

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 768 976

51 Int. Cl.:

C12N 9/22 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 15.04.2016 PCT/EP2016/058442

(87) Fecha y número de publicación internacional: 20.10.2016 WO16166340

(96) Fecha de presentación y número de la solicitud europea: 15.04.2016 E 16724290 (8)

(97) Fecha y número de publicación de la concesión europea: 11.12.2019 EP 3283625

(54) Título: Edición de genoma mediada por nucleasa

(30) Prioridad:

16.04.2015 GB 201506509 18.12.2015 US 201562269143 P 24.03.2016 US 201662312724 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **24.06.2020**

(73) Titular/es:

WAGENINGEN UNIVERSITEIT (100.0%) Droevendaalsesteeg 4 6708 PB Wageningen, NL

(72) Inventor/es:

VAN DER OOST, JOHN

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Edición de genoma mediada por nucleasa

5 Campo de la invención

10

15

20

25

30

35

40

45

50

55

60

65

La invención se refiere al campo de herramientas, procedimientos y técnicas de ingeniería genética para la edición de genomas o genes. Dicha edición o manipulación de secuencias de polinucleótidos, incluidas secuencias de genes estructurales o de control, tiene aplicación en muchos campos de la salud y la biotecnología, por ejemplo en tratamientos de terapia génica de seres humanos o animales, el cultivo de plantas y la cría de animales y la mejora de organismos industriales, por ejemplo mediante la alteración de enzimas y rutas metabólicas, particularmente microorganismos; también en los sectores de la biología sintética y la producción de biocombustibles a partir de algas, por ejemplo. Además, la invención se refiere también a herramientas y procedimientos de investigación para su uso en investigación científica básica que implica genética molecular.

Antecedentes de la invención

Las nucleasas específicas del sitio pueden permitir la generación de roturas bicatenarias (DSB) en posiciones seleccionadas a lo largo de una cadena de ADN. En un organismo de interés, esto permite que las DSB se realicen en posiciones predeterminadas en el genoma. La creación de dichas roturas por medio de nucleasas específicas del sitio hace que la maquinaria de reparación celular endógena se readapte para insertar, eliminar o modificar el ADN en posiciones deseadas en el genoma de interés. La escisión dirigida de ADN mediada por nucleasas específicas del sitio es, por lo tanto, una herramienta de investigación básica importante que ha facilitado la determinación funcional y la anotación de genes específicos, pero, entre otras cosas, también ha permitido la mutación, la adición, la sustitución o la modificación dirigida de genes en organismos de importancia agrícola, industrial o comercial. Como la base genética de fenotipos orgánicos tanto deseados como no deseados se revela a través de la secuenciación del ADN, la capacidad para generar alteraciones dirigidas en loci genómicos específicos es fundamental para la ingeniería genética de rasgos útiles y en el desarrollo de tratamientos clínicos para enfermedades con una base genética.

Otros enfoques de nucleasas específicas del sitio implican roturas de ácido nucleico diana monocatenario, ya sea individualmente o en combinación.

Durante el decenio pasado se han desarrollado una serie de herramientas moleculares para permitir la ingeniería genética específica en general, y para la edición especializada de genomas eucariotas en particular. Inicialmente, se desarrollaron nucleasas con dedos de zinc (ZFN), seguidas de nucleasas efectoras de tipo activador de la transcripción (TALEN). Recientemente, se ha producido una revolución mediante el desarrollo de la nucleasa Cas9 asociada a CRISPR, como una alternativa muy eficaz, genérica y barata para la cirugía genómica especializada en una serie de células eucariotas (desde levaduras y plantas hasta peces cebra y seres humanos) (revisado por Van der Oost 2013, Science 339: 768-770 y Charpentier y Doudna, 2013, Nature 495: 50-51).

Se han descubierto y aislado muchas nucleasas específicas del sitio útiles a partir de procariotas. Al igual que los eucariotas, los organismos procariotas poseen un conjunto variable de sistemas de defensa para protegerse contra los virus. Las estrategias de defensa que protegen a su huésped microbiano contra el ADN invasor se basan principalmente en sistemas de inmunidad generales (innatos), tales como las, bien conocidas, enzimas de restricción.

Un descubrimiento reciente importante en este sector ha sido la demostración de un sistema inmunitario específico (adaptativo) en bacterias y arqueas. Este sistema inmunitario adaptativo consiste en repeticiones palindrómicas interespaciadas regularmente agrupadas (CRISPR) y genes Cas asociados a CRISPR que codifican las proteínas Cas. El sistema CRISPR-Cas utiliza pequeños ARN de CRISPR que guían las proteínas Cas efectoras a los ácidos nucleicos invasores complementarios, eventualmente neutralizando la invasión. Se distinguen dos clases de complejos efectores de Cas: complejos de múltiples subunidades (por ejemplo. Cascade de *E. coli*) y sistemas de una única proteína (por ejemplo Cas9 de *Streptococcus pyogenes*) (Van der Oost *et al.*, 2014, Nature Rev. Microbiol. 12: 479-492).

Los análisis moleculares de CRISPR-Cas han proporcionado la base para el desarrollo de herramientas de ingeniería del genoma. Cas9 es un complejo efector CRISPR-Cas relativamente sencillo que puede expresarse funcionalmente en una amplia serie de células procariotas y eucariotas. Es importante indicar que la guía de ARN de Cas9 se puede manipular fácilmente para que se dirija específicamente a cualquier secuencia de interés. Aunque también es posible ajustar la especificidad para un determinado gen diana con el sistema TALEN, un inconveniente de este sistema es que esto requiere una laboriosa ingeniería de proteínas. En el caso de Cas9, solo se debe generar y clonar un oligonucleótido corto, lo que ahorra tiempo y dinero. Las aplicaciones del sistema Cas9 incluyen ingeniería genética general (alteración, reparación e integración de genes), control de la expresión génica (estimulación y silenciamiento) y marcado de genes (toma de imágenes). La coexpresión de Cas9 con diferentes quías permite la multiplexación, por ejemplo, generar múltiples inactivaciones génicas simultáneamente.

El sistema CRISPR-Cas permite la escisión específica de la diana del ADN genómico guiada por la nucleasa Cas9 en complejo con un ARN guía (ARNg) que se une complementariamente a una secuencia objetivo de 20 nucleótidos. Por lo tanto, la alteración de la secuencia del ARNg permite que la endonucleasa Cas9 se programe para cortar ADN bicatenario en sitios complementarios al ARN guía de 20 pares de bases. El sistema Cas9 se ha utilizado para modificar genomas en múltiples células y organismos.

En comparación con sistemas alternativos de edición de genoma (nucleasas de dedo de cinc, TALEN), la ingeniería genética por medio de Cas9 es muy eficaz, barata y rápida.

10

15

20

25

50

55

60

65

A pesar de estos desarrollos, el sistema Cas9 todavía tiene algunos inconvenientes prácticos. En primer lugar, basándose en un mecanismo intrínseco de discriminación propia/discriminación no propia, el Cas9 requiere un motivo de secuencia (motivo adyacente protoespaciador, PAM) en la región flanqueante adyacente a la secuencia diana. El requerimiento del PAM impone una limitación de diseño significativa al sistema de endonucleasa, que excluye potenciales sitios diana.

En segundo lugar, aunque las nucleasas guiadas por ARN tales como Cas9 incorporan ARN guía que se dirigen a la escisión de sitios diana específicos y, por lo tanto, muestran una reducción en la actividad significativa fuera de la diana observada en la mayor parte de las otras nucleasas disponibles, se produce aún un determinado nivel de escisión fuera de la diana (Pattanayak *et al.*, 2013, Nat. Biotechnol. 31: 839-843), es decir, la escisión de secuencias genómicas que difieren de la secuencia diana prevista en uno o más nucleótidos. Generalmente, se requieren 15-17 nucleótidos para el emparejamiento de bases con una diana complementaria de 20 nucleótidos; se ha planteado la hipótesis de la tolerancia a los emparejamientos incorrectos para explicar los problemas fuera de la diana de los que se ha informado. La especificidad imperfecta de la unión específica del sitio modificado mediante ingeniería genética puede conducir a la inserción, modificación o eliminación no deseada de loci genómicos durante un evento de direccionamiento génico, que se ha asociado con toxicidad celular. Las consecuencias de dichos eventos de escisión fuera de la diana que dan como resultado alteraciones no deseadas de los loci genómicos distintos de la diana deseada pueden ser extremadamente graves en un contexto clínico.

La escisión específica de secuencia del sitio diana de la nucleasa prevista en ausencia de actividad de escisión fuera de la diana, o con solo una actividad mínima de fondo, es un requisito previo para la manipulación genómica de alta eficacia en aplicaciones de investigación básicas y especialmente para evitar la escisión de genes que no se deseaban escindir durante las modificaciones genómicas dirigidas asociadas con aplicaciones clínicas de las tecnologías de endonucleasas específicas del sitio, en particular debido a que las roturas bicatenarias resultantes dan como resultado modificaciones genómicas estables y heredables.

A pesar de que se prestó mucha atención a abordar estas características no deseadas del sistema Cas9, hasta la fecha siguen ampliamente sin resolverse.

La especificidad imprecisa, en particular, sigue siendo una dificultad y solo se ha abordado parcialmente expandiendo la secuencia diana que se desea reconocer mediante dímeros de Cas9 catalíticamente inactivado fusionado al dominio de nucleasa de Fokl (dCas9-Fokl) (Guilinger et al., 2014, Nat. Biotechnol. 32: 577-582) Además, se ha demostrado que las variantes de nickasa modificadas genéticamente de Cas9 (en las que uno de los dos sitios de nucleasa está alterado) facilitan la reparación dirigida por homología en genomas eucariotas con una especificidad aumentada y una actividad reducida fuera de la diana (Ran et al., 2013, Cell 154: 1380-1389. También, Mali et al., 2013, Nat. Biotechnol. 31: 833-838).

El documento WO 2015/035139 describe composiciones, procedimientos, sistemas y kits para controlar la actividad y/o mejorar la especificidad de las endonucleasas programables por ARN, tales como Cas9. Por ejemplo, los ARN guía (ARNg) están diseñados para que existan en un estado "activado" o "desactivado", lo que controla la actividad de unión y, por lo tanto, de escisión de las endonucleasas programables por ARN. También se describen ARNg de detección de ARNm que modulan la actividad de las endonucleasas programables por ARN, en función de la presencia o ausencia de un ARNm diana. Se describen algunos ARNg que modulan la actividad de una endonucleasa programable por ARN basándose en la presencia o ausencia de un ADN extendido (ADNx).

Otro enfoque para mitigar la actividad fuera de la diana se ha centrado en el desarrollo de paquetes informáticos para asistir al proceso de diseño de ARN guía mediante la realización de búsquedas exhaustivas de secuencias diana frente a secuencias de referencia genómicas, lo que permite la selección de secuencias diana con efectos de escisión mínimos fuera de la diana (Naito *et al.*, 2015, Bioinformatics 31: 1120-1123). Sin embargo, esto simplemente permite una exploración eficaz del espacio de secuencia diana disponible para el diseño de secuencias guía en lugar de abordar directamente las limitaciones inherentes de CRISPR-Cas9 como herramienta de edición de genoma.

Por lo tanto, las nucleasas disponibles actualmente, incluidos los sistemas CRISPR-Cas9, no se encuentran en su estado actual de desarrollo en una forma necesariamente adecuada para la mayor parte de las aplicaciones clínicas o, de hecho, muchas otras aplicaciones de edición de genoma sensibles a la diana. Existe una necesidad continua

de herramientas de edición de genoma con mayor especificidad y fiabilidad inherentes de las que están disponibles actualmente en la técnica.

Schunder *et al.* proporcionaron la primera indicación de un sistema CRISPR/Cas funcional en *Francisella tularensis* (Schunder *et al.*, 2013, International Journal of Medical Microbiology 303: 51-60). Sin embargo, hasta la fecha la estructura y la funcionalidad del sistema siguen siendo inciertas.

Posteriormente, Vestergaard *et al.* proporcionaron una clasificación de todos los sistemas inmunitarios adaptativos CRISPR conocidos de Archaea basada principalmente en sus secuencias de proteínas Cas concatenadas, en el que Cas_Cpf1 se identificó como un único sistema de interferencia de proteínas que carece de Cas3, Cas5, Cas7 y Cas8, que recuerda a Cas9 en sistemas bacterianos tipo II a pesar de no parecer compartir ningún dominio estructural (Vestergaard *et al.*, 2014, RNA biology 11.2 (2014): 156-167).

Sumario de la invención

15

20

10

5

Tratando de superar determinadas desventajas prácticas asociadas con los sistemas Cas9, los inventores proporcionan una nucleasa novedosa (Cpf1) no relacionada con Cas9 para su aplicación como herramienta de edición de genes. Se ha descubierto que Cpf1 tiene características mecanicistas excepcionalmente ventajosas tales como un dominio de nucleasa único y un motivo PAM aguas arriba y se puede aplicar como una herramienta mejorada para la edición especializada del genoma en general, y para reparar trastornos genéticos de células madre humanas. Además, la nucleasa Cpf1 puede funcionar como parte de un sistema de ingeniería multiplex para microorganismos.

En consecuencia, la presente invención proporciona un vector de expresión tal como se establece en las reivindicaciones 1 a 9, 11, 12, 14 o 15; un sistema vector tal como se establece en las reivindicaciones 10 a 12; y una célula huésped tal como se establece en la reivindicación 13.

En el presente documento se describe un polipéptido aislado o un fragmento del mismo, que comprende la secuencia de aminoácidos SEQ ID NO: 1 o una secuencia con al menos 60% de identidad con el mismo, y que tiene una actividad de nucleasa.

El polipéptido o el fragmento puede comprender una secuencia de aminoácidos con al menos el 75%; preferentemente al menos el 85%; de forma más preferida al menos el 90%; de forma incluso más preferida al menos el 95% de SEQ ID NO: 1.

35

40

45

50

55

60

30

Además de la SEQ ID NO: 1 de referencia, también se describe cualquier secuencia variante que tenga el porcentaje de identidad definido con la misma. Dicho porcentaje de identidad incluye cualquiera de los siguientes: se divulga una secuencia de aminoácidos o ácidos nucleicos de referencia y secuencias con al menos un determinado porcentaje de identidad, por ejemplo al menos el 60%, pudiendo ser diferente opcionalmente el porcentaje de identidad. Por ejemplo: un porcentaje de identidad que se selecciona entre uno de los siguientes: al menos el 60%, al menos el 61%, al menos el 62%, al menos el 63%, al menos el 64%, al menos el 65%, al menos el 66%, al menos el 67%, al menos el 67%, al menos el 70%, al menos el 71%, al menos el 72%, al menos el 73%, al menos el 74%, al menos el 75%, al menos el 75%, al menos el 75%, al menos el 80%, al menos el 81%, al menos el 82%, al menos el 83%, al menos el 84%, al menos el 85%, al menos el 86%, al menos el 87%, al menos el 89%, al menos el 89%, al menos el 99%, al menos el 99,5% o al menos el 99,8%. Dicha identidad de secuencia con una secuencia de aminoácidos SEQ ID NO: 1 es una función del número de posiciones idénticas compartidas por las secuencias en una ventana de comparación seleccionada, teniendo en cuenta el número de espacios que deben introducirse para un alineamiento óptimo de las dos secuencias y la longitud de cada espacio.

En cualquier aspecto de la presente invención, los residuos de aminoácidos pueden sustituirse de forma conservativa o no conservativa. Las sustituciones conservativas de aminoácidos se refieren a aquellas en las que los residuos de aminoácidos se sustituyen por otros residuos de aminoácidos con propiedades químicas similares (por ejemplo, carga o hidrofobicidad) y, por lo tanto, no alteran las propiedades funcionales del polipéptido resultante. De forma similar, el lector experto apreciará que las secuencias de ácido nucleico pueden sustituirse de forma conservativa o no conservativa sin afectar a la función del polipéptido. Los ácidos nucleicos modificados conservativamente son aquellos sustituidos por ácidos nucleicos que codifican variantes idénticas o funcionalmente idénticas de las secuencias de aminoácidos. El lector experto apreciará que cada codón en un ácido nucleico (excepto AUG y UGG; típicamente los únicos codones para metionina o triptófano, respectivamente) pueden modificarse para producir una molécula funcionalmente idéntica. En consecuencia, cada variación silenciosa (es decir, un codón sinónimo) de un polinucleótido o un polipéptido, que codifica un polipéptido de la presente invención, está implícita en cada secuencia de polipéptidos descrita.

Se describe un polipéptido o un fragmento que tiene actividad de nucleasa y que comprende el motivo de secuencia de aminoácidos: FQIYN. Este corresponde a los residuos 786-790 de SEQ ID NO: 1.

También se describe un polipéptido o un fragmento que tiene actividad de nucleasa y que comprende el motivo de secuencia de aminoácidos: FQIYNK. Este corresponde a los residuos 786-791 de SEQ ID NO: 1.

5 Además se describe un polipéptido o un fragmento que tiene actividad de nucleasa y que comprende el motivo de secuencia de aminoácidos: FQIYNKD. Este corresponde a los residuos 786-792 de la SEQ ID NO: 1.

Además se describe un polipéptido o un fragmento que tiene actividad de nucleasa y que comprende el motivo de secuencia de aminoácidos: X1X2X3 X4X5FQIYNKDX6X7, correspondiente a los residuos 781-794 de SEQ ID NO: 1, en la que X1 es uno de entre G o K, X2 es uno de entre K, S o D, X3 es uno de entre L o I, X4 es uno de entre Y o F, X⁵ es uno de entre L o M, X⁶ es uno de entre F o Y y X⁷ es uno de entre S, A o V.

También se describe un polipéptido o un fragmento que tiene actividad de nucleasa y que comprende el motivo de secuencia de aminoácidos: GKLYLFQIYNKDFS. Este corresponde a los residuos 781-794 de SEQ ID NO: 1.

El motivo de secuencia de aminoácidos puede comprender en vez de los mismos residuos seleccionados de entre 784-794, 785-794, 786-794, 787-794, 788-794 o 789-794 de SEQ ID NO: 1, El motivo puede seleccionarse de entre los residuos 783-793, 783-792, 783-791, 783-790, 783-789 o 783-788 de SEQ ID NO: 1. Además, el motivo puede seleccionarse de entre los residuos 784-793, 785-792 o 786-790 de SEQ ID NO: 1.

Aquí se describe una versión catalíticamente inactiva de Cpf1 en la que el dominio RuvC puede comprender:

- (a) un residuo Glu (E) y un motivo corto Glu-Ile-Asp (GID); o
- 25 (b) un residuo Glu (E), y un motivo corto Gly-Ile-Asp (GID); o
 - (c) un residuo Glu (E) y un motivo corto Glu-lle-Asp (EID); o
 - (d) un residuo Glu (E) y un motivo corto Ser-lle-Asp (SID); o
 - (e) el motivo de secuencia de aminoácidos: X8IDRGER en la que X8 es uno de entre G o S; o
 - (f) el motivo de secuencia de aminoácidos: DANGAY; o
- 35 (g) el motivo de secuencia de aminoácidos: EX9LN en la que X9 es uno de entre D, N o E; o
 - (h) el motivo de secuencia de aminoácidos: EDLN.
- Un polipéptido o un fragmento descrito en el presente documento puede definirse tanto en términos de la secuencia 40 de referencia SEQ ID NO: 1 como de cualquier porcentaje de variante con respecto a la misma, en combinación con cualquiera de los motivos de aminoácidos mencionados anteriormente como características esenciales.

La proteína o el polipéptido descrito en el presente documento puede tener un dominio RuvC (nucleasa); preferentemente el dominio RuvC puede comprender:

- (a) un motivo corto GID; o
- (b) un motivo corto SID;
- 50 (c) un residuo Glu (E) y un motivo corto GID.

El dominio RuvC puede comprender un residuo Glu (E) y un motivo corto SID.

Cuando el dominio RuvC comprende un residuo Glu (E) y un motivo corto GID o SID, el residuo D (aspartato) del 55 motivo puede ser un residuo catalítico.

El dominio RuvC puede comprender el motivo de secuencia de aminoácidos X8IDRGER en el que X8 es uno de entre G o S. Por ejemplo, la proteína o el polipéptido puede tener un dominio RuvC (nucleasa), en el que el dominio RuvC comprende el motivo de secuencia de aminoácidos SIDRGER.

Cuando el dominio RuvC comprende un motivo de secuencia de aminoácidos GIDRGER o SIDRGER, el residuo D (aspartato) del motivo puede ser un residuo catalítico.

La proteína o el polipéptido puede tener un dominio RuvC (nucleasa), en el que el dominio RuvC puede comprender 65 el motivo de secuencia de aminoácidos DANGAY.

5

60

10

15

20

30

45

Cuando el dominio RuvC comprende un motivo de secuencia de aminoácidos DANGAY, el residuo D (aspartato) del motivo puede ser un residuo catalítico.

- La proteína o el polipéptido puede tener un dominio RuvC (nucleasa), en el que el dominio RuvC puede comprender el motivo de secuencia de aminoácidos: EX⁹LN en el que X⁹ es uno de entre D, N o E. Por ejemplo, la proteína o el polipéptido puede tener un dominio RuvC (nucleasa), en el que el dominio RuvC comprende el motivo de secuencia de aminoácidos: EDLN. Cuando el dominio RuvC comprende un motivo de secuencia de aminoácidos EDLN, ENLN o EELN, el residuo E (glutamato) del motivo puede ser un residuo catalítico.
- 10 El polipéptido o el fragmento descrito en el presente documento puede tener un dominio RuvC (nucleasa) que comprende un residuo Glu (E) y los motivos de secuencia de aminoácidos SID y DANGAY.
 - Opcionalmente, el polipéptido o el fragmento puede tener un dominio RuvC (nucleasa) que comprende un residuo Glu (E) y los motivos de secuencia de aminoácidos SID y EDLN.
 - Opcionalmente, el polipéptido o el fragmento puede tener un dominio RuvC (nucleasa) que comprende un residuo Glu (E), y los motivos de secuencia de aminoácidos SID, DANGAY y EDLN.
- Opcionalmente, el dominio RuvC (nucleasa) puede comprender el motivo de secuencia de aminoácidos: X⁸IDRGER en el que X⁸ es uno de entre G o S, y el motivo de secuencia de aminoácidos DANGAY.
 - Opcionalmente, el dominio RuvC (nucleasa) puede comprender el motivo de secuencia de aminoácidos: X8IDRGER en el que X8 es uno de entre G o S, y el motivo de la secuencia de aminoácidos: EX9LN en el que X9 es uno de entre D, N o E.
- Opcionalmente, el dominio RuvC (nucleasa) puede comprender el motivo de secuencia de aminoácidos: X8IDRGER en el que X8 es uno de entre G o S, y el motivo de la secuencia de aminoácidos: EDLN.
- Opcionalmente, el dominio RuvC (nucleasa) puede comprender el motivo de secuencia de aminoácidos: X⁸IDRGER en el que X⁸ es uno de entre G o S, y el motivo de secuencia de aminoácidos: DANGAY y el motivo de secuencia de aminoácidos: EX⁹LN en el que X⁹ es uno de entre D, N o E.
 - Opcionalmente, el dominio RuvC (nucleasa) puede comprender el motivo de secuencia de aminoácidos: X⁸IDRGER en el que X⁸ es uno de entre G o S, y los motivos de la secuencia de aminoácidos DANGAY y EDLN.
 - Preferentemente, el dominio RuvC (nucleasa) comprende los motivos de secuencia de aminoácidos: SIDRGER, DANGAY y EDLN.
 - En otros aspectos, el polipéptido o el fragmento puede tener un motivo rico en arginina.
- El motivo rico en arginina puede comprender el motivo de secuencia de aminoácidos: X¹ºYX¹¹X¹²ZX¹³LX¹⁴X¹5X¹6EX¹²X²¹8X¹9X²²X²¹ARX²²2X²³, en el que X¹⁰es uno de entre D o N, X¹¹ es uno de entre R, Q o H, X¹² es uno de entre K, E, S o D, X¹³ es uno de entre A, K o L, X¹⁴ es uno de entre D, N o A, X¹⁵ es uno de entre V, N, Q, K o A, X¹⁶ es uno de entre R, K o I, X¹² es uno de entre Y, K o I, X¹³ es uno de entre D o E, X¹³ es uno de entre N, R o M, X²⁰ es uno de entre K, V, F o D, X²¹ es uno de entre E, A, D o S, X²² es uno de entre R, Q o K y X²³ es uno de entre N, A, S o D.
- El motivo rico en arginina puede comprender el motivo de secuencia de aminoácidos: DYRKALDVREYDNKEARRN, DYQKKLDNREKERVAARQA, DYREKLNQREIEMKDARQS, DYHSLLDKKEKERFEARQN o NYHDKLAAIEKDRDSARKD.
 - Un polipéptido o un fragmento descrito en el presente documento puede tener un dominio RuvC (nucleasa) que comprende un residuo Glu (E), y los motivos de la secuencia de aminoácidos Ser-Ile-Asp (SID), DANGAY y el motivo de la secuencia de aminoácidos EDLN. Preferentemente, el dominio RuvC (nucleasa) comprenderá el motivo de secuencia de aminoácidos: X8IDRGER en el que X8 es uno de entre G o S, y los motivos de la secuencia de aminoácidos DANGAY y EDLN. Más preferentemente, el dominio RuvC (nucleasa) comprenderá los motivos de secuencia de aminoácidos: SIDRGER, DANGAY y EDLN.
- Un polipéptido o un fragmento descrito en el presente documento preferentemente no comprende un dominio HNH (nucleasa). Adicionalmente o alternativamente, un polipéptido o un fragmento tal como se describe en el presente documento no comprende un lóbulo de reconocimiento que está típicamente presente en Cas9.
 - Determinados polipéptidos o fragmentos descritos en el presente documento pueden tener actividad de nucleasa que viene proporcionada por un único sitio en el polipéptido.

65

55

15

35

40

Otros polipéptidos o fragmentos descritos en el presente documento pueden comprender además un dominio de dedo de zinc, aunque el sitio de unión a metal (típicamente 4 aminoácidos, Cys y/o His) no está completo en todas las variantes de Cpf1.

5 Los polipéptidos o los fragmentos descritos en el presente documento pueden tener una actividad de nucleasa que es una escisión monocatenaria, por ejemplo actividad de nickasa.

Preferentemente, se pueden utilizar dos subunidades de Cpf1 en una disposición dimérica en la que los dominios de nucleasa de cada una de las dos subunidades escinden cadenas de ADN individuales. Preferentemente, dicho dímero puede ser un homodímero en el que los dominios similares a RuvC de cada una de las dos subunidades escinden cadenas de ADN individuales. Alternativamente, los polipéptidos Cpf1 pueden modificarse genéticamente para que contengan más de un dominio de nucleasa, nativo o de otro tipo, que permita la escisión de ambas cadenas de ADN.

10

20

25

30

35

15 El polipéptido o los fragmentos de la invención tienen preferentemente afinidad de unión por una molécula de ARN quía.

En otros aspectos, un polipéptido o un fragmento descrito en el presente documento puede tener un ARN guía que comprende una secuencia sustancialmente complementaria a una secuencia comprendida en una cadena de ácido nucleico diana.

Un polipéptido o fragmento descrito en el presente documento tiene preferentemente afinidad de unión por un motivo de secuencia de polinucleótidos presente en una cadena de ácido nucleico diana. Este motivo de secuencia generalmente se conoce como secuencia de motivo adyacente protoespaciador (PAM). Preferentemente, el motivo de la secuencia de nucleótidos es de al menos 3 residuos contiguos de ácido nucleico.

El PAM está ubicado en la diana (adyacente al protoespaciador). Típicamente, el dominio SEED del ARN guía (la región que es la responsable más probable del emparejamiento de bases inicial de la guía/diana) es complementario a la secuencia de ácido nucleico diana. Preferentemente, la parte SEED de la guía no tolera los emparejamientos incorrectos.

Para mejorar aún más los polipéptidos o los fragmentos descritos en el presente documento, se pueden añadir aminoácidos adicionales, preferentemente por medio de una fusión al extremo N-terminal o C-terminal. La secuencia de aminoácidos adicional puede tener actividad de modificación, visualización, activación de la transcripción o represión de la transcripción de ácidos nucleicos o cromatina y preferentemente se fusiona traduccionalmente a través de la expresión en sistemas de expresión de proteínas naturales o artificiales, o se une covalentemente mediante una etapa de síntesis química a la, al menos una, subunidad; preferentemente el, al menos un, resto funcional está fusionado o unido a al menos la región del extremo N-terminal y/o la región del extremo C-terminal.

- La secuencia de aminoácidos adicional que tiene actividad de modificación, activación, represión o visualización de ácidos nucleicos o cromatina puede ser una proteína; opcionalmente seleccionada de entre una helicasa, una nucleasa, una nucleasa, una ADN metiltransferasa (por ejemplo, Dam) o ADN desmetilasa, una histona metiltransferasa, una histona desmetilasa, una acetilasa, una desacetilasa, una fosfatasa, una quinasa, un (co-)activador de la transcripción, una subunidad de ARN polimerasa, un represor de la transcripción, una proteína de unión al ADN, una proteína de estructuración de ADN, una proteína marcadora, una proteína reportera, una proteína fluorescente, una proteína de unión a ligando (por ejemplo, mCherry o una proteína de unión a metales pesados), un péptido señal (por ejemplo, secuencia de señal TAT), una secuencia de localización subcelular (por ejemplo, secuencia de localización nuclear) o un epítope de anticuerpo.
- Cuando la proteína es una nucleasa, puede ser una seleccionada de entre una endonucleasa de restricción de tipo II tal como Fokl, o una porción mutante o activa de la misma. Preferentemente, un complejo de proteínas de la invención puede fusionarse al dominio N-terminal de Fokl y otro complejo de proteínas de la invención puede fusionarse al dominio C-terminal de Fokl. Estos dos complejos de proteínas pueden utilizarse juntos (en una configuración dimérica) para lograr un corte bicatenario específico del locus ventajoso en un ácido nucleico, por lo que la ubicación del corte en el material genético depende del diseño y la elección del usuario, por ejemplo de forma guiada por el componente de ARN (definido y descrito más adelante) y se debe a la presencia de una secuencia denominada "motivo adyacente protoespaciador" (PAM) en la cadena de ácido nucleico diana (también descrita con más detalle más adelante).
- Una proteína o un polipéptido descrito en el presente documento puede tener una secuencia de aminoácidos adicional que es una endonucleasa de restricción modificada, por ejemplo Fokl. La modificación se encuentra preferentemente en el dominio catalítico.
- El Fokl modificado puede ser KKR Sharkey o ELD Sharkey, que está fusionado con la proteína Cpf1. En una aplicación preferida de estos complejos, dos de estos complejos (KKR Sharkey y ELD Sharkey) pueden estar juntos en combinación. Un par heterodímero de complejos de proteínas que emplean Fokl modificado de forma diferente

tiene una ventaja particular en el corte bicatenario dirigido de ácido nucleico. Si se utilizan homodímeros, entonces es posible que se produzcan más escisiones en sitios no diana debido a la actividad no específica. Un enfoque heterodímero aumenta ventajosamente la fidelidad de la escisión en una muestra de material.

Ventajosamente, las modificaciones anteriores pueden permitir a un usuario seleccionar de forma predeterminada un locus genético preciso que se desea escindir, marcar o alterar de otra forma de alguna manera, por ejemplo por metilación, utilizando cualquiera de los ácidos nucleicos o cromatina modificando, visualizando, activando la transcripción o reprimiendo la transcripción de entidades definidas en el presente documento. La otra parte componente del sistema es una molécula de ARN que actúa como guía para dirigir los complejos de la invención al locus correcto en el ADN o ARN que se pretende modificar, cortar o marcar.

Un polipéptido o un fragmento descrito en el presente documento está preferentemente unido a un ARN guía y a un ácido nucleico diana. De esta forma, se forma un complejo que proporciona actividad de nucleasa de cadena de ADN dirigida, en el que se escinde un locus diana deseado.

Se describe un polinucleótido que comprende una secuencia de polinucleótidos que codifica un polipéptido o un fragmento tal como se ha definido en el presente documento anteriormente.

También se describe un vector de expresión que comprende un polinucleótido tal como se ha mencionado anteriormente.

15

25

35

45

50

60

Además se describe un vector de expresión tal como se ha definido anteriormente, que comprende además una secuencia de nucleótidos que codifica un ARN guía que tiene una complementariedad sustancial con una secuencia deseada presente en la cadena de ácido nucleico diana. El ARN guía en el estado nativo es un único ARN que consiste en un ARNcr.

Un vector de expresión tal como se describe es preferentemente un vector vírico, por ejemplo adenovirus o virus adenoasociado (AAV).

También se describe una célula huésped transformada para expresar un polipéptido o un fragmento tal como se ha descrito anteriormente en el presente documento.

Típicamente, el ADN del vector de expresión puede suministrarse a la célula huésped por transformación, electroporación o virus (AAV). Además, el ARN puede suministrarse a una célula huésped mediante inyección o electroporación. Las proteínas pueden suministrarse a las células mediante electroporación, etiquetas de péptidos (VIH). Una célula huésped tal como se ha descrito anteriormente en el presente documento puede transformarse adicionalmente para que contenga un ARN guía que comprende una secuencia sustancialmente complementaria a una secuencia comprendida en una cadena de ácido nucleico diana presente en la célula huésped.

40 En el presente documento se describe cualquier célula huésped transformada con un vector de expresión tal como se ha descrito anteriormente en el presente documento.

También se describe un procedimiento para escindir una cadena de ácido nucleico diana en un locus específico, que comprende exponer el ácido nucleico diana a un polipéptido o un fragmento tal como se define en el presente documento, y con una molécula de ARN guía que comprende una secuencia sustancialmente complementaria a una secuencia comprendida en la cadena de ácido nucleico diana.

Además se describe un procedimiento para escindir una cadena de ácido nucleico diana en un locus específico en el genoma de una célula de un organismo, que comprende transformar la célula con un vector de expresión tal como se describe en el presente documento, y transformar la célula con un vector que expresa un ARN guía que comprende una secuencia sustancialmente complementaria a una secuencia comprendida en una cadena de ácido nucleico diana.

También se describe un procedimiento para escindir una cadena de ácido nucleico diana en un locus específico en el genoma de una célula de un organismo, que comprende transformar la célula con un vector de expresión tal como se describe en el presente documento.

Además, se describe un procedimiento de edición de genes de unión de extremos no homólogos que comprende (a) transformar la célula con un vector de expresión tal como se describe en el presente documento y transformar la célula con un vector que expresa un ARN guía que comprende una secuencia sustancialmente complementaria a una secuencia comprendida en un cadena de ácido nucleico diana; o (b) transformar la célula con un vector de expresión tal como se describe en el presente documento. Los polipéptidos pueden modificarse o utilizarse para causar roturas bicatenarias.

También se describe un procedimiento de edición de genes de unión a extremos homólogos que comprende (a) transformar la célula con un vector de expresión tal como se describe en el presente documento, y transformar la

célula con un vector que expresa un ARN guía que comprende una secuencia sustancialmente complementaria a una secuencia comprendida en una cadena de ácido nucleico diana; o (b) transformar la célula con un vector de expresión tal como se describe en el presente documento; para crear una rotura bicatenaria en un locus deseado en el material genético, y exponer el material genético a una secuencia de polinucleótidos que tiene regiones terminales complementarias a las regiones finales rotas del material genético.

Descripción detallada

5

20

40

45

60

65

La proteína de secuencia de aminoácidos SEQ ID NO: 1 es una proteína grande (aproximadamente 1300 aminoácidos) que contiene un dominio de nucleasa similar a RuvC homólogo a los respectivos dominios de Cas9 y el elemento transponible ORF-B, junto con una región rica en arginina similar a aquella en Cas9 y dedo de cinc (ausente en Cas9 pero compartido con ORF-B), pero carece del dominio de nucleasa HNH que está presente en todas las proteínas Cas9.

15 La invención se describirá ahora en detalle con referencia a los ejemplos y a los dibujos en los que:

La figura 1 muestra la estructura del dominio de la nucleasa novedosa CRISPR-Cas, Cpf1. Se muestran tres dominios de nucleasa RuvC, un dedo de cinc y un dominio rico en arginina que permite la interacción con guía de ARN y diana de ADN.

La figura 2 muestra los resultados de un análisis *in silico* del motivo adyacente protoespaciador conservado (PAM). El panel A muestra un Weblogo basado en flancos de 5' de protoespaciadores representados en la tabla 1. El panel B muestra un Weblogo basado en flancos de 3' de protoespaciadores representados en la tabla 1.

La figura 3 muestra los resultados de un alineamiento múltiple de la familia de proteínas Cpf1. Cada secuencia está marcada con el número identificador de GenBank (GI) y el nombre sistemático de un organismo. La estructura secundaria pronosticada (SS) se muestra sombreada. Los residuos del sitio activo de los dominios similares a RuvC se muestran en negrita y con doble subrayado. La hélice de puente potencial se muestra sombreada y con un subrayado simple. La secuencia de aminoácidos FQIYN también se indica en negrita, con sombreado y subrayado discontinuo.

Ejemplo 1 - Nucleasas novedosas para la edición de genes

Ejemplos específicos son (1) Cpf1 asociado a CRISPR de la bacteria marina *Francisella novicida* (Fn-Cpf1), y (2) Cpf1 asociado a CRISPR del arqueón *Methanomethylophylus alvus* cepa Mx1201 (Mal-Cpf1) que reside en el intestino humano.

Sin que los inventores deseen vincularse a ninguna teoría particular, Cpf1 reconoce el ARNcr en una forma específica de secuencia, después de lo cual se produce la escisión del segmento de ARN bicatenario y, finalmente, la formación de un complejo efector que consiste en Cpf1 y una única guía de ARNcr. Cpf1 puede funcionar como un dímero, escindiendo los dominios similares a RuvC de cada una de las dos subunidades cadenas de ADN individuales. Alternativamente, Cpf1 puede contener más de un dominio de nucleasa que permite la escisión de ambas cadenas de ADN. Alternativamente, uno o más dominios RuvC de Cpf1 pueden mostrar una flexibilidad inusual que permite la escisión de ambas cadenas.

Los ejemplos siguientes se realizaron en paralelo para las variantes de proteínas bacterianas Fno-Cpf1 y de arqueas Mal-Cpf1:

La clonación se lleva a cabo en la totalidad del locus CRISPR, incluido el operón *cas* (cpf1-cas4-cas1-cas2), la región líder, la matriz CRISPR y las regiones flanqueantes (aproximadamente 10 kb) en un vector de copia baja (por ejemplo, pACYC184) en una cepa de *E. coli* K12; no se conocen detalles sobre la maduración de la guía, que puede ser similar a la de Cas9 (traARNcr/RNasalII), o puede ser similar a la de Cascade (ribonucleasa similar a Cas6, aunque esa no es parte de los operones cpf1), o puede ser única. Otros materiales y procedimientos detallados se proporcionan en Sapranauskas *et al.*, 2011, Nucleic Acids Res. 39: 9275-9282.

Se utilizaron procedimientos estándar para optimizar posibilidades de producción funcional de proteínas de las proteínas Cpf1 seleccionadas en *E. coli*: (i) realizando un diseño de armonización de codones para ajustar secuencias de nucleótidos *cpf*1 (véase Angov *et al.*, 2008, PLoS One 3, e2189); (ii) incluyendo la etiqueta strepll Nterminal o C-terminal, que permitirá una purificación por afinidad; (iii) clonando un gen sintético en el vector de expresión T7 (por ejemplo pET24d) y transformando el plásmido en cepa de no producción de *E. coli* (por ejemplo JM109, que carece del gen de la ARN polimerasa T7), (iv) transfiriendo el plásmido por medio de la segunda transformación a la cepa de producción de *E. coli* (por ejemplo, BL21 (DE3), que contiene el gen de la ARN polimerasa T7 bajo el control del promotor ramnosa, que permite un ajuste preciso de la expresión, (v) variando condiciones de expresión (medio, concentración de inductor, tiempo de inducción), (vi) utilizando condiciones óptimas para el cultivo a escala de litro, después de lo cual las células se recolectan y se alteran mecánicamente para obtener extracto desprovisto de células (pequeños volúmenes por sonicación; grandes volúmenes por French

Press), (vii) separando membranas y fracciones solubles, y realizando una purificación por afinidad utilizando resina de estreptactina, (viii) analizando fracciones relevantes por SDS-PAGE, y almacenando la proteína pura para análisis posteriores.

- Además de lo anterior, adicionalmente, el gen de ARNcr predicho se secuencia, o se crea un gen de ARN de guía única (ARNsg), por ejemplo mediante la adición de 4 bucles sintéticos de nucleótidos (Jinek *et al.*, 2012, Science 337: 816-821); genes de ARN que residen en el mismo plásmido que el gen *cpf1*, o en un plásmido separado.
- Adicionalmente, se produce un mutante Cpf1 catalíticamente inactivo (el sitio activo RuvC contiene glutamato conservado (E), así como un motivo GID).
 - Adicionalmente, se produce un mutante Cpf1 catalíticamente inactivo (el sitio activo RuvC contiene glutamato conservado (E), así como motivo SID).
- Además, las fusiones N-terminales o C-terminales están hechas del mutante Cpf1 con el dominio nucleasa Fokl con enlazadores de conexión diferentes (tal como se describe para Cas9; véase Guilinger *et al.*, 2014, Nat. Biotecnología 32: 577-82).

Ejemplo 2 - Caracterización bioquímica de nucleasas Cpf1

Estos experimentos caracterizan la vigilancia de la guía y la escisión de la diana. El sistema CRISPR es un sistema inmunitario adaptativo en bacterias y arqueas. Las matrices CRISPR consisten en repeticiones idénticas (por ejemplo 30 pb) y espaciadores variables (por ejemplo 35 pb). La naturaleza adaptativa del sistema CRISPR se basa en la adquisición regular de nuevos separadores, a menudo correspondientes a fragmentos (protoespaciadores) derivados de virus. La adquisición generalmente depende de la selección de un protoespaciador sobre la base de la presencia de un motivo adyacente de protoespaciador (PAM). La presencia de este motivo es crucial para la eventual interferencia del complejo efector asociado a CRISPR (por ejemplo Cas9) con su guía de ARNcr. El motivo PAM permite la discriminación propia frente a la discriminación no propia: las secuencias diana potenciales (es decir, complementarias a la secuencia guía de ARNcr) residen tanto en el genoma del huésped (la matriz CRISPR propia) como en el genoma del invasor (el protoespaciador no propio); la presencia del protoespaciador en el ADN invasor activa el complejo efector para unirlo de forma escalonada; cuando se produce un emparejamiento perfecto de bases entre la secuencia del protoespaciador inmediatamente adyacente al PAM (la denominada secuencia semilla), las bases se emparejan como una cremallera, que eventualmente conduce a un estado de Cas9 para catalizar la escisión de las cadenas de ADN diana (véase Jinek *et al.*, 2012, Science 337: 816-821; también Gasiunas *et al.*, 2012, PNAS 109: E2579-E2586).

Análisis *in silico* del PAM asociado a Cpf1 por análisis BLAST de los espaciadores CRISPR de los loci de *cpf1*. El análisis BLAST de algunos espaciadores muestra varias secuencias homólogas (90-100% de identidad), (tabla 1). Los éxitos más prometedores se refieren a secuencias idénticas de genes víricos en general, y genes de profagos en particular. Los profagos se derivan a partir de virus lisogénicos, cuyos genomas se han integrado en el genoma de las bacterias. Como es el caso con los virus eucariotas, la gama de huéspedes de los virus procariotas es a menudo bastante limitada; por lo tanto, cuando se encuentra el profago coincidente en una bacteria que está estrechamente relacionada con la bacteria que tiene la secuencia espaciadora correspondiente en su matriz CRISPR, esto proporciona cierta confianza de que es un verdadero éxito. En otras palabras, puede ser que el profago se asemeje a un virus que ha intentado infectar la bacteria que contiene CRISPR, pero la invasión ha dado como resultado la adquisición de espaciadores y la inmunidad vírica de esta última bacteria.

Tabla 1. Resultados de BLAST con espaciadores CRISPR asociados a cpf1 FnU112 como secuencias de consulta. Las secuencias de nucleótidos de ambos espaciadores (arriba) y protoespaciadores están sombreadas; los flancos 5' y 3' de los protoespaciadores no están sombreados; Herramienta: Diana CRISPR (bioanalysis.otago.ac.nz/CRISPRTarget/). Consulta: toda la matriz CRISPR de subespecies de *Francisella novicida*. Base de datos diana: Genbank-NT. Apertura de hueco -10, Extensión -2; Emparejamiento correcto de nucleótidos 1, Emparejamiento incorrecto de nucleótidos -1; Valor de E 1; Tamaño de palabra 7; Puntuación de corte 20; Protoespaciador flanqueante del extremo 3' 8 pb; Protoespaciador flanqueante del extremo 5' 8 pb.

55

50

20

25

30

35

40

45

Nº de espaciador de subespecies de Fn	Huésped del profago, número de acceso del gen diana		Alineamiento del espaciador de subespecies de Fn con protoespaciador (más flancos de 8 nt en ambos lados)
Francisella novicida U112 Nº 1	Francisella novicida 3523, hipo prot AEE26301.1	espaciador protoespaciador	5' AGATTAAAAGGTAATTCTATCTTGTTGAG
Francisella novicida U112 Nº 2	Francisella novicida 3523, secuencia intergénica en profago	espaciador protoespaciador	5' TAGCCATTTATGAAGGTCATTTTTT
Francisella novicida Fx1 Nº 1	Francisella novicida 3523, hipo prot AEE26295.1, "proteína del tubo de cola principal del fago"	espaciador protoespaciador	5' ATGATTATTACTTAACTGCAGTGTTTAC
Francisella novicida FTG Nº 1	Francisella novicida 3523, hipo prot YP_0058240 59.1	espaciador protoespaciador	5' GCCACAATACTACAAAAAATAACTTAA 00
Francisella novicida GA99-3549 Nº 1	Francisella novicida 3523, hipo prot FN3523_100 9, "placa base_J"	espaciador protoespaciador	5' ATTGTCAAAACATAAGCAGCTGCTTCAAATAT O O OO

El análisis de las secuencias que flanquean los protoespaciadores en los genes de profago dio como resultado un motivo conservado rico en T; curiosamente, este motivo no reside aguas abajo del protoespaciador (como en el sistema Cas9), sino aguas arriba. Aunque no desean vincularse a ninguna teoría particular, los inventores encuentran que Cpf1 de la invención requiere un motivo similar a PAM (3-4 nucleótidos) para unirse a una molécula de ADN diana que es complementaria a la guía, tiene una secuencia semilla (8-10 nucleótidos) en la que no se permiten emparejamientos incorrectos, y tiene un único sitio de nucleasa que permite mellar la cadena de ADN diana emparejada con la base.

Los motivos PAM de Cpf1 y las variantes de la invención también se caracterizaron utilizando el enfoque de Jiang *et al.*, 2013, Nat. Biotecnología 31: 233-239). Se utilizaron dos derivados de *E. coli* BL21 (DE3), inicialmente transformados con un plásmido diana o con un plásmido no diana; dos plásmidos diana variantes utilizados tienen una parte similar (marcador GFP, marcador KmR, origen de replicación) y una parte variable con secuencia diana (protoespaciador) con un PAM degenerado asociado (5-8 nucleótidos variables) aguas arriba o aguas abajo del protoespaciador); a continuación, esta cepa se transformó con un plásmido de expresión Cpf1 (incluye diseño CRISPR con ARN de guía única (ARNsg, marcador CmR); el cribado de transformantes se realizó en placas con cloranfenicol (Cm) (no kanamicina (Km)), y cribado de colonias no fluorescentes, que indica la pérdida de plásmido diana. A medida que se pierdan los plásmidos con los PAM correctos, se realizó DNA Deep Seq de productos de PCR apropiados de la totalidad del conjunto de plásmido diana, antes y después de la transformación. Las diferencias revelan el PAM (Bikard *et al.*, 2013, Nucleic Acids Res. 41: 7429-7437).

Las firmas PAM se confirmaron mediante caracterización *in vitro* de la actividad de escisión de BsCas9/ARNsg; Los ensayos revelan condiciones óptimas (temperatura, tampón/pH, sal, metales).

La presencia de una secuencia semilla en el PAM se estableció según procedimientos descritos por Jinek *et al.*, 2012, Science 337: 816-821.

Ejemplo 3 - Ingeniería genética bacteriana

10

15

20

25

30

Realización de ingeniería genética de alto rendimiento del genoma bacteriano con variantes de nucleasa. Sin desear vincularse a ninguna teoría particular, los inventores esperan que los complejos Cpf1/guía de la invención permitan

un direccionamiento específico del ADN genómico. El direccionamiento multiplex se puede establecer mediante el uso de un diseño CRISPR junto con un ARNcr coincidente.

Los experimentos proporcionan la aplicación de Cpf1 y variantes de la invención. Cas9 se analiza en paralelo como referencia.

Se realiza la activación/desactivación génica (inserción/alteración de cualquier secuencia). La cepa huésped *E. coli* K12 (LacZ +, GFP-) se modificó genéticamente de la forma siguiente: el gen que codifica una variante de la proteína verde fluorescente (GFPuv) se inserta en el gen lacZ, dando como resultado un fenotipo claro (LacZ-, GFP+). El gen *cpf1* se introdujo en un plásmido (o derivados de esos plásmidos), junto con un fragmento que permite la recombinación homóloga de la secuencia diana. Se seleccionó una secuencia diana (protoespaciadora), con una secuencia PAM apropiada ubicada de forma adyacente; una guía correspondiente diseñada, que consiste en el ARNcr (con espaciador complementario al protoespaciador diana) y el gen ARNcr (adaptado del procedimiento descrito para Cas9 por Jiang *et al.* (2013a) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31: 233-239).

El silenciamiento de la expresión génica (utilizando Cas9 inactivado catalíticamente, fue tal como se describe: dCas9 derivado de Spy-Cas9; (Bikard *et al.*, 2013, Nucleic Acids Res. 41: 7429-7437; Qi *et al.*, 2013, Cell 152: 1173-1183); mediante la unión al promotor (sitio de unión a ARN polimerasa) del gen diana, o de genes diana utilizando un enfoque multiplex (utilizando un diseño CRISPR).

Activación de expresión génica; como anteriormente (silenciamiento); sitio de unión aguas arriba de la unión de ARN polimerasa, con Cas9 fusionado al dominio de activación (tal como se ha descrito para Spy-Cas9) (Bikard *et al.*, 2013, Nucleic Acids Res. 41: 7429-7437).

La fusión de Cpf1 inactivado y el dominio de nucleasa Fokl (descrito en el ejemplo 1) se compararon con un Cpf1 activo en diferentes configuraciones experimentales. Esto requirió dos interacciones simultáneas de guías y dianas, lo que da como resultado una mejora importante de la escisión en el sitio deseado.

30 Ejemplo 4 - Ingeniería genética de células madre humanas

5

10

15

20

25

35

40

45

50

55

60

65

La edición dirigida de mutaciones genéticas que causan enfermedades sería un tratamiento elegante y eficaz para enfermedades genéticas. Los sistemas de edición de genes recientemente descubiertos, tales como Cas9, permiten el direccionamiento específico de mutaciones que causan enfermedades en el genoma, y pueden utilizarse para reparar funcionalmente o deshabilitar permanentemente genes mutados. La eficacia de los sistemas de edición de genes se ha demostrado en un entorno de laboratorio, y ahora se utilizan de forma rutinaria en la edición del genoma de una amplia diversidad de tipos de células de muchas especies diferentes, incluidos los seres humanos. Sin embargo, a pesar del éxito de estos sistemas en el entorno de investigación, la aplicación clínica de los sistemas de edición de genes se ve obstaculizada por la falta de un sistema de suministro adecuado para introducir tecnologías de edición de genes en las células de los pacientes de una forma segura, transitoria y eficaz. Varios laboratorios están trabajando en el desarrollo de vectores víricos recombinantes que se puedan utilizar para suministrar sistemas de edición de genes a las células del paciente, pero la expresión prolongada de CRISPR/Cas9, por ejemplo, a partir de dichos vectores aumentará la probabilidad de efectos fuera de la diana y, por lo tanto, no es ideal. El suministro intracelular de proteínas de edición de genes recombinantes y ARN de CRISPR sintético sería un procedimiento eficaz, no integrador y transitorio para la aplicación de la tecnología de edición de genes en células de pacientes.

Recientemente se ha desarrollado un procedimiento novedoso que permite la transducción de proteínas nativas en prácticamente cualquier tipo de célula (D'Astolfo *et al.*, 2015, Cell, 161: 674-690). Esta tecnología, denominada iTOP, por Transducción por Osmocitosis y Propanobetaína inducida (*induced Transduction by Osmocytosis and Propanebetaine*), se basa en una combinación de compuestos de molécula pequeña, que desencadenan la absorción y la liberación intracelular de proteínas nativas. iTOP es altamente eficaz, logra de forma rutinaria eficacias de transducción > 90% de las células y funciona en una amplia diversidad de tipos de células primarias. Se ha demostrado que la transducción mediada por iTOP de la proteína Cas9 recombinante y ARNsg transcrito *in vitro* permite una edición de genes altamente eficaz en tipos de células difíciles de transfectar, incluidas las células madre humanas. Tras la transducción iTOP-CRISPR/Cas9, se ha informado de > 70% de direccionamiento de genes bialélicos en células ES humanas sin la necesidad de selección con fármacos de células transducidas.

Las ventajas clave de iTOP sobre las tecnologías existentes son: (i) la capacidad de transducir células primarias (madre) con proteína nativa con una eficacia muy alta, (ii) la naturaleza transitoria no integradora de la edición de genes mediada por proteínas, que asegura la seguridad y minimiza efectos fuera de la diana, y (iii) el control estricto de la dosis y el momento de la proteína suministrada. Hemos demostrado que iTOP-CRISPR/Cas9 es una herramienta eficaz para modificar una gran diversidad de tipos de células (del paciente) primarias. Sin embargo, debido a problemas de solubilidad de proteínas y de tamaño, la producción de Cas9 recombinante está obstaculizando la adopción (clínica) a gran escala de este sistema. Cpf1 podría resolver estos problemas y allanar el camino para el desarrollo de nuevos tratamientos para tratar enfermedades genéticas.

La tecnología iTOP se utilizará para permitir el suministro intracelular eficaz de Cpf1 en células madre humanas. La ventaja de iTOP es su enfoque altamente flexible. En primer lugar, la hipertonicidad mediada por NaCl induce la absorción intracelular de proteínas a través de un proceso denominado macropinocitosis (D'Astolfo op. cit.)). En segundo lugar, un compuesto de transducción de propanobetaína (NDSB-201 o ácido gamma-aminobutírico (GABA) u otros desencadena la liberación intracelular de proteínas a partir de las vesículas de macropinosomas. Además de estos compuestos, se añaden osmoprotectores tales como glicerol y glicina para ayudar a las células a hacer frente al estrés hipertónico inducido por NaCl. Variando la concentración de NaCl, la concentración y el tipo de compuesto de transducción y/o la concentración y el tipo de osmoprotectores, el sistema iTOP puede adaptarse y optimizarse para que cumpla con los requisitos específicos de la proteína de carga y/o las células diana. Los parámetros iTOP se optimizaron para permitir la edición eficaz de genes de células madre embrionarias humanas (hESC), direccionando al gen endógeno WDR85 por Cpf1 (equipado con una señal de localización nuclear N-terminal o Cterminal (NLS)), tal como se ha mostrado recientemente para Cas9.

En el listado de secuencias siguiente, los residuos de aminoácidos Glu Xaa Asp (subrayado simple) son el motivo 15 GID de un dominio RuvC. Por lo tanto, en la SEQ ID NO: 1, el residuo Xaa puede ser I.

Los residuos de aminoácidos Ile Asp Arg Gly Glu Arg (subrayado doble) incluyen los residuos IDR de un dominio RuvC.

Los residuos de aminoácidos Phe Glu Asp (subrayado triple) incluyen el residuo E que forma parte de los residuos de sitio activo de un dominio RuvC.

Ejemplo 5 - Alineamiento múltiple de proteínas Cpf1

25 La figura 3 muestra los resultados de un alineamiento múltiple de proteínas Cpf1. El alineamiento se construyó utilizando el programa MUSCLE y se modificó manualmente sobre la base de alineamientos por pares locales PSI-BLAST y el resultado de HHpred. Cada secuencia está etiquetada con el número de Identificador de GenBank (GI) y la denominación sistemática de un organismo. El análisis de cinco secuencias en este trabajo está etiquetado con 30 los números respectivos. La estructura secundaria (SS) fue predicha por Jpred y se muestra sombreada. El CONSENSO se calculó para cada columna de alineamiento ajustando la puntuación de la suma de pares dentro de la columna entre los de una columna homogénea (el mismo residuo en todas las secuencias alineadas) y una columna aleatoria con un corte de homogeneidad de 0,8. Los residuos de sitio activo de los dominios similares a RuvC se muestran en negrita y con doble subrayado. La hélice de puente potencial se muestra sombreada y con un 35 subrayado simple. La secuencia de aminoácidos FQIYN también se indica en negrita, con sombreado y subrayado de puntos.

```
Listado de secuencias
40
      <110> Wageningen Universiteit
      <120> Cpf1 Nuclease
      <130> RAW/P223284WO
45
      <160>36
      <170> PatentIn versión 3.5
50
      <210>1
      <211> 1304
      <212> PRT
      <213> Secuencia artificial
55
      <220>
```

5

10

20

65

<222> (504)..(504)

```
<223> Secuencia consenso de Cpf1
      <220>
      <221> misc feature
60
      <222> (439)..(439)
      <223> Xaa puede ser cualquier aminoácido natural
      <220>
      <221> misc_feature
```

<223> Xaa puede ser cualquier aminoácido natural

```
<220>
      <221> misc_feature
      <222> (521)..(521)
 5
     <223> Xaa puede ser cualquier aminoácido natural
      <220>
     <221> misc_feature
      <222> (539)..(539)
10
     <223> Xaa puede ser cualquier aminoácido natural
     <221> misc_feature
     <222> (800)..(800)
15
     <223> Xaa puede ser cualquier aminoácido natural
      <400> 1
      Met Ser Ile Tyr Gln Glu Phe Val Asn Lys Tyr Ser Leu Ser Lys Thr
      Leu Arg Phe Glu Leu Ile Pro Gln Gly Lys Thr Leu Glu Asn Ile Lys
                    20
                                          25
      Ala Arg Gly Leu Ile Leu Asp Asp Glu Lys Arg Ala Lys Asp Tyr Lys
```

Lys Ala Lys Gln Ile Ile Asp Lys Tyr His Gln Phe Phe Ile Glu Glu 5.5 Ile Leu Ser Ser Val Cys Ile Ser Glu Asp Leu Leu Gln Asn Tyr Ser Asp Val Tyr Phe Lys Leu Lys Lys Ser Asp Asp Asp Asn Leu Gln Lys 85 90 Asp Phe Lys Ser Ala Lys Asp Thr Ile Lys Lys Gln Ile Ser Glu Tyr 100 105 Ile Lys Asp Ser Glu Lys Phe Lys Asn Leu Phe Asn Gln Asn Leu Ile 115 120 125 Asp Ala Lys Lys Gly Gln Glu Ser Asp Leu Ile Leu Trp Leu Lys Gln 130 135 Ser Lys Asp Asn Gly Ile Glu Leu Phe Lys Ala Asn Ser Asp Ile Thr Asp Ile Asp Glu Ala Leu Glu Ile Ile Lys Ser Phe Lys Gly Trp Thr Thr Tyr Phe Lys Gly Phe His Glu Asn Arg Lys Asn Val Tyr Ser Ser 180 185 Asp Asp Ile Pro Thr Ser Ile Ile Tyr Arg Ile Val Asp Asp Asn Leu 200 Pro Lys Phe Leu Glu Asn Lys Ala Lys Tyr Glu Ser Leu Lys Asp Lys Ala Pro Glu Ala Ile Asn Tyr Glu Gln Ile Lys Lys Asp Leu Ala Glu Glu Leu Thr Phe Asp Ile Asp Tyr Lys Thr Ser Glu Val Asn Gln Arg 250 245 Val Phe Ser Leu Asp Glu Val Phe Glu Ile Ala Asn Phe Asn Asn Tyr

Leu	Asn	Gln 275	Ser	Gly	Ile	Thr	Lys 280	Phe	Asn	Thr	Ile	Ile 285	Gly	Gly	Lys
Phe	Val 290	Asn	Gly	Glu	Asn	Thr 295	Lys	Arg	Lys	Gly	Ile 300	Asn	Glu	Tyr	Ile
Asn 305	Leu	Tyr	Ser	Gln	Gln 310	Ile	Asn	Asp	Lys	Thr 315	Leu	Lys	Lys	Tyr	Lys 320
Met	Ser	Val	Leu	Phe 325	Lys	Gln	Ile	Leu	Ser 330	Asp	Thr	Glu	Ser	Lys 335	Ser
Phe	Val	Ile	Asp 340	Lys	Leu	Glu	Asp	Asp 345	Ser	Asp	Val	Val	Thr 350	Thr	Met
Gln	Ser	Phe 355	Tyr	Glu	Gln	Ile	Ala 360	Ala	Phe	Lys	Thr	Val 365	Glu	Glu	Lys
Ser	Ile 370	Lys	Glu	Thr	Leu	Ser 375	Leu	Leu	Phe	Asp	Asp 380	Leu	Lys	Ala	Gln
Lys 385	Leu	Asp	Leu	Ser	Lys 390	Ile	Tyr	Phe	Lys	Asn 395	Asp	Lys	Ser	Leu	Thr 400
Asp	Leu	Ser	Gln	Gln 405	Val	Phe	Asp	Asp	Tyr 410	Ser	Val	Ile	Gly	Thr 415	Ala
Val	Leu	Glu	Tyr 420	Ile	Thr	Gln	Gln	Val 425	Ala	Pro	Lys	Asn	Leu 430	Asp	Asn
Pro	Ser	Lys 435	Lys	Glu	Gln	Xaa	Leu 440	Ile	Ala	Lys	Lys	Thr 445	Glu	Lys	Ala
Lys	Tyr 450	Leu	Ser	Leu	Glu	Thr 455	Ile	Lys	Leu	Ala	Leu 460	Glu	Glu	Phe	Asn
Lys 465	His	Arg	Asp	Ile	Asp 470	Lys	Gln	Суѕ	Arg	Phe 475	Glu	Glu	Ile	Leu	Ala 480
Asn	Phe	Ala	Ala	Ile 485	Pro	Met	Ile	Phe	Asp 490	Glu	Ile	Ala	Gln	Asn 495	Lys
Asp	Asn	Leu	Ala 500	Gln	Ile	Ser	Xaa	Lys 505	Tyr	Gln	Asn	Gln	Gly 510	Lys	Lys

Asp	Leu	Leu 515	Gln	Ala	Ser	Ala	Glu 520	Xaa	Asp	Val	Lys	Ala 525	Ile	Lys	Asp
Leu	Leu 530	Asp	Gln	Thr	Asn	Asn 535	Leu	Leu	His	Xaa	Leu 540	Lys	Ile	Phe	His
Ile 545	Ser	Gln	Ser	Glu	Asp 550	Lys	Ala	Asn	Ile	Leu 555	Asp	Lys	Asp	Glu	His 560
Phe	Tyr	Leu	Val	Phe 565	Glu	Glu	Cys	Tyr	Phe 570	Glu	Leu	Ala	Asn	Ile 575	Val
Pro	Leu	Tyr	Asn 580	Lys	Ile	Arg	Asn	Tyr 585	Ile	Thr	Gln	Lys	Pro 590	Tyr	Ser
Asp	Glu	Lys 595	Phe	Lys	Leu	Asn	Phe 600	Glu	Asn	Ser	Thr	Leu 605	Ala	Asn	Gly
Trp	Asp 610	Lys	Asn	Lys	Glu	Pro 615	Asp	Asn	Thr	Ala	Ile 620	Leu	Phe	Ile	Lys
Asp 625	Asp	Lys	Tyr	Tyr	Leu 630	Gly	Val	Met	Asn	Lys 635	Lys	Asn	Asn	Lys	Ile 640
Phe	Asp	Asp	Lys	Ala 645	Ile	Lys	Glu	Asn	Lys 650	Gly	Glu	Gly	Tyr	Lys 655	Lys
Ile	Val	Tyr	Lys 660	Leu	Leu	Pro	Gly	Ala 665	Asn	Lys	Met	Leu	Pro 670	Lys	Val
Phe	Phe	Ser 675	Ala	Lys	Ser	Ile	Lys 680	Phe	Tyr	Asn	Pro	Ser 685	Glu	Asp	Ile
Leu	Arg 690	Ile	Arg	Asn	His	Ser 695	Thr	His	Thr	Lys	Asn 700	Gly	Asn	Pro	Gln
Lys 705	Gly	Tyr	Glu	Lys	Phe 710	Glu	Phe	Asn	Ile	Glu 715	Asp	Cys	Arg	Lys	Phe 720
Ile	Asp	Phe	Tyr	Lys 725	Glu	Ser	Ile	Ser	Lys 730	His	Pro	Glu	Trp	Lys 735	Asp

Phe	Gly	Phe	Arg 740	Phe	Ser	Asp	Thr	Gln 745	Arg	Tyr	Asn	Ser	Ile 750	Asp	Glu
Phe	Tyr	Arg 755	Glu	Val	Glu	Asn	Gln 760	Gly	Tyr	Lys	Leu	Thr 765	Phe	Glu	Asn
Ile	Ser 770	Glu	Ser	Tyr	Ile	Asp 775	Ser	Val	Val	Asn	Gln 780	Gly	Lys	Leu	Tyr
Leu 785	Phe	Gln	Ile	Tyr	Asn 790	Lys	Asp	Phe	Ser	Ala 795	Tyr	Ser	Lys	Gly	Xaa 800
Pro	Asn	Leu	His	Thr 805	Leu	Tyr	Trp	Lys	Ala 810	Leu	Phe	Asp	Glu	Arg 815	Asn
Leu	Gln	Asp	Val 820	Val	Tyr	Lys	Leu	Asn 825	Gly	Glu	Ala	Glu	Leu 830	Phe	Tyr
Arg	Lys	Gln 835	Ser	Ile	Pro	Lys	Lys 840	Ile	Thr	His	Pro	Ala 845	Lys	Glu	Ala
Ile	Ala 850	Asn	Lys	Asn	Lys	Asp 855	Asn	Pro	Lys	Lys	Glu 860	Ser	Val	Phe	Glu
Tyr 865	Asp	Leu	Ile	Lys	Asp 870	Lys	Arg	Phe	Thr	Glu 875	Asp	Lys	Phe	Phe	Phe 880
His	Cys	Pro	Ile	Thr 885	Ile	Asn	Phe	Lys	Ser 890	Ser	Gly	Ala	Asn	Lys 895	Phe
Asn	Asp	Glu	Ile 900	Asn	Leu	Leu	Leu	Lys 905	Glu	Lys	Ala	Asn	Asp 910	Val	His
Ile	Leu	Ser 915	Ile	Asp	Arg	Gly	Glu 920	Arg	His	Leu	Ala	Tyr 925	Tyr	Thr	Leu
Val	Asp 930	Gly	Lys	Gly	Asn	Ile 935	Ile	Lys	Gln	Asp	Thr 940	Phe	Asn	Ile	Ile
Gly 945	Asn	Asp	Arg	Met	Lys 950	Thr	Asn	Tyr	His	Asp 955	Lys	Leu	Ala	Ala	Ile 960
Glu	Lys	Asp	Arg	Asp 965	Ser	Ala	Arg	Lys	Asp 970	Trp	Lys	Lys	Ile	Asn 975	Asn

- Ile Lys Glu Met Lys Glu Gly Tyr Leu Ser Gln Val Val His Glu Ile 980 985 990
- Ala Lys Leu Val Ile Glu Tyr Asn Ala Ile Val Val Phe Glu Asp Leu 995 1000 1005
- Asn Phe Gly Phe Lys Arg Gly Arg Phe Lys Val Glu Lys Gln Val 1010 $$ 1015 $$ 1020
- Tyr Gln Lys Leu Glu Lys Met Leu Ile Glu Lys Leu Asn Tyr Leu 1025 1030 1035
- Ala Tyr Gln Leu Thr Ala Pro Phe Glu Thr Phe Lys Lys Met Gly 1055 $$ 1060 $$ 1065
- Lys Gln Thr Gly Ile Ile Tyr Tyr Val Pro Ala Gly Phe Thr Ser 1070 1075 1080
- Lys Ile Cys Pro Val Thr Gly Phe Val Asn Gln Leu Tyr Pro Lys 1085 1090 1095
- Lys Ile Cys Tyr Asn Leu Asp Lys Gly Tyr Phe Glu Phe Ser Phe 1115 1120 1125
- Asp Tyr Lys Asn Phe Gly Asp Lys Ala Ala Lys Gly Lys Trp Thr 1130 1140
- Lys Asn His Asn Trp Asp Thr Arg Glu Val Tyr Pro Thr Lys Glu 1160 1165 1170
- Leu Glu Lys Leu Leu Lys Asp Tyr Ser Ile Glu Tyr Gly His Gly 1175 1180 1185

```
Glu Cys Ile Lys Ala Ala Ile Cys Gly Glu Ser Asp Lys Lys Phe
         1190
                            1195
     Phe Ala Lys Leu Thr Ser Val Leu Asn Thr Ile Leu Gln Met Arg
                            1210
     Asn Ser Lys Thr Gly Thr Glu Leu Asp Tyr Leu Ile Ser Pro Val
                             1225
     Ala Asp Val Asn Gly Asn Phe Phe Asp Ser Arg Gln Ala Pro Lys
                  1240 1245
       1235
     Asn Met Pro Gln Asp Ala Asp Ala Asn Gly Ala Tyr His Ile Gly
              1255
         1250
     Leu Lys Gly Leu Met Leu Leu Asp Arg Ile Lys Asn Asn Gln Glu
        1265
                  1270
     Gly Lys Lys Leu Asn Leu Val Ile Lys Asn Glu Glu Tyr Phe Glu
                            1285
     Phe Val Gln Asn Arg Asn Asn Ser Ser Lys Ile
                          1300
     <210> 2
     <211>5
    <212> PRT
     <213> Secuencia artificial
    <223> Residuos 786-791 de SEQ ID NO:1
10
     <400> 2
     Phe Gln Ile Tyr Asn
     1
    <210> 3
15
    <211>6
     <212> PRT
    <213> Secuencia artificial
    <220>
20
    <223> Residuos 786-791 de SEQ ID NO:1
     <400> 3
     Phe Gln Ile Tyr Asn Lys
25
    <210> 4
     <211>7
     <212> PRT
    <213> Secuencia artificial
30
    <223> Residuos 786 - 792 de SEQ ID NO: 1
     <400> 4
     Phe Gln Ile Tyr Asn Lys Asp
35
```

```
<210> 5
      <211> 14
      <212> PRT
      <213> Secuencia artificial
 5
      <223> Residuos 781 - 794 de SEQ ID NO:1
      <220>
10
      <221> misc_feature
      <222> (1)..(1)
      <223> Xaa puede ser Gly o Lys
      <220>
15
      <221> misc feature
      <222> (2)..(2)
      <223> Xaa puede ser Lys, Ser o Asp
      <220>
20
      <221> misc_feature
      <222> (3)..(3)
      <223> Xaa puede ser Leu o lle
      <220>
25
      <221> misc_feature
      <222> (4)..(4)
      <223> Xaa puede ser Tyr o Phe
      <220>
30
      <221> misc_feature
      <222> (5)..(5)
      <223> Xaa puede ser Leu o Met
      <220>
35
      <221> misc_feature
      <222> (13)..(13)
      <223> Xaa puede ser Phe o Tyr
      <220>
40
      <221> misc_feature
      <222> (14)..(14)
      <223> Xaa puede ser Ser, Ala o Val
      <400> 5
      Xaa Xaa Xaa Xaa Phe Gln Ile Tyr Asn Lys Asp Xaa Xaa
45
      <210>6
      <211> 14
      <212> PRT
50
      <213> Secuencia artificial
      <220>
      <223> Residuos 781 - 794 de SEQ ID NO: 1
55
      Gly Lys Leu Tyr Leu Phe Gln Ile Tyr Asn Lys Asp Phe Ser
                         5
      <210>7
      <211> 7
60
      <212> PRT
      <213> Secuencia artificial
      <220>
      <223> Dominio RuvC de Cpf1 catalíticamente inactivo
```

```
<220>
      <221> misc_feature
      <222> (1)..(1)
 5
      <223> Xaa puede ser Gly o Ser
      <400> 7
      Xaa Ile Asp Arg Gly Glu Arg
                         5
      <210>8
10
      <211>6
      <212> PRT
      <213> Secuencia artificial
15
      <220>
      <223> Dominio RuvC de Cpf1 catalíticamente inactivo
      <400> 8
      Asp Ala Asn Gly Ala Tyr
20
      <210>9
      <211>4
      <212> PRT
      <213> Secuencia artificial
25
      <223> Dominio RuvC de Cpf1 catalíticamente inactivo
      <220>
30
      <221> misc_feature
      <222> (2)..(2)
      <223> Xaa puede ser Asp, Asn o Glu
      <400> 9
      Glu Xaa Leu Asn
35
      <210> 10
      <211>4
      <212> PRT
40
      <213> Secuencia artificial
      <223> Dominio RuvC de Cpf1 catalíticamente inactivo
45
      <400> 10
      Glu Asp Leu Asn
      <210> 11
      <211> 7
50
      <212> PRT
      <213> Secuencia artificial
      <220>
      <223> dominio RuvC
55
      <400> 11
      Ser Ile Asp Arg Gly Glu Arg
                         5
      <210> 12
      <211> 7
60
      <212> PRT
      <213> Secuencia artificial
```

```
<220>
      <223> dominio RuvC
      <400> 12
      Gly Ile Asp Arg Gly Glu Arg
 5
      <210> 13
      <211>4
      <212> PRT
10
      <213> Secuencia artificial
      <220>
      <223>
      Dominio RuvC
15
      <400> 13
      Glu Asn Leu Asn
      <210> 14
      <211>4
20
      <212> PRT
      <213> Secuencia artificial
      <220>
25
      <223> dominio RuvC
      <400> 14
      Glu Glu Leu Asn
30
      <210> 15
      <211> 19
      <212> PRT
      <213> Secuencia artificial
35
      <220>
      <223> Motivo rico en arginina
      <220>
      <221> misc feature
40
      <222> (1)..(1)
      <223> Xaa puede ser Asp o Asn
      <220>
      <221> misc_feature
45
      <222> (3)..(3)
      <223> Xaa puede ser Arg, Gln o His
      <220>
      <221> misc_feature
50
      <222> (4)..(4)
      <223> Xaa puede ser Lys, Glu, Ser o Asp
      <220>
      <221> misc_feature
55
      <222> (5)..(5)
      <223> Xaa puede ser Ala, Lys o Leu
      <220>
      <221> misc feature
60
      <222> (7)..(7)
      <223> Xaa puede ser Asp, Asn o Ala
      <220>
```

```
<221> misc_feature
      <222> (8)..(8)
      <223> Xaa puede ser Val, Asn, Gln, Lys o Ala
 5
      <220>
      <221> misc_feature
      <222> (9)..(9)
      <223> Xaa puede ser Arg, Lys o lle
      <220>
10
      <221> misc_feature
      <222> (11)..(11)
      <223> Xaa puede ser Tyr, Lys o Ile
15
      <220>
      <221> misc_feature
      <222> (12)..(12)
      <223> Xaa puede ser Asp o Glu
      <220>
20
      <221> misc_feature
      <222> (13)..(13)
      <223> Xaa puede ser Asn, Arg o Met
25
      <220>
      <221> misc_feature
      <222> (14)..(14)
      <223> Xaa puede ser Lys, Val, Phe o Asp
30
      <220>
      <221> misc feature
      <222> (15)..(15)
      <223> Xaa puede ser Glu, Ala, Asp o Ser
35
      <220>
      <221> misc_feature
      <222> (18)..(18)
      <223> Xaa puede ser Arg, Gln o Lys
40
      <220>
      <221> misc_feature
      <222> (19)..(19)
      <223> Xaa puede ser Asn, Ala, Ser o Asp
45
      Xaa Tyr Xaa Xaa Xaa Leu Xaa Xaa Xaa Glu Xaa Xaa Xaa Xaa Ala
                                                  10
      Arg Xaa Xaa
      <210> 16
50
      <211>19
      <212> PRT
      <213> Secuencia artificial
55
      <220>
      <223> Motivo rico en arginina
      <400> 16
      Asp Tyr Arg Lys Ala Leu Asp Val Arg Glu Tyr Asp Asn Lys Glu Ala
                          5
                                                  10
                                                                          15
      Arg Arg Asn
60
      <210> 17
```

```
<211> 19
      <212> PRT
      <213> Secuencia artificial
     <220>
     <223> Motivo rico en arginina
      Asp Tyr Gln Lys Lys Leu Asp Asn Arg Glu Lys Glu Arg Val Ala Ala
                                              10
      Arg Gln Ala
10
     <210> 18
     <211> 19
     <212> PRT
     <213> Secuencia artificial
15
      <220>
      <223> Motivo rico en arginina
      Asp Tyr Arg Glu Lys Leu Asn Gln Arg Glu Ile Glu Met Lys Asp Ala
                                              10
      Arg Gln Ser
20
     <210> 19
     <211> 19
     <212> PRT
25
     <213> Secuencia artificial
     <220>
     <223> Motivo rico en arginina
30
      <400> 19
      Asp Tyr His Ser Leu Leu Asp Lys Lys Glu Lys Glu Arg Phe Glu Ala
                                             10
      Arg Gln Asn
     <210> 20
     <211> 19
     <212> PRT
35
     <213> Secuencia artificial
     <220>
     <223> Motivo rico en arginina
40
      <400> 20
      Asn Tyr His Asp Lys Leu Ala Ala Ile Glu Lys Asp Arg Asp Ser Ala
                        5
                                              10
      Arg Lys Asp
     <210> 21
     <211>29
     <212> ADN
45
     <213> Francisella novicida
     <400> 21
      agattaaaag gtaattctat cttgttgag
50
```

```
<210> 22
      <211>45
      <212> ADN
     <213> Francisella novicida
 5
      ataatttaag attaaaaggt aattctattt tgttgagatc tgagc
     <210> 23
     <211> 26
10
     <212> ADN
     <213> Francisella novicida
      tagcgattta tgaaggtcat tttttt
15
     <210> 24
     <211> 42
     <212> ADN
20
     <213> Francisella novicida
     <400> 24
      ctaaattata gcgatttatg aaggtcattt ttttaaaaaag tt
      42
     <210> 25
25
      <211>29
     <212> ADN
     <213> Francisella novicida
     <400> 25
30
      atggattatt acttaactgg agtgtttac
      29
     <210> 26
     <211> 45
35
     <212> ADN
     <213> Francisella novicida
      aatgttcaat ggattattac ttaattggag tgtctacgtc gatgg
      45
40
     <210> 27
     <211> 28
     <212> ADN
     <213> Francisella novicida
45
      <400> 27
      gccacaaata ctacaaaaaa taacttaa
      28
     <210> 28
50
     <211> 44
     <212> ADN
     <213> Francisella novicida
      attttttggc tccaaatact acaaaaaata acttaaactt tgaa
55
     <210> 29
     <211>32
     <212> ADN
60
     <213> Francisella novicida
```

```
<400> 29
      attgtcaaaa cataagcagc tgcttcaaat at
     <210> 30
 5
     <211> 48
     <212> ADN
     <213> Francisella novicida
     <400> 30
10
     ggtcttttac tgttattaca taagcagccg cttcaaatat cttagcaa
     <210> 31
     <211> 10
     <212> PRT
15
     <213> Secuencia artificial
     <223> Un polipéptido aislado o fragmento del mismo que tiene una actividad de nucleasa.
20
     <400> 31
      Tyr Leu Phe Gln Ile Tyr Asn Lys Asp Phe
     <210> 32
25
     <211> 1184
     <212> PRT
     <213> Methanomethylophilus alvus
      Met Asp Ala Lys Glu Phe Thr Gly Gln Tyr Pro Leu Ser Lys Thr Leu
                                             10
      Arg Phe Glu Leu Arg Pro Ile Gly Arg Thr Trp Asp Asn Leu Glu Ala
                                        25
      Ser Gly Tyr Leu Ala Glu Asp Arg His Arg Ala Glu Cys Tyr Pro Arg
              35
                                    40
                                                          45
      Ala Lys Glu Leu Leu Asp Asp Asn His Arg Ala Phe Leu Asn Arg Val
30
         50
                                55
```

Leu 65	Pro	Gln	Ile	Gln	Asp 70	Ala	Asp	Gly	Tyr	Lys 75	Gly	Leu	Phe	Ala	Lys 80
Pro	Ala	Leu	Asp	Glu 85	Ala	Met	Lys	Ile	Ala 90	Lys	Glu	Asn	Gly	Asn 95	Glu
Ser	Asp	Ile	Glu 100	Val	Leu	Glu	Ala	Phe 105	Asn	Gly	Phe	Ser	Val 110	Tyr	Phe
Thr	Gly	Tyr 115	His	Glu	Ser	Arg	Glu 120	Asn	Ile	Tyr	Ser	Asp 125	Glu	Asp	Met
Val	Ser 130	Val	Ala	Tyr	Arg	Ile 135	Thr	Glu	Asp	Asn	Phe 140	Pro	Arg	Phe	Val
Ser 145	Asn	Ala	Leu	Ile	Phe 150	Asp	Lys	Leu	Asn	Glu 155	Ser	His	Pro	Asp	Ile 160
Ile	Ser	Glu	Val	Ser 165	Gly	Asn	Leu	Gly	Val 170	Asp	Asp	Ile	Gly	Lys 175	Tyr
Phe	Asp	Val	Ser 180	Asn	Tyr	Asn	Asn	Phe 185	Leu	Ser	Gln	Ala	Gly 190	Ile	Asp
Asp	Tyr	Asn 195	His	Ile	Ile	Gly	Gly 200	His	Thr	Thr	Glu	Asp 205	Gly	Leu	Ile
Gln	Ala 210	Phe	Asn	Val	Val	Leu 215	Asn	Leu	Arg	His	Gln 220	Lys	Asp	Pro	Gly
Phe 225	Glu	Lys	Ile	Gln	Phe 230	Lys	Gln	Leu	Tyr	Lys 235	Gln	Ile	Leu	Ser	Val 240
Arg	Thr	Ser	Lys	Ser 245	Tyr	Ile	Pro	Lys	Gln 250	Phe	Asp	Asn	Ser	Lys 255	Glu
Met	Val	Asp	Cys 260	Ile	Cys	Asp	Tyr	Val 265	Ser	Lys	Ile	Glu	Lys 270	Ser	Glu
Thr	Val	Glu 275	Arg	Ala	Leu	Lys	Leu 280	Val	Arg	Asn	Ile	Ser 285	Ser	Phe	Asp
Leu	Arg	Gly	Ile	Phe	Val	Asn	Lys	Lys	Asn	Leu	Arg	Ile	Leu	Ser	Asn

	290					295					300				
Lys 305	Leu	Ile	Gly	Asp	Trp 310	Asp	Ala	Ile	Glu	Thr 315	Ala	Leu	Met	His	Ser 320
Ser	Ser	Ser	Glu	Asn 325	Asp	Lys	Lys	Ser	Val 330	Tyr	Asp	Ser	Ala	Glu 335	Ala
Phe	Thr	Leu	Asp 340	Asp	Ile	Phe	Ser	Ser 345	Val	Lys	Lys	Phe	Ser 350	Asp	Ala
Ser	Ala	Glu 355	Asp	Ile	Gly	Asn	Arg 360	Ala	Glu	Asp	Ile	Суs 365	Arg	Val	Ile
Ser	Glu 370	Thr	Ala	Pro	Phe	Ile 375	Asn	Asp	Leu	Arg	Ala 380	Val	Asp	Leu	Asp
Ser 385	Leu	Asn	Asp	Asp	Gly 390	Tyr	Glu	Ala	Ala	Val 395	Ser	Lys	Ile	Arg	Glu 400
Ser	Leu	Glu	Pro	Tyr 405	Met	Asp	Leu	Phe	His 410	Glu	Leu	Glu	Ile	Phe 415	Ser
Val	Gly	Asp	Glu 420	Phe	Pro	Lys	Cys	Ala 425	Ala	Phe	Tyr	Ser	Glu 430	Leu	Glu
Glu	Val	Ser 435	Glu	Gln	Leu	Ile	Glu 440	Ile	Ile	Pro	Leu	Phe 445	Asn	Lys	Ala
Arg	Ser 450	Phe	Cys	Thr	Arg	Lys 455	Arg	Tyr	Ser	Thr	Asp 460	Lys	Ile	Lys	Val
Asn 465	Leu	Lys	Phe	Pro	Thr 470	Leu	Ala	Asp	Gly	Trp 475	Asp	Leu	Asn	Lys	Glu 480
Arg	Asp	Asn	Lys	Ala 485	Ala	Ile	Leu	Arg	Lys 490	Asp	Gly	Lys	Tyr	Tyr 495	Leu
Ala	Ile	Leu	Asp 500	Met	Lys	Lys	Asp	Leu 505	Ser	Ser	Ile	Arg	Thr 510	Ser	Asp
Glu	Asp	Glu 515	Ser	Ser	Phe	Glu	Lys 520	Met	Glu	Tyr	Lys	Leu 525	Leu	Pro	Ser

Pro Val Lys Met Leu Pro Lys Ile Phe Val Lys Ser Lys Ala Ala Lys 535 Glu Lys Tyr Gly Leu Thr Asp Arg Met Leu Glu Cys Tyr Asp Lys Gly Met His Lys Ser Gly Ser Ala Phe Asp Leu Gly Phe Cys His Glu Leu 565 570 Ile Asp Tyr Tyr Lys Arg Cys Ile Ala Glu Tyr Pro Gly Trp Asp Val Phe Asp Phe Lys Phe Arg Glu Thr Ser Asp Tyr Gly Ser Met Lys Glu Phe Asn Glu Asp Val Ala Gly Ala Gly Tyr Tyr Met Ser Leu Arg Lys 615 610 Ile Pro Cys Ser Glu Val Tyr Arg Leu Leu Asp Glu Lys Ser Ile Tyr 630 635 Leu Phe Gln Ile Tyr Asn Lys Asp Tyr Ser Glu Asn Ala His Gly Asn 645 650 655 Lys Asn Met His Thr Met Tyr Trp Glu Gly Leu Phe Ser Pro Gln Asn 665 Leu Glu Ser Pro Val Phe Lys Leu Ser Gly Gly Ala Glu Leu Phe Phe Arg Lys Ser Ser Ile Pro Asn Asp Ala Lys Thr Val His Pro Lys Gly Ser Val Leu Val Pro Arg Asn Asp Val Asn Gly Arg Arg Ile Pro Asp 710 Ser Ile Tyr Arg Glu Leu Thr Arg Tyr Phe Asn Arg Gly Asp Cys Arg Ile Ser Asp Glu Ala Lys Ser Tyr Leu Asp Lys Val Lys Thr Lys Lys 740 745 Ala Asp His Asp Ile Val Lys Asp Arg Arg Phe Thr Val Asp Lys Met

	755				760					765			
Met Phe 770	His Va	al Pro	Ile	Ala 775	Met	Asn	Phe	Lys	Ala 780	Ile	Ser	Lys	Pro
Asn Leu 785	Asn L	ys Lys	Val 790	Ile	Asp	Gly	Ile	Ile 795	Asp	Asp	Gln	Asp	Leu 800
Lys Ile	Ile G	ly Ile 805	Asp	Arg	Gly	Glu	Arg 810	Asn	Leu	Ile	Tyr	Val 815	Thr
Met Val	-	rg Lys 20	Gly	Asn	Ile	Leu 825	Tyr	Gln	Asp	Ser	Leu 830	Asn	Ile
Leu Asn	Gly T ₂ 835	yr Asp	Tyr	Arg	Lys 840	Ala	Leu	Asp	Val	Arg 845	Glu	Tyr	Asp
Asn Lys 850	Glu A	la Arg	Arg	Asn 855	Trp	Thr	Lys	Val	Glu 860	Gly	Ile	Arg	Lys
Met Lys 865	Glu G	ly Tyr	Leu 870	Ser	Leu	Ala	Val	Ser 875	Lys	Leu	Ala	Asp	Met 880
Ile Ile	Glu A	sn Asn 885	Ala	Ile	Ile	Val	Met 890	Glu	Asp	Leu	Asn	His 895	Gly
Phe Lys		ly Arg 00	Ser	Lys	Ile	Glu 905	Lys	Gln	Val	Tyr	Gln 910	Lys	Phe
Glu Ser	Met Le 915	eu Ile	Asn	Lys	Leu 920	Gly	Tyr	Met	Val	Leu 925	Lys	Asp	Lys
Ser Ile 930	Asp G	ln Ser	Gly	Gly 935	Ala	Leu	His	Gly	Tyr 940	Gln	Leu	Ala	Asn
His Val 945	Thr Tl	hr Leu	Ala 950	Ser	Val	Gly	Lys	Gln 955	Cys	Gly	Val	Ile	Phe 960
Tyr Ile	Pro A	la Ala 965	Phe	Thr	Ser	Lys	Ile 970	Asp	Pro	Thr	Thr	Gly 975	Phe
Ala Asp		he Ala 80	Leu	Ser	Asn	Val 985	Lys	Asn	Val	Ala	Ser 990	Met	Arg

Glu Phe Phe Ser Lys Met Lys Ser Val Ile Tyr Asp Lys Ala Glu Gly 1000 Lys Phe Ala Phe Thr Phe Asp Tyr Leu Asp Tyr Asn Val Lys Ser 1015 Glu Cys Gly Arg Thr Leu Trp Thr Val Tyr Thr Val Gly Glu Arg 1025 1030 1035 Phe Thr Tyr Ser Arg Val Asn Arg Glu Tyr Val Arg Lys Val Pro 1045 Thr Asp Ile Ile Tyr Asp Ala Leu Gln Lys Ala Gly Ile Ser Val 1060 Glu Gly Asp Leu Arg Asp Arg Ile Ala Glu Ser Asp Gly Asp Thr 1070 1075 1080 Leu Lys Ser Ile Phe Tyr Ala Phe Lys Tyr Ala Leu Asp Met Arg 1085 1090 1095 Val Glu Asn Arg Glu Glu Asp Tyr Ile Gln Ser Pro Val Lys Asn 1105 Ala Ser Gly Glu Phe Phe Cys Ser Lys Asn Ala Gly Lys Ser Leu 1120 Pro Gln Asp Ser Asp Ala Asn Gly Ala Tyr Asn Ile Ala Leu Lys 1135 1130 1140 Gly Ile Leu Gln Leu Arg Met Leu Ser Glu Gln Tyr Asp Pro Asn 1150 1155 1145 Ala Glu Ser Ile Arg Leu Pro Leu Ile Thr Asn Lys Ala Trp Leu 1160 1165 1170 Thr Phe Met Gln Ser Gly Met Lys Thr Trp Lys 1175 1180 <210> 33

<400> 33

<211> 1265 <212> PRT

<213> Acidaminococcus sp. BV3L6 8

Met Thr Gln Phe Glu Gly Phe Thr Asn Leu Tyr Gln Val Ser Lys Thr Leu Arg Phe Glu Leu Ile Pro Gln Gly Lys Thr Leu Lys His Ile Gln Glu Gln Gly Phe Ile Glu Glu Asp Lys Ala Arg Asn Asp His Tyr Lys 40 Glu Leu Lys Pro Ile Ile Asp Arg Ile Tyr Lys Thr Tyr Ala Asp Gln Cys Leu Gln Leu Val Gly Arg Thr Asp Asn Leu Thr Asp Ala Ile Asn 65 70 Lys Arg His Ala Glu Ile Tyr Lys Gly Leu Phe Lys Ala Glu Leu Phe 90 85 Asn Gly Lys Val Leu Lys Gln Leu Gly Thr Val Thr Thr Thr Glu His 100 105 Glu Asn Ala Leu Leu Arg Ser Phe Asp Lys Phe Thr Thr Tyr Phe Ser Gly Phe Tyr Glu Asn Arg Lys Asn Val Phe Ser Ala Glu Asp Ile Ser 135 Thr Ala Ile Pro His Arg Ile Val Gln Asp Asn Phe Pro Lys Phe Lys 150 155 Glu Asn Cys His Ile Phe Thr Arg Leu Ile Thr Ala Val Pro Ser Leu 165 170 175 Arg Glu His Phe Glu Asn Val Lys Lys Ala Ile Gly Ile Phe Val Ser Thr Ser Ile Glu Glu Val Phe Ser Phe Pro Phe Tyr Asn Gln Leu Leu 200 195 Thr Gln Thr Gln Ile Asp Leu Tyr Asn Gln Leu Leu Gly Gly Ile Ser

Arg 225	Glu	Ala	Gly	Thr	Glu 230	Lys	Ile	Lys	Gly	Leu 235	Asn	Glu	Val	Leu	Asn 240
Leu	Ala	Ile	Gln	Lys 245	Asn	Asp	Glu	Thr	Ala 250	His	Ile	Ile	Ala	Ser 255	Leu
Pro	His	Arg	Phe 260	Ile	Pro	Leu	Phe	Lys 265	Gln	Ile	Leu	Ser	Asp 270	Arg	Asn
Thr	Leu	Ser 275	Phe	Ile	Leu	Glu	Glu 280	Phe	Lys	Ser	Asp	Glu 285	Glu	Val	Ile
Gln	Ser 290	Phe	Cys	Lys	Tyr	Lys 295	Thr	Leu	Leu	Arg	Asn 300	Glu	Asn	Val	Leu
Glu 305	Thr	Ala	Glu	Ala	Leu 310	Phe	Asn	Glu	Leu	Asn 315	Ser	Ile	Asp	Leu	Thr 320
His	Ile	Phe	Ile	Ser 325	His	Lys	Lys	Leu	Glu 330	Thr	Ile	Ser	Ser	Ala 335	Leu
Cys	Asp	His	Trp 340	Asp	Thr	Leu	Arg	Asn 345	Ala	Leu	Tyr	Glu	Arg 350	Arg	Ile
Ser	Glu	Leu 355	Thr	Gly	Lys	Ile	Thr 360	Lys	Ser	Ala	Lys	Glu 365	Lys	Val	Gln
Arg	Ser 370	Leu	Lys	His	Glu	Asp 375	Ile	Asn	Leu	Gln	Glu 380	Ile	Ile	Ser	Ala
Ala 385	Gly	Lys	Glu	Leu	Ser 390	Glu	Ala	Phe	Lys	Gln 395	Lys	Thr	Ser	Glu	Ile 400
Leu	Ser	His	Ala	His 405	Ala	Ala	Leu	Asp	Gln 410	Pro	Leu	Pro	Thr	Thr 415	Leu
Lys	Lys	Gln	Glu 420	Glu	Lys	Glu	Ile	Leu 425	Lys	Ser	Gln	Leu	Asp 430	Ser	Leu
Leu	Gly	Leu 435	Tyr	His	Leu	Leu	Asp 440	Trp	Phe	Ala	Val	Asp 445	Glu	Ser	Asn
Glu	Val 450	Asp	Pro	Glu	Phe	Ser 455	Ala	Arg	Leu	Thr	Gly 460	Ile	Lys	Leu	Glu

Met Glu 465	Pro Ser	Leu Ser 470	_	r Asn	Lys	Ala 475	Arg	Asn	Tyr	Ala	Thr 480
Lys Lys	Pro Tyr	Ser Val 485	Glu Ly	s Phe	Lys 490	Leu	Asn	Phe	Gln	Met 495	Pro
Thr Leu	Ala Ser 500	Gly Trp	Asp Va	l Asn 505	Lys	Glu	Lys	Asn	Asn 510	Gly	Ala
Ile Leu	Phe Val	. Lys Asn	Gly Le 52	_	Tyr	Leu	Gly	Ile 525	Met	Pro	Lys
Gln Lys 530		ß Tyr Lys	Ala Le 535	u Ser	Phe	Glu	Pro 540	Thr	Glu	Lys	Thr
Ser Glu 545	Gly Phe	e Asp Lys 550	_	r Tyr	Asp	Tyr 555	Phe	Pro	Asp	Ala	Ala 560
Lys Met	. Ile Pro	Lys Cys 565	Ser Th	r Gln	Leu 570	Lys	Ala	Val	Thr	Ala 575	His
Phe Glr	Thr His	Thr Thr	Pro Il	e Leu 585	Leu	Ser	Asn	Asn	Phe 590	Ile	Glu
Pro Leu	Glu Ile 595	e Thr Lys	Glu Il 60	_	Asp	Leu	Asn	Asn 605	Pro	Glu	Lys
Glu Pro 610		Phe Gln	Thr Al 615	a Tyr	Ala	Lys	Lys 620	Thr	Gly	Asp	Gln
Lys Gly 625	Tyr Arg	Glu Ala 630	_	s Lys	Trp	Ile 635	Asp	Phe	Thr	Arg	Asp 640
Phe Leu	Ser Lys	Tyr Thr 645	Lys Th	r Thr	Ser 650	Ile	Asp	Leu	Ser	Ser 655	Leu
Arg Pro	Ser Ser 660	Gln Tyr	Lys As	p Leu 665	Gly	Glu	Tyr	Tyr	Ala 670	Glu	Leu
Asn Pro	Leu Leu 675	ı Tyr His	Ile Se 68		Gln	Arg	Ile	Ala 685	Glu	Lys	Glu

Ile Met Asp Ala Val Glu Thr Gly Lys Leu Tyr Leu Phe Gln Ile Tyr Asn Lys Asp Phe Ala Lys Gly His His Gly Lys Pro Asn Leu His Thr Leu Tyr Trp Thr Gly Leu Phe Ser Pro Glu Asn Leu Ala Lys Thr Ser Ile Lys Leu Asn Gly Gln Ala Glu Leu Phe Tyr Arg Pro Lys Ser Arg 740 745 Met Lys Arg Met Ala His Arg Leu Gly Glu Lys Met Leu Asn Lys Lys Leu Lys Asp Gln Lys Thr Pro Ile Pro Asp Thr Leu Tyr Gln Glu Leu Tyr Asp Tyr Val Asn His Arg Leu Ser His Asp Leu Ser Asp Glu Ala Arg Ala Leu Leu Pro Asn Val Ile Thr Lys Glu Val Ser His Glu Ile Ile Lys Asp Arg Arg Phe Thr Ser Asp Lys Phe Phe His Val Pro 820 825 Ile Thr Leu Asn Tyr Gln Ala Ala Asn Ser Pro Ser Lys Phe Asn Gln Arg Val Asn Ala Tyr Leu Lys Glu His Pro Glu Thr Pro Ile Ile Gly Ile Asp Arg Gly Glu Arg Asn Leu Ile Tyr Ile Thr Val Ile Asp Ser Thr Gly Lys Ile Leu Glu Gln Arg Ser Leu Asn Thr Ile Gln Gln Phe Asp Tyr Gln Lys Lys Leu Asp Asn Arg Glu Lys Glu Arg Val Ala Ala Arg Gln Ala Trp Ser Val Val Gly Thr Ile Lys Asp Leu Lys Gln Gly 920

- Tyr Leu Ser Gln Val Ile His Glu Ile Val Asp Leu Met Ile His Tyr 930 935 940
- Gln Ala Val Val Val Leu Glu Asn Leu Asn Phe Gly Phe Lys Ser Lys 945 950 955 960
- Arg Thr Gly Ile Ala Glu Lys Ala Val Tyr Gln Gln Phe Glu Lys Met 965 970 975
- Leu Ile Asp Lys Leu Asn Cys Leu Val Leu Lys Asp Tyr Pro Ala Glu 980 985 985
- Lys Val Gly Gly Val Leu Asn Pro $\,$ Tyr Gln Leu Thr Asp $\,$ Gln Phe Thr $\,$ 995 $\,$ $\,$ 1000 $\,$ $\,$ 1005
- Ser Phe Ala Lys Met Gly Thr Gln Ser Gly Phe Leu Phe Tyr Val 1010 1015
- Pro Ala Pro Tyr Thr Ser Lys Ile Asp Pro Leu Thr Gly Phe Val $1025 \hspace{1.5cm} 1030 \hspace{1.5cm} 1035$
- Asp Pro Phe Val Trp Lys Thr Ile Lys Asn His Glu Ser Arg Lys 1040 1045 1050
- His Phe Leu Glu Gly Phe Asp Phe Leu His Tyr Asp Val Lys Thr 1055 1060 1065
- Gln Arg Gly Leu Pro Gly Phe Met Pro Ala Trp Asp Ile Val Phe 1085 \$1090\$
- Glu Lys Asn Glu Thr Gln Phe Asp Ala Lys Gly Thr Pro Phe Ile 1100 $$1105\$
- Ala Gly Lys Arg Ile Val Pro Val Ile Glu Asn His Arg Phe Thr 1115 \$1120 \$1125
- Gly Arg Tyr Arg Asp Leu Tyr Pro Ala Asn Glu Leu Ile Ala Leu 1130 \$1135\$ \$1140

Leu Glu 1145		Lys G	ly Ile	val 1150		Arg	Asp	_	Ser 1155	Asn	Ile	Leu
Pro Lys 1160		Leu G	lu Asr	Asp 1165		Ser	His	Ala	Ile 1170	Asp	Thr	Met
Val Ala 1175		Ile A	rg Ser	Val 1180		Gln	Met		Asn 1185	Ser	Asn	Ala
Ala Thr 1190	_	Glu A	sp Tyr	: Ile 1195		Ser	Pro		Arg 1200	Asp	Leu	Asn
Gly Val 1205	_	Phe A	sp Ser	Arg 1210		Gln	Asn	Pro	Glu 1215	Trp	Pro	Met
Asp Ala 1220		Ala A	sn Gly	7 Ala 1225		His	Ile		Leu 1230	Lys	Gly	Gln
Leu Leu 1235		Asn H	is Leu	Lys 1240	Glu	Ser	Lys	Asp	Leu 1245	Lys	Leu	Gln
Asn Gly 1250		Ser A	sn Glr	Asp 1255	_	Leu	Ala	_	Ile 1260	Gln	Glu	Leu
Arg Asn 1265												
<210> 34 <211> 1187 <212> PRT <213> Lach		aceae										
<400>34 Met Ser	Lys L	eu Gl [.] 5	u Lys	Phe Tl	hr As	sn Cy 1(r Se	r Leu	. Ser	Lys 15	Thr
Leu Arg	Phe Li	_	a Ile	Pro V	al G] 25		ys Th	r Gl	n Glu	. Asn	ı Ile	: Asp
Asn Lys .	Arg Le 35	eu Le	u Val	Glu A:		lu Ly	ys Ar	g Al	a Glu 45	. Asp) Tyr	Lys
Gly Val 1 50	Lys L	ys Le	u Leu	Asp A: 55	rg Ty	/r T	r Le	u Se 60		: Ile	e Asn	. Asp

Val 65	Leu	His	Ser	Ile	Gly 70	Asn	Glu	Gly	Tyr	Lys 75	Ser	Leu	Phe	Lys	Lys 80
Asp	Ile	Ile	Glu	Thr 85	Ile	Leu	Pro	Glu	Phe 90	Leu	Asp	Asp	Lys	Asp 95	Glu
Ile	Ala	Leu	Val 100	Asn	Ser	Phe	Asn	Gly 105	Phe	Thr	Thr	Ala	Phe 110	Thr	Gly
Phe	Phe	Asp 115	Asn	Arg	Glu	Asn	Met 120	Phe	Ser	Glu	Glu	Ala 125	Lys	Ser	Thr
Ser	Ile 130	Ala	Phe	Arg	Cys	Ile 135	Asn	Glu	Asn	Leu	Thr 140	Arg	Tyr	Ile	Ser
Asn 145	Met	Asp	Ile	Phe	Glu 150	Lys	Val	Asp	Ala	Ile 155	Phe	Asp	Lys	His	Glu 160
Val	Gln	Glu	Ile	Lys 165	Glu	Lys	Ile	Leu	Asn 170	Ser	Asp	Tyr	Asp	Val 175	Glu
Asp	Phe	Phe	Glu 180	Gly	Glu	Phe	Phe	Asn 185	Phe	Val	Leu	Thr	Gln 190	Glu	Gly
Ile	Asp	Val 195	Tyr	Asn	Ala	Ile	Ile 200	Gly	Gly	Phe	Val	Thr 205	Glu	Ser	Gly
Glu	Lys 210	Ile	Lys	Gly	Leu	Asn 215	Glu	Tyr	Ile	Asn	Leu 220	Tyr	Asn	Gln	Lys
Thr 225	Lys	Gln	Lys	Leu	Pro 230	Lys	Phe	Lys	Pro	Leu 235	Tyr	Lys	Gln	Val	Leu 240
Ser	Asp	Arg	Glu	Ser 245	Leu	Ser	Phe	Tyr	Gly 250	Glu	Gly	Tyr	Thr	Ser 255	Asp
Glu	Glu	Val	Leu 260	Glu	Val	Phe	Arg	Asn 265	Thr	Leu	Asn	Lys	Asn 270	Ser	Glu
Ile	Phe	Ser 275	Ser	Ile	Lys	Lys	Leu 280	Glu	Lys	Leu	Phe	Lys 285	Asn	Phe	Asp
Glu	Tyr	Ser	Ser	Ala	Gly	Ile	Phe	Val	Lys	Asn	Gly	Pro	Ala	Ile	Ser

	290					295					300				
Thr 305	Ile	Ser	Lys	Asp	Ile 310	Phe	Gly	Glu	Trp	Asn 315	Val	Ile	Arg	Asp	Lys 320
Trp	Asn	Ala	Glu	Tyr 325	Asp	Asp	Ile	His	Leu 330	Lys	Lys	Lys	Ala	Val 335	Val
Thr	Glu	Lys	Tyr 340	Glu	Asp	Asp	Arg	Arg 345	Lys	Ser	Phe	Lys	Lys 350	Ile	Gly
Ser	Phe	Ser 355	Leu	Glu	Gln	Leu	Gln 360	Glu	Tyr	Ala	Asp	Ala 365	Asp	Leu	Ser
Val	Val 370	Glu	Lys	Leu	Lys	Glu 375	Ile	Ile	Ile	Gln	Lys 380	Val	Asp	Glu	Ile
Tyr 385	Lys	Val	Tyr	Gly	Ser 390	Ser	Glu	Lys	Leu	Phe 395	Asp	Ala	Asp	Phe	Val 400
Leu	Glu	Lys	Ser	Leu 405	Lys	Lys	Asn	Asp	Ala 410	Val	Val	Ala	Ile	Met 415	Lys
Asp	Leu	Leu	Asp 420	Ser	Val	Lys	Ser	Phe 425	Glu	Asn	Tyr	Ile	Lys 430	Ala	Phe
Phe	Gly	Glu 435	Gly	Lys	Glu	Thr	Asn 440	Arg	Asp	Glu	Ser	Phe 445	Tyr	Gly	Asp
Phe	Val 450	Leu	Ala	Tyr	Asp	Ile 455	Leu	Leu	Lys	Val	Asp 460	His	Ile	Tyr	Asp
Ala 465	Ile	Arg	Asn	Tyr	Val 470	Thr	Gln	Lys	Pro	Tyr 475	Ser	Lys	Asp	Lys	Phe 480
Lys	Leu	Tyr	Phe	Gln 485	Asn	Pro	Gln	Phe	Met 490	Gly	Gly	Trp	Asp	Lys 495	Asp
Lys	Glu	Thr	Asp 500	Tyr	Arg	Ala	Thr	Ile 505	Leu	Arg	Tyr	Gly	Ser 510	Lys	Tyr
Tyr	Leu	Ala 515	Ile	Met	Asp	Lys	Lys 520	Tyr	Ala	Lys	Cys	Leu 525	Gln	Lys	Ile

Asp	Lys 530	Asp	Asp	Val	Asn	Gly 535	Asn	Tyr	Glu	Lys	Ile 540	Asn	Tyr	Lys	Leu
Leu 545	Pro	Gly	Pro	Asn	Lys 550	Met	Leu	Pro	Lys	Val 555	Phe	Phe	Ser	Lys	Lys 560
Trp	Met	Ala	Tyr	Tyr 565	Asn	Pro	Ser	Glu	Asp 570	Ile	Gln	Lys	Ile	Tyr 575	Lys
Asn	Gly	Thr	Phe 580	Lys	Lys	Gly	Asp	Met 585	Phe	Asn	Leu	Asn	Asp 590	Cys	His
Lys	Leu	Ile 595	Asp	Phe	Phe	Lys	Asp 600	Ser	Ile	Ser	Arg	Tyr 605	Pro	Lys	Trp
Ser	Asn 610	Ala	Tyr	Asp	Phe	Asn 615	Phe	Ser	Glu	Thr	Glu 620	Lys	Tyr	Lys	Asp
Ile 625	Ala	Gly	Phe	Tyr	Arg 630	Glu	Val	Glu	Glu	Gln 635	Gly	Tyr	Lys	Val	Ser 640
Phe	Glu	Ser	Ala	Ser 645	Lys	Lys	Glu	Val	Asp 650	Lys	Leu	Val	Glu	Glu 655	Gly
Lys	Leu	Tyr	Met 660	Phe	Gln	Ile	Tyr	Asn 665	Lys	Asp	Phe	Ser	Asp 670	Lys	Ser
His	Gly	Thr 675	Pro	Asn	Leu	His	Thr 680	Met	Tyr	Phe	Lys	Leu 685	Leu	Phe	Asp
Glu	Asn 690	Asn	His	Gly	Gln	Ile 695	Arg	Leu	Ser	Gly	Gly 700	Ala	Glu	Leu	Phe
Met 705	Arg	Arg	Ala	Ser	Leu 710	Lys	Lys	Glu	Glu	Leu 715	Val	Val	His	Pro	Ala 720
Asn	Ser	Pro	Ile	Ala 725	Asn	Lys	Asn	Pro	Asp 730	Asn	Pro	Lys	Lys	Thr 735	Thr
Thr	Leu	Ser	Tyr 740	Asp	Val	Tyr	Lys	Asp 745	Lys	Arg	Phe	Ser	Glu 750	Asp	Gln
Tyr	Glu	Leu	His	Ile	Pro	Ile	Ala	Ile	Asn	Lys	Cys	Pro	Lys	Asn	Ile

	755		76	50				765			
Phe Lys		Thr Glu	Val Ar 775	g Val	Leu	Leu	Lys 780	His	Asp	Asp	Asn
Pro Tyr 785	Val Ile	Gly Ile 790	Asp Ar	g Gly	Glu	Arg 795	Asn	Leu	Leu	Tyr	Ile 800
Val Val	. Val Asp	Gly Lys 805	Gly As	n Ile	Val 810	Glu	Gln	Tyr	Ser	Leu 815	Asn
Glu Il∈	e Ile Asn 820	Asn Phe	Asn Gl	y Ile 825	Arg	Ile	Lys	Thr	Asp 830	Tyr	His
Ser Lei	ı Leu Asp 835	Lys Lys	Glu Ly 84		Arg	Phe	Glu	Ala 845	Arg	Gln	Asn
Trp Thr 850		Glu Asn	Ile Ly 855	s Glu	Leu	Lys	Ala 860	Gly	Tyr	Ile	Ser
Gln Val 865	. Val His	Lys Ile 870	Cys Gl	u Leu	Val	Glu 875	Lys	Tyr	Asp	Ala	Val 880
Ile Ala	ı Leu Glu	Asp Leu 885	Asn Se	er Gly	Phe 890	Lys	Asn	Ser	Arg	Val 895	Lys
Val Glı	ı Lys Gln 900	Val Tyr	Gln Ly	s Phe 905	Glu	Lys	Met	Leu	Ile 910	Asp	Lys
Leu Asr	n Tyr Met 915	Val Asp	Lys Ly 92		Asn	Pro	Суз	Ala 925	Thr	Gly	Gly
Ala Leu 930		Tyr Gln	Ile Th	ır Asn	Lys	Phe	Glu 940	Ser	Phe	Lys	Ser
Met Ser 945	Thr Gln	Asn Gly 950	Phe Il	e Phe	Tyr	Ile 955	Pro	Ala	Trp	Leu	Thr 960
Ser Lys	s Ile Asp	Pro Ser 965	Thr Gl	y Phe	Val 970	Asn	Leu	Leu	Lys	Thr 975	Lys
Tyr Thr	Ser Ile 980	Ala Asp	Ser Ly	s Lys 985	Phe	Ile	Ser	Ser	Phe 990	Asp	Arg

Ile Met Tyr Val Pro Glu Glu Asp Leu Phe Glu Phe Ala Leu Asp Tyr 1000 Lys Asn Phe Ser Arg Thr Asp Ala Asp Tyr Ile Lys Lys Trp Lys 1015 Leu Tyr Ser Tyr Gly Asn Arg Ile Arg Ile Phe Arg Asn Pro Lys 1025 1030 1035 Lys Asn Asn Val Phe Asp Trp Glu Glu Val Cys Leu Thr Ser Ala 1040 1045 Tyr Lys Glu Leu Phe Asn Lys Tyr Gly Ile Asn Tyr Gln Gln Gly 1055 1060 Asp Ile Arg Ala Leu Leu Cys Glu Gln Ser Asp Lys Ala Phe Tyr 1070 1075 1080 Ser Ser Phe Met Ala Leu Met Ser Leu Met Leu Gln Met Arg Asn 1085 1090 1095 Ser Ile Thr Gly Arg Thr Asp Val Asp Phe Leu Ile Ser Pro Val 1105 Lys Asn Ser Asp Gly Ile Phe Tyr Asp Ser Arg Asn Tyr Glu Ala 1120 Gln Glu Asn Ala Ile Leu Pro Lys Asn Ala Asp Ala Asn Gly Ala 1135 1130 1140 Tyr Asn Ile Ala Arg Lys Val Leu Trp Ala Ile Gly Gln Phe Lys 1145 1150 1155 Lys Ala Glu Asp Glu Lys Leu Asp Lys Val Lys Ile Ala Ile Ser 1160 1165 Asn Lys Glu Trp Leu Glu Tyr Ala Gln Thr Ser Val Lys His 1175 1185 1180 <210> 35 <211> 1255 <212> PRT <213> Francisella tularensis U112 1

<400> 35

Met 1	Ser	Ile	Tyr	Gln 5	Glu	Phe	Val	Asn	Lys 10	Tyr	Ser	Leu	Ser	Lys 15	Thr
Leu	Arg	Phe	Glu 20	Leu	Ile	Pro	Gln	Gly 25	Lys	Thr	Leu	Glu	Asn 30	Ile	Lys
Ala	Arg	Gly 35	Leu	Ile	Leu	Asp	Asp 40	Glu	Lys	Arg	Ala	Lys 45	Asp	Tyr	Lys
Lys	Ala 50	Lys	Gln	Ile	Ile	Asp 55	Lys	Tyr	His	Gln	Phe 60	Phe	Ile	Glu	Glu
Ile 65	Leu	Ser	Ser	Val	Asp 70	Ser	Glu	Lys	Phe	Lys 75	Asn	Leu	Phe	Asn	Gln 80
Asn	Leu	Ile	Asp	Ala 85	Lys	Lys	Gly	Gln	Glu 90	Ser	Asp	Leu	Ile	Leu 95	Trp
Leu	Lys	Gln	Ser 100	Lys	Asp	Asn	Gly	Ile 105	Glu	Leu	Phe	Lys	Ala 110	Asn	Ser
Asp	Ile	Thr 115	Asp	Ile	Asp	Glu	Ala 120	Leu	Glu	Ile	Ile	Lys 125	Ser	Phe	Lys
Gly	Trp 130	Thr	Thr	Tyr	Phe	Lys 135	Gly	Phe	His	Glu	Asn 140	Arg	Lys	Asn	Val
Tyr 145	Ser	Ser	Asn	Asp	Ile 150	Pro	Thr	Ser	Ile	Ile 155	Tyr	Arg	Ile	Val	Asp 160
Asp	Asn	Leu	Pro	Lys 165	Phe	Leu	Glu	Asn	Lys 170	Ala	Lys	Tyr	Glu	Ser 175	Leu
Lys	Asp	Lys	Ala 180	Pro	Glu	Ala	Ile	Asn 185	Tyr	Glu	Gln	Ile	Lys 190	Lys	Asp
Leu	Ala	Glu 195	Glu	Leu	Thr	Phe	Asp 200	Ile	Asp	Tyr	Lys	Thr 205	Ser	Glu	Val
Asn	Gln 210	Arg	Val	Phe	Ser	Leu 215	Asp	Glu	Val	Phe	Glu 220	Ile	Ala	Asn	Phe

Asn 225	Asn	Tyr	Leu	Asn	Gln 230	Ser	Gly	Ile	Thr	Lys 235	Phe	Asn	Thr	Ile	Ile 240
Gly	Gly	Lys	Phe	Val 245	Asn	Gly	Glu	Asn	Thr 250	Lys	Arg	Lys	Gly	Ile 255	Asn
Glu	Tyr	Ile	Asn 260	Leu	Tyr	Ser	Gln	Gln 265	Ile	Asn	Asp	Lys	Thr 270	Leu	Lys
Lys	Tyr	Lys 275	Met	Ser	Val	Leu	Phe 280	Lys	Gln	Ile	Leu	Ser 285	Asp	Thr	Glu
Ser	Lys 290	Ser	Phe	Val	Ile	Asp 295	Lys	Leu	Glu	Asp	Asp 300	Ser	Asp	Val	Val
Thr 305	Thr	Met	Gln	Ser	Phe 310	Tyr	Glu	Gln	Ile	Ala 315	Ala	Phe	Lys	Thr	Val 320
Glu	Glu	Lys	Ser	Ile 325	Lys	Glu	Thr	Leu	Ser 330	Leu	Leu	Phe	Asp	Asp 335	Leu
Lys	Ala	Gln	Lys 340	Leu	Asp	Leu	Ser	Lys 345	Ile	Tyr	Phe	Lys	Asn 350	Asp	Lys
Ser	Leu	Thr 355	Asp	Leu	Ser	Gln	Gln 360	Val	Phe	Asp	Asp	Tyr 365	Ser	Val	Ile
Gly	Thr 370	Ala	Val	Leu	Glu	Tyr 375	Ile	Thr	Gln	Gln	Ile 380	Ala	Pro	Lys	Asn
Leu 385	Asp	Asn	Pro	Ser	Lys 390	Lys	Glu	Gln	Glu	Leu 395	Ile	Ala	Lys	Lys	Thr 400
Glu	Lys	Ala	Lys	Tyr 405	Leu	Ser	Leu	Glu	Thr 410	Ile	Lys	Leu	Ala	Leu 415	Glu
Glu	Phe	Asn	Lys 420	His	Arg	Asp	Ile	Asp 425	Lys	Gln	Cys	Arg	Phe 430	Glu	Glu
Ile	Leu	Ala 435	Asn	Phe	Ala	Ala	Ile 440	Pro	Met	Ile	Phe	Asp 445	Glu	Ile	Ala
Gln	Asn 450	Lys	Asp	Asn	Leu	Ala 455	Gln	Ile	Ser	Ile	Lys 460	Tyr	Gln	Asn	Gln

Gly Lys 465	Lys Asp	Leu Leu 470		Ala	Ser	Ala	Glu 475	Asp	Asp	Val	Lys	Ala 480
Ile Lys	Asp Leu	Leu Asp 485	Gln	Thr	Asn	Asn 490	Leu	Leu	His	Lys	Leu 495	Lys
Ile Phe	His Ile 500	Ser Glr	Ser	Glu	Asp 505	Lys	Ala	Asn	Ile	Leu 510	Asp	Lys
Asp Glu	His Phe 515	Tyr Leu	Val	Phe 520	Glu	Glu	Cys	Tyr	Phe 525	Glu	Leu	Ala
Asn Ile 530	Val Pro	Leu Tyr	Asn 535	Lys	Ile	Arg	Asn	Tyr 540	Ile	Thr	Gln	Lys
Pro Tyr 545	Ser Asp	Glu Lys 550		Lys	Leu	Asn	Phe 555	Glu	Asn	Ser	Thr	Leu 560
Ala Asn	Gly Trp	Asp Lys 565	Asn	Lys	Glu	Pro 570	Asp	Asn	Thr	Ala	Ile 575	Leu
Phe Ile	Lys Asp 580	Asp Lys	Tyr	Tyr	Leu 585	Gly	Val	Met	Asn	Lys 590	Lys	Asn
Asn Lys	Ile Phe 595	Asp Asp	Lys	Ala 600	Ile	Lys	Glu	Asn	Lys 605	Gly	Glu	Gly
Tyr Lys 610	Lys Ile	Val Tyr	Lys 615	Leu	Leu	Pro	Gly	Ala 620	Asn	Lys	Met	Leu
Pro Lys 625	Val Phe	Phe Ser 630		Lys	Ser	Ile	Lys 635	Phe	Tyr	Asn	Pro	Ser 640
Glu Asp	Ile Leu	Arg Ile	arg	Asn	His	Ser 650	Thr	His	Thr	Lys	Asn 655	Gly
Ser Pro	Gln Lys 660	Gly Tyr	· Glu	Lys	Phe 665	Glu	Phe	Asn	Ile	Glu 670	Asp	Cys
Arg Lys	Phe Ile	Asp Phe	: Tyr	Lys 680	Gln	Ser	Ile	Ser	Lys 685	His	Pro	Glu

Trp	Lys 690	Asp	Phe	Gly	Phe	Arg 695	Phe	Ser	Asp	Thr	Gln 700	Arg	Tyr	Asn	Ser
Ile 705	Asp	Glu	Phe	Tyr	Arg 710	Glu	Val	Glu	Asn	Gln 715	Gly	Tyr	Lys	Leu	Thr 720
Phe	Glu	Asn	Ile	Ser 725	Glu	Ser	Tyr	Ile	Asp 730	Ser	Val	Val	Asn	Gln 735	Gly
Lys	Leu	Tyr	Leu 740	Phe	Gln	Ile	Tyr	Asn 745	Lys	Asp	Phe	Ser	Ala 750	Tyr	Ser
Lys	Gly	Arg 755	Pro	Asn	Leu	His	Thr 760	Leu	Tyr	Trp	Lys	Ala 765	Leu	Phe	Asp
Glu	Arg 770	Asn	Leu	Gln	Asp	Val 775	Val	Tyr	Lys	Leu	Asn 780	Gly	Glu	Ala	Glu
Leu 785	Phe	Tyr	Arg	Lys	Gln 790	Ser	Ile	Pro	Lys	Lys 795	Ile	Thr	His	Pro	Ala 800
Lys	Glu	Ala	Ile	Ala 805	Asn	Lys	Asn	Lys	Asp 810	Asn	Pro	Lys	Lys	Glu 815	Ser
Val	Phe	Glu	Tyr 820	Asp	Leu	Ile	Lys	Asp 825	Lys	Arg	Phe	Thr	Glu 830	Asp	Lys
Phe	Phe	Phe 835	His	Cys	Pro	Ile	Thr 840	Ile	Asn	Phe	Lys	Ser 845	Ser	Gly	Ala
Asn	Lys 850	Phe	Asn	Asp	Glu	Ile 855	Asn	Leu	Leu	Leu	Lys 860	Glu	Lys	Ala	Asn
Asp 865	Val	His	Ile		Ser 870		Asp	Arg	Gly	Glu 875	_	His	Leu		Tyr 880
Tyr	Thr	Leu	Val	Asp 885	Gly	Lys	Gly	Asn	Ile 890	Ile	Lys	Gln	Asp	Thr 895	Phe
Asn	Ile	Ile	Gly 900	Asn	Asp	Arg	Met	Lys 905	Thr	Asn	Tyr	His	Asp 910	Lys	Leu
Ala	Ala	Ile 915	Glu	Lys	Asp	Arg	Asp 920	Ser	Ala	Arg	Lys	Asp 925	Trp	Lys	Lys

Ile Asn Asn Ile Lys Glu Met Lys Glu Gly Tyr Leu Ser Gln Val Val 935 His Glu Ile Ala Lys Leu Val Ile Glu Tyr Asn Ala Ile Val Val Phe 950 Glu Asp Leu Asn Phe Gly Phe Lys Arg Gly Arg Phe Lys Val Glu Lys 965 970 Gln Val Tyr Gln Lys Leu Glu Lys Met Leu Ile Glu Lys Leu Asn Tyr Leu Val Phe Lys Asp Asn Glu Phe Asp Lys Thr Gly Gly Val Leu Arg 995 1000 1005 Ala Tyr Gln Leu Thr Ala Pro Phe Glu Thr Phe Lys Lys Met Gly 1010 1015 1020 Lys Gln Thr Gly Ile Ile Tyr Tyr Val Pro Ala Gly Phe Thr Ser 1025 1030 1035 Lys Ile Cys Pro Val Thr Gly Phe Val Asn Gln Leu Tyr Pro Lys 1045 Tyr Glu Ser Val Ser Lys Ser Gln Glu Phe Phe Ser Lys Phe Asp 1060 Lys Ile Cys Tyr Asn Leu Asp Lys Gly Tyr Phe Glu Phe Ser Phe 1075 1080 Asp Tyr Lys Asn Phe Gly Asp Lys Ala Ala Lys Gly Lys Trp Thr 1085 1090 1095 Ile Ala Ser Phe Gly Ser Arg Leu Ile Asn Phe Arg Asn Ser Asp 1100 1105 Lys Asn His Asn Trp Asp Thr Arg Glu Val Tyr Pro Thr Lys Glu 1115 1120 1125

Leu Glu Lys Leu Lys Asp Tyr Ser Ile Glu Tyr Gly His Gly

1135

1130

Glu	Cys 1145		e Lys	s Ala	a Alá	a Il∈ 115	-	ys G	ly G	lu	Ser	Asp 1155	Lys	Lys	Phe
Phe	Ala 1160		: Lei	ı Thr	s Ser	r Val		eu A	sn I	hr'	Ile	Leu 1170	Gln	Met	Arg
Asn	Ser 1175	_	: Thi	c Gly	y Thr	f Glu 118		eu A	sp I	'yr	Leu	Ile 1185		Pro	Val
Ala	Asp 1190		. Asr	ı Gly	/ Asr	n Phe 119		ne A	sp S	er.	Arg	Gln 1200	Ala	Pro	Lys
Asn	Met 1205		Glr	n Asp) Alá	a Asp 121		la A	sn G	ly.	Ala	Tyr 1215	His	Ile	Gly
Leu	Lys 1220	_	, Lei	ı Met	Leu	1 Leu 122		Ly A	rg I	le	Lys	Asn 1230	Asn	Gln	Glu
Gly	Lys 1235		: Lei	ı Asr	ı Leı	ı Val 124		le L	ys A	sn	Glu	Glu 1245	Tyr	Phe	Glu
Phe	Val 1250		n Asr	n Arç	g Asr	n Asr 125									
<210 <211 <212 <213	> 119 > PR	Γ	us Me	ethan	oplas	ma te	rmitu	m 10							
<400 Met		Asn	Tyr	Asp	Glu	Phe	Thr	Lys	Leu	Ty	r Pr	o Ile	e Gln	. Lys	Thr
1			-	5				_		_				15	
									10					13	
Ile	Arg	Phe	Glu 20	Leu	Lys	Pro	Gln	Gly 25		Th	r Me	et Gli	u His 30		Glu
			20		_			25	Arg					: Leu	
Thr	Phe	Asn 35	20 Phe	Phe	Glu	Glu	Asp 40	25 Arg	Arg Asp	Aro	g Al	a Gli 45 's Ph	30	Leu Tyr	Lys

Lys	Leu	Phe	Ser	Glu 85	Leu	Leu	Lys	Glu	Glu 90	Ile	Tyr	Lys	Lys	Gly 95	Asn
His	Gln	Glu	Ile 100	Asp	Ala	Leu	Lys	Ser 105	Phe	Asp	Lys	Phe	Ser 110	Gly	Tyr
Phe	Ile	Gly 115	Leu	His	Glu	Asn	Arg 120	Lys	Asn	Met	Tyr	Ser 125	Asp	Gly	Asp
Glu	Ile 130	Thr	Ala	Ile	Ser	Asn 135	Arg	Ile	Val	Asn	Glu 140	Asn	Phe	Pro	Lys
Phe 145	Leu	Asp	Asn	Leu	Gln 150	Lys	Tyr	Gln	Glu	Ala 155	Arg	Lys	Lys	Tyr	Pro 160
Glu	Trp	Ile	Ile	Lys 165	Ala	Glu	Ser	Ala	Leu 170	Val	Ala	His	Asn	Ile 175	Lys
Met	Asp	Glu	Val 180	Phe	Ser	Leu	Glu	Tyr 185	Phe	Asn	Lys	Val	Leu 190	Asn	Gln
Glu	Gly	Ile 195	Gln	Arg	Tyr	Asn	Leu 200	Ala	Leu	Gly	Gly	Tyr 205	Val	Thr	Lys
Ser	Gly 210	Glu	Lys	Met	Met	Gly 215	Leu	Asn	Asp	Ala	Leu 220	Asn	Leu	Ala	His
Gln 225	Ser	Glu	Lys	Ser	Ser 230	Lys	Gly	Arg	Ile	His 235	Met	Thr	Pro	Leu	Phe 240
Lys	Gln	Ile	Leu	Ser 245	Glu	Lys	Glu	Ser	Phe 250	Ser	Tyr	Ile	Pro	Asp 255	Val
Phe	Thr	Glu	Asp 260	Ser	Gln	Leu	Leu	Pro 265	Ser	Ile	Gly	Gly	Phe 270	Phe	Ala
Gln	Ile	Glu 275	Asn	Asp	Lys	Asp	Gly 280	Asn	Ile	Phe	Asp	Arg 285	Ala	Leu	Glu
Leu	Ile 290	Ser	Ser	Tyr	Ala	Glu 295	Tyr	Asp	Thr	Glu	Arg 300	Ile	Tyr	Ile	Arg
Gln	Ala	Asp	Ile	Asn	Arg	Val	Ser	Asn	Val	Ile	Phe	Gly	Glu	Trp	Gly

305	310	315	320
Thr Leu Gly Gly Leu		Lys Ala Asp Ser Ile	Asn Asp
325		330	335
Ile Asn Leu Glu Arg	Thr Cys Lys Lys V	7al Asp Lys Trp Leu	Asp Ser
340	345	350	
Lys Glu Phe Ala Leu	Ser Asp Val Leu G	Glu Ala Ile Lys Arg	Thr Gly
355	360	365	
Asn Asn Asp Ala Phe	Asn Glu Tyr Ile S	Ser Lys Met Arg Thr	Ala Arg
370	375	380	
Glu Lys Ile Asp Ala	Ala Arg Lys Glu M	Met Lys Phe Ile Ser	Glu Lys
385	390	395	400
Ile Ser Gly Asp Glu		le Ile Lys Thr Leu	Leu Asp
405		10	415
Ser Val Gln Gln Phe 420	Leu His Phe Phe A 425	asn Leu Phe Lys Ala 430	Arg Gln
Asp Ile Pro Leu Asp	Gly Ala Phe Tyr A	ala Glu Phe Asp Glu	Val His
435	440	445	
Ser Lys Leu Phe Ala	Ile Val Pro Leu T	'yr Asn Lys Val Arg	Asn Tyr
450	455	460	
Leu Thr Lys Asn Asn	Leu Asn Thr Lys L	Lys Ile Lys Leu Asn	Phe Lys
465	470	475	480
Asn Pro Thr Leu Ala		Gln Asn Lys Val Tyr	Asp Tyr
485		190	495
Ala Ser Leu Ile Phe	Leu Arg Asp Gly A	asn Tyr Tyr Leu Gly	Ile Ile
500	505	510	
Asn Pro Lys Arg Lys	Lys Asn Ile Lys P	Phe Glu Gln Gly Ser	Gly Asn
515	520	525	
Gly Pro Phe Tyr Arg	Lys Met Val Tyr L	ys Gln Ile Pro Gly	Pro Asn
530	535	540	

Lys 545	Asn	Leu	Pro	Arg	Val 550	Phe	Leu	Thr	Ser	Thr 555	Lys	Gly	Lys	Lys	Glu 560
Tyr	Lys	Pro	Ser	Lys 565	Glu	Ile	Ile	Glu	Gly 570	Tyr	Glu	Ala	Asp	Lys 575	His
Ile	Arg	Gly	Asp 580	Lys	Phe	Asp	Leu	Asp 585	Phe	Cys	His	Lys	Leu 590	Ile	Asp
Phe	Phe	Lys 595	Glu	Ser	Ile	Glu	Lys 600	His	Lys	Asp	Trp	Ser 605	Lys	Phe	Asn
Phe	Tyr 610	Phe	Ser	Pro	Thr	Glu 615	Ser	Tyr	Gly	Asp	Ile 620	Ser	Glu	Phe	Tyr
Leu 625	Asp	Val	Glu	Lys	Gln 630	Gly	Tyr	Arg	Met	His 635	Phe	Glu	Asn	Ile	Ser 640
Ala	Glu	Thr	Ile	Asp 645	Glu	Tyr	Val	Glu	Lys 650	Gly	Asp	Leu	Phe	Leu 655	Phe
Gln	Ile	Tyr	Asn 660	Lys	Asp	Phe	Val	Lys 665	Ala	Ala	Thr	Gly	Lys 670	Lys	Asp
Met	His	Thr 675	Ile	Tyr	Trp	Asn	Ala 680	Ala	Phe	Ser	Pro	Glu 685	Asn	Leu	Gln
Asp	Val 690	Val	Val	Lys	Leu	Asn 695	Gly	Glu	Ala	Glu	Leu 700	Phe	Tyr	Arg	Asp
Lys 705	Ser	Asp	Ile	Lys	Glu 710	Ile	Val	His	Arg	Glu 715	Gly	Glu	Ile	Leu	Val 720
Asn	Arg	Thr	Tyr	Asn 725	Gly	Arg	Thr	Pro	Val 730	Pro	Asp	Lys	Ile	His 735	Lys
Lys	Leu	Thr	Asp 740	Tyr	His	Asn	Gly	Arg 745	Thr	Lys	Asp	Leu	Gly 750	Glu	Ala
Lys	Glu	Tyr 755	Leu	Asp	Lys	Val	Arg 760	Tyr	Phe	Lys	Ala	His 765	Tyr	Asp	Ile
Thr	Lys	Asp	Arg	Arg	Tyr	Leu	Asn	Asp	Lys	Ile	Tyr	Phe	His	Val	Pro

770		775		780	
Leu Thr Leu 785	Asn Phe Lys 790	Ala Asn Gl	ly Lys Lys <i>1</i> 795	Asn Leu Asn	Lys Met 800
Val Ile Glu	Lys Phe Leu 805	Ser Asp G	lu Lys Ala B 810	His Ile Ile	Gly Ile 815
Asp Arg Gly	Glu Arg Asn 820	_	yr Tyr Ser I 25	Ile Ile Asp 830	Arg Ser
Gly Lys Ile 835	Ile Asp Gln	Gln Ser Le 840	eu Asn Val I	Ile Asp Gly 845	Phe Asp
Tyr Arg Glu 850	Lys Leu Asn	Gln Arg Gl 855		Met Lys Asp 860	Ala Arg
Gln Ser Trp 865	Asn Ala Ile 870	Gly Lys Il	le Lys Asp 1 875	Leu Lys Glu	Gly Tyr 880
Leu Ser Lys	Ala Val His 885	Glu Ile Th	nr Lys Met <i>A</i> 890	Ala Ile Gln	Tyr Asn 895
Ala Ile Val	Val Met Glu 900		sn Tyr Gly I 05	Phe Lys Arg 910	Gly Arg
Phe Lys Val 915	Glu Lys Gln	Ile Tyr Gl 920	ln Lys Phe (Glu Asn Met 925	Leu Ile
Asp Lys Met 930	Asn Tyr Leu	Val Phe Ly 935	-	Pro Asp Glu 940	Ser Pro
Gly Gly Val 945	Leu Asn Ala 950	Tyr Gln Le	eu Thr Asn I 955	Pro Leu Glu	Ser Phe 960
Ala Lys Leu	Gly Lys Gln 965	Thr Gly II	le Leu Phe 1 970	Tyr Val Pro	Ala Ala 975
Tyr Thr Ser	Lys Ile Asp 980		nr Gly Phe V 85	Val Asn Leu 990	Phe Asn
Thr Ser Ser 995	Lys Thr Asn	Ala Gln (Glu Arg Lys	Glu Phe Le	eu Gln Lys

Phe	Glu 1010	Ser	Ile	Ser	Tyr	Ser 1015		Lys	Asp	Gly	Gly 1020		Phe	Ala
Phe	Ala 1025	Phe	Asp	Tyr	Arg	Lys 1030		Gly	Thr	Ser	Lys 1035		Asp	His
Lys	Asn 1040		Trp	Thr	Ala	Tyr 1045		Asn	Gly	Glu	Arg 1050		Arg	Tyr
Ile	Lys 1055	Glu	Lys	Lys	Arg	Asn 1060		Leu	Phe	Asp	Pro 1065		Lys	Glu
Ile	Lys 1070	Glu	Ala	Leu	Thr	Ser 1075	Ser	Gly	Ile	Lys	Tyr 1080		Gly	Gly
Gln	Asn 1085	Ile	Leu	Pro	Asp	Ile 1090	Leu	Arg	Ser	Asn	Asn 1095	Asn	Gly	Leu
Ile	Tyr 1100	Thr	Met	Tyr	Ser	Ser 1105	Phe	Ile	Ala	Ala	Ile 1110	Gln	Met	Arg
Val	Tyr 1115	Asp	Gly	Lys	Glu	Asp 1120		Ile	Ile	Ser	Pro 1125	Ile	Lys	Asn
Ser	Lys 1130	Gly	Glu	Phe	Phe	Arg 1135	Thr	Asp	Pro	Lys	Arg 1140	Arg	Glu	Leu
Pro	Ile 1145	Asp	Ala	Asp		Asn 1150	_	Ala	Tyr		Ile 1155	Ala	Leu	Arg
Gly	Glu 1160	Leu	Thr	Met		Ala 1165	Ile	Ala	Glu		Phe 1170	Asp	Pro	Asp
Ser	Glu 1175	Lys	Met	Ala		Leu 1180		Leu	Lys		Lys 1185	Asp	Trp	Phe
Glu	Phe 1190		Gln	Thr		Gly 1195								

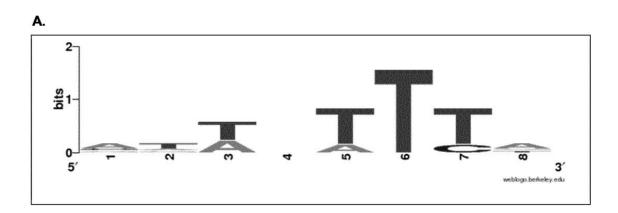
REIVINDICACIONES

- 1. Un vector de expresión que comprende una secuencia de nucleótidos que codifica un polipéptido Cpf1 que comprende la secuencia de aminoácidos YLFQIYNKDF (residuos de aminoácidos 784-793 de la SEQ ID NO: 1).
- 2. El vector de expresión de la reivindicación 1, en el que dicho polipéptido Cpf1 tiene al menos el 60% de identidad con la SEQ ID NO: 1 y tiene actividad de nucleasa.
- 3. El vector de expresión de la reivindicación 1, en el que el polipéptido Cpf1 comprende la secuencia de aminoácidos GKLYLFQIYNKDFS (residuos de aminoácidos 781-794 de la SEQ ID NO: 1).
 - 4. El vector de expresión de la reivindicación 1, en el que el polipéptido Cpf1 es una nickasa.

5

40

50


- 5. El vector de expresión de cualquiera de las reivindicaciones 1 a 4, en el que el polipéptido Cpf1 está fusionado en su extremo N-terminal o C-terminal a una secuencia de aminoácidos adicional.
- El vector de expresión de la reivindicación 5, en el que la secuencia de aminoácidos adicional es una proteína seleccionada de entre una helicasa, una nucleasa, una nucleasa, una ADN metiltransferasa, una ADN desmetilasa, una histona metiltransferasa, una histona desmetilasa, una acetilasa, una desacetilasa, una fosfatasa, una quinasa, un (co)activador de la transcripción, una subunidad de ARN polimerasa, un represor de la transcripción, una proteína de unión a ADN, una proteína de estructuración de ADN, una proteína marcadora, una proteína reportera, una proteína fluorescente, una proteína de unión a ligando, un péptido señal, una secuencia de localización subcelular o un epítopo de anticuerpo.
- 25 7. El vector de expresión de la reivindicación 6, en el que la secuencia de aminoácidos adicional es una secuencia de localización nuclear.
 - 8. El vector de expresión de la reivindicación 6, en el que la secuencia de aminoácidos adicional es un dominio Fokl.
- 9. El vector de expresión de cualquiera de las reivindicaciones anteriores, que además comprende una secuencia de nucleótidos que codifica un ARN guía que tiene una complementariedad sustancial con una secuencia deseada presente en una cadena de ácido nucleico diana.
- 10. Un sistema vector que comprende (a) un vector de expresión de cualquiera de las reivindicaciones 1 a 8 y (b) un vector que comprende una secuencia de nucleótidos que codifica un ARN guía que tiene una complementariedad sustancial con una secuencia deseada presente en una cadena de ácido nucleico diana.
 - 11. El vector o el sistema de expresión de cualquiera de las reivindicaciones anteriores, en el que dichos vectores son vectores víricos.
 - 12. El vector o el sistema de expresión de la reivindicación 11, en el que dichos vectores víricos son vectores víricos adenoasociados.
- 13. Una célula huésped que comprende una secuencia de nucleótidos que codifica un polipéptido Cpf1 que comprende la secuencia de aminoácidos YLFQIYNKDF (residuos de aminoácidos 784-793 de la SEQ ID NO: 1), no siendo la célula huésped parte de un cuerpo humano en ninguna etapa de formación o de desarrollo.
 - 14. El vector de expresión de la reivindicación 1, en el que dicho polipéptido Cpf1 tiene al menos el 85% de identidad con la SEQ ID NO: 1.
 - 15. El vector de expresión de la reivindicación 1, en el que dicho polipéptido Cpf1 tiene al menos el 95% de identidad con la SEQ ID NO: 1.

55

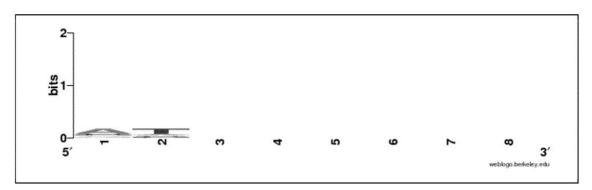

Figura 1

Figura 2

В.

Figura 3⊿

s MDAKEFTGGYPLSKTLRFELRPI GRTWDNLEA S.GYLAEDRHRAECY.PRAKELLDDNHRAFLNRVLPQI MIQEGFTNLYQUSKTLRFELIPQ GKTLKHIGE, O. GFIEEDRARND. HY. KELKPIIDRIYKTYADQCIGLUV termitum 10 MNNYDEPTKLYPIQKTIRFELKPQ GRTWEHLET F.NFFEEDRDRAE. KY. KILKPIIDRIYKTYADQCIGLUV MNNYDEPTKLYPIQKTIRFELKPQ GRTWEHLET F.NFFEEDRDRAE. KY. KILKPIIDRIYKTIBHLTNN MSKLEKFTNCYSLSKTLRFKAIPV GKTQENIDN K.RLUVEDEKRAE. DY. KGVKKLLDRYYLSFINDVLHSI 12 1 MSIYQEFVNKYSLSKTLRFELIPQ GKTLENIKA R.GLILDDEKRAK. DY. KKAKQIIDKYHQFFIEEILSSV	S	HESRENIY SDE DM. VSVAYRITEDNEPREVSNALIFDKINSERPD I ISEVSGNLGVDD. YENRKNVF SAE DISTAIPHRIVQDNEPKFKENCHIFTRLITAVPS LREHFENVKKAIGIEVSTS termitum 10 HENRKNWY SDG DEITAISNRIVNENFPKFLDNLQKYQEARKKYPE WIIKAESALVAHNIK ND2006 14 FDNRENMF SEE AKSTSIAPRCINENLITRYISNNDIFEKV DAIF DKHEVQETKEKILNSDYD. TE 1 HENRKNYY SSN DIPTSIIYRIVDDNLPKFLENKAYESL KDKAP EAINYEQIKKDLAEELTFDIDYKTSEVNQRVFS	S IGKYEDVSNYNNFLSQAGIDDYNHIIGGHTTEDGILQAENVVLN.LRHQKDPGFEKIQFKQLYKQLISVRTSK RIEEVESFPEYNQLLIGIGIDLYNQLLGGIS.REAGTEKIKGLNEVLN.LAIQKNDETA.HIIASLPHRFIPLFKQLISDRNTL termitum 10 MDEVESLEYFNKVLNQEGIQRYNLALGGYV.TKSGE.KMMGLNDALN.LAHQSEKSSKG.RIHMTPLFKQLISSKESF ND2006 14 VEDFFEGEFNYVLTQEGIDVYNLIGGEY.TESGE.KIKGLNEYIN.LYNQKTKO.KLPKFKPLYKQVLSDRESL IZ 1 LDEVFEIANFNNYLNQSGITKFNTIIGGEF.VNGENTRRKGINEYIN.LYSQQINNKKYKMSVLFKQIISDTESK	SYTPKQFDNSKE	1LSNKL ICDMDAIETALMHSSSSE INDKKSVYDSAEAFTLDDIFSSVKKF. 1TSSAL CDHWDTLRNALYBERRISE LTGKITK.SAKEKVQRSLK.HEDINLQEIISAAG. termitum 10 RVSNVI FGEWGTLGGLMREYKADS INDINLE.RTCKKVDKWLD.SKEFALSDVLEAIKRT.GN ND2006 14 TISKDI FGEWNVIRDKWNAEYDDI HLKKKAAVTE.KYEDJRRKSEKKIGSFSLEQLGEYADAD. 12 1 DLSQQV IAPKNIGAEF.NKHRDIDK
505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	595317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus
545612232 Acidaminococcus sp BV3L6 8	545612232 Acidaminococcus sp BV3L6 8	545612232 Acidaminococcus sp BV3L6 8	545612232 Acidaminococcus sp BV3L6 8	545612232 Acidaminococcus sp BV3L6 8	545612232 Acidaminococcus sp BV3L6 8
851218172 Candidatus Methanoplasma termitum	851218772 Candidatus Methanoplasma termitum 10	851218172 Candidatus Methanoplasma termitum 10	851218172 Candidatus Methanoplasma termitum 10	851218172 Candidatus Methanoplasma termitum 10	851218172 Candidatus Methanoplasma termitum 10
737666241 Lachnospiraceae	737666241 Lachnospiraceae bacterium ND2006 14	737666241 Lachnospiraceae bacterium ND2006 14	737666241 Lachnospiraceae bacterium ND2006 14	737666241 Lachnospiraceae bacterium ND2006 14	737666241 Lachnospiraceae bacterium ND2006 14
489130501 Francisella tularensis U112 1	489130501 Francisella tularensis U112 1	489130501 Francisella tularensis U112 1	489130501 Francisella tularensis Ull2 1	489130501 Francisella tularensis Ull2 1	489130501 Francisella tularensis VII2 1

Figura 3B

SDA. SAEDI NDDGYEAAVSKIRESLEPYMDLF KELSEAFKQKTSEILSHAHAALDQ PLPTTL KKQEEKIILKSQLOSLIGLY NDA. FENEYI SEKM. RTAREKIDAARKEMKFI SEKI SGEBESIHIIKTILDSVQQFL LSV. VEKLK EII IQKVDEIYKVYGSSEKLFDADF KKNDAVVAIMKDLLDSVKSFE QCR. FEELL ANF AAI PMIFDEIAQNKDNIAQISIKYQNQ GKKDLL QASAEDDVKAIKDLLDQTNNIL	HELEIFSVGDEFPRCAAFYSELEEVSEQLI.EIIPLENKARSFCTRKRYSTDKIKV.NLKFPTLAD.GWDLNKE HLLDWFAVDSSNEVDPEFSARLTGTKLEME.PSLSFYNKARNYATKRYSVBRFKL.NFGNFTLAS.GWDVNKE HFPNLF.KARQDIPLDGAFYABFDEVHSKLF.AIVPLYNKVRNYLTKNNINTKKIKL.NFKNPTLAN.GWDQNKV NYIKAF.FGEGKETNRDESFYGDFVLAYDILL.KVDHIYDAIRNYUTGKPYSKDKFKL.YFQNPQFMG.GWDKDKE HKLKIFHISQSED.KANILDKDEHFYLVFEEGYFELA.NIVPLYNKIRNYITQKFYSDEKFKL.NFENSTLAN.GWDKNKE	RDNKAALLRY DGKYYLAILDM.KKDLSSIRTSDEDESSF.EKMEYKLLPSPVKMLPKI KNNGALLFVR.NGIYYLGINPK.QKGRYKALGFEPPRKTS YDYASLIFUR.DGNYYLGINP.KRKKNIK.FEQGSGN.G PPY.RKMYKQIPGPNKNLPRV. TDYRATILRY GSKYYLAIMDK.KYAKCIQKIDKDDVN FDYRATILRY GSKYYLAIMDK.KYAKCIQKIDKDDVN FDYRATILRY GSKYYLGVNNK.KNNKIED.DKAIKENKGEGY.KKIVYKLIPGANKMLPKV	FVK SKAAKEK YGL T DRMLECYDK GMH KSGS HTTPILL SNNFTEP LEI T KEIYDINNPEKEP KKFGTAVAK KTGDQK FLT STKGKKE YKP S DXH IRGD FF SKKWMAY YNP S EDIQKIYKN GTF FF SAKSIKE YNP S EDILRIRNH STHT KNGSPQKG	AFD LGFC HELID. GYR EALC KWID. KFD LDFC HKLID. MFN LNDC HKLID. YEKF EFN IEDC.	YYKR.CIAAZY PEWD. VF. DEK.F. RET. SDYG.SMKEFNEDVAGA.GYYMSI.RKIPCSEV FIRD FISKY IXTT. SI.DLSSL. RPS.SQYK.DLGEYYAELNPL.LYHISF.QRIAAEKEI FFKE.SIEKH KOWS KF.NFY.F. SPT.ESYG.DISEFYLDVEKQ.GYRMHF.ENISAETI FFKD.SIERY PEWRSN.AY.DFN.F. SET.EKYK.DIAGFYREVEEQ.GYKVSF.ESAAKKEV SET.EKYK.DIAGFYREVEEQ.GYKVSF.ESASKKEV	YRLLD, EKS. IYLEQIYMKDYSENAHGNKNMHTMYWEGLFSPQN.LESPVFKLSGGAELFFRKSSIPNDAKTVHPKGSVLVP MDAVE.TGK.LYLEQIYMKDFAKGHGKPNLHTLYMTGLFSPEN.LAKTSIKLNGQAELFYRPKSRMKR.MAHRLGEKMLN BEYVE.KGD.LEFEQIYMKDFVKAATGKKDMHTIYMNAAFSPEN.LQDVVVKLNGGAELFYRDKSJIKE.,IVHREGEILVN DKLVE.EGK.LYMEQIYMKDFSDKSHGTPNLHTMYFKLL.FDENN.HGQIRLSGGAELFMRRASLKKEELVVHPANSPIAN DSVVN.ÕGK.LYLEQIYMKDFSAYSKGRPNLHTLYWKALFDENN.HQQIVYKLNGEAELFWRRASLKKEELVVHPANSPIAN	RN. DDNGRRIP. DSIYRELTRYFNRGDCRISDEAK. SYLDKVKTKKADH. DLVKDRRFTVDKMMFHVPIAMN. KRIKNDKTPIP. DTLYQELYDVUNHR. RT.YNGRTPVP. DXIHKKLTDYHNGRTKDLGEAKEYLDKVRY.F. KAHY. KN. PD. NPKK. TTT. KN. PD. NPKK. TTT. KN. PD. NPKK. ESV.	FKAISKP., NINKKVIDGIID. DQD., LKIIGIDRGERNLIYVTWVD. RKGNILYQD., SLNIL., NG. Y. YQAANSP. SKFNQRVNAYLKE. HPE., TPIIGIDRGERNLIYTVID. STGKILEQR., SLNTI., QQ. F. FKANGKK., NINKWYIEKFLS. DEK., AHIGIDRGERNLLYYSTID. RSGKILDQQ., SLNVI., DG. F. KCPKNIE., KINTEVRVLLKH. DDN., PYYIGIDRGERNLLYIVVVD. GKGNILKQP., SLNEI., IN NFNGI. RIKT FKSSGAN., KFNDEINLLIKEKAND., VHILSIDRGERHLAYYTLVD. GKGNIIKQD., TFNII., GN., D. RMKT
505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus
545612222 Acidaminococcus sp 34316 8	545612222 Acidaminococcus sp BV3L6 8	545612222 Acidaminococcus sp BV3L6 8	545612222 Acidaminococcus sp BV3L6 8	545612222 Acidaminococcus sp BV3L6 8	545612232 Acidaminococcus sp BV3L6 8	545612232 Acidaminococcus sp BV3L6 8	545612232 Acidaminococcus sp BV316 8	54561223 Acidaminococus so BV3L6 8
851218172 Candidatus Methanoplasma termitum 10	851218172 Candidatus Methanoplasma termitum 10	851218172 Candidatus Methanoplasma termitum 10	851218172 Candidatus Methanoplasma termitum 10	851218172 Candidatus Methanoplasma termitum 10	851218772 Candidatus Methanoplasma termitum 10	851218172 Candidatus Methanoplasma termitum 10	851218172 Candidatus Methanoplasma termitum 10	851218172 Candidatus Methanoplasma termitum 10
737666241 Lachnospiraceae bacterium ND2006 14	737666241 Lachnospiraceae bacterium ND2006 14	737666241 Lachnospiraceae bacterium ND206 14	737666241 Lachnospiraceae bacterium ND2066 14	737666241 Lachnospiraceae bacterium ND2066 14	73766624 Lachnospiraceae bacterium ND2006 14	737666241 Lachnospiraceae bacterium ND2006 14	737666241 Lachnospiraceae bacterium ND2066 14	737666241 Lachnospiracese bacterium ND2006 14
489130501 Francisella tularensis U112 1	489130501 Francisella tularensis U112 1	489130501 Francisella tularensis U112 1	489130501 Francisella tularensis U112 1	489130501 Francisella tularensis UI12 1	489130501 Francisella tularensis Ull2 1	889130501 Francisella tularensis U112 1	489130501 Francisella tularensis U112 1	489130501 Francisella tulamensis U112 1

Figura 30

US 8 termitum 10 n ND2006 14	HéMIGE MIGAENRA DYRKALDUNEYDN. KEARRNWIRVEGIRKWKEGYLSLAVSKLADMI B DYOKKALDUNEKER. VAARQAWSVUGIIKUKEGYLSQVIHEIYDLM LETMILUM 10 DYRKALDUREKER. VAARQAWSVUGIIKULEGYLSQVIHEIYDLM DYRKALNORDIEM. KDARQSWNAIGKIKDLKEGYLSQVIHEIYDLM ND2006 14 DYRKALNORDIEM. KDARQSWNAIGKIKDLKEGYLSQVVHKICELV DYRSTLOKKEKER. FEARQNWTSIENIKELKAGYLSQVVHKICELV NYHDRIAATEKDR. DSARKDWKKINNIKEMKEGYLSQVVHEIAKLU	EKQUYQKFESMLINKLGYMVLKDKS. IDQSGGALHGYQLAN. B IHYQ. AUVULBALNFGFKSKRT.GIA. Lermitum 10 IQYN. AIVVVLEDINYGFKRGRF.KV. ND2006 14 EKYD. AVIVFEDINSGFKNSRV.KV. EKQUYQKFESMLINKLGYMVLKNYP. IDQSGGALHGYQLAN. EKQUYQKFESMLINKLGYMVLKNAP. EKQUYQKFESMLINKLGYMVLKNAP. EKYD. AVIALEDINSGFKNSRV.KV. EKQUYQKFESMLIDKLNYMVDKKSN. PCATGGALKGYQITN. IEYN. AIVVFEDINFGFKRGRF.KV.	Lermitum 10 PLESFAKM. GRQCGVIEYIPAAFTSKID. PTTGFADLFALS. NVKNVASMREFESKMKSVIY Lermitum 10 PLESFAKL. GRQTGLIEYVPAAYTSKID. PTTGFVDEVWK. TIKNHESRKHFLEGFDFLHY ND2006 14 KFESFKSM. STQNGFIEYIPAMLTSKID. PSTGFVNLKTK. YTSIADSKKFISSFDRIMY STQNGFIEYIPAMLTSKID. PSTGFVNLKTK. YTSIADSKKFISSFDRIMY STQNGFIEYIPAMLTSKID. PSTGFVNLKTK. YTSIADSKKFISSFDRIMY	DKAEGK.FAFTF.DYLDYNVKSECGRTLWTVYT.VGERFTYSRVNREYVRKVPTD.IDAL B DVKTGD.FILHFKMNRNLSFQRGLPGFMPAWDIVFEKNETQFDAKGTPFIAGKRIVPVIENHRFTGRYRDL.YPANE.LIALL termitum 10 SAKDGGIFAFAF.DYRKFGTGKT.DHKNVWTAYT.NGERMRYIK.EKRNELFDPSKE.IKFAL n ND2006 14 VPEEDL.FEFAL.DYRNFSRTDA.DYIKK.WKLYS.YGNRIRIER.NFKNNVF.DWEEV.CLTSA.YKELF 112 1 NLDKGY.FEFSF.DYRNFGDKAAKGKWTIAS.FGSRINFR.NSDKNHNW.DTREV.YPTKE.LEKLI	OKAGISVEG. DLRD. RIAESD. GDTLKSIFYAFKYALDMRVE. NRE EEKGIVERD.GEDYINSPVRDASGEFFCSK. EEKGIVERD.GSNILP. KLIENDD. SFAIDTMVALIRSVLQMRNS. NAAT GEDYINSPVRDINGVCFDSR termitum 10 tssgixydg.golip. Dliasnn. NGLIYIMYSSFIAALQMRNY. DGK. EDYIISPIXNSKGEFFTD n ND2006 14 NKYGINYQQ.G.DIRA. LLCEQSD. KAFYSSFWALMSLMIQMRNSI. TGRT. DVDFIISPVKNSDGIFYDSR KBYSIEYGH.GECIKA.AICGESD. KKFFAKLTSVLNTILQMRNS. KTGT. ELDYLISPVADVNGNFFDSR	BUNC-III NAGKSLPQDSBANGANIALKGILQLRMLSEQYD.PNA.ESIRLPLITINKAMLTEMQSGMKTWK RECMILUM 10 PRRREPPIDABANGAYHIALKGQLLLNHLKESKDL.KLQNGISNQDWLAYIQELRN PRRREPPIDABANGAYHIALKGGLLLNHLKESKMAKLELKHKDWFEFWQIRGD PRRREPPIDABANGAYHIALKGGLLTMRAIAEKFDPDSE.KMAKLELKHKDWFEFWQIRGD NYE.APREPPIDABANIARKYLMALGGFKKABD.EKL.NYKKIATSNKFWIRAPAPPIBANIANIANIANIANIANIANIANIANIANIANIANIANIA
505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus	505317677 Methanomethylophilus alvus
545612232 Acidaminococcus sp BV316 8	545612232 Acidaminococcus sp BV316 8	545612232 Acidaminococcus sp BV316 8	545612232 Acidaminococcus sp BV316 8	545612232 Acidaminococcus sp BV3L6 8	545612232 Acidaminococcus sp BV316 8	545612232 Acidaminococcus sp BV3L6 8
851218172 Candidatus Methanoplasma termitum	851218172 Candidatus Methanoplasma termitum	851218172 Candidatus Methanoplasma termitum	851218172 Candidatus Methanoplasma termitum	851218172 Candidatus Methanoplasma termitum	851218172 Candidatus Methanoplasma termitum	851218172 Candidatus Methanoplasma termitum
737666241 Lachnospiraceae bacterium ND2006 1	737666241 Lachnospiraceae bacterium ND2006 1	737666241 Lachnospiraceae bacterium ND2006 1	737666241 Lachnospiraceae bacterium ND2006 1	737666241 Lachnospiraceae bacterium ND2006 1	737666241 Lachnospiraceae bacterium ND2006 1	737666241 Lachnospiraceae bacterium ND2006 1
489130501 Francisella tularensis U112 1	489130501 Francisella tularensis U112 1	489130501 Francisella tularensis U112 1	489130501 Francisella tularensis U112 1	489130501 Francisella tularensis Ull2 1	489130501 Francisella tularensis U112 1	889130501 Francisella Hularensis Ull2 1