

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 765 852

(51) Int. CI.:

F01D 11/00 (2006.01) F01D 25/24 (2006.01) F02C 7/28 (2006.01) F16J 15/44 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

- (96) Fecha de presentación y número de la solicitud europea: E 17173194 (6) 29.05.2017 (97) Fecha y número de publicación de la concesión europea: 18.12.2019 EP 3409897
 - (54) Título: Dispositivo de sellado para una turbina, método para fabricar un dispositivo de sellado y una
 - (45) Fecha de publicación y mención en BOPI de la traducción de la patente: 11.06.2020

(73) Titular/es:

MTU AERO ENGINES AG (100.0%) **Dachauer Strasse 665** 80995 München, DE

(72) Inventor/es:

SCHLEMMER, MARKUS; PIRKER, KLAUS; SOSNOWKA, LUKASZ; KISLINGER. BERND: STANKA, RUDOLF y **REGULSKI, MARCIN**

(74) Agente/Representante:

SÁNCHEZ SILVA, Jesús Eladio

DESCRIPCIÓN

Dispositivo de sellado para una turbina, método para fabricar un dispositivo de sellado y una turbina

- La invención se refiere a un dispositivo de sellado para una turbina, en particular para un motor de avión, de acuerdo con el preámbulo de la reivindicación 1. Otros aspectos de la invención se refieren a un método para fabricar un dispositivo de sellado para una turbina, así como una turbina.
- En la fabricación de turbinas se conoce el montaje de anillos del álabe guía de una pluralidad de segmentos de álabe guía. Estos anillos de álabe guía se utilizan para alinear un medio (medio de trabajo) que fluye a través de las turbinas durante el funcionamiento. Por medio de los anillos del álabe guía, al menos una parte de la energía cinética del medio que fluye puede convertirse en energía de rotación durante la alineación. Esta energía de rotación puede utilizarse para mover (impulsar) un impulsor unido al anillo del álabe guía y, de este modo, poner en movimiento de rotación un eje de transmisión de la turbina unido al impulsor. Para poder operar las turbinas con un grado de eficacia relativamente alto, es aconsejable mantener lo más pequeños posible los espacios, por ejemplo, entre el anillo del álabe guía y una pieza de la carcasa del eje adyacente a la misma en dirección radial, como la carcasa del rotor de la turbina. De esta forma se puede evitar, al menos en gran medida, la fuga indeseada de líquidos del medio.
- De la patente japonesa JP 2003343206 A1 se conoce un dispositivo de sellado de acuerdo con el preámbulo de la reivindicación 1. Sin embargo, la desventaja de esta estructura previamente conocida es que la unión del elemento de estator al dispositivo de sellado es muy compacta. Además, la fuga de líquido del medio se produce en el área de la unión entre el elemento del estator y el dispositivo de sellado, especialmente en un alojamiento para el elemento del estator. Estas fugas de líquido están presentes particularmente en el área de una banda axial de un portador de junta del dispositivo de sellado. En esta área, el alojamiento para el elemento del estator no está hermetizado suficientemente.
- En la patente europea EP 2 762 684 A1 se describe un dispositivo de sellado similar para una turbina. En esta, un portador de junta del dispositivo de sellado se fabrica y, en particular, se funde o forja en una sola pieza. Sin embargo, la desventaja de este portador de junta conocido, es que la proyección axial para la colocación de un elemento de sellado es muy corta. Esta estructura conocida es especialmente adecuada para colocar juntas de escobillas. No obstante, también se puede colocar una junta en forma de panal en la sección de retención de la proyección axial que se extiende radialmente. Sin embargo, la superficie de retención o de contacto de la proyección axial es muy pequeña y por lo tanto es adecuada solo para colocar juntas de panal pequeñas. Esto puede provocar fugas en el área del espacio radial que se debe sellar entre el rotor y el estator.
- Otros dispositivos de sellado de este tipo para turbinas se conocen de las patentes europeas EP 2 060 741 A2 y EP 2 551 454 A2. Ambos dispositivos de sellado son muy compactos, ya que en estos casos se fabrican dos proyecciones radiales en un portador de junta para formar un alojamiento para el elemento del estator. Además de su peso relativamente alto, estos dispositivos de sellado conocidos son más difíciles de fabricar, debido a que hay que retirar el material en el espacio intermedio entre las proyecciones axiales.
 - Se conocen otros dispositivos de sellado de los documentos US 2011/044798 A1, DE 37 24 210 A1, EP2559849A2, EP2722486A1, US 6 179 560 B1 y FR3003599A1.
- El objetivo de la presente invención es proporcionar un dispositivo de sellado para una turbina, un método para fabricar un dispositivo de sellado para una turbina, así como una turbina del tipo antes mencionado, que, en particular, tenga mejor hermeticidad contra la fuga de líquido.
- Este objetivo se logra mediante un dispositivo de sellado con las características de la reivindicación 1, un método con las características de la reivindicación 10, así como mediante una turbina con las características de la reivindicación 12. Las modalidades ventajosas con desarrollos apropiados de la invención aparecen en las correspondientes reivindicaciones dependientes, en donde los diseños ventajosos de cada aspecto de la invención se deben considerar como diseños ventajosos de los otros aspectos de la invención y viceversa.
- Un primer aspecto de la invención se refiere a un dispositivo de sellado para una turbina, en particular para un motor de 55 avión, para sellar un vacío radial entre un rotor y un estator, que comprende al menos un elemento de sellado, al menos un portador de junta para sujetar y/o fijar el al menos un elemento de sellado, en donde el portador de junta tiene una proyección radial que se extiende en una dirección de extensión radial y una proyección axial integrada a esta y que se extiende en una dirección de extensión axial y el elemento de sellado está dispuesto en una superficie de contacto radial interior de la proyección axial. El dispositivo de sellado también comprende un anillo delantero o un segmento de anillo 60 delantero y/o un anillo trasero o un segmento de anillo trasero, visto en la dirección de flujo de la turbina, cada uno con una proyección que se extiende radialmente. Una de estas proyecciones que se extienden radialmente forma con la proyección radial del portador de junta un alojamiento para recibir un elemento del estator, en donde en un extremo radial interior de al menos esta proyección que se extiende radialmente se forma un reborde interior que se extiende axialmente y al menos el reborde interior de la proyección que se extiende radialmente, que junto con la proyección radial del portador 65 de junta forma el alojamiento, se une con una superficie radialmente interior de la proyección axial por adherencia de materiales o unión continua. Por ejemplo, el reborde interior se puede soldar a la superficie de la proyección axial. También

son posibles uniones con tornillo, a presión o abrazadera o combinaciones de uniones por adherencia de materiales y unión continua. La unión por adherencia de materiales o unión continua del reborde interior con la proyección axial del portador de junta asegura ventajosamente que el alojamiento del elemento del estator esté sellado en esta área. Se sellan las fugas de líquido del medio de la turbina. La mejora de la hermeticidad en esta área aumenta significativamente la eficiencia de la turbina.

5

10

15

20

35

40

45

50

55

60

65

En otra modalidad ventajosa del dispositivo de sellado de acuerdo con la invención, un reborde exterior que se extiende axialmente se forma en un extremo radialmente interior de al menos una proyección que se extiende radialmente de los anillos o segmentos de anillo. En este caso, el reborde exterior interactúa, por ejemplo, con un componente fabricado en correspondencia de una serie de álabes de rotor adyacente, para impedir una salida radial directa del medio de flujo, en particular del gas caliente del canal de flujo hacia la estructura interior radial de la carcasa.

En un otra modalidad ventajosa del dispositivo de sellado de acuerdo con la invención, el anillo delantero o el segmento de anillo delantero y/o el anillo trasero y/o el segmento de anillo trasero se fabrican como elementos laminados. De esta manera, el anillo delantero o el segmento de anillo delantero y/o el anillo trasero o el segmento de anillo trasero pueden ser fabricados muy fácilmente y en particular como un componente de peso ligero. En general, esto resulta en una reducción significativa del peso del dispositivo de sellado de acuerdo con la invención comparado a los dispositivos de sellado conocidos en la técnica. Los anillos o segmentos de anillos pueden ser fabricados por laminación. Normalmente los anillos o segmentos de anillos se fabrican en una sola pieza. Sin embargo, también es posible fabricar los elementos individuales del anillo delantero o trasero o del segmento de anillo a partir de piezas individuales y soldarlas o unirlas entre sí. Además, también es posible fabricar los anillos o segmentos de anillos mencionados anteriormente a partir de un material a base de níquel, por ejemplo, en particular mediante un proceso de mecanizado o un proceso de fabricación con aditivo.

[0012]En el dispositivo de sellado de acuerdo con la invención, el portador de junta tiene forma de T de manera tal que la proyección axial se extiende en la dirección axial en ambos lados más allá de un área de unión entre la proyección radial y la proyección axial. Esta modalidad del portador de junta proporciona ventajosamente una superficie de contacto interior radial de la proyección axial relativamente grande, para sujetar y/o fijar el al menos un elemento de sellado. El elemento de sellado se fabrica normalmente como una junta en forma de panal. Sin embargo, también se pueden fijar elementos de sellado en forma de escobillas en la proyección axial del portador de junta.

El portador de junta en forma de T de una sola pieza tiene preferentemente una sola proyección que se extiende radialmente. Esto es particularmente ventajoso para fines de fabricación, ya que, por ejemplo, no se requiere ninguna extracción de material entre dos proyecciones radiales. Además, se puede ahorrar peso en comparación con los portadores de sellado de una sola pieza que tienen dos o más proyecciones radiales.

En otras modalidades ventajosas del dispositivo de sellado de acuerdo con la invención, el elemento del estator es una raíz de álabe o un segmento de raíz de álabe de un anillo de álabe guía, de un segmento de un anillo de álabe guía o de un álabe guía de la turbina. En este caso, el dispositivo de sellado puede fabricarse como un anillo SIAS (Static Inner Air Seal) o un segmento de anillo SIAS.

Además, un bloque deslizante se puede unir, mediante al menos un perno axial, a las proyecciones que se extienden radialmente de los anillos o segmentos de anillos delanteros o traseros, así como a la proyección axial del portador de junta. El perno axial se encaja a través de los correspondientes orificios en los elementos mencionados. Esto resulta en un aseguramiento axial de la raíz del álabe en el dispositivo de sellado. El bloque deslizante puede ser de metal, una aleación metálica, cerámica u otros materiales adecuados, especialmente materiales resistentes a altas temperaturas. En otras modalidades ventajosas del dispositivo de sellado de acuerdo con la invención, el portador de junta del dispositivo de sellado se fabrica en una pieza mediante forja, fundición, torneado o un proceso de fabricación con aditivo. El portador de junta es, por lo tanto, muy estable y también se puede fabricar a bajo costo. Esto permite la transmisión de toda la potencia a través del portador de junta y, por tanto, del dispositivo de sellado.

Un segundo aspecto de la invención se refiere a un proceso para fabricar el dispositivo de sellado de acuerdo con el primer aspecto de la invención que comprende al menos los pasos siguientes: Fabricación del portador de junta del dispositivo de sellado mediante forja, fundición, torneado o un proceso de fabricación con aditivo; colocación del anillo delantero o el segmento de anillo trasero en el área de la proyección radial del portador de junta para formar el alojamiento para el elemento de estator y unión del reborde interior que se extiende radialmente del anillo delantero o el segmento de anillo delantero y/o el anillo trasero o el segmento de anillo trasero que forma el alojamiento con la superficie interior radial de la proyección axial del portador de junta en una unión por adherencia de materiales y unión continua. La fabricación del portador de junta, especialmente en una sola pieza, se puede llevar a cabo de forma sencilla y económica y da como resultado un portador de junta extremadamente estable desde el punto de vista de su estructura. Además, la unión por adherencia de materiales y/o unión continua entre el reborde interior que se extiende axialmente y la superficie de la proyección axial del portador de junta asegura el sellado de la hendidura resultante en esta área contra las estructuras de la carcasa que rodean esta área. Esto aumenta significativamente la hermeticidad del dispositivo de sellado, especialmente el sellado en el área del espacio radial entre el rotor y el estator. El reborde interior se puede soldar a la superficie de la proyección axial. También se pueden concebir otras posibilidades de unión por adherencia de materiales. Además, el reborde interior también se puede atornillar o pegar

a la superficie mencionada anteriormente y se puede unir por medio de una unión por empalme o una unión a presión. También son posibles combinaciones de uniones por adherencia de materiales y unión continua.

Otras ventajas resultan si el anillo delantero o el segmento de anillo delantero y/o el anillo trasero o el segmento de anillo trasero se fabrican como elementos laminados. Estos se pueden fabricar en una sola pieza, especialmente por medio de una laminación apropiada. Sin embargo, también es posible soldar varios elementos individuales de los anillos o segmentos de anillos mencionados. En combinación con el portador de junta de una pieza, que en particular puede ser de metal o aleaciones de metal, como por ejemplo materiales a base de níquel, y la fabricación de los anillos o segmentos de anillo como elementos laminados, se produce una especie de híbrido, que provoca una reducción significativa del peso del dispositivo de sellado en su conjunto.

Otras características y sus ventajas pueden encontrarse en las descripciones del primer aspecto de la invención, en donde las modalidades ventajosas del primer aspecto de la invención deben considerarse como modalidades ventajosas del segundo aspecto de la invención y viceversa.

Un tercer aspecto de la invención se refiere a una turbina, en particular un motor de avión, con al menos un dispositivo de sellado de acuerdo con el primer aspecto de la invención y/o con al menos un dispositivo de sellado fabricado por un método de acuerdo con el segundo aspecto de la invención. Las características y sus ventajas del tercer aspecto de la invención pueden extraerse de las descripciones del primer y segundo aspecto de la invención, en donde las modalidades ventajosas del primer y segundo aspecto de la invención deben considerarse como modalidades ventajosas del tercer aspecto de la invención y viceversa. En particular, se puede aumentar significativamente la eficacia de la turbina de acuerdo con la invención.

Otras características de la invención resultan de las reivindicaciones, la modalidad ilustrativa y los dibujos. Las características y combinaciones de características mencionadas anteriormente en la descripción así como las características y combinaciones de características mencionadas posteriormente en la modalidad ilustrativa se pueden utilizar no solo en la combinación indicada en cada caso, sino también en otras combinaciones sin salirse del alcance de la invención. Se muestran:

30 En la Figura 1

5

10

15

20

25

40

45

50

55

60

65

una vista esquemática en corte del dispositivo de sellado de acuerdo con la invención;

En la Figura 2

una vista esquemática en perspectiva del dispositivo de sellado de acuerdo con la invención mostrado en la Figura 1; y En la Figura 3

35 otra representación esquemática en perspectiva del dispositivo de sellado de acuerdo con la Figura 1.

La Figura 1 muestra una vista esquemática en corte de un dispositivo de sellado 10 para una turbina, especialmente para un motor de avión. El dispositivo de sellado sirve para sellar un espacio radial entre el rotor y el estator de la turbina. En la modalidad ilustrativa mostrada (ver también las Figuras 2 y 3), el estator es un anillo de álabes del estator de una turbina de gas.

El dispositivo de sellado 10 tiene un portador de junta 12 para sujetar y/o fijar un elemento de sellado 18, en donde el portador de junta 12 tiene una proyección radial 14 que se extiende en dirección radial R y una proyección axial 16 integrada a este y que se extiende en dirección axial A. Las indicaciones "radial" y "axial" también pueden incluir direcciones que se desvían de una dirección de extensión axial o radial ideal. Son posibles desviaciones de la dirección de extensión axial o radial ideal en un rango de ángulo entre +15° y -15°. Se puede observar que el elemento de sellado 18 está dispuesto sobre una superficie de contacto interior radial 20 de la proyección axial 16. En la modalidad ilustrativa que se muestra, el elemento de sellado 18 es una junta en forma de panal. La junta en forma de panal puede ser de materiales comunes, en particular de metal, una aleación metálica, cerámica o combinaciones de estos materiales. El portador de junta 12 se fabrica en una sola pieza mediante forja, fundición, torneado o un proceso de fabricación con aditivo. El material utilizado para el portador de junta 12 puede ser de nuevo metales, aleaciones metálicas u otros materiales adecuados para altas temperaturas o una combinación de estos. En particular, el material del portador de junta 12 puede ser un material a base de níquel. En la modalidad ilustrativa mostrada, varios elementos de sellado 18 están dispuestos uno junto al otro en la dirección circunferencial en el eje 16 y forman un anillo del elemento de sellado cerrado o casi cerrado que rodea el cubo del rotor (vea también las Figuras 2 y 3). El término "colocación" del elemento de sellado 18 en la proyección axial 16 se entiende como una unión por adherencia de materiales y/o unión continua, desmontable o no desmontable. Además, es posible colocar una o más capas intermedias o elementos de retención para el elemento de sellado 18 entre la superficie de contacto interior radial 20 de la proyección axial 16 y la superficie de contacto correspondiente del elemento de sellado 18.

Además, se puede apreciar que el dispositivo de sellado 10 comprende un anillo delantero o un segmento de anillo delantero 28 visto en la dirección de flujo S y un anillo trasero o segmento de anillo trasero 30, cada uno con una proyección que se extiende radialmente 32, 34. Varios segmentos de anillo delantero o trasero 28 forman un anillo delantero o trasero correspondiente del dispositivo de sellado 10. En la modalidad ilustrativa mostrada, el segmento de anillo delantero 28 tiene un reborde interior radial que se extiende axialmente 64 y un reborde exterior radial que se extiende axialmente 60, el reborde exterior 60 y el reborde interior 64 están unidos integralmente a la proyección 32 que

ES 2 765 852 T3

se extiende radialmente. El segmento de anillo trasero 30 también tiene un reborde interior radial que se extiende axialmente 66 y un reborde exterior radial que también se extiende axialmente 62. El reborde interior 66 y el reborde exterior 62 se unen de nuevo en una sola pieza con la proyección 34.

También se puede observar que la proyección 34 forma un alojamiento 36 con la proyección radial 14 del portador de junta 12 para alojar un elemento del estator. En la modalidad ilustrativa mostrada, el alojamiento 36 sirve para recibir, sujetar y fijar una raíz del álabe o un segmento de la raíz del álabe de su segmento de anillo del álabe guía. Básicamente el elemento de estator a alojar puede ser una sección de la carcasa de la turbina, una sección del álabe guía, una sección de un portador de álabe y similar. Por ejemplo, el dispositivo de sellado 10 se puede colocar en el área de una turbina de baja presión de un motor de avión.

Además, se puede observar que el reborde interior 66 de la proyección que se extiende radialmente 34, que forma el alojamiento 36 con la proyección axial 14 del portador de junta 12, está unida por adherencia de materiales a una superficie interior radial 68 de la proyección axial. El reborde interior 66 se puede soldar a la superficie 68. Se puede utilizar, por ejemplo, una lámina de soldadura. Además, es posible utilizar varios métodos de soldadura, como la soldadura por puntos, por fricción, por anillo o por costura. El reborde interior 66 también se puede unir mediante unión continua a la superficie 68 con uniones de tornillo, de empalme o de abrazadera (no mostradas). Dependiendo de la aplicación, la unión por adherencia de materiales también se puede logra mediante pegado de los componentes. También es posible una combinación de unión por adherencia de materiales y/o unión continua.

Además, está claro que en la modalidad ilustrativa mostrada, el anillo delantero o el segmento de anillo delantero 28 así como el anillo trasero o el segmento de anillo trasero 30 tienen una sección transversal en forma de C. Las dos bridas exteriores 60, 62 sirven para estabilizar los anillos 28, 30 y para sellar al menos parcialmente esta área de la estructura de la carcasa de la turbina contra el medio de trabajo de la turbina.

También se puede apreciar que el portador de junta 12 tiene forma de T, de manera que la proyección axial 16 se extiende en la dirección axial A en ambos lados más allá de un área de unión 22 entre la proyección radial 14 y la proyección axial 16. Esto proporciona una gran superficie de contacto 20 para colocar un elemento de sellado 18 correspondiente. También es evidente que en la hendidura 36 hay un bloque deslizante 48, que se fija al dispositivo de sellado 10 mediante un perno axial 50. El perno axial 50 se pasa a través de los correspondientes orificios 52, 54, 56, 58 en las proyecciones 32, 34, la proyección radial 14 y el bloque de deslizamiento 48 y en correspondencia se ancla.

La Figura 2 muestra una vista esquemática en perspectiva del dispositivo de sellado 10 de acuerdo con la Figura 1. Se puede ver la forma anular del portador de juntas 12 y los anillos delantero y trasero 28, 30. Además, es evidente que la forma de anillo mencionada se logra mediante la unión de segmentos de anillo individuales. Lo mismo se aplica a la disposición y el modalidad de los elementos de sellado 18. También es evidente que la proyección radial 14 forma el alojamiento 36 con la proyección 34 del anillo trasero 30. En el alojamiento 36, se fijan a intervalos predefinidos a los bloques deslizantes 48 por medio de los pernos axiales 50. El reborde interior anular 66 del anillo trasero 30 se apoya en la superficie exterior radial 68 de la proyección axial 16 y, por lo tanto, se une por adherencia de materiales. De esta manera, el alojamiento circunferencial 36 queda sellado en esta área.

La Figura 3 muestra otra vista esquemática en perspectiva del dispositivo de sellado 10 mostrado en la Figura 1. Se puede reconocer la colocación del anillo delantero 28 en la proyección radial 14 del portador de juntas 12. El anillo delantero 28 comprende el reborde interior 64, el reborde exterior 60, así como la proyección 32, que está unida integralmente a las bridas interior y exterior 64, 60.

Lista de números de referencia:

15

20

25

30

35

40

45

58

Orificio

	10	Dispositivo de sellado
50	12	Portador de junta
	14	Proyección radial
	16	Proyección axial
	18	Elemento de sellado
	20	Superficie de contacto
55	22	Área de unión
	28	Anillo delantero, segmento de anillo delantero
	30	Anillo trasero, segmento de anillo trasero
	32	Proyección
	34	Proyección
60	36	Alojamiento
	48	Bloque deslizante
	50	Pernos axiales
	52	Orificio
	54	Orificio
65	56	Orificio

ES 2 765 852 T3

	60	Brida exterior
	62	Brida exterior
	64	Brida interior
	66	Brida interior
5	68	Superficie
	R	Dirección de extensión radial
	Α	Dirección de extensión axial
	S	Dirección del flujo

REIVINDICACIONES

- 1. Dispositivo de sellado (10) para una turbina, especialmente para un motor de avión, para sellar una proyección radial entre un rotor y un estator, que comprende
 - al menos un elemento de sellado (18),
 - al menos un portador de junta (12) para sujetar y/o fijar al menos un elemento de sellado (18), en donde el portador de junta (12) tiene una proyección radial (14) que se extiende en una dirección de extensión radial (R) y una proyección axial (16) integrada a este y que se extiende en una dirección de extensión axial (A), en donde el portador de junta (12) tiene forma de T, de manera que el elemento de sellado (16) se extiende en dirección axial (A) por ambos lados más allá de un área de unión (22) entre la proyección radial (14) y la proyección axial (16), y en donde el elemento de sellado (18) está dispuesto sobre una superficie de contacto interior radial (20) de la proyección axial (16), y
 - un anillo delantero o un segmento de anillo delantero (28) y/o un anillo trasero o un segmento de anillo trasero (30), vistos en el sentido del flujo (S) de la turbina, cada uno con una proyección que se extiende radialmente (32, 34),

en donde una de las proyecciones (32, 34) forma con la proyección radial (14) un alojamiento (36) para recibir un elemento del estator.

caracterizado porque

- en un extremo interior radial de al menos esta proyección que se extiende radialmente (32, 34) se forma un reborde interior (64, 66) que se extiende axialmente, y al menos el reborde interior (66) de la proyección que se extiende radialmente (34), que forma el alojamiento (36) con la proyección radial (14) del portador de junta (12), unida por adherencia de materiales o en unión continua a una superficie exterior radial (68) de la proyección axial (16).
- Dispositivo de sellado (10) de acuerdo con la reivindicación 1, caracterizado porque el reborde interior (66) se suelda a la superficie (68).
 - 3. Dispositivo de sellado (10) de acuerdo con la reivindicación 1 o 2, caracterizado porque
- un reborde exterior que se extiende axialmente (60, 62) se fabrica en un extremo exterior radial de al menos una de las proyecciones que se extienden radialmente (32, 34).
 - Dispositivo de sellado (10) de acuerdo con una de las reivindicaciones anteriores, caracterizado porque
 - el anillo delantero o el segmento de anillo delantero (28) y/o el anillo trasero o el segmento de anillo trasero (30) se fabrican como elementos laminados.
 - Dispositivo de sellado (10) de acuerdo con una de las reivindicaciones anteriores, caracterizado porque
- 40 el elemento del estator es una raíz de álabe o un segmento de raíz de álabe de un anillo de álabe guía, un segmento de anillo de álabe guía o un álabe guía de la turbina.
 - Dispositivo de sellado (10) de acuerdo con una de las reivindicaciones anteriores, caracterizado porque
- un bloque de deslizamiento (48) está unido a las proyecciones que se extienden radialmente (32, 34) y a la proyección radial (14) mediante al menos un perno axial (50).
 - 7. Dispositivo de sellado (10) de acuerdo con una de las reivindicaciones anteriores, caracterizado porque
- el portador de junta (12) del dispositivo de sellado (10) se fabrica mediante forja, fundición, torneado o un proceso de fabricación con aditivo.
 - 8. Dispositivo de sellado (10) de acuerdo con una de las reivindicaciones anteriores, caracterizado porque
 - el elemento de sellado (18) se fabrica como una junta en forma de panal.
 - Dispositivo de sellado (10) de acuerdo con una de las reivindicaciones anteriores, caracterizado porque
 el dispositivo de sellado (10) es un anillo SIAS (Static Inner Air Seal) o un segmento de anillo SIAS.
 - 10. Un método de fabricación del dispositivo de sellado (10) de acuerdo con una de las reivindicaciones 1 a 9 que comprende al menos los siguientes pasos:
 - fabricación del portador de junta (12) del dispositivo de sellado (10) mediante forja, fundición, torneado o un proceso de fabricación con aditivo.

7

60

55

5

10

15

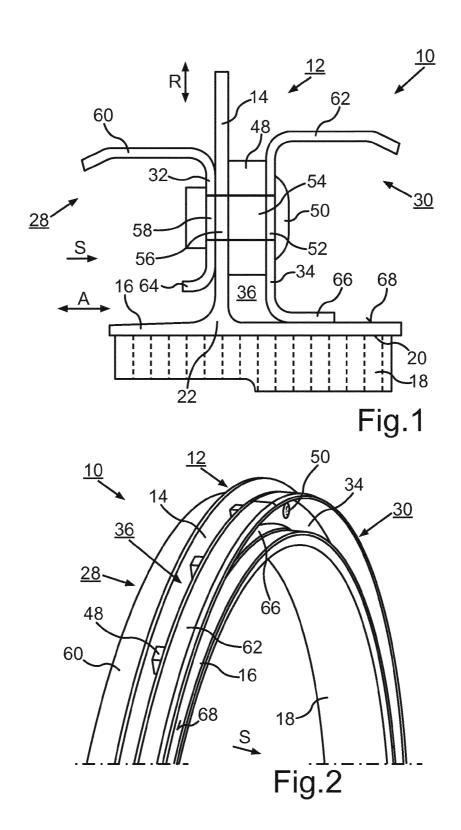
20

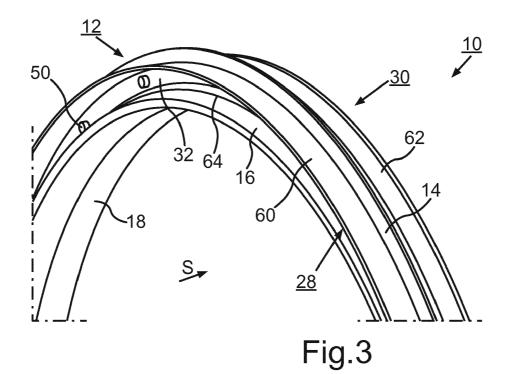
25

35

ES 2 765 852 T3

- colocación del anillo delantero o del segmento de anillo delantero (28) y/o del anillo trasero o del segmento de anillo trasero (30) en el área de la proyección radial (14) del portador de junta (12) para formar el alojamiento (36) para el elemento de estator; y
- unión por adherencia de materiales y/o unión continua del reborde interior que se extiende axialmente (64, 66) del anillo anterior o del segmento de anillo anterior (28) y/o del anillo trasero o del segmento de anillo trasero (30) que forma el alojamiento (36) con la superficie exterior radial (68) del anillo axial (16) del portador de junta (12).
- 11. Método de acuerdo con la reivindicación 10, caracterizado porque el reborde interior (66) se suelda a la superficie (68).


5


10

15

12. Turbina, en particular motor de avión, que tiene al menos un dispositivo de sellado (10) de acuerdo con una de las reivindicaciones 1 a 9 y/o con al menos un dispositivo de sellado (10) fabricada mediante el método de acuerdo con una de las reivindicaciones 10 a 11.

8

