

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 771 862

61 Int. Cl.:

A61K 48/00 (2006.01) C12N 9/12 (2006.01) A61K 39/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 28.10.2014 PCT/EP2014/073164

(87) Fecha y número de publicación internacional: 07.05.2015 WO15063117

(96) Fecha de presentación y número de la solicitud europea: 28.10.2014 E 14790592 (1)

(97) Fecha y número de publicación de la concesión europea: 27.11.2019 EP 3062824

(54) Título: Una vacuna de ADN que codifica telomerasa

(30) Prioridad:

28.10.2013 EP 13190547

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **07.07.2020**

(73) Titular/es:

INVECTYS (100.0%) 28 rue du Docteur Roux 75015 Paris, FR

(72) Inventor/es:

LANGLADE DEMOYEN, PIERRE; WAIN-HOBSON, SIMON; HUET, THIERRY; LIARD, CHRISTELLE y PLIQUET, ELODIE

(74) Agente/Representante:

ELZABURU, S.L.P

DESCRIPCIÓN

Una vacuna de ADN que codifica telomerasa

La presente invención se refiere al campo de la vacunación antitumoral. La invención proporciona más concretamente una construcción de ácido nucleico que codifica una forma enzimática inactiva de la proteína transcriptasa inversa de telomerasa humana.

Antecedentes de la invención:

5

10

15

20

25

30

35

40

45

50

55

La estimulación de las respuestas de células T específicas de tumores con inmunoterapia activa tiene varias ventajas teóricas sobre otras formas de tratamiento del cáncer. Para obtener beneficios clínicos, la inmunoterapia basada en células T debe estimular respuestas de células T reactivas a tumores CD8 y CD4 que reconocen antígenos específicos de tumor. En consecuencia, la atención creciente se ha centrado en identificar epítopos de MHC de clase I y II de antígenos asociados a tumores múltiples (TAA) (Cheever, et al. 2009). Sin embargo, la expresión heterogénea de la mayoría de los antígenos tumorales caracterizados entre los diferentes tipos de cáncer limita la amplia aplicabilidad de las vacunas contra el cáncer que se dirigen a tales antígenos. Durante los últimos años. la transcriptasa inversa de la telomerasa humana (hTERT) se ha convertido en el primer antígeno tumoral común bonafide y se investiga activamente como diana universal para la inmunoterapia del cáncer. La transcriptasa inversa de la telomerasa humana (hTERT) es la subunidad catalítica de la enzima telomerasa que sintetiza el ADN telomérico en los extremos cromosómicos. hTERT se expresa en exceso en la mayoría de los tumores humanos (> 85%) y prácticamente en todos los tipos de cáncer. Además, la activación de la telomerasa se ha convertido en uno de los mecanismos de escape tumoral más importantes para sortear las vías de muerte celular dependientes de los telómeros. Está bien establecido que las estrategias terapéuticas dirigidas a antígenos que no participan en el crecimiento tumoral pueden dar como resultado la selección de mutantes tumorales con pérdida de antígeno que son clínicamente progresivos. Por lo tanto, la regulación por disminución o la pérdida de la actividad telomerasa afectarán severamente el potencial de crecimiento de las células tumorales. Además, la telomerasa es relativamente específica de las células cancerosas ya que las células normales del organismo expresan poca o ninguna telomerasa durante la mayor parte de su vida útil y generalmente tienen telómeros más largos que los de las células tumorales. Todos estos hallazgos justifican las aplicaciones clínicas de hTERT para la inmunoterapia contra el cáncer.

La vacunación con péptidos, ampliamente utilizada en varios ensayos de vacunas contra el cáncer, es la estrategia más avanzada con respecto al antígeno hTERT. Sin embargo, varios factores podrían influir en el éxito óptimo de esta estrategia de vacuna basada en péptidos, tales como (1) la restricción del antígeno leucocitario humano (HLA), (2) el procesamiento natural de péptidos en las células tumorales, (3) la pérdida de la presentación del antígeno en las células tumorales, (4) la funcionalidad de las células T específicas de antígeno, y (5) la persistencia a largo plazo de las respuestas inmunitarias en el anfitrión después de la vacunación.

La respuesta de memoria obtenida con las vacunas peptídicas y especialmente con los péptidos cortos es muy baja y no es persistente. Estos resultados subóptimos se pueden explicar en parte por la ausencia de ayuda de células T CD4. Además, la semivida del complejo de MHC/vacuna de péptido en las células presentadoras es de solo unas pocas horas, a continuación, los péptidos desaparecen. Las células dendríticas ya no presentan péptidos a los linfocitos y, por lo tanto, se vuelven tolerogénicas. Este defecto en la presentación de péptidos puede ser perjudicial en algunos casos (Rosenberg et al., 2004).

Compendio de la invención:

Los autores de la presente invención han desarrollado una estrategia de vacuna de ADN que no muestra los inconvenientes de la vacunación con péptidos (incluso péptidos largos), restringida a ciertos epítopos de hTERT. En particular, la vacunación con ADN evita procedimientos costosos y complicados para la producción y purificación de proteínas. Además, una vacuna de ADN que codifica la proteína hTERT hace posible inducir células T auxiliares CTL y CD4 independientemente de la restricción de HLA del paciente, a la vez que es segura e induce una mejor respuesta inmunitaria cuantitativa y cualitativa.

La invención proporciona una construcción de ácido nucleico que comprende una secuencia que codifica una proteína transcriptasa inversa de telomerasa humana (hTERT) que carece de la actividad catalítica de la telomerasa y de una señal de localización nucleolar, en donde la proteína hTERT se fusiona en el extremo N con una proteína que mejora el direccionamiento de la proteína hTERT al proteasoma, que puede ser ubiquitina o calreticulina.

La construcción de ácido nucleico de la invención es útil para desencadenar una respuesta inmunitaria en un sujeto, preferiblemente una respuesta inmunitaria celular, contra células que expresan en exceso la telomerasa, preferiblemente células de displasia o células tumorales, así como células infectadas con un oncovirus.

En la presente memoria se describe un método para prevenir o tratar un tumor en un paciente, cuyo método comprende administrar dicha construcción de ácido nucleico a un paciente que lo necesite.

Tal tratamiento se puede denominar inmunoterapia activa o vacunación terapéutica, ya que desencadena una respuesta inmunitaria contra el tumor, especialmente una respuesta de células T CD8 citotóxica, junto con una respuesta específica de células T CD4.

Se obtiene una respuesta inmunitaria celular amplia porque los repertorios de células T CD4 y CD8 son estimulados por los epítopos disponibles en hTERT. El número de células T CD4 y CD8 dirigidas contra muchos epítopos de hTERT es mayor que en la vacunación con péptidos. Se mejora la producción de interleucinas, además de la inducción de células T CD4, especialmente citocinas Th1, lo que permite un crecimiento y diferenciación óptimos de las células T CD8 con el sello distintivo de las células antitumorales.

Leyendas de las figuras

5

20

25

30

10 Figura 1A Mapa del plásmido INVAC-1

Ubicación (bases)	Secuencia	Origen
1-3478	Vector NTC8685-eRNA41H-HindIII-Xbal	NTC
3479 - 3484	Sitio de clonación HindIII: A.AGCTT	NTC/Invectys
3485 - 6967	Transgén Ubi-hTERT	Invectys
6968 - 6973	Sitio de clonación Xbal: T.CTAGA	Invectys/NTC
6974 - 7120	Vector NTC8685-eRNA41H-HindIII-Xbal	NTC

Características del vector

Agonista eRNA11a RIG-I: 7-532

Terminador procariótico trpA: 535-564

15 VA RNAI (VA1) de adenovirus serotipo 5: 568-761

Origen ampliado del sitio de ensamblaje primosomal (PAS-BH): 771-1055

Origen de replicación pUC: 1056-2070

Marcador de selección de sacarosa (RNA-OUT): 2087-2231

Potenciador de SV40: 2232-2451 Potenciador de CMV: 2452-2897

Promotor de CMV: 2898-3017

Líder sin traducir (exón 1): 3018-3204

HTLV-1 R: 3089-3314

Intrón 3' basado en β -globina de conejo sintética: 3323-3429

Exón 2 (sitios de unión a proteínas SR-Kozak): 3430-3478

Transgén Ubi-hTERT que incluyen sitios de clonación HindIII-Xbal-Invectys): 3479-6973

Terminador eucariótico: 6980-7114

Figura 1B Validación de gel para INVAC-1

El vector de expresión INVAC-1 se verificó por mapeo de restricción. El patrón corresponde al mapa de restricción esperado.

Calle 1: escalera de 1 kb

Calle 2: INVAC-1 sin digerir

ES 2 771 862 T3

Calle 3: INVAC-1 digerido con BgIII/NotI (bandas 3496, 3262, 220, 142 pb)

Calle 4: INVAC-1 digerido con Ncol (bandas de 4084, 3036 pb)

Calle 5: INVAC-1 digerido con HindIII/XbaI (3631, bandas de 3489 pb)

Figura 2A hTERT, INVAC-1 y derivados de INVAC-1.

5 Alineamiento esquemático entre proteínas hTERT de tipo salvaje y Ubi-hTERT modificadas codificadas por INVAC-1 y derivados de INVAC-1: pUTD10Not (abreviado como Δ10Not), pUTD10Cog (abreviado como Δ10Cog) y pUTD23Tyn (abreviado como Δ23).

Características de la secuencia:

10

30

35

45

VDD: Deleción de los aminoácidos 867-869 dentro del sitio catalítico.

DGLLLRL (SEQ ID NO: 19): Deleción adicional de los aminoácidos 860-867; deleción de VDD aguas arriba

FLLVTPH (SEQ ID NO: 20): Deleción adicional de los aminoácidos 869-876; deleción de VDD aguas abajo

IRR: Deleción adicional de los aminoácidos 857-859; DGLLLRLVDD aguas arriba (SEQ ID NO: 21): deleción

LTH: Deleción adicional de los aminoácidos 877-879; VDDFLLVTPH aguas abajo (SEQ ID NO: 22): deleción

Ubi: secuencia de ubiquitina humana (1-76 aminoácidos)

15 **V5:** Etiqueta C-terminal V5 para la detección conveniente de proteínas

Figura 2B Validación de gel para derivados de INVAC-1

Los vectores de expresión pUTD10Not, pUTD10Cog y pUTD23Tyn (derivados de INVAC-1) se verificaron mediante mapeo de restricción. Los patrones corresponden a los mapas de restricción esperados.

Calle M: escalera de 1 kb

20 Calle 1: pUTD10Cog (5348, bandas de 3585 pb)

Calle 2: pUTD10 Not (5348, bandas de 3585 pb)

Calle 3: pUTD23Tyn (5348, bandas de 3546 pb)

Figura 3 Expresión de hTERT de tipo salvaje, INVAC-1 y derivados de INVAC-1 *in vitro* en diferentes líneas celulares evaluadas por transferencia Western

25 HTERT de tipo salvaje (pTRIP-CMV-hTERT), vector vacío (pNTC8685-eRNA41H, cadena principal de INVAC-1 sin secuencia codificante foránea), construcciones de INVAC-1 y derivadas de INVAC-1 (pUTD10Not/Δ10Not, pUTD10Cog/Δ10Cog y pUTD23Tyn/Δ23) se transfectaron en células HEK293T (A, C). La hTERT de tipo salvaje, el vector vacío pNTC8685-eRNA41H y las construcciones de INVAC-1 se transfectaron en células CrFK (B).

La expresión de proteínas se controló durante 18-96 h después de la transfección en células HEK293T (A, C) y durante 24-72 h en células CrFK (B).

El tiempo de recolección de células se indica en la parte superior de cada calle. Se cargaron 15 μ g de proteína total de productos lisados celulares por calle para las membranas A, B, C (hTERT, INVAC-1) y se cargaron 20 μ g de productos lisados de proteína total por calle para las membranas C (Δ 10Not, Δ 10Cog, Δ 23). Se detectó hTERT con un anticuerpo monoclonal de conejo anti-hTERT (hTERT, INVAC-1) o con una anti-etiqueta V5 (Δ 10Not, Δ 10Cog, Δ 23). La detección de proteína β -actina se utilizó como control de carga y se detectó con un anticuerpo monoclonal de ratón anti- β -actina. La detección de proteínas hTERT de células CrFK (B) y proteínas derivadas de INVAC-1 de células HEK293T (C) requirió un mayor tiempo de exposición.

Figura 4 Localización intracelular de construcciones de hTERT e INVAC-1 en diferentes líneas celulares evaluadas por inmunofluorescencia

La hTERT de tipo salvaje (pTRIP-CMV-hTERT), el vector vacío (pNTC8685-eRNA41H, la cadena principal de INVAC-1 sin secuencia codificante foránea) y las construcciones de INVAC-1 se transfectaron en células HEK293T (A) o CrFK (D) durante 24 h, y en células HeLa (B) o QT6 (C) durante 24 h y 48h.

Las células se procesaron para la tinción de inmunofluorescencia con un anticuerpo monoclonal de conejo antihTERT y un anti-anticuerpo secundario de conejo Alexa Fluor 488® de cabra (verde). Los núcleos se tiñeron con DAPI (azul). Las células no tratadas se tiñeron solo con DAPI. Las células se analizaron mediante microscopía de fluorescencia (x63).

5

10

15

20

25

30

35

40

45

50

55

Figura 5 Actividad telomerasa de hTERT, INVAC-1 y derivados de INVAC-1 evaluados mediante ensayo TRAP

Las células CrFK se transfectaron con construcciones de hTERT de tipo salvaje (pTRIP-CMV-hTERT), INVAC-1 y derivados de INVAC-1. Veinticuatro horas después, se recolectaron las células, se extrajeron las proteínas celulares totales y se evaluó la actividad telomerasa (transcriptasa inversa) mediante el ensayo del Protocolo de Amplificación de Repetición Telomérica (TRAP). Se muestran las mediciones de absorbancia (DO450/690 nm) y la Actividad Telomerasa Relativa (RTA; razón muestra/control positivo) de construcciones de INVAC-1 (A, B) y derivadas de INVAC-1 (C, D) en comparación con hTERT de tipo salvaje y células CrFK sin tratar (n = 3 para 2,1 µg de muestras de concentración de proteína total). **: p = 0.0016. ***: p <0.0001, prueba t no pareada.

No se detectó actividad telomerasa en células CrFK transfectadas con INVAC-1 y derivados de INVAC-1.

Figura 6: Impacto de la electroporación para inducir niveles significativos de células T CD8 específicas para hTERT que secretan interferón-y después de la administración ID de INVAC-1

Se inmunizaron ID ratones hembra C57BL/6 de siete semanas de edad (2-8 ratones por grupo) con 100 μg de INVAC-1 o 1X PBS. Para la mitad de los animales, se realizó una electroporación en cada sitio de vacunación directamente después de la inmunización. Catorce días después de la vacunación, se recogieron los bazos de todos los ratones. Los esplenocitos se purificaron con Ficoll y se estimularon en un ensayo ELIspot para IFN-γ por triplicado con una reserva de 2 péptidos de hTERT restringidos a MHC H2^b (p429, p660) durante 19 horas. Las manchas se revelaron con un anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT. Los resultados son la mediana de la frecuencia de células T CD8 específicas para hTERT que secretan IFNγ/200.000 esplenocitos. Análisis de Kruskal-Wallis con la prueba de comparación múltiple de Dunn. *: valor p <0,05. EP = electroporación.

Figura 7: Evaluación de varias rutas de administración para la vacunación con INVAC-1 seguida de electroporación para inducir células T CD8 específicas de hTERT que secretan interferón y.

Se inmunizaron ratones HLA-B7 transgénicos de siete a diez semanas de edad a través de A) la vía ID o SC (3-8 ratones por grupo) y B) a través de la vía ID o IM (4-5 ratones por grupo) con 25 μg de INVAC-1 o 1X PBS. Todos los animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización. Catorce días después de la vacunación, se recogieron bazos A) o sangre periférica B) de todos los ratones. Los esplenocitos o las PBMC se purificaron con Ficoll y se estimularon en un ensayo ELIspot para IFN-γ por triplicado con una reserva de 3 péptidos específicos de hTERT restringidos al MHC HLA-B7 (p351, p1123 y p277) durante 19 horas. Las manchas se revelaron con un anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT. Los resultados son la mediana de la frecuencia de células T CD8 específicas para hTERT que secretan IFNγ/200.000 esplenocitos o PBMC. Prueba no paramétrica de Mann Whitney, *: valor p <0,05. Se estableció voluntariamente una línea sombreada a 10 células T CD8 específicas de hTERT que secretaban IFNγ/200.000 esplenocitos como un umbral de corte que permitía la determinación de los animales que respondían.

Figura 8: Impacto de la dosis de la vacuna sobre la respuesta de células T CD8 específicas para hTERT después de una inmunización ID única con INVAC-1 y electroporación

Se inmunizaron ID ratones hembra C57BL/6 de siete semanas de edad A) con 12,5, 25, 50 o 100 μg de INVAC-1 o 1X PBS (4-6 ratones por grupo) y B) con 100, 200, 400, 800 o 1200 μg de INVAC-1 o 1X PBS (3-5 ratones por grupo). Se realizó una electroporación en cada sitio de vacunación directamente después de la inmunización. Catorce días después de la vacunación, se recogieron los bazos de todos los ratones. Los esplenocitos se purificaron con Ficoll y se estimularon en un ensayo ELIspot para IFN-γ por triplicado con una reserva de 2 péptidos de hTERT restringidos al MHC H2^b (p429, p660) durante 19 horas. Las manchas se revelaron con un anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT. Los resultados son la mediana de la frecuencia de células T CD8 específicas para hTERT que secretaban IFNγ/200.000 esplenocitos. Análisis de Kruskal-Wallis con la prueba de comparación múltiple de Dunn. *: valor p <0,05, **: valor p <0,01. Se estableció voluntariamente una línea sombreada en 10 manchas/200.000 esplenocitos para permitir la determinación de los animales que respondían.

Figura 9: Impacto de un régimen de vacunación de cebado-refuerzo con INVAC-1 sobre células T CD8 específicas para hTERT que secretan interferón-γ

Se inmunizaron ratones transgénicos para HLA-B7 de siete a diez semanas de edad a través de la vía ID (5 ratones por grupo) con 25 µg de INVAC-1. Todos los animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización. Veintiún días después, los ratones recibieron una inyección de refuerzo utilizando el mismo procedimiento. Se recogió sangre periférica antes de la primera inmunización, los días 7, 15 y 21 después del cebado y los días 9, 16 y 22 después del refuerzo.

Las PBMC se purificaron con Ficoll y se estimularon en un ensayo ELIspot para IFN-γ por triplicado en una reserva de 3 péptidos específicos de hTERT restringidos al MHC HLA-B7 (p351, p1123 y p277) durante 19 horas. Las manchas se revelaron con un anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT. Los resultados son la mediana de la frecuencia de células T CD8 específicas para hTERT que secretan IFNγ/200.000 esplenocitos. Prueba no paramétrica de Mann-Whitney, *: valor p <0,05. Se estableció voluntariamente una línea sombreada en 10 puntos/200.000 esplenocitos para permitir la determinación de los animales que respondían.

5

10

15

20

25

30

35

40

45

50

55

Figura 10: Evaluación de la vacunación ID (inmunización única versus régimen de cebado/refuerzo) con INVAC-1, Δ10Not, Δ10Cog o Δ23 seguido de electroporación para inducir células T CD8 específicas para hTERT que secretan interferón γ.

A) Se inmunizaron ID ratones hembra C57BL/6 de siete semanas de edad (4 ratones por grupo) con 100 μg de INVAC-1, Δ10Not, Δ10Cog o Δ23 o 1X PBS. Se realizó una electroporación en cada sitio de vacunación directamente después de la inmunización. La mitad de los animales recibió una inyección de refuerzo veintiún días después de la primera vacunación utilizando el mismo procedimiento. Se recogieron los bazos de los ratones 14 días o 10 días después de la última inmunización, respectivamente, para los animales que recibieron una sola inyección o inyecciones de cebado y refuerzo. Los esplenocitos se purificaron con Ficoll y se estimularon en un ensayo ELIspot para IFN-γ por triplicado con un grupo de 2 péptidos de hTERT restringidos al MHC H2^b (p429, p660) durante 19 horas. Las manchas se revelaron con un anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT. Los resultados son la mediana de la frecuencia de células T CD8 específicas para hTERT que secretan IFNγ/200.000 esplenocitos para animales que recibieron una inyección única (CEBADO, puntos de color negro) o una inyección de cebado y refuerzo (PB, puntos de color blanco). Prueba no paramétrica de Mann Whitney, *: valor p <0,05. Se estableció voluntariamente un punto de corte en 10 células T CD8 específicas para hTERT que secretaban IFNγ/200.000 esplenocitos (línea sombreada) para permitir la determinación de los animales que respondían. PB = post-refuerzo.

B) Se inmunizaron ratones transgénicos para HLA-B7 de siete a diez semanas de edad a través de la vía ID (5 ratones por grupo) con 100 μg de INVAC-1, Δ10Not, Δ10Cog o Δ23 o 1X PBS. Todos los animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización. Veintiún días después de la primera vacunación, los ratones recibieron una inyección de refuerzo utilizando el mismo procedimiento. Los esplenocitos se purificaron con Ficoll y se estimularon en un ensayo ELIspot para IFN-γ por triplicado con una reserva de 3 péptidos específicos de hTERT restringidos al MHC HLA-B7 (p351, p1123 y p277) durante 19 horas. Las manchas se revelaron con un anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT. Los resultados son la mediana de la frecuencia de células T CD8 específicas para hTERT que secretan IFNγ/200.000 esplenocitos o PBL. Prueba no paramétrica de Mann Whitney, *: valor p <0,05. Se estableció voluntariamente un punto de corte en 10 manchas/200.000 esplenocitos para determinar la frecuencia de los animales que respondían (línea sombreada).

Figura 11: Amplitud de la respuesta de células T específicas para hTERT después de una o varias inmunizaciones ID seguidas de electroporación: Comparación entre las construcciones de INVAC-1, pNTC-hTERT y pNTC-hTERT-ΔVDD

Se inmunizaron ratones transgénicos para HLA-B7 de siete a 13 semanas de edad a través de la vía ID (6 ratones por grupo) con 25 μg de INVAC-1, hTERTΔVDD (pNTC-hTERT-ΔVDD), hTERT (pNTC-hTERT) o vector vacío NTC (pNTC8685-eRNA41H). Cuarenta y ocho animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización. La mitad de los animales recibió una inyección de refuerzo veintiún días después de la primera vacunación utilizando el mismo procedimiento. Los bazos de los ratones se cosecharon 14 días o 10 días después de la última inmunización, respectivamente, para los animales que recibieron una sola inyección o inyecciones de cebado y refuerzo.

Los esplenocitos se purificaron con Ficoll y se estimularon en un ensayo ELIspot para IFN-γ por triplicado, con un conjunto de 269 péptidos purificados de hTERT (pureza> 70%, GenScript) divididos en 27 reservas de 9-10 péptidos solapantes de hTERT (péptidos de 15 unidades que se solapan en 11 aminoácidos), durante una estimulación nocturna (19 horas). Las manchas se revelaron con un anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT.

Para cada ratón, se calculó la mediana del número de manchas por triplicado y por condición de estimulación (medio o reserva de péptidos). La frecuencia (F) de las células T específicas para hTERT se calculó después de restar la mediana del número de manchas en pocillos estimulados con medio de la mediana del número de manchas en los pocillos estimulados con la reserva de péptidos. Los valores negativos se establecieron en 0 para análisis posteriores.

Este análisis se realizó para los animales que recibieron una sola vacuna (A) o una vacuna de cebado-refuerzo (B). (A y B) Para cada grupo de vacunación (INVAC-1, hTERTΔVDD, hTERT, NTC), se calculó una mediana (n = 6) de la frecuencia (F) de las células T específicas de telomerasa que secretaban IFNγ/200.000 esplenocitos por condición de estimulación para obtener un valor por cada uno de las 27 reservas.

(C) Suma de la mediana total de la frecuencia (F) de las células T específicas de telomerasa detectadas para las 27 reservas (269 péptidos purificados) después de la vacunación con INVAC-1, hTERTΔVDD, hTERT o NTC. Los análisis estadísticos se realizaron con el soporte lógico Prism 5 utilizando una prueba no paramétrica de Kruskal-Wallis con corrección de Dunn. El valor de p <0,05 se consideró estadísticamente significativo.

Figura 12: Potencia de la vacunación ID con INVAC-1 y electroporación para generar células T CD8 citotóxicas específicas y células T Th1-CD4

5

10

15

20

25

30

35

40

45

50

55

- A) Se inmunizaron ratones transgénicos para HLA-B7 de siete a 10 semanas de edad a través de la vía ID (5 ratones por grupo) con 25 μg de INVAC-1 o 1X PBS. Todos los animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización. El día 14 después de la inyección, los esplenocitos singénicos, pulsados con péptidos de hTERT individuales restringidos al MHC HLA-B7 (p351 o p1123) o no pulsados, se marcaron con succinimidil éster diacetato de carboxiforesceína (CFSE) a tres concentraciones diferentes: alta = 1 μM (621), media = 0.5 μM (987) y baja = 0.1 μM (sin pulsar). El mismo número de células marcadas con CFSE alta, media o baja se transfirió IV a ratones vacunados. Después de 15-18 horas, se determinó la desaparición de las células pulsadas con péptidos en el bazo mediante citometría de flujo. El porcentaje de lisis específica se calculó comparando la proporción de células pulsadas con las células no pulsadas en ratones vacunados frente a los de control. Los datos representan el porcentaje de lisis específica para cada ratón contra cada péptido individual en el bazo después de la vacunación ID con INVAC-1. Las barras horizontales muestran el porcentaje promedio de lisis por péptido y por ruta de inmunización. También se trazan las desviaciones típicas (n = 10 animales individuales/grupo). Los análisis estadísticos se realizaron con el soporte lógico Prism 5 utilizando una prueba no paramétrica de Kruskal-Wallis con corrección de Dunn. El valor de p <0,05 se consideró estadísticamente significativo.
- B y C) Se inmunizaron ratones transgénicos para HLA-A2/DR1 de siete a diez semanas de edad a través de la vía ID (7-10 ratones por grupo) con 25 μg de INVAC-1 o 1X PBS. Todos los animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización. Catorce días después de la vacunación, se recogieron los bazos de todos los ratones. Los esplenocitos se purificaron con Ficoll y B) la mitad de ellos se estimularon por triplicado en un ensayo ELIspot para IFN-γ con una reserva de 3 péptidos específicos de hTERT restringidos al MHC HLA-DR1 (p1029, p578 y p904) durante 19 horas. Las manchas se revelaron con un anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT. Los resultados son la mediana de la frecuencia de células T CD4 específicas para hTERT que secretan IFNγ/200.000 esplenocitos. Prueba no paramétrica de Mann Whitney, ***: valor p <0,001.
- C) La segunda mitad de los esplenocitos se estimuló durante 24 h con una reserva de 3 péptidos específicos de hTERT restringidos al MHC HLA-DR1 (p1029, p578 y p904). Los sobrenadantes de las células estimuladas se recuperaron y se probaron en un ensayo CBA para evaluar la concentración de citocinas Th1/Th2 y Th17 secretadas por las células T CD4 específicas para hTERT. Los resultados son la mediana de las concentraciones de citocina en pg/ml. Análisis de Kruskal-Wallis con la prueba de comparación múltiple de Dunn. *: valor p <0,05.

Figura 13: Impacto de una vacunación ID terapéutica o preventiva con INVAC-1 seguida de electroporación en un modelo tumoral de ratones transgénicos para HLA-A2/DR1 singénicos.

- A) Se inmunizaron ratones transgénicos para HLA-A2/DR1 de cinco a diez semanas de edad a través de la vía ID (5 ratones por grupo) con 100 μg de INVAC-1 o 1X PBS. Todos los animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización. Veintiún días después del cebado, los ratones recibieron una inyección de refuerzo siguiendo el mismo procedimiento. Un mes después del refuerzo, a los ratones se les inocularon a través de la vía SC 50.000 células tumorales Sarc-2 (fibrosarcoma de ratón). La mediana del volumen tumoral en cada grupo vacunado se muestra en diferentes días después del injerto de células tumorales. Se dibujó una línea sombreada a 500 mm³ para permitir el cálculo del retraso del crecimiento tumoral.
- B) Se inocularon ratones transgénicos para HLA-A2/DR1 de 24 semanas de edad (10 ratones por grupo) a través de la vía SC con 20.000 células tumorales Sarc-2 (fibrosarcoma de ratón). Cuatro días después del injerto de células tumorales, los animales fueron inmunizados a través de la vía ID con 25 μg de INVAC-1 o un plásmido vacío (NTC, cadena principal de INVAC-1 sin secuencia de antígeno). Todos los animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización. Veintiún y 35 días después del cebado, los ratones recibieron inyecciones de refuerzo utilizando el mismo procedimiento. La mediana del volumen tumoral en cada grupo vacunado se muestra en diferentes días después de la sensibilización. Se dibujó una línea sombreada a 500 mm³ para permitir el cálculo del retraso del crecimiento tumoral.

Figura 14: Potenciación de las respuestas inmunitarias celulares inducidas por INVAC-1 mediante GM-CSF y eficacia *in vivo* en un modelo de tumor de ratón transgénico para HLA-A2/DR1 singénico

A) Se inmunizaron ID ratones hembra C57BL/6 de siete semanas de edad (5 ratones por grupo) con 25 μg de INVAC-1, 25 μg de INVAC-1 y 0,5 μg de mGM-CSF o 1X PBS. La electroporación se realizó en cada sitio de vacunación directamente después de la inmunización con INVAC-1. Catorce días después de la vacunación, se recogieron los bazos de todos los ratones. Los esplenocitos se purificaron con Ficoll y se estimularon en un ensayo

ELIspot para IFN-γ por triplicado con un grupo de 2 péptidos de hTERT restringidos al MHC H2^b (p429, p660) durante 19 horas. Las manchas se revelaron con un anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT. Los resultados son la mediana de la frecuencia de células T CD8 específicas para hTERT que secretan IFNγ/200.000 esplenocitos. Análisis de Kruskal-Wallis con la prueba de comparación múltiple de Dunn. **: valor p <0,01.

5

10

25

30

35

40

55

- B) Se inmunizaron ratones transgénicos para HLA-A2/DR1 de siete a diez semanas de edad a través de la vía ID (5 ratones por grupo) con 100 μg de INVAC-1, 100 μg de INVAC-1 y 5 μg de mGM-CSF. Todos los animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización con INVAC-1. Catorce días después de la vacunación, se recogieron los bazos de todos los ratones. Los esplenocitos se purificaron con Ficoll y se estimularon por triplicado con una reserva de 3 péptidos específicos para hTERT restringidos al MHC HLA-DR1 (p1029, p578 y p904) durante 24 horas. Los sobrenadantes de las células estimuladas se recuperaron y probaron en un ensayo CBA para evaluar la concentración de citocinas Th1/Th2 y Th17 secretadas por las células T CD4 específicas para hTERT. Los resultados son la mediana de la concentración de citocina en pg/ml. Análisis de Kruskal-Wallis con la prueba de comparación múltiple de Dunn. *: valor p <0,05. **: valor p <0,01.
- C) A ratones transgénicos para HLA-A2/DR1 de siete a diez semanas de edad (10 ratones por grupo) se les inocularon a través de la vía SC 20.000 células tumorales Sarc-2 (fibrosarcoma de ratón). Cuatro días después del injerto de células tumorales, los animales fueron inmunizados a través de la vía ID con 25 μg de INVAC-1 y 0,5 μg de mGM-CSF, un plásmido vacío (NTC, cadena principal de INVAC-1 sin secuencia de antígeno) y 0,5 μg de mGM-CSF o 1X PBS y 0,5 μg de mGM-CSF. Todos los animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización con INVAC-1. Veintiún y 35 días después del cebado, los ratones recibieron inyecciones de refuerzo con el mismo protocolo. La mediana del volumen tumoral en cada grupo vacunado se muestra en diferentes días después del injerto de las células tumorales.

Se dibujó una línea sombreada a 500 mm³ para permitir el cálculo del retraso del crecimiento tumoral.

Figura 15: Impacto de IL-12 para potenciar las respuestas de células T CD8 específicas para hTERT inducidas por INVAC-1

Se inmunizaron ratones transgénicos para HLA-A2/DR1 de siete a diez semanas de edad a través de la vía ID (5 ratones por grupo) con 100 μg de INVAC-1, 100 μg de INVAC-1 y 1 ng de IL-12, 1X PBS o 1X PBS y 1 ng de IL-12. Todos los animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización con INVAC-1. Catorce días después de la vacunación, se recogieron los bazos de todos los ratones. Los esplenocitos se purificaron con Ficoll y se estimularon por triplicado en un ensayo ELIspot para IFN-γ con una reserva de 2 péptidos específicos de hTERT restringidos al HLA-A2 (UCP4.1 y UCP2.1) durante 19 horas. Las manchas se revelaron con un anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT. Los resultados son la mediana de la frecuencia de células T CD8 específicas para hTERT que secretan IFNγ/200.000 esplenocitos. Se estableció una línea sombreada en 10 manchas/200.000 esplenocitos para permitir la determinación de los animales que respondían.

- La **Figura 16** muestra la secuencia de nucleótidos completa del vector de expresión del plásmido INVAC-1 (7120 pb). Las características del vector se detallan en la leyenda de la Figura 1A. La proteína de fusión de hTERT codificada por INVAC-1 (1158 AA) comienza en la posición 3488 (ATG que codifica el aminoácido M) y termina en 6961 (GAC que codifica el aminoácido D). Se suprimieron los 47 primeros aminoácidos (1-47 AA) de la proteína INVAC-1/hTERT y se remplazaron por un polipéptido de ubiquitina (76 AA). El sitio catalítico se inactivó mediante una deleción de 9 pb (entre los nucleótidos 6172-6173) que codificaba VDD (* en la secuencia) y que correspondía a AA 867-869 de la telomerasa humana de tipo salvaje (hTERT; número de acceso NM_198253). La primera línea es la secuencia de nucleótidos; la segunda línea es la secuencia de aminoácidos correspondiente. Las anotaciones (véase también la Figura 1A) se proporcionan o bien encima o bien debajo de las secuencias. "\(\text{\text{"}}\)": Codón de parada.
- La **Figura 17** muestra la secuencia del inserto que codifica la proteína de fusión ubiquitina-telomerasa humana (UbihTERT) D10Not. Se suprimieron los 23 primeros aminoácidos (1-23 AA) de hTERT que fueron reemplazados por un
 polipéptido de ubiquitina (76 AA). Se introdujo una deleción adicional entre los aminoácidos 912-913 (* véase la
 secuencia), correspondiente a AA 860-869 de la telomerasa humana de tipo salvaje (hTERT; número de acceso
 NM_198253). Esta deleción de 10 aminoácidos incluye la deleción de 3 AA (ΔVDD) que da como resultado la
 inactivación de la actividad enzimática de TERT humana y la deleción de 7 AA adicionales aguas arriba de la
 secuencia VDD. Los 14 aminoácidos en la secuencia C-terminal de Ubi-hTERT codifican la etiqueta epitópica V5. La
 primera línea es la secuencia de nucleótidos; la segunda línea es la secuencia de aminoácidos correspondiente. Las
 anotaciones se proporcionan o bien encima o bien debajo de las secuencias. "□": Codón de parada.
 - La **Figura 18** muestra la secuencia del inserto que codifica la proteína de fusión de ubiquitina-telomerasa humana (Ubi-hTERT) D10Cog. Se suprimiendo los 23 primeros aminoácidos (1-23 AA) de hTERT que fueron reemplazados por un polipéptido de ubiquitina (76 AA). Se introdujo una deleción adicional entre los aminoácidos 919-920 (* véase la secuencia), correspondiente a AA 867-876 de la telomerasa humana de tipo salvaje (hTERT; número de acceso NM_198253). Esta deleción de 10 aminoácidos incluye la deleción de 3 AA (ΔVDD) que da como resultado la inactivación de la actividad enzimática de TERT humana y la deleción de 7 AA adicionales aguas abajo de la

secuencia VDD. Los 14 aminoácidos en la secuencia C-terminal de Ubi-hTERT codifican la etiqueta epitópica V5. La primera línea es la secuencia de nucleótidos; La segunda línea es la secuencia de aminoácidos correspondiente. Las anotaciones se proporcionan o bien encima o bien debajo de las secuencias. "

"": Codón de parada.

La **Figura 19** muestra la secuencia del inserto que codifica la proteína de fusión de ubiquitina-telomerasa humana (Ubi-hTERT) D23Tyn. Se suprimieron los 23 primeros aminoácidos (1-23 AA) de hTERT que fueron reemplazados por un polipéptido de ubiquitina (76 AA). Se introdujo una deleción adicional entre los aminoácidos 909-910 (* véase la secuencia), correspondiente a AA 857-879 de la telomerasa humana de tipo salvaje (hTERT; número de acceso NM_198253). Esta deleción de 23 aminoácidos incluye la deleción de 3 AA (ΔVDD) que da como resultado la inactivación de la actividad enzimática de TERT humana y la deleción de 10 AA adicionales aguas arriba y aguas abajo de la secuencia VDD. Los 14 aminoácidos en la secuencia C-terminal de Ubi-hTERT codifican la etiqueta epitópica V5. La primera línea es la secuencia de nucleótidos; La segunda línea es la secuencia de aminoácidos correspondiente. Las anotaciones se proporcionan o bien encima o bien debajo de las secuencias. "□": Codón de parada.

Figura 20 Mapas de plásmidos derivados con permutaciones al azar de INVAC-1

Ubicación (bases)	Secuencia	Origen
1 - 882	vector pcDNA™ 3.1 (+)	Cadena principal de vectores comerciales Invitrogen utilizada por GeneCust
883 - 922	Sitio de clonación múltiple (MCS) que contiene el sitio de clonación HindIII: A.AGCTT	Invitrogen
923 - 4474	Transgenes con permutaciones al azar de Ubi-hTERT	Invectys
4475 - 4517	Sitio de clonación múltiple (MCS) que contiene el sitio de clonación Xbal: T.CTAGA	Invitrogen
4518 - 8918	vector pcDNA™ 3.1 (+)	Cadena principal de vectores comerciales Invitrogen utilizada por GeneCust

Figura 20A pUTScram: características del vector

Gen	Ubicación (bases)
Promotor de CMV	232-819
Promotor de T7	863-882
hUbi (ubiquitina humana)	923-1150
Conector 4xGly	1151-1162
hTERT de secuencia aleatoria (TERT humana de secuencia aleatoria)	1163-4414
Fragmento 7 de hTERT	1163-1372
Conector 6xGly	1373-1390
Fragmento 2 de hTERT	1391-1591
Conector 6xGly	1592-1609
Fragmento 6 de hTERT	1610-1921

15

5

10

ES 2 771 862 T3

Gen	Ubicación (bases)
Conector 6xGly	1922-1939
Fragmento 4 de hTERT	1940-2056
Conector 6xGly	2057-2074
Fragmento 9 de hTERT	2075-2650
Conector 6xGly	2651-2668
Fragmento 3 de hTERT	2669-2788
Conector 6xGly	2789-2806
Fragmento 1 de hTERT	2807-3064
Conector 6xGly	3065-3082
Fragmento 8 de hTERT	3083-3559
Conector 6xGly	3560-3577
Fragmento 10 de hTERT	3578-4093
Conector 6xGly	4094-4111
Fragmento 5 de hTERT	4112-4414
Conector 6xGly	4415-4432
Etiqueta V5	4433-4474
Secuencia de poliadenilación de BGH	4518-4742
ori f1 (origen f1)	4788-5216
Promotor temprano y origen de SV40	5221-5564
Gen de neomicina	5626-6420
SV40 pA (señal de poliadenilación temprana de SV40)	6594-6724
Origen pUC (cadena complementaria)	7107-7777
Gen de ampicilina (cadena complementaria)	7922-8782

Figura 20B pUTInv: características del vector

Gen	Ubicación (bases)
Promotor de CMV	232-819

ES 2 771 862 T3

Gen	Ubicación (bases)
Promotor de T7	863-882
hUbi (ubiquitina humana)	923-1150
Conector 4xGly	1151-1162
HTERT de secuencia invertida (TERT humana de secuencia invertida)	1163-4414
Fragmento 10 de hTERT	1163-1678
Conector 6xGly	1679-1696
Fragmento 9 de hTERT	1697-2272
Conector 6xGly	2273-2290
Fragmento 8 de hTERT	2291-2767
Conector 6xGly	2768-2785
Fragmento 7 de hTERT	2786-2995
Conector 6xGly	2996-3013
Fragmento 6 de hTERT	3014-3325
Conector 6xGly	3326-3343
Fragmento 5 de hTERT	3344-3646
Conector 6xGly	3647-3664
Fragmento 4 de hTERT	3665-3781
Conector 6xGly	3782-3799
Fragmento 3 de hTERT	3800-3919
Conector 6xGly	3920-3937
Fragmento 2 de hTERT	3938-4138
Conector 6xGly	4139-4156
Fragmento 1 de hTERT	4157-4414
Conector 6xGly	4415-4432
Etiqueta V5	4433-4474
Secuencia de poliadenilación de BGH	4518-4742

Gen	Ubicación (bases)
ori f1 (origen f1)	4788-5216
Promotor temprano y origen de SV40	5221-5564
Gen de neomicina	5626-6420
SV40 pA (señal de poliadenilación temprana de SV40)	6594-6724
Origen pUC (cadena complementaria)	7107-7777
Gen de ampicilina (cadena complementaria)	7922-8782

Figura 21A Validación de gel para pUTScram

El vector de expresión pUTScram se verificó mediante mapeo de restricción. El patrón corresponde al mapa de restricción esperado.

5 Calle M: escalera de 1 kb

Calle 1: pUTScram digerido con HindIII/Xbal (bandas de 3576, 5342 pb)

Figura 21B Validación de gel para pUTInv

El vector de expresión pUTInv se verificó mediante mapeo de restricción. El patrón corresponde al mapa de restricción esperado.

10 Calle M: escalera de 1 kb

15

20

25

30

Calle 1: pUTInv digerido con HindIII/XbaI (bandas de 3576, 5342 pb)

Figura 22 Construcciones de hTERT, INVAC-1, pUTScram y pUTInv

Alineamiento esquemático entre proteínas hTERT de tipo salvaje y Ubi-hTERT modificada codificadas por INVAC-1 y derivados con permutaciones al azar de INVAC-1: pUTScram (Secuencia Aleatoria) y pUTInv (Secuencia Invertida).

La secuencia de hTERT modificada (ΔVDD) se dividió en diez fragmentos inmunogénicos: **fragmento 1** (258 pb; Leu24 - Gly109), **fragmento 2** (201 pb; Phe115 - Ala181), **fragmento 3** (120 pb; Trp203 - Ala242), **fragmento 4** (117 pb; Ser255 - Arg293), **fragmento 5** (303 pb; Pro320-Thr420), **fragmento 6** (312 pb; Ala423 - Val526), **fragmento 7** (210 pb; Cys528 - Gln597), **fragmento 8** (477 pb; Arg599 - Lys757), **fragmento 9** (576 pb; Lys760 - lle951), **fragmento 10** (516 pb; Asn958 - Asp1129).

Características de secuencia:

VDD: Deleción de los aminoácidos 867-869 dentro del sitio catalítico.

Ubi: secuencia de ubiquitina humana (aminoácidos 1-76)

F (Phe): Residuo de fenilalanina de hTERT (AA47)

G (Gly): Residuo de glicina C-terminal de ubiquitina (AA76)

R (Arg): Arginina, primer aminoácido de la proteína INVAC-1 (AA 77)

N (Asn): Asparragina, primer aminoácido de la proteína hTERT artificial (Secuencia Aleatoria) codificada por pUTScram (AA 81)

C (Cys): Cisteína, primer aminoácido de la proteína hTERT artificial (Secuencia Invertida) codificada por pUTInv (AA 81)

V5: Etiqueta C-terminal V5 para la detección conveniente de proteínas

Figura 23 Expresión in vitro de hTERT de tipo salvaje, INVAC-1 y derivados con permutaciones al azar de

INVAC-1, evaluada mediante transferencia Western

5

10

15

30

35

40

45

50

55

Se transfectaron hTERT de tipo salvaje, INVAC-1, pUTScram y pUTInv en células HEK293T. La expresión de proteínas se controló durante 18-96 h después de la transfección. (A y C) Se cargaron muestras de hTERT de tipo salvaje e INVAC-1 durante 18 h y 72 h a 15 μg de concentración de proteína total. Estas muestras se utilizaron como controles positivos de las expresiones de proteínas. Las proteínas (A) de Secuencia Aleatoria y (C) de Secuencia Invertida se cargaron a 20 μg de proteína total de productos lisados celulares por calle. Se detectó hTERT con un anticuerpo monoclonal de conejo anti-hTERT (hTERT, INVAC-1) o con un anticuerpo monoclonal de ratón antietiqueta V5 (Secuencia Aleatoria, Secuencia Invertida). El tiempo de recolección de células se indica en la parte superior de cada calle. La proteína β-actina se utilizó como control de carga y se detectó con un anticuerpo monoclonal de ratón anti-β-actina. La detección de productos derivados con permutaciones al azar de INVAC-1 requirió un tiempo de exposición más largo que las proteínas hTERT de tipo salvaje e INVAC-1 (10 segundos a 30 minutos frente a menos de 1 segundo).

Las intensidades de la señal de proteína con permutaciones al azar se normalizaron a la señal de β-actina en la transferencia Western (A y C) utilizando el soporte lógico ImageJ. (B) Secuencia Aleatoria. (D) Secuencia Invertida. Se generaron gráficos de perfil de control de carga y bandas de proteínas para cada calle para obtener números arbitrarios correspondientes al área bajo el perfil de la curva. Se calcula una razón (densidad relativa) dividiendo el valor del área para cada muestra por el valor del área para el control de carga correspondiente.

Figura 24 Actividades telomerasa de hTERT, INVAC-1 y derivados con permutaciones al azar de INVAC-1 evaluadas mediante ensayo TRAP

Las células CrFK se transfectaron con construcciones de hTERT de tipo salvaje (pTRIP-CMV-hTERT), pUTScram y pUTInv. Veinticuatro horas después, se recolectaron las células, se extrajeron las proteínas celulares totales y se evaluó la actividad telomerasa (transcriptasa inversa) mediante el ensayo del Protocolo de Amplificación de Repetición Telomérica (TRAP). Se muestran las mediciones de absorbancia (DO450/690 nm) y la actividad telomerasa relativa (RTA; razón muestra/control positivo) de construcciones con permutaciones al azar (A y B, respectivamente) en comparación con hTERT de tipo salvaje y las células CrFK no tratadas (n = 3 para 2,1 μg de muestra de concentración de proteína total), se realizó una prueba t no pareada.

No se detectó actividad telomerasa en células CrFK transfectadas con las construcciones pUTScram y pUTInv.

Figura 25: Evaluación de la vacunación ID con INVAC-1, pUTScram y pUTInv seguida de electroporación para inducir células T CD8 específicas para hTERT que secretan interferón γ.

Se inmunizaron ratones transgénicos para HLA-B7 de nueve a quince semanas de edad. a través de la vía ID (3-5 ratones por grupo) con 100 µg de INVAC-1, pUTScram, pUTInv o 1X PBS después de dos ciclos de inmunización (régimen de cebado/refuerzo). Se realizó una electroporación en cada sitio de vacunación directamente después de cada inmunización. Se recogieron los bazos de los ratones 10 días después de la segunda inmunización.

Los esplenocitos se purificaron con Ficoll y se estimularon en un ensayo ELIspot para IFN-y por triplicado con una reserva de 3 péptidos de hTERT específicos restringidos al MHC HLA-B7 (p277, p351 y p1123) o medio libre durante 19 horas. Las manchas se revelaron con un anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT. Los resultados son la mediana de la frecuencia de células T CD8 específicas para hTERT que secretan IFNy/200.000 esplenocitos. Se realizó la prueba no paramétrica de Mann Whitney, *: valor p <0,05. Se estableció voluntariamente un punto de corte en 10 manchas/200.000 esplenocitos para determinar la frecuencia de los animales que respondían (línea sombreada).

Figura 26: Potencia de pUTScram y pUTInv para generar células T CD8 citotóxicas específicas para hTERT después de la vacunación ID y la electroporación

Se inmunizaron ratones transgénicos para HLA-B7 de quince semanas de edad. a través de la vía ID (4-6 ratones por grupo) con 100 μg de INVAC-1, pUTScram, pUTInv o 1X PBS. Todos los animales recibieron una electroporación en cada sitio de vacunación directamente después de la inmunización. El día 14 después de la inyección, los esplenocitos singénicos, pulsados con péptidos de hTERT individuales restringidos al MHC HLA-B7 (p351 o p1123) o no pulsados, se marcaron con succinimidil éster diacetato de carboxiforesceína (CFSE) a tres concentraciones diferentes: alta = 5 μM (351), media = 2 μM (1123) y baja = 0,2 μM (sin pulsar). Se inyectó una mezcla que contenía un número igual de células marcadas con CFSE de cada concentración a través de la vena retroorbital (IV) a los ratones vacunados. Después de 15-18 horas, se determinó la desaparición de las células pulsadas con péptidos en el bazo mediante citometría de flujo. El porcentaje de lisis específica se calculó comparando la proporción de células pulsadas con las pulsadas en ratones vacunados frente a los de control. Los datos representan el porcentaje de lisis específica para cada ratón contra cada péptido individual en el bazo después de la vacunación ID. Las barras horizontales muestran la mediana del porcentaje de lisis por péptido. Los análisis estadísticos se realizaron con el soporte lógico Prism 5 utilizando una prueba no paramétrica de Kruskal-Wallis con corrección de Dunn. El valor de p <0,05 se consideró estadísticamente significativo.

La Figura 27 muestra la delineación de los segmentos inmunogénicos de la secuencia de codones optimizados de Ubi-hTERT utilizada para construcciones derivadas con permutaciones al azar de INVAC-1. La primera línea es la secuencia de nucleótidos de codones optimizados de Ubi-hTERT (SEQ ID NO: 45) y la segunda línea es la secuencia de aminoácidos correspondiente (SEQ ID NO: 46). La secuencia de Ubi-hTERT se dividió en diez fragmentos que incluían las secuencias inmunogénicas. Estos fragmentos están delineados mediante símbolos (<...>). Las secuencias inmunogénicas se destacan en color gris. Las secuencias de hTERT entre fragmentos no inmunogénicos, que no están incluidas en las construcciones pUTScram y pUTInv, están subrayadas. Los 14 aminoácidos en la secuencia C-terminal de Ubi-hTERT codifican la etiqueta epitópica V5. Las anotaciones se proporcionan o bien encima o bien debajo de las secuencias. (*) Indica la deleción de la secuencia VDD. "

"": Codón de parada.

La Figura 28 muestra la secuencia completa de nucleótidos del inserto pUTScram (3555 pb). Las características del vector se detallan en la leyenda de la Figura 20. El inserto con permutaciones al azar Ubi-hTERT (Secuencia Aleatoria, 1184 AA) comienza en la posición 923 (ATG que codifica el aminoácido M) y termina en la posición 4474 (ACT que codifica el aminoácido T) de pUTScram. Se suprimieron los 23 primeros aminoácidos (1-23 AA) de la proteína hTERT que fueron reemplazados por un polipéptido de ubiquitina (76 AA). El sitio catalítico se inactivó mediante una deleción de 9 pb que codificaba VDD (* en la secuencia) y correspondiente a AA 867-869 de la telomerasa humana de tipo salvaje (hTERT; patente WO 2007/014740 e isoforma 1 de hTERT; Número de acceso NM_198253). La secuencia de hTERT se dividió en diez fragmentos inmunogénicos y se volvió a ensamblar en el siguiente orden específico: fragmento 7 (210 pb), fragmento 2 (201 pb), fragmento 6 (312 pb), fragmento 4 (117 pb), fragmento 9 (576 pb), fragmento 3 (120 pb), fragmento 1 (258 pb), fragmento 8 (477 pb), fragmento 10 (516 pb), fragmento 5 (303 pb). Estos 10 fragmentos estaban unidos por puentes con un conector 6xGly (conector G; 18 pb). Los 14 aminoácidos en la secuencia C-terminal del inserto con permutaciones al azar de Ubi-hTERT codifican la etiqueta epitópica V5. La primera línea es la secuencia de nucleótidos (SEQ ID NO: 47); la segunda línea es la secuencia de aminoácidos correspondiente (SEQ ID NO: 48). Las anotaciones (véase también la Figura 20A) se proporciona o bien encima o bien debajo de las secuencias. "□": Codón de parada.

La Figura 29 muestra la secuencia completa de nucleótidos del inserto pUTInv (3555 pb). Las características del vector se detallan en la leyenda de la Figura 20. El inserto con permutaciones al azar de Ubi-hTERT (Secuencia Invertida, 1184 AA) comienza en la posición 923 (ATG que codifica el aminoácido M) y termina en la posición 4474 (ACT que codifica el aminoácido T) de pUTInv. Se suprimieron los 23 primeros aminoácidos (1-23 AA) de la proteína hTERT que fueron reemplazados por un polipéptido ubiquitina (76 AA). El sitio catalítico se inactivó mediante una deleción de 9 pb que codificaba VDD (* en la secuencia) y correspondiente a AA 867-869 de la telomerasa humana de tipo salvaje (hTERT; patente WO 2007/014740; Número de acceso NM_198253). La secuencia de hTERT se dividió en diez fragmentos inmunogénicos y se volvió a ensamblar en el siguiente orden específico: fragmento 10 (516 pb), fragmento 9 (576 pb), fragmento 8 (477 pb), fragmento 7 (210 pb), fragmento 6 (312 pb), fragmento 5 (303 pb), fragmento 4 (117 pb), fragmento 3 (120 pb), fragmento 2 (201 pb), fragmento 1 (258 pb). Estos 10 fragmentos estaban unidos por puentes con un conector 6xGly (conector G; 18 pb). Los 14 aminoácidos en la secuencia C-terminal del inserto con permutaciones al azar de Ubi-hTERT codifican la etiqueta epitópica V5. La primera línea es la secuencia de nucleótidos (SEQ ID NO: 49); la segunda línea es la secuencia de aminoácidos correspondiente (SEQ ID NO: 50). Las anotaciones (véase también la Figura 20B) se proporcionan o bien encima o bien debajo de las secuencias. "□": Codón de parada.

Descripción detallada de la invención:

Definiciones

5

10

15

20

25

30

35

40

45

50

55

60

El complejo de telomerasa consiste en un molde de ARN y componentes proteicos que incluyen una transcriptasa inversa, denominada "Transcriptasa inversa de la telomerasa" (TERT), que es el principal determinante de la actividad de telomerasa. A menos que se especifique lo contrario, en la presente memoria descriptiva, el término "telomerasa" se refiere a TERT, incluida la telomerasa humana de tipo salvaje, o variantes de la misma. Se conoce la telomerasa humana de tipo salvaje (o hTERT) (número de acceso GeneBank NM_198253), y tiene una secuencia de aminoácidos SEQ ID NO: 2 (el ADNc se muestra como SEQ ID NO: 1)

La "actividad catalítica de la telomerasa" se refiere a la actividad de TERT como una transcriptasa inversa de telomerasa. El término "desprovista de actividad catalítica telomerasa" significa que la secuencia de ácido nucleico codifica una TERT mutante, que está inactiva.

En la presente invención, el término "variante" se refiere a variantes alélicas, variantes de empalme, mutantes naturales o artificiales, que son homólogos a la secuencia de referencia de hTERT. Dos secuencias de aminoácidos son "homólogas", "sustancialmente homólogas" o "sustancialmente similares" cuando uno o más residuos de aminoácidos se reemplazan por un residuo biológicamente similar o cuando más de 80% de los aminoácidos son idénticos, o más de aproximadamente 90%, preferiblemente más de aproximadamente 95%, son similares (funcionalmente idénticos). Preferiblemente, las secuencias similares u homólogas se identifican mediante alineamiento utilizando, por ejemplo, el programa de apilamiento GCG (Genetics Computer Group, Program Manual for the GCG Package, Version 7, Madison, Wisconsin), o cualquiera de los programas conocidos en la técnica (BLAST, FASTA, etc.).

En la presente descripción "sustituido" o "modificado", incluyen aquellos aminoácidos que han sido alterados o modificados a partir de aminoácidos naturales.

Las variantes incluyen proteínas que tienen una secuencia que difiere de la proteína hTERT de tipo salvaje en una o varias mutaciones (es decir, sustituciones, deleciones, inserciones), más preferiblemente una o varias sustituciones de un solo punto. La variante puede comprender sustituciones conservativas.

El término "sustitución conservativa" como se emplea en la presente memoria denota el reemplazo de un residuo de aminoácido por otro, sin alterar la conformación y función general del péptido, incluyendo, pero sin limitarse a, el reemplazo de un aminoácido por uno que tenga propiedades similares (tal como, por ejemplo, polaridad, potencial de enlace de hidrógeno, ácido, básico, forma, hidrófobo, aromático y similares). Los aminoácidos con propiedades similares son bien conocidos en la técnica. Por ejemplo, la arginina, la histidina y la lisina son aminoácidos alcalinos hidrófilos y pueden ser intercambiables. De manera similar, la isoleucina, un aminoácido hidrófobo, puede reemplazarse por leucina, metionina o valina. Los aminoácidos hidrófilos neutros, que pueden sustituirse entre sí, incluyen asparragina, glutamina, serina y treonina.

El término "polinucleótido aislado" se define como un polinucleótido eliminado del entorno en el que aparece naturalmente. Por ejemplo, una molécula de ADN natural presente en el genoma de una bacteria viva o como parte de un banco de genes no está aislada, pero la misma molécula separada de la parte restante del genoma bacteriano, como resultado de, por ejemplo, un evento de clonación (amplificación) está aislada. Típicamente, una molécula de ADN aislada está libre de regiones de ADN (p. ej., regiones codificantes) a las que está inmediatamente contigua en el extremo 5' o 3', en el genoma natural. Tales polinucleótidos aislados pueden ser parte de un vector o una composición y aún se pueden definir como aislados porque dicho vector o composición no forman parte del entorno natural de tal polinucleótido.

El término "inmunogénico" significa que la composición o construcción a la que se refiere es capaz de inducir una respuesta inmunitaria tras la administración. "Respuesta inmunitaria" en un sujeto se refiere al desarrollo de una respuesta inmunitaria innata y adaptativa, incluyendo una respuesta inmunitaria humoral, una respuesta inmunitaria celular o una respuesta inmunitaria humoral y celular a un antígeno. Una "respuesta inmunitaria humoral" se refiere a aquella que está mediada por anticuerpos. Una "respuesta inmunitaria celular" es aquella mediada por linfocitos T. Esto incluye la producción de citocinas, quimiocinas y moléculas similares producidas por las células T activadas, los glóbulos blancos o ambos. Las respuestas inmunitarias se pueden determinar utilizando inmunoensayos y ensayos de neutralización convencionales para la detección de la respuesta inmunitaria humoral, que son conocidos en la

En el contexto de la invención, la respuesta inmunitaria preferiblemente abarca la estimulación o proliferación de células T CD8 y/o células T CD4 citotóxicas y se puede determinar utilizando inmunoensayos tales como el ensayo ELIspot, el ensayo de citotoxicidad *in vivo* o ensayo de unión con secreción de citocinas.

Como se emplea en la presente memoria, el término "tratamiento" o "terapia" o "inmunoterapia" se refiere a cualquiera de alivio, mejora y/o eliminación, reducción y/o estabilización (p. ej., ausencia de progreso a etapas más avanzadas) de un síntoma, así como el retraso en la progresión del tumor o displasia, o de un síntoma de los mismos. Por lo tanto, el término incluye el logro de una respuesta inmunitaria antitumoral eficaz observada en pacientes con cáncer.

Como se emplea en la presente memoria, el término "prevención" o "prevenir" se refiere al alivio, mejora y/o eliminación, reducción y/o estabilización (p. ej., ausencia de progreso a etapas más avanzadas) de un pródromo, es decir cualquier alteración o síntoma temprano (o conjunto de síntomas) que pueda indicar el inicio de una enfermedad antes de que aparezcan síntomas específicos.

Una célula que **"expresa en exceso telomerasa"** se refiere a una célula en un sujeto que, o bien expresa telomerasa, p. ej. tras mutación o infección, especialmente infección por un oncovirus, si bien generalmente no lo hace, en condiciones normales, o bien a una célula en un sujeto que expresa un mayor nivel de telomerasa (p. ej., tras mutación o infección), en comparación con las condiciones normales. Preferiblemente, la célula que expresa en exceso la telomerasa muestra un aumento de expresión de al menos 5%, al menos 10%, al menos 20%, 30%, 40%, 50%, 60%, 70%, 80% o más.

El "paciente" o "sujeto" es típicamente un sujeto mamífero, preferiblemente un sujeto humano, de cualquier edad, sexo o gravedad de afección.

Construcciones de ácido nucleico

5

10

15

20

25

30

35

40

45

50

55

En la presente memoria se proporciona una construcción de ácido nucleico que está diseñada para permitir la vacunación en pacientes. La construcción de ácido nucleico codifica una telomerasa que carece de actividad catalítica telomerasa (que elimina su actividad inmortalizante) y carece de una señal de localización nucleolar (que impide su transferencia al nucleolo).

La construcción de ácido nucleico de la invención está en forma aislada.

ES 2 771 862 T3

El ácido nucleico puede ser ADN o ARN, pero es preferiblemente ADN, más preferiblemente ADN de doble hebra.

La construcción de ácido nucleico no es un ácido nucleico genómico natural, en particular no comprende intrones.

Como primer bloqueo de seguridad, la secuencia de hTERT carece de actividad catalítica telomerasa. En una realización preferida, la secuencia que codifica hTERT contiene mutaciones que proporcionan la inactivación de la actividad catalítica de la proteína hTERT. El término "mutación" incluye una sustitución de uno o varios aminoácidos, una deleción de uno o varios aminoácidos y/o una inserción de uno o varios aminoácidos. En una realización particular, la proteína hTERT carece de actividad catalítica telomerasa por deleción de al menos un aminoácido.

Preferiblemente, la secuencia muestra una deleción, preferiblemente una deleción de aminoácidos VDD, como se muestra en la Figura 2A. Preferiblemente, la proteína hTERT carece de actividad catalítica telomerasa por la única deleción de los aminoácidos 867-869 (VDD). En otra realización particular, la proteína hTERT carece de actividad catalítica telomerasa mediante una deleción adicional de 1 a 10, 11 o 12 aminoácidos aguas arriba y/o aguas abajo de los aminoácidos 867-869 (VDD).

Como segundo bloqueo de seguridad, la secuencia que codifica hTERT carece adicionalmente de la señal de localización nucleolar. Esta señal de localización nucleolar está correlacionada con la localización subcelular de hTERT y, por lo tanto, con su actividad enzimática. Preferiblemente, la proteína hTERT carece de una señal de localización nucleolar por deleción de al menos los aminoácidos 1-23, más preferiblemente por deleción de los aminoácidos 1-47.

Además de las modificaciones que proporcionan el primer y segundo bloqueos de seguridad, la proteína hTERT codificada por la construcción de ácido nucleico de la invención puede ser una secuencia de hTERT de tipo salvaje, o una secuencia variante.

En la lista de secuencias,

5

10

15

20

SEQ ID NO: 1 es el ADNc de hTERT de tipo salvaje;

SEQ ID NO: 2 es la secuencia de aminoácidos correspondiente;

SEQ ID NO: 3 es el ADNc de hTERT utilizado en el vector INVAC-1;

25 SEQ ID NO: 4 es la secuencia de aminoácidos correspondiente;

SEQ ID NO: 5 es el ADNc de hTERT utilizado en el vector pUTD10Not;

SEQ ID NO: 6 es la secuencia de aminoácidos correspondiente;

SEQ ID NO: 7 es el ADNc de hTERT utilizado en el vector pUTD10Cog;

SEQ ID NO: 8 es la secuencia de aminoácidos correspondiente;

30 SEQ ID NO: 9 es el ADNc de hTERT utilizado en el vector pUTD23Tyn;

SEQ ID NO: 10 es la secuencia de aminoácidos correspondiente.

En una realización preferida, la invención emplea un ácido nucleico que codifica una proteína de SEQ ID NO: 4.

Tal ácido nucleico puede comprender la secuencia SEQ ID NO: 3.

En otra realización, la construcción de ácido nucleico codifica la secuencia de aminoácidos SEQ ID NO: 6, 8 o 10, y preferiblemente comprende SEQ ID NO: 5, 7 o 9.

El ácido nucleico codifica adicionalmente una proteína que mejora el direccionamiento de la proteína hTERT al proteasoma (aumentando la presentación de clase I de los péptidos derivados). Más concretamente, la proteína hTERT se fusiona en el extremo N con tal proteína que mejora el direccionamiento de la proteína hTERT al proteána. Dicha proteína es ubiquitina o una proteína chaperona, concretamente calreticulina.

40 En la lista de secuencias

SEQ ID NO: 11 es la secuencia completa del plásmido INVAC-1 que incluye el ADNc de Ubi-hTERT codificada por INVAC-1:

SEQ ID NO: 12 es la secuencia de aminoácidos correspondiente de Ubi-hTERT codificada por INVAC-1;

SEQ ID NO: 13 es el ADNc del inserto pUTD10Not;

45 SEQ ID NO: 14 es la secuencia de aminoácidos correspondiente;

ES 2 771 862 T3

SEQ ID NO: 15 es el ADNc del inserto pUTD10Cog;

SEQ ID NO: 16 es la secuencia de aminoácidos correspondiente;

SEQ ID NO: 17 es el ADNc del inserto pUTD23Tyn;

5

10

15

20

25

35

40

45

50

La SEQ ID NO: 18 es la secuencia de aminoácidos correspondiente.

En una realización concreta, la construcción de ácido nucleico codifica la secuencia de aminoácidos SEQ ID NO: 12.

Más concretamente, la construcción de ácido nucleico puede comprender SEQ ID NO: 11 o los nucleótidos 3488 a 6961 de SEQ ID NO: 11.

En otra realización, la construcción de ácido nucleico codifica la secuencia de aminoácidos SEQ ID NO: 14, 16 o 18, y preferiblemente comprende SEQ ID NO: 13, 15 o 17.

ΔhTERT se refiere a la hTERT con los aminoácidos VDD 867-869 suprimidos.

Construcciones genéticas, composiciones inmunogénicas y administración.

Preferiblemente, el ácido nucleico es una construcción genética que comprende una secuencia de polinucleótidos como se define en la presente memoria, y secuencias reguladoras (tales como uno o varios promotores, potenciadores, terminadores adecuados, etc.) que permiten la expresión (p. ej., transcripción y traducción) del producto proteico en la célula anfitriona u organismo anfitrión.

Las construcciones genéticas de la invención pueden ser ADN o ARN, y son preferiblemente ADN de doble hebra. Las construcciones genéticas de la invención también pueden estar en una forma adecuada para la transformación de la célula anfitriona u organismo anfitrión previstos, en una forma adecuada para la integración en el ADN genómico de la célula anfitriona prevista o en una forma adecuada para la replicación, mantenimiento y/o herencia independientes en el organismo anfitrión previsto. Por ejemplo, las construcciones genéticas de la invención pueden estar en forma de un vector, tal como por ejemplo un plásmido, cósmido, YAC, un vector viral o transposón. En particular, el vector puede ser un vector de expresión, es decir, un vector que puede proporcionar expresión *in vitro* y/o *in vivo* (p. ej., en una célula anfitriona, organismo anfitrión y/o sistema de expresión adecuados).

En un aspecto preferido pero no limitante, una construcción genética de la invención comprende i) al menos un ácido nucleico de la invención; conectado operablemente a ii) uno o más elementos reguladores, tales como un promotor y opcionalmente un terminador adecuado; y opcionalmente también iii) uno o más elementos adicionales de construcciones genéticas tales como secuencias 3'- o 5'-UTR, secuencias líder, marcadores de selección, marcadores de expresión/genes informadores, y/o elementos que pueden facilitar o aumentar (la eficacia de) la transformación o la integración.

En una realización concreta, la construcción genética se puede preparar digiriendo el polímero de ácido nucleico con una endonucleasa de restricción y clonando en un plásmido que contiene un promotor tal como el promotor de SV40, el promotor de citomegalovirus (CMV) o el promotor del virus del sarcoma de Rous (RSV). En una realización preferida, las secuencias de ácido nucleico TERT se insertan en un plásmido de expresión NTC8685-eRNA41H (véase la Figura 1A).

Otros vectores incluyen vectores retrovirales, vectores de lentivirus, vectores de adenovirus, vectores de virus vaccinia, vectores de virus de viruela, vectores de virus de sarampión y vectores asociados a adenovirus.

Se pueden preparar composiciones que comprenden dicho ácido nucleico o vector. Las composiciones son inmunogénicas. Pueden comprender un portador o excipientes que son adecuados para la administración en seres humanos o mamíferos (es decir, no tóxicos y, si fuera necesario, estériles). Tales excipientes incluyen diluyentes líquidos, semisólidos o sólidos que sirven como vehículos farmacéuticos, agentes isotónicos, estabilizadores o cualquier coadyuvante. Los diluyentes pueden incluir agua, solución salina, dextrosa, etanol, glicerol y similares. Los agentes isotónicos pueden incluir cloruro de sodio, dextrosa, manitol, sorbitol y lactosa, entre otros. Los estabilizadores incluyen albúmina, entre otros. Cualquier coadyuvante conocido en la técnica se puede utilizar en la composición de la vacuna, incluidos los coadyuvantes con una base oleosa tales como coadyuvante completo de Freund y coadyuvante incompleto de Freund, coadyuvantes con una base de micolato, lipopolisacáridos bacterianos (LPS), peptidoglicanos, proteoglicanos, hidróxido de aluminio, saponina, DEAE-dextrano, aceites neutros (tales como el migliol), aceites vegetales (tales como aceite de araquis), polioles Pluronic®.

El ácido nucleico o la composición se pueden administrar directamente o se pueden empaquetar en liposomas o aplicar como recubrimiento sobre partículas de oro coloidal antes de la administración. Los mecanismos para empaquetar vacunas de ADN en liposomas son conocidas en la técnica, por ejemplo, de Murray, 1991. De manera similar, los mecanismos para aplicar como recubrimiento ADN desnudo sobre partículas de oro son ilustradas por Yang, 1992, y los mecanismos para la expresión de proteínas utilizando vectores virales se encuentran en Adolph. 1996.

Para la inmunización genética, las composiciones de vacuna se administran preferiblemente por vía intradérmica, subcutánea, intramuscular, en los tumores o en cualquier tipo de órganos linfoides mediante inyección o mediante bombardeo de partículas impulsadas por gas, y se suministran en una cantidad eficaz para estimular una respuesta inmunitaria en el organismo anfitrión. En una realización preferida de la presente invención, la administración comprende una etapa de electroporación, también designada en la presente memoria mediante el término "electrotransferencia", además de la etapa de inyección (como describen Mir 2008, Sardesai y Weiner 2011).

Las composiciones también se pueden administrar *ex vivo* a células linfoides o mieloides mediante transfección liposómica, bombardeo de partículas o transducción viral (incluidas las técnicas de co-cultivo). Las células tratadas se reintroducen a continuación en el sujeto que se vaya a inmunizar.

Si bien se entenderá que la cantidad de material necesaria dependerá de la inmunogenicidad de cada construcción individual y no se puede predecir *a priori*, el procedimiento de determinación de la dosificación apropiada para cualquier construcción dada es sencillo. Específicamente, se administra una serie de dosificaciones de tamaño creciente, comenzando en aproximadamente 5 a 30 μg, o preferiblemente 20-25 μg, hasta aproximadamente 500 μg a aproximadamente 5 mg, preferiblemente hasta 500-1500 μg, 500-1200 μg, o 500-1000 μg, por ejemplo, a la especie correspondiente y se observa la respuesta inmunitaria resultante, por ejemplo, detectando la respuesta inmunitaria celular mediante un ensayo Elispot para IFNγ (como se describe en la sección experimental), detectando las respuestas CTL utilizando un ensayo de lisis *in vivo* o un ensayo de liberación de cromo o detectando la respuesta Th (célula T auxiliar) utilizando un ensayo de liberación de citocinas.

En una realización preferida, el régimen de vacunación comprende de una a tres inyecciones, preferiblemente repetidas tres o cuatro semanas después.

En una realización concreta, el programa de vacunación puede estar compuesto por una o dos inyecciones seguidas tres o cuatro semanas después por al menos un ciclo de tres a cinco inyecciones.

En otra realización, una dosis de cebador consiste en una a tres inyecciones, seguidas de al menos una dosis de refuerzo cada año, o cada dos o años, por ejemplo.

Estos son solo ejemplos, y cualquier otro régimen de vacunación está incluido en la presente memoria.

Prevención o tratamiento de tumores.

5

20

25

30

40

45

50

El ácido nucleico o la composición inmunogénica como se describe anteriormente es útil en un método para prevenir o tratar un tumor en un paciente.

Se describe un método para prevenir o tratar un tumor en un paciente, cuyo método comprende administrar una cantidad eficaz de dicho ácido nucleico o composición inmunogénica en un paciente que lo necesite. Dicho ácido nucleico o composición inmunogénica se administra en una cantidad suficiente para inducir una respuesta inmunitaria en el paciente.

El tumor puede ser cualquier proliferación no deseada de células, en particular un tumor benigno o un tumor maligno, especialmente un cáncer.

El cáncer puede estar en cualquier etapa de desarrollo, incluida la etapa metastásica. El cáncer puede ser crónico o no crónico (agudo).

En una realización concreta, el tumor es un cáncer sólido o un carcinoma. Los ejemplos incluyen melanoma, tumor cerebral tal como glioblastoma, neuroblastoma y astrocitoma y carcinomas de vejiga, mama, cuello uterino, colon, pulmón, especialmente cáncer de pulmón de células no pequeñas (CPCNP), páncreas, próstata, cáncer de cabeza y cuello, o cáncer de estómago.

En otra realización, el tumor puede ser un tumor líquido, p. ej. un tumor hematopoyético o leucemia, tal como una leucemia linfocítica crónica o aguda, leucemia mieloide crónica o aguda, linfoma que incluye enfermedad de Hodgkin, mieloma múltiple, mieloma maligno.

En una realización concreta, el tratamiento según la invención se puede combinar con terapia convencional, que incluye quimioterapia, radioterapia o cirugía. También podrían ser útiles las combinaciones con moléculas inmunomoduladoras coadyuvantes tales como GM-CSF o una citocina tal como IL-2 o IL-12.

Las Figuras y Ejemplos ilustran la invención sin limitar su alcance.

Ejemplo I

Abreviaturas

AA: Aminoácido, APC: Célula Presentadora de Antígeno, pb: Par de bases, CTL: Linfocito T citotóxico, CMV: Citomegalovirus ADN Ácido desoxirribonucleico, EP: Electroporación, HTLV-1: Virus linfotrópico T humano tipo I,

HTERT: transcriptasa inversa de la telomerasa humana, ID: Intradérmica, IM: Intramuscular, IV: Intravenosa, LTR: Repeticiones Terminales Largas, NoLS: Secuencia de Localización Nucleolar, PBMC: Células Mononucleares de Sangre Periférica, RIG-I: Gen 1 inducible por Ácido Retinoico, ARN Ácido ribonucleico, RT: Temperatura ambiente, RTA: Actividad Relativa de Telomerasa, SC: Subcutánea, TRAP: Protocolo de Amplificación de Repetición Telomérica, TERT: Transcriptasa inversa de la telomerasa, Ubi: Ubiquitina VDD: Valina-Ácido Aspártico-Ácido Aspártico.

Materiales y Métodos

Vectores de ADN plasmídico

INVAC-1

20

25

30

35

40

45

50

INVAC-1 es un vector de expresión plasmídico de 7120 pb que codifica una construcción de fusión de ubiquitinatelomerasa humana de 1158 AA (Ubi-hTERT) correspondiente a una proteína de aproximadamente 127,4 kDa
(Figuras 1A y 16). Puesto que se pretende que INVAC-1 sea utilizado en seres humanos, la actividad enzimática de
la transcriptasa inversa de la telomerasa se ha desactivado por razones de seguridad. De hecho, la secuencia TERT
humana codificada por INVAC-1 se modificó en el sitio catalítico mediante una deleción de 9 pb que codifica tres
aminoácidos valina-ácido aspártico-ácido aspártico (867-869 AA), abreviado a VDD en el código de una letra (Figura
2A). Además, la porción N-terminal de 47 AA de la proteína, que incluye la secuencia de localización nucleolar
(NoLS) requerida para la localización subcelular de telomerasa (Yang, 2002), fue reemplazada por la secuencia
codificante de ubiquitina (Ubi) (1-76 AA).

El transgén Ubi-hTERT se inserta en un esqueleto de vector validado por NTC (Nature Technology Corporation, Lincoln, Nebraska) que combina genes sintéticos cuidadosamente diseñados para una producción bacteriana de alto rendimiento, una mayor expresión en células de mamíferos y, en consecuencia, respuestas inmunitarias eficaces.

La expresión del gen diana es impulsada por un intrón-promotor quimérico optimizado (intrón sintético SV40-CMV-HTLV-1 R) compuesto por un promotor CMV y el inicio del exón 1, una secuencia HTLV-I R que contiene el sitio aceptor de empalme 5', un sitio aceptor 3' sintético basado en el intrón de β-globina de conejo, un potenciador de empalme del exón 2 que comprende un sitio de unión a proteína rica en serina-arginina (SR) para mejorar la exportación de ARN (Lavigueur et al., 1993) y una secuencia de Kozak del exón 2 aguas arriba del codón de inicio para el gen de interés. El ADN entre el codón de parada y el terminador está limitado para reducir la posibilidad de expresión de péptidos crípticos o alteración de la expresión mediada por microARN no deseada.

Para mejorar las respuestas inmunitarias celulares, el vector codifica un agonista de ARN de doble hebra transcrito con ARN polimerasa III del activador de respuesta inmunitaria innata del gen-1 (RIG-I) inducible por ácido retinoico.

No se conoce ninguna característica de virulencia asociada con este vector. El plásmido no se replica en las células diana eucarióticas. El propio esqueleto vector no contiene secuencias codificantes de proteínas y no se han identificado marcos de lectura abiertos que codifiquen proteínas alternativas en el esqueleto del vector, por lo tanto, no hay un gen de resistencia a antibióticos. La selección de plásmidos se realiza por medio de un marcador seleccionable de sacarosa libre de antibióticos (RNA-OUT).

Síntesis y clonación de genes

El gen Ubi-hTERT fue sintetizado *de novo* a través de un procedimiento de ensamblaje de oligonucleótidos de 40 unidades solapantes (GeneCust, Luxemburgo). Se realizaron varios cambios de bases conservativos para eliminar los sitios de restricción y atenuar las secuencias ricas en GC. El inserto se clonó en el vector de expresión pcDNA3.1(+) (Invitrogen, Carlsbad, EE.UU.) utilizando sitios de clonación HindIII-XbaI y se verificó mediante secuenciación.

Subclonación del inserto Ubi-hTERT en el vector de clonación NTC8685-eRNA41H-HindIII-Xbal

El inserto de ubiquitina-telomerasa se clonó en el vector de expresión NTC8685-eRNA41H-HindIII-Xbal diseñado mediante NTC. Sin embargo, su mejor vector apropiado NTC8685-eRNA41H (ref. NTC-DV8685-41HLV) no tenía sitios de restricción compatibles con el inserto Ubi-hTERT. Por consiguiente, este vector se digirió con Sail y BgIII y se ligó a un oligonucleótido sintético de doble hebra que incluye sitios de restricción apropiados para subclonar Ubi-hTERT, es decir, HindIII-Xbal:

Sall **HindIII** Smal **Xbal** BglII GTCGACAAGCTTCCCGGGTCTAGAAGATCT (SEQ ID NO: 23)

Este nuevo vector (NTC8685-eRNA41H-HindIII-XbaI) que ahora incluye el policonector anterior se verificó mediante digestión con enzimas de restricción y secuenciación utilizando cebadores pVAC5' (GCTTTTCTGCCAGGTGCTGA SEQ ID NO: 24) y pVAC3' (GCCAGAAGTCAGATGCTCAA SEQ ID NO: 25) que se reasocian con secuencias aguas

arriba y aguas abajo del sitio policonector respectivamente.

El vector NTC8685-eRNA41H-HindIII-Xbal hecho a medida se digirió con HindIII y Xbal y el vector de 3631 pb se purificó en gel a partir del conector de 12 pb. La construcción pcDNA3.1-Ubi-hTERT se digirió con HindIII y Xbal y el inserto Ubi-hTERT de 3489 pb se transfirió mediante ligadura en el aceptor NTC8685-eRNA41H-HindIII-Xbal para crear NTC8685-eRNA41H-HindIII-Xbal-Ubi-hTERT (INVAC-1) (Figura 1A). El producto de ligación se transformó en el anfitrión de selección libre de antibióticos NTC4862 (DH5α attλ::P_{5/6 6/6}-RNA-IN- SacB, catR) (ref. NTC-DVU-CC1). El vector resultante se verificó mediante digestión con enzimas de restricción (Figura 1B): BgIII/NotI = 3496, 3262, 220, bandas de 142 pb; NcoI = 4084, bandas de 3036 pb; HindIII/Xbal = 3631, bandas de 3489 pb, y los términos del inserto Ubi-hTERT se verificó mediante secuenciación de ADN con cebadores pVAC5' y pVAC3'. No se identificó ninguna alteración de nucleótidos.

Producción de plásmidos

5

10

15

30

35

40

45

50

55

INVAC-1 fue producido por primera vez por NTC en condiciones de calidad de grado de investigación. El ADN plasmídico se transformó en células *E. coli* NTC4862 utilizando electroporación. Las células se colocaron en placas y se propagaron en medios con sacarosa al 6% según lo recomendado por el fabricante (Manual de Instrucciones de NTC, junio de 2011). Después de la extracción, el ADN plasmídico se resuspendió en PBS 1X sin endotoxina a una concentración final de 2 mg/ml.

Posteriormente, INVAC-1 fue fabricado por Eurogentec (Bélgica) para el aumento a escala de GLP y GMP, y la producción de GMP. La secuenciación completa del plásmido INVAC-1 se llevó a cabo en este punto.

Derivados de INVAC-1

Todas las construcciones derivadas de INVAC-1 son plásmidos de ADN de doble hebra de aproximadamente 8,9 kb que codifican proteínas de fusión de ubiquitina-telomerasa humanas que son enzimáticamente inactivas (Figura 2A). Los transgenes Ubi-hTERT se insertaron en el vector pcDNA3.1(+) (5,4 kb) de Invitrogen derivado de pcDNA3.0 que fue diseñado para un alto nivel de expresiones transitorias y estables en células de mamífero. Este vector contiene el promotor de citomegalovirus humano inmediato-temprano (CMV-IE) y la señal de poliadenilación de la hormona de crecimiento bovina (BHG-poliA) como secuencia de terminación.

pUTD10Not (abreviado como Δ10Not)

La secuencia codificante de hTERT se encuentra entre el nucleótido 923 y 4492 pb de la cadena principal del plásmido pcDNA3.1. pUTD10Not codifica una proteína de fusión de ubiquitina-telomerasa humana de 1189 AA (Δ10Not) correspondiente a aproximadamente 130,8 kDa de peso molecular (Figura 2A). Se suprimieron los 23 primeros aminoácidos (1-23 AA) de hTERT que fueron reemplazados por un polipéptido de ubiquitina (76 AA). En el dominio del sitio catalítico, se introdujo una deleción adicional entre los aminoácidos 912-913 (marca *; Figura 17), correspondiente a AA 860-869 (DGLLLRLVDD_ SEQ ID NO: 21) de hTERT de tipo salvaje (número de acceso NM_198253). Esta deleción de 10 aminoácidos incluye la deleción de 3 AA (ΔVDD) que da como resultado la inactivación de la actividad enzimática de hTERT y la eliminación de 7 AA adicionales aguas arriba de la secuencia VDD. Catorce aminoácidos en la secuencia C-terminal de Ubi-hTERT codifican la etiqueta epitópica V5 (Figura 2A).

pUTD10Cog (abreviado como Δ10Cog)

La secuencia codificante de hTERT se encuentra entre el nucleótido 923 y 4492 pb de la cadena principal del plásmido pcDNA3.1. pUTD10Cog codifica una proteína de fusión de ubiquitina-telomerasa humana de 1189 AA (Δ10Cog) correspondiente a aproximadamente 130,8 kDa de peso molecular (Figura 2A). Se suprimieron los 23 primeros aminoácidos (1-23 AA) de hTERT que fueron reemplazados por un polipéptido de ubiquitina (76 AA). En el dominio del sitio catalítico, se introdujo una deleción adicional entre los aminoácidos 919-920 (marca *; Figura 18), correspondiente a AA 867-876 (VDDFLLVTPH_ SEQ ID NO: 22) de hTERT de tipo salvaje (número de acceso NM_198253). Esta deleción de 10 aminoácidos incluye la deleción de 3 AA (ΔVDD) que da como resultado la inactivación de la actividad enzimática de hTERT y la deleción de 7 AA adicionales aguas abajo de la secuencia VDD. Catorce aminoácidos en la secuencia C-terminal de Ubi-hTERT codifican para la etiqueta epitópica V5 (Figura 2A).

pUTD23Tyn (abreviado como Δ23)

La secuencia codificante de hTERT se encuentra entre el nucleótido 923 y 4453 pb de la cadena principal del plásmido pcDNA3.1. pUTD23Tyn codifica una proteína de fusión ubiquitina-telomerasa humana de 1176 AA (Δ23) correspondiente a aproximadamente 129,4 kDa de peso molecular (Figura 2A). Se suprimieron los 23 primeros aminoácidos (1-23 AA) de hTERT que fueron reemplazados por un polipéptido de ubiquitina (76 AA). En el dominio del sitio catalítico, se introdujo una deleción adicional entre los aminoácidos 909-910 (marca *; Figura 19), correspondiente a AA 857-879 (IRRDGLLLRLVDDFLLVTPHLTH_ SEQ ID NO: 26) de hTERT de tipo salvaje (número de acceso NM_198253). Esta deleción de 23 aminoácidos incluye la deleción de 3 AA (ΔVDD) que da como resultado la inactivación de la actividad enzimática hTERT y la deleción de 10 AA adicionales aguas arriba y 10 AA aguas abajo de la secuencia VDD. Catorce aminoácidos en la secuencia C-terminal de Ubi-hTERT codifican la

etiqueta epitópica V5 (Figura 2A).

Síntesis y clonación de genes

Los genes se sintetizaron *de novo* como construcciones de fusión de ubiquitina-telomerasa a través de un procedimiento o de ensamblaje de oligonucleótidos de 40 unidades solapantes (GeneCust, Luxemburgo). La síntesis génica incluyó sitios de restricción flanqueantes únicos HindIII/XbaI para permitir la subclonación del gen en el sistema de expresión deseado. Los genes sintetizados se clonaron entre los sitios de restricción HindIII y XbaI del vector de expresión pcDNA3.1(+) (Invitrogen, Carlsbad, EE.UU.). Las secuencias de los plásmidos se verificaron mediante secuenciación utilizando cebadores PEGFP-N5' CGGTGGGAGGTCTATATAAG (SEQ ID NO: 27) y BGH CAGGGTCAAGGAAGGCAC (SEQ ID NO: 28).

10 Producción de plásmidos

5

15

20

30

35

40

45

50

Todos los derivados de INVAC-1 fueron transformados y producidos en células *E. coli* 5-alfa (fhuA2Δ (argF-lacZ) U169 phoA glnV44 Φ80 Δ (lacZ) M15 gyrA96 recA1 re1A1 endA1 thi-1 hsdR17) (Lucigen Corporation, Middleton, EE.UU., ref. 60602-2) por RD Biotech (Besançon, Francia). Se prepararon provisiones de partida concentradas de plásmido gigaprep sin endotoxina (2 mg/ml) resuspendidas en 1X PBS estéril. Los vectores se verificaron mediante mapeo de restricción (HindIII-XbaI; Figura 2B).

pTRIP-CMV-hTERT

pTRIP-CMV-hTERT codifica la proteína TERT humana (hTERT) de tipo salvaje 1132 AA (correspondiente a aproximadamente 124,5 kDa) con actividad catalítica. Este plásmido se utilizó como control positivo para ensayos *in vitro*. La construcción se describió por primera vez en la solicitud de patente WO 2007/014740. El pTRIP-CMV-hTERT se construyó subclonando primero un inserto de hTERT EcoRI-Sall derivado del plásmido pBABE-hygro-hTERT (amablemente proporcionado por el Dr. Robert Weinberg) en el vector pSP73 (Promega Life Science, Wisconsin, EE.UU.) para generar la construcción pSPhTERT. A continuación se insertó un fragmento BgIII-Sall en el vector derivado de retrovirus pTRIP-CMV cortado con BamHI y XhoI para crear pTRIP-CMV-hTERT. La expresión de hTERT es impulsada por el promotor de citomegalovirus humano (CMV).

El plásmido pTRIP-CMV-hTERT fue transformado y producido en células *E. coli* 5-alfa (fhuA2Δ (argF-lacZ) U169 phoA glnV44 Φ80 Δ (lacZ) M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17) (Lucigen Corporation, Middleton, EE.UU., ref. 60602-2) por RD Biotech (Besançon, Francia).

Se preparó una provisión de partida concentrada de plásmido gigaprep libre de endotoxina de 2 mg/ml resuspendida en 1X PBS estéril. El vector producido se verificó por digestión con enzimas de restricción (EcoRI + BamHI = bandas de 10286 + 2720 + 886 pb).

pNTC-hTERT

pNTC-hTERT codifica la proteína TERT humana de tipo salvaje 1132 AA (hTERT) con actividad catalítica (SEQ ID NO: 2). Este plásmido se utilizó para investigar la amplitud de las respuestas de células T específicas para hTERT *in vivo* en comparación con la construcción INVAC-1.

El inserto hTERT de tipo salvaje se sintetizó *de novo* con sitios de clonación HindIII-Xbal a través de un procedimiento de ensamblaje de oligonucleótidos solapantes (GenScript, EE.UU.). La construcción sintética (3417 pb) se clonó en pUC57 (2710 pb) mediante sitios HindIII y Xbal y a continuación se verificó mediante secuenciación utilizando cebadores M13/pUC (-20) y M13/pUC (-26) y mapeo de restricción (HindIII/Xbal). En consecuencia, el inserto hTERT se subclonó mediante NTC en el vector de clonación NTC8685-eRNA41H-HindIII-Xbal como se describió anteriormente (véase la construcción INVAC-1). El vector resultante pNTC-hTERT se verificó mediante digestión con enzimas de restricción (Xmal = bandas de 4375, 2041, 506, 120 pb; BamHI/XmnI = bandas de 6887, 155 pb; HindIII/Xbal = bandas de 3631, 3411 pb) y secuenciación de ADN utilizando cebadores pVAC5', pVAC3' y hTERTseq (5' GGCAAGTCCTACGTCCAGTG 3', SEQ ID NO: 44).

El plásmido pNTC-hTERT fue producido por NTC en condiciones de calidad de grado de investigación como se describió anteriormente para el plásmido INVAC-1.

pNTC-hTERT-ΔVDD

pNTC-hTERT-ΔVDD codifica la secuencia de TERT humana de 1129 AA (hTERT) modificada en el sitio catalítico mediante una deleción de 9 pb que codifica Valina - Ácido Aspártico - Ácido Aspártico (ΔVDD; 867-869 AA). Este plásmido se utilizó para investigar la amplitud de las respuestas de células T específicas para hTERT *in vivo* en comparación con la construcción INVAC-1.

La secuencia de ADN de hTERT-ΔVDD es idéntica a la hTERT de tipo salvaje, excepto por una deleción de 3 aminoácidos (ΔVDD). Se sintetizó un inserto de ADN de 167 pb que incluye el fragmento BamHI/XmnI de 152 pb de hTERT, pero con la deleción ΔVDD y sitios de restricción EcoRV adicionales *de novo* mediante GenScript. Este fragmento sintético se clonó en el vector pUC57 (2710 pb) utilizando sitios de clonación EcoRV. El gen sintetizado se

verificó mediante secuenciación utilizando cebadores M13/pUC (-20) y M13/pUC (-26) y productos de la digestión con enzimas de restricción (BamHl/Ndel). Este vector se digirió a continuación utilizando sitios BamHl/XmnI y el fragmento ΔVDD-BamHl/XmnI se clonó en la región hTERT predigerida con BamHl/XmnI del vector pNTC-hTERT (bandas de 6887, 155 pb). El vector resultante pNTC-hTERT-ΔVDD se verificó mediante digestión con enzimas de restricción (XmaI = bandas de 4375, 2032, 506, 120 pb; BamHl/XmnI = bandas de 6887, 146 pb; HindIII/XbaI = bandas de 3631, 3402 pb) y secuenciación de ADN utilizando cebadores pVAC5', pVAC3' y hTERTseq (5' GGCAAGTCCTACGTCCAGTG 3' SEQ ID NO: 44).

pNTC-hTERT-ΔVDD fue producido por NTC como se describió anteriormente para las construcciones de INVAC-1 y pNTC-hTERT.

Cultivos celulares y transfecciones transitorias para ensayos de transferencia Western y TRAP

Se cultivaron líneas celulares CrFK (riñón felino de Crandell Rees), HEK293T (riñón embrionario humano) y HeLa (adenocarcinoma cervical humano de Henrietta Lacks) en medio de Eagle modificado de Dulbecco (DMEM) con un suplemento de suero de ternera fetal inactivado por calor al 10% (PAA, Velizy-Villacoublay, Francia) y penicilina/estreptomicina al 1% (Life Technologies, Saint-Aubin, Francia).

La línea celular QT6 (fibrosarcoma japonés de codorniz) se cultivó en F10 de Ham (Eurobio, Courtaboeuf, Francia) con un suplemento de suero de ternera fetal inactivado por calor (PAA) al 10%, penicilina/estreptomicina al 1% (Life Technologies), suero de pollo al 1% (PAA), L-glutamina 10 mM (Sigma-Aldrich, St. Louis, EE.UU.), caldo de triptosa al 0,5% (Sigma-Aldrich, St. Louis, EE.UU.).

Las células se cultivaron como monocapas en matraces de 75 cm² a 37°C en una atmósfera humidificada que contenía 5% de CO₂. Las células se cultivaron hasta 70-80% de confluencia el día de la transfección. Para ensayos de transferencia Western, se sembraron 5x10⁵ células en placas de cultivo de tejidos de seis pocillos y se incubaron durante 24 h. Para los ensayos TRAP, se sembraron 7x10⁵ células en placas de cultivo de tejidos de seis pocillos y se incubaron durante 24 h.

Las construcciones de INVAC-1 y derivadas de INVAC-1 se transfectaron en células diana utilizando el reactivo de transfección de polímero catiónico jetPrime de acuerdo con las instrucciones del fabricante (Polyplus-transfection Inc., Francia). Las células transfectadas con el plásmido pTRIP-CMV-hTERT se utilizaron como control positivo y las células no transfectadas o las células transfectadas con plásmido vacío pNTC8685-eRNA41H como control negativo. Los medios de transfección se eliminaron 4 horas más tarde y se reemplazaron por 2 ml de medio de cultivo DMEM. Después del tiempo apropiado de transfección: 18-96 horas para los ensayos de transferencia Western y 24 horas para los ensayos TRAP, las células se recolectaron y analizaron para determinar la expresión y actividad de la telomerasa.

Transferencia Western

5

10

20

25

30

35

40

45

50

55

Para los análisis de transferencia Western, se lisaron células CrFK y HEK293T transfectadas sobre hielo durante 10-20 minutos en tampón RIPA (Sigma-Aldrich, St. Louis, EE.UU.) con un suplemento de cóctel inhibidor de proteasa (Roche Diagnostic, Indianápolis, EE.UU.). Los productos lisados se aclararon por centrifugación a 14.000 rpm durante 15 minutos a 4°C. Se recogieron los sobrenadantes y se midió la concentración de proteína utilizando el ensayo colorimétrico de Bradford. Las muestras de proteínas se desnaturalizaron 5 minutos a 95°C, se separaron en geles Bis-Tris al 4-12% de Nu-PAGE® Novex (Invitrogen, Carlsbad, EE.UU.) y se electrotransfirieron sobre membranas de PVDF (pila de transferencia iBlot®, Invitrogen, Carlsbad, EE.UÚ.) utilizando el dispositivo iBlot® (Invitrogen, Carlsbad, EE.UU.). Para determinar el peso molecular se utilizaron Protein Ladder Novex® Sharp Prestained Ladder (Invitrogen, Carlsbad, EE.UU.). Las membranas se cortaron aproximadamente a 60 kDa y se bloquearon con 1X PBS, Tween®20 al 0,05%, leche al 3%. La parte superior de la membrana se sondeó con un anticuerpo monoclonal de conejo anti-hTERT (Abcam, Cambridge, Reino Unido) diluido a 1/2000 en tampón de bloqueo o un anticuerpo monoclonal de ratón anti-V5 (Invitrogen, Carlsbad, EE.UU.) diluido a 1/5000. La parte inferior de la membrana se sondeó con un anticuerpo monoclonal de ratón anti-β-actina (Sigma Aldrich SARL, Saint-Quentin Fallavier, Francia) diluido a 1/5000. Finalmente, las proteínas relevantes se visualizaron mediante tinción con el anticuerpo conjugado con peroxidasa de rábano picante (HRP) secundario apropiado durante 1 hora a temperatura ambiente - anti-anticuerpo de ratón ligado a HRP (GE Healthcare, Vélizy, Francia) diluido a 1/5000 o anti-anticuerpo de conejo ligado a HRP (Cell Signaling, Danvers, EE.UU.) diluido a 1/1000 en tampón de bloqueo. Las señales de inmunotransferencia se detectaron mediante un ensayo de quimioluminiscencia mejorado utilizando el kit de reactivo de sustrato quimioluminiscente HRP ECL. Las películas y el casete correspondiente se adquirieron a GE Healthcare (Buckinghamshire, Reino Unido).

Ensayo TRAP

La actividad de la telomerasa se evaluó mediante el enfoque del Protocolo de Amplificación de Repetición Telomérica (TRAP) (Kim et al. 1994) utilizando el kit TeloTAGGG Telomerase PCR ELISAPLUS (Roche Diagnostic GmbH Mannheim, Alemania) de acuerdo con las instrucciones del fabricante. Veinticuatro horas después de la transfección como se describió anteriormente, se cosecharon células CrFK. Las células se lavaron con 1X PBS, seguido de centrifugación a 1.600 rpm durante 5 minutos a 4°C. Las células se resuspendieron en 0,2 ml de tampón

de lisis y se incubaron sobre hielo durante 30 minutos. Los productos lisados se aclararon por centrifugación a 14.000 rpm, 20 min a 4-8°C. Se recogieron los sobrenadantes y se midió la concentración de proteína utilizando el ensayo colorimétrico de Bradford. Los sobrenadantes se utilizaron para la elongación mediada por telomerasa de secuencias teloméricas y los productos se amplificaron por PCR utilizando cebadores biotinilados. Cada sobrenadante celular se dividió previamente en dos partes alícuotas antes de realizar el ensayo: una se utilizó para preparar un control negativo por inactivación por calor de la telomerasa durante 10 minutos a 85°C, la otra se utilizó para evaluar la elongación mediada por telomerasa de secuencias teloméricas. Además, se amplificó simultáneamente un patrón interno de 216 pb de longitud, presente en la mezcla de reacción, para excluir resultados falsos negativos debido a los inhibidores de la ADN-polimerasa Taq que pudieran estar presentes en los lisados. Se utilizó tampón de lisis como control negativo. Todas las mezclas de reacción se incubaron 20 minutos a 25°C y a continuación 5 minutos a 94°C. Los productos de telomerasa se amplificaron en 30 ciclos de PCR: 94°C durante 30 segundos, 50°C durante 30 segundos, 72°C durante 90 segundos, terminaron en 1 ciclo a 72°C durante 10 minutos y se mantuvieron a 4°C.

Se incubaron 2,5 µL de productos de amplificación por PCR durante 10 minutos a rt con el reactivo de desnaturalización proporcionado en el kit. Después de la incubación, se añadieron 100 µL de tampón de hibridación por pocillo. Cada solución se mezcló y se transfirieron 100 µL a una microplaca previamente recubierta con estreptavidina y se incubaron durante 2 horas a 37°C con agitación suave (300 rpm). A continuación, los pocillos se lavaron con un tampón de lavado y se incubaron con un anticuerpo ligado a peroxidasa de rábano picante (HRP) anti-digoxigenina (1/50) durante 30 minutos a rt. El sustrato de HRP (TMB) se añadió a continuación durante 15 minutos a temperatura ambiente para la medición colorimétrica. La reacción se detuvo con el reactivo de parada de ELISA.

El nivel de actividad de telomerasa en cada muestra se determinó comparando la señal de la muestra con la señal obtenida utilizando una cantidad conocida de molde de control positivo (ADN molde con la misma secuencia que un producto de telomerasa con ocho repeticiones teloméricas). Los valores de absorbancia fueron referidos mediante la lectura de A₄₅₀ frente a blanco (longitud de onda de referencia A₆₉₀ nm). La actividad relativa de la telomerasa (RTA) se obtuvo utilizando la siguiente fórmula:

 $RTA = [(A_S-A_{S0})]/A_{S,IS}]/[(A_{TS8}-A_{TS8,0})/A_{TS8,IS}] \times 100$

dónde:

5

10

15

20

25

35

40

45

50

55

As es la absorbancia de la muestra,

Aso, absorbancia de la muestra tratada térmicamente,

As,is, absorbancia del patrón interno (IS) de la muestra,

ATS8, absorbancia del molde de control (TS8),

A_{TS8,0}, absorbancia del tampón de lisis,

ATS8,IS, absorbancia del patrón interno (IS) del molde de control (TS8).

Inmunofluorescencia

Se sembraron células CrFK, HEK293T, HeLa y QT6 en portaobjetos de cámara Lab-Tek® de 8 pocillos (Sigma-Aldrich, St. Louis, EE.UU.) a 2x10⁴ células/pocillo en 200 μL de medio de cultivo y se incubaron durante la noche a 37°C, 5% de CO2. Al día siguiente, se desechó el medio de cultivo y se añadieron 200 µl de medio de nueva aportación. Se añadieron 10 μL de una solución de mezcla que contenía 0,2 μg de INVAC-1, pTRIP-CMV-hTERT o el plásmido de control vacío pNTC8685-eRNA41H y 0.5 µL de Fugene HD (Promega France, Charbonnières-lesbains, France) en OptiMEM (Life Technologies, Saint-Aubin, Francia) a la cámara correspondiente. Se utilizaron 2x10⁴ células no tratadas por cámara como control negativo. Los portaobjetos de cámara se incubaron durante 24 y 48 horas a 37°C, 5% de CO₂. Las células transfectadas se lavaron cuidadosamente con 1X PBS y se añadieron 200 μL de PFA al 2% a cada pocillo durante 10 minutos a 4°C para fijar y permeabilizar las células. A continuación, los pocillos se lavaron dos veces con 1X PBS con Tween®20 al 0,05% y se incubaron durante 30 minutos a temperatura ambiente con 200 µL de solución de bloqueo (Triton X100 al 0,5%; Sigma-Aldrich, BSA al 3%; Sigma-Aldrich, suero de cabra al 10%; Invitrogen, en 1X PBS con Tween®20 al 0,05%). El anticuerpo monoclonal de conejo anti-hTERT primario (Abcam, Cambridge, Reino Unido) diluido a 1/100 en tampón de bloqueo se aplicó sobre las células durante 1.5 horas a temperatura ambiente bajo agitación. Después de tres lavados en 1X PBS con Tween®20 al 0,05%, se aplicó un anticuerpo secundario de cabra anti-conejo-Alexa Fluor 488® (Life Technologies, Saint-Aubin, Francia) diluido en solución de bloqueo (1/500) durante 45 minutos a temperatura ambiente bajo agitación. Los pocillos se lavaron tres veces con 1X PBS con Tween®20 al 0,05% y se montaron en medio de montaje VECTASHIELD® que contenía DAPI (Vector Laboratories, Cambridgeshire, Reino Unido). Los cubreobjetos se analizaron bajo un microscopio de fluorescencia (Axio Observer Z1, Carl Zeiss Microlmaging GmbH, Jena, Alemania) equipado con un sistema de procesamiento y análisis de imágenes (Axiovision, Carl Zeiss Microlmaging GmbH, Jena, Alemania).

Ratones

10

15

20

25

30

Se adquirieron ratones hembra C57BL/6 (6-8 semanas de edad) de los laboratorios Janvier (Saint-Berthevin, Francia).

Se utilizaron dos cepas de ratones transgénicos: HLA-B*0702 y HLA-A2/DR1.

5 Los ratones transgénicos para HLA-B*0702 expresan los dominios α1-α2 de HLA-B*0702 humano de la molécula y el dominio α3 murino de la molécula H2D. Estos ratones no expresan las moléculas H2-D^b y H2-K^b (Rohrlich et al., 2003).

Los ratones transgénicos para HLA-A2/DR1 expresan los dominios α1-α2 de HLA-A*0201 humano, el dominio α3 murino de la molécula H2D y la β2-microglobulina humana. Por otra parte, estos ratones transgénicos expresan las moléculas HLA-DRB1*0101 y HLA-DRA*0101 humanas. Estos tienen los genes H2-D^b, H2-K^b e IA^b murinos inactivados (Pajot et al., 2004).

Ambas cepas de ratones transgénicos se utilizaron entre las 6 y las 10 semanas de edad y fueron suministradas por el Instituto Pasteur de París. Los animales fueron alojados en la instalación de animales libres de patógenos específicos del Instituto Pasteur (Animal Facilities Lwoff núm. 22, número de acuerdo B 75 15-07). Antes de las inmunizaciones intradérmicas (ID), intramusculares (IM) o subcutáneas (SC) o la inyección intravenosa (IV), los ratones se anestesiaron con una solución mixta de xilacina al 2% (Rompun, Bayer Santé, Loos, Francia) y ketamina al 8% (Imalgen 1000, Merial, Lyon, Francia) en 1X solución salina tamponada con fosfato (1X PBS, Life Technologies, Saint-Aubin, Francia) a través de la ruta intraperitoneal (IP) según el peso individual del animal y la duración de la anestesia. Todos los animales fueron manejados en estricta conformidad con la buena práctica animal y cumplieron con la experimentación local con animales (Directiva 2010/63/UE).

Péptidos hTERT

Los péptidos de hTERT restringidos a HLA-B*0702, HLA-A*0201 o HLA-DR se describieron previamente (véanse las referencias en la Tabla 1). Los péptidos de hTERT restringidos a H2-Db y H2-Kb fueron determinados mediante predicción de epítopos *in silico* para unir moléculas de MHC de clase I de ratón utilizando cuatro algoritmos disponibles en línea: Syfpeithi (http://www.syfpeithi.de/), Bimas (http://www-bimas.cit.nih.gov/), NetMHCpan y SMM (http://tools.immuneepitope.org/main/). Todos los péptidos sintéticos se adquirieron liofilizados (>90% de pureza) de Proimmune (Oxford, Reino Unido). Los péptidos liofilizados se disolvieron en agua estéril a 2 mg/ml y se almacenaron a -20°C antes de su uso. Los detalles de las secuencias peptídicas y la restricción de MHC se muestran en la Tabla 1.

Tabla 1: péptidos de hTERT y restricción de MHC

Código de péptido (referencia)	Secuencia	Restricción de MHC	Cepa de Ratón			
277	RPAEEATSL (SEQ ID NO: 30)					
(Adotevi et al., 2006)	THE NEED TO LOCATE THE COST					
351	DDCLTCADDL (CFO ID NO. 20)	_	HLA-B7 transgénica			
(Adotevi et al., 2006)	RPSLTGARRL (SEQ ID NO: 29)	HLA-B*0702				
1123		_				
(Cortez-Gonzalez et al., 2006)	LPSDFKTIL (SEQ ID NO: 31)					
540	ILAKFLHWL (SEQ ID NO: 32)					
(Firat et al., 2002)	ILAN LITURE (OLG ID NO. 02)	HLA-A*0201	HLA-A2/DR1			
Y572	YLFFYRKSV (SEQ ID NO: 33)	11LA-A 0201	transgénica			
(Firat et al., 2002)	TELL TIMOV (OEQ ID NO. 33)					

Código de péptido (referencia)	Secuencia	Restricción de MHC	Cepa de Ratón
Y988	YLQVNSLQTV (SEQ ID NO: 34)		
(Firat et al., 2002)	TEQVINOLQTV (OLQ ID NO. 54)		
UCP2.1	01/14/01/1 001 (050 10 110 05)		_
(Dosset et al., 2012)	SVWSKLQSI (SEQ ID NO: 35)	HLA-A*0201	
UCP4.1			-
(Dosset et al., 2012)	SLCYSILKA (SEC ID NO: 36)	HLA-A*0201	
UCP2	KSVWSKLQSIGIRQH (SEQ ID NO:		
(Godet et al., 2012)	37)		
UCP3	GTAFVQMPAHGLFPW (SEQ ID NO:	HLA-DR	HLA-A2/DR1
(Godet et al., 2012)	38)	INLA-DIN	transgénica
UCP4	CLOVOU KAKNAOMO (OFO ID NO. 20)	-	
(Godet et al., 2012)	SLCYSILKAKNAGMS (SEC ID NO: 39)		
429	RPIVNMDYV (SEC ID NO: 40)	H2D ^b	C57/BL6J
660	HAQCPYGVL (SEQ ID NO: 41)	H2K ^b	C57/B16J
1034	QAYRFHACVL (SEQ ID NO: 42)	H2K ^b	C57/B16J
1021	QTVCTINIYKI (SEC ID NO: 43)	H2D ^b	C57/B16J

Biblioteca de péptidos de hTERT

Los péptidos de hTERT liofilizados (pureza >70%) se adquirieron de GenScript (EE.UU.). Este conjunto está compuesto por 269 péptidos de 15 AA con solapamiento de 11 AA y recuperación de la secuencia proteica completa de hTERT de INVAC-1. Cada péptido se resuspendió en agua destilada a 2 mg/ml antes de su uso de acuerdo con las recomendaciones del proveedor y se mantuvo congelado a -20°C antes de su uso. Se utilizaron veintisiete reservas de 9-10 péptidos solapantes de hTERT (Tabla 2) para escrutar la amplitud de la respuesta de células T específicas para hTERT en un ensayo ELISPOT con IFNy.

Tabla 2: Reservas de péptidos solapantes de hTERT

01	D3	no.	l na	ne	ne l	07	no.	no	D10	D4.1	013	D12	014	lose	nic	D17	010	D10	P20	D21	กาา	022	P24	DAC	P26	027
	P2	Lo	14	ro	10	177	l Lo	79	LIU	L11	L17	LTO	1 - 14	LTO	L10	LTA	L19	113	PZU	LZI	722	PZ3	F24	rza	P20	721
1	11	21	31	41	51	61	71	81	91	101	111	121	131	141	151	161	171	181	191	201	211	221	231	241	251	261
2	12	22	32	42	52	62	72	82	92	102	112	122	132	142	152	162	172	182	192	202	212	222	232	242	252	262
3	13	23	33	43	53	63	73	83	93	103	113	123	133	143	153	163	173	183	193	203	213	223	233	243	253	263
4	14	24	34	44	54	64	74	84	94	104	114	124	134	144	154	164	174	184	194	204	214	224	234	244	254	264
5	15	25	35	45	55	65	75	85	95	105	115	125	135	145	155	165	175	185	195	205	215	225	235	245	255	265
6	16	26	36	46	56	66	76	86	96	106	116	126	136	146	156	166	176	186	196	206	216	226	236	2.46	256	266
7	17	27	37	47	57	67	77	87	97	107	117	127	137	147	157	167	177	187	197	207	217	227	237	247	257	267
8	18	28	38	48	58	68	78	88	98	108	118	128	138	148	158	168	178	188	198	208	218	228	238	248	258	268
9	19	29	39	49	59	69	79	89	99	109	119	129	139	149	159	169	179	189	199	209	219	229	239	249	259	269
10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	190	200	210	220	230	240	250	260	

5

Línea celular tumoral

5

10

15

20

25

30

35

40

La línea celular tumoral Sarc-2 utilizada para evaluar el efecto antitumoral mediado por INVAC-1 se obtuvo de un fibrosarcoma espontáneo de un ratón HLA-A2/DR3. La masa tumoral se disoció en condiciones estériles y se generó una suspensión celular primaria. Se demostró que la línea celular expresaba la molécula HLA-A*0201. Las células se cultivaron en medio RPMI glutamax (Life Technologies) con un suplemento de FBS al 10% (Life Technologies) y penicilina/estreptomicina al 1%.

Inmunización de ratón y procedimiento de electroporación in vivo

La inmunización intradérmica (ID) se realizó en la parte inferior del flanco del ratón con jeringas de insulina y agujas específicas (U-100, 29GX1/2"-0,33x12 mm, Terumo, Bélgica) después del afeitado. No se observó eritema después del afeitado, durante y después de los procedimientos de inmunización. Se realizó inmunización intramuscular (IM) en el músculo *tibialis cranealis* anterior, utilizando también jeringas de insulina y agujas específicas U-100. La inmunización subcutánea (SC) se realizó en la base de la cola, también con jeringas de insulina y agujas específicas U-100. Cada animal recibió una inyección de plásmido de cebado IM, ID o SC (INVAC-1, NTC, pUTD10Not, pUTD10Cog o pUTD23Tyn) correspondiente a 12,5, 25, 50, 100, 200, 400, 800 o 1200 µg de ADN o 1X PBS, dependiendo del experimento. Según el régimen de vacunación, los ratones podrían recibir una segunda o tercera inyección similar de ADN o 1X PBS.

La electroporación de ADN *in vivo* se realizó utilizando el sistema y el soporte lógico de electroporación CLINIPORATOR® 2 (IGEA, Italia) equipado con electrodos de placa (P-30-8G, IGEA). Inmediatamente después de la vacunación ID o SC, se realizó un pliegue de la piel en el sitio de inyección, completamente cubierto con gel conductor (Labo FH, gel de contacto azul, NM Médical, Francia) y se colocó entre los electrodos de la placa. Se aplicaron dos pulsos de diferentes voltajes (HV-LV): HV: 1250 V/cm, 1 Hz, 100 μs; 1 pulso, 1000 ms de descanso; LV: 180 V/cm, 1 Hz, 400 ms, 1 pulso. Directamente después de la inyección IM, cada músculo se cubrió por completo con gel conductor y se colocó entre los electrodos de la placa. Se aplicaron dos pulsos de diferentes voltajes (HV-LV): HV: 750 V/cm, 1 Hz, 100 μs; 1 pulso, 1000 ms de descanso; LV: 100 V/cm, 1 Hz, 400 ms, 1 pulso.

En ciertos experimentos, 18 horas antes de la vacunación de ADN o concomitantemente a la administración de INVAC-1, se inyectaron a los ratones ID 0,5 μg de GM-CSF murino o 1 ng de IL-12 murina en un volumen final de 25 μl/flanco. Ambas citocinas se adquirieron compraron de Miltenyi (Alemania).

Ensayo ELispot

Se tomaron bazos de ratones inmunizados y se machacaron, y las suspensiones celulares se filtraron a través de una malla de nailon de 70 mm (Cell Strainer, BD Biosciences, Francia) para aislar los esplenocitos. La sangre de ratones inmunizados se recogió mediante punción retroorbital bajo anestesia para aislar células sanguíneas mononucleares periféricas (PBMC). Los esplenocitos o PBMC se purificaron utilizando Ficoll (medio de separación de linfocitos, Eurobio, Francia). Los linfocitos purificados con Ficoll de sangre o bazo se numeraron utilizando el contador Cellometer® Auto T4 Plus (Ozyme, Francia).

Las microplacas de PVDF ELIspot (kit IFNγ Elispot, Diaclone, Abcyss, Francia, ref. 862.031.010P) se recubrieron durante la noche con anticuerpo de captura (anti-IFN-γ de ratón) y se bloquearon con 1X PBS-leche al 2%. Se añadieron suspensiones celulares a las placas por triplicado a 2 x 10⁵ células/pocillo y se estimularon con 5 μg/ml de péptidos derivados de hTERT restringidos para HLA o H2 con medio de cultivo sin suero o con PMA-ionomicina (respectivamente 0,1 μM y 1 μM). Después de 19 horas, se revelaron manchas con el anticuerpo de detección conjugado con biotina seguido de estreptavidina-AP y solución de sustrato BCIP/NBT. Las manchas se contaron utilizando el contador y el soporte lógico Immunospot ELIspot (CTL, Alemania). Cuando se analizan los datos de ELIspot, un animal vacunado se considera un respondedor si la frecuencia de las manchas, correspondiente a las células T CD8 o CD4 específicas para hTERT, es superior al valor de corte de 10 manchas.

Ensayo de citotoxicidad in vivo

Para la preparación de las células diana, los esplenocitos de ratones HLA-B7 no sometidos a tratamiento previo se marcaron con una solución de PBS 1X que contenía concentraciones altas (5 μM), medias (1 μM) o bajas (0,2 μM) de CFSE (kit trazador de células CFDA-SE Vybrant); Life Technologies, Saint-Aubin, Francia). Los esplenocitos no sometidos a tratamiento previo marcados con CFSE 5 y 1 μM se pulsaron respectivamente con 2 péptidos HLA-B7 diferentes, 1123 y 351 a 5 μg/ml durante 1,5 horas a temperatura ambiente. Los esplenocitos de baja marca de CFSE se dejaron sin pulsar. Cada ratón previamente vacunado con INVAC-1 o 1X PBS recibió, el día 14 después del cebado o el día 10 después de la inyección de refuerzo, 10⁷ células marcadas con CFSE de una mezcla que contenía un número igual de células de cada fracción a través de la vena retroorbital. Después de 15-18 horas, las suspensiones unicelulares de bazos se analizaron por citometría de flujo utilizando el citómetro de flujo MACSQUANT® (Miltenyi, Alemania).

La desaparición de las células pulsadas con péptidos se determinó comparando la proporción de poblaciones pulsadas (intensidad de fluorescencia de CFSE alta/media) con las no pulsadas (intensidad de fluorescencia de CFSE baja) en ratones inmunizados con INVAC-1 frente ratones de control (1X PBS). El porcentaje de destrucción

específica por animal de prueba se estableció de acuerdo con la siguiente fórmula:

 $[1-[media\ (CFSE^{baja}PBS/CFSE^{alta/media}PBS)/(CFSE^{baja}pDNA/CFSE^{alta/media}pDNA)]]\ X\ 100.$

Ensayo de unión a citocinas (CBA)

Se cultivaron 24 h a 37°C esplenocitos (6x10⁵ células) de ratones HLA-A2/DR1 vacunados con péptidos derivados de hTERT restringidos para HLA-DR (578, 904 y 1029) a 5 μg/ml. Los sobrenadantes del cultivo de citocinas se recuperaron y se mantuvieron congelados a -20°C hasta la prueba. Se utilizó un kit comercialmente disponible, el kit Cytometric Beads Array para Th1/Th2/Th17 de ratón (CBA, BD biosciences) para cuantificar, respectivamente, la concentración de IL-2, IFNγ, TNFα, IL-4, IL-6, IL-17a e IL-10. El inmunoensayo CBA se realizó de acuerdo con las instrucciones del fabricante. La adquisición de citometría de flujo se realizó utilizando el citómetro de flujo FACScan LSRII (BD Biosciences); los análisis se realizaron con el soporte lógico FCAP Array TM versión 3.0 (BD Biosciences).

Efecto antitumoral in vivo

5

10

15

20

25

35

40

45

50

Para los experimentos de vacunación terapéutica, a ratones HLA-A2/DR1 de 24 semanas se les injertaron subcutáneamente 2·10⁴ células Sarc-2 en el flanco abdominal derecho. A continuación, los animales se inmunizaron con vacunas de ADN *vía* ruta ID seguido de electroporación como se describió anteriormente los días 4, 21 y 35 después del injerto. Cada 2 a 3 días, se realizó el seguimiento del crecimiento tumoral utilizando un calibre. El peso del ratón también se controló cada 2 a 3 días. Los ratones se sacrificaron cuando los tumores alcanzaron los 2000 mm³. Se siguieron las pautas para el bienestar y el uso de animales en la investigación del cáncer, especialmente para el seguimiento de los signos clínicos que requerían una intervención inmediata (Workman *et al.* 2010, BJC). El volumen tumoral se calculó utilizando la siguiente fórmula: (L*1²)/2. Los resultados se expresan en mm³ (L = longitud; I = anchura).

Para la vacunación profiláctica, los ratones HLA-A2/DR1 de 5-10 semanas de edad se vacunaron dos veces (días 0 y 21) como se describió anteriormente. Treinta y dos días después de la última inmunización, a los animales se les injertaron subcutáneamente 5·10⁴ células Sarc-2. Se realizó el seguimiento del peso de los ratones y el crecimiento tumoral cada 2 a 3 días como se describió anteriormente. Los ratones se sacrificaron cuando los tumores alcanzaron los 2000 mm³.

El criterio de retraso del crecimiento tumoral (TGD) se utilizó para evaluar la eficacia de la vacuna. Este compara el tiempo para alcanzar un volumen tumoral definido (500 mm³) en grupos de control y tratados.

Análisis estadístico y manejo de datos.

30 El soporte lógico Prism-5 se utilizó para el manejo de datos, el análisis y las representaciones gráficas. Los datos se representan como la media ± desviación típica o como la mediana. Los análisis estadísticos de los ensayos ELISpot se realizaron utilizando un análisis no paramétrico de Mann Whitney y/o Kruskal-Wallis con la prueba de comparación múltiple de Dunn. La significación se estableció en el valor p <0,05.

Resultados

Caracterización y análisis de secuencia del ADN plasmídico de INVAC-1

El transgén Ubi-hTERT se insertó con éxito en pNTC8685-eRNA41H-HindIII-Xbal como se muestra mediante mapeo de restricción utilizando diversas endonucleasas de restricción (Figuras 1A y 1B). El vector resultante pNTC8685-eRNA41H-HindIII-Xbal-Ubi-hTERT (INVAC-1) también fue secuenciado parcialmente en las uniones utilizando cebadores pVAC5' y pVAC3'. Las secuencias confirmaron que el procedimiento de clonación se había logrado satisfactoriamente.

La secuenciación completa del plásmido INVAC-1 se realizó en el material plasmídico de Master Cell Bank (SEQ ID NO: 11 y Figura 16). El resultado coincidió con la secuencia esperada, excepto para una base. De hecho, esta secuenciación completa identificó una mutación silenciosa (G6064C; glicina GGG a glicina GGC) en comparación con el gen de la telomerasa humana archivado en las bases de datos (número de acceso NM_198253). Esta mutación silenciosa podría considerarse como una firma adicional de INVAC-1 ya que este cambio de base destruye un sitio único BamHI (GGATCC a GCATCC) presente en el gen de la telomerasa de tipo salvaje.

Caracterización y análisis de secuencia de construcciones derivadas de INVAC-1

Se sintetizaron y clonaron tres plásmidos de ADN derivado de INVAC-1 que expresaban diferentes proteínas de fusión Ubi-hTERT (Figura 2A). Todos los transgenes de Ubi-hTERT se ligaron con éxito en el vector de expresión pcDNA3.1(+) de Invitrogen como se muestra por digestión HindIII y XbaI y electroforesis (Figura 2B). Los insertos y las uniones se secuenciaron utilizando cebadores PEGFP-N5' y BGH que coinciden con la secuencia del vector que flanquea el inserto de ADN. Los resultados de la secuencia confirmaron que los transgenes se habían clonado correctamente (SEQ ID NO: 13, 15, 17 y Figuras 17 a 19).

INVAC-1 y las proteínas derivadas de INVAC-1 se expresan correctamente *in vitro* y son degradadas por la ruta del proteasoma

Se realizó un ensayo de transferencia Western para proporcionar información sobre la expresión global de hTERT de tipo salvaje, INVAC-1 y proteínas derivadas de INVAC-1 después de 18 h a 96 h de transfección transitoria *in vitro* en líneas celulares HEK293T y CrFK. Las bandas de la proteína hTERT de tipo salvaje correspondieron al tamaño de la hTERT no modificada a 124,5 kDa (Figuras 3A y 3B, parte izquierda de la Figura). La expresión de la proteína hTERT de tipo salvaje pareció ser estable a lo largo del tiempo, especialmente en las células HEK293T. Por el contrario, INVAC-1 (Figuras 3A y 3B, parte derecha de la Figura y Figura 3C, parte superior de la Figura) y proteínas derivadas de INVAC-1 (Figura 3C, parte inferior de la Figura) se degradaron rápidamente con el tiempo.

5

10

15

20

25

30

35

40

45

50

55

A diferencia de la hTERT de tipo salvaje (pTRIP-CMV-hTERT), la construcción INVAC-1 produjo dos bandas distintas: una banda superior débil que correspondía a la proteína de fusión Ubi-hTERT en el tamaño previsto de 127,4 kDa y una banda inferior que correspondía a la proteína hTERT codificada por INVAC-1 que carecía del polipéptido ubiquitina (119 kDa). Estas dos formas de proteína hTERT codificada por INVAC-1 se detectaron en ambas líneas celulares, HEK293T y CrFK (Figuras 3A y 3B). Se observó el mismo patrón para las construcciones derivadas de INVAC-1, Δ10Not, Δ10Cog y Δ23 (Figura 3C). En conjunto, la expresión más débil de INVAC-1 y las proteínas derivadas de INVAC-1 en comparación con la hTERT de tipo salvaje, sus patrones de expresión y su cinética de desaparición con el tiempo sugieren que estas proteínas se degradaban rápidamente por la ruta del proteasoma dependiente de ubiquitina de acuerdo con el modelo propuesto para la degradación de las proteínas de fusión de ubiquitina (Bachmair, 1986). La rápida aparición de la banda de INVAC-1 de 119 kDa indica que la mayoría de la proteína fue escindida co-traduccionalmente o casi por proteasas de procesamiento específicas de ubiquitina en la unión Ubi-hTERT. En consecuencia, la proteína entró en una ruta de degradación rápida dependiente del proteasoma de acuerdo con la llamada regla del extremo N para la degradación de proteínas (Tasaki, 2012; Varshavsky, 1996).

Estos resultados validan el patrón de expresión *in vitro* y la identidad de las proteínas de fusión Ubi-hTERT codificadas por INVAC-1 y derivados de INVAC-1. El polipéptido de ubiquitina fusionado con las proteínas derivadas de hTERT desempeñó su papel al mejorar la degradación de las proteínas de acuerdo con la regla del extremo N. De acuerdo con esta regla del extremo N, la hTERT se convirtió en una proteína inestable rápidamente degradada por el sistema del proteasoma implicado en la producción de péptidos para la presentación de antígenos por moléculas de clase I del complejo mayor de histocompatibilidad (MHC) (Cadima-Couto, 2009; Michalek et al, 1993). Por lo tanto, estos datos indican que las construcciones de fusión Ubi-hTERT que experimentan una mejora de la degradación en células de cultivo de tejidos de mamíferos, también podrían degradarse rápidamente *in vivo* y podrían inducir eficazmente respuestas de células T CD8+ más altas que hTERT de tipo salvaje.

La proteína INVAC-1 tiene una distribución citoplasmática predominante y un patrón de exclusión nucleolar.

Con la idea de deslocalizar la proteína hTERT derivada de INVAC-1 para mejorar su degradación, se eliminó la señal de localización nucleolar (porción N-terminal de hTERT). Por lo tanto, la localización celular de hTERT codificada por INVAC-1 se evaluó mediante análisis de inmunofluorescencia después de la transfección en líneas celulares CrFK, HEK293, HeLa, QT6 (Figura 4).

Se demostró que la hTERT de tipo salvaje (pTRIP-CMV-hTERT) se localizaba predominantemente en el núcleo y el nucleolo en las células HEK293T transfectadas a las 24 h (Figura 4A). En contraste, la proteína INVAC-1 se distribuyó entre el núcleo y el citoplasma con, ante todo, un patrón claro de exclusión nucleolar (Figura 4A). La transfección transitoria de los plásmidos hTERT de tipo salvaje (pTRIP-CMV-hTERT) e INVAC-1 en células HeLa mostró patrones de localización similares a las 24 y 48 horas de la transfección para ambas proteínas (Figura 4B).

La débil señal de fluorescencia anti-hTERT que se pudo observar en las células HEK293T y HeLa después de la transfección del vector con cadena principal vacía pNTC8685-eRNA41H probablemente se debió a la reactividad cruzada con hTERT endógena

Para superar el fondo de fluorescencia no específico debido a la expresión de la proteína hTERT endógena, se utilizaron líneas celulares no humanas, fibrosarcoma de codorniz QT6 y células de riñón felino CrFK para la inmunotinción. No se observó señal de fondo en ambas líneas celulares después de la transfección transitoria con el vector de cadena principal vacía pNTC8685-eRNA41H (Figuras 4C y D). Como se esperaba, la proteína hTERT de tipo salvaje exógena (pTRIP-CMV-hTERT) se detectó principalmente en el núcleo y el nucleolo de ambas líneas celulares (Figuras 4C y D). La proteína INVAC-1, como ya se observó en las células HEK293T y HeLa, tenía una distribución nuclear y citoplasmática en las células CrFK a las 24 h (Figura 4D). Curiosamente, la expresión de INVAC-1 en células QT6 a las 24 y 48 h solo fue citoplasmática, lo que sugiere que la eliminación de la señal de localización nucleolar alteró drásticamente la distribución de la proteína en esta línea celular.

Tomados en conjunto, estos resultados mostraron que la proteína hTERT derivada de INVAC-1 tiene una distribución subcelular modificada en comparación con la hTERT de tipo salvaje en diferentes líneas celulares. Esta alteración puede ser una ventaja para mejorar la degradación proteasómica de la proteína a péptidos para la presentación de MHC de clase I para generar respuestas inmunitarias celulares específicas (Andersson y Barry,

2004).

5

15

25

30

35

40

45

50

La transfección de células QT6 y CrFK (sin antecedentes de hTERT no específicos) con derivados de INVAC-1 (pUTD10Not, pUTD10Cog y pUTD23Tyn) confirmó un patrón de exclusión nucleolar de estas proteínas derivadas de hTERT (datos no mostrados). Su distribución subcelular fue principalmente citoplasmática en comparación con la hTERT de tipo salvaje.

INVAC-1 y los derivados de INVAC-1 no tienen actividad enzimática

La telomerasa humana juega un papel crítico en el crecimiento tumoral al participar en la inmortalización y prevenir la senescencia de las células tumorales. Por lo tanto, el uso de la telomerasa de tipo salvaje como producto de vacuna puede generar problemas de seguridad.

Se realizó un ensayo TRAP para evaluar la actividad de la telomerasa de las construcciones Ubi-hTERT en la línea celular CrFK negativa para telomerasa. La actividad de la telomerasa solo se detectó en células CrFK transfectadas con hTERT de tipo salvaje utilizando el plásmido pTRIP-CMV-hTERT. No se detectó actividad telomerasa en células CrFK transfectadas con INVAC-1 o derivados de INVAC-1 (Figura 5).

Como se muestra en las Figuras 5A y 5C, los datos de absorbancia sin procesar demostraron que el nivel de actividad telomerasa de INVAC-1 y derivados de INVAC-1 es comparable al nivel de células no tratadas.

Los datos de la actividad telomerasa relativa (RTA) (Figuras 5B y 5D) que representan resultados completamente analizados teniendo en cuenta la especificidad del ensayo mediante el uso de varios controles negativos, incluidas muestras inactivadas por calor, muestran que INVAC-1 y los derivados de INVAC-1 están completamente desprovistos de cualquier actividad de telomerasa.

Todas las muestras tratadas con el control de patrón de amplificación interno (IS) fueron altamente positivas confirmando la ausencia de inhibidores de ADN polimerasa Taq en muestras de producto lisado de CrFK y, por lo tanto, enfatizando nuevamente la especificidad del ensayo.

En conclusión, estos resultados confirmaron que INVAC-1 y los derivados de INVAC-1 no tienen actividad enzimática. Por lo tanto, con respecto a la actividad telomerasa, no existe ningún problema de seguridad para la utilización de INVAC-1 en seres humanos.

La electroporación es ventajosa para inducir niveles significativos de células T CD8 específicas para hTERT que secretan interferón-y después de la administración ID de INVAC-1

La intensidad de las respuestas de células T CD8 específicas para hTERT se evaluó en ratones C57BL/6 previamente inmunizados con INVAC-1 a través de la vía intradérmica seguida o no de electroporación cutánea (Figura 6). Catorce días después de la inyección, se recogieron los bazos de los ratones y se realizó un seguimiento de las respuestas inmunitarias inducidas a través de un ensayo ELISPOT para IFN-γ utilizando péptidos de hTERT restringidos a H2. Una diferencia significativa en la frecuencia de las células T CD8 IFNγ+ se observó entre el grupo de ratones que recibieron una electroporación después de la inyección ID de INVAC-1 y el grupo que no lo hizo (p< 0,05). Por lo tanto, estos resultados sugieren que la electroporación es ventajosa para inducir niveles significativos de respuestas de células T CD8 específicas para hTERT después de la vacunación ID con INVAC-1.

La vacunación con INVAC-1 a través de diferentes vías de administración seguidas de electroporación induce células T CD8 específico de hTERT que secretan interferón γ. La ruta de vacunación ID parece ser la mejor vía

Las vacunas convencionales se administran comúnmente a través de la vía SC o IM. Sin embargo, la vía intradérmica de inmunización ahora está recuperando interés en el campo de la vacunación (Combadiere y Liard, 2011). En consecuencia, la vía ID se probó para la administración de INVAC-1 y se comparó con las vías SC e IM convencionales.

En un primer conjunto de experimentos, se inmunizaron diferentes grupos de ratones transgénicos para HLA-B7 con INVAC-1 a través de la vía ID o SC seguido inmediatamente de electroporación (Figura 7A). Catorce días después de la vacunación/electroporación, se recogieron los bazos de los ratones y se realizó un seguimiento de la respuesta inmunitaria inducida en el bazo a través de un ensayo ELISPOT para IFN-γ utilizando péptidos de hTERT restringidos a HLA-B7. En un segundo conjunto de experimentos, un grupo de ratones transgénicos para HLA-B7 se inmunizó con INVAC-1 a través de la vía ID y el otro a través de la vía IM seguido inmediatamente de electroporación (Figura 7B). Se realizó un seguimiento de la frecuencia de las células T CD8 específicas para hTERT en PBMC a través de un ensayo ELISPOT para IFN-γ utilizando péptidos de hTERT restringidos a HLA-B7. Se estableció que la vacunación con INVAC-1 seguida de electroporación fue capaz de inducir respuestas de células T CD8 específicas para hTERT en ratones HLA-B7 cualquiera que fuera la vía de vacunación utilizada (Figura 7A y 7B).

Por otra parte, como se muestra en la Figura 7A, el número de animales que respondían fue mayor en el grupo de ratones vacunados a través de la vía ID en comparación con el grupo vacunado a través de la vía SC, con 6 de 8 frente a 3 de 8 respondedores respectivamente. También se observó una diferencia significativa en la frecuencia de células T CD8 específicas para hTERT entre el grupo de ratones vacunados ID en comparación con los animales vacunados IM (p<0,05) (Figura 7B).

5

10

15

20

25

30

35

40

45

50

55

Ambos experimentos demostraron que la vía ID de vacunación era más eficaz que las vías IM y SC para la inducción mediada por INVAC-1 de células T CD8 específicas para hTERT. Se obtuvieron datos similares utilizando otros modelos de ratón es decir ratones HLA-A2-DR1 (datos no mostrados). En consecuencia, todos los estudios de inmunogenicidad posteriores realizados con INVAC-1 se diseñaron con una administración ID de la vacuna seguida de electroporación.

Impacto de la dosis de la vacuna sobre la respuesta de células T CD8 específicas para hTERT después de una única inmunización ID con INVAC-1 y electroporación

Otro parámetro importante que se debía probar fue el impacto de la dosis de la vacuna sobre las respuestas de células T CD8 específicas para hTERT. Se inmunizaron ratones C57BL/6 a través de la vía ID seguido de electroporación en ambos flancos inferiores con dosis crecientes de INVAC-1. El volumen de la vacuna se mantuvo constante a 50 µl/sitio. Los animales fueron vacunados en 2 o 4 sitios dependiendo de la dosis final de vacuna recibida. Catorce días después de la vacunación/electroporación, se recogieron los bazos de los ratones y se realizó un seguimiento de las respuestas inmunitarias celulares específicas a través de un ensayo ELISPOT para IFN-y utilizando péptidos de hTERT restringidos a H2.

En un primer conjunto de experimentos, los ratones C57BL/6 recibieron una inyección ID única de INVAC-1/electroporación con dosis que oscilaban de 12,5 μg a 100 μg (Figura 8A). Se observó una diferencia significativa en la frecuencia de las células T CD8 específicas para hTERT en el grupo de animales vacunados con 100 μg de INVAC-1 en comparación con los animales de control vacunados con PBS (*p*<0,01) (Figura 8A). También se observó que la mediana del número de células T CD8 específicas para hTERT aumentó en proporción a la dosis de vacuna recibida (de 12,5 μg a 100 μg). El número de animales que respondían también aumentó junto con la dosis de la vacuna con 4 de 6 respondedores respectivamente para la dosis de 12,5 μg, 4 de 5 para la dosis de 25 μg y 6 de 6 respondedores para las dosis de 50 y 100 μg.

En una segunda serie de experimentos, los ratones C57BL/6 recibieron una inyección ID única de INVAC-1/electroporación con dosis que oscilaban de 100 μ g a 1200 μ g (Figura 8B). Se observó una diferencia significativa en la frecuencia de las células T CD8 específicas para hTERT en el grupo de animales vacunados con 800 μ g de INVAC-1 administrado a 4 mg/ml en comparación con los animales de control vacunados con PBS (p<0,05) (Figura 8B). Se observó que la mediana del número de células T CD8 específicas para hTERT aumentó proporcionalmente a la dosis de vacuna recibida de 100 μ g a 800 μ g y que esta mediana del número disminuyó al inyectar 1200 μ g. El número de animales que respondían aumentó con la dosis de la vacuna con 4 de 5 respondedores para la dosis de 100 μ g, 5 de 5 o 4 de 4 respondedores para las dosis superiores a 200 μ g, respectivamente. Para la dosis de 1200 μ g, incluso si todos los animales fueran respondedores, todavía habría 2 de 5 animales con un nivel de respuestas específicas cercano al valor de corte.

En conclusión, para el criterio de células T CD8 específicas de vacuna en ratones C57BL/6, se observó una respuesta a la dosis como consecuencia de la administración de diferentes cantidades de INVAC-1. Curiosamente, no se observaron signos de toxicidad de la vacuna en animales a los que se habían inyectado las dosis más altas de vacuna (800 y 1200 μg) en comparación con los ratones de control (control del peso corporal y autopsia macroscópica en el sacrificio). Se obtuvieron datos similares en ratones transgénicos para HLA-B7 (datos no mostrados).

Se recomienda un régimen de cebado-refuerzo para la vacunación con INVAC-1 para aumentar el nivel de respuesta de células T CD8 específicas para hTERT

La mayoría de los protocolos de vacunación recomendados para las vacunas convencionales (BCG, sarampión, influenza...) incluyen un régimen de cebado/refuerzo para mejorar la frecuencia de las respuestas inmunitarias específicas de la vacuna. En consecuencia, el impacto de un régimen de cebado/refuerzo sobre la generación de respuestas de células T CD8 específicas para hTERT se probó para la vacunación con INVAC-1 ID y electroporación. Con este objetivo, los ratones transgénicos para HLA-B7 se inmunizaron ID con INVAC-1 y los sitios de vacunación cutánea se sometieron a electroporación directamente después de la administración de la vacuna. Veintiún días después de la primera inmunización, los ratones recibieron una segunda inyección de INVAC-1 utilizando el mismo procedimiento de vacunación. En diferentes momentos después de las inmunizaciones de cebado y refuerzo, se recolectó sangre periférica para controlar las respuestas de células T CD8 específicas para hTERT a través de un ensayo ELISPOT para IFN-γ utilizando péptidos de hTERT restringidos a HLA-B7 (Figura 9). Se observó un pico de respuesta de células T CD8 específicas para hTERT a los 14 días después del cebado. Sin embargo, la mediana de la frecuencia de las células T CD8 específicas para hTERT en el grupo de animales vacunados fue relativamente baja (11,3 puntos/200.000 PBMC) y hubo 2 de 5 animales que no respondieron a la vacuna. Después del refuerzo, se observó un pico de células T CD8 específicas para hTERT el día 10 después de la

inyección. La mediana de la frecuencia de las células T CD8 específicas para hTERT en el grupo de animales vacunados en este momento (D31 post-cebado, D10 post-refuerzo) fue significativamente diferente de la mediana de la frecuencia de las células T CD8 específicas para hTERT en muestras preinmunes (p<0,05). Hubo 4 de 5 respondedores después del refuerzo.

- En conclusión, se recomienda un régimen de vacunación de cebado/refuerzo para la vacunación ID con INVAC-1/electroporación debido a que en primer lugar permite aumentar la frecuencia de las células T CD8 específicas para hTERT que circulan en la sangre (células T efectoras) y, en segundo lugar, acorta el tiempo necesario para alcanzar el pico de la respuesta inmunitaria celular específica, que es un parámetro importante en el contexto de una vacunación contra el cáncer.
- La vacunación ID con construcciones Δ10Not, Δ10Cog o Δ23 seguida de electroporación también induce una respuesta de células T CD8 específicas para hTERT. Se recomienda un régimen de vacunación de cebado/refuerzo para aumentar la frecuencia de las células T CD8 específicas de la vacuna.
- Junto con el desarrollo de INVAC-1, se diseñaron otras 3 construcciones de plásmidos de ADN (derivados de INVAC-1): Δ10Not (pUTD10Not), Δ10Cog (pUTD10Cog) o Δ23 (pUTD23Tyn). Se diseñaron tres deleciones en el sitio catalítico de la enzima hTERT. Oscilaron entre 10 y 23 residuos de aminoácidos y abarcaron el trío crucial de residuos de valina-ácido aspártico-ácido aspártico (Val-Asp-Asp o VDD en el código de una letra) (Figura 2A). Estas construcciones fueron diseñadas para mostrar que cualquier deleción que elimine la actividad de la enzima podría conservar la inmunogenicidad.
- Para confirmar esta hipótesis, se inmunizaron ratones C57BL/6 a través de la vía ID seguido de electroporación con INVAC-1, Δ10Not, Δ10Cog, Δ23 o PBS (Figura 10A). La mitad de los animales recibió una segunda inyección de ADN o PBS 21 días después de la primera inmunización utilizando el mismo procedimiento. Los animales fueron sacrificados catorce días (grupo de ratones que recibieron una sola inyección) o diez días (grupo de ratones que recibieron 2 inyecciones) después de la última vacunación/electroporación. Se recogieron los bazos de los ratones y se realizó un seguimiento de la respuesta inducida de células T CD8 a través de un ensayo ELISPOT para IFN-γ utilizando péptidos de hTERT restringidos a H2 (reserva de 4 péptidos).

30

35

50

55

- Para los animales que recibieron una única inyección de ADN, se observó una diferencia significativa en la frecuencia de células T CD8 específicas para hTERT solo en el grupo de ratones vacunados con 100 μ g de INVAC-1 en comparación con los animales de control vacunados con PBS (p<0,05) (Figura 10A, puntos oscuros). Al analizar la frecuencia de los respondedores, hubo 3 de 4 respondedores en el grupo de ratones vacunados con INVAC-1 y Δ 10Cog. Sin embargo, para Δ 10Cog, los animales respondieron poco con respuestas de células T CD8 específicas para hTERT inferiores a 50/200.000 esplenocitos. Solo hubo 1 de 4 respondedores en el grupo de animales vacunados con Δ 23 y ningún respondedor con animales tratados con Δ 10Not. Para los animales que recibieron dos vacunas (Figura 10A, puntos de color blanco), se observó una mediana de la frecuencia significativa de células T CD8 secretoras de IFN- γ específicas para hTERT en el bazo de los ratones inmunizados con INVAC-1, Δ 10Not y Δ 10Cog en comparación con los ratones de control a los que se había inyectado PBS (p<0,001). Solo hubo 2 de los 4 animales que respondían en el grupo de ratones vacunados con Δ 23, lo que no fue estadísticamente significativo. En conclusión, después de una o dos rondas de vacunación, las construcciones de INVAC-1 y derivadas de INVAC-1 permitieron la inducción de células T CD8 específicas para hTERT, siendo INVAC-1 la más inmunogénica en ratones C57BL/6.
- 40 En un segundo conjunto de experimentos, los ratones transgénicos para HLA-B7 se vacunaron ID con INVAC-1, Δ10Not, Δ10Cog, Δ23 o PBS (Figura 10B) seguido de electroporación y recibieron una segunda inyección 21 días después de la primera utilizando el mismo procedimiento. Se recogieron los bazos 10 días después de la última inyección y se controló la respuesta inducida de células T CD8 a través de un ensayo ELISPOT para IFN-γ utilizando péptidos de hTERT restringidos a B7. Como se muestra en la Figura 10B, se observó una mediana de la frecuencia significativa de células T CD8 secretoras de IFN-γ específicas para hTERT en el bazo de los ratones inmunizados con INVAC-1, Δ10Not, Δ10Cog y Δ23 en comparación con los ratones de control a los que se había inyectado PBS (p<0,001).
 - Como se muestra para INVAC-1, los 3 derivados de INVAC-1 Δ10Not, Δ10Cog y Δ23 también fueron capaces de inducir células T CD8 específicas para hTERT *in vivo* después de la vacunación ID y la electroporación en dos cepas de ratones diferentes. También se recomendó un régimen de vacunación de cebado/refuerzo para que los derivados de INVAC-1 alcanzaran niveles significativos de respuestas de células T CD8 específicas para hTERT. Tomados en conjunto, estos resultados demuestran que INVAC-1 es la construcción que permite la inducción de la mejor respuesta de células T CD8 específicas para hTERT. Esto probablemente se deba a la diferencia observada en los niveles de expresión de la proteína ΔhTERT después de la transfección del plásmido como se muestra mediante transferencia Western (Figura 3).

La amplitud de la respuesta de células T específicas para hTERT después de la vacunación o vacunaciones ID seguidas de electroporación es diferente según la construcción del plásmido hTERT utilizada para la vacunación (INVAC-1, pNTC-hTERT o pNTC-hTERT-ΔVDD)

Se ha evaluado el impacto de las modificaciones de la secuencia de hTERT diseñadas dentro de la construcción INVAC-1, es decir, (1) la deleción de la señal de localización nucleolar, (2) la adición de la secuencia de ubiquitina y (3) la deleción dentro del sitio catalítico, sobre el repertorio de la respuesta inmunitaria de células T contra hTERT. Las respuestas inmunitarias celulares específicas para hTERT de INVAC-1 se escrutaron después de una o varias inmunizaciones ID/una o varias electroporaciones con INVAC-1 y se compararon con las respuestas inducidas por un ADN que codifica la secuencia de tipo nativo/salvaje de la TERT humana (pNTC-hTERT) y un ADN que codifica la secuencia de hTERT de la que se había eliminado solamente la región VDD (pNTC-hTERT-ΔVDD). Los animales de control recibieron una o varias inyecciones ID de 25 μg de vector vacío pNTC seguido de electroporación.

5

10

15

20

25

40

45

50

55

Una primera serie de ratones transgénicos para HLA-B7 recibió una inyección única de cualquiera de las 4 construcciones utilizando el protocolo de vacunación descrito anteriormente (25 µg/ratón). Una segunda serie de animales recibió una inyección de cebado y un refuerzo 21 días después de la primera vacunación con cualquiera de las 4 construcciones utilizando el protocolo de vacunación descrito anteriormente (25 µg/ratón).

Catorce días después de una inyección única o 10 días después del refuerzo, se analizaron los esplenocitos de ratones vacunados y de control en un ensayo ELIspot para IFNy utilizando 269 péptidos de 15 AA solapantes de 11 AA y recuperando la secuencia de proteínas completa de hTERT (27 reservas compuestas de 10 péptidos cada una).

La inmunización con INVAC-1 indujo un gran repertorio de células T contra numerosos epítopos de hTERT ya que después del cebado, se reconocieron aproximadamente 12 reservas de péptidos (Figura 11A). Estos datos sugieren que se expresaron un mínimo de 12 epítopos restringidos a HLA-B7 después del procesamiento sobre la superficie de las células dendríticas con una densidad de complejos de péptidos del MHC que permitían la inducción de una fuerte respuesta de células T. Estos importantes resultados muestran la capacidad de INVAC-1 para el procesamiento y la expresión de numerosos péptidos de hTERT sobre la superficie de las APC. La diferencia obtenida con las otras construcciones (hTERT y hTERTΔVDD) valida las características de optimización realizadas en INVAC-1, lo que lleva al aumento de la amplitud del repertorio de células T contra hTERT. Además, estos resultados resaltan la ventaja de la vacunación de ADN frente a la inmunización peptídica.

En este estudio se confirmó la ventaja de un segundo ciclo de inmunización (cebado-refuerzo) con INVAC-1 en ratones transgénicos. El repertorio de células T *in vivo* se mejoró a medida que se revelaron al menos 5 nuevos epítopos (Figura 11B). Se reconoció un total de al menos 17 epítopos después del refuerzo. Estos datos confirman que varias inyecciones en el paciente serán beneficiosas para obtener una mejor respuesta antitumoral.

Al analizar estos datos globalmente al hacer la suma de la mediana total de la frecuencia de células T específicas detectadas para las 27 reservas de péptidos, no se observaron diferencias importantes después de uno (cebado) o dos (cebado-refuerzo) ciclos de inmunizaciones entre las tres construcciones de hTERT (Figura 11C). Esto sugiere que las modificaciones realizadas en hTERT de INVAC-1 no tuvieron impacto sobre la amplitud de la respuesta inmunitaria, a pesar de que se observó una respuesta inmunitaria mediada por células T significativamente mayor después del refuerzo con INVAC-1.

En conclusión, la vacunación con INVAC-1 medió un gran repertorio de respuesta inmunitaria de células T contra numerosos epítopos de hTERT diferentes de construcciones de hTERT de tipo salvaje y hTERTΔVDD en términos de péptidos/epítopos reconocidos por las células T.

La vacunación ID con INVAC-1 seguida de electroporación induce respuestas de células T específicas para hTERT con el sello distintivo de una respuesta inmunitaria anticancerosa: células T CD8 citotóxicas y células T CD4 Th1

Entre las células inmunitarias que son relevantes en las respuestas inmunitarias antitumorales, los linfocitos T CD8 citotóxicos (CTL) y las células T CD4 Th1 se han identificado como las células efectoras más potentes (Vesely et al., 2011) (Braumuller et al., 2013).

En una primera etapa, se investigó la actividad citotóxica de las células T CD8 específicas para hTERT *in vivo* después de la vacunación ID/electroporación con INVAC-1. De hecho, esta actividad es necesaria para destruir las células tumorales. Para medir la resistencia citolítica *in vivo* de la respuesta de las células T CD8+ específicas para hTERT provocada por la inmunización con INVAC-1, se realizó un ensayo de citotoxicidad *in vivo* utilizando esplenocitos pulsados con péptidos marcados con succinimidil éster diacetato de carboxifluoresceína (CFSE) como células diana. A ratones transgénicos para HLA-B7 que recibieron una vacunación con cebado o cebado/refuerzo con INVAC-1 (o PBS como control) a través de la vía ID como se describió anteriormente, se les inyectaron por vía intravenosa 7·10⁶ células diana. Las células diana eran esplenocitos de ratones congénicos no sometidos a tratamiento previo, marcados independientemente con 3 concentraciones diferentes de CFSE y pulsadas con un péptido hTERT restringido a HLA-B7 (p351, péptido inmunodominante o p1123, péptido subdominante) o no pulsadas como control interno. Después de 15-18 horas, se recogieron las células del bazo y la desaparición de las células pulsadas con péptidos en ratones inmunizados frente a ratones de control se cuantificó por citometría de flujo.

Los resultados muestran que todos los ratones desarrollaron CTL específicos contra el péptido inmunodominante

p351 después de una sola inyección (Figura 12A, puntos de color blanco) con una mediana de lisis específica de 35%. Un tercio de los animales desarrollaron CTL específicos contra el péptido subdominante p1123 (Figura 12A, puntos de color negro). Se puede esperar que múltiples ciclos de inyección permitirían aumentar el número de animales que desarrollan una lisis CTL específica contra el péptido subdominante 1123.

Recientemente se ha descrito que una respuesta de células T CD4 específicas para hTERT puede estar asociada con una mejor respuesta a la quimioterapia en pacientes con CPNM (Godet et al., 2012). Por lo tanto, se investigó la presencia de una respuesta de células T CD4 específicas para hTERT después de la inyección de INVAC-1 ID. Con este objetivo, los ratones transgénicos para HLA-A2/DR1 se inmunizaron ID con INVAC-1 seguido de electroporación y se realizó un seguimiento de la respuesta de células T CD4 específicas para hTERT en el bazo 14 días después de la vacunación a través de un ensayo ELISPOT para IFN-γ utilizando péptidos de hTERT restringidos a DR1. Como se muestra en la Figura 12B, se observó una mediana de la frecuencia significativa de células T CD4 secretoras de IFN-γ específicas para hTERT en el bazo de los ratones vacunados ID en comparación con los ratones de control a los que se había inyectado PBS (*p*<0,001).

15

20

25

30

35

40

45

50

55

Se ha enfatizado que la inmunidad Th1 tenía un claro efecto positivo sobre la eliminación de células cancerosas *in vivo* (Braumuller et al., 2013). De hecho, las células Th1 CD4+ producen varias citocinas (tales como IFN-γ, TNF-α e IL-2) esenciales para la inducción de inmunidad celular contra tumores. En consecuencia, después de la vacunación con INVAC-1 ID, se investigaron las diferentes citocinas secretadas por las células T CD4 específicas para hTERT. Con este objetivo, se estimularon los esplenocitos de ratones transgénicos para HLA-A2/DR1 vacunados con INVAC-1 *in vitro* durante 24 horas con una reserva de péptidos de hTERT o se dejaron sin estimular. Los sobrenadantes se recuperaron y analizaron en un Ensayo de Unión a Citocinas (CBA) para evaluar la concentración de citocinas Th1, Th2 y Th17 secretadas por las células T CD4 específicas para hTERT.

Como se muestra en la Figura 12C, se detectaron concentraciones significativas de citocinas Th1 IL-2, TNF α e IFN γ en sobrenadantes de esplenocitos recuperados de ratones vacunados con INVAC-1 en comparación con sobrenadantes de ratones de control (p<0.05).

Por lo tanto, la vacunación ID/electroporación con INVAC-1 puede promover la expansión de células T CD8 específicas para hTERT que exhiben una actividad citotóxica *in vivo* junto con células T CD4 específicas con un perfil Th1. Ambos tipos de respuesta son el sello distintivo de una respuesta inmunitaria anticancerosa favorable.

La vacunación ID terapéutica y preventiva con INVAC-1 seguida de electroporación retrasan el crecimiento tumoral después de la inoculación de tumor singénico a ratones transgénicos para HLA-A2/DR1

Hasta este punto, los resultados han demostrado que una inyección ID de INVAC-1 seguida de electroporación fue capaz de inducir células T CD8 citotóxicas y células T CD4 Th1 en ratones. La siguiente etapa consistió en evaluar a continuación la protección de los ratones HLA-A2/DR1 transgénicos conferida por la vacunación con INVAC-1 ID y electroporación después de la inoculación de células tumorales Sarc-2 (fibrosarcoma). En un primer intento, los ratones HLA-A2/DR1 transgénicos se vacunaron ID con INVAC-1 seguido de electroporación en una estrategia de cebado/refuerzo o se vacunaron simuladamente con PBS. Un mes después de la vacunación preventiva, los ratones fueron sensibilizados a través de la vía SC con 50.000 células Sarc-2. El volumen tumoral se midió cada 2-3 días. La Figura 13A muestra la cinética de la mediana del volumen del tumor después de la sensibilización según el tratamiento de los ratones. A continuación, se calculó el retraso del crecimiento tumoral (TGD) a 500 mm³. Este criterio permite medir el efecto del tratamiento de una vacuna sobre el crecimiento tumoral al comparar el tiempo para alcanzar un volumen tumoral definido en los grupos de control y tratados. Se observó un retraso en el crecimiento tumoral de once días entre el grupo de ratones vacunados con INVAC-1 y el grupo de animales que recibieron PBS. Por lo tanto, la vacunación preventiva con INVAC-1 fue responsable de una desaceleración en el crecimiento tumoral. Debido a que la inoculación del tumor se realizó un mes después de la última vacunación, los efectos antitumorales podrían atribuirse en cierta medida a la presencia de células T de memoria específicas para hTERT.

En una segunda serie de experimentos, a los ratones transgénicos se les injertaron 20.000 células Sarc-2 y se vacunaron ID con INVAC-1 seguido de electroporación 4 días después de la inoculación celular (Figura 13B). Los animales de control recibieron una inyección ID de un plásmido "vacío" (NTC) que tenía la misma cadena principal que INVAC-1 pero que no codificaba ningún antígeno tumoral. Se realizaron dos vacunaciones de refuerzo con el mismo procedimiento 21 y 35 días después del injerto tumoral. Se calculó el retraso del crecimiento tumoral a 500 mm³. Se observó un retraso del crecimiento tumoral de 4 días entre el grupo de ratones vacunados con INVAC-1 y el grupo de animales que recibieron el plásmido vacío NTC. En conclusión, la vacunación terapéutica con INVAC-1 permitió una desaceleración relativamente débil, aunque observada repetidamente, sobre el crecimiento tumoral.

La administración de GM-CSF murino junto con la vacunación ID con INVAC-1/electroporación mejora la intensidad y la calidad de la respuesta inmunitaria celular específica de hTERT y retrasa el crecimiento tumoral después de una sensibilización con tumor singénico en ratones transgénicos para HLA-A2/DR1.

Se han utilizado diferentes citocinas hasta ahora como inmunomoduladores para facilitar el reconocimiento de antígeno y la expansión de células T en estudios de vacunación contra el cáncer tanto en modelos animales como

en seres humanos. Una de las citocinas más frecuentemente utilizadas es el GM-CSF (Factor Estimulante de Colonias de Granulocitos-Macrófagos). Se sabe que esta citocina ayuda a la maduración de las Células Presentadoras de Antígenos y favorece las respuestas inmunitarias celulares Th1 (Parmiani et al., 2007). Con respecto al papel principal desempeñado por GM-CSF en el contexto de las vacunas antitumorales, se probó el impacto de la adición de GM-CSF murino (mGM-CSF) sobre las respuestas de células T específicas para hTERT después de la vacunación con INVAC-1 ID y la electroporación. Con este objetivo, los ratones C57BL/6 recibieron una inyección ID de mGM-CSF 18 horas antes de ser vacunados con INVAC-1 a través de la vía ID seguida de electroporación (Figura 14A). Otro grupo de ratones se vacunó ID con INVAC-1/electroporación sin adición de mGM-CSF. Los animales de control fueron vacunados simuladamente con PBS y electroporación. Catorce días después de la inyección, se recogieron los bazos de los ratones y se realizó un seguimiento de las respuestas inmunitarias inducidas a través de un ensayo ELISPOT para IFN-y utilizando péptidos de hTERT restringidos a H2. Se observó una diferencia significativa en la frecuencia de células T CD8 IFNy+ entre el grupo de ratones que recibieron mGM-CSF antes de la inyección ID de INVAC-1 y el grupo que no lo hizo (p <0,001). Por lo tanto, la adición de mGM-CSF permitió un aumento importante en la frecuencia de células T CD8 específicas para hTERT. Una segunda etapa consistió en investigar el impacto de este inmunodulador sobre la calidad de las células T CD4 específicas para hTERT, y especialmente sobre la generación de células T específicas de Th1. Con este objetivo, se estimularon los esplenocitos de ratones transgénicos para HLA-A2/DR1 vacunados con INVAC-1 o INVAC-1/mGM-CSF in vitro durante 24 horas con una reserva de péptidos de hTERT restringidos a DR1 o se dejaron son estimular. Los sobrenadantes se recuperaron y analizaron en un Ensayo de Unión a Citocinas (CBA) para evaluar la concentración de citocinas Th1, Th2 y Th17 secretadas por las células T CD4 específicas para hTERT. Como se muestra en la Figura 14B, se detectaron concentraciones significativas de citocinas Th1 IL-2, TNFα e IFNγ en sobrenadantes de esplenocitos recuperados de ratones vacunados con INVAC-1/mGM-CSF en comparación con los sobrenadantes de ratones vacunados solo con INVAC-1. Al añadir mGM-CSF, hubo un aumento importante en la concentración de TNF α (p <0,01), IFNy (p <0,05) e IL-2 (p <0,05) que son citocinas antitumorales Th1.

Posteriormente, se estudió la combinación mGM-CSF/INVAC-1 en el modelo de tumor animal Sarc-2 para evaluar si mGM-CSF podría potenciar los efectos antitumorales.

Con este objetivo, se injertaron a ratones transgénicos para HLA-A2/DR1 20.000 células Sarc-2 y se vacunaron ID con INVAC-1 y mGM-CSF seguido de electroporación 4 días después del injerto celular (Figura 14C). Los animales de control recibieron una inyección ID de un plásmido vacío (NTC) y mGM-CSF o PBS y mGM-CSF. Se realizaron dos vacunaciones de refuerzo con el mismo procedimiento 21 y 35 días después del injerto tumoral. Se calculó retraso del crecimiento tumoral (TGD) a 500 mm³. Se observó un TGD de 14 días entre el grupo de ratones vacunados con INVAC-1/mGM-CSF y el grupo de animales que recibieron NTC/mGM-CSF; se observó TGD de 10 días entre el grupo INVAC-1/mGM-CSF y el grupo PBS/mGM-CSF. Estos resultados demuestran que una vacunación terapéutica con INVAC-1 combinado con mGM-CSF permitió una desaceleración en el crecimiento tumoral.

La administración de IL-12 murina junto con la vacunación ID con INVAC-1/electroporación mejora la intensidad de la respuesta de células T CD8 específicas para hTERT

También se investigó el impacto de la citocina IL-12 sobre la respuesta de células T CD8 específicas para hTERT después de la vacunación con INVAC-1 ID y la electroporación. Con este objetivo, los ratones HLA-A2/DR1 recibieron una inyección ID de IL-12 junto con la administración ID de INVAC-1 seguido de electroporación (Figura 15). Otro grupo de ratones se vacunó ID con INVAC-1/electroporación sin adición de IL-12. Los animales de control se vacunaron simuladamente con PBS e IL-12 o PBS solo seguido de electroporación. Catorce días después de la inyección, se recogieron los bazos de los ratones y se realizó un seguimiento de las respuestas inmunitarias inducidas a través de un ensayo ELISPOT para IFN-γ utilizando péptidos de hTERT restringidos a A2. La frecuencia de respuesta de los ratones se incrementó al añadir IL-12. De hecho, hubo 2 de 5 y 4 de 5 animales que respondían para el grupo vacunado con INVAC-1 y el grupo vacunado con INVAC-1/IL-12 respectivamente.

Ejemplo II

5

10

15

20

25

30

35

40

45

50

Abreviaturas

AA: Aminoácidos, **pb**: Pares de bases, **CTL**: Linfocitos T citotóxicos, **CMV**: Citomegalovirus, **ADN**: Ácido desoxirribonucleico, **EP**: Electroporación, **ID**: Intradérmico, **NoLS**: Secuencia de localización nucleolar, **ARN**: Ácido ribonucleico, **RTA**: Actividad telomerasa relativa, **TRAP**: Protocolo de amplificación de repeticiones teloméricas, **TERT**: Transcriptasa inversa de telomerasa, **Ubi**: Ubiquitina, **VDD**: Valina-ácido aspártico-ácido aspártico.

Materiales y métodos

Vectores de ADN plasmídico

55 **INVAC-1**

La construcción INVAC-1 ya se describió en el Ejemplo I.

Derivados permutados al azar de INVAC-1

5

10

15

20

40

45

50

55

Las construcciones pUTScram y pUTInv son plásmidos de ADN de doble hebra de aproximadamente 8,9 kb que codifican proteínas de fusión basadas en ubiquitina-telomerasa humanas que son enzimáticamente inactivas. Los transgenes de Secuencia Aleatoria "Scrambled" y de Secuencia Invertida "Inverted" se insertaron en el vector Invitrogen pcDNA3.1(+) (5,4 kb) derivado de pcDNA3.0 que se diseñó para un alto nivel de expresión estable y transitoria en células de mamífero. La expresión transgénica es impulsada por el promotor inmediato-temprano de citomegalovirus (CMV) humano para permitir una expresión eficaz de alto nivel en una amplia gama de células de mamífero. El vector contiene múltiples sitios de clonación (MCS) para facilitar la clonación. La terminación eficaz de la transcripción es impulsada por la señal de poliadenilación de la Hormona de Crecimiento Bovina (BGH).

pUTScram (denominado de Secuencia Aleatoria)

El inserto de hTERT Ubi-Scrambled (de secuencia aleatoria, 1184 AA) comienza en la posición 923 y termina en la posición 4474 del plásmido pUTScram (Figura 20A). pUTScram codifica una construcción de fusión basada en ubiquitina-telomerasa humana (De secuencia aleatoria) de 1184 AA que corresponde a una proteína de aproximadamente 130,2 kDa. Se suprimieron los 23 primeros aminoácidos (1-23 AA) de la proteína hTERT que fueron reemplazados por un polipéptido ubiquitina (76 AA). El sitio catalítico se inactivó mediante una deleción de 9 pb que codificaba VDD (marca *; Figura 28) y correspondiente a AA 867-869 de telomerasa humana de tipo salvaje (hTERT; patente WO 2007/014740 y e isoforma 1 de hTERT con Número de acceso NM_198253). La secuencia de hTERT se dividió en diez fragmentos inmunogénicos y se volvió a montar en el siguiente orden específico: fragmento 7 (210 pb), fragmento 2 (201 pb), fragmento 6 (312 pb), fragmento 4 (117 pb), fragmento 9 (576 pb), fragmento 3 (120 pb), fragmento 1 (258 pb), fragmento 8 (477 pb), fragmento 10 (516 pb), fragmento 5 (303 pb). Estos 10 fragmentos están unidos por puentes con un conector 6xGly (conector G; 18 pb). En consecuencia, se eliminaron 76 AA no inmunogénicos (228 pb) de la secuencia de hTERT. Los 14 aminoácidos en la secuencia C-terminal del inserto permutado al azar Ubi-hTERT codifican la etiqueta epitópica V5 (Figura 22).

pUTInv (denominado de secuencia invertida)

25 El inserto de hTERT Ubi-inverted (Secuencia Invertida, 1184 AA) comienza en la posición 923 y termina en la posición 4474 del plásmido pUTInv (Figura 20B). pUTInv codifica una construcción de fusión basada en ubiquitinatelomerasa humana (Secuencia Invertida) de 1184 AA correspondiente a una proteína de aproximadamente 130.2 kDa. Se suprimieron los 23 primeros aminoácidos (1-23 AA) de la proteína hTERT que fueron reemplazados por un polipéptido de ubiquitina (76 AA). El sitio catalítico se inactivó mediante una deleción de 9 pb que codificaba VDD (marca *; Figura 29) y correspondiente a los AA 867-869 de telomerasa humana de tipo salvaje (hTERT; patente WO 30 2007/014740; Número de acceso NM 198253). La secuencia de hTERT se dividió en diez fragmentos inmunogénicos y se volvió a montar en el siguiente orden específico: fragmento 10 (516 pb), fragmento 9 (576 pb), fragmento 8 (477 pb), fragmento 7 (210 pb), fragmento 6 (312 pb), fragmento 5 (303 pb), fragmento 4 (117 pb), fragmento 3 (120 pb), fragmento 2 (201 pb), fragmento 1 (258 pb). Estos 10 fragmentos se unieron con un 35 conector 6xGly (conector G; 18 pb). En consecuencia, se eliminaron 76 AA no inmunogénicos (228 pb) de la secuencia de hTERT. Los 14 aminoácidos en la secuencia C-terminal del inserto permutado al azar Ubi-hTERT codifican la etiqueta epitópica V5 (Figura 22).

Síntesis y clonación genes

Los genes fueron sintetizado *de novo* como construcciones de fusión basadas en ubiquitina-telomerasa a través de un procedimiento de ensamblaje de oligonucleótidos de 40 unidades solapantes (GeneCust, Luxemburgo). Se realizaron varios cambios de bases conservativos para eliminar los sitios de restricción y atenuar las secuencias ricas en GC. La síntesis génica incluyó sitios de restricción flanqueantes únicos HindIII/Xbal para permitir la subclonación del gen en el sistema de expresión deseado. Los genes sintetizados se clonaron entre los sitios de restricción HindIII y Xbal del vector de expresión pcDNA3.1(+) (Invitrogen, Carlsbad, EE.UU.). Las secuencias de los plásmidos se verificaron mediante secuenciación utilizando cebadores PEGFP-N5' CGGTGGGAGGTCTATATAAG (SEQ ID NO: 27) y BGH CAGGGTCAAGGAAGGCAC (SEQ ID NO: 28).

Producción de plásmidos

Estos derivados permutados al azar de INVAC-1 sintetizados por GeneCust se transformaron y produjeron en células $E.\ coli$ 5-alfa (fhuA2 Δ (argF-lacZ) U169 phoA glnV44 Φ 80 Δ (lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17) (Lucigen Corporation, Middleton, EE.UU., ref. 60602-2) por RD Biotech (Besançon, Francia). Las células se colocaron en placa y se propagaron en medio de caldo Lenox que contenía ampicilina (Núm. EU04000D, Euromedex). Después de la extracción y purificación, se prepararon provisiones de partida concentradas de plásmido gigaprep sin endotoxina (2 mg/ml) resuspendidas en 1X PBS estéril. Los vectores se verificaron mediante mapeo de restricción (HindIII-XbaI; Figura 21).

pTRIP-CMV-hTERT

Este plásmido de ADN ya se describió en el Ejemplo I.

Cultivos celulares y transfecciones transitorias para ensayos de transferencia Western y TRAP

Se cultivaron líneas celulares CrFK (riñón felino de Crandell Rees) y HEK293T (riñón embrionario humano) en medio de Eagle modificado de Dulbecco (DMEM) con un suplemento de suero de ternera fetal inactivado por calor al 10% (PAA, Velizy-Villacoublay, Francia) y penicilina/estreptomicina al 1% (Life Technologies, Saint-Aubin, Francia).

- Las células se cultivaron como monocapas en matraces de 75 cm² a 37°C en una atmósfera humidificada que contenía 5% de CO₂. Las células se cultivaron hasta 70-80% de confluencia el día de la transfección. Para los ensayos de transferencia Western, se sembraron 5x10⁵ células en placas de cultivo de tejidos de seis pocillos y se incubaron durante 24 h. Para ensayos TRAP, se sembraron 7x10⁵ células en placas de cultivo de tejidos de seis pocillos y se incubaron durante 24 h.
- Las construcciones pUTScram y pUTInv de INVAC-1 se transfectaron en células diana utilizando el reactivo de transfección de polímero catiónico jetPrime de acuerdo con las instrucciones del fabricante (Polyplus-transfection Inc., Francia). Las células transfectadas con el plásmido pTRIP-CMV-hTERT se utilizaron como control positivo y las células no transfectadas como control negativo. Los medios de transfección se eliminaron 4 horas más tarde y se reemplazaron por 2 ml de medio de cultivo DMEM. Después del tiempo apropiado de transfección 18-96 horas para los ensayos de transferencia Western y 24 horas para los ensayos de TRAP, las células se recolectaron y analizaron para determinar la expresión y actividad de la telomerasa.

Transferencia Western

Los análisis de transferencia Western se realizaron utilizando células HEK293T transfectadas. El procedimiento de transferencia Western es el que se ha descrito en el Ejemplo I.

20 Ensayo TRAP

Este procedimiento es el que se ha descrito en el Ejemplo I.

Ratones

En estos experimentos se utilizó la cepa de ratón transgénico HLA-B*0702.

Los ratones transgénicos para HLA-B*0702 expresan los dominios α1-α2 de HLA-B*0702 humanos de la molécula y el dominio α3 murino de la molécula H2D. Estos ratones no expresan las moléculas H2-D^b y H2-K^b (Rohrlich, Cardinaud et al. 2003).

Los ratones se utilizaron entre las 9 y 15 semanas de edad y fueron suministrados por el Instituto Pasteur de París. Los animales fueron alojados en la instalación de animales libres de patógenos específicos del Instituto Pasteur (Animal Facilities Lwoff Núm. 22, número de acuerdo B 75 15-07). Antes de la inyección intradérmica (ID) o intravenosa (IV), los ratones fueron anestesiados con una solución mixta de xilazina al 2% (Rompun, Bayer Santé, Loos, Francia) y ketamina al 8% (Imalgen 1000, Merial, Lyon, Francia) en 1X Solución Salina Tamponada con Fosfato (IX PBS, Life Technologies, Saint-Aubin, Francia) a través de la vía intraperitoneal (IP) según el peso individual del animal y la duración de la anestesia. Todos los animales fueron manejados en estricta conformidad con la buena práctica animal y cumplieron con la experimentación local con animales (Directiva 2010/63/UE).

Péptidos de hTERT

Los péptidos de hTERT restringidos a HLA-B*0702, se describieron previamente en el Ejemplo I. Los péptidos liofilizados se disolvieron en agua estéril a 2 mg/ml y se almacenaron a -20°C antes de su uso.

Inmunización de ratones y procedimiento de electroporación in vivo

- La inmunización intradérmica (ID) se realizó en la parte inferior del flanco del ratón con jeringas de insulina y agujas específicas (U-100, 29GX1/2"-0,33x12 mm, Terumo, Bélgica) después del afeitado. No se observó eritema después del afeitado, durante y después de los procedimientos de inmunización. Cada animal recibió una inyección ID de cebado de plásmido (INVAC-1, pUTScram o pUTInv) con 100 µg de ADN o 1X PBS. Según el régimen de vacunación, los ratones podrían recibir una segunda inyección similar de ADN o 1X PBS.
- La electroporación de ADN *in vivo* se realizó utilizando el sistema y el soporte lógico de electroporación CLINIPORATOR® 2 (IGEA, Italia) equipado con electrodos de placa (P-30-8G, IGEA). Inmediatamente después de la vacunación ID, se realizó un pliegue de la piel en el sitio de inyección, se cubrió completamente con gel conductor (Labo FH, gel de contacto azul, NM Medical, Francia) y se colocó entre los electrodos de la placa. Se aplicaron dos pulsos de diferentes voltajes (HV-LV): HV: 1250 V/cm, 1 Hz, 100 μs; 1 pulso, 1000 ms de descanso; LV: 180 V/cm, 1 Hz, 400 ms, 1 pulso.

50

30

35

Ensayo ELISpot

El ensayo ELISpot se realizó de acuerdo con el método descrito en el Ejemplo I. Solo se utilizó una reserva de tres péptidos de hTERT específicos restringidos a HLA-B*0702 (p277, p351 y p1123) en el Ejemplo II.

Ensayo de citotoxicidad in vivo

El ensayo de lisis *in vivo* se realizó de acuerdo con el procedimiento descrito en el Ejemplo I. Solo se utilizaron dos péptidos de hTERT específicos restringidos a HLA-B*0702 (p351 y p1123) respectivamente como péptidos inmunodominantes y subdominantes en el Ejemplo II.

Análisis estadístico y manejo de datos.

Se utilizó el soporte lógico GraphPad Prism 5 para el manejo de datos, el análisis y las representaciones gráficas. Los datos se representan como la media ± desviación típica o como la mediana. Los análisis estadísticos de los ensayos ELISpot se realizaron utilizando un análisis no paramétrico de Mann Whitney y/o Kruskal-Wallis con la prueba de comparación múltiple de Dunn. La significación se estableció en el valor p <0,05.

Resultados

10

20

25

30

35

40

45

50

Caracterización y análisis de secuencia del ADN plasmídico de INVAC-1

15 La caracterización y el análisis de secuencia del ADN plasmídico de INVAC-1 ya se describieron en el Ejemplo I.

Caracterización y análisis de secuencia de construcciones derivadas por permutaciones al azar de INVAC-1 (pUTScram y pUTInv)

Se sintetizaron y clonaron dos genes derivados por permutaciones al azar de INVAC-1 (Figura 20). Estas construcciones se basaron en la secuencia de nucleótidos de INVAC-1 descrita en el Ejemplo I y la secuencia de aminoácidos de hTERT de tipo salvaje descrita en la solicitud de patente internacional WO 2007/014740.

La optimización de codones se realizó para la expresión de alto nivel en células de mamífero (Figura 27). Los transgenes permutados al azar Ubi-hTERT de secuencia aleatoria y de secuencia invertida se ligaron con éxito en el vector de expresión de Invitrogen pcDNA3.1(+) como se muestra por digestión con HindIII y Xbal y electroforesis (Figura 21). Los insertos y las uniones se secuenciaron utilizando los cebadores PEGFP-N5' y BGH que coincidían con la secuencia del vector que flanqueaba el inserto de ADN. Los resultados de la secuencia confirmaron que los transgenes se habían clonado correctamente (Figuras 28 y 29).

Las proteínas derivadas con permutaciones al azar de INVAC-1 se expresan correctamente *in vitro* y se degradan por la ruta del proteasoma

Se realizó el ensayo de transferencia Western para proporcionar información sobre la expresión global de las proteínas hTERT de tipo salvaje, INVAC-1, pUTScram y pUTInv después de 18 h a 96 h de transfección transitoria in vitro en líneas celulares HEK293T. Las bandas de proteína hTERT de tipo salvaje correspondían al tamaño de la hTERT no modificada en 124,5 kDa (Figuras 23A y 23C, parte izquierda de las Figuras). En el Ejemplo I, se ha demostrado que las proteínas INVAC-1 se degradan rápidamente con el tiempo en sentido contrario a las proteínas hTERT de tipo salvaje expresadas a un nivel estable. Se detectaron bandas específicas para proteínas con permutaciones al azar de Secuencia Aleatoria o de Secuencia Invertida con el tiempo (Figuras 23A y 23C, parte derecha de las Figuras). Para ambas, estas bandas se observaron a un tamaño menor (<110 kDa) que el tamaño pronosticado para las proteínas completas (130,2 kDa). Estas formas de proteínas de Secuencia Aleatoria y de Secuencia Invertida correspondían a los productos degradados. De hecho, los productos no degradados de expresión de Secuencia Aleatoria y de Secuencia Invertida no fueron detectables en el análisis de transferencia Western. Estas construcciones produjeron, respectivamente, de 1 a 3 bandas específicas lo que sugieren una degradación rápida de estas proteínas inmediatamente después de la producción. En cuanto a INVAC-1, se demostró el mismo patrón de degradación con el tiempo para los productos degradados de Secuencia Aleatoria después de la normalización al control de carga de β-actina (análisis ImageJ; Figura 23B). Los productos degradados de Secuencia Invertida tienen un patrón más similar a las otras proteínas derivadas de INVAC-1 (Figuras 23C, 23D y Figura 3C: pUTD10Not, pUTD10Cog y pUTD23Tyn, véase el Éjemplo I).

Los derivados con permutaciones al azar de INVAC-1 tienen una distribución citoplasmática predominante y un patrón de exclusión nucleolar

Como se demostró para INVAC-1 y derivados INVAC-1 (pUTD10Not, pUTD10Cog y pUTD23Tyn, véase el Ejemplo I), las proteínas con permutaciones al azar de Secuencia Aleatoria y de Secuencia Invertida codificadas por pUTScram y pUTInv se distribuyeron entre el núcleo y el citoplasma con un patrón de exclusión nucleolar (datos no mostrados).

Los derivados con permutaciones al azar de INVAC-1 no tienen actividad enzimática

5

10

15

20

25

30

35

40

45

50

55

Se realizó un ensayo TRAP para evaluar la actividad telomerasa de las construcciones con permutaciones al azar de Ubi-hTERT en la línea celular CrFK negativa para telomerasa. La actividad telomerasa solo se detectó en células CrFK transfectadas con hTERT de tipo salvaje utilizando el plásmido pTRIP-CMV-hTERT.

Como se muestra en la Figura 24A, los datos de absorbancia sin procesar demostraron que el nivel de actividad telomerasa de las proteínas de Secuencia Aleatoria y de Secuencia Invertida es comparable al nivel de las células no tratadas. Los datos de la Actividad Telomerasa Relativa (RTA) (Figura 24B) que representan resultados completamente analizados teniendo en cuenta la especificidad del ensayo mediante el uso de varios controles negativos, incluidas las muestras inactivadas por calor, confirmaron que estas proteínas con permutaciones al azar están completamente desprovistas de cualquier actividad telomerasa.

Las construcciones de hTERT con permutaciones al azar inducen una respuesta de células T CD8 específicas para hTERT

Las construcciones pUTScram y pUTInv se diseñaron para inducir la presentación de antígenos de múltiples epítopos de hTERT aumentando el alcance de las características de INVAC-1. Se evaluó la comparación de inmunogenicidad de pUTScram, pUTInv e INVAC-1 en ratones HLA-B7 inmunizados ID con las diferentes construcciones seguido de electroporación cutánea después de dos ciclos de inmunización (régimen de cebado/refuerzo). Los animales fueron sacrificados diez días después de la segunda vacunación/electroporación. Se recogieron los bazos de los ratones y se realizó un seguimiento de la respuesta de células T CD8 inducida a través de un ensayo ELISPOT para IFN-y utilizando péptidos de hTERT restringidos a HLA-B7 MHC clase I (reserva de 3 péptidos p277, p351 y p1123). Se observó una diferencia significativa en la frecuencia de células T CD8 específicas para hTERT en ratones vacunados con INVAC-1, pUTScram (Secuencia Aleatoria) y pUTInv (Secuencia Invertida) en comparación con los animales de control (Figura 25).

Estos resultados demuestran que las construcciones artificiales con permutaciones al azar de hTERT, pUTScram (Secuencia Aleatoria) y pUTInv (Secuencia Invertida), fueron capaces de inducir niveles altos significativos de respuestas de células T CD8 específicas para hTERT después de dos ciclos de inmunización como lo hizo INVAC-1. De hecho, como se demostró previamente para INVAC-1, la ventaja de un régimen de vacunación de cebado/refuerzo es reforzar selectivamente las células T específicas activadas previamente y ampliar la presentación del epítopo para generar células T específicas secundarias de hTERT que impliquen nuevos TCR específicos.

La vacunación con construcciones artificiales de hTERT con permutaciones al azar pUTScram y pUTInv inducen células T CD8 específicas para hTERT citotóxicas *in vivo*

Entre las células inmunitarias que son relevantes en las respuestas inmunitarias antitumorales, los linfocitos T CD8 citotóxicos (CTL) y las células T CD4 Th1 se han identificado como las células efectoras más potentes (Vesely, Kershaw et al. 2011) (Braumuller, Wieder et al. 2013)

Se investigó la actividad citotóxica de las células T CD8 específicas para hTERT *in vivo* después de la vacunación ID/electroporación con INVAC-1, pUTScram y pUTInv. Para medir la resistencia citolítica *in vivo* de la respuesta de células T CD8 específica de hTERT+ provocada por la inmunización con ADN, se realizó un ensayo de citotoxicidad *in vivo* utilizando esplenocitos marcados con pulsos de péptidos y succinimidil éster diacetato carboxifluoresceína (CFSE) como células diana. A ratones transgénicos para HLA-B7 que recibieron una vacuna con construcciones de ADN (o PBS como control) a través de la vía ID, como se describió anteriormente, se les inyectaron por vía intravenosa 10⁷ células diana. Las células diana eran esplenocitos de ratones congénicos no sometidos a tratamiento previo marcados independientemente con 3 concentraciones diferentes de CFSE y pulsadas con un péptido hTERT restringido a HLA-B7 (p351, péptido inmunodominante o p1123, péptido subdominante) o sin pulsar como control interno. Después de 15-18 horas, se recogieron bazos de ratones inmunizados y se analizaron las suspensiones de esplenocitos mediante citometría de flujo. El porcentaje de lisis específica se evaluó comparando la proporción de células marcadas con CFSE pulsado a no pulsado en ratones vacunados versus ratones control.

Los resultados muestran que todos los ratones inmunizados con las diferentes construcciones desarrollaron linfocitos T citotóxicos (CTL) específicos de hTERT después de una inmunización.

Como se esperaba, la citotoxicidad contra el péptido inmunodominante p351 fue mayor que contra el péptido subdominante p1123 para los tres grupos (Figura 26).

La inmunización con INVAC-1 y pUTInv condujo a una lisis específica de células diana portadoras de epítopos inmuno-dominantes de telomerasa (p351) de 37% y 35%, respectivamente (Figura 26, puntos de color negro). En comparación, la inmunización con pUTScram condujo a una lisis específica de 20%. Dos ratones de cinco inmunizados con INVAC-1 y uno de seis con pUTScram desarrollaron CTL específicos contra el péptido subdominante p1123 (Figura 26, puntos de color gris).

Como se indicó anteriormente, se puede esperar que múltiples ciclos de inyección permitan aumentar el número de animales que desarrollan una lisis por CTL específica contra péptidos inmunodominantes y subdominantes. De hecho, los resultados anteriores (véase el Ejemplo I) demostraron que una segunda inmunización amplía el abanico de respuestas inmunitarias contra los epítopos subdominantes.

5 En conclusión, como INVAC-1, la inmunización artificial mediada por hTERT con permutaciones al azar de Secuencia Aleatoria o de Secuencia Invertida puede generar células T CD8 específicas para hTERT que exhiben actividad citolítica *in vivo*.

Referencias

- Adolph, K. 1996 ed. "Viral Genome Methods" CRC Press, Florida
- Adotevi, O., Mollier, K., Neuveut, C., Cardinaud, S., Boulanger, E., Mignen, B., Fridman, W.H., Zanetti, M., Charneau, P., Tartour, E., et al. (2006). Immunogenic HLA-B*0702-restricted epitopes derived from human telomerase reverse transcriptase that elicit antitumor cytotoxic T-cell responses. Clin Cancer Res 12, 3158-3167
 - Andersson, H.A., y Barry, M.A. (2004). Maximizing antigen targeting to the proteasome for gene-based vaccines. Mol Ther 10, 432-446.
 - Bachmair, A., Finley, D., y Varshavsky, A. (1986). In vivo half-life of a protein is a function of its aminoterminal residue. Science 234, 179-186.
 - Braumuller, H., Wieder, T., Brenner, E., Assmann, S., Hahn, M., Alkhaled, M., Schilbach, K., Essmann, F., Kneilling, M., Griessinger, C., et al. (2013). T-helper-1-cell cytokines drive cancer into senescence. Nature 494, 361-365.
 - Cadima-Couto, I., Freitas-Vieira, A., Nowarski, R., Britan-Rosich, E., Kotler, M., y Goncalves, J. (2009).
 Ubiquitin-fusion as a strategy to modulate protein half-life: A3G antiviral activity revisited. Virology 393, 286-294.
 - Cheever et al., The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res, 2009. 15(17): p. 5323-37.
 - Combadiere, B., y Liard, C. (2011). Transcutaneous and intradermal vaccination. Human Vaccines 7, 811-827.
 - Cortez-Gonzalez, X., Sidney, J., Adotevi, O., Sette, A., Millard, F., Lemonnier, F., Langlade-Demoyen, P., y Zanetti, M. (2006). Immunogenic HLA-B7-restricted peptides of hTRT. Int Immunol 18, 1707-1718.
 - Dosset, M., Godet, Y., Vauchy, C., Beziaud, L., Lone, Y.C., Sedlik, C., Liard, C., Levionnois, E., Clerc, B., Sandoval, F., et al. (2012). Universal cancer peptide-based therapeutic vaccine breaks tolerance against telomerase and eradicates established tumor. Clin Cancer Res 18, 6284-6295.
 - Firat, H., Cochet, M., Rohrlich, P.S., Garcia-Pons, F., Darche, S., Danos, O., Lemonnier, F.A., y Langlade-Demoyen, P. (2002). Comparative analysis of the CD8(+) T cell repertoires of H-2 class I wild-type/HLA-A2.1 and H-2 class I knockout/HLA-A2.1 transgenic mice. Internat Immunol 14, 925-934.
 - Godet, Y., Fabre-Guillevin, E., Dosset, M., Lamuraglia, M., Levionnois, E., Ravel, P., Benhamouda, N., Cazes, A., Le Pimpec-Barthes, F., Gaugler, B., et al. (2012). Analysis of spontaneous tumor-specific CD4 T cell immunity in lung cancer using promiscuous HLA-DR telomerase-derived epitopes: potential synergistic effect with chemotherapy response. Clin Cancer Res 18, 2943-2953.
 - Lavigueur, A., H. La Branche, et al. (1993). A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev 7: 2405-2417.
 - Michalek, M.T., Grant, E.P., Gramm, C., Goldberg, A.L., y Rock, K.L. (1993). A role for the ubiquitindependent proteolytic pathway in MHC class I-restricted antigen presentation. Nature 363, 552-554.
 - Mir LM. 2008. Application of electroporation gene therapy: past, current, and future. Methods Mol Biol 423: 3-17.
 - Murray, 1991, ed. "Gene Transfer and Expression Protocols" Humana Pres, Clifton, N.J.
 - Pajot, A., Michel, M.L., Fazilleau, N., Pancre, V., Auriault, C., Ojcius, D.M., Lemonnier, F.A., y Lone, Y.C. (2004). A mouse model of human adaptive immune functions: HLA-A2.1-/HLA-DR1-transgenic H-2 class I/class II-knockout mice. Eur J Immunol 34, 3060-3069.
 - Parmiani, G., Castelli, C., Pilla, L., Santinami, M., Colombo, M.P., y Rivoltini, L. (2007). Opposite immune functions of GM-CSF administered as vaccine adjuvant in cancer patients. Ann Oncol 18, 226-232.
 - Rohrlich, P.S., Cardinaud, S., Firat, H., Lamari, M., Briand, P., Escriou, N., y Lemonnier, F.A. (2003). HLA-B*0702 transgenic, H-2KbDb double-knockout mice: phenotypical and functional characterization in response to influenza virus. Int Immunol 15, 765-772.
 - Rosenberg SA, Yang JC, Restifo NP (2004). Cancer immunotherapy: moving beyond current vaccines. Nat Med. 10:909-15.
 - Sardesai NY, Weiner DB. 2011. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 23: 421-429.

39

15

10

20

25

30

35

40

45

50

55

- Tasaki, T., Sriram, S.M., Park, K.S., y Kwon, Y.T. (2012). The N-end rule pathway. Annu Rev Biochem 81, 261-289.
- Varshavsky, A. (1996). The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci USA 93, 12142-12149.
- Vesely, M.D., Kershaw, M.H., Schreiber, R.D., y Smyth, M.J. (2011). Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29, 235-271.
- Yang, 1992, "Gene transfer into mammalian somatic cells in vivo", Crit. Rev. Biotech. 12: 335-356
- Yang, Y., Chen, Y., Zhang, C., Huang, H., y Weissman, S.M. (2002). Nucleolar localization of hTERT protein is associated with telomerase function. Exp Cell Res 277, 201-209.

10

5

LISTA DE SECUENCIAS

	<110	> IN\	/ECT	YS													
5	<120	> Una	a vac	una c	le AD	N que	e cod	ifica t	telom	erasa	l						
	<130	> B16	698P	C00													
10	<160	> 50															
10	<170	> Pat	entIn	versi	ión 3.	5											
15	<210 <211 <212 <213	> 401 > AD	N	apiens	S												
20	<220 <221 <222	> CD	_	.57)													
	<400 cag		cgc t	tgcgl	taato	gc tọ	gcgca	acgt	g gga	aagco	cctg	gcc	ccgg	cca (cccc	cgcg	58
									gcc Ala								106
									gcc Ala 25								154
									cgc Arg								202
									tgc Cys								250
			-	-				_	cag Gln			_	_	_		_	298
									tgc Cys								346
									gac Asp 105								394
									agc Ser								442
									tgg Trp								490
	ggc	gac	gac	gtg	ctg	gtt		ctg	ctg	gca	cgc	tgc	gcg	ctc	ttt	gtg	538

145	150	155	160
		gtg tgc ggg ccg ccg Val Cys Gly Pro Pro 170	
		ccc ccg cca cac gct Pro Pro Pro His Ala 190	
		gcc tgg aac cat agc Ala Trp Asn His Ser 205	
		gcc ccg ggt gcg agg Ala Pro Gly Ala Arg 220	
		ttg ccc aag agg ccc Leu Pro Lys Arg Pro 235	
		ccc gtt ggg cag ggg Pro Val Gly Gln Gly 250	
		agt gac cgt ggt ttc Ser Asp Arg Gly Phe 270	
		gcc acc tct ttg gag Ala Thr Ser Leu Glu 285	
		tcc gtg ggc cgc cag Ser Val Gly Arg Gln 300	
		cca cgt ccc tgg gac Pro Arg Pro Trp Asp 315	
		cac ttc ctc tac tcc His Phe Leu Tyr Ser 330	
		cta ctc agc tct ctg Leu Leu Ser Ser Leu 350	
		gag acc atc ttt ctg Glu Thr Ile Phe Leu 365	
		agg ttg ccc cgc ctg Arg Leu Pro Arg Leu 380	-
		ctg gag ctg ctt ggg Leu Glu Leu Leu Gly 395	
gcg cag tgc ccc tac	ggg gtg ctc ctc	aag acg cac tgc ccg	ctg cga 1306

Ala	Gln	Cys	Pro	Tyr 405	Gly	Val	Leu	Leu	Lys 410	Thr	His	Cys	Pro	Leu 415	Arg	
_		_	acc Thr 420		_	_		_	_	_			_		_	1354
			gcg Ala	_					_		_		_	_	_	1402
			ctc Leu													1450
		_	tgc Cys	_	-		-									1498
			gaa Glu	-	-						-	_				1546
			cat His 500													1594
_			gac Asp	_	_		_	_		_			-		_	1642
-	_	_	gca Ala			_	_	_				_	-	_		1690
_			ctg Leu	_	_			_	_		_					1738
		_	acg Thr			_			_							1786
	_	_	gtc Val 580		_	_	_		_				_	_		1834
_	_	_	gtg Val	~ -	_	_	~ 7	_	~	~ -		~ 1		_	~ 7	1882
		_	gcc Ala			_	_	_	_		_		_			1930
	_		gac Asp		_		_				_	_		_		1978
gga Gly	gcc Ala	aga Arg	acg Thr	ttc Phe 645	cgc Arg	aga Arg	gaa Glu	aag Lys	agg Arg 650	gcc Ala	gag Glu	cgt Arg	ctc Leu	acc Thr 655	tcg Ser	2026

		aag Lys	_	_		_					_				_	2074
		ctc Leu 675	_		_			_		_	_	-				2122
-		cgc Arg				_	_			_	_	-	_	_		2170
	_	tac Tyr		_	_		_		_				_			2218
	_	gac Asp			_		_		_	_					_	2266
	_	tac Tyr	_		-			_		-	_	_	-	-		2314
		gtc Val 755	-	-	-		-	-		-			-		-	2362
	_	ccg Pro		_	_	_			_		_				_	2410
_	_	agg Arg	_	_	-	-			_	_			_			2458
-	_	agt Ser				_	-			_		_	-			2506
		cgc Arg														2554
_		tcc Ser 835				-	_		_	_	_	-			-	2602
		aac Asn														2650
_	_	gtg Val	_	_		_	_									2698
		ttc Phe				_	_	_		_					_	2746
		aac Asn	_		_							_	_	_		2794

gcc ctg ggt ggc acg gct ttt gtt cag atg ccg gcc cac ggc cta ttc Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe 915 920 925	2842
ccc tgg tgc ggc ctg ctg ctg gat acc cgg acc ctg gag gtg cag agc Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser 930 935 940	2890
gac tac tcc agc tat gcc cgg acc tcc atc aga gcc agt ctc acc ttc Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe 945 950 955 960	2938
aac cgc ggc ttc aag gct ggg agg aac atg cgt cgc aaa ctc ttt gggAsn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly965970	2986
gtc ttg cgg ctg aag tgt cac agc ctg ttt ctg gat ttg cag gtg aac Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn 980 985 990	3034
agc ctc cag acg gtg tgc acc aac atc tac aag atc ctc ctg ctg cag Ser Leu Gln Thr Val Cys Thr Asn 11e Tyr Lys Ile Leu Leu Gln 995 1000 1005	3082
gcg tac agg ttt cac gca tgt gtg ctg cag ctc cca ttt cat cag Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln 1010 1015 1020	3127
Caa gtt tgg aag aac ccc aca ttt ttc ctg cgc gtc atc tct gac Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp 1025 1030 1035	3172
acg gcc tcc ctc tgc tac tcc atc ctg aaa gcc aag aac gca ggg Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly 1040 1045 1050	3217
atg tcg ctg ggg gcc aag ggc gcc gcc ggc cct ctg ccc tcc gag Met Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu 1055 1060 1065	3262
gcc gtg cag tgg ctg tgc cac caa gca ttc ctg ctc aag ctg act Ala Val Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr 1070 1075 1080	3307
cga cac cgt gtc acc tac gtg cca ctc ctg ggg tca ctc agg aca Arg His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr 1085 1090 1095	3352
gcc cag acg cag ctg agt cgg aag ctc ccg ggg acg acg ctg act Ala Gln Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr 1100 1105 1110	3397
gcc ctg gag gcc gca gcc aac ccg gca ctg ccc tca gac ttc aag Ala Leu Glu Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys 1115 1120 1125	3442
acc atc ctg gac tga tggccacccg cccacagcca ggccgagagc agacaccagc Thr Ile Leu Asp 1130	3497
agccctgtca cgccgggctc tacgtcccag ggagggaggg gcggcccaca cccaggcccg	3557

cacc	gcto	ggg a	agtct	gago	jc ct	gagt	gagt	gtt	tgg	ccga	ggc	ctgca	atg 1	taagg	gctgaa
ggct	gagt	gt o	ccggo	ctgag	g co	ctgaç	gcgag	g tgt	cca	gcca	aggg	gctga	agt (gtcca	agcaca
ccto	gccgt	ct t	cact	tccc	cc ac	caggo	ctggc	c gct	cgg	ctcc	acco	ccago	ggc (cagct	tttcc
tcac	ccago	gag d	cccg	gctto	cc ac	ctccc	ccaca	a tag	ggaat	agt	ccat	cccc	cag a	attc	gccatt
gtto	cacco	ect o	egeed	ctgcc	ec to	ccttt	gcct	tco	cacco	ccca	ccat	ccaç	ggt (ggaga	accctg
agaa	aggad	ccc t	ggga	agcto	et go	ggaat	ttg	g agt	gaco	caaa	ggt	gtgco	cct o	gtaca	acaggc
gago	gacco	ctg d	cacct	ggat	g gg	gggto	cccto	g tgg	gtca	aaat	tggg	gggga	agg f	tgata	gtggga
gtaa	aata	act o	gaata	atato	ga gt	tttt	cagt	ttt	gaaa	aaaa	a				
<210 <211 <212 <213	> 113 > PR	Т	apiens	5											
<400 Met 1		Arg	Ala	Pro 5	Arg	Cys	Arg	Ala	Val 10	Arg	Ser	Leu	Leu	Arg 15	Ser
His	Tyr	Arg	Glu 20	Val	Leu	Pro	Leu	Ala 25	Thr	Phe	Val	Arg	Arg 30	Leu	Gly
Pro	Gln	Gly 35	Trp	Arg	Leu	Val	Gln 40	Arg	Gly	Asp	Pro	Ala 45	Ala	Phe	Arg
Ala	Leu 50	Val	Ala	Gln	Cys	Leu 55	Val	Cys	Val	Pro	Trp 60	Asp	Ala	Arg	Pro
Pro 65	Pro	Ala	Ala	Pro	Ser 70	Phe	Arg	Gln	Val	Ser 75	Cys	Leu	Lys	Glu	Leu 80
Val	Ala	Arg	Val	Leu 85	Gln	Arg	Leu	Cys	Glu 90	Arg	Gly	Ala	Lys	Asn 95	Val
Leu	Ala	Phe	Gly 100	Phe	Ala	Leu	Leu	Asp 105	Gly	Ala	Arg	Gly	Gly 110	Pro	Pro
Glu	Ala	Phe 115	Thr	Thr	Ser	Val	Arg 120	Ser	Tyr	Leu	Pro	Asn 125	Thr	Val	Thr
Asp	Ala 130	Leu	Arg	Gly	Ser	Gly 135	Ala	Trp	Gly	Leu	Leu 140	Leu	Arg	Arg	Val
Gly 145	Asp	Asp	Val	Leu	Val 150	His	Leu	Leu	Ala	Arg 155	Cys	Ala	Leu	Phe	Val 160

Leu	Val	Ala	Pro	Ser 165	Cys	Ala	Tyr	Gln	Val 170	Cys	Gly	Pro	Pro	Leu 175	Tyr
Gln	Leu	Gly	Ala 180	Ala	Thr	Gln	Ala	Arg 185	Pro	Pro	Pro	His	Ala 190	Ser	Gly
Pro	Arg	Arg 195	Arg	Leu	Gly	Сув	Glu 200	Arg	Ala	Trp	Asn	His 205	Ser	Val	Arg
Glu	Ala 210	Gly	Val	Pro	Leu	Gly 215	Leu	Pro	Ala	Pro	Gly 220	Ala	Arg	Arg	Arg
Gly 225	Gly	Ser	Ala	Ser	Arg 230	Ser	Leu	Pro	Leu	Pro 235	Lys	Arg	Pro	Arg	Arg 240
Gly	Ala	Ala	Pro	Glu 245	Pro	Glu	Arg	Thr	Pro 250	Val	Gly	Gln	Gly	Ser 255	Trp
Ala	His	Pro	Gly 260	Arg	Thr	Arg	Gly	Pro 265	Ser	Asp	Arg	Gly	Phe 270	Cys	Val
Val	Ser	Pro 275	Ala	Arg	Pro	Ala	Glu 280	Glu	Ala	Thr	Ser	Leu 285	Glu	Gly	Ala
Leu	Ser 290	Gly	Thr	Arg	His	Ser 295	His	Pro	Ser	Val	Gly 300	Arg	Gln	His	His
Ala 305	Gly	Pro	Pro	Ser	Thr 310	Ser	Arg	Pro	Pro	Arg 315	Pro	Trp	Asp	Thr	Pro 320
Cys	Pro	Pro	Val	Tyr 325	Ala	Glu	Thr	Lys	His 330	Phe	Leu	Tyr	Ser	Ser 335	Gly
Asp	Lys	Glu	Gln 340	Leu	Arg	Pro	Ser	Phe 345	Leu	Leu	Ser	Ser	Leu 350	Arg	Pro
Ser	Leu	Thr 355	Gly	Ala	Arg	Arg	Leu 360	Val	Glu	Thr	Ile	Phe 365	Leu	Gly	Ser
Arg	Pro 370	Trp	Met	Pro	Gly	Thr 375	Pro	Arg	Arg	Leu	Pro 380	Arg	Leu	Pro	Gln
A rg 385	Tyr	Trp	Gln	Met	Arg 390	Pro	Leu	Phe	Leu	Glu 395	Leu	Leu	Gly	Asn	His 400
Ala	Gln	Cys	Pro	Tyr 405	Gly	Val	Leu	Leu	Lys 410	Thr	His	Cys	Pro	Leu 415	Arg

Ala	Ala	Val	Thr 420	Pro	Ala	Ala	Gly	Val 425	Cys	Ala	Arg	Glu	Lys 430	Pro	Gln
Gly	Ser	Val 435	Ala	Ala	Pro	Glu	Glu 440	Glu	Asp	Thr	Asp	Pro 445	Arg	Arg	Leu
Val	Gln 4 50	Leu	Leu	Arg	Gln	His 455	Ser	Ser	Pro	Trp	Gln 460	Val	Tyr	Gly	Phe
Val 465	Arg	Ala	Cys	Leu	Arg 470	Arg	Leu	Val	Pro	Pro 47 5	Gly	Leu	Trp	Gly	Ser 480
Arg	His	Asn	Glu	Arg 485	Arg	Phe	Leu	Arg	Asn 490	Thr	Lys	Lys	Phe	Ile 495	Ser
Leu	Gly	Lys	His 500	Ala	Lys	Leu	Ser	Leu 505	Gln	Glu	Leu	Thr	Trp 510	Lys	Met
Ser	Val	Arg 515	Asp	Cys	Ala	Trp	Leu 520	Arg	Arg	Ser	Pro	Gly 525	Val	Gly	Cys
Val	Pro 530	Ala	Ala	Glu	His	Arg 535	Leu	Arg	Glu	Glu	Ile 540	Leu	Ala	Lys	Phe
Leu 545	His	Trp	Leu	Met	Ser 550	Val	Tyr	Val	Val	Glu 555	Leu	Leu	Arg	Ser	Phe 560
Phe	Tyr	Val	Thr	Glu 565	Thr	Thr	Phe	Gln	Lys 570	Asn	Arg	Leu	Phe	Phe 575	Tyr
Arg	Lys	Ser	Val 580	Trp	Ser	Lys	Leu	Gln 585	Ser	Ile	Gly	Ile	Arg 590	Gln	His
Leu	Lys	A rg 595	Val	Gln	Leu	Arg	Glu 600	Leu	Ser	Glu	Ala	Glu 605	Val	Arg	Gln
His	Arg 610	Glu	Ala	Arg	Pro	Ala 615	Leu	Leu	Thr	Ser	Arg 620	Leu	Arg	Phe	Ile
Pro 625	Lys	Pro	Asp	Gly	Leu 630	Arg	Pro	Ile	Val	Asn 635	Met	Asp	Tyr	Val	Val 640
Gly	Ala	Arg	Thr	Phe 645	Arg	Arg	Glu	Lys	Arg 650	Ala	Glu	Arg	Leu	Thr 655	Ser

Arg Val Lys Ala Leu Phe Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg

			660					665					670		
Pro	Gly	Leu 675	Leu	Gly	Ala	Ser	Val 680	Leu	Gly	Leu	Asp	Asp 685	Ile	His	Arg
Ala	Trp 690	Arg	Thr	Phe	Val	Leu 695	Arg	Val	Arg	Ala	Gln 700	Asp	Pro	Pro	Pro
Glu 705	Leu	Tyr	Phe	Val	Lys 710	Val	Asp	Val	Thr	Gly 715	Ala	Tyr	Asp	Thr	Ile 720
Pro	Gln	Asp	Arg	Leu 725	Thr	Glu	Val	Ile	Ala 730	Ser	Ile	Ile	Lys	Pro 735	Gln
Asn	Thr	Tyr	Cys 740	Val	Arg	Arg	Tyr	Ala 745	Val	Val	Gln	Lys	Ala 750	Ala	His
Gly	His	Val 755	Arg	Lys	Ala	Phe	Lys 760	Ser	His	Val	Ser	Thr 765	Leu	Thr	Asp
Leu	Gln 770	Pro	Tyr	Met	Arg	Gln 775	Phe	Val	Ala	His	Leu 780	Gln	Glu	Thr	Ser
Pro 785	Leu	Arg	Asp	Ala	Val 790	Val	Ile	Glu	Gln	Ser 795	Ser	Ser	Leu	Asn	Glu 800
Ala	Ser	Ser	Gly	Leu 805	Phe	Asp	Val	Phe	Leu 810	Arg	Phe	Met	Cys	His 815	His
Ala	Val	Arg	Ile 820	Arg	Gly	Lys	Ser	Tyr 825	Val	Gln	Cys	Gln	Gly 830	Ile	Pro
Gln	Gly	Ser 835	Ile	Leu	Ser	Thr	Leu 840	Leu	Cys	Ser	Leu	Cys 845	Tyr	Gly	Asp
Met	Glu 850	Asn	Lys	Leu	Phe	Ala 855	Gly	Ile	Arg	Arg	Asp 860	Gly	Leu	Leu	Leu
Arg 865	Leu	Val	Asp	Asp	Phe 870	Leu	Leu	Val	Thr	Pro 875	His	Leu	Thr	His	Ala 880
Lys	Thr	Phe	Leu	Arg 885	Thr	Leu	Val	Arg	Gly 890	Val	Pro	Glu	Tyr	Gly 895	Cys
Val	Val	Asn	Leu 900	Arg	Lys	Thr	Val	Val 905	Asn	Phe	Pro	Val	Glu 910	Asp	Glu

- Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe 915 920 925
- Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser 930 935 940
- Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe 945 950 955 960
- Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly 965 970 975
- Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn 980 985 990
- Ser Leu Gln Thr Val Cys Thr Asn $\,$ Ile Tyr Lys Ile Leu Leu Gln $\,$ 995 $\,$ 1000 $\,$ 1005
- Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln 1010 1015 1020
- Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp 1025 1030 1035
- Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly 1040 1045 1050
- Met Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu 1055 1060 1065
- Ala Val Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr 1070 1075 1080
- Arg His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr 1085 1090 1095
- Ala Gln Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr 1100 1105 1110
- Ala Leu Glu Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys 1115 1120 1125
- Thr Ile Leu Asp 1130
- <210> 3 5 <211> 3246
 - <212> ADN
 - <213> Homo sapiens
- 10 <220> <221> CDS <222> (1)..(3246)

<400	. 2																
cgc	gct Ala															48	}
	ccc Pro		-	-				_				_	-	_		96	5
_	gtg Val	_	_		_	_		_	_		_			_		144	l
	ctg Leu 50															192	2
	gag Glu															240)
	gac Asp															288	3
	ggc Gly	_	-		_	-		-	_	_	_	-				336	3
	ctg Leu															384	Ī
	cag Gln 130			-	-		-	-						-	-	432	2
	ccc Pro	-		_	-		_	-		_				-	-	480)
	gag Glu															528	3
	Gl y ggg	= =														576	3
	ggc Gly															624	Ī
	gcc Ala 210															672	2

	gtg Val															720
	ctc Leu			_	_								_	_		768
	gcg Ala															816
	tgt C ys		_			_			_							864
	gac Asp 290															912
	agc Ser	_			-									_		960
	agg Arg			_					_		_		_	_		1008
_	cgc Arg				_			_		_		_				1056
	gcg Ala	_	_							_	_		_	_	_	1104
_	gct Ala 370		_			_	_		_	_	_			_		1152
_	ggc Gly				_					_		_		_	_	1200
_	gtg Val	_	_		_	_		_	_			_				1248
ttc Phe	gtg Val	cgg Arg	gcc Ala 420	tgc Cys	ctg Leu	cgc Arg	cgg Arg	ctg Leu 425	gtg Val	ccc Pro	cca Pro	ggc Gly	ctc Leu 430	tgg Trp	ggc Gly	1296
	agg Arg															1344
	ctg Leu 450		_		_	_		_	_	_		_	_		_	1392
-	agc Ser				-	-		_	-		-			-		1440

465	470	475	480
	a Glu His Arg Leu A	gt gag gag atc ctg gcc rg Glu Glu Ile Leu Ala 90 495	
		tc gtc gag ctg ctc agg al Val Glu Leu Leu Arg 510	
		aa aag aac agg ctg ttt ln Lys Asn Arg Leu Phe 525	
		aa agc att gga atc aga ln Ser Ile Gly Ile Arg 540	-
		tg tcg gaa gca gag gtc eu Ser Glu Ala Glu Val 555	
	a Arg Pro Ala Leu L	tg acg tcc aga ctc cgc eu Thr Ser Arg Leu Arg 70 575	
		tt gtg aac atg gac tac le Val Asn Met Asp Tyr 590	-
		ag agg gcc gag cgt ctc ys Arg Ala Glu Arg Leu 605	
		tc aac tac gag cgg gct eu Asn Tyr Glu Arg Ala 620	
		tg ggc ctg gac gat atc eu Gly Leu Asp Asp Ile 635	
	r Phe Val Leu Arg V	tg egg gee eag gae eeg al Arg Ala Gln Asp Pro 650 655	-
		tg acg ggc gcg tac gac al Thr Gly Ala Tyr Asp 670	
		tc gcc agc atc atc aaa le Ala Ser Ile Ile Lys 685	
		cc gtg gtc cag aag gcc la Val Val Gln Lys Ala 700	-
		gc cac gtc tct acc ttg er His Val Ser Thr Leu 715	
gac ctc cag ccg ta	c atg cga cag ttc g	tg gct cac ctg cag gag	acc 2208

Asp	Leu	Gln	Pro	Tyr 725	Met	Arg	Gln	Phe	Val 730	Ala	His	Leu	Gln	Glu 735	Thr	
_	_	_		-	-	_	-			cag Gln	_			_		2256
	_	_	-				-	-		cta Leu	-		-	_		2304
	_		-				-			gtc Val	_	-	_			2352
_	_						_	_		tgc Cys 795	_	_	-			2400
										cgg Arg						2448
										ctc Leu						2496
										gag Glu						2544
	_		_							gta Val	_	_		-	_	2592
		_	_		_	_	_	_	_	cac His 875						2640
										gag Glu						2688
	_		_					_	_	agt Ser					_	2736
			Ξ.			_				aaa Lys	_		217			2784
	_	_	_		_	_		_	_	ttg Leu	_			_		2832
_	_		-					_		ctc Leu 955	_	_	_			2880
			-	_		_	_			ttt Phe		_		-		2928

aag aac ccc aca ttt ttc ctg cgc gtc atc tct gac acg gcc tcc ctc Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala Ser Leu 980 985 990	2976
tgc tac tcc atc ctg aaa gcc aag aac gca ggg atg tcg ctg ggg gcc Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser Leu Gly Ala 995 1000 1005	3024
aag ggc gcc gcc ggc cct ctg ccc tcc gag gcc gtg cag tgg ctg Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val Gln Trp Leu 1010 1015 1020	3069
tgc cac caa gca ttc ctg ctc aag ctg act cga cac cgt gtc acc Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His Arg Val Thr 1025 1030 1035	3114
tac gtg cca ctc ctg ggg tca ctc agg aca gcc cag acg ctg Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln Thr Gln Leu 1040 1045 1050	3159
agt cgg aag ctc ccg ggg acg acg ctg act gcc ctg gag gcc gca Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu Glu Ala Ala 1055 1060 1065	3204
gcc aac ccg gca ctg ccc tca gac ttc aag acc atc ctg gac Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile Leu Asp 1070 1075 1080	3246
<210> 4 <211> 1082 <212> PRT <213> Homo sapiens	
<pre><400> 4 Arg Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg 1</pre>	
Pro Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu	
20 25 30	
20 25 30 Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn	
Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn 35 Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Pro	
Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn 45 Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Pro 55 Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val	

Val	Leu	Val 115	Ala	Pro	Ser	Cys	Ala 120	Tyr	Gln	Val	Cys	Gly 125	Pro	Pro	Leu
Tyr	Gln 130	Leu	Gly	Ala	Ala	Thr 135	Gln	Ala	Arg	Pro	Pro 140	Pro	His	Ala	Ser
Gly 145	Pro	Arg	Arg	Arg	Leu 150	Gly	Суѕ	Glu	Arg	Ala 155	Trp	Asn	His	Ser	Val 160
Arg	Glu	Ala	Gly	Val 165	Pro	Leu	Gly	Leu	Pro 170	Ala	Pro	Gly	Ala	Arg 175	Arg
Arg	Gly	Gly	Ser 180	Ala	Ser	Arg	Ser	Leu 185	Pro	Leu	Pro	Lys	Arg 190	Pro	Arg
Arg	Gly	Ala 195	Ala	Pro	Glu	Pro	Glu 200	Arg	Thr	Pro	Val	Gly 205	Gln	Gly	Ser
Trp	Ala 210	His	Pro	Gly	Arg	Thr 215	Arg	Gly	Pro	Ser	Asp 220	Arg	Gly	Phe	Cys
Val 225	Val	Ser	Pro	Ala	Arg 230	Pro	Ala	Glu	Glu	Ala 235	Thr	Ser	Leu	Glu	Gly 240
Ala	Leu	Ser	Gly	Thr 245	Arg	His	Ser	His	Pro 250	Ser	Val	Gly	Arg	Gln 255	His
His	Ala	Gly	Pro 260	Pro	Ser	Thr	Ser	Arg 265	Pro	Pro	Arg	Pro	Trp 270	Asp	Thr
Pro	Cys	Pro 275	Pro	Val	Tyr	Ala	Glu 280	Thr	Lys	His	Phe	Leu 285	Tyr	Ser	Ser
Gly	Asp 290	Lys	Glu	Gln	Leu	Arg 295	Pro	Ser	Phe	Leu	Leu 300	Ser	Ser	Leu	Arg
Pro 305	Ser	Leu	Thr	Gly	Ala 310	Arg	Arg	Leu	Val	Glu 315	Thr	Ile	Phe	Leu	Gly 320
Ser	Arg	Pro	Trp	Met 325	Pro	Gly	Thr	Pro	Arg 330	Arg	Leu	Pro	Arg	Leu 335	Pro
Gln	Arg	Tyr	Trp 340	Gln	Met	Arg	Pro	Leu 345	Phe	Leu	Glu	Leu	Leu 350	Gly	Asn
His	Ala	Gln	Cys	Pro	Tyr	Gly	Val	Leu	Leu	Lys	Thr	His	Cys	Pro	Leu

Arg	Ala 370	Ala	Val	Thr	Pro	Ala 375	Ala	Gly	Val	Cys	Ala 380	Arg	Glu	Lys	Pro
Gln 385	Gly	Ser	Val	Ala	Ala 390	Pro	Glu	Glu	Glu	Asp 395	Thr	Asp	Pro	Arg	Arg 400
Leu	Val	Gln	Leu	Leu 405	Arg	Gln	His	Ser	Ser 410	Pro	Trp	Gln	Val	Tyr 415	Gly
Phe	Val	Arg	Ala 420	Суз	Leu	Arg	Arg	Leu 425	Val	Pro	Pro	Gly	Leu 430	Trp	Gly
Ser	Arg	His 435	Asn	Glu	Arg	Arg	Phe 440	Leu	Arg	Asn	Thr	Lys 445	Lys	Phe	Ile
Ser	Leu 450	Gly	Lys	His	Ala	Lys 455	Leu	Ser	Leu	Gln	Glu 460	Leu	Thr	Trp	Lys
Met 465	Ser	Val	Arg	Gly	Cys 470	Ala	Trp	Leu	Arg	Arg 475	Ser	Pro	Gly	Val	Gly 480
Суѕ	Val	Pro	Ala	Ala 485	Glu	His	Arg	Leu	Arg 490	Glu	Glu	Ile	Leu	Ala 495	Lys
Phe	Leu	His	Trp 500	Leu	Met	Ser	Val	Tyr 505	Val	Val	Glu	Leu	Leu 510	Arg	Ser
Phe	Phe	Tyr 515	Val	Thr	Glu	Thr	Thr 520	Phe	Gln	Lys	Asn	Arg 525	Leu	Phe	Phe
Tyr	Arg 530	Lys	Ser	Val	Trp	Ser 535	Lys	Leu	Gln	Ser	Ile 540	Gly	Ile	Arg	Gln
His 545	Leu	Lys	Arg	Val	Gln 550	Leu	Arg	Glu	Leu	Ser 555	Glu	Ala	Glu	Val	Arg 560
Gln	His	Arg	Glu	Ala 565	Arg	Pro	Ala	Leu	Leu 570	Thr	Ser	Arg	Leu	Arg 575	Phe
Ile	Pro	Lys	Pro 580	Asp	Gly	Leu	Arg	Pro 585	Ile	Val	Asn	Met	Asp 590	Tyr	Val
Val	Gly	Ala 595	Arg	Thr	Phe	Arg	Arg 600	Glu	Lys	Arg	Ala	Glu 605	Arg	Leu	Thr
Ser	Arg	Val	Lys	Ala	Leu	Phe	Ser	Val	Leu	Asn	Tyr	Glu	Arg	Ala	Arg

	610					615					620				
Arg 625	Pro	Gly	Leu	Leu	Gly 630	Ala	Ser	Val	Leu	Gly 635	Leu	Asp	Asp	Ile	His 640
Arg	Ala	Trp	Arg	Thr 645	Phe	Val	Leu	Arg	Val 650	Arg	Ala	Gln	Asp	Pro 655	Pro
Pro	Glu	Leu	Tyr 660	Phe	Val	Lys	Val	Asp 665	Val	Thr	Gly	Ala	Tyr 670	Asp	Thr
Ile	Pro	Gln 675	Asp	Arg	Leu	Thr	Glu 680	Val	Ile	Ala	Ser	Ile 685	Ile	Lys	Pro
Gln	Asn 690	Thr	Tyr	Cys	Val	Arg 695	Arg	Tyr	Ala	Val	Val 700	Gln	Lys	Ala	Ala
His 705	Gly	His	Val	Arg	Lys 710	Ala	Phe	Lys	Ser	His 715	Val	Ser	Thr	Leu	Thr 720
Asp	Leu	Gln	Pro	Tyr 725	Met	Arg	Gln	Phe	Val 730	Ala	His	Leu	Gln	Glu 735	Thr
Ser	Pro	Leu	Arg 740	Asp	Ala	Val	Val	Ile 745	Glu	Gln	Ser	Ser	Ser 750	Leu	Asn
Glu	Ala	Ser 755	Ser	Gly	Leu	Phe	Asp 760	Val	Phe	Leu	Arg	Phe 765	Met	Cys	His
His	A la 770	Val	Arg	Ile	Arg	Gly 775	Lys	Ser	Tyr	Val	Gln 780	Cys	Gln	Gly	Ile
Pro 785	Gln	Gly	Ser	Ile	Leu 790	Ser	Thr	Leu	Leu	Cys 795	Ser	Leu	Cys	Tyr	Gly 800
Asp	Met	Glu	Asn	Lys 805	Leu	Phe	Ala	Gly	Ile 810	Arg	Arg	Asp	Gly	Leu 815	Leu
Leu	Arg	Leu	Phe 820	Leu	Leu	Val	Thr	Pro 825	His	Leu	Thr	His	Ala 830	Lys	Thr
Phe	Leu	A rg 835	Thr	Leu	Val	Arg	Gly 840	Val	Pro	Glu	Tyr	Gly 845	Cys	Val	Val
Asn	Leu 850	Arg	Lys	Thr	Val	Val 855	Asn	Phe	Pro	Val	Glu 860	Asp	Glu	Ala	Leu

Gly 865	Gly	Thr	Ala	Phe	Val 870	Gln	Met	Pro	Ala	His 875	Gly	Leu	Phe	Pro	Trp 880
Cys	Gly	Leu	Leu	Leu 885	Asp	Thr	Arg	Thr	Leu 890	Glu	Val	Gln	Ser	Asp 895	_
Ser	Ser	Tyr	A la 900	Arg	Thr	Ser	Ile	Arg 905	Ala	Ser	Leu	Thr	Phe 910		Arg
Gly	Phe	Lys 915	Ala	Gly	Arg	Asn	Met 920	Arg	Arg	Lys	Leu	Phe 925	Gly	Val	Leu
Arg	Leu 930	Lys	Cys	His	Ser	Leu 935	Phe	Leu	Asp	Leu	Gln 940	Val	Asn	Ser	Leu
Gln 945	Thr	Val	Cys	Thr	Asn 950	Ile	Tyr	Lys	Ile	Leu 955	Leu	Leu	Gln	Ala	Tyr 960
Arg	Phe	His	Ala	Cys 965	Val	Leu	Gln	Leu	Pro 970	Phe	His	Gln	Gln	Val 975	
Lys	Asn	Pro	Thr 980	Phe	Phe	Leu	Arg	Val 985	Ile	Ser	Asp	Thr	Ala 990		Leu
Cys	Tyr	Ser 995	Ile	Leu	Lys	Ala	Lys 1000		n Ala	a Gly	y Met	5 Se 10		eu G	ly Ala
Lys	Gly 1010		a Ala	a Gly	Pro	101		ro Se	er Gl	lu Al		al 020	Gln	Trp	Leu
Cys	His 1025		n Ala	n Ph∈	e Leu	103	_	ys Le	eu Tl	nr Ai	_	is . 035	Arg	Val	Thr
Tyr	Val 1040		Leu	ı Lev	ı Gly	7 Sei 104		eu Ai	rg Tl	nr Al		ln 050	Thr	Gln	Leu
Ser	Arg 1055		s Leu	ı Pro	Gly	7 Thi 106		nr Le	eu Tl	nr Al		eu 065	Glu	Ala	Ala
Ala	7 an	Pro	Ala	ı Lev	ı Pro			sp Pl	ne Ly	ys Tl		le :	Leu	Asp	
	1070					107	/5				Τ.	000			
<212	1070	7 N				10	/5				Τ.				
<211 <212 <213 <220 <221	1070 > 5 > 329 > ADI > Hor	7 N mo sa	apiens			10	/5				10				

_	-					-	_			_			cgg Arg	_			48
_	_		_		-	_		_	-		-	_	cag Gln 30	_	_		96
_	_	-			_	-					-	-	ccc Pro	_		1	44
													ttg Leu			1	92
													ttc Phe			2	40
	_		_	_						_			act Thr	_	_	2	88
			_						-	_	_	_	ggt Gly 110			3	36
													ctg Leu			3	84
	_	_		_	-	_			_		-		tcc Ser	_	_	4	32
	_	-	-						-			-	gct Ala		_	4	80
_	_					-				-	_		ctg Leu		-	5	28
_		-				_				_			cct Pro 190			5	76
													agt Ser			6	24
													gaa Glu			6	72
-			-		_				-				agg Arg			7	20

	cca Pro															768
_	gag Glu	_			_	_		_		-						816
	cca Pro					_			_						_	864
_	cct Pro 290		_			_			_					_		912
	aag Lys			_			_		_			_				960
	ttt Phe	_			_		-			_			-	_		1008
_	gtg Val					_			_			_				1056
	cgc Arg															1104
	ttt Phe 370															1152
_	ctg Leu	_			_		_		_	_				_	_	1200
	gtg Val	_	_	_	_			_				_	_		_	1248
	gag Glu	_		-		_	_		_	_	_			_		1296
	tca Ser															1344
	gtc Val 450															1392
	agg Arg															1440
	ttg Leu															1488

				485					490					495		
						-		_	_		_	-	gag Glu 510			1536
_	_	-				-	_		_				atg Met	_	_	1584
		-	-	_	_								gag Glu			1632
													tgg Trp			1680
	_	_				-	_			_	_	-	cag Gln		-	1728
	_		_	_	_	-	_	_		_	_	_	cgc Arg 590		_	1776
	-				_							-	ggc Gly		-	1824
				_	-		-			-	_		ttc Phe	-		1872
	_	_	_		_	_			_		_	-	ctt Leu			1920
				-	-	-	_	-					gga Gly	-	-	1968
			-	-	-				-		-		ttt Phe 670			2016
			_	_	Asp		${\tt Pro}$	Pro					gtg Val		_	2064
-	-			_		-				_	-		ctc Leu			2112
		_						_				_	gtg Val	_		2160
													aaa Lys			2208
aaa	tcc	cac	gtg	tct	acc	ttg	aca	gac	ctc	cag	cct	tat	atg	cgg	cag	2256

Lys	Ser	His	Val 740	Ser	Thr	Leu	Thr	Asp 745	Leu	Gln	Pro	Tyr	Met 750	Arg	Gln	
	_	_	cac His		_			_		_		_	_		_	2304
	_	_	tcc Ser	_					_				_		_	2352
		_	cgc Arg		_	_			_						_	2400
			cag Gln	_	_				_		_		_	_		2448
_	_	_	agc Ser 820	_	_			_	_				_		_	2496
			aga Arg													2544
		_	cgg Arg		_	-								_	_	2592
		_	cgg Arg				_						_	-	-	2640
			aca Thr	-		-	_	_		-			_			2688
	_		ctg Leu 900	_		-							_		_	2736
	-		tat Tyr	-	-					-	-	_				2784
			aag Lys													2832
_	_		aag Lys	_		_			_	_	_	_	_			2880
	-		gtg Val	-								_	_	-	-	2928
	_		cat His 980	-	-	-	-	_	_				_	_		2976

tgg aaa aac cct acc ttc ttc ctg cgg gtg att agc gac acc gcc agt Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala Ser 995 1000 1005	3024
ctt tgc tac tcc atc ttg aaa gca aaa aac gct ggc atg agc ttg Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser Leu 1010 1015 1020	3069
gga gct aag ggc gcc gct gga cct ctg ccc agt gaa gca gtc cag Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val Gln 1025 1030 1035	3114
tgg ctg tgt cat cag gct ttc ctc ctt aaa ctg aca cgc cac cgc Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His Arg 1040 1045 1050	3159
gtg act tac gtc cca ctc ctg ggc tcc ctg aga act gct cag acc Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln Thr 1055 1060 1065	3204
cag ctt tcc cgg aag ctt cca ggc act acc ctt acc gca ctc gaa Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu Glu 1070 1075 1080	3249
gca gcc gcc aac cct gcc ctg ccc tcc gac ttt aag act atc ctg Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile Leu 1085 1090 1095	3294
gac Asp	3297
<210> 6 <211> 1099 <212> PRT <213> Homo sapiens	
<400>6 Leu Ala Thr Phe Val Arg Arg Leu Gly Pro Gln Gly Trp Arg Leu Val 1 5 10 15	
Gln Arg Gly Asp Pro Ala Ala Phe Arg Ala Leu Val Ala Gln Cys Leu 20 25 30	
Val Cys Val Pro Trp Asp Ala Arg Pro Pro Pro Ala Ala Pro Ser Phe 35 40 45	
Arg Gln Val Ser Cys Leu Lys Glu Leu Val Ala Arg Val Leu Gln Arg 50 55 60	
Leu Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe Gly Phe Ala Leu 65 70 75 80	

Arg	Ser	Tyr	Leu 100	Pro	Asn	Thr	Val	Thr 105	Asp	Ala	Leu	Arg	Gly 110	Ser	Gly
Ala	Trp	Gly 115	Leu	Leu	Leu	Arg	Arg 120	Val	Gly	Asp	Asp	Val 125	Leu	Val	His
Leu	Leu 130	Ala	Arg	Сув	Ala	Leu 135	Phe	Val	Leu	Val	Ala 140	Pro	Ser	Сув	Ala
Туг 145	Gln	Val	Cys	Gly	Pro 150	Pro	Leu	Tyr	Gln	Leu 155	Gly	Ala	Ala	Thr	Gln 160
Ala	Arg	Pro	Pro	Pro 165	His	Ala	Ser	Gly	Pro 170	Arg	Arg	Arg	Leu	Gly 175	Cys
Glu	Arg	Ala	Trp 180	Asn	His	Ser	Val	Arg 185	Glu	Ala	Gly	Val	Pro 190	Leu	Gly
Leu	Pro	Ala 195	Pro	Gly	Ala	Arg	Arg 200	Arg	Gly	Gly	Ser	Ala 205	Ser	Arg	Ser
Leu	Pro 210	Leu	Pro	Lys	Arg	Pro 215	Arg	Arg	Gly	Ala	Ala 220	Pro	Glu	Pro	Glu
Arg 225	Thr	Pro	Val	Gly	Gln 230	Gly	Ser	Trp	Ala	His 235	Pro	Gly	Arg	Thr	Arg 240
Gly	Pro	Ser	Asp	Arg 245	Gly	Phe	Суѕ	Val	Val 250	Ser	Pro	Ala	Arg	Pro 255	Ala
Glu	Glu	Ala	Thr 260	Ser	Leu	Glu	Gly	Ala 265	Leu	Ser	Gly	Thr	Arg 270	His	Ser
His	Pro	Ser 275	Val	Gly	Arg	Gln	His 280	His	Ala	Gly	Pro	Pro 285	Ser	Thr	Ser
Arg	Pro 290	Pro	Arg	Pro	Trp	Asp 295	Thr	Pro	Cys	Pro	Pro 300	Val	Tyr	Ala	Glu
Thr 305	Lys	His	Phe	Leu	Tyr 310	Ser	Ser	Gly	Asp	Lys 315	Glu	Gln	Leu	Arg	Pro 320
Ser	Phe	Leu	Leu	Ser 325	Ser	Leu	Arg	Pro	Ser 330	Leu	Thr	Gly	Ala	Arg 335	Arg
Leu	Val	Glu	Thr 340	Ile	Phe	Leu	Gly	Ser 345	Arg	Pro	Trp	Met	Pro 350	Gly	Thr

Pro	Arg	Arg 355	Leu	Pro	Arg	Leu	Pro 360	Gln	Arg	Tyr	Trp	Gln 365	Met	Arg	Pro
Leu	Phe 370	Leu	Glu	Leu	Leu	Gly 375	Asn	His	Ala	Gln	Суs 380	Pro	Tyr	Gly	Val
Leu 385	Leu	Lys	Thr	His	Cys 390	Pro	Leu	Arg	Ala	Ala 395	Val	Thr	Pro	Ala	Ala 400
Gly	Val	Cys	Ala	Arg 405	Glu	Lys	Pro	Gln	Gly 410	Ser	Val	Ala	Ala	Pro 415	Glu
Glu	Glu	Asp	Thr 420	Asp	Pro	Arg	Arg	Leu 425	Val	Gln	Leu	Leu	Arg 430	Gln	His
Ser	Ser	Pro 435	Trp	Gln	Val	Tyr	Gly 440	Phe	Val	Arg	Ala	Cys 445	Leu	Arg	Arg
Leu	Val 450	Pro	Pro	Gly	Leu	Trp 455	Gly	Ser	Arg	His	Asn 460	Glu	Arg	Arg	Phe
Leu 465	Arg	Asn	Thr	Lys	Lys 470	Phe	Ile	Ser	Leu	Gly 475	Lys	His	Ala	Lys	Leu 480
Ser	Leu	Gln	Glu	Leu 485	Thr	Trp	Lys	Met	Ser 490	Val	Arg	Gly	Cys	Ala 495	Trp
Leu	Arg	Arg	Ser 500	Pro	Gly	Val	Gly	Cys 505	Val	Pro	Ala	Ala	Glu 510	His	Arg
Leu	Arg	Glu 515	Glu	Ile	Leu	Ala	Lys 520	Phe	Leu	His	Trp	Leu 525	Met	Ser	Val
Tyr	Val 530	Val	Glu	Leu	Leu	Arg 535	Ser	Phe	Phe	Tyr	Val 540	Thr	Glu	Thr	Thr
Phe 545	Gln	Lys	Asn	Arg	Leu 550	Phe	Phe	Tyr	Arg	Lys 555	Ser	Val	Trp	Ser	Lys 560
Leu	Gln	Ser	Ile	Gly 565	Ile	Arg	Gln	His	Leu 570	Lys	Arg	Val	Gln	Leu 575	Arg
Glu	Leu	Ser	Glu 580	Ala	Glu	Val	Arg	Gln 585	His	Arg	Glu	Ala	Arg 590	Pro	Ala
Leu	Leu	Thr	Ser	Arg	Leu	Arg	Phe	Ile	Pro	Lys	Pro	Asp	Gly	Leu	Arg

		595					600					605				
Pro	Ile 610	Val	Asn	Met	Asp	Туг 615	Val	Val	Gly	Ala	Arg 620	Thr	Phe	Arg	Arg	
Glu 625	Lys	Arg	Ala	Glu	Arg 630	Leu	Thr	Ser	Arg	Val 635	Lys	Ala	Leu	Phe	Ser 640	
Val	Leu	Asn	Tyr	Glu 645	Arg	Ala	Arg	Arg	Pro 650	Gly	Leu	Leu	Gly	Ala 655	Ser	
Val	Leu	Gly	Leu 660	Asp	Asp	Ile	His	Arg 665	Ala	Trp	Arg	Thr	Phe 670	Val	Leu	
Arg	Val	Arg 675	Ala	Gln	Asp	Pro	Pro 680	Pro	Glu	Leu	Tyr	Phe 685	Val	Lys	Val	
Asp	Val 690	Thr	Gly	Ala	Tyr	Asp 695	Thr	Ile	Pro	Gln	Asp 700	Arg	Leu	Thr	Glu	
Val 705	Ile	Ala	Ser	Ile	Ile 710	Lys	Pro	Gln	Asn	Thr 715	Tyr	Cys	Val	Arg	A rg 720	
Tyr	Ala	Val	Val	Gln 725	Lys	Ala	Ala	His	Gly 730	His	Val	Arg	Lys	Ala 735	Phe	
Lys	Ser	His	Val 740	Ser	Thr	Leu	Thr	Asp 745	Leu	Gln	Pro	Tyr	Met 750	Arg	Gln	
Phe	Val	Ala 755	His	Leu	Gln	Glu	Thr 760	Ser	Pro	Leu	Arg	Asp 765	Ala	Val	Val	
Ile	Glu 770	Gln	Ser	Ser	Ser	Leu 775	Asn	Glu	Ala	Ser	Ser 780	Gly	Leu	Phe	Asp	
Val 785	Phe	Leu	Arg	Phe	Met 790	Cys	His	His	Ala	Val 795	Arg	Ile	Arg	Gly	Lys 800	
Ser	Tyr	Val	Gln	Cys 805	Gln	Gly	Ile	Pro	Gln 810	Gly	Ser	Ile	Leu	Ser 815	Thr	
Leu	Leu	Cys	Ser 820	Leu	Cys	Tyr	Gly	Asp 825	Met	Glu	Asn	Lys	Leu 830	Phe	Ala	
Gly	Ile	Arg 835	Arg	Phe	Leu	Leu	Val 840	Thr	Pro	His	Leu	Thr 845	His	Ala	Lys	

	Phe 850	Leu	Arg	Thr	Leu	Val 855	Arg	Gly	Val	Pro	Glu 860	Tyr	Gly	Cys	Val
Val 865	Asn	Leu	Arg	Lys	Thr 870	Val	Val	Asn	Phe	Pro 875	Val	Glu	Asp	Glu	Ala 880
Leu	Gly	Gly	Thr	Ala 885	Phe	Val	Gln	Met	Pro 890	Ala	His	Gly	Leu	Phe 895	Pro
Trp	Суѕ	Gly	Leu 900	Leu	Leu	Asp	Thr	Arg 905	Thr	Leu	Glu	Val	Gln 910	Ser	Asp
Tyr	Ser	Ser 915	Tyr	Ala	Arg	Thr	Ser 920	Ile	Arg	Ala	Ser	Leu 925	Thr	Phe	Asn
Arg	Gly 930	Phe	Lys	Ala	Gly	Arg 935	Asn	Met	Arg	Arg	Lys 940	Leu	Phe	Gly	Val
Leu 945	Arg	Leu	Lys	Cys	His 950	Ser	Leu	Phe	Leu	Asp 955	Leu	Gln	Val	Asn	Ser 960
Leu	Gln	Thr	Val	Cys 965	Thr	Asn	Ile	Tyr	Lys 970	Ile	Leu	Leu	Leu	Gln 975	Ala
Tyr	Arg	Phe	His 980	Ala	Cys	Val	Leu	Gln 985	Leu	Pro	Phe	His	Gln 990		Val
Trp	Lys	Asn	Pro	Thr	Dho	Dho	Ton	7. ~.	~ 37~ 1	1 -1.	_	_			1 - C
_	-	995	110		rue	rne	1000		y va.	L 114	e Sei	r As		nr A	la Ser
_	_	995 Ty:	: Ser				1000 s A)			La G	10	05		
Leu	Cys 1010	995 Ty:) Ly:		r Ile	e Leu	1 Ly s 101	1000 s A: L5) La Ly	ys As	sn Al	la Gi 10 er Gi	10 Ly 1 020	05 Met	Ser	Leu
Leu	Cys 1010 Ala 1025	995 Tyı) Lys	s Ser	r Ile	e Leu n Ala	1 Lys 101 1 Gly 103	1000 s A: L5 7 P: 30) La Ly	ys As eu Pi	sn Al	la Gi 10 er Gi 10	10 Ly 1 020 Lu 2	05 Met Ala	Ser :	Leu Gln
Leu Gly Trp	Cys 101(Ala 1025 Leu 104(995 Tyi) Ly: 5	r Ser s Gly	r Ile y Ala	e Leu n Ala	1 Lys 101 1 Gly 103 1 Phe 104	1000 5 A: 15 7 P: 30 1 G:) La Ly co Le eu Le	ys A s eu Pr	sn Al	la G. 1(er G. 1(teu Th 1(10 ly 1 020 lu 2 035	05 Met Ala	Ser :	Leu Gln Arg
Leu Gly Trp Val	Cys 1010 Ala 1025 Leu 1040	Tyn Tyn Lyn Cyn Tyn Sen	r Ser s Gly	r Ile 7 Ala 8 Glr	e Leu a Ala a Ala	101 Lys 101 103 103 104 104 106	1000 S A: L5 7 P: 800 L6 15 G: 600) La Ly CO Le Ly Se	ys As eu Pr eu Ly	sn Al ro Se ys Le	la G. 10 11 10 11 10 11 10 11 10 11 10 11 11	100 ly 100 200 lu 200 300 300 300 300 300 300 300 300 300	Met Ala	Ser : Val : His :	Leu Gln Arg Thr
Leu Gly Trp Val	Cys 1010 Ala 1025 Leu 1040 Thr 1055 Leu 1070	995 Tyn Lys Cys Tyn Ala	r Ser S Gly S His	The	e Leu Ala Ala Leu	10 Lys 103 103 1 Gly 103 1 Phe 104 106 107	1000 A. A) co Le Ly Se	ys As	Sen A. Co See A.	G. 10 The The True True True True True True True Tru	100 Ly 1020 Lu 2035 2050 2050	Met Ala Arg	Ser Wal His Gln	Leu Gln Arg Thr
Leu Gly Trp Val	Cys 1010 Ala 1025 Leu 1040 Thr 1055 Leu 1070 Ala 1085	995 Tyn Lys Cys Tyn Ala	Ser	The	e Leu Ala Ala Leu	10 Lys 101 103 103 104 104 106 107	1000 A. A) co Le Ly Se	ys As	Sen A. Co See A.	G. 10 The The True True True True True True True Tru	100 Ly 1020 Lu 2035 2035 2035 2035 2035	Met Ala Arg	Ser Wal His Gln	Leu Gln Arg Thr

5

10

<220> <221> CDS

<222> (1)..(3297)

-	gcc					-	_			_		tgg Trp		-		48
_	_		-		_	_		_	_		_	gcc Ala	_	_	_	96
												gcc Ala 45				144
												gtg Val				192
	_	-			_	_		-		_		ggc Gly		_	_	240
	_		_	_						_		act Thr		_	_	288
			-						-	-	_	aga Arg				336
_			_	_	_					_	-	gtt Val 125	_	-		384
	_	-		_	-	_			_		-	ccc Pro		_	_	432
												gct Ala				480
_	_					_				_	_	cgg Arg	_		_	528
_		-				-				_		gtg Val				576

_	cca Pro	_			_		_	_				_	_	_		624
	CCC Pro 210	_		_			_	_		_	_		_			672
_	aca Thr		-		_				_							720
	cca Pro															768
-	gag Glu	-			-	-		-		-						816
	cca Pro					_			_						_	864
	cct Pro 290															912
	aag Lys						_		_			_				960
	ttt Phe															1008
_	gtg Val					_			_			_				1056
	cgc Arg															1104
	ttt Phe 370	_	_		_				_	_	_				_	1152
	ctg Leu															1200
	gtg Val															1248
	gag Glu															1296
	tca Ser															1344

4.	35	440		445	
				c aac gaa cgg c s Asn Glu Arg A 460	=
	_	_		c aag cat gca a y Lys His Ala I 5	
				t aga gga tgc g 1 Arg Gly Cys A 4	
				a gca gca gag c o Ala Ala Glu H 510	
Leu Arg G			_	c tgg ctt atg a s Trp Leu Met S 525	
				c gtg aca gag a r Val Thr Glu I 540	
-	-	-		g tcc gtc tgg a s Ser Val Trp S 5	
_		Ile Arg Gln	-	g aga gtt cag c s Arg Val Gln I 5	=
				c gaa gct cgc c g Glu Ala Arg P 590	
Leu Leu T				a ccc gat ggc c s Pro Asp Gly I 605	=
				c cgc act ttc a a Arg Thr Phe A 620	
		Arg Leu Thr		g aag gca ctt t 1 Lys Ala Leu P 5	
	_			t ctt ctc gga g y Leu Leu Gly A 6	_
		-		g cgc acc ttt g p Arg Thr Phe V 670	-
Arg Val A				t tat ttt gtg a u Tyr Phe Val I 685	
gat gtt a	.ct ggt gct	tac gat aca	atc cct cag	g gac cgg ctc a	cc gag 2112

Asp	Val 690	Thr	Gly	Ala	Tyr	Asp 695	Thr	Ile	Pro	Gln	Asp 700	Arg	Leu	Thr	Glu	
		_						_		acc Thr 715		_		_		2160
	-	-	-	_		-	-			cac His		-		-		2208
										cag Gln						2256
	_	_		_	_			_		ttg Leu		_	_		_	2304
	_	_		_					_	tcc Ser			_		_	2352
		-	-		_	_			_	gtg Val 795					_	2400
										ggt Gly						2448
_	_	-	-	_	-			-	_	gag Glu			_		-	2496
		_	_	_		_		_		ctg Leu	_			_		2544
		_			_	_				cca Pro				_	-	2592
										cca Pro 875						2640
_	~~			<i>-</i> .			~ ~ ~		_	gcc Ala		~;			_	2688
										ctc Leu						2736
	-			-	-					gct Ala	-	_				2784
			_	_				_	_	agg Arg		_				2832

	t ttt ttg gac ttg cag gtc aat tct eu Phe Leu Asp Leu Gln Val Asn Ser 955 960	2880
	t tat aaa atc ctc ttg ctg cag gct e Tyr Lys Ile Leu Leu Leu Gln Ala 970 975	2928
	ng cag ctg cct ttc cac cag cag gtg nu Gln Leu Pro Phe His Gln Gln Val 985 990	2976
Trp Lys Asn Pro Thr Phe Phe Le	ng cgg gtg att agc gac acc gcc agt nu Arg Val Ile Ser Asp Thr Ala Ser 100 1005	3024
	gca aaa aac gct ggc atg agc ttg Ala Lys Asn Ala Gly Met Ser Leu 1020	3069
	cct ctg ccc agt gaa gca gtc cag Pro Leu Pro Ser Glu Ala Val Gln 1035	3114
	ctc ctt aaa ctg aca cgc cac cgc Leu Leu Lys Leu Thr Arg His Arg 1050	3159
	ggc tcc ctg aga act gct cag acc Gly Ser Leu Arg Thr Ala Gln Thr 1065	3204
	ggc act acc ctt acc gca ctc gaa Gly Thr Thr Leu Thr Ala Leu Glu 1080	3249
gca gcc gcc aac cct gcc ctg Ala Ala Ala Asn Pro Ala Leu 1085 1090	ccc tcc gac ttt aag act atc ctg Pro Ser Asp Phe Lys Thr Ile Leu 1095	3294
gac Asp		3297
<210> 8 <211> 1099 <212> PRT <213> Homo sapiens		
<400>8 Leu Ala Thr Phe Val Arg Arg Le 1 5	eu Gly Pro Gln Gly Trp Arg Leu Val 10 15	
Gln Arg Gly Asp Pro Ala Ala Ph 20	ue Arg Ala Leu Val Ala Gln Cys Leu 25 30	
Val Cys Val Pro Trp Asp Ala Ar	rg Pro Pro Pro Ala Ala Pro Ser Phe	

Arg	Gln 50	Val	Ser	Cys	Leu	Lys 55	Glu	Leu	Val	Ala	Arg 60	Val	Leu	Gln	Arg
Leu 65	Cys	Glu	Arg	Gly	Ala 70	Lys	Asn	Val	Leu	Ala 75	Phe	Gly	Phe	Ala	Leu 80
Leu	Asp	Gly	Ala	Arg 85	Gly	Gly	Pro	Pro	Glu 90	Ala	Phe	Thr	Thr	Ser 95	Val
Arg	Ser	Tyr	Leu 100	Pro	Asn	Thr	Val	Thr 105	Asp	Ala	Leu	Arg	Gly 110	Ser	Gly
Ala	Trp	Gly 115	Leu	Leu	Leu	Arg	Arg 120	Val	Gly	Asp	Asp	Val 125	Leu	Val	His
Leu	Leu 130	Ala	Arg	Cys	Ala	Leu 135	Phe	Val	Leu	Val	Ala 140	Pro	Ser	Cys	Ala
Tyr 145	Gln	Val	Cys	Gly	Pro 150	Pro	Leu	Tyr	Gln	Leu 155	Gly	Ala	Ala	Thr	Gln 160
Ala	Arg	Pro	Pro	Pro 165	His	Ala	Ser	Gly	Pro 170	Arg	Arg	Arg	Leu	Gly 175	Суѕ
Glu	Arg	Ala	Trp 180	Asn	His	Ser	Val	A rg 185	Glu	Ala	Gly	Val	Pro 190	Leu	Gly
Leu	Pro	Ala 195	Pro	Gly	Ala	Arg	A rg 200	Arg	Gly	Gly	Ser	Ala 205	Ser	Arg	Ser
Leu	Pro 210	Leu	Pro	Lys	Arg	Pro 215	Arg	Arg	Gly	Ala	Ala 220	Pro	Glu	Pro	Glu
Arg 225	Thr	Pro	Val	Gly	Gln 230	Gly	Ser	Trp	Ala	His 235	Pro	Gly	Arg	Thr	Arg 240
Gly	Pro	Ser	Asp	Arg 245	Gly	Phe	Cys	Val	Val 250	Ser	Pro	Ala	Arg	Pro 255	Ala
Glu	Glu	Ala	Thr 260	Ser	Leu	Glu	Gly	Ala 265	Leu	Ser	Gly	Thr	Arg 270	His	Ser
His	Pro	Ser 275	Val	Gly	Arg	Gln	His 280	His	Ala	Gly	Pro	Pro 285	Ser	Thr	Ser
Arg	Pro 290	Pro	Arg	Pro	Trp	Asp 295	Thr	Pro	Cys	Pro	Pro 300	Val	Tyr	Ala	Glu

Thr 305	Lys	His	Phe	Leu	Tyr 310	Ser	Ser	Gly	Asp	Lys 315	Glu	Gln	Leu	Arg	9ro 320
Ser	Phe	Leu	Leu	Ser 325	Ser	Leu	Arg	Pro	Ser 330	Leu	Thr	Gly	Ala	Arg 335	Arg
Leu	Val	Glu	Thr 340	Ile	Phe	Leu	Gly	Ser 345	Arg	Pro	Trp	Met	Pro 350	Gly	Thr
Pro	Arg	Arg 355	Leu	Pro	Arg	Leu	Pro 360	Gln	Arg	Tyr	Trp	Gln 365	Met	Arg	Pro
Leu	Phe 370	Leu	Glu	Leu	Leu	Gly 375	Asn	His	Ala	Gln	Cys 380	Pro	Tyr	Gly	Val
Leu 385	Leu	Lys	Thr	His	Cys 390	Pro	Leu	Arg	Ala	Ala 395	Val	Thr	Pro	Ala	Ala 400
Gly	Val	Cys	Ala	Arg 405	Glu	Lys	Pro	Gln	Gly 410	Ser	Val	Ala	Ala	Pro 415	Glu
Glu	Glu	Asp	Thr 420	Asp	Pro	Arg	Arg	Leu 425	Val	Gln	Leu	Leu	Arg 430	Gln	His
Ser	Ser	Pro 435	Trp	Gln	Val	Tyr	Gly 440	Phe	Val	Arg	Ala	Cys 445	Leu	Arg	Arg
Leu	Val 450	Pro	Pro	Gly	Leu	Trp 455	Gly	Ser	Arg	His	Asn 460	Glu	Arg	Arg	Phe
Leu 465	Arg	Asn	Thr	Lys	Lys 470	Phe	Ile	Ser	Leu	Gly 475	Lys	His	Ala	Lys	Leu 480
Ser	Leu	Gln	Glu	Leu 485	Thr	Trp	Lys	Met	Ser 490	Val	Arg	Gly	Суѕ	Ala 495	Trp
Leu	Arg	Arg	Ser 500	Pro	Gly	Val	Gly	Cys 505	Val	Pro	Ala	Ala	Glu 510	His	Arg
Leu	Arg	Glu 515	Glu	Ile	Leu	Ala	Lys 520	Phe	Leu	His	Trp	Leu 525	Met	Ser	Val
Tyr	Val 530	Val	Glu	Leu	Leu	Arg 535	Ser	Phe	Phe	Tyr	Val 540	Thr	Glu	Thr	Thr
Phe	Gln	Lys	Asn	Arg	Leu	Phe	Phe	Tyr	Arg	Lys	Ser	Val	Trp	Ser	Lys

545					550					555					560
Leu	Gln	Ser	Ile	Gly 565	Ile	Arg	Gln	His	Leu 570	Lys	Arg	Val	Gln	Leu 575	Arg
Glu	Leu	Ser	Glu 580	Ala	Glu	Val	Arg	Gln 585	His	Arg	Glu	Ala	Arg 590	Pro	Ala
Leu	Leu	Thr 595	Ser	Arg	Leu	Arg	Phe 600	Ile	Pro	Lys	Pro	Asp 605	Gly	Leu	Arg
Pro	Ile 610	Val	Asn	Met	Asp	Tyr 615	Val	Val	Gly	Ala	Arg 620	Thr	Phe	Arg	Arg
Glu 625	Lys	Arg	Ala	Glu	Arg 630	Leu	Thr	Ser	Arg	Val 635	Lys	Ala	Leu	Phe	Ser 640
Val	Leu	Asn	Tyr	Glu 645	Arg	Ala	Arg	Arg	Pro 650	Gly	Leu	Leu	Gly	Ala 655	Ser
Val	Leu	Gly	Leu 660	Asp	Asp	Ile	His	Arg 665	Ala	Trp	Arg	Thr	Phe 670	Val	Leu
Arg	Val	Arg 675	Ala	Gln	Asp	Pro	Pro 680	Pro	Glu	Leu	Tyr	Phe 685	Val	Lys	Val
Asp	Val 690	Thr	Gly	Ala	Tyr	Asp 695	Thr	Ile	Pro	Gln	Asp 700	Arg	Leu	Thr	Glu
Val 705	Ile	Ala	Ser	Ile	Ile 710	Lys	Pro	Gln	Asn	Thr 715	Tyr	Cys	Val	Arg	Arg 720
Tyr	Ala	Val	Val	Gln 725	Lys	Ala	Ala	His	Gly 730	His	Val	Arg	Lys	Ala 735	Phe
Lys	Ser	His	Val 740	Ser	Thr	Leu	Thr	Asp 745	Leu	Gln	Pro	Tyr	Met 750	Arg	Gln
Phe	Val	Ala 755	His	Leu	Gln	Glu	Thr 760	Ser	Pro	Leu	Arg	Asp 765	Ala	Val	Val
Ile	Glu 770	Gln	Ser	Ser	Ser	Leu 775	Asn	Glu	Ala	Ser	Ser 780	Gly	Leu	Phe	Asp
Val 785	Phe	Leu	Arg	Phe	Met 790	Cys	His	His	Ala	Val 795	Arg	Ile	Arg	Gly	Lys 800

- Ser Tyr Val Gln Cys Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr $805 \ \ 810 \ \ 815$
- Leu Leu Cys Ser Leu Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala 820 825 830
- Gly Ile Arg Arg Asp Gly Leu Leu Leu Arg Leu Leu Thr His Ala Lys 835 840 845
- Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly Cys Val 850 855 860
- Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu Ala 865 870 875 880
- Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe Pro 885 890 895
- Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser Asp 900 905 910
- Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe Asn 915 920 925
- Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly Val 930 935 940
- Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn Ser 945 950 955 960
- Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Gln Ala 965 970 975
- Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln Val 980 985 990
- Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala Ser
- Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser Leu 1010 1015 1020
- Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val Gln 1025 1030 1035
- Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His Arg 1040 1045 1050

		1055	2				106	-, -,			-	65	`			
	Gln	Leu 1070		r Arç	J Lys	Leu	Pro 107	Ly Ti	nr Th	ır Le		nr <i>1</i> 080	Ala 1	Leu (Glu	
	Ala	Ala 1085		a Asr	n Pro	Ala	109	ro Se	er As	sp Ph	_	7 s 1	Thr I	Ile 1	Leu	
	Asp															
5	<210 <211 <212 <213	> 325 > AD	N	apiens	3											
10	<220 <221 <222	> CD		8)												
		gcc				cgg Arg									gtg Val	48
															ctg Leu	96
															ttc Phe	144
															cgg Arg	192
															ttg Leu 80	240
						gga Gly									gtc Val	288
				-		aac Asn			-	_	_	-			ggt Gly	336
															cac His	384
		_	_		_	_	_		_		_			_	gca Ala	432

Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln Thr

	cag Gln	_	_									_	_		_	480
_	cgc Arg					_				_	_		_		_	528
	cgg Arg															576
_	cca Pro	_			_		_	_				_	_	_		624
	ccc Pro 210	_		_			_	_		_	_		_			672
_	aca Thr		-		_				_							720
	cca Pro															768
_	gag Glu	_			_	_		_		_						816
	cca Pro					_			_						_	864
	cct Pro 290															912
	aag Lys			_			_		_			_				960
	ttt Phe	_			-		-			_			-	-		1008
	gtg Val															1056
	cgc Arg															1104
	ttt Phe 370															1152
	ctg Leu															1200

385					390					395					400	
ggt Gly					gaa Glu											1248
gag Glu		-		_		_	_		_	_	_			_		1296
tca Ser				_	gtg Val						-	-	_		-	1344
					ttg Leu											1392
-				_	aag Lys 470				_		_		-	_		1440
-	_	-		-	aca Thr		-	_	-	-	-		-	-		1488
ctc Leu					gga Gly											1536
ctg Leu	_	-			ctc Leu	_	_		_				_	_	-	1584
tac Tyr		_	-	_	ctg Leu											1632
ttt Phe 545																1680
ctc Leu	_	_			att Ile	_	_			_	_	_	_		_	1728
gag Glu	_		-	_	_	_	-	_		_	_	_	-		_	1776
ctc Leu					ctg Leu											1824
cct Pro				_	_		_			_	_			_		1872
gag Glu 625	_	_	-		_	_			_		_	_				1920
gtg	ctt	aat	tat	gaa	aga	gcc	cgc	aga	cct	ggt	ctt	ctc	gga	gcc	agc	1968

Val	Leu	Asn	Tyr	Glu 645	Arg	Ala	Arg	Arg	Pro 650	Gly	Leu	Leu	Gly	Ala 655	Ser	
			_	_	_				_	tgg Trp	_					2016
			-	_	_					ctt Leu					_	2064
_	_			-		-				cag Gln	-					2112
		_						_		acc Thr 715		_		_		2160
	_	_	_	_		_	_			cac His		_		_		2208
										cag Gln						2256
	_	_		_	_			_		ttg Leu		_	_		-	2304
	_	_		_					_	tcc Ser			_		-	2352
		_	_		_	_			_	gtg Val 795					_	2400
			_	-	_				_	ggt Gly	-		_	-		2448
-	-	-	-	-	-			-	_	gag Glu			_		-	2496
										agg Arg						2544
	_	_			_					gtt Val						2592
_	_	_					_		_	cag Gln 875	_		_			2640
_				_		_	_		_	acc Thr						2688

cag tcc gat tat agt tcc tat gca aga aca tca att cgg gct agc ctg Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu 900 905 910	2736
act ttc aac agg ggc ttc aag gcc ggc cgg aat atg aga agg aaa ctg Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu 915 920 925	2784
ttc gga gtg ttg aga ctt aag tgt cat agt ctt ttt ttg gac ttg cag Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln 930 935 940	2832
gtc aat tct ctc cag aca gtg tgt acc aac att tat aaa atc ctc ttg Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu 945 950 955 960	2880
ctg cag gct tac aga ttc cat gcc tgc gtc ctg cag ctg cct ttc cac Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His 965 970 975	2928
cag cag gtg tgg aaa aac cct acc ttc ttc ctg cgg gtg att agc gac Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp 980 985 990	2976
acc gcc agt ctt tgc tac tcc atc ttg aaa gca aaa aac gct ggc atg Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met 995 1000 1005	3024
agc ttg gga gct aag ggc gcc gct gga cct ctg ccc agt gaa gca Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala 1010 1015 1020	3069
gtc cag tgg ctg tgt cat cag gct ttc ctc ctt aaa ctg aca cgc Val Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg 1025 1030 1035	3114
cac cgc gtg act tac gtc cca ctc ctg ggc tcc ctg aga act gct His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala 1040 1045 1050	3159
cag acc cag ctt tcc cgg aag ctt cca ggc act acc ctt acc gca Gln Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala 1055 1060 1065	3204
ctc gaa gca gcc gcc aac cct gcc ctg ccc tcc gac ttt aag act Leu Glu Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr 1070 1075 1080	3249
atc ctg gac Ile Leu Asp 1085	3258
<210> 10 <211> 1086 <212> PRT <213> Homo sapiens	
<400> 10 Leu Ala Thr Phe Val Arg Arg Leu Gly Pro Gln Gly Trp Arg Leu Val 1 5 10 15	

Gln	Arg	Gly	Asp 20	Pro	Ala	Ala	Phe	Arg 25	Ala	Leu	Val	Ala	Gln 30	Cys	Leu
Val	Cys	Val 35	Pro	Trp	Asp	Ala	Arg 40	Pro	Pro	Pro	Ala	Ala 45	Pro	Ser	Phe
Arg	Gln 50	Val	Ser	Сув	Leu	Lys 55	Glu	Leu	Val	Ala	Arg 60	Val	Leu	Gln	Arg
Leu 65	Cys	Glu	Arg	Gly	Ala 70	Lys	Asn	Val	Leu	Ala 75	Phe	Gly	Phe	Ala	Leu 80
Leu	Asp	Gly	Ala	Arg 85	Gly	Gly	Pro	Pro	Glu 90	Ala	Phe	Thr	Thr	Ser 95	Val
Arg	Ser	Tyr	Leu 100	Pro	Asn	Thr	Val	Thr 105	Asp	Ala	Leu	Arg	Gly 110	Ser	Gly
Ala	Trp	Gly 115	Leu	Leu	Leu	Arg	Arg 120	Val	Gly	Asp	Asp	Val 125	Leu	Val	His
Leu	Leu 130	Ala	Arg	Cys	Ala	Leu 135	Phe	Val	Leu	Val	Ala 140	Pro	Ser	Cys	Ala
Tyr 145	Gln	Val	Суз	Gly	Pro 150	Pro	Leu	Tyr	Gln	Leu 155	Gly	Ala	Ala	Thr	Gln 160
Ala	Arg	Pro	Pro	Pro 165	His	Ala	Ser	Gly	Pro 170	Arg	Arg	Arg	Leu	Gly 175	Cys
Glu	Arg	Ala	Trp 180	Asn	His	Ser	Val	Arg 185	Glu	Ala	Gly	Val	Pro 190	Leu	Gly
Leu	Pro	Ala 195	Pro	Gly	Ala	Arg	Arg 200	Arg	Gly	Gly	Ser	Ala 205	Ser	Arg	Ser
Leu	Pro 210	Leu	Pro	Lys	Arg	Pro 215	Arg	Arg	Gly	Ala	Ala 220	Pro	Glu	Pro	Glu
Arg 225	Thr	Pro	Val	Gly	Gln 230	Gly	Ser	Trp	Ala	His 235	Pro	Gly	Arg	Thr	Arg 240
Gly	Pro	Ser	Asp	Arg 245	Gly	Phe	Cys	Val	Val 250	Ser	Pro	Ala	Arg	Pro 255	Ala

Glu Glu Ala Thr Ser Leu Glu Gly Ala Leu Ser Gly Thr Arg His Ser 260 265 270

HIS	Pro	275	vai	GIĀ	Arg	GIN	280	HIS	АІА	GIY	PIO	285	ser	Thr	ser
Arg	Pro 290	Pro	Arg	Pro	Trp	Asp 295	Thr	Pro	Суз	Pro	Pro 300	Val	Tyr	Ala	Glu
Thr 305	Lys	His	Phe	Leu	Tyr 310	Ser	Ser	Gly	Asp	Lys 315	Glu	Gln	Leu	Arg	Pro 320
Ser	Phe	Leu	Leu	Ser 325	Ser	Leu	Arg	Pro	Ser 330	Leu	Thr	Gly	Ala	Arg 335	Arg
Leu	Val	Glu	Thr 340	Ile	Phe	Leu	Gly	Ser 345	Arg	Pro	Trp	Met	Pro 350	Gly	Thr
Pro	Arg	A rg 355	Leu	Pro	Arg	Leu	Pro 360	Gln	Arg	Tyr	Trp	Gln 365	Met	Arg	Pro
Leu	Phe 370	Leu	Glu	Leu	Leu	Gly 375	Asn	His	Ala	Gln	Cys 380	Pro	Tyr	Gly	Val
Leu 385	Leu	Lys	Thr	His	Cys 390	Pro	Leu	Arg	Ala	Ala 395	Val	Thr	Pro	Ala	Ala 400
Gly	Val	Cys	Ala	Arg 405	Glu	Lys	Pro	Gln	Gly 410	Ser	Val	Ala	Ala	Pro 415	Glu
Glu	Glu	Asp	Thr 420	Asp	Pro	Arg	Arg	Leu 425	Val	Gln	Leu	Leu	Arg 430	Gln	His
Ser	Ser	Pro 435	Trp	Gln	Val	Tyr	Gly 440	Phe	Val	Arg	Ala	Cys 445	Leu	Arg	Arg
Leu	Val 450	Pro	Pro	Gly	Leu	Trp 455	Gly	Ser	Arg	His	Asn 460	Glu	Arg	Arg	Phe
Leu 465	Arg	Asn	Thr	Lys	Lys 470	Phe	Ile	Ser	Leu	Gly 475	Lys	His	Ala	Lys	Leu 480
Ser	Leu	Gln	Glu	Leu 485	Thr	Trp	Lys	Met	Ser 490	Val	Arg	Gly	Cys	Ala 495	Trp
Leu	Arg	Arg	Ser 500	Pro	Gly	Val	Gly	Суs 505	Val	Pro	Ala	Ala	Glu 510	His	Arg
Leu	Arg	Glu	Glu	Ile	Leu	Ala	Lys	Phe	Leu	His	Trp	Leu	Met	Ser	Val

		515					520					525			
Tyr	Val 530	Val	Glu	Leu	Leu	Arg 535	Ser	Phe	Phe	Tyr	Val 540	Thr	Glu	Thr	Thr
Phe 545	Gln	Lys	Asn	Arg	Leu 550	Phe	Phe	Tyr	Arg	Lys 555	Ser	Val	Trp	Ser	Lys 560
Leu	Gln	Ser	Ile	Gly 565	Ile	Arg	Gln	His	Leu 570	Lys	Arg	Val	Gln	Leu 575	Arg
Glu	Leu	Ser	Glu 580	Ala	Glu	Val	Arg	Gln 585	His	Arg	Glu	Ala	Arg 590	Pro	Ala
Leu	Leu	Thr 595	Ser	Arg	Leu	Arg	Phe 600	Ile	Pro	Lys	Pro	Asp 605	Gly	Leu	Arg
Pro	Ile 610	Val	Asn	Met	Asp	Tyr 615	Val	Val	Gly	Ala	Arg 620	Thr	Phe	Arg	Arg
Glu 625	Lys	Arg	Ala	Glu	Arg 630	Leu	Thr	Ser	Arg	Val 635	Lys	Ala	Leu	Phe	Ser 640
Val	Leu	Asn	Tyr	Glu 645	Arg	Ala	Arg	Arg	Pro 650	Gly	Leu	Leu	Gly	Ala 655	Ser
Val	Leu	Gly	Leu 660	Asp	Asp	Ile	His	Arg 665	Ala	Trp	Arg	Thr	Phe 670	Val	Leu
Arg	Val	Arg 675	Ala	Gln	Asp	Pro	Pro 680	Pro	Glu	Leu	Tyr	Phe 685	Val	Lys	Val
Asp	Val 690	Thr	Gly	Ala	Tyr	Asp 695	Thr	Ile	Pro	Gln	Asp 700	Arg	Leu	Thr	Glu
Val 705	Ile	Ala	Ser	Ile	Ile 710	Lys	Pro	Gln	Asn	Thr 715	Tyr	Cys	Val	Arg	A rg 720
Tyr	Ala	Val	Val	Gln 725	Lys	Ala	Ala	His	Gly 730	His	Val	Arg	Lys	Ala 735	Phe
Lys	Ser	His	Val 740	Ser	Thr	Leu	Thr	Asp 745	Leu	Gln	Pro	Tyr	Met 750	Arg	Gln
Phe	Val	Ala 755	His	Leu	Gln	Glu	Thr 760	Ser	Pro	Leu	Arg	Asp 765	Ala	Val	Val

Ile	Glu 770	Gln	Ser	Ser	Ser	Leu 775	Asn	Glu	Ala	Ser	Ser 780	Gly	Leu	Phe	Asp
Val 785	Phe	Leu	Arg	Phe	Met 790	Cys	His	His	Ala	Val 795	Arg	Ile	Arg	Gly	Lys 800
Ser	Tyr	Val	Gln	Cys 805	Gln	Gly	Ile	Pro	Gln 810	Gly	Ser	Ile	Leu	Ser 815	Thr
Leu	Leu	Cys	Ser 820	Leu	Cys	Туг	Gly	As p 825	Met	Glu	Asn	Lys	Leu 830	Phe	Ala
Gly	Ala	Lys 835	Thr	Phe	Leu	Arg	Thr 840	Leu	Val	Arg	Gly	Val 845	Pro	Glu	Tyr
Gly	Cys 850	Val	Val	Asn	Leu	Arg 855	Lys	Thr	Val	Val	Asn 860	Phe	Pro	Val	Glu
Asp 865	Glu	Ala	Leu	Gly	Gly 870	Thr	Ala	Phe	Val	Gln 875	Met	Pro	Ala	His	Gly 880
Leu	Phe	Pro	Trp	Cys 885	Gly	Leu	Leu	Leu	Asp 890	Thr	Arg	Thr	Leu	Glu 895	Val
Gln	Ser	Asp	Tyr 900	Ser	Ser	Tyr	Ala	Arg 905	Thr	Ser	Ile	Arg	Ala 910	Ser	Leu
Thr	Phe	Asn 915	Arg	Gly	Phe	Lys	Ala 920	Gly	Arg	Asn	Met	Arg 925	Arg	Lys	Leu
Phe	Gly 930	Val	Leu	Arg	Leu	Lys 935	Cys	His	Ser	Leu	Phe 940	Leu	Asp	Leu	Gln
Val 945	Asn	Ser	Leu	Gln	Thr 950	Val	Cys	Thr	Asn	Ile 955	Tyr	Lys	Ile	Leu	Leu 960
Leu	Gln	Ala	Tyr	Arg 965	Phe	His	Ala	Cys	Val 970	Leu	Gln	Leu	Pro	Phe 975	His

Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala 1010 1015 1020

Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp

Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met 995 $$ 1000 $$ 1000 $$

985

980

	Val	Gln 1025	Trp	Leu	Cys	His	Gln 1030	Ala	Phe	Leu	Leu	Lys 1035	Leu	Thr	Arg		
	His	Arg 1040	Val	Thr	Tyr	Val	Pro 1045	Leu	Leu	Gly	Ser	Leu 1050	Arg	Thr	Ala		
	Gln	Thr 1055		Leu	Ser	Arg	Lys 1060	Leu	Pro	Gly	Thr	Thr 1065	Leu	Thr	Ala		
	Leu	Glu 1070		Ala	Ala	Asn	Pro 1075	Ala	Leu	Pro	Ser	Asp 1080	Phe	Lys	Thr		
	Ile	Leu 1085	Asp														
5	<212	> 11 > 7120 > ADN > Artifi	I														
	<220 <223	> > vecto	or de	expr	esión	de pl	ásmido	o INV	'AC-1								
10		> > CDS > (348		6961)													
15	<400 gcta		cg t	tggt	ttaaq	g tag	gtgta	gtg	gtta	tcac	gt t	cgcct	aaca	cgc	gaaag	gt	60
	cccc	ggtto	cg a	aacc	gggca	a cta	acaaa	cca	acaa	cgtta	aa a	aaaca	ggtc	ctc	cccata	ac	120
	tctt	tcatt	tg t	acaca	accgo	c aa	gctcg	aca	atca	tcgga	at to	gaagc	attg	tcg	cacac	at	180
	cttc	cacac	ca g	gatca	agtad	ct	gcttt	cgc	tttt	aacca	aa g	gcttt	tctc	caa	gggat	at	240
	ttat	agtct	tc a	aaac	acaca	a at	tactt	tac	agtt	agggt	tg a	gtttc	cttt	tgt	gctgt	tt	300
	ttta	aaata	aa t	aatt	tagta	a tti	tgtat	ctc	ttata	agaa	at c	caagc	ctat	cat	gtaaa	at	360
	gtag	gctagt	ta t	taaa	aagaa	a ca	gatta	tct	gtct	tttai	tc g	cacat	taag	cct	ctata	gt	420
	tact	aggaa	aa t	atta	tatgo	c aaa	attaa	ccg	gggc	aggg	ga g	tagcc	gagc	ttc	tccca	ca	480
	agto	tgtg	cg a	gggg	geege	g cg	cgggc	cta	gaga	tggc	gg c	gtcgg	atcg	gcc	agccc	gc	540
	ctaa	atgago	cg g	gctt	tttt	te	ttagg	gtg	caaa	agga	ga g	cctgt	aagc	ggg	cactc	tt	600
	ccgt	ggtct	tg g	tgga	taaat	to	gcaag	ggt	atca	tggc	gg a	cgacc	gggg	ttc	gagcc	cc	660
	gtat	ccgg	cc g	tccg	ccgto	g ato	ccatg	cgg	ttac	cgcc	eg e	gtgtc	gaac	cca	ggtgt	gc	720
	gaco	gtcaga	ac a	acgg	gggag	g tg	ctcct	ttt	ggct	taati	ta a	cctac	cggt	ctg	cctcg	cg	780
	cgtt	tcggt	tg a	tgac	ggtga	a aaa	acctc	tga	caca	tgca	gc t	cccgg	agac	ggt	cacag	ct	840

tgtctgtaag	cggatgccgg	gagcagacaa	gcccgtcagg	gcgcgtcagc	gggtgttggc	900
gggtgtcggg	gcgcagccat	gacccagtca	cgtagcgata	gcggagtgta	tactggctta	960
actatgcggc	atcagagcag	attgtactga	gagtgcacca	tatgcggtgt	gaaataccgc	1020
acagatgcgt	aaggagaaaa	taccgcatca	ggcgctcttc	cgcttcctcg	ctcactgact	1080
cgctgcgctc	ggtcgttcgg	ctgcggcgag	cggtatcagc	tcactcaaag	gcggtaatac	1140
ggttatccac	agaatcaggg	gataacgcag	gaaagaacat	gtgagcaaaa	ggccagcaaa	1200
aggccaggaa	ccgtaaaaag	gccgcgttgc	tggcgttttt	ccataggctc	cgcccccctg	1260
acgagcatca	caaaaatcga	cgctcaagtc	agaggtggcg	aaacccgaca	ggactataaa	1320
gataccaggc	gtttccccct	ggaagctccc	tcgtgcgctc	tcctgttccg	accctgccgc	1380
ttaccggata	cctgtccgcc	tttctccctt	cgggaagcgt	ggcgctttct	catageteae	1440
gctgtaggta	tctcagttcg	gtgtaggtcg	ttcgctccaa	gctgggctgt	gtgcacgaac	1500
cccccgttca	gcccgaccgc	tgcgccttat	ccggtaacta	tcgtcttgag	tccaacccgg	1560
taagacacga	cttatcgcca	ctggcagcag	ccactggtaa	caggattagc	agagcgaggt	1620
atgtaggcgg	tgctacagag	ttcttgaagt	ggtggcctaa	ctacggctac	actagaagaa	1680
cagtatttgg	tatctgcgct	ctgctgaagc	cagttacctt	cggaaaaaga	gttggtagct	1740
cttgatccgg	caaacaaacc	accgctggta	gcggtggttt	ttttgtttgc	aagcagcaga	1800
ttacgcgcag	aaaaaaagga	tctcaagaag	atcctttgat	cttttctacg	gggtctgacg	1860
ctcagtggaa	cgaaaactca	cgttaaggga	ttttggtcat	gagattatca	aaaaggatct	1920
tcacctagat	ccttttaaat	taaaaatgaa	gttttaaatc	aatctaaagt	atatatgagt	1980
aaacttggtc	tgacagttac	caatgcttaa	tcagtgaggc	acctatctca	gcgatctgtc	2040
tatttcgttc	atccatagtt	gcctgactcc	tgcaaaccac	gttgtggtag	aattggtaaa	2100
gagagtcgtg	taaaatatcg	agttcgcaca	tcttgttgtc	tgattattga	tttttggcga	2160
aaccatttga	tcatatgaca	agatgtgtat	ctaccttaac	ttaatgattt	tgataaaaat	2220
cattaggtac	ccctgatcac	tgtggaatgt	gtgtcagtta	gggtgtggaa	agtccccagg	2280
ctccccagca	ggcagaagta	tgcaaagcat	gcatctcaat	tagtcagcaa	ccaggtgtgg	2340
aaagtcccca	ggctccccag	caggcagaag	tatgcaaagc	atgcatctca	attagtcagc	2400
aaccatagtc	ccgcccctaa	ctccgcccat	cccgccccta	actccgccca	gttacggggt	2460
cattagttca	tagcccatat	atggagttcc	gcgttacata	acttacggta	aatggcccgc	2520
ctggctgacc	gcccaacgac	ccccgcccat	tgacgtcaat	aatgacgtat	gttcccatag	2580
taacgccaat	agggactttc	cattgacgtc	aatgggtgga	gtatttacgg	taaactgccc	2640
acttggcagt	acatcaagtg	tatcatatgc	caagtacgcc	ccctattgac	gtcaatgacg	2700
gtaaatggcc	cgcctggcat	tatgcccagt	acatgacctt	atgggacttt	cctacttggc	2760

agtacatcta cgtattagtc atcgctatta ccatggtgat c	gcggttttgg cagtacatca	2820
atgggcgtgg atagcggttt gactcacggg gatttccaag t	tctccacccc attgacgtca	2880
atgggagttt gttttggcac caaaatcaac gggactttcc a	aaaatgtcgt aacaactccg	2940
ccccattgac gcaaatgggc ggtaggcgtg tacggtggga g	ggtctatata agcagagctc	3000
gtttagtgaa ccgtcagatc gcctggagac gccatccacg c	ctgttttgac ctccatagaa	3060
gacaccggga ccgatccagc ctccgcggct cgcatctctc c	cttcacgcgc ccgccgccct	3120
acctgaggec gecatecaeg eeggttgagt egegttetge e	cgcctcccgc ctgtggtgcc	3180
tcctgaactg cgtccgccgt ctaggtaagt ttaaagctca c	ggtcgagacc gggcctttgt	3240
ccggcgctcc cttggagcct acctagactc agccggctct c	ccacgctttg cctgaccctg	3300
cttgctcaac tctagttctc tcgttaactt aatgagacag a	atagaaactg gtcttgtaga	3360
aacagagtag togootgott ttotgooagg tgotgactto t	tctcccctgg gcttttttct	3420
ttttctcagg ttgaaaagaa gaagacgaag aagacgaaga a	agacaaaccg tcgtcgacaa	3480
gcttacc atg cag atc ttc gtg aag acc ctg acc c Met Gln Ile Phe Val Lys Thr Leu Thr G 1 5	= = =	3529
ctc gag gtg gag ccc agt gac acc atc gaa aat g Leu Glu Val Glu Pro Ser Asp Thr Ile Glu Asn V 15 20 25		3577
caa gat aaa gaa ggc atc cca ccc gac cag cag a Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln A 35 40		3625
ggc aag cag ctg gaa gat ggc cgc act ctg tct c Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Ser A 50 55		3673
aaa gag tcg acc ctg cac ctg gtc ctg cgt ctg a Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu A 65 70		3721
ctg gtg gcc cag tgc ctg gtg tgc gtg ccc tgg g Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp A 80 85		3769
cct gcc gca ccc tca ttc cgc caa gtg tcc tgc c Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys I 95 100 105		3817
gcc cga gtg ctg cag agg ctg tgc gag cgc ggc g Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly A 115 120		3865
gcc ttc ggc ttc gcg ctg ctg gac ggg gct cgc c Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg G 130	gga ggc cca ccc gag Gly Gly Pro Pro Glu 140	3913
gcc ttc acc acc agc gtg cgc agc tac ctg ccc a Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro A		3961

145	15	0	155	
	g agc ggg gcg tg y Ser Gly Ala Tr 165	p Gly Leu Leu I		
	g gtt cac ctg ct u Val His Leu Le 180			_
	c tgc gcc tac ca r Cys Ala Tyr Gl: 195			-
	c act cag gca cg a Thr Gln Ala Ar 0	-		
	g gga tgc gaa cg u Gly Cys Glu Ar 23	g Ala Trp Asn H		
	c ctg ggc ctg cc o Leu Gly Leu Pr 245	o Ala Pro Gly A		
	c cga agt ctg cc r Arg Ser Leu Pr 260			
	g ccg gag cgg acu u Pro Glu Arg Th 275			=
	g acg cgt gga cc g Thr Arg Gly Pr 0			
	a ccc gcc gaa ga g Pro Ala Glu Gl [.] 31	u Ala Thr Ser I		
	c cac toc cac co g His Ser His Pro 325	o Ser Val Gly A		
	c aca tog ogg co r Thr Ser Arg Pr 340	-	Frp Asp Thr Pro	_
	c gcc gag acc aa r Ala Glu Thr Ly 355	_		_
	g cgg cca tcc tt u Arg Pro Ser Pho 0			•
	t cgg agg ctc gto a Arg Arg Leu Va 39	l Glu Thr Ile E		
ccc tgg atg cca	a ggg act ccc cg	c agg ttg ccc o	ege ctg eee cag	aga 4729

Pro	Trp 400	Met	Pro	Gly	Thr	Pro 405	Arg	Arg	Leu	Pro	Arg 410	Leu	Pro	Gln	Arg	
			_			ctg Leu		_		_						4777
						ctc Leu										4825
						ggt Gly										4873
			-			gag Glu		_		_		_	_	_		4921
_	_		_	_		agc Ser 485	_			_						4969
	_	_	_	_		ctg Leu										5017
						ctc Leu										5065
	_		-	_		tcg Ser	_	_		_	_		_	_	-	5113
			-	-		ctg Leu	_		_			-		-	-	5161
_	_	_			_	ctg Leu 565	_				_	_	_		_	5209
						tac Tyr										5257
				_		ttt Phe	_	_			_	_	_			5305
_	_	_		_	_	ttg Leu		_				_	_		_	5353
						gag Glu										5401
	-	-			-	ctg Leu 645	_	_		-		_				5449

						ccg Pro										5497
						gaa Glu										5545
	_	_	_		_	gtg Val						_		_		5593
						gtg Val										5641
	-				_	cgt Arg 725			-	_	_	_	_			5689
_			_	_		gat Asp		_				_				5737
_	_			_		gtc Val		_	-					_		5785
-		-		-		tat Tyr	-		-	-	-	-	-			5833
	-	_	_	-		aag Lys	_		-			_		-		5881
_	_		_	_	_	ttc Phe 805		-		_	_			_	_	5929
_		_	_	_	_	atc Ile		_	-			_			_	5977
-	_				-	gtc Val			-		_	_			-	6025
						tcc Ser	_									6073
					_	ctg Leu		_	-	_	_			_	_	6121
						ggg Gly 885										6169
						cct Pro										6217

			tgc gtg gtg aac ttg Cys Val Val Asn Leu 925	6265
Arg Lys Thr V			gag gcc ctg ggt ggc Glu Ala Leu Gly Gly 940	6313
	Val Gln Met Pro A		ttc ccc tgg tgc ggc Phe Pro Trp Cys Gly 955	6361
		eu Glu Val Gln	agc gac tac tcc agc Ser Asp Tyr Ser Ser 970	6409
		· -	ttc aac cgc ggc ttc Phe Asn Arg Gly Phe 990	6457
		_	ggg gtc ttg cgg ctg Gly Val Leu Arg Leu 1005	6505
Lys Cys His S			g aac agc ctc cag 1 Asn Ser Leu Gln 1020	6550
Thr Val Cys T	acc aac atc tac Thr Asn Ile Tyr 1025		g ctg cag gcg tac u Leu Gln Ala Tyr 1035	6595
Arg Phe His A	gca tgt gtg ctg Ala Cys Val Leu 1040	_	t cat cag caa gtt e His Gln Gln Val 1050	6640
Trp Lys Asn E	ccc aca ttt ttc Pro Thr Phe Phe 1055			6685
Ser Leu Cys T	tac tcc atc ctg Tyr Ser Ile Leu 1070			6730
Leu Gly Ala I	aag ggc gcc gcc Lys Gly Ala Ala 1085			6775
Gln Trp Leu C	ege cac caa gca Cys His Gln Ala 1100		g ctg act cga cac s Leu Thr Arg His 1110	6820
Arg Val Thr T			c agg aca gcc cag u Arg Thr Ala Gln 1125	6865
Thr Gln Leu S	agt cgg aag ctc Ser Arg Lys Leu 1130		g ctg act gcc ctg r Leu Thr Ala Leu 1140	6910
	gcc aac ccg gca Ala Asn Pro Ala		c ttc aag acc atc p Phe Lys Thr Ile	6955
:	1145	1150	1155	
ctg gac taata Leu Asp	aatcta gaagatctt	t ttccctctgc ca	aaaattat ggggacatca	7011
tgaagcccct to	gagcatctg acttct	ggct aataaaggaa	atttattttc attgcaatag	7071
	tttttgtgt ctctca	ctcg gaaggacata	agggcggcc	7120
∠210 <u>~ 12</u>				

<212	> 115 > PR > Arti	Т													
<220 <223	> > Coı	nstrud	cción	sinté	tica										
<400 Met 1	> 12 Gln	Ile	Phe	Val 5	Lys	Thr	Leu	Thr	Gly 10	Lys	Thr	Ile	Thr	Leu 15	Glu
Val	Glu	Pro	Ser 20	Asp	Thr	Ile	Glu	Asn 25	Val	Lys	Ala	Lys	Ile 30	Gln	Asp
Lys	Glu	Gly 35	Ile	Pro	Pro	Asp	Gln 40	Gln	Arg	Leu	Ile	Phe 45	Ala	Gly	Lys
Gln	Leu 50	Glu	Asp	Gly	Arg	Thr 55	Leu	Ser	Asp	Tyr	Asn 60	Ile	Gln	Lys	Glu
Ser 65	Thr	Leu	His	Leu	Val 70	Leu	Arg	Leu	Arg	Gly 75	Gly	Arg	Ala	Leu	Val 80
Ala	Gln	Cys	Leu	Val 85	Cys	Val	Pro	Trp	Asp 90	Ala	Arg	Pro	Pro	Pro 95	Ala
Ala	Pro	Ser	Phe 100	Arg	Gln	Val	Ser	Cys 105	Leu	Lys	Glu	Leu	Val 110	Ala	Arg
Val	Leu	Gln 115	Arg	Leu	Cys	Glu	Arg 120	Gly	Ala	Lys	Asn	Val 125	Leu	Ala	Phe
Gly	Phe 130	Ala	Leu	Leu	Asp	Gly 135	Ala	Arg	Gly	Gly	Pro 140	Pro	Glu	Ala	Phe
Thr 145	Thr	Ser	Val	Arg	Ser 150	Tyr	Leu	Pro	Asn	Thr 155	Val	Thr	Asp	Ala	Leu 160
Arg	Gly	Ser	Gly	Ala 165	Trp	Gly	Leu	Leu	Leu 170	Arg	Arg	Val	Gly	Asp 175	Asp

Val	Leu	Val	His 180	Leu	Leu	Ala	Arg	Cys 185	Ala	Leu	Phe	Val	Leu 190	Val	Ala
Pro	Ser	Cys 195	Ala	Tyr	Gln	Val	Cys 200	Gly	Pro	Pro	Leu	Tyr 205	Gln	Leu	Gly
Ala	Ala 210	Thr	Gln	Ala	Arg	Pro 215	Pro	Pro	His	Ala	Ser 220	Gly	Pro	Arg	Arg
Arg 225	Leu	Gly	Cys	Glu	Arg 230	Ala	Trp	Asn	His	Ser 235	Val	Arg	Glu	Ala	Gly 240
Val	Pro	Leu	Gly	Leu 245	Pro	Ala	Pro	Gly	Ala 250	Arg	Arg	Arg	Gly	Gly 255	Ser
Ala	Ser	Arg	Ser 260	Leu	Pro	Leu	Pro	Lys 265	Arg	Pro	Arg	Arg	Gly 270	Ala	Ala
Pro	Glu	Pro 275	Glu	Arg	Thr	Pro	Val 280	Gly	Gln	Gly	Ser	Trp 285	Ala	His	Pro
Gly	Arg 290	Thr	Arg	Gly	Pro	Ser 295	Asp	Arg	Gly	Phe	Cys 300	Val	Val	Ser	Pro
Ala 305	Arg	Pro	Ala	Glu	Glu 310	Ala	Thr	Ser	Leu	Glu 315	Gly	Ala	Leu	Ser	Gly 320
Thr	Arg	His	Ser	His 325	Pro	Ser	Val	Gly	Arg 330	Gln	His	His	Ala	Gly 335	Pro
Pro	Ser	Thr	Ser 340	Arg	Pro	Pro	Arg	Pro 345	Trp	Asp	Thr	Pro	Cys 350	Pro	Pro
Val	Tyr	Ala 355	Glu	Thr	Lys	His	Phe 360	Leu	Tyr	Ser	Ser	Gly 365	Asp	Lys	Glu
Gln	Leu 370	Arg	Pro	Ser	Phe	Leu 375	Leu	Ser	Ser	Leu	Arg 380	Pro	Ser	Leu	Thr
Gly 385	Ala	Arg	Arg	Leu	Val 390	Glu	Thr	Ile	Phe	Leu 395	Gly	Ser	Arg	Pro	Trp 400
Met	Pro	Gly	Thr	Pro 405	Arg	Arg	Leu	Pro	Arg 410	Leu	Pro	Gln	Arg	Tyr 415	Trp
Gln	Met	Arg	Pro	Leu	Phe	Leu	Glu	Leu	Leu	Gly	Asn	His	Ala	Gln	Cys

			420					425					430		
Pro	Tyr	Gly 435	Val	Leu	Leu	Lys	Thr 440	His	Cys	Pro	Leu	Arg 445	Ala	Ala	Val
Thr	Pro 450	Ala	Ala	Gly	Val	Cys 455	Ala	Arg	Glu	Lys	Pro 460	Gln	Gly	Ser	Val
Ala 465	Ala	Pro	Glu	Glu	Glu 470	Asp	Thr	Asp	Pro	Arg 475	Arg	Leu	Val	Gln	Leu 480
Leu	Arg	Gln	His	Ser 485	Ser	Pro	Trp	Gln	Val 490	Tyr	Gly	Phe	Val	Arg 495	Ala
Cys	Leu	Arg	Arg 500	Leu	Val	Pro	Pro	Gly 505	Leu	Trp	Gly	Ser	Arg 510	His	Asn
Glu	Arg	Arg 515	Phe	Leu	Arg	Asn	Thr 520	Lys	Lys	Phe	Ile	Ser 525	Leu	Gly	Lys
His	Ala 530	Lys	Leu	Ser	Leu	Gln 535	Glu	Leu	Thr	Trp	Lys 540	Met	Ser	Val	Arg
Gly 545	Cys	Ala	Trp	Leu	Arg 550	Arg	Ser	Pro	Gly	Val 555	Gly	Cys	Val	Pro	Ala 560
Ala	Glu	His	Arg	Leu 565	Arg	Glu	Glu	Ile	Leu 570	Ala	Lys	Phe	Leu	His 575	Trp
Leu	Met	Ser	Val 580	Tyr	Val	Val	Glu	Leu 585	Leu	Arg	Ser	Phe	Phe 590	Tyr	Val
Thr	Glu	Thr 595	Thr	Phe	Gln	Lys	Asn 600	Arg	Leu	Phe	Phe	Tyr 605	Arg	Lys	Ser
Val	Trp 610	Ser	Lys	Leu	Gln	Ser 615	Ile	Gly	Ile	Arg	Gln 620	His	Leu	Lys	Arg
Val 625	Gln	Leu	Arg	Glu	Leu 630	Ser	Glu	Ala	Glu	Val 635	Arg	Gln	His	Arg	Glu 640
Ala	Arg	Pro	Ala	Leu 645	Leu	Thr	Ser	Arg	Leu 650	Arg	Phe	Ile	Pro	Lys 655	Pro
Asp	Gly	Leu	Arg 660	Pro	Ile	Val	Asn	Met 665	Asp	Tyr	Val	Val	Gly 670	Ala	Arg

Thr	Phe	Arg 675	Arg	Glu	Lys	Arg	Ala 680	Glu	Arg	Leu	Thr	Ser 685	Arg	Val	Lys
Ala	Leu 690	Phe	Ser	Val	Leu	Asn 695	Tyr	Glu	Arg	Ala	A rg 700	Arg	Pro	Gly	Leu
Leu 705	Gly	Ala	Ser	Val	Leu 710	Gly	Leu	Asp	Asp	Ile 715	His	Arg	Ala	Trp	Arg 720
Thr	Phe	Val	Leu	A rg 725	Val	Arg	Ala	Gln	Asp 730	Pro	Pro	Pro	Glu	Leu 735	Туг
Phe	Val	Lys	Val 740	Asp	Val	Thr	Gly	Ala 745	Tyr	Asp	Thr	Ile	Pro 750	Gln	Asp
Arg	Leu	Thr 755	Glu	Val	Ile	Ala	Ser 760	Ile	Ile	Lys	Pro	Gln 765	Asn	Thr	Tyr
Cys	Val 770	Arg	Arg	Tyr	Ala	Val 775	Val	Gln	Lys	Ala	Ala 780	His	Gly	His	Val
Arg 785	Lys	Ala	Phe	Lys	Ser 790	His	Val	Ser	Thr	Leu 795	Thr	Asp	Leu	Gln	Pro 800
Tyr	Met	Arg	Gln	Phe 805	Val	Ala	His	Leu	Gln 810	Glu	Thr	Ser	Pro	Leu 815	Arg
Asp	Ala	Val	Val 820	Ile	Glu	Gln	Ser	Ser 825	Ser	Leu	Asn	Glu	Ala 830	Ser	Ser
Gly	Leu	Phe 835	Asp	Val	Phe	Leu	Arg 840	Phe	Met	Cys	His	His 845	Ala	Val	Arg
Ile	Arg 850	Gly	Lys	Ser	Tyr	Val 855	Gln	Cys	Gln	Gly	Ile 860	Pro	Gln	Gly	Ser
Ile 865	Leu	Ser	Thr	Leu	Leu 870	Cys	Ser	Leu	Cys	Tyr 875	Gly	Asp	Met	Glu	As r 880
Lys	Leu	Phe	Ala	Gly 885	Ile	Arg	Arg	Asp	Gly 890	Leu	Leu	Leu	Arg	Leu 895	Phe

Leu Leu Val Thr Pro His Leu Thr His Ala Lys Thr Phe Leu Arg Thr

Leu Val Arg Gly Val Pro Glu Tyr Gly Cys Val Val Asn Leu Arg Lys 915 920 925

Thr Val Val Asn Phe Pro Val Glu Asp Glu Ala Leu Gly Gly Thr Ala 930 935 940
Phe Val Gln Met Pro Ala His Gly Leu Phe Pro Trp Cys Gly Leu Leu 945 950 955 960
Leu Asp Thr Arg Thr Leu Glu Val Gln Ser Asp Tyr Ser Ser Tyr Ala 965 970 975
Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe Asn Arg Gly Phe Lys Ala 980 985 990
Gly Arg Asn Met Arg Arg Lys Leu Phe Gly Val Leu Arg Leu Lys Cys 995 1000 1005
His Ser Leu Phe Leu Asp Leu Gln Val Asn Ser Leu Gln Thr Val 1010 1015 1020
Cys Thr Asn Ile Tyr Lys Ile Leu Leu Gln Ala Tyr Arg Phe 1025 1030 1035
His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln Val Trp Lys 1040 1045 1050
Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala Ser Leu 1055 1060 1065
Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser Leu Gly 1070 1075 1080
Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val Gln Trp 1085 1090 1095
Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His Arg Val
Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln Thr Gln 1115 1120 1125
Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu Glu Ala 1130 1135 1140
Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile Leu Asp 1145 1150 1155
<210> 13 <211> 3570 <212> ADN <213> Artificial
<220> <223> secuencia del inserto pUTD10Not
<220> <221> CDS <222> (1)(3570)

<400	> 13															
_	cag Gln			-			_			_				_	_	48
	gag Glu		-	-					-		_	_		_	_	96
_	gag Glu					-	_	_		_			_		_	144
_	ctg Leu 50		-		-			-	-				-	-	_	192
_	act Thr	_		_	_		_	_	_			_	_			240
	cgg Arg															288
	gct Ala	_		_	_		-	_	_	_	_	_	_	_		336
	gac Asp	-					_	-		_			_		-	384
	ctc Leu 130															432
	gca Ala	_		-		-				_	_		_		_	480
_	gga Gly					-				_	_				_	528
	aac Asn															576
-	ctg Leu					-	-	_	_	_			-	-		624

	gcc Ala 210															672
	ccc Pro				_			_	_		_	_	_			720
	cac His															768
	cat His															816
	gca Ala		_	_				_	_	_				_		864
_	agg Arg 290		_	_		-	-		_			_			_	912
	cag Gln				_									_	_	960
	ggc Gly															1008
	ttg Leu	_		_		_										1056
	agg Arg	_			_						_	_			-	1104
	tgg Trp 370															1152
-	tat Tyr		_		_			_						_		1200
	agc Ser															1248
	ttt Phe	_			_			_					_	_	_	1296
	agg Arg															1344
	ctg Leu															1392

	450					455					460					
	tgt Cys															1440
-	gaa Glu			_				-	_		_			-		1488
_	cct Pro	_	_		_	_	_			_						1536
_	gtg Val						_	_	_		_	_	_			1584
	ttg Leu 530							-		-		_				1632
	aag Lys															1680
_	aca Thr		_	_	_	_	_		_	_						1728
	gga Gly	_		_	_		_	-				_	_	-		1776
	ctc Leu	-	_		_				_	-	_			-	_	1824
-	ctg Leu 610												_	_		1872
_	ctg Leu					_		_		_	_		_	_		1920
	att Ile															1968
-	gaa Glu	-	_	_		-	-	-	_		-		_			2016
	ctg Leu							_			_					2064
	gat Asp 690															2112
gag	aga	ctg	aca	tct	cgc	gtg	aag	gca	ctt	ttt	tct	gtg	ctt	aat	tat	2160

Glu 705	Arg	Leu	Thr	Ser	Arg 710	Val	Lys	Ala	Leu	Phe 715	Ser	Val	Leu	Asn	Tyr 720	
_	_	_	_	_						gcc Ala	_				_	2208
										gtg Val						2256
-	-									aaa Lys	-	-	-			2304
_		_				_	-			acc Thr				-		2352
										aga Arg 795						2400
										gct Ala						2448
		_		_		_			_	cgg Arg	_		_	_		2496
										gtg Val						2544
-					_				_	ttt Phe	-			_	_	2592
										ggc Gly 875						2640
_	_				_		_		_	agc Ser		_	_	_	_	2688
										ttc Phe						2736
	_	_	-				_			gcc Ala				_		2784
										tgt Cys						2832
			-						-	gaa Glu 955	-					2880

gct ttt gtt cag atg cct gcc cac ggc ctg ttc cca tgg tgc gga ctg Ala Phe Val Gln Met Pro Ala His Gly Leu Phe Pro Trp Cys Gly Leu 965 970 975	2928
ctg ctc gat acc cgg acc ctc gag gtg cag tcc gat tat agt tcc tat Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser Asp Tyr Ser Ser Tyr 980 985 990	2976
gca aga aca tca att cgg gct agc ctg act ttc aac agg ggc ttc aag Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe Asn Arg Gly Phe Lys 995 1000 1005	3024
gcc ggc cgg aat atg aga agg aaa ctg ttc gga gtg ttg aga ctt Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly Val Leu Arg Leu 1010 1015 1020	3069
aag tgt cat agt ctt ttt ttg gac ttg cag gtc aat tct ctc cag Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn Ser Leu Gln 1025 1030 1035	3114
aca gtg tgt acc aac att tat aaa atc ctc ttg ctg cag gct tac Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Gln Ala Tyr 1040 1045 1050	3159
aga ttc cat gcc tgc gtc ctg cag ctg cct ttc cac cag cag gtg Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln Val 1055 1060 1065	3204
tgg aaa aac cct acc ttc ttc ctg cgg gtg att agc gac acc gcc Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala 1070 1075 1080	3249
agt ctt tgc tac tcc atc ttg aaa gca aaa aac gct ggc atg agc Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser 1085 1090 1095	3294
ttg gga gct aag ggc gcc gct gga cct ctg ccc agt gaa gca gtc Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val 1100 1105 1110	3339
cag tgg ctg tgt cat cag gct ttc ctc ctt aaa ctg aca cgc cac Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His 1115 1120 1125	3384
cgc gtg act tac gtc cca ctc ctg ggc tcc ctg aga act gct cag Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln 1130 1135 1140	3429
acc cag ctt tcc cgg aag ctt cca ggc act acc ctt acc gca ctc Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu 1145 1150 1155	3474
gaa gca gcc gcc aac cct gcc ctg ccc tcc gac ttt aag act atc Glu Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile 1160 1165 1170	3519
ctg gac ggc aag cca att cct aat cca ttg ctg ggc ctg gac tca Leu Asp Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser 1175 1180 1185	3564
act tga Thr	3570
<210> 14 <211> 1189 <212> PRT <213> Artificial	
<220> <223> Construcción sintética	
<400> 14	

Met 1	Gln	Ile	Phe	Val 5	Lys	Thr	Leu	Thr	Gly 10	Lys	Thr	Ile	Thr	Leu 15	Glu
Val	Glu	Pro	Ser 20	Asp	Thr	Ile	Glu	Asn 25	Val	Lys	Ala	Lys	Ile 30	Gln	Asp
Lys	Glu	Gly 35	Ile	Pro	Pro	Asp	Gln 40	Gln	Arg	Leu	Ile	Phe 45	Ala	Gly	Lys
Gln	Leu 50	Glu	Asp	Gly	Arg	Thr 55	Leu	Ser	Asp	Tyr	Asn 60	Ile	Gln	Lys	Glu
Ser 65	Thr	Leu	His	Leu	Val 70	Leu	Arg	Leu	Arg	Gly 75	Gly	Leu	Ala	Thr	Phe 80
Val	Arg	Arg	Leu	Gly 85	Pro	Gln	Gly	Trp	Arg 90	Leu	Val	Gln	Arg	Gly 95	Asp
Pro	Ala	Ala	Phe 100	Arg	Ala	Leu	Val	Ala 105	Gln	Cys	Leu	Val	Cys 110	Val	Pro
Trp	Asp	Ala 115	Arg	Pro	Pro	Pro	Ala 120	Ala	Pro	Ser	Phe	Arg 125	Gln	Val	Ser
Cys	Leu 130	Lys	Glu	Leu	Val	Ala 135	Arg	Val	Leu	Gln	Arg 140	Leu	Cys	Glu	Arg
Gly 145	Ala	Lys	Asn	Val	Leu 150	Ala	Phe	Gly	Phe	Ala 155	Leu	Leu	Asp	Gly	Ala 160
Arg	Gly	Gly	Pro	Pro 165	Glu	Ala	Phe	Thr	Thr 170	Ser	Val	Arg	Ser	Tyr 175	Leu
Pro	Asn	Thr	Val 180	Thr	Asp	Ala	Leu	Arg 185	Gly	Ser	Gly	Ala	Trp 190	Gly	Leu
Leu	Leu	Arg 195	Arg	Val	Gly	Asp	Asp 200	Val	Leu	Val	His	Leu 205	Leu	Ala	Arg

Cys	Ala 210	Leu	Phe	Val	Leu	Val 215	Ala	Pro	Ser	Cys	Ala 220	Tyr	Gln	Val	Cys
Gly 225	Pro	Pro	Leu	Tyr	Gln 230	Leu	Gly	Ala	Ala	Thr 235	Gln	Ala	Arg	Pro	Pro 240
Pro	His	Ala	Ser	Gly 245	Pro	Arg	Arg	Arg	Leu 250	Gly	Сув	Glu	Arg	Ala 255	Trp
Asn	His	Ser	Val 260	Arg	Glu	Ala	Gly	Val 265	Pro	Leu	Gly	Leu	Pro 270	Ala	Pro
Gly	Ala	Arg 275	Arg	Arg	Gly	Gly	Ser 280	Ala	Ser	Arg	Ser	Leu 285	Pro	Leu	Pro
Lys	A rg 290	Pro	Arg	Arg	Gly	Ala 295	Ala	Pro	Glu	Pro	Glu 300	Arg	Thr	Pro	Val
Gly 305	Gln	Gly	Ser	Trp	Ala 310	His	Pro	Gly	Arg	Thr 315	Arg	Gly	Pro	Ser	Asp 320
Arg	Gly	Phe	Cys	Val 325	Val	Ser	Pro	Ala	Arg 330	Pro	Ala	Glu	Glu	Ala 335	Thr
Ser	Leu	Glu	Gly 340	Ala	Leu	Ser	Gly	Thr 345	Arg	His	Ser	His	Pro 350	Ser	Val
Gly	Arg	G1n 355	His	His	Ala	Gly	Pro 360	Pro	Ser	Thr	Ser	A rg 365	Pro	Pro	Arg
Pro	Trp 370	Asp	Thr	Pro	Cys	Pro 375	Pro	Val	Tyr	Ala	Glu 380	Thr	Lys	His	Phe
Leu 385	Tyr	Ser	Ser	Gly	Asp 390	Lys	Glu	Gln	Leu	Arg 395	Pro	Ser	Phe	Leu	Leu 400
Ser	Ser	Leu	Arg	Pro 405	Ser	Leu	Thr	Gly	Ala 410	Arg	Arg	Leu	Val	Glu 415	Thr
Ile	Phe	Leu	Gly 420	Ser	Arg	Pro	Trp	Met 425	Pro	Gly	Thr	Pro	Arg 430	Arg	Leu
Pro	Arg	Leu 435	Pro	Gln	Arg	Tyr	Trp 440	Gln	Met	Arg	Pro	Leu 445	Phe	Leu	Glu
Leu	Leu 450	Gly	Asn	His	Ala	Gln	Cys	Pro	Tyr	Gly	Val	Leu	Leu	Lys	Thr

His 465	Cys	Pro	Leu	Arg	Ala 470	Ala	Val	Thr	Pro	Ala 475	Ala	Gly	Val	Cys	Ala 480
Arg	Glu	Lys	Pro	Gln 485	Gly	Ser	Val	Ala	Ala 490	Pro	Glu	Glu	Glu	Asp 495	Thr
Asp	Pro	Arg	Arg 500	Leu	Val	Gln	Leu	Leu 505	Arg	Gln	His	Ser	Ser 510	Pro	Trp
Gln	Val	Tyr 515	Gly	Phe	Val	Arg	Ala 520	Cys	Leu	Arg	Arg	Leu 525	Val	Pro	Pro
Gly	Leu 530	Trp	Gly	Ser	Arg	His 535	Asn	Glu	Arg	Arg	Phe 540	Leu	Arg	Asn	Thr
Lys 545	Lys	Phe	Ile	Ser	Leu 550	Gly	Lys	His	Ala	Lys 555	Leu	Ser	Leu	Gln	Glu 560
Leu	Thr	Trp	Lys	Met 565	Ser	Val	Arg	Gly	Cys 570	Ala	Trp	Leu	Arg	A rg 575	Ser
Pro	Gly	Val	Gly 580	Cys	Val	Pro	Ala	Ala 585	Glu	His	Arg	Leu	Arg 590	Glu	Glu
Ile	Leu	Ala 595	Lys	Phe	Leu	His	Trp 600	Leu	Met	Ser	Val	Tyr 605	Val	Val	Glu
Leu	Leu 610	Arg	Ser	Phe	Phe	Tyr 615	Val	Thr	Glu	Thr	Thr 620	Phe	Gln	Lys	Asn
Arg 625	Leu	Phe	Phe	Tyr	Arg 630	Lys	Ser	Val	Trp	Ser 635	Lys	Leu	Gln	Ser	Ile 640
Gly	Ile	Arg	Gln	His 645	Leu	Lys	Arg	Val	Gln 650	Leu	Arg	Glu	Leu	Ser 655	Glu
Ala	Glu	Val	Arg 660	Gln	His	Arg	Glu	Ala 665	Arg	Pro	Ala	Leu	Leu 670	Thr	Ser
Arg	Leu	Arg 675	Phe	Ile	Pro	Lys	Pro 680	Asp	Gly	Leu	Arg	Pro 685	Ile	Val	Asn
	690	_	Val		_	695					700				
Glu	Arg	Leu	Thr	Ser	Arg	Val	Lys	Ala	Leu	Phe	Ser	Val	Leu	Asn	Tyr

705					710					715					720
Glu	Arg	Ala	Arg	Arg 725	Pro	Gly	Leu	Leu	Gly 730	Ala	Ser	Val	Leu	Gly 735	Leu
Asp	Asp	Ile	His 740	Arg	Ala	Trp	Arg	Thr 745	Phe	Val	Leu	Arg	Val 750	Arg	Ala
Gln	Asp	Pro 755	Pro	Pro	Glu	Leu	Tyr 760	Phe	Val	Lys	Val	Asp 765	Val	Thr	Gly
Ala	Tyr 770	Asp	Thr	Ile	Pro	Gln 775	Asp	Arg	Leu	Thr	Glu 780	Val	Ile	Ala	Ser
Ile 785	Ile	Lys	Pro	Gln	Asn 790	Thr	Tyr	Cys	Val	Arg 795	Arg	Tyr	Ala	Val	Val 800
Gln	Lys	Ala	Ala	His 805	Gly	His	Val	Arg	Lys 810	Ala	Phe	Lys	Ser	His 815	Val
Ser	Thr	Leu	Thr 820	Asp	Leu	Gln	Pro	Tyr 825	Met	Arg	Gln	Phe	Val 830	Ala	His
Leu	Gln	Glu 835	Thr	Ser	Pro	Leu	Arg 840	Asp	Ala	Val	Val	Ile 845	Glu	Gln	Ser
Ser	Ser 850	Leu	Asn	Glu	Ala	Ser 855	Ser	Gly	Leu	Phe	Asp 860	Val	Phe	Leu	Arg
Phe 865	Met	Cys	His	His	Ala 870	Val	Arg	Ile	Arg	Gly 875	Lys	Ser	Tyr	Val	Gln 880
Cys	Gln	Gly	Ile	Pro 885	Gln	Gly	Ser	Ile	Leu 890	Ser	Thr	Leu	Leu	Cys 895	Ser
Leu	Cys	Tyr	Gly 900	Asp	Met	Glu	Asn	Lys 905	Leu	Phe	Ala	Gly	Ile 910	Arg	Arg
Phe	Leu	Leu 915	Val	Thr	Pro	His	Leu 920	Thr	His	Ala	Lys	Thr 925	Phe	Leu	Arg
Thr	Leu 930	Val	Arg	Gly	Val	Pro 935	Glu	Tyr	Gly	Cys	Val 940	Val	Asn	Leu	Arg
Lys 945	Thr	Val	Val	Asn	Phe 950	Pro	Val	Glu	Asp	Glu 955	Ala	Leu	Gly	Gly	Thr 960

Ala	Phe	Val	Gln	Met 965	Pro	Ala 1	His G	_	eu Pi 70	he P:	ro Tr	р С у я	975	•
Leu	Leu	Asp	Thr 980	Arg	Thr	Leu (al G 85	ln S	er A	зр Ту:	r Sei 99		r Tyr
Ala	Arg	Thr 995	Ser	Ile	Arg		Ser L000	Leu	Thr 1	Phe i		rg (005	Gly E	Phe Lys
Ala	Gly 1010		, Asn	Met	. Arg	Arg 101		Leu	Phe	Gly	Val 1020		Arg	Leu
Lys	Cys 1025		Ser	Leu	ı Phe	Leu 1030	_	Leu	Gln	Val	Asn 1035	Ser	Leu	Gln
Thr	Val 1040	_	Thr	Asn	ı Ile	Tyr 104	_	Ile	Leu	Leu	Leu 1050	Gln	Ala	Tyr
Arg	Phe 1055		. Ala	. Cys	s Val	Leu 106		Leu	Pro	Phe	His 1065	Gln	Gln	Val
Trp	Lys 1070		Pro	Thr	Phe	Phe 107!		Arg	Val	Ile	Ser 1080	Asp	Thr	Ala
Ser	Leu 1085	_	. Tyr	Ser	: Ile	Leu 1090	_	Ala	Lys	Asn	Ala 1095	_	Met	Ser
Leu	Gly 1100		. Lys	: Gly	, Ala	Ala 110	_	Pro	Leu	Pro	Ser 1110	Glu	Ala	Val
Gln	Trp 1115		. Cys	His	Gln	Ala 1120		Leu	Leu	Lys	Leu 1125	Thr	Arg	His
Arg	Val 1130		Tyr	· Val	. Pro	Leu 113!		Gly	Ser	Leu	Arg 1140	Thr	Ala	Gln
Thr	Gln 1145		. Ser	Arg	, Lys	Leu 1150		Gly	Thr	Thr	Leu 1155	Thr	Ala	Leu
Glu	Ala 1160		Ala	Asn	Pro	Ala 116		Pro	Ser	Asp	Phe 1170	Lys	Thr	Ile
Leu	Asp 1175	_	Lys	Pro) Ile	Pro 1180		Pro	Leu	Leu	Gly 1185	Leu	Asp	Ser
Thr														
<212	> 15 > 357 > ADI > Arti	N												
<220 <223	> > sec	uenc	ia del	inse	rto pU	ITD10	Cog							
<220 <221	> > CD:	S												

<222> (1)..(3570) <400> 15 atg cag att ttc gtc aaa aca ttg aca gga aag acc atc aca ctg gaa 48 Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu 96 gtg gag cca agc gac act att gag aac gtc aaa gcc aag att cag gac Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp aag gag ggc atc cca cca gac cag cag agg ctg att ttt gcc gga aag 144 Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys 35 40 192 cag ctg gag gac gga cgc aca ctc agt gac tac aat atc cag aag gaa Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu agt act ctg cat ctg gtc ctt cgc ctg cgc ggc gga ctg gcc acc ttc Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Leu Ala Thr Phe 240 70 75 288 gtg cgg cgc ctg gga ccc cag ggc tgg cgg ctg gtg cag cgc ggg gac Val Arg Arg Leu Gly Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp cct gct gct ttc aga gct ctc gtc gcc cag tgt ctg gtc tgc gtt cct 336 Pro Ala Ala Phe Arg Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro 100 105 384 tgg gac gca cgg ccc cca ccc gcc ccc agt ttc cgg cag gtg agt Trp Asp Ala Arg Pro Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser tgt ctc aaa gag ttg gtt gct cgg gtg ttg cag cgg ctt tgt gaa agg Cys Leu Lys Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg 432 135 480 gga gca aag aac gtc ctt gcc ttt ggc ttc gct ttg ctc gat gga gca Gly Ala Lys Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala cgc gga ggc cct cct gag gca ttc act act agc gtc cgg tcc tac ctg 528 Arg Gly Gly Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu 170 576 ccc aac aca gtg acc gac gct ctg aga ggt tca ggt gcc tgg ggt ctg

Pro Asn Thr Val Thr Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu 180 185 190

			t ctg gtt cac l Leu Val His		
			c tcc tgc gca o Ser Cys Ala 220		
	-	Leu Gly Ala	t gct act cag a Ala Thr Gln 235		
			g ctg ggc tgc g Leu Gly Cys 250		
_			g cct ctc ggc 1 Pro Leu Gly 5		
			c agt cgc tca a Ser Arg Ser	_	
			t gaa ccc gag o Glu Pro Glu 300	-	_
		His Pro Gl	a agg acc agg y Arg Thr Arg 315		-
		_	c agg cct gcc a Arg Pro Ala 330		
			c agg cat tct r Arg His Ser 5		
	_		c tct aca agc o Ser Thr Ser	-	-
			g tat gcc gag 1 Tyr Ala Glu 380		
		Lys Glu Gl	g ctc cgg ccc n Leu Arg Pro 395		_
			a gct cgc agg y Ala Arg Arg 410		
_			g cca ggc acc t Pro Gly Thr 5		_
			g atg cgc cct n Met Arg Pro		

	ctg Leu 450				_	_	_				_	_	_	_		1392
	tgt Cys															1440
_	gaa Glu			_				_	_		-			-		1488
_	cct Pro	_	_		_	_	_			_						1536
	gtg Val															1584
	ttg Leu 530															1632
_	aag Lys				_		_		_	_		_	_	_		1680
	aca Thr															1728
	gga Gly	_		_	_		-	_				_	_	_		1776
	ctc Leu	_	_		_				_	_	_			_	-	1824
_	ctg Leu 610												_	_		1872
_	ctg Leu					_		_		-	_		_	-		1920
	att Ile															1968
	gaa Glu															2016
	ctg Leu															2064
	gat Asp															2112

	690					695					700					
	aga Arg															2160
_	aga Arg	-	_	_						_	_				_	2208
_	gat Asp				_		_								_	2256
_	gat Asp										_	-	_			2304
	tac Tyr 770															2352
	atc Ile			_				_		_			_	-	_	2400
_	aaa Lys	_	_					_		_						2448
	acc Thr															2496
_	cag Gln			_		_		_	_		_		_	_		2544
-	tct Ser 850				-				-		-			_	_	2592
	atg Met	_			_						_				_	2640
	cag Gln															2688
	tgc Cys															2736
	ggt Gly															2784
	ctg Leu 930															2832
aaa	act	gtg	gtt	aat	ttc	cca	gtg	gag	gac	gaa	gct	ctc	gga	ggc	aca	2880

Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu Ala Leu Gly Gly Thr 945 950 950 960	
gct ttt gtt cag atg cct gcc cac ggc ctg ttc cca tgg tgc gga ctg Ala Phe Val Gln Met Pro Ala His Gly Leu Phe Pro Trp Cys Gly Leu 965 970 975	2928
ctg ctc gat acc cgg acc ctc gag gtg cag tcc gat tat agt tcc tat Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser Asp Tyr Ser Ser Tyr 980 985 990	2976
gca aga aca tca att cgg gct agc ctg act ttc aac agg ggc ttc aag Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe Asn Arg Gly Phe Lys 995 1000 1005	3024
gcc ggc cgg aat atg aga agg aaa ctg ttc gga gtg ttg aga ctt Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly Val Leu Arg Leu 1010 1015 1020	3069
aag tgt cat agt ctt ttt ttg gac ttg cag gtc aat tct ctc cag Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn Ser Leu Gln 1025 1030 1035	3114
aca gtg tgt acc aac att tat aaa atc ctc ttg ctg cag gct tac Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Gln Ala Tyr 1040 1045 1050	3159
aga ttc cat gcc tgc gtc ctg cag ctg cct ttc cac cag cag gtg Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln Val 1055 1060 1065	3204
tgg aaa aac cct acc ttc ttc ctg cgg gtg att agc gac acc gcc Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr Ala 1070 1075 1080	3249
agt ctt tgc tac tcc atc ttg aaa gca aaa aac gct ggc atg agc Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser 1085 1090 1095	3294
ttg gga gct aag ggc gcc gct gga cct ctg ccc agt gaa gca gtc Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala Val 1100 1105 1110	3339
cag tgg ctg tgt cat cag gct ttc ctc ctt aaa ctg aca cgc cac Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg His 1115 1120 1125	3384
cgc gtg act tac gtc cca ctc ctg ggc tcc ctg aga act gct cag Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala Gln 1130 1135 1140	3429
acc cag ctt tcc cgg aag ctt cca ggc act acc ctt acc gca ctc Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala Leu 1145 1150 1155	3474
gaa gca gcc gcc aac cct gcc ctg ccc tcc gac ttt aag act atc Glu Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr Ile 1160 1165 1170	3519
ctg gac ggc aag cca att cct aat cca ttg ctg ggc ctg gac tca Leu Asp Gly Lys Pro Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser 1175 1180 1185	3564
act tga Thr	3570
<210> 16 <211> 1189 <212> PRT <213> Artificial	

5

10

<220>

<223> Construcción sintética

<400	> 16														
Met 1	Gln	Ile	Phe	Val 5	Lys	Thr	Leu	Thr	Gly 10	Lys	Thr	Ile	Thr	Leu 15	Glu
Val	Glu	Pro	Ser 20	Asp	Thr	Ile	Glu	Asn 25	Val	Lys	Ala	Lys	Ile 30	Gln	Asp
Lys	Glu	Gly 35	Ile	Pro	Pro	Asp	Gln 40	Gln	Arg	Leu	Ile	Phe 45	Ala	Gly	Lys
Gln	Leu 50	Glu	Asp	Gly	Arg	Thr 55	Leu	Ser	Asp	Tyr	Asn 60	Ile	Gln	Lys	Glu
Ser 65	Thr	Leu	His	Leu	Val 70	Leu	Arg	Leu	Arg	Gly 75	Gly	Leu	Ala	Thr	Phe 80
Val	Arg	Arg	Leu	Gly 85	Pro	Gln	Gly	Trp	Arg 90	Leu	Val	Gln	Arg	Gly 95	Asp
Pro	Ala	Ala	Phe 100	Arg	Ala	Leu	Val	Ala 105	Gln	Cys	Leu	Val	Cys 110	Val	Pro
Trp	Asp	Ala 115	Arg	Pro	Pro	Pro	Ala 120	Ala	Pro	Ser	Phe	Arg 125	Gln	Val	Ser
Cys	Leu 130	Lys	Glu	Leu	Val	Ala 135	Arg	Val	Leu	Gln	Arg 140	Leu	Cys	Glu	Arg
Gly 145	Ala	Lys	Asn	Val	Leu 150	Ala	Phe	Gly	Phe	Ala 155	Leu	Leu	Asp	Gly	Ala 160
Arg	Gly	Gly	Pro	Pro 165	Glu	Ala	Phe	Thr	Thr 170	Ser	Val	Arg	Ser	Tyr 175	Leu
Pro	Asn	Thr	Val 180	Thr	Asp	Ala	Leu	Arg 185	Gly	Ser	Gly	Ala	Trp 190	Gly	Leu

Leu	Leu	Arg 195	Arg	Val	Gly	Asp	Asp 200	Val	Leu	Val	His	Leu 205	Leu	Ala	Arg
Cys	Ala 210	Leu	Phe	Val	Leu	Val 215	Ala	Pro	Ser	Cys	Ala 220	Tyr	Gln	Val	Cys
Gly 225	Pro	Pro	Leu	Tyr	Gln 230	Leu	Gly	Ala	Ala	Thr 235	Gln	Ala	Arg	Pro	Pro 240
Pro	His	Ala	Ser	Gly 245	Pro	Arg	Arg	Arg	Leu 250	Gly	Суѕ	Glu	Arg	Ala 255	Trp
Asn	His	Ser	Val 260	Arg	Glu	Ala	Gly	Val 265	Pro	Leu	Gly	Leu	Pro 270	Ala	Pro
Gly	Ala	Arg 275	Arg	Arg	Gly	Gly	Ser 280	Ala	Ser	Arg	Ser	Leu 285	Pro	Leu	Pro
Lys	Arg 290	Pro	Arg	Arg	Gly	Ala 295	Ala	Pro	Glu	Pro	Glu 300	Arg	Thr	Pro	Val
Gly 305	Gln	Gly	Ser	Trp	Ala 310	His	Pro	Gly	Arg	Thr 315	Arg	Gly	Pro	Ser	Asp 320
Arg	Gly	Phe	Суз	Val 325	Val	Ser	Pro	Ala	Arg 330	Pro	Ala	Glu	Glu	Ala 335	Thr
Ser	Leu	Glu	Gly 340	Ala	Leu	Ser	Gly	Thr 345	Arg	His	Ser	His	Pro 350	Ser	Val
Gly	Arg	Gln 355	His	His	Ala	Gly	Pro 360	Pro	Ser	Thr	Ser	Arg 365	Pro	Pro	Arg
Pro	Trp 370	Asp	Thr	Pro	Cys	Pro 375	Pro	Val	Tyr	Ala	Glu 380	Thr	Lys	His	Phe
Leu 385	Tyr	Ser	Ser	Gly	Asp 390	Lys	Glu	Gln	Leu	Arg 395	Pro	Ser	Phe	Leu	Leu 400
Ser	Ser	Leu	Arg	Pro 405	Ser	Leu	Thr	Gly	Ala 410	Arg	Arg	Leu	Val	Glu 415	Thr
Ile	Phe	Leu	Gly 420	Ser	Arg	Pro	Trp	Met 425	Pro	Gly	Thr	Pro	Arg 430	Arg	Leu
Pro	Arg	Leu 435	Pro	Gln	Arg	Tyr	Trp 440	Gln	Met	Arg	Pro	Leu 445	Phe	Leu	Glu

Leu	Leu 450	Gly	Asn	His	Ala	Gln 455	Cys	Pro	Tyr	Gly	Val 460	Leu	Leu	Lys	Thr
His 465	Cys	Pro	Leu	Arg	Ala 470	Ala	Val	Thr	Pro	Ala 475	Ala	Gly	Val	Cys	Ala 480
Arg	Glu	Lys	Pro	Gln 485	Gly	Ser	Val	Ala	Ala 490	Pro	Glu	Glu	Glu	Asp 495	Thr
Asp	Pro	Arg	A rg 500	Leu	Val	Gln	Leu	Leu 505	Arg	Gln	His	Ser	Ser 510	Pro	Trp
Gln	Val	Tyr 515	Gly	Phe	Val	Arg	Ala 520	Суз	Leu	Arg	Arg	Leu 525	Val	Pro	Pro
Gly	Leu 530	Trp	Gly	Ser	Arg	His 535	Asn	Glu	Arg	Arg	Phe 540	Leu	Arg	Asn	Thr
Lys 545	Lys	Phe	Ile	Ser	Leu 550	Gly	Lys	His	Ala	Lys 555	Leu	Ser	Leu	Gln	Glu 560
Leu	Thr	Trp	Lys	Met 565	Ser	Val	Arg	Gly	Cys 570	Ala	Trp	Leu	Arg	A rg 575	Ser
Pro	Gly	Val	Gly 580	Суз	Val	Pro	Ala	Ala 585	Glu	His	Arg	Leu	Arg 590	Glu	Glu
Ile	Leu	Ala 595	Lys	Phe	Leu	His	Trp 600	Leu	Met	Ser	Val	Tyr 605	Val	Val	Glu
Leu	Leu 610	Arg	Ser	Phe	Phe	Tyr 615	Val	Thr	Glu	Thr	Thr 620	Phe	Gln	Lys	Asn
Arg 625	Leu	Phe	Phe	Tyr	A rg 630	Lys	Ser	Val	Trp	Ser 635	Lys	Leu	Gln	Ser	Ile 640
Gly	Ile	Arg	Gln	His 645	Leu	Lys	Arg	Val	Gln 650	Leu	Arg	Glu	Leu	Ser 655	Glu
Ala	Glu	Val	Arg 660	Gln	His	Arg	Glu	Ala 665	Arg	Pro	Ala	Leu	Leu 670	Thr	Ser
Arg	Leu	Arg 675	Phe	Ile	Pro	Lys	Pro 680	Asp	Gly	Leu	Arg	Pro 685	Ile	Val	Asn
Met	Asp 690	Tyr	Val	Val	Gly	Ala 695	Arg	Thr	Phe	Arg	A rg 700	Glu	Lys	Arg	Ala

Glu 705	Arg	Leu	Thr	Ser	Arg 710	Val	Lys	Ala	Leu	Phe 715	Ser	Val	Leu	Asn	Tyr 720
Glu	Arg	Ala	Arg	Arg 725	Pro	Gly	Leu	Leu	Gly 730	Ala	Ser	Val	Leu	Gly 735	Leu
Asp	Asp	Ile	His 740	Arg	Ala	Trp	Arg	Thr 745	Phe	Val	Leu	Arg	Val 750	Arg	Ala
Gln	Asp	Pro 755	Pro	Pro	Glu	Leu	Tyr 760	Phe	Val	Lys	Val	Asp 765	Val	Thr	Gly
Ala	Tyr 770	Asp	Thr	Ile	Pro	Gln 775	Asp	Arg	Leu	Thr	Glu 780	Val	Ile	Ala	Ser
Ile 785	Ile	Lys	Pro	Gln	Asn 790	Thr	Tyr	Cys	Val	Arg 795	Arg	Tyr	Ala	Val	Val 800
Gln	Lys	Ala	Ala	His 805	Gly	His	Val	Arg	Lys 810	Ala	Phe	Lys	Ser	His 815	Val
Ser	Thr	Leu	Thr 820	Asp	Leu	Gln	Pro	Tyr 825	Met	Arg	Gln	Phe	Val 830	Ala	His
Leu	Gln	Glu 835	Thr	Ser	Pro	Leu	Arg 840	Asp	Ala	Val	Val	Ile 845	Glu	Gln	Ser
Ser	Ser 850	Leu	Asn	Glu	Ala	Ser 855	Ser	Gly	Leu	Phe	Asp 860	Val	Phe	Leu	Arg
Phe 865	Met	Суѕ	His	His	Ala 870	Val	Arg	Ile	Arg	Gly 875	Lys	Ser	Tyr	Val	Gln 880
Cys	Gln	Gly	Ile	Pro 885	Gln	Gly	Ser	Ile	Leu 890	Ser	Thr	Leu	Leu	Cys 895	Ser
Leu	Cys	Tyr	Gly 900	Asp	Met	Glu	Asn	Lys 905	Leu	Phe	Ala	Gly	Ile 910	Arg	Arg
Asp	Gly	Leu 915	Leu	Leu	Arg	Leu	Leu 920	Thr	His	Ala	Lys	Thr 925	Phe	Leu	Arg
Thr	Leu 930	Val	Arg	Gly	Val	Pro 935	Glu	Tyr	Gly	Суз	Val 940	Val	Asn	Leu	Arg
Lys	Thr	Val	Val	Asn	Phe	Pro	Val	Glu	Asp	Glu	Ala	Leu	Gly	Gly	Thr

945					950				9!	55				960
Ala	Phe '	Val		Met 965	Pro 2	Ala H:	is G	_	eu Pl 70	ne P:	ro Tr	o Cy:	s Gly 975	7 Leu
Leu	Leu i		Thr 980	Arg	Thr :	Leu G		al G: 35	ln Se	er A	зр Ту	s Se:		Tyr
Ala		Thr 995	Ser	Ile	Arg :		er 1	Leu :	Thr I	Phe A		rg ()05	Gly I	Phe Ly
Ala	Gly 1010		Asn	Met	Arg	Arg 1015		Leu	Phe	Gly	Val 1020	Leu	Arg	Leu
Lys	Cys 1025	His	Ser	Leu	Phe	Leu 1030	Asp	Leu	Gln	Val	Asn 1035	Ser	Leu	Gln
Thr	Val 1040		Thr	Asn	Ile	Tyr 1045	Lys	Ile	Leu	Leu	Leu 1050	Gln	Ala	Tyr
Arg	Phe 1055		Ala	Cys	Val	Leu 1060	Gln	Leu	Pro	Phe	His 1065	Gln	Gln	Val
Trp	Lys 1070		Pro	Thr	Phe	Phe 1075	Leu	Arg	Val	Ile	Ser 1080	Asp	Thr	Ala
Ser	Leu 1085	_	Tyr	Ser	Ile	Leu 1090	_	Ala	Lys	Asn	Ala 1095	Gly	Met	Ser
Leu	Gly 1100		Lys	Gly	Ala	Ala 1105	Gly	Pro	Leu	Pro	Ser 1110	Glu	Ala	Val
Gln	Trp 1115		Cys	His	Gln	Ala 1120	Phe	Leu	Leu	Lys	Leu 1125	Thr	Arg	His
Arg	Val 1130	Thr	Tyr	Val	Pro	Leu 1135	Leu	Gly	Ser	Leu	Arg 1140	Thr	Ala	Gln
Thr	Gln 1145		Ser	Arg	Lys	Leu 1150		Gly	Thr	Thr	Leu 1155	Thr	Ala	Leu
Glu	Ala 1160	Ala	Ala	Asn	Pro	Ala 1165	Leu	Pro	Ser	Asp	Phe 1170	Lys	Thr	Ile
Leu	Asp 1175	Gly	Lys	Pro	Ile	Pro 1180	Asn	Pro	Leu	Leu	Gly 1185	Leu	Asp	Ser
	Thr													
<212	> 17 > 353 > ADN > Artif	1												

5

10

<220>

118

<223> secuencia del inserto pUTD23Tyn

<220> <221> CDS

5

<222> (1)..(3528) <400> 17 48 atg cag att ttc gtc aaa aca ttg aca gga aag acc atc aca ctg gaa Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu 1.0 gtg gag cca agc gac act att gag aac gtc aaa gcc aag att cag gac 96 Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp 25 aag gag ggc atc cca cca gac cag cag agg ctg att ttt gcc gga aag 144 Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys 40 cag ctg gag gac gga cgc aca ctc agt gac tac aat atc cag aag gaa 192 Gln Leu Glu Asp Gly Arg Thr Leu Ser Asp Tyr Asn Ile Gln Lys Glu 55 agt act ctg cat ctg gtc ctt cgc ctg cgc ggc gga ctg gcc acc ttc Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly Leu Ala Thr Phe 240 70 288 gtg cgg cgc ctg gga ccc cag ggc tgg cgg ctg gtg cag cgc ggg gac Val Arg Arg Leu Gly Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp cct gct gct ttc aga gct ctc gcc cag tgt ctg gtc tgc gtt cct 336 Pro Ala Ala Phe Arg Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro 105 tgg gac gca cgg ccc cca ccc gcc gcc ccc agt ttc cgg cag gtg agt 384 Trp Asp Ala Arg Pro Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser 120 tgt ctc aaa gag ttg gtt gct cgg gtg ttg cag cgg ctt tgt gaa agg 432 Cys Leu Lys Glu Leu Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg 130 135 480 gga gca aag aac gtc ctt gcc ttt ggc ttc gct ttg ctc gat gga gca Gly Ala Lys Asn Val Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala cgc gga ggc cct cct gag gca ttc act act agc gtc cgg tcc tac ctg 528 Arg Gly Gly Pro Pro Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu 165 170 576 ccc aac aca gtg acc gac gct ctg aga ggt tca ggt gcc tgg ggt ctg

Pro	Asn	Thr	Val 180	Thr	Asp	Ala	Leu	Arg 185	Gly	Ser	Gly	Ala	Trp 190	Gly	Leu	
_	ctg Leu					-	-	-	_	-			_	-		624
	gcc Ala 210															672
	ccc Pro				_			-	-		_	_	_			720
	cac His	-				-	_		_		_	-		-		768
	cat His	_				_						_		_		816
	gca Ala															864
_	agg Arg 290		_	_		_	_		_			_			_	912
	cag Gln				-									_	-	960
	ggc Gly		_	_				_			_	_		_		1008
	ttg Leu															1056
	agg Arg															1104
_	tgg Trp 370	-		_	~~	_	_		_		~ ~ ~					1152
	tat Tyr															1200
	agc Ser															1248
	ttt Phe	_			-			_					-	_	-	1296

ccc agg ctc ccc c Pro Arg Leu Pro G 435			
ctt ctg ggt aac c Leu Leu Gly Asn H 450	 		
cac tgt cct ctg a His Cys Pro Leu A 465			
aga gaa aaa ccc c Arg Glu Lys Pro G 4			
gac cct cgc cgc c Asp Pro Arg Arg L 500	 		
cag gtg tac ggc t Gln Val Tyr Gly P 515			
gga ttg tgg gga t Gly Leu Trp Gly S 530	 		
aag aag ttt atc t Lys Lys Phe Ile S 545	 		
ctg aca tgg aag a Leu Thr Trp Lys M 5	 		
cct gga gtt gga t Pro Gly Val Gly C 580	 		
att ctc gca aag t Ile Leu Ala Lys P 595			
ctg ctg cgg tct t Leu Leu Arg Ser P 610			
aga ctg ttc ttc t Arg Leu Phe Phe T 625			
ggt att aga cag c Gly Ile Arg Gln H 6	 		_
gct gaa gtc cgc c Ala Glu Val Arg G 660	 	_	
cgg ctg cgg ttt a Arg Leu Arg Phe I 675			

_	gat Asp 690		_			_	_			-			_	_	-	2	112
	aga Arg	_			_		_	_								2	160
-	aga Arg	_	_	_						-	_				_	2	208
-	gat As p				_		_								_	2	256
_	gat Asp										_	_	_			2	304
-	tac Tyr 770	-				_	-							-		2	352
	atc Ile															2	400
_	aaa Lys	_	_					_		_						2	448
	acc Thr															2	496
_	cag Gln			_		_		_	_		_		_	_		2	544
_	tct Ser 850				_				_		_			_	_	2	592
	atg Met	_			_						_				_	2	640
	cag Gln															2	688
	tgc Cys															2	736
	ttg Leu															2	784
	ttg Leu															2	832

930	935	940	
gga ggc aca gct ttt gt Gly Gly Thr Ala Phe Va 945 95	al Gln Met Pro Ala His	Gly Leu Phe Pro Trp)
tgc gga ctg ctg ctc ga Cys Gly Leu Leu Leu As 965			}
agt too tat goa aga ac Ser Ser Tyr Ala Arg Th 980			;
		a ctg ttc gga gtg ttg 3024 s Leu Phe Gly Val Leu 1005	Į
aga ctt aag tgt cat a Arg Leu Lys Cys His S 1010)
ctc cag aca gtg tgt a Leu Gln Thr Val Cys T 1025			Į
gct tac aga ttc cat g Ala Tyr Arg Phe His A 1040)
cag gtg tgg aaa aac c Gln Val Trp Lys Asn F 1055	oct acc ttc ttc ctg c Pro Thr Phe Phe Leu A 1060		Ī
acc gcc agt ctt tgc t Thr Ala Ser Leu Cys T 1070)
atg agc ttg gga gct a Met Ser Leu Gly Ala I 1085			Į
gca gtc cag tgg ctg t Ala Val Gln Trp Leu C 1100)
cgc cac cgc gtg act t Arg His Arg Val Thr T 1115	Tyr Val Pro Leu Leu G		Į
gct cag acc cag ctt t Ala Gln Thr Gln Leu S 1130	ccc cgg aag ctt cca g Ser Arg Lys Leu Pro G 1135)
gca ctc gaa gca gcc g Ala Leu Glu Ala Ala A 1145			Ī
act atc ctg gac ggc a Thr Ile Leu Asp Gly I 1160	_)
gac tca act tga		3531	
Asp Ser Thr 1175			
<210> 18 <211> 1176 <212> PRT <213> Artificial			
<220> <223> Construcción sintétic	ca		

400	4.0														
<400 Me t 1	> 18 Gln	Ile	Phe	Val 5	Lys	Thr	Leu	Thr	Gly 10	Lys	Thr	Ile	Thr	Leu 15	Glu
Val	Glu	Pro	Ser 20	Asp	Thr	Ile	Glu	Asn 25	Val	Lys	Ala	Lys	Ile 30	Gln	Asp
Lys	Glu	Gly 35	Ile	Pro	Pro	Asp	Gln 40	Gln	Arg	Leu	Ile	Phe 45	Ala	Gly	Lys
Gln	Leu 50	Glu	Asp	Gly	Arg	Thr 55	Leu	Ser	Asp	Tyr	Asn 60	Ile	Gln	Lys	Glu
Ser 65	Thr	Leu	His	Leu	Val 70	Leu	Arg	Leu	Arg	Gly 75	Gly	Leu	Ala	Thr	Phe 80
Val	Arg	Arg	Leu	Gly 85	Pro	Gln	Gly	Trp	Arg 90	Leu	Val	Gln	Arg	Gly 95	Asp
Pro	Ala	Ala	Phe 100	Arg	Ala	Leu	Val	Ala 105	Gln	Суз	Leu	Val	Cys 110	Val	Pro
Trp	Asp	Ala 115	Arg	Pro	Pro	Pro	Ala 120	Ala	Pro	Ser	Phe	Arg 125	Gln	Val	Ser
Cys	Leu 130	Lys	Glu	Leu	Val	Ala 135	Arg	Val	Leu	Gln	Arg 140	Leu	Cys	Glu	Arg
Gly 145	Ala	Lys	Asn	Val	Leu 150	Ala	Phe	Gly	Phe	Ala 155	Leu	Leu	Asp	Gly	Ala 160
Arg	Gly	Gly	Pro	Pro 165	Glu	Ala	Phe	Thr	Thr 170	Ser	Val	Arg	Ser	Tyr 175	Leu
Pro	Asn	Thr	Val 180	Thr	Asp	Ala	Leu	Arg 185	Gly	Ser	Gly	Ala	Trp 190	Gly	Leu
Leu	Leu	Arg	Arg	Val	Gly	Asp	Asp	Val	Leu	Val	His	Leu	Leu	Ala	Arg

		195					200					205			
Суз	Ala 210	Leu	Phe	Val	Leu	Val 215	Ala	Pro	Ser	Суз	Ala 220	Tyr	Gln	Val	Суз
Gly 225	Pro	Pro	Leu	Tyr	Gln 230	Leu	Gly	Ala	Ala	Thr 235	Gln	Ala	Arg	Pro	Pro 240
Pro	His	Ala	Ser	Gly 245	Pro	Arg	Arg	Arg	Leu 250	Gly	Cys	Glu	Arg	Ala 255	Trp
Asn	His	Ser	Val 260	Arg	Glu	Ala	Gly	Val 265	Pro	Leu	Gly	Leu	Pro 270	Ala	Pro
Gly	Ala	Arg 275	Arg	Arg	Gly	Gly	Ser 280	Ala	Ser	Arg	Ser	Leu 285	Pro	Leu	Pro
Lys	Arg 290	Pro	Arg	Arg	Gly	Ala 295	Ala	Pro	Glu	Pro	Glu 300	Arg	Thr	Pro	Val
Gly 305	Gln	Gly	Ser	Trp	Ala 310	His	Pro	Gly	Arg	Thr 315	Arg	Gly	Pro	Ser	Asp 320
Arg	Gly	Phe	Cys	Val 325	Val	Ser	Pro	Ala	Arg 330	Pro	Ala	Glu	Glu	Ala 335	Thr
Ser	Leu	Glu	Gly 340	Ala	Leu	Ser	Gly	Thr 345	Arg	His	Ser	His	Pro 350	Ser	Val
Gly	Arg	Gln 355	His	His	Ala	Gly	Pro 360	Pro	Ser	Thr	Ser	Arg 365	Pro	Pro	Arg
Pro	Trp 370	Asp	Thr	Pro	Cys	Pro 375	Pro	Val	Tyr	Ala	Glu 380	Thr	Lys	His	Phe
Leu 385	Tyr	Ser	Ser	Gly	Asp 390	Lys	Glu	Gln	Leu	Arg 395	Pro	Ser	Phe	Leu	Leu 400
Ser	Ser	Leu	Arg	Pro 405	Ser	Leu	Thr	Gly	Ala 410	Arg	Arg	Leu	Val	Glu 415	Thr
Ile	Phe	Leu	Gly 420	Ser	Arg	Pro	Trp	Met 425	Pro	Gly	Thr	Pro	Arg 430	Arg	Leu
Pro	Arg	Leu 435	Pro	Gln	Arg	Tyr	Trp 440	Gln	Met	Arg	Pro	Leu 445	Phe	Leu	Glu

Leu	Leu 450	Gly	Asn	His	Ala	Gln 455	Cys	Pro	Tyr	Gly	Val 460	Leu	Leu	Lys	Thr
His 465	Cys	Pro	Leu	Arg	Ala 470	Ala	Val	Thr	Pro	Ala 475	Ala	Gly	Val	Cys	Ala 480
Arg	Glu	Lys	Pro	Gln 485	Gly	Ser	Val	Ala	Ala 490	Pro	Glu	Glu	Glu	Asp 495	Thr
Asp	Pro	Arg	A rg 500	Leu	Val	Gln	Leu	Leu 505	Arg	Gln	His	Ser	Ser 510	Pro	Trp
Gln	Val	Tyr 515	Gly	Phe	Val	Arg	Ala 520	Cys	Leu	Arg	Arg	Leu 525	Val	Pro	Pro
Gly	Leu 530	Trp	Gly	Ser	Arg	His 535	Asn	Glu	Arg	Arg	Phe 540	Leu	Arg	Asn	Thr
Lys 545	Lys	Phe	Ile	Ser	Leu 550	Gly	Lys	His	Ala	Lys 555	Leu	Ser	Leu	Gln	Glu 560
Leu	Thr	Trp	Lys	Met 565	Ser	Val	Arg	Gly	Cys 570	Ala	Trp	Leu	Arg	Arg 575	Ser
Pro	Gly	Val	Gly 580	Суз	Val	Pro	Ala	Ala 585	Glu	His	Arg	Leu	Arg 590	Glu	Glu
Ile	Leu	Ala 595	Lys	Phe	Leu	His	Trp 600	Leu	Met	Ser	Val	Tyr 605	Val	Val	Glu
Leu	Leu 610	Arg	Ser	Phe	Phe	Tyr 615	Val	Thr	Glu	Thr	Thr 620	Phe	Gln	Lys	Asn
Arg 625	Leu	Phe	Phe	Tyr	Arg 630	Lys	Ser	Val	Trp	Ser 635	Lys	Leu	Gln	Ser	Ile 640
Gly	Ile	Arg	Gln	His 645	Leu	Lys	Arg	Val	Gln 650	Leu	Arg	Glu	Leu	Ser 655	Glu
Ala	Glu	Val	Arg 660	Gln	His	Arg	Glu	Ala 665	Arg	Pro	Ala	Leu	Leu 670	Thr	Ser
Arg	Leu	Arg 675	Phe	Ile	Pro	Lys	Pro 680	Asp	Gly	Leu	Arg	Pro 685	Ile	Val	Asn
Met	Asp 690	Tyr	Val	Val	Gly	Ala 695	Arg	Thr	Phe	Arg	A rg 700	Glu	Lys	Arg	Ala

Glu 705	Arg	Leu	Thr	Ser	Arg 710	Val	Lys	Ala	Leu	Phe 715	Ser	Val	Leu	Asn	Tyr 720
Glu	Arg	Ala	Arg	Arg 725	Pro	Gly	Leu	Leu	Gly 730	Ala	Ser	Val	Leu	Gly 735	Leu
Asp	Asp	Ile	His 740	Arg	Ala	Trp	Arg	Thr 745	Phe	Val	Leu	Arg	Val 750	Arg	Ala
Gln	Asp	Pro 755	Pro	Pro	Glu	Leu	Туг 760	Phe	Val	Lys	Val	Asp 765	Val	Thr	Gly
Ala	Tyr 770	Asp	Thr	Ile	Pro	Gln 775	Asp	Arg	Leu	Thr	Glu 780	Val	Ile	Ala	Ser
Ile 785	Ile	Lys	Pro	Gln	Asn 790	Thr	Tyr	Cys	Val	Arg 795	Arg	Tyr	Ala	Val	Val 800
Gln	Lys	Ala	Ala	His 805	Gly	His	Val	Arg	Lys 810	Ala	Phe	Lys	Ser	His 815	Val
Ser	Thr	Leu	Thr 820	Asp	Leu	Gln	Pro	Tyr 825	Met	Arg	Gln	Phe	Val 830	Ala	His
Leu	Gln	G1u 835	Thr	Ser	Pro	Leu	Arg 840	Asp	Ala	Val	Val	Ile 845	Glu	Gln	Ser
Ser	Ser 850	Leu	Asn	Glu	Ala	Ser 855	Ser	Gly	Leu	Phe	Asp 860	Val	Phe	Leu	Arg
865			His		870					875					880
-		-	Ile	885		-			890					895	
	-		Gly 900					905				_	910	-	
		915	Thr				920					925			
	930	-	Lys			935					940	-			
Gly 945	Gly	Thr	Ala	Phe	Val 950	Gln	Met	Pro	Ala	His 955	Gly	Leu	Phe	Pro	Trp 960

Cys	Gly	Leu	Leu	Leu 965	Asp	Thr A	rg T		eu G: 70	lu V	al Glı	n Sei	975	_
Ser	Ser	Tyr	A la 980	Arg	Thr	Ser I		rg A:	la Se	er L	eu Th	Phe 990		a Arg
Gly	Phe	Lys 995	Ala	Gly	Arg	Asn M	et 2 000	Arg i	Arg 1	Lys :		ne ()05	Sly V	al Le
_	Leu 101(_	s Cys	His	Ser	Leu 1015		Leu	Asp	Leu	Gln 1020	Val	Asn	Ser
	Gln 1025		. Val	. Cys	Thr	Asn 1030		Tyr	Lys	Ile	Leu 1035	Leu	Leu	Gln
	Tyr 1040	-	J Phe	His	: Ala	Cys 1045		Leu	Gln	Leu	Pro 1050	Phe	His	Gln
Gln	Val 1055	-	Lys	Asn	Pro	Thr 1060		Phe	Leu	Arg	Val 1065	Ile	Ser	Asp
	Ala 1070		. Leu	Cys	Туг	Ser 1075		Leu	Lys	Ala	Lys 1080	Asn	Ala	Gly
	Ser 1085		ı Gly	Ala	Lys	Gly 1090		Ala	Gly	Pro	Leu 1095	Pro	Ser	Glu
	Val 1100		1 Trp	Leu	. Cys	His 1105		Ala	Phe	Leu	Leu 1110	Lys	Leu	Thr
_	His 1115	_	y Val	. Thr	Туг	Val 1120		Leu	Leu	Gly	Ser 1125	Leu	Arg	Thr
Ala	Gln 1130		Gln	. Leu	Ser	Arg 1135		Leu	Pro	Gly	Thr 1140	Thr	Leu	Thr
	Leu 1145		ı Ala	Ala	Ala	Asn 1150		Ala	Leu	Pro	Ser 1155	Asp	Phe	Lys
	Ile 1160		ı Asp	Gly	Lys	Pro 1165		Pro	Asn	Pro	Leu 1170	Leu	Gly	Leu
Asp	Ser 1175		:											
<210: <211: <212: <213:	> 7 > PR		apiens	s										
<400> Asp 1		Leu	Leu	Leu 5	Arg	Leu								
<210><211><211>	> 7	Т												

```
<213> Homo sapiens
        <400> 20
        Phe Leu Leu Val Thr Pro His
5
        <210> 21
        <211> 10
        <212> PRT
        <213> Homo sapiens
10
        <400> 21
        Asp Gly Leu Leu Leu Arg Leu Val Asp Asp
                          5
        <210> 22
15
        <211> 10
        <212> PRT
        <213> Homo sapiens
        <400> 22
        Val Asp Asp Phe Leu Leu Val Thr Pro His
        1
                           5
20
        <210> 23
        <211>30
        <212> ADN
        <213> Artificial
25
        <220>
        <223> sitio de restricción
30
        <400> 23
        gtcgacaagc ttcccgggtc tagaagatct
                                           30
        <210> 24
        <211> 20
        <212> ADN
35
        <213> Artificial
        <220>
        <223> cebador
40
        <400> 24
        gcttttctgc caggtgctga
                                20
        <210> 25
        <211> 20
45
        <212> ADN
        <213> Artificial
        <220>
50
        <223> cebador
        <400> 25
        gccagaagtc agatgctcaa
                                  20
55
        <210> 26
        <211>23
        <212> PRT
        <213> Homo sapiens
60
        <400> 26
```

```
Ile Arg Arg Asp Gly Leu Leu Leu Arg Leu Val Asp Asp Phe Leu Leu
        Val Thr Pro His Leu Thr His
        <210> 27
        <211> 20
5
        <212> ADN
        <213> Artificial
        <220>
        <223> cebador
10
        <400> 27
                                20
       cggtgggagg tctatataag
        <210> 28
        <211> 18
15
        <212> ADN
        <213> Artificial
        <220>
20
        <223> cebador
        <400> 28
        cagggtcaag gaaggcac
                                18
25
        <210> 29
        <211> 10
        <212> PRT
        <213> Homo sapiens
        <400> 29
30
        Arg Pro Ser Leu Thr Gly Ala Arg Arg Leu
                                               10
35
        <210> 30
        <211>9
        <212> PRT
        <213> Homo sapiens
        <400> 30
40
        Arg Pro Ala Glu Glu Ala Thr Ser Leu
                         5
        <210> 31
        <211>9
45
        <212> PRT
        <213> Homo sapiens
        <400> 31
        Leu Pro Ser Asp Phe Lys Thr Ile Leu
        1
                         5
50
        <210> 32
        <211>9
        <212> PRT
        <213> Homo sapiens
55
        Ile Leu Ala Lys Phe Leu His Trp Leu
                         5
        <210> 33
```

```
<211>9
        <212> PRT
        <213> Homo sapiens
5
        <400> 33
        Tyr Leu Phe Phe Tyr Arg Lys Ser Val
                         5
        <210> 34
        <211>10
        <212> PRT
10
        <213> Homo sapiens
        <400> 34
        Tyr Leu Gln Val Asn Ser Leu Gln Thr Val
15
        <210> 35
        <211>9
        <212> PRT
        <213> Homo sapiens
20
        <400> 35
        Ser Val Trp Ser Lys Leu Gln Ser Ile
                         5
        <210>36
25
        <211>9
        <212> PRT
       <213> Homo sapiens
        <400> 36
        Ser Leu Cys Tyr Ser Ile Leu Lys Ala
                         5
30
        1
        <210> 37
        <211> 15
        <212> PRT
35
        <213> Homo sapiens
        <400> 37
        Lys Ser Val Trp Ser Lys Leu Gln Ser Ile Gly Ile Arg Gln His
                         5
40
        <210>38
        <211> 15
        <212> PRT
        <213> Homo sapiens
45
        Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe Pro Trp
                         5
                                              10
                                                                    15
        <210>39
       <211> 15
50
        <212> PRT
       <213> Homo sapiens
        <400>39
        Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met Ser
                         5
                                              10
55
        <210> 40
        <211>9
        <212> PRT
        <213> Homo sapiens
60
```

```
<400> 40
        Arg Pro Ile Val Asn Met Asp Tyr Val
        <210>41
 5
        <211>9
        <212> PRT
        <213> Homo sapiens
        <400> 41
        His Ala Gln Cys Pro Tyr Gly Val Leu
                           5
10
        <210> 42
        <211>10
        <212> PRT
15
        <213> Homo sapiens
        <400> 42
        Gln Ala Tyr Arg Phe His Ala Cys Val Leu
                            5
20
        <210> 43
        <211> 11
        <212> PRT
        <213> Homo sapiens
25
        Gln Thr Val Cys Thr Ile Asn Ile Tyr Lys Ile
                           5
        <210> 44
        <211> 20
30
        <212> ADN
        <213> Artificial
        <220>
        <223> cebador
35
        <400> 44
        ggcaagtcct acgtccagtg
                                  20
        <210> 45
40
        <211>3591
        <212> ADN
        <213> Secuencia artificial
45
        <223> secuencia optimizada de fusión Ubi-hTERT
        <220>
        <221> CDS
        <222> (1)..(3591)
50
        <400> 45
         atg cag att ttc gtc aaa aca ttg aca gga aag acc atc aca ctg gaa
                                                                                             48
         Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu
                                                   10
         gtg gag cca agc gac act att gag aac gtc aaa gcc aag att cag gac Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp
                                                                                             96
```

			20					25					30			
	gag Glu															144
	ctg Leu 50															192
_	act Thr	_		_	_		_	_	_			_	_			240
	cgg Arg	_	_			_				_		_	_		_	288
	gct Ala															336
	gac Asp	-					_	-		_			_		_	384
-	ctc Leu 130			_	_	_			_	_			_	-		432
	gca Ala	_		-		-				-	_		-		-	480
-	gga Gly					_				_	_				_	528
	aac Asn				-	-	_	-				-			-	576
_	ctg Leu					-	_	_	_	_			_	-		624
-	gcc Ala 210	_	Phe	Val	Leu		Āla			_	_	Tyr	_	-	_	672
	ccc Pro				_			-	-		_	-	-			720
	cac His	-				_	_		_		_	_		-		768
	cat His															816
gga	gca	agg	aga	cgc	ggt	gga	tcc	gcc	agt	cgc	tca	ctc	CCC	ttg	cct	864

Gly	Ala	Arg 275	Arg	Arg	Gly	Gly	Ser 280	Ala	Ser	Arg	Ser	Leu 285	Pro	Leu	Pro	
_			_	_		_			_	ccc Pro		_			_	912
										acc Thr 315						960
			_	_				_		cct Pro	-	_		-		1008
										cat His						1056
		_			_					aca Thr	_	_			_	1104
										gcc Ala						1152
_			_		_			_		cgg Arg 395				_		1200
	-		-			_			-	cgc Arg		_				1248
		_			_			_		ggc Gly			_	_	_	1296
				_				_	_	cgc Arg				_	_	1344
										ggc Gly						1392
	~ -	_							_	gcc Ala 475		~ 1		~ -		1440
_	_			_				-	-	cct Pro	-			-		1488
-		_	-		-	_	_			cag Gln						1536
										cgg Arg						1584

gga tte Gly Le	ı Trp						_		_		_				1632
aag aa Lys Ly: 545															1680
ctg ac		_	_	_	_	_		_	_						1728
cct gg Pro Gl															1776
att cte	_	_		_				_	_	_			_	_	1824
ctg cte Leu Le 61	ı Arg											_	_		1872
aga cto Arg Le 625															1920
ggt at Gly Il	_	_			_	_	_	_		_		_		_	1968
gct gaa Ala Gl	_	_	_		_	_	-	_		_		_			2016
cgg cte Arg Le															2064
atg ga Met As 69	Tyr														2112
gag ag Glu Are 705															2160
gaa ag Glu Ar															2208
gat ga Asp As	t atc p Ile	cat His 740	cgg Arg	gct Ala	tgg Trp	cgc Arg	acc Thr 745	ttt Phe	gtg Val	ctt Leu	cgg Arg	gtg Val 750	agg Arg	gca Ala	2256
cag ga Gln As															2304
gct tad Ala Ty: 77	r Asp				_	_							_		2352

att atc aaa ccc cag aac acc tac tgc gtg aga agg tac gcc gtc gtt Ile Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg Arg Tyr Ala Val Val 785 790 795 800	2400
cag aaa gcc gca cac gga cac gtg cgc aaa gct ttc aaa tcc cac gtg Gln Lys Ala Ala His Gly His Val Arg Lys Ala Phe Lys Ser His Val 805 810 815	2448
tct acc ttg aca gac ctc cag cct tat atg cgg cag ttt gtc gca cac Ser Thr Leu Thr Asp Leu Gln Pro Tyr Met Arg Gln Phe Val Ala His 820 825 830	2496
ctg cag gag act agc ccc ttg agg gac gct gtg gtc atc gaa cag tcc Leu Gln Glu Thr Ser Pro Leu Arg Asp Ala Val Val Ile Glu Gln Ser 835 840 845	2544
age tet ete aat gag gea tee tea gge etg ttt gat gtg tte etg ege Ser Ser Leu Asn Glu Ala Ser Ser Gly Leu Phe Asp Val Phe Leu Arg 850 855 860	2592
ttt atg tgc cac cac gcc gtg cgg att agg ggc aag tct tac gtg cag Phe Met Cys His His Ala Val Arg Ile Arg Gly Lys Ser Tyr Val Gln 865 870 875 880	2640
tgc cag ggc atc cca cag ggt agc atc ctg agc aca ctg ctg tgt agc Cys Gln Gly Ile Pro Gln Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser 885 890 895	2688
ctg tgc tat ggc gat atg gag aat aaa ttg ttc gcc ggt atc aga aga Leu Cys Tyr Gly Asp Met Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg 900 905 910	2736
gac ggt ttg ctc ctg agg ctg ttc ctg ctg gtt acc ccc cat ctg act Asp Gly Leu Leu Arg Leu Phe Leu Leu Val Thr Pro His Leu Thr 915 920 925	2784
cat gcc aaa aca ttt ttg cgg act ctg gtt agg ggc gtg cca gag tat His Ala Lys Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr 930 935 940	2832
ggc tgt gtt gtg aat ttg cgg aaa act gtg gtt aat ttc cca gtg gag Gly Cys Val Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu 945 950 955 960	2880
gac gaa gct ctc gga ggc aca gct ttt gtt cag atg cct gcc cac ggc Asp Glu Ala Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly 965 970 975	2928
ctg ttc cca tgg tgc gga ctg ctg ctc gat acc cgg acc ctc gag gtg Leu Phe Pro Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val 980 985 990	2976
cag tcc gat tat agt tcc tat gca aga aca tca att cgg gct agc ctg Gln Ser Asp Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu 995 1000 1005	3024
act ttc aac agg ggc ttc aag gcc ggc cgg aat atg aga agg aaa Thr Phe Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys 1010 1015 1020	3069
ctg ttc gga gtg ttg aga ctt aag tgt cat agt ctt ttt ttg gac Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp	3114

	1025					1030					1035				
Leu						cag Gln 1045							tat Tyr		3159
Ile		_	-	-	-	tac Tyr 1060	-			-	-	-	-	-	3204
Leu						gtg Val 1075								ctg Leu	3249
Arg						gcc Ala 1090									3294
Ala			_		_	agc Ser 1105	_		_	_		_	_		3339
Pro						gtc Val 1120									3384
Leu						cac His 1135								_	3429
Gly		_	_		_	cag Gln 1150		-				_			3474
Gly	act Thr 1160				_	ctc Leu 1165	_	_	_	_			-	_	3519
Pro						atc Ile 1180							cct Pro		3564
Pro	_	_		_	_	tca Ser 1195	act Thr	tga							3591
<212	> 46 > 1196 > PRT > Secu		a artif	icial											
<220: <223:	> > Cons	strucc	ción s	intétio	ca										
<400 Met 1		[le		/al 1	Lys 1	Γhr L€	eu Tl	nr G: 10	_	ys Tl	nr Ile	e Thi	r Lei 15	ı Glu	
Val	Glu I		Ser A 20	Asp :	Thr 1	[le G]	Lu As 2!		al Ly	ys A	la Ly	s Ile 30	e Glı	n Asp	

Lys	Glu	Gly 35	Ile	Pro	Pro	Asp	Gln 40	Gln	Arg	Leu	Ile	Phe 45	Ala	Gly	Lys
Gln	Leu 50	Glu	Asp	Gly	Arg	Thr 55	Leu	Ser	Asp	Tyr	Asn 60	Ile	Gln	Lys	Glu
Ser 65	Thr	Leu	His	Leu	Val 70	Leu	Arg	Leu	Arg	Gly 75	Gly	Leu	Ala	Thr	Phe 80
Val	Arg	Arg	Leu	Gly 85	Pro	Gln	Gly	Trp	Arg 90	Leu	Val	Gln	Arg	Gly 95	Asp
Pro	Ala	Ala	Phe 100	Arg	Ala	Leu	Val	Ala 105	Gln	Суѕ	Leu	Val	Cys 110	Val	Pro
Trp	Asp	Ala 115	Arg	Pro	Pro	Pro	Ala 120	Ala	Pro	Ser	Phe	Arg 125	Gln	Val	Ser
Cys	Leu 130	Lys	Glu	Leu	Val	Ala 135	Arg	Val	Leu	Gln	Arg 140	Leu	Cys	Glu	Arg
Gly 145	Ala	Lys	Asn	Val	Leu 150	Ala	Phe	Gly	Phe	Ala 155	Leu	Leu	Asp	Gly	Ala 160
Arg	Gly	Gly	Pro	Pro 165	Glu	Ala	Phe	Thr	Thr 170	Ser	Val	Arg	Ser	Tyr 175	Leu
Pro	Asn	Thr	Val 180	Thr	Asp	Ala	Leu	Arg 185	Gly	Ser	Gly	Ala	Trp 190	Gly	Leu
Leu	Leu	Arg 195	Arg	Val	Gly	Asp	Asp 200	Val	Leu	Val	His	Leu 205	Leu	Ala	Arg
Cys	Ala 210	Leu	Phe	Val	Leu	Val 215	Ala	Pro	Ser	Cys	Ala 220	Tyr	Gln	Val	Cys
Gly 225	Pro	Pro	Leu	Tyr	Gln 230	Leu	Gly	Ala	Ala	Thr 235	Gln	Ala	Arg	Pro	Pro 240
Pro	His	Ala	Ser	Gly 245	Pro	Arg	Arg	Arg	Leu 250	Gly	Cys	Glu	Arg	Ala 255	Trp
Asn	His	Ser	Val 260	Arg	Glu	Ala	Gly	Val 265	Pro	Leu	Gly	Leu	Pro 270	Ala	Pro

Gly Ala Arg Arg Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro

		275					280					285			
Lys	Arg 290	Pro	Arg	Arg	Gly	Ala 295	Ala	Pro	Glu	Pro	Glu 300	Arg	Thr	Pro	Val
Gly 305	Gln	Gly	Ser	Trp	Ala 310	His	Pro	Gly	Arg	Thr 315	Arg	Gly	Pro	Ser	Asp 320
Arg	Gly	Phe	Cys	Val 325	Val	Ser	Pro	Ala	Arg 330	Pro	Ala	Glu	Glu	Ala 335	Thr
Ser	Leu	Glu	Gly 340	Ala	Leu	Ser	Gly	Thr 345	Arg	His	Ser	His	Pro 350	Ser	Val
Gly	Arg	Gln 355	His	His	Ala	Gly	Pro 360	Pro	Ser	Thr	Ser	Arg 365	Pro	Pro	Arg
Pro	Trp 370	Asp	Thr	Pro	Cys	Pro 375	Pro	Val	Tyr	Ala	Glu 380	Thr	Lys	His	Phe
Leu 385	Tyr	Ser	Ser	Gly	Asp 390	Lys	Glu	Gln	Leu	A rg 395	Pro	Ser	Phe	Leu	Leu 400
Ser	Ser	Leu	Arg	Pro 405	Ser	Leu	Thr	Gly	Ala 410	Arg	Arg	Leu	Val	Glu 415	Thr
Ile	Phe	Leu	Gly 420	Ser	Arg	Pro	Trp	Met 425	Pro	Gly	Thr	Pro	Arg 430	Arg	Leu
Pro	Arg	Leu 435	Pro	Gln	Arg	Tyr	Trp 440	Gln	Met	Arg	Pro	Leu 445	Phe	Leu	Glu
Leu	Leu 450	Gly	Asn	His	Ala	Gln 455	Cys	Pro	Tyr	Gly	Val 460	Leu	Leu	Lys	Thr
His 465	Cys	Pro	Leu	Arg	Ala 470	Ala	Val	Thr	Pro	Ala 475	Ala	Gly	Val	Cys	Ala 480
Arg	Glu	Lys	Pro	Gln 485	Gly	Ser	Val	Ala	Ala 490	Pro	Glu	Glu	Glu	Asp 495	Thr
Asp	Pro	Arg	Arg 500	Leu	Val	Gln	Leu	Leu 505	Arg	Gln	His	Ser	Ser 510	Pro	Trp
Gln	Val	Tyr 515	Gly	Phe	Val	Arg	Ala 520	Cys	Leu	Arg	Arg	Leu 525	Val	Pro	Pro

Gly	Leu 530	Trp	Gly	Ser	Arg	His 535	Asn	Glu	Arg	Arg	Phe 540	Leu	Arg	Asn	Thr
Lys 545	Lys	Phe	Ile	Ser	Leu 550	Gly	Lys	His	Ala	Lys 555	Leu	Ser	Leu	Gln	Glu 560
Leu	Thr	Trp	Lys	Met 565	Ser	Val	Arg	Gly	Cys 570	Ala	Trp	Leu	Arg	Arg 575	Ser
Pro	Gly	Val	Gly 580	Cys	Val	Pro	Ala	Ala 585	Glu	His	Arg	Leu	A rg 590	Glu	Glu
Ile	Leu	Ala 595	Lys	Phe	Leu	His	Trp 600	Leu	Met	Ser	Val	Tyr 605	Val	Val	Glu
Leu	Leu 610	Arg	Ser	Phe	Phe	Tyr 615	Val	Thr	Glu	Thr	Thr 620	Phe	Gln	Lys	Asn
Arg 625	Leu	Phe	Phe	Tyr	Arg 630	Lys	Ser	Val	Trp	Ser 635	Lys	Leu	Gln	Ser	Ile 640
Gly	Ile	Arg	Gln	His 645	Leu	Lys	Arg	Val	Gln 650	Leu	Arg	Glu	Leu	Ser 655	Glu
Ala	Glu	Val	Arg 660	Gln	His	Arg	Glu	Ala 665	Arg	Pro	Ala	Leu	Leu 670	Thr	Ser
Arg	Leu	Arg 675	Phe	Ile	Pro	Lys	Pro 680	Asp	Gly	Leu	Arg	Pro 685	Ile	Val	Asn
Met	Asp 690	Tyr	Val	Val	Gly	Ala 695	Arg	Thr	Phe	Arg	A rg 700	Glu	Lys	Arg	Ala
Glu 705	Arg	Leu	Thr	Ser	A rg 710	Val	Lys	Ala	Leu	Phe 715	Ser	Val	Leu	Asn	Tyr 720
Glu	Arg	Ala	Arg	Arg 725	Pro	Gly	Leu	Leu	Gly 730	Ala	Ser	Val	Leu	Gly 735	Leu
Asp	Asp	Ile	His 740	Arg	Ala	Trp	Arg	Thr 745	Phe	Val	Leu	Arg	Val 750	Arg	Ala
Gln	Asp	Pro 755	Pro	Pro	Glu	Leu	Tyr 760	Phe	Val	Lys	Val	Asp 765	Val	Thr	Gly
Ala	Tyr 770	Asp	Thr	Ile	Pro	Gln 775	Asp	Arg	Leu	Thr	Glu 780	Val	Ile	Ala	Ser

Ile Ile Lys 785	Pro Gln	Asn Thr 790	Tyr Cys	Val Arg 795	Arg Tyr	Ala Val	Val 800
Gln Lys Ala	Ala His 805	Gly His	Val Arg	Lys Ala 810	Phe Lys	Ser His 815	Val
Ser Thr Leu	Thr Asp 820	Leu Gln	Pro Tyr 825	_	Gln Phe	Val Ala 830	His
Leu Gln Glu 835	Thr Ser	Pro Leu	Arg Asp 840	Ala Val	Val Ile 845	Glu Gln	Ser
Ser Ser Leu 850	Asn Glu	Ala Ser 855	_	Leu Phe	Asp Val 860	Phe Leu	Arg
Phe Met Cys 865	His His	Ala Val 870	Arg Ile	Arg Gly 875	Lys Ser	Tyr Val	Gln 880
Cys Gln Gly	Ile Pro 885	Gln Gly	Ser Ile	Leu Ser 890	Thr Leu	Leu Cys 895	Ser
Leu Cys Tyr	Gly Asp 900	Met Glu	Asn Lys 905		Ala Gly	Ile Arg 910	Arg
Asp Gly Leu 915	Leu Leu	Arg Leu	Phe Leu 920	Leu Val	Thr Pro 925	His Leu	Thr
His Ala Lys 930	Thr Phe	Leu Arg 935	Thr Leu	Val Arg	Gly Val 940	Pro Glu	Tyr
Gly Cys Val 945	Val Asn	Leu Arg 950	Lys Thr	Val Val 955	Asn Phe	Pro Val	Glu 960
Asp Glu Ala	Leu Gly 965	Gly Thr	Ala Phe	Val Gln 970	Met Pro	Ala His 975	Gly
Leu Phe Pro	Trp Cys 980	Gly Leu	Leu Leu 985		Arg Thr	Leu Glu 990	Val
Gln Ser Asp 995	Tyr Ser	Ser Tyr	Ala Ar 1000	g Thr Se	r Ile Ar 10		er Leu
Thr Phe Ass	n Arg Gl		s Ala G 15	ly Arg A	sn Met . 1020	Arg Arg I	ùуs

Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp 1025 $$ 1030 $$ 1035 $$

Leu	Gln 1040	Val	Asn	Ser	Leu	Gln 1045	Thr	Val	Cys	Thr	Asn 1050	Ile	Tyr	Lys	
Ile	Leu 1055		Leu	Gln	Ala	Tyr 1060	Arg	Phe	His	Ala	Cys 1065	Val	Leu	Gln	
Leu	Pro 1070		His	Gln	Gln	Val 1075	_	Lys	Asn	Pro	Thr 1080	Phe	Phe	Leu	
Arg	Val 1085		Ser	Asp	Thr	Ala 1090		Leu	Cys	Tyr	Ser 1095	Ile	Leu	Lys	
Ala	Lys 1100		Ala	Gly	Met	Ser 1105		Gly	Ala	Lys	Gly 1110	Ala	Ala	Gly	
Pro	Leu 1115		Ser	Glu	Ala	Val 1120	Gln	Trp	Leu	Cys	His 1125	Gln	Ala	Phe	
Leu	Leu 1130	_	Leu	Thr	Arg	His 1135	Arg	Val	Thr	Tyr	Val 1140	Pro	Leu	Leu	
Gly	Ser 1145		Arg	Thr	Ala	Gln 1150		Gln	Leu	Ser	Arg 1155	Lys	Leu	Pro	
Gly	Thr 1160		Leu	Thr	Ala	Leu 1165	Glu	Ala	Ala	Ala	Asn 1170	Pro	Ala	Leu	
Pro	Ser 1175	Asp	Phe	Lys	Thr	Ile 1180	Leu	Asp	Gly	Lys	Pro 1185	Ile	Pro	Asn	
Pro	Leu 1190		Gly	Leu	Asp	Ser 1195	Thr								
<212	> 47 > 3555 > ADN > Secu	1	a artif	ficial											
<220 <223	> > inse	rto pl	JTSC	ram											
	> > CDS > (1)		i)												
	cag a		Phe '						ly L					g gaa u Glu	48

		cca Pro	_	_					_		_	_		_	_	96
_		ggc Gly 35				_	_	_		_			_		_	144
_	_	gag Glu	-		_			_	_				_	_	-	192
_		ctg Leu		_	_		_	_	_							240
		cca Pro														288
	_	cac His			_	_	-			-	_	_	_			336
		tac Tyr 115							_	_		_	_			384
		aag Lys		-		_	_		_	-				-	_	432
		aag Lys														480
		tcc Ser														528
		tgg Trp														576
		ctg Leu 195														624
gca Ala	tac Tyr 210	cag Gln	gtc Val	tgc Cys	gga Gly	ccc Pro 215	cca Pro	ctt Leu	tat Tyr	cag Gln	ctc Leu 220	ggc Gly	gct Ala	gct Ala	ggt Gly	672
		ggt Gly														720
		gct Ala														768
_	_	ctc Leu		_						_						816

	260	265	5	270	
			o Pro Gly Leu	tgg gga tct cgg Trp Gly Ser Arg 285	
_				ttt atc tcc ctg Phe Ile Ser Leu	
		Ser Leu Glr		tgg aag atg ago Trp Lys Met Ser 320	
				gtt gga ggt gga Val Gly Gly Gly 335	
			y Arg Thr Arg	ggc cca agc gat Gly Pro Ser Asp 350	
		-	a Arg Pro Ala	gaa gag gct acc Glu Glu Ala Thr 365	
				gga ggt gga gga Gly Gly Gly Gly	
		Leu Thr Asp	-	tat atg cgg cag Tyr Met Arg Gln 400	
				gac gct gtg gtc Asp Ala Val Val 415	
	_		ı Ala Ser Ser	ggc ctg ttt gat Gly Leu Phe Asp 430	
		_	s Ala Val Arg	att agg ggc aag Ile Arg Gly Lys 445	
				atc ctg agc aca Ile Leu Ser Thr	
		Tyr Gly Asp		aaa ttg ttc gcc Lys Leu Phe Ala 480	
				ctg ctg gtt acc Leu Leu Val Thr 495	
			e Leu Arg Thr	ctg gtt agg ggc Leu Val Arg Gly 510	
gtg cca gag	tat ggc tgt	gtt gtg aat	t ttg cgg aaa	act gtg gtt aat	1584

Val	Pro	Glu 515	Tyr	Gly	Cys	Val	Val 520	Asn	Leu	Arg	Lys	Thr 525	Val	Val	Asn	
	cca Pro 530			_	_	_					_		_	_	_	1632
	gcc Ala															1680
	ctc Leu			_		-		-			-	-				1728
	gga Gly															1776
	ctc Leu		_		_			_		-	_				_	1824
_	cgc Arg 610				_		_			_	_		-			1872
	ggt Gly			_	_					-	_			_		1920
	cgg Arg	_		_	_		-		_	-		_	-		-	1968
_	cag Gln	_	_	-	-	-			-	-					_	2016
_	ccc Pro	_			_		-	_				_	-	-		2064
	ttg Leu 690	_			_	_			_	_		_		_		2112
	ttc Phe															2160
_	gag Glu	_		_	_	_	-	_	_		_	_	_	_		2208
_	ctc Leu	_				_							_			2256
_	cct Pro				_	_		_			_	_			_	2304

agg gag aag cgc gcc gag aga ctg aca tct cgc gtg aag gca ctt ttt Arg Glu Lys Arg Ala Glu Arg Leu Thr Ser Arg Val Lys Ala Leu Phe 770 775 780	2352
tct gtg ctt aat tat gaa aga gcc cgc aga cct ggt ctt ctc gga gcc Ser Val Leu Asn Tyr Glu Arg Ala Arg Arg Pro Gly Leu Leu Gly Ala 785 790 795 800	2400
agc gtg ctc ggc ctg gat gat atc cat cgg gct tgg cgc acc ttt gtg Ser Val Leu Gly Leu Asp Asp Ile His Arg Ala Trp Arg Thr Phe Val 805 810 815	2448
ctt cgg gtg agg gca cag gat cct cct cct gag ctt tat ttt gtg aaa Leu Arg Val Arg Ala Gln Asp Pro Pro Glu Leu Tyr Phe Val Lys 820 825 830	2496
gtt gat gtt act ggt gct tac gat aca atc cct cag gac cgg ctc acc Val Asp Val Thr Gly Ala Tyr Asp Thr Ile Pro Gln Asp Arg Leu Thr 835 840 845	2544
gag gtg atc gcc tct att atc aaa ccc cag aac acc tac tgc gtg aga Glu Val Ile Ala Ser Ile Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg 850 855 860	2592
agg tac gcc gtc gtt cag aaa gcc gca cac gga cac gtg cgc aaa ggt Arg Tyr Ala Val Val Gln Lys Ala Ala His Gly His Val Arg Lys Gly 865 870 875 880	2640
gga gga ggt ggt gga aac agg ggc ttc aag gcc ggc cgg aat atg aga Gly Gly Gly Gly Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg 885 890 895	2688
agg aaa ctg ttc gga gtg ttg aga ctt aag tgt cat agt ctt ttt ttg Arg Lys Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu 900 905 910	2736
gac ttg cag gtc aat tct ctc cag aca gtg tgt acc aac att tat aaa Asp Leu Gln Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys 915 920 925	2784
atc ctc ttg ctg cag gct tac aga ttc cat gcc tgc gtc ctg cag ctg Ile Leu Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu 930 935 940	2832
cct ttc cac cag cag gtg tgg aaa aac cct acc ttc ttc ctg cgg gtg Pro Phe His Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val 945 950 955 960	2880
att agc gac acc gcc agt ctt tgc tac tcc atc ttg aaa gca aaa aac Ile Ser Asp Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn 965 970 975	2928
gct ggc atg agc ttg gga gct aag ggc gcc gct gga cct ctg ccc agt Ala Gly Met Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser 980 985 990	2976
gaa gca gtc cag tgg ctg tgt cat cag gct ttc ctc ctt aaa ctg aca Glu Ala Val Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr 995 1000 1005	3024
cgc cac cgc gtg act tac gtc cca ctc ctg ggc tcc ctg aga act Arg His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr 1010 1015 1020	3069

-	cag Gln 1025		_				Lys								3114
	ctc Leu 1040														3159
	atc Ile 1055														3204
	gcc Ala 1070			_			_			_		_			3249
_	ctc Leu 1085					_	Leu		-		-			_	3294
	gga Gly 1100														3339
	tgg Trp 1115	_					_	_	_					_	3384
	tac Tyr 1130														3429
	gcc Ala 1145														3474
	agg Arg 1160														3519
	cct Pro 1175			-	_		_	_			tga				3555
<212	> 48 > 1184 > PRT > Secu		a artif	icial											
<220 <223	> > Cons	struco	ción s	intéti	ca										
<400 Met 1	> 48 Gln 1	[le		Val : 5	Lys :	Thr Le	eu Tl	hr Gi		ys Tl	nr Ile	e Th:	r Le	u Glu	
Val	Glu I		Ser 1 20	Asp '	Thr :	Ile G	lu A:		al Ly	ys A	la Ly:	s Ile 30	e Gl	n Asp	

Lys	Glu	Gly 35	Ile	Pro	Pro	Asp	Gln 40	Gln	Arg	Leu	Ile	Phe 45	Ala	Gly	Lys
Gln	Leu 50	Glu	Asp	Gly	Arg	Thr 55	Leu	Ser	Asp	Tyr	Asn 60	Ile	Gln	Lys	Glu
Ser 65	Thr	Leu	His	Leu	Val 70	Leu	Arg	Leu	Arg	Gly 75	Gly	Gly	Gly	Gly	Gly 80
Cys	Val	Pro	Ala	Ala 85	Glu	His	Arg	Leu	Arg 90	Glu	Glu	Ile	Leu	Ala 95	Lys
Phe	Leu	His	Trp 100	Leu	Met	Ser	Val	Tyr 105	Val	Val	Glu	Leu	Leu 110	Arg	Ser
Phe	Phe	Tyr 115	Val	Thr	Glu	Thr	Thr 120	Phe	Gln	Lys	Asn	A rg 125	Leu	Phe	Phe
Tyr	Arg 130	Lys	Ser	Val	Trp	Ser 135	Lys	Leu	Gln	Ser	Ile 140	Gly	Ile	Arg	Gln
His 145	Leu	Lys	Arg	Val	Gln 150	Gly	Gly	Gly	Gly	Gly 155	Gly	Phe	Thr	Thr	Ser 160
Val	Arg	Ser	Tyr	Leu 165	Pro	Asn	Thr	Val	Thr 170	Asp	Ala	Leu	Arg	Gly 175	Ser
Gly	Ala	Trp	Gly 180	Leu	Leu	Leu	Arg	A rg 185	Val	Gly	Asp	Asp	Val 190	Leu	Val
His	Leu	Leu 195	Ala	Arg	Cys	Ala	Leu 200	Phe	Val	Leu	Val	Ala 205	Pro	Ser	Cys
Ala	Tyr 210	Gln	Val	Cys	Gly	Pro 215	Pro	Leu	Tyr	Gln	Leu 220	Gly	Ala	Ala	Gly
Gly 225	Gly	Gly	Gly	Gly	Ala 230	Gly	Val	Cys	Ala	Arg 235	Glu	Lys	Pro	Gln	Gly 240
Ser	Val	Ala	Ala	Pro 245	Glu	Glu	Glu	Asp	Thr 250	Asp	Pro	Arg	Arg	Leu 255	Val
Gln	Leu	Leu	Arg 260	Gln	His	Ser	Ser	Pro 265	Trp	Gln	Val	Tyr	Gly 270	Phe	Val

Arg Ala Cys Leu Arg Arg Leu Val Pro Pro Gly Leu Trp Gly Ser Arg 275 280 285

His	Asn 290	Glu	Arg	Arg	Phe	Leu 295	Arg	Asn	Thr	Lys	Lys 300	Phe	Ile	Ser	Leu
Gly 305	Lys	His	Ala	Lys	Leu 310	Ser	Leu	Gln	Glu	Leu 315	Thr	Trp	Lys	Met	Ser 320
Val	Arg	Gly	Cys	Ala 325	Trp	Leu	Arg	Arg	Ser 330	Pro	Gly	Val	Gly	Gly 335	Gly
Gly	Gly	Gly	Ser 340	Trp	Ala	His	Pro	Gly 345	Arg	Thr	Arg	Gly	Pro 350	Ser	Asp
Arg	Gly	Phe 355	Cys	Val	Val	Ser	Pro 360	Ala	Arg	Pro	Ala	Glu 365	Glu	Ala	Thr
Ser	Leu 370	Glu	Gly	Ala	Leu	Ser 375	Gly	Thr	Arg	Gly	Gly 380	Gly	Gly	Gly	Gly
Lys 385	Ser	His	Val	Ser	Thr 390	Leu	Thr	Asp	Leu	Gln 395	Pro	Tyr	Met	Arg	Gln 400
Phe	Val	Ala	His	Leu 405	Gln	Glu	Thr	Ser	Pro 410	Leu	Arg	Asp	Ala	Val 415	Val
Ile	Glu	Gln	Ser 420	Ser	Ser	Leu	Asn	Glu 425	Ala	Ser	Ser	Gly	Leu 430	Phe	Asp
Val	Phe	Leu 435	Arg	Phe	Met	Cys	His 440	His	Ala	Val	Arg	Ile 445	Arg	Gly	Lys
Ser	Tyr 450	Val	Gln	Cys	Gln	Gly 455	Ile	Pro	Gln	Gly	Ser 460	Ile	Leu	Ser	Thr
Leu 465	Leu	Cys	Ser	Leu	Cys 470	Tyr	Gly	Asp	Met	Glu 475	Asn	Lys	Leu	Phe	Ala 480
Gly	Ile	Arg	Arg	Asp 485	Gly	Leu	Leu	Leu	Arg 490	Leu	Phe	Leu	Leu	Val 495	Thr
Pro	His	Leu	Thr 500	His	Ala	Lys	Thr	Phe 505	Leu	Arg	Thr	Leu	Val 510	Arg	Gly
Val	Pro	Glu 515	Tyr	Gly	Cys	Val	Val 520	Asn	Leu	Arg	Lys	Thr 525	Val	Val	Asn
Dhe	Dro	Va 1	G1.,	Δer	G1.,	λ 1 ο	Leu	G1 **	G1 17	Th∽	Δ 1 =	Dhe	Va 1	G1n	Mo+

	530					535					540				
Pro 545	Ala	His	Gly	Leu	Phe 550	Pro	Trp	Суз	Gly	Leu 555	Leu	Leu	Asp	Thr	Arg 560
Thr	Leu	Glu	Val	Gln 565	Ser	Asp	Tyr	Ser	Ser 570	Tyr	Ala	Arg	Thr	Ser 575	Ile
Gly	Gly	Gly	Gly 580	Gly	Gly	Trp	Asn	His 585	Ser	Val	Arg	Glu	Ala 590	Gly	Val
Pro	Leu	Gly 595	Leu	Pro	Ala	Pro	Gly 600	Ala	Arg	Arg	Arg	Gly 605	Gly	Ser	Ala
Ser	Arg 610	Ser	Leu	Pro	Leu	Pro 615	Lys	Arg	Pro	Arg	Arg 620	Gly	Ala	Gly	Gly
Gly 625	Gly	Gly	Gly	Leu	Ala 630	Thr	Phe	Val	Arg	Arg 635	Leu	Gly	Pro	Gln	Gly 640
Trp	Arg	Leu	Val	Gln 645	Arg	Gly	Asp	Pro	Ala 650	Ala	Phe	Arg	Ala	Leu 655	Val
Ala	Gln	Суѕ	Leu 660	Val	Cys	Val	Pro	Trp 665	Asp	Ala	Arg	Pro	Pro 670	Pro	Ala
Ala	Pro	Ser 675	Phe	Arg	Gln	Val	Ser 680	Cys	Leu	Lys	Glu	Leu 685	Val	Ala	Arg
Val	Leu 690	Gln	Arg	Leu	Cys	Glu 695	Arg	Gly	Ala	Lys	Asn 700	Val	Leu	Ala	Phe
Gly 705	Phe	Ala	Leu	Leu	Asp 710	Gly	Ala	Arg	Gly	Gly 715	Gly	Gly	Gly	Gly	Gly 720
Arg	Glu	Leu	Ser	Glu 725	Ala	Glu	Val	Arg	Gln 730	His	Arg	Glu	Ala	A rg 735	Pro
Ala	Leu	Leu	Thr 740	Ser	Arg	Leu	Arg	Phe 745	Ile	Pro	Lys	Pro	Asp 750	Gly	Leu
Arg	Pro	Ile 755	Val	Asn	Met	Asp	Tyr 760	Val	Val	Gly	Ala	Arg 765	Thr	Phe	Arg
Arg	Glu 770	Lys	Arg	Ala	Glu	A rg 775	Leu	Thr	Ser	Arg	Val 780	Lys	Ala	Leu	Phe

- Ser Val Leu Asn Tyr Glu Arg Ala Arg Pro Gly Leu Leu Gly Ala 800

 Ser Val Leu Gly Leu Asp Asp Ile His Arg 810

 Tyr Gly Leu Gly Ala 800

 Ser Val Leu Gly Leu Asp Asp Ile His 810
- Leu Arg Val Arg Ala Gln Asp Pro Pro Pro Glu Leu Tyr Phe Val Lys 820 825 830
- Val Asp Val Thr Gly Ala Tyr Asp Thr Ile Pro Gln Asp Arg Leu Thr 835 840 845
- Glu Val Ile Ala Ser Ile Ile Lys Pro Gln Asn Thr Tyr Cys Val Arg 850 855 860
- Arg Tyr Ala Val Val Gln Lys Ala Ala His Gly His Val Arg Lys Gly 865 870 875 880
- Gly Gly Gly Gly Asn Arg Gly Phe Lys Ala Gly Arg Asn Met Arg 885 890 895
- Arg Lys Leu Phe Gly Val Leu Arg Leu Lys Cys His Ser Leu Phe Leu 900 905 910
- Asp Leu Gln Val Asn Ser Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys 915 920 925
- Ile Leu Leu Gln Ala Tyr Arg Phe His Ala Cys Val Leu Gln Leu 930 935 940
- Pro Phe His Gln Gln Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val 945 950 955 960
- Ile Ser Asp Thr Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn 965 970 975
- Ala Gly Met Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser 980 985 990
- Glu Ala Val Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr 995 1000 1005
- Arg His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr 1010 1015 1020
- Ala Gln Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr 1025 1030 1035

Ala Leu Glu Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys 1040 1045 1050
Thr Ile Leu Asp Gly Gly Gly Gly Gly Pro Cys Pro Pro Val 1055 1060 1065
Tyr Ala Glu Thr Lys His Phe Leu Tyr Ser Ser Gly Asp Lys Glu 1070 1075 1080
Gln Leu Arg Pro Ser Phe Leu Leu Ser Ser Leu Arg Pro Ser Leu 1085 1090 1095
Thr Gly Ala Arg Arg Leu Val Glu Thr Ile Phe Leu Gly Ser Arg 1100 1105 1110
Pro Trp Met Pro Gly Thr Pro Arg Arg Leu Pro Arg Leu Pro Gln 1115 1120 1125
Arg Tyr Trp Gln Met Arg Pro Leu Phe Leu Glu Leu Leu Gly Asn 1130 1135 1140
His Ala Gln Cys Pro Tyr Gly Val Leu Leu Lys Thr His Cys Pro 1145 1150 1155
Leu Arg Ala Ala Val Thr Gly Gly Gly Gly Gly Gly Lys Pro 1160 1165 1170
Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr 1175 1180
<210> 49 <211> 3555 <212> ADN <213> Secuencia artificial
<220> <223> inserto pUTInv
<220> <221> CDS <222> (1)(3555)
<400>49 atg cag att ttc gtc aaa aca ttg aca gga aag acc atc aca ctg gaa Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu 1 5 10
gtg gag cca agc gac act att gag aac gtc aaa gcc aag att cag gac 96 Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp 20 25 30

_	gag Glu					_	_	_		_			-		_	144
_	ctg Leu 50		_		-			_	_				_	_	_	192
-	act Thr	_		_	-		_	_	_							240
	agg Arg			_	_				_	_			_			288
	ttg Leu	_		_	_		_			_	_	_	_	_		336
	ctc Leu	_			-								_	_	_	384
-	tac Tyr 130	-			-	-	-	-	-	-				-	_	432
	tgg Trp							_				_	_		_	480
-	ctt Leu	_				_		-			_		_	_	_	528
	gct Ala															576
_	tgt Cys		_	_					_		_		_			624
	gtc Val 210															672
	aaa Lys															720
	gcc Ala	_			-		_			_	_					768
	gga Gly							_		-		_			_	816
	cag Gln		-	-		-	_			_		_		-	-	864

	_		gaa Glu	_		_				_				_	912
	-		ttc Phe	-	-		-	-		-					960
	_		tac Tyr		_	_	_			_		_		_	1008
_		_	ctg Leu 340	-	-	_	-		 _	_				_	1056
	_		atc Ile	_	-	_		_	_		_		_	_	1104
_			cat His	_			_			_			_	_	1152
			cca Pro												1200
_			cca Pro			_	_	_				_		_	1248
			gcc Ala 420												1296
			ctc Leu												1344
			gga Gly					_	 _		_	_	_	-	1392
_	_		cgc Arg	-	-	_		_	_				_		1440
			aaa Lys												1488
			gcc Ala 500												1536
			gtg Val												1584
			ggt Gly												1632

	530					535					540						
						ttt Phe										1680)
						gtg Val										1728	}
						ctc Leu										1776	;
						gtg Val										1824	ļ
-					_	aaa Lys 615							_	-		1872	2
-	_				_	cgc Arg	_				_	_		_		1920)
		-	-	-		gtg Val	-	-	-	-						1968	}
						cag Gln	_		-	_					-	2016	5
	_		_	_		cag Gln	_				_	_			_	2064	ļ
						ggt Gly 695										2112	?
						gct Ala										2160)
_	_		_	_	_	ctc Leu		_						_		2208	}
						tgc Cys										2256	;
						gaa Glu		_		_				_	-	2304	Ļ
			_		_	cat His 775	_	_		_	_	_		_		2352	?
tgg	aag	atg	agc	gtt	aga	gga	tgc	gca	tgg	ctc	agg	cgg	tca	cct	gga	2400)

Trp 785	Lys	Met	Ser	Val	Arg 790	Gly	Cys	Ala	Trp	Leu 795	Arg	Arg	Ser	Pro	Gly 800	
_	gga Gly							_					_			2448
	cac His															2496
	ctg Leu			-		-			_			-	_		_	2544
	gag Glu 850				_			_			_					2592
_	aga Arg	_					_				_	_	_			2640
	ctg Leu															2688
	aag Lys															2736
	gga Gly			-									_	-		2784
	ttc Phe 930	_	_				-			_	_		-			2832
_	gaa Glu		_		_											2880
	cat His															2928
~-	gca Ala				~ -	~ -	~		~ -		~	_	_	_	_	2976
								Gly					y Pl		ct act nr Thr	3024
_	gtc Val 1010	Arg					As		_	_	ar Ās		-	ctg a Leu A	_	3069
	tca Ser 1025	Gly					ı Le				rg Va					3114

gtt ctg gtt cac ctc ctg gcc cgg tgt gcc ctg ttc gtg ctg gtg Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val Leu Val 1040 1045 1050	
gct ccc tcc tgc gca tac cag gtc tgc gga ccc cca ctt tat cag Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr Gln 1055 1060 1065	
ctc ggc gct gct gga ggt gga ggt gga ggt ctg gcc acc ttc gtg Leu Gly Ala Ala Gly Gly Gly Gly Gly Leu Ala Thr Phe Val 1070 1080	
cgg cgc ctg gga ccc cag ggc tgg cgg ctg gtg cag cgc ggg gac Arg Arg Leu Gly Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp 1085 1090 1095	
cct gct gct ttc aga gct ctc gtc gcc cag tgt ctg gtc tgc gtt Pro Ala Ala Phe Arg Ala Leu Val Ala Gln Cys Leu Val Cys Val 1100 1105 1110	
cct tgg gac gca cgg ccc cca ccc gcc gcc ccc agt ttc cgg cag Pro Trp Asp Ala Arg Pro Pro Pro Ala Ala Pro Ser Phe Arg Gln 1115 1120 1125	
gtg agt tgt ctc aaa gag ttg gtt gct cgg gtg ttg cag cgg ctt Val Ser Cys Leu Lys Glu Leu Val Ala Arg Val Leu Gln Arg Leu 1130 1135 1140	
tgt gaa agg gga gca aag aac gtc ctt gcc ttt ggc ttc gct ttg Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe Gly Phe Ala Leu 1145 1150 1155	
ctc gat gga gca cgc gga gga ggt ggt gga gga ggt ggc aag cca Leu Asp Gly Ala Arg Gly Gly Gly Gly Gly Gly Gly Lys Pro 1160 1165 1170	
att cct aat cca ttg ctg ggc ctg gac tca act tga Ile Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr 1175 1180	3555
<210> 50 <211> 1184 <212> PRT <213> Secuencia artificial	
<220> <223> Construcción sintética	
<pre><400> 50 Met Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Gl 1</pre>	u
Val Glu Pro Ser Asp Thr Ile Glu Asn Val Lys Ala Lys Ile Gln Asp 20 25 30	p
Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Ly 35 40 45	s

Gln	Leu 50	Glu	Asp	Gly	Arg	Thr 55	Leu	Ser	Asp	Tyr	Asn 60	Ile	Gln	Lys	Glu
Ser 65	Thr	Leu	His	Leu	Val 70	Leu	Arg	Leu	Arg	Gly 75	Gly	Gly	Gly	Gly	Gly 80
Asn	Arg	Gly	Phe	Lys 85	Ala	Gly	Arg	Asn	Met 90	Arg	Arg	Lys	Leu	Phe 95	Gly
Val	Leu	Arg	Leu 100	Lys	Cys	His	Ser	Leu 105	Phe	Leu	Asp	Leu	Gln 110	Val	Asn
Ser	Leu	Gln 115	Thr	Val	Cys	Thr	Asn 120	Ile	Tyr	Lys	Ile	Leu 125	Leu	Leu	Gln
Ala	Tyr 130	Arg	Phe	His	Ala	Cys 135	Val	Leu	Gln	Leu	Pro 140	Phe	His	Gln	Gln
Val 145	Trp	Lys	Asn	Pro	Thr 150	Phe	Phe	Leu	Arg	Val 155	Ile	Ser	Asp	Thr	Ala 160
Ser	Leu	Cys	Tyr	Ser 165	Ile	Leu	Lys	Ala	Lys 170	Asn	Ala	Gly	Met	Ser 175	Leu
Gly	Ala	Lys	Gly 180	Ala	Ala	Gly	Pro	Leu 185	Pro	Ser	Glu	Ala	Val 190	Gln	Trp
Leu	Cys	His 195	Gln	Ala	Phe	Leu	Leu 200	Lys	Leu	Thr	Arg	His 205	Arg	Val	Thr
Tyr	Val 210	Pro	Leu	Leu	Gly	Ser 215	Leu	Arg	Thr	Ala	Gln 220	Thr	Gln	Leu	Ser
Arg 225	Lys	Leu	Pro	Gly	Thr 230	Thr	Leu	Thr	Ala	Leu 235	Glu	Ala	Ala	Ala	Asn 240
Pro	Ala	Leu	Pro	Ser 245	Asp	Phe	Lys	Thr	Ile 250	Leu	Asp	Gly	Gly	Gly 255	Gly
Gly	Gly	Lys	Ser 260	His	Val	Ser	Thr	Leu 265	Thr	Asp	Leu	Gln	Pro 270	Tyr	Met
Arg	Gln	Phe 275	Val	Ala	His	Leu	Gln 280	Glu	Thr	Ser	Pro	Leu 285	Arg	Asp	Ala

Val Val Ile Glu Gln Ser Ser Ser Leu Asn Glu Ala Ser Ser Gly Leu 290 295 300

Phe 305	Asp	Val	Phe	Leu	Arg 310	Phe	Met	Cys	His	His 315	Ala	Val	Arg	Ile	Arg 320
Gly	Lys	Ser	Tyr	Val 325	Gln	Cys	Gln	Gly	Ile 330	Pro	Gln	Gly	Ser	Ile 335	Leu
Ser	Thr	Leu	Leu 340	Cys	Ser	Leu	Суѕ	Tyr 345	Gly	Asp	Met	Glu	Asn 350	Lys	Leu
Phe	Ala	Gly 355	Ile	Arg	Arg	Asp	Gly 360	Leu	Leu	Leu	Arg	Leu 365	Phe	Leu	Leu
Val	Thr 370	Pro	His	Leu	Thr	His 375	Ala	Lys	Thr	Phe	Leu 380	Arg	Thr	Leu	Val
A rg 385	Gly	Val	Pro	Glu	Tyr 390	Gly	Cys	Val	Val	Asn 395	Leu	Arg	Lys	Thr	Val 400
Val	Asn	Phe	Pro	Val 405	Glu	Asp	Glu	Ala	Leu 410	Gly	Gly	Thr	Ala	Phe 415	Val
Gln	Met	Pro	Ala 420	His	Gly	Leu	Phe	Pro 425	Trp	Cys	Gly	Leu	Leu 430	Leu	Asp
Thr	Arg	Thr 435	Leu	Glu	Val	Gln	Ser 440	Asp	Tyr	Ser	Ser	Tyr 445	Ala	Arg	Thr
Ser	Ile 450	Gly	Gly	Gly	Gly	Gly 455	Gly	Arg	Glu	Leu	Ser 460	Glu	Ala	Glu	Val
Arg 465	Gln	His	Arg	Glu	Ala 470	Arg	Pro	Ala	Leu	Leu 475	Thr	Ser	Arg	Leu	Arg 480
Phe	Ile	Pro	Lys	Pro 485	Asp	Gly	Leu	Arg	Pro 490	Ile	Val	Asn	Met	Asp 495	Tyr
Val	Val	Gly	Ala 500	Arg	Thr	Phe	Arg	A rg 505	Glu	Lys	Arg	Ala	Glu 510	Arg	Leu
Thr	Ser	Arg 515	Val	Lys	Ala	Leu	Phe 520	Ser	Val	Leu	Asn	Tyr 525	Glu	Arg	Ala
Arg	A rg 530	Pro	Gly	Leu	Leu	Gly 535	Ala	Ser	Val	Leu	Gly 540	Leu	Asp	Asp	Ile
His 545	Arg	Ala	Trp	Arg	Thr 550	Phe	Val	Leu	Arg	Val 555	Arg	Ala	Gln	Asp	Pro 560

Pro	Pro	Glu	Leu	Tyr 565	Phe	Val	Lys	Val	Asp 570	Val	Thr	Gly	Ala	Tyr 575	Asp
Thr	Ile	Pro	Gln 580	Asp	Arg	Leu	Thr	Glu 585	Val	Ile	Ala	Ser	Ile 590	Ile	Lys
Pro	Gln	Asn 595	Thr	Tyr	Cys	Val	Arg 600	Arg	Tyr	Ala	Val	Val 605	Gln	Lys	Ala
Ala	His 610	Gly	His	Val	Arg	Lys 615	Gly	Gly	Gly	Gly	Gly 620	Gly	Cys	Val	Pro
Ala 625	Ala	Glu	His	Arg	Leu 630	Arg	Glu	Glu	Ile	Leu 635	Ala	Lys	Phe	Leu	His 640
Trp	Leu	Met	Ser	Val 645	Tyr	Val	Val	Glu	Leu 650	Leu	Arg	Ser	Phe	Phe 655	Tyr
Val	Thr	Glu	Thr 660	Thr	Phe	Gln	Lys	Asn 665	Arg	Leu	Phe	Phe	Tyr 670	Arg	Lys
Ser	Val	Trp 675	Ser	Lys	Leu	Gln	Ser 680	Ile	Gly	Ile	Arg	Gln 685	His	Leu	Lys
Arg	Val 690	Gln	Gly	Gly	Gly	Gly 695	Gly	Gly	Ala	Gly	Val 700	Cys	Ala	Arg	Glu
Lys 705	Pro	Gln	Gly	Ser	Val 710	Ala	Ala	Pro	Glu	Glu 715	Glu	Asp	Thr	Asp	Pro 720
Arg	Arg	Leu	Val	Gln 725	Leu	Leu	Arg	Gln	His 730	Ser	Ser	Pro	Trp	Gln 735	Val
Tyr	Gly	Phe	Val 740	Arg	Ala	Cys	Leu	Arg 745	Arg	Leu	Val	Pro	Pro 750	Gly	Leu
Trp	Gly	Ser 755	Arg	His	Asn	Glu	Arg 760	Arg	Phe	Leu	Arg	Asn 765	Thr	Lys	Lys
Phe	Ile 770	Ser	Leu	Gly	Lys	His 775	Ala	Lys	Leu	Ser	Leu 780	Gln	Glu	Leu	Thr
Trp 785	Lys	Met	Ser	Val	Arg 790	Gly	Суз	Ala	Trp	Leu 795	Arg	Arg	Ser	Pro	Gly 800

Val Gly Gly Gly Gly Gly Pro Cys Pro Pro Val Tyr Ala Glu Thr

	805	810	815
Lys His Phe Leu		y Asp Lys Glu Gln :	Leu Arg Pro Ser
820		825	830
Phe Leu Leu Ser	Ser Leu Arg Pr	o Ser Leu Thr Gly a	Ala Arg Arg Leu
835	84		845
Val Glu Thr Ile	Phe Leu Gly Se	r Arg Pro Trp Met 1	Pro Gly Thr Pro
850	855	860	
Arg Arg Leu Pro	Arg Leu Pro Gl.	n Arg Tyr Trp Gln 1	Met Arg Pro Leu
865	870	875	880
Phe Leu Glu Leu	Leu Gly Asn Hi	s Ala Gln Cys Pro '	Tyr Gly Val Leu
	885	890	895
Leu Lys Thr His	-	g Ala Ala Val Thr (905	Gly Gly Gly 910
Gly Gly Ser Trp 915	Ala His Pro Gl	y Arg Thr Arg Gly 1	Pro Ser Asp Arg 925
Gly Phe Cys Val	Val Ser Pro Al	a Arg Pro Ala Glu (Glu Ala Thr Ser
930	935	940	
Leu Glu Gly Ala	Leu Ser Gly Th	r Arg Gly Gly Gly (Gly Gly Gly Trp
945	950	955	960
Asn His Ser Val	Arg Glu Ala Gl	y Val Pro Leu Gly : 970	Leu Pro Ala Pro 975
Gly Ala Arg Arg		r Ala Ser Arg Ser :	Leu Pro Leu Pro
980		985	990
Lys Arg Pro Arg	Arg Gly Ala Gl	y Gly Gly Gly Gly	Gly Phe Thr Thr
995		00	1005
Ser Val Arg Se	r Tyr Leu Pro	Asn Thr Val Thr As _l	
1010	1015	10:	
Gly Ser Gly Al 1025	a Trp Gly Leu 1030	Leu Leu Arg Arg Va 10	
Val Leu Val Hi	s Leu Leu Ala .	Arg Cys Ala Leu Pho	
1040	1045	10	

Ala Pro Ser Cys Ala Tyr Gln 1060 Val Cys Gly Pro Pro Leu Tyr Gln 1065

Leu Gly Ala Ala Gly Gly Gly Gly Gly Gly Leu Ala 1080 Thr Phe Val 1070

Arg Arg Leu Gly Pro Gln Gly 1090 Trp Arg Leu Val Gln 1095 Arg Gly Asp 1080

Pro Ala Ala Phe Arg Ala Leu 1105 Val Ala Gln Cys Leu Val Cys Val 1110

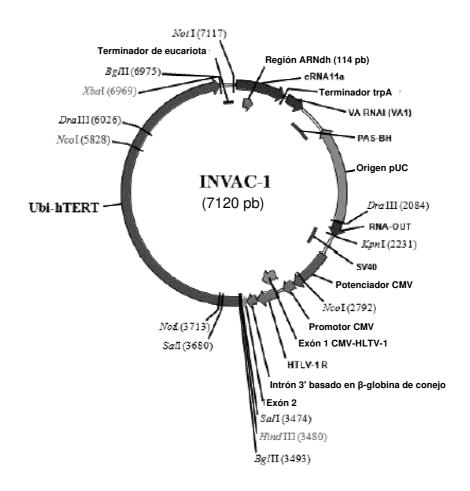
Pro Trp Asp Ala Arg Pro Pro 1120 Pro Ala Ala Pro Ser Phe Arg Gln 1115

Val Ser Cys Leu Lys Glu Leu 1135 Val Ala Arg Val Leu Gln Arg Leu 1130

Cys Glu Arg Gly Ala Lys Asn Val Leu Ala Phe Gly Phe Ala Leu 1145

Leu Asp Gly Ala Arg Gly Gly Gly Gly Gly Gly Gly Gly Gly Lys Pro 1160

Tle Pro Asn Pro Leu Leu Gly Leu Asp Ser Thr


1180

REIVINDICACIONES

- 1. Una construcción de ácido nucleico que comprende una secuencia que codifica una proteína transcriptasa inversa de telomerasa humana (hTERT) que carece de actividad catalítica de telomerasa y de una señal de localización nucleolar, en donde la proteína hTERT se fusiona en el extremo N con ubiquitina o calreticulina.
- 5 2. La construcción de ácido nucleico de la reivindicación 1, en donde la secuencia que codifica la proteína hTERT contiene una mutación que proporciona la inactivación de la actividad catalítica de la proteína TERT.
 - 3. La construcción de ácido nucleico de la reivindicación 2, en donde la proteína hTERT carece de actividad catalítica telomerasa por deleción de al menos un aminoácido.
- 4. La construcción de ácido nucleico de la reivindicación 3, en donde la proteína hTERT carece de actividad catalítica telomerasa por deleción de los aminoácidos 867-869 (VDD).
 - 5. La construcción de ácido nucleico de la reivindicación 4, en donde la proteína hTERT carece de actividad catalítica telomerasa por una deleción adicional de 1 a 12 aminoácidos aguas arriba y/o aguas abajo de los aminoácidos 867-869 (VDD).
 - 6. La construcción de ácido nucleico de cualquiera de las reivindicaciones 1 a 5, en donde la proteína hTERT carece de una señal de localización nucleolar por deleción de al menos los aminoácidos 1-23.

15

- 7. La construcción de ácido nucleico de la reivindicación 6, en donde la proteína hTERT carece de una señal de localización nucleolar por deleción de los aminoácidos 1-47.
- 8. La construcción de ácido nucleico de cualquiera de las reivindicaciones 1 a 7, en donde la proteína que potencia el direccionamiento de la proteína hTERT al proteasoma es ubiquitina.
- 9. La construcción de ácido nucleico de cualquiera de las reivindicaciones 1 a 7, en donde la proteína que potencia el direccionamiento de la proteína hTERT al proteasoma es calreticulina.
 - 10. La construcción de ácido nucleico de cualquiera de las reivindicaciones 1 a 9, que es un ADN, preferiblemente un plásmido de ADN.
 - La construcción de ácido nucleico de la reivindicación 10, que codifica la secuencia de aminoácidos de SEQ ID NO: 12.
 - 12. La construcción de ácido nucleico de la reivindicación 11, que comprende SEQ ID NO: 11 o los nucleótidos 3488 a 6961 de SEQ ID NO: 11.
 - 13. La construcción de ácido nucleico de la reivindicación 10, que codifica la secuencia de aminoácidos de SEQ ID NO: 14, 16 o 18, y preferiblemente comprende la secuencia de nucleótidos de SEQ ID NO: 13, 15 o 17.
- 30 14. La construcción de ácido nucleico de cualquiera de las reivindicaciones 1 a 13, para su uso en la activación de una respuesta inmunitaria en un sujeto, contra células que expresan en exceso la telomerasa, preferiblemente células de displasia, células tumorales o células infectadas por un oncovirus.
 - 15. La construcción de ácido nucleico de cualquiera de las reivindicaciones 1 a 14, para su uso en la prevención o el tratamiento de un tumor en un paciente.

FIGURA 1A

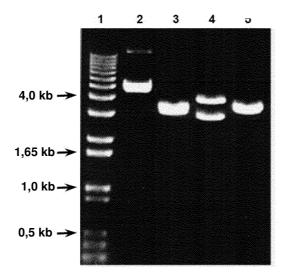
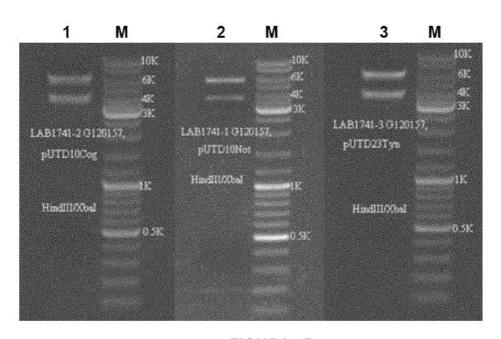



FIGURA 1B

FIGURA 2A

FIGURA 2B

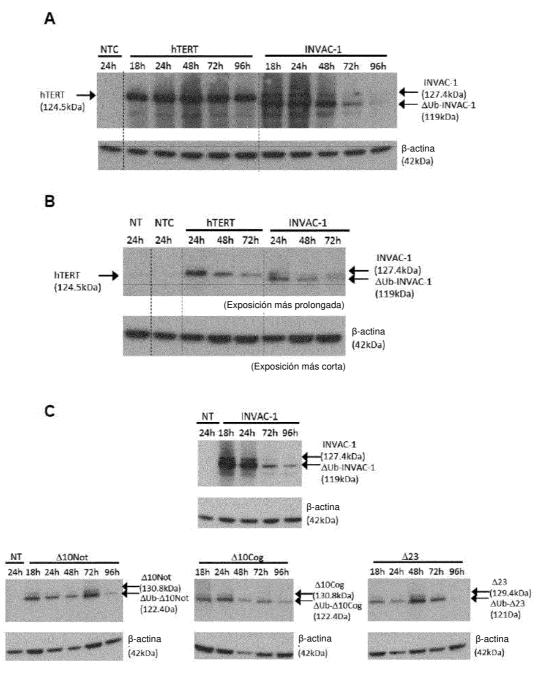


FIGURA 3

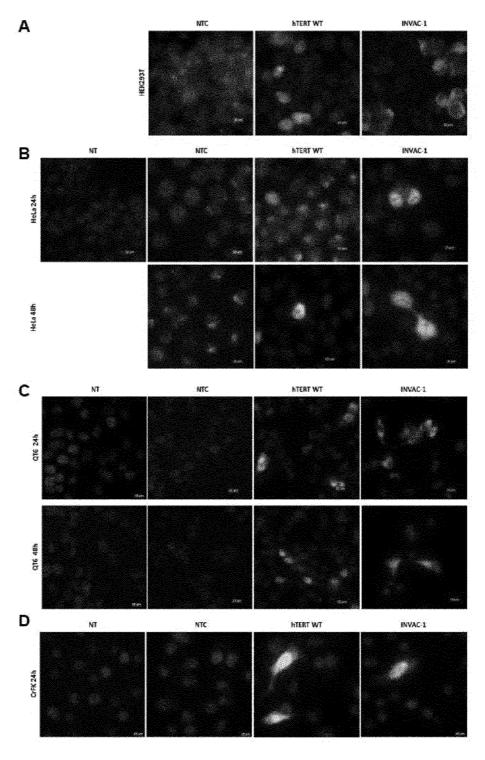
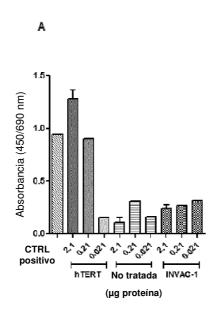
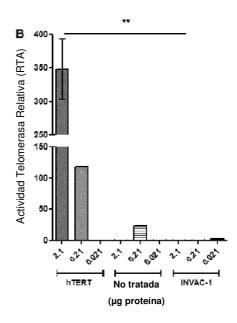
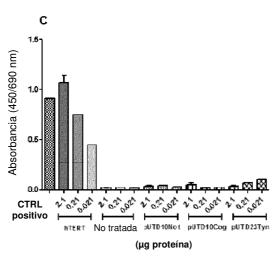





FIGURA 4

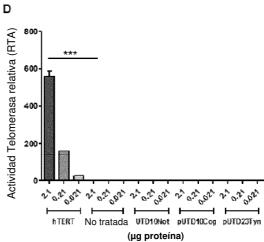
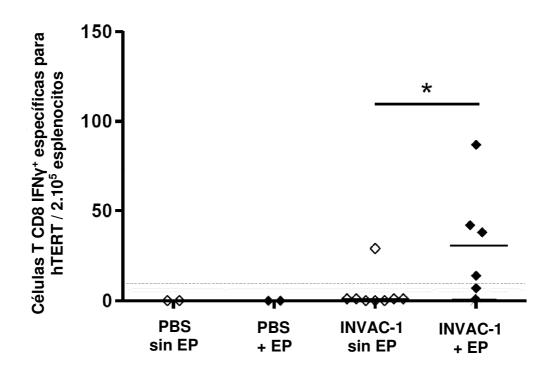
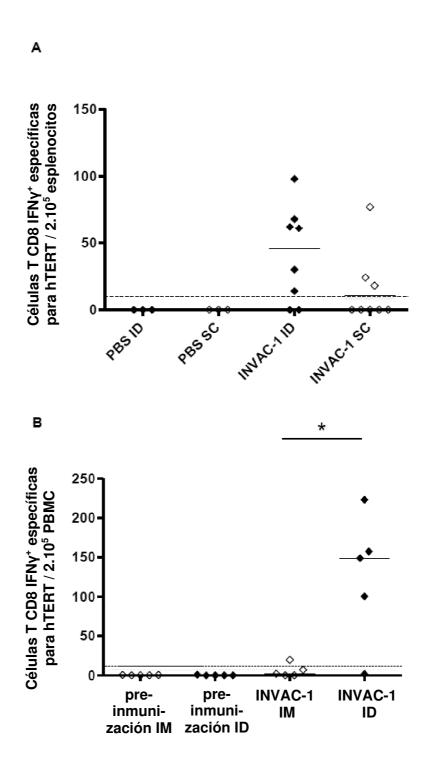





FIGURA 5

FIGURA 6

FIGURA 7

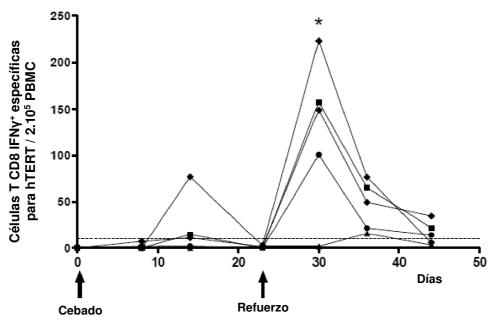
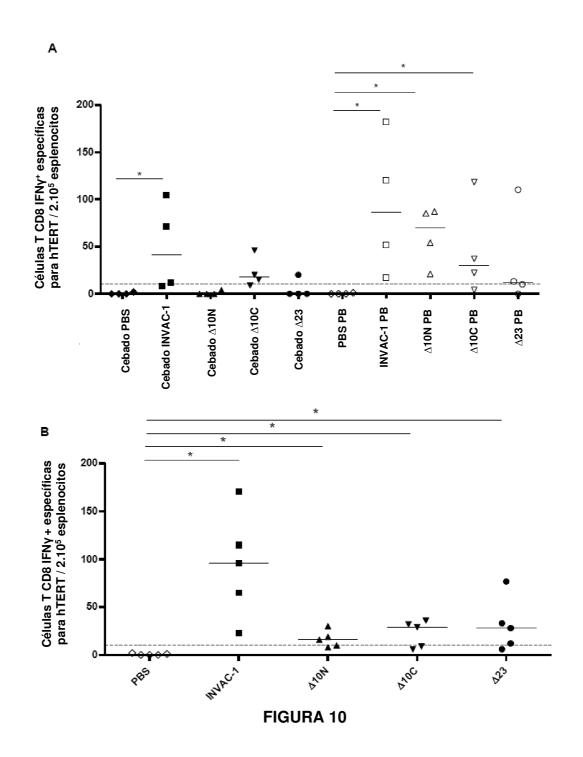
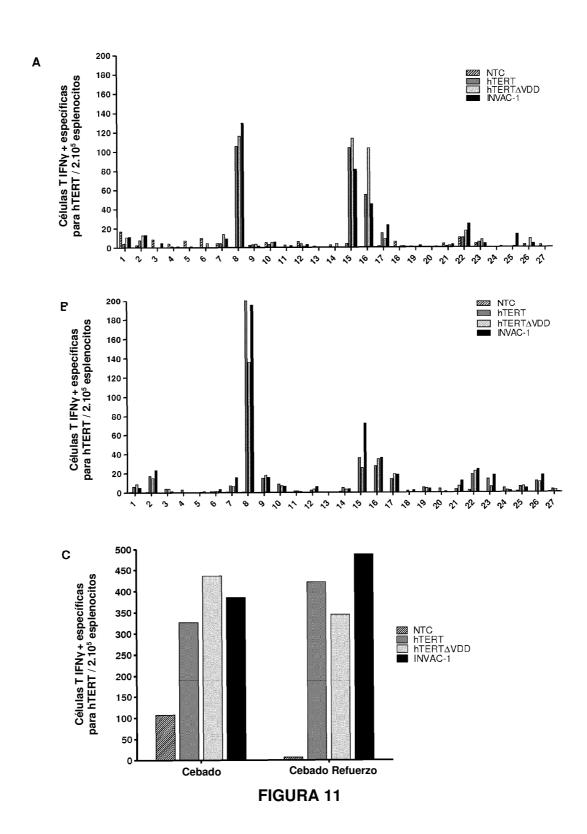
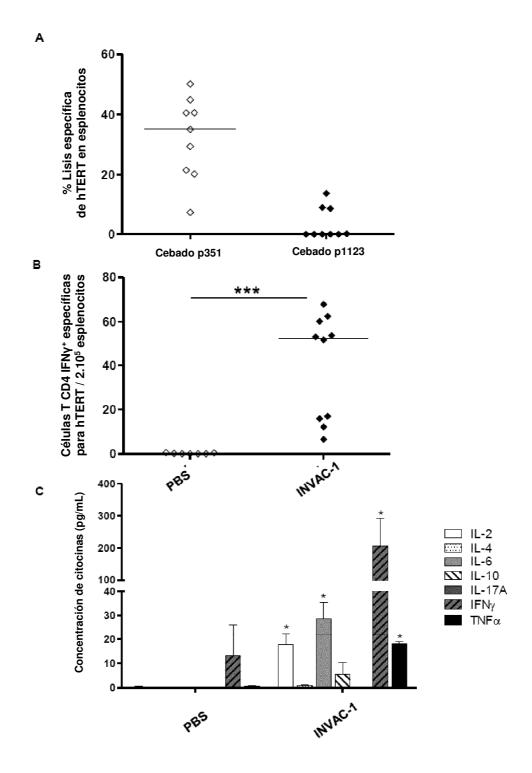
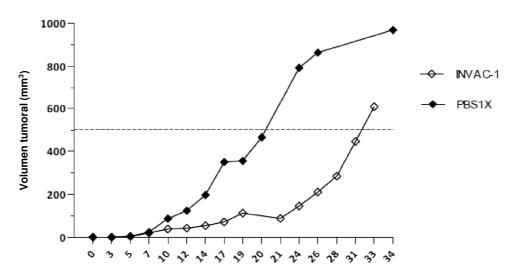
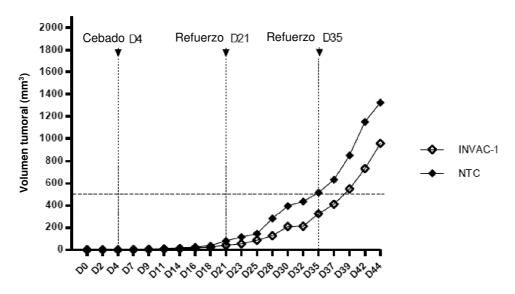
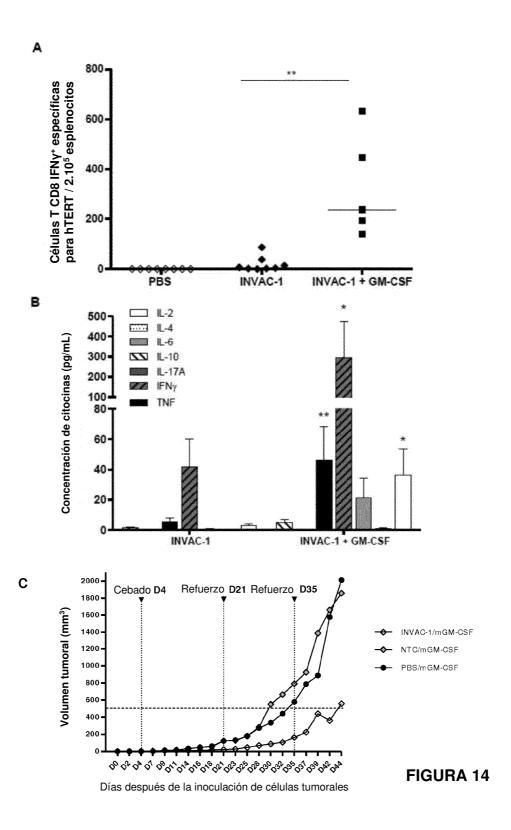




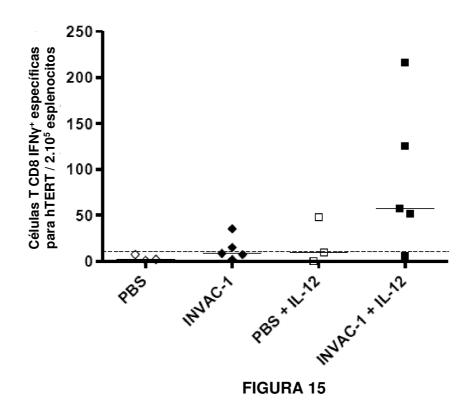
FIGURA 9


FIGURA 12

Α


Días después de la inoculación de células tumorales


В

Días después de la inoculación de células tumorales

FIGURA 13

No 1	tI < agonista eRNA11a RIGI gctagcaccgttggtttccgtagtgttagtggttatcacgttcgcctaacacgcgaaaggt	60
61	< Región ARNdh ccccggttcgaaaccgggcactacaaaccaacgttaaaaaacaggtcctccccatac	120
	tettteattgtacacacgcaagetegacaatcateggattgaagcattgtegcacacat	180
	Región ARNdh >	200
181	cttccacacaggatcagtacctgctttcgcttttaaccaaggcttttctccaagggatat	240
241	$\verb ttatagtctcaaaacacacaattactttacagttagggtgagtttccttttgtgctgttt \\$	300
301	$\verb tttaaaataatttagtatttgtatctcttatagaaatccaagcctatcatgtaaaat \\$	360
361	$\tt gtagctagtattaaaaagaacagattatctgtcttttatcgcacattaagcctctatagt$	420
421	${\tt tactaggaaatattatatgcaaattaaccggggcaggggagtagccgagcttctcccaca}$	480
481	agonista eRNA11a RIGI > < termina agtotgtgggaggggggggggggggggggggggggggg	ador 540
	procariótico trpA > < VA RNAI Adenovirus 5	
541	$\verb ctaatgaggggcttttttttttttttagggtgcaaaaggagagcctgtaagcgggcactctt \\$	600
601	$\verb ccgtggtctggtggataaattcgcaagggtatcatggcggacgaccggggttcgagcccc \\$	660
661	$\tt gtatecggccgtecgccgtgatecatgcggttaccgcccgcgtgtcgaacccaggtgtgc$	720
721	$\mbox{VA RNAI} > \mbox{ < PAS-BH} \\ \mbox{gacgtcagacaacggggagtgctccttttggcttccttc} \mbox{\textbf{c}} \mbox{cctaccggt} \mbox{\textbf{c}} \mbox{tgcctcgcg} \label{eq:cctaccgg}$	780
781	Sitio de ensamblaie primosomal (PAS-BH) origen extendido ι cgtttcggtgatgacggtgaaaacctctgacacatgcagctcccggagacggtcacagct	840
841	tgtctgtaagcggatgccgggagcagacaagcccgtcaggggcgctcagcgggtgttggc	900
901	$\tt gggtgtcggggcgcagccatgacccagtcacgtagcgatagcggagtgtatactggctta$	960
961	${\tt actatgcggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaataccgc}$	1020
1021	${\tt PAS-BH} > < \text{origen de replicación pUC} \\ \text{acagatgcgtaaggagaaaataccgcatcaggcgctcttccgcttcctcgctcactgact} \\$	1080
1081	${\tt cgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactca$	1140
1141	ggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaaggccagcaaa	1200
1201	aggccaggaaccgtaaaaaggccgcgttgctggcgttttttccataggctccgccccctg	1260
1261	acgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggactataaa	1320
1321	gataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgc	1380
1381	$\verb ttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcac \\$	1440
1441	gctgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaac	1500
1501	cccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccgg	1560
1561	${\tt taagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggt}$	1620
1621	$\verb atgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaa \\$	1680
1681	cagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagct	1740
1741	cttgatccggcaaacaaaccaccgctggtagcggtggtttttttt	1800
1 2 0 1	++2000000000000000000000000000000000000	1860

FIGURA 16

1861	$\verb ctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatct $	1920
1921	${\tt tcacctagatccttttaaattaaaaatgaagttttaaatcaatc$	1980
1981	$a {\tt aaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtc}$	2040
2041	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2100
2101	gagagtcgtgtaaaatatcgagttcgcacatcttgttgtctgattattgatttttggcga	2160
2161	a accent t t gat catatga caa gat g t g t at ctacct ta act ta at gat t t t gat aa aa at t t accent a consideration of the consideratio	2220
2221	$\begin{array}{ccc} \text{RNA-OUT} &>_< & \textbf{bloqueo potenciador SV40} \\ \text{catta} \textbf{aggtacc} \text{cct} \textbf{gatca} \text{ctgtggaatgtgtqtcagttagggtgtggaaagtccccagg} \\ & \text{KpnI} & \text{BclI} \end{array}$	2280
2281	$\verb ctccccagcaggcagaagtatgcaaagcatgcatctcaattagtcagcaaccaggtgtgg $	2340
2341	${\tt aaagtccccaggctccccagcaggcagaagtatgcaaagcatgcat$	2400
2401	$\begin{array}{c} \text{bloqueo promotor SV40} &><\\ \text{aaccatagtcccgcccctaactccgcccateccgcccctaactccgccca} \textbf{\textit{g}} \text{ttacggggt} \end{array}$	2460
2461	$\begin{tabular}{ll} bloqueo\ potenciador\ promotor\ CMV-IE\ humano: \\ cattagttcatagcccatatatggagttccgcgttacataacttacggtaaatggcccgc \end{tabular}$	2520
2521	$\verb ctggctgaccgcccaacgaccccgcccattgacgtcaataatgacgtatgttcccatag \\$	2580
2581	ta acgcca at agggact ttc cattgacgtca at gggtggagt at ttacggta a actgccc	2640
2641	${\tt acttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacg}$	2700
2701	$\tt gtaaatggcccgcctggcattatgcccagtacatgaccttatgggactttcctacttggc$	2760
2761	${\tt NcoI}$ agtacatctacgtattagtcatcgctatta ${\tt accat}{\tt agt}$ gatgcggttttggcagtacatca	2820
	$a g tacat c tacg tattag t catego tatta \textbf{\textit{ccatgg}} t g a t g c g g t t t t g g c a g t a catego a t t c catego g g g g g g g g g g g g g g g g g g $	
2821	${\tt agtacatctacgtattagtcatcgctatta} \textbf{\textit{ccatgg}} \texttt{tgatgcggttttggcagtacatca}$	2880
2821	$\label{eq:control_control} \begin{tabular}{ll} a gtacatctacg tattagctactcacg gtattagctactcacg gtattagctactcacg gtattagctacacg gtattagctacacacg gtattagctacacg gtattagctac$	2880 2940
2821 2881 2941	$\label{eq:control_control_control} \begin{tabular}{ll} agtacatcacgtattagtcatcgctatta$ $ccatgg$ tgatgcggttttggcagtacatca $$ atgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtca $$ $$ $$ promotor CMV $$ atgggagtttgttttg$ $$ $$ caccaaaatcaacgggactttccaaaatgtcgtaacaactccg $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$	2880 2940 3000
2821 2881 2941 3001	agtacatctacgtattagtcatcgctatta ccatgg tgatgcggttttggcagtacatca atgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtca >< promotor CMV atgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccg ccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctc >< lider no traducido (exón 1) gtttagtgaaccgtcagatcgcctggagacgccatccacgetgttttgacctccatagaa	2940 3000 3060
2821 2881 2941 3001 3061	agtacatctacgtattagtcatcgctatta ccatgg tgatgcggttttggcagtacatca atgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtca >< promotor CMV atgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccg ccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctc >< líder no traducido (exón 1) gtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaa < región R HTLV-1 de LTR gacaccgggaccgatccagcctccgcggctcgcatctctccttcacgcgcccgcc	2880 2940 3000 3060 3120
2821 2881 2941 3001 3061	agtacatetacgtattagtcategetatta ccatgg tgatgcggttttggcagtacatea atgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtca >< promotor CMV atgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccg ccccattgacgcaaatgggcgtaggcgtgtacggtgggaggtctatataagcagagctc >< líder no traducido (exón 1) gtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaa	2880 2940 3000 3060 3120
2821 2881 2941 3001 3061 3121	agtacatctacgtattagtcatcgctatta ccatgg tgatgcggttttggcagtacatca atgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtca >< promotor CMV atgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccg ccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctc >< líder no traducido (exón 1) gtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaa < región R HTLV-1 de LTR gacaccgggaccgatccagcctccgcggctcgcatctctccttcacgcgcccgcc	2880 2940 3000 3060 3120 3180
2821 2881 2941 3001 3061 3121 3181	agtacatetacgtattagtcategetatta ccatgg tgatgcggttttggcagtacatea atgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtca >< promotor CMV atgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccg ccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataagcagagctc >< lider no traducido (exón 1) gtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaa	2940 3000 3060 3120 3180
2821 2881 2941 3001 3061 3121 3181 3241	$agtacatctacgtattagtcatcgctatta{ \textbf{ccatgg}} tgatgcggttttggcagtacatca atgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtca $	2940 3000 3060 3120 3180 3240 3300
2821 2881 2941 3001 3061 3121 3181 3241 3301	agtacatetacgtattagtcategetattaccatggtgatgcggttttggcagtacatea atgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtca >< promotor CMV atgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccg ccccattgacgcaaatgggcggtaggcgtgtacggtgggaggtctatataaagcagagctc >< líder no traducido (exón 1) gtttagtgaaccgtcagatccctggagacgccatccacgctgttttgacctccatagaa	2940 3000 3060 3120 3180 3240 3300
2821 2881 2941 3001 3061 3121 3181 3241 3301 3361	agtacatetacgtattagtcategetatta \mathbf{ccatgg} tgatgcggttttggcagtacatea atgggcgtggatagcggtttgactcacggggatttccaagtctccaccccattgacgtca >< promotor CMV atgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccg ccccattgacgcaaatgggcgtaggcgtgtacggtgggggggtctatataagcagagctc >< líder no traducido (exón 1) gtttagtgaaccgtcagatcgcctggagacgccatccacgctgttttgacctccatagaa	2880 2940 3000 3060 3120 3180 3240 3300 3360 3420

FIGURA 16 cont.

	< Ubiquitina humana	
3541	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3600
3601	cgaccagcagaggctcatctttgctggcaagcagctggaagatggccgcactctgtctg	3660
3661	SalI NotI ctacaacatccagaaaga gtcgac cctgcacctggtcctgcgtctgagaggc ggc cgcc Y N I Q K E S T L H L V L R L R G G R A Ubiquitina humana >< hTER	
3721	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3780
	Secuencia codificante de transcriptasa inversa de telomeasa humana (hTERT)	
3781	ctcattccgccaagtgtcctgcctgaaggagctggtggcccgagtgctgcagaggctgtg S F R Q V S C L K E L V A R V L Q R L C	3840
3841	cgagcgcggcgcgaagaacgtgctggccttcggcttcgcgctgctggacgggctcgcgg E R G A K N V L A F G F A L L D G A R G	3900
3901	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3960
3961	cgcactgcggggagcgggggggggggctgctgttgcgccgcgtgggcgacgacgtgct A L R G S G A W G L L L R R V G D D V L	4020
4021	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4080
4081	ggtgtgcggccgccgctgtaccagctcggcgctgccactcaggcacggcctccacctca $\tt V \ C \ G \ P \ P \ L \ Y \ Q \ L \ G \ A \ A \ T \ Q \ A \ R \ P \ P \ P \ H$	4140
4141	cgctagtggaccccgaaggcgtctgggatgcgaacgggcctggaaccatagcgtcaggga A S G P R R L G C E R A W N H S V R E	4200
4201	ggccggggtccccctgggcctgccagccccgggtgcgaggaggcgcgggggcagtgccag A G V P L G L P A P G A R R G G S A S	4260
4261	ccgaagtctgccgttgcccaagaggcccaggcgtggcgctgcccctgagccggagcggac	4320
4321	gcccgttgggcaggggtcctgggcccacccgggcaggacgcgtggaccgagtgaccgtgg P V G Q G S W A H P G R T R G P S D R G	4380
4381		4440
4441	ctctggcacgcgccactcccacccatccgtgggccgccagcaccacgcgggccccccatc S G T R H S H P S V G R Q H H A G P P S	4500
4501	cacategeggceaceaegteeetgggacaegeettgteeeeeggtgtaegeegagaeeaa T S R P P R P W D T P C P P V Y A E T K	4560
4561	geactteetetaeteeteaggegaeaaggageagetgeggeeateetteet	4620
4621	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4680
4681	gccctggatgccagggactccccgcaggttgccccgcctgccccagcgctactggcaaat P W M P G T P R R L P R L P Q R Y W Q M	4740
4741	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4800

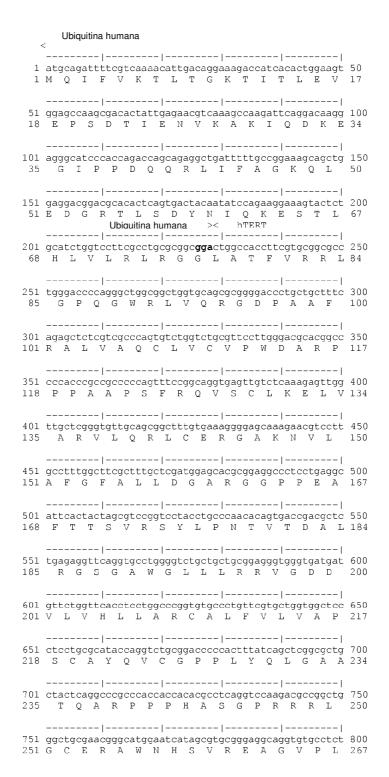
4801	caa K	gac T	gca H	ctç C				ago A				ccc P		agc A				tgc A	ccgç R	gga E	4860
4861	gaa K	gcc P				tgt: V			ccc P		igga E		ıgga D	cac T		ccc P	ccg R	tcg R	cct <u>c</u> L	ggt V	4920
4921	gca: Q	gct: L	gct L	ccç R	rcca Q						Q Q		-		ctt F	cgt V	geg R	ggc A	ctga C	ect L	4980
4981					gcc P						ctc S						ccg R		ccto L	ag R	5040
5041	gaa N	cac T	caa K				ctc S				igca H			igct L			gca Q		gcto L	jac T	5100
5101	gtg: W		gat M			gcg R											ggt V		-	gt V	5160
5161		ggc A			ıgca H	iccg R		gcg R		ıgg <i>a</i> E	ıgat I			caa K		cct L	gca H	ctg W	gatç L	gat M	5220
5221	gag S	tgt: V			.cgt V				caq R			ctt F		cgt V		gga E	gac T	cac T	gttt F	ca Q	5280
5281	aaa K	gaa N	cag R	gct L	gtt F	ttt F	cta Y	ccg R	gaa K	igaç S	rtgt V	cto W	rgag S	caa K	gtt L	gca Q	aag S	cat I	tgga G	aat I	5340
5341	caga R	aca Q	gca H	ctt L			ggt V			gcç R	E Igga	ıgct L	gtc S	gga E	agc A		ggt V	cag R	gcaç Q	gca H	5400
5401	tcg:	gga. E	agc A	caç R				gct L						ctt F		ccc P	caa K	gcc P		G G	5460
5461					tgt V									cag R		gtt F		cag R	agaa E	aaa K	5520
5521	gage R	ggc A	cga E	geg R	rtct L	cac T	ctc S	acg R	ggt V		ıggc A	act L	gtt F			gct L	caa N	cta Y	cgaç E	geg R	5580
5581						L								cct		cga D	tat I	cca H	cago R	gc A	5640
5641	ctg: W	gcg. R	cac T		.cgt V						cca Q			gcc P		tga E	gct L	gta Y	cttt F	gt V	5700
5701	caa K		gga D	tgt V	gac T	ggg G		gta Y	icga D	cac T	cat	ccc P				gct L	cac T	gga E	ggto V	at I	5760
5761	cgc A		cat I		caa K									tcg R						gaa K	5820
5821	ggc	ege A		coI tgg G			ccg R			ctt F					ctc S	tac T	ctt L	gac T	agad D	cct L	5880
5881																			ggat D		5940
5941																			cgto V		6000
6001	cc+:	a c c	c++	ca+	ata	rcca.		raI		· a cc	rcat	cac	raaa	rcaa	at c	cta	ca+	cca	atao	202	6060
3001																			C		3000
6061	ggg G				ıggg G	ctc S	cat I	cct L			gct L				cct L			cgg G	cgad D	cat M	6120

6121	ggagaacaagctgtttgcggggattcggcgggacgggctgctcctgcgtttgttcttgtt E N K L F A G I R R D G L L L R ${f L}$ F L L *	6180
6181	ggtgacacctcacctcacccacgcgaaaaccttcctcaggaccctggtccgaggtgtccc V T P H L T H A K T F L R T L V R G V P	6240
6241	tgagtatggctgcgtggtgaacttgcggaagacagtggtgaacttccctgtagaagacga E Y G C V V N L R K T V V N F P V E D E	6300
6301	ggccctgggtggcacggcttttgttcagatgccggcccacggcctattcccctggtgcgg A L G G T A F V Q M P A H G L F P W C G	6360
6361	cctgctgctggatacccggaccctggaggtgcagagcgactactccagctatgcccggac L L L D T R T L E V Q S D Y S S Y A R T	6420
6421	ctccatcagagccagtctcaccttcaaccgcggcttcaaggctgggaggaacatgcgtcg S I R A S L T F N R G F K A G R N M R R	6480
6481	caaactetttggggtettgeggetgaagtgtea eageetgtttetggatttgeaggtgaa K L F G V L R L K C H S L F L D L Q V N	6540
6541	cagcctccagacggtgtgcaccaacatctacaagatcctcctgctgcaggcgtacaggtt S L Q T V C T N I Y K I L L Q A Y R F	6600
6601	tcacgcatgtgtgctgcagctcccatttcatcagcaagtttggaagaaccccacattttt H A C V L Q L P F H Q Q V W K N P T F F	6660
6661	cctgcgcgtcatctctgacacggcctccctctgctactccatcctgaaagccaagaacgc L R V I S D T A S L C Y S I L K A K N A	6720
6721	agggatgtcgctgggggccaagggcgccgccggccctctgccctccgaggccgtgcagtg G M S L G A K G A A G P L P S E A V Q W	6780
6781	gctgtgccaccaagcattcctgctcaagctgactcgacaccgtgtcacctacgtgccact L C H Q A F L L K L T R H R V T Y V P L	6840
6841	cctggggtcactcaggacagcccagacgcagctgagtcggaagctcccggggacgacgct L G S L R T A Q T Q L S R K L P G T T L	6900
6901	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6960
6961	> >XbaI BglII < Terminador eucariótico ctaataa tctagaagatct ttttccctctgccaaaaattatggggacatcatgaagccc	7020
7021	Secuencia señal poliA ttgagcatctgacttctggct aataaa ggaaatttattttcattgcaatagtgtgttgga	7080
7081	Terminador eucariótico > NotI atttttgtgtctctcactcggaaggacataagg gcggcc 7120	

	 Ubiquitina humana 	
	atgcagattttcgtcaaaacattgacaggaaagaccatcacactggaagt M Q I F V K T L T G K T I T L E V	50 17
	ggagccaagcgacactattgagaacgtcaaagccaagattcaggacaagg E P S D T I E N V K A K I Q D K E	100 34
101 35	agggcatcccaccagaccagcagaggctgatttttgccggaaagcagctg G I P P D Q Q R L I F A G K Q L	150 50
151 51	Ubiquitina humana > <htert< td=""><td>200 67</td></htert<>	200 67
201 68	gcatctggtccttcgcctgcgcggcggactggccaccttcgtgcggcgcc H L V L R L R G G L A T F V R R L	
251 85	tgggaccccagggctggcggctggtgcagcgcggggaccctgcttcc G P Q G W R L V Q R G D P A A F	300 100
	agagctctcgtcgccagtgtctggtctgcgttccttgggacgcacggcc R A L V A Q C L V C V P W D A R P	350 117
351 118		400 134
401 135	ttgctcgggtgttgcagcggctttgtgaaaggggagcaaagaacgtcctt A R V L Q R L C E R G A K N V L	450 150
	gcctttggcttcgctttgctcgatggagcacgcggaggcctcctgaggc A F G F A L L D G A R G G P P E A	500 167
501 168		
551 185	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	600 200
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	650 217
651 218		700 234
701 235		750 250
751 251	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	800 267

FIGURA 17

		850 284
851 285		900 300
901 301	agaacacctgtcggccagggctcctgggctcaccccggaaggaccagggg	950 317
951 318		1000 334
1001 335	aggctacctccttggaaggagccctcagtggcaccaggcattctcatcca A T S L E G A L S G T R H S H P	1050 350
		1100 367
1101 368		1150 384
1151 385	ttttgtattccagtggcgataaagagcagctccggccctcttttctgctc L Y S S G D K E Q L R P S F L L	1200 400
	tcaagcctccgccctctctgaccggagctcgcaggctggtggagaccat S S L R P S L T G A R R L V E T I	1250 417
	ctttctgggctcaagaccatggatgccaggcacccccgcagactgcca F L G S R P W M P G T P R R L P R	
1301 435	ggctccccagcggtactggcagatgcgccctcttttctggaacttctg L P Q R Y W Q M R P L F L E L L	1350 450
	ggtaaccacgccagtgcccatatggcgtcctgctgaagaccactgtcc G N H A Q C P Y G V L L K T H C P	1400 467
1401 468	tetgagggeegegtgaceceageegeggtgtgtgtgtgctagagaaaaac L R A A V T P A A G V C A R E K P	
	cccagggctcagtggctgcacctgaagaggaggacactgaccctcgccgc Q G S V A A P E E E D T D P R R	
	cttgtccagttgctcaggcagcattcatcaccatggcaggtgtacggctt L V Q L L R Q H S S P W Q V Y G F	1550 517
		1600 534
1601 535	ggcacaacgaacggcgctttctgaggaatacaaagaagtttatctccctg H N E R R F L R N T K K F I S L	1650 550


FIGURA 17 cont.

1651	ggcaagcatgcaaagctcagcttgcaggagctgacatggaagatgagcgt	1700
551	G K H A K L S L Q E L T W K M S V	567
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
1751 585		1800 600
1801 601		1850 617
1851 618	agagaccacttttcagaagaacagactgttcttctacaggaagtccgtct E T T F Q K N R L F F Y R K S V W	
1901 635	ggagcaagctccagagtattggtattagacagcaccttaagagagttcag S K L Q S I G I R Q H L K R V Q	1950 650
1951 651	cttagagagetgteegaagetgaagteegeeageacegegaagetegeee L R E L S E A E V R Q H R E A R P	2000 667
2001 668	cgcctcctgacctctcggctgcggtttattcccaaacccgatggcctta	2050 684
	gacctatcgtgaatatggattacgtcgtgggtgcccgcactttcagaagg PIVNMDYVVGARTFRR	2100 700
2101 701		2150 717
2151 718	gettaattatgaaagageeggagacetggtetteteggageeagegtge L N Y E R A R R P G L L G A S V L	
		2300 767
2301 768	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2350 784
2351 785		2400 800
2401 801		2450 817
2451 818	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

2501 835	aggagactagccccttgagggacgctgtggtcatcgaacagtccagctct E T S P L R D A V V I E Q S S S	2550 850
		2600 867
2601 868		
2651 885		2700 900
	gatatggagaataaattgttcgccggtatcagaagattcctgctggttac D M E N K L F A G I R $\bf F$ L L V T $\bf *$	2750 917
2801 935	tgccagagtatggctgttgttgtgaatttgcggaaaactgtggttaatttc PEYGCVVNLRKTVVNF	2850 950
		2900 967
2951 985	aggtgcagtccgattatagttcctatgcaagaacatcaattcgggctagc V Q S D Y S S Y A R T S I R A S	3000 1000
		3050 1017
	gttcggagtgttgagacttaagtgtcatagtctttttttggacttgcagg F G V L R L K C H S L F L D L Q V	
3101 1035		3150 1050
3151 1051		3200 1067
3201 1068		
3251 1085	gtctttgctactccatcttgaaagcaaaaaacgctggcatgagcttggga L C Y S I L K A K N A G M S L G	3300 1100
3301 1101		3350 1117

FIGURA 17 cont.

3351	tcatcaggctttcctccttaaactgacacgccaccgcgtgacttacgtcc	3400
1118	H Q A F L L K L T R H R V T Y V P	1134
3401	$\verb cactcctgggctccctgagaactgctcagacccagctttcccggaagctt \\$	3450
1135	LLGSLRTAQTQLSRKL	1150
3451	ccaggcactacccttaccgcactcgaagcagccgccaaccctgccctgcc	3500
1151	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1167
	hTERT>< Etiqueta V5	
	$\verb ctccgactttaagactatcctg \textbf{gac} \\ \texttt{ggcaagccaattcctaatccattgc} $	
1168	SDFKTILDGKPIPNPLL	1184
	>PARADA	
3551	tgggcctggactcaacttga 3570	
1185	G L D S T 🗆 1189	

FIGURA 18

	cggc					cgga	gca		rag		ıcg		gga				 tcgct R S	850 284
851 285	cact			tgac	taa		gcc	aaç	aa	gaç	jga	gco	ege	ccc	etg	aac	 ccgag E	900 300
901 301	agaa	cac	cct	gtcg	gco		gct	cct	gg	gct	ca	cc	ccc	gaa	agg	acc	 agggg R G	950 317
951 318	ccca	ago	gat		ggg		tgt	gtt	gt	gto		cag		agg		tgc	 cgaag E E	1000 334
1001 335	aggc	tac		cctt	gga	aagg	agc		ca	gto	Jgc		cag		att		 atcca P	1050 350
		tgç	gta	aggc	ago	catc	atg	ccc	ıgc	CCC	cc	cto	eta		agc	aga	 cctcc P P	1100 367
1101 368	caga	cct	tg	ggac	caca		tgc	cca	cc	agt	gt	ato	gco			caa	-	1150 384
1151 385										ago	cto					ttc	 tgctc L	1200 400
		gco	ctc	cgcc	ecct		tga	.ccc	ga	gct	cg	ca	ggo	tg	gtg	gag	 accat T I	1250 417
1251 418	cttt	ctç	jgg (ctca	aga	acca	tgg	ato	rcc	agg	jca	CC	cco	egg	ag	act	 gccca P R	
1301 435	ggct	ccc		agcç		actg				gco	ct					aac	 ttctg L	1350 450
	ggta	acc	cac	gaad	agt	gcc	cat	atç	ığc	gto	ct	gct	tga	aga	acc	cac	 tgtcc C P	
1401 468	tctg	ago	gc	egec	gtç	gacc	cca	gco	gc	cg	jtg	tg	tgt	gct	ag	aga	 aaaac K P	1450 484
1451 485	ccca		jet	cagt	ggd		acc	tga	ıag	agg	jag	gad	cac		acc		 geege . R	1500 500
		tco	agt	ttgc	ctca		agc	att	ca			ato		agg		tac	 ggctt G F	1550 517
1551 518	cgtg	agç	gc†	ttgc		gcgg		cto	ıgt	ccc	ccc	cc	gga		, gtg	ggg	 atctc S R	1600 534
1601 535								gaç		ata	іса						 ccctg L	1650 550

1651 551	ggcaagcatgcaaagctca	 gcttgcaggagctgacatggaagatgagcgt L Q E L T W K M S V	1700 567
1701 568	tagaggatgcgcatggctc	 aggcggtcacctggagttggatgcgttccag R R S P G V G C V P A	
1751 585	cagcagagcacaggctgcg	 cgaagagattctcgcaaagttcctgcactgg E E I L A K F L H W	1800 600
1801 601	cttatgagcgtctacgtgg L M S V Y V V		1850 617
1851 618	agagaccacttttcagaag E T T F Q K		
1901 635	ggagcaagctccagagtat S K L Q S I	tggtattagacagcaccttaagagagttcag G I R Q H L K R V Q	1950 650
1951 651	cttagagagctgtccgaag L R E L S E A		2000 667
2001 668	egeceteetgacetetegg A L L T S R		2050 684
	gacctatcgtgaatatgga P I V N M D		2100 700
2101 701	gagaagegegegagagae E K R A E R L		2150 717
2151 718	gcttaattatgaaagagcc L N Y E R A	cgcagacctggtcttctcggagccagcgtgc R R P G L L G A S V L	
2201 735	tcggcctggatgatatcca G L D D I H		2250 750
	agggcacaggatectecte R A Q D P P P	ctgagctttattttgtgaaagttgatgttac	2300 767
	tggtgcttacgatacaatc G A Y D T I	cctcaggaccggctcaccgaggtgatcgcct P Q D R L T E V I A S	
2351 785	ctattatcaaaccccagaa I I K P Q N	cacctactgcgtgagaaggtacgccgtcgtt T Y C V R R Y A V V	2400 800
	cagaaagccgcacacggac Q K A A H G H		2450 817
2451 818	taccttgacagacctccag		

FIGURA 18 cont.

2501 835		2550 850
2551 851		2600 867
2601 868		2650 884
2651 885		2700 900
	gatatggagaataaattgttegeeggtateagaagagaeggtttgeteet D M E N K L F A G I R R D G L L L	2750 917
2801 935	tgccagagtatggctgtgttgtgaatttgcggaaaactgtggttaatttc PEYGCVVNLRKTVVNF	2850 950
2851 951		2900 967
2901 968		
2951 985	aggtgcagtccgattatagttcctatgcaagaacatcaattcgggctagc V Q S D Y S S Y A R T S I R A S	3000 1000
3001 1001		3050 1017
3051 1018		
3101 1035		3150 1050
	gtetttgetactecatettgaaageaaaaaagetggeatgagettggga L C Y S I L K A K N A G M S L G	3300 1100
3301 1101		3350 1117

3351	teatcaggetttectecttaaactgacacgecaccgegtgacttacgtee	3400
1118	HQAFLLKLTRHRVTYVP	1134
3401	cactcctgggctccctgagaactgctcagacccagctttcccggaagctt	3450
1135	LLGSLRTAQTQLSRKL	1150
	~ ~	
3451	ccaggcactacccttaccgcactcgaagcagccgccaaccctgccctgcc	3500
	hTERT>< etiqueta V5	
3501	ctccgactttaagactatcctggacggcaagccaattcctaatccattgc	3550
1168	SDFKTILDGKPIPNPLL	1184
	> PARADA	
3551	tgggcctggactcaacttga 3570	
1185	G L D S T □ 1189	

	< Ubiquitina humana	
	atgcagattttcgtcaaaacattgacaggaaagaccatcacactggaagt M Q I F V K T L T G K T I T L E V	50 17
51 18	ggagccaagcgacactattgagaacgtcaaagccaagattcaggacaagg E P S D T I E N V K A K I Q D K E	100 34
101 35	agggcatcccaccagaccagcagaggctgatttttgccggaaagcagctg G I P P D Q Q R L I F A G K Q L	150 50
151 51	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200 67
201 68	gcatctggtccttcgcctgcgcggcggcaccttcgtgcgcgccc H L V L R L R G G L A T F V R R L	250 84
251 85	tgggaccccagggctggcggctggtgcagcgggggaccctgctgctttc G P Q G W R L V Q R G D P A A F	300 100
301 101	agagetetegtegeecagtgtetggtetgegtteettgggaegeaeggee R A L V A Q C L V C V P W D A R P	350 117
351 118		400 134
401 135	ttgctcgggtgttgcagcggctttgtgaaaggggagcaaagaacgtcctt A R V L Q R L C E R G A K N V L	450 150
	gcctttggcttcgctttgctcgatggagcacgcggaggccctcctgaggc A F G F A L L D G A R G G P P E A	500 167
501 168		550 184
551 185	tgagaggttcaggtgcctggggtctgctgctgcggagggtgggt	600 200
601 201	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	650 217
651 218	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	700 234
701 235		750 250
	ggctgcgaacgggcatggaatcatagcgtgcgggaggcaggtgtgcctct	

FIGURA 19

801			 gcaaggagacgcggtggatccgccagtcgct	850
268	G L P	APG.		284
851 285	cacteceet L P L	tgcctaagag P K R	gecaagaagaggagcegcectgaaceegag PRRGAAPEPE	900 300
901 301	agaacacct	gtcggccagg	 gctcctgggctcaccccggaaggaccagggg S W A H P G R T R G	950 317
951 318	cccaagcga	taggggcttc	 tgtgttgtgtcaccagccaggcctgccgaag C V V S P A R P A E E	1000 334
1001 335		ccttggaagg	 agccctcagtggcaccaggcattctcatcca A L S G T R H S H P	1050 350
	tctgtgggt S V G	aggcagcatc R Q H H	atgccggcccccctctacaagcagacctcc A G P P S T S R P P	1100 367
		ggacacaccc	 tgcccaccagtgtatgccgagaccaagcact C P P V Y A E T K H F	1150 384
1151 385			 taaagagcagctccggccctcttttctgctc K E Q L R P S F L L	1200 400
	tcaagcctc	egecectete	 tgaccggagctcgcaggctggtggagaccat T G A R R L V E T I	1250 417
1251 418	ctttctggg	ctcaagacca	 tggatgccaggcacccccgcagactgccca W M P G T P R R L P R	
1301 435	ggctccccc L P Q	agcggtactg R Y W		1350 450
	ggtaaccac	gcccagtgcc	 catatggcgtcctgctgaagacccactgtcc Y G V L L K T H C P	1400 467
	tctgagggc	cgccgtgacc	 ccagccgccggtgtgtgtgctagagaaaaac P A A G V C A R E K P	1450 484
1451 485	cccagggct	cagtggctgc	 acctgaagaggaggacactgacctcgccgc PEEEDTDPRR	1500 500
1501 501	cttgtccag		agcattcatcaccatggcaggtgtacggcttH S S P W Q V Y G F	1550 517
1551 518		ttgcctgcgg	agactggtcccccccggattgtggggatctcRLVPPGLWGSR	1600 534
1601 535		•	 tctgaggaatacaaagaagtttatctccctg L R N T K K F I S L	1650 550

	ggcaagca	atgcaaagctca	 gcttgcaggagctgacatggaagatgagcgt	
551		A K L S	LQELTWKMSV	567
1701 568	tagaggat R G C	egegeatggete C A W L	aggeggteacetggagttggatgegtteeag R R S P G V G C V P A	
1751 585	cagcagag		 cgaagagattctcgcaaagttcctgcactgg E E I L A K F L H W	1800 600
1801 601	cttatgag		 tcgaactgctgcggtctttcttctacgtgac E L L R S F F Y V T	1850 617
1851 618		acttttcagaag	nacagactgttcttctacaggaagtccgtct N R L F F Y R K S V W	
1901 635	ggagcaag S K	getecagagtat L Q S I	 tggtattagacagcaccttaagagagttcag G I R Q H L K R V Q	1950 650
1951 651	cttagaga	agctgtccgaag	 ctgaagtccgccagcaccgcgaagctcgcc E V R Q H R E A R P	2000 667
2001 668	cgccctcc	ctgacctctcgg	 ctgcggtttattcccaaacccgatggcctta L R F I P K P D G L R	2050 684
2051 685	gacctato P I	egtgaatatgga V N M D		2100 700
	gagaagco E K R	gegeegagagae A E R L		2150 717
2151 718	gcttaatt	tatgaaagagco	cgcagacctggtcttctcggagccagcgtgc R R P G L L G A S V L	
2201 735	teggeets	ggatgatatcca	 tcgggcttggcgcacctttgtgcttcgggtg RAWRTFVLRV	2250 750
	agggcaca		ctgagctttattttgtgaaagttgatgttac	2300 767
2301 768	tggtgctt		 cctcaggaccggctcaccgaggtgatcgcct PQDRLTEVIAS	2350 784
2351 785		caaaccccagaa	cacctactgcgtgagaaggtacgccgtcgtt T Y C V R R Y A V V	2400 800
2401 801	cagaaagc	ccgcacacggac	 :acgtgcgcaaagctttcaaatcccacgtgtc V R K A F K S H V S	2450 817
2451 818		acagacctccag	cottatatgcggcagtttgtcgcacacctgc P Y M R Q F V A H L Q	

2501 835	aggagactagccccttgagggacgctgtggtcatcgaacagtccagctct E T S P L R D A V V I E Q S S S	2550 850
	ctcaatgaggcatcctcaggcctgtttgatgtgttcctgcgctttatgtg	
2601 868	ccaccacgccgtgcggattaggggcaagtcttacgtgcagtgccagggca H H A V R I R G K S Y V Q C Q G I	2650 884
2651 885	tcccacagggtagcatcctgagcacactgctgtgtagcctgtgctatggc	2700 900
	gatatggagaataaattgttcgccggtgccaaaacattttttgcggactct D M E N K L F A $f G$ $f A$ K T F L R T L	2750 917
	ggttagggggtgccagagtatggctgtgttgtgaatttgcggaaactg V R G V P E Y G C V V N L R K T V	
2801 935	tggttaatttcccagtggaggacgaagctctcggaggcacagcttttgtt V N F P V E D E A L G G T A F V	2850 950
	cagatgcctgccacggcctgttccatggtgcggactgctgctcgatac Q M P A H G L F P W C G L L L D T	2900 967
	ccggaccctcgaggtgcagtccgattatagttcctatgcaagaacatcaa R T L E V Q S D Y S S Y A R T S I	
2951 985	ttcgggctagcctgactttcaacaggggcttcaaggccggcaggaatatg R A S L T F N R G F K A G R N M	3000 1000
		3050 1017
3051 1018	ggacttgcaggtcaattctctccagacagtgtgtaccaacatttataaaa D L Q V N S L Q T V C T N I Y K I	3100 1034
3101 1035		3150 1050
	ttccaccagcaggtgtggaaaaaccctaccttcttcctgcgggtgattag F H Q Q V W K N P T F F L R V I S	3200 1067
3201 1068	cgacaccgccagtctttgctactccatcttgaaagcaaaaaacgctggca	
3251 1085	tgagettgggagetaagggegegetggaeetetgeeeagtgaageagte S L G A K G A A G P L P S E A V	3300 1100
3301 1101	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3350 1117

	gacttacgtcccactcctgggctccctgagaactgctcagacccagcttt	3400
1118	TYVPLLGSLRTAQTQLS	1134
3401	cccggaagcttccaggcactacccttaccgcactcgaagcagccgccaac	3450
1135	RKLPGTTLTALEAAAN	1150
	hTERT> etiqueta V5	
3451	cctgccctgccctccgactttaagactatcctggacggcaagccaattcc	3500
1151	P A L P S D F K T I L D G K P I P	1167
	>PARADA	
	-	
3501	taatccattgctgggcctggactcaacttga 3531	
1168	NPLLGLDST 🗆 1176	

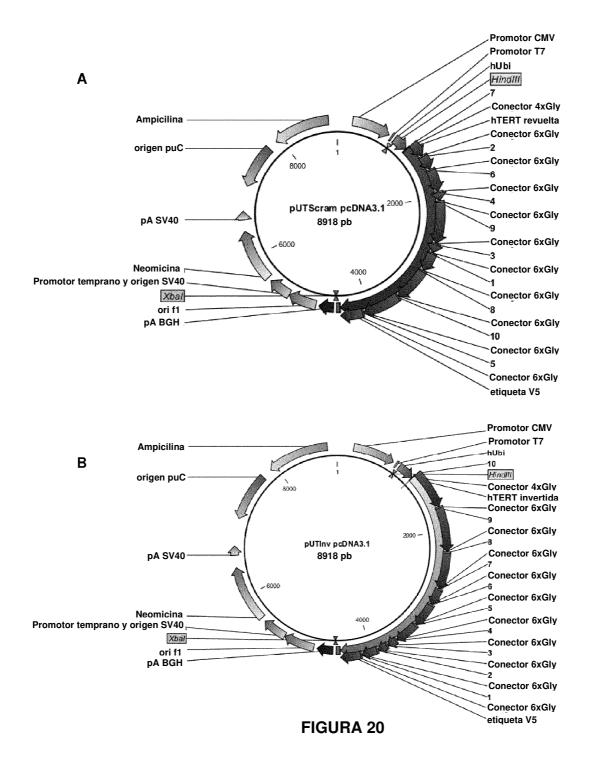
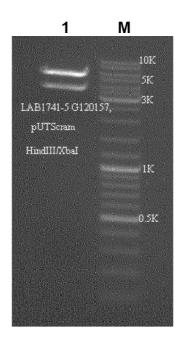
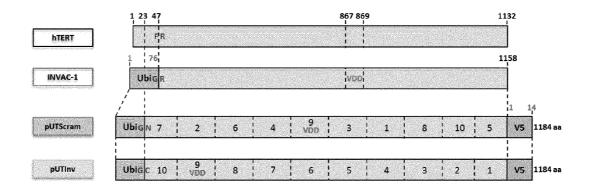
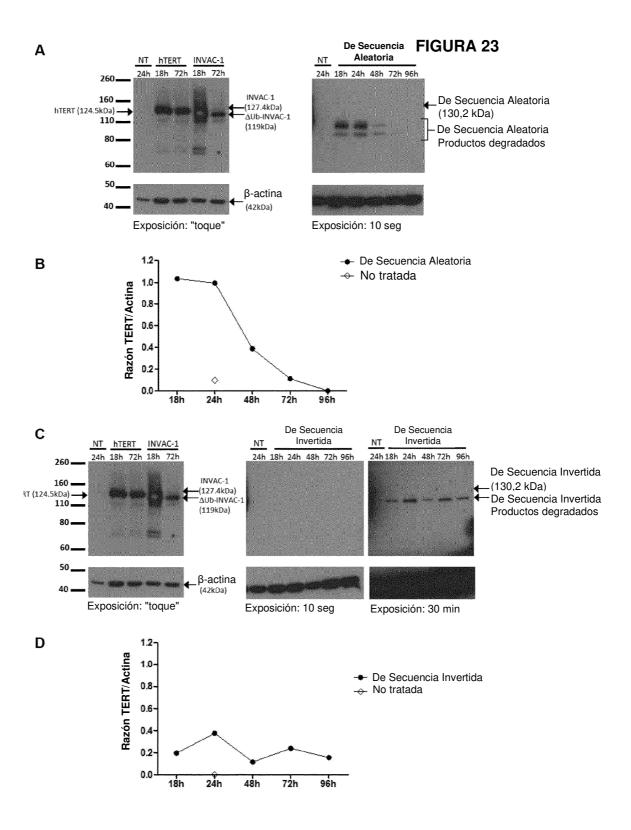
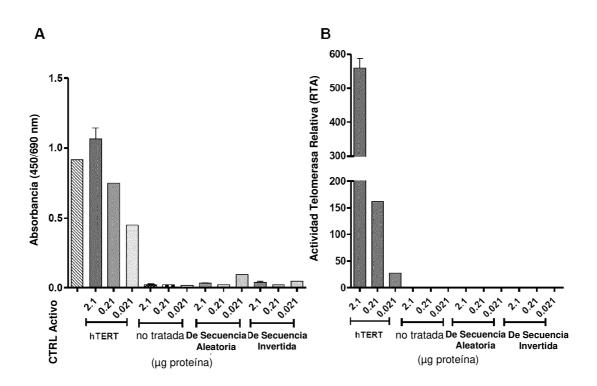




FIGURA 21


Α



В



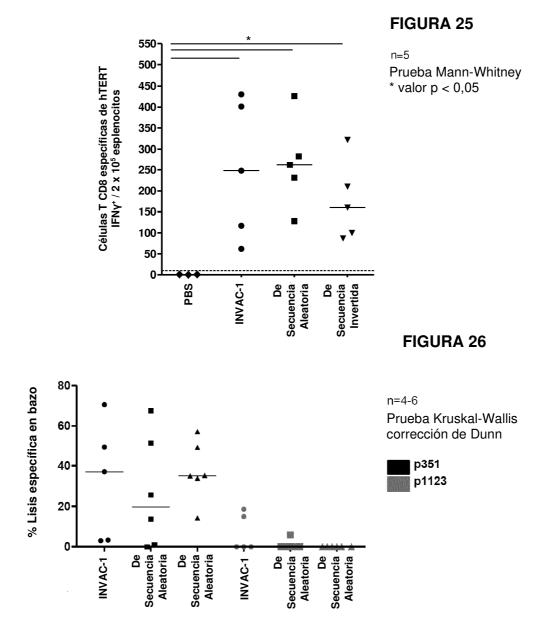
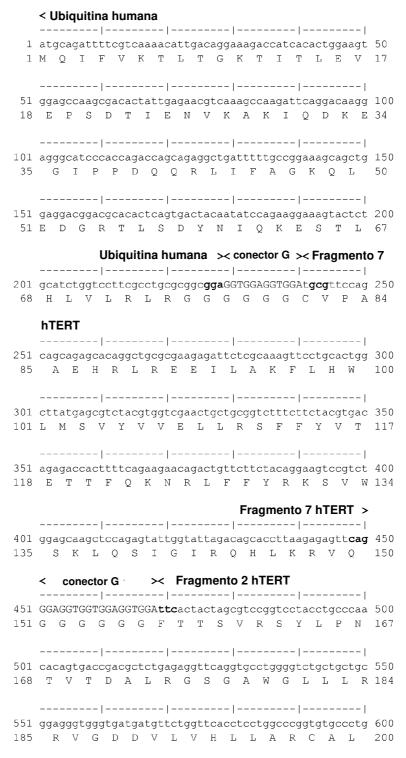

FIGURA 22

FIGURA 24

Figura 27

J	< Ubiquitina humana							
1 1	atgcagattttcgtcaaaacattgacaggaaagaccatcacactggaagtggagccaagc	60 20						
61 21	gacactattgagaacgtcaaagccaagattcaggacaaggagggcatcccaccagaccag D T I E N V K A K I Q D K E G I P P D Q	120 40						
121 41	cagaggctgatttttgccggaaagcagctggaggacggac	180 60						
	Ubiquitina humana >< Fragmento 1 h	TERT						
181 61	atccagaaggaaagtactctgcatctggtccttcgcctgcgcggcggactggccaccttc I Q K E S T L H L V L R L R G G L A T F	240 80						
241 81	gtgcggcgcctgggaccccagggctggcggctggtgcagcgcggggaccctgctttc V R R L G P Q G W R L V Q R G D P A A F	300 100						
301 101	agagetetegtegeecagtgtetggtetgegtteettgggaegeaeggeeceeaecegeeRALVAQCLVVPWDARPPAA	360 120						
361 121	gccccagtttccggcaggtgagttgtctcaaagagttggttg	420 140						
	Fragmento -	1						
421 141	ctttgtgaaaggggagcaaagaacgtecttgeetttgetegetttgetegatggagca L C E R G A K N V L A F G F A L L D G A	480 160						
hTERT > < Fragmento 2 hTERT								
481 161	cgcggaggcctcctgaggcattcactactagcgtccggtcctacctgcccaacacagtg R G G P P E A F T T S V R S Y L P N T V	540 180						
541 181	accgacgctctgagaggttcaggtgcctggggtctgctgctgcggagggtgggt	600 200						
601 201	gttctggttcacctcctggcccggtgtgccctgttcgtgctggtggctcctc	660 220						


									•	,			TEF								
661 221	ta	cca	ggt	ctg	cgg	acc	CCC	act	tta		gct	cgg	cgc							 acca <u>P</u>	720 240
				-1-			I				1			- 1 -						3 hT	ERT
721																				cgtg	780
241	<u>P</u>	Н		S	G	P	R	R	R	L	G	С	Е	R	<u>A</u>	W	N	Н	S	V	260
781																				 atcc	840
261	201000000	Contraction of the Contraction o	OTHER DESIGNATION OF THE PERSON NAMED IN		00/2/2000/00/00/00	- Children of the	400000000000000000000000000000000000000	12.3000000000000000000000000000000000000	SOUTH PROPERTY.	NUMBER 1	_		G G	_	SENSION	-	ALC: VIEWS	SUPPLYMENT	-	occuration and a second	280
				-1-			I			_			3 hT								
841																				cgag	900
281	A	S	R	S	L	Р	L	P	K	R	Ρ	R	R	G	Α	A	P	E	P	E	300
				- -									hTE								
901	ag	aac	acc	tgt	cgg	сса	.ggg	<u>ic</u> to	ctg	lddc	tca	.ccc	cgg	aag	gac	caç	igg	locc	aag	cgat	960
301	<u>R</u>	T		V		Q							G_				<u> </u>			Miller Strate St	320
961																				 agga	1020
321	0.00000000	discount of the	Printer and the second second	CONTRACTOR STATES	ACCRECATION AND ASSESSED.	TO CHARLEST AND A							Ē	The second second				distriction of the second	ALCOHOLD STATE OF THE PARTY OF	And a second sec	340
F	rag	me	nto																	1	
1021	gc	 cct																			1080
341	A	L	S	G	Т	R	<u>H</u>	S	Н	Р	S	V	G	R	Q	Н	Н	A	G	P	360
				-1-			1				I							hTE		1	
1081						acc	tcc	cag	acc	ttg	gga	.cac	acc	ctg	ccc	acc	agt	gta	tgc	cgag	1140
361	<u>P</u>	S	Т	S	R	P	P	R	P	M	D	<u>T</u>	Ρ	С	Ρ	Р	V	Y	A	E	380
1141																					1200
381	1000100000	leading (BDD) a BOD	PARKS AVE	AND STREET,	Commission on a	2002-200-040	M2000000000000000000000000000000000000	1335	CANTED AND STORY	V201	427933ac0355ev	104152043040	Q Q	06182220HOW-3777	5533415-576	N-1000000	0.000-000-000-0	1304 E 2/24 100	56+M6-m-256	OND CONTRACTOR AND ADDRESS OF THE PARTY OF T	400
1201																					1060
1201 401	merker/s	NAME OF STREET	L	MATSER HOUSE	and the street of the street o	PARTICIPATION AND ADDRESS OF	COURSESSORY CO.	yac T		400000000	NAME OF TAXABLE	SINNESSES NO	ger L	VINDOWNSKA	ececusiones	HONESINGON	POVONE NAMED	CONSTRUCTION OF STREET	975-0100m#5#H70	CONTRACT	1260 420
				- -										- -							
1261 421	363570-603	3000000000	SECURATE S	30000	_	-				STORES	027977746	250,000	gcc P	200000000000000000000000000000000000000	Mark Colors	CONTRACTOR OF THE PERSON AND ADDRESS OF THE	CHECKSTONS	CHACTOTINGS	0.000	ACCURATION SHAPE	1320 440
∃ ∠⊥	υ.	r.	E	VV	141	r	J	1	r	Γ.	T.	لبا	ī	R	'n	_ E	¥	P.	т.	44	440
1321	ca	gat	geg	ccc	tct	ctt	tet	gga	act	tct	ggg	taa	.cca	egc *	cca	gtg	(000	ata v	tgg	cgtc	1380

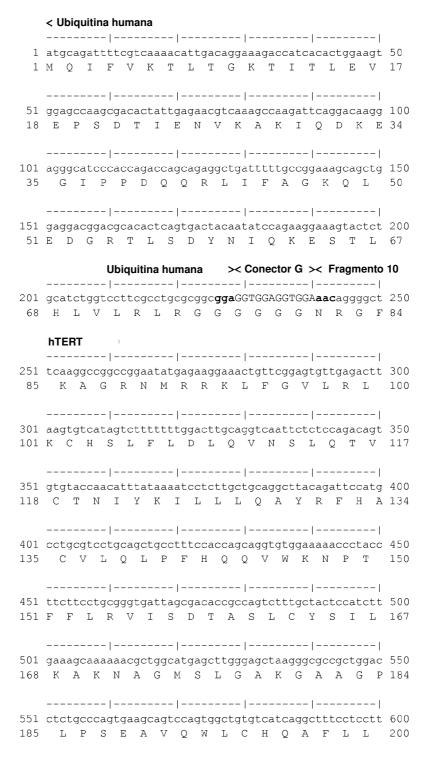
		Fragment				Fragmento 6 hTE	RT
1381	ctgctgaagacccactgtc	ctctgagg	gccgc	cgtgac	c <u>ccagcc</u> go		1440
461	L L K T H C P			V T		G V C A	480
1441	agagaaaaaccccagggcto	'			'		1500
481	R E K P Q G S	V A	A P	E E	E D T	D P R R	500
1501	cttgtccagttgctcaggca	'					1560
501	L V Q L L R Q	H S	S P	W Q	V Y G	F V R A	520
1561	tgcctgcggagactggtcc	1					1620
521	C L R R L V P	PG	L W	G S	R H N	ERRF	540
1621	ctgaggaatacaaagaagtt	•			•		1680
541	L R N T K K F		L G	- 0000000		S L Q E	560
		l	!		9	6 hTERT >	
1681	ctgacatggaagatgagcgi						1740
561	L T W K M S V	R G (C _ A _	W L	R R S	P G V <u>G</u>	580
	< Fragmento 7 hTERT		!		-		
1741	tgcgttccagcagcagagca						1800
581	W32000199493250033		0.000			F L H W	600
1801	cttatgagegtetaegtgg	I					1860
601	L M S V Y V	E L	L R	S F	F Y V	T E T T	620
1861	tttcagaagaacagactgtt	'			'	'	1920
621	F Q K N R L F		3000000	s ∨		L Q S I	640
	Fragmento						
1921	ggtattagacagcaccttaa					 agctgaagtccgc	1980
641	G I R Q H L K					TOTAL AND COOK OF SECURIOR STATE OF SECURIOR SEC	660
1001							2040
661	cagcaccgcgaagctcgcc Q H R E A R P					WEATHER STORE AND A STORE AND	2040 680
		'					
2041 681	gatggccttagacctatcgt D G L R P I V		0.910002009-0.0009-0.0009-0.00			gcactttcagaagg T F R R	2100 700

2101 701	gagaagcgcgccgagagactgacatctcgcgtgaaggcacttttttctgtgcttaattat EKRAERLTSRVKALFSVLNY	2160 720
2161 721	gaaagageegeagacetggtetteteggageeagegtgeteggeetggatgatateeat ERARPGLLGASVLGLDDIH	2220 740
2221 741	cgggcttggcgcacctttgtgcttcgggtgagggcacaggatcctcctcctgagctttat R A W R T F V L R V R A Q D P P P E L Y	2280 760
2281 761	FVKVDVTGAYDTIPODRLTE	2340 780
2341 781	gtgatcgcctctattatcaaaccccagaacacctactgcgtgagaaggtacgccgtcgtt V I A S I I K P Q N T Y C V R R Y A V V Fragmento 8 hTERT > < Fragmento 9 hTERT	2400 800
2401 801		2460 820
2461 821	gacctccagccttatatgcggcagtttgtcgcacacctgcaggagactagccccttgagg	2520 840
2521 841	gacgctgtggtcatcgaacagtccagctctctcaatgaggcatcctcaggcctgtttgat D A V V I E Q S S S L N E A S S G L F D	2580 860
2581 861	gtgttcctgcgctttatgtgccaccacgccgtgcggattaggggcaagtcttacgtgcag	2640 880
2641 881	tgccagggcatcccacagggtagcatcctgagcacactgctgtgtagcctgtgctatggc	2700 900
2701 901		2760 920
2761 921	ctgctggttacccccatctgactcatgccaaaacatttttgcggactctggttaggggc LLVTPHLTHAKTFLRTLVRG	2820 940
2821 941	gtgccagagtatggctgtgttgtgaatttgcggaaaactgtggttaatttcccagtggag V P E Y G C V V N L R K T V V N F P V E	2880 960
2881 961	gacgaageteteggaggeacagettttgtteagatgeetgeeacggeetgtteeatgg	2940 980

2941 981	tgcggactgctgctcgatacccggaccctcgaggtgcagtccgattatagttcctatgca C G L L L D T R T L E V Q S D Y S S Y A	3000 1000
Fragme	nto 9 hTERT > < Fragmento 10 hTERT	
	agaacatcaatt <u>cgggctagcctgactttc</u> aacaggggcttcaaggccggccggaatatg R T S I <u>R A S L T F</u> N R G F K A G R N M	3060 1020
	agaaggaaactgttcggagtgttgagacttaagtgtcatagtctttttttt	3120 1040
	gtcaattctctccagacagtgtgtaccaacatttataaaatcctcttgctgcaggcttac V N S L Q T V C T N I Y K I L L D Q A Y	3180 1060
	agattccatgcctgcgtcctgcagctgcctttccaccagcaggtgtggaaaaaccctaccRFHACVLQLPFHQQVWKNPT	3240 1080
	ttcttcctgcgggtgattagcgacaccgccagtctttgctactccatcttgaaagcaaaa FFLRVISDTASLCYSILKAK	3300 1100
		3360 1120
	cagtggctgtgtcatcaggctttcctccttaaactgacacgccaccgcgtgacttacgtcQ W L C H Q A F L L K L T R H R V T Y V	3420 1140
		3480 1160
	Fragmento 10	3540
	T L T A L E A A A N P A L P S D F K T I	1180
	>< Etiqueta V5	
1181	OPPORTUNE TO THE PROPERTY OF T	

Figura 28

601	ttcgtgctggtggctccctcctgcgcataccaggtctgcggacccccact	650
	F V L V A P S C A Y Q V C G P P L	217
201		21,
-	Fragmento 2 hTERT → conector G → Fragmento 6	
•		
C E 1		700
	ttatcagctcggcgct gct GGTGGAGGTGGAGGT gcc ggtgtgtgtg	
218	Y Q L G A A G G G G G A G V C A	234
	hTERT	
701	$\verb ctagagaaaaaccccagggctcagtggctgcacctgaagaggaggacact \\$	750
235	R E K P Q G S V A A P E E E D T	250
751	gaccctcgccgccttgtccagttgctcaggcagcattcatcaccatggca	800
	D P R R L V Q L L R Q H S S P W Q	267
201		201
0.01		0.5.0
	$\tt ggtgtacggcttcgtgagggcttgcctgcggagactggtccccccggat$	
268	V Y G F V R A C L R R L V P P G L	284
851	tgtggggatctcggcacaacgaacggcgctttctgaggaatacaaagaag	900
285	WGSRHNERRFLRNTKK	300
901	tttatctccctgggcaagcatgcaaagctcagcttgcaggagctgacatg	950
	F I S L G K H A K L S L Q E L T W	317
001		01,
	Fragmento 6 hTERT ><	
0.5.1	gaagatgagcgttaga gga tgcgcatggctcaggcggtcacctgga gtt G	1000
318	K M S V R G C A W L R R S P G V G	334
_	onector G >< Fragmento 4 hTERT	
·		
	${\tt GAGGTGGAGGTGGAGGA} \textbf{tcc} \textbf{tgggctcaccccggaaggaccaggggccca}$	
335	G G G G S W A H P G R T R G P	350
1051	agcgataggggcttctgtgttgtgtcaccagccaggcctgccgaagaggc	1100
351	S D R G F C V V S P A R P A E E A	367
	Fragmento 4 hTERT >< conector G	
1101	tacctccttggaaggagccctcagtggcacc agg GGTGGTGGAGGTGGAG	1150
368		
200		204
	>< Fragmento 9 hTERT	
1155		1000
	GAaaatcccacgtgtctaccttgacagacctccagccttatatgcggcag	
385	K S H V S T I, T D I, O P Y M R O	400

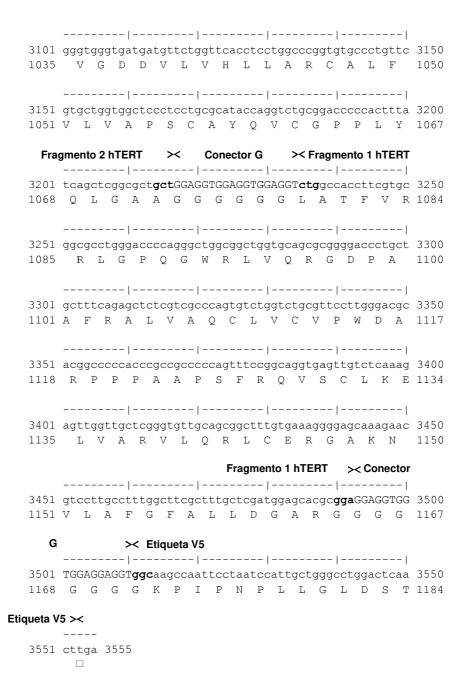

1201	tttgtcgcacacctgcaggagactagccccttgagggacgctgtggtcat	1250
	F V A H L Q E T S P L R D A V V I	417
401		41/
1251	cgaacagtccagctctctcaatgaggcatcctcaggcctgtttgatgtgt	1300
418		
410		101
1301	tcctgcgctttatgtgccaccacgccgtgcggattaggggcaagtcttac	1350
435	L R F M C H H A V R I R G K S Y	450
100		100
1351	$\tt gtgcagtgccagggcatcccacagggtagcatcctgagcacactgctgtg$	1400
451	V Q C Q G I P Q G S I L S T L L C	467
	${\tt tagcctgtgctatggcgatatggagaataaattgttcgccggtatcagaa}$	1450
468	S L C Y G D M E N K L F A G I R R	484
1 / 5 1	gagacggtttgctcctgaggctgttcctgctggttaccccccatctgact	1 5 0 0
485	D G L L L R L F L L V T P H L T	500
	*	
1501	catgccaaaacatttttgcggactctggttaggggggtgccagagtatgg	1550
301	H A K T F L R T L V R G V P E Y G	517
1551	ctgtgttgtgaatttgcggaaaactgtggttaatttcccagtggaggacg	1600
518	C V V N L R K T V V N F P V E D E	
1601	${\tt aagctctcggaggcacagcttttgttcagatgcctgcccacggcctgttc}$	1650
535	ALGGTAFVQMPAHGLF	550
1651	ccatggtgcggactgctgctcgatacccggaccctcgaggtgcagtccga	1700
551	P W C G L L L D T R T L E V Q S D	567
	Fragmento 9 hTERT >< conector G >< Frag	mento 3
1701	$\verb ttatagttcctatgcaagaacatca \textbf{att} \texttt{GGAGGAGGTGGAGGT} \textbf{tgg} a$	1750
568	Y S S Y A R T S I G G G G G W N	
500		J U ¬
	hTERT	
1751	atcatagcgtgcgggaggcaggtgtgcctctcggcctgccagcccccgga	1800
585	H S V R E A G V P L G L P A P G	600
1801	$\tt gcaaggagacgcggtggatccgccagtcgctcactccccttgcctaagag$	1850
601	A R R R G G S A S R S T. P T. P K R	617

Frag				>< Fragmento 1 hTEF	RT
1851				 GGA ctg gccaccttcgtgc	1900
618	P R R	G A G	G G G	G L A T F V R	
1901 635	ggcgcctgg R L G	gaccccaggg PQG	ctggcggctggt W R L V	gcagcgcggggaccctgct Q R G D P A	1950 650
	gctttcaga A F R	gctctcgtcg A L V A	cccagtgtctgc	gtetgegtteettgggaege 7 C V P W D A	
2001 668	acggccccc R P P	acccgccgcc P A A	cccagtttccgc PSFR		2050 684
2051 685	agttggttg	ctcgggtgtt	gcagcggctttc	gtgaaaggggagcaaagaac E R G A K N	2100 700
		1		nto 1 hTERT >< conector	G
	gtccttgcc	tttggcttcg	ctttgctcgatg	ggagcacgc gga GGAGGTGG G A R G G G G	2150 717
		_	ento 8 hTERT		
2151 718	TGGAGGTGG G G G	A aga gagetg R E L	tccgaagctgaa S E A E	agtccgccagcaccgcgaag V R Q H R E A	
2201 735	ctcgccccg R P A	ccctcctgac . L L T	ctctcggctgcg S R L R	ggtttattcccaaacccgat F I P K P D	2250 750
2251 751	ggccttaga G L R	cctatcgtga P I V N	atatggattaco	gtcgtgggtgcccgcacttt VGARTF	2300 767
2301 768	cagaaggga R R E	gaagegegee K R A	gagagactgaca E R L T	atctcgcgtgaaggcacttt S R V K A L F	
2351 785	tttctgtgc S V L	ttaattatga NYE	aagagcccgcac R A R R	gacctggtcttctcggagcc P G L L G A	2400 800
2401				gcttggcgcacctttgtgct	2450

2451 818	tcgggtgagggcacaggatcctcctcctgagetttattttgtgaaagttg R V R A Q D P P P E L Y F V K V D	
0.5.04		0.550
835	atgttactggtgcttacgatacaatccctcaggaccggctcaccgaggtg $\mbox{ V \ T \ G \ A \ Y \ D \ T \ I \ P \ Q \ D \ R \ L \ T \ E \ V }$	850
	ategeetetattateaaaceeeagaacacetaetgegtgagaaggtaege I A S I I K P Q N T Y C V R R Y A	2600 867
	Fragmento 8 hTERT >< conector G	
2601 868	cgtcgttcagaaagccgcacacggacacgtgcgc aaa GGTGGAGGAGGTG V V Q K A A H G H V R K G G G G	
	→ Fragmento 10 hTERT	
2651	GTGGA aac aggggcttcaaggccggccggaatatgagaaggaaactgttc	2700
885	G N R G F K A G R N M R R K L F	900
0701		0750
	ggagtgttgagacttaagtgtcatagtcttttttttggacttgcaggtcaa G V L R L K C H S L F L D L Q V N	917
918	ttctctccagacagtgtgtaccaacatttataaaatcctcttgctgcagg S L Q T V C T N I Y K I L L L Q A	
2801 935	cttacagattccatgcctgcgtcctgcagctgcctttccaccagcaggtg Y R F H A C V L Q L P F H Q Q V	2850 950
	tggaaaaaccctaccttcttcctgcgggtgattagcgacaccgccagtct W K N P T F F L R V I S D T A S L	2900 967
2901 968	ttgctactccatcttgaaagcaaaaaacgctggcatgagcttgggagcta C Y S I L K A K N A G M S L G A K	
2951 985	agggcgccgctggacctctgcccagtgaagcagtccagtggctgtgtcat G A A G P L P S E A V Q W L C H	3000 1000
	caggettteeteettaaaetgacaegecaecgegtgaettaegteeeaet Q A F L L K L T R H R V T Y V P L	3050 1017
	cctgggctccctgagaactgctcagacccagctttcccggaaacttccag	
1018	L G S L R T A Q T Q L S R K L P G	1034

3101	gcactaccettaccgcactcgaagcagccgccaaccetgccctgccc	3150
1035	TTLTALEAAANPALPS 1	L050
	Fragmento 10 hTERT > Conector G > Fragmento 5	
3151	gactttaagactatcct gga cGGAGGTGGAGGTGGAGGT ccc tgcccacc	3200
		1067
	hTERT	
3201	agtgtatgccgagaccaagcactttttgtattccagtggcgataaagagc 3	3250
1068	V Y A E T K H F L Y S S G D K E Q 1	
3251	agctccggccctcttttctgctctcaagcctccgcccctctctgaccgga	3300
1085		1100
2000		
3301	gctcgcaggctggtggagaccatctttctgggctcaagaccatggatgcc 3	3350
		1117
1101		,
3351	aggcacccccgcagactgcccaggctccccagcggtactggcagatgc	3400
1110		
3401	gccctctctttctggaacttctgggtaaccacgcccagtgcccatatggc 3	3450
		1150
1100		
	Fragmento 5 hTERT >< Conector G	ì
3451	gtcctgctgaagacccactgtcctctgagggccgccgtg acc GGAGGTGG	3500
		1167
	→ Etiqueta V5	
3501	TGGAGGAGGT ggc aagccaattcctaatccattgctgggcctggactcaa 3	3550
1168		1184
Etiqueta V5	×	
3551	cttga 3555	
0001		

Figura 29



		650
201	K L T R H R V T Y V P L L G S L R	217
651	aactgctcagacccagctttcccggaaacttccaggcactacccttaccg	700
218	TAQTQLSRKLPGTTLTA	234
	Fragmento 10	
701	cactcgaagcagccgccaaccctgccctgccctccgactttaagactatc	750
235	LEAAANPALPSDFKTI	250
LTED	T	
hTER	T >< Conector G >< Fragmento 9 hTERT	
751	ctg gac GGAGGTGGAGGTGGAaaatcccacgtgtctaccttgacaga	800
251	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	267
801	cctccagccttatatgcggcagtttgtcgcacacctgcaggagactagcc	850
268	L Q P Y M R Q F V A H L Q E T S P	
0 E 1		000
285	cettgagggacgetgtggtcatcgaacagtecageteteteaatgaggca L R D A V V I E Q S S S L N E A	900 300
901 301	tcctcaggcctgtttgatgtgttcctgcgctttatgtgccaccacgccgt S S G L F D V F L R F M C H H A V	
301		317
	gcggattaggggcaagtcttacgtgcagtgccagggcatcccacagggta	
318	RIRGKSYVQCQGIPQGS	334
	$\tt gcatcctgagcacactgctgtgtagcctgtgctatggcgatatggagaat$	1050
335	ILSTLLCSLCYGDMEN	350
1051	aaattgttcgccggtatcagaagagacggtttgctcctgaggctgttcct	1100
351		367
	*	
1101	getggttaccccccatctgactcatgccaaaacatttttgcggactctgg	1150
368	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	384
1151	ttaggggcgtgccagagtatggctgtgttgtgaatttgcggaaaactgtg	1200
385	R G V P E Y G C V V N L R K T V	400
1001		1050
	gttaatttcccagtggaggacgaagctctcggaggcacagcttttgttca V N F P V E D E A L G G T A F V Q	1250 417

	gatgcctgcccacggcctgttcccatggtgcggactgctgctcgataccc M P A H G L F P W C G L L L D T R Fragmento 9 hTERT >		
	_		
	ggaccctcgaggtgcagtccgattatagttcctatgcaagaacatca att		
435	~ 1	450	
	< Conector G		
1351	$\tt GGTGGAGGTGGAGGT \pmb{aga} \tt gagctgtccgaagctgaagtccgccagca$	1400	
451	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	467	
1401	ccgcgaagctcgccccgccctcctgacctctcggctgcggtttattccca	1450	
	REARPALLTSRLRFIPK		
1451	aacccgatggccttagacctatcgtgaatatggattacgtcgtgggtgcc	1500	
485	P D G L R P I V N M D Y V V G A	500	
100		500	
1 = 0.1		1 5 5 0	
	cgcactttcagaagggagaagcgccgagagactgacatctcgcgtgaa		
201	R T F R R E K R A E R L T S R V K	517	
	ggcacttttttctgtgcttaattatgaaagagcccgcagacctggtcttc		
518	ALFSVLNYERARPGLL	534	
	${\tt tcggagccagcgtgctcggcctggatgatatccatcgggcttggcgcacc}$		
535	G A S V L G L D D I H R A W R T	550	
	$\verb tttgtgcttcgggtgagggcacaggatcctcctcctgagctttattttgt $		
551	F V L R V R A Q D P P P E L Y F V	567	
1701	$\tt gaaagttgatgttactggtgcttacgatacaatccctcaggaccggctca$	1750	
568	K V D V T G A Y D T I P Q D R L T	584	
1751	ccgaggtgatcgcctctattatcaaaccccagaacacctactgcgtgaga	1800	
585	E V I A S I I K P Q N T Y C V R	600	
	Fragmento 8 hTERT → Cone	ctor	
1801	aggtacgccgtcgttcagaaagccgcacacggacacgtgcgcaaaGGAGG	1850	
	R Y A V V Q K A A H G H V R K G G	617	
	~		
G >< Fragmento 7 hTERT			
1851	TGGAGGTGGAGGA tgc gttccagcagcagagcacaggctgcgcgaagaga	1900	
610		604	

1901	ttctcgcaaagttcctgcactggcttatgagcgtctacgtggtcgaactg	1950
635	L A K F L H W L M S V Y V V E L	650
033		050
1951	$\verb ctgcggtctttcttctacgtgacagagaccacttttcagaagaacagact \\$	2000
651		667
001		
2001	$\tt gttcttctacaggaagtccgtctggagcaagctccagagtattggtatta$	2050
668	F F Y R K S V W S K L Q S I G I R	684
	Fragmento 7 hTERT → Conector G → Fragmento	6
		•
2051	$\tt gacagcaccttaagagagtt \textbf{cag} \tt GGTGGAGGTGGAGGAgcc} \tt ggtgtg$	2100
685	Q H L K R V Q G G G G G A G V	700
	hTERT	
2101	tgtgctagagaaaaaccccagggctcagtggctgcacctgaagaggagga	2150
701	C A R E K P Q G S V A A P E E E D	717
0151		2200
	${\tt cactgaccctcgccgccttgtccagttgctcaggcagcattcatcaccat}$	
718	T D P R R L V Q L L R Q H S S P W	734
2201	ggcaggtgtacggcttcgtgagggcttgcctgcggagactggtcccccc	2250
735	Q V Y G F V R A C L R R L V P P	750
2251	ggattgtggggatctcggcacaacgaacggcgctttctgaggaatacaaa	2300
	G L W G S R H N E R R F L R N T K	767
, 0 =		, , ,
2301	$\tt gaagtttatctccctgggcaagcatgcaaagctcagcttgcaggagctga$	2350
768	K F I S L G K H A K L S L Q E L T	784
	Fragmento 6	
0055		0.400
	$\verb catggaagatgagcgttaga \textbf{gga} \\ \verb tggcatggctcaggcggtcacctgga \\$	2400
785	W K M S V R G C A W L R R S P G	800
hTE	DT > Conector G > Eragmonto 5 hTEDT	
111121	RT >< Conector G >< Fragmento 5 hTERT	
	<pre>gttGGAGGAGGTGGAGGTccctgcccaccagtgtatgccgagaccaa</pre>	2450
801	V G G G G G P C P P V Y A E T K	817
0.457		0500
2451	gcactttttgtattccagtggcgataaagagcagctccggccctcttttc	2500

2501 835	tgctctcaagcctccgcccctctctgaccggagctcgcaggctggtggag L S S L R P S L T G A R R L V E	2550 850
000		
2551	accatctttctgggctcaagaccatggatgccaggcaccccccgcagact	2600
851		867
2601	gcccaggctcccccagcggtactggcagatgcgccctcttttctggaac	2650
868	PRLPQRYWQMRPLFLEL	884
0.651		0700
2651 885	ttctgggtaaccacgcccagtgcccatatggcgtcctgctgaagacccac L G N H A Q C P Y G V L L K T H	900
000		
	Fragmento 5 hTERT >< Conector G >< Fragment	0 4
2701	tgtcctctgagggccgccgtgaccGGTGGAGGAGGTGGTGGAtcctgggc	2750
901	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	917
	hTERT	
	$\verb tcaccccggaaggaccaggggcccaagcgataggggcttctgtgttgtt $	
918	H P G R T R G P S D R G F C V V S	934
2801	caccagccaggcctgccgaagaggctacctccttggaaggagccctcagt	2850
935	PARPAEEATS LEGALS	950
Fragmento	4 hTERT >< Conector G >< Fragmento 3 hTERT	
	ggcacc agg GGAGGTGGAGGTGGA tgg aatcatagcgtgcgggaggc	
951	G T R G G G G G W N H S V R E A	967
	${\tt aggtgtgcctctcggcctgccagcccccggagcaaggagacgcggtggat}$	
968	G V P L G L P A P G A R R G G S	984
	Fragmento 3 hTERT ><	
2051		2000
	ccgccagtcgctcactccccttgcctaagaggccaagaagaagagga gcc GGT ASRSLPLPKRPRGAGA	
	Conector G >< Fragmento 2 hTERT	
3001	GGAGGAGGTGGTGGA ttc actactagcgtccggtcctacctgcccaacac	3050
1001	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1017
3051	agtgaccgacgctctgagaggttcaggtgcctggggtctgctgctgctgcgga	3100
1018		

