiento de hipercolesterolemia utilizando un promotor del presente documento en combinación operativa con un ácido nucleico que codifica para fenilalanina hidroxilasa humana (Registro: P00439.1) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.
- 30 En determinados aspectos, el uso es para el tratamiento de tirosinemia tipo 1 usando un promotor del presente documento en combinación operativa con un ácido nucleico que codifica para fumarilacetoacetato hidrolasa de humana (Registro: P16930.2) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.
- En determinados aspectos, el uso es para el tratamiento de tirosinemia Tipo 2 utilizando un promotor del presente documento en combinación operativa con un ácido nucleico que codifica para tirosina aminotransferasa humana (Registro: P17735.1) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.
- En determinados aspectos, el uso es para el tratamiento de homocistinuria utilizando un promotor del presente documento en combinación operativa con un ácido nucleico que codifica para metilentetrahidrofolato reductasa humana (Registro: P42898.3) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.
 - En determinados aspectos, el uso es para el tratamiento de hiperlipidemia e hipercolesterolemia utilizando un promotor del presente documento en combinación operativa con un ácido nucleico que codifica para acil-CoA deshidrogenasa de cadena media humana (Registro: P11310.1) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.
 - En determinados aspectos, el uso es para el tratamiento de Galactosemia utilizando un promotor del presente documento en combinación operativa con un ácido nucleico que codifica para galactosa-1-fosfato uridiltransferasa humana (Registro: P07902.3) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.
 - En determinados aspectos, el uso es para el tratamiento del síndrome de Lesch-Nyhan utilizando un promotor del presente documento en combinación operativa con un ácido nucleico que codifica para hipoxantina fosforribosiltransferasa humana (Registro: P00492.2) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.
 - En determinados aspectos, el uso es para el tratamiento de la enfermedad de Gaucher utilizando un promotor del presente documento en combinación operativa con un ácido nucleico que codifica para cerebrosidasa humana (Registro: P07602.2, Registro: P04062.3) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.
 - En determinados aspectos, el uso es para el tratamiento dela enfermedad de Tay-Sachs utilizando un promotor del presente documento en combinación operativa con un ácido nucleico que codifica para beta-hexosaminidasa humana (Registro: P06865.2) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.
- 65 En determinados aspectos, el uso es para el tratamiento de la enfermedad de Fabry utilizando un promotor del presente documento en combinación operativa con un ácido nucleico que codifica para α-galactosidasa humana

(Registro: P06280.1) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.

En determinados aspectos, el uso es para el tratamiento del síndrome de Hunter utilizando un promotor del presente documento en combinación operativa con un ácido nucleico que codifica para iduronato sulfatasa humana (Registro: P22304.1) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.

En determinados aspectos, el uso es para el tratamiento de la enfermedad por almacenamiento de glucógeno la utilizando un promotor en combinación operativa con un ácido nucleico que codifica para glucosa-6-fosfatasa humana (Registro: P35575.2) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.

En determinados aspectos, el uso es para el tratamiento del metabolismo del amoniaco utilizando un promotor en combinación operativa con un ácido nucleico que codifica para ornitina transcarbamilasa humana (Registro: P00480.3) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.

15 En determinados aspectos, el uso es para el tratamiento de fenilcetonuria utilizando un promotor en combinación operativa con un ácido nucleico que codifica para el receptor de lipoproteínas de baja densidad humano (Registro: P01130.1) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.

10

30

35

40

45

50

55

60

65

En determinados aspectos, el uso es para el tratamiento de acidemia propiónica utilizando un promotor en combinación operativa con un ácido nucleico que codifica para propionil-coenzima A carboxilasa, ya sea PCCA y/o PCCB (Registro: P05166.3 beta, NP_000273.2 alfa, NP_001121164.1 alfa) o variantes con más de 50, 60, 70, 80, 90, 95 o 95 de identidad o similitud de secuencia.

También se contemplan usos en regímenes de vacuna, por ejemplo, para el suministro conjunto de una citocina o para el suministro de un inmunógeno o antígeno.

Las partículas víricas recombinantes, las cápsides o los vectores que comprenden los ácidos nucleicos divulgados en el presente documento pueden suministrarse al hígado a través de la arteria hepática, la vena porta o intravenosamente para producir niveles terapéuticos de proteínas terapéuticas o de factores de coagulación en la sangre. La cápside o vector se suspende preferentemente en un transportador fisiológicamente compatible, pudiendo administrarse a un paciente mamífero humano o no humano. Un experto en la materia puede seleccionar fácilmente transportadores s adecuados a la vista de la indicación para la cual se dirige el virus de transferencia. Por ejemplo, un transportador adecuado incluye una solución salina, que puede formularse con una variedad de soluciones tamponantes (por ejemplo, solución salina tamponada con fosfato). Otros transportadores ilustrativos incluyen solución salina estéril, lactosa, sacarosa, fosfato de calcio, gelatina, dextrano, agar, pectina, aceite de sésamo y agua.

Opcionalmente, las composiciones de la divulgación pueden contener otros excipientes farmacéuticamente aceptables, tales como conservantes, o estabilizantes químicos. Conservantes ejemplares adecuados incluyen clorobutanol, sorbato de potasio, ácido sórbico, dióxido de azufre, galato de propilo, los parabenos, etil vainillina, glicerina, fenol y paraclorofenol. Estabilizantes químicos adecuados incluyen gelatina y albúmina.

Las partículas, cápsides o vectores de virus recombinantes se administran en cantidades suficientes para transfectar las células y proporcionar niveles suficientes de transferencia y expresión génica para proporcionar un beneficio terapéutico sin efectos adversos indebidos, o con efectos fisiológicos médicamente aceptables, que se pueden determinar por los expertos en las materias médicas. Las vías de administración convencional y farmacéuticamente aceptables incluyen, aunque sin limitación, suministro directo a un órgano deseado (por ejemplo, el hígado (opcionalmente a través de la arteria hepática) o el pulmón), vía oral, inhalación, intranasal, intratraqueal, intraarterial, intraocular, intravenosa, intramuscular, subcutánea, intradérmica y otras vías de administración parenteral. Las vías de administración pueden combinarse, si se desea.

Las dosis de las partículas, cápsides o vectores de virus recombinantes dependerán principalmente de factores tales como la afección a tratar, la edad, el peso y la salud del paciente, y por lo tanto pueden variar entre los pacientes. Por ejemplo, una dosificación de un ser humano terapéuticamente eficaz del vector vírico está generalmente en el intervalo de aproximadamente 0,1 ml a aproximadamente 100 ml de solución que contiene concentraciones de aproximadamente 1x10⁹ a 1x10¹⁶ genomas del vector del virus.

Otras proteínas terapéuticas útiles codificadas por los ácidos nucleicos (p. ej., operativamente en combinación con promotores) indicadas en el presente documento incluyen hormonas y factores de crecimiento y diferenciación que incluyen, sin limitación, insulina, glucagón, hormona del crecimiento (GH), hormona paratiroidea (PTH), factor liberador de la hormona del crecimiento (GRF), hormona foliculoestimulante (FSH), hormona luteinizante (LH), gonadotropina coriónica humana (hCG), factor de crecimiento endotelial vascular (VEGF), angiopoyetinas, angiostatina, factor estimulante de colonias de granulocitos (GCSF), eritropoyetina (EPO), factor de crecimiento del tejido conectivo (CTGF), factor de crecimiento fibroblástico básico (bFGF), factor de crecimiento fibroblástico ácido (aFGF), factor de crecimiento epidérmico (EGF), factor de crecimiento derivado de plaquetas (PDGF), factores de crecimiento insulínico I y II (IGF-I e IGF-II), cualquiera de la superfamilia alfa del factor de crecimiento transformante, incluyendo TGFalfa, activinas, inhibinas o cualquiera de las BMP 1-15 de las proteínas morfogenéticas óseas (BMP), cualquiera de la

familia del factor de diferenciación de heregluina/neuregulina/ARIA/neu (NDF) de los factores de crecimiento, factor de crecimiento nervioso (NGF), factor neurotrófico derivado del cerebro (BDNF), neurotrofinas NT-3 y NT-4/5, factor neurotrófico ciliar (CNTF), factor neurotrófico derivado de la línea de células gliales (GDNF), neurturina, agrina, cualquiera de la familia de semaforinas/colapsinas, netrina-1 y netrina-2, factor de crecimiento de hepatocitos (HGF), efrinas, nogina, sonic hedgehog y tirosina hidroxilasa.

Otras proteínas terapéuticas codificadas por los ácidos nucleicos (p. ej., operativamente en combinación con promotores) indicadas en el presente documento incluyen aquellas que regulan el sistema inmunitario, incluyendo, sin limitación, citocinas y linfocinas tales como trombopoyetina (TPO), interleucinas (IL) IL-1 a IL-25 (incluidas IL-2, IL-4, IL-12 e IL-18), proteína quimioatrayente de monocitos, factor inhibidor de la leucemia, factor estimulante de colonias de granulocitos-macrófagos, ligando Fas, factores de necrosis tumoral alfa y beta, interferones alfa, beta y gamma, factor de células madre, ligando flk-2/flt3. Las proteínas producidas por el sistema inmunitario también son útiles. Estas incluyen, sin limitaciones, inmunoglobulinas IgG, IgM, IgA, IgD e IgE, inmunoglobulinas quiméricas, anticuerpos humanizados, anticuerpos monocatenarios, receptores de linfocitos T, receptores de linfocitos T quiméricos, receptores de linfocitos T de cadena sencilla, moléculas MHC de clase I y clase II, así como inmunoglobulinas y moléculas MHC modificadas por ingeniería. Las proteínas útiles también incluyen proteínas reguladoras del complemento tales como proteínas reguladoras del complemento, proteína cofactor de membrana (MCP), factor acelerador de la descomposición (DAF), CR1, CF2 y CD59.

10

15

35

40

55

60

65

Otras proteínas terapéuticas codificadas por los ácidos nucleicos (p. ej., operativamente en combinación con promotores) indicadas en el presente documento son receptores para las hormonas, factores de crecimiento, citocinas, linfocinas, proteínas reguladoras y proteínas del sistema inmunitario. La divulgación abarca los receptores para la regulación del colesterol y/o la modulación de los lípidos, incluidos el receptor de lipoproteínas de baja densidad (LDL), el receptor de lipoproteínas de alta densidad (HDL), el receptor de lipoproteínas de muy baja densidad (VLDL) y los receptores neutralizantes. La divulgación también abarca proteínas tales como miembros de la superfamilia de receptores de hormonas esteroideas, incluidos los receptores de glucocorticoides y los receptores de estrógenos, los receptores de vitamina D y otros receptores nucleares. Además, proteínas útiles incluyen factores de transcripción como jun, fos, max, mad, factor de respuesta sérica (SRF), AP-1, AP2, myb, MyoD y miogenina, proteínas que contienen caja ETS, TFE3, E2F, ATF1, ATF2, ATF3, ATF4, ZF5, NFAT, CREB, HNF-4, C/EBP, SP1, proteínas de unión a caja CCAAT, factor de regulación de interferón (IRF-1), proteína tumoral de Wilms, proteína de unión a ETS, STAT, proteínas de unión a caja GATA, por ejemplo, GATA-3 y la familia forkhead de proteínas de hélice alada.

Otras proteínas útiles incluyen, carbamoil sintetasa I, ornitina transcarbamilasa, arginosuccinato sintetasa, arginosuccinato liasa, arginasa, fumarilacetoacetato hidrolasa, fenilalanina hidroxilasa, alfa-1 antitripsina, glucosa-6-fosfatasa, porfobilinógeno desaminasa, cistatión beta-sintasa, cetoácido descarboxilasa de cadena ramificada, albúmina, isovaleril-CoA deshidrogenasa, propionil CoA carboxilasa, metil malonil CoA mutasa, glutaril CoA deshidrogenasa, insulina, beta-glucosidasa, piruvato carboxilasa, fosforilasa hepática, fosforilasa cinasa, glicina descarboxilasa, proteína H, proteína T, una secuencia reguladora transmembrana de fibrosis quística (CFTR) y una secuencia de ADNc de distrofina. Aún otras proteínas útiles incluyen enzimas tales como las que pueden ser útiles en la terapia de reemplazo enzimático, que es útil en una variedad de afecciones que son el resultado de una actividad deficiente de la enzima. Por ejemplo, las enzimas que contienen manosa-6-fosfato pueden utilizarse en terapias para enfermedades por almacenamiento lisosómico (por ejemplo, un gen adecuado incluye el que codifica la beta-glucuronidasa (GUSB)).

Otras proteínas útiles incluyen polipéptidos de origen no natural, tales como polipéptidos quiméricos o híbridos que tienen una secuencia de aminoácidos de origen no natural que contiene inserciones, deleciones o sustituciones de aminoácidos. Por ejemplo, las inmunoglobulinas modificadas por ingeniería de cadena sencilla podrían ser útiles en determinados pacientes inmunocomprometidos. Otros tipos de secuencias génicas de origen no natural incluyen moléculas antisentido y ácidos nucleicos catalíticos, tal como ribozimas, que podrían usarse para reducir la sobreexpresión de una diana.

La reducción y/o modulación de la expresión de una proteína es particularmente deseable para el tratamiento de afecciones hiperproliferativas caracterizadas por células en hiperproliferación, como son los cánceres y la psoriasis. Los polipéptidos diana incluyen aquellos polipéptidos que se producen exclusivamente o a niveles más altos en células hiperproliferativas en comparación con las células normales. Los antígenos diana incluyen polipéptidos codificados por oncogenes tales como myb, myc, fyn, y el gen de translocación bcr/abl, ras, src, P53, neu, trk y EGRF. Además de los productos oncogénicos como antígenos diana, los polipéptidos diana para tratamientos y regímenes protectores contra el cáncer incluyen regiones variables de anticuerpos producidos por linfomas de linfocitos B y regiones variables de receptores de linfocitos T de linfomas de linfocitos T que, en algunas realizaciones, también se usan como antígenos diana para una enfermedad autoinmunitaria. Se pueden usar otros polipéptidos asociados a tumores como polipéptidos diana tales como polipéptidos que se encuentran a niveles más altos en células tumorales que incluyen el polipéptido reconocido por el anticuerpo monoclonal 17-1A y los polipéptidos de unión a folato.

Otros polipéptidos y proteínas terapéuticos adecuados incluyen aquellos que pueden ser útiles para tratar individuos que padecen enfermedades y trastornos autoinmunitarios al conferir una respuesta inmunitaria protectora de base amplia contra dianas que están asociadas con la autoinmunidad, incluidos los receptores celulares y las células que

producen anticuerpos "autodirigidos". Las enfermedades autoinmunitarias mediadas por linfocitos T incluyen artritis reumatoide (AR), esclerosis múltiple (EM), síndrome de Sjögren, sarcoidosis, diabetes mellitus dependiente de insulina (I DDM), tiroiditis autoinmunitaria, artritis reactiva, espondilitis anquilosante, esclerodermia, polimiositis, dermatomiositis, psoriasis, vasculitis, granulomatosis de Wegener, enfermedad de Crohn y colitis ulcerosa. Cada una de estas enfermedades se caracteriza por receptores de linfocitos T (TCR) que se unen a antígenos endógenos e inician la cascada inflamatoria asociada con las enfermedades autoinmunitarias.

Los vectores indicados en el presente documento pueden formularse de una manera que permita la expresión de una proteína transportada por los vectores para inducir una respuesta inmunitaria a un antígeno seleccionado. Por ejemplo, para promover una respuesta inmunitaria, el antígeno puede expresarse a partir de un promotor divulgado en el presente documento, el vector puede adyuvarse como se describe en el presente documento, y/o el vector puede introducirse en tejido degenerado.

10

Ejemplos de antígenos inmunogénicos adecuados incluyen los seleccionados de una variedad de familias víricas. 15 Ejemplos de familias víricas deseables contra las cuales sería deseable una respuesta inmunitaria incluyen, la familia de los picornavirus, que incluye los géneros rinovirus, que son responsables de aproximadamente el 50 % de los casos del restriado común; los géneros enterovirus, que incluyen los poliovirus, coxsackievirus, ecovirus y enterovirus humanos, tal como el virus de la hepatitis A; y los géneros apthovirus, que son responsables de las enfermedades de la fiebre aftosa, principalmente en animales no humanos. Dentro de la familia de los virus picornavirus, los antígenos 20 diana incluyen VP1, VP2, VP3, VP4 y VPG. Otras familias víricas incluyen los astrovirus y la familia del calcivirus. La familia del calcivirus abarca el grupo de virus Norwalk, que son un importante agente causante de la gastroenteritis epidémica. Aún otra familia vírica deseable para su uso en el direccionamiento de antígenos para inducir respuestas inmunitarias en seres humanos y animales no humanos es la familia de togavirus, que incluye los géneros alfavirus, que incluyen virus Sindbis, virus RossRiver y Encefalitis Equina Venezolana, Oriental y Occidental, y rubivirus, 25 incluyendo el virus de la rubéola. La familia flaviviridae incluye dengue, fiebre amarilla, encefalitis japonesa, encefalitis de St. Louis y virus de la encefalitis transmitida por garrapatas. Se pueden generar otros antígenos diana a partir de la hepatitis C o la familia de coronavirus, que incluye una serie de virus no humanos, tales como el virus de la bronquitis infecciosa (aves de corral), el virus gastroentérico transmisible porcino (cerdo), el virus de la encefalomielitis hemaglutinatina porcina (cerdo), virus de peritonitis infecciosa felino (gatos), coronavirus entérico felino (gato), 30 coronavirus canino (perro) y coronavirus respiratorios humanos, que pueden causar el resfriado común y/o hepatitis no A, B o C, y que incluyen la supuesta causa de síndrome respiratorio agudo repentino (SRAS). Dentro de la familia de los coronavirus, los antígenos diana incluyen la glucoproteína E1 (también llamada proteína M o de matriz), E2 (también llamada proteína S o Spike), E3 (también llamada HE o hemaglutina-elterosa) (no presente en todos los coronavirus) o N (nucleocápside). Aún otros antígenos se pueden dirigir contra la familia de arterivirus y la familia de 35 rabdovirus. La familia de los rabdovirus incluye los géneros vesiculovirus (p. ej., El Virus de la Estomatitis Vesicular) y los géneros lisisavirus (p. ej., rabia). Dentro de la familia de los rabdovirus, los antígenos adecuados pueden derivar de la proteína G o la proteína N. La familia filoviridae, que incluye virus de la fiebre hemorrágica los como el virus de Marburg y el Ébola, puede ser una fuente adecuada de antígenos. La familia de paramixovirus incluye el Virus paragripal Tipo 1, el Virus paragripal Tipo 3, el Virus paragripal Tipo 3 bovino, rubulavirus (virus de las paperas, el 40 Virus paragripal Tipo 2, el Virus paragripal Tipo 4, el virus de la enfermedad de Newcastle (pollos), peste bovina, el morbillivirus, que incluye sarampión y moquillo canino y neumovirus, que incluye el virus sincitial respiratorio. El virus de la gripe se clasifica dentro de la familia de ortomixovirus y es una fuente adecuada de antígenos (por ejemplo, la proteína HA, la proteína N1). La familia de los bunyavirus incluye los géneros bunyavirus (encefalitis de California, La Crosse), flebovirus (fiebre del Valle del Rift), hantavirus puremala es el virus de la fiebre de hemahagina), nairovirus 45 (enfermedad de las ovejas de Nairobi) y varios bungavirus no asignados. La familia arenavirus proporciona una fuente de antígenos contra LCM y contra el virus de la fiebre de Lassa. Otra fuente de antígenos es la familia bornavirus. La familia reovirus incluye los géneros reovirus, rotavirus (que causa gastroenteritis aguda en niños), orbinivirus, y cultivirus (virus de la garrapata de Colorado, Lebombo (seres humanos), encefalosis equina, lengua azul). La familia retrovirus incluye la subfamilia oncovirinal que abarca enfermedades humanas y veterinarias tales como el virus de la 50 leucemia felina, HTLVI y HTLVII, lentivirus (que incluye el VIH, el virus de inmunodeficiencia de simios, el virus de inmunodeficiencia felina, el virus de anemia infecciosa equina, y espumavirinal). La familia papovavirus incluye la subfamilia de poliomavirus (virus BKU y JCU) y la subfamilia papilomavirus (asociados con cánceres o progresión maligna de papiloma). La familia adenovirus incluye los virus (EX, AD7, ARD, O.B.) que causan enfermedad respiratoria y/o enteritis. El papovirus felino de la familia de los parvovirus (enteritis felina), el panleucovirus felino, el 55 parvovirus canino, y el parvovirus porcino. La familia herpesvirus incluye la subfamilia alfaherpesvirinae, la cual abarca los géneros simplexvirus (HSVI, HSVII), varicelovirus (pseudorabias, varicela zóster) y la subfamilia betaherpesvirinae, la cual incluye los géneros citomegalovirus (HCMV, muromegalovirus) y la subfamilia gammaherpesvirinae, la cual incluye los géneros linfocriptovirus, EBV (linfoma de Burkitts), herpesvirus 6A humanos, 6B y 7, herpesvirus asociados con sarcoma de Kaposi y cercopithecine herpesvirus (virus B), rinotraqueitis infecciosa, virus de la enfermedad de Marek y radinovirus. La familia de los poxvirus incluye la subfamilia cordopoxvirinae, que abarca los géneros 60 ortopoxvirus (Variola major (Viruela) y Vaccinia (viruela bovina), parapoxvirus, avipoxvirus, capripoxvirus, leporipoxvirus, suipoxvirus y la subfamilia entomopoxvirinae. La familia de los hepadnavirus incluye el virus de la hepatitis B. Un virus no clasificado que puede ser una fuente adecuada de antígenos es el virus de la hepatitis delta, el virus de la hepatitis E y los priones. Otro virus que es una fuente de antígenos es el virus Nipan. Aún otras fuentes víricas pueden incluir el virus de la enfermedad infecciosa de la bolsa aviar y el virus del síndrome respiratorio y reproductivo porcino. La familia de alfavirus incluye el virus de la arteritis equina y varios virus de encefalitis.

La presente divulgación también puede abarcar inmunógenos basados en proteínas que son útiles para inmunizar un animal humano o no humano contra otros patógenos, incluyendo bacterias, hongos, microorganismos parásitos o parásitos multicelulares que infectan vertebrados humanos y no humanos, o de una célula cancerosa o célula tumoral. Los ejemplos de patógenos bacterianos incluyen cocos grampositivos patógenos incluyendo neumococos; estafilococos (y las toxinas producidas por ellos, p.ej., enterotoxina B); y estreptococos. Los cocos patógenos gramnegativos incluyen meningococo; gonococo. Los bacilos gramnegativos entéricos patógenos incluyen enterobacterias; pseudomonas, acinetobacterias y eikenella; melioidosis; salmonella; shigella; haemophilus; moraxella; H. ducreyi (que causa chancroide); especies de brucella (brucelosis); Francisella tularensis (que causa tularemia); Yersinia pestis (peste) y otras Yersinia (pasteurella); streptobacillus moniliformis y spirillum; Los bacilos grampositivos incluyen listeria monocytogenes; erysipelothrix rhusiopathiae; Corynebacterium diphtheriae (difteria); cólera; B. anthracis (ántrax); donovanosis (granuloma inguinal); y bartonelosis. Las enfermedades causadas por bacterias anaerobias patógenas incluyen el tétanos; botulismo (Clostridium botulinum y su toxina); Clostridium perfringens y su toxina épsilon; otros clostridios; tuberculosis; lepra; y otras micobacterias. Las enfermedades por espiroquetas patógenas incluyen sífilis; treponematosis: pian, sífilis endémica y pinta; y leptospirosis. Otras infecciones causadas por bacterias patógenas superiores y hongos patógenos incluyen muermo (Burkholderia mallei); actinomicosis; nocardiosis; criptococosis, blastomicosis, histoplasmosis y coccidioidomicosis; candidiasis, aspergilosis y mucormicosis; esporotricosis; paracoccidiodomicosis, petrielidiosis, torulopsosis, micetoma y cromomicosis; y dermatofitosis. Las infecciones por rickettsia incluyen fiebre tifoidea, fiebre maculosa de las Montañas Rocosas, Fiebre Q (Coxiella burnetti) y viruela rickettsiósica. Ejemplos de micoplasma e infecciones por clamidias incluyen: mycoplasma pneumoniae; linfogranuloma venéreo; psitacosis; e infecciones perinatales por clamidias. Los eucariotas patógenos abarcan protozoos y helmintos patógenos, y las infecciones producidas incluyen: amebiasis; malaria; leishmaniosis; tripanosomiasis; toxoplasmosis; Pneumocystis carinii; Trichans; Toxoplasma gondii; babesiosis; giardiasis; triquinosis; filariasis; esquistosomiasis; nematodos; trematodos o duelas; e infecciones por cestodos (tenia).

Muchos de estos organismos y/o las toxinas producidas por los mismos han sido identificados por los Centros para el Control de Enfermedades [(CDC), Departamento de Salud y Servicios Humanos, EE. UU.], como agentes que pueden usarse en ataques biológicos. Por ejemplo, algunos de estos agentes biológicos, incluyen, Bacillus anthracia (ántrax), Clostridium botulinum y su toxina (botulismo), Yersinia pestis (peste), variola mayor (viruela), Francisella tularensis (tularemia) y fiebres hemorrágicas víricas [filovirus (p. ej., Ébola, Marburg] y arenavirus [por ejemplo, Lassa, Machupo]), todos los cuales están actualmente clasificados como agentes de Categoría A; Coxiella burnetti (fiebre Q); especies de Brucella (brucelosis), Burkholderia mallei (muermo), Burkholderia pseudomallei (meloidosis), Ricinus communis y su toxina (toxina ricina), Clostridium perfringens y su toxina (toxina épsilon), Especies de estafilococos y sus toxinas (enterotoxina B), Chlamydia psittaci (psitacosis), amenazas a la seguridad del agua (p. ej., Vibrio cholerae, Crytosporidium parvum), fiebre tifoidea (Richettsia powazekii) y encefalitis vírica (alfavirus, por ejemplo, encefalitis equina Venezolana; encefalitis equina del este; encefalitis equina del oeste); todos los cuales están actualmente clasificados como agentes de Categoría B; y virus Nipan y hantavirus, que actualmente están clasificados como agentes de Categoría C. Además, otros organismos, que se clasifican así o de manera diferente, pueden identificarse y/o usarse para tal fin en el futuro. Se entenderá fácilmente que los vectores víricos y otras construcciones descritas en el presente documento son útiles para suministrar antígenos de estos organismos, virus, sus toxinas u otros subproductos, que evitarán y/o tratarán infecciones u otras reacciones adversas con estos agentes biológicos.

En determinados aspectos, una proteína para la expresión en un vector de la divulgación es un segmento de una región variable de linfocitos T que desencadena una respuesta inmunitaria, es decir, para eliminar los linfocitos T citotóxicos. En artritis reumatoide (AR), se han caracterizado varias regiones variables específicas de TCR que están implicadas en la enfermedad. Estos TCR incluyen V-3, V-14, V-17 y V-17. Por lo tanto, el suministro de una secuencia del ácido nucleico que codifica al menos uno de estos polipéptidos desencadenará una respuesta inmunitaria que se dirigirá a los linfocitos T implicados en la AR. En esclerosis múltiple (EM), se han caracterizado varias regiones variables específicas de TCR que están implicadas en la enfermedad. Estos TCR incluyen V-7 y V-10. Por lo tanto, el suministro de una secuencia del ácido nucleico que codifica al menos uno de estos polipéptidos desencadenará una respuesta inmunitaria que se dirigirá a los linfocitos T implicados en la EM. En escleroderma, se han caracterizado varias regiones variables específicas de TCR que están implicadas en la enfermedad. Estos TCR incluyen V-6, V-8, V-14 y V-16, V-3C, V-7, V-14, V-15, V-16, V-28 y V-12. Por lo tanto, el suministro de una molécula de ácido nucleico que codifica al menos uno de estos polipéptidos desencadenará una respuesta inmunitaria que se dirigirá a los linfocitos T implicados en escleroderma.

Los vectores víricos recombinantes de la divulgación proporcionan un vehículo de transferencia génica eficaz que puede suministrar proteínas seleccionadas a una célula hospedadora seleccionada *in vivo* o ex vivo incluso cuando el organismo tiene anticuerpos neutralizantes de la proteína. En un aspecto, los vectores descritos en el presente documento y las células se mezclan ex vivo; las células infectadas se cultivan usando metodologías convencionales; y las células transducidas se vuelven a infundir en el paciente.

Realizaciones adicionales

10

15

20

25

30

35

40

45

50

55

60

65 En determinadas realizaciones, la invención se refiere a vectores víricos recombinantes que comprenden una secuencia del ácido nucleico de un promotor específico de hígado de la invención en combinación operativa con una

secuencia del ácido nucleico heterólogo que codifica una proteína. Generalmente, la secuencia del ácido nucleico que codifica la proteína comprende un mayor porcentaje de codones de aminoácidos específicos de células hepáticas en comparación con el uso general de codones humanos. En determinados aspectos, la divulgación se refiere a métodos para tratar a un sujeto diagnosticado con un rasgo genético que da como resultado la expresión de una proteína no funcional mutada o truncada mediante la administración de una cantidad eficaz de un vector divulgado en el presente documento configurado para expresar una proteína funcional del hígado.

En determinadas realizaciones, el vector comprende una secuencia de un ácido nucleico vírico de más de 10, 20, 30, 40, 50, 100 o 200 nucleótidos. En determinadas realizaciones, la secuencia de un ácido nucleico vírico es un segmento del virus adenoasociado humano (hAAV) de los serotipos 1, 2, 3B, 4, 5, 6, 7, 8, 9 o combinaciones o variantes de los mismos, que generalmente comprende una repetición terminal invertida de AAV.

10

15

20

25

30

35

50

55

60

65

En determinados aspectos, la divulgación se refiere a una partícula vírica, por ejemplo, cápside que comprende un vector divulgado en el presente documento, por ejemplo, el vector empaquetado en una cápside. La cápside puede ser una cápside o partícula recombinante o quimérica, por ejemplo, una cápside que tiene secuencias de aminoácidos que son una combinación de pseudotipos de AAV para VP 1, 2 o 3. Un VP de cápside de AAV puede derivar de un gen humano o gen de AAV animal, o combinaciones con alteraciones genéticamente modificadas, es decir, AAV aislado de células humanas o un primate no humano infectados. Los AAV de animales incluyen los derivados de aves, bovino, porcino, ratones, etc. En determinados aspectos, la cápside puede tener secuencias de aminoácidos que son genéticamente modificados o cápsides sintéticas identificadas mediante métodos como la evolución dirigida o el diseño racional.

En determinadas realizaciones, los vectores divulgados en el presente documento son un ácido nucleico monocatenario o bicatenario o un ácido nucleico autocomplementario de menos de 5,1, 5,0, 4,9, 4,8, 4,7, 4,6 o 4,5 kb de nucleótidos en total. En determinadas realizaciones, el vector es incompetente para la replicación dentro de un hospedador humano, por ejemplo, el vector no codifica una polimerasa vírica.

En determinados aspectos, la secuencia promotora específica de hígado comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99 o 100 % de identidad de secuencia con GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTA (SEQ ID NO: 21) ATAATCTCAGGACAAACA (SEQ ID NO: 43) y/o TATAAAAGGCCAGCAGCAGCCTGACCACATCT- CATCCTC (SEQ ID NO: 20).

En determinados aspectos, la SEQ ID NO: 20 es 3' o posterior a la SEQ ID NO: 21 entre un enlazador nucleotídico, por ejemplo, conectado con un enlazador como se ilustra: 5'- SEQ ID NO: 21 seguida de un enlazador seguido de SEQ ID NO: 20-3'. El enlazador puede ser de entre 0 a 200 nucleótidos, de 10 a 100 nucleótidos, de 20 a 70 nucleótidos, de 30 a 60 nucleótidos, de 30 a 40 nucleótidos, de 32 a 36 nucleótidos. En determinados aspectos, la secuencia promotora específica de hígado comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, o 100 % de identidad de secuencia con la SEQ ID NO: 4, 5, 6, o 7.

Como se usan en el presente documento, el promotor específico de hígado se refiere a las secuencias en la dirección 5' del sitio de inicio de la transcripción de la proteína a producir. Las secuencias promotoras divulgadas en el presente documento pueden contener combinaciones de otros promotores, potenciadores, otras secuencias y fragmentos de los mismos conocidos. Por ejemplo, la SEQ ID NO: 21 es la secuencia del potenciador ABP acortado. Por sí solo no funciona como un promotor, sirve para potenciar la expresión conferida por el promotor central, SEQ ID NO: 20, SynO,
 que por sí solo no confiere una expresión génica eficaz. Se contemplan secuencias potenciadoras adicionales que pueden reemplazar o aumentar el potenciador short ABP.

En determinados aspectos, la secuencia promotora específica de hígado comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99 o 100 % de identidad de secuencia con CGGAGGAGCAAACAGGG (SEQ ID NO: 97) y/o TATAAAAG- GCCAGCAGCAGCCTGACCACATCTCATCCTC (SEQ ID NO: 20).

En determinados aspectos, la SEQ ID NO: 20 es 3' o posterior a la SEQ ID NO: 97 entre un enlazador nucleotídico, por ejemplo, conectado con un enlazador como se ilustra: 5'- SEQ ID NO: 97 seguida de un enlazador seguido de SEQ ID NO: 20-3'. El enlazador puede ser de entre 0 a 200 nucleótidos, de 10 a 100 nucleótidos, de 20 a 70 nucleótidos, de 30 a 60 nucleótidos, de 30 a 40 nucleótidos, de 32 a 36 nucleótidos.

En determinados aspectos, la secuencia promotora específica de hígado comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99 o 100 % de identidad de secuencia con CGGAGGAGCAAACAGGGGCTAAGTCCAC (SEQ ID NO: 98) y/o TATAAAAGGCCAGCAGCAGCAGCATCTCATCCTC (SEQ ID NO: 20).

En determinados aspectos, la SEQ ID NO: 20 es 3' o posterior a la SEQ ID NO: 98 entre un enlazador nucleotídico, por ejemplo, conectado con un enlazador como se ilustra: 5'- SEQ ID NO: 98 seguida de un enlazador seguido de SEQ ID NO: 20-3'. El enlazador puede ser de entre 0 a 200 nucleótidos, de 10 a 100 nucleótidos, de 20 a 70 nucleótidos, de 30 a 60 nucleótidos, de 30 a 40 nucleótidos, de 32 a 36 nucleótidos.

En determinados aspectos, la secuencia promotora específica de hígado comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99 o 100 % de identidad de secuencia con GGCTGCTGGTGAATATTAACCAAGGTC (SEQ ID NO: v/o TATAAAAGGCCAGCAGCAGCCTGACCACATCTCATCCTC (SEQ ID NO: 20).

En determinados aspectos, la SEQ ID NO: 20 es 3' o posterior a la SEQ ID NO: 99 entre un enlazador nucleotídico, por ejemplo, conectado con un enlazador como se ilustra: 5'- SEQ ID NO: 99 seguida de un enlazador seguido de SEQ ID NO: 20-3'. El enlazador puede ser de entre 0 a 200 nucleótidos, de 10 a 100 nucleótidos, de 20 a 70 nucleótidos, de 30 a 60 nucleótidos, de 30 a 40 nucleótidos, de 32 a 36 nucleótidos.

10

En determinados aspectos, la secuencia promotora específica de hígado comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99 o 100 % de identidad de secuencia con GGGGAGGCTGCTGGTGAATATTAACCAAGGTCACCCCAGT- TATCGGAGGAGCAAACAGGGG CTAAGTCCAC (SEQ ID NO: 100) y/o TATAAAAGGCCAGCAGCAGCCTGAC- CACATCTCATCCTC (SEQ ID NO: 20).

15

En determinados aspectos, la SEQ ID NO: 20 es 3' o posterior a la SEQ ID NO: 100 entre un enlazador nucleotídico, por ejemplo, conectado con un enlazador como se ilustra: 5'- SEQ ID NO: 100 seguida de un enlazador seguido de SEQ ID NO: 20-3'. El enlazador puede ser de entre 0 a 200 nucleótidos, de 10 a 100 nucleótidos, de 20 a 70 nucleótidos, de 30 a 60 nucleótidos, de 30 a 40 nucleótidos, de 32 a 36 nucleótidos.

20

En determinados aspectos, la secuencia promotora específica de hígado comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99 o 100 % de identidad de secuencia con GGGGAGGCTGCTGGTGAATATTAACCAAGGTCACCCCAGT- TATCGGAGGAGCAAACAGGGA CTAAGTCCAC (SEQ ID NO: 101) y/o TATAAAAGGCCAGCAGCAGCCTGAC- CACATCTCATCCTC (SEQ ID NO: 20).

25

En determinados aspectos, la SEQ ID NO: 20 es 3' o posterior a la SEQ ID NO: 101 entre un enlazador nucleotídico, por ejemplo, conectado con un enlazador como se ilustra: 5'- SEQ ID NO: 101 seguida de un enlazador seguido de SEQ ID NO: 20-3'. El enlazador puede ser de entre 0 a 200 nucleótidos, de 10 a 100 nucleótidos, de 20 a 70 nucleótidos, de 30 a 60 nucleótidos, de 30 a 40 nucleótidos, de 32 a 36 nucleótidos.

30

En determinados aspectos, la secuencia promotora específica de hígado comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, o 100 % de identidad de secuencia con la SEQ ID NO: 4, 5, 6, 7, 102, 103, 104, 105, 106, 107 o 108,

35 En determinados aspectos, la secuencia del ácido nucleico del promotor específico de hígado es inferior a 205 o 250 nucleótidos. Las expresiones "menos de 205 o 250 nucleótidos" se refieren a la longitud de una cadena sencilla o la longitud de pares de bases de cadena doble. El promotor funcional es bicatenario después de la conversión intracelular posterior a una infección vírica. No funcionaría si fuera monocatenario.

40

En determinados aspectos, la divulgación contempla que el primer nucleótido de la secuencia promotora es la 5' "G" en el sitio de unión al TF HFNIa, GTTAAT (SEQ ID NO: 25), por ejemplo, el promotor es 5' - SEQ ID NO: 21, seguido de un enlazador y seguido adicionalmente por un sitio de inicio de la transcripción (TSS), por ejemplo TCATCCTC (SEQ ID NO: 109), en donde el último nucleótido en el sitio de inicio de la transcripción es el final de la secuencia promotora. En determinados aspectos, el enlazador comprende una caja TATAA (SEQ ID NO: 26) y un espaciador rico en GC. En determinadas realizaciones, la divulgación contempla que el primer nucleótido de la secuencia promotora es una 5' "G" en GTTAA (SEQ ID NO: 27), GTTA (SEQ ID NO: 28), GTT (SEQ ID NO: 29). En determinados aspectos, el primer nucleótido de la secuencia promotora es una 5' "T" en TTAAT (SEQ ID NO: 30), TTAA (SEQ ID NO: 31), TTA (SEQ ID NO: 32). En determinados aspectos, el primer nucleótido de la secuencia promotora es una 5' "A" en AAT (SEQ ID NO: 33).

50

45

En determinados aspectos, la divulgación contempla un promotor que comprende 5'-SEQ ID NO: 21 o 97 o 98 o 99 o 100 o 101 opcionalmente seguido de un enlazador, seguido de una caja TATAA, seguido de un espaciador rico en GC seguido de un sitio de inicio de la transcripción. En determinados aspectos, el espaciador rico en GC es una secuencia en donde más del 60, 70, 80 o 90 % de los nucleótidos son G o C, por ejemplo, en una ventana de 5 a 35 nucleótidos, de 10 a 30 nucleótidos, o de 15 a 40 nucleótidos, o de 5 a 50 o 60 nucleótidos. En determinados aspectos, el espaciador rico en GC es GGCCAGCAGCAGCCTGACCACATC (SEQ ID NO: 110). En determinadas realizaciones, la secuencia promotora específica de hígado comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, o 100 % de identidad de secuencia con la SEQ ID NO: 110.

55

60 En determinados aspectos, la secuencia promotora específica de hígado comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, o 100 % de identidad de secuencia con una de:

la SEQ ID NO: 34: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA; la SEQ ID NO: 35: TTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;

Ia SEQ ID NO: 36: TAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA: la SEQ ID NO: 37: AATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;

65

```
la SEQ ID NO: 38: ATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
       Ia SEQ ID NO: 39: TTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
       Ia SEQ ID NO: 40: TTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
       Ia SEQ ID NO: 41: TTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
5
       Ia SEQ ID NO: 42: TTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
       Ia SEQ ID NO: 44: TGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
       Ia SEQ ID NO: 45: GTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
       Ia SEQ ID NO: 46: TGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
       la SEQ ID NO: 47: GCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
       la SEQ ID NO: 48: CCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
10
       Ia SEQ ID NO: 49: CCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
       la SEQ ID NO: 50: CTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACA;
       la SEQ ID NO: 51: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAAC;
       Ia SEQ ID NO: 52: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAA:
       Ia SEQ ID NO: 53: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAA;
15
       Ia SEQ ID NO: 54: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAA;
       Ia SEQ ID NO: 55: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACA:
       Ia SEQ ID NO: 56: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGAC;
       Ia SEQ ID NO: 57: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGA;
20
       Ia SEQ ID NO: 58: GTTAATTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGG;
       Ia SEQ ID NO: 59: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAG;
       Ia SEQ ID NO: 60: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCA;
       la SEQ ID NO: 61: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTC;
       Ia SEQ ID NO: 62: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCT;
25
       la SEQ ID NO: 63: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATC;
       la SEQ ID NO: 64: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAAT;
       Ia SEQ ID NO: 65: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAA;
       Ia SEQ ID NO: 66: GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAAC;
       Ia SEQ ID NO: 67: TTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAA;
30
       la SEQ ID NO: 68: TAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAA;
       la SEQ ID NO: 69: AATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACA;
       la SEQ ID NO: 70: ATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGAC;
       la SEQ ID NO: 71: TTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGA:
       la SEQ ID NO: 72: TTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGG;
35
       la SEQ ID NO: 73: TTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAG;
       la SEQ ID NO: 74: TTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCA;
       la SEQ ID NO: 75: TGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTC;
       la SEQ ID NO: 76: GTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCT;
       la SEQ ID NO: 77: TGGCCCTTGCGATGTTTGCTCTGGTTAATAATC;
40
       la SEQ ID NO: 78: GCCCTTGCGATGTTTGCTCTGGTTAATAAT;
       la SEQ ID NO: 79: CCCTTGCGATGTTTGCTCTGGTTAATAA;
       la SEQ ID NO: 80: CCTTGCGATGTTTGCTCTGGTTAAT A;
       Ia SEQ ID NO: 81: CTTGCGATGTTT GCTCTGGTTAAT;
       Ia SEQ ID NO: 82: TTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAAC;
45
       Ia SEQ ID NO: 83: TAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAA;
       Ia SEQ ID NO: 84: AATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAA;
       la SEQ ID NO: 85: ATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAA;
       la SEQ ID NO: 86: TTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACA;
       la SEQ ID NO: 87: TTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGAC;
       la SEQ ID NO: 88: TTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGA;
50
       la SEQ ID NO: 89: TTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGG;
       la SEQ ID NO: 90: TGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAG;
       la SEQ ID NO: 91: TGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCA;
       la SEQ ID NO: 92: GGCCCTTGCGATGTTTGCTCTGGTTAATAATCTC;
55
       Ia SEQ ID NO: 93: GCCCTTGCGATGTTTGCTCTGGTTAATAATCT:
       la SEQ ID NO: 94: CCCTTGCGATGTTTGCTCTGGTTAATAATC;
       la SEQ ID NO: 95: CCTTGCGATGTTTGCTCTGGTTAATAAT; o
       la SEQ ID NO: 96: CTTGCGATGTTTGCTCTGGTTAATAA.
```

60 En determinados aspectos, el promotor puede comenzar con el primer nucleótido 5' de la SEQ ID NO: 34-96 y terminar con el último nucleótido del TSS.

En determinadas realizaciones, la proteína es un fVIII o fIX o una variante de los mismos. En determinadas realizaciones, los esquemas de optimización de codones y promotores divulgados en el presente documento podrían usarse para cualquier terapia génica con AAV dirigida al hígado. Se contemplan otras enfermedades metabólicas causadas por deficiencias de enzimas hepáticas y la expresión de esas proteínas funcionales.

65

En determinadas realizaciones, la variante de fVIII comprende un dominio A1, un dominio A2, una secuencia RHQR (SEQ ID NO: 24), un dominio A3, un dominio C1 y un dominio C2. En determinadas realizaciones, la variante de fVIII comprende un dominio B eliminado.

5

En determinadas realizaciones, la variante de fVIII comprende un enlazador de entre dos y cincuenta, o dos y veinticinco, o dos y quince aminoácidos entre el dominio A2 y el dominio A3.

En determinadas realizaciones, la variante de fVIII comprende un dominio A1, un dominio A2, un dominio de péptido de activación (ap, por sus siglas en inglés), un dominio A3, un dominio C1 y un dominio C2. En determinadas realizaciones, la variante de fVIII comprende un domino B eliminado.

En determinadas realizaciones, la variante de fVIII comprende un enlazador de entre dos y cincuenta, o dos y veinticinco, o dos y quince aminoácidos entre el dominio A2 y el un dominio de péptido de activación (ap).

15

25

35

En determinadas realizaciones, la variante de fVIII comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, o 100 % de identidad de secuencia con la SEQ ID NO: 3.

En determinadas realizaciones, a variante de fVIII comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, o 100 % de identidad de secuencia con la SEQ ID NO: 13, 14, 15 o 16.

En determinados aspectos, la divulgación se refiere a métodos en los que el uso de codones de un gen se ajusta de acuerdo con el tejido en que se expresará, por ejemplo, tejido hepático. En determinados aspectos, la secuencia del ácido nucleico que codifica una proteína comprende codones que se utilizan o representan de manera diferencial en genes altamente expresados dentro del hígado u otro tejido específico en comparación con el uso de codones de toda la región de codificación del genoma humano y evita los codones que están subrepresentados en el hígado o en otro tejido específico.

En determinadas realizaciones, la secuencia del ácido nucleico que codifica la proteína comprende codones para más del 50, 60, 70, 80, 90 o 95 % o 100 % de los aminoácidos que se prefieren como se proporciona en la Figura 2.

En determinadas realizaciones, la secuencia del ácido nucleico que codifica una proteína que comprende un mayor porcentaje de codones de aminoácidos específicos de células hepáticas en comparación con el uso general de codones humanos es una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, o 100 % de identidad de secuencia con la SEQ ID NO: 1.

En determinadas realizaciones, la variante de fIX comprende una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, o 100 % de identidad de secuencia con la SEQ ID NO: 17, 18 o 19.

- 40 En determinadas realizaciones, la secuencia del ácido nucleico que codifica una proteína que comprende un mayor porcentaje de codones de aminoácidos específicos de células hepáticas en comparación con el uso general de codones humanos es una secuencia que tiene al menos un 50, 60, 70, 80, 85, 90, 95, 96, 97, 98, 99, o 100 % de identidad de secuencia con la SEQ ID NO: 8, 9 o 10.
- 45 En determinadas realizaciones, la secuencia del ácido nucleico que codifica la proteína comprende al menos uno de a) a g) en donde,
 - a) un codón ATC es en más del 50 % o 52 % para lle;
 - b) un codón ATC es en más del 38 % o 40 % para Thr;
 - c) un codón TTC es en más del 57 % o 59 % para Phe;
 - d) un codón GAG es en más del 60 % o 62 % para Glu;
 - e) un codón CTG es en más del 43 % o 45 % para Leu;
 - f) un codón AAG es en más del 60 % o 62 % para Lys; y/o
 - g) un codón GAC es en más del 56 % o 58 % para Asp.

55

50

En determinadas realizaciones, la secuencia del ácido nucleico que codifica la proteína comprende al menos dos o más, o tres o más, o cuatro o más, cinco o más, cinco o más, seis o más, o todos de a), b), c), d), e), f) y g).

En determinadas realizaciones, la secuencia del ácido nucleico que codifica la proteína comprende menos de 100, 50, 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2 o ningún dinucleótido 5'-CG-3'.

La invención proporciona composiciones farmacéuticas que comprenden un vector de la invención y un excipiente farmacéuticamente aceptable.

La invención también proporciona un vector o composición de la invención para su uso en un método para inducir la coagulación de la sangre, comprendiendo dicho método administrar una cantidad eficaz del vector o composición a

un sujeto que lo necesite.

En determinadas realizaciones, el sujeto es diagnosticado con hemofilia A o B o hemofilia adquirida o es poco probable que responda a infusiones exógenas de fVIII.

5

10

En determinadas realizaciones, el vector, la partícula vírica o cápside se administra en combinación con un agente inmunosupresor, *por ejemplo*, ciclosporina, tacrolimus, sirolimus, ciclofosfamida, metotrexato, azatioprina, mercaptopurina, fluorouracilo, ácido micofenólico, dactinomicina, fingolimod, anticuerpo o proteína de unión a receptores de linfocitos T, muromonab-CD3, anticuerpo o proteína de unión al receptor de IL-2, basiliximab, daclizumab, IFN-beta recombinante, anticuerpo o proteína de unión a TNF-alfa, infliximab, etanorcept, adalimumab o combinaciones de los mismos.

En determinados aspectos, la divulgación se refiere a sistemas de expresión que comprenden ácidos nucleicos o vectores que comprenden ácidos nucleicos divulgados en el presente documento.

15

Los siguientes ejemplos se proporcionan para ilustrar determinadas características particulares y/o realizaciones. Estos ejemplos no deben interpretarse como limitantes de la divulgación a las características particulares o realizaciones descritas.

20 Ejemplos

Ejemplo 1

Optimización de los factores de coagulación y su ADN codificante

25

50

Este ejemplo ilustra la optimización de las secuencias codificantes para las proteínas fVIII y fIX para mejorar su utilidad para la expresión *in vivo* y la terapia génica.

La secuencia de nucleótidos del ADNc que codifica para fVIII y fIX se optimizó inicialmente implementando una preferencia de uso de codones específicos para la célula hepática humana en comparación con la secuencia de nucleótidos de origen natural que codifica la secuencia correspondiente sin optimización de condones para un ser humano.

La adaptabilidad de una secuencia de nucleótidos que codifica fVIII al uso de codones de las células hepáticas 35 humanas puede expresarse como índice de adaptación de codones hepáticos (LCAI por sus siglas en inglés). Un índice de adaptación de codones se define como una medida de la adaptabilidad relativa del uso de codones de un gen hacia el uso de codones de genes altamente expresados en el hígado humano. La adaptabilidad relativa de cada codón es la relación entre el uso de cada codón, y el del codón más abundante para el mismo aminoácido. El CAI se define como la media geométrica de estos valores de adaptabilidad relativa. Se excluyen los codones no sinónimos y 40 los codones de terminación (dependientes del código genético). Los valores de CAI varían de 0 a 1, indicando los valores más altos una mayor proporción de los codones más abundantes. Usando las secuencias de 43 genes altamente expresados en el hígado humano, se construyó una tabla personalizada de preferencia de uso de codones específica para el hígado humano (véase la Figura 2A) que difiere sustancialmente de los codones más prevalentes usados en secuencias codificantes humanas totales (Figura. 2B). La secuencia codificante optimizada de las variantes 45 de fVIII ET3 y HSQ se desarrolló con los codones estadísticamente más prevalentes identificados por el análisis de preferencia de uso en el hígado.

ET3 es un fVIII híbrido con el dominio B eliminado (BDD) que contiene dominios humanos y porcinos, es decir, secuencia (A1 y A3 porcino, véase la Figura 1A y 1B) con un enlazador en el dominio B eliminado. ET3 utiliza una secuencia enlazadora OL derivada de una secuencia porcina de 24 aminoácidos, es decir, la secuencia SFAQNSRPPSASAPKPPVLRRHQR (SEQ ID NO: 23) derivada de la porcina. La secuencia de aminoácidos de ET3 es la SEQ ID NO: 123:

MQLELSTCVFLCLLPLGFSAIRRYYLGAVELSWDYRQSELLRELHVDTRFPATAPGALPLGPSVLYKKTVFVEFTDQL FSVARPRPPWMGLLGPTIQAEVYDTVVVTLKNMASHPVSLHAVGVSFWKSSEGAEYEDHTSQREKEDDKVLPGKSQTY VWQVLKENGPTASDPPCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLTRERTQNLHEFVLLFAVFDEGKSWHSARND SWTRAMDPAPARAQPAMHTVNGYVNRSLPGLIGCHKKSVYWHVIGMGTSPEVHSIFLEGHTFLVRHHRQASLEISPLT FLTAQTFLMDLGQFLLFCHISSHHHGGMEAHVRVESCAEEPQLRRKADEEEDYDDNLYDSDMDVVRLDGDDVSPFIQI RSVAKKHPKTWVHYIAAEEEDWDYAPLVLAPDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGIL

$$\begin{align} GPLLYGEVGDTLLIIFKNQASRPYNIYPHGITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSDPR CLTRYYSSFVNMERDLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQRFLPNPAGVQLED PEFQASNIMHSINGYVFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKHKMVYEDTLTLFPFSGETVFMSME NPGLWILGCHNSDFRNRGMTALLKVSSCDKNTGDYYEDSYEDISAYLLSKNNAIEPRSFAQNSRPPSASAPKPPVLRR HQRDISLPTFQPEEDKMDYDDIFSTETKGEDFDIYGEDENQDPRSFQKRTRHYFIAAVEQLWDYGMSESPRALRNRAQ NGEVPRFKKVVFREFADGSFTQPSYRGELNKHLGLLGPYIRAEVEDNIMVTFKNQASRPYSFYSSLISYPDDQEQGAE PRHNFVQPNETRTYFWKVQHHMAPTEDEFDCKAWAYFSDVDLEKDVHSGLIGPLLICRANTLNAAHGRQVTVQEFALF FTIFDETKSWYFTENVERNCRAPCHLQMEDPTLKENYRFHAINGYVMDTLPGLVMAQNQRIRWYLLSMGSNENIHSIH FSGHVFSVRKKEEYKMAVYNLYPGVFETVEMLPSKVGIWRIECLIGEHLQAGMSTTFLVYSKKCQTPLGMASGHIRDF QITASGQYGQWAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYISQFIIMYSLDGKKWQ TYRGNSTGTLMVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLRMELMGCDLNSCSMPLGMESKAISDAQIT ASSYFTNMFATWSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGH QWTLFFQNGKVKVFQGNQDSFTPVVNSLDPPLLTRYLRIHPQSWVHQIALRMEVLGCEAQDLY$$

HSQ es una variante de fVIII humano en donde la proteína fVIII humana BDD se sustituye con un enlazador SQ, SFSQNPPVLKRHQR (SEQ ID NO: 22) derivado humano de 14 aminoácidos. La secuencia de aminoácidos de HSQ es la SEQ ID NO: 3:

MQIELSTCFFLCLLRFCFSATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKTLFVEFTVHLF NIAKPRPPWMGLLGPTIQAEVYDTVVITLKNMASHPVSLHAVGVSYWKASEGAEYDDQTSQREKEDDKVFPGGSHTYV WQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQTLHKFILLFAVFDEGKSWHSETKNS LMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSVYWHVIGMGTTPEVHSIFLEGHTFLVRNHRQASLEISPITF LTAQTLLMDLGQFLLFCHISSHQHDGMEAYVKVDSCPEEPQLRMKNNEEAEDYDDDLTDSEMDVVRFDDDNSPSFIQI RSVAKKHPKTWVHYIAAEEEDWDYAPLVLAPDDRSYKSQYLNNGPQRIGRKYKKVRFMAYTDETFKTREAIQHESGIL GPLLYGEVGDTLLIIFKNQASRPYNIYPHGITDVRPLYSRRLPKGVKHLKDFPILPGEIFKYKWTVTVEDGPTKSDPR CLTRYYSSFVNMERDLASGLIGPLLICYKESVDQRGNQIMSDKRNVILFSVFDENRSWYLTENIQRFLPNPAGVQLED PEFQASNIMHSINGYVFDSLQLSVCLHEVAYWYILSIGAQTDFLSVFFSGYTFKHKMVYEDTLTLFPFSGETVFMSME NPGLWILGCHNSDFRNRGMTALLKVSSCDKNTGDYYEDSYEDISAYLLSKNNAIEPRSFSQNPPVLKRHQREITRTTL QSDQEEIDYDDTISVEMKKEDFDIYDEDENQSPRSFQKKTRHYFIAAVERLWDYGMSSSPHVLRNRAQSGSVPQFKKV VFQEFTDGSFTQPLYRGELNEHLGLLGPYIRAEVEDNIMVTFRNQASRPYSFYSSLISYEEDQRQGAEPRKNFVKPNE TKTYFWKVQHHMAPTKDEFDCKAWAYFSDVDLEKDVHSGLIGPLLVCHTNTLNPAHGRQVTVQEFALFFTIFDETKSW YFTENMERNCRAPCNIQMEDPTFKENYRFHAINGYIMDTLPGLVMAQDQRIRWYLLSMGSNENIHSIHFSGHVFTVRK KEEYKMALYNLYPGVFETVEMLPSKAGIWRVECLIGEHLHAGMSTLFLVYSNKCQTPLGMASGHIRDFQITASGQYGQ WAPKLARLHYSGSINAWSTKEPFSWIKVDLLAPMIIHGIKTQGARQKFSSLYISQFIIMYSLDGKKWQTYRGNSTGTL MVFFGNVDSSGIKHNIFNPPIIARYIRLHPTHYSIRSTLRMELMGCDLNSCSMPLGMESKAISDAQITASSYFTNMFA TWSPSKARLHLQGRSNAWRPQVNNPKEWLQVDFQKTMKVTGVTTQGVKSLLTSMYVKEFLISSSQDGHQWTLFFQNGK VKVFQGNQDSFTPVVNSLDPPLLTRYLRIHPQSWVHQIALRMEVLGCEAQDLY

Tanto HSQ como ET3 contienen la secuencia de reconocimiento RHQR (SEQ ID NO: 24) para la secuencia de procesamiento PACE/furina para el dominio B.

La secuencia de ET3 con codones de hígado optimizados es (SEQ ID NO: 12)

 $\tt ATGCAGCTGGAACTGTCTACCTGTGTTTTCTGTGTCTGCTGCTCTGGGGTTTTCTGCTATCCGCCGCTACTATCTG$ GATCTGGTGAAGGACCTGAATTCCGGACTGATCGGAGCTCTGCTGGTGTAGAGAGGGGAAGCCTGACCAGAGAAAGA TCTCTGCCAGGACTGATCGGCTGCCATAAGAAAAGCGTCTATTGGCACGTGATCGGAATGGGCACCAGCCCCGAGGTG CATTCTATCTTCCTGGAAGGCCACACCTTTCTGGTCAGGCACCATAGACAGGCCTCTCTGGAGATCTCCCCTCTGACC ${\tt TACGACGATAACCTGTATGACAGCGATATGGACGTCGTGCGCCTGGACGGCGATGTCAGCCCTTTCATCCAGATCCGCCTTGCACGATGTCAGCCCTTTCATCCAGATCCGCCTGGACGATGTCAGCCCTTTCATCCAGATCCGCCCTGGACGATGTCAGCCCTTTCATCCAGATCCGCCCTGGACGATGTCAGCCCTTTCATCCAGATCCGCCCTGGACGATGTCAGCCCTTTCATCCAGATCCGCCTTGCACGATGTCAGCCCTTTCATCCAGATCCGCCTGGACGATGTCAGCCCTTTCATCCAGATCCGCCTGGACGATGTCAGCCCTTTCATCCAGATCCGCCTGGACGATGTCAGCCCTTTCATCCAGATCCAGATCCGCCTTGTCAGCCCTTTCATCCAGATCCGCCTTGTCAGCCCTTTCATCCAGATCCGCCTTTCATCCAGATCCGCCTTGTCAGCCCTTTCATCCAGATCCGCCTTGTCAGCCCTTTCATCCAGATCCGCCTTGTCAGCCCTTTCATCCAGATCCGCCTTGTCAGCAGTCGTCAGATCAG$ AAGAAAGTGAGGTTCATGGCCTATACCGACGAGACCTTTAAGACCAGAGAGGCTATCCAGCACGAATCCGGGATCCTG

TATCCCCATGGCATCACCGACGTGAGACCACTGTACAGCAGGAGACTGCCCAAGGGGGTCAAACACCTGAAGGATTTC $\tt CCCATCCTGCCTGGAGAGATCTTTAAGTATAAATGGACCGTCACCGTGGAAGACGGGCCTACCAAGTCCGATCCACGC$ GACGAGAACCGCAGCTGGTACCTGACCGAGAACATCCAGCGGTTCCTGCCAAATCCAGCTGGAGTGCAGCTGGAGGAC ${\tt CACGAGGTGGCCTACTGGTATATCCTGTCCATCGGCGCTCAGACCGACTTCCTGTCCGTGTTCTTTAGCGGGTACACC}$ AGCTGTGATAAGAATACCGGCGATTACTATGAGGACTCTTACGAAGATATCTCCGCTTATCTGCTGAGCAAGAACAAT GCCATCGAGCCCAGGTCTTTCGCTCAGAACTCCAGACCTCCAAGCGCTTCTGCTCCTAAGCCACCTGTGCTGAGAAGA CATCAGAGGGACATCTCCCTGCCTACCTTCCAGCCAGAGGAAGATAAAATGGACTACGACGATATCTTCAGCACCGAG ACCAAGGGGGAAGATTTTGACATCTATGGAGAGGACGAAAACCAGGATCCAAGATCCTTCCAGAAGAGAACCAGACAC ${\tt TACTTTATCGCCGCTGTGGAGCAGCTGTGGGACTATGGGATGTCCGAAAGCCCACGGGCCCTGAGGAACAGAGCTCAGGGACAGAGCTCAGGAGCAGAGCCCACGGGCCCTGAGGAACAGAGCTCAGGAGAGCCCACGGGCCCTGAGGAACAGAGCTCAGGAGAGCCCACGGGCCCTGAGGAACAGAGCTCAGGAGAGCCCACGGGCCCTGAGGAACAGAGCCCAGGAGACAGAGCCCACGGGCCCTGAGGAACAGAGCCCAGGAGCAGAGCCCACGGGCCCTGAGGAACAGAGCCCAGGGCCCAGGGCCCTGAGGAACAGAGCCCAAGGCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGAGCCCCAGGCCCCAGGGCCCAGGGCCCAGGGCCCAGGCCCAGGGCCCCAGGGCCCCAGGGCCCAGGGCCCAGGGCCCAGGGCCCCAGGGCCCAGGGCCCAGGGCCCAGGGCCCAGGGCCCAGGGCCCCAGGGCCCAGGGCCCAGGGCCCAGGGCCCAGGGCCCAGGGCCCAGGGCCCAGGGCCCAGGGCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCAGGGCCCCCAGGGCCCCAGGGCCCCAGGGCCCCCAGGGCCCCAGGGCCCCCAGGGCCCCCAGGGCCCCCAGGGCCCCCAGGCCCCAGGCCCCAGGCCCCA$ AATGGAGAGGTGCCCCGCTTCAAGAAAGTCGTGTTCCGGGAGTTTGCCCGACGGCAGCTTTACCCAGCCATCTTACAGG GGGGAGCTGAACAAGCATCTGGGGCTGCTGGGACCCTATATCAGAGCCGAGGTCGAAGATAACATCATGGTGACCTTC GATGAATTCGACTGCAAAGCTTGGGCCTATTTTTCCGATGTCGACCTGGAGAAGGACGTGCATAGCGGCCTGATCGGG $\tt CCTCTGCTGATCTGTCGCGCCAACACCCTGAATGCTGCTCACGGAAGACAGGTCACCGTGCAGGAGTTCGCTCTGTTC$ $\tt TTCTCTGGCCATGTCTTTTCCGTGAGGAAGAAGAGGGAATACAAAATGGCCGTGTACAATCTGTATCCTGGGGTCTTC$ GAGACCGTGGAAATGCTGCCAAGCAAAGTGGGAATCTGGAGAATCGAGTGCCTGATCGGCGAACACCTGCAGGCCGGG $\tt ATGAGCACCATCCTGGTGTACTCTAAGAAATGTCAGACCCCACTGGGGATGGCCTCCGGACATATCCGCGACTTC$ ACCTACAGAGGCAATTCCACCGGGACCCTGATGGTCTTCTTTGGAAACGTGGATTCCAGCGGCATCAAGCACAACATC TTCAATCCACCCATCATCGCCCGCTACATCCGGCTGCATCCTACCCACTATAGCATCAGGTCTACCCTGAGAATGGAG CTGATGGGATGCGACCTGAACAGCTGTTCTATGCCACTGGGCATGGAGTCCAAGGCTATCAGCGATGCCCAGATCACC GCTTGGAGACCCCAGGTGAACAATCCTAAGGAGTGGCTGCAGGTCGACTTCCAGAAAACCATGAAGGTCACCGGGGTG GAGGTCCTGGGATGCGAAGCTCAGGACCTGTATTGA

Además, los motivos de ADN CpG en la secuencia codificante con codones de hígado optimizados para ET3 y HSQ se eliminaron porque pueden conducir a la metilación y silenciamiento de genes. Véase Bird, DNA methylation and the frequency of CpG in animal DNA, 1980, Nucleic Acids Res, 8: 1499-1504. Los codones se sustituyeron con la alternativa humana/hepática más utilizada (basada en el análisis de preferencia de uso en el hígado analizada

anteriormente) que no dio como resultado la formación de un dinucleótido 5'-CG-3 'en la secuencia. Estas modificaciones eliminaron 174 y 175 CpG de las secuencias de ET3 y HSQ con codones de hígado optimizados, respectivamente. La eliminación de CpG también ayuda al vector a evadir la detección inmunitaria, potenciando la seguridad y la eficacia del vector. Véase J Clin Invest. 2013, 123(7):2994-3001, titulado "CpG-depleted adenoassociated virus vectors evade immune detection".

La secuencia de ET3 con codones de hígado optimizados con CpG eliminados es la SEQ ID NO: 11:

 GATCTGGTGAAGGACCTGAATTCTGGACTGATTGGAGCTCTGCTGGTGTGTAGAGAGGGAAGCCTGACCAGAGAAAGA $\tt CATTCTATCTTCCTGGAAGGCCACACCTTTCTGGTCAGGCACCATAGACAGGCCTCTCTGGAGATCTCCCCTCTGACC$ GGAATGGAGGCTCATGTCAGGGTGGAATCCTGTGCTGAGGAACCACAGCTGAGAAGAAAGGCTGATGAGGAAGAAGACGAC ${\tt AGGTCTGTGGCCAAGAACATCCAAAGACCTGGGTCCACTACATTGCTGCTGAAGAGGAAGATTGGGGACTATGCCCCC}$ ${\tt AAGAAAGTGAGGTTCATGGCCTATACAGATGAGACCTTTAAGACCAGAGAGGCTATCCAGCATGAATCTGGGATCCTGGATCCTGGATCCTGGATCCTGGATCCTGGATCCTGGATCCTGAGATCTGGGATCCTGGATCCTGGATCCTGGATCCTGGATCCTGAGATCTGGGATCCTGAGATCTGAGATCTGGGATCCTGAGATCTGGAATCTGGGATCCTGAGATCTGGAATCTGGGATCCTGAGATCTGAGATCTGGAATCTGGGATCCTGAGATCTGAGATCTGGGATCCTGAGATCTGAGATCTGGGATCCTGAGATCTGAGATCTGGGATCCTGAGATCTGAGATCTGGAATCTGGGATCCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGAATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGATCTGAGAATCTGAGATCAGATCTGAGATCTGAGATCA$ GGACCTCTGCTGTATGGAGAAGTGGGGGATACCCTGCTGATCATCTTCAAGAACCAGGCCTCCAGGCCATACAATATC $\tt CCCATCCTGCCTGGAGAGATCTTTAAGTATAAATGGACAGTCACAGTGGAAGATGGGCCTACCAAGTCTGATCCAAGGCAGAGTCACAAGTCTGATCCAAGGAGAAGATGGACAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTGATCCAAGGAGATCAAGTCTAAGATCAAGTCTGATCAAGTCTGATCAAGTCTAAGATCAAGTCTAAGATCAAGTCTAAGATCAAGTCTAAGATCAAGTCTAAGATCAAGTCTAAGATCAAGTCTAAGATCAAGTCTAAGATCAAGTCTAAGATCAAGTCTAAGATCAAGTCTAAGATCAAGTCTAAGATCAAGTCAAGATC$ TGTTACAAAGAGTCTGTGGACCAGAGGGGCAACCAGATCATGTCTGATAAGAGAAATGTCATCCTGTTCTCTGTGTTT TTTAAGCATAAAATGGTGTATGAGGATACCCTGACCCTGTTCCCCTTTTCTGGGGAGACAGTGTTCATGTCCATGGAA ${\tt AACCCTGGCCTGTGGATCCTGGGTGCCACAACTCTGACTTCAGGAATAGAGGAATGACAGCCCTGCTGAAAGTGTCC}$ GCCATTGAGCCCAGGTCTTTTGCTCAGAACTCCAGACCTCCATCTGCTTCTGCTCCTAAGCCACCTGTGCTGAGAAGA ACCAAGGGGGAAGATTTTGACATCTATGGAGAGGATGAAAACCAGGATCCAAGATCCTTCCAGAAGAACCAGACAC TACTTTATTGCTGCTGTGGAGCAGCTGTGGGACTATGGGATGTCTGAAAGCCCAAGGGCCCTGAGGAACAGAGCTCAG AATGGAGAGGTGCCCAGATTCAAGAAAGTGGTGTTCAGAGAGTTTGCTGATGGCAGCTTTACCCAGCCATCTTACAGG $\tt GGGGAGCTGAACAAGCATCTGGGGCTGCTGGGACCCTATATCAGAGCTGAGGTGAAGATAACATCATGGTGACCTTC$ ${\tt GATGAATTTGACTGCAAAGCTTGGGCCTATTTTTCTGATGTGGACCTGGAGAAGGATGTGCATTCTGGCCTGATTGGG}$ $\verb|CCTCTGCTGATCTGTAGGGCCAACACCCTGAATGCTGCTCATGGAAGACAGGTCACAGTGCAGGAGTTTGCTCTGTTC| \\$ TTTACCATCTTTGATGAAACCAAGAGCTGGTACTTCACAGAGAATGTGGAAAGGAATTGCAGAGCCCCCTGTCATCTG $\tt CTGGTCATGGCTCAGAACCAGAGGATCAGATGGTACCTGCTGTCTATGGGATCCAATGAGAATATCCATAGCATCCAC$ $\tt TTCTCTGGCCATGTCTTTTCTGTGAGGAAGAAGAGGGAATACAAAATGGCTGTGTACAATCTGTATCCTGGGGTCTTT$ GAGACAGTGGAAATGCTGCCAAGCAAAGTGGGAATCTGGAGAATTGAGTGCCTGATTGGGGAACACCTGCAGGCTGGG $\tt ATGAGCACCACCTTCCTGGTGTACTCTAAGAAATGTCAGACCCCACTGGGGATGGCCTCTGGACATATCAGGGACTTC$ ${\tt CAGATCACAGCTTCTGGACAGTATGGACAGTGGGCTCCAAAGCTGGCTAGACTGCACTATTCTGGCTCCATCAATGCC}$ TGGTCTACCAAAGAGCCATTCTCCTGGATCAAGGTGGACCTGCTGGCCCCCATGATCATCCATGGAATCAAAACCCAG GGAGCTAGGCAGAAGTTCAGCTCTCTGTACATCTCCCAGTTTATCATCATGTATAGCCTGGATGGGAAGAAATGGCAG ACCTACAGAGGCAATTCCACTGGGACCCTGATGGTCTTCTTTGGAAATGTGGATTCCTCTGGCATCAAGCACAACATC TTCAATCCACCCATCATTGCCAGGTACATCAGGCTGCATCCTACCCACTATAGCATCAGGTCTACCCTGAGAATGGAG GCTTGGAGACCCCAGGTGAACAATCCTAAGGAGTGGCTGCAGGTGGACTTCCAGAAAACCATGAAGGTCACAGGGGTG ${\tt CAGTGGACCCTGTTCTTTCAGAATGGCAAGGTCAAAGTGTTCCAGGGGGAATCAGGACTCTTTTACCCCAGTGGTGAAC}$ GAGGTCCTGGGATGTGAAGCTCAGGACCTGTATTGA.

La secuencia de HSQ con codones de hígado optimizados con CpG eliminados es la SEQ ID NO: 2:

 $\tt CTGACAGCCCAGACCCTGCTGATGGACCTGGGACAGTTCCTGCTGTTTTGCCACATCTCCAGCCACCAGCATGATGGC$ $\tt ATGGAGGCTTATGTGAAAGTGGACTCCTGTCCTGAGGAACCTCAGCTGAGGATGAAGAACAATGAGGAAGCTGAAGAC$ ${\tt TATGATGATGACCTGACAGATCTGAGATGGTCAGGTTTGATGATGATAACTCTCCCTCTTTATCCAGATC}$ AGGTCTGTGGCCAAGAACACCCTAAGACCTGGGTCCATTACATTGCTGCTGAGGAAGAGGACTGGGATTATGCTCCA $\tt CTGGTGCTGGCCCCTGATGATAGATCCTACAAAAGCCAGTATCTGAACAATGGACCCCAGAGGATTGGCAGAAAGTAC$ GGACCTCTGCTGTATGGGGAAGTGGGGGACACCCTGCTGATCATCTTCAAGAACCAGGCCAGCAGGCCTTACAATATC TATCCACATGGCATCACAGATGTGAGACCTCTGTACTCCAGGAGGCTGCCAAAGGGGGTGAAACACCTGAAGGACTTC TGTTACAAAGAGTCTGTGGATCAGAGGGGCAACCAGATCATGTCTGACAAGAGGAATGTGATCCTGTTCTCTTT GATGAAAACAGGTCTTGGTACCTGACAGAGAACATCCAGAGGTTCCTGCCTAATCCAGCTGGAGTGCAGCTGGAAGAT TTTAAGCATAAAATGGTGTATGAGGACACCCTGACCCTGTTCCCATTTTCTGGAGAAACTGTGTTCATGAGCATGGAG GCCATTGAGCCCAGGAGCTTCTCTCAGAACCCTCCAGTGCTGAAGAGGCACCAGAGGGAGATCACCAGAACCACCCTG GAAGATGAGAACCAGTCTCCCAGGTCCTTCCAGAAGAAAACCAGACATTACTTTATTGCTGCTGTGGAGAGGCTGTGG GACTATGGCATGTCCAGCTCTCCTCATGTGCTGAGAAATAGAGCTCAGTCTGGATCTGTCCCACAGTTCAAGAAAGTG GTCTTCCAGGAGTTTACAGATGGAAGCTTTACCCAGCCACTGTACAGGGGAGAACTGAATGAGCACCTGGGGCTGCTG ${\tt GGACCCTATATCAGGGCTGAAGTGGAGGATAACATCATGGTCACCTTCAGGAATCAGGCCAGCAGACCCTACTCTTTT}$ TTTTCTGATGTGGATCTGGAGAAGGATGTCCACTCTGGCCTGATTGGGCCACTGCTGGTGTGTCATACCAACACCCTG TACTTCACAGAAAACATGGAGAGGAATTGCAGAGCCCCATGTAACATCCAGATGGAAGACCCCACCTTCAAGGAGAAC TACAGATTTCATGCTATCAATGGGTATATCATGGATACCCTGCCAGGACTGGTCATGGCTCAGGACCAGAGGATCAGA ${\tt GGGATCTGGAGGGTGGAATGCCTGATTGGGGAGCACCTGCATGCTGGAATGTCTACCCTGTTCCTGGTGTACTCCAAT}$ AAGTGTCAGACCCCCTGGGGATGGCTTCTGGACATATCAGGGACTTCCAGATCACAGCTTCTGGACAGTATGGACAG AAGGTGGACCTGCTGGCTCCAATGATCATCCATGGCATCAAAACCCAGGGGGCCAGGCAGAAGTTCTCTTCCCTGTAC ATCAGCCAGTTTATCATCATGTATTCTCTGGATGGGAAGAAATGGCAGACCTACAGAGGCAATTCCACAGGGACCCTG AGACTGCACCCAACCCATTATTCCATCAGGAGCACCCTGAGAATGGAGCTGATGGGGTTGATCTGAACAGCTGTTCT $\tt ATGCCCTGGGAATGGAGTCTAAGGCCATCTCTGATGCTCAGATCACAGCCTCCAGCTACTTCACCAATATGTTTGCT$ ACCTGGTCCCCAAGCAAGGCTAGACTGCATCTGCAGGGAAGAAGCAATGCTTGGAGACCACAGGTGAACAATCCCAAG GAGTGGCTGCAGGTGGACTTCCAGAAAACCATGAAGGTGACAGGAGTCACCACCCAGGGAGTGAAAAGCCTGCTGACC $\tt CTGAGAATCCACCCACAGTCCTGGGTGCATCAGATTGCTCTGAGGATGGAAGTCCTGGGCTGTGAGGCCCAGGACCTG$ TATTGA

Este enfoque aumentó el LCAI de 0,62 a 0,86 para fVIII humano (HSQ) con dominio B eliminado. La expresión *in vitro* de las secuencias optimizadas de fVIII se evaluó en células HepG2 transfectadas transitoriamente con los plásmidos de expresión de fVIII correspondientes. La optimización de codones en la secuencia del ácido nucleico que codifica para HSQ aumentó la expresión de HSQ 7,4 veces, y se expresó de manera tan eficaz como ET3 sin codones optimizados (Figura 3A). La optimización de codones en la secuencia del ácido nucleico que codifica para HSQ aumentó la expresión de ET3 5,6 veces. Cuando se probó *in vivo* mediante inyección hidrodinámica de plásmido que portaba las variantes de fVIII con codones optimizados en ratones, la actividad de HSQ aumentó a niveles que podrían detectarse mediante el ensayo que eran casi equivalentes a los niveles de fVIII observados en la ET3 sin codones optimizados (Figura 3B). Adicionalmente, se observó un aumento de 17 veces en la actividad para la ET3 con codones optimizados (Figura 3B).

La eficacia de la traducción a veces también puede mejorarse mediante la optimización del contenido de GC, estructura secundaria de ARNm, sitios de PoliA prematuros, motivo de inestabilidad de ARN, energía libre estable de ARNm, sitios chi internos, motivos de inestabilidad de ARN, sitios de unión a ribosomas, sitios de corte y empalme crípticos, islas CpG negativas, secuencia SD, cajas TATA y señales terminales crípticas, etc. La FIG. 4 ilustra los cambios que se realizaron en un casete AAV que codifica la secuencia de ET3 con codones optimizados y CpG eliminados para

aumentar su producción. Varios elementos de acción en cis dentro de la secuencia de HSQ se modificaron adicionalmente para aumentar la expresión de fVIII, tal como se resume en la siguiente tabla.

Elementos de Acción en CIS	Optimizado	Original
Corte y empalme(GGTAAG)	0	2
Corte y empalme (GGTGAT)	0	1
PoliA(AATAAA) (4789 - AATAAA)	1	1
PoliA(ATTAAA)	0	0
Desestabilizante(ATTTA)	0	6
PoliT(TTTTTT) (4827 - TTTTTT)	1	2
PoliA(AAAAAAA)	0	1

- Además de las secuencias con codones de hígado optimizados proporcionadas anteriormente, la secuencia codificante para las proteínas ET3 y HSQ fVIII se optimizó con codones para la expresión en células mieloides. Usando las secuencias de genes altamente expresados en las células mieloides humanas, se construyó una tabla personalizada de preferencia de uso de codones específica para el hígado humano (véase la Figura 2C) que difiere sustancialmente de los codones más prevalentes usados en secuencias codificantes humanas totales (Figura. 2B). La secuencia codificante optimizada de las variantes de fVIII ET3 y HSQ se desarrolló con los codones estadísticamente más prevalentes identificados por el análisis de preferencia de uso en el hígado. Además, los motivos de ADN CpG en la secuencia codificante con codones mieloides optimizados para ET3 y HSQ se eliminaron porque pueden conducir a la metilación y silenciamiento de genes.
- 15 La secuencia de ET3 con codones mieloides optimizados con CpG eliminados es la SEQ ID NO: 125:

 ${\tt ACCTATGTGTGGCAGGTGCTGAAGGAGAATGGCCCTACAGCTTCAGATCCTCCCTGCCTCACATACTCTTATCTGAGCCTAGAGCTTCAGATCCTCAGATCAGATCCTCAGATCAGATCCTCAGATCAGATCCAGATCCAGATCCAGATCA$ ${\tt GAAAGAACTCAGAACCTGCATGAGTTTGTCCTGCTCTTTTGCTGTTTTGATGAGGGAAAGTCCTGGCACTCAGCAAGG}$ AATAGGTCCCTGCCTGGACTCATTGGCTGCCATAAGAAATCAGTCTATTGGCATGTGATTGGAATGGGCACCAGCCCA ${\tt CAGATCAGGTCAGTGGCTAAGAACACCCTAAGACCTGGGTCCACTACATTGCAGCTGAAGAGGGAAGATTGGGACTAT}$ AAGTACAAGAAAGTGAGGTTCATGGCTTATACTGATGAGACCTTTAAGACAAGAGAGGCCAATCCAGCATGAAAGTGGC AATATCTATCCCCATGGCATCACAGATGTGAGGCCTCTCTACAGCAGGAGACTGCCCAAGGGAGTCAAACACCTCAAG GATTTCCCCATCCTGCCAGGGGAAATCTTCAAGTATAAATGGACAGTCACTGTGGAAGATGGGCCAACTAAGTCAGAT GTGTTTGATGAGAATAGGAGTTGGTATCTGACAGAAAACATCCAGAGGTTCCTGCCTAATCCTGCAGGAGTGCAGCTG GAGGACCCAGAATTTCAGGCTTCAAACATCATGCATAGTATCAATGGCTATGTGTTTGATAGTCTGCAGCTCTCTGTC

TACACATTCAAGCATAAGATGGTCTATGAAGATACCCTGACACTCTTCCCCTTTTCTGGGGAGACTGTGTTTATGAGC ATGGAAAACCCAGGCCTGTGGATTCTGGGGTGCCACAACAGTGACTTCAGGAATAGAGGGATGACTGCTCTGCTCAAA $\tt GTGTCCTCATGTGATAAGAATACTGGAGATTACTATGAGGACTCTTATGAGAGATATCAGTGCATATCTGCTCTCCAAA$ AACAATGCCATTGAGCCCAGGTCATTTGCTCAGAACAGTAGACCACCTTCTGCAAGTGCACCAAAGCCTCCAGTGCTG A GACACTACTTTATTGCAGCTGTGGAGCAGCTGTGGGACTATGGCATGTCTGAATCACCTAGAGCTCTGAGGAACAGAGCACAGAATGGGGAGGTGCCCAGGTTCAAGAAAGTGGTGTTCAGAGAATTTGCAGATGGCTCTTTTACCCAGCCTAGC TACAGGGGGGGGCTCAACAAGCATCTGGGGCTGCTGGGACCCTATATCAGAGCAGAGGTGGAAGATAACATCATGGTG ACATTCAAGAATCAGGCCTCAAGACCCTACAGTTTTTATAGTTCTCTGATCAGCTACCCAGATGATCAGGAGCAGGGG ACAGAGGATGAGTTTGACTGCAAGGCCTGGGCATATTTTTCTGATGTGGACCTGGAGAAGGATGTGCATAGTGGCCTC $\tt CTGTTCTTTACAATCTTTGATGAAACTAAGTCCTGGTACTTCACAGAGAATGTGGAAAGGAATTGCAGAGCCCCCTGC$ $\tt CCAGGCCTGGTGATGGCACAGAACCAGAGGATCAGGTGGTATCTGCTCAGCATGGGGTCCAATGAGAATATCCATTCT$ $\verb|ATCCACTTCTCAGGACATGTCTTTTCAGTGAGGAAGAAGAGGAATATAAAATGGCTGTGTACAATCTGTATCCAGGG$ GTCTTTGAGACAGTGGAAATGCTGCCTAGCAAAGTGGGGATCTGGAGAATTGAGTGCCTCATTGGAGAACACCTGCAG GCAGGGATGTCCACCACATTTCTGGTGTACTCAAAGAAATGCCAGACTCCCCTGGGGATGGCAAGTGGACATATCAGG GACTTCCAGATCACTGCATCAGGACAGTATGGACAGTGGGCACCAAAGCTGGCTAGGCTCCACTATAGTGGCTCTATC $\tt ATGGAGCTGATGGGGTTGACCTCAACAGCTGCTCCATGCCACTGGGAATGGAATCCAAGGCAATCTCAGATGCCCAGGGGGAATGGAATCTCAGATGCCCAGGGGGAATGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCAGGGGAATGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCCAGGGAATGGAATCTCAGATGCCCAGGGGAATCTCAGATGCCCAGGGGAATGGAATCTCAGATGCCCAGGGAATGGAATCTCAGATGCCCAGGGAATGGAATCTCAGATGCCCAGGGAATGGAATCTCAGATGCCCAGGGAATGGAATCTCAGATGCCAGGGAATGGAATCTCAGATGCCCAGGGAATGGAATGGAATCTCAGATGCCAGGGAATGAATG$ ATCACTGCTTCTAGCTACTTCACCAATATGTTTGCAACATGGTCACCCAGTAAAGCAAGGCTGCACCTCCAGGGAAGG ${\tt TCCAATGCTTGGAGACCCCAGGTGAACAATCCAAAGGAGTGGCTGCAGGTGGACTTTCAGAAAACCATGAAGGTCACA}$ AGAATGGAGGTCCTGGGCTGTGAAGCCCAGGACCTGTATTGA

La secuencia de HSQ con codones mieloides optimizados con CpG eliminados es la SEQ ID NO: 126:

ATGCAGATTGAGCTCAGCACCTGCTTCTTTCTGTGCCTGCTCAGGTTCTGCTTTTCAGCCACAAGGAGATACTATCTG GGAGCTGTGGAACTGTCATGGGATTACATGCAGAGTGACCTGGGAGAGCTCCCTGTGGATGCTAGGTTCCCCCCAAGG $\tt GTCCCAAAGTCTTTCCCTTTTAATACCAGTGTGGTCTATAAGAAAACACTCTTTGTGGAATTTACTGATCACCTGTTC$ GCAGAGTATGATGATCAGACAAGCCAGAGAGAAAAAAGAGGATGATAAGGTGTTCCCAGGAGGAGCCATACTTATGTG $\tt CTGATGCAGGACAGGGATGCTGCTTCTGCCAGAGCTTGGCCCAAGATGCACAGTGAATGGATATGTCAATAGGTCCAGTGATGCACAGTGAATGGATATGTCAATAGGTCCAGTGATGCACAGTGAATGGATATGTCAATAGGTCCAGTGATGCACAGTGAATGGATATGTCAATAGGTCCAGTGATGCACAGTGAATGGATATGTCAATAGGTCCAGTGAATGCACAGTGAATGGATATGTCAATAGGTCCAGTGAATGCACAGTGAATGGATATGTCAATAGGTCCAGTGAATGCACAGTGAATGGATATGTCAATAGGTCCAGTGAATGCACAGTGAATGGATATGTCAATAGGTCCAGTGAATGCACAGTGAATGGATATGTCAATAGGTCCAGTGAATGCACAGTGAATGGATATGTCAATAGGTCCAGTGAATGCACAGTGAATGGATATGTCAATAGGTCCAGTGAATGCACAGTGAATGGATAGGATAGGATAGGATAGGATAGGATAGGATAGGATAGGATAGGATAGGATAGGATAGGATAGGATAGGATAGGATAGAGATAGAATGGATAGAATGGATAGAATGGATAGAATGGATAGAATGGATAGAATGGATAGAATAGGATAGAATGAATAGGATAGAATAGGATAGAATAGGATAGA$ A GAAGTGTGGCCAAGAAACACCCAAAGACATGGGTCCATTACATTGCAGCTGAGGAAGAGGACTGGGATTATGCACCTAAGAAAGTGAGGTTCATGGCCTATACTGATGAAACATTTAAGACTAGAGAAGCTATCCAGCATGAGTCAGGCATCCTG GGACCACTGCTCTATGGAGAAGTGGGGGACACCCTGCTCATCATCTTCAAGAACCAGGCTTCCAGGCCATACAATATC $\tt TGCTACAAAGAGAGTGTGGATCAGAGGGGCCAACCAGATCATGTCAGACAAGAGGAATGTGATCCTGTTCAGTGTCTTT$ GATGAAAACAGGTCTTGGTATCTGACAGAGAACATCCAGAGATTCCTGCCAAATCCTGCAGGGGTGCAGCTGGAAGAT CAGTCAGATCAGGAAGAGATTGACTATGATGATACCATCTCAGTGGAAATGAAGAAGAGGACTTTGATATCTATGAT GAAGATGAGAACCAGAGTCCAAGGTCTTTCCAGAAGAAAACCAGACATTACTTTATTGCTGCAGTGGAGAGGCTGTGG GATTATGGAATGTCCTCAAGTCCACATGTGCTGAGGAATAGGGCACAGTCTGGCAGTGTCCCTCAGTTCAAGAAAGTG GTCTTCCAGGAGTTTACAGATGGCAGCTTCACTCAGCCTCTGTACAGGGGAGAACTCAATGAGCACCTGGGGCTGCTG GGACCCTATATCAGAGCTGAAGTGGAGGATAACATCATGGTCACCTTCAGGAATCAGGCTTCAAGACCCTACAGTTTT TATTCTAGCCTGATCAGCTATGAAGAGGACCAGAGGCAGGGAGCTGAACCTAGGAAAAACTTTGTGAAGCCAAATGAG ${\tt ACCAAAACATACTTTTGGAAGGTCCAGCACCACATGGCACCAAACAAGATGAGTTTGATTGCAAGGCATGGGCCTAT}$ TTTTCAGATGTGGATCTGGAGAAGGATGTCCACAGTGGCCTCATTGGGCCTCTGCTGGTGTGCCATACTAACACCCTG AATCCAGCTCATGGCAGGCAGGTGACAGTCCAGGAGTTTGCACTGTTCTTTACCATCTTTGATGAGACAAAGTCCTGG ${\tt TACTTCACTGAAAACATGGAGAGGATTGCAGAGCTCCTTGCAACATCCAGATGGAAGACCCCACCTTCAAGGAGAAC}$ TACAGATTTCATGCAATCAATGGGTATATCATGGATACACTGCCAGGACTGGTGATGGCCCAGGACCAGAGGATCAGA TGGTATCTGCTCAGCATGGGGTCCAATGAGAATATCCACTCTATCCATTTCAGTGGACATGTGTTTACAGTCAGAAAG $\tt ATCTCTCAGTTTATCATCATGTATAGCCTGGATGGCAAGAAATGGCAGACCTACAGGGCCAATAGCACAGGGACTCTG$ ATGCCACTGGGAATGGAGTCCAAGGCAATCTCAGATGCCCAGATCACTGCTAGCTCCTACTTCACTAATATGTTTGCT ACCTGGAGCCCCTCCAAAGCAAGGCTGCACCTCCAGGGAAGGACCAATGCATGGAGGCCTCAGGTGAACAATCCCAAG GAATGGCTGCAGGTGGATTTCCAGAAAACTATGAAGGTGACTGGAGTCACAACTCAGGGAGTGAAAAGTCTGCTCACT ${\tt TCTATGTATGTCAAGGAGTTCCTGATCTCAAGTTCTCAGGATGGCCACCAGTGGACCCTGTTCTTTCAGAATGGAAAG}$ GTGAAAGTCTTCCAGGGCAATCAGGATTCCTTTACACCAGTGGTCAACTCACTGGACCCTCCCCTGCTCACTAGATAT $\tt CTGAGAATCCACCCTCAGAGCTGGGTGCATCAGATTGCTCTCAGAATGGAAGTCCTGGGCTGTGAGGCACAGGACCTG$

La expresión *in vitro* de las secuencias de fVIII no optimizadas, optimizadas para hígado y optimizadas para mieloides se evaluó en células HepG2 transfectadas transitoriamente con los plásmidos de expresión de fVIII correspondientes FIG.5). La optimización específica del tejido conduce a una mayor actividad de FVIII en las células HepG2 (hepáticas) que expresan el fVIII optimizado para el hígado en comparación con las formas no optimizadas u optimizadas para mieloides de ET3 o HSQ. Estos resultados muestran que la optimización para el hígado beneficia específicamente la expresión en células derivadas de hepatocitos y que la expresión de FVIII optimizado para mieloides no beneficia la expresión en células HepG2.

10

Adicionalmente, cuando estos experimentos se repitieron utilizando células no humanas (células de riñón de hámster recién nacido), se descubrió que la optimización de la secuencia específica de seres humanos condujo a una disminución de la expresión en las células no humanas (FIG. 6).

15 Factor IX

Similar a la optimización con codones para el fVIII de coagulación analizada anteriormente, las secuencias de fIX también fueron optimizadas con codón de expresión en hepatocitos usando las mismas tablas de optimización de codones usadas para el factor de coagulación fVIII. Las secuencias de fIX seleccionadas para la optimización incluyen fIX con la mutación protrombogénica "Padua" R338L ("fIX Padua" véase Paolo et al, "X-Linked Thrombophilia with a Mutant Factor IX" N Engl J Med; 361:1671-1675, 2009) y fIX con la variante trombofélica "Malmo" 148T (fIX Malmo, " véase Graham et al, "The Malmo Polymorphism of Coagulation Factor IX, An Immunologic Polymorphism Due to Dimorphism of Residue 148 That Is in Linkage Disequilibrium with Two Other FIX Polymorphisms", Am. J. Hum. Genet. 42:573-580, 1988)

25

Los ADNc de flX optimizados para hígado y mieloide se diseñaron y optimizaron de acuerdo con las tablas de hígado y mieloide mostradas en la FIG. 2. Todas los casos de "cg" en su secuencia se eliminan mediante la sustitución de codones sinónimos. Ambos ADNc incorporan las sustituciones de Padua y Malmo.

30 FIX optimizado con codones de hígado con mutaciones Padua/Malmo y sin CpG (Versión 1) (SEQ ID NO: 124)

GAGTGTACAGTGTTCCTGGACCATGAGAATGCCAATAAGATCCTGAACAGGCCCAAAAGATACAATTCTGGAAAGCTG GAGGAATTTGTGCAGGGCAACCTGGAGAGGGAATGCATGGAGGAAAAGTGTAGCTTTGAGGAAGCTAGGGAGGTGTTT GGAGGGTCTTGCAAAGATGATATCAACTCCTATGAGTGCTGGTGTCCTTTTGGATTTGAAGGCAAAAATTGTGAGCTG GATGTGACCTGTAACATCAAGAATGGCAGGTGTGAGCAGTTCTGTAAAAACTCTGCTGATAATAAGGTGGTCTGCAGC GTCAGCCAGACCTCTAAGCTGACCAGAGCTGAGACTGTGTTCCCAGATGTGGATTATGTCAACTCCACAGAGGCTGAA ACCATCCTGGACAACATCACCCAGTCTACCCAGTCCTTCAATGACTTTACCAGAGTGGTGGGAGGAGGAGGATGCCAAA ACAGAACATACTGAGCAGAAGAGGAATGTGATCAGAATCATCCCTCACCATAACTACAATGCTGCTATCAACAAATAT AATCATGACATTGCCCTGCTGGAACTGGATGAGCCTCTGGTGCTGAACAGCTATGTCACCCCAATCTGCATTGCTGAC AAAGAGTATACCAATATCTTCCTGAAGTTTGGATCTGGATATGTGTCTGGATGGGGAAGGGTCTTCCACAAGGGCAGG TACAACAATATGTTCTGTGCTGGATTTCATGAGGGAGGCAGGGACTCCTGTCAGGGGGGATTCTGGAGGCCCACATGTG ATCTACACCAAAGTGAGCAGGTATGTGAACTGGATCAAAGAGAGACCAAACTGACCTGA

FIX optimizado con codones de hígado sin CpG que codifican modificaciones A582 (SEQ ID NO: 8)

GAGTGTACAGTGTTCCTGGACCATGAAAATGCTAATAAAATCCTGAACAGGCCAAAGAGGTACAATTCTGGGAAACTG ${\tt GAGGAATTTGTGCAGGGAAACCTGGAGGGGAATGCATGGAGGAAAAGTGTAGCTTTGAGGAAGCCAGGGAGGTGTTT}$ GAAAATACAGAGAGCCACAGAGTTCTGGAAACAGTATGTGGATGGGGATCAGTGTGAGTCCAACCCCTGTCTGAAT GGAGGGTCTTGCAAGGATGATATCAACTCCTATGAGTGCTGGTGTCCTTTTGGATTTGAAGGCAAGAATTGTGAGCTG GATGTGACCTGTAACATCAAAAATGGGAGGTGTGAGCAGTTCTGTAAGAACTCTGCTGATAATAAAGTGGTCTGCAGC GTCAGCCAGACCAGCAAGCTGACCAGAGCTGAGGCTGTGTTTCCTGATGTGGATTATGTCAACTCTACAGAGGCTGAA TGGATTGTCACAGCTGCTCACTGTGTGGAAACTGGGGTCAAGATCACAGTGGTGGCTGGAGAGCACAACATTGAGGAA ACTGAACATACAGAGCAGAAAAGGAATGTGATCAGAATCATCCCCCACCATAACTACAATGCTGCTATCAACAAGTAT ATCTATACCAAGGTGTCCAGATATGTCAACTGGATCAAGGAGAAAACCAAGCTGACCTGA

FIX optimizado con codones de hígado sin CpG incluyendo modificaciones de Padua y A582 (SEQ ID NO: 9)

Además, se construyeron otras dos variantes. La primera es una variante optimizada para hígado, Padua, 148T que es muy similar a la secuencia optimizada para hígado anterior, excepto que se sintetizó usando una versión alternativa del algoritmo de optimización de codones.

FIX optimizado con codones de hígado con mutaciones Padua/Malmo y sin CpG (Versión 2) (SEQ ID NO: 10)

GAGTGTACAGTGTTCCTGGACCATGAAAATGCTAATAAAATCCTGAACAGGCCAAAGAGGTACAATTCTGGGAAACTG GAGGAATTTGTGCAGGGAAACCTGGAGAGGGAATGCATGGAGGAAAAGTGTAGCTTTGAGGAAGCCAGGGAGGTGTTT GAAAATACAGAGAGGACCACAGAGTTCTGGAAACAGTATGTGGATGGGGATCAGTGTGAGTCCAACCCCTGTCTGAAT GGAGGGTCTTGCAAGGATGATATCAACTCCTATGAGTGCTGGTGTCCTTTTGGATTTGAAGGCAAGAATTGTGAGCTG GATGTGACCTGTAACATCAAAAATGGGAGGTGTGAGCAGTTCTGTAAGAACTCTGCTGATAATAAAGTGGTCTGCAGC TGTACAGAAGGCTACAGGCTGGCTGAGAACCAGAAGAGCTGTGAACCAGCTGTGCCCTTCCCTTGTGGGAGGGTGTCT GTCAGCCAGACCAGCAAGCTGACCAGAGCTGAGACAGTGTTTCCTGATGTGGATTATGTCAACTCTACAGAGGCTGAA ACCATCCTGGACAACATCACCCAGTCTACCCAGTCCTTCAATGACTTTACCAGGGTGGTGGGAGGAGGATGCTAAG ACTGAACATACAGAGCAGAAAAGGAATGTGATCAGAATCATCCCCCACCATAACTACAATGCTGCTATCAACAAGTAT AATCATGACATTGCCCTGCTGGAACTGGATGAGCCTCTGGTGCTGAACAGCTATGTCACCCCAATCTGCATTGCTGAC ACAGAGGTGGAAGGCACCAGCTTCCTGACTGGCATCATCTCTTGGGGGGGAATGTGCTATGAAGGGGAAATATGGA ATCTATACCAAGGTGTCCAGATATGTCAACTGGATCAAGGAGAAAACCAAGCTGACCTGA

Además, se optimizó una secuencia de fIX con mutaciones Padua/Malmo y sin CpG de acuerdo con la tabla patrón de optimización de codones humanos (véase la FIG. 2B).

10 FIX optimizado con codones humanos con mutaciones Padua/Malmo y sin CpG (SEQ ID NO: 127)

ATGCAGAGGGTGAATATGATTATGGCTGAGTCCCCTGGGCTGATTACCATTTGCCTGCTGGGATACCTGCTGTCTGCT GAGTGTACAGTGTTCCTGGACCATGAGAATGCAAATAAGATCCTGAACAGGCCCAAAAGATATAATAGTGGAAAGCTG GAGGAATTTGTGCAGGGCAACCTGGAGAGAGAATGCATGGAGGAAAAGTGTAGCTTTGAGGAAGCCAGGGAGGTGTTT GGAGGGAGTTGCAAAGATGATATCAACTCATATGAATGCTGGTGTCCTTTTGGATTTTGAAGGCAAAAATTGTGAGCTG GATGTGACCTGTAACATTAAGAATGGGAGGTGTGAGCAGTTTTGTAAAAACTCTGCTGATAATAAGGTGGTCTGCAGT TGTACAGAAGGGTATAGACTGGCTGAGAACCAGAAGTCCTGTGAACCAGCTGTGCCCTTCCCTTGTGGAAGGGTGTCT GTCTCCCAGACTTCAAAACTGACCAGAGCTGAGACTGTGTTTCCTGATGTGGATTATGTCAACAGCACAGAGGGCTGAA ACTATCCTGGACAACATTACTCAGTCTACCCAGAGTTTCAATGACTTTACCAGAGTGGTGGGGAGGAGGATGCTAAA $\tt CCAGGCCAGTTCCCCTGGCAGGTGGTCCTGAATGGGAAGGTGGATGCATTTTGTGGGGGGATCTATTGTGAATGAGAAA$ TGGATTGTCACAGCTGCTCACTGTGTGGAAACTGGGGTCAAGATCACAGTGGTGGCTGGAGAGCACAACATTGAGGAA ACAGAACATACTGAGCAGAAGAGGGAATGTGATCAGAATCATTCCTCACCATAACTACAATGCAGCCATCAACAAATAT AATCATGACATTGCCCTGCTGGAACTGGATGAGCCTCTGGTGCTGAACAGCTATGTCACACCAATCTGCATTGCTGAC AAGGAGTACACTAACATCTTCCTGAAGTTTGGGTCAGGATATGTGTCTGGATGGGGAAGAGTCTTCCACAAGGGCAGG ${\tt TCTGCACTGGTGCTGCAGTATCTGAGAGTGCCTCTGGTGGATAGGGCCACTTGTCTGCTGTCTACCAAGTTCACCATC}$ TACAACAATATGTTCTGTGCTGGATTTCATGAGGGAGGGGAGAGACTCCTGTCAGGGAGATTCTGGAGGCCCACATGTG ATCTACACCAAAGTGAGCAGGTATGTGAACTGGATCAAGGAAAAGACCAAACTGACATGA

La expresión *in vitro* de la secuencia de fIX optimizada para el hígado (SEQ ID NO: 10) y la secuencia de fIX optimizada para humanos (SEQ ID NO: 127) se evaluó en células HepG2 transfectadas de forma transitoria con los correspondientes plásmidos de expresión de fVIII (FIG. 7). La optimización específica del tejido conduce a una mayor actividad de fIX en las células HepG2 (hepáticas) que expresan el fIX optimizado para el hígado en comparación con el fIX optimizado para humanos. Estos resultados muestran que la optimización para hígado beneficia específicamente la expresión en células derivadas de hepatocitos.

Ejemplo 2

20

30

5

Desarrollo de Promotores

25 Este ejemplo describe el desarrollo iterativo de secuencias promotoras optimizadas para la expresión de proteínas en el tejido y las células del hígado.

Los promotores se sintetizaron *de novo* y se clonaron en un plásmido de expresión que conduce la expresión del fVIII de coagulación. La actividad de FVIII se midió 48 horas después de la transfección mediante un ensayo de coágulo de una etapa. Como comparador, se utilizó el promotor híbrido de hígado (HLP). HLP representa uno de los promotores

46

dirigidos al hígado más cortos pero más potentes descritos hasta la fecha. El promotor HLP y su uso se describen en McIntosh et al., "Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human fVIII variant", Blood, 25;121(17):3335-44, 2013. La secuencia de HLP se proporciona como la SEQ ID NO: 128:

5

TGTTTGCTGCTTGCAATGTTTGCCCATTTTAGGGTGGACACAGGACGCTGTGGTTTCTGAGCCAGGGGGGCGACTCAGA
TCCCAGCCAGTGGACTTAGCCCCTGTTTGCTCCTCCGATAACTGGGGTGACCTTGGTTAATATTCACCAGCAGCCTCC
CCCGTTGCCCCTCTGGATCCACTGCTTAAATACGGACGAGGACAGGGCCCTGTCTCCTCAGCTTCAGGCACCACCACT
GACCTGGGACAGTGAATC

Diseño Inicial de Promotores (Promotores de 1ª Generación)

- Para comenzar la construcción de promotores sintéticos dirigidos al hígado, se seleccionaron dos promotores mínimos dirigidos al hígado que fueron plataformas diseñadas para modificaciones adicionales. Estos dos promotores se designan "ABP-SynO" (SEQ ID NO: 131) y "ABP-HPI-God". Estos promotores son fusiones novedosas de elementos de control regulador previamente descritos. ABP "es una región agrupada de sitios de unión a factores de transcripción, "HP1 "es un sitio de unión a factores de transcripción específico, "God" es una región similar a un potenciador que funciona en proximidad directa al sitio de inicio de la transcripción, y "SynO "es un promotor mínimo que contiene el sitio de unión al factor de transcripción HP1 y una caja TATA. Para todas las construcciones, donde no se proporciona dentro del contexto natural, se agregó o se completó una secuencia TATA (TATAAA) inmediatamente 3' de la región promotora.
- 20 El promotor inicial diseñado se basó en el elemento "ABP", que se describe, por ejemplo, en Rouet et al., "A potent enhancer made of clustered liver-specific elements in the transcription control sequences of human alpha 1-microglobulin/bikunin gene", J Biol Chem., 267(29):20765-73, 1992. ABP comprende la secuencia de nucleótidos establecida como elemento ABP (SEQ ID NO: 113):

 ${\tt GTTAATTTTTAAAAAGCAGTCAAAAGTCCAAGTGGCCCTTGCGAGCATTTACTCTCTGTTTGCTCTGGTTAATAATCTCTCAGGAGCACAAACA}$

25

Como se ilustra en la Figura 8, ABP comprende los siguientes sitios de unión al TF: TF HNF-1-1 (nucleótidos 16-23 de la SEQ ID NO: 4), HNF-4 (nucleótidos 26-36 de la SEQ ID NO: 4), HNF-3a (nucleótidos 39-45 de la SEQ ID NO: 4), HNF1-2 (nucleótidos 48-62 de la SEQ ID NO: 4) y HNF-3-2 TF (nucleótidos 65-71 de la SEQ ID NO: 4).

30

35

40

Varios de los promotores divulgados incluyen un sitio de unión al TF HP1 (GTTAATAATTTTC, nucleótidos 75-87 de la SEQ ID NO: 4). El elemento HP1 se describe, por ejemplo, en Schorpp et al., "Hepatocyte-specific promoter element HP1 of the Xenopus albumin gene interacts with transcriptional factors of mammalian hepatocytes", J Mol Biol., 202(2):307-20, 1988. El sitio de unión al TF HP1 está incluido en el elemento SynO (incluido en varios de los promotores divulgados), que también incluye una caja TATA. La secuencia del elemento SynO se proporciona como **elemento SynO** GAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAA (SEQ ID NO: 114)

El elemento SynO se describe, por ejemplo, en Ryffel et al., "Liver cell specific gene transcription *in vitro*: the promoter elements HP1 and TATA box are necessary and sufficient to generate a liver-specific promoter". Nucleic Acids Res., 17(3): 939-953, 1989.

Varios de los promotores divulgados incluyen un "God" que comprende la secuencia establecida como: **elemento God** AGTCATATGTTTGCTCACTGAAGGTTACTAGTTAACAGGCATCCCTTAAACAGGA (SEQ ID NO: 115)

45

El elemento God se describe, por ejemplo, en Godbout et al., "Multiple regulatory elements in the intergenic region between the alpha-fetoprotein and albumin genes", Mol Cell Biol., 6(2):477-87, 1986.

Los elementos ABP, SynO y God se combinaron para formar dos nuevos promotores, "ABP-SynO" y "ABP-HP1-God" como sigue (véase la FIG. 8):

promotor ABP-SynO (SEQ ID NO: 131)

 ${\tt GTTAATTTTTAAAAAGCAGTCAAAAGTCCAAGTGGCCCTTGCGAGCATTTACTCTCTGTTTGCTCTGGTTAATAATCTCAGGAGCACAAACAGAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAA}$

55

promotor ABP-Hp1-God (SEQ ID NO: 6)

 ${\tt GTTAATTTTTAAAAAGCAGTCAAAAGTCCAAGTGGCCCTTGCGAGCATTTACTCTCTGTTTGCTCTGGTTAATAATCTCAGGGAGCACAAACAGAGGTTAATAATTTTCAGTCATATGTTTGCTCACTGAAGGTTACTAGTTAACAGGCATCCCTTAAACAGGATATAAAA$

La expresión *in vitro* de FVIII se ensayó en células HepG2 transfectadas transitoriamente con plásmidos de expresión de FVIII impulsados por el promotor ABP-SynO o ABP-Hp1-God (FIG. 9A). Adicionalmente, la actividad *in vivo* de fVIII en ratones se ensayó mediante plásmido desnudo hidrodinámicamente suministrado que expresaba FVIII impulsado por el promotor ABP-SynO o ABP-Hp1-God (FIG. 9B). A partir de los resultados, se muestra que los promotores tanto ABP-Syno como ABP-Hp1-God impulsan la expresión de fVIII *in vitro* e *in vivo*. Sin embargo, estos diseños iniciales no impulsan la expresión de fVIII de manera tan fuerte como el promotor HLP *in vitro*, y que la expresión *in vivo* disminuye rápidamente en relación con HLP.

Optimización Inicial (Promotores de 2ª Generación)

10

20

30

35

55

Para aumentar la fuerza transcripcional de los promotores ABP-SynO y ABP-Hp1-God, se siguieron múltiples estrategias para la optimización. Esto incluye alterar los sitios de unión a factores de transcripción para reflejar la secuencia de unión consenso, eliminar el espacio intermedio entre los sitios de unión a factores de transcripción, agregar sitios de unión del factor de transcripción adicionales, añadir un motivo del sitio de inicio de la transcripción e incluir el intrón de SV40.

Se generó una variante de ABP que contiene sitios de unión a TF consenso, como sigue: ABP-exact (sitios de unión a factores de transcripción consenso) (SEQ ID NO: 116)

 $\tt GTTAATCATTAACTTAAAAAGCAGTCAAAAGTCCAAAGGTCAAAGGTCAGAGCATTTACTCTCCCAATGTTGACTCTCGTTAATGATTAAGGAGCAATTGTTGACTT$

Como se ilustra en la Figura 8, ABP-exact comprende los siguientes sitios de unión a TF consenso: HNF-1-1 consenso, HNF-4 consenso, HNF-3a consenso, HNF1-2 consenso y HNF-3-2 consenso. Se generó una versión condensada de Apb-exact que incluye los mismos sitios de unión a TF consenso, pero una secuencia general más corta, denominada Short-ABP-exact. cuya secuencia se establece como:

Short-ABP-exact (SEQ ID NO: 117) GTTAATCATTAACTTAGGTCAAAGGTCAGACAATGTTGACTCTCGTTAATGATTAACCGGAATTGTTGACTT

Las siguientes características se incluyeron adicionalmente en algunos de los promotores divulgados: Un sitio de inicio de la transcripción (TSS), que contiene un 23 que contiene un espaciador rico en GC y se colocó inmediatamente después de una caja TATA en el promotor para un espaciado óptimo con el motivo de inicio de la transcripción inmediatamente después del espaciador (véase FIG. 10). La secuencia de TSS ensayada incluye la secuencia establecida como: GCCAGCAGCAGCAGCACATCTCATCCTC (nucleótidos 116-146 de la SEQ ID NO: 4)

Un sitio de unión al factor de transcripción HNF1a. HNF1a es un factor de transcripción dirigido al hígado: GTTAATCATTAA (nucleótidos 1-12 de la SEQ ID NO: 4)

40 Un sitio de unión al factor de transcripción Sp1. Sp1 es un factor de transcripción dirigido al hígado: TGGGCGGAGT (nucleótidos 1-10 de la SEQ ID NO: 121)

Una secuencia de intrón SV40 establecida como:

Estos elementos se combinaron para formar varios promotores nuevos, como sigue (véase la FIG. 11):

50 ABP-exact-SynO (SEQ ID NO: 118)

 ${\tt GTTAATCATTAACATAAAAAGCAGTCAAAAGTCCAAAGGTCAAAGGTCAGAGCATTTACTCTCTCCAATGTTGACTCTCCGTTAATGATTAAGGAGCAATTGTTGACTTGAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAAA}$

ShortABP-exact-SynO (SEQ ID NO: 119)

 ${\tt GTTAATCATTAACCTTAGGTCAAAGGTCAGACAATGTTGACTCTCGTTAATGATTAACCGGAATTGTTGACTTGAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAA}$

ABP-HP1-God-TSS (SEQ ID NO: 7)

GTTAATTTTTAAAAAGCAGTCAAAAGTCCAAGTGGCCCTTGCGAGCATTTACTCTCTGTTTGCTCTGGTTAATAAT CTCAGGAGCACAAACAGAGGTTAATAATTTTCAGTCATATGTTTGCTCACTGAAGGTTACTAGTTAACAGGCATCCCT TAAACAGGATATAAAAGGCCAGCAGCAGCCTGACCACATCTCATCCTC

HNF1a-ABP-SynO (SEQ ID NO: 120)

 ${\tt GTTAATCATTAAGTCGTTAATTTTTAAAAAGCAGTCAAAAGTCCAAGTGGCCCTTGCGAGCATTTACTCTCTGTTT}\\ {\tt GCTCTGGTTAATAATCTCAGGAGCACAAACAGAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAA}\\$

Sp1-ABP-SynO (SEQ ID NO: 121)

10

5

HNF1-ShortABPExact-SynO-TSS-Int (SEQ ID NO: 112)

 $\label{thm:condition} \textbf{GTTAATCATTAAGTCGTTAATCATTAAGTCAAAAGGTCAGACAATGTTGACTCTCGTTAATGATTAACCGGAAT TGTTGACTTGAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAAGGCCAGCAGCAGCCTGACCACATCTC ATCCTCCTCTAAGGTAAATATAAAAATTTTTAAGTGTATAATGTGTTAAACTACTGATTCTAATTGTTTTGTGTATTTTA GATTCCAACCTATGGAACTGA$

15

Los promotores se sintetizaron *de novo* y se clonaron en un plásmido de expresión que conduce la expresión del fVIII de coagulación. La actividad de FVIII se midió 48 horas después de la transfección mediante un ensayo de coágulo de una etapa. Como comparador, el promotor de hígado híbrido (HLP) se utiliza en este y otros experimentos.

20

30

35

La expresión in vitro de FVIII se ensayó en células HepG2 transfectadas transitoriamente con plásmidos de expresión de FVIII impulsados por el respectivo promotor (FIG. 12A). Adicionalmente, la actividad in vivo de fVIII en ratones se ensayó mediante plásmido desnudo hidrodinámicamente suministrado que expresaba FVIII impulsado por el respectivo promotor (FIG. 12B). A partir de estos datos, se muestra que la adición del motivo de sitio de inicio de la transcripción sintético, nuevo mejora sustancialmente la expresión. Adicionalmente, la adición de sitios de unión a factores de transcripción fuera de su contexto genómico natural tuvo impactos inesperados e impredecibles en la expresión. Cuando se añaden directamente proximal al elemento potenciador ABP, los sitios de unión al factor de transcripción HNF1 y Sp1 anulan completamente la expresión. Cuando se añadió el sitio de unión al factor de transcripción HNF1 directamente proximal al potenciador shortABPExact, la expresión fue fuerte. Este hallazgo ilustra que las complejas interacciones espacio temporales de los factores de transcripción, ya sea en su contexto genómico natural o no natural, es difícil de modelar o predecir. Además, la alteración de los sitios de unión a factores de transcripción en las secuencias de unión consenso anuló la expresión génica. Sin embargo, la adición del sitio de unión al factor de transcripción HNF1, el sitio de inicio de la transcripción y el intrón SV40 fue suficiente para rescatar la expresión del diseño del promotor shortABPExact-SynO complementado con HNF1. Como se ilustra en la FIG. 12B. ABP-Hp1-God-TSS y HNF1-shortABPExact-SynO-TSS-Int, mantuvieron ambos una expresión más alta que el promotor HLP durante el transcurso del experimento, lo que demuestra que la adición del sitio de inicio de la transcripción, el sitio de unión al factor de transcripción HNF1, el ajuste de la secuencia ABP a la secuencia consenso y la eliminación del ADN intermedio entre los sitios de unión al factor de transcripción, y/o la adición del intrón SV40 podría mejorar la durabilidad y la fuerza de expresión in vivo.

40

45

55

Optimización Adicional (Promotores de 3ª Generación)

Si bien el diseño del promotor ABP-Hpl-God-TSS probado excedió con creces la fuerza del promotor HLP, su tamaño (204 pares de bases) permaneció incompatible con algunos empaquetamientos completos de vectores AAV, tal como los que contienen transgenes de fVIII de longitud completa. La reducción adicional en el tamaño del promotor se dirigió por la selección de los elementos más prometedores probados y descritos anteriormente, así como un elemento nuevo, shortABP, que es el potenciador ABP donde se conservan las secuencias de los sitios de unión a factores de transcripción genómico natural, pero se han truncado las secuencias intermedias entre ellos.

50 **shortABP** (nucleótidos 16-71 de la SEQ ID NO: 4): GTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGT-TAATAATCTCAGGACAAACA

Como se ilustra en la Figura 13, shortABP contiene los siguientes sitios de unión a TF: TF HNF-1-1 (nucleótidos 16-23 de la SEQ ID NO: 4), HNF-4 (nucleótidos 26-36 de la SEQ ID NO: 4), HNF-3a (nucleótidos 39-45 de la SEQ ID NO: 4), HNF1-2 (nucleótidos 48-62 de la SEQ ID NO: 4) y HNF-3-2 TF (nucleótidos 65-71 de la SEQ ID NO: 4).

Como se ilustra en la Figura 13, el sitio de unión al TF HNF1, el elemento SynO (que contiene un sitio de unión al TF HP1 y una caja TATA), y un sitio de inicio de la transcripción se unieron a shortABP para formar el HNF1-shortABP-SynO-TSS (designado el Paquete Combinatorio Hepático, o HCB), como sigue:

5 HNF1-shortABP-SynO-TSS (también denominado Paquete Combinatorio Hepático, o HCB) (SEQ ID NO: 4)

Como se ilustra en la Figura 13, se unieron el sitio de unión al TF HNF1, el elemento God, una caja TATA y un sitio de inicio de la transcripción a shortABP para formar shortABP-HP1-God-TSS, como sigue: shortABP-HP1-God-TSS (SEQ ID NO: 5)

Los promotores se sintetizaron de novo y se clonaron en un plásmido de expresión que conduce la expresión del fVIII de coagulación. La actividad de FVIII se midió 48 horas después de la transfección mediante un ensayo de coágulo de una etapa. La expresión in vitro de FVIII se ensayó en células HepG2 transfectadas transitoriamente con plásmidos de expresión de FVIII impulsados por el respectivo promotor mostrado en la FIG. 14A. Adicionalmente, la actividad in vivo de fVIII en ratones se ensayó mediante plásmido desnudo hidrodinámicamente suministrado que expresaba FVIII impulsado por el respectivo promotor (FIG. 14). A partir de estos datos, se muestra que el promotor HNF1-shortABP-SynO-TSS (HCB) promueve una mayor expresión de fVIII en comparación con la de HLP tanto in vivo como in vitro, mientras mantiene una expresión duradera 4-14 veces mayor que la de HLP in vivo, a pesar de que el HNF1-shortABP-SynO-TSS es un 42 % más pequeño que HLP.

25 Optimización Complementaria (Promotores de 4ª Generación)

30

40

Recientemente se construyó un potente potenciador dirigido al hígado, designado el módulo regulador específico de hepatocitos informático (HSCRM8 o "HS") combinando las secuencias de varias especies en un nuevo potenciador construido por ordenador (véase, por ejemplo, Nair et al., "Computationally designed liver-specific transcriptional modules and hyperactive flX improve hepatic gene therapy", Blood, 23(20): 3195-3199, 2014). La secuencia del potenciador HS y los sitios de unión a los factores de transcripción correspondientes se proporcionan como sigue:

HS (secuencia potenciadora no humana HSCRM8) (SEQ ID NO: 101) GGGGAGGCTGCTGGTGAATATTAACCAAGGTCACCCCAGTTATCGGAGGAGCAAACAGGGACTAAGTCCAC

35 El elemento de respuesta HS incluye los siguientes sitios de unión a TF:

MYOD GGCTGCTGGTGAATATT, nucleótidos 5-22 de la SEQ ID NO: 101
CEBP GCTGCTGGTGAA, nucleótidos 7-18 de la SEQ ID NO: 101
Nhf1 GCTGGTGAATATTAACCA, nucleótidos 10-27 de la SEQ ID NO: 101
Lef1/TCF1 TTAACCAAGGT, nucleótidos 21-31 de la SEQ ID NO: 101
CEBP CGGAGGAGCAAA, nucleótidos 44-55 de la SEQ ID NO: 101
Forkhead GGAGCAAACAGGG, nucleótidos 48-60 de la SEQ ID NO: 101
Lef1/TCF1 AGGGACTAAG, nucleótidos 57-66 de la SEQ ID NO: 101

El genoma humano se examinó para determinar las secuencias humanas correspondientes a las del elemento HS y se modificó el elemento HS para contener solo secuencias humanas para generar una secuencia potenciadora completamente humana denominada "HSh". La secuencia del potenciador HSh y los sitios de unión a factores de transcripción correspondientes se proporcionan como sigue (véase también la FIG. 15):

HSh (secuencia genómica humana) (SEQ ID NO: 111) GGGGAGGCTGCTGGTGAATATTAACCAAGGTCACCCCAGT- TATCGGAGGAGCAAACAGGGGCTAAGTCCAC

45 El elemento de respuesta HSh incluye los siguientes sitios de unión a TF:

MYOD GGCTGCTGGTGAATATT, nucleótidos 5-22 de la SEQ ID NO: 101
CEBP GCTGCTGGTGAA, nucleótidos 7-18 de la SEQ ID NO: 101
Nhf1 GCTGGT GAATATTAACCA, nucleótidos 10-27 de la SEQ ID NO: 101

(continuación)

Lef1/TCF1 TTAACCAAGGT, nucleótidos 21-31 de la SEQ ID NO: 101 **CFBP** CGGAGGAGCAAA, nucleótidos 44-55 de la SEQ ID NO: 101 Forkhead GGAGCAAACAGGG, nucleótidos 48-60 de la SEQ ID NO: 101 Lef1/TCF1 AGGGGCTAAG, nucleótidos 57-66 de la SEQ ID NO: 111

También se utilizaron partes del potenciador HSh. como sique:

5'HSh (porción 5' de HSCRM8h) (nucleótidos 6-32 de la SEQ ID NO: 111) GGCTGCTGGTGAATATTAACCAAGGTC

5 El elemento de respuesta 5'HSh incluye los siguientes sitios de unión a TF:

> **MYOD** GGCTGCTGGTGAATATT, nucleótidos 5-22 de la SEQ ID NO: 101 CEBP GCTGCTGGTGAA, nucleótidos 7-18 de la SEQ ID NO: 101 GCTGGTGAATATTAACCA, nucleótidos 10-27 de la SEQ ID NO: 101 Nhf1

Lef1/TCF1 TTAACCAAGGT, nucleótidos 21-31 de la SEQ ID NO: 101

3'HSh (porción 3' de HSCRM8h) (nucleótidos 44-68 de la SEQ ID NO: 111) CGGAGGAGCAAACAG- GGGCTAAGTC

10 El elemento de respuesta 3'HSh incluye los siguientes sitios de unión a TF:

> **CEBP** CGGAGGAGCAAA, nucleótidos 44-55 de la SEQ ID NO: 101 Forkhead GGAGCAAACAGGG, nucleótidos 48-60 de la SEQ ID NO: 101 AGGGGCTAAG nucleótidos 57-66 de la SEQ ID NO:

Lef1/TCF1

sHS (short HS, se ha eliminado el espacio intermedio entre los grupos 5' y 3' de los sitios de unión a factores de transcripción) (nucleótidos 1-54 de la SEQ ID NO: 106) GGCTGCTGGTGAATATTAACCAAGGTCATCGGAGGAG-CAAACAGGGACTAAGTC

El elemento de respuesta sHS incluye los siguientes sitios de unión a TF:

GGCTGCTGGTGAATATT, nucleótidos 5-22 de la SEQ ID NO: 101 **MYOD** CEBP GCTGCTGGTGAA, nucleótidos 7-18 de la SEQ ID NO: 101

GCTGGT GAATATTAACCA, nucleótidos 10-27 de la SEQ ID NO: 101 Nhf1

TTAACCAAGGT, nucleótidos 21-31 de la SEQ ID NO: 101 Lef1/TCF1 CGGAGGAGCAAA, nucleótidos 44-55 de la SEQ ID NO: 101 **CEBP** GGAGCAAACAGGG, nucleótidos 48-60 de la SEQ ID NO: 101 Forkhead

AGGGACTAAG, nucleótidos 57-66 de la SEQ ID NO: 111 Lef1/TCF1

Adicionalmente, se construyó una forma modificada del promotor shortABP, denominada "supershortABP", eliminando 20 adicionalmente los nucleótidos y reorganizando los sitios de unión a TF. La secuencia del elemento de respuesta supershortABP y los sitios de unión a factores de transcripción correspondientes se proporcionan como sigue: Super short ABP (elemento más corto basado en ABP) (SEQ ID NO: 122) CCCTTGCTGGTTAATAATCTCAGT-TAATTTGTTTGCACAAACA

El elemento de respuesta supershortABP incluye los siguientes sitios de unión a TF:

HNF4 CCCTTGC. nucleótidos 1-7 de la SEQ ID NO: 122

TGGTTAATAATCTCA, nucleótidos 8-22 de la SEQ ID NO: HNF1b

122

HNF1 GTTAATT, nucleótidos 23-29 de la SEQ ID NO: 122 HNF3 TGTTTGC, nucleótidos 30-36 de la SEQ ID NO: 122 HNF3b ACAAACA, nucleótidos 37-43 de la SEQ ID NO: 122

Como se ilustra en la Figura 16, los elementos anteriores se combinaron para formar varios promotores nuevos, como sigue (véase la FIG. 11):

Agro (SEQ ID NO: 107)

15

25

30

 $\tt CAAACAGGGGAGGTTAATAATTTTCTATAAAAGGCCAGCAGCAGCCTGACCACATCTCATCCTC$

La secuencia Agro incluye 5'HS (nucleótidos 1-27 de la SEQ ID NO: 107), Super short ABP (nucleótidos 28-70 de la 35 SEQ ID NO: 107), 3'HSh (nucleótidos 71-87 de la SEQ ID NO: 107), SynO (nucleótidos 88-110 de la SEQ ID NO: 107), y TSS (nucleótidos 111-142 de la SEQ ID NO: 107)

HSh-HCB (SEQ ID NO: 102)

5'HSh-HCB (SEQ ID NO: 104)

 ${\tt GGCTGCTGGTGAATATTAACCAAGGTCGTTAATCATTAAGTCGTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACAGAGGTTAATAATTTTCCAGATCTCTGAGCAATAGTATAAAAGGCCAGCAGCAGCCTGACCACATCTCATCCTC$

10

3'HSh-HCB (SEQ ID NO: 103)

 $\tt CGGAGGAGCAAACAGGGGCTAAGTCGTTAATCATTAAGTCGTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACAGAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAAGGCCAGCAGCAGCCTGACCACATCTCATCCTC$

15 **HSh-SynO-TSS (SEQ ID NO: 105)**

GGGGAGGCTGCTGGTGAATATTAACCAAGGTCACCCCAGTTATCGGAGGAGCAAACAGGGGCTAAGTCCACGAGGTTA
ATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAAGGCCAGCAGCCTGACCACATCTCATCCTC

HS-SynO-TSS (SEQ ID NO: 108)

20

 ${\tt GGGGAGGCTGCTGGTGAATATTAACCAAGGTCACCCCAGTTATCGGAGGAGCAAACAGGGACTAAGTCCACGAGGTTAAATTTTCCAGATCTCTCTGAGCAATAGTATAAAAGGCCAGCAGCAGCCTGACCACATCTCATCCTC}$

sHS-SynO-TSS (SEQ ID NO: 106)

 ${\tt GGCTGCTGGTGAATATTAACCAAGGTCATCGGAGGAGCAAACAGGGACTAAGTCGAGGTTAATAATTTTCCAGATCTC}\\ {\tt TCTGAGCAATAGTATAAAAGGCCAGCAGCAGCCTGACCACATCTCATCCTC}\\$

25

30

35

50

Los promotores se sintetizaron *de novo* y se clonaron en un plásmido de expresión que conduce la expresión del fVIII de coagulación. La actividad de FVIII se midió 48 horas después de la transfección mediante un ensayo de coágulo de una etapa. La expresión *in vitro* de FVIII se ensayó en células HepG2 transfectadas transitoriamente con plásmidos de expresión de FVIII impulsados por el respectivo promotor mostrado en la FIG. 17. Estos resultados demuestran que la fuerza *in vivo* del promotor HCB puede aumentarse mediante la adición de unas secuencias potenciadoras complementarias. El mayor beneficio se observó cuando se añadió el potenciador HSh humano completo al extremo 5' del promotor HCB. Complementar solo las porciones de 5 'o 3' del HSh atenuó la expresión mejorada ligeramente en comparación con el módulo HSh completo. Adicionalmente, cuando se eliminó el potenciador shortABP del diseño de HCB y se reemplazó con potenciadores bien HSh o HS, la expresión de fVIII disminuyó ligeramente de los niveles observados en el promotor HSh-HCB, que contiene el potenciador shortABP. Sin embargo, cuando el plásmido sHS-SynO se administró hidrodinámicamente a ratones, no se observó expresión, lo que demuestra que el módulo potenciador shortABP puede ser un potenciador más adecuado para una expresión *in vivo* duradera.

40 Ejemplo 3

Vector AVV Recombinante para la Expresión de fVIII

Este ejemplo ilustra vectores AAV recombinantes ejemplares que codifican una variante de fVIII que comprende un genoma dimensionado para una expresión óptima de proteínas basada en vectores AAV (es decir, un genoma de 5 kb o menos pb).

La FIG. 4 representa vectores basados en AAV para la expresión de variantes de fVIII que carecen del dominio B. Sin embargo, las construcciones mostradas en la FIG. 4 están por encima del límite de 5,0 kb para la expresión óptima de proteínas de un vector AAV. La eliminación del ADN genómico vírico no esencial y los restos de clonación, y la sustitución con secuencias promotoras más cortas (como el promotor HCB (SEQ ID NO: 4, 146 pb), permitieron el

desarrollo de un genoma de fVIII-AAV de alta expresión de aproximadamente 4,9 kb de longitud.

En la FIG. 18 se representa un vector AAV ejemplar con dicho genoma. Esta figura ilustra un vector AAV que incluye ITR 5' y 3', el promotor HCB (SEQ ID NO: 4), una molécula de ácido nucleico que codifica una proteína fVIII variante que carece del dominio B (tal como cualquiera de las secuencias ET3 o HSQ con CpG eliminados y codones de hígado optimizados proporcionadas en el presente documento) y una secuencia de poli A sintética.

Una secuencia ejemplar de un casete AAV como se muestra en la FIG. 18 se proporciona como la SEQ ID NO: 129, que tiene la siguiente estructura:

10 (5'AAV2 ITR) - RE - (promotor HCB) - Kozak - (región codificante HSQ) - RE - (señal de poliadenilación) - RE - (3'ITR de AAV2)

Los elementos del casete AAV de la SEQ ID NO: 129 son los siguientes:

Elemento	Inicio (pb)	Final (pb)
5' ITR de AAV2	1	141
Agel (sitio de restricción)	142	147
promotor HCB	148	293
Sitio Xhol destruido	294	299
Secuencia consenso Kozak	300	304
HSQ optimizada para hígado con CpG	305	4678
Notl (sitio de restricción)	4679	4686
Señal de poliA de beta globina de conejo	4687	4735
MunI (sitio de restricción)	4736	4741
3' ITR de AAV2	4742	4882

15

Los sitios de restricción pueden eliminarse opcionalmente del casete para proporcionar un genoma de AAV recombinante acortado. Adicionalmente, el transgén se puede sustituir según sea necesario. La eliminación de los elementos de los sitios de restricción generaría un vector de 4885 pares de bases (ET3) o 4855 (HSQ).

20 SEQ ID NO: 129:

TGACGATCAGACCAGCCAGCGGGAAAAAGAGGACGATAAGGTGTTCCCTGGCGGGTCCCATACCTACGTGTGGCAGGT CCTGAAGGAGAATGGACCAATGGCTTCCGACCCTCTGTGCCTGACCTACTCTTATCTGTCCCACGTGGACCTGGTCAA GGATCTGAACAGCGGCCTGATCGGGGCTCTGCTGGTGTGTCGCGAAGGGTCCCTGGCCAAGGAGAAAACCCAGACCCT GCATAAGTTCATCCTGCTGTTCGCCGTGTTTGACGAAGGAAAAAGCTGGCACTCTGAGACCAAGAACTCTCTGATGCA ${\tt ACTGATCGGCTGCCACAGAAAGTCCGTGTATTGGCATGTCATCGGAATGGGCACCACCCCTGAAGTGCACAGCATCTT}$ CCTGGAGGGGCATACCTTTCTGGTCCGCAACCACCGGCAGGCTAGCCTGGAGATCTCTCCAATCACCTTCCTGACCGC $\tt CCAGACCCTGCTGATGGACCTGGGACAGTTCCTGCTGTTTTGCCACATCTCCAGCCACCAGCATGATGGCATGGAGGC$ $\tt TGACCTGACCGACAGCGAGATGGATGTGGTCCGCTTCGATGACGATAACTCTCCCTCTTTATCCAGATCCGGTCCGT$ GGCCAAGAACACCCTAAGACCTGGGTCCATTACATCGCCGCTGAGGAAGAGGACTGGGATTATGCTCCACTGGTGCT GGCCCCGACGATAGATCCTACAAAAGCCAGTATCTGAACAATGGACCCCAGAGGATCGGCAGAAAGTACAAGAAAGT GAGGTTCATGGCTTATACCGATGAGACCTTTAAGACCAGAGAAGCCATCCAGCACGAGTCCGGGATCCTGGGACCTCT TGGCATCACCGATGTGAGACCTCTGTACTCCCGCCGGCTGCCAAAGGGCGTGAAACACCTGAAGGACTTCCCAATCCT GCCCGGGGAAATCTTTAAGTATAAATGGACCGTCACCGTCGAGGATGGGCCCACCAAGAGCCGACCCTAGGTGCCTGAC CAGATACTATTCTTCCTTCGTGAATATGGAGAGAGACCTGGCTTCCGGACTGATCGGACCCCTGCTGATCTGTTACAA AGAGAGCGTGGATCAGCGCGGCAACCAGATCATGTCTGACAAGCGGAATGTGATCCTGTTCAGCGTCTTTGACGAAAA $\tt CCGCTCTTGGTACCTGACCGAGAACATCCAGCGGTTCCTGCCTAATCCAGCTGGAGTGCAGCTGGAAGATCCCGAGTT$ $\tt CGCTTACTGGTATATCCTGAGCATCGGAGCCCAGACCGATTTCCTGTCTTTTTTCCGGCTACACCTTTAAGCA$ TAAAATGGTGTATGAGGACACCCTGACCCTGTTCCCATTTTCCGGCGAAACCGTGTTCATGAGCATGGAGAATCCCGG GCTGTGGATCCTGGGATGCCACAACTCCGATTTCAGGAATAGAGGGATGACCGCCCTGCTGAAAGTGAGCTCTTGTGA CAAGAACACCGGAGACTACTATGAAGATAGCTACGAGGACATCTCTGCTTATCTGCTGTCCAAAAACAATGCCATCGA GCCCAGGAGCTTCTCTCAGAACCCTCCAGTGCTGAAGCGCCACCAGCGGGAGATCACCAGAACCACCCTGCAGAGCGA TCAGGAAGAGATCGACTACGACGATACCATCTCCGTGGAAATGAAGAAGAGGACTTCGATATCTATGACGAAGATGA GAACCAGTCTCCCAGGTCCTTCCAGAAGAAAACCAGACATTACTTTATCGCCGCTGTGGAGCGGCTGTGGGACTATGG GGAGTTTACCGACGGAAGCTTTACCCAGCCACTGTACCGCGGCGAACTGAACGAGCACCTGGGGCTGCTGGGACCCTA TATCCGGGCTGAAGTGGAGGATAACATCATGGTCACCTTCAGGAATCAGGCCAGCAGACCCTACTCTTTTTATTCCAG CCTGATCTCCTACGAAGAGGCCCAGAGACAGGGAGCTGAACCAAGAAAAACTTCGTGAAGCCTAATGAGACCAAAAC CTACTTTTGGAAGGTGCAGCACCATATGGCCCCTACCAAAGACGAGTTCGATTGCAAGGCCTGGGCTTATTTTAGCGA CGTGGATCTGGAGAAGGACGTCCACTCCGGCCTGATCGGGCCACTGCTGGTGTGTCATACCAACACCCTGAATCCAGC ${\tt TCACGGAAGGCAGGTGACCGTCCAGGAATTCGCCCTGTTCTTTACCATCTTTGATGAGACCAAGAGCTGGTACTTCAC}$ ${\tt TCATGCTATCAATGGGTATATCATGGATACCCTGCCAGGACTGGTCATGGCTCAGGACCAGAGGATCAGATGGTACCT}$ GTACAAGATGGCCCTGTACAACCTGTATCCCGGCGTGTTCGAAACCGTCGAGATGCTGCCTTCCAAGGCTGGGATCTG GCGGGTGGAATGCCTGATCGGGGAGCACCTGCATGCCGGAATGTCTACCCTGTTCCTGGTGTACTCCAATAAGTGTCA GACCCCCTGGGGATGGCTAGCGGACATATCCGCGACTTCCAGATCACCGCTTCCGGACAGTACGGACAGTGGGCTCC TAAGCTGGCTAGACTGCACTATTCTGGCTCCATCAACGCTTGGTCTACCAAAGAGCCTTTCTCCTGGATCAAGGTGGA $\tt CCTGCTGGCTCCAATGATCATCCATGGCATCAAAACCCAGGGGGCCAGGCAGAAGTTCTCTTCCCTGTACATCAGCCA$ GTTTATCATCATGTATTCTCTGGATGGGAAGAAATGGCAGACCTACAGAGGCAATTCCACCGGGACCCTGATGGTGTT CTTTGGCAACGTCGACAGCTCTGGGATCAAGCACATCTTCAATCCCCCTATCATCGCCCGCTACATCCGGCTGCA $\tt CCCAACCCATTATTCCATCCGCAGCACCCTGCGGATGGAGCTGATGGGGGTGCGATCTGAACAGCTGTTCTATGCCCCT$ GGGAATGGAGTCTAAGGCCATCTCCGACGCTCAGATCACCGCCTCCAGCTACTTCACCAATATGTTTGCTACCTGGTC CCCAAGCAAGGCTAGACTGCATCTGCAGGGAAGAAGCAACGCTTGGAGACCACAGGTGAACAATCCCAAGGAGTGGCT GCAGGTCGACTTCCAGAAAACCATGAAGGTGACCGGAGTCACCACCCAGGGCGTGAAAAGCCTGCTGACCTCTATGTA GAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTT

Otro vector AAV ejemplar que incluye un transgén de fVIII impulsado por el promotor HCB se proporciona como la SEQ ID NO: 130, que proporciona un diseño prototípico de un casete de AAV que codifica un transgén terapéutico bajo el control del promotor HCB. Cada elemento está separado por uno o dos sitios de enzimas de restricción (RE, por sus siglas en inglés), que permiten una sustitución fácil de estos elementos. En la SEQ ID NO: 130, el orden de los elementos es como sigue:

10 AAV2-HCB-ET3-LCO-NCG-SpA

^{(5&#}x27;ITR de AAV2) - *RE* - (promotor HCB) - *RE* - (intrón de MVM) - *RE* - Kozak - (región codificante de ET3) - *RE* - (señal de poliadenilación) - *RE* - (3'ITR de AAV2)

Elemento	Inicio (pb)	Final (pb)
5' ITR de AAV2	1	141
Agel (sitio de restricción)	142	147
promotor HCB	148	293
Sall + Pacl (sitios de restricción)	294	307
intrón de MVM	308	399
Xhol (sitio de restricción)	400	405
Secuencia consenso Kozak	406	410
ET3 optimizada para hígado sin CpG	411	4814
Notl (sitio de restricción)	4815	4822
Señal de poliA de beta globina de conejo	4823	4871
Munl (sitio de restricción)	4872	4877
3' ITR de AAV2	4878	5018

El intrón y los sitios de restricción pueden eliminarse opcionalmente del casete para proporcionar un genoma de AAV recombinante acortado. Adicionalmente, el transgén se puede sustituir según sea necesario. La eliminación del intrón y de los elementos de los sitios de restricción generaría un vector de 4885 pares de bases (ET3) o 4855 (HSQ).

Se generaron partículas de virus AAV2-HCB-ET3-LCO-NCG-SpA y se usaron para transducir ratones. La actividad de fVIII en suero se ensayó en varios puntos temporales después de la transducción (véase la FIG. 19). El ensayo de terapia génica *in vivo* se realizó sustancialmente como se describe en Brown et al. ("Bioengineered Factor FVIII Enables Long-Term Correction of Murine Hemophilia A Following Liver-Directed Adeno-Associated Viral Vector Delivery", Molecular Therapy - Methods and Clinical Development. 1:14036, 2014).

SEQ ID NO: 130:

10

TAAGTCGTTAATTTTTGTGGCCCTTGCGATGTTTGCTCTGGTTAATAATCTCAGGACAAACAGAGGTTAATAATTTTC TGGATACCAGATTCCCAGCTACAGCTCCAGGAGCTCTGCCTCTGGGCCCATCTGTGCTGTACAAGAAAACAGTCTTTG $\tt CTGAGGTGTATGATACAGTGGTGGTGACCCTGAAAAACATGGCCTCCCATCCTGTGAGCCTGCATGCTGTGGGGGGTGT$ ACTCTTATCTGTCCCATGTGGATCTGGTGAAGGACCTGAATTCTGGACTGATTGGAGCTCTGCTGGTGTAGAGAGG GAAGCCTGACCAGAGAAAGAACCCAGAACCTGCATGAGTTTGTCCTGCTGTTTGCTGTTTTGATGAAGGGAAGAGCT GGCACTCTGCCAGGAATGACTCCTGGACCAGAGCTATGGATCCAGCTCCTGCTAGAGCTCAGCCTGCTATGCACACAG ${\tt TCAATGGCTATGTGAATAGGTCTCTGCCAGGACTGATTGGCTGCCATAAGAAATCTGTCTATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGGCATGTGATTGGAATTGAATT$

TGGAGATCTCCCCTCTGACCTTCCTGACAGCTCAGACCTTTCTGATGGACCTGGGGCAGTTCCTGCTGTTTTGCCATA TCTCTTCCCACCATCATGGAGGAATGGAGGCTCATGTCAGGGTGGAATCCTGTGCTGAGGAACCACAGCTGAGAAGAA AGGCTGATGAGGAAGAGGACTATGATGATAACCTGTATGACTCTGATATGGATGTGGTGAGGCTGGATGGGGATGATG AAGATTGGGACTATGCCCCCCTGGTGCTGGCTCCTGATGATAGATCCTACAAAAGCCAGTATCTGAACAATGGGCCCC AGAGGATTGGAAGGAAGTACAAGAAAGTGAGGTTCATGGCCTATACAGATGAGACCTTTAAGACCAGAGAGGCTATCC AGCATGAATCTGGGATCCTGGGACCTCTGCTGTATGGAGAAGTGGGGGATACCCTGCTGATCATCTTCAAGAACCAGG TGATTGGACCCCTGCTGATCTGTTACAAAGAGTCTGTGGACCAGAGGGGCCAACCAGATCATGTCTGATAAGAGAAATG $\tt CTGGAGTGCAGCTGGAGGACCCAGAATTTCAGGCTTCCAACATCATGCATAGCATCAATGGCTATGTGTTTGATAGCC$ TGTTCTTTAGTGGGTACACCTTTAAGCATAAAATGGTGTATGAGGATACCCTGACCCTGTTCCCCTTTTCTGGGGAGA CAGTGTTCATGTCCATGGAAAACCCTGGCCTGTGGATCCTGGGGTGCCACAACTCTGACTTCAGGAATAGAGGAATGA CAGCCCTGCTGAAAGTGTCCAGCTGTGATAAGAATACAGGGGATTACTATGAGGACTCTTATGAAGATATCTCTGCTT ATCTGCTGAGCAAGAACAATGCCATTGAGCCCAGGTCTTTTGCTCAGAACTCCAGACCTCCATCTGCTTCTGCTCCTA ATGATATCTTCAGCACAGAGACCAAGGGGGAAGATTTTGACATCTATGGAGAGGATGAAAACCAGGATCCAAGATCCT ${\tt TCCAGAAGAGACCAGACCACTTTATTGCTGCTGTGGGAGCAGCTGTGGGACTATGGGATGTCTGAAAGCCCAAGGG}$ ${\tt CCCTGAGGAACAGAGCTCAGAATGGAGAGGTGCCCAGATTCAAGAAAGTGGTGTTCAGAGAGTTTGCTGATGGCAGCT}$ ATAACATCATGGTGACCTTCAAGAATCAGGCTTCTAGGCCCTACTCCTTTTATTCTTCCCTGATCTCCTACCCTGATG ATCAGGAGCAGGGGGCTGAACCTAGGCACACTTTGTGCAGCCAAATGAGACCAGAACCTACTTTTGGAAGGTGCAGC ATCACATGGCTCCCACAGAGGATGAATTTGACTGCAAAGCTTGGGCCTATTTTTCTGATGTGGACCTGGAGAAGGATG TGCATTCTGGCCTGATTGGGCCTCTGCTGATCTGTAGGGCCAACACCCTGAATGCTGCTCATGGAAGACAGGTCACAG TGCAGGAGTTTGCTCTGTTCTTTACCATCTTTGATGAAACCAAGAGCTGGTACTTCACAGAGAATGTGGAAAGGAATT $\tt GCAGAGCCCCCTGTCATCTGCAGATGGAGGACCCTACCCTGAAGGAAAACTACAGGTTCCATGCCATCAATGGATATG$ AGAATATCCATAGCATCCACTTCTCTGGCCATGTCTTTTCTGTGAGGAAGAAGAGGAATACAAAATGGCTGTGTACA ATCTGTATCCTGGGGTCTTTGAGACAGTGGAAATGCTGCCAAGCAAAGTGGGAAATCTGGAGAATTGAGTGCCTGATTG GGGAACACCTGCAGGCTGGGATGAGCACCACCTTCCTGGTGTACTCTAAGAAATGTCAGACCCCACTGGGGATGGCCT $\tt CTGGACATATCAGGGACTTCCAGATCACAGCTTCTGGACAGTATGGACAGTGGGCTCCAAAGCTGGCTAGACTGCACT$ ${\tt TCCATGGAATCAAAACCCAGGGAGCTAGGCAGAAGTTCAGCTCTCTGTACATCTCCCAGTTTATCATCATGTATAGCC}$ ${\tt TGGATGGGAAAATGGCAGACCTACAGAGGCAATTCCACTGGGACCCTGATGGTCTTCTTTGGAAATGTGGATTCCT}$ CTGGCATCAAGCACAACATCTTCAATCCACCCATCATTGCCAGGTACATCAGGCTGCATCCTACCCACTATAGCATCA GGTCTACCCTGAGAATGGAGCTGATGGGATGTGACCTGAACAGCTGTTCTATGCCACTGGGCATGGAGTCCAAGGCTA ACCTGCAGGGAAGATCCAATGCTTGGAGACCCCAGGTGAACAATCCTAAGGAGTGGCTGCAGGTGGACTTCCAGAAAA GCTCTTCCCAGGATGGCCACCAGTGGACCCTGTTCTTTCAGAATGGCAAGGTCAAAGTGTTCCAGGGGAATCAGGACT ACCAGATTGCTCTGAGAATGGAGGTCCTGGGATGTGAAGCTCAGGACCTGTATTGAGCGGCCGCAATAAAATATCTTT ATTTTCATTACATCTGTGTGTTTGTTTTTTGTGTGCAATTGAGGAACCCCTAGTGATGGAGTTGGCCACTCCCTCTCT GCGCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCAGTGAG CGAGCGAGCGCAGCTGCCTGCAGG

Ejemplo 4

5 Tratamiento de la hemofilia A humana usando terapia génica basada en AAV

Este ejemplo describe un método ejemplar para el uso clínico de vectores AAV que codifican fVIII para el tratamiento de la hemofilia A.

Se selecciona un paciente diagnosticado con hemofilia A para el tratamiento. Al paciente se le administra una cantidad terapéuticamente eficaz de un AAV recombinante que codifica la variante de ET3 o HSQ fVIII, tal como AAV-ET3 o AAV-HSQ bajo el control de un promotor HCB como se divulga en el presente documento. El AAV recombinante puede administrarse por vía intravenosa. El médico puede seleccionar una dosis terapéutica adecuada. En algunos casos, la dosis terapéuticamente eficaz está en el intervalo de 1 x 10¹¹ a 1 x 10¹⁴ partículas víricas (pv)/kg, tal como aproximadamente 1 x 10¹² pv/kg. En la mayoría de los casos, al paciente se le administra una dosis única. La salud del sujeto se puede monitorizar con el tiempo para determinar la eficacia del tratamiento.

LISTADO DE SECUENCIAS

<110> Emory University CHILDREN'S HEALTHCARE OF ATLANTA, INC. Doering, Christopher Spencer, H Trent

5 Spencer, H Trent Brown, Harrison C

<120> PROMOTORES Y VECTORES RECOMBINANTES PARA LA EXPRESIÓN DE PROTEÍNAS EN EL HÍGADO Y USOS DE LOS MISMOS

10

<130> 6975-96747-04

<150> US 62/202.133 <151> 06/08/2015

15

<150> US 62/212.634 <151> 01/09/2015

<150> US 62/148.696 20 <151> 16/04/2015

<160> 131

<170> PatentIn versión 3.5

25

<210> 1 <211> 2351 <212> PRT

<213> Homo sapiens

30

<400> 1

Met 1	Gln	Ile	Glu	Leu 5	Ser	Thr	Cys	Phe	Phe 10	Leu	Cys	Leu	Leu	Arg 15	Phe
Cys	Phe	Ser	Ala 20	Thr	Arg	Arg	Tyr	Tyr 25	Leu	Gly	Ala	Val	Glu 30	Leu	Ser
Trp	Asp	Tyr 35	Met	Gln	Ser	Asp	Leu 40	Gly	Glu	Leu	Pro	Val 45	Asp	Ala	Arg
Phe	Pro 50	Pro	Arg	Val	Pro	Lys 55	Ser	Phe	Pro	Phe	Asn 60	Thr	Ser	Val	Val
Tyr 65	Lys	Lys	Thr	Leu	Phe 70	Val	Glu	Phe	Thr	Asp 75	His	Leu	Phe	Asn	Ile 80
Ala	Lys	Pro	Arg	Pro 85	Pro	Trp	Met	Gly	Leu 90	Leu	Gly	Pro	Thr	Ile 95	Gln
Ala	Glu	Val	Tyr 100	Asp	Thr	Val	Val	Ile 105	Thr	Leu	Lys	Asn	Met 110	Ala	Ser
His	Pro	Val 115	Ser	Leu	His	Ala	Val 120	Gly	Val	Ser	Tyr	Trp 125	Lys	Ala	Ser

Glu	Gly 130	Ala	Glu	Tyr	Asp	Asp 135	Gln	Thr	Ser	Gln	Arg 140	Glu	Lys	Glu	Asp
Asp 145	Lys	Val	Phe	Pro	Gly 150	Gly	Ser	His	Thr	Tyr 155	Val	Trp	Gln	Val	Leu 160
Lys	Glu	Asn	Gly	Pro 165	Met	Ala	Ser	Asp	Pro 170	Leu	Cys	Leu	Thr	Tyr 175	Ser
Tyr	Leu	Ser	His 180	Val	Asp	Leu	Val	Lys 185	Asp	Leu	Asn	Ser	Gly 190	Leu	Ile
Gly	Ala	Leu 195	Leu	Val	Cys	Arg	Glu 200	Gly	Ser	Leu	Ala	Lys 205	Glu	Lys	Thr
Gln	Thr 210	Leu	His	Lys	Phe	Ile 215	Leu	Leu	Phe	Ala	Val 220	Phe	Asp	Glu	Gly
Lys 225	Ser	Trp	His	Ser	Glu 230	Thr	Lys	Asn	Ser	Leu 235	Met	Gln	Asp	Arg	Asp 240
Ala	Ala	Ser	Ala	Arg 245	Ala	Trp	Pro	Lys	Met 250	His	Thr	Val	Asn	Gly 255	Tyr
Val	Asn	Arg	Ser 260	Leu	Pro	Gly	Leu	Ile 265	Gly	Cys	His	Arg	Lys 270	Ser	Val
Tyr	Trp	His 275	Val	Ile	Gly	Met	Gly 280	Thr	Thr	Pro	Glu	Val 285	His	Ser	Ile
Phe	Leu 290	Glu	Gly	His	Thr	Phe 295	Leu	Val	Arg	Asn	His 300	Arg	Gln	Ala	Ser
Leu 305	Glu	Ile	Ser	Pro	Ile 310	Thr	Phe	Leu	Thr	Ala 315	Gln	Thr	Leu	Leu	Met 320
Asp	Leu	Gly	Gln	Phe 325	Leu	Leu	Phe	Cys	His 330	Ile	Ser	Ser	His	Gln 335	His
Asp	Gly	Met	Glu 340	Ala	Tyr	Val	Lys	Val 345	Asp	Ser	Cys	Pro	Glu 350	Glu	Pro
Gln	Leu	A rg 355	Met	Lys	Asn	Asn	Glu 360	Glu	Ala	Glu	Asp	Tyr 365	Asp	Asp	Asp
Leu	Thr	Asp	Ser	Glu	Met	Asp	Val	Val	Arg	Phe	Asp	Asp	Asp	Asn	Ser

	370					375					380				
Pro 385	Ser	Phe	Ile	Gln	Ile 390	Arg	Ser	Val	Ala	Lys 395	Lys	His	Pro	Lys	Thr 400
Trp	Val	His	Tyr	Ile 405	Ala	Ala	Glu	Glu	Glu 4 10	Asp	Trp	Asp	Tyr	Ala 415	Pro
Leu	Val	Leu	Ala 420	Pro	Asp	Asp	Arg	Ser 425	Tyr	Lys	Ser	Gln	Tyr 430	Leu	Asn
Asn	Gly	Pro 435	Gln	Arg	Ile	Gly	Arg 440	Lys	Tyr	Lys	Lys	Val 445	Arg	Phe	Met
Ala	Tyr 450	Thr	Asp	Glu	Thr	Phe 455	Lys	Thr	Arg	Glu	Ala 460	Ile	Gln	His	Glu
Ser 465	Gly	Ile	Leu	Gly	Pro 470	Leu	Leu	Tyr	Gly	Glu 4 75	Val	Gly	Asp	Thr	Leu 480
Leu	Ile	Ile	Phe	Lys 485	Asn	Gln	Ala	Ser	Arg 490	Pro	Tyr	Asn	Ile	Tyr 495	Pro
His	Gly	Ile	Thr 500	Asp	Val	Arg	Pro	Leu 505	Tyr	Ser	Arg	Arg	Leu 510	Pro	Lys
Gly	Val	Lys 515	His	Leu	Lys	Asp	Phe 520	Pro	Ile	Leu	Pro	Gly 525	Glu	Ile	Phe
Lys	Tyr 530	Lys	Trp	Thr	Val	Thr 535	Val	Glu	Asp	Gly	Pro 540	Thr	Lys	Ser	Asp
Pro 545	Arg	Cys	Leu		A rg 550	Tyr	Tyr	Ser	Ser	Phe 555		Asn	Met		Arg 560
Asp	Leu	Ala	Ser	Gly 565	Leu	Ile	Gly	Pro	Leu 570	Leu	Ile	Cys	Tyr	Lys 575	Glu
Ser	Val	Asp	Gln 580	Arg	Gly	Asn	Gln	Ile 585	Met	Ser	Asp	Lys	A rg 590	Asn	Val
Ile	Leu	Phe 595	Ser	Val	Phe	Asp	Glu 600	Asn	Arg	Ser	Trp	Tyr 605	Leu	Thr	Glu
Asn	Ile 610	Gln	Arg	Phe	Leu	Pro 615	Asn	Pro	Ala	Gly	Val 620	Gln	Leu	Glu	Asp

Pro 625	Glu	Phe	Gln	Ala	Ser 630	Asn	Ile	Met	His	Ser 635	Ile	Asn	Gly	Tyr	Val 640
Phe	Asp	Ser	Leu	Gln 645	Leu	Ser	Val	Cys	Leu 650	His	Glu	Val	Ala	Tyr 655	Trp
Tyr	Ile	Leu	Ser 660	Ile	Gly	Ala	Gln	Thr 665	Asp	Phe	Leu	Ser	Val 670	Phe	Phe
Ser	Gly	Tyr 675	Thr	Phe	Lys	His	Lys 680	Met	Val	Tyr	Glu	Asp 685	Thr	Leu	Thr
Leu	Phe 690	Pro	Phe	Ser	Gly	Glu 695	Thr	Val	Phe	Met	Ser 700	Met	Glu	Asn	Pro
Gly 705	Leu	Trp	Ile	Leu	Gly 710	Cys	His	Asn	Ser	Asp 715	Phe	Arg	Asn	Arg	Gly 720
Met	Thr	Ala	Leu	Leu 725	Lys	Val	Ser	Ser	Cys 730	Asp	Lys	Asn	Thr	Gly 735	Asp
Tyr	Tyr	Glu	Asp 740	Ser	Tyr	Glu	Asp	Ile 745	Ser	Ala	Tyr	Leu	Leu 750	Ser	Lys
Asn	Asn	Ala 755	Ile	Glu	Pro	Arg	Ser 760	Phe	Ser	Gln	Asn	Ser 765	Arg	His	Pro
Ser	Thr 770	Arg	Gln	Lys	Gln	Phe 775	Asn	Ala	Thr	Thr	Ile 780	Pro	Glu	Asn	Asp
Ile 785	Glu	Lys	Thr	Asp	Pro 790	Trp	Phe	Ala	His	A rg 795	Thr	Pro	Met	Pro	Lys 800
Ile	Gln	Asn	Val	Ser 805	Ser	Ser	Asp	Leu	Leu 810	Met	Leu	Leu	Arg	Gln 815	Ser
Pro	Thr	Pro	His 820	Gly	Leu	Ser	Leu	Ser 825	Asp	Leu	Gln	Glu	Ala 830	Lys	Tyr
Glu	Thr	Phe 835	Ser	Asp	Asp	Pro	Ser 840	Pro	Gly	Ala	Ile	Asp 845	Ser	Asn	Asn
Ser	Leu 850	Ser	Glu	Met	Thr	His 855	Phe	Arg	Pro	Gln	Leu 860	His	His	Ser	Gly
Asp 865	Met	Val	Phe	Thr	Pro 870	Glu	Ser	Gly	Leu	Gln 875	Leu	Arg	Leu	Asn	Glu 880

Lys Leu Gly Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met Pro Val His Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys Ser Ser Pro Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser Asn Asn Ser Ala Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Leu Ile Glu Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu Ser Asp Thr Glu Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg Met Leu Met Asp Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln Lys Lys Glu Gly Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met Ser Phe Phe Lys Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile

Gln	Arg 1130		His	Gly	Lys	Asn 1135	Ser	Leu	Asn	Ser	Gly 1140	Gln	Gly	Pro
Ser	Pro 1145	Lys	Gln	Leu	Val	Ser 1150	Leu	Gly	Pro	Glu	Lys 1155	Ser	Val	Glu
Gly	Gln 1160	Asn	Phe	Leu	Ser	Glu 1165	Lys	Asn	Lys	Val	Val 1170	Val	Gly	Lys
Gly	Glu 1175	Phe	Thr	Lys	_	Val 1180	Gly	Leu	Lys	Glu	Met 1185	Val	Phe	Pro
Ser	Ser 1190	Arg	Asn	Leu	Phe	Leu 1195	Thr	Asn	Leu	Asp	Asn 1200	Leu	His	Glu
Asn	Asn 1205	Thr	His	Asn		Glu 1210	Lys	Lys	Ile	Gln	Glu 1215	Glu	Ile	Glu
Lys	Lys 1220	Glu	Thr	Leu	Ile	Gln 1225	Glu	Asn	Val	Val	Leu 1230	Pro	Gln	Ile
His	Thr 1235	Val	Thr	Gly		Lys 1240	Asn	Phe	Met	Lys	Asn 1245	Leu	Phe	Leu
Leu	Ser 1250		Arg	Gln		Val 1255	Glu	Gly	Ser	Tyr	Asp 1260	Gly	Ala	Tyr
Ala	Pro 1265	Val	Leu	Gln	Asp	Phe 1270	Arg	Ser	Leu	Asn	Asp 1275	Ser	Thr	Asn
Arg	Thr 1280	Lys	Lys	His	Thr	Ala 1285	His	Phe	Ser	Lys	Lys 1290	Gly	Glu	Glu
Glu	Asn 1295	Leu	Glu	Gly	Leu	Gly 1300	Asn	Gln	Thr	Lys	Gln 1305	Ile	Val	Glu
Lys	Tyr 1310	Ala	Cys	Thr	Thr	Arg 1315	Ile	Ser	Pro	Asn	Thr 1320	Ser	Gln	Gln
Asn	Phe 1325	Val	Thr	Gln	Arg	Ser 1330	Lys	Arg	Ala	Leu	Lys 1335	Gln	Phe	Arg
Leu	Pro 1340	Leu	Glu	Glu	Thr	Glu 1345	Leu	Glu	Lys	Arg	Ile 1350	Ile	Val	Asp
Asp	Thr	Ser	Thr	Gln	Trp	Ser	Lys	Asn	Met	Lys	His	Leu	Thr	Pro

	1355					1360					1365			
Ser	Thr 1370	Leu	Thr	Gln	Ile	Asp 1375	_	Asn	Glu	Lys	Glu 1380	Lys	Gly	Ala
Ile	Thr 1385	Gln	Ser	Pro	Leu	Ser 1390	Asp	Cys	Leu	Thr	Arg 1395	Ser	His	Ser
Ile	Pro 1400	Gln	Ala	Asn	Arg	Ser 1405	Pro	Leu	Pro	Ile	Ala 1410	Lys	Val	Ser
Ser	Phe 1415	Pro	Ser	Ile	Arg	Pro 1420	Ile	Tyr	Leu	Thr	Arg 1425	Val	Leu	Phe
Gln	Asp 1430	Asn	Ser	Ser	His	Leu 1435	Pro	Ala	Ala	Ser	Tyr 1440	Arg	Lys	Lys
Asp	Ser 1445	Gly	Val	Gln	Glu	Ser 1450	Ser	His	Phe	Leu	Gln 1 4 55	Gly	Ala	Lys
Lys	Asn 1460	Asn	Leu	Ser	Leu	Ala 1465	Ile	Leu	Thr	Leu	Glu 1 4 70	Met	Thr	Gly
Asp	Gln 1 4 75	Arg	Glu	Val	Gly	Ser 1480	Leu	Gly	Thr	Ser	Ala 1485	Thr	Asn	Ser
Val	Thr 1490	_	Lys	Lys		Glu 1495		Thr	Val	Leu	Pro 1500	Lys	Pro	Asp
Leu	Pro 1505	Lys	Thr	Ser	Gly	Lys 1510	Val	Glu	Leu	Leu	Pro 1515	Lys	Val	His
Ile	Tyr 1520	Gln	Lys	Asp	Leu	Phe 1525	Pro	Thr	Glu	Thr	Ser 1530	Asn	Gly	Ser
Pro	Gly 1535	His	Leu	Asp	Leu	Val 1540	Glu	Gly	Ser	Leu	Leu 1545	Gln	Gly	Thr
Glu	Gly 1550	Ala	Ile	Lys	Trp	Asn 1555	Glu	Ala	Asn	Arg	Pro 1560	Gly	Lys	Val
Pro	Phe 1565	Leu	Arg	Val	Ala	Thr 1570	Glu	Ser	Ser	Ala	Lys 1575	Thr	Pro	Ser
Lys	Leu 1580	Leu	Asp	Pro	Leu	Ala 1585	Trp	Asp	Asn	His	Tyr 1590	Gly	Thr	Gln

Ile	Pro 1595		Glu	Glu	Trp	Lys 1600		Gln	Glu	Lys	Ser 1605	Pro	Glu	Lys
Thr	Ala 1610	Phe	Lys	Lys	Lys	Asp 1615	Thr	Ile	Leu	Ser	Leu 1620	Asn	Ala	Cys
Glu	Ser 1625		His	Ala	Ile	Ala 1630		Ile	Asn	Glu	Gly 1635		Asn	Lys
Pro	Glu 1640	Ile	Glu	Val	Thr	Trp 1645	Ala	Lys	Gln	Gly	Arg 1650	Thr	Glu	Arg
Leu	Cys 1655	Ser	Gln	Asn	Pro	Pro 1660	Val	Leu	Lys	Arg	His 1665	Gln	Arg	Glu
Ile	Thr 1670	Arg	Thr	Thr	Leu	Gln 1675	Ser	Asp	Gln	Glu	Glu 1680	Ile	Asp	Tyr
Asp	Asp 1685		Ile	Ser	Val	Glu 1690		Lys	Lys	Glu	Asp 1695		Asp	Ile
Tyr	Asp 1700		Asp	Glu	Asn	Gln 1705		Pro	Arg	Ser	Phe 1710	Gln	Lys	Lys
Thr	Arg 1715		Tyr	Phe	Ile	Ala 1720	Ala	Val	Glu	Arg	Leu 1725		Asp	Tyr
Gly	Met 1730	Ser	Ser	Ser	Pro	His 1735	Val	Leu	Arg	Asn	Arg 1740	Ala	Gln	Ser
Gly	Ser 1745	Val	Pro	Gln	Phe	Lys 1750	Lys	Val	Val	Phe	Gln 1755	Glu	Phe	Thr
Asp	Gly 1760	Ser	Phe	Thr	Gln	Pro 1765	Leu	Tyr	Arg	Gly	Glu 1770	Leu	Asn	Glu
His	Leu 1775	Gly	Leu	Leu	Gly	Pro 1780	Tyr	Ile	Arg	Ala	Glu 1785	Val	Glu	Asp
Asn	Ile 1790	Met	Val	Thr	Phe	Arg 1795	Asn	Gln	Ala	Ser	Arg 1800	Pro	Tyr	Ser
Phe	Tyr 1805	Ser	Ser	Leu	Ile	Ser 1810	Tyr	Glu	Glu	Asp	Gln 1815	Arg	Gln	Gly
Ala	Glu 1820	Pro	Arg	Lys	Asn	Phe 1825	Val	Lys	Pro	Asn	Glu 1830	Thr	Lys	Thr

Tyr Phe Trp Lys Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala Ile Asn Gly Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His

Tyr	Ser 2075	Gly	Ser	Ile	Asn	Ala 2080	Trp	Ser	Thr	Lys	Glu 2085	Pro	Phe	Ser
Trp	Ile 2090	Lys	Val	Asp	Leu	Leu 2095	Ala	Pro	Met	Ile	Ile 2100	His	Gly	Ile
Lys	Thr 2105	Gln	Gly	Ala	Arg	Gln 2110	Lys	Phe	Ser	Ser	Leu 2115	Tyr	Ile	Ser
Gln	Phe 2120	Ile	Ile	Met	Tyr	Ser 2125	Leu	Asp	Gly	Lys	Lys 2130	Trp	Gln	Thr
Tyr	Arg 2135	Gly	Asn	Ser	Thr	Gly 2140	Thr	Leu	Met	Val	Phe 2145	Phe	Gly	Asn
Val	Asp 2150	Ser	Ser	Gly	Ile	Lys 2155	His	Asn	Ile	Phe	Asn 2160	Pro	Pro	Ile
Ile	Ala 2165	Arg	Tyr	Ile	Arg	Leu 2170	His	Pro	Thr	His	Tyr 2175	Ser	Ile	Arg
Ser	Thr 2180	Leu	Arg	Met	Glu	Leu 2185	Met	Gly	Cys	Asp	Leu 2190	Asn	Ser	Cys
Ser	Met 2195	Pro	Leu	Gly	Met	Glu 2200	Ser	Lys	Ala	Ile	Ser 2205	Asp	Ala	Gln
Ile	Thr 2210	Ala	Ser	Ser	_	Phe 2215	Thr	Asn	Met	Phe	Ala 2220	Thr	Trp	Ser
	Ser 2225	_		_					_	_			Ala	Trp
Arg	Pro 2240	Gln	Val	Asn	Asn	Pro 2245	Lys	Glu	Trp	Leu	Gln 2250	Val	Asp	Phe
Gln	Lys 2255	Thr	Met	Lys	Val	Thr 2260	Gly	Val	Thr	Thr	Gln 2265	Gly	Val	Lys
Ser	Leu 2270	Leu	Thr	Ser	Met	Tyr 2275	Val	Lys	Glu	Phe	Leu 2280	Ile	Ser	Ser
Ser	Gln 2285	Asp	Gly	His	Gln	Trp 2290	Thr	Leu	Phe	Phe	Gln 2295	Asn	Gly	Lys
Val	Lys	Val	Phe	Gln	Gly	Asn	Gln	Asp	Ser	Phe	Thr	Pro	Val	Val

2300 2305 2310 Asn Ser Leu Asp Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His 2315 2320 2325 Pro Gln Ser Trp Val His Gln Ile Ala Leu Arg Met Glu Val Leu 2330 2335 2340 Gly Cys Glu Ala Gln Asp Leu Tyr 2345 2350 <210> 2 <211> 4374 <212> ADN 5 <213> Secuencia artificial <220> <223> fVIII recombinante

10

<400> 2

atgcagattg	aactgtctac	ctgtttctt	ctgtgcctgc	tgaggttttg	tttttctgct	60
accagaagat	actacctggg	agctgtggaa	ctgagctggg	attacatgca	gtctgacctg	120
ggagagctgc	ctgtggatgc	tagattccca	cctagagtcc	ctaagtcctt	ccccttcaac	180
acctctgtgg	tctacaagaa	aaccctgttt	gtggagttta	cagaccacct	gttcaacatt	240
gctaagccta	gaccaccatg	gatgggactg	ctgggaccaa	ccatccaggc	agaggtgtat	300
gacacagtgg	tcatcaccct	gaaaaacatg	gcttctcacc	ctgtgtccct	gcatgctgtg	360
ggagtctcct	actggaaggc	ctctgaaggg	gctgagtatg	atgatcagac	cagccagagg	420
gaaaaagagg	atgataaggt	gttccctgga	gggtcccata	cctatgtgtg	gcaggtcctg	480
aaggagaatg	gaccaatggc	ttctgaccct	ctgtgcctga	cctactctta	tctgtcccat	540
gtggacctgg	tcaaggatct	gaactctggc	ctgattgggg	ctctgctggt	gtgtagggaa	600
gggtccctgg	ccaaggagaa	aacccagacc	ctgcataagt	tcatcctgct	gtttgctgtg	660
tttgatgaag	gaaaaagctg	gcactctgag	accaagaact	ctctgatgca	ggacagggat	720
gctgcttctg	ccagagcttg	gcccaagatg	cacacagtga	atggctatgt	caataggagc	780
ctgcctggac	tgattggctg	ccacagaaag	tctgtgtatt	ggcatgtcat	tggaatgggc	840
accacccctg	aagtgcacag	catcttcctg	gaggggcata	cctttctggt	caggaaccac	900
aggcaggcta	gcctggagat	ctctccaatc	accttcctga	cagcccagac	cctgctgatg	960
gacctgggac	agttcctgct	gttttgccac	atctccagcc	accagcatga	tggcatggag	1020
gcttatgtga	aagtggactc	ctgtcctgag	gaacctcagc	tgaggatgaa	gaacaatgag	1080
gaagctgaag	actatgatga	tgacctgaca	gactctgaga	tggatgtggt	caggtttgat	1140
gatgataact	ctccctcctt	tatccagatc	aggtctgtgg	ccaagaaaca	ccctaagacc	1200

tgggtccatt	acattgctgc	tgaggaagag	gactgggatt	atgctccact	ggtgctggcc	1260
cctgatgata	gatcctacaa	aagccagtat	ctgaacaatg	gaccccagag	gattggcaga	1320
aagtacaaga	aagtgaggtt	catggcttat	acagatgaga	cctttaagac	cagagaagcc	1380
atccagcatg	agtctgggat	cctgggacct	ctgctgtatg	gggaagtggg	ggacaccctg	1440
ctgatcatct	tcaagaacca	ggccagcagg	ccttacaata	tctatccaca	tggcatcaca	1500
gatgtgagac	ctctgtactc	caggaggctg	ccaaaggggg	tgaaacacct	gaaggacttc	1560
ccaatcctgc	ctggggaaat	ctttaagtat	aaatggacag	tcacagtgga	ggatgggccc	1620
accaagtctg	accctaggtg	cctgaccaga	tactattctt	cctttgtgaa	tatggagaga	1680
gacctggctt	ctggactgat	tggacccctg	ctgatctgtt	acaaagagtc	tgtggatcag	1740
aggggcaacc	agatcatgtc	tgacaagagg	aatgtgatcc	tgttctctgt	ctttgatgaa	1800
aacaggtctt	ggtacctgac	agagaacatc	cagaggttcc	tgcctaatcc	agctggagtg	1860
cagctggaag	atcctgagtt	ccaggcctct	aacatcatgc	attccatcaa	tggctatgtg	1920
tttgactccc	tgcagctgtc	tgtgtgcctg	catgaggtgg	cttactggta	tatcctgagc	1980
attggagccc	agacagattt	cctgtctgtg	ttcttttctg	gctacacctt	taagcataaa	2040
atggtgtatg	aggacaccct	gaccctgttc	ccattttctg	gagaaactgt	gttcatgagc	2100
atggagaatc	ctgggctgtg	gatcctggga	tgccacaact	ctgatttcag	gaatagaggg	2160
atgacagccc	tgctgaaagt	gagctcttgt	gacaagaaca	caggagacta	ctatgaagat	2220
agctatgagg	acatctctgc	ttatctgctg	tccaaaaaca	atgccattga	gcccaggagc	2280
ttctctcaga	accctccagt	gctgaagagg	caccagaggg	agatcaccag	aaccaccctg	2340
cagtctgatc	aggaagagat	tgactatgat	gataccatct	ctgtggaaat	gaagaaagag	2400
gactttgata	tctatgatga	agatgagaac	cagtctccca	ggtccttcca	gaagaaaacc	2460
agacattact	ttattgctgc	tgtggagagg	ctgtgggact	atggcatgtc	cagctctcct	2520
catgtgctga	gaaatagagc	tcagtctgga	tctgtcccac	agttcaagaa	agtggtcttc	2580
caggagttta	cagatggaag	ctttacccag	ccactgtaca	ggggagaact	gaatgagcac	2640
ctggggctgc	tgggacccta	tatcagggct	gaagtggagg	ataacatcat	ggtcaccttc	2700
aggaatcagg	ccagcagacc	ctactctttt	tattccagcc	tgatctccta	tgaagaggac	2760
cagagacagg	gagctgaacc	aagaaaaaac	tttgtgaagc	ctaatgagac	caaaacctac	2820
ttttggaagg	tgcagcacca	tatggcccct	accaaagatg	agtttgattg	caaggcctgg	2880
gcttattttt	ctgatgtgga	tctggagaag	gatgtccact	ctggcctgat	tgggccactg	2940
ctggtgtgtc	ataccaacac	cctgaatcca	gctcatggaa	ggcaggtgac	agtccaggaa	3000
tttgccctgt	tctttaccat	ctttgatgag	accaagagct	ggtacttcac	agaaaacatg	3060

gagaggaatt	gcagagcccc	atgtaacatc	cagatggaag	accccacctt	caaggagaac	3120
tacagatttc	atgctatcaa	tgggtatatc	atggataccc	tgccaggact	ggtcatggct	3180
caggaccaga	ggatcagatg	gtacctgctg	agcatggggt	ctaatgagaa	tatccactcc	3240
atccatttct	ctggacatgt	gtttacagta	aggaagaaag	aagagtacaa	gatggccctg	3300
tacaacctgt	atcctggggt	gtttgaaaca	gtggagatgc	tgccttccaa	ggctgggatc	3360
tggagggtgg	aatgcctgat	tggggagcac	ctgcatgctg	gaatgtctac	cctgttcctg	3420
gtgtactcca	ataagtgtca	gacccccctg	gggatggctt	ctggacatat	cagggacttc	3480
cagatcacag	cttctggaca	gtatggacag	tgggctccta	agctggctag	actgcactat	3540
tctggctcca	tcaatgcttg	gtctaccaaa	gagcctttct	cctggatcaa	ggtggacctg	3600
ctggctccaa	tgatcatcca	tggcatcaaa	acccaggggg	ccaggcagaa	gttctcttcc	3660
ctgtacatca	gccagtttat	catcatgtat	tctctggatg	ggaagaaatg	gcagacctac	3720
agaggcaatt	ccacagggac	cctgatggtg	ttctttggca	atgtggacag	ctctgggatc	3780
aagcacaaca	tcttcaatcc	ccctatcatt	gccaggtaca	tcagactgca	cccaacccat	3840
tattccatca	ggagcaccct	gagaatggag	ctgatggggt	gtgatctgaa	cagctgttct	3900
atgcccctgg	gaatggagtc	taaggccatc	tctgatgctc	agatcacagc	ctccagctac	3960
ttcaccaata	tgtttgctac	ctggtcccca	agcaaggcta	gactgcatct	gcagggaaga	4020
agcaatgctt	ggagaccaca	ggtgaacaat	cccaaggagt	ggctgcaggt	ggacttccag	4080
aaaaccatga	aggtgacagg	agtcaccacc	cagggagtga	aaagcctgct	gacctctatg	4140
tatgtcaagg	agttcctgat	ctcttccagc	caggatgggc	accagtggac	cctgttcttt	4200
cagaatggaa	aggtgaaagt	cttccagggc	aatcaggatt	cctttacccc	tgtggtcaac	4260
agcctggacc	cacccctgct	gaccaggtac	ctgagaatcc	acccacagtc	ctgggtgcat	4320
cagattgctc	tgaggatgga	agtcctgggc	tgtgaggccc	aggacctgta	ttga	4374

<210> 3 <211> 1457

<211> 1437 <212> PRT

<213> Secuencia artificial

<220>

<223> fVIII recombinante

10

5

<400> 3

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser 20 25 30

Trp	Asp	Tyr 35	Met	Gln	Ser	Asp	Leu 40	Gly	Glu	Leu	Pro	Val 45	Asp	Ala	Arg
Phe	Pro 50	Pro	Arg	Val	Pro	Lys 55	Ser	Phe	Pro	Phe	Asn 60	Thr	Ser	Val	Val
Tyr 65	Lys	Lys	Thr	Leu	Phe 70	Val	Glu	Phe	Thr	Val 75	His	Leu	Phe	Asn	Ile 80
Ala	Lys	Pro	Arg	Pro 85	Pro	Trp	Met	Gly	Leu 90	Leu	Gly	Pro	Thr	Ile 95	Gln
Ala	Glu	Val	Tyr 100	Asp	Thr	Val	Val	Ile 105	Thr	Leu	Lys	Asn	Met 110	Ala	Ser
His	Pro	Val 115	Ser	Leu	His	Ala	Val 120	Gly	Val	Ser	Tyr	Trp 125	Lys	Ala	Ser
Glu	Gly 130	Ala	Glu	Tyr	Asp	Asp 135	Gln	Thr	Ser	Gln	Arg 140	Glu	Lys	Glu	Asp
Asp 145	Lys	Val	Phe	Pro	Gly 150	Gly	Ser	His	Thr	Tyr 155	Val	Trp	Gln	Val	Leu 160
Lys	Glu	Asn	Gly	Pro 165	Met	Ala	Ser	Asp	Pro 170	Leu	Cys	Leu	Thr	Tyr 175	Ser
Tyr	Leu	Ser	His 180	Val	Asp	Leu	Val	Lys 185	Asp	Leu	Asn	Ser	Gly 190	Leu	Ile
Gly	Ala	Leu 195	Leu	Val	Cys	Arg	Glu 200	Gly	Ser	Leu	Ala	Lys 205	Glu	Lys	Thr
Gln	Thr 210	Leu	His	Lys	Phe	Ile 215	Leu	Leu	Phe	Ala	Val 220	Phe	Asp	Glu	Gly
Lys 225	Ser	Trp	His	Ser	Glu 230	Thr	Lys	Asn	Ser	Leu 235	Met	Gln	Asp	Arg	Asp 240
Ala	Ala	Ser	Ala	Arg 245	Ala	Trp	Pro	Lys	Met 250	His	Thr	Val	Asn	Gly 255	Tyr
Val	Asn	Arg	Ser 260	Leu	Pro	Gly	Leu	Ile 265	Gly	Cys	His	Arg	Lys 270	Ser	Val
Tyr	Trp	His	Val	Ile	Gly	Met	Gly	Thr	Thr	Pro	Glu	Val	His	Ser	Ile

Phe	Leu 290	Glu	Gly	His	Thr	Phe 295	Leu	Val	Arg	Asn	His 300	Arg	Gln	Ala	Ser
Leu 305	Glu	Ile	Ser	Pro	Ile 310	Thr	Phe	Leu	Thr	Ala 315	Gln	Thr	Leu	Leu	Met 320
Asp	Leu	Gly	Gln	Phe 325	Leu	Leu	Phe	Cys	His 330	Ile	Ser	Ser	His	Gln 335	His
Asp	Gly	Met	Glu 340	Ala	Tyr	Val	Lys	Val 345	Asp	Ser	Cys	Pro	Glu 350	Glu	Pro
Gln	Leu	Arg 355	Met	Lys	Asn	Asn	Glu 360	Glu	Ala	Glu	Asp	Tyr 365	Asp	Asp	Asp
Leu	Thr 370	Asp	Ser	Glu	Met	Asp 375	Val	Val	Arg	Phe	Asp 380	Asp	Asp	Asn	Ser
Pro 385	Ser	Phe	Ile	Gln	Ile 390	Arg	Ser	Val	Ala	Lys 395	Lys	His	Pro	Lys	Thr 400
Trp	Val	His	Tyr	Ile 405	Ala	Ala	Glu	Glu	Glu 410	Asp	Trp	Asp	Tyr	Ala 415	Pro
Leu	Val	Leu	Ala 420	Pro	Asp	Asp	Arg	Ser 425	Tyr	Lys	Ser	Gln	Tyr 430	Leu	Asn
Asn	Gly	Pro 435	Gln	Arg	Ile	Gly	Arg 440	Lys	Tyr	Lys	Lys	Val 445	Arg	Phe	Met
Ala	Tyr 450	Thr	Asp	Glu	Thr	Phe 455	Lys	Thr	Arg	Glu	Ala 460	Ile	Gln	His	Glu
Ser 465	Gly	Ile	Leu	Gly	Pro 470	Leu	Leu	Tyr	Gly	Glu 475	Val	Gly	Asp	Thr	Leu 480
Leu	Ile	Ile	Phe	Lys 485	Asn	Gln	Ala	Ser	Arg 490	Pro	Tyr	Asn	Ile	Tyr 495	Pro
His	Gly	Ile	Thr 500	Asp	Val	Arg	Pro	Leu 505	Tyr	Ser	Arg	Arg	Leu 510	Pro	Lys
Gly	Val	Lys 515	His	Leu	Lys	Asp	Phe 520	Pro	Ile	Leu	Pro	Gly 525	Glu	Ile	Phe
Lys	Tyr 530	Lys	Trp	Thr	Val	Thr 535	Val	Glu	Asp	Gly	Pro 540	Thr	Lys	Ser	Asp

Pro Arg Cys 545	Leu Thr	Arg Ty 550	r Tyr	Ser	Ser	Phe 555	Val	Asn	Met	Glu	Arg 560
Asp Leu Ala	Ser Gly 565		e Gly	Pro	Leu 570	Leu	Ile	Cys	Tyr	Lys 575	Glu
Ser Val Asp	Gln Arg 580	Gly As	n Gln	Ile 585	Met	Ser	Asp	Lys	A rg 590	Asn	Val
Ile Leu Phe 595	Ser Val	Phe As	p Glu 600	Asn	Arg	Ser	Trp	Tyr 605	Leu	Thr	Glu
Asn Ile Gln 610	Arg Phe	Leu Pr 61		Pro	Ala	Gly	Val 620	Gln	Leu	Glu	Asp
Pro Glu Phe 625	Gln Ala	Ser As	n Ile	Met	His	Ser 635	Ile	Asn	Gly	Tyr	Val 640
Phe Asp Ser	Leu Gln 645		r Val	Cys	Leu 650	His	Glu	Val	Ala	Tyr 655	Trp
Tyr Ile Leu	Ser Ile 660	Gly Al	a Gln	Thr 665	Asp	Phe	Leu	Ser	Val 670	Phe	Phe
Ser Gly Tyr 675	Thr Phe	Lys Hi	s Lys 680	Met	Val	Tyr	Glu	Asp 685	Thr	Leu	Thr
Leu Phe Pro 690	Phe Ser	Gly Gl		Val	Phe	Met	Ser 700	Met	Glu	Asn	Pro
Gly Leu Trp 705	Ile Leu	Gly C ₃ 710	s His	Asn	Ser	Asp 715	Phe	Arg	Asn	Arg	Gly 720
Met Thr Ala	Leu Leu 725		l Ser	Ser	Cys 730	Asp	Lys	Asn	Thr	Gly 735	Asp
Tyr Tyr Glu	Asp Ser	Tyr Gl	u Asp	Ile 745	Ser	Ala	Tyr	Leu	Leu 750	Ser	Lys
Asn Asn Ala 755	Ile Glu	Pro Ai	g Ser 760	Phe	Ser	Gln	Asn	Pro 765	Pro	Val	Leu
Lys Arg His 770	Gln Arg	Glu II		Arg	Thr	Thr	Leu 780	Gln	Ser	Asp	Gln
Glu Glu Ile	Asp Tyr	Asp As	p Thr	Ile	Ser	Val	Glu	Met	Lys	Lys	Glu

785					790					795					800
Asp	Phe	Asp	Ile	Tyr 805	Asp	Glu	Asp	Glu	Asn 810	Gln	Ser	Pro	Arg	Ser 815	Phe
Gln	Lys	Lys	Thr 820	Arg	His	Tyr	Phe	Ile 825	Ala	Ala	Val	Glu	Arg 830	Leu	Trp
Asp	Tyr	Gly 835	Met	Ser	Ser	Ser	Pro 840	His	Val	Leu	Arg	Asn 845	Arg	Ala	Gln
Ser	Gly 850	Ser	Val	Pro	Gln	Phe 855	Lys	Lys	Val	Val	Phe 860	Gln	Glu	Phe	Thr
Asp 865	Gly	Ser	Phe	Thr	Gln 870	Pro	Leu	Tyr	Arg	Gly 875	Glu	Leu	Asn	Glu	His 880
Leu	Gly	Leu	Leu	Gly 885	Pro	Tyr	Ile	Arg	Ala 890	Glu	Val	Glu	Asp	As n 895	Ile
Met	Val	Thr	Phe 900	Arg	Asn	Gln	Ala	Ser 905	Arg	Pro	Tyr	Ser	Phe 910	Tyr	Ser
Ser	Leu	Ile 915	Ser	Tyr	Glu	Glu	Asp 920	Gln	Arg	Gln	Gly	Ala 925	Glu	Pro	Arg
Lys	As n 930	Phe	Val	Lys	Pro	As n 935	Glu	Thr	Lys	Thr	Tyr 940	Phe	Trp	Lys	Val
Gln 945	His	His	Met	Ala	Pro 950	Thr	Lys	Asp	Glu	Phe 955	Asp	Cys	Lys	Ala	Trp 960
Ala	Tyr	Phe	Ser	Asp 965	Val	Asp	Leu	Glu	Lys 970	Asp	Val	His	Ser	Gly 975	Leu
Ile	Gly	Pro	Leu 980	Leu	Val	Cys	His	Thr 985	Asn	Thr	Leu	Asn	Pro 990	Ala	His
Gly	Arg	Gln 995	Val	Thr	Val	Gln	Glu 1000		e Ala	a Let	ı Phe	Phe 100		nr Il	Le Phe
Asp	Glu 1010		r Lys	s Sei	r Tr	7 Ty:		ne Th	nr Gl	Lu As		et (Glu <i>l</i>	Arg <i>P</i>	Asn
Cys	Arg 1025		a Pro	Cys	s Ası	n Ile 103		Ln Me	et Gl	Lu As	_	ro :	Chr I	Phe I	Lys

Glu	Asn 1040	Tyr	Arg	Phe	His	Ala 1045		Asn	Gly	Tyr	Ile 1050	Met	Asp	Thr
Leu	Pro 1055	Gly	Leu	Val	Met	Ala 1060	Gln	Asp	Gln	Arg	Ile 1065	Arg	Trp	Tyr
Leu	Leu 1070	Ser	Met	Gly	Ser	Asn 1075	Glu	Asn	Ile	His	Ser 1080	Ile	His	Phe
Ser	Gly 1085		Val	Phe	Thr	Val 1090	_	Lys	Lys	Glu	Glu 1095	Tyr	Lys	Met
Ala	Leu 1100	Tyr	Asn	Leu	Tyr	Pro 1105	Gly	Val	Phe	Glu	Thr 1110	Val	Glu	Met
Leu	Pro 1115		Lys	Ala	Gly	Ile 1120	Trp	Arg	Val	Glu	Cys 1125	Leu	Ile	Gly
Glu	His 1130	Leu	His	Ala	Gly	Met 1135	Ser	Thr	Leu	Phe	Leu 1140	Val	Tyr	Ser
Asn	Lys 1145	_	Gln	Thr	Pro	Leu 1150	Gly	Met	Ala	Ser	Gly 1155	His	Ile	Arg
Asp	Phe 1160	Gln	Ile	Thr	Ala	Ser 1165	Gly	Gln	Tyr	_	Gln 1170	Trp	Ala	Pro
Lys	Leu 1175	Ala	Arg	Leu	His	Tyr 1180	Ser	Gly	Ser	Ile	Asn 1185	Ala	Trp	Ser
Thr	Lys 1190	Glu	Pro	Phe	Ser	Trp 1195	Ile	Lys	Val	Asp	Leu 1200	Leu	Ala	Pro
Met	Ile 1205	Ile	His	Gly	Ile	Lys 1210	Thr	Gln	Gly	Ala	Arg 1215	Gln	Lys	Phe
Ser	Ser 1220	Leu	Tyr	Ile	Ser	Gln 1225	Phe	Ile	Ile	Met	Tyr 1230	Ser	Leu	Asp
Gly	Lys 1235	Lys	Trp	Gln	Thr	Tyr 1240	Arg	Gly	Asn	Ser	Thr 1245	Gly	Thr	Leu
Met	Val 1250	Phe	Phe	Gly	Asn	Val 1255	Asp	Ser	Ser	Gly	Ile 1260	Lys	His	Asn
Ile	Phe 1265	Asn	Pro	Pro	Ile	Ile 1270	Ala	Arg	Tyr	Ile	Arg 1275	Leu	His	Pro

	Thr	His 1280	Tyr	Ser	Ile	Arg	Ser 1285	Thr	Leu	Arg	Met	Glu 1290	Leu	Met	Gly	
	Cys	Asp 1295	Leu	Asn	Ser	Cys	Ser 1300	Met	Pro	Leu	Gly	Met 1305	Glu	Ser	Lys	
	Ala	Ile 1310	Ser	Asp	Ala	Gln	Ile 1315	Thr	Ala	Ser	Ser	Tyr 1320	Phe	Thr	Asn	
	Met	Phe 1325	Ala	Thr	Trp	Ser	Pro 1330	Ser	Lys	Ala	Arg	Leu 1335	His	Leu	Gln	
	Gly	Arg 1340	Ser	Asn	Ala	Trp	Arg 1345	Pro	Gln	Val	Asn	Asn 1350	Pro	Lys	Glu	
	Trp	Leu 1355	Gln	Val	Asp	Phe	Gln 1360	Lys	Thr	Met	Lys	Val 1365	Thr	Gly	Val	
	Thr	Thr 1370	Gln	Gly	Val	Lys	Ser 1375	Leu	Leu	Thr	Ser	Met 1380	Tyr	Val	Lys	
	Glu	Phe 1385	Leu	Ile	Ser	Ser	Ser 1390	Gln	Asp	Gly	His	Gln 1395	Trp	Thr	Leu	
	Phe	Phe 1400	Gln	Asn	Gly	Lys	Val 1405	Lys	Val	Phe	Gln	Gly 1410	Asn	Gln	Asp	
	Ser	Phe 1415	Thr	Pro	Val	Val	Asn 1420	Ser	Leu	Asp	Pro	Pro 1425	Leu	Leu	Thr	
	Arg	Tyr 1430	Leu	Arg	Ile	His	Pro 1435	Gln	Ser	Trp	Val	His 1440	Gln	Ile	Ala	
	Leu	Arg 1445	Met	Glu	Val	Leu	Gly 1450	Cys	Glu	Ala	Gln	Asp 1455	Leu	Tyr		
<210> 4 <211> 14 <212> AD <213> Se	N	cia artifi	cial													
<220> <223> se	cuenc	ia prom	notora	recon	nbinar	nte										
<400> 4		-														
gttaat	catt	aagt	cgtt	aa t	tttt	gtgg	jc cct	tgcg	gatg	tttg	gatat	gg tt	aata	atct	:	60
caggac	aaac	agag	gtta	at a	attt	tcca	ıg ato	tctc	tga	gcaa	tagt	at aa	aagg	gccaç	J	120
cagcag	rcctg	g acca	cato	tc a	tcct	c										146

<210> <211> <212> <213>

<220> <223>

<400>

5

10

45	<220> <223> flX recombinante <400> 8	
40	<210> 8 <211> 1386 <212> ADN <213> Secuencia artificial	
	gcagcctgac cacatctcat cctc	204
	ttgctcactg aaggttacta gttaacaggc atcccttaaa caggatataa aaggccagca	180
	tttgctctgg ttaataatct caggagcaca aacagaggtt aataattttc agtcatatgt	120
	gttaattttt aaaaagcagt caaaagtcca agtggccctt gcgagcattt actctctctg	60
35	<400> 7	
	<220> <223> secuencia promotora recombinante	
30	<210> 7 <211> 204 <212> ADN <213> Secuencia artificial	
25		- / -
	ttgctcactg aaggttacta gttaacaggc atcccttaaa caggatataa aa	172
	gttaattttt aaaaagcagt caaaagtcca agtggccctt gcgagcattt actctctctg tttgctctgg ttaataatct caggagcaca aacagaggtt aataattttc agtcatatgt	60 120
	<400> 6	
20	<223> secuencia promotora recombinante	
	<212> ADN <213> Secuencia artificial <220>	
15	<210> 6 <211> 172	
	tataaaaggc cagcagcagc ctgaccacat ctcatcctc	159
	ttttcagtca tatgtttgct cactgaaggt tactagttaa caggcatccc ttaaacagga	120
	gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcagga caaacataca	60
10	<400> 5	
	<220> <223> secuencia promotora recombinante	
5	<212> ADN <213> Secuencia artificial	
	<210> 5 <211> 159	

atgcagaggg	tgaacatgat	catggctgag	tctcctggac	tgatcaccat	ctgcctgctg	60
ggctatctgc	tgtctgctga	gtgtacagtg	ttcctggacc	atgaaaatgc	taataaaatc	120
ctgaacaggc	caaagaggta	caattctggg	aaactggagg	aatttgtgca	gggaaacctg	180
gagagggaat	gcatggagga	aaagtgtagc	tttgaggaag	ccagggaggt	gtttgaaaat	240
acagagagga	ccacagagtt	ctggaaacag	tatgtggatg	gggatcagtg	tgagtccaac	300
ccctgtctga	atggagggtc	ttgcaaggat	gatatcaact	cctatgagtg	ctggtgtcct	360
tttggatttg	aaggcaagaa	ttgtgagctg	gatgtgacct	gtaacatcaa	aaatgggagg	420
tgtgagcagt	tctgtaagaa	ctctgctgat	aataaagtgg	tctgcagctg	tacagaaggc	480
tacaggctgg	ctgagaacca	gaagagctgt	gaaccagctg	tgcccttccc	ttgtgggagg	540
gtgtctgtca	gccagaccag	caagctgacc	agagctgagg	ctgtgtttcc	tgatgtggat	600
tatgtcaact	ctacagaggc	tgaaaccatc	ctggacaaca	tcacccagtc	tacccagtcc	660
ttcaatgact	ttaccagggt	ggtgggaggg	gaggatgcta	agccaggaca	gttcccctgg	720
caggtggtcc	tgaatggcaa	agtggatgct	ttttgtgggg	gctccattgt	gaatgagaag	780
tggattgtca	cagctgctca	ctgtgtggaa	actggggtca	agatcacagt	ggtggctgga	840
gagcacaaca	ttgaggaaac	tgaacataca	gagcagaaaa	ggaatgtgat	cagaatcatc	900
ccccaccata	actacaatgc	tgctatcaac	aagtataatc	atgacattgc	cctgctggaa	960
ctggatgagc	ctctggtgct	gaacagctat	gtcaccccaa	tctgcattgc	tgacaaggag	1020
tataccaata	tcttcctgaa	atttgggtct	ggatatgtgt	ctgggtgggg	aagggtcttc	1080
cacaagggaa	ggtctgctct	ggtgctgcag	tatctgaggg	tgcccctggt	ggacagagct	1140
acctgcctga	ggagcaccaa	gttcaccatc	tacaacaata	tgttctgtgc	tggatttcat	1200
gagggaggga	gggactcctg	tcagggagat	tctggaggcc	ctcatgtgac	agaggtggaa	1260
ggcaccagct	tcctgactgg	catcatctct	tggggggagg	aatgtgctat	gaaggggaaa	1320
tatggaatct	ataccaaggt	gtccagatat	gtcaactgga	tcaaggagaa	aaccaagctg	1380
acctga						1386

<210> 9

<211> 1386 <212> ADN

<213> Secuencia artificial

<220>

<223> fIX recombinante

10

5

<400> 9

atgcagaggg	tgaacatgat	catggctgag	tctcctggac	tgatcaccat	ctgcctgctg	60
ggctatctgc	tgtctgctga	gtgtacagtg	ttcctggacc	atgaaaatgc	taataaaatc	120
ctgaacaggc	caaagaggta	caattctggg	aaactggagg	aatttgtgca	gggaaacctg	180
gagagggaat	gcatggagga	aaagtgtagc	tttgaggaag	ccagggaggt	gtttgaaaat	240
acagagagga	ccacagagtt	ctggaaacag	tatgtggatg	gggatcagtg	tgagtccaac	300
ccctgtctga	atggagggtc	ttgcaaggat	gatatcaact	cctatgagtg	ctggtgtcct	360
tttggatttg	aaggcaagaa	ttgtgagctg	gatgtgacct	gtaacatcaa	aaatgggagg	420
tgtgagcagt	tctgtaagaa	ctctgctgat	aataaagtgg	tctgcagctg	tacagaaggc	480
tacaggctgg	ctgagaacca	gaagagctgt	gaaccagctg	tgcccttccc	ttgtgggagg	540
gtgtctgtca	gccagaccag	caagctgacc	agagctgagg	ctgtgtttcc	tgatgtggat	600
tatgtcaact	ctacagaggc	tgaaaccatc	ctggacaaca	tcacccagtc	tacccagtcc	660
ttcaatgact	ttaccagggt	ggtgggaggg	gaggatgcta	agccaggaca	gttcccctgg	720
caggtggtcc	tgaatggcaa	agtggatgct	ttttgtgggg	gctccattgt	gaatgagaag	780
tggattgtca	cagctgctca	ctgtgtggaa	actggggtca	agatcacagt	ggtggctgga	840
gagcacaaca	ttgaggaaac	tgaacataca	gagcagaaaa	ggaatgtgat	cagaatcatc	900
ccccaccata	actacaatgc	tgctatcaac	aagtataatc	atgacattgc	cctgctggaa	960
ctggatgagc	ctctggtgct	gaacagctat	gtcaccccaa	tctgcattgc	tgacaaggag	1020
tataccaata	tcttcctgaa	atttgggtct	ggatatgtgt	ctgggtgggg	aagggtcttc	1080
cacaagggaa	ggtctgctct	ggtgctgcag	tatctgaggg	tgcccctggt	ggacagagct	1140
acctgcctgc	tgagcaccaa	gttcaccatc	tacaacaata	tgttctgtgc	tggatttcat	1200
gagggaggga	gggactcctg	tcagggagat	tctggaggcc	ctcatgtgac	agaggtggaa	1260
ggcaccagct	tcctgactgg	catcatctct	tggggggagg	aatgtgctat	gaaggggaaa	1320
tatggaatct	ataccaaggt	gtccagatat	gtcaactgga	tcaaggagaa	aaccaagctg	1380
acctga						1386

<210> 10

<211> 1386 <212> ADN

<213> Secuencia artificial

<220>

<223> fIX recombinante

10

5

<400> 10

atgcagaggg	tgaacatgat	catggctgag	tctcctggac	tgatcaccat	ctgcctgctg	60
ggctatctgc	tgtctgctga	gtgtacagtg	ttcctggacc	atgaaaatgc	taataaaatc	120
ctgaacaggc	caaagaggta	caattctggg	aaactggagg	aatttgtgca	gggaaacctg	180
gagagggaat	gcatggagga	aaagtgtagc	tttgaggaag	ccagggaggt	gtttgaaaat	240
acagagagga	ccacagagtt	ctggaaacag	tatgtggatg	gggatcagtg	tgagtccaac	300
ccctgtctga	atggagggtc	ttgcaaggat	gatatcaact	cctatgagtg	ctggtgtcct	360
tttggatttg	aaggcaagaa	ttgtgagctg	gatgtgacct	gtaacatcaa	aaatgggagg	420
tgtgagcagt	tctgtaagaa	ctctgctgat	aataaagtgg	tctgcagctg	tacagaaggc	480
tacaggctgg	ctgagaacca	gaagagctgt	gaaccagctg	tgcccttccc	ttgtgggagg	540
gtgtctgtca	gccagaccag	caagctgacc	agagctgaga	cagtgtttcc	tgatgtggat	600
tatgtcaact	ctacagaggc	tgaaaccatc	ctggacaaca	tcacccagtc	tacccagtcc	660
ttcaatgact	ttaccagggt	ggtgggaggg	gaggatgcta	agccaggaca	gttcccctgg	720
caggtggtcc	tgaatggcaa	agtggatgct	ttttgtgggg	gctccattgt	gaatgagaag	780
tggattgtca	cagctgctca	ctgtgtggaa	actggggtca	agatcacagt	ggtggctgga	840
gagcacaaca	ttgaggaaac	tgaacataca	gagcagaaaa	ggaatgtgat	cagaatcatc	900
ccccaccata	actacaatgc	tgctatcaac	aagtataatc	atgacattgc	cctgctggaa	960
ctggatgagc	ctctggtgct	gaacagctat	gtcaccccaa	tctgcattgc	tgacaaggag	1020
tataccaata	tcttcctgaa	atttgggtct	ggatatgtgt	ctgggtgggg	aagggtcttc	1080
cacaagggaa	ggtctgctct	ggtgctgcag	tatctgaggg	tgcccctggt	ggacagagct	1140
acctgcctgc	tgagcaccaa	gttcaccatc	tacaacaata	tgttctgtgc	tggatttcat	1200
gagggaggga	gggactcctg	tcagggagat	tctggaggcc	ctcatgtgac	agaggtggaa	1260
ggcaccagct	tcctgactgg	catcatctct	tggggggagg	aatgtgctat	gaaggggaaa	1320
tatggaatct	ataccaaggt	gtccagatat	gtcaactgga	tcaaggagaa	aaccaagctg	1380
acctga						1386

<210> 11

5

10

<211> 4404 <212> ADN

<213> Secuencia artificial

<223> fVIII recombinante

<400> 11

atgcagctgg	aactgtctac	ctgtgtgttt	ctgtgtctgc	tgcctctggg	gttttctgct	60
atcaggagat	actatctggg	agctgtggag	ctgtcctggg	actacaggca	gtctgagctg	120
ctgagagaac	tgcatgtgga	taccagattc	ccagctacag	ctccaggagc	tetgeetetg	180
ggcccatctg	tgctgtacaa	gaaaacagtc	tttgtggagt	ttacagacca	gctgttctct	240
gtggccaggc	caagaccacc	ttggatggga	ctgctgggac	caaccatcca	ggctgaggtg	300
tatgatacag	tggtggtgac	cctgaaaaac	atggcctccc	atcctgtgag	cctgcatgct	360
gtgggggtgt	ccttctggaa	gtcctctgag	ggagctgagt	atgaagacca	tacctcccag	420
agggagaaag	aagatgataa	ggtgctgcct	ggcaaaagcc	agacctatgt	ctggcaggtg	480
ctgaaggaga	atggaccaac	tgcttctgac	ccaccatgcc	tgacctactc	ttatctgtcc	540

catgtggatc	tggtgaagga	cctgaattct	ggactgattg	gagctctgct	ggtgtgtaga	600
gagggaagcc	tgaccagaga	aagaacccag	aacctgcatg	agtttgtcct	gctgtttgct	660
gtgtttgatg	aagggaagag	ctggcactct	gccaggaatg	actcctggac	cagagctatg	720
gatccagctc	ctgctagagc	tcagcctgct	atgcacacag	tcaatggcta	tgtgaatagg	780
tctctgccag	gactgattgg	ctgccataag	aaatctgtct	attggcatgt	gattggaatg	840
ggcaccagcc	ctgaggtgca	ttctatcttc	ctggaaggcc	acacctttct	ggtcaggcac	900
catagacagg	cctctctgga	gatctcccct	ctgaccttcc	tgacagctca	gacctttctg	960
atggacctgg	ggcagttcct	gctgttttgc	catatctctt	cccaccatca	tggaggaatg	1020
gaggctcatg	tcagggtgga	atcctgtgct	gaggaaccac	agctgagaag	aaaggctgat	1080
gaggaagagg	actatgatga	taacctgtat	gactctgata	tggatgtggt	gaggctggat	1140
ggggatgatg	tcagcccttt	catccagatc	aggtctgtgg	ccaagaaaca	tccaaagacc	1200
tgggtccact	acattgctgc	tgaagaggaa	gattgggact	atgcccccct	ggtgctggct	1260
cctgatgata	gatcctacaa	aagccagtat	ctgaacaatg	ggccccagag	gattggaagg	1320
aagtacaaga	aagtgaggtt	catggcctat	acagatgaga	cctttaagac	cagagaggct	1380
atccagcatg	aatctgggat	cctgggacct	ctgctgtatg	gagaagtggg	ggataccctg	1440
ctgatcatct	tcaagaacca	ggcctccagg	ccatacaata	tctatcccca	tggcatcaca	1500
gatgtgagac	cactgtacag	caggagactg	cccaaggggg	tcaaacacct	gaaggatttc	1560
cccatcctgc	ctggagagat	ctttaagtat	aaatggacag	tcacagtgga	agatgggcct	1620
accaagtctg	atccaaggtg	cctgaccaga	tactatagct	cttttgtgaa	catggagaga	1680
gacctggctt	ctggactgat	tggacccctg	ctgatctgtt	acaaagagtc	tgtggaccag	1740
aggggcaacc	agatcatgtc	tgataagaga	aatgtcatcc	tgttctctgt	gtttgatgag	1800
aacaggagct	ggtacctgac	agagaacatc	cagaggttcc	tgccaaatcc	agctggagtg	1860
cagctggagg	acccagaatt	tcaggcttcc	aacatcatgc	atagcatcaa	tggctatgtg	1920
tttgatagcc	tgcagctgtc	tgtctgcctg	catgaggtgg	cctactggta	tatcctgtcc	1980
attggagctc	agacagactt	cctgtctgtg	ttctttagtg	ggtacacctt	taagcataaa	2040
atggtgtatg	aggataccct	gaccctgttc	cccttttctg	gggagacagt	gttcatgtcc	2100
atggaaaacc	ctggcctgtg	gatcctgggg	tgccacaact	ctgacttcag	gaatagagga	2160
atgacagccc	tgctgaaagt	gtccagctgt	gataagaata	caggggatta	ctatgaggac	2220
tcttatgaag	atatctctgc	ttatctgctg	agcaagaaca	atgccattga	gcccaggtct	2280
tttgctcaga	actccagacc	tccatctgct	tctgctccta	agccacctgt	gctgagaaga	2340
catcagaggg	acatctccct	gcctaccttc	cagccagagg	aagataaaat	ggactatgat	2400

gatatettea geacagagad	caagggggaa	gattttgaca	tctatggaga	ggatgaaaac	2460
caggatccaa gatccttcca	a gaagagaacc	agacactact	ttattgctgc	tgtggagcag	2520
ctgtgggact atgggatgt	c tgaaagccca	agggccctga	ggaacagagc	tcagaatgga	2580
gaggtgccca gattcaagaa	a agtggtgttc	agagagtttg	ctgatggcag	ctttacccag	2640
ccatcttaca ggggggagct	gaacaagcat	ctggggctgc	tgggacccta	tatcagagct	2700
gaggtggaag ataacatca	ggtgaccttc	aagaatcagg	cttctaggcc	ctactccttt	2760
tattetteee tgateteeta	a ccctgatgat	caggagcagg	gagctgaacc	taggcacaac	2820
tttgtgcagc caaatgagad	c cagaacctac	ttttggaagg	tgcagcatca	catggctccc	2880
acagaggatg aatttgact	g caaagcttgg	gcctattttt	ctgatgtgga	cctggagaag	2940
gatgtgcatt ctggcctgat	tgggcctctg	ctgatctgta	gggccaacac	cctgaatgct	3000
gctcatggaa gacaggtca	agtgcaggag	tttgctctgt	tctttaccat	ctttgatgaa	3060
accaagagct ggtacttca	agagaatgtg	gaaaggaatt	gcagagcccc	ctgtcatctg	3120
cagatggagg accetaceet	gaaggaaaac	tacaggttcc	atgccatcaa	tggatatgtc	3180
atggataccc tgcctggcct	ggtcatggct	cagaaccaga	ggatcagatg	gtacctgctg	3240
tctatgggat ccaatgagaa	a tatccatagc	atccacttct	ctggccatgt	cttttctgtg	3300
aggaagaaag aggaataca	a aatggctgtg	tacaatctgt	atcctggggt	ctttgagaca	3360
gtggaaatgc tgccaagcaa	a agtgggaatc	tggagaattg	agtgcctgat	tggggaacac	3420
ctgcaggctg ggatgagcad	caccttcctg	gtgtactcta	agaaatgtca	gaccccactg	3480
gggatggcct ctggacata	cagggacttc	cagatcacag	cttctggaca	gtatggacag	3540
tgggctccaa agctggctag	g actgcactat	tctggctcca	tcaatgcctg	gtctaccaaa	3600
gagccattct cctggatca	a ggtggacctg	ctggccccca	tgatcatcca	tggaatcaaa	3660
acccagggag ctaggcaga	a gttcagctct	ctgtacatct	cccagtttat	catcatgtat	3720
agcctggatg ggaagaaat	g gcagacctac	agaggcaatt	ccactgggac	cctgatggtc	3780
ttctttggaa atgtggatto	ctctggcatc	aagcacaaca	tcttcaatcc	acccatcatt	3840
gccaggtaca tcaggctgca	a toctacccac	tatagcatca	ggtctaccct	gagaatggag	3900
ctgatgggat gtgacctga	a cagctgttct	atgccactgg	gcatggagtc	caaggctatc	3960
tctgatgccc agatcacage	ttcttcctac	ttcaccaata	tgtttgctac	ctggtcccca	4020
agcaaggcta gactgcacct	gcagggaaga	tccaatgctt	ggagacccca	ggtgaacaat	4080
cctaaggagt ggctgcagg	ggacttccag	aaaaccatga	aggtcacagg	ggtgaccacc	4140
cagggagtga aatctctgc	gacctccatg	tatgtcaagg	agttcctgat	cagctcttcc	4200
caggatggcc accagtgga	c cctgttcttt	cagaatggca	aggtcaaagt	gttccagggg	4260
aatcaggact cttttaccc	agtggtgaac	tccctggatc	ctccactgct	gaccaggtac	4320

ctgagaatcc atcctcagag ctgggtgcac cagattgctc tgagaatgga ggtcctggga 4380 tgtgaagctc aggacctgta ttga 4404

<210> 12

<211> 4404

<212> ADN

<213> Secuencia artificial

<220>

<223> fVIII recombinante

10

5

<400> 12

atgcagctgg aactgtctac ctgtgtgttt ctgtgtctgc tgcctctggg gttttctgct 60 atccgccgct actatctggg agccgtggag ctgtcctggg actacaggca gagcgagctg 120 180 ctgagagaac tgcacgtgga taccagattc ccagctaccg ctccaggagc tctgcctctg 240 ggcccatccg tgctgtacaa gaaaaccgtc ttcgtggagt ttaccgacca gctgttcagc 300 gtggccaggc caagaccacc ttggatggga ctgctgggac caaccatcca ggctgaggtg 360 tacgataccg tggtcgtgac cctgaaaaac atggcctccc atcccgtgag cctgcacgct 420 gtcggggtgt ccttctggaa gtccagcgag ggagccgagt acgaagacca tacctcccag cqcqaqaaaq aaqacqataa qqtqctqcct qqcaaaaqcc aqacctatqt ctqqcaqqtq 480 540 ctgaaggaga acggaccaac cgctagcgac ccaccatgcc tgacctactc ttatctgtcc cacgtcgatc tggtgaagga cctgaattcc ggactgatcg gagctctgct ggtgtgtaga 600 gagggaagcc tgaccagaga aagaacccag aacctgcatg agttcgtcct gctgttcgcc 660 720 gtgtttgacg aagggaagag ctggcactct gcccgcaatg actcctggac cagagctatg 780 gatecagete etgetagage teageetget atgeacaceg teaacggeta egtgaategg 840 tctctgccag gactgatcgg ctgccataag aaaagcgtct attggcacgt gatcggaatg 900 ggcaccagcc ccgaggtgca ttctatcttc ctggaaggcc acacctttct ggtcaggcac catagacagg cctctctgga gatctcccct ctgaccttcc tgaccgctca gacctttctg 960 1020 atggacctgg ggcagttcct gctgttttgc catatctctt cccaccatca cggaggaatg gaggeteacg teagggtgga atcetgtget gaggaaceae agetgagaag aaaggetgat 1080 gaggaagagg actacgacga taacctgtat gacagcgata tggacgtcgt gcgcctggac 1140 ggcgacgatg tcagcccttt catccagatc cggtctgtgg ccaagaaaca tccaaagacc 1200 1260 tgggtccact acatcgccgc tgaagaggaa gattgggact atgcccccct ggtgctggct cctgacgata gatcctacaa aagccagtat ctgaacaatg ggccccagcg catcggacgg 1320 1380 aagtacaaga aagtgaggtt catggcctat accgacgaga cctttaagac cagagaggct atccagcacg aatccgggat cctgggacct ctgctgtacg gcgaagtggg ggataccctg 1440

ctgatcatct tcaagaacca	ggcctccagg	ccatacaata	tctatcccca	tggcatcacc	1500
gacgtgagac cactgtacag	caggagactg	cccaaggggg	tcaaacacct	gaaggatttc	1560
cccatcctgc ctggagagat	ctttaagtat	aaatggaccg	tcaccgtgga	agacgggcct	1620
accaagtccg atccacgctg	cctgacccgg	tactatagct	ctttcgtgaa	catggagaga	1680
gacctggcta gcggactgat	cggacccctg	ctgatctgtt	acaaagagag	cgtggaccag	1740
aggggcaacc agatcatgtc	tgataagaga	aatgtcatcc	tgttctccgt	gtttgacgag	1800
aaccgcagct ggtacctgac	cgagaacatc	cagcggttcc	tgccaaatcc	agctggagtg	1860
cagctggagg acccagaatt	tcaggcttcc	aacatcatgc	atagcatcaa	tggctacgtg	1920
ttcgatagcc tgcagctgtc	tgtctgcctg	cacgaggtgg	cctactggta	tatcctgtcc	1980
atcggcgctc agaccgactt	cctgtccgtg	ttctttagcg	ggtacacctt	taagcataaa	2040
atggtgtatg aggataccct	gaccctgttc	cccttttctg	gcgagaccgt	gttcatgtcc	2100
atggaaaacc ctggcctgtg	gatcctgggg	tgccacaaca	gcgacttcag	gaatagagga	2160
atgaccgccc tgctgaaagt	gtccagctgt	gataagaata	ccggcgatta	ctatgaggac	2220
tcttacgaag atatctccgc	ttatctgctg	agcaagaaca	atgccatcga	gcccaggtct	2280
ttcgctcaga actccagacc	tccaagcgct	tctgctccta	agccacctgt	gctgagaaga	2340
catcagaggg acatctccct	gcctaccttc	cagccagagg	aagataaaat	ggactacgac	2400
gatatettea geacegagae	caagggggaa	gattttgaca	tctatggaga	ggacgaaaac	2460
caggatccaa gatccttcca	gaagagaacc	agacactact	ttatcgccgc	tgtggagcag	2520
ctgtgggact atgggatgtc	cgaaagccca	cgggccctga	ggaacagagc	tcagaatgga	2580
gaggtgcccc gcttcaagaa	agtcgtgttc	cgggagtttg	ccgacggcag	ctttacccag	2640
ccatcttaca ggggggagct	gaacaagcat	ctggggctgc	tgggacccta	tatcagagcc	2700
gaggtcgaag ataacatcat	ggtgaccttc	aagaatcagg	cttctcgccc	ctactccttt	2760
tattcttccc tgatctccta	ccctgacgat	caggagcagg	gcgccgaacc	taggcacaac	2820
ttcgtgcagc caaatgagac	cagaacctac	ttttggaagg	tgcagcatca	catggctccc	2880
accgaggatg aattcgactg	caaagcttgg	gcctattttt	ccgatgtcga	cctggagaag	2940
gacgtgcata gcggcctgat	cgggcctctg	ctgatctgtc	gcgccaacac	cctgaatgct	3000
gctcacggaa gacaggtcac	cgtgcaggag	ttcgctctgt	tctttaccat	ctttgacgaa	3060
accaagagct ggtacttcac	cgagaacgtg	gaaaggaatt	gcagagcccc	ctgtcatctg	3120
cagatggagg accctaccct	gaaggaaaac	tacaggttcc	acgccatcaa	tggatatgtc	3180
atggataccc tgcccggcct	ggtcatggct	cagaaccagc	gcatccggtg	gtacctgctg	3240
tctatgggat ccaacgagaa	tatccatagc	atccacttct	ctggccatgt	cttttccgtg	3300
aggaagaaag aggaatacaa	aatggccgtg	tacaatctgt	atcctggggt	cttcgagacc	3360

gtggaaatgc	tgccaagcaa	agtgggaatc	tggagaatcg	agtgcctgat	cggcgaacac	3420
ctgcaggccg	ggatgagcac	caccttcctg	gtgtactcta	agaaatgtca	gaccccactg	3480
gggatggcct	ccggacatat	ccgcgacttc	cagatcaccg	ctagcggaca	gtacggacag	3540
tgggctccaa	agctggctag	actgcactat	tctggctcca	tcaacgcctg	gtctaccaaa	3600
gagccattct	cctggatcaa	ggtggacctg	ctggccccca	tgatcatcca	cggaatcaaa	3660
acccagggcg	ctaggcagaa	gttcagctct	ctgtacatct	cccagtttat	catcatgtat	3720
agcctggacg	ggaagaaatg	gcagacctac	agaggcaatt	ccaccgggac	cctgatggtc	3780
ttctttggaa	acgtggattc	cagcggcatc	aagcacaaca	tcttcaatcc	acccatcatc	3840
gcccgctaca	tccggctgca	tcctacccac	tatagcatca	ggtctaccct	gagaatggag	3900
ctgatgggat	gcgacctgaa	cagctgttct	atgccactgg	gcatggagtc	caaggctatc	3960
agcgatgccc	agatcaccgc	ttcttcctac	ttcaccaata	tgtttgctac	ctggtcccca	4020
agcaaggcta	gactgcacct	gcagggaaga	tccaacgctt	ggagacccca	ggtgaacaat	4080
cctaaggagt	ggctgcaggt	cgacttccag	aaaaccatga	aggtcaccgg	ggtgaccacc	4140
cagggagtga	aatctctgct	gacctccatg	tacgtcaagg	agttcctgat	cagctcttcc	4200
caggacggcc	accagtggac	cctgttcttt	cagaacggca	aggtcaaagt	gttccagggg	4260
aatcaggact	cttttacccc	cgtcgtgaac	tccctggatc	ctccactgct	gaccaggtac	4320
ctgagaatcc	atcctcagag	ctgggtgcac	cagatcgctc	tgagaatgga	ggtcctggga	4380
tgcgaagctc	aggacctgta	ttga				4404

<210> 13

<211> 391

<212> PRT

<213> Secuencia artificial

<220>

<223> secuencia promotora recombinante

10 <400> 13

Cys Phe Ser Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser 20 25 30

Trp Asp Tyr Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg 35 40 45

Phe Pro Pro Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val 50 55 60

Tyr 65	Lys	Lys	Thr	Leu	Phe 70	Val	Glu	Phe	Thr	Val 75	His	Leu	Phe	Asn	Ile 80
Ala	Lys	Pro	Arg	Pro 85	Pro	Trp	Met	Gly	Leu 90	Leu	Gly	Pro	Thr	Ile 95	Gln
Ala	Glu	Val	Tyr 100	Asp	Thr	Val	Val	Ile 105	Thr	Leu	Lys	Asn	Met 110	Ala	Ser
His	Pro	Val 115	Ser	Leu	His	Ala	Val 120	Gly	Val	Ser	Tyr	Trp 125	Lys	Ala	Ser
Glu	Gly 130	Ala	Glu	Tyr	Asp	Asp 135	Gln	Thr	Ser	Gln	Arg 140	Glu	Lys	Glu	Asp
Asp 145	Lys	Val	Phe	Pro	Gly 150	Gly	Ser	His	Thr	Tyr 155	Val	Trp	Gln	Val	Leu 160
Lys	Glu	Asn	Gly	Pro 165	Met	Ala	Ser	Asp	Pro 170	Leu	Cys	Leu	Thr	Tyr 175	Ser
Tyr	Leu	Ser	His 180	Val	Asp	Leu	Val	Lys 185	Asp	Leu	Asn	Ser	Gly 190	Leu	Ile
Gly	Ala	Leu 195	Leu	Val	Cys	Arg	Glu 200	Gly	Ser	Leu	Ala	Lys 205	Glu	Lys	Thr
Gln	Thr 210	Leu	His	Lys	Phe	Ile 215	Leu	Leu	Phe	Ala	Val 220	Phe	Asp	Glu	Gly
Lys 225	Ser	Trp	His	Ser	Glu 230	Thr	Lys	Asn	Ser	Leu 235	Met	Gln	Asp	Arg	Asp 240
Ala	Ala	Ser	Ala	Arg 245	Ala	Trp	Pro	Lys	Met 250	His	Thr	Val	Asn	Gly 255	Tyr
Val	Asn	Arg	Ser 260	Leu	Pro	Gly	Leu	Ile 265	Gly	Cys	His	Arg	Lys 270	Ser	Val
Tyr	Trp	His 275	Val	Ile	Gly	Met	Gly 280	Thr	Thr	Pro	Glu	Val 285	His	Ser	Ile
Phe	Leu 290	Glu	Gly	His	Thr	Phe 295	Leu	Val	Arg	Asn	His 300	Arg	Gln	Ala	Ser
Leu 305	Glu	Ile	Ser	Pro	Ile 310	Thr	Phe	Leu	Thr	Ala 315	Gln	Thr	Leu	Leu	Met 320

Asp Leu Gly Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His 325 330 335

	Asp G	ly Me	t Glu 340		Tyr	Val	Lys	Val 345	Asp S	er C	ys Pi	ro Gl 35		ı Pro	
	Gln L	eu Ar 35	_	Lys	Asn	Asn	Glu 360	Glu	Ala (Glu A		yr As	p Asp	Asp	
	Leu T	hr As	p Ser	Glu	Met	Asp 375	Val	Val .	Arg I	_	sp As 80	sp As	p Asr	n Ser	
	Pro S 385	er Ph	e Ile	Gln	Ile 390	Arg									
<210> 14 <211> 391 <212> PRT <213> Sec		artificia	I												
<220> <223> secu	uencia p	oromoto	ora rec	ombir	nante										
<400> 14															
Me 1	t Gln	Leu	Glu	Leu 5	Ser	Thr	Cys	Val	Phe 10	Leu	Cys	Leu	Leu	Pro 15	Leu
G1	y Phe	Ser	Ala 20	Ile	Arg	Arg	Tyr	Tyr 25	Leu	Gly	Ala	Val	Glu 30	Leu	Ser
Tr	p Asp	Tyr 35	Arg	Gln	Ser	Glu	Leu 40	Leu	Arg	Glu	Leu	His 45	Val	Asp	Thr
Ar	g Phe 50	Pro	Ala	Thr	Ala	Pro 55	Gly	Ala	Leu	Pro	Leu 60	Gly	Pro	Ser	Val
Le 65	u Tyr	Lys	Lys	Thr	Val 70	Phe	Val	Glu	Phe	Thr 75	Asp	Gln	Leu	Phe	Ser 80
Va	l Ala	Arg	Pro	Arg 85	Pro	Pro	Trp	Met	Gly 90	Leu	Leu	Gly	Pro	Thr 95	Ile
Gl	n Ala	Glu	Val 100	Tyr	Asp	Thr	Val	Val 105	Val	Thr	Leu	Lys	Asn 110	Met	Ala
Se	r His	Pro 115	Val	Ser	Leu	His	Ala 120		Gly	Val	Ser	Phe 125	Trp	Lys	Ser

5

10

Ser (Glu 130	Gly	Ala	Glu	Tyr	Glu 135	Asp	His	Thr	Ser	Gln 140	Arg	Glu	Lys	Glu
Asp 2	Asp	Lys	Val	Leu	Pro 150	Gly	Lys	Ser	Gln	Thr 155	Tyr	Val	Trp	Gln	Val 160
Leu :	Lys	Glu	Asn	Gly 165	Pro	Thr	Ala	Ser	Asp 170	Pro	Pro	Cys	Leu	Thr 175	Tyr
Ser '	Tyr	Leu	Ser 180	His	Val	Asp	Leu	Val 185	Lys	Asp	Leu	Asn	Ser 190	Gly	Leu
Ile	Gly	Ala 195	Leu	Leu	Val	Cys	Arg 200	Glu	Gly	Ser	Leu	Thr 205	Arg	Glu	Arg
Thr (Gln 210	Asn	Leu	His	Glu	Phe 215	Val	Leu	Leu	Phe	Ala 220	Val	Phe	Asp	Glu
Gly : 225	Lys	Ser	Trp	His	Ser 230	Ala	Arg	Asn	Asp	Ser 235	Trp	Thr	Arg	Ala	Met 240
Asp 1	Pro	Ala	Pro	Ala 245	Arg	Ala	Gln	Pro	A la 250	Met	His	Thr	Val	As n 255	Gly
Tyr '	Val	Asn	Arg 260	Ser	Leu	Pro	Gly	Leu 265	Ile	Gly	Cys	His	Lys 270	Lys	Ser
Val '	Tyr	Trp 275	His	Val	Ile	Gly	Met 280	Gly	Thr	Ser	Pro	Glu 285	Val	His	Ser
Ile i	Phe 290	Leu	Glu	Gly	His	Thr 295	Phe	Leu	Val	Arg	His 300	His	Arg	Gln	Ala
Ser :	Leu	Glu	Ile	Ser	Pro 310	Leu	Thr	Phe	Leu	Thr 315	Ala	Gln	Thr	Phe	Leu 320
Met 2	Asp	Leu	Gly	Gln 325	Phe	Leu	Leu	Phe	Cys 330	His	Ile	Ser	Ser	His 335	His
His (Gly	Gly	Met 340	Glu	Ala	His	Val	Arg 345	Val	Glu	Ser	Cys	Ala 350	Glu	Glu
Pro (Gln	Leu 355	Arg	Arg	Lys	Ala	Asp 360	Glu	Glu	Glu	Asp	Tyr 365	Asp	Asp	Asn
Leu '	Tyr 370	Asp	Ser	Asp	Met	Asp 375	Val	Val	Arg	Leu	Asp 380	Gly	Asp	Asp	Val

Ser Pro Phe Ile Gln Ile Arg

5	<210> 7 <211> 3 <212> F <213> 3	371 PRT	ncia a	rtificia	I												
40	<220> <223> s	secuer	ncia pi	romoto	ora re	combi	nante										
10	<400>	15															
		Glu 1	Ile	Thr	Arg	Thr 5	Thr	Leu	Gln	Ser	Asp 10	Gln	Glu	Glu	Ile	Asp 15	Tyr
		Asp	Asp	Thr	Ile 20	Ser	Val	Glu	Met	Lys 25	Lys	Glu	Asp	Phe	Asp 30	Ile	Tyr
		Asp	Glu	Asp 35	Glu	Asn	Gln	Ser	Pro 40	Arg	Ser	Phe	Gln	Lys 45	Lys	Thr	Arg
		His	Tyr 50	Phe	Ile	Ala	Ala	Val 55	Glu	Arg	Leu	Trp	Asp 60	Tyr	Gly	Met	Ser
		Ser 65	Ser	Pro	His	Val	Leu 70	Arg	Asn	Arg	Ala	Gln 75	Ser	Gly	Ser	Val	Pro 80
		Gln	Phe	Lys	Lys	Val 85	Val	Phe	Gln	Glu	Phe 90	Thr	Asp	Gly	Ser	Phe 95	Thr
		Gln	Pro	Leu	Tyr 100	Arg	Gly	Glu	Leu	Asn 105	Glu	His	Leu	Gly	Leu 110	Leu	Gly
		Pro	Tyr	Ile 115	Arg	Ala	Glu	Val	Glu 120	Asp	Asn	Ile	Met	Val 125	Thr	Phe	Arg
		Asn	Gln 130	Ala	Ser	Arg	Pro	Tyr 135	Ser	Phe	Tyr	Ser	Ser 140	Leu	Ile	Ser	Tyr
		Glu 145	Glu	Asp	Gln	Arg	Gln 150	Gly	Ala	Glu	Pro	Arg 155	Lys	Asn	Phe	Val	Lys 160
		Pro	Asn	Glu	Thr	Lys 165	Thr	Tyr	Phe	Trp	Lys 170	Val	Gln	His	His	Met 175	Ala
		Pro	Thr	Lys	Asp 180	Glu	Phe	Asp	Cys	Lys 185	Ala	Trp	Ala	Tyr	Phe 190	Ser	Asp

Va	ıl.	Asp	Leu 195	Glu	Lys	Asp	Val	His 200	Ser	Gly	Leu	Ile	Gly 205	Pro	Leu	Leu
Va		Cys 210	His	Thr	Asn	Thr	Leu 215	Asn	Pro	Ala	His	Gly 220	Arg	Gln	Val	Thr
Va 22		Gln	Glu	Phe	Ala	Leu 230	Phe	Phe	Thr	Ile	Phe 235	Asp	Glu	Thr	Lys	Ser 240
Tr	rp	Tyr	Phe	Thr	Glu 245	Asn	Met	Glu	Arg	Asn 250	Cys	Arg	Ala	Pro	Cys 255	Asn
11	.е	Gln	Met	Glu 260	Asp	Pro	Thr	Phe	Lys 265	Glu	Asn	Tyr	Arg	Phe 270	His	Ala
11	.е .	Asn	Gly 275	Tyr	Ile	Met	Asp	Thr 280	Leu	Pro	Gly	Leu	Val 285	Met	Ala	Gln
As	_	Gln 290	Arg	Ile	Arg	Trp	Tyr 295	Leu	Leu	Ser	Met	Gly 300	Ser	Asn	Glu	Asn
11 30		His	Ser	Ile	His	Phe 310	Ser	Gly	His	Val	Phe 315	Thr	Val	Arg	Lys	Lys 320
G1	.u	Glu	Tyr	Lys	Met 325	Ala	Leu	Tyr	Asn	Leu 330	Tyr	Pro	Gly	Val	Phe 335	Glu
Th	r '	Val	Glu	Met 340	Leu	Pro	Ser	Lys	Ala 345	Gly	Ile	Trp	Arg	Val 350	Glu	Cys
Le	eu		Gly 355		His			Ala 360		Met	Ser	Thr	Leu 365		Leu	Val
Ту		Ser 370	Asn													
<210> 16 <211> 371 <212> PRT <213> Sect		cia ar	tificial													
<220> <223> secu	iend	cia pr	omoto	ra rec	ombir	nante										
<400> 16																

Asp Ile Ser Leu Pro Thr Phe Gln Pro Glu Glu Asp Lys Met Asp Tyr 1 5 10 15

5

10

Asp	Asp	Ile	Phe 20	Ser	Thr	Glu	Thr	Lys 25	Gly	Glu	Asp	Phe	Asp 30	Ile	Tyr
Gly	Glu	Asp 35	Glu	Asn	Gln	Asp	Pro 40	Arg	Ser	Phe	Gln	Lys 45	Arg	Thr	Arg
His	Tyr 50	Phe	Ile	Ala	Ala	Val 55	Glu	Gln	Leu	Trp	Asp 60	Tyr	Gly	Met	Ser
Glu 65	Ser	Pro	Arg	Ala	Leu 70	Arg	Asn	Arg	Ala	Gln 75	Asn	Gly	Glu	Val	Pro 80
Arg	Phe	Lys	Lys	Val 85	Val	Phe	Arg	Glu	Phe 90	Ala	Asp	Gly	Ser	Phe 95	Thr
Gln	Pro	Ser	Tyr 100	Arg	Gly	Glu	Leu	Asn 105	Lys	His	Leu	Gly	Leu 110	Leu	Gly
Pro	Tyr	Ile 115	Arg	Ala	Glu	Val	Glu 120	Asp	Asn	Ile	Met	Val 125	Thr	Phe	Lys
Asn	Gln 130	Ala	Ser	Arg	Pro	Tyr 135	Ser	Phe	Tyr	Ser	Ser 140	Leu	Ile	Ser	Tyr
Pro 145	Asp	Asp	Gln	Glu	Gln 150	Gly	Ala	Glu	Pro	Arg 155	His	Asn	Phe	Val	Gln 160
Pro	Asn	Glu	Thr	Arg 165	Thr	Tyr	Phe	Trp	Lys 170	Val	Gln	His	His	Met 175	Ala
Pro	Thr	Glu	Asp 180	Glu	Phe	Asp	Cys	Lys 185	Ala	Trp	Ala	Tyr	Phe 190	Ser	Asp
Val	Asp	Leu 195	Glu	Lys	Asp	Val	His 200	Ser	Gly	Leu	Ile	Gly 205	Pro	Leu	Leu
Ile	Cys 210	Arg	Ala	Asn	Thr	Leu 215	Asn	Ala	Ala	His	Gly 220	Arg	Gln	Val	Thr
Val 225	Gln	Glu	Phe	Ala	Leu 230	Phe	Phe	Thr	Ile	Phe 235	Asp	Glu	Thr	Lys	Ser 240
Trp	Tyr	Phe	Thr	Glu 245	Asn	Val	Glu	Arg	Asn 250	Cys	Arg	Ala	Pro	Cys 255	His
Leu	Gln	Met	Glu 260	Asp	Pro	Thr	Leu	Lys 265	Glu	Asn	Tyr	Arg	Phe 270	His	Ala

	Ile	Asn	Gly 275	Tyr	Val	Met	Asp	Thr 280	Leu	Pro	Gly	Leu	Val 285	Met	Ala	Gln
	Asn	Gln 290	Arg	Ile	Arg	Trp	Tyr 295	Leu	Leu	Ser	Met	Gly 300	Ser	Asn	Glu	Asn
	Ile 305		Ser	Ile	His	Phe 310	Ser	Gly	His	Val	Phe 315	Ser	Val	Arg	Lys	Lys 320
	Glu	Glu	Tyr	Lys	Met 325	Ala	Val	Tyr	Asn	Leu 330	Tyr	Pro	Gly	Val	Phe 335	Glu
	Thr	Val	Glu	Met 340	Leu	Pro	Ser	Lys	Val 345	Gly	Ile	Trp	Arg	Ile 350	Glu	Cys
	Leu	Ile	Gly 355	Glu	His	Leu	Gln	Ala 360	Gly	Met	Ser	Thr	Thr 365	Phe	Leu	Val
	Tyr	Ser 370	Lys													
<210> 17 <211> 461 <212> PR <213> Sec	Т	a artif	icial													
<220> <223> flX	recon	nbinar	nte													
<400> 17																
	Met 1	Gln	Arg	Val	Asn 5	Met	Ile	Met	Ala	Glu 10	Ser	Pro	Gly	Leu	Ile 15	Thr
	Ile	Cys	Leu	Leu 20	Gly	Tyr	Leu	Leu	Ser 25	Ala	Glu	Cys	Thr	Val 30	Phe	Leu
	Asp	His	Glu 35	Asn	Ala	Asn	Lys	Ile 40	Leu	Asn	Arg	Pro	Lys 45	Arg	Tyr	Asn
	Ser	Gly 50	Lys	Leu	Glu	Glu	Phe 55	Val	Gln	Gly	Asn	Leu 60	Glu	Arg	Glu	Cys
	Met 65	Glu	Glu	Lys	Cys	Ser 70	Phe	Glu	Glu	Ala	Arg 75	Glu	Val	Phe	Glu	Asn 80
	Thr	Glu	Arg	Thr	Thr 85	Glu	Phe	Trp	Lys	Gln 90	Tyr	Val	Asp	Gly	Asp 95	Gln

5

10

Cys	Glu	Ser	Asn 100	Pro	Cys	Leu	Asn	Gly 105	Gly	Ser	Cys	Lys	Asp 110	Asp	Ile
Asn	Ser	Tyr 115	Glu	Cys	Trp	Cys	Pro 120	Phe	Gly	Phe	Glu	Gly 125	Lys	Asn	Cys
Glu	Leu 130	Asp	Val	Thr	Cys	Asn 135	Ile	Lys	Asn	Gly	Arg 140	Cys	Glu	Gln	Phe
Cys 145	Lys	Asn	Ser	Ala	Asp 150	Asn	Lys	Val	Val	Cys 155	Ser	Cys	Thr	Glu	Gly 160
Tyr	Arg	Leu	Ala	Glu 165	Asn	Gln	Lys	Ser	Cys 170	Glu	Pro	Ala	Val	Pro 175	Phe
Pro	Cys	Gly	A rg 180	Val	Ser	Val	Ser	Gln 185	Thr	Ser	Lys	Leu	Thr 190	Arg	Ala
Glu	Ala	Val 195	Phe	Pro	Asp	Val	Asp 200	Tyr	Val	Asn	Ser	Thr 205	Glu	Ala	Glu
Thr	Ile 210	Leu	Asp	Asn	Ile	Thr 215	Gln	Ser	Thr	Gln	Ser 220	Phe	Asn	Asp	Phe
Thr 225	Arg	Val	Val	Gly	Gly 230	Glu	Asp	Ala	Lys	Pro 235	Gly	Gln	Phe	Pro	Trp 240
Gln	Val	Val	Leu	Asn 245	Gly	Lys	Val	Asp	Ala 250	Phe	Cys	Gly	Gly	Ser 255	Ile
Val	Asn	Glu	Lys 260	Trp	Ile	Val	Thr	Ala 265	Ala	His	Cys	Val	Glu 270	Thr	Gly
Val	Lys	Ile 275	Thr	Val	Val	Ala	Gly 280	Glu	His	Asn	Ile	Glu 285	Glu	Thr	Glu
His	Thr 290	Glu	Gln	Lys	Arg	Asn 295	Val	Ile	Arg	Ile	Ile 300	Pro	His	His	Asn
Tyr 305	Asn	Ala	Ala	Ile	Asn 310	Lys	Tyr	Asn	His	Asp 315	Ile	Ala	Leu	Leu	Glu 320
Leu	Asp	Glu	Pro	Leu 325	Val	Leu	Asn	Ser	Tyr 330	Val	Thr	Pro	Ile	Cys 335	Ile
Ala	Asp	Lys	Glu 340	Tyr	Thr	Asn	Ile	Phe 345	Leu	Lys	Phe	Gly	Ser 350	Gly	Tyr

	Val	. Ser	: Gly 355	_	Gly	Arg	y Val	360		. Lys	Gly	Arc	365		ı Leı	ı Val
	Leu	370		Leu	ı Arç	η Val	. Pro 375		ı Val	. Asp	Arg	380		: Сув	s Lei	ı Arg
	Ser 385		Lys	. Phe	. Thr	390	_	: Asn	a Asr	n Met	Phe 395	_	a Ala	Gly	7 Ph€	His
	Glu	Gly	Gly	Arg	Asp 405		: Cys	Gln	Gly	410		: Gly	, Gly	Pro	His 415	s Val
	Thr	Glu	ı Val	. Glu 420		7 Thr	Ser	Phe	Leu 425		Gly	, Il∈	e Ile	Ser 430		Gly
	Glu	Glu	Cys 435		. Met	. Lys	: Gly	Lys 440		: Gly	Ile	• Туг	Thr 445		s Val	L Ser
	Arg	Tyr 450		. Asn	Trp) Ile	Lys 455		ı Lys	Thr	Lys	460		;		
<210> 18 <211> 46 <212> PF <213> Se	61 RT	cia ar	tificial													
<220> <223> fl>	〈 reco	mbina	ante													
<400> 18	3															
	Met 1	Gln	Arg	Val	Asn 5	Met	Ile	Met	Ala	Glu 10	Ser	Pro	Gly	Leu	Ile 15	Thr
	Ile	Cys	Leu	Leu 20	Gly	Tyr	Leu	Leu	Ser 25	Ala	Glu	Cys	Thr	Val 30	Phe	Leu
	Asp	His	Glu 35	Asn	Ala	Asn	Lys	Ile 40	Leu	Asn	Arg	Pro	Lys 45	Arg	Tyr	Asn
	Ser	Gly 50	Lys	Leu	Glu	Glu	Phe 55	Val	Gln	Gly	Asn	Leu 60	Glu	Arg	Glu	Cys
	Met 65	Glu	Glu	Lys	Cys	Ser 70	Phe	Glu	Glu	Ala	Arg 75	Glu	Val	Phe	Glu	Asn 80
	Thr	Glu	Arg	Thr	Thr 85	Glu	Phe	Trp	Lys	Gln 90	Tyr	Val	Asp	Gly	Asp 95	Gln

5

10

Cys	Glu	Ser	Asn 100	Pro	Cys	Leu	Asn	Gly 105	Gly	Ser	Cys	Lys	Asp 110	Asp	Ile
Asn	Ser	Tyr 115	Glu	Cys	Trp	Cys	Pro 120	Phe	Gly	Phe	Glu	Gly 125	Lys	Asn	Cys
Glu	Leu 130	Asp	Val	Thr	Cys	Asn 135	Ile	Lys	Asn	Gly	Arg 140	Cys	Glu	Gln	Phe
Cys 145	Lys	Asn	Ser	Ala	Asp 150	Asn	Lys	Val	Val	Cys 155	Ser	Cys	Thr	Glu	Gly 160
Tyr	Arg	Leu	Ala	Glu 165	Asn	Gln	Lys	Ser	Cys 170	Glu	Pro	Ala	Val	Pro 175	Phe
Pro	Cys	Gly	Arg 180	Val	Ser	Val	Ser	Gln 185	Thr	Ser	Lys	Leu	Thr 190	Arg	Ala
Glu	Ala	Val 195	Phe	Pro	Asp	Val	Asp 200	Tyr	Val	Asn	Ser	Thr 205	Glu	Ala	Glu
Thr	Ile 210	Leu	Asp	Asn	Ile	Thr 215	Gln	Ser	Thr	Gln	Ser 220	Phe	Asn	Asp	Phe
Thr 225	Arg	Val	Val	Gly	Gly 230	Glu	Asp	Ala	Lys	Pro 235	Gly	Gln	Phe	Pro	Trp 240
Gln	Val	Val	Leu	Asn 245	Gly	Lys	Val	Asp	Ala 250	Phe	Cys	Gly	Gly	Ser 255	Ile
Val	Asn	Glu	Lys 260	Trp	Ile	Val	Thr	Ala 265	Ala	His	Cys	Val	Glu 270	Thr	Gly
Val	Lys	Ile 275	Thr	Val	Val	Ala	Gly 280	Glu	His	Asn	Ile	Glu 285	Glu	Thr	Glu
His	Thr 290	Glu	Gln	Lys	Arg	Asn 295	Val	Ile	Arg	Ile	Ile 300	Pro	His	His	Asn
Tyr 305	Asn	Ala	Ala	Ile	Asn 310	Lys	Tyr	Asn	His	Asp 315	Ile	Ala	Leu	Leu	Glu 320
Leu	Asp	Glu	Pro	Leu 325	Val	Leu	Asn	Ser	Tyr 330	Val	Thr	Pro	Ile	Cys 335	Ile
Ala	Asp	Lys	Glu 340	Tyr	Thr	Asn	Ile	Phe 345	Leu	Lys	Phe	Gly	Ser 350	Gly	Tyr

	Val	. Se		1y 555	Trp	Gly	Arg	Val	Phe 360	His	Lys	Gly	Arg	365		a Le	eu Val
	Leu	ı Gl 37		'yr	Leu	Arg	Val	Pro 375	Leu	Val	Asp	Arg	Ala 380		с Су	s Le	eu Leu
	Ser 385		r I	ys	Phe	Thr	Ile 390	Tyr	Asn	Asn	Met	Phe 395	_	Ala	a Gl	y Pl	ne His 400
	Glu	ı Gl	уΘ	ly	Arg	Asp 405	Ser	Cys	Gln	Gly	Asp 410	Ser	Gly	Gl _y	y Pr		ls Val 15
	Thr	Gl	u V	'al	Glu 420	Gly	Thr	Ser	Phe	Leu 425	Thr	Gly	Ile	: Ile	e Se 43	_	rp Gly
	Glu	ı Gl		ys 35	Ala	Met	Lys	Gly	Lys 440	Tyr	Gly	Ile	Tyr	Th:	_	s Va	al Ser
	Arç	, Ту 45		'al	Asn	Trp	Ile	Lys 455	Glu	Lys	Thr	Lys	Leu 460		c		
<210><211><211><212><213>	461 PR		ia ar	tificia	al												
<220> <223>		econ	nbina	ante													
<400>	19																
		Met 1	Glr	n Ar	g Va	1 As :	n Met	: Ile	Met	Ala	Glu 10	Ser	Pro	Gly	Leu	Ile 15	Thr
		Ile	Суз	s Le	u Le 20		у Туг	: Leu	Leu	Ser 25	Ala	Glu	Cys	Thr	Val 30	Phe	Leu
		Asp	His	35		n Al	a Asr	Lys	Ile 40	Leu	Asn	Arg	Pro	Lys 45	Arg	Tyr	Asn
		Ser	Gly 50	, Ly	s Le	u Gl	u Glu	Phe 55	Val	Gln	Gly	Asn	Leu 60	Glu	Arg	Glu	Cys
		Met 65	Glu	ı Gl	u Ly	s Cy	s Ser 70	Phe	Glu	Glu	Ala	Arg 75	Glu	Val	Phe	Glu	Asn 80
		Thr	Glu	ı Ar	g Th	r Th:	r Glu	. Phe	Trp	Lys	Gln 90	Tyr	Val	Asp	Gly	Asp 95	Gln

Cys	Glu	Ser	Asn 100	Pro	Cys	Leu	Asn	Gly 105	Gly	Ser	Суѕ	Lys	Asp 110	Asp	Ile
Asn	Ser	Tyr 115	Glu	Cys	Trp	Cys	Pro 120	Phe	Gly	Phe	Glu	Gly 125	Lys	Asn	Cys
Glu	Leu 130	Asp	Val	Thr	Cys	Asn 135	Ile	Lys	Asn	Gly	Arg 140	Cys	Glu	Gln	Phe
Cys 145	Lys	Asn	Ser	Ala	Asp 150	Asn	Lys	Val	Val	Cys 155	Ser	Cys	Thr	Glu	Gly 160
Tyr	Arg	Leu	Ala	Glu 165	Asn	Gln	Lys	Ser	Cys 170	Glu	Pro	Ala	Val	Pro 175	Phe
Pro	Cys	Gly	Arg 180	Val	Ser	Val	Ser	Gln 185	Thr	Ser	Lys	Leu	Thr 190	Arg	Ala
Glu	Thr	Val 195	Phe	Pro	Asp	Val	Asp 200	Tyr	Val	Asn	Ser	Thr 205	Glu	Ala	Glu
Thr	Ile 210	Leu	Asp	Asn	Ile	Thr 215	Gln	Ser	Thr	Gln	Ser 220	Phe	Asn	Asp	Phe
Thr 225	Arg	Val	Val	Gly	Gly 230	Glu	Asp	Ala	Lys	Pro 235	Gly	Gln	Phe	Pro	Trp 240
Gln	Val	Val	Leu	Asn 245	Gly	Lys	Val	Asp	Ala 250	Phe	Cys	Gly	Gly	Ser 255	Ile
Val	Asn	Glu	Lys 260	Trp	Ile	Val	Thr	Ala 265	Ala	His	Cys	Val	Glu 270	Thr	Gly
Val	Lys	Ile 275	Thr	Val	Val	Ala	Gly 280	Glu	His	Asn	Ile	Glu 285	Glu	Thr	Glu
His	Thr 290	Glu	Gln	Lys	Arg	Asn 295	Val	Ile	Arg	Ile	Ile 300	Pro	His	His	Asn
Tyr 305	Asn	Ala	Ala	Ile	Asn 310	Lys	Tyr	Asn	His	Asp 315	Ile	Ala	Leu	Leu	Glu 320
Leu	Asp	Glu	Pro	Leu 325	Val	Leu	Asn	Ser	Tyr 330	Val	Thr	Pro	Ile	Cys 335	Ile
Ala	Asp	Lys	Glu 340	Tyr	Thr	Asn	Ile	Phe 345	Leu	Lys	Phe	Gly	Ser 350	Gly	Tyr

		Val	Ser	Gly 355	Trp	Gly	Arg	Val	Phe 360	His	Lys	Gly	Arg	Ser 365	Ala	Leu	Val
		Leu	Gln 370	Tyr	Leu	Arg	Val	Pro 375	Leu	Val	Asp	Arg	A la 380	Thr	Cys	Leu	Leu
		Ser 385	Thr	Lys	Phe	Thr	Ile 390	Tyr	Asn	Asn	Met	Phe 395	Cys	Ala	Gly	Phe	His 400
		Glu	Gly	Gly	Arg	Asp 405	Ser	Cys	Gln	Gly	Asp 410	Ser	Gly	Gly	Pro	His 415	Val
		Thr	Glu	Val	Glu 420	Gly	Thr	Ser	Phe	Leu 425	Thr	Gly	Ile	Ile	Ser 430	Trp	Gly
		Glu	Glu	Cys 435	Ala	Met	Lys	Gly	Lys 440	Tyr	Gly	Ile	Tyr	Thr 445	Lys	Val	Ser
		Arg	Tyr 450	Val	Asn	Trp	Ile	Lys 455	Glu	Lys	Thr	Lys	Leu 460	Thr			
5	<210> 20 <211> 39 <212> AE <213> Se) DN	cia arti	ificial													
	<220> <223> secuencia promotora recombinante																
10	<400> 20 tataaaaggc cagcagcagc ctgaccacat ctcatcctc 39																
15	<210> 21 <211> 38 <212> AE <213> Se	DN	cia arti	ificial													
20	<220> <223> se	cuenc	ia pro	motor	a recc	mbina	ante										
	<400> 21 gttaattttt g		cttg c	gatgttt	gc tct	ggtta						38					
25	<210> 22 <211> 14 <212> PF <213> Se	RT	cia arti	ificial													
30	<220> <223> en	lazado	or pep	tídico	recon	nbinar	nte										
	<400> 22																
		Se 1	r Ph	e Se	r Gl	n As	sn Pi	ro P	ro V	al L		ys <i>I</i>	Arg H	His (Gln	Arg	
35		_				J					1	. •					

```
<210> 23
        <211> 24
        <212> PRT
        <213> Secuencia artificial
5
        <223> enlazador peptídico recombinante
        <400> 23
10
            Ser Phe Ala Gln Asn Ser Arg Pro Pro Ser Ala Ser Ala Pro Lys Pro
                                                                                     15
                                 5
                                                           10
            Pro Val Leu Arg Arg His Gln Arg
                            20
        <210> 24
        <211> 4
        <212> PRT
15
        <213> Secuencia artificial
        <223> secuencia promotora recombinante
20
        <400> 24
                                              Arg His Gln Arg
25
        <210> 25
        <211>6
        <212> ADN
        <213> Secuencia artificial
30
        <223> secuencia promotora recombinante
        <400> 25
        gttaat
                                                                  6
35
        <210> 26
        <211> 5
        <212> ADN
        <213> Secuencia artificial
40
        <220>
        <223> secuencia promotora recombinante
        <400> 26
45
        tataa
                                                                  5
        <210> 27
        <211>5
        <212> ADN
50
        <213> Secuencia artificial
        <223> secuencia promotora recombinante
        <400> 27
55
                                                                  5
        gttaa
```

_	<210> 28 <211> 4 <212> ADN <213> Secuencia artificial	
5	<220> <223> secuencia promotora recombinante	
10	<400> 28 gtta	4
15	<210> 29 <211> 3 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
20	<400> 29 gtt	3
25	<210> 30 <211> 5 <212> ADN <213> Secuencia artificial	
30	<220> <223> secuencia promotora recombinante	
30	<400> 30 ttaat	5
35	<210> 31 <211> 4 <212> ADN <213> Secuencia artificial	
40	<220> <223> secuencia promotora recombinante	
	<400> 31 ttaa	4
45	<210> 32 <211> 3 <212> ADN <213> Secuencia artificial	
50	<220> <223> secuencia promotora recombinante	
E.E.	<400> 32 tta	3
55	<210> 33 <211> 3 <212> ADN <213> Secuencia artificial	
60	<220> <223> secuencia promotora recombinante	
65	<400> 33 aat	3

5	<210> 34 <211> 56 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
10	<400> 34 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcagga caaaca	56
15	<210> 35 <211> 55 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
20	<400> 35 ttaatttttg tggcccttgc gatgtttgct ctggttaata atctcaggac aaaca	55
25	<210> 36 <211> 54 <212> ADN <213> Secuencia artificial	
30	<220> <223> secuencia promotora recombinante	
50	<400> 36 taatttttgt ggcccttgcg atgtttgctc tggttaataa tctcaggaca aaca	54
35	<210> 37 <211> 53 <212> ADN <213> Secuencia artificial	
40	<220> <223> secuencia promotora recombinante	
	<400> 37 aatttttgtg gcccttgcga tgtttgctct ggttaataat ctcaggacaa aca	53
45	<210> 38 <211> 52 <212> ADN <213> Secuencia artificial	
50	<220> <223> secuencia promotora recombinante	
EE	<400> 38 atttttgtgg cccttgcgat gtttgctctg gttaataatc tcaggacaaa ca	52
55	<210> 39 <211> 51 <212> ADN <213> Secuencia artificial	
60	<220> <223> secuencia promotora recombinante	
65	<400> 39 tttttgtggc ccttgcgatg tttgctctgg ttaataatct caggacaaac a	51

5	<210> 40 <211> 50 <212> ADN <213> Secuencia artificial <220>	
	<223> secuencia promotora recombinante	
10	<400> 40 ttttgtggcc cttgcgatgt ttgctctggt taataatctc aggacaaaca	50
15	<210> 41 <211> 49 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
20	<400> 41 tttgtggccc ttgcgatgtt tgctctggtt aataatctca ggacaaaca	49
25	<210> 42 <211> 48 <212> ADN <213> Secuencia artificial	
30	<220> <223> secuencia promotora recombinante	
35	<400> 42 ttgtggccct tgcgatgttt gctctggtta ataatctcag gacaaaca 48 <210> 43 <211> 18 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
40	<400> 43 ataatctcag gacaaaca	18
45	<210> 44 <211> 47 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
50	<400> 44 tgtggccctt gcgatgtttg ctctggttaa taatctcagg acaaaca	47
55	<210> 45 <211> 46 <212> ADN <213> Secuencia artificial	
60	<220> <223> secuencia promotora recombinante	
	<400> 45 gtggcccttg cgatgtttgc tctggttaat aatctcagga caaaca	46
65	<210> 46 <211> 45	

	<212> ADN <213> Secuencia artificial	
5	<220> <223> secuencia promotora recombinante	
	<400> 46 tggcccttgc gatgtttgct ctggttaata atctcaggac aaaca	45
10	<210> 47 <211> 43 <212> ADN <213> Secuencia artificial	
15	<220> <223> secuencia promotora recombinante	
20	<400> 47 gcccttgcga tgtttgctct ggttaataat ctcaggacaa aca	43
20	<210> 48 <211> 42 <212> ADN <213> Secuencia artificial	
25	<220> <223> secuencia promotora recombinante	
30	<400> 48 cccttgcgat gtttgctctg gttaataatc tcaggacaaa ca	42
35	<210> 49 <211> 41 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
40	<400> 49 ccttgcgatg tttgctctgg ttaataatct caggacaaac a	41
45	<210> 50 <211> 40 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
50	<400> 50 cttgcgatgt ttgctctggt taataatctc aggacaaaca	40
55	<210> 51 <211> 55 <212> ADN <213> Secuencia artificial	
60	<220> <223> secuencia promotora recombinante	
	<400> 51 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcagga caaac	55
65	<210> 52 <211> 54	

	<212> ADN <213> Secuencia artificial	
5	<220> <223> secuencia promotora recombinante	
	<400> 52 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcagga caaa	54
10	<210> 53 <211> 53 <212> ADN <213> Secuencia artificial	
15	<220> <223> secuencia promotora recombinante	
20	<400> 53 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcagga caa	53
20	<210> 54 <211> 53 <212> ADN <213> Secuencia artificial	
25	<220> <223> secuencia promotora recombinante	
30	<400> 54 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcagga caa	53
35	<210> 55 <211> 52 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
40	<400> 55 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcagga ca	52
45	<210> 56 <211> 51 <212> ADN <213> Secuencia artificial	
50	<220> <223> secuencia promotora recombinante	
50	<400> 56 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcagga c	51
55	<210> 57 <211> 50 <212> ADN <213> Secuencia artificial	
60	<220> <223> secuencia promotora recombinante	
	<400> 57 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcagga	50
65	<210> 58 <211> 49	

	<212> ADN <213> Secuencia artificial	
5	<220> <223> secuencia promotora recombinante	
	<400> 58 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcagg	49
10	<210> 59 <211> 48 <212> ADN <213> Secuencia artificial	
15	<220> <223> secuencia promotora recombinante	
20	<400> 59 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcag	48
	<210> 60 <211> 47 <212> ADN <213> Secuencia artificial	
25	<220> <223> secuencia promotora recombinante	
30	<400> 60 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctca	47
35	<210> 61 <211> 46 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
40	<400> 61 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctc	46
45	<210> 62 <211> 45 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
50	<400> 62 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatct	45
55	<210> 63 <211> 44 <212> ADN <213> Secuencia artificial	
60	<220> <223> secuencia promotora recombinante	
	<400> 63 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatc	44
65	<210> 64 <211> 43	

	<212> ADN <213> Secuencia artificial	
5	<220> <223> secuencia promotora recombinante	
	<400> 64 gttaattttt gtggcccttg cgatgtttgc tctggttaat aat	43
10	<210> 65 <211> 42 <212> ADN <213> Secuencia artificial	
15	<220> <223> secuencia promotora recombinante	
20	<400> 65 gttaattttt gtggcccttg cgatgtttgc tctggttaat aa	42
	<210> 66 <211> 55 <212> ADN <213> Secuencia artificial	
25	<220> <223> secuencia promotora recombinante	
30	<400> 66 gttaattttt gtggcccttg cgatgtttgc tctggttaat aatctcagga caaac	55
35	<210> 67 <211> 53 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
40	<400> 67 ttaatttttg tggcccttgc gatgtttgct ctggttaata atctcaggac aaa	53
45	<210> 68 <211> 51 <212> ADN <213> Secuencia artificial	
50	<220> <223> secuencia promotora recombinante	
50	<400> 68 taattttgt ggcccttgcg atgtttgctc tggttaataa tctcaggaca a	51
55	<210> 69 <211> 49 <212> ADN <213> Secuencia artificial	
60	<220> <223> secuencia promotora recombinante	
	<400> 69 aatttttgtg gcccttgcga tgtttgctct ggttaataat ctcaggaca	49
65	<210> 70 <211> 47	

	<212> ADN <213> Secuencia artificial	
5	<220> <223> secuencia promotora recombinante	
	<400> 70 attttgtgg cccttgcgat gtttgctctg gttaataatc tcaggac	47
10	<210> 71 <211> 45 <212> ADN <213> Secuencia artificial	
15	<220> <223> secuencia promotora recombinante	
20	<400> 71 tttttgtggc ccttgcgatg tttgctctgg ttaataatct cagga	45
	<210> 72 <211> 43 <212> ADN <213> Secuencia artificial	
25	<220> <223> secuencia promotora recombinante	
30	<400> 72 ttttgtggcc cttgcgatgt ttgctctggt taataatctc agg	43
35	<210> 73 <211> 41 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
40	<400> 73 tttgtggccc ttgcgatgtt tgctctggtt aataatctca g	41
45	<210> 74 <211> 39 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
50	<400> 74 ttgtggccct tgcgatgttt gctctggtta ataatctca	39
55	<210> 75 <211> 37 <212> ADN <213> Secuencia artificial	
60	<220> <223> secuencia promotora recombinante	
	<400> 75 tgtggccctt gcgatgtttg ctctggttaa taatctc	37
65	<210> 76 <211> 35	

	<212> ADN <213> Secuencia artificial	
5	<220> <223> secuencia promotora recombinante	
	<400> 76 gtggcccttg cgatgtttgc tctggttaat aatct	35
10	<210> 77 <211> 33 <212> ADN <213> Secuencia artificial	
15	<220> <223> secuencia promotora recombinante	
20	<400> 77 tggcccttgc gatgtttgct ctggttaata atc	33
	<210> 78 <211> 30 <212> ADN <213> Secuencia artificial	
25	<220> <223> secuencia promotora recombinante	
30	<400> 78 gcccttgcga tgtttgctct ggttaataat	30
35	<210> 79 <211> 28 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
40	<400> 79 cccttgcgat gtttgctctg gttaataa 28 <210> 80 <211> 26 <212> ADN	
45	<213> Secuencia artificial <220> <223> secuencia promotora recombinante	
50	<400> 80 ccttgcgatg tttgctctgg ttaata	26
55	<210> 81 <211> 24 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
60	<400> 81 cttgcgatgt ttgctctggt taat	24
65	<210> 82 <211> 54 <212> ADN <213> Secuencia artificial	

	<220> <223> secuencia promotora recombinante	
5	<400> 82 ttaatttttg tggcccttgc gatgtttgct ctggttaata atctcaggac aaac	54
10	<210> 83 <211> 52 <212> ADN <213> Secuencia artificial	
15	<220> <223> secuencia promotora recombinante	
15	<400> 83 taatttttgt ggcccttgcg atgtttgctc tggttaataa tctcaggaca aa	52
20	<210> 84 <211> 50 <212> ADN <213> Secuencia artificial	
25	<220> <223> secuencia promotora recombinante	
	<400> 84 aatttttgtg gcccttgcga tgtttgctct ggttaataat ctcaggacaa	50
30	<210> 85 <211> 49 <212> ADN <213> Secuencia artificial	
35	<220> <223> secuencia promotora recombinante	
40	<400> 85 atttttgtgg cccttgcgat gtttgctctg gttaataatc tcaggacaa <210> 86 <211> 47	49
45	<212> ADN <213> Secuencia artificial	
45	<220> <223> secuencia promotora recombinante	
50	<400> 86 tttttgtggc ccttgcgatg tttgctctgg ttaataatct caggaca	47
55	<210> 87 <211> 45 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
60	<400> 87 ttttgtggcc cttgcgatgt ttgctctggt taataatctc aggac	45
65	<210> 88 <211> 43 <212> ADN <213> Secuencia artificial	

	<220> <223> secuencia promotora recombinante	
5	<400> 88 tttgtggccc ttgcgatgtt tgctctggtt aataatctca gga	43
10	<210> 89 <211> 41 <212> ADN <213> Secuencia artificial	
15	<220> <223> secuencia promotora recombinante	
13	<400> 89 ttgtggccct tgcgatgttt gctctggtta ataatctcag g	41
20	<210> 90 <211> 39 <212> ADN <213> Secuencia artificial	
25	<220> <223> secuencia promotora recombinante	
	<400> 90 tgtggccctt gcgatgtttg ctctggttaa taatctcag	39
30	<210> 91 <211> 36 <212> ADN <213> Secuencia artificial	
35	<220> <223> secuencia promotora recombinante	
40	<400> 91 tggcccttgc gatgtttgct ctggttaata atctca <210> 92 <211> 34	36
45	<212> ADN <213> Secuencia artificial	
.0	<220> <223> secuencia promotora recombinante	
50	<400> 92 ggcccttgcg atgtttgctc tggttaataa tctc	34
55	<210> 93 <211> 32 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
60	<400> 93 gcccttgcga tgtttgctct ggttaataat ct	32
65	<210> 94 <211> 30 <212> ADN <213> Secuencia artificial	

	<220> <223> secuencia promotora recombinante	
5	<400> 94 cccttgcgat gtttgctctg gttaataatc	30
10	<210> 95 <211> 28 <212> ADN <213> Secuencia artificial	
45	<220> <223> secuencia promotora recombinante	
15	<400> 95 ccttgcgatg tttgctctgg ttaataat	28
20	<210> 96 <211> 26 <212> ADN <213> Secuencia artificial	
25	<220> <223> secuencia promotora recombinante	
	<400> 96 cttgcgatgt ttgctctggt taataa	26
30	<210> 97 <211> 17 <212> ADN <213> Secuencia artificial	
35	<220> <223> secuencia promotora recombinante	
40	<400> 97 cggaggagca aacaggg <210> 98	17
45	<211> 28 <212> ADN <213> Secuencia artificial	
45	<220> <223> secuencia promotora recombinante	
50	<400> 98 cggaggagca aacaggggct aagtccac	28
55	<210> 99 <211> 27 <212> ADN <213> Secuencia artificial	
	<220> <223> secuencia promotora recombinante	
60	<400> 99 ggctgctggt gaatattaac caaggtc	27
65	<210> 100 <211> 71 <212> ADN <213> Secuencia artificial	

	<220> <223> secuencia promotora recombinante	
5	<400> 100	
	ggggaggctg ctggtgaata ttaaccaagg tcaccccagt tatcggagga gcaaacaggg	60 71
10	<210> 101 <211> 71 <212> ADN <213> Secuencia artificial	
15	<220> <223> secuencia promotora recombinante <400> 101	
	ggggaggctg ctggtgaata ttaaccaagg tcaccccagt tatcggagga gcaaacaggg	60 71
20	<210> 102 <211> 220 <212> ADN <213> Secuencia artificial	
25	<220> <223> secuencia promotora recombinante	
30	<400> 102	
	ggggaggctg ctggtgaata ttaaccaagg tcaccccagt tatcggagga gcaaacaggg	60
	gctaagtcca ctaggttaat cattaagtcg ttaatttttg tggcccttgc gatgtttgct	120
	ctggttaata atctcaggac aaacagaggt taataatttt ccagatctct ctgagcaata	180
	gtataaaagg ccagcagcag cctgaccaca tctcatcctc	220
35	<210> 103 <211> 171 <212> ADN <213> Secuencia artificial	
40	<220> <223> secuencia promotora recombinante	
10	<400> 103	
	cggaggagca aacaggggct aagtcgttaa tcattaagtc gttaattttt gtggcccttg	60
	cgatgtttgc tctggttaat aatctcagga caaacagagg ttaataattt tccagatctc	120
	tctgagcaat agtataaaag gccagcagca gcctgaccac atctcatcct c	171
45	<210> 104 <211> 173 <212> ADN <213> Secuencia artificial	

	<220> <223> secuencia promotora recombinante	
5	<400> 104	
	ggctgctggt gaatattaac caaggtcgtt aatcattaag tcgttaattt ttgtggccct	60
	tgcgatgttt gctctggtta ataatctcag gacaaacaga ggttaataat tttccagatc	120
	tctctgagca atagtataaa aggccagcag cagcctgacc acatctcatc ctc	173
10	<210> 105 <211> 146 <212> ADN <213> Secuencia artificial	
15	<220> <223> secuencia promotora recombinante	
	<400> 105	
	ggggaggctg ctggtgaata ttaaccaagg tcaccccagt tatcggagga gcaaacaggg	60
	gctaagtcca cgaggttaat aattttccag atctctctga gcaatagtat aaaaggccag	120
	cagcagcctg accacatctc atcctc	146
20 25 30	<210> 106 <211> 129 <212> ADN <213> Secuencia artificial <220> <223> secuencia promotora recombinante <400> 106	
	ggctgctggt gaatattaac caaggtcatc ggaggagcaa acagggacta agtcgaggtt	60
	aataattttc cagatctctc tgagcaatag tataaaaggc cagcagcagc ctgaccacat	120
	ctcatcctc	129
35	<210> 107 <211> 142 <212> ADN <213> Secuencia artificial	
40	<220> <223> secuencia promotora recombinante	
	<400> 107	
	ggctgctggt gaatattaac caaggtcccc ttgctggtta ataatctcag ttaatttgtt	60
	tgcacaaaca cggaggagca aacaggggag gttaataatt ttctataaaa ggccagcagc	120
	agectgacea cateteatee te	142

	<210> 108	
	<211> 146	
_	<212> ADN	
5	<213> Secuencia artificial	
	<220>	
	<223> secuencia promotora recombinante	
	220 Social promotora resombliante	
10	<400> 108	
	ggggaggctg ctggtgaata ttaaccaagg tcaccccagt tatcggagga gcaaacaggg	60
	actaagtcca cgaggttaat aattttccag atctctctga gcaatagtat aaaaggccag	120
	cagcagcctg accacatctc atcctc	146
	<210> 109	
15	<211> 8	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
20	<223> secuencia promotora recombinante	
	<400> 109 tcatcctc 8	
	040 440	
25	<210> 110 <211> 24	
25	<211> 24 <212> ADN	
	<213> Secuencia artificial	
	<220>	
30	<223> secuencia promotora recombinante	
	400 440	
	<400> 110	
	ggccagcagc agcctgacca catc 24	
35	<210> 111	
	<211> 71	
	<212> ADN	
	<213> Secuencia artificial	
40	222	
40	<220>	
	<223> secuencia promotora recombinante	
	<400> 111	
		60
	ggggaggctg ctggtgaata ttaaccaagg tcaccccagt tatcggagga gcaaacaggg	80
4-	gctaagtcca c	71
45		
	<210> 112	
	<211> 255	
	<212> ADN	
50	<213> Secuencia artificial	
	1000-	
	<220>	
	<223> secuencia promotora recombinante	
55	<400> 112	

	gttaatcatt aagtcgttaa tcattaactt aggtcaaagg tcagacaatg ttgactctcg	60	
	ttaatgatta accggaattg ttgacttgag gttaataatt ttccagatct ctctgagcaa	120	
	tagtataaaa ggccagcagc agcctgacca catctcatcc tcctctaagg taaatataaa	180	
	atttttaagt gtataatgtg ttaaactact gattctaatt gtttgtgtat tttagattcc	240	
	aacctatgga actga	255	
5	<210> 113 <211> 94 <212> ADN <213> Secuencia artificial		
10	<220> <223> secuencia promotora recombinante		
10	<400> 113		
	gttaattttt aaaaagcagt caaaagtcca agtggccctt gcgagcattt actctctctg		6
	tttgctctgg ttaataatct caggagcaca aaca		9.
15	<210> 114 <211> 43 <212> ADN <213> Secuencia artificial		
20	<220> <223> secuencia promotora recombinante		
25	<400> 114 gaggttaata attttccaga tctctctgag caatagtata aaa43		
	<210> 115 <211> 55 <212> ADN <213> Secuencia artificial		
30	<220> <223> secuencia promotora recombinante		
35	<400> 115 agtcatatgt ttgctcactg aaggttacta gttaacaggc atcccttaaa cagga 55		
40	<210> 116 <211> 108 <212> ADN <213> Secuencia artificial		
40	<220> <223> secuencia promotora recombinante		
45	<400> 116		
	gttaatcatt aacttaaaaa gcagtcaaaa gtccaaaggt caaaggtcag agcatttact	60	
	ctctccaatg ttgactctcg ttaatgatta aggagcaatt gttgactt	108	
50	<210> 117 <211> 72		

	<212> ADN <213> Secuencia artificial	
5	<220> <223> secuencia promotora recombinante	
	<400> 117	
	gttaatcatt aacttaggtc aaaggtcaga caatgttgac tctcgttaat gattaaccgg	60
	aattgttgac tt	72
10		
	<210> 118 <211> 151	
	<212> ADN	
15	<213> Secuencia artificial	
10	<220> <223> secuencia promotora recombinante	
	<400> 118	
20		
	gttaatcatt aacttaaaaa gcagtcaaaa gtccaaaggt caaaggtcag agcatttact	60
	ctctccaatg ttgactctcg ttaatgatta aggagcaatt gttgacttga ggttaataat	120
	tttccagatc tctctgagca atagtataaa a	151
	<210> 119	
. =	<211> 115	
25	<212> ADN <213> Secuencia artificial	
	<220>	
	<223> secuencia promotora recombinante	
30	<400> 119	
	400-110	
	gttaatcatt aacttaggtc aaaggtcaga caatgttgac tctcgttaat gattaaccgg	60
	aattgttgac ttgaggttaa taattttcca gatctctctg agcaatagta taaaa	115
35	<210> 120	
	<211> 152	
	<212> ADN <213> Secuencia artificial	
10	<220>	
40	<223> secuencia promotora recombinante	
	<400> 120	
	gttaatcatt aagtcgttaa tttttaaaaa gcagtcaaaa gtccaagtgg cccttgcgag	60
	catttactct ctctgtttgc tctggttaat aatctcagga gcacaaacag aggttaataa	120
4-	ttttccagat ctctctgagc aatagtataa aa	152
1 5		
	<210> 121 <211> 150	

	<212> ADN	
	<213> Secuencia artificial	
	<220>	
5	<223> secuencia promotora recombinante	
	<400> 121	
	tgggcggagt gtcgttaatt tttaaaaagc agtcaaaagt ccaagtggcc cttgcgagca	60
	tttactctct ctgtttgctc tggttaataa tctcaggagc acaaacagag gttaataatt	120
	ttccagatct ctctgagcaa tagtataaaa	150
10	<210> 122	
	<210> 122 <211> 43	
	<212> ADN	
	<213> Secuencia artificial	
15	<220>	
	<220> <223> secuencia promotora recombinante	
	<400> 122	
20	cccttgctgg ttaataatct cagttaattt gtttgcacaa aca 43	
	<210> 123	
	<211> 1467	
25	<212> PRT <213> Secuencia artificial	
23	12 107 Decuencia artificial	
	<220>	
	<223> fVIII recombinante	
30	<400> 123	

1	GIII	шеш	Giu	5	Ser		Cys	Vai	10	шец	Cys	шеш	шеш	15	пес
Gly	Phe	Ser	Ala 20	Ile	Arg	Arg	Tyr	Tyr 25	Leu	Gly	Ala	Val	Glu 30	Leu	Ser
Trp	Asp	Tyr 35	Arg	Gln	Ser	Glu	Leu 40	Leu	Arg	Glu	Leu	His 45	Val	Asp	Thr
Arg	Phe 50	Pro	Ala	Thr	Ala	Pro 55	Gly	Ala	Leu	Pro	Leu 60	Gly	Pro	Ser	Val
Leu 65	Tyr	Lys	Lys	Thr	Val 70	Phe	Val	Glu	Phe	Thr 75	Asp	Gln	Leu	Phe	Ser 80
Val	Ala	Arg	Pro	Arg 85	Pro	Pro	Trp	Met	Gly 90	Leu	Leu	Gly	Pro	Thr 95	Ile
Gln	Ala	Glu	Val 100	Tyr	Asp	Thr	Val	Val 105	Val	Thr	Leu	Lys	Asn 110	Met	Ala
Ser	His	Pro 115	Val	Ser	Leu	His	Ala 120	Val	Gly	Val	Ser	Phe 125	Trp	Lys	Ser
Ser	Glu 130	Gly	Ala	Glu	Tyr	Glu 135	Asp	His	Thr	Ser	Gln 140	Arg	Glu	Lys	Glu

Asp Asp Lys Val Leu Pro Gly Lys Ser Gln Thr Tyr Val Trp Gln Val

145					150					155					160
Leu	Lys	Glu	Asn	Gly 165	Pro	Thr	Ala	Ser	Asp 170	Pro	Pro	Cys	Leu	Thr 175	Tyr
Ser	Tyr	Leu	Ser 180	His	Val	Asp	Leu	Val 185	Lys	Asp	Leu	Asn	Ser 190	Gly	Leu
Ile	Gly	Ala 195	Leu	Leu	Val	Cys	Arg 200	Glu	Gly	Ser	Leu	Thr 205	Arg	Glu	Arg
Thr	Gln 210	Asn	Leu	His	Glu	Phe 215	Val	Leu	Leu	Phe	Ala 220	Val	Phe	Asp	Glu
Gly 225	Lys	Ser	Trp	His	Ser 230	Ala	Arg	Asn	Asp	Ser 235	Trp	Thr	Arg	Ala	Met 240
Asp	Pro	Ala	Pro	Ala 245	Arg	Ala	Gln	Pro	A la 250	Met	His	Thr	Val	As n 255	Gly
Tyr	Val	Asn	Arg 260	Ser	Leu	Pro	Gly	Leu 265	Ile	Gly	Cys	His	Lys 270	Lys	Ser
Val	Tyr	Trp 275	His	Val	Ile	Gly	Met 280	Gly	Thr	Ser	Pro	Glu 285	Val	His	Ser
Ile	Phe 290	Leu	Glu	Gly	His	Thr 295	Phe	Leu	Val	Arg	His 300	His	Arg	Gln	Ala
Ser 305	Leu	Glu	Ile	Ser	Pro 310	Leu	Thr	Phe	Leu	Thr 315	Ala	Gln	Thr	Phe	Leu 320
Met	Asp	Leu	Gly	Gln 325	Phe	Leu	Leu	Phe	Cys 330	His	Ile	Ser	Ser	His 335	His
His	Gly	Gly	Met 340	Glu	Ala	His	Val	A rg 345	Val	Glu	Ser	Cys	Ala 350	Glu	Glu
Pro	Gln	Leu 355	Arg	Arg	Lys	Ala	Asp 360	Glu	Glu	Glu	Asp	Tyr 365	Asp	Asp	Asn
Leu	Tyr 370	Asp	Ser	Asp	Met	Asp 375	Val	Val	Arg	Leu	Asp 380	Gly	Asp	Asp	Val
Ser 385	Pro	Phe	Ile	Gln	Ile 390	Arg	Ser	Val	Ala	Lys 395	Lys	His	Pro	Lys	Thr 400

Trp	Val	His	Tyr	Ile 405	Ala	Ala	Glu	Glu	Glu 410	Asp	Trp	Asp	Tyr	Ala 415	Pro
Leu	Val	Leu	Ala 420	Pro	Asp	Asp	Arg	Ser 425	Tyr	Lys	Ser	Gln	Tyr 430	Leu	Asn
Asn	Gly	Pro 435	Gln	Arg	Ile	Gly	Arg 440	Lys	Tyr	Lys	Lys	Val 445	Arg	Phe	Met
Ala	Tyr 450	Thr	Asp	Glu	Thr	Phe 455	Lys	Thr	Arg	Glu	Ala 460	Ile	Gln	His	Glu
Ser 465	Gly	Ile	Leu	Gly	Pro 470	Leu	Leu	Tyr	Gly	Glu 475	Val	Gly	Asp	Thr	Leu 480
Leu	Ile	Ile	Phe	Lys 485	Asn	Gln	Ala	Ser	Arg 490	Pro	Tyr	Asn	Ile	Tyr 495	Pro
His	Gly	Ile	Thr 500	Asp	Val	Arg	Pro	Leu 505	Tyr	Ser	Arg	Arg	Leu 510	Pro	Lys
Gly	Val	Lys 515	His	Leu	Lys	Asp	Phe 520	Pro	Ile	Leu	Pro	Gly 525	Glu	Ile	Phe
Lys	Tyr 530	Lys	Trp	Thr	Val	Thr 535	Val	Glu	Asp	Gly	Pro 540	Thr	Lys	Ser	Asp
Pro 545	Arg	Cys	Leu	Thr	Arg 550	Tyr	Tyr	Ser	Ser	Phe 555	Val	Asn	Met	Glu	Arg 560
Asp	Leu	Ala	Ser	Gly 565	Leu	Ile	Gly	Pro	Leu 570	Leu	Ile	Cys	Tyr	Lys 575	Glu
Ser	Val	Asp	Gln 580	Arg	Gly	Asn	Gln	Ile 585	Met	Ser	Asp	Lys	Arg 590	Asn	Val
Ile	Leu	Phe 595	Ser	Val	Phe	Asp	Glu 600	Asn	Arg	Ser	Trp	Tyr 605	Leu	Thr	Glu
Asn	Ile 610	Gln	Arg	Phe	Leu	Pro 615	Asn	Pro	Ala	Gly	Val 620	Gln	Leu	Glu	Asp
Pro 625	Glu	Phe	Gln	Ala	Ser 630	Asn	Ile	Met	His	Ser 635	Ile	Asn	Gly	Tyr	Val 640
Phe	Asp	Ser	Leu	Gln 645	Leu	Ser	Val	Cys	Leu 650	His	Glu	Val	Ala	Tyr 655	Trp

Tyr	Ile	Leu	Ser 660	Ile	Gly	Ala	Gln	Thr 665	Asp	Phe	Leu	Ser	Val 670	Phe	Phe
Ser	Gly	Tyr 675	Thr	Phe	Lys	His	Lys 680	Met	Val	Tyr	Glu	Asp 685	Thr	Leu	Thr
Leu	Phe 690	Pro	Phe	Ser	Gly	Glu 695	Thr	Val	Phe	Met	Ser 700	Met	Glu	Asn	Pro
Gly 705	Leu	Trp	Ile	Leu	Gly 710	Cys	His	Asn	Ser	Asp 715	Phe	Arg	Asn	Arg	Gly 720
Met	Thr	Ala	Leu	Leu 725	Lys	Val	Ser	Ser	Cys 730	Asp	Lys	Asn	Thr	Gly 735	Asp
Tyr	Tyr	Glu	Asp 740	Ser	Tyr	Glu	Asp	Ile 745	Ser	Ala	Tyr	Leu	Leu 750	Ser	Lys
Asn	Asn	Ala 755	Ile	Glu	Pro	Arg	Ser 760	Phe	Ala	Gln	Asn	Ser 765	Arg	Pro	Pro
Ser	A la 770	Ser	Ala	Pro	Lys	Pro 775	Pro	Val	Leu	Arg	Arg 780	His	Gln	Arg	Asp
Ile 785	Ser	Leu	Pro	Thr	Phe 790	Gln	Pro	Glu	Glu	Asp 795	Lys	Met	Asp	Tyr	Asp 800
Asp	Ile	Phe	Ser	Thr 805	Glu	Thr	Lys	Gly	Glu 810	Asp	Phe	Asp	Ile	Tyr 815	Gly
Glu	Asp	Glu	Asn 820	Gln	Asp	Pro	Arg	Ser 825	Phe	Gln	Lys	Arg	Thr 830	Arg	His
Tyr	Phe	Ile 835	Ala	Ala	Val	Glu	Gln 840	Leu	Trp	Asp	Tyr	Gly 845	Met	Ser	Glu
Ser	Pro 850	Arg	Ala	Leu	Arg	As n 855	Arg	Ala	Gln	Asn	Gly 860	Glu	Val	Pro	Arg
Phe 865	Lys	Lys	Val	Val	Phe 870	Arg	Glu	Phe	Ala	Asp 875	Gly	Ser	Phe	Thr	Gln 880
Pro	Ser	Tyr	Arg	Gly 885	Glu	Leu	Asn	Lys	His 890	Leu	Gly	Leu	Leu	Gly 895	Pro
Tyr	Ile	Arg	Ala 900	Glu	Val	Glu	Asp	Asn 905	Ile	Met	Val	Thr	Phe 910	Lys	Asn

- Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser Leu Ile Ser Tyr Pro 915 920 925
- Asp Asp Gln Glu Gln Gly Ala Glu Pro Arg His Asn Phe Val Gln Pro 930 935 940
- Asn Glu Thr Arg Thr Tyr Phe Trp Lys Val Gln His His Met Ala Pro 945 950 955 960
- Thr Glu Asp Glu Phe Asp Cys Lys Ala Trp Ala Tyr Phe Ser Asp Val 965 970 975
- Asp Leu Glu Lys Asp Val His Ser Gly Leu Ile Gly Pro Leu Leu Ile 980 985 990
- Cys Arg Ala Asn Thr Leu Asn Ala Ala His Gly Arg Gln Val Thr Val 995 1000 1005
- Gln Glu Phe Ala Leu Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser 1010 1015 1020
- Trp Tyr Phe Thr Glu Asn Val Glu Arg Asn Cys Arg Ala Pro Cys 1025 1030 1035
- His Leu Gln Met Glu Asp Pro Thr Leu Lys Glu Asn Tyr Arg Phe 1040 1045 1050
- His Ala Ile Asn Gly Tyr Val Met Asp Thr Leu Pro Gly Leu Val 1055 1060 1065
- Met Ala Gln Asn Gln Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly 1070 1075 1080
- Ser Asn Glu Asn Ile His Ser Ile His Phe Ser Gly His Val Phe 1085 1090 1095
- Ser Val Arg Lys Lys Glu Glu Tyr Lys Met Ala Val Tyr Asn Leu 1100 1105 1110
- Tyr Pro Gly Val Phe Glu Thr Val Glu Met Leu Pro Ser Lys Val 1115 1120 1125
- Gly Ile Trp Arg Ile Glu Cys Leu Ile Gly Glu His Leu Gln Ala 1130 1135 1140
- Gly Met Ser Thr Thr Phe Leu Val Tyr Ser Lys Lys Cys Gln Thr

	1145					1150					1155			
Pro	Leu 1160	Gly	Met	Ala	Ser	Gly 1165	His	Ile	Arg	Asp	Phe 1170	Gln	Ile	Thr
Ala	Ser 1175	Gly	Gln	Tyr	Gly	Gln 1180	Trp	Ala	Pro	Lys	Leu 1185	Ala	Arg	Leu
His	Tyr 1190	Ser	Gly	Ser	Ile	Asn 1195	Ala	Trp	Ser	Thr	Lys 1200	Glu	Pro	Phe
Ser	Trp 1205		Lys	Val	Asp	Leu 1210	Leu	Ala	Pro	Met	Ile 1215	Ile	His	Gly
Ile	Lys 1220	Thr	Gln	Gly	Ala	Arg 1225	Gln	Lys	Phe	Ser	Ser 1230	Leu	Tyr	Ile
Ser	Gln 1235	Phe	Ile	Ile	Met	Tyr 1240		Leu	Asp	Gly	Lys 1245	Lys	Trp	Gln
Thr	Tyr 1250		Gly	Asn	Ser	Thr 1255	Gly	Thr	Leu	Met	Val 1260	Phe	Phe	Gly
Asn	Val 1265	Asp	Ser	Ser	Gly	Ile 1270	Lys	His	Asn	Ile	Phe 1275	Asn	Pro	Pro
Ile	Ile 1280	Ala	Arg	Tyr	Ile	Arg 1285	Leu	His	Pro	Thr	His 1290	Tyr	Ser	Ile
Arg	Ser 1295	Thr	Leu	Arg	Met	Glu 1300	Leu	Met	Gly	Cys	Asp 1305	Leu	Asn	Ser
Cys	Ser 1310	Met	Pro	Leu	Gly	Met 1315	Glu	Ser	Lys	Ala	Ile 1320	Ser	Asp	Ala
Gln	Ile 1325	Thr	Ala	Ser	Ser	Tyr 1330	Phe	Thr	Asn	Met	Phe 1335	Ala	Thr	Trp
Ser	Pro 1340	Ser	Lys	Ala	Arg	Leu 1345	His	Leu	Gln	Gly	Arg 1350	Ser	Asn	Ala
Trp	Arg 1355	Pro	Gln	Val	Asn	Asn 1360	Pro	Lys	Glu	Trp	Leu 1365	Gln	Val	Asp
Phe	Gln 1370	Lys	Thr	Met	Lys	Val 1375	Thr	Gly	Val	Thr	Thr 1380	Gln	Gly	Val

	Lys	Ser 1385	Leu	Leu	Thr	Ser	Met 1390	Tyr	Val	Lys	Glu	Phe 1395	Leu	Ile	Ser
	Ser	Ser 1400	Gln	Asp	Gly	His	Gln 1405	Trp	Thr	Leu	Phe	Phe 1410	Gln	Asn	Gly
	Lys	Val 1415	Lys	Val	Phe	Gln	Gly 1420	Asn	Gln	Asp	Ser	Phe 1425	Thr	Pro	Val
	Val	Asn 1430	Ser	Leu	Asp	Pro	Pro 1435	Leu	Leu	Thr	Arg	Tyr 1440	Leu	Arg	Ile
	His	Pro 1445	Gln	Ser	Trp	Val	His 1450	Gln	Ile	Ala	Leu	Arg 1455	Met	Glu	Val
	Leu	Gly 1460	Cys	Glu	Ala	Gln	Asp 1465	Leu	Tyr						
6 N	an ei e	ortificio	J												

<210> 124 <211> 1386

5 <212> ADN

<213> Secuencia artificial

<223> secuencia promotora recombinante

10

<400> 124

atgcagaggg	tcaatatgat	catggctgaa	tctcctgggc	tgatcaccat	ttgcctgctg	60
ggatacctgc	tgtctgctga	gtgtacagtg	ttcctggacc	atgagaatgc	caataagatc	120
ctgaacaggc	ccaaaagata	caattctgga	aagctggagg	aatttgtgca	gggcaacctg	180
gagagggaat	gcatggagga	aaagtgtagc	tttgaggaag	ctagggaggt	gtttgaaaac	240
acagagagga	ccacagaatt	ctggaagcag	tatgtggatg	gagatcagtg	tgagtccaac	300
ccctgtctga	atggagggtc	ttgcaaagat	gatatcaact	cctatgagtg	ctggtgtcct	360
tttggatttg	aaggcaaaaa	ttgtgagctg	gatgtgacct	gtaacatcaa	gaatggcagg	420
tgtgagcagt	tctgtaaaaa	ctctgctgat	aataaggtgg	tctgcagctg	tacagaaggc	480
tataggctgg	ctgagaacca	gaagagctgt	gaaccagctg	tgcccttccc	ttgtgggagg	540
gtgtctgtca	gccagacctc	taagctgacc	agagctgaga	ctgtgttccc	agatgtggat	600
tatgtcaact	ccacagaggc	tgaaaccatc	ctggacaaca	tcacccagtc	tacccagtcc	660
ttcaatgact	ttaccagagt	ggtgggagga	gaggatgcca	aaccaggcca	gttcccctgg	720
caggtggtcc	tgaatgggaa	ggtggatgct	ttttgtgggg	gatccattgt	gaatgagaaa	780
tggattgtca	cagctgctca	ctgtgtggag	acaggggtca	agatcactgt	ggtggctgga	840
gagcacaaca	ttgaggaaac	agaacatact	gagcagaaga	ggaatgtgat	cagaatcatc	900
aat aa aa at a	2012022100	+ cc+ 2+ c22 c	222424224	2+ 62 62++66	aataataa	960
	actacaatgc					
ctggatgagc	ctctggtgct	gaacagctat	gtcaccccaa	tctgcattgc	tgacaaagag	1020
tataccaata	tcttcctgaa	gtttggatct	ggatatgtgt	ctggatgggg	aagggtcttc	1080
cacaagggca	ggtctgccct	ggtgctgcag	tatctgaggg	tgcctctggt	ggacagagct	1140
acctgcctgc	tgtctaccaa	gttcaccatc	tacaacaata	tgttctgtgc	tggatttcat	1200
gagggaggca	gggactcctg	tcagggggat	tctggaggcc	cacatgtgac	agaggtggaa	1260
ggcaccagct	tcctgactgg	catcatctct	tggggggagg	aatgtgctat	gaaggggaaa	1320
tatggaatct	acaccaaagt	gagcaggtat	gtgaactgga	tcaaagagaa	gaccaaactg	1380
acctga						1386

<210> 125

5

10

<211> 4404 <212> ADN

<213> Secuencia artificial

<220>

<223> secuencia promotora recombinante

<400> 125

60	attttcagct	teeceetggg	ctctgcctgc	etgtgtgtte	ageteteaae	atgeagetgg
120	gtcagagctg	actacaggca	ctgtcctggg	agcagtggaa	actatctggg	atcaggagat
180	actgccactg	ctcctggagc	cctgcaacag	tactaggttc	tgcatgtgga	ctcagagaac
240	gctgttcagt	ttacagacca	tttgtggagt	gaaaactgtc	tgctgtacaa	ggaccttcag
300	ggctgaagtg	ccaccatcca	ctgctgggac	ctggatgggg	ccaggccccc	gtggccaggc
360	cctgcatgct	atccagtcag	atggcctctc	cctgaaaaac	tggtggtgac	tatgatactg
420	tacctcacag	atgaagacca	ggagctgagt	gagcagtgag	gcttctggaa	gtgggagtga
480	gtggcaggtg	agacctatgt	ggaaaaagcc	ggtgctgcca	aagatgataa	agggagaaag
540	ttatctgagc	tcacatactc	cctccctgcc	agcttcagat	atggccctac	ctgaaggaga
600	ggtgtgcaga	gggcactgct	ggcctgattg	cctcaatagt	tggtgaagga	catgtggatc
660	gctctttgct	agtttgtcct	aacctgcatg	aagaactcag	tcacaaggga	gaggggtccc
720	cagggctatg	acagctggac	gcaaggaatg	ctggcactca	agggaaagtc	gtgtttgatg
780	tgtgaatagg	tcaatggcta	atgcacactg	tcagccagct	cagccagagc	gacccagcac
840	gattggaatg	attggcatgt	aaatcagtct	ctgccataag	gactcattgg	tccctgcctg
900	ggtcaggcac	acacatttct	ctggaaggcc	ttccatcttc	cagaggtgca	ggcaccagcc
960	gacatttctg	tcacagcaca	ctgactttcc	gatcagccca	ccagcctgga	catagacagg
1020	tggagggatg	gtcaccatca	catatctcaa	gctcttttgc	ggcagttcct	atggacctgg
1080	gaagggagat	agetgaggag	gaggaacctc	aagetgtgea	tcagggtgga	gaggeteatg

gaggaagagg actatgatga	taacctgtat	gactcagata	tggatgtggt	gaggctggat	1140
ggagatgatg tcagcccatt	catccagatc	aggtcagtgg	ctaagaaaca	ccctaagacc	1200
tgggtccact acattgcagc	tgaagaggaa	gattgggact	atgcacccct	ggtgctggcc	1260
ccagatgata gaagttacaa	atctcagtat	ctgaacaatg	ggccccagag	gattggaagg	1320
aagtacaaga aagtgaggtt	catggcttat	actgatgaga	cctttaagac	aagagaggca	1380
atccagcatg aaagtggcat	cctgggacca	ctgctctatg	gagaagtggg	ggataccctg	1440
ctcatcatct tcaagaacca	ggcctcaagg	ccttacaata	tctatcccca	tggcatcaca	1500
gatgtgaggc ctctctacag	caggagactg	cccaagggag	tcaaacacct	caaggatttc	1560
cccatcctgc caggggaaat	cttcaagtat	aaatggacag	tcactgtgga	agatgggcca	1620
actaagtcag atcctaggtg	cctgaccagg	tactattcta	gctttgtgaa	catggagagg	1680
gacctggctt caggactgat	tggacctctg	ctcatctgct	acaaagaatc	agtggaccag	1740
aggggcaacc agatcatgag	tgataagaga	aatgtcatcc	tgttctcagt	gtttgatgag	1800
aataggagtt ggtatctgac	agaaaacatc	cagaggttcc	tgcctaatcc	tgcaggagtg	1860
cagctggagg acccagaatt	tcaggcttca	aacatcatgc	atagtatcaa	tggctatgtg	1920
tttgatagtc tgcagctctc	tgtctgcctg	catgaggtgg	cctactggta	tatcctcagc	1980
attggagete agaetgaett	cctgagtgtg	ttcttttcag	gctacacatt	caagcataag	2040
atggtctatg aagataccct	gacactcttc	cccttttctg	gggagactgt	gtttatgagc	2100
atggaaaacc caggcctgtg	gattctgggg	tgccacaaca	gtgacttcag	gaatagaggg	2160
atgactgctc tgctcaaagt	gtcctcatgt	gataagaata	ctggagatta	ctatgaggac	2220
tcttatgaag atatcagtgc	atatctgctc	tccaaaaaca	atgccattga	gcccaggtca	2280
tttgctcaga acagtagacc	accttctgca	agtgcaccaa	agcctccagt	gctgaggaga	2340
caccagaggg acatcagcct	gccaaccttc	cagcctgagg	aagataaaat	ggactatgat	2400
gatatettet ecaetgagae	caagggggaa	gattttgaca	tctatggaga	ggatgaaaac	2460
caggacccca ggtccttcca	gaagaggacc	agacactact	ttattgcagc	tgtggagcag	2520
ctgtgggact atggcatgtc	tgaatcacct	agagctctga	ggaacagagc	acagaatggg	2580
gaggtgccca ggttcaagaa	agtggtgttc	agagaatttg	cagatggctc	ttttacccag	2640
cctagctaca ggggggagct	caacaagcat	ctggggctgc	tgggacccta	tatcagagca	2700
gaggtggaag ataacatcat	ggtgacattc	aagaatcagg	cctcaagacc	ctacagtttt	2760
tatagttctc tgatcagcta	cccagatgat	caggagcagg	gggctgaacc	aaggcacaac	2820
tttgtgcagc ctaatgagac	aagaacttac	ttttggaagg	tccagcatca	catggctccc	2880
acagaggatg agtttgactg	caaggcctgg	gcatatttt	ctgatgtgga	cctggagaag	2940

gatgtgcata	gtggcctcat	tgggccactg	ctcatctgca	gggcaaacac	actgaatgct	3000
gcacatggca	ggcaggtcac	tgtgcaggag	tttgccctgt	tctttacaat	ctttgatgaa	3060
actaagtcct	ggtacttcac	agagaatgtg	gaaaggaatt	gcagagcccc	ctgccatctc	3120
cagatggagg	acccaactct	gaaggaaaac	tacaggttcc	atgctatcaa	tggatatgtc	3180
atggatacac	tgccaggcct	ggtgatggca	cagaaccaga	ggatcaggtg	gtatctgctc	3240
agcatggggt	ccaatgagaa	tatccattct	atccacttct	caggacatgt	cttttcagtg	3300
aggaagaaag	aggaatataa	aatggctgtg	tacaatctgt	atccaggggt	ctttgagaca	3360
gtggaaatgc	tgcctagcaa	agtggggatc	tggagaattg	agtgcctcat	tggagaacac	3420
ctgcaggcag	ggatgtccac	cacatttctg	gtgtactcaa	agaaatgcca	gactcccctg	3480
gggatggcaa	gtggacatat	cagggacttc	cagatcactg	catcaggaca	gtatggacag	3540
tgggcaccaa	agctggctag	gctccactat	agtggctcta	tcaatgcttg	gagtaccaaa	3600
gagcctttct	cttggatcaa	ggtggatctg	ctggccccca	tgatcatcca	tggaatcaaa	3660
acacagggag	ctagacagaa	gttcagctcc	ctgtacatca	gtcagtttat	catcatgtat	3720
tctctggatg	ggaagaaatg	gcagacctac	aggggcaata	gcactgggac	actgatggtc	3780
ttctttggaa	atgtggattc	aagtggcatc	aagcacaaca	tcttcaatcc	tcccatcatt	3840
gccaggtaca	tcagactgca	tcccacacac	tattcaatca	ggagtactct	cagaatggag	3900
ctgatggggt	gtgacctcaa	cagctgctcc	atgccactgg	gaatggaatc	caaggcaatc	3960
tcagatgccc	agatcactgc	ttctagctac	ttcaccaata	tgtttgcaac	atggtcaccc	4020
agtaaagcaa	ggctgcacct	ccagggaagg	tccaatgctt	ggagacccca	ggtgaacaat	4080
ccaaaggagt	ggctgcaggt	ggactttcag	aaaaccatga	aggtcacagg	ggtgactacc	4140
cagggagtga	aaagtctgct	cacctctatg	tatgtcaagg	agttcctgat	ctcctcaagt	4200
caggatggcc	accagtggac	actgttcttt	cagaatggca	aggtcaaagt	gttccagggg	4260
aatcaggaca	gctttacacc	agtggtgaac	agcctggacc	cccctctgct	cactagatat	4320
ctgagaatcc	atccacagag	ctgggtgcac	cagattgcac	tcagaatgga	ggtcctgggc	4380
tgtgaagccc	aggacctgta	ttga				4404

<210> 126

<211> 4374

<212> ADN

<213> Secuencia artificial

<220>

<223> secuencia promotora recombinante

10

5

<400> 126

atgcagattg agctcagcac ctgcttcttt ctgtgcctgc tcaggttctg cttttcagcc 60
acaaggagat actatctggg agctgtggaa ctgtcatggg attacatgca gagtgacctg 120

ggagagctcc	ctgtggatgc	taggttcccc	ccaagggtcc	caaagtcttt	cccttttaat	180
accagtgtgg	tctataagaa	aacactcttt	gtggaattta	ctgatcacct	gttcaacatt	240
gcaaagccaa	ggcctccctg	gatgggactg	ctgggaccta	ccatccaggc	tgaggtgtat	300
gacactgtgg	tcatcacact	gaaaaacatg	gcatctcacc	ctgtcagcct	gcatgcagtg	360
ggagtcagct	actggaaggc	ttcagaaggg	gcagagtatg	atgatcagac	aagccagaga	420
gaaaaagagg	atgataaggt	gttcccagga	gggagccata	cttatgtgtg	gcaggtcctg	480
aaggagaatg	gcccaatggc	cagtgaccca	ctgtgcctca	cctactcata	tctgagtcat	540
gtggacctgg	tcaaggatct	caactcaggc	ctgattgggg	cactgctggt	gtgcagggaa	600
ggctcactgg	ccaaggagaa	aacccagaca	ctgcataagt	tcatcctgct	ctttgctgtg	660
tttgatgaag	ggaaatcttg	gcacagtgag	accaagaaca	gtctgatgca	ggacagggat	720
gctgcttctg	ccagagcttg	gcccaagatg	cacacagtga	atggatatgt	caataggtcc	780
ctgccaggac	tcattggctg	ccacagaaag	tcagtgtatt	ggcatgtcat	tggaatgggc	840
accacaccag	aagtgcacag	catcttcctg	gaggggcata	cctttctggt	caggaaccac	900
aggcaggcca	gcctggagat	cagcccaatc	accttcctga	cagcccagac	tctgctcatg	960
gatctggggc	agttcctgct	cttttgccac	atcagctccc	accagcatga	tggaatggag	1020
gcatatgtga	aagtggactc	ctgcccagag	gaaccacagc	tgaggatgaa	gaacaatgag	1080
gaagctgaag	actatgatga	tgacctgaca	gactcagaga	tggatgtggt	caggtttgat	1140
gatgataaca	gcccctcctt	tatccagatc	agaagtgtgg	ccaagaaaca	cccaaagaca	1200
tgggtccatt	acattgcagc	tgaggaagag	gactgggatt	atgcacctct	ggtgctggcc	1260
ccagatgata	gatcctacaa	atcacagtat	ctgaacaatg	gaccccagag	gattggcaga	1320
aagtacaaga	aagtgaggtt	catggcctat	actgatgaaa	catttaagac	tagagaagct	1380
atccagcatg	agtcaggcat	cctgggacca	ctgctctatg	gagaagtggg	ggacaccctg	1440
ctcatcatct	tcaagaacca	ggcttccagg	ccatacaata	tctatcctca	tggcatcaca	1500
gatgtgagac	cactctactc	aaggagactg	cctaagggag	tcaaacacct	caaggacttc	1560
cctatcctgc	caggggaaat	ctttaagtat	aaatggactg	tgacagtgga	ggatgggccc	1620
actaagagtg	acccaaggtg	cctgaccaga	tactattcaa	gttttgtgaa	tatggaaagg	1680
gatctggcat	caggactgat	tggacctctg	ctcatctgct	acaaagagag	tgtggatcag	1740
aggggcaacc	agatcatgtc	agacaagagg	aatgtgatcc	tgttcagtgt	ctttgatgaa	1800
aacaggtctt	ggtatctgac	agagaacatc	cagagattcc	tgccaaatcc	tgcaggggtg	1860
cagctggaag	atccagagtt	tcaggcctca	aacatcatgc	atagtatcaa	tggatatgtg	1920
tttgacagtc	tgcagctctc	tgtgtgcctg	catgaagtgg	cctactggta	tatcctgtcc	1980

attggagctc agacagattt	cctgagtgtg	ttcttttcag	gctacacttt	taagcataaa	2040
atggtctatg aggacacact	gactctcttc	ccttttagtg	gggaaacagt	gtttatgagc	2100
atggagaatc cagggctgtg	gattctggga	tgccacaaca	gtgatttcag	gaatagaggc	2160
atgactgctc tgctcaaagt	gtctagctgt	gacaagaaca	caggggacta	ctatgaagat	2220
tcttatgagg acatcagtgc	ttatctgctc	tccaaaaaca	atgcaattga	acccagatca	2280
ttcagtcaga atccacctgt	gctgaagagg	caccagagag	agatcactag	gactaccctg	2340
cagtcagatc aggaagagat	tgactatgat	gataccatct	cagtggaaat	gaagaaagag	2400
gactttgata tctatgatga	agatgagaac	cagagtccaa	ggtctttcca	gaagaaaacc	2460
agacattact ttattgctgc	agtggagagg	ctgtgggatt	atggaatgtc	ctcaagtcca	2520
catgtgctga ggaatagggc	acagtctggc	agtgtccctc	agttcaagaa	agtggtcttc	2580
caggagttta cagatggcag	cttcactcag	cctctgtaca	ggggagaact	caatgagcac	2640
ctggggctgc tgggacccta	tatcagagct	gaagtggagg	ataacatcat	ggtcaccttc	2700
aggaatcagg cttcaagacc	ctacagtttt	tattctagcc	tgatcagcta	tgaagaggac	2760
cagaggcagg gagctgaacc	taggaaaaac	tttgtgaagc	caaatgagac	caaaacatac	2820
ttttggaagg tccagcacca	catggcacca	accaaagatg	agtttgattg	caaggcatgg	2880
gcctattttt cagatgtgga	tctggagaag	gatgtccaca	gtggcctcat	tgggcctctg	2940
ctggtgtgcc atactaacac	cctgaatcca	gctcatggca	ggcaggtgac	agtccaggag	3000
tttgcactgt tctttaccat	ctttgatgag	acaaagtcct	ggtacttcac	tgaaaacatg	3060
gagaggaatt gcagagctcc	ttgcaacatc	cagatggaag	accccacctt	caaggagaac	3120
tacagatttc atgcaatcaa	tgggtatatc	atggatacac	tgccaggact	ggtgatggcc	3180
caggaccaga ggatcagatg	gtatctgctc	agcatggggt	ccaatgagaa	tatccactct	3240
atccatttca gtggacatgt	gtttacagtc	agaaagaaag	aagagtataa	aatggccctg	3300
tacaacctct atccaggagt	gtttgaaaca	gtggagatgc	tgccaagcaa	ggctgggatc	3360
tggagggtgg aatgcctcat	tggggagcac	ctgcatgcag	gaatgtcaac	cctgtttctg	3420
gtctacagta ataagtgcca	gacacctctg	ggaatggcaa	gtggacatat	cagggatttc	3480
cagatcactg ctagtggaca	gtatggacag	tgggcaccaa	agctggctag	actccactat	3540
tcaggctcaa tcaatgcttg	gtccaccaaa	gagccattct	catggatcaa	ggtggacctg	3600
ctggctccta tgatcatcca	tggcatcaaa	acacaggggg	caaggcagaa	gttctcctca	3660
ctgtacatct ctcagtttat	catcatgtat	agcctggatg	gcaagaaatg	gcagacctac	3720
aggggcaata gcacagggac	tctgatggtg	ttctttggca	atgtggacag	cagtgggatc	3780
aagcacaaca tcttcaatcc	cccaatcatt	gcaaggtaca	tcagactgca	ccccacccat	3840
tattcaatca ggagtacact	caggatggaa	ctgatggggt	gtgatctcaa	cagttgctct	3900

atgccactgg	gaatggagtc	caaggcaatc	tcagatgccc	agatcactgc	tagctcctac	3960
ttcactaata	tgtttgctac	ctggagcccc	tccaaagcaa	ggctgcacct	ccagggaagg	4020
agcaatgcat	ggaggcctca	ggtgaacaat	cccaaggaat	ggctgcaggt	ggatttccag	4080
aaaactatga	aggtgactgg	agtcacaact	cagggagtga	aaagtctgct	cacttctatg	4140
tatgtcaagg	agttcctgat	ctcaagttct	caggatggcc	accagtggac	cctgttcttt	4200
cagaatggaa	aggtgaaagt	cttccagggc	aatcaggatt	cctttacacc	agtggtcaac	4260
tcactggacc	ctcccctgct	cactagatat	ctgagaatcc	accctcagag	ctgggtgcat	4320
cagattgctc	tcagaatgga	agtcctgggc	tgtgaggcac	aggacctgta	ttga	4374

<210> 127 <211> 1386

5 <212> ADN

<213> Secuencia artificial

<223> secuencia promotora recombinante

10 <400> 127

atgcagaggg	tgaatatgat	tatggctgag	tcccctgggc	tgattaccat	ttgcctgctg	60
ggatacctgc	tgtctgctga	gtgtacagtg	ttcctggacc	atgagaatgc	aaataagatc	120
ctgaacaggc	ccaaaagata	taatagtgga	aagctggagg	aatttgtgca	gggcaacctg	180
gagagagaat	gcatggagga	aaagtgtagc	tttgaggaag	ccagggaggt	gtttgaaaat	240
acagagagaa	ccacagaatt	ctggaagcag	tatgtggatg	gagatcagtg	tgagagcaac	300
ccctgtctga	atggagggag	ttgcaaagat	gatatcaact	catatgaatg	ctggtgtcct	360
tttggatttg	aaggcaaaaa	ttgtgagctg	gatgtgacct	gtaacattaa	gaatgggagg	420
tgtgagcagt	tttgtaaaaa	ctctgctgat	aataaggtgg	tctgcagttg	tacagaaggg	480
tatagactgg	ctgagaacca	gaagtcctgt	gaaccagctg	tgcccttccc	ttgtggaagg	540
gtgtctgtct	cccagacttc	aaaactgacc	agagctgaga	ctgtgtttcc	tgatgtggat	600
tatgtcaaca	gcacagaggc	tgaaactatc	ctggacaaca	ttactcagtc	tacccagagt	660
ttcaatgact	ttaccagagt	ggtgggagga	gaggatgcta	aaccaggcca	gttcccctgg	720
caggtggtcc	tgaatgggaa	ggtggatgca	ttttgtgggg	gatctattgt	gaatgagaaa	780
tggattgtca	cagctgctca	ctgtgtggaa	actggggtca	agatcacagt	ggtggctgga	840
gagcacaaca	ttgaggaaac	agaacatact	gagcagaaga	ggaatgtgat	cagaatcatt	900
cctcaccata	actacaatgc	agccatcaac	aaatataatc	atgacattgc	cctgctggaa	960
ctggatgagc	ctctggtgct	gaacagctat	gtcacaccaa	tctgcattgc	tgacaaggag	1020
tacactaaca	tcttcctgaa	gtttgggtca	ggatatgtgt	ctggatgggg	aagagtcttc	1080
cacaagggca	ggtctgcact	ggtgctgcag	tatctgagag	tgcctctggt	ggatagggcc	1140
	tgtctaccaa					1200
	gagactcctg					1260
	tcctgacagg					1320
	acaccaaagt					1380
acatga	3 ·		2 3 33-	33		1386
J ==						

<210> 128 <211> 252 <212> ADN

<213> Secuencia artificial

<220>

<223> secuencia promotora recombinante

10 <400> 128

5

tgtttgctgc ttgcaatgtt tgcccatttt agggtggaca caggacgctg tggtttctga 60 gccagggggc gactcagatc ccagccagtg gacttagccc ctgtttgctc ctccgataac 120 tggggtgacc ttggttaata ttcaccagca gcctcccccg ttgcccctct ggatccactg 180 cttaaatacg gacgaggaca gggccctgtc tcctcagctt caggcaccac cactgacctg 240 ggacagtgaa tc 252

<210> 129

<211> 4882

<212> ADN

<213> Secuencia artificial

<220>

<223> secuencia de AAV recombinante

10

5

<400> 129

cctgcaggca gctgcgcgct cgctcgctca ctgaggccgc ccgggcaaag cccgggcgtc 60 gggcgacctt tggtcgcccg gcctcagtga gcgagcgagc gcgcagagag ggagtggcca 120 actccatcac taggggttcc taccggtgtt aatcattaag tcgttaattt ttgtggccct 180 240 tgcgatgttt gctctggtta ataatctcag gacaaacaga ggttaataat tttccagatc tctctgagca atagtataaa aggccagcag cagcctgacc acatctcatc ctcgtcgagc 300 360 caccatgcag atcgaactgt ctacctgttt ctttctgtgc ctgctgcggt tttgtttttc cgctaccaga agatactacc tgggagccgt cgaactgagc tgggattaca tgcagtctga 420 480 cctgggagag ctgcccgtgg acgctagatt cccacctaga gtccctaagt ccttcccctt caacaccagc gtggtctaca agaaaaccct gttcgtggag tttaccgacc acctgttcaa 540 catcgctaag cctagaccac catggatggg actgctggga ccaaccatcc aggccgaggt 600 gtacgacacc gtggtcatca ccctgaaaaa catggcttct caccccgtgt ccctgcatgc 660

tgtgggcgtc	tcctactgga	aggccagcga	aggggctgag	tatgacgatc	agaccagcca	720
gcgggaaaaa	gaggacgata	aggtgttccc	tggcgggtcc	catacctacg	tgtggcaggt	780
cctgaaggag	aatggaccaa	tggcttccga	ccctctgtgc	ctgacctact	cttatctgtc	840
ccacgtggac	ctggtcaagg	atctgaacag	cggcctgatc	ggggctctgc	tggtgtgtcg	900
cgaagggtcc	ctggccaagg	agaaaaccca	gaccctgcat	aagttcatcc	tgctgttcgc	960
cgtgtttgac	gaaggaaaaa	gctggcactc	tgagaccaag	aactctctga	tgcaggacag	1020
ggatgccgct	tccgccagag	cttggcccaa	gatgcacacc	gtgaacggct	acgtcaatag	1080
gagcctgcct	ggactgatcg	gctgccacag	aaagtccgtg	tattggcatg	tcatcggaat	1140
gggcaccacc	cctgaagtgc	acagcatctt	cctggagggg	catacctttc	tggtccgcaa	1200
ccaccggcag	gctagcctgg	agatctctcc	aatcaccttc	ctgaccgccc	agaccctgct	1260
gatggacctg	ggacagttcc	tgctgttttg	ccacatctcc	agccaccagc	atgatggcat	1320
ggaggcttac	gtgaaagtcg	actcctgtcc	cgaggaacct	cagctgagga	tgaagaacaa	1380
tgaggaagcc	gaagactatg	acgatgacct	gaccgacagc	gagatggatg	tggtccgctt	1440
cgatgacgat	aactctccct	cctttatcca	gatccggtcc	gtggccaaga	aacaccctaa	1500
gacctgggtc	cattacatcg	ccgctgagga	agaggactgg	gattatgctc	cactggtgct	1560
ggcccccgac	gatagatcct	acaaaagcca	gtatctgaac	aatggacccc	agaggatcgg	1620
cagaaagtac	aagaaagtga	ggttcatggc	ttataccgat	gagaccttta	agaccagaga	1680
agccatccag	cacgagtccg	ggatcctggg	acctctgctg	tacggcgaag	tgggggacac	1740
cctgctgatc	atcttcaaga	accaggccag	caggccttac	aatatctatc	cacatggcat	1800
caccgatgtg	agacctctgt	actcccgccg	gctgccaaag	ggcgtgaaac	acctgaagga	1860
cttcccaatc	ctgcccgggg	aaatctttaa	gtataaatgg	accgtcaccg	tcgaggatgg	1920
gcccaccaag	agcgacccta	ggtgcctgac	cagatactat	tcttccttcg	tgaatatgga	1980
gagagacctg	gcttccggac	tgatcggacc	cctgctgatc	tgttacaaag	agagcgtgga	2040
tcagcgcggc	aaccagatca	tgtctgacaa	gcggaatgtg	atcctgttca	gcgtctttga	2100
cgaaaaccgc	tcttggtacc	tgaccgagaa	catccagcgg	ttcctgccta	atccagctgg	2160
agtgcagctg	gaagatcccg	agttccaggc	ctctaacatc	atgcattcca	tcaatggcta	2220
cgtgttcgac	tccctgcagc	tgagcgtgtg	cctgcacgag	gtcgcttact	ggtatatcct	2280
gagcatcgga	gcccagaccg	atttcctgtc	tgtgttcttt	tccggctaca	cctttaagca	2340
taaaatggtg	tatgaggaca	ccctgaccct	gttcccattt	tccggcgaaa	ccgtgttcat	2400
gagcatggag	aatcccgggc	tgtggatcct	gggatgccac	aactccgatt	tcaggaatag	2460
agggatgacc	gccctgctga	aagtgagctc	ttgtgacaag	aacaccggag	actactatga	2520

agatagctac	gaggacatct	ctgcttatct	gctgtccaaa	aacaatgcca	tcgagcccag	2580
gagcttctct	cagaaccctc	cagtgctgaa	gcgccaccag	cgggagatca	ccagaaccac	2640
cctgcagagc	gatcaggaag	agatcgacta	cgacgatacc	atctccgtgg	aaatgaagaa	2700
agaggacttc	gatatctatg	acgaagatga	gaaccagtct	cccaggtcct	tccagaagaa	2760
aaccagacat	tactttatcg	ccgctgtgga	gcggctgtgg	gactatggca	tgtccagctc	2820
tcctcacgtg	ctgagaaata	gagctcagtc	cggaagcgtc	ccacagttca	agaaagtggt	2880
cttccaggag	tttaccgacg	gaagctttac	ccagccactg	taccgcggcg	aactgaacga	2940
gcacctgggg	ctgctgggac	cctatatccg	ggctgaagtg	gaggataaca	tcatggtcac	3000
cttcaggaat	caggccagca	gaccctactc	tttttattcc	agcctgatct	cctacgaaga	3060
ggaccagaga	cagggagctg	aaccaagaaa	aaacttcgtg	aagcctaatg	agaccaaaac	3120
ctacttttgg	aaggtgcagc	accatatggc	ccctaccaaa	gacgagttcg	attgcaaggc	3180
ctgggcttat	tttagcgacg	tggatctgga	gaaggacgtc	cactccggcc	tgatcgggcc	3240
actgctggtg	tgtcatacca	acaccctgaa	tccagctcac	ggaaggcagg	tgaccgtcca	3300
ggaattcgcc	ctgttcttta	ccatctttga	tgagaccaag	agctggtact	tcaccgaaaa	3360
catggagagg	aattgcagag	ccccatgtaa	catccagatg	gaagacccca	ccttcaagga	3420
gaactacaga	tttcatgcta	tcaatgggta	tatcatggat	accctgccag	gactggtcat	3480
ggctcaggac	cagaggatca	gatggtacct	gctgagcatg	gggtctaacg	agaatatcca	3540
ctccatccat	ttcagcggac	acgtgtttac	cgtccgcaag	aaagaagagt	acaagatggc	3600
cctgtacaac	ctgtatcccg	gcgtgttcga	aaccgtcgag	atgctgcctt	ccaaggctgg	3660
gatctggcgg	gtggaatgcc	tgatcgggga	gcacctgcat	gccggaatgt	ctaccctgtt	3720
cctggtgtac	tccaataagt	gtcagacccc	cctggggatg	gctagcggac	atatccgcga	3780
cttccagatc	accgcttccg	gacagtacgg	acagtgggct	cctaagctgg	ctagactgca	3840
ctattctggc	tccatcaacg	cttggtctac	caaagagcct	ttctcctgga	tcaaggtgga	3900
cctgctggct	ccaatgatca	tccatggcat	caaaacccag	ggggccaggc	agaagttctc	3960
ttccctgtac	atcagccagt	ttatcatcat	gtattctctg	gatgggaaga	aatggcagac	4020
ctacagaggc	aattccaccg	ggaccctgat	ggtgttcttt	ggcaacgtcg	acagctctgg	4080
gatcaagcac	aacatcttca	atccccctat	catcgcccgc	tacatccggc	tgcacccaac	4140
ccattattcc	atccgcagca	ccctgcggat	ggagctgatg	gggtgcgatc	tgaacagctg	4200
ttctatgccc	ctgggaatgg	agtctaaggc	catctccgac	gctcagatca	ccgcctccag	4260
ctacttcacc	aatatgtttg	ctacctggtc	cccaagcaag	gctagactgc	atctgcaggg	4320
aagaagcaac	gcttggagac	cacaggtgaa	caatcccaag	gagtggctgc	aggtcgactt	4380
ccagaaaacc	atgaaggtga	ccggagtcac	cacccagggc	gtgaaaagcc	tgctgacctc	4440

tatgtacgtc aaggagttcc tgatctcttc cagccaggac gggcaccagt ggaccctgtt	4500
ctttcagaac ggaaaggtga aagtcttcca gggcaatcag gattccttta cccctgtggt	4560
caacagectg gacccacccc tgctgaccag gtacctgaga atccacccac agtcctgggt	4620
gcatcagatc gctctgagga tggaagtcct gggctgcgag gcccaggacc tgtattgagc	4680
ggccgcaata aaatatcttt attttcatta catctgtgtg ttggtttttt gtgtgcaatt	4740
gaggaacccc tagtgatgga gttggccact ccctctctgc gcgctcgctc gctcactgag	4800
gccgggcgac caaaggtcgc ccgacgcccg ggctttgccc gggcggcctc agtgagcgag	4860
cgagcgcgca gctgcctgca gg	4882

<210> 130 <211> 5018 <212> ADN

<213> Secuencia artificial

<220>

<223> secuencia de AAV recombinante

10

5

<400> 130

cctgcaggca	gctgcgcgct	cgctcgctca	ctgaggccgc	ccgggcaaag	cccgggcgtc	60
gggcgacctt	tggtcgcccg	gcctcagtga	gcgagcgagc	gcgcagagag	ggagtggcca	120
actccatcac	taggggttcc	taccggtgtt	aatcattaag	tcgttaattt	ttgtggccct	180
tgcgatgttt	gctctggtta	ataatctcag	gacaaacaga	ggttaataat	tttccagatc	240
tctctgagca	atagtataaa	aggccagcag	cagcctgacc	acatctcatc	ctcgtcgact	300
taattaaaag	aggtaagggt	ttaagggatg	gttggttggt	ggggtattaa	tgtttaatta	360
cctggagcac	ctgcctgaaa	tcacttttt	tcaggttggc	tcgagccacc	atgcagctgg	420
aactgtctac	ctgtgtgttt	ctgtgtctgc	tgcctctggg	gttttctgct	atcaggagat	480
actatctggg	agctgtggag	ctgtcctggg	actacaggca	gtctgagctg	ctgagagaac	540
tgcatgtgga	taccagattc	ccagctacag	ctccaggagc	tctgcctctg	ggcccatctg	600
tgctgtacaa	gaaaacagtc	tttgtggagt	ttacagacca	gctgttctct	gtggccaggc	660
caagaccacc	ttggatggga	ctgctgggac	caaccatcca	ggctgaggtg	tatgatacag	720
tggtggtgac	cctgaaaaac	atggcctccc	atcctgtgag	cctgcatgct	gtgggggtgt	780
ccttctggaa	gtcctctgag	ggagctgagt	atgaagacca	tacctcccag	agggagaaag	840
aagatgataa	ggtgctgcct	ggcaaaagcc	agacctatgt	ctggcaggtg	ctgaaggaga	900
atggaccaac	tgcttctgac	ccaccatgcc	tgacctactc	ttatctgtcc	catgtggatc	960
tggtgaagga	cctgaattct	ggactgattg	gagctctgct	ggtgtgtaga	gagggaagcc	1020
tgaccagaga	aagaacccag	aacctgcatg	agtttgtcct	gctgtttgct	gtgtttgatg	1080

aagggaagag	ctggcactct	gccaggaatg	actcctggac	cagagctatg	gatccagctc	1140
ctgctagagc	tcagcctgct	atgcacacag	tcaatggcta	tgtgaatagg	tctctgccag	1200
gactgattgg	ctgccataag	aaatctgtct	attggcatgt	gattggaatg	ggcaccagcc	1260
ctgaggtgca	ttctatcttc	ctggaaggcc	acacctttct	ggtcaggcac	catagacagg	1320
cctctctgga	gatctcccct	ctgaccttcc	tgacagctca	gacctttctg	atggacctgg	1380
ggcagttcct	gctgttttgc	catatctctt	cccaccatca	tggaggaatg	gaggctcatg	1440
tcagggtgga	atcctgtgct	gaggaaccac	agctgagaag	aaaggctgat	gaggaagagg	1500
actatgatga	taacctgtat	gactctgata	tggatgtggt	gaggctggat	ggggatgatg	1560
tcagcccttt	catccagatc	aggtctgtgg	ccaagaaaca	tccaaagacc	tgggtccact	1620
acattgctgc	tgaagaggaa	gattgggact	atgcccccct	ggtgctggct	cctgatgata	1680
gatcctacaa	aagccagtat	ctgaacaatg	ggccccagag	gattggaagg	aagtacaaga	1740
aagtgaggtt	catggcctat	acagatgaga	cctttaagac	cagagaggct	atccagcatg	1800
aatctgggat	cctgggacct	ctgctgtatg	gagaagtggg	ggataccctg	ctgatcatct	1860
tcaagaacca	ggcctccagg	ccatacaata	tctatcccca	tggcatcaca	gatgtgagac	1920
cactgtacag	caggagactg	cccaaggggg	tcaaacacct	gaaggatttc	cccatcctgc	1980
ctggagagat	ctttaagtat	aaatggacag	tcacagtgga	agatgggcct	accaagtctg	2040
atccaaggtg	cctgaccaga	tactatagct	cttttgtgaa	catggagaga	gacctggctt	2100
ctggactgat	tggacccctg	ctgatctgtt	acaaagagtc	tgtggaccag	aggggcaacc	2160
agatcatgtc	tgataagaga	aatgtcatcc	tgttctctgt	gtttgatgag	aacaggagct	2220
ggtacctgac	agagaacatc	cagaggttcc	tgccaaatcc	agctggagtg	cagctggagg	2280
acccagaatt	tcaggcttcc	aacatcatgc	atagcatcaa	tggctatgtg	tttgatagcc	2340
tgcagctgtc	tgtctgcctg	catgaggtgg	cctactggta	tatcctgtcc	attggagctc	2400
agacagactt	cctgtctgtg	ttctttagtg	ggtacacctt	taagcataaa	atggtgtatg	2460
aggataccct	gaccctgttc	cccttttctg	gggagacagt	gttcatgtcc	atggaaaacc	2520
ctggcctgtg	gatcctgggg	tgccacaact	ctgacttcag	gaatagagga	atgacagccc	2580
tgctgaaagt	gtccagctgt	gataagaata	caggggatta	ctatgaggac	tcttatgaag	2640
atatctctgc	ttatctgctg	agcaagaaca	atgccattga	gcccaggtct	tttgctcaga	2700
actccagacc	tccatctgct	tctgctccta	agccacctgt	gctgagaaga	catcagaggg	2760
acatctccct	gcctaccttc	cagccagagg	aagataaaat	ggactatgat	gatatcttca	2820
gcacagagac	caagggggaa	gattttgaca	tctatggaga	ggatgaaaac	caggatccaa	2880
gatccttcca	gaagagaacc	agacactact	ttattgctgc	tgtggagcag	ctgtgggact	2940
atgggatgtc	tgaaagccca	agggccctga	ggaacagagc	tcagaatgga	gaggtgccca	3000

gatto	aagaa	agtggtgttc	agagagtttg	ctgatggcag	ctttacccag	ccatcttaca	3060
ggggg	gagct	gaacaagcat	ctggggctgc	tgggacccta	tatcagagct	gaggtggaag	3120
ataac	atcat	ggtgaccttc	aagaatcagg	cttctaggcc	ctactccttt	tattcttccc	3180
tgato	tccta	ccctgatgat	caggagcagg	gagctgaacc	taggcacaac	tttgtgcagc	3240
caaat	gagac	cagaacctac	ttttggaagg	tgcagcatca	catggctccc	acagaggatg	3300
aattt	gactg	caaagcttgg	gcctatttt	ctgatgtgga	cctggagaag	gatgtgcatt	3360
ctggc	ctgat	tgggcctctg	ctgatctgta	gggccaacac	cctgaatgct	gctcatggaa	3420
gacag	gtcac	agtgcaggag	tttgctctgt	tctttaccat	ctttgatgaa	accaagagct	3480
ggtac	ttcac	agagaatgtg	gaaaggaatt	gcagagcccc	ctgtcatctg	cagatggagg	3540
accct	accct	gaaggaaaac	tacaggttcc	atgccatcaa	tggatatgtc	atggataccc	3600
tgcct	ggcct	ggtcatggct	cagaaccaga	ggatcagatg	gtacctgctg	tctatgggat	3660
ccaat	gagaa	tatccatagc	atccacttct	ctggccatgt	cttttctgtg	aggaagaaag	3720
aggaa	tacaa	aatggctgtg	tacaatctgt	atcctggggt	ctttgagaca	gtggaaatgc	3780
tgcca	agcaa	agtgggaatc	tggagaattg	agtgcctgat	tggggaacac	ctgcaggctg	3840
ggatg	agcac	caccttcctg	gtgtactcta	agaaatgtca	gaccccactg	gggatggcct	3900
ctgga	catat	cagggacttc	cagatcacag	cttctggaca	gtatggacag	tgggctccaa	3960
agctg	gctag	actgcactat	tctggctcca	tcaatgcctg	gtctaccaaa	gagccattct	4020
cctgg	ratcaa	ggtggacctg	ctggccccca	tgatcatcca	tggaatcaaa	acccagggag	4080
ctagg	cagaa	gttcagctct	ctgtacatct	cccagtttat	catcatgtat	agcctggatg	4140
ggaag	aaatg	gcagacctac	agaggcaatt	ccactgggac	cctgatggtc	ttctttggaa	4200
atgtg	gattc	ctctggcatc	aagcacaaca	tcttcaatcc	acccatcatt	gccaggtaca	4260
tcagg	rctgca	tcctacccac	tatagcatca	ggtctaccct	gagaatggag	ctgatgggat	4320
gtgac	ctgaa	cagctgttct	atgccactgg	gcatggagtc	caaggctatc	tctgatgccc	4380
agato	acagc	ttcttcctac	ttcaccaata	tgtttgctac	ctggtcccca	agcaaggcta	4440
gactg	rcacct	gcagggaaga	tccaatgctt	ggagacccca	ggtgaacaat	cctaaggagt	4500
ggctg	caggt	ggacttccag	aaaaccatga	aggtcacagg	ggtgaccacc	cagggagtga	4560
aatct	ctgct	gacctccatg	tatgtcaagg	agttcctgat	cagctcttcc	caggatggcc	4620
accag	rtggac	cctgttcttt	cagaatggca	aggtcaaagt	gttccagggg	aatcaggact	4680
ctttt	acccc	agtggtgaac	tccctggatc	ctccactgct	gaccaggtac	ctgagaatcc	4740
atcct	cagag	ctgggtgcac	cagattgctc	tgagaatgga	ggtcctggga	tgtgaagctc	4800
aggac	ctgta	ttgagcggcc	gcaataaaat	atctttattt	tcattacatc	tgtgtgttgg	4860

	ttttttgtgt	gcaattgagg	aacccctagt	gatggagttg	gccactccct	ctctgcgcgc	4920
	tcgctcgctc	actgaggccg	ggcgaccaaa	ggtcgcccga	cgcccgggct	ttgcccgggc	4980
	ggcctcagtg	agcgagcgag	cgcgcagctg	cctgcagg			5018
5	<210> 131 <211> 137 <212> ADN <213> Secuen	cia artificial					
10	<220> <223> secuence <400> 131	cia promotora re	combinante				
	gttaatttt	t aaaaagcagt	t caaaagtcc	a agtggcccti	t gcgagcattt	actetetetg	60
	tttgctctg	g ttaataatc	t caggagcaca	a aacagaggti	t aataatttt	cagatetete	120
	tgagcaata	g tataaaa					137

REIVINDICACIONES

1. Una molécula de ácido nucleico recombinante, que comprende:

un promotor específico de hígado que comprende un primer elemento de respuesta de no más de 160 nucleótidos de 5 longitud que comprende:

un sitio de unión al factor de transcripción (TF) HNF1a que comprende o que consiste en los nucleótidos 1-12 de la SEQ ID NO: 4, un sitio de unión al TF HNF1-1 que comprende o que consiste en los nucleótidos 16-23 de la SEQ ID NO: 4;

- un sitio de unión al TF HNF4 que comprende o que consiste en los nucleótidos 26-36 de la SEQ ID NO: 4; un sitio de unión al TF HNF3a que comprende o que consiste en los nucleótidos 39-45 de la SEQ ID NO: 4; un sitio de unión al TF HNF1-2 que comprende o que consiste en los nucleótidos 48-62 de la SEQ ID NO: 4; un sitio de unión al TF HNF3-2 que comprende o que consiste en los nucleótidos 65-71 de la SEQ ID NO: 4 un sitio de unión al TF HP1 que comprende o que consiste en los nucleótidos 75-87 de la SEQ ID NO: 4; una caja TATA que comprende o que consiste en los nucleótidos 108-114 de la SEQ ID NO: 4; y un Sitio de Inicio de la Transcripción que comprende o que consiste en los nucleótidos 116-146 de la SEQ ID NO:
 - 2. La molécula de ácido nucleico recombinante de la reivindicación 1, en donde:
 - (a) el primer elemento de respuesta comprende, de 5' a 3', el sitio de unión al TF HNF1a, el sitio de unión al TF HNF1-1, el sitio de unión al TF HNF4, el sitio de unión al TF HNF3a, el sitio de unión al TF HNF1-2, el sitio de unión al TF HNF3-2, el sitio de unión al TF HP1, la caja TATA y el Sitio de Inicio de la Transcripción (TSS); y/o
 - (b) el primer elemento de respuesta no tiene más de 150 nucleótidos de longitud, en donde, opcionalmente, el primer elemento de respuesta tiene 146 nucleótidos de longitud; y/o
 - (c) el primer elemento de respuesta comprende o consiste en una secuencia de nucleótidos al menos un 90 % idéntica a la SEQ ID NO: 4, en donde, opcionalmente, el primer elemento de respuesta comprende o consiste en la secuencia de nucleótidos establecida como la SEQ ID NO: 4; y/o
 - (d) el promotor consiste en el primer elemento de respuesta.
 - 3. La molécula de ácido nucleico recombinante de la reivindicación 1 o 2, que comprende adicionalmente un segundo elemento de respuesta cadena arriba del primer elemento de respuesta, comprendiendo el segundo elemento de respuesta uno de:
- un elemento de respuesta HSh que comprende o que consiste en una secuencia de nucleótidos al menos un 90 % idéntica a la SEQ ID NO: 111;
 - un elemento de respuesta 5'HS que comprende o que consiste en una secuencia de nucleótidos al menos un 90 % idéntica a los nucleótidos 6-32 de la SEQ ID NO: 111; o
- un elemento de respuesta 3'HS que comprende o que consiste en una secuencia de nucleótidos al menos un 90 % idéntica a los nucleótidos 44-68 de la SEQ ID NO: 111,
 - en donde, opcionalmente

20

25

30

45

50

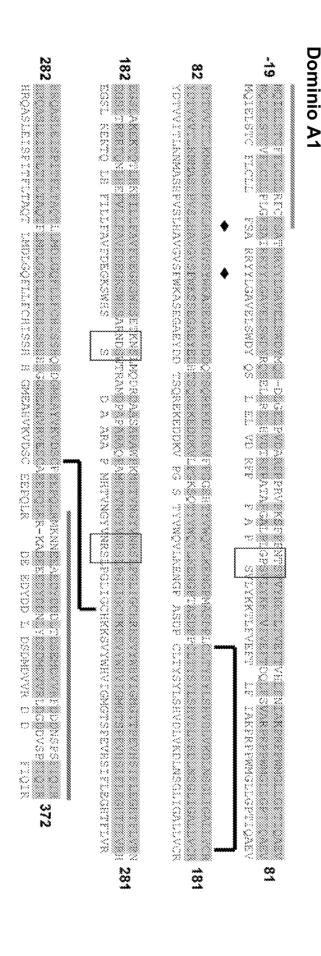
55

- el elemento de respuesta HSh comprende o consiste en la secuencia de nucleótidos establecida como la SEQ ID NO: 111:
- el elemento de respuesta 5'HS comprende o consiste en los nucleótidos 6-32 de la SEQ ID NO: 111; o el elemento de respuesta 3'HS comprende o consiste en los nucleótidos 44-68 de la SEQ ID NO: 111.
- 4. La molécula de ácido nucleico recombinante de la reivindicación 3, en donde el promotor recombinante comprende o consiste en una secuencia de nucleótidos al menos un 90 % idéntica a una de la SEQ ID NO: 102 (HSh-HCB), SEQ ID NO: 104 (5'HSh-HCB) o SEQ ID NO: 103 (3'HSh-HCB), en donde, opcionalmente, el promotor recombinante comprende o consiste en la secuencia de nucleótidos establecida como la SEQ ID NO: 102 (HSh-HCB), SEQ ID NO:
- 104 (5'HSh-HCB) o SEQ ID NO: 103 (3'HSh- HCB).
 - 5. Un vector que comprende la molécula de ácido nucleico recombinante de una cualquiera de las reivindicaciones anteriores.
 - 6. El vector de la reivindicación 5, en donde el vector es un vector vírico, en donde, opcionalmente, el vector vírico es un vector AAV, un vector gamma retrovírico, un vector lentivírico o un vector adenovírico.
- 7. El vector de la reivindicación 5 o 6, que comprende una molécula de ácido nucleico que codifica un factor de coagulación que está operativamente unido al promotor.
 - 8. El vector de la reivindicación 7, en donde:
- (a) el factor de coagulación es fVIII, o una variante de fVIII ET3 o humana con el dominio B eliminado (HSQ), en donde, opcionalmente, el fVIII comprende la secuencia del ácido nucleico establecida como la SEQ ID NO: 2, SEQ ID NO: 11, SEQ ID NO: 125, o SEQ ID NO: 126, o una secuencia del ácido nucleico al menos un

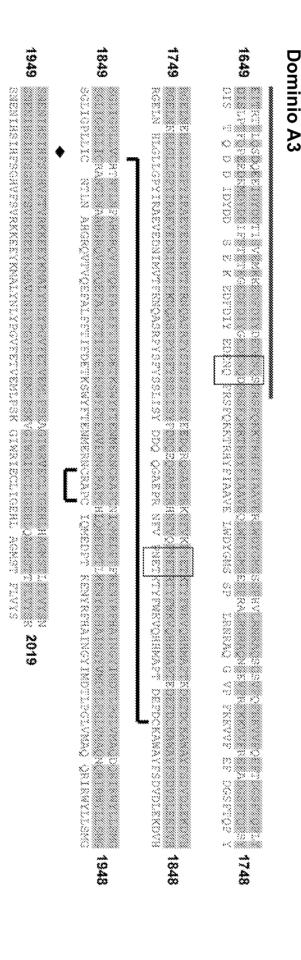
90 % idéntica a la SEQ ID NO: 2, SEQ ID NO: 11, SEQ ID NO: 12, la SEQ ID NO: 125 o la SEQ ID NO: 126; o (b) el factor de coagulación es fIX, en donde, opcionalmente, el fIX comprende la secuencia del ácido nucleico establecida como la SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 124, o SEQ ID NO: 127, o una secuencia del ácido nucleico al menos un 90 % idéntica a la SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 124 o SEQ ID NO: 127.

- 9. Una composición que comprende el vector de una cualquiera de las reivindicaciones 5-8 en un transportador farmacéuticamente aceptable.
- 10. El vector de la reivindicación 7 u 8, o la composición de la reivindicación 9, para su uso en un método para inducir la coagulación de la sangre en un sujeto que lo necesite, comprendiendo dicho método administrar al sujeto una cantidad terapéuticamente eficaz del vector o composición.
- 11. El vector de la reivindicación 7 u 8, o la composición de la reivindicación 9, para su uso en un método de tratamiento
 de un sujeto con un trastorno de la coagulación, comprendiendo dicho método seleccionar un sujeto con el trastorno de la coagulación y administrar al sujeto una cantidad terapéuticamente eficaz del vector o la composición.
 - 12. El vector o composición para su uso en el método de la reivindicación 11, en donde el trastorno de la coagulación
 - hemofilia A y al sujeto se le administra un vector que comprende una molécula de ácido nucleico que codifica una proteína con actividad de fVIII; o hemofilia B y al sujeto se le administra un vector que comprende una molécula de ácido nucleico que codifica una proteína con actividad de fIX.
 - 13. El vector o composición para su uso en el método de una cualquiera de las reivindicaciones 10-12, en donde:
 - (a) el vector se administra por vía intravenosa; o
 - (b) el vector es un vector AAV.

5


20

25


30

35

14. El vector o composición para su uso en el método de una cualquiera de las reivindicaciones 10-13, en donde el vector se administra en combinación con un agente inmunosupresor, en donde, opcionalmente, el agente inmunosupresor es ciclosporina, tacrolimus, sirolimus, ciclofosfamida, metotrexato, azatioprina, mercaptopurina, fluorouracilo, ácido micofenólico, dactinomicina, fingolimod, anticuerpo o proteína de unión a receptores de linfocitos T, muromonab-CD3, anticuerpo o proteína de unión al receptor de IL-2, basiliximab, daclizumab, IFN-beta recombinante, anticuerpo o proteína de unión a TNF-alfa, infliximab, etanercept o adalimumab.

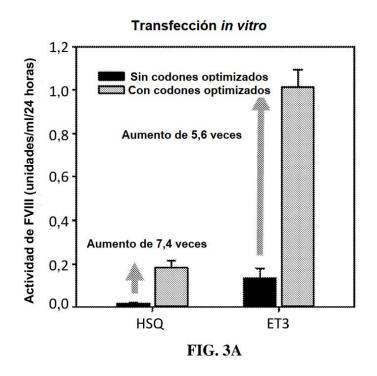
145

146

Tabla de optimización de codones humanos específicos de hígado

S AES	Sa Sa	Se 62	Gin Ca		्रक्ष १६				Asn As			-		Arg Co			Ale GO	Ala GO	A 68	Als 600	AA Codón	
35	Ä	ă	ā	Ä	24	ř	#	ਨ ਨ	1	గ	č	š	H	5,4	Ä	ర	à	-	, , , , , , , , , , , , , , , , , , ,	ਲ	dón Frecuencia	Total
0,34	0,42	0,58	0,75	0,25	0,45	0,55	0,46	0,54	0,46	0,54	0,21	0,2	80,0	0,11	2,2	0,19	0,11	0,26	0,23	9,4 4	cia Frecuencia	Hígado
0,37	0,35	0,65	0,75	0,25	0,4	0,6	0,39	0,61	0,41	0,59	0,21	0,2	0,07	0,1	0,18	0,24	0,1	0,27	0,19	0,44		0
1,09	0,83	1,12,	1,00	1,00	0,89	1,09	0,85	1,13*	0,89	3,08	1, 00	1,00	0,88	0,91	0,90	3,26	0,91	1,04	0,83	3,10	Hígado:Total	
ş	200	Sec.	25 10 10 10 10 10 10 10 10 10 10 10 10 10	West.	843	8 4 3	883	Ke33	893	rer.	843	Ra3	ä	(%)	in the second	æ	æ	3	Š	3	A	
CQ.	8	111	311	ATG	AAA	AAG	CTA	3116	XII.	CIT	SS	CTG	ATA	ATT	ATC	æ	CAC	GGA	999	661	Codón	
0,27	0,33	0,45	0,55	posk	0,42	0,58	0,07	0,13	0,07	0,13	0,2	0,41	0,16	0,36	0,48	0,41	0,59	0,25	0,25	0,18	Frecuencia Fre	Total Hí
0,24	0,38	0,35	0,65	þasi	0,35	0,65	0,06	0,11	0,04	0,1	0,23	0,47	0,11	0,28	0,61	0,41	0,59	0,23	0,28	0,12	Frecuencia Hígado:Tota	Hígado
0,89	1,35	0,78	1,18*	1,00	0,83	1,12*	0,86	0,85	ě	9,7	::55	1,15	0,88	97,8	1,23.	:. 88	1,00	0,92	1,32	9,75	o:Total	
		Val GTC						991 di					Ser TCG	Ser TCT	Ser AGC	Ser TCA	Ser AGT	Ser TCC	Pro CCT	Pro CCG	AA Codón	
		0,24	0,11	0,18	0,47	0,43	0,57	keek	0,12	0,24	0,28	0,36	0,06	0,18	0,24	0,15	0,15	0,22	0,28	0,11	Frecuencia Frecuencia Hígado:Total	Total Hígado
		0,26	0,08	0,13	0,52	0,37	0,63	şus	8,12	0,19	0,21	0,47	0,06	0,17	0,25	0,13	0,12	0,28	87,0	0,1	cuencia Híga	ado
		1,08	0.73	0.72	1,31	0,86	1,11	1,00	1,00	0,79	0,73	1,31 *	1,00	0,94	1,04	0,87	0,80	1,27	1,08	0,91	ido:Total	

115.2


Tabla patrón de optimización de codones humanos

GUG 0,463346	GUA 0,116577	GUC 0,238306	GUU 0,18177	AUG 1	AUA 0,169062	AUC 0,469866	AUU 0,361072	CUG 0,395702	CUA 0,07138	CUC 0,195577	CUU 0,131716	UUG 0,129058	UUA 0,076568	UUC 0,535866	UUU 0,464134	Codón Frecuencia
1143534	287712	588138	448607	896005	304565	846466	650473	1611801	290751	796638	536515	525688	311881	824692	714298	Recuento
GCG 0,106176	GCA 0,228121	GCC 0,399781	GCU 0,265922	ACG 0,113812	ACA 0,284188	ACC 0,355232	ACU 0,246769	CCG 0,113196	CCA 0,276603	CCC 0,32347	CCU 0,286731	UCG 0,054398	UCA 0,150517	UCC 0,21796	UCU 0,187586	Recuento Codón Frecuencia
299495	643471	1127679	750096	246105	614523	768147	533609	281570	688038	804620	713233	179419	496448	718892	618711	Recuento
GAG	GAA	GAC	GAU	AAG	AAA	AAC	AAU	CAG	CAA	CAC	CAU	UAG	UAA	UAC	UAU	Codón
0,577547	0,422453	0,535458	0,464542	0,565951	0,434049	0,529633	0,470367	0,734983	0,265017	0,581485	0,418515	0	0	UAC 0,556662	UAU 0,443338	Codón Freucencia
1609975	1177632	1020595	885429	1295568	993621	776603	689701	1391973	501911	613713	441711	0	٥	622407	495699	Recuento
GGG	GGA	GGC	GGU	AGG	AGA	AGC	AGU	CGG	CGA	CGC	CGU	UGG	UGA	UGC	UGU	Codón
0,249882	0,249922	0,337109	0,163087	0,211091	0,214658	0,239938	0,149602	0,201554	0,108812	0,183777	0,080108	,	نسؤ	UGC 0,543843	UGU 0,456157	Codón Frecuencia
669768	669873	903565	437126	486463	494682	791383	493429	464485	250760	423516	184609	535595	10000	513028	430311	Recuento

FIG. 2B

Tablas de optimización de codones de Monocitos/Mieloides

Codón Fre	cuencia	Recuento	Codón Frecuencia	cuencia	Recuento	Codón F	Frecuencia	Recuento	Codón F	recuencia	Recuento
uuu	0,39	95	UCU	0,15	72	UAU	0,4	70	UGU	0,33	
UUC	0,61	150	CC	0,22	103	UAC	0,6	107	CGC	0,67	
UUA	0,05	27	UCA	0,17	77	UAA	0	0	UGA		
OUU	0,12	67	UCG	0,04	**************************************	UAG	۵	0	UGG	,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Cuu 0,1	0,1	56	CCU	0,22	75	CAU	0,39	54	CGU	CGU 0,1	27
CUC	0,24	139	CCC	0,38	127	CAC	0,61	83	CGC	9,14	
CUA	0,07	40	CCA	0,31	104	CAA	0,28	71	CGA	0,09	
CUG	0,43	251	000	0,09	30	CAG	0,72	180	000	0,18	
AUU	0,26	66	ACU	0,21	78	AAU	0,43	121	AGU	0,14	
AUC	0,6	155	ACC	0,42	153	AAC	0,57	161	AGC	0,28	
AUA	0,14	537	ACA	0,27	98	AAA	0,37	130	AGA	0,22	
AUG	>	5.3 -3	ACG	0,	36	AAG	0,63	225	AGG	0,27	
GUU	0,16	56	CCU	0,32	ens de	GAU	0,46	137	GGU	0,13	
GUC	0,29	103	900	0,35	124	GAC	0,54	161	GGC	0,37	
GUA	0,09	32	GCA	0,25	88	GAA	0,44	180	GGA	0,24	
GUG	0,47	169	900	0,07	25	GAG	0,56	230	GGG	0,26	

Inyección hidrodinámica in vivo

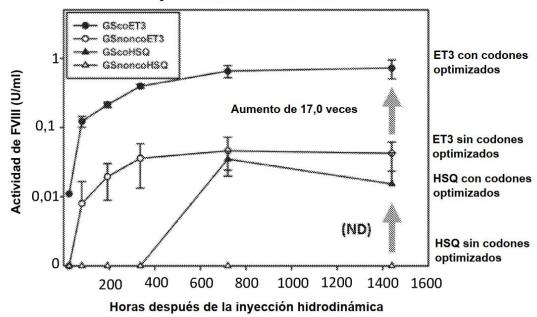
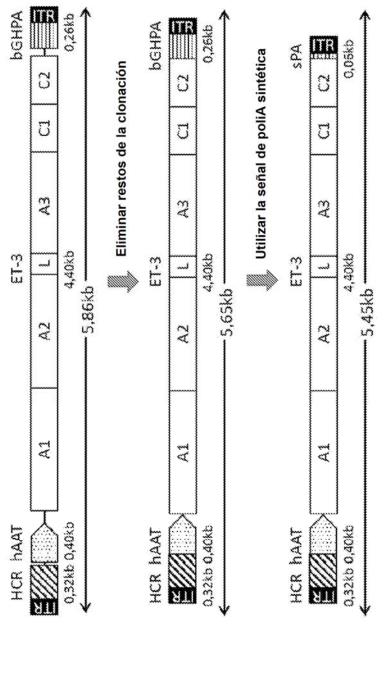
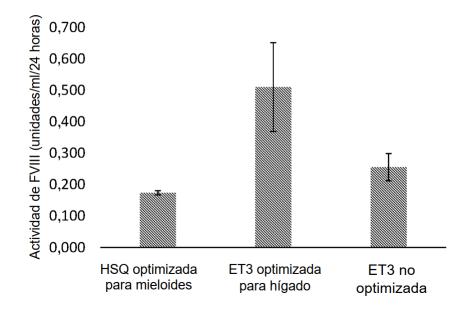
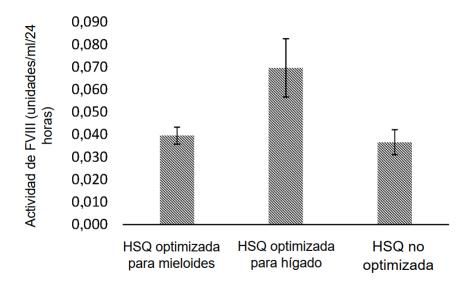
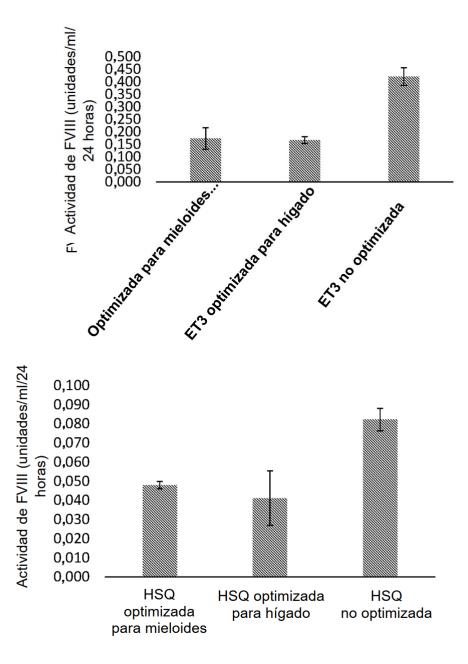
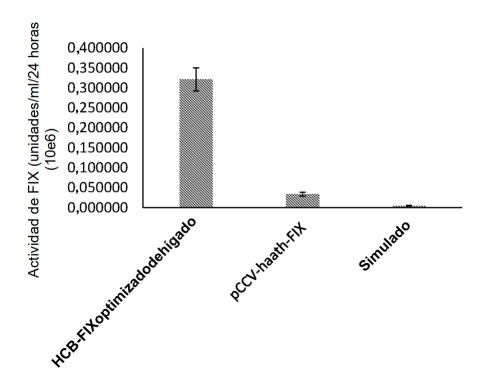




FIG. 3B

FIG. 4

Beneficios de la optimización de codones específicos de tejido (expresión de células HepG2 por transfección transitoria)


FIG. 5

Expresión de optimización de codones específicos de tejido en células de diferentes especies (expresión en células de riñón de hámster recién nacido por transfección transitoria)

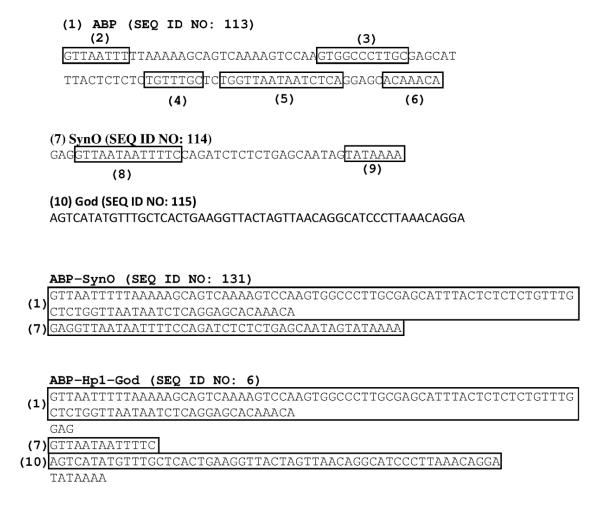


FIG. 6

Optimización en el hígado (factor IX)

FIG. 7

- (1) Elemento ABP
- (2) Sitio de unión a TF HNF1-1
- (3) Sitio de unión a TF HNF4
- (4) Sitio de unión a TF HNF3a
- (5) Sitio de unión a TF HNF1-2
- (6) Sitio de unión a TF HNF3-2
- (7) Elemento Syno
- (8) Sitio de unión a TF HP1
- (9) Caja TATA
- (10) Elemento God

FIG. 8

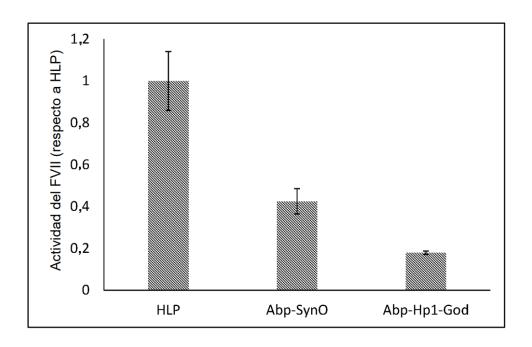
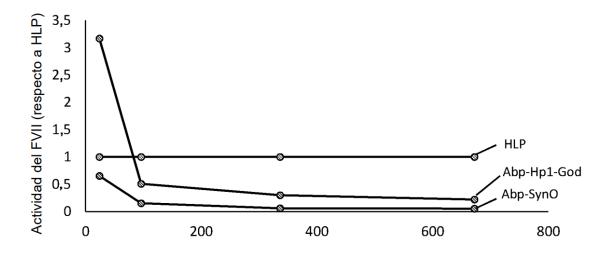
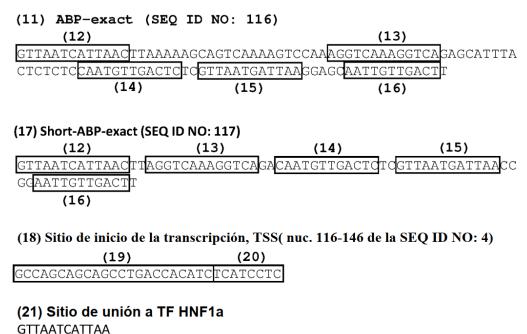




FIG. 9A

Horas después de la inyección

FIG. 9B

GITAATCATTAA

(22) Sitio de unión a TF Sp1
GTTAATCATTAA

(23) Intrón SV40

CTCTAAGGTAAATATAAAATTTTTAAGTGTATAATGTGTTAAACTACTGATTCTAAT TGTTTGTGTATTTTAGATTCCAACCTATGGAACTGA

- (11) ABP-exact (sitios de unión al FT consenso)
- (12) Sitio de unión a TF consenso HNF1
- (13) Sitio de unión a TF consenso HNF4
- (14) Sitio de unión a TF consenso HNF3a
- (15) Sitio de unión a TF consenso HNF1
- (16) Sitio de unión a TF consenso HNF3
- (17) Short-ABP-exact
- (18) Sitio de Inicio de la Transcripción (TSS)
- (19) Espaciador rico en GC
- (20) Motivo de Inicio de la transcripción
- (21) Sitio de unión a TF HMF1a (sitio de unión a TF dirigido a hígado)
- (22) Sitio de unión a TF Sp1 (sitio de unión a TF dirigido a hígado)
- (23) Intrón SV40

FIG. 10

ABP-exact-SynO (SEQ ID NO: 118)

- (11) GTTAATCATTAACTTAAAAAGCAGTCAAAAGTCCAAAGGTCAAAGGTCAGAGCATTTACTCTCTCCA
 ATGTTGACTCTCGTTAATGATTAAGGAGCAATTGTTGACTT
 - (7) GAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAA

ShortABP-exact-SynO (SEQ ID NO: 119)

- (17) GTTAATCATTAACTTAGGTCAAAGGTCAGACAATGTTGACTCTCGTTAATGATTAACCGGAATTGTT
 GACTT
- (7) GAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAA

ABP-HP1-God-TSS (SEQ ID NO: 7)

- (1) GTTAATTTTTAAAAAGCAGTCAAAAGTCCAAGTGGCCCTTGCGAGCATTTACTCTCTGTTTG
 CTCTGGTTAATAATCTCAGGAGCACAAACA
- (8) GTTAATAATTTC
- (10) AGTCATATGTTTGCTCACTGAAGGTTACTAGTTAACAGGCATCCCTTAAACAGGA TATAAAAG
- (18) GCCAGCAGCAGCCTGACCACATCTCATCCTC

Potenciador ABP

HP1

Espaciador rico en GC Caja TATA TSS

Potenciador proximal Godbout

FIG. 11A

HNF1a-ABP-SynO (SEQ ID NO: 120)

(21) GTTAATCATTAA

GTC

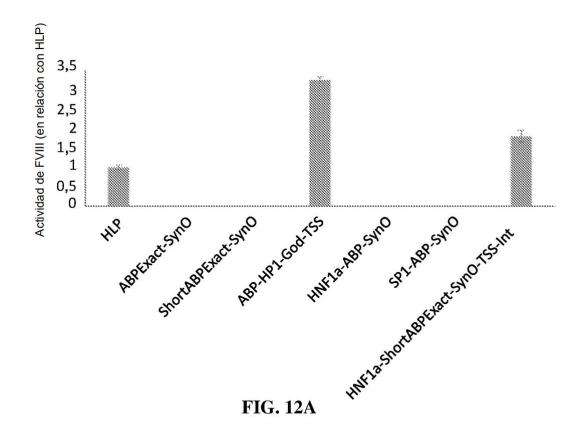
- (1) GTTAATTTTTAAAAAGCAGTCAAAAGTCCAAGTGGCCCTTGCGAGCATTTACTCTCTGTTTG
- (7) GAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAA

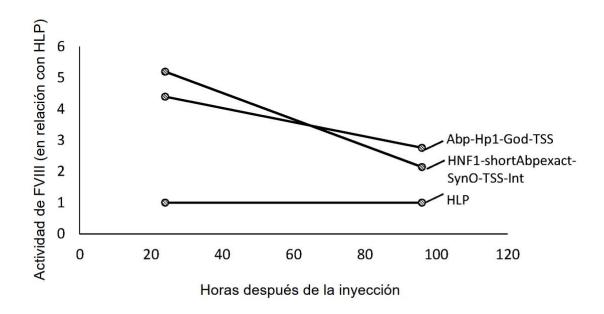
Sp1-ABP-SynO (SEQ ID NO: 121)

(22) TGGGCGGAGT

GTC

- (1) GTTAATTTTTAAAAAGCAGTCAAAAGTCCAAGTGGCCCTTGCGAGCATTTACTCTCTGTTTG
- (7) GAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAAAA


HNF1-ShortABPExact-SynO-TSS-Int (SEQ ID NO: 112)


(21) GTTAATCATTAA

GTC

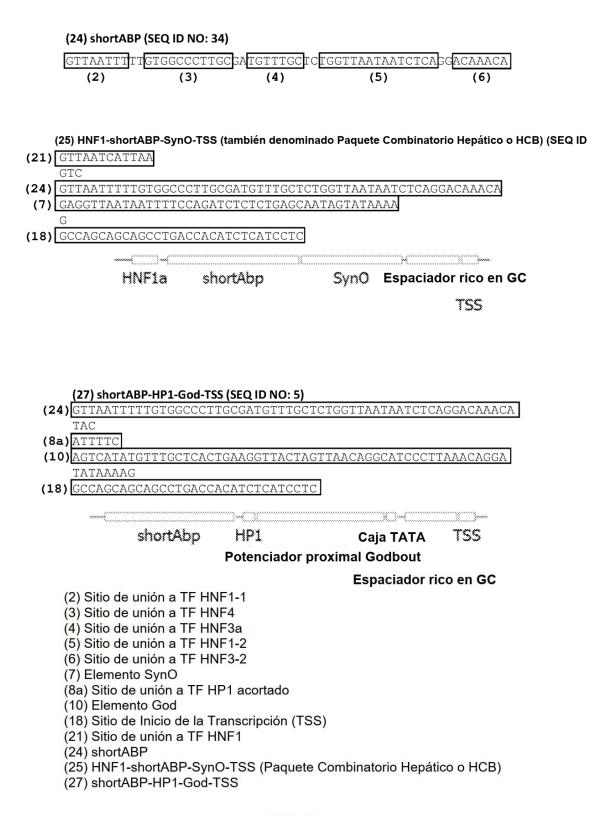
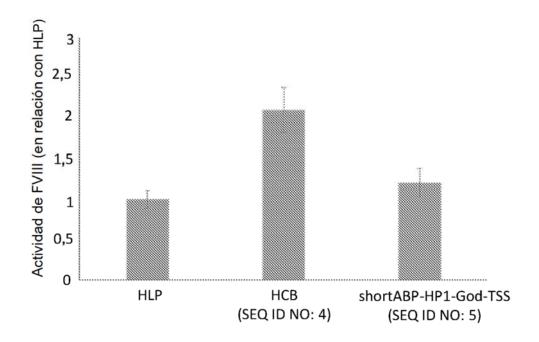
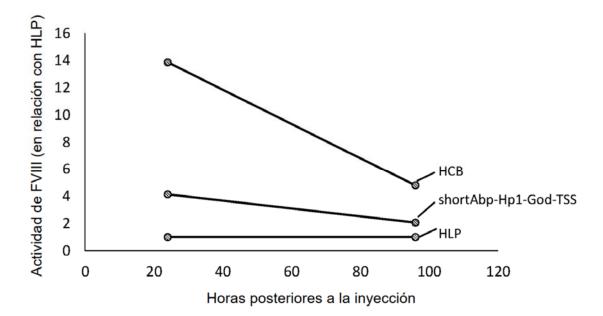
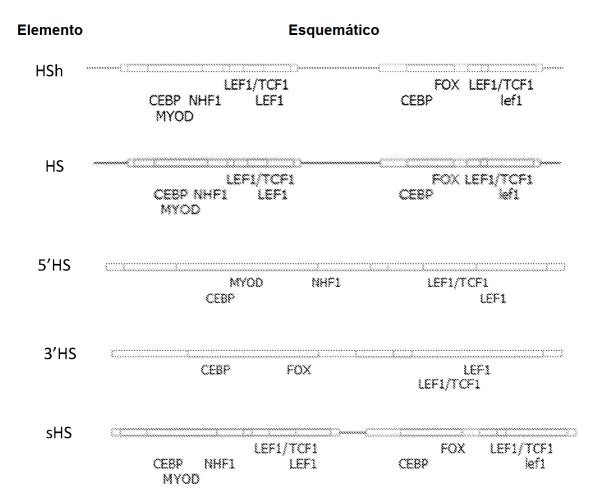

- (17) GTTAATCATTAACTTAGGTCAAAGGTCAGACAATGTTGACTCTCGTTAATGATTAACCGGAATTGT
- (7) GAGGTTAATAATTTTCCAGATCTCTCTGAGCAATAGTATAA
 AAG
- (18) GCCAGCAGCAGCCTGACCACATCTCATCCTC

FIG. 11B




FIG. 12B


FIG. 13

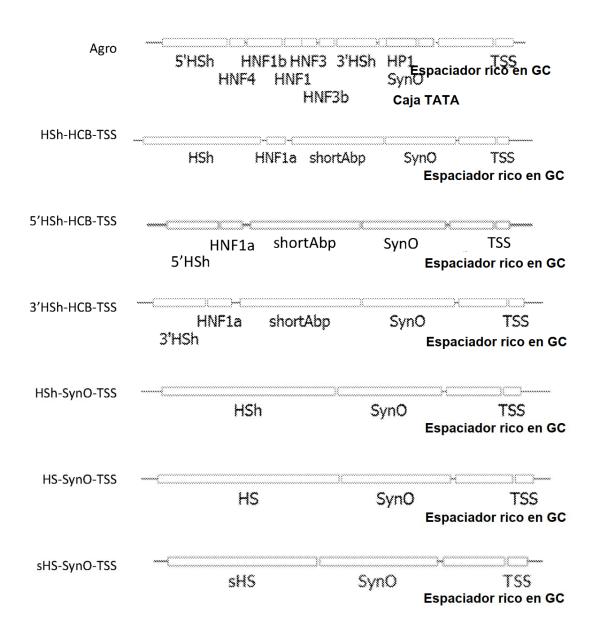

FIG. 14A

FIG. 14B

FIG. 15

FIG. 16

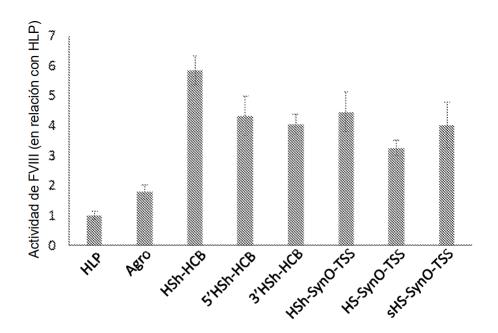
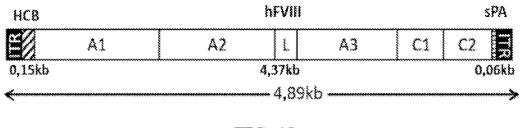
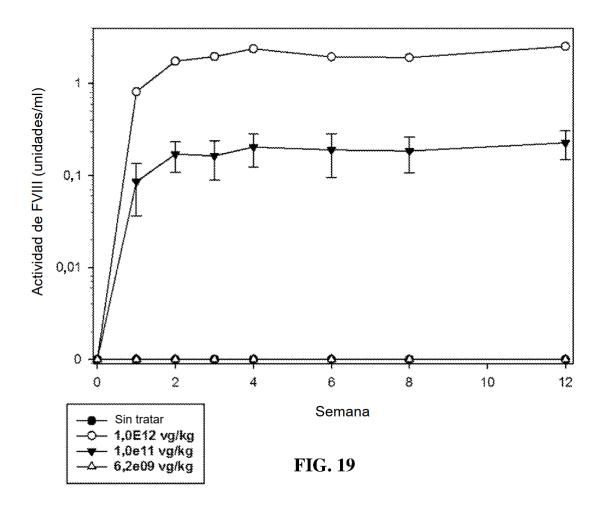




FIG. 17

FIG. 18

Ratón Transducido con AAV-HCB-MVM-ET3-LCO-NCG

