

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 775 049

61 Int. Cl.:

C12Q 1/6886 (2008.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 23.10.2006 E 16150667 (0)
 Fecha y número de publicación de la concesión europea: 08.01.2020 EP 3061834

(54) Título: Mutaciones del gen SHP-2 en melanomas

(30) Prioridad:

21.10.2005 US 729171 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 23.07.2020

(73) Titular/es:

THE REGENTS OF THE UNIVERSITY OF CALIFORNIA (100.0%)
1111 Franklin Street, 12th Floor Oakland, CA 94607-5200, US

(72) Inventor/es:

BASTIAN, BORIS, C. y CURTIN, JOHN, A.

(74) Agente/Representante:

PONS ARIÑO, Ángel

DESCRIPCIÓN

Mutaciones del gen SHP-2 en melanomas

5 Declaración de derechos en cuanto a las invenciones realizadas bajo investigación o desarrollo federalmente patrocinado

Esta invención se realizó con el apoyo del Gobierno bajo la concesión Nº. CA95300 concedida por los Institutos Nacionales de Salud. El Gobierno tiene ciertos derechos en esta invención.

Antecedentes de la invención

10

15

20

25

30

35

40

45

50

55

60

65

Entre los melanomas que afectan a la piel, hay una marcada variación de las características histopatológicas y clínicas, dependiendo parcialmente de la localización anatómica y de los patrones de exposición al sol. Recientemente se ha demostrado (Curtin, *et al.*, New Engl. J. Med. 353: 2135-2147, 2005) que las rutas de MAP-quinasa y Pl3 quinasa se activan de forma diferente entre los subtipos de melanoma cuando los tumores se clasifican de acuerdo con una combinación de la exposición UV y del sitio anatómico. De manera prominente, aunque las mutaciones de BRAF son altamente prevalentes (59%) en los melanomas que se producen en la piel sin signos de daño crónico inducido por el sol (melanomas no CSD), la frecuencia es muy baja en los melanomas que se producen en las palmas de las manos, plantas de los pies o los sitios subungueales (acral o mucosal). Las mutaciones BRAF también son poco comunes en los melanomas que se producen en la piel que muestra evidencias de daño crónico inducido por el sol (melanomas CSD). Alrededor del 10 al 20% de los melanomas de todos los subtipos activan estas rutas por mutación de las NRAS, pero tanto las mutaciones BRAF como NRAS nunca ocurren al mismo tiempo. Estos resultados plantean la cuestión fundamental de cómo la ruta de la MAP quinasa puede ser activada en aquellos tumores que no tienen las mutaciones NRAS o BRAF.

El análisis de CGH de matriz de Curtin *et al.*, supra, encontró diferencias en las características de las aberraciones del número de copias de ADN entre los subtipos de melanoma, con diferencias significativas en la frecuencia de la participación de varios loci. El examen de los perfiles de número de copias de 103 melanomas primarios de este estudio halló el aumento (10 tumores) o la amplificación (7 tumores) del cromosoma 4p12. Dieciséis de estos tumores se habían secuenciado para BRAF y NRAS y no se encontraron mutaciones. Todos los 17 tumores fueron de los subtipos acral, mucosal o CDS.

La región 4p12 común de elevación del número de copias contiene varios receptores de tirosina quinasas (RTK) que son atractivos oncogenes candidatos de melanoma. Estos incluyen el v-kit Hardy-Zuckerman 4 KIT del homólogo del oncogén viral de sarcoma felino, el receptor del factor de crecimiento endotelial vascular KDR y el receptor del factor alfa de crecimiento derivado de plaquetas (PDGFRA). El KIT es un gen importante para la supervivencia de melanocitos y su desarrollo (Chabot, et al., Nature 335: 88-89, 1988; Geissler, et al., Cell 55: 185-192, 1988) y está sujeto a mutaciones oncogénicas en una variedad de tipos de cáncer (Beghini et al., Cancer 92: 657-662, 2001; Beghini et al., Blood Cells Molecules and Diseases 24: 262-270, 1998; Isozaki, et al., Am J. Path. 157: 1581-1585, 200; Lux, et al., Am. J. Path. 156:791-795, 2000; Wardelmann, et al., Mod. Pathology 15: 125-136, 2002). Sin embargo, investigaciones anteriores han descartado en general su importancia en el melanoma porque la expresión parecía estar perdida durante la progresión tumoral (Lassam y Bickford, Oncogene 7: 51-56, 1992; Natali, et al., Int. J. Cancer 52: 197-201, 1992; Zakut, et al., Oncogene 8: 2221-2229, 1993; Huang, et al., Oncogene 13: 2339-2347, 1996; Montone, et al., Mod. Pathology 10: 939-944, 1997). El KDR es importante en la angiogénesis (Millauer, et al., Cell 72: 835-846, 1993) y en el desarrollo de tumores sólidos (Millauer, et al., Nature 367: 576-579, 1994) y se expresa comúnmente en melanoma (Straume y Akslen, Am J Pathol 159: 223-235, 2001). El PDGFRA se encuentra que se activa por mutaciones o deleciones pequeñas en un subconjunto de tumores gastrointestinales estromales (GIST) (Heinrich, et al., Science 299: 708-710, 2003) y en la leucemia mieloide aguda infantil (Heinrich, et al., Science 299: 708-710, 2003).

Las proteína-tirosina fosfatasas (PTPasas) son un conjunto de moléculas altamente pleomórficas con papeles en la regulación de las respuestas de las células eucariotas a señales extracelulares mediante la regulación del contenido de fosfotirosina de las proteínas intracelulares específicas. Las PTPasas de mamíferos han sido divididas en dos amplias categorías: (1) PTPasas del receptor transmembrana que contienen dominios catalíticos vinculados citoplásmicos y (2) PTPasas intracelulares. Dentro de la segunda categoría está una PTPasa denominada SHP2 que contiene dos dominios de homología 2 (SH2) de SRC en tándem situados en el extremo terminal amino de la proteína. Los dominios SH2 permiten que SHP2 se una a los restos de fosfotirosina específicos dentro de las secuencias de proteínas. Las mutaciones dentro de SHP2, más específicamente dentro de las regiones de SH2 de SHP2 se han asociado con diversos trastornos, tales como: síndrome de Noonan, síndrome de LEOPARD, leucemia mielomonocítica juvenil, leucemia monoblástica aguda y varios neuroblastomas. El SHP2 opera inmediatamente cadena abajo de KIT y las células que expresan el mutante SHP2 se ha mostrado que se sensibilizan frente al factor de células madre (SCF), el ligando para KIT, resultando la estimulación en una señal prolongada y más intensa de p-ERK con una duración de hasta 60 min (Niimi, *et al.*, Leukemia 20, 635-644, 2006).

La presente invención se basa en el descubrimiento de ciertos melanomas dependientes de KIT, por ejemplo,

melanomas mucosales, acrales, oculares, tales como el conjuntival, o CSD.

Breve resumen

15

20

25

30

La presente divulgación proporciona métodos para detectar un melanoma c-Kit-dependiente, por ejemplo, un melanoma de la mucosa; un melanoma acral; un melanoma ocular, por ejemplo, un melanoma conjuntival; o un melanoma CSD. Los métodos comprenden la detección de una mutación de secuencia y/o la amplificación o sobreexpresión de c-KIT en células de melanoma de un paciente. Los métodos se pueden utilizar para indicaciones de diagnóstico y de pronóstico y, por ejemplo, para la identificación de pacientes con melanoma que son sensibles a los inhibidores de c-kit. La divulgación también proporciona métodos de tratamiento de melanoma que comprenden la administración de un inhibidor de c-Kit a un melanoma c-Kit-dependiente.

La invención proporciona un método de detección de células de melanoma dependientes de c-KIT en una muestra biológica que comprende células de melanoma de un paciente que tiene un melanoma acral, un melanoma de la mucosa o un melanoma de daño inducido por el sol (CSD) crónico, comprendiendo el método:

detectar la presencia o ausencia de una mutación de secuencia en un gen de SHP2 en células de melanoma del paciente,

en donde la presencia de la mutación de secuencia es indicativa de la presencia de células de melanoma dependientes de c-KIT.

La invención también proporciona un método para monitorizar la progresión de un melanoma en un paciente que tiene un melanoma acral, de CSD o de la mucosa, sometido a una terapia, comprendiendo el método monitorizar el número de células de melanoma dependientes de c-KIT que tienen una mutación de la secuencia de SHP2 en una muestra biológica del paciente, en donde un cambio en el número de células de melanoma dependientes de c-KIT que tienen la mutación de SHP2 es indicativo de la respuesta del paciente a la terapia.

La invención también proporciona un inhibidor de c-Kit para su uso en un método de inhibición de la proliferación de células de melanoma dependientes de c-KIT en un paciente que tiene un melanoma acral, un melanoma de la mucosa o melanoma CSD, en donde las células de melanoma dependientes de c-KIT se detectan mediante la detección de una mutación de la secuencia de SHP2, y en donde el inhibidor de c-Kit es un fármaco dirigido al receptor tirosina guinasa de molécula pequeña o un anticuerpo anti-c-Kit.

35 Se divulga adicionalmente un método de detección de melanoma en una muestra biológica, por ejemplo, una muestra de piel, que comprende células de melanoma de un paciente que tiene melanoma o se sospecha que tiene melanoma, comprendiendo el procedimiento la detección de una mutación de secuencia o un aumento en el número de copias de c-KIT, o la sobreexpresión de c-KIT en células de melanoma presentes en la muestra biológica, en el que la presencia de una mutación de la activación de c-KIT o la presencia de un aumento en el número de copias de 40 c-KIT es indicativa de la presencia de melanoma. Por lo general, el melanoma es el melanoma acral, melanoma mucosal, el melanoma CDS, u ocular, por ejemplo, el melanoma conjuntival. En algunos aspectos de la divulgación, la etapa de detección comprende la detección de los niveles de un ácido nucleico c-KIT, por ejemplo, ARNm o ADN genómico. En aspectos típicos de la divulgación, tales etapas de detección comprenden una reacción de amplificación, tales como PCR o RT-PCR. En otros aspectos de la divulgación, la etapa de detección comprende 45 detectar los niveles de expresión de la proteína c-KIT o la detección de una mutación en la proteína c-KIT. En algunos aspectos de la divulgación, la etapa de detección puede comprender la detección de múltiples defectos c-kit, por ejemplo, la detección de una mutación de secuencia y los cambios del número de copias.

Las células de melanoma c-KIT dependientes también se pueden detectar mediante la detección de una mutación en la secuencia de SHP2. En algunos aspectos, el análisis de la presencia de una mutación de secuencia en SHP2 se lleva a cabo, además de la detección de defectos en c-KIT en el melanoma. La mutación SHP2 se detecta a menudo en el dominio de la proteína tirosina fosfatasa. Por ejemplo, la mutación puede dar como resultado P491L, I309V o S150F en los exones 13, 8 y 4, respectivamente. La mutación puede detectarse mediante el análisis de cualquiera de los ácidos nucleicos o proteínas. Típicamente, la mutación se detecta mediante el análisis de ácidos nucleicos, por ejemplo, ARN o ADN genómico, a partir de una muestra biológica del paciente.

Típicamente, la etapa de detección comprende detectar la presencia de una mutación de una secuencia en un c-KIT o SHP2. Esto se logra a menudo, por ejemplo, mediante el análisis de los ácidos nucleicos de la muestra biológica. El ácido nucleico puede ser una muestra de ADN o ARN. La muestra de ADN puede ser derivada de la transcripción inversa del ARN, o puede ser ADN genómico. A menudo, la etapa de detección para detectar la mutación comprende una reacción de amplificación.

El melanoma es de un paciente que tiene, o se sospecha que tiene, un melanoma acral, un melanoma de la mucosa, uno ocular, por ejemplo, melanoma conjuntival, o CSD.

En aspectos adicionales de la divulgación, la etapa de detección comprende detectar la presencia de una mutación

3

65

50

55

60

en el exón 11, 13, 17 o 18 de c-KIT.

5

30

50

55

En otros aspectos de la divulgación, el melanoma acral, melanoma CSD, melanoma de la mucosa, o melanoma ocular, por ejemplo, el melanoma conjuntival, se detecta mediante la detección de un aumento en el número de copias del gen c-KIT y / o la sobreexpresión del producto génico. Los métodos de detección se realizaron como se describe en el presente documento. Por ejemplo, la sobreexpresión se puede detectar mediante la evaluación de los niveles de ARNm o proteína. El número de copias se puede evaluar, por ejemplo, por métodos o procedimientos de amplificación tales como la hibridación in situ.

- La divulgación también proporciona un método para detectar la presencia de células de melanoma a partir de un melanoma que surja en las palmas, plantas, debajo de las uñas, de las membranas de las mucosas, de la piel crónicamente expuesta al sol o de los ojos, por ejemplo, la úvea o conjuntiva, comprendiendo el método detectar un aumento del número de copias de c-KIT, o una mutación en una secuencia del gen c-KIT o un gen SHP2.
- 15 En otros aspectos de la divulgación, la presencia de células de melanoma de un melanoma que surge en las palmas, plantas, debajo de las uñas, membranas mucosas, piel expuesta al sol de manera crónica o melanoma ocular puede ser detectada mediante la detección de la sobreexpresión de c-Kit.
- La divulgación también proporciona un método de monitorización de la progresión de melanoma, por ejemplo, en un paciente sometido a un régimen de tratamiento de melanoma, en un paciente que tiene un melanoma acral, mucosal, CSD u ocular, por ejemplo, conjuntival o uveal, comprendiendo el método detectar la presencia de una proteína c-KIT mutada o ácido nucleico; o una proteína de SHP2 mutada o ácido nucleico, en una muestra biológica del paciente.
- En algunos aspectos de la divulgación, el seguimiento de la progresión del melanoma en un paciente que tiene un melanoma acral, mucosal, CSD u ocular se realiza mediante la detección de un aumento en el número de copias de c-KIT, con relación a un control normal, en una muestra biológica del paciente; o mediante el control del número de células de melanoma que tienen un c-KIT o mutación de secuencia SHP2 en una muestra sospechosa de que comprenda células de melanoma.
 - En otros aspectos de la divulgación, el seguimiento de la progresión del melanoma en un paciente que tiene un melanoma acral, mucosal, CSD, u ocular, por ejemplo, conjuntival se realiza mediante la detección de un aumento de la expresión de c-KIT, con relación a la normalidad, en una muestra biológica del paciente.
- Típicamente, en el seguimiento de la progresión del melanoma en conformidad con la invención, la presencia de un número reducido de células de melanoma c-KIT-dependientes en la muestra biológica es indicativa de una respuesta terapéutica frente a la del agente de tratamiento en el paciente.
- En todos los métodos de detección de la divulgación, la muestra biológica puede provenir de cualquier fuente en el cuerpo que se sospeche que contiene células de melanoma primarios o metastásicos. Por lo tanto, la muestra biológica puede ser de piel, por ejemplo, la piel acral, del ojo, por ejemplo, la conjuntiva, o de las membranas mucosas, y en otros aspectos, puede ser de sangre, suero, tejido de los nódulos linfáticos, o tejido de órganos viscerales. En algunas realizaciones, por ejemplo, en el seguimiento de la progresión del melanoma, la muestra es de un tejido fácilmente accesible tal como la sangre.
 - En otro aspecto, la divulgación proporciona un método para determinar si un paciente con melanoma es un candidato para recibir una terapia que inhiba la actividad de c-Kit. El método comprende determinar si el melanoma del paciente comprende células de melanoma que tienen un aumento en el número de copias c-KIT y/o sobreexpresan c-kit y/o que tienen una mutación en la secuencia de c-Kit o SHP2. La detección se realiza de acuerdo con los métodos descritos en el presente documento. En consecuencia, la etapa de detección puede comprender la detección de niveles de ARNm o de proteínas. En otros aspectos, la etapa de detección puede comprender la detección de la presencia de una mutación c-kit en una muestra de ácido nucleico del melanoma o de una muestra de proteína del melanoma. La muestra de ácido nucleico puede ser ARN o ADN, por ejemplo, ADN genómico o ADNc hecho a partir de ARN de la muestra de melanoma. A menudo, la etapa de detección comprende una reacción de amplificación. tal como PCR o RT-PCR.
 - En aspectos típicos, el melanoma es un melanoma acral, un melanoma de la mucosa, un melanoma ocular, por ejemplo, un melanoma conjuntival, o un melanoma CSD.
- 60 En otro aspecto, la divulgación proporciona un método para inhibir la proliferación de células de melanoma c-KIT-dependientes, comprendiendo el método la administración de un inhibidor de c-KIT. El inhibidor de c-KIT, puede ser, por ejemplo, una molécula pequeña, tal como mesilato de imatinib, dasatinib, sunitinib; un anticuerpo; o un péptido. Típicamente, las células de melanoma son de un melanoma acral, un melanoma de la mucosa, uno ocular, por ejemplo, el melanoma conjuntival, o un melanoma CSD.

Breve descripción de los dibujos

Figura 1: paneles que muestran las muestras representativas de la piel correspondientes a las puntuaciones de daño crónico del daño inducido por el sol (CDS) de CDS 0 a CDS 3.

Figura 2: Dos melanomas con amplificación, mutación y sobreexpresión de KIT. El panel de la izquierda muestra los datos de la matriz CGH con la relación log 2 del tumor para hacer referencia a la intensidad de fluorescencia en el eje y, y la posición genómica de los clones BAC en megabases en el eje x. Una relación log 2 de 0 indica el número de copias normales. Los clones BAC con una mayor proporción de 0,9 se consideran amplificados. Las flechas indican la localización del lugar de KIT. Los paneles centrales muestran las trazas de secuenciación del ADN del tumor y el tejido normal adyacente. En el ADN del tumor, los picos para el alelo mutado son más altos que los alelos de tipo salvaje lo que indica la amplificación del alelo mutado. Los paneles de la derecha muestran una fuerte expresión de la proteína KIT en el frente invasivo del melanoma por inmunohistoquímica. En el caso de AM210 KIT, un agregado de células que expresan KIT se encuentra en un espacio linfático (cabezas de flecha).

Figura 3: Distribución de frecuencias de las alteraciones genéticas en BRAF, NRAS y KIT entre los cuatro grupos de melanoma. NoCSD = melanomas en la piel sin daño crónico inducido por el sol como lo demuestra la marcada elastosis solar; CDS = melanomas en la piel con daño crónico solar inducido como lo demuestra la marcada elastosis solar; acrales = melanomas en las plantas de los pies, palmas, o en los sitios sub-ungueales; mucosas = melanomas en las membranas de la mucosa.

Figura 4: La pérdida y la mutación de SHP2 en un melanoma primario. El panel izquierdo muestra el perfil de la matriz CGH del cromosoma 12 para un melanoma primario con una pérdida limitada de 12q24.13 que contiene SHP2 (punta de la flecha). El eje Y muestra la relación entre la relación log 2 para cada locus normalizado con la relación log 2 mediana del genoma. El eje X muestra la posición genómica de los loci a partir de datos de la página web UCSC Genome Browser (genome.ucsc.edu; ensamblaje Julio de 2003). El panel derecho muestra las trazas de secuenciación del exón 13 de SHP2 que muestra una transición de C a T que resulta en una sustitución de aminoácidos P491L. La altura del pico de las trazas de secuenciación indica que la pérdida en 12q24.13 reconoce al alelo normal.

Descripción detallada

Introducción

5

10

15

20

25

30

45

50

55

60

65

La presente divulgación proporciona métodos, reactivos y kits, para el diagnóstico del cáncer, para usos de pronóstico y para el tratamiento de melanomas. La divulgación se basa en el descubrimiento de que el c-KIT es un oncogén en el melanoma, y una diana terapéutica en los melanomas, por ejemplo, melanomas de las membranas de las mucosas, melanomas acrales, melanomas de la piel crónicamente dañada por el sol, y melanomas oculares, tales como melanomas conjuntivales.

El KIT es una glicoproteína transmembrana de 145 kd que es el producto del gen KIT, el homólogo celular normal del oncogén del virus del sarcoma v-kit felino. Es un miembro de la familia de tirosina quinasas receptoras subclase III y está estrechamente relacionado con los receptores para y el ligando de PDGF, M-CSF, FLT3. El ligando para KIT, el factor de células madre (SCF) promueve la dimerización y la autofosforilación de los receptores de kit. Los restos de tirosina fosforilados resultantes proporcionan sitios de unión para moléculas de señalización que contienen dominios SH2, incluyendo fosfatidilinositol (PI) 3-quinasa. Estas moléculas de señalización activan una variedad de dianas corriente abajo. La señalización de KIT es importante para el desarrollo normal y la supervivencia de melanocitos, así como otras células. La importancia de c-KIT en tumores malignos ha sido bien documentado (véase, por ejemplo, Heinrich *et al.*, J. Clin. Oncology 20: 1692-1703 para una revisión)

En un aspecto de la divulgación, la capacidad de detectar las células de melanoma en virtud de la detección del número de copias incrementado de c-KiT, los niveles de expresión y/o una forma mutante (secuencia) de c-Kit, es útil para cualquiera de un gran número de aplicaciones. Por ejemplo, se puede usar, solo o en combinación con otros métodos de diagnóstico, para el diagnóstico de melanomas, o un cierto tipo de melanoma, en el paciente. También se puede utilizar para identificar melanomas particulares que son sensibles a los agentes terapéuticos, tales como agentes terapéuticos que se dirigen a ciertos tirosina quinasas receptoras, por ejemplo, mesilato de imatinib (mesilato se designa químicamente como metanosulfonato de 4-[(4-metil-1-piperazinil)metil]-N-[4-metil-3-[[4-(3-piridinil)-2-irimidinil]amino]-fenil]benzamida), que es un inhibidor de fenilaminopirimidina tirosina quinasa, dasatinib y sunetinib.

La detección de los niveles de c-Kit o la presencia de mutaciones también se puede utilizar para controlar la eficacia de un tratamiento de melanoma. Por ejemplo, el nivel de un polipéptido o polinucleótido c-Kit, o el número de células melanocíticas que tienen mutaciones de secuencia en c-Kit, o un aumento en el número de copias de un gen c-KIT, después de un tratamiento contra el cáncer puede ser en comparación con el nivel de antes del tratamiento. Una disminución en el nivel del polipéptido o polinucleótido c-Kit, o una reducción en el número de células de melanoma que han mutado c-Kit después del tratamiento indican que es un tratamiento eficaz. Además, el nivel de c-Kit y/o la

presencia de c-Kit mutado puede ser estadísticamente correlacionado con la eficacia de determinadas terapias antimelanoma o con los resultados de pronóstico observados, permitiendo de esta manera el desarrollo de bases de datos basados en el que un pronóstico basado en la estadística, o una selección del tratamiento más eficaz, se puede hacer a la vista de un determinado nivel o presencia de diagnóstico de c-Kit.

La detección del nivel de c-Kit o las mutaciones en c-Kit, por ejemplo, en la superficie celular, también puede ser útil para controlar el número o localización de las células de melanoma en un paciente, por ejemplo, para monitorizar la progresión del cáncer en el tiempo.

Las mutaciones SHP2 también se han identificado en melanomas, por ejemplo, melanoma acral, ocular, mucosal o CSD. En consecuencia, la detección de mutaciones de la secuencia de SHP2 también puede detectar melanomas que son melanomas c-KIT-dependientes y dianas para la terapia utilizando inhibidores de c-KIT.

El c-KIT también puede servir como una diana terapéutica. Por consiguiente, la divulgación también proporciona métodos para tratar melanomas, en particular los melanomas que sobreexpresan y/o tienen un c-KIT mutante o SHP2 mutante mediante la administración de inhibidores de c-KIT, por ejemplo, anticuerpos, péptidos, fármacos reconocidos por tirosina quinasa receptoras de pequeñas moléculas, tal como mesilato imatinib u otros inhibidores de moléculas pequeñas y los inhibidores de ácido nucleico de c-KIT.

Definiciones

5

15

20

25

30

35

40

45

60

65

El término "c-KIT" se refiere al kit de proteína quinasa tirosina proto-oncogén. "C-KIT" se usa indistintamente con "KIT" en esta aplicación. El término abarca ácidos nucleicos y variantes polimórficas de polipéptidos, alelos, mutantes y fragmentos de KIT. Tales secuencias son bien conocidas en la técnica. Secuencias KIT humanas ejemplares están disponibles bajo las secuencias de referencia NM_000222 (secuencia de nucleótidos) en la base de datos de nucleótidos NCBI y el número de entrada P10721 (secuencia polipeptídica). Se proporciona la secuencia de NM_000222 en la SEQ ID NO: 1 como una secuencia de polinucleótidos ejemplar. La secuencia de polipéptido ejemplar P10721 se muestra en SEQ ID NO: 2. El KIT humano comparte una estrecha identidad estructural con el KIT de otras especies. Por ejemplo, el ácido nucleico KIT primate y las secuencias de proteínas son más del 99% similar al KIT humano. Las secuencias de ácido nucleico y proteína de KIT de rata y de ratón tienen de 80 a 85% de manera similar al KIT humano.

El término "SHP2" se refiere a la proteína-tirosina fosfatasa del tipo 11 no receptora codificada por el gen ptpn11 que se asigna al locus 12q24. El término abarca ácidos nucleicos y variantes polimórficas polipeptídicas, alelos, mutantes y fragmentos de SHP2. Tales secuencias son bien conocidas en la técnica. Ejemplos de secuencias SHP2 humanas están disponibles bajo las secuencias de referencia NP_002834 (secuencia de nucleótidos) en la base de datos de nucleótidos y el número de entrada NCBI NP-002825 (secuencia polipeptídica). La secuencia NP-002834 se ofrece como SEQ ID NO: 3 como una secuencia de nucleótidos ejemplar. La secuencia del polipéptido ejemplar se muestra en la SEQ ID NO: 4.

Un "melanoma dependiente de c-Kit" o "células de melanoma dependiente de c-Kit" tal como se utiliza en el contexto de esta aplicación se refiere a un melanoma que comprende células de melanoma que tienen un defecto (también referido como una "mutación") en c -Kit y/o una mutación de secuencia en SHP2. El defecto en c-Kit puede ser una mutación de la secuencia c-Kit, un aumento en el número de copias de c-Kit, o la sobreexpresión de c-Kit. Las "células de melanoma dependientes de c-Kit" pueden tener uno o más de tales mutaciones, por ejemplo, las células del melanoma pueden tener un c-KIT y/o una mutación de secuencia de SHP2 y un aumento en el número de copias de c-kit. Un "melanoma dependiente de c-Kit" de la presente invención típicamente es de piel acral, de la mucosa, conjuntival o de piel con signos de daño crónico inducido por el sol.

50 En el contexto de esta solicitud "melanoma acral" se refiere a melanomas que se producen en la piel que no lleva pelo de las palmas o las plantas o debajo de las uñas. Un subconjunto de melanomas acrales son los "melanomas acrales-lentiginosos".

La expresión "melanoma de mucosa" se refiere a los tumores que surgen en las membranas mucosas; "melanoma ocular" tal como se usa en el presente documento es el melanoma que surge del ojo. "Melanoma ocular" incluye el melanoma uveal y el conjuntival. El "melanoma conjuntival" se refiere a un melanoma que surge en la conjuntiva.

"Melanoma CSD", tal como se utiliza en este documento, se refiere al melanoma que surge de la piel con daño crónico inducido por el sol; y "melanoma NCSD", tal como se utiliza en este documento, se refiere a melanomas derivados de piel sin daño crónico inducido por el sol. La distinción entre los grupos "CSD" y "NCSD" en la presente aplicación se basa en la presencia o ausencia en la microscopía de elastosis solar marcada de la dermis que rodea los melanomas. En casi todos los casos, los melanomas asociados con el daño crónico inducido por el sol (CDS) se producen en la cara y en las extremidades distales, tales como los antebrazos, el dorso de las manos, las espinillas y las pantorrillas. Estos melanomas típicamente aparecen en individuos mayores de 50 años de edad, y microscópicamente, tienen un componente intraepidérmico en el que los melanocitos están dispuestos como unidades solitarias en lugar de nidos. Además, estos melanomas tienden a tener una epidermis atrófica con el

borrado de las crestas epiteliales. Un subconjunto de los melanomas CSD es melanomas lentigo maligno. Por el contrario, los melanomas que no estaban asociados al daño crónico inducido por el sol (CNDS) aparecen en el tronco y las extremidades proximales, tales como los muslos y los brazos superiores. Los melanomas CNDS suelen mostrar un componente intraepidérmico en el que los melanocitos se disponen como nidos en lugar de unidades solitarias y muestran una considerable dispersión cadena arriba (diseminación pagetoide). Muchos de los melanomas CNDS son los melanomas de extensión superficial.

5

10

15

20

25

30

35

40

45

50

El daño crónico inducido por el sol se define como el que tiene una puntuación mayor de CSD que CSD 2. Las puntuaciones se obtienen mediante la determinación del grado de elastosis solar en secciones teñidas de hematoxilina y eosina (H & E) de la piel normal que rodea los melanomas a un aumento de 100-200x utilizando el siguiente sistema (Landi *et al.*, Science 2006), ejemplos de los cuales se proporcionan en la figura 1:

CDS 0: ausencia de fibras elastóticas; CDS 0+: fibras elastóticas raras discernible sólo a un aumento 200x

CDS 1: fibras elastóticas dispersadas que se extienden como unidades individuales, no como fanegas, entre los haces de colágeno; los clasificadores "-" o "+" se utilizan para indicar si las fibras elastóticas fueron muy escasas o estaban densamente dispersas.

CSD 2: fibras elastóticas densamente dispersadas distribuidas predominantemente como fanegas en lugar de unidades individuales; el clasificador "-" se utiliza para indicar qué fanegas estaban presentes, pero las fibras elastóticas distribuidas como unidades individuales predominaban; se utilizó el clasificador "+" cuando se formaron agregados más grandes de fanegas, pero conservando el contorno de fanegas individuales en lugar de la formación de depósitos amorfos;

CDS 3: depósitos de material amorfo de color gris azulado con pérdida de la textura de la fibra; el clasificador "-" solo es para la formación focal de depósitos amorfos; el clasificador "+" es para aglomerados muy grandes de material basófilo difuso.

Todas las imágenes de la figura 1 fueron tomadas con el objetivo de 40x a excepción de la parte inferior derecha, que muestra una vista general con el objetivo 10x.

Tal como se utiliza en este documento, la expresión "determinar que el melanoma surgió de" un sitio, por ejemplo, la piel acral, mucosa, la conjuntiva, o la piel que tiene daño crónico inducido por el sol, se refiere a la identificación del sitio de origen de un melanoma. Tal determinación puede ser realizada por inspección visual de un paciente o por la evaluación de la patología del melanoma.

Los términos "tumor" o "cáncer" en un animal se refieren a la presencia de células que poseen características tales como el crecimiento atípico o la morfología, incluyendo la proliferación incontrolada, inmortalidad, potencial metastásico, rápido crecimiento y velocidad de proliferación y ciertas características morfológicas distintivas. A menudo, las células cancerosas estarán en forma de tumor, pero dichas células pueden existir solas en un animal. "Tumor" incluye tanto los tumores benignos como los malignos. El término "neoplásico" se refiere a un crecimiento atípico tanto benigno como maligno.

"Muestra biológica", como se utiliza en este documento, se refiere a una muestra obtenida de un paciente sospechoso de tener o que tiene un melanoma. En algunos aspectos, la muestra puede ser una biopsia de tejido, la cual se refiere a cualquier tipo de biopsia, tal como una biopsia con aguja, biopsia con aguja fina, biopsia quirúrgica, etc. La muestra comprende típicamente una muestra de tejido de la piel que alberga la lesión o la sospecha de la lesión, aunque la muestra biológica también se puede derivar de otra, de otro sitio, por ejemplo, un sitio para que un melanoma pueda hacer metástasis, o de la sangre. En algunos casos, la muestra biológica puede provenir también de una región adyacente a la lesión o que se sospeche con lesión.

"Proporcionar una muestra biológica" significa obtener una muestra biológica para su uso en los métodos descritos en la presente invención. Más a menudo, esto se realizará mediante la eliminación de una muestra de células de un paciente, pero también se puede lograr mediante el uso de células previamente aisladas (por ejemplo, aisladas de otra persona, en otro momento, y/o para otro fin), o mediante la realización de los métodos de la invención *in vivo*. También se pueden utilizar tejidos de almacenamiento, que tengan tratamiento o una historia con resultados.

Un paciente que es "un candidato para recibir una terapia basada en la tirosina quinasa receptora" se refiere a un paciente que tiene un melanoma que tiene un defecto en c-KIT, de manera que el c-KIT está aumentado en el número de copias, se sobreexpresa y/o tiene una mutación de la secuencia; o un paciente que tiene una mutación de secuencia, ya sea sola o en combinación con un defecto de c-KIT, en SHP2, por ejemplo, en el dominio de proteína tirosina fosfatasa de SHP2.

Una "terapia a base de quinasa tirosina receptora" se refiere a un agente que inhibe la c-KIT, incluyendo agentes de moléculas pequeñas, tales como mesilato de imatinib, dasatinib o sunitinib, o análogos de los mismos, anticuerpos y similares.

65 Los términos "idéntico" o porcentaje de "identidad", en el contexto de dos o más ácidos nucleicos o secuencias polipeptídicas, se refieren a dos o más secuencias o subsecuencias que son iguales o tienen un porcentaje

especificado de restos de aminoácidos o nucleótidos que son iguales (es decir, aproximadamente 60% de identidad, preferiblemente 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o superior identidad sobre una región especificada, cuando se comparan y alinean para una correspondencia máxima sobre una ventana de comparación o región designada) según se mide usando un algoritmo de comparación de secuencias BLAST o BLAST 2.0 con los parámetros por defecto descritos más abajo, o mediante el alineamiento manual y la inspección visual (véase, por ejemplo, el sitio web NCBI http://www.ncbi.nlm.nih.gov/BLAST/ o similares). Tales secuencias entonces se dice que son "sustancialmente idénticas. "Esta definición también se refiere, o se puede aplicar, al complemento de una secuencia de ensayo. La definición también incluye secuencias que tienen deleciones y/o adiciones, así como aquellas que tienen sustituciones, así como variantes de origen natural, por ejemplo, polimórficas o alélicas y variantes artificiales. Como se describe a continuación, los algoritmos preferidos pueden dar cuenta de los huecos y similares. Preferiblemente, existe identidad en una región que tiene al menos aproximadamente 25 aminoácidos o nucleótidos de longitud, o más preferiblemente sobre una región que tiene 50-100 aminoácidos o nucleótidos de longitud.

10

25

30

35

40

45

50

55

60

65

Para la comparación de secuencias, típicamente una secuencia actúa como secuencia de referencia, a la cual las secuencias de ensayo se comparan. Cuando se usa un algoritmo de comparación de secuencias, las secuencias de ensayo y de referencia se introducen en un ordenador, las coordenadas de subsecuencia se designan, si es necesario, y se designan los parámetros del programa del algoritmo de la secuencia. Preferiblemente, se pueden utilizar los parámetros del programa por defecto o pueden ser designados parámetros alternativos. El algoritmo de comparación de secuencias calcula entonces las identidades de secuencia por ciento para las secuencias de ensayo con respecto a la secuencia de referencia, basándose en los parámetros del programa.

Una "ventana de comparación", como se usa en el presente documento, incluye la referencia a un segmento de uno del número de posiciones contiguas seleccionadas del grupo que consiste típicamente de 20 a 600, por lo general aproximadamente de 50 a aproximadamente 200, más habitualmente de aproximadamente de 100 a aproximadamente 150, en el que una secuencia puede compararse con una secuencia de referencia del mismo número de posiciones contiguas después de que las dos secuencias se alineen de manera óptima. Los métodos de alineación de secuencias para su comparación son muy conocidos en la técnica. El alineamiento óptimo de las secuencias para su comparación puede llevarse a cabo, por ejemplo, mediante el algoritmo de homología local de Smith & Waterman, Adv. Appl. Mat. 2: 482 (1981), mediante el algoritmo de alineación de homología de Needleman y Wunsch, J. Mol. Biol. 48: 443 (1970), por el método de búsqueda de similitud de Pearson y Lipman, Proc. Nat'l. Acad. Sci. USA 85: 2444 (1988), mediante implementaciones informáticas de estos algoritmos (GAP, BESTFIT, FASTA, y TFASTA en el paquete de software Wisconsin Genetics, Genetics Computer Group, 575 Science Dr., Madison, Wis.), O mediante alineamiento manual e inspección visual (véase, por ejemplo, Current Protocols in Molecular Biology (Ausubel *et al.*, eds. 1995 suplemento)).

Los ejemplos preferidos de algoritmos que son adecuados para determinar el porcentaje de identidad de secuencia y la similitud de secuencia incluyen los algoritmos BLAST y BLAST 2.0, que se describen en Altschul et al., Nucl. Acids Res. 25: 3.389 a 3402 (1977) y Altschul et al., J. Mol. Biol. 215: 403-410 (1990). Para los fines de la presente divulgación, BLAST y BLAST 2.0 se utilizan con los parámetros por defecto para determinar el porcentaje de identidad de secuencia para los ácidos nucleicos y proteínas de la divulgación. El software para realizar el análisis BLAST está disponible públicamente a través del Centro Nacional de Información Biotecnológica (NCBI). Este algoritmo implica primero identificar pares de secuencias de alta puntuación (HSP) identificando palabras cortas de longitud W en la secuencia problema, que coinciden o satisfacen alguna puntuación umbral T de valor positivo cuando se alinean con una palabra de la misma longitud en una secuencia de base de datos. T se refiere como el umbral de puntuación de palabra vecina (Altschul et al., Supra). Estas coincidencias de palabras vecinas iniciales actúan como semillas para iniciar búsquedas para encontrar HSP más largos que los contienen. Las coincidencias de palabras se extienden en ambas direcciones a lo largo de cada secuencia por lo que la puntuación de alineamiento acumulativa se puede aumentar. Las puntuaciones acumulativas se calculan usando, por ejemplo, para secuencias de nucleótidos, los parámetros M (puntuación de recompensa para un par de restos coincidentes; siempre > 0) y N (puntuación de penalización para restos no coincidentes; siempre < 0). Para secuencias de aminoácidos, se utiliza una matriz de puntuación para calcular la puntuación acumulativa. La extensión de las coincidencias de palabras en cada dirección se detiene cuando: la puntuación de alineamiento acumulativa disminuye en la cantidad X desde su valor máximo alcanzado; la puntuación acumulativa llega a cero o menos, debido a la acumulación de una o más alineaciones de restos de puntuación negativa; o el final de cualquier secuencia que se alcanza. Los parámetros del algoritmo BLAST W, T y X determinan la sensibilidad y la velocidad de la alineación. El programa BLASTN (para secuencias de nucleótidos) usa por defecto una longitud de palabra (W) de 11, una expectativa (E) de 10, un punto de corte de 100, M = 5, N = -4, y una comparación de ambas cadenas. Para las secuencias de aminoácidos (proteínas), el programa BLASTP usa por defecto una longitud de palabra (W) de 3, una expectativa (E) de 10, y la matriz de puntuación BLOSUM62 (véase Henikoff y Henikoff (1989) Proc. Natl. Acad. Sci. USA 89: 10915)). Para los fines de la presente divulgación, el algoritmo BLAST2.0 se utiliza con los parámetros por defecto y el filtro apagado.

El algoritmo BLAST también realiza un análisis estadístico de la similitud entre dos secuencias (véase, por ejemplo, Karlin y Altschul, Proc. Nat'l. Acad. Sci. USA 90: 5873-5787 (1993)). Una medida de la similitud proporcionada por el algoritmo BLAST es la suma de la probabilidad más pequeña (P(N)), que proporciona una indicación de la

probabilidad por la cual una coincidencia entre dos secuencias de nucleótidos o aminoácidos se produciría por casualidad. Por ejemplo, un ácido nucleico se considera similar a una secuencia de referencia si la probabilidad de suma más pequeña en una comparación del ácido nucleico de ensayo con el ácido nucleico de referencia es menor que aproximadamente 0,2, más preferiblemente menor que aproximadamente 0,01 y lo más preferiblemente menor que aproximadamente 0,001. Los valores log pueden ser números negativos grandes, por ejemplo, 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.

Una indicación de que dos secuencias de ácidos nucleicos o polipéptidos son sustancialmente idénticas es que el polipéptido codificado por el primer ácido nucleico es inmunológicamente reactivo en forma cruzada con los anticuerpos generados contra el polipéptido codificado por el segundo ácido nucleico, como se describe a continuación. Por lo tanto, un polipéptido es típicamente sustancialmente idéntico a un segundo polipéptido, por ejemplo, cuando los dos péptidos difieren sólo por sustituciones conservativas. Otra indicación de que dos secuencias de ácido nucleico son sustancialmente idénticas es que las dos moléculas o sus complementos se hibridan entre sí en condiciones rigurosas, como se describe a continuación. Sin embargo, otra indicación de que dos secuencias de ácido nucleico son sustancialmente idénticas es que los mismos cebadores pueden usarse para amplificar las secuencias.

Los términos "aislado", "purificado" o la expresión "biológicamente puro" se refieren a material que está sustancial o esencialmente libre de componentes que normalmente lo acompañan como se encuentran en su estado nativo. La pureza y la homogeneidad se determinan típicamente usando técnicas de química analítica tales como electroforesis en gel de poliacrilamida o cromatografía líquida de alta resolución. Una proteína o ácido nucleico que es la especie predominante presente en una preparación se purifica sustancialmente. En particular, un ácido nucleico aislado se separa de algunos marcos de lectura abiertos que flanquean naturalmente al gen y codifican distintas proteínas de la proteína codificada por el gen. El término "purificado" en algunos aspectos indica que un ácido nucleico o una proteína da lugar esencialmente a una banda en un gel electroforético. Preferiblemente, esto significa que el ácido nucleico o la proteína es al menos 85% puro, más preferiblemente al menos 95% puro, y lo más preferiblemente al menos 99% puro. "Purificar" o "purificación" en otros aspectos significa la eliminación de al menos un contaminante de la composición a purificar. En este sentido, la purificación no requiere que el compuesto purificado sea homogéneo, por ejemplo, 100% de pureza.

Los términos "polipéptido", "péptido" y "proteína" se usan indistintamente en el presente documento para referirse a un polímero de restos de aminoácidos. Los términos se aplican a polímeros de aminoácidos en los que uno o más restos de aminoácidos es un mimético químico artificial de un aminoácido de origen natural correspondiente, así como a polímeros de origen natural de aminoácidos, aquellos que contienen restos modificado, y polímeros de aminoácido de origen no natural.

El término "aminoácido" se refiere a aminoácidos que aparecen naturalmente y sintéticos, así como a análogos de aminoácidos y miméticos de aminoácidos que funcionan de manera similar a los aminoácidos de origen natural. Los aminoácidos de origen natural son los codificados por el código genético, así como aquellos aminoácidos que se modifican más tarde, por ejemplo, hidroxiprolina, γ -carboxiglutamato y O-fosfoserina. Análogos de aminoácidos se refiere a compuestos que tienen la misma estructura química básica que un aminoácido de origen natural, por ejemplo, un carbono α que está unido a un hidrógeno, un grupo carboxilo, un grupo amino y un grupo R, por ejemplo, homoserina, norleucina, sulfóxido de metionina, metionina metil-sulfonio. Tales análogos pueden tener grupos R modificados (por ejemplo, norleucina) o esqueletos peptídicos modificados, pero conservan la misma estructura química básica que un aminoácido de origen natural. Los miméticos de aminoácidos se refieren a compuestos químicos que tienen una estructura que es diferente de la estructura química general de un aminoácido, pero que funcionan de manera similar a un aminoácido de origen natural.

Los aminoácidos pueden ser referidos en la presente memoria por cualquiera de sus comúnmente conocidos símbolos de tres letras o por los símbolos de una letra recomendados por la Comisión de Nomenclatura Bioquímica IUPAC-IUB. Los nucleótidos, del mismo modo, pueden hacer referencia a sus códigos de una sola letra comúnmente aceptados.

"Variantes conservativamente modificadas" se aplica tanto a secuencias de aminoácidos como de ácidos nucleicos. Con respecto a las secuencias particulares de los ácidos nucleicos, las variantes modificadas de manera conservadora se refieren a aquellos ácidos nucleicos que codifican secuencias de aminoácidos idénticas o esencialmente idénticas, o donde el ácido nucleico no codifica una secuencia de aminoácidos, a secuencias esencialmente idénticas o asociadas, por ejemplo, naturalmente contiguas. Debido a la degeneración del código genético, un gran número de ácidos nucleicos funcionalmente idénticos codifican la mayoría de las proteínas. Por ejemplo, los codones GCA, GCC, GCG y GCU todos codifican al aminoácido alanina. Por lo tanto, en cada posición en la que una alanina está especificada por un codón, el codón puede ser alterado a otro de los codones correspondientes descritos sin alterar el polipéptido codificado. Tales variaciones de ácido nucleico son "variaciones silenciosas", que son una especie de variaciones modificadas de manera conservadora. Cada secuencia de ácido nucleico en este documento que codifica un polipéptido también describe variaciones silenciosas del ácido nucleico. Cualquier experto reconocerá que en ciertos contextos cada codón en un ácido nucleico (excepto AUG, que es ordinariamente el único codón para triptófano) puede

ser modificado para producir una molécula funcionalmente idéntica. Por consiguiente, a menudo las variaciones silenciosas de un ácido nucleico que codifica un polipéptido están implícitas en una secuencia descrita con respecto al producto de expresión, pero no con respecto a las secuencias de sonda reales.

En cuanto a las secuencias de aminoácidos, cualquier experto reconocerá que las sustituciones individuales, deleciones o adiciones a un ácido nucleico, péptido, polipéptido o secuencia de proteína, que altera, añade o elimina un único aminoácido o un pequeño porcentaje de aminoácidos en la codificada secuencia, es una "variante modificada de forma conservadora", cuando la alteración da como resultado la sustitución de un aminoácido con un aminoácido químicamente similar. Las tablas de sustitución conservadora que proporcionan aminoácidos funcionalmente similares son bien conocidas en la técnica. Tales variantes modificadas de manera conservadora se suman y no excluyen a las variantes polimórficas, homólogos entre especies y alelos de la invención. Típicamente, las sustituciones conservadoras entre sí: 1) Alanina (A), Glicina (G); 2) Ácido aspártico (D), Ácido glutámico (E); 3) Asparagina (N), Glutamina (Q); 4) Arginina (R), Lisina (K); 5) Isoleucina (I), leucina (L), Metionina (M), Valina (V); 6) Fenilalanina (F), Tirosina (Y), Triptófano (W); 7) Serina (S), Treonina (T); y 8) Cisteína (C), Metionina (M) (véase, por ejemplo, Creighton, Proteins (1984)).

"Ácido nucleico" u "oligonucleótido" u "polinucleótido" o equivalentes gramaticales usados en este documento significan al menos dos nucleótidos unidos covalentemente entre sí. Los oligonucleótidos son típicamente de aproximadamente 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 o más nucleótidos de longitud, hasta aproximadamente 100 nucleótidos de longitud. Los ácidos nucleicos y polinucleótidos son unos polímeros de cualquier longitud, incluyendo longitudes más largas, por ejemplo, 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10000, etc. Un ácido nucleico de la presente divulgación contendrá generalmente enlaces fosfodiéster, aunque en algunos casos, los análogos de ácido nucleico que se incluyen pueden tener estructuras, que comprenden, por ejemplo, fosforamidato, fosforotioato, fosforoditioato o enlaces O-metilfosforoamidita (véase Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); y estructuras de ácidos nucleicos peptídicas y los enlaces. Otros ácidos nucleicos análogos incluyen aquellos con estructuras positivas; estructuras no iónicos y estructuras de no ribosa, incluyendo las descritos en las patentes de EE.UU. Nos. 5.235.033 y 5.034.506, y en los capítulos 6 y 7, ASC Symposium Series 580, Carbohydrate Modifications in Antisense Research, Sanghui & Cook, eds. Los ácidos nucleicos que contienen uno o más azúcares carbocíclicos también se incluyen dentro de una definición de ácidos nucleicos. Las modificaciones de la estructura de ribosa-fosfato se pueden hacer por una variedad de razones, por ejemplo, para aumentar la estabilidad y la vida media de tales moléculas en entornos fisiológicos o como sondas en un biochip. Pueden hacerse mezclas de ácidos nucleicos naturales y análogos; alternativamente, se pueden realizar mezclas de diferentes análogos de ácidos nucleicos y mezclas de ácidos nucleicos y análogos de origen natural.

20

25

30

35

40

45

50

55

60

65

Una variedad de referencias divulga tales análogos de ácidos nucleicos, incluyendo, por ejemplo, fosforamidato (Beaucage et al., Tetrahedron 49 (10): 1925 (1993) y referencias en el mismo; Letsinger, J. Org. Chem. 35: 3800 (1970); Sprinzl et al., Eur. J. Biochem. 81: 579 (1977); Letsinger et al., Nucl. Acids Res. 14: 3487 (1986); Sawai et al., Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110: 4470 (1988); y Pauwels et al., Chemica Scripta 26: 141 91986)), fosforotioato (Mag et al., Nucleic Acids Res. 19: 1437 (1991); y la Patente de EE.UU. No. 5.644.048), fosforoditioato (Briu et al., J. Am. Chem. Soc. 111: 2321 (1989), los enlaces O-metilfosforoamidita (véase Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), y las estructuras de ácidos nucleicos peptídicas y los enlaces (véase Egholm, J. Am. Chem. Soc. 114: 1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31: 1008 (1992); Nielsen, Nature, 365: 566 (1993); Carlsson et al., Nature 380: 207 (1996). Otros ácidos nucleicos análogos incluyen aquellos con estructuras positivas (Denpcy et al., Proc. Natl. Acad. Sci. USA 92: 6097 (1995); estructuras no iónicas (patentes de EE.UU. Nos. 5.386.023, 5.637.684, 5.602.240, 5.216.141 y 4.469.863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30: 423 (1991); Letsinger et al., J. Am. Chem. Soc. 110: 4470 (1988); Letsinger et al., Nucleoside and Nucleotide 13: 1597 (1994); capítulos 2 y 3, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y. S. Sanghui y P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4: 395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994); Tetrahedron Lett. 37: 743 (1996)) y estructuras de no ribosa, incluyendo las descritas en las patentes de EE.UU. Nos. 5.235.033 y 5.034.506, y en los capítulos 6 y 7, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y. S. Sanghui y P. Dan Cook, Los ácidos nucleicos que contienen uno o más azúcares carbocíclicos también se incluyen dentro de una definición de ácidos nucleicos (ver Jenkins et al., Chem. Soc. Rev. (1995) pp 169-176). Varios análogos de ácidos nucleicos se describen en Rawls, C & E News Jun. 2, 1997, página 35.

Otros análogos incluyen ácidos nucleicos peptídicos (PNA), que son análogos de ácidos nucleicos peptídicos. Estas estructuras son sustancialmente no iónicas en condiciones neutras, en contraste con la estructura de fosfodiéster altamente cargada de los ácidos nucleicos naturales. Esto da como resultado dos ventajas. En primer lugar, la estructura ANP muestra una mejor cinética de hibridación. Los PNA tienen grandes cambios en la temperatura de fusión (T_m) para las pares de bases no coincidentes frente a las perfectamente emparejadas. El ADN y el ARN presentan típicamente una caída de 2-4°C en la T_m para un desapareamiento interno. Con la estructura de PNA no iónica, la caída está más cerca de 7-9°C. De manera similar, debido a su naturaleza no iónica, la hibridación de las bases unidas a estas estructuras es relativamente insensible a la concentración de sal. Además, los PNA no son degradados por enzimas celulares y por lo tanto pueden ser más estables.

Los ácidos nucleicos pueden ser de cadena sencilla o de cadena doble, tal como se especifica, o contener porciones

tanto de secuencia de doble cadena como de cadena sencilla. Como se apreciará por los expertos en la materia, la representación de una sola hebra también define la secuencia de la cadena complementaria; por lo tanto, las secuencias descritas en el presente documento también proporcionan el complemento de la secuencia. A menos que se indique lo contrario, una secuencia de ácido nucleico particular abarca también implícitamente sus variantes modificadas de manera conservadora (por ejemplo, sustituciones de codones degenerados) y secuencias complementarias, así como la secuencia indicada explícitamente. El ácido nucleico puede ser ADN, tanto genómico como ADNc, ARN o un híbrido, donde el ácido nucleico puede contener combinaciones de ribonucleótidos y desoxirribonucleótidos, y combinaciones de bases, incluyendo uracilo, adenina, timina, citosina, guanina, inosina, xantina, hipoxantina, isocitosina, isoguanina, etc. "Transcripto" se refiere típicamente a un ARN de origen natural, por ejemplo, un pre-ARNm, ARNnh o ARNm. Tal como se utiliza en este documento, el término "nucleósido" incluye nucleótidos y nucleósidos y nucleósidos análogos, y nucleósidos modificados tales como nucleósidos modificados aminoácidos. Además, "nucleósido" incluye estructuras analógicas no naturales. Por lo tanto, por ejemplo, las unidades individuales de un ácido nucleico peptídico, cada una conteniendo una base, se denominan en este documento como un nucleósido.

15

20

10

5

Un "marcador" o un "resto detectable" es una composición detectable por medios espectroscópicos, fotoquímicos, bioquímicos, inmunoquímicos, químicos u otros medios físicos. Por ejemplo, los marcadores útiles incluyen ³²P, colorantes fluorescentes, reactivos densos en electrones, enzimas (por ejemplo, como se usan comúnmente en un ELISA), biotina, digoxigenina o haptenos y proteínas u otras entidades que pueden hacerse detectables, por ejemplo, mediante la incorporación de un radiomarcador en el péptido o usarse para detectar anticuerpos específicamente reactivos con el péptido. Los marcadores se pueden incorporar en los ácidos nucleicos de KIT, proteínas y anticuerpos en cualquier posición. Se puede emplear cualquier método conocido en la técnica para conjugar el anticuerpo al marcador, por ejemplo, usando métodos descritos en Hermanson, Bioconjugate Techniques 1996, Academic Press, Inc., San Diego.

25

Una "sonda marcada de ácido nucleico u oligonucleótido" es uno que se une, ya sea de forma covalente, a través de un enlazador o un enlace químico, o no covalentemente, van der Waals, electrostático, enlaces iónicos, o de hidrógeno a un marcador de tal manera que la presencia de la sonda se puede detectar detectando la presencia del marcador unido a la sonda. Alternativamente, el método de uso de las interacciones de alta afinidad puede lograr los mismos resultados en los que uno de un par de parejas de unión se une a la otra, por ejemplo, biotina, estreptavidina.

30

35

40

Tal como se usa en el presente documento una "sonda de ácido nucleico u oligonucleótido" se define como un ácido nucleico capaz de unirse a un ácido nucleico diana de secuencia complementaria a través de uno o más tipos de enlaces químicos, normalmente a través del apareamiento de bases complementarias, normalmente a través de la formación de enlaces de hidrógeno. En la presente memoria, una sonda puede incluir bases naturales (es decir, A, G, C o T) o modificadas (7-desazaguanosina, inosina, etc.). Además, las bases en una sonda pueden estar unidas por un enlace distinto de un enlace fosfodiéster, con tal de que no interfiera funcionalmente con la hibridación. Por lo tanto, por ejemplo, las sondas pueden ser ácidos nucleicos peptídicos en los que las bases constituyentes están unidas por enlaces peptídicos en lugar de enlaces fosfodiéster. Se entenderá por cualquier experto en la técnica que las sondas puedan unir secuencias diana que carecen de complementariedad completa con la secuencia de sonda dependiendo de la rigurosidad de las condiciones de hibridación. Las sondas están preferiblemente marcadas directamente como con isótopos, cromóforos, luminóforos, cromógenos, o marcarse indirectamente tal como con biotina a la que un complejo de estreptavidina puede unirse más tarde. Por ensayar la presencia o ausencia de la sonda, se puede detectar la presencia o ausencia de la secuencia o subsecuencia seleccionada. El diagnóstico o pronóstico se pueden basar en el nivel genómico, o en el nivel de ARN o la expresión de proteínas.

45

50

El término "recombinante", cuando se usa con referencia, por ejemplo, a una célula, o un ácido nucleico, proteína o vector, indica que la célula, el ácido nucleico, la proteína o el vector ha sido modificado por la introducción de un ácido nucleico heterólogo o proteína o la alteración de un ácido nucleico nativo o proteína, o que la célula deriva de una célula así modificada. Por lo tanto, por ejemplo, las células recombinantes expresan genes que no se encuentran dentro de la forma nativa (no recombinante) de la célula o expresan genes nativos que se expresan anormalmente de otra forma, expresados o no expresados en absoluto. Por la expresión "ácido nucleico recombinante" en el presente documento se quiere decir el ácido nucleico, formado originalmente *in vitro*, en general, mediante la manipulación del ácido nucleico, por ejemplo, usando polimerasas y endonucleasas, en una forma no encontrada normalmente en la naturaleza. Del mismo modo, una "proteína recombinante" es una proteína producida usando técnicas recombinantes, es decir, a través de la expresión de un ácido nucleico recombinante como se representa anteriormente.

60

55

La expresión "selectivamente (o específicamente) se hibrida a" se refiere a la unión, la formación de dúplex o la hibridación de una molécula solamente con una secuencia de nucleótidos particular en condiciones de hibridación rigurosas cuando esa secuencia está presente en una mezcla compleja (por ejemplo, ADN o ARN celular total o de la biblioteca).

65 L

La expresión "condiciones de hibridación rigurosas" se refiere a condiciones en las que una sonda se hibridará con su subsecuencia diana, típicamente en una mezcla compleja de ácidos nucleicos, pero no con otras secuencias. Las

5

10

15

20

25

55

60

65

condiciones rigurosas dependen de la secuencia y serán diferentes en diferentes circunstancias. Las secuencias más largas se hibridan específicamente a temperaturas más altas. Una extensa guía para la hibridación de ácidos nucleicos se encuentra en Tijssen, Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generalmente, las condiciones rigurosas se seleccionan para que sean aproximadamente de 5 a 10°C inferior al punto de fusión térmico (T_m) para la secuencia específica a un pH de fuerza iónica definida. La T_m es la temperatura (bajo una fuerza iónica determinada, pH, y concentración de ácido nucleico) a la que el 50% de las sondas complementarias a la diana se hibridan con la secuencia diana en el equilibrio (como las secuencias diana están presentes en exceso, a la T_m, el 50% de las sondas están ocupadas en el equilibrio). Las condiciones rigurosas serán aquellas en las que la concentración de sal es menor que aproximadamente 1,0 M de ion sodio, típicamente de aproximadamente 0,01 a 1,0 M de concentración de iones de sodio (u otras sales) a pH de 7,0 a 8,3 y la temperatura es al menos aproximadamente 30°C para sondas cortas (por ejemplo, de 10 a 50 nucleótidos) y de al menos aproximadamente 60°C para sondas largas (por ejemplo, mayor que 50 nucleótidos). Las condiciones rigurosas también se pueden lograr con la adición de agentes desestabilizantes tales como formamida. Para la hibridación selectiva o específica. una señal positiva es al menos dos veces la del fondo, preferiblemente 10 veces la hibridación de fondo. Las condiciones de hibridación rigurosas ejemplares pueden ser de la siguiente manera: 50% de formamida, 5 x SSC y SDS al 1%, incubando a 42°C, o, 5 x SSC, 1% de SDS, incubando a 65°C, con el lavado en 0,2 x SSC, y 0,1% de SDS a 65°C. Para la PCR, una temperatura de aproximadamente 36°C es típica para la amplificación de baja rigurosidad, aunque las temperaturas de hibridación pueden variar entre aproximadamente 32°C y 48°C, dependiendo de la longitud del cebador. Por amplificación por PCR de alta rigurosidad, una temperatura de aproximadamente 62°C es típica, aunque las temperaturas de hibridación de alta rigurosidad pueden variar de aproximadamente 50°C a aproximadamente 65°C, dependiendo de la longitud del cebador y la especificidad. Las condiciones de ciclo típico para ambas amplificaciones de alta y de baja rigurosidad incluyen una fase de desnaturalización de 90°C-95°C durante 30 seg-2 min, con una duración de la fase de hibridación 30 sec-2 min, y una fase de extensión de aproximadamente 72°C durante 1-2 min. Se proporcionan protocolos y directrices para las reacciones de amplificación de baja y alta rigurosidad, por ejemplo, en Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. Nueva York).

Los ácidos nucleicos que no se hibridan entre sí en condiciones rigurosas son todavía sustancialmente idénticos si los polipéptidos que codifican son sustancialmente idénticos. Esto ocurre, por ejemplo, cuando se crea una copia de un ácido nucleico usando la máxima degeneración de codón permitida por el código genético. En tales casos, los ácidos nucleicos típicamente se hibridan en condiciones de hibridación moderadamente rigurosas. Las "condiciones de hibridación moderadamente rigurosas" ejemplares incluyen una hibridación en un tampón de formamida al 40%, NaCl 1 M, SDS al 1% a 37°C y un lavado en 1 x SSC a 45°C. Una hibridación positiva es al menos dos veces la del fondo. Los expertos reconocerán fácilmente que las condiciones de hibridación y lavado alternativas se pueden utilizar para proporcionar condiciones de rigurosidad similares. Las directrices adicionales para determinar los parámetros de hibridación se proporcionan en numerosas referencias, por ejemplo, y Current Protocols in Molecular Biology, ed. Ausubel, *et al.*

La expresión "efectos funcionales" en el contexto de ensayos para probar los compuestos que inhiben la actividad de una proteína c-KIT incluye la determinación de un parámetro que está indirecta o directamente bajo la influencia de la proteína del cáncer de c-KIT o el ácido nucleico, por ejemplo, un efecto funcional, físico o químico, tal como la capacidad de disminuir la tumorigénesis. Las actividades o el efecto funcional de c-KIT incluyen la actividad de la interacción proteína-proteína, por ejemplo, la capacidad de c-KIT para unirse a un anticuerpo u otra proteína con la que interactúa; la actividad de tirosina quinasa receptora, la capacidad de c-KIT para unirse a un ligando, el crecimiento celular en agar blando; la dependencia del anclaje; la inhibición por contacto y la limitación de la densidad del crecimiento; la proliferación celular; la transformación celular; el factor de crecimiento o la dependencia en suero; los índices de marcadores tumorales específicos; la invasividad en Matrigel; el crecimiento del tumor y la metástasis *in vivo*, incluyendo la medición del crecimiento del tumor y la "toma" del tumor en un sistema modelo; ARNm y la expresión de proteínas en las células, incluyendo las sometidas a metástasis y otras características de las células cancerosas. Los "efectos funcionales" incluyen actividades *in vitro*, *in vivo* y *ex vivo*.

"Inhibidores" de c-KIT se refieren a moléculas inhibidoras o compuestos que, por ejemplo, se unen, parcial o totalmente a la actividad de bloque, disminuyen, previenen, retrasan la activación, inactivan, desensibilizan o desregulan la actividad o la expresión de las proteínas c-KIT, por ejemplo, los antagonistas. Los inhibidores incluyen ARNip o ARN antisentido, versiones genéticamente modificadas de proteínas c-KIT, por ejemplo, versiones con actividad alterada, así como los antagonistas de KIT de origen natural y sintéticos, anticuerpos, moléculas químicas pequeñas y similares. Los inhibidores son conocidos, se pueden realizar otros ensayos para la identificación de inhibidores *in vitro* o *in vivo*, por ejemplo, en células o membranas celulares, mediante la aplicación de compuestos inhibidores de ensayo, y luego determinando los efectos funcionales sobre la actividad.

Las muestras o los ensayos que comprenden proteínas c-KIT que se tratan con un inhibidor potencial se comparan con muestras control sin el inhibidor, para examinar el grado de inhibición. A las muestras control (no tratadas con inhibidores) se les asigna un valor de actividad de la proteína relativa del 100%. La inhibición de c-KIT se logra cuando el valor de actividad con respecto al control es de aproximadamente 80%, preferiblemente 50%, más preferiblemente desde 25 hasta 0%.

La expresión "cambios en el crecimiento de las células" se refiere a cualquier cambio en las características de crecimiento y proliferación celular *in vitro* o *in vivo*, tales como la formación de focos, la independencia de anclaje, el crecimiento en agar semi-sólido o blando, los cambios en la inhibición por contacto y la limitación de la densidad de crecimiento, la pérdida de propiedades del factor de crecimiento o del suero, cambios en la morfología celular, ganar o perder inmortalización, ganar o perder marcadores específicos tumorales, capacidad para formar o suprimir los tumores cuando se inyectan en animales huéspedes adecuados y/o la inmortalización de las células. Véase, por ejemplo, Freshney, Culture of Animal Cells a Manual of Basic Technique pp. 231-241 (3ª ed. 1994).

- En la presente memoria, "anticuerpo" incluye la referencia a una molécula de inmunoglobulina inmunológicamente 10 reactiva con un antígeno particular e incluye anticuerpos tanto policionales como monocionales. El término también incluye formas de ingeniería genética tales como anticuerpos quiméricos (por ejemplo, anticuerpos murinos humanizados) y anticuerpos heteroconjugados (por ejemplo, anticuerpos biespecíficos). El término "anticuerpo" también incluye formas de unión de antígeno a anticuerpos, incluyendo fragmentos con capacidad de unión al 15 antígeno (por ejemplo, Fab', F(ab')₂, Fab, Fv y rlgG. Véase también, Pierce Catalog and Handbook, 1994-95 (Pierce Chemical Co., Rockford, Ill.). Véase también, por ejemplo, Kuby, J., Immunology, 3ª ed., W. H. Freeman & Co., Nueva York (1998). El término también se refiere a fragmentos Fv de cadena individual recombinantes (scFv). El término anticuerpo también incluye moléculas bivalentes o biespecíficas, diacuerpos, triacuerpos y tetracuerpos. Se describen moléculas bivalentes y biespecíficas en, por ejemplo, Kostelny et al. (1992) J Immunol 148: 1547, Pack and Pluckthun (1992) Biochemistry 31: 1579, Hollinger et al., 1993, supra, Gruber et al. (1994) J Immunol: 5368, Zhu 20 et al. (1997) Protein Sci 6: 781, Hu et al. (1996) Cancer Res. 56: 3055, Adams et al. (1993) Cancer Res. 53: 4026, y McCartney, et al. (1995) Protein Eng. 8: 301.
- Un anticuerpo inmunológicamente reactivo con un antígeno particular se puede generar mediante métodos recombinantes tales como la selección de bibliotecas de anticuerpos recombinantes en fagos o vectores similares, véase, por ejemplo, Huse et al., Science 246: 1275-1281 (1989); Ward et al., Nature 341: 544-546 (1989); y Vaughan et al., Nature Biotech. 14: 309-314 (1996), o mediante la inmunización de un animal con el antígeno o con ADN que codifica el antígeno.
- Típicamente, una inmunoglobulina tiene una cadena pesada y ligera. Cada cadena pesada y ligera contiene una región constante y una región variable (las regiones también se conocen como "dominios"). Las regiones variables de cadena ligera y pesada contienen cuatro regiones "marco" interrumpidas por tres regiones hipervariables, también denominadas "regiones determinantes de complementariedad" o "CDR". La extensión de las regiones estructurales y CDR se han definido. Las secuencias de las regiones marco de diferentes cadenas ligeras o pesadas se conservan relativamente dentro de una especie. La región marco de un anticuerpo, que es las regiones marco combinadas de las cadenas ligeras y pesadas constituyente, sirve para posicionar y alinear las CDR en el espacio tridimensional.
- Las CDR son principalmente responsables de la unión de un antígeno a un epítopo. Las CDR de cada cadena se denominan típicamente CDR1, CDR2 y CDR3, numeradas secuencialmente partiendo del extremo N-terminal y también se identifican típicamente por la cadena en la que se encuentra la CDR en particular. Así, una CDR3 de V_H se encuentra en el dominio variable de la cadena pesada del anticuerpo en el que se encuentra, mientras que una CDR1 de V_L es la CDR1 del dominio variable de la cadena ligera del anticuerpo en el que se encuentra.
- Las referencias a "V_H" o a un "V_H" se refieren a la región variable de una cadena pesada de inmunoglobulina de un anticuerpo, incluyendo la cadena pesada de un Fv, scFv, Fab o. Las referencias a "V_L" o a una "V_L" se refieren a la región variable de una cadena ligera de inmunoglobulina, incluyendo la cadena ligera de un Fv, scFv, dsFv o Fab.
- La expresión "Fv de cadena sencilla" o "scFv" se refiere a un anticuerpo en el que se han unido los dominios variables de la cadena pesada y de la cadena ligera de un anticuerpo tradicional de dos cadenas para formar una cadena. Típicamente, se inserta un péptido de enlace entre las dos cadenas para permitir el plegamiento apropiado y la creación de un sitio de unión activo.
- Un "anticuerpo quimérico" es una molécula de inmunoglobulina en la que (a) se altera, se sustituye o se intercambia la región constante, o una porción de la misma, para que el sitio de unión al antígeno (región variable) se una a una región constante de una clase diferente o alterada, función efectora y/o especies, o una molécula completamente diferente que confiere nuevas propiedades al anticuerpo quimérico, por ejemplo, una enzima, toxina, hormona, un factor de crecimiento, fármaco, etc.; o (b) se altera, se sustituye o se intercambia la región variable, o una porción de la misma con una región variable que tiene una especificidad de antígeno diferente o alterada.
 - Un "anticuerpo humanizado" es una molécula de inmunoglobulina que contiene una secuencia mínima derivada de inmunoglobulina no humana. Los anticuerpos humanizados incluyen inmunoglobulinas humanas (anticuerpo receptor) en las que los restos de una región determinante de complementariedad (CDR) del receptor se sustituyen por restos de una CDR de una especie no humana (anticuerpo donante) tal como un ratón, una rata o un conejo que tienen la deseada especificidad, afinidad y capacidad. En algunos casos, los restos marco Fv de la inmunoglobulina humana se sustituyen por los correspondientes restos no humanos. Los anticuerpos humanizados también pueden

65

comprender restos que no se encuentren ni en el anticuerpo receptor ni en las secuencias CDR o marco importadas. En general, un anticuerpo humanizado comprenderá sustancialmente todos de al menos uno, y típicamente dos, dominios variables, en los que todas o sustancialmente todas las regiones CDR corresponden a las de una inmunoglobulina no humana y todas o sustancialmente todas las regiones marco (FR) son las de una secuencia consenso de inmunoglobulina humana. El anticuerpo humanizado óptimamente también comprenderá al menos una porción de una región constante de inmunoglobulina (Fc), típicamente la de una inmunoglobulina humana (Jones *et al.*, Nature 321: 522-525 (1986); Riechmann *et al.*, Nature 332: 323-329 (1988); y Presta, Curr. Op. Struct. Biol. 2: 593-596 (1992)). La humanización puede realizarse esencialmente siguiendo el procedimiento de Winter y colaboradores (Jones *et al.*, Nature 321: 522-525 (1986); Riechmann *et al.*, Nature 332: 323-327 (1988); Verhoeyen *et al.*, Science 239: 1534-1536 (1988)), mediante la sustitución de las CDR de roedor o secuencias CDR por las secuencias correspondientes de un anticuerpo humano. Por consiguiente, dichos anticuerpos humanizados son anticuerpos quiméricos (patente de EE.UU. N.º 4.816.567), en donde sustancialmente menos de un dominio variable humano intacto ha sido sustituido por la secuencia correspondiente de una especie no humana.

15 La expresión "anticuerpo completamente humano" se refiere a una inmunoglobulina que comprende regiones variables humanas además de regiones marco y constantes humanas. Tales anticuerpos pueden producirse usando diversas técnicas conocidas en la técnica. Por ejemplo, los métodos in vitro implican el uso de bibliotecas recombinantes de fragmentos de anticuerpos humanos que se muestran en bacteriófagos (por ejemplo, McCafferty et al., 1990, Nature 348: 552-554; Hoogenboom y Winter, J. Mol. Biol. 227: 381 (1991); y Marks et al., J. Mol. Biol. 222: 581 (1991)), células de levadura (Boder y Wittrup, 1997, Nat Biotechnol 15: 553-557) o en ribosomas (Hanes y 20 Pluckthun, 1997, Proc Natl Acad Sci EE.UU. 94: 4937-4942). De manera similar, se pueden preparar anticuerpos humanos mediante la introducción de loci de inmunoglobulina humana en animales transgénicos, por ejemplo, ratones en los que los genes de inmunoglobulina endógena han sido parcial o completamente inactivados. Tras la estimulación, se observa la producción de anticuerpos humanos, que se asemeja bastante a la observada en los 25 seres humanos en todos los aspectos, incluyendo el reordenamiento del gen, ensamblaje y repertorio de anticuerpos. Este enfoque se describe, por ejemplo, en las patentes de EE.UU. Nos. 6.150.584, 5.545.807; 5.545.806; 5.569.825; 5.625.126; 5.633.425; 5.661.016 y en las siguientes publicaciones científicas: (por ejemplo, Jakobavits, Adv Drug Deliv Rev. 31: 33-42 (1998), Marks et al., Bio/Technology 10: 779-783 (1992); Lonberg et al., Nature 368: 856-859 (1994); Morrison, Nature 368: 812-13 (1994); Fishwild et al., Nature Biotechnology 14: 845-51 30 (1996); Neuberger, Nature Biotechnology 14: 826 (1996); Lonberg y Huszar, Intern. Rev. Immunol. 13: 65-93 (1995).

"Epítopo" o "determinante antigénico" se refiere a un sitio en un antígeno al que se une un anticuerpo. Los epítopos pueden formarse tanto a partir de aminoácidos contiguos como aminoácidos no contiguos yuxtapuestos por plegamiento terciario de una proteína. Los epítopos formados a partir de aminoácidos contiguos normalmente se conservan bajo la exposición a disolventes desnaturalizantes mientras que los epítopos formados por plegamiento terciario típicamente se pierden tras el tratamiento con disolventes desnaturalizantes. Un epítopo incluye normalmente al menos 3, y más habitualmente, al menos 5 o 8-10 aminoácidos en una conformación espacial única. Los métodos para determinar la conformación espacial de los epítopos incluyen, por ejemplo, cristalografía de rayos X y resonancia magnética nuclear bidimensional. Véase, por ejemplo, Epitope Mapping Protocolos in Methods in Molecular Biology, vol. 66, Glenn E. Morris, Ed (1996).

Métodos generales recombinantes

10

35

40

45

50

55

60

65

Esta divulgación se basa en técnicas de rutina en el campo de la genética recombinante para la preparación de c-Kit para su uso en la divulgación y para métodos de detección de c-Kit. Textos básicos que divulgan los métodos generales de uso en esta divulgación incluyen Sambrook & Russell, Molecular Cloning, A Laboratory Manual (3ª Ed, 2001); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); y Current Protocols in Molecular Biology (Ausubel *et al.*, eds., 1994-1999). Por ejemplo, en aplicaciones en las que c-KIT, o un fragmento de c-KIT se vaya a producir, por ejemplo, para su uso en un ensayo para detectar inhibidores, se emplean protocolos de expresión de rutina.

Identificación de c-Kit o SHP2 secuencias en una muestra de un paciente

En un aspecto de la divulgación, la presencia de niveles elevados del polinucleótido c-KIT, por ejemplo, ARNm, o el aumento de los niveles de proteína c-KIT y/o la presencia de mutaciones en la secuencia de c-KIT o SHP2 se determina en muestras biológicas sospechosas de que comprendan células de melanoma.

En algunos aspectos de la divulgación, se determinan las mutaciones en c-KIT. Como se ha señalado, las secuencias KIT humanas son muy conocidas. Además del ARNm y las secuencias de proteínas (números de entrada a modo de ejemplo, supra). La secuencia genómica es conocida (véase, por ejemplo, Vandenbark, Oncogene 1992 julio; 7 (7): 1259-1266). Se sabe también que las variantes polimórficas no influyen en la actividad, incluyendo polimorfismos de nucleótido único en el intrón, regiones no traducidas y en la secuencia de codificación que resulta en ningún cambio en la secuencia de aminoácidos o en un cambio conservador (véase, por ejemplo, la base de datos NCBI SNP). El gen abarca 89 kb y tiene 21 exones. La transcripción del ARNm es 5,23 kb. El empalme alternativo del exón 9 da lugar a dos isoformas, KitA y Kit, que se diferencian en la presencia o ausencia de cuatro aminoácidos.

"Mutación de secuencia", como se usa en esta solicitud, se refiere a los cambios en una secuencia de polinucleótidos que dan lugar a cambios en la actividad de la proteína. Las mutaciones pueden ser sustituciones de nucleótidos, tales como las sustituciones de un solo nucleótido, inserciones o deleciones. Las mutaciones c-KIT detectadas en melanomas acral, mucosal, CSD u ocular en la presente divulgación son típicamente activadoras de mutaciones que conducen a la activación de la actividad c-KIT.

La proteína KIT de longitud completa tiene 976 aminoácidos de longitud y contiene varios dominios característicos de esta familia de receptores de factores de crecimiento, incluyendo 5 dominios del tipo C2 similares a inmunoglobulina de la región extracelular, tres de los cuales están involucrados en la unión del ligando. La unión del ligando a c-KIT conduce a su homodimerización y a la activación de su actividad enzimática de tirosina quinasa intracelular intrínseca, con autofosforilación posterior. La región intracelular de c-Kit contiene dos dominios de tirosina quinasa, los TK I y TK II, así como un dominio yuxtamembrana que regula negativamente los dominios TK I y TK II y un dominio de proteína tirosina quinasa. La estructura de la quinasa c-kit activa ha sido determinada (véase, por ejemplo, Mol *et al.*, J Biol Chem 2003 agosto 22; 278 (34): 31461-64). Son conocidas la pérdida de función y la ganancia de mutaciones funcionales.

Varias mutaciones de ganancia de función se han identificado en tumores malignos, que dan como resultado, la activación constitutiva SCF-independiente de c-Kit. La actividad de la tirosina quinasa de KIT se puede activar por mutaciones de varios exones diferentes del gen c-kit (véase, por ejemplo, la revisión de Heinrich et al., supra). Los exones 1-9 abarcan los dominios extracelulares y los exones 11-17 codifican los dominios intracelulares. El exón 10 codifica el dominio transmembrana, el exón 11 codifica el dominio yuxtamembrana intracelular, y los exones 13 y 17 son los dominios de tirosina quinasa. Se han descrito mutaciones en el exón 2 de la porción extracelular en los trastornos mieloproliferativos, se han identificado mutaciones en el exón 8 en la leucemia mieloide aguda y en el exón 9 en tumores del estroma gastrointestinal. Se han descrito mutaciones en el exón 11, que es el dominio yuxtamembrana de c-Kit que regula negativamente los dominios de tirosina quinasa de los exones 13 y 17, en tumores del estroma gastrointestinal humanos. Este es el sitio más común de mutación en los tumores del estroma gastrointestinal humano. Las mutaciones en los exones 13 y 17, que codifican para los dominios de tirosina quinasa de c-Kit, se detectan con frecuencia en la mastocitosis sistémica, leucemias de unión al factor de núcleo y los seminomas. Las mutaciones en los dominios de tirosina quinasa afectan a la capacidad de unión a ATP de c-Kit. v pueden producir ganancia de función de la actividad de tirosina quinasa o la pérdida de función. Las mutaciones en el clúster de la región yuxtamembrana de c-Kit alrededor de los dos sitios de autofosforilación principales median la unión de PTB, Tyr-568 y Tyr-570 y están asociados con tumores del estroma gastrointestinal humanos. Las mutaciones en el dominio quinasa se encuentran en los mastocitos y en leucemias mieloides y en los tumores de células germinales humanos.

La presente divulgación se basa en el descubrimiento de mutaciones en sitios de mutación de c-KIT comunes en melanomas, por ejemplo, en melanomas de la mucosa, acral y CD. Una mutación puede estar en cualquier parte del gen de c-KIT. Los sitios de mutaciones de la secuencia comunes están presentes en los exones 11, 13, 17 y 18. Las mutaciones ejemplares que pueden ser identificadas en la presente divulgación se muestran en la Tabla 3. Estas mutaciones incluyen las mutaciones siguientes: K642E, L576P, D816H, V559A, A829P y la eliminación intrónica, R634W, Y553N y N566D. Como se ha indicado en la Tabla 3, algunas de estas mutaciones no se han publicado anteriormente. Tal como se entiende en la técnica, la mutación particular comúnmente se conoce por el cambio en la secuencia de aminoácidos que resulta de la mutación en la secuencia de ácido nucleico.

En la presente divulgación, la sobreexpresión y/o la mutación de secuencia en C-KIT son detectadas para el diagnóstico (o para indicaciones de pronóstico) de melanomas, por ejemplo, para el diagnóstico de subtipos de melanomas, tales como, acral, mucosal, CDS y melanomas oculares. Por lo tanto, pueden ser analizadas muestras biológicas obtenidas de pacientes que tienen o se sospecha que tienen melanoma respecto a los aumentos en el número de copias C-KIT, la sobreexpresión de ARNm de c-KIT, la sobreexpresión de la proteína C-KIT y por la presencia de mutaciones en C-KIT. La presencia de mutaciones está convenientemente analizada mediante el análisis de muestras de ácido nucleico, ARN o ADN, de la muestra biológica, pero también se puede determinar mediante el análisis de proteínas.

55 Mutaciones de la secuencia de SHP2

5

10

15

20

25

30

35

40

45

50

60

65

El SHP2 (también conocido como PTPN11) codifica la proteína tirosina fosfatasa tipo no receptor, región de homología de Src 2-dominio fosfatasa-2 (SHP2) y funciona como un transductor de señal intracelular que se asocia con los receptores de tirosina quinasa y los adaptadores de armazón (Tartaglia y Gelb, Ann. Rev. Genom. and Hum. Gen. 6: 45-68, 2005). El ácido nucleico y la proteína a partir de células de melanoma, por ejemplo, células de melanoma acral, mucosal, ocular, o melanomas CSD, de un paciente también pueden ser evaluadas respecto a la presencia de mutaciones de la secuencia de SHP2. Típicamente, el método comprende detectar una mutación en el dominio de la proteína tirosina fosfatasa, por ejemplo, un P491L, un S150F, o una sustitución I309V. La detección de la secuencia mutante se realiza típicamente mediante la evaluación de muestras de ácidos nucleicos a partir de células de melanoma del paciente. La evaluación se puede realizar utilizando métodos muy conocidos en la técnica, incluyendo, por ejemplo, análisis de la secuencia, uso de oligonucleótidos específicos de alelo y similares. Los

métodos empleados son los mismos que los utilizados para determinar las mutaciones en la secuencia de c-KIT.

Las mutaciones en SHP2 también se pueden determinar mediante la evaluación de muestras de proteínas, por ejemplo, usando anticuerpos específicos.

Detección del número de copias

5

10

15

20

25

30

35

50

60

65

En un aspecto, la detección diagnóstica y pronóstica de c-Kit en el cáncer se lleva a cabo mediante la determinación del número de copias de c-Kit, es decir, el número de secuencias de ADN en una célula que codifica c-Kit. Los métodos para evaluar el número de copias de un gen particular son muy conocidos por los expertos en la técnica, e incluyen, entre otros, ensayos de hibridación y de amplificación. Un aumento en el número de copias de c-KIT en la presente divulgación se determina usando una sonda que se hibrida selectivamente con c-KIT.

En algunos aspectos, el número de copias de c-Kit en una muestra se determina mediante hibridación in situ, por ejemplo, hibridación in situ fluorescente o FISH. Los ensayos de hibridación in situ son muy conocidos (por ejemplo, Angerer (1987) Meth. Enzymol 152: 649). Las sondas utilizadas en dichas aplicaciones se hibridan específicamente a c-KIT. Las sondas se marcan, típicamente con marcadores fluorescentes. Las sondas preferidas son suficientemente largas, por ejemplo, de aproximadamente 50, 100 o 200 nucleótidos a aproximadamente 1.000 o más nucleótidos, con el fin de hibridar específicamente con el ácido o ácidos nucleicos diana en condiciones rigurosas.

Cualquiera de un número de otros ensayos basados en la hibridación se puede utilizar para detectar el número de copias de c-kit en las células de una muestra biológica. Por ejemplo, hibridación en manchas, ensayos basados en matrices y similares se pueden utilizar para determinar el número de copias de c-Kit.

En otros aspectos, los ensayos basados en la amplificación se utilizan para medir el número de copias de c-kit y se pueden determinar los niveles de transcritos de c-kit. En tal ensayo, las secuencias de ácido nucleico de c-Kit actúan como una plantilla en una reacción de amplificación (por ejemplo, una reacción en cadena de la polimerasa o PCR). Tales reacciones de amplificaciones se realizan cuantitativamente. En una amplificación cuantitativa, la cantidad de producto de amplificación será proporcional a la cantidad de plantilla en la muestra original. La comparación con los controles apropiados proporciona una medida del número de copias o del nivel de transcripción de ARN. Los métodos de amplificación cuantitativa son muy conocidos por los expertos en la técnica. Los protocolos detallados para la PCR cuantitativa de las muestras de ADN y ARN son conocidos (véase, por ejemplo, Innis *et al.* (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. Nueva York). Las conocidas secuencias de ácidos nucleicos para c-KIT (véase, por ejemplo, SEQ ID NO: 1) son suficientes para permitir a que un experto seleccione rutinariamente cebadores para amplificar cualquier parte del gen. Los cebadores adecuados para la amplificación de secuencias específicas pueden ser diseñados utilizando los principios bien conocidos en la técnica (véase, por ejemplo, Dieffenfach y Dveksler, PCR Primer: A Laboratory Manual (1995)).

Otros métodos de amplificación adecuados incluyen, pero no se limitan a, la reacción en cadena de la ligasa (LCR) (véase, Wu y Wallace (1989) Genomics 4: 560, Landegren et al. (1988) Science 241: 1077 y Barringer et al. (1990) Gen 89: 117), la amplificación por transcripción (Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173), la replicación de secuencias autosostenidas (Guatelli et al. (1990) Proc. Natl. Acad. Sci. USA 87: 1874), PCR de punto, y PCR por el adaptador del enlazante, etc.

La presencia de mutaciones en secuencias de ADN o ARN de c-KIT se puede determinar usando cualquier técnica conocida en la técnica. Por ejemplo, en un aspecto, puede ser utilizada la hibridación de oligonucleótidos específica de alelo, que se basa en distinguir un mutante de una secuencia de ácidos nucleicos normal usando un oligonucleótido que se hibrida específicamente con la secuencia de ácido nucleico mutante o normal. Este método emplea típicamente oligonucleótidos cortos, por ejemplo, 15-20 nucleótidos, de longitud, que están diseñados para hibridar diferencialmente al alelo normal o al mutante. Guías para el diseño de tales sondas están disponibles en la técnica. La presencia de un alelo mutante se determina mediante la determinación de la cantidad de oligonucleótido específico de alelo que se hibrida a la muestra.

Son conocidos en la técnica formatos de ensayo adecuados para la detección de híbridos formados entre las sondas y las secuencias de ácidos nucleicos en una muestra e incluyen el formato de la diana inmovilizada (hibridación en manchas) y formatos de ensayo de la sonda inmovilizada (hibridación en manchas inversa o hibridación en línea). Los formatos de ensayo hibridación en manchas e hibridación en manchas inversa se describen en las patentes de EE.UU. Nos. 5.310.893; 5.451.512; 5.468.613; y 5.604.099.

Cebadores específicos de alelo

En otros aspectos, la presencia (o la cantidad) de un ácido nucleico c-KIT normal o mutante se puede detectar usando amplificación específica de alelo o métodos de extensión de cebadores. Estas reacciones implican típicamente el uso de cebadores que están diseñados para dirigir específicamente un alelo normal o mutante a través de una falta de coincidencia en el extremo 3' de un cebador. La presencia de una falta de coincidencia afecta

a la capacidad de la polimerasa para extender un cebador cuando la polimerasa carece de actividad de corrección de errores. La cantidad de producto amplificado puede determinarse utilizando una sonda o midiendo directamente la cantidad de ADN presente en la reacción.

- La detección de niveles elevados de ácidos nucleicos c-KIT o la presencia de una mutación c-KIT también se puede realizar utilizando la actividad de la nucleasa 5' (también conocido como el ensayo de "TaqMan®"), por ejemplo, como se describe en las patentes de EE.UU. Nos. 5.210.015; 5.487.972; y 5.804.375; y Holland *et al.*, 1988, Proc. Natl. Acad. Sci. USA 88: 7276-7280. En tal ensayo, se añaden sondas de detección marcadas que se hibridan dentro de la región amplificada durante la reacción de amplificación. En algunos aspectos, la sonda de hibridación puede ser una sonda específica de alelo que discrimine a un alelo normal o mutante. Alternativamente, el método puede llevarse a cabo utilizando un cebador específico de alelo y una sonda marcada que se una al producto amplificado. En otros aspectos, la sonda no puede discriminar entre un alelo mutante y uno normal.
- En otros aspectos, la presencia de un alelo c-KIT mutante puede ser determinada de forma conveniente utilizando secuenciación del ADN, tal como pirosecuenciación u otras técnicas de secuenciación conocidas. Otros métodos de detección incluyen métodos de detección de polimorfismo conformacional de cadena sencilla y análisis de electroforesis en gel de gradiente de desnaturalización.
- Como se indicó anteriormente, en algunos aspectos, se detectan niveles de ARN de c-KIT. Los métodos de detección y/o cuantificación del nivel de transcritos del gen de c-Kit (ARNm o ADNc hecho a partir de estos) utilizando técnicas de hibridación de ácidos nucleicos son conocidos por los expertos en la técnica. Por ejemplo, los niveles de expresión de c-Kit también se pueden analizar mediante técnicas tales como la transferencia de puntos, hibridación in situ, protección de RNasa, sistemas de microchips de ADN de sondeo y similares.
- El nivel de transcritos de c-KIT o la presencia de una mutación en el transcripto se puede detectar también por métodos basados en la amplificación (por ejemplo, RT-PCR). Los métodos RT-PCR son muy conocidos por los expertos (véase, por ejemplo, Ausubel *et al.*, supra). Preferiblemente, en la RT-PCR cuantitativa, por ejemplo, se utiliza un ensayo TaqMan®, lo que permite la comparación del nivel de ARNm en una muestra con una muestra control o valor.

Detección de secuencias del polipéptido c-Kit

La expresión o la actividad del c-Kit alterada también se pueden detectar mediante la detección de los niveles de proteína o de la actividad de c-Kit. Por ejemplo, la detección de la actividad de la proteína c-Kit o la expresión se puede utilizar con fines diagnósticos o en ensayos de selección. En algunos aspectos, el nivel de c-Kit se determina convenientemente usando ensayos inmunológicos para detectar el nivel de polipéptidos de c-kit. La siguiente sección trata sobre la detección inmunológica de c-kit. La sección también se refiere a la generación y la ingeniería de anticuerpos que se pueden utilizar, por ejemplo, en aplicaciones terapéuticas.

40 Detección inmunológica de c-Kit

30

35

45

50

55

60

65

Los anticuerpos pueden usarse para detectar c-Kit o se pueden evaluar en los métodos de la divulgación para la capacidad de inhibir c-Kit. Se puede detectar y/o cuantificar c-Kit usando cualquiera de un número de ensayos de unión inmunológicos bien reconocidos. Una visión general de la tecnología aplicable puede encontrarse en Harlow y Lane, Antibodies: A Laboratory Manual (1988) y Harlow y Lane, Using Antibodies (1999). Otros recursos incluyen también en Methods in Cell Biology: Antibodies in Cell Biology, volumen 37 (Asai, ed. 1993); Basic and Clinical Immunology (Stites y Terr, eds., 7ª ed., 1991, y Current Protocols in Immunology (Coligan, et al. Eds, John C. Wiley, 1999-hasta el presente). Los ensayos de unión inmunológicos pueden utilizar anticuerpos policlonales o monoclonales. En algunos aspectos, se pueden emplear anticuerpos que detectan específicamente moléculas mutantes c-KIT.

Ensayos utilizados comúnmente incluyen ensayos no competitivos, por ejemplo, ensayos de sándwich y ensayos competitivos. En ensayos competitivos, la cantidad de c-Kit presente en la muestra se mide indirectamente midiendo la cantidad de un c-Kit conocido, añadido (exógeno) desplazado (competido a distancia) de un anticuerpo anti-c-Kit por el desconocido c-Kit presente en una muestra. Otros formatos de ensayo usados comúnmente incluyen inmunotransferencias, que se utilizan para detectar y cuantificar la presencia de proteínas en una muestra. Otros formatos de ensayo incluyen inmunoensayos de liposomas (LIA), que utilizan liposomas diseñados para unirse a moléculas específicas (por ejemplo, anticuerpos) y liberar reactivos o marcadores encapsulados, que son detectados a continuación de acuerdo con técnicas estándar (véase Monroe et al., Amer. Clin. Prod. Rev. 5: 34-41 (1986)).

Los inmunoensayos también utilizan a menudo un agente marcador para unirse específicamente y marcar el complejo formado por el anticuerpo y el antígeno. El agente marcador puede ser en sí mismo uno de los restos que comprenden el complejo anticuerpo/antígeno. Por lo tanto, el agente marcador puede ser un polipéptido c-Kit marcado o un anticuerpo anti-c-Kit marcado. Alternativamente, el agente marcador puede ser un tercer resto, tal como un anticuerpo secundario, que se une específicamente al complejo anticuerpo/antígeno (un anticuerpo secundario es típicamente específico para los anticuerpos de la especie de la que se deriva el primer anticuerpo).

Otras proteínas capaces de unirse específicamente a regiones constantes de inmunoglobulina, tales como la proteína A o la proteína G también se pueden usar como el agente de marcado. El agente marcador puede modificarse con un resto detectable, tal como biotina, a la que otra molécula se puede unir específicamente, tal como estreptavidina. La variedad de restos detectables es muy conocida para los expertos en la técnica.

El marcador particular o grupo detectable usado en el ensayo no es un aspecto crítico de la divulgación, con tal de que no interfiera significativamente con la unión del anticuerpo utilizado en el ensayo específico. El grupo detectable puede ser cualquier material que tenga una propiedad física o química detectable. Tales marcadores detectables se han desarrollado mucho en el campo de los inmunoensayos y, en general, la mayoría de cualquier marcador útil en tales métodos puede aplicarse a la presente divulgación. Por lo tanto, un marcador es cualquier composición detectable por medios espectroscópicos, fotoquímicos, bioquímicos, inmunoquímicos, eléctricos, ópticos o químicos. Los marcadores útiles en la presente divulgación incluyen perlas magnéticas (por ejemplo, DynabeadsTM), compuestos fluorescentes (por ejemplo, isotiocianato de fluoresceína, rojo de Texas, rodamina, fluoresceína y similares), radiomarcadores, enzimas (por ejemplo, peroxidasa de rábano picante, fosfatasa alcalina y otras utilizadas comúnmente en un ELISA), estreptavidina/biotina y marcadores colorimétricos tales como el oro coloidal o el vidrio coloreado o las perlas de plástico (por ejemplo, poliestireno, polipropileno, látex, etc.). Se pueden usar también compuestos quimioluminiscentes. Para una revisión de diversos sistemas de marcaje o de producción de señal que se pueden usar, véase la patente de EE.UU. N.º 4.391.904.

Hay anticuerpos para c-kit disponibles comercialmente. En algunos aspectos, las mutaciones de c-Kit se pueden detectar usando anticuerpos que se unen específicamente a una forma mutante, así también se pueden utilizar inmunoensayos para detectar las proteínas c-Kit mutantes.

El c-Kit o un fragmento del mismo, por ejemplo, el dominio extracelular, o el dominio de yuxtaposición, se pueden utilizar para producir anticuerpos específicamente reactivos con c-Kit. Por ejemplo, se aísla un c-Kit recombinante o un fragmento antigénico del mismo. La proteína recombinante es el inmunógeno preferido para la producción de anticuerpos monoclonales o policionales. Alternativamente, puede ser utilizado un péptido sintético derivado de las secuencias divulgadas en este documento y conjugado a una proteína vehículo como inmunógeno. También se pueden utilizar proteínas de origen natural, ya sea en forma pura o impura. El producto se utiliza a continuación para generar anticuerpos.

Los métodos para producir anticuerpos policionales y monocionales que reaccionan específicamente con c-KIT son conocidos por los expertos en la técnica (véase, por ejemplo, Coligan; Harlow y Lane, ambos supra). Dichas técnicas incluyen la preparación de anticuerpos por selección de anticuerpos a partir de bibliotecas de anticuerpos recombinantes en fagos o vectores similares, así como la preparación de anticuerpos policionales y monocionales inmunizando conejos o ratones (véase, por ejemplo, Huse et al., Science 246: 1275-1281 (1989); Ward et al., Nature 341: 544-546 (1989)). Tales anticuerpos pueden ser utilizados para aplicaciones diagnósticas o pronósticas, por ejemplo, en la detección de melanomas o de otros tipos de cáncer que muestren una mayor expresión o actividad del c-Kit.

Típicamente, se seleccionan antisueros policlonales con un título de 104 o mayor y se analizan de acuerdo a su reactividad cruzada frente a proteínas no-c-Kit o incluso otras proteínas relacionadas de otros organismos, usando un inmunoensayo de unión competitiva. Los antisueros policlonales específicos y los anticuerpos monoclonales se unirán normalmente con una Kd de al menos aproximadamente 0,1 mM, más habitualmente a al menos aproximadamente 1 μM, opcionalmente a al menos aproximadamente 0,1 μM o mejor, y opcionalmente a 0,01 μM o mejor.

En algunas realizaciones, puede ser utilizado un anticuerpo c-kit para aplicaciones terapéuticas. Por ejemplo, en algunos aspectos, se puede utilizar un anticuerpo de este tipo para reducir o eliminar una función biológica de c-Kit como se describe a continuación. Es decir, la adición de anticuerpos anti-c-Kit (tanto policionales como preferiblemente monoclonales) a tejido de melanoma maligno (o una población de células que contiene células cancerosas) puede reducir o eliminar el melanoma. Generalmente, se prefiere al menos una disminución del 25% en la actividad, el crecimiento, el tamaño o similares, siendo particularmente preferido al menos aproximadamente una del 50% y aproximadamente siendo especialmente preferida una disminución de 95-100%.

A menudo, los anticuerpos frente a las proteínas c-kit para aplicaciones terapéuticas son anticuerpos humanizados (por ejemplo, Xenerex Biosciences, Mederex, Inc., Abgenix, Inc., Protein Design Labs, Inc.). Las formas humanizadas de anticuerpos no humanos (por ejemplo, murinos) son moléculas quiméricas de inmunoglobulinas, cadenas de inmunoglobulinas o fragmentos de los mismos (tales como anticuerpos de Fv, Fab, Fab', F(ab')2 u otras subsecuencias de unión a antígeno de los anticuerpos) que contienen una secuencia mínima derivada de inmunoglobulina no humana. Los anticuerpos humanizados incluyen inmunoglobulinas humanas (anticuerpo receptor) en las que los restos de una región determinante de complementariedad (CDR) del receptor se sustituyen por restos de una CDR de una especie no humana (anticuerpo donante) tal como ratón, rata o conejo que tienen la especificidad, afinidad y capacidad deseada. En algunos casos, los restos del marco Fv de la inmunoglobulina humana se sustituyen por los correspondientes restos no humanos. Los anticuerpos humanizados también pueden comprender restos que no se encuentran ni en el anticuerpo receptor ni en las secuencias CDR o marco importadas.

En general, un anticuerpo humanizado comprenderá sustancialmente todos de al menos uno, y típicamente dos, dominios variables, en los que todas o sustancialmente todas las regiones CDR corresponden a las de una inmunoglobulina no humana y todas o sustancialmente todas de las regiones marco (FR) son las de una secuencia consenso de inmunoglobulina humana. El anticuerpo humanizado óptimamente también comprenderá al menos una porción de una región constante de inmunoglobulina (Fc), típicamente la de una inmunoglobulina humana (Jones et al., Nature 321: 522-525 (1986); Riechmann et al., Nature 332: 323-329 (1988); y Presta, Curr. Op. Struct. Biol. 2: 593-596 (1992)). La humanización puede realizarse esencialmente siguiendo el procedimiento de Winter y colaboradores (Jones et al., Nature 321: 522-525 (1986); Riechmann et al., Nature 332: 323-327 (1988); Verhoeyen et al., Science 239: 1534-1536 (1988)), mediante la sustitución de secuencias CDRs o CDR de roedor por las secuencias correspondientes de un anticuerpo humano. Por consiguiente, dichos anticuerpos humanizados son anticuerpos quiméricos (patente de EE.UU. No. 4.816.567), en donde sustancialmente menos de un dominio variable humano intacto ha sido sustituido por la secuencia correspondiente de una especie no humana.

Los anticuerpos humanos también pueden producirse usando diversas técnicas conocidas en la técnica, incluyendo bibliotecas de presentación de fagos (Hoogenboom y Winter, J. Mol. Biol. 227: 381 (1991); Marks *et al.*, J. Mol. Biol. 222: 581 (1991)). Las técnicas de Cole *et al.* y Boerner *et al.* también están disponibles para la preparación de anticuerpos monoclonales humanos (Cole *et al.*, Monoclonal Antibodies and Cancer Therapy, p. 77 (1985) y Boerner *et al.*, J. Immunol. 147(1): 86-95 (1991)). De manera similar, los anticuerpos humanos se pueden hacer mediante la introducción de loci de inmunoglobulina humana en animales transgénicos, por ejemplo, ratones en los que los genes de inmunoglobulina endógena han sido parcial o completamente inactivados. Tras la estimulación, se observa la producción de anticuerpos humanos, que se asemeja bastante a la observada en los seres humanos en todos los aspectos, incluyendo el reordenamiento del gen, ensamblaje y repertorio de anticuerpos. Este enfoque se describe, por ejemplo, en la patente de EE.UU. Nos. 5.545.807; 5.545.806; 5.569.825; 5.625.126; 5.633.425; 5.661.016, y en las siguientes publicaciones científicas: Marks *et al.*, Bio/Technology 10: 779-783 (1992); Lonberg y otros, Nature 368: 856-859 (1994); Morrison, Nature 368: 812-13 (1994); Fishwild *et al.*, Nature Biotechnology 14: 845-51 (1996); Neuberger, Nature Biotechnology 14: 826 (1996); Lonberg y Huszar, Intern. Rev. Immunol. 13: 65-93 (1995).

Detección de la actividad

5

10

15

20

25

50

55

60

Como se aprecia por cualquier experto en la técnica, la actividad de c-Kit se puede detectar para evaluar los niveles de expresión o para identificar los inhibidores de la actividad. La actividad se puede evaluar usando una variedad de ensayos *in vitro* e *in vivo*, incluyendo la actividad de unión del ligando y la actividad de la tirosina quinasa. En algunos aspectos, discutidos con mayor detalle a continuación, los inhibidores se pueden identificar usando criterios de valoración adicionales, tales como los asociados con la transformación. Normalmente la actividad de c-Kit se determina midiendo la capacidad de unirse a una proteína con la que interactúa, por ejemplo, un anticuerpo, ligando, u otras proteínas, tales como moléculas de señalización que contienen dominios SH2.

Diagnóstico/pronóstico de enfermedades

Se pueden utilizar c-Kit y secuencias de ácidos nucleicos SHP2 y polipéptidos para el diagnóstico o pronóstico del melanoma en un paciente. Por ejemplo, como se describe anteriormente, se puede determinar la secuencia, el nivel o la actividad de c-Kit en una muestra de melanoma de un paciente, en el que una alteración, por ejemplo, un aumento en el nivel de expresión o de actividad de c-Kit, o la detección de un aumento en el número de copias o una mutación en la secuencia de c-Kit, indica la presencia o la probabilidad de melanoma.

A menudo, se pueden utilizar estos métodos en combinación con otros métodos de diagnóstico, por ejemplo, la detección de otros indicadores de melanoma, por ejemplo, la morfología celular y similar. En otros aspectos, una muestra de tejido que se sabe que contiene células de melanoma, por ejemplo, de un tumor, será analizado en busca de defectos c-Kit para determinar información sobre el cáncer, por ejemplo, la eficacia de ciertos tratamientos, tales como agentes terapéuticos que se dirigen a tirosina quinasas receptoras, tales como mesilato de imatinib, la esperanza de supervivencia y similares.

En algunos aspectos, se puede utilizar el análisis de las células de melanoma para la presencia de defectos de c-Kit o una mutación de la secuencia SHP2 para determinar el pronóstico de un paciente con melanoma o para determinar la progresión de la enfermedad. Por ejemplo, si se detecta el melanoma usando una técnica que no sea mediante la detección de c-Kit, por ejemplo, mediante la biopsia del tejido, entonces, la presencia o la ausencia de un defecto de c-Kit se pueden utilizar para determinar el pronóstico para el paciente, es decir, la presencia de un defecto en c-Kit, o la mutación de la secuencia SHP2, suelen indicar una esperanza de la reducción de la supervivencia en el paciente en comparación con un paciente con melanoma pero con un nivel normal de c-Kit. En la presente memoria, "esperanza de supervivencia" se refiere a una predicción con respecto a la gravedad, la duración, o el progreso de una enfermedad, afección, o cualquier síntoma de la misma. Una "presencia de diagnóstico" puede ser un aumento en el número de copias de c-KIT, aumento de los niveles de ARNm de c-KIT o proteína y/o presencia de mutaciones en la secuencia de c-KIT o SHP2 que alteran la función.

65 Cualquier muestra biológica sospechosa de contener células de melanoma puede ser evaluada para determinar la progresión. Por ejemplo, pueden ser analizados tejidos de los órganos viscerales, sangre, ganglios linfáticos y

similares para detectar la presencia de mutaciones de la secuencia de c-Kit o SHP2 y/o aumentos en el número de copias de c-kit y/o la expresión.

La presencia de una mutación particular también puede indicar que un melanoma puede o no puede ser sensible a ciertos tratamientos, por ejemplo, mesilato de imatinib. Por ejemplo, los melanomas que tienen mutaciones en la región yuxtamembrana no pueden ser sensibles a mesilato de imatinib.

Los métodos de la presente divulgación se pueden utilizar para determinar el curso óptimo del tratamiento en un paciente con cáncer. Por ejemplo, la presencia de un aumento en el número de copias de c-KIT y/o un nivel elevado de c-Kit y/o una mutación de la secuencia en c-Kit puede indicar que ciertos agentes terapéuticos, tales como los que reconocen a tirosina quinasas receptoras, serán beneficiosos para los pacientes. Además, puede establecerse una correlación fácilmente entre la presencia de un defecto en c-Kit y/o una mutación de secuencia en SHP2, y la eficacia relativa de uno u otro agente anti-melanoma. Tales análisis se pueden realizar, por ejemplo, a posteriori, es decir, mediante el análisis de un defecto de c-Kit y mutación de secuencia SHP2 en las muestras tomadas previamente a partir de pacientes que han sido padecido posteriormente uno o más tipos de terapia contra el cáncer, por ejemplo, las terapias que reconocen tirosina quinasa receptoras y correlacionar la presencia del defecto con la conocida eficacia del tratamiento.

Detección de inhibidores o moduladores de c-KIT

5

10

15

20

25

30

35

40

45

50

65

En otro aspecto, la presente divulgación incluye métodos de tratamiento de melanoma que sobreexpresan y/o tienen una mutación en c-KIT, donde el método comprende administrar un inhibidor de c-KIT. Los inhibidores de c-KIT son conocidos, incluyendo, por ejemplo, el mesilato de imatinib. El mesilato de imatinib, que inhibe el producto de la oncoproteína de la translocación cromosómica Philadelphia, BCR-ABL, inhibe otros miembros de la familia del receptor del dominio tipo III de tirosina quinasa dividido, incluyendo Kit, PDGF-Rα y FLT-3 (véase, por ejemplo, la revisión de Wong & Witte en Annu Rev Immunol. 22: 247-306, 2004). También se han identificado otros inhibidores de molécula pequeña de la actividad de tirosina quinasa KIT. Estos incluyen indolinonas y anilinoftalazinas (véase, por ejemplo, Ma *et al.*, J. Invest. Dermatol. 114: 392-394, 2000; Smolich *et al.* Blood 97: 1413-1421, 2001; Krystal *et al.* Cancer Res. 61: 3660-3668, 2001; Mendel *et al.*, Anticancer Drug Des 15: 29-41, 2000; y Wood *et al.* Cancer Res. 60: 2178-2189, 2000). Medicamentos particulares en estas clases incluyen SU6668 y SU5416 (SUGEN Inc. South San Francisco, Calif.).

Otros inhibidores incluyen inhibidores tales como anticuerpos, péptidos, ácidos nucleicos y similares. Tal como se usa en el presente documento, un inhibidor de c-Kit es una molécula que modula la expresión del ácido nucleico de c-Kit y/o la actividad de la proteína de c-Kit.

El método de cribado de los moduladores de compuestos puede emplear, por ejemplo, células de melanoma en la que c-kit se sobreexpresa o se amplifica. Tales moduladores pueden ser moduladores de tirosina quinasa receptora candidatos.

Pueden ser identificados inhibidores de c-kit adicionales por el ensayo de la actividad de c-kit, por ejemplo, por unión o actividad enzimática. Tales ensayos emplean secuencias de c-kit o fragmentos conocidos, por ejemplo, el dominio extracelular de c-kit, o variantes de los mismos. Una secuencia del polipéptido de la secuencia c-kit humana ejemplar que podría ser utilizada en tales ensayos se proporciona en la SEQ ID NO: 2.

Los ensayos de actividad se usan para identificar inhibidores que se pueden utilizar como agentes terapéuticos, por ejemplo, anticuerpos para c-Kit y antagonistas de la actividad c-Kit. Los inhibidores de la actividad de c-Kit son examinados usando polipéptidos de c-kit, ya sean recombinantes o de origen natural. La proteína puede aislarse, expresarse en una célula, expresarse en tejidos o en un animal, ya sea recombinante o de origen natural. Por ejemplo, se pueden utilizar células transformadas. La modulación se ensaya utilizando uno de los ensayos *in vitro* o *in vivo* descritos en este documento. La actividad también puede ser examinada *in vitro* con reacciones en estado soluble o sólido, utilizando un fragmento de c-Kit que se une a otra proteína, por ejemplo, un ligando de c-KIT.

En otro aspecto, los niveles de ARNm y/o de expresión de proteínas se pueden medir para evaluar los efectos de un compuesto de ensayo sobre los niveles de expresión de c-Kit. Una célula huésped que expresa c-Kit se pone en contacto con un compuesto de ensayo durante un tiempo suficiente para efectuar cualquier interacción, y entonces se mide el nivel de ARNm o de proteína. La cantidad de tiempo para efectuar dichas interacciones puede determinarse empíricamente, tal como mediante la ejecución de un curso de tiempo y midiendo el nivel de expresión como una función de tiempo. La cantidad de expresión se puede medir mediante el uso de cualquier método conocido por los expertos en la técnica por ser adecuado.

La cantidad de expresión entonces se compara con la cantidad de expresión en ausencia del compuesto de ensayo. Una célula sustancialmente idéntica puede derivarse de las mismas células a partir de las cuales se preparó la célula recombinante pero que no habían sido modificadas por la introducción del ADN heterólogo. Una diferencia en la cantidad de expresión indica que el compuesto de ensayo tiene de alguna manera niveles de c-Kit alterados.

En ensayos que identifican a los inhibidores de c-kit, las muestras que se tratan con un inhibidor potencial se comparan con muestras de control para determinar la extensión de la modulación. A las muestras de control (no tratadas con inhibidores candidatos) se les asigna un valor de actividad relativa de 100. La inhibición de c-Kit se consigue cuando el valor de actividad con respecto al control es de aproximadamente 80%, opcionalmente 50%, opcionalmente 25-0%.

Los compuestos ensayados como inhibidores de c-kit pueden ser cualquier compuesto químico pequeño, o una entidad biológica, por ejemplo, una macromolécula tal como una proteína, azúcar, ácido nucleico o lípido. Alternativamente, los moduladores pueden ser alterados genéticamente en versiones de c-Kit. Típicamente, los compuestos de ensayo serán moléculas químicas pequeñas y péptidos o anticuerpos.

En algunas realizaciones, los agentes tienen un peso molecular de menos de 1.500 daltons y, en algunos casos, menos de 1.000, 800, 600, 500 o 400 daltons. El tamaño relativamente pequeño de los agentes puede ser deseable porque las moléculas más pequeñas tienen una mayor probabilidad de tener propiedades fisicoquímicas compatibles con buenas características farmacocinéticas, incluyendo la absorción oral de agentes con mayor peso molecular. Por ejemplo, fueron descritos agentes menos probables de tener éxito como medicamentos basados en la permeabilidad y solubilidad por Lipinski *et al.* de la siguiente manera: tienen más de 5 donantes de puentes de H (expresados como la suma de OH y NH); tienen un peso molecular de más de 500; tienen un LogP de más de 5 (o MLogP sobre 4,15); y/o tiene más de 10 aceptores de puentes de H (expresados como la suma de N y O). Véase, por ejemplo, Lipinski *et al.* Adv Drug Delivery Res 23: 3-25 (1997). Las clases de compuestos que son sustratos para los transportadores biológicos suelen ser excepciones a la regla.

Esencialmente puede ser usado cualquier compuesto químico como modulador potencial o ligando en los ensayos de la invención. Muy a menudo, los compuestos pueden disolverse en soluciones acuosas u orgánicas (especialmente basadas en DMSO). Los ensayos están diseñados para cribar grandes bibliotecas químicas mediante la automatización de las etapas de ensayo, que normalmente se ejecutan en paralelo (por ejemplo, en formatos de microtitulación en placas de microtitulación en ensayos robotizados). Se apreciará que existen muchos proveedores de compuestos químicos, incluyendo Sigma (St. Louis, MO), Aldrich (St. Louis, MO), Sigma-Aldrich (St. Louis, MO), Fluka Chemika-Biochemica Analytika (Buchs Suiza) y similares.

Ensayos de expresión

5

10

15

20

25

30

35

50

55

60

Ciertos métodos de cribado implican la detección de un compuesto que modula la expresión de c-Kit. Tales métodos implican generalmente la realización de ensayos basados en células en las que se ponen en contacto los compuestos de ensayo con una o más células que expresan un c-Kit y luego la detección de una disminución de la expresión (ya sea la transcripción o el producto de la traducción). Dichos ensayos se realizan a menudo con células que sobreexpresan c-Kit.

La expresión puede ser detectada en un número de diferentes maneras. Como se describe en este documento, los niveles de expresión de la proteína en una célula se pueden determinar mediante el sondeo del ARNm expresado en una célula con una sonda que se hibrida específicamente con un transcrito de c-Kit (o el ácido nucleico complementario derivado del mismo). Alternativamente, la proteína se puede detectar usando métodos inmunológicos en los que un lisado celular se sondea con anticuerpos que se unen específicamente a la proteína.

Otros ensayos basados en células son ensayos reporteros llevados a cabo con células que no expresan la proteína. A menudo, estos ensayos se llevan a cabo con una construcción de ácido nucleico heteróloga que incluye un promotor que está unido operativamente a un gen indicador que codifica un producto detectable.

Inhibidores de ácido nucleico

En algunos aspectos, los inhibidores de c-kit son moléculas de ácido nucleico. Por ejemplo, pueden usarse ribozimas, ARN antisentido y/o moléculas de ARN interferente pequeño (ARNip) para reconocer al c-Kit.

En algunos aspectos, las moléculas de ARNip se utilizan como inhibidores de c-KIT. En células de mamíferos, la introducción de ARNbc largos (> 30 nt) a menudo inicia una respuesta antiviral potente, ejemplificada por la inhibición no específica de la síntesis de proteínas y la degradación del ARN. El fenómeno de la interferencia de ARN se describe y se discute, por ejemplo, en Bass, Nature 411: 428-29 (2001); Elbahir *et al.*, Nature 411: 494-98 (2001); y Fire *et al.*, Nature 391: 806-11 (1998), donde se discuten también métodos de preparación de ARN de interferencia. Los ARNip en base a las secuencias de c-Kit divulgadas en este documento son menos de 100 pares de bases, típicamente 30 bps o más cortos, y son hechos por métodos conocidos en la técnica. Los ARNip ejemplares de acuerdo con la divulgación podrían tener hasta 29 bps, 25 bps, 22 bps, 21 bps, 20 bps, 15 bps, 10 bps, 5 bps o cualquier número entero o alrededor del mismo entre los mismos.

El ARNip puede comprender dos moléculas complementarias, o pueden construirse de tal manera que un único transcrito tiene tanto secuencias complementarias sentido como antisentido del gen diana, por ejemplo, una horquilla.

Se conocen métodos para el diseño de ARN de doble cadena que inhiben la expresión de genes en una célula diana (véase, por ejemplo, la patente de EE.UU. No. 6.506.559; Elbashir *et al.* Methods 26: 199-213, 2002; Chalk *et al.*, Biochem. Biophysy Res. Comm 319: 264-274, 2004; Cui *et al.* Computer Method and Programs in Biomedicine 75: 67-73, 2004, Wang *et al.*, Bioinformatics 20: 1818-1820, 2004). Por ejemplo, el diseño de ARNip (incluyendo las horquillas) siguen típicamente las reglas termodinámicas conocidas (véase, por ejemplo, Schwarz, *et al.*, Cell 115: 199-208, 2003; Reynolds *et al.*, Nat Biotechnol. 22: 326-30, 2004; Khvorova, *et al.*, Cell 115: 209-16, 2003). Muchos programas de ordenador están disponibles para la selección de regiones de c-Kit que son sitios diana adecuados. Estos incluyen programas disponibles a través de fuentes comerciales tales como Ambion, Dharmacon, Promega, Invitrogen, Ziagen y GenScript, así como fuentes no comerciales tales como EMBOSS, The Wistar Institute, Instituto Whitehead y otros.

5

10

15

20

40

45

65

Por ejemplo, el diseño se puede basar en las siguientes consideraciones. Típicamente se seleccionan secuencias más cortas, es decir, menos de aproximadamente 30 nucleótidos. La región de codificación del ARNm es generalmente reconocida. La búsqueda de una secuencia diana apropiada comienza opcionalmente 50-100 nucleótidos cadena abajo del codón de inicio, ya que las proteínas de unión de región no traducida y/o los complejos de iniciación de la traducción pueden interferir con la unión del complejo de endonucleasa de RNPip. Algunos algoritmos, por ejemplo, basados en el trabajo de Elbashir *et al.*, supra, buscan un motivo AA de secuencia de 23 nt (N19)TT (N, cualquier nucleótido) y seleccionan las entradas con aprox. 50% del contenido de G/C (de 30% a 70% también ha trabajado en ellos). Si no se encuentran secuencias adecuadas, la búsqueda se extiende usando el motivo NA (N21). La secuencia del ARNip sentido corresponde a (N19)TT o N21 (posición de 3 a 23 del motivo de 23-nt), respectivamente. En este último caso, el extremo 3 'del sentido ARNip se convierte a TT.

Otros algoritmos preferiblemente seleccionan ARNip correspondientes al motivo diana NAR (N17) SNN, donde R es purina (A, G) e Y es pirimidina (C, U). Por consiguiente, los respectivos ARNip sentido y antisentido de 21-nt comienzan con un nucleótido de purina y también pueden expresarse a partir de vectores de expresión de pol III sin un cambio en el sitio de reconocimiento; la expresión de los ARN de promotores de pol III sólo es eficaz cuando el primer nucleótido transcrito es una purina.

También pueden ser diseñados otros ácidos nucleicos, por ejemplo, ribozimas, antisentido, en base a principios conocidos. Por ejemplo, Sfold (véase, por ejemplo, Ding, *et al.*, Nucleic Acids Res. 32 Ejemplar del Servidor Web, W135-W141, Ding y Lawrence, Nucl. Acids Res. 31: 7280, 7301, 2003; y Ding y Lawrence, Nucl. Acids Res. 20: 1034-1046, 2001) proporcionan programas relacionados con el diseño de ribozimas y antisentido, así como ARNip.

35 Tratamiento del melanoma y administración de productos farmacéuticos y composiciones de vacuna

Se pueden administrar inhibidores de c-Kit a un paciente para el tratamiento de melanomas. Como se describe en detalle a continuación, los inhibidores se administran de cualquier manera adecuada, opcionalmente con vehículos farmacéuticamente aceptables. En algunos aspectos, se administra el mesilato de imatinib, o enantiómeros, profármacos y sales farmacéuticamente aceptables del mismo. El mesilato de imatinib está disponible en Novartis (Basilea, Suiza) (Savage, D. G. y Antman, K. H. (2002) N. Engl. J. Med. 346(9): 683-93; Mauro, M. J. et al. (2002) J. Clin. Oncol. 20(1): 325-34; Schiffer, C. A. (2001) Semin. Oncol. 28(5 Supl. 17): 34-9; Demetri, G. D. (2001) Semin. Oncol. 28(5 Supl. 17): 3-8; Verweij, J. et al. (2001) Eur. J. Cancer. 37(15): 1816-9; Shah, N. P. y Sawyers, C. L. (2001) Curr. Opin. Investig. Drugs. 2(3): 422-3). Los protocolos para la administración de inhibidores, tal como el mesilato de imatinib, son conocidos (véase, por ejemplo, J Clin Oncol. 1 de diciembre de 2003; 21 (23): 4342-9) y se pueden optimizar aún más para los pacientes con melanoma en base a los principios conocidos en las técnicas farmacológicas (Remington Pharmaceutical Sciences, 17ª ed, 1989).

Se conocen otros inhibidores de c-KIT. Por ejemplo, los compuestos que tienen una estructura de indolina se informaron como los que muestran la acción inhibidora de quinasa c-Kit (documento WO 01/45689). También había un informe relativo a la acción inhibidora sobre la quinasa c-Kit por los compuestos que tienen una estructura de quinazolina (documento WO 01/47890). Otros inhibidores de c-kit conocidos incluyen CT52923, PD173955, XL820, SU11248 y SU5614. Aunque puede ser deseable usar un inhibidor específico de c-KIT, los inhibidores de c-KIT se pueden administrar también para que reconozcan otras tirosina quinasas receptoras. Por ejemplo, el SU11248 (Sutent, Pfizer) es un inhibidor de tirosina quinasa receptora de dianas múltiples que reconoce 3 tirosina quinasas distintas del receptor del factor de crecimiento endotelial vascular (VEGFR-1, -2 y -3), receptor alfa y beta del factor de crecimiento derivado de plaquetas (PDGFR-α y -β), receptoras de KIT, y tirosina quinasa 3/Flk2 fms relacionadas (FLT3). El dasatinib (Bristol Myers Squibb, BMS-354825) es un inhibidor de quinasa de pequeña molécula. El dasatinib es también un inhibidor de SRC, así como un inhibidor de abl.

Los inhibidores se pueden administrar a un paciente en dosis terapéuticamente eficaces para prevenir, tratar o controlar el melanoma. Los compuestos se administran a un paciente en una cantidad suficiente para provocar una respuesta protectora o terapéutica eficaz en el paciente. Una respuesta terapéutica eficaz es una respuesta que, al menos parcialmente, detiene o retrasa los síntomas o las complicaciones de la enfermedad. Una cantidad adecuada para lograr esto se define como una "dosis terapéuticamente eficaz". La dosis se determinará por la eficacia de los

inhibidores de c-Kit particulares empleados y la condición del sujeto, así como por el peso corporal o el área superficial de la zona a tratar. El tamaño de la dosis también será determinado por la existencia, la naturaleza y la extensión de cualquier efecto adverso que acompañe la administración de un compuesto o vector particular en un sujeto particular.

5

10

30

35

40

45

60

65

La toxicidad y la eficacia terapéutica de tales compuestos pueden determinarse mediante procedimientos farmacéuticos estándar en cultivos celulares o animales experimentales, por ejemplo, determinando la LD $_{50}$ (la dosis letal para el 50% de la población) y la ED $_{50}$ (la dosis terapéuticamente eficaz en el 50% de la población). La relación de dosis entre los efectos tóxicos y los terapéuticos es el índice terapéutico y puede expresarse como la relación LD $_{50}$ /ED $_{50}$. Se prefieren compuestos que exhiban índices terapéuticos grandes. Aunque se pueden utilizar compuestos que exhiban efectos secundarios tóxicos, se debe tener cuidado al diseñar el sistema de administración que reconoce dichos compuestos en el sitio del tejido afectado para minimizar el daño potencial a las células normales y, por lo tanto, para reducir los efectos secundarios.

Los datos obtenidos de los ensayos de cultivos celulares y de los estudios animales pueden usarse para formular un intervalo de dosificación para uso en humanos. La dosificación de dichos compuestos se encuentra preferiblemente dentro de un intervalo de concentraciones circulantes que incluye una ED₅₀ con poca o ninguna toxicidad. La dosificación puede variar dentro de este intervalo dependiendo de la forma de dosificación empleada y la ruta de administración. Para cualquier compuesto utilizado en los métodos de la invención, la dosis terapéuticamente eficaz puede estimarse inicialmente a partir de ensayos de cultivo celular. Una dosis puede formularse en modelos animales para conseguir un intervalo de concentraciones en plasma circulante que incluya la IC₅₀ (la concentración del compuesto de ensayo que consigue una inhibición media máxima de los síntomas) como se determina en cultivo celular. Dicha información se puede utilizar para determinar con mayor precisión las dosis útiles en seres humanos. Los niveles en plasma pueden medirse, por ejemplo, por cromatografía líquida de alto rendimiento (HPLC). En general, la dosis equivalente de un modulador es de aproximadamente 1 ng/kg a 10 mg/kg para un sujeto típico.

Las composiciones farmacéuticas para su uso en la presente invención se pueden formular por medio de técnicas estándar utilizando uno o más vehículos o excipientes fisiológicamente aceptables. Los compuestos y sus sales y solvatos fisiológicamente aceptables pueden formularse para su administración por cualquier vía adecuada, incluyendo por vía de la inhalación, tópica, nasal, oral, parenteral (por ejemplo, por vía intravenosa, intraperitoneal, intravesical o intratecal) o por vía rectal.

Para la administración oral, las composiciones farmacéuticas pueden tomar la forma de, por ejemplo, comprimidos o cápsulas preparadas por medios convencionales con excipientes farmacéuticamente aceptables, que incluyen agentes de unión, por ejemplo, almidón de maíz pregelatinizado, polivinilpirrolidona o hidroxipropil metilcelulosa; cargas, por ejemplo, lactosa, celulosa microcristalina o hidrógeno fosfato de calcio; lubricantes, por ejemplo, estearato de magnesio, talco o sílice; agentes disgregantes, por ejemplo, almidón de patata o almidón glicolato sódico; o agentes humectantes, por ejemplo, lauril sulfato de sodio. Los comprimidos pueden recubrirse por métodos bien conocidos en la técnica. Las preparaciones líquidas para la administración oral pueden tomar la forma de, por ejemplo, soluciones, jarabes o suspensiones, o se pueden presentar como un producto seco para su constitución con agua u otro vehículo adecuado antes del uso. Tales preparaciones líquidas pueden prepararse por medios convencionales con aditivos farmacéuticamente aceptables, por ejemplo, agentes de suspensión, por ejemplo, jarabe de sorbitol, derivados de celulosa o grasas comestibles hidrogenadas; agentes emulsionantes, por ejemplo, lecitina o goma arábiga; vehículos no acuosos, por ejemplo, aceite de almendras, ésteres oleosos, alcohol etílico o aceites vegetales fraccionados; y conservantes, por ejemplo, p-hidroxibenzoatos de metilo o propilo o ácido sórbico. Las preparaciones también pueden contener sales tampón, agentes aromatizantes, colorantes y/o edulcorantes, según sea apropiado. Si se desea, las preparaciones para la administración oral se pueden formular adecuadamente para dar una liberación controlada del compuesto activo.

Para la administración por inhalación, los compuestos se pueden administran convenientemente en la forma de una presentación de pulverización de aerosol desde envases presurizados o un nebulizador, con el uso de un propulsor adecuado, por ejemplo, diclorodifluorometano, triclorofluorometano, diclorotetrafluoroetano, dióxido de carbono u otro gas adecuado. En el caso de un aerosol presurizado, la unidad de dosificación puede determinarse proporcionando una válvula para suministrar una cantidad medida. Las cápsulas y los cartuchos de, por ejemplo, gelatina para uso en un inhalador o insuflador se pueden formular conteniendo una mezcla en polvo del compuesto y una base en polvo adecuada, por ejemplo, de lactosa o almidón.

Los compuestos pueden formularse para administración parenteral por inyección, por ejemplo, mediante inyección de bolo o infusión continua. Las formulaciones para inyección se pueden presentar en la forma de dosificación unitaria, por ejemplo, en ampollas o en recipientes de dosis múltiples, con un conservante añadido. Las composiciones pueden tomar formas tales como suspensiones, soluciones o emulsiones en vehículos oleosos o acuosos, y pueden contener agentes de formulación, por ejemplo, de suspensión, estabilizantes y/o dispersantes. Alternativamente, el ingrediente activo puede estar en forma de polvo para su constitución con un vehículo adecuado, por ejemplo, agua estéril libre de pirógenos, antes de su uso.

Los compuestos también se pueden formular en composiciones rectales, por ejemplo, supositorios o enemas de

retención, por ejemplo, que contienen bases de supositorio convencionales, por ejemplo, manteca de cacao u otros glicéridos.

Además, los compuestos se pueden formular como una preparación de depósito. Tales formulaciones de acción prolongada pueden administrarse por implantación (por ejemplo, por vía subcutánea o intramuscular) o por inyección intramuscular. Así, por ejemplo, los compuestos pueden formularse con materiales poliméricos o hidrófobos adecuados (por ejemplo, como una emulsión en un aceite aceptable) o resinas de intercambio iónico, o como derivados poco solubles, por ejemplo, como una sal poco soluble.

Las composiciones pueden, si se desea, presentarse en un envase o dispositivo dispensador que puede contener una o más formas de dosificación unitaria que contienen el ingrediente activo. El paquete puede, por ejemplo, comprender una lámina de metal o de plástico, por ejemplo, un paquete de ampollas. El envase o dispositivo dispensador puede acompañarse de instrucciones para la administración.

15 <u>Inhibidores de la expresión génica</u>

5

20

25

30

35

40

45

50

55

60

65

En un aspecto de la presente divulgación, los inhibidores de c-Kit también pueden comprender moléculas de ácidos nucleicos que inhiban la expresión de c-Kit. Pueden ser utilizados métodos de transferencia génica virales y no virales convencionales para introducir los ácidos nucleicos que codifican los polipéptidos de c-Kit genéticamente modificados en células de mamíferos o tejidos diana, o alternativamente, ácidos nucleicos, por ejemplo, los inhibidores de la actividad de c-Kit, tales como ARNip, ribozimas, o ARN anti-sentido. Los sistemas de administración de vectores no víricos incluyen plásmidos de ADN, ácidos nucleicos desnudo, y ácido nucleico complejado con un vehículo de administración tal como un liposoma. Los sistemas de administración de vectores virales incluyen virus de ADN y ARN, que tienen ya sea genomas episómicos o integrados después de su administración a las células. Para una revisión de procedimientos de terapia génica, véase Anderson, Science 256: 808-813 (1992); Nabel y Feigner, TIBTECH 11: 211-217 (1993); Mitani y Caskey, TIBTECH 11: 162-166 (1993); Dillon, TIBTECH 11: 167-175 (1993); Miller, Nature 357: 455-460 (1992); Van Brunt, Biotechnology 6 (10): 1149-1154 (1988); Vigne, Restorative Neurology and Neuroscience 8: 35-36 (1995); Kremer y Perricaudet, British Medical Bulletin 51 (1): 31-44 (1995); Haddada *et al.*, en Current Topics in Microbiology and Immunology, Doerfler y Böhm (eds) (1995); y Yu *et al.*, Gene Therapy 1: 13-26 (1994).

En algunos aspectos, se administran ARNips. La terapia de ARNip se lleva a cabo mediante la administración a un paciente un ARNip por vectores estándar que codifican los ARNip de la divulgación y/o los sistemas de administración de genes, tales como mediante la administración de moléculas de ARNip sintéticas. Típicamente, las moléculas de ARNip sintéticas se estabilizan químicamente para evitar la degradación de nucleasa *in vivo*. Los métodos para preparar moléculas de ARN químicamente estabilizadas son muy conocidos en la técnica. Típicamente, tales moléculas comprenden estructuras modificadas y nucleótidos para evitar la acción de ribonucleasas. Otras modificaciones son también posibles, por ejemplo, ARNip conjugados con colesterol han mostrado propiedades farmacológicas mejoradas (véase, por ejemplo, Song *et al.* Nature Med. 9: 347-351 (2003).

Métodos de administración no virales

Los métodos de administración no vírica de ácidos nucleicos que codifican los polipéptidos modificados de la divulgación incluyen lipofección, microinyección, biolística, virosomas, liposomas, inmunoliposomas, conjugados de policatión o lípido:ácido nucleico, ADN desnudo, viriones artificiales y la absorción potenciada por agente de ADN. La lipofección se describe, por ejemplo, en la patente de EE.UU. No. 5.049.386, la patente de EE.UU. N.º 4.946.787; y la patente de EE.UU. N.º 4.897.355) y los reactivos de lipofección se venden comercialmente (por ejemplo, Transfectam™ y Lipofectina™). Los lípidos catiónicos y neutros que son adecuados para la lipofección eficiente de reconocimiento de receptores de polinucleótidos incluyen los de Felgner, documento WO 91/17424, documento WO 91/16024. La administración puede ser a las células (administración *ex vivo*) o tejidos diana (administración *in vivo*).

La preparación de complejos de lípidos:ácidos nucleicos, incluyendo liposomas dirigidos tales como complejos de inmunolipídicos, es muy conocida para los expertos en la técnica (véase, por ejemplo, Crystal, Science 270: 404-410 (1995); Blaese et al., Cancer Gene Ther. 2: 291-297 (1995); Behr et al., Bioconjugate Chem. 5: 382-389 (1994); Remy et al., Bioconjugate Chem. 5: 647-654 (1994); Gao et al., Gene Therapy 2: 710-722 (1995); Ahmad et al., Cancer Res. 52: 4817-4820 (1992); patentes de EE.UU. Nos. 4.186.183, 4.217.344, 4.235.871, 4.261.975, 4.485.054, 4.501.728, 4.774.085, 4.837.028 y 4.946.787).

Métodos de administración viral

El uso de sistemas basados en virus de ARN o ADN para la administración de inhibidores de c-Kit son conocidos en la técnica. Los sistemas basados en virus convencionales para la administración de inhibidores de ácidos nucleicos de c-kit pueden incluir vectores retrovirales, lentivirus, adenovirales, adeno-asociados y virus del herpes simple para la transferencia de genes.

En muchas aplicaciones de terapia génica, es deseable que el vector de la terapia génica se pueda administrar con

24

un alto grado de especificidad a un tipo de tejido particular, por ejemplo, un tejido de páncreas o mamario. Un vector viral es normalmente modificado para que tenga especificidad para un tipo de célula dado por la expresión de un ligando como una proteína de fusión con una proteína de la cubierta viral en la superficie exterior de los virus. El ligando se elige para que tenga afinidad por un receptor que se sabe que está presente en el tipo celular de interés. Por ejemplo, Han et al., PNAS 92: 9747-9751 (1995), informó que el virus de la leucemia murina de Moloney puede modificarse para expresar la herregulina humana fusionada a gp70, y el virus recombinante infecta ciertas células de cáncer humano que expresan el receptor del factor de crecimiento epidérmico humano. Este principio puede extenderse a otros pares de virus que expresan una proteína de fusión de ligando y la célula diana que expresa un receptor. Por ejemplo, el fago filamentoso puede diseñarse para que muestre fragmentos de anticuerpos (por ejemplo, Fab o Fv) que tienen afinidad de unión específica para virtualmente cualquier receptor celular seleccionado. Aunque la descripción anterior se aplica fundamentalmente a vectores víricos, los mismos principios pueden aplicarse a vectores no virales. Tales vectores pueden ser diseñados para que contengan secuencias de captación específicas que se cree que favorecen la absorción por las células diana específicas.

Los vectores de terapia génica pueden administrarse *in vivo* mediante la administración a un paciente individual, típicamente por administración sistémica (por ejemplo, intravenosa, intraperitoneal, intramuscular, subdérmica o infusión intracraneal) o por aplicación tópica, como se describe a continuación. Alternativamente, los vectores pueden administrarse a células *ex vivo*, tales como células explantadas de un paciente individual.

10

30

35

40

45

50

55

60

65

- La transfección de células *ex vivo* para el diagnóstico, la investigación o para terapia génica (por ejemplo, a través de la re-infusión de células transfectadas en el organismo anfitrión) es bien conocida por los expertos en la técnica. En algunos aspectos, las células se aíslan del organismo del sujeto, se transfectan con ácidos nucleicos inhibidores de c-Kit y se re-infusionan de nuevo en el organismo del sujeto (por ejemplo, del paciente). Diversos tipos de células adecuadas para la transfección *ex vivo* son muy conocidos por los expertos en la técnica (véase, por ejemplo, Freshney *et al.*, Culture of Animal Cells, A Manual of Basic Technique (tercera ed. 1994)) y las referencias que allí se citan para una discusión de cómo aislar y cultivar células de pacientes).
 - Se pueden administrar también vectores (por ejemplo, retrovirus, adenovirus, liposomas, etc.) que contienen ácidos nucleicos terapéuticos directamente al organismo para la transducción de células *in vivo*. Alternativamente, puede ser administrado ADN desnudo. La administración es mediante cualquiera de las rutas utilizadas normalmente para introducir una molécula en contacto directo con sangre o células de tejidos. Los métodos adecuados de administración de tales ácidos nucleicos están disponibles y son bien conocidos por los expertos en la técnica y, aunque pueda utilizarse más de una ruta para administrar una composición particular, una ruta en particular puede proporcionar a menudo una reacción más inmediata y más eficaz que otra ruta.
 - Los vehículos farmacéuticamente aceptables se determinan en parte por la composición particular que se administra, así como por el método particular usado para administrar la composición. En consecuencia, existe una amplia variedad de formulaciones adecuadas de composiciones farmacéuticas de la presente divulgación, como se describe a continuación (véase, por ejemplo, Remington´s Pharmaceutical Sciences of, 17ª ed., 1989).

En algunos aspectos, los polipéptidos c-Kit y los polinucleótidos también se pueden administrar como composiciones de vacuna para estimular una respuesta inmune, típicamente una respuesta celular (CTL y/o HTL). Tales composiciones de vacuna pueden incluir, por ejemplo, péptidos lipidificados (véase, por ejemplo, Vitiello, A. et al., J. Clin. Invest. 95: 341 (1995)), microesferas ("PLG") de composiciones peptídicas encapsuladas en poli(DL-lactida-coglicólido) (véase, por ejemplo, Eldridge, et al., Molec. Immunol. 28: 287-294 (1991); Alonso et al., Vaccine 12: 299-306 (1994); Jones et al., Vaccine 13: 675-681 (1995)), composiciones peptidicas contenidas en complejos inmunoestimulantes (ISCOMS) (véase, por ejemplo, Takahashi et al., Nature 344: 873-875 (1990); Hu et al., Clin Exp Immunol 113: 235-243 (1998)), sistemas de péptido de múltiples antígenos (MAP) (véase, por ejemplo, Tam, Proc. Natl. Acad. Sci. U.S.A. 85: 5409-5413 (1988); Tam, J. Immunol. Methods 196: 17-32 (1996)), péptidos formulados como péptidos multivalentes; péptidos para uso en sistemas balísticos de administración, típicamente péptidos cristalizados, vectores de administración viral (Perkus, et al., en: Concepts in vaccine development (Kaufmann, ed., p. 379, 1996); Chakrabarti, et al., Nature 320: 535 (1986); Hu et al., Nature 320: 537 (1986); Kieny, et al., AIDS Bio/Technology 4: 790 (1986); Top et al., J. Infect. Dis. 124: 148 (1971); Chanda et al., Virology 175: 535 (1990)), partículas de origen viral o sintético (véase, por ejemplo, Kofler et al., J. Immunol. Methods. 192: 25 (1996); Eldridge et al., Sem. Hematol. 30: 16 (1993); Falo et al., Nature Med. 7: 649 (1995)), coadyuvantes (Warren et al., Annu. Rev. Immunol. 4: 369 (1986); Gupta et al., Vaccine 11: 293 (1993)), liposomas (Reddy et al., J. Immunol. 148: 1585 (1992); Rock, Immunol. Today 17: 131 (1996)), o, ADNc desnudo o absorbido en partículas (Ulmer, et al., Science 259: 1745 (1993); Robinson et al., Vaccine 11: 957 (1993); Shiver et al., en: Concepts in vaccine development (Kaufmann, ed, p. 423, 1996); Cesar y Berzofsky, Annu. Rev. Immunol. 12: 923 (1994) y Eldridge et al., Sem. Hematol. 30: 16 (1993)). También se pueden usar tecnologías de administración específicas de toxinas, también conocidas como reconocimiento mediado por receptores, tales como las de Avant Immunotherapeutics, Inc. (Needham, Mass.).

Kits para uso de aplicaciones diagnósticas y/o pronósticas

La divulgación también describe kits para aplicaciones de diagnóstico o terapéuticas. Para aplicaciones de

diagnóstico/pronósticas, tales kits pueden incluir cualquiera o todos de los siguientes: reactivos de ensayo, tampones, c-KIT y/o sondas SHP2, cebadores, anticuerpos o similares.

Además, los kits pueden incluir materiales de instrucción que contienen directrices (es decir, protocolos) para la práctica de los métodos de la presente divulgación. Mientras que los materiales de instrucción comprenden materiales típicamente escritos o impresos que no se limitan a los mismos. Cualquier medio capaz de almacenar tales instrucciones y comunicarlas a un usuario final está contemplado por la presente divulgación. Tales medios incluyen, pero no se limitan a medios electrónicos de almacenamiento (por ejemplo, discos magnéticos, cintas, cartuchos, chips), medios ópticos (por ejemplo, CD ROM) y similares. Tales medios pueden incluir direcciones de sitios de Internet que proporcionen estos materiales de instrucción.

Ejemplos

5

10

15

20

25

30

35

40

45

50

55

60

65

Ejemplo 1 - Examen de los perfiles del número de copias de 103 melanomas primarios

Las rutas de MAP-quinasa y PI3 quinasa se activan de forma diferente entre los subtipos de melanoma cuando los tumores se clasifican de acuerdo a una combinación de la exposición UV y el sitio anatómico (Curtin, et al., New Engl. J. Med. 353: 2135-2147, 2005). De manera prominente, mientras que las mutaciones de BRAF son altamente prevalentes (59%) en los melanomas que se producen en la piel sin signos de daño crónico inducido por el sol (melanomas no CSD), la frecuencia es muy baja en los melanomas que se producen en las palmas de las manos, plantas de los pies o en los sitios subungueales o (melanomas de la mucosa acral, respectivamente). Las mutaciones BRAF también son poco comunes en los melanomas que se producen en la piel lo que muestra evidencia de daño crónico inducido por el sol (melanomas CSD). Alrededor del 10 al 20% de los melanomas de todos los subtipos activan estas rutas por mutación de las NRAS, pero las mutaciones de tanto NRAS como BRAF no ocurren nunca al mismo tiempo. Estos resultados plantean la cuestión fundamental de cómo la ruta de la MAP quinasa puede ser activada en aquellos tumores que no tienen mutaciones de NRAS o BRAF.

La matriz de análisis de CGH de Curtin *et al.*, supra, encontró diferencias en las características de las aberraciones del número de copias de ADN entre los subtipos de melanoma, con diferencias significativas en la frecuencia de la participación de varios loci. El examen de los perfiles del número de copias de 103 melanomas primarios de este estudio (datos disponibles en GEO, http://www.ncbi.nlm.nih.gov/geo/; número de entrada GSE2631), halló el aumento (10 tumores) o la amplificación (7 tumores) del cromosoma 4p12, Fig. 2. Dieciséis de estos tumores se habían secuenciado para BRAF y NRAS y no se encontraron mutaciones. Todos los 17 tumores eran de los subtipos acral. mucosal o CDS.

Ejemplo 2 - Inmunohistoquímica e hibridación in situ para c-Kit

La región 4p12 común de elevación del número de copias contiene varios receptores tirosina quinasas (RTK) que son atractivos oncogenes candidato de melanoma. Estos incluyen el v-kit Hardy-Zuckerman 4 del c-Kit homólogo del oncogén viral del sarcoma felino, el receptor KDR del factor de crecimiento endotelial vascular y el receptor alfa del factor de crecimiento derivado de plaquetas (PDGFRA). El c-Kit es un gen esencial para la supervivencia de melanocitos y el desarrollo (Chabot, et al., Nature 335: 88-89, 1988; Geissler, et al., Cell 55: 185-192, 1988) y está sujeto a mutaciones oncogénicas en una variedad de tipos de cáncer (Beghini et al., Cancer 92: 657-662, 2001; Beghini et al., Blood Cells Molecules and Diseases 24: 262-270, 1998; Isozaki, et al., Am J. Path. 157: 1581-1585, 2000; Lux, et al., Am. J. Path. 156:791-795, 2000; Wardelmann, et al., Mod. Pathology 15: 125-136, 2002). Sin embargo, investigaciones anteriores han descartado, en general, su importancia en el melanoma porque la expresión parecía estar perdida durante la progresión tumoral (Lassam y Bickford, Oncogene 7: 51-56, 1992; Natali, et al., Int. J. Cancer 52: 197-201, 1992; Zakut, et al., Oncogene 8: 2221-2229, 1993; Huang, et al., Oncogene 13: 2339-2347, 1996; Montone, et al., Mod. Pathology 10: 939-944, 1997). El KDR es importante en la angiogénesis (Millauer et al., Cell 72: 835-846, 1993) y en el desarrollo de tumores sólidos (Millauer et al., Nature 367: 576-579, 1994) y se expresa comúnmente en melanoma (Straume y Akslen, Am J Pathol 159: 223-235, 2001). El PDGFRA se encuentra que se activa por mutaciones o deleciones pequeñas en un subconjunto de tumores gastrointestinales estromales (GIST) (Heinrich, et al., Science 299: 708-710, 2003) y en la leucemia mieloide aguda infantil (Hiwatari, et al., Leukemia 19: 476-477, 2005).

Se realizó la inmunohistoquímica para PDGFRA y KDR y la hibridación in situ para PDGFRA en microsistemas de tejidos y se encontró que, aunque ambos genes se expresaban en subconjuntos de melanomas, no hubo asociación entre el aumento del número de copias en 4q12 y la expresión de proteínas o ARN (datos no mostrados). Además, la secuenciación de los sitios de mutación común de PDGFRA, los exones 10, 12, 14 y 18 (Heinrich, *et al.*, Science 299: 708-710, 2003), en los casos con amplificación de 4q12 no mostraron ninguna mutación. En contraste, ocho de los once (73%) melanomas con un aumento de copias 4q12 que se probaron para la expresión de c-kit mediante inmunohistoquímica empleando concentraciones de anticuerpos convencionales (véase métodos) indicaron un aumento en la expresión de c-kit. El análisis de secuencia de los sitios de mutación comunes de c-Kit, los exones 11, 13, 17 y 18 en las siete muestras con amplificaciones en c-Kit encontraron tres muestras con mutaciones. Las tres muestras mostraron una mutación K642E, y una tenía una mutación adicional en el resto N566D (Tabla 2). La mutación K642E es oncogénica (Isozaki, *et al.*, Am J. Path 157: 1581-1585, 2000) y se produce en GIST

esporádicas (Lux, et al., Am J. Path 156: 791-795, 2000) y familiares (Isozaki, et al., Am. J. Path. 157: 1581-1585, 2000). La amplificación en 4q12 dirigida al alelo mutado en los tres casos, indicada por la altura del pico de las trazas de secuenciación, y la proteína c-Kit fue altamente expresada en los tres casos (Fig. 2). Estos hallazgos indicaron que c-Kit fue el gen que conducía la selección de los aumentos del número de copias en 4q12 en al menos estos tres casos, y motivaron la secuenciación de estos mismos exones c-kit en el resto de los tumores para determinar si las mutaciones se producían en ausencia de cambios del número de copias. Se encontraron mutaciones codificantes en 14 tumores (14%) y una eliminación intrónica en un tumor adicional (Tabla 3). El análisis del ADN de tejido normal adyacente para los casos de c-kit-mutante de la que se podría obtener, 8/15, no se encontraron mutaciones, lo que indica que las mutaciones fueron adquiridas de forma somática.

10

15

20

25

30

35

55

60

65

Las frecuencias de aberraciones c-Kit (es decir, los aumentos de las mutaciones de secuencia o el número de copias) en los diferentes subgrupos de melanoma variaban en aproximadamente la imagen especular con mutaciones BRAF. Las aberraciones c-kit en los melanomas de mucosa, acral, CDS y no CSD estaban presentes en el 39%, 26%, 17% y 0%, respectivamente, mientras que las mutaciones de BRAF estaban presentes en el 11%, 23%, 11%, 59% (Maldonado, et al., J. Natl. Canc. Inst. 95:1878-1880, 2003; Curtin, et al., New Engl. J. Med. 353: 2135-2147, 2005).

El análisis inmunohistoquímico de la expresión de la proteína c-Kit apoya aún más su papel como un oncogén de melanoma. Diez de once (91%) melanomas con mutaciones c-kit y ocho de once (73%) con los aumentos del número de copias de c-Kit mostraron una mayor expresión de la proteína c-Kit en fase de crecimiento vertical (VGP) en relación con otras partes del tumor (Tabla 2, Fig. 1), indicando que la expresión de c-Kit en el melanoma se ha mejorado en las etapas de progresión avanzadas de los tumores con aumentos de mutaciones o de dosificación del receptor. Las cuatro muestras con aumento de mutaciones de c-Kit o del número de copias que no mostraron una fuerte expresión de la proteína c-Kit en el VGP del tumor en condiciones estándar de análisis mostraron una mayor expresión en la VGP cuando se emplearon concentraciones de anticuerpo más altas. En contraste, sólo 6/19 (32%) de las muestras sin mutación c-kit detectable o número de copias para las que se disponía tejido residual para la inmunohistoquímica mostraron una elevación expresa de la proteína c-kit en el VGP. Curiosamente, los seis melanomas que expresan c-kit en los que los métodos de los inventaron no revelaron aberraciones genéticas en c-Kit (n = 6) fueron todos de tipo salvaje para BRAF o NRAS y sólo una mostró amplificación de CCND1. De este modo, la señalización de c-Kit aberrante en el melanoma puede ser activada tanto por los efectos de dosificación de genes tal como se describe para otros tipos de cáncer (Sihto, et al., J Clin Oncol 23: 49-57, 2005) como por mutación, y tal vez por otros mecanismos que alteran la expresión no valorados en el estudio de los inventores. Las frecuencias de las aberraciones de c-Kit (es decir, los incrementos de las mutaciones o del número de copias) en los diferentes subgrupos de melanoma variaban en aproximadamente la imagen especular con mutaciones BRAF (por ejemplo, la Fig. 3). Las aberraciones de c-kit en los melanomas de la mucosa, acral, CDS y no CSD estaban presentes en el 39%, 26%, 17% y 0%, respectivamente, mientras que las mutaciones de BRAF estaban presentes en el 11%, 23%, 11%, 59% (Maldonado, et al., J. Natl. Canc. Inst. 95:1878-1880, 2003; Curtin, et al., New Engl. J. Med. 353: 2135-2147, 2005).

Observamos que los resultados de los inventores relativos a la importancia de c-kit en el melanoma están en contraste con la mayoría de los estudios anteriores, que mostraban que c-kit eran reguladas durante la progresión del melanoma o que afectaban negativamente al crecimiento del tumor (Lassam y Bickford, Oncogene 7: 51-56, 1992; Natali, et al., Int. J. Cancer 52: 197-201, 1992; Zakut, et al., Oncogene 8: 2221-2229, 1993; Huang, et al., Oncogene 13: 2339-2347, 1996; Montone, et al., Mod. Pathology 10: 939-944, 1997). Sólo un estudio de los melanomas metastásicos informa de mutaciones en dos de cada 100 metástasis de melanoma y sin detalles acerca de la naturaleza del tumor primario (Willmore-Payne, et al., Hum. Pathol. 36:486-493, 2005). Creemos que esta diferencia se debe a nuestro enfoque de la clasificación del melanoma, lo que ha motivado a los inventores a utilizar una cohorte de muestra enriquecida en tumores donde c-Kit pasaba a ser activo y a la interpretación de los resultados en un contexto más amplio. Concordante con los hallazgos de los inventores, se ha publicado previamente la expresión de c-Kit a alto nivel en melanomas acrales (Ohashi, et al., Melanoma Res. 6:25-30, 1996).

Los datos de los inventores tienen importantes implicaciones para la terapia del melanoma y para la mejora de la comprensión del desarrollo del melanoma y sugieren futuras líneas de investigación. La mayoría de las mutaciones que encontramos en el melanoma han sido reportadas para otros tipos de cáncer y se cree que conducen a la activación constitutiva del receptor (Tabla 3). Doce de los melanomas en la serie de los inventores tenían mutaciones que afectaban el dominio yuxtamembrana que se espera que promoviera la dimerización en ausencia de factor de dispersión (SCF) que resulta en la activación constitutiva (Lennartsson, *et al.*, Oncogene 18: 5546-5553, 1999) o para prevenir que el c-Kit mantenga su conformación auto-inhibida (Mol, *et al.*, J. Biol. Chem. 279:31655-31663, 2004). Es importante destacar que, para las consideraciones terapéuticas, las mutaciones en la región yuxtamembrana eran más frecuentes en la serie de los inventores (tabla) y son potencialmente sensibles a Imatinib (Frost, *et al.*, Mol. Canc. Ther. 1:1115-1124, 2002; Heinrich, *et al.*, J. Clin. Onc. 21:4342-4349, 2003; Ma, *et al.*, Blood 99: 1741-1744, 2002). Tres de nuestros casos tenían mutaciones en el dominio quinasa que con frecuencia son resistentes a Imatinib (Heinrich, *et al.*, J. Clin. Onc. 21: 4342-4349, 2003) los tipos de melanoma que contienen mutaciones de c-Kit representan una minoría de casos en las poblaciones de ascendencia europea; en todo el mundo pueden representar la mayor carga de melanoma, ya que son más comunes en personas de África, Asia y de ascendencia hispana. Además, son particularmente agresivos, de manera que el impacto terapéutico de los

conocimientos de estas mutaciones puede ser considerable.

La combinación de los datos de mutación, dosis y expresión de proteínas indican las complejidades de la manera en que c-Kit puede estar implicado en la señalización aberrante. En la cohorte de los inventores, sólo los melanomas con la mutación K642E mostró un aumento del número de copias de c-Kit y, por el contrario, esta mutación no se encontró en los melanomas sin aumento de la dosis o la mutación NRAS (por ejemplo, las Tablas 1 y 2). Los estudios funcionales (Tarn, et al., Clin. Canc. Res. 11: 3668-3677, 2005) y el hallazgo de que el alelo K642E se puede encontrar en la línea germinal (Isozaki, et al., Am. J. Path. 157: 1581-1585, 2000) sugiere que representa una forma de activación débil de c-Kit. Por lo tanto, esta mutación parece requerir etapas selectivas adicionales que interactúan directamente con el fin de proporcionar una señal oncogénica significativa. Todas las demás muestras con mutaciones codificantes en c-Kit no tuvieron aumentos de número de copias del locus de c-Kit y no mostraron mutaciones BRAF o NRAS, lo que sugiere que estas mutaciones tienen una señal oncogénica sustancialmente más fuerte.

Los tipos de melanomas que muestran alteraciones genéticas frecuentes de c-Kit con frecuencia muestran un patrón de crecimiento lentiginoso, caracterizado por melanocitos alineados como células individuales a lo largo de la epidermis en la etapa de progresión precedente al crecimiento invasivo. Por el contrario, los melanomas no CSD típicamente muestran un patrón de crecimiento pagetoide con melanocitos dispersos por toda la epidermis.

Ejemplo 2 Análisis de mutaciones de SHP2

Métodos

10

20

45

50

55

60

65

Se estudiaron 104 melanomas primarios de melanoma de la mucosa (n = 35), piel acral (n = 24), de piel con daño crónico inducido por el sol (n = 16) y sin éste (n = 12) y ocular (n = 16). El daño inducido por el sol se definió microscópicamente por la presencia o la ausencia de elastosis solar marcada. Estos casos son parte de un conjunto de datos previamente publicado (Maldonado, *et al.* J. Natl. Canc. Inst. 95: 1878-1880, 2003; Curtin, *et al.*, New Engl. J. Med. 353: 2135-2147, 2005). También, los inventores estudiaron 13 líneas celulares.

30 El ADN para el análisis de mutación se extrae de tumores primarios embebidos en parafina fijados en formol y de tejido normal circundante, ya publicados (Bastian, et al: Cancer Res. 8: 2170-2175, 1998). Se realizó el análisis de secuencia por secuenciación directa de productos de PCR amplificados generados con cebadores específicos diseñados para incluir los exones de interés. Los cebadores usados fueron como sigue:

```
exón 3a: 5'-gtaaaatccgacgtggaagatg-3' (directo) y 5'-gttcagaggtaggatctgcacagt-3' (inverso); exón 3b: 5'-gaaatggagctgtcacccacatc-3' (directo) y 5'-catacacagaccgtcatgcattt-3' (inverso); exón 4a: 5'-tttgtgaaagaacaacatgaacc-3' (directo) y 5'-gacttgccgtcattgctctc-3' (inverso); exón 4b: 5'-ggaaaacatggtagttttcttgtacg-3' (directo) y 5'-tgaatgtaatggtgtctgtcttctg-3' (inverso); exón 7: 5'-gtaatgctgatccaggctt-3' (directo) y 5'-cctgaggaaaggtacagagg-3' (inverso); exón 8: 5'-gctggggagtaactgatttga-3' (directo) y 5'-ctttcaggacatgaggaagg-3' (inverso); exón 13a: 5'-gtccactaaaagttgtgcattaaaca-3' (directo) y 5'-caggctggtacctgctctc-3' (inverso); exón 13b: 5'-catgatgtttccttcgtaggtg-3' (directo) y 5'-ctcctgctcaaaaggagagc-3' (inverso).
```

Para los propósitos de secuenciación, un cebador M13 directo (5'-tgtaaaacgacggccagt-3') e inverso (5'-agcggataacaatttcacacagg-3') se añadieron en los extremos 5' terminal de cada cebador directo e inverso, respectivamente. Las condiciones de los ciclos de PCR fueron las siguientes. Una desnaturalización inicial a 95°C durante 6 minutos fue seguida por diez ciclos de 95°C durante 90 segundos, una fase de hibridación a 62°C durante 90 segundos, disminuyendo en 0,5°C cada ciclo de la toma de contacto a 57°C y una etapa de elongación de 72°C, durante 90 segundos. Esto fue seguido por 36 ciclos adicionales como se describe anteriormente con una temperatura de hibridación de 57°C y finalmente una etapa de elongación a 72°C durante 10 minutos. Los productos de la PCR se purificaron usando ExoSAP-IT® (USB Corporation, Cleveland, Ohio) y se secuenciaron directamente con los cebadores M13 utilizando un ABI PRISM® 3700 DNA Analyzer (Applied Biosystems, Foster City, Calif.).

El SHP2 (también conocido como PTPN11) codifica la proteína fosfatasa tirosina tipo no receptora, la región de homología de Src 2-dominio fosfatasa-2 (SHP2) y funciona como un transductor de señal intracelular que se asocia con los receptores de tirosina quinasa y los adaptadores de la estructura (Tartaglia y Gelb, Ann. Rev. Genom. and Hum. Gen. 6: 45-68, 2005). Los inventores han secuenciado los exones 3, 7, 8 y 13 en 104 tumores de melanoma primario y 13 líneas celulares de melanoma y el exón 4 en 50 melanomas primarios y observaron tres mutaciones, lo que resulta en un P491L, S150F, y la sustitución de I309V, respectivamente, ambos de los cuales se producen en el dominio de la proteína tirosina fosfatasa (PTP). Fueron encontrados en un melanoma en la piel dañada por el sol crónicamente (CSD) y en el melanoma de mucosal, respectivamente, y se demostró que eran adquiridos somáticamente por la secuenciación del ADN a partir del tejido normal adyacente.

La sustitución de P491L (Binder, *et al.*, J Clin Endocrinol Metab 90: 5377-5381, 2005) ha sido encontrada en la línea germinal en pacientes con síndrome de Noonan y ha sido somáticamente adquirida en todos (Tartaglia, *et al.*, Blood. 104: 307-313, 2004). La mutación I309V en la línea germinal también se ha observado en el síndrome de Noonan

(Tartaglia, et al., Am. J. Hum. Gen. 70: 1555-1563, 2002). También se publicaron mutaciones somáticas y de línea germinal que resultan en las sustituciones P491L y P491S y mutaciones de la línea germinal que resultan en una sustitución I309V en un estudio que examinaba a pacientes, ya sea con el síndrome de Noonan o con él de Leopard (Tartaglia, et al., Am J Hum Genet. 78: 279-290, 2006). El S150F no ha sido previamente publicado. Se ha publicado anteriormente una mutación que resulta en una mutación R138Q en SHP2 en una muestra de melanoma (Bentires-Ali, et al., Cancer Res. 64: 8816-8820, 2004).

5

10

15

20

25

30

35

40

45

50

55

60

65

La proteína SHP2 consiste en un dominio N-SH2, PTP y C-SH2. Aunque el mecanismo exacto de la función de SHP2 no está completamente claro, se propone que, en su estado inactivo, el dominio de N-SH2 bloquee el sitio catalítico de PTP. La unión de SHP2 a su ligando activa la fosfatasa mediante el cambio de la conformación del dominio N-SH2 resultando en su disociación del dominio PTP (Tartaglia y Gelb, Ann. Rev. Genom. and Hum. Gen. 6: 45-68, 2005). Tanto los restos I309 como P491 se encuentran en el dominio de PTP. En su estado inactivo, la proteína SHP2 es inactiva debido a las interacciones entre el dominio PTP y N-SH2. Las pruebas de la estructura cristalina indican que el resto P491 está espacialmente lejos de las superficies de interacción N-SH2/PTP. Ambos restos 1309 y P491, se cree que contribuyen a la estructura general PTP y no se piensa que desempeñan un papel en la función catalítica o en las interacciones N-SH2/PTP (Tartaglia, *et al.*, Am J Hum Genet. 78: 279-290, 2006).

SHP2 controla positivamente la activación de la cascada RAS/MAPK (Cunnick, et al., J. Biol. Chem. 277: 9498-9504, 2002; Maroun, et al., Mol. Cell. Biol. 20: 8513-8525, 2000; Shi, et al., Mol. Cell. Biol. 20: 1526-1536, 2000; Saxton, et al., EMBO J. 16: 2352-2364, 1997). La ruta MAPK está desregulada en JMML debido a las mutaciones en NRAS, KRAS2 o NF1 en aproximadamente el 40% de los casos. Un análisis genético de SHP2 en 62 pacientes con JMML sin síndrome de Noonan mostró que el 34% de los pacientes JMML tenían mutaciones en SHP2. Complementando estos datos con el estado de mutación de otros componentes de la ruta MAPK mostrada, las mutaciones de SHP2 eran mutuamente excluyentes de otras mutaciones de la ruta MAPK que soportan un papel de activación de la ruta MAPK para SHP2 (Tartaglia, et al., Nat Genet. 34: 148-150, 2003).

En los 104 melanomas primarios analizados en este ejemplo, dos pacientes tenían mutaciones en los SHP2. Ningún paciente tenía mutaciones en otros componentes de la cascada MAPK examinada, la mutación de BRAF, FANR, KIT o el número de copia anormal de KIT. El análisis de los datos CGH publicados (Curtin, *et al.*, New Engl. J. Med 353: 2135-2147, 2005) en el conjunto de datos de los inventores demostró que la muestra CSD mutada perdía una copia del locus SHP2 y que el alelo perdido reconoce el alelo de tipo salvaje como se indica por la altura del pico de las trazas de secuenciación (Figura 4).

En general, hay una distribución distinta de las mutaciones en SHP2 en pacientes con síndrome de Noonan o Leopard o JMML, AML, lo que indica que las diferentes mutaciones dan lugar a fenotipos diferentes. Las mutaciones de SHP2 en JMML que son sin Noonan asociado, no se encuentran en la línea germinal, lo que indica que esta mutación puede ser letal. En contraste, las mutaciones somáticas en SHP2 que resultan en el síndrome de Noonan, pero que no son leucomogénicas pueden tener una ganancia de función más suave. Los autores especularon que el síndrome de Noonan/mutantes JMML tienen efectos intermedios, lo que puede explicar el curso más leve de la leucemia mielomonocítica juvenil cuando se produce en pacientes con síndrome de Noonan. Los individuos con síndrome de Noonan que desarrollan leucemia mielomonocítica juvenil (LMMJ) tienen mutaciones de la línea germinal en SHP2 en 5/7 de los casos, 4 de estos tienen mutaciones que resultan en una sustitución Thr73lle mientras que esta sustitución se produce en sólo el 4% de los pacientes con síndrome de Noonan (Tartaglia, *et al.*, Nat Genet. 34: 148-150, 2003).

Las mutaciones identificadas en las dos muestras de melanoma, como se divulga en este ejemplo, se conocen que son alteraciones causantes de enfermedades que se encuentran en síndromes y cánceres con la activación de la ruta MAPK. La observación de los inventores de que estas mutaciones se producen en melanomas sin activaciones adicionales en la ruta MAPK sugiere que la mutación SHP2 proporciona un mecanismo alternativo de la activación de MAPK en el melanoma. En condiciones fisiológicas normales, la ruta MAPK puede ser activada por la unión del factor de células madre (SCF) al KIT de quinasa tirosina receptora, lo que da como resultado la dimerización de KIT y, por lo tanto, la activación de su actividad de proteína quinasa (Roskoski, Biochem. Biophys. Res. Comm. 337: 1-13, 2005). Esto da como resultado la autofosforilación de KIT en los restos de tirosina que son los sitios de conexión para las moléculas de transducción de señales que contienen los dominios SH2. El SHP2 se sabe que se une a la fosfotirosina 568 de KIT (Roskoski, Biochem. Biophys. Res. Comm. 337: 1-13, 2005). En los melanomas, KIT muta con frecuencia en tumores sin mutación de BRAF (Curtin, et al., J Clin Oncol 24: 4340-4346, 2006), resultando en la activación de MAPK. Los cánceres con mutaciones en la región yuxta-membrana de KIT son sensibles a Imatinib (Heinrich, et al., J Clin Oncol. 21: 4342-4349, 2003; Frost, et al., Mol Canc Therap 1: 1115-1124, 2002; Ma, et al., Blood 99: 1741-1744, 2002), ya que se espera que estas mutaciones promuevan la dimerización de KIT en ausencia de SCF, lo que resulta en su activación constitutiva (Lennartsson, et al., Oncogene 18: 5546-5553, 1999), o para evitar que KIT se mantenga en su conformación auto-inhibida (Mol, et al., J. Biol. Chem. 279: 31655-31663, 2004). El Imatinib impide la autofosforilación de KIT (Heinrich, et al., Blood 96: 925-932, 2000), lo que indica un efecto terapéutico para agentes tales como el Imatinib para los tumores con mutaciones SHP2, ya que su sitio de acoplamiento en KIT no se autofosforilará y, por lo tanto, SHP2 será incapaz de activar positivamente la ruta MAPK.

Los ejemplos anteriores se proporcionan a modo de ilustración y no a modo de limitación. Los expertos en la técnica

reconocerán fácilmente una diversidad de parámetros no críticos que podrían cambiarse o modificarse para producir resultados esencialmente similares.

Tabla 1

	N.º de <i>BRAF</i> mutado (%)	N.º de <i>RAS</i> mutado (%)	N.º de KIT mutado (%)	N.º con aumento de número de copias de <i>Kit</i> (%)
No CSD	22/33 (67)	8/33 (24)	3/18 (0)	0/36 (0)
CDS	3/26 (12)	4/26 (15)	4/19 (21)	1/29 (3)
Mucosal	2/31 (6)	1/30 (3)	8/37 (22)	10/33 (30)
Acral	6/31 (19)	3/31 (10)	3/29 (10)	6/34 (18)

Tabla 2

Código	Tipo	Número de copia <i>Kit</i>	Mutación Kit	Inmunohistoquímica
20	acral	amp	ts	nd
AM108	acral	amp	ts	positivo
AM107	acral	enh	ts	nd
AM126	acral	enh	ts	positivo ¹
AM130	acral	enh	ts	positivo
AM112	acral	normal	ts	nd
AM169	acral	normal	Y553N	positivo ¹
AM17	acral	normal	R634W	positivo
AM60	acral	normal	K642E y BRAF	positivo
AM141	mucosal	amp	K642E	positivo
AM148	mucosal	amp	K642E	positivo
AM218	mucosal	amp	ts	positivo ¹
AM210	mucosal	amp	K642E y N566D	positivo
AM120	mucosal	enh	ts	positivo
AM209	mucosa	enh	ts	positivo
AM157	mucosal	enh	ts	nd
AM147	mucosal	enh	ts	positivo ¹
AM143	mucosal	enh	ts	positivo
AM124	mucosal	enh	ts	nd
AM223	mucosal	normal	V559A	positivo
AM219	mucosal	nd	V559A	positivo
AM207	mucosal	nd	L576P	positivo
AM220	mucosal	nd	L576P	positivo
AM150	mucosal	normal	D816H	positivo
111	CDS	amp	ts	nd
53	CDS	normal	L576P	nd
Mx41	CDS	normal	D816H	nd
18	CDS	normal	A829P	nd
57	CDS	normal	eliminación intrónica/NRAS	nd

enh: aumento del n.º de copias; *amp*: amplificador: nd: no disponible; *CSD*: daño solar crónico ¹Tinción de CD117 realizada a una concentración de 1/25 durante 60 minutos

Tabla 3

Mutación Kit	Nº. de mutaciones	Dominio afectado	La mutación de la enfermedad se reporta en:
K642E	4	JMD ¹	tumor de células germinales
L576P	3	JMD	GIST
D816H	2	quinasa	AML, tumor de células germinales
V559A	2	JMD	GIST
A829P	1	quinasa	nuevo
eliminación intrónica	1	JMD	nuevo
R634W	1		nuevo
Y553N	1	JMD	nuevo pero muchas mutaciones en 550-556 en GIST
N566D	1	JMD	GIST (N566G)

JMD es yuxtamembrana

SEQ ID NO: 1 Secuencia de ácidos nucleicos de KIT humana ejemplar CDS 22-2952

¹el resto se encuentra fuera de la JMD, pero se sabe que la mutación desestabiliza el JMD a través de interacciones de aminoácidos

1 gateceateg eagetacege gatgagagge getegeggeg eetgggattt tetetgegtt 61 obgotoctac tgottegegt egagacagge tetteteaac catetqtgag tecaggggaa 121 cogtetecae catecateca tecaggaaaa teagaettaa tagteegegt gggegaegag 181 attaggetgt tatgeactga teegggettt gteaaatgga ettttgagat eetggatgaa 241 acgaatgaga ataagcagaa tgaatggatc acggaaaagg cagaagccac caacaccggc 301 aaatacacgt gcaccaacaa acacggetta agcaatteca tttatgtgtt tgttagagat 361 cctgccaage tittccttgt tgaccgctcc ttgtatggga aagaagacaa cgacacgctg 421 gtccgctgtc ctctcacaga cccagaagtg accaattatt ccctcaaggg gtgccagggg 481 aagcetette ecaaggaett gaggtttatt eetgaceeca aggegggeat eatgateaaa 541 agtgtgaaac gegeetaeca teggetetgt etgeattgtt etgtggaeca ggagggeaag 601 tcagtgctgt cggaaaaatt catcctgaaa gtgaggccag ccttcaaagc tgtgcctgtt 661 gtgtctgtgt ccaaagcaag ctatcttctt agggaagggg aagaattcac agtgacgtgc 721 acaataaaag atgtgtctag ttctgtgtac tcaacgtgga aaagagaaaa cagtcagact 781 aaactacagg agaaatataa tagctggcat cacggtgact tcaattatga acgtcaggca 841 acgttgacta tcagttcagc gagagttaat gattctggag tgttcatgtg ttatgccaat 901 aatacttttg gatcagcaaa tgtcacaaca accttggaag tagtagataa aggattcatt 961 aatatottoo ocatgataaa cactacagta titgtaaacg atggagaaaa tgtagatitg 1021 attgttgaat atgaagcatt ccccaaacct gaacaccagc agtggatcta tatgaacaga 1081 accttcactg ataaatggga agattatccc aagtctgaga atgaaagtaa tatcagatac 1141 gtaagtgaac ttcatctaac gagattaaaa ggcaccgaag gaggcactta cacattecta 1201 gtgtccaatt ctgacgtcaa tgctgccata gcatttaatg tttatgtgaa tacaaaacca 1261 gaaateetga ettaegaeag getegtgaat ggeatgetee aatgtgtgge ageaggatte 1321 ccagagccca caatagattg gtatttttgt ccaggaactg agcagagatg ctctgcttct

1381 gtactgccag tggatgtgca gacactaaac tcatctgggc caccgtttgg aaagctagtg 1441 gttcagagtt ctatagattc tagtgcattc aagcacaatg gcacggttga atgtaaggct 1501 tacaacgatg tgggcaagac ttctgcctat tttaactttg catttaaagg taacaacaaa 1561 gagcaaatec atececacae cetqttcaet cetttqetga ttqqtttcqt aategtaget 1621 ggcatgatgt gcattatigt gatgattotg acctacaaat atttacagaa acccatgtat 1681 gaagtacagt ggaaggttgt tgaggagata aatggaaaca attatgttta catagaccca 1741 acacaactto ottatgatoa caaatgggag tttoccagaa acaggotgag ttttgggaaa 1801 accetgggtg etggagettt egggaaggtt gttgaggeaa etgettatgg ettaattaag 1861 teagatgegg ceatgactgt egetgtaaag atgeteaage egagtgeeca tittgacagaa 1921 ogggaageee teatgtetga acteaaagte etgagttace ttggtaatea catgaatatt 1981 gtgaatctac ttggageetg caccattgga gggeecacce tggteattac agaatattgt 2041 tgctatggtg atcttttgaa ttttttgaga agaaaacgtg attcatttat ttgttcaaag 2101 caggaagato atgoaqaago tgoactttat aagaatotto tgoattoaaa qqaqtottoo 2161 tgcagcgata gtactaatga gtacatggac atgaaacctg gagtttetta tgttgteeca 2221 accaaggoog acaaaaggag atotgtgaga ataggotcat acatagaaag agatgtgact 2281 occeptation tygoaggatga ogagttggco otagacttag aagacttgct gagcttttct 2341 taccaggtgg caaagggcat ggettteete geeteeaaga attgtattea cagagaettg 2401 gcagccagaa atatcotoot taotoatggt oggatcacaa agatttgtga tttttggtcta 2461 gccagagaca tcaagaatga ttctaattat gtggttaaag gaaacgctcg actacctgtg 2521 aagtggatgg cacctgaaag cattttcaac tgtgtataca cgtttgaaag tgacqtctqq 2581 teetatggga tittitetitig ggagetgtie tettitaggaa geageeesta teetggaatg 2641 ceggtegatt etaagtteta caagatgate aaggaagget teeggatget cageeetgaa 2701 cacgcacctg ctgaaatgta tgacataatg aagacttgct gggatgcaga tcccctaaaa 2761 agaccaacat toaagcaaat tgttCagcta attgagaagc agatttCaga gagcaccaat 2821 catatttact ccaacttagc aaactgcagc cccaaccgac agaagcccgt ggtagaccat 2881 tetgtgegga teaattetgt eggeageace getteeteet eeeageetet gettgtgeae 2941 gacgatgtet gagcagaate agtgtttggg teaecectee aggaatgate tettettttg 3001 gettecatga tggttatttt ettttettte aacttgeate caactecagg atagtgggea

3061 coccactgca atootytott totgagcaca otttagtggo egatgatitt tgtcatcago 3121 caccatecta ttgcaaaggt tccaactgta tatattccca atagcaacgt agcttctacc 3181 atgaacagaa aacattotga tttggaaaaa gagagggagg tatggactgg gggccagagt 3241 cotttocaag gottotocaa ttotgoocaa aaatatggtt gatagtttac otgaataaat 3301 ggtagtaate acagttggce ttcagaacca tecatagtag tatgatgata caagattaga 3361 agctgaaaac ctaagtcott tatgtggaaa acagaacatc attagaacaa aggacagagt 3421 atgaacacct gggcttaaga aatctagtat ttcatgctgg gaatgagaca taggccatga 3481 aaaaaatgat ccccaagtgt gaacaaaaga tgctcttctg tggaccactg catgagcttt 3541 tatactaccg acctggtttt taaatagagt ttgctattag agcattgaat tggagagaag 3601 gcctccctag ccagcacttg tatatacgca tctataaatt gtccgtgttc atacatttga 3661 ggggaaaaca ccataaggtt tegtttetgt atacaaccet ggcattatgt ccactgtgta 3721 tagaagtaga ttaagagcca tataagtttg aaggaaacag ttaataccat tttttaagga 3781 aacaatataa ccacaaagca cagtttgaac aaaatctcct cttttagctg atgaacttat 3841 totgtagatt otgtggaaca agcotatoag ottoagaatg gcattgtact caatggattt 3901 gatgctgttt gacaaagtta ctgattcact gcatggctcc cacaggagtg ggaaaacact 3961 gocatettag titiggattet tatgtagcag gaaataaagt ataggtitag coteettege 4021 aggeatgice tggaeacegg gecagitatet atatatgigt atgitaegitt gitatgigtgit 4081 agacaaatat ttggaggggt atttttgccc tgagtccaag agggtccttt agtacctgaa 4141 aagtaacttg gettteatta ttagtactge tettgtttet titteacatag etgtetagag 4201 tagettacca gaagetteea tagtggtgea gaggaagtgg aaggeateag teeetatgta 4261 tttgcagttc acctgcactt aaggcactct gttatttaga ctcatcttac tgtacctgtt 4321 cottagacot tocataatgo tactgtotoa otgaaacatt taaattttac cotttagact 4381 gtagcctgga tattattott gtagtttacc totttaaaaa caaaacaaaa caaaacaaaa 4441 aactcccctt cctcactgcc caatataaaa ggcaaatgtg tacatggcag agtttgtgtg 4501 tigicitgaa agattoaggi atgittgoott tatggittee eccitetaca titettaqae 4561 tacatttaga gaactgtggc cgttatctgg aagtaaccat ttgcactgga gttctatgct 4621 ctogcacctt tccaaagtta acagattttg gggttgtgtt gtcacccaag agattgttgt 4681 ttgccatact ttgtctgaaa aattcctttg tgtttctatt gacttcaatg atagtaaqaa

4741 aagtggttgt tagttataga tgtctaggta cttcaggggc acttcattga gagttttgtc
4801 ttgccatact ttgtctgaaa aattcctttg tgtttctatt gacttcaatg atagtaagaa
4861 aagtggttgt tagttataga tgtctaggta cttcaggggc acttcattga gagttttgtc
4921 aatgtctttt gaatattccc aagcccatga gtccttgaaa atattttta tatatacagt
4981 aactttatgt gtaaatacat aagcggcgta agtttaaagg atgttggtgt tccacgtgtt
5041 ttattcctgt atgttgtcca attgttgaca gttctgaaga attc

SEQ ID NO: 2 Secuencia de polipéptidos humana de c-Kit ejemplar

1 mrgargawdf lcvlllllrv qtgssqpsvs pgepsppsih pgksdlivrv gdeirllctd 61 pgfvkwtfei ldetnenkqn ewitekaeat ntgkytctnk hglsnsiyvf vrdpaklflv 121 drslygkedn dtlvrcpltd pevtnyslkg cqgkplpkdl rfipdpkagi miksvkrayh 181 rlclhcsvdq egksvlsekf ilkvrpafka vpvvsvskas yllregeeft vtctikdvss 241 svystwkren sqtklqekyn swhhgdfnye rqatltissa rvndsgvfmc yanntfgsan-301 vtttlevvdk gfinifpmin ttvfvndgen vdliveyeaf pkpehqqwiy mnrtftdkwe 361 dypksenesn iryvselhlt rlkgteggty tflvsnsdvn aaiafnvyvn tkpeiltydr 421 lvngmlqcva agfpeptidw yfcpgteqrc sasvlpvdvq tlnssgppfg klvvqssids 481 safkhngtve ckayndvgkt sayfnfafkg nnkeqihpht lftplligfv ivagmmciiv 541 miltykylqk pmyevqwkvv eeingnnyvy idptqlpydh kwefprnrls fgktlgagaf 601 gkvveatayg liksdaamtv avkmlkpsah lterealmse lkvlsylgnh mnivnllgac 661 tiggptlvit eyccygdlln flrrkrdsfi cskqedhaea alyknllhsk esscsdstne 721 ymdmkpgvsy vvptkadkrr svrigsyier dvtpaimedd elaldledll sfsygvakgm 781 aflasknoih rdlaarnill thgritkicd fglardiknd snyvykgnar lpvkwmapes 841 ifncvytfes dvwsygiflw elfslgsspy pgmpvdskfy kmikegfrml spehapaemy 901 dimktcwdad plkrptfkqi vqliekqise stnhiysnla ncspnrqkpv vdhsvrinsv 961 gstasssqpl lvhddv

SEQ ID NO: 3 Secuencia de ácidos nucleicos de SHP2 humana ejemplar NM_002834

1 atgacatogo ggagatggtt teacceaaat atcactggtg tggaggcaga aaacctactg
61 ttgacaagag gagttgatgg cagttttttg gcaaggccta gtaaaagtaa ccctggagac
121 ttcacacttt ccgttagaag aaatggaget gtcacccaca tcaagattca gaacactggt
181 gattactatg acctgtatgg aggggagaaa tttgcactt tggctgagtt ggtccagtat
241 tacatggaac atcacgggca attaaaagag aagaatggag atgtcattga gcttaaatat
301 cctctgaact gtgcagatcc tacctctgaa aggtggttte atggacatct ctctgggaaa
361 gaagcagaga aattattaac tgaaaaagga aaacatggta gttttcttgt acgagaggc
421 cagagccacc ctggagattt tgttctttct gtgcgcactg gtgatgacaa aggggagagc
481 aatgacggca agtctaaagt gacccatgtt atgattcgct gtcaggaact gaaatacgac
541 gttggtggag gagaacggtt tgattctttg acagatcttg tggaacatta taagaagaat

601 octatggtgg aaacattggg tacagtacta caactcaagc agccccttaa cacgactcgt 661 ataaatgetg etgaaataga aagcagagtt egagaactaa gcaaattage tgagaccaca 721 gataaagtoa aacaaggott ttgggaagaa tttgagacac tacaacaaca ggagtgcaaa 781 ettetetaca geegaaaaga gggteaaagg caagaaaaca aaaacaaaaa tagatataaa 841 aacateetge eetttgatea taccagggtt gteetacaeg atggtgatee caatgageet 901 gtttcagatt acatcaatgc aaatatcatc atgcctgaat ttgaaaccaa gtgcaacaat 961 tcaaagccca aaaagagtta cattgccaca caaggctgcc tgcaaaacac ggtgaatgac 1021 tittggegga tggtgttcca agaaaactcc cgagtgattg tcatgacaac gaaagaagtg 1081 gagagaggaa agagtaaatg tgtcaaatac tggcctgatg agtatgctct aaaagaatat 1141 ggegteatge gtgttaggaa egteaaagaa agegeegete atgaetatae getaagagaa 1201 ettaaaettt caaaggttgg acaagggaat acggagagaa eggictggca ataccaettt 1261 eggacetgge eggaceaegg egtgeceage gaceetgggg gegtgetgga etteetggag 1321 gaggtgcacc ataagcagga gagcatcatg gatgcagggc cggtcgtggt gcactgcagt 1381 gctggaattg gccggacagg gacgttcatt gtgattgata ttcttattga catcatcaga 1441 gagaaaggtg ttgactgcga tattgacgtt cccaaaacca tccagatggt geggtctcag 1501 aggtcaggga tggtccagac agaagcacag taccgattta tctatatggc ggtccagcat 1561 tatattgaaa cactacagog caggattgaa gaagagcaga aaagcaagag gaaagggcac 1621 gaatatacaa atattaagta ttetetageg gaccagacga gtggagatca gagccetete 1681 eegeettgta eteeaaegee aeeetgtgea gaaatgagag aagacagtge tagagtetat 1741 gaaaacgtgg gcctgatgca acagcagaaa agtttcagat ga

SEQ ID NO: 4 Secuencia de polipéptidos de SHP2 humana ejemplar

1 mtsrrwfhpn itgveaenll ltrgvdgsfl arpsksnpgd ftlsvrrnga vthikiqntg 61 dyydlyggek fatlaelvqy ymehhgqlke kngdvielky plncadptse rwfhghlsgk 121 eaeklltekg khgsflvres gshpgdfvls vrtgddkges ndgkskvthv mircgelkyd 181 vgggerfdsl tdlvehykkn pmvetlgtvl qlkqplnttr inaaeiesrv relsklaett 241 dkvkqgfwee fetlqqqeck llysrkegqr qenknknryk nilpfdhtrv vlhdgdpnep 301 vsdyinanii mpefetkonn skpkksyiat ggolqntvnd fwrmvfqens rvivmttkev 361 ergkskovky wpdeyalkey gymryrnyke saahdytlre lklskygggn tertywgyhf 421 rtwpdhgvps dpggvldfle evhhkgesim dagpvvvhcs agigrtgtfi vidilidiir 481 ekgydddidv pktigmyrsg rsgmygteag yrfiymaygh yietlgrrie eegkskrkgh 541 eytnikysla dqtsgdqspl ppctptppca emredsarvy envglmqqqk sfr

REALIZACIONES

30

45

Como realización 1, la invención también proporciona un método de detección de células de melanoma dependientes de c-KIT en una muestra biológica de un paciente que tiene un melanoma que surgió de piel acral, mucosa, ojo o piel que tiene daño crónico inducido por el sol (CSD), comprendiendo el método: detectar la presencia o ausencia de una mutación en células de melanoma en la muestra biológica, donde la mutación es: i) una mutación de secuencia en un gen c-KIT, o ii) un aumento en el número de copias en un gen c-KIT, o iii) una mutación de 10 secuencia en un gen SHP-2; en donde la presencia de la mutación es indicativa de la presencia de células de melanoma dependientes de c-KIT.

La invención también proporciona:

- 15 2. El método de la realización 1, en donde la etapa de detección comprende detectar la presencia o ausencia de la mutación en una muestra de ácido nucleico de la muestra biológica.
 - 3. El método de la realización 2, en donde la detección de la presencia o ausencia de la mutación en la muestra de ácido nucleico comprende detectar la presencia o ausencia de un aumento en el número de copias del gen c-KIT.
- 20 4. El método de la realización 2, en donde la detección de la presencia o ausencia del aumento en el número de copias comprende poner en contacto la muestra de ácido nucleico de la muestra biológica con una sonda para el gen c-KIT en condiciones en las que la sonda se hibrida selectivamente con el c -KIT gen, y determinar la presencia o ausencia del aumento en el número de copias.
 - 5. El método de la realización 4, en donde la etapa de contacto se realiza en una hibridación in situ.
- 25 6. El método de la realización 2, en donde la detección de la presencia o ausencia de la mutación en la muestra de ácido nucleico comprende una reacción de amplificación.
 - 7. El método de la realización 2, en donde la detección de la presencia o ausencia de la mutación en la muestra de ácido nucleico comprende detectar una mutación de secuencia en el gen c-KIT.
 - 8. El método de la realización 7, en donde la etapa de detección comprende detectar la presencia o ausencia de una mutación en el exón 11, 13, 17 o 18 de c-KIT.
 - 9. El método de la realización 1, en donde la etapa de detección comprende detectar la presencia o ausencia de una mutación de secuencia en un gen c-Kit, donde la mutación se detecta en una proteína codificada por el gen.
 - 10. El método de la realización 1, en donde la etapa de detección comprende detectar la presencia o ausencia de una mutación de secuencia en un gen SHP2.
- 11. El método de la realización 10, en donde la mutación en el gen SHP2 está en la región que codifica el 35 dominio de proteína tirosina fosfatasa.
 - 12. El método de la realización 11, en donde la mutación es una sustitución P491L, S150F o 1309V.
 - 13. El método de la realización 10, en donde la presencia o ausencia de la mutación de secuencia en el gen SHP2 se detecta en una muestra de ácido nucleico de la muestra biológica.
- 40 14. El método de la realización 1, en donde la muestra biológica es una muestra de piel, una muestra de una membrana mucosa o una muestra de un ojo.
 - 15. El método de la realización 1, en donde la muestra biológica es de ganglio linfático, pulmón, hígado, glándula suprarrenal o hueso.
 - 16. El método de la realización 1, que comprende detectar la presencia o ausencia de una mutación de secuencia en el gen c-KIT o un aumento en el número de copias del gen c-KIT.
 - 17. El método de la realización 16, que comprende además una mutación de secuencia en el gen SHP2. La invención también proporciona como realización 18 un método de detección de células de melanoma dependientes de c-KIT en una muestra biológica de un paciente que tiene un melanoma, comprendiendo el método: determinar que el melanoma surgió de la conjuntiva, mucosa o piel que tiene daño inducido por luz solar

50 crónico (CSD); y detectar la sobreexpresión de c-KIT.

La invención también proporciona como realización 19 un método para monitorizar la progresión de un melanoma en un paciente sometido a una terapia, comprendiendo el método detectar un cambio en el número de células de melanoma dependientes de c-KIT en una muestra biológica del paciente, en donde un cambio en el número de células de melanoma dependientes de c-KIT es indicativo de la respuesta del paciente a la terapia.

- 20. El método de la realización 19, en donde la muestra biológica es de piel o mucosa.
- 21. El método de la realización 19, en donde la muestra biológica es de sangre.
- La invención también proporciona como realización 22 un método para inhibir la proliferación de células de melanoma dependientes de c-KIT, comprendiendo el método administrar un inhibidor de c-KIT.
 - 23. El método de la realización 22, en donde el inhibidor de c-KIT es una molécula pequeña.
 - 24. El método de la realización 22, en donde el inhibidor de c-KIT es un anticuerpo.
- 15 25. El método de la realización 22, en donde las células de melanoma dependientes de c-KIT surgieron de un melanoma acral.
 - 26. El método de la realización 22, en donde las células de melanoma dependientes de c-KIT surgieron de un melanoma de la mucosa.
 - 27. El método de la realización 22, en donde las células de melanoma dependientes de c-KIT surgieron de un melanoma conjuntival.
 - 28. El método de la realización 22, en donde el melanoma dependiente de c-KIT surgió de un melanoma CSD.
 - 29. El método de la realización 22, en donde las células de melanoma dependientes de c-KIT tienen una mutación de la secuencia de c-Kit.
- 30. El método de la realización 22, en donde las células de melanoma dependientes de c-KIT tienen un aumento en el número de copias de c-KIT.

La invención también proporciona como realización 31 un método de detección de células de melanoma dependientes de c-KIT en una muestra biológica de un paciente que tiene un melanoma, comprendiendo el método: detectar la presencia o ausencia de una mutación en células de melanoma en el muestra biológica, donde la mutación es: i) una mutación de secuencia en un gen c-KIT, o ii) un aumento en el número de copias en un gen c-KIT, o iii) una mutación de secuencia en un gen SHP-2; en donde la presencia de la mutación es indicativa de la presencia de células de melanoma dependientes de c-KIT.

LISTADO DE SECUENCIAS

<110> Regents of the University of California

<120> Mutaciones del oncogén c-Kit en melanomas

40 <130> N104936

5

20

30

35

<140> EP 06836496.7 <141> 23-10-2006

45 <150> PCT/US06/41510 <151> 23-10-2006

<150> US 60/729.171

<151> 21-10-2005

<160> 27

<170> FastSEQ para Windows Versión 4.0

55 <210> 1

<211> 5084

<212> ADN

<213> Homo sapiens

60 <220>

<223> homólogo humano del oncogén viral del sarcoma felino v-kit Hardy-Zuckerman 4 (c-kit, KIT), receptor del factor de crecimiento de mastocitos/células madre (SCFR), PBT, CD117, antígeno YB5.B8

<400> 1

65

```
gateceateg cagetacege gatgagagge getegeggeg cetgggattt tetetgegtt 60
ctgctcctac tgcttcgcgt ccagacaggc tcttctcaac catctgtgag tccaggggaa 120
cogtotocac catocatoca tocaggaaaa toagacttaa tagtoogogt gggcgacgag 180
attaggetgt tatgeactga teegggettt gteaaatgga ettttgagat eetggatgaa 240
acgaatgaga ataagcagaa tgaatggatc acggaaaagg cagaagccac caacaccggc 300
aaatacacgt gcaccaacaa acacggctta agcaattcca tttatgtgtt tgttagagat 360
cctgccaage ttttccttgt tgaccgctcc ttgtatggga aagaagacaa cgacacgctg 420
gtccgctgtc ctctcacaga cccagaagtg accaattatt ccctcaaggg gtgccagggg 480
aagestette esaaggastt gaggtttatt eetgassesa aggegggsat satgatsaaa 540
agtgtgaaac gcgcctacca toggctctgt ctgcattgtt ctgtggacca ggagggcaag 600
teagtgetgt eggaaaaatt cateetgaaa gtgaggeeag eetteaaage tgtgeetgtt 660
qtqtctqtqt ccaaaqcaaq ctatcttctt aqqqaaqggg aagaattcac agtqacgtgc 720
acaataaaag atgtgtctag ttctgtgtac tcaacgtgga aaagagaaaa cagtcagact 780
aaactacagg agaaatataa tagctggcat cacggtgact tcaattatga acgtcaggca 840
acgttgacta tcagttcagc gagagttaat gattctggag tgttcatgtg ttatgccaat 900
aatacttttg gatcagcaaa tgtcacaaca accttggaag tagtagataa aggattcatt 960
aatatettee eeatgataaa caetacagta titigtaaacg atggagaaaa tgtagatitig 1020
attqttqaat atqaaqcatt ccccaaacct qaacaccaqc agtggatcta tatgaacaga 1080
accttcactq ataaatqqqa aqattatccc aaqtctqaqa atqaaaqtaa tatcaqatac 1140
qtaaqtqaac ttcatctaac qaqattaaaa qqcaccqaaq qaqqcactta cacattccta 1200
gtqtccaatt ctqacqtcaa tqctqccata qcatttaatq tttatgtgaa tacaaaacca 1260
gaaatcctga cttacgacag gctcgtgaat ggcatgctcc aatgtgtggc agcaggattc 1320
ccagagecca caatagattg gtatttttgt ccaggaactg ageagagatg ctctgettet 1380
gtactgccag tggatgtgca gacactaaac tcatctgggc caccgtttgg aaagctagtg 1440
gttcagagtt ctatagattc tagtgcattc aagcacaatg gcacggttga atgtaaggct 1500
tacaacgatg tgggcaagac ttctgcctat tttaactttg catttaaagg taacaacaaa 1560
```

```
gagcaaatec atececacae ectgtteact ectttgetga ttggtttegt aategtaget 1620
ggcatgatgt gcattattgt gatgattctg acctacaaat atttacagaa acccatgtat 1680
qaagtacagt ggaaggttgt tgaggagata aatggaaaca attatgttta catagaccca 1740
acacaactto ottatgatoa caaatgggag tttoccagaa acaggotgag ttttgggaaa 1800
accordggtg ctggagcttt cgggaaggtt qttgaggcaa ctgcttatgg cttaattaag 1860
tcagatgcgg ccatgactgt cgctgtaaag atgctcaagc cgagtgccca tttgacagaa 1920
cgggaagccc tcatgtctga actcaaagtc ctgagttacc ttggtaatca catgaatatt 1980
gtgaatetac ttggagcetg caccattgga qggcccacce tggtcattac agaatattgt 2040
tgctatggtg atcttttgaa ttttttgaga agaaaacgtg attcatttat ttgttcaaag 2100
caggaagatc atgcagaagc tgcactttat aagaatcttc tgcattcaaa ggagtcttcc 2160
tgcagcgata gtactaatga gtacatggac atgaaacctg gagtttctta tgttgtccca 2220
accaaggceg acaaaaggag atctgtgaga ataggctcat acatagaaag agatgtgact 2280
cccgccatca tggaggatga cgagttggcc ctagacttag aagacttgct gagcttttct 2340
taccagging caaagggcat ggetticete geetecaaga attgtattea cagagaettig 2400
gcagccagaa atatcctcct tactcatggt cggatcacaa agatttgtga ttttggtcta 2460
gccagagaca tcaagaatga ttctaattat gtggttaaag gaaacgctcg actacctgtg 2520
aagtggatgg cacctgaaag cattttcaac tgtgtataca cgtttgaaag tgacgtctgg 2580
tectatggga tttttetttg ggagetgtte tetttaggaa geageeesta teetggaatg 2640
coggtogatt ctaagtteta caagatgate aaggaagget teeggatget cageeetgaa 2700
cacgcacctg ctgaaatgta tgacataatg aagacttgct gggatgcaga tcccctaaaa 2760
agaccaacat tcaagcaaat tgttcagcta attgagaagc agatttcaga gagcaccaat 2820
catatttact ccaacttagc aaactgcagc cccaaccgac agaagcccgt ggtagaccat 2880
totgtgogga toaattotgt oggoagoaco gottootoot occagootot gottgtgoac 2940
gacgatgtct gagcagaatc agtgtttggg tcacccctcc aggaatgatc tcttcttttg 3000
getteeatga tggttatttt ettttettte aacttgeate caacteeagg atagtgggea 3060
ccccactgca atcctgtctt tctgagcaca ctttagtggc cgatgatttt tgtcatcagc 3120
caccatecta ttgcaaaggt tecaaetgta tatatteeca atageaaegt agettetaee 3180
atgaacagaa aacattctga tttggaaaaa gagagggagg tatggactgg gggccagagt 3240
cctttccaag gettctccaa ttctgcccaa aaatatggtt gatagtttac ctgaataaat 3300
ggtagtaatc acagttggcc ttcagaacca tccatagtag tatgatgata caagattaga 3360
agotgaaaac otaagtoott tatgtggaaa acagaacato attagaacaa aggacagagt 3420
atgaacacct gggcttaaga aatctagtat ttcatgctgg gaatgagaca taggccatga 3480
aaaaaatgat ccccaagtgt gaacaaaaga tgctcttctg tggaccactg catgagcttt 3540
tatactaccg acctggtttt taaatagagt ttgctattag agcattgaat tggagagaag 3600
gcctccctag ccagcacttg tatatacgca totataaatt gtccgtgttc atacatttga 3660
ggggaaaaca ccataaggtt tegtttetgt atacaaceet ggeattatgt ccaetgtgta 3720
tagaagtaga ttaagagcca tataagtttg aaggaaacag ttaataccat tttttaagga 3780
aacaatataa ccacaaagca cagtttgaac aaaatctcct cttttagctg atgaacttat 3840
totgtagatt otgtggaaca agootatoag ottoagaatg goattgtact caatggattt 3900
gatgctgttt gacaaagtta ctgattcact gcatggctcc cacaggagtg ggaaaacact 3960
gccatcttag tttggattct tatgtagcag gaaataaagt ataggtttag cctccttcgc 4020
aggeatgtee tggacacegg gecagtatet atatatgtgt atgtaegttt gtatgtgtgt 4080
agacaaatat ttggaggggt atttttgccc tgagtccaag agggtccttt agtacctgaa 4140
aagtaacttg gettteatta ttagtactge tettgtttet ttteacatag etgtetagag 4200
tagettacea gaagetteea tagtggtgea gaggaagtgg aaggeateag teeetatgta 4260
tttgcagttc acctgcactt aaggcactct gttatttaga ctcatcttac tgtacctgtt 4320
cettagacet tecataatge tactgtetea etgaaacatt taaattttae eetttagact 4380
gtagcctgga tattattett gtagtttace tetttaaaaa caaaacaaaa caaaacaaaa 4440
aactccctt cctcactgcc caatataaaa ggcaaatgtg tacatggcag agtttgtgtg 4500
ttgtcttgaa agattcaggt atgttgcctt tatggtttcc cccttctaca tttcttagac 4560
tacatttaga gaactqtqqc cgttatctgg aagtaaccat ttgcactgga qttctatgct 4620
ctcgcacctt tccaaagtta acagattttg gggttgtgtt gtcacccaag agattgttgt 4680
ttgccatact ttgtctgaaa aattcctttg tgtttctatt gacttcaatg atagtaagaa 4740
aagtggttgt tagttataga tgtctaggta cttcaggggc acttcattga gagttttgtc 4800
ttgccatact ttgtctgaaa aattcctttg tgtttctatt gacttcaatg atagtaagaa 4860
aagtggttgt tagttataga tgtctaggta cttcaggggc acttcattga gagttttgtc 4920
aatgtetttt gaatatteee aageeeatga gteettgaaa atatttttta tatataeagt 4980
aactttatgt gtaaatacat aagcggcgta agtttaaagg atgttggtgt tccacgtgtt 5040
                                                                  5084
ttattcctgt atgttgtcca attgttgaca gttctgaaga attc
```

<210> 2

<211> 976 <212> PRT

<213> Homo sapiens

<220>

5

10

<223> homólogo humano del oncogén viral del sarcoma felino v-kit Hardy-Zuckerman 4 (c-kit, KIT), receptor del factor de crecimiento de mastocitos/células madre (SCFR), PBT, CD117, antígeno YB5.B8

<400> 2

Met Arg Gly Ala Arg Gly Ala Trp Asp Phe Leu Cys Val Leu Leu Leu 10 Leu Leu Arq Val Gln Thr Gly Ser Ser Gln Pro Ser Val Ser Pro Gly 25 Glu Pro Ser Pro Pro Ser Ile His Pro Gly Lys Ser Asp Leu Ile Val Arg Val Gly Asp Glu Ile Arg Leu Leu Cys Thr Asp Pro Gly Phe Val Lys Trp Thr Phe Glu Ile Leu Asp Glu Thr Asn Glu Asn Lys Gln Asn Glu Trp Ile Thr Glu Lys Ala Glu Ala Thr Asn Thr Gly Lys Tyr Thr Cys Thr Asn Lys His Gly Leu Ser Asn Ser Ile Tyr Val Phe Val Arg 105 Asp Pro Ala Lys Leu Phe Leu Val Asp Arg Ser Leu Tyr Gly Lys Glu 120 Asp Asn Asp Thr Leu Val Arg Cys Pro Leu Thr Asp Pro Glu Val Thr 135 Asn Tyr Ser Leu Lys Gly Cys Gln Gly Lys Pro Leu Pro Lys Asp Leu 150 Arg Phe Ile Pro Asp Pro Lys Ala Gly Ile Met Ile Lys Ser Val Lys 165 170 Arg Ala Tyr His Arg Leu Cys Leu His Cys Ser Val Asp Gln Glu Gly 180 185 Lys Ser Val Leu Ser Glu Lys Phe Ile Leu Lys Val Arg Pro Ala Phe 200 205 Lys Ala Val Pro Val Val Ser Val Ser Lys Ala Ser Tyr Leu Leu Arg 215 220 Glu Gly Glu Glu Phe Thr Val Thr Cys Thr Ile Lys Asp Val Ser Ser 230 235 240 Ser Val Tyr Ser Thr Trp Lys Arg Glu Asn Ser Gln Thr Lys Leu Gln 245 250 Glu Lys Tyr Asn Ser Trp His His Gly Asp Phe Asn Tyr Glu Arg Gln 265 270 Ala Thr Leu Thr Ile Ser Ser Ala Arg Val Asn Asp Ser Gly Val Phe 275 285 280 Met Cys Tyr Ala Asn Asn Thr Phe Gly Ser Ala Asn Val Thr Thr Thr 300 295 Leu Glu Val Val Asp Lys Gly Phe Ile Asn Ile Phe Pro Met Ile Asn 310 315 Thr Thr Val Phe Val Asn Asp Gly Glu Asn Val Asp Leu Ile Val Glu 325 330 Tyr Glu Ala Phe Pro Lys Pro Glu His Gln Gln Trp Ile Tyr Met Asn 345 Arg Thr Phe Thr Asp Lys Trp Glu Asp Tyr Pro Lys Ser Glu Asn Glu 360 365 Ser Asn Ile Arg Tyr Val Ser Glu Leu His Leu Thr Arg Leu Lys Gly 370 375

```
Thr Glu Gly Gly Thr Tyr Thr Phe Leu Val Ser Asn Ser Asp Val Asn
              390
                      395
Ala Ala Ile Ala Phe Asn Val Tyr Val Asn Thr Lys Pro Glu Ile Leu
              405
                                410
Thr Tyr Asp Arg Leu Val Asn Gly Met Leu Gln Cys Val Ala Ala Gly
                           425
         420
Phe Pro Glu Pro Thr Ile Asp Trp Tyr Phe Cys Pro Gly Thr Glu Gln
 435 440
                              445
Arg Cys Ser Ala Ser Val Leu Pro Val Asp Val Gln Thr Leu Asn Ser
                   455
Ser Gly Pro Pro Phe Gly Lys Leu Val Val Gln Ser Ser Ile Asp Ser
                  470
                                   475
Ser Ala Phe Lys His Asn Gly Thr Val Glu Cys Lys Ala Tyr Asn Asp
              485
                                490
Val Gly Lys Thr Ser Ala Tyr Phc Asn Phe Ala Phe Lys Gly Asn Asn
          500
                            505
Lys Glu Gln Ile His Pro His Thr Leu Phe Thr Pro Leu Leu Ile Gly
                        520
Phe Val Ile Val Ala Gly Met Met Cys Ile Ile Val Met Ile Leu Thr
                                      540
                     535
Tyr Lys Tyr Leu Gln Lys Pro Met Tyr Glu Val Gln Trp Lys Val Val
              550
                                555
Glu Glu Ile Asn Gly Asn Asn Tyr Val Tyr Ile Asp Pro Thr Gln Leu
              565
                                570
Pro Tyr Asp His Lys Trp Glu Phe Pro Arg Asn Arg Leu Ser Phe Gly
          580
                            585
                                              590
Lys Thr Leu Gly Ala Gly Ala Phe Gly Lys Val Val Glu Ala Thr Ala
      595
                        600
                                          605
Tyr Gly Leu Ile Lys Ser Asp Ala Ala Met Thr Val Ala Val Lys Met
                    615
                                       620
Leu Lys Pro Ser Ala His Leu Thr Glu Arg Glu Ala Leu Met Ser Glu
      630
                                   635
Leu Lys Val Leu Ser Tyr Leu Gly Asn His Met Asn Ile Val Asn Leu
                               650
           645
Leu Gly Ala Cys Thr Ile Gly Gly Pro Thr Leu Val Ile Thr Glu Tyr
                            665
Cys Cys Tyr Gly Asp Leu Leu Asn Phe Leu Arg Arg Lys Arg Asp Ser
                         680
                                           685
Phe Ile Cys Ser Lys Gln Glu Asp His Ala Glu Ala Ala Leu Tyr Lys
                                       700
                     695
Asn Leu Leu His Ser Lys Glu Ser Ser Cys Ser Asp Ser Thr Asn Glu
                 710
                                   715
Tyr Met Asp Met Lys Pro Gly Val Ser Tyr Val Val Pro Thr Lys Ala
                               730
Asp Lys Arg Arg Ser Val Arg Ile Gly Ser Tyr Ile Glu Arg Asp Val
                            745
          740
Thr Pro Ala Ile Met Glu Asp Asp Glu Leu Ala Leu Asp Leu Glu Asp
                        760
                                          765
Leu Leu Ser Phe Ser Tyr Gln Val Ala Lys Gly Met Ala Phe Leu Ala
                     775
                                       780
Ser Lys Asn Cys Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Leu
                  790
                                   795
Thr His Gly Arg Ile Thr Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp
                               810
             805
Ile Lys Asn Asp Ser Asn Tyr Val Val Lys Gly Asn Ala Arg Leu Pro
         820
                           825
Val Lys Trp Met Ala Pro Glu Ser Ile Phe Asn Cys Val Tyr Thr Phe
                       840 845
Glu Ser Asp Val Trp Ser Tyr Gly Ile Phe Leu Trp Glu Leu Phe Ser
                               860
                     855
```

```
Leu Gly Ser Ser Pro Tyr Pro Gly Met Pro Val Asp Ser Lys Phe Tyr
865
                                         875
                    870
Lys Met Ile Lys Glu Gly Phe Arg Met Leu Ser Pro Glu His Ala Pro
                                     890
                885
Ala Glu Met Tyr Asp Ile Met Lys Thr Cys Trp Asp Ala Asp Pro Leu
            900
                                 905
Lys Arg Pro Thr Phe Lys Gln Ile Val Gln Leu Ile Glu Lys Gln Ile
                                                 925
                            920
Ser Glu Ser Thr Asn His Ile Tyr Ser Asn Leu Ala Asn Cys Ser Pro
                                             940
                        935
Asn Arg Gln Lys Pro Val Val Asp His Ser Val Arg Ile Asn Ser Val
                    950
                                         955
Gly Ser Thr Ala Ser Ser Ser Gln Pro Leu Leu Val His Asp Asp Val
                965
                                     970
                                                         975
```

<210> 3

<211> 1782

<212> ADN

<213> Homo sapiens

<220>

5

10

<223> proteína tirosina fosfatasa, no receptora tipo 11 (PTPN11), tirosina fosfatasa que contiene homología con src 2 (SH2) (SHP-2, SHP2, SH-PTP2), síndrome de Noonan 1 (NS1), proteína tirosina fosfatasa 2C (PTP2C), CFC, BPTP3, PTP1D, MGC14433

<400> 3

```
atgacatege ggagatggtt teacecaaat ateactggtg tggaggeaga aaacetaetg 60
ttgacaagag gagttgatgg cagttttttg gcaaggccta gtaaaagtaa ccctggagac 120
ttcacacttt ccgttagaag aaatggagct gtcacccaca tcaagattca gaacactggt 180
gattactatg acctgtatgg aggggagaaa tttgccactt tggctgagtt ggtccagtat 240
tacatggaac atcacgggca attaaaagag aagaatggag atgtcattga gcttaaatat 300
cetetgaact gtgeagatee tacetetgaa aggtggttte atggacatet etetgggaaa 360
gaagcagaga aattattaac tgaaaaagga aaacatggta gttttcttgt acgagagagc 420
cagagecace etggagattt tgttetttet gtgegeaetg gtgatgaeaa aggggagage 480
aatgacggca agtetaaagt gacccatgtt atgatteget gteaggaact gaaatacgae 540
gttggtggag gagaacggtt tgattctttg acaqatcttg tggaacatta taagaaqaat 600
cctatggtgg aaacattggg tacagtacta caactcaagc agccccttaa cacgactcgt 660
ataaatgctg ctgaaataga aagcagagtt cgagaactaa gcaaattagc tgagaccaca 720
gataaagtca aacaaggctt ttgggaagaa tttgagacac tacaacaaca ggagtgcaaa 780
cttctctaca gccgaaaaga gggtcaaagg caagaaaaca aaaacaaaaa tagatataaa 840
aacatoctgc cotttgatca taccagggtt gtoctacacg atggtgatcc caatgagect 900
gtttcagatt acatcaatgc aaatatcatc atgcctgaat ttgaaaccaa gtgcaacaat 960
tcaaagccca aaaagagtta cattgccaca caaggctgcc tgcaaaacac ggtgaatgac 1020
ttttggcgga tggtgttcca agaaaactcc cgagtgattg tcatgacaac gaaagaagtg 1080
gagagaggaa agagtaaatg tgtcaaatac tggcctgatg agtatgctct aaaagaatat 1140
ggcgtcatgc gtgttaggaa cgtcaaagaa agcgccgctc atgactatac gctaagagaa 1200
cttaaacttt caaaggttgg acaagggaat acggagagaa cggtctggca ataccacttt 1260
eggacetgge eggaceaegg egtgeeeage gaceetgggg gegtgetgga etteetggag 1320
gaggtgcacc ataagcagga gagcatcatg gatgcagggc cggtcgtggt gcactgcagt 1380
gctggaattg gccggacagg gacgttcatt gtgattgata ttcttattga catcatcaga 1440
gagaaaggtg ttgactgcga tattgacgtt cccaaaacca tccagatggt gcggtctcag 1500
aggtcaggga tggtccagac agaagcacag taccgattta tctatatggc ggtccagcat 1560
tatattgaaa cactacagcg caggattgaa gaagagcaga aaagcaagag gaaagggcac 1620
gaatatacaa atattaagta ttetetageg gaccagaega gtggagatea gageeetete 1680
ccgccttgta ctccaacgcc accctgtgca gaaatgagag aagacagtgc tagagtctat 1740
gaaaacgtgg gcctgatgca acagcagaaa agtttcagat ga
                                                                  1782
```

15

<210> 4 <211> 593 <212> PRT <213> Homo sapiens

<220>

<223> proteína tirosina fosfatasa, no receptora tipo 11 (PTPN11), tirosina fosfatasa que contiene homología con src 2 (SH2) (SHP-2, SHP2, SH-PTP2), síndrome de Noonan 1 (NS1), proteína tirosina fosfatasa 2C (PTP2C), CFC, BPTP3, PTP1D

<400> 4

10

Met 1	Thr	Ser	Arg	Arg 5	Trp	Phe	His	Pro	Asn 10	Ile	Thr	Gly	Val	Glu 15	Ala
Glu	Asn	Leu	Leu 20	Leu	Thr	Arg	Gly	Val 25	Asp	Gly	Ser	Phe	Leu 30	Ala	Arg
Pro	Ser	Lys 35	Ser	Asn	Pro	Gly	Asp 40	Phe	Thr	Leu	Ser	Val 45	Arg	Arg	Asn
Gly	Ala 50		Thr	His	Ile	Lys 55	Ile	Gln	Asn	Thr	Gly 60	Asp	Tyr	Tyr	Asp
Leu 65		Gly	Gly	Glu	Lys 70		Ala	Thr	Leu	Ala 75		Leu	Val	Gln	Tyr 80
	Met	Glu	His	His 85	Gly	Gln	Leu	Lys	Glu 90		Asn	Gly	Asp	Val 95	
Glu	Leu	Lys	Tyr 100	Pro	Leu	Asn	Суѕ	Ala 105	Asp	Pro	Thr	Ser	Glu 110	Arg	Trp
Phe	His	Gly 115	His	Leu	Ser	Gly	Lys 120	Glu	Ala	Glu	Lys	Leu 125	Leu	Thr	Glu
Lys	Gly 130	Lys	His	Gly	Ser	Phe 135	Leu	Val	Arg	Glu	Ser 140	Gln	Ser	His	Pro
Gly 145	Asp	Phe	Val	Leu	Ser 150	Val	Arg	Thr	Gly	Asp 155	Asp	Lys	Gly	Glu	Ser 160
	Asp	Gly	Lys	Ser 165		Val	Thr	His	Val 170	Met	īle	Arg	Cys	Gln 175	Glu
Leu	Lys	Tyr	Asp 180	Val	Gly	Gly	GΙΆ	Glu 185	Arg	Phe	Asp	Ser	Leu 190	Thr	Asp
Leu	Val	Glu 195	His	Tyr	Lys	Lys	Asn 200	Pro	Met	Val	Glu	Thr 205	Leu	Gly	Thr
Val	Leu 210	Gln	Leu	Lys	Gln	Pro 215	Leu	Asn	Thr	Thr	Arg 220	Ile	Asn	Ala	Ala
Glu 225	Ile	Glu	Ser	Arg	Val 230	Arg	Glu	Leu	Ser	Lys 235	Leu	Ala	Glu	Thr	Thr 240
Asp	Lys	Val	Lys	Gln 245	Gly	Phe	Trp	Glu	Glu 250	Phe	Glu	Thr	Leu	Gln 255	Gln
Gln	Glu	Cys	Lys 260	Leu	Leu	Tyr	Ser	Arg 265	Lys	Glu	Gly	Gln	Arg 270	Gln	Glu
Asn	Lys	Asn 275	Lys	Asn	Arg	Tyr	Lys 280	Asn	Ile	Leu	Pro	Phe 285	Asp	His	Thr
Arg	Val 290	Val	Leu	His	Asp	Gly 295	Asp	Pro	Asn	Glu	Pro 300	Val	Ser	Asp	Tyr
Ile 305	Asn	Ala	Asn	Ile	Ile 310	Met	Pro	Glu	Phe	Glu 315	Thr	Lys	Cys	Asn	Asn 320
Ser	Lys	Pro	Lys	Lys 325	Ser	Tyr	Ile	Ala	Thr 330	Gln	Gly	Суз	Leu	G1n 335	Asn
·			340		_	-		345					350	Arg	
Ile	Val	Met 355	Thr	Thr	Lys	Glu	Val 360	Glu	Arg	Gly	Lys	Ser 365	Lys	Cys	Val
Lys	Tyr 370	Trp	Pro	Asp	Glu	Tyr 375	Ala	Leu	Lys	Glu	Tyr 380	Gly	Val	Met	Arg
Val	Arg	Asn	Val	Lys	Glu	Ser	Ala	Ala	His	Asp	Tyr	Thr	Leu	Arg	Glu

400

390

```
Leu Lys Leu Ser Lys Val Gly Gln Gly Asn Thr Glu Arg Thr Val Trp
                                  405
                                                        410
               Gln Tyr His Phe Arg Thr Trp Pro Asp His Gly Val Pro Ser Asp Pro
                                                    425
               Gly Gly Val Leu Asp Phe Leu Glu Glu Val His His Lys Gln Glu Ser
                                               440
                                                                      445
               Ile Met Asp Ala Gly Pro Val Val Val His Cys Ser Ala Gly Ile Gly
                                           455
               Arg Thr Gly Thr Phe Ile Val Ile Asp Ile Leu Ile Asp Ile Ile Arg
                                      470
                                                             475
               Glu Lys Gly Val Asp Cys Asp Ile Asp Val Pro Lys Thr Ile Gln Met
                                  485
                                                        490
                                                                               495
               Val Arg Ser Gln Arg Ser Gly Met Val Gln Thr Glu Ala Gln Tyr Arg
                             500
                                                    505
                                                                           510
               Phe Ile Tyr Met Ala Val Gin His Tyr Ile Glu Thr Leu Gln Arg Arg
                        515
                                               520
                                                                      525
               Ile Glu Glu Glu Gln Lys Ser Lys Arg Lys Gly His Glu Tyr Thr Asn
                                           535
                                                                  540
               Ile Lys Tyr Ser Leu Ala Asp Gln Thr Ser Gly Asp Gln Ser Pro Leu
                                                             555
                                      550
               Pro Pro Cys Thr Pro Thr Pro Pro Cys Ala Glu Met Arg Glu Asp Ser
                                                                               575
                                  565
                                                        570
               Ala Arg Val Tyr Glu Asn Val Gly Leu Met Gln Gln Gln Lys Ser Phe
                                                                           590
                             580
                                                    585
               Arg
        <210>5
        <211> 23
 5
        <212> ADN
        <213> Secuencia artificial
        <223> motivo de secuencia de 23 nt diana de RNPip
10
        <221> modified_base
        <222> (3)...(21)
        <223> n = cualquier nucleótido
15
        <400> 5
        aannnnnnn nnnnnnnnn ntt 23
        <210>6
20
        <211> 22
        <212> ADN
        <213> Secuencia artificial
25
        <223> cebador directo para amplificación por PCR del exón 3a de SHP2
        <400>6
                                22
        gtaaaatccg acgtggaaga tg
30
        <210>7
        <211> 24
        <212> ADN
        <213> Secuencia artificial
35
        <220>
        <223> cebador inverso para amplificación por PCR del exón 3a de SHP2
```

	4005 7									
	<400> 7 gttcagaggt aggatctgca cagt 24									
5	<210> 8 <211> 23 <212> ADN <213> Secuencia artificial									
10	<220> <223> cebador directo para amplificación p	oor PCR del exón 3b de SHP2								
	<400> 8 gaaatggagc tgtcacccac atc 23									
15	<210> 9 <211> 23 <212> ADN <213> Secuencia artificial									
20	<220> <223> cebador inverso para amplificación	por PCR del exón 3b de SHP2								
25	<400> 9 catacacaga ccgtcatgca ttt 23									
23	<210> 10 <211> 23 <212> ADN <213> Secuencia artificial									
30	<220> <223> cebador directo para amplificación p	<220> <223> cebador directo para amplificación por PCR del exón 4a de SHP2								
35	<400> 10 tttgtgaaag aacaacatga acc 23									
40	<210> 11 <211> 20 <212> ADN <213> Secuencia artificial									
	<220> <223> cebador inverso para amplificación	por PCR del exón 4a de SHP2								
45	<400> 11 gacttgccgt cattgctctc 20									
50	<210> 12 <211> 26 <212> ADN <213> Secuencia artificial									
55	<220> <223> cebador directo para amplificación p	<220> <223> cebador directo para amplificación por PCR del exón 4b de SHP2								
	<400> 12 ggaaaacatg gtagttttct tgtacg 26									
60	<210> 13 <211> 25 <212> ADN <213> Secuencia artificial									
65	<220> <223> cebador inverso para amplificación	por PCR del exón 4b de SHP2								

```
<400> 13
          tgaatgtaat ggtgtctgtc ttctg
                                        25
          <210> 14
 5
          <211> 19
          <212> ADN
          <213> Secuencia artificial
          <220>
10
          <223> cebador directo para amplificación por PCR del exón 7 de SHP2
          gtaatgctga tccaggctt
                                        19
15
          <210> 15
          <211> 21
          <212> ADN
          <213> Secuencia artificial
20
          <220>
          <223> cebador inverso para amplificación por PCR del exón 7 de SHP2
          <400> 15
          ccctgaggaa aggtacagag g
                                        21
25
          <210> 16
          <211> 21
          <212> ADN
          <213> Secuencia artificial
30
          <220>
          <223> cebador directo para amplificación por PCR del exón 8 de SHP2
          <400> 16
35
          gctggggagt aactgatttg a
                                        21
          <210> 17
          <211> 20
          <212> ADN
40
          <213> Secuencia artificial
          <220>
          <223> cebador inverso para amplificación por PCR del exón 8 de SHP2
          <400> 17
45
          ctttcaggac atgaggaagg
                                                20
          <210> 18
          <211> 26
50
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> cebador directo para amplificación por PCR del exón 13a de SHP2
55
          gtccactaaa agttgtgcat taaaca
          <210> 19
60
          <211> 20
          <212> ADN
          <213> Secuencia artificial
          <220>
          <223> cebador inverso para amplificación por PCR del exón 13a de SHP2
65
```

```
<400> 19
          caggctggta cctgctcttc
                                        20
          <210> 20
 5
          <211> 22
          <212> ADN
          <213> Secuencia artificial
          <220>
10
          <223> cebador directo para amplificación por PCR del exón 13b de SHP2
          catgatgttt ccttcgtagg tg
                                                22
          <210> 21
15
          <211> 20
          <212> ADN
          <213> Secuencia artificial
20
          <220>
          <223> cebador inverso para amplificación por PCR del exón 13b de SHP2
          <400> 21
          ctcctgctca aaaggagagc
                                                20
25
          <210> 22
          <211> 18
          <212> ADN
          <213> Secuencia artificial
30
          <220>
          <223> cebador directo M13 para amplificación por PCR
          <400> 22
35
          tgtaaaacga cggccagt
                                        18
          <210> 23
          <211> 23
          <212> ADN
40
          <213> Secuencia artificial
          <220>
          <223> cebador inverso M13 para amplificación por PCR
45
          <400> 23
          agcggataac aatttcacac agg
                                        23
          <210> 24
          <211> 23
50
          <212> ADN
          <213> Secuencia artificial
          <223> motivo de secuencia de 23 nt diana de RNPip
55
          <221> modified base
          <222> (1)...(1)
          <223> n = cualquier nucleótido
          <221> modified_base
60
          <222> (3)...(23)
          <223> n = cualquier nucleótido
          <400> 24
65
          nannnnnnn nnnnnnnnnn nnn 23
```

```
<210> 25
          <211> 21
          <212> ADN
 5
          <213> Secuencia artificial
          <220>
          <223> secuencia sentido de ARNip (molécula combinada de ARN/ADN)
10
          <221> modified_base
          <222> (1)...(19)
          <223> n = cualquier nucleótido
          <221> misc feature
15
          <222> (1)...(19)
          <223> ribonucleótidos
          <400> 25
                                        21
          nnnnnnnn nnnnnnnnt t
20
          <210> 26
          <211> 21
          <212> ARN
          <213> Secuencia artificial
25
          <220>
          <223> secuencia sentido de ARNip
          <221> modified_base
30
          <222> (1)...(21)
          <223> n = cualquier nucleótido
          <400> 26
          nnnnnnnnn nnnnnnnnn n
                                        21
35
          <210> 27
          <211> 23
          <212> ARN
          <213> Secuencia artificial
40
          <220>
          <223> motivo de diana de ARNip
          <221> modified_base
45
          <222> (1)... (1)
          <223> n = cualquier nucleótido
          <221> modified_base
          <222> (3)...(3)
50
          <223> r = cualquier purina (a o g)
          <221> modified base
          <222> (4)...(20)
          <223> n = cualquier nucleótido
55
          <221> modified base
          <222> (21)...(21)
          <223> y = cualquier pirimidina (c o u)
60
          <221> modified_base
          <222> (22)...(23)
          <223> n = cualquier nucleótido
          <400> 27
          narnnnnnn nnnnnnnnn ynn 23
65
```

REIVINDICACIONES

1. Un método de detección de células de melanoma dependientes de c-KIT en una muestra biológica que comprende células de melanoma de un paciente que tiene un melanoma acral, un melanoma de mucosa o un melanoma de daño inducido por el sol (CSD) crónico, comprendiendo el método:

detectar la presencia o ausencia de una mutación de secuencia en un gen SHP2 en células de melanoma del paciente, en donde la presencia de la mutación de secuencia es indicativa de la presencia de células de melanoma dependientes de c-KIT.

10

5

2. Un método para determinar si un paciente con melanoma que tiene un melanoma acral, un melanoma de mucosa o un melanoma CSD, es un candidato para recibir una terapia que inhibe la actividad de c-Kit, comprendiendo el método detectar si una muestra biológica del melanoma del paciente comprende células de melanoma que tienen una mutación de secuencia en un gen SHP2.

15

35

3. El método de la reivindicación 1 o 2, en donde la etapa de detección comprende detectar la presencia o ausencia de la mutación de secuencia en una muestra de ácido nucleico de la muestra biológica.

4. 20 un

- 4. El método de una cualquiera de las reivindicaciones 1 a 3, en donde la muestra biológica es una muestra de piel o una muestra de una membrana mucosa.
- 5. El método de una cualquiera de las reivindicaciones 1 a 3, en donde la muestra biológica es de ganglio linfático, pulmón, hígado, glándula suprarrenal o hueso.
- 25 6. El método de una cualquiera de las reivindicaciones 1 a 5, en donde la mutación en el gen SHP2 está en la región que codifica el dominio de proteína tirosina fosfatasa.
 - 7. El método de la reivindicación 6, en donde la mutación da como resultado una sustitución P491L, S150F o I309V.
- 30 8. El método de una cualquiera de las reivindicaciones 1 a 7, en donde el melanoma es un melanoma CSD o melanoma de mucosa.
 - 9. Un método para monitorizar la progresión de un melanoma en un paciente que tiene un melanoma acral, CSD o de mucosa, sometido a una terapia, comprendiendo el método monitorizar el número de células de melanoma dependientes de c-KIT que tienen una mutación de la secuencia de SHP2 en una muestra biológica del paciente, en donde un cambio en el número de células de melanoma dependientes de c-KIT que tienen la mutación de SHP2 es indicativo de la respuesta del paciente a la terapia.
- 10. El método de la reivindicación 9, en donde la muestra biológica es de piel que tiene daño inducido por el sol crónico, de mucosa o de sangre.
 - 11. El método de la reivindicación 9 o 10, en donde la mutación en el gen SHP2 está en la región que codifica el dominio de proteína tirosina fosfatasa.
- 45 12. El método de la reivindicación 11, en donde la mutación da como resultado una sustitución P491L, S150F o I309V
- 13. Un inhibidor de c-Kit para su uso en un método de inhibición de la proliferación de células de melanoma dependientes de c-KIT en un paciente que tiene un melanoma acral, un melanoma de mucosa o melanoma CSD, en donde las células de melanoma dependientes de c-KIT se detectan mediante la detección de células de melanoma con una mutación de la secuencia de SHP2 en una muestra biológica del paciente, y en donde el inhibidor de c-Kit es un fármaco dirigido al receptor tirosina quinasa de molécula pequeña o un anticuerpo anti-c-Kit.
- 14. El inhibidor de c-Kit para su uso en conformidad con la reivindicación 13, en donde la mutación en el gen SHP2
 está en la región que codifica el dominio de proteína tirosina fosfatasa, y es opcionalmente una mutación que da como resultado una sustitución P491L, S150F o I309V.
 - 15. El inhibidor de c-Kit para su uso en conformidad con la reivindicación 13, en donde el melanoma es un melanoma de mucosa o CSD.

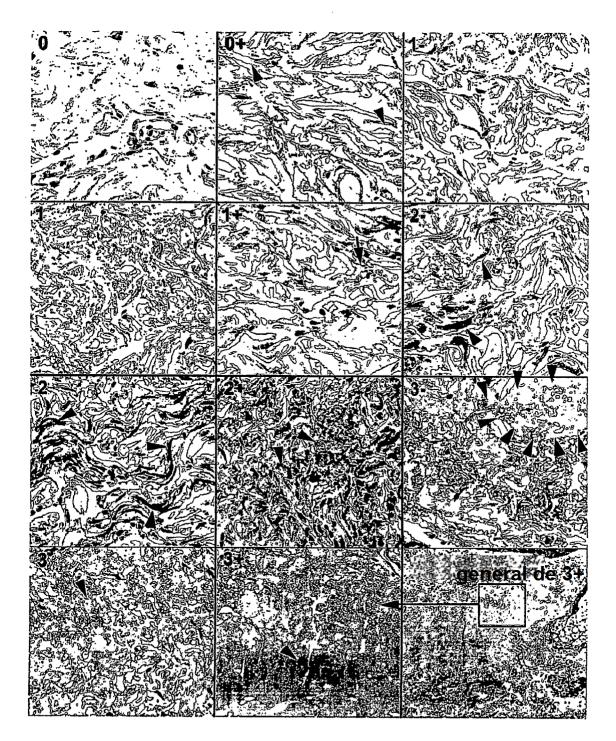
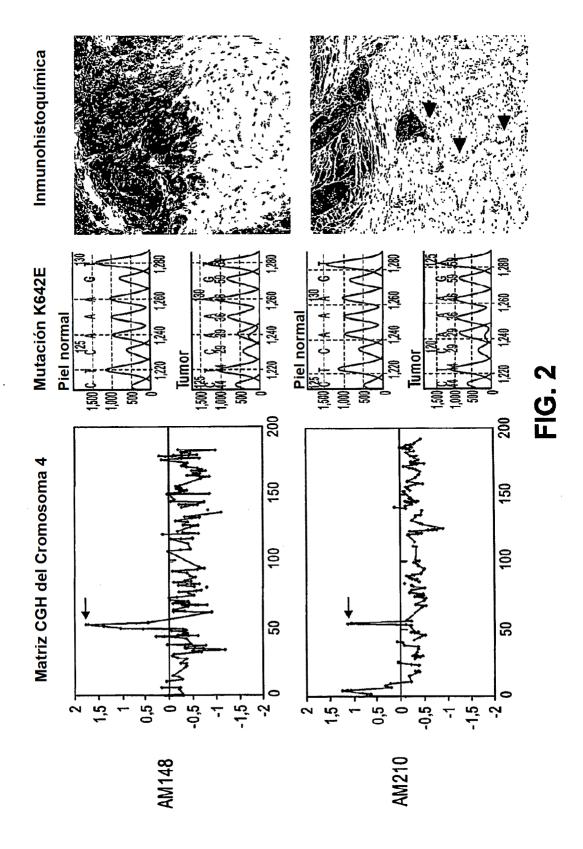



FIG. 1

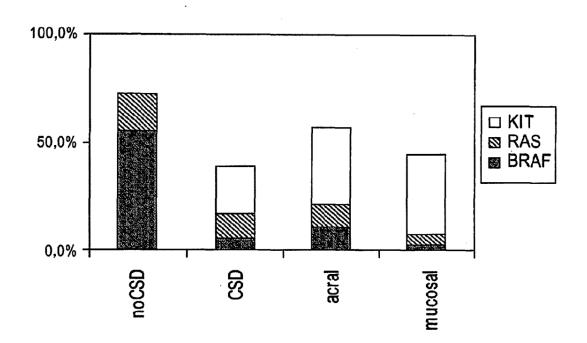


FIG. 3