

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 767 804

51 Int. Cl.:

H05B 3/06 (2006.01) H05B 3/10 (2006.01) H05B 3/12 (2006.01) H05B 3/16 (2006.01) H05B 3/20 (2006.01) H05B 3/26 (2006.01) H05K 1/16 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 26.03.2016 PCT/CN2016/077439

(87) Fecha y número de publicación internacional: 10.08.2017 WO17133067

96) Fecha de presentación y número de la solicitud europea: 26.03.2016 E 16888891 (5)

(97) Fecha y número de publicación de la concesión europea: 13.11.2019 EP 3253176

(54) Título: Elemento de película gruesa recubierto con un sustrato y que tiene una alta capacidad de conducción térmica

(30) Prioridad:

03.02.2016 CN 201610075017

Fecha de publicación y mención en BOPI de la traducción de la patente: 18.06.2020

(73) Titular/es:

GUANGDONG FLEXWARM ADVANCED MATERIALS & TECHNOLOGY CO., LTD. (100.0%) No.7 Xian Road, Zini Village, Shawan Town, Panyu District Guangzhou, Guangdong 511400, CN

(72) Inventor/es:

HUANG, WEICONG

(74) Agente/Representante:

TOMAS GIL, Tesifonte Enrique

DESCRIPCIÓN

Elemento de película gruesa recubierto con un sustrato y que tiene una alta capacidad de conducción térmica

5 CAMPO DE LA INVENCIÓN

15

20

25

30

35

40

45

60

65

[0001] La presente invención se refiere al campo de las películas gruesas y, más particularmente, a un elemento de película gruesa que tiene un sustrato recubierto con una alta conductividad térmica.

10 ANTECEDENTES DE LA INVENCIÓN

[0002] Los elementos calefactores de película gruesa se refieren a elementos calefactores que se hacen fabricando materiales exotérmicos en un sustrato para producir películas gruesas y proporcionándoles electricidad para generar calor. Los métodos de calentamiento convencionales incluyen el calentamiento de tubo calentado eléctricamente y el calentamiento PTC. Un elemento calefactor de tubo calentado eléctricamente se sirve de un tubo metálico como la carcasa externa y distribuye aleación de níquel-cromo o hierro-cromo en espiral en él para formar bandas calefactoras; a continuación, el espacio libre es llena con escoria de magnesita que tiene una conductividad térmica y una capacidad aislante excelentes y se sella con gel de sílice en ambos extremos del tubo. El método de calentamiento PTC se sirve de cerámica como el material exotérmico. Tanto el calentamiento de tubo calentado eléctricamente como el calentamiento PTC conducen calor indirectamente con un rendimiento térmico bajo y son estructuralmente enormes y voluminosos. Además, tomando en consideración la protección ambiental, los calentadores que se sirven de estos dos tipos de métodos de calentamiento se manchan fácilmente después de un calentamiento reiterado y su limpieza no es fácil. Adicionalmente, los calentadores PTC contienen plomo y otras sustancias peligrosas y se oxidan fácilmente, provocando una disminución de la potencia y una vida útil corta.

[0003] La patente CN 104425053 A divulga un lodo de resistencia a base de baldosa de cerámica para circuitos de película gruesa y el método de preparación del mismo, que proporciona un lodo de resistencia que corresponde a baldosas de cerámica y proporciona una posibilidad de preparación de elementos calefactores bajo suelos nuevos. Las materias primas del lodo de resistencia incluyen contenido en fase sólida (que incluye polvo de vitrocerámica y polvo de plata) y agente aglutinante orgánico, donde el porcentaje en peso de cada uno de los materiales es un 70-85 % de polvo de vitrocerámica y un 15-30 % de agente aglutinante orgánico; la suma de los cuales es el 100 %. El lodo de resistencia se usa principalmente para imprimirlo en la parte posterior de las placas de cerámica para formar un circuito de película gruesa.

[0004] La patente CN 201936869 U divulga un dispositivo de circuito de película gruesa, que comprende un sustrato de cerámica, una oblea de circuito de película gruesa y cables eléctricos. La oblea de circuito de película gruesa se dispone en el sustrato de cerámica y los lados externos del sustrato de cerámica están cubiertos por una capa de epoxi. Los dos cables eléctricos están conectados a ambos lados del sustrato de cerámica, y los puntos de conexión entre los cables eléctricos y el sustrato de cerámica están cubiertos por la capa de epoxi.

[0005] La patente JP 2007 265647 A divulga un elemento de película gruesa que tiene un sustrato recubierto que tiene una alta conductividad térmica. Comprende un soporte, un recubrimiento de película gruesa depositado en el soporte y una capa de cobertura que cubre el recubrimiento. El recubrimiento de película gruesa es un material calefactor. Un modo de calentamiento es el calentamiento eléctrico.

[0006] Las patentes DE 25 48 019 A1 y JP H11 54245 A revelan cada una un calentador que comprende un soporte que lleva un elemento resistivo de película gruesa, cubierto por una capa de cobertura.

[0007] Se podría entender a partir de las tecnologías anteriores que la tecnología de película gruesa está desarrollándose gradualmente; sin embargo, en la actualidad, las investigaciones se centran en su mayoría en desarrollar lodo de resistencia para circuitos de película gruesa pero rara vez en los productos componentes de las películas gruesas. La solución técnica del dispositivo de circuito de película gruesa anteriormente mencionado se lleva a cabo disponiendo circuitos de película gruesa en el sustrato de cerámica y la capa de epoxi, pero su conductibilidad térmica no es excelente. La aplicación de películas gruesas en productos amplía inmensamente el desarrollo de productos calefactores. El dispositivo de calentamiento existente podría satisfacer las demandas de calentamiento; sin embargo, rara vez se ve un dispositivo de calentamiento que lleve a cabo una transferencia de calor unilateral, o la transferencia de calor unilateral de dicho dispositivo es demasiado pobre, dificultando la reducción de pérdidas de calor al mantener altas propiedades de conducción térmica unilateral.

RESUMEN DE LA INVENCIÓN

[0008] Para resolver los problemas mencionados previamente, la presente invención proporciona un elemento de película gruesa que tiene un sustrato recubierto con una alta conductividad térmica que tiene las ventajas de un volumen pequeño, una alta eficiencia, respeto al medioambiente, un alto rendimiento de seguridad y una vida útil de servicio larga.

[0009] El concepto de película gruesa en la presente invención es un término comparativo con respecto a las películas finas. Una película gruesa es una capa de película con un grosor que varía de varios micrómetros a decenas de micrómetros formado mediante impresión y sinterización en un soporte; el material usado para producir la capa de película se conoce como película gruesa, y el recubrimiento hecho a partir de la película gruesa se llama recubrimiento de película gruesa. El elemento calefactor de película gruesa tiene las ventajas de una alta densidad de potencia, una alta velocidad de calentamiento, una alta temperatura de funcionamiento, una rápida tasa de generación de calor, una alta fuerza mecánica, un volumen pequeño, una instalación fácil, un campo de temperatura de calentamiento uniforme, una larga vida útil, ahorro de energía y respeto al medioambiente y un rendimiento de seguridad excelente.

[0010] El elemento de película gruesa que tiene un sustrato recubierto con una alta conductividad térmica de la presente invención comprende un soporte, un recubrimiento de película gruesa depositado en el soporte y una capa de cobertura que cubre el recubrimiento. El recubrimiento de película gruesa es un material calefactor, y el modo de calentamiento es el calentamiento eléctrico. Según la invención, el soporte, el recubrimiento de película gruesa y la capa de cobertura se seleccionan a partir de un material que cumple todas las ecuaciones siguientes:

$$\lambda_3 A \frac{T_3 - T_0}{d_3} = \mathbf{a} \times \lambda_1 A \frac{T_1 - T_0}{d_1}, \ \lambda_2 A \frac{T_2 - T_0}{d_2} = \mathbf{b} \times \lambda_1 A \frac{T_1 - T_0}{d_1}, \ \lambda_2 A \frac{T_2 - T_0}{d_2} = \mathbf{c} \times \lambda_3 A \frac{T_3 - T_0}{d_3};$$

 $10 \le a \le 10^4$, $0 < b \le 10^6$, $0 < c \le 10^3$; 20

 $T_2 < T_{Punto}$ de fusión mínimo de la capa de cobertura;

 $T_2 < T_{Punto de fusión mínimo del soporte};$

*T*₀ ≤ 25 °C:

5

10

15

25

30

50

donde el valor de $\lambda_1 A^{\frac{T_1-T_0}{d_1}}$ representa la tasa de transferencia de calor de la capa de cobertura; el valor de

 $\lambda_2 A \frac{T_2 - T_0}{d_2}$ representa la tasa de generación de calor del recubrimiento de película gruesa; el valor de $\lambda_3 A \frac{T_3 - T_0}{d_3}$ representa la tasa de transferencia de calor del soporte; representa la tasa de transferencia de calor del soporte;

representa el coeficiente de conductividad térmica del recubrimiento de película gruesa a la temperatura de T2; λ₃ representa el coeficiente de conductividad térmica del soporte a la temperatura de T₃;

A representa, según el caso de cálculo, un área de contacto del recubrimiento de película gruesa ya sea con la capa de cobertura o con el soporte;

d₁ representa el grosor de la capa de cobertura;

d₂ representa el grosor del recubrimiento de película gruesa; 35

d₃ representa el grosor del soporte;

T₀ representa la temperatura inicial del elemento calefactor de película gruesa antes de iniciar el calentamiento;

T₁ representa la temperatura superficial de la capa de cobertura medida bajo un estado de calentamiento estable:

40 T₂ representa la temperatura de calentamiento del recubrimiento de película gruesa medida bajo dicho estado de calentamiento estable:

T₃ representa la temperatura superficial del soporte medida bajo dicho estado de calentamiento estable; $d_2 \le 50 \mu m$;

y d₁ ≥ 10 μ m; 10 μ m ≤ d₃ ≤ 20 cm;

45 TPunto de fusión mínimo del soporte > 25 °C;

la capa de cobertura se refiere a una capa dieléctrica que cubre el recubrimiento de película gruesa mediante impresión y/o sinterización o encolado, y el área de la capa de cobertura es superior a la del recubrimiento de película gruesa.

[0011] El soporte es la capa dieléctrica que lleva el recubrimiento de película gruesa. El recubrimiento de película gruesa cubre el soporte mediante impresión, recubrimiento, pulverización o sinterización, y es el sustrato recubierto del elemento de película gruesa.

[0012] El coeficiente de conductividad térmica se refiere al calor transferido por un material de un metro de grosor 55 que tiene una diferencia de temperatura entre dos superficies laterales de 1 grado (K, °C) a través de un área de un metro cuadrado (1 m²) en un segundo (1 S) bajo una condición de transferencia de calor estable. La unidad del coeficiente de conductividad térmica es vatio/metro · grado (W/(m · K), y K se puede sustituir por °C).

[0013] La capa de cobertura, el recubrimiento de película gruesa y el soporte se adhieren estrechamente entre sí 60 en las partes de calentamiento eléctrico de los elementos calefactores de película gruesa, y los dos lados del recubrimiento de película gruesa conectan con electrodos externos. Cuando se le proporciona electricidad, el recubrimiento de película gruesa se calienta y se vuelve caliente después de que la energía eléctrica se transforme en energía térmica. La tasa de generación de calor del recubrimiento de película gruesa se podría calcular $\frac{T_0-T_0}{T_0-T_0}$

mediante d_2 según le coeficiente de conductividad térmica, el área de contacto, la temperatura inicial, la temperatura de calentamiento y el grosor del recubrimiento de película gruesa, donde T_2 representa la temperatura de calentamiento de la película gruesa.

5

10

15

30

45

55

[0014] La presente invención se caracteriza por el hecho de que el elemento calefactor de película gruesa tiene un sustrato recubierto que tiene una alta conductividad térmica, y que la tasa de generación de calor de la capa de cobertura, el recubrimiento de película gruesa y el soporte deberían cumplir los requisitos siguientes:

(1) la tasa de transferencia de calor de la capa de cobertura y el soporte deberían satisfacer la fórmula siguiente:

 $\lambda_3 A \frac{T_3 - T_0}{d_3} = a \times \lambda_1 A \frac{T_1 - T_0}{d_1}$, donde $10 \le a \le 10^4$; para aquellos elementos de película gruesa que satisfagan la capa de cobertura,

ecuación anterior, la capacidad de transferencia de calor de su soporte es superior a la de la capa de cobertura, lo que significa que el soporte es rápido mientras que la capa de cobertura en le aumento de temperatura o que la diferencia de temperatura entre la capa de cobertura y el soporte es grande después de un equilibrio térmico estable. Por lo tanto, los elementos de película gruesa muestran generalmente el efecto técnico de calentamiento del soporte.

(2) la tasa de generación de calor del recubrimiento de película gruesa y la tasa de transferencia de calor de la

20 capa de cobertura deberían satisfacer la fórmula siguiente: λ₂A (π/2-π₀) donde 0 < b ≤ 10⁶; si la tasa de generación de calor del recubrimiento de película gruesa es muy superior a la tasa de transferencia de calor de la capa de cobertura, el calor acumulado de forma continua del recubrimiento de película gruesa no podría conducirse fuera, de manera que la temperatura del recubrimiento de película gruesa continua aumentando, y cuando la temperatura es superior al punto de fusión mínimo de la capa de cobertura, la capa de cobertura empezaría a fundirse o incluso a quemarse, lo que destruiría la estructura de la capa de cobertura o el soporte, destruyendo así los elementos calefactores de película gruesa.

(3) la tasa de generación de calor del recubrimiento de película gruesa y la tasa de transferencia de calor del

soporte deberían satisfacer la fórmula siguiente: $\lambda_2 A \frac{T_2 - T_0}{d_2} = c \times \lambda_3 A \frac{T_3 - T_0}{d_3}, 0 < c \le 10^3, \text{ si la tasa de generación de calor del recubrimiento de película gruesa es muy superior a la tasa de transferencia de calor del soporte, el calor acumulado de forma continua del recubrimiento de película gruesa no podría conducirse fuera, de manera que la temperatura del recubrimiento de película gruesa continuaría aumentando, y cuando la temperatura es superior al punto de fusión mínimo del soporte, el soporte empezaría fundirse o incluso a quemarse, lo que destruiría la estructura del soporte, destruyendo así los elementos calefactores de película gruesa.$

- 35 (4) la temperatura de calentamiento del recubrimiento de película gruesa no podría ser superior al punto de fusión mínimo de la capa de cobertura o el soporte y debería cumplir los requisitos. $T_2 < T_{Punto de fusión mínimo de la capa de cobertura y <math>T_2 < T_{Punto de fusión mínimo del soporte}$. Debería evitarse una temperatura de calentamiento excesivamente alta para prevenir la destrucción de los elementos calefactores de película gruesa.
- 40 [0015] Cuando se cumplen los requisitos anteriormente mencionados, la tasa de transferencia de calor de la capa de cobertura y el soporte se determina por las propiedades del material y el elemento calefactor de película gruesa.

[0016] La fórmula para calcular la tasa de transferencia de calor del soporte es $\lambda_3 A \frac{T_3 - T_0}{d_3}$, donde λ_3 representa el coeficiente de conductividad térmica del soporte, donde la unidad es W/m.k, y se determina por las propiedades de los materiales para preparar el soporte; d₃ representa el grosor del soporte, y se determina por la técnica de preparación y los requisitos de los elementos calefactores de película gruesa; T₃ representa la temperatura superficial del soporte y se determina por las propiedades de los elementos calefactores de película gruesa.

[0017] La fórmula para calcular la tasa de transferencia de calor de la capa de cobertura es $\lambda_1 A \frac{T_1 - T_0}{d_1}$, donde λ_1 representa el coeficiente de conductividad térmica de la capa de cobertura, donde la unidad es W/m.k, y se determina por las propiedades del material para preparar la capa de cobertura; d_1 representa el grosor de la capa de cobertura y se determina por la técnica de preparación y los requisitos de los elementos calefactores de película gruesa; T_1 representa la temperatura superficial de la capa de cobertura, y se determina por las propiedades de los elementos calefactores de película gruesa.

[0018] Preferiblemente, el coeficiente de conductividad térmica del soporte λ_3 es ≥ 3 W/m.k, el coeficiente de conductividad térmica de la capa de cobertura λ_1 es ≤ 3 W/m.k; donde $10 \leq a \leq 10^4$, $10^4 \leq b \leq 10^6$, $10 \leq c \leq 10^3$.

[0019] Preferiblemente, el soporte y el recubrimiento de película gruesa están unidos por impresión o sinterización; el recubrimiento de película gruesa y la capa de cobertura están unidos por impresión, recubrimiento, pulverización, sinterización o encolado.

5 [0020] Preferiblemente, la región entre el soporte y la capa de cobertura sin el recubrimiento de película gruesa está unida por impresión, recubrimiento, pulverización o sinterización, o con encolado.

[0021] Preferiblemente, el soporte incluye poliimidas, materiales de aislamiento orgánicos, materiales de aislamiento inorgánicos, cerámica, vitrocerámica, cuarzo, materiales de piedra, tejidos y fibra.

[0022] Preferiblemente, el recubrimiento de película gruesa es uno o más entre plata, platino, paladio, óxido de paladio, oro y materiales de tierras raras.

[0023] Preferiblemente, la capa de cobertura está hecha de uno o más entre poliéster, poliimida o polieterimida (PEI), cerámica, gel de sílice, amianto, micarex, tejido y fibra.

[0024] Preferiblemente, el área del recubrimiento de película gruesa es inferior o igual al área de la capa de cobertura o el soporte.

20 [0025] La presente invención proporciona también un uso del elemento de película gruesa para recubrir productos con calentamiento de sustrato.

[0026] Los efectos beneficiosos de la presente invención son como sigue:

- 25 (1) el sustrato recubierto del elemento de película gruesa de la presente invención tiene una alta conductividad térmica, y es adecuado para recubrir productos con calentamiento de sustrato para mejorar la eficiencia de transferencia de calor y reducir la pérdida de calor cuando no se requiere calentamiento de doble cara.
 - (2) la estructura de tres capas del elemento de película gruesa de la presente invención podría unirse directamente mediante impresión o sinterización, y el recubrimiento de película gruesa calentaría el soporte directamente sin la necesidad de cualquier medio. Por lo tanto, el calor podría conducirse directamente al soporte, mejorando así la eficiencia de conducción del calor. Adicionalmente, la capa de cobertura de la presente invención cubre el recubrimiento de película gruesa, evitando la fuga eléctrica del recubrimiento de película gruesa después de proporcionar electricidad y mejorar el rendimiento de seguridad.
- 35 [0027] El elemento de película gruesa de la presente invención genera calor mediante el recubrimiento de película gruesa, cuyo rango de grosor está a nivel micrométrico, y tiene una tasa de generación de calor constante y una vida útil de servicio larga.

DESCRIPCIÓN DETALLADA DE LAS FORMAS DE REALIZACIÓN PREFERIDAS

[0028] La presente invención se describirá a continuación más específicamente con referencia a las formas de realización siguientes. Cabe destacar que las descripciones siguientes de formas de realización preferidas de esta invención se presentan aquí con fines únicamente ilustrativos y descriptivos. No se destinan a ser exhaustivas o a limitarse a la forma precisa descrita.

[0029] La presente invención divulga un elemento de película gruesa que tiene un sustrato recubierto con una alta conductividad térmica, que comprende un soporte, un recubrimiento de película gruesa depositado en el soporte y una capa de cobertura que cubre el recubrimiento; el recubrimiento de película gruesa es un material de calentamiento, y el modo de calentamiento es el calentamiento eléctrico, donde el soporte, el recubrimiento de película gruesa y la capa de cobertura se seleccionan a partir de un material que satisface todas las ecuaciones siguientes:

$$\lambda_1 A \frac{T_1 - T_0}{d_1} = \mathbf{a} \times \ \lambda_3 A \frac{T_3 - T_0}{d_3}, \lambda_2 A \frac{T_2 - T_0}{d_2} = \mathbf{b} \times \ \lambda_1 A \frac{T_1 - T_0}{d_1}, \ \lambda_2 A \frac{T_2 - T_0}{d_2} = \mathbf{c} \times \ \lambda_3 A \frac{T_3 - T_0}{d_3}; \ ;$$

55 $10 \le a \le 10^4$, $0 < b \le 10^6$, $0 < c \le 10^3$;

 $T_2 < T_{Punto}$ de fusión mínimo de la capa de cobertura;

 $T_2 < T_{Punto de fusión mínimo del soporte}$;

 $T_0 \le 25 \,^{\circ}\text{C};$

 $d_2 \le 50 \mu m$;

10

15

30

40

45

50

60

y $d_1 \ge 10 \ \mu m$; $10 \ \mu m \le d_3 \le 20 \ cm$;

TPunto de fusión mínimo del soporte >25 °C;

 $\lambda_3 \geq \lambda_1$.

[0030] Las formas de realización siguientes incluyen 20 elementos de película gruesa preparados por el solicitante, y los materiales para preparar la capa de cobertura, el recubrimiento de película gruesa y el soporte de los 20 elementos de película gruesa enumerados satisfacen todos las ecuaciones anteriores. El método de preparación y la fórmula detallados se proporcionan como sigue:

Formas de realización

5

10

20

25

30

35

40

45

50

55

[0031] Se selecciona pasta de plata con un coeficiente de conductividad térmica de λ_2 para preparar el recubrimiento de película gruesa, se seleccionan poliimidas con un coeficiente de conductividad térmica de λ_3 para preparar el soporte, y se seleccionan poliimidas con un coeficiente de conductividad térmica de λ_1 para preparar la capa de cobertura. Las tres capas se unen por sinterización. El área del recubrimiento de película gruesa preparado es A_2 , el grosor es d_2 ; el área de la capa de cobertura es A_1 , el grosor es d_1 ; el área del soporte es A_3 , el grosor es d_3 .

15 [0032] Encender un suministro de energía CC externo para cargar el recubrimiento de película gruesa. La película gruesa comienza a calentarse, cuando el calentamiento se estabiliza, medir la temperatura superficial de la capa de cobertura y el soporte, y se mide la temperatura de calentamiento del recubrimiento de película gruesa bajo un estado de calentamiento estable. La tasa de transferencia de calor de la capa de cobertura y el soporte y la tasa

de generación de calor del recubrimiento de película gruesa se calculan según la fórmula siguiente: $\lambda_1 A^{\frac{I_1-I_0}{d_1}}$ $\lambda_2 A^{\frac{I_2-I_0}{d_2}}$, $\lambda_3 A^{\frac{I_3-I_0}{d_2}}$.

[0033] Las tablas 1 a 4 son los 20 elementos de película gruesa preparados por el solicitante. Después de proporcionar electricidad para calentar durante 2 minutos, los elementos de película gruesa se miden conforme a los estándares nacionales para obtener los datos de rendimiento (coeficiente de conductividad térmica, temperatura superficial) tal y como se muestra en las tablas. El grosor, el área de contacto, la temperatura inicial se miden antes del calentamiento.

[0034] Los métodos para medir el coeficiente de conductividad térmica de la capa de cobertura, el recubrimiento de película gruesa y el soporte son como sigue:

(1) Encender la potencia y ajustar la tensión de calentamiento a un valor específico, y a continuación encender el conmutador del dispositivo con una potencia de 6V y precalentar durante 20 minutos.

(2) Llevar a cabo una calibración a cero para el galvanómetro con indicador luminoso.

(3) Calibrar la tensión de servicio estándar de un potenciómetro UJ31 según la temperatura ambiente, ajustar el interruptor conmutador del potenciómetro en una posición estándar y ajustar la corriente de servicio del potenciómetro.

Conforme la tensión de baterías estándar varía con la temperatura, la calibración de temperatura ambiente se calcula mediante la fórmula siguiente:

$$E_t = E_0 - [39,94(t-20)+0,929(t-20)^2];$$

donde $E_0 = 1,0186V$.

(4) Colocar una placa de calentamiento y pares termoeléctricos inferiores en la parte inferior de una probeta de ensayo fina; colocar pares termoeléctricos superiores en la parte superior de la probeta de ensayo fina. Debe observarse que los pares termoeléctricos deben colocarse en la posición central de la probeta de ensayo, las y secciones frías de los pares termoeléctricos deben colocarse en una botella de hielo.

(5) Colocar el interruptor conmutador del potenciómetro en posición 1, medir las temperaturas iniciales en la parte superior y la parte inferior de la probeta de ensayo; proceder únicamente cuando la diferencia de temperatura entre la parte superior y la parte inferior es inferior a 0,004 mV (0,1 °C).

(6) Preañadir 0,08 mV al potencial termoeléctrico inicial de los pares termoeléctricos superiores, encender el interruptor de calentamiento para iniciar el calentamiento; mientras tanto, controlar el tiempo con un cronómetro; cuando el indicador luminoso de un galvanómetro con indicador luminoso vuelve a la posición cero, apagar la fuente de calor para obtener la temperatura en exceso y el tiempo de calentamiento de la parte superior.

(7) Medir el potencial termoeléctrico de los pares termoeléctricos inferiores después de 4-5 minutos para obtener la temperatura en exceso y el tiempo de calentamiento de la parte inferior.

(8) Colocar el interruptor conmutador del potenciómetro a la posición 2, encender el interruptor de calentamiento para medir la corriente de calentamiento.

(9) Terminar el ensayo, apagar la potencia y despejar el instrumento y el equipo.

60 [0035] La temperatura se mide usando un termómetro de termopar de la siguiente manera:

(1) Conectar cables termosensibles a las superficies del recubrimiento de película gruesa, el soporte, y la capa de cobertura de los elementos calefactores y el aire exterior.

- (2) Proporcionar electricidad al producto de calentamiento con potencia nominal y medir las temperaturas en todas las partes.
- (3) Registrar la temperatura T₀, T₁, T₂, T₃ en todas las partes del producto en cada intervalo de tiempo mediante un ordenador conectado.

[0036] El grosor se mide usando un micrómetro y apilando y haciendo la media de los valores.

[0037] El método para medir el punto de fusión es como sigue:

- 10 [0038] Instrumento de detección: calorímetro diferencial de barrido, modelo DSC2920, fabricado por instrumentos TA (EE. UU). El instrumento está cualificado (nivel A) según se ha verificado mediante la Regulación de verificación de analizador térmico 014-1996 (Verification Regulation of Thermal Analyzer 014-1996).
 - (1) temperatura ambiente: 20-25 °C; humedad relativa: < 80 %;
 - (2) material estándar para la calibración instrumental: material estándar de análisis térmico -Indium; punto de fusión estándar 429,7485 K (156,60).
 - (3) procedimiento de medición: referencia a "GB/T19466.3-2O04/ISO" para el procedimiento de detección.

[0039] Repetir la medición tres veces para asegurar un funcionamiento normal del instrumento antes del ensayo de probeta: pesar 1-2 ng de la probeta, con una precisión de 0,01 mg, colocar la probeta en una placa de probeta de aluminio. Condiciones de ensayo: calentar la probeta a 200 °C a una velocidad de 10 °C/min, y repetir la medición diez veces. Modelo de medición: recopilar la información de los puntos de fusión mediante el ordenador y el instrumento, determinar la temperatura extrapolada inicial del pico de fusión endotérmica mediante la recogida automática de los datos medidos y el análisis de programa de los espectros para obtener directamente el modelo de medición. Los resultados de la medición se calculan según la fórmula de Bessel.

[0040] La tabla 1 son los datos de rendimiento de las capas de cobertura de los elementos de película gruesa en las formas de realización 1 a 20. Los detalles son como sigue:

30

5

15

Tabla 1

			Capa de	cobertura		
	Coeficiente de conductividad térmica λ ₁ (W/m.k)	Grosor d₁ (µm)	Temperatura superficial T ₁ (°C)	TPunto de fusión mínimo de la capa de cobertura (°C)	Temperatura inicial T ₀ (°C)	Tasa de transferencia de calor /10 ⁶
Forma de realización 1	2,3	4000	50	350	25	0,00023
Forma de realización 2	2,2	5000	45	350	25	0,0001584
Forma de realización 3	2,3	5000	50	350	25	0,000184
Forma de realización 4	4,6	5000	53	350	25	0,0005152
Forma de realización 5	2,2	6000	46	350	25	0,0001232
Forma de realización 6	2	6000	45	350	25	0,000106667
Forma de realización 7	1,8	6000	45	350	25	0,000096
Forma de realización 8	2,2	8000	48	350	25	0,000107525
Forma de realización 9	2,4	8000	45	350	25	0,000096
Forma de realización 10	1,85	10000	45	350	25	0,0000666
Forma de realización 11	2,1	10000	50	350	25	0,000084
Forma de realización 12	2,12	20000	50	350	25	0,000053

			Capa de	cobertura		
	Coeficiente de conductividad térmica λ ₁ (W/m.k)	Grosor d ₁ (µm)	Temperatura superficial T ₁ (°C)	TPunto de fusión mínimo de la capa de cobertura (°C)	Temperatura inicial T ₀ (°C)	Tasa de transferencia de calor /10 ⁶
Forma de realización 13	2,2	20000	45	350	25	0,0000352
Forma de realización 14	2,23	2000	45	350	25	0,0005798
Forma de realización 15	2,2	2000	55	350	25	0,000594
Forma de realización 16	2,2	12000	55	350	25	0,000143
Forma de realización 17	2,23	12000	45	350	25	5,94667E-05
Forma de realización 18	2,05	12000	45	350	25	6,83333E-05
Forma de realización 19	2,2	7000	50	350	25	0,000125714
Forma de realización 20	2,2	7000	50	350	25	9,42857E-05

[0041] La tabla 2 son los datos de rendimiento de los recubrimientos de película gruesa de los elementos de película gruesa en las formas de realización 1 a 20. Los detalles son como sigue:

5

			Tabla 2									
		Recubrimiento de película gruesa										
	Coeficiente de conductividad térmica λ ₂ (W/m.k)	Grosor d ₂ (µm)	Área A ₂ (m²)	Temperatura de calentamiento T ₂ (°C)	Temperatura inicial T ₀ (°C)	Tasa de generación de calor /10 ⁶						
Forma de realización 1	380	50	0,016	116	25	11,0656						
Forma de realización 2	320	50	0,018	110	25	9,792						
Forma de realización 3	380	40	0,016	103	25	11,856						
Forma de realización 4	380	40	0,02	112	25	16,53						
Forma de realización 5	380	30	0,016	98	25	14,79466667						
Forma de realización 6	381	30	0,016	97	25	14,6304						
Forma de realización 7	381	30	0,016	95	25	14,224						
Forma de realización 8	381	25	0,017	108	25	21,50364						
Forma de realización 9	380	25	0,016	97	25	17,5104						

			Recubrimiento	de película grues	sa	
	Coeficiente de conductividad térmica λ ₂ (W/m.k)	Grosor d ₂ (µm)	Área A ₂ (m²)	Temperatura de calentamiento T ₂ (°C)	Temperatura inicial T ₀ (°C)	Tasa de generación de calor /10 ⁶
Forma de realización 10	380	25	0,018	100	25	20,52
Forma de realización 11	380	30	0,016	100	25	15,2
Forma de realización 12	380	30	0,02	108	25	21,02666667
Forma de realización 13	381	20	0,016	95	25	21,336
Forma de realización 14	381	20	0,026	98	25	36,1569
Forma de realización 15	381	30	0,018	99	25	16,9164
Forma de realización 16	380,5	30	0,026	110	25	28,03016667
Forma de realización 17	380,5	35	0,016	103	25	13,56754286
Forma de realización 18	380,5	35	0,02	98	25	15,87228571
Forma de realización 19	380,5	25	0,016	94	25	16,80288
Forma de realización 20	380,5	25	0,012	102	25	14,06328

[0042] La tabla 3 so los datos de rendimiento de los soportes de los elementos de película gruesa en las formas de realización 1 a 20. Los detalles son como sigue:

			Tabla 3			
			Sop	orte		
	Coeficiente de conductividad térmica λ ₃ (W/m.k)	Grosor d ₃ (µm)	Temperatura superficial T ₃ (°C m)	T _{Punto de fusión} mínimo del soporte (°C)	Temperatura inicial T ₀ (°C m)	Tasa de transferencia de calor /10 ⁶
Forma de realización 1	7,15	20	105	350	25	0,4576
Forma de realización 2	7,15	80	100	350	25	0,12065625
Forma de realización 3	7,15	50	90	350	25	0,14872
Forma de realización 4	7,16	100	108	350	25	0,118856
Forma de realización 5	7,16	20	86	350	25	0,349408
Forma de realización 6	7,16	200	90	350	25	0,037232

	Soporte										
	Coeficiente de conductividad térmica λ ₃ (W/m.k)	Grosor d ₃ (µm)	Temperatura superficial T ₃ (°C m)	T _{Punto de fusión} mínimo del soporte (°C)	Temperatura inicial T ₀ (°C m)	Tasa de transferencia de calor /106					
Forma de realización 7	7,21	300	84	350	25	0,022687467					
Forma de realización 8	7,21	80	90	350	25	0,099588125					
Forma de realización 9	7,21	20	87	350	25	0,357616					
Forma de realización 10	7,18	50	95	350	25	0,180936					
Forma de realización 11	7,18	50	93	350	25	0,1562368					
Forma de realización 12	7,18	50	105	350	25	0,22976					
Forma de realización 13	7,15	30	85	350	25	0,2288					
Forma de realización 14	7,15	30	88	350	25	0,39039					
Forma de realización 15	7,15	25	85	350	25	0,30888					
Forma de realización 16	7,17	25	100	350	25	0,55926					
Forma de realización 17	7,17	50	94	350	25	0,1583136					
Forma de realización 18	7,22	50	88	350	25	0,181944					
Forma de realización 19	7,22	50	91	350	25	0,1524864					
Forma de realización 20	7,22	45	92	350	25	0,128997333					

[0043] La tabla 4 son los índices de transferencia de calor calculados según los datos de rendimiento enumerados en las tablas 1, 2 y 3. Las tasas de transferencia de calor de la capa de cobertura, el recubrimiento de película gruesa y el soporte se calculan por relación para obtener la condición límite del material de la presente invención, es decir las ecuaciones siguientes:

$$\lambda_3 A \frac{T_3 - T_0}{d_3} = \mathbf{a} \times \lambda_1 A \frac{T_1 - T_0}{d_1} , \quad \lambda_2 A \frac{T_2 - T_0}{d_2} = \mathbf{b} \times \lambda_1 A \frac{T_1 - T_0}{d_1} , \quad \lambda_2 A \frac{T_2 - T_0}{d_2} = \mathbf{c} \times \lambda_3 A \frac{T_3 - T_0}{d_3} ;$$

donde $10 \le a \le 10^4$, $0 < b \le 10^6$, $0 < c \le 10^3$.

10

5

	Satisface las	ecuaciones?	Sí																			
	c	•	24,181818	81,156177	79,72028	139,07586	42,342095	392,9523	626,95409	215,92574	48,964252	113,41027	97,288219	91,515785	93,251748	92,617383	54,7669	50,120099	85,700425	87,237203	110,19265	109,01993
	٩	1	48111,304	61818,182	64434,783	32084,627	120086,58	137160	148166,67	199987,35	182400	308108,11	180952,38	396729,56	606136,36	62360,987	28478,788	196015,15	228153,75	232277,35	133659,27	149156
•	œ	5	1989,5652	761,71875	808,26087	230,69876	2836,1039	349,05	236,32778	926,18577	3725,1667	2716,7568	1859,9619	4335,0943	0290	673,31839	520	3910,9091	2662,2242	2662,5951	1212,96	1368,1535
Tabla 4	Soporte	Tasa de transferencia de calor	457600	120656,25	148720	118856	349408	37232	22687,46667	99588,125	357616	180936	156236,8	229760	228800	390390	308880	559260	158313,6	181944	152486,4	128997,3333
Ξ΄.	Recubrimiento de película gruesa	Tasa de generación de calor	11065600	9792000	11856000	16530000	14794666,67	14630400	14224000	21503640	17510400	20520000	15200000	21026666,67	21336000	36156900	16916400	28030166,67	13567542,86	15872285,71	16802880	14063280
	Capa de cobertura	Tasa de transferencia de calor	230	158,4	184	515,2	123,2	106,6666667	96	107,525	96	9,99	84	53	35,2	579,8	594	143	59,46666667	68,3333333	125,7142857	94,28571429
			Forma de realización 1	Forma de realización 2	Forma de realización 3	Forma de realización 4	Forma de realización 5	Forma de realización 6	Forma de realización 7	Forma de realización 8	Forma de realización 9	Forma de realización 10	Forma de realización 11	Forma de realización 12	Forma de realización 13	Forma de realización 14	Forma de realización 15	Forma de realización 16	Forma de realización 17	Forma de realización 18	Forma de realización 19	Forma de realización 20

Los resultados enumerados en la tabla 4 muestran que todas las películas gruesas preparadas según las formas de realización 1 a 20 satisfacen las ecuaciones; y el soporte, es decir sustrato recubierto, tiene la función de generación de calor y la diferencia de temperatura entre los dos lados es de más de 40 °C, para conseguir la función de generación de calor. En uso, el producto pudo reducir la pérdida de calor cuando el sustrato recubierto del elemento de película gruesa se calienta, y la temperatura pudo aumentar más de 100 °C después de proporcionarle electricidad durante dos minutos, lo que demuestra que el elemento calefactor de película gruesa de la presente invención tiene una alta eficiencia de generación de calor.

[0044] Las tablas 5 a 8 son los datos de rendimiento de los elementos de película gruesa en los ejemplos de contraste 1 a 10 de la presente invención. Todos los datos de rendimiento se miden como los mostrados en las tablas 1 a 4. Los detalles son como sigue:

Tabla 5

			Capa de	e cobertura		
	Coeficiente de conductividad térmica λ ₁ (W/m.k)	Grosor d ₁ (μm)	Temperatura superficial T ₁ (°C)	TPunto de fusión mínimo de la capa de cobertura (°C)	Temperatura inicial T ₀ (°C)	Tasa de transferencia de calor /10 ⁶
Ejemplo de contraste 1	7,18	25	113	350	25	0,4043776
Ejemplo de contraste 2	2,2	25	55	350	25	0,14784
Ejemplo de contraste 3	2,23	25	102	350	25	0,1098944
Ejemplo de contraste 4	7,17	50	53	350	25	0,2248512
Ejemplo de contraste 5	7,21	50	97	350	25	0,1661184
Ejemplo de contraste 6	7,18	75	51	350	25	0,139387733
Ejemplo de contraste 7	1,8	75	94	350	25	0,026496
Ejemplo de contraste 8	2,2	75	47	350	25	0,036138667
Ejemplo de contraste 9	2,4	100	93	350	25	0,026112
Ejemplo de contraste 10	7,18	100	44	350	25	0,0763952

15

5

10

Tabla 6

			Recubrimient	o de película grues	a	
	Coeficiente de conductividad térmica λ ₂ (W/m.k)	Grosor d ₂ (µm)	Área A ₂ (m²)	Temperatura de calentamiento T ₂ (°C)	Temperatura inicial T ₀ (°C)	Tasa de generación de calor /10 ⁶
Ejemplo de contraste 1	382	50	0,016	116	25	11,12384
Ejemplo de contraste 2	382	50	0,056	56	25	13,26304
Ejemplo de contraste 3	382	40	0,016	103	25	11,9184
Ejemplo de contraste 4	382	40	0,056	55	25	16,044
Ejemplo de contraste 5	382	30	0,016	98	25	14,87253333
Ejemplo de contraste 6	382	30	0,056	52	25	19,2528
Ejemplo de contraste 7	382	30	0,016	95	25	14,26133333

		Recubrimiento de película gruesa										
	Coeficiente de conductividad térmica λ ₂ (W/m.k)	Grosor d ₂ (µm)	Área A ₂ (m²)	Temperatura de calentamiento T ₂ (°C)	Temperatura inicial T ₀ (°C)	Tasa de generación de calor /10 ⁶						
Ejemplo de contraste 8	382	25	0,056	49	25	20,53632						
Ejemplo de contraste 9	382	25	0,016	97	25	17,60256						
Ejemplo de contraste 10	382	25	0,056	46	25	17,96928						

Tabla 7

	Soporte										
	Coeficiente de conductividad térmica λ ₃ (W/m.k)	Grosor d ₃ (mm)	Temperatura superficial T ₃ (°C)	T _{Punto} de fusión mínimo del soporte (°C)	Temperatura inicial T ₀ (°Cm)	Tasa de transferencia de calor /10 ³					
Ejemplo de contraste 1	7,16	1	105	350	25	9,1648					
Ejemplo de contraste 2	7,16	2	42	350	25	3,40816					
Ejemplo de contraste 3	7,16	4	87	350	25	1,77568					
Ejemplo de contraste 4	7,18	1	43	350	25	7,23744					
Ejemplo de contraste 5	7,18	2	86	350	25	3,50384					
Ejemplo de contraste 6	7,18	1	40	350	25	6,0312					
Ejemplo de contraste 7	7,21	2	84	350	25	3,40312					
Ejemplo de contraste 8	7,21	3	38	350	25	1,749626667					
Ejemplo de contraste 9	7,22	1	87	350	25	7,16224					
Ejemplo de contraste 10	7,22	2	40	350	25	3,0324					

Tabla 8	¿Satisface las ecuaciones?		N _O	No	No	No	No	ON	No	N _O	No	No
	v		1213,757	3891,5544	6712,0202	2216,8059	4244,6383	3192,2006	4190,6643	11737,544	2457,6892	5925,7618
	q		27,508546	89,712121	108,45321	71,353855	89,529717	138,12406	538,24477	568,26446	674,11765	235,21478
	В		0,022664	0,023053	0,0161581	0,0321877	0,0210924	0,0432692	0,128439	0,0484143	0,2742892	0,0396936
	Soporte	Tasa de transferencia de calor	9164,8	3408,16	1775,68	7237,44	3503,84	6031,2	3403,12	1749,626667	7162,24	3032,4
	Recubrimiento de película gruesa	Tasa de generación de calor	11123840	13263040	11918400	16044000	14872533,33	19252800	14261333,33	20536320	17602560	17969280
	Capa de cobertura	Tasa de transferencia de calor	404377,6	147840	109894,4	224851,2	166118,4	139387,7333	26496	36138,66667	26112	76395,2
			Ejemplo de contraste 1	Ejemplo de contraste 2	Ejemplo de contraste 3	Ejemplo de contraste 4	Ejemplo de contraste 5	Ejemplo de contraste 6	Ejemplo de contraste 7	Ejemplo de contraste 8	Ejemplo de contraste 9	Ejemplo de contraste 10

[0045] El material y la estructura de los elementos de película gruesa en los ejemplos de contraste 1 a 10 enumerados en las tablas anteriores no cumplen el requisito de selección de material de la presente invención, ni satisfacen las ecuaciones de la presente invención. Después de proporcionar electricidad y generación de calor, las diferencias de temperatura entre los dos lados de los elementos de película gruesa en los ejemplos de contraste 1 a 10 no son significativamente diferentes, y la diferencia de temperatura de calentamiento entre la capa de cobertura y el soporte es inferior 15 °C. Los elementos de película gruesa preparados según tales selecciones de material no cumplen el requisito del elemento de película gruesa que tiene un sustrato recubierto con una alta conductividad térmica de la presente invención ni cumplen el requisito de producto de la presente invención, lo que demuestra la tasa de transferencia de calor y la correlación de la presente invención.

10

15

5

[0046] Según la divulgación y enseñanzas de la especificación anteriormente mencionada, los expertos en la técnica de la presente invención todavía pueden hacer cambios y modificaciones en la forma de realización mencionada previamente, por lo tanto, el alcance de la presente invención no se limita a las formas de realización específicas descritas y descritas previamente, y todas aquellas modificaciones y cambios a la invención actual se encuentran dentro del alcance de la presente invención tal y como se define en las reivindicaciones anexas.

REIVINDICACIONES

1. Elemento de película gruesa que tiene un sustrato recubierto con una alta conductividad térmica, que comprende un soporte; un recubrimiento de película gruesa depositado en el soporte; y una capa de cobertura que cubre el recubrimiento, el recubrimiento de película gruesa es un material calefactor, y un modo de calentamiento es el calentamiento eléctrico,

caracterizado por el hecho de que

el soporte, el recubrimiento de película gruesa y la capa de cobertura se seleccionan a partir de un material que satisface cada una de las ecuaciones siguientes:

$$\lambda_3 A \frac{T_3 - T_0}{d_3} = \mathbf{a} \times \lambda_1 A \frac{T_1 - T_0}{d_1}, \ \lambda_2 A \frac{T_2 - T_0}{d_2} = \mathbf{b} \times \lambda_1 A \frac{T_1 - T_0}{d_1}, \ \lambda_2 A \frac{T_2 - T_0}{d_2} = \mathbf{c} \times \lambda_3 A \frac{T_3 - T_0}{d_3};$$

donde $10 < a \le 10^4$, $0 < b \le 10^6$, $0 < c \le 10^3$;

 $T_2 < T_{Punto}$ de fusión mínimo de la capa de cobertura;

 $T_2 < T_{Punto}$ de fusión mínimo del soporte; $T_0 < 25$ °C;

5

10

15

25

30

35

50

donde un valor $\lambda_1 A^{\frac{T_1-T_0}{d_1}}$ representa una tasa de transferencia de calor de la capa de cobertura;

un valor de $\frac{\lambda_2 A^{\frac{T_2-T_0}{d_2}}}{d_2}$ representa una tasa de generación de calor del recubrimiento de película gruesa;

un valor $\frac{\lambda_3 A}{d_3} \frac{T_3 - T_0}{d_3}$ representa una tasa de transferencia de calor del soporte;

 λ_1 representa un coeficiente de conductividad térmica de la capa de cobertura a una temperatura de T_1 ; λ_2 20 representa un coeficiente de conductividad térmica del recubrimiento de película gruesa a una temperatura de T_2 ;

λ₃ representa un coeficiente de conductividad térmica del soporte a una temperatura de T₃;

A representa, según el caso de cálculo, un área de contacto del recubrimiento de película gruesa ya sea con la capa de cobertura o con el soporte:

d₁ representa un grosor de la capa de cobertura; d₂ representa un grosor del recubrimiento de película gruesa; d₃ representa un grosor del soporte;

T₀ representa una temperatura inicial del elemento calefactor de película gruesa antes iniciar el calentamiento;

T₁ representa una temperatura superficial de la capa de cobertura medida bajo un estado de calentamiento estable: T₂ representa una temperatura de calentamiento del recubrimiento de película gruesa medida bajo dicho estado

de calentamiento estable: T₃ representa una temperatura superficial del soporte medida bajo dicho estado de calentamiento estable;

donde $d_2 \le 50 \mu m$; $d_1 \ge 10 \mu m$; $10 \mu m \le d_3 \le 20 cm$; $T_{Punto de fusión mínimo del soporte} > 25 °C$; y $\lambda_3 \ge \lambda_1$.

2. Elemento de película gruesa según la reivindicación 1, caracterizado por el hecho de que el coeficiente de conductividad térmica λ₃ del soporte es superior o igual a 3W/m.k, el coeficiente de conductividad térmica λ₁ de la capa de cobertura es inferior o igual a 3W/m.k; y $10 \le a \le 10^4$, $10^4 \le b \le 10^6$, $10 \le c \le 10^3$.

- 3. Elemento de película gruesa según la reivindicación 2, caracterizado por el hecho de que un área entre el 40 soporte y la capa de cobertura que no tiene el recubrimiento de película gruesa está unida mediante impresión o sinterización.
- 4. Elemento de película gruesa según la reivindicación 1, caracterizado por el hecho de que el soporte y el 45 recubrimiento de película gruesa están unidos mediante recubrimiento por impresión, pulverización o sinterización, y el recubrimiento de película gruesa y la capa de cobertura están unidos por impresión, sinterización o encolado.
 - 5. Elemento de película gruesa según la reivindicación 1, caracterizado por el hecho de que el soporte comprende poliimidas, materiales aislantes orgánicos, materiales aislantes inorgánicos, cerámica, vitrocerámica, cuarzo, materiales de piedra, tejidos y fibras.
 - 6. Elemento de película gruesa según la reivindicación 1, caracterizado por el hecho de que el recubrimiento de película gruesa es uno o más entre plata, platino, paladio, óxido de paladio, oro y materiales de tierras raras.
- 7. Elemento de película gruesa según la reivindicación 1, caracterizado por el hecho de que la capa de cobertura 55 está hecha de uno o más entre poliéster, poliimida o polieterimida (PEI), cerámica, gel de sílice, amianto, micarex, tejido y fibra.
- 8. Elemento de película gruesa según la reivindicación 1, caracterizado por el hecho de que un área del 60 recubrimiento de película gruesa es inferior o igual a un área de la capa de cobertura o un área del soporte.

9. Uso de un elemento de película gruesa para productos de recubrimiento que tienen un sustrato de calentamiento de un solo lado, donde el elemento de película gruesa tiene un sustrato recubierto con una alta conductividad térmica y comprende: un soporte; un recubrimiento de película gruesa depositado en el soporte; y una capa de cobertura que cubre el recubrimiento, donde el recubrimiento de película gruesa es un material calefactor, y un modo de calentamiento es el calentamiento eléctrico, caracterizado por el hecho de que el soporte, el recubrimiento de película gruesa y la capa de cobertura se seleccionan a partir de un material que cumple todas las ecuaciones siguientes:

10

15

20

25

30

35

40

45

5

donde $10 \le a \le 10^4$, $0 < b \le 10^6$, $0 < c \le 10^3$;

 $T_2 < T_{Punto de fusión mínimo de la capa de cobertura}$;

 $T_2 < T_{Punto de fusión mínimo del soporte};$ $T_0 \le 25 \,^{\circ}C;$

donde un valor de $\frac{\lambda_1 A^{\frac{T_1-T_0}{d_1}}}{\alpha_1}$ representa una tasa de transferencia de calor de la capa de cobertura;

un valor de $\frac{\lambda_2 A}{d_2} \frac{T_2 - T_0}{d_2}$ representa una tasa de generación de calor del recubrimiento de película gruesa;

un valor de $\frac{\lambda_3 A}{d_3} \frac{T_3 - T_0}{d_3}$ representa una tasa de transferencia de calor del soporte;

 λ_1 representa un coeficiente de conductividad térmica de la capa de cobertura a una temperatura de T_1 ; λ_2 representa un coeficiente de conductividad térmica del recubrimiento de película gruesa a una temperatura de

λ₃ representa un coeficiente de conductividad térmica del soporte a una temperatura de T₃;

A representa, según el caso de cálculo, un área de contacto del recubrimiento de película gruesa ya sea con la capa de cobertura o con el soporte;

d₁ representa un grosor de la capa de cobertura; d₂ representa un grosor del recubrimiento de película gruesa; d₃ representa un grosor del soporte;

T₀ representa una temperatura inicial del elemento calefactor de película gruesa antes iniciar el calentamiento; T₁ representa una temperatura superficial de la capa de cobertura medida bajo un estado de calentamiento estable:

T₂ representa una temperatura de calentamiento del recubrimiento de película gruesa medida bajo dicho estado de calentamiento estable:

T₃ representa una temperatura superficial del soporte medida bajo dicho estado de calentamiento estable; donde $d_2 \le 50 \ \mu m; \ d_1 \ge 10 \ \mu m; \ 10 \ \mu m \le d_3 \le 20 \ cm; \ T_{Punto de fusion minimo del soporte} > 25 \ ^{\circ}C; \ y \ \lambda_3 \ge \lambda_1.$

- 10. Uso del elemento de película gruesa según la reivindicación 9, caracterizado por el hecho de que el coeficiente de conductividad térmica λ₃ del soporte es superior a o igual a 3W/m.k, el coeficiente de conductividad térmica λ_1 de la capa de cobertura es inferior o igual a 3W/m.k; y $10 \le a \le 10^4$, $10^4 \le b \le 10^6$, $10 \le c \le 10^3$.
 - 11. Uso del elemento de película gruesa según la reivindicación 10, caracterizado por el hecho de que un área entre el soporte y la capa de cobertura que no tiene el recubrimiento de película gruesa está unida por impresión o sinterización.
 - 12. Uso del elemento de película gruesa según la reivindicación 9, caracterizado por el hecho de que el soporte y el recubrimiento de película gruesa están unidos por recubrimiento de impresión, pulverización o sinterización, y el recubrimiento de película gruesa y la capa de cobertura están unidos por impresión, sinterización o encolado.

- 13. Uso del elemento de película gruesa según la reivindicación 9 caracterizado por el hecho de que el soporte comprende poliimidas, materiales aislantes orgánicos, materiales aislantes inorgánicos, cerámica, vitrocerámica, cuarzo, materiales de piedra, tejidos y fibras.
- 14. Uso del elemento de película gruesa según la reivindicación 9, caracterizado por el hecho de que el 50 recubrimiento de película gruesa es uno o más entre plata, platino, paladio, óxido de paladio, oro y materiales de
- 15. Uso del elemento de película gruesa según la reivindicación 9, caracterizado por el hecho de que la capa de 55 cobertura está hecha de uno o más entre poliéster, poliimida o polieterimida (PEI), cerámica, gel de sílice, amianto, micarex, tejido y fibra.

16. Uso del elemento de película gruesa según la reivindicación 9, **caracterizado por el hecho de que** un área del recubrimiento de película gruesa es inferior o igual a un área de la capa de cobertura o un área del soporte.