

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 770 603

51 Int. CI.:

C12N 9/04 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 26.01.2017 PCT/EP2017/051577

(87) Fecha y número de publicación internacional: 03.08.2017 WO17129637

(96) Fecha de presentación y número de la solicitud europea: 26.01.2017 E 17702333 (0)

(97) Fecha y número de publicación de la concesión europea: 13.11.2019 EP 3408384

(54) Título: Celobiosa deshidrogenasa mutada con especificidad de sustrato modificada

(30) Prioridad:

26.01.2016 EP 16152770

Fecha de publicación y mención en BOPI de la traducción de la patente: **02.07.2020**

(73) Titular/es:

DIRECTSENS GMBH (100.0%) Am Rosenbühel 38 3400 Klosterneuburg, AT

(72) Inventor/es:

SYGMUND, CHRISTOPH; LUDWIG, ROLAND y STOICA, LEONARD

74) Agente/Representante:

CARPINTERO LÓPEZ, Mario

DESCRIPCIÓN

Celobiosa deshidrogenasa mutada con especificidad de sustrato modificada

5 El campo de la presente invención se refiere a la modificación enzimática recombinante para modificar la especificidad de sustrato.

La celobiosa deshidrogenasa (EC 1.1.99.18, CDH) fue descubierta por primera vez en 1974 en el sistema enzimático extracelular de *Phanerochaete chrysosporium* y posteriormente en varios otros hongos basidiomicetos. Una característica especial de esta enzima es su composición: la combinación de un dominio de flavodehidrogenasa catalíticamente activo (también llamado "dominio de flavina"), que aloja un FAD unido de forma no covalente, y un dominio de hemo, con un hemo *b* como cofactor. Ambos dominios están conectados por un enlazador. Por su actividad catalítica, la celobiosa de sustrato natural se oxida en una reacción que reduce el FAD del dominio de flavina.

15

20

50

55

60

65

10

La CDH o su dominio de flavodehidrogenasa oxida los carbohidratos como sus sustratos naturales, celobiosa y celo-oligosacáridos, y otros como lactosa y maltosa. Se ha descubierto y demostrado previamente que las CDH son capaces de convertir glucosa de manera eficiente (Harreither et al., 2011; WO 2010/097462 A). Existen CDH modificadas que tienen actividad reducida en maltosa (WO2013/131942). Se conocen otras CDHS de *Metarhizium anisopliae* (Base de datos Uniprot, N.° de Acc. E9DZA5) o *Stemphylium lycopersici* (Base de datos Uniprot, N.° de Acc. A0A0L1HDV7). Gao et al. (Plos Genetics, 7(1), (2001): e1001264) describe la secuenciación genómica de los hongos *Metarhizium anisopliae* y *M. acridum*. El documento de patente EP 2 636 733 A1 describe CDH mutadas artificialmente para reducir su actividad de oxidación de maltosa.

El problema con las CDH reside en la versatilidad que disminuye su uso en sensores para detectar un solo analito en mezclas de varios sustratos potenciales. La presente invención se refiere a una celobiosa deshidrogenasa (CDH) modificada como se describe en las presentes reivindicaciones.

Un objetivo de la presente divulgación es proporcionar una celobiosa deshidrogenasa o su dominio de flavodehidrogenasa catalíticamente activo, que sea capaz de detectar selectivamente la lactosa en presencia de glucosa y galactosa, especialmente con electrodos basados en transferencia directa de electrones o electrodos basados en transferencia mediada de electrones para proporcionar sensores adecuados analíticamente útiles.

La presente divulgación se refiere a celobiosa deshidrogenasas (CDH) recombinantes modificadas con un 35 recambio reducido de glucosa y galactosa. El objetivo es reducir el efecto de cualquier concentración de glucosa y galactosa presente en una matriz de muestra en la detección de lactosa. En particular, la divulgación proporciona una celobiosa deshidrogenasa (CDH) modificada o su dominio funcional de flavodehidrogenasa que tiene una sustitución en el aminoácido correspondiente a N721 de la SEQ ID NO: 5 (CDH de M. thermophilum) o correspondiente a N722 de la SEQ ID NO: 4 (CDH de N. crassa) por glutamina, isoleucina, treonina o leucina o 40 una sustitución de la asparagina en el motivo del centro activo que tiene la secuencia de aminoácidos NHW por glutamina, isoleucina, treonina o leucina; por lo tanto, este motivo sería QHW, IHW, THW o LHW. Por lo general, el motivo se encuentra cerca del extremo C terminal de una CDH o del dominio de la flavodehidrogenasa, por eiemplo, alrededor de los aminoácidos 660 a 780 de una CDH o los aminoácidos 430 a 550 de un dominio de flavodehidrogenasa. Las enzimas de celobiosa deshidrogenasa modificadas preferidas de la invención están optimizadas para su uso en biosensores basados en transferencia directa de electrones (3ª generación) o en 45 transferencia mediada de electrones (2ª generación).

Para aumentar el rendimiento de CDH como catalizador de electrodo selectivo para lactosa, la modificación genética persiguió la reducción de la actividad de oxidación de glucosa y galactosa sola o en combinación con un aumento de la actividad de oxidación de lactosa. Con la descripción general de la modificación de un dominio de flavodehidrogenasa de CDH, un dominio de alta homología en todas las CDH, es posible modificar cualquier CDH de acuerdo con los principios descritos en la presente memoria para disminuir la sensibilidad a la glucosa y la galactosa. Por lo tanto, la presente invención proporciona en particular una celobiosa deshidrogenasa (CDH) modificada o su dominio funcional de flavodehidrogenasa que tiene una actividad reducida de oxidación de glucosa y galactosa en comparación con la CDH no modificada o su dominio funcional de flavodehidrogenasa mientras que esencialmente mantiene una alta actividad de oxidación de lactosa, por ejemplo, como máximo una reducción del 20% en la actividad de oxidación de lactosa, en condiciones estándar y como se muestra en los ejemplos. La invención proporciona además un procedimiento de oxidación de la lactosa con la CDH de la invención. Tal procedimiento se usa preferentemente en la detección analítica de lactosa en una muestra. También es posible la detección de maltosa.

La mayoría de las CDH son capaces de oxidar la lactosa. La reacción de oxidación se puede detectar, por ejemplo, monitorizando los aceptores de electrones para la reacción redox, tales quinonas, como DCIP (2,6-dicloroindofenol) o- o p-benzoquinona o derivados de las mismas, azul de metileno, verde de metileno, azul de Meldola, ferricianuro de potasio, hexafluorofosfato de ferricenio, FeCl₃ o citocromo c (siendo este último un cofactor

del dominio hemo) o simplemente determinando la corriente eléctrica o las tensiones en un electrodo, siendo el aceptor de electrones la superficie del electrodo.

No es necesario usar una CDH completa; el dominio de flavina, incluso sin el dominio hemo, es suficiente para la actividad catalítica. Por lo tanto, el dominio se denomina "dominio funcional" ya que tiene la función de oxidar la lactosa con un aceptor de electrones adecuado. La actividad es ejercida por la enzima celobiosa deshidrogenasa completa o por el dominio de la flavodehidrogenasa catalíticamente activa.

5

20

25

30

35

40

45

50

Las CDH de tipo salvaje tienen una actividad indeseable para oxidar la glucosa y la galactosa, especialmente en el caso de las CDH de la ascomicota. La modificación de acuerdo con la presente invención debe entenderse ahora en que las CDH de la invención se desvían de las CDH de tipo salvaje por esta actividad de oxidación de glucosa y galactosa sustancialmente disminuida. Esta actividad de oxidación de glucosa y galactosa sustancialmente disminuida puede estar en combinación con una disminución aumentada o solo pequeña en la actividad de oxidación de lactosa. En algunas realizaciones, la invención aumenta la relación de la actividad de oxidación de lactosa a la actividad de oxidación de glucosa y/o galactosa.

Las CDH modificadas preferidas o su dominio funcional de flavodehidrogenasa son de una CDH del subreino dikarya. Preferentemente, la CDH es de Ascomicota o Basidiomicota. Las ascomicotas preferidas se seleccionan de Myriococcum thermophilum, Corynascus thermophilus, Chaetomium atrobrunneum (Myceliophthora fergusii), Hypoxylon haematostroma, Neurospora crassa o Stachybotrys bisby. Las basidiomicotas preferidas son Athelia rolfsii, Gelatoporia subvermispora, Phanerochaete chrysosporium, Trametes versicolor. Tales CDH no modificadas se describen en los documentos de patente WO 2010/097462 A y WO2013/131942, que incluye secuencias de nucleótidos codificantes, y en secuencias de la SEQ ID NO: 1-10 en la presente memoria descriptiva. Las secuencias adecuadas también están disponibles en las bases de datos de secuencias, en particular la base de datos NCBI, por ejemplo, números de acceso ADT70773.1, ADT70775.1, ADT70772.1, XP_956591.1, ABS45567.2, ADT70777.1, AAO64483.1, ACF60617.1, AAB61455.1, XP_008041466.1. "No modificado" como se usa en la presente memoria es una CDH sin la modificación inventiva que disminuye la actividad de oxidación de glucosa y galactosa. Puede haber modificaciones adicionales que aumenten la interacción entre la flavina y el dominio hemo si se usa una CDH completa (tal como se describe en el documento de patente WO 2010/097462).

Preferentemente, la CDH modificada o su dominio funcional de flavodehidrogenasa se basa en un dominio de CDH o flavodehidrogenasa no modificada con un motivo central activo que tiene la secuencia $X_1X_2NHWX_3X_4X_5$, en la que X_1 es cualquier aminoácido, preferentemente seleccionado de N, C y R; X_2 se selecciona de S y A; X_3 se selecciona de V, M e I; X_4 es cualquier aminoácido, preferentemente seleccionado de G y S; y X_5 es cualquier aminoácido, preferentemente seleccionado de S, A y T; especialmente preferido X_4 y X_5 no son ambos S. En la enzima o dominio modificado de la invención, el N en este motivo se cambia a Q, I, T o L como se indicó anteriormente. Este cambio facilita el cambio de actividad de la invención reduciendo la actividad en glucosa y/o galactosa. Con la información del motivo, se puede determinar la posición para la sustitución. Preferentemente, también la CDH modificada o el dominio comprende la secuencia $X_1X_2ZHWX_3X_4X_5$, siendo Z, Q, I, T o L y X_1 - X_5 definidos como anteriormente.

La CDH modificada o su dominio funcional de flavodehidrogenasa comprende preferentemente un dominio de flavodehidrogenasa modificada basado en uno de los dominios de flavodehidrogenasa no modificada de acuerdo con los aminoácidos 253-831 de la SEQ ID NO: 1, aminoácidos 269-845 de la SEQ ID NO: 2, aminoácidos 249-787 de la SEQ ID NO: 3, aminoácidos 253-829 de la SEQ ID NO: 4, aminoácidos 251-828 de la SEQ ID NO: 5, aminoácidos 251-829 de la SEQ ID NO: 6, aminoácidos 233-771 de la SEQ ID NO: 7, aminoácidos 236-774 de la SEQ ID NO: 8, aminoácidos 235-773 de la SEQ ID NO: 9, aminoácidos 230-768 de la SEQ ID NO: 10. Preferentemente el dominio inventivo de flavodehidrogenasa modificada tiene una secuencia con al menos 50%, preferentemente al menos 55%, al menos 60%, al menos 65%, al menos 70%, al menos 75%, al menos 80%, al menos 85%, al menos 90%, al menos 95%, al menos 98%, en particular se prefiere al menos 99%, de identidad de secuencia con uno de dichos dominios de flavodehidrogenasa no modificada y además comprende al menos una sustitución de aminoácidos en el aminoácido correspondiente a N721 de la SEQ ID NO: 5 o en el motivo NHW, adecuado para reducir la actividad de oxidación de glucosa y galactosa.

Preferentemente, el aminoácido correspondiente a N721 de la SEQ ID NO: 5 o asparagina en el motivo NHW es el aminoácido N723 de la SEQ ID NO: 1, N738 de la SEQ ID NO: 2, N718 de la SEQ ID NO: 3, N722 de la SEQ ID NO: 4, N721 de la SEQ ID NO: 5, N721 de la SEQ ID NO: 6, N704 de la SEQ ID NO: 7, N707 de la SEQ ID NO: 8, N706 de la SEQ ID NO: 9, N701 de la SEQ ID NO: 10.

Las CDH homólogas o los dominios de flavodehidrogenasa dentro de estos requisitos de secuencia se pueden identificar fácilmente mediante comparaciones de secuencia tales como la alineación de secuencia usando herramientas disponibles públicamente, tales como BLASTP, ClustalW o FastDB. Preferentemente, una CDH homóloga o modificada o el dominio de la misma tiene 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, al menos 11, al menos 13, al menos 15, al menos 17, al menos 20, al menos 25, al menos 30, al menos 40, al menos 50, al menos 60, al menos 60, al menos 100 y/o hasta 100, hasta 80, hasta 60, hasta 50, hasta 40, hasta 30, hasta 30, hasta 20, hasta 15

sustituciones, deleciones, inserciones o modificaciones de aminoácidos adicionales, y cualquier intervalo entre estos valores, en comparación con cualquiera de las CDH de las SEQ ID NO: 1-10 o cualquiera de sus dominios de flavodehidrogenasa. Una base CDH preferida particular es de *N. crassa*, SEQ ID NO: 4. Otras "sustituciones, deleciones, inserciones de aminoácidos" no incluyen la sustitución en el N de N721 correspondiente a SEQ ID NO: 5 o en el motivo NHW. Se puede hacer una predicción de tales modificaciones mediante procedimientos computacionales que utilizan, por ejemplo, acoplamiento molecular en estructuras cristalinas como la entrada de base de datos PDB "1kdq".

El efecto de aminoácidos modificados adicionales en el sitio activo y el sitio de unión al sustrato se puede determinar para catálisis homogénea por procedimientos fotométricos y para catálisis heterogénea por mediciones electroquímicas usando electrodos enzimáticos, tal como se describe en la presente memoria.

15

20

40

45

50

55

60

65

Los procedimientos para una modificación adicional pueden ser conocidos en la técnica, tales como mutaciones de aminoácidos, que incluyen sustituciones, deleciones o adiciones de aminoácidos, pero también modificación/derivación guímica de cadenas laterales de aminoácidos.

La enzima o dominio inventivos generalmente se expresan de forma recombinante. También se proporcionan preparaciones que comprenden la CDH o dominio modificado. El término "enzima" o "preparación enzimática", como se usa en la presente memoria descriptiva, se refiere a una celobiosa deshidrogenasa o su dominio de flavodehidrogenasa de un organismo específico que es al menos aproximadamente 20% puro, preferentemente al menos aproximadamente 40% puro, incluso más preferentemente al menos aproximadamente 60 % puro, incluso más preferentemente al menos 90% puro, según se determina por electroforesis en gel de poliacrilamida (SDS-PAGE).

La presente divulgación se refiere a celobiosa deshidrogenasas modificadas/diseñadas genéticamente o al dominio de flavodehidrogenasa a partir de estructuras de proteínas existentes, que oxidan la glucosa y/o galactosa de manera menos eficiente con o sin un recambio de lactosa más eficiente que las celobiosa deshidrogenasas conocidas actualmente, especialmente aquellas que son más cercanas a la CDH modificada o al dominio de la flavodehidrogenasa, como un dominio de CDH o de flavodehidrogenasa de las de secuencias SEQ ID NO: 1-10 (las porciones para el dominio de la flavodehidrogenasa se proporcionan a continuación en la descripción de la Figura 1). Las constantes cinéticas de las enzimas responsables de este efecto son preferentemente un valor K_M más alto y un valor k_{cat} más bajo para glucosa y/o galactosa sola o en combinación con un valor K_M más bajo y un valor k_{cat} más alto para la lactosa que las enzimas actualmente caracterizadas.

Preferentemente, el valor K_M de la celobiosa deshidrogenasa o su dominio funcional de flavodehidrogenasa para una reacción de oxidación de lactosa es inferior a 10 mM, preferentemente según se determina con la CDH o dicho dominio está inmovilizado en un electrodo.

Preferentemente, el valor K_M de la celobiosa deshidrogenasa o su dominio funcional de flavodehidrogenasa para una reacción de oxidación de glucosa y/o galactosa es superior a 3 M o superior a 5 M, preferentemente según se determina con la CDH o dicho dominio está inmovilizado en un electrodo.

Por supuesto, la CDH modificada o el dominio de flavina todavía pueden tener actividad para una oxidación electrocatalítica de glucosa y/o galactosa. Es suficiente que se reduzca la dependencia de la concentración de la señal de glucosa y/o galactosa. Esencialmente, las señales de fondo constantes que dependen de glucosa y/o galactosa se pueden eliminar de la detección de lactosa por normalización. Con especial preferencia, el dominio de CDH o flavina tiene la propiedad de que una señal de glucosa y/o galactosa durante la detección de lactosa o la determinación de la concentración de lactosa es inferior al 5%; particularmente la señal, por ejemplo, La corriente de electrodo o la reducción electroquímica de un aceptor de electrones, de 20 g/l de glucosa y/o galactosa en una solución en comparación con la señal de una solución de lactosa de 20 g/l es inferior al 5%. En realizaciones preferentes de la invención, la actividad de oxidación de glucosa y/o galactosa de la CDH o del dominio se reduce en relación con la actividad de oxidación de lactosa. Con especial preferencia, la dependencia de la concentración de la oxidación de glucosa y/o galactosa presentes, solo se detecta una contribución sustancialmente constante de glucosa y/o galactosa a la señal en relación con una señal de lactosa.

Se entiende que un experto en la técnica puede diseñar la celobiosa deshidrogenasa mencionada u otra para obtener la CDH modificada o el dominio de la flavodehidrogenasa activa utilizando los principios descritos en la presente memoria o en la técnica anterior (WO 2010/097462 A, WO2013/131942) como el diseño racional de enzimas a través de mutagénesis dirigida al sitio o enfoques de evolución dirigida (por ejemplo, transposición genética, PCR propensa a errores, etc.) y el posterior cribado de la diversidad generada. Las técnicas para introducir una mutación adicional en la secuencia de ácido nucleicos para intercambiar un nucleótido por otro nucleótido con el objetivo de intercambiar un aminoácido por otro en la proteína resultante se pueden lograr mediante mutagénesis dirigida al sitio utilizando cualquiera de los procedimientos conocidos en la técnica. Las posiciones de aminoácidos y la modificación para modificar una CDH pueden obtenerse mediante modelos de

homología utilizando la estructura cristalina de *Phanerochaete chrysosporium* CDH (entrada de la base de datos PDB 1kdg) como plantilla y superposición de los modelos obtenidos, así como estudios de acoplamiento. Es posible usar una CDH como plantilla y mediante comparación de secuencia para obtener los aminoácidos correspondientes para modificación para reducir la actividad de oxidación de glucosa y/o galactosa.

La CDH modificada o su dominio funcional de flavodehidrogenasa se puede aislar por diafiltración, cromatografía de intercambio iónico y preferentemente purificarse adicionalmente por cromatografía de interacción hidrófoba. Preferentemente, la CDH o el dominio es producido de forma recombinante por *Pichia pastoris*.

La invención proporciona además una molécula de ácido nucleico que codifica una CDH modificada o su dominio funcional de flavodehidrogenasa como se describió anteriormente. Las secuencias de CDH no modificadas son conocidas en la técnica, por ejemplo, en la base de datos de secuencias NCBI y divulgada en los documentos de patente WO 2010/097462 A y WO2013/131942. El ácido nucleico puede modificarse para codificar el dominio inventivo de CDH o flavina con la sustitución o mutación adicional. Los ácidos nucleicos, CDH o dominios descritos en la presente memoria pueden aislarse y/o purificarse.

5

20

40

45

50

65

Además, se proporciona un procedimiento de producción de una CDH modificada o su dominio funcional de flavodehidrogenasa de la invención, que comprende expresar de forma recombinante una molécula de ácido nucleico que codifica dicha CDH modificada o su dominio funcional de flavodehidrogenasa en una célula huésped.

En otro aspecto, la invención proporciona además un electrodo que comprende una celobiosa deshidrogenasa inmovilizada o su dominio funcional de flavodehidrogenasa de la invención.

Preferentemente, el electrodo comprende una CDH inmovilizada en modo de transferencia de electrones directa o mediada (Tasca et al. 2011a, Tasca et al. 2011b, Ludwig et al. 2010, Safina et al. 2010, Tasca et al 2010a, Tasca et al. 2010b) o un dominio de flavodehidrogenasa inmovilizado en modo de transferencia mediada de electrones. Como electrodo, se entiende cualquier superficie adecuada para recoger electrones de CDH. El electrodo puede ser de cualquier material adecuado para inmovilizar la CDH, por ejemplo, carbono como grafito, grafito pirolítico, carbono vítreo, nanotubos de carbono (de pared simple o múltiple), fibras de carbono, diamante dopado con boro, electrodos de oro modificados con promotores, por ejemplo, tioles o electrodos serigrafiados. Esta es una lista no exhaustiva de posibles electrodos, que pueden, por ejemplo, contienen otras nanopartículas (oro, ...) para aumentar el área de superficie específica. Los usos particulares de los electrodos de la invención están en la provisión de biosensores, más específicamente a los biosensores de lactosa que usan las propiedades de transferencia directa de electrones (DET) de la celobiosa deshidrogenasa (CDH) o que usan propiedades de transferencia mediada de electrones (MET) para medir la concentración de lactosa a ácidos, pH neutro, alcalino.

En el electrodo, la CDH o el dominio de la flavodehidrogenasa pueden inmovilizarse por adsorción, preferentemente también atrapamiento físico en un polímero, formación compleja, preferentemente a través de un enlazador complejante adicional, unión covalente, en particular reticulación o unión iónica y/o la celobiosa deshidrogenasa inmovilizada puede ser reticulada, en particular por agentes bifuncionales, para aumentar la estabilidad o la actividad. Se ha demostrado que la reticulación con agentes bifuncionales, tales como agentes con dos grupos reactivos que hacen una conexión con la CDH, puede estabilizar la CDH e incluso aumentar su actividad en electrodos de grafito medibles por los procedimientos amperométricos descritos en la presente memoria. Esta ventaja puede conducir a una mayor sensibilidad y a reducir el límite de detección de lactosa. Tal agente de reticulación es, por ejemplo, glutaraldehído o cualquier otro dialdehído. Otros procedimientos para la inmovilización se describen, por ejemplo, en WO 2010/097462 y WO2013/131942, que se pueden usar de acuerdo con la invención.

Los electrodos se pueden usar en forma de un solo electrodo o pilas de electrodos, por ejemplo, de 2, 3, 4 o más electrodos.

Las configuraciones y usos de los electrodos, incluyendo los parámetros de medición, se describen, por ejemplo, en WO 2010/097462 y WO2013/131942, que se pueden usar de acuerdo con la invención.

La presente divulgación proporciona además un procedimiento de oxidación de la lactosa con el dominio inventivo de CDH o flavina, especialmente en un procedimiento de detección de o cuantificación de la lactosa en una muestra que comprende la etapa de oxidar lactosa en dicha muestra con una CDH modificada o su dominio funcional de flavodehidrogenasa o un electrodo como se describe en la presente memoria y detecta o cuantifica dicha oxidación, preferentemente en el que dicha muestra comprende o se sospecha que comprende glucosa y/o galactosa. La muestra de fluido puede ser cualquier fluido que potencialmente comprenda lactosa, incluyendo leche o productos lácteos, como suero o queso. Si se analizan productos sólidos, como el queso, los carbohidratos, incluyendo la lactosa, pueden extraerse o el producto sólido puede fluidificarse, por ejemplo, mediante disolución.

En otro aspecto, la presente invención proporciona un kit de ensayo de lactosa que comprende la celobiosa deshidrogenasa modificada o su dominio funcional de flavodehidrogenasa o un electrodo como se describe en la

presente memoria. El kit puede, en realizaciones preferentes, también comprender sustancias auxiliares, tales como tampones, y recipientes tales como medios de retención de muestras y/o patrones de lactosa. Se pueden usar patrones de lactosa para calibrar el ensayo. El kit también puede comprender un lector para una señal, especialmente una señal electroquímica tal como un potenciostato, un dispositivo de memoria legible por ordenador con software para calibración y/o cálculos de medición. La invención se puede definir por las siguientes realizaciones:

5

10

15

35

40

45

50

55

60

65

- 1. Una celobiosa deshidrogenasa (CDH) modificada o su dominio funcional de flavodehidrogenasa que tiene una sustitución en el aminoácido correspondiente a N721 de la SEQ ID NO: 5 (CDH de *M. thermophilum*) por glutamina, isoleucina, treonina o leucina o una sustitución de asparagina en el motivo central activo que tiene la secuencia de aminoácidos NHW por glutamina, isoleucina, treonina o leucina.
- 2. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con 1, en la que el motivo del centro activo tiene la secuencia $X_1X_2NHWX_3X_4X_5$, en la que X_1 es cualquier aminoácido, preferentemente seleccionado de N, C y R; X_2 se selecciona de S y A; X_3 se selecciona de V, M e I; X_4 es cualquier aminoácido, preferentemente seleccionado de G y S; y X_5 es cualquier aminoácido, preferentemente seleccionado de S, A y T; especialmente preferido X_4 y X_5 no son ambos S.
- 3. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con 1 o 2, caracterizada porque la CDH es de *dikaryota*, preferentemente seleccionada de *ascomycota* o *basidiomycota*.
- 4. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con 3, caracterizada porque la CDH es una CDH modificada de una CDH de *Myriococcum thermophilum, Corynascus thermophilus, Chaetomium atrobrunneum (Myceliophthora fergusii), Hypoxylon haematostroma, Neurospora crassa o Stachybotrys bisby, Athelia rolfsii, Gelatoporia subvermispora, Phanerochaete chrysosporium, Trametes versicolor.*
- 5. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con uno cualquiera de 1 a 4, que comprende un dominio de flavodehidrogenasa modificada basado en uno de los dominios de flavodehidrogenasa no modificada de acuerdo con los aminoácidos 253-831 de la SEQ ID NO: 1, aminoácidos 269-845 de la SEQ ID NO: 2, aminoácidos 249-787 de la SEQ ID NO: 3, aminoácidos 253-829 de la SEQ ID NO: 4, aminoácidos 251-828 de la SEQ ID NO: 5, aminoácidos 251-829 de la SEQ ID NO: 6, aminoácidos 233-771 de la SEQ ID NO: 7, aminoácidos 236-774 de la SEQ ID NO: 8, aminoácidos 235-773 de la SEQ ID NO: 9, aminoácidos 230-768 de la SEQ ID NO: 10;
 - dicho dominio de flavodehidrogenasa modificada tiene una secuencia con al menos 50%, preferentemente al menos 55%, al menos 60%, al menos 65%, al menos 70%, al menos 75%, al menos 80%, al menos 85%, a al menos 90%, al menos 95%, al menos 98%, en particular se prefiere al menos 99%, de identidad de secuencia con uno de dichos dominios de flavodehidrogenasa no modificada y además comprende la mutación de sustitución en el aminoácido correspondiente a N721 de la SEQ ID NO: 5 o en el motivo NHW. 6. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con uno cualquiera de 1 a 5, en la que el aminoácido correspondiente a N721 de la SEQ ID NO: 5 o asparagina en el motivo NHW es el aminoácido N723 de la SEQ ID NO: 1, N738 de la SEQ ID NO: 2, N718 de la SEQ ID NO: 3, N722 de la SEQ ID NO: 4, N721 de la SEQ ID NO: 5, N721 de la SEQ ID NO: 6, N704 de la SEQ ID NO: 7, N707 de la SEQ ID NO: 8, N706 de la SEQ ID NO: 9, N701 de la SEQ ID NO: 10.
 - 7. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con uno cualquiera de 1 a 6, que se produce de forma recombinante por *Pichia pastoris*, se aísla por diafiltración, cromatografía de intercambio iónico y preferentemente se purifica adicionalmente por cromatografía de interacción hidrófoba. 8. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con uno cualquiera de 1 a 7, caracterizada porque el valor K_M de la celobiosa deshidrogenasa o su dominio funcional de flavodehidrogenasa para una reacción de oxidación de lactosa es inferior a 10 mM, preferentemente según
 - se determina con la CDH, o estando dicho dominio inmovilizado en un electrodo.

 9. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con uno cualquiera de 1 a

 8, caracterizada porque el valor K_M de la celobiosa deshidrogenasa o su dominio funcional de
 flavodehidrogenasa para una reacción de oxidación de glucosa es superior a 3 M, preferentemente como se
 determina con la CDH, o estando dicho dominio inmovilizado en un electrodo.
 - 10. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con uno cualquiera de 1 a 9, caracterizada porque el valor K_M de la celobiosa deshidrogenasa o su dominio funcional de flavodehidrogenasa para una reacción de oxidación de galactosa es superior a 3 M, preferentemente como se determina con la CDH, o estando dicho dominio inmovilizado en un electrodo.
 - 11. Una molécula de ácido nucleico que codifica una CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con uno cualquiera de 1 a 10.
 - 12. Un procedimiento de producción de una CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con uno cualquiera de 1 a 10, que comprende expresar de forma recombinante una molécula de ácido nucleico de acuerdo con 11 en una célula huésped.
 - 13. Un electrodo que comprende una celobiosa deshidrogenasa inmovilizada o su dominio funcional de flavodehidrogenasa de acuerdo con uno cualquiera de 1 a 10; preferentemente en el que la celobiosa deshidrogenasa se inmoviliza por adsorción, formación de complejo, con especial preferencia a través de un enlazador complejante adicional, enlace covalente o iónico, y/o en el

que preferentemente la celobiosa deshidrogenasa inmovilizada se reticula, en particular por agentes bifuncionales, para aumentar la estabilidad o actividad.

- 14. Un procedimiento de detección o cuantificación de lactosa en una muestra que comprende la etapa de oxidar lactosa en dicha muestra con una CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con uno cualquiera de 1 a 10, o un electrodo de acuerdo con 13 y detectar o cuantificar dicha oxidación, preferentemente en el que dicha muestra comprende o se sospecha que comprende glucosa y/o galactosa, con especial preferencia una muestra que contiene leche o productos lácteos.
- 15. Un kit de ensayo de lactosa que comprende la celobiosa deshidrogenasa modificada o su dominio funcional de flavodehidrogenasa de acuerdo con cualquiera de los 1 a 10 o un electrodo de acuerdo con 13 y un medio de retención de muestras y/o estándares de lactosa.

La presente invención se ilustra adicionalmente mediante las siguientes Figuras y ejemplos sin limitarse a los mismos.

15 Figuras

5

10

20

25

30

35

45

60

65

La **Figura 1** es una alineación de secuencias de secuencias de aminoácidos de los dominios de flavodehidrogenasa ("dominios de flavina") de las CDH de tipo salvaje de *Chaetomium atrobrunneum* (aa 253-831 de la SEQ ID NO: 1), *Hypoxylon haematostroma* (aa 269-845 de la SEQ ID NO: 2), *Corynascus thermophilus* (aa 249-787 de la SEQ ID NO: 3), *Neurospora crassa* (aa 253-829 de la SEQ ID NO: 4), *Myriococcum thermophilum* (aa 251-828 de la SEQ ID NO: 5), *Stachybotrys bisby* (aa 251-829 de la SEQ ID NO: 6), *Athelia rolfsii* (aa 233-771 de la SEQ ID NO: 7), *Gelatoporia subvermispora* (aa 236-774 de la SEQ ID NO: 8), *Phanerochaete chrysosporium* (aa 235-773 de la SEQ ID NO: 9), *Trametes versicolor* (aa 230-768 de la SEQ ID NO: 10). El sitio de mutación correspondiente a N721 de la SEQ ID NO: 5 está resaltado y marcado con "+" (posición 483 de la numeración consensuada mostrada de los dominios de flavina mostrados).

La **Figura 2** proporciona curvas de calibración de lactosa de electrodos de detección que presentan CDH de *N. crassa* de tipo salvaje no modificada y CDH *de N. crassa* N722Q.

La **Figura 3** muestra el efecto de la adición de una solución de lactosa de 0,1 g con diferentes concentraciones de glucosa y galactosa cuando se usa CDH de *N. crassa* de tipo salvaje no modificada y CDH de *N. crassa* N722Q. La señal para la CDH de *N. crassa* de tipo salvaje no modificada es dependiente de glucosa y galactosa. La señal para la CDH de *N. crassa* N722Q no depende de la glucosa y la galactosa.

La **Figura 4** proporciona curvas de calibración de glucosa de electrodos de detección que presentan CDH de *N. crassa* de tipo salvaje no modificada y variante de CDH de *N. crassa*. CDH N722Q.

La **Figura 5** proporciona curvas de calibración de galactosa de electrodos de detección que presentan CDH de *N. crassa* de tipo salvaje no modificada y variante de CDH de *N. crassa*, CDH N722Q.

Ejemplos

40 Ejemplo 1: Materiales

Los productos químicos utilizados en tampones y medios de fermentación eran productos comerciales y al menos de grado analítico, si no se indica lo contrario. Los sustratos para estudios cinéticos fueron lactosa, galactosa, glucosa y 2,6-dicloroindofenol (DCIP) de Sigma-Aldrich en el grado más alto de pureza disponible. Los tampones se prepararon usando agua purificada y desionizada (18 $M\Omega$) con un sistema Milli-Q (Millipore, Bedford, MA, EE. UU.).

Ejemplo 2: Ensayos de actividad enzimática y cinética en estado estable

La actividad enzimática se ensayó a 30 °C usando el DCIP (Karapetyan et al., 2005 Journal of Biotechnology 121:34-48) como aceptor de electrones. Las soluciones madre de carbohidratos usadas para mediciones cinéticas se prepararon en el tampón respectivo y se dejaron reposar durante la noche para la mutarotación, mientras que las soluciones madre de aceptores de electrones se prepararon en agua y se usaron inmediatamente. La estequiometría de reacción es de 1 para el receptor DCIP de dos electrones (1 mol de DCIP reducido por mol de carbohidrato oxidado). Las constantes cinéticas se calcularon ajustando los datos observados a la ecuación de Henri-Michaelis-Menten o al modelo adaptado para la inhibición del sustrato usando regresión no lineal por mínimos cuadrados y el programa SigmaPlot (Systat Software, San José, California, E.E. U.U.). La concentración de proteína se determinó con el ensayo de Bradford.

Ejemplo 3: Caracterización de proteínas

La concentración de proteína se determinó mediante el procedimiento de tinción con colorante de Bradford usando un ensayo prefabricado de Bio-Rad Laboratories Hercules, California, EE. UU.) y albúmina de suero bovino como estándar de acuerdo con las recomendaciones del fabricante.

Para la caracterización electroforética, SDS-PAGE se realizó en una unidad de electroforesis vertical Hoefer SE 260 Mighty Small II. Los geles (10,5×10 cm; 10% T, 2,7% C) se moldearon y ejecutaron de acuerdo con las modificaciones del sistema Laemmli por parte de los fabricantes. Las bandas de proteínas en la SDS-PAGE se tiñeron con plata, las bandas en el gel IEF con azul de Coomassie R-250, de acuerdo con las instrucciones.

Ejemplo 4: Actividad de lactosa a glucosa/galactosa

5

10

15

20

45

50

55

65

El aminoácido N721 de la CDH de *M. therm.*, que forma parte del subsitio catalítico, cerca del anillo de isoaloxazina y completamente conservada entre las CDH, se seleccionó para la mutagénesis de saturación. Se utilizaron codones degenerados del tipo NNS. La biblioteca mutante correspondiente se transformó en *S. cerevisiae* y se expresó bajo el control del promotor GAL 1 en cuatro placas de 96 pocillos. Cada placa contenía 88 variantes y se inocularon 8 pocillos con el tipo salvaje como control. Las bibliotecas se seleccionaron dos veces para determinar la actividad de CDH con el ensayo basado en DCIP usando lactosa o glucosa como sustrato. Los 11 transformantes que mostraron una relación aumentada de actividad de lactosa a glucosa se enviaron para secuenciar para identificar la mutación beneficiosa. La Tabla 1 muestra los resultados de la detección y los intercambios de aminoácidos identificados. Las variantes seleccionadas mostraron un aumento en la actividad de lactosa mientras que la actividad de glucosa se redujo drásticamente en comparación con el tipo salvaje.

Tabla 1. Actividad de lactosa a glucosa/galactosa Relación de act. DCIP (ΔAbs. h⁻¹)

		relacion de act.	DOII (ДАВЗ. II)		
		30 mM Lactosa	50 mM Glucosa	Lactosa/Glucosa	Intercambio de aminoácidos
	Peso (prom.)	1,7	0,27	6,3	ninguno
25	Placa 1 D05	4,7	0,03	156	Q
	Placa 1 G11	4,6	0,02	230	Q
	Placa 2 B05	3,8	0,02	190	I
	Placa 2 E05	5,9	0,01	590	1
30	Placa 2 G05	3,8	0,01	380	T
	Placa 2 F07	3,8	0,04	95	T
	Placa 3 A11	5,0	0,11	45	Q
	Placa 3 C10	4,8	0,02	240	L
35	Placa 3 H11	5,6	0,02	280	Q
	Placa 4 G08	4,7	0,02	235	Q
	Placa 4 G10	4,7	0,01	470	Q

40 La actividad en galactosa se parecía a los resultados en glucosa.

Ejemplo 5: Generación de variantes de CDH de Neurospora crassa por mutagénesis dirigida al sitio

El plásmido pNCIIA previamente reportado, que codifica el gen CDH de N. crassa (XM 951498, SEQ ID NO: 12 del documento de patente WO 2010/097462, incorporado por referencia en la presente) se usó como plantillas gen amplificación del diana cebadores 5NCa-BstBI con los . TATTTCGAAACGATGAGGACCACCTCGGCC-3', SEQ ID NO: 3NCa-Xbal TATCACGTGCTACACACACTGCCAATACC-3', SEQ ID NO: 12). La PCR se realizó con el ADN polimerasa de alta fidelidad Phusion de New England BioLabs, una mezcla de desoxinucleósido trifosfato (dNTP) de Fermentas, cebadores oligonucleotídicos de VBC Biotech (Viena, Austria) y un termociclador C-1000 de Bio-Rad Laboratories. El fragmento de PCR resultante se digirió con BstBl y Xbal y se clonó en el vector igualmente tratado pPICZα A. El procedimiento dio como resultado un gen que codifica una proteína con sus secuencias de señal nativas clonadas baio el control del promotor AOX1 inducible por metanol. Se omitieron las etiquetas C-terminales para la purificación o detección de anticuerpos. La correcta inserción de los genes y la ausencia de mutaciones se confirmaron mediante secuenciación de ADN. Los plásmidos lineales verificados se usaron para la transformación en células electrocompetentes de P. pastoris y los transformantes se seleccionaron en placas YPD Zeocin (1 mg

60 Ejemplo 6: Producción de CDH recombinante

La CDH recombinante de tipo salvaje, así como la variante, se produjeron en matraces con deflector de 1 l. Los precultivos se cultivaron durante la noche en 30 ml de medio YPD a 30 °C y 120 rpm. Después de aproximadamente 18 horas, los precultivos se transfirieron a matraces con deflectores de 1 litro que contenían 200 ml de medio BMGY sin metanol. La inducción con metanol se inició inmediatamente usando una bomba peristáltica multicanal

(Minipuls Evolution, Gilson, Middleton, WI, EE. UU.). Cada matraz se suministró metanol ocho veces al día produciendo una concentración total de metanol al 2% (v/v) por día. El aumento de la actividad se controló usando el DCIP y los ensayos de enzimas citocromo c. El cultivo se detuvo en el quinto día de inducción de metanol, las células se eliminaron por centrifugación (4000 rpm, 20 min) y el sobrenadante se ajustó a una concentración final de sulfato de amonio del 20%.

Ejemplo 7: Purificación de CDH recombinante

5

10

15

20

35

40

45

50

Las enzimas se purificaron hasta homogeneidad en una purificación de dos etapas. La muestra se cargó en una columna de 20 ml de PHE Sepharose FF (HR26/20) equilibrada con tampón de acetato de Na 50 mM pH 5,5 que contenía sulfato de amonio al 20%. Las proteínas se eluyeron aumentando la concentración del tampón de elución (tampón de acetato de Na 50 mM, pH 5,5) de 0 a 100% en 5 volúmenes de columna y se agruparon las fracciones que contenían actividad de CDH. Después de la diafiltración con un módulo de flujo cruzado de pila plana de polietersulfona con un límite de 10 kDa (Viva Flow 50, Sartorius, Göttingen, Alemania) hasta una conductividad de 5 mS cm⁻¹ en acetato de Na 20 mM pH 5,5 las muestras se cargaron en una columna Q-Source de 20 ml (HR26/20) equilibrada con un tampón de acetato de Na 20 mM, pH 5,5. La CDH se eluyó aumentando la concentración del tampón de elución (tampón de acetato de Na 50 mM, pH 5,5 que contenía 0,5 M de NaCl) del 0 al 100% en 50 volúmenes de columna. Las fracciones se probaron para determinar la actividad de CDH y se agruparon de acuerdo con el Reinheitszahl más alto (RZ, calculado a partir de la relación de absorbancia 420 nm/280 nm). Las enzimas purificadas se concentraron y se diafiltraron en 50 mM de tampón citrato, pH 5,5, se dividieron en alícuotas y se mantuvieron a 4 °C para su uso posterior.

Ejemplo 8: Mediciones electroquímicas

Se conectó un electrodo serigrafiado con una configuración de tres electrodos (Dropsens, Oviedo, España) a un potenciostato Autolab (PGSTAT204, Metrohm Autolab B. V., Utrecht, Países Bajos) y se usó para mediciones electroquímicas. Los electrodos serigrafiados modificados con enzimas (DropSens, Oviedo, España) se montaron usando un portaelectrodos (DropSens, Oviedo, España) en un vaso de precipitados lleno de 50 ml de tampón de medición y, opcionalmente, concentraciones variables de glucosa. El sistema fue controlado por el software NOVA versión 1.11.0 (Metrohm Autolab B. V., Utrecht, Países Bajos).

Ejemplo 9: CDH mutada de N. crassa - glucosa reducida, actividad de galactosa

La CDH de *N. crassa* oxida la glucosa y la galactosa (Harreither et al., 2007), lo que tiene efectos secundarios negativos en la precisión de la detección de lactosa si hay glucosa y galactosa. Para reducir la actividad con glucosa y galactosa, se usó CDH de *N. crassa* como un andamiaje de proteínas para el cual las actividades de glucosa y galactosa se redujeron considerablemente. La variante enzimática N722Q se produjo de forma heteróloga en *P. pastoris* de acuerdo con las rutinas explicadas y se comparó con la CDH recombinante de tipo salvaje de *N. crassa*. Los pesos moleculares no diferían significativamente de la enzima nativa producida por el hongo. Para investigar el efecto de la mutación en la variante de *N. crassa*, se realizó una caracterización completa de las constantes en estado estable (Tablas 2 y 3).

Tabla 2. Constantes cinéticas aparentes de wtCDH para donantes de electrones indicados en 100 mM de tampón McIIvaine a pH 5,5 utilizando DCIP como aceptor de electrones artificial

Enzima	Sustrato (Donantes de electrones)	K _m Medio (mM) ± SD	V _{max} Medio (U/mg) ± SD	k _{cat} Medio (s ⁻¹)	k_{cat}/K_m Medio (mM ⁻¹ s ⁻¹)
	Lactosa	0,154 ± 0,01	18,2 ± 0,56	25,78	167,4
wtCDH	Glucosaª	$2039 \pm 0,41$	$20,3 \pm 2,34$	28,76	12,03
	Galactosa ^a	$26,5 \pm 6,85$	6,33 ± 1,57	8,97	3,75

9

Tabla 3. Constantes cinéticas aparentes del sensor de *N. crassa* N722Q para donantes de electrones indicados en 100 mM de tampón McIIvaine a pH 5,5 utilizando DCIP como aceptor de electrones artificial

5	Enzima	Sustrato (Donantes de electrones)	K _m Medio (mM) ± SD	V _{max} Medio (U/mg) ± SD	k _{cat} Medio (s ⁻¹)	k _{cat} /K _m Medio (mM ⁻¹ s ⁻¹)
	N722Q	Lactosa Glucosaª	2,18 ± 0,28 > 10 M ^b	55,0 ± 2,0	77,92	35,74
10		Galactosa ^a	> 10 M ^b	No se pudi	eron calcular lo	os datos ^b

 $^{^{\}text{a}}$ Valores K_{m} y k_{cat} extrapolados.

Las constantes en la Tabla 3 muestran con más detalle que la actividad de oxidación de glucosa y galactosa se suprime en la variante de CDH de *N. crassa*.

Ejemplo 10: CDH mutada de N. crassa - rendimiento del electrodo

Para probar la variante modificada de CDH de *N. crassa* se inmovilizó en un electrodo de grafito y se midieron las respuestas actuales en diferentes concentraciones de glucosa, galactosa y lactosa. Las Figuras 2-5 muestran la influencia de diferentes concentraciones de glucosa o galactosa en las mediciones de lactosa. A diferencia de la CDH de tipo salvaje, en las mediciones de lactosa no se pudo detectar una influencia significativa de glucosa y galactosa en las mediciones con las variantes de CDH modificadas.

25 Referencias

30

35

45

Gao et al. (2001) Plos Genetics, 7 (1): e1001264

Harreither et al. (2011) Appl. Environ. Microbiol. 77:1804-1815.

Ludwig et al. (2010) Chem. Phys. Chem. 11:2674-2697

Safina et al. (2010) Electrochimica Acta 55: 7690-7695.

Tasca et al. (2010) Bioelect. 25:1710-1716.

Tasca et al. (2010b) Bioelect. 25:1710-1716.

Tasca et al. (2011) Anal. Chem. 83:3042-3049.

Tasca et al. (2011b). Analyst 136:2033-2036.

LISTADO DE SECUENCIAS

<110> Directsens GmbH

40 <120> Celobiosa deshidrogenasa mutada con sustrato modificado

<130> r70421

<150> EP16152770.0

<151> 2016-01-26

<160> 12

<170> PatentIn versión 3.5

^b No se pudieron analizar los datos, ya que todavía estaban ubicados dentro del intervalo lineal.

	<210> 1 <211> 83 <212> PF <213> Ch	RT	mium :	atrobri	unneu	m											
5		Met 1	Arg	Pro	Ser	Ser 5	Arg	Phe	Val	Gly	Ala 10	Leu	Ala	Ala	Ala	Ala 15	Ser
10	:	Phe	Leu	Pro	Ser 20	Ala	Leu	Ala	Gln	Asn 25	Asn	Ala	Ala	Val	Thr 30	Phe	Thr
15		Asp	Pro	Asp 35	Thr	Gly	Ile	Val	Phe 40	Asn	Ser	Trp	Gly	Leu 45	Ala	Asn	Gly
20	-	Ala	Pro 50	Gln	Thr	Gln	Gly	Gly 55	Phe	Thr	Phe	Gly	Val 60	Ala	Leu	Pro	Ser
25		Asp 65	Ala	Leu	Thr	Thr	Asp 70	Ala	Thr	Glu	Phe	Ile 75	Gly	Tyr	Leu	Glu	Cys 80
30		Ala	Ser	Ala	Asp	Asn 85	Gln	Gly	Trp	Cys	Gly 90	Val	Ser	Met	Gly	Gly 95	Pro
35					100					105					110	Asn	
40	1	Tyr	Thr	Ser 115	Leu	Arg	Phe	Ala	Thr 120	Gly	Tyr	Ala	Met	Pro 125	Asp	Val	Tyr
45		Ser	Gly 130	Asp	Ala	Thr	Ile	Thr 135	Gln	Ile	Ser	Ser	Ser 140	Ile	Asn	Ala	Thr
45		145		-			150	-	-			155			-	Thr	160
50		Asp	Gly	Ala	Ser	${ t Gly}$	${ t Gly}$	Ala	Ser	Thr	Ser	Ala	${ t Gly}$	Val	Leu	Val	Leu

					165					170					175	
5	Gly	Trp	Val	Gln 180	Ala	Phe	Pro	Ser	Pro 185	Gly	Asn	Pro	Thr	Cys 190	Pro	Asp
10	Gln	Ile	Thr 195	Leu	Glu	Gln	His	Asn 200	Asn	Gly	Met	Gly	Ile 205	Trp	Gly	Ala
15	Val	Met 210	Asp	Ser	Asn	Val	Ala 215	Asn	Pro	Ser	Tyr	Thr 220	Glu	Trp	Ala	Ala
	Gln 225	Ala	Thr	Lys	Thr	Val 230	Glu	Ala	Glu	Cys	Asp 235	Gly	Pro	Ser	Glu	Thr 240
20	Asp	Ile	Val	Gly	Val 245	Pro	Val	Pro	Thr	Gly 250	Thr	Thr	Phe	Asp	Tyr 255	Ile
25	Val	Val	Gly	Gly 260	Gly	Ala	Gly	Gly	Ile 265	Pro	Thr	Ala	Asp	Lys 270	Leu	Ser
30	Glu	Ala	Gly 275	Lys	Ser	Val	Leu	Leu 280	Ile	Glu	Lys	Gly	Ile 285	Ala	Ser	Thr
35	Ala	Glu 290	His	Gly	Gly	Thr	Leu 295	Gly	Pro	Glu	Trp	Leu 300	Glu	Gly	Asn	Asp
40	Leu 305	Thr	Arg	Phe	Asp	Val 310	Pro	Gly	Leu	Cys	Asn 315	Gln	Ile	Trp	Val	Asp 320
45	Ser	Lys	Gly	Ile	Ala 325	Cys	Glu	Asp	Thr	Asp 330	Gln	Met	Ala	Gly	Cys 335	Val
	Leu	Gly	Gly	Gly 340	Thr	Ala	Val	Asn	Ala 345	Gly	Leu	Trp	Phe	Lys 350	Pro	Tyr
50	Ser	Leu	Asp 355	Trp	Asp	Tyr	Leu	Phe 360	Pro	Ser	Gly	Trp	Lys 365	Tyr	Arg	Asp
55	Ile	Gln 370	Ala	Ala	Ile	Gly	A rg 375	Val	Phe	Ser	Arg	Ile 380	Pro	Gly	Thr	Asp
60	Ala 385	Pro	Ser	Thr	Asp	Gly 390	Lys	Arg	Tyr	Tyr	Gln 395	Gln	Gly	Phe	Asp	Val 400
65	Leu	Ala	Gly	Gly	Leu 405	Ser	Ala	Gly	Gly	Trp	Asn	Lys	Val	Thr	Ala	Asn

	Ser	Ser	Pro	Asp 420	Lys	Lys	Asn	Arg	Thr 425	Phe	Ser	Asn	Ala	Pro 430	Phe	Met
5	Phe	Ser	Gly 435	Gly	Glu	Arg	Gly	Gly 440	Pro	Leu	Ala	Thr	Tyr 445	Leu	Thr	Ser
10	Ala	Lys 450	Lys	Arg	Ser	Asn	Phe 455	Asn	Leu	Trp	Leu	Asn 460	Thr	Ser	Val	Lys
15	Arg 465	Val	Ile	Arg	Glu	Gly 470	Gly	His	Val	Thr	Gly 475	Val	Glu	Val	Glu	Pro 480
20	Phe	Arg	Thr	Gly	Gly 485	Tyr	Gln	Gly	Ile	Val 490	Asn	Val	Thr	Ala	Val 495	Ser
	Gly	Arg	Val	Val 500	Leu	Ser	Ala	Gly	Thr 505	Phe	Gly	Ser	Ala	Lys 510	Ile	Leu
25	Leu	Arg	Gly 515	Gly	Ile	Gly	Pro	Ala 520	Asp	Gln	Leu	Glu	Val 525	Val	Lys	Ala
30	Ser	Lys 530	Ile	Asp	Gly	Pro	Thr 535	Met	Ile	Ser	Asn	Ala 540	Ser	Trp	Ile	Pro
35	Leu 545	Pro	Val	Gly	Tyr	As n 550	Leu	Asp	Asp	His	Leu 555	Asn	Thr	Asp	Thr	Val 560
40	Ile	Thr	His	Pro	Asp 565	Val	Ala	Phe	Tyr	Asp 570	Phe	Tyr	Glu	Ala	Trp 575	Asn
45	Thr	Pro	Ile	Glu 580	Ala	Asp	Lys	Asn	Ser 585	Tyr	Leu	Ser	Ser	A rg 590	Thr	Gly
	Ile	Leu	Ala 595	Gln	Ala	Ala	Pro	Asn 600	Ile	Gly	Pro	Met	Met 605	Trp	Glu	Glu
50	Ile	Lys 610	Gly	Ala	Asp	Gly	Ile 615	Val	Arg	Gln	Leu	Gln 620	Trp	Thr	Ala	Arg
55	Val 625	Glu	Gly	Ser	Phe	Asp 630	Thr	Pro	Asn	Gly	Gln 635	Ala	Met	Thr	Ile	Ser 640
60	Gln	Tyr	Leu	Gly	Arg 645	Gly	Ala	Thr	Ser	A rg 650	Gly	Arg	Met	Thr	Ile 655	Thr
65	Pro	Ser	Leu	Thr 660	Thr	Val	Val	Ser	Asp 665	Val	Pro	Tyr	Leu	Lys 670	Asp	Pro

	Asn	Asp	Lys 675	Glu	Ala	Val	Ile	Gln 680	Gly	Ile	Val	Asn	Leu 685	Gln	Asn	Ala
5	Leu	Lys 690	Asn	Val	Ala	Gly	Leu 695	Thr	Trp	Thr	Tyr	Pro 700	Asn	Ser	Ser	Ile
10	Thr 705	Pro	Arg	Glu	Tyr	Val 710	Asp	Asn	Met	Val	Val 715	Ser	Pro	Ser	Asn	Arg 720
15	Arg	Ala	Asn	His	Trp 725	Met	Gly	Thr	Ala	Lys 730	Ile	Gly	Thr	Asp	Asp 735	Gly
20	Arg	Leu	Ala	Gly 740	Gly	Ser	Ala	Val	Val 745	Asp	Leu	Asn	Thr	Lys 750	Val	Tyr
25	Gly	Thr	Asp 755	Asn	Leu	Phe	Val	Val 760	Asp	Ala	Ser	Ile	Phe 765	Pro	Gly	Thr
20	Pro	Thr 770	Thr	Asn	Pro	Ser	Ala 775	Tyr	Ile	Val	Thr	A la 780	Ala	Glu	His	Ala
30	Ser 785	Gln	Arg	Ile	Leu	Gly 790	Leu	Ala	Ala	Pro	Lys 795	Pro	Val	Gly	Lys	Trp 800
35	Gly	Gln	Cys	Gly	Gly 805	Arg	Gln	Trp	Thr	Gly 810	Ser	Phe	Gln	Cys	Val 815	Ser
40	Gly	Thr	Lys	Cys 820	Glu	Val	Val	Asn	Glu 825	Trp	Tyr	Ser	Gln	Cys 830	Leu	

-	<210> 2 <211> 8 <212> P <213> H	45 RT	rlon ha	emato	strom	а											
5	<400> 2																
10		Met 1	Gly	Arg	Leu	Gly 5	Ser	Leu	Ala	Lys	Leu 10	Leu	Leu	Ala	Val	Gly 15	Leu
		Asn	Val	Gln	Gln 20	Cys	Phe	Gly	Gln	Asn 25	Gly	Pro	Pro	Thr	Pro 30	Tyr	Thr
15		Asp	Ser	Glu 35	Thr	Gly	Ile	Thr	Phe 40	Ala	Thr	Trp	Ser	Val 45	Pro	Asp	Arg
20		Ala	Glu 50	Gly	Gly	Asn	Gly	Leu 55	Ala	Pro	Trp	Gly	Gly 60	Leu	Thr	Phe	Gly

	Val 65	Ala	Leu	Pro	Glu	Asn 70	Ala	Leu	Thr	Thr	Asp 75	Ala	Thr	Glu	Leu	Ile 80
5	Gly	Tyr	Leu	Lys	Cys 85	Gly	Ser	Asn	Gly	Thr 90	Thr	Thr	Asp	Ala	Trp 95	Cys
10	Gly	Leu	Ser	Phe 100	Gly	Gly	Pro	Met	Thr 105	Asn	Ser	Leu	Leu	Leu 110	Met	Ala
15	Trp	Pro	His 115	Glu	Asp	Glu	Ile	Leu 120	Thr	Ser	Phe	Arg	Phe 125	Ala	Ser	Gly
20	Tyr	Thr 130	Arg	Pro	Asp	Leu	Tyr 135	Thr	Gly	Asp	Ala	Lys 140	Leu	Thr	Gln	Ile
	Ser 145	Ser	Thr	Ile	Asp	Lys 150	Asp	His	Phe	Thr	Leu 155	Ile	Phe	Arg	Cys	Gln 160
25	Asn	Cys	Leu	Ala	Trp 165	Asn	Gln	Asp	Gly	Ala 170	Ser	Gly	Ser	Ala	Ser 175	Thr
30	Ser	Ala	Gly	Ser 180	Leu	Ile	Leu	Gly	Trp 185	Ala	Ser	Ala	Leu	Arg 190	Ala	Pro
35	Thr	Asn	Ala 195	Gly	Cys	Pro	Ala	Glu 200	Ile	Asn	Phe	Asn	Phe 205	His	Asn	Asn
40	Gly	Gln 210	Met	Ile	Trp	Gly	Ala 215	Thr	Leu	Asp	Glu	Ser 220	Ala	Ala	Asn	Pro
45	Ser 225	Tyr	Ser	Glu	Trp	Ala 230	Ala	Lys	Ala	Thr	Ala 235	Thr	Val	Thr	Gly	Asp 240
	Cys	Gly	Gly	Ala	Thr 245	Pro	Thr	Thr	Thr	Thr 250	Thr	Thr	Thr	Thr	Ser 255	Val
50	Pro	Thr	Ala	Thr 260	Gly	Ile	Pro	Val	Pro 265	Thr	Gly	Thr	Tyr	Asp 270	Tyr	Ile
55	Val	Val	Gly 275	Ala	Gly	Ala	Gly	Gly 280	Ile	Pro	Leu	Ala	Asp 285	Lys	Leu	Ser
60	Glu	Ala 290	Gly	Lys	Ser	Val	Leu 295	Leu	Ile	Glu	Lys	Gly 300	Pro	Pro	Ser	Ser
65	Gly 305	Arg	Trp	Gly	Gly	Thr	Leu	Lys	Pro	Glu	Trp 315	Leu	Lys	Asp	Thr	Asn 320

	Leu	Thr	Arg	Phe	Asp 325	Val	Pro	Gly	Leu	Cys 330	Asn	Glu	Ile	Trp	Val 335	Asn
5	Ser	Ala	Gly	Val 340	Ala	Cys	Thr	Asp	Thr 345	Asp	Gln	Met	Ala	Gly 350	Cys	Val
10	Leu	Gly	Gly 355	Gly	Thr	Ala	Val	Asn 360	Ala	Gly	Leu	Trp	Trp 365	Lys	Pro	Tyr
15	Asn	Leu 370	Asp	Trp	Asp	Tyr	Asn 375	Phe	Pro	Arg	Gly	Trp 380	Lys	Ser	Arg	Asp
20	Met 385	Ala	Ala	Ala	Thr	Arg 390	Arg	Val	Phe	Ser	Arg 395	Ile	Pro	Gly	Thr	Asp 400
25	Asn	Pro	Ser	Met	Asp 405	Gly	Lys	Arg	Tyr	Leu 410	Gln	Gln	Gly	Phe	Glu 415	Ile
	Leu	Ala	Gly	Gly 420	Leu	Lys	Ala	Ala	Gly 425	Trp	Thr	Glu	Val	Thr 430	Ala	Asn
30	Asp	Ala	Pro 435	Asn	Lys	Lys	Asn	His 440	Thr	Tyr	Ser	His	Ser 445	Pro	Phe	Met
35	Phe	Ser 450	Gly	Gly	Glu	Arg	Gly 455	Gly	Pro	Met	Gly	Thr 460	Tyr	Leu	Val	Ser
40	Ala 465	Ser	Arg	Arg	Lys	Asn 470	Phe	His	Leu	Trp	Thr 475	Gly	Thr	Ala	Val	Lys 480
45	Arg	Val	Val	Arg	Thr 485	Gly	Gly	His	Ile	Thr 490	Gly	Leu	Glu	Val	Glu 495	Pro
50	Phe	Val	Asn	Gly 500	Gly	Tyr	Thr	Gly	Val 505	Val	Asn	Val	Thr	Ser 510	Ile	Thr
	Gly	Arg	Val 515	Val	Leu	Ser	Ala	Gly 520	Ala	Phe	Gly	Ser	Ala 525	Lys	Ile	Leu
55	Leu	Arg 530	Ser	Gly	Ile	Gly	Pro 535	Glu	Asp	Gln	Leu	Glu 540	Ile	Val	Lys	Ser
60	Ser 545	Thr	Asp	Gly	Pro	Thr 550	Met	Ile	Ser	Asp	Ser 555	Ser	Trp	Ile	Thr	Leu 560
65	Pro	Val	Gly	Tyr	Asn	Leu	Glu	Asp	His	Thr	Asn	Thr	Asp	Thr	Val	Val

					565					570					575	
5	Thr	His	Pro	Asp 580	Val	Val	Phe	Tyr	Asp 585	Phe	Tyr	Glu	Ala	Gly 590	His	Pro
10	Asn	Val	Thr 595	Asp	Lys	Asp	Leu	Tyr 600	Leu	Asn	Ser	Arg	Ala 605	Gly	Ile	Leu
15	Ala	Gln 610	Ala	Ala	Pro	Asn	Ile 615	Gly	Pro	Met	Phe	Trp 620	Glu	Glu	Ile	Lys
20	Gly 625	Lys	Asp	Gly	Val	Val 630	Arg	Gln	Leu	Gln	Trp 635	Thr	Ala	Arg	Val	Glu 640
20	Gly	Ser	Ala	Gly	Thr 645	Pro	Asn	Gly	Tyr	Ala 650	Met	Thr	Met	Ser	Gln 655	Tyr
25	Leu	Gly	Arg	Gly 660	Ala	Lys	Ser	Arg	Gly 665	Arg	Met	Thr	Ile	Thr 670	Lys	Ala
30	Leu	Thr	Thr 675	Val	Val	Ser	Thr	Val 680	Pro	Tyr	Leu	Gln	Asp 685	Lys	Asn	Asp
35	Val	Glu 690	Ala	Val	Ile	Gln	Gly 695	Ile	Lys	Asn	Leu	Gln 700	Ala	Ala	Leu	Ser
40	Asn 705	Val	Lys	Asn	Leu	Thr 710	Trp	Thr	Tyr	Pro	Pro 715	Ser	Asn	Thr	Thr	Val 720
45	Glu	Asp	Phe	Val	Asn 725	Asn	Met	Leu	Val	Ser 730	Tyr	Thr	Asn	Arg	A rg 735	Ser
-0	Asn	His	Trp	Ile 740	Gly	Thr	Asn	Lys	Leu 745	Gly	Thr	Asp	Asp	Gly 750	Arg	Ser
50	Arg	Gly	Gly 755	Ser	Ala	Val	Val	Asp 760	Leu	Asn	Thr	Lys	Val 765	Tyr	Gly	Thr
55	Asp	As n 770	Leu	Phe	Val	Val	Asp 775	Ala	Gly	Ile	Phe	Pro 780	Gly	His	Ile	Thr
60	Thr 785	Asn	Pro	Thr	Ser	Tyr 790	Ile	Val	Ile	Ala	Ala 795	Glu	Arg	Ala	Ser	Glu 800
65	Arg	Ile	Leu	Asp	Leu 805	Pro	Pro	Ala	Arg	Ala 810	Gln	Pro	Arg	Phe	Ala 815	Gln

	Cys	Gly	Gly	Arg 820	Thr	Trp	Thr	Gly	Ser 825	Phe	Gln	Cys	Ala	Ala 830	Pro	Tyr
5	Thr	Cys	Gln 835	Tyr	Arg	Asn	Glu	Arg 840	Tyr	Ser	Gln	Cys	Arg 845			
10	<210> 3 <211> 787 <212> PRT <213> Coryna	scus tl	hermo	philus												
15	<400> 3	T	7	T	G	3	17-1	G1	71-	mb	71-	T	71-	71-	mb	T
15	met 1	туѕ	Leu	Leu	5	Arg	vai	стА	Ата	10	Ата	ьеu	Ата	Ата	15	Leu
20	Ser	Leu	Lys	Gln 20	Cys	Ala	Ala	Gln	Met 25	Thr	Glu	Gly	Thr	Tyr 30	Thr	His
25	Glu	Ala	Thr 35	Gly	Ile	Thr	Phe	Lys 40	Thr	Trp	Thr	Pro	Ser 45	Asp	Gly	Ser
30	Thr	Phe 50	Thr	Phe	Gly	Leu	Ala 55	Leu	Pro	Gly	Asp	Ala 60	Leu	Thr	Asn	Asp
	Ala 65	Thr	Glu	Tyr	Ile	Gly 70	Leu	Leu	Arg	Cys	Gln 75	Ile	Thr	Asp	Pro	Ser 80
35	Ser	Pro	Gly	Tyr	Cys 85	Gly	Ile	Ser	His	Gly 90	Gln	Ser	Gly	Gln	Met 95	Thr
40	Gln	Ala	Leu	Leu 100	Leu	Val	Ala	Trp	Ala 105	Ser	Glu	Asp	Val	Val 110	Tyr	Thr
45	Ser	Phe	Arg 115	Tyr	Ala	Thr	Gly	Tyr 120	Thr	Leu	Pro	Glu	Leu 125	Tyr	Thr	Gly
50	Asp	Ala 130	Lys	Leu	Thr	Gln	Ile 135	Ala	Ser	Ser	Val	Ser 140	Gly	Asp	Ser	Phe
55	Glu 145	Val	Leu	Phe	Arg	Cys 150	Glu	Asn	Cys	Phe	Ser 155	Trp	Asp	Gln	Asn	Gly 160
60	Ala	Thr	Gly	Ser	Val 165	Ser	Thr	Ser	Asn	Gly 170	Ala	Leu	Val	Leu	Gly 175	Tyr
	Ala	Ala	Ser	Lys 180	Ser	Gly	Leu	Thr	Gly 185	Ala	Thr	Cys	Pro	Asp 190	Thr	Ala

	Glu	Phe	Gly 195	Phe	His	Asn	Asn	Gly 200	Phe	Gly	Gln	Trp	Gly 205	Ala	Val	Leu
5	Glu	Gly 210	Ala	Thr	Ser	Asp	Ser 215	Tyr	Glu	Glu	Trp	Ala 220	Gln	Leu	Ala	Thr
10	Ile 225	Thr	Pro	Pro	Thr	Thr 230	Cys	Asp	Gly	Asn	Gly 235	Pro	Gly	Asp	Lys	Val 240
15	Cys	Val	Pro	Ala	Pro 245	Glu	Asp	Thr	Tyr	Asp 250	Tyr	Ile	Val	Val	Gly 255	Ala
20	Gly	Ala	Gly	Gly 260	Ile	Thr	Val	Ala	Asp 265	Lys	Leu	Ser	Glu	Ala 270	Gly	His
	Lys	Val	Leu 275	Leu	Ile	Glu	Lys	Gly 280	Pro	Pro	Ser	Thr	Gly 285	Leu	Trp	Asn
25	Gly	Thr 290	Met	Lys	Pro	Glu	Trp 295	Leu	Glu	Gly	Thr	Asp 300	Leu	Thr	Arg	Phe
30	Asp 305	Val	Pro	Gly	Leu	Cys 310	Asn	Gln	Ile	Trp	Val 315	Asp	Ser	Ala	Gly	Ile 320
35	Ala	Cys	Thr	Asp	Thr 325	Asp	Gln	Met	Ala	Gly 330	Cys	Val	Leu	Gly	Gly 335	Gly
40	Thr	Ala	Val	Asn 340	Ala	Gly	Leu	Trp	Trp 345	Lys	Pro	His	Pro	Ala 350	Asp	Trp
45	Asp	Asp	Asn 355	Phe	Pro	His	Gly	Trp 360	Lys	Ser	Ser	Asp	Leu 365	Ala	Asp	Ala
50	Thr	Glu 370	Arg	Val	Phe	Ser	Arg 375	Ile	Pro	Gly	Thr	Trp 380	His	Pro	Ser	Gln
50	Asp 385	Gly	Lys	Leu	Tyr	Arg 390	Gln	Glu	Gly	Phe	Glu 395	Val	Ile	Ser	Gln	Gly 400
55	Leu	Ala	Asn	Ala	Gly 405	Trp	Arg	Glu	Val	Asp 410	Ala	Asn	Gln	Glu	Pro 415	Ser
60	Glu	Lys	Asn	Arg 420	Thr	Tyr	Ser	His	Ser 425	Val	Phe	Met	Phe	Ser 430	Gly	Gly
65	Glu	Arg	Gly 435	Gly	Pro	Leu	Ala	Thr	Tyr	Leu	Ala	Ser	Ala 445	Ala	Gln	Arg

	Ser	Asn 450	Phe	Asn	Leu	Trp	Val 455	Asn	Thr	Ser	Val	Arg 460	Arg	Ala	Ile	Arg
5	Thr 465	Gly	Pro	Arg	Val	Ser 470	Gly	Val	Glu	Leu	Glu 475	Cys	Leu	Ala	Asp	Gly 480
10	Gly	Phe	Asn	Gly	Thr 485	Val	Asn	Leu	Lys	Glu 490	Gly	Gly	Gly	Val	Ile 495	Phe
15	Ser	Ala	Gly	Ala 500	Phe	Gly	Ser	Ala	Lys 505	Leu	Leu	Leu	Arg	Ser 510	Gly	Ile
20	Gly	Pro	Glu 515	Asp	Gln	Leu	Glu	Ile 520	Val	Ala	Ser	Ser	Lys 525	Asp	Gly	Glu
0.5	Thr	Phe 530	Ile	Ser	Lys	Asn	Asp 535	Trp	Ile	Lys	Leu	Pro 540	Val	Gly	His	Asn
25	Leu 545	Ile	Asp	His	Leu	Asn 550	Thr	Asp	Leu	Ile	Ile 555	Thr	His	Pro	Asp	Val 560
30	Val	Phe	Tyr	Asp	Phe 565	Tyr	Ala	Ala	Trp	Asp 570	Asn	Pro	Ile	Thr	Glu 575	Asp
35	Lys	Glu	Ala	Tyr 580	Leu	Asn	Ser	Arg	Ser 585	Gly	Ile	Leu	Ala	Gln 590	Ala	Ala
40	Pro	Asn	Ile 595	Gly	Pro	Leu	Met	Trp 600	Glu	Glu	Val	Thr	Pro 605	Ser	Asp	Gly
45	Ile	Thr 610	Arg	Gln	Phe	Gln	Trp 615	Thr	Cys	Arg	Val	Glu 620	Gly	Asp	Ser	Ser
50	Lys 625	Thr	Asn	Ser	Thr	His 630	Ala	Met	Thr	Leu	Ser 635	Gln	Tyr	Leu	Gly	Arg 640
30	Gly	Val	Val	Ser	Arg 645	Gly	Arg	Met	Gly	Ile 650	Thr	Ser	Gly	Leu	Thr 655	Thr
55	Thr	Val	Ala	Glu 660	His	Pro	Tyr	Leu	His 665	Asn	Asp	Gly	Asp	Leu 670	Glu	Ala
60	Val	Ile	Gln 675	Gly	Ile	Gln	Asn	Val 680	Val	Asp	Ala	Leu	Ser 685	Gln	Val	Pro
65	Asp	Leu 690	Glu	Trp	Val	Leu	Pro 695	Pro	Pro	Asn	Thr	Thr	Val	Glu	Glu	Tyr

	Val 705	Asn	Ser	Leu	Ile	Val 710	Ser	Pro	Ala	Asn	Arg 715	Arg	Ala	Asn	His	Trp 720
5	Met	Gly	Thr	Ala	Lys 725	Met	Gly	Leu	Asp	Asp 730	Gly	Arg	Ser	Gly	Gly 735	Ser
10	Ala	Val	Val	Asp 740	Leu	Asn	Thr	Lys	Val 745	Tyr	Gly	Thr	Asp	As n 750	Leu	Phe
15	Val	Val	Asp 755	Ala	Ser	Ile	Phe	Pro 760	Gly	Met	Ser	Thr	Gly 765	Asn	Pro	Ser
20	Ala	Met 770	Ile	Val	Ile	Val	Ala 775	Glu	Gln	Ala	Ala	Gln 780	Arg	Ile	Leu	Ser
	Leu 785	Arg	Tyr													
25	<210> 4 <211> 829 <212> PRT <213> Neuros	pora c	rassa													
30	<400> 4															
	Met 1	Arg	Thr	Thr	Ser 5	Ala	Phe	Leu	Ser	Gly 10	Leu	Ala	Ala	Val	Ala 15	Ser
35	Leu	Leu	Ser	Pro 20	Ala	Phe	Ala	Gln	Thr 25	Ala	Pro	Lys	Thr	Phe 30	Thr	His
40	Pro	Asp	Thr 35	Gly	Ile	Val	Phe	Asn 40	Thr	Trp	Ser	Ala	Ser 45	Asp	Ser	Gln
45	Thr	Lys 50	Gly	Gly	Phe	Thr	Val 55	Gly	Met	Ala	Leu	Pro 60	Ser	Asn	Ala	Leu
50	Thr 65	Thr	Asp	Ala	Thr	Glu 70	Phe	Ile	Gly	Tyr	Leu 75	Glu	Cys	Ser	Ser	Ala 80
55	Lys	Asn	Gly	Ala	Asn 85	Ser	Gly	Trp	Cys	Gly 90	Val	Ser	Leu	Arg	Gly 95	Ala
60	Met	Thr	Asn	Asn 100	Leu	Leu	Ile	Thr	Ala 105	Trp	Pro	Ser	Asp	Gly 110	Glu	Val
	Tyr	Thr	Asn 115	Leu	Met	Phe	Ala	Thr 120	Gly	Tyr	Ala	Met	Pro 125	Lys	Asn	Tyr

	Ala	Gly 130	Asp	Ala	Lys	Ile	Thr 135	Gln	Ile	Ala	Ser	Ser 140	Val	Asn	Ala	Thr
5	His 145	Phe	Thr	Leu	Val	Phe 150	Arg	Cys	Gln	Asn	Cys 155	Leu	Ser	Trp	Asp	Gln 160
10	Asp	Gly	Val	Thr	Gly 165	Gly	Ile	Ser	Thr	Ser 170	Asn	Lys	Gly	Ala	Gln 175	Leu
15	Gly	Trp	Val	Gln 180	Ala	Phe	Pro	Ser	Pro 185	Gly	Asn	Pro	Thr	Cys 190	Pro	Thr
20	Gln	Ile	Thr 195	Leu	Ser	Gln	His	Asp 200	Asn	Gly	Met	Gly	Gln 205	Trp	Gly	Ala
25	Ala	Phe 210	Asp	Ser	Asn	Ile	Ala 215	Asn	Pro	Ser	Tyr	Thr 220	Ala	Trp	Ala	Ala
20	Lys 225	Ala	Thr	Lys	Thr	Val 230	Thr	Gly	Thr	Cys	Ser 235	Gly	Pro	Val	Thr	Thr 240
30	Ser	Ile	Ala	Ala	Thr 245	Pro	Val	Pro	Thr	Gly 250	Val	Ser	Phe	Asp	Tyr 255	Ile
35	Val	Val	Gly	Gly 260	Gly	Ala	Gly	Gly	Ile 265	Pro	Val	Ala	Asp	Lys 270	Leu	Ser
40	Glu	Ser	Gly 275	Lys	Ser	Val	Leu	Leu 280	Ile	Glu	Lys	Gly	Phe 285	Ala	Ser	Thr
45	Gly	Glu 290	His	Gly	Gly	Thr	Leu 295	Lys	Pro	Glu	Trp	Leu 300	Asn	Asn	Thr	Ser
50	Leu 305	Thr	Arg	Phe	Asp	Val 310	Pro	Gly	Leu	Cys	As n 315	Gln	Ile	Trp	Lys	Asp 320
	Ser	Asp	Gly	Ile	Ala 325	Cys	Ser	Asp	Thr	Asp 330	Gln	Met	Ala	Gly	Cys 335	Val
55	Leu	Gly	Gly	Gly 340	Thr	Ala	Ile	Asn	Ala 345	Gly	Leu	Trp	Tyr	Lys 350	Pro	Tyr
60	Thr	Lys	Asp 355	Trp	Asp	Tyr	Leu	Phe 360	Pro	Ser	Gly	Trp	Lys 365	Gly	Ser	Asp
65	Ile	Ala	Gly	Ala	Thr	Ser	Arg	Ala	Leu	Ser	Arg	Ile	Pro	Gly	Thr	Thr

		370					375					380				
5	Thr 385	Pro	Ser	Gln	Asp	Gly 390	Lys	Arg	Tyr	Leu	Gln 395	Gln	Gly	Phe	Glu	Val 400
10	Leu	Ala	Asn	Gly	Leu 405	Lys	Ala	Ser	Gly	Trp 410	Lys	Glu	Val	Asp	Ser 415	Leu
15	Lys	Asp	Ser	Glu 420	Gln	Lys	Asn	Arg	Thr 425	Phe	Ser	His	Thr	Ser 430	Tyr	Met
	Tyr	Ile	Asn 435	Gly	Glu	Arg	Gly	Gly 440	Pro	Leu	Ala	Thr	Tyr 445	Leu	Val	Ser
20	Ala	Lys 450	Lys	Arg	Ser	Asn	Phe 455	Lys	Leu	Trp	Leu	Asn 460	Thr	Ala	Val	Lys
25	Arg 465	Val	Ile	Arg	Glu	Gly 470	Gly	His	Ile	Thr	Gly 475	Val	Glu	Val	Glu	Ala 480
30	Phe	Arg	Asn	Gly	Gly 485	Tyr	Ser	Gly	Ile	Ile 490	Pro	Val	Thr	Asn	Thr 495	Thr
35	Gly	Arg	Val	Val 500	Leu	Ser	Ala	Gly	Thr 505	Phe	Gly	Ser	Ala	Lys 510	Ile	Leu
40	Leu	Arg	Ser 515	Gly	Ile	Gly	Pro	Lys 520	Asp	Gln	Leu	Glu	Val 525	Val	Lys	Ala
45	Ser	Ala 530	_	Gly	Pro	Thr	Met 535		Ser	Asn	Ser	Ser 540	_	Ile	Asp	Leu
	Pro 545	Val	Gly	His	Asn	Leu 550	Val	Asp	His	Thr	A sn 555	Thr	Asp	Thr	Val	Ile 560
50	Gln	His	Asn	Asn	Val 565	Thr	Phe	Tyr	Asp	Phe 570	Tyr	Lys	Ala	Trp	Asp 575	Asn
55	Pro	Asn	Thr	Thr 580	Asp	Met	Asn	Leu	Tyr 585	Leu	Asn	Gly	Arg	Ser 590	Gly	Ile
60	Phe	Ala	Gln 595	Ala	Ala	Pro	Asn	Ile 600	Gly	Pro	Leu	Phe	Trp 605	Glu	Glu	Ile
65	Thr	Gly	Ala	Asp	Gly	Ile	Val	Arg	Gln	Leu	His	Trp	Thr	Ala	Arg	Val

			Arg	Thr	Ser	Ser	Arg	Leu	Ile	Gly	Ala	Leu	Ala	Ala	Ala	Leu	Leu
60	<400> 5																
55	<210> 5 <211> 8 <212> P <213> M	28 RT	occum	therm	ophilu	m											
		Lys	Cys	Glu	Lys 820	Gln	Asn	Asp	Trp	Tyr 825	Trp	Gln	Cys	Val			
50		Cys	Gly	Gly	Pro	Thr 805	Tyr	Thr	Gly	Ser	Gln 810	Thr	Cys	Gln	Ala	Pro 815	Tyr
45		Lys 785	Ile	Leu	Ala	Gln	Pro 790	Ala	Asn	Glu	Ala	Val 795	Pro	Lys	Trp	Gly	Trp 800
40		Thr	Asn 770	Pro	Thr	Ala	Tyr	Ile 775	Val	Val	Ala	Ala	Glu 780	His	Ala	Ala	Ala
35		Asp	Asn	Leu 755	Tyr	Val	Val	Asp	Ala 760	Ser	Ile	Phe	Pro	Gly 765	Val	Pro	Thr
30		Ser	Gly	Gly	Thr 740	Ala	Val	Val	Asp	Thr 745	Asn	Thr	Arg	Val	Tyr 750	Gly	Thr
25		Ser	Asn	His	Trp	Met 725	Gly	Thr	Asn	Lys	Met 730	Gly	Thr	Asp	Asp	Gly 735	Arg
		Ala 705	Ala	Asp	Phe	Val	Asp 710	Lys	Gln	Pro	Val	Thr 715	Tyr	Gln	Ser	Arg	A rg 720
20		Ala	Asn 690	Val	Lys	Gly	Leu	Thr 695	Trp	Ala	Tyr	Pro	Ser 700	Ala	Asn	Gln	Thr
15		Asp	Lys	Ala 675	Ala	Val	Val	Gln	Gly 680	Ile	Val	Asn	Leu	Gln 685	Lys	Ala	Leu
10		Thr	Leu	Asn	Thr 660	Val	Val	Ser	Asp	Leu 665	Pro	Tyr	Leu	Lys	Asp 670	Pro	Asn
5		Tyr	Leu	Gly	Arg	Gly 645	Ala	Thr	Ser	Arg	Gly 650	Arg	Met	Thr	Leu	Ser 655	Pro
		Glu 625	Gly	Ser	Phe	Glu	Thr 630	Pro	Asp	Gly	Tyr	Ala 635	Met	Thr	Met	Ser	Gln 640

	Pro	Ser	Ala	Leu 20	Ala	Gln	Asn	Asn	Val 25	Pro	Asn	Thr	Phe	Thr 30	Asp	Pro
5	Asp	Ser	Gly 35	Ile	Thr	Phe	Asn	Thr 40	Trp	Gly	Leu	Asp	Glu 45	Asp	Ser	Pro
10	Gln	Thr 50	Gln	Gly	Gly	Phe	Thr 55	Phe	Gly	Val	Ala	Leu 60	Pro	Ser	Asp	Ala
15	Leu 65	Thr	Thr	Asp	Ala	Ser 70	Glu	Phe	Ile	Gly	Tyr 75	Leu	Lys	Cys	Ala	Arg 80
20	Asn	Asp	Glu	Ser	Gly 85	Trp	Cys	Gly	Ile	Ser 90	Leu	Gly	Gly	Pro	Met 95	Thr
	Asn	Ser	Leu	Leu 100	Ile	Thr	Ala	Trp	Pro 105	His	Glu	Asp	Thr	Val 110	Tyr	Thr
25	Ser	Leu	Arg 115	Phe	Ala	Thr	Gly	Tyr 120	Ala	Met	Pro	Asp	Val 125	Tyr	Glu	Gly
30	Asp	Ala 130	Glu	Ile	Thr	Gln	Val 135	Ser	Ser	Ser	Val	Asn 140	Ser	Thr	His	Phe
35	Ser 145	Leu	Ile	Phe	Arg	Cys 150	Lys	Asn	Cys	Leu	Gln 155	Trp	Ser	His	Gly	Gly 160
40	Ser	Ser	Gly	Gly	Ala 165	Ser	Thr	Ser	Gly	Gly 170	Val	Leu	Val	Leu	Gly 175	Trp
45	Val	Gln	Ala	Phe 180	Asp	Asp	Pro	Gly	Asn 185	Pro	Thr	Cys	Pro	Glu 190	Gln	Ile
5 0	Thr	Leu	Gln 195	Gln	His	Asp	Asn	Gly 200	Met	Gly	Ile	Trp	Gly 205	Ala	Gln	Leu
50	Asn	Thr 210	Asp	Ala	Ala	Ser	Pro 215	Ser	Tyr	Thr	Asp	Trp 220	Ala	Ala	Gln	Ala
55	Thr 225	Lys	Thr	Val	Thr	Gly 230	Asp	Cys	Glu	Gly	Pro 235	Thr	Glu	Thr	Ser	Val 240
60	Val	Gly	Val	Pro	Val 245	Pro	Thr	Gly	Val	Ser 250	Phe	Asp	Tyr	Ile	Val 255	Val
65	Gly	Gly	Gly	Ala 260	Gly	Gly	Ile	Pro	Ala 265	Ala	Asp	Lys	Leu	Ser 270	Glu	Ala

	Gly	Lys	Ser 275	Val	Leu	Leu	Ile	Glu 280	Lys	Gly	Phe	Ala	Ser 285	Thr	Ala	Asn
5	Thr	Gly 290	Gly	Thr	Leu	Gly	Pro 295	Glu	Trp	Leu	Glu	Gly 300	His	Asp	Leu	Thr
10	Arg 305	Phe	Asp	Val	Pro	Gly 310	Leu	Cys	Asn	Gln	Ile 315	Trp	Val	Asp	Ser	Lys 320
15	Gly	Ile	Ala	Cys	Glu 325	Asp	Thr	Asp	Gln	Met 330	Ala	Gly	Cys	Val	Leu 335	Gly
20	Gly	Gly	Thr	Ala 340	Val	Asn	Ala	Gly	Leu 345	Trp	Phe	Lys	Pro	Tyr 350	Ser	Leu
	Asp	Trp	Asp 355	Tyr	Leu	Phe	Pro	Asp 360	Gly	Trp	Lys	Tyr	Asn 365	Asp	Val	Gln
25	Pro	Ala 370	Ile	Asn	Arg	Ala	Leu 375	Ser	Arg	Ile	Pro	Gly 380	Thr	Asp	Ala	Pro
30	Ser 385	Thr	Asp	Gly	Lys	Arg 390	Tyr	Tyr	Gln	Glu	Gly 395	Phe	Glu	Val	Leu	Ser 400
35	Lys	Gly	Leu	Ala	Ala 405	Gly	Gly	Trp	Thr	Ser 410	Val	Thr	Ala	Asn	Asn 415	Ala
40	Pro	Asp	Lys	Lys 420	Asn	Arg	Thr	Phe	Ala 425	His	Ala	Pro	Phe	Met 430	Phe	Ala
45	Gly	Gly	Glu 435	Arg	Asn	Gly	Pro	Leu 440	Gly	Thr	Tyr	Phe	Gln 445	Thr	Ala	Lys
50	Lys	Arg 450	Asn	Asn	Phe	Asp	Val 455	Trp	Leu	Asn	Thr	Ser 460	Val	Lys	Arg	Val
50	Ile 465	Arg	Glu	Gly	Gly	His 470	Ile	Thr	Gly	Val	Glu 475	Val	Glu	Pro	Phe	Arg 480
55	Asp	Gly	Gly	Tyr	Glu 485	Gly	Ile	Val	Pro	Val 490	Thr	Lys	Val	Thr	Gly 495	Arg
60	Val	Ile	Leu	Ser 500	Ala	Gly	Thr	Phe	Gly 505	Ser	Ala	Lys	Ile	Leu 510	Leu	Arg
65	Ser	Gly	Ile 515	Gly	Pro	Glu	Asp	Gln 520	Leu	Glu	Val	Val	Ala 525	Ala	Ser	Glu

	Lys	Asp 530	Gly	Pro	Thr	Met	Ile 535	Gly	Asn	Ser	Ser	Trp 540	Ile	Asn	Leu	Pro
5	Val 545	Gly	Tyr	Asn	Leu	Asp 550	Asp	His	Leu	Asn	Thr 555	Asp	Thr	Val	Ile	Ser 560
10	His	Pro	Asp	Val	Val 565	Phe	Tyr	Asp	Phe	Tyr 570	Glu	Ala	Trp	Asp	Asp 575	Pro
15	Ile	Glu	Ser	Asp 580	Lys	Asn	Ser	Tyr	Leu 585	Glu	Ser	Arg	Thr	Gly 590	Ile	Leu
20	Ala	Gln	Ala 595	Ala	Pro	Asn	Ile	Gly 600	Pro	Met	Phe	Trp	Glu 605	Glu	Ile	Val
25	Gly	Ala 610	Asp	Gly	Ile	Val	Arg 615	Gln	Leu	Gln	Trp	Thr 620	Ala	Arg	Val	Glu
	Gly 625	Ser	Leu	Gly	Ala	Pro 630	Asn	Gly	His	Thr	Met 635	Thr	Met	Ser	Gln	Tyr 640
30	Leu	Gly	Arg	Gly	Ala 645	Thr	Ser	Arg	Gly	A rg 650	Met	Thr	Ile	Thr	Pro 655	Ser
35	Leu	Thr	Thr	Ile 660	Val	Ser	Asp	Val	Pro 665	Tyr	Leu	Lys	Asp	Pro 670	Asn	Asp
40	Lys	Glu	Ala 675	Val	Ile	Gln	Gly	Ile 680	Ile	Asn	Leu	Gln	Asn 685	Ala	Leu	Gln
45	Asn	Val 690	Ala	Asn	Leu	Thr	Trp 695	Leu	Phe	Pro	Asn	Ser 700	Thr	Ile	Thr	Pro
50	Arg 705	Glu	Tyr	Val	Glu	Ser 710	Met	Val	Val	Ser	Pro 715	Ser	Asn	Arg	Arg	Ser 720
55	Asn	His	Trp	Met	Gly 725	Thr	Asn	Lys	Leu	Gly 730	Thr	Asp	Asp	Gly	Arg 735	Lys
55	Gly	Gly	Ser	Ala 740	Val	Val	Asp	Leu	Asp 7 4 5	Thr	Arg	Val	Tyr	Gly 750	Thr	Asp
60	Asn	Leu	Phe 755	Val	Ile	Asp	Ala	Ser 760	Ile	Phe	Pro	Gly	Val 765	Pro	Thr	Thr
65	Asn	Pro	Thr	Ser	Tvr	Ile	Val	Val	Ala	Ala	Glu	His	Ala	Ser	Ser	Ara

		770					775					780				
5	Ile 785	Leu	Ala	Leu	Pro	Asp 790	Leu	Glu	Pro	Val	Pro 795	Lys	Tyr	Gly	Gln	Cys 800
10	Gly	Gly	Arg	Glu	Trp 805	Thr	Gly	Ser	Phe	Val 810	Cys	Ala	Asp	Gly	Ser 815	Thr
15	<210> 6 <211> 829	Glu	Tyr	Gln 820	Asn	Glu	Trp	Tyr	Ser 825	Gln	Cys	Leu				
20	<212> PRT <213> Stachyt	ootrys	bisbyi													
25	<400> 6 Met 1	Leu	Phe	Lys	Leu 5	Ser	Asn	Trp	Leu	Leu 10	Ala	Leu	Ala	Leu	Phe 15	Val
25	Gly	Asn	Val	Val 20	Ala	Gln	Leu	Val	Gly 25	Pro	Thr	Pro	Tyr	Thr 30	Asp	Pro
30	Asp	Thr	Gly 35	Ile	Val	Phe	Gln	Ser 40	Trp	Val	Asn	Pro	Ala 45	Gly	Thr	Leu
35	Lys	Phe 50	Gly	Tyr	Thr	Tyr	Pro 55	Ala	Asn	Ala	Ala	Thr 60	Val	Ala	Ala	Thr
40	Glu 65	Phe	Ile	Gly	Phe	Leu 70	Glu	Cys	Gln	Gly	Ala 75	Gly	Trp	Cys	Ser	Val 80
45	Ser	Leu	Gly	Gly	Ser 85	Met	Leu	Asn	Lys	Pro 90	Leu	Val	Val	Ala	Tyr 95	Pro
50	Ser	Gly	Asp	Glu 100	Val	Leu	Ala	Ser	Leu 105	Lys	Trp	Ala	Thr	Gly 110	Tyr	Ala
	Asn	Pro	Glu 115	Pro	Tyr	Gly	Gly	Asn 120	His	Lys	Leu	Ser	Gln 125	Ile	Ser	Ser
55	Ser	Val 130	Thr	Ser	Ala	Gly	Phe 135	Arg	Val	Val	Tyr	Arg 140	Cys	Glu	Gly	Cys
60	Leu 145	Ala	Trp	Asn	Tyr	Gln 150	Gly	Ile	Glu	Gly	Gly 155	Ser	Pro	Thr	Asn	Gly 160
65	Ala	Ser	Met	Pro	Ile	Gly	Trp	Ala	Tyr	Ser	Ala	Ser	Ser	Val	Leu	Asn

					165					170					175	
5	Gly	Asp	Cys	Val 180	Asp	Asn	Thr	Val	Leu 185	Ile	Gln	His	Asp	Thr 190	Phe	Gly
10	Asn	Tyr	Gly 195	Phe	Val	Pro	Asp	Glu 200	Ser	Ser	Leu	Arg	Thr 205	Glu	Tyr	Asn
15	Asp	Trp 210	Thr	Glu	Leu	Pro	Thr 215	Arg	Val	Val	Arg	Gly 220	Asp	Cys	Gly	Gly
	Ser 225	Thr	Thr	Thr	Ser	Ser 230	Val	Pro	Ser	Ser	Thr 235	Ala	Pro	Pro	Gln	Gly 240
20	Thr	Gly	Ile	Pro	Val 245	Pro	Thr	Gly	Ala	Ser 250	Tyr	Asp	Tyr	Ile	Val 255	Val
25	Gly	Ser	Gly	Ala 260	Gly	Gly	Ile	Pro	Ile 265	Ala	Asp	Lys	Leu	Thr 270	Glu	Ala
30	Gly	Lys	Lys 275	Val	Leu	Leu	Ile	Glu 280	Lys	Gly	Pro	Pro	Ser 285	Ser	Gly	Arg
35	Tyr	Asp 290	Gly	Lys	Leu	Lys	Pro 295	Thr	Trp	Leu	Glu	Gly 300	Thr	Asn	Leu	Thr
40	Arg 305	Phe	Asp	Val	Pro	Gly 310	Leu	Cys	Asn	Gln	Ile 315	Trp	Val	Asp	Ser	A la 320
45	Gly	Ile	Ala	Cys	Arg 325	Asp	Thr	Asp	Gln	Met 330	Ala	Gly	Cys	Val	Leu 335	Gly
	Gly	Gly	Thr	Ala 340	Val	Asn	Ala	Gly	Leu 345	Trp	Trp	Lys	Pro	Asn 350	Pro	Ile
50	Asp	Trp	Asp 355	Tyr	Asn	Phe	Pro	Ser 360	Gly	Trp	Lys	Ser	Ser 365	Glu	Met	Ile
55	Gly	Ala 370	Thr	Asn	Arg	Val	Phe 375	Ser	Arg	Ile	Gly	Gly 380	Thr	Thr	Val	Pro
60	Ser 385	Gln	Asp	Gly	Lys	Thr 390	Tyr	Tyr	Gln	Gln	Gly 395	Phe	Asn	Val	Leu	Ser 400
65	Ser	Gly	Leu	Lys	Ala 405	Ala	Gly	Trp	Thr	Ser 410	Val	Ser	Leu	Asn	Asn 415	Ala

	Pro	Ala	Gln	Lys 420	Asn	Arg	Thr	Tyr	Gly 425	Ala	Gly	Pro	Phe	Met 430	Phe	Ser
5	Gly	Gly	Glu 435	Arg	Gly	Gly	Pro	Leu 440	Ala	Thr	Tyr	Leu	Ala 445	Thr	Ala	Lys
10	Lys	Arg 450	Gly	Asn	Phe	Asp	Leu 455	Trp	Thr	Asn	Thr	Gln 460	Val	Lys	Arg	Val
15	Ile 465	Arg	Gln	Gly	Gly	His 470	Val	Thr	Gly	Val	Glu 475	Val	Glu	Asn	Tyr	Asn 480
20	Gly	Asp	Gly	Tyr	Lys 485	Gly	Thr	Val	Lys	Val 490	Thr	Pro	Val	Ser	Gly 495	Arg
	Val	Val	Leu	Ser 500	Ala	Gly	Thr	Phe	Gly 505	Ser	Ala	Lys	Leu	Leu 510	Leu	Arg
25	Ser	Gly	Ile 515	Gly	Pro	Lys	Asp	Gln 520	Leu	Ala	Ile	Val	Lys 525	Asn	Ser	Thr
30	Asp	Gly 530	Pro	Thr	Met	Ala	Ser 535	Glu	Arg	Asp	Trp	Ile 540	Asn	Leu	Pro	Val
35	Gly 545	Tyr	Asn	Leu	Glu	Asp 550	His	Thr	Asn	Thr	Asp 555	Ile	Val	Ile	Ser	His 560
40	Pro	Asp	Val	Val	His 565	Tyr	Asp	Phe	Tyr	Glu 570	Ala	Trp	Thr	Ala	Pro 575	Ile
45	Glu	Ser	Asp	Lys 580	Thr	Ala	Tyr	Leu	Gly 585	Lys	Arg	Ser	Gly	Ile 590	Leu	Ala
	Gln	Ala	Ala 595	Pro	Asn	Ile	Gly	Pro 600	Leu	Phe	Phe	Asp	Glu 605	Val	Arg	Gly
50	Ala	Asp 610	Asn	Ile	Val	Arg	Ser 615	Ile	Gln	Tyr	Thr	Ala 620	Arg	Val	Glu	Gly
55	Asn 625	Ser	Val	Val	Pro	Asn 630	Gly	Lys	Ala	Met	Val 635	Ile	Ser	Gln	Tyr	Leu 640
60	Gly	Arg	Gly	Ala	Val 645	Ser	Arg	Gly	Arg	Met 650	Thr	Ile	Ser	Gln	Gly 655	Leu
65	Asn	Thr	Ile	Val 660	Ser	Thr	Ala	Pro	Tyr 665	Leu	Ser	Asn	Val	Asn 670	Asp	Leu

	Glu	Ala	Val 675	Ile	Lys	Ser	Leu	Glu 680	Asn	Ile	Ala	Asn	Ser 685	Leu	Thr	Ser
5	Lys	Val 690	Lys	Asn	Leu	Lys	Ile 695	Glu	Trp	Pro	Ala	Ser 700	Gly	Thr	Ser	Ile
10	Arg 705	Asp	His	Val	Thr	Asn 710	Met	Pro	Leu	Asp	Pro 715	Ala	Thr	Arg	Arg	Ala 720
15	Asn	His	Trp	Ile	Gly 725	Thr	Asn	Lys	Ile	Gly 730	Thr	Lys	Asp	Gly	Arg 735	Leu
20	Thr	Gly	Gly	Asp 740	Ser	Val	Val	Asp	Leu 745	Asn	Thr	Lys	Val	Tyr 750	Gly	Thr
25	Asp	Asn	Leu 755	Phe	Val	Val	Asp	Ala 760	Ser	Ile	Phe	Pro	Gly 765	Met	Val	Thr
20	Thr	As n 770	Pro	Ser	Ala	Tyr	Ile 775	Val	Ile	Ala	Ala	Glu 780	His	Ala	Ala	Ser
30	Lys 785	Ile	Leu	Ser	Leu	Pro 790	Thr	Ala	Lys	Ala	Ala 795	Ala	Lys	Tyr	Glu	Gln 800
35	Cys	Gly	Gly	Leu	Glu 805	Tyr	Asn	Gly	Asn	Phe 810	Gln	Cys	Ala	Ser	Gly 815	Leu
40	Thr	Cys	Thr	Trp 820	Leu	Asn	Asp	Tyr	Tyr 825	Trp	Gln	Cys	Thr			
45	<210> 7 <211> 771 <212> PRT <213> Athelia	rolfsii														
	<400> 7															
50	Met 1	Leu	Ser	Arg	Leu 5	Val	Leu	Asn	Leu	Leu 10	Ala	Ile	Thr	Val	Ile 15	Gly
55	Val	Phe	Gly	Gln 20	Ser	Ser	Ser	Ser	Tyr 25	Thr	Asp	Asn	Gly	Ile 30	Asn	Phe
60	Gln	Gly	Ile 35	Thr	Asp	Pro	Thr	Tyr 40	Gly	Val	Thr	Tyr	Gly 45	Ala	Val	Phe
	Pro	Pro 50	Ala	Ser	Val	Asp	Ser 55	Asp	Glu	Phe	Ile	Gly 60	Glu	Ile	Ala	Ala

	Pro 65	Val	Ala	Ala	Lys	Trp 70	Ile	Gly	Leu	Ser	Leu 75	Gly	Gly	Ala	Met	Ile 80
5	Asn	Asn	Leu	Leu	Ile 85	Val	Ala	Trp	Pro	Asn 90	Asn	Asn	Glu	Ile	Val 95	Phe
10	Ser	Ser	Arg	Tyr 100	Thr	Thr	Gly	Tyr	Val 105	Leu	Pro	Thr	Ile	Tyr 110	Ser	Gly
15	Pro	Lys	Ile 115	Thr	Thr	Ile	Ser	Ser 120	Ser	Val	Asn	Ser	Thr 125	His	Trp	Lys
20	Trp	Ile 130	Tyr	Arg	Суѕ	Gln	Asn 135	Суѕ	Thr	Thr	Trp	Ser 140	Gly	Gly	Ser	Leu
	Ala 145	Ala	Asn	Gly	Ser	Ala 150	Val	Trp	Ala	Trp	Ala 155	Tyr	Ser	Ser	Ala	Ala 160
25	Val	Asp	Thr	Pro	Ser 165	Ser	Pro	Ser	Ser	Ser 170	Phe	Asp	Glu	His	Thr 175	Asp
30	Phe	Gly	Phe	Phe 180	Gly	Glu	Ile	Thr	Ser 185	Asn	Ala	His	Val	Ser 190	Gln	Ser
35	Val	Tyr	Glu 195	Gln	Tyr	Leu	Thr	Gly 200	Thr	Gly	Val	Thr	Ser 205	Thr	Ser	Ser
40	Ser	Thr 210	Ser	Thr	Thr	Thr	Ser 215	Thr	Ser	Thr	Thr	Thr 220	Ser	Thr	Ser	Ser
45	Ala 225	Pro	Thr	Val	Ser	Ala 230	Thr	Pro	Tyr	Asp	Tyr 235	Ile	Ile	Val	Gly	Ala 240
	Gly	Pro	Ala	Gly	Ile 245	Ile	Ala	Ala	Asp	Arg 250	Leu	Ser	Glu	Ala	Gly 255	Lys
50	Lys	Val	Leu	Leu 260	Leu	Glu	Arg	Gly	Gly 265	Pro	Ser	Thr	Lys	Glu 270	Thr	Gly
55	Gly	Thr	Tyr 275	Thr	Ala	Pro	Trp	Ala 280	Ala	Ser	Ser	Gly	Leu 285	Thr	Lys	Phe
60	Asp	Ile 290	Pro	Gly	Val	Phe	Glu 295	Ser	Leu	Phe	Thr	Asp 300	Ser	Asn	Ser	Phe
65	Trp 305	Trp	Cys	Lys	Asp	Ile 310	Thr	Val	Phe	Ala	Gly 315	Суз	Leu	Thr	Gly	Gly 320

	Gly	Thr	Ala	Ile	Asn 325	Gly	Ala	Leu	Tyr	Trp 330	Tyr	Pro	Thr	Asp	Leu 335	Asp
5	Phe	Ser	Thr	Ala 340	Asn	Gly	Trp	Pro	Ser 345	Ser	Trp	Thr	Ala	His 350	Gln	Lys
10	Tyr	Thr	Asp 355	Leu	Val	Ser	Ser	Arg 360	Leu	Pro	Ser	Ser	Asp 365	His	Pro	Ser
15	Thr	Asp 370	Gly	Lys	Arg	Tyr	Leu 375	Glu	Gln	Ser	Ala	Ala 380	Val	Val	Ala	Gln
20	Leu 385	Leu	Asn	Gly	Gln	Gly 390	Tyr	Arg	Asn	Lys	Thr 395	Ile	Asn	Asn	Ala	Pro 400
25	Asn	Ala	Lys	Asp	His 405	Val	Tyr	Gly	Tyr	Ser 410	Ala	Phe	Asp	Phe	Leu 415	Asn
	Gly	Lys	Arg	Ala 420	Gly	Pro	Val	Ala	Thr 425	Tyr	Leu	Gln	Thr	Ala 430	Lys	Thr
30	Arg	Asn	Asn 435	Phe	His	Phe	Lys	Asn 440	Tyr	Val	Leu	Val	Ser 445	Asn	Val	Val
35	Arg	Asn 450	Gly	Ser	Thr	Ile	Thr 455	Gly	Val	Lys	Thr	Asn 460	Asp	Thr	Ser	Leu
40	Gly 465	Pro	Asn	Gly	Val	Ile 470	Pro	Leu	Thr	Lys	Asn 475	Gly	Arg	Val	Ile	Leu 480
45	Ser	Ala	Gly	Ser	Leu 485	Ser	Ser	Pro	Arg	Ile 490	Leu	Phe	Gln	Ser	Gly 495	Ile
50	Gly	Pro	Thr	Asp 500	Met	Leu	Thr	Leu	Val 505	Gln	Asn	Asn	Pro	Thr 510	Ala	Ser
	Ala	Asn	Leu 515	Pro	Ser	Gln	Ser	Gln 520	Trp	Ile	His	Leu	Pro 525	Val	Gly	Tyr
55	Asn	Val 530	Ala	Asp	Ala	Pro	Ser 535	Ile	Asn	Phe	Val	Phe 540	Thr	His	Pro	Ser
60	Ile 545	Asp	Ala	Tyr	Asp	A sn 550	Trp	Ala	Asn	Val	Trp 555	Thr	Asn	Pro	Arg	Ser 560
65	Thr	Asp	Ala	Glu	Gln	Tyr	Leu	Lys	Asn	Gln	Ser	Gly	Val	Leu	Ala	Ala

					565					570					575	
5	Ser	Ser	Pro	Lys 580	Leu	Asn	Phe	Trp	Arg 585	Ala	Tyr	Gly	Gly	Ser 590	Asp	Gly
10	Arg	Thr	A rg 595	Trp	Met	Gln	Gly	Thr 600	Val	Arg	Pro	Gly	Ala 605	Ala	Ser	Ile
15	Asn	Thr 610	Thr	Tyr	Asn	Tyr	Asn 615	Ala	Ser	Gln	Ile	Phe 620	Thr	Ile	Thr	Thr
	Tyr 625	Val	Ser	Thr	Gly	Ile 630	Thr	Ser	Arg	Gly	Arg 635	Ile	Gly	Val	Thr	Ser 640
20	Ser	Leu	Asn	Val	Leu 645	Pro	Leu	Val	Asn	Pro 650	Trp	Leu	Val	Asp	Pro 655	Val
25	Asp	Glu	Lys	Val 660	Leu	Thr	Gln	Ser	Leu 665	Glu	Asp	Leu	Val	Ser 670	Asn	Met
30	Lys	Ser	Val 675	Pro	Gly	Leu	Thr	Met 680	Ile	Met	Pro	Asp	Asn 685	Thr	Thr	Ser
35	Ile	Ala 690	Asp	Tyr	Val	Lys	Asn 695	Tyr	Asp	Arg	Ala	Ser 700	Met	Asn	Ser	Asn
40	His 705	Trp	Val	Gly	Ser	Asn 710	Lys	Ile	Ala	Ser	Asn 715	Ala	Thr	Glu	Gly	Val 720
45	Val	Asp	Glu	His	Thr 725	_	Val			Thr 730		Asn	Leu	Phe	Ile 735	Val
	Asp	Ala	Ser	Ile 740	Ile	Pro	Ser	Leu	Pro 745	Met	Gly	Asn	Pro	Gln 750	Gly	Ala
50	Leu	Met	Ser 755	Ala	Ala	Glu	Gln	Ala 760	Val	Ala	Lys	Ile	Leu 765	Ala	Leu	Ala
55	Gly	Gly 770	Pro													
60	<210> 8 <211> 774 <212> PRT <213> Gelator	ooria s	ubverr	mispor	ra											
	<400> 8															

	Met 1	Phe	Gly	Arg	Phe 5	Leu	Leu	Ala	Leu	Leu 10	Pro	Leu	Val	Gly	Ser 15	Val
5	Leu	Ser	Gln	Ser 20	Gly	Ser	Ser	Tyr	Thr 25	Asp	Pro	Asp	Asn	Gly 30	Phe	Val
10	Phe	Asn	Gly 35	Ile	Thr	Asp	Pro	Val 40	Tyr	Gly	Val	Thr	Tyr 45	Gly	Val	Val
15	Phe	Pro 50	Glu	Pro	Ser	Ser	Ser 55	Gly	Thr	Tyr	Pro	Asp 60	Glu	Phe	Ile	Gly
20	Glu 65	Ile	Val	Ala	Pro	Leu 70	Thr	Ala	Glu	Trp	Ile 75	Gly	Val	Ser	Phe	Gly 80
	Gly	Ala	Met	Leu	Asp 85	Cys	Leu	Leu	Leu	Val 90	Ala	Trp	Pro	Asn	Gln 95	Asn
25	Ser	Ile	Val	Ala 100	Ser	Thr	Arg	Tyr	Ala 105	Thr	Asp	Tyr	Val	Gln 110	Pro	Thr
30	Glu	Tyr	Asp 115	Gly	Pro	Val	Leu	Thr 120	Thr	Leu	Pro	Ser	Ser 125	Tyr	Val	Asn
35	Ser	Thr 130	His	Trp	Lys	Tyr	Val 135	Tyr	Arg	Cys	Gln	Asn 140	Cys	Thr	Thr	Trp
40	Gln 145	Gly	Gly	Gly	Ile	Ser 150	Leu	Gly	Gly	Thr	Gly 155	Val	Leu	Ala	Trp	Ala 160
45	Tyr	Ser	Asn	Val	Gly 165	Val	Asp	Asp	Pro	Ser 170	Asp	Pro	Glu	Ser	Asn 175	Phe
50	Leu	Glu	His	Thr 180	Asp	Phe	Gly	Phe	Phe 185	Gly	Glu	Asn	Phe	Gly 190	Gln	Thr
30	Glu	Asn	Ala 195	Asn	Tyr	Asn	Asn	Tyr 200	Val	Asn	Gly	Asn	Pro 205	Gly	Thr	Pro
55	Thr	Ser 210	Thr	Pro	Pro	Thr	Thr 215	Ser	Pro	Thr	Gly	Pro 220	Thr	Thr	Thr	Ser
60	Pro 225	Ala	Ser	Pro	Pro	Thr 230	Ala	Ser	Ala	Thr	Pro 235	Tyr	Asp	Tyr	Ile	Ile 240
65	Val	Gly	Ala	Gly	Ala 245	Gly	Gly	Ile	Ile	Ala 250	Ala	Asp	Arg	Leu	Ser 255	Gln

	Asn	Asn	Lys	Lys 260	Val	Leu	Leu	Leu	Glu 265	Arg	Gly	Gly	Pro	Ser 270	Thr	Gly
5	Glu	Thr	Gly 275	Gly	Thr	Tyr	Val	Ala 280	Asp	Trp	Ala	Glu	Gly 285	Thr	Asn	Leu
10	Thr	Lys 290	Phe	Asp	Ile	Pro	Gly 295	Leu	Phe	Glu	Ser	Met 300	Phe	Asp	Asp	Pro
15	Asp 305	Pro	Trp	Tyr	Trp	Cys 310	Ser	Asp	Val	Thr	Phe 315	Tyr	Ala	Gly	Cys	Leu 320
20	Leu	Gly	Gly	Gly	Thr 325	Ser	Val	Asn	Gly	Ala 330	Leu	Tyr	Trp	Tyr	Pro 335	Thr
	Asp	Thr	Asp	Phe 340	Ser	Thr	Ala	Arg	Gly 345	Trp	Pro	Ser	Ser	Trp 350	Ser	Asn
25	His	Gln	Ala 355	Tyr	Thr	Asn	Ala	Met 360	Thr	Gln	Arg	Leu	Pro 365	Ser	Thr	Asp
30	His	Pro 370	Ser	Thr	Asp	Gly	Glu 375	Arg	Tyr	Leu	Glu	Gln 380	Ser	Ala	Gln	Val
35	Ala 385	Met	Gln	Leu	Leu	Asn 390	Ala	Gln	Gly	Tyr	Tyr 395	Gln	Ala	Thr	Ile	Asn 400
40	Asp	Ser	Pro	Asp	Ser 405	Lys	Asp	His	Val	Tyr 410	Gly	Tyr	Ser	Ala	Phe 415	Asp
45	Phe	Ile	Asn	Gly 420	Lys	Arg	Gly	Gly	Val 425	Val	Ala	Thr	Tyr	Leu 430	Gln	Thr
	Ala	Asn	Gln 435	Arg	Ser	Asn	Phe	Val 440	Tyr	Lys	Asp	Tyr	Thr 445	Leu	Val	Ser
50	Ser	Val 450	Val	Arg	Asn	Gly	Ser 455	Gln	Ile	Leu	Gly	Val 460	Gln	Thr	Asn	Asn
55	Thr 465	Ala	Ile	Gly	Pro	Asn 470	Gly	Phe	Ile	Pro	Leu 475	Asn	Pro	Asn	Gly	Arg 480
60	Val	Ile	Leu	Ser	Ala 485	Gly	Ser	Phe	Gly	Thr 490	Pro	Arg	Ile	Leu	Phe 495	Gln
65	Ser	Gly	Ile	Gly 500	Pro	Thr	Asp	Met	Leu 505	Gln	Thr	Val	Gln	Gln 510	Asn	Ala

	Ala	Val	Ala 515	Ala	Asn	Met	Pro	Ser 520	Glu	Ser	Asp	Trp	Ile 525	Asn	Leu	Pro
5	Val	Gly 530	Met	Asn	Val	Ser	Asp 535	Asn	Pro	Ser	Ile	Asn 540	Leu	Val	Phe	Thr
10	His 545	Pro	Ser	Ile	Asp	Ala 550	Tyr	Asp	Asn	Trp	Ala 555	Asp	Val	Trp	Thr	Asp 560
15	Pro	Arg	Pro	Ala	Asp 565	Ala	Ala	Gln	Tyr	Leu 570	Ala	Ser	Gln	Ser	Gly 575	Val
20	Phe	Ala	Gly	Ala 580	Ser	Pro	Lys	Leu	Asn 585	Phe	Trp	Arg	Asp	Tyr 590	Glu	Gly
	Ser	Asp	Gly 595	Ile	Gln	Arg	Ser	Ala 600	Gln	Gly	Thr	Val	Arg 605	Pro	Gly	Ala
25	Ala	Ser 610	Val	Asn	Thr	Thr	Leu 615	Pro	Tyr	Asn	Ala	Ser 620	Gln	Ile	Phe	Thr
30	Ile 625	Thr	Val	Tyr	Leu	Ser 630	Ser	Gly	Ile	Thr	Ser 635	Arg	Gly	Arg	Ile	Gly 640
35	Val	Thr	Ala	Gly	Leu 645	Asn	Ala	Val	Ala	Leu 650	Glu	Asn	Pro	Trp	Leu 655	Thr
40	Asp	Pro	Val	Asp 660	Lys	Val	Val	Leu	Ile 665	Gln	Ala	Leu	Glu	Asp 670	Val	Ile
45	Ser	Thr	Leu 675	Pro	Ser	Val	Pro	Asp 680	Leu	Thr	Met	Ile	Thr 685	Pro	Asp	Ser
	Gly	Met 690	Thr	Leu	Glu	Glu	Tyr 695	Val	Asp	Leu	Tyr	Asp 700	Pro	Ser	Thr	Met
50	Cys 705	Ser	Asn	His	Trp	Val 710	Gly	Ser	Ala	Lys	Met 715	Gly	Thr	Ser	Ser	Asp 720
55	Thr	Ala	Val	Val	Asp 725	Glu	Asn	Ala	Lys	Val 730	Phe	Asn	Thr	Asp	Asn 735	Leu
60	Phe	Val	Ile	Asp 740	Ala	Ser	Ile	Val	Pro 745	Ser	Leu	Pro	Val	Gly 750	Asn	Pro
65	His	Gly	Thr 755	Val	Met	Ser	Ala	Ala 760	Glu	Gln	Ala	Val	Ala 765	Asn	Ile	Leu

Ala Leu Ser Gly Gly Pro 770

5	<210> 9 <211> 773 <212> PRT <213> Phanero	ochaet	te chry	/sospc	orium											
	<400> 9															
10	Met 1	Leu	Gly	Arg	Ser 5	Leu	Leu	Ala	Leu	Leu 10	Pro	Phe	Val	Gly	Leu 15	Ala
15	Phe	Ser	Gln	Ser 20	Ala	Ser	Gln	Phe	Thr 25	Asp	Pro	Thr	Thr	Gly 30	Phe	Gln
20	Phe	Thr	Gly 35	Ile	Thr	Asp	Pro	Val 40	His	Asp	Val	Thr	Tyr 45	Gly	Phe	Val
25	Phe	Pro 50	Pro	Leu	Ala	Thr	Ser 55	Gly	Ala	Gln	Ser	Thr 60	Glu	Phe	Ile	Gly
30	Glu 65	Val	Val	Ala	Pro	Ile 70	Ala	Ser	Lys	Trp	Ile 75	Gly	Ile	Ala	Leu	Gly 80
	Gly	Ala	Met	Asn	Asn 85	Asp	Leu	Leu	Leu	Val 90	Ala	Trp	Ala	Asn	Gly 95	Asn
35	Gln	Ile	Val	Ser 100	Ser	Thr	Arg	Trp	Ala 105	Thr	Gly	Tyr	Val	Gln 110	Pro	Thr
40	Ala	Tyr	Thr 115	Gly	Thr	Ala	Thr	Leu 120	Thr	Thr	Leu	Pro	Glu 125	Thr	Thr	Ile
45	Asn	Ser 130	Thr	His	Trp	Lys	Trp 135	Val	Phe	Arg	Cys	Gln 140	Gly	Cys	Thr	Glu
50	Trp 145	Asn	Asn	Gly	Gly	Gly 150	Ile	Asp	Val	Thr	Ser 155	Gln	Gly	Val	Leu	Ala 160
55	Trp	Ala	Phe	Ser	Asn 165	Val	Ala	Val	Asp	Asp 170	Pro	Ser	Asp	Pro	Gln 175	Ser
60	Thr	Phe	Ser	Glu 180	His	Thr	Asp	Phe	Gly 185	Phe	Phe	Gly	Ile	Asp 190	Tyr	Ser
	Thr	Ala	His 195	Ser	Ala	Asn	Tyr	Gln 200	Asn	Tyr	Leu	Asn	Gly 205	Asp	Ser	Gly

	Asn	Pro 210	Thr	Thr	Thr	Ser	Thr 215	Lys	Pro	Thr	Ser	Thr 220	Ser	Ser	Ser	Val
5	Thr 225	Thr	Gly	Pro	Thr	Val 230	Ser	Ala	Thr	Pro	Tyr 235	Asp	Tyr	Ile	Ile	Val 240
10	Gly	Ala	Gly	Pro	Gly 245	Gly	Ile	Ile	Ala	Ala 250	Asp	Arg	Leu	Ser	Glu 255	Ala
15	Gly	Lys	Lys	Val 260	Leu	Leu	Leu	Glu	Arg 265	Gly	Gly	Pro	Ser	Thr 270	Lys	Gln
20	Thr	Gly	Gly 275	Thr	Tyr	Val	Ala	Pro 280	Trp	Ala	Thr	Ser	Ser 285	Gly	Leu	Thr
25	Lys	Phe 290	Asp	Ile	Pro	Gly	Leu 295	Phe	Glu	Ser	Leu	Phe 300	Thr	Asp	Ser	Asn
25	Pro 305	Phe	Trp	Trp	Cys	Lys 310	Asp	Ile	Thr	Val	Phe 315	Ala	Gly	Cys	Leu	Val 320
30	Gly	Gly	Gly	Thr	Ser 325	Val	Asn	Gly	Ala	Leu 330	Tyr	Trp	Tyr	Pro	Asn 335	Asp
35	Gly	Asp	Phe	Ser 340	Ser	Ser	Val	Gly	Trp 345	Pro	Ser	Ser	Trp	Thr 350	Asn	His
40	Ala	Pro	Tyr 355	Thr	Ser	Lys	Leu	Ser 360	Ser	Arg	Leu	Pro	Ser 365	Thr	Asp	His
45	Pro	Ser 370	Thr	Asp	Gly	Gln	Arg 375	Tyr	Leu	Glu	Gln	Ser 380	Phe	Asn	Val	Val
50	Ser 385	Gln	Leu	Leu	Lys	Gly 390	Gln	Gly	Tyr	Asn	Gln 395	Ala	Thr	Ile	Asn	Asp 400
	Asn	Pro	Asn	Tyr	Lys 405	Asp	His	Val	Phe	Gly 410	Tyr	Ser	Ala	Phe	Asp 415	Phe
55	Leu	Asn	Gly	Lys 420	Arg	Ala	Gly	Pro	Val 425	Ala	Thr	Tyr	Leu	Gln 430	Thr	Ala
60	Leu	Ala	Arg 435	Pro	Asn	Phe	Thr	Phe 440	Lys	Thr	Asn	Val	Met 445	Val	Ser	Asn
65	Val	Val	Arg	Asn	Gly	Ser	Gln	Ile	Leu	Gly	Val	Gln	Thr	Asn	Asp	Pro

		450					455					460				
5	Thr 465	Leu	Gly	Pro	Asn	Gly 470	Phe	Ile	Pro	Val	Thr 475	Pro	Lys	Gly	Arg	Val 480
10	Ile	Leu	Ser	Ala	Gly 485	Ala	Phe	Gly	Thr	Ser 490	Arg	Ile	Leu	Phe	Gln 495	Ser
15	Gly	Ile	Gly	Pro 500	Thr	Asp	Met	Ile	Gln 505	Thr	Val	Gln	Ser	Asn 510	Pro	Thr
	Ala	Ala	Ala 515	Ala	Leu	Pro	Pro	Gln 520	Asn	Gln	Trp	Ile	Asn 525	Leu	Pro	Val
20	Gly	Met 530	Asn	Ala	Gln	Asp	Asn 535	Pro	Ser	Ile	Asn	Leu 540	Val	Phe	Thr	His
25	Pro 5 4 5	Ser	Ile	Asp	Ala	Tyr 550	Glu	Asn	Trp	Ala	Asp 555	Val	Trp	Ser	Asn	Pro 560
30	Arg	Pro	Ala	Asp	Ala 565	Ala	Gln	Tyr	Leu	Ala 570	Asn	Gln	Ser	Gly	Val 575	Phe
35	Ala	Gly	Ala	Ser 580	Pro	Lys	Leu	Asn	Phe 585	Trp	Arg	Ala	Tyr	Ser 590	Gly	Ser
40	Asp	Gly	Phe 595	Thr	Arg	Tyr	Ala	Gln 600	Gly	Thr	Val	Arg	Pro 605	Gly	Ala	Ala
45	Ser	Val 610	Asn	Ser	Ser	Leu	Pro 615	Tyr	Asn	Ala	Ser	Gln 620	Ile	Phe	Thr	Ile
	Thr 625	Val	Tyr	Leu	Ser	Thr 630	Gly	Ile	Gln	Ser	Arg 635	Gly	Arg	Ile	Gly	Ile 640
50	Asp	Ala	Ala	Leu	Arg 645	Gly	Thr	Val	Leu	Thr 650	Pro	Pro	Trp	Leu	Val 655	Asn
55	Pro	Val	Asp	Lys 660	Thr	Val	Leu	Leu	Gln 665	Ala	Leu	His	Asp	Val 670	Val	Ser
60	Asn	Ile	Gly 675	Ser	Ile	Pro	Gly	Leu 680	Thr	Met	Ile	Thr	Pro 685	Asp	Val	Thr
65	Gln	Thr 690	Leu	Glu	Glu	Tyr	Val 695	Asp	Ala	Tyr	Asp	Pro 700	Ala	Thr	Met	Asn

	Ser 705	Asn	His	Trp	Val	Ser 710	Ser	Thr	Thr	Ile	Gly 715	Ser	Ser	Pro	Gln	Ser 720
5	Ala	Val	Val	Asp	Ser 725	Asn	Val	Lys	Val	Phe 730	Gly	Thr	Asn	Asn	Leu 735	Phe
10	Ile	Val	Asp	Ala 740	Gly	Ile	Ile	Pro	His 745	Leu	Pro	Thr	Gly	As n 750	Pro	Gln
15	Gly	Thr	Leu 755	Met	Ser	Ala	Ala	Glu 760	Gln	Ala	Ala	Ala	Lys 765	Ile	Leu	Ala
20	Leu	Ala 770	Gly	Gly	Pro											
25	<210> 10 <211> 768 <212> PRT <213> <i>Tramet</i>	es ver	sicolor													
	<400> 10															
30	Met 1	Lys	Phe	Lys	Ser 5	Leu	Leu	Leu	Ser	Leu 10	Leu	Pro	Leu	Val	Gly 15	Ser
35	Val	Tyr	Ser	Gln 20	Val	Ala	Ala	Pro	Tyr 25	Val	Asp	Ser	Gly	Asn 30	Gly	Phe
40	Val	Phe	Asp 35	Gly	Val	Thr	Asp	Pro 40	Val	His	Ser	Val	Thr 45	Tyr	Gly	Ile
40	Val	Leu 50	Pro	Gln	Ala	Ser	Thr 55	Ser	Thr	Glu	Phe	Ile 60	Gly	Glu	Phe	Val
45	Ala 65	Pro	Asn	Glu	Ala	Gln 70	Trp	Ile	Gly	Leu	Ala 75	Leu	Gly	Gly	Ala	Met 80
50	Ile	Gly	Asn	Leu	Leu 85	Leu	Val	Ala	Trp	Pro 90	Asp	Gly	Asn	Lys	Ile 95	Val
55	Ser	Ser	Pro	Arg 100	Tyr	Ala	Thr	Gly	Tyr 105	Thr	Leu	Pro	Ala	Ala 110	Tyr	Ala
60	Gly	Pro	Thr 115	Ile	Thr	Gln	Leu	Pro 120	Ser	Ser	Ser	Val	Asn 125	Ser	Thr	His
65	Trp	Lys 130	Phe	Val	Phe	Arg	Cys 135	Gln	Asn	Cys	Thr	Ala 140	Trp	Asn	Gly	Gly

	Ser 145	Ile	Asp	Pro	Ser	Gly 150	Thr	Gly	Val	Phe	Ala 155	Trp	Ala	Phe	Ser	Asn 160
5	Val	Ala	Val	Asp	Asp 165	Pro	Ser	Asp	Pro	Asn 170	Ser	Ser	Phe	Ala	Glu 175	His
10	Thr	Asp	Phe	Gly 180	Phe	Phe	Gly	Ile	Asn 185	Phe	Pro	Asp	Ala	Gln 190	Ser	Ser
15	Asn	Tyr	Gln 195	Asn	Tyr	Leu	Ala	Gly 200	Asn	Ala	Gly	Thr	Pro 205	Pro	Pro	Thr
20	Ser	Val 210	Pro	Ser	Gly	Pro	Ser 215	Ser	Thr	Thr	Thr	Thr 220	Thr	Gly	Pro	Thr
	Ala 225	Thr	Ala	Thr	Pro	Phe 230	Asp	Tyr	Ile	Val	Val 235	Gly	Ala	Gly	Pro	Gly 240
25	Gly	Leu	Val	Thr	Ala 245	Asp	Arg	Leu	Ser	Glu 250	Ala	Gly	Lys	Lys	Val 255	Leu
30	Leu	Leu	Glu	Arg 260	Gly	Gly	Pro	Ser	Thr 265	Ala	Glu	Thr	Gly	Gly 270	Thr	Tyr
35	Asp	Ala	Thr 275	Trp	Ala	Lys	Ser	Ala 280	Asn	Leu	Thr	Lys	Phe 285	Asp	Val	Pro
40	Gly	Leu 290	Phe	Glu	Thr	Leu	Phe 295	Thr	Asp	Thr	Asn	Pro 300	Phe	Trp	Trp	Cys
45	Lys 305	Asp	Thr	Asn	Phe	Phe 310	Ala	Gly	Cys	Leu	Leu 315	Gly	Gly	Gly	Thr	Ser 320
	Val	Asn	Gly	Ala	Leu 325	Tyr	Trp	Tyr	Pro	Asn 330	Ser	Arg	Asp	Phe	Ser 335	Thr
50	Ala	Ser	Gly	Trp 340	Pro	Ser	Ser	Trp	Gly 345	Asn	His	Gln	Pro	Phe 350	Thr	Asp
55	Lys	Leu	Lys 355	Gln	Arg	Leu	Pro	Ser 360	Thr	Asp	His	Pro	Ser 365	Ala	Asp	Gly
60	Gln	Arg 370	Tyr	Leu	Glu	Gln	Ser 375	Ala	Thr	Val	Val	Gln 380	Gln	Leu	Leu	Ser
65	Gly 385	Gln	Gly	Tyr	Ser	Gln 390	Ile	Thr	Ile	Asn	Asp 395	Asn	Pro	Asp	Ser	Lys 400

	Asp	His	Val	Phe	Gly 405	Phe	Ser	Ala	Phe	Asp 410	Phe	Leu	Asn	Gly	Gln 415	Arg
5	Ala	Gly	Pro	Val 420	Ala	Thr	Tyr	Phe	Glu 425	Thr	Ala	Leu	Ala	Arg 430	Lys	Asn
10	Phe	Val	Tyr 435	Lys	Asp	Asn	Val	Leu 440	Val	Thr	Gln	Val	Ile 445	Arg	Asn	Gly
15	Ser	Thr 450	Ile	Leu	Gly	Val	Arg 455	Thr	Asn	Asp	Asn	Thr 460	Leu	Gly	Pro	Asp
20	Gly 465	Ile	Val	Pro	Leu	Asn 470	Pro	Asn	Gly	Arg	Val 475	Ile	Leu	Ser	Gly	Gly 480
	Ser	Phe	Gly	Thr	Pro 485	Arg	Ile	Leu	Phe	Gln 490	Ser	Gly	Ile	Gly	Pro 495	Thr
25	Asp	Met	Leu	Gln 500	Thr	Val	Gln	Ser	Asn 505	Ala	Gln	Ala	Ala	Ala 510	Asn	Leu
30	Pro	Pro	Gln 515	Ser	Glu	Trp	Ile	Asn 520	Leu	Pro	Val	Gly	Gln 525	Ser	Val	Ser
35	Asp	Asn 530	Pro	Ser	Ile	Asn	Leu 535	Val	Phe	Thr	His	Pro 540	Ser	Ile	Asp	Ala
40	Tyr 545	Asp	Asn	Trp	Ala	Asp 550	Val	Trp	Ser	Asn	Pro 555	Arg	Pro	Ala	Asp	Ala 560
45	Gln	Gln	Tyr	Leu	Gln 565	Ser	Arg	Ser	Gly	Val 570	Leu	Ala	Gly	Ala	Ser 575	Pro
	Lys	Leu	Asn	Phe 580	Trp	Arg	Ala	Tyr	Gly 585	Gly	Ser	Asp	Gly	Ile 590	Thr	Arg
50	Tyr	Ala	Gln 595	Gly	Thr	Val	Arg	Pro 600	Gly	Ala	Ala	Ser	Val 605	Asn	Thr	Ser
55	Val	Ala 610	Tyr	Asn	Ala	Ser	Glu 615	Ile	Phe	Thr	Ile	Thr 620	Leu	Tyr	Leu	Ser
60	Asn 625	Gly	Ile	Gln	Ser	Arg 630	Gly	Arg	Ile	Gly	Val 635	Asp	Ala	Ala	Leu	Asn 640
65	Ala	Lys	Ala	Leu	Val 645	Asn	Pro	Trp	Leu	Thr 650	Asn	Ser	Val	Asp	Lys 655	Thr

	Val	Leu	Leu	Gln 660	Ala	Leu	His	Asp	Val 665	Thr	Ser	Thr	Met	Lys 670	Asn	Val
5	Pro	Gly	Leu 675	Thr	Met	Ile	Thr	Pro 680	Asp	Asn	Thr	Met	Thr 685	Leu	Glu	Gln
10	Tyr	Val 690	Ala	Ala	Tyr	Asp	Pro 695	Ala	Thr	Met	Cys	Ser 700	Asn	His	Trp	Val
15	Gly 705	Ala	Ala	Lys	Met	Gly 710	Thr	Ser	Ser	Ser	Thr 715	Ala	Val	Val	Asp	Glu 720
20	Asn	Ala	Lys	Val	Phe 725	Asn	Thr	Asp	Asn	Leu 730	Phe	Ile	Val	Asp	Ala 735	Ser
25	Ile	Ile	Pro	Ser 740	Leu	Pro	Ile	Gly	Asn 745	Pro	Gln	Gly	Val	Leu 750	Met	Ser
	Ala	Ala	Glu 755	Gln	Ala	Val	Ser	Arg 760	Ile	Leu	Ala	Leu	Ala 765	Gly	Gly	Pro
30	<210> 11 <211> 30 <212> ADN <213> Secuen <220>	ıcia art	ificial													
35	<223> cebado	r														
	<400> 11 tatttcgaaa cgatgaggac cacctcggcc 30															
40 45	<210> 12 <211> 29 <212> ADN <213> Secuen <220> <223> cebado		ificial													
70	<400> 12 tatcacgtgc taca		t gcca	atacc		29	9									

REIVINDICACIONES

- Una celobiosa deshidrogenasa (CDH) modificada o su dominio funcional de flavodehidrogenasa que tiene una sustitución en el aminoácido correspondiente a N721 de la SEQ ID NO: 5 (CDH de M. thermophilum) por 5 glutamina, isoleucina, treonina o leucina o una sustitución de asparagina en el motivo del centro activo que tiene la secuencia de aminoácidos NHW por glutamina, isoleucina, treonina o leucina, que comprende un dominio de flavodehidrogenasa modificada basado en uno de los dominios de flavodehidrogenasa no modificada de acuerdo con los aminoácidos 253-831 de la SEQ ID NO: 1, aminoácidos 269-845 de la SEQ ID NO: 2, aminoácidos 249-787 de la SEQ ID NO: 3, aminoácidos 253-829 de la SEQ ID 10 NO: 4, aminoácidos 251-828 de la SEQ ID NO: 5, aminoácidos 251-829 de la SEQ ID NO: 6, aminoácidos 233-771 de la SEQ ID NO: 7, aminoácidos 236-774 de la SEQ ID NO: 8, aminoácidos 235-773 de la SEQ ID NO: 9, aminoácidos 230-768 de la SEQ ID NO: 10; dicho dominio de flavodehidrogenasa modificada tiene una secuencia con al menos un 50% de identidad de secuencia con uno de dichos dominios de flavodehidrogenasa no modificada y además comprende la mutación de sustitución en el aminoácido correspondiente al N721 de la SEQ ID NO: 5 o en el motivo NHW. 15
 - 2. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con la reivindicación 1, en la que el motivo del centro activo tiene la secuencia X₁X₂NHWX₃X₄X₅, en la que X₁ es cualquier aminoácido, preferentemente seleccionado de N, C y R; X₂ se selecciona de S y A; X₃ se selecciona de V, M e I; X₄ es cualquier aminoácido, preferentemente seleccionado de G y S; y X₅ es cualquier aminoácido, preferentemente seleccionado de S, A y T; especialmente preferido X₄ y X₅ no son ambos S.
- La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con la reivindicación 1 o 2, caracterizada porque la CDH es de dikaryota, preferentemente seleccionada de ascomycota o basidiomycota.

20

30

35

45

50

60

- 4. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con la reivindicación 3, caracterizada porque la CDH es una CDH modificada de una CDH de Myriococcum thermophilum, Corynascus thermophilus, Chaetomium atrobrunneum (Myceliophthora fergusii), Hypoxylon haematostroma, Neurospora crassa o Stachybotrys bisby, Athelia rolfsii, Gelatoporia subvermispora, Phanerochaete chrysosporium, Trametes versicolor.
- 5. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con una cualquiera de las reivindicaciones 1 a 4, en la que dicho dominio de flavodehidrogenasa modificada tiene una secuencia con al menos 70%, preferentemente al menos 75%, al menos 80%, al menos 85%, al menos 90%, al menos 95%, al menos 98%, en particular se prefiere al menos 99%, de identidad de secuencia con uno de dichos dominios de flavodehidrogenasa no modificada, y además comprende la mutación de sustitución en el aminoácido correspondiente a N721 de la SEQ ID NO: 5 o en el motivo NHW.
- 40 6. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con una cualquiera de las reivindicaciones 1 a 5, en la que el aminoácido correspondiente a N721 de la SEQ ID NO: 5 o asparagina en el motivo NHW es el aminoácido N723 de la SEQ ID NO: 1, N738 de la SEQ ID NO: 2, N718 de la SEQ ID NO: 3, N722 de la SEQ ID NO: 4, N721 de la SEQ ID NO: 5, N721 de la SEQ ID NO: 6, N704 de la SEQ ID NO: 7, N707 de la SEQ ID NO: 8, N706 de la SEQ ID NO: 9, N701 de la SEQ ID NO: 10.
 - 7. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con una cualquiera de las reivindicaciones 1 a 6, que se produce de forma recombinante por *Pichia pastoris*, se aísla por diafiltración, cromatografía de intercambio iónico y preferentemente se purifica adicionalmente por cromatografía de interacción hidrófoba.
- 8. La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con una cualquiera de las reivindicaciones 1 a 7, caracterizada porque el valor K_M de la celobiosa deshidrogenasa o su dominio funcional de flavodehidrogenasa para una reacción de oxidación de lactosa es inferior a 10 mM, preferentemente según se determina con la CDH, o estando dicho dominio inmovilizado en un electrodo.
 55
 - **9.** La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con una cualquiera de las reivindicaciones 1 a 8, **caracterizada porque** el valor K_M de la celobiosa deshidrogenasa o su dominio funcional de flavodehidrogenasa para una reacción de oxidación de glucosa es superior a 3 M, preferentemente como se determina con la CDH, o estando dicho dominio inmovilizado en un electrodo.
 - **10.** La CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con una cualquiera de las reivindicaciones 1 a 9, **caracterizada porque** el valor K_M de la celobiosa deshidrogenasa o su dominio funcional de flavodehidrogenasa para una reacción de oxidación de galactosa es superior a 3 M, preferentemente como se determina con la CDH, o estando dicho dominio inmovilizado en un electrodo.

- **11.** Una molécula de ácido nucleico que codifica una CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con una cualquiera de las reivindicaciones 1 a 10.
- 12. Un procedimiento de producción de una CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con una cualquiera de las reivindicaciones 1 a 10, que comprende expresar de forma recombinante una molécula de ácido nucleico de acuerdo con la reivindicación 11 en una célula huésped.

5

- 13. Un electrodo que comprende una celobiosa deshidrogenasa inmovilizada o su dominio funcional de flavodehidrogenasa de acuerdo con una cualquiera de las reivindicaciones 1 a 10;
 preferentemente en el que la celobiosa deshidrogenasa se inmoviliza por adsorción, formación de complejo, con especial preferencia a través de un enlazador complejante adicional, enlace covalente o iónico, y/o en el que preferentemente la celobiosa deshidrogenasa inmovilizada se reticula, en particular por agentes bifuncionales, para aumentar la estabilidad o actividad.
- 15. Un procedimiento de detección de o cuantificación de lactosa en una muestra que comprende la etapa de oxidar la lactosa en dicha muestra con una CDH modificada o su dominio funcional de flavodehidrogenasa de acuerdo con una cualquiera de las reivindicaciones 1 a 10, o un electrodo de acuerdo con la reivindicación 13 y detectar o cuantificar dicha oxidación, preferentemente en el que dicha muestra comprende o se sospecha que comprende glucosa y/o galactosa, con especial preferencia una muestra que contiene leche o productos lácteos.
 - **15.** Un kit de ensayo de lactosa que comprende la celobiosa deshidrogenasa modificada o su dominio funcional de flavodehidrogenasa de acuerdo con cualquiera de las reivindicaciones 1 a 10 o un electrodo de acuerdo con la reivindicación 13 y un medio de retención de muestras y/o estándares de lactosa.

Fig.1

```
A.rolfs: SEQ ID NO: 7; G.subve: SEQ ID NO: 8; P.chrys: SEQ ID NO: 9; T.versi: SEQ ID NO: 10;
C.therm: SEQ ID NO: 3; S.bisby: SEQ ID NO: 6; N.crass: SEQ ID NO: 4; H.haema: SEQ ID NO: 2;
C.atrob: SEQ ID NO: 1; M.therm: SEQ ID NO: 5;
                           20
                                               40
A.rolfs : YDYIIVGAGPAGIIAADRLSEAGKKVLLLERGGPSTKETGGTYTAPWAASSGLTKFDIPGVFESLFTDSN :
G.subve : YDYIIVGAGAGGIIAADRLSONNKKVLLLERGGPSTGETGGTYVADWAEGTNLTKFDIPGLFESMFDDPD :
                                                                                   70
P.chrys: YDYIIVGAGPGGIIAADRLSEAGKKVLLLERGGPSTKQTGGTYVAPWATSSGLTKFDIPGLFESLFTDSN
                                                                                   70
T.versi : FDYIVVGAGPGGLVTADRLSEAGKKVLLLERGGPSTAETGGTYDATWAKSANLTKFDVPGLFETLFTDTN
                                                                                   70
C.therm: YDYIVVGAGAGGITVADKLSEAGHKVLLIEKGPPSTGLWNGTMKPEWLEGTDLTRFDVPGLCNQIWVDSA
                                                                                   70
S.bisby: YDYIVVGSGAGGIPIADKLTEAGKKVLLIEKGPPSSGRYDGKLKPTWLEGTNLTRFDVPGLCNQIWVDSA
                                                                                   70
N.crass : FDYIVVGGGAGGIPVADKLSESGKSVLLIEKGFASTGEHGGTLKPEWLNNTSLTRFDVPGLCNQIWKDSD
H.haema: YDYIVVGAGAGGIPLADKLSEAGKSVLLIEKGPPSSGRWGGTLKPEWLKDTNLTRFDVPGLCNEIWVNSA
                                                                                   70
C.atrob : FDYIVVGGGAGGIPTADKLSEAGKSVLLIEKGIASTAEHGGTLGPEWLEGNDLTRFDVPGLCNOIWVDSK :
                                                                                   70
M.therm: FDYIVVGGGAGGIPAADKLSEAGKSVLLIEKGFASTANTGGTLGPEWLEGHDLTRFDVPGLCNQIWVDSK:
                                                                                   70
                                    100
A.rolfs: SFWWCKDITVFAGCLTGGGTAINGALYWYPTDLDFS--TANGWPSSWTAHOKYTDLVSSRLPSSDHPSTD: 138
G.subve: PWYWCSDVTFYAGCLLGGGTSVNGALYWYPTDTDFS--TARGWPSSWSNHQAYTNAMTQRLPSTDHPSTD: 138
P.chrys: PFWWCKDITVFAGCLVGGGTSVNGALYWYPNDGDFS--SSVGWPSSWTNHAPYTSKLSSRLPSTDHPSTD: 138
T.versi: PFWWCKDTNFFAGCLLGGGTSVNGALYWYPNSRDFS--TASGWPSSWGNHQPFTDKLKQRLPSTDHPSAD: 138
C.therm: GI-ACTDTDQMAGCVLGGGTAVNAGLWWKPHPADWDDNFPHGWKSS--DLADATERVFSRIPGTWHPSQD: 137
S.bisby: GI-ACRDTDQMAGCVLGGGTAVNAGLWWKPNPIDWDYNFPSGWKSS--EMIGATNRVFSRIGGTTVPSQD: 137
N.crass: GI-ACSDTDQMAGCVLGGGTAINAGLWYKPYTKDWDYLFPSGWKGS--DIAGATSRALSRIPGTTTPSQD: 137
H.haema: GV-ACTDTDQMAGCVLGGGTAVNAGLWWKPYNLDWDYNFPRGWKSR--DMAAATRRVFSRIPGTDNPSMD: 137
C.atrob: GI-ACEDTDQMAGCVLGGGTAVNAGLWFKPYSLDWDYLFPSGWKYR--DIQAAIGRVFSRIPGTDAPSTD: 137
M.therm: GI-ACEDTDQMAGCVLGGGTAVNAGLWFKPYSLDWDYLFPDGWKYN--DVQPAINRALSRIPGTDAPSTD: 137
                           160
                                              180
                                                                  200
A.rolfs: GKRYLEQSAAVVAQLLNGQGYRNKTINNAPNAKDHVYGYSAFDFLNGKRAGPVATYLQTAKTRNNFHFKN: 208
G.subve : GERYLEQSAQVAMQLLNAQGYYQATINDSPDSKDHVYGYSAFDFINGKRGGVVATYLQTANQRSNFVYKD : 208
P.chrys: GQRYLEQSFNVVSQLLKGQGYNQATINDNPNYKDHVFGYSAFDFLNGKRAGPVATYLQTALARPNFTFKT: 208
T.versi : GQRYLEQSATVVQQLLSGQGYSQITINDNPDSKDHVFGFSAFDFLNGQRAGPVATYFETALARKNFVYKD : 208
C.therm: GKLYRQEGFEVISQGLANAGWREVDANQEPSEKNRTYSHSVFMFSGGERGGPLATYLASAAQRSNFNLWV: 207
S.bisby: GKTYYQQGFNVLSSGLKAAGWTSVSLNNAPAQKNRTYGAGPFMFSGGERGGPLATYLATAKKRGNFDLWT: 207
N.crass: GKRYLQQGFEVLANGLKASGWKEVDSLKDSEQKNRTFSHTSYMYINGERGGPLATYLVSAKKRSNFKLWL: 207
H.haema: GKRYLOOGFEILAGGLKAAGWTEVTANDAPNKKNHTYSHSPFMFSGGERGGPMGTYLVSASRRKNFHLWT: 207
C.atrob: GKRYYQQGFDVLAGGLSAGGWNKVTANSSPDKKNRTFSNAPFMFSGGERGGPLATYLTSAKKRSNFNLWL: 207
M.therm: GKRYYOEGFEVLSKGLAAGGWTSVTANNAPDKKNRTFAHAPFMFAGGERNGPLGTYFOTAKKRNNFDVWL: 207
                                    240
                                                        260
A.rolfs: YVLVSNVVRNGSTITGVKTNDT-SLGPNGVIPLTK-NGRVILSAGSLSSPRILFOSGIGPTDMLTLVONN: 276
G.subve: YTLVSSVVRNGSQILGVQTNNT-AIGPNGFIPLNP-NGRVILSAGSFGTPRILFQSGIGPTDMLQTVQQN: 276
P.chrys: NVMVSNVVRNGSQILGVQTNDP-TLGPNGFIPVTP-KGRVILSAGAFGTSRILFQSGIGPTDMIQTVQSN: 276
T.versi: NVLVTQVIRNGSTILGVRTNDN-TLGPDGIVPLNP-NGRVILSGGSFGTPRILFQSGIGPTDMLQTVQSN: 276
C.therm: NTSVRRAIRTGPRVSGVELECLADGGFNGTVNLKE-GGGVIFSAGAFGSAKLLLRSGIGPEDQLEIVAS-: 275
S.bisby: NTQVKRVIRQGGHVTGVEVENYNGDGYKGTVKVTPVSGRVVLSAGTFGSAKLLLRSGIGPKDOLAIVKN-: 276
N.crass: NTAVKRVIREGGHITGVEVEAFRNGGYSGIIPVTNTTGRVVLSAGTFGSAKILLRSGIGPKDQLEVVKA-: 276
H.haema: GTAVKRVVRTGGHITGLEVEPFVNGGYTGVVNVTSITGRVVLSAGAFGSAKILLRSGIGPEDQLEIVKS-: 276
 atrob : NTSVKRVIREGGHVTGVEVEPFRTGGYQGIVNVTAVSGRVVLSAGTFGSAKILLRGGIGPADQLEVVKAS : 277
M.therm: NTSVKRVIREGGHITGVEVEPFRDGGYEGIVPVTKVTGRVILSAGTFGSAKILLRSGIGPEDQLEVVAAS: 277
                          300
                                              320
                                                                  340
A.rolfs : PTASANLPSQSQWIHLPVGYNVADAPSINFVFTHPSIDAYDNWANVWTNPRSTDAEQYLKNQSGVLAASS : 346
G.subve: AAVAANMPSESDWINLPVGMNVSDNPSINLVFTHPSIDAYDNWADVWTDPRPADAAQYLASQSGVFAGAS: 346
P.chrys: PTAAAALPPQNQWINLPVGMNAQDNPSINLVFTHPSIDAYENWADVWSNPRPADAAQYLANQSGVFAGAS: 346
T.versi : AQAAANLPPQSEWINLPVGQSVSDNPSINLVFTHPSIDAYDNWADVWSNPRPADAQQYLQSRSGVLAGAS : 346
C.therm: SKDGETFISKNDWIKLPVGHNLIDHLNTDLIITHPDVVFYDFY-AAWDNPITEDKEAYLNSRSGILAOAA: 344
S.bisby: STDGPTMASERDWINLPVGYNLEDHTNTDIVISHPDVVHYDFY-EAWTAPIESDKTAYLGKRSGILAQAA: 345
N.crass: SADGPTMVSNSSWIDLPVGHNLVDHTNTDTVIQHNNVTFYDFY-KAWDNPNTTDMNLYLNGRSGIFAQAA: 345
H.haema: STDGPTMISDSSWITLPVGYNLEDHTNTDTVVTHPDVVFYDFY-EAGH-PNVTDKDLYLNSRAGILAQAA
                                                                                : 344
C.atrob: KIDGPTMISNASWIPLPVGYNLDDHLNTDTVITHPDVAFYDFY-EAWNTPIEADKNSYLSSRTGILAQAA: 346
M.therm: EKDGPTMIGNSSWINLPVGYNLDDHLNTDTVISHPDVVFYDFY-EAWDDPIESDKNSYLESRTGILAQAA: 346
```

Fig. 1 (continuación)

```
360
                                   380
                                                      400
\verb|A.rolfs:PKL-NFWRAYGGSDGRTRWMQGTVRPGAASINTTYNYNASQIFTITTYVSTGITSRGRIGVTSSLNVLP:414| \\
G.subve: PKL--NFWRDYEGSDGIQRSAQGTVRPGAASVNTTLPYNASQIFTITVYLSSGITSRGRIGVTAGLNAVA: 414
P.chrys: PKL--NFWRAYSGSDGFTRYAQGTVRPGAASVNSSLPYNASQIFTITVYLSTGIQSRGRIGIDAALRGTV: 414
T.versi: PKL--NFWRAYGGSDGITRYAQGTVRPGAASVNTSVAYNASEIFTITLYLSNGIQSRGRIGVDAALNAKA: 414
C.therm: PNIGPLMWEEVTPSDGITRQFQWTCRVEGDSSKT----NSTHAMTLSQYLGRGVVSRGRMGITSGLTTTV: 410
S.bisby: PNIGPLFFDEVRGADNIVRSIQYTARVEGNSVV----PNGKAMVISQYLGRGAVSRGRMTISQGLNTIV: 410
N.crass : PNIGPLFWEEITGADGIVRQLHWTARVEGSFET----PDGYAMTMSQYLGRGATSRGRMTLSPTLNTVV : 410
H.haema : PNIGPMFWEEIKGKDGVVRQLQWTARVEGSAGT----PNGYAMTMSQYLGRGAKSRGRMTITKALTTVV : 409
C.atrob : PNIGPMMWEEIKGADGIVRQLQWTARVEGSFDT----PNGQAMTISQYLGRGATSRGRMTITPSLTTVV : 411
M.therm: PNIGPMFWEEIVGADGIVRQLQWTARVEGSLGA----PNGHTMTMSQYLGRGATSRGRMTITPSLTTIV: 411
                                             460
A.rolfs : LVNPWLVDPVDEKVLTQSLEDLVSNMK-SVPGLTMIMPDNTTSIADYVKNY--DRASMNSNHWVGSNKIA : 481
G.subve : LENPWLTDPVDKVVLIQALEDVISTLP-SVPDLTMITPDSGMTLEEYVDLY--DPSTMCSNHWVGSAKMG : 481
P.chrys: LTPPWLVNPVDKTVLLQALHDVVSNIG-SIPGLTMITPDVTQTLEEYVDAY--DPATMNSNHWVSSTTIG: 481
T.versi : LVNPWLTNSVDKTVLLQALHDVTSTMK-NVPGLTMITPDNTMTLEQYVAAY--DPATMCSNHWVGAAKMG : 481
\texttt{C.therm} : \texttt{AEHPYLHNDGDLEAVIQGIQNVVDALS-QVPDLEWVLPPPNTTVEEYVNSLIVSPANRRA} \textbf{M} \texttt{HWMGTAKMG} : 479
S.bisby: STAPYLSNVNDLEAVIKSLENIANSLTSKVKNLKIEWPASGTSIRDHVTNMPLDPATRRANHWIGTNKIG: 480
N.crass: SDLPYLKDPNDKAAVVQGIVNLQKALA-NVKGLTWAYPSANQTAADFVDKQPVTYQSRRSNHWMGTNKMG: 479
H.haema: STVPYLQDKNDVEAVIQGIKNLQAALS-NVKNLTWTYPPSNTTVEDFVNNMLVSYTNRRSNHWIGTNKLG: 478
C.atrob : SDVPYLKDPNDKEAVIQGIVNLQNALK-NVAGLTWTYPNSSITPREYVDNMVVSPSNRRANHWMGTAKIG : 480
M.therm: SDVPYLKDPNDKEAVIQGIINLQNALQ-NVANLTWLFPNSTITPREYVESMVVSPSNRRSNHWMGTNKLG: 480
A.rolfs : SN----ATEGVVDEHTKVFRTDNLFIVDASIIPSLPMGNPQGALMSAAEQAVAKILALAGGP----- : 539
G.subve: TS----SDTAVVDENAKVFNTDNLFVIDASIVPSLPVGNPHGTVMSAAEQAVANILALSGGP-----: 539
P.chrys: SS----PQSAVVDSNVKVFGTNNLFIVDAGIIPHLPTGNPQGTLMSAAEQAAAKILALAGGP-----: 539
T.versi : TS----SSTAVVDENAKVFNTDNLFIVDASIIPSLPIGNPQGVLMSAAEQAVSRILALAGGP-----: 539
C.therm: LDDGRS-GGSAVVDLNTKVYGTDNLFVVDASIFPGMSTGNPSAMIVIVAEQAAQRILSLRY----:: 539
S.bisby: TKDGRLTGGDSVVDLNTKVYGTDNLFVVDASIFPGMVTTNPSAYIVIAAEHAASKILSLPTAKAAAKYEQ: 550
N.crass: TDDGRS-GGTAVVDTNTRVYGTDNLYVVDASIFPGVPTTNPTAYIVVAAEHAAAKILAQPANEAVPKWGW: 548
H.haema: TDDGRSRGGSAVVDLNTKVYGTDNLFVVDAGIFPGHITTNPTSYIVIAAERASERILDLPPARAQPRFAQ: 548
C.atrob: TDDGRLAGGSAVVDLNTKVYGTDNLFVVDASIFPGTPTTNPSAYIVTAAEHASQRILGLAAPKPVGKWGQ: 550
M.therm: TDDGRK-GGSAVVDLDTRVYGTDNLFVIDASIFPGVPTTNPTSYIVVAAEHASSRILALPDLEPVPKYGQ: 549
                         580
A.rolfs : -----: :
G. subve : -----:
P.chrys : ----- :
T.versi: -----::
C.therm : -----: :
S.bisby: CGGLEYNGNFQCASGLTCTWLNDYYWQCT: 579
N.crass: CGGPTYTGSQTCQAPYKCEKQNDWYWQCV: 577
H.haema: CGGRTWTGSFQCAAPYTCQYRNERYSQCR: 577
C.atrob : CGGRQWTGSFQCVSGTKCEVVNEWYSQCL : 579
M.therm: CGGREWTGSFVCADGSTCEYQNEWYSQCL: 578
```

Fig. 2

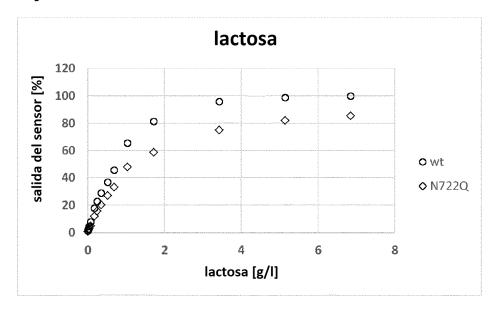


Fig. 3

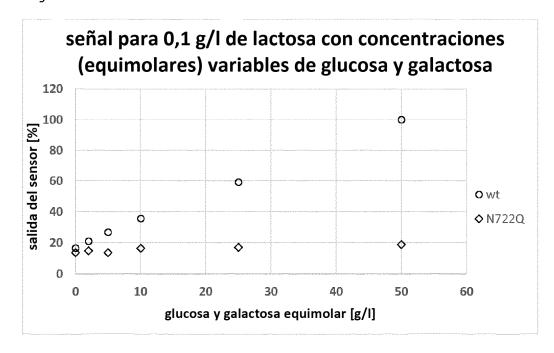


Fig. 4

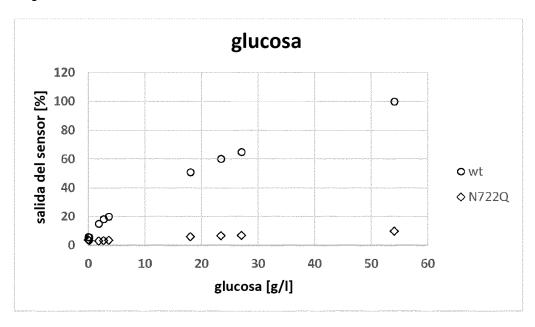
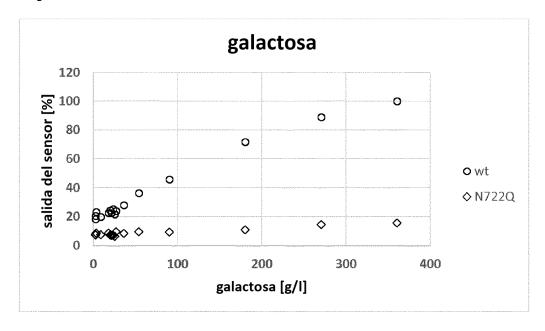



Fig. 5

