

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 769 574

51 Int. Cl.:

C07K 14/705 (2006.01) C07K 19/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 15.03.2014 PCT/US2014/029983

(87) Fecha y número de publicación internacional: 18.09.2014 WO14145252

96 Fecha de presentación y número de la solicitud europea: 15.03.2014 E 14722891 (0)

(97) Fecha y número de publicación de la concesión europea: 28.08.2019 EP 2970426

54 Título: Reconocimiento de células citotóxicas con receptores quiméricos para inmunoterapia adoptiva

(30) Prioridad:

15.03.2013 US 201361793443 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **26.06.2020**

(73) Titular/es:

MILONE, MICHAEL C. (50.0%) 314 Surrey Road Cherry Hill, NJ 08002, US y WANG, ENXIU (50.0%)

(72) Inventor/es:

MILONE, MICHAEL C. y WANG, ENXIU

74 Agente/Representante:

SALVÀ FERRER, Joan

DESCRIPCIÓN

Reconocimiento de células citotóxicas con receptores quiméricos para inmunoterapia adoptiva

5 Descripción

10

[0001] Esta solicitud reivindica la prioridad de US Nº de serie: 61/793.443 presentada el 15 de marzo de 2013.

DECLARACIÓN CON RESPECTO A LA INVESTIGACIÓN O DESARROLLO FINANCIADA FEDERALMENTE

[0002] Esta invención se realizó con apoyo del gobierno con PN2 EY016586 otorgado por los Institutos Nacionales de Salud (NIH). El gobierno tiene ciertos derechos en la invención.

ANTECEDENTES DE LA INVENCIÓN

15

[0003] Con el uso de tecnologías de transferencia de genes, las células T pueden ser modificados genéticamente para expresar de forma estable de anticuerpos dominios de unión en su superficie que dotan a las células T con especificidades que son independientes de las restricciones impuestas por el complejo principal de histocompatibilidad (MHC). Los receptores de antígenos quiméricos (CARs) representan proteínas sintéticas 20 expresadas en las células T (células CART) que fusionan un fragmento de reconocimiento de antígeno de un anticuerpo (por ejemplo, un scFv, o fragmento de región variable de cadena única) con un dominio intracelular de la CD3-zeta cadena. Tras la interacción con una célula diana que expresa antígeno afín del scFv, CARs expresados en las células de células T pueden desencadenar la activación de células T que conduce a la destrucción de células diana (también referidos como lisis de células diana). Cuando se combina con señales coestimuladoras adicionales, 25 tales como el dominio intracelular de CD137 o CD28, estos receptores también son capaces de generar la proliferación. Sin embargo, parte de esta proliferación parece ser independiente de antígeno, a diferencia de las respuestas del receptor normal de las células T (TCR) (Milone et al., 2009, Mol Ther 17 (8): 1453-1464). Los receptores artificiales no se reproducen por completo la transducción de la señal intracelular producida por TCR natural de unión a péptido antigénico complejado con moléculas de MHC (Brocker, 2000, Blood 96 (5): 1999-30 2001). Los defectos de señalización pueden limitar la supervivencia a largo plazo de las células de CART en la transferencia adoptiva en ausencia de altos niveles de citocinas como la IL-2 (Lo et al, 2010, Clin Cancer Res 16 (10): 2769-80). También tienen alteración en la regulación que podría ser beneficioso en algunas aplicaciones contra el cáncer (Loskog et al, 2006, Leukemia 20 (10): 1819-1828), pero estos defectos reguladores también conducen a problemas potenciales para el control de su "fuera de la diana "actividad contra los tejidos normales, que también 35 expresan el antígeno, incluso a niveles extremadamente bajos. Estos efectos "fuera de objetivo" son una seria limitación a la terapéutica basada en el CAR, y han dado lugar a muertes probables durante la evaluación de fase I temprana de células T modificadas con CAR (Morgan et al. 2010, Mol Ther 18 (4): 843 -51).

[0004] Por lo tanto, existe una necesidad en la técnica de enfoques alternativos para la construcción de CARs que 40 superen las limitaciones actuales en agentes terapéuticos basados en CAR. La presente invención aborda esta necesidad insatisfecha en la técnica.

[0005] Zhang et al. The Journal of Immunology (2012); 189 (5): 2290-2299 describe un receptor de antígeno quimérico basado en NKp30.

DESCRIPCIÓN RESUMIDA

45

55

[0006] Basándose en la descripción en el presente documento, la presente invención proporciona la materia definida en las reivindicaciones adjuntas.

[0007] En un primer aspecto, la presente descripción se caracteriza por un NKR-CAR purificado, o de origen no natural, que comprende uno, dos o la totalidad de un dominio de unión a antígeno extracelular, un dominio transmembrana, por ejemplo, un dominio transmembrana de NKR, y un dominio citoplasmático, por ejemplo, un dominio citoplasmático de NKR.

[0008] En un caso, dicho NKR-CAR comprende un dominio de unión a antígeno extracelular; un dominio transmembrana y un dominio citoplasmático NKR. En un caso, dicho NKR-CAR comprende un KIR-CAR, por ejemplo, un actKIR-CAR o inhKIR-CAR, un NCR-CAR, por ejemplo, un actNCR-CAR, un SLAMF-CAR, por ejemplo, un inhSLAMF-CAR, un FcR-CAR, por ejemplo, CD16-CAR, por ejemplo, un actCD16-CAR, o CD64-CAR, por ejemplo, un actCD64-CAR, o un Ly49-CAR, por ejemplo, un actLy49-CAR o inhLy49-CAR. En un caso, el NKR-CAR comprende un dominio transmembrana y un dominio de unión a antígeno extracelular, y que comprende además un dominio bisagra dispuesto entre dicho dominio transmembrana y dicho dominio de unión a antígeno extracelular.

[0009] En otro aspecto, la presente descripción incluye un ácido nucleico, por ejemplo, un ácido nucleico purificado, o de origen no natural, por ejemplo, un ácido nucleico que comprende una secuencia de ADN, o ARN, por ejemplo, un ARNm, que comprende una secuencia ue codifica un NKR-CAR que se describe en este documento. En

un caso, el ácido nucleico comprende además una secuencia que codifica una molécula adaptadora o dominio de señalización intracelular que interactúa con dicho NKR-CAR.

[0010] En otro aspecto, la presente descripción se caracteriza por una célula citotóxica, por ejemplo, una célula T de origen natural o no natural, células NK o células T citotóxicas o una línea de células NK que comprenden un NKR-CAR que se describe en este documento. En un caso, la célula citotóxica comprende además una molécula adaptadora o dominio de señalización intracelular que interactúa con dicho NKR-CAR.

[0011] En otro aspecto, la presente descripción se caracteriza por un procedimiento de fabricación de una célula 10 citotóxica, por ejemplo, una célula T natural o no natural, células NK o células T citotóxicas o una línea de células NK que comprende un NKR-CAR, que se describe en el presente documento, que comprende introducir en una célula citotóxica un ácido nucleico, por ejemplo, un ARNm, que comprende una secuencia que codifica un NKR-CAR, que se describe en este documento. En un caso, el procedimiento comprende además fabricar un NKR-CAR, descrito en este documento, en la célula citotóxica.

[0012] En otro aspecto, la presente descripción presenta un procedimiento de tratamiento de un sujeto, por ejemplo, un procedimiento para proporcionar una inmunidad anti-tumoral en un mamífero, que comprende administrar al mamífero una cantidad eficaz de una célula citotóxica, por ejemplo, una célula T de origen natural o no natural, células NK o células T citotóxicas o una línea de células NK que comprende un NKR-CAR descrito en este 20 documento.

[0013] En otro aspecto, la presente descripción incluye un KIR-CAR purificado, o de origen no natural, que comprende un dominio de unión a antígeno extracelulary un dominio transmembrana, por ejemplo, un dominio transmembrana de KIR, o un dominio citoplasmático, por ejemplo, un dominio citoplasmático que contiene ITIM, o un dominio citoplasmático de KIR. En un caso, el KIR-CAR comprende un dominio de unión a antígeno extracelular, un dominio transmembrana y un dominio citoplasmático que contiene ITIM o un dominio citoplasmático de KIR.

[0014] En un caso, dicho dominio transmembrana puede interactuar con, por ejemplo, se unen, al dominio transmembrana DAP12. En una realización, dicho dominio transmembrana comprende un resto cargado positivamente, por ejemplo, un residuo de aminoácido que comprende un resto cargado positivamente, por ejemplo, la cadena lateral. En un caso, dicho dominio transmembrana comprende un dominio transmembrana de KIR.

[0015] En un caso, dicho KIR-CAR es un KIR-CAR activador. En un caso, dicho KIR-CAR comprende un dominio transmembrana de KIR. En un caso, dicho KIR-CAR es un KIR-CAR inhibidor. En un caso, dicho KIR-CAR comprende un dominio citoplasmático de KIR. En un caso, dicho KIR-CAR comprende un dominio de unión a antígeno extracelular y un dominio transmembrana, por ejemplo, un dominio transmembrana que comprende un resto cargado positivamente, por ejemplo, un dominio transmembrana de KIR.

40 **[0016]** En un caso, un KIR-CAR descrito en este documento comprende un dominio de unión a antígeno que comprende un scFv. En un caso, dicho dominio de unión a antígeno comprende un dominio único de VH, por ejemplo, un dominio de VH único de camélido, tiburón o lamprea, o un dominio único de VH derivado de una secuencia humana o de ratón, o un andamio de no anticuerpo, por ejemplo, una fibronectina, por ejemplo, una de molécula de tipo anticuerpo de fibronectina de tipo III. En un caso, dicho dominio de unión a antígeno comprende un 45 nanoanticuerpo. En un caso, dicho dominio de unión a antígeno comprende un dominio VHH de camélidos.

[0017] En un caso, un KIR-CAR que se describe en este documento comprende un dominio bisagra extracelular. En una realización, el dominio bisagra extracelular es distinto de un dominio bisagra de KIR, por ejemplo, distinto de un dominio bisagra KIR2DS2. En una realización, el dominio bisagra extracelular se deriva de una molécula natural. En una realización, el dominio bisagra extracelular se deriva de una molécula natural que no sea un KIR. En una realización, el dominio bisagra extracelular comprende una secuencia de polipéptido de origen no natural. En una realización, el dominio bisagra extracelular comprende la bisagra extracelular de CD8-alfa humana. En una realización, el dominio bisagra extracelular comprende una bisagra extracelular sintética. En una realización, el dominio bisagra extracelular es de menos de 50, 20, o 10 aminoácidos de longitud. En una fealización, el dominio bisagra extracelular tiene menos aminoácidos que un dominio bisagra KIR2DS2.

[0018] En un caso, el KIR-CAR que se describe en este documento es un actKIR-CAR. En un caso, dicho actKIR-CAR comprende un dominio transmembrana que comprende un resto cargado positivamente, por ejemplo, un residuo de aminoácido que comprende un resto cargado positivamente, por ejemplo, una cadena lateral cargada positivamente o un dominio transmembrana de actKIR. En un caso, dicho actKIR-CAR puede interactuar con y promover la señalización de un polipéptido que contiene ITAM o una molécula adaptadora. En un caso, dicho actKIR-CAR puede interactuar con y promover la señalización de un polipéptido DAP12. En un caso, dicho actKIR-CAR comprende un dominio D de KIR. En un caso, dicho actKIR-CAR comprende un dominio D1 de KIR. En un caso, dicho actKIR-CAR no comprende un dominio D de KIR. En un caso, dicho actKIR-CAR comprende un dominio D de KIR. En un caso, dicho actKIR-CAR comprende un dominio D de KIR. En un caso, dicho actKIR-CAR comprende un dominio D de KIR. En un caso, dicho actKIR-CAR comprende un dominio transmembrana KIR2DS2. En un caso, dicho actKIR-CAR no comprende además un dominio citoplasmático KIR2DS2. En un caso, dicho actKIR-CAR no

comprende un dominio D de KIR.

[0019] En un caso, el dominio de unión a antígeno de un KIR-CAR que se describe en este documento se une a un antígeno presente en una célula diana, por ejemplo, una célula de cáncer. En un caso, dicho dominio de unión a
5 antígeno se une a un antígeno que se expresaba mucho más en una célula diana, por ejemplo, una célula de cáncer que una célula no diana, por ejemplo, una célula no cancerosa, por ejemplo, una célula no cancerosa del mismo tipo que la célula diana. En un caso, dicho dominio de unión antígeno se une a un antígeno que se describe en el presente documento.

- 10 [0020] En un caso, el KIR-CAR que se describe en este documento es un inhKIR-CAR. En un caso, el inhKIR-CAR comprende un dominio transmembrana inhKIR. En un caso, el inhKIR-CAR inhKIR-CAR comprende un dominio citoplasmático que contiene ITIM, por ejemplo, un dominio citoplasmático de inhKIR, por ejemplo, un dominio citoplasmático KIR2DL o KIR3DL. En un caso, el inhKIR-CAR comprende un transmembrana que no es un transmembrana de KIR, por ejemplo, un dominio transmembrana de receptores PD-1, CTLA4 o que contienen ITM de las familias de receptores de los genes ILT (CD85), Siglec, LMIR (CD300) y/o SLAM. En un caso, el inhKIR-CAR comprende un dominio citoplasmático de un receptor inhibidor distinto de un KIR, por ejemplo, de PD-1, CTLA4 o receptores que contienen ITIM de familias de receptores de genes de ILT (CD85), Siglec, LMIR (CD300) y/o SLAM. En un caso, el inhKIR-CAR comprende un dominio transmembrana y dominio citoplasmático de un receptor inhibidor distinto de un KIR, por ejemplo, un dominio transmembrana y citoplasmático, independientemente, de por ejemplo, de receptores PD-1, CTLA4 o que contienen ITM de las familias de receptores de los genes ILT (CD85), Siglec, LMIR (CD300) y/o SLAM. En un caso, dicho dominio citoplasmático comprende un ITIM. En un caso, el inhKIR-CAR comprende un dominio D de KIR. En un caso, el inhKIR-CAR comprende un dominio D1 de KIR. En un caso, el inhKIR-CAR comprende un dominio D2 de KIR. En un caso, el inhKIR-CAR comprende un dominio D2 de KIR. En un caso, el inhKIR-CAR comprende un dominio D2 de KIR. En un caso, el inhKIR-CAR comprende un dominio D2 de KIR. En un caso, el inhKIR-CAR comprende un dominio D2 de KIR. En un caso, el inhKIR-CAR comprende un dominio D2 de KIR. En un caso, el inhKIR-CAR comprende un dominio D2 de KIR. En un caso, el inhKIR-CAR comprende un dominio D2 de KIR.
- [0021] En un caso, el dominio de unión a antígeno de los inhKIR-CARS describe en este documento se une a un antígeno no presente en una célula diana, por ejemplo, una célula de cáncer. En un caso, dicho antígeno se une dominio un antígeno que se expresaba mucho más en una célula no diana de unión, por ejemplo, una célula no cancerosa, de una célula diana, por ejemplo, célula cancerosa, por ejemplo, una célula cancerosa del mismo tipo como la célula diana. En un caso, dicho antígeno de unión se une de dominio desmoglein1/3 (Dsg1/3). En un ejemplo, un inhCAR, por ejemplo, un inhTCAR o inhNKR-CAR, por ejemplo, un inhKIR-CAR, y un actCAR, por ejemplo, un actTCAR o actNKR-CAR, por ejemplo, un actKIR-CAR, se proporcionan en la que los comprende inhCAR un dominio de unión al antígeno que los objetivos desmoglein1/3 (Dsg1/3) y el actCAR comprende un dominio de unión al antígeno que los objetivos de un antígeno distinto Dsg1/3, por ejemplo, EGFR. En un ejemplo, este par se usa para tratar un cáncer que expresa EGFR, por ejemplo, un adenocarcinoma de pulmón o colon. En un ejemplo, las células cancerosas expresan menos Dsg1/3 que las células no cancerosas. En un ejemplo de esta combinación puede minimizar ataque CAR-mediada de células de la piel o células escamosas de la pista GI (es decir, la mucosa oral). En un caso, dicho antígeno se une dominio de unión a un receptor de efrina o una claudin.
- 40 [0022] En otro aspecto, la descripción presenta un ácido nucleico, por ejemplo, un ácido nucleico purificado o no natural, por ejemplo, un ácido nucleico que comprende una secuencia de ADN o ARN, por ejemplo, un ARNm, que comprende (a) una secuencia que codifica un KIR-CAR, por ejemplo, un primer KIR-CAR que se describe en este documento. En un caso, dicho KIR-CAR, por ejemplo, dicho primer KIR-CAR, es un actKIR-CAR, por ejemplo, un actKIR-CAR que se describe en este documento. En un caso, dicho KIR-CAR, por ejemplo, dicho primer KIR-CAR, es un inhKIR-CAR, por ejemplo, un inhKIR-CAR que se describe en este documento. En un caso, dicho ácido nucleico comprende una secuencia de ADN. En un caso, dicho ácido nucleico comprende una secuencia de ARNm.
- [0023] En un ejemplo, dicho ácido nucleico comprende la secuencia que codifica un KIR-CAR, por ejemplo, un actKIR-CAR, y la secuencia que codifica una molécula inhibidora que comprende: un dominio citoplasmático de inhKIR; un dominio transmembrana, por ejemplo, un dominio transmembrana de KIR; y un dominio citoplasmático inhibidor, por ejemplo, un dominio ITIM, por ejemplo, un dominio ITIM de inhKIR. En un ejemplo, la molécula inhibidora es un inhKIR de origen natural, o una secuencia que comparte al menos 50, 60, 70, 80, 85, 90, 95, o 99% de homología con, o que difiere en no más de 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, o 20 residuos de un inhKIR de origen natural.
- [0024] En un ejemplo, dicho ácido nucleico comprende una secuencia que codifica un KIR-CAR, por ejemplo, un actKIR-CAR, y la secuencia que codifica una molécula inhibidora que comprende: un dominio citoplasmático de familia SLAM; un dominio transmembrana, por ejemplo, un dominio transmembrana de la familia SLAM; y un dominio citoplasmático inhibidor, por ejemplo, un dominio de la familia SLAM, por ejemplo, un dominio ITIM de familia SLAM. En un ejemplo, la molécula inhibidora es un miembro natural de la familia SLAM, o una secuencia que comparte al menos 50, 60, 70, 80, 85, 90, 95, o 99% de homología con, o que difiere en no más de 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, o 20 residuos de, un miembro de la familia SLAM de origen natural.
- 65 **[0025]** En un caso, dicho ácido nucleico descrito en este documento comprende además (b) una secuencia que codifica un segundo KIR-CAR que se describe en este documento, por ejemplo, un segundo KIR-CAR que es

diferente de dicho primer KIR-CAR. En un caso, (a) y (b) están dispuestas en la misma molécula de ácido nucleico, por ejemplo, el mismo vector, por ejemplo, el mismo vector viral, por ejemplo, un vector lenti-viral. En un caso, uno de (a) y (b) está dispuesto en una primera molécula de ácido nucleico, por ejemplo, un primer vector, por ejemplo, un vector viral, por ejemplo, un vector lenti-viral, y el otro está dispuesto en un segundo molécula de ácido nucleico, por ejemplo, un segundo vector, por ejemplo, un vector viral, por ejemplo, un vector lenti-viral. En un caso, dicho primer KIR-CAR y dicho segundo KIR-CAR es un actKIR-CAR. En un ejemplo, el compromiso de cualquiera acto KIR-CAR sí sola es insuficiente para provocar niveles sustanciales de activación. En un ejemplo, el acoplamiento de la primera y segunda actKIR-CAR da un aditivo, o sinérgico, el nivel de activación. En un caso, dicho primer KIR-CAR y dicho segundo KIR-CAR es un inhKIR-CAR. En un caso, uno de dichos primero KIR-CAR y dicho segundo KIR-CAR es un actKIR-CAR y el otro es un inhKIR-CAR. En un caso, dicho actKIR-CAR es un actKIR-CAR que se describe en este documento. En un caso, el ácido nucleico descrito en este documento comprende un actKIR-CAR que se describe en este documento y un inhKIR-CAR que se describe en este documento.

15 [0026] En una forma de realización comprende además poner nucleicos (c) la secuencia que codifica un dominio de señalización intracelular, por ejemplo, una molécula adaptadora, que puede producir una señal de activación. En una realización, dicho dominio de señalización intracelular comprende un motivo ITAM. En una realización, dicha secuencia codifica un polipéptido DAP 12 que comprende un dominio de señalización intracelular DAP 12. En una realización, dicho DAP 12 polipéptido comprende además un dominio transmembrana. En una realización, dicho 20 DAP 12 polipéptido comprende además un dominio extracelular. En un caso, cada uno de (a), (b), y (c) están presentes en la misma molécula de ácido nucleico, por ejemplo, un vector, por ejemplo, un vector viral, por ejemplo, un vector lenti-viral. En un caso, uno de (a), (b), y (c) se codifica en una primera molécula de ácido nucleico, por ejemplo, un vector, por ejemplo, un vector viral, por ejemplo, un vector lenti-viral y una segunda y tercera de (a), (b), y (c) se codifica en una segunda molécula de ácido nucleico, por ejemplo, un vector, por ejemplo, un vector viral, por 25 ejemplo, un vector lenti-viral. En un caso (a) está presente en una primera molécula de ácido nucleico, por ejemplo, un vector, por ejemplo, un vector viral, por ejemplo, un vector lenti-viral, y (b) y (c) están presentes en una segunda molécula de ácido nucleico, por ejemplo, un vector, por ejemplo, un vector viral, por ejemplo, un vector lenti-viral. En otro caso, (b) está presente en una primera molécula de ácido nucleico, por ejemplo, un vector, por ejemplo, un vector viral, por ejemplo, un vector lenti-viral, y (a) y (c) están presentes en un segundo ácido nucleico molécula, por 30 ejemplo, un vector, por ejemplo, un vector viral, por ejemplo, un vector lenti-viral. En un caso, (c) está presente en una primera molécula de ácido nucleico, por ejemplo, un vector, por ejemplo, un vector viral, por ejemplo, un vector lenti-viral, y (b) y (a) están presentes en un segundo ácido nucleico molécula, por ejemplo, un vector, por ejemplo, un vector viral, por ejemplo, un vector lenti-viral. En un caso, cada uno de (a), (b), y (c) están presentes en diferentes moléculas de ácido nucleico, por ejemplo, diferentes vectores, por ejemplo, vectores virales, por ejemplo, un 35 vectores lenti-viral.

[0027] En un ejemplo, (i) el dominio de uno de unión a antígeno de dicho primer KIR-CAR dicho segundo KIR-CAR no comprende un dominio variable de cadena ligera y un dominio variable de cadena pesada, (ii) el antígeno de dominio de unión una de dichas primer KIR-CAR dicho segundo KIR-CAR es un scFv, y el otro es otro es distinto de 40 un scFv, (iii) cuando está presente en la superficie de una célula, los dominios de unión al antígeno de dicho primer KIR-CAR y dicho segundo KIR-CAR, asociado con uno de otro menor que si ambos eran antígeno scFv dominios de unión, (iv) en la que, cuando está presente en la superficie de una célula, la unión del dominio de unión a antígeno de dicho primero KIR-CAR a su antígeno cognado no se reduce sustancialmente por la presencia de dicho segundo KIR-CAR, (v) el dominio de unión al antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR, 45 comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea solo dominio VH, o un único dominio VH derivado de una secuencia humana o de ratón, o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula, (vi) el dominio de unión a antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR, es un scFv, y la otra comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de 50 una secuencia humana o de ratón o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula, (vii) el dominio de unión a antígeno de uno de dichos primero KIR-CAR dicho segundo KIR-CAR, es un scFv, y la otra comprende un nanocuerpo, o dominio de unión a (viii) el antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR, es un scFv, y la otra comprende un dominio de camélidos VHH.

[0028] En un caso, el dominio de unión a antígeno de una de dicho primer KIR-CAR y dicho segundo KIR-CAR no comprende un dominio variable de cadena ligera y un dominio variable de cadena pesada. En un caso, el dominio de unión a antígeno de una de dicho primer KIR-CAR y dicho segundo KIR-CAR es un scFv, y el otro es distinto de un scFv.

55

[0029] En un caso, cuando está presente en la superficie de una célula, los dominios de unión al antígeno de dicho primer KIR-CAR dicho segundo KIR-CAR, asociado con uno de otro menor que si ambos eran antígeno scFv dominios de unión. En un caso, cuando está presente en la superficie de una célula, la unión del dominio de unión al antígeno de dicho primer KIR-CAR a su antígeno cognado no se reduce sustancialmente por la presencia de dicho segundo KIR-CAR. En un caso, el antígeno de dominio de uno de unión a dicho primer KIR-CAR dicho segundo KIR-CAR, comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un

único dominio VH derivado de un humano o la secuencia de ratón o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula. En un caso, el antígeno de dominio de uno de unión a dicho primer KIR-CAR dicho segundo KIR-CAR, es un scFv, y la otra comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un solo dominio VH derivado de una secuencia humana o de ratón o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula. En un caso, el dominio de unión a antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR, es un scFv, y la otra comprende un nanoanticuerpo. En un caso, el dominio de unión a antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR, es un scFv, y la otra comprende un dominio de camélidos VHH.

10

[0030] En una realización, el ácido nucleico comprende una secuencia que codifica un TCAR. En una realización, dicho TCAR comprende un dominio de unión a antígeno y un dominio citoplasmático activador del complejo de receptores de células T con CD3, por ejemplo, cadena zeta de CD3, cadena épsilon de CD3, cadena gamma de CD3, cadena delta de CD3. En una realización, dicho TCAR comprende un dominio coestimulador de receptor to coestimulador por ejemplo, CD28, CD137, CD27, ICOS u OX40.

En una forma de realización (i) el dominio de unión a antígeno de dicho KIR-CAR dicho TCAR no comprende un dominio variable de cadena ligera y un dominio variable de cadena pesada, (ii) el dominio de unión a antígeno de uno de dichos KIR- CAR dicho TCAR es un scFv, y el otro es distinto de un scFv, (iii) cuando está 20 presente en la superficie de una célula, los dominios de unión a antígeno dicho KIR-CAR y dicho TCAR, asociado con uno de otro menor que si ambos eran scFv antígeno dominios de unión, (iv) cuando está presente en la superficie de una célula, la unión del dominio de unión a antígeno de dicho KIR-CAR a su antígeno cognado no se reduce sustancialmente por la presencia de dicha unión segundo TCAR, (v) el antígeno dominio de uno de dichos KIR-CAR dicho TCAR, comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único 25 dominio VH, o un único dominio VH derivado de una secuencia humana o de ratón o un andamio de no anticuerpo, por ejemplo, , una fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula, (vi) el dominio de uno de unión a antígeno de dicho KIR-CAR dicho TCAR, es un scFv, y la otra comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de una secuencia humana o de ratón o un no andamio anticuerpo, por ejemplo, una fibronectina, por ejemplo, una de 30 fibronectina de tipo III similar a anticuerpo molécula, (vii) el dominio de uno de unión a antígenos dicho KIR-CAR dicho TCAR, es un scFv, y la otra comprende un nanocuerpo, o (viii) en la que, el dominio de unión a antígeno de uno de dichos KIR-CAR dicho TCAR, es un scFv, y la otra comprende un dominio de camélidos VHH. En una realización, el dominio de unión a antígeno de uno de dichos KIR-CAR dicho TCAR no comprende un dominio variable de cadena ligera y un dominio variable de cadena pesada.

35

[0032] En una realización, el dominio de unión a antígeno de uno de dichos KIR-CAR dicho TCAR es un scFv, y el otro es distinto de un scFv. En una realización, cuando está presente en la superficie de una célula, los dominios de unión a antígeno dicho KIR-CAR dicho TCAR, asociado con uno de otro menor que si ambos eran antígeno scFv dominios de unión. En una realización, cuando está presente en la superficie de una célula, la unión del dominio de unión a antígeno de dicho KIR-CAR a su antígeno cognado no se reduce sustancialmente por la presencia de dicho segundo TCAR. En una realización, el dominio de unión a antígeno de uno de dichos KIR-CAR dicho TCAR, comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de una secuencia humana o de ratón o un andamio no anticuerpo, por ejemplo, un fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula. En una realización, el dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio de VH derivados de una secuencia de humano o de ratón o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula. En una realización, el dominio de unión a antígeno de uno de dichos KIR-CAR dicho TCAR, es un scFv, y la otra comprende un nanoanticuerpo. En una realización, el dominio de unión a antígeno de uno de dichos KIR-CAR dicho TCAR, es un scFv, y la otra comprende un dominio de camélidos VHH.

[0033] En otro aspecto, la presente descripción presenta una célula citotóxica, por ejemplo, una célula T de origen natural o no natural, células NK o células T citotóxicas o una línea de células NK, por ejemplo, NK92, que comprende (a) un primer KIR-CAR que se describe en este documento. En un caso, dicha célula citotóxica es una célula T. En un caso, dicha célula citotóxica es una célula NK. En un caso, dicha célula citotóxica es de una línea de células NK, por ejemplo, una célula NK92. En un caso, dicho primer KIR-CAR es un actKIR-CAR que se describe en este documento. En un caso, dicho primer KIR-CAR es un inhKIR-CAR que se describe en este documento.

[0034] En un ejemplo, dicha célula citotóxica comprende un KIR-CAR, por ejemplo, un actKIR-CAR, y una molécula inhibidora que comprende: un dominio citoplasmático de inhKIR; un dominio transmembrana, por ejemplo, un dominio transmembrana de KIR; y un dominio citoplasmático inhibidor, por ejemplo, un dominio ITIM, por ejemplo, un dominio ITM de inhKIR. En un ejemplo, la molécula inhibidora es un inhKIR de origen natural, o una secuencia que comparte al menos 50, 60, 70, 80, 85, 90, 95, o 99% de homología con, o que difiere en no más de 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, o 20 residuos de un inhKIR de origen natural.

65

[0035] En un ejemplo, dicha célula citotóxica comprende un KIR-CAR, por ejemplo, un actKIR-CAR, y una

ES 2 769 574 T3

molécula inhibidora que comprende: un dominio citoplasmático de la familia SLAM; un dominio transmembrana, por ejemplo, un dominio de transmembrana de la familia SLAM; y un dominio citoplasmático inhibidor, por ejemplo, un dominio de la familia SLAM, por ejemplo, un dominio ITIM de la familia SLAM. En un ejemplo, la molécula inhibidora es un miembro natural de la familia SLAM, o una secuencia que comparte al menos 50, 60, 70, 80, 85, 90, 95, o 99% 5 de homología con, o que difiere en no más de 1, 2, 3, 4, 5.

[0036] En un caso, la célula citotóxica comprende además (b) un segundo KIR-CAR que se describe en el presente documento, por ejemplo, un segundo KIR-CAR que es diferente de dicho primer KIR-CAR. En un caso, uno de dichos KIR-CAR y dicho segundo KIR-CAR es un actKIR-CAR y el otro es un inhKIR-CAR. En un caso, dicho actKIR-CAR es un actKIR-CAR que se describe en este documento. En un caso, uno de dichos inhKIR-CAR es un inhKIR-CAR que se describe en este documento. En un caso, la célula citotóxica describa en este documento comprende actKIR-CAR que se describe en este documento y un inhKIR-CAR que se describe en este documento.

[0037] En un ejemplo, la célula citotóxica comprende además un dominio de señalización intracelular, por ejemplo, una molécula adaptadora, que puede producir una señal de activación, por ejemplo, que es exógena a dicha célula, que puede producir una señal de activación. En un caso, dicho dominio de señalización intracelular comprende un motivo ITAM. En un caso, dicho dominio de señalización intracelular comprende un polipéptido DAP 12 que comprende el dominio de señalización intracelular DAP 12. En un caso, dicho polipéptido DAP 12 comprende además un dominio transmembrana. En un caso, dicho polipéptido DAP 12 comprende además un dominio 20 extracelular.

En un ejemplo, una célula citotóxica comprende un primer y segundo KIR-CAR que se describe en este [0038] documento en el que (i) el dominio de uno de unión a antígenos dicho primer KIR-CAR dicho segundo KIR-CAR no comprende un dominio variable de cadena ligera y una pesada de dominio variable de la cadena, (ii) el dominio de 25 uno de unión a antígeno de dicho primer KIR-CAR dicho segundo KIR-CAR es un scFv, y el otro es distinto de un scFv, (iii) cuando está presente en la superficie de una célula, los dominios de unión al antígeno de dicho primer KIR-CAR y dicho segundo KIR-CAR, asociado con uno de otro menor que si ambos eran antígeno scFv dominios de unión, (iv) cuando está presente en la superficie de una célula, la unión del dominio de unión a antígeno dicho primer KIR-CAR a su antígeno cognado no se reduce sustancialmente por la presencia de dicho segundo KIR-CAR, 30 dominio (v) de unión a antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR, comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o dominio VH único lamprea, o un único dominio VH derivado de un humano o mo secuencia de uso o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula, (vi) el dominio de unión a antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR, comprende un scFv, y la otra comprende un único dominio de VH, por ejemplo, 35 un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de una secuencia humana o de ratón o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, un fibronectina tipo III similar a anticuerpo molécula, (vii) en el que, el dominio de unión a antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR, comprende un scFv, y la otra comprende un nanocuerpo, o (viii) el dominio de unión a antígeno una de dichas primer KIR-CAR dicho segundo KIR-CAR, comprende un scFv, y la otra comprende un dominio de camélidos

[0039] En un caso, el dominio de unión a antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR no comprende un dominio variable de cadena ligera y un dominio variable de cadena pesada. En un caso, el dominio de unión a antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR es un scFv, y el otro es distinto de un 45 scFv. En un caso, cuando está presente en la superficie de una célula, los dominios de unión al antígeno de dicho primer KIR-CAR dicho segundo KIR-CAR, asociado con uno de otro menor que si ambos eran antígeno scFv dominios de unión. En un caso, cuando está presente en la superficie de una célula, la unión del dominio de unión al antígeno de dicho primer KIR-CAR a su antígeno cognado no se reduce sustancialmente por la presencia de dicho segundo KIR-CAR. En un caso, el antígeno de dominio de uno de unión a dicho primer KIR-CAR dicho segundo 50 KIR-CAR, comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de un humano o la secuencia de ratón o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula. En un caso, el antígeno de dominio de uno de unión a dicho primer KIR-CAR dicho segundo KIR-CAR, comprende un scFv, y la otra comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o dominio VH único lamprea, o un solo dominio VH 55 derivado de una secuencia humana o de ratón o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula. En un caso, el dominio de unión a antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR, comprende un scFv, y la otra comprende un nanoanticuerpo. En un caso, el dominio de unión a antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR, comprende un scFv, y la otra comprende un dominio de camélidos VHH. 60

[0040] En un ejemplo, una célula citotóxica comprende KIR-CARs, tal como se describe en este documento y comprende además un TCAR. En un caso, dicho TCAR comprende un dominio de unión a antígeno y un dominio de la estimulación primaria. En un caso, dicho TCAR comprende un dominio de coestimulación.

65 **[0041]** En un ejemplo, la célula citotóxica, por ejemplo, una célula T natural o no natural, células NK o células T citotóxicas o una línea de células NK, por ejemplo, una célula NK92, comprende un ácido nucleico como se describe

en el presente documento; o un KIR-CAR codificado por un ácido nucleico descrito en el presente documento. En un caso, dicha célula citotóxica es una célula T. En un caso, dicha célula citotóxica es una célula NK. En un caso, dicha célula citotóxica es de una línea de células NK, por ejemplo, NK92.

- 5 [0042] En otro aspecto, la presente descripción presenta procedimientos de fabricación de una célula que se describe en este documento que comprende introducir en una célula citotóxica, un ácido nucleico descrito en el presente documento en dicha célula. En un caso, dicho procedimiento comprende la formación en una célula citotóxica, un KIR-CAR.
- En otro aspecto, la presente descripción presenta procedimientos de tratar a un sujeto, por ejemplo, un 10 **[0043]** procedimiento para proporcionar una inmunidad anti-tumoral en un mamífero, que comprende administrar al mamífero una cantidad eficaz de una célula que se describe en este documento. En un caso, dicha célula es autóloga. En un caso, dicha célula es alogénica. En una realización, la célula es una célula T, por ejemplo, una célula T autóloga. En una realización, la célula es una célula T alogénico. En una realización, la célula es una célula 15 NK, por ejemplo, una célula NK autólogo. En una realización, la célula es una célula NK alogénicas. En una realización, la célula es una célula de una línea celular NK, por ejemplo, NK92. En un caso, dicho mamífero es un humano. En un caso, dicho que el procedimiento comprende además la evaluación de mamífero, por ejemplo, humano, por un efecto secundario de dicho tratamiento. En un caso, dicho efecto lateral comprende aguda síndrome de dificultad respiratoria, neutropenia febril, hipotensión, encefalopatía, transaminitis hepática, convulsiones, o el 20 síndrome de activación de macrófagos. En un caso, el procedimiento comprende además el tratamiento de dicho humano que tiene un efecto secundario con el agente anti-citocina, por ejemplo, un antagonista de factor de necrosis tumoral, por ejemplo, una fusión TNF-Ig, por ejemplo, etanercept, un antagonista de IL-6, por ejemplo, una antagonista IL6 receptor, por ejemplo, un anticuerpo anti-receptor de IL6, por ejemplo, tocilizumab, o un corticosteroide. En una realización, el tratamiento comprende la administración de un anticuerpo anti-receptor de IL6 25 a dicho ser humano. En un caso, el procedimiento comprende el tratamiento de un mamífero, por ejemplo un humano, que tiene una enfermedad asociada con la expresión de mesotelina o CD19. En un caso, el procedimiento comprende el tratamiento de un mamífero, por ejemplo un humano, que tiene un trastorno asociado con proliferación celular no deseada, por ejemplo, cáncer. En un caso, dicho trastorno es carcinoma de páncreas, mesotelioma, carcinoma de pulmón, carcinoma de ovario, leucemia o linfoma.
- En otro aspecto, la presente descripción incluye un purificada, o de origen no natural, NCR-CAR, por ejemplo, un NCR-CAR de activación, que comprende un dominio de unión a antígeno extracelular, un dominio transmembrana, por ejemplo, un dominio transmembrana que comprende un resto cargado positivamente, por ejemplo, un residuo de aminoácido que comprende un resto cargado positivamente, por ejemplo, una cadena lateral 35 cargada positivamente o un dominio transmembrana NCR, y un dominio citoplasmático, por ejemplo, un dominio citoplasmático NCR. En un caso, dicho NCR-CAR comprende un dominio transmembrana que comprende un resto cargado positivamente, por ejemplo, un residuo de aminoácido que comprende un resto cargado positivamente, por ejemplo, una cadena lateral cargada positivamente, por ejemplo, el dominio transmembrana NCR, por ejemplo, un NKp30, NKp44, NKp46 o dominio citoplasmático. En un caso, dicho NCR-CAR comprende un dominio citoplasmático 40 que puede interactuar con una molécula adaptadora que comprende o molécula de señalización intracelular, por ejemplo, una DAP12, gamma de FcR o CD3 ζ dominio citoplasmático. En un caso, dicho NCR-CAR, por ejemplo, un NKp30-CAR, comprende un dominio transmembrana que puede interactuar con una molécula adaptadora o molécula de señalización intracelular, por ejemplo, DAP12. En un caso, dicho NCR-CAR comprende un NKp46-CAR. En un caso, dicho NKp46-CAR, comprende un dominio transmembrana que comprende un resto cargado 45 positivamente, por ejemplo, un residuo de aminoácido que comprende un resto cargado positivamente, por ejemplo, una cadena lateral cargada positivamente o, por ejemplo, un dominio transmembrana NCR, que pueden interactuar con una molécula adaptadora o molécula de señalización intracelular, por ejemplo, uno que tiene una gamma de FcR o CD3 ζ dominio citoplasmático. En un caso, dicho NCR-CAR que se describe en este documento comprende además un dominio bisagra dispuesta entre dicho dominio transmembrana y dicho un dominio de unión a antígeno 50 extracelular.
- [0045] En otro aspecto, la presente descripción incluye un ácido nucleico, por ejemplo, una que ocurre, el ácido de origen no natural nucleico, por ejemplo, un ácido nucleico que comprende una secuencia de ADN o ARN, por ejemplo, un ARNm, que comprende una secuencia purificada o que codifica una NCR-CAR que se describe en este documento. En un caso, el ácido nucleico comprende una secuencia que codifica una NKp30-CAR y, opcionalmente, una molécula adaptadora o molécula de señalización intracelular, por ejemplo, DAP12. En un caso, dicho NCR-CAR, por ejemplo, NKp46-CAR, comprende un dominio transmembrana que comprende un resto cargado positivamente, por ejemplo, un residuo de aminoácido que comprende un resto cargado positivamente, por ejemplo, una cadena lateral cargada positivamente o un dominio transmembrana NCR que pueden interactuar con una molécula adaptadora o molécula de señalización intracelular, por ejemplo, una gamma de FcR o molécula CD3 ζ. En un caso, comprende además poner en secuencia de ácido nucleico que codifica una molécula adaptadora o molécula de señalización intracelular, que por ejemplo, comprende una DAP12, gamma de FcR o CD3 ζ.
- [0046] En otro aspecto, la presente descripción se caracteriza por una célula citotóxica, por ejemplo, una célula T 65 de origen natural o no natural, células NK o células T citotóxicas o una línea de células NK que comprende un NCR-CAR que se describe en este documento. En un caso, la célula citotóxica comprende además una molécula

adaptadora o molécula de señalización intracelular, que por ejemplo, comprende un dominio citoplasmático DAP12, FcRγ o CD3ζ. En un caso, la célula citotóxica comprende un NKp30-CAR y, opcionalmente, una molécula adaptadora o molécula de señalización intracelular, por ejemplo, DAP12. En un caso, dicho NKp46-CAR comprende un dominio transmembrana que puede interactuar con una molécula adaptadora o molécula de señalización 5 intracelular, por ejemplo, una molécula FcRγ o molécula CD3 ζ.

[0047] En otro aspecto, la presente descripción incluye un procedimiento de fabricación de una célula que se describe en este documento que comprende, introducir en una célula citotóxica, un ácido nucleico que comprende una secuencia que codifica un NCR-CAR que se describe en este documento. En un caso, el procedimiento 10 comprende formar en una célula citotóxica, un NCR-CAR descrito en este documento.

[0048] En otro aspecto, la presente descripción presenta un procedimiento de tratamiento de un sujeto, por ejemplo, un procedimiento para proporcionar una inmunidad anti-tumoral en un mamífero, que comprende administrar al mamífero una cantidad eficaz de una célula que se describe en este documento, por ejemplo, una 15 célula de la reivindicación descrita en este documento que comprende NCR-CAR que se describe en este documento.

[0049] En otro aspecto, la presente descripción incluye un purificada, o de origen no natural, SLAMF-CAR, por ejemplo, un inhibidor SLAMF-CAR, que comprende un dominio de unión a antígeno extracelular, un dominio transmembrana, por ejemplo, un dominio transmembrana que comprende un resto cargado positivamente, por ejemplo, un a cadena lateral cargada positivamente, por ejemplo, un dominio SLAMF transmembrana y un dominio citoplasmático SLAMF. En un caso, dicho SLAMF-CAR comprende un dominio citoplasmático SLAMF, CD48, CD229, 2B4, CD84, NTB-A, CRACC, BLAME, o CD2F-10. En un caso, dicho SLAMF-CAR comprende además un dominio bisagra, dispuesto entre dicho dominio transmembrana y dicho un dominio de unión a antígeno extracelular.

[0050] En otro aspecto, la presente descripción se caracteriza por un ácido nucleico, por ejemplo, un ácido nucleico purificado o de origen no natural, por ejemplo, un ácido nucleico que comprende una secuencia de ADN o ARN, por ejemplo, un ARNm, que comprende una secuencia que codifica un SLAMF-CAR que se describe en este 30 documento.

[0051] En otro aspecto, la presente descripción ofrece una célula citotóxica, por ejemplo, una célula T de origen natural o no natural, células NK o células T citotóxicas o una línea de células NK que comprenden un SLAMF-CAR que se describe en este documento.

[0052] En otro aspecto, la presente descripción incluye un procedimiento de fabricación de una célula citotóxica que comprende un SLAMF-CAR que se describe en este documento, que comprende, introducir en una célula citotóxica un ácido nucleico que comprende una secuencia que codifica un SLAMF-CAR descrito en este documento. En un caso, el procedimiento comprende formar en una célula citotóxica, un SLAMF -CAR descritos en 40 este documento.

[0053] En otro aspecto, la presente descripción presenta un procedimiento de tratamiento de un sujeto, por ejemplo, un procedimiento para proporcionar una inmunidad anti-tumoral en un mamífero, que comprende administrar al mamífero una cantidad eficaz de una célula que comprende un SLAMF-CAR descrito en el presente 45 documento.

[0054] En otro aspecto, la presente descripción incluye un purificados, o de origen no natural, FcR-CAR, por ejemplo, CD16-CAR, por ejemplo, una activación de CD16-CAR o un CD64-CAR, por ejemplo, un CD64-CAR activación, que comprende una unión a antígeno del dominio extra-celular, un dominio transmembrana, y un dominio citoplasmático de CD16 o CD64. En un caso, dicho FcR-CAR es un CD16-CAR. En un caso, dicho FcR-CAR es un CD64-CAR. En un caso, dicho FcR-CAR puede interactuar con una molécula adaptadora o molécula de señalización intracelular, por ejemplo, un dominio gamma de FcR o CD3 ζ, por ejemplo, a través de un dominio transmembrana, por ejemplo, un dominio transmembrana que comprende un resto cargado positivamente, por ejemplo, un aminoácido de residuos que comprende un resto cargado positivamente, por ejemplo, una cadena lateral cargada positivamente o, por ejemplo, un dominio transmembrana CD16 o CD64. En un caso, dicho FcR-CAR comprende además un dominio bisagra, dispuesto entre dicho dominio transmembrana y dicho un dominio de unión a antígeno extracelular.

[0055] En otro aspecto, la presente descripción incluye un purificada o no natural, el ácido nucleico, por ejemplo, un ácido nucleico que comprende una secuencia de ADN o ARN, por ejemplo, un ARNm que comprende una secuencia que codifica un FcR-CAR describen En el presente documento en. En un caso, el ácido nucleico comprende además una molécula adaptadora o molécula de señalización intracelular que comprende un dominio de activación citoplasmática, por ejemplo, dominio citoplasmático FcRγ o CD3 ζ. En un caso, dicho FcR -CAR y dicho dominio de activación citoplasmático están dispuestos en moléculas separadas de ácido nucleico, por ejemplo, vectores separados, por ejemplo, vectores virales separados, por ejemplo, vectores lenti-viral separados.

[0056] En otro aspecto, la presente descripción ofrece una célula citotóxica, por ejemplo, una célula T de origen natural o no natural, células NK o células T citotóxicas o una línea de células NK que comprende un FcR -CAR que se describe en este documento. En un caso, la célula citotóxica comprende además un dominio de activación citoplasmática, por ejemplo, gamma de FcR o CD3 ζ dominio citoplasmático.

[0057] En otro aspecto, la presente descripción incluye un procedimiento de fabricación de una célula que comprende un FcR -CAR que se describe en este documento, que comprende, introducir en una célula citotóxica, un ácido nucleico que comprende una secuencia que codifica un FcR -CAR que se describe en este documento. En un caso, el procedimiento comprende formar en una célula citotóxica, un FcR -CAR descritos en este documento.

[0058] En otro aspecto, la presente descripción presenta un procedimiento de tratamiento de un sujeto, por ejemplo, un procedimiento para proporcionar una inmunidad anti-tumoral en un mamífero, que comprende administrar al mamífero una cantidad eficaz de una célula que comprende un FcR -CAR describió En el presente documento en.

10

15

[0059] En otro aspecto, la presente exposición presenta purifica, o de origen no natural, Ly49-CAR que comprende un dominio de unión a antígeno extra-celular, y un dominio transmembrana, por ejemplo, un dominio Ly49-transmembrana, o un dominio citoplasmático, por ejemplo, , un dominio citoplasmático que contiene ITIM-, por ejemplo, un dominio Ly49-citoplásmica. En un caso, la Ly49-CAR comprende un dominio transmembrana y un caso, dicho Ly49-citoplásmica. En un caso, dicho Ly49-CAR activar, por ejemplo, Ly49D o Ly49H. En un caso, dicho Ly49-CAR comprende un dominio transmembrana cargado positivamente, por ejemplo, un dominio citoplasmático que contiene ITAM-, por ejemplo, DAP 12. En un caso, dicho Ly49-CAR comprende un dominio Ly49-transmembrana. En un caso, dicho KIR-CAR es un Ly49-CAR inhibidora, por ejemplo, Ly49A o Ly49C. En un caso, dicho Ly49-CAR comprende un dominio citoplasmático que contiene ITIM-, por ejemplo, un dominio Ly49-citoplásmica. En un caso, dicho Ly49-CAR comprende un dominio Ly49-citoplasma seleccionado, independientemente de Ly49A-Ly49W. En un caso, dicho Ly49-CAR comprende además un dominio bisagra, dispuesto entre dicho dominio transmembrana y dicho un dominio de unión a antígeno extracelular.

[0060] En otro aspecto, la presente descripción incluye un ácido nucleico, por ejemplo, una que ocurre, el ácido de origen no natural nucleico, por ejemplo, un ácido nucleico que comprende una secuencia de ADN o ARN, por ejemplo, un ARNm, que comprende una secuencia purificada o que codifica una Ly49-CAR que se describe en este documento. En un caso, el ácido nucleico comprende además un dominio de activación citoplasmática, por ejemplo, DAP12 dominio citoplasmático. En un caso, dicho Ly49-CAR y dicho dominio de activación citoplasmático están dispuestos en moléculas separadas de ácido nucleico, por ejemplo, vectores separados, por ejemplo, vectores virales separados.

[0061] En otro aspecto, la presente descripción ofrece una célula citotóxica, por ejemplo, una célula T de origen natural o no natural, células NK o células T citotóxicas o una línea de células NK que comprende un Ly49-CAR que se describe en este documento. En un caso, la célula citotóxica comprende además un dominio citoplasmática de activación, por ejemplo, dominio citoplasmático DAP12.

[0062] En otro aspecto, la presente descripción presenta un procedimiento de fabricación de una célula que 45 comprende un Ly49-CAR que se describe en este documento, que comprende, introducir en una célula citotóxica, un ácido nucleico que comprende una secuencia que codifica un Ly49-CAR descrito en este documento en dicha célula.

[0063] En otro aspecto, la presente descripción incluye un procedimiento de fabricación de una célula que 50 comprende un Ly49-CAR que se describe en este documento, que comprende formar en una célula citotóxica, un Ly49-CAR que se describe en este documento.

[0064] En otro aspecto, la presente descripción presenta un procedimiento de tratamiento de un sujeto, por ejemplo, un procedimiento para proporcionar una inmunidad anti-tumoral en un mamífero, que comprende 55 administrar al mamífero una cantidad eficaz de una célula que se describe en este documento, por ejemplo, una célula que comprende un Ly49-CAR que se describe en este documento.

[0065] En otro aspecto, la presente exposición presenta una célula que comprende, por ejemplo, una célula citotóxica, que comprende un receptor primero de origen no natural membrana quimérico integrado que comprende un dominio de unión a antígeno y un segundo origen no natural receptor incrustado membrana quimérico que comprende una dominio de unión a antígeno en el que, (i) el dominio de unión a antígenos dicha primera y dicha segunda de origen no natural receptor incrustado membrana quimérica no comprende un dominio variable de cadena ligera y un dominio variable de cadena pesada, (ii) el dominio de unión a antígeno de uno de dicho primer y dicho segundo origen no natural receptor incrustado membrana quimérica comprende un scFv, y el otro es distinto de un scFv, (iii) cuando está presente en la superficie de una célula, los dominios de unión a antígeno dicha primera y dicha segundos de origen no natural receptor de membrana incrustado quimérico, asociado con uno de otro menor

que si ambos fueron scFv dominios de unión a antígeno, (iv) cuando está presente en la superficie de una célula, la unión del dominio de unión a antígeno de dicho primero de origen no natural quimérico membrana incrustado receptor a su antígeno cognado no se reduce sustancialmente por la presencia de dicho segundo origen no natural membrana quimérico receptor incorporado, (v) el dominio de unión a antígeno de una de dicha primera y dicha 5 segunda de origen no natural receptor incrustado membrana quimérico, comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de una secuencia humana o de ratón o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, un dominio de fibronectina de tipo III similar a anticuerpo molécula, (vi) el antígeno de unión de uno de dichos primero dicho segundo origen no natural receptor incrustado membrana quimérico, comprende un scFv, y la otra comprende un 10 único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de una secuencia humana o de ratón o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, un fibronectin tipo III similar a anticuerpo molécula, (vii) el dominio de unión a antígeno de una de dichas primera y dicha segunda de origen no natural receptor incrustado membrana quimérico, comprende un scFv, y la otra comprende un nanocuerpo, y (viii) la unión al antígeno dominio de una de dicha primera y dicha segunda de 15 origen no natural membrana quimérico receptor integrado, comprende un scFv, y la otra comprende un dominio de camélidos VHH. En un caso, dicha célula es la célula T. En un caso, dicha célula es una célula NK. En un caso, dicha célula es de una línea celular NK, por ejemplo, NK92. En un caso, una de dicha primera y dicha segunda de origen no natural receptores de membrana incrustado quimérico es una TCAR. En un caso, ambos de dicho primer y dicho segundo origen no natural receptores de membrana incrustado quimérico es una TCAR. En un caso, una de 20 dicha primera y dicha segunda de origen no natural receptores integrados de membrana quimérico es una NKR-CAR, por ejemplo, un KIR-CAR. En un caso, ambos de dichos primer y segundo receptores de origen no natural de membrana quimérico incrustado es un NKR-CAR, por ejemplo, un KIR-CAR. En un caso, el antígeno de dominio de una unión de dicha primera y dicha segunda de origen no natural receptor de membrana incrustado quimérica no comprende un dominio variable de cadena ligera y un dominio variable de cadena pesada. En un caso, cuando está 25 presente en la superficie de una célula, los dominios de unión a antígeno de dicha primera y dicha membrana quimérico segunda de origen no natural receptor integrado, asociado con uno de otro menor que si ambos eran antígeno scFv dominios de unión. En un caso, cuando está presente en la superficie de una célula, la unión del dominio de unión a antígeno de dicho primero de origen no natural quimérico membrana incrustado receptor a su antígeno cognado no se reduce sustancialmente por la presencia de dicho segundo origen no natural membrana 30 quimérico receptor incorporado. En un caso, el antígeno de dominio de una unión de dicha primera y dicha segunda de origen no natural receptor incrustado membrana quimérico, comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de una secuencia de humano o de ratón o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula. En un caso, dicho que el dominio de unión a antígeno de una de dichas primera segunda de 35 origen no natural receptor incrustado membrana quimérico, comprende un scFv, y la otra comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de una secuencia humana o de ratón o un andamio de no anticuerpo, por ejemplo, un fibronectina, por ejemplo, una de fibronectina de tipo III similar a anticuerpo molécula. En un caso, el dominio de unión a antígeno de una de dichas primera y dicha segunda de origen no natural receptor incrustado membrana quimérico, comprende un scFv, y la 40 otra comprende un nanoanticuerpo. En un caso, el dominio de unión a antígeno de una de dichas primera y dicha segunda de origen no natural receptor incrustado membrana quimérico, comprende un scFv, y la otra comprende un dominio de camélidos VHH. En un caso, la presente descripción comprende un ácido nucleico, por ejemplo, una, el ácido nucleico de origen purificado o no natural, que comprende una secuencia que codifica producen un primer y segundo no natural receptor incrustado membrana quimérica que comprende un antígeno de dominio de unión 45 descrito en el presente documento. En un caso, la presente descripción comprende un procedimiento de fabricación de una célula se describe en el presente documento comprendido introducir en una célula el ácido nucleico descrito en el presente documento. En un caso, la presente descripción comprende un procedimiento de fabricación de una célula se describe en el presente documento, que comprende, formando en una célula citotóxica, un primer y dicho receptor incrustado segunda de origen no natural membrana quiméricos descritos en el presente documento. En un 50 caso, la presente descripción comprende un procedimiento de tratamiento de un ejemplo sujeto, un procedimiento para proporcionar una inmunidad anti-tumoral en un mamífero, que comprende administrar al mamífero una cantidad eficaz de una célula que se describe en este documento.

[0066] En otro aspecto, la presente descripción incluye un kit que comprende un ácido nucleico o célula descrita 55 en el presente documento.

[0067] En otro aspecto, la presente exposición presenta una secuencia de ácido nucleico aislada que codifica una (receptor de antígeno de receptor-like-quimérica de inmunoglobulina de células asesinas) KIR-CAR, en el que la secuencia de ácido nucleico aislada comprende la secuencia de ácido nucleico de un dominio de unión a antígeno y 60 un KIR o fragmento de la misma. En una realización, el dominio de unión a antígeno se selecciona del grupo que consiste de un anticuerpo murino, un anticuerpo humanizado, un anticuerpo humano, un anticuerpo quimérico, y un fragmento de la misma. En una realización, el fragmento es un Fab o un scFv. En un caso, el KIR se selecciona entre el grupo constituido por un KIR de activación, un KIR inhibidor, y cualquier combinación de los mismos. En una realización, al menos una región bisagra se ha eliminado de la KIR activación.

5

[0068] En otro aspecto, la presente exposición presenta un aislado KIR-CAR (células asesinas similar a

inmunoglobulina del receptor de antígeno de receptor quimérico) que comprende un dominio de unión a antígeno y un KIR o fragmento de la misma. En una realización, el dominio de unión a antígeno se selecciona del grupo que consiste de un anticuerpo murino, un anticuerpo humanizado, un anticuerpo humano, un anticuerpo quimérico, y un fragmento de la misma. En una realización, el fragmento es un Fab o un scFv. En un caso, el KIR se selecciona entre el grupo constituido por un KIR de activación, un KIR inhibidor, y cualquier combinación de los mismos. En una realización, al menos una región bisagra se ha eliminado de la KIR activación. En otro aspecto, la presente descripción presenta una composición que comprende al menos dos KIR-CARs, en el que la primer KIR-CAR comprende un dominio de unión a antígeno y un KIR activar o fragmento del mismo y el segundo KIR-CAR comprende un dominio de unión a antígeno y un inhibidor KIR o fragmento de la misma. En un caso, el dominio de unión en la primer KIR-CAR antígeno es específico para un antígeno presente en un tumor y el dominio de unión a antígeno en la segunda KIR-CAR es específico para un antígeno presente en una célula normal.

[0069] En otro aspecto, la presente descripción dispone de una célula modificada genéticamente T que comprende al menos dos KIR-CARs, en el que la primer KIR-CAR comprende un dominio de unión a antígeno y un KIR activar o fragmento del mismo y el segundo KIR-CAR comprende una antígeno de dominio y un KIR inhibidor o fragmento de unión del mismo. En un caso, el dominio de unión en la primer KIR-CAR antígeno es específico para un antígeno presente en un tumor y el dominio de unión a antígeno en la segunda KIR-CAR es específico para un antígeno presente en una célula normal. En una realización, la célula es una célula T.

20 [0070] En otro aspecto, la presente descripción incluye un procedimiento para proporcionar una inmunidad antitumoral en un mamífero, comprendiendo el procedimiento administrar al mamífero una cantidad eficaz de una célula que comprende al menos dos KIR-CARs, en el que la primer KIR- CAR comprende un dominio y un KIR activar o fragmento de unión del mismo antígeno y el segundo KIR-CAR comprende un dominio de unión a antígeno y un KIR inhibidor o fragmento del mismo. En un caso, el dominio de unión a antígeno en la primer KIR-CAR es específico para un antígeno presente en un tumor y el dominio de unión a antígeno en la segunda KIR-CAR es específico para un antígeno presente en una célula normal, controlando de este modo la off- actividad de destino de la célula. En un caso, la célula es una célula T.

BREVE DESCRIPCIÓN DE LOS DIBUJOS

30

[0071] La siguiente descripción detallada de ejemplos de la descripción, incluyendo las realizaciones preferidas de la invención, se entenderá mejor cuando se lea conjuntamente con los dibujos adjuntos. Para el propósito de ilustrar la invención, se muestran en los dibujos realizaciones que se prefieren actualmente. Debe entenderse, sin embargo, que la invención no está limitada a las disposiciones e instrumentalidades precisas de las realizaciones mostradas en los dibujos.

Figura 1, que comprende las Figuras 1A y 1B, es una serie de diagramas esquemáticos que muestran la estructura de origen natural inhibitoria y la activación de los KIR (Figura 1A) y una activación de KIR-CAR basados en scFv (Figura 1B).

La Figura 2 es una representación esquemática del vector lentiviral utilizado para entregar un CAR basado-KIR 40 activación en combinación con la molécula de señalización DAP12.

La Figura 3 es una imagen que demuestra que un mesotelina-específicos actKIR-CARS se pueden expresar de manera eficiente en la superficie de las células T humanas primarias. Las células T humanas se estimularon con anti-CD3/microperlas anti-CD28 y transducidas con el CAR indicado o transducidas de manera ficticia y expandido ex vivo. La expresión se detectó usando un biotinilado de cabra anti-ratón F (ab) IgG policional de 2-específico 45 (Jackson Immunologics) seguido de tinción con estreptavidina-PE.

La Figura 4 es una imagen que demuestra que las células T que expresan el SS1 actKIR-CAR exhiben actividad citotóxica hacia el objetivo K562 células diseñadas para expresar la mesotelina ligando (KT-meso). Las células T humanas se estimularon con microperlas anti-CD3/anti-CD28, transducidas con el CAR indicado o transducidas de manera ficticia y expandido ex vivo. 10 5 células K562 CFSE marcado que expresan mesotelina (KT-meso) o de tipo

- 50 salvaje de control K562 se incubaron con relaciones variables de células T CAR que expresan durante 16 horas a 37 °C, 5% de CO 2. Las células K562 diana fueron luego separado por citometría de flujo usando perlas countbright y una tinción de viabilidad (7AAD). El porcentaje de células K562 se lisaron (por ciento de lisis) se calcula restando el número de células diana viables que quedan después de la incubación con células T efectoras a partir del número de K562 viable que queda después de cultivo durante la noche sin células T efectoras, y dividiendo por el número de 55 viable K562 que queda después de cultivo durante la noche sin células T efectoras.
 - La Figura 5, que comprende la Figura 5A y 5B, es una serie de diagramas esquemáticos que muestran un KIR CAR activación en el que se eliminó la bisagra KIR2DS2 (CAR KIR2S). Basándose en el modelo de segregación cinética de la activación de TCR diagramado en la Figura 5A, se cree que la mesotelina-específica SS1 KIR CAR tiene una bisagra que es demasiado largo para permitir la apropiada segregación. Por lo tanto haciendo que la mesotelina-
- 60 específica KIR CAR bisagra se cree más corta para mejorar la función. La Figura 5B es un esquema que muestra que la SS1 scFv se fusiona con el dominio transmembrana KIR sin los dos dominios tipo Ig de KIR2DS2 como la bisagra.
- La Figura 6, que comprende las Figuras 6A y 6B, es una serie de imágenes que demuestran que exposiciones CAR KIRS2 basados SS1 scFv mayor actividad citolítica hacia células diana de mesotelina que expresan en comparación con el CAR formado por la fusión de la SS1 scFv en longitud completa KIR2DS2 de tipo salvaje. Las células T humanas primarias fueron estimuladas con CD3/28 microperlas seguidos por transducción lentiviral, ya sea con la

SS1-KIR2DS2 activante KIR-CAR, SS1-KIRS2 activar KIR CAR, el CAR SS1-zeta. Se utilizaron las células T no transducidas Mock (NTD) como un control. Las células T se expandieron hasta el final del crecimiento en fase log. La expresión en la superficie de los CARs SS1 específica se determinó por citometría de flujo usando una cabra biotinilado anti-ratón F (ab) 2 específica anticuerpo policlonal seguido por la detección de estreptavidina-PE como se muestra en la Figura 6A. Se muestra en la Figura 6B, K562 células diana con o sin la mesotelina y teñidas con CFSE se mezclaron con las células T efectoras que se caracterizan en la Figura 6A, como se indica mediante la variación de las células T efectoras a las relaciones de diana que van desde 10: 1 a 1: 1. Lisis de células diana K562 se evaluó mediante citometría de flujo para determinar el% de células viables CFSE + como se describe para la Figura 4. Los datos que se muestra es la célula objetivo calculada% de lisis en comparación contra las células diana sin 10 células efectoras.

La figura 7, que comprende las Figuras 7A y 7B, es una serie de imágenes que muestran la co-expresión de la CD19 actKIR-CAR y la SS1 inhKIR-CAR. Células informadoras Jurkat NFAT-GFP se transdujeron con el indicaron KIR CAR o no transducidas (NDT) y se mezcló 1: 1 con las células diana con o sin el CD19 y antígenos de mesotelina tal como se indica. De resultados muestra la expresión de GFP a las 24 horas después de la mezcla de Jurkat y células 15 diana (figura 7A). Muestra la Figura 7B expresión de la mesotelina y idiotipos CD19 de superficie tal como se determina por tinción con una proteína de fusión mesotelina-Fc y un anticuerpo monoclonal específico para la FMC63 anti-CD 19 scFv idiotipo.

La figura 8, que comprende las Figuras 8A a 8C, es una serie de imágenes que demuestran co-expresión de tipo salvaje PD-1 tanto con un mesotelina CAR de orientación activando CAR basado en KIR o TCR-zeta base. Las células T humanas primarias fueron estimuladas con CD3/28 microperlas seguidos por transducción lentiviral, ya sea con la SS1-KIRS2 activar KIR CAR o el CAR SS1-zeta. Se utilizaron células Mock no transducidas (NTD) como un control negativo. Las células T se expandieron más de 9 días, y la expresión de CAR superficial se determinó por tinción con mesotelina-Fc seguido de un anticuerpo específico de Fc de cabra anti-humano conjugado con PE (Figura 8A). Líneas celulares K562 (de tipo salvaje [en peso], la mesotelina expresando [meso] o mesotelina y PD-L1

- 25 co-expresión de [meso-PDLL]) se tiñeron utilizando el anticuerpo monoclonal CAK1 anti-mesotelina específica a la expresión confirmar la mesotelina sobre los objetivos (Figura 8B). Las células T humanas primarias transducidas como se muestra en la Figura 8A se sometieron a electroporación con 10 ug de ARN transcrito in vitro de codificación de tipo salvaje PD1 usando un electroporador BTX ECM830 (PD1 +) o falsamente transfectadas (PD1). La expresión en superficie de PD-1 se expresó utilizando un anti-PDL monoclonal conjugado con APC 30 (Figura 8C).
 - La Figura 9 es una que demuestra la imagen que la combinación de co-expresión de tipo salvaje mesotelina orientación CAR basado PD-1 tanto con un CAR basado-KIR activar y TCR-zeta llevado a PD-1 ligando 1 (PDL-1) inhibición dependiente de la citotoxicidad de activación KIR-CAR-mesotelina específica. Las células T humanas primarias fueron estimuladas con CD3/28 microperlas seguidos por transducción lentiviral, ya sea con la SS1-KIRS2
- 35 activar KIR CAR, el CAR SS1-zeta o transducidas de forma simulada (NTD). Las células T se expandieron más de 9 días, seguido de electroporación de 5x10 ⁶ células T con 10 ug de ARN transcrito in vitro de codificación de tipo salvaje PD1 usando un ECM830 BTX electroporador (PD1 +) o falsamente transfectadas (PD1-). Se determinó la expresión de la superficie de la CAR SS1-específico y PD-1 como se muestra en la Figura 8. K562 células diana con ningún mesotelina o expresar mesotelina con o sin PDL-1 se mezclaron con las diferentes condiciones de las células
- 40 T como se indica usando efector variando células T a las relaciones de diana de 30: 1 a 1: 1 como se muestra. Lisis de células diana K562 se evaluó mediante un procedimiento AM colorante calceína para cuantificar las células viables restantes siguientes 4 horas de incubación. Los datos mostrados se calculan el% de lisis de células diana en comparación contra las células diana sin células efectoras.
- La Figura 10 es una imagen que demuestra el interferón-gamma (IFN-γ) la producción por las células T a partir de dos donantes diferentes que expresan una mesotelina-específica activando CAR a base de KIR (SS1-KIR2DS2 o SS1-KIRS2) o TCR-zeta CAR base con o sin un dominio coestimuladora (SS1-z, SS1-28z o SS1-BBz). Las células T humanas primarias fueron estimuladas con CD3/28 microperlas seguidos por transducción lentiviral con el indicaron la activación de KIR CAR o CAR basado TCR-zeta. Se utilizaron células Mock no transducidas (NTD) como un control negativo. Células diana K562 con ningún mesotelina (K562) o mesotelina que expresa (K562-meso) se
- 50 mezclaron con las diferentes condiciones de las células T como se indica en una proporción 2: 1 de las células T efectoras a células diana. Después de 16 horas de incubación, el IFN-γ se midió en los sobrenadantes de cultivo usando un (sistemas R y D) ELISA ensayo humano IFN-gamma específico.
 - La Figura 11 es una imagen que demuestra la producción de interleucina-2 (IL-2) por las células T que expresan un mesotelina-específica activando CAR a base de KIR (SS1-KIR2DS2 o SS1-KIRS2) o TCR-zeta CAR base con o sin
- 55 un dominio coestimuladora (SS1-z, SS1-28z o SS1-BBz). Las células T humanas primarias fueron estimuladas con CD3/28 microperlas seguidos por transducción lentiviral con el indicaron la activación de KIR CAR o CAR basado TCR-zeta. Se utilizaron células Mock no transducidas (NTD) como un control negativo. Células diana K562 con ningún mesotelina (K562) o mesotelina que expresa (K562-meso) se mezclaron con las diferentes condiciones de las células T como se indica en una proporción 2: 1 de las células T efectoras a células diana. Después de 16 horas
- 60 de incubación, IL-2 se midió en los sobrenadantes de cultivo usando un (sistemas R y D) IL-2 específica ELISA ensayo humano.
 - Figura 12, que comprende las Figuras 12A-12B, representa la construcción de un receptor de antígeno quimérico basado en KIR-mesotelina específica (KIR-CAR) por ingeniería de células T con actividad citotóxica robusto. Las células T humanas primarias fueron estimuladas con CD3/28 microperlas seguidos por transducción con un vector
- 65 lentiviral que expresa GFP y dsRed (Control) o DAP12 y dsRed (DAP12). Las células se expandieron ex vivo hasta el final del crecimiento en fase log. 5x10 ⁶ células T de cada población transducida se sometieron a electroporación

- con 10 ug de ARN transcrito in vitro de codificación SS1-KIRS2 usando un electroporador BTX ECM830. La expresión de ambos dsRed y SS1-KIRS2 se evaluó por citometría de flujo con el SS1-KIRS2 detectaron usando un biotinilado de cabra anti-ratón F (ab) 2 específica anticuerpo policional seguido por estreptavidina-PE. El panel superior de la Figura 12A muestra la estrategia de gating para la identificación de las células T que expresan dsRed, que fueron analizados a continuación para la expresión SS1-KIRS2 como se muestra en la parte inferior del panel. La Figura 12B muestra la capacidad de las células caracterizadas en la Figura 12A a la citotoxicidad mediata contra de tipo salvaje células K562 (K562-wt) o células K562 que expresan mesotelina (K562-mesotelina) como se evaluó utilizando un 4-hr 51 ensayo de liberación de Cr.
- La Figura 13 muestra que la expresión de un TCR endógeno es afectado por SS1-KIRS2 y expresión 10 DAP12. 5x10 ⁶ células T humanas primarias se sometieron a electroporación con 10 ug de ARN transcrito in vitro de codificación SS1-KIRS2 o falsamente transfectadas utilizando un electroporador BTX ECM830. Después de la incubación durante la noche, las células T transfectadas se tiñeron para la expresión de SS1-KIRS2 usando una cabra biotinilado anti-ratón F (ab) 2 específica anticuerpo policlonal seguido por estreptavidina-PE. La expresión de Vβ13.1 se evaluó utilizando un anticuerpo monoclonal específico conjugado con PE a esta cadena Vβ del TCR.
- 15 La Figura 14 ilustra la capacidad de un CAR basado-KIR mesotelina-específico (SS1-KIRS2) para estimular la proliferación de células T que se dependiente de antígeno pero independiente de la coestimulación CD28 adicional. Las células T humanas primarias fueron estimuladas con CD3/28 microperlas seguidos por transducción lentiviral de SS1-KIRS2 y DAP12 o el TCR-zeta CAR (SSL-zeta) mesotelina-específico. Se utilizaron células Mock no transducidas (NTD) como un control negativo. Células diana K562 con ningún mesotelina (K562 en peso) o
- 20 expresar la mesotelina (K562-mesotelina) se mezclaron con las diferentes condiciones de las células T como se indica en una proporción 2: 1 de las células T efectoras a células diana. Células T estimuladas con K562-mesotelina se dividieron adicionalmente en una condición con o sin un anticuerpo agonista monoclonal anti-CD28 (clon 9.3) a 1 ug/ml. El número de células T viables se enumeraron por citometría de flujo utilizando el recuento basado en perlas en los puntos de tiempo indicados para calcular el número de duplicaciones de la población después de la 25 estimulación de antígeno.
 - La Figura 15, que comprende las Figuras 15A-15C, demuestra que-mesotelina específica KIR-CAR células T modificadas muestran actividad anti-tumor in vivo mejorada en comparación con los CARs basados segunda generación TCR-zeta que llevan CD28 o CD137 (41BB) dominios coestimuladoras. La Figura 15A muestra un experimento en el que NOD-SCID-γ c^{-/-} (NSG) los ratones fueron implantados subcutáneamente con una célula que
- 30 expresa la mesotelina mesotelioma derivado (células EM-meso). 20 días después de la implantación del tumor, cada animal se inyectaron por vía intravenosa con 7 millones de células T que se estimularon con anti-CD3/cuentas estimuladoras anti-CD28 siguieron transducción lentiviral con una serie de CAR basado en CD3 con o sin un dominio coestimuladora (SS1-ζ, los CARs a base de KIR mesotelina-específicos SS1-BBζ y SS1-28ζ) o, SS1-KIRS2 con DAP12. Transducidas de forma simulada se utilizaron las células T (DTN) como control. El volumen del tumor se
- 35 evaluó a través de la medición de la pinza. 8 animales se analizaron para cada condición de células T La figura 15B muestra que la actividad in vivo de la KIR-CAR es independiente de injerto de células T en la sangre, el bazo o tumor. La frecuencia de células T CD45 + humanas se evaluó al final del experimento mediante citometría de flujo, y los datos se expresan como un porcentaje de células viables totales en la sangre, el bazo y el tumor de digerir. La Figura 15C muestra que las células T modificadas-DAP12 requieren el CAR basado en KIR mesotelina-específico
- 40 para la erradicación del tumor. Se utilizó el mismo modelo que se muestra en la Figura 15A. Se inyectaron 4 millones de células T que expresan DAP12 y dsRed (DAP12), SS1-28z o SS1-KIRS2 y DAP12 (SS1-KIRS2) por vía intravenosa en el día 20, y el volumen del tumor se evaluó con el tiempo a través de la pinza de medición. Figura 16 que comprende las Figuras 16A-16B, demuestra un CAR basado-KIR con CD19 especificidad puede
- desencadenar citotoxicidad de las células diana específicas de antígeno. Después de anti-CD3/anti-CD28 grano de activación, las células T se transdujeron con un vector lentiviral bicistrónico que expresa DAP12 junto con ya sea un CAR CD19-específico basado-KIR en el que el scFv derivado de FMC63 se fusiona con longitud completa KIR2DS2 (CD19-KIR2DS2) o un CAR basado-KIR generado por la fusión de la FMC63 scFv al dominio transmembrana y citoplasmático de KIR2DS2 a través de un engarce corto [Gly] 4 -Ser enlazador (CD19-KIRS2). Las células T
- transducidas se cultivaron hasta el final de la fase logarítmica de crecimiento, y la expresión de la CD 19-específica CAR basado en KIR se evaluó por citometría de flujo usando un biotinilado de cabra anti-ratón F (ab) 2 de anticuerpo policlonal seguido por SA-PE. ⁵¹ Cr-etiquetado K562 células diana con (K562- CD19) o sin (K562-wt) CD19 expresión se mezclaron en diferentes proporciones con las células T a las células diana (proporción E: T). La citotoxicidad se determinó mediante la medición de la fracción de ⁵¹ Cr liberado en el sobrenadante a las 4 horas. Las células T de control que, o bien fueron transducidas de forma simulada (NTD) o transducidas con un
- 55 específico CAR basado en CD3 para CD19 (CD19-z) también se incluyeron como controles positivos y negativos, respectivamente.
 - Figura 17 que comprende las Figuras 17A-17B muestra CD19-KIRS2 actividad in vivo. NOD-SCID-γ c^{-/-} (NSG) los ratones fueron injertados por vía intravenosa por inyección en la vena de la cola en el día 0 de 1 millón de Nalm-6 células tumorales CBG, una línea de células leucémicas que expresan CD19. Las células T se estimularon con anti-
- 60 CD3/cuentas estimuladoras anti-CD28 seguido de la transducción lentiviral en el día 1 con una serie de CAR basado en CD3 CD19-specífic con o sin un dominio coestimuladora (CD19z, 19BBz) o el CD19-específica KIR- CARs basados, CD19-KIRS2 con DAP12 (19KIRS2). Se utilizaron las células T no transducidas Mock (NTD) como un control. Las células T se expandieron hasta el final del crecimiento en fase logarítmica ex vivo y se inyectaron por vía intravenosa en el día 5 de inyección de la línea celular leucémica poste con 2 millones de células CAR T por
- 65 ratón. La carga tumoral se evaluó a través de formación de imágenes bioluminiscente. 5 animales se analizaron para cada condición de células T. La Figura 17A muestra el flujo individuo bioluminiscente de fotones para los animales

- individuales en el día 5 (línea de base antes de la inyección de células T) y en el día 15 tras el injerto de células leucémicas. La figura 17B muestra el flujo total mediana para cada grupo de tratamiento en el tiempo. La Figura 18 demuestra un NCR CAR basado en NKp46 con disparadores mesotelina especificidad de antígeno específico de citotoxicidad. Después de anti-CD28 de activación de talón anti-CD3 /, las células T se transdujeron con un vector lentiviral bicistrónico que expresan DAP12 y SS1-KIRS2 (control), o FcεRγ y un CAR a base de NKp46 mesotelina específico (SS1-NKp46) o FcεRγ y una mesotelina-específica NKp46 CAR en el que se trunca el dominio extracelular NKp46 naturales (SS1-TNKp46). La expresión de los CARs mesotelina-específicos se evaluó por citometría de flujo usando un biotinilado de cabra anti-ratón F (ab) 2 de anticuerpo policlonal seguido por SA-PE como se muestra en la figura 18A. Las células T se mezclaron con ⁵¹ marcadas con Cr células diana K562 que expresan la mesotelina en relaciones variables de células T efector a diana células K562 (proporción E: T). La
- 10 expresan la mesotelina en relaciones variables de células T efector a diana células K562 (proporción E: T). La citotoxicidad se determinó mediante la medición de la fracción de ⁵¹ Cr liberado en el sobrenadante a las 4 horas en comparación con la liberación espontánea como se muestra en la figura 18B.
 - La Figura 19 muestra una representación esquemática de los receptores utilizados en los experimentos se muestra en las Figuras 21-23.
- 15 La Figura 20 demuestra la generación y caracterización de una línea celular K562-meso que expresan el KIR2DL3 ligando HLA-Cw. Células K562 (K562) o células K562 que expresan mesotelina (K562-meso) se transdujeron con el HLA-Cw3 alelo seguidas de células activadas por fluorescencia para obtener células K562 que expresan HLACw con (K562-meso-HLACw) o sin (K562- HLACw) la expresión de mesotelina. La expresión de HLA-Cw3 se evaluó por citometría de flujo utilizando un APC conjugado monoclonal anticuerpo que reconoce HLA-A, B y C alelos (clon W6/32).
 - La Figura 21 demuestra la co-expresión de SS1-KIRS2 y KIR2DL3 en las células T humanas primarias. Las células T humanas primarias fueron estimuladas con CD3/28 microperlas seguidos por transducción lentiviral con SS1-KIRS2 y DAP12 (SS1-KIRS2) o transducidas de forma simulada (NTD) en combinación con el tipo salvaje KIR2DL3. Las células T se expandieron hasta el final del crecimiento en fase log. La expresión en la superficie de la
- 25 CAR mesotelina-específico y KIR2DL3 se determinó por tinción con mesotelina-Fc seguido por conjugado-PE Fc de cabra anti-humana y un anticuerpo monoclonal para el ectodominio KIR2DL3.
 - La Figura 22 demuestra que KIR2DL3 coexpresa con un KIR CAR puede suprimir la citotoxicidad específica de antígeno en presencia de HLA-Cw en las células diana. Células T que se generaron y se caracterizó como se describe en la Figura 21 se mezclaron con 51-Cr diana marcado células K562 que se generaron y se caracterizaron
- 30 como se describe en la Figura 22. La citotoxicidad se determinó mediante la medición de la fracción de ⁵¹ Cr liberado en el sobrenadante a las 4 horas las células diana en comparación sin células efectoras.
 - La Figura 23 muestra una representación esquemática de los receptores utilizados en los experimentos mostrados en la Figura 24.
- La Figura 24 demuestra la incapacidad para co-expresar dos receptores quiméricos basados en scFv en la superficie de la célula T al tiempo que conserva la especificidad de unión respectivo cada receptores. Células Jurkat T se transdujeron mediante un vector lentiviral que codifica SS1-KIR2DL3. Estas células se transdujeron posteriormente con un segundo vector lentiviral que codifica CD19-KIR2DS2 a diferentes diluciones del vector. La expresión de la SS1-específico scFv se evaluó mediante la mesotelina-Fc seguido por conjugado-PE Fc de cabra antihumano. Expresión La CD19-específico scFv se evaluó utilizando un anticuerpo monoclonal específico PE-do conjugado con el FMC63 idiotipo.
 - La Figura 25 es una imagen demostrando que la expresión de un CAR CD19 específico también redujo la expresión de sitios de unión a la mesotelina sobre la superficie de las células co-expresar una CAR fusión ssl-zeta-mCherry. Las células T humanas primarias fueron estimuladas con CD3/28 microperlas seguidos por transducción lentiviral con un CAR zeta SS1 scFv que lleva una fusión C-terminal mCherry (SS1z-MCH) o la FMC63 derivado de
- 45 41BB-zeta CAR (19bbz) CD19 específico solo o combinación . Se utilizaron células transducidas de forma simulada como control. Las células T se expandieron hasta el final del crecimiento en fase logarítmica, y dsRed así como la expresión CAR superficial se determinó por citometría de flujo después de tinción con mesotelina-Fc seguidas de un Fc específico de cabra anti-humano policional de anticuerpo conjugado a FITC.
- La Figura 26 es una imagen demostrando que la expresión mutuamente excluyente de sitios de unión para la SS1 scFv no es única para la FMC63 scFv. Las células T humanas primarias fueron estimuladas con CD3/28 microperlas seguidos por transducción lentiviral ya sea con un CAR zeta SS1 scFv o varios específico CD19 41BB-zeta CARs (19BBz [FMC63 scFv, 214d scFv o scFv CAR BL22 con alternos orientaciones VH y VL [H2L y L2H]). NTD representa modelo de células transducidas utilizadas como control de tinción. Además, un conjunto independiente de las células T fueron co-transducidas con el CAR zeta SS1 scFv y los diferentes CARs CD19 específicos como
- 55 anteriormente. Las células T se expandieron hasta el final del crecimiento en fase logarítmica, y la expresión de CAR superficial se determinó por tinción con biotinilado proteína L (reconoce la cadena ligera kappa) seguido de estreptavidina APC simultáneamente con mesotelina-Fc seguido por un específico Fc de cabra anti-humana anticuerpo policlonal conjugado con PE. Las células cotransduced mostraron que la expresión mutuamente excluyentes observado con CAR basado en FMC63 también se observa con otros scFv-CARS.
- 60 Figura 27, que comprende las Figuras 27A-27B, representan el mecanismo putativo para la pérdida de scFv vinculantes cuando dos moléculas scFv son co- expresado en la superficie celular (Figura 27A) y la evitación putativo de esta interacción cuando un CAR basado en el dominio único VHH camélidos se expresa en una superficie celular T en combinación con un CAR basado-scFv.
- La Figura 28 demuestra un CAR basado en dominio único VHH de camélidos puede ser expresado en una superficie 65 de células T en combinación con un CAR basado-scFv sin la interacción del receptor apreciable. Células Jurkat T que expresan GFP bajo un promotor dependiente de NFAT (NF-GFP) fueron transducidas ya sea con un CAR

mesotelina-específica activación (SS1-CAR), CD19 específico de la activación de (19-CAR) o un CAR generaron utilizando un dominio de camélidos VHH específico para EGFR (VHH-CAR). Después de la transducción con el CAR de activación, las células se transdujeron con un CAR inhibitoria dicional que reconoce CD19 (19PD1) para generar células que coexpresan tanto la activación y CAR inhibitoria (SS1 + 19PD1, 19 + 19PD1 o VHH + 19PD1). Las 5 células T Jurkat transducidas se co-cultivaron durante 24 horas con diferentes líneas de células que son o bien 1) desprovisto de todos los antígenos diana (K562), 2) expresan la mesotelina (K-meso), CD19 (K-19) o EGFR (A431) solamente, 3) expresan una combinación de EGFR y la mesotelina (A431 -mesothelin) o CD19 (A431-CD19) o 4) expresar una combinación de CD19 y la mesotelina (K-19/meso). Condiciones adicionales que incluyen o bien no hay células estimuladoras (sin stim) o K562 con 1 ug/ml de OKT3 (OKT3) también se incluyeron como controles 10 positivos y negativos para la activación de NFAT, respectivamente. Expresión de GFP, como un marcador de la activación de NFAT, se evaluó por citometría de flujo.

La figura 29 muestra una secuencia de anotación de KIR2DS2.

La figura 30 muestra una secuencia de anotación de KIR2DL3.

La figura 31 muestra una secuencia de anotación de NKp46.

15 La figura 32 muestra una secuencia de anotación de SS1-KIRS2.

La figura 33 muestra una secuencia de anotación de SS1-KIR2DS2.

La figura 34 muestra una secuencia de anotación de SS1-tNKp46.

La figura 35 muestra una secuencia de anotación de SS1-KIRL3.

20 DESCRIPCIÓN DETALLADA

[0072] En un aspecto, la presente invención proporciona composiciones y procedimientos para la regulación de la especificidad y la actividad de las células T u otras células citotóxicas, por ejemplo, células NK. En un caso, se proporciona un receptor de antígeno quimérico (un CAR), por ejemplo, un receptor CAR de células NK (a NKR-CAR) en base a un receptor de células NK (un NKR), por ejemplo, un KIR-CAR, un NCR-CAR, un SLAMF-CAR, un FcR-CAR, o un Ly49-CAR. En un caso, la presente descripción proporciona un tipo de receptor de antígeno quimérico (CAR) en el que el CAR se denomina un NKR, por ejemplo, un "KIR-CAR", que es un diseño de CAR que comprende un componente de un receptor encontrado en células asesinas naturales (NK). En un caso, el receptor de NK incluye pero no se limita a una similar a receptor de tipo inmunoglobulina de células asesinas (KIR). KIR puede funcionar como un KIR de activación o un KIR inhibidor.

[0073] Una ventaja de los NKR-CARs, por ejemplo, KIR-CARs, de la presente descripción es que un NKR-CAR, por ejemplo, un KIR-CARS proporciona un procedimiento para la regulación de células citotóxicas, por ejemplo, células T, la especificidad para el control de la actividad fuera de la diana de la célula T modificada. En algunos 35 casos, los KIR-CARS de la invención no requieren una coestimulación para proliferar.

[0074] NKR-CARs pueden entregar una señal a través de un adaptador de proteínas, por ejemplo, una proteína que contiene adaptador ITAM. En una realización, los KIR-CARS de la invención comprenden un KIR activación que entrega su señal a través de una interacción con el motivo a base de immunotyrosine de activación (ITAM) que contiene proteína de membrana, DAP12 que está mediada por los residuos dentro de los dominios transmembrana de estas proteínas.

[0075] En un ejemplo, un NKR-CAR puede entregar una señal inhibidora a través de un motivo inhibidor. En un caso, los KIR-CARS de la presente descripción comprenden un KIR inhibidor que entrega su señal a través de una interacción con los motivos inhibidores basados en immunotyrosine (ITIMs). KIR que llevan dominios citoplasmáticos que contienen ITIMs anula la señal de activación conduce a la inhibición de NK citolítica y actividad productora de citocinas. Sin embargo, la descripción no debe limitarse a los KIR inhibidors. Más bien, cualquier proteína inhibidora que tiene un dominio citoplasmático que se asocia con una señal inhibitoria se puede utilizar en la construcción de los CARs de la descripción.

[0076] En consecuencia, la presente descripción proporciona una composición que comprende un NKR-CAR, por ejemplo, un KIR-CAR, los vectores que comprenden los mismos, composiciones que comprenden un NKR-CAR, por ejemplo, un KIR-CAR, los vectores de empaquetado en partículas virales, y células T recombinantes u otras células citotóxicas que comprenden una NKR-CAR, por ejemplo, un KIR-CAR. La presente descripción también incluye procedimientos de fabricación de una célula modificada genéticamente T u otra célula citotóxica, por ejemplo, una célula NK, o células NK cultivadas, por ejemplo, una célula NK92, expresando una NKR-CAR, por ejemplo, un KIR-CAR (KIR- CART), en el que el NKR-CAR expresado, por ejemplo, un KIR-CAR, comprende un dominio de reconocimiento de antígeno de un anticuerpo específico con una molécula de señalización intracelular de un NKR, por ejemplo, un KIR. Por ejemplo, en algunos casos, la molécula de señalización intracelular incluye, pero no se limita a, un KIR ITAM, un ITIM KIR, y similares.

[0077] Por consiguiente, la presente descripción proporciona composiciones y procedimientos para regular la especificidad y la actividad de las células T u otras células citotóxicas modificadas para expresar una NKR-CAR, por ejemplo, un KIR-CAR. La presente descripción también proporciona células que comprenden una pluralidad de tipos de NKR-CARs, por ejemplo, KIR-CAR y la inhibición de NKR-CAR, por ejemplo, un KIR-CAR), en el que la pluralidad de tipos de NKR-CARS, por ejemplo, KIR-CARS,

participan en la señalización para regular la activación de células T. En este aspecto, es beneficioso para controlar de manera eficaz y regular las células citotóxicas NKR-CAR, por ejemplo, células T KIR-CAR, de tal manera que matan las células tumorales mientras que no afecta normales espectador células. Por lo tanto, en un caso, la presente descripción también proporciona procedimientos para matar las células cancerosas y reducir al mínimo el agotamiento de las células no cancerosas normales, mejorando de este modo la especificidad de un NKR-CAR, por ejemplo, un KIR-CAR, la terapia.

[0078] En un caso, el NKR-CAR, por ejemplo, el enfoque de KIR-CAR incluye la separación física de una pluralidad de tipos de CARs expresadas en una célula, en el que la unión de una pluralidad de tipos de NKR-CARs, por ejemplo, KIR- CARs a su antígeno diana se requiere para la célula NKR-CAR citotóxico, por ejemplo, célula T KIR-CAR, activación. Por ejemplo, en el enfoque de KIR-CAR, cada KIR-CAR de la pluralidad de tipo de KIR-CARs tienen diferente dominio de señalización intracelular. Por ejemplo, cuando se utiliza una pluralidad de tipos de KIR-CARS para inducir KIR-CAR activación de las células T, el primer tipo de KIR-CARS sólo puede comprender un dominio intracelular de un KIR la activación y el segundo tipo de CAR sólo puede comprender un dominio intracelular de un KIR inhibidor. De esta manera, la activación condicional de células T se genera mediante el acoplamiento de la activación de KIR-CAR (actKIR-CAR) a un antígeno sobre una célula maligna de interés. Un KIR-CAR inhibitoria (inhKIR-CAR) que lleva un resto dirigido contra un antígeno que está presente en una normal de unión al antígeno, pero no de células malignas proporciona amortiguación de los efectos de activación de la actKIR-CAR cuando la célula T se encuentra con las células normales.

[0079] En un caso, la presente descripción proporciona una célula T u otra célula citotóxica ingeniería genética para expresar al menos dos NKR-CARs, por ejemplo, al menos dos KIR-CARs, en el que la primera NKR-CAR, por ejemplo, un KIR-CAR es un actNKR-CAR, por ejemplo, un actKIR-CAR, y la segunda NKR-CAR, por ejemplo, un KIR-CAR, es un inhNKR-CAR, por ejemplo, un inhKIR-CAR. En un caso, la presente descripción proporciona un inhNKR-CAR, por ejemplo, un inhKIR-CAR, que la unión del inhNKR-CAR, por ejemplo, un inhKIR-CAR, a un resultado de células normales en el inhibición de la célula citotóxica, por ejemplo, el inhibición de la actividad de células T KIR-CAR. En un caso, la unión de el inhNKR-CAR, por ejemplo, un inhKIR-CAR, a un antígeno asociado con un no cancerosas célula da como resultado la muerte de la célula citotóxica NKR-CAR, por ejemplo, una célula de T KIR-CAR.

[0080] En un caso, un inhNKR-CAR, por ejemplo, un actKIR-CAR, de la descripción se puede utilizar en combinación con los CARs existentes con el fin de regular la actividad de los CARs. CARs a modo de ejemplo se han descrito en el documento PCT/US11/64191.

35 [0081] También se ha descubierto que, en las células que tienen una pluralidad de receptores integrados de membrana quimérico que comprende una unión de dominio (CMERs) antígeno, las interacciones entre el dominio de unión a antígeno de los CMERs pueden ser indeseables, por ejemplo, porque inhibe la interacción la capacidad de uno o más de los dominios de unión para unirse a su antígeno afín o podría generar sitios de unión novedosos con antígeno afín desconocido antígeno. De acuerdo con ello, descritos en este documento son células que tienen un primer y un segundo CMER de origen no natural en el que los dominios de unión minimiza tales interacciones antígeno. También se describen en este documento son ácidos nucleicos que codifican una primera y una segunda que se producen de forma no natural tales CMERs, así como procedimientos de fabricación y uso de tales células y ácidos nucleicos. En un ejemplo, el antígeno de dominio de uno de dicha unión primero dicho segundo origen no natural CMER, comprende un scFv, y la otra comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un solo VH dominio derivado de una secuencia de humano o de ratón o un andamio de no anticuerpo.

DEFINICIONES

30

60

50 [0082] A menos que se defina lo contrario, todos los términos técnicos y científicos usados en este documento tienen el mismo significado que se entiende comúnmente por un experto ordinario en la técnica a la que pertenece la invención. Aunque cualquiera de los procedimientos y materiales similares o equivalentes a los descritos en el presente documento se pueden usar en la práctica de y/o para el ensayo de la presente invención, los materiales y procedimientos preferidos se describen en este documento. Al describir y reivindicar la presente invención, la siguiente terminología será utilizada de acuerdo con la forma en que se define, en donde se proporciona una definición.

[0083] También debe entenderse que la terminología usada en este documento es para el propósito de describir solamente realizaciones particulares, y no pretende ser limitante.

[0084] Los artículos "un" y "una" se utilizan en este documento para referirse a uno o a más de uno (es decir, a al menos uno) del objeto gramatical del artículo. A modo de ejemplo, "un elemento" significa un elemento o más de un elemento.

65 **[0085]** "Aproximadamente", tal como se utiliza en el presente documento cuando se refiere a un valor medible, tal como una cantidad, una duración temporal, y similares, se entiende que comprende las variaciones de ± 20% o ±

ES 2 769 574 T3

10%, en algunos casos \pm 5%, en algunos casos \pm 1%, y en algún caso \pm 0,1% del valor especificado, ya que tales variaciones son apropiadas para llevar a cabo los procedimientos descritos.

[0086] Molécula adaptadora, tal como ese término se usa en este documento, se refiere a un polipéptido con una secuencia que permite la interacción con dos o más moléculas, y en realizaciones, promueve la activación o inactivación de una célula citotóxica. Por ejemplo, en el caso de DAP12, ésta comprende interacciones con un KIR activante a través de interacciones de carga dentro del dominio transmembrana e interacciones con las moléculas de señalización como ZAP70 o Syk través de una secuencia de ITAM fosforilado dentro del dominio citoplasmático.

10 [0087] El término "antígeno" o "Ag", tal como se utiliza en el presente documento se define como una molécula que provoca una respuesta inmunitaria. Esta respuesta inmunitaria puede implicar la producción de anticuerpos, o la activación de células específicas inmunológicamente competentes, o ambos. El experto en la técnica entenderá que cualquier macromolécula, incluyendo prácticamente todas las proteínas o péptidos, puede servir como antígeno. Además, los antígenos pueden derivar de ADN recombinante o genómico. Un experto en la técnica entenderá que cualquier ADN, que comprende una secuencia de nucleótidos o una secuencia de nucleótidos parcial que codifica una proteína que provoca una respuesta inmunitaria, codifica por tanto un "antígeno", tal como ese término se utiliza en el presente documento. Además, un experto en la técnica entenderá que un antígeno no tiene que ser codificado exclusivamente por una secuencia de nucleótidos de longitud completa de un gen. Es fácilmente evidente que la presente descripción incluye, pero no se limita a, el uso de secuencias de nucleótidos parciales de 20 más de un gen y que estas secuencias de nucleótidos están dispuestas en varias combinaciones para codificar polipéptidos que provocan la respuesta inmunitaria deseada. Además, un experto en la materia entenderá que un antígeno no tiene que ser codificado por un "gen" en absoluto. Es fácilmente evidente que un antígeno se puede generar sintetizado o se puede derivar de una muestra biológica. Dicha muestra biológica puede incluir, pero no está limitado a, una muestra de tejido, una muestra de tumor, una célula o un fluido biológico.

[0088] El término "efecto antitumoral", tal como se utiliza en el presente documento, se refiere a un efecto biológico que puede manifiestarse por una disminución en el volumen del tumor, una disminución en el número de células tumorales, una disminución en el número de metástasis, un aumento de la esperanza de vida, o mejora de varios síntomas fisiológicos asociados con la afección cancerosa. Un "efecto antitumoral" también se puede manifestar por 30 la capacidad de los péptidos, polinucleótidos, células y anticuerpos de la presente descripción en la prevención de la aparición de tumor en primer lugar.

[0089] El término significa "antígeno propio" o "autoantígeno", significa, de acuerdo con la presente invención, cualquier antígeno propio que es reconocido por el sistema inmunitario como si fuera exterior. Los antígenos propios comprenden, pero no se limitan a, las proteínas celulares, fosfoproteínas, proteínas de superficie celular, lípidos celulares, ácidos nucleicos, glicoproteínas, incluyendo receptores de superficie celular.

[0090] El término "enfermedad autoinmune", tal como se utiliza en el presente documento, se define como un trastorno que resulta de una respuesta autoinmune. Una enfermedad autoinmune es el resultado de una respuesta inapropiada y excesiva a un antígeno propio. Ejemplos de enfermedades autoinmunes incluyen, pero no se limitan a, enfermedad de Addision, alopecia areata, espondilitis anquilosante, hepatitis autoinmune, parotiditis autoinmune, enfermedad de Crohn, diabetes (tipo I), epidermolisis bullosa distrófica, epididimitis, glomerulonefritis, enfermedad de Graves, síndrome de Guillain-Barr, enfermedad de Hashimoto, anemia hemolítica, lupus eritematoso sistémico, esclerosis múltiple, miastenia gravis, pénfigo vulgar, psoriasis, fiebre reumática, artritis reumatoide, sarcoidosis, esclerodermia, síndrome de Sjogren, espondiloartropatías, tiroiditis, vasculitis, vitíligo, mixedema, anemia perniciosa, ulcerosa colitis, entre otras.

[0091] Tal como se utiliza en este documento, el término "autólogo" pretende referirse a cualquier material derivado de la misma persona a la cual más tarde se va a reintroducir.

[0092] "Alogénico" se refiere a un injerto obtenido de un animal diferente de la misma especie.

[0093] CAR, tal como ese término se utiliza en este documento, se refiere a un polipéptido quimérico que comparte propiedades estructurales y funcionales con un receptor de función inmunitaria de célula o molécula adaptadora, de,
 55 por ejemplo, una célula T o una célula NK. CARs incluyen TCARs y NKR-CARS. Tras la unión a un antígeno afín, un CAR puede activar o inactivar la célula citotóxica en la que está dispuesta, o modular la actividad antitumoral de la célula o, de otra manera, modular la respuesta inmunitaria de la célula.

[0094] El término "cáncer", tal como se utiliza en el presente documento, se define como una enfermedad caracterizada por el crecimiento rápido e incontrolado de células aberrantes. Las células cancerosas pueden diseminarse localmente o a través de la sangre y el sistema linfático a otras partes del cuerpo. Ejemplos de diversos tipos de cáncer incluyen, pero no se limitan a, cáncer de mama, cáncer de próstata, cáncer de ovario, cáncer cervical, cáncer de piel, cáncer pancreático, cáncer colorrectal, cáncer renal, cáncer de hígado, cáncer de cerebro, linfoma, leucemia, cáncer de pulmón, glioma, y similares.

[0095] Tal como se utiliza en este documento, el término "modificaciones conservadoras de secuencia" pretende

18

ES 2 769 574 T3

referirse a modificaciones de aminoácidos que no afectan o alteran de manera significativa las características de unión del anticuerpo que contiene la secuencia de aminoácidos. Tales modificaciones conservadoras incluyen sustituciones, adiciones y deleciones de aminoácidos. Las modificaciones pueden ser introducidas en un anticuerpo de la presente descripción mediante técnicas estándar conocidas en el sector, tales como mutagénesis dirigida al 5 sitio y mutagénesis mediada por PCR. Las sustituciones de aminoácidos conservativas son aquellas en las que el residuo de aminoácido se reemplaza por un residuo de aminoácido que tiene una cadena lateral similar. Las familias de residuos de aminoácidos que tienen cadenas laterales similares han sido definidas en la técnica. Estas familias incluyen aminoácidos con cadenas básicas secundarias (por ejemplo, lisina, arginina, histidina), cadenas laterales ácidas (por ejemplo, ácido aspártico, ácido glutámico), cadenas laterales polares no cargadas (por ejemplo, glicina, 10 asparagina, glutamina, serina, treonina, tirosina, cisteína, triptófano), cadenas laterales no polares (por ejemplo, alanina, valina, leucina, isoleucina, prolina, fenilalanina, metionina), cadenas laterales ramificadas en beta (por ejemplo, treonina, valina, isoleucina) y cadenas laterales aromáticas (por ejemplo, tirosina, fenilalanina, triptófano, histidina). Así, por ejemplo, uno o más residuos de aminoácidos dentro de las regiones CDR de un anticuerpo de la presente descripción pueden ser sustituidos por otros residuos de aminoácidos de la misma familia de cadena lateral 15 y el anticuerpo alterado puede probarse por la capacidad de unirse a FRβ usando los ensayos funcionales descritos en este documento.

[0096] Un promotor "constitutivo" es una secuencia de nucleótidos que, cuando se une operativamente con un polinucleótido que codifica o especifica un producto génico, provoca que se produzca el producto génico en una 20 célula bajo la mayoría o todas las condiciones fisiológicas de la célula.

[0097] Citoplasmática e intracelular, como se aplica a moléculas adaptadoras y dominios de señalización se utilizan indistintamente en este documento.

- 25 [0098] "Que codifica" se refiere a la propiedad inherente de secuencias específicas de nucleótidos en un polinucleótido, tal como un gen, un ADNc, o un ARNm, para servir como plantillas para la síntesis de otros polímeros y macromoléculas en procesos biológicos que tienen una secuencia definida de nucleótidos (es decir, ARNr, ARNt y ARNm) o una secuencia definida de aminoácidos y las propiedades biológicas resultantes de las mismas. Así, un gen codifica una proteína si la transcripción y la traducción del ARNm correspondiente a ese gen producen la proteína en una célula u otro sistema biológico. Tanto la cadena codificante, la secuencia de nucleótidos de la cual es idéntica a la secuencia de ARNm y por lo general se proporciona en listados de secuencia, y la cadena no codificante, usada como plantilla para la transcripción de un gen o ADNc, pueden denominarse como que codifica la proteína u otro producto de ese gen o ADNc.
- 35 **[0099]** A menos que se especifique lo contrario, una "secuencia de nucleótidos que codifica una secuencia de aminoácidos" incluye todas las secuencias de nucleótidos que son versiones degeneradas una de la otra y que codifican la misma secuencia de aminoácidos. Las secuencias de nucleótidos que codifican proteínas y ARN pueden incluir intrones.
- 40 **[0100]** "Cantidad eficaz" o "cantidad terapéuticamente eficaz" se usan indistintamente en el presente documento, y se refieren a una cantidad de un compuesto, formulación, material o composición, tal como se describe en el presente documento, eficaz para conseguir un resultado biológico particular. Tales resultados pueden incluir, pero no se limitan a, la inhibición de la infección por el virus tal como se determina por cualquier medio adecuado en la técnica.

45

- **[0101]** Tal como se utiliza en el presente documento "endógeno" se refiere a cualquier material de o producido en un organismo, célula, tejido o sistema.
- [0102] Tal como se utiliza en este documento, el término "exógeno" se refiere a cualquier material introducido desde o producido fuera de un organismo, célula, tejido o sistema.
 - **[0103]** El término "expresión", tal como se utiliza en el presente documento se define como la transcripción y/o traducción de una secuencia de nucleótidos particular impulsadas por su promotor.
- 55 **[0104]** "Vector de expresión" se refiere a un vector que comprende un polinucleótido recombinante que comprende secuencias de control de expresión unidas operativamente a una secuencia de nucleótidos a expresar. Un vector de expresión comprende suficientes elementos que actúan en cis para la expresión; otros elementos para la expresión pueden ser suministrados por la célula huésped o en un sistema de expresión in vitro. Los vectores de expresión incluyen todos los conocidos en la técnica, tales como cósmidos, plásmidos (por ejemplo, desnudos o contenidos en liposomas) y virus (por ejemplo, lentivirus, retrovirus, adenovirus y virus adenoasociados) que incorporan el polinucleótido recombinante.
 - **[0105]** FcR-CAR, tal como ese término se usa en este documento, se refiere a un CAR que comparte propiedades funcionales y estructurales con un FcR.
 - [0106] "Completamente humana" se refiere a una inmunoglobulina, tal como un anticuerpo, en donde la molécula

es de origen humano o consiste en una secuencia de aminoácidos idéntica a una forma humana del anticuerpo.

[0107] "Homóloga", tal como se utiliza en el presente documento, se refiere a la identidad de secuencia de subunidades entre dos moléculas poliméricas, por ejemplo, entre dos moléculas de ácido nucleico, tales como, dos moléculas de ADN o dos moléculas de ARN, o entre dos moléculas de polipéptido. Cuando una posición de subunidad en ambas de las dos moléculas está ocupada por la misma subunidad monomérica; por ejemplo, si una posición en cada una de dos moléculas de ADN está ocupada por adenina, entonces son homólogas en esa posición. La homología entre dos secuencias es una función directa del número de posiciones coincidentes u homólogas; por ejemplo, si la mitad (por ejemplo, cinco posiciones en un polímero de diez subunidades de longitud) 10 de las posiciones en dos secuencias son homólogas, las dos secuencias son 50% homólogas; si el 90% de las posiciones (por ejemplo, 9 de 10), se emparejan o son homólogas, las dos secuencias son 90% homólogas.

Las formas "humanizadas" de anticuerpos no humanos (por ejemplo, murinos) son inmunoglobulinas quiméricas, cadenas de inmunoglobulinas o fragmentos de las mismas (tales como Fy, Fab, Fab', F(ab')2 u otras 15 subsecuencias de unión a antígeno de anticuerpos) que contienen una secuencia mínima derivada de inmunoglobulina no humana. En su mayor parte, los anticuerpos humanizados son inmunoglobulinas humanas (anticuerpo receptor) en que los residuos de una región complementaria de determinación (CDR) del receptor se sustituyen por residuos de una CDR de una especie no humana (anticuerpo donante), tal como ratón, rata o conejo que tienen la especificidad, afinidad y capacidad deseadas. En algunos casos, los residuos de la región estructural 20 (FR) de la inmunoglobulina humana se sustituyen por los correspondientes residuos no humanos. Además, los anticuerpos humanizados pueden comprender residuos que no se encuentran ni en el anticuerpo receptor ni en las secuencias CDR o de estructura importadas. Estas modificaciones se realizan para refinar aún más y optimizar el rendimiento del anticuerpo. En general, el anticuerpo humanizado comprenderá sustancialmente todos de al menos uno, y típicamente dos, dominios variables, en los que todas o sustancialmente todas las regiones CDR 25 corresponden a las de una inmunoglobulina no humana y todas o sustancialmente todas las regiones FR son las de una secuencia de inmunoglobulina humana. El anticuerpo humanizado también comprenderá óptimamente al menos una porción de una región constante de inmunoglobulina (Fc), típicamente la de una inmunoglobulina humana. Para más detalles, véase Jones et al, Nature, 321: 522-525, 1986; Reichmann et al, Nature, 332: 323-329, 1988; Presta, Curr. Op. Struct. Biol., 2: 593-596, 1992.

[0109] "Dominio de señalización intracelular", tal como se utiliza en el presente documento, se refiere a una secuencia de polipéptido que es un componente de una proteína integral de membrana más grande. Esta secuencia de polipéptido, a través de interacciones reguladas con otras proteínas celulares, es capaz de estimular o inhibir la función de células inmunes, tales como la liberación de gránulos líticos, la producción o la proliferación de citocinas.

[0110] Tal como se utiliza en este documento, un "material de instrucciones" incluye una publicación, una grabación, un diagrama, o cualquier otro medio de expresión que se puede utilizar para comunicar la utilidad de las composiciones y procedimientos de la descripción. El material de instrucciones del kit de la presente descripción puede, por ejemplo, ser fijado a un recipiente que contiene el ácido nucleico, péptido, y/o composición de la 40 descripción o ser enviado junto con un recipiente que contiene el ácido nucleico, péptido, y/o composición. Alternativamente, el material de instrucciones puede ser enviado por separado del recipiente con la intención de que el material de instrucciones y el compuesto se usen cooperativamente por el receptor.

- [0111] "Aislado" significa alterado o eliminado del estado natural. Por ejemplo, un ácido nucleico o un péptido de forma natural presente en un animal vivo no está "aislado", pero el mismo ácido nucleico o péptido parcial o completamente separado de los materiales coexistentes de su estado natural está aislado. Un ácido nucleico o proteína aislados pueden existir en forma sustancialmente purificada, o pueden existir en un ambiente no nativo, tal como, por ejemplo, una célula huésped.
- 50 **[0112]** En el contexto de la presente invención, se usan las siguientes abreviaturas para las bases de ácidos nucleicos que aparecen comúnmente. "A" se refiere a adenosina, "C" se refiere a la citosina, "G" se refiere a guanosina, "T" se refiere a la timidina, y "U" se refiere a uridina.
- [0113] A menos que se especifique lo contrario, una "secuencia de nucleótidos que codifica una secuencia de 55 aminoácidos" incluye todas las secuencias de nucleótidos que son versiones degeneradas una de la otra y que codifican la misma secuencia de aminoácidos. La frase secuencia de nucleótidos que codifica una proteína o un ARN también puede incluir intrones en la medida en que la secuencia de nucleótidos que codifica la proteína puede en alguna versión contener un intrón o intrones.
- 60 **[0114]** KIR-CAR, tal como ese término se usa en este documento, se refiere a un CAR que comparte propiedades funcionales y estructurales con un KIR.
- [0115] Un "lentivirus" tal como se utiliza en el presente documento, se refiere a un género de la familia Retroviridae. Los lentivirus son únicos entre los retrovirus en ser capaces de infectar células que no se dividen; 65 pueden suministrar una cantidad significativa de información genética en el ADN de la célula huésped, por lo que son uno de los procedimientos más eficaces de un vector de suministro de genes. VIH, SIV, FIV y son todos

ES 2 769 574 T3

ejemplos de lentivirus. Los vectores derivados de lentivirus ofrecen los medios para alcanzar niveles significativos de transferencia de genes in vivo.

[0116] Ly49-CAR, tal como ese término se usa en este documento, se refiere a un CAR que comparte propiedades 5 funcionales y estructurales con Ly49.

[0117] NCR-CAR, tal como ese término se usa en este documento, se refiere a un CAR que comparte propiedades funcionales y estructurales con un NCR.

- 10 [0118] Receptor de la función inmune de células NK (o NKR), tal como ese término se usa en este documento, se refiere a una proteína transmembrana de origen natural endógena expresada en células NK, que se puede acoplar con un ligando en una célula presentadora de antígeno y modular una respuesta de función inmunitaria de células NK, por ejemplo, se puede modular la actividad citolítica o la secreción de citocinas de la célula NK. El NKR puede contribuir a la activación (un NKR activador, o actNKR), o la inhibición (un NKR inhibidor, o inhNKR). Típicamente, un NKR comprende un dominio extracelular de unión a ligando (ECD), un dominio transmembrana (TM) y un dominio citoplasmático intracelular (ICD). NKRs incluyen la familia de receptores del receptor de tipo inmunoglobulina asesino, tales como KIR2DS2, la familia de receptores del receptor de células NK (NCR), tales como NKp46 (NCR1), la familia de receptores de activación de linfocitos de señalización (SLAM) (SLAMF) de los receptores, tales como 2B4, y los receptores de unión a Fc, tales como receptor de unión a IgG, CD16 (FcγRIII). Ejemplos de respuestas de función inmune de células NK moduladas por NKRs comprenden matar células diana (a menudo referida como la citotoxicidad o la citólisis), secreción y/o proliferación de citocinas. Típicamente, un NKR adecuado para uso en los procedimientos y composiciones descritos en este documento es un NKR humano (o hNKR). En un ejemplo, también se incluye la familia de receptores Ly49 en Mus musculus, que surgió por evolución convergente para proporcionar la misma función que un KIR en células NK y células T murinas.
 - **[0119]** NKR-CAR, tal como ese término se usa en este documento, se refiere a un CAR que comparte propiedades funcionales y estructurales con un NKR o molécula adaptadora de una célula NK.
- [0120] El término "unido operativamente" se refiere a enlace funcional entre una secuencia reguladora y una secuencia de ácido nucleico heteróloga que resulta en la expresión de esta última. Por ejemplo, una primera secuencia de ácido nucleico está unida operativamente con una segunda secuencia de ácido nucleico cuando la primera secuencia de ácido nucleico se coloca en una relación funcional con la segunda secuencia de ácido nucleico. Por ejemplo, un promotor está unido operativamente a una secuencia codificante si el promotor afecta a la transcripción o expresión de la secuencia codificante. Generalmente, las secuencias de ADN unidas operativamente son contiguas y, cuando es necesario unir dos regiones codificantes de proteínas, en el mismo marco de lectura.
 - **[0121]** La administración "parenteral" de una composición inmunogénica incluye, por ejemplo, inyección subcutánea (sc), intravenosa (iv), intramuscular (im) o intraesternal, o técnicas de infusión.
- 40 [0122] El término "polinucleótido", tal como se utiliza en el presente documento, se define como una cadena de nucleótidos. Además, los ácidos nucleicos son polímeros de nucleótidos. Por lo tanto, los ácidos nucleicos y polinucleótidos como se utilizan en el presente documento son intercambiables. Un experto en la técnica tiene el conocimiento general de que los ácidos nucleicos son polinucleótidos, que pueden ser hidrolizados en los "nucleótidos" monoméricos. Los nucleótidos monoméricos se pueden hidrolizar en nucleósidos. Tal como se utiliza en el presente documento, los polinucleótidos incluyen, pero no se limitan a, todas las secuencias de ácido nucleico que se obtienen mediante cualquier medio disponible en la técnica, incluyendo, sin limitación, medios recombinantes, es decir, la clonación de secuencias de ácidos nucleicos a partir de una biblioteca recombinante o un genoma de célula, usando tecnología de clonación ordinaria y PCR™, y similares, y por medios sintéticos.
- 50 [0123] Tal como se utiliza en este documento, los términos "péptido", "polipéptido" y "proteína" se utilizan indistintamente, y se refieren a un compuesto formado por residuos de aminoácidos unidos covalentemente mediante enlaces peptídicos. Una proteína o péptido debe contener al menos dos aminoácidos, y sin limitación se colocan en el número máximo de aminoácidos que puede comprender la secuencia de una proteína o péptido. Los polipéptidos incluyen cualquier péptido o proteína que comprende dos o más aminoácidos unidos entre sí por enlaces peptídicos. Tal como se utiliza en el presente documento, el término se refiere tanto a cadenas cortas, que también comúnmente se hace referencia en la técnica como péptidos, oligopéptidos y oligómeros, por ejemplo, y a cadenas más largas, que generalmente se hace referencia en la técnica como proteínas, de las cuales hay muchos tipos. "Polipéptidos" incluyen, por ejemplo, los fragmentos biológicamente activos, polipéptidos sustancialmente homólogos, oligopéptidos, homodímeros, heterodímeros, variantes de polipéptidos, polipéptidos modificados, derivados, análogos, proteínas de fusión, entre otros. Los polipéptidos incluyen péptidos naturales, péptidos recombinantes, péptidos sintéticos, o una combinación de los mismos.
- [0124] El término "promotor", tal como se utiliza en el presente documento, se define como una secuencia de ADN reconocida por la maquinaria sintética de la célula, o maquinaria sintética introducida, requerido para iniciar la 65 transcripción específica de una secuencia de polinucleótido.

- [0125] Tal como se utiliza en el presente documento, el término "secuencia promotora/reguladora" significa una secuencia de ácido nucleico que se requiere para la expresión de un producto génico operativamente unido a la secuencia promotora/reguladora. En algunos casos, esta secuencia puede ser la secuencia promotora central y en otros casos, esta secuencia también puede incluir una secuencia potenciadora y otros elementos reguladores que son necesarios para la expresión del producto génico. La secuencia promotora/reguladora puede ser, por ejemplo, una que expresa el producto génico de una manera específica de tejido.
- [0126] Un promotor "inducible" es una secuencia de nucleótidos que, cuando se une operativamente con un polinucleótido que codifica o especifica un producto génico, provoca que se produzca el producto génico en una 10 célula sustancialmente solo cuando un inductor que corresponde al promotor está presente en la célula.
 - **[0127]** TCAR, tal como ese término se usa en este documento, se refiere a un CAR que comparte propiedades funcionales y estructurales con un receptor de función inmune de la célula o molécula adaptadora de una célula T.
- 15 **[0128]** Un promotor "específico de tejido" es una secuencia de nucleótidos que, cuando se une operativamente con un polinucleótido que codifica o es especificado por un gen, provoca que se produzca el producto génico en una célula sustancialmente solo si la célula es una célula del tipo de tejido.
- [0129] Una "vía de transducción de señales" se refiere a la relación bioquímica entre una variedad de moléculas de transducción de señales que desempeñan un papel en la transmisión de una señal de una porción de una célula a otra porción de una célula. La frase "receptor de superficie celular" incluye moléculas y complejos de moléculas capaces de recibir una señal y la transmisión de la señal a través de la membrana de una célula.
- [0130] El término "sujeto" pretende incluir organismos vivos en los que puede obtenerse una respuesta inmunitaria 25 (por ejemplo, mamíferos).
- [0131] Tal como se utiliza en el presente documento, una célula "sustancialmente purificada" es una célula que está esencialmente libre de otros tipos de células. Una célula sustancialmente purificada se refiere también a una célula que ha sido separada de otros tipos de células con las que está normalmente asociada en su estado de 30 origen natural. En algunos casos, una población de células sustancialmente purificada se refiere a una población homogénea de células. En otros casos, este término se refiere simplemente a la célula que se ha separado de las células con las que está asociada de forma natural en su estado natural. En algunas realizaciones, las células se cultivan in vitro. En otras realizaciones, las células no se cultivan in vitro.
- 35 [0132] Tal como se utiliza en este documento, un bloqueador ("cap") 5' (también denominado un bloqueador de ARN, un bloqueador de ARN 7-metilguanosina o un bloqueador de ARN m7G) es un nucleótido de guanina modificado que se ha agregado a la "parte delantera" o extremo 5' de un ARN mensajero eucariota poco después del inicio de la transcripción. El bloqueador 5' se compone de un grupo terminal que está unido al primer nucleótido transcritos. Su presencia es fundamental para el reconocimiento por el ribosoma y protección frente a ARNasas. LA do adición de bloqueador está acoplada a la transcripción, y se produce co-transcripcionalmente, de manera que cada uno influye en el otro. Poco después del inicio de la transcripción, el extremo 5' del ARNm que se sintetiza se une mediante un complejo de síntesis de bloqueador asociada con ARN polimerasa. Este complejo enzimático cataliza las reacciones químicas que se requieren para el bloqueo de ARNm. La síntesis procede como una reacción bioquímica de múltiples etapas. El resto de bloqueo puede ser modificado para modular la funcionalidad del ARNm, 45 tales como su estabilidad o eficacia de la traducción.
- [0133] Tal como se utiliza en este documento, "ARN transcrito in vitro" se refiere a ARN, preferiblemente ARNm, que se ha sintetizado in vitro. Generalmente, el ARN transcrito in vitro se genera a partir de un vector de transcripción in vitro. El vector de transcripción in vitro comprende una plantilla que se utiliza para generar el ARN 50 transcrito in vitro.
- [0134] Tal como se utiliza en este documento, un "poli (A)" es una serie de adenosinas unidos por poliadenilación para el ARNm. En la realización preferida de una construcción para la expresión transitoria, la polyA es de entre 50 y 5.000, preferiblemente mayor que 64, las secuencias más preferiblemente mayor que 100, más preferiblemente mayor que 300 o 400. poli (A) puede ser modificado química o enzimáticamente a modular la funcionalidad de ARNm como de localización, la estabilidad o la eficiencia de la traducción.
- [0135] Tal como se utiliza en este documento, "poliadenilación" se refiere a la unión covalente de un resto polyadenylyl, o su variante modificada, a una molécula de ARN mensajero. En los organismos eucariotas, la mayoría de ARN mensajero (ARNm) moléculas se poliadenilados en el extremo 3'. El 3' poli (A) de la cola es una larga secuencia de nucleótidos de adenina (a menudo varios cientos) Añadido a la pre-mRNA a través de la acción de una enzima, la polimerasa de poliadenilato. En eucariotas superiores, se añade el poli (A) de la cola en las transcripciones que contienen una secuencia específica, la señal de poliadenilación. El poli (A) de la cola y la proteína unida a lo ayuda en la protección de ARNm de la degradación por exonucleasas. Poliadenilación también es importante para la terminación de la transcripción, la exportación del ARNm desde el núcleo, y la traducción. La poliadenilación ocurre en el núcleo inmediatamente después de la transcripción de ADN en ARN, pero, además,

ES 2 769 574 T3

también puede ocurrir más tarde en el citoplasma. Después de la transcripción se ha terminado, la cadena de mRNA se escinde mediante la acción de un complejo de endonucleasa asociado con la ARN polimerasa. El sitio de escisión se caracteriza generalmente por la presencia de la secuencia de bases AAUAAA cerca del sitio de escisión. Después de que el mRNA se ha escindido, residuos de adenosina se añaden al extremo libre 3' en el sitio 5 de escisión.

[0136] Tal como se utiliza en este documento, "transitoria" se refiere a la expresión de un transgén no integrado durante un período de horas, días o semanas, en el que el período de tiempo de la expresión es menor que el período de tiempo para la expresión del gen si se integra en el genoma o está contenido dentro de un replicón 10 plásmido estable en la célula huésped.

[0137] Tal como se utiliza en este documento, el término "TCAR" comprende un dominio de antígeno, un dominio de señalización intracelular, y opcionalmente uno o más dominios co-estimuladore.

15 **[0138]** El término "terapéutico" tal como se utiliza en este documento significa un tratamiento y/o profilaxis. Se obtiene un efecto terapéutico mediante supresión, remisión, o erradicación de un estado patológico.

[0139] El término "transfectado" o "transformado" o "transducido" tal como se utiliza en el presente documento se refiere a un proceso por el cual el ácido nucleico exógeno se transfiere o se introduce en la célula huésped. Células
 20 "transfectadas" o "transformadas" o "transducidas" célula es la que se ha transfectado, transformado o transducido con ácido nucleico exógeno. La célula incluye la célula del sujeto primaria y su progenie.

[0140] La frase "bajo el control transcripcional" o "unido operativamente", tal como se utiliza en el presente documento significa que el promotor está en la ubicación y orientación correctas en relación con un polinucleótido para controlar la iniciación de la transcripción por la ARN polimerasa y la expresión del polinucleótido.

[0141] Un "vector" es una composición de materia que comprende un ácido nucleico aislado y que puede ser utilizado para suministrar el ácido nucleico aislado al interior de una célula. Numerosos vectores son conocidos en la técnica incluyendo, pero no limitado a, polinucleótidos lineales, polinucleótidos asociados con compuestos iónicos o anfifílicos, plásmidos y virus. Así, el término "vector" incluye un plásmido de replicación autónoma o un virus. El término también debe interpretarse que incluye compuestos no plásmidos y compuestos no virales que facilitan la transferencia de ácido nucleico en células, tales como, por ejemplo, compuestos de polilisina, liposomas, y similares. Los ejemplos de vectores virales incluyen, pero no se limitan a, vectores adenovirales, vectores de virus adenoasociados, vectores retrovirales, vectores lentivirales, y similares.

[0142] Por el término "se une específicamente", tal como se utiliza en el presente documento, se entiende un anticuerpo, o un ligando, que reconoce y se une con una proteína pareja que se une a un análogo presente en una muestra, pero que el anticuerpo o ligando no reconoce ni se une sustancialmente a otras moléculas en la muestra.

40 **[0143]** Por el término "estimulación", se entiende una respuesta primaria inducida por la unión de una molécula estimuladora con su ligando afín mediando de este modo un evento de transducción de señales, tal como, pero no limitado a, la transducción de señales a través del receptor NK apropiado.

[0144] "Xenogénicos" se refiere a un injerto procedente de un animal de una especie diferente.

[0145] Los rangos o intervalos: a lo largo de esta descripción, los diversos aspectos de la invención pueden ser presentados en un formato de intervalo. Debe entenderse que la descripción en formato de intervalo es meramente por conveniencia y brevedad, y no debe interpretarse como una limitación inflexible sobre el alcance de la invención. Por consiguiente, se debe considerar que la descripción de un intervalo ha descrito específicamente todos los posibles subintervalos, así como valores numéricos individuales dentro de ese intervalo. Por ejemplo, la descripción de un intervalo, tal como de 1 a 6, se debe considerar que tiene subintervalos específicamente descritos, tales como de 1 a 3, de 1 a 4, de 1 a 5, de 2 a 4, de 2 a 6, de 3 a 6 etc., así como números individuales dentro de ese intervalo, por ejemplo, 1, 2, 2,7, 3, 4, 5, 5,3 y 6. Esto se aplica independientemente de la amplitud del intervalo.

55 NKR-CAR

35

45

65

[0146] Se da a conocer en el presente documento composiciones y procedimientos para la regulación de la especificidad y la actividad de células citotóxicas, por ejemplo, células T o células NK, por ejemplo, con un receptor de antígeno quimérico de origen no natural (CAR). En un caso, el CAR es un NKR-CAR. Un NKR-CAR es un CAR que comparte propiedades funcionales y estructurales con un receptor de función inmunitaria de células NK (o NKR). NKRs y NKR-CARS se describen en el presente documento, por ejemplo, en la sección de abajo. Tal como se discute a continuación, una variedad de NKRs puede servir como la base para un NKR-CAR.

RECEPTORES DE FUNCIÓN INMUNITARIA DE CÉLULAS NK (NKRS) Y CÉLULAS NK

[0147] Como se discute en el presente documento, el receptor de función inmunitaria de células NK (o NKR) se

refiere a una proteína transmembrana de origen natural endógeno expresada en células NK, que se puede acoplar con un ligando en una célula presentadora de antígeno y modula una respuesta de la función inmunitaria de células NK, por ejemplo, se puede modular la actividad citolítica o secreción de citocinas de la célula NK.

- 5 [0148] Las células NK son células mononucleares que se desarrollan en la médula ósea a partir de progenitores linfoides, y las características morfológicas y propiedades biológicas incluyen típicamente la expresión de los determinantes de grupo (CDs) CD16, CD56, y/o CD57; la ausencia del complejo TCR alfa/beta o gamma/delta en la superficie celular; la capacidad de unirse y eliminar células diana que no expresan las proteínas de "auto" complejo mayor de histocompatibilidad (MHC)/antígeno leucocitario humano (HLA); y la capacidad de eliminar las células 10 tumorales u otras células enfermas que expresan ligandos para la activación de los receptores NK. Las células NK se caracterizan por su capacidad para unirse y eliminar varios tipos de líneas de células tumorales sin la necesidad de inmunización o activación previa. Las células NK también pueden liberar proteínas solubles y citocinas que ejercen un efecto regulador en el sistema inmunitario; y pueden someterse a múltiples rondas de división celular y producen células hijas con propiedades biológicas similares a la célula madre. Tras la activación por interferones v/o 15 citocinas, las células NK median la lisis de células tumorales y de células infectadas con patógenos intracelulares mediante mecanismos que requieren contactos directos, físicas entre la célula NK y la célula diana. La lisis de células diana implica la liberación de gránulos citotóxicos de la célula NK sobre la superficie de la diana unida y proteínas efectoras, tales como la perforina y granzima B que penetran en la membrana plasmática diana e inducen la apoptosis o muerte celular programada. Las células normales, sanas están protegidas de la lisis por células 20 NK. La actividad de las células NK se regula por un mecanismo complejo que implica tanto señales estimuladoras e inhibidoras.
- [0149] En resumen, la actividad lítica de las células NK se regula por varios receptores de superficie celular que transducen señales intracelulares positivas o negativas tras la interacción con ligandos en la célula diana. El equilibrio entre señales positivas y negativas transmitidas a través de estos receptores determina se lisa (elimina) o no una célula diana por una célula NK. Las señales estimuladoras de células NK pueden estar mediadas por receptores de citotoxicidad naturales (NCR), tales como NKp30, NKp44 y NKp46; así como los receptores de NKG2C, receptores NKG2D, ciertos receptores de tipo inmunoglobulina de células asesinas activadoras (KIR), y otros receptores de NK de activación (Lanier, Annual Review of Immunology 2005; 23: 225-74). Las señales inhibidoras de células NK pueden ser mediadas por receptores como Ly49, CD94/NKG2A, así como ciertos KIR inhibidores, que reconocen moléculas del complejo mayor de histocompatibilidad (MHC) de clase I (Karre y otros, Nature 1986; 319: 675-8; Ohlen et al, Science 1989; 246: 666-8). Estos receptores inhibidores se unen a determinantes polimórficos de moléculas MHC de clase I (incluyendo HLA de clase I) presentes en otras células e inhibir lisis mediada por células NK.

KIR-CAR

35

[0150] Se describe en el presente documento una molécula de receptor de antígeno quimérico (CAR) que comprende un resto de unión a antígeno y un receptor de tipo inmunoglobulina de células asesinas (KIR-CAR). En 40 una realización, el KIR-CAR de la invención se expresa en la superficie de una célula T.

NKCARS BASADO EN KIR-CAR

- [0151] KIR, referidos como receptores de tipo inmunoglobulina de células asesinas, se han caracterizado en los seres humanos y los primates no humanos, y son moléculas transmembranas polimórficas de tipo 1 presentes en ciertos subconjuntos de linfocitos, incluyendo las células NK y algunas células T. KIR interactúan con determinantes en los dominios alfa 1 y 2 de las moléculas de MHC de clase I y, tal como se describe en otra parte en el presente documento, los KIR distintos son estimuladores o inhibidores para las células NK.
- 50 [0152] NKCARs descritos en este documento incluyen KIR-CARS, que comparten propiedades funcionales y estructurales con los KIR.
- [0153] KIR son una familia de proteínas de superficie celular que se encuentran en las células NK. Regulan la función de eliminar estas células mediante la interacción con moléculas de MHC de clase I, que se expresan en todos los tipos de células. Esta interacción les permite detectar células infectadas por virus o células tumorales. La mayoría de los KIR son inhibidores, lo que significa que su reconocimiento de MHC suprime la actividad citotóxica de la célula NK que las expresa. Sólo un número limitado de KIR tienen la capacidad de activar las células.
- [0154] La familia de genes de KIR tiene al menos 15 loci de genes (KIR2DL1, KIR2DL2/L3, KIR2DL4, KIR2DL5A, 60 KIR2DL5B, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4, KIR2DS5, KIR3DL1/S1, KIR3DL2, KIR3DL3 y dos pseudogenes, KIR2DP1 y KIR3DP1) codificados dentro de una región de 100-200 Kb del complejo de receptor de leucocitos (LRC) localizada en el cromosoma 19 (19q13.4). El LRC constituye un grupo grande, de 1 Mb y denso de genes inmunes de rápida evolución genes inmunes que contiene genes que codifican otras moléculas de superficie celular con dominios extracelulares de tipo Ig distintivos. Además, el LRC extendido contiene genes que codifican las moléculas adaptadoras transmembrana DAP10 y DAP12.

[0155] Los genes de KIR varían en longitud de 4 a 16 Kb (secuencia genómica completa) y puede contener cuatro a nueve exones. Los genes KIR se clasifican como pertenecientes a uno de los tres grupos de acuerdo con sus características estructurales: (1) genes de tipo I KIR2D, que codifican dos proteínas de dominio extra-celulares con una conformación D1 y D2; (2) Los estructuralmente divergentes genes Tipo II KIR2D que codifican dos proteínas de dominio extra celular con una conformación D0 y D2; y finalmente (3) los genes que codifican proteínas KIR3D con tres dominios de tipo Ig extracelulares (D0, D1 y D2).

[0156] Los genes de tipo I KIR2D, que incluyen la KIR2DP1 pseudogene así como genes KIR2DL1-3 y KIR2DS1-5, poseen ocho exones así como una secuencia pseudoexón 3. Este pseudoexón se inactiva en los tipos I KIR2D. En algunos casos esto es debido a una sustitución de nucleótidos se encuentra en el intrón 2-exón 3 empalme de sitio donde su secuencia de nucleótidos presenta una alta grado de identidad a KIR3D exón 3 secuencias y posee una característica de tres pares de bases eliminación. En otros casos, un codón de parada prematuro iniciados diferencial de empalme del exón 3. Dentro del grupo de tipo I KIR2D de los genes, KIR2DL1 y KIR2DL2 comparten una deleción común en el exón 7 de las distingan de los otros KIR en este exón, lo que da como resultado un menor exón 7 secuencia. Del mismo modo, dentro de Tipo I KIR2D, KIR2DL1-3 difieren de KIR2DS1-5 sólo en la longitud de su región de la cola citoplasmática de codificación en el exón 9. La estructura difiere KIR2DP1 pseudogen de la de KIR2DL1-3 en que el primero tiene una secuencia de exón 4 más corto, debido a una única deleción de pares de bases.

20 [0157] Los genes tipo II de KIR2D incluyen KIR2DL4 y KIR2DL5. A diferencia de KIR3D y Tipo I KIR2D, Tipo II KIR2D característicamente se haya eliminado la región correspondiente al exón 4 en el resto de KIR. Además, genes de tipo II KIR2D diferir de genes de tipo I KIR2D en que el primero posee un exón traducida 3, mientras que los genes de tipo I KIR2D tienen una secuencia no traducida 3 pseudoexón en su lugar. Dentro de los genes de Tipo II KIR2D, KIR2DL4 se diferencia más lejos de KIR2DL5 (así como de otros genes KIR) por la longitud de su secuencia de exón 1. En KIR2DL4, se encontró el exón 1 a ser de seis nucleótidos más largo y de poseer un codón de iniciación diferentes de los presentes en los otros genes KIR. Este codón de iniciación está en mejor acuerdo con el 'Kozak iniciación de la transcripción secuencia consenso' que el segundo potencial codón de iniciación en KIR2DL4 que corresponde al codón de iniciación presente en otros genes KIR.

30 [0158] Los genes KIR3D poseen nueve exones e incluyen los genes KIR3DL1, KIR3DS1, KIR3DL2 y KIR3DL3 estructuralmente relacionados. Secuencias de nucleótidos KIR3DL2 son el más largo de todos los genes KIR y lapso de 16 256 pb de secuencias genómicas completas y 1368 pb de cDNA. Dentro del grupo KIR3D, los cuatro genes KIR difieren en la longitud de la región que codifica la cola citoplásmica en el exón 9. La longitud de la cola citoplásmica de las proteínas de KIR puede variar de 14 residuos de aminoácidos de largo (en algunos KIR3DS1 alelos) a 108 amino residuos de ácido largos (en las proteínas KIR2DL4). Además, difiere KIR3DS1 de KIR3DL1 o KIR3DL2 en que el primero tiene una secuencia más corta exón 8. Difiere KIR3DL3 de otras secuencias de KIR en que carece completamente exón 6. La mayor diferencia la estructura de genes KIR extrema observada fue la de KIR3DP1. Este fragmento del gen carece por completo de los exones 6 a 9, y de vez en cuando también el exón 2. Las partes restantes del gen que están presentes (exón 1, 3, 4 y 5) comparten un alto nivel de identidad de secuencia con otras secuencias KIR3D, en particular, a secuencias de KIR3DL3.

[0159] Las proteínas KIR poseen característica de tipo Ig dominios en sus regiones extracelulares, que en algunas proteínas KIR están involucrados en HLA de clase I la unión del ligando. También poseen regiones transmembrana y citoplásmicas que son funcionalmente relevantes, ya que definen el tipo de señal que se transduce a la célula 45 NK. Proteínas KIR pueden tener dos o tres dominios tipo Ig (de ahí KIR2D o KIR3D), así como colas cortas o largo citoplasmáticos (representado como KIR2DS o KIR2DL). Dos proteínas KIR dominio se subdividen en dos grupos dependiendo del origen de la membrana distal de tipo Ig dominios presentes. Proteínas de tipo I KIR2D (KIR2DL1, KIR2DL2, KIR2DL3, KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS4 y KIR2DS5) poseen una membrana distal de tipo Ig dominio similar en origen a la KIR3D D1 de tipo Ig dominio pero carecen de un dominio D0. Este D1 de tipo Ig 50 dominio está codificado principalmente por el cuarto exón de los genes KIR correspondientes. Las proteínas de tipo II KIR2D, KIR2DL4 y KIR2DL5, poseen una membrana distal de tipo Ig dominio de secuencia similar al dominio presente D0 en proteínas KIR3D, sin embargo, Tipo II KIR2D carecen de un dominio D1. Larga colas citoplasmáticas por lo general contienen dos motivos inhibidores basados en tirosina inmunitario (ITIM) que transducen señales inhibidoras a la célula NK. Colas citoplasmáticas cortas poseen una carga positiva residuo de aminoácido en su 55 región transmembrana que les permite asocian con una DAP12 molécula de señalización capaz de generar una señal de activación de excepciones a esto es KIR2DL4, que contiene sólo un extremo N-terminal ITIM. Además, KIR2DL4 también posee un residuo cargado (arginina) en su dominio transmembrana, una característica que permite a este receptor para provocar ambas señales de inhibidores y activadores. KIR controlar la respuesta de las células NK humanas mediante la entrega de inhibidor o señales de activación a partir del reconocimiento de MHC de 60 clase I ligandos sobre la superficie de las células diana potenciales.

[0160] Las proteínas KIR varían en longitud desde 306 hasta 456 residuos de aminoácidos. Aunque las diferencias en la longitud de la proteína son en su mayoría la consecuencia de la cantidad de lg dominios presente, citoplasmática diversidad longitud región es también un factor de influencia. El péptido líder de la mayoría de las proteínas KIR es 21 residuos de aminoácidos de largo. Sin embargo, la presencia de un codón de iniciación diferente genera un péptido líder correspondientemente más largo en las proteínas KIR2DL4.

[0161] El dominio de tipo Ig D0presente en las proteínas de tipo II KIR2D y proteínas KIR3D es de aproximadamente 96 residuos de aminoácidos de longitud. El dominio D1 de tipo I KIR2D y de las proteínas KIR3D es de 102 residuos de aminoácidos de longitud, mientras que el dominio D2 de todas las proteínas KIR es de 98 residuos de aminoácidos de largo. La longitud de la región de tallo varía desde el 24 residuos de aminoácidos presente en la mayoría proteínas KIR, a sólo siete residuos de aminoácidos en la proteína divergente KIR3DL3. La región de transmembrana está a 20 residuos de aminoácidos de largo para la mayoría de las proteínas KIR, pero un residuo más corto en proteínas KIR2DL1 y KIR2DL2 como resultado de una deleción de tres pares de base en el exón 7. Por último, la región citoplasmática de KIR proteínas exposiciones mayores variaciones de longitud, que van de 23 residuos de aminoácidos en algunos alelos KIR3DS1 al 96 residuos de aminoácidos presentes en las proteínas KIR3DL2.

[0162] Las secuencias de aminoácidos para los polipéptidos KIR humanos (Homo sapiens) están disponibles en la base de datos NCBI, ver por ejemplo, números de acceso NP_037421.2 (GI: 134268644), NP_703144.2 (GI: 46488946), NP_001229796.1 (GI: 338968852), NP_001229796.1 (GI: 338968852), NP_006728.2 (GI: 134268642), NP_065396.1 (GI: 11968154), NP_001018091.1 (GI: 66267727), NP_001077008.1 (GI: 134133244), NP_036444.1 (GI: 6912472), NP_055327.1 (GI: 7657277), NP_056952.2 (GI: 71143139), NP_036446.3 (GI: 116517309), NP_001074239.1 (GI: 124107610), NP_002246.5 (GI: 124107606), NP_001074241.1 (GI: 124107604), NP_036445.1 (GI: 6912474).

[0163] La nomenclatura para los KIR se basa en el número de dominios extracelulares (KIR2D y KIR3D que tienen de dos y tres extracelulares de Ig-dominios, respectivamente) y si la cola citoplasmática es largo (KIR2DL o KIR3DL) o corto (KIR2DS o KIR3DS). La presencia o ausencia de un determinado KIR es variable de una célula NK a otro dentro de la población presente NK en un solo individuo. Entre los seres humanos, también hay un nivel relativamente alto de polimorfismo de genes KIR, estando presentes en algunos ciertos genes KIR, pero no todos los individuos. La expresión de alelos KIR en células NK está regulada estocásticamente, lo que significa que, en un individuo dado, un linfocito dado puede expresar uno, dos, o más diferentes KIR, dependiendo de la genoptype del individuo. Las células NK de un solo individuo típicamente expresan diferentes combinaciones de los KIR, proporcionando un repertorio de células NK con diferentes especificidades para las moléculas MHC de clase I.

Ciertos productos génicos de KIR causan la estimulación de la actividad de los linfocitos cuando se une a un ligando apropiado. Los KIR activar todos tienen una cola citoplásmica corta con un residuo de trans-membrana cargada que se asocia con una molécula adaptadora que tiene una Activación Motifs inmunoreceptor basado en tirosina (ITAM) que transducen señales estimuladoras a la célula NK. Por el contrario, los KIR inhibidors tienen una 35 larga cola citoplásmica que contiene inmunoreceptor basado en tirosina inhibitoria Motif (ITIM), que transduce señales inhibidoras a la célula NK tras el acoplamiento de sus ligandos de MHC de clase I. Los KIR inhibidors conocidos incluyen miembros de las subfamilias KIR2DL y KIR3DL. KIR inhibidors que tiene dos dominios de la (KIR2DL) reconocen HLA-C alotipos: KIR2DL2 (p58.2 antiguamente designado) y el, producto del gen alélica estrechamente relacionado KIR2DL3 Ambos reconocen "grupo 1" alotipos HLA-C (incluyendo HLA-Cw1, -3 , -7, y -40 8), mientras que KIR2DL1 (p58.1) reconoce "grupo 2" alotipos HLA-C (tales como HLA-Cw2, -4, -5, y -6). El reconocimiento por KIR2DL1 viene dictado por la presencia de un residuo de Lys en la posición 80 de alelos HLA-C. KIR2DL2 y KIR2DL3 reconocimiento está dictada por la presencia de un residuo Asn en la posición 80 en HLA-C. Es importante destacar que la gran mayoría de alelos HLA-C tiene o bien un Asn o un residuo Lys en la posición 80. Por lo tanto, KIR2DL1, -2 y -3 reconocen colectivamente esencialmente todos los alotipos HLA-C encuentran en 45 los seres humanos. Un KIR con tres dominios Ig, KIR3DL1 (p70), reconoce un epítopo compartido por los alelos HLA-Bw4. Finalmente, KIR3DL2 (p140), un homodímero de moléculas con tres dominios Ig, reconoce HLA-A3 y -A11.

[0165] Sin embargo, la presente descripción no debe limitarse a los KIR inhibidors que comprenden una cola citoplásmica que contiene ITIM. Más bien, cualquier proteína inhibidora que tiene un dominio citoplasmático que se asocia con una señal inhibitoria se puede utilizar en la construcción de los CARs de la presente descripción. Los ejemplos no limitantes de una proteína inhibidora incluyen, pero no se limitan CTLA-4, PD-1, y similares. Estas proteínas se sabe que inhiben la activación de células T.

55 [0166] Por consiguiente, la presente descripción proporciona un KIR-CAR comprende un dominio extracelular que comprende un elemento de unión a la diana específica se hace referencia de otro modo como un dominio de unión a antígeno fusionado a un KIR o fragmento de la misma. En una realización, el KIR es un KIR activación que comprende una cola citoplásmica corta que se asocia con una molécula adaptadora que tiene una Activación Motifs inmunoreceptor basado en tirosina (ITAM) que transducen señales estimuladoras a la célula NK (denominado en el presente documento en otra parte como actKIR-CAR). En un caso, el KIR es un KIR inhibidor que comprende una larga cola citoplásmica que contiene inmunoreceptor basado en tirosina inhibitoria Motif (ITIM), que transduce señales inhibidoras (denominados en el presente documento en otra parte como inhKIR-CAR). En algunos casos, es deseable eliminar la región bisagra para los KIR de activación cuando la construcción un actKIR-CAR. Esto es porque la invención se basa en parte en el descubrimiento de que una activación de KIR CAR en la que la bisagra 65 KIR2DS2 se eliminó para generar el KIR2S CAR, este KIRS2 CAR exhibió una mayor actividad citolítica en comparación con un actKIR-CAR comprende un KIR2DS2 longitud de tipo salvaje completo.

[0167] Las secuencias de ácidos nucleicos que codifican para las moléculas deseadas de la invención pueden obtenerse usando procedimientos recombinantes conocidos en la técnica, tales como, por ejemplo, mediante el cribado de bibliotecas de células que expresan el gen, derivando el gen a partir de un vector conocido incluir el mismo, o mediante el aislamiento directamente de células y tejidos que contienen el mismo, utilizando técnicas estándar. Alternativamente, el gen de interés puede producirse sintéticamente, en lugar de clonarse.

[0168] La presente invención incluye retroviral y lentiviral vector construcciones que expresan un KIR-CAR que se pueden transducir directamente en una célula. La presente invención también incluye un constructo de ARN que se pueden transfectar directamente en una célula. Un procedimiento para generar ARNm para el uso en la transfección implica la transcripción in vitro (IVT) de una plantilla con cebadores diseñados especialmente, seguido de adición de poliA, para producir una construcción que contiene 3' y 5' la secuencia no traducida ('UTR'), un 5' tapa y/o del sitio de entrada de ribosoma interno (IRES), el gen que va a expresarse, y una cola de poliA, típicamente 50-2000 bases de longitud. RNA así producido puede transfectar eficientemente diferentes tipos de células. En una realización, la plantilla incluye secuencias para el KIR-CAR.

[0169] En un ejemplo, un KIR-CAR comprende un dominio de unión a antígeno y un dominio transmembrana de KIr. En un ejemplo, un KIR-CAR comprende un dominio de unión a antígeno y un dominio intracelular de KIR, por ejemplo, un dominio intracelular de inhKIR.

[0170] Dominio D de KIR, tal como ese término se usa en este documento, se refiere a un dominio D0, D1 o D2 de un KIR.

[0171] Dominio D de KIR, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido 25 que tiene propiedades estructurales y funcionales de un dominio D de un KIR.

[0172] Dominio D0 de KIR, tal como ese término se usa en este documento, se refiere a un dominio D0 de un KIR. En una realización, el dominio D0 de KIR de un T KIR-CARiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un origen natural dominio D0 de KIR o un dominio D0 de KIR descritos en este documento. En realizaciones, el dominio D0 de KIR de A difiere KIR-CAR en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un origen natural dominio D0 de KIR o un dominio D0 de KIR descritos en este documento . En realizaciones, el dominio D0 de KIR de A difiere KIR-CAR en no más de 5, 4, 3, 2 o 1 residuo a partir de una secuencia de referencia, por ejemplo, un dominio de origen natural KIR D0 o un dominio D0 de KIR describe en este documento. En realizaciones, el dominio D0 de KIR de un S5 KIR-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio de origen natural KIR D0 o un dominio D0 de KIR descritos en este documento.

[0173] Dominio D1 de KIR, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio D1 de un KIR. En una realización, el dominio D1 de KIR de un T KIR-CARiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un origen natural dominio D1 de KIR o un dominio D1 de KIR descritos en este documento. En realizaciones, el dominio D1 de KIR de A difiere KIR-CAR en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un origen natural dominio D1 de KIR o un dominio D1 de KIR describe en el presente documento. En realizaciones, el dominio D1 KIR de A difiere KIR-CAR en no más de 5, 4, 3, 2 o 1 residuo a partir de una secuencia de referencia, por ejemplo, un dominio de origen natural KIR D0 o un dominio D1 de KIR describe en este documento. En realizaciones, el dominio D1 KIR de un KIR-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio de origen natural KIR D1 o un dominio D1 de KIR descritos en este documento.

50 [0174] Dominio D2 de KIR, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio D2 de un KIR. En una realización, el dominio D2 de KIR de un T KIR-CARiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un origen natural dominio D2 de KIR o un dominio D2 de KIR descritos en este documento. En realizaciones, el dominio D2 de KIR de A difiere KIR-CAR en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un origen natural dominio D2 de KIR o un dominio D2 de KIR describe en el presente documento. En realizaciones, el dominio D2 de KIR de A difiere KIR-CAR en no más de 5, 4, 3, 2 o 1 residuo a partir de una secuencia de referencia, por ejemplo, un dominio de origen natural KIR D2 o un dominio D2 de KIR describe en este documento. En realizaciones, el dominio D2 de KIR de un KIR-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio de origen natural KIR D2 o un dominio D0 de KIR descritos en este documento.

[0175] Dominio bisagra o de tallo de KIR, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de una bisagra o tallo de dominio de un KIR. En una forma de realización, el dominio bisagra o de tallo de KIR de un KIR-CAR tiene al menos 70, 80, 85, 90, 95, o 65 99% de homología con una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de KIR de origen natural o un dominio bisagra o de tallo de KIR que se describe en este documento. En realizaciones, el dominio

bisagra o de tallo de KIR de un KIR-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de KIR de origen natural o un dominio bisagra o de tallo de KIR que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de KIR de un KIR-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo un dominio bisagra o de tallo 5 de KIR de origen natural o un dominio bisagra o de tallo de KIR que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de KIR de un KIR-CAR no difiere de, o comparte el 100% de homología con, una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de KIR de origen natural o un dominio bisagra o de tallo de KIR que se describe en este documento.

10 [0176] Dominio transmembrana de KIR, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio transmembrana de un KIR. En un ejemplo, el dominio transmembrana de KIR de un KIR-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio transmembranade KIR de origen natural o un dominio transmembrana de KIR descrito en este documento. En casos, el dominio transmembrana de KIR de un KIR-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio transmembrana de KIR de origen natural o un dominio transmembrana de KIR de origen natural o un dominio transmembrana de KIR de origen natural o un dominio transmembrana de KIR que se describe en este documento. En casos, el dominio transmembrana de KIR de un KIR-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio transmembrana de KIR de origen natural o un dominio transmembrana de KIR de origen natural o un dominio transmembrana de KIR de origen natural o un dominio transmembrana de KIR de origen natural o un dominio transmembrana KIR descrito en este documento.

[0177] Dominio intracelular de KIR, tal como el término se utiliza en el presente documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio intracelular de un KIR. KIR dominios intracelulares comprenden KIR inhibidor intracelular dominios (denominado en este documento inhKIR intracelular dominios) y la activación de KIR intracelular dominios (denominado en este documento actKIR intracelular dominios). En un ejemplo, el dominio intracelular inhKIR comprende una secuencia de ITIM. En una realización, el dominio intracelular KIR de un T KIR-CARiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un origen natural dominio intracelular KIR o un KIR dominio intracelular describe en este documento. En realizaciones, el dominio intracelular KIR de A difiere KIR-CAR en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un origen natural KIR dominio intracelular o un dominio intracelular KIR de A difiere KIR-CAR en no más de 5, 4, 3, 2 o 1 residuo a partir de una secuencia de referencia, por ejemplo, un origen natural KIR dominio KIR intracelular de un KIR-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un origen natural KIR dominio intracelular KIR describe en este documento. En realizaciones, el dominio KIR intracelular vo un dominio intracelular KIR describe en este documento. En realizaciones, el dominio KIR intracelular vo un dominio intracelular KIR describe en este documento.

[0178] NKCARs descritos en este documento incluyen NCR-CAR, que comparten propiedades funcionales y 40 estructurales con NCR.

Las células asesinas naturales (NK) son células linfoides citotóxicos especializados en la destrucción de tumores y células infectadas con el virus. A diferencia de los linfocitos T citotóxicos, las células NK no expresan receptores específicos de antígeno. El reconocimiento de las células transformadas se produce a través de la 45 asociación de una multitud de receptores de superficie celular con marcadores de superficie sobre la célula diana. Los receptores de la superficie de las células NK se pueden distinguir en función de si activar o inhibir la citotoxicidad de NK mediada por células. Numerosas interacciones entre los diferentes receptores parecen conducir a la formación de sinapsis entre NK y células diana. La integración de la activación y la inhibición de las señales en los dictados sinapsis si o no las células NK ejercen su función citolítica en la célula diana. Entre los receptores 50 activadores, la familia de receptores de citotoxicidad natural como lg moléculas se denomina (NCR). Estos receptores de citotoxicidad natural incluyen moléculas NKp30, NKp44 y NKp46. Los NCR son receptores activadores clave para las células NK en el reconocimiento de células tumorales. Los tres NCR están implicados en el aclaramiento de ambos tumor y las células infectadas por virus. En este último, la actividad antiviral se inicia por la interacción de NKp44 con hemaglutinina del virus de la gripe o virus Sendai. NKp46 dirige a las células infectadas 55 con virus mediante la unión a la hemaglutinina virus de la gripe o virus Sendai hemaglutinina-neuraminidasa. En contraste, se ha demostrado que la citotoxicidad de NK mediada por células es inhibida por la unión de NKp30 a la pp65 proteína citomegalovirus humano (véase, por ejemplo, Arnón, et al, Nat Immunol (2005) 6:.... 515 a 523).

[0180] Las secuencias de aminoácidos de un polipéptido de NCR humano (Homo sapiens) están disponibles en la 60 base de datos NCBI, ver por ejemplo, número de acceso NP_004819.2 (GI: 153945782), 014.931,1 (GI: 47605770), 095.944,2 (GI: 251757303), 076036,1 (GI: 47605775), NP_001138939.1 (GI: 224586865), y/o NP_001138938.1 (GI: 224586860).

[0181] En un ejemplo, un NCR-CAR comprende un dominio de unión a antígeno y un dominio transmembrana de 65 NCR. En un ejemplo, un KIR-CAR comprende un dominio de unión a antígeno y un dominio intracelular de NCR.

[0182] Dominio extracelular de NCR, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio extracelular de un NCR. En un ejemplo, el dominio extracelular NCR de un NCR-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un origen natural NCR dominio extracelular o un dominio extracelular NCR descritos en este documento. En casos el dominio extracelular NCR de A difiere NCR-CAR en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un origen natural NCR dominio extracelular o un dominio extracelular NCR descritos en este documento. En casos el dominio extracelular NCR de A difiere NCR-CAR en no más de 5, 4, 3, 2 o 1 residuo a partir de una secuencia de referencia, por ejemplo, un origen natural NCR dominio extracelular o un dominio extracelular NCR describe en este documento. En casos el dominio extracelular de un NCR NCR-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un origen natural NCR dominio extracelular o un dominio extracelular NCR descritos en este documento.

[0183] Dominio bisagra o de tallo de NCR, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de una bisagra o tallo de dominio de un NCR. En una forma de realización, el dominio bisagra o de tallo de NCR de un NCR-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de NCR de origen natural o un dominio bisagra o de tallo de NCR que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de NCR de un NCR-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de NCR de origen natural o un dominio bisagra o de tallo de NCR que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de NCR que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de NCR que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de NCR que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de NCR que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de NCR de un NCR-CAR no difiere de, o comparte el 100% de homología con, una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de NCR de origen natural o un dominio bisagra o de tallo de NCR de origen natural o un dominio bisagra o de tallo de NCR de origen

[0184] Dominio transmembrana de NCR, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio transmembrana de un NCR. En un ejemplo, el dominio transmembrana de NCR de un NCR-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de 30 homología con una secuencia de referencia, por ejemplo, un dominio transmembranade NCR de origen natural o un dominio transmembrana de NCR descrito en este documento. En casos, el dominio transmembrana de NCR de un NCR-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio transmembrana de NCR descrito en este documento. En casos, el dominio transmembrana de NCR de un NCR-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo, un dominio transmembrana de NCR de origen natural o un dominio transmembrana de NCR que se describe en este documento. En casos, el dominio transmembrana de NCR de un NCR-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio transmembrana de NCR descrito en este documento.

40 [0185] Dominio intracelular de NCR, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio intracelular de un NCR. En un ejemplo, el dominio intracelular NCR de un NCR-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio intracelular de NCR origen natural o un dominio intracelular de NCR descrito en este documento. En casos, el dominio intracelular NCR de un NCR-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR descrito en este documento. En casos, el dominio intracelular de NCR de un NCR-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo, un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR descrito en este documento. En casos, el dominio intracelular de NCR de un NCR-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de origen natural o un dominio intracelular de NCR de or

Receptores SLAM

55 **[0186]** NKCARs que describen en este documento incluyen SLAMF-CARs, que comparten propiedades funcionales y estructurales con SLAMFs.

[0187] La molécula de activación de linfocitos de señalización (SLAM) de la familia de señalización de receptores de células inmunes está estrechamente relacionado con la familia CD2 de la inmunoglobulina (Ig) superfamilia de moléculas. La familia SLAM (SLAMF) actualmente incluye nueve miembros nombrados SLAM, CD48, CD29, 2B4, CD84, NTB-A, CRACC, culpa, y CD2F-10. En general, las moléculas de SLAM poseen de dos a cuatro dominios extracelulares de Ig, un segmento transmembrana y una región intracelular de la tirosina-rico. Las moléculas se expresan diferencialmente en una variedad de tipos de células inmunes. Varios son ligandos auto y SLAM se ha identificado como el receptor del virus del sarampión humanos. Varios pequeños SH2- que contiene proteínas adaptadoras se sabe que se asocian con los dominios intracelulares de miembros de la familia SLAM y receptor modular la señalización incluyendo SH2D1A (también conocidas como proteína asociada a SLAM [SAP]) y SH2D1B

(también conocido como EAT2). Por ejemplo, en las células T y NK, receptores de la familia SLAM activados se convierten en tirosina fosforilada y reclutar el SAP adaptador y, posteriormente, la Src quinasa Fyn. La consiguiente cascada de transducción de señales influye en el resultado de la célula presentadora de antígeno por células T y las interacciones célula a célula diana NK.

[0188] Las secuencias de aminoácidos de polipéptidos receptores SLAM humano (Homo sapiens) están disponibles en la base de datos NCBI, ver por ejemplo, número de acceso NP_057466.1 (GI: 7706529), NP_067004.3 (GI: 19923572), NP_003028.1 (GI: 4506969), NP_001171808.1 (GI: 296434285), NP_001171643.1 (GI: 296040491), NP_001769.2 (GI: 21361571), NP_254273.2 (GI: 226342990), NP_064510.1 (GI: 9910342) y/o NP_002339.2 (GI: 55925578)

[0189] En un ejemplo, un SLAMF-CAR comprende un dominio de unión a antígeno y un dominio transmembrana de SLAMF. En un ejemplo, un SLAMF-CAR comprende un dominio de unión a antígeno y un dominio intracelular de NCR.

15

[0190] Dominio extracelular de SLAMF, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio extracelular de un SLAMF. En un ejemplo, el dominio extracelular SLAMF de un SLAMF-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un origen natural SLAMF dominio extracelular o un dominio extracelular SLAMF de A difiere SLAMF de CARs en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un origen natural SLAMF dominio extracelular o un dominio extracelular SLAMF descritos en este documento . En casos el dominio extracelular SLAMF de A difiere SLAMF de CARs en no más de 5, 4, 3, 2 o 1 residuo a partir de una secuencia de referencia, por ejemplo, un origen natural SLAMF dominio extracelular o un dominio extracelular SLAMF describe en este documento. En casos el dominio extracelular de un SLAMF SLAMF-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un origen natural SLAMF dominio extracelular o un dominio extracelular SLAMF dominio extracelular SLAMF dominio extracelular SLAMF dominio extracelular SLAMF dominio

[0191] Dominio bisagra o de tallo de SLAMF, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de una bisagra o tallo de dominio de un SLAMF. En una forma de realización, el dominio bisagra o de tallo de SLAMF de un SLAMF-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de SLAMF de origen natural o un dominio bisagra o de tallo de SLAMF que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de SLAMF de un SLAMF-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de SLAMF de origen natural o un dominio bisagra o de tallo de SLAMF que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de SLAMF de origen natural o un dominio bisagra o de tallo de SLAMF que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de SLAMF de un SLAMF-CAR no difiere de, o comparte el 100% de homología con, una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de SLAMF de origen natural o un dominio bisagra o de tallo de SLAMF de origen natural o un dominio bisagra o de tallo de SLAMF de origen natural o un dominio bisagra o de tallo de SLAMF de origen natural o un dominio bisagra o de tallo de SLAMF que se describe en este documento.

[0192] Dominio transmembrana de SLAMF, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio transmembrana de un SLAMF. En un ejemplo, el dominio transmembrana de SLAMF de un SLAMF-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio transmembranade SLAMF de origen natural o un dominio transmembrana de SLAMF descrito en este documento. En casos, el dominio transmembrana de SLAMF de un SLAMF-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio transmembrana de SLAMF de origen natural o un dominio transmembrana de SLAMF de un SLAMF-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo, un dominio transmembrana de SLAMF de origen natural o un dominio transmembrana de SLAMF que se describe en este documento. En casos, el dominio transmembrana de SLAMF de origen natural o un dominio transmembrana de SLAMF que se describe en este documento. En casos, el dominio transmembrana de SLAMF de origen natural o un dominio transmembrana de SLAMF de origen natural o un dominio transmembrana KIR descrito en este documento.

[0193] Dominio intracelular de SLAMF, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio intracelular de un SLAMF. En un ejemplo, el dominio intracelular SLAMF de un SLAMF-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio intracelular de SLAMF origen natural o un dominio intracelular de SLAMF de un SLAMF-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio intracelular de SLAMF de origen natural o un dominio intracelular de SLAMF descrito en este documento. En casos, el dominio intracelular de SLAMF de un SLAMF-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo, un dominio intracelular de SLAMF de origen natural o un dominio intracelular de SLAMF de origen natural o un dominio intracelular de SLAMF de sun SLAMF-CAR no difiere de, o

comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio intracelular de SLAMF de origen natural o un dominio intracelular de SLAMF descrito en este documento.

Receptores de unión a Fc

5

[0194] NKCARs que se describen en este documento incluyen CARs basados en los receptores de Fc, FCR-CARs, por ejemplo, CD16-CARs, y CD64-CARS, que comparten propiedades funcionales y estructurales con CD16 y CD64.

10 [0195] Tras la activación, las células NK producen citocinas y quimiocinas abundante y al mismo tiempo muestran una actividad citolítica potente. La activación de las células NK puede ocurrir a través de la unión de receptores de células NK a ligandos sobre la célula diana directa, como se ve con la muerte celular tumoral directa, oa través de la reticulación del receptor Fc (CD 16; Fc? RIII) mediante la unión a la porción Fc de anticuerpos unidos a una célula que lleva un antígeno. Este CD16 de acoplamiento (CD16 reticulación) iniciados NK respuestas de las células a través de señales intracelulares que se generan a través de uno, o ambos, de las cadenas de adaptador asociados-CD16, gamma de FcR o CD3 ζ. La activación de los cables de CD16 a la fosforilación de la γ ο ζ cadena, que a su vez recluta tirosina quinasas, Syk y ZAP-70, iniciando una cascada de transducción de señales que conduce a funciones rápidas y potentes efectoras. La función efectora más conocida es la liberación de gránulos citoplasmáticos que transportan proteínas tóxicas para matar células diana cercanas a través del proceso de la citotoxicidad celular dependiente de anticuerpos. CD16 entrecruzamiento también se traduce en la producción de citocinas y quimiocinas que, a su vez, activan y orquestar una serie de respuestas inmunes.

[0196] Sin embargo, a diferencia de los linfocitos T y B, se cree que las células NK tener sólo una capacidad limitada para el reconocimiento de destino mediante receptores de activación de la línea germinal codificada (Bottino et al, Curr Top Microbiol Immunol 298:.. 175-182 (2006); Stewart et al., Curr Top Microbiol Immunol. 298: 1-21 (2006)). Células NK expresan el receptor de activación Fc CD 16, que reconoce las células IgG-revestidos objetivo, de reconocimiento del objetivo ampliando así (Ravetch y Bolland, Annu Rev Immunol 19:... 275-290 (2001); Lanier Nat Immunol 9 (5): 495-502 (2008); Bryceson y Long, Curr Opin Immunol 20 (3): 344-352 (2008)).

30 **[0197]** La actividad de transducción de expresión y de la señal de varios receptores de activación de células NK requiere asocia físicamente adaptadores, que señala transducen a través de motivos de activación basado en tirosina inmunoreceptor (ITAM). Entre estos adaptadores, gamma de FcR y las cadenas CD3 ζ pueden asociarse con CD16 y receptores de citotoxicidad naturales (NCR), ya sea como ligados por disulfuro homo-dímeros o hetero-dímeros, y estas cadenas se han pensado para ser expresada por todas las células maduras NK.

[0198] La secuencia de aminoácidos para CD16 (Homo sapiens) está disponible en la base de datos NCBI, véase, por ejemplo, número de acceso NP 000560.5 (GI: 50726979), NP 001231682.1 (GI: 348041254)

[0199] En un ejemplo, un FcR-CAR comprende un dominio de unión a antígeno y un dominio transmembrana de 40 FcR. En un ejemplo, un FcR-CAR comprende un dominio de unión a antígeno y un dominio intracelular de FcR.

[0200] Dominio extracelular de CD 16, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio extracelular de un CD16. En un ejemplo, el dominio extracelular CD16 de un CD16-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un origen natural CD16 dominio extracelular o un dominio extracelular CD16 descritos en este documento. En casos el dominio extracelular CD16 de A difiere CD16-CAR en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, describe un origen natural CD16 dominio extracelular o un dominio extracelular CD 16 En el presente documento en. En casos el CD 16 dominio extracelular de un difiere CD16-CAR en no más de 5, 4, 3, 2 o 1 residuo a partir de una secuencia de referencia, por ejemplo, un origen natural CD16 dominio extracelular CD16 descrito en este documento. En casos el dominio CD16 extracelular de un CD16-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un origen natural CD16 dominio extracelular o un dominio extracelular o

55 [0201] Dominio bisagra o de tallo de CD16, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de una bisagra o tallo de dominio de un CD16. En una forma de realización, el dominio bisagra o de tallo de CD16 de un CD16-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de CD16 de origen natural o un dominio bisagra o de tallo de CD16 que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de CD16 de un CD16-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de CD16 de origen natural o un dominio bisagra o de tallo de CD16 que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de CD16 de un CD16-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo un dominio bisagra o de tallo de CD16 de origen natural o un dominio bisagra o de tallo de CD16 que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de CD16 de un CD16-CAR no difiere de, o comparte el 100% de homología con, una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de

CD16 de origen natural o un dominio bisagra o de tallo de CD16 que se describe en este documento.

[0202] Dominio transmembrana de CD16, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio transmembrana de un CD16. En un 5 ejemplo, el dominio transmembrana de CD16 de un CD16-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio transmembranade CD16 de origen natural o un dominio transmembrana de CD16 descrito en este documento. En casos, el dominio transmembrana de CD16 de un CD16-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio transmembrana de CD16 descrito en este documento. En casos, el dominio transmembrana de CD16 de un CD16-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo, un dominio transmembrana de CD16 de origen natural o un dominio transmembrana de CD16 que se describe en este documento. En casos, el dominio transmembrana de CD16 de un CD16-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio transmembrana CD16 descrito en este 15 documento.

[0203] Dominio intracelular de CD16, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio intracelular de un CD16. En un ejemplo, el dominio intracelular CD16 de un CD16-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio intracelular de CD16 origen natural o un dominio intracelular de CD16 descrito en este documento. En casos, el dominio intracelular CD16 de un CD16-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio intracelular de CD16 de origen natural o un dominio intracelular de CD16 descrito en este documento. En casos, el dominio intracelular de CD16 de un CD16-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo, un 25 dominio intracelular de CD16 de origen natural o un dominio intracelular de CD16 descrito en este documento. En casos, el dominio intracelular de CD16 de un CD16-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio intracelular de CD16 descrito en este documento.

30 [0204] Dominio extracelular de CD64, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio extracelular de un CD64. En un ejemplo, el dominio extracelular CD64 de un CD64-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un origen natural CD64 dominio extracelular o un dominio extracelular CD64 descritos en este documento. En casos el dominio extracelular CD64 de A difiere CD64-CAR en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un origen natural CD64 dominio extracelular o un dominio extracelular CD64 descritos en este documento. En casos el dominio extracelular CD64 de A difiere CD64-CAR en no más de 5, 4, 3, 2 o 1 residuo a partir de una secuencia de referencia, por ejemplo, un origen natural CD64 dominio extracelular o un dominio extracelular CD64 descrito en este documento. En casos el dominio CD64 extracelular de un CD64-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un origen natural CD64 dominio extracelular o un dominio extracelular CD64 descritos en este documento.

[0205] Dominio bisagra o de tallo de CD64, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de una bisagra o tallo de dominio de un 45 CD64. En una forma de realización, el dominio bisagra o de tallo de CD64 de un CD64-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de CD64 de un CD64-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de CD64 de origen natural o un 50 dominio bisagra o de tallo de CD64 que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de CD64 de un CD64-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de CD64 de un CD64-CAR no difiere de, o comparte el 100% de homología con, una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen natural o un dominio bisagra o de tallo de CD64 de origen

[0206] Dominio transmembrana de CD64, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio transmembrana de un CD64. En un ejemplo, el dominio transmembrana de CD64 de un CD64-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio transmembranade CD64 de origen natural o un dominio transmembrana de CD64 descrito en este documento. En casos, el dominio transmembrana de CD64 de un CD64-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio transmembrana de CD64 de origen natural o un dominio transmembrana de CD64 descrito en este documento. En casos, el dominio transmembrana de CD64 de un CD64-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo, un dominio transmembrana de CD64 de origen natural o un dominio transmembrana de CD64 que se describe en este documento. En casos, el dominio transmembrana de

CD64 de un CD64-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio transmembrana de CD64 de origen natural o un dominio transmembrana CD64 descrito en este documento.

5 [0207] Dominio intracelular de CD64, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio intracelular de un CD64. En un ejemplo, el dominio intracelular CD64 de un CD64-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio intracelular de CD64 origen natural o un dominio intracelular de CD64 descrito en este documento. En casos, el dominio intracelular CD64 de un CD64-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio intracelular de CD64 de origen natural o un dominio intracelular de CD64 descrito en este documento. En casos, el dominio intracelular de CD64 de un CD64-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo, un dominio intracelular de CD64 de origen natural o un dominio intracelular de CD64 descrito en este documento. En casos, el dominio intracelular de CD64 de un CD64-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio intracelular de CD64 de origen natural o un dominio intracelular de CD64 de origen natural o un dominio intracelular de CD64 descrito en este documento.

Ly49 y receptores de tipo lectina de células asesinas relacionados

30

20 **[0208]** NKCARs descritos en este documento incluyen Ly49-CARS, que comparten propiedades funcionales y estructurales con Ly49.

[0209] Los receptores de Ly49 derivan de al menos 23 genes identificados (Ly49A-W) en ratones. Estos receptores comparten muchas de las mismas funciones en células de ratón NK y células T como que desempeñan 25 los KIR en los seres humanos a pesar de su diferente estructura (tipo II proteínas integrales de membrana de la lectina de tipo C superfamilia), y también contienen un grado considerable de genética variación como los KIR humanos. La notable similitud funcional entre los receptores de Ly49 y KIR sugieren que estos grupos de receptores han evolucionado independientemente todavía convergente para realizar las mismas funcionales fisiológicos en las células NK y células T.

[0210] Al igual que los KIR en los seres humanos, diferentes receptores Ly49 reconocen diferentes alelos de MHC de clase I y se expresan diferencialmente en los subconjuntos de células NK. Los receptores Ly49 prototípicos originales, Ly49A y Ly49C poseen un cojinete de dominio citoplasmático dos motivos inhibidores basados en immunotyrosine (ITIM) similar a los KIR inhibidors tales como KIR2DL3. Estos dominios han sido identificados para reclutar la fosfatasa, SHP-1, y como los KIR inhibidors, sirven para limitar la activación de células NK y células T. Además de las moléculas Ly49 inhibidors, varios miembros de la familia, tales como Ly49D y Ly49H han perdido los dominios que contiene ITIM-, y en su lugar han adquirido la capacidad de interactuar con la molécula adaptadora de señalización, DAP12 similar a los KIR de activación tal como KIR2DS2 en los seres humanos.

- 40 [0211] La secuencia de aminoácidos para los miembros de la familia Ly49 están disponibles en la base de datos NCBI, véase por ejemplo, números de acceso AAF82184.1 (GI: 9230810), AAF99547.1 (GI: 9801837), NP_034778.2 (GI: 133922593), NP_034779 0,1 (GI: 6754462), NP_001095090.1 (GI: 197333718), NP_034776.1 (GI: 21327665), AAK11559.1 (GI: 13021834) y/o NP_038822.3 (GI: 9256549).
- 45 **[0212]** En un ejemplo, un Ly49-CAR comprende un dominio de unión a antígeno y un dominio transmembrana de Ly49. En un ejemplo, un Ly49-CAR comprende un dominio de unión a antígeno y un dominio intracelular de NCR.

[0213] Dominio extracelular de Ly49, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio extracelular de un Ly49. En un ejemplo, el dominio extracelular Ly49 de un Ly49-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un origen natural Ly49 dominio extracelular o un dominio extracelular Ly49 descritos en este documento. En casos el dominio extracelular Ly49 de A difiere Ly49 de CARs en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un origen natural Ly49 dominio extracelular co un dominio extracelular Ly49 descritos en este documento. En casos el dominio extracelular Ly49 de A difiere Ly49 de CARs en no más de 5, 4, 3, 2 o 1 residuo a partir de una secuencia de referencia, por ejemplo, un origen natural Ly49 dominio extracelular o un dominio extracelular Ly49 describe en este documento. En casos el dominio extracelular de un Ly49 Ly49-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un origen natural Ly49 dominio extracelular o un dominio extracelular Ly49 descritos en este documento.

[0214] Dominio bisagra o de tallo de Ly49, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de una bisagra o tallo de dominio de un Ly49. En una forma de realización, el dominio bisagra o de tallo de Ly49 de un Ly49-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de Ly49 de origen natural o un dominio bisagra o de tallo de Ly49 que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de Ly49 de un Ly49-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una

secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de Ly49 de origen natural o un dominio bisagra o de tallo de Ly49 que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de Ly49 de un Ly49-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo un dominio bisagra o de tallo de Ly49 de origen natural o un dominio bisagra o de tallo de Ly49 que se describe en este documento. En realizaciones, el dominio bisagra o de tallo de Ly49 de un Ly49-CAR no difiere de, o comparte el 100% de homología con, una secuencia de referencia, por ejemplo, un dominio bisagra o de tallo de Ly49 de origen natural o un dominio bisagra o de tallo de Ly49 que se describe en este documento.

[0215] Dominio transmembrana de Ly49, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio transmembrana de un Ly49. En un ejemplo, el dominio transmembrana de Ly49 de un Ly49-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio transmembranade Ly49 de origen natural o un dominio transmembrana de Ly49 descrito en este documento. En casos, el dominio transmembrana de Ly49 de un Ly49-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio transmembrana de Ly49 descrito en este documento. En casos, el dominio transmembrana de Ly49 de un Ly49-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo, un dominio transmembrana de Ly49 de origen natural o un dominio transmembrana de Ly49 que se describe en este documento. En casos, el dominio transmembrana de Ly49 de un Ly49-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un 20 dominio transmembrana de Ly49 de origen natural o un dominio transmembrana de Ly49 descrito en este documento.

[0216] Dominio intracelular de Ly49, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio intracelular de un Ly49. En un ejemplo, el dominio intracelular Ly49 de un Ly49-CAR tiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio intracelular de Ly49 origen natural o un dominio intracelular de Ly49 descrito en este documento. En casos, el dominio intracelular Ly49 de un Ly49-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio intracelular de Ly49 de origen natural o un dominio intracelular de Ly49 descrito en este documento. En casos, el dominio intracelular de Ly49 de un Ly49-CAR difiere en no más de 5, 4, 3, 2 o 1 residuo de una secuencia de referencia, por ejemplo, un dominio intracelular de Ly49 descrito en este documento. En casos, el dominio intracelular de Ly49 de origen natural o un dominio intracelular de Ly49 descrito en este documento. En casos, el dominio intracelular de Ly49 de un Ly49-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio intracelular de Ly49 descrito en este documento.

35 Dominios de señalización intracelular o moléculas adaptadoras, por ejemplo, DAP12

40

[0217] Algunos NKR-CARS interactúan con otras moléculas, por ejemplo, moléculas que comprenden un dominio de señalización intracelular, por ejemplo, un ITAM. En una realización, un dominio de señalización intracelular es DAP12.

[0218] DAP12 es llamado así debido a sus características estructurales, y supuesta función. Ciertos receptores de superficie celular carecen de funcionalidad intrínseca, que hipotéticamente puede interactuar con otro "partner" de proteínas, sugerido como una proteína de 12 kD. El mecanismo de señalización puede implicar una señal de ITAM.

45 **[0219]** La DAP12 se identificó a partir de bases de datos de secuencias en base a una relación hipotética para CD3 (véase Olcese, et al (1997) J. Immunol. 158: 5083-5.086), la presencia de una secuencia ITAM (ver Thomas (1995) J. Exp Med 181: 1953-1956), ciertas predicciones de tamaño (véase Olcese; y Takase, et al (1997). J. Immunol 159: 741 a 747, y otras características En particular, el dominio transmembrana estaba hipótesis para contener un residuo cargado, lo que permitiría un puente de sal con los correspondientes segmentos transmembrana de sus socios presuntos receptores, proteína CD94 KIR, y posiblemente otras proteínas similares Véase Daeron, et al (1995) Immunity 3: 635-646.

[0220] De hecho, muchos de los conocidos moléculas de receptores KIR, MIR, ILT y CD94/NKG2 puede en realidad de función con una proteína accesoria que es parte del receptor funcional complejo. Ver Olcese, et 55 al. (1997) J. Immunol. 158: 5083 a 5086; y Takase, et al. (1997) J. Immunol. 159: 741-747.

[0221] Un dominio DAP 12, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio citoplasmático de una DAP 12, e incluirá típicamente un dominio de ITAM. En una forma de realización de un dominio DAP 12 de un T KIR-CARiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un DAP de origen natural 12 o una DAP 12 descritos en este documento. En realizaciones, el dominio DAP 12 de A difiere KIR-CAR en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un DAP de origen natural 12 o una DAP 12 describe en este documento. En realizaciones, el dominio DAP 12 de A difiere KIR-CAR en no más de 5, 4, 3, 2 o 1 residuo a partir de una secuencia de referencia, por ejemplo, un DAP de origen natural 12 o una DAP 12 describe en este documento. En realizaciones, el dominio DAP 12 de un KIR-CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un DAP de origen natural 12 o una DAP 12

descritos en este documento.

[0222] La DAP10 se identificó en parte, por su homología con la DAP12, y otras características. En particular, en contraste con la DAP12, que presenta un motivo de activación de ITAM, la DAP10 exhibe un motivo inhibidor 5 ITIM. El MDL-1 se identificó por su asociación funcional con DAP12.

[0223] La interacción funcional entre, por ejemplo, DAP12 o DAP10, y su receptor accesorio puede permitir el uso de la combinación estructural de los receptores que normalmente no se encuentran en una forma truncada del receptor. Así, el mecanismo de señalización a través de proteínas tales accesorios como la DAP12 y DAP10 permite 10 la ingeniería interesante de otro KIR-como complejos de receptores, por ejemplo, con los receptores de tipo KIR, MIR, ILT y CD94 NKG2. Las formas truncadas de los receptores intactos pueden construirse que interactúan con una DAP12 o DAP10 para formar complejo una señalización funcional.

[0224] La secuencia de nucleótidos de DAP12 de primate corresponde a SEQ ID NO: 6; la secuencia de aminoácidos corresponde a SEQ ID NO: 7. Los aparece la secuencia de señal para funcionar de met (-26) a Gln (-1) o ala1; la proteína madura debe ejecutar desde aproximadamente ala1 (o Gln2), el dominio extracelular desde aproximadamente ala1 a Pro14; el dominio extracelular contiene dos cisteínas en 7 y 9, lo que probablemente permitan enlaces disulfuro a homotípica adicional o proteínas accesorias heterotípicos; la región transmembrana se ejecuta desde aproximadamente gly15 o val16 a aproximadamente gly39; y un motivo ITAM de tyr65 a leu79 (YxxL-20 6/8x-YxxL). El LVA03A EST se identificó y se utiliza para extraer otras secuencias que se solapan. Ver también GenBank EST humanos que son parte de DAP12 humana; algunos, pero no todos, incluido acceso a Genbank # AA481924; H39980; W60940; N41026; R49793; W60864; W92376; H12338; T52100; AA480109; H12392; W74783; y T55959

25 NKR-CARS INHIBIDORES

[0225] La presente descripción proporciona composiciones y procedimientos para limitar el agotamiento de las células no cancerosas mediante un tipo de terapia de células T CAR. Tal como se describe en el presente documento, un tipo de terapia de células T CAR comprende el uso de receptores NK que incluyen, pero no se limita 30 a, receptores activadores e inhibidores de células NK conocidos como receptor de tipo inmunoglobulina de células asesinas (KIR). Por consiguiente, la presente descripción proporciona composiciones y procedimientos de uso de un NKR-CAR, por ejemplo, un KIR-CAR, incluyendo, pero no se limita a, un NKR-CAR activador (actNKR-CAR), por ejemplo, un KIR-CAR activador (actKIR-CAR) y un NKR-CAR inhibidor (inhNKR-CAR), por ejemplo, un KIR-CAR inhibidor (inhKIR-CAR).

[0226] En algunos casos, el KIR de un inhKIR-CARS es un KIR inhibidor que comprende una larga cola citoplasmatica que contiene un motivo inhibidor basado en tirosina inmunoreceptor (ITIM), que transducen señales inhibidoras (se hace referencia en otra parte en el presente documento como inhKIR-CAR).

40 **[0227]** En algunos casos, un inhKIR-CAR comprende un dominio citoplasmático de una molécula inhibidora que no es KIR. Estas moléculas inhibidoras pueden, en algunos casos, disminuir la capacidad de una célula para montar una respuesta efectora inmunitaria. Los dominios citoplasmáticos de las moléculas inhibidoras se pueden acoplar, por ejemplo, por fusión, a dominios transmembrana de KIR. Moléculas inhibidoras de ejemplo se muestran en la tabla 1:

4	_

35

Tabla 1 Moléculas inhibidoras	
CD160	
2B4	
PD1	
TIM3	
LAG3	
TIGIT	
CTLA-4	
BTLA	
LAIR1	
PD-L1	
VISTA	

[0228] En algunos casos, un inhKIR-CAR comprende un dominio citoplasmático de PD1. Un dominio citoplasmático de PD1, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio citoplasmático de un PD1. En un ejemplo, el dominio citoplasmático de PD1 de un T KIR-CARiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio citoplasmático de PD1 de origen natural o un dominio citoplasmático de PD1 descrito en este documento (SEQ ID NO: 14). En algunos casos, el dominio citoplasmático de PD1 de un KIR-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio

ES 2 769 574 T3

citoplasmático de PD1 de origen natural o un dominio citoplasmático de PD1 descrito en este documento. En algunos casos, el dominio citoplasmático de PD1 de un KIR-CAR difiere en no más de 5, 4, 3, 2 o 1 residuos de una secuencia de referencia, por ejemplo, un dominio citoplasmático de PD1 de origen natural o un dominio citoplasmático de PD1 descrito en este documento. En algunos casos, el dominio citoplasmático de PD1 de un KIR-5 CAR no difiere de, o comparte 100% de homología con, una secuencia de referencia, por ejemplo, un dominio citoplasmático de PD1 de origen natural o un dominio citoplasmático de PD1 descrito en este documento.

[0229] En algunos casos, un inhKIR-CAR comprende un dominio citoplasmático de CTLA-4. Un dominio citoplasmático de CTLA-4, tal como ese término se usa en este documento, se refiere a un dominio de polipéptido que tiene propiedades estructurales y funcionales de un dominio citoplasmático de un CTLA-4. En un ejemplo, el dominio citoplasmático de CTLA-4 de un T KIR-CARiene al menos 70, 80, 85, 90, 95, o 99% de homología con una secuencia de referencia, por ejemplo, un dominio citoplasmático de CTLA-4 de origen natural o un dominio citoplasmático de CTLA-4 de un KIR-CAR difiere en no más de 15, 10, 5, 2, o 1% de sus residuos de una secuencia de referencia, por ejemplo, un dominio citoplasmático de CTLA-4 de origen natural o un dominio citoplasmático de CTLA-4 de origen natural o un kIR-CAR difiere en no más de 5, 4, 3, 2 o 1 residuos de una secuencia de referencia, por ejemplo, un dominio citoplasmático de CTLA-4 de origen natural o un dominio citoplasmático de CTLA-4 de

[0230] En un ejemplo, un inhNKR-CAR, por ejemplo, un inhKIR-CAR, tras el acoplamiento con un antígeno en una célula no diana o espectadora, inactiva la célula citotóxica que comprende el inhNKR-CAR. Si bien gran parte de la descripción a continuación se refiere a inhKIR-CARS, la presente descripción incluye la aplicación análoga de otros inhNKR-CARS.

[0231] En una realización, las células T que expresan el actKIR-CAR exhiben una propiedad antitumoral cuando se unen a su diana, mientras que las células T que expresan un inhKIR-CAR dan lugar a la inhibición de la actividad de las células cuando el inhKIR-CAR está unido a su diana.

[0232] Independientemente del tipo de KIR-CAR, los KIR-CARs están diseñados para comprender un dominio extracelular que tiene un dominio de unión a antígeno fusionado a un dominio citoplasmático. En un caso, los KIR-CAR, cuando se expresan en una célula T, son capaces de redirigir el reconocimiento del antígeno en base a la especificidad de antígeno. Un antígeno de ejemplo es CD19 porque este antígeno se expresa en el linfoma de células B. Sin embargo, CD19 también se expresa en las células B normales, y por lo tanto los CAR que comprenden un dominio anti-CD 19 pueden dar lugar al agotamiento de las células B normales. El agotamiento de las células B normales puede hacer que un sujeto tratado sea susceptible a la infección, ya que las células B normalmente ayudan a las células T en el control de la infección. La presente descripción proporciona 40 composiciones y procedimientos para limitar el agotamiento de tejido normal durante la terapia con células T KIR-CAR. En un caso, la presente descripción proporciona procedimientos para tratar el cáncer y otros trastornos usando la terapia de células T KIR-CAR a la vez que limita el agotamiento de células espectadoras sanas.

[0233] En un caso, la presente descripción comprende controlar o regular la actividad de las células T KIR-CAR.
45 En un caso, la presente descripción comprende composiciones y procedimientos relacionados con la modificación genética de las células T para expresar una pluralidad de tipos de KIR-CARs, donde la activación de células T KIR-CAR es dependiente de la unión de una pluralidad de tipos de KIR-CARs a su receptor diana. La dependencia de la unión de una pluralidad de tipos de KIR-CARs mejora la especificidad de la actividad lítica de la célula T KIR-CAR, reduciendo así el potencial de agotamiento de tejido sano normal.

50

55

[0234] En otro caso, la presente descripción comprende composiciones y procedimientos relacionados con la modificación genética de las células T con un KIR-CAR inhibidor. En un caso, el KIR-CAR inhibidor comprende un dominio de unión a antígeno extracelular que reconoce un antígeno asociado con una célula normal, no cancerosa, y un dominio citoplasmático inhibidor.

[0235] En una realización, la invención proporciona un KIR-CAR dual donde una célula T se modifica genéticamente para expresar un inhKIR-CAR y un actKIR-CAR. En una realización, la unión del inhKIR-CAR a una célula normal, no cancerosa, da lugar a la inhibición de la célula T KIR-CAR dual. Por ejemplo, en una realización, la unión del inhKIR-CAR a una célula normal, no cancerosa, da lugar a la muerte de la célula T KIR-CAR dual. En otra realización, la unión del inhKIR-CAR a una célula normal, no cancerosa, da lugar a la inhibición de la transducción de señal del actKIR-CAR. En aún otra realización, la unión del inhKIR-CAR a una célula normal, no cancerosa, da lugar a la inducción de una señal de transducción de señales que evita que la célula T actKIR-CAR muestre su actividad anti-tumoral. En consecuencia, el KIR-CAR dual que comprende al menos un inhKIR-CAR y al menos un actKIR-CAR de la invención proporciona un mecanismo para regular la actividad de la célula T KIR-CAR dual.

[0236] En un caso, la presente descripción proporciona procedimientos para tratar el cáncer y otros trastornos

utilizando terapias con células T KIR-CAR y reducir al mínimo el agotamiento de tejido sano normal. El cáncer puede ser un tumor maligno hematológico, un tumor sólido, un tumor primario o un tumor con metástasis. Otras enfermedades tratables usando las composiciones y procedimientos de la presente descripción incluyen infecciones virales, bacterianas y parasitarias, así como enfermedades autoinmunes.

DOMINIO BISAGRA EXTRACELULAR

[0237] El dominio bisagra extracelular, tal como ese término se usa en este documento, se refiere a una secuencia polipeptídica de un NKCAR dispuesto entre el dominio transmembrana y el dominio de unión a antígeno. En una 10 realización, el dominio bisagra extracelular permite suficiente distancia desde la superficie externa de la célula y el dominio de unión a antígeno, así como flexibilidad para minimizar el impedimento estérico entre la célula y el dominio de unión a antígeno. En una realización, el dominio bisagra extracelular es suficientemente corto o flexible que no interfiere con el acoplamiento de la célula que incluye el NKCAR con una célula que contiene el antígeno, por eiemplo, una célula diana. En una realización, el dominio bisagra extracelular es de 2 a 20, 5 a 15, 7 a 12, o 8 a 10 15 aminoácidos de longitud. En una realización, el dominio bisagra incluye al menos 50, 20, o 10 residuos. En realizaciones, la bisagra es de 10 a 300, 10 a 250, o 10 a 200 residuos de longitud. En una realización, la distancia desde la que la bisagra se extiende desde la célula es suficientemente corta que la bisagra no obstaculiza el acoplamiento con la superficie de una célula diana. En una realización, la bisagra se extiende menos de 20, 15, o 10 nanómetros desde la superficie de la célula citotóxica. Por lo tanto, la idoneidad para una bisagra puede estar 20 influenciada por la longitud lineal, el número de residuos de aminoácidos y la flexibilidad de la bisagra. Una bisagra IgG4 puede ser tan larga como 200 aminoácidos de longitud, pero la distancia que se extiende desde la superficie de la célula citotóxica es más pequeña debido al plegamiento del dominio de Ig. Una bisagra CD8alfa, que es de ~43 aminoácidos, es bastante lineal con ~ 8 nm de longitud. En cambio, las bisagras C2 y C3 de IgG4) es de ~ 200 aminoácidos de longitud, pero tiene una distancia desde la superficie de la célula citotóxica comparable a la de la 25 bisagra CD8 alfa. Si bien no se desea estar ligado a la teoría, la similitud en la extensión está influenciada por la flexibilidad.

[0238] En algunos casos, el dominio bisagra extracelular es, por ejemplo, una bisagra de una proteína humana, un fragmento de la misma, o un enlazador de oligopéptido o polipéptido corto.

[0239] En algunas realizaciones, la bisagra es una secuencia artificial. En una realización, la bisagra es un enlazador de oligopéptido corto que comprende un doblete de glicina-serina.

[0240] En algunas realizaciones, la bisagra es una secuencia de origen natural. En algunas realizaciones, la bisagra puede ser una bisagra de Ig humana (inmunoglobulina), o fragmento del mismo. En una realización, por ejemplo, los comprende bisagra (por ejemplo, consta de) la secuencia de aminoácido de la bisagra IgG4 (SEQ ID NO: 49). En una realización, por ejemplo, los comprende bisagra (por ejemplo, consiste en) la secuencia de aminoácidos de la bisagra IgD (SEQ ID NO: 50). En algunas realizaciones, la bisagra puede ser una bisagra CD8 humano, o fragmento de la misma. En una realización, por ejemplo, los comprende bisagra (por ejemplo, consiste 40 en) la secuencia de aminoácidos de la bisagra CD8 (SEQ ID NO: 51).

TCARS

[0241] En algunos casos, la terapia de células CAR de la presente descripción comprende NKR-CAR en combinación con un TCAR. En una realización, un TCAR comprende un dominio de unión a antígeno fusionado a un dominio intracelular. En las realizaciones, un dominio de señalización intracelular produce una señal intracelular cuando un dominio extracelular, por ejemplo, un dominio de unión a antígeno, a la que se fusiona une a un ligando contador. Dominios de señalización intracelular pueden incluir dominios de señalización intracelulares primarios y dominios de señalización coestimuladoras. En una realización, una molécula de TCAR puede ser construido para la expresión en una célula inmune, por ejemplo, una célula T, tal que la molécula TCAR comprende un dominio, por ejemplo, unos primarios dominios de señalización intracelular, dominio de señalización coestimuladora, dominios inhibidores, etc., que se deriva de un polipéptido que se asocia típicamente con la célula inmune. Por ejemplo, un TCAR para la expresión en una célula T puede comprender un dominio 41BB y un dominio zeta CD3. En este caso, tanto el 41BB y dominios CD3 zeta se derivan de polipéptidos asociados con la célula T. En otra realización, una molécula TCAR comprende un dominio que se deriva de un polipéptido que no está normalmente asociada con la célula inmune. Alternativamente, un TCAR para la expresión en una célula NK puede comprender un dominio 41BB y un dominio zeta CD3 derivada de una célula T (Véase, por ejemplo WO2013/033626).

60 DOMINIO DE SEÑALIZACIÓN INTRACELULAR PRIMARIA

[0242] En algunos casos, un dominio de señalización intracelular primaria produce una señal intracelular cuando un dominio extracelular, por ejemplo, un dominio de unión a antígeno, a la que se fusiona une cognado antígeno. Se deriva de una molécula estimuladora primaria, por ejemplo, que comprende la secuencia intracelular de una molécula estimuladora primaria. Comprende suficiente secuencia de molécula estimuladora primaria para producir una señal intracelular, por ejemplo, cuando un dominio de unión a antígeno al que se fusiona une cognado antígeno.

- [0243] Una molécula estimuladora primaria, es una molécula, que al ligando afín de unión, media una respuesta efectora inmunitaria, por ejemplo, en la célula en la que se expresa. Típicamente, se genera una señal intracelular que es dependiente de la unión a un cognado ligando que comprende antígeno. El complejo TCR/CD3 es una molécula estimuladora principal modo de ejemplo; que genera una señal intracelular tras la unión a ligando afín, por ejemplo, una molécula de MHC cargado con un péptido. Típicamente, por ejemplo, en el caso de la molécula de estimulación primario TCR/CD3, la generación de una señal intracelular por un dominio de señalización intracelular primaria depende de la unión de la molécula estimuladora primaria al antígeno.
- 10 **[0244]** La estimulación primaria puede mediar la expresión alterada de ciertas moléculas, tales como la regulación por descenso de TGF-β, y/o reorganización de las estructuras del citoesqueleto, y similares.
- [0245] La estimulación puede, por ejemplo, en presencia de la coestimulación, dar lugar a una optimización, por ejemplo, un aumento, en una función efectora inmune de la célula T. La estimulación, por ejemplo, en el contexto de una célula T, puede mediar una respuesta de células T, por ejemplo, proliferación, activación, diferenciación, y similares.
- [0246] En una realización, el dominio de señalización intracelular primaria comprende un motivo de señalización, por ejemplo, un motivo de activación basado en tirosina inmunoreceptor o ITAM. Un dominio de señalización intracelular primaria puede comprender ITAM que contiene secuencias de señalización citoplasmáticas de TCR zeta (CD3 zeta), FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CD5, CD22, CD79a, CD79b, CD278 (también conocido como "ICOS") y CD66d.

[0247] Los ejemplos de dominios de señalización intracelular primaria se proporcionan en la Tabla 2.

つ	ᇧ
_	J

- [0248] Un dominio de señalización intracelular primaria comprende un fragmento funcional o análogo, de una molécula estimuladora primaria (por ejemplo, CD3 zeta -. GenBank Acc No. BAG36664.1) Puede comprender toda la región intracelular o un fragmento de la región intracelular que es suficiente para la generación de una señal intracelular cuando un dominio de unión a antígeno al que se fusiona, o se acopla por un interruptor de dimerización, se une al antígeno cognado. En realizaciones, el dominio de señalización intracelular primaria tiene al menos 70, 75. 80. 85, 90, 95, 98, o 99% de identidad de secuencia con una molécula de origen natural primaria de estimulación, por ejemplo, un ser humano (GenBank Acc. No. BAG36664.1), u otro mamífero, por ejemplo, una especie no humana, por ejemplo, roedores, mono o murino intracelular molécula estimuladora primaria. En realizaciones, el dominio de señalización intracelular primaria tiene al menos 70, 75. 80. 85, 90, 95, 98, o 99% de identidad de secuencia con SEQ ID NO: 13.
- [0249] En realizaciones, el dominio de señalización intracelular primaria, tiene al menos 70, 75, 80, 85, 90, 95, 96, 97, 98, o 99% de identidad con, o difiere en no más de 30, 25, 20, 15, 10, 5, 4, 3, 2, o 1 residuos de aminoácidos de los residuos correspondientes de una molécula estimuladora primaria humana de origen natural, por ejemplo, una molécula estimuladora primaria humana de origen natural descrita en el presente documento.

DOMINIO DE SEÑALIZACIÓN COESTIMULADOR

- 45 **[0250]** En un ejemplo, un dominio de señalización coestimulador produce una señal intracelular cuando un dominio extracelular, por ejemplo, un dominio de unión a antígeno al que se fusiona, o se acopla mediante un interruptor de dimerización, se une a un ligando afín. Se deriva de una molécula coestimuladora. Comprende suficiente secuencia de molécula coestimuladora primaria para producir una señal intracelular, por ejemplo, cuando un dominio extracelular, por ejemplo, un dominio de unión a antígeno, al que se fusiona, o se acopla mediante un interruptor de 50 dimerización, se une a un ligando afín.
 - [0251] Las moléculas coestimuladoras son moléculas de la superficie celular, distintas de receptores de antígenos

o sus ligandos homólogos, que promueven una respuesta efectora inmune. En algunos casos, se requieren para una respuesta inmunitaria eficaz o mejorada. Típicamente, una molécula coestimuladora genera una señal intracelular que es dependiente de la unión a un ligando afín que es, en realizaciones, distinto de un antígeno, por ejemplo, el antígeno reconocido por un dominio de unión a antígeno de una célula T. Típicamente, la señalización de una molécula estimuladora primaria y una molécula coestimuladora contribuye a una respuesta efectora inmune, y en algunos casos, ambas son necesarias para la generación eficiente o mejorada de una respuesta efectora inmune.

[0252] Un dominio coestimulador comprende un fragmento funcional o análogo, de una molécula coestimuladora (por ejemplo, 4-1BB). Puede comprender toda la región intracelular o un fragmento de la región intracelular que es suficiente para la generación de una señal intracelular, por ejemplo, cuando un dominio de unión a antígeno al que se fusiona, o se acopla por un interruptor de dimerización, se une a un antígeno afín. En realizaciones, el dominio coestimulador tiene al menos 70, 75, 80, 85, 90, 95, 98, o 99% de identidad de secuencia con una molécula coestimuladora de origen natural, por ejemplo, una molécula coestimuladora intracelular de ser humano, u otro mamífero, por ejemplo, una especie no humana, por ejemplo, roedores, mono, simio o murino. En realizaciones, el dominio coestimulador tiene al menos 70, 75, 80, 85, 90, 95, 98, o 99% de identidad de secuencia con SEQ ID NO:

[0253] Los dominios de señalización coestimulador a modo de ejemplo (dominios de señalización intracelular) se proporcionan en la Tabla 3.

20_	
	Tabla 3: Dominios de señalización coestimuladores para RCARX (identificados por las moléculas coestimuladoras
-	de las que se derivan)
-	CD27
-	CD28
	4-1BB (CD137)
-	OX40
	CD30
	CD40
	COS (CD278)
	CAM-1
	LFA-1 (CD11a/CD18)
-	CD2
	CD7
	LIGHT
	NKG2C
	B7-H3
	Un ligando que se une específicamente con CD83

[0254] En realizaciones, el dominio de señalización coestimulador, tiene al menos 70, 75, 80, 85, 90, 95, 96, 97, 98, o 99% de identidad con, o difiere en no más de 30, 25, 20, 15, 10, 5, 4, 3, 2, o 1 residuos de aminoácidos de los residuos correspondientes de una molécula estimuladora primaria humana de origen natural, por ejemplo, una 25 molécula coestimuladora humana de origen natural descrita en el presente documento.

DOMINIO DE UNIÓN A ANTÍGENO

[0255] Los CARs que se describen en el presente documento, por ejemplo, los KIR-CARS que se describen en el presente documento, incluyen un dominio de unión a antígeno en la región extracelular. Un "dominio de unión a antígeno", tal como el término se utiliza en el presente documento, se refiere a una molécula que tiene afinidad por un antígeno diana, típicamente un antígeno en una célula diana, por ejemplo, una célula de cáncer. Un dominio de unión a antígeno de ejemplo comprende un polipéptido, por ejemplo, una molécula de anticuerpo (que incluye un anticuerpo, y fragmentos de unión a antígeno del mismo, por ejemplo, una inmunoglobulina, anticuerpo de dominio único (SDAB), y un scFv), o un andamio de no anticuerpo, por ejemplo, una fibronectina, y similares. En realizaciones, el dominio de unión a antígeno es un polipéptido único. En realizaciones, el dominio de unión a antígeno comprende uno, dos, o más polipéptidos.

[0256] La elección de un dominio de unión a antígeno puede depender del tipo y número de ligandos o receptores que definen la superficie de una célula diana. Por ejemplo, el dominio de unión a antígeno puede ser escogido para reconocer un ligando o receptor que actúa como un marcador de superficie celular en las células diana asociadas con un estado patológico particular. Ejemplos de marcadores de superficie celular que pueden actuar como ligandos o receptores incluyen un marcador de superficie celular asociado con un estado patológico particular, por ejemplo, marcadores de la superficie celular para enfermedades víricas, enfermedades bacterianas, infecciones parasitarias, enfermedades autoinmunes y trastornos asociados con la proliferación celular no deseada, por ejemplo, un cáncer, por ejemplo, un cáncer que se describe en el presente documento.

[0257] En el contexto de la presente descripción, "antígeno tumoral" o "antígeno trastorno proliferativo" o "antígeno

asociado con un trastorno proliferativo" se refiere a antígenos que son comunes a los trastornos de proliferación específicas. En ciertos aspectos, los antígenos trastorno proliferativo de la presente descripción se derivan de, cánceres que incluyen pero no se limitan a melanoma primario o metastásico, timoma, linfoma, sarcoma, cáncer de pulmón (por ejemplo, NSCLC o SCLC), cáncer de hígado, linfoma no Hodgkin de , linfoma de Hodgkin, leucemias, 5 mieloma múltiple, glioblastoma, neuroblastoma, cáncer uterino, cáncer cervical, cáncer renal, cáncer de tiroides, cáncer de vejiga, cáncer de riñón y adenocarcinomas tales como cáncer de mama, cáncer de próstata, cáncer de ovario, cáncer de páncreas, cáncer de colon y la me gusta. En algunas realizaciones, el cáncer es de células B aguda linfoide leucemia ("bola"), de células T aguda linfoide leucemia ("vertical"), aguda linfoide leucemia (ALL), leucemia aguda mieloide (AML); uno o más crónicos leucemias incluyendo, pero no limitado a la leucemia mielógena 10 crónica (LMC), leucemia linfocítica crónica (CLL); adicional cánceres hematológicos o condiciones hematológicas, incluyendo, pero no limitado a células B de leucemia prolinfocítica, blástica neoplasia de células dendríticas plasmacitoides, linfoma de Burkitt, difuso linfoma de células grandes B, linfoma folicular, leucemia de células pilosas, pequeña célula o un gran linfoma de células foliculares, condiciones linfoproliferativos malignos, linfoma MALT, linfoma de células del manto, linfoma de la zona marginal, mieloma múltiple, mielodisplasia v síndrome 15 mielodisplásico, linfoma no Hodgkin, linfoma plasmablástico, neoplasma de células dendríticas plasmacitoides, macroglobulinemia de Waldenstrom,

[0258] En una realización, el antígeno tumoral comprende uno o más epítopos antigénicos del cáncer inmunológicamente reconocidos por linfocitos infiltrantes de tumor (TIL) derivados de un tumor de cáncer de un 20 mamífero.

Los antígenos tumorales son proteínas que son producidas por las células tumorales que provocan una [0259] respuesta inmunitaria, particularmente de células T mediadas por respuestas inmunes. La selección del dominio de la descripción de unión dependerá del tipo particular de cáncer antígeno que va a tratarse. Los antígenos tumorales 25 son bien conocidos en la técnica e incluyen, por ejemplo, un antígeno de glioma-asociado, antígeno carcinoembrionario (CEA), EGFRvIII, IL-11Ra, IL-13ra, EGFR, B7H3, Kit, CA-IX, CS-1, MUC1, BCMA, bcr-abl, HER2, gonadotropina coriónica β-humana, alfafetoproteína (AFP), ALK, CD19, CD123, ciclina B1, lectina-reactiva AFP, Fos-relacionado antígeno 1, ADRB3, tiroglobulina, EphA2, RAGE-1, RU1, RU2, SSX2, AKAP-4, LCK, OY-TES1, PAX5, SART3, CLL-1, fucosil GM1, GloboH, MN-CA IX, EpCAM, EVT6-AML, TGS5, la telomerasa 30 transcriptasa inversa humana, ácido plysialic, PLAC1, RU1, RU2 (AS), intestinal carboxilo esterasa, lewisY, SLE, LY6K, mut hsp70-2, M-CSF, MYCN, RhoC, TRP-2, CYP1B1, BORIS, prostasa, antígeno específico de la próstata (PSA), PAX3, PAP, NY-ESO-1, LAGE-1a, LMP2, NCAM, p53, p53 mutante, Ras mutante, gp100, prostein, OR51E2, PANX3, PSMA, PSCA, Her2/neu, hTERT, HMWMAA, HA VCR1, VEGFR2, PDGFR-beta, legumain, HPV E6, E7, survivina y de la telomerasa, la proteína de esperma 17, SSEA-4, tirosinasa, TARP, WT1, próstata-carcinoma t umor 35 antígeno-1 (PCTA-1), ML-IAP, MAGE, MAGE-A1, MAD-CT-1, MAD-CT-2, MelanA/MART1, XAGE1, ELF2M, ERG (gen de fusión TMPRSS2 ETS), NA17, elastasa de neutrófilos, los puntos de interrupción de translocación sarcoma, NY-BR-1, EfrinaB2, CD20, CD22, CD24, CD30, CD33, CD38, CD44v6, CD97, CD171, CD179a, receptor de andrógenos, factor de crecimiento de insulina (IGF) -l, IGF-II, receptor de IGF-I, GD2, o-acetil-GD2, GD3, GM3, GPRC5D, GPR20, CXORF61, receptor de folato (FRA), ácido fólico beta receptor, ROR1, de flt3, TAG72, TN Ag, Tie 40 2, TEM1, TEM7R, Cldn6, TSHR, UPK2 y mesotelina. En una realización preferida, el antígeno tumoral se selecciona del grupo que consiste de receptor de folato (FRA), mesotelina, EGFRVIII, IL-13ra, CD123, CD19, CD33, BCMA, GD2, CLL-1, CA-IX, MUC1, HER2, y cualquier combinación de los mismos.

[0260] En una realización, el antígeno tumoral comprende uno o más epítopos antigénicos de cáncer asociados con un tumor maligno. Los tumores malignos expresan una serie de proteínas que pueden servir como antígenos objetivo para un ataque inmunitario. Estas moléculas incluyen, pero no están limitados a tejidos específicos antígenos tales como MART-1, tirosinasa y GP 100 en melanoma y fosfatasa ácida prostática (PAP) y antígeno prostático específico (PSA) en el cáncer de próstata. Otros antígenos objetivo incluyen moléculas relacionadas con transformación tales como el oncogén HER-2/Neu/ErbB-2. Sin embargo, otro grupo de antígenos diana son antígenos onco-fetales tales como el antígeno carcinoembrionario (CEA). En el linfoma de células B la inmunoglobulina idiotipo específico de tumor constituye un antígeno de inmunoglobulina verdaderamente-tumor específico que es única para el tumor individual. Diferenciación de células B antígenos tales como CD19, CD20 y CD37 son otros candidatos para antígenos diana en linfoma de células B.

[0261] Los ejemplos no limitantes de antígenos tumorales incluyen los siguientes: Antígenos de Diferenciación tal como (MART-I), gp100 (Pmel 17), tirosinasa, antígenos MART-1/MelanA TRP-1 TRP-2 y específicos de tumores multilinaje tales como MAGE-1, MAGE-3, BAGE, GAGE-1, GAGE-2, p15; sobreexpresa antígenos embrionarios tales como CEA; oncogenes sobreexpresados y genes mutados supresores de tumores tales como p53, Ras, HER-2/neu; antígenos tumorales únicos que resultan de translocaciones cromosómicas; tales como BCR-ABL, E2A-PRL,
60 H4-RET, IGH-IGK, MYL-RAR; y antígenos virales, tales como el virus de Epstein Barr antígenos EBVA y el virus del papiloma humano (HPV) antígenos E6 y E7. Otros antígenos grandes, basados en proteínas incluyen TSP-180, MAGE-4, MAGE-5, MAGE-6, RAGE, NY-ESO, p185erbB2, p180erbB-3, c-met, nm-23H1, PSA, TAG-72, CA 19-9, CA 72-4, CAM 17.1, NuMa, K-ras, beta-catenina, CDK4, Mum-1, p 15, p 16, 43-9F, 5T4, 791Tgp72, alfa-fetoproteína, beta-HCG, BCA225, BTAA, CA 125, CA 15-3\CA 27.29\BCAA, CA 195, CA 242, CA-50, CAM43, CD68\P1, CO-029, FGF-5, G250, GA733\EpCAM, HTgp- 175, M344, MA-50, MG7-Ag, MOV18, NB/70K, NY-CO-1, RCAS1, SDCCAG16, TA-90\Mac-2 proteína de unión a\ proteína asociada a ciclofilina C, TAAL6, TAG72, TLP, y TPS.

[0262] Dependiendo del antígeno deseado a reconocer, el CAR de la invención puede modificarse para incluir el dominio de unión a antígeno apropiado que es específico para el antígeno diana deseado.

5 Dominios de unión a antígeno derivados de una molécula de anticuerpo

[0263] El dominio de unión a antígeno puede derivarse de una molécula de anticuerpo, por ejemplo, uno o más de los anticuerpos monoclonales, anticuerpos policlonales, anticuerpos recombinantes, anticuerpos humanos, anticuerpos humanizados, de un solo dominio anticuerpos ejemplo, un dominio variable de cadena pesada (VH), un dominio de cadena ligera variable (VL) y un dominio variable (VHH) de, por ejemplo, origen de camélido humano o. En algunos casos, es beneficioso para el dominio de unión a antígeno que se derivan de la misma especie en la que en última instancia, se utilizará el CAR en, por ejemplo, para su uso en seres humanos, puede ser beneficioso para el dominio de unión a antígeno del CAR, por ejemplo, , el KIR-CAR, por ejemplo, se describe en el presente documento, para comprender una un antígeno humanizado dominio de unión humano o. Los anticuerpos pueden obtenerse utilizando técnicas conocidas conocidos en la técnica.

[0264] El término "anticuerpo", como se utiliza en el presente documento, se refiere a una molécula de inmunoglobulina que se une específicamente con un antígeno diana. Un anticuerpo puede ser inmunoglobulina intacta derivada de fuentes naturales o de fuentes recombinantes y puede ser una porción inmunorreactiva de inmunoglobulina intacta. Los anticuerpos son típicamente tetrámeros de moléculas de inmunoglobulina. La molécula de anticuerpo descrito en el presente documento puede existir en una variedad de formas en que la parte del anticuerpo de unión a antígeno se expresa como parte de una cadena polipeptídica contigua incluyendo, por ejemplo, un fragmento de anticuerpo de dominio único (SDAB), un anticuerpo de cadena única (scFv) y un anticuerpo humanizado o humano, por ejemplo, como se describe en el presente documento.

[0265] El término "fragmento de anticuerpo" se refiere a una porción de un anticuerpo intacto, y se refiere a las regiones determinantes de variables antigénicas de un anticuerpo intacto. Ejemplos de fragmentos de anticuerpos incluyen, pero no se limitan a, un anticuerpo de dominio de cadena simple (SDAB), Fab, Fab 'F (ab') 2, y fragmentos Fv, anticuerpos lineales, anticuerpos scFv, un anticuerpo lineal, un anticuerpo de dominio único tal como un SDAB (ya sea VL o VH), un dominio VHH de camélidos, y anticuerpos multiespecíficos formados a partir de fragmentos de anticuerpos.

[0266] Una "cadena pesada de anticuerpo", tal como se utiliza en el presente documento, se refiere a la mayor de los dos tipos de cadenas de polipéptido presentes en todas las moléculas de anticuerpo en sus conformaciones 35 naturales.

[0267] Un "anticuerpo de cadena ligera", tal como se utiliza en el presente documento, se refiere a la menor de los dos tipos de cadenas de polipéptido presentes en todas las moléculas de anticuerpo en sus conformaciones naturales. Las cadenas ligeras κ y λ se refieren a los dos principales isotipos de cadena ligera de anticuerpo.

[0268] Por el término "anticuerpo sintético" tal como se utiliza en el presente documento, se quiere decir una molécula de anticuerpo que se genera usando tecnología de ADN recombinante, tal como, por ejemplo, una molécula de anticuerpo expresada por un bacteriófago tal como se describe en el presente documento. El término también debe interpretarse en el sentido de una molécula de anticuerpo que se ha generado mediante la síntesis de una molécula de ADN que codifica la molécula de anticuerpo y cuya molécula de ADN expresa una proteína de anticuerpo, o una secuencia de aminoácidos que especifica el anticuerpo, en donde la secuencia de ADN o aminoácidos se ha obtenido utilizando tecnología de secuencia de ADN y aminoácidos sintéticos que está disponible y es bien conocida en la técnica.

50 **[0269]** En realizaciones, el dominio de unión a antígeno comprende un fragmento de un anticuerpo que es suficiente para conferir reconocimiento y unión específica al antígeno diana. Los ejemplos de un fragmento de anticuerpo incluyen, pero no se limitan a, un fragmento Fab, Fab', F(ab')₂ o Fv, un fragmento de anticuerpo scFv, un anticuerpo lineal, un anticuerpo de dominio único tal como un SDAB (ya sea VL o VH), un dominio VHH de camélidos, y anticuerpos multiespecíficos formados a partir de fragmentos de anticuerpos.

[0270] En una realización, el dominio de unión a antígeno es un "scFv", que puede comprender una proteína de fusión que comprende una cadena VL y una cadena VH de un anticuerpo, en la que el VH y VL están, por ejemplo, unidas a través de un enlazador polipéptido flexible corto, por ejemplo, un enlazador descrito en la presente memoria. El scFv es capaz de ser expresado como un polipéptido de cadena sencilla y retiene la especificidad del anticuerpo intacto del que deriva. Además, las cadenas variables VL y VH se pueden unir en cualquier orden, por ejemplo, con respecto a los extremos N-terminales y C-terminales del polipéptido, el scFv puede comprender VL-enlazador-VH o puede comprender VH-enlazador-VL. Un scFv se puede preparar según el procedimiento conocido en la técnica (véase, por ejemplo, Bird et al, (1988) Science 242: 423-426 y Huston et al, (1988) Proc Natl Acad Sci. USA. 85: 5879-5883).

[0271] Tal como se describió anteriormente y en otros puntos, las moléculas scFv pueden ser producidos mediante

65

la unión de las cadenas VH y VL juntas utilizando enlazadores polipeptídicos flexibles. En algunas realizaciones, las moléculas scFv comprenden un enlazador polipéptido flexible con una longitud y/o composición de aminoácidos optimizadas. La longitud del enlazador polipéptido flexible puede afectar en gran medida a cómo las regiones variables de un scFv se pliegan e interactúan. De hecho, si se emplea un polipéptido enlazador corto (por ejemplo, 5 entre 5-10 aminoácidos, se impide el plegado intracatenario. Para ejemplos de orientación del enlazador y tamaño, véase, por ejemplo, Hollinger et al 1993 Proc Natl Acad Sci USA. 90: 6444-6448, publicaciones de Solicitud de Patente de Estados Unidos Nos. 2005/0100543, 2005/0175606, 2007/0014794, y las publicaciones PCT Nos. WO2006/020258 y WO2007/024715. En una realización, el enlazador péptido de scFv consiste en aminoácidos, tales como residuos de glicina y/o serina, utilizados solos o en combinación, para unir regiones de cadena pesada 10 variable y cadena ligera variable juntas. En una realización, el enlazador de polipéptido flexible es una enlazador Gly/Ser y, por ejemplo, comprende la secuencia de aminoácidos (Gly-Gly-Gly-Ser)n, donde n es un entero positivo igual o mayor que 1. Por ejemplo, n = 1, n = 2, n = 3. n = 4, n = 5 y n = 6, n = 7, n = 8, n = 9 y n = 10. En una realización, los enlazadores polipeptídicos flexibles incluyen, pero no se limitan a, (Gly4Ser)4 o (Gly4Ser)3. En otra realización, los enlazadores incluyen múltiples repeticiones de (Gly2Ser), (GlySer) o (Gly3Ser).

15

En algunas realizaciones, el dominio de unión a antígeno son moléculas de unión a antígeno de dominio único (SDAB). Una molécula de SDAB incluye moléculas cuyas regiones determinantes complementarias son parte de un polipéptido de dominio único. Los ejemplos incluyen, pero no se limitan a, los dominios variables de cadena pesada, moléculas de unión desprovistas de forma natural de cadenas ligeras, dominios únicos derivados de 20 anticuerpos convencionales de 4 cadenas, dominios modificados y andamios de dominio único distintos de los derivados de anticuerpos (por ejemplo, se describe en más detalle a continuación). Las moléculas de SDAB pueden ser cualquiera de la técnica, o las futuras moléculas de dominio único. Las moléculas de SDAB pueden derivarse de cualquier especie, incluyendo, pero no limitado a, ratón, ser humano, camello, llama, pescados, tiburón, cabra, conejo y bovino. Este término también incluye moléculas de anticuerpo de dominio único de origen natural de 25 especies distintas de Camelidae y tiburones.

[0273] En un aspecto, una molécula de SDAB se puede derivar de una región variable de la inmunoglobulina que se encuentra en los peces, tal como, por ejemplo, la que deriva del isotipo de inmunoglobulina conocido como Nuevo Receptor de Antígeno (NAR) encontrado en el suero de tiburón. Los procedimientos para producir moléculas 30 de dominio único derivadas de una región variable de NAR ("IgNARs") se describen en el documento WO 03/014161 y Streltsov (2005) Protein Sci. 14: 2901-2909.

Según otro aspecto, una molécula de SDAB es una molécula de unión a antígeno de dominio único de origen natural conocida como una cadena pesada desprovista de las cadenas ligeras. Tales moléculas de dominio 35 único se describen en WO 9404678 y Hamers-Casterman, C. et al. (1993) Nature 363: 446-448, por ejemplo. Por razones de claridad, este dominio variable derivado de una molécula de cadena pesada desprovista de forma natural de cadena ligera se conoce en el presente documento como un VHH o nanoanticuerpo para distinguirla de la VH convencional de inmunoglobulinas de cuatro cadenas. Dicha molécula de VHH puede derivar de especies de Camelidae, por ejemplo en camello, llama, dromedario, alpaca y guanaco. Otras especies además de Camelidae 40 pueden producir moléculas de cadena pesada desprovista de forma natural de cadena ligera; dichos VHH están dentro del alcance de la invención.

[0275] En ciertas realizaciones, la molécula de SDAB es un polipéptido de fusión de cadena única que comprende una o más moléculas de dominio único (por ejemplo, nanocuerpos), desprovistas de un dominio variable 45 complementario o una constante de inmunoglobulina, por ejemplo, Fc, región que se une a uno o más antígenos diana.

[0276] Las moléculas de SDAB pueden ser recombinantes, injertadas con CDR, humanizadas, camelizadas, desinmunizadas y/o generadas in vitro (por ejemplo, seleccionados por expresión en fagos).

fragmento del mismo.

En una realización, la parte del dominio de unión a antígeno comprende un anticuerpo humano o un

En algunas realizaciones, un anticuerpo no humano se humaniza, donde las secuencias o regiones 55 específicas del anticuerpo se modifican para aumentar la similitud con un anticuerpo producido de manera natural en un ser humano. En una realización, el dominio de unión a antígeno está humanizado.

[0279] Los anticuerpos no humanos pueden humanizarse usando una variedad de técnicas conocidas en el sector, por ejemplo, injerto de CDR (véase, por ejemplo, la Patente Europea Nº EP 239400; Publicación Internacional No. 60 WO 91/09967; y las Patentes de Estados Unidos Nº. 5.225.539, 5.530.101, y 5.585.089), el recubrimiento o "resurfacing" (véase, por ejemplo, Patentes Europeas Nos. EP 592.106 y EP 519.596; Padlan, 1991, Molecular Immunology, 28 (4/5.): 489-498; Studnicka et al, 1994, Protein Engineering, 7 (6): 805-814; y Roguska et al, 1994, PNAS, 91: 969-973), intercambio de cadenas (véase, por ejemplo, la patente de Estados Unidos Nº 5.565.332), y técnicas descritas en, por ejemplo, la publicación de la Solicitud de Patente de Estados Unidos Nº US2005/0042664, 65 la publicación de la Solicitud de Patente de Estados Unidos Nº US2005/0048617, la patente de los Estados Unidos. No. 6.407.213, la patente de los Estados Unidos. No. 5.766.886, la Publicación Internacional No. WO

ES 2 769 574 T3

9317105, Tan et al, 2002, J. Immunol., 169: 1119-1125; Caldas et al, 2000, Protein Eng, 13 (5): 353-60; Morea et al, 2000, Methods, 20: 267-79; Baca et al., 1997, J. Biol. Chem, 272: 10678-84; Roguska et al, 1996, Protein Eng, 9 (10): 895-904; Couto et al, 1995, Cancer Res., 55: 5973-5977; Couto et al, 1995, Cancer Res, 55 (8): 1717-1722; Sandhu 1994 Gene, 150 (2): 409-10; y Pedersen et al., 1994, J. Mol. Biol, 235 (3): 959-73. A menudo, los residuos de estructura en las regiones de estructura estarán sustituidos con el residuo correspondiente del anticuerpo donante de CDR para alterar, por ejemplo mejorar, la unión al antígeno. Estas sustituciones estructurales se identifican mediante procedimientos bien conocidos en la técnica, por ejemplo, mediante el modelado de las interacciones de los residuos de CDR y la estructura para identificar los residuos estructurales importantes para la unión a antígeno y comparación de secuencias para identificar residuos estructurales inusuales en posiciones 10 particulares. (Véase, por ejemplo, Queen et al, Patente de Estados Unidos No. 5.585.089; y Riechmann et al, 1988, Nature, 332: 323). En realizaciones preferidas, la molécula de anticuerpo humanizado comprende una secuencia descrita en este documento, por ejemplo, una cadena ligera variable y/o una cadena pesada variable descritas en el presente documento, por ejemplo, una cadena ligera variabley/o cadena pesada variable humanizadas descritas en la Tabla 4

15

[0280] Un anticuerpo humanizado tiene uno o más residuos de aminoácidos introducidos en el mismo de una fuente que es no humana. Estos residuos de aminoácidos no humanos se refieren a menudo como residuos "importados", que típicamente se toman de un dominio variable "importado". Por lo tanto, los anticuerpos humanizados comprenden una o más CDR de las moléculas de inmunoglobulina no humanas y regiones 20 estructurales de humano. La humanización de anticuerpos es bien conocida en la técnica y, esencialmente, se puede realizar siguiendo el procedimiento de Winter y colaboradores (Jones et al, Nature, 321: 522-525 (1986); Riechmann et al, Nature, 332: 323-327 (1988); Verhoeyen et al, Science, 239: 1534-1536 (1988)), mediante la sustitución de CDR o secuencias de CDR de roedor por las secuencias correspondientes de un anticuerpo humano, es decir, un injerto de CDR (EP 239.400; publicación PCT No. WO 91/09967; y las patentes de Estados Unidos No 25 4.816.567; 6.331.415; 5.225.539; 5.530.101; 5.585.089; 6.548.640). En tales anticuerpos quiméricos humanizados, sustancialmente menos de un dominio variable humano intacto ha sido sustituido por la secuencia correspondiente de una especie no humana. En la práctica, los anticuerpos humanizados son típicamente anticuerpos humanos en los que algunos residuos CDR y posiblemente algunos residuos estructurales (FR) están sustituidos por residuos de sitios análogos en anticuerpos de roedores. La humanización de anticuerpos también se puede lograr mediante el 30 recubrimiento o "resurfacing" (EP 592.106; EP 519.596; Padlan, 1991, Molecular Immunology, 28 (4/5): 489-498; Studnicka et al, Protein Engineering, 7 (6): 805-814 (1994); y Roguska et al, PNAS, 91: 969-973 (1994)) o intercambio de cadenas (patente de Estados Unidos. No. 5.565.332).

[0281] En algunos casos, el anticuerpo de la presente descripción se prepara adicionalmente usando un anticuerpo que tiene una o más de las secuencias de VH y/o VL y descritas en este documento que se puede utilizar como material de partida para diseñar un anticuerpo modificado, cuyo anticuerpo modificado puede tener propiedades alteradas en comparación con el anticuerpo de partida. En diversas realizaciones, el anticuerpo se modifica mediante la modificación de uno o más aminoácidos dentro de una o ambas regiones variables (es decir, VH y/o VL), por ejemplo dentro de una o más regiones CDR y/o dentro de una o más regiones estructurales.

40

[0282] En otro aspecto, el dominio de unión a antígeno es un receptor de células T ("TCR"), o un fragmento del mismo, por ejemplo, TCR de cadena única (scTCR). Los procedimientos para fabricar tales TCR se conocen en la técnica. Véase, por ejemplo, Willemsen RA et al, Gene Therapy 7: 1369-1377 (2000); Zhang T et al, Cancer Gene Ther 11: 487-496 (2004); Aggen et al, Gene Ther. 19 (4): 365-74 (2012). Por ejemplo, scTCR se puede diseñar que contenga los genes Vα y Vβ de un clon de células T unido por un enlazador (por ejemplo, un péptido flexible). Este enfoque es muy útil para una diana asociada a cáncer que en sí es intracelular, sin embargo, un fragmento de dicho antígeno (péptido) se presenta en la superficie de las células cancerosas por MHC.

50

55

60

65

Tabla 4: Dominios de unión a antígeno de ejemplo

Antígeno diana	Nombre	Secuencia de aminoácidos
CD19	huscFv1	EIVMTQSPATLSLSPGERATLSCRASQDISKYLNWYQQKPGQAPRL LIYHTSRLHSGIPARFSGSGSGTDYTLTISSLQPEDFAVYFCQQGNT LPYTFGQGTKLEIKGGGGSGGGGGGGGQVQLQESGPGLVKPSE TLSLTCTVSGVSLPDYGVSWIRQPPGKGLEWIGVIWGSETTYYSSS LKSRVTISKDNSKNQVSLKLSSVTAADTAVYYCAKHYYYGGSYA MDYWGQGTLVTVSS (SEQ ID NO: 16)
CD19	huscFv2	civmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdy tltisslqpedfavyfcqqgntlpytfgqgtkleikggggsgggggggggggggggqqlqesgpglvkpsetl sltctvsgvslpdygvswirqppgkglewigviwgsettyyqsslksrvtiskdnsknqvslklssvta adtavyycakhyyyggsyamdywgqgtlvtvss (SEQ ID NO: 17)
CD19	huscFv3	qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgsettyyssslksrvti skdnsknqvslklssvtaadtavyycakhyyyggsyamdywgqgtlvtvssggggsgggggggggggggggggggggggsgivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgt dytltisslqpedfavyfcqqgntlpytfgqgtklcik (SEQ ID NO: 18)
CD19	huscFv4	qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgsettyyqsslksrvti skdnsknqvslklssvtaadtavyycakhyyyggsyamdywgqgtlvtvssggggsggggggggggggggggggsgsiymtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgt dytltisslqpedfavyfcqqgntlpytfgqgtkleik (SEQ ID NO: 19)
CD19	huscFv5	eivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdy tltisslqpedfavyfcqqgntlpytfgqgtkleikggggsgggggggggggggggggggqqqlqesgpglv kpsetlsltctvsgvslpdygvswirqppgkglewigviwgsettyyssslksrvtiskdnsknqvslkl ssvtaadtavyycakhyyyggsyamdywgqgtlvtvss (SEQ ID NO: 20)
CD19	huscFv6	eivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdy tltisslqpedfavyfcqqgntlpytfgqgtkleikggggsgggggggggggggggggggggggggggggggg

Antígeno diana	Nombre	Secuencia de aminoácidos
CD 19	huscFv7	qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgsettyyssslksrvti skdnsknqvslklssvtaadtavyycakhyyyggsyamdywgqgtlvtvssggggsggggggggggggggggggggggggggg
CD19	huscFv8	qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgsettyyqsslksrvti skdnsknqvslklssvtaadtavyycakhyyyggsyamdywgqgtlvtvssggggsggggggggggggggggggggggggggg
CD19	huscFv9	eivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgstdy tltisslqpedfavyfcqqgntlpytfgqgtkleikggggsgggggggggggggggggggggggggggggggg
CD19	HuscFv10	qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgsettyynsslksrvti skdnsknqvslklssvtaadtavyycakhyyyggsyamdywgqgtlvtvssggggsgggggggggggggggggggseivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfs gsgsgtdytltisslqpedfavyfcqqgntlpytfgqgtkleik (SEQ ID NO: 25)
CD19	HuscFv11	eivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgtdy tltisslqpedfavyfcqqgntlpytfgqgtkleikggggsgggggggggggggggqqqlqcsgpglvkpsetl sltctvsgvslpdygvswirqppgkglewigviwgsettyynsslksrvtiskdnsknqvslklssvta adtavyycakhyyyggsyamdywgqgtlvtvss (SEQ ID NO: 26)
CD19	HuscFv12	qvqlqesgpglvkpsetlsltctvsgvslpdygvswirqppgkglewigviwgsettyynsslksrvti skdnsknqvslklssvtaadtavyycakhyyyggsyamdywgqgtlvtvssggggsgggggggggggggggggscivmtqspatlslspgeratlscrasqdiskylnwyqqkpgqaprlliyhtsrlhsgiparfsgsgsgt dytltisslqpedfavyfcqqgntlpytfgqgtkleik (SEQ ID NO: 27)
CD 19	muCTL 019	diqmtqttsslsaslgdrvtiscrasqdiskylnwyqqkpdgtvklliyhtsrlhsgvpsrfsgsgsgtdy sltisnleqediatyfcqqgntlpyffgggtkleitgggsgggggggggggggggggsevklqesgpglvapsqsls vtctvsgvslpdygvswirqpprkglewlgviwgsettyynsalksrltiikdnsksqvflkmnslqtd dtaiyycakhyyyggsyamdywgqgtsvtvss (SEQ ID NO: 28)

Antígeno diana	Nombre	Sectionals de aminoácidos
CD 123	Mu1172	DIVLTQSPASLAVSLGQRATISC <u>RASESVDNYGNTFMH</u> WYQQKPG QPPKLLIY <u>RASNLES</u> GIPARFSGSGSRTDFTLTINPVEADDVATYYC QQSNEDPPTFGAGTKLELKGGGGSGGGGSSGGGSQIQLVQSGPEL KKPGETVKISCKASGYIFT <u>NYGMN</u> WVKQAPGKSFKWMG <u>WINTYT</u> GESTYSADFKGRFAFSLETSASTAYLHINDLKNEDTATYFCAR <u>SGG</u> YDPMDYWGQGTSVTVSS (SEQ ID NO: 29)
CD123	Mu1176	DVQITQSPSYLAASPGETITINC <u>RASKSISKDLA</u> WYQEKPGKTNKLL IY <u>SGSTLQS</u> GIPSRFSGSGTDFTLTISSLEPEDFAMYYC <u>QQHNKY</u> <u>PYT</u> FGGGTKLEIKGGGGSGGGGSSGGGSQVQLQQPGAELVRPGAS VKLSCKASGYTFT <u>SYWMN</u> WVKQRPDQGLEWIG <u>RIDPYDSETHYN</u> <u>QKFKD</u> KAILTVDKSSSTAYMQLSSLTSEDSAVYYCAR <u>GNWDDY</u> W GQGTTLTVSS (SEQ ID NO: 30)
CD123	huscFv1	divltqspdslavslgeratincrasesvdnygntfmhwyqqkpgqppklliyrasnlesgvpdrfsgsgsrtdfltisslqaedvavyycqqsnedpptfgqgtkleikggggsggggggggggggggggggqiqlvqsgselkkpgasvkvsckasgyiftnygmnwvrqapgqglewmgwintytgestysadfkgrfvfsldtsvstaylqinalkaedtavyycarsggydpmdywgqgttvtvss (SEQ ID NO: 31)
CD123	huscFv2	divltqspdslavslgeratincrasesvdnygntfmhwyqqkpgqppklliyrasnlesgvpdrfsgsgsrtdfltisslqaedvavyycqqsnedpptfgqgtkleikggggsgggggggggggggggggggggqqlvqsgaevkkpgasvkvsckasgyiftnygmnwvrqapgqrlewmgwintytgestysadfkgrvtitldtsastaymelsslrsedtavyycarsggydpmdywgqgttvtvss (SEQ ID NO: 32)
CD123	huscFv3	eivltqspatlslspgeratlscrasesvdnygntfmhwyqqkpgqaprlliyrasnlesgiparfsgsgsrtdftltisslepedvavyycqqsnedpptfgqgtkleikggggsgggggggggggggggggggggggggggggggg
CD123	huscFv4	eivltqspatlslspgeratlscrasesvdnygntfmhwyqqkpgqaprlliyrasnlesgiparfsgsgs rtdftltisslepedvavyycqqsnedpptfgqgtkleikggggsgggggggggggggggggggggggggggggggg

Antígeno diana	Nombre	Secuencia de aminoácidos
CD123	huscFv5	qiqlvqsgselkkpgasvkvsckasgyiftnygmnwvrqapgqglewmgwintytgestysadfk grfvfsldtsvstaylqinalkaedtavyycarsggydpmdywgqgttvtvssggggsggggggggg sggggsdivltqspdslavslgeratincrasesvdnygntfmhwyqqkpgqppklliyrasnlesgv pdrfsgsgrtdfiltisslqaedvavyycqqsnedpptfgqgtkleik (SEQ ID NO: 35)
CD123	huscFv6	qiqlvqsgsclkkpgasvkvsckasgyiftnygmnwvrqapgqglcwmgwintytgestysadfk grfvfsldtsvstaylqinalkaedtavyycarsggydpmdywgqgttvtvssggggsgggggggg sggggscivltqspatlslspgeratlscrasesvdnygntfmhwyqqkpgqaprlliyrasnlesgipa rfsgsgsrtdfltisslepedvavyycqqsnedpptfgqgtkleik (SEQ ID NO: 36)
CD123	huscFv7	qiqlvqsgaevkkpgasvkvsckasgyiftnygmnwvrqapgqrlewmgwintytgestysadfk grvtitldtsastaymelsslrsedtavyycarsggydpmdywgqgttvtvssggggggggggggggg sggggsdivltqspdslavslgeratincrasesvdnygntfmhwyqqkpgqppklliyrasnlesgv pdrfsgsgsrtdftltisslqaedvavyycqqsnedpptfgqgtkleik (SEQ ID NO: 37)
CD123	huscFv8	qiqlvqsgaevkkpgasvkvsckasgyiftnygmnwvrqapgqrlewmgwintytgestysadfk grvtitldtsastaymelsslrsedtavyycarsggydpmdywgqgttvtvssggggsggggggggg sggggseivltqspatlslspgeratlscrasesvdnygntfmhwyqqkpgqaprlliyrasnlesgipa rfsgsgsrtdftltisslepedvavyycqqsnedpptfgqgtkleik (SEQ ID NO: 38)
EGFRVIII	huscFv1	eiqlvqsgaevkkpgatvkisckgsgfniedyyihwvqqapgkglewmgridpendetkygpifq grvtitadtstntvymelsslrsedtavyycafrggvywgqgttvtvssggggsgggggggggggggg sdvvmtqspdslavslgeratinckssqslldsdgktylnwlqqkpgqppkrlislvskldsgvpdrfs gsgsgtdftltisslqaedvavyycwqgthfpgtfgggtkveik (SEQ ID NO: 39)
EGFRvIII	huscFv2	dvvmtqspdslavslgeratinckssqslldsdgktylnwlqqkpgqppkrlislvskldsgvpdrfsg sgsgtdftltisslqaedvavyycwqgthfpgtfgggtkveikggggsggggggggggggggggeiqlv qsgaevkkpgatvkisckgsgfniedyyihwvqqapgkglewmgridpendetkygpifqgrvtit adtstntvymelsslrsedtavyycafrggvywgqgttvtvss (SEQ ID NO: 40)
EGFRvIII	huscFv3	eiqlvqsgaevkkpgeslrisckgsgfniedyyihwvrqmpgkglewmgridpendetkygpifq ghvtisadtsintvylqwsslkasdtamyycafrggvywgqgttvtvssggggsggggggggggggggggggggggggg

Antígeno diana	Nombre	Secuencia de aminoácidos
EGFRvIII	huscFv4	dvvmtqsplslpvtlgqpasisckssqslldsdgktylnwlqqrpgqsprrlislvskldsgvpdrfsgs gsgtdftlkisrveaedvgvyycwqgthfpgtfgggtkveikggggsggggggggggggggggggggeiqlv qsgaevkkpgeslrisckgsgfniedyyihwvrqmpgkglewmgridpendetkygpifqghvti sadtsintvylqwsslkasdtamyycafrggvywgqgttvtvss (SEQ ID NO: 42)
EGFRvIII	huscFv5	eiqlvqsgaevkkpgatvkisckgsgfniedyyihwvqqapgkglewmgridpendetkygpifq grvtitadtstntvymelsslrsedtavyycafrggvywgqgttvtvssggggsgggggggggggggggg sdvvmtqsplslpvtlgqpasisckssqslldsdgktylnwlqqrpgqsprrlislvskldsgvpdrfsg sgsgtdfllkisrveaedvgvyycwqgthfpgtfgggtkveik (SEQ ID NO: 43)
EGFRvIII	huscFv6	eiqlvqsgaevkkpgeslrisckgsgfniedyyihwvrqmpgkglewmgridpendetkygpifq ghvtisadtsintvylqwsslkasdtamyycafrggvywgqgttvtvssggggsggggggggggggggggggggggggg
EGFRvIII	huscFv7	dvvmtqspdslavslgeratinckssqslldsdgktylnwlqqkpgqppkrlislvskldsgvpdrfsg sgsgtdfltisslqaedvavyycwqgthfpgtfgggtkveikggggsgggggggggggggggggggggeiqlv qsgaevkkpgeslrisckgsgfniedyyihwvrqmpgkglewmgridpendetkygpifqghvti sadtsintvylqwsslkasdtamyycafrggvywgqgttvtvss (SEQ ID NO: 45)
EGFRvIII	huscFv8	dvvmtqsplslpvtlgqpasisckssqslldsdgktylnwlqqrpgqsprrlislvskldsgvpdrfsgsgsgtdftlkisrveaedvgvyycwqgthfpgtfgggtkveikggggsggggggggggggggggggggggeiqlvqsgaevkkpgatvkisckgsgfniedyyihwvqqapgkglewmgridpendetkygpifqgrvtit adtstntvymelsslrsedtavyycafrggvywgqgttvtvss (SEQ ID NO: 46)
EGFRvIII	Mu310C	eiqlqqsgaelvkpgasvklsctgsgfniedyyihwvkqrteqglewigridpendetkygpifqgra titadtssntvylqlssltsedtavyycafrggvywgpgtltvssggggsggggggggggshmdvvmt qspltlsvaigqsasisckssqslldsdgktylnwllqrpgqspkrlislvskldsgvpdrftgsgsgtdftl risrveaedlgiyycwqgthfpgtfgggtkleik (SEQ ID NO: 47)

5

Andamios que no son anticuerpos

[0283] En realizaciones, el dominio de unión a antígeno comprende un andamio no anticuerpo, por ejemplo, una fibronectina, anquirina, anticuerpo de dominio, lipocalina, pequeño inmuno-farmacéutica modular, maxybody, 10 Proteína A, o AffilinTM. El andamio no anticuerpo tiene la capacidad de unirse al antígeno diana en una célula. En realizaciones, el dominio de unión a antígeno es un polipéptido o fragmento del mismo de una proteína de origen natural se expresa en una célula. En algunas realizaciones, el dominio de unión a antígeno comprende un andamio de no anticuerpo. Una amplia variedad de andamios que no son anticuerpos puede ser empleado siempre que el polipéptido resultante incluye al menos una región de unión que se une específicamente al antígeno diana en una 15 célula diana.

[0284] Los andamios que no son anticuerpos incluyen: fibronectina (Novartis, MA), ankyrin (Molecular Partners AG, Zurich, Suiza), anticuerpos de dominio (Domantis, Ltd., Cambridge, MA, y Ablynx NV, Zwijnaarde, Bélgica), lipocalina (Pieris Proteolab AG, Freising, Alemania), pequeñas inmuno-modulares farmacéuticos (Trubion Pharmaceuticals Inc., Seattle, WA), maxybodies (Avidia, Inc., Mountain View, CA), proteína A (Affibody AG, Suecia), y AffilinTM (gamma-cristalina o ubiquitina) (Scil proteínas GmbH, Halle, Alemania).

[0285] Los andamios de fibronectina se pueden basar en dominio de fibronectina de tipo III (por ejemplo, el módulo de la décima parte de la fibronectina de tipo III (domini ¹⁰ Fn3)). El dominio de fibronectina de tipo III tiene 7 u 8 hebras beta que están distribuidas entre dos láminas beta, que a su paquete de uno contra el otro para formar el núcleo de la proteína y, además, los bucles que contienen (análogas a CDR) que conectan las hebras beta entre sí y están expuestos al disolvente. Hay al menos tres de tales bucles en cada borde del sándwich de lámina beta, en el que el borde es el límite de la perpendicular proteína a la dirección de las hebras beta (véase el documento US 6.818.418). Debido a esta estructura, esto imita andamios que no son anticuerpos antígeno propiedades que son similares en naturaleza y afinidad a las de anticuerpos de unión. Estos andamios se pueden utilizar en una aleatorización de bucle y arrastrando los pies estrategia in vitro que es similar al proceso de maduración de afinidad de anticuerpos in vivo.

[0286] La tecnología de anquirina se basa en el uso de proteínas con ankyrin derivados módulos de repetición como andamios para cojinete de regiones variables que pueden ser utilizados para la unión a diferentes objetivos. El módulo de repetición de anquirina es un 33 amino polipéptido ácido que consta de dos a-hélices anti-paralelas y un giro β. La unión de las regiones variables está optimizada principalmente mediante el uso de ribosoma pantalla.

[0287] Avimers se derivan de proteína que contiene A-dominio natural tal como HER3. Estos dominios son 40 utilizados por la naturaleza de las interacciones proteína-proteína y en el ser humano más de 250 proteínas estructuralmente se basan en los A-dominios. Avimers consisten en un número de diferentes monómeros "A-dominio" (2-10) unidos a través de aminoácidos ligadores de ácido. Avimers pueden ser creados que pueden unirse al antígeno diana utilizando la metodología descrita en, por ejemplo, la solicitud de patente de EE.UU. № 20040175756; 20050053973; 20050048512; y 20060008844.

[0288] Los ligandos de afinidad Affibody son proteínas pequeñas y sencillas compuestas de un paquete de tres hélices basado en el andamio de uno de los dominios de unión a IgG de la proteína A. La proteína A es una proteína de superficie de la bacteria Staphylococcus aureus. Este dominio andamio consta de 58 aminoácidos, 13 de los cuales se asignaron al azar para generar bibliotecas Affibody con un gran número de variantes de ligando (Véase, por ejemplo, US 5.831.012). Moléculas Affibody anticuerpos imitan, tienen un peso molecular de 6 kDa, en comparación con el peso molecular de los anticuerpos, que es de 150 kDa. A pesar de su pequeño tamaño, el sitio de unión de moléculas Affibody es similar a la de un anticuerpo.

[0289] Los miméticos de proteínas epítopo (PEM) son de tamaño medio, cíclico, péptido-como moléculas (MW 1 55 2kDa) que imitan las estructuras secundarias de horquilla beta de las proteínas, la estructura secundaria importante implicado en interacciones proteína-proteína

DOMINIO DE UNIÓN A ANTÍGENO NO EMPAREJADOS

60 **[0290]** Se ha descubierto, que las células que tiene una pluralidad de membrana incrustado receptores quiméricos que comprenden cada uno un antígeno de dominio (CMERs) de unión que las interacciones entre el dominio de unión a antígeno de la CMER pueden ser indeseables, por ejemplo, debido a que inhibe la capacidad de una o más de los dominios de unión a antígeno para unirse a su antígeno cognado. En consecuencia, se da a conocer en el presente documento son un primer y un antígeno CMERcomprising ocurre segunda no natural dominios que 65 minimizan tales interacciones cuando se expresa en la misma célula de unión. En un ejemplo, una pluralidad de CMERs comprende dos TCARs. En un ejemplo, una pluralidad de CMERs comprende un TCAR y otro CMER. En un

ejemplo, una pluralidad de CMERs comprende dos NKR-CARS. En un ejemplo, una pluralidad de CMERs comprende un NKR-CAR y otro CMER. En un ejemplo, una pluralidad de CMERs comprende un TCAR y un NKR-CAR.

- 5 [0291] En algunos casos, la presente descripción comprende un primer y segundo CMER, en el que el dominio de unión a antígeno de una de dichas primera CMER dicho segundo CMER no comprende un dominio ligero variable y un dominio variable pesado. En algunos casos, el antígeno de dominio de una unión de dicho primero CMER dicho segundo CMER es un scFv, y el otro no es un scFv. En algunos casos, el antígeno de dominio de una de dichas primera CMER dicho segundo CMER comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de una secuencia humana o de ratón o una unión andamio no anticuerpo. En algunos casos, el antígeno de dominio de una unión de dicho primero CMER dicho segundo CMER comprende un nanoanticuerpo. En algunos casos, el antígeno de dominio de una unión de dicho primero CMER dicho segundo CMER comprende un dominio de camélidos VHH.
- 15 **[0292]** En algunos casos, el dominio de unión a antígeno de una de dichas primera CMER dicho segundo CMER comprende un scFv, y la otra comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un solo VH dominio derivado de una secuencia de humano o de ratón. En algunos casos, el antígeno de dominio de una unión de dicho primero CMER dicho segundo CMER comprende un scFv, y la otra comprende un nanoanticuerpo. En algunos casos, el antígeno de dominio de una unión de dicho primero CMER dichos segundos CMER comprende comprende un scFv, y la otra comprende un dominio de camélidos VHH.
- [0293] En algunos casos, cuando está presente en la superficie de una célula, la unión del dominio de unión a antígeno de dicho primero CMER a su antígeno cognado no se reduce sustancialmente por la presencia de dicho segundo CMER. En algunos casos, la unión del dominio de unión a antígeno de dicho primero CMER a su antígeno cognado en presencia de dicho segundo CMER es 85%, 90%, 95%, 96%, 97%, 98% o 99% de la unión de la dominio de unión a antígeno de dicho primer CMER a su antígeno cognado en ausencia de dicho segundo CMER.
- [0294] En algunos casos, cuando está presente en la superficie de una célula, los dominios de unión al antígeno de dicho primer CMER dicho segundo CMER, asociado con uno de otro menor que si ambos eran antígeno scFv dominios de unión. En algunos casos, los dominios de unión al antígeno de dicho primer CMER dicho segundo CMER, asociado con uno de otro 85%, 90%, 95%, 96%, 97%, 98% o 99% menor que si ambos eran antígeno scFv dominios de unión.
- [0295] En algunos casos, la presente descripción comprende un primer y segundo KIR-CAR, en el que el dominio de unión a antígeno de una de dichas primer KIR-CAR dicho segundo KIR-CAR no comprende un dominio ligero variable y un dominio variable pesado. En algunos casos, el antígeno de dominio de uno de unión a dicho primer KIR-CAR dicho segundo KIR-CAR es un scFv, y el otro no es un scFv. En algunos casos, el antígeno de dominio de uno de unión a dicho primer KIR-CAR dicho segundo KIR-CAR comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de un humano o secuencia de ratón o un andamio de no anticuerpo. En algunos casos, el antígeno de dominio de una de dichas primer KIR-CAR unirse a dicho segundo KIR-CAR comprende un nanoanticuerpo. En algunos casos, el antígeno de dominio de uno de unión a dicho primer KIR-CAR dicho segundo KIR-CAR comprende un dominio de camélidos VHH.
- [0296] En algunos casos, el dominio de unión a antígeno de uno de dicho primer KIR-CAR y dicho segundo KIR-45 CAR comprende un scFv, y la otra comprende un dominio de VH único, por ejemplo, un dominio de VH único de camélido, tiburón, o lamprea, o un dominio de VH único derivado de una secuencia humana o de ratón. En algunos casos, el dominio de unión a antígeno de uno de dicho primer KIR-CAR y dicho segundo KIR-CAR comprende un scFv, y el otro comprende un nanoanticuerpo. En algunos casos, el dominio de unión a antígeno de uno de dicho primer KIR-CAR y dicho segundo KIR-CAR comprende un scFv, y el otra comprende un dominio de VHH de 50 camélidos.
- [0297] En algunos casos, cuando está presente en la superficie de una célula, la unión del dominio de unión a antígeno de dicho primer KIR-CAR a su antígeno afín no se reduce sustancialmente por la presencia de dicho segundo KIR-CAR. En algunos casos, la unión del dominio de unión a antígeno de dicho primer KIR-CAR a su antígeno afín en presencia de dicho segundo KIR-CAR es 85%, 90%, 95%, 96%, 97%, 98% o 99% de unión del dominio de unión a antígeno de dicho primer KIR-CAR a su antígeno afín en ausencia de antígeno de dicho segundo KIR-CAR.
- [0298] En algunos casos, cuando está presente en la superficie de una célula, los dominios de unión al antígeno de dicho primer KIR-CAR y dicho segundo KIR-CAR, asociados entre sí menos que si ambos fueran dominios de unión a antígeno scFv. En algunos casos, los dominios de unión al antígeno de dicho primer KIR-CAR y dicho segundo KIR-CAR, se asocian entre sí un 85%, 90%, 95%, 96%, 97%, 98% o 99% menor que si ambos fueran dominios de unión a antígeno scFv.
- 65 **[0299]** En algunos casos, la presente descripción comprende un primer y segundo TCAR, en el que el dominio de unión a antígeno de una de dichas primera TCAR dicho segundo TCAR no comprende un dominio ligero variable y

un dominio variable pesado. En algunos casos, el antígeno de dominio de una unión de dicho primero TCAR dicho segundo TCAR es un scFv, y el otro no es un scFv. En algunos casos, el antígeno de dominio de uno de unión a dicho primer TCAR dicho segundo TCAR comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un único dominio VH derivado de una secuencia humana o de ratón o un andamio no anticuerpo. En algunos casos, el antígeno de dominio de una unión de dicho primero TCAR dicho segundo TCAR comprende un nanoanticuerpo. En algunos casos, el antígeno de dominio de una unión de dicho primero TCAR dicho segundo TCAR comprende un dominio de camélidos VHH.

[0300] En algunos casos, el dominio de unión a antígeno de una de dichas primera TCAR dicho segundo TCAR 10 comprende un scFv, y la otra comprende un único dominio de VH, por ejemplo, un camélido, tiburón, o lamprea único dominio VH, o un solo VH dominio derivado de una secuencia de humano o de ratón. En algunos casos, el antígeno de dominio de una unión de dicho primero TCAR dicho segundo TCAR comprende un scFv, y la otra comprende un nanoanticuerpo. En algunos casos, el antígeno de dominio de una unión de dicho primero TCAR dicho segundo TCAR comprende un scFv, y la otra comprende un dominio de camélidos VHH.

[0301] En algunos casos, cuando está presente en la superficie de una célula, la unión del dominio de unión a antígeno de dicho primero TCAR a su antígeno cognado no se reduce sustancialmente por la presencia de dicho segundo TCAR. En algunos casos, la unión del dominio de dicha primera TCAR unión a su antígeno cognado en presencia antígeno de dicho segundo TCAR es 85%, 90%, 95%, 96%, 97%, 98% o 99% de la unión del dominio de unión a antígeno de dicho primer TCAR a su antígeno cognado en ausencia de dicho segundo TCAR. En algunos casos, cuando está presente en la superficie de una célula, los dominios de unión al antígeno de dicho primer TCAR dicho segundo TCAR, asociado con uno de otro menor que si ambos eran antígeno scFv dominios de unión. En algunos casos, los dominios de dicha primera TCAR de unión a antígeno de dicho segundo TCAR, asociado con uno de otro 85%, 90%, 95%, 96%, 97%, 98% o 99% menor que si ambos eran antígeno scFv dominios de unión.

VECTORES

25

[0302] La presente invención también proporciona vectores en los que se inserta un ADN de la presente invención. Vectores derivados de retrovirus tales como los lentivirus son herramientas adecuadas para lograr la transferencia de genes a largo plazo, ya que permiten a largo plazo, integración estable de un transgén y su propagación en células hijas. Los vectores lentivirales tienen la ventaja añadida sobre los vectores derivados de onco-retrovirus tales como el virus de la leucemia murina en que pueden transducir células, tales como hepatocitos no proliferantes. También tienen la ventaja añadida de baja inmunogenicidad. En breve resumen, la expresión de ácidos nucleicos naturales o sintéticos que codifican las CAR se consigue típicamente mediante unión operativa de un ácido nucleico que codifica el polipéptido CAR o partes del mismo a un promotor, y la incorporación del constructo en un vector de expresión. Los vectores pueden ser adecuados para la replicación e integración de los eucariotas. Vectores de clonación típicos contienen terminadores de transcripción y traducción, secuencias de iniciación y promotores útiles para la regulación de la expresión de la secuencia de ácido nucleico deseada.

- 40 **[0303]** El ácido nucleico puede clonarse en un cierto número de tipos de vectores. Por ejemplo, el ácido nucleico puede clonarse en un vector que incluye, pero no limitado a un plásmido, un fagémido, un derivado del fago, un virus animal, y un cósmido. Los vectores de particular interés incluyen vectores de expresión, vectores de replicación, vectores de generación de sondas y vectores de secuenciación.
- 45 [0304] Además, el vector de expresión se puede proporcionar a una célula en la forma de un vector viral. Tecnología de vector viral es bien conocido en la técnica y se describe, por ejemplo, en Sambrook et al, 2012, Molecular Cloning: Laboratory Handbook, volúmenes 1 -4, Cold Spring Harbor Press, NY), y en otra virología y molecular manuales de biología. Los virus, que son útiles como vectores incluyen, pero no se limitan a, retrovirus, adenovirus, virus adeno-asociados, virus del herpes, y lentivirus. En general, un vector adecuado contiene un origen de replicación funcional en al menos un organismo, una secuencia promotora, de restricción conveniente endonucleasa de sitios, y uno o más marcadores seleccionables, (por ejemplo, WO 01/96584; WO 01/29058; y la patente de EE.UU. No. 6.326.193).
- [0305] Los elementos promotores adicionales, por ejemplo, potenciadores, regulan la frecuencia de iniciación de la transcripción. Típicamente, estos se encuentran en la región de 30-110 pb aguas arriba del sitio de inicio, aunque un número de promotores han sido recientemente demostrado que contienen elementos funcionales cadena abajo del sitio de inicio así. El espaciado entre los elementos promotores frecuentemente es flexible, de modo que la función del promotor se conserva cuando los elementos se invierten o se mueven uno respecto al otro. En el promotor de la timidina quinasa (tk), la separación entre elementos promotores puede aumentarse a 50 pb antes de que la actividad comienza a disminuir. Dependiendo del promotor, parece que elementos individuales pueden funcionar ya sea cooperativamente o independientemente para la transcripción activate.

[0306] Un ejemplo de un promotor es la secuencia de promotor temprano inmediato de citomegalovirus (CMV). Esta secuencia promotora es una secuencia promotora constitutiva fuerte capaz de conducir altos niveles de expresión de cualquier secuencia de polinucleótido ligada operativamente al mismo. Sin embargo, otras secuencias de promotores constitutivos también se pueden usar, incluyendo, pero no limitado a, el virus de simio 40 (SV40), el

promotor temprano, el virus de tumor mamario de ratón (MMTV), el virus de la inmunodeficiencia humana (VIH) repetición terminal larga (LTR), el promotor MoMuLV promotor, un promotor aviar virus de la leucemia, un virus de Epstein-Barr promotor temprano inmediato, un promotor del virus del sarcoma de Rous, el factor de elongación-1α, promotor, así como promotores de genes humanos tales como, pero no limitado a, el promotor de la actina, la promotor de miosina, el promotor de la hemoglobina, y el promotor de la creatina quinasa. Además, la invención no debe limitarse al uso de promotores constitutivos. Los promotores inducibles también se contemplan como parte de la invención. El uso de un promotor inducible proporciona un interruptor molecular capaz de girar sobre la expresión de la secuencia de polinucleótido al que está unido operativamente cuando se desea tal expresión, o apagar la expresión cuando no se desea la expresión. Ejemplos de promotores inducibles incluyen, pero no se limitan a un promotor de metalotionina, un promotor de glucocorticoides, un promotor de la progesterona, y un promotor de tetraciclina.

[0307] En una realización, el vector es un vector de lentivirus. En una realización, el vector comprende además un promotor. En una realización, el promotor es un promotor EF-1.

15

[0308] En una realización, el vector es un transcrito in vitro vector, por ejemplo, un vector que transcribe el ARN de una molécula de ácido nucleico descrita en este documento. En una realización, la secuencia de ácido nucleico en el vector comprende además una (A) de la cola, por ejemplo, una cola de poli A se describe en el presente documento, por ejemplo, poli, que comprende de aproximadamente 150 bases de adenosina. En una realización, la secuencia 20 de ácido nucleico en el vector comprende además un 3'UTR.

[0309] Con el fin de evaluar la expresión de un polipéptido CAR o porciones de los mismos, el vector de expresión que se introduce en una célula también puede contener un gen marcador seleccionable o un gen indicador o ambos para facilitar la identificación y selección de células que expresan a partir de la población de células que se pretende transfectadas o infectadas a través de vectores virales. En otros aspectos, el marcador seleccionable se puede llevar en un trozo separado de ADN y usarse en un procedimiento de transfección CO-. Ambos marcadores seleccionables y genes informadores pueden ser flanqueados con secuencias reguladoras apropiadas para permitir la expresión en las células huésped. Los marcadores seleccionables útiles incluyen, por ejemplo, genes de resistencia a antibióticos, tales como neo y similares.

[0310] Los genes indicadores se usan para identificar células potencialmente transfectadas y para evaluar la funcionalidad de secuencias reguladoras. En general, un gen indicador es un gen que no está presente en o expresado por el organismo o tejido receptor y que codifica un polipéptido cuya expresión se manifiesta por alguna propiedad fácilmente detectable, por ejemplo, la actividad enzimática. La expresión del gen indicador se ensaya en un momento adecuado después de que el ADN se ha introducido en las células receptoras. Genes indicadores adecuados pueden incluir genes que codifican la luciferasa, beta-galactosidasa, cloranfenicol acetil transferasa, fosfatasa alcalina secretada, o el gen de la proteína verde fluorescente (por ejemplo, Ui-Tei et al, 2000 FEBS Letters 479: 79-82). Los sistemas de expresión adecuados son bien conocidos y se pueden preparar usando técnicas conocidas u obtenerse comercialmente. En general, el constructo con la región flanqueante mínimo 5 que muestra el nivel más alto de expresión de gen indicador se identifica como el promotor. Tales regiones promotoras pueden estar ligados a un gen indicador y utilizarse para evaluar agentes por su capacidad para modular la transcripción promotor-conducido.

[0311] Los procedimientos para introducir y expresar genes en una célula se conocen en la técnica. En el contexto de un vector de expresión, el vector puede introducirse fácilmente en una célula huésped, por ejemplo, de mamífero, bacteriana, de levadura o célula de insecto por cualquier procedimiento en la técnica. Por ejemplo, el vector de expresión se puede transferir en una célula huésped por medios biológicos, físicos o químicos.

[0312] Los polinucleótidos se puede introducir en células diana usando cualquiera de un número de diferentes procedimientos, por ejemplo, los procedimientos disponibles en el comercio que incluyen, pero no se limitan a, electroporación (Amaxa Nucleofector-II (Amaxa Biosystems, Colonia, Alemania)), (ECM 830 (BTX) (Harvard Instruments, Boston, Mass.) o el gene Pulser II (BioRad, Denver, Colo.), Multiporator (Eppendort, Hamburg Alemania), catiónicos transfección mediada por liposomas utilizando lipofección, la encapsulación de polímero, péptido transfección mediada o sistemas de suministro de partícula biolísticos tales como "pistolas de genes" (véase, 55 por ejemplo, Nishikawa, et al Hum gene Ther, 12 (8):.. 861-70 (2001).

[0313] Los procedimientos físicos para la introducción de un polinucleótido en una célula huésped incluyen precipitación con fosfato de calcio, lipofección, bombardeo de partículas, microinyección, electroporación, y similares. Los procedimientos para producir células que comprenden los vectores y/o ácidos nucleicos exógenos son bien conocidos en la técnica. Véase, por ejemplo, Sambrook et al, 2012, Molecular Cloning: Laboratory handbook, volúmenes 1 -4, Cold Spring Harbor Press, Nueva York).

[0314] Los procedimientos biológicos para la introducción de un polinucleótido de interés en una célula huésped incluyen el uso de vectores de ADN y ARN. Los vectores virales, y especialmente vectores retrovirales, se han convertido en el procedimiento más ampliamente usado para insertar genes en, por ejemplo, células humanas de mamífero. Otros vectores virales pueden ser derivados de lentivirus, poxvirus, virus del herpes simplex I, adenovirus

ES 2 769 574 T3

y virus adeno-asociados, y similares. Véase, por ejemplo, la patente de Estados Unidos. Nos. 5.350.674 y 5.585.362.

- [0315] medios químicos para la introducción de un polinucleótido en una célula huésped incluyen sistemas de 5 dispersión coloidal, tales como complejos de macromoléculas, nanocápsulas, microesferas, perlas y sistemas basados en lípidos que incluyen emulsiones de aceite en agua, micelas, micelas mixtas y liposomas. Un sistema coloidal a modo de ejemplo para su uso como un vehículo de suministro in vitro e in vivo es un liposoma (por ejemplo, una vesícula de membrana artificial).
- 10 [0316] Se describen en el presente documento procedimientos para producir un transcrito in vitro de ARN NK-CAR en. La presente descripción también incluye un NK-CAR ARN que codifica constructo que se pueden transfectar directamente en una célula. Un procedimiento para generar ARNm para el uso en la transfección puede implicar la transcripción in vitro (IVT) de una plantilla con cebadores diseñados especialmente, seguido de adición de poliA, para producir una construcción que contiene 3' y 5' la secuencia no traducida ('UTR'), un 5 'tapa y/o del sitio de entrada de ribosoma interno (IRES), el ácido nucleico a expresar, y una cola de poliA, típicamente 50-2000 bases en. RNA así producidos pueden eficientemente transfectar diferentes tipos de células. En un aspecto, la plantilla incluye secuencias para la NK-CAR.
- [0317] En un aspecto, NK-CAR está codificada por un ARN mensajero (ARNm). En un aspecto el ARNm que 20 codifica la NK-CAR se introduce en una célula T para la producción de una célula NK-CAR.
- [0318] En un caso, el transcrito in vitro del ARN NK-CAR en puede ser introducido en una célula como una forma de transfección transitoria. El ARN se produce por la transcripción in vitro usando una reacción en cadena de la polimerasa (PCR) plantilla -generated. De ADN de interés a partir de cualquier fuente puede ser directamente convertida por PCR en una plantilla de mRNA in vitro la síntesis usando cebadores apropiados y la ARN polimerasa. La fuente del ADN puede ser, por ejemplo, ADN genómico, ADN plasmídico, ADN de fago, ADNc, secuencia de ADN sintética o cualquier otra fuente apropiada de ADN. En un caso, el templo deseado para la transcripción in vitro es un NK-CAR de la presente descripción. Por ejemplo, el molde para la ARN NK-CAR comprende una región extracelular que comprende un único dominio variable de la cadena de un anticuerpo antitumor; una región bisagra, un dominio transmembrana (por ejemplo, un dominio transmembrana de KIR). En un caso, los templos deseados para la transcripción in vitro comprende KIR-CAR y DAP 12 en plantillas separadas. En un caso, el templo deseado para la transcripción in vitro comprende KIR-CAR y DAP12 en la misma plantilla. La plantilla para la DAP12 comprende un dominio transmembrana y una región intracelular.
- 35 [0319] En un caso, el ADN para ser utilizado para la PCR contiene un marco de lectura abierto. El ADN puede ser de una secuencia de ADN de origen natural del genoma de un organismo. En un caso, el ácido nucleico puede incluir algunos o todos de los 5' y/o 3' regiones no traducidas (UTRs). El ácido nucleico puede incluir exones e intrones. En un caso, el ADN para ser utilizado para la PCR es una secuencia de ácido nucleico humana. En otro ejemplo, el ADN para ser utilizado para la PCR es una secuencia de ácido nucleico humano que incluye los UTRs 5' y 3'. El ADN puede ser alternativamente una secuencia de ADN artificial que normalmente no se expresa en un organismo de origen natural. Una secuencia de ADN artificial ejemplar es uno que contiene porciones de genes que se ligan entre sí para formar un marco de lectura abierto que codifica una proteína de fusión. Las porciones de ADN que se ligan juntos pueden ser de un solo organismo o de más de un organismo.
- PCR se utiliza para generar una plantilla para la transcripción in vitro de ARNm que se usa para la transfección. Los procedimientos para realizar la PCR son bien conocidos en la técnica. Los cebadores para uso en PCR están diseñados para tener regiones que son sustancialmente complementarios a las regiones del ADN para ser utilizado como una plantilla para la PCR. "Sustancialmente complementaria", como se utiliza en el presente documento, se refiere a secuencias de nucleótidos donde una mayoría o la totalidad de las bases en la secuencia 50 del cebador son complementarios, o una o más bases no son complementarias, o no coincidentes. Las secuencias sustancialmente complementarias son capaces de recocido o hibridar con la diana de ADN destinado en condiciones de recocido utilizados para la PCR. Los cebadores pueden ser diseñados para ser sustancialmente complementaria a cualquier parte de la plantilla de ADN. Por ejemplo, los cebadores pueden ser diseñados para amplificar la porción de un ácido nucleico que normalmente se transcribe en las células (el marco de lectura abierto), incluyendo 5' UTRs 55 y 3'. Los cebadores también se pueden diseñar para amplificar una porción de un ácido nucleico que codifica un dominio particular de interés. En un caso, los cebadores se diseñaron para amplificar la región de codificación de un ADNc humano, incluyendo la totalidad o porciones de los 5' y 3' UTRs. Los cebadores útiles para la PCR se pueden generar por procedimientos sintéticos que son bien conocidos en la técnica. "Cebadores hacia adelante" son cebadores que contienen una región de nucleótidos que son sustancialmente complementarias a los nucleótidos en 60 la plantilla de ADN que están aguas arriba de la secuencia de ADN que se va a amplificar. "Aguas arriba" se utiliza en el presente documento para referirse a una localización 5, a la secuencia de ADN a amplificar con relación a la hebra de codificación. "Los cebadores inversos" son cebadores que contienen una región de nucleótidos que son sustancialmente complementarios a una plantilla de ADN de doble cadena que están aguas abajo de la secuencia

de ADN que se va a amplificar. "Aguas abajo" se utiliza en el presente documento para referirse a un lugar 3' de la

65 secuencia de ADN que va a amplificarse con respecto a la cadena de codificación.

[0321] Cualquier ADN polimerasa útil para la PCR se puede utilizar en los procedimientos descritos en el presente documento. Los reactivos y la polimerasa están disponibles comercialmente de un número de fuentes.

[0322] Las estructuras químicas con la capacidad de promover la estabilidad y/o la eficacia de traducción también se pueden usar. El ARN tiene preferiblemente 5' y 3' UTRs. En una realización, el 5' UTR es entre uno y 3000 nucleótidos de longitud. La longitud de 5' y 3' UTR secuencias que se añaden a la región de codificación puede ser alterado por diferentes procedimientos, incluyendo, pero no limitado a, el diseño de cebadores para PCR que hibridan con diferentes regiones de las UTRs. Usando este enfoque, una persona de experiencia ordinaria en la técnica puede modificar los 5' y 3' UTR longitudes necesarias para lograr la eficacia de traducción óptima después de la transfección del ARN transcrito.

[0323] Los y 3' UTRs 5' pueden ser los endógenos 5' y 3' UTRs de origen natural, para el ácido nucleico de interés. Alternativamente, las secuencias UTR que no son endógenos al ácido nucleico de interés se pueden añadir mediante la incorporación de las secuencias de UTR en los cebadores de avance y retroceso o por cualquier otra modificación de la plantilla. El uso de secuencias UTR que no son endógenos al ácido nucleico de interés puede ser útil para la modificación de la estabilidad y/o eficacia de la traducción del ARN. Por ejemplo, se sabe que los elementos ricos en AU en las secuencias de UTR 3' pueden disminuir la estabilidad del ARNm. Por lo tanto, 3' UTRs pueden ser seleccionados o diseñados para aumentar la estabilidad del ARN transcrito basado en propiedades de UTRs que son bien conocidos en la técnica.

[0324] En una realización, el 5' UTR puede contener la secuencia de Kozak del ácido nucleico endógeno. Alternativamente, cuando un 5' UTR que no es endógeno al ácido nucleico de interés está siendo añadida por PCR como se describió anteriormente, una secuencia Kozak consenso puede ser rediseñado por la adición de la secuencia 5' UTR. Secuencias de Kozak pueden aumentar la eficiencia de la traducción de algunas transcripciones de ARN, pero no parece ser necesario para todos los ARN para permitir la traducción eficiente. El requisito para secuencias de Kozak para muchos mRNAs se conoce en la técnica. En otras realizaciones, el 5' UTR puede ser 5'UTR de un virus de ARN, cuyo genoma de ARN es estable en las células. En otras realizaciones diferentes análogos de nucleótidos se pueden utilizar en el 3' o 5' UTR a la degradación impiden exonucleasa del ARNm.

20

[0325] Para permitir la síntesis de ARN a partir de una plantilla de ADN sin necesidad de clonación de genes, un promotor de la transcripción debe estar unido a la plantilla de ADN aguas arriba de la secuencia que se transcribe. Cuando una secuencia que funciona como un promotor para una ARN polimerasa se añade al extremo 5' del cebador hacia adelante, el promotor de la ARN polimerasa se incorpora en el producto de la PCR aguas arriba del marco de lectura abierto que es para ser transcrita. En una realización preferida, el promotor es un promotor de polimerasa de T7, como se describe en otra parte en este documento. Otros promotores útiles incluyen, pero no se limitan a, T3 y ARN polimerasa SP6 promotores. Secuencias de nucleótidos de consenso para los promotores T7, T3 y SP6 son conocidos en la técnica.

40 **[0326]** En una realización preferida, el ARNm tiene tanto una tapa en el extremo 5' y una 3' cola de poli (A) que determinan de unión al ribosoma, la iniciación de la traducción y la estabilidad del ARNm en la célula. En un molde de ADN circular, por ejemplo, plásmido de ADN, ARN polimerasa produce un producto de larga concatemérica que no es adecuado para la expresión en células eucariotas. La transcripción del ADN del plásmido linealizado en el extremo de los Resultados de la UTR 3' 'en el ARNm de tamaño normal que no es eficaz en la transfección eucariota incluso si está poliadenilado después de la transcripción.

[0327] En un molde de ADN lineal, fago T7 RNA polimerasa puede extender el extremo 3' de la transcripción más allá de la última base de la plantilla (Schenborn y Mierendorf, Nuc Acids Res., 13: 6223-36 (1985); Nacheva y .. Berzal-Herranz, Eur J. Biochem, 270: 1485-1465 (2003).

[0328] El procedimiento convencional de integración de poliA/T se extiende en un molde de ADN es la clonación molecular. Sin embargo secuencia poliA/T integrado en el ADN plásmido puede causar inestabilidad del plásmido, por lo que las plantillas de ADN de plásmidos obtenidos a partir de células bacterianas son a menudo altamente contaminados con deleciones y otras aberraciones. Esto hace que los procedimientos de clonación no sólo laboriosos y lentos pero a menudo no fiables. Esa es la razón por un procedimiento que permite la construcción de moldes de ADN con poliA/T 3' tramo sin clonación altamente deseable.

[0329] El poliA/segmento T de la plantilla de ADN de la transcripción puede ser producido durante la PCR usando un cebador inverso que contiene una cola de poli T, tales como cola 100T (tamaño puede ser 50-5000 T (SEQ ID NO: 111)), o después de la PCR por cualquier otro procedimiento, incluyendo, pero no limitado a, la ligadura de ADN o en la recombinación in vitro. Poli (A) colas también proporcionar estabilidad a los ARN y reducir su degradación. Generalmente, la longitud de una cola de poli (A) se correlaciona positivamente con la estabilidad del ARN transcrito. En una realización, el poli (A) de la cola es de entre 100 y 5000 adenosinas.

65 **[0330]** Las colas de poli (A) de ARN pueden extenderse aún más tras la transcripción in vitro con el uso de un poli (A) polimerasa, tal como E. coli poliA polimerasa (E-PAP). En una realización, el aumento de la longitud de una (A)

de la cola poli de 100 nucleótidos a entre 300 y 400 nucleótidos resultados en aproximadamente un aumento de dos veces en la eficiencia de traducción del ARN. Además, la unión de diferentes grupos químicos al extremo 3' puede aumentar la estabilidad del mRNA. Dicha unión puede contener modificado/nucleótidos artificiales, aptámeros y otros compuestos. Por ejemplo, análogos de ATP pueden ser incorporados en la cola de poli (A) utilizando poli 5 polimerasa (A). Análogos de ATP pueden aumentar aún más la estabilidad del ARN.

[0331] Los bloqueadores 5' también proporcionan estabilidad a las moléculas de ARN. En una realización preferida, los ARN producido por los procedimientos descritos en este documento incluyen un tope 5'. El tope 5' se proporciona el uso de técnicas conocidas en la técnica y se describe en el presente documento (Cougot, et al, 10 Trends in Biochem Sci, 29: 436-444 (2001); Stepinski, et al, ARN, 7:... 1468- 95 (2001); Elango, et al, Biochim Biophys Res Commun, 330: 958-966 (2005)).

Los ARN producidos por los procedimientos descritos en este documento también puede contener la secuencia de un sitio de entrada de ribosoma interno (IRES). La secuencia IRES puede ser cualquier viral, 15 cromosómica o una secuencia diseñada artificialmente que inicia la unión a ARNm al ribosoma tapa independiente y facilita la iniciación de la traducción. Cualquier solutos adecuados para la electroporación de células, que pueden contener factores que facilitan la permeabilidad celular y la viabilidad tales como azúcares, péptidos, lípidos, proteínas, antioxidantes, y agentes tensioactivos pueden ser incluidos. En el caso en que se utiliza un sistema de administración no viral, un vehículo de entrega a modo de ejemplo es un liposoma. El uso de formulaciones de 20 lípidos se contempla para la introducción de los ácidos nucleicos en una célula huésped (in vitro, ex vivo o in vivo). En otro aspecto, el ácido nucleico puede estar asociado con un lípido. El ácido nucleico asociado con un lípido se puede encapsular en el interior acuoso de un liposoma, entremezclado dentro de la bicapa lipídica de un liposoma, unido a un liposoma mediante una molécula que une que está asociado con tanto el liposoma y el oligonucleótido, atrapado en un liposoma, complejado con un liposoma, dispersado en una solución que contiene un 25 lípido, mezclado con un lípido, combinado con un lípido, contenido como una suspensión en un lípido, contenido o complejado con una micela, o de otra manera asociado con un lípido. Lípidos, lípidos/ADN o lípido/expresión composiciones vector asociado no se limitan a ninguna estructura particular en solución. Por ejemplo, pueden estar presentes en una estructura bicapa, como micelas, o con una estructura de "colapsado". Pueden también simplemente intercalarse en una solución, posiblemente formando agregados que no son uniformes en tamaño o 30 forma. Los lípidos son sustancias grasas que pueden ser de origen natural o lípidos sintéticos. Por ejemplo, los lípidos incluyen las gotitas grasas que se producen naturalmente en el citoplasma así como la clase de compuestos que contienen hidrocarburos alifáticos de cadena larga y sus derivados, tales como ácidos grasos, alcoholes, aminas, amino alcoholes, y aldehídos.

35 **[0333]** Los lípidos adecuados para su uso se pueden obtener de fuentes comerciales. Por ejemplo, dimiristil fosfatidilcolina ("DMPC") puede obtenerse de Sigma, St. Louis, MO; fosfato de dicetilo ("DCP") se puede obtener a partir de K & K Laboratorios (Plainview, NY); colesterol ("Choi") se puede obtener a partir de Calbiochem-Behring; dimiristilo fosfatidilglicerol ("DMPG") y otros lípidos se pueden obtener de Avanti Polar Lipids, Inc. (Birmingham, AL.). Las soluciones madre de lípidos en cloroformo o cloroformo/metanol pueden almacenarse a 40 aproximadamente -20°C. El cloroformo se usa como el único disolvente ya que es más fácilmente evaporó el metanol. "Liposoma" es un término genérico que abarca una variedad de vehículos individuales y multilamelares de lípidos formados por la generación de bicapas o agregados de lípidos encerradas. Los liposomas se pueden caracterizar por tener estructuras vesiculares con una membrana bicapa de fosfolípidos y un medio acuoso interno. Los liposomas multilamelares tienen múltiples capas de lípidos separadas por medio acuoso. Se forman 45 espontáneamente cuando los fosfolípidos se suspenden en un exceso de solución acuosa. Los componentes lipídicos experimentan auto-antes de la formación de estructuras cerradas y agua atrapar y solutos disueltos entre las bicapas lipídicas (Ghosh et al, 1991 Glycobiology 5:. 505-10). Sin embargo, las composiciones que tienen diferentes estructuras en solución de la estructura vesicular normal, también están abarcados. Por ejemplo, los lípidos pueden asumir una estructura micelar o simplemente existir como agregados no uniformes de moléculas de 50 lípidos. También se contemplan complejos de ácido lipofectamina-nucleico.

FUENTES DE CÉLULAS T

[0334] Antes de la expansión y la modificación genética, se obtiene una fuente de células T de un sujeto. El término "sujeto" pretende incluir organismos vivos en los que una respuesta inmunitaria puede ser obtenido (por ejemplo, mamíferos). Ejemplos de sujetos incluyen humanos, perros, gatos, ratones, ratas, y especies transgénicas de los mismos. Las células T pueden obtenerse de un número de fuentes, incluyendo las células de sangre periférica mononucleares, médula ósea, tejido de ganglio linfático, sangre del cordón umbilical, el tejido del timo, el tejido de un sitio de infección, ascitis, derrame pleural, tejido de bazo, y tumores. En ciertas realizaciones de la presente invención, cualquier número de líneas de células T disponibles en la técnica, puede ser utilizado. En ciertos casos de la presente descripción, las células T pueden obtenerse de una unidad de sangre recogida de un sujeto usando cualquier número de técnicas conocidas por el experto en la técnica, tales como separación de Ficoll ™. En un caso preferido, las células de la sangre circulante de un individuo se obtienen mediante aféresis. El producto de aféresis típicamente contiene linfocitos, incluyendo las células T, monocitos, granulocitos, células B, otras células blancas de la sangre nucleadas, células rojas de la sangre y plaquetas. En un caso, las células recogidas por aféresis pueden lavarse para eliminar la fracción de plasma y para colocar las células en un tampón apropiado o

soportes para las etapas de procesamiento posteriores. En un caso de la descripción, las células se lavan con solución salina tamponada con fosfato (PBS). En un ejemplo alternativo, la solución de lavado carece de calcio y magnesio falta mayo o puede carecer de muchos, si no todos los cationes divalentes. De nuevo, sorprendentemente, la activación inicial pasos en ausencia de plomo de calcio a la activación ampliada. Como los expertos en la técnica apreciarán fácilmente una etapa de lavado puede llevarse a cabo por procedimientos conocidos por los expertos en la técnica, tales como mediante el uso de una, el procesador celular semiautomático "flujo a través" centrífuga (por ejemplo Cobe 2991, la Baxter CytoMate, o la célula Haemonetics Ahorro 5) de acuerdo con las instrucciones del fabricante. Después del lavado, las células se pueden resuspendieron en una variedad de tampones biocompatibles, tales como, por ejemplo, Ca-libre, Mg-PBS libre, Plasmalyte A, u otra solución de solución salina con o sin tampón. Alternativamente, los componentes no deseados de la muestra de aféresis pueden ser quitados y las células directamente resuspendieron en medios de cultivo.

En otro ejemplo, las células T se aíslan a partir de linfocitos de sangre periférica mediante la lisis de las células rojas de la sangre y agotando los monocitos, por ejemplo, por centrifugación a través de un Percoll ™ 15 gradiente o por contracorriente centrífuga elutriación. Una subpoblación específica de células T, tales como CD3 +, CD28 + , CD4 + , CD8 + , CD45RA + , y CD45RO + células T, se puede aislar adicionalmente mediante técnicas de selección positiva o negativa. Por ejemplo, en un caso, las células T son aisladas mediante incubación con anti-CD3/anti-CD28 (es decir, 3x28) y conjugado con perlas, tales como Dynabeads® M-450 CD3/CD28 T, para un período de tiempo suficiente para la selección positiva de las células T deseados. En un caso, el período de tiempo 20 es de aproximadamente 30 minutos. En un caso adicional, los rangos de período de tiempo de 30 minutos a 36 horas o más y todos los valores enteros entre ellos. En un caso adicional, el período de tiempo es al menos 1, 2, 3, 4, 5, o 6 horas. En otro caso más preferido, el período de tiempo es de 10 a 24 horas. En un caso preferido, el período de tiempo de incubación es de 24 horas. Para el aislamiento de las células T de pacientes con leucemia, el uso de tiempos de incubación más largos, tal como 24 horas, puede aumentar el rendimiento celular. Tiempos de 25 incubación más largos pueden ser usados para aislar células T en cualquier situación donde hay células T unos en comparación con otros tipos de células, tales en el aislamiento de los linfocitos infiltrantes de tumor (TIL) de tejido tumoral o a partir de individuos inmunocomprometidos. Además, el uso de tiempos de incubación más largos puede aumentar la eficacia de la captura de las células T CD8 +. Por lo tanto, simplemente acortando o alargando el tiempo se permite que las células T se unen a las perlas CD3/CD28 y/o aumentando o disminuyendo la relación de perlas a 30 las células T (como se describe adicionalmente en este documento), subpoblaciones de células T se pueden seleccionar preferentemente favor o en contra a la iniciación del cultivo o en otros puntos de tiempo durante el proceso. Además, aumentando o disminuyendo la relación de anticuerpos anti-CD28 en las perlas o otra superficie anti-CD3 y/o, subpoblaciones de células T se pueden seleccionar preferentemente a favor o en contra al inicio del cultivo o en otros puntos de tiempo deseados. El experto en la técnica reconocería que múltiples rondas de 35 selección también se pueden utilizar en el contexto de esta invención. En ciertos casos, puede ser deseable llevar a cabo el procedimiento de selección y el uso de las células "no seleccionadas" en el proceso de activación y expansión. Células "no seleccionadas" también pueden ser sometidas a rondas adicionales de selección.

[0336] El enriquecimiento de una población de células T mediante selección negativa se puede lograr con una combinación de anticuerpos dirigidos a marcadores de la superficie únicos para las células seleccionadas negativamente. Un procedimiento es la clasificación celular y/o la selección a través de inmunoadherencia magnética negativa o citometría de que utiliza un cóctel de anticuerpos monoclonales dirigidos a marcadores de superficie celular presente en las células seleccionadas negativamente fluya. Por ejemplo, para enriquecer para CD4 + células por selección negativa, un cóctel de anticuerpos monoclonales típicamente incluye anticuerpos para 45 CD14, CD20, CD11b, CD16, HLA-DR, y CD8. En ciertos casos, puede ser deseable para enriquecer o seleccionar positivamente para las células T reguladoras que normalmente expresan CD4 +, CD25 +, CD62L hi , GITR +, y FoxP3 +. Alternativamente, en ciertos casos, las células T reguladoras se agotan por perlas anti-C25 conjugados u otro procedimiento similar de selección.

Para el aislamiento de una población deseada de células mediante selección positiva o negativa, la concentración de células y la superficie (por ejemplo, partículas tales como perlas) se puede variar. En ciertos casos, puede ser deseable disminuir significativamente el volumen en el que los granos y las células están juntos mixto (es decir, aumentar la concentración de células), para asegurar el contacto máximo de las células y los granos. Por ejemplo, en un caso/ml se utiliza una concentración de 2 mil millones de células. En un caso,/ml se utiliza una 55 concentración de 1 mil millones de células. En un caso adicional, mayor que 100 millones de células/ml se utiliza. En un caso adicional/ml se usa una concentración de células de 10, 15, 20, 25, 30, 35, 40, 45, o 50 millones de células. En otro caso más/ml se usa una concentración de células de 75, 80, 85, 90, 95, o 100 millones de células. En otros casos/ml se pueden usar concentraciones de 125 o 150 millones de células. El uso de concentraciones altas puede provocar un aumento de rendimiento celular, activación celular, y la expansión de 60 células. Además, el uso de concentraciones celulares elevadas permite la captura más eficaz de células que pueden expresar débilmente antígenos diana de interés, tales como CD28-negativas las células T, o a partir de muestras en las que hay muchas células tumorales presentes (es decir, la sangre leucémica, tejido tumoral, etc. .). Tales poblaciones de células pueden tener valor terapéutico y sería deseable obtener. Por ejemplo, utilizando alta concentración de células permite una selección más eficaz de CD8 + células T que normalmente tienen expresión 65 CD28 más débiles.

[0338] En un ejemplo relacionado, puede ser deseable usar concentraciones inferiores de células. Al diluir significativamente la mezcla de las células T y la superficie (por ejemplo, partículas tales como perlas), las interacciones entre las partículas y las células se reduce al mínimo. Esto selecciona para células que expresan grandes cantidades de antígenos deseados a estar unidos a las partículas. Por ejemplo, CD4 + células T expresan mayores niveles de CD28 y son capturados de manera más eficiente de CD8 + células T en concentraciones diluidas. En un caso, la concentración de células utilizadas es de 5 X 10 6/ml. En otros casos, la concentración usada puede ser de aproximadamente 1 X 10 5/ml a 1 x 10 6/ml, y cualquier valor entero en el medio.

[0339] En otros casos, las células se pueden incubar en un rotador durante distintos períodos de tiempo a distintas 10 velocidades en cualquiera de 2-10 °C o a temperatura ambiente.

[0340] Las células T para la estimulación también se pueden congelar después de una etapa de lavado. No se desea estar ligado por la teoría, la congelación y posterior descongelación paso proporciona un producto más uniforme mediante la eliminación de los granulocitos y monocitos a alguna medida, en la población celular. Después de la etapa de lavado que elimina el plasma y las plaquetas, las células pueden suspenderse en una solución de congelación. Mientras que muchas soluciones de congelación y parámetros son conocidos en la técnica y serán útiles en este contexto, un procedimiento implica el uso de PBS que contenía 20% de DMSO y 8% de albúmina de suero humano, o medios de cultivo que contienen 10% de dextrano 40 y 5% de dextrosa, 20% albúmina de suero humano y 7,5% de DMSO, o 31,25% Plasmalyte-A, 31,25% de dextrosa 5%, 0,45% de NaCl, 10% de dextrano 40 y 5% de dextrosa, 20% albúmina de suero humano, y 7,5% de DMSO o de otros medios de comunicación celulares adecuadas congelación que contiene, por ejemplo, Hespan y Plasmalyte a, las células luego se congelan a -80 °C a una velocidad de 1 ° por minuto y se almacenan en la fase de vapor de un tanque de almacenamiento de nitrógeno líquido. Otros procedimientos de congelación controlada se pueden utilizar, así como la congelación no controlada inmediatamente a -20 °C o en nitrógeno líquido.

[0341] En ciertos casos, las células crioconservadas se descongelan y se lavan como se describe en el presente documento y se les permite reposar durante una hora a temperatura ambiente antes de la activación usando los procedimientos de la presente descripción.

30 [0342] También se contemplan en el contexto de la invención es la colección de muestras de sangre o de aféresis producto de un sujeto en un período de tiempo antes de que las células expandidas como se describe en el presente documento podrían ser necesarios. Como tal, la fuente de las células para ser expandido se puede recoger en cualquier punto de tiempo necesario, y la deseada células, tales como células T, aislados y congelados para su uso posterior en la terapia de células T para cualquier número de enfermedades o afecciones que se beneficiarían de la 35 terapia de células T, tales como los descritos en el presente documento. En un caso una muestra de sangre o una aféresis se toma de un sujeto generalmente sano. En ciertos casos, una muestra de sangre o un aféresis es tomada de un sujeto sano en general que está en riesgo de desarrollar una enfermedad, pero que aún no se ha desarrollado una enfermedad, y se aíslan y se congelan para su uso posterior las células de interés. En ciertos casos, las células T pueden expandirse, congelados, y se utilizan en un momento posterior. En ciertos casos, las muestras se recogen 40 de un paciente poco después del diagnóstico de una enfermedad particular tal como se describe en el presente documento, pero antes de cualquier tratamiento. En un caso adicional, las células se aíslan de una muestra de sangre o una aféresis a partir de un sujeto antes de cualquier número de modalidades de tratamiento pertinentes, incluyendo, pero no limitado al tratamiento con agentes tales como natalizumab, efalizumab, agentes antivirales, quimioterapia, radiación, inmunosupresor agentes, tales como ciclosporina, azatioprina, metotrexato, micofenolato, y 45 FK506, anticuerpos, u otros agentes immunoablative tales como CAMPATH, anticuerpos anti-CD3, Cytoxan, fludarabina, ciclosporina, FK506, rapamicina, ácido micofenólico, esteroides, FR901228, y la irradiación. Estos fármacos inhiben bien la fosfatasa calcineurina dependiente de calcio (ciclosporina y FK506) o inhiben la p70S6 quinasa que es importante para el factor de crecimiento inducido señalización (rapamicina). (. Liu et al, Cell 66: 807-815, 1991; Henderson et al, Immun., 73: 316-321, 1991; Bierer et al, Curr Opin Immun. 5:. 763-773, 1993...). En un 50 caso adicional, las células se aíslan de un paciente y se congelaron para su posterior uso en conjunción con (por ejemplo, antes, simultáneamente o después de) la médula ósea o trasplante de células, la terapia ablativa de células T provenir ya sea utilizando agentes de quimioterapia tales como, fludarabina, externo la terapia de haz de radiación (XRT), ciclofosfamida, o anticuerpos tales como OKT3 o CAMPATH. En otro caso, las células se aíslan antes y pueden ser congelados para su uso posterior para el tratamiento después de la terapia ablativa de células B tales 55 como agentes que reaccionan con CD20, por ejemplo, Rituxan.

[0343] En un caso adicional de la presente descripción, las células T se obtienen de un paciente directamente después del tratamiento. En este sentido, se ha observado que después de ciertos tratamientos contra el cáncer, en particular tratamientos con fármacos que dañan el sistema inmunitario, poco después del tratamiento durante el período cuando los pacientes normalmente se recuperarían del tratamiento, la calidad de las células T obtenidas puede ser óptima o mejorada por su capacidad para expandir ex vivo. Del mismo modo, después de la manipulación ex vivo utilizando los procedimientos descritos en el presente documento, estas células pueden estar en un estado preferido para el injerto mejorado y la expansión in vivo. Por lo tanto, se contempla dentro del contexto de la presente invención recoger glóbulos, incluyendo células T, células dendríticas u otras células del linaje hematopoyético, durante esta fase de recuperación. Además, en ciertos casos, se pueden usar regímenes de movilización (por ejemplo, movilización con GM-CSF) y acondicionamiento para crear una condición en un sujeto, en

el que la repoblación, la recirculación, la regeneración y/o expansión de tipos de células particulares se favorecen, especialmente durante una ventana de tiempo definida después de la terapia. Los tipos de células ilustrativas incluyen células T, células B, células dendríticas y otras células del sistema inmunitario.

5 ACTIVACIÓN Y EXPANSIÓN DE LAS CÉLULAS T

[0344] Las células T se activan y, en general, se expanden usando procedimientos, tales como los descritos, por ejemplo, en las patentes de Estados Unidos 6,352,694; 6.534.055; 6.905.680; 6.692.964; 5.858.358; 6.887.466; 6.905.681; 7.144.575; 7.067.318; 7.172.869; 7.232.566; 7.175.843; 5.883.223; 6.905.874; 6.797.514; 6.867.041; y 10 solicitud de patente US No. 20060121005.

[0345] En general, las células T de la invención se expandido en contacto con una superficie tiene unido al mismo un agente que estimula a/TCR señal asociada complejo CD3 y un ligando que estimula una molécula coestimuladora en la superficie de las células T. En particular, las poblaciones de células T pueden ser estimuladas 15 como se describe en el presente documento, tal como por contacto con un anticuerpo anti-CD3, o fragmento de unión a antígeno del mismo, o un anticuerpo anti-CD2 inmovilizado sobre una superficie, o por contacto con una proteína cinasa C activador (por ejemplo, briostatina) en conjunción con un ionóforo de calcio. Para co-estimulación de una molécula accesoria en la superficie de las células T, un ligando que se une se utiliza la molécula accesoria. Por ejemplo, una población de células T puede contactarse con un anticuerpo anti-CD3 y un anticuerpo 20 anti-CD28, en condiciones apropiadas para estimular la proliferación de las células T. Para estimular la proliferación de CD4 + células T o CD8 + células T, un anticuerpo anti-CD3 y un anticuerpo anti-CD28. Los ejemplos de un anticuerpo anti-CD28 incluyen 9,3, B-T3, XR-CD28 (Diaclone, Besançon, Francia) se puede utilizar como puede otros procedimientos comúnmente conocidos en la técnica (Berg et al, Transplant Proc 30 (8): 3975-3977, 1998; Haanen et al, J. Exp Med 190 (9): 13191328, 1999; Garland et al, J. Immunol Meth 227 (1-2): 53-63, 1999).

[0346] En ciertos casos, la señal de estimulación primaria y la señal co-estimuladora para las células T pueden ser proporcionadas por diferentes protocolos. Por ejemplo, los agentes que proporcionan cada señal pueden estar en solución o acoplado a una superficie. Cuando se acopla a una superficie, los agentes pueden estar acoplados a la misma superficie (es decir, en "cis" de formación) o a las superficies separadas (es decir, en la formación de 30 "trans"). Alternativamente, un agente puede acoplarse a una superficie y el otro agente en solución. En un caso, el agente que proporciona la señal co-estimuladora se une a una superficie de la célula y el agente que proporciona la señal de activación primaria está en solución o acoplado a una superficie. En ciertos casos, ambos agentes pueden estar en solución. En otro caso, los agentes pueden estar en forma soluble, y luego reticulado a una superficie, tal como una célula que expresa receptores de Fc o un anticuerpo u otro agente de unión que se unirá a los agentes. A 35 este respecto, véase, por ejemplo, la solicitud de patente de EE.UU. Nos. 20040101519 y 20060034810 para las células presentadoras de antígeno artificiales (AAPCS) que se contemplan para su uso en la activación y expansión de células T en la presente descripción.

En un caso, los dos agentes se inmovilizan sobre perlas, ya sea en el mismo grano, es decir, "cis", o a 40 perlas separadas, es decir, "trans". A modo de ejemplo, el agente que proporciona la señal de activación primaria es un anticuerpo anti-CD3 o un fragmento de unión a antígeno del mismo y el agente que proporciona la señal coestimuladora es un anticuerpo anti-CD28 o fragmento de unión a antígeno del mismo; y ambos agentes son coinmovilizados al mismo cordón en cantidades moleculares equivalentes. En un caso, una relación 1: 1 de cada anticuerpo unido a las perlas de CD4 + expansión de células T y el crecimiento de las células T se utiliza. En ciertos 45 aspectos de la presente descripción, una relación de anti-CD3: CD28 unidos a las perlas se utiliza de tal manera que un aumento en la expansión de células T se observa en comparación con la expansión observada usando una relación de 1: 1. En un caso particular, se observa un aumento de aproximadamente 1 a aproximadamente 3 veces en comparación con la expansión observada usando una relación de 1: 1. En un caso, la proporción de CD3: CD28 de anticuerpo unido a los rangos de los granos de 100: 1 a 1: 100 y todos los valores enteros entre ellos. En un 50 aspecto de la presente descripción, más anticuerpo anti-CD28 se une a las partículas que anticuerpo anti-CD3, es decir, la relación de CD3: CD28 es menor que uno. En ciertos casos de la descripción, la relación de anticuerpo anti CD28 a anticuerpo anti CD3 unido a las perlas es mayor que 2: 1. En un caso particular, un 1: se utiliza relación CD28 de anticuerpo unido a las perlas: CD3 100. En otro ejemplo, un 1:75 CD3: se utiliza relación CD28 de anticuerpo unido a los gránulos. En un caso adicional, un una y cincuenta CD3: se utiliza relación CD28 de 55 anticuerpo unido a los gránulos. En otro ejemplo, un una y treinta CD3: se utiliza relación CD28 de anticuerpo unido a los gránulos. En un caso preferido, un uno y diez CD3: se utiliza relación CD28 de anticuerpo unido a los gránulos. En otro ejemplo, un 1: se utiliza relación CD28 de anticuerpo unido a las perlas: 3 CD3. En aún otro ejemplo, un 3: se usa relación CD28 de anticuerpo unido a las perlas: 1 CD3.

Las proporciones de partículas a células de 1: 500 a 500: 1 y cualesquiera valores enteros en el medio puede ser usado para estimular las células T u otras células diana. Como los expertos ordinarios en la técnica puede apreciar fácilmente, la proporción de partículas a las células puede depender del tamaño de partícula con respecto a la célula diana. Por ejemplo, pequeñas perlas de tamaño sólo podían unirse unas pocas células, mientras que los granos más grandes podrían obligar a muchos. En ciertos casos, la proporción de células a las partículas varía de 1: 65 100 a 100: 1, y con valores de número entero en el medio y en otros casos la relación comprende 1: 9 a 9: 1 y cualesquiera valores enteros en el medio, también se pueden utilizar para estimular células T. La relación de anti-

CD3 y anti-partículas-acoplados-CD28 a las células T que dan como resultado la estimulación de células T puede variar como se señaló anteriormente, sin embargo ciertos valores preferidos incluyen 1: 100, 1:50, 01:40, 01:30, 1:20, 1:10, 1: 9, 1: 8, 1: 7, 1: 6, 1: 5, 1: 4, 1: 3, 1: 2, 1: 1,2: 1,3: 1,4: 1,5: 1, 6: 1, 7: 1, 8: 1, 9: 1, 10: 1, y 15: 1 con una relación preferida de al menos 1: 1 partículas por célula T. En un caso, una relación de partículas a células de 1: 1 o 5 menos se utiliza. En un caso particular, una partícula preferida: proporción de células es de 1: 5. En otros casos, la relación de partículas a células puede ser variada dependiendo del día de la estimulación. Por ejemplo, en un caso, la proporción de partículas a células es de 1: 1 a 10: 1 en el primer día y las partículas adicionales se añaden a las células cada día o cada dos días a partir de entonces por hasta 10 días, a las relaciones finales de 1: 1 a 1:10 (basado en los recuentos de células en el día de la adición). En un caso particular, la relación de partículas a células 10 es de 1: 1 en el primer día de la estimulación y se ajustó a 1: 5 en el tercer y quinto días de estimulación. En otro caso, se añaden partículas en un diario o cada dos días base a una relación final de 1: 1 en el primer día, y 1: 5 en el tercer y quinto días de estimulación. En otro caso, la relación de partículas a células es de 2: 1 en el primer día de la estimulación y se ajustó a 01:10 en el tercer y quinto días de estimulación. En otro caso, se añaden partículas en un diario o cada dos días base a una relación final de 1: 1 en el primer día, y 1:10 en el tercer y quinto días de 15 estimulación. Un experto en la técnica apreciará que una variedad de otras relaciones pueden ser adecuados para su uso en la presente invención. En particular, las proporciones pueden variar dependiendo del tamaño de las partículas y del tamaño de la célula y el tipo.

[0349] En otros ejemplos de la presente descripción, las células, como las células T, se combinan con los granos de agente recubierto, las perlas y las células se separan posteriormente, y después se cultivan las células. En un ejemplo alternativo, antes del cultivo, las perlas y las células de agente recubierto no se separaron, pero se cultivan juntos. En un caso adicional, las perlas y las células se concentran en primer lugar mediante la aplicación de una fuerza, como una fuerza magnética, que resulta en aumento de ligación de marcadores de superficie celular, induciendo de este modo la estimulación de células.

[0350] A modo de ejemplo, las proteínas de la superficie celular se pueden ligar al permitir perlas paramagnéticas a las que están unidos anti-CD3 y anti-CD28 (perlas 3x28) para ponerse en contacto con las células T. En un caso las células (por ejemplo, 10 ⁴ a 10 ⁹ células T) y los granos (por ejemplo, Dynabeads® M-450 CD3/CD28 T perlas paramagnéticas en una proporción de 1: 1) se combinan en un tampón, por ejemplo PBS (sin cationes divalentes 30 tales como, calcio y magnesio). Una vez más, los expertos en la técnica pueden apreciar fácilmente cualquier concentración de células puede ser utilizado. Por ejemplo, la célula diana puede ser muy raro en la muestra y comprender solamente 0,01% de la muestra o toda la muestra (es decir, 100%) puede comprender la célula diana de interés. En consecuencia, cualquier número de células está dentro del contexto de la presente invención. En ciertos casos, puede ser deseable disminuir significativamente el volumen en el que las partículas y las células están 35 juntos mixto (es decir, aumentar la concentración de células), para asegurar el contacto máximo de las células y partículas. Por ejemplo, en un caso,/ml se utiliza una concentración de alrededor de 2 mil millones de células. En otro ejemplo, más de 100 millones de células/ml se utiliza. En un caso adicional,/ml se usa una concentración de células de 10, 15, 20, 25, 30, 35, 40, 45, o 50 millones de células. En otro caso más,/ml se usa una concentración de células de 75, 80, 85, 90, 95, o 100 millones de células. En otros casos,/ml se pueden usar concentraciones de 125 40 o 150 millones de células. El uso de concentraciones altas puede provocar un aumento de rendimiento celular, activación celular, y la expansión de células. Además, el uso de concentraciones celulares elevadas permite la captura más eficaz de células que pueden expresar débilmente antígenos diana de interés, tales como células T CD28-negativas. Tales poblaciones de células pueden tener valor terapéutico y sería deseable obtener en ciertos casos. Por ejemplo, utilizando alta concentración de células permite una selección más eficaz de células T CD8 + 45 que normalmente tienen expresión CD28 más débiles.

En un caso de la presente descripción, la mezcla se puede cultivar durante varias horas (alrededor de 3 horas) a aproximadamente 14 días o cualquier valor entero por hora en el medio. En otro caso, la mezcla puede ser cultivada durante 21 días. En un caso de la descripción de las perlas y las células T se cultivan juntos durante 50 aproximadamente ocho días. En otro caso, las perlas y las células T se cultivan juntos durante 2-3 días. Varios ciclos de estimulación también pueden ser deseables de tal manera que el tiempo de cultivo de las células T puede ser de 60 días o más. Las condiciones apropiadas para el cultivo de células T incluyen un medio apropiado (por ejemplo, medio esencial mínimo o medio RPMI 1640 o, X-vivo 15, (Lonza)) que puede contener factores necesarios para la proliferación y viabilidad, incluyendo suero (por ejemplo, bovino fetal o humana suero), la interleucina-2 (IL-2), 55 insulina, IFN-γ, IL-4, IL-7, GM-CSF, IL-10, IL-12, IL-15, TGF, y TNF-α o cualesquiera otros aditivos para el crecimiento de células conocidos por el experto en la materia. Otros aditivos para el crecimiento de células incluyen, pero no se limitan a, agente tensioactivo, plasmanato, y agentes tales como N-acetil-cisteína y 2-mercaptoetanol reductor. Los medios pueden incluir RPMI 1640, AIM-V, DMEM, MEM, α-MEM, F-12, X-Vivo 15, y X-Vivo 20, Optimizer, con adición de aminoácidos, piruvato de sodio, y vitaminas, ya sea libre de suero o complementado con 60 una cantidad adecuada de suero (o plasma) o un conjunto definido de hormonas, y/o una cantidad de citocina (s) suficiente para el crecimiento y expansión de células T. Los antibióticos, por ejemplo, penicilina y estreptomicina, se incluyen sólo en cultivos experimentales, no en cultivos de células que han de ser infundida en un sujeto. Las células diana se mantienen en condiciones necesarias para el crecimiento de apoyo, por ejemplo, una temperatura apropiada (por ejemplo, 37 °C) y la atmósfera (por ejemplo, aire más 5% de CO 2).

[0352] Las células T que han sido expuestos a los tiempos de estimulación variaron pueden presentar

características diferentes. Por ejemplo, la sangre típico o productos de células mononucleares de sangre periférica apheresed tienen una población de células T helper (T H , CD4 +) que es mayor que la población de células citotóxicas o supresor de T (T c , CD8 +). La expansión ex vivo de las células T mediante la estimulación de los receptores CD3 y CD28 produce una población de células T que antes sobre los días 8-9 consiste 5 predominantemente de T H células, mientras que después de aproximadamente 8-9 días, la población de células T comprende una cada vez mayor población de T c células. En consecuencia, dependiendo de la finalidad del tratamiento, la infusión de un sujeto con una población de células T que comprende predominantemente de T H células puede ser ventajosa. Del mismo modo, si un subconjunto de antígeno específico de T c se ha aislado las células puede ser beneficioso para expandir este subconjunto en un grado mayor.

[0353] Además, en adición a los marcadores CD4 y CD8, otros marcadores fenotípicos varían significativamente, pero en gran parte, de forma reproducible durante el transcurso del proceso de expansión celular. Por lo tanto, tal reproducibilidad permite la capacidad de adaptar un producto de células T activado para propósitos específicos.

15 APLICACIÓN TERAPÉUTICA

[0354] La presente descripción abarca una célula (por ejemplo, célula T) modificada para expresar una pluralidad de tipos de KIR-CARS, en donde cada KIR-CAR combina un dominio de reconocimiento de antígeno de un anticuerpo específico con un componente de un KIR.

[0355] En una realización, los KIR-CARS de la invención comprenden un KIR activador que suministra su señal a través de una interacción con el motivo de activación de base inmunotirosina (ITAM) que contiene proteína de membrana, DAP12, que está mediada por los residuos dentro de los dominios transmembrana de estas proteínas.

25 [0356] En un caso, los KIR-CARS de la descripción comprenden un KIR inhibidor que entrega su señal a través de uno o más motivos inhibidores basados en immunotyrosine (ITIMs) que interactúan directamente o indirectamente con proteínas de señalización citoplasmáticas tales como SHP-1, SHP -2 y familiares Vav de las proteínas. KIR que llevan dominios citoplasmáticos que contienen (ITIMs) anula la señal de activación conduce a la inhibición de NK citolítica y actividad productora de citocinas. En algunos casos, la célula T modificado que expresa un KIR-CAR de la descripción puede provocar una respuesta de células T mediada por KIR-CAR. En un caso, la dependencia de la unión a más de un tipo de antígeno permite a la célula T modificado para exhibir una especificidad aumentada para provocar una respuesta tras la unión de una célula tumoral en lugar de una célula normal espectadora.

[0357] La descripción proporciona el uso de una pluralidad de tipos de KIR-CARs para redirigir la especificidad de 35 una célula T primaria a un antígeno tumoral. Por lo tanto, la presente descripción también proporciona un procedimiento para estimular una respuesta inmunitaria mediada por células T a una población de células o tejido diana en un mamífero que comprende la etapa de administrar al mamífero una célula T que expresa una pluralidad de tipos de KIR-CARS, en el que cada tipo de KIR-CAR comprende un resto de unión que específicamente interactúa con una diana predeterminada. En una realización, la célula comprende un primer KIR-CAR que 40 comprende un KIR activante (actKIR-CAR), y un segundo KIR-CAR que comprende un KIR inhibidor (inhKIR-CAR).

[0358] Sin desear estar ligado por ninguna teoría en particular, la respuesta inmunitaria anti-tumoral provocada por las células T modificadas con KIR-CAR puede ser una una respuesta inmunitaria activa o pasiva. Además, la respuesta inmunitaria mediada por KIR-CAR puede ser parte de un enfoque de inmunoterapia adoptiva en la que las células T modificadas con KIR-CAR inducen una respuesta inmunitaria específica para el dominio de unión a antígeno en el KIR-CAR.

[0359] Los cánceres que se pueden tratar incluyen los tumores que no están vascularizados, o todavía no sustancialmente vascularizados, así como tumores vascularizados. Los cánceres pueden comprender tumores no sólidos (tales como tumores hematológicos, por ejemplo, leucemias y linfomas) o pueden comprender tumores sólidos. Los tipos de cánceres a tratar con los CARs de la invención incluyen, pero no se limitan a, carcinoma, blastoma, y sarcoma, y ciertas leucemias o tumores malignos linfoides, tumores benignos y malignos, y tumores malignos por ejemplo, sarcomas, carcinomas y melanomas. Los tumores/ cánceres de adulto y tumores/cánceres pediátricos también se incluyen.

[0360] Los cánceres hematológicos son cánceres de la sangre o médula ósea. Ejemplos de cánceres hematológicos (o hematógenos) incluyen leucemias, incluyendo leucemias agudas (tales como leucemia linfocítica aguda, leucemia mielocítica aguda, leucemia mielógena aguda y mieloblástica, promielocítica, mielomonocítica, monocítica y eritroleucemia), leucemias crónicas (tales como leucemia mielocítica crónica (granulocítica), leucemia mielógena crónica, y leucemia linfocítica crónica), policitemia vera, linfoma, enfermedad de Hodgkin, linfoma no Hodgkin (formas indolente y de grado alto), mieloma múltiple, macroglobulinemia de Waldenstrom, enfermedad de cadena pesada, síndrome mielodisplásico, leucemia de células pilosas y mielodisplasia.

[0361] Los tumores sólidos son masas anormales de tejido que normalmente no contienen quistes o áreas 65 líquidas. Los tumores sólidos pueden ser benignos o malignos. Los diferentes tipos de tumores sólidos se nombran por el tipo de células que los forman (tales como sarcomas, carcinomas y linfomas). Ejemplos de tumores sólidos,

tales como sarcomas y carcinomas, incluyen fibrosarcoma, mixosarcoma, liposarcoma, condrosarcoma, osteosarcoma, y otros sarcomas, sinovioma, mesotelioma, tumor de Ewing, leiomiosarcoma, rabdomiosarcoma, carcinoma de colon, malignidad linfoide, cáncer de páncreas, cáncer de mama, cáncer de pulmón, cáncer de ovario, cáncer de próstata, carcinoma hepatocelular, carcinoma de células escamosas, carcinoma de células basales, adenocarcinoma, carcinoma de las glándulas del sudor, carcinoma medular de tiroides, carcinoma papilar de tiroides, carcinoma de glándulas sebáceas feocromocitomas, carcinoma papilar, adenocarcinomas papilares, carcinoma medular, carcinoma broncogénico, carcinoma de células renales, hepatoma, carcinoma de conducto biliar, coriocarcinoma, tumor de Wilms, cáncer cervical, tumor testicular, seminoma, carcinoma de vejiga, melanoma, y tumores del SNC (tales como un glioma (tales como glioma del tronco cerebral y gliomas mixtos), glioblastoma (también conocido como glioblastoma multiforme) astrocitoma, linfoma del SNC, germinoma, meduloblastoma, craniofariogioma Schwannoma, ependimoma, pinealoma, hemangioblastoma, neuroma acústico, oligodendroglioma, menangioma, neuroblastoma, retinoblastoma y metástasis cerebrales).

[0362] En una realización, la parte de fracción antígeno se unen de las células T KIR-CAR de la invención está diseñada para tratar un cáncer particular. En una realización, las células T KIR-CAR de la invención se modifican para expresar una primera actKIR-CAR dirigidas a un primer antígeno y un segundo inhKIR-CAR dirigidas a un segundo antígeno, donde el primer antígeno se expresa en un tumor particular o cáncer y el segundo antígeno no se expresa en un tumor o cáncer particular. De esta manera, la activación condicional de células T se genera mediante el acoplamiento de actKIR-CAR (o CAR TCR-zeta estándar que lleva un scFv a un antígeno en la célula maligna de interés) y el cojinete inhKIR-CAR por ejemplo, un scFv dirigido contra un antígeno que está presente en normal, pero no tejido maligno proporciona una inhibición de la señal de activación desde el actKIR-CAR cuando las células los encuentros de células T KIR-CAR normales. Los ejemplos de antígenos que sirven como dianas útiles para CARes de inhibidores incluyen los receptores de efrina (Pasquale, 2010, Nat Rev Cancer 10 (3): 165-80) y claudins (. Singh et al, 2010, J Oncol, 2010: 541 957), que se expresan por las células epiteliales de tejidos normales, pero a menudo perdieron selectivamente por cánceres (por ejemplo EPHA7).

[0363] Con respecto a la inmunización ex vivo, al menos una de las siguientes situaciones tiene lugar in vitro antes de la administración de la célula en un mamífero: i) expansión de las células, ii) introducción de un ácido nucleico que codifica un KIR-CAR a las células, y/o iii) la crioconservación de las células.

[0364] Los procedimientos ex vivo son bien conocidos en la técnica y se discuten más completamente a continuación. Brevemente, las células se aíslan de un mamífero (preferiblemente un humano) y se modifican genéticamente (es decir, se transducen o transfectan in vitro) con un vector que expresa un KIR-CAR descrito en este documento. La célula modificada con KIR-CAR puede ser administrada a un receptor mamífero para proporcionar un beneficio terapéutico. El receptor mamífero puede ser humano y la célula moficada con KIR-CAR puede ser autóloga con respecto al receptor. Alternativamente, las células pueden ser alogénicas, singénicas o xenogénicas con respecto al receptor.

[0365] El procedimiento para la expansión ex vivo de células madre y progenitoras hematopoyéticas se describe en la patente de los Estados Unidos. No. 5.199.942, y se puede aplicar a las células de la presente invención. Otros procedimientos adecuados son conocidos en la técnica, por lo tanto, la presente descripción no se limita a ningún procedimiento particular de la expansión ex vivo de las células. Brevemente, el cultivo ex vivo y la expansión de células T comprende: (1) recoger células madre y progenitoras hematopoyéticas CD34+ de un mamífero de la recogida de sangre peiférica o de explantes de médula ósea; y (2) expandir tales células ex vivo. Además de los factores de crecimiento celular descritos en la patente de los Estados Unidos. No. 5.199.942, otros factores tales como flt3-L, IL-1, IL-3 y el ligando c-kit, se pueden utilizar para el cultivo y la expansión de las células.

[0366] Además de usar una vacuna basada en células en términos de inmunización ex vivo, la presente descripción también proporciona composiciones y procedimientos para la inmunización in vivo para provocar una 50 respuesta inmunitaria dirigida contra un antígeno en un paciente.

[0367] En general, las células activadas y expandidas tal como se describe en el presente documento se pueden utilizar en el tratamiento y prevención de enfermedades que aparecen en individuos que están inmunocomprometidos. En particular, las células T modificadas con KIR-CAR de la invención se utilizan en el tratamiento del cáncer. En ciertas realizaciones, las células de la invención se utilizan en el tratamiento de pacientes en riesgo de desarrollar cáncer. Por lo tanto, la presente descripción proporciona procedimientos para el tratamiento o prevención del cáncer que comprende administrar a un sujeto en necesidad del mismo, una cantidad terapéuticamente eficaz de las células T mdificadas con KIR-CAR de la invención.

60 **[0368]** Las células T modificadas con KIR-CAR de la presente invención se pueden administrar solas, o como una composición farmacéutica en combinación con diluyentes y/o con otros componentes, tales como las poblaciones de células IL-2 u otras citocinas. Brevemente, las composiciones farmacéuticas de la presente descripción pueden comprender una población de células diana, tal como se describe en el presente documento, en combinación con uno o más portadores, diluyentes o excipientes farmacéuticamente o fisiológicamente aceptables. Tales composiciones pueden comprender tampones, tales como solución salina tamponada neutra, solución salina tamponada con fosfato y similares; carbohidratos, tales como glucosa, manosa, sacarosa o dextranos,

manitol; proteínas; polipéptidos o aminoácidos tales como glicina; antioxidantes; agentes quelantes, tales como EDTA o glutatión; adyuvantes (por ejemplo, hidróxido de aluminio); y conservantes. Las composiciones de la presente invención se formulan preferentemente para la administración intravenosa.

- 5 [0369] Las composiciones farmacéuticas de la presente invención pueden ser administradas en una forma apropiada de la enfermedad a tratar (o prevenir). La cantidad y frecuencia de administración serán determinadas por factores tales como la condición del paciente, y el tipo y gravedad de la enfermedad del paciente, aunque las dosis apropiadas pueden ser determinadas por ensayos clínicos.
- 10 [0370] Cuando se indica "una cantidad inmunológicamente eficaz", "una cantidad eficaz antitumoral", "una cantidad eficaz inhibidora de tumores", o "cantidad terapéutica", la cantidad precisa de las composiciones de la presente invención a administrar puede ser determinada por un médico con la consideración de las diferencias individuales en edad, peso, tamaño del tumor, extensión de la infección o metástasis y estado del paciente (sujeto). Por lo general, se puede afirmar que una composición farmacéutica que comprende las células T descritas
 15 en este documento se pueden administrar a una dosis de 10⁴ a 10⁹ células/kg de peso corporal, preferiblemente de 10⁵ a 10⁶ células/kg de peso corporal, incluyendo todos los valores enteros dentro de esos intervalos. Las composiciones de células T también se pueden administrar varias veces en estas dosis. Las células se pueden administrar mediante el uso de técnicas de infusión que se conocen comúnmente en inmunoterapia (ver, por ejemplo, Rosenberg et al, New Eng J. of Med 319: 1676, 1988). La dosificación óptima y el régimen de tratamiento
 20 para un paciente particular pueden determinarse fácilmente por un experto en el sector de la medicina mediante el seguimiento del paciente en busca de signos de la enfermedad y ajustando el tratamiento en consecuencia.
- [0371] En ciertos casos, puede ser deseable extraer sangre (o realizar una aféresis), activar y modificar genéticamente las células T de la misma de acuerdo con la presente descripción, y reinfundir al paciente estas células T modificadas genéticamente activadas y expandidas. Este proceso puede llevarse a cabo varias veces cada pocas semanas. En ciertos casos, las células T pueden ser activadas a partir de extracciones de sangre de desde 10 cc a 400 cc. En ciertos casos, las células T se activan desde extracciones de sangre de 20cc, 30cc, 40cc, 50cc, 60cc, 70cc, 80cc, 90cc, o 100cc. Sin pretender imponer ninguna teoría, el uso de este protocolo de múltiples extraccionesde sangre/reinfusión múltiple puede servir para seleccionar ciertas poblaciones de células T.
- [0372] La administración de las presentes composiciones se puede llevar a cabo de cualquier manera conveniente, incluyendo por inhalación de aerosol, inyección, ingestión, transfusión, implante o transplante. Las composiciones descritas en el presente documento se pueden administrar a un paciente por vía subcutánea, por vía intradérmica, por vía intratumoral, intranodal, intramedular, intramuscular, por inyección intravenosa (i.v.), o 35 intraperitoneal. En una realización, las composiciones de células T de la presente invención se administran a un paciente por inyección intradérmica o subcutánea. En otra realización, las composiciones de células T de la presente invención se administran preferiblemente por inyección iv. Las composiciones de células T pueden ser inyectadas directamente en un tumor, nódulo linfático o sitio de la infección.
- En ciertas realizaciones de la presente invención, las células activadas y expandido usando los procedimientos descritos en este documento, u otros procedimientos conocidos en la técnica donde las células T se expanden a niveles terapéuticos, se administran a un paciente en combinación con (por ejemplo, antes, simultáneamente o después de) cualquier número de modalidades de tratamiento pertinentes, incluyendo pero no limitado al tratamiento con agentes tales como la terapia antiviral, cidofovir y la interleucina-2, citarabina (también 45 conocido como ARA-C) o tratamiento natalizumab para MS pacientes o tratamiento efalizumab para la psoriasis pacientes u otros tratamientos para pacientes de LMP. En realizaciones adicionales, las células T de la invención pueden usarse en combinación con la quimioterapia, radiación, agentes inmunosupresores, tales como ciclosporina, azatioprina, metotrexato, micofenolato, y FK506, anticuerpos, u otros agentes immunoablative tales como camino de leva, anti-CD3 anticuerpos u otras terapias de anticuerpos, citoxina, fludaribine, ciclosporina, FK506, rapamicina, 50 ácido micofenólico, esteroides, FR901228, citocinas, y la irradiación. Estos fármacos inhiben bien la fosfatasa calcineurina dependiente de calcio (ciclosporina y FK506) o inhiben la p70S6 quinasa que es importante para el factor de crecimiento inducido señalización (rapamicina) (Liu et al, Cell 66:.. 807-815, 1991; Henderson et al, Immun. 73: 316-321, 1991; Bierer et al, Curr Opin Immun. 5: 763-773, 1993). En una realización adicional, las composiciones celulares de la presente invención se administran a un paciente en combinación con (por ejemplo, antes, 55 simultáneamente o después), la terapia ablativa de células T usando cualquiera de los agentes de quimioterapia tales como, fludarabina, la radiación trasplante de médula ósea de haz externo terapia (XRT), ciclofosfamida, o anticuerpos tales como OKT3 o CAMPATH. En otra realización, las composiciones celulares de la presente invención se administran después de la terapia ablativa de células B tales como agentes que reaccionan con CD20, por ejemplo, Rituxan. Por ejemplo, en una realización, los sujetos pueden someterse a un tratamiento estándar con 60 quimioterapia de alta dosis seguida de sangre periférica trasplante de células madre. En ciertas realizaciones, tras el trasplante, los sujetos reciben una infusión de las células inmunes expandidas de la presente invención. En una realización adicional, las células expandidas se administran antes o después de la cirugía.
- [0374] La dosificación de los tratamientos anteriores para ser administrada a un paciente variará con la naturaleza precisa de la condición a tratar y el receptor del tratamiento. El escalado de las dosificaciones para administración humana se puede realizar de acuerdo con las prácticas aceptadas en la técnica. Las estrategias para la dosificación

de células T CAR y la programación se han discutido anteriormente (Ertl et al, 2011, Cancer Res, 71: 3175-81; Junghans, 2010, Journal of Translational Medicine, 8:55).

EJEMPLOS EXPERIMENTALES

5

[0375] La invención se describe adicionalmente en detalle por referencia a los siguientes ejemplos experimentales. Estos ejemplos se proporcionan para fines de ilustración solamente, y no están destinados a ser limitativos a menos que se especifique lo contrario. Así, la invención de ninguna manera debería ser interpretada como limitada a los siguientes ejemplos, sino más bien, debe interpretarse para abarcar cualquiera y todas las 10 variaciones que se hacen evidentes como resultado de la enseñanza proporcionada en este documento.

[0376] Sin más descripción, se cree que un experto en la técnica puede, usando la descripción precedente y los siguientes ejemplos ilustrativos, fabricar y utilizar los compuestos de la presente invención y practicar los procedimientos reivindicados. Los siguientes ejemplos de trabajo, por lo tanto, apuntan específicamente a realizaciones preferidas de la presente invención, y no deben interpretarse como limitantes en modo alguno del resto de la descripción.

Ejemplo 1: receptores NK quiméricos

20 [0377] Los resultados presentados en este documento demuestran un enfoque alternativo para la construcción de las CAR para las células T que pueden ser más finamente regulado en comparación con diseños CAR actual. Los experimentos fueron diseñados para desarrollar un nuevo sistema, CAR regulado que comprende al menos dos o tres proteínas de fusión quiméricas. La señal de activación primaria de células T y las señales inhibidoras se basan en que ocurre naturalmente activadores e inhibidores receptores de células NK conocidos como células asesinas 25 similares a inmunoglobulina (receptores KIR).

[0378] Existen KIR tanto como activador y formas inhibitorias que dependen del dominio intracelular del receptor. KIR Activación entregan sus señales a través de una interacción con el motivo a base de immunotyrosine de activación (ITAM) que contiene proteína de membrana, DAP12 que es reclutado por residuos dentro de los dominios transmembrana de estas proteínas. KIR inhibidors llevan un dominio citoplasmático que contiene motivos inhibidores basados en immunotyrosine (ITIMs), que anula la señal de activación conduce a la inhibición de NK citolítica y actividad productora de citocinas. De manera similar a TCR, los KIR pertenecen a la familia de las inmunoglobulinas de receptores de proteínas, y muchos se unen a invariante de MHC y MHC-como ligandos. Sin desear estar ligado por ninguna teoría particular, se cree que estas interacciones se utilizan para naturalmente distinguir las células normales (normalmente expresan alta densidad de MHC de clase I) a partir de células malignas o infectadas por virus (a menudo con bajo o falta de MHC de clase I).

[0379] KIR-como receptores quiméricos de antígeno (KIR-CAR) han sido construidos que se fusionan un scFv a un antígeno diana de interés con la activación y los KIR inhibidors como se muestra en la activación de la Figura 1.
40 condicional de células T se genera mediante el acoplamiento de un activador KIR-CAR (actKIR-CAR) o CAR TCR-zeta estándar teniendo un scFv a un antígeno sobre la célula maligna de interés. Un CAR inhibitoria (inhCAR) que lleva un scFv dirigido contra un antígeno que está presente en normal, pero no tejido maligno proporcionaría amortiguación de la CAR la activación de señal primaria cuando las células los encuentros de células T normales. Los ejemplos de antígenos que sirven como dianas útiles para CARes de inhibidores incluyen los receptores de efrina (Pasquale, 2010, Nat Rev Cancer 10 (3): 165-80) y claudins (. Singh et al, 2010, J Oncol, 2010: 541 957), que se expresan por las células epiteliales de tejidos normales, pero a menudo perdieron selectivamente por cánceres (por ejemplo EPHA7).

Ejemplo 2: Construcción y Actividad de KIR-CAR activador

50

[0380] Los experimentos fueron diseñados para construir la activación de KIR-CARS basados en la fusión de la anti-CD19 o anti-mesotelina scFv (SS-1) que se incorporaron previamente en los CARs basados en el dominio citoplasmático TCR-zeta que están actualmente en ensayos clínicos. El KIR2DS2 humano receptor activador KIR fue elegido como el receptor base inicial para la actKIR-CAR. Para entregar señales de activación, las actKIR-CARS requiere la coexpresión de DAP12, que no se expresa normalmente en células T. Por lo tanto, un vector lentiviral que se construyó expresa tanto la actKIR-CAR con DAP12 humana usando un casete del gen "bicistrónico" basado en el 2A ribosomal omitir péptido. Un diagrama del vector lentiviral se ilustra en la Figura 2. Los estudios iniciales demostraron que el actKIR-CARS se expresaron de manera eficiente en las células T humanas primarias y la unida a la mesotelina SS1 actKIR-CAR (Figura 3). Citotóxica, las células T que expresan el SS1 actKIR-CAR demostró:
60 Similar a la zeta SS1 scFv CD3 previamente desarrollado y publicado (SS1-ζ) CAR (3360-5 Carpenito et al, 2009, Proc Natl Acad Sci USA. 106 (9)). La actividad hacia células diana K562 diseñadas para expresar el ligando de mesotelina (KT-meso) como se muestra en la figura 4. Ni exposiciones de los receptores de muerte de tipo salvaje K562 que carece del objetivo mesotelina.

65 [0381] Puesto que la actividad citotóxica de la SS1 KIR CAR hacia células diana a mesotelina positivo fue menor que el CAR basado en TCRzeta estándar de orientación el mismo antígeno con expresión en la superficie CAR

comparable, se cree que el CAR mesotelina puede tener una bisagra extracelular (sobre la base de tipo salvaje KIR2DS2) que no es óptima para la separación de CD45 debido a su longitud. La segregación cinética de activación de los receptores basados en ITAM de CD45 se cree que es un mecanismo clave para la activación de TCR, y depende de una escala de longitud entre las membranas de la célula T y la célula diana de ~14-15 nm (Choudhuri et al., 2005, Nature 436 (7050): 578-82). Se estima que la KIR2DS2 basado SS1 KIR-CAR para tener una escala de longitud de más de 20 nm basándose en la estructura cristalina parcial de mesotelina que demuestra que el epítopo SS1 es probable a una distancia nm ~ 10 de la membrana de la célula diana (Ma et al, 2012, J Biol Chem 287 (40):. 33123-31) y CAR que se estima que es ~ 10 nm suponiendo que cada tipo Ig dominio es ~ 3,5 nm en la bisagra KIR2DS2 además del scFv. Por lo tanto un KIR CAR activación en el que se eliminó la bisagra KIR2DS2 (KIRS2 CAR) como se muestra esquemáticamente en la Figura 5 se construyó. Se demostró que un KIRS2 CAR basado SS1 scFv exhibió una mayor actividad citolítica hacia células diana de mesotelina que expresan en comparación con el CAR formado por la fusión de la SS1 scFv sobre la longitud completa de tipo salvaje KIR2DS2 (Figura 6). Esta optimizado KIRS2 CAR también mostró una actividad mejorada sobre el TCRzeta CAR basado SS1 scFv que tiene una CD8 alpha bisagra extracelular.

Ejemplo 3: Construcción y Actividad de InhKIR-CAR

15

45

[0382] Un inhibidor de KIR-CAR se construyó en base a la fusión de la anti-mesotelina SS1 scFv a la base receptor KIR2DL3 inhibidor. Los estudios iniciales demostraron que los inhKIR-CARS expresaron de manera eficiente en las células T humanas primarias. CD19 actKIR-CAR, SS1 actKIR-CAR y SS1 inhKIR-CAR solo o en combinación se han introducido en las células Jurkat T que llevan un reportero dsGFP bajo el control de un promotor de NFAT impulsado a la activación del monitor de esta vía crítica de señalización de células T. Mientras que las células Jurkat T que expresan CD19 actKIR-CAR o SS1 actKIR-CAR solo se activan de manera eficiente por K562 que expresan tanto CD19 y mesotelina (KT-meso/CD19), células T Jurkat co-expresan el CD19 actKIR-CAR y la SS1 inhKIR-CAR mostró marcadamente reducida la activación por las células misma KT-meso/CD19 diana (Figura 7A); sin embargo, el análisis de la expresión en la superficie de la CD 19 y mesotelina scFv de unión usando reactivos específicos idiotipo sorprendentemente demostraron que la expresión de los diferentes especificidades diana scFv eran mutuamente excluyentes (Figura 7B).

30 Ejemplo 4: Sensibilidad de diseños de KIR-CAR activador para sistemas de receptores inhibidores naturales

[0383] Dado que la co-expresión de dos CARs scFv es limitada, se persiguió una estrategia para evaluar la sensibilidad de los CARs de activación a base de KIR a señales inhibidoras derivadas del receptor PD-1. PD-1 es un receptor natural en las células T que utiliza un ITIM en el dominio citoplasmático similar a los KIR inhibidors para reclutar fosfatasas que regulan negativamente la señalización de TCR. Una representación esquemática se muestra en la Figura 19. Los resultados presentados en este documento demuestran que de tipo salvaje PD-1 puede ser sobre-expresa con tanto un CAR basado en KIR activación y un CAR basado TCR-zeta orientación mesotelina (figuras 8A y 8C). Los resultados también muestran que esta combinación dio lugar a PD-1 ligando 1 (PDL-1) inhibición dependiente de la mesotelina-específica la activación de la citotoxicidad de KIR-CAR (Figura 9). En el 40 contexto de la normalidad expresión PD-1 por las células T (es decir, células T sin PD-1 de la transfección), las exposiciones KIR-CAR menos inhibición cuando se encuentran con PD-L1 células diana que sobreexpresa en comparación con el CAR basado TCR-zeta. Sin desear estar ligado por ninguna teoría particular, se cree que esto puede ser una ventaja de los KIR-CARS cuando se enfrentan a los tumores que comúnmente expresan ligandos de receptores inhibidores.

Ejemplo 5: Activación dependiente de co-estimulación de KIR CARs

[0384] Los experimentos se diseñaron para evaluar los efectos de los receptores quiméricos co-estimuladoras (CCRs) en el sistema KIR-CAR en comparación a la descrita con CARs estándar por Kloss et al. (Kloss et al, 2013, Nat Biotechnol 31 (1): 71-5). Los experimentos también se han diseñado para evaluar los requisitos de activación dependientes coestimuladoras para los KIR enganchando el receptor CD28 endógeno en células T utilizando el anticuerpo agonista, el clon 9.3. Como se muestra en la Figura 14, la KIRS2 CAR mostró una proliferación robusta en respuesta a objetivos de mesotelina-positiva en ausencia de coestimulación de CD28. Esta proliferación es superior a la observada con un CAR TCR-zeta donde co-estimulación se ha demostrado ser crítica para la proliferación. Estos datos sugieren que la CAR a base de KIR puede no tener los mismos requisitos de coestimulación como CARs TCR-zeta para la proliferación específica de antígeno (Milone et al, 2009, Mol Ther 17 (8): 1453-1464; Carpenito et al, 2009, Proc Natl Acad Sci EE.UU. 106 (9): 3360-5), y esta independencia coestimulación puede ser una ventaja significativa de CARs basados-KIR a los CARs basados en TCR-zeta actuales. Los experimentos han sido diseñados para evaluar las CAR a base de KIR en ratones humanizados para 60 probar el CAR a base de KIR contra los CARs con y sin dominios coestimuladoras en un in vivo ajuste pre-clínica (datos y experimentos en el Ejemplo 5 también se presentan en el ejemplo 6).

Ejemplo 6: Receptores de antígenos quiméricos (CAR) basados en receptor de tipo inmunoglobulina asesina (KIR) desencadenan actividad citotóxica en tumores sólidos

[0385] Los receptores de antígeno quimérico (CARs) que portan un dominio de unión a antígeno ligado en cis a los

dominios citoplasmáticos de CD3-ζ y receptores coestimulantes proporcionan un procedimiento potente para la citotoxicidad de células de ingeniería T hacia los tumores (Grupp et al., La revista New England de la medicina, 368 (16): 1509-1518, 2013; Brentjens y otros, Science la medicina traslacional, 5 (177): 177ra38, 2013; Porter y otros, El Diario de Nueva Inglaterra de la medicina, 365 (8): 725 -33, 2011). Un receptor quimérico alternativa en la que un fragmento variable de cadena única (scFv) de orientación mesotelina (SS1) se fusionó a la transmembrana y el dominio citoplasmático de KIR2DS2, un asesino estimulador similar a inmunoglobulina del receptor (KIR) normalmente expresada por células asesinas naturales (NK) es descrito en este documento. Esto desencadena CAR basado-KIR SS1-KIRS2 robusto específica de antígeno citotóxico actividad, la secreción de citocinas y la proliferación cuando se entrega a las células T en combinación con el adaptador de DAP12 molécula. Es importante destacar que, utilizando un modelo de xenoinjerto de mesotelioma que es resistente a las células T CAR-modificado basado-CD3 que llevan los dominios citoplasmáticos de los receptores coestimuladoras, CD28 o 41BB, las células T modificadas-DAP12 SS1-KIRS2/exhiben anti-tumor superiores actividad, lo que sugiere que el CAR a base de KIR puede superar señales inhibidoras dentro de los tumores que segundo límite y CARs tercera generación basados en CD3. Los datos presentados en el presente documento el apoyo futuro evaluación clínica de un CAR basado-KIR en tumores sólidos.

[0386] Se diseñaron CARs de "primera generación" mediante la incorporación de un dominio citoplasmático que contiene el motivo de activación basado en immunotyrosine (ITAM) en un solo receptor quimérico que utiliza un fragmento variable de cadena única (scFv) a partir de un anticuerpo para el antígeno específico de la orientación (
20 Sadelain et al, descubrimiento Cancer, 3 (4):. 388-98, 2013). Un número de diferentes dominios de señalización adicionales de los receptores coestimuladoras tales como CD28, ICOS, 41BB y OX-40 se incorporaron más tarde en tándem en estos receptores para mejorar la función de la proliferación y el efector de CARs (Finney HM et al. J Immunol . 1998; 161: 2791-2797; Maher J. et al Nat Biotech 2002; 20:.. 70-75; Finney HM et al J Immunol 2004; 18:. 676-684; Milone et al, 2009, Mol Ther. 17 (8): 1453-1464; Carpenito et al, 2009, Proc Natl Acad Sci EE.UU. 106 (9): 3360-5). Estos "segunda generación" (un dominio de co-estimuladoras) y "tercera generación" (dominios 2 co-estimuladoras) CARs demuestran función mejora de forma significativa en los modelos animales preclínicos de cáncer, y estos CARs co-estimulación mejorada están actualmente en ensayos clínicos en humanos para neoplasias hematológicas y tumores sólidos (revisado en Barrett DM et al Ann Rev Med 2014; 65: 333-347).

30 [0387] Aunque los CARs de cadena única desencadenan robusta actividad citotóxica específica de antígeno, receptores naturales que utilizan los dominios ITAM altamente conservadas son generalmente estructuran en complejos multi-cadena compuestas de unión a ligando por separado y ITAM que contiene cadenas de señalización, tales como el receptor de células T (TCR) -CD3 complejo, el receptor de células B (BCR) -lgα/β complejo y el receptor de Fc (FcR) compleja. Los beneficios de un complejo inmunoreceptor multi-cadena se han postulado para incluir: 1) una mayor diversidad de señales disponibles a través de las múltiples interacciones de la cadena, 2) el uso de un dominio de señalización para múltiples receptores de unión a ligando, y 3) una acción de la señalización por el ITAM que contiene la cadena que es separable de la internalización de la cadena de unión a ligando (Sigalov et al, avances en medicina experimental y biología, 640:. ix-xi, 2008). Las consecuencias de la combinación de varios componentes del receptor homóloga normalmente se encuentran en diferentes receptores en una sola CAR no ha sido dilucidado completamente; sin embargo, la energía y la señalización independiente de antígeno se han observado con algunos diseños que sugieren que estos receptores pueden no recapitular plenamente la función de los receptores naturales de los que se basan (Brocker, Blood, 96 (5): 1999-2001, 2000; Brocker et al, The journal of experimental Medicine 181 (5):... 1653-9, 1995; Milone et al, terapia molecular: la revista de la Sociedad Americana de terapia génica, 17 (8): 1453-1464, 2009).

La invención reivindicada en el presente documento describe CARs construidos sobre una mayor potencia más diseño receptor split "natural" que tiene en la activación de las células T debido a las interacciones seleccionados natural entre las subunidades dentro del complejo receptor. Se eligió el asesino similar a inmunoglobulina sistema receptor (KIR), que representa uno de los sistemas de receptores basados en ITAM más 50 simples, como la base para un CAR (Thielens et al, Current Opinion in Immunology, 24 (2):. 239-45, 2012). Aunque expresado por las células asesinas naturales en los que contribuyen a su citotoxicidad natural, expresión KIR también se ha observado tanto en las células CD4 + y T CD8 + (Moretta et al, Immunological Reviews, 155:. 105-17, 1997; Falk et al, Human. inmunología: 61 (12):. 1219-1232, 2000; Remtoula et al, Journal of Immunology, 180 (5): 2767-71, 2008). KIR de activación, tales como KIR2DS2, poseen un corto dominio citoplasmático con conocido no 55 capacidad de señalización endógena. En lugar de ello, estos receptores forman un complejo no covalente con dímeros de DAP12, un ITAM que contiene adaptador molécula capaz de Syk y Zap70 quinasas de unión en las células NK (Lanier et al, Nature, 391 (6668):. 703-7, 1998) . Además de estimular la citotoxicidad sobre la unión del ligando, los KIR también se ha demostrado que presentan efectos coestimuladoras dentro de las células T en ausencia de DAP12 lo que sugiere que estas moléculas podrían ser capaces de proporcionar tanto primaria 60 actividad de disparo y la coestimulación de las células T (Snyder et al., journal of Immunology, 173 (6): 3725-31, 2004).

[0389] CAR basado en KIR A se construyó mediante corte y empalme de la mesotelina-específica SS1 scFv sobre la transmembrana y corto dominio citoplasmático de la activación de KIR, KIR2DS2 (SS1-KIRS2) como se ilustra esquemáticamente en la Figura 1 (Hassan et al., Clinical Cancer investigación: un diario oficial de la Asociación Americana para la Investigación del cáncer, 8 (11): 3520-6, 2002). La molécula adaptadora que contiene ITAM-,

DAP12 se expresa constitutivamente en las células asesinas naturales (NK), pero que sólo se expresa en un subconjunto de células T humanas (Moretta et al.). Por lo tanto, un vector lentiviral bicistrónico que codifica tanto la CAR mesotelina-específica KIR- base (SS1-KIRS2) y la molécula de DAP12 separados por la secuencia de virus Thoseaasigna 2A (T2A) se generó con el fin de lograr la co-expresión de ambas moléculas (Fig. 2). Transducción de células T humanas primarias con SS1-KIRS2 y DAP12 lentivirus bicistroinic siguiente anti-CD3 y anti-CD28 de activación demostrado expresión en la superficie sólida de SS1-KIRS2 que era comparable a la SS1ζ CAR basado en CD3 (Fig. 6). Células T co transducidas SS1-KIRS2/DAP12 expandido siguiente policlonal anti-CD3/anti-CD28 de la estimulación con una cinética que era comparable a la observada con transducidas de forma simulada células T o células T transducidas con un CAR-mesotelina específico que contiene el dominio citoplasmático CD3 (datos no mostrados). Las actividades citotóxicas de la se comparó frente a CD3 (SS1-z) células CAR T a base de KIR. Células T transducidas con DAP12 SS1-KIRS2/mostraron una potente actividad citotóxica hacia células K562 que expresan la mesotelina humana (K-meso), pero no muestran actividad hacia de tipo salvaje K562 (Kwt), similar en magnitud a la construcción SS1ζ apoyar la activación específica del receptor SS1-KIRS2 por el antígeno diana mesotelina cognado (Fig. 6).

[0390] Puesto que la expresión de KIR2DS2 se ha descrito en las células T en ausencia de la expresión de DAP12 detectable, la expresión y la función del receptor SS1-KIRS2 con o sin co-entrega de DAP12 se evaluó. El uso de un vector lentiviral que DAP12 co-expresada con la proteína fluorescente de color rojo, dsRed (DAP12-dsRed) o una dsRed-expresión de vector de control (dsRed), las células T se transdujeron con la DAP12 o control de vector lentiviral seguido por la transfección con transcrito in vitro ARN que expresa SS1-KIRS2. SS1-KIRS2 se expresó en la superficie de las células T sin la adición de DAP12; sin embargo, la expresión superficial de SS1-KIRS2 aumentó en ~ 1-log con la adición de DAP12 (Fig. 12A). A pesar de la expresión de SS1-KIRS2 en ausencia de DAP12 coentrega, estas células T no mostraron actividad citotóxica apreciable en respuesta a las células diana de mesotelina que expresan en comparación con las células T que co-expresado SS1-KIRS2 y DAP12 (Fig. 12B). Los datos presentados en este documento sugieren que se requiere DAP12 para la actividad SS1-KIRS2, pero no excluye la posibilidad de que el dominio KIR también podría proporcionar adicional co-estimuladoras actividad independiente de su asociación con la DAP12 de manera similar al receptor KIR2DS2 naturales (Snyder et al.).

[0391] La asociación no covalente de KIR2DS2 natural y DAP12 depende de las interacciones electrostáticas entre un residuo de ácido aspártico en el dominio KIR transmembrana (TM) y un residuo de lisina en el dominio DAP12 TM (Feng et al., PLoS Biology, 4 (5): E142, 2006). Aunque se cree que la configuración de estos residuos de aminoácidos ionizables en los dominios TM de TCR y CD3 subunidades a diferir de los KIR y DAP12, proporcionando alguna especificidad para las interacciones, la posibilidad de que SS1-KIRS2 podría estar interactuando con componentes del complejo CD3 en lugar de co-entregado DAP12 se investigó. Dado que se requiere la asociación entre las cadenas complejas y TCR CD3 para la expresión de TCR en la superficie celular, se esperaría que la competencia de la KIR para los componentes CD3 para interferir con la expresión de TCR normal, como ya se observó con la expresión de TCR clonados (Varela-Rohena et al., Nature Medicine, 14 (12): 1390-5, 2008). Por lo tanto, se evaluó el efecto de la expresión SS1-KIRS2 en la expresión de una endógeno TCR Vβ. La frecuencia o la intensidad de las células TCR Vβ 14.3+ T no se vieron afectadas en las células T que expresan el SS1-KIRS2. Los datos presentados en este documento sugieren una ausencia de una interacción significativa entre SS1-KIRS2 y miembros del complejo CD3 (Fig. 13).

Aunque la actividad citotóxica es una función efectora importante para la actividad anti-tumoral in vivo de las células T en, la capacidad de un antígeno-receptor a la secreción de citocinas gatillo y la proliferación de células 45 T también son características importantes que en general correlacionan con la actividad anti-tumor robusto en vivo. Por lo tanto, la capacidad de las células T que expresan SS1-KIRS2/DAP12 y CARs basados en CD3Z se comparó sin dominios coestimuladoras (SS1-zeta) o con CD28 o dominios coestimuladoras 4-1BB (SS1-28ζ y SS1-BBζ, respectivamente) a los productos de interferón-γ e IL-2 en respuesta a la mesotelina. El constructo SS1-ζ produce los niveles más bajos tanto de IFN-γ e IL-2 (Fig. 10, 11). La producción de interferón-γ fue mayor y elevado 50 de manera similar en las células T que expresan SS1-KIRS2/DAP12 o CARs basados en CDSζ teniendo dominios coestimuladoras (Fig. 10). Células T con los CARs basados-CD3 que portan dominios coestimuladoras producen mayores cantidades de IL-2 en comparación con las células T que expresan SS1-ζ o SS1-KIRS2/DAP12 (Fig. 11). El/receptor SS1-KIRS2 DAP12 era también un potente estimulador de la proliferación de células T en respuesta al antígeno cognado (Fig. 14). Sorprendentemente, esta proliferación no fue afectado por la adición de anticuerpo 55 agonista de CD28 (clon 9.3) lo que sugiere que no se requieren señales coestimuladoras adicionales. Los datos presentados en el presente documento son consistente con un reportada previamente función coestimuladora de KIR2DS2 expresado naturalmente en clones de células T CD8 + humanos en ausencia de DAP12 (Snyder et al.). Una explicación alternativa es que los receptores adicionales expresadas naturalmente por las células T también son capaces de utilizar la DAP12 co-entregado adicional que contribuye a la activación de células T y la 60 proliferación.

[0393] Esa actividad anti-tumoral in vivo de las células T modificadas con CARs basados mesotelina-específica TCR-zeta en se mejora significativamente por la incorporación de dominios coestimuladoras incluyendo CD28 y 41BB se demostró anteriormente (Carpenito et al., Actas de la Academia nacional de Ciencias de los Estados Unidos de América, 106 (9): 3360-5, 2009); sin embargo, la eficacia de una inyección intravenosa única de estas células segunda o tercera generación CAR T en establecido portadores de xenoinjertos de mesotelioma ratones a

menudo no conduce a la regresión completa del tumor (Cancer Res Luna EK et al Clin 2011; 17 (14):. 4719-30 .; Riese MJ et al Cancer Res 2013; 73 (12):. 3566-77). Por lo tanto, se evaluó la actividad de las células T-KIRS2 SS1 modificados DAP12/en este modelo subcutáneo resistente de mesotelioma. La capacidad de las células T modificadas-DAP12 SS1-KIRS2 /, modificados DAP12-dsRed y células SS1-28ζ T para matar las células EMMESO 5 in vitro se ensayó primero. Como se muestra en la Figura 15A, los tres tipos de células T CAR-modificado mostraron similar en vitro eficacia matanza, con citotoxicidad mínima inducida por las células T modificadas-DAP12dsRed. Ratones portadores de tumores grandes EM-meso establecidos se inyectaron por vía intravenosa con 10 7 células T que eran o células T simulacros transducidas (Mock) o células T transducidas (en un nivel similar de la transducción de ~ 80%) con SS1-z, SS1- BBz, SS1-28z, o SS1-KIR-DAP12 y el crecimiento tumoral fue seguido 10 (Fig. 15A). En este modelo, la maqueta, SS1ζ, y las células T SS1BBζ no tenían una eficacia significativa antitumor. El crecimiento de los tumores fue significativamente (datos no presentados), pero sólo se redujo modestamente por inyección de las células SS1-28ζ CAR T. Por el contrario, después de un período de retraso 10 días, las células T modificadas-DAP12 SS1-KIRS2/inducen inhibición regresión tumoral marcada del crecimiento del tumor EM-meso durante hasta 48 días. En este momento, los animales fueron sacrificados y la sangre, bazos, y los 15 tumores analizados. La citometría de flujo se utilizó para detectar la presencia del humano células CD45 + (Fig. 15B). Sólo los ratones que recibieron las células SS1-BBz CAR T había detectables + células hCD45 en la sangre y el bazo. Dentro de los tumores, no se detectaron células hCD45 + en los ratones tratados con células-T mock y sólo un bajo porcentaje de células T se observaron en los ratones tratados con SS1z. En contraste, la SS1-KIRS2/DAP12, SS1-28z, y SS1-41BB CARs tenían células hCD45 + que formaban 2-4% de las células viables 20 totales con frecuencias comparables señaladas para cada grupo (Fig. 15B). Los datos presentados en este documento demuestran que el marcado aumento de la eficacia de la SS1-KIRS2/DAP12 no era debido a mayor frecuencia de células T dentro de los tumores.

[0394] Para estudiar más la ubicación de las células T dentro de los tumores, se realizó inmunohistoquímica. La tinción de células T CD8 + mostraron y las células T CD4 + dentro de los tumores dentro de cada grupo. Los tumores de los animales tratados con células T modificadas-CAR SS1-28ζ SS1-BBζ y demostraron particularmente densos infiltrados de células T; sin embargo, estos infiltrados tendían a estar dentro de la periferia del tumor lo que sugiere que las células T modificadas-CAR SS1-28ζ SS1-BBζ y pueden ser limitados en su capacidad de tráfico y/o función con el microambiente del tumor en comparación con el SS1-KIRS2 células/DAP12 CAR T.

[0395] La expresión constitutiva de DAP12 solo en células T murinas Se ha informado de conferir NK actividad similar a estas células T con la capacidad de controlar un tumor sólido a través de NKG2D efectos desencadenados-ligando (Teng et al., The Journal of Biological Chemistry, 280 (46): 38235-41, 2005). Aunque NKG2D se ha informado a asociarse con DAP12 en ratones, esta asociación parece estar ausente en humanos (Rosen et al Journal of Immunology, 173 (4):. 2470-8, 2004). A pesar de la falta de in vitro la actividad citolítica por las células T que expresan sólo DAP12, un segundo en el experimento in vivo se realizó para comparar las células T que expresan DAP12 solo para SS1-KIRS2/DAP12 y para SS1-28z ingeniería células T. Similar a los resultados in vitro, las células T que expresan DAP12-eran incapaces de controlar tumores EM-meso en ausencia del receptor SS1-KIR2S-mesotelina específica (Fig 15C). Los datos presentados en este documento muestran una impresionante 40 respuesta anti-tumor de las células SS1-KIRS2/DAP12 T con la regresión del tumor franco y casi eliminación de los tumores por el día 48.

[0396] La persistencia de células T en los tumores se ha demostrado que ser un determinante importante de la eficacia de la transferencia de células T adoptiva. Sin embargo, los datos presentados en este documento muestran que los efectos mejorados de la KIR-CAR no se deben a un aumento del número de células T dentro de los tumores; tanto los constructos SS1-28z y SS1-41BBz parecen persistir en números ligeramente más altos que los CARs de KIR. La localización de las células T CAR puede ser importante, sin embargo. Los datos presentados en este documento de tinción sugieren que las células SS1-KIRS2/DAP12 T pueden ser más eficientes en llegar al centro de los tumores.

Los mecanismos responsables de la eficacia notablemente mejorada de los CARs basados-KIR se están investigando activamente. Aunque ambos sistemas receptores CD3 y KIR se basan en el reclutamiento y la activación de la señal de corriente abajo a base de ITAM, la naturaleza de la señalización mediada por ITAM subsiguiente no puede ser equivalente. Recientemente, un número de receptores heterólogos con ningún 55 mecanismo conocido para la interacción con los receptores ITAM contienen incluyendo los receptores de citocinas para el tipo I de interferón y la IL-3, los receptores de quimioquinas, CXCR4 y RANKL se ha demostrado que dependerá de ITAM-que contiene el receptor para la señalización (Wang et al, Nature Immunology, 9 (2):. 186-93, 2008; Hida et al, inmunología Naturaleza, 10 (2):.. 214-22, 2009; Koga y otros, Nature, 428 (6984): 758-63, 2004; Kumar et al, Inmunidad, 25 (2):. 213-24, 2006). Por tanto, es posible que la introducción de DAP12 en células T 60 puede alterar un número de señales adicionales que podrían ser relevantes para la función de células T dentro del microambiente del tumor complejo. La proliferación robusta de las células T después de la activación CAR basado en KIR sin co-estimulación adicional también podría ser una parte importante de la eficacia mejorada de las células T modificadas con SS1-KIRS2 y DAP12. La expansión clonal de las células T después de TCR y el acoplamiento del receptor co-estimuladoras requiere enormes demandas sintéticos. Ambos receptores CD28 y 4-1BB son potentes 65 activadores de la vía de mTOR que es un regulador importante del metabolismo requiere para apoyar la expansión clonal (Colombetti et al, Journal of Immunology, 176 (5):. 2730-8, 2006; So et al, Frontiers in Immunology, 4:.. 139,

2013; Marelli-Berg et al Immunology, 136 (4): 363-9, 2012). Curiosamente, Berezhnoy et al. informó recientemente de que la interrupción de mTOR utilizando un ARNsi a raptor dirigida por un aptámero de ARN de 4-1BB-específico mejorado significativamente la actividad antitumoral de las células T después de la vacunación terapéutica de ratones portadores de tumor (Berezhnoy et al., The Journal of Clinical Investigation . 124 (1): 188-97, 2014). Dado 5 que las señales coestimuladoras tales como CD28 y 41BB están normalmente regulados tanto temporal como espacialmente durante una respuesta inmunitaria, esto sugiere que las señales coestimuladoras no reguladas producidos por el BBζ y 28ζ CARs, mientras crítica para la proliferación robusta en respuesta a CD3 CAR de disparo, podría tener efectos negativos sobre la función de las células T in vivo, quizás a través de señalización mTOR persistente.

10

En conclusión, los datos presentados en este documento demuestran que la combinación de CAR basado en KIR y DAP12 proporciona un sistema receptor altamente eficaz para conferir especificidad de antígeno artificial a las células T. A pesar de equivalente relativo en la actividad in vitro, se ha demostrado además que este CAR a base de KIR ha meiorado mucho la eficacia antitumoral en comparación con las CAR basado en CD3 con uno o más 15 coestimuladoras dominios en el sistema de modelo de tumor se utiliza en el presente documento, tal vez debido al aumento de resistencia a la inactivación. La exploración adicional en los mecanismos de este aumento de la eficacia y de receptor quimérico diseños basados sobre otros receptores de unión a ligando DAP12-asociado, así como ITAM natural adicional que contiene los sistemas de receptores tales como gamma de FcR, será perseguido.

20 Ejemplo 7: CAR basado en KIR se puede coexpresar con un KIR inhibidor natural que permite la regulación mediante la expresión de HLA en las células diana

Generación y caracterización de una línea celular K562-meso que expresa el ligando de KIR2DL3 HLA-Cw

Material y Procedimiento: tipo salvaje células K562 o K562 una línea previamente ingeniería genética para expresar la mesotelina (K562-meso) fueron transducidas con un vector lentiviral que codifica el alelo HLA-Cw3. Las células se clasifican para la expresión uniforme de mesotelina y HLA-Cw3 por clasificación de células activadas por fluorescencia. La expresión de HLA-Cw3 se confirmó por citometría de flujo después de tinción con el W6/32 anti-HLA A, B, C anticuerpo conjugado con APC.

30

[0400] Resultado: Se pueden generar líneas de células K562 que expresan la mesotelina o HLA-Cw3 solos o en combinación (Fig. 20).

Co-expresión de SS1-KIRS2 y KIR2DL3 en las células T humanas primarias

35

45

Material y Procedimiento: las células T humanas primarias se estimularon con anti-CD3/28 microperlas seguido de la transducción, ya sea con un vector lentiviral bicistrónico que expresa DAP12 y SS1-KIRS2 solo o en combinación con un vector lentiviral que expresa KIR2DL3 en el día 1 después de la activación . La expresión de la SS1-KIRS2 CAR se evaluó por citometría de flujo usando un biotinilado de cabra anti-ratón F (ab) 2 de anticuerpo 40 policional seguido por SA-APC. Expresión KIR2DL3 se determinó usando un anticuerpo monocional específico KIR2D.

Resultados: se pueden generar células T humanas primarias que expresan un CAR basado en KIR específico de mesotelina con DAP12 (KIRS2) solo, KIR2DL3 solo o una combinación de los dos receptores (Fig. 21).

KIR2DL3 coexpresado con un KIR CAR puede suprimir la citotoxicidad específica de antígeno en presencia de HLA-Cw en las células diana

Material y Procedimiento: las células T humanas primarias se estimularon con anti-CD3/28 microperlas 50 seguido de la transducción con un vector lentiviral que expresa bicistrónico DAP12 y SS1-KIRS2. 5 g de transcrito in vitro ARNm que codifica KIR2DL3 se introdujo en las células T transducidas lentivirally-por electroporación siguientes 10 días de la expansión ex vivo. Estas poblaciones de células T se mezclaron con 51 marcadas con Cr K562 células diana (K562, K562-meso, K562-HLACw y K562-meso/HLACw) como se indica en relaciones variables de células T efector a diana células K562 (proporción E: T) . La citotoxicidad se determinó mediante la medición de 55 la fracción de ⁵¹ Cr liberado en el sobrenadante a las 4 horas.

[0404] Resultado: las células T ssl-KIRS2/DAP12 que expresan eran capaces de matar a diana células K562 que expresan mesotelina, independientemente de la expresión de HLA-Cw3. En contraste, las células T co-expresan el receptor SS1-KIRS2/DAP12 complejo y el KIR inhibidor, KIR2DL3 fallaron en mostrar citotoxicidad robusto contra 60 K562 que expresan la mesotelina con HLA-Cw3; sin embargo, estas células demostraron actividad citotóxica hacia células K562 que expresan mesotelina solo que era comparable a las células T modificadas-DAP12 ssl-KIRS2 /. Estos resultados demuestran la capacidad de los receptores KIR inhibidors para regular la actividad funcional de la activación de CARs basados-KIR (Fig. 22).

65 Ejemplo 8: CAR basado en KIR con especificidad de CD19 puede desencadenar citotoxicidad de las células diana específica de antígeno in vitro e in vivo

CAR basado en KIR con especificidad de CD19 puede desencadenar citotoxicidad de las células diana específica de antígeno in vitro

5 [0405] Material y Procedimiento: Siguiendo anti-CD3/anti-CD28 grano de activación, las células T se transdujeron con un vector lentiviral bicistrónico que expresa DAP12 junto con ya sea un CAR basado-KIR CD19-específico en el que el scFv FMC63 derivado de se fusiona a longitud completa KIR2DS2 (CD19-KIR2DS2) o un CAR basado-KIR generado por la fusión de la FMC63 scFv a la transmembrana y el dominio citoplasmático de KIR2DS2 a través de un engarce corto [Gly] 4 -Ser enlazador (CD19-KIRS2). Las células T transducidas se cultivaron hasta el final de la fase logarítmica de crecimiento, y la expresión de la CAR basado en KIR CD19-específica se evaluó por citometría de flujo usando un biotinilado de cabra anti-ratón F (ab) 2 de anticuerpo policional seguido por SA -EDUCACIÓN FÍSICA. ⁵¹ Cr-etiquetado K562 células diana con (K562-CD19) o sin (K562-wt) CD19 expresión se mezclaron en diferentes proporciones con las células T a las células diana (proporción E: T). La citotoxicidad se determinó mediante la medición de la fracción de ⁵¹ Cr liberado en el sobrenadante a las 4 horas. Las células T de control que, o bien fueron transducidas de forma simulada (NTD) o transducidas con un específico CAR basado en CD3 para CD19 (CD19-z) también se incluyeron como controles positivos y negativos, respectivamente.

[0406] Resultados: Análisis de citometría de flujo demuestra la expresión de la CD19 específico scFv en la superficie de las células T transducidas con CD19-KIR2DS2, CD19-KIRS2 y CD19-z (Fig 16A.). Células T que expresan DAP12, ya sea con CD19-KIR2DS2 o CD19-KIRS2 eran capaces de matar células diana de una manera específica de antígeno (Fig. 16B). Citotoxicidad exhibida por las células T CAR-modificado basado-KIR fue comparable a o mayor que las células T que expresan un CAR basado-CD3 CD19-específico.

Células T transducidas con CD19-KIRS2/DAP12 inducir la regresión tumoral en un xenoinjerto de leucemia humana

25

45

[0407] Material y Procedimiento: NOD-SCID-γ c -/- (NSG) los ratones fueron injertados por vía intravenosa por la vena de la cola en el día 0 con 1 millón de Nalm-6 células tumorales CBG, una línea celular de leucemia que expresan CD19. En el experimento, las células T se estimularon con anti-CD3/anti-CD28 estimulador perlas, seguido de la transducción lentiviral en el día 1 con una serie de CAR CD3-base con o sin un dominio coestimuladora (CD19-30 z, CD19-BBz) o la CARs basados-KIR CD19-específicos, CD19-KIRS2 con DAP12 como se indica en la figura. Transducidas de forma simulada se utilizaron las células T (DTN) como control. Las células T se expandieron hasta el final del crecimiento en fase logarítmica ex vivo y se inyectaron por vía intravenosa los días de inyección 5 de post línea celular de leucemia con 2 millones de células CAR T por ratón. La carga tumoral se evaluó a través de formación de imágenes bioluminiscente. 5 animales se analizaron para cada condición de las células T (Fig 17).

[0408] Resultado: En el experimento in vivo se presenta (Fig 17), las células T NTD no tuvo ningún efecto sobre el crecimiento tumoral, mientras que CD19z, CD19BBz y las células T transducidas-CD19-KIRS2 exhiben varios efectos anti-tumorales. Los ratones infundidos con células CD19z T mostró una ligera reducción en la carga tumoral pero retuvo niveles detectables de luminiscencia. En contraste, la luminiscencia de las células tumorales en ratones infundido con células ya sea CD 19BBz o CD19KIRS2 T caído al límite inferior de detección (Fig 17B, línea de puntos) sólo 7 días después de la inyección de las células T, que exhibe completa fuera de liquidación de un pequeño depósito de células de leucemia en la raíz del diente de células-T inaccesibles. Por día 15, la carga tumoral en el grupo de células T mock superó el punto final (2x10 10 fotones/segundo) y se sacrificaron, mientras que la luminiscencia en los grupos CD19BBz y CD19KIRS2 se mantuvo en el límite inferior de detección.

Ejemplo 9: CAR basado en el dominio VHH único de camélido se puede expresar en una superficie de células T en combinación con un CAR basado en scFv sin la interacción apreciable del receptor.

[0409] Material y Procedimiento: las células Jurkat T que expresan GFP bajo un promotor dependiente de NFAT
50 (NF-GFP) fueron transducidas ya sea con un CAR mesotelina-específica activación (SS1-CAR), CD19 específico de la activación de (19-CAR) o una CAR genera utilizando un específico dominio VHH de camélidos a EGFR (VHH-CAR). Después de la transducción con el CAR de activación, las células se transdujeron con un CAR inhibidor adicional que reconoce CD19 (19PD1) para generar células que coexpresan tanto la activación y CAR inhibitoria (SS1 + 19PD1, 19 + 19PD1 o VHH + 19PD1). Las células T Jurkat transducidas se co-cultivaron durante 24 horas
55 con diferentes líneas de células que son o bien 1) desprovisto de todos los antígenos diana (K562), 2) expresan la mesotelina (K-meso), CD19 (K-19) o EGFR (A431) solamente, 3) expresan una combinación de EGFR y la mesotelina (A431 -mesothelin) o CD19 (A431-CD19) o 4) expresar una combinación de CD19 y la mesotelina (K-19/meso). Condiciones adicionales que incluyen o bien no hay células estimuladoras (sin Stim) o K562 con 1 mg/ml de OKT3 (OKT3) también se incluyeron como controles positivos y negativos para la activación de NFAT,
60 respectivamente. Expresión de GFP, como un marcador de la activación de NFAT, se evaluó por citometría de flujo.

[0410] Resultado: camellos y especies relacionadas (por ejemplo Llama) producir naturalmente anticuerpos que tienen una única cadena pesada como dominio variable. Este dominio, conocido como un dominio de camélidos VHH, ha evolucionado para existir sin emparejamiento a un dominio variable de cadena ligera. Fig. Shows 27A esquemáticamente la posibilidad de que dos moléculas scFv heterólogos pueden disociarse y re-asociado uno con el otro cuando se muestra en la superficie de una célula como se demuestra por la interrupción observada en scFv

de unión a ligando afín durante receptor co-expresión (Fig 25 y Fig 26). La Fig. 27B muestra una representación esquemática de la interacción reducida esperada entre un scFv CAR aparece en la superficie de una célula en combinación con un CAR basado en el dominio VHH. Fig 28 demuestra que la coexpresión de dos CARs basados en scFv (SS1-z activantes CAR y CD19-PD1 CAR inhibitoria) en la superficie de A conduce Jurkat a la incapacidad de la CAR de activación (SS1-z) para reconocer su ligando cognado en la célula diana y el gatillo de activación de las células T a pesar de la ausencia de ligando del receptor inhibidor. Esto es consistente con la observada reduce la unión del ligando en la superficie (Fig 25). En cambio, la coexpresión de la misma CAR inhibitoria (CD19-PD1) con un CAR activación a base de VHH de camélidos (VHH-z) no tiene impacto en la capacidad de la CAR activación a base de VHH de reconocer su ligando EGFR cognado. Estos datos apoyan el modelo representado en la figura 27B que un CAR activación a base de VHH se puede expresar con un CAR a base de scFv sin interacción significativa entre los receptores debido a la reducida capacidad de los dominios scFv y VHH para interactuar.

Ejemplo 10: Un NCR CAR basado en NKp46 con especificidad de mesotelina desencadena citotoxicidad específica de antígeno

[0411] Material y Procedimiento: Siguiendo anti-CD28 de activación de talón anti-CD3 /, las células T se transdujeron con un vector lentiviral bicistrónico que expresa ya sea DAP 12 y SS1-KIRS2 (control), o FcεRγ y un específico a la mesotelina a base de NKp46 CAR (SS1-NKp46) o FcεRγ y una NKp46 CAR mesotelina-específico en el que se trunca el dominio extracelular NKp46 naturales (SS1-TNKp46). La expresión de las CAR-específicos mesothelian se evaluó por citometría de flujo usando un biotinilado de cabra anti-ratón F (ab) 2 de anticuerpo policlonal seguido por SA-PE (Figura 18). Las células T se mezclaron con ⁵¹ marcadas con Cr células diana K562 que expresan la mesotelina en relaciones variables de células T efector a diana células K562 (proporción E: T). La citotoxicidad se determinó mediante la medición de la fracción de ⁵¹ Cr liberado en el sobrenadante a las 4 horas en comparación con la liberación espontánea.

[0412] Resultados: Tanto la SS1-NKp46 y SS1-sNKp46 receptores exhiben expresión en la superficie en las células T. SS1-TNKp46 transduce las células T muestran robusto citolisis de células diana que es comparable a la CAR SS1-KIRS2 a base de KIR. SS1-NKp46 exhibió más débil actividad citotóxica que fue evidente sólo a alta efector a relaciones de células diana (Fig 18). Estos datos demuestran que un inmunoreceptor quimérico específico de antígeno para su uso en la reorientación de la actividad citolítica de las células T puede ser generado a partir de receptores de citotoxicidad naturales (NCR) usando un diseño similar al que se utiliza para crear un CAR basado-KIR

Ejemplo 11: Interacción de los dominios scFv

15

35 Material y Procedimiento: En la figura 24, las células T Jurkat se transdujeron con vector lentiviral que codifica un CAR basado-KIR inhibidor-mesotelina específico (SS1-KIR2DL3). Estas células transducidas fueron luego transducidas con diferentes diluciones de un vector lentiviral que codifica un CD19 específico de la activación de CAR a base de KIR (CD19-KIR2DS2). Estos KIR-CARS se muestran esquemáticamente en la Figura 23. 40 Después de la transducción con los dos CARs, la frecuencia de células con expresión en la superficie de un CAR con un scFv intacto capaz de unirse a su ligando diana se evaluó por citometría de flujo después de la tinción tanto con un mesotelina-Fc proteína de fusión seguido por un anticuerpo secundario anti-Fc marcado con PE y un anti-CD 19-específico (clon FMC63) anti-idiotipo monoclonal anticuerpo marcado con APC. En la figura 25, anti-CD3/28activan células T primarias humanas se transdujeron con diferentes vectores lentivirales que codifican ya sea a-45 específica mesotelina CAR basado en CD3Z que lleva una fusión mCherry a la C-terminal (SS1z-MCH), un CD19específicos CAR con CD3Z y 41BB dominio citoplasmático (19bbz) o una combinación de ambos SS1z-MCH y 19bbz. La expresión de mCherry y una funcional SS1 scFv se evaluó por citometría de flujo después de la tinción con una proteína de fusión mesotelina-Fc seguido de un anticuerpo secundario anti-Fc marcado con FITC. En la figura 26, anti-CD3/28-activan células T primarias humanas se transdujeron con diferentes vectores lentivirales que 50 codifican ya sea un CAR mesotelina-específica basada en CD3Z (SS1z), un CAR CD19-específico que lleva el FMC63 scFv (19bbz) o un CD19 CAR específico de que lleva el 21d4 scFv (21d4bbz) o un CAR CD19-específico que lleva el BL22 scFv (BL22bbz) en el que el scFv se compone de un dominio variable de cadena pesada (VH) 5' al dominio variable de cadena ligera (VL) en el scFv (H2L) o el VL situada 5' de la VH (L2H). Después de la transducción con cada uno de los CAR CD19-específica, las células T fueron co-transducidas con SS1z. La unión de 55 la SS1z a la mesotelina y la expresión en la superficie de la anti-CD19 scFv se evaluó por citometría de flujo después de la tinción con una proteína de fusión mesotelina-Fc seguido de un anticuerpo secundario anti-Fc marcado con FITC o biotina proteína L seguido por estreptavidina conjugado APC.

[0414] Resultado: La Fig. 24 muestra que la coexpresión de dos, de unión a ligando CARs basados en scFv intactos (SS1-KIR2DL3 y CD19-KIR2DS2) en la superficie celular es mutuamente exclusiva. La Figura 26 demuestra la pérdida de la unión del ligando se produce a pesar de la expresión de la CAR en la célula como se ilustra por la presencia de células que expresan mCherry con la unión reducida a la mesotelina en las células co-transducidas con SS1z-MCH y 19bbz. La Figura 26 demuestra que la interacción entre scFv conduce a la pérdida de función de unión a scFv se puede observar usando diferentes vehículos a base de scFv que apoyan la naturaleza universal de este efecto. Estas observaciones son consistentes con el modelo representado en la figura 27 Panel A en la que el dominio variable de un scFv puede someterse a apareamiento intermolecular con un receptor quimérico basado en

ES 2 769 574 T3

scFv heteróloga que conduce a la pérdida de la unión por el scFv dentro de un solo CAR.

Ejemplo 12: Secuencias de KIR-CAR

5 **[0415]**

Secuencia del gen SS1 K1R2DS2 (SEQ ID NO: 1)

cggataaggegcagcggtcgggctgaacgggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcaggg gctcgccgcagccgaacgaccgagcgagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctct cccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcggaagtgagcgcaacgcaattaatt t caca caggaa a cagctat gaccat gattac gcca ag eg caat taaccct cacta a ag eg gaacaa aa get ggag et gcaat taaccct cacta a ag eg gaacaa aa get ggag et gcaat taaccct cacta a ag eg gaacaa aa get ggag et gcaat taaccct cacta a ag eg gaacaa aa get ggag et gcaat taaccct cacta a ag eg gaacaa aa get ggag et gcaat taaccct cacta a ag eg gaacaa aa get ggag et gcaat taaccct cacta a ag eg gaacaa aa ag et ggag et gcaat taaccct cacta a ag eg gaacaa aa ag et ggag et gcaat taaccct cacta a ag eg gaacaa aa ag et ggag et gcaat taaccct cacta a ag eg gaacaa aa ag et ggag et gcaat taaccct cacta a ag eg gaacaa aa ag et ggag et gcaat taaccct cacta a ag eg gaacaa aa ag et ggag et gcaat taaccct cacta a ag eg gaacaa aa ag et ggag et gcaat taaccct cacta a ag eg gaacaa aa ag et ggag et gcaat taaccct cacta a ag eg gaacaa aa ag et ggag et gcaat taaccct cacta a ag eg gaacaa aa ag et gaacaa aa aa ag et gaacaa aa aa ag et gaacaa aa aa ag et gaacaa ag et gaacaa aa ag et gaacaa aa ag et gaacaactgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtcccgtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgcccgaacagggacctgaaagcgaaagcgaaaccagagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcgagctacaaccatccettcagacaggatcagaagaacttagatcattatataatacagtagcaaccetctattgtgtgcatcaaaggata cgctgatcttcagacctggaggaggagatatgagggacaattggagaagtgaattatataaaatataaagtagtaaaaattgaaccgggttcttgggagcagcagcagcactatgggcgcagcctcaatgacgctgacggtacaggccagacaattattgtctggtatagtg cag cag cag cag caa catt t g ctg agg c ctatt g agg cg caa cag cat ctg ttg caact cac ag t ctg gg g cat caag cag ctc graph of the companion of the companiogaa attaa caattaca caa agcttaa tacactccttaattgaa gaa tcgcaa aa accagcaa gaa aa agaa tgaa caa gaa ttattggaa aa agaa tacactaa tacactccttaattgaa gaa tcgcaa aa accagcaa gaa aa agaa tattaggaa aa agaa ta accagcaa gaa accagcaa accagcaa gaa accagcaa accagcaa gaa accagcaa accagcaggtaggtttaagaatagtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagacccacctccctgaacggatctcgacggtatcgattagactgtagcccaggaatatggcagctagattgtacacatttagaaggaaaagttatcttggtag cagt t cat gtag cag t ga ta ta tag aag cag aag ta at t ccag cag ag ac ag ga cag ga cag ga cag ag ac ag ga cag ga ca attag cagga agat ggc cagtaa aa aa cagtacat acaga caat ggc ag caat ttc accagt actac ag ttaa ggc cgc ct gt tg a cagtaa agat ggc ag caat ttc accagt actac ag ttaa ggc cgc ct gt tg a cagtaa agat ggc ag caat ttc accagt actac ag ttaa ggc cgc ct gt tg a cagtaa agat ggc ag caat ttc accagt actac ag ttaa ggc cgc ct gt tg a cagtaa ag taa ag taagtgggcggggatcaagcaggaatttggcattccctacaatccccaaagtcaaggagtaatagaatctatgaataaagaattaaagaggggggattggggggtacagtgcaggggaaagaatagtagacataatagcaacagacatacaaactaaagaattacaaaaaaga aggt gg cg cg gg gt aaact gg gaa ag t gat gt cg t gt act gg ct cc g cc tt tt t cc cg ag gg t gg gg ga gaa cc gt at at a company to the company to thectggcctctttacgggttatggcccttgcattacttccacctggctgcagtacgtgattcttgatcccgagcttcgggttggaagtgggtgggagagttcgaggccttgcgcttaaggagccccttcgcctcgtgcttgagttgaggcctggcctggcctggggccgccgctgtctcgctgctttcgataagtctctagccattttaaaatttttgatgacctgctgcgacgctttttttctggcaagatagtcttgtaaatgcgggccaagatctgcacactggtatttcggtttttggggccgcgggcggcgacgggcccgtgcgtcccagcgcacatgttcggcgaggcggggcctgcgagcgcggccaccgagaatcggacgggggtagtctcaagctggcctgctctggtgcctggcctcgccgccgtgtatcgccccgccctgggcggcaaggctggc

ctcgggagagcgggtgagtcacccacacaaaggaaaagggcctttccgtcctcagccgtcgcttcatgtgactccacggatggagtttccccacactgagtgggtggagactgaagttaggccagcttggcacttgatgtaattctccttggaatttgccctttttgagtttggatcttggttcattctcaagcctcagacagtggttcaaagtttttttcttccatttcaggtgtcgtgagctagaATGGGG GGACTTGAACCCTGCAGCAGGCTCCTGCTCCTGCTCCTGCTGCTGAAG TGGTCTCCGTCCTGTCCAGGCCCAGGCCCAGAGCGATTGCAGTTGCTCTACGG TGAGCCCGGGCGTGCTGGCAGGGATCGTGATGGGAGACCTGGTGCTGACAGT GCTCATTGCCCTGGCCGTGTACTTCCTGGGCCGGCTGGTCCCTCGGGGGCGAG GGGCTGCGGAGGCAGCGGCGAAACAGCGTATCACTGAGACCGAGTCGC CTTATCAGGAGCTCCAGGGTCAGAGGTCGGATGTCTACAGCGACCTCAACAC ACAGAGGCCGTATTACAAAgTCGAGGGCGGCGGAGAGGGCAGAGGAAGTCT TCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTAGGatggccttaccagtgaccg cettgetcetgecgetggecttgetgeteeaegeeggeaggetgggateeeaggtacaactgeageagtetgggectgagetggagaagcctggcgcttcagtgaagatatcctgcaaggcttctggttactcattcactggctacaccatgaactgggtgaagcagagccatggaaagagccttgagtggattggacttattactccttacaatggtgcttctagctacaaccagaagttcaggggcaaggcca catta a ct g taga ca a g t cat c cag ca cag ceta cat g g a cet cet cag t ct g a cat ct g a a g a c t ct g cag t ct at t t ct g t g cag t ct a consideration of the considerataggggggttacgacgggagggttttgactactggggccaagggaccacggtcaccgtctcctcaggtggaggcggttcaggeggeggtggctctageggtggttggateggacategagctcactcagtctccagcaatcatgtctgcatctccaggggagaagatttatgacacatccaaactggcttctggagtcccaggtcgcttcagtggcagtgggtctggaaactcttactctcacaatcagcagcgtggaggctgaagatgatgcaacttattactgccagcagtggagtaagcaccctctcacgtacggtgctgggacaaagttgggtttgagcacttccttctgcacagagaggggaagtataaggacactttgcacctcattggagagcaccatgatggggtctccaatgg caggagagag ag cett gtcctg cag ctcct gg ag ctcct at gacat gtaccat ctatcc ag gg ag gg gg gg gg cccatctacagatgetteggetettteegtgacteteectatgagtggteaaactegagtgacceaetgettgtttetgteaeaggaaaecetg cagggaa cagaa cagtgaa cag cag ag attet gatgaa caa gac cat caggag g t g t catac g cataa G t c gac aat caa cag cag gag g t g t catac g cataa G t c gac aat caa cag cag g g a g cag g a g cagctctgg attacaaa atttgtgaaa gattgactgg tattcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtca gg caacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccggggcactgacaattccgtggtgttgtcggggaagctgacgtcctttccatggctgctcgcctgtgttgccacctggattctgcgcgg gtcttcgccttcagacgagtcggatctccctttgggccgcctccccgcctggaattcgagctcggtacctttaagaccaaagatctgctttttgcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactagggaacccactgctta agcet caata a agett geett gagt gett caagt agt g t g teget cagt teget g ta act agag at cect cag accettttagtcagtgtggaaaatctctagcagtagttgttattgtcatcttattattcagtatttataacttgcaaagaaatgaatatcagagagtgagaggaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgc

Secuencia del gen SS1 KIRS2 (SEQ ID NO: 2)

agcacttttaa agttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgcca ctgtag caatggcaa caacgttgcgcaa actattaactggcgaa ctacttactctagcttcccggcaa caattaatagactggatggtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctg cag cag ag cg cag at acca a at act g t cett ct ag t g t ag ccg cag t t ag g cac cact t cag a act ct g t ag cac cg cet acat t cag ag a cact ct g t ag cac cg cet acat t can be called a calculation of the contract of the case of the caacctege tetge taateet gttace agtgget getgee agtggegat aagtegt gtettace gggtt ggaet caa gae gat agttace agtgegegat gat getget getgee gcggataaggcgcagcggtcgggctgaacgggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagataccta cagcgtgag ctatgagaa agcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcaggggctcgccgcagccgaacgaccgagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctct cccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcggcagtgagcgcaacgcaattaat gt gag t tag ct cact cattag g caccc cag g ctttac actt tat g ctt ccg g ct cg tat g t t g t g t g a g c g a tag cac act g t g t g c g a tag c gagctta at gtag tcttat gcaatactctt gtag tctt gcaacat gg taac gat gag ttag caacat gccttac aa gg agaa aa aa gag tag gag agaa gag acga accactga at tgcaga agatattg tattta agtgcct agctcgata caataa acggg tctctctgg ttagaccagata agctcgata accactga at tgcaga agatattg tattta agtgcct agctcgata caataa acggg tctctctgg ttagaccagata agctcgata accactga at tgcaga agatattg tattta agtgcct agctcgata caataa acggg tctctct agctcgata accactga at tgcaga accactga accactga at tgcaga agatattg tattta agtgcct agctcgata accactga accctgagcetgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgt cccgtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgcccgaacagggacctgaaagcgaaagcgaaaccagagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcgag gggcaag caggag actagaacg attcg cagtta at cct ggcct gt tagaaacat cagaag gct gt agacaaat act gggacaggagataaaagacaccaaggaagctttagacaagatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggc gggttcttgggagcagcagcagcactatgggcgcagcctcaatgacgctgacggtacaggccagacaattattgtctggtataggtaggtttaagaatagtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagacccacctccca accccg aggggacccg acaggcccg aaggaatag aagaag agaag agaag agaag agaag acagatcc attcg attag agaag agtgaacggatctcgacggtatcgattagactgtagcccaggaatatggcagctagattgtacacatttagaaggaaaagttatcttga attag cagga agat ggc cagtaa aa acagtacat acaga caat ggc ag caat ttc accagt actac ag ttaa ggc cgc ct gt tg a cagta cagga agat ggc agat actac ag ttaa ggc cgc ct gt tg a cagga agat ggc agat ga cagga ag tagga agat ggc ag cagta cagga agat ggc ag cagga ag tagga agat ggc ag cagga ag tagga ag tgtgggcggggatcaagcaggaatttggcattccctacaatccccaaagtcaaggagtaatagaatctatgaataaagaattaaagaggggggattggggggtacagtgcaggggaaagaatagtagacataatagcaacagacatacaaactaaagaattacaaaaacaa attacaa aa atttcaa aa attttcgggtttatta caggga cag cag ag atccagtttggctgcatacgcgtcgtgaggctccggtetggeetetttaegggttatggeeettgegtgeettgaattaetteeacetggetgeagtaegtgattettgateeegagettegggtt ggaagtgggtgggagagttcgaggccttgcgcttaaggagccccttcgcctcgtgcttgagttgaggcctggcctggcgctggggccgccgcgtgcgaatctggtggcaccttcgcgcctgtctcgctgctttcgataagtctctagccatttaaaatttttgatgacctggcgacgggcccgtgcgtcccagcgcacatgttcggcgaggcggggcctgcgagcgcggccaccgagaatcggacgggggtagtctcaagctggccggcctgctctggtgcctggcctcgcgccgtgtatcgccccgccctgggcggcaaggctggc ctcgggagagcgggtgagtcacccacacaaaggaaaagggcctttccgtcctcagccgtcgcttcatgtgactccacggatggagtttccccacactgagtgggtggagactgaagttaggccagcttggcacttgatgtaattctccttggaatttgccctttttgagtttggatcttggttcattctcaagcctcagacagtggttcaaagtttttttcttccatttcaggtgtcgtgagctagaATGGGGGGACTTGAACCCTGCAGCAGGCTCCTGCTCCTGCTCCTGCTGCTGAAG TGGTCTCCGTCCTGTCCAGGCCCAGGCCCAGAGCGATTGCAGTTGCTCTACGG TGAGCCCGGGCGTGCTGGCAGGGATCGTGATGGGAGACCTGGTGCTGACAGT GCTCATTGCCCTGGCCGTGTACTTCCTGGGCCGGCTGGTCCCTCGGGGGCGAG GGGCTGCGGAGGCAGCGGAAACAGCGTATCACTGAGACCGAGTCGC CTTATCAGGAGCTCCAGGGTCAGAGGTCGGATGTCTACAGCGACCTCAACAC ACAGAGGCCGTATTACAAAgTCGAGGGCGGCGGAGAGGGCAGAGGAAGTCT TCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTAGGatggccttaccagtgaccg cettgetcetgecgetggecttgetgetceaegeeggeatceeaggtacaaetgeageagtetgggectgagetggagaagcctggcgcttcagtgaagatatcctgcaaggcttctggttactcattcactggctacaccatgaactgggtgaagcagaa catta act g taga ca a g t cat c cag ca cat g g a cet cet cag t ct g a cat et g a a g a c t ct g cag t ct at t t et g t g cat et g a g a cet et g a cet et g a g a c

aggggggttacgacgggagggttttgactactggggccaagggaccacggtcaccgtctcctcaggtggaggcggttcaggeggeggtggctctageggtggttggateggacategagctcactcagtctccagcaatcatgtctgcatctccaggggagaagatttat gacacatcca a act ggcttct ggagtcccag gtcgcttcag tggcagt gggtct ggaaactct tactctctcacaatcag can be a considered and the considered graph of theagcgtggaggctgaagatgatgcaacttattactgccagcagtggagtaagcaccctctcacgtacggtgctgggacaaagttggaa at caa agctag cgg tggcgg aggt tctgg aggt ggg ggt tcct cacccactga accaa gctccaa aaccgg taaccccaaaaaaaatgctgctgtaatggaccaagagcctgcagggaacagaacagtgaacagcgaggattctgatgaacaagaccatcaggaggtgt catacg cata a Gtcga caat caacctctggatta caa a atttgtga a agattgactggt attctta a ctatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttgtgcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaagctgacgtcctttccatggctgggcctgctgccggctcttgcggctcttcgcgtcttcgccttcagacgagtcggatctccctttgggccgcctccccgctggaagggcta attcactcccaacgaagacaagatctgctttttgcttgtactgggtctctctggttagaccagatctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgggcctctgagctattccagaagtagtgaggaggcttttttggaggcctacgcttttgcgtcgagacgtacccaattcgccctatagtgagtcgtattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatcccctttcgccagctggcgtaatagcgaagaggcccgcaccgatcgccttcccaacagttgcgcagcctgaatggcgaatggcgcgcgcgcgcttaagcggcgcattaagcgcggggtgtggtggtggtgtacgcgcagcgtgaccgctacacttgc ctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccct gatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactcaacccattttaacaaaatattaacgtttacaatttcccaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacattca a at at g tatcc g ct cat g aga ca at a accet g at a a at g ct tea at a at at t g a a a a g g a a g ag t at g aga t at tea a catt t g a a a a g g a a g ag t at g ag t at t ca a catt t a cat f a cat g ag a cat g ac a cat g accgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgg

Secuencia del gen SS1 KIR2DL3 (SEQ ID NO: 3)

cgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttg caaa caaaa aaa caccgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcggataaggcgcagcggtcgggctgaacgggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgacccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcggcagtgagcgcaacgcaattaatt t caca caggaa a cagctat gaccat gattac gcca ag cgcgca attaaccct cactaa ag ggaa caa aa gct ggag ct gcaat taaccct cactaa ag ggaa caa aa gct ggag ct gcaat taaccct cactaa ag ggaa caa aa gct ggag ct gcaat taaccct cactaa ag ggaa caa aa gct ggag ct gcaat taaccct cactaa ag ggaa caa aa gct ggag ct gcaat taaccct cactaa ag ggaa caa aa gct ggag ct gcaat taaccct cactaa ag ggaa caa aa gct ggag ct gcaat taaccct cactaa ag ggaa caa aa gct ggag ct gcaat taaccct cactaa ag ggaa caa aa gct ggag ct gcaat taaccct cactaa ag ggaa caa aa gct ggag ct gcaat taaccct cactaa ag ggaa caa aa ag ct ggag ct gcaat taaccct cactaa ag ggaa caa aa ag ct ggag ct gcaat taaccct cactaa ag ggaa caa aa ag ct ggag ct gcaat taaccct cactaa ag ggaa caa aa ag ct ggag ct gcaat taaccct cactaa ag ggaa caa aa ag ct ggag ct gcaat taaccct cactaa ag ggaa caa aa ag ct ggag ct gcaat taaccct cactaa ag ggaa caa aa ag ct ggag ct gcaat taaccct cactaa ag ggaa caa aa ag ct ggaa caataa cactaa ag ggaa caa aa ag ct ggaa caataa cactaa ag ggaa caa aa ag ct ggaa caataa cactaa ag ggaa caataa cactaa ag ggaa caa aa ag ct ggaa caataa cactaa ag ggaa caataa cactaa cactaa ag ggaa caataa cactaa ag ggaa caataa cactaa caccga accact ga at t g cag a gat at t g t at t t a a g t g c t a g c t c g at a ca a t a a a c g g g t c t c t c t g g t t a g a c c a g a t cctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgcccgaacagggacctgaaagcgaaagggaaaccagagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcgag gagataaaagacaccaaggaagctttagacaagatagaggaagagcaaaacaaaagtaagaccaccgcacagcaagcggc cgctgatcttcagacctggaggaggagatatgagggacaattggagaagtgaattatataaaatataaagtagtaaaaattgaacccagg caaga at cct gg ct gt gg aaa gat acct aaa gg at caa cag ct cct gg gg at tt gg gg tt gct ct gg aaa act cat tt gc a cag gc acc gg gg at tt gg gg tt gct ct gg aaa act cat tt gc a cag gc acc gg gg at tt gg gg tt gct ct gg aaa act cat tt gc a cag gc acc gg gg at tt gg gg tt gct ct gg aaa act cat tt gc a cag gc acc gg gg at tt gg gg tt gct ct gg aaa act cat tt gc a cag gc acc gg gg at tt gg gg at tgaa attaa caattaca caa gcttaa ta cactcct ta att gaa gaa tc gcaa aa acca gcaa gaa aa gaa tgaa caa gaa tt att ggaa aa acca gcaa gaa aa gaa ta acca gcaa gaa acca gcaa gaa aa gaa ta acca gcaa gaa acca gcaa gggtaggtttaagaatagtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagacccacctccctgaacggatctcgacggtatcgattagactgtagcccaggaatatggcagctagattgtacacatttagaaggaaaagttatcttga attag cagga agat ggc cagtaa aa aa cagtacata caga caat ggc ag caat ttc accagt actac ag tta agg ccg cct gtt gas a cagtacata cagacaat ggc ag caat ttc accagt actac ag tta agg ccg cct gtt gas a cagacaat ggc ag caat ttc accagt actac ag tta agg ccg cct gtt gas a cagacaat ggc ag caat ttc accagt actac ag tta agg ccg cct gtt gas a cagacaat ggc ag caat ttc accagt actac ag tta agg ccg cct gtt gas a cagacaat ggc ag caat ttc accagt actac ag tta agg ccg cct gtt gas a cagacaat ggc ag caat ttc accagt accag ta ag accaga gas ag a cagacaat ggc ag caat ttc accagt accag ta ag accaga gas ag accaga gas ag a cagacaat ggc ag caat ttc accag ta cagacaat ggc ag caat ta cagacaat ggc ag caat ttc accag ta caat accag accagtgggcggggatcaagcaggaatttggcattccctacaatccccaaagtcaaggagtaatagaatctatgaataaagaattaaagaggggggattggggggtacagtgcaggggaaagaatagtagacataatagcaacagacatacaaactaaagaattacaaaaactggcctctttacgggttatggcccttgcattacttccacctggctgcagtacgtgattcttgatcccgagcttcgggtt

ggaagtgggtgggagagttcgaggccttgcgcttaaggagccccttcgcctcgtgcttgagttgaggcctggcctggcgctg gggccgccgcgtgcgaatctggtggcaccttcgcgcctgtctcgctgctttcgataagtctctagccatttaaaatttttgatgacct gctgcgacgctttttttctggcaagatagtcttgtaaatgcgggccaagatctgcacactggtatttcggtttttggggccgcgggcggcgacggggcccgtgcgtcccagcgcacatgttcggcgaggcggggcctgcgagcgggccaccgagaatcggacggg ggtagtctcaagctggccggcctgctctggtgcctggcctcgcgccgtgtatcgccccgccctgggcggcaaggctggc ctcgggagagcgggtgagtcacccacacaaaggaaaagggcctttccgtcctcagccgtcgcttcatgtgactccacggatggagtttccccacactgagtgggtggagactgaagttaggccagcttggcacttgatgtaattctccttggaatttgccctttttgagtttggatcttggttcattctcaagcctcagacagtggttcaaagtttttttcttccatttcaggtgtcgtgagctagaATGGGGTGGTCTCCGTCCTGTCCAGGCCCAGGCCCAGAGCGATTGCAGTTGCTCTACGG TGAGCCCGGGCGTGCTGGCAGGGATCGTGATGGGAGACCTGGTGCTGACAGT GCTCATTGCCCTGGCCGTGTACTTCCTGGGCCGGCTGGTCCCTCGGGGGCGAG GGGCTGCGGAGCCAGCGGAAACAGCGTATCACTGAGACCGAGTCGC ${\tt CTTATCAGGAGCTCCAGGGTCAGAGGTCGGATGTCTACAGCGACCTCAACAC}$ A CAGAGGCCGTATTACAAAgTCGAGGGCGGCGGAGAGGGCAGAGGAAGTCTTCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTAGGatggccttaccagtgaccg cettgetcetgecgetggecttgetgetceaegeegeegggateeeaggtacaaetgeageagtetgggectgagetggagaagcctggcgcttcagtgaagatatcctgcaaggcttctggttactcattcactggctacaccatgaactgggtgaagcagaagggggggttacgacgggaggggttttgactactggggccaagggaccacggtcaccgtctcctcaggtggaggcggttcaggeggeggtggctctageggtggttggateggacategagctcactcagtctccagcaatcatgtctgcatctccaggggagaaggtcaccatgacctgcagtgccagctcaagtgtaagttacatgcactggtaccagcagaagtcaggcacctccccaaaagatgg agcgtggaggctgaagatgatgcaacttattactgccagcagtggagtaagcaccctctcacgtacggtgctgggacaaagttggaaat caa ag CTAGC gg tgg cgg ag gt tct gg ag gt gg gg gt tcc CAGGGGCCCTGGCCACATGAGGGAGTCCACAGAAAACCTTCCCTCCTGGCCCACCCAGGTCCCCTGGTGAAAT CAGAAGAGACAGTCATCCTGCAATGTTGGTCAGATGTCAGGTTTCAGCACTT CCTTCTGCACAGAGAAGGGAAGTTTAAGGACACTTTGCACCTCATTGGAGAG CACCATGATGGGGTCTCCAAGGCCAACTTCTCCATCGGTCCCATGATGCAAG TTGTCAGCTCCCAGTGACCCTCTGGACATCGTCATCACAGGTCTATATGAGAA ACCTTCTCTCAGCCCAGCCGGGCCCCACGGTTCTGGCAGGAGAGAGCGTG ACCTTGTCCTGCAGCTCCCGGAGCTCCTATGACATGTACCATCTATCCAGGGA GGGGGAGGCCCATGAACGTAGGTTCTCTGCAGGGCCCAAGGTCAACGGAAC ATTCCAGGCCGACTTTCCTCTGGGCCCTGCCACCCACGGAGGAACCTACAGA TGCTTCGGCTCTTTCCGTGACTCTCCATACGAGTGGTCAAACTCGAGTGACCC ACTGCTTGTTCTGTCACAGGAAACCCTTCAAATAGTTGGCTTTCACCCACTG AACCAAGCTCCGAAACCGGTAACCCCAGACACCTGCATGTTCTGATTGGGAC CTCAGTGGTCATCCTCTTCATCCTCCTCCTCTTCTTCTCCTTCATCGCTG GTGCTGCAACAAAAAAATGCTGTTGTAATGGACCAAGAGCCTGCAGGGAAC AGAACAGTGAACAGGGAGGACTCTGATGAACAAGACCCTCAGGAGGTGACA TCAGAGGCCCAAGACACCCCCAACAGATATCATCGTGTACACGGAACTTCCA

ctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttggggcattgccaccacctgtcagctcctttccgggactttcgctttcccctcctattgccacggcggaactcatcgccgcctgccttgcccgctgttggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaagctgacgtcctttccatcccgcggcctgctgccggctcttcgcgtcttcgccttcgcctcagacgagtcggatctccctttgggccgcctccccgcctggaattcgagctcggtacctttaagaccaatgacttacaaggcagctgtagatcttagccactttttaaaagaaaaggggggactggaagggctaattcactcccaacgaagacaagatctgctttttgcttgtactgggtctctctggttagaccagatctgagcagatctgagcagatctgagacagatctgctttttgcttgtactgggtctctctggttagaccagatctgagcagatctgagacagatctgctttttgcttgtactgggtctctctggttagaccagatctgagcagatctgagacagatctgagatctctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtcccgtctgttgtgtgactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtagtagttcatgtcatcttattattgcctcggcctctgagctattccagaagtagtgaggaggcttttttggaggcctacgcttttgcgtcgagacgtacccaattcgccctcttg cag cacate cecett tege cagetg gegta at agega ag aggee egea cega tege cette cea acag ttg egea geetga atggcga atggcgcgccctgt ag cggcgcat taag cgcggcggtgt ggtggt ggtggt acgcgcag cgtgaccgctacaggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccategccct gatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacactccgcga attttaacaaaatattaacgtttacaatttcccaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaata cattca aatat g tatccgct cat g aga caata accct g ataa at g cttcaata at at t g aaa aa g g aa g ag tat g ag tattcaata at a constant a consa catt t ccgtg tcgccct tatt cccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgg

Secuencia de la construcción CD19 KIR2DS2 (SEQ ID NO: 4)

taaccat gag t gataacact geggccaact tact tet gacaac gat eggag gaccgaa gag ag ctaacc get ttt tt geacaacatgggggat cat gtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcgaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggtatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgacctege tetget a atcetg ttace agtggetgetge cag tgg egata agtegtg tettace ggg ttggacte aga egatagt tack accept the control of the control ofcggataaggcgcagcggtcgggctgaacgggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcaggg

gctcgccgcagccgaacgaccgagcgagcgagcgagtcagtgagcgaggaagcggaagagcgcccaatacgcaaaccgcctctcccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcggcagtgagcgcaacgcaattacaccgtg catgccg attggtg a agta aggtgg tacgatcgtg cctt attagga aggca acagacgggtctga catggattgg aggca acagacggg acagacgg acagacg acagacgg acagacg acagacg acagacg acagacg acagacg acagacg acga accactga at tgccg cattgcag agatattg tattta agtgcctag ctcgatacaataa acggg tctctctggt tagaccag at the control of the contrctgagcctgggagctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtactctggtaactagagatccctcagacccttttagtcagtgtggaaaatctctagcagtggcgcccgaacagggacctgaaagcgaaagggaaaccagagctctctcgacgcaggactcggcttgctgaagcgcgcacggcaagaggcgag gggttcttgggagcagcagcagcactatgggcgcagcctcaatgacgctgacggtacaggccagacaattattgtctggtatagtg cag cag cag cag cag cat ctg ttg cag cat ctg ttg caact cac agt ctg gg gc at cag cag cat ctg ttg caact cac agt ctg gg gc at cag cag ctc and ctg ttg can ct cac agt ctg gg gc at cag cag cat ctg ttg caact cac agt ctg gg gc at cag cag ctc and ctg ttg can ct cac agt ctg gg gc at cag cag ctc.cagg caagaat cct gg ctg tgg aaagat acct aaaggat caacagct cct gg gg att ttg gg gt ttg ctct gg aaaact catt tg caacagct cct gg gg gat ttg gg gg gat ttg gg gat gg gat gg gat gg gat gg gat gg gg gat gg gg gat gg gg gg gg gg gg gg gg gggtaggtttaagaatagtttttgctgtactttctatagtgaatagagttaggcagggatattcaccattatcgtttcagacccacctccctgaacggatctcgacggtatcgattagactgtagcccaggaatatggcagctagattgtacacatttagaaggaaaagttatcttggtag cagt t cat gtag cag t ga ta ta tag aag cag aag ta at t ccag cag ag ac ag ga cag ga cag ga cag ag ac ag ga cag ag ac ag ga cag gagtggcggggatcaagcaggaatttggcattccctacaatccccaaagtcaaggagtaatagaatctatgaataaagaattaaagaaaatta tagga caggta agaga tcaggctga a catctta aga cagcagta caa at gg cagtatt catcca caatttta aa agaa a acatct agacag cagta caa at gg cagtatt catcca caatttta aa agaa a acatct agacag cagtacaa at gg cagtatt catcca caatttta aa agaa a acatct agacag cagtacaa at gg cagtatt catcca caatttta aa agaa a acatct agacag cagtat caa at gg caaggggggattggggggtacagtgcaggggaaagaatagtagacataatagcaacagacatacaaactaaagaattacaaaaacaa attacaa aa att tcaa aa attt tcgggtt tattacag gga cag cag ag atccagtt tggctgcatacg cgtcgtg ag gctccggtaga aggt gg cg cgg gg taaact gg gaaa gt gat gt cgt gt act gg ct ccg cctttt tcccg agg gt gg gg gagaaccg tatatactggcctctttacgggttatggcccttgcattacttccacctggctgcagtacgtgattcttgatcccgagcttcgggttggaagtgggtgggagagttcgaggccttgcgcttaaggagccccttcgcctcgtgcttgagttgaggcctggcctggcctg gggccgccgctgtctcgctgctttcgataagtctctagccatttaaaatttttgatgacctgctgcgacgctttttttctggcaagatagtcttgtaaatgcgggccaagatctgcacactggtatttcggtttttggggccgcgggcggcgacggggcccgtgcgtcccagcgcacatgttcggcgaggcggggcctgcgagcgggccaccgagaatcggacgg ggtagtctcaagctggcctgctctggtgcctggcctcgcgccgtgtatcgccccgccctgggcggcaaggctggcccggtcggcaccagttgcgtgagcggaaagatggccgcttcccggccctgctgcagggagctcaaaatggaggacgcggcgctcgggagagcgggtgagtcacccacacaaaggaaaagggcctttccgtcctcagccgtcgcttcatgtgactccacgg

atggagtttccccacactgagtgggtggagactgaagttaggccagcttggcacttgatgtaattctccttggaatttgccctttttgagtttggatcttggttcattctcaagcctcagacagtggttcaaagtttttttcttccatttcaggtgtcgtgagctagaATGGGGTGGTCTCCGTCCTGTCCAGGCCCAGGCCCAGAGCGATTGCAGTTGCTCTACGG TGAGCCCGGGCGTGCTGGCAGGGATCGTGATGGGAGACCTGGTGCTGACAGT GCTCATTGCCCTGGCCGTGTACTTCCTGGGCCGGCTGGTCCCTCGGGGGCGAG GGGCTGCGGAGGCAGCGGAAACAGCGTATCACTGAGACCGAGTCGC CTTATCAGGAGCTCCAGGGTCAGAGGTCGGATGTCTACAGCGACCTCAACAC ACAGAGGCCGTATTACAAAgTCGAGGGCGGCGGAGAGGGCAGAGGAAGTCT TCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTAGGatggccttaccagtgaccg cettgetcetgecgetggecttgetgetceaegeegeegggatceGACATCCAGATGACACAGACTACATCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGCAGGGC AAGTCAGGACATTAGTAAATATTTAAATTGGTATCAGCAGAAACCAGATGGA ACTGTTAAACTCCTGATCTACCATACATCAAGATTACACTCAGGAGTCCCATC AAGGTTCAGTGGCAGTGGGTCTGGAACAGATTATTCTCTCACCATTAGCAAC CTGGAGCAAGAAGATATTGCCACTTACTTTTGCCAACAGGGTAATACGCTTCC GTACACGTTCGGAGGGGGGACTAAGTTGGAAATAACAGGTGGCGGTGGCTCG GGCGGTGGTGGGTGGCGGCGGATCTGAGGTGAAACTGCAGGAGTCA GGACCTGGCCTGGCGCCCTCACAGAGCCTGTCCGTCACATGCACTGTCTC AGGGGTCTCATTACCCGACTATGGTGTAAGCTGGATTCGCCAGCCTCCACGA AAGGGTCTGGAGTGGCTGGGAGTAATATGGGGTAGTGAAACCACATACTATA ATTCAGCTCTCAAATCCAGACTGACCATCATCAAGGACAACTCCAAGAGCCA AGTTTTCTTAAAAATGAACAGTCTGCAAACTGATGACACAGCCATTTACTACT GTGCCAAACATTATTACTACGGTGGTAGCTATGCTATGGACTACTGGGGTCA AGGAACCTCAGTCACCGTCTCCTCAgctagcACGCGTggtggcggaggttctggaggtgggggttctacggttctgttactcactcccctatcagttgtcagctcccagtgaccctctggacatcgtcatcacaggtctatatgagaaacctaccat ctatc cagg gagg gagg cccat gaacg taggt tetet geagg gee caa gg tea acgg aa cattc cag gee gactt tetet geagg gagge gagge caa gg tea acgg aa cattc cag gee gactt tetet geagg gagge gagg gagge gagg gaggcctctgggccctgccacccacggaggaacctacagatgcttcggctctttccgtgactctccctatgagtggtcaaactcgagtgaaaaatgctgctgtaatggaccaagagcctgcagggaacagaacagtgaacagcgaggattctgatgaacaagaccatcaggaggtgtcatacgcataaGtcgacaatcaacctctggattacaaaatttgtgaaagattgactggtattcttaactatgttgctccttttacgctatgtggatacgctgctttaatgcctttgtatcatgctattgcttcccgtatggctttcattttctcctccttgtataaatcctggttgctgtctctttatgaggagttgtggcccgttgtcaggcaacgtggcgtggtgtgcactgtgtttgctgacgcaacccccactggttgggcccgctgctggacaggggctcggctgttgggcactgacaattccgtggtgttgtcggggaagctgacgtcctttccatggctgctgcctgctgccggctcttcgcgtcttcgccttcgcctcagacgagtcggatctcccttttgggccgcctccccgcct gga attegageteggtacettta agacea atgaceta caaggeaget gtagatettagee acttttta aa agaa aaggggggacetgagatettagee acttttta actt general agacea atgacet general actt general agacea at galler agacet grant grantgaagggcta att cactcccaacgaagacaagatct gcttttt gctt gtactgggtctctct ggttagaccagatct gagcct gggagaccagatct gagcct gggagaccagatct gagcct gggagaccagatct gagcct gagcagatct gagcct gagcagatct gagcagatctctctctggctaactagggaacccactgcttaagcctcaataaagcttgccttgagtgcttcaagtagtgtgtgcccgtctgttgtgtg

Secuencia de CAR quimérico CD19-PD1 (SEQ ID NO: 5)

TGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGG ${\tt CCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCC}$ GCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTC ACCGTCATCACCGAAACGCGCGAGACGAAAGGGCCTCGTGATACGCCTATTT TTATAGGTTAATGTCATGATAATAATGGTTTCTTAGACGTCAGGTGGCACTTT TCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAA ATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGA AAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTT TGCGGCATTTTGCCTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAA AAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATG ATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGC CGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTT GAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAG CTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGG ACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTG CGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAAT AGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTT CCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCG CGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTT ATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATC GCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTT ACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCT AGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTT TCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAG

CCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGT AACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGT AGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTG CTAATCCTGTTACCAGTGGCTGCCAGTGGCGATAAGTCGTGTCTTACCGG GTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACG GGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA GATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAA AGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGA GGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGC ATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGC CTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTA TTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCG CAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCC TCTCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCG TTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAA TTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACGC CAAGCTCTAATACGACTCACTATAGGGAGACAAGCTTGCATGCCTGCAGGTC GACATGGCCTTACCAGTGACCGCCTTGCTCCTGCCGCTGGCCTTGCTCCA CGCCGCCAGGCCGGACATCCAGATGACACAGACTACATCCTCCCTGTCTGCC TCTCTGGGAGACAGAGTCACCATCAGTTGCAGGGCAAGTCAGGACATTAGTA AATATTTAAATTGGTATCAGCAGAAACCAGATGGAACTGTTAAACTCCTGAT CTACCATACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGT GGGTCTGGAACAGATTATTCTCTCACCATTAGCAACCTGGAGCAAGAAGATA TTGCCACTTACTTTTGCCAACAGGGTAATACGCTTCCGTACACGTTCGGAGGG GGGACTAAGTTGGAAATAACAGGTGGCGGTGGCTCGGGCGGTGGTGGTCG GGTGGCGGCGGATCTGAGGTGAAACTGCAGGAGTCAGGACCTGGCCTGGTGG CGCCCTCACAGAGCCTGTCCGTCACATGCACTGTCTCAGGGGTCTCATTACCC GACTATGGTGTAAGCTGGATTCGCCAGCCTCCACGAAAGGGTCTGGAGTGGC TGGGAGTAATATGGGGTAGTGAAACCACATACTATAATTCAGCTCTCAAATC CAGACTGACCATCATCAAGGACAACTCCAAGAGCCAAGTTTTCTTAAAAATG AACAGTCTGCAAACTGATGACACAGCCATTTACTACTGTGCCAAACATTATTA ${\tt CTACGGTGGTAGCTATGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACC}$ ggcctgctgggcagcctggtgctgctagtctgggtcctggccgtcatctgctcccgggccgcacgagggacaataggagcca ggegeaceggecagecetgaaggaggaceetcageegtgetgtgttetetgtggactatggggagetggattteeagtgg cgagagaagaccccggagcccccgtgccctgtgtccctgagcagacggagtatgccaccattgtctttcctagcggaatggg caceteateceegeegeagggeteagetgaeggeeeteggagtgeeeageeactgaggeetgaggatggaeactgetet **GTGGCGCC**

DAP12-T2A-SS1-KIRS2 (SEQ ID No: 6) ADN de 1464 pb

CARACTERÍSTICAS	Localización
DAP12	1339

Secuencia T2A	352408
SS1-scFv	4811200
Enlazador GS	12071236
Secuencia derivada de KIR2DS2	12371464

ATGGGGGGAC TTGAACCCTG CAGCAGGTTC CTGCTCCTGC CTCTCCTGCT GGCTGTAAGT GGTCTCCGTC CTGTCCAGGT CCAGGCCCAG AGCGATTGCA GTTGCTCTAC GGTGAGCCCG GGCGTGCTGG CAGGGATCGT GATGGGAGAC CTGGTGCTGA CAGTGCTCAT TGCCCTGGCC GTGTACTTCC TGGGCCGGCT GGTCCCTCGG GGGCGAGGG CTGCGGAGGC AGCGACCCGG AAACAGCGTA TCACTGAGAC CGAGTCGCCT TATCAGGAGC TCCAGGGTCA GAGGTCGGAT GTCTACAGCG ACCTCAACAC ACAGAGGCCG TATTACAAAG TCGAGGGCGG CGGAGAGGGCC AGAGGAAGTC TTCTAACATG CGGTGACGTG GAGGAGAATC CCGGCCCTAG GATGGCCTTA CCAGTGACCG CCTTGCTCCT GCCGCTGGCC TTGCTGCTCC ACGCCGCCAG GCCGGGATCC CAGGTACAAC TGCAGCAGTC TGGGCCTGAG CTGGAGAAGC CTGGCGCTTC AGTGAAGATA TCCTGCAAGG CTTCTGGTTA CTCATTCACT GGCTACACCA TGAACTGGGT GAAGCAGAGC CATGGAAAGA GCCTTGAGTG GATTGGACTT ATTACTCCTT ACAATGGTGC TTCTAGCTAC AACCAGAAGT TCAGGGGCAA GGCCACATTA ACTGTAGACA AGTCATCCAG CACAGCCTAC ATGGACCTCC TCAGTCTGAC ATCTGAAGAC TCTGCAGTCT ATTTCTGTGC AAGGGGGGGT TACGACGGGA GGGGTTTTGA CTACTGGGGC CAAGGGACCA CGGTCACCGT CTCCTCAGGT GGAGGCGGTT CAGGCGGCGG TGGCTCTAGC GGTGGTGGAT CGGACATCGA GCTCACTCAG TCTCCAGCAA TCATGTCTGC ATCTCCAGGG GAGAAGGTCA CCATGACCTG CAGTGCCAGC TCAAGTGTAA GTTACATGCA CTGGTACCAG CAGAAGTCAG GCACCTCCCC CAAAAGATGG ATTTATGACA CATCCAAACT GGCTTCTGGA GTCCCAGGTC GCTTCAGTGG CAGTGGGTCT GGAAACTCTT ACTCTCTCAC AATCAGCAGC GTGGAGGCTG AAGATGATGC AACTTATTAC TGCCAGCAGT GGAGTAAGCA CCCTCTCACG TACGGTGCTG GGACAAAGTT GGAAATCAAA GCTAGCGGTG GCGGAGGTTC TGGAGGTGGG GGTTCCTCAC CCACTGAACC AAGCTCCAAA ACCGGTAACC CCAGACACCT GCATGTTCTG ATTGGGACCT CAGTGGTCAA AATCCCTTTC ACCATCCTCC TCTTCTTCT CCTTCATCGC TGGTGCTCCA ACAAAAAAA TGCTGCTGTA ATGGACCAAG AGCCTGCAGG GAACAGAACA GTGAACAGCG AGGATTCTGA TGAACAAGAC CATCAGGAGG TGTCATACGC ATAA

5 DAP12-T2A-SS1-KIRS2 (SEQ ID No: 7) Proteína de 488 aa

CARACTERÍSTICAS	Localización
DAP12	1113
Secuencia T2A	118136
Péptido señal de CD8 alfa	138158
SS1-scFv	161400
Enlazador GS	403412
Secuencia derivada de KIR2DS2	413487

Secuencia

MGGLEPCSRF LLLPLLLAVS GLRPVQVQAQ SDCSCSTVSP GVLAGIVMGD LVLTVLIALA VYFLGRLVPR GRGAAEAATR KQRITETESP YQELQGQRSD VYSDLNTQRP YYKVEGGGEG RGSLLTCGDV EENPGPRMAL PVTALLLPLA LLLHAARPGS QVQLQQSGPE LEKPGASVKI SCKASGYSFT GYTMNWVKQS HGKSLEWIGL ITPYNGASSY NQKFRGKATL TVDKSSSTAY MDLLSLTSED SAVYFCARGG YDGRGFDYWG QGTTVTVSSG GGGSGGGGSS GGGSDIELTQ SPAIMSASPG EKVTMTCSAS SSVSYMHWYQ QKSGTSPKRW IYDTSKLASG VPGRFSGSGS GNSYSLTISS VEAEDDATYY CQQWSKHPLT YGAGTKLEIK ASGGGGSGGG GSSPTEPSSK TGNPRHLHVL IGTSVVKIPF TILLFFLLHR WCSNKKNAAV MDQEPAGNRT VNSEDSDEQD HQEVSYA

FCERG-T2A-SS1-TNKp46 (SEQ ID No: 8) ADN de 1365 pb

CARACTERÍSTICAS	Localización
FCERG	1258
T2A	271327
Péptido señal de CD8 alfa	331393
SS1-scFv	4001119
Enlazador GS	11261155
Secuencia derivada de NKp46	11561365

Secuencia

ATGATTCCAG CAGTGGTCTT GCTCTTACTC CTTTTGGTTG AACAAGCAGC GGCCCTGGGA GAGCCTCAGC TCTGCTATAT CCTGGATGCC ATCCTGTTTC TGTATGGAAT TGTCCTCACC CTCCTCTACT GCCGACTGAA GATCCAAGTG CGAAAGGCAG CTATAACCAG CTATGAGAAA TCAGATGGTG TTTACACGGG CCTGAGCACC AGGAACCAGG AGACTTACGA GACTCTGAAG CATGAGAAAC CACCACAGTC CGGAGGCGGC GGAGAGGGCA GAGGAAGTCT TCTAACATGC GGTGACGTGG AGGAGAATCC CGGCCCTAGG ATGGCCTTAC CAGTGACCGC CTTGCTCCTG CCGCTGGCCT TGCTGCTCCA CGCCGCCAGG CCGGGATCCC AGGTACAACT GCAGCAGTCT GGGCCTGAGC TGGAGAAGCC TGGCGCTTCA GTGAAGATAT CCTGCAAGGC TTCTGGTTAC TCATTCACTG GCTACACCAT GAACTGGGTG AAGCAGAGCC ATGGAAAGAG CCTTGAGTGG ATTGGACTTA TTACTCCTTA CAATGGTGCT TCTAGCTACA ACCAGAAGTT CAGGGGCAAG GCCACATTAA CTGTAGACAA GTCATCCAGC ACAGCCTACA TGGACCTCCT CAGTCTGACA TCTGAAGACT CTGCAGTCTA TTTCTGTGCA AGGGGGGGTT ACGACGGGAG GGGTTTTGAC TACTGGGGCC AAGGGACCAC GGTCACCGTC TCCTCAGGTG GAGGCGGTTC AGGCGGCGGT GGCTCTAGCG GTGGTGGATC GGACATCGAG CTCACTCAGT CTCCAGCAAT CATGTCTGCA TCTCCAGGGG AGAAGGTCAC CATGACCTGC AGTGCCAGCT CAAGTGTAAG TTACATGCAC TGGTACCAGC AGAAGTCAGG CACCTCCCC AAAAGATGGA TTTATGACAC ATCCAAACTG GCTTCTGGAG TCCCAGGTCG CTTCAGTGGC AGTGGGTCTG GAAACTCTTA CTCTCTCACA ATCAGCAGCG TGGAGGCTGA AGATGATGCA ACTTATTACT GCCAGCAGTG GAGTAAGCAC CCTCTCACGT ACGGTGCTGG GACAAAGTTG GAAATCAAAG CTAGCGGTGG CGGAGGTTCT GGAGGTGGGG GTTCCTTAAC CACAGAGACG GGACTCCAGA AAGACCATGC CCTCTGGGAT CACACTGCCC AGAATCTCCT TCGGATGGGC CTGGCCTTTC TAGTCCTGGT GGCTCTAGTG TGGTTCCTGG TTGAAGACTG GCTCAGCAGG AAGAGGACTA GAGAGCGAGC CAGCAGAGCT TCCACTTGGG AAGGCAGGAG AAGGCTGAAC ACACAGACTC TTTGA

5

FCERG-T2A-SS1-TNKp46 (SEQ ID No: 9) Proteína de 455 aa

CARACTERÍSTICAS	Localización
FCERG	186
T2A	91109
Péptido señal de CD8 añfa	111131
SS1-scFv	134373
Enlazador GS	376385
Secuencia derivada de NKp46	186454

Secuencia

MIPAVVLLLL LLVEQAAALG EPQLCYILDA ILFLYGIVLT LLYCRLKIQV RKAAITSYEK SDGVYTGLST RNQETYETLK HEKPPQSGGG GEGRGSLLTC GDVEENPGPR MALPVTALLL PLALLLHAAR PGSQVQLQQS GPELEKPGAS VKISCKASGY SFTGYTMNWV KQSHGKSLEW IGLITPYNGA SSYNQKFRGK ATLTVDKSSS TAYMDLLSLT SEDSAVYFCA RGGYDGRGFD YWGQGTTVTV SSGGGGSGGG GSSGGGSDIE LTQSPAIMSA SPGEKVTMTC SASSSVSYMH WYQQKSGTSP KRWIYDTSKL ASGVPGRFSG SGSGNSYSLT ISSVEAEDDA TYYCQQWSKH PLTYGAGTKL EIKASGGGGS GGGGSLTTET GLQKDHALWD HTAQNLLRMG LAFLVLVALV

WFLVEDWLSR KRTRERASRA STWEGRRRLN TQTL

5 DAP12-T2A-CD19-KIRS2 (SEQ ID No: 10) ADN de 1470 pb

CARACTERÍSTICAS	Localización
DAP12	1339
Secuencia T2A	352408
CD19-scFv	481481
Enlazador GS	12131242
Secuencia derivada de KIR2DS2	12431470

Secuencia

ATGGGGGGAC TTGAACCCTG CAGCAGGTTC CTGCTCCTGC CTCTCCTGCT GGCTGTAAGT GGTCTCCGTC CTGTCCAGGT CCAGGCCCAG AGCGATTGCA GTTGCTCTAC GGTGAGCCCG GGCGTGCTGG CAGGGATCGT GATGGGAGAC CTGGTGCTGA CAGTGCTCAT TGCCCTGGCC GTGTACTTCC TGGGCCGGCT GGTCCCTCGG GGGCGAGGG CTGCGGAGGC AGCGACCCGG AAACAGCGTA TCACTGAGAC CGAGTCGCCT TATCAGGAGC TCCAGGGTCA GAGGTCGGAT GTCTACAGCG ACCTCAACAC ACAGAGGCCG TATTACAAAG TCGAGGGCGG CGGAGAGGGC AGAGGAAGTC TTCTAACATG CGGTGACGTG GAGGAGAATC CCGGCCCTAG GATGGCCTTA CCAGTGACCG CCTTGCTCCT GCCGCTGGCC TTGCTGCTCC ACGCCGCCAG GCCGGGATCC GACATCCAGA TGACACAGAC TACATCCTCC CTGTCTGCCT CTCTGGGAGA CAGAGTCACC ATCAGTTGCA GGGCAAGTCA GGACATTAGT AAATATTTAA ATTGGTATCA GCAGAAACCA GATGGAACTG TTAAACTCCT GATCTACCAT ACATCAAGAT TACACTCAGG AGTCCCATCA AGGTTCAGTG GCAGTGGGTC TGGAACAGAT TATTCTCTCA CCATTAGCAA CCTGGAGCAA GAAGATATTG CCACTTACTT TTGCCAACAG GGTAATACGC TTCCGTACAC GTTCGGAGGG GGGACTAAGT TGGAAATAAC AGGTGGCGGT GGCTCGGGCG GTGGTGGGTC GGGTGGCGGC TCCGTCACAT GCACTGTCTC AGGGGTCTCA TTACCCGACT ATGGTGTAAG CTGGATTCGC CAGCCTCCAC GAAAGGGTCT GGAGTGGCTG GGAGTAATAT GGGGTAGTGA AACCACATAC TATAATTCAG CTCTCAAATC CAGACTGACC ATCATCAAGG ACAACTCCAA GAGCCAAGTT TTCTTAAAAA TGAACAGTCT GCAAACTGAT GACACAGCCA TTTACTACTG TGCCAAACAT TATTACTACG GTGGTAGCTA TGCTATGGAC TACTGGGGTC AAGGAACCTC AGTCACCGTC TCCTCAGCTA GCGGTGGCGG AGGTTCTGGA GGTGGGGGTT CCTCACCCAC TGAACCAAGC TCCAAAACCG GTAACCCCAG ACACCTGCAT GTTCTGATTG GGACCTCAGT GGTCAAAATC CCTTTCACCA TCCTCCTCTT CTTTCTCCTT CATCGCTGGT GCTCCAACAA AAAAAATGCT GCTGTAATGG ACCAAGAGCC TGCAGGGAAC AGAACAGTGA ACAGCGAGGA TTCTGATGAA CAAGACCATC AGGAGGTGTC ATACGCATAA

10

DAP12-T2A-CD19-KIRS2 (SEQ ID No: 611) Proteína de 489 aa

CARACTERÍSTICAS	Localización	
DAP12	1113	
Secuencia T2A	118136	
Péptido señal de CD8 alfa	138158	

CD19-scFv	161402
Enlazador GS	405414
Secuencia derivada de KIR2DS2	415489

Secuencia

15

MGGLEPCSRF LLLPLLLAVS GLRPVQVQAQ SDCSCSTVSP GVLAGIVMGD LVLTVLIALA VYFLGRLVPR GRGAAEAATR KQRITETESP YQELQGQRSD VYSDLNTQRP YYKVEGGGEG RGSLLTCGDV EENPGPRMAL PVTALLLPLA LLLHAARPGS DIQMTQTTSS LSASLGDRVT ISCRASQDIS KYLNWYQQKP DGTVKLLIYH TSRLHSGVPS RFSGSGSGTD YSLTISNLEQ

EDIATYFCQQ GNTLPYTFGG GTKLEITGGG GSGGGGSGGG GSEVKLQESG PGLVAPSQSL SVTCTVSGVS LPDYGVSWIR QPPRKGLEWL GVIWGSETTY YNSALKSRLT IIKDNSKSQV FLKMNSLQTD DTAIYYCAKH YYYGGSYAMD YWGQGTSVTV SSASGGGGSG GGGSSPTEPS SKTGNPRHLH VLIGTSVVKI PFTILLFFLL HRWCSNKKNA AVMDQEPAGN RTVNSEDSDE QDHQEVSYA*

5 Dominio intracelular 4-1BB (secuencia de aminoácidos) (SEQ ID NO: 12)
KRGRKKLLYIFKQPFMRPVQTTQEEDGSCRFPEEEEGGCEL
C

Dominio CD3 zeta (secuencia de aminoácidos) (SEQ ID NO: 13)

RVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRK NPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDAL HMQALPPR

Dominio citoplasmático de PD1 (SEQ ID NO: 14) aminoácidos 192-288

CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPCVPEQT EYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL

10
Dominio citoplasmático de CTLA-4 (SEQ ID NO: 15) aminoácidos 118-223
AVSLSKMLKKRSPLTTGVYVKMPPTEPECEKQFQPYFIPIN

Traducción de la bisagra IgG4H (SEQ ID NO. 49) UNA lineal de 230 aa

ESKYGPPCPP CPAPEFLGGP SVFLFPPKPK DTLMISRTPE VTCVVVDVSQ EDPEVQFNWYVDGVEVHNAK TKPREEQFNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKGL PSSIEKTISK AKGQPREPQV YTLPPSQEEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL DSDGSFFLYS RLTVDKSRWQ EGNVFSCSVM HEALHNHYTQ KSLSLSLGKM

Traducción de la bisagra IgGDH (SEQ ID NO. 50) UNA lineal de 282 aa

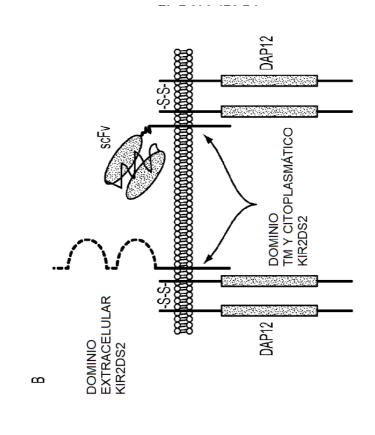
ES 2 769 574 T3

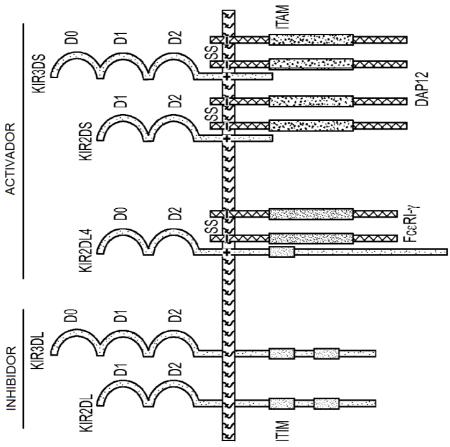
RWPESPKAQA SSVPTAQPQA EGSLAKATTA PATTRNTGRG GEEKKKEKEK EEQEERETKT PECPSHTQPL GVYLLTPAVQ DLWLRDKATF TCFVVGSDLK DAHLTWEVAG KVPTGGVEEG LLERHSNGSQ SQHSRLTLPR SLWNAGTSVT CTLNHPSLPP QRLMALREPA AQAPVKLSLN LLASSDPPEA ASWLLCEVSG FSPPNILLMW LEDQREVNTS GFAPARPPPQ PGSTTFWAWS VLRVPAPPSP QPATYTCVVS HEDSRTLLNA SRSLEVSYVT DH

Bisagra CD8 humana (SEQ ID NO. 51) Una lineal de 43 aa 10-feb-2009 TTTPAPRPPT PAPTIASQPL 5 SLRPEACRPAAGGAVHTRGL DFA

10			
15			
20			
25			
30			
35			
40			
45			
50			
55			

REIVINDICACIONES


- 1. Un receptor de antígeno quimérico de tipo inmunoglobulina, purificado, o no natural, de células asesinas activadoras (actKIR-CAR), que comprende:
- 5 (i) un dominio de unión a antígeno extracelular derivado de una molécula de anticuerpo o que comprende un andamio no-anticuerpo que tiene la capacidad de unirse al antígeno diana en una célula;
 - (ii) un dominio transmembrana de actKIR que puede interactuar con el dominio transmembrana de DAP12; y (iii) un dominio citoplasmático.
- 10 2. El actKIR-CAR, según la reivindicación 1, en el que el dominio transmembrana de actKIR comprende un resto cargado positivamente y/o el dominio citoplasmático es un dominio citoplasmático de KIR.
 - 3. El actKIR-CAR, según la reivindicación 1 o 2, en el que el actKIR-CAR comprende un dominio D, D1 o D2 de KIR, o el actKIR-CAR no comprende un dominio D de KIR.
 - 4. El actKIR-CAR, según cualquiera de las reivindicaciones 1-3, en el que el actKIR-CAR comprende un dominio transmembrana KIR2DS2 y/o un dominio citoplasmático KIR2DS2.
- 5. El actKIR-CAR, según cualquiera de las reivindicaciones 1-4, que comprende además un dominio bisagra 20 extracelular que comprende la bisagra extracelular de CD8-alfa humana o una bisagra de inmunoglobulina humana.
 - 6. El actKIR-CAR, según cualquiera de las reivindicaciones 1-5, en el que el dominio de unión a antígeno se une a un antígeno presente en una célula de cáncer.
- 25 7. El actKIR-CAR, según cualquiera de las reivindicaciones 1-6, en el que el dominio de unión al antígeno se une a: (i) receptor de folato (FRa), mesotelina, EGFRVIII, IL-13ra, CD123, CD19, CD33, BCMA, GD2, CLL -1, CA-IX, MUC1, HER2, y cualquier combinación de los mismos; o (ii) CD19 o mesotelina.
- 30 8. El actKIR-CAR, según cualquiera de las reivindicaciones anteriores, en el que el dominio de unión a antígeno extracelular derivado de una molécula de anticuerpo comprende un scFv o dominio VHH de camélidos.
 - 9. Un ácido nucleico que comprende:

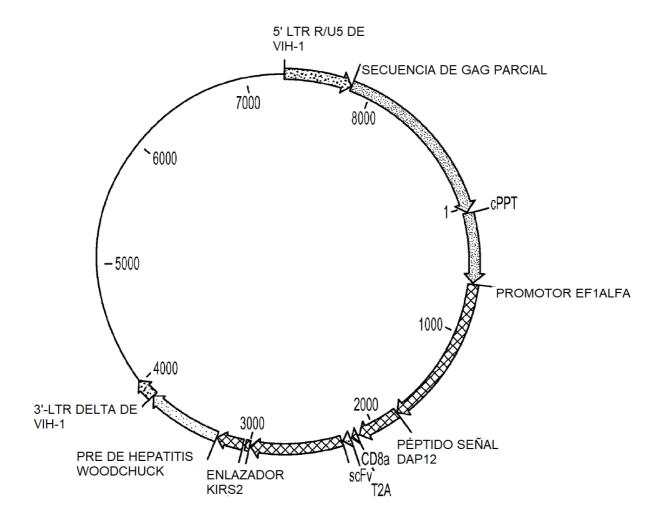
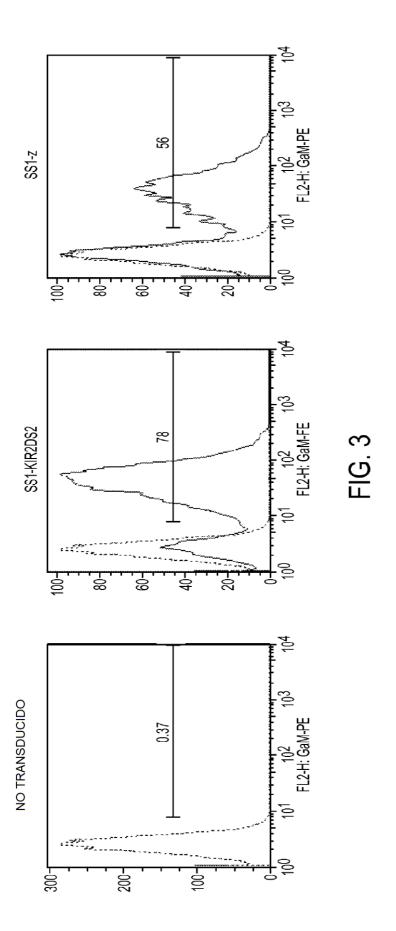
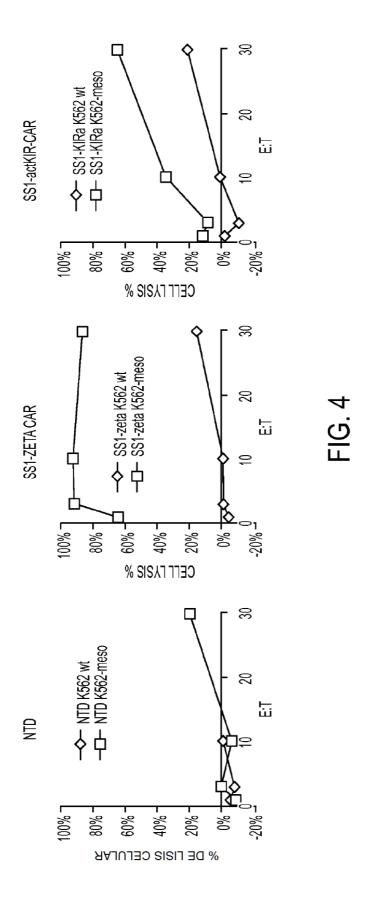
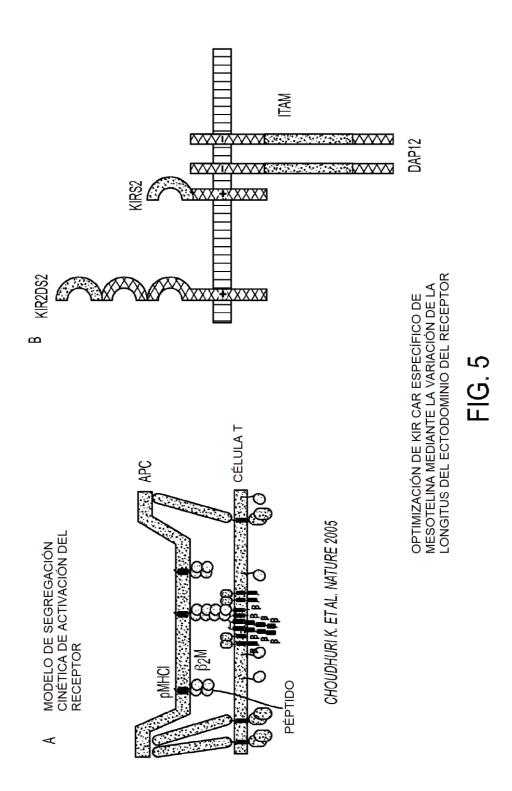
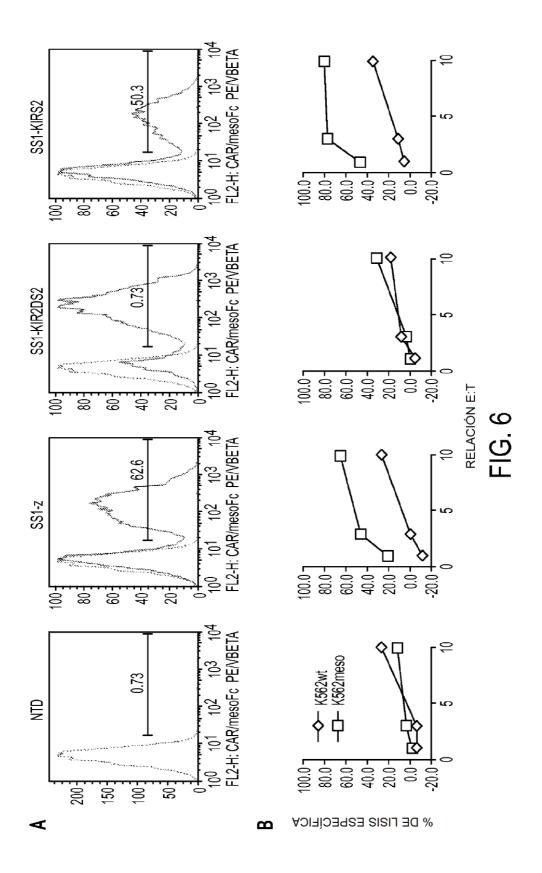

- (a) una secuencia que codifica un actKIR-CAR, según cualquiera de las reivindicaciones anteriores.
- El ácido nucleico, según de la reivindicación 9, en el que el ácido nucleico comprende además:
 (b) una secuencia que codifica un dominio de señalización intracelular que comprende un motivo ITAM,
 - en el que el dominio de señalización intracelular puede producir una señal de activación.
- 40 11. El ácido nucleico, según la reivindicación 10, en el que la secuencia que codifica el dominio de señalización intracelular codifica un polipéptido DAP 12 que comprende un dominio de señalización intracelular DAP 12.
- 12. El ácido nucleico, según la reivindicación 10 o 11, en el que cada uno de (a) y (b) está presente en la misma molécula de ácido nucleico o en el que cada uno de (a) y (b) está presente en diferentes moléculas de ácido 45 nucleico.
 - 13. El ácido nucleico, según cualquiera de las reivindicaciones 9-12, que comprende además una secuencia que codifica un TCAR.
- 50 14. Una célula citotóxica que comprende un polipéptido DAP12 y:
 - (i) un actKIR-CAR, según cualquiera de las reivindicaciones 1-8; o
 - (ii) un ácido nucleico, según cualquiera de las reivindicaciones 9-13.
 - en la que el actKIR-CAR puede interactuar con y promover la señalización del polipéptido DAP12.
- 55 15. La célula citotóxica, según la reivindicación 14, en la que la célula es una célula T o célula NK.
 - 16. Un procedimiento de fabricación de la célula citotóxica, según la reivindicación 14 o 15, que comprende introducir en una célula citotóxica el ácido nucleico, según cualquiera de las reivindicaciones 9-13.
- 60 17. Una célula citotóxica, según la reivindicación 14 o 15, para uso en terapia.
 - 18. Una célula citotóxica, según la reivindicación 14 o 15 para uso en un procedimiento de tratamiento de cáncer en un mamífero, en la que el procedimiento comprende administrar al mamífero una cantidad eficaz de la célula.
- 65 19. La célula para uso, según la reivindicación 17 o 18, en la que la célula es autóloga o alogénica.

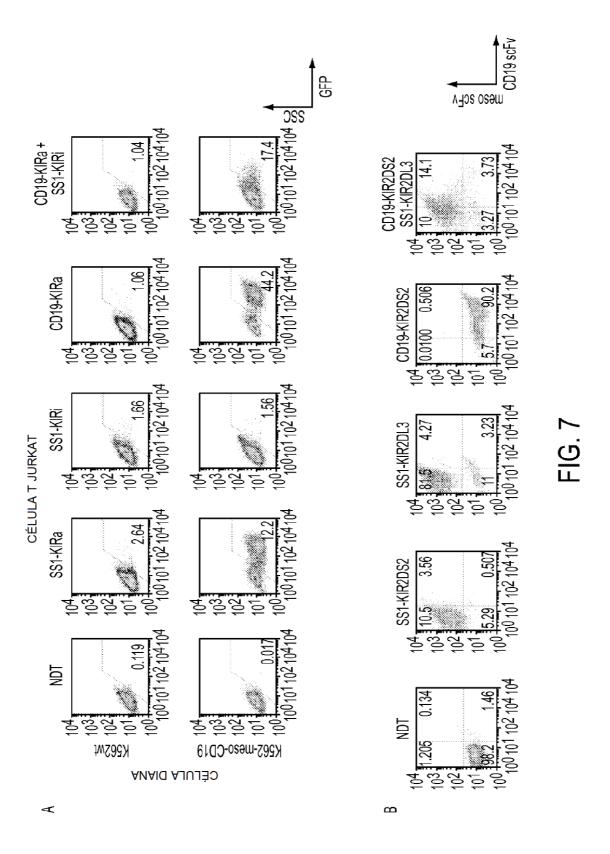
ES 2 769 574 T3

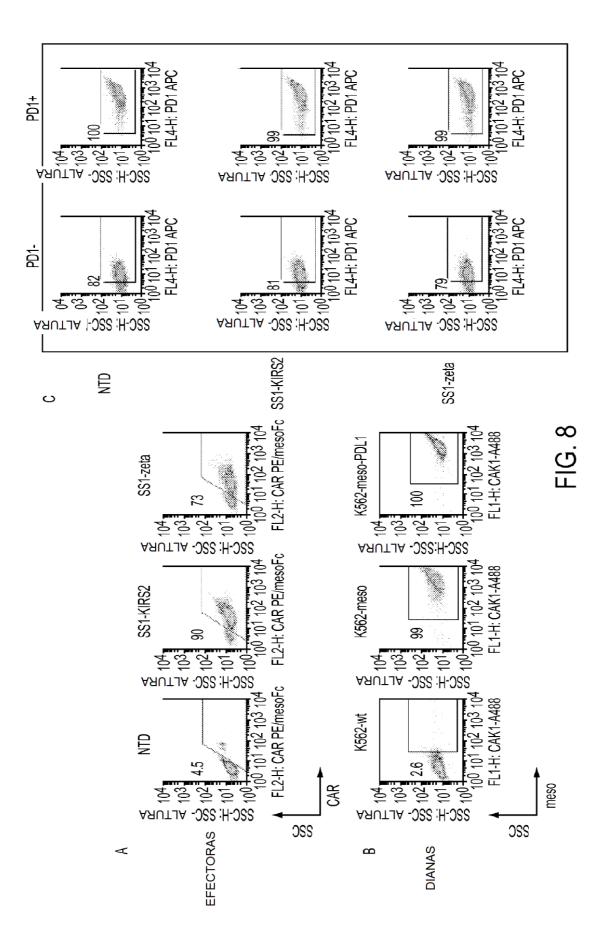
- 20. La célula para uso, según la reivindicación 18 o 19, en la que el mamífero es un ser humano.
- 21. La célula para uso, según la reivindicación 20, en la que el ser humano se trata adicionalmente con un agente anti-citocina para un efecto secundario del tratamiento con la célula citotóxica.
- 22. La célula para uso, según la reivindicación 21, en la que el agente anti-citocina es un antagonista del factor de necrosis tumoral, un antagonista de IL-6, un antagonista del receptor de IL-6, o un corticosteroide.

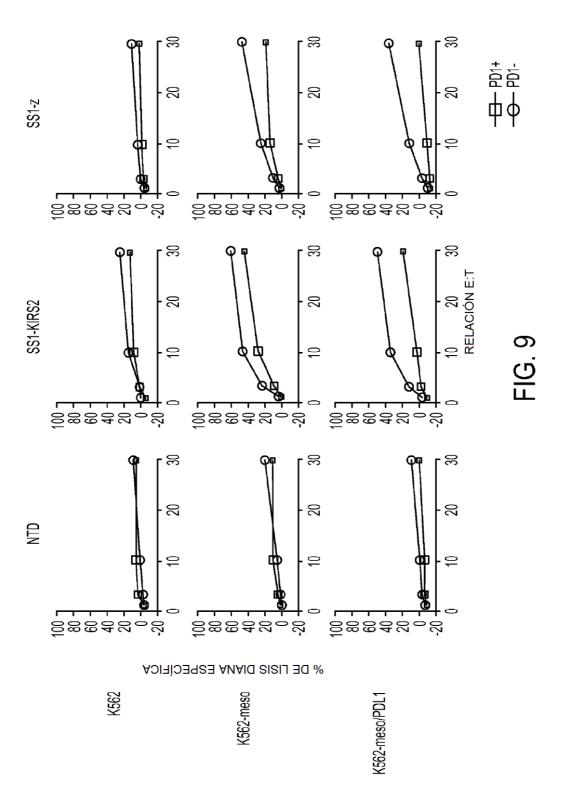
10

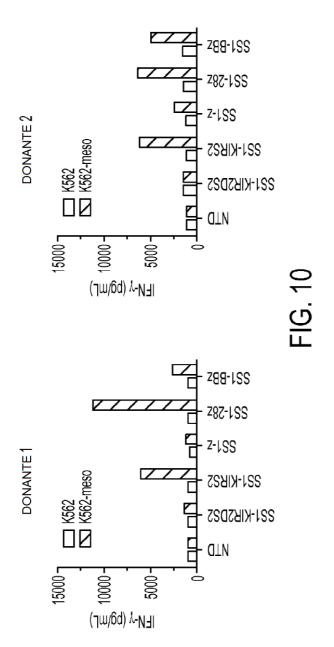
<u>E</u>

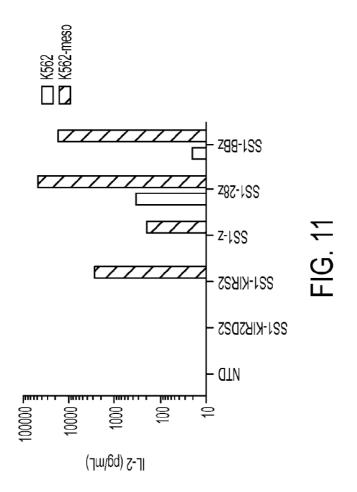






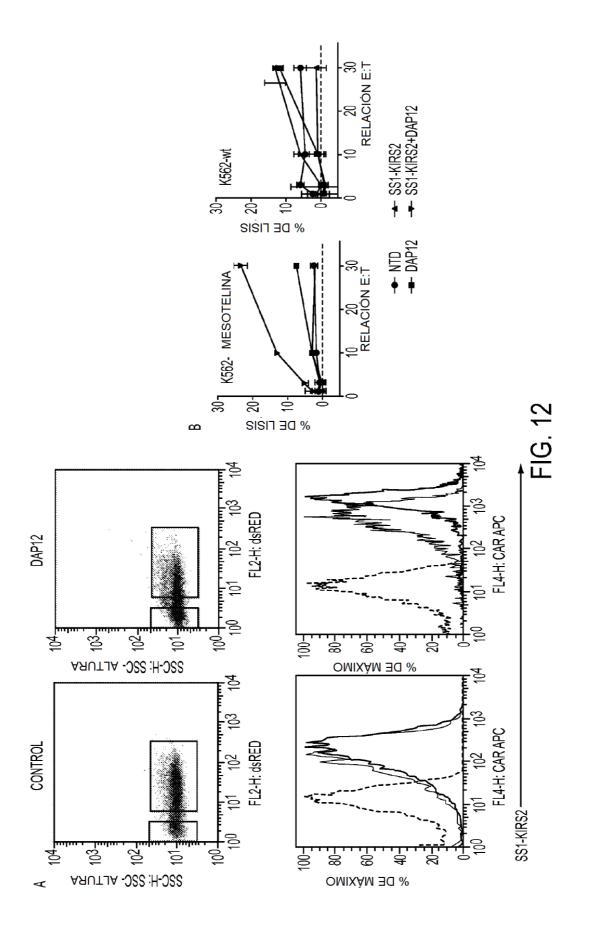

FIG. 2

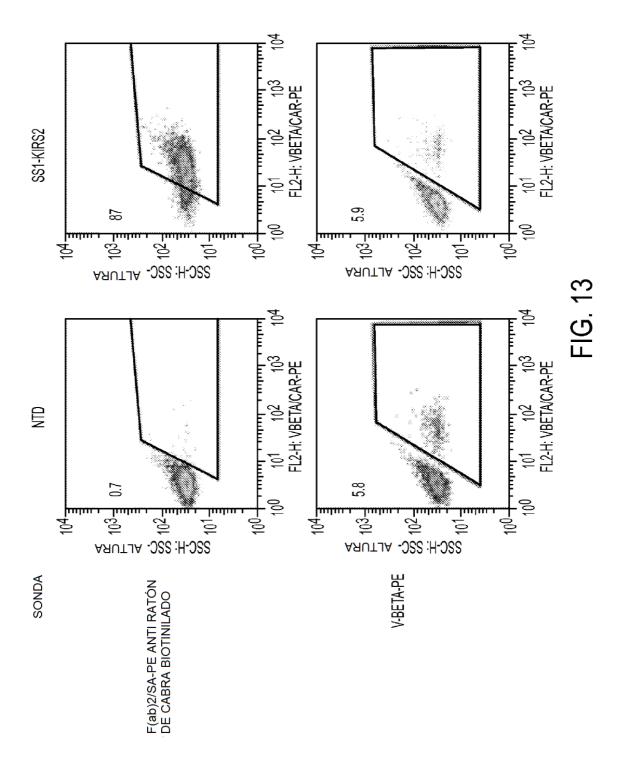


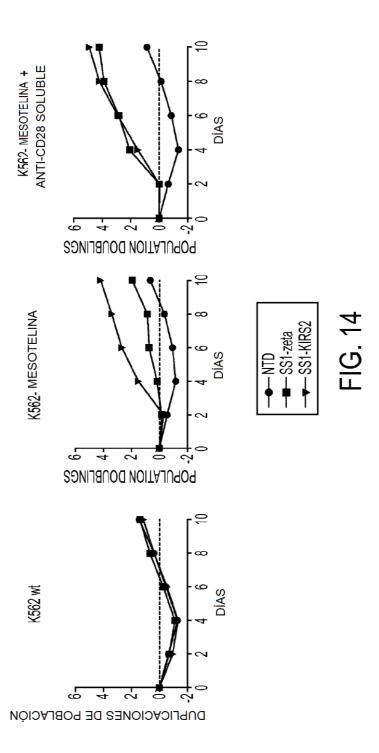


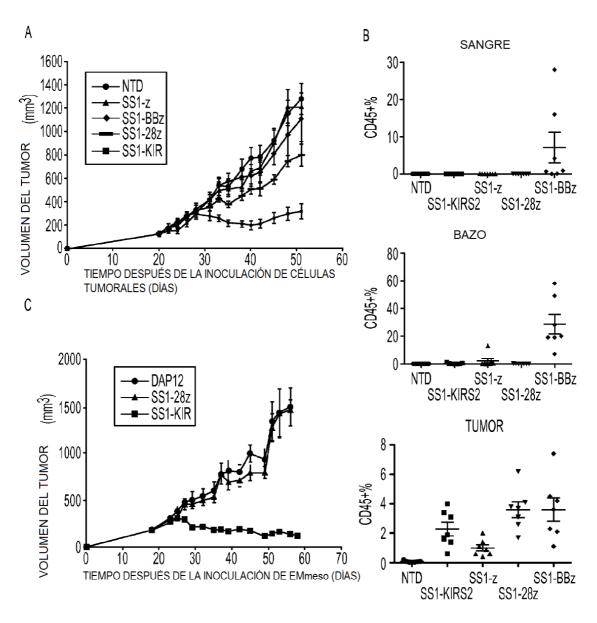
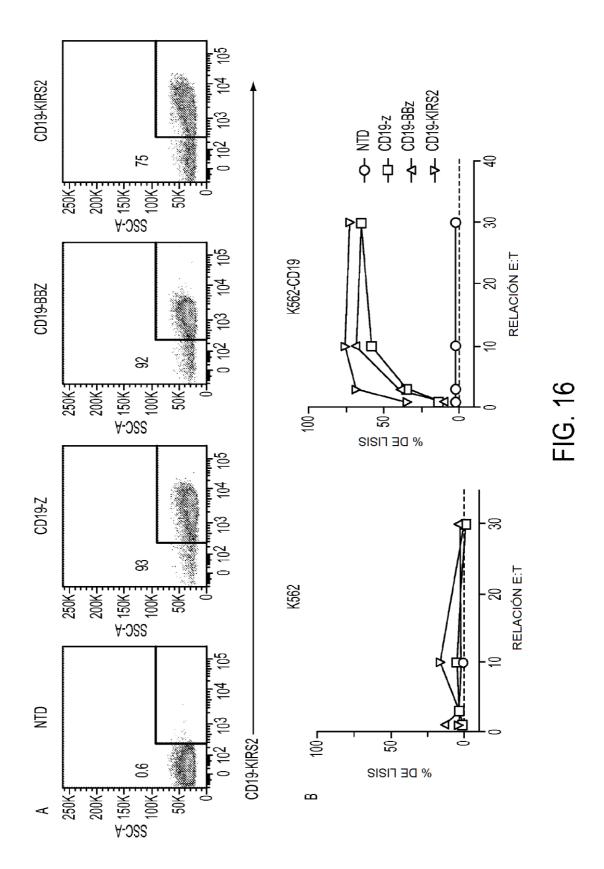
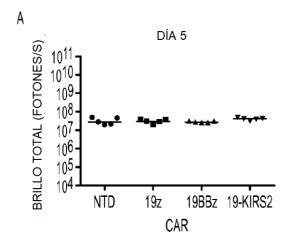
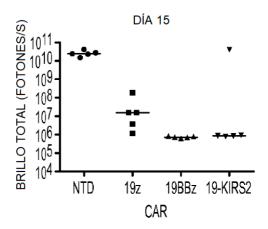
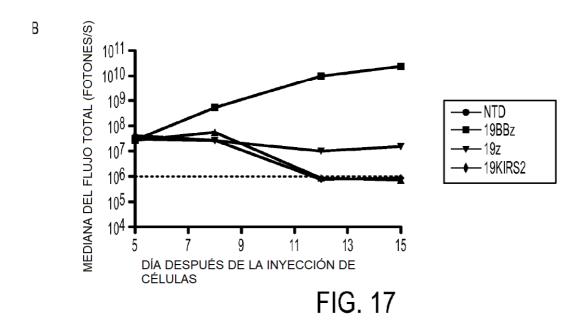


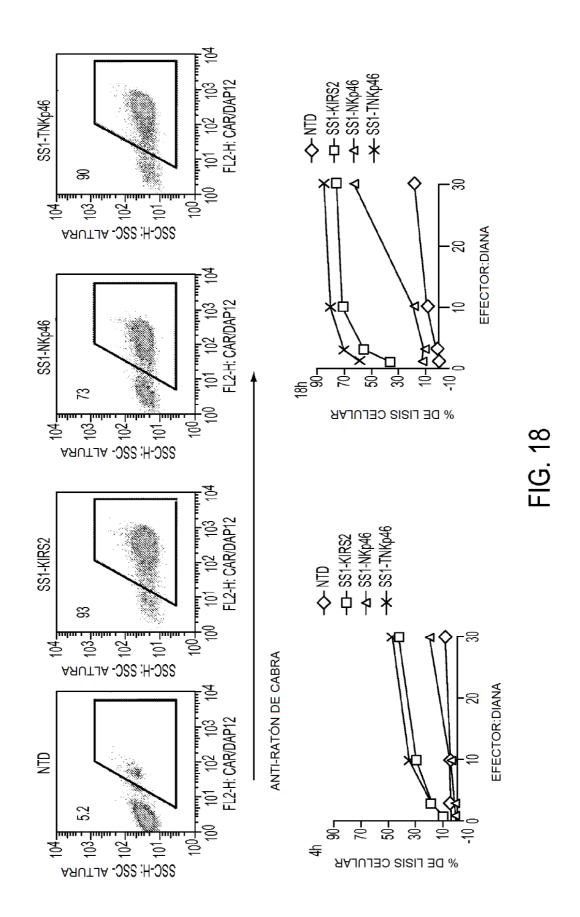









FIG. 15

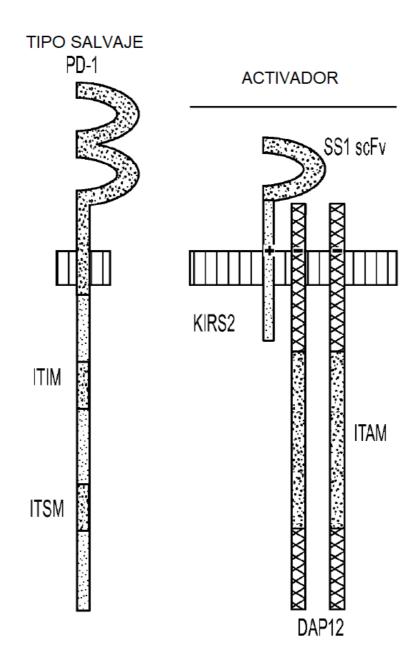
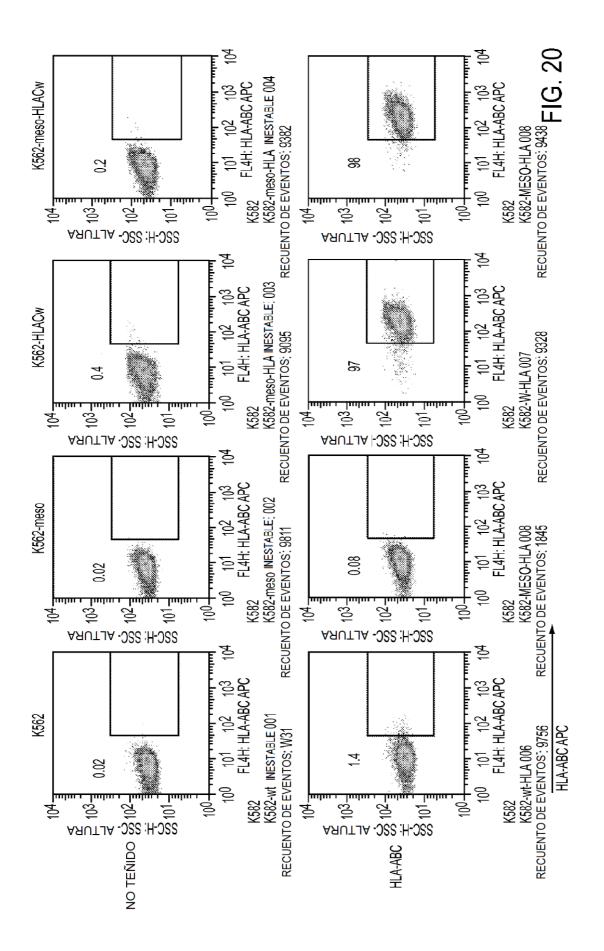
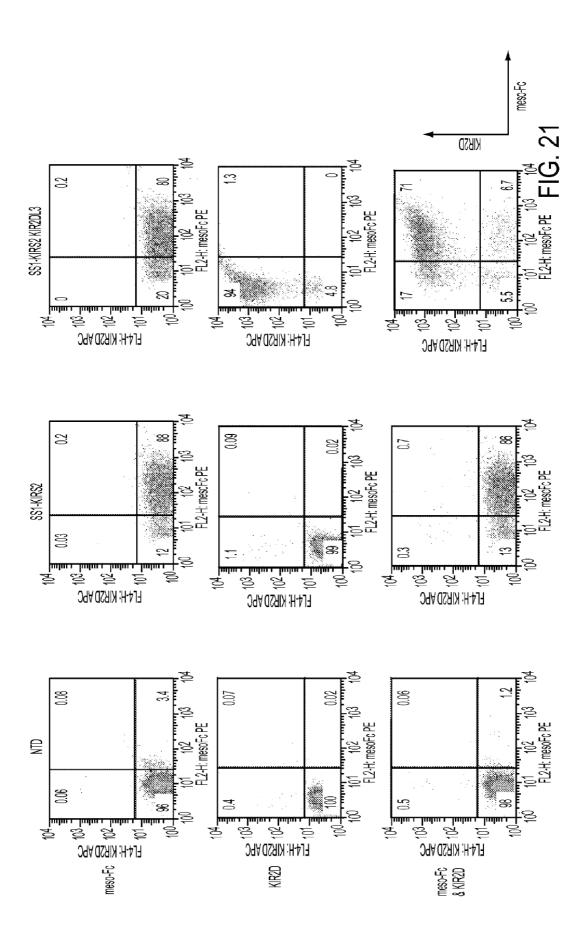




FIG. 19

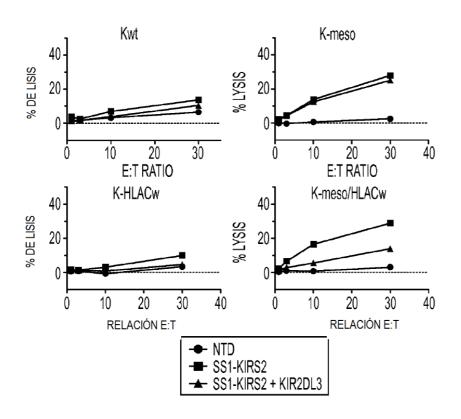
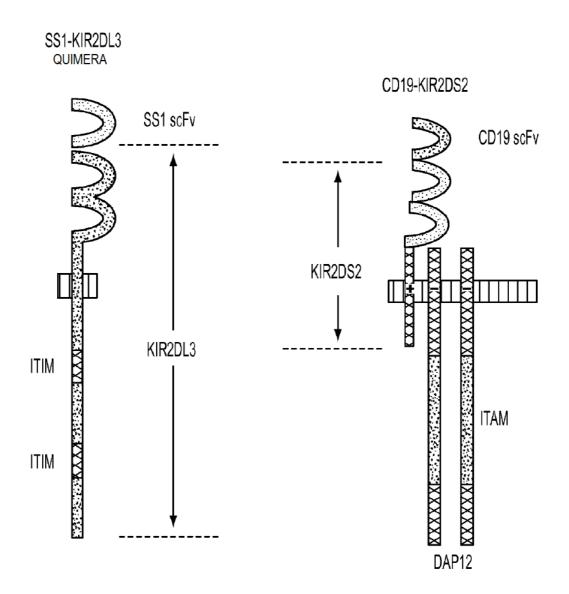
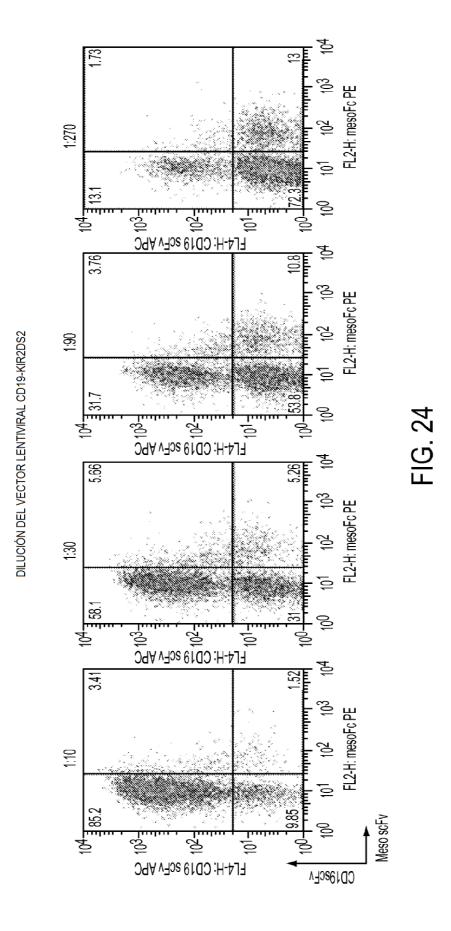
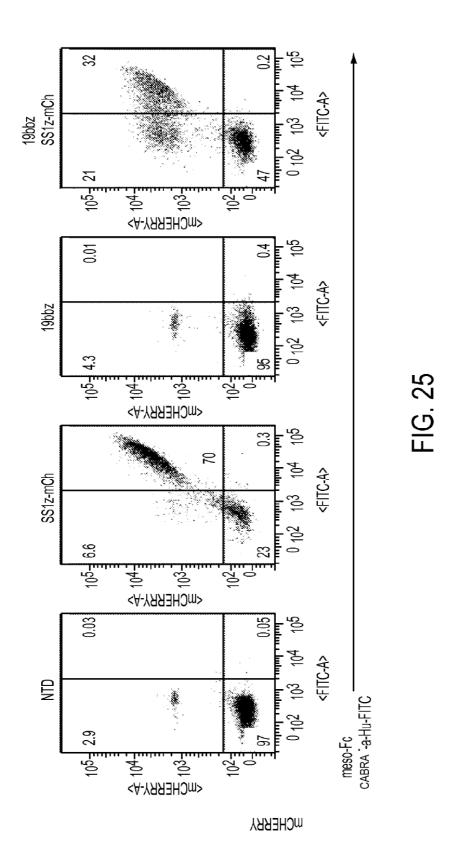
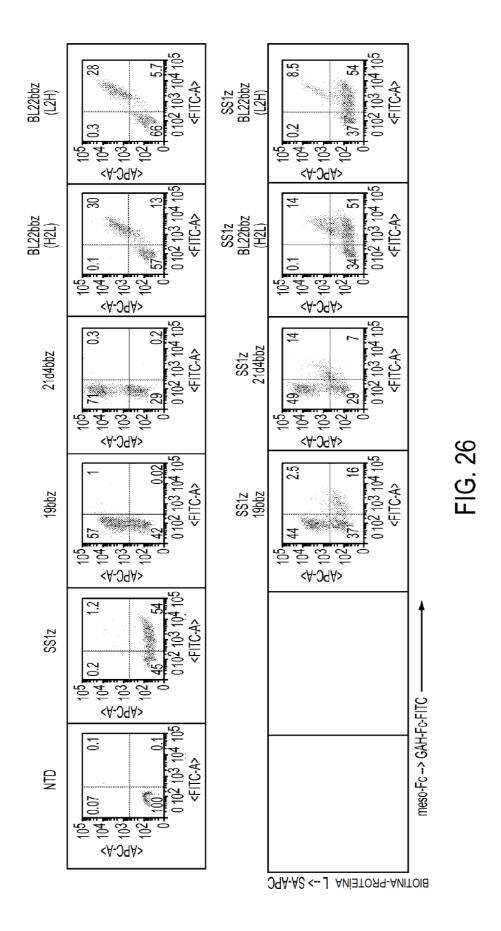


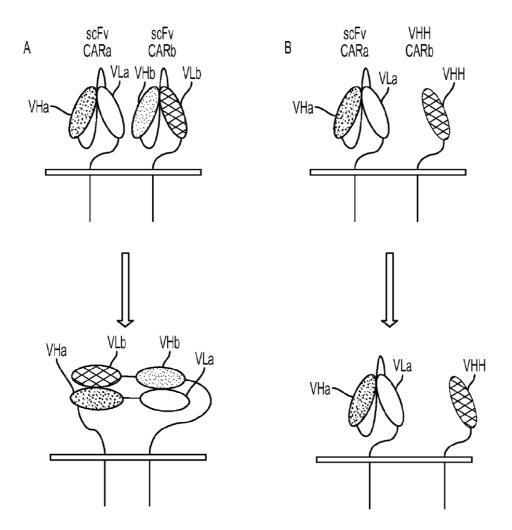
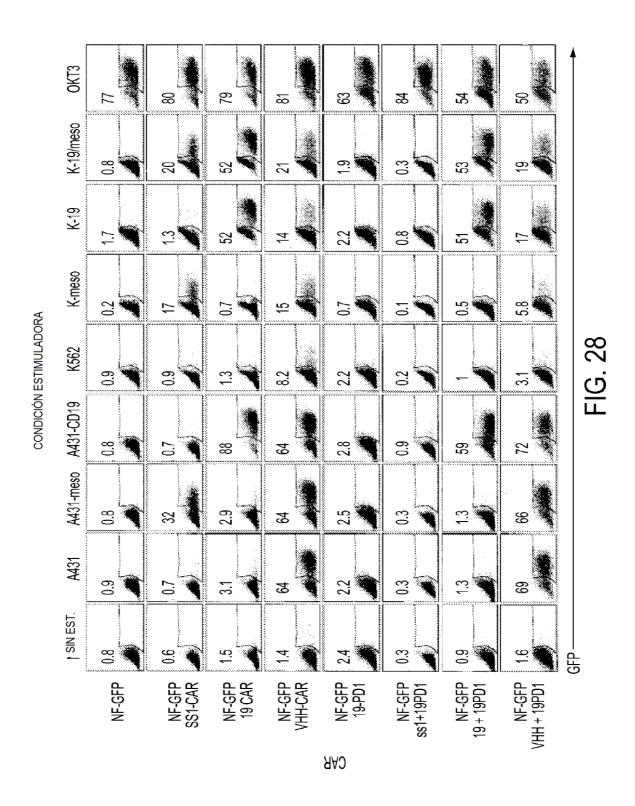
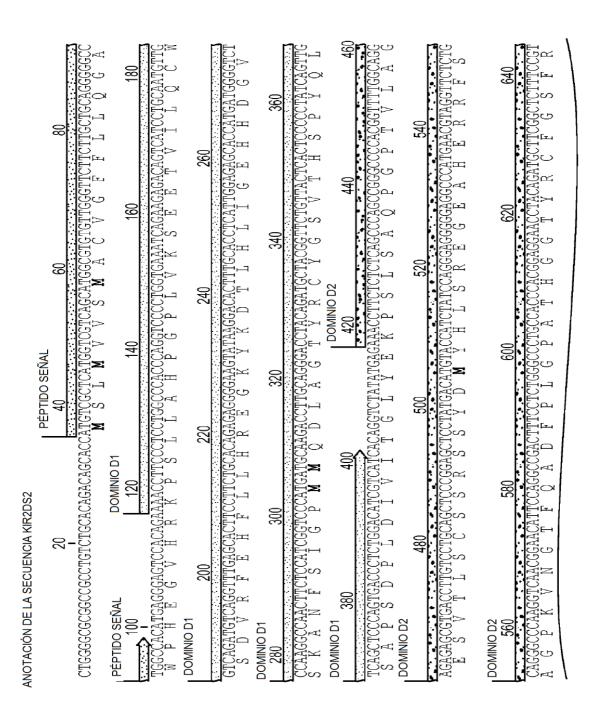
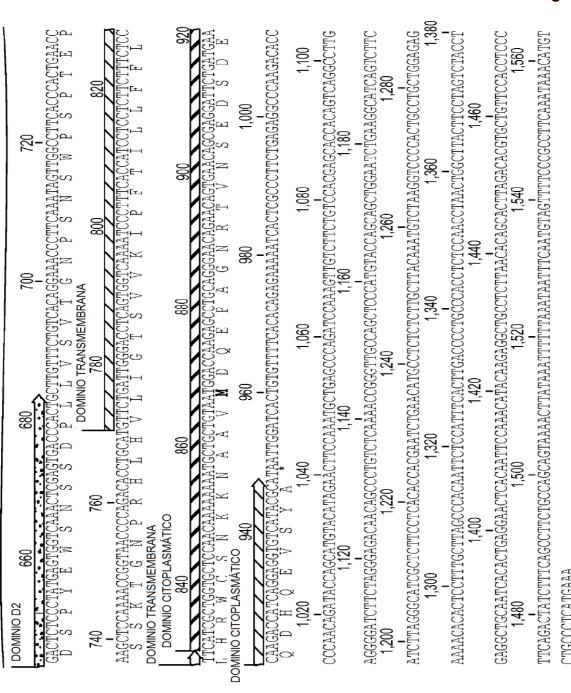
FIG. 22

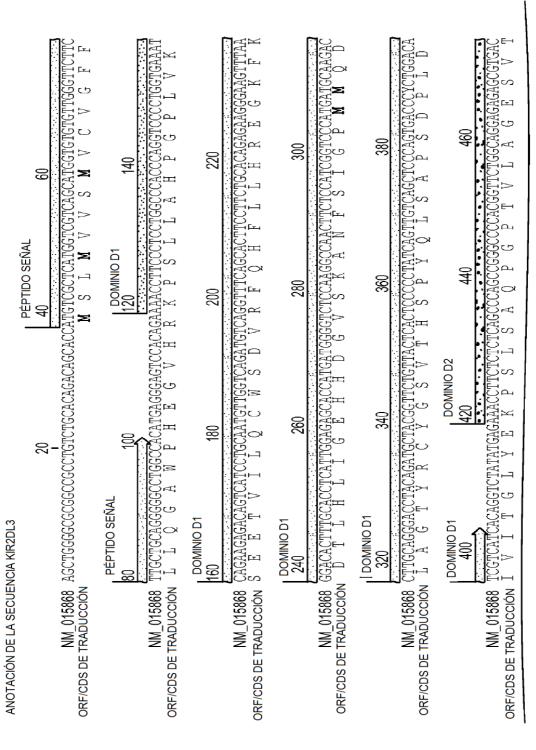





FIG. 23

114

115


FIG. 27

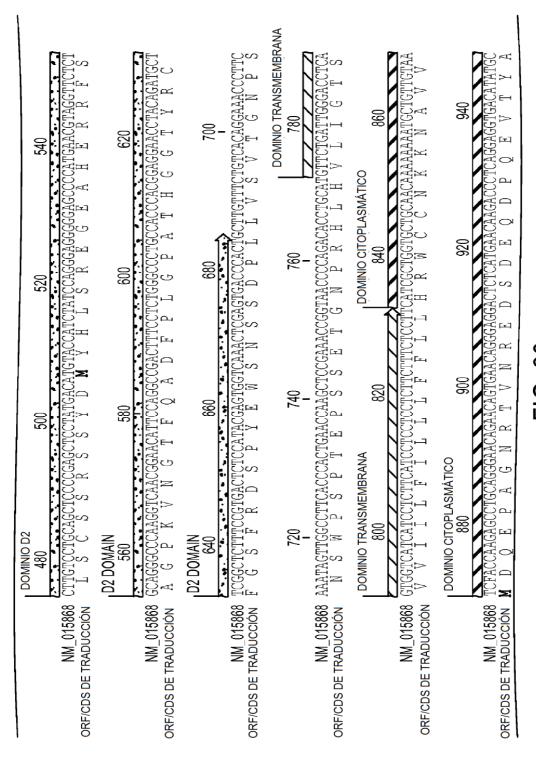
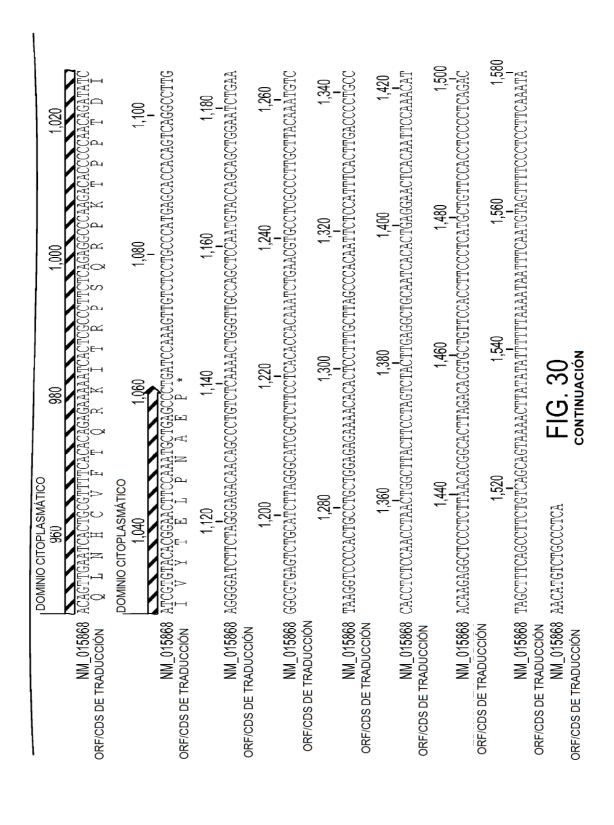



FIG. 30 continuación

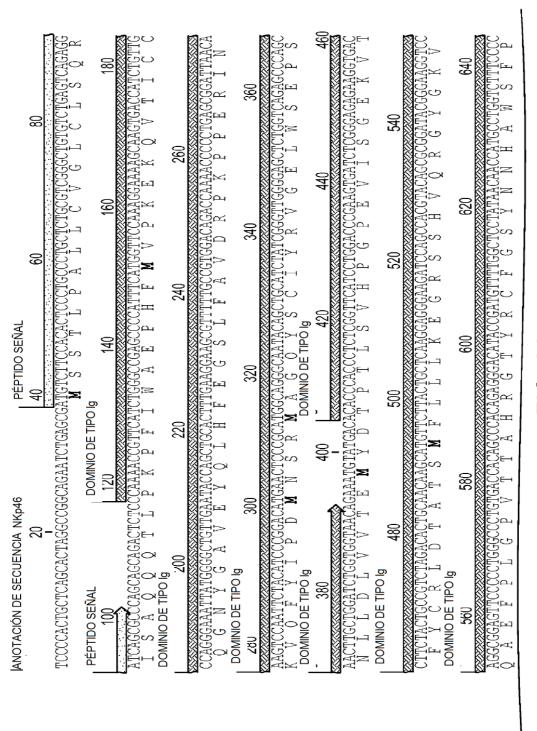
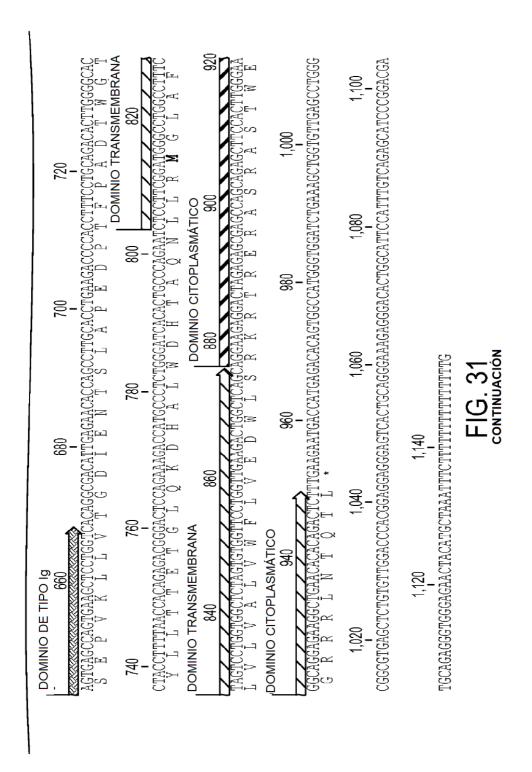



FIG. 31

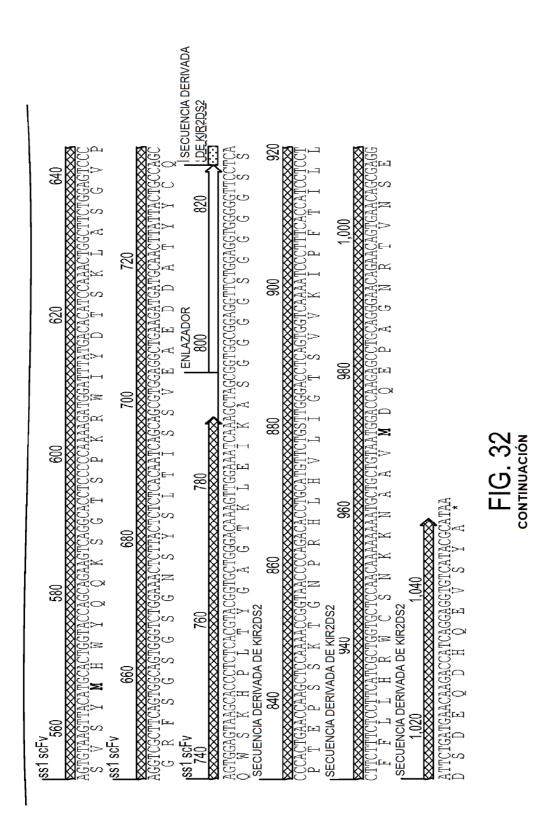
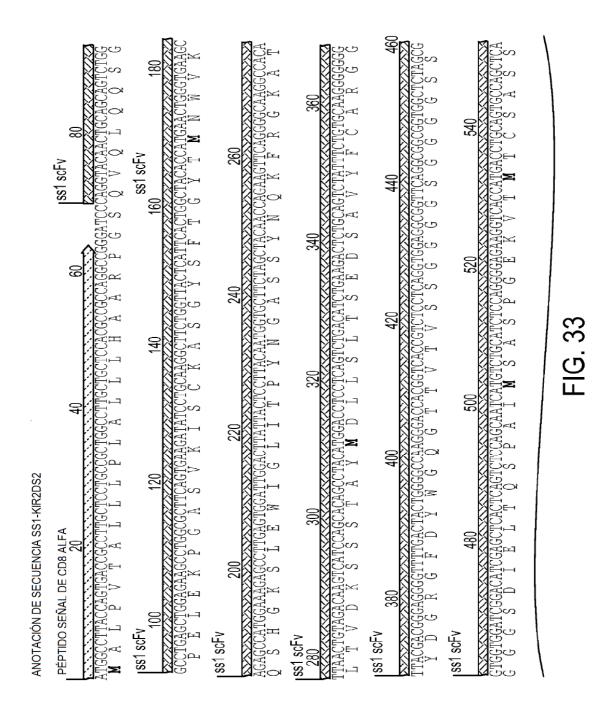




FIG. 32

127

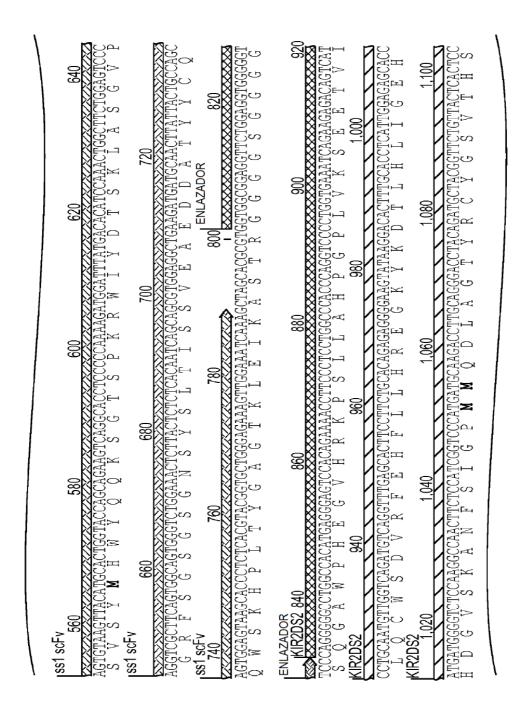
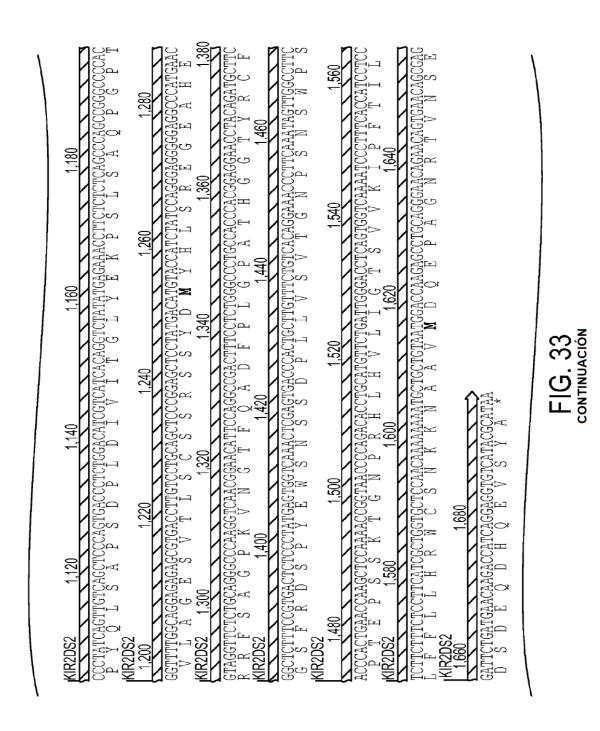
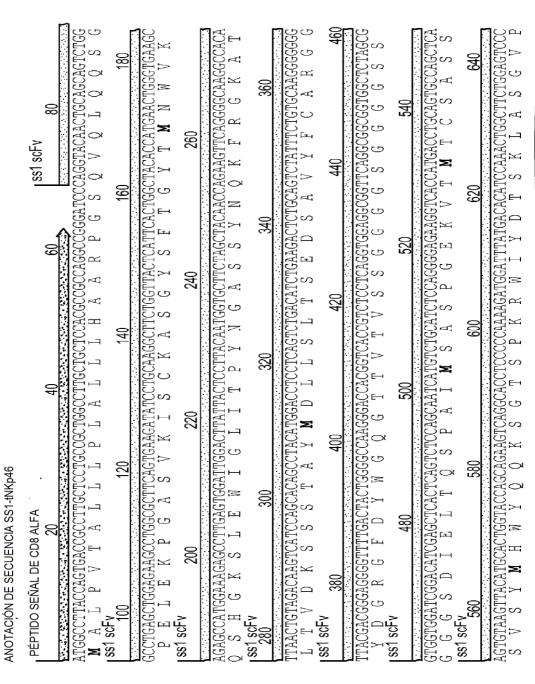
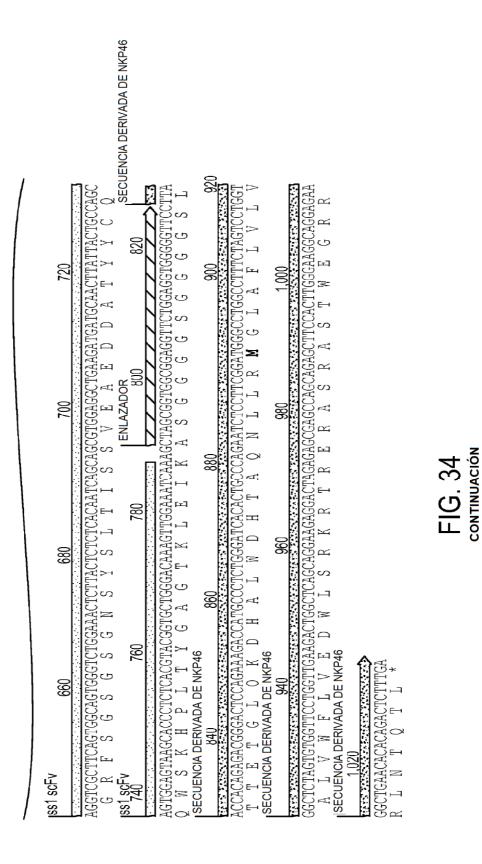
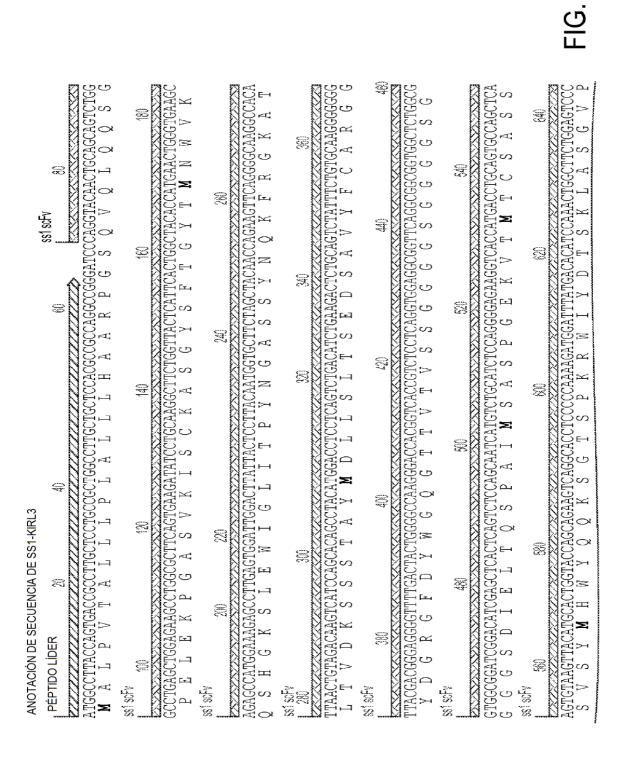
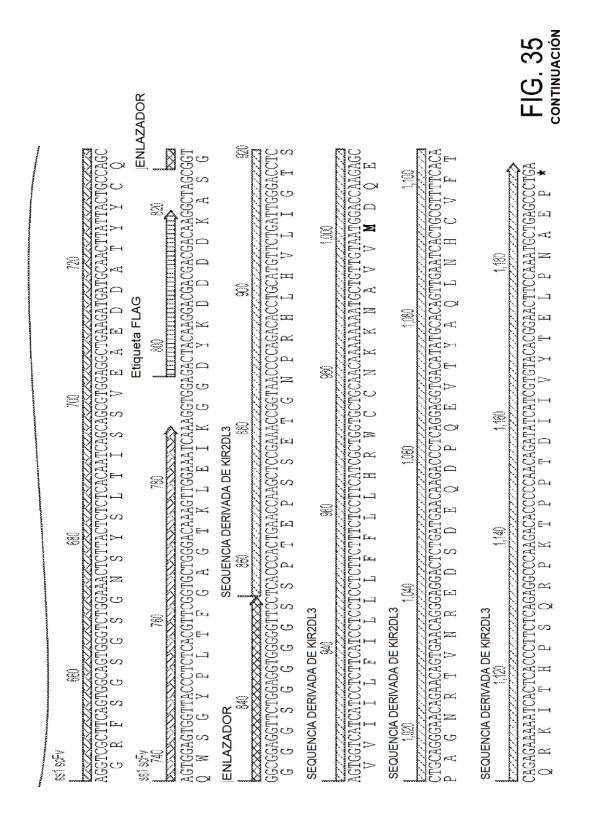


FIG. 33


FIG. 34

132

