

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 777 948

(51) Int. CI.:

G01N 33/68 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 04.11.2008 PCT/EP2008/064946

(87) Fecha y número de publicación internacional: 14.05.2009 WO09059972

96) Fecha de presentación y número de la solicitud europea: 04.11.2008 E 08847014 (1)

(97) Fecha y número de publicación de la concesión europea: 15.01.2020 EP 2208073

(54) Título: Marcadores bioquímicos para la evaluación de riesgos de CVD

(30) Prioridad:

05.11.2007 GB 0721713 20.11.2007 GB 0722748 15.02.2008 GB 0802814

Fecha de publicación y mención en BOPI de la traducción de la patente: **06.08.2020**

(73) Titular/es:

NORDIC BIOSCIENCE A/S (100.0%) Herlev Hovedgade 207 2730 Herlev, DK

(72) Inventor/es:

KARSDAL, MORTEN; QVIST, PER y BARASCUK, NATASHA

74 Agente/Representante:

VIDAL GONZÁLEZ, Maria Ester

Observaciones:

Véase nota informativa (Remarks, Remarques o Bemerkungen) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Marcadores bioquímicos para la evaluación de riesgos de CVD

15

40

45

- La presente invención se refiere a ensayos para la detección de marcadores bioquímicos valiosos para fines de diagnóstico en enfermedades cardiovasculares y pronóstico del desarrollo de enfermedades, incluyendo marcadores bioquímicos indicativos del riesgo de eventos cardiovasculares resultantes del desarrollo ateroesclerótico y la inestabilidad de placas.
- A nivel mundial, la enfermedad cardiovascular (CVD) es la principal causa de morbilidad y mortalidad. Actualmente, no existen procedimientos de diagnóstico eficaces y no invasivos que permitan el diagnóstico y la clasificación de pacientes en diferentes grupos de riesgo y el diagnóstico de pacientes de bajo riesgo. Las herramientas de diagnóstico y pronóstico se componen principalmente de análisis multivariantes de marcadores simples, tales como edad, tabaquismo y diversas concentraciones de lípidos y lipoproteínas.
 - La CVD cubre varios síndromes clínicos, principalmente, angina de pecho, infarto de miocardio (trombosis coronaria) y accidente cerebrovascular. Todos estos síndromes suelen ser las secuelas de una ateroesclerosis complicada.
- La ateroesclerosis comienza con engrosamiento de la íntima en la infancia y progresa a estrías grasas en la íntima 20 de las arterias; estas lesiones se caracterizan como tipo I y II, respectivamente. Las estrías grasas son las primeras lesiones macroscópicamente visibles en el desarrollo de la ateroesclerosis y ocurren en casi todos los seres humanos de todas las razas y sociedades. En el estado no patogénico, las células endoteliales (EC) resisten las interacciones adhesivas con leucocitos. Sin embargo, las acciones de las citocinas proinflamatorias y las lipoproteínas oxidadas acumuladas en la pared arterial durante la aterogénesis, inician la expresión de moléculas de adhesión, tales como las moléculas de adhesión intercelular (ICAM) -1 y las moléculas de adhesión celular vascular 25 (VCAM) -1, en la superficie de las EC de la aorta. Esto permite la captura y transmigración de leucocitos a través de la superficie endotelial, hacia la parte íntima de la pared del vaso. El desarrollo de placas implica un número creciente de células de músculo liso (SMC) que sufren desplazamiento y apoptosis, lo que da como resultado un aumento de la renovación de la matriz. La síntesis alterada de colágeno puede dar como resultado un tapón fibroso 30 debilitado y una placa ateroesclerótica que es más propensa a la rotura; sin embargo, la mayoría de los investigadores creen que las acciones de enzimas proteolíticas, tales como las metaloproteasas de matriz (MMP) y otras proteasas, contribuyen de manera importante al riesgo de rotura de la placa (Clarkson y Kaplan 509-28).
- Las placas son divisibles en dos tipos diferentes: placas 'vulnerables' y 'estabilizadas'. Sin embargo, para análisis histológicos detallados y comprensión molecular, a menudo se usa una clasificación más detallada. Hay tres etapas principales en el desarrollo de la placa: iniciación, estrías grasas y la placa compleja/avanzada (Stary H.C.).

Las placas ateroescleróticas se desarrollan dentro de la íntima de las arterias y pueden clasificarse según su composición y estructura. Esta clasificación divide las lesiones en ocho tipos (Stary H.C.):

- I. Los macrófagos cargados y agrandados mediante gotículas de lípidos (células de espuma de macrófagos) aumentan en la íntima.
- II. Las células de espuma de macrófagos se acumulan en la parte profunda de la capa de proteoglucanos junto con las gotículas de lípidos dentro de las SMC de la íntima. Las capas de células de espuma son visibles como estrías grasas. En las lesiones de tipo II, los monocitos penetran en el revestimiento endotelial mediante proteínas quimioatrayentes de monocitos (principalmente MCP-1), que se sobreexpresan en el ateroma humano. Los primeros tipos de lesión (tipo I y II) pueden comenzar en la infancia y no necesariamente conducen a la rotura de la placa. Asimismo, el desarrollo de la ateroesclerosis puede terminar después de la formación de la lesión de tipo III, y la formación de placa no es predecible (Stary H.C.).
- III. La lesión de tipo III se determina como la lesión intermedia entre las estrías grasas (tipo II) y el ateroma (tipo IV). Estas lesiones contienen grupos de lípidos extracelulares y, por lo tanto, expanden los espacios entre las SMC normalmente adyacentes de la capa musculoelástica profunda de la íntima. Los grupos de material pueden reemplazar los proteoglucanos y las fibras de colágeno que normalmente residen aquí, pero esto ocurre con poco impacto en esta etapa de la aterogénesis.
- IV. El ateroma es el primer signo clínico de ateroesclerosis. El desplazamiento de las SMC en la íntima de las arterias mediante la acumulación de grupos extracelulares de lípidos y la alteración de la arquitectura de la íntima es un rasgo característico de una lesión de tipo IV. La formación de los núcleos lipídicos es el resultado final de este desplazamiento de SMC. La formación de un núcleo lipídico explica el aumento del engrosamiento de la pared. El núcleo lipídico es una región grande y bien delimitada de la íntima profunda donde los elementos estructurales normales de esta parte de la pared arterial se han reemplazado por restos de células de espuma densamente empaquetadas, gotículas de lípidos libres, cristales de colesterol y partículas de calcio. Las SMC que normalmente residen en esta área están disminuidas o completamente ausentes en esta etapa de progresión de la ateroesclerosis. Cualquier SMC remanente se dispersa ampliamente y ha desarrollado cuerpos celulares alargados y muy a menudo membranas basales inusualmente gruesas. En esta etapa, comienza el desarrollo de una capa que recubre el núcleo lipídico. Esta capa consiste en colágeno y matriz intercelular rica en proteoglucanos, SMC con y sin gotículas de lípidos, macrófagos y células espumosas.

V. La respuesta a la lesión de tipo IV es la formación de una matriz reparadora de tejido fibroso, formando un "tapón" fibroso. Normalmente, estas lesiones consistirán en capas de núcleos lipídicos y tejido reparador apilados irregularmente uno encima del otro. Eventos como el hematoma y la formación de trombos pueden complicar adicionalmente este tipo de lesiones. Si no es fatal, estas complicaciones de la lesión se integran en la lesión y se cubren con una capa delgada de tejido de matriz reparadora, que consiste en colágenos y proteoglucanos. El contenido de proteínas de matriz extracelular de colágeno y proteoglucanos aumenta en la placa ateroesclerótica durante la formación del tapón.

VI. Los defectos del endotelio, tales como fisuras, erosiones, ulceraciones, hematomas, trombos, hemorragias, pueden, si se combinan, dar lugar a un tipo de lesión más complicada designada como lesión de tipo VI.

VII. La lesión a menudo se conoce como lesión calcificada, donde más de un 50 % de la lesión consiste en minerales. Además de las calcificaciones, estas lesiones contienen abundancia de tejido conectivo fibroso reparador. Cuando las SMC atrapadas en esto sufren apoptosis y se desintegran; sus orgánulos mineralizados se convierten en parte de la calcificación.

VIII. La lesión fibrótica sigue a la lesión calcificada. La lesión fibrótica puede consistir completamente en colágeno y sin lípidos. (Stary H.C.)

Los eventos cardiovasculares son a menudo el resultado de la rotura de la placa, en la cual la inflamación y la liberación de proteasas debilitan las regiones dorsales del tapón fibroso y permiten que los materiales grasos en la placa entren en contacto con la sangre que precipita un trombo parietal (Clarkson y Kaplan). El adelgazamiento del tapón fibroso por el aumento de la actividad de la proteasa en combinación con la disminución de la producción de matriz, se considera un rasgo característico de la inestabilidad de la placa que aumenta el riesgo de rotura. La vulnerabilidad de las placas y su riesgo de rotura es un área de interés clínico. La definición de una placa vulnerable (VP) no está estandarizada, pero existe un acuerdo general que indica la existencia de tres rasgos característicos histológicos en comparación con la placa estable:

- 1) Un núcleo lipídico más grande (> 40 por ciento de la lesión total).
- 2) Un tapón fibroso más delgado (65 150 micrómetros).
- 3) Gran cantidad de células inflamatorias agudas.

30 Los criterios principales para definir una VP incluyen: inflamación activa (presencia de monocitos, macrófagos y linfocitos T), tapón delgado con núcleo lipídico grande, denudación endotelial con agregación plaquetaria superficial, placa fisurada y > 90 % de estenosis de la arteria. Otros criterios menores incluyen: nódulo superficial calcificado, hemorragia intraplaca, disfunción endotelial y remodelación externa (Shin, Edelberg y Hong).

35 Las complicaciones, la inestabilidad y la rotura de la placa pueden ser inhibidas por el tratamiento médico y/o la modificación del estilo de vida. En algunos casos, sin embargo, se pueden necesitar procedimientos más invasivos, es decir, angioplastia o cirugía de derivación.

En la actualidad, las herramientas de diagnóstico se basan en análisis de imágenes estáticas aún en desarrollo o en procedimientos de baja tecnología, como los niveles de presión arterial sistólica y diastólica relacionados con el riesgo de CVD. El campo ha dedicado mucha atención al desarrollo de análisis multivariante que puedan identificar mejor a los pacientes con alto riesgo. Uno de estos modelos es el modelo SCORE (modelo de evaluación sistemática de riesgos coronarios). En 1994, con una revisión en 2003, la Sociedad Europea de Ateroesclerosis, la Sociedad Europea de Cardiología y la Sociedad Europea de Hipertensión emitieron un conjunto de recomendaciones sobre la prevención de enfermedades coronarias. Esta guía se basa en varias técnicas de evaluación, que se han desarrollado para evaluar el riesgo de CVD en sujetos asintomáticos, es decir, la identificación de pacientes asintomáticos de alto riesgo. El modelo SCORE integra género, edad, hábito de fumar, presión arterial sistólica y colesterol total o la relación colesterol/HDL como factores de riesgo (Graham et al.).

Para hacer un diagnóstico más detallado, el modelo SCORE no es suficiente y se utilizan técnicas de imagen. Por lo tanto, los procedimientos de imagen se utilizan principalmente en pacientes del grupo de alto riesgo o durante la investigación.

TÉCNICAS DE IMAGEN

5

10

15

20

25

55

60

65

La angiografía coronaria (CAG) es actualmente la técnica de imagen de referencia para definir el grado de estenosis. La CAG forma imágenes de la luz del vaso en dos dimensiones, pero está restringido solo a la luz y no a la pared del vaso, por lo que la CAG no puede distinguir entre una arteria con una placa estable y una arteria con una placa vulnerable. La CAG a menudo se usa para determinar si un paciente necesita cirugía; angioplastia o derivación. Para determinar si un punto de estrechamiento de la luz es una placa avanzada, se necesitan otras técnicas, es decir, ecografía coronaria intravascular (IVUS) o angioscopia.

La IVUS proporciona imágenes bidimensionales en sección transversal de la placa y la pared del vaso, y se considera un procedimiento bueno para la caracterización de la pared del vaso y la morfología y el grado de calcificación, pero deficiente para evaluar los lípidos en la lesión. Sin embargo, la IVUS es invasiva y requiere experiencia y gastos: por lo tanto, su uso no está muy extendido. La angioscopia es otro procedimiento útil para comprender e identificar la ateroesclerosis. La angioscopia es una visualización directa de la superficie de la placa y

tiene la capacidad de detectar el color de la placa y la trombosis. La angioscopia es, sin embargo, invasiva y técnicamente difícil, y hasta ahora no ha sido capaz de detectar el grado de extensión de la placa. Otra técnica de imagen que actualmente recibe mucha atención es la resonancia magnética nuclear (MRI). La MRI no es invasiva y es capaz de identificar la placa carotídea con alto riesgo de accidente cerebrovascular. Por otro lado, la MRI no es la mejor técnica para formar imágenes de las arterias coronarias, debido a los pequeños tamaños de placa y la ubicación de las arterias coronarias. Se están desarrollando otras técnicas de imagen, es decir, elastografía, termografía y tomografía de coherencia óptica (Schaar et al.).

Las técnicas de imagen mencionadas están todas en desarrollo y solas, ninguna puede identificar una placa vulnerable, pero son herramientas útiles para comprender tanto los eventos moleculares como el recambio de la placa antes de la rotura. En la actualidad, la única oportunidad para diagnosticar CVD en una etapa temprana es utilizar un intervalo de factores de riesgo para la enfermedad coronaria establecida, enfermedad arterial periférica y enfermedad ateroesclerótica cerebrovascular del paciente en cuestión, así como parientes cercanos del paciente.

15 MARCADORES BIOQUIMICOS ACTUALES

Actualmente, varios marcadores bioquímicos se conocen como factores de riesgo para la ateroesclerosis. Recientemente se ha dirigido mucha atención a la medición de las concentraciones de marcadores bioquímicos en suero; tanto de lípidos como del colesterol total, el colesterol de las lipoproteínas de baja densidad (LDL-C) como el colesterol de las lipoproteínas de alta densidad (HDL-C) y los marcadores inflamatorios como la proteína C-reactiva (CRP), la interleucina-6 (IL-6), la interleucina-18 (IL-18), el factor de necrosis tumoral alfa (TNF-α), CD40, el ligando de CD40 (CD40L) y otros.

Entre los marcadores de lipoproteínas, ha habido al menos dos avances notables. El tamaño de las partículas de LDL parece predecir el grado de progresión de la ateroesclerosis. El aumento de las concentraciones de partículas pequeñas de LDL está más relacionado con el riesgo de CVD que el aumento de las concentraciones de partículas grandes (Gardner, Fortmann y Krauss).

El nivel de HDL-C está fuertemente relacionado con los triglicéridos, y el nivel alto de triglicéridos se correlaciona con un mayor riesgo de CHD. Un estudio de cohortes realizado por Jeppesen et al. (2003) encontró que TG altos/HDL-C bajo son los factores de riesgo más fuertes de IHD (cardiopatía isquémica) (Jeppesen et al.).

Los perfiles lipídicos son importantes para la evaluación de los factores de riesgo, pero no permiten comprender y medir los eventos moleculares asociados con el recambio de la placa. Se han sugerido varios marcadores bioquímicos como factores de riesgo para CVD, aunque no es un producto específico de la enfermedad. Estos incluyen CRP y péptido natriurético óseo (BNP) (véase la Tabla 1). La Tabla 1 resume algunos de los marcadores conocidos de CVD.

Tabla 1: Una selección de marcadores bioquímicos actuales en CVD.

Marcador	Tipo	Descripción						
CRP (proteína C-reactiva)	Inflamatorio	Producida en el hígado, aumenta durante los estados inflamatorios.						
Proteína plasmática asociada al embarazo (PAPP-A)	Inflamatorio	Proteína de unión al zinc que actúa como una enzima, específicamente una metalopeptidasa.						
Interleucina-6 (IL-6)	Citocina inflamatoria	Nivel elevado en insuficiencia cardíaca e infarto de miocardio.						
Interleucina-8 (IL-8)	Citocina inflamatoria	Elevada en infartos de miocardio.						
Interleucina-18	Citocina inflamatoria	Elevada en infarto de miocardio.						
TNF-α (factor de necrosis tumoral)	Citocina	Conc. elevada en la configuración de la insuficiencia cardíaca.						
MCP-1	Quimiocina	Recluta monocitos de la sangre en la lesión ateroesclerótica temprana.						
Molécula de adhesión intercelular 1 (ICAM-1)	Molécula de adhesión	Elevada en infartos de miocardio y accidente cerebrovascular.						
Molécula de adhesión celular vascular 1 (VCAM-1)	Molécula de adhesión	Elevada en infartos de miocardio y accidente cerebrovascular.						

20

Marcador	Tipo	Descripción					
Péptido natriurético cerebral (BNP)	Actividad neurohormonal	Producido en aurículas y ventrículos del corazón sano normal.					
Fosfolipasa A2 asociada a lipoproteínas (Lp-PLA ₂)	Fosfolipasa	La Lp-PLA ₂ asociada a LDL tiene efectos proaterogénicos.					
Creatina fosfocinasa (CK-MB)	Enzima	Útil como detección temprana de infarto de miocardio.					
Mieloperoxidasa (MPO)	Hemoenzima	Activa las metaloproteasas y promueve la desestabilización de la placa.					
Mioglobulina	Hemoproteína	Liberada por necrosis tisular.					
CD40L Proteína		Liberada en las primeras etapas de la aterogénesis hasta la rotura de la placa. Elevada en accidente cerebrovascular.					
Troponina T (TnT)	Proteína	Herramienta para la estratificación de riesgos.					
Proteína de unión a ácidos grasos tipo cardiaco (H-FABP)		La H-FARB se libera del corazón inmediatamente después del infarto.					
Microalbuminuria	Proteína	Marcador de disfunción endotelial vascular.					
Colesterol de las lipoproteínas de baja densidad (LDL-C)	Lipoproteína	Transporta el colesterol en la sangre.					
Colesterol de las lipoproteínas de alta densidad (HDL-C)	Lipoproteína	Tiene propiedades antioxidantes y antiinflamatorias.					
Triglicérido	Lípido						
PIIINP	Procolágeno	Marcador del recambio de colágeno de tipo III.					

Por lo tanto, se ha sugerido una variedad de marcadores bioquímicos diferentes como marcadores de eventos cardiovasculares. Wang et al (2006) midieron 10 marcadores bioquímicos diferentes en 3200 pacientes que participaron en el estudio de Framingham, que se describe en la Tabla 1. La conclusión fue que la medición de 10 marcadores bioquímicos solo contribuye moderadamente al diagnóstico por encima de los factores de riesgo estándar. De los 10 marcadores bioquímicos, el nivel de péptido natriurético de tipo B, el nivel de proteína C-reactiva y la relación de albúmina a creatinina en orina mostraron la mejor correlación entre el marcador y muerte/eventos cardiovasculares (Wang et al.).

10 PROTEÍNA C-REACTIVA

15

20

La proteína C-reactiva (CRP) es una proteína sérica de fase aguda producida por el hígado en respuesta a diferentes condiciones clínicas, tales como, inflamación, infección o trauma (Gabay y Kushner 1999). La producción de CRP es inducida por citocinas como la IL-6, liberada de los tejidos afectados o dañados. Aún se desconoce el papel fisiológico de la CRP y se están discutiendo sus acciones proinflamatorias o antiinflamatorias.

Existe evidencia acumulada de que la CRP es un factor de riesgo de CVD en seres humanos. En un estudio de Ridker et al. 2002, se demostró que la CRP es un mejor factor pronóstico de eventos cardiovasculares futuros que el colesterol LDL, en una gran población compuesta por 28.000 mujeres sanas seguidas durante ocho años por la aparición de infarto agudo de miocardio, accidente cerebrovascular, revascularización coronaria o muerte por CVD. Muchos otros estudios también han informado que los niveles de referencia de CRP constituyen un factor de riesgo independiente para eventos cardiovasculares (Thompson et al. 1995, Mendall et al. 1996, Kuller et al. 1996, Ridker et al. 1997, Tracy et al. 1997, Ridker et al. 2000).

Se ha especulado que la CRP circulante solo refleja la inflamación general que ocurre en el procedimiento ateroesclerótico y no es un componente activo en la patogénesis de la enfermedad. Sin embargo, varias líneas de evidencia también respaldan la opinión de que la CRP tiene un papel en la aterogénesis. En primer lugar, las infecciones crónicas que dan lugar a la CRP también están asociadas con un mayor riesgo de CVD (Leinonen y Saikku 2002). En segundo lugar, nosotros y otros hemos identificado que la CRP se encuentra en diferentes niveles de lesiones ateroescleróticas (Reynolds y Vance 1987, Hatanaka et al. 1995). Por último, se ha demostrado que la CRP tiene propiedades proaterogénicas *in vitro*: la CRP puede activar las células endoteliales para producir moléculas de adhesión (Pasceri et al. 2000). También puede disminuir la producción de eNOS en células endoteliales (Venugopal et al. 2002) y mejorar la absorción de LDL mediante macrófagos (Zwaka et al. 2001).

35 PÉPTIDO NATRIURÉTICO CEREBRAL

El péptido natriurético cerebral (BNP) (tipo B) es una hormona peptídica secretada por los ventrículos del corazón en respuesta al estiramiento excesivo de los miocitos cardíacos en los ventrículos. El T-proBNP (el fragmento N-

terminal inactivo), junto con la hormona activa (BNP), se libera al torrente sanguíneo tras la escisión de proBNP. Tanto BNP como NT-proBNP se han sugerido como posibles marcadores bioquímicos de eventos cardiovasculares (Wang et al.).

5 QUIMIOCINAS

Las quimiocinas también son posibles marcadores de CVD; las quimiocinas son citocinas de bajo peso molecular producidas en la inflamación. Una quimiocina importante en relación con la CVD es la proteína quimioatrayente de monocitos 1 (MCP-1). La MCP-1 parece jugar un papel temprano e importante en el reclutamiento de monocitos para lesiones ateroescleróticas. En un estudio que utilizó un modelo de mono de ateroesclerosis, las concentraciones plasmáticas de MCP-1 se asociaron altamente con el tamaño de la placa y las complicaciones de la placa (Register et al.).

LIPIDOS QUE INCLUYEN COLESTEROL

15

20

25

10

Recientemente se ha dirigido mucha atención a la medición de las concentraciones de colesterol en suero; tanto el colesterol total, como las concentraciones de colesterol de las lipoproteínas de baja densidad (LDL-C) y el colesterol de las lipoproteínas de alta densidad (HDL-C). Entre los marcadores de lipoproteínas, ha habido al menos dos avances notables. En primer lugar, el tamaño de las partículas de LDL parece predecir el grado de progresión de la ateroesclerosis. El aumento de las concentraciones de partículas pequeñas de LDL está más relacionado con el riesgo de CVD que el aumento de las concentraciones de partículas grandes (Gardner et al). En segundo lugar, el contenido de oleato de colesterilo de las partículas de LDL puede convertirse en un marcador particularmente importante del riesgo de CVD. En monos, el enriquecimiento de los núcleos de partículas de lipoproteína con el oleato de colesterilo se asoció de manera fuerte y positiva con la ateroesclerosis de las arterias coronarias más grave (Rudel et al) y fue aditiva a las contribuciones de las concentraciones de colesterol LDL y HDL. Estos hallazgos en animales de experimentación están respaldados por estudios anteriores en seres humanos (Lawrie et al) que mostraron que las lipoproteínas plasmáticas con proporciones más bajas de linoleato de colesterilo (y, por el contrario, proporciones más altas de oleato de colesterilo) son normales de pacientes con complicaciones de CHD (enfermedad coronaria) en comparación con controles normales.

30

El nivel de HDL-C está fuertemente relacionado con los triglicéridos, y el nivel alto de triglicéridos se correlaciona con un mayor riesgo de CHD. Un estudio de cohortes realizado por Jeppesen et al. encontró que TG altos/HDL-C bajo son los factores de riesgo más fuertes de IHD (cardiopatía isquémica).

Estos perfiles lipídicos son importantes para la evaluación de los factores de riesgo, pero no permiten comprender y medir los eventos moleculares asociados con el recambio de la placa. Se han sugerido varios marcadores bioquímicos como factores de riesgo para CVD, aunque estos no son los productos específicos de la enfermedad. Estos incluyen CRP y ApoE.

40 LIPOPROTEINAS

El biomarcador más utilizado para predecir CVD es la concentración de colesterol (tanto el total como la relación colesterol/HDL). Estos se usan junto con otros factores de riesgo, tales como la presión arterial y el nivel de LDL. Ambos factores se utilizan en el modelo SCORE mencionado anteriormente. El nivel de LDL es importante ya que las LDL transporta el colesterol en la sangre y la acumulación de LDL oxidadas puede promover la ateroesclerosis (Graham et al). Además, se encuentra una asociación significativa entre CHD y los niveles de triglicéridos (TG), en los que un mayor riesgo de CHD se asoció con niveles crecientes de TG, independientemente de los niveles de LDL-C y HDL-C, aunque se observa el nivel de colesterol como uno de los principales factores de riesgo de CVD (Jeppeson et al).

50

55

60

65

45

APO-E

La apolipoproteína E se encuentra en quilomicrones, VLDL y HDL. Se sintetiza principalmente en el hígado, pero también en muchos otros órganos tales como el cerebro, bazo, riñón (Siest et al. 1995). La ApoE juega un papel esencial en el metabolismo de las lipoproteínas al actuar como un ligando para dos receptores: el receptor de LDL y el receptor remanente de quilomicrón específico de ApoE. La interacción entre ApoE con estos receptores proporciona una base para la regulación metabólica del colesterol. El polimorfismo en el locus del gen apoE da como resultado tres alelos encontrados en la mayoría de las poblaciones: ε2, ε3 y ε4 que determinan seis fenotipos apoE. Las isoformas se diferencian entre sí por un aminoácido en las posiciones 112 y 158. La ApoE2 tiene cisteína en ambos restos y E4 tiene arginina en ambas posiciones. La ApoE3 contiene cisteína en la posición 112 y arginina en la 158. Las frecuencias alélicas difieren en diferentes poblaciones. Algunos estudios han evaluado la posible relación entre el polimorfismo de apoE y la ateroesclerosis. Un metaanálisis de 14 estudios de observación demostró que el alelo ε4 está asociado con la enfermedad coronaria tanto en hombres como en mujeres (Wilson et al. 1996). Asimismo, el alelo ε4 se ha asociado con la ateroesclerosis de la arteria carótida (Terry et al. 1996, Cattin et al. 1997, Haraki et al. 2002).

La ApoE tiene 299 aminoácidos de largo y transporta lipoproteínas, vitaminas liposolubles y colesterol al sistema linfático y más a la circulación sanguínea. La ApoE se sintetiza principalmente en el hígado. En la actualidad, hay siete receptores de mamíferos para ApoE que pertenecen a la familia conservada de genes de receptores de lipoproteínas de baja densidad.

MARCADORES BIOQUIMICOS ADICIONALES

5

10

15

25

30

35

La microalbuminuria (albúmina al nivel de creatinina) también es un posible marcador independiente. La tasa de excreción de albúmina urinaria es un marcador de cambios en el riñón y, en comparación con una pequeña elevación de creatinina, puede indicar ateroesclerosis (Wang et al.).

De los marcadores de procolágeno, se ha investigado el marcador para la tasa de recambio de colágeno de tipo III (PIINP) como marcador pronóstico de hipertensión y se ha asociado con infarto de miocardio. Satta et al. examinó la correlación entre el aneurisma aórtico abdominal (AAA) y la concentración del procolágeno (PIINP) en la sangre. Se mostró que el recambio de colágeno de tipo III aumenta en pacientes con AAA y puede deberse a una síntesis mejorada, degradación mejorada o una combinación de ambas. En el mismo experimento, se midió el propéptido carboxiterminal del procolágeno de tipo I (PICP), y no hubo síntesis acelerada de colágeno de tipo I en el saco del aneurisma.

20 PERFIL DE PROTEÍNA DE LA PLACA

Las arterias humanas se pueden dividir en arterias más grandes o elásticas, arterias medianas o musculares y arterias pequeñas. Las paredes de las arterias están compuestas de íntima, media y adventicia, separadas por la lámina elástica interna y la lámina elástica externa. La íntima consiste en tejido conectivo, células musculares lisas y algunos macrófagos aislados. Los límites de la íntima se pueden definir como una capa entre la superficie de la luz del endotelio y la lámina elástica interna.

La íntima arterial se puede dividir en dos capas. La capa interna, llamada capa de proteoglucanos, compuesta de abundantes proteoglucanos, células musculares lisas y macrófagos. La capa inferior, la capa musculoelástica, está compuesta de abundantes células musculares lisas y fibras elásticas. En condiciones normales, las dos capas de la íntima apenas son visibles por microscopía óptica, pero son distintas y prominentes cuando se produce un engrosamiento de la íntima.

La media es la parte muscular de la pared arterial, compuesta de células musculares lisas, elastina, fibrillas de colágeno.

La adventicia, capa externa, es altamente microvascular y contiene colágenos, fibrillas elásticas, células musculares lisas y canales linfáticos.

Las placas ateroescleróticas humanas se caracterizan por un núcleo rico en lípidos cubierto por un tapón fibroso compuesto por colágenos fibrilares, elastina, proteoglucanos y SMC. Los proteoglucanos hialuronanos son componentes no fibrilares principales de la matriz extracelular que tienen el potencial de afectar el desarrollo de la lesión al regular eventos tales como la acumulación de lípidos, la trombosis y la proliferación y migración celular y al afectar las propiedades materiales del tejido (Wight 1995). La ApoE infiltrante y la CRP también están presentes y se ha demostrado la localización de ambas en placas ateroescleróticas de arterias coronarias en diferentes etapas de la enfermedad ateroesclerótica.

DISTRIBUCIÓN DE ApoE Y CRP EN SERES HUMANOS

La Tabla 2 dada a continuación muestra la distribución de ApoE y CRP en el cuerpo humano.

	Tabla 2:
Proteína	Sitios de expresión
APOE	Sangre, Suero, Plasma, Hígado, Saliva, Monocito, Cerebelo, Líquido cefalorraquídeo, Corteza frontal, Hipocampo, Corteza temporal
CRP	Sangre, Riñón, Hígado, Líquido peritoneal, Plasma, Suero

La Tabla 3 dada a continuación ilustra las interacciones conocidas de ApoE y CRP con proteínas demostradas in vivo y/o in vitro.

Tabla 3

Proteína	a Interacciones con proteínas
ApoE	Albúmina, Proteína beta amiloide A4, Macroglobulina, Proteína tau asociada a microtúbulos, Receptor de LDL, Catepsina B, Neurofilamento 3, Proteína de transferencia de fosfolípidos, Proteína prión, Receptores de VLDL, Receptores depuradores clase B,
CRP	Suero amiloide P, Factor de complemento H, Fibronectina 1, Histona 1, FC gamma RI, FC gamma RIIB, CD32, Glucoproteína plaquetaria VI, Leptina. <i>Interacción no proteica:</i> Calcio, Colesterol

DISTRIBUCIÓN DE COLÁGENO EN SERES HUMANOS

El colágeno se distribuye ampliamente en el cuerpo humano, es decir, ~ 30 % de la masa de proteína en el cuerpo humano está compuesta de colágeno. En la Tabla 4, los principales tipos de colágeno se enumeran con su distribución de tejido principal.

_	_			-
	$\overline{}$	h	_	
	_	u	17	4

	Tabla 4
Tipo de colágeno	Distribución de tejido
1	Piel, hueso, tendón, ligamento, córnea
II	Cartílago, cuerpo vítreo
III	Piel, arteria, intestino, útero
IV	Membranas basales
V	Hueso, piel, córnea, placenta
VI	Hueso, cartílago, córnea, piel, arteria
VII	Piel, vejiga, mucosa oral, cordón umbilical, amnios
VIII	Membrana de Descemet, arteria, hueso, cerebro, corazón, riñón, piel, cartílago
XIII	Células endoteliales, piel, ojo, corazón, músculo esquelético
XIV	Arteria, hueso, piel, cartílago, ojo, nervio, tendón, útero
XXI	Arteria, corazón, estómago, riñón, músculo esquelético, placenta

10

15

25

El colágeno de tipo I es el colágeno más abundante y se encuentra en la mayoría del tejido conectivo. Es especialmente importante para la estructura de los huesos y la piel. El contenido principal de colágeno en el cuerpo humano se distribuye en la piel y los huesos, donde los principales componentes del colágeno son colágenos de tipo I y III. El colágeno de tipo III es un componente principal de las arterias grandes, y también se encuentra en pequeñas cantidades en los tejidos ricos en colágeno de tipo I. Además, el colágeno de tipo IV se encuentra en la membrana basal y alrededor de los vasos sanguíneos y los nervios. La localización más común del colágeno de tipo V se encuentra dentro de las fibrillas de colágeno características, en asociación con el colágeno de tipo I y III (Garrone et al).

Algunos colágenos tienen una distribución de tejido restringida: por ejemplo, el tipo II, que se encuentran casi exclusivamente en el cartílago (Mayne R.).

Las fibrillas de colágeno a menudo consisten en más de un tipo de colágeno. Por ejemplo, las fibrillas de colágeno de tipo I a menudo contienen pequeñas cantidades de tipos III, V y XII, mientras que las fibrillas de colágeno de tipo II de cartílago también contienen de tipo IX y XI.

COLÁGENOS EN ARTERIAS

En las arterias, se encuentran seis tipos de colágeno (tipos I, III, IV, V, VI y VIII), donde los tipos I y III son los más abundantes, 80 - 90 % del contenido de colágeno. Los tipos I y III también son predominantes en la pared del vaso. Parecen estar distribuidos conjuntamente en diferentes cantidades dentro de las tres capas de la pared arterial, la síntesis de colágeno de tipo I y III tiende a ubicarse en la íntima (Mayne R).

COLÁGENOS Y OTRAS PROTEÍNAS ESTRUCTURALES EN EL RECAMBIO DE PLACA

35

40

Durante el desarrollo de las placas ateroescleróticas, el colágeno se acumula en el tapón fibroso (Stary H.C.). En un estudio realizado por Katsuda et al (1992), se encontraron colágeno de tipo I, III y IV en el engrosamiento de la íntima en todas las etapas de la lesión en los tejidos aórticos humanos. El colágeno de tipo VI se distribuyó en la membrana basal en la región de las células de la íntima y en las lesiones avanzadas también se detectaron alrededor de las SMC alargadas. Estudios anteriores de tipo I y III han proporcionado evidencia de una distribución igual en la pared arterial ateroesclerótica (Shekhonin et al). De acuerdo con McCullagh et al (1980), el tipo III es el colágeno predominante en la media aórtica humana normal (aproximadamente el 70 % del colágeno extraíble). Un

estudio reciente de Eriksen *et al* (2006) encontró una disminución del contenido de colágeno total en la válvula aórtica humana dependiendo del grado de estenosis. Se cree que el mecanismo molecular de la estenosis es similar a la ateroesclerosis. En válvulas aórticas sanas, el contenido de colágeno es principalmente de tipo I y III. Durante la estenosis, el contenido total de colágeno disminuye, lo que presumiblemente es causado por un aumento en el recambio de colágeno de tipo I. El colágeno de tipo I representaba aproximadamente un 60-70 % del colágeno total; mientras que la proporción de colágeno de tipo III fue de un 30-40 % tanto en válvulas sanas como en válvulas calcificadas.

El colágeno de tipo V también aumenta en las lesiones ateroescleróticas avanzadas y se distribuye por toda la matriz 10 extracelular tanto en la media aórtica como en la región subendotelial de las placas (McCullagh et al).

Parece existir un consenso en cuanto a que los principales tipos de colágeno que se encuentran en la placa ateroesclerótica son los tipos I y III, aún no se ha investigado si están distribuidos por igual en vasos sanos y ateroescleróticos.

En el estudio de Katsuda et al (1992) no se detectó colágeno en el centro del ateroma de las lesiones más avanzadas.

ELASTINA

20

15

35

45

50

La elastina es una de las proteínas más estables del cuerpo y se encuentra en la mayoría del tejido conectivo debido a su elasticidad y resistencia. La elastina domina el contenido de proteínas de la pared arterial, donde es la principal proteína de la matriz extracelular.

La elastina es el componente principal en las fibras elásticas y está relacionada con la calcificación. La calcificación vascular ocurre en dos sitios distintos dentro de la pared del vaso: la íntima y la media. La calcificación en la íntima está relacionada con la ateroesclerosis, principalmente dentro del núcleo necrótico. La fibra elástica calcificada constituye el dorso de la placa donde las placas son más propensas a romperse; sugiriendo que la calcificación de la fibra elástica puede afectar la estabilidad de la placa (Bobryshev Y. V.). En la ateroesclerosis, el contenido de fibras elásticas disminuye junto con la deposición de lípidos, esto genera una mayor susceptibilidad a las enzimas que degradan elastina. De este modo, el contenido de elastina en contraste con el colágeno disminuye a medida que se desarrolla la lesión.

DISTRIBUCIÓN DE ELASTINA EN SERES HUMANOS

La tabla 5 muestra la distribución de elastina en el cuerpo humano.

	Tabla 5:
Proteína	Sitios de expresión
Elastina	Aorta y otros vasos sanguíneos, Pulmón, Fibroblastos de la piel

40 La Tabla 6 ilustra las interacciones conocidas de Elastina con proteínas demostradas in vivo y/o in vitro.

					Tabla 6:					
Proteína	Interaccio	nes con pro	oteínas							
Elastina	Decorina,	Elastasa,	Fibrilina,	Fibulina,	Lisozima,	Lisil	oxidasa,	Galectina,	Biglicano,	Nidógeno,
	Ficolina, F	Proteinase3	3.							

PROTEOGLUCANOS COMO COMPONENTES DE MATRIZ

Los proteoglucanos (PG) son macromoléculas de polisacárido-proteína localizadas predominantemente en la matriz intercelular de la pared del vaso (Salisbury y Wagner 1981). Los PG son macromoléculas caracterizadas por la presencia de una, o más, cadenas laterales largas de azúcar sin ramificar y altamente polianiónicas llamadas GAG, unidas covalentemente a una proteína central a través de una región de enlace. La unidad repetitiva del GAG consiste en un amino azúcar, ya sea N-acetil-glucosamina (GlcNAc) o N-acetil-galactosamina (GalNAc), y un ácido hexurónico, ácido glucourónico (GlcA) o ácido idurónico (IdoA). Uno o ambos azúcares en la unidad de repetición contienen uno o más grupos sulfato (Rodriguez-Lee 2007). Además de las cadenas GAG, la mayoría de las proteínas centrales llevan oligosacáridos unidos a N y/u O.

55 CLASIFICACIÓN Y NOMENCLATURA DE LOS PG

Los PG son un grupo muy heterogéneo de macromoléculas. Un solo tipo de proteína central puede variar en el número y tipo de cadenas GAG unidas. La longitud de las cadenas y la disposición de los restos sulfatados a lo largo de las cadenas también varían.

Se distinguen cuatro clases principales de GAG de acuerdo con la estructura de la unidad repetida de disacárido: sulfato de condroitina (CS) y sulfato de dermatán (DS), sulfato de heparina (HS) y heparina, hialuronano y sulfato de queratina (KS).

El hialuronano es el más simple de los GAG. A diferencia de todos los demás, no contiene azúcares sulfatados. Todas sus unidades de disacárido son idénticas, la longitud de su cadena es enorme y no está unida a ninguna proteína central.

- 10 KS es una cadena de polilactosamina sulfatada. KS-I se describió originalmente en la córnea, y está unida en N a los restos de asparagina en la proteína central, mientras que KS-II o KS de cartílago, está unida en O a los restos de serina o treonina (Funderburgh 2000). Los PG se pueden clasificar de acuerdo con varios parámetros:
 - Cadena GAG adjunta (CS/DS o HS que contienen PG)
- Distribución topógráfica en relación con la célula (PG extracelulares y de membrana basal, PG asociados a células o PG intracelulares)
 - Homología de proteínas centrales (hialectanos, pequeños PG ricos en leucina (SLRP)

Los PG de condroitina/sulfato de dermatán (versicano, agrecano, neurocano y brevicano) pertenecen a la familia de 20 los proteoglucanos de unión a hialuronano. Esta familia de genes se denomina colectivamente hialectanos. Cada miembro de la familia tiene una distribución característica, con agrecano prominente en el cartílago, neurocano y brevicano prominente en el sistema nervioso central, y versicano presente en una variedad de tejidos blandos, incluyendo las paredes arteriales. La estructura de genes y proteínas de versicano sigue una plantilla de dominio. El extremo globular amino-terminal (G1) se une al hialuronano GAG, y el dominio globular carboxiterminal (G3) se 25 asemeja a la familia de proteínas selectina, que consiste en una lectina de tipo C adyacente a dos dominios del factor de crecimiento epidérmico (EGF) y una región reguladora del complemento. La región media de la proteína central de versicano está codificada por dos grandes exones que especifican las regiones de unión CS de versicano. La región codificada por el exón 7 se llama αGAG, mientras que la región codificada por el exón 8 se llama βGAG. Cuatro transcripciones de ARNm surgen del empalme alternativo de versicano, dando lugar a V0, V1, V2 y V3 que 30 difieren en la longitud de la proteína central y el número de GAG adjuntos (Dours-Zimmermann y Zimmermann). El número de posibles sitios de fijación de GAG en versicano humano es: 17-23 para V0, 12-15 para V1, 5-8 para V2 y ninguno para V3 (Wight 617-23).

Decorina y biglicano son miembros de la familia SLRP que comprende al menos nueve miembros agrupados en tres clases (I, II y III) y diferentes subfamilias. Todos se caracterizan por la presencia de un dominio central que contiene repeticiones ricas en leucina para lograr una fuerte presencia de un dominio central que contiene repeticiones ricas en leucina para lograr fuertes interacciones proteína-proteína. La decorina y el biglicano son miembros de la clase I y muestran la mayor homología de aminoácidos de la familia (-57 %) y son los únicos SLRP con un propéptido. El propéptido está altamente conservado en todas las especies y puede funcionar como una secuencia de reconocimiento para la xilosiltransferasa, la primera enzima implicada en la síntesis de la cadena GAG.

Versicano, decorina y biglicano son las principales PG de CS/DS en la matriz de la pared arterial de los mamíferos (Wight et al. 1986). El tamaño de la proteína central versicano V0 es de 370 kDa, lo que la hace aproximadamente 10 veces más grande que la decorina de 36 kDa y el biglicano de 38 kDa. Las cadenas laterales muestran una amplia gama de tamaños, pero generalmente promedian alrededor de 40-90 kDa cada una.

Proteoglucanos de sulfato de heparán: Los HSPG se dividen en cinco clases distintas de PG pericelulares y asociados a células, y representan al menos un 95 % de los HS de las superficies celulares, membranas basales y ECM de mamífero. Los HSPG asociados a células incluyen sindecanos integrales de membrana y glipicanos anclados. Los HSPG pericelulares incluyen principalmente perlecano, agrina. Estos PG se denominan pericelulares debido a su estrecha asociación con la membrana plasmática a través de las integrinas (Whitelock e lozzo).

El perlecano es un HSPG modular que se expresa en casi todas las membranas basales, así como en órganos mesenquimales y tejidos conectivos, y es uno de los polipéptidos de cadena sencilla más grandes que se encuentran en animales vertebrados e invertebrados. Los cinco módulos de perlecano y sus cadenas laterales HS participan en una gran cantidad de interacciones moleculares, como el factor de crecimiento de fibroblastos 2, el factor de crecimiento endotelial vascular (VEGF), el factor de crecimiento procedente de plaquetas (PDGF) y otras proteínas de la matriz. La proteína central del perlecano humano es de -470 kDa y, junto con numerosos oligosacáridos unidos a O y cuatro cadenas laterales HS, puede alcanzar un peso molecular de más de 800 kDa (Knox y Whitelock).

DISTRIBUCIÓN PROTEOGLUCANA

45

50

55

60

Los proteoglucanos (PG) son macromoléculas distribuidas en casi todo el cuerpo humano. La estructura y el tamaño de los PG varían extremadamente. La estructura básica de todos los PG incluye una proteína central y al menos una, pero a menudo muchas, cadenas de hidratos de carbono, los glucosaminoglucano (GAG). Los PG se pueden

encontrar intracelularmente, en la superficie de las células y en la matriz extracelular. La diversidad estructural de los PG sugiere numerosas funciones biológicas, véase la Tabla 7.

Tabla 7:

	D ()	B: ()) - '/	E :/
Familia de proteoglucanos	Proteoglucano	Distribución	Función
Sulfato de queratán: PG pequeño rico en leucina		Córnea	Organización y crecimiento de fibrillas de colágeno. Transparencia corneal. Migración de células epiteliales y reparación de tejidos.
Sulfato de condroitina	Versicano	Células musculares lisas de los vasos sanguíneos. Células epiteliales de la piel. Células del sistema nervioso central y periférico.	Adhesión, migración y proliferación celular.
Sulfato de dermatán (PG pequeños ricos en		Tejido conectivo. Pared arterial.	Desempeña un papel en el ensamblaje de la matriz.
leucina)	Biglicano	Tejido de matriz extracelular: hueso, cartílago, tendón, arterias.	Papel en la mineralización del hueso.
Heparánsulfato	Perlecano	Matriz extracelular de vasos sanguíneos.	Se une y reticula muchos componentes de la matriz extracelular y las moléculas de la superficie celular.
Sulfato de condroitina - PG agregante grande	Agrecano	Cartílago. Matriz extracelular.	Da a los tejidos la capacidad de resistir cargas compresivas.

La Tabla 7 anterior brinda una descripción general de la distribución y función de PG.

PROTEOGLUCANOS EN ARTERIAS

- Al menos cinco tipos de PG están presentes en la matriz extracelular de la pared arterial; versicano: que interactúa con el hialuronano para formar grandes agregados; decorina y biglicano pequeños ricos en leucina, que interactúan con componentes de la matriz fibrilar como el colágeno y la elastina; heparánsulfato perlecano, que es un componente de la lámina basal y queratina sulfato lumicano (Talusan et al.).
- Versicano es una de varias moléculas de ECM que se acumulan en lesiones de ateroesclerosis. Aunque varios estudios indican que versicano es claramente capaz de unirse a LDL, el versicano generalmente no se detecta en el centro rico en lípidos del núcleo necrótico (Evanko et al.).
- Se ha demostrado que lumicano se une directamente a los macrófagos y mejora la migración de los macrófagos. Por lo tanto, el lumicano puede influir directamente en el comportamiento de los macrófagos en la íntima vascular, así como estimular la formación del núcleo necrótico, característico de las lesiones ateroescleróticas avanzadas (Funderburgh et al. 1997).
- Biglicano se encuentra en el tapón fibroso. Versicano y biglicano tienen afinidad por las LDL y forman complejos insolubles, lo que acelera la oxidación de las LDL. Biglicano puede contribuir a la patogénesis de la ateroesclerosis atrapando lipoproteínas en la pared de la arteria. Los cambios en el metabolismo de los proteoglucanos de la íntima de las arterias constituyen las lesiones iniciales de la ateroesclerosis y la acumulación de proteoglucanos juega un papel fundamental en la progresión de la ateroesclerosis (Kunz J.).
- Perlecano se informó en la hiperplasia de la íntima humana como uno de los componentes centrales de la matriz extracelular de la íntima, mediante análisis basado en espectrometría de masas y mediante inmunohistoquímica.
 - La Tabla 8 ilustra la distribución de algunos PG en tinciones inmunohistoquímicas de PG en arterias normales y ateroescleróticas (Evanko et al).

Tabla 8:

	Vaso normal		Núcleo fibroso				
PG o GAG	Células endoteliales	SMC	Células endoteliales	SMC	Macrófagos	Tapón fibroso	Núcleo de placa
Perlecano	+++	++	+++	+++	++	+	+++

	Vaso normal		Núcleo fibroso				
PG o GAG	Células endoteliales	SMC	Células endoteliales	SMC	Macrófagos	Tapón fibroso	Núcleo de placa
Decorina	+	++	+	+	+++	+	+++
Biglicano	-/+	++	++	+++	+	+++	-/+
Versicano	-	++	-/+	+++	-	+++	-
Hialuronano	++	+	++	+++	+++	+++	+++
Resultados de tinción: - indetectable; -/+ detectable de forma variable; + detectable; ++ moderado; +++ fuerte							

IMPLICACIÓN DE LOS PROTEOGLUCANOS EN LA REMODELACIÓN DE MATRICES

Un estudio de la progresión de la ateroesclerosis en primates no humanos ha demostrado que la acumulación de PG específicos varía con la gravedad de la lesión y con la distribución de las células y los factores de crecimiento, lo que sugiere que diferentes PG juegan un papel distinto durante la progresión de la ateroesclerosis. Los diferentes niveles de PG específicos pueden afectar directamente las propiedades materiales del tejido a través de su contribución a la alteración de las disposiciones estructurales de los componentes de la matriz fibrosa, tal como la elastina y el colágeno.

Versicano e hialuronano muestran una localización similar en la matriz, lo que sugiere la formación de agregados entre los dos en la aterogénesis. El marcado aumento de versicano e hialuronano en las lesiones tempranas podría sugerir que desempeñan un papel en las lesiones ateroescleróticas tempranas, tales como la proliferación y la migración de SMC y leucocitos. Asimismo, el versicano y el hialuronano son componentes principales de la matriz de las lesiones restenóticas humanas y se ha demostrado que contribuyen al engrosamiento neointimal después de una lesión vascular *in vitro*. Una abundancia de versicano temprano en la aterogénesis también podría predisponer a la matriz extracelular a aumentar el atrapamiento de lípidos debido a la unión de las lipoproteínas a las cadenas de sulfato de condroitina de versicano. Esta idea se apoya por la localización conjunta de versicano con apoproteína (a) y apolipoproteína E en la arteriopatía de trasplante (Evanko et al). La pérdida de versicano de la placa puede provocar inestabilidad de la matriz.

Esto se evidencia aún más por el aumento del gen versicano observado después de una lesión vascular. Versicano también se identificó aquí en todas las etapas de la aterogénesis; en la íntima de las placas de desarrollo temprano, pero también en las lesiones avanzadas y en los bordes de los núcleos necróticos llenos de lípidos, así como en la interfaz placa-trombo (Wight y Merrilees 2005). Estas observaciones implican a versicano en la acumulación de lípidos, inflamación y trombosis. Asimismo, el versicano desempeña un papel importante en el ensamblaje de ECM y en el control de la fibrilogénesis de fibra elástica, lo cual es de importancia fundamental en la remodelación de ECM durante la enfermedad vascular (Wight y Merrilees 2005).

- 30 El papel de biglicano en la biología celular arterial no está claro. Algunos estudios inmunohistoquímicos han mostrado la asociación de biglicano con la tinción de colágeno I y III en lesiones restenóticas humanas (Evanko et al.).
- La importancia del biglicano como proteína matricial se afirmó aún más mediante la generación de ratones BALB/cA homocigotos para una mutación nula del gen biglicano, donde un 50 % de los ratones machos con deficiencia de biglicano murieron repentinamente en los primeros 3 meses de vida como resultado de una rotura aórtica. Esta observación sugiere que el biglicano es esencial para la integridad estructural y funcional de la pared aórtica, así como un posible papel de los defectos genéticos de biglicano en la patogénesis de la disección y rotura aórtica en humanos. (Heegaard et al. 2007)
- 40 Otros estudios indican que el biglicano es un PG importante asociado con elastina en arterias de primates; estas observaciones son similares a las de la arteriopatía coronaria humana (Evanko et al).

Se ha demostrado que la decorina se une al colágeno y regula la formación de fibrillas de colágeno (Brown y Vogel) (Danielson et al.).

PERFILES DE PROTEASA

10

15

20

25

45

50

Las proteasas hidrolizan los enlaces peptídicos y son responsables de la degradación de las proteínas de la matriz extracelular, tal como el colágeno, los proteoglucanos y la elastina en el ateroma, véase la Tabla 9. En las placas ateroescleróticas se encuentran tres tipos principales: metaloproteinasas (es decir, MMP), serina proteasas y cisteína proteasas (es decir, catepsinas). Las catepsinas y las MMP son responsables de la degradación de todas las proteínas de la matriz extracelular. Como la matriz es esencial para la estabilidad de la placa, su eliminación del tapón fibroso por las proteasas puede provocar la rotura de la placa (Stary H.C.).

55 En la Tabla 9 se enumeran una variedad de proteasas encontradas en la placa ateroesclerótica.

Tabla 9 Proteasas detectadas en placas ateroescleróticas.

Proteasa	Sustratos de degradación
Catepsina K	Proteoglucanos, elastina, colágeno
Catepsina S	Proteoglucanos, elastina, colágeno
Catepsina L	Proteoglucanos, Colágeno de tipo I
Catepsina B	Proteoglucanos
MMP-1	Colágeno de tipo I, II y III
MMP-2	Proteoglucanos, elastina
MMP-3	Proteoglucanos, colágeno de tipo III, elastina
MMP-8	Proteoglucanos, colágeno de tipo I, II y III
MMP-9	Elastina, colágeno de tipo I y III
MMP-13	Proteoglucanos, colágeno de tipo I, II y III
MMP-18	Colágeno de tipo I

Se sospecha que la principal fuente de expresión de MMP en la placa está relacionada con la actividad de macrófagos y SMC. Los macrófagos en las placas contienen abundantes MMP-1, -8, -9 y -13 y se localizan conjuntamente con sitios de degradación de colágeno y proteoglucanos in situ (Kunz J.). Asimismo, los datos propios sugieren la localización de MMP-8 y catepsina K en placas ateroescleróticas.

METALOPROTEINASAS (MMP) DE LA MATRIZ

Las MMP es un gran grupo de endopeptidasas, capaces de degradar la mayoría de los componentes de la ECM. En la actualidad, se han identificado más de 25 MMP. Las metaloproteinasas se caracterizan por un sitio activo que contiene un átomo metálico, normalmente zinc, y se secretan como zimógenos. Los inhibidores de tejido específicos, TIMP, regulan la actividad de las MMP. Se encuentra una gran variedad de MMP en las placas ateroescleróticas. Con mayor frecuencia se ubican en macrófagos que bordean el tapón fibroso, dentro del dorso de la placa en SMC y macrófagos y rara vez se identifican dentro del tapón fibroso (Kunz J.).]

Las MMP se clasifican en diferentes grupos de acuerdo con su especificidad de sustrato: Colagenasas, que degradan el colágeno fibrilar, como el colágeno de tipo I, II, III y V, pero también proteoglucanos; Gelatinasas, que degradan proteoglucanos, colágeno de tipo IV, V, VII y elastina; Estromelisina que es activo contra proteoglucanos y elastina (Rouis M). Estos tres subgrupos son de particular interés con respecto a la remodelación de la matriz en placas ateroescleróticas.

GELATINASAS

10

15

20

25

30

40

45

La elastina insoluble se digiere mediante MMP-2 y -9, ambas pertenecientes a la familia de gelatinasas de MMP. La MMP-9 tiene un papel importante que afecta el tamaño y la composición de la placa ateroesclerótica. En placas ateroescleróticas humanas inestables y en regiones vulnerables de placas, se ha observado una mayor expresión y concentración de MMP-9. Además, la MMP-9 se encuentra intracelularmente (lo que indica síntesis activa) en placas coronarias con mayor frecuencia en pacientes con angina inestable en comparación con aquellos con angina estable. El nivel de MMP-9 en sangre aumenta en asociación con la ateroesclerosis coronaria y predice eventos cardiovasculares adversos (Sundstrom y Vasan). Un estudio reciente de Kuzuya et al (2006) indica que MMP-2 es responsable de la acumulación de SMC en el tapón fibroso y, por lo tanto, induce la inestabilidad de la placa.

35 ESTROMELISINA

La MMP-3 pertenece a las proteasas de estromelisina y es capaz de degradar tanto la elastina como los proteoglucanos. Un estudio realizado por Yamada et al (2002) indica que la MMP-3 puede ser un medio fiable para predecir el riesgo genético de infarto de miocardio en las mujeres.

COLAGENASAS

Las MMP-1, -8 y -13 se han identificado en placas ateroescleróticas donde degradan proteoglucanos y colágeno de tipo I y III.

Las MMP-1, -8 y -13 son colagenasas, que escinden el colágeno en dos fragmentos que se degradan aún más con MMP-2, -3 o -9.

La MMP-8 se expresa mediante neutrófilos, que no se encuentran comúnmente en el ateroma humano, pero se han identificado en placas ateroescleróticas. La MMP-8 puede ser en parte responsable de la degradación del tapón

fibroso ya que la MMP-8 tiene preferencia por el colágeno de tipo I (Herman et al), que tiene una actividad tres veces mayor en la degradación del colágeno I que la MMP-1 y 13. Esto es apoyado por Turu et al (2006), en este estudio el contenido de la MMP-8 en el plasma es significativamente mayor para pacientes con placas vulnerables, que para pacientes con placas estables.

5

Se ha informado que la MMP-13 escinde SLRPS, con alta especificidad para biglicano. La degradación de biglicano mediante MMP-13 en un sitio de escisión específico (...G₁₇₇/V₁₇₈) ha sido demostrada previamente por Monfort et al. (2005) y propusieron que jugaba un papel importante en la detección temprana de la degradación del cartílago en la osteoartritis.)

10

15

20

CATEPSINAS

Las catepsinas de cisteína humana constan de 11 miembros, incluidas las catepsinas B, K, L y S, y se expresan predominantemente dentro de los compartimentos endosomales/lisosomales de las células. Las catepsinas son capaces de catalizar la descomposición hidrolítica de proteoglucanos, colágeno y elastina.

En el aneurisma aórtico abdominal (AAA) se encontraron altos niveles de catepsinas S, K y L en comparación con la aorta normal. La SMC vascular humana normal no contiene catepsina K detectable mediante inmunotinción, pero las células dentro de las placas ateroescleróticas son claramente positivas. La catepsina K se localiza en áreas propensas a la rotura, tales como el tapón fibroso, los dorsos de la placa y en el sitio real de las roturas de la placa (Chapman et al). Se encuentra que la catepsina S se localiza conjuntamente con regiones de aumento de la degradación de elastina en las placas ateroescleróticas, y se observa una reducción de la ateroesclerosis en los ratones con deficiencia de catepsina S y K (Liu et al).

Tanto la catepsina L como la K degradan varios proteoglucanos y colágeno de tipo I y II, la catepsina K se degrada dentro de las triple hélices reticuladas covalentemente, mientras que la catepsina L se escinde solo en las regiones telopéptidas no helicoidales. La catepsina K se localiza en el tapón fibroso y el dorso de la placa. La expresión de catepsina K en arterias normales es muy baja. Las primeras lesiones ateroescleróticas humanas mostraron expresión de catepsina K en las SMC de la íntima y la media. En placas ateroescleróticas avanzadas, la catepsina K se localizó principalmente en macrófagos y SMC del tapón fibroso (Lutgens et al). Los niveles de proteína de catepsina K aumentaron en las lesiones ateroescleróticas en comparación con las arterias normales, mientras que los niveles de ARNm de catepsina K fueron similares en las arterias ateroescleróticas y normales. Asimismo, se demostró que los niveles de proteínas y de ARNm de catepsina K eran más altos en las placas ateroescleróticas humanas avanzadas pero estables en comparación con las lesiones ateroescleróticas tempranas y las lesiones que contienen trombo (Chapman et al).

La catepsina S solo se expresa escasamente en SMC de la íntima y la media en lesiones ateroescleróticas humanas tempranas y estrías de grasa. En placas ateroescleróticas humanas avanzadas, la catepsina S se localizó en macrófagos y SMC del tapón fibroso. La EC que recubre la luz del vaso y los microvasos de la placa también expresaron catepsina S. Además, los niveles de proteínas y ARNm de catepsina S aumentaron en el ateroma humano en comparación con las arterias normales (Lutgens et al). La catepsina S puede degradar proteoglucanos, elastina y colágeno (Liu et al).

En la actualidad, la determinación del riesgo de CVD está ocurriendo en una etapa tardía en la progresión de la ateroesclerosis; un punto en el que existe un riesgo significativo de rotura de la placa fibrosa. Existe la necesidad de ensayos de diagnóstico o pronóstico que proporcionen información sobre la ateroesclerosis o el riesgo de CVD tanto en la etapa temprana como en las etapas tardías. Los hallazgos de Katsuda et al (1992) sugieren que existen mecanismos enzimáticos para la eliminación de colágenos de lesiones avanzadas, lo que sugiere un papel importante de los neoepítopos en la arterioesclerosis.

50

40

El documento WO95/08115 divulga un procedimiento para analizar fragmentos de colágeno en líquidos corporales, que incluye poner una muestra de líquido corporal en contacto con al menos un compañero de unión inmunitaria para los fragmentos de colágeno, siendo dicho compañero de unión inmunorreactivo con péptidos sintéticos, cuyas secuencias proceden esencialmente de colágeno y que contienen posibles sitios para la reticulación.

55

El documento US6010862 también describe el uso de un compañero de unión inmunitaria para detectar la degradación del colágeno de tipo III *in vivo*.

El documento US2004/048321 describe una serie de péptidos sintetizados para que coincidan con los componentes telopéptidos de productos de degradación de colágeno de tipo III en líquidos corporales y su uso en ensayos de reabsorción de colágeno.

Becker et al. describen un fragmento reticulado que se puede aislar de una digestión tríptica de colágeno insoluble III en la piel de ternera.

65

En el documento EP0829724 se describe un inmunoensayo de tipo sandwich para la detección y/o cuantificación de

productos de degradación de colágeno en muestras biológicas.

Hori et al. describen anticuerpos monoclonales producidos contra el colágeno humano de tipo III que son capaces de unirse al epítopo Gly-Ala-Hyp-Gly-Leu-Arq-Gly-Gly-Ala-Gly.

5

10

La presente invención proporciona un procedimiento de bioensayo para la cuantificación de fragmentos peptídicos que comprende un neoepítopo formado por escisión de colágeno de tipo III mediante MMP-1, MMP-3, MMP-9, MMP-13, Catepsina K, Catepsina S, ADAMTS1, ADAMTS4 o ADAMTS8, comprendiendo dicho procedimiento poner en contacto una muestra que comprende dichos fragmentos peptídicos con un anticuerpo monoclonal que tiene afinidad de unión específica por dicho neoepítopo y determinar el nivel de unión de dicho anticuerpo monoclonal a fragmentos peptídicos en dicha muestra, en donde dicho anticuerpo monoclonal no es reactivo con el colágeno de tipo III inalterado,

en donde dicho anticuerpo monoclonal tiene una afinidad de unión específica por la secuencia del neoepítopo N-terminal KNGETG v no es reactivo con una versión N-prolongada de dicho péptido.

15

El resultado de dicho ensayo puede producir un índice indicativo del grado de riesgo en un paciente particular de rotura de una placa ateroesclerótica o del estado vulnerable de las placas ateroescleróticas de un paciente.

Los pacientes que tienen un valor para dicho índice por encima de un nivel umbral pueden ser recomendados para una mayor investigación mediante procedimientos de imagen de placa (incluidos los discutidos anteriormente) o para la prescripción de medicamentos para el tratamiento de la ateroesclerosis o para el tratamiento quirúrgico de la aterosclerosis, y dichas investigaciones o tratamientos de seguimiento pueden formar parte del procedimiento de la invención.

- Preferentemente, la invención proporciona además, en donde la muestra es una muestra procedente de un paciente, dicho procedimiento que comprende además comparar el nivel determinado de dicha unión de dichos fragmentos peptídicos con valores característicos de (a) individuos sanos comparables y/o (b) una afección ateroesclerótica patológica.
- 30 La invención también proporciona un anticuerpo monoclonal contra un neoepítopo N-terminal formado mediante escisión de proteinasa de colágeno de tipo III, siendo el anticuerpo específicamente inmunorreactivo con la secuencia de neoepítopo N-terminal KNGETG y siendo no reactivo con una versión N-prolongada de dicho péptido.
- La invención proporciona además una línea celular que produce el anticuerpo monoclonal de la invención; y un kit de inmunoensayo que comprende un anticuerpo monoclonal de la invención, y un agente de competencia que se une a dicho anticuerpo monoclonal y, opcionalmente, uno o más de un reactivo de lavado, un tampón, un reactivo de parada, un marcador enzimático, un sustrato marcador enzimático, patrones de calibración, un anticuerpo anti-ratón e instrucciones para realizar un ensayo usando dicho kit.
- 40 Tal como se describe en el presente documento, las proteínas de la placa ateroesclerótica incluyen lumicano, versicano, perlecano, decorina, biglicano, colágeno de tipo III, CRP, ApoE y elastina. El colágeno de tipo I no se considera proteínas de la placa ateroesclerótica. Las proteínas presentes en la placa ateroesclerótica que están expuestas allí a proteasas en un grado mayor que en otras partes del cuerpo son de particular interés.

45 ENSAYOS DE COLÁGENO

En el presente documento se describen ensayos peptídicos para fragmentos peptídicos de colágeno de tipo III (SEQ ID NO: 153), preferentemente de colágeno de tipo III maduro, es decir, no de propéptido de colágeno de tipo III. Las proteínas principales en las placas ateroescleróticas son el colágeno de tipo I y III, así como la elastina, mientras que el proteoglucano contribuye solo en menor medida a la matriz de la placa. De las tres proteínas principales que se encuentran en las placas ateroescleróticas, el colágeno de tipo I y III son dominantes, mientras que la elastina domina el perfil proteico en las arterias, pero no el componente proteico principal en la placa. El colágeno de tipo I es abundante en todo el cuerpo humano, mientras que el tipo III tiene una ubicación de tejido más restringida y, en la presente opinión, constituye un candidato más específico como marcador bioquímico.

55

60

50

Varias proteasas candidatas pueden ser responsables de la digestión del colágeno en la placa ya que la bibliografía informa de muchas proteasas diferentes en la placa ateroesclerótica. Muy probablemente, es que este sea el resultado de la gran variedad de procedimientos complicados que eventualmente conducen a la rotura de la placa. Sin embargo, en la presente evaluación, las fases tempranas pueden consistir en una gama de MMP, mientras que las etapas posteriores pueden depender más de la degradación de la catepsina K de la matriz, lo que da como resultado diferentes perfiles de neoepítopos que dependen de los niveles de enfermedad. Se ha determinado que las enzimas enumeradas en la siguiente tabla escinden el colágeno de tipo III en al menos los siguientes sitios de escisión (marcados *):

Proteasa	Neoepítopo	SEQ ID NO
MMP-1	A*GIPGAPGLMGARGPPGPA*G	154
MMP-1	K*GDPGPPGIPGRNGDPGI*P	155
MMP-1	G*LAGPPGMPGPRGSPGPQG*V	156
MMP-1	G*ERGLPGPPGIKGPAGIPGF*P	157
MMP-1	G*IAGITGARGLAGPPGMPGPR*G	158
MMP-1	G*IKGHRGFPGNPGAPGSPGPAG*Q	159
MMP-1	A*RGLAGPPGMPGPRGSPGPQGV*K	160
MMP-1	I*TGARGLAGPPGMPGPRGSPGPQG*V	161
MMP-1	I*TGARGLAGPPGMPGPRGSPGPQGV*K	162
MMP-1	G*ITGARGLAGPPGMPGPRGSPGPQG*V	163
MMP-1	G*VKGESGKPGANGLSGERGPPGPQG*L	164
MMP-1	G*SRGAPGPQGPRGDKGETGERGAAG*I	165
MMP-1	P*KGDAGQPGEKGSPGAQGPPGAPGPLG*I	166
MMP-1	G*ITGARGLAGPPGMPGPRGSPGPQGV*K	167
MMP-1	G*LRGGAGPPGPEGGKGAAGPPGPPGAAGTPG*L	168
MMP-1	G*HAGAQGPPGPPGINGSPGGKGEMGPAGIPGAPG*L	169
MMP-1	A*GKSGDRGESGPAGPAGAPGPAGSRGAPGPQGPRGDKGETG	170
	ERGAAG*I	
MMP-1	G*LQGLPGTGGPPGENGKPGEPGPKGDAGAPGAPGGKGDAGA	171
	PGERGPPG*L	
MMP-3	G*ERGLPGPPGIKGPAGIPGF*P	172
MMP-3	A*VGGLAGYPGPAGPPGPPGPPGT*S	173
MMP-3	K*DGTSGHPGPIGPPGPRGNRGER*G	174
MMP-3	A*VGGLAGYPGPAGPPGPPGPPGTSGHPG*S	175
MMP-3	G*IAGITGARGLAGPPGMPGPRGSPGPQG*V	176
MMP-3	A*PGAPGGKGDAGAPGERGPPGLAGAPGLRG*G	177
MMP-3	A*VGGLAGYPGPAGPPGPPGPPGTSGHPGSPG*S	178
MMP-2	A*IGSPGPAGPRGPVGPSGPPG*K	179
MMP-3 y -8	G*AIGSPGPAGPRGPVGPSGPPG*K	180
MMP-8	P*AGQQGAIGSPGPA*G	181
MMP-8	G*GPPGVAGPPGGSGPAGPP*G	182
MMP-8	L*AGPPGMPGPRGSPGPQG*V	183
MMP-8	G*LSGERGPPGPQGLPGLA*G	184
MMP-8	R*GLAGPPGMPGPRGSPGPQG*V	185
MMP-8	G*LAGPPGMPGPRGSPGPQGV*K	186
MMP-8	R*GLAGPPGMPGPRGSPGPQGV*K	187
MMP-8	G*PQGPPGKNGETGPQGPPGP*T	188
MMP-8	G*VKGERGSPGPGAAGFPGAR*G	189
MMP-8	A*RGLAGPPGMPGPRGSPGPQG*V	190
MMP-8	N*GLSGERGPPGPQGLPGLAGTA*G	191

Proteasa	Neoepítopo (continuación)	SEQ ID NO
MMP-8	A*VGGLAGYPGPAGPPGPPGPPGT*S	192
MMP-8	G*SPGGKGEMGPAGIPGAPGLMGA*R	193
MMP-8	T*GARGLAGPPGMPGPRGSPGPQG*V	194
MMP-8	V*KGESGKPGANGLSGERGPPGPQG*L	195
MMP-8	G*VKGERGSPGGPGAAGFPGARGLPGPPGSNGNPGPPGPSGS	196
	PGKDGPPGPAG*N	
MMP-8	G*SPGAQGPPGAPGPLGIAGITGARGLAGPPG*M	197
MMP-8	R*GAPGEKGEGGPPGVAGPPGGSGPAGPPGPQ*G	198
MMP-8	R*GAPGEKGEGGPPGVAGPPGGSGPAGPPGPQ*G	199
MMP-8	G*IAGITGARGLAGPPGMPGPRGSPGPQG*V	200
MMP-9	G*IKGPAGIPGFPG*M	201
MMP-9	G*QPGVMGFPGPKG*N	202
MMP-9	G*IKGPAGIPGFPGMK*G	203
MMP-9	G*IKGPAGIPGFPGMKG*H	204
MMP-9	I*PGAPGLMGARGPPGPAG*A	205
MMP-9	G*ERGLPGPPGIKGPAGIP*G	206
MMP-9	G*IPGAPGLMGARGPPGPAG*A	207
MMP-9	G*FRGPAGPNGIPGEKGPAG*E	208
MMP-9	P*GIPGQPGSPGSPGPPGIC*E	209
MMP-9	G*ERGLPGPPGIKGPAGIPGF*P	210
MMP-9	A*VGGLAGYPGPAGPPGPPGPPG*T	211
MMP-9	G*VKGERGSPGGPGAAGFPGARG*L	212
MMP-9	G*DAGAPGAPGKGDAGAPGERGPPG*L	213
MMP-9	Q*GPPGPTGPGGDKGDTGPPGPQGL*Q	214
MMP-9	G*INGSPGGKGEMGPAGIPGAPGLM*G	215
MMP-9	Q*GPPGEPGQAGPSGPPGPPGAIGPS*G	216
MMP-9	P*GPPGINGSPGGKGEMGPAGIPGAP*G	217
MMP-9	R*GLPGPPGSNGNPGPPGPSGSPGKDGPPGPAG*N	218
MMP-9	G*KNGETGPQGPPGPTGPGGDKGDTGPPGPQG*L	219
MMP-9	G*LPGIAGPRGSPGERGETGPPGPAGFPGAPG*Q	220
MMP-9	G*INGSPGGKGEMGPAGIPGAPGLMGARGPPGPAG*A	221
MMP-9	P*GINGSPGGKGEMGPAGIPGAPGLMGARGPPGPAG*A	222
MMP-9	P*PGENGKPGEPGPKGDAGAPGAPGGKGDAGAPGERGPPG*L	223
MMP-9	G*LKGENGLPGENGAPGPMGPRGAPGERGRPGLPGAAG*A	224
MMP-9	G*NTGAPGSPGVSGPKGDAGQPGEKGSPGAQGPPGAPGPLG*	225
	I	
MMP-9	G*LMGARGPPGPAGANGAPGLRGGAGEPGKNGAKGEPGPRG*	226
	E	
MMP-9	G*LRGGAGPPGPEGGKGAAGPPGPPGAAGTPGLQGMPGERGG	227
	LGSPGPKG*D	
MMP-8 y -9	G*QQGAIGSPGPAGPRGPVGPSGPPG*K	228
MMP-9	K*GDPGPPGIPGRNGDPGIPGQPG*S	229

Proteasa	Neoepítopo	SEQ ID NO
MMP-9	G*LRGGAGPPGPEGGKGAAGPPGPPG*A	230
MMP-9	G*KNGETGPQGPPGPTGPGGDKGDTGPPGPQG*L	231
MMP-9	G*YQGPPGEPGQAGPSGPPGPPG*A	232
MMP-9	G*VAGPPGGSGPAGPPGPQG*V	233
MMP-8, -9 y -13	G*DKGEPGGPGADGVPGKDGPRGPTGPIGPPGPAG*Q	234
ADAMTS-5	Q*GHAGAQGPPGPPGIN*G	235
Catepsina K	A*GERGAPGPA*G	236
Catepsina K	A*GIPGFPGMK*G	237
Catepsina K	F*PGMKGHRGFD*G	238
Catepsina K	G*FPGARGLPGPPG*S	239
Catepsina K	A*GFPGARGLPGPPG*S	240
Catepsina K	P*PGPPGPPGTSGHP*G	241
Catepsina K	G*FPGMKGHRGFD*G	242
Catepsina K	Q*PGDKGEGGAPGLPGI*A	243
Catepsina K	R*GDKGETGERGAAGIK*G	244
Catepsina K	D*GRNGEKGETGAPGLK*G	245
Catepsina K	A*GQPGDKGEGGAPGLPGIA*G	246
Catepsina K	G*GPPGENGKPGEPGPKGD*A	247
Catepsina K	A*GIPGFPGMKGHRGFD*G	248
Catepsina K	R*GGAGEPGKNGAKGEPGPR*G	249
Catepsina K	K*GERGSPGGPGAAGFPGARGLPGPP*G	250
Catepsina K	I*PGVPGAKGEDGKDGSPGEPGANGLP*G	251
Catepsina K	G*AAGFPGARGLPGPPGSNGNPGPPGPS*G	252
Catepsina K	R*PGPPGPSGPRGQPGVMGFPGPKGN*D	253
Catepsina K	Q*GPPGPPGINGSPGGKGEMGPAGIPGAP*G	254
Catepsina K	A*GKDGESGRPGRPGERGLPGPPGIK*G	255
Catepsina K	A*GARGNDGARGSDGQPGPPGPPGTAGFPG*S	256
Catepsina K	S*PGVSGPKGDAGQPGEKGSPGAQGPPGAPG*P	257
Catepsina K	R*GSDGQPGPPGPPGTAGFPGSPGAKGEVGPA*G	258
Catepsina K	Q*GPPGPPGINGSPGGKGEMGPAGIPGAPGLM*G	259
Catepsina K	A*GPPGPPGPPGTSGHPGSPGSPGYQGPPGEPG*Q	260
Catepsina K	F*PGAPGQNGEPGGKGERGAPGEKGEGGPPGVA*G	261
Catepsina K	A*GFPGAPGQNGEPGGKGERGAPGEKGEGGPPG*V	262
Catepsina K	A*GARGNDGARGSDGQPGPPGPPGTAGFPGSPGAKGEVGPA*	263
	G	
Catepsina K	R*GAAGEPGRDGVPGGPGMRGMPGSPGGPGSDGKPGPPGSQG	264
	ESGRPGPPGPS*G	
Catepsina S	G*IAGITGARGL*A	265
Catepsina S	AGPPGPPGAAGTPGLQGM	266
Catepsina S	N*GLSGERGPPGPQGLPG*L	267
Catepsina S	M*GARGPPGPAGANGAPGLR*G	268
Catepsina S	N*GLSGERGPPGPQGLPGLA*G	269
Catepsina S	G*IAGITGARGLAGPPGMPGPRG*S	270

	(continuación)	
Proteasa	Neoepítopo	SEQ ID NO
Catepsina S	G*IAGITGARGLAGPPGMPGPRGSPGPQG*V	271
Catepsina S	R*GGAGPPGPEGGKGAAGPPGPPGAAGTPGLQ*G	272
Catepsina S	S*GPKGDAGQPGEKGSPGAQGPPGAPGPLG*I	273
Catepsina S	G*IAGITGARGLAGPPGMPGPRGSPGPQGVK*G	274
Catepsina S	A*VGGLAGYPGPAGPPGPPGPPGTSGHPGSPGSPGYQ*G	275
Catepsina S	E*PGPQGHAGAQGPPGPPGINGSPGGKGEMGPAGIPGAPG*L	276
ADAMTS1	I*PGFPGMKGHR*G	277
ADAMTS1	R*GSPGGPGAAGFPGAR*G	278
ADAMTS1	K*GPAGIPGFPGMKGHR*G	279
ADAMTS1	R*GLAGPPGMPGPRGSPGPQ*G	280
ADAMTS1	A*GITGARGLAGPPGMPGPR*G	281
ADAMTS1	L*GIAGITGARGLAGPPGMPGPR*G	282
ADAMTS1	T*GARGLAGPPGMPGPRGSPGPQ*G	283
ADAMTS1	Q*GPPGPPGINGSPGGKGEMGPAG*I	284
ADAMTS1	L*PGPPGIKGPAGIPGFPGMKGHR*G	285
ADAMTS1	A*GITGARGLAGPPGMPGPRGSPGPQ*G	286
ADAMTS1	T*GARGLAGPPGMPGPRGSPGPQGVK*G	287
ADAMTS1	R*GLPGPPGIKGPAGIPGFPGMKGHR*G	288
ADAMTS1	G*RPGLPGAAGARGNDGARGSDGQPGPPG*P	289
ADAMTS1	N*GAPGPMGPRGAPGERGRPGLPGAAGAR*G	290
ADAMTS1	A*GSRGAPGPQGPRGDKGETGERGAAGIK*G	291
ADAMTS1	R*GLAGPPGMPGPRGSPGPQGVKGESGKPGAN*G	292
ADAMTS1	R*GLAGPPGMPGPRGSPGPQGVKGESGKPGANGL*S	293
ADAMTS1	P*GPPGSNGNPGPPGPSGSPGKDGPPGPAGNTGAPGS*P	294
ADAMTS1	T*GARGLAGPPGMPGPRGSPGPQGVKGESGKPGAN*G	295
ADAMTS1	R*GAPGEKGEGGPPGVAGPPGGSGPAGPPGPQGVKGER*G	296
ADAMTS1	G*GPPGVAGPPGGSGPAGPPGPQGVKGERGSPGGPGAAGF*P	297
ADAMTS1	K*SGDRGESGPAGPAGAPGPAGSRGAPGPQGPRGDKGETGER	298
	GAAGIK*G	
ADAMTS4	I*PGFPGMKGHR*G	299
ADAMTS4	R*GLAGPPGMPGPR*G	300
ADAMTS4	G*PQGLQGLPGTGGPP*G	301
ADAMTS4	K*GPAGIPGFPGMKGHR*G	302
ADAMTS4	R*GLAGPPGMPGPRGSPGPQG*V	303
ADAMTS4	G*GPPGENGKPGEPGPKGDAGAP*G	304
ADAMTS4	A*PGFRGPAGPNGIPGEKGPAGER*G	305
ADAMTS4	E*KGSPGAQGPPGAPGPLGIAGITGAR*G	306
ADAMTS4	L*PGPPGIKGPAGIPGFPGMKGHR*G	307
ADAMTS4	R*GAPGFRGPAGPNGIPGEKGPAGER*G	308
ADAMTS4	R*GLPGPPGIKGPAGIPGFPGMKGHR*G	309
ADAMTS4	R*GPVGPSGPPGKDGTSGHPGPIGPPGPR*G	310
5,	IV OF VOLOGEE GVIDGE GOLLEGEIGEE GELVE	1 0.0

(continuación)

Proteasa	Neoepítopo	SEQ ID NO
ADAMTS4	A*PGPQGPRGDKGETGERGAAGIKGHR*G	311
ADAMTS4	R*GAPGPQGPRGDKGETGERGAAGIKGHR*G	312
ADAMTS4	R*GFPGNPGAPGSPGPAGQQGAIGSPGPAGPR*G	313
ADAMTS4	L*PGPPGIKGPAGIPGFPGMKGHRGFDGR*N	314
ADAMTS4	D*AGQPGEKGSPGAQGPPGAPGPLGIAGITGAR*G	315
ADAMTS4	R*GPTGPIGPPGPAGQPGDKGEGGAPGLPGIAGPR*G	316
ADAMTS4	K*GDAGQPGEKGSPGAQGPPGAPGPLGIAGITGAR*G	317
ADAMTS4	R*NGEKGETGAPGLKGENGLPGENGAPGPMGPR*G	318
ADAMTS4	A*PGFRGPAGPNGIPGEKGPAGERGAPGPAGPRGA*A	319
ADAMTS4	R*GAPGFRGPAGPNGIPGEKGPAGERGAPGPAGPR*G	320
ADAMTS4	R*GSPGERGETGPPGPAGFPGAPGQNGEPGGKGER*G	321
ADAMTS4	G*HAGAQGPPGPPGINGSPGGKGEMGPAGIPGAPGLMG*A	322
ADAMTS4	R*GLAGPPGMPGPRGSPGPQGVKGESGKPGANGLSGER*G	323
ADAMTS8	L*GIAGITGARGL*A	324
ADAMTS8	I*PGFPGMKGHR*G	325
ADAMTS8	R*GLAGPPGMPGPR*G	326
ADAMTS8	Q*GPPGAPGPLGIAGITGAR*G	327
ADAMTS8	A*GITGARGLAGPPGMPGPR*G	328
ADAMTS8	A*GIPGAPGLMGARGPPGPAGAN*G	329
ADAMTS8	R*GLAGPPGMPGPRGSPGPQGVKG*E	330
ADAMTS8	K*GSPGAQGPPGAPGPLGIAGITGAR*G	331
ADAMTS8	L*PGPPGIKGPAGIPGFPGMKGHR*G	332
ADAMTS8	K*DGTSGHPGPIGPPGPRGNRGER*G	333
ADAMTS8	A*GITGARGLAGPPGMPGPRGSPGPQ*G	334
ADAMTS8	R*GLAGPPGMPGPRGSPGPQGVKGESG*K	335
ADAMTS8	R*GLAGPPGMPGPRGSPGPQGVKGESGKPGAN*G	336
ADAMTS8	R*GLAGPPGMPGPRGSPGPQGVKGESGKPGANGL*S	337
ADAMTS8	P*GPPGSNGNPGPPGPSGSPGKDGPPGPAGNTGAPGS*P	338
ADAMTS8	R*GAPGEKGEGGPPGVAGPPGGSGPAGPPGPQGVKGER*G	339
ADAMTS8	K*SGDRGESGPAGPAGAPGPAGSRGAPGPQGPRGDKGETGER	340
	GA*A	
ADAMTS8	R*GAPGEKGEGGPPGVAGPPGGSGPAGPPGPQGVKGERGSPG	341
	GPGAAGFPGAR*G	
MMP9	*AIGPSG *	342
desconocido	-AGGFAP*	781
	•	

En consecuencia, en un procedimiento descrito en el presente documento, dichos fragmentos peptídicos comprenden preferentemente un neoepítopo formado por escisión de colágeno de tipo III mediante una proteasa en un sitio marcado por el signo * en una cualquiera de las secuencias parciales de colágeno de tipo III anteriores.

También, en un procedimiento descrito en el presente documento, dichos fragmentos peptídicos comprenden preferentemente un neoepítopo formado por escisión de colágeno de tipo III mediante una (o más) proteasa(s) en un sitio en una cualquiera de las secuencias parciales anteriores de colágeno de tipo III entre los *s, o el compañero de unión inmunitaria es específicamente reactivo con una secuencia que se extiende entre los *s en cualquier entrada

de la tabla anterior.

5

Preferentemente, dicho compañero de unión inmunitaria no es reactivo con colágeno de tipo III inalterado. Preferentemente, dicho compañero de unión inmunitaria no es reactivo con dicha secuencia enumerada anteriormente si se prolonga más allá del sitio de escisión respectivo.

El compañero de unión inmunitaria puede ser uno específicamente reactivo con un neoepítopo C-terminal o N-terminal formado por escisión de colágeno de tipo III.

10 Por lo tanto, los compañeros de unión inmunitaria adecuados descritos en el presente documento pueden ser específicamente reactivos con cualquiera de las siguientes secuencias en el extremo N de un péptido: (Los n.º de ID de secuencia siguen a cada secuencia)

GIPGAP 343	GDPGPP 408	LAGPPG 470	ERGLPG 534	IAGITG 598
IKGHRG 344	RGLAGP 409	TGARGL 471		ITGARG 599
VKGESG 345	SRGAPG 410	KGDAGQ 472	ITGARG 535	LRGGAG 600
HAGAQG 346	GKSGDR 411	LQGLPG 473	ERGLPG 536	KDGTSG 763
DGTSGH 347	VGGLAG 412	IAGITG 474	PGAPGG 537	VGGLAG 601
IGSPGP 348	AIGSPG 413	AGQQGA 475	GPPGVA 538	AGPPGM 602
LSGERG 349	GLAGPP 414	LAGPPG 476	GLAGPP 539	PQGPPG 603
VKGERG 350	RGLAGP 415	GLSGER 477	VGGLAG 540	SPGGKG 604
GARGLA 351	KGESGK 416	VKGERG 478	SPGAQG 541	GAPGEK 605
GAPGEK 352	IAGITG 417	IKGPAG 479	QPGVMG 542	IKGPAG 606
IKGPAG 353	PGAPGL 418	ERGLPG 480	IPGAPG 543	FRGPAG 607
GIPGQP 354	ERGLPG 419	VGGLAG 481	VKGERG 544	DAGAPG 608
GPPGPT 355	INGSPG 420	GPPGEP 482	GPPGIN 545	GLPGPP 609
KNGETG 356	LPGIAG 421	INGSPG 483	GINGSP 546	PGENGK 610
LKGENG 357	NTGAPG 422	LMGARG 484	LRGGAG 547	QQGAIG 611
GDPGPP 358	LRGGAG 423	KNGETG 485	YQGPPG 548	VAGPPG 612
DKGEPG 359	GHAGAQ 424	GERGAP 486	GIPGFP 549	PGMKGH 613
FPGARG 360	GFPGAR 425	PGPPGP 487	FPGMKG 550	PGDKGE 614
GDKGET 361	GRNGEK 426	GQPGDK 488	GPPGEN 551	
GGAGEP 362	GERGSP 427	PGVPGA 489	AAGFPG 552	
GPPGPP 363	GKDGES 428	GARGND 490	PGVSGP 553	GSDGQP 615
		PGAPGQ 491	GFPGAP 554	GARGND 616
GAAGEP 365	IAGITG 429	GPPGPP 492	GLSGER 555	GARGPP 617
GLSGER 366		IAGITG 493	GGAGPP 556	GPKGDA 618
IAGITG 367	GPKGDA 430		VGGLAG 557	PGPQGH 619
PGFPGM 368	GSPGGP 431	GPAGIP 494	GLAGPP 558	
GIAGIT 369		GPPGPP 495	PGPPGI 559	GITGAR 620
GARGLA 370	GLPGPP 432	RPGLPG 496	GAPGPM 560	GSRGAP 621
GLAGPP 371		GPPGSN 497	GARGLA 561	GAPGEK 622
GPPGVA 372	SGDRGE 433	PGFPGM 498	GLAGPP 562	PQGLQG 623
GPAGIP 373	GLAGPP 434	GPPGEN 499	PGFRGP 563	KGSPGA 624
PGPPGI 374	GAPGFR 435	GLPGPP 500	GPVGPS 564	PGPQGP 625
GAPGPQ 375	GFPGNP 436	PGPPGI 501	AGQPGE 565	GPTGPI 626
GDAGQP 376	NGEKGE 437	PGFRGP 502	GAPGFR 566	GSPGER 627

HAGAQG 377	GLAGPP 438	GIAGIT 503	PGFPGM 567	
GPPGAP 378	GITGAR 439	GIPGAP 504	GLAGPP 568	GSPGAQ 628
	DGTSGH 440	GITGAR 505		GLAGPP 629
GLAGPP 379	GPPGSN 441	GAPGEK 506	SGDRGE 569	GAPGEK 630
AIGPSG 380				

o con cualquiera de las siguientes secuencias en el extremo C de un péptido:

GPPGPA 381	NGDPGI 442	SPGPQG 507	AGIPGF 570	GMPGPR 631
SPGPAG 382	PGPQGV 443	PPGPQG 508	ERGAAG 571	PGPLGI 632
AAGTPG 383	IPGAPG 444	ERGPPG 509	PGPPGT 572	GNRGER 633
TSGHPG 384	SPGPQG 445	APGLRG 510	HPGSPG 573	PSGPPG 634
PSGPPG 385	GSPGPA 446	GPAGPP 511	SPGPQG 574	GLPGLA 635
	QGPPGP 447	SPGPQG 512	GLAGTA 575	PGPPGT 636
PGLMGA 386		LAGPPG 513	GPPGPQ 576	GPPGPQ 637
SPGPQG 387	IPGFPG 448	FPGPKG 514	GFPGMK 577	FPGMKG 638
	GPAGIP 449	PPGPAG 515	EKGPAG 578	GPPGIC 640
PPGPPG 388	FPGARG 450		PGPQGL 579	GAPGLM 641
GAIGPS 389	GIPGAP 451		FPGAPG 580	
PPGPAG 390	ERGPPG 452	LPGAAG 516	APGPLG 581	EPGPRG 642
SPGPKG 391	PSGPPG 453	IPGQPG 517		
PPGPAG 392	GPPGIN 454	GAPGPA 518	GFPGMK 582	GHRGFD 643
LPGPPG 393	GTSGHP 455	GHRGFD 519	PGLPGI 583	GAAGIK 644
GAPGLK 394	GLPGIA 456	PGPKGD 520	GHRGFD 584	GEPGPR 645
GLPGPP 395	GANGLP 457	GPPGPS 521	PGPKGN 585	GIPGAP 646
GPPGIK 396	TAGFPG 458	PPGAPG 522	GEVGPA 586	GAPGLM 647
GPPGVA 397	EGGPPG 459	GEVGPA 523	GPPGPS 587	TGARGL 648
TPGLQG 398	PQGLPG 460	GAPGLR 524	GLPGLA 588	MPGPRG 649
GTPGLQ 399	APGPLG 461	GPQGVK 525	GSPGYQ 589	GMKGHR 650
GFPGAR 400	GSPGPQ 462	GMPGPR 526	EMGPAG 590	GPQGVK 651
QPGPPG 401	GAAGAR 463	GAAGIK 527	GKPGAN 591	PGANGL 652
TGAPGS 402	GVKGER 464	PGAAGF 528	GMPGPR 592	GTGGPP 653
SPGPQG 403	GDAGAP 465	GPAGER 529	GITGAR 593	GPPGPR 654
GPAGPR 404	RGFDGR 466	GIAGPR 530	AGPRGA 594	GGKGER 655
APGLMG 405	GLSGER 467	TGARGL 531	GPAGAN 595	PQGVKG 656
GNRGER 406	GSPGPQ 468	VKGESG 532	GKPGAN 596	PGANGL 657
TGAPGS 407	GVKGER 469	TGERGA 533	GFPGAR 597	

En el procedimiento de la invención el anticuerpo monoclonal tiene una afinidad de unión específica por la secuencia del neoepítopo N-terminal KNGETG y no es reactivo con una versión N-prolongada de dicho péptido.

Otros sitios de escisión que definen neoepítopos que pueden analizarse de manera similar se pueden identificar mediante la exposición de colágeno de tipo III u otra proteína de placa ateroesclerótica a cualquiera de las enzimas descritas en el presente documento y el aislamiento y segmentación de péptidos producidos de ese modo.

El resultado de un ensayo de acuerdo con la invención puede combinarse con uno o más biomarcadores medidos para formar un índice compuesto de valor de diagnóstico o pronóstico.

El término "compañero de unión inmunitaria", como se usa en el presente documento, incluye anticuerpos policionales y monoclonales y también fragmentos de unión específicos de anticuerpos tales como Fab o F(ab')₂. Por lo tanto, dicho compañero de unión inmunitaria puede ser un anticuerpo monoclonal o un fragmento de un anticuerpo monoclonal que tiene afinidad de unión específica.

El término "proteína", usado en el presente documento incluye, lipoproteínas y proteoglucanos y otros conjugados

20

15

(no proteicos) de proteínas de origen natural.

25

30

35

40

En general, todos los formatos de inmunoensayo previamente conocidos se pueden usar de acuerdo con esta invención, incluidos formatos heterogéneos y homogéneos, ensayos tipo sándwich, ensayos de competencia, ensayos ligados a enzimas, ensayos radioinmunitarios y similares. Por lo tanto, opcionalmente, dicho procedimiento se realiza como un inmunoensayo de competencia en el que dicho compañero de unión inmunitaria y un agente de competencia se incuban en presencia de dicha muestra y el agente de competencia compite con los fragmentos peptídicos en la muestra para unirse al compañero de unión inmunitaria.

Dicho agente de competencia puede ser un péptido sintético o un péptido nativo purificado formado por escisión de la proteína a la que pertenece el neoepítopo para revelar dicho neoepítopo. Por lo tanto, el péptido puede proceder del colágeno de tipo III.

Un procedimiento adecuado podría ser un inmunoensayo de competencia que utiliza anticuerpos monoclonales o fragmentos de unión de anticuerpos que se unen a neoepítopos de fragmentos de cualquiera de estas proteínas o neoepítopos en fragmentos peptídicos de otras proteínas procedentes de placas ateroescleróticas. Los péptidos sintéticos seleccionados adecuadamente recubiertos sobre la superficie sólida de una placa de microtitulación podrían competir con la muestra para unirse a los anticuerpos monoclonales o fragmentos de unión. Como alternativa, los fragmentos nativos purificados de una o más de estas proteínas que llevan el neoepítopo reconocido por el anticuerpo monoclonal o fragmento de unión podrían usarse en la superficie sólida. Otra alternativa más es inmovilizar el anticuerpo monoclonal o fragmento de unión en la superficie sólida y luego incubar conjuntamente la muestra con un péptido sintético unido apropiadamente a una molécula señal, por ejemplo, peroxidasa de rábano picante o biotina. La muestra puede ser una muestra de orina, suero, sangre, plasma u otro, por ejemplo, biopsia de placa ateroesclerótica.

En determinados procedimientos preferidos, la muestra es una muestra procedente del paciente, y el procedimiento comprende además comparar el nivel determinado de dicha unión de dichos fragmentos de péptidos con valores característicos de (a) individuos sanos comparables y/o (b) una afección ateroesclerótica patológica y, opcionalmente, asociar un nivel más alto del péptido medido (normalmente indicado por un nivel más alto de unión) con un grado más grave de dicha afección.

Un aspecto de la presente invención se refiere al desarrollo de anticuerpos monoclonales que reconocen neoepítopos como se describe anteriormente. Esto se puede lograr mediante la inmunización de ratones con péptidos sintéticos que se originan a partir de la secuencia de aminoácidos de la molécula de proteína en cuestión (incluidas las secuencias enumeradas anteriormente o las secuencias que terminan en ellas), la fusión de las células del bazo de ratones seleccionados a células de mieloma y la prueba de los anticuerpos monoclonales para la unión a neoepítopos en péptidos sintéticos relevantes. La especificidad para los neoepítopos se puede garantizar exigiendo reactividad con un péptido sintético y una falta de reactividad con una forma C prolongada del péptido inmunizante (para un neoepítopo C-terminal) o una forma N-terminal prolongada del péptido inmunizante (para un neoepítopo N-terminal). Los anticuerpos para los neoepítopos también se pueden evaluar para establecer una falta de capacidad de unión a la proteína nativa. Como alternativa, la especificidad para un neoepítopo se puede garantizar exigiendo que la reactividad del anticuerpo sea negativamente dependiente de la presencia de biotina u otros grupos funcionales unidos covalentemente a uno de los aminoácidos terminales.

- 45 La divulgación describe un compañero de unión inmunitaria que es específicamente inmunorreactivo con un neoepítopo formado por la escisión de dicha proteína mediante una proteasa en un sitio final en una cualquiera de las secuencias parciales establecidas anteriormente, y puede ser, por ejemplo, un anticuerpo monoclonal o un fragmento de unión del mismo.
- La divulgación describe una línea celular que produce un anticuerpo monoclonal contra un neoepítopo C-terminal o N-terminal formado por la escisión de una proteína de placa ateroesclerótica en los sitios finales de secuencias en una cualquiera de las secuencias parciales expuestas anteriormente.
- La divulgación describe además un péptido que comprende un neoepítopo C-terminal o N-terminal formado por escisión de dicha proteína en una cualquiera de las secuencias parciales de estas proteínas expuestas anteriormente. Dicho péptido puede conjugarse como un hapteno a un vehículo para producir una respuesta inmunitaria a dicho péptido, o inmovilizarse a una superficie sólida o conjugarse a un marcador detectable para su uso en un inmunoensayo.
- 60 La divulgación describe además una molécula de ácido nucleico aislada que codifica un péptido que comprende un neoepítopo C-terminal o N-terminal formado por escisión de dicha proteína en una cualquiera de las secuencias parciales expuestas anteriormente.
- La invención comprende además un vector que comprende una secuencia de ácido nucleico que comprende una señal de expresión y una secuencia de codificación que codifica la expresión de un péptido que comprende un neoepítopo C-terminal o N-terminal formado por escisión de una proteína en una cualquiera de las secuencias

parciales establecidas anteriormente e incluye además una célula hospedadora transformada con dicho vector y que expresa dicho péptido.

Otro aspecto más de la divulgación se refiere a kits, que se pueden usar convenientemente para llevar a cabo los procedimientos descritos anteriormente. Dichos kits pueden incluir (1) una placa de microtitulación recubierta con péptido sintético; (2) un anticuerpo monoclonal o fragmento de unión a anticuerpo de la invención reactivo con dicho péptido sintético; y (3) una inmunoglobulina anti-IgG de ratón marcada. Como alternativa, dichos kits pueden incluir (1) una placa de microtitulación recubierta con fragmentos de proteínas nativas purificadas; (2) un anticuerpo monoclonal que reconoce un neoepítopo en fragmentos de una cualquiera de dichas proteínas, y que reacciona con dichos fragmentos purificados; y (3) una inmunoglobulina anti-IgG de ratón marcada. Como alternativa, dichos kits pueden incluir (1) una placa de microtitulación recubierta con estreptavidina; (2) un péptido sintético unido a biotina; (3) un anticuerpo monoclonal que reconoce un neoepítopo en dichos fragmentos de proteínas y reacciona con dicho péptido sintético; y (4) una inmunoglobulina anti-IgG de ratón marcada. Otra alternativa más podría ser kits que incluyen (1) una placa de microtitulación recubierta con estreptavidina; (2) un péptido sintético unido a biotina; (3) un anticuerpo monoclonal que reconoce un neoepítopo en dichos fragmentos de proteínas (y que reacciona con dicho péptido sintético) y se conjuga con peroxidasa de rábano picante.

Por lo tanto, la invención incluye un kit de inmunoensayo que comprende un anticuerpo monoclonal que es específicamente inmunorreactivo con la secuencia del neoepítopo N-terminal KNGETG y que no es reactivo con una versión N-prolongada de dicho péptido, y un agente de competencia que se une a dicho anticuerpo monoclonal y, opcionalmente, uno o más de un reactivo de lavado, un tampón, un reactivo de parada, un marcador enzimático, un sustrato marcador enzimático, patrones de calibración, un anticuerpo anti-ratón e instrucciones para realizar dicho inmunoensayo.

Los ensayos descritos en el presente documento son útiles en el diagnóstico de la enfermedad ateroesclerótica en pacientes. Además, las pruebas son útiles para la evaluación de la progresión de la enfermedad y el control de la respuesta al tratamiento. Los compañeros de unión inmunitaria de la invención también pueden usarse en inmunotinción para mostrar la presencia o ubicación de productos de escisión de cualquier proteína de placa ateroesclerótica descrita en el presente documento.

La invención se explicará e ilustrará adicionalmente con referencia a los dibujos adjuntos, en los que:

La Figura 1 muestra la tinción de Biglicano (aumentos 2, 4, 4 y 10 x respectivamente) usando un anticuerpo monoclonal de ratón en una muestra aórtica con lesión de tipo III.

La Figura 2 muestra la tinción de catepsina K (aumentos 2, 4, 10 y 10 x respectivamente) usando un anticuerpo monoclonal de ratón en una muestra aórtica con lesión de tipo III.

La Figura 3 muestra la tinción de Biglicano (aumentos 2, 4, 10 y 10 x respectivamente) usando un anticuerpo monoclonal de ratón en una muestra aórtica con lesión de tipo V.

La Figura 4 muestra la tinción de catepsina K (aumentos 2, 4, 10 y 10 x respectivamente) usando un anticuerpo monoclonal de ratón en una muestra aórtica con lesión de tipo V.

La Figura 5 muestra productos de escisión de biglicano generados por proteasas: MMP2, MMP3, MMP8, catepsina K, catepsina S, catepsina B y catepsina L. M = marcador Rainbow. -enz = sin digestión enzimática, ciclo en un gel en el Ejemplo 2.

Las Figuras 6 a 8 muestran los resultados del estudio de competencia obtenidos en el Ejemplo 4.

La Figura 9 muestra los resultados del estudio de competencia obtenidos en el Ejemplo 6.

Las Figuras 10 y 11 muestran los resultados del estudio de competencia obtenidos en el Ejemplo 7.

55 **Ejemplo de referencia 1.**

20

30

35

40

50

Para el análisis de localización de proteoglucanos y proteasas, se realizaron tinciones inmunohistoquímicas de muestras arteriales humanas procedentes de arterias descendentes coronarias izquierdas (LAD).

60 A continuación, se muestra la ubicación conjunta de la proteasa de catepsina K y biglicano.

La tinción inmunohistoquímica como se ve en las Figuras 1 y 2 reveló una ubicación conjunta de biglicano y catepsina K. Esto puede sugerir que biglicano es un sustrato preferido de catepsina K.

65 La misma tinción inmunohistoquímica se realizó en las muestras aórticas, donde se formó la placa ateroesclerótica y como resultado de esta arquitectura aórtica normal se reemplazó por infiltrados de células de espuma de

macrófagos y calcificaciones. Los resultados de estas inmunotinciones se recogen en las Figuras 3 y 4.

Se mostró que la tinción inmunohistoquímica de biglicano y catepsina K se localiza conjuntamente en una lesión ateroesclerótica progresiva. Estos resultados juntos generan hipótesis de sitios específicos de escisión de catepsina K en biglicano, lo que da como resultado una mayor generación de neoepítopos en lesiones ateroescleróticas. Para probar esta hipótesis, se escindió biglicano con diferentes proteasas.

Ejemplo de referencia 2.

Degradación de biglicano para la evaluación de fragmentos de degradación. El biglicano del cartílago articular bovino (B8041 - Sigma-Aldrich) se escindió mediante las siguientes proteasas: MMP2, MMP3, MMP8, Catepsina K, Catepsina S, Catepsina B y Catepsina L. Fragmentos de proteoglucanos generados por la escisión enzimática de las proteasas mencionadas anteriormente se separaron en geles NuPage® Bis-Tris al 10 % y luego se tiñeron con plata mediante "Silver Express" - kit de tinción con plata (n.º de Cat. de Invitrogen LC6100, n.º de lot. 341099). La Figura 5 representa los resultados de la separación de los derivados proteolíticos y las tinciones de biglicano y plata.

Ejemplo 3

Los ratones se inmunizaron con péptidos procedentes de colágeno de tipo III conjugados con ovoalbúmina. Los sueros se seleccionaron para determinar la reactividad con secuencias peptídicas de selección conjugadas con biotina. Se produjeron clones secretores de anticuerpos monoclonales y se seleccionaron usando las secuencias de selección. Se verificó la falta de reactividad de los clones con versiones alargadas del péptido diana que continúan con las secuencias adyacentes del colágeno de tipo III (péptido de deselección) y la falta de reactividad con un péptido sin sentido. Ninguno de los clones positivos para las secuencias diana reaccionó con las secuencias alargadas o sin sentido.

Las secuencias diana, inmunógenos, secuencias de selección y secuencias de deselección fueron las siguientes:

N.º:	Secuencia diana	Inmunógeno	Secuencia de selección	Secuencia de deselección	n.º de ratón
NB51	KNGETG 356	KNGETGPQGPGGC-OVA	KNGETGPQGP-PG-K-Biotina	KDGETGAAGPPGK- Biotina KDGEAGAQGPPGK -Biotina PGKNGETPGPQ- GP-K-Biotina	278; 279; 289; 345; 346; 347
NB26	IAGITG 429	IAGITGARGLGGC-KLH	IAGITGARGL-AG-K- Biotina IAGLTGARGL-AG-K- Biotina)	LGIAGITGARGL- AG-K-Biotina	146; 147; 148; 149; 156; 157;
NB52	IAGITG	IAGITGARGLGGC-OVA	IAGITGARGL-AG-K- Biotina IAGLTGARGL-AG-K- Biotina)	LGIAGITGARGL- AG-K-Biotina	348; 349; 357; 358; 359;
NB27	KDGTSG 763	KDGTSGHPGPGGC-OVA	KDGTSGHPGP-IG-K- Biotina KDGSSGHPGP-IG-K- Biotina	PGKDGTSGHP-GP- K-Biotina	158; 159; 167; 168; 169; 178;
NB67	APGPLG 581	OVA-CGG-GPPGAPGPLG	Biotina-AQ- GPPGAPGPLG Biotina-AQ- GPPGSPGPLG	Biotina-DD- GPSGAEGPPG Biotina-GP- PGAPGPLGIA	167; 168; 169; 178; 179; 189;
NB68	NTGAPG 422	NTGAPGSPGV-CGG-OVA	NTGAPGSPGVSG-K- Biotina NSGSPGNPGVAG-K- Biotina	AGNTGAPGSP-GV- Biotina	234; 235; 236; 237; 238; 239;

			(continuacion)		
NB69	AIGPSG 380	AIGPSGPAGK-GGC-OVA (808680)	AIGPSGPAGKDG-K- Biotina AIGPAGPAGKDG-K- Biotina	PGAIGPSGPAG-KD- Biotina	245; 246; 247; 248; 249; 256;
NB57	AGGFAP 781	KLH-CGG-EKAGGFAP	Biotina-CG- EKAGGFAP Biotina-CG- EKSGGFSP	Biotina-GG- EKAGGFAPYY	1; 2; 3; 4; 5; 6;

Ejemplo 4

20

5 Reactividad de los anticuerpos monoclonales de neoepítopo de colágeno de tipo III con orina humana

La reactividad de clones de anticuerpos monoclonales seleccionados del ejemplo 3 con orina humana se determinó en un formato de ensayo de competencia usando los péptidos inmunizantes como agente de competencia. En un procedimiento normal, se revistieron placas recubiertas con estreptavidina de 96 pocillos durante 30 minutos con 10 ng/ml de péptido de biotina en PBS-BTE a 20 °C con agitación y se lavaron 5x en tampón de lavado. Se añadieron 20 µl de muestra diluida (solución de orina o péptido). Se añadieron 100 µl de solución de anticuerpo no purificada (sobrenadante del cultivo celular) diluida como se detalla a continuación. Las placas se incubaron durante 1 hora a 20 °C con agitación a 300 rpm y luego se lavaron 5x en tampón de lavado. Se añadieron 100 µl de anticuerpo secundario-POD (1:5000) y se incubaron durante 1 hora a 20 °C con agitación a 300 rpm antes de lavar 5x en tampón de lavado. Se añadieron 100 µl de TMB y se incubaron durante 15 minutos en agitación en oscuridad a 300 rpm antes de añadir 100 µl de solución de parada. Las placas se leyeron a 450 nm en un lector ELISA con 650 nm como referencia. Por lo tanto, se produjo competencia entre el péptido en la placa y el péptido en solución para el anticuerpo y la cantidad de anticuerpo unido a la placa se determinó mediante la reacción de formación de color de peroxidasa.

Los resultados se ven en la Figura 6 para cuatro clones diferentes. Se puede ver que cada uno de los anticuerpos detecta secuencias relevantes en la orina.

Se realizaron estudios de competencia adicionales en un clon seleccionado para probar la competencia para la unión de anticuerpos entre el péptido inmunizante y el colágeno nativo de tipo III escindido *in vitro* por MMP9. Los resultados se muestran en la Figura 7 para el colágeno escindido, el péptido KNGETG y una versión alargada de esa secuencia. Se puede ver que el anticuerpo se une a la secuencia del péptido inmunizante y al colágeno escindido por la enzima, pero no a la secuencia extendida.

30 Se observan estudios de competencia adicionales en el mismo clon en la Figura 8, donde los agentes de competencia fueron el péptido KNGETG, suero humano, suero de rata, FCS (suero de ternera fetal) y extractos de placa ateroesclerótica respectivamente. Se ve que el anticuerpo es reactivo con el péptido, el extracto de placa y el suero humano, pero no con el suero de rata o el FCS.

35 Ejemplo de referencia 5

Aumento de antisueros a las secuencias decorina, biglicano y versicano

Se generaron antisueros y se obtuvieron anticuerpos monoclonales como en el Ejemplo 3, pero usando los siguientes inmunógenos, secuencias de selección y secuencias de deselección:

N.°:	Epítopo	Secuencia diana	Inmunógeno	Secuencia de selección	Secuencia de deselección	N.º de ratón
NB62	Decorina- 176N	IVIELG 91	IVIELGTNPL- GGC-KLH	IVIELGTNPL-KS-K- Biotina LVIELGGNPL-KN- K-Biotina IVVELGGNPL-TN- K-Biotina	QMIVIELGTNPLK- K-Biotina NVLVIELGGNPL- K-Biotina	7;8;9; 10;12; 13
NB63	Biglicano- 108C	NNDISE 116	OVA-CGG- LDLQNNDISE	Biotina-TL- LDLQNNDISE	Biotina- LDLQNNDISELR	14;15; 16;17; 18;19
NB64	Versicano- 87N	QNGNIK 143	QNGNIKIGQD- GGC-KLH	QNGNIKIGQD-YK- Biotina QDGNIKIGQD-YK- Biotina	VAQNGNIKIGQD- K-Biotina VAQDGNIKIGQD- K-Biotina	23;24 25;26; 27;28;

Ejemplo de referencia 6

5

10

20

25

40

50

55

Reactividad del anticuerpo monoclonal de neoepítopo decorina con orina humana

Un ELISA de competencia se llevó a cabo generalmente como en el Ejemplo 5 usando un anticuerpo monoclonal no purificado antidecorina (NB62)

Los resultados se muestran en la Figura 9. La reactividad se observa contra la secuencia peptídica contra la cual se generó y seleccionó el anticuerpo y contra la orina, pero no contra la secuencia peptídica irrelevante NB18.

Ejemplo de referencia 7

Reactividad del anticuerpo monoclonal de neoepítopo versicano con orina humana

15 Un ELISA de competencia se llevó a cabo generalmente como en el Ejemplo 5 usando dos clones de anticuerpos monoclonales no purificado antiversicano generados contra la secuencia (NB64).

Los resultados se muestran en las Figuras 10 y 11 para los respectivos clones. En cada caso, se observa reactividad contra la secuencia peptídica contra la cual se generó y seleccionó el anticuerpo y contra la orina, pero no contra la secuencia peptídica irrelevante NB18.

En la presente memoria descriptiva, a menos que se indique expresamente lo contrario, la palabra 'o' se usa en el sentido de un operador que devuelve un valor verdadero cuando se cumple una o ambas condiciones, en oposición al operador 'exclusivo o' que requiere que solo se cumpla una de las condiciones. La expresión 'que comprende' se usa en el sentido de 'que incluye' en lugar de que signifique 'que consiste en'.

Lista de referencias

Becker U, Nowack H, Gay S y Timpl R. Production and specificity of antibodies against the aminoterminal region in type III collagen. Immunology 1976; 31(1): 57-65.

Bobryshev YV. Calcification of elastic fibers in human atherosclerotic plaque. Atherosclerosis 2005;180:293-303.

Brown, D. C. y K. G. Vogel. "Characteristics of the *in vitro* interaction of a small proteoglycan (PG II) of bovine tendon with type I collagen". Matrix. 9.6 (1989): 468-78.

Cattin L, Fisicaro M, Tonizzo M, Valenti M, Danek GM, Fonda M, Da Col PG, Casagrande S, Pincetri E, Bovenzi M, y Baralle F. Polymorphism of the apolipoprotein E gene and early carotid atherosclerosis defined by ultrasonography in asymptomatic adults. Arterioscler Thromb Vasc Biol. Enero de 1997;17(1):91-4.

Chapman HA, Riese RJ, Shi GP. Emerging roles for cysteine proteases in human biology. Annu.Rev.Physiol 1997;59:63-88.

Clarkson TB, Kaplan JR. Stage of Reproductive Life, Atherosclerosis Progression and Estrogen Effects on Coronary Artery Atherosclerosis, En: Lobo RA, editor. Treatment of the Postmenopausal Woman: Basic and Clinical Aspects, 3^a ed. San Diego: Elsevier; 2007. págs. 509-28.

Danielson, K. G., et al. "Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility". J.Cell Biol. 136.3 (1997): 729-43.

Dours-Zimmermann, M. T. y D. R. Zimmermann. "A novel glycosaminoglycan attachment domain identified in two alternative splice variants of human versican". J.Biol.Chem. 269.52 (1994): 32992-98.

Eriksen HA, Satta J, Risteli J, Veijola M, Vare P, Soini Y. Type I and type III collagen synthesis and composition in the valve matrix in aortic valve stenosis. Atherosclerosis 2006:189:91-98.

Evanko, S. P., et al. "Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta". Am. J. Pathol. 152.2 (1998): 533-46.

Funderburgh, J. L. "Keratan sulfate: structure, biosynthesis, and function". Glycobiology 10.10 (2000): 951-58.

Funderburgh, J. L., et al. "Macrophage receptors for lumican. A corneal keratan sulfate proteoglycan". Invest Ophthalmol.Vis.Sci. 38.6 (1997): 1159-67.

Gabay C and Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 11

60

65

de febrero de 1999;340(6):448-54.

5

60

- Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 1996;276:875-81.
- Garrone R, Lethias C, Le Guellec D. Distribution of minor collagens during skin development. Microsc.Res Tech. 1997;38:407-12.
- Graham I, Atar D, Borch-Johnsen K, Boysen G, Burell G, Cifkova R et al. European guidelines on cardiovascular disease prevention in clinical practice: executive summary. Atherosclerosis 2007;194:1-45.
 - Haraki T, Takegoshi T, Kitoh C, Wakasugi T, Saga T, Hirai JI, Aoyama T, Inazu A y Mabuchi H, Carotid artery intima-media thickness and brachial artery flow-mediated vasodilation in asymptomatic Japanese male subjects amongst apolipoprotein E phenotypes. J Intern Med. Agosto de 2002; 252(2):114-20.
- Hatanaka K, Li XA, Masuda K, Yutani C y Yamamoto A, Immunohistochemical localization of C-reactive proteinbinding sites in human atherosclerotic aortic lesions by a modified streptavidin-biotin-staining method. Pathol Int. Septiembre de 1995;45(9):635-41.
- Heegaard AM, Corsi A, Danielsen CC, Nielsen KL, Jorgensen HL, Riminucci M, Young MF y Bianco P, Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation. 29 de mayo 2007;115(21):2731-8). Epub de 14 de mayo de 2007.
- Herman MP, Sukhova GK, Libby P, Gerdes N, Tang N, Horton DB et al. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation 2001;104:1899-904.
- Hori H, Keene DR, Sakai LY, Wirtz MK, Bächinger HP, Godfrey M, Hollister DW. Repeated helical epitopes of defined amino acid sequence in human type III collagen identified by monoclonal antibodies. Molecular Immunology. 1992; 29(6); 759-70.
 - Jeppesen J, Hein HO, Suadicani P, Gyntelberg F. High triglycerides/low high-density lipoprotein cholesterol, ischemic electrocardiogram changes, and risk of ischemic heart disease. Am Heart J 2003;145:103-08.
- Lawrie TD, Mcalpine SG, Rifkind BM, Robinson JF. Serum fatty-acid patterns in coronary-artery disease. Lancet 1961;1:421-24.
 - Katsuda S, Okada Y, Minamoto T, Oda Y, Matsui Y, Nakanishi I. Collagens in human atherosclerosis. Immunohistochemical analysis using collagen type-specific antibodies. Arterioscler.Thromb. 1992;12:494-502.
- Knox, S. M. y J. M. Whitelock. "Perlecan: how does one molecule do so many things?" Cell Mol.Life Sci. 63.21 (2006): 2435-45.
- Kuller LH, Tracy RP, Shaten J y Meilahn EN, Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple Risk Factor Intervention Trial. Am J Epidemiol. 15 de septiembre de 1996;144(6):537-47.
 - Kunz J. Matrix metalloproteinases and atherogenesis in dependence of age. Gerontology. 2007;53:63-73.
- Kuzuya M, Nakamura K, Sasaki T, Cheng XW, Itohara S, Iguchi A. Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient mice. Arterioscler.Thromb.Vasc.Biol 2006;26:1120-25.
 - Leinonen M y Saikku P, Evidence for infectious agents in cardiovascular disease and atherosclerosis. Lancet Infect Dis. Enero de 2002;2(1):11-7.
- Liu J, Sukhova GK, Sun JS, Xu WH, Libby P, Shi GP. Lysosomal cysteine proteases in atherosclerosis. Arterioscler.Thromb.Vasc.Biol 2004;24:1359-66.
- Lutgens, S. P., et al. "Cathepsin cysteine proteases in cardiovascular disease". FASEB J. 21.12 (2007): 3029-41.
- Mayne R. Collagenous proteins of blood vessels. Arterioesclerosis. 1986;6:585-93.
 - McCullagh KG, Duance VC, Bishop KA. The distribution of collagen types I, III and V (AB) in normal and atherosclerotic human aorta. J Pathol 1980;130:45-55.
- Mendall MA, Patel P, Ballam L, Strachan D y Northfield TC. C reactive protein and its relation to cardiovascular

risk factors: a population based cross sectional study., BMJ. 27 de abril de 1996;312(7038):1061-5.

- Monfort J, Nacher M, Montell E, Vila J, Verges J y Benito P, Chondroitin sulfate and hyaluronic acid (500-730 kda) inhibit stromelysin-1 synthesis in human osteoarthritic chondrocytes. Drugs Exp Clin Res. 2005;31(2):71-6.
- Pasceri V, Willerson JT y Yeh ET, Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation. 31 de octubre de 2000;102(18):2165-8.
- Register TC, Cann JA, Kaplan JR, Williams JK, Adams MR, Morgan TM et al. Effects of soy isoflavones and conjugated equine estrogens on inflammatory markers in atherosclerotic, ovariectomized monkeys. J Clin Endocrinol Metab 2005;90:1734-40.
 - Reynolds GD y Vance RP. C-reactive protein immunohistochemical localization in normal and atherosclerotic human aortas. Arch Pathol Lab Med. Marzo de 1987;111(3):265-9.
- 15
 Ridker PM, Intrinsic fibrinolytic capacity and systemic inflammation: novel risk factors for arterial thrombotic disease. Haemostasis. 1997;27 Suppl 1:2-11.
- Ridker PM, Hennekens CH, Buring JE y Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 23 de marzo de 2000;342(12):836-43.
 - Rodriguez-Lee M, Bondjers G y Camejo G, Fatty acid-induced atherogenic changes in extracellular matrix proteoglycans. Curr Opin Lipidol. Octubre de 2007;18(5):546-53
- Rouis M. Matrix metalloproteinases: a potential therapeutic target in atherosclerosis. Curr Drug Targets.Cardiovasc Haematol Disord. 2005;5:541-48.
- Rudel LL, Haines J, Sawyer JK, Shah R, Wilson MS, Carr TP. Hepatic origin of cholesteryl oleate in coronary artery atherosclerosis in African green monkeys. Enrichment by dietary monounsaturated fat. J Clin Invest 1997; 100:74-83.
 - Salisbury BG y Wagner, W DJ Biol Chem. 10 de agosto de 1981;256(15):8050-7, 'Isolation and preliminary characterization of proteoglycans dissociatively extracted from human aorta'.
- Satta J, Juvonen T, Haukipuro K, Juvonen M, Kairaluoma MI. Increased turnover of collagen in abdominal aortic aneurysms, demonstrated by measuring the concentration of the aminoterminal propeptide of type III procollagen in peripheral and aortal blood samples. J Vasc.Surg. 1995;22:155-60.
- Schaar JA, Mastik F, Regar E, den Uil CA, Gijsen FJ, Wentzel JJ et al. Current diagnostic modalities for vulnerable plaque detection. Curr Pharm Des. 2007;13:995-1001.
 - Siest G, Pillot T, Regis-Bailly A, Leininger-Muller B, Steinmetz J, Galteau MM y Visvikis S, Apolipoprotein E: an important gene and protein to follow in laboratory medicine. Clin Chem. Agosto de 1995;41(8 Pt 1):1068-86.
- Shin, J., J. E. Edelberg, y M. K. Hong. "Vulnerable atherosclerotic plaque: clinical implications". Curr.Vasc.Pharmacol. 1.2 (2003): 183-204.
- Shekhonin BV, Domogatsky SP, Muzykantov VR, Idelson GL, Rukosuev VS. Distribution of type I, III, IV and V collagen in normal and atherosclerotic human arterial wall: immunomorphological characteristics. Coll.Relat Res 1985;5:355-68.
 - Stary HC. Composition and classification of human atherosclerotic lesions. Virchows Arch A. Pathol Anat.Histopathol. 1992;421:277-90.
- 55 Sundstrom J, Vasan RS. Circulating biomarkers of extracellular matrix remodeling and risk of atherosclerotic events. Curr Opin Lipidol. 2006;17:45-53.
 - Talusan, P., et al. "Analysis of intimal proteoglycans in atherosclerosisprone and atherosclerosis-resistant human arteries by mass spectrometry". Mol.Cell Proteomics. 4.9 (2005): 1350-57.
- Thompson D, Banks RE, Forbes MA, Storr M, Higginson J, Raynes J, Illingworth JM, Perren TJ, Selby PJ y Whicher JT, The acute phase protein response in patients receiving subcutaneous IL-6. Clin Exp Immunol. Octubre de 1995;102(1):217-23.
- Terry JG, Howard G, Mercuri M, Bond MG y Crouse JR 3rd. Apolipoprotein E polymorphism is associated with segment-specific extracranial carotid artery intima-media thickening., Stroke. Octubre de 1996;27(10): 1755-9.

Tracy RP, Lemaitre RN, Psaty BM,Ives DG, Evans RW, Cushman M, Meilahn EN y Kuller LH, Relationship of Creactive protein to risk of cardiovascular disease in the elderly. Results from the Cardiovascular Health Study and the Rural Health Promotion Project. Arterioscler Thromb Vasc Biol. Junio de 1997;17(6):1121-7.

Turu MM, Krupinski J, Catena E, Rosell A, Montaner J, Rubio F et al. Intraplaque MMP-8 levels are increased in asymptomatic patients with carotid plaque progression on ultrasound. Atherosclerosis 2006;187:161-69.

- Venugopal SK, Devaraj S, Yuhanna I, Shaul P y Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells., Circulation. 17 de septiembre de 2002;106(12):1439-41.
 - Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med 2006;355:2631-39.
- Whitelock, J. M. y R. V. lozzo. "Heparan sulfate: a complex polymer charged with biological activity". Chem.Rev. 105.7 (2005): 2745-64.
 - Wight, T. N. "The extracellular matrix and atherosclerosis". Curr.Opin.Lipidol. 6.5 (1995): 326-34.
- Wight, T. N., et al. "Vascular cell proteoglycans: evidence for metabolic modulation". Ciba Found.Symp. 124 (1986): 241-59.
- Wight TN, Versican: a versatile extracellular matrix proteoglycan in cell biology.Curr Opin Cell Biol. Octubre de 2002;14(5):617-23.
 - Wight TN y Merrilees MJ, Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res. 14 de mayo 2004;94(9):1158-67.
- Wilson PW, Schaefer EJ, Larson MG y Ordovas JM. Apolipoprotein E alleles and risk of coronary disease. A meta-analysis. Arterioscler Thromb Vasc Biol. Octubre de 1996;16(10):1250-5.
 - Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H et al. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med 2002;347:1916-23.
- Zwaka TP, Hombach V y Torzewski J. C-reactive protein-mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis., Circulation. 6 de marzo de 2001;103(9):1194-7.

LISTADO DE SECUENCIAS

- <110> Nordic Bioscience As
- <120> Marcadores bioquímicos para la evaluación de riesgos de CVD
- 45 <130> P15861WO

5

35

- <150> GB 0721713.6
- <151> 05/11/2007
- 50 <150> GB 0722748.1
 - <151> 20/11/2007
- 55 <150> GB 0802814.4
 - <151> 15/02/2008
 - <160> 800
- 60 <170> PatentIn versión 3.5
 - <210> 1
 - <211> 3396
- 65 <212> PRT
 - <213> Homo sapiens

<400> 1

Met Phe Ile Asn Ile Lys Ser Ile Leu Trp Met Cys Ser Thr Leu Ile Val Thr His Ala Leu His Lys Val Lys Val Gly Lys Ser Pro Pro Val Arg Gly Ser Leu Ser Gly Lys Val Ser Leu Pro Cys His Phe Ser Thr Met Pro Thr Leu Pro Pro Ser Tyr Asn Thr Ser Glu Phe Leu Arg Ile Lys Trp Ser Lys Ile Glu Val Asp Lys Asn Gly Lys Asp Leu Lys Glu Thr Thr Val Leu Val Ala Gln Asn Gly Asn Ile Lys Ile Gly Gln Asp Tyr Lys Gly Arg Val Ser Val Pro Thr His Pro Glu Ala Val Gly Asp 105 Ala Ser Leu Thr Val Val Lys Leu Leu Ala Ser Asp Ala Gly Leu Tyr Arg Cys Asp Val Met Tyr Gly Ile Glu Asp Thr Gln Asp Thr Val Ser 135 Leu Thr Val Asp Gly Val Val Phe His Tyr Arg Ala Ala Thr Ser Arg 150 155 Tyr Thr Leu Asn Phe Glu Ala Ala Gln Lys Ala Cys Leu Asp Val Gly 165 Ala Val Ile Ala Thr Pro Glu Gln Leu Phe Ala Ala Tyr Glu Asp Gly 185 Phe Glu Gln Cys Asp Ala Gly Trp Leu Ala Asp Gln Thr Val Arg Tyr 195 200 Pro Ile Arg Ala Pro Arg Val Gly Cys Tyr Gly Asp Lys Met Gly Lys 215 Ala Gly Val Arg Thr Tyr Gly Phe Arg Ser Pro Gln Glu Thr Tyr Asp

225	230	235 2	40
Val Tyr Cys Tyr Val 245		y Asp Val Phe His Leu T) 255	hr
Val Pro Ser Lys Phe	Thr Phe Glu Glu Ala	a Ala Lys Glu Cys Glu A	sn
260	265	270	
Gln Asp Ala Arg Leu	Ala Thr Val Gly Glu	ı Leu Gln Ala Ala Trp A.	rg
275	280	285	
Asn Gly Phe Asp Gln	Cys Asp Tyr Gly Trp	D Leu Ser Asp Ala Ser V	al
290	295	300	
Arg His Pro Val Thr	Val Ala Arg Ala Glr	n Cys Gly Gly Gly Leu L	eu
305	310	315 3:	20
Gly Val Arg Thr Leu 325		n Gln Thr Gly Phe Pro P 335	ro
Pro Asp Ser Arg Phe 340	Asp Ala Tyr Cys Phe 345	e Lys Pro Lys Glu Ala T 350	hr
Thr Ile Asp Leu Ser	Ile Leu Ala Glu Thr	r Ala Ser Pro Ser Leu Se	er
355	360	365	
Lys Glu Pro Gln Met 370	Val Ser Asp Arg Thr 375	Thr Pro Ile Ile Pro Lo	eu
Val Asp Glu Leu Pro	Val Ile Pro Thr Glu	Phe Pro Pro Val Gly A	.sn
385	390	395 4	00
Ile Val Ser Phe Glu 405		l Gln Pro Gln Ala Ile T.) 415	hr
Asp Ser Leu Ala Thr 420	Lys Leu Pro Thr Pro	o Thr Gly Ser Thr Lys L 430	ys
Pro Trp Asp Met Asp	Asp Tyr Ser Pro Ser	c Ala Ser Gly Pro Leu G	ly
435	440	445	
Lys Leu Asp Ile Ser	Glu Ile Lys Glu Glu	ı Val Leu Gln Ser Thr T	hr
450	455	460	
Gly Val Ser His Tyr	Ala Thr Asp Ser Trp	Asp Gly Val Val Glu A	.sp
465	470	475 4	80
Lys Gln Thr Gln Glu 485		e Glu Gln Ile Glu Val G 495	ly
Pro Leu Val Thr Ser	Met Glu Ile Leu Lys	s His Ile Pro Ser Lys G	lu
500	505	510	
Phe Pro Val Thr Glu	Thr Pro Leu Val Thr	Ala Arg Met Ile Leu G	lu
515	520	525	
Ser Lys Thr Glu Lys	Lys Met Val Ser Thr	val Ser Glu Leu Val T.	hr
530	535	540	
Thr Gly His Tyr Gly	Phe Thr Leu Gly Glu	ı Glu Asp Asp Glu Asp A	rg
545	550	555 5	60

Thr Leu Thr Val Gly Ser Asp Glu Ser Thr Leu Ile Phe Asp Gln Ile 570 Pro Glu Val Ile Thr Val Ser Lys Thr Ser Glu Asp Thr Ile His Thr 585 His Leu Glu Asp Leu Glu Ser Val Ser Ala Ser Thr Thr Val Ser Pro 600 Leu Ile Met Pro Asp Asn Asn Gly Ser Ser Met Asp Asp Trp Glu Glu 615 Arg Gln Thr Ser Gly Arg Ile Thr Glu Glu Phe Leu Gly Lys Tyr Leu 630 635 Ser Thr Thr Pro Phe Pro Ser Gln His Arg Thr Glu Ile Glu Leu Phe Pro Tyr Ser Gly Asp Lys Ile Leu Val Glu Gly Ile Ser Thr Val Ile 665 660 Tyr Pro Ser Leu Gln Thr Glu Met Thr His Arg Arg Glu Arg Thr Glu 680 Thr Leu Ile Pro Glu Met Arg Thr Asp Thr Tyr Thr Asp Glu Ile Gln 695 Glu Glu Ile Thr Lys Ser Pro Phe Met Gly Lys Thr Glu Glu Glu Val 710 715 Phe Ser Gly Met Lys Leu Ser Thr Ser Leu Ser Glu Pro Ile His Val Thr Glu Ser Ser Val Glu Met Thr Lys Ser Phe Asp Phe Pro Thr Leu 745 Ile Thr Lys Leu Ser Ala Glu Pro Thr Glu Val Arg Asp Met Glu Glu 760 Asp Phe Thr Ala Thr Pro Gly Thr Thr Lys Tyr Asp Glu Asn Ile Thr Thr Val Leu Leu Ala His Gly Thr Leu Ser Val Glu Ala Ala Thr Val Ser Lys Trp Ser Trp Asp Glu Asp Asn Thr Thr Ser Lys Pro Leu Glu Ser Thr Glu Pro Ser Ala Ser Ser Lys Leu Pro Pro Ala Leu Leu Thr 825 Thr Val Gly Met Asn Gly Lys Asp Lys Asp Ile Pro Ser Phe Thr Glu 840 Asp Gly Ala Asp Glu Phe Thr Leu Ile Pro Asp Ser Thr Gln Lys Gln Leu Glu Glu Val Thr Asp Glu Asp Ile Ala Ala His Gly Lys Phe Thr 870 875

- Ile Arg Phe Gln Pro Thr Thr Ser Thr Gly Ile Ala Glu Lys Ser Thr 885 890 895
- Leu Arg Asp Ser Thr Thr Glu Glu Lys Val Pro Pro Ile Thr Ser Thr 900 905 910
- Glu Gly Gln Val Tyr Ala Thr Met Glu Gly Ser Ala Leu Gly Glu Val 915 920 925
- Glu Asp Val Asp Leu Ser Lys Pro Val Ser Thr Val Pro Gln Phe Ala 930 935 940
- His Thr Ser Glu Val Glu Gly Leu Ala Phe Val Ser Tyr Ser Ser Thr 945 950 955 960
- Gln Glu Pro Thr Thr Tyr Val Asp Ser Ser His Thr Ile Pro Leu Ser 965 970 975
- Val Ile Pro Lys Thr Asp Trp Gly Val Leu Val Pro Ser Val Pro Ser 980 985 990
- Glu Asp Glu Val Leu Gly Glu Pro Ser Gln Asp Ile Leu Val Ile Asp 995 1000 1005
- Gln Thr Arg Leu Glu Ala Thr Ile Ser Pro Glu Thr Met Arg Thr 1010 \$1015\$ 1020
- Thr Lys Ile Thr Glu Gly Thr Thr Glu Glu Glu Phe Pro Trp Lys 1025 1030 1035
- Glu Gln Thr Ala Glu Lys Pro Val Pro Ala Leu Ser Ser Thr Ala 1040 1045 1050
- Trp Thr Pro Lys Glu Ala Val Thr Pro Leu Asp Glu Gln Glu Gly 1055 1060
- Asp Gly Ser Ala Tyr Thr Val Ser Glu Asp Glu Leu Leu Thr Gly 1070 1080
- Ser Glu Arg Val Pro Val Leu Glu Thr Thr Pro Val Gly Lys Ile 1085 1090 1095
- Asp His Ser Val Ser Tyr Pro Pro Gly Ala Val Thr Glu His Lys 1100 1105 1110
- Val Lys Thr Asp Glu Val Val Thr Leu Thr Pro Arg Ile Gly Pro 1115 1120 1125
- Lys Val Ser Leu Ser Pro Gly Pro Glu Gln Lys Tyr Glu Thr Glu 1130 1135 1140
- Gly Ser Ser Thr Thr Gly Phe Thr Ser Ser Leu Ser Pro Phe Ser 1145 1150 1155
- Thr His Ile Thr Gln Leu Met Glu Glu Thr Thr Thr Glu Lys Thr 1160 \$1165 \$1170
- Ser Leu Glu Asp Ile Asp Leu Gly Ser Gly Leu Phe Glu Lys Pro 1175 1180 1185
- Lys Ala Thr Glu Leu Ile Glu Phe Ser Thr Ile Lys Val Thr Val

	1190					1195					1200			
Pro	Ser 1205	Asp	Ile	Thr	Thr	Ala 1210	Phe	Ser	Ser	Val	Asp 1215	Arg	Leu	His
Thr	Thr 1220	Ser	Ala	Phe	Lys	Pro 1225		Ser	Ala	Ile	Thr 1230	Lys	Lys	Pro
Pro	Leu 1235	Ile	Asp	Arg	Glu	Pro 1240	Gly	Glu	Glu	Thr	Thr 1245	Ser	Asp	Met
Val	Ile 1250	Ile	Gly	Glu	Ser	Thr 1255	Ser	His	Val	Pro	Pro 1260	Thr	Thr	Leu
Glu	Asp 1265	Ile	Val	Ala	Lys	Glu 1270		Glu	Thr	Asp	Ile 1275	Asp	Arg	Glu
Tyr	Phe 1280	Thr	Thr	Ser	Ser	Pro 1285	Pro	Ala	Thr	Gln	Pro 1290	Thr	Arg	Pro
Pro	Thr 1295	Val	Glu	Asp	Lys	Glu 1300	Ala	Phe	Gly	Pro	Gln 1305	Ala	Leu	Ser
Thr	Pro 1310	Gln	Pro	Pro	Ala	Ser 1315	Thr	Lys	Phe	His	Pro 1320	Asp	Ile	Asn
Val	Tyr 1325	Ile	Ile	Glu	Val	Arg 1330	Glu	Asn	Lys	Thr	Gly 1335	Arg	Met	Ser
Asp	Leu 1340	Ser	Val	Ile	Gly	His 1345	Pro	Ile	Asp	Ser	Glu 1350	Ser	Lys	Glu
Asp	Glu 1355	Pro	Cys	Ser	Glu	Glu 1360	Thr	Asp	Pro	Val	His 1365	Asp	Leu	Met
Ala	Glu 1370	Ile	Leu	Pro	Glu	Phe 1375	Pro	Asp	Ile	Ile	Glu 1380	Ile	Asp	Leu
Tyr	His 1385	Ser	Glu	Glu	Asn	Glu 1390	Glu	Glu	Glu	Glu	Glu 1395	Суз	Ala	Asn
Ala	Thr 1400	Asp	Val	Thr	Thr	Thr 1405	Pro	Ser	Val	Gln	Tyr 1410	Ile	Asn	Gly
Lys	His 1415	Leu	Val	Thr	Thr	Val 1420	Pro	Lys	Asp	Pro	Glu 1425	Ala	Ala	Glu
Ala	Arg 1430	Arg	Gly	Gln	Phe	Glu 1435		Val	Ala	Pro	Ser 1440	Gln	Asn	Phe
Ser	Asp 1445	Ser	Ser	Glu	Ser	Asp 1450	Thr	His	Pro	Phe	Val 1455	Ile	Ala	Lys
Thr	Glu 1460	Leu	Ser	Thr	Ala	Val 1465	Gln	Pro	Asn	Glu	Ser 1470	Thr	Glu	Thr
Thr	Glu 1475	Ser	Leu	Glu	Val	Thr 1480	Trp	Lys	Pro	Glu	Thr 1485	Tyr	Pro	Glu
Thr	Ser 1490	Glu	His	Phe	Ser	Gly 1495	Gly	Glu	Pro	Asp	Val 1500	Phe	Pro	Thr

Val	Pro 1505	Phe	His	Glu	Glu	Phe 1510	Glu	Ser	Gly	Thr	Ala 1515	Lys	Lys	Gly
Ala	Glu 1520	Ser	Val	Thr	Glu	Arg 1525	Asp	Thr	Glu	Val	Gly 1530	His	Gln	Ala
His	Glu 1535	His	Thr	Glu	Pro	Val 1540	Ser	Leu	Phe	Pro	Glu 1545	Glu	Ser	Ser
Gly	Glu 1550	Ile	Ala	Ile	Asp	Gln 1555	Glu	Ser	Gln	Lys	Ile 1560	Ala	Phe	Ala
Arg	Ala 1565	Thr	Glu	Val	Thr	Phe 1570	Gly	Glu	Glu	Val	Glu 1575	Lys	Ser	Thr
Ser	Val 1580	Thr	Tyr	Thr	Pro	Thr 1585		Val	Pro	Ser	Ser 1590	Ala	Ser	Ala
Tyr	Val 1595	Ser	Glu	Glu	Glu	Ala 1600	Val	Thr	Leu	Ile	Gly 1605	Asn	Pro	Trp
Pro	Asp 1610	Asp	Leu	Leu	Ser	Thr 1615	_	Glu	Ser	Trp	Val 1620	Glu	Ala	Thr
Pro	Arg 1625	Gln	Val	Val	Glu	Leu 1630	Ser	Gly	Ser	Ser	Ser 1635	Ile	Pro	Ile
Thr	Glu 1640	Gly	Ser	Gly	Glu	Ala 1645	Glu	Glu	Asp	Glu	Asp 1650	Thr	Met	Phe
Thr	Met 1655		Thr	Asp	Leu	Ser 1660		Arg	Asn	Thr	Thr 1665	Asp	Thr	Leu
Ile	Thr 1670	Leu	Asp	Thr	Ser	Arg 1675	Ile	Ile	Thr	Glu	Ser 1680	Phe	Phe	Glu
Val	Pro 1685	Ala	Thr	Thr	Ile	Tyr 1690	Pro	Val	Ser	Glu	Gln 1695	Pro	Ser	Ala
Lys	Val 1700	Val	Pro	Thr	Lys	Phe 1705		Ser	Glu	Thr	Asp 1710	Thr	Ser	Glu
Trp	Ile 1715	Ser	Ser	Thr	Thr	Val 1720	Glu	Glu	Lys	Lys	Arg 1725	Lys	Glu	Glu
Glu	Gly 1730	Thr	Thr	Gly	Thr	Ala 1735	Ser	Thr	Phe	Glu	Val 1740	Tyr	Ser	Ser
Thr	Gln 1745	Arg	Ser	Asp	Gln	Leu 1750	Ile	Leu	Pro	Phe	Glu 1755	Leu	Glu	Ser
Pro	Asn 1760	Val	Ala	Thr	Ser	Ser 1765	Asp	Ser	Gly	Thr	Arg 1770	Lys	Ser	Phe
Met	Ser 1775	Leu	Thr	Thr	Pro	Thr 1780	Gln	Ser	Glu	Arg	Glu 1785	Met	Thr	Asp
Ser	Thr 1790	Pro	Val	Phe	Thr	Glu 1795	Thr	Asn	Thr	Leu	Glu 1800	Asn	Leu	Gly

Ala	Gln 1805	Thr	Thr	Glu	His	Ser 1810	Ser	Ile	His	Gln	Pro 1815	Gly	Val	Gln
Glu	Gly 1820	Leu	Thr	Thr	Leu	Pro 1825	Arg	Ser	Pro	Ala	Ser 1830	Val	Phe	Met
Glu	Gln 1835	Gly	Ser	Gly	Glu	Ala 1840	Ala	Ala	Asp	Pro	Glu 1845	Thr	Thr	Thr
Val	Ser 1850	Ser	Phe	Ser	Leu	Asn 1855	Val	Glu	Tyr	Ala	Ile 1860	Gln	Ala	Glu
Lys	Glu 1865	Val	Ala	Gly	Thr	Leu 1870		Pro	His	Val	Glu 1875		Thr	Phe
Ser	Thr 1880	Glu	Pro	Thr	Gly	Leu 1885	Val	Leu	Ser	Thr	Val 1890	Met	Asp	Arg
Val	Val 1895	Ala	Glu	Asn	Ile	Thr 1900	Gln	Thr	Ser	Arg	Glu 1905	Ile	Val	Ile
Ser	Glu 1910	Arg	Leu	Gly	Glu	Pro 1915	Asn	Tyr	Gly	Ala	Glu 1920	Ile	Arg	Gly
Phe	Ser 1925	Thr	Gly	Phe	Pro	Leu 1930	Glu	Glu	Asp	Phe	Ser 1935	Gly	Asp	Phe
Arg	Glu 1940	Tyr	Ser	Thr	Val	Ser 1945	His	Pro	Ile	Ala	Lys 1950	Glu	Glu	Thr
Val	Met 1955	Met	Glu	Gly	Ser	Gly 1960	Asp	Ala	Ala	Phe	Arg 1965	Asp	Thr	Gln
Thr	Ser 1970	Pro	Ser	Thr	Val	Pro 1975	Thr	Ser	Val	His	Ile 1980	Ser	His	Ile
Ser	Asp 1985	Ser	Glu	Gly	Pro	Ser 1990	Ser	Thr	Met	Val	Ser 1995	Thr	Ser	Ala
Phe	Pro 2000	Trp	Glu	Glu	Phe	Thr 2005	Ser	Ser	Ala	Glu	Gly 2010	Ser	Gly	Glu
Gln	Leu 2015	Val	Thr	Val	Ser	Ser 2020	Ser	Val	Val	Pro	Val 2025	Leu	Pro	Ser
Ala	Val 2030	Gln	Lys	Phe	Ser	Gly 2035	Thr	Ala	Ser	Ser	Ile 2040	Ile	Asp	Glu
Gly	Leu 2045	Gly	Glu	Val	Gly	Thr 2050	Val	Asn	Glu	Ile	Asp 2055	Arg	Arg	Ser
Thr	Ile 2060	Leu	Pro	Thr	Ala	Glu 2065	Val	Glu	Gly	Thr	Lys 2070	Ala	Pro	Val
Glu	Lys 2075	Glu	Glu	Val	Lys	Val 2080	Ser	Gly	Thr	Val	Ser 2085	Thr	Asn	Phe
Pro	Gln 2090	Thr	Ile	Glu	Pro	Ala 2095	Lys	Leu	Trp	Ser	Arg 2100	Gln	Glu	Val
Asn	Pro	Val	Arg	Gln	Glu	Ile	Glu	Ser	Glu	Thr	Thr	Ser	Glu	Glu

	2105					2110					2115			
Gln	Ile 2120	Gln	Glu	Glu	Lys	Ser 2125		Glu	Ser	Pro	Gln 2130	Asn	Ser	Pro
Ala	Thr 2135	Glu	Gln	Thr	Ile	Phe 2140	Asp	Ser	Gln	Thr	Phe 2145	Thr	Glu	Thr
Glu	Leu 2150	Lys	Thr	Thr	Asp	Tyr 2155	Ser	Val	Leu	Thr	Thr 2160	Lys	Lys	Thr
Tyr	Ser 2165	Asp	Asp	Lys	Glu	Met 2170	_	Glu	Glu	Asp	Thr 2175	Ser	Leu	Val
Asn	Met 2180	Ser	Thr	Pro	Asp	Pro 2185	Asp	Ala	Asn	Gly	Leu 2190	Glu	Ser	Tyr
Thr	Thr 2195	Leu	Pro	Glu	Ala	Thr 2200	Glu	Lys	Ser	His	Phe 2205	Phe	Leu	Ala
Thr	Ala 2210	Leu	Val	Thr	Glu	Ser 2215	Ile	Pro	Ala	Glu	His 2220	Val	Val	Thr
Asp	Ser 2225	Pro	Ile	Lys	Lys	Glu 2230	Glu	Ser	Thr	Lys	His 2235	Phe	Pro	Lys
Gly	Met 2240	Arg	Pro	Thr		Gln 2245	Glu	Ser	Asp	Thr	Glu 2250	Leu	Leu	Phe
Ser	Gly 2255	Leu	Gly	Ser	Gly	Glu 2260	Glu	Val	Leu	Pro	Thr 2265	Leu	Pro	Thr
Glu	Ser 2270	Val	Asn	Phe	Thr	Glu 2275	Val	Glu	Gln	Ile	Asn 2280	Asn	Thr	Leu
Tyr	Pro 2285	His	Thr	Ser		Val 2290	Glu	Ser	Thr	Ser	Ser 2295	Asp	Lys	Ile
Glu	Asp 2300	Phe	Asn	Arg	Met	Glu 2305	Asn	Val	Ala	Lys	Glu 2310	Val	Gly	Pro
Leu	Val 2315	Ser	Gln	Thr	Asp	Ile 2320	Phe	Glu	Gly	Ser	Gly 2325	Ser	Val	Thr
Ser	Thr 2330	Thr	Leu	Ile	Glu	Ile 2335	Leu	Ser	Asp	Thr	Gly 2340	Ala	Glu	Gly
Pro	Thr 2345	Val	Ala	Pro	Leu	Pro 2350	Phe	Ser	Thr	Asp	Ile 2355	Gly	His	Pro
Gln	Asn 2360	Gln	Thr	Val	Arg	Trp 2365	Ala	Glu	Glu	Ile	Gln 2370	Thr	Ser	Arg
Pro	Gln 2375	Thr	Ile	Thr	Glu	Gln 2380	Asp	Ser	Asn	Lys	Asn 2385	Ser	Ser	Thr
Ala	Glu 2390	Ile	Asn	Glu	Thr	Thr 2395	Thr	Ser	Ser	Thr	Asp 2400	Phe	Leu	Ala
Arg	Ala 2405	Tyr	Gly	Phe	Glu	Met 2410	Ala	Lys	Glu	Phe	Val 2415	Thr	Ser	Ala

Pro	Lys 2420	Pro	Ser	Asp	Leu	Tyr 2425	Tyr	Glu	Pro	Ser	Gly 2430	Glu	Gly	Ser
Gly	Glu 2435	Val	Asp	Ile	Val	Asp 2440	Ser	Phe	His	Thr	Ser 2445	Ala	Thr	Thr
Gln	Ala 2450	Thr	Arg	Gln	Glu	Ser 2455	Ser	Thr	Thr	Phe	Val 2460	Ser	Asp	Gly
Ser	Leu 2465	Glu	Lys	His	Pro	Glu 2470	Val	Pro	Ser	Ala	Lys 2475	Ala	Val	Thr
Ala	Asp 2480	Gly	Phe	Pro	Thr	Val 2485	Ser	Val	Met	Leu	Pro 2490	Leu	His	Ser
Glu	Gln 2495	Asn	Lys	Ser	Ser	Pro 2500	Asp	Pro	Thr	Ser	Thr 2505	Leu	Ser	Asn
Thr	Val 2510	Ser	Tyr	Glu	Arg	Ser 2515	Thr	Asp	Gly	Ser	Phe 2520	Gln	Asp	Arg
Phe	Arg 2525	Glu	Phe	Glu	Asp	Ser 2530	Thr	Leu	Lys	Pro	Asn 2535	Arg	Lys	Lys
Pro	Thr 2540	Glu	Asn	Ile	Ile	Ile 2545	Asp	Leu	Asp	Lys	Glu 2550	Asp	Lys	Asp
Leu	Ile 2555	Leu	Thr	Ile	Thr	Glu 2560	Ser	Thr	Ile	Leu	Glu 2565	Ile	Leu	Pro
Glu	Leu 2570	Thr	Ser	Asp	Lys	Asn 2575	Thr	Ile	Ile	Asp	Ile 2580	Asp	His	Thr
Lys	Pro 2585	Val	Tyr	Glu	_	Ile 2590	Leu	Gly	Met	Gln	Thr 2595	Asp	Ile	Asp
Thr	Glu 2600	Val	Pro	Ser	Glu	Pro 2605	His	Asp	Ser	Asn	Asp 2610	Glu	Ser	Asn
Asp	Asp 2615	Ser	Thr	Gln	Val	Gln 2620	Glu	Ile	Tyr	Glu	Ala 2625	Ala	Val	Asn
Leu	Ser 2630	Leu	Thr	Glu	Glu	Thr 2635	Phe	Glu	Gly	Ser	Ala 2640	Asp	Val	Leu
Ala	Ser 2645	Tyr	Thr	Gln	Ala	Thr 2650	His	Asp	Glu	Ser	Met 2655	Thr	Tyr	Glu
Asp	Arg 2660	Ser	Gln	Leu	Asp	His 2665	Met	Gly	Phe	His	Phe 2670	Thr	Thr	Gly
Ile	Pro 2675	Ala	Pro	Ser	Thr	Glu 2680	Thr	Glu	Leu	Asp	Val 2685	Leu	Leu	Pro
Thr	Ala 2690	Thr	Ser	Leu	Pro	Ile 2695	Pro	Arg	Lys	Ser	Ala 2700	Thr	Val	Ile
Pro	Glu 2705	Ile	Glu	Gly	Ile	Lys 2710	Ala	Glu	Ala	Lys	Ala 2715	Leu	Asp	Asp

Met	Phe 2720	Glu	Ser	Ser	Thr	Leu 2725	Ser	Asp	Gly	Gln	Ala 2730	Ile	Ala	Asp
Gln	Ser 2735	Glu	Ile	Ile	Pro	Thr 2740		Gly	Gln	Phe	Glu 2745	Arg	Thr	Gln
Glu	Glu 2750	Tyr	Glu	Asp	Lys	Lys 2755	His	Ala	Gly	Pro	Ser 2760	Phe	Gln	Pro
Glu	Phe 2765	Ser	Ser	Gly	Ala	Glu 2770		Ala	Leu	Val	Asp 2775	His	Thr	Pro
Tyr	Leu 2780	Ser	Ile	Ala	Thr	Thr 2785	His	Leu	Met	Asp	Gln 2790	Ser	Val	Thr
Glu	Val 2795	Pro	Asp	Val	Met	Glu 2800	Gly	Ser	Asn	Pro	Pro 2805	Tyr	Tyr	Thr
Asp	Thr 2810	Thr	Leu	Ala	Val	Ser 2815	Thr	Phe	Ala	Lys	Leu 2820	Ser	Ser	Gln
Thr	Pro 2825	Ser	Ser	Pro	Leu	Thr 2830	Ile	Tyr	Ser	Gly	Ser 2835	Glu	Ala	Ser
Gly	His 2840	Thr	Glu	Ile	Pro	Gln 2845	Pro	Ser	Ala	Leu	Pro 2850	Gly	Ile	Asp
Val	Gly 2855	Ser	Ser	Val		Ser 2860	Pro	Gln	Asp	Ser	Phe 2865	Lys	Glu	Ile
His	Val 2870	Asn	Ile	Glu	Ala	Thr 2875	Phe	Lys	Pro	Ser	Ser 2880	Glu	Glu	Tyr
Leu	His 2885	Ile	Thr	Glu	Pro	Pro 2890	Ser	Leu	Ser	Pro	Asp 2895	Thr	Lys	Leu
Glu	Pro 2900	Ser	Glu	Asp		Gly 2905		Pro	Glu	Leu	Leu 2910	Glu	Glu	Met
Glu	Ala 2915	Ser	Pro	Thr	Glu	Leu 2920	Ile	Ala	Val	Glu	Gly 2925	Thr	Glu	Ile
Leu	Gln 2930	Asp	Phe	Gln	Asn	Lys 2935	Thr	Asp	Gly	Gln	Val 2940	Ser	Gly	Glu
Ala	Ile 2945	Lys	Met	Phe	Pro	Thr 2950	Ile	Lys	Thr	Pro	Glu 2955	Ala	Gly	Thr
Val	Ile 2960	Thr	Thr	Ala	Asp	Glu 2965	Ile	Glu	Leu	Glu	Gly 2970	Ala	Thr	Gln
Trp	Pro 2975	His	Ser	Thr	Ser	Ala 2980	Ser	Ala	Thr	Tyr	Gly 2985	Val	Glu	Ala
Gly	Val 2990	Val	Pro	Trp	Leu	Ser 2995	Pro	Gln	Thr	Ser	Glu 3000	Arg	Pro	Thr
Leu	Ser 3005	Ser	Ser	Pro	Glu	Ile 3010	Asn	Pro	Glu	Thr	Gln 3015	Ala	Ala	Leu
Ile	Arg	Gly	Gln	Asp	Ser	Thr	Ile	Ala	Ala	Ser	Glu	Gln	Gln	Val

	3020					3025					3030			
Ala	Ala 3035	Arg	Ile	Leu	Asp	Ser 3040	Asn	Asp	Gln	Ala	Thr 3045	Val	Asn	Pro
Val	Glu 3050	Phe	Asn	Thr	Glu	Val 3055	Ala	Thr	Pro	Pro	Phe 3060	Ser	Leu	Leu
Glu	Thr 3065	Ser	Asn	Glu	Thr	Asp 3070	Phe	Leu	Ile	Gly	Ile 3075	Asn	Glu	Glu
Ser	Val 3080	Glu	Gly	Thr	Ala	Ile 3085	Tyr	Leu	Pro	Gly	Pro 3090	Asp	Arg	Cys
Lys	Met 3095	Asn	Pro	Cys	Leu	Asn 3100		Gly	Thr	Cys	Tyr 3105	Pro	Thr	Glu
Thr	Ser 3110	Tyr	Val	Cys	Thr	Cys 3115	Val	Pro	Gly	Tyr	Ser 3120	Gly	Asp	Gln
Cys	Glu 3125	Leu	Asp	Phe	Asp	Glu 3130		His	Ser	Asn	Pro 3135	Суѕ	Arg	Asn
Gly	Ala 3140	Thr	Cys	Val	Asp	Gly 3145		Asn	Thr	Phe	Arg 3150	Cys	Leu	Cys
Leu	Pro 3155	Ser	Tyr	Val	Gly	Ala 3160	Leu	Суѕ	Glu	Gln	Asp 3165	Thr	Glu	Thr
Cys	Asp 3170	Tyr	Gly	Trp	His	Lys 3175	Phe	Gln	Gly	Gln	Cys 3180	Tyr	Lys	Tyr
Phe	Ala 3185	His	Arg	Arg	Thr	Trp 3190	Asp	Ala	Ala	Glu	Arg 3195	Glu	Cys	Arg
Leu	Gln 3200	Gly	Ala	His	Leu	Thr 3205	Ser	Ile	Leu	Ser	His 3210	Glu	Glu	Gln
Met	Phe 3215	Val	Asn	Arg	Val	Gly 3220	His	Asp	Tyr	Gln	Trp 3225	Ile	Gly	Leu
Asn	Asp 3230	Lys	Met	Phe	Glu	His 3235	Asp	Phe	Arg	Trp	Thr 3240	Asp	Gly	Ser
Thr	Leu 3245	Gln	Tyr	Glu	Asn	Trp 3250	Arg	Pro	Asn	Gln	Pro 3255	Asp	Ser	Phe
Phe	Ser 3260	Ala	Gly	Glu	Asp	Cys 3265	Val	Val	Ile	Ile	Trp 3270	His	Glu	Asn
Gly	Gln 3275	Trp	Asn	Asp	Val	Pro 3280	Cys	Asn	Tyr	His	Leu 3285	Thr	Tyr	Thr
Cys	Lys 3290	Lys	Gly	Thr	Val	Ala 3295	Cys	Gly	Gln	Pro	Pro 3300	Val	Val	Glu
Asn	Ala 3305	Lys	Thr	Phe	Gly	Lys 3310	Met	Lys	Pro	Arg	Tyr 3315	Glu	Ile	Asn
Ser	Leu 3320	Ile	Arg	Tyr	His	Cys 3325	Lys	Asp	Gly	Phe	Ile 3330	Gln	Arg	His

```
Leu Pro Thr Ile Arg Cys Leu Gly Asn Gly Arg Trp Ala Ile Pro
                       3340
                                           3345
Lys Ile Thr Cys Met Asn Pro Ser Ala Tyr Gln Arg Thr Tyr Ser
   3350
                       3355
Met Lys Tyr Phe Lys Asn Ser Ser Ser Ala Lys Asp Asn Ser Ile
                                           3375
   3365
                       3370
Asn Thr Ser Lys His Asp His Arg Trp Ser Arg Arg Trp Gln Glu
   3380
                       3385
                                           3390
Ser Arg Arg
   3395
```

<210> 2 <211> 338 <212> PRT

<213> Homo sapiens

<400> 2

Met Ser Leu Ser Ala Phe Thr Leu Phe Leu Ala Leu Ile Gly Gly Thr Ser Gly Gln Tyr Tyr Asp Tyr Asp Phe Pro Leu Ser Ile Tyr Gly Gln Ser Ser Pro Asn Cys Ala Pro Glu Cys Asn Cys Pro Glu Ser Tyr Pro 40 Ser Ala Met Tyr Cys Asp Glu Leu Lys Leu Lys Ser Val Pro Met Val 55 Pro Pro Gly Ile Lys Tyr Leu Tyr Leu Arg Asn Asn Gln Ile Asp His Ile Asp Glu Lys Ala Phe Glu Asn Val Thr Asp Leu Gln Trp Leu Ile 90 Leu Asp His Asn Leu Leu Glu Asn Ser Lys Ile Lys Gly Arg Val Phe Ser Lys Leu Lys Gln Leu Lys Lys Leu His Ile Asn His Asn Asn Leu Thr Glu Ser Val Gly Pro Leu Pro Lys Ser Leu Glu Asp Leu Gln Leu 135 Thr His Asn Lys Ile Thr Lys Leu Gly Ser Phe Glu Gly Leu Val Asn 145 Leu Thr Phe Ile His Leu Gln His Asn Arg Leu Lys Glu Asp Ala Val 170 Ser Ala Ala Phe Lys Gly Leu Lys Ser Leu Glu Tyr Leu Asp Leu Ser Phe Asn Gln Ile Ala Arg Leu Pro Ser Gly Leu Pro Val Ser Leu Leu 200 Thr Leu Tyr Leu Asp Asn Asn Lys Ile Ser Asn Ile Pro Asp Glu Tyr

	210					215					220				
Phe 225	Lys	Arg	Phe	Asn	Ala 230	Leu	Gln	Tyr	Leu	Arg 235	Leu	Ser	His	Asn	Glu 240
Leu	Ala	Asp	Ser	Gly 245	Ile	Pro	Gly	Asn	Ser 250	Phe	Asn	Val	Ser	Ser 255	Let
Val	Glu	Leu	Asp 260	Leu	Ser	Tyr	Asn	Lys 265	Leu	Lys	Asn	Ile	Pro 270	Thr	Val
Asn	Glu	Asn 275	Leu	Glu	Asn	Tyr	Tyr 280	Leu	Glu	Val	Asn	Gln 285	Leu	Glu	Lys
Phe	Asp 290	Ile	Lys	Ser	Phe	Cys 295	Lys	Ile	Leu	Gly	Pro 300	Leu	Ser	Tyr	Ser
Lys 305	Ile	Lys	His	Leu	Arg 310	Leu	Asp	Gly	Asn	Arg 315	Ile	Ser	Glu	Thr	Ser 320
Leu	Pro	Pro	Asp	Met 325	Tyr	Glu	Cys	Leu	Arg 330	Val	Ala	Asn	Glu	Val 335	Thr
_	_														

Leu Asn

<210> 3 <211> 4391 <212> PRT

<213> Homo sapiens

<400> 3

5

Met 1	Gly	Trp	Arg	Ala 5	Pro	Gly	Ala	Leu	Leu 10	Leu	Ala	Leu	Leu	Leu 15	His
Gly	Arg	Leu	Leu 20	Ala	Val	Thr	His	Gly 25	Leu	Arg	Ala	Tyr	Asp 30	Gly	Leu
Ser	Leu	Pro 35	Glu	Asp	Ile	Glu	Thr 40	Val	Thr	Ala	Ser	Gln 45	Met	Arg	Trp
Thr	His 50	Ser	Tyr	Leu	Ser	Asp 55	Asp	Glu	Asp	Met	Leu 60	Ala	Asp	Ser	Ile
Ser 65	Gly	Asp	Asp	Leu	Gly 70	Ser	Gly	Asp	Leu	Gly 75	Ser	Gly	Asp	Phe	Gln 80
Met	Val	Tyr	Phe	Arg 85	Ala	Leu	Val	Asn	Phe 90	Thr	Arg	Ser	Ile	Glu 95	Tyr
Ser	Pro	Gln	Leu 100	Glu	Asp	Ala	Gly	Ser 105	Arg	Glu	Phe	Arg	Glu 110	Val	Ser
Glu	Ala	Val 115	Val	Asp	Thr	Leu	Glu 120	Ser	Glu	Tyr	Leu	Lys 125	Ile	Pro	Gly
Asp	Gln 130	Val	Val	Ser	Val	Val 135	Phe	Ile	Lys	Glu	Leu 140	Asp	Gly	Trp	Val
Phe 145	Val	Glu	Leu	Asp	Val 150	Gly	Ser	Glu	Gly	Asn 155	Ala	Asp	Gly	Ala	Gln 160

Ile Gln Glu Met Leu Leu Arg Val Ile Ser Ser Gly Ser Val Ala Ser 165 170 Tyr Val Thr Ser Pro Gln Gly Phe Gln Phe Arg Arg Leu Gly Thr Val 185 Pro Gln Phe Pro Arg Ala Cys Thr Glu Ala Glu Phe Ala Cys His Ser Tyr Asn Glu Cys Val Ala Leu Glu Tyr Arg Cys Asp Arg Arg Pro Asp 215 Cys Arg Asp Met Ser Asp Glu Leu Asn Cys Glu Glu Pro Val Leu Gly 230 Ile Ser Pro Thr Phe Ser Leu Leu Val Glu Thr Thr Ser Leu Pro Pro 245 250 Arg Pro Glu Thr Thr Ile Met Arg Gln Pro Pro Val Thr His Ala Pro 265 Gln Pro Leu Leu Pro Gly Ser Val Arg Pro Leu Pro Cys Gly Pro Gln Glu Ala Ala Cys Arg Asn Gly His Cys Ile Pro Arg Asp Tyr Leu Cys Asp Gly Gln Glu Asp Cys Glu Asp Gly Ser Asp Glu Leu Asp Cys Gly 305 310 315 Pro Pro Pro Cys Glu Pro Asn Glu Phe Pro Cys Gly Asn Gly His Cys Ala Leu Lys Leu Trp Arg Cys Asp Gly Asp Phe Asp Cys Glu Asp Arg Thr Asp Glu Ala Asn Cys Pro Thr Lys Arg Pro Glu Glu Val Cys 360 Gly Pro Thr Gln Phe Arg Cys Val Ser Thr Asn Met Cys Ile Pro Ala 375 Ser Phe His Cys Asp Glu Glu Ser Asp Cys Pro Asp Arg Ser Asp Glu 390 395 Phe Gly Cys Met Pro Pro Gln Val Val Thr Pro Pro Arg Glu Ser Ile Gln Ala Ser Arg Gly Gln Thr Val Thr Phe Thr Cys Val Ala Ile Gly Val Pro Thr Pro Ile Ile Asn Trp Arg Leu Asn Trp Gly His Ile Pro 440 Ser His Pro Arg Val Thr Val Thr Ser Glu Gly Gly Arg Gly Thr Leu Ile Ile Arg Asp Val Lys Glu Ser Asp Gln Gly Ala Tyr Thr Cys Glu 470 475 Ala Met Asn Ala Arg Gly Met Val Phe Gly Ile Pro Asp Gly Val Leu

				485					490					495	
Glu	Leu	Val	Pro 500	Gln	Arg	Gly	Pro	Cys 505	Pro	Asp	Gly	His	Phe 510	Tyr	Leu
Glu	His	Ser 515	Ala	Ala	Cys	Leu	Pro 520	Cys	Phe	Cys	Phe	Gly 525	Ile	Thr	Ser
Val	Cys 530	Gln	Ser	Thr	Arg	Arg 535	Phe	Arg	Asp	Gln	Ile 540	Arg	Leu	Arg	Phe
Asp 545	Gln	Pro	Asp	Asp	Phe 550	Lys	Gly	Val	Asn	Val 555	Thr	Met	Pro	Ala	Gln 560
Pro	Gly	Thr	Pro	Pro 565	Leu	Ser	Ser	Thr	Gln 570	Leu	Gln	Ile	Asp	Pro 575	Ser
Leu	His	Glu	Phe 580	Gln	Leu	Val	Asp	Leu 585	Ser	Arg	Arg	Phe	Leu 590	Val	His
Asp	Ser	Phe 595	Trp	Ala	Leu	Pro	Glu 600	Gln	Phe	Leu	Gly	Asn 605	Lys	Val	Asp
Ser	Tyr 610	Gly	Gly	Ser	Leu	Arg 615	Tyr	Asn	Val	Arg	Tyr 620	Glu	Leu	Ala	Arg
Gly 625	Met	Leu	Glu	Pro	Val 630	Gln	Arg	Pro	Asp	Val 635	Val	Leu	Val	Gly	Ala 640
Gly	Tyr	Arg	Leu	Leu 645	Ser	Arg	Gly	His	Thr 650	Pro	Thr	Gln	Pro	Gly 655	Ala
Leu	Asn	Gln	Arg 660	Gln	Val	Gln	Phe	Ser 665	Glu	Glu	His	Trp	Val 670	His	Glu
Ser	Gly	Arg 675	Pro	Val	Gln	Arg	Ala 680	Glu	Leu	Leu	Gln	Val 685	Leu	Gln	Ser
Leu	Glu 690	Ala	Val	Leu	Ile	Gln 695	Thr	Val	Tyr	Asn	Thr 700	Lys	Met	Ala	Ser
Val 705	Gly	Leu	Ser	Asp	Ile 710	Ala	Met	Asp	Thr	Thr 715	Val	Thr	His	Ala	Thr 720
Ser	His	Gly	Arg	Ala 725	His	Ser	Val	Glu	Glu 730	Cys	Arg	Cys	Pro	Ile 735	Gly
Tyr	Ser	Gly	Leu 740	Ser	Cys	Glu	Ser	Cys 745	Asp	Ala	His	Phe	Thr 750	Arg	Val
Pro	Gly	Gly 755	Pro	Tyr	Leu	Gly	Thr 760	Cys	Ser	Gly	Cys	Ser 765	Cys	Asn	Gly
His	Ala 770	Ser	Ser	Cys	Asp	Pro 775	Val	Tyr	Gly	His	Cys 780	Leu	Asn	Cys	Gln
His 785	Asn	Thr	Glu	Gly	Pro 790	Gln	Cys	Asn	Lys	Cys 795	Lys	Ala	Gly	Phe	Phe 800
Gly	Asp	Ala	Met	Lys 805	Ala	Thr	Ala	Thr	Ser 810	Cys	Arg	Pro	Cys	Pro 815	Cys

Pro Tyr Ile Asp Ala Ser Arg Phe Ser Asp Thr Cys Phe Leu Asp Thr Asp Gly Gln Ala Thr Cys Asp Ala Cys Ala Pro Gly Tyr Thr Gly Arg Arg Cys Glu Ser Cys Ala Pro Gly Tyr Glu Gly Asn Pro Ile Gln 850 855 Pro Gly Gly Lys Cys Arg Pro Val Asn Gln Glu Ile Val Arg Cys Asp Glu Arg Gly Ser Met Gly Thr Ser Gly Glu Ala Cys Arg Cys Lys Asn Asn Val Val Gly Arg Leu Cys Asn Glu Cys Ala Asp Gly Ser Phe His 905 Leu Ser Thr Arg Asn Pro Asp Gly Cys Leu Lys Cys Phe Cys Met Gly Val Ser Arg His Cys Thr Ser Ser Ser Trp Ser Arg Ala Gln Leu His 935 Gly Ala Ser Glu Glu Pro Gly His Phe Ser Leu Thr Asn Ala Ala Ser 950 955 Thr His Thr Thr Asn Glu Gly Ile Phe Ser Pro Thr Pro Gly Glu Leu Gly Phe Ser Ser Phe His Arg Leu Leu Ser Gly Pro Tyr Phe Trp Ser 985 Leu Pro Ser Arg Phe Leu Gly Asp Lys Val Thr Ser Tyr Gly Gly Glu 1000 Leu Arg Phe Thr Val Thr Gln Arg Ser Gln Pro Gly Ser Thr Pro Leu His Gly Gln Pro Leu Val Val Leu Gln Gly Asn Asn Ile Ile 1030 Leu Glu His His Val Ala Gln Glu Pro Ser Pro Gly Gln Pro Ser 1040 1045 1050 Thr Phe Ile Val Pro Phe Arg Glu Gln Ala Trp Gln Arg Pro Asp Gly Gln Pro Ala Thr Arg Glu His Leu Leu Met Ala Leu Ala Gly 1070 1075 Ile Asp Thr Leu Leu Ile Arg Ala Ser Tyr Ala Gln Gln Pro Ala 1090 1095 Glu Ser Arg Val Ser Gly Ile Ser Met Asp Val Ala Val Pro Glu

Glu Thr Gly Gln Asp Pro Ala Leu Glu Val Glu Gln Cys Ser Cys

1105

1120

1100

Pro	Pro 1130	Gly	Tyr	Arg	Gly	Pro 1135	Ser	Cys	Gln	Asp	Cys 1140	Asp	Thr	Gly
Tyr	Thr 1145	Arg	Thr	Pro	Ser	Gly 1150	Leu	Tyr	Leu	Gly	Thr 1155	Cys	Glu	Arg
Cys	Ser 1160	Cys	His	Gly	His	Ser 1165	Glu	Ala	Cys	Glu	Pro 1170	Glu	Thr	Gly
Ala	Cys 1175	Gln	Gly	Cys	Gln	His 1180	His	Thr	Glu	Gly	Pro 1185	Arg	Cys	Glu
Gln	Cys 1190	Gln	Pro	Gly	Tyr	Tyr 1195	Gly	Asp	Ala	Gln	Arg 1200	Gly	Thr	Pro
Gln	Asp 1205	Cys	Gln	Leu	Cys	Pro 1210	Cys	Tyr	Gly	Asp	Pro 1215	Ala	Ala	Gly
Gln	Ala 1220	Ala	His	Thr	Cys	Phe 1225	Leu	Asp	Thr	Asp	Gly 1230	His	Pro	Thr
Cys	Asp 1235	Ala	Cys	Ser	Pro	Gly 1240	His	Ser	Gly	Arg	His 1245	Cys	Glu	Arg
Суѕ	Ala 1250	Pro	Gly	Tyr	Tyr	Gly 1255	Asn	Pro	Ser	Gln	Gly 1260	Gln	Pro	Суѕ
Gln	Arg 1265	Asp	Ser	Gln	Val	Pro 1270	Gly	Pro	Ile	Gly	Cys 1275	Asn	Cys	Asp
Pro	Gln 1280	Gly	Ser	Val	Ser	Ser 1285	Gln	Cys	Asp	Ala	Ala 1290	Gly	Gln	Cys
Gln	Cys 1295	Lys	Ala	Gln	Val	Glu 1300	Gly	Leu	Thr	Cys	Ser 1305	His	Cys	Arg
Pro	His 1310	His	Phe	His	Leu	Ser 1315	Ala	Ser	Asn	Pro	Asp 1320	Gly	Cys	Leu
Pro	Cys 1325		_		_	Ile 1330				_	Ala 1335	Ser	Ser	Ala
Tyr	Thr 1340	Arg	His	Leu	Ile	Ser 1345	Thr	His	Phe	Ala	Pro 1350	Gly	Asp	Phe
Gln	Gly 1355	Phe	Ala	Leu	Val	Asn 1360	Pro	Gln	Arg	Asn	Ser 1365	Arg	Leu	Thr
Gly	Glu 1370	Phe	Thr	Val	Glu	Pro 1375	Val	Pro	Glu	Gly	Ala 1380	Gln	Leu	Ser
Phe	Gly 1385	Asn	Phe	Ala	Gln	Leu 1390	Gly	His	Glu	Ser	Phe 1395	Tyr	Trp	Gln
Leu	Pro 1400	Glu	Thr	Tyr	Gln	Gly 1405	Asp	Lys	Val	Ala	Ala 1410	Tyr	Gly	Gly
Lys	Leu 1415	Arg	Tyr	Thr	Leu	Ser 1420	Tyr	Thr	Ala	Gly	Pro 1425	Gln	Gly	Ser
Pro	Leu	Ser	Asp	Pro	Asp	Val	Gln	Ile	Thr	Gly	Asn	Asn	Ile	Met

	1430					1435					1440			
Leu	Val 1445	Ala	Ser	Gln	Pro	Ala 1450	Leu	Gln	Gly	Pro	Glu 1455	Arg	Arg	Ser
Tyr	Glu 1460	Ile	Met	Phe	Arg	Glu 1465	Glu	Phe	Trp	Arg	Arg 1470	Pro	Asp	Gly
Gln	Pro 1475	Ala	Thr	Arg	Glu	His 1480	Leu	Leu	Met	Ala	Leu 1485	Ala	Asp	Leu
Asp	Glu 1490	Leu	Leu	Ile	Arg	Ala 1495	Thr	Phe	Ser	Ser	Val 1500	Pro	Leu	Val
Ala	Ser 1505	Ile	Ser	Ala	Val	Ser 1510	Leu	Glu	Val	Ala	Gln 1515	Pro	Gly	Pro
Ser	Asn 1520	Arg	Pro	Arg	Ala	Leu 1525	Glu	Val	Glu	Glu	Cys 1530	Arg	Cys	Pro
Pro	Gly 1535	Tyr	Ile	Gly	Leu	Ser 1540	Cys	Gln	Asp	Cys	Ala 1545	Pro	Gly	Tyr
Thr	Arg 1550	Thr	Gly	Ser	Gly	Leu 1555	Tyr	Leu	Gly	His	Cys 1560	Glu	Leu	Cys
Glu	Cys 1565	Asn	Gly	His	Ser	Asp 1570	Leu	Cys	His	Pro	Glu 1575	Thr	Gly	Ala
Cys	Ser 1580	Gln	Cys	Gln	His	Asn 1585	Ala	Ala	Gly	Glu	Phe 1590	Cys	Glu	Leu
Cys	Ala 1595	Pro	Gly	Tyr	Tyr	Gly 1600	Asp	Ala	Thr	Ala	Gly 1605	Thr	Pro	Glu
Asp	Cys 1610	Gln	Pro	Суз	Ala	Cys 1615	Pro	Leu	Thr	Asn	Pro 1620	Glu	Asn	Met
Phe	Ser 1625	Arg	Thr	Cys	Glu	Ser 1630	Leu	Gly	Ala	Gly	Gly 1635	Tyr	Arg	Cys
Thr	Ala 1640	Cys	Glu	Pro	Gly	Tyr 1645	Thr	Gly	Gln	Tyr	Cys 1650	Glu	Gln	Cys
Gly	Pro 1655	Gly	Tyr	Val	Gly	Asn 1660	Pro	Ser	Val	Gln	Gly 1665	Gly	Gln	Cys
Leu	Pro 1670	Glu	Thr	Asn	Gln	Ala 1675	Pro	Leu	Val	Val	Glu 1680	Val	His	Pro
Ala	Arg 1685	Ser	Ile	Val	Pro	Gln 1690	Gly	Gly	Ser	His	Ser 1695	Leu	Arg	Cys
Gln	Val 1700	Ser	Gly	Ser	Pro	Pro 1705	His	Tyr	Phe	Tyr	Trp 1710	Ser	Arg	Glu
Asp	Gly 1715	Arg	Pro	Val	Pro	Ser 1720	Gly	Thr	Gln	Gln	Arg 1725	His	Gln	Gly
Ser	Glu 1730	Leu	His	Phe	Pro	Ser 1735	Val	Gln	Pro	Ser	Asp 1740	Ala	Gly	Val

Tyr	Ile 1745	Cys	Thr	Cys	Arg	Asn 1750	Leu	His	Gln	Ser	Asn 1755	Thr	Ser	Arg
Ala	Glu 1760	Leu	Leu	Val	Thr	Glu 1765	Ala	Pro	Ser	Lys	Pro 1770	Ile	Thr	Val
Thr	Val 1775	Glu	Glu	Gln	Arg	Ser 1780	Gln	Ser	Val	Arg	Pro 1785	Gly	Ala	Asp
Val	Thr 1790	Phe	Ile	Cys	Thr	Ala 1795	Lys	Ser	Lys	Ser	Pro 1800	Ala	Tyr	Thr
Leu	Val 1805	Trp	Thr	Arg	Leu	His 1810	Asn	Gly	Lys	Leu	Pro 1815	Thr	Arg	Ala
Met	Asp 1820	Phe	Asn	Gly	Ile	Leu 1825	Thr	Ile	Arg	Asn	Val 1830	Gln	Leu	Ser
Asp	Ala 1835	_	Thr	Tyr	Val	Cys 1840	Thr	Gly	Ser	Asn	Met 1845	Phe	Ala	Met
Asp	Gln 1850	Gly	Thr	Ala	Thr	Leu 1855	His	Val	Gln	Ala	Ser 1860	Gly	Thr	Leu
Ser	Ala 1865	Pro	Val	Val	Ser	Ile 1870	His	Pro	Pro	Gln	Leu 1875	Thr	Val	Gln
Pro	Gly 1880	Gln	Leu	Ala	Glu	Phe 1885	Arg	Cys	Ser	Ala	Thr 1890	Gly	Ser	Pro
Thr	Pro 1895	Thr	Leu	Glu	Trp	Thr 1900	Gly	Gly	Pro	Gly	Gly 1905	Gln	Leu	Pro
Ala	Lys 1910	Ala	Gln	Ile	His	Gly 1915	Gly	Ile	Leu	Arg	Leu 1920	Pro	Ala	Val
Glu	Pro 1925	Thr	Asp	Gln	Ala	Gln 1930	Tyr	Leu	Cys	Arg	Ala 1935	His	Ser	Ser
Ala	Gly 1940		Gln		Ala	Arg 1945		Val			Val 1950	His	Gly	Gly
Gly	Gly 1955	Pro	Arg	Val	Gln	Val 1960	Ser	Pro	Glu	Arg	Thr 1965	Gln	Val	His
Ala	Gly 1970	Arg	Thr	Val	Arg	Leu 1975	Tyr	Cys	Arg	Ala	Ala 1980	Gly	Val	Pro
Ser	Ala 1985	Thr	Ile	Thr	Trp	Arg 1990	Lys	Glu	Gly	Gly	Ser 1995	Leu	Pro	Pro
Gln	70 T -	Arq	Ser	Glu	Arg	Thr	Asp	Ile	Ala	Thr	Leu 2010	Leu	Ile	Pro
	2000	,				2005					2010			
Ala		-		Ala	Asp	2005 Ala 2020	Gly	Phe	Tyr	Leu		Val	Ala	Thr

Ser	Ala 2045	Ser	Asp	Ala	Ser	Pro 2050	Pro	Pro	Val	Lys	Ile 2055	Glu	Ser	Ser
Ser	Pro 2060	Ser	Val	Thr	Glu	Gly 2065	Gln	Thr	Leu	Asp	Leu 2070	Asn	Cys	Val
Val	Ala 2075	Gly	Ser	Ala	His	Ala 2080	Gln	Val	Thr	Trp	Tyr 2085	Arg	Arg	Gly
Gly	Ser 2090	Leu	Pro	Pro	His	Thr 2095	Gln	Val	His	Gly	Ser 2100	Arg	Leu	Arg
Leu	Pro 2105	Gln	Val	Ser	Pro	Ala 2110	Asp	Ser	Gly	Glu	Tyr 2115	Val	Cys	Arg
Val	Glu 2120	Asn	Gly	Ser	Gly	Pro 2125	Lys	Glu	Ala	Ser	Ile 2130	Thr	Val	Ser
Val	Leu 2135	His	Gly	Thr	His	Ser 2140	Gly	Pro	Ser	Tyr	Thr 2145	Pro	Val	Pro
Gly	Ser 2150	Thr	Arg	Pro	Ile	Arg 2155	Ile	Glu	Pro	Ser	Ser 2160	Ser	His	Val
Ala	Glu 2165	Gly	Gln	Thr	Leu	Asp 2170	Leu	Asn	Cys	Val	Val 2175	Pro	Gly	Gln
Ala	His 2180	Ala	Gln	Val	Thr	Trp 2185	His	Lys	Arg	Gly	Gly 2190	Ser	Leu	Pro
Ala	Arg 2195	His	Gln	Thr	His	Gly 2200	Ser	Leu	Leu	Arg	Leu 2205	His	Gln	Val
Thr	Pro 2210	Ala	Asp	Ser	Gly	Glu 2215	Tyr	Val	Cys	His	Val 2220	Val	Gly	Thr
Ser	Gly 2225	Pro	Leu	Glu	Ala	Ser 2230	Val	Leu	Val	Thr	Ile 2235	Glu	Ala	Ser
Val	Ile 2240	Pro	Gly	Pro	Ile	Pro 2245	Pro	Val	Arg	Ile	Glu 2250	Ser	Ser	Ser
Ser	Thr 2255	Val	Ala	Glu	Gly	Gln 2260	Thr	Leu	Asp	Leu	Ser 2265	Cys	Val	Val
Ala	Gly 2270	Gln	Ala	His	Ala	Gln 2275	Val	Thr	Trp	Tyr	Lys 2280	Arg	Gly	Gly
Ser	Leu 2285	Pro	Ala	Arg	His	Gln 2290	Val	Arg	Gly	Ser	Arg 2295	Leu	Tyr	Ile
Phe	Gln 2300	Ala	Ser	Pro	Ala	Asp 2305	Ala	Gly	Gln	Tyr	Val 2310	Cys	Arg	Ala
Ser	Asn 2315	Gly	Met	Glu	Ala	Ser 2320	Ile	Thr	Val	Thr	Val 2325	Thr	Gly	Thr
Gln	Gly 2330	Ala	Asn	Leu	Ala	Tyr 2335	Pro	Ala	Gly	Ser	Thr 2340	Gln	Pro	Ile
Arg	Ile	Glu	Pro	Ser	Ser	Ser	Gln	Val	Ala	Glu	Gly	Gln	Thr	Leu

	2345					2350					2355			
Asp	Leu 2360	Asn	Cys	Val	Val	Pro 2365	Gly	Gln	Ser	His	Ala 2370	Gln	Val	Thr
Trp	His 2375	Lys	Arg	Gly	Gly	Ser 2380	Leu	Pro	Val	Arg	His 2385	Gln	Thr	His
Gly	Ser 2390	Leu	Leu	Arg	Leu	Tyr 2395	Gln	Ala	Ser	Pro	Ala 2400	Asp	Ser	Gly
Glu	Tyr 2405	Val	Cys	Arg	Val	Leu 2410	Gly	Ser	Ser	Val	Pro 2415	Leu	Glu	Ala
Ser	Val 2420	Leu	Val	Thr	Ile	Glu 2425	Pro	Ala	Gly	Ser	Val 2430	Pro	Ala	Leu
Gly	Val 2435	Thr	Pro	Thr	Val	Arg 2440	Ile	Glu	Ser	Ser	Ser 2445	Ser	Gln	Val
Ala	Glu 2450	Gly	Gln	Thr	Leu	Asp 2455	Leu	Asn	Cys	Leu	Val 2460	Ala	Gly	Gln
Ala	His 2465	Ala	Gln	Val	Thr	Trp 2470	His	Lys	Arg	Gly	Gly 2475	Ser	Leu	Pro
Ala	Arg 2480	His	Gln	Val	His	Gly 2485	Ser	Arg	Leu	Arg	Leu 2490	Leu	Gln	Val
Thr	Pro 2495	Ala	Asp	Ser	Gly	Glu 2500	Tyr	Val	Cys	Arg	Val 2505	Val	Gly	Ser
Ser	Gly 2510	Thr	Gln	Glu	Ala	Ser 2515	Val	Leu	Val	Thr	Ile 2520	Gln	Gln	Arg
Leu	Ser 2525	Gly	Ser	His	Ser	Gln 2530	Gly	Val	Ala	Tyr	Pro 2535	Val	Arg	Ile
Glu	Ser 2540	Ser	Ser	Ala	Ser	Leu 2545	Ala	Asn	Gly	His	Thr 2550	Leu	Asp	Leu
Asn	Cys 2555	Leu	Val	Ala	Ser	Gln 2560	Ala	Pro	His	Thr	Ile 2565	Thr	Trp	Tyr
Lys	Arg 2570	Gly	Gly	Ser	Leu	Pro 2575	Ser	Arg	His	Gln	Ile 2580	Val	Gly	Ser
Arg	Leu 2585	Arg	Ile	Pro	Gln	Val 2590	Thr	Pro	Ala	Asp	Ser 2595	Gly	Glu	Tyr
Val	Cys 2600	His	Val	Ser	Asn	Gly 2605	Ala	Gly	Ser	Arg	Glu 2610	Thr	Ser	Leu
Ile	Val 2615	Thr	Ile	Gln	Gly	Ser 2620	Gly	Ser	Ser	His	Val 2625	Pro	Ser	Val
Ser	Pro 2630	Pro	Ile	Arg	Ile	Glu 2635	Ser	Ser	Ser	Pro	Thr 2640	Val	Val	Glu
Gly	Gln 2645	Thr	Leu	Asp	Leu	Asn 2650	Cys	Val	Val	Ala	Arg 2655	Gln	Pro	Gln

Ala	Ile 2660	Ile	Thr	Trp	Tyr	Lys 2665	_	Gly	Gly	Ser	Leu 2670	Pro	Ser	Arg
His	Gln 2675	Thr	His	Gly	Ser	His 2680	Leu	Arg	Leu	His	Gln 2685	Met	Ser	Val
Ala	Asp 2690		Gly	Glu	Tyr	Val 2695	Cys	Arg	Ala	Asn	Asn 2700	Asn	Ile	Asp
Ala	Leu 2705	Glu	Ala	Ser	Ile	Val 2710	Ile	Ser	Val	Ser	Pro 2715	Ser	Ala	Gly
Ser	Pro 2720	Ser	Ala	Pro	Gly	Ser 2725	Ser	Met	Pro	Ile	Arg 2730	Ile	Glu	Ser
Ser	Ser 2735	Ser	His	Val	Ala	Glu 2740	Gly	Glu	Thr	Leu	Asp 2745	Leu	Asn	Cys
Val	Val 2750	Pro	Gly	Gln	Ala	His 2755	Ala	Gln	Val	Thr	Trp 2760	His	Lys	Arg
Gly	Gly 2765	Ser	Leu	Pro	Ser	His 2770	His	Gln	Thr	Arg	Gly 2775	Ser	Arg	Leu
Arg	Leu 2780	His	His	Val	Ser	Pro 2785	Ala	Asp	Ser	Gly	Glu 2790	Tyr	Val	Cys
Arg	Val 2795	Met	Gly	Ser	Ser	Gly 2800	Pro	Leu	Glu	Ala	Ser 2805	Val	Leu	Val
Thr	Ile 2810	Glu	Ala	Ser	Gly	Ser 2815	Ser	Ala	Val	His	Val 2820	Pro	Ala	Pro
Gly	Gly 2825	Ala	Pro	Pro	Ile	Arg 2830	Ile	Glu	Pro	Ser	Ser 2835	Ser	Arg	Val
Ala	Glu 2840	Gly	Gln	Thr	Leu	Asp 2845	Leu	Lys	Cys	Val	Val 2850	Pro	Gly	Gln
Ala	His 2855	Ala	Gln	Val	Thr	Trp 2860	His	Lys	Arg	Gly	Gly 2865	Asn	Leu	Pro
Ala	Arg 2870	His	Gln	Val	His	Gly 2875	Pro	Leu	Leu	Arg	Leu 2880	Asn	Gln	Val
Ser	Pro 2885	Ala	Asp	Ser	Gly	Glu 2890	Tyr	Ser	Cys	Gln	Val 2895		Gly	Ser
Ser	Gly 2900	Thr	Leu	Glu	Ala	Ser 2905	Val	Leu	Val	Thr	Ile 2910	Glu	Pro	Ser
Ser	Pro 2915	Gly	Pro	Ile	Pro	Ala 2920	Pro	Gly	Leu	Ala	Gln 2925	Pro	Ile	Tyr
Ile	Glu 2930	Ala	Ser	Ser	Ser	His 2935	Val	Thr	Glu	Gly	Gln 2940	Thr	Leu	Asp
Leu	Asn 2945	Cys	Val	Val	Pro	Gly 2950	Gln	Ala	His	Ala	Gln 2955	Val	Thr	Trp

Tyr	Lys 2960	Arg	Gly	Gly	Ser	Leu 2965	Pro	Ala	Arg	His	Gln 2970	Thr	His	Gly
Ser	Gln 2975	Leu	Arg	Leu	His	Leu 2980	Val	Ser	Pro	Ala	Asp 2985	Ser	Gly	Glu
Tyr	Val 2990	Cys	Arg	Ala	Ala	Ser 2995	Gly	Pro	Gly	Pro	Glu 3000	Gln	Glu	Ala
Ser	Phe 3005	Thr	Val	Thr	Val	Pro 3010	Pro	Ser	Glu	Gly	Ser 3015	Ser	Tyr	Arg
Leu	Arg 3020	Ser	Pro	Val	Ile	Ser 3025	Ile	Asp	Pro	Pro	Ser 3030	Ser	Thr	Val
Gln	Gln 3035	Gly	Gln	Asp	Ala	Ser 3040	Phe	Lys	Cys	Leu	Ile 3045	His	Asp	Gly
Ala	Ala 3050	Pro	Ile	Ser	Leu	Glu 3055	Trp	Lys	Thr	Arg	Asn 3060	Gln	Glu	Leu
Glu	Asp 3065	Asn	Val	His	Ile	Ser 3070	Pro	Asn	Gly	Ser	Ile 3075	Ile	Thr	Ile
Val	Gly 3080	Thr	Arg	Pro	Ser	Asn 3085	His	Gly	Thr	Tyr	Arg 3090	Cys	Val	Ala
Ser	Asn 3095	Ala	Tyr	Gly	Val	Ala 3100	Gln	Ser	Val	Val	Asn 3105	Leu	Ser	Val
His	Gly 3110	Pro	Pro	Thr	Val	Ser 3115	Val	Leu	Pro	Glu	Gly 3120	Pro	Val	Trp
Val	Lys 3125	Val	Gly	Lys	Ala	Val 3130	Thr	Leu	Glu	Cys	Val 3135	Ser	Ala	Gly
Glu	Pro 3140	Arg	Ser	Ser	Ala	Arg 3145	Trp	Thr	Arg	Ile	Ser 3150	Ser	Thr	Pro
Ala	Lys 3155	Leu	Glu	Gln	Arg	Thr 3160	Tyr	Gly	Leu	Met	Asp 3165	Ser	His	Ala
Val	Leu 3170	Gln	Ile	Ser	Ser	Ala 3175	Lys	Pro	Ser	Asp	Ala 3180	Gly	Thr	Tyr
Val	Cys 3185	Leu	Ala	Gln	Asn	Ala 3190	Leu	Gly	Thr	Ala	Gln 3195	Lys	Gln	Val
Glu	Val 3200	Ile	Val	Asp	Thr	Gly 3205	Ala	Met	Ala	Pro	Gly 3210	Ala	Pro	Gln
Val	Gln 3215	Ala	Glu	Glu	Ala	Glu 3220	Leu	Thr	Val	Glu	Ala 3225	Gly	His	Thr
Ala	Thr 3230	Leu	Arg	Cys	Ser	Ala 3235	Thr	Gly	Ser	Pro	Ala 3240	Pro	Thr	Ile
His	Trp 3245	Ser	Lys	Leu	Arg	Ser 3250	Pro	Leu	Pro	Trp	Gln 3255	His	Arg	Leu
Glu	Gly	Asp	Thr	Leu	Ile	Ile	Pro	Arg	Val	Ala	Gln	Gln	Asp	Ser

	3260					3265					3270			
Gly	Gln 3275	Tyr	Ile	Cys	Asn	Ala 3280		Ser	Pro	Ala	Gly 3285	His	Ala	Glu
Ala	Thr 3290	Ile	Ile	Leu	His	Val 3295	Glu	Ser	Pro	Pro	Tyr 3300	Ala	Thr	Thr
Val	Pro 3305	Glu	His	Ala	Ser	Val 3310	Gln	Ala	Gly	Glu	Thr 3315	Val	Gln	Leu
Gln	Cys 3320	Leu	Ala	His	Gly	Thr 3325	Pro	Pro	Leu	Thr	Phe 3330	Gln	Trp	Ser
Arg	Val 3335		Ser	Ser	Leu	Pro 3340	Gly	Arg	Ala	Thr	Ala 3345		Asn	Glu
Leu	Leu 3350	His	Phe	Glu	Arg	Ala 3355	Ala	Pro	Glu	Asp	Ser 3360	Gly	Arg	Tyr
Arg	Cys 3365	Arg	Val	Thr	Asn	Lys 3370	Val	Gly	Ser	Ala	Glu 3375	Ala	Phe	Ala
Gln	Leu 3380	Leu	Val	Gln	Gly	Pro 3385	Pro	Gly	Ser	Leu	Pro 3390	Ala	Thr	Ser
Ile	Pro 3395	Ala	Gly	Ser	Thr	Pro 3400	Thr	Val	Gln	Val	Thr 3405	Pro	Gln	Leu
Glu	Thr 3410	Lys	Ser	Ile	Gly	Ala 3415	Ser	Val	Glu	Phe	His 3420	Cys	Ala	Val
Pro	Ser 3425	Asp	Arg	Gly	Thr	Gln 3430	Leu	Arg	Trp	Phe	Lys 3435	Glu	Gly	Gly
Gln	Leu 3440	Pro	Pro	Gly	His	Ser 3445	Val	Gln	Asp	Gly	Val 3450	Leu	Arg	Ile
Gln	Asn 3455	Leu	Asp	Gln	Ser	Cys 3460	Gln	Gly	Thr	Tyr	Ile 3465	Cys	Gln	Ala
His	Gly 3470	Pro	Trp	Gly	Lys	Ala 3475	Gln	Ala	Ser	Ala	Gln 3480	Leu	Val	Ile
Gln	Ala 3485	Leu	Pro	Ser	Val	Leu 3490	Ile	Asn	Ile	Arg	Thr 3495	Ser	Val	Gln
Thr	Val 3500	Val	Val	Gly	His	Ala 3505	Val	Glu	Phe	Glu	Cys 3510	Leu	Ala	Leu
Gly	Asp 3515	Pro	Lys	Pro	Gln	Val 3520	Thr	Trp	Ser	Lys	Val 3525	Gly	Gly	His
Leu	Arg 3530	Pro	Gly	Ile	Val	Gln 3535	Ser	Gly	Gly	Val	Val 3540	Arg	Ile	Ala
His	Val 3545	Glu	Leu	Ala	Asp	Ala 3550	Gly	Gln	Tyr	Arg	Cys 3555	Thr	Ala	Thr
Asn	Ala 3560	Ala	Gly	Thr	Thr	Gln 3565	Ser	His	Val	Leu	Leu 3570	Leu	Val	Gln

Ala	Leu 3575	Pro	Gln	Ile	Ser	Met 3580	Pro	Gln	Glu	Val	Arg 3585	Val	Pro	Ala
Gly	Ser 3590	Ala	Ala	Val	Phe	Pro 3595		Ile	Ala	Ser	Gly 3600	Tyr	Pro	Thr
Pro	Asp 3605	Ile	Ser	Trp	Ser	Lys 3610	Leu	Asp	Gly	Ser	Leu 3615	Pro	Pro	Asp
Ser	Arg 3620	Leu	Glu	Asn	Asn	Met 3625	Leu	Met	Leu	Pro	Ser 3630	Val	Arg	Pro
Gln	Asp 3635	Ala	Gly	Thr	Tyr	Val 3640		Thr	Ala	Thr	Asn 3645	Arg	Gln	Gly
Lys	Val 3650	Lys	Ala	Phe	Ala	His 3655	Leu	Gln	Val	Pro	Glu 3660	Arg	Val	Val
Pro	Tyr 3665	Phe	Thr	Gln	Thr	Pro 3670	Tyr	Ser	Phe	Leu	Pro 3675	Leu	Pro	Thr
Ile	Lys 3680	Asp	Ala	Tyr	Arg	Lys 3685	Phe	Glu	Ile	Lys	Ile 3690	Thr	Phe	Arg
Pro	Asp 3695	Ser	Ala	Asp	Gly	Met 3700	Leu	Leu	Tyr	Asn	Gly 3705	Gln	Lys	Arg
Val	Pro 3710	Gly	Ser	Pro	Thr	Asn 3715	Leu	Ala	Asn	Arg	Gln 3720	Pro	Asp	Phe
Ile	Ser 3725	Phe	Gly	Leu	Val	Gly 3730	Gly	Arg	Pro	Glu	Phe 3735	Arg	Phe	Asp
Ala	Gly 3740	Ser	Gly	Met	Ala	Thr 3745		Arg	His	Pro	Thr 3750	Pro	Leu	Ala
Leu	Gly 3755	His	Phe	His	Thr	Val 3760	Thr	Leu	Leu	Arg	Ser 3765	Leu	Thr	Gln
Gly	Ser 3770		Ile		Gly	Asp 3775		Ala		Val	Asn 3780	Gly	Thr	Ser
Gln	Gly 3785	Lys	Phe	Gln	Gly	Leu 3790	Asp	Leu	Asn	Glu	Glu 3795	Leu	Tyr	Leu
Gly	Gly 3800	Tyr	Pro	Asp	Tyr	Gly 3805	Ala	Ile	Pro	Lys	Ala 3810	Gly	Leu	Ser
Ser	Gly 3815	Phe	Ile	Gly	Cys	Val 3820	Arg	Glu	Leu	Arg	Ile 3825	Gln	Gly	Glu
Glu	Ile 3830	Val	Phe	His	Asp	Leu 3835	Asn	Leu	Thr	Ala	His 3840	Gly	Ile	Ser
His	Cys 3845	Pro	Thr	Cys	Arg	Asp 3850	Arg	Pro	Cys	Gln	Asn 3855	Gly	Gly	Gln
Cys	His 3860	Asp	Ser	Glu	Ser	Ser 3865	Ser	Tyr	Val	Cys	Val 3870	Cys	Pro	Ala

Gly Pho		Gly	Ser	Arg	Cys 3880		His	Ser	Gln	Ala 3885	Leu	His	Cys
His Pro		Ala	Cys	Gly	Pro 3895	Asp	Ala	Thr	Cys	Val 3900	Asn	Arg	Pro
Asp Gl;	_	Gly	Tyr	Thr	Cys 3910	Arg	Cys	His	Leu	Gly 3915	Arg	Ser	Gly
Leu Aro		Glu	Glu	Gly	Val 3925	Thr	Val	Thr	Thr	Pro 3930	Ser	Leu	Ser
Gly Ala		Ser	Tyr	Leu	Ala 3940	Leu	Pro	Ala	Leu	Thr 3945	Asn	Thr	His
His Gla		Arg	Leu	Asp	Val 3955	Glu	Phe	Lys	Pro	Leu 3960	Ala	Pro	Asp
Gly Va.		Leu	Phe	Ser	Gly 3970	Gly	Lys	Ser	Gly	Pro 3975	Val	Glu	Asp
Phe Va.		Leu	Ala	Met	Val 3985	Gly	Gly	His	Leu	Glu 3990	Phe	Arg	Tyr
Glu Le	_	Ser	Gly	Leu	Ala 4000	Val	Leu	Arg	Ser	Ala 4005	Glu	Pro	Leu
Ala Le	_	Arg	Trp	His	Arg 4015	Val	Ser	Ala	Glu	Arg 4020	Leu	Asn	Lys
Asp Gl;		Leu	Arg	Val	Asn 4030	Gly	Gly	Arg	Pro	Val 4035	Leu	Arg	Ser
Ser Pro	_	Lys	Ser	Gln	Gly 4045	Leu	Asn	Leu	His	Thr 4050	Leu	Leu	Tyr
Leu Gl;		Val	Glu	Pro	Ser 4060	Val	Pro	Leu	Ser	Pro 4065	Ala	Thr	Asn
Met Se.				_	_	_		_		Val 4080		Val	Asn
Gly Lya	_	Leu	Asp	Leu	Thr 4090	Tyr	Ser	Phe	Leu	Gly 4095	Ser	Gln	Gly
Ile Gl:		Cys	Tyr	Asp	Ser 4105	Ser	Pro	Cys	Glu	Arg 4110	Gln	Pro	Cys
Gln Hi	_	Ala	Thr	Cys	Met 4120	Pro	Ala	Gly	Glu	Tyr 4125	Glu	Phe	Gln
Cys Let		Arg	Asp	Gly	Phe 4135	Lys	Gly	Asp	Leu	Cys 4140	Glu	His	Glu
Glu Ası 41		Cys	Gln	Leu	Arg 4150	Glu	Pro	Cys	Leu	His 4155	Gly	Gly	Thr
Cys Gl:		Thr	Arg	Cys	Leu 4165	Cys	Leu	Pro	Gly	Phe 4170	Ser	Gly	Pro
Arg Cy	Gln	Gln	Gly	Ser	Gly	His	Gly	Ile	Ala	Glu	Ser	Asp	Trp

	4175					4180					4185			
His	Leu 4190	Glu	Gly	Ser	Gly	Gly 4195	Asn	Asp	Ala	Pro	Gly 4200	Gln	Tyr	Gly
Ala	Tyr 4205	Phe	His	Asp	Asp	Gly 4210	Phe	Leu	Ala	Phe	Pro 4215	Gly	His	Val
Phe	Ser 4220	Arg	Ser	Leu	Pro	Glu 4225	Val	Pro	Glu	Thr	Ile 4230	Glu	Leu	Glu
Val	Arg 4235	Thr	Ser	Thr	Ala	Ser 4240	Gly	Leu	Leu	Leu	Trp 4245	Gln	Gly	Val
Glu	Val 4250	Gly	Glu	Ala	Gly	Gln 4255	Gly	Lys	Asp	Phe	Ile 4260	Ser	Leu	Gly
Leu	Gln 4265	Asp	Gly	His	Leu	Val 4270	Phe	Arg	Tyr	Gln	Leu 4275	Gly	Ser	Gly
Glu	Ala 4280	Arg	Leu	Val	Ser	Glu 4285	Asp	Pro	Ile	Asn	Asp 4290	Gly	Glu	Trp
His	Arg 4295	Val	Thr	Ala	Leu	Arg 4300	Glu	Gly	Arg	Arg	Gly 4305	Ser	Ile	Gln
Val	Asp 4310	Gly	Glu	Glu	Leu	Val 4315	Ser	Gly	Arg	Ser	Pro 4320	Gly	Pro	Asn
Val	Ala 4325	Val	Asn	Ala	Lys	Gly 4330	Ser	Val	Tyr	Ile	Gly 4335	Gly	Ala	Pro
Asp	Val 4340	Ala	Thr	Leu	Thr	Gly 4345	Gly	Arg	Phe	Ser	Ser 4350	Gly	Ile	Thr
Gly	Cys 4355	Val	Lys	Asn	Leu	Val 4360	Leu	His	Ser	Ala	Arg 4365	Pro	Gly	Ala
Pro	Pro 4370	Pro	Gln	Pro	Leu	Asp 4375	Leu	Gln	His	Arg	Ala 4380	Gln	Ala	Gly
Ala	Asn 4385	Thr	Arg	Pro	Cys	Pro 4390	Ser							

<210> 4
5 <211> 368
<212> PRT
<213> Homo sapiens

<400> 4

Met Trp Pro Leu Trp Arg Leu Val Ser Leu Leu Ala Leu Ser Gln Ala 1 5 10 15

Leu Pro Phe Glu Gln Arg Gly Phe Trp Asp Phe Thr Leu Asp Asp Gly 20 25 30

Pro Phe Met Met Asn Asp Glu Glu Ala Ser Gly Ala Asp Thr Ser Gly 35 40 45

Val Leu Asp Pro Asp Ser Val Thr Pro Thr Tyr Ser Ala Met Cys Pro 50 60

```
Phe Gly Cys His Cys His Leu Arg Val Val Gln Cys Ser Asp Leu Gly
Leu Lys Ser Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu Asp
                                    90
Leu Gln Asn Asn Asp Ile Ser Glu Leu Arg Lys Asp Asp Phe Lys Gly
                               105
Leu Gln His Leu Tyr Ala Leu Val Leu Val Asn Asn Lys Ile Ser Lys
                           120
Ile His Glu Lys Ala Phe Ser Pro Leu Arg Lys Leu Gln Lys Leu Tyr
                       135
Ile Ser Lys Asn His Leu Val Glu Ile Pro Pro Asn Leu Pro Ser Ser
Leu Val Glu Leu Arg Ile His Asp Asn Arg Ile Arg Lys Val Pro Lys
                                   170
Gly Val Phe Ser Gly Leu Arg Asn Met Asn Cys Ile Glu Met Gly Gly
                            185
Asn Pro Leu Glu Asn Ser Gly Phe Glu Pro Gly Ala Phe Asp Gly Leu
                           200
Lys Leu Asn Tyr Leu Arg Ile Ser Glu Ala Lys Leu Thr Gly Ile Pro
                       215
Lys Asp Leu Pro Glu Thr Leu Asn Glu Leu His Leu Asp His Asn Lys
225
                   230
                                        235
Ile Gln Ala Ile Glu Leu Glu Asp Leu Leu Arg Tyr Ser Lys Leu Tyr
                                   250
Arg Leu Gly Leu Gly His Asn Gln Ile Arg Met Ile Glu Asn Gly Ser
                               265
Leu Ser Phe Leu Pro Thr Leu Arg Glu Leu His Leu Asp Asn Asn Lys
                           280
Leu Ala Arg Val Pro Ser Gly Leu Pro Asp Leu Lys Leu Gln Val
Val Tyr Leu His Ser Asn Asn Ile Thr Lys Val Gly Val Asn Asp Phe
                   310
305
                                        315
Cys Pro Met Gly Phe Gly Val Lys Arg Ala Tyr Tyr Asn Gly Ile Ser
                                   330
Leu Phe Asn Asn Pro Val Pro Tyr Trp Glu Val Gln Pro Ala Thr Phe
            340
                                345
Arg Cys Val Thr Asp Arg Leu Ala Ile Gln Phe Gly Asn Tyr Lys Lys
```

<210> 5 <211> 359 5 <212> PRT

<213> Homo sapiens

<400> 5

Met 1	Lys	Ala	Thr	Ile 5	Ile	Leu	Leu	Leu	Leu 10	Ala	Gln	Val	Ser	Trp 15	Ala
Gly	Pro	Phe	Gln 20	Gln	Arg	Gly	Leu	Phe 25	Asp	Phe	Met	Leu	Glu 30	Asp	Glu
Ala	Ser	Gly 35	Ile	Gly	Pro	Glu	Val 40	Pro	Asp	Asp	Arg	Asp 45	Phe	Glu	Pro
Ser	Leu 50	Gly	Pro	Val	Cys	Pro 55	Phe	Arg	Cys	Gln	Cys 60	His	Leu	Arg	Val
Val 65	Gln	Cys	Ser	Asp	Leu 70	Gly	Leu	Asp	Lys	Val 75	Pro	Lys	Asp	Leu	Pro 80
Pro	Asp	Thr	Thr	Leu 85	Leu	Asp	Leu	Gln	Asn 90	Asn	Lys	Ile	Thr	Glu 95	Ile
Lys	Asp	Gly	Asp 100	Phe	Lys	Asn	Leu	Lys 105	Asn	Leu	His	Ala	Leu 110	Ile	Leu
Val	Asn	Asn 115	Lys	Ile	Ser	Lys	Val 120	Ser	Pro	Gly	Ala	Phe 125	Thr	Pro	Leu
Val	Lys 130	Leu	Glu	Arg	Leu	Tyr 135	Leu	Ser	Lys	Asn	Gln 140	Leu	Lys	Glu	Leu
Pro 145	Glu	Lys	Met	Pro	Lys 150	Thr	Leu	Gln	Glu	Leu 155	Arg	Ala	His	Glu	Asn 160
Glu	Ile	Thr	Lys	Val 165	Arg	Lys	Val	Thr	Phe 170	Asn	Gly	Leu	Asn	Gln 175	Met
Ile	Val	Ile	Glu 180	Leu	Gly	Thr	Asn	Pro 185	Leu	Lys	Ser	Ser	Gly 190	Ile	Glu
Asn	Gly	Ala 195	Phe	Gln	Gly	Met	Lys 200	Lys	Leu	Ser	Tyr	Ile 205	Arg	Ile	Ala
Asp	Thr 210	Asn	Ile	Thr	Ser	Ile 215	Pro	Gln	Gly	Leu	Pro 220	Pro	Ser	Leu	Thr
Glu 225	Leu	His	Leu	Asp	Gly 230	Asn	Lys	Ile	Ser	Arg 235	Val	Asp	Ala	Ala	Ser 240
Leu	Lys	Gly	Leu	Asn 245	Asn	Leu	Ala	Lys	Leu 250	Gly	Leu	Ser	Phe	Asn 255	Ser
Ile	Ser	Ala	Val 260	Asp	Asn	Gly	Ser	Leu 265	Ala	Asn	Thr	Pro	His 270	Leu	Arg
Glu	Leu	His 275	Leu	Asp	Asn	Asn	Lys 280	Leu	Thr	Arg	Val	Pro 285	Gly	Gly	Leu
Ala	Glu 290	His	Lys	Tyr	Ile	Gln 295	Val	Val	Tyr	Leu	His 300	Asn	Asn	Asn	Ile
Ser 305	Val	Val	Gly	Ser	Ser 310	Asp	Phe	Cys	Pro	Pro 315	Gly	His	Asn	Thr	Lys 320

```
Lys Ala Ser Tyr Ser Gly Val Ser Leu Phe Ser Asn Pro Val Gln Tyr
                             325
            Trp Glu Ile Gln Pro Ser Thr Phe Arg Cys Val Tyr Val Arg Ser Ala
                                              345
            Ile Gln Leu Gly Asn Tyr Lys
                    355
      <210> 6
      <211> 24
5
       <212> PRT
       <213> Homo sapiens
      <400> 6
            Lys Ser Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu Asp Leu
                                                   10
            Gln Asn Asn Ile Ser Glu Leu
10
                         20
      <210> 7
       <211> 25
       <212> PRT
15
       <213> Homo sapiens
      <400> 7
            Leu Lys Ser Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu Asp
            Leu Gln Asn Asn Asp Ile Ser Glu Leu
20
      <210>8
       <211> 25
       <212> PRT
       <213> Homo sapiens
25
       <400> 8
            Glu Asn Ser Gly Phe Glu Pro Gly Ala Phe Asp Gly Leu Lys Leu Asn
            Tyr Leu Arg Ile Ser Glu Ala Lys Leu
                         20
      <210>9
30
      <211> 26
       <212> PRT
      <213> Homo sapiens
35
      <400> 9
            Gly Leu Lys Ser Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu
                             5
            1
                                                   10
            Asp Leu Gln Asn Asn Asp Ile Ser Glu Leu
                         20
                                               25
      <210> 10
40
      <211> 20
       <212> PRT
      <213> Homo sapiens
```

```
<400> 10
             Tyr Leu Arg Ile Ser Glu Ala Lys Leu Thr Gly Ile Pro Lys Asp Leu
                                       Pro Glu Thr Leu
                                                     20
5
       <210> 11
       <211> 26
       <212> PRT
       <213> Homo sapiens
10
       <400> 11
            Gly Leu Lys Ser Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu
                                                     10
            Asp Leu Gln Asn Asn Asp Ile Ser Glu Leu
       <210> 12
15
       <211> 26
       <212> PRT
       <213> Homo sapiens
20
       <400> 12
             Leu Thr Gly Ile Pro Lys Asp Leu Pro Glu Thr Leu Asn Glu Leu His
             Leu Asp His Asn Lys Ile Gln Ala Ile Glu
                          20
       <210> 13
       <211> 22
25
       <212> PRT
       <213> Homo sapiens
       <400> 13
30
             Lys Arg Ile Ser Glu Ala Lys Leu Thr Gly Ile Pro Lys Asp Leu Pro
                                                     10
             Glu Thr Leu Asn Glu Leu
                          20
       <210> 14
       <211> 14
       <212> PRT
35
       <213> Homo sapiens
       <400> 14
                 Gln Ala Ile Glu Leu Glu Asp Leu Leu Arg Tyr Ser Lys Leu
40
       <210> 15
       <211> 12
       <212> PRT
45
       <213> Homo sapiens
```

```
<400> 15
                     Gln Ala Ile Glu Leu Glu Asp Leu Leu Arg Tyr Ser
5
       <210> 16
       <211> 19
       <212> PRT
       <213> Homo sapiens
10
       <400> 16
            Ser Glu Ala Lys Leu Thr Gly Ile Pro Lys Asp Leu Pro Glu Thr Leu
                              5
                                                    10
                                         Asn Glu Leu
15
       <210> 17
       <211> 25
       <212> PRT
       <213> Homo sapiens
20
       <400> 17
            Leu Lys Ala Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu Asp
            1
                              5
                                                    10
                                                                           15
            Leu Gln Asn Asn Asp Ile Ser Glu Leu
                                                25
                          20
       <210> 18
25
       <211> 18
       <212> PRT
       <213> Homo sapiens
       <400> 18
30
            Thr Leu Leu Asp Leu Gln Asn Asp Ile Ser Glu Leu Arg Lys Asp
                              5
                                                    10
                                                                           15
            Asp Phe
       <210> 19
       <211> 12
       <212> PRT
35
       <213> Homo sapiens
       <400> 19
                     Ala Ile Glu Leu Glu Asp Leu Leu Arg Tyr Ser Lys
                                       5
40
       <210> 20
       <211> 15
       <212> PRT
45
       <213> Homo sapiens
       <400> 20
               Glu Asn Ser Gly Phe Glu Pro Gly Ala Phe Asp Gly Leu Lys Leu
                                                       10
50
       <210> 21
```

```
<211> 13
       <212> PRT
       <213> Homo sapiens
5
       <400> 21
                   Met Ile Val Ile Glu Leu Gly Thr Asn Pro Leu Lys Ser
                                                            10
       <210> 22
10
       <211> 13
       <212> PRT
       <213> Homo sapiens
       <400> 22
15
                   Met Ile Val Ile Glu Leu Gly Thr Asn Pro Leu Lys Ser
                                                            10
       <210> 23
       <211> 17
20
       <212> PRT
       <213> Homo sapiens
       <400> 23
             Glu Leu His Leu Asp Gly Asn Lys Ile Ser Arg Val Asp Ala Ala Ser
                               5
                                                      10
             Leu
25
       <210> 24
       <211> 18
       <212> PRT
30
       <213> Homo sapiens
       <400> 24
            Leu Val Asn Asn Lys Ile Ser Lys Val Ser Pro Gly Ala Phe Thr Pro
                               5
            1
                                                     10
            Leu Val
35
       <210> 25
       <211> 26
       <212> PRT
       <213> Homo sapiens
40
       <400> 25
             Ala Leu Ile Leu Val Asn Asn Lys Ile Ser Lys Val Ser Pro Gly Ala
                                5
                                                                             15
                                                      10
              Phe Thr Pro Leu Val Lys Leu Glu Arg Leu
                                                  25
                           20
45
       <210> 26
       <211> 17
       <212> PRT
       <213> Homo sapiens
       <400> 26
50
```

```
Phe Ser Asn Pro Val Gln Tyr Trp Glu Ile Gln Pro Ser Thr Phe Arg
                               5
             Cys
       <210> 27
       <211> 15
5
       <212> PRT
       <213> Homo sapiens
       <400> 27
               Lys Ser Ser Gly Ile Glu Asn Gly Ala Phe Gln Gly Met Lys Lys
                                                       10
10
       <210> 28
       <211> 18
       <212> PRT
       <213> Homo sapiens
15
       <400> 28
            Lys Ser Ser Gly Ile Glu Asn Gly Ala Phe Gln Gly Met Lys Lys Leu
             Ser Tyr
20
       <210> 29
       <211> 13
       <212> PRT
       <213> Homo sapiens
25
       <400> 29
                   Asn Lys Ile Thr Glu Ile Lys Asp Gly Asp Phe Lys Asn
                                     5
30
       <210> 30
       <211> 17
       <212> PRT
       <213> Homo sapiens
35
       <400> 30
             Gln Gly Leu Pro Pro Ser Leu Thr Glu Leu His Leu Asp Gly Asn Lys
                                                     10
             Ile
       <210> 31
40
       <211> 12
       <212> PRT
       <213> Homo sapiens
       <400> 31
45
                      Lys Leu Leu Ala Ser Asp Ala Gly Leu Tyr Arg Cys
                                        5
       <210> 32
       <211> 13
50
       <212> PRT
       <213> Homo sapiens
```

```
<400> 32
                   Leu Ala Thr Val Gly Glu Leu Gln Ala Ala Trp Arg Asn
                                     5
5
       <210> 33
       <211> 15
       <212> PRT
       <213> Homo sapiens
10
       <400> 33
               Lys Glu Thr Thr Val Leu Val Ala Gln Asn Gly Asn Ile Lys Ile
                                                      10
15
       <210> 34
       <211> 12
       <212> PRT
       <213> Homo sapiens
20
       <400> 34
                     Ser Leu Glu Asp Leu Gln Leu Thr His Asn Lys Ile
                                       5
       <210> 35
25
       <211> 13
       <212> PRT
       <213> Homo sapiens
       <400> 35
30
                   Arg Leu Lys Glu Asp Ala Val Ser Ala Ala Phe Lys Gly
                                     5
       <210> 36
       <211> 16
       <212> PRT
35
       <213> Homo sapiens
       <400> 36
            Arg Ser Ile Glu Tyr Ser Pro Gln Leu Glu Asp Ala Gly Ser Arg Glu
                               5
                                                     10
40
       <210> 37
       <211> 12
       <212> PRT
45
       <213> Homo sapiens
       <400> 37
                      Arg Leu Glu Gly Asp Thr Leu Ile Ile Pro Arg Val
                                        5
                                                               10
50
       <210>38
       <211> 15
       <212> PRT
       <213> Homo sapiens
55
       <400> 38
```

```
Glu Val Ser Glu Ala Val Val Glu Lys Leu Glu Pro Glu Tyr Arg
                                5
                                                      10
      <210>39
      <211> 16
       <212> PRT
5
      <213> Homo sapiens
      <400> 39
            Arg Glu Val Ser Glu Ala Val Val Glu Lys Leu Glu Pro Glu Tyr Arg
10
      <210> 40
      <211> 12
       <212> PRT
15
       <213> Homo sapiens
      <400> 40
                      Arg Ser Ile Glu Tyr Ser Pro Gln Leu Glu Asp Ala
20
      <210>41
      <211> 22
       <212> PRT
       <213> Homo sapiens
25
      <400>41
            Ser Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu Asp Leu Gln
                                                   10
            Asn Asn Asp Ile Ser Glu
                         20
30
      <210>42
      <211> 23
      <212> PRT
      <213> Homo sapiens
35
      <400> 42
            Lys Ser Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu Asp Leu
                             5
                                                   10
            Gln Asn Asn Ile Ser Glu
                         20
      <210> 43
40
       <211> 23
       <212> PRT
       <213> Homo sapiens
      <400> 43
45
            Asn Ser Gly Phe Glu Pro Gly Ala Phe Asp Gly Leu Lys Leu Asn Tyr
                                                  10
            Leu Arg Ile Ser Glu Ala Lys
                         20
```

```
<210> 44
       <211> 24
       <212> PRT
       <213> Homo sapiens
5
       <400> 44
            Leu Lys Ser Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu Asp
                                                    10
            Leu Gln Asn Asn Asp Ile Ser Glu
                         20
10
       <210> 45
       <211> 18
       <212> PRT
       <213> Homo sapiens
15
      <400> 45
            Leu Arg Ile Ser Glu Ala Lys Leu Thr Gly Ile Pro Lys Asp Leu Pro
            Glu Thr
       <210> 46
20
       <211> 24
       <212> PRT
       <213> Homo sapiens
       <400> 46
25
             Leu Lys Ser Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu Asp
                                                     10
            Leu Gln Asn Asn Asp Ile Ser Glu
       <210>47
       <211> 26
       <212> PRT
30
       <213> Homo sapiens
       <400> 47
            Leu Thr Gly Ile Pro Lys Asp Leu Pro Glu Thr Leu Asn Glu Leu His
                              5
            Leu Asp His Asn Lys Ile Gln Ala Ile Glu
                          20
35
       <210> 48
       <211> 11
       <212> PRT
40
       <213> Homo sapiens
       <400> 48
                        Ile Val Ile Glu Leu Gly Thr Asn Pro Leu Lys
                                                                10
45
       <210>49
```

```
<211> 10
       <212> PRT
       <213> Homo sapiens
 5
       <400>49
                          Leu Leu Ala Ser Asp Ala Gly Leu Tyr Arg
       <210> 50
       <211> 12
10
       <212> PRT
       <213> Homo sapiens
       <400> 50
15
                      Leu Ala Thr Val Gly Glu Leu Gln Ala Ala Trp Arg
                                        5
       <210> 51
       <211> 13
       <212> PRT
20
       <213> Homo sapiens
       <400> 51
                   Glu Thr Thr Val Leu Val Ala Gln Asn Gly Asn Ile Lys
                                      5
                                                             10
25
       <210> 52
       <211> 11
       <212> PRT
30
       <213> Homo sapiens
       <400> 52
                        Ser Leu Glu Asp Leu Gln Leu Thr His Asn Lys
                                          5
35
       <210> 53
       <211> 11
       <212> PRT
       <213> Homo sapiens
40
       <400> 53
                        Leu Lys Glu Asp Ala Val Ser Ala Ala Phe Lys
                                          5
       <210> 54
45
       <211> 14
       <212> PRT
       <213> Homo sapiens
50
       <400> 54
                 Ser Ile Glu Tyr Ser Pro Gln Leu Glu Asp Ala Gly Ser Arg
                                   5
                                                          10
       <210> 55
55
       <211> 10
       <212> PRT
       <213> Homo sapiens
```

```
<400> 55
                           Leu Glu Gly Asp Thr Leu Ile Ile Pro Arg
                                            5
5
       <210> 56
       <211> 20
       <212> PRT
       <213> Homo sapiens
10
       <400> 56
             Arg Ile Ser Glu Ala Lys Leu Thr Gly Ile Pro Lys Asp Leu Pro Glu
                                                     10
             Thr Leu Asn Glu
                           20
       <210> 57
15
       <211> 12
       <212> PRT
       <213> Homo sapiens
20
       <400> 57
                      Ala Ile Glu Leu Glu Asp Leu Leu Arg Tyr Ser Lys
                                        5
       <210> 58
25
       <211> 10
       <212> PRT
       <213> Homo sapiens
       <400> 58
30
                          Ala Ile Glu Leu Glu Asp Leu Leu Arg Tyr
                                                                   10
       <210> 59
       <211> 17
35
       <212> PRT
       <213> Homo sapiens
       <400> 59
             Glu Ala Lys Leu Thr Gly Ile Pro Lys Asp Leu Pro Glu Thr Leu Asn
                              5
                                                     10
             Glu
40
       <210> 60
       <211> 24
       <212> PRT
45
       <213> Homo sapiens
       <400> 60
```

```
Leu Lys Ala Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu Asp
             Leu Gln Asn Asn Asp Ile Ser Glu
                          20
       <210>61
       <211> 16
       <212> PRT
5
       <213> Homo sapiens
       <400>61
            Leu Leu Asp Leu Gln Asn Asn Ile Ser Glu Leu Arg Lys Asp Asp
                      5
                                                    10
10
       <210> 62
       <211> 10
       <212> PRT
15
       <213> Homo sapiens
       <400> 62
                         Ile Glu Leu Glu Asp Leu Leu Arg Tyr Ser
                                           5
20
       <210> 63
       <211> 13
       <212> PRT
       <213> Homo sapiens
25
       <400> 63
                  Asn Ser Gly Phe Glu Pro Gly Ala Phe Asp Gly Leu Lys
                                    5
30
       <210> 64
       <211> 14
       <212> PRT
       <213> Homo sapiens
35
       <400> 64
                Asp Glu Ala Ser Gly Ile Gly Pro Glu Val Pro Asp Asp Arg
                                  5
       <210>65
40
       <211> 15
       <212> PRT
       <213> Homo sapiens
       <400> 65
45
              Leu His Leu Asp Gly Asn Lys Ile Ser Arg Val Asp Ala Ala Ser
                                5
                                                      10
       <210>66
       <211> 16
50
       <212> PRT
       <213> Homo sapiens
       <400> 66
```

```
Val Asn Asn Lys Ile Ser Lys Val Ser Pro Gly Ala Phe Thr Pro Leu
                               5
                                                     10
       <210> 67
       <211> 24
5
       <212> PRT
       <213> Homo sapiens
       <400> 67
            Leu Ile Leu Val Asn Asn Lys Ile Ser Lys Val Ser Pro Gly Ala Phe
                                                     10
             Thr Pro Leu Val Lys Leu Glu Arg
                          20
10
       <210>68
       <211> 15
       <212> PRT
15
       <213> Homo sapiens
       <400> 68
               Ser Asn Pro Val Gln Tyr Trp Glu Ile Gln Pro Ser Thr Phe Arg
                                 5
20
       <210>69
       <211> 13
       <212> PRT
       <213> Homo sapiens
25
       <400> 69
                   Ser Ser Gly Ile Glu Asn Gly Ala Phe Gln Gly Met Lys
                   1
                                     5
       <210> 70
30
       <211> 16
       <212> PRT
       <213> Homo sapiens
       <400> 70
35
            Ser Ser Gly Ile Glu Asn Gly Ala Phe Gln Gly Met Lys Lys Leu Ser
                               5
       <210> 71
40
       <211> 11
       <212> PRT
       <213> Homo sapiens
       <400> 71
45
                       Lys Ile Thr Glu Ile Lys Asp Gly Asp Phe Lys
                       1
                                          5
       <210> 72
       <211> 15
50
       <212> PRT
       <213> Homo sapiens
       <400> 72
```

```
Gly Leu Pro Pro Ser Leu Thr Glu Leu His Leu Asp Gly Asn Lys
                                  5
                                                                                15
       <210> 73
       <211> 14
 5
       <212> PRT
       <213> Homo sapiens
       <400> 73
                 Val Ser Glu Ala Val Val Glu Lys Leu Glu Pro Glu Tyr Arg
                                                           10
10
       <210> 74
       <211> 15
       <212> PRT
15
       <213> Homo sapiens
       <400> 74
               Glu Val Ser Glu Ala Val Val Glu Lys Leu Glu Pro Glu Tyr Arg
20
       <210> 75
       <211> 17
       <212> PRT
       <213> Homo sapiens
25
       <400> 75
             Ser Ile Glu Tyr Ser Pro Gln Leu Glu Asp Ala Ser Ala Lys Glu Phe
                                                      10
             Arg
30
       <210> 76
       <211> 6
       <212> PRT
       <213> Homo sapiens
35
       <400> 76
                                    Ser Val Pro Lys Glu Ile
                                                      5
       <210> 77
40
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 77
45
                                    Asn Ser Gly Phe Glu Pro
                                                       5
       <210> 78
       <211> 6
       <212> PRT
50
       <213> Homo sapiens
       <400> 78
```

		Leu 1	Lys	Ser	Val	Pro 5	Lys
5	<210> 79 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 79						
10		Leu 1	Arg	Ile	Ser	Glu 5	Ala
15	<210> 80 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 80						
		Gly 1	Leu	Lys	Leu	Asn 5	Tyr
20	<210> 81 <211> 6 <212> PRT						
25	<213> Homo sapiens <400> 81						
		Leu 1	Lys	Ser	Val	Pro 5	Lys
30	<210> 82 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 82						
		Gln 1	Cys	Ser	Asp	Leu 5	Gly
40	<210> 83 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 83						
		Leu 1	Thr	Gly	Ile	Pro 5	Lys
50	<210> 84 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 84						
55		Arg 1	Ile	Ser	Glu	Ala 5	Lys

```
<210> 85
       <211> 6
       <212> PRT
       <213> Homo sapiens
 5
       <400> 85
                                    Ala Ile Glu Leu Glu Asp
10
       <210>86
       <211> 6
       <212> PRT
       <213> Homo sapiens
15
       <400> 86
                                     Glu Ala Lys Leu Thr Gly
       <210>87
20
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 87
25
                                    Leu Lys Ala Val Pro Lys
       <210> 88
       <211> 6
       <212> PRT
30
       <213> Homo sapiens
       <400> 88
                                    Leu Leu Asp Leu Gln Asn
                                                       5
35
       <210>89
       <211> 6
       <212> PRT
40
       <213> Homo sapiens
       <400> 89
                                     Ile Glu Leu Glu Asp Leu
                                                        5
45
       <210>90
       <211> 6
       <212> PRT
       <213> Homo sapiens
50
       <400> 90
                                     Asn Ser Gly Phe Glu Pro
                                                        5
55
       <210> 91
       <211> 6
```

	<212> PRT <213> Homo sapiens	
_	<400> 91	
5		Ile Val Ile Glu Leu Gly 1 5
10	<210> 92 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 92	
15		Asn Gly Leu Asn Gln Met 1 5
20	<210> 93 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 93	
		Asp Glu Ala Ser Gly Ile 1 5
25	<210> 94 <211> 6 <212> PRT <213> Homo sapiens	
30	<400> 94	
		Leu His Leu Asp Gly Asn 1 5
35	<210> 95 <211> 6 <212> PRT <213> Homo sapiens	
40	<400> 95	
		Val Asn Asn Lys Ile Ser 1 5
45	<210> 96 <211> 6 <212> PRT <213> Homo sapiens	
50	<400> 96	
		Leu Ile Leu Val Asn Asn 1 5
55	<210> 97 <211> 6 <212> PRT <213> Homo sapiens	

	<400> 97	
		Ser Asn Pro Val Gln Tyr 1 5
5	<210> 98 <211> 6 <212> PRT <213> Homo sapiens	
10	<400> 98	
		Ser Ser Gly Ile Glu Asn 1 5
15	<210> 99 <211> 6 <212> PRT <213> Homo sapiens	
20	<400> 99	
		Lys Ile Thr Glu Ile Lys 1 5
25	<210> 100 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 100	
30		Gly Leu Pro Pro Ser Leu 1 5
35	<210> 101 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 101	
40		Leu Leu Ala Ser Asp Ala 1 5
	<210> 102 <211> 6 <212> PRT <213> Homo sapiens	
45	<400> 102	
		Leu Ala Thr Val Gly Glu 1 5
50	<210> 103 <211> 6 <212> PRT <213> Homo sapiens	
55	<400> 103	

		Glu Thr Thr Val Leu Val
5	<210> 104 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 104	
10		Ser Leu Thr Val Val Lys 1 5
15	<210> 105 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 105	
20		Glu Asn Gln Asp Ala Arg 1 5
	<210> 106 <211> 6 <212> PRT <213> Homo sapiens	
25	<400> 106	
		Asn Gly Phe Asp Gln Cys 1 5
30	<210> 107 <211> 6 <212> PRT <213> Homo sapiens	
35	<400> 107	
		Ser Leu Glu Asp Leu Gln 1 5
40	<210> 108 <211> 6 <212> PRT <213> Homo sapiens	
45	<400> 108	
		Leu Lys Glu Asp Ala Val 1 5
50	<210> 109 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 109	
55		His Leu Gln His Asn Arg 1 5

```
<210> 110
       <211>6
       <212> PRT
       <213> Homo sapiens
 5
       <400> 110
                                     Leu Gln His Asn Arg Leu
10
       <210> 111
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 111
15
                                      Ser Ile Glu Tyr Ser Pro
                                                        5
       <210> 112
20
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 112
25
                                     Leu Val Asn Phe Thr Arg
                                     1
                                                        5
       <210> 113
       <211> 6
       <212> PRT
30
       <213> Homo sapiens
       <400> 113
                                     Val Ser Glu Ala Val Val
                                                        5
35
       <210> 114
       <211>6
       <212> PRT
40
       <213> Homo sapiens
       <400> 114
                                     Glu Val Ser Glu Ala Val
                                                        5
45
       <210> 115
       <211> 6
       <212> PRT
       <213> Homo sapiens
50
       <400> 115
                                     Ser Ile Glu Tyr Ser Pro
                                        1
                                                           5
55
       <210> 116
       <211> 6
```

```
<212> PRT
       <213> Homo sapiens
       <400> 116
 5
                                     Asn Asn Asp Ile Ser Glu
       <210> 117
       <211> 6
10
       <212> PRT
       <213> Homo sapiens
       <400> 117
                                     Arg Ile Ser Glu Ala Lys
15
       <210> 118
       <211> 6
       <212> PRT
20
       <213> Homo sapiens
       <400> 118
                                     Leu Arg Lys Asp Asp Phe
                                                        5
25
       <210> 119
       <211> 6
       <212> PRT
       <213> Homo sapiens
30
       <400> 119
                                     Lys Asp Leu Pro Glu Thr
                                                        5
       <210> 120
35
       <211>6
       <212> PRT
       <213> Homo sapiens
40
       <400> 120
                                     Leu Asn Glu Leu His Leu
                                                        5
       <210> 121
45
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 121
50
                                     Tyr Trp Glu Val Gln Pro
       <210> 122
       <211> 6
55
       <212> PRT
       <213> Homo sapiens
```

	<400> 122						
		Lys 1	Ile	Gln	Ala	Ile 5	Glu
5	<210> 123 <211> 6 <212> PRT <213> Homo sapiens						
10	<400> 123						
		Pro 1	Glu	Thr	Leu	Asn 5	Glu
15	<210> 124 <211> 6 <212> PRT <213> Homo sapiens						
20	<400> 124						
		Leu 1	Leu	Arg	Tyr	Ser 5	Lys
25	<210> 125 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 125						
30		Glu 1	Asp	Leu	Leu	Arg 5	Tyr
35	<210> 126 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 126						
40		Asn 1	Asn	Asp	Ile	Ser 5	Glu
	<210> 127 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 127						
		Glu 1	Leu	Arg	Lys	Asp 5	Asp
50	<210> 128 <211> 6 <212> PRT <213> Homo sapiens						
55	<400> 128						

		Asp Leu Leu Arg Tyr Ser 1 5
5	<210> 129 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 129	
10		Ala Phe Asp Gly Leu Lys 1 5
15	<210> 130 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 130	
		Gly Thr Asn Pro Leu Lys 1 5
20	<210> 131 <211> 6 <212> PRT	
25	<213> Homo sapiens <400> 131	
		Ser Ser Gly Ile Glu Asn 1 5
30	<210> 132 <211> 6 <212> PRT <213> Homo sapiens	
35	<400> 132	
		Glu Val Pro Asp Asp Arg 1 5
40	<210> 133 <211> 6 <212> PRT <213> Homo sapiens	
45	<400> 133	
		Arg Val Asp Ala Ala Ser 1 5
50	<210> 134 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 134	
55		Gly Ala Phe Thr Pro Leu 1 5

```
<210> 135
       <211> 6
       <212> PRT
       <213> Homo sapiens
 5
       <400> 135
                                    Leu Val Lys Leu Glu Arg
10
       <210> 136
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 136
15
                                   Gln Pro Ser Thr Phe Arg
       <210> 137
20
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 137
25
                                    Ala Phe Gln Gly Met Lys
                                     1
                                                        5
       <210> 138
       <211> 6
       <212> PRT
30
       <213> Homo sapiens
       <400> 138
                                     Gly Met Lys Lys Leu Ser
                                                        5
35
       <210> 139
       <211> 6
       <212> PRT
40
       <213> Homo sapiens
       <400> 139
                                    Lys Asp Gly Asp Phe Lys
45
       <210> 140
       <211> 6
       <212> PRT
       <213> Homo sapiens
50
       <400> 140
                                    His Leu Asp Gly Asn Lys
                                     1
55
       <210> 141
       <211> 6
       <212> PRT
```

```
<213> Homo sapiens
       <400> 141
                                    Cys Asp Val Met Tyr Gly
 5
       <210> 142
       <211> 6
       <212> PRT
10
       <213> Homo sapiens
       <400> 142
                                    Asn Gly Phe Asp Gln Cys
15
       <210> 143
       <211> 6
       <212> PRT
       <213> Homo sapiens
20
       <400> 143
                                     Gln Asn Gly Ile Asn Lys
25
       <210> 144
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 144
30
                                     Ile Gly Gln Asp Tyr Lys
       <210> 145
35
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 145
40
                                     Gln Leu Thr His Asn Lys
       <210> 146
       <211> 6
45
       <212> PRT
       <213> Homo sapiens
       <400> 146
                                     Val Ser Ala Ala Phe Lys
50
       <210> 147
       <211>6
       <212> PRT
55
       <213> Homo sapiens
       <400> 147
```

```
Gly Leu Lys Ser Leu Glu
       <210> 148
 5
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 148
10
                                    Glu Asp Ala Gly Ser Arg
       <210> 149
       <211>6
15
       <212> PRT
       <213> Homo sapiens
       <400> 149
                                    Glu Phe Arg Glu Val Ser
20
       <210> 150
       <211> 6
       <212> PRT
25
       <213> Homo sapiens
       <400> 150
                                    Val Ala Gln Gln Asp Ser
                                    1
                                                      5
30
       <210> 151
       <211> 6
       <212> PRT
       <213> Homo sapiens
35
       <400> 151
                                    Leu Glu Pro Glu Tyr Arg
40
       <210> 152
       <211> 6
       <212> PRT
       <213> Homo sapiens
45
       <400> 152
                                    Ser Ala Lys Glu Phe Arg
       <210> 153
50
       <211> 1466
       <212> PRT
       <213> Homo sapiens
       <400> 153
55
             Met Met Ser Phe Val Gln Lys Gly Ser Trp Leu Leu Leu Ala Leu Leu
```

1				5					10					15	
His	Pro	Thr	Ile 20	Ile	Leu	Ala	Gln	Gln 25	Glu	Ala	Val	Glu	Gly 30	Gly	Cys
Ser	His	Leu 35	Gly	Gln	Ser	Tyr	Ala 40	Asp	Arg	Asp	Val	Trp 45	Lys	Pro	Glu
Pro	Cys 50	Gln	Ile	Cys	Val	Cys 55	Asp	Ser	Gly	Ser	Val 60	Leu	Cys	Asp	Asp
Ile 65	Ile	Cys	Asp	Asp	Gln 70	Glu	Leu	Asp	Cys	Pro 75	Asn	Pro	Glu	Ile	Pro 80
Phe	Gly	Glu	Cys	Cys 85	Ala	Val	Cys	Pro	Gln 90	Pro	Pro	Thr	Ala	Pro 95	Thr
Arg	Pro	Pro	Asn 100	Gly	Gln	Gly	Pro	Gln 105	Gly	Pro	Lys	Gly	Asp 110	Pro	Gly
Pro	Pro	Gly 115	Ile	Pro	Gly	Arg	Asn 120	Gly	Asp	Pro	Gly	Ile 125	Pro	Gly	Gln
Pro	Gly 130	Ser	Pro	Gly	Ser	Pro 135	Gly	Pro	Pro	Gly	Ile 140	Cys	Glu	Ser	Cys
Pro 145	Thr	Gly	Pro	Gln	Asn 150	Tyr	Ser	Pro	Gln	Tyr 155	Asp	Ser	Tyr	Asp	Val 160
Lys	Ser	Gly	Val	Ala 165	Val	Gly	Gly	Leu	Ala 170	Gly	Tyr	Pro	Gly	Pro 175	Ala
Gly	Pro	Pro	Gly 180	Pro	Pro	Gly	Pro	Pro 185	Gly	Thr	Ser	Gly	His 190	Pro	Gly
Ser	Pro	Gly 195	Ser	Pro	Gly	Tyr	Gln 200	Gly	Pro	Pro	Gly	Glu 205	Pro	Gly	Gln
Ala	Gly 210	Pro	Ser	Gly	Pro	Pro 215	Gly	Pro	Pro	Gly	Ala 220	Ile	Gly	Pro	Ser
Gly 225	Pro	Ala	Gly	Lys	Asp 230	Gly	Glu	Ser	Gly	Arg 235	Pro	Gly	Arg	Pro	Gly 240
Glu	Arg	Gly	Leu	Pro 245	Gly	Pro	Pro	Gly	Ile 250	Lys	Gly	Pro	Ala	Gly 255	Ile
Pro	Gly	Phe	Pro 260	Gly	Met	Lys	Gly	His 265	Arg	Gly	Phe	Asp	Gly 270	Arg	Asn
Gly	Glu	Lys 275	Gly	Glu	Thr	Gly	Ala 280	Pro	Gly	Leu	Lys	Gly 285	Glu	Asn	Gly
Leu	Pro 290	Gly	Glu	Asn	Gly	Ala 295	Pro	Gly	Pro	Met	Gly 300	Pro	Arg	Gly	Ala
Pro 305	Gly	Glu	Arg	Gly	Arg 310	Pro	Gly	Leu	Pro	Gly 315	Ala	Ala	Gly	Ala	Arg 320
Gly	Asn	Asp	Gly	Ala 325	Arg	Gly	Ser	Asp	Gly 330	Gln	Pro	Gly	Pro	Pro 335	Gly

Pro	Pro	Gly	Thr 340	Ala	Gly	Phe	Pro	Gly 345	Ser	Pro	Gly	Ala	Lys 350	Gly	Glu
Val	Gly	Pro 355	Ala	Gly	Ser	Pro	Gly 360	Ser	Asn	Gly	Ala	Pro 365	Gly	Gln	Arg
Gly	Glu 370	Pro	Gly	Pro	Gln	Gly 375	His	Ala	Gly	Ala	Gln 380	Gly	Pro	Pro	Gly
Pro 385	Pro	Gly	Ile	Asn	Gly 390	Ser	Pro	Gly	Gly	Lys 395	Gly	Glu	Met	Gly	Pro 400
Ala	Gly	Ile	Pro	Gly 405	Ala	Pro	Gly	Leu	Met 410	Gly	Ala	Arg	Gly	Pro 415	Pro
Gly	Pro	Ala	Gly 420	Ala	Asn	Gly	Ala	Pro 425	Gly	Leu	Arg	Gly	Gly 430	Ala	Gly
Glu	Pro	Gly 435	Lys	Asn	Gly	Ala	Lys 440	Gly	Glu	Pro	Gly	Pro 445	Arg	Gly	Glu
Arg	Gly 450	Glu	Ala	Gly	Ile	Pro 455	Gly	Val	Pro	Gly	Ala 460	Lys	Gly	Glu	Asp
Gly 465	Lys	Asp	Gly	Ser	Pro 470	Gly	Glu	Pro	Gly	Ala 475	Asn	Gly	Leu	Pro	Gly 480
Ala	Ala	Gly	Glu	Arg 485	Gly	Ala	Pro	Gly	Phe 490	Arg	Gly	Pro	Ala	Gly 495	Pro
Asn	Gly	Ile	Pro 500	Gly	Glu	Lys	Gly	Pro 505	Ala	Gly	Glu	Arg	Gly 510	Ala	Pro
Gly	Pro	Ala 515	Gly	Pro	Arg	Gly	Ala 520	Ala	Gly	Glu	Pro	Gly 525	Arg	Asp	Gly
Val	Pro 530	Gly	Gly	Pro	Gly	Met 535	Arg	Gly	Met	Pro	Gly 540	Ser	Pro	Gly	Gly
Pro 545	Gly	Ser	Asp	Gly	Lys 550	Pro	Gly	Pro	Pro	Gly 555	Ser	Gln	Gly	Glu	Ser 560
Gly	Arg	Pro	Gly	Pro 565	Pro	Gly	Pro	Ser	Gly 570	Pro	Arg	Gly	Gln	Pro 575	Gly
Val	Met	Gly	Phe 580	Pro	Gly	Pro	Lys	Gly 585	Asn	Asp	Gly	Ala	Pro 590	Gly	Lys
Asn	Gly	Glu 595	Arg	Gly	Gly	Pro	Gly 600	Gly	Pro	Gly	Pro	Gln 605	Gly	Pro	Pro
Gly	Lys 610	Asn	Gly	Glu	Thr	Gly 615	Pro	Gln	Gly	Pro	Pro 620	Gly	Pro	Thr	Gly
Pro 625	Gly	Gly	Asp	Lys	Gly 630	Asp	Thr	Gly	Pro	Pro 635	Gly	Pro	Gln	Gly	Leu 640
Gln	Gly	Leu	Pro	Gly 645	Thr	Gly	Gly	Pro	Pro 650	Gly	Glu	Asn	Gly	Lys 655	Pro

Gly	Glu	Pro	Gly 660	Pro	Lys	Gly	Asp	Ala 665	Gly	Ala	Pro	Gly	Ala 670	Pro	Gly
Gly	Lys	Gly 675	Asp	Ala	Gly	Ala	Pro 680	Gly	Glu	Arg	Gly	Pro 685	Pro	Gly	Leu
Ala	Gly 690	Ala	Pro	Gly	Leu	Arg 695	Gly	Gly	Ala	Gly	Pro 700	Pro	Gly	Pro	Glu
Gly 705	Gly	Lys	Gly	Ala	Ala 710	Gly	Pro	Pro	Gly	Pro 715	Pro	Gly	Ala	Ala	Gly 720
Thr	Pro	Gly	Leu	Gln 725	Gly	Met	Pro	Gly	Glu 730	Arg	Gly	Gly	Leu	Gly 735	Ser
Pro	Gly	Pro	Lys 740	Gly	Asp	Lys	Gly	Glu 745	Pro	Gly	Gly	Pro	Gly 750	Ala	Asp
Gly	Val	Pro 755	Gly	Lys	Asp	Gly	Pro 760	Arg	Gly	Pro	Thr	Gly 765	Pro	Ile	Gly
Pro	Pro 770	Gly	Pro	Ala	Gly	Gln 775	Pro	Gly	Asp	Lys	Gly 780	Glu	Gly	Gly	Ala
Pro 785	Gly	Leu	Pro	Gly	11e 790	Ala	Gly	Pro	Arg	Gly 795	Ser	Pro	Gly	Glu	Arg 800
Gly	Glu	Thr	Gly	Pro 805	Pro	Gly	Pro	Ala	Gly 810	Phe	Pro	Gly	Ala	Pro 815	Gly
Gln	Asn	Gly	Glu 820	Pro	Gly	Gly	Lys	Gly 825	Glu	Arg	Gly	Ala	Pro 830	Gly	Glu
Lys	Gly	Glu 835	Gly	Gly	Pro	Pro	Gly 840	Val	Ala	Gly	Pro	Pro 845	Gly	Gly	Ser
Gly	Pro 850	Ala	Gly	Pro	Pro	Gly 855	Pro	Gln	Gly	Val	Lys 860	Gly	Glu	Arg	Gly
Ser 865	Pro	Gly	Gly	Pro	Gly 870	Ala	Ala	Gly	Phe	Pro 875	Gly	Ala	Arg	Gly	Leu 880
Pro	Gly	Pro	Pro	Gly 885	Ser	Asn	Gly	Asn	Pro 890	Gly	Pro	Pro	Gly	Pro 895	Ser
Gly	Ser	Pro	Gly 900	Lys	Asp	Gly	Pro	Pro 905	Gly	Pro	Ala	Gly	Asn 910	Thr	Gly
Ala	Pro	Gly 915	Ser	Pro	Gly	Val	Ser 920	Gly	Pro	Lys	Gly	Asp 925	Ala	Gly	Gln
Pro	Gly 930	Glu	Lys	Gly	Ser	Pro 935	Gly	Ala	Gln	Gly	Pro 940	Pro	Gly	Ala	Pro
Gly 945	Pro	Leu	Gly	Ile	Ala 950	Gly	Ile	Thr	Gly	Ala 955	Arg	Gly	Leu	Ala	Gly 960
Pro	Pro	Gly	Met	Pro 965	Gly	Pro	Arg	Gly	Ser 970	Pro	Gly	Pro	Gln	Gly 975	Val
Lys	Gly	Glu	Ser	Gly	Lys	Pro	Gly	Ala	Asn	Gly	Leu	Ser	Gly	Glu	Arg

98	30	98	35	990
Gly Pro Pro Gl 995	ly Pro Gln G	Sly Leu I 1000	Pro Gly Leu	Ala Gly Thr Ala Gly 1005
Glu Pro Gly A 1010	Arg Asp Gly	Asn Pro 1015	Gly Ser Asp	Gly Leu Pro Gly 1020
Arg Asp Gly S 1025	Ser Pro Gly	Gly Lys 1030	Gly Asp Arg	Gly Glu Asn Gly 1035
Ser Pro Gly A	Ala Pro Gly	Ala Pro 1045	Gly His Pro	Gly Pro Pro Gly 1050
Pro Val Gly E 1055	Pro Ala Gly	Lys Ser 1060	Gly Asp Arg	Gly Glu Ser Gly 1065
Pro Ala Gly E 1070	Pro Ala Gly	Ala Pro 1075	Gly Pro Ala	Gly Ser Arg Gly 1080
Ala Pro Gly E 1085	Pro Gln Gly	Pro Arg 1090	Gly Asp Lys	Gly Glu Thr Gly 1095
Glu Arg Gly A	Ala Ala Gly	Ile Lys 1105	Gly His Arg	Gly Phe Pro Gly 1110
Asn Pro Gly A	Ala Pro Gly	Ser Pro 1120	Gly Pro Ala	Gly Gln Gln Gly 1125
Ala Ile Gly S 1130	Ser Pro Gly	Pro Ala 1135	Gly Pro Arg	Gly Pro Val Gly 1140
Pro Ser Gly E 1145	Pro Pro Gly	Lys Asp 1150	Gly Thr Ser	Gly His Pro Gly 1155
Pro Ile Gly E 1160	Pro Pro Gly	Pro Arg 1165	Gly Asn Arg	Gly Glu Arg Gly 1170
Ser Glu Gly S 1175	Ser Pro Gly	His Pro 1180	Gly Gln Pro	Gly Pro Pro Gly 1185
Pro Pro Gly A 1190	Ala Pro Gly	Pro Cys 1195	Cys Gly Gly	Val Gly Ala Ala 1200
Ala Ile Ala G 1205	Gly Ile Gly	Gly Glu 1210	Lys Ala Gly	Gly Phe Ala Pro 1215
Tyr Tyr Gly A 1220	Asp Glu Pro	Met Asp 1225	Phe Lys Ile	Asn Thr Asp Glu 1230
Ile Met Thr S 1235	Ser Leu Lys	Ser Val 1240	Asn Gly Gln	Ile Glu Ser Leu 1245
Ile Ser Pro A 1250	Asp Gly Ser	Arg Lys 1255	Asn Pro Ala	Arg Asn Cys Arg 1260
Asp Leu Lys E 1265	Phe Cys His	Pro Glu 1270	Leu Lys Ser	Gly Glu Tyr Trp 1275
Val Asp Pro A 1280	Asn Gln Gly	Cys Lys 1285	Leu Asp Ala	Ile Lys Val Phe 1290

```
Cys Asn Met Glu Thr Gly Glu Thr Cys Ile Ser Ala Asn Pro Leu
                                    1300
           Asn Val Pro Arg Lys His Trp Trp Thr Asp Ser Ser Ala Glu Lys
                                    1315
           Lys His Val Trp Phe Gly Glu Ser Met Asp Gly Gly Phe Gln Phe
               1325
                                    1330
                                                         1335
           Ser Tyr Gly Asn Pro Glu Leu Pro Glu Asp Val Leu Asp Val Gln
               1340
                                    1345
           Leu Ala Phe Leu Arg Leu Leu Ser Ser Arg Ala Ser Gln Asn Ile
               1355
                                    1360
                                                         1365
           Thr Tyr His Cys Lys Asn Ser Ile Ala Tyr Met Asp Gln Ala Ser
               1370
                                    1375
                                                         1380
           Gly Asn Val Lys Lys Ala Leu Lys Leu Met Gly Ser Asn Glu Gly
                1385
                                    1390
                                                          1395
           Glu Phe Lys Ala Glu Gly Asn Ser Lys Phe Thr Tyr Thr Val Leu
                                    1405
           Glu Asp Gly Cys Thr Lys His Thr Gly Glu Trp Ser Lys Thr Val
                                    1420
           Phe Glu Tyr Arg Thr Arg Lys Ala Val Arg Leu Pro Ile Val Asp
               1430
                                    1435
           Ile Ala Pro Tyr Asp Ile Gly Gly Pro Asp Gln Glu Phe Gly Val
                                    1450
           Asp Val Gly Pro Val Cys Phe Leu
               1460
      <210> 154
      <211> 20
      <212> PRT
5
      <213> Homo sapiens
      <400> 154
           Ala Gly Ile Pro Gly Ala Pro Gly Leu Met Gly Ala Arg Gly Pro Pro
                                              10
           Gly Pro Ala Gly
                       20
10
      <210> 155
      <211> 19
      <212> PRT
15
      <213> Homo sapiens
      <400> 155
           Lys Gly Asp Pro Gly Pro Pro Gly Ile Pro Gly Asg Asg Pro
                                              10
           Gly Ile Pro
20
```

```
<210> 156
       <211> 20
       <212> PRT
       <213> Homo sapiens
5
       <400> 156
            Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro Gly
                                                   10
            Pro Gln Gly Val
                         20
10
       <210> 157
       <211> 21
       <212> PRT
       <213> Homo sapiens
15
      <400> 157
            Gly Glu Arg Gly Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly
                                                    10
            Ile Pro Gly Phe Pro
                         20
       <210> 158
20
       <211> 22
       <212> PRT
       <213> Homo sapiens
       <400> 158
25
             Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly
                                                     10
             Met Pro Gly Pro Arg Gly
                          20
       <210> 159
       <211> 23
       <212> PRT
30
       <213> Homo sapiens
       <400> 159
            Gly Ile Lys Gly His Arg Gly Phe Pro Gly Asn Pro Gly Ala Pro Gly
                                                     10
            Ser Pro Gly Pro Ala Gly Gln
                          20
35
       <210> 160
       <211> 23
       <212> PRT
40
       <213> Homo sapiens
       <400> 160
```

```
Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser
            Pro Gly Pro Gln Gly Val Lys
                         20
      <210> 161
      <211> 25
      <212> PRT
5
      <213> Homo sapiens
      <400> 161
            Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro
                           Arg Gly Ser Pro Gly Pro Gln Gly Val
                                        20
10
      <210> 162
      <211> 26
      <212> PRT
15
      <213> Homo sapiens
       <400> 162
            Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro
                          5
                                                                         15
            Arg Gly Ser Pro Gly Pro Gln Gly Val Lys
                         20
20
      <210> 163
      <211> 26
      <212> PRT
       <213> Homo sapiens
25
      <400> 163
            Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly
            Pro Arg Gly Ser Pro Gly Pro Gln Gly Val
                         20
                                               25
30
      <210> 164
      <211> 26
       <212> PRT
       <213> Homo sapiens
35
      <400> 164
            Gly Val Lys Gly Glu Ser Gly Lys Pro Gly Ala Asn Gly Leu Ser Gly
                             5
                                                   10
            Glu Arg Gly Pro Pro Gly Pro Gln Gly Leu
                        20
      <210> 165
      <211> 26
40
       <212> PRT
```

```
<213> Homo sapiens
       <400> 165
            Gly Ser Arg Gly Ala Pro Gly Pro Gln Gly Pro Arg Gly Asp Lys Gly
                              5
                                                    10
                                                                          15
            Glu Thr Gly Glu Arg Gly Ala Ala Gly Ile
                         20
5
       <210> 166
       <211> 28
       <212> PRT
10
       <213> Homo sapiens
       <400> 166
            Pro Lys Gly Asp Ala Gly Gln Pro Gly Glu Lys Gly Ser Pro Gly Ala
                                                  10
            Gln Gly Pro Pro Gly Ala Pro Gly Pro Leu Gly Ile
15
       <210> 167
       <211> 27
       <212> PRT
       <213> Homo sapiens
20
       <400> 167
            Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly
                                                    10
            Pro Arg Gly Ser Pro Gly Pro Gln Gly Val Lys
25
       <210> 168
       <211> 32
       <212> PRT
       <213> Homo sapiens
30
       <400> 168
            Gly Leu Arg Gly Gly Ala Gly Pro Pro Gly Pro Glu Gly Gly Lys Gly
            Ala Ala Gly Pro Pro Gly Pro Pro Gly Ala Ala Gly Thr Pro Gly Leu
                                               25
       <210> 169
35
       <211> 35
       <212> PRT
       <213> Homo sapiens
       <400> 169
40
```

```
Gly His Ala Gly Ala Gln Gly Pro Pro Gly Pro Gly Ile Asn Gly
                                                  10
            Ser Pro Gly Gly Lys Gly Glu Met Gly Pro Ala Gly Ile Pro Gly Ala
                                              25
            Pro Gly Leu
                     35
      <210> 170
      <211> 48
5
      <212> PRT
      <213> Homo sapiens
      <400> 170
            Ala Gly Lys Ser Gly Asp Arg Gly Glu Ser Gly Pro Ala Gly Pro Ala
            Gly Ala Pro Gly Pro Ala Gly Ser Arg Gly Ala Pro Gly Pro Gln Gly
            Pro Arg Gly Asp Lys Gly Glu Thr Gly Glu Arg Gly Ala Ala Gly Ile
                                                               45
10
      <210> 171
      <211> 50
      <212> PRT
15
      <213> Homo sapiens
      <400> 171
            Gly Leu Gln Gly Leu Pro Gly Thr Gly Gly Pro Pro Gly Glu Asn Gly
                             5
            Lys Pro Gly Glu Pro Gly Pro Lys Gly Asp Ala Gly Ala Pro Gly Ala
                                              25
            Pro Gly Gly Lys Gly Asp Ala Gly Ala Pro Gly Glu Arg Gly Pro Pro
                     35
                                          40
                                                                45
                                          Gly Leu
                                               50
20
      <210> 172
      <211> 21
       <212> PRT
      <213> Homo sapiens
25
      <400> 172
            Gly Glu Arg Gly Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly
                                                   10
            Ile Pro Gly Phe Pro
                         20
30
      <210> 173
      <211> 24
      <212> PRT
```

```
<213> Homo sapiens
       <400> 173
            Ala Val Gly Gly Leu Ala Gly Tyr Pro Gly Pro Ala Gly Pro Pro Gly
                             5
                                                   10
            Pro Pro Gly Pro Pro Gly Thr Ser
                         20
5
      <210> 174
      <211> 24
      <212> PRT
10
      <213> Homo sapiens
      <400> 174
           Lys Asp Gly Thr Ser Gly His Pro Gly Pro Ile Gly Pro Pro Gly Pro
                                                   10
            Arg Gly Asn Arg Gly Glu Arg Gly
                         20
15
      <210> 175
      <211> 29
       <212> PRT
       <213> Homo sapiens
20
      <400> 175
           Ala Val Gly Gly Leu Ala Gly Tyr Pro Gly Pro Ala Gly Pro Pro Gly
            Pro Pro Gly Pro Pro Gly Thr Ser Gly His Pro Gly Ser
      <210> 176
25
      <211> 29
       <212> PRT
      <213> Homo sapiens
30
      <400> 176
            Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly
            Met Pro Gly Pro Arg Gly Ser Pro Gly Pro Gln Gly Val
      <210> 177
35
      <211> 31
       <212> PRT
       <213> Homo sapiens
      <400> 177
40
            Ala Pro Gly Ala Pro Gly Gly Lys Gly Asp Ala Gly Ala Pro Gly Glu
            Arg Gly Pro Pro Gly Leu Ala Gly Ala Pro Gly Leu Arg Gly Gly
                                               25
```

```
<210> 178
       <211> 32
       <212> PRT
5
       <213> Homo sapiens
       <400> 178
            Ala Val Gly Gly Leu Ala Gly Tyr Pro Gly Pro Ala Gly Pro Pro Gly
                                                    10
            Pro Pro Gly Pro Pro Gly Thr Ser Gly His Pro Gly Ser Pro Gly Ser
                                                25
10
       <210> 179
       <211> 22
       <212> PRT
       <213> Homo sapiens
15
       <400> 179
            Ala Ile Gly Ser Pro Gly Pro Ala Gly Pro Arg Gly Pro Val Gly Pro
                              5
                                                                           15
            Ser Gly Pro Pro Gly Lys
                          20
20
       <210> 180
       <211> 23
       <212> PRT
       <213> Homo sapiens
25
      <400> 180
            Gly Ala Ile Gly Ser Pro Gly Pro Ala Gly Pro Arg Gly Pro Val Gly
                                                    10
            Pro Ser Gly Pro Pro Gly Lys
                          20
       <210> 181
30
       <211> 15
       <212> PRT
       <213> Homo sapiens
       <400> 181
35
              Pro Ala Gly Gln Gln Gly Ala Ile Gly Ser Pro Gly Pro Ala Gly
                                5
                                                                             15
                                                      10
       <210> 182
       <211> 20
40
       <212> PRT
       <213> Homo sapiens
       <400> 182
            Gly Gly Pro Pro Gly Val Ala Gly Pro Pro Gly Gly Ser Gly Pro Ala
                              5
                                                   10
            Gly Pro Pro Gly
                          20
45
```

```
<210> 183
       <211> 19
       <212> PRT
       <213> Homo sapiens
       <400> 183
            Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro Gly Pro
                                                     10
            Gln Gly Val
10
       <210> 184
       <211> 19
       <212> PRT
       <213> Homo sapiens
15
       <400> 184
            Gly Leu Ser Gly Glu Arg Gly Pro Pro Gly Pro Gln Gly Leu Pro Gly
                                                     10
            Leu Ala Gly
20
       <210> 185
       <211> 21
       <212> PRT
       <213> Homo sapiens
25
       <400> 185
            Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro
                                                     10
            Gly Pro Gln Gly Val
                          20
       <210> 186
30
       <211> 21
       <212> PRT
       <213> Homo sapiens
       <400> 186
35
            Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro Gly
                              5
            Pro Gln Gly Val Lys
                          20
       <210> 187
       <211> 22
40
       <212> PRT
       <213> Homo sapiens
       <400> 187
```

```
Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro
                              5
            Gly Pro Gln Gly Val Lys
                         20
       <210> 188
       <211> 21
5
       <212> PRT
       <213> Homo sapiens
       <400> 188
            Gly Pro Gln Gly Pro Pro Gly Lys Asn Gly Glu Thr Gly Pro Gln Gly
                                               10
                                    Pro Pro Gly Pro Thr
                                                  20
10
       <210> 189
       <211> 22
       <212> PRT
15
       <213> Homo sapiens
       <400> 189
            Gly Val Lys Gly Glu Arg Gly Ser Pro Gly Gly Pro Gly Ala Ala Gly
                                                    10
            Phe Pro Gly Ala Arg Gly
                         20
20
       <210> 190
       <211> 22
       <212> PRT
       <213> Homo sapiens
25
       <400> 190
            Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser
                              5
            Pro Gly Pro Gln Gly Val
                         20
30
       <210> 191
       <211> 23
       <212> PRT
       <213> Homo sapiens
       <400> 191
35
            Asn Gly Leu Ser Gly Glu Arg Gly Pro Pro Gly Pro Gln Gly Leu Pro
                                                    10
            Gly Leu Ala Gly Thr Ala Gly
                         20
       <210> 192
40
       <211> 24
       <212> PRT
       <213> Homo sapiens
```

```
<400> 192
            Ala Val Gly Gly Leu Ala Gly Tyr Pro Gly Pro Ala Gly Pro Pro Gly
                                                    10
            Pro Pro Gly Pro Pro Gly Thr Ser
                         20
5
       <210> 193
       <211> 24
       <212> PRT
       <213> Homo sapiens
10
       <400> 193
            Gly Ser Pro Gly Gly Lys Gly Glu Met Gly Pro Ala Gly Ile Pro Gly
            Ala Pro Gly Leu Met Gly Ala Arg
                         20
15
       <210> 194
       <211> 24
       <212> PRT
       <213> Homo sapiens
20
       <400> 194
            Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg
                              5
                                                    10
                                                                          15
            Gly Ser Pro Gly Pro Gln Gly Val
                         20
       <210> 195
25
       <211> 25
       <212> PRT
       <213> Homo sapiens
       <400> 195
30
            Val Lys Gly Glu Ser Gly Lys Pro Gly Ala Asn Gly Leu Ser Gly Glu
            Arg Gly Pro Pro Gly Pro Gln Gly Leu
                         20
       <210> 196
       <211> 53
       <212> PRT
35
       <213> Homo sapiens
       <400> 196
```

```
Gly Val Lys Gly Glu Arg Gly Ser Pro Gly Gly Pro Gly Ala Ala Gly
            Phe Pro Gly Ala Arg Gly Leu Pro Gly Pro Pro Gly Ser Asn Gly Asn
                                              25
            Pro Gly Pro Pro Gly Pro Ser Gly Ser Pro Gly Lys Asp Gly Pro Pro
                                          40
            Gly Pro Ala Gly Asn
                50
      <210> 197
      <211> 32
5
      <212> PRT
      <213> Homo sapiens
      <400> 197
            Gly Ser Pro Gly Ala Gln Gly Pro Pro Gly Ala Pro Gly Pro Leu Gly
                                                  10
            Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met
                                              25
10
      <210> 198
      <211> 32
      <212> PRT
15
      <213> Homo sapiens
      <400> 198
            Arg Gly Ala Pro Gly Glu Lys Gly Glu Gly Pro Pro Gly Val Ala
            Gly Pro Pro Gly Gly Ser Gly Pro Ala Gly Pro Pro Gly Pro Gln Gly
                                              25
20
      <210> 199
      <211> 32
      <212> PRT
      <213> Homo sapiens
25
      <400> 199
            Arg Gly Ala Pro Gly Glu Lys Gly Glu Gly Pro Pro Gly Val Ala
                                                  10
            Gly Pro Pro Gly Gly Ser Gly Pro Ala Gly Pro Pro Gly Pro Gln Gly
30
      <210> 200
       <211> 29
      <212> PRT
      <213> Homo sapiens
35
      <400> 200
```

```
Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly
                                                     10
            Met Pro Gly Pro Arg Gly Ser Pro Gly Pro Gln Gly Val
                                                25
       <210> 201
       <211> 14
       <212> PRT
5
       <213> Homo sapiens
       <400> 201
                 Gly Ile Lys Gly Pro Ala Gly Ile Pro Gly Phe Pro Gly Met
                                   5
                                                         10
10
       <210> 202
       <211> 14
       <212> PRT
15
       <213> Homo sapiens
       <400> 202
                 Gly Gln Pro Gly Val Met Gly Phe Pro Gly Pro Lys Gly Asn
                                   5
20
       <210> 203
       <211> 16
       <212> PRT
       <213> Homo sapiens
25
       <400> 203
            Gly Ile Lys Gly Pro Ala Gly Ile Pro Gly Phe Pro Gly Met Lys Gly
                               5
                                                     10
                                                                           15
30
       <210> 204
       <211> 17
       <212> PRT
       <213> Homo sapiens
35
       <400> 204
            Gly Ile Lys Gly Pro Ala Gly Ile Pro Gly Phe Pro Gly Met Lys Gly
            1
                              5
                                                     10
            His
       <210> 205
40
       <211> 19
       <212> PRT
       <213> Homo sapiens
       <400> 205
45
            Ile Pro Gly Ala Pro Gly Leu Met Gly Ala Arg Gly Pro Pro Gly Pro
                                 5
               1
                                                        10
                                                                              15
               Ala Gly Ala
```

```
<210> 206
       <211> 19
       <212> PRT
       <213> Homo sapiens
5
       <400> 206
            Gly Glu Arg Gly Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly
                     5
                                                    10
            Ile Pro Gly
10
       <210> 207
       <211> 20
       <212> PRT
       <213> Homo sapiens
15
       <400> 207
            Gly Ile Pro Gly Ala Pro Gly Leu Met Gly Ala Arg Gly Pro Pro Gly
                                               10
            Pro Ala Gly Ala
                         20
       <210> 208
       <211> 20
20
       <212> PRT
       <213> Homo sapiens
       <400> 208
25
            Gly Phe Arg Gly Pro Ala Gly Pro Asn Gly Ile Pro Gly Glu Lys Gly
                                                    10
            Pro Ala Gly Glu
                          20
       <210> 209
       <211> 20
30
       <212> PRT
       <213> Homo sapiens
       <400> 209
            Pro Gly Ile Pro Gly Gln Pro Gly Ser Pro Gly Ser Pro Gly Pro Pro
                              5
            1
                                                    10
            Gly Ile Cys Glu
                         20
35
       <210> 210
       <211> 21
       <212> PRT
40
       <213> Homo sapiens
       <400> 210
```

```
Gly Glu Arg Gly Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly
                              5
                                                    10
            Ile Pro Gly Phe Pro
      <210> 211
      <211> 23
      <212> PRT
5
       <213> Homo sapiens
      <400> 211
            Ala Val Gly Gly Leu Ala Gly Tyr Pro Gly Pro Ala Gly Pro Pro Gly
                                                   10
            Pro Pro Gly Pro Pro Gly Thr
10
      <210> 212
       <211> 23
       <212> PRT
       <213> Homo sapiens
15
      <400> 212
            Gly Val Lys Gly Glu Arg Gly Ser Pro Gly Gly Pro Gly Ala Ala Gly
                                                   10
            Phe Pro Gly Ala Arg Gly Leu
20
      <210> 213
      <211> 26
       <212> PRT
       <213> Homo sapiens
25
      <400> 213
            Gly Asp Ala Gly Ala Pro Gly Ala Pro Gly Lys Gly Asp Ala Gly
                              5
            Ala Pro Gly Glu Arg Gly Pro Pro Gly Leu
                         2.0
      <210> 214
30
       <211> 25
       <212> PRT
       <213> Homo sapiens
35
      <400> 214
            Gln Gly Pro Pro Gly Pro Thr Gly Pro Gly Gly Asp Lys Gly Asp Thr
            Gly Pro Pro Gly Pro Gln Gly Leu Gln
                         20
      <210> 215
      <211> 25
40
       <212> PRT
      <213> Homo sapiens
```

```
<400> 215
            Gly Ile Asn Gly Ser Pro Gly Gly Lys Gly Glu Met Gly Pro Ala Gly
            Ile Pro Gly Ala Pro Gly Leu Met Gly
                         2.0
5
      <210> 216
      <211> 26
       <212> PRT
       <213> Homo sapiens
10
       <400> 216
            Gln Gly Pro Pro Gly Glu Pro Gly Gln Ala Gly Pro Ser Gly Pro Pro
                                                   10
                         Gly Pro Pro Gly Ala Ile Gly Pro Ser Gly
                                      20
      <210> 217
15
      <211> 26
       <212> PRT
       <213> Homo sapiens
20
      <400> 217
            Pro Gly Pro Pro Gly Ile Asn Gly Ser Pro Gly Gly Lys Gly Glu Met
            1
                             5
                                                   10
                                                                         15
            Gly Pro Ala Gly Ile Pro Gly Ala Pro Gly
                         20
      <210> 218
25
       <211> 33
       <212> PRT
       <213> Homo sapiens
      <400> 218
30
            Arg Gly Leu Pro Gly Pro Pro Gly Ser Asn Gly Asn Pro Gly Pro Pro
            Gly Pro Ser Gly Ser Pro Gly Lys Asp Gly Pro Pro Gly Pro Ala Gly
                                               25
                         20
            Asn
       <210> 219
       <211> 32
35
       <212> PRT
       <213> Homo sapiens
      <400> 219
            Gly Lys Asn Gly Glu Thr Gly Pro Gln Gly Pro Pro Gly Pro Thr Gly
            Pro Gly Gly Asp Lys Gly Asp Thr Gly Pro Pro Gly Pro Gln Gly Leu
                         20
                                               25
40
```

```
<210> 220
      <211> 32
       <212> PRT
5
       <213> Homo sapiens
      <400> 220
            Gly Leu Pro Gly Ile Ala Gly Pro Arg Gly Ser Pro Gly Glu Arg Gly
            Glu Thr Gly Pro Pro Gly Pro Ala Gly Phe Pro Gly Ala Pro Gly Gln
                                              25
10
      <210> 221
       <211> 35
       <212> PRT
       <213> Homo sapiens
15
      <400> 221
            Gly Ile Asn Gly Ser Pro Gly Gly Lys Gly Glu Met Gly Pro Ala Gly
            Ile Pro Gly Ala Pro Gly Leu Met Gly Ala Arg Gly Pro Pro Gly Pro
                                               25
                                        Ala Gly Ala
                                                 35
20
      <210> 222
      <211> 36
      <212> PRT
       <213> Homo sapiens
25
      <400> 222
            Pro Gly Ile Asn Gly Ser Pro Gly Gly Lys Gly Glu Met Gly Pro Ala
                                                   10
            Gly Ile Pro Gly Ala Pro Gly Leu Met Gly Ala Arg Gly Pro Pro Gly
                         20
                                               25
            Pro Ala Gly Ala
                     35
       <210> 223
30
       <211> 40
       <212> PRT
       <213> Homo sapiens
       <400> 223
35
            Pro Pro Gly Glu Asn Gly Lys Pro Gly Glu Pro Gly Pro Lys Gly Asp
            Ala Gly Ala Pro Gly Ala Pro Gly Gly Lys Gly Asp Ala Gly Ala Pro
            Gly Glu Arg Gly Pro Pro Gly Leu
                     35
```

```
<210> 224
      <211> 38
      <212> PRT
      <213> Homo sapiens
5
      <400> 224
            Gly Leu Lys Gly Glu Asn Gly Leu Pro Gly Glu Asn Gly Ala Pro Gly
                                     10
            Pro Met Gly Pro Arg Gly Ala Pro Gly Glu Arg Gly Arg Pro Gly Leu
            Pro Gly Ala Ala Gly Ala
                    35
      <210> 225
10
      <211> 41
      <212> PRT
      <213> Homo sapiens
15
      <400> 225
            Gly Asn Thr Gly Ala Pro Gly Ser Pro Gly Val Ser Gly Pro Lys Gly
                             5
            Asp Ala Gly Gln Pro Gly Glu Lys Gly Ser Pro Gly Ala Gln Gly Pro
            Pro Gly Ala Pro Gly Pro Leu Gly Ile
      <210> 226
20
      <211> 41
      <212> PRT
      <213> Homo sapiens
      <400> 226
25
            Gly Leu Met Gly Ala Arg Gly Pro Pro Gly Pro Ala Gly Ala Asn Gly
                             5
                                                  10
            Ala Pro Gly Leu Arg Gly Gly Ala Gly Glu Pro Gly Lys Asn Gly Ala
                                              25
            Lys Gly Glu Pro Gly Pro Arg Gly Glu
                                          40
      <210> 227
      <211> 50
      <212> PRT
30
      <213> Homo sapiens
      <400> 227
```

```
Gly Leu Arg Gly Gly Ala Gly Pro Pro Gly Pro Glu Gly Gly Lys Gly
                              5
                                                   10
                                                                         15
            Ala Ala Gly Pro Pro Gly Pro Pro Gly Ala Ala Gly Thr Pro Gly Leu
                                               25
            Gln Gly Met Pro Gly Glu Arg Gly Gly Leu Gly Ser Pro Gly Pro Lys
                                           40
            Gly Asp
                 50
      <210> 228
       <211> 26
       <212> PRT
5
      <213> Homo sapiens
      <400> 228
            Gly Gln Gln Gly Ala Ile Gly Ser Pro Gly Pro Ala Gly Pro Arg Gly
                                                   10
            Pro Val Gly Pro Ser Gly Pro Pro Gly Lys
10
      <210> 229
       <211> 24
       <212> PRT
15
       <213> Homo sapiens
      <400> 229
            Lys Gly Asp Pro Gly Pro Pro Gly Ile Pro Gly Arg Asn Gly Asp Pro
            Gly Ile Pro Gly Gln Pro Gly Ser
                         20
20
       <210> 230
       <211> 26
       <212> PRT
       <213> Homo sapiens
25
      <400> 230
            Gly Leu Arg Gly Gly Ala Gly Pro Pro Gly Pro Glu Gly Gly Lys Gly
            Ala Ala Gly Pro Pro Gly Pro Pro Gly Ala
                                                        25
                                   20
      <210> 231
30
      <211> 32
       <212> PRT
       <213> Homo sapiens
35
      <400> 231
```

```
Gly Lys Asn Gly Glu Thr Gly Pro Gln Gly Pro Pro Gly Pro Thr Gly
                              5
                                                    10
            Pro Gly Gly Asp Lys Gly Asp Thr Gly Pro Pro Gly Pro Gln Gly Leu
                                               25
      <210> 232
      <211> 23
       <212> PRT
5
       <213> Homo sapiens
      <400> 232
            Gly Tyr Gln Gly Pro Pro Gly Glu Pro Gly Gln Ala Gly Pro Ser Gly
            Pro Pro Gly Pro Pro Gly Ala
                         2.0
10
      <210> 233
      <211> 20
       <212> PRT
       <213> Homo sapiens
15
      <400> 233
            Gly Val Ala Gly Pro Pro Gly Gly Ser Gly Pro Ala Gly Pro Pro Gly
                                                    10
            Pro Gln Gly Val
20
      <210> 234
       <211> 35
       <212> PRT
       <213> Homo sapiens
25
       <400> 234
            Gly Asp Lys Gly Glu Pro Gly Gly Pro Gly Ala Asp Gly Val Pro Gly
                              5
            Lys Asp Gly Pro Arg Gly Pro Thr Gly Pro Ile Gly Pro Pro Gly Pro
                                               25
                                                                     30
            Ala Gly Gln
                     35
      <210> 235
30
       <211> 17
       <212> PRT
       <213> Homo sapiens
35
      <400> 235
            Gln Gly His Ala Gly Ala Gln Gly Pro Pro Gly Pro Pro Gly Ile Asn
                              5
                                                   10
            Gly
       <210> 236
40
       <211> 11
```

```
<212> PRT
       <213> Homo sapiens
       <400> 236
 5
                        Ala Gly Glu Arg Gly Ala Pro Gly Pro Ala Gly
       <210> 237
       <211> 11
       <212> PRT
10
       <213> Homo sapiens
       <400> 237
                        Ala Gly Ile Pro Gly Phe Pro Gly Met Lys Gly
                                           5
15
       <210> 238
       <211> 12
       <212> PRT
20
       <213> Homo sapiens
       <400> 238
                      Phe Pro Gly Met Lys Gly His Arg Gly Phe Asp Gly
25
       <210> 239
       <211> 14
       <212> PRT
       <213> Homo sapiens
30
       <400> 239
                 Gly Phe Pro Gly Ala Arg Gly Leu Pro Gly Pro Pro Gly Ser
                                    5
                                                           10
35
       <210> 240
       <211> 15
       <212> PRT
       <213> Homo sapiens
40
       <400> 240
               Ala Gly Phe Pro Gly Ala Arg Gly Leu Pro Gly Pro Pro Gly Ser
                                  5
                                                         10
                                                                                15
       <210> 241
45
       <211> 15
       <212> PRT
       <213> Homo sapiens
       <400> 241
50
               Pro Pro Gly Pro Pro Gly Pro Pro Gly Thr Ser Gly His Pro Gly
                                 5
       <210> 242
       <211> 13
       <212> PRT
55
       <213> Homo sapiens
       <400> 242
```

```
Gly Phe Pro Gly Met Lys Gly His Arg Gly Phe Asp Gly
                                      5
       <210> 243
       <211> 17
       <212> PRT
5
       <213> Homo sapiens
       <400> 243
            Gln Pro Gly Asp Lys Gly Glu Gly Gly Ala Pro Gly Leu Pro Gly Ile
               1
                                  5
                                                        10
                                                                               15
               Ala
10
       <210> 244
       <211> 17
       <212> PRT
15
       <213> Homo sapiens
       <400> 244
             Arg Gly Asp Lys Gly Glu Thr Gly Glu Arg Gly Ala Ala Gly Ile Lys
                               5
                                                     10
             Gly
20
       <210> 245
       <211> 17
       <212> PRT
       <213> Homo sapiens
25
       <400> 245
            Asp Gly Arg Asn Gly Glu Lys Gly Glu Thr Gly Ala Pro Gly Leu Lys
            Gly
30
       <210> 246
       <211> 20
       <212> PRT
       <213> Homo sapiens
35
       <400> 246
             Ala Gly Gln Pro Gly Asp Lys Gly Glu Gly Gly Ala Pro Gly Leu Pro
                                                     10
             Gly Ile Ala Gly
                          20
       <210> 247
40
       <211> 19
       <212> PRT
       <213> Homo sapiens
       <400> 247
45
```

```
Gly Gly Pro Pro Gly Glu Asn Gly Lys Pro Gly Glu Pro Gly Pro Lys
                              5
            Gly Asp Ala
       <210> 248
       <211> 17
5
       <212> PRT
       <213> Homo sapiens
       <400> 248
            Ala Gly Ile Pro Gly Phe Pro Gly Met Lys Gly His Arg Gly Phe Asp
            Gly
10
       <210> 249
       <211> 20
       <212> PRT
15
       <213> Homo sapiens
       <400> 249
            Arg Gly Gly Ala Gly Glu Pro Gly Lys Asn Gly Ala Lys Gly Glu Pro
                                                     10
            Gly Pro Arg Gly
                          20
20
       <210> 250
       <211> 26
       <212> PRT
       <213> Homo sapiens
25
       <400> 250
            Lys Gly Glu Arg Gly Ser Pro Gly Gly Pro Gly Ala Ala Gly Phe Pro
            1
                              5
            Gly Ala Arg Gly Leu Pro Gly Pro Pro Gly
                          20
       <210> 251
30
       <211> 27
       <212> PRT
       <213> Homo sapiens
35
       <400> 251
             Ile Pro Gly Val Pro Gly Ala Lys Gly Glu Asp Gly Lys Asp Gly Ser
             Pro Gly Glu Pro Gly Ala Asn Gly Leu Pro Gly
                          20
                                                25
       <210> 252
40
       <211> 28
       <212> PRT
       <213> Homo sapiens
       <400> 252
```

```
Gly Ala Ala Gly Phe Pro Gly Ala Arg Gly Leu Pro Gly Pro Pro Gly
            Ser Asn Gly Asn Pro Gly Pro Pro Gly Pro Ser Gly
      <210> 253
5
      <211> 26
      <212> PRT
       <213> Homo sapiens
      <400> 253
10
            Arg Pro Gly Pro Gly Pro Ser Gly Pro Arg Gly Gln Pro Gly Val
            Met Gly Phe Pro Gly Pro Lys Gly Asn Asp
                         20
      <210> 254
       <211> 29
       <212> PRT
15
       <213> Homo sapiens
       <400> 254
            Gln Gly Pro Pro Gly Pro Pro Gly Ile Asn Gly Ser Pro Gly Gly Lys
                              5
            1
                                                   10
                   Gly Glu Met Gly Pro Ala Gly Ile Pro Gly Ala Pro Gly
                                20
                                                      25
20
      <210> 255
      <211> 26
       <212> PRT
25
       <213> Homo sapiens
      <400> 255
            Ala Gly Lys Asp Gly Glu Ser Gly Arg Pro Gly Arg Pro Gly Glu Arg
            Gly Leu Pro Gly Pro Pro Gly Ile Lys Gly
                         20
30
       <210> 256
       <211> 30
       <212> PRT
       <213> Homo sapiens
35
      <400> 256
            Ala Gly Ala Arg Gly Asn Asp Gly Ala Arg Gly Ser Asp Gly Gln Pro
            Gly Pro Pro Gly Pro Pro Gly Thr Ala Gly Phe Pro Gly Ser
40
      <210> 257
      <211> 31
       <212> PRT
      <213> Homo sapiens
```

```
<400> 257
            Ser Pro Gly Val Ser Gly Pro Lys Gly Asp Ala Gly Gln Pro Gly Glu
                                                   10
            Lys Gly Ser Pro Gly Ala Gln Gly Pro Pro Gly Ala Pro Gly Pro
                                               25
5
      <210> 258
       <211> 32
       <212> PRT
       <213> Homo sapiens
10
      <400> 258
            Arg Gly Ser Asp Gly Gln Pro Gly Pro Pro Gly Pro Pro Gly Thr Ala
            Gly Phe Pro Gly Ser Pro Gly Ala Lys Gly Glu Val Gly Pro Ala Gly
                         20
                                               25
      <210> 259
15
       <211> 32
       <212> PRT
       <213> Homo sapiens
20
      <400> 259
            Gln Gly Pro Pro Gly Pro Pro Gly Ile Asn Gly Ser Pro Gly Gly Lys
            Gly Glu Met Gly Pro Ala Gly Ile Pro Gly Ala Pro Gly Leu Met Gly
       <210> 260
       <211> 33
25
       <212> PRT
       <213> Homo sapiens
       <400> 260
30
            Ala Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly Thr Ser Gly His Pro
            Gly Ser Pro Gly Ser Pro Gly Tyr Gln Gly Pro Pro Gly Glu Pro Gly
                                              25
            Gln
       <210> 261
       <211> 33
       <212> PRT
35
       <213> Homo sapiens
       <400> 261
            Phe Pro Gly Ala Pro Gly Gln Asn Gly Glu Pro Gly Gly Lys Gly Glu
            1
            Arg Gly Ala Pro Gly Glu Lys Gly Glu Gly Gly Pro Pro Gly Val Ala
                                               25
                         20
                                                                    30
            Gly
40
```

```
<210> 262
       <211> 33
       <212> PRT
5
       <213> Homo sapiens
      <400> 262
            Ala Gly Phe Pro Gly Ala Pro Gly Gln Asn Gly Glu Pro Gly Gly Lys
            Gly Glu Arg Gly Ala Pro Gly Glu Lys Gly Glu Gly Gly Pro Pro Gly
                                               25
            Val
10
      <210> 263
       <211> 41
       <212> PRT
       <213> Homo sapiens
15
       <400> 263
            Ala Gly Ala Arg Gly Asn Asp Gly Ala Arg Gly Ser Asp Gly Gln Pro
                                                   10
            Gly Pro Pro Gly Pro Gly Thr Ala Gly Phe Pro Gly Ser Pro Gly
                                               25
            Ala Lys Gly Glu Val Gly Pro Ala Gly
                     35
20
      <210> 264
       <211> 53
       <212> PRT
       <213> Homo sapiens
25
      <400> 264
            Arg Gly Ala Ala Gly Glu Pro Gly Arg Asp Gly Val Pro Gly Gly Pro
                                                   10
            Gly Met Arg Gly Met Pro Gly Ser Pro Gly Gly Pro Gly Ser Asp Gly
                         20
                                               25
                                                                     30
            Lys Pro Gly Pro Pro Gly Ser Gln Gly Glu Ser Gly Arg Pro Gly Pro
                     35
                                           40
            Pro Gly Pro Ser Gly
                50
      <210> 265
30
      <211> 12
       <212> PRT
       <213> Homo sapiens
       <400> 265
35
                     Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala
                                      5
      <210> 266
       <211> 18
40
      <212> PRT
```

```
<213> Homo sapiens
       <400> 266
            Ala Gly Pro Pro Gly Pro Pro Gly Ala Ala Gly Thr Pro Gly Leu Gln
                                                     10
            Gly Met
5
       <210> 267
       <211> 18
       <212> PRT
10
       <213> Homo sapiens
       <400> 267
            Asn Gly Leu Ser Gly Glu Arg Gly Pro Pro Gly Pro Gln Gly Leu Pro
            Gly Leu
15
       <210> 268
       <211> 20
       <212> PRT
       <213> Homo sapiens
20
       <400> 268
            Met Gly Ala Arg Gly Pro Pro Gly Pro Ala Gly Ala Asn Gly Ala Pro
                                                     10
            Gly Leu Arg Gly
25
       <210> 269
       <211> 20
       <212> PRT
       <213> Homo sapiens
30
       <400> 269
            Asn Gly Leu Ser Gly Glu Arg Gly Pro Pro Gly Pro Gln Gly Leu Pro
            1
                              5
                                                     10
            Gly Leu Ala Gly
                          20
       <210> 270
35
       <211> 23
       <212> PRT
       <213> Homo sapiens
       <400> 270
40
            Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly
            Met Pro Gly Pro Arg Gly Ser
                          20
       <210> 271
       <211> 29
       <212> PRT
45
       <213> Homo sapiens
```

```
<400> 271
            Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly
            Met Pro Gly Pro Arg Gly Ser Pro Gly Pro Gln Gly Val
                                               25
      <210> 272
5
      <211> 32
      <212> PRT
       <213> Homo sapiens
      <400> 272
10
            Arg Gly Gly Ala Gly Pro Pro Gly Pro Glu Gly Gly Lys Gly Ala Ala
            Gly Pro Pro Gly Pro Gly Ala Ala Gly Thr Pro Gly Leu Gln Gly
                         20
                                               25
       <210> 273
15
       <211> 30
       <212> PRT
      <213> Homo sapiens
       <400> 273
20
            Ser Gly Pro Lys Gly Asp Ala Gly Gln Pro Gly Glu Lys Gly Ser Pro
                             5
            Gly Ala Gln Gly Pro Pro Gly Ala Pro Gly Pro Leu Gly Ile
                                               25
       <210> 274
       <211> 31
       <212> PRT
25
       <213> Homo sapiens
      <400> 274
            Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly
                             5
            1
                                                   10
            Met Pro Gly Pro Arg Gly Ser Pro Gly Pro Gln Gly Val Lys Gly
                         20
                                               25
30
                                                                    30
       <210> 275
       <211> 37
       <212> PRT
35
       <213> Homo sapiens
       <400> 275
            Ala Val Gly Gly Leu Ala Gly Tyr Pro Gly Pro Ala Gly Pro Pro Gly
                                                   10
            Pro Pro Gly Pro Pro Gly Thr Ser Gly His Pro Gly Ser Pro Gly Ser
                                               25
                         20
            Pro Gly Tyr Gln Gly
                     35
40
       <210> 276
       <211> 40
```

```
<212> PRT
       <213> Homo sapiens
       <400> 276
5
             Glu Pro Gly Pro Gln Gly His Ala Gly Ala Gln Gly Pro Pro Gly Pro
                               5
             Pro Gly Ile Asn Gly Ser Pro Gly Gly Lys Gly Glu Met Gly Pro Ala
                                                25
             Gly Ile Pro Gly Ala Pro Gly Leu
       <210> 277
       <211> 12
10
       <212> PRT
       <213> Homo sapiens
       <400> 277
                     Ile Pro Gly Phe Pro Gly Met Lys Gly His Arg Gly
                                       5
15
       <210> 278
       <211> 17
       <212> PRT
20
       <213> Homo sapiens
       <400> 278
             Arg Gly Ser Pro Gly Gly Pro Gly Ala Ala Gly Phe Pro Gly Ala Arg
             Gly
25
       <210> 279
       <211> 17
       <212> PRT
       <213> Homo sapiens
30
       <400> 279
            Lys Gly Pro Ala Gly Ile Pro Gly Phe Pro Gly Met Lys Gly His Arg
                                                    10
            Gly
35
       <210> 280
       <211> 20
       <212> PRT
       <213> Homo sapiens
40
      <400> 280
            Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro
            1
                                       Gly Pro Gln Gly
45
       <210> 281
```

```
<211> 20
       <212> PRT
       <213> Homo sapiens
5
       <400> 281
            Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro
            Gly Pro Arg Gly
                          20
       <210> 282
10
       <211> 23
       <212> PRT
       <213> Homo sapiens
       <400> 282
15
            Leu Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro
                              5
                                                    10
            Gly Met Pro Gly Pro Arg Gly
                          20
       <210> 283
       <211> 23
20
       <212> PRT
       <213> Homo sapiens
       <400> 283
             Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg
             Gly Ser Pro Gly Pro Gln Gly
                          20
25
       <210> 284
       <211> 24
       <212> PRT
30
       <213> Homo sapiens
       <400> 284
            Gln Gly Pro Pro Gly Pro Pro Gly Ile Asn Gly Ser Pro Gly Gly Lys
                                                    10
            Gly Glu Met Gly Pro Ala Gly Ile
                          20
35
       <210> 285
       <211> 24
       <212> PRT
       <213> Homo sapiens
40
       <400> 285
            Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly Ile Pro Gly Phe
                              5
                                                    10
                                                                          15
            Pro Gly Met Lys Gly His Arg Gly
                          20
```

```
<210> 286
       <211> 26
       <212> PRT
       <213> Homo sapiens
       <400> 286
            Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro
                                                    10
            Gly Pro Arg Gly Ser Pro Gly Pro Gln Gly
                         20
10
       <210> 287
       <211> 26
       <212> PRT
       <213> Homo sapiens
15
       <400> 287
            Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg
            Gly Ser Pro Gly Pro Gln Gly Val Lys Gly
20
       <210> 288
       <211> 26
       <212> PRT
       <213> Homo sapiens
       <400> 288
25
            Arg Gly Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly Ile Pro
                              5
                                                    1.0
            Gly Phe Pro Gly Met Lys Gly His Arg Gly
                         20
       <210> 289
30
       <211> 29
       <212> PRT
       <213> Homo sapiens
       <400> 289
35
            Gly Arg Pro Gly Leu Pro Gly Ala Ala Gly Ala Arg Gly Asn Asp Gly
            Ala Arg Gly Ser Asp Gly Gln Pro Gly Pro Pro Gly Pro
                                               25
       <210> 290
       <211> 29
40
       <212> PRT
       <213> Homo sapiens
       <400> 290
            Asn Gly Ala Pro Gly Pro Met Gly Pro Arg Gly Ala Pro Gly Glu Arg
                              5
                                                                          15
                                                    10
            Gly Arg Pro Gly Leu Pro Gly Ala Ala Gly Ala Arg Gly
                         20
                                                25
45
```

```
<210> 291
       <211> 29
       <212> PRT
5
       <213> Homo sapiens
      <400> 291
            Ala Gly Ser Arg Gly Ala Pro Gly Pro Gln Gly Pro Arg Gly Asp Lys
            Gly Glu Thr Gly Glu Arg Gly Ala Ala Gly Ile Lys Gly
                                   20
                                                         25
10
      <210> 292
       <211> 32
       <212> PRT
       <213> Homo sapiens
15
       <400> 292
             Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro
             1
                              5
                                                                          15
             Gly Pro Gln Gly Val Lys Gly Glu Ser Gly Lys Pro Gly Ala Asn Gly
                                                25
20
      <210> 293
       <211> 34
       <212> PRT
       <213> Homo sapiens
25
      <400> 293
            Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro
                                                    10
            Gly Pro Gln Gly Val Lys Gly Glu Ser Gly Lys Pro Gly Ala Asn Gly
            Leu Ser
      <210> 294
30
       <211> 37
       <212> PRT
      <213> Homo sapiens
      <400> 294
35
            Pro Gly Pro Pro Gly Ser Asn Gly Asn Pro Gly Pro Pro Gly Pro Ser
            Gly Ser Pro Gly Lys Asp Gly Pro Pro Gly Pro Ala Gly Asn Thr Gly
                                               25
                         20
            Ala Pro Gly Ser Pro
                     35
       <210> 295
       <211> 35
       <212> PRT
40
```

```
<213> Homo sapiens
       <400> 295
            Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg
                                                   10
            Gly Ser Pro Gly Pro Gln Gly Val Lys Gly Glu Ser Gly Lys Pro Gly
                                              25
            Ala Asn Gly
5
                    35
      <210> 296
       <211> 38
       <212> PRT
10
       <213> Homo sapiens
      <400> 296
            Arg Gly Ala Pro Gly Glu Lys Gly Glu Gly Gly Pro Pro Gly Val Ala
15
                                                   10
            Gly Pro Pro Gly Gly Ser Gly Pro Ala Gly Pro Pro Gly Pro Gln Gly
                                              25
            Val Lys Gly Glu Arg Gly
                    35
      <210> 297
       <211> 40
20
       <212> PRT
       <213> Homo sapiens
      <400> 297
            Gly Gly Pro Pro Gly Val Ala Gly Pro Pro Gly Gly Ser Gly Pro Ala
            Gly Pro Pro Gly Pro Gln Gly Val Lys Gly Glu Arg Gly Ser Pro Gly
                                              25
                         20
            Gly Pro Gly Ala Ala Gly Phe Pro
25
                    35
       <210> 298
       <211> 48
       <212> PRT
30
       <213> Homo sapiens
      <400> 298
            Lys Ser Gly Asp Arg Gly Glu Ser Gly Pro Ala Gly Pro Ala Gly Ala
            Pro Gly Pro Ala Gly Ser Arg Gly Ala Pro Gly Pro Gln Gly Pro Arg
            Gly Asp Lys Gly Glu Thr Gly Glu Arg Gly Ala Ala Gly Ile Lys Gly
                                          40
35
       <210> 299
```

```
<211> 12
       <212> PRT
       <213> Homo sapiens
5
       <400> 299
                      Ile Pro Gly Phe Pro Gly Met Lys Gly His Arg Gly
       <210> 300
10
       <211> 14
       <212> PRT
       <213> Homo sapiens
       <400> 300
15
                 Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly
       <210> 301
       <211> 16
20
       <212> PRT
       <213> Homo sapiens
       <400> 301
             Gly Pro Gln Gly Leu Gln Gly Leu Pro Gly Thr Gly Gly Pro Pro Gly
                               5
                                                      10
25
       <210> 302
       <211> 17
       <212> PRT
30
       <213> Homo sapiens
       <400> 302
            Lys Gly Pro Ala Gly Ile Pro Gly Phe Pro Gly Met Lys Gly His Arg
                                                     10
            Gly
35
       <210> 303
       <211> 21
       <212> PRT
       <213> Homo sapiens
40
       <400> 303
             Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro
                                                      10
             Gly Pro Gln Gly Val
                           20
45
       <210> 304
       <211> 23
       <212> PRT
       <213> Homo sapiens
       <400> 304
50
```

```
Gly Gly Pro Pro Gly Glu Asn Gly Lys Pro Gly Glu Pro Gly Pro Lys
                              5
            Gly Asp Ala Gly Ala Pro Gly
                          20
       <210> 305
       <211> 24
       <212> PRT
5
       <213> Homo sapiens
       <400> 305
            Ala Pro Gly Phe Arg Gly Pro Ala Gly Pro Asn Gly Ile Pro Gly Glu
                                                    10
             Lys Gly Pro Ala Gly Glu Arg Gly
                          20
10
       <210> 306
       <211> 27
       <212> PRT
15
       <213> Homo sapiens
       <400> 306
            Glu Lys Gly Ser Pro Gly Ala Gln Gly Pro Pro Gly Ala Pro Gly Pro
            Leu Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly
20
       <210> 307
       <211> 27
       <212> PRT
       <213> Homo sapiens
25
       <400> 307
            Glu Lys Gly Ser Pro Gly Ala Gln Gly Pro Pro Gly Ala Pro Gly Pro
                                                    10
                       Leu Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly
                                     20
30
       <210> 308
       <211> 26
       <212> PRT
       <213> Homo sapiens
35
       <400> 308
            Arg Gly Ala Pro Gly Phe Arg Gly Pro Ala Gly Pro Asn Gly Ile Pro
            1
                              5
                                                                          15
            Gly Glu Lys Gly Pro Ala Gly Glu Arg Gly
                          20
       <210> 309
40
       <211> 26
       <212> PRT
       <213> Homo sapiens
```

```
<400> 309
            Arg Gly Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly Ile Pro
                              5
                                                    10
            Gly Phe Pro Gly Met Lys Gly His Arg Gly
                         20
5
      <210> 310
       <211> 29
       <212> PRT
       <213> Homo sapiens
10
       <400> 310
            Arg Gly Pro Val Gly Pro Ser Gly Pro Pro Gly Lys Asp Gly Thr Ser
            Gly His Pro Gly Pro Ile Gly Pro Pro Gly Pro Arg Gly
      <210> 311
15
      <211> 27
      <212> PRT
       <213> Homo sapiens
      <400> 311
20
            Ala Pro Gly Pro Gln Gly Pro Arg Gly Asp Lys Gly Glu Thr Gly Glu
                                                    10
            Arg Gly Ala Ala Gly Ile Lys Gly His Arg Gly
                                               25
      <210> 312
      <211> 29
25
       <212> PRT
       <213> Homo sapiens
      <400> 312
            Arg Gly Ala Pro Gly Pro Gln Gly Pro Arg Gly Asp Lys Gly Glu Thr
            Gly Glu Arg Gly Ala Ala Gly Ile Lys Gly His Arg Gly
30
                         20
                                               25
       <210> 313
       <211> 32
       <212> PRT
35
       <213> Homo sapiens
       <400> 313
            Arg Gly Phe Pro Gly Asn Pro Gly Ala Pro Gly Ser Pro Gly Pro Ala
            1
            Gly Gln Gln Gly Ala Ile Gly Ser Pro Gly Pro Ala Gly Pro Arg Gly
                         20
                                               25
40
      <210> 314
       <211> 29
       <212> PRT
```

```
<213> Homo sapiens
       <400> 314
            Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly Ile Pro Gly Phe
                                                    10
            Pro Gly Met Lys Gly His Arg Gly Phe Asp Gly Arg Asn
                                               25
5
      <210> 315
       <211> 33
       <212> PRT
10
       <213> Homo sapiens
       <400> 315
            Asp Ala Gly Gln Pro Gly Glu Lys Gly Ser Pro Gly Ala Gln Gly Pro
            Pro Gly Ala Pro Gly Pro Leu Gly Ile Ala Gly Ile Thr Gly Ala Arg
                                               25
            Gly
15
      <210> 316
       <211> 35
       <212> PRT
       <213> Homo sapiens
20
       <400> 316
            Arg Gly Pro Thr Gly Pro Ile Gly Pro Pro Gly Pro Ala Gly Gln Pro
            Gly Asp Lys Gly Glu Gly Gly Ala Pro Gly Leu Pro Gly Ile Ala Gly
            Pro Arg Gly
                     35
25
      <210> 317
       <211> 35
       <212> PRT
       <213> Homo sapiens
30
       <400> 317
            Lys Gly Asp Ala Gly Gln Pro Gly Glu Lys Gly Ser Pro Gly Ala Gln
            Gly Pro Pro Gly Ala Pro Gly Pro Leu Gly Ile Ala Gly Ile Thr Gly
                                               25
            Ala Arg Gly
                     35
      <210> 318
35
       <211> 33
       <212> PRT
       <213> Homo sapiens
       <400> 318
40
```

```
Arg Asn Gly Glu Lys Gly Glu Thr Gly Ala Pro Gly Leu Lys Gly Glu
            Asn Gly Leu Pro Gly Glu Asn Gly Ala Pro Gly Pro Met Gly Pro Arg
                                               25
            Gly
      <210> 319
      <211> 35
       <212> PRT
5
       <213> Homo sapiens
      <400> 319
            Ala Pro Gly Phe Arg Gly Pro Ala Gly Pro Asn Gly Ile Pro Gly Glu
            Lys Gly Pro Ala Gly Glu Arg Gly Ala Pro Gly Pro Ala Gly Pro Arg
            Gly Ala Ala
                    35
10
      <210> 320
       <211> 35
       <212> PRT
15
       <213> Homo sapiens
      <400> 320
            Arg Gly Ala Pro Gly Phe Arg Gly Pro Ala Gly Pro Asn Gly Ile Pro
            Gly Glu Lys Gly Pro Ala Gly Glu Arg Gly Ala Pro Gly Pro Ala Gly
                                               25
            Pro Arg Gly
                     35
20
      <210> 321
       <211> 35
       <212> PRT
       <213> Homo sapiens
25
       <400> 321
            Arg Gly Ser Pro Gly Glu Arg Gly Glu Thr Gly Pro Pro Gly Pro Ala
                             5
            Gly Phe Pro Gly Ala Pro Gly Gln Asn Gly Glu Pro Gly Gly Lys Gly
                                               25
                                                                     30
            Glu Arg Gly
                     35
      <210> 322
30
       <211> 38
       <212> PRT
       <213> Homo sapiens
35
      <400> 322
```

```
Gly His Ala Gly Ala Gln Gly Pro Pro Gly Pro Pro Gly Ile Asn Gly
                                                    1.0
            Ser Pro Gly Gly Lys Gly Glu Met Gly Pro Ala Gly Ile Pro Gly Ala
                                                25
                         20
            Pro Gly Leu Met Gly Ala
                     35
       <210> 323
       <211> 38
5
       <212> PRT
       <213> Homo sapiens
       <400> 323
10
            Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro
            Gly Pro Gln Gly Val Lys Gly Glu Ser Gly Lys Pro Gly Ala Asn Gly
                          20
                                                25
            Leu Ser Gly Glu Arg Gly
                     35
       <210> 324
       <211> 13
       <212> PRT
15
       <213> Homo sapiens
       <400> 324
                   Leu Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala
20
       <210> 325
       <211> 12
       <212> PRT
25
       <213> Homo sapiens
       <400> 325
                     Ile Pro Gly Phe Pro Gly Met Lys Gly His Arg Gly
                                       5
30
       <210> 326
       <211> 14
       <212> PRT
       <213> Homo sapiens
35
       <400> 326
                 Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly
                                   5
40
       <210> 327
       <211> 20
       <212> PRT
       <213> Homo sapiens
45
       <400> 327
```

```
Gln Gly Pro Pro Gly Ala Pro Gly Pro Leu Gly Ile Ala Gly Ile Thr
                                                    10
            Gly Ala Arg Gly
                         20
       <210> 328
5
       <211> 20
       <212> PRT
       <213> Homo sapiens
       <400> 328
10
            Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro
            Gly Pro Arg Gly
                          20
       <210> 329
       <211> 23
15
       <212> PRT
       <213> Homo sapiens
       <400> 329
            Ala Gly Ile Pro Gly Ala Pro Gly Leu Met Gly Ala Arg Gly Pro Pro
                              5
            Gly Pro Ala Gly Ala Asn Gly
                          20
20
       <210> 330
       <211> 24
       <212> PRT
25
       <213> Homo sapiens
       <400> 330
            Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro
            Gly Pro Gln Gly Val Lys Gly Glu
                         20
30
       <210> 331
       <211> 26
       <212> PRT
       <213> Homo sapiens
35
       <400> 331
            Lys Gly Ser Pro Gly Ala Gln Gly Pro Pro Gly Ala Pro Gly Pro Leu
            Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly
                          20
40
       <210> 332
       <211> 24
       <212> PRT
       <213> Homo sapiens
```

```
<400> 332
            Leu Pro Gly Pro Pro Gly Ile Lys Gly Pro Ala Gly Ile Pro Gly Phe
            Pro Gly Met Lys Gly His Arg Gly
                         20
5
      <210> 333
       <211> 24
       <212> PRT
       <213> Homo sapiens
10
      <400> 333
            Lys Asp Gly Thr Ser Gly His Pro Gly Pro Ile Gly Pro Pro Gly Pro
                                                    10
                              Arg Gly Asn Arg Gly Glu Arg Gly
                                           20
      <210> 334
15
      <211> 26
       <212> PRT
       <213> Homo sapiens
20
      <400> 334
            Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Pro Pro Gly Met Pro
                                                    10
            Gly Pro Arg Gly Ser Pro Gly Pro Gln Gly
                         20
      <210> 335
      <211> 27
25
       <212> PRT
      <213> Homo sapiens
       <400> 335
30
            Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro
            Gly Pro Gln Gly Val Lys Gly Glu Ser Gly Lys
       <210> 336
       <211> 32
       <212> PRT
35
       <213> Homo sapiens
       <400> 336
            Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro
                             5
                                                   10
                                                                         15
            Gly Pro Gln Gly Val Lys Gly Glu Ser Gly Lys Pro Gly Ala Asn Gly
                                               25
                                                                     30
                         20
40
```

```
<210> 337
      <211> 34
      <212> PRT
      <213> Homo sapiens
5
      <400> 337
            Arg Gly Leu Ala Gly Pro Pro Gly Met Pro Gly Pro Arg Gly Ser Pro
            Gly Pro Gln Gly Val Lys Gly Glu Ser Gly Lys Pro Gly Ala Asn Gly
            Leu Ser
10
      <210> 338
      <211> 37
      <212> PRT
      <213> Homo sapiens
      <400> 338
15
           Pro Gly Pro Pro Gly Ser Asn Gly Asn Pro Gly Pro Pro Gly Pro Ser
           Gly Ser Pro Gly Lys Asp Gly Pro Pro Gly Pro Ala Gly Asn Thr Gly
                                   Ala Pro Gly Ser Pro
                                            35
      <210> 339
      <211> 38
20
      <212> PRT
      <213> Homo sapiens
      <400> 339
25
            Arg Gly Ala Pro Gly Glu Lys Gly Glu Gly Pro Pro Gly Val Ala
                                                   10
            Gly Pro Pro Gly Gly Ser Gly Pro Ala Gly Pro Pro Gly Pro Gln Gly
                                              25
            Val Lys Gly Glu Arg Gly
                    35
      <210> 340
      <211> 44
30
      <212> PRT
      <213> Homo sapiens
      <400> 340
            Lys Ser Gly Asp Arg Gly Glu Ser Gly Pro Ala Gly Pro Ala Gly Ala
                                                  10
            Pro Gly Pro Ala Gly Ser Arg Gly Ala Pro Gly Pro Gln Gly Pro Arg
                                              25
            Gly Asp Lys Gly Glu Thr Gly Glu Arg Gly Ala Ala
                     35
35
```

```
<210> 341
       <211> 53
       <212> PRT
5
       <213> Homo sapiens
       <400> 341
            Arg Gly Ala Pro Gly Glu Lys Gly Glu Gly Gly Pro Pro Gly Val Ala
            Gly Pro Pro Gly Gly Ser Gly Pro Ala Gly Pro Pro Gly Pro Gln Gly
                                                 25
            Val Lys Gly Glu Arg Gly Ser Pro Gly Gly Pro Gly Ala Ala Gly Phe
            Pro Gly Ala Arg Gly
                50
10
       <210> 342
       <211> 6
       <212> PRT
       <213> Homo sapiens
15
       <400> 342
                                   Ala Ile Gly Pro Ser Gly
20
       <210> 343
       <211>6
       <212> PRT
       <213> Homo sapiens
25
       <400> 343
                                   Gly Ile Pro Gly Ala Pro
                                                    5
       <210> 344
30
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 344
35
                                  Ile Lys Gly His Arg Gly
       <210> 345
       <211> 6
40
       <212> PRT
       <213> Homo sapiens
       <400> 345
                                   Val Lys Gly Glu Ser Gly
45
       <210> 346
       <211> 6
       <212> PRT
```

	<213> Homo sapiens	
	<400> 346	
		His Ala Gly Ala Gln Gly
5		1 5
10	<210> 347 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 347	
		Asp Gly Thr Ser Gly His
15		1 5
00	<210> 348 <211> 6 <212> PRT <213> Homo sapiens	
20	<400> 348	
		Ile Gly Ser Pro Gly Pro 1 5
25	<210> 349 <211> 6 <212> PRT <213> Homo sapiens	
30	<400> 349	
		Leu Ser Gly Glu Arg Gly 1 5
35	<210> 350 <211> 6 <212> PRT <213> Homo sapiens	
40	<400> 350	
10		Val Lys Gly Glu Arg Gly 1 5
45	<210> 351 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 351	
50		Gly Ala Arg Gly Leu Ala 1 5
55	<210> 352 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 352	

		Gly Ala Pro Gly Glu Lys 1 5
5	<210> 353 <211> 6 <212> PRT <213> Homo sapiens	
10	<400> 353	Ile Lys Gly Pro Ala Gly
15	<210> 354 <211> 6 <212> PRT <213> Homo sapiens	1 5
	<400> 354	
20		Gly Ile Pro Gly Gln Pro 1 5
25	<210> 355 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 355	
		Gly Pro Pro Gly Pro Thr
30	<210> 356 <211> 6 <212> PRT <213> Homo sapiens	
35	<400> 356	
		Lys Asn Gly Glu Thr Gly 1 5
40	<210> 357 <211> 6 <212> PRT <213> Homo sapiens	
45	<400> 357	
		Leu Lys Gly Glu Asn Gly 1 5
50	<210> 358 <211> 6 <212> PRT <213> Homo sapiens	
55	<400> 358	
		Gly Asp Pro Gly Pro Pro 1 5

```
<210> 359
       <211> 6
       <212> PRT
 5
       <213> Homo sapiens
       <400> 359
                                     Gly Asp Pro Gly Pro Pro
10
       <210> 360
       <211> 6
       <212> PRT
       <213> Homo sapiens
15
       <400> 360
                                     Phe Pro Gly Ala Arg Gly
20
       <210> 361
       <211>6
       <212> PRT
       <213> Homo sapiens
25
       <400> 361
                                      Gly Asp Lys Gly Glu Thr
                                                         5
       <210> 362
30
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 362
35
                                     Gly Gly Ala Gly Glu Pro
       <210> 363
40
       <400> 363 000
       <210> 364
       <211> 6
       <212> PRT
45
       <213> Homo sapiens
       <400> 364
                                      Gly Pro Pro Gly Pro Pro
                                                         5
50
       <210> 365
       <211> 6
       <212> PRT
       <213> Homo sapiens
55
       <400> 365
```

		Gly Ala Ala Gly Glu Pro 1 5
5	<210> 366 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 366	
10		Gly Leu Ser Gly Glu Arg 1 5
15	<210> 367 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 367	
		Ile Ala Gly Ile Thr Gly 1 5
20	<210> 368 <211> 6 <212> PRT <213> Homo sapiens	
25	<400> 368	
		Pro Gly Phe Pro Gly Met 1 5
30	<210> 369 <211> 6 <212> PRT <213> Homo sapiens	
35	<400> 369	
		Gly Ile Ala Gly Ile Thr 1 5
40	<210> 370 <211> 6 <212> PRT <213> Homo sapiens	
45	<400> 370	
		Gly Ala Arg Gly Leu Ala 1 5
50	<210> 371 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 371	
55		Gly Leu Ala Gly Pro Pro 1 5

5	<210> 372 <211> 6 <212> PRT <213> Homo sapiens <400> 372		
		Gly Pro Pro Gly Va 1 5	l Ala
10	<210> 373 <211> 6 <212> PRT <213> Homo sapiens		
15	<400> 373		
		Gly Pro Ala Gly II 1 5	e Pro
20	<210> 374 <211> 6 <212> PRT <213> Homo sapiens		
25	<400> 374		
		Pro Gly Pro Pro G	ly Ile
		1	5
30	<210> 375 <211> 6 <212> PRT <213> Homo sapiens		
35	<400> 375		
		Gly Ala Pro Gly Pro	Gln
40	<210> 376 <211> 6 <212> PRT <213> Homo sapiens		
45	<400> 376		
		Gly Asp Ala Gly Gl 1 5	n Pro
50	<210> 377 <211> 6 <212> PRT <213> Homo sapiens		
	<400> 377		
55		His Ala Gly Ala Gl 1 5	n Gly
	<210> 378 <211> 6		

```
<212> PRT
       <213> Homo sapiens
       <400> 378
 5
                                     Gly Pro Pro Gly Ala Pro
       <210> 379
       <211> 6
10
       <212> PRT
       <213> Homo sapiens
       <400> 379
                                     Gly Leu Ala Gly Pro Pro
                                                        5
15
       <210> 380
       <211> 6
       <212> PRT
20
       <213> Homo sapiens
       <400> 380
                                     Ala Ile Gly Pro Ser Gly
                                                        5
25
       <210> 381
       <211> 6
       <212> PRT
       <213> Homo sapiens
30
       <400> 381
                                    Gly Pro Pro Gly Pro Ala
35
       <210> 382
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 382
40
                                    Ser Pro Gly Pro Ala Gly
       <210> 383
45
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 383
50
                                     Ala Ala Gly Thr Pro Gly
       <210> 384
       <211> 6
55
       <212> PRT
       <213> Homo sapiens
```

	<400> 384	
		Thr Ser Gly His Pro Gly 1 5
5	<210> 385 <211> 6 <212> PRT <213> Homo sapiens	
10	<400> 385	
		Pro Ser Gly Pro Pro Gly 1 5
15	<210> 386 <211> 6 <212> PRT <213> Homo sapiens	
20	<400> 386	
		Pro Gly Leu Met Gly Ala 1 5
25	<210> 387 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 387	
30		Ser Pro Gly Pro Gln Gly 1 5
35	<210> 388 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 388	
		Pro Pro Gly Pro Pro Gly 5
40	<210> 389 <211> 6 <212> PRT <213> Homo sapiens	
45	<400> 389	
		Gly Ala Ile Gly Pro Ser
50	<210> 390 <211> 6 <212> PRT <213> Homo sapiens	
55	<400> 390	

		Pro Pro Gly Pro Ala Gly 1 5
5	<210> 391 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 391	
10		Ser Pro Gly Pro Lys Gly 1 5
15	<210> 392 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 392	
00		Pro Pro Gly Pro Ala Gly 1 5
20	<210> 393 <211> 6 <212> PRT <213> Homo sapiens	
25	<400> 393	
		Leu Pro Gly Pro Pro Gly 1 5
30	<210> 394 <211> 6 <212> PRT <213> Homo sapiens	
35	<400> 394	
		Gly Ala Pro Gly Leu Lys 1 5
40	<210> 395 <211> 6 <212> PRT <213> Homo sapiens	
45	<400> 395	
		Gly Leu Pro Gly Pro Pro 1 5
50	<210> 396 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 396	
55		Gly Pro Pro Gly Ile Lys 1 5

```
<210> 397
       <211> 6
       <212> PRT
       <213> Homo sapiens
 5
       <400> 397
                                    Gly Pro Pro Gly Val Ala
                                                       5
10
       <210> 398
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 398
15
                                     Thr Pro Gly Leu Gln Gly
                                                        5
       <210> 399
20
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 399
25
                                     Gly Thr Pro Gly Leu Gln
       <210> 400
       <211> 6
       <212> PRT
30
       <213> Homo sapiens
       <400> 400
                                    Gly Phe Pro Gly Ala Arg
35
       <210> 401
       <211>6
       <212> PRT
40
       <213> Homo sapiens
       <400> 401
                                     Gln Pro Gly Pro Pro Gly
45
       <210> 402
       <211> 6
       <212> PRT
       <213> Homo sapiens
50
       <400> 402
                                     Thr Gly Ala Pro Gly Ser
55
       <210> 403
       <211> 6
       <212> PRT
```

	<213> Homo sapiens	
	<400> 403	
		Ser Pro Gly Pro Gln Gly
5		1 5
10	<210> 404 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 404	
		Gly Pro Ala Gly Pro Arg
15	<210> 405 <211> 6 <212> PRT <213> Homo sapiens	1 5
20	<400> 405	
	400-400	Ala Pro Gly Leu Met Gly 1 5
25	<210> 406 <211> 6 <212> PRT <213> Homo sapiens	
30	<400> 406	
		Gly Asn Arg Gly Glu Arg 1 5
35	<210> 407 <211> 6 <212> PRT <213> Homo sapiens	
40	<400> 407	
		Thr Gly Ala Pro Gly Ser 1 5
45	<210> 408 <211> 6 <212> PRT <213> Homo sapiens	
	<400> 408	
50		Gly Asp Pro Gly Pro Pro 1 5
55	<210> 409 <211> 6 <212> PRT <213> Homo sapiens	

	<400> 409						
		Arg 1	Gly	Leu	Ala	Gly 5	Pro
5	<210> 410 <211> 6 <212> PRT <213> Homo sapiens						
10	<400> 410						
		Ser 1	Arg	Gly	Ala	Pro 5	Gly
15	<210> 411 <211> 6 <212> PRT <213> Homo sapiens						
20	<400> 411						
		Gly 1	Lys	Ser	Gly	Asp 5	Arg
25	<210> 412 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 412						
30		Val 1	Gly	Gly	Leu	Ala 5	Gly
35	<210> 413 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 413						
		Ala 1	Ile	Gly	Ser	Pro 5	Gly
40	<210> 414 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 414						
		Gly 1	Leu	Ala	Gly	Pro 5	Pro
50	<210> 415 <211> 6 <212> PRT <213> Homo sapiens						
55	<400> 415						

		Arg 1	Gly	Leu	Ala	Gly 5	Pro
5	<210> 416 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 416						
10		Lys 1	Gly	Glu	Ser	Gly 5	Lys
15	<210> 417 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 417						
		Ile 1	Ala	Gly	Ile	Thr 5	Gly
20	<210> 418 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 418						
		Pro 1	Gly	Ala	Pro	Gly 5	Leu
30	<210> 419 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 419						
		Glu 1	Arg	Gly	Leu	Pro 5	Gly
40	<210> 420 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 420						
		Ile 1	Asn	Gly	Ser	Pro 5	Gly
50	<210> 421 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 421						
55		Leu 1	Pro	Gly	Ile	Ala 5	Gly

```
<210> 422
       <211> 6
       <212> PRT
       <213> Homo sapiens
 5
       <400> 422
                                     Asn Thr Gly Ala Pro Gly
10
       <210> 423
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 423
15
                                     Leu Arg Gly Gly Ala Gly
       <210> 424
20
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 424
25
                                     Gly His Ala Gly Ala Gln
                                                         5
       <210> 425
       <211> 6
       <212> PRT
30
       <213> Homo sapiens
       <400> 425
                                     Gly Phe Pro Gly Ala Arg
                                                         5
35
       <210> 426
       <211>6
       <212> PRT
       <213> Homo sapiens
40
       <400> 426
                                      Gly Arg Asn Gly Glu Lys
                                                         5
45
       <210> 427
       <211> 6
       <212> PRT
       <213> Homo sapiens
50
       <400> 427
                                     Gly Glu Arg Gly Ser Pro
55
       <210> 428
       <211> 6
       <212> PRT
       <213> Homo sapiens
60
       <400> 428
```

```
Gly Lys Asp Gly Glu Ser
       <210> 429
 5
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 429
10
                                     Ile Ala Gly Ile Thr Gly
                                     1
       <210> 430
       <211> 6
15
       <212> PRT
       <213> Homo sapiens
       <400> 430
                                     Gly Pro Lys Gly Asp Ala
20
                                                        5
       <210> 431
       <211> 6
       <212> PRT
25
       <213> Homo sapiens
       <400> 431
                                     Gly Ser Pro Gly Gly Pro
30
       <210> 432
       <211> 6
       <212> PRT
       <213> Homo sapiens
35
       <400> 432
                                     Gly Leu Pro Gly Pro Pro
                                                        5
40
       <210> 433
       <211> 6
       <212> PRT
       <213> Homo sapiens
45
       <400> 433
                                     Ser Gly Asp Arg Gly Glu
                                     1
       <210> 434
50
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 434
55
                                     Gly Leu Ala Gly Pro Pro
                                                        5
       <210> 435
       <211>6
```

	<212> PRT <213> Homo sapiens						
5	<400> 435	Gly	Ala	Pro	Glv	Phe	Ara
		1	пια	110	GIY	5	AIG
10	<210> 436 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 436	0. 3	D 1	_	G.1	-	
15		Gly 1	Phe	Pro	Gly	Asn 5	Pro
20	<210> 437 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 437						
0E		Asn 1	Gly	Glu	Lys	Gly 5	Glu
25	<210> 438 <211> 6 <212> PRT <213> Homo sapiens						
30	<400> 438						
		Gly 1	Leu	Ala	Gly	Pro 5	Pro
35	<210> 439 <211> 6 <212> PRT <213> Homo sapiens						
40	<400> 439		_				
		Gly 1	Ile	Thr	Gly	Ala 5	Arg
45	<210> 440 <211> 6 <212> PRT <213> Homo sapiens						
50	<400> 440						
		Asp 1	Gly	Thr	Ser	Gly 5	His
55	<210> 441 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 441						

```
Gly Pro Pro Gly Ser Asn
       <210> 442
       <211> 6
       <212> PRT
 5
       <213> Homo sapiens
       <400> 442
                                     Asn Gly Asp Pro Gly Ile
10
       <210> 443
       <211>6
       <212> PRT
15
       <213> Homo sapiens
       <400> 443
                                     Pro Gly Pro Gln Gly Val
20
       <210> 444
       <211> 6
       <212> PRT
       <213> Homo sapiens
25
       <400> 444
                                     Ile Pro Gly Ala Pro Gly
30
       <210> 445
       <211>6
       <212> PRT
       <213> Homo sapiens
35
       <400> 445
                                     Ser Pro Gly Pro Gln Gly
       <210> 446
40
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 446
45
                                     Gly Ser Pro Gly Pro Ala
                                                        5
       <210> 447
       <211> 6
       <212> PRT
50
       <213> Homo sapiens
       <400> 447
                                     Gln Gly Pro Pro Gly Pro
55
       <210> 448
       <211> 6
       <212> PRT
```

	<213> Homo sapiens						
	<400> 448						
_			Pro	Gly	Phe		Gly
5	<210> 449	1				5	
10	<211> 6 <212> PRT <213> Homo sapiens						
	<400> 449						
15		Gly 1	Pro	Ala	Gly	Ile 5	Pro
	<210> 450 <211> 6 <212> PRT <213> Homo sapiens						
20	<400> 450						
		Phe	Pro	Gly	Ala	Arg	Gly
0.5		1	L			Ţ	5
25	<210> 451						
30	<211> 6 <212> PRT <213> Homo sapiens						
	<400> 451						
35		Gly 1	Ile	Pro	Gly	Ala 5	Pro
	<210> 452 <211> 6 <212> PRT <213> Homo sapiens						
40	<400> 452						
		Glu 1	Arg	Gly	Pro	Pro 5	Gly
45	<210> 453 <211> 6 <212> PRT <213> Homo sapiens						
50	<400> 453						
		Pro 1	Ser	Gly	Pro	Pro 5	Gly
55	<210> 454 <211> 6 <212> PRT <213> Homo sapiens						
60	<400> 454						

```
Gly Pro Pro Gly Ile Asn
       <210> 455
       <211> 6
       <212> PRT
 5
       <213> Homo sapiens
       <400> 455
                                     Gly Thr Ser Gly His Pro
10
       <210> 456
       <211>6
       <212> PRT
15
       <213> Homo sapiens
       <400> 456
                                     Gly Leu Pro Gly Ile Ala
20
       <210> 457
       <211> 6
       <212> PRT
       <213> Homo sapiens
25
       <400> 457
                                     Gly Ala Asn Gly Leu Pro
30
       <210> 458
       <211>6
       <212> PRT
       <213> Homo sapiens
35
       <400> 458
                                     Thr Ala Gly Phe Pro Gly
       <210> 459
40
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 459
45
                                     Glu Gly Gly Pro Pro Gly
       <210> 460
       <211> 6
       <212> PRT
50
       <213> Homo sapiens
       <400> 460
                                     Pro Gln Gly Leu Pro Gly
55
       <210> 461
       <211> 6
       <212> PRT
```

```
<213> Homo sapiens
       <400> 461
                                     Ala Pro Gly Pro Leu Gly
5
       <210> 462
       <211> 6
       <212> PRT
10
       <213> Homo sapiens
       <400> 462
                                     Gly Ser Pro Gly Pro Gln
                                                        5
15
       <210> 463
       <211> 6
       <212> PRT
       <213> Homo sapiens
20
       <400> 463
                                     Gly Ala Ala Gly Ala Arg
                                                        5
25
       <210> 464
       <211> 6
       <212> PRT
       <213> Homo sapiens
30
       <400> 464
                                     Gly Val Lys Gly Glu Arg
                                                        5
       <210> 465
35
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 465
40
                                     Gly Asp Ala Gly Ala Pro
       <210> 466
       <211> 6
45
       <212> PRT
       <213> Homo sapiens
       <400> 466
                                     Arg Gly Phe Asp Gly Arg
                                                        5
50
       <210> 467
       <211> 6
       <212> PRT
55
       <213> Homo sapiens
       <400> 467
                                     Gly Leu Ser Gly Glu Arg
                                                        5
```

```
<210> 468
       <211>6
       <212> PRT
 5
       <213> Homo sapiens
       <400> 468
                                     Gly Ser Pro Gly Pro Gln
                                                        5
10
       <210> 469
       <211> 6
       <212> PRT
       <213> Homo sapiens
15
       <400> 469
                                     Gly Val Lys Gly Glu Arg
20
       <210> 470
       <211> 6
       <212> PRT
       <213> Homo sapiens
25
       <400> 470
                                     Leu Ala Gly Pro Pro Gly
       <210> 471
30
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 471
35
                                     Thr Gly Ala Arg Gly Leu
       <210> 472
       <211>6
       <212> PRT
40
       <213> Homo sapiens
       <400> 472
                                     Lys Gly Asp Ala Gly Gln
45
       <210> 473
       <211> 6
       <212> PRT
50
       <213> Homo sapiens
       <400> 473
                                     Leu Gln Gly Leu Pro Gly
55
       <210> 474
       <211> 6
       <212> PRT
       <213> Homo sapiens
```

	<400> 474						
		Ile 1	Ala	Gly	Ile	Thr 5	Gly
5	<210> 475 <211> 6 <212> PRT <213> Homo sapiens	1				3	
10	<400> 475						
		Ala 1	Gly	Gln	Gln	Gly 5	Ala
15	<210> 476 <211> 6 <212> PRT <213> Homo sapiens						
20	<400> 476						
		Leu 1	Ala	Gly	Pro	Pro 5	Gly
25	<210> 477 <211> 6 <212> PRT <213> Homo sapiens						
30	<400> 477						
		Gly 1	Leu	Ser	Gly	Glu 5	Arg
35	<210> 478 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 478						
40		Val 1	Lys	Gly	Glu	Arg 5	Gly
45	<210> 479 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 479						
		Ile 1	Lys	Gly	Pro	Ala 5	Gly
50	<210> 480 <211> 6 <212> PRT <213> Homo sapiens						
55	<400> 480						
		Glu 1	Arg	Gly	Leu	Pro 5	Gly

```
<210> 481
       <211>6
       <212> PRT
       <213> Homo sapiens
 5
       <400> 481
                                     Val Gly Gly Leu Ala Gly
10
       <210> 482
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 482
15
                                     Gly Pro Pro Gly Glu Pro
                                                         5
       <210> 483
20
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 483
25
                                     Ile Asn Gly Ser Pro Gly
                                     1
                                                         5
       <210> 484
       <211> 6
       <212> PRT
30
       <213> Homo sapiens
       <400> 484
                                     Leu Met Gly Ala Arg Gly
35
       <210> 485
       <211>6
       <212> PRT
40
       <213> Homo sapiens
       <400> 485
                                     Lys Asn Gly Glu Thr Gly
45
       <210> 486
       <211> 6
       <212> PRT
       <213> Homo sapiens
50
       <400> 486
                                     Gly Glu Arg Gly Ala Pro
                                                         5
55
       <210> 487
       <211> 6
       <212> PRT
       <213> Homo sapiens
```

	<400> 487						
		Pro 1	Gly	Pro	Pro	Gly 5	Pro
5	<210> 488 <211> 6 <212> PRT <213> Homo sapiens	1				J	
10	<400> 488						
		Gly 1	Gln	Pro	Gly	Asp 5	Lys
15	<210> 489 <211> 6 <212> PRT <213> Homo sapiens						
20	<400> 489						
		Pro 1	Gly	Val	Pro	Gly 5	Ala
25	<210> 490 <211> 6 <212> PRT <213> Homo sapiens						
30	<400> 490						
		Gly 1	Ala	Arg	Gly	Asn 5	Asp
35	<210> 491 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 491						
40		Pro 1	Gly	Ala	Pro	Gly 5	Gln
45	<210> 492 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 492						
		Gly 1	Pro	Pro	Gly	Pro 5	Pro
50	<210> 493 <211> 6 <212> PRT <213> Homo sapiens						
55	<400> 493						

		Ile 1	Ala	Gly	Ile	Thr 5	Gly
5	<210> 494 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 494						
10		Gly 1	Pro	Ala	Gly	Ile 5	Pro
15	<210> 495 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 495						
		Gly 1	Pro	Pro	Gly	Pro 5	Pro
20	<210> 496 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 496						
		Arg 1	Pro	Gly	Leu	Pro 5	Gly
30	<210> 497 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 497						
		Gly 1	Pro	Pro	Gly	Ser 5	Asn
40	<210> 498 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 498						
		Pro 1	Gly	Phe	Pro	Gly 5	Met
50	<210> 499 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 499						
55		Gly 1	Pro	Pro	Gly	Glu 5	Asn
	<210> 500 <211> 6						

```
<212> PRT
       <213> Homo sapiens
       <400> 500
 5
                                     Gly Leu Pro Gly Pro Pro
                                                         5
       <210> 501
       <211> 6
10
       <212> PRT
       <213> Homo sapiens
       <400> 501
                                     Pro Gly Pro Pro Gly Ile
                                                         5
15
       <210> 502
       <211> 6
       <212> PRT
20
       <213> Homo sapiens
       <400> 502
                                      Pro Gly Phe Arg Gly Pro
                                                         5
25
       <210> 503
       <211> 6
       <212> PRT
       <213> Homo sapiens
30
       <400> 503
                                     Gly Ile Ala Gly Ile Thr
                                     1
                                                         5
       <210> 504
35
       <211> 6
       <212> PRT
       <213> Homo sapiens
40
       <400> 504
                                     Gly Ile Pro Gly Ala Pro
                                                         5
       <210> 505
       <211> 6
45
       <212> PRT
       <213> Homo sapiens
       <400> 505
50
                                     Gly Ile Thr Gly Ala Arg
                                                         5
                                     1
       <210> 506
       <211> 6
       <212> PRT
55
       <213> Homo sapiens
       <400> 506
```

		Gly 1	Ala	Pro	Gly	Glu 5	Lys
5	<210> 507 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 507						
10		Ser 1	Pro	Gly	Pro	Gln 5	Gly
15	<210> 508 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 508						
		Pro 1	Pro	Gly	Pro	Gln 5	Gly
20	<210> 509 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 509						
		Glu 1	Arg	Gly	Pro	Pro 5	Gly
30	<210> 510 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 510						
		Ala 1	Pro	Gly	Leu	Arg 5	Gly
40	<210> 511 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 511						
		Gly	Pro	Ala	Gly	Pro	Pro
		-	1.				5
50	<210> 512 <211> 6 <212> PRT <213> Homo sapiens						
55	<400> 512						
		Ser 1	Pro	Gly	Pro	Gln 5	Gly

```
<210> 513
       <211>6
       <212> PRT
       <213> Homo sapiens
 5
       <400> 513
                                     Leu Ala Gly Pro Pro Gly
                                                        5
10
       <210> 514
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 514
15
                                     Phe Pro Gly Pro Lys Gly
       <210> 515
20
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 515
25
                                     Pro Pro Gly Pro Ala Gly
                                                        5
       <210> 516
       <211> 6
       <212> PRT
30
       <213> Homo sapiens
       <400> 516
                                     Leu Pro Gly Ala Ala Gly
                                                        5
35
       <210> 517
       <211> 6
       <212> PRT
       <213> Homo sapiens
40
       <400> 517
                                     Ile Pro Gly Gln Pro Gly
45
       <210> 518
       <211> 6
       <212> PRT
       <213> Homo sapiens
50
       <400> 518
                                     Gly Ala Pro Gly Pro Ala
                                     1
                                                        5
55
       <210> 519
       <211>6
       <212> PRT
       <213> Homo sapiens
```

	<400> 519						
		Gly 1	His	Arg	Gly	Phe 5	Asp
5	<210> 520 <211> 6 <212> PRT <213> Homo sapiens						
10	<400> 520						
		Pro 1	Gly	Pro	Lys	Gly 5	Asp
15	<210> 521 <211> 6 <212> PRT <213> Homo sapiens						
20	<400> 521						
		Gly 1	Pro	Pro	Gly	Pro 5	Ser
25	<210> 522 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 522						
30		Pro 1	Pro	Gly	Ala	Pro 5	Gly
35	<210> 523 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 523	0.1	0. 1	1	0. 1	_	
40	<210> 524	GIY 1	GIU	Val	Gly	Pro 5	Ala
	<211> 6 <212> PRT <213> Homo sapiens						
45	<400> 524						
		Gly 1	Ala	Pro	Gly	Leu 5	Arg
50	<210> 525 <211> 6 <212> PRT <213> Homo sapiens						
55	<400> 525						
		Gly 1	Pro	Gln	Gly	Val 5	Lys
	<210> 526						

```
<211>6
       <212> PRT
       <213> Homo sapiens
 5
       <400> 526
                                     Gly Met Pro Gly Pro Arg
       <210> 527
10
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 527
15
                                     Gly Ala Ala Gly Ile Lys
       <210> 528
       <211> 6
       <212> PRT
20
       <213> Homo sapiens
       <400> 528
                                     Pro Gly Ala Ala Gly Phe
                                                        5
                                     1
25
       <210> 529
       <211>6
       <212> PRT
30
       <213> Homo sapiens
       <400> 529
                                     Gly Pro Ala Gly Glu Arg
35
       <210> 530
       <211>6
       <212> PRT
       <213> Homo sapiens
40
       <400> 530
                                     Gly Ile Ala Gly Pro Arg
45
       <210> 531
       <211>6
       <212> PRT
       <213> Homo sapiens
50
       <400> 531
                                     Thr Gly Ala Arg Gly Leu
                                                        5
                                     1
       <210> 532
55
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 532
60
```

		Val 1	Lys	Gly	Glu	Ser 5	Gly
5	<210> 533 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 533						
10		Thr 1	Gly	Glu	Arg	Gly 5	Ala
15	<210> 534 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 534						
00		Glu 1	Arg	Gly	Leu	Pro 5	Gly
20	<210> 535 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 535						
		Ile 1	Thr	Gly	Ala	Arg 5	Gly
30	<210> 536 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 536						
		Glu 1	Arg	Gly	Leu	Pro 5	Gly
40	<210> 537 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 537	_					
		Pro 1	Gly	Ala	Pro	GLy 5	Gly
50	<210> 538 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 538						
55		Gly 1	Pro	Pro	Gly	Val 5	Ala
	<210> 539 <211> 6						

```
<212> PRT
       <213> Homo sapiens
       <400> 539
 5
                                     Gly Leu Ala Gly Pro Pro
       <210> 540
       <211> 6
10
       <212> PRT
       <213> Homo sapiens
       <400> 540
                                     Val Gly Gly Leu Ala Gly
                                                         5
15
       <210> 541
       <211> 6
       <212> PRT
20
       <213> Homo sapiens
       <400> 541
                                      Ser Pro Gly Ala Gln Gly
                                                         5
                                      1
25
       <210> 542
       <211> 6
       <212> PRT
       <213> Homo sapiens
30
       <400> 542
                                      Gln Pro Gly Val Met Gly
35
       <210> 543
       <211> 6
       <212> PRT
       <213> Homo sapiens
40
       <400> 543
                                      Ile Pro Gly Ala Pro Gly
                                                         5
                                      1
       <210> 544
       <211> 6
45
       <212> PRT
       <213> Homo sapiens
       <400> 544
50
                                     Val Lys Gly Glu Arg Gly
                                                         5
       <210> 545
       <211>6
       <212> PRT
55
       <213> Homo sapiens
       <400> 545
```

		Gly 1	Pro	Pro	Gly	Ile 5	Asn
5	<210> 546 <211> 6 <212> PRT <213> Homo sapiens						
10	<400> 546	Gly	Ile	Asn	Gly		Pro
15	<210> 547 <211> 6 <212> PRT <213> Homo sapiens	1				5	
	<400> 547						
20		Leu 1	Arg	Gly	Gly	Ala 5	Gly
25	<210> 548 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 548						
30		Tyr 1	Gln	Gly	Pro	Pro 5	Gly
	<210> 549 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 549						
		Gly 1	Ile	Pro	Gly	Phe 5	Pro
40	<210> 550 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 550						
		Phe 1	Pro	Gly	Met	Lys 5	Gly
50	<210> 551 <211> 6 <212> PRT <213> Homo sapiens						
55	<400> 551						
		Gly 1	Pro	Pro	Gly	Glu 5	Asn
	<210> 552						

```
<211>6
       <212> PRT
       <213> Homo sapiens
 5
       <400> 552
                                     Ala Ala Gly Phe Pro Gly
       <210> 553
10
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 553
15
                                     Pro Gly Val Ser Gly Pro
       <210> 554
       <211> 6
       <212> PRT
20
       <213> Homo sapiens
       <400> 554
                                     Gly Phe Pro Gly Ala Pro
                                                        5
25
       <210> 555
       <211>6
       <212> PRT
30
       <213> Homo sapiens
       <400> 555
                                     Gly Leu Ser Gly Glu Arg
35
       <210> 556
       <211>6
       <212> PRT
       <213> Homo sapiens
40
       <400> 556
                                     Gly Gly Ala Gly Pro Pro
45
       <210> 557
       <211>6
       <212> PRT
       <213> Homo sapiens
50
       <400> 557
                                     Val Gly Gly Leu Ala Gly
                                     1
       <210> 558
55
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 558
60
```

		Gly 1	Leu	Ala	Gly	Pro 5	Pro
5	<210> 559 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 559						
10		Pro 1	Gly	Pro	Pro	Gly 5	Ile
15	<210> 560 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 560						
00		Gly 1	Ala	Pro	Gly	Pro 5	Met
20	<210> 561 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 561						
		Gly 1	Ala	Arg	Gly	Leu 5	Ala
30	<210> 562 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 562						
		Gly 1	Leu	Ala	Gly	Pro 5	Pro
40	<210> 563 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 563						
		Pro 1	Gly	Phe	Arg	Gly 5	Pro
50	<210> 564 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 564						
55		Gly 1	Pro	Val	Gly	Pro 5	Ser
	<210> 565 <211> 6 <212> PRT						

	<213> Homo sapiens						
	<400> 565						
		Ala	Gly	Gln	Pro	Gly	Glu
5		1				5	
10	<210> 566 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 566						
			Ala	Pro	Gly		Arg
15	<210> 567 <211> 6 <212> PRT	1				5	
20	<213> Homo sapiens						
	<400> 567						
		Pro 1	Gly	Phe	Pro	Gly 5	Met
25	<210> 568 <211> 6 <212> PRT <213> Homo sapiens						
30	<400> 568						
		Gly 1	Leu	Ala	Gly	Pro 5	Pro
35	<210> 569 <211> 6 <212> PRT <213> Homo sapiens						
40	<400> 569						
.0		Ser 1	Gly	Asp	Arg	Gly 5	Glu
45	<210> 570 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 570						
50		Ala 1	Gly	Ile	Pro	Gly 5	Phe
55	<210> 571 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 571						

		Glu 1	ı Arg	Gly	' Ala	Ala 5	. Gly	•
5	<210> 572 <211> 6 <212> PRT <213> Homo sapiens							
	<400> 572							
10			Pro	Gly	Pro	Pro	Gly	Thr
			1				5	
15	<210> 573 <211> 6 <212> PRT <213> Homo sapiens							
20	<400> 573							
			His 1	Pro	Gly	Ser	Pro 5	Gly
25	<210> 574 <211> 6 <212> PRT <213> Homo sapiens							
	<400> 574							
30			Ser 1	Pro	Gly	Pro	Gln 5	Gly
35	<210> 575 <211> 6 <212> PRT <213> Homo sapiens							
	<400> 575							
			Gly 1	Leu	Ala	Gly	Thr 5	Ala
40	<210> 576							
45	<211> 6 <212> PRT <213> Homo sapiens							
	<400> 576							
			Gly 1	Pro	Pro	Gly	Pro 5	Gln
50	<210> 577 <211> 6 <212> PRT							
55	<213> Homo sapiens <400> 577							

		Gly 1	Phe	Pro	Gly	Met 5	Lys
5	<210> 578 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 578						
10		Glu 1	Lys	Gly	Pro	Ala 5	Gly
15	<210> 579 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 579						
		Pro 1	Gly	Pro	Gln	Gly 5	Leu
20	<210> 580 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 580						
		Phe 1	Pro	Gly	Ala	Pro 5	Gly
30	<210> 581 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 581						
		Ala 1	Pro	Gly	Pro	Leu 5	Gly
40	<210> 582 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 582						
		Gly 1	Phe	Pro	Gly	Met 5	Lys
50	<210> 583 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 583						
55		Pro 1	Gly	Leu	Pro	Gly 5	Ile
	<210> 584 <211> 6						

	<212> PRT <213> Homo sapiens						
_	<400> 584						
5		Gly 1	His	Arg	Gly	Phe 5	Asp
10	<210> 585 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 585						
15		Pro 1	Gly	Pro	Lys	Gly 5	Asn
15	<210> 586	_				J	
20	<211> 6 <212> PRT <213> Homo sapiens						
	<400> 586						
			Glu	Val	Gly		Ala
25		1				5	
	<210> 587 <211> 6 <212> PRT <213> Homo sapiens						
30	<400> 587						
		Gly 1	Pro	Pro	Gly	Pro 5	Ser
35	<210> 588 <211> 6 <212> PRT <213> Homo sapiens						
40	<400> 588						
		Gly 1	Leu	Pro	Gly	Leu 5	Ala
45	<210> 589 <211> 6 <212> PRT <213> Homo sapiens						
50	<400> 589						
		Gly 1	Ser	Pro	Gly	Tyr 5	Gln
55	<210> 590 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 590						

		Glu 1	Met	Gly	Pro	Ala 5	Gly
5	<210> 591 <211> 6 <212> PRT <213> Homo sapiens						
10	<400> 591		Lys	Pro	Gly		Asn
15	<210> 592 <211> 6 <212> PRT <213> Homo sapiens	1				5	
	<400> 592						
20		Gly 1	Met	Pro	Gly	Pro 5	Arg
25	<210> 593 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 593						
30		Gly 1	Ile	Thr	Gly	Ala 5	Arg
35	<210> 594 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 594						
		Ala 1	GIY	Pro	Arg	Gly 5	Ala
40	<210> 595 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 595						
		Gly 1	Pro	Ala	Gly	Ala 5	Asn
50	<210> 596 <211> 6 <212> PRT <213> Homo sapiens						
55	<400> 596	Glv	Lve	Pro	Glv	Ala	Asn
		1	- Y S	110	CΤΥ	5	21011
	<210> 597 <211> 6						

	<212> PRT <213> Homo sapiens						
5	<400> 597	C1	Dho	Dro	C1	71 -	7) 25 07
		1	Phe	Pro	GTÀ	A1a 5	Arg
10	<210> 598 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 598	_					
15		Ile 1	Ala	Gly	Ile	Thr 5	Gly
20	<210> 599 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 599						
		Ile 1	Thr	Gly	Ala	Arg 5	Gly
25	<210> 600 <211> 6 <212> PRT <213> Homo sapiens						
30	<400> 600						
		Leu 1	Arg	Gly	Gly	Ala 5	Gly
35	<210> 601 <211> 6 <212> PRT <213> Homo sapiens						
40	<400> 601						
		Val 1	Gly	Gly	Leu	Ala 5	Gly
45	<210> 602 <211> 6 <212> PRT <213> Homo sapiens						
50	<400> 602						
		Ala 1	Gly	Pro	Pro	Gly 5	Met
55	<210> 603 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 603						

		Pro 1	Gln	Gly	Pro	Pro 5	Gly
5	<210> 604 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 604						
10		Ser 1	Pro	Gly	Gly	Lys 5	Gly
15	<210> 605 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 605						
00		Gly 1	Ala	Pro	Gly	Glu 5	Lys
20	<210> 606 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 606						
		Ile 1	Lys	Gly	Pro	Ala 5	Gly
30	<210> 607 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 607						
		Phe 1	Arg	Gly	Pro	Ala 5	Gly
40	<210> 608 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 608						
		Asp 1	Ala	Gly	Ala	Pro 5	Gly
50	<210> 609 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 609						
55		Gly 1	Leu	Pro	Gly	Pro 5	Pro
	<210> 610 <211> 6 <212> PRT						

	<213> Homo sapiens						
	<400> 610						
F		Pro 1	Gly	Glu	Asn	Gly 5	Lys
5	<210> 611 <211> 6	1				J	
10	<212> PRT <213> Homo sapiens						
	<400> 611						
		Gln 1	Gln	Gly	Ala	Ile 5	Gly
15	<210> 612 <211> 6 <212> PRT <213> Homo sapiens						
20	<400> 612						
		Val 1	Ala	Gly	Pro	Pro 5	Gly
25	<210> 613 <211> 6 <212> PRT <213> Homo sapiens						
30	<400> 613						
		Pro 1	Gly	Met	Lys	Gly 5	His
35	<210> 614 <211> 6 <212> PRT <213> Homo sapiens						
40	<400> 614						
10		Pro 1	Gly	Asp	Lys	Gly 5	Glu
45	<210> 615 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 615						
50		Gly 1	Ser	Asp	Gly	Gln 5	Pro
55	<210> 616 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 616						
		Gly 1	Ala	Arg	Gly	Asn 5	Asp

```
<210> 617
       <211> 6
       <212> PRT
 5
       <213> Homo sapiens
       <400> 617
                                     Gly Ala Arg Gly Pro Pro
                                                         5
10
       <210> 618
       <211> 6
       <212> PRT
       <213> Homo sapiens
15
       <400> 618
                                     Gly Pro Lys Gly Asp Ala
20
       <210> 619
       <211> 6
       <212> PRT
       <213> Homo sapiens
25
       <400> 619
                                     Pro Gly Pro Gln Gly His
                                                        5
                                     1
       <210> 620
       <211> 6
30
       <212> PRT
       <213> Homo sapiens
       <400> 620
35
                                     Gly Ile Thr Gly Ala Arg
                                     1
       <210> 621
       <211> 6
40
       <212> PRT
       <213> Homo sapiens
       <400> 621
                                     Gly Ser Arg Gly Ala Pro
                                                         5
45
       <210> 622
       <211>6
       <212> PRT
50
       <213> Homo sapiens
       <400> 622
                                     Gly Ala Pro Gly Glu Lys
                                                        5
                                     1
55
       <210> 623
       <211> 6
       <212> PRT
       <213> Homo sapiens
60
```

	<400> 623						
		Pro 1	Gln	Gly	Leu	Gln 5	Gly
5	<210> 624 <211> 6 <212> PRT <213> Homo sapiens						
10	<400> 624	_	~ 1		_	~ 1	
		Lys 1	Gly	Ser	Pro	GLy 5	Ala
15	<210> 625 <211> 6 <212> PRT <213> Homo sapiens						
20	<400> 625						
		Pro 1	Gly	Pro	Gln	Gly 5	Pro
25	<210> 626 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 626						
30		Gly 1	Pro	Thr	Gly	Pro 5	Ile
35	<210> 627 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 627						
40		Gly 1	Ser	Pro	Gly	Glu 5	Arg
40	<210> 628 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 628						
		Gly 1	Ser	Pro	Gly	Ala 5	Gln
50	<210> 629 <211> 6 <212> PRT <213> Homo sapiens						
55	<400> 629						
		Gly 1	Leu	Ala	Gly	Pro 5	Pro

5	<210> 630 <211> 6 <212> PRT <213> Homo sapiens <400> 630						
		Gly 1	Ala	Pro	Gly	Glu 5	Lys
10	<210> 631 <211> 6 <212> PRT <213> Homo sapiens						
15	<400> 631						
		Gly 1	Met	Pro	Gly	Pro 5	Arg
20	<210> 632 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 632						
		Pro 1	Gly	Pro	Leu	Gly 5	Ile
30	<210> 633 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 633						
35		Gly	Asn	Arg	Gly	Glu	Arg
		1				5	
40	<210> 634 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 634						
		Pro 1	Ser	Gly	Pro	Pro 5	Gly
50	<210> 635 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 635						
55		Gly 1	Leu	Pro	Gly	Leu 5	Ala
60	<210> 636 <211> 6 <212> PRT <213> Homo sapiens						

	<400> 636						
		Pro 1	Gly	Pro	Pro	Gly 5	Thr
5	<210> 637 <211> 6 <212> PRT <213> Homo sapiens	-				Ü	
10	<400> 637	~]	_	_	6 3	_	~ 3
		G1y 1	Pro	Pro	GIY	Pro 5	GIn
15	<210> 638 <211> 6 <212> PRT <213> Homo sapiens						
20	<400> 638						
		Phe 1	Pro	Gly	Met	Lys 5	Gly
25	<210> 639 <211> 6 <212> PRT <213> Homo sapiens						
30	<400> 639						
		Gly 1	Pro	Pro	Gly	Ile 5	Cys
35	<210> 640 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 640						
40		Gly 1	Pro	Pro	Gly	Ile 5	Cys
45	<210> 641 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 641						
50		Gly 1	Ala	Pro	Gly	Leu 5	Met
50	<210> 642 <211> 6 <212> PRT <213> Homo sapiens						
55	<400> 642						
		Glu 1	Pro	Gly	Pro	Arg 5	Gly

```
<210> 643
       <211> 6
       <212> PRT
 5
       <213> Homo sapiens
       <400> 643
                                     Gly His Arg Gly Phe Asp
10
       <210> 644
       <211> 6
       <212> PRT
       <213> Homo sapiens
15
       <400> 644
                                     Gly Ala Ala Gly Ile Lys
20
       <210> 645
       <211> 6
       <212> PRT
       <213> Homo sapiens
25
       <400> 645
                                     Gly Glu Pro Gly Pro Arg
                                                        5
       <210> 646
       <211> 6
30
       <212> PRT
       <213> Homo sapiens
       <400> 646
35
                                     Gly Ile Pro Gly Ala Pro
                                                        5
                                     1
       <210> 647
       <211> 6
40
       <212> PRT
       <213> Homo sapiens
       <400> 647
                                     Gly Ala Pro Gly Leu Met
                                                        5
45
       <210> 648
       <211>6
       <212> PRT
50
       <213> Homo sapiens
       <400> 648
                                     Thr Gly Ala Arg Gly Leu
                                                        5
                                     1
55
       <210> 649
       <211> 6
       <212> PRT
       <213> Homo sapiens
60
```

	<400> 649						
		Met 1	Pro	Gly	Pro	Arg 5	Gly
5	<210> 650 <211> 6 <212> PRT <213> Homo sapiens						
10	<400> 650						
		Gly 1	Met	Lys	Gly	His 5	Arg
15	<210> 651 <211> 6 <212> PRT <213> Homo sapiens						
20	<400> 651						
		Gly 1	Pro	Gln	Gly	Val 5	Lys
25	<210> 652 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 652						
30		Pro 1	Gly	Ala	Asn	Gly 5	Leu
35	<210> 653 <211> 6 <212> PRT <213> Homo sapiens <400> 653						
	~400 ~ 000	Gly	Thr	Gly	Gly	Pro	Pro
40	<210> 654 <211> 6 <212> PRT	1				5	
45	<213> Homo sapiens <400> 654						
	44007 004	Gly 1	Pro	Pro	Gly	Pro 5	Arg
50	<210> 655 <211> 6 <212> PRT <213> Homo sapiens						
55	<400> 655						
		Gly 1	Gly	Lys	Gly	Glu 5	Arg
	<210> 656						

```
<211>6
       <212> PRT
       <213> Homo sapiens
5
       <400> 656
                                   Pro Gln Gly Val Lys Gly
       <210>657
       <211> 6
10
       <212> PRT
       <213> Homo sapiens
       <400> 657
15
                                    Pro Gly Ala Asn Gly Leu
       <210> 658
       <211> 161
20
       <212> PRT
       <213> Homo sapiens
       <400> 658
                Met Glu Lys Leu Cys Phe Leu Val Leu Thr Ser Leu Ser His Ala
                Phe Gly Gln Thr Asp Met Ser Arg Lys Ala Phe Val Phe Pro Lys Glu
                                                 25
                Ser Asp Thr Ser Tyr Val Ser Leu Lys Ala Pro Leu Thr Lys Pro Leu
                Lys Ala Phe Thr Val Cys Leu His Phe Tyr Thr Glu Leu Ser Ser Thr
                Arg Gly Thr Val Phe Ser Arg Met Pro Pro Arg Asp Lys Thr Met Arg
                Phe Phe Ile Phe Trp Ser Lys Asp Ile Gly Tyr Ser Phe Thr Val Gly
                                 85
                Gly Ser Glu Ile Leu Phe Glu Val Pro Glu Val Thr Val Ala Pro Val
                                                 105
                His Ile Cys Thr Ser Trp Glu Ser Ala Ser Gly Ile Val Glu Phe Trp
                        115
                                             120
                Val Asp Gly Lys Pro Arg Val Arg Lys Ser Leu Lys Lys Gly Tyr Thr
                                        135
                Val Gly Ala Glu Ala Ser Ile Ile Leu Gly Gln Glu Gln Asp Ser Phe
                145
                                     150
                                                         155
                Gly
25
       <210> 659
       <211> 317
       <212> PRT
30
       <213> Homo sapiens
       <400>659
```

Met Lys Val Leu Trp Ala Ala Leu Leu Val Thr Phe Leu Ala Gly Cys Gln Ala Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu Arg Gln Gln Thr Glu Trp Gln Ser Gly Gln Arg Trp Glu Leu Ala Leu Gly Arg Phe Trp Asp Tyr Leu Arg Trp Val Gln Thr Leu Ser Glu Gln 5.5 Val Gln Glu Glu Leu Leu Ser Ser Gln Val Thr Gln Glu Leu Arg Ala Leu Met Asp Glu Thr Met Lys Glu Leu Lys Ala Tyr Lys Ser Glu Leu 90 Glu Glu Gln Leu Thr Pro Val Ala Glu Glu Thr Arg Ala Arg Leu Ser 100 105 Lys Glu Leu Gln Ala Ala Gln Ala Arg Leu Gly Ala Asp Met Glu Asp 120 Val Cys Gly Arg Leu Val Gln Tyr Arg Gly Glu Val Gln Ala Met Leu 135 Gly Gln Ser Thr Glu Glu Leu Arg Val Arg Leu Ala Ser His Leu Arg Lys Leu Arg Lys Arg Leu Leu Arg Asp Ala Asp Asp Leu Gln Lys Arg 170 Leu Ala Val Tyr Gln Ala Gly Ala Arg Glu Gly Ala Glu Arg Gly Leu 180 185 Ser Ala Ile Arg Glu Arg Leu Gly Pro Leu Val Glu Gln Gly Arg Val 200 Arg Ala Ala Thr Val Gly Ser Leu Ala Gly Gln Pro Leu Gln Glu Arg Ala Gln Ala Trp Gly Glu Arg Leu Arg Ala Arg Met Glu Glu Met Gly 230 235 Ser Arg Thr Arg Asp Arg Leu Asp Glu Val Lys Glu Gln Val Ala Glu 250 Val Arg Ala Lys Leu Glu Glu Gln Ala Gln Gln Ile Arg Leu Gln Ala 265 Glu Ala Phe Gln Ala Arg Leu Lys Ser Trp Phe Glu Pro Leu Val Glu Asp Met Gln Arg Gln Trp Ala Gly Leu Val Glu Lys Val Gln Ala Ala Val Gly Thr Ser Ala Ala Pro Val Pro Ser Asp Asn His 305 310 315

<210> 660 <211> 17 <212> PRT

```
<213> Homo sapiens
       <400> 660
             Ala Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu Arg
               1
                                  5
                                                        10
                                                                               15
               Gln
5
       <210> 661
       <211> 17
       <212> PRT
10
       <213> Homo sapiens
       <400> 661
             Ala Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu Arg
                                                     10
             Gln
15
       <210> 662
       <211> 16
       <212> PRT
       <213> Homo sapiens
20
       <400> 662
             Val Ala Glu Val Arg Ala Lys Leu Glu Glu Gln Ala Gln Gln Ile Arg
25
       <210>663
       <211> 17
       <212> PRT
       <213> Homo sapiens
       <400> 663
30
             Ala Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu Arg
                                                     10
             Gln
       <210> 664
       <211> 13
35
       <212> PRT
       <213> Homo sapiens
       <400> 664
40
                   Ala Met Leu Gly Gln Ser Thr Glu Glu Leu Arg Val Arg
                                     5
       <210> 665
       <211> 14
45
       <212> PRT
       <213> Homo sapiens
       <400> 665
                 Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu Arg Gln
                                   5
50
```

```
<210> 666
       <211> 14
       <212> PRT
       <213> Homo sapiens
5
       <400> 666
                 Arg Gln Gln Thr Glu Trp Gln Ser Gly Gln Arg Trp Glu Leu
10
       <210> 667
       <211> 18
       <212> PRT
       <213> Homo sapiens
       <400> 667
15
             Leu Ala Val Tyr Gln Ala Gly Ala Arg Glu Gly Ala Glu Arg Gly Leu
                               5
                                                      10
             Ser Ala
       <210> 668
20
       <211> 13
       <212> PRT
       <213> Homo sapiens
       <400> 668
25
                   Arg Ala Lys Leu Glu Glu Gln Ala Gln Gln Ile Arg Leu
                                      5
       <210> 669
       <211> 14
       <212> PRT
30
       <213> Homo sapiens
       <400> 669
                 Ala Lys Leu Glu Glu Gln Ala Gln Gln Ile Arg Leu Gln Ala
                                    5
35
       <210> 670
       <211> 17
       <212> PRT
40
       <213> Homo sapiens
       <400> 670
             Ala Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu Arg
                               5
                                                      10
             Gln
45
       <210> 671
       <211> 16
       <212> PRT
       <213> Homo sapiens
50
       <400> 671
             Lys Val Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu Arg Gln
                               5
                                                      10
55
       <210> 672
```

```
<211> 14
       <212> PRT
       <213> Homo sapiens
5
       <400> 672
                 Glu Gln Ala Val Glu Thr Glu Pro Glu Pro Glu Leu Arg Gln
                                                          10
       <210> 673
10
       <211> 16
       <212> PRT
       <213> Homo sapiens
       <400> 673
15
             Asp Glu Val Lys Glu Gln Val Ala Glu Val Arg Ala Lys Leu Glu Glu
                                                      10
       <210> 674
       <211> 16
       <212> PRT
20
       <213> Homo sapiens
       <400> 674
             Lys Glu Ser Asp Thr Ser Tyr Val Ser Leu Lys Ala Pro Leu Thr Lys
25
             1
                               5
                                                      10
                                                                            15
       <210> 675
       <211> 16
       <212> PRT
30
       <213> Homo sapiens
       <400> 675
             Gly Gly Asn Phe Glu Gly Ser Gln Ser Leu Val Gly Asp Ile Gly Asn
                                                      10
35
       <210> 676
       <211> 16
       <212> PRT
       <213> Homo sapiens
40
       <400> 676
            Ala Leu Lys Tyr Glu Val Gln Gly Glu Val Phe Thr Lys Pro Gln Leu
                                                      10
45
       <210> 677
       <211> 14
       <212> PRT
       <213> Homo sapiens
50
       <400> 677
                 Gly Ile Val Glu Phe Trp Val Asp Gly Lys Pro Arg Val Arg
                                                          10
       <210> 678
55
       <211> 10
       <212> PRT
       <213> Homo sapiens
       <400> 678
```

```
Arg Lys Ala Phe Val Phe Pro Lys Glu Ser
                                            5
       <210> 679
5
       <211> 16
       <212> PRT
       <213> Homo sapiens
       <400> 679
10
             Lys Tyr Glu Val Gln Gly Glu Val Phe Thr Lys Pro Gln Leu Trp Pro
                               5
                                                                            15
                                                      10
       <210> 680
       <211> 13
15
       <212> PRT
       <213> Homo sapiens
       <400> 680
                   Asp Ser Phe Gly Gly Asn Phe Glu Gly Ser Gln Ser Leu
20
                                      5
                                                            10
       <210> 681
       <211> 12
       <212> PRT
25
       <213> Homo sapiens
       <400> 681
                      Asp Phe Val Leu Ser Pro Asp Glu Ile Asn Thr Ile
30
                           1
                                             5
                                                                    10
       <210> 682
       <211> 13
       <212> PRT
35
       <213> Homo sapiens
       <400> 682
                   Ser Leu Lys Lys Gly Tyr Thr Val Gly Ala Glu Ala Ser
                                     5
                                                            10
40
       <210> 683
       <211> 12
       <212> PRT
45
       <213> Homo sapiens
       <400> 683
                      Ala Phe Gly Gln Thr Asp Met Ser Arg Lys Ala Phe
                                        5
50
       <210> 684
       <211> 14
       <212> PRT
       <213> Homo sapiens
55
       <400> 684
                 Ser Leu Lys Lys Gly Tyr Thr Val Gly Ala Glu Ala Ser Ile
                                   5
                                                          10
60
       <210> 685
```

```
<211> 11
       <212> PRT
       <213> Homo sapiens
 5
       <400> 685
                         Gly Glu Val Phe Thr Lys Pro Gln Leu Trp Pro
       <210> 686
10
       <211> 15
       <212> PRT
       <213> Homo sapiens
       <400> 686
15
               Ser Ile Ile Leu Gly Gln Glu Gln Asp Ser Phe Gly Gly Asn Phe
                                                         10
       <210> 687
       <211> 14
       <212> PRT
20
       <213> Homo sapiens
       <400> 687
                  Lys Tyr Glu Val Gln Gly Glu Val Phe Thr Lys Pro Gln Leu
                                    5
                  1
                                                            10
25
       <210> 688
       <211>6
       <212> PRT
30
       <213> Homo sapiens
       <400> 688
                                    Lys Val Glu Gln Ala Val
35
       <210> 689
       <211>6
       <212> PRT
       <213> Homo sapiens
40
       <400> 689
                                    Ala Glu Val Arg Ala Lys
       <210> 690
45
       <211>6
       <212> PRT
       <213> Homo sapiens
50
       <400> 690
                                    Met Leu Gly Gln Ser Thr
       <210> 691
55
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 691
60
```

		Gln 1	Ala	Val	Glu	Thr 5	Glu
5	<210> 692 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 692						
10		Gln 1	Gln	Thr	Glu	Trp 5	Gln
15	<210> 693 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 693						
		Ala 1	Val	Tyr	Gln	Ala 5	Gly
20	<210> 694 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 694						
		Ala 1	Lys	Leu	Glu	Glu 5	Gln
30	<210> 695 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 695						
		Lys 1	Leu	Glu	Glu	Gln 5	Ala
40	<210> 696 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 696						
		Val 1	Glu	Gln	Ala	Val 5	Glu
50	<210> 697 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 697						
55		Gln 1	Ala	Val	Glu	Thr 5	Glu
	<210> 698 <211> 6						

	<212> PRT <213> Homo sapiens						
5	<400> 698						
3		Glu 1	Val	Lys	Glu	Gln 5	Val
10	<210> 699 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 699						
15		Ala 1	Phe	Val	Phe	Pro 5	Lys
20	<210> 700 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 700						
		Tyr 1	Glu	Val	Gln	Gly 5	Glu
25	<210> 701 <211> 6 <212> PRT <213> Homo sapiens						
30	<400> 701						
		Lys 1	Ala	Phe	Val	Phe 5	Pro
35	<210> 702 <211> 6 <212> PRT <213> Homo sapiens						
40	<400> 702						
		Ser 1	Phe	Gly	Gly	Asn 5	Phe
45	<210> 703 <211> 6 <212> PRT <213> Homo sapiens						
50	<400> 703						
		Phe 1	Val	Leu	Ser	Pro 5	Asp
55	<210> 704 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 704						

		Leu 1	Lys	Lys	Gly	Tyr 5	Thr
5	<210> 705 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 705						
10		Phe 1	Gly	Gln	Thr	Asp 5	Met
15	<210> 706 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 706						
00		Leu 1	Lys	Lys	Gly	Tyr 5	Thr
20	<210> 707 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 707						
		Ile 1	Ile	Leu	Gly	Gln 5	Glu
30	<210> 708 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 708						
		Tyr 1	Glu	Val	Gln	Gly 5	Glu
40	<210> 709 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 709	Leu	Lvs	Tvr	Glu	Val	Gln
		1	210	-7-	014	5	0111
50	<210> 710 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 710						
55		Ile 1	Val	Glu	Phe	Trp 5	Val
	<210> 711 <211> 6						

	<212> PRT <213> Homo sapiens						
5	<400> 711	C1.,	Cor	7 an	mh r	Cor	Ш.т.х
		GIU 1	Ser	Asp	Tnr	Ser 5	Tyr
10	<210> 712 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 712	~1		_1	~ ·	~ 1	_
15		Gly 1	Asn	Phe	Glu	Gly 5	Ser
20	<210> 713 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 713						
05		Thr 1	Glu	Pro	Glu	Pro 5	Glu
25	<210> 714 <211> 6 <212> PRT <213> Homo sapiens						
30	<400> 714						
		Thr 1	Glu	Pro	Glu	Pro 5	Glu
35	<210> 715 <211> 6 <212> PRT <213> Homo sapiens						
40	<400> 715						_
		GIu 1	Gln	Ala	GIn	GIn 5	Ile
45	<210> 716 <211> 6 <212> PRT <213> Homo sapiens						
50	<400> 716						
		Thr 1	Glu	Glu	Leu	Arg 5	Val
55	<210> 717 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 717						

		Pro 1	Glu	Pro	Glu	Leu 5	Arg
5	<210> 718 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 718						
10		Ser 1	Gly	Gln	Arg	Trp 5	Glu
15	<210> 719 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 719						
20		Glu 1	Gly	Ala	Glu	Arg 5	Gly
20	<210> 720 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 720						
		Gln 1	Ala	Gln	Gln	Ile 5	Arg
30	<210> 721 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 721						
		Gln 1	Gln	Ile	Arg	Leu 5	Gln
40	<210> 722 <211> 6 <212> PRT <213> Homo sapiens						
45	<400> 722						
		Glu 1	Pro	Glu	Pro	Glu 5	Leu
50	<210> 723 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 723						
55		Pro 1	Glu	Pro	Glu	Leu 5	Arg
	<210> 724 <211> 6 <212> PRT						

```
<213> Homo sapiens
       <400> 724
                                     Glu Val Arg Ala Lys Leu
5
       <210> 725
       <211> 7
       <212> PRT
10
       <213> Homo sapiens
       <400> 725
                                   Lys Ala Phe Val Phe Pro Lys
15
       <210> 726
       <211> 6
       <212> PRT
       <213> Homo sapiens
20
       <400> 726
                                     Ala Phe Val Phe Pro Lys
                                                        5
25
       <210> 727
       <211> 6
       <212> PRT
       <213> Homo sapiens
30
       <400> 727
                                     Lys Pro Gln Leu Trp Pro
       <210> 728
35
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 728
40
                                     Phe Val Phe Pro Lys Glu
       <210> 729
       <211> 6
45
       <212> PRT
       <213> Homo sapiens
       <400> 729
                                     Pro Asp Glu Ile Asn Thr
                                                        5
50
       <210> 730
       <211> 6
       <212> PRT
55
       <213> Homo sapiens
       <400> 730
                                     Asp Met Ser Arg Lys Ala
                                                        5
                                     1
```

5	<210> 731 <211> 6 <212> PRT <213> Homo sapiens						
	<400> 731						
10	<210> 732 <211> 6	Val 1	Gly	Ala	Glu	Ala 5	Ser
15	<212> PRT <213> Homo sapiens <400> 732						
		Lys 1	Pro	Gln	Leu	Trp 5	Pro
20	<210> 733 <211> 6 <212> PRT <213> Homo sapiens						
25	<400> 733						
		Asp 1	Ser	Phe	Gly	Gly 5	Asn
30	<210> 734 <211> 6 <212> PRT <213> Homo sapiens						
35	<400> 734						
		Val 1	Phe	Thr	Lys	Pro 5	Gln
40	<210> 735 <211> 757 <212> PRT <213> Homo sapiens						
	<400> 735						

Met 1	Ala	Gly	Leu	Thr 5	Ala	Ala	Ala	Pro	Arg 10	Pro	Gly	Val	Leu	Leu 15	Leu
Leu	Leu	Ser	Ile 20	Leu	His	Pro	Ser	Arg 25	Pro	Gly	Gly	Val	Pro 30	Gly	Ala
Ile	Pro	Gly 35	Gly	Val	Pro	Gly	Gly 40	Val	Phe	Tyr	Pro	Gly 45	Ala	Gly	Leu
Gly	Ala 50	Leu	Gly	Gly	Gly	Ala 55	Leu	Gly	Pro	Gly	Gly 60	Lys	Pro	Leu	Lys
Pro 65	Val	Pro	Gly	Gly	Leu 70	Ala	Gly	Ala	Gly	Leu 75	Gly	Ala	Gly	Leu	Gly 80
Ala	Phe	Pro	Ala	Val 85	Thr	Phe	Pro	Gly	Ala 90	Leu	Val	Pro	Gly	Gly 95	Val
Ala	Asp	Ala	Ala 100	Ala	Ala	Tyr	Lys	Ala 105	Ala	Lys	Ala	Gly	Ala 110	Gly	Leu
Gly	Gly	Val 115	Pro	Gly	Val	Gly	Gly 120	Leu	Gly	Val	Ser	Ala 125	Gly	Ala	Val
Val	Pro 130	Gln	Pro	Gly	Ala	Gly 135	Val	Lys	Pro	Gly	Lys 140	Val	Pro	Gly	Val
Gly 145	Leu	Pro	Gly	Val	Tyr 150	Pro	Gly	Gly	Val	Leu 155	Pro	Gly	Ala	Arg	Phe 160
Pro	Gly	Val	Gly	Val 165	Leu	Pro	Gly	Val	Pro 170	Thr	Gly	Ala	Gly	Val 175	Lys
Pro	Lys	Ala	Pro 180	Gly	Val	Gly	Gly	Ala 185	Phe	Ala	Gly	Ile	Pro 190	Gly	Val
Gly	Pro	Phe 195	Gly	Gly	Pro	Gln	Pro 200	Gly	Val	Pro	Leu	Gly 205	Tyr	Pro	Ile
Lys	Ala 210	Pro	Lys	Leu	Pro	Gly 215	Gly	Tyr	Gly	Leu	Pro 220	Tyr	Thr	Thr	Gly
Lys 225	Leu	Pro	Tyr	Gly	Tyr 230	Gly	Pro	Gly	Gly	Val 235	Ala	Gly	Ala	Ala	Gly 240
Lys	Ala	Gly	Tyr	Pro 245	Thr	Gly	Thr	Gly	Val 250	Gly	Pro	Gln	Ala	Ala 255	Ala
Ala	Ala	Ala	Ala 260	Lys	Ala	Ala	Ala	Lys 265	Phe	Gly	Ala	Gly	Ala 270	Ala	Gly
Val	Leu	Pro 275	Gly	Val	Gly	Gly	Ala 280	Gly	Val	Pro	Gly	Val 285	Pro	Gly	Ala
Ile	Pro	Gly	Ile	Gly	Gly	Ile	Ala	Gly	Val	Gly	Thr	Pro	Ala	Ala	Ala

	290					295					300				
Ala 305	Ala	Ala	Ala	Ala	Ala 310	Ala	Lys	Ala	Ala	Lys 315	Tyr	Gly	Ala	Ala	Ala 320
Gly	Leu	Val	Pro	Gly 325	Gly	Pro	Gly	Phe	Gly 330	Pro	Gly	Val	Val	Gly 335	Val
Pro	Gly	Ala	Gly 340	Val	Pro	Gly	Val	Gly 345	Val	Pro	Gly	Ala	Gly 350	Ile	Pro
Val	Val	Pro 355	Gly	Ala	Gly	Ile	Pro 360	Gly	Ala	Ala	Val	Pro 365	Gly	Val	Val
Ser	Pro 370	Glu	Ala	Ala	Ala	Lys 375	Ala	Ala	Ala	Lys	Ala 380	Ala	Lys	Tyr	Gly
Ala 385	Arg	Pro	Gly	Val	Gly 390	Val	Gly	Gly	Ile	Pro 395	Thr	Tyr	Gly	Val	Gly 400
Ala	Gly	Gly	Phe	Pro 405	Gly	Phe	Gly	Val	Gly 410	Val	Gly	Gly	Ile	Pro 415	Gly
Val	Ala	Gly	Val 420	Pro	Ser	Val	Gly	Gly 425	Val	Pro	Gly	Val	Gly 430	Gly	Val
Pro	Gly	Val 435	Gly	Ile	Ser	Pro	Glu 440	Ala	Gln	Ala	Ala	Ala 445	Ala	Ala	Lys
Ala	Ala 450	Lys	Tyr	Gly	Val	Gly 455	Thr	Pro	Ala	Ala	Ala 460	Ala	Ala	Lys	Ala
Ala 465	Ala	Lys	Ala	Ala	Gln 470	Phe	Gly	Leu	Val	Pro 475	Gly	Val	Gly	Val	Ala 480
Pro	Gly	Val	Gly	Val 485	Ala	Pro	Gly	Val	Gly 490	Val	Ala	Pro	Gly	Val 495	Gly
Leu	Ala	Pro	Gly 500	Val	Gly	Val	Ala	Pro 505	Gly	Val	Gly	Val	Ala 510	Pro	Gly
Val	Gly	Val 515	Ala	Pro	Gly	Ile	Gly 520	Pro	Gly	Gly	Val	Ala 525	Ala	Ala	Ala
Lys	Ser 530	Ala	Ala	Lys	Val	Ala 535	Ala	Lys	Ala	Gln	Leu 540	Arg	Ala	Ala	Ala
Gly 545	Leu	Gly	Ala	Gly	Ile 550	Pro	Gly	Leu	Gly	Val 555	Gly	Val	Gly	Val	Pro 560
Gly	Leu	Gly	Val	Gly 565	Ala	Gly	Val	Pro	Gly 570	Leu	Gly	Val	Gly	Ala 575	Gly
Val	Pro	Gly	Phe 580	Gly	Ala	Gly	Ala	Asp 585	Glu	Gly	Val	Arg	Arg 590	Ser	Leu
Ser	Pro	Glu 595	Leu	Arg	Glu	Gly	Asp 600	Pro	Ser	Ser	Ser	Gln 605	His	Leu	Pro
Ser	Thr 610	Pro	Ser	Ser	Pro	Arg 615	Val	Pro	Gly	Ala	Leu 620	Ala	Ala	Ala	Lys

```
Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly Gly Leu Gly
           Ala Leu Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly Ala Gly Pro
                            645
                                                 650
           Ala Ala Ala Ala Ala Ala Lys Ala Ala Lys Ala Ala Gln Phe
                                            665
           Gly Leu Val Gly Ala Ala Gly Leu Gly Gly Leu Gly Val Gly Gly Leu
                                        680
           Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro Ala Ala Ala
                                    695
           Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val Leu Gly
                                                     715
           Gly Ala Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg Pro Gly Phe
           Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys Ala Cys
                                             745
           Gly Arg Lys Arg Lys
                   755
      <210> 736
      <211> 20
      <212> PRT
5
      <213> Homo sapiens
      <400> 736
           Ala Arg Pro Gly Val Gly Val Gly Ile Pro Thr Tyr Gly Val Gly
           Ala Gly Gly Phe
10
      <210> 737
      <211> 17
      <212> PRT
15
      <213> Homo sapiens
      <400> 737
            Gly Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro Gly
           Gly
20
      <210> 738
      <211> 25
      <212> PRT
      <213> Homo sapiens
25
      <400> 738
```

```
Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro
                              5
            Gly Ile Gly Pro Gly Gly Val Ala Ala
                         20
       <210> 739
       <211> 23
5
       <212> PRT
       <213> Homo sapiens
       <400> 739
             Gly Gly Ala Gly Val Pro Gly Val Pro Gly Ala Ile Pro Gly Ile Gly
                               5
                                                    10
             Gly Ile Ala Gly Val Gly Thr
                          20
10
       <210> 740
       <211> 23
       <212> PRT
15
       <213> Homo sapiens
       <400> 740
             Gly Gly Ala Gly Val Pro Gly Val Pro Gly Ala Ile Pro Gly Ile Gly
                                                    10
             Gly Ile Ala Gly Val Gly Thr
                          20
20
       <210> 741
       <211> 16
       <212> PRT
       <213> Homo sapiens
25
       <400> 741
            Gly Val Gly Ile Ser Pro Glu Ala Gln Ala Ala Ala Ala Lys Ala
30
       <210> 742
       <211> 16
       <212> PRT
       <213> Homo sapiens
35
       <400> 742
            Gly Val Gly Ile Ser Pro Glu Ala Gln Ala Ala Ala Ala Lys Ala
                                                    10
                                                                          15
       <210> 743
40
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 743
45
                                  Arg Pro Gly Val Gly Val
                                                    5
       <210> 744
       <211> 6
```

```
<212> PRT
       <213> Homo sapiens
       <400> 744
 5
                                     Leu Pro Tyr Thr Thr Gly
       <210> 745
       <211> 6
10
       <212> PRT
       <213> Homo sapiens
       <400> 745
                                     Val Ala Pro Gly Val Gly
                                                        5
                                     1
15
       <210> 746
       <211> 6
       <212> PRT
20
       <213> Homo sapiens
       <400> 746
                                     Gly Ala Gly Val Pro Gly
25
       <210> 747
       <211> 6
       <212> PRT
       <213> Homo sapiens
30
       <400> 747
                                     Val Gly Ile Ser Pro Glu
                                                        5
35
       <210> 748
       <211> 6
       <212> PRT
       <213> Homo sapiens
40
       <400> 748
                                     Arg Pro Gly Val Gly Val
                                                        5
                                     1
       <210> 749
45
       <211>6
       <212> PRT
       <213> Homo sapiens
       <400> 749
50
                                     Leu Pro Tyr Thr Thr Gly
                                                        5
       <210> 750
       <211> 6
55
       <212> PRT
       <213> Homo sapiens
       <400> 750
```

```
Gly Val Gly Ala Gly Gly
                                                       5
       <210> 751
       <211>6
       <212> PRT
 5
       <213> Homo sapiens
       <400> 751
                                    Tyr Gly Tyr Gly Pro Gly
                                                       5
10
       <210> 752
       <211> 6
       <212> PRT
15
       <213> Homo sapiens
       <400> 752
                                    Gly Pro Gly Gly Val Ala
20
       <210> 753
       <211> 6
       <212> PRT
       <213> Homo sapiens
25
       <400> 753
                                    Gly Ile Ala Gly Val Gly
                                    1
30
       <210> 754
       <211> 13
       <212> PRT
       <213> Homo sapiens
35
       <400> 754
                    Lys Asn Gly Glu Thr Gly Pro Gln Gly Pro Gly Cys
       <210> 755
       <211> 13
40
       <212> PRT
       <213> Homo sapiens
       <400> 755
45
                    Lys Asn Gly Glu Thr Gly Pro Gln Gly Pro Pro Gly Lys
                                      5
       <210> 756
       <211> 13
50
       <212> PRT
       <213> Homo sapiens
       <400> 756
                    Lys Asp Gly Glu Thr Gly Ala Ala Gly Pro Pro Gly Lys
                                       5
                                                             10
55
       <210> 757
```

```
<211> 13
       <212> PRT
       <213> Homo sapiens
5
       <400> 757
                    Lys Asp Gly Glu Ala Gly Ala Gln Gly Pro Pro Gly Lys
                                                             10
       <210> 758
10
       <211> 14
       <212> PRT
       <213> Homo sapiens
       <400> 758
15
                 Pro Gly Lys Asn Gly Glu Thr Pro Gly Pro Gln Gly Pro Lys
       <210> 759
       <211> 13
20
       <212> PRT
       <213> Homo sapiens
       <400> 759
                   Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Gly Gly Cys
                                      5
25
       <210> 760
       <211> 13
       <212> PRT
       <213> Homo sapiens
30
       <400> 760
                   Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Lys
                   1
35
       <210> 761
       <211> 13
       <212> PRT
       <213> Homo sapiens
40
       <400> 761
                   Ile Ala Gly Leu Thr Gly Ala Arg Gly Leu Ala Gly Lys
45
       <210> 762
       <211> 15
       <212> PRT
       <213> Homo sapiens
50
       <400> 762
               Leu Gly Ile Ala Gly Ile Thr Gly Ala Arg Gly Leu Ala Gly Lys
       <210> 763
55
       <211> 6
       <212> PRT
       <213> Homo sapiens
       <400> 763
```

```
Lys Asp Gly Thr Ser Gly
                                    1
       <210> 764
 5
       <211> 13
       <212> PRT
       <213> Homo sapiens
       <400> 764
10
                    Lys Asp Gly Thr Ser Gly His Pro Gly Pro Gly Cys
                                       5
       <210> 765
       <211> 13
<212> PRT
15
       <213> Homo sapiens
       <400> 765
                    Lys Asp Gly Thr Ser Gly His Pro Gly Pro Ile Gly Lys
20
       <210> 766
       <211> 13
       <212> PRT
25
       <213> Homo sapiens
       <400> 766
                    Lys Asp Gly Ser Ser Gly His Pro Gly Pro Ile Gly Lys
                                       5
30
       <210> 767
       <211> 13
<212> PRT
       <213> Homo sapiens
35
       <400> 767
                    Pro Gly Lys Asp Gly Thr Ser Gly His Pro Gly Pro Lys
                                       5
40
       <210> 768
       <211> 13
       <212> PRT
       <213> Homo sapiens
45
       <400> 768
                    Cys Gly Gly Pro Pro Gly Ala Pro Gly Pro Leu Gly
                                       5
50
       <210> 769
       <211> 12
       <212> PRT
       <213> Homo sapiens
55
       <400> 769
                      Ala Gln Gly Pro Pro Gly Ala Pro Gly Pro Leu Gly
                                         5
                                                                10
```

```
<210> 770
       <211> 12
       <212> PRT
       <213> Homo sapiens
5
       <400> 770
                      Ala Gln Gly Pro Pro Gly Ser Pro Gly Pro Leu Gly
                                         5
10
       <210> 771
       <211> 12
       <212> PRT
       <213> Homo sapiens
       <400> 771
15
                      Asp Asp Gly Pro Ser Gly Ala Glu Gly Pro Pro Gly
       <210> 772
20
       <211> 12
       <212> PRT
       <213> Homo sapiens
       <400> 772
25
                      Gly Pro Pro Gly Ala Pro Gly Pro Leu Gly Ile Ala
                                         5
       <210> 773
       <211> 13
       <212> PRT
30
       <213> Homo sapiens
       <400> 773
                    Asn Thr Gly Ala Pro Gly Ser Pro Gly Val Cys Gly Gly
35
       <210> 774
       <211> 13
       <212> PRT
       <213> Homo sapiens
40
       <400> 774
                    Asn Thr Gly Ala Pro Gly Ser Pro Gly Val Ser Gly Lys
                    1
                                       5
                                                             10
45
       <210> 775
       <211> 13
       <212> PRT
       <213> Homo sapiens
50
       <400> 775
                    Asn Ser Gly Ser Pro Gly Asn Pro Gly Val Ala Gly Lys
                    1
                                                              10
55
       <210> 776
       <211> 12
       <212> PRT
       <213> Homo sapiens
```

```
<400> 776
                      Ala Gly Asn Thr Gly Ala Pro Gly Ser Pro Gly Val
                                         5
5
       <210> 777
       <211> 13
       <212> PRT
       <213> Homo sapiens
10
       <400> 777
                    Ala Ile Gly Pro Ser Gly Pro Ala Gly Lys Gly Gly Cys
                    1
                                                              10
       <210> 778
15
       <211> 13
       <212> PRT
       <213> Homo sapiens
       <400> 778
20
                    Ala Ile Gly Pro Ser Gly Pro Ala Gly Lys Asp Gly Lys
                                      5
                                                              10
       <210> 779
       <211> 13
25
       <212> PRT
       <213> Homo sapiens
       <400> 779
                    Ala Ile Gly Pro Ala Gly Pro Ala Gly Lys Asp Gly Lys
                                                             10
30
       <210> 780
       <211> 13
       <212> PRT
35
       <213> Homo sapiens
       <400> 780
                    Pro Gly Ala Ile Gly Pro Ser Gly Pro Ala Gly Lys Asp
                                      5
                                                             10
40
       <210> 781
       <211> 6
       <212> PRT
       <213> Homo sapiens
45
       <400> 781
                                    Ala Gly Gly Phe Ala Pro
                                                      5
                                    1
       <210> 782
50
       <211> 11
       <212> PRT
       <213> Homo sapiens
55
       <400> 782
                        Cys Gly Gly Glu Lys Ala Gly Gly Phe Ala Pro
                                           5
                                                                  10
       <210> 783
```

```
<211> 10
       <212> PRT
       <213> Homo sapiens
 5
       <400> 783
                           Cys Gly Glu Lys Ala Gly Gly Phe Ala Pro
       <210> 784
10
       <211> 10
       <212> PRT
       <213> Homo sapiens
       <400> 784
15
                           Cys Gly Glu Lys Ser Gly Gly Phe Ser Pro
       <210> 785
       <211> 12
20
       <212> PRT
       <213> Homo sapiens
       <400> 785
                       Gly Gly Glu Lys Ala Gly Gly Phe Ala Pro Tyr Tyr
                                         5
25
       <210> 786
       <211>6
       <212> PRT
30
       <213> Homo sapiens
       <400> 786
                                     Gln Asn Gly Asn Ile Lys
35
       <210> 787
       <211> 13
       <212> PRT
       <213> Homo sapiens
40
       <400> 787
                    Ile Val Ile Glu Leu Gly Thr Asn Pro Leu Gly Gly Cys
                                                              10
       <210> 788
45
       <211> 13
       <212> PRT
       <213> Homo sapiens
50
       <400> 788
                    Ile Val Ile Glu Leu Gly Thr Asn Pro Leu Lys Ser Lys
                                                              10
       <210> 789
55
       <211> 13
       <212> PRT
       <213> Homo sapiens
       <400> 789
```

```
Leu Val Ile Glu Leu Gly Gly Asn Pro Leu Lys Asn Lys
       <210> 790
5
       <211> 13
       <212> PRT
       <213> Homo sapiens
       <400> 790
10
                   Ile Val Val Glu Leu Gly Gly Asn Pro Leu Thr Asn Lys
                                      5
                   1
       <210> 791
       <211> 14
15
       <212> PRT
       <213> Homo sapiens
       <400> 791
                 Gln Met Ile Val Ile Glu Leu Gly Thr Asn Pro Leu Lys Lys
                                   5
20
       <210> 792
       <211> 13
       <212> PRT
25
       <213> Homo sapiens
       <400> 792
                   Asn Val Leu Val Ile Glu Leu Gly Gly Asn Pro Leu Lys
                                      5
                                                             10
30
       <210> 793
       <211> 13
       <212> PRT
       <213> Homo sapiens
35
       <400> 793
                   Cys Gly Gly Leu Asp Leu Gln Asn Asn Asp Ile Ser Glu
                                      5
                                                             10
40
       <210> 794
       <211> 12
       <212> PRT
       <213> Homo sapiens
       <400> 794
45
                      Thr Leu Leu Asp Leu Gln Asn Asn Asp Ile Ser Glu
                                        5
                      1
                                                               10
       <210> 795
       <211> 12
50
       <212> PRT
       <213> Homo sapiens
       <400> 795
55
                      Leu Asp Leu Gln Asn Asn Asp Ile Ser Glu Leu Arg
       <210> 796
       <211> 16
```

```
<212> PRT
       <213> Homo sapiens
       <400> 796
 5
             Gln Asn Gly Asn Ile Lys Ile Gly Gln Asp Gly Gly Cys Lys Leu His
                                                      10
       <210> 797
       <211> 12
<212> PRT
10
       <213> Homo sapiens
       <400> 797
                      Gln Asn Gly Asn Ile Lys Ile Gly Gln Asp Tyr Lys
                                         5
15
       <210> 798
       <211> 12
       <212> PRT
20
       <213> Homo sapiens
       <400> 798
                      Gln Asp Gly Asn Ile Lys Ile Gly Gln Asp Tyr Lys
                                         5
                                                                10
25
       <210> 799
       <211> 13
       <212> PRT
       <213> Homo sapiens
30
       <400> 799
                    Val Ala Gln Asn Gly Asn Ile Lys Ile Gly Gln Asp Lys
35
       <210> 800
       <211> 13
       <212> PRT
       <213> Homo sapiens
40
       <400> 800
                    Val Ala Gln Asp Gly Asn Ile Lys Ile Gly Gln Asp Lys
                    1
                                      5
                                                             10
```

REIVINDICACIONES

- 1. Un procedimiento de bioensayo para la cuantificación de fragmentos peptídicos que comprende un neoepítopo formado por **escisión** de colágeno de tipo III mediante MMP-1, MMP-3, MMP-8, MMP-9, MMP-13, Catepsina K, Catepsina S, ADAMTS1, ADAMTS4 o ADAMTS8, comprendiendo dicho procedimiento poner en contacto una muestra que comprende dichos fragmentos peptídicos con un anticuerpo monoclonal que tiene afinidad de unión específica por dicho neoepítopo y determinar el nivel de unión de dicho anticuerpo monoclonal a fragmentos peptídicos en dicha muestra, en el que dicho anticuerpo monoclonal no es reactivo con el colágeno de tipo III inalterado,
- 10 en el que dicho anticuerpo monoclonal tiene una afinidad de unión específica por la secuencia del neoepítopo Nterminal KNGETG y no es reactivo con una versión N-prolongada de dicho péptido.
 - 2. Un procedimiento reivindicado en la reivindicación 1, en el que dicho procedimiento se realiza como un inmunoensayo de competencia en el que dicho anticuerpo monoclonal y un agente de competencia se incuban en presencia de dicha muestra y el agente de competencia compite con los fragmentos peptídicos en la muestra para unirse al anticuerpo monoclonal.
- 3. Un procedimiento reivindicado en la reivindicación 2, en el que dicho agente de competencia es un péptido sintético o es un péptido nativo purificado formado por escisión de la proteína de la que proviene dicho epítopo para revelar dicho neoepítopo.
 - 4. Un procedimiento reivindicado en una cualquiera de las reivindicaciones 1 a 3, en el que la muestra es una muestra de orina, suero, sangre o plasma.
- 5. Un procedimiento reivindicado en cualquier reivindicación precedente, en el que la muestra es una muestra procedente de un paciente, comprendiendo dicho procedimiento además comparar el nivel determinado de dicha unión de dichos fragmentos peptídicos con valores característicos de (a) individuos sanos comparables y/o (b) una afección ateroesclerótica patológica.
- 30 6. Un anticuerpo monoclonal contra un neoepítopo N-terminal formado por escisión mediante proteinasa de colágeno de tipo III, siendo el anticuerpo específicamente inmunorreactivo con la secuencia de neoepítopo N-terminal KNGETG y siendo no reactivo con una versión N-prolongada de dicho péptido.
 - 7. Una línea celular que produce un anticuerpo monoclonal reivindicado en la reivindicación 6.
 - 8. Un kit de inmunoensayo que comprende un anticuerpo monoclonal reivindicado en la reivindicación 6, y un agente de competencia que se une a dicho anticuerpo monoclonal y, opcionalmente, uno o más de un reactivo de lavado, un tampón, un reactivo de parada, un marcador enzimático, un sustrato marcador enzimático, patrones de calibración, un anticuerpo anti-ratón e instrucciones para realizar un ensayo usando dicho kit.

40

35

15

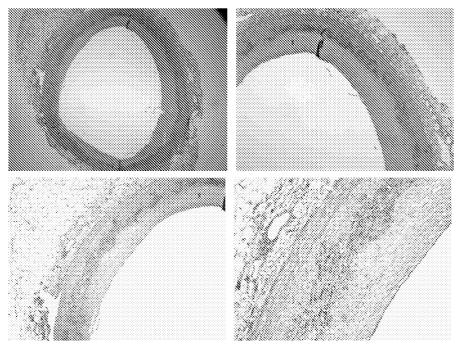


Figura 1

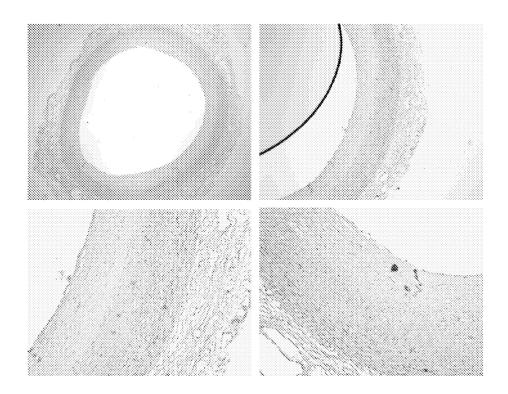


Figura 2

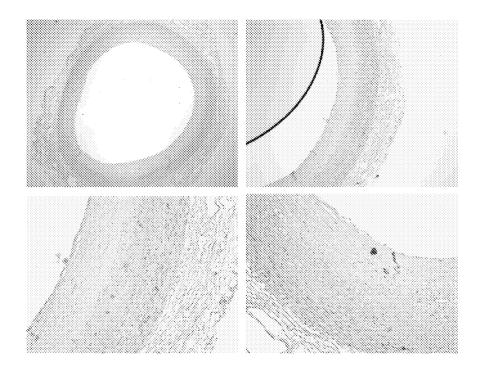


Figura 3

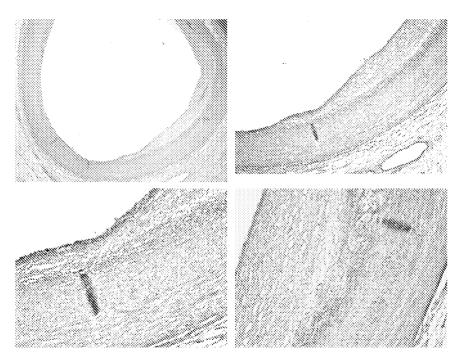


Figura 4

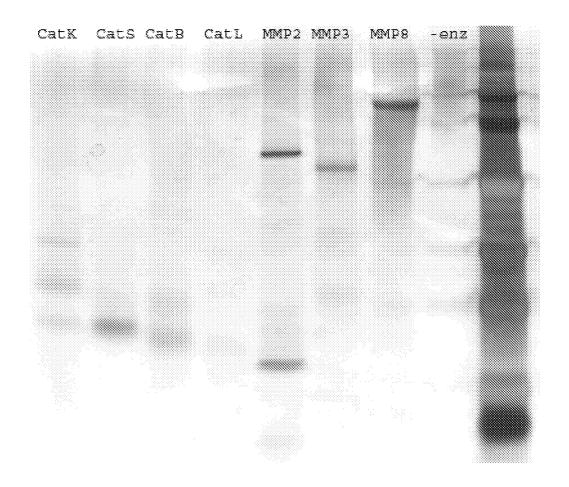


Figura 5

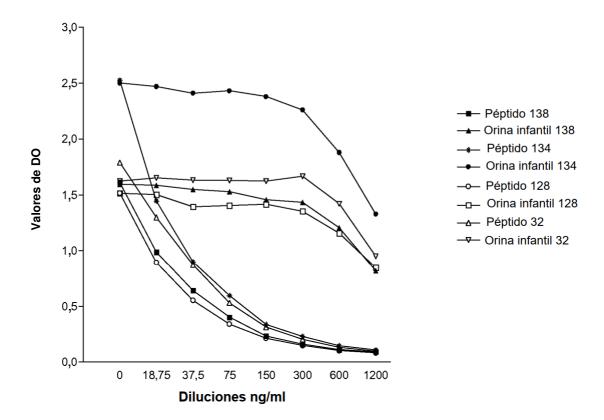


Figura 6

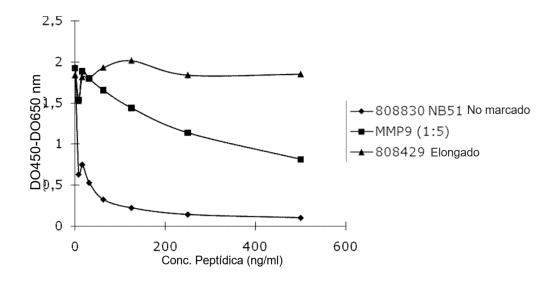


Figura 7

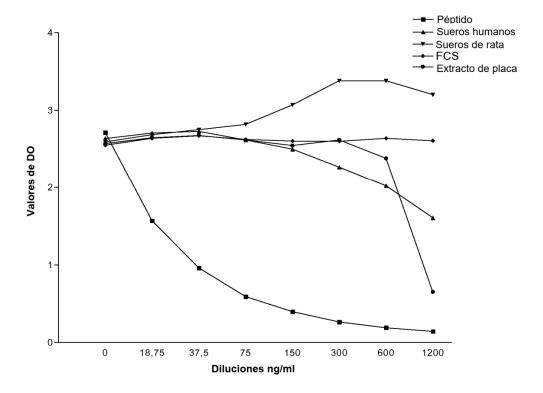


Figura 8

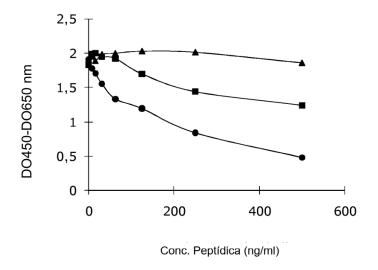


Figura 9

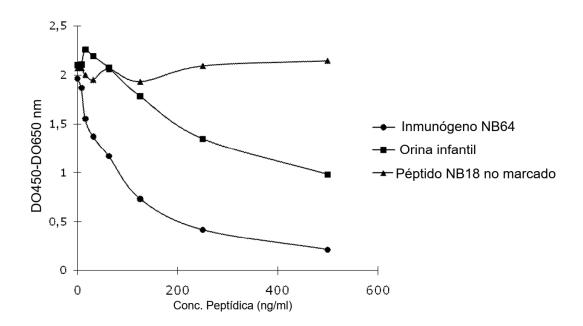


Fig 10

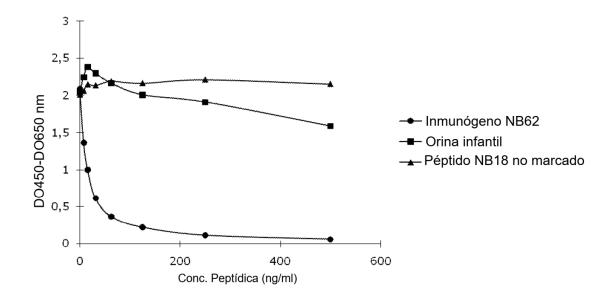


Fig 11