

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 787 475

51 Int. Cl.:

C12Q 1/6886 (2008.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 17.06.2004 E 18190058 (0)
 Fecha y número de publicación de la concesión europea: 01.04.2020 EP 3470535

(54) Título: Predicción de probabilidad de recurrencia del cáncer

(30) Prioridad:

24.06.2003 US 482339 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: **16.10.2020**

(73) Titular/es:

GENOMIC HEALTH, INC. (50.0%) 301 Penobscot Drive Redwood City, CA 94063, US y NSABP FOUNDATION, INC. (50.0%)

(72) Inventor/es:

BRYANT, JOHN L.; PAIK, SOONMYUNG; BAKER, JOFFRE y SHAK, STEVE

(74) Agente/Representante:

ISERN JARA, Jorge

DESCRIPCIÓN

Predicción de probabilidad de recurrencia del cáncer

Antecedentes de la invención

Campo de la invención

10

15

20

25

30

35

40

45

5 La presente divulgación presenta series de genes cuya expresión es importante en el diagnóstico y/o el pronóstico del cáncer.

Descripción de la técnica relacionada

Los oncólogos disponen de diversas opciones de tratamiento, incluyendo distintas combinaciones de fármacos quimioterapéuticos caracterizados como "protocolo de tratamiento", y diversos fármacos que no tienen indicación establecida para un cáncer en particular, pero para los que existe evidencia de eficacia en ese cáncer. Una mayor probabilidad de un buen resultado del tratamiento requiere que los pacientes sean asignados a un tratamiento del cáncer disponible óptimo, y que esa asignación se efectúe lo antes posible tras el diagnóstico.

Actualmente, los test de diagnóstico utilizados en la práctica clínica son de un solo analito, y por consiguiente no capturan el valor potencial de conocer las relaciones entre docenas de marcadores diferentes. Además, frecuentemente los tests de diagnóstico no son cuantitativos, basándose en la inmunohistoquímica. Este método a menudo aporta distintos resultados en diferentes laboratorios, en parte porque los reactivos no están estandarizados, y en parte porque las interpretaciones son subjetivas y no fácilmente cuantificadas. Los tests basados en ARN con frecuencia no se usan debido al problema de degradación del ARN con el paso del tiempo, y el hecho de que resulte difícil obtener muestras de tejido frescas de los pacientes para su análisis. El tejido embebido en parafina fijado es más fácilmente obtenible, y se han establecido métodos para detectar el ARN en tejido fijado. No obstante, típicamente estos métodos no permiten el estudio de grandes cifras de genes (ADN o ARN) de pequeñas cantidades de material. Por tanto, tradicionalmente se ha utilizado poco el tejido fijado, aparte de para la detección inmunohistoquímica de proteínas.

En los últimos años, varios grupos han publicado estudios sobre la clasificación de ciertos tipos de cáncer por análisis de expresión génica por microarrays (ver, p.ej., Golub et al., Science 286:531-537 (1999); Bhattacharjae et al., Proc. Natl. Acad. Sci. USA 98:13790-13795 (2001); Chen-Hsiang et al., Bioinformatics 17 (Suppl. 1):S316-S322 (2001); Ramaswamy etal., Proc. Natl. Acad. Sci. USA 98:15149-15154 (2001)). Se ha informado también de algunas clasificaciones de cánceres de mama humanos, basados en patrones de expresión génica (Martin et al, Cancer Res. 60:2232-2238 (2000); West et al., Proc. Natl. Acad. Sci. USA98:11462-11467 (2001); Sorlie etal., Proc. Natl. Acad. Sci. USA98:10869-10874 (2001); Yan et al., Cancer Res. 61:8375-8380 (2001)). No obstante, esos estudios se enfocan principalmente en mejorar y refinar la clasificación ya establecida de varios tipos de cáncer, incluyendo el cáncer de mama, y en general no proporcionan nueva información sobre las relaciones de los genes expresados diferencialmente, y no relacionan los hallazgos con estrategias de tratamiento, para mejorar los resultados clínicos de la terapia del cáncer.

Aunque la biología y bioquímica molecular modernas han revelado cientos de genes cuyas actividades influyen en el comportamiento de las células tumorales, el estado de su diferenciación y su sensibilidad o resistencia a determinados fármacos terapéuticos, con contadas excepciones, el estado de esos genes no ha sido explotado a efectos de la toma rutinaria de decisiones clínicas sobre tratamientos con fármacos. Una notable excepción es el uso de la expresión de la proteína del receptor de estrógenos (ER) en los carcinomas de mama para seleccionar pacientes para el tratamiento con fármacos antiestrogénicos, como tamoxifen. Otro ejemplo excepcional es el uso de la expresión de la proteína ErbB2 (Her2) en carcinomas de mama, para seleccionar pacientes con el fármaco antagonista de Her2 Her-ceptin® (Genentech, Inc., South San Francisco, CA).

A pesar de los recientes avances, el desafío del tratamiento del cáncer sigue siendo objetivar pautas de tratamiento específicas para tipos de tumores patogénicamente distintos, y en última instancia personalizar el tratamiento del tumor para maximizar los resultados. Por consiguiente, se necesitan tests que proporcionen simultáneamente información predictiva acerca de la respuesta del paciente a las diversas opciones de tratamiento. Esto es especialmente cierto en el cáncer de mama, cuya biología es poco conocida. Es evidente que la clasificación del cáncer de mama en algunos subgrupos, como el subgrupo ErbB2+, y subgrupos caracterizados por una baja o ausente expresión génica del receptor de estrógenos (ER), y algunos factores transcripcionales adicionales (Perou et. al., Nature 406:747-752 (2000)) no refleja la heterogeneidad celular y molecular del cáncer de mama, y no facilita el diseño de estrategias de tratamiento que maximicen la respuesta del paciente.

50 En particular, cuando a una paciente se le diagnostica un cáncer, como cáncer de mama u ovario, se necesitan en gran medida métodos que permitan al médico predecir el curso esperado de la enfermedad, incluyendo la probabilidad de recurrencia del cáncer, la supervivencia a largo plazo de la paciente, y similares, y seleccionar en consecuencia la opción de tratamiento más apropiada.

Bos et al. (Cancer, Vol. 97, No 6, 1573-1518, 2003) divulgan el uso de ARN HIF-a para predecir la probabilidad de supervivencia libre de enfermedad de una paciente con cáncer de mama nódulo negativo ductal invasivo. US2002/156263 divulga MELK (KIAA0175) como uno de un gran número de genes que se ha observado que se expresan diferencialmente en el cáncer de mama.

5 Resumen de la invención

10

15

20

30

35

40

45

La presente invención viene definida por las reivindicaciones adjuntas 1 a 8.

La presente invención considera el uso de material de biopsia embebido en parafina guardado, para el ensayo de todos los marcadores de la serie, y por consiguiente es compatible con el tipo de material de biopsia más ampliamente disponible. También es compatible con otros métodos distintos de obtención de tejido tumoral, por ejemplo, por biopsia con aguja gruesa, o aspiración con aguja fina. Además, para cada miembro de la serie de genes, la invención especifica las secuencias de oligonucleótidos que se pueden utilizar en el test.

En un aspecto, la presente invención se refiere a un método para predecir la probabilidad de supervivencia libre de enfermedad de una paciente con cáncer de mama nódulo negativo, ER positivo, ductal invasivo, comprendiendo la determinación del nivel de expresión de la transcripción de ARN de MELK en una célula o una muestra de tejido del cáncer de mama obtenidos de la paciente, normalizado contra el nivel de expresión de una serie de referencia de transcripciones de ARN, comparando el nivel de expresión normalizado de MELK de la paciente, con un nivel normalizado de expresión de MELK en una serie de referencia de tejido de cáncer de mama, comprendiendo pacientes que estaban (a) vivas sin recurrencia del cáncer de mama local, regional o distante, (b) vivas con recurrencia contralateral de cáncer de mama, (c) vivas con segundo cáncer primario no de mama, o (d) fallecieron antes de la recurrencia del cáncer de mama, donde un nivel aumentado de la expresión normalizada de MELK en la paciente indica una menor probabilidad de supervivencia libre de enfermedad.

En varias realizaciones, se determina el nivel de expresión de al menos 2, o al menos 5, o al menos 10, o al menos 15, o al menos 20 o al menos 25 transcripciones de ARN de pronóstico o sus productos de expresión.

En otra realización, el cáncer es cáncer de mama o cáncer de ovario.

El cáncer es cáncer de mama nódulo negativo, ER positivo. En otra realización, el ARN comprende ARN intrónico, Se determina el nivel de expresión de la transcripción de ARN de MELK, donde la expresión de MELK indica una menor probabilidad de supervivencia a largo plazo sin recurrencia del cáncer.

La invención consiste en un método de predicción de la probabilidad de supervivencia a largo plazo de una paciente con cáncer, sin recurrencia del cáncer, comprendiendo la determinación del nivel de expresión de transcripciones de ARN de MELK, en una célula cancerosa obtenida de dicha paciente, normalizado contra el nivel de expresión de todas las transcripciones de ARN o sus productos en la célula cancerosa, o de una serie de referencia de transcripciones de ARN o sus productos de expresión, donde el incremento en la expresión de MELK indica una menor probabilidad de supervivencia a largo plazo sin recurrencia del cáncer.

En una realización de este método, el ARN se aísla de una muestra de tejido del cáncer de mama de la paciente, se embebe en cera y se fija.

En otra realización, el ARN se aísla del tejido biopsiado con aguja gruesa, o células aspiradas con aguja fina.

En un aspecto diferente, la divulgación se refiere a un array que comprende la hibridación de polinucleótidos con dos o más de los siguientes genes: B_Catenina; BAG1; BIN1; BUB1; C20_orf1; CCNB1; CCNE2; CDC20; CDH1; CEGP1; CIAP1; cMYC; CTSL2; DKFZp586M07; DR5; EpCAM; EstR1; FOXM1; GRB7; GSTM1; GSTM3; HER2; HNRPAB; ID1; IGF1R; ITGA7; Ki_67; KNSL2; LMNB1; MCM2; MELK; MMP12; MMP9; MYBL2; NEK2; NME1; NPD009; PCNA; PR; PREP; PTTG1; RPLPO; Src; STK15; STMY3; SURV; TFRC; TOP2A; y TS, inmovilizado en una superficie sólida.

En un aspecto de la divulgación, el array comprende la hibridación de polinucleótidos en dos o más de los siguientes genes: MMP9, GSTM1, MELK, PR, DKFZp586M07, GSTM3, CDC20, CCNB1, STMY3, GRB7, MYBL2, CEGP1, SURV, LMNB1, CTSL2, PTTG1, BAG1, KNSL2, CIAP1, PREP, NEK2, EpCAM, PCNA, C20_orf1, ITGA7, ID1 B_Catenina, EstR1, CDH1, TS HER2, y cMYC.

En otro aspecto, el array comprende la hibridación de polinucleótidos en dos o más de los siguientes genes: GRB7, 40 SURV, PR, LMNB1, MYBL2, HER2, GSTM1, MELK, S20_orf1, PTTG1, BUB1, CDC20, CCNB1, STMY3, KNSL2, CTSL2, MCM2, NEK2, DR5, Ki_67, CCNE2, TOP2A, PCNA, PREP, FOXM1, NME1, CEGP1, BAG1, STK15, HNRPAB, EstR1, MMP9, DKFZp586M07, TS, Src, BIN1, NP009, RPLPO, GSTM3, MMP12, TFRC, e IGF1R.

50 En otro aspecto, los arrays comprenden la hibridación de polinucleótidos en al menos 3, o al menos 5, o al menos 10, o al menos 15, o al menos 20, o al menos 25 de los genes listados.

En otro aspecto más, los arrays comprenden la hibridación de polinucleótidos en todos los genes listados.

Y aún en otro aspecto más, los arrays comprenden más de una hibridación de polinucleótidos en el mismo gen.

En un aspecto adicional, os arrays comprenden secuencias basadas en intrones.

En otro aspecto, los polinucleótidos son ADNc (ADN complementario), que pueden, por ejemplo, tener aproximadamente una longitud de 500 a 5000 bases.

5 En otro aspecto más, los polinucleótidos son oligonucleótidos, que pueden, por ejemplo, tener aproximadamente una longitud de 20 a 80 bases.

Los arrays pueden, por ejemplo, inmovilizarse sobre vidrio, y pueden contener cientos de miles, por ej., 330.000 oligonucleótidos.

En otro aspecto, la divulgación se refiere a un método de predicción de la probabilidad de supervivencia a largo plazo de una paciente diagnosticada de cáncer de mama invasivo, sin recurrencia del cáncer de mama, comprendiendo los pasos de

- (a) determinar los niveles de expresión de las transcripciones de ARN, o los productos de expresión de genes de una serie de genes seleccionado del grupo compuesto por B_Catenina; BAG1; BIN1; BUB1; C20_orfl; CCNB1; CCNE2; CDC20; CDH1; CEGP1; CIAP1; cMYC; CTSL2; DKFZp586M07; DR5; EpCAM; EstR1; FOXM1; GRB7; GSTM1; GSTM3; HER2; HNRPAB; ID1; IGF1R; ITGA7; Ki_67; KNSL2; LMNB1; MCM2; MELK; MMP12; MMP9; MYBL2; NEK2; NME1; N-PD009; PCNA; PR; PREP; PTTG1; RPLPO; Src; STK15; STMY3; SURV; TFRC; TOP2A; y TS en una célula de cáncer de mama obtenida de la paciente, normalizado contra los niveles de expresión de todas las transcripciones de ARN o sus productos de expresión en dicha célula de cáncer de mama, o de una serie de referencia de transcripciones de ARN o sus productos;
- (b) someter los datos obtenidos en el paso (a) a análisis estadístico; y;
- (c) determinar si la probabilidad de dicha supervivencia a largo plazo ha aumentado o disminuido.

En otro aspecto más, la divulgación se refiere a un método de preparación de un perfil genómico personalizado para una paciente, comprendiendo los pasos de

- (a) someter ARN extraído de un tejido de mama obtenido de la paciente al análisis de expresión génica;
- (b) determinar el nivel de expresión en el tejido de uno o más genes seleccionados de la serie de genes del cáncer de mama listados en cualquiera de las Tablas 1 y 2, donde el nivel de expresión está normalizado con respecto a un gen o genes de control, y opcionalmente se compara con la cantidad hallada en un conjunto de tejidos de referencia del cáncer de mama; y
- (c) crear un informe resumiendo los datos obtenidos en dicho análisis de expresión génica. El tejido mamario puede comprender células de cáncer de mama.

En otra realización, el tejido mamario se obtiene de una muestra de biopsia embebida en parafina y fijada, en la que el ARN puede estar fragmentado.

El informe puede incluir la predicción de la probabilidad de supervivencia a largo plazo de la paciente, y/o una recomendación para una modalidad de tratamiento de dicha paciente.

En otro aspecto, la divulgación se refiere a un método para medir los niveles de productos de RNAm de los genes listados en las Tablas 1 y 2 por reacción de la cadena de polimerasa en tiempo real (RT-PCR), utilizando un amplicón listado en la Tabla, y un conjunto y un conjunto de sonda-cebador indicado en las Tablas 4A - 4D. 25

En otro aspecto más, la divulgación se refiere a un conjunto de sonda-cebador de PCR listado en las Tablas 4A - 4D, y un amplicón de PCR listado en la Tabla 3.

A. Definiciones

Salvo que se defina de otro modo, todos los términos técnicos y científicos utilizados aquí tienen el mismo significado que el que comúnmente entienden los expertos en la técnica a la que pertenece esta invención. Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, NY 1994), y March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, NY 1992), proporcionan a los expertos en la técnica una guía general sobre muchos de los términos utilizados en la presente solicitud.

20

15

25

30

40

45

35

Un experto en la técnica conocerá muchos métodos y materiales similares a los que se describen aquí, que podrían utilizarse en la práctica de la presente invención. La presente invención no se limita en modo alguno a los métodos y materiales descritos. A efectos de la presente invención, se definen a continuación los siguientes términos.

El término "microarray" se refiere a una disposición ordenada de elementos de array hibridables, de preferencia sondas de polinucleótidos, sobre un sustrato.

5

10

15

20

25

30

35

40

45

50

55

El término "polinucleótido", utilizado en singular o plural, se refiere en general a cualquier polirribonucleótido o polidesoxirribonucleótido, que puede ser ARN o ADN no modificado, o ARN o ADN modificado. Así, por ejemplo, los polinucleótidos, como se definen aquí, incluyen entre otros, ADN de cadena simple y doble, ADN incluyendo regiones de cadena simple y doble, ARN de cadena simple y doble y ARN incluyendo regiones de cadena simple y doble, moléculas híbridas comprendiendo ADN y ARN que pueden ser de cadena simple o, más típicamente, de cadena doble, o incluir regiones de cadena simple y doble. Además, el término "polinucleótido", como se utiliza aquí, se refiere a regiones de cadena triple comprendiendo ARN o ARN o ARN y ADN. Las cadenas de tales regiones pueden ser de la misma molécula o de moléculas distintas. Las regiones pueden incluir todas las de una o más de las moléculas, pero más típicamente incluyen solo una región de algunas de las moléculas. Una de las moléculas de una región de triple hélice es frecuentemente un oligonucleótido. El término "polinucleótido" incluye específicamente ADNcs. El término incluye ADNs (incluyendo ADNcs) y ARNs que contienen una o más bases modificadas. Así, tal como se aplica el término aquí, ADNs o ARNs con cadenas principales modificadas, por razones de estabilidad u otros motivos, son "polinucleótidos". Además, ADNs o ARNs comprendiendo bases inusuales, como la inosina, o bases modificadas, como bases tritiadas, se incluyen en el término "polinucleótidos", como se define aquí. En general, el término "polinucleótidos" comprende todas las formas modificadas guímica, enzimática y/o metabólicamente de polinucleótidos no modificados, así como las formas guímicas de ADN y ARN características de los virus y las células, incluyendo las células simples y complejas.

El término "oligonucleótido" se refiere a un polinucleótido relativamente corto, incluyendo, entre otros, desoxirribonucleótidos de cadena simple, ribonucleótidos de cadena simple o doble, híbridos de ARN:ADN y ADNs de cadena doble. Los oligonucleótidos, como los oligonucleótidos sonda de ADN de cadena simple, son frecuentemente sintetizados por métodos químicos, por ejemplo, sintetizadores de oligonucleótidos automáticos usmg, disponibles comercialmente. No obstante, los oligonucleótidos pueden hacerse por otros varios métodos, incluyendo técnicas in vitro mediadas por ADN recombinante, y por expresión de ADNs en células y organismos.

Los términos "gen expresado diferencialmente", "expresión génica diferencial" y sus sinónimos, que se utilizan intercambiablemente, se refieren a un gen cuya expresión es activada a un nivel superior o inferior, en un sujeto que padece una enfermedad, específicamente cáncer, como cáncer de mama, en relación con su expresión en un sujeto normal o de control. Los términos incluyen también genes cuya expresión es activada a un nivel superior o inferior en distintos estadios de la misma enfermedad. Se entiende también que un gen expresado diferencialmente puede ser activado o inhibido a nivel del ácido nucleico o a nivel de proteína, o puede ser sujeto a un empalme alternativo para dar un producto de polipéptido distinto. Tales diferencias pueden ponerse de manifiesto, por ejemplo, por un cambio en los niveles de ARNm, expresión de superficie, secreción u otro fraccionamiento de un polipéptido. La expresión génica diferencial puede incluir una comparación de expresión entre dos o más genes, o sus productos génicos, o una comparación de los cocientes de la expresión entre dos o más genes, o sus productos génicos, o incluso una comparación de dos productos procesados diferentemente del mismo gen, que difieran entre sujetos normales y sujetos con una enfermedad, específicamente cáncer, o entre varios estadios de la misma enfermedad. La expresión diferencial incluye diferencias cuantitativas y cualitativas en el patrón de expresión temporal o celular de un gen, o sus productos de expresión entre, por ejemplo, células normales o enfermas, o entre células que han pasado por distintos episodios de la enfermedad, o estadios de la misma. A los efectos de esta invención, la "expresión génica diferencial" se considera presente cuando hay una diferencia aproximada de al menos el doble, preferiblemente de al menos unas cuatro veces, más preferiblemente de al menos unas seis veces, y aún más preferiblemente de al menos unas diez veces entre la expresión de un gen determinado en sujetos normales y enfermos, o en varios estadios del desarrollo de la enfermedad en un sujeto enfermo.

El término "sobreexpresión" con respecto a una transcripción de ARN, se utiliza para referirse al nivel de la transcripción determinado por normalización respecto al nivel de referencia de ARNms, que pueden ser todas las transcripciones medidas en la muestra, o una serie de referencia de ARNms particular.

La frase "amplificación génica" se refiere a un proceso por el que se forman múltiples copias de un gen o fragmento de gen en una célula o línea celular particular. La región duplicada (un tramo de ADN amplificado) se denomina habitualmente "amplicón". Habitualmente, la cantidad de ARN mensajero (ARNm) producida, es decir, el nivel de expresión génica, aumenta también en proporción al número de copias hecho del gen particular expresado.

El término "pronóstico" se utiliza aquí con referencia a la predicción de probabilidad de progresión o muerte atribuible al cáncer, incluyendo recurrencia, diseminación metastásica y resistencia a fármacos, de una enfermedad neoplásica, como el cáncer de mama. El término "predicción" se usa aquí para referirse a la probabilidad de que un paciente responda de forma favorable o desfavorable a un fármaco o serie de fármacos, y también a la amplitud de esas respuestas, o de que un paciente sobreviva, tras la extracción quirúrgica del tumor primario y/o quimioterapia, durante determinado periodo de

tiempo, sin recurrencia del cáncer. Los métodos predictivos de la presente invención pueden ser utilizados clínicamente para adoptar decisiones de tratamiento, eligiendo las modalidades de tratamiento más apropiadas para cualquier paciente en particular. Los métodos predictivos de la presente invención son valiosos instrumentos para predecir si es probable que un paciente responda favorablemente a una pauta de tratamiento, como intervención quirúrgica, quimioterapia con un fármaco o combinación de fármacos determinados, y/o terapia de radiación, o si es probable una supervivencia a largo plazo del paciente, tras la cirugía y/o conclusión de la quimioterapia u otras modalidades de tratamiento.

5

10

15

20

25

30

35

50

55

El término "a largo plazo" se utiliza aquí para referirse a una supervivencia de al menos 3 años, más preferiblemente de al menos 8 años, aún más preferiblemente de al menos 10 años tras la cirugía u otro tratamiento.

El término "tumor", como se utiliza aquí, se refiere a todo crecimiento y proliferación celular neoplásica, maligna o benigna, y todas las células y tejidos precancerosos y cancerosos.

Los términos "cáncer" y "canceroso" se refieren o describen el estado fisiológico en mamíferos que se caracteriza típicamente por un crecimiento celular no regulado. Los ejemplos de cáncer incluyen, entre otros, cáncer de mama, cáncer de ovario, cáncer de colon, cáncer de pulmón, cáncer de próstata, cáncer hepatocelular, cáncer gástrico, cáncer de páncreas, cáncer cervical, cáncer hepático, cáncer de vejiga, cáncer del tracto urinario, cáncer de tiroides, cáncer renal, carcinoma, melanoma y cáncer cerebral.

La "patología" del cáncer incluye todos los fenómenos que afectan al bienestar del paciente. Esto incluye, entre otros, el crecimiento celular anormal o incontrolable, la metástasis, la interferencia con el normal funcionamiento de las células vecinas, la liberación de citoquinas u otros productos de secreción a niveles anormales, la supresión o agravamiento de la respuesta inflamatoria o inmunológica, neoplasia, premalignidad, malignidad, invasión de tejidos u órganos vecinos o distantes, como nódulos linfáticos, etc.

El "rigor" de las reacciones de hibridación puede ser determinado fácilmente por un experto en la técnica, y en general es un cálculo empírico dependiente de la longitud de la sonda, la temperatura de lavado y la concentración de sal. En general, sondas más largas requieren temperaturas superiores para una adecuada apareación, mientras que las sondas más cortas requieren temperaturas inferiores. La hibridación depende generalmente de la capacidad del ADN desnaturalizado para la apareación cuando están presentes cadenas complementarias en un entorno por debajo de su temperatura de fusión. Cuanto mayor sea de grado de homología deseado entre la sonda y la secuencia hibridable, tanto más alta es la temperatura relativa que puede utilizarse. La consecuencia es que temperaturas relativas superiores tenderán a hacer más estrictas las condiciones de reacción, mientras que temperaturas más bajas lo harán menos. Para detalles y explicaciones adicionales del rigor de las reacciones de hibridación, ver Ausubel et al., Current Protocols in Molecular Biology. Wiley

Las "condiciones rigurosas" o "condiciones muy rigurosas", como se definen aquí, típicamente: (1) emplean baja potencia iónica y alta temperatura para lavar, por ejemplo cloruro de sodio 0,015 M/ citrato sódico 0,0015 /dodecil sulfato sódico 0,1% a 50°C; (2) emplean durante la hibridación un agente desnaturalizante, como formamida, por ejemplo, 50% (v/v) formamida con albúmina de suero bovino 0,1% /Ficoll 01% /polivinilpirrolidona 0,1% /tampón fosfato sódico 50mM a pH 6.5 con cloruro sódico 750 mM, citrato sódico 75 mM a 42°C; o (3) emplean formamida 50%, 5 x SSC (NaCl 0,75 M, citrato sódico 0,075 M), fosfato sódico 50 mM (pH 6.8), pirofosfato sódico 0,1%, 5 x solución de Denhardt, ADN de esperma de salmón sonicado (50 µg/ml), SDS 0,1%, y sulfato de dextrano 10% a 42°C, con lavados a 42°C en 0,2 x SSC (cloruro sódico / citrato sódico) y formamida 50% a 55°C, seguido de un lavado muy riguroso consistente en 0,1 x SSC conteniendo EDTA a 55°C.

Las "condiciones moderadamente rigurosas" pueden ser identificadas como las describen Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, e incluyen el uso de una solución de lavado y condiciones de hibridación (por ej. temperatura, potencia iónica y % SDS) menos rigurosas que las descritas más arriba. Un ejemplo de condiciones moderadamente rigurosas es la incubación durante la noche a 37°C, en una solución comprendiendo: formamida 20%, 5 x SSC (NaCl 150 mM, citrato trisódico 15 mM), fosfato sódico 50 mM (pH 7.6), 5 x solución de Denhardt, sulfato de dextrano 10%, y ADN de esperma de salmón cortado desnaturalizado 20 mg/ml, seguido del lavado de filtros en 1 x SSC a aproximadamente 37-50°C. El experto sabrá cómo ajustar la temperatura, la potencia iónica, etc., lo necesario para ajustarlo a factores tales como la longitud de la sonda y similares.

En el contexto de la presente invención, la referencia a "al menos uno", "al menos dos", "al menos cinco", etc., de los genes listados en cualquier serie de genes particular significa cualquiera o cualquiera y todas las combinaciones de los genes listados.

El término cáncer "nódulo negativo", como en cáncer de mama "nódulo negativo", se utiliza aquí en referencia a un cáncer que no se ha diseminado a los nódulos linfáticos.

Los términos "empalme" y "empalme de ARN" son utilizados de forma intercambiable, y se refieren al procesado de ARN que elimina intrones y une exones, para producir ARNm maduro con secuencia de codificación continua que pasa al citoplasma de una célula eucariota.

En teoría, el término "exón" se refiere a cualquier segmento de un gen interrumpido que está representado en el producto de ARN maduro (B. Lewin. Genes IV Cell Press, Cambridge Mass. 1990). En teoría, el término "intrón" se refiere a cualquier segmento de ADN transcrito pero eliminado de dentro de la transcripción empalmando juntos los exones de ambos lados. Operativamente, las secuencias de exón aparecen en la secuencia de ARNm de un gen como se define en los números de la Ref. SEC ID. Operativamente, 30 secuencias de intrón son las secuencias que intervienen en el ADN genómico de un gen, delimitadas por secuencias de exón, y con secuencias de consenso de empalme GT y AG en sus límites 5' y 3'.

B. Descripción detallada

5

10

15

20

25

30

35

50

En la práctica de la presente invención se emplearán, salvo que se indique lo contrario, técnicas convencionales de biología molecular (incluyendo técnicas recombinantes), microbiología, biología celular y bioquímica conocidas por los expertos en la técnica. Tales técnicas se explican en detalle en la literatura, como en "Molecular Cloning: A Laboratory Manual", 2nd edition (Sambrook et al., 1989); "Oligonucleotide Synthesis" (M.J. Gait, ed., 1984); "Animal Cell Culture" (R.I. Freshney, ed., 1987); "Methods in Enzymology" (Academic Press, Inc.); "Handbook of Experimental Immunology", 4th edition (D.M. Weir& C.C. Blackwell, eds., Blackwell Science Inc., 1987); "Gene Transfer Vectors for Mammalian Cells" (J.M. Miller & M.P. Calos, eds., 1987); "Current Protocols in Molecular Biology" (F.M. Ausubel et al., eds., 1987); y "PCR: The Polymerase Chain Reaction", (Mullis et al., eds., 1994).

1. Perfil de expresión génica

Los métodos de perfilado de expresión génica incluyen métodos basados en el análisis de hibridación de polinucleótidos, métodos basados en la secuenciación de polinucleótidos y métodos basados en proteómica. Los métodos utilizados más comúnmente conocidos en la técnica de cuantificación de la expresión de ARNm en una muestra incluyen la hibridación northern blotting e in situ (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); ensayos de protección de ARNasa (Hod, Biotechniques so 13:852-854 (1992)); y métodos basados en PCR, como la reacción de cadena de polimerasa de transcripción inversa (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Alternativamente, se pueden emplear anticuerpos que puedan reconocer dúplex específicos, incluyendo dúplex de ADN, dúplex de ARN, y dúplex híbridos de ADN-ARN o dúplex de proteínas de ADN. Los métodos representativos de análisis de expresión génica basados en secuenciación incluyen el Análisis en Serie de Expresión Génica (SAGE), y el análisis de expresión génica por secuenciación de firma paralela masiva (MPSS)

2. Métodos de perfilado de expresión génica basados en PCR

a PCR de transcriptasa inversa (RT-PCR)

De las técnicas indicadas más arriba, el método cuantitativo más sensible y más flexible es RT-PCR, que puede utilizarse para comparar niveles de ARNm en poblaciones de muestras distintas, en tejidos normales y tumorales, con o sin tratamiento farmacológico, para caracterizar patrones de expresión génica, para discriminar entre ARNms estrechamente relacionados, y para analizar la estructura del ARN.

El primer paso es aislar el ARNm de una muestra diana. El material de inicio es típicamente ARN total aislado de tumores humanos o líneas celulares tumorales, y tejidos o líneas celulares normales correspondientes, respectivamente. Por tanto, se puede aislar ARN de diversos tumores primarios, incluyendo tumores de mama, pulmón, colon, próstata, cerebro, hígado, riñón, páncreas, bazo, timo, testículos, ovario, útero, etc., o líneas de células tumorales, con ADN agrupado de donantes sanos. Si la fuente del ARNm es un tumor primario, se puede extraer ARNm, por ejemplo, de muestras de tejido congelado o guardadas y embebidas en parafina y fijadas (por ej. fijadas en formalina).

Los métodos generales de extracción de ARNm son bien conocidos por los expertos en la técnica, y se divulgan en libros de texto estándar de biología molecular, incluyendo Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Los métodos para la extracción de ARN de tejidos embebidos en parafina se divulgan, por ejemplo, en Rupp and Locker, Lab Invest. 56:A67 (1987), y De Andres et al., BioTechniques 18:42044 (1995). En particular, se puede aislar ARN utilizando un kit de purificación, conjunto de tampón y proteasa de fabricantes comerciales, como Qiagen, conforme con las instrucciones del fabricante. Por ejemplo, se puede aislar ARN total de células en cultivo utilizando minicolumnas Qiagen RNeasy. Otros kits de aislamiento de ARN disponibles comercialmente incluyen MasterPure™ Complete DNA y RNA Purification Kit (EPICENTRE®, Madison, WI), y Paraffin Block RNA Isolation Kit (Ambion, Inc.). Se puede aislar ARN total de muestras de tejido utilizando RNA Stat-60 (Tel-Test). Se puede aislar ARN de un tumor preparado, por ejemplo, por centrifugación de gradiente de densidad de cloruro de cesio.

Como el ARN no puede servir como plantilla para la PCR, el primer paso en el perfilado de expresión génica por RT-PCR es la transcripción inversa de la plantilla de ARN en ADNc, seguido de su amplificación exponencial en una reacción PCR. Las dos transcriptasas inversas más utilizadas comúnmente son la transcriptasa inversa de virus de mieloblastosis aviar (AMV-RT) y la transcriptasa inversa del virus de leucemia murina de Moloney (MMLV-RT). El paso de la transcripción inversa se ceba típicamente utilizando cebadores específicos, hexámeros aleatorios o cebadores oligo.dT, dependiendo de las circunstancias y el objetivo del perfilado de expresión. Por ejemplo, el ARN extraído pueden ser transcrito

inversamente utilizando un kit GeneAmp RNA PCR (Perkin Elmer, CA, USA), siguiendo las instrucciones del fabricante. El ADNc derivado puede ser utilizado entonces como plantilla en la posterior reacción de PCR.

Aunque en el paso de la PCR se puede utilizar diversas ADN polimerasas dependientes de ADN termoestable, se emplea típicamente la ADN polimerasa Taq, que tiene una actividad de nucleasa 5'-3', pero carece de actividad de endonucleasa correctora 3'-5'. Así, TaqMan® PCR utiliza típicamente la actividad de nucleasa 5' de polimerasa Taq o Tth para hidrolizar una sonda de hibridación ligada a su amplicón diana, pero se puede utilizar cualquier enzima con actividad de nucleasa 5' equivalente. Se utilizan dos cebadores de oligonucleótidos para generar un amplicón típico de una reacción PCR. Un tercer oligonucleótido, o sonda, está diseñado para detectar la secuencia de nucleótidos ubicada entre los dos cebadores de PCR. La sonda es no extensible por el enzima de la polimerasa ADN Taq, y está marcada con un colorante fluorescente reporter y un colorante fluorescente inhibidor. Cualquier emisión inducida por láser del colorante reporter es inhibida por el colorante inhibidor, cuando los dos colorantes están ubicados juntos como lo están en la sonda. Durante la reacción de amplificación, el enzima de la polimerasa de ADN Taq divide la sonda de una forma que depende de la plantilla. Los fragmentos de sonda resultantes se disocian en solución, y la señal del colorante reporter liberado queda libre del efecto de inhibición del segundo fluoróforo. Por cada nueva molécula sintetizada se libera una molécula de colorante reporter, y la detección del colorante reporter no inhibido proporciona la base para la interpretación cuantitativa de los datos.

Se puede realizar la ET-PCR TaqMan© utilizando los equipos disponibles comercialmente, como, por ejemplo, ABI PRISM 7700™ Sequence Detection System™ (Perkin-Elmer-Applied Biosystems, Foster City, CA, USA), o Lightcycler (Roche Molecular Biochemicals, Mannheim, Alemania). En una realización preferente, el procedimiento de la nucleasa 5' se realiza en un dispositivo de PCR cuantitativa de tiempo real, como ABI PRISM 7700™ Sequence Detection System™. El sistema está compuesto por un termociclador, láser, dispositivo de carga acoplada (CCD), cámara y ordenador. El sistema amplifica las muestras en un formato de 96 pocillos en un termociclador. Durante la amplificación, la señal fluorescente inducida por láser es recogida en tiempo real a través de cables de fibra óptica para los 96 pocillos, y detectada en el CCD. El sistema incluye software para la ejecución del instrumento y para analizar los datos.

Los datos del ensayo de 5'-nucleasa se expresan inicialmente como Ct, o el ciclo umbral. Como se ha comentado más arriba, los valores de fluorescencia se registran durante cada ciclo, y representan la cantidad de producto amplificado hasta ese punto de la reacción de amplificación. El punto donde se registra primero la señal fluorescente como estadísticamente significativa es el ciclo umbral (Ct).

Para minimizar los errores y el efecto de variación entre muestras, la RT-PCR se realiza habitualmente utilizando un estándar interno. El estándar interno ideal se expresa a un nivel constante entre distintos tejidos, y no es afectado por el tratamiento experimental. Los ARNs utilizados más frecuentemente para normalizar patrones de expresión génica son ARNms para los genes constitutivos gliceraldehido 3 fosfato deshidrogenasa (GAPDH) y β-actina.

Una variación más reciente de la técnica de RT-PCR es la PCR cuantitativa en tiempo real, que mide la acumulación de producto de la PCR mediante una sonda fluorigénica con marcaje dual (es decir, sonda TaqMan®). La PCR de tiempo real es compatible tanto con la PCR cuantitativa competitiva, donde se emplea para la normalización un competidor interno para cada secuencia diana, como con la PCR cuantitativa comparativa, utilizando un gen de normalización contenido dentro de la muestra, o un gen constitutivo RT-PCR. Para más detalles ver, por ejemplo, Held et al., Genome Research 6:986-994 (1996).

Los pasos de un protocolo representativo para el perfilado de la expresión génica, utilizando tejidos embebidos en parafina fijados como fuente de ARN, incluyen el aislamiento de ARNm, purificación, extensión y amplificación de cebador, se aportan en diversos artículos publicados en revistas (por ejemplo: T.E. Godfrey et al. J. Molec. Diagnostics 2: 84-91 [2000]; K. Specht et al., Am. J. Pathol. 158:419-29 [2001]}. Resumiendo, un proceso representativo se inicia cortando secciones de un grosor de 10 μ m aproximadamente de muestras de tejido tumoral embebidas en parafina. Se extrae entonces el ARN, y se elimina la proteína y el ADN. Tras el análisis de la concentración de ARN, se pueden incluir pasos de reparación y/o amplificación de ARN, si es necesario, y se transcribe inversamente el ARN utilizando promotores específicos de gen seguido de RT-PCR.

b. Sistema MassARRAY

5

10

15

20

25

30

35

40

45

50

55

En el método de perfilado de expresión génica basado en MasARRAY, desarrollado por Sequenom, Inc. (San Diego, CA), tras el aislamiento del ARN y la transcripción inversa, al ADNc obtenido se añade una molécula de ADN sintético (competidor), que coincide con la región diana de ADNc en todas las posiciones, excepto una base simple, y sirve como estándar interno. La mezcla de ADNc/competidor se amplifica por PCR y se somete a un tratamiento de enzima fosfatasa alcalina de camarón (SAP) post PCR, que produce la desfosforilación de los nucleótidos restantes. Tras la inactivación de la fosfatasa alcalina, los productos de la PCR del competidor del ADNc se someten a la extensión del cebador, que genera señales de masa distintas para los productos de la PCR derivados del competidor y el ADNc. Tras la purificación, esos productos se disponen en un array de chips, precargado con los componentes necesarios para el análisis con espectrometría de masas de tiempo de vuelo tipo desorción/ionización por láser asistido por matriz (MALDI-TOF MS). Se

cuantifica entonces el ADNc presente en la reacción analizando los cocientes de las áreas de pico en el espectro de masa generado. Para más detalles ver, ej. Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).

c. Otros métodos basados en PCR

Otras técnicas basadas en PCR incluyen, por ejemplo, el display diferencial (Liang and Pardee, Science 257:967-971 (1992)); el polimorfismo de longitud de segmentos amplificados (iAFLP) (Kawamoto et al., Genome Res. 12:1305-1312 (1999)); tecnología BeadArray™ (Illumina, San Diego, CA; Oliphantetal., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray para la detección de la expresión gen 35 (BADGE), utilizando el sistema LuminexIOO LabMAP disponible comercialmente y múltiples microesferas codificadas por colores (Luminex Corp., Austin, TX) en un ensayo rápido de expresión génica (Yang et al., Genome Res. 11:1888-1898 (2001)); y análisis de perfilado de expresión de alta cobertura (HiCEP) (Fukumura et al., Nucl. Acids. Res. 31(16)e94 (2003)).

3. Microarrays

5

10

15

20

25

30

35

45

50

La expresión génica diferencial puede ser también identificada, o confirmada utilizando la técnica de microarray. Por tanto, el perfil de expresión de los genes asociados al cáncer de mama puede ser medido en tejido tumoral fresco o embebido en parafina, utilizando la tecnología de microarray. En este método, secuencias de polinucleótidos de interés (incluyendo ADNcs y oligonucleótidos) son laminadas o dispuestas sobre un sustrato de microchip. Las secuencias dispuestas son entonces hibridadas con sondas de ADN específicas de células o tejidos de interés. Igual que en el método RT-PCR, la fuente de ARNm es típicamente ARN total aislado de tumores humanos o líneas celulares tumorales, y tejidos o líneas celulares correspondientes. Por tanto, el ARN puede aislarse de diversos tumores primarios o líneas celulares tumorales. Si la fuente del ARNm es un tumor primario, se puede extraer ARNm, por ejemplo, de muestras de tejido congeladas o embebidas en parafina archivadas y fijadas (por ej. fijadas en formalina), preparadas de forma rutinaria y conservadas en la práctica clínica diaria.

En una realización específica de la técnica de microarray, se aplican insertos amplificados de PCR de clones de ADNc a un sustrato en un array denso. De preferencia, se aplican al sustrato al menos 10.000 secuencias de nucleótidos. Los genes micrordenados, inmovilizados en el microchip en 10.000 elementos cada uno, son aptos para la hibridación en condiciones rigurosas. Se pueden generar sondas de ADNc marcadas mediante incorporación de nucleótidos fluorescentes por transcripción inversa de ARN extraído de tejidos de interés. Las sondas de ADNc marcadas aplicadas sobre el chip se hibridan con especificidad para cada punto de ADN en el array. Tras un lavado estricto para eliminar las sondas no ligadas específicamente, el chip es escaneado por microscopía de láser confocal u otro método de detección, como cámara CCD. La cuantificación o hibridación de cada elemento ordenado permite la evaluación de la abundancia de ARNm correspondiente. Con fluorescencia de doble color, las sondas de ADNc marcadas de forma separada, generadas de dos fuentes de ARN, se hibridan por pares con el array. La abundancia relativa de las transcripciones de las dos fuentes correspondiendo a cada den especificado se determina así simultáneamente. La escala miniaturizada de la hibridación permite la evaluación cómoda y rápida del patrón de expresión de grandes números de genes. Tales métodos han demostrado tener la sensibilidad requerida para detectar transcripciones raras, expresadas en unas pocas copias por célula, y detectar de forma reproducible, al menos aproximadamente, diferencias dobles en los niveles de expresión (Schena et al., Proc. Natl. Acad. Sci. USA 93(2): 106-149 (1996)). El análisis de microarray puede realizarse con los equipos disponibles comercialmente, siguiendo los protocolos del fabricante, como usar la tecnología Affymetrix GenChip, o la tecnología de microarray de Incyte.

40 El desarrollo de métodos de microarray, para el análisis a gran escala de expresión génica, hace posible la búsqueda sistemática de marcadores moleculares de clasificación del cáncer y predicción de resultados en diversos tipos de tumores.

4. Análisis en serie de la expresión génica (SAGE)

El análisis en serie de la expresión génica (SAGE) es un método que permite el análisis simultáneo y cuantitativo de un gran número de transcripciones génicas, sin necesidad de proporcionar una sonda de hibridación individual para cada transcripción. Primero se genera una etiqueta de secuencia corta (aproximadamente 10-14 bp) que contiene suficiente información para identificar de forma inequívoca una transcripción, siempre que la etiqueta se obtenga de una posición única dentro de cada transcripción. A continuación se enlazan juntas muchas transcripciones para formar largas moléculas en serie, que pueden ser secuenciadas, revelando la identidad de las múltiples etiquetas simultáneamente. El patrón de expresión de cualquier población de transcripciones puede ser evaluado cuantitativamente determinando la abundancia de etiquetas individuales, e identificando el gen correspondiente a cada etiqueta. Para más detalles ver, p.ej., Velculescu et al., Science 270:484-487 (1995); y Velculescu et al., Cell 88:243-51 (1997).

5. Análisis de expresión génica por secuenciación de firma paralela masiva (MPSS)

Este método, descrito por Brenner etal., Nature Biotechnology 18:630-634 (2000), es un enfoque de secuenciación que combina la secuenciación de firma no basada en gel, con la clonación in vitro de millones de plantillas sobre microperlas separadas de diámetro 5 µm. Primero se construye una biblioteca de microperlas de plantillas de ADN por clonación in vitro. A esto le sigue la creación de un array planar de la plantilla conteniendo microperlas en una celda de flujo a alta densidad (típicamente superior a 3 x 106 microperlas/cm2). Los extremos libres de las plantillas clonadas en cada microperla se analizan simultáneamente, utilizando un método de secuenciación de firma basado en fluorescencia que no requiere la separación de fragmentos de ADN. Este método ha demostrado proporcionar de forma simultánea y precisa, en una sola operación, cientos de miles de secuencias de firma génica de una biblioteca de ADNc de levaduras.

6. Inmunohistoquímica

5

20

25

30

35

40

45

50

55

Los métodos de inmunohistoquímica son también adecuados para detectar los niveles de expresión de los marcadores de pronóstico de la presente invención. Así, para detectar la expresión se utilizan anticuerpos o antisueros, de preferencia antisueros policionales, y aún mejor anticuerpos monocionales específicos para cada marcador. Los anticuerpos pueden ser detectados por marcaje directo de los propios anticuerpos, por ejemplo, con marcadores radioactivos, marcadores fluorescentes, marcadores haptenos, como la biotina, o una enzima como la peroxidasa de rábano o la fosfatasa alcalina.
 Alternativamente, se utiliza un anticuerpo primario no marcado junto con un anticuerpo secundario marcado, comprendiendo antisueros, antisueros policionales, o un anticuerpo monocional específico para el anticuerpo primario. Los protocolos y kits de inmunohistoquímica son bien conocidos en la técnica y están disponibles comercialmente.

7. Proteómica

El término "proteoma" se define como la totalidad de las proteínas presentes en una muestra (por ej. tejido, organismo o cultivo celular) en un momento determinado. La proteómica incluye, entre otros, el estudio de los cambios globales de la expresión proteica en una muestra (denominada también "proteómica de expresión"). La proteómica incluye típicamente los siguientes pasos: (1) separación de las proteínas individuales en una muestra por electroforesis en gel 2-D (2-D PAGE); (2) identificación de las proteínas individuales recuperadas del gel, por ej., por espectrometría de masas o secuenciación de terminal-N, y (3) análisis de los datos utilizando la bioinformática. Los métodos proteómicos son valiosos suplementos de otros métodos de perfilado de expresión génica, y se pueden usar solos o en combinación con otros métodos, para detectar los productos de los marcadores de pronóstico de la presente invención.

8. Descripción general del aislamiento, purificación y amplificación del ARNm

Los pasos de un protocolo representativo para el perfilado de la expresión génica, utilizando tejidos embebidos en parafina fijados, como fuente de ARN, incluyendo el aislamiento de ARNm, purificación, extensión y amplificación del cebador, se indican en diversos artículos publicados en revistas (por ejemplo: T.E. Godfrey et al., J. Molec. Diagnostics 2: 84-91 [2000]; K. Specht et al., Am. J. Pathol. 158:419-29 [2001]). Resumiendo, un proceso representativo se inicia cortando secciones de un grosor de 10 µm aproximadamente de muestras de tejido tumoral embebidas en parafina. Se extrae entonces el ARN, y se elimina la proteína y el ADN. Tras el análisis de la concentración de ARN, se pueden incluir pasos de reparación y/o amplificación de ARN, si es necesario, y se transcribe inversamente el ARN utilizando promotores específicos de gen seguido de RT-PCR. Finalmente, los datos son analizados para identificar la mejor opción(es) de tratamiento disponible para el paciente, en base al patrón de expresión génica característico identificado en la muestra tumoral examinada, dependiendo de la probabilidad prevista de recurrencia del cáncer.

9. <u>Serie de genes de cáncer de mama, subsecuencias génicas ensayadas y aplicación clínica de los datos de expresión génica</u>

Un aspecto importante de la presente invención es el uso de la expresión medida de determinados genes mediante tejido de cáncer de mama, para obtener información de pronóstico. Para este fin es necesario corregir (normalizar) diferencias en la cantidad de ARN ensayado y la variabilidad en la calidad de ARN usado. Por consiguiente, el ensayo típicamente mide e incorpora la expresión de determinados genes normalizadores, incluyendo genes constitutivos bien conocidos, como GAPDH y Cyp1. Alternativamente, la normalización puede basarse en la señal media o mediana (Ct) de todos los genes ensayados, o un amplio subconjunto de ellos (enfoque de normalización global). Sobre una base de gen-por-gen, la cantidad medida normalizada de ARNm de tumor de un paciente, se compara con la cantidad hallada en un conjunto de referencia de tejido de cáncer de mama. El número (N) de tejidos de cáncer de mama en esta serie de referencia debe ser suficientemente grande como para asegurar que series de referencia distintas (globalmente) se comporten esencialmente del mismo modo. Si se cumple esta condición, la identidad de los tejidos de cáncer de mama individuales presentes en una serie particular no tendrá un impacto significativo sobre las cantidades relativas de los genes ensayados. Habitualmente, la serie de referencia de tejido de cáncer de mama está compuesta como mínimo por unas 30 muestras FPE de tejido de cáncer de mama distintas, y preferiblemente al menos de unas 40. Salvo que se indique lo contrario, los niveles de expresión normalizada de cada ARNm/tumor estudiado/paciente, se expresarán como porcentaje del nivel de expresión medido en la serie de referencia. Más específicamente, la serie de referencia de un número de tumores suficientemente elevado (por ej., 40) proporciona una distribución de niveles normalizados de cada especie de ARNm El nivel medido en una muestra particular de tumor a analizar cae en algún percentil dentro de este rango, que puede ser determinado por métodos bien conocidos en la técnica. Más abajo, salvo que se indique lo contrario, la referencia a los niveles de expresión de un gen supone expresión normalizada en relación con la serie de referencia, aunque esto no se indique siempre explícitamente.

10. Diseño de cebadores y sondas de PCR basados en intrones

- Según un aspecto de la presente invención, los cebadores y las sondas de PCR se diseñan basados en secuencias de intrones presentes en el gen a amplificar. En consecuencia, el primer paso en el diseño de cebadores/sondas es la delineación de las secuencias de intrones en los genes. Esto puede hacerse mediante software de dominio público, como el software DNA BLAT desarrollado por Kent, W.J., Genome Res. 12(4):656-64 (2002), o el software BLAST, incluyendo sus variaciones. Los posteriores pasos siguen unos métodos bien establecidos de diseño de cebadores y sondas de PCR.
- Para evitar señales no específicas, es importante enmascarar secuencias repetitivas en los intrones, al diseñar los cebadores y las sondas. Esto puede conseguirse fácilmente utilizando el programa Repeat Masker, obtenible online a través del Baylor College of Medicine, que criba secuencias de ADN contra una biblioteca de elementos repetitivos, y devuelve una secuencia de consulta en la que se enmascaran los elementos repetitivos. Las secuencias enmascaradas de intrones pueden ser usadas entonces para diseñar secuencias de cebador y sonda, utilizando cualquier paquete de diseño de cebadores/sondas disponibles comercialmente o de otro modo, como Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. En: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365-386)
- Los factores más importantes a considerar en el diseño de cebadores de PCR incluyen la longitud del cebador, la temperatura de fusión (Tm), y el contenido G/C, la especificidad, las secuencias de cebador complementarias y la secuencia de extremo 3'. En general, los cebadores de PCR óptimos son de 17-30 bases de longitud, y contienen aproximadamente un 20-80% de bases G+C, como por ejemplo, aproximadamente un 50-60%. Típicamente son preferibles temperaturas entre 50 y 80°C, p.ej., aproximadamente de 50 a 70°C.
- Para más directrices para el diseño de cebadores y sondas de PCR ver, p.ej. Dieffenbach, C.W. et al., "General Concepts 50 for PCR Primer Design" in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1995, pp. 133-155; Innis and Gelfand, "Optimization of PCRs" in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; y Plasterer, T.N. Primer select: Primer and probe design. Methods Mol. Biol. 70:520-527 (1997).

Se dan más detalles de la invención en el siguiente Ejemplo no limitativo.

30 Ejemplo

Un estudio de Fase II de expresión génica en 242 tumores de mama malignos

Se diseñó y llevó a cabo un estudio de expresión génica, con el objetivo primario de caracterizar molecularmente la expresión génica en muestras de tejido embebidas en parafina y fijadas, de carcinoma de mama ductal invasivo, y explorar la correlación entre tales perfiles moleculares y la supervivencia libre de enfermedad.

35 <u>Diseño del estudio</u>

Se realizaron ensayos moleculares en tejidos de tumor de mama primario, embebidos en parafina y fijados con formalina, obtenidos de 252 pacientes individuales diagnosticadas con cáncer de mama invasivo. Todas las pacientes que presentaban nódulos linfáticos negativos, eran ER positivas y estaban tratadas con Tamoxifen. La media de edad era de 52 años, y el tamaño medio del tumor clínico era de 2 cm. La media de seguimiento era de 10,9 años. A 1 de enero de 2003, 41 pacientes presentaban recurrencia local o distante de la enfermedad, o fallecimiento por cáncer de mama. Las pacientes eran incluidas en el estudio solo si la evaluación histopatológica, realizada como se describe en la sección Materiales y Métodos, indicaba cantidades adecuadas de tejido tumoral y patología homogénea.

Materiales y métodos

Cada bloque de tumor representativo se caracterizaba por histopatología estándar para el diagnóstico, evaluación semicuantitativa de la cantidad de tumor y grado del tumor. Si el área tumoral era inferior al 70% de la sección, el área tumoral se diseccionaba aproximadamente y se tomaba tejido de 6 secciones (10 micrones). De lo contrario se preparaba un total de 3 secciones (también de un grosor de 10 micrones cada una). Las secciones se colocaron en dos Tubos Costar Brand Microcentrifuge (polipropileno, tubos de 1,7 ml, transparentes). Si se obtenía más de un bloque tumoral como parte del procedimiento quirúrgico, se utilizaba para el análisis el bloque más representativo de la patología.

50

40

Análisis de la expresión génica

Se extrajo y se purificó ARNm de muestras de tejido embebidas en parafina y fijadas, y se prepararon para el análisis de expresión génica como se describe en el anterior capítulo 6.

Se realizaron ensayos moleculares de expresión génica cuantitativa por RT-PCR, utilizando el ABI PRISM 7900™ Sequence Detection System™ (Perkin-Elmer-Applied Biosystems, Foster City, CA, USA). El ABI PRISM 7900™ consiste en un termociclador, láser, dispositivo de carga acoplada (CCD), cámara y ordenador. El sistema amplifica muestras en un formato de 384 pocillos en un termociclador. Durante la amplificación, la señal fluorescente inducida por láser es recogida en tiempo real a través de cables de fibra óptica para los 384 pocillos, y detectada en el CCD. El sistema incluye software para la ejecución del instrumento y para analizar los datos.

Análisis y resultados

5

15

Se analizó tejido tumoral de187 genes relacionados con cáncer y 5 genes de referencia. Se obtuvieron perfiles adecuados de RT-PCR de 242 de las 252 pacientes. Los valores de ciclo umbral (CT) de cada paciente se normalizaron en base a la media de los 7 genes de referencia para esa paciente particular. Se disponía de los datos del resultado clínico de todas las pacientes, de una revisión de los datos de registro y gráficos de las pacientes seleccionadas. Los resultados fueron clasificados como:

Evento: Viva con recurrencia local, regional o distante de cáncer de mama, o fallecimiento por cáncer de mama.

Sin evento: Viva sin recurrencia local, regional o distante de cáncer de mama, o viva con recurrencia de cáncer de mama contralateral, o viva con segundo cáncer primario no de mama, o fallecida antes de la recurrencia del cáncer de mama.

El análisis se realizó por:

- 20 A. Determinación de la relación entre la expresión génica normalizada y los resultados binarios de 0 o 1;
 - B. Análisis de la relación entre la expresión génica normalizada y el tiempo hasta el resultado (0 o 1 como se define más arriba), donde se descartaban las pacientes vivas sin recurrencia de cáncer de mama, o que habían fallecido debido a una causa distinta del cáncer de mama. Se utilizó este enfoque para evaluar el impacto en el pronóstico de genes individuales y también de series de genes múltiples.
- 25 Análisis de las pacientes con carcinoma de mama invasivo por enfoque binario

En el primer enfoque (binario), se realizó el análisis en las 242 pacientes con carcinoma de mama invasivo. Se realizó un test t en los grupos de pacientes clasificadas como sin recurrencia y fallecimiento no relacionado con cáncer de mama a los 10 años, versus recurrencia o muerte relacionada con cáncer de mama a los 10 años, y se calcularon los valores p para las diferencias entre grupos para cada gen.

30 En la Tabla 1 aparecen los 33 genes para los que el valor p para las diferencias entre los grupos era <0,05. La primera columna de valores de expresión medios corresponde a pacientes que presentaron recurrencia metastásica o fallecieron por cáncer de mama. La segunda columna de valores de expresión medios corresponde a pacientes que no tenían recurrencia metastásica o no fallecieron por cáncer de mama.

Tabla 1Media grupo A Media grupo B

^	_
٠,	<u></u>

	J			
Gen	Evento	Sin evento	Estadística T	Valor p
MMP9	-3,15	-4,27	3,75	0,00
GSTM1	-5,02	-4,03	-3,56	0,00
MELK	-3,89	-4,66	3,34	0,00
PR	-4,56	-3,18	-3,27	0,00
DKFZp586M07	-3,83	-2,94	-3,09	0,00
GSTM3	-2,56	-1,69	-3,06	0,00
MCM2	-3,51	-4,08	3,03	0,00
CDC20	-3,01	-3,75	3,01	0,00
CCNB1	-4,48	-5,17	3,02	0,00
STMY3	-0,58	-1,20	2,95	0,00

GRB7	-1,93	-3,01	2,98	0,00
MYBL2	-3,91	-4,78	2,91	0,01
CEGP1	-3,00	-1,85	-2,89	0,01
SURV	-4,23	-5,06	2,88	0,01
LMNB1	-2,40	-2,91	2,81	0,01
CTSL2	-5,74	-6,39	2,83	0,01
PTTG1	-3,49	-4,14	2,72	0,01
BAG1	-1,76	-1,30	-2,58	0,01
KNSL2	-3,35	-4,06	2,60	0,01
CIAP1	-4,44	-4,02	-2,58	0,01
PREP	-3,34	-3,74	2,56	0,01
NEK2	-5,25	-5,80	2,53	0,01
EpCAM	-1,95	-2,31	2,50	0,01
PCNA	-2,79	-3,13	2,42	0,02
C20_orf1	-2,43	-3,09	2,39	0,02
ITGA7	-4,53	-3,87	-2,37	0,02
ID1	-2,58	-2,17	-2,30	0,02
B_Catenina	-1,32	-1,08	-2,28	0,03
EstR1	-0,78	-0,12	-2,28	0,03
CDH1	-2,76	-3,27	2,20	0,03
TS	-2,86	-3,29	2,18	0,03
HER2	0,53	-0,22	2,18	0,03
cMYC	-3,22	-2,85	-2,16	0,04

En la Tabla 1 anterior, los valores t negativos indican una mayor expresión, asociada a mejores resultados, y a la inversa, valores superiores (positivos) de t indican una mayor expresión asociada a peores resultados. Así, por ejemplo, una expresión elevada del gen CCNB1 (valor t = 3,02, CT media viva <CT media fallecida) indica una menor probabilidad de supervivencia libre de enfermedad. De forma similar, una expresión elevada del gen GSTM1 (valor t = -3,56, CT media viva >CT media fallecida) indica una mayor probabilidad de supervivencia libre de enfermedad.

Así, en base a la serie de datos indicada en la Tabla 1, la expresión de cualquiera de los siguientes genes en el cáncer de mama indica una menor probabilidad de supervivencia sin recurrencia del cáncer: C20_orf1; CCNB1; CDC20; CDH1; CTSL2; EpCAM; GRB7; HER2; KNSL2; LMNB1; MCM2; MMP9; MYBL2; NEK2; PCNA; PREP; PTTG1; STMY3; SURV; TS; MELK.

En base a la serie de datos indicada en la Tabla 1, la expresión de cualquiera de los siguientes genes en el cáncer de mama indica un mejor pronóstico de supervivencia sin recurrencia del cáncer: BAG1; BCatenin; CEGP1; CIAP1; cMYC; DKFZp586M07; EstR1; GSTM1; GSTM3; ID1; ITGA7; PR.

Análisis de genes múltiples e indicadores de resultados

5

10

Se adoptaron dos enfoques para determinar si el uso de genes múltiples proporcionaría una mejor discriminación entre resultados. Primero se realizó un análisis de discriminación utilizando un enfoque de avance progresivo Se generaron modelos que clasificaron el resultado con mayor discriminación de la obtenida con cualquier gen individual solo. Según un segundo enfoque (enfoque de tiempo-hasta-el evento), se definió para cada gen un modelo Cox Proportional Hazards (ver, p.ej., Cox, D. R., and Oakes, D. (1984), Analysis of Survival Data, Chapman and Hall, London, New York), con el tiempo hasta la recurrencia o la muerte como variable dependiente, y el nivel de expresión del gen como variable independiente. Se identificaron los genes con un valor p < 0,05 en el modelo Cox. Para cada gen, el modelo Cox proporciona el riesgo

relativo (RR) de recurrencia o muerte para el cambio de una unidad en la expresión del gen. Se puede optar por dividir las pacientes en subgrupos por cualquier valor umbral de la expresión medida (en la escala CT), donde todas las pacientes con valores de expresión superiores al umbral tienen un riesgo superior, y todas las pacientes con valores de expresión inferiores al umbral tienen menor riesgo, o al revés, dependiendo de si el gen es un indicador de mal (RR> 1,01) o buen (RR<1,01) pronóstico. Así, cualquier valor umbral definirá los subgrupos de pacientes con riesgo aumentado o disminuido respectivamente. Los resultados se resumen en la Tabla 2 , que muestra los 42 genes para los que el valor p para las diferencias entre los grupos era <0,05.

Tabla	a 2
-------	-----

Tabla 2	
Riesgo Relativo	valor p
1,52	0,000011
1,57	0,000090
0,74	0,000129
1,92	0,000227
1,46	0,000264
1,46	0,000505
0,68	0,000543
1,59	0,000684
1,59	0,000735
1,63	0,001135
1,58	0,001425
1,54	0,001443
1,60	0,001975
1,47	0,002337
1,48	0,002910
1,43	0,003877
1,59	0,005203
1,48	0,006533
0,62	0,006660
1,46	0,008188
1,38	0,009505
1,38	0,009551
1,67	0,010237
1,69	0,012308
1,52	0,012837
1,46	0,013622
0,84	0,013754
0,68	0,015422
1,46	0,017013
	Riesgo Relativo 1,52 1,57 0,74 1,92 1,46 1,46 0,68 1,59 1,59 1,63 1,58 1,54 1,60 1,47 1,48 1,43 1,59 1,48 1,43 1,59 1,48 0,62 1,46 1,38 1,38 1,38 1,67 1,69 1,52 1,46 0,84 0,68

5

(continuación)

Gen	Riesgo Relativo	valor p
HNRPAB	1,96	0,017942
EstR1	0,80	0,018877
MMP9	1,19	0,019591
DKFZp586M07	0,79	0,020073
TS	1,44	0,025186
Src	1,70	0,037398
BIN1	0,75	0,038979
NPD009	0,80	0,039020
RPLPO	0,52	0,041575
GSTM3	0,84	0,041848
MMP12	1,27	0,042074
TFRC	1,57	0,046145
IGF1R	0,78	0,046745

En base a la serie de datos indicada en la Tabla 2, la expresión de cualquiera de los siguientes genes en el cáncer de mama indica una menor probabilidad de supervivencia sin recurrencia del cáncer: GRB7; SURV; LMNB1; MYBL2; HER2; MELK; C20_orf1; PTTG1; BUB1; CDC20; CCNB1; STMY3; KNSL2; CTSL2; MCM2; NEK2; Ki_67; CCNE2; TOP2A-4; PCNA; PREP; FOXM1; NME1; STK15; HNRPAB; MMP9; TS; Src; MMP12; TFRC.

En base a la serie de datos indicada en la Tabla 2, la expresión de cualquiera de los siguientes genes en el cáncer de mama indica un mejor pronóstico de supervivencia sin recurrencia del cáncer: PR; GSTM1; DR5; CEGP1; BAG1; EstR1; DKFZp586M07; BIN1; NPD009; RPLPO; GSTM3; IGF1R.

El análisis binario y de tiempo-hasta-el evento, con contadas excepciones, identificaron los mismos genes como marcadores de pronóstico. Por ejemplo, la comparación de las Tablas 1 y 2 muestra que 10 genes estaban representados en los 15 genes superiores en ambas listas. Además, cuando ambos análisis identificaron el mismo gen a [p<0,10], lo que ocurrió para 26 genes, fueron siempre concordantes con respecto a la dirección (signo positivo o negativo) de la correlación con la supervivencia/recurrencia. Globalmente, estos resultados confirman la conclusión de que los marcadores identificados tienen un valor de pronóstico significativo.

Análisis génico multivariado de 242 pacientes con carcinoma de mama invasivo

En los modelos Cox comprendiendo más de dos genes (modelos multivariados), se procede a la entrada gradual de cada gen individual en el modelo, donde el primer gen entrado se preselecciona entre los genes con valores p univariados significativos, y el gen seleccionado para la entrada en el modelo en cada paso posterior es el gen que mejora más el encaje del modelo con los datos. Este análisis puede ser realizado con cualquier número total de genes. En el análisis cuyos resultados se muestran más abajo, se llevó a cabo la entrada progresiva de hasta 10 genes.

Se realizó el análisis multivariado utilizando la siguiente ecuación:

5

20

Se realizó el análisis multivariado utilizando la siguiente ecuación:

R=exp[coef(genA) x Ct(genA) + coef(genB) x Ct(genB) + coef(genC) x Ct(genC) +......

En esta ecuación, los coeficientes para genes que son predictores de resultado beneficioso son números positivos, y los coeficientes para genes que son predictores de resultado desfavorable son números negativos. Los valores "Ct" de la ecuación son ΔCts, es decir, reflejan la diferencia entre el valor Ct normalizado de una población, y el valor Ct normalizado medido para la paciente en cuestión. La convención utilizada en el presente análisis ha sido que ΔCts por debajo y por encima de la media de la población tienen signos positivos y signos negativos, respectivamente (reflejando una mayor o menor abundancia de ARNm). El riesgo relativo (RR) calculado resolviendo esta ecuación indicará si la paciente tiene una probabilidad aumentada o reducida de supervivencia a largo plazo sin recurrencia del cáncer.

Se llevó a cabo un análisis gradual multivariado, utilizando el Cox Proportional Hazards Model, de los datos de expresión génica obtenidos de las 242 pacientes con carcinoma de mama invasivo. En este análisis se ha determinado que la siguiente serie de diez genes tiene un valor predictivo particularmente sólido de la supervivencia de las pacientes: GRB7; LMNB1; ER; STMY3; KLK10; PR; KRT5; FGFR1; MCM6; SNRPF. En esta serie de genes, ER, PR, KRT5 y MCM6 contribuyen a un buen pronóstico, mientras que GRB7, LMNB1, STMY3, KLK10, FGFR1 y SNRPF contribuyen a un mal pronóstico.

5

Aunque la presente invención ha sido descrita con referencia a lo que se considera que son realizaciones específicas, hay que entender que la invención no se limita a tales realizaciones. Por el contrario, se pretende que la invención cubra diversas modificaciones incluidas en el alcance de las reivindicaciones adjuntas.

Secuencia	OGODICITIOTOCOTACTISTOCITOCOCCTOGICAACAACAATCACTGAGOCTGCCATGTGTGTG CTCTTCGTCATCTGA	cottotageacitggaayacaaanoottgcccoottcatattaattgsgaaaaaaaacaatcaac aggaagacttgaac	OCTICOAMADGAMCAASAGGCCTTCGGCTCCAGATGGCTCCCCTGGGGCACCGGGGACCGAACCAA GAGTCAACGAGG	OCOMOGITATOCACIONATOCOGGICAAGTOTAGGITGCACIOCAGGAAGTGAGAGGGCOATG	TCAGCTGTGAGCTGCGGATACCGCCCGGCAATGGGACCTGCTCTTAACCTCAAACCTAGGACCGT	TTCAGGTTGTTGCAGGAGAGATGTACATGACTGTCTCCATTATTGATCGGTTCATGCAGAAAATT	ATROCONTROCTOCTANCTURBS CTTTCTT GACATETARCATE GOTT GOTAN TATCACATTTT GOT.	TODATTORACITETOCOAATGTACTOGOCGTOGCACTOCACACACTGTTACCTGTGGAGTGCA	GAGTGTCCCCCCGGTATCTTCCCCGGCCCTGCCCATCCCGATGAAATTGGAAATTTATTGAAA	BRANI CARIANI COSTOS I TUACOS COSTOS NABARIOS COTOS ACATORAS MAS CARA CARA CARA CARA CARA CARA CARA CA	TRECTION BOTH BOTH ACTION OF A CONTRACT OF A THE STATE OF A STATE OF A THING OF A STATE	TCCCTCCACTCGGAMGGAGTATCCTGCTACAAGAGGGTCAAGTTGGACAGTGTCAGATGTCAGAA	TBTGTCACTBABCUAGCAGAATCTGGTGGACTGTTCGCGTCCTCAAGGCAATGAGTGCCAATG 6T	TECATTTCYACCTGTTAACCTTCATCATTTGTGCACCTGGAAGCAAAGAAGAAGAAGAAGGAACC GACTGCAT	OTICIOAAAARASICITICAATOATTIGAAAACTTIGATGOOCTTTAAGTOCIGGGAAGTOGGGTAATGA	OGGCCCTCCAGN/CAATGATGGGCTTTATGATGCTGAGTGCGATGAGAGGGGGGGTCTTAAGGGG AAGCAGTGGA	COTGSTGCCCTTATALCTGCTGTGGAGATGGTGGAGGCCCACCACCACTACATGCCCCACTA	EAGOGORATTCACCACATGGACTACTATAAAAGACAACGAACTGCCTGTGAAGGGGGGACTGCCTGTGAAGTGG	OCACCOSACAATOTGTCCTCCCCAGAGCCCTGAATCCTGGAGGCTCACGCCCCCAGAA	COATCTGCATCTTOTTTGGGGTCCCCACCCTTGAGTGCCTCAGATAATAGCCTGGTGGG	aaggtatoagaaaaagacaaaggatogggacoggacogtostgattatgacaaaagocaggostga atgaaaattoagstggoog	0.44T0C04T0TT0C0C0CT4C14C04C0A4C0A7C1T0T0C0T0A4C0A7C4C0A4C0A7C4ACAAAA
0		2		4			7															
SEQ ID NO.	SEQ ID NO: 1	SEQ ID NO:	SEQ ID NO: 3	SEQ ID NO:	SEQ ID NO: 5	SEQ ID NO: 6	SEQ ID NO:	SEQ ID NO: 8	SEQ ID NO: 9	SEQID NO: 10	SEQID NO: 11	SEQID NO: 12	SEQID NO: 13	SEQID NO: 14	SEQID NO: 15	SEQID NO: 16	SEQID NO: 17	SEQID NO: 18	SEQID NO: 19	SEQID NO: 20	SEQID NO:21	SEQID NO: 22
Parada	1629	754	942	1070	2740	206	2108	747	2580	640	1894	1578	738	633	1211	510	2024	2759	1980	1342	179	324
Inicio	1549	673	998	1002	2675	823	2026	619	2499	563	1822	1494	671	699	1127	435	1956	2685	1898	1275	93	248
Acceso	NM_001904	NM_004323	NM_004305	NM_004336	NM_012112	NM_031966	NM_057749	NM_001255	NM_004360	NM_020974	NM_001166	NM_002467	NM_001333	AL050227	NM_003842	NM_002354	NM_000125	NM_023109	NM_021953	NM_005310	NM_000581	NM_000849
Ę.	B-Catenin	BAG1	BIN1	BUB1	C20 orf1	CCNB1	CCNE2	CDC20	CDH1	CEGP1	CIAP1	cMYC	CTSL2	DKFZp586	DR5	EpCAM	EstR1	FGFR1	FOXM1	GRB7	GSTM1	GSTM3

TABLA 3

					(continuación)
હ	Acceso	Inicio	Inicio Parada	SEQ ID NO.	Secuencia
HER2	NM_004448	1138	1208	SEQID NO: 23	COGTGTOAGAAGTOCAGGAAGCCCTGTGCCCGAGTGTGTGTATGGTGTGGGCATGGAGCAGTTGC GAGAGG
HNRPAB	NM_004499	1086	1170	SEQ ID NO: 24	CANDGANGCGACCANGTGATGGACACATGGTTTGTTTGGATATGGAGTGAACATATGTAGG AAATTTAAGTTGGCAAAG
101	NM_002165	286	326	SEQID NO: 25	ABANCCBCANBOTBANGANGTGBANTGTCCNOCADGTCATCBACTACATCAGGGACCTTCAG TTGSA
IGF1R	NM_000875	3467	3550	SEQ ID NO: 26	acatgataccoaacatticacastcaaaatcogagattitiogtatgacgbaratstsaga Cagactattacoggaa
ITGA7	NM_002206	633	712	SEQ ID NO: 27	CATATGATT GGTCGCTTTGTGCTCAGCCAGCACCTGGCCATCCGGGATGAGTTGGATGGTTGG GGAATGGAAGTTCT
KI-67	NM_002417	42	122	SEQID NO: 28	COGNETTIOSGI GEGNATGACGASECGITEGATCAAAATGACCITGEGGGCCCGAATGGTCCC
KLK10	NM_002776	996	1044	SEQ ID NO: 29	GOCGAGAGODATGATGATGCTCTTGGTGGCGAGTGGGGTGAAGTGTCGCGGTTGTCTGAAGT GTTGAAAGCTGTG
KNSL2	BC000712	1266	1343	SEQID NO: 30	OCNOCTOGCCATGATTTTCOTTTCNCCGGGTATTCCCACCAGAAATGGACAGAATGAAGTGTTT GAAGAGATTGC
KRT5	NM_000424	1605	1674	SEQID NO: 31	TCAGTGGAGAGAGAGAGAGCGAGTCAACATGTGTGTGTGAAAGCAGTGTTCCTGTGGATATG GCA
LMNB1	NM_005573	1500	1566	SEQID NO: 32	TOCAAACOCTOGTGTCACAGCCAGCCCCAACTGACGCTCAYCTGGAAGAAACCACACTCGTGGG G
MCM2	NM_004526	2442	2517	SEQID NO: 33	QACTITTGCCCGGTACCTTTCATTCCGGCGTGACAATGACCTGTTGCTCTTCATACTGAAGCA GTTAGTGGC
MCM6	NM_005915	2669	2751	SEQIDNO: 34	TANTBOTICETATGTCACATTCATCACAGGTTT CATACCAACAGGCTTCAGCACTTCCTTTGGT GTGTTTCGTGTCOCA
MELK	NM_014791	22	87	SEQ ID NO: 35	AACCCGGCGATCGAAAAGATTCTTAGGAACGCCGTACCAGCCGCGTCTCTCAGGACAGCAGGCCC
MMP12	NM_002426	816	894	SEQ ID NO: 36	COMOGETI GCGAAATCCTGAGAATCAGAACCAGGTGTGTGTGACOCCAATTTGAGTTTTGAGTTTTGATGCT GTGAGTACCGT
MMP9	NM_004994	124	191	SEQ ID NO: 37	OAGAACCAATGTCACCGACAGGGGGGGGGGGAGGGAATACGTGTAOCGGTATOGTTACAGTGGGG TO
MYBL2	NM_002466	669	673	SEQID NO: 38	OCCOMANTODCAMANTETTODCAMAGAGAGAGAGAATGATTOTGANGAATCACTGGAACTCTAG CATCAMANG
NEK2	NM_002497	102	181	SEQ ID NO: 39	GTANDADADADAGAGATGTBBGCANGTGBGCGATGGCGTTGCDSGGCTQNGANGTATGMGTATGMGTTGT YGTAGAGCATTGGGA
NME1	NM_000269	365	439	SEQ ID NO: 40	CCAACCCTICAAACCCTGGAACCTTCCGTGAAGACTTCTGCATACAAGTTGCAAACAACAACAAAAACAAAAAACAAAAAAAA
6000dN	NM_020686	589	662	SEQ ID NO: 41	QQCTGTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
					AAYGGTCG
PCNA	NM_002592	157	228	SEQ ID NO: 42	OMBGTSTTGARGGAGTEMAGARGTEMFENAGAGGGGTGGTGGTGGAATATTAGGTERAGGGTG TAMAGE
PR	NM_000926	1895	1980	SEQID NO: 43	OCATCAGOGTGTCATATOGTGTCCTTACGTGTGGGAGGTGTAAGGTCTTTAAGAGGGCAATG GAAGGGGACAACAAGTACT

(continuación)	Secuencia	GROADOSTICADATTCANGACGANTCGCCAGTCTGCCAACTATGGGTGATCAACATTGACTTC TGGGATGCTG	BOSTACI CTANTOTAT GATA AGGANA A TOGA AGA AGCA GOCA COCOTOTOCTA A GATO A TOTA TOTA TOTA TOTA TOTA TOT	GZATTGTATGATGATGAAAGGAAAGGAAAGGAGGTTGTGTGTGTGTGAAAAGGGAATTAGAGGTTGGG AGTTGGTGA	GOSCIGORGA GARA GIROSCIO CARACATICO GOCCO GOGO GOTTA CARA GATTA COCCO CARACO CONTROCA CARACO CARACO CONTROCA CARACO CONTROCA CARACO CA	CCTGAACATGAAGGAGCTGAAGCTGCTGCAGACCATCGGGAAGGGGGAGTTCGGAGACGTGATG	ANTITICEA O BAGGACTA CITICIO FOR CACACACTA CACACACACACACA CACACA TA CATA TA CATA	COTIODINGOSTOCIALATA DESTOCOLA DE COLOCIA DE COTION DE COTION DE COTITITICA DE COLOCA DE COLOCA DE COLOCA DE C ACTION ATROPICA DA COLOCA TIOTA	TOTTHEATT COCGGGCTTACCADDTCAAAATGAAAGAAGAAAGAAAAAAAAAA	OCCAACTGCTTTCATTTGTGASGGATCTGAACCAATACAGAACATAAAGGAAATGGGGCTGA GF	ANYCOAAGGGGAGAGTGATGATTCCATATGGACTTTGACTCAGCTGTGGGTCCTCGGGGCAAA	SEQID NO: 54 GCCTGGGTGTGCCTTTCAACATCGCCAGCTACGCCCTGCTCACGTACATGATTGCGCACATCACG
	SEQ ID NO.	SEQ ID NO: 44	SEQ ID NO: 45	SEQ ID NO: 46	SEQID NO: 47	SEQ ID NO: 48	SEQID NO: 49	SEQ ID NO: 50	SEQID NO: 51	SEQID NO: 52	SEQ ID NO: 53	SEQID NO: 54
	Inicio Parada	965	122	998	150	1043	1170	2180	817	2178	4577	829
	Inicio	829	8	791	7.1	979	1101	2090	737	2110	4505	764
	Acceso	NM_002726	NM_004219	NM_C01002	NM_003095	NM_004383	NM_003600	NM_005940	NM_001168	NM_003234	NM_001067	NM_001071
	eg G	PREP	PTTG1	RPLPO	SNRPF	Src	STK15	STMY3	SURV	TFRC	TOP2A	TS

	22	23	G 29	23	24	28	20	20	21	21	21	23	20	24	19	20	20	27	22	27	8000	21	22	23	21	21	27	21	23	20	18	19	30
Secuencia	GGCTCTTGTGCGTACTGTCCTT	TCAGATGACGAGGACACAGATG	AGGCTCAGTGATGTCTTCCCTGTCACCAG	CGTTGTCAGCACTTGGAATACAA	GTTCAACCTCTTCCTGTGGACTGT	CCCAATTAACATGACCCGGCAACCAT	CCTGCAAAAGGGAACAAGAG	CGTGGTTGACTCTGATCTCG	CTTCGCCTCCAGATGGCTCCC	CCGAGGTTAATCCAGCACGTA	AAGACATGGCGCTCTCAGTTC	TGCTGGGAGCCTACACTTGGCCC	TCAGCTGTGAGCTGCGGATA	ACGGTCCTAGGTTTGAGGTTAAGA	CAGGTCCCATTGCCGGGCG	TTCAGGTTGTTGCAGGAGAC	CATCTTCTTGGGCACACAAT	TGTCTCCATTATTGATCGGTTCATGCA	ATGCTGTGGCTCCTTCCTAACT	ACCCAAATTGTGATATACAAAAGGTT	TACCAAGCAACCTACATGTCAAGAAAGCCC	TGGATTGGAGTTCTGGGAATG	GCTTGCACTCCACAGGTACACA	ACTGGCCGTGGCACTGGACACA	TGAGTGTCCCCGGTATCTTC	CAGCCGCTTTCAGATTTTCAT	TGCCAATCCCGATGAAATTGGAAATTT	TGACAATCAGCACACCTGCAT	TGTGACTACAGCCGTGATCCTTA	CAGGCCCTCTTCCGAGCGGT	TGCCTGTGGTGGGAAGCT	GGAAAATGCCTCCGGTGTT	TGACATAGCATCATCCTTTGGTTCCCAGTT
SEQ ID NO	SEQ ID NO:55	SEQ ID NO:56	SEQ ID NO:57	SEQ ID NO:58	SEQ ID NO:59	SEQ ID NO:60	SEQ ID NO:61	SEQ ID NO:62	SEQ ID NO:63	SEQ ID NO:64	SEQ ID NO.65	SEQ ID NO:66	SEQ ID NO:67	SEQ ID NO:68	SEQ ID NO:69	SEQ ID NO:70	SEQ ID NO:71	SEQ ID NO:72	SEQ ID NO:73	SEQ ID NO:74	SEQ ID NO:75	SEQ ID NO:76	SEQ ID NO:77	SEQ ID NO:78	SEQ ID NO:79	SEQ ID NO:80	SEQ ID NO:81	SEQ ID NO:82	SEQ ID NO:83	SEQ ID NO:84	SEQ ID NO:85	SEQ ID NO:86	SEQ ID NO:87
Nombre	S2150/B-Cate.f3	S2151/B-Cate.r3	S5046/B-Cate.p3	S1386/BAG1.f2	S1387/BAG1.r2	S4731/BAG1.p2	S2651/BIN1.f3	S2652/BIN1.r3	S4954/BIN1.p3	S4294/BUB1.f1	S4295/BUB1.r1	S4296/BUB1.p1	\$3560/C20 or.f1	\$3561/C20 or.r1	\$3562/C20 or.p1	S1720/CCNB1.f2	S1721/CCNB1.r2	S4733/CCNB1.p2	S1458/CCNE2.f2	S1459/CCNE2.r2	S4945/CCNE2.p2	S4447/CDC20.f1	S4448/CCC20.r1	S4449/CDC20.p1	S0073/CDH1.f3	S0075/CDH1.r3	S4990/CDH1.p3	S1494/CEGP1.f2	S1495/CEGP1.r2	S4735/CEGP1.p2	S0764/CIAP1.f2	S0765/CIAP1.r2	S4802/CIAP1.p2
Acceso	NM_001904	NM_001904	NM_001904	NM_004323	NM_004323	NM_004323	NM_004305	NM_004305	NM_004305	NM_004336	NM_004336	NM_004336	NM_012112	NM_012112	NM_012112	NM_031966	NM_031966	NM_031966	NM_057749	NM_057749	NM_057749	NM_001255	NM_001255	NM_001255	NM_004360	NM_004360	NM_004360	NM_020974	NM_020974	NM_020974	NM_001166	NM_001166	NM_001166
Gen	B-Catenin	B-Catenin	B-Catenin	BAG1	BAG1	BAG1	BIN1	BIN1	BIN1	BUB1	BUB1	8081	C20 orf1	C20 orf1	C20 orf1	CCNB1	CCNB1	CCNB1	CCNE2	CCNE2	CCNE2	CDC20	CDC20	CDC20	CDH1	CDH1	CDH1	CEGP1	CEGP1	CEGP1	CIAP1	CIAP1	CIAP1

TABLA 4

		21	22	27	21	19	24	27	19	23	24	19	23	20	21	25	19	19	19	20	19	27	19	22	23	20	20	23	20	27	30	21	25	27
	Secuencia	TCCCTCCACTCGGAAGGACTA	CGGTTGTTGCTGATCTGTCTCA	TCTGACACTGTCCAACTTGACCCTCTT	TGTCTCACTGAGCGAGCAGAA	ACCATTGCAGCCCTGATTG	CTTGAGGACGCGAACAGTCCACCA	TCCATTTTCTACCTGTTAACCTTCATC	ATGCAGTCGGTCCCTTCCT	TTGCTTCCAGGGCCTGCACAAA	CTCTGAGACAGTGCTTCGATGACT	CCATGAGGCCCAACTTCCT	CAGACTTGGTGCCCTTTGACTCC	GGGCCCTCCAGAACAATGAT	TGCACTGCTTGGCCTTAAAGA	CCGCTCTCATCGCAGTCAGGATCAT	CGTGGTGCCCCTCTATGAC	GGCTAGTGGCGCGCATGTAG	CTGGAGATGCTGGACGCCC	CACGGGACATTCACCACATC	GGGTGCCATCCACTTCACA	ATAAAAAGACAACGACGACTGC	CCACCCCGAGCAATCTGT	AAATCCAGTCCCCCTACTTTGG	CCTGAATCCTGGAGGCTCACGCC	ocatolgoatocatoftgft	goccaccagggtattatctg	ctocccacccttgagaagtgcct	GGCCCAGCTTGAATTTTTCA	AAGCTATGAGGAAAAGAAGTACACGAT	TCAGCCACTGGCTTCTGTCATAATCAGGAG	CAATGCCATCTTGCGCTACAT	GTCCACTCGAATCTTTCTTCTTCA	CTCGCAAGCACATGTGTGGTGAGA
(continuación)	SEQ ID NO	Sco ID NO:88	SEQ ID NO:89	SEQ ID NO:90	SEQ ID NO:91	SEQ ID NO:92	SEQ ID NO:93	SEQ ID NO:94	SEQ ID NO:95	SEQ ID NO:96	SEQ ID NO:97	SEQ ID NO:98	SEQ ID NO:99	SEQ ID NO:100	SEQ ID NO:101	SEQ ID NO:102	SEQ ID NO:103	SEQ ID NO:104	SEQ ID NO:105	SEQ ID NO:106	SEQ ID NO:107	SEQ ID NO:108	SEQ ID NO:109	SEQ ID NO:110	SEQ ID NO:111	SEQ ID NO:112	SEQ ID NO:113	SEQ ID NO:114	SEQ ID NO:115	SEQ ID NO:116	SEQ ID NO:117	SEQ ID NO:118	SEQ ID NO:119	SEQ ID NO:120
	Nombre	S0085/cMYC.f3	S0087/cMYC.r3	S4994/cMYC.p3	S4354/CTSL2.f1	S4355/CTSL2.r1	S4356/CTSL2.p1	S4396/DKFZp5.f1	S4397/DKFZp5.r1	S4398/DKFZpS.p1	S2551/DR5.f2	S2552/DR5.r2	S4979/DR5.p2	S1807/EpCAM.f1	S1808/EpCAM.r1	S4984/EpCAM.p1	S0115/EstR1.f1	S0117/EstR1.r1	S4737/EstR1.p1	S0818/FGFR1.13	S0819/FGFR1.r3	S4816/FGFR1.p3	S2006/FOXM1.f1	S2007/FOXM1.r1	S4757/FOXM1.p1	S0130/GRB7.f2	S0132/GRB7.r2	S4726/GRB7.p2	\$2026/GSTM1.rt	S2027/GSTM1.f1	S4739/GSTM1.p1	S2038/GSTM3.f2	S2039/GSTM3.r2	S5064/GSTM3.p2
	Acceso	NM_002467	NM_002467	NM_002467	NM_001333	NM_001333	NM_001333	AL050227	AL050227	AL050227	NM_003842	NM_003842	NM_003842	NM_002354	NM_002354	NM_002354	NM_C00125	NM_000125	NM_000125	NM_023109	NM_023109	NM_023109	NM_021953	NM_021953	NM_021953	NM_005310	NM_005310	NM_005310	NM_000561	NM_000561	NM_000561	NM_000849	NM_000849	NM_000849
	Gen	cMYC	cMYC	cMYC	CTSL2	CTSL2	CTSL2	DKFZp586M0723	DKFZp586M0723	DKFZp586M0723	DR5	DR5	DR5	EpCAM	EpCAM	EpCAM	EstR1	EstR1	EstR1	FGFR1	FGFR1	FGFR1	FOXM1	FOXM1	FOXM1	GRB7	GRB7	GRB7	GSTM1	GSTM1	GSTM1	GSTM3	GSTM3	GSTM3

			(continuación)		
Gen	Acceso	Nombre	SEQ ID NO	Secuencia	
HER2	NM_004448	S0142/HER2.f3	SEQ ID NO:121	CGGTGTGAGAGTGCAGCAA	20
HER2	NM_004448	S0144/HER2.r3	SEQ ID NO:122	CCTCTCGCAAGTGCTCCAT	19
HER2	NM_004448	S4729/HER2.p3	SEQ ID NO:123	CCAGACCATAGCACACTCGGGCAC	24
HNRPAB	NM_004499	S4510/HNRPAB.f3	SEQ ID NO:124	CAAGGGAGCGACCAACTGA	19
HNRPAB	NM_004499	S4511/HNRPAB.r3	SEQ ID NO:125	GTTTGCCAAGTTAAATTTGGTACATAAT	28
HNRPAB	NM_004499	S4512/HNRPAB.p3	SEQ ID NO:126	CTCCATATCCAAACAAAGCATGTGTGCG	28
ID1	NM_002165	S0820/ID1.f1	SEQ ID NO:127	AGAACCGCAAGGTGAGCAA	19
101	NM_002165	S0821/ID1.r1	SEQ ID NO:128	TCCAACTGAAGGTCCCTGATG	21
ID1	NM_002165	S4832/ID1.p1	SEQ ID NO:129	TGGAGATTCTCCAGCACGTCATCGAC	26
IGF1R	NM_000875	S1249/IGF1R.f3	SEQ ID NO:130	GCATGGTAGCCGAAGATTTCA	21
IGF1R	NM_000875	S1250/IGF1R.r3	SEQ ID NO:131	TTCCGGTAATAGTCTGTCTCATAGATATC	30
IGF1R	NM_000875	S4895/IGF1R.p3	SEQ ID NO:132	CGCGTCATACCAAAATCTCCGATTTTGA	28
ITGA7	NM_002206	S0859/ITGA7.f1	SEQ ID NO:133	GATATGATTGGTCGCTGCTTTG	22
ITGA7	NM_002206	S0920/ITGA7.r1	SEQ ID NO:134	AGAACTTCCATTCCCCACCAT	21
ITGA7	NM_002206	S4795/ITGA7.p1	SEQ ID NO:135	CAGCCAGGACCTGGCCATCCG	21
Ki-67	NM_002417	S0436/Ki-67.f2	SEQ ID NO:136	CGGACTTTGGGTGCGACTT	19
Ki-67	NM_002417	S0437/Ki-67.r2	SEQ ID NO:137	TTACAACTCTTCCACTGGGACGAT	24
Ki-67	NM_002417	S4741/Ki-67.p2	SEQ ID NO:138	CCACTTGTCGAACCACCGCTCGT	23
KLK10	NM_002776	S2624/KLK1 0.f3	SEQ ID NO:139	GCCCAGAGGCTCCATCGT	18
KLK10	NM_002776	S2625/KLK10.r3	SEQ ID NO:140	CAGAGGTTTGAACAGTGCAGACA	23
KLK10	NM_002776	S4978/KLK10.p3	SEQ ID NO:141	CCTCTTCCTCCCCAGTCGGCTGA	23
KNSL2	BC000712	S4432/KNSL2.f2	SEQ ID NO:142	CCACCTCGCCATGATTTTC	20
KNSL2	BC000712	S4433/KNSL2.r2	SEQ ID NO:143	GCAATCTCTTCAAACACTTCATCCT	25
KNSL2	BC000712	S4434/KNSL2.p2	SEQ ID NO:144	TTTGACCGGGTATTCCCACCAGGAA	25
KRT5	NM_000424	S0175/KRT5.f3	SEQ ID NO:145	tcagtggagaagttgga	20
KRT5	NM_000424	S0177/KRT5.r3	SEQ ID NO:146	tgccatatccagaggaaaca	20
KRT5	NM_000424	S5015/KRT5.p3	SEQ ID NO:147	ccagicaacatctctgttgtcacaagca	28
LMNB1	NM_005573	S4477/LMNB1.f1	SEQ ID NO:148	TGCAAACGCTGGTGTCACA	19
LMNB1	NM_006573	S4478/LMNB1.r1	SEQ ID NO:149	CCCCACGAGTTCTGGTTCTTC	21
LMNB1	NM_005573	S4479/LMNB1.p1	SEQ ID NO:150	CAGCCCCCAACTGACCTCATC	22
MCM2	NM_004526	S1602/MCM2.f2	SEQ ID NO:151	GACTTTTGCCCGCTACCTTTC	21
MCM2	NM_004526	S1603/MCM2.r2	SEQ ID NO:152	GCCACTAACTGCTTCAGTATGAAGAG	56
MCM2	NM_004526	S4900/MCM2.p2	SEQ ID NO:153	ACAGCTCATTGTTGTCACGCCGGA	24

Acceso	Nombre	SEQ ID NO	Secuencia	
NM_005915	S1704/MCM6.f3	SEQ ID NO:154	TGATGGTCCTATGTGTCACATTCA	24
NM_005915	S1705/MCM6.r3	SEQ ID NO:155	TGGGACAGGAACACACCAA	20
NM_005915	S4919/MCM6.p3	SEQ ID NO:156	CAGGTTTCATACCAACACAGGCTTCAGCAC	30
NM_014791	S4318/MELK.f1	SEQ ID NO:157	AACCCGGCGATCGAAAAG	18
NM_014791	S4319/MELK.r1	SEQ ID NO:158	GGCCTGCTGTCCTGAGA	18
NM_014791	S4320/MELK.p1	SEQ ID NO:159	TCTTAGGAACGCCGTACCAGCCGC	24
NM_002426	S4381/MMP12.t2	SEQ ID NO:160	CCAACGCTTGCCAAATCCT	19
NM_002426	S4382/MMP12.r2	SEQ ID NO:161	ACGGTAGTGACAGCATCAAAACTC	24
NM_002426	S4383/MMP12.p2	SEQ ID NO:162	AACCAGCTCTCTGTGACCCCAATT	24
NM_004994	S0656/MMP9.f1	SEQ ID NO:163	GAGAACCAATCTCACCGACA	20
NM_004994	S0657/MMP9.r1	SEQ ID NO:164	CACCCGAGTGTAACCATAGC	20
NM_004994	S4760/MMP9.p1	SEQ ID NO:165	ACAGGTATTCCTCTGCCAGCTGCC	24
NM_002466	S3270/MYBL2.f1	SEQ ID NO:166	GCCGAGATCGCCAAGATG	18
NM_002466	S3271/MYBL2.r1	SEQ ID NO:167	CTTTTGATGGTAGAGTTCCAGTGATTC	27
NM_002466	S4742/MYBL2.p1	SEQ ID NO:168	CAGCATTGTCTGTCCTCCCTGGCA	24
NM_002497	S4327/NEK2.f1	SEQ ID NO:169	GTGAGGCAGCGCACTCT	18
NM_002497	S4328/NEK2.r1	SEQ ID NO:170	TGCCAATGGTGTACAACACTTCA	23
NM_002497	S4329/NEK2.p1	SEQ ID NO:171	TGCCTTCCCGGGCTGAGGACT	21
NM_000269	S2526/NME1.f3	SEQ ID NO:172	CCAACCCTGCAGACTCCAA	19
NM_000269	S2527/NME1.r3	SEQ ID NO:173	ATGTATAATGTTCCTGCCAACTTGTATG	28
NM_000269	S4949/NME1.p3	SEQ ID NO:174	CCTGGGACCATCCGTGGAGACTTCT	25
NM_020686	S4474/NPD009.f3	SEQ ID NO:175	GGCTGTGGCTGAGGCTGTAG	20
NM_020686	S4475/NPD009.r3	SEQ ID NO:176	GGAGCATTCGAGGTCAAATCA	21
NM_020686	S4476/NPD009.p3	SEQ ID NO:177	TTCCCAGAGTGTCTCACCTCCAGCAGAG	28
NM_002592	S0447/PCNA.f2	SEQ ID NO:178	GAAGGTGTTGGAGGCACTCAAG	22
NM_002592	S0448/PCNA.r2	SEQ ID NO:179	GGTTTACACCGCTGGAGCTAA	21
NM_002592	S4784/PCNA.p2	SEQ ID NO:180	ATCCCAGCAGGCCTCGTTGATGAG	24
NM_000926	S1336/PR.16	SEQ ID NO:181	GCATCAGGCTGTCATTATGG	20
NM_000926	S1337/PR.r6	SEQ ID NO:182	AGTAGTTGTGCTGCCTTCC	20
NM_000926	S4743/PR.p6	SEQ ID NO:183	TGTCCTTACCTGTGGGAGCTGTAAGGTC	28
NM_002726	S1771/PREP.f1	SEQ ID NO:184	GGGACGGTGTTCACATTCAAG	21
NM_002726	S1772/PREP.r1	SEQ ID NO:185	CAGGATCCCAGAAGTCAATGTTG	23
NM_002726	S4929/PREP.p1	SEQ ID NO:186	TCGCCAGTCTCCCAACTATCGCGT	24

		(continuación)		
Acceso	Nombre	SEQ ID NO	Secuencia	
NM_004219	S4525/PTTG1.f2	SEQ ID NO:187	GGCTACTCTGATCTATGTTGATAAGGAA	28
NM_004219	S4526/PTTG1.r2	SEQ ID NO:188	GCTTCAGCCCATCCTTAGCA	50
NM_004219	S4527/PTTG1.p2	SEQ ID NO:189	CACACGGGTGCCTGGTTCTCCA	22
NM 001002	S0256/RPLPO.12	SEQ ID NO: 190	CCATTCTATCATCAACGGGTACAA	24
NM_001002	S0258/RPLPO.r2	SEQ ID NO:191	TCAGCAAGTGGGAAGGTGTAATC	23
NM_001002	S4744/RPLPO.p2	SEQ ID NO:192	TCTCCACAGACAAGGCCAGGACTCG	25
NM_003095	S4489/SNRPF.f2	SEQ ID NO:193	GGCTGGTCGGCAGAGAGTAG	20
NM_003095	S4490/SNRPF.r2	SEQ ID NO:194	TGAGGAAAGGTTTGGGATTGA	21
NM 003095	S4491/SNRPF.p2	SEQ ID NO: 195	AAACTCATGTAAACCACGGCCGAATGTTG	29
NM_004383	S1820/Src.f2	SEQ ID NO:196	CCTGAACATGAAGGAGCTGA	20
NM_004383	S1821/Src.r2	SEQ ID NO:197	CATCACGTCTCCGAACTCC	19
NM_004383	S5034/Src.p2	SEQ ID NO:198	TCCCGATGGTCTGCAGCAGCT	21
NM_003600	S0794/STK15.f2	SEQ ID NO:199	CATCTTCCAGGAGGACCACT	20
NM_003600	S0795/STK15.r2	SEQ ID NO:200	TCCGACCTTCAATCATTTCA	20
NM_003600	S4745/STK1 5.p2	SEQ ID NO:201	CTCTGTGGCACCCTGGACTACCTG	24
NM_005940	S2067/STMY3.f3	SEQ ID NO:202	CCTGGAGGCTGCAACATACC	20
NM_005940	S2068/STMY3.r3	SEQ ID NO:203	TACAATGGCTTTGGAGGATAGCA	23
NM_005940	S4746/STMY3.p3	SEQ ID NO:204	ATCCTCCTGAAGCCCTTTTCGCAGC	25
NM_001168	S02591SURV.f2	SEQ ID NO:205	TGTTTTGATTCCCGGGCTTA	20
NM_001168	S0261/SURV.r2	SEQ ID NO:206	CAAAGCTGTCAGCTCTAGCAAAAG	24
NM_001168	S4747/SURV.p2	SEQ ID NO:207	TGCCTTCTTCCTCCCTCACTTCTCACCT	28
NM_003234	S1352/TFRC.f3	SEQ ID NO:208	GCCAACTGCTTTCATTTGTG	20
NM_003234	S1353/TFRC.r3	SEQ ID NO:209	ACTCAGGCCCATTTCCTTTA	20
NM_003234	S4748/TFRC.p3	SEQ ID NO:210	AGGGATCTGAACCAATACAGAGCAGACA	28
NM_001067	S0271/TOP2A.14	SEQ ID NO:211	AATCCAAGGGGGAGAGTGAT	20
NM_001067	S0273/TOP2A.r4	SEQ ID NO:212	GTACAGATTTTGCCCGAGGA	20
NM_001067	S4777/TOP2A.p4	SEQ ID NO:213	CATATGGACTTTGACTCAGCTGTGGC	56
NM_001071	S0280/TS.f1	SEQ ID NO:214	GCCTCGGTGTGCCTTTCA	18
NM_001071	S0282/TS.r1	SEQ ID NO:215	CGTGATGTGCGCAATCATG	19
NM 001071	S4780/TS.p1	SEQ ID NO:216	CATCGCCAGCTACGCCCTGCTC	22

```
LISTA DE SECUENCIAS
     [0103]
     <110> Salud genómica
     <120> Predicción de la probabilidad de recurrencia del cáncer
     <130> GRF/FP6349666
     <140> 04809450,2
     <141> 2004-06-17
10
     <150> PCT/US2004/019567
     <151 > 2004-06-17
     <150> US 60/482,339
     <151 > 24/06/2003
15
     <160> 216
     <170> FastSEQ para Windows Versión 4.0
20
     <210> 1 25
     <211> 80
     <212> ADN
     <213> Secuencia artificial
25
     <220>
     <223> PCR Amplicon
     <400>
       ggctcttgtg cgtactgtcc ttcgggctgg tgacagggaa gacatcactg agcctgccat 60
      ctgtgctctt cgtcatctga
                                                                                        80
30
     <210>2
     <211> 81
     <212> ADN
     <213> Secuencia artificial
     <220>
35
     <223> PCR Amplicon
     <400> 2
      cgttgtcagc acttggaata caagatggtt gccgggtcat gttaattggg aaaaagaaca 60
      gtccacagga agaggttgaa c
                                                                                        81
     <210> 3
40
     <211> 76
      <212> ADN
     <213> Secuencia artificial
     <220>
45
     <223> PCR Amplicon
     <400> 3
```

	cctgcaaaag g		cccttcgcct	ccagatggct	cccctgccgc	cacccccgag	60 76
	<210>4 <211>68 <212> ADN						
5	<213> Secuencia	artificial					
	<220> <223> PCR Amplio	con					
10	<400> 4						
	ccgaggttaa t catgtctt	ccagcacgt	atggggccaa	gtgtaggctc	ccagcaggaa	ctgagagcgc	60 68
	<210> 5						
4.5	<211> 65						
15	<212> ADN <213> Secuencia a						
	<213> Secuencia a	artificiai					
	<220>						
	<223> PCR Amplic	ron					
20	1220° I OIT / IIIplic	JOI1					
20	<400> 5						
	tcagctgtga g accgt	ctgcggata	ccgcccggca	atgggacctg	ctcttaacct	caaacctagg	60 65
	<210>6						
25	<211> 84						
	<212> ADN						
	<213> Secuencia	artificial					
	<220>						
30	<223> PCR Amplio	on					
	<400> 6						
	ttcaggttgt to aataattgtg to			actgtctcca	ttattgatcg	gttcatgcag	60 84
	<210> 7						
35	<211> 82						
	<212> ADN						
	<213> Secuencia a	artificial					
	<220>						
40	<223> PCR Amplic	con					
	<400> 7						

		tccttcctaa cacaatttgg		cttgacatgt	aggttgcttg	gtaataacct	60 82
	<210> 8						
5	<211> 68 <212> ADN						
Э	<213> Secuencia	a artificial					
	<220>	r.					
10	<223> PCR Amp	licon					
10	<400> 8						
	tggattggag gtgcaagc	ttctgggaat	gtactggccg	tggcactgga	caacagtgtg	tacctgtgga	60 68
	<210>9						
15	<211> 81						
	<212> ADN						
	<213> Secuencia	a artificial					
	<220>						
20	<223> PCR Amp	licon					
	<400> 9						
		ccggtatctt gaaagcggct		ccaatcccga	tgaaattgga	aattttattg	60 81
25	<210> 10						
	<211> 77						
	<212> ADN						
	<213> Secuencia	a artificial					
30	<220>						
	<223> PCR Amp	licon					
	<400> 10						
	tgacaatcag tcacggctgt		ttcaccgctc	ggaagagggc	ctgagctgca		60 77
35	<210> 11						
	<211> 72						
	<212> ADN						
	<213> Secuencia	a artificial					
40							
	<220>						
	<223> PCR Amp	licon					

	<400> 11 tgcctgtggt gggaagctca gtaactggga accaaaggat gatgctatgt cagaacaccg gaggcatttt cc	60 72
5	<210> 12 <211> 84 <212> ADN <213> Secuencia artificial	
10	<220>	
10	<223> PCR Amplicon	
	<400> 12	
	tecetecaet eggaaggaet ateetgetge caagagggte aagttggaea gtgteagagt eetgagaeag ateageaaea aeeg	60 84
15	<210> 13 <211> 67 <212> ADN <213> Secuencia artificial	
20	<220> <223> PCR Amplicon	
	<400> 13	
	tgtctcactg agcgagcaga atctggtgga ctgttcgcgt cctcaaggca atcagggctg caatggt	60 67
25		
30	<210> 14 <211> 74 <212> ADN <213> Secuencia artificial	
30	<220>	
	<223> PCR Amplicon	
	<400> 14	
	tccattttct acctgttaac cttcatcatt ttgtgcaggc cctggaagca aagagaggaa	60
35	gggaccgact gcat	74
33	tccattttct acctgttaac cttcatcatt ttgtgcaggc cctggaagca aagagaggaa 60 gggaccgact gcat	
40	<210> 15 <211> 84 <212> ADN <213> Secuencia artificial	

	<220>	
	<223> PCR Amplicon	
5	<400> 15	
	ctctgagaca gtgcttcgat gactttgcag acttggtgcc ctttgactcc tgggagccgc tcatgaggaa gttgggcctc atgg	60 84
	<210> 16	
	<211> 75	
10	<212> ADN <213> Secuencia artificial	
	<220>	
1 E	<223> PCR Amplicon	
15	<400> 16	
	gggccctcca gaacaatgat gggctttatg atcctgactg cgatgagagc gggctcttta aggccaagca gtgca	60 75
	<210> 17	
20	<211> 68	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
25	<223> PCR Amplicon	
	<400> 17	
	cgtggtgccc ctctatgacc tgctgctgga gatgctggac gcccaccgcc tacatgcgcc cactagcc	60 68
30	<210> 18	
	<211> 74	
	<212> ADN	
	<213> Secuencia artificial	
35	<220>	
	<223> PCR Amplicon	
	<400>	
	cacgggacat tcaccacatc gactactata aaaagacaac caacggccga ctgcctgtga agtggatggc accc	60 74
40		
	<210> 19	
	<211> 82	
	<212> ADN	
	<213> Secuencia artificial	

	<220> <223> PCR Amplicon	
	220 Tott/unpiloon	
5	<400> 19 aaaagacaac caacggccga ctgcctgtga 60	
	ccaccccgag caaatctgtc ctccccagaa cccctgaatc ctggaggctc acgccccag ccaaagtagg gggactggat tt	60 82
	<210> 20	
	<211> 67	
10	<212> ADN <213> Secuencia artificial	
	<220>	
15	<223> PCR Amplicon	
. •	<400> 20	
	ccatctgcat ccatcttgtt tgggctcccc acccttgaga agtgcctcag ataataccct ggtggcc	60 67
	<210> 21	
20	<211> 86	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
25	<223> PCR Amplicon	
	<400> 21	
	aagctatgag gaaaagaagt acacgatggg ggacgctcct gattatgaca gaagccagtg gctgaatgaa aaattcaagc tgggcc	60 86
30	<210> 22	
	<211> 76	
	<212> ADN	
	<213> Secuencia artificial	
35	<220>	
	<223> PCR Amplicon	
	<400> 22	
	caatgccatc ttgcgctaca tcgctcgcaa gcacaacatg tgtggtgaga ctgaagaaga aaagattcga gtggac	60 76
40		
. •	<210> 23	
	<211> 70	
	<212> ADN	
	<213> Secuencia artificial	

	<220> <223> PCR Am	plicon					
5	<400> 23						
5		agtgcagcaa	accctatacc	cgagtgtgct	atggtctggg	catggagcac	60
	ttgcgagagg	-,,,,.,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		70
	<210>24						
10	<211> 84						
10	<212> ADN <213> Secuenci	ia artificial					
	<220>						
4.5	<223> PCR Amp	plicon					
15	<400> 24						
		accaactgat ttaacttggc		ctttgtttgg	atatggagtg	aacacaatta	60 84
	<210> 25						
20	<211> 70						
	<212> ADN <213> Secuenci	ia artificial					
	<220>						
25	<223> PCR Amp	plicon					
	<400> 25						
	agaaccgcaa ttcagttgga		gtggagattc	tccagcacgt	catcgactac	atcagggacc	60 70
30	<210> 26						
	<211> 83 <212> ADN						
	<213> Secuenci	ia artificial					
35	<220>						
	<223> PCR Amp	plicon					
	<400> 26						
		cgaagatttc ctattaccgg		tcggagattt	tggtatgacg	cgagatatct	60 83
40							
	<210> 27						
	<211> 79						
	<212> ADN <213> Secuenci	ia artificial					

	<220> <223> PCR Amp	olicon					
	VZZSZ POR AIII	DIIGOTT					
5	<400> 27						
	gatatgattg ggtggggaat		tgtgctcagc	caggacctgg	ccatccggga	tgagttggat	60 79
	<210> 28						
	<211> 80						
10	<212> ADN <213> Secuenci	o ortificial					
	<213> Secuenci	a artificial					
	<220>						
	<223> PCR Amp	olicon					
15	<400> 28						
		gtgcgacttg	acgagcggtg	gttcgacaag	taacettaca	ggccggatcg	60
		agagttgtaa		, <u>,</u>	-999-9	99999	80
	<210> 29						
20	<211> 78						
	<212> ADN <213> Secuenci	o ortificial					
	<213> Secuenci	a artiliciai					
	<220>						
25	<223> PCR Amp	plicon					
	<400> 29						
	gcccagaggc gcactgttca		atcctcttcc	tccccagtcg	gctgaactct	ccccttgtct	60 78
30	<210> 30						
	<211> 77						
	<212> ADN						
	<213> Secuenci	а аппса					
35	<220>						
	<223> PCR Amp	olicon					
	<400> 30						
	ccacctcgcc gtgtttgaag		ctttgaccgg	gtattcccac	caggaagtgg	acaggatgaa	60 77
40							
	<210> 31						
	<211> 69						
	<212> ADN <213> Secuenci	a artificial					

	<220> <223> PCR Amplicon	
5	<400> 31	
	tcagtggaga aggagttgga ccagtcaaca tctctgttgt cacaagcagt gtttcctctg gatatggca	60 69
	<210> 32	
	<211> 66	
10	<212> ADN	
	<213> Secuencia artificial	
	<220>	
15	<223> PCR Amplicon	
. •	<400> 32	
	tgcaaacgct ggtgtcacag ccagcccccc aactgacctc atctggaaga accagaactc gtgggg	60 66
	<210> 33	
20	<211> 75	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
25	<223> PCR Amplicon	
	<400> 33	
	gacttttgcc cgctaccttt cattccggcg tgacaacaat gagctgttgc tcttcatact gaagcagtta gtggc	60 75
30	<210> 34	
	<211> 82	
	<212> ADN	
	<213> Secuencia artificial	
35	<220>	
	<223> PCR Amplicon	
	<400> 34	
		60
40	ctttggtgtg tttcctgtcc ca	82
40	<210> 35	
	<211> 65	
	<212> ADN	
	<213> Secuencia artificial	
45		

	<220>						
	<223> PCR Amp	plicon					
	<400> 35						
5	aacccggcga	tcgaaaagat	tcttaggaac	gccgtaccag	ccgcgtctct	caggacagca	60
	ggccc						65
	<210> 36						
	<211> 78						
10	<212> ADN <213> Secuenci	a artificial					
	12 TOP OCCUCION	a artinolar					
	<220>						
15	<223> PCR Amp	plicon					
13	<400> 36						
			acaattcaga	accagctctc	tgtgacccca	atttgagttt	
	tgatgctgtc	actaccgt					78
	<210> 37						
20	<211> 67						
	<212> ADN						
	<213> Secuenci	a artificial					
	<220>						
25	<223> PCR Amp	plicon					
	<400> 37						
		ctcaccgaca	ggcagctggc	agaggaatac	ctgtaccgct	atggttacac	
	tcgggtg						67
30	<210> 38						
	<211> 74						
	<212> ADN						
	<213> Secuenci	а аппсы					
35	<220>						
	<223> PCR Amp	plicon					
	<400> 38						
			gccagggagg	acagacaatg	ctgtgaagaa	tcactggaac	60
40	tctaccatca	aaag					74
40	<210> 39						
	<211> 79						
	<212> ADN						
	<213> Secuenci	a artificial					

	<220>						
	<223> PCR Amp	licon					
5	<400> 39						
	gtgaggcagc gtgttgtaca		cgactggccg	gccatgcctt	cccgggctga	ggactatgaa	60 79
	<210> 40						
	<211> 74						
10	<212> ADN						
	<213> Secuencia	a artificial					
	<220>						
	<223> PCR Amp	licon					
15	<400> 40						
		agactccaag	cctgggacca	tccgtggaga	cttctgcata	caagttggca	60
	ggaacattat						74
	<210> 41						
20	<211> 73						
	<212> ADN						
	<213> Secuencia	a artificial					
	<220>						
25	<223> PCR Amp	licon					
	<400> 41						
	ggctgtggct cctcgaatgc		catctctgct	ggaggtgaga	cactctggga	actgatttga	60 73
30	<210> 42						
	<211> 71						
	<212> ADN						
	<213> Secuencia	a artificial					
35	<220>						
	<223> PCR Amp	licon					
	<400> 42						
	gaaggtgttg cggtgtaaac		aggacctcat	caacgaggcc	tgctgggata	ttagctccag	60 71
40							
	<210> 43						
	<211> 85						
	<212> ADN	o artificial					
	<213> Secuencia	a artincial					

	<220>						
	<223> PCR Amp	licon					
5	<400> 43						
		gtcattatgg ggcagcacaa	_	tgtgggagct	gtaaggtctt	ctttaagagg	60 85
	<210>44						
	<211> 76						
10	<212> ADN						
	<213> Secuencia	a artificial					
	}<220>						
4.5	<223> PCR Amplicon						
15	<400> 44						
	gggacggtgt gacttctggg		gacgaatcgc	cagtctccca	actatcgcgt	gatcaacatt	60 76
	<210> 45						
20	<211> 74						
	<212> ADN						
	<213> Secuencia	a artificial					
	<220>						
25	<223> PCR Amp	licon					
	<400> 45						
	ggctactctg ggatgggctg		ataaggaaaa	tggagaacca	ggcacccgtg	tggttgctaa	60 74
30	<210> 46						
	<211> 75						
	<212> ADN						
	<213> Secuencia	a artificial					
35	<220>						
	<223> PCR Amp	licon					
	<400> 46						
	ccattctatc cttcccactt		acaaacgagt	cctggccttg	tctgtggaga	cggattacac	60 75
40							
	<210> 47						
	<211> 79						
	<212> ADN <213> Secuencia	a artificial					
	- Lio- Occuention	a artinolal					

	<220>	
	<223> PCR Amplicon	
5	<400> 47	
	ggctggtcgg cagagagtag cctgcaacat tcggccgtgg tttacatgag tttacccctc aatcccaaac ctttcctca	60 79
	<210> 48	
	<211> 64	
10	<212> ADN <213> Secuencia artificial	
	<220>	
15	<223> PCR Amplicon	
15	<400> 48	
	cctgaacatg aaggagctga agctgctgca gaccatcggg aagggggagt tcggagacgt gatg	60 64
	<210> 49	
20	<211> 69	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
25	<223> PCR Amplicon	
	<400>49	
	catettecag gaggaceaet etetgtggea eeetggaeta eetgeeeeet gaaatgattg aaggtegga	60 69
30	<210> 50	
	<211> 90	
	<212> ADN	
	<213> Secuencia artificial	
35	<220>	
	<223> PCR Amplicon	
	<400> 50	
	cctggaggct gcaacatacc tcaatcctgt cccaggccgg atcctcctga agcccttttc gcagcactgc tatcctccaa agccattgta	60 90
40		
	<210> 51	
	<211> 79 <212> ADN	
	<213> Secuencia artificial	

	<220> <223> PCR Amplicon	
	220 FOR Amplicon	
5	<400> 51	
	tgttttgatt cccgggctta ccaggtgaga agtgagggag gaagaaggca gtgtcccttt tgctagagct gacagcttg	60 79
	<210> 52	
	<211> 68	
10	<212> ADN <213> Secuencia artificial	
	<213> Secuencia artificial	
	<220>	
	<223> PCR Amplicon	
15	<400> 52	
	gccaactgct ttcatttgtg agggatctga accaatacag agcagacata aaggaaatgg	60
	gcctgagt	68
	<210> 53	
20	<211> 72	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
25	<223> PCR Amplicon	
	<400> 53	
	aatccaaggg ggagagtgat gacttccata tggactttga ctcagctgtg gctcctcggg caaaatctgt ac	60 72
30	<210> 54	
	<211> 65	
	<212> ADN	
	<213> Secuencia artificial	
35	<220>	
	<223> PCR Amplicon	
	<400> 54	
	gcctcggtgt gcctttcaac atcgccaget acgccctgct cacgtacatg attgcgcaca tcacg	60 65
40		
	<210> 55	
	<211> 22	
	<212> ADN <213> Secuencia artificial	
	>2 TO SECUENCIA ALLIIICIAI	

	<220> <223> PCR cebador-sonda
5	<400> 55 ggetettgtg egtactgtee tt 22
10	<210> 56 <211> 23 <212> ADN <213> Secuencia artificial
15	<220> <223> PCR cebador-sonda
	<400> 56 tcagatgacg aagagcacag atg 23
20	<210> 57 <211> 29 <212> ADN <213> Secuencia artificial
25	<220> <223> PCR cebador-sonda
	<400> 57 aggeteagtg atgtetteec tgteaceag 29
30	<210> 58 <211> 23 <212> ADN <213> Secuencia artificial
35	<220> <223> PCR cebador-sonda
	<400> 58 cgttgtcagc acttggaata caa 23
40	<210> 59 <211>24 <212> ADN <213> Secuencia artificial
45	<220> <223> PCR cebador-sonda

	<400> 59		
	gttcaacctc ttcctgtgga ctgt	24	
_	<210> 60		
5	<211> 26 <212> ADN 35		
	<213> Secuencia artificial		
	12 10° Occurring artificial		
	<220>		
10	<223> PCR cebador-sonda		
	<400> 60		
	cccaattaac atgacccggc aaccat		26
15	<210> 61		
	<211> 20		
	<212> ADN		
	<213> Secuencia artificial		
20	<220>		
	<223> PCR cebador-sonda		
	<400> 61		
	cctgcaaaag ggaacaagag	20	
25			
	<210> 62		
	<211> 20		
	<212> ADN		
30	<213> Secuencia artificial		
	<220>		
	<223> PCR cebador-sonda		
	<220>		
35	<223> PCR cebador-sonda		
	<400> 62		
	cgtggttgac tctgatctcg 20		
40	<210> 63		
	<211> 21		
	<212> ADN 10		
	<213> Secuencia artificial		
45	<220>		
	<223> PCR cebador-sonda		
	<400> 63		

	cttcgcctcc agatggctcc c	21
5	<210> 64 <211> 21 <212> ADN <213> Secuencia artificial	
10	<220> <223> PCR cebador-sonda <400> 64	
	ccgaggttaa tccagcacgt a	21
15	<210> 65 <211>21 <212> ADN <213> Secuencia artificial	
20	<220> <223> PCR cebador-sonda	
	<400> 65 aagacatggc gctctcagtt c	21
25	<210>66 <211> 23 <212> ADN <213> Secuencia artificial	
30	<220> <223> PCR cebador-sonda	
35	<400> 66 tgctgggagc ctacacttgg ccc	23
	<210> 67 <211> 20 <212> ADN	
40	<213> Secuencia artificial <220> <223> PCR cebador-sonda	
45	<400> 67 tcagctgtga gctgcggata <210> 68 <211> 24	20
	<212> ADN	

	<213> Secuencia artificial		
_	<220> <223> PCR cebador-sonda		
5	<400> 68 acggtcctag gtttgaggtt aaga		24
10	<210>69 <211> 19 <212> ADN <213> Secuencia artificial		
15	<220> <223> PCR cebador-sonda		
	<400> 69 caggtcccat tgccgggcg	19	
20	<210> 70 <211> 20 <212> ADN <213> Secuencia artificial		
25	<220> <223> PCR cebador-sonda		
30	<400> 70 ttcaggttgt tgcaggagac <210> 71	20	
35	<211> 20 <212> ADN <213> Secuencia artificial <220> <223> PCR cebador-sonda		
40	<400> 71 catcttcttg ggcacacaat	20	
45	<210> 72 <211> 27 <212> ADN <213> Secuencia artificial		
	<220> <223> PCR cebador-sonda		

	<400> 72	
	tgtctccatt attgatcggt tcatgca 27	
5	<210> 73	
	<211> 22	
	<212> ADN	
	<213> Secuencia artificial	
10	<220>	
	<223> PCR cebador-sonda	
	<400> 73	
	atgctgtggc tccttcctaa ct 22	
15		
	<210> 74	
	<211> 27	
	<212> ADN	
	<213> Secuencia artificial	
20	000	
	<220>	
	<223> PCR cebador-sonda	
	<400> 74	
25	acccaaattg tgatatacaa aaaggtt 27	
	<210> 75	
	<211> 30 25	
	<212> ADN	
30	<213> Secuencia artificial	
	22205	
	<220> <223> PCR cebador-sonda	
	220 TOR Cobador Conta	
35	<400> 75	
	taccaagcaa cctacatgtc aagaaagccc 30	
	<210> 76	
	<211 > 21	
40	<212> ADN	
	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
45		
	<400> 76	
	tggattggag ttctgggaat g 21	

	<210>77	
	<211> 22	
	<212> ADN	
	<213> Secuencia artificial	
5		
	<220>	
	<223> PCR cebador-sonda	
	<400> 77	
	gcttgcactc cacaggtaca ca	22
10	3 3 33	
	<210> 78	
	<210> 76 <211> 23	
	<211> 23 <212> ADN	
15		
15	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
	12232 F CIT Cepador-Sorida	
20	<400> 78	
20		23
	actggccgtg gcactggaca aca	23
	0.40 = 70	
	<210> 79	
	<211>21	
25	<212> ADN	
	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
30	~223/ FCN Cepador-sorida	
30	<400> 79	
		24
	tgagtgtccc ccggtatctt c	21
	<210>80	
35	<211> 21	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
40	<223> PCR cebador-sonda	
	.400: 00	
	<400> 80	
	cagccgcttt cagattttca t	21
45	<210> 81	
	<211> 27	
	<212> ADN	
	<213> Secuencia artificial	

	<220> <223> PCR cebador-sonda		
5	<400> 81	+++	27
	tgccaatccc gatgaaattg gaaa	ш	21
	<210> 82 <211>21		
10	<212> ADN		
	<213> Secuencia artificial		
	<220>		
15	<223> PCR cebador-sonda		
10	<400> 82		
	tgacaatcag cacacctgca t	21	
	<210> 83		
20	<211> 23		
	<212> ADN		
	<213> Secuencia artificial		
	<220>		
25	<223> PCR cebador-sonda		
	<400> 83		
	tgtgactaca gccgtgatcc tta	23	
30	<400> 88		
	<220>		
	<223> PCR cebador-sonda		
	<210>84 <211> 20		
35	<212> ADN		
	<213> Secuencia artificial		
	<220>		
40	<223> PCR cebador-sonda		
.0	<400> 84		
	caggecetet teegageggt	20	
	<210> 85		
45	<211> 18		
	<212> ADN		
	<213> Secuencia artificial		

	<220> <223> PCR cebador-sonda
5	<400> 85 tgcctgtggt gggaagct 18
10	<210> 86 <211> 19 <212> ADN <213> Secuencia artificial
	<220> <223> PCR cebador-sonda
15	<400> 86 ggaaaatgcc tccggtgtt 19
20	<210> 87 <211> 30 <212> ADN <213> Secuencia artificial
25	<220> <223> PCR cebador-sonda <400> 87 tgacatagca tcatcctttg gttcccagtt 30
30	<210> 88 <211>21 <212> ADN <213> Secuencia artificial
35	<220> <223> PCR cebador-sonda
	<400> 88 tccctccact cggaaggact a 21
40	<210> 89 <211> 22 <212> ADN <213> Secuencia artificial
45	<220> <223> PCR cebador-sonda
	<400> 89

	cggttgttgc tgatctgtct ca 22
	<210> 90 <211> 27
5	<212> ADN <213> Secuencia artificial
	<220> <223> PCR cebador-sonda
10	
	<400> 90 tetgacaetg tecaaettga ecetett 27
4.5	<210> 91
15	
	<212> ADN <213> Secuencia artificial
00	<220>
20	<223> PCR cebador-sonda
	<400> 91
	tgtctcactg agcgagcaga a 21
25	<210> 92 <211> 19
	<212> ADN
	<213> Secuencia artificial
30	<220>
	<223> PCR cebador-sonda
	<400> 92
0.5	accattgcag ccctgattg 19
35	<210> 93
	<211> 24
	<212> ADN
40	<213> Secuencia artificial
40	<220>
	<223> PCR cebador-sonda
	<400> 93
45	cttgaggacg cgaacagtcc acca 24
	<210> 94

	<211> 27	
	<212> ADN	
	<213> Secuencia artificial	
5	<220>	
	<223> PCR cebador-sonda	
	<400> 94	
	tccattttct acctgttaac cttcatc	27
10		
	<210> 95	
	<211> 19	
	<212> ADN	
4.5	<213> Secuencia artificial	
15	<220>	
	<223> PCR cebador-sonda	
	12207 I OIT GEDAGGI-30IIda	
	<400> 95	
20	atgcagtcgg tcccttcct 19	
	<210> 96	
	<211>23	
	<212> ADN	
25	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
30	<400> 96	
	ttgcttccag ggcctgcaca aaa	23
	<210> 97	
0.5	<211> 24	
35	<212> ADN	
	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
40		
	<400> 97	
	ctctgagaca gtgcttcgat gact	24
	<210> 98	
	<211> 19	
45	<212> ADN	
-	<213> Secuencia artificial	
	<220>	

	<223> PCR cebador-sonda		
_	<400> 98 ccatgaggcc caacttcct	19	
5	<210>99 <211> 23		
10	<212> ADN <213> Secuencia artificial		
	<220> <223> PCR cebador-sonda		
15	<400> 99 cagacttggt gecetttgac tee	23	3
20	<210> 100 <211> 20 <212> ADN <213> Secuencia artificial		
	<220> <223> PCR cebador-sonda		
25	<400> 100 gggccctcca gaacaatgat	20	
30	<210> 101 <211> 21 <212> ADN <213> Secuencia artificial		
35	<220> <223> PCR cebador-sonda		
33	<400> 101 tgcactgctt ggccttaaag a	21	
40	<210> 102 <211>25 <212> ADN <213> Secuencia artificial		
45	<220> <223> PCR cebador-sonda		
	<400> 102 ccgctctcat cgcagtcagg atca	t	25

	<210> 103	
	<211> 19	
	<212> ADN	
5	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
10	<400> 103	
	cgtggtgccc ctctatgac	19
	<210> 104	
	<211> 19	
15	<212> ADN	
	<213> Secuencia artificial	
	<220>	
20	<223> PCR cebador-sonda	
	<400> 104	
	ggctagtggg cgcatgtag	19
	<210> 105	
25	<211> 19	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
30	<223> PCR cebador-sonda	
	<400> 105	
	ctggagatgc tggacgccc	19
35	<210> 106	
	<211> 20	
	<212> ADN	
	<213> Secuencia artificial	
40	<220>	
	<223> PCR cebador-sonda	
	<400> 106	
45	cacgggacat tcaccacatc	20
45	<210> 107	
	<211> 19	
	<212> ADN	

	<213> Secuencia artificial	
_	<220> <223> PCR cebador-sonda	
5	<400> 107 gggtgccatc cacttcaca 19	
10	<210> 108 <211> 27 <212> ADN <213> Secuencia artificial	
15	<220> <223> PCR cebador-sonda	
	<400> 108 ataaaaagac aaccaacggc cgactgc	27
20	<210> 109 <211> 19 <212> ADN <213> Secuencia artificial	
25	<220> <223> PCR cebador-sonda	
30	<400> 109 ccaccccgag caaatctgt 19	
	<210> 110 <211> 22 <212> ADN <213> Secuencia artificial	
35	<220> <223> PCR cebador-sonda	
40	<400> 110 aaatccagtc cccctacttt gg 22	
45	<210> 111 <211>23 <212> ADN 15 <213> Secuencia artificial	
	<220> <223> PCR cebador-sonda	

	<400> 111 cctgaatcct ggaggetcac gcc	23
5	<210> 112 <211> 20 <212> ADN <213> Secuencia artificial	
10	<220> <223> PCR cebador-sonda	
15	<400> 112 ccatctgcat ccatcttgtt 20	
10	<210> 113 <211> 20 <212> ADN <213> Secuencia artificial	
20	<220> <223> PCR cebador-sonda	
25	<400> 113 ggccaccagg gtattatctg 20)
30	<210> 114 <211> 23 <212> ADN <213> Secuencia artificial	
	<220> <223> PCR cebador-sonda	
35	<400> 114 ctccccaccc ttgagaagtg cct <210> 115 <211> 20	23
40	<212> ADN <213> Secuencia artificial	
	<220> <223> PCR cebador-sonda	
45	<400> 115 ggcccagctt gaatttttca 20	İ
	<210> 116	

	<211> 27 <212> ADN <213> Secuencia artificial	
5	<220> <223> PCR cebador-sonda	
	<400> 116	
	aagctatgag gaaaagaagt acacgat	27
10		
	<210> 117	
	<211>30	
	<212> ADN <213> Secuencia artificial	
15	210 Cocconcia antinolar	
	<220>	
	<223> PCR cebador-sonda	
	<400> 117	
20	tcagccactg gcttctgtca taatcaggag	30
	<210> 118	
	<211> 21	
	<212> ADN	
25	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
30	<400> 118	
	caatgccatc ttgcgctaca t 21	
	<210> 119	
	<211> 25	
35	<212> ADN	
	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
40	.400. 440	
	<400> 119	
	gtccactcga atcttttctt cttca 25	
	<210> 120	
45	<211> 27 55	
	<212> ADN	
	<213> Secuencia artificial	

	<220> <223> PCR cebador-sonda	
5	<400> 120 ctcgcaagca caacatgtgt ggtgaga 27	7
10	<210> 121 <211> 27 55 <212> ADN <213> Secuencia artificial	
	<220> <223> PCR cebador-sonda	
15	<400> 121 cggtgtgaga agtgcagcaa 20	
20	<210> 122 <211> 19 <212> ADN <213> Secuencia artificial	
25	<220> <223> PCR cebador-sonda <400> 122	
	cctctcgcaa gtgctccat 19	
30	<210> 123 <211> 24 <212> ADN <213> Secuencia artificial	
35	<220> <223> PCR cebador-sonda	
	<400> 123 ccagaccata gcacactegg gcac 24	
40	<210> 124 <211>19 <212> ADN <213> Secuencia artificial	
45	<220> <223> PCR cebador-sonda	
	<400> 124	

	caagggagcg accaactga 19	
5	<210> 125 <211> 28 <212> ADN	
	<213> Secuencia artificial	
	<400> 125	
	gtttgccaag ttaaatttgg tacataat	28
10		
	<210> 126	
	<211> 28 5	
	<212> ADN	
	<213> Secuencia artificial	
15	000	
	<220>	
	<223> PCR cebador-sonda	
	<400> 126	
	ctccatatcc aaacaaagca tgtgtgcg	28
20	otocatatos audoudugou tgtgtgog	
	<210> 127	
	<211> 19	
	<212> ADN	
25	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
30	<400> 127	
	agaaccgcaa ggtgagcaa 19	
	<210> 128	
	<211> 21	
35	<212> ADN	
	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
40		
	<400> 128	
	tccaactgaa ggtccctgat g 21	
	<210> 129	
45	<211> 26	
	<212> ADN	
	<213> Secuencia artificial	

	<220>	
	<223> PCR cebador-sonda	
5	<400> 129	
	tggagattet ecageaegte ategae	26
	<210> 130	
	<211> 21	
10	<212> ADN	
	<213> Secuencia artificial	
	<220>	
15	<223> PCR cebador-sonda	
.0	<400> 130	
	gcatggtagc cgaagatttc a 21	
	<210> 131	
20	<211> 30	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
25	<223> PCR cebador-sonda	
	<400> 131	
	tttccggtaa tagtctgtct catagatatc	30
30	<210> 132	
	<211> 28	
	<212> ADN	
	<213> Secuencia artificial	
35	<220>	
	<223> PCR cebador-sonda	
	<400> 132	
	cgcgtcatac caaaatctcc gattttga	28
40		
	<210> 133	
	<211> 22	
	<212> ADN	
45	<213> Secuencia artificial	
45	-220 >	
	<220> <223> PCR cebador-sonda	
	>223/ FUN UEDAUUI-SUIUA	

	<400> 133 gatatgattg gtcgctgctt tg	22
5	<210> 134 <211> 21 <212> ADN <213> Secuencia artificial	
10	<220> <223> PCR cebador-sonda	
	<400> 134 agaacttcca ttccccacca t	21
15	<210> 135 <211> 21 <212> ADN <213> Secuencia artificial	
20	<220> <223> PCR cebador-sonda	
25	<400> 135 cagccaggac ctggccatcc g	21
25	<210> 136 <211> 19 <212> ADN <213> Secuencia artificial	
30	<220> <223> PCR cebador-sonda	
35	<400> 136 cggactttgg gtgcgactt 1	9
40	<210> 137 <211> 24 <212> ADN <213> Secuencia artificial	
	<220> <223> PCR cebador-sonda	
45	<400> 137 ttacaactct tccactggga cgat	24

	<210> 138	
	<211> 23	
	<212> ADN	
	<213> Secuencia artificial	
5		
	<220>	
	<223> PCR cebador-sonda	
	-100- 100	
	<400> 138	22
10	ccacttgtcg aaccaccgct cgt	23
	-040- 400	
	<210> 139	
	<211>18	
45	<212> ADN	
15	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
	220 TOT CODDUCT COLLEG	
20	<400> 139	
	gcccagaggc tccatcgt 18	
	<210> 140	
	<211> 23	
25	<212> ADN	
	<213> Secuencia artificial	
	<220>	
00	<223> PCR cebador-sonda	
30	<400> 140	
		23
	cagaggtttg aacagtgcag aca	23
	.040, 444	
25	<210> 141	
35	<211> 23 <212> ADN	
	<213> Secuencia artificial	
	<220>	
40	<223> PCR cebador-sonda	
	<400> 141	
	cetetteete eccagtegge tga	23
45	<210> 142	
	<211>20	
	<212> ADN	
	<213> Secuencia artificial	

	<220> <223> PCR cebador-sonda	
5	<400> 142 ccacctcgcc atgatttttc 20	
10	<210> 143 <211> 25 <212> ADN <213> Secuencia artificial	
15	<220> <223> PCR cebador-sonda	
10	<400> 143 gcaatetett caaacaette ateet	25
20	<210> 144 <211> 25 <212> ADN <213> Secuencia artificial	
25	<220> <223> PCR cebador-sonda	
	<400> 144 tttgaccggg tattcccacc aggaa	25
30	<210> 145 <211> 20 <212> ADN <213> Secuencia artificial	
35	<220> <223> PCR cebador-sonda	
	<400>145 tcagtggaga aggagttgga	20
40	<210> 146 <211> 20 <212> ADN <213> Secuencia artificial	
45	<220> <223> PCR cebador-sonda	
	<400>146	

	tgccatatcc agaggaaaca 20
5	<210> 147 <211> 20 <212> ADN <213> Secuencia artificial
10	<220> <223> PCR cebador-sonda <400>147 ccagtcaaca tctctgttgt cacaagca 28
15	<210> 148 <211> 19 <212> ADN <213> Secuencia artificial
20	<220> <223> PCR cebador-sonda
	<400>148 tgcaaacgct ggtgtcaca 19
25	<210> 149 <211> 21 <212> ADN <213> Secuencia artificial
30	<220> <223> PCR cebador-sonda
	<400>149 ccccacgagt tctggttctt c 21
35	<210> 150 <211> 22 <212> ADN <213> Secuencia artificial
40	<220> <223> PCR cebador-sonda
45	<400>150 cagcccccca actgacctca tc 22
	<210> 151 <211> 21

	<212> ADN <213> Secuencia artificial	
5	<220> <223> PCR cebador-sonda	
	<400>151 gacttttgcc cgctaccttt c 21	
10	<210> 152 <211> 26 <212> ADN <213> Secuencia artificial	
15	<220> <223> PCR cebador-sonda	
20	<400> 152 gccactaact gcttcagtat gaagag 26	
	<210> 153 <211> 24 <212> ADN <213> Secuencia artificial	
25	<220> <223> PCR cebador-sonda	
30	<400> 153 acagctcatt gttgtcacgc cgga 24	
35	<210> 154 <211> 24 <212> ADN <213> Secuencia artificial	
	<220> <223> PCR cebador-sonda	
40	<400> 154 tgatggtcct atgtgtcaca ttca 24	
45	<210> 155 <211> 20 <212> ADN <213> Secuencia artificial	
	<220>	

	<223> PCR cebador-sonda
	<400> 155
	tgggacagga aacacaccaa 20
5	
	<210> 156
	<211> 30
	<212> ADN <213> Secuencia artificial
10	-210 Cooderiola artificial
	<220>
	<223> PCR cebador-sonda
	<400> 156
15	caggtttcat accaacacag gcttcagcac 30
	<210> 157
	<211> 18
20	<212> ADN <213> Secuencia artificial
20	13/ Secuencia artificial
	<220>
	<223> PCR cebador-sonda
25	<400> 157
	aacceggega tegaaaag 18
	<210> 158
	<211> 18
30	<212> ADN
	<213> Secuencia artificial
	<220>
	<223> PCR cebador-sonda
35	44005 450
	<400> 158 agacctacta tectgaga 18
	gggcctgctg tcctgaga 18
	<210> 159
40	<211> 24
	<212> ADN
	<213> Secuencia artificial
	<220>
45	<223> PCR cebador-sonda
	<400> 159
	tettaggaac geegtaceag eege 24

5	<210> 160 <211> 19 <212> ADN <213> Secuencia artificial	
	<220> <223> PCR cebador-sonda	
10	<400> 160 ccaacgcttg ccaaatcct 19	
15	<210> 161 <211> 24 <212> ADN <213> Secuencia artificial	
20	<220> <223> PCR cebador-sonda	
20	<400> 161 acggtagtga cagcatcaaa actc	24
25	<210> 162 <211> 24 <212> ADN <213> Secuencia artificial	
30	<220> <223> PCR cebador-sonda	
	<400> 162 aaccagctct ctgtgacccc aatt	24
35	<210> 163 <211> 20 <212> ADN <213> Secuencia artificial	
40	<220> <223> PCR cebador-sonda	
	<400> 163 gagaaccaat ctcaccgaca	20
45	<210> 164 <211> 20 <212> ADN <213> Secuencia artificial	

	<220> <223> PCR cebador-sonda	
5	<400> 164 caccegagtg taaccatage 2	0
10	<210> 165 <211> 24 <212> ADN <213> Secuencia artificial	
	<220> <223> PCR cebador-sonda	
15	<400> 165 acaggtattc ctctgccagc tgcc	24
20	<210> 166 <211> 18 <212> ADN <213> Secuencia artificial	
25	<220> <223> PCR cebador-sonda <400> 166 gccgagatcg ccaagatg 18	
30	<210> 167 <211> 27 <212> ADN <213> Secuencia artificial	
35	<220> <223> PCR cebador-sonda <400> 167	
	cttttgatgg tagagttcca gtgattc	27
40	<210> 168 <211> 24 <212> ADN <213> Secuencia artificial	
45	<220> <223> PCR cebador-sonda	
	<400> 168 cagcattgtc tgtcctccct ggca	24

	<210> 169	
	<211> 18	
	<212> ADN	
5	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
10	<400> 169	
	gtgaggcagc gcgactct	18
	<210> 170	
	<211> 23	
15	<212> ADN	
	<213> Secuencia artificial	
	<220>	
20	<223> PCR cebador-sonda	
	<400> 170	
	tgccaatggt gtacaacact tca	23
	<210> 171	
25	<211> 21	
	<212> ADN	
	<213> Secuencia artificial	
	<220>	
30	<223> PCR cebador-sonda	
	<400> 171	
	tgccttcccg ggctgaggac t	21
35	<210> 172	
	<211> 19	
	<212> ADN	
	<213> Secuencia artificial	
40	<220>	
	<223> PCR cebador-sonda	
	<400> 172	
45	ccaaccctgc agactccaa	19
+∪	<210> 173	
	<211> 28	
	<212> ADN	

	<213> Secuencia artificial	
_	<220> <223> PCR cebador-sonda	
5	<400> 173 atgtataatg ttcctgccaa cttgtatg	28
10	<210> 174 <211> 25 <212> ADN <213> Secuencia artificial	
15	<220> <223> PCR cebador-sonda	
	<400> 174 cctgggacca tccgtggaga cttct	25
20	<210> 175 <211> 20 <212> ADN <213> Secuencia artificial	
25	<220> <223> PCR cebador-sonda	
30	<400> 175 ggctgtggct gaggctgtag 20	
	<210> 176 <211>21 <212> ADN <213> Secuencia artificial	
35	<220> <223> PCR cebador-sonda	
40	<400> 176 ggagcattcg aggtcaaatc a 21	
45	<210> 177 <211> 28 <212> ADN <213> Secuencia artificial	
	<220> <223> PCR cebador-sonda	

	<400> 177 ttcccagagt gtctcacctc cagca	agag	28
5	<210> 178 <211> 22 <212> ADN <213> Secuencia artificial		
10	<220> <223> PCR cebador-sonda		
45	<400> 178 gaaggtgttg gaggcactca ag	22	
15	<210> 179 <211> 21 <212> ADN <213> Secuencia artificial		
20	<220> <223> PCR cebador-sonda <400> 179 ggtttacacc gctggagcta a	21	
25			
	<210> 180 <211> 24 <212> ADN <213> Secuencia artificial		
30	<220> <223> PCR cebador-sonda		
35	<400> 180 atcccagcag gcctcgttga tgag	g 24	
40	<210> 181 <211> 20 <212> ADN <213> Secuencia artificial		
	<220> <223> PCR cebador-sonda		
45	<400> 181 gcatcaggct gtcattatgg	20	
	<210> 182		

	<211> 20		
	<212> ADN		
	<213> Secuencia artificial		
5	<220>		
	<223> PCR cebador-sonda		
	<400> 182		
	agtagttgtg ctgcccttcc 20		
10			
. •	<210> 183		
	<211> 28		
	<212> ADN		
	<213> Secuencia artificial		
15			
	<220>		
	<223> PCR cebador-sonda		
	<400> 182		
00	tgtccttacc tgtgggagct gtaaggtc		28
20	igiooilaoo igigggagot glaaggio		20
	<210> 183		
0.5	<211> 28		
25	<212> ADN		
	<213> Secuencia artificial		
	<220>		
	<223> PCR cebador-sonda		
30	<400> 183		
	tgtccttacc tgtgggagct gtaaggtc		28
	igicollace igigggaget glaaggie		20
	<210> 184		
35	<211> 21		
	<212> ADN		
	<213> Secuencia artificial		
	<220>		
40	<223> PCR cebador-sonda		
	<400> 184		
	gggacggtgt tcacattcaa g	21	
45	1040: 405		
45	<210> 185		
	<211> 23		
	<212> ADN		
	<213> Secuencia artificial		

	<220> <223> PCR cebador-sonda			
5	<400> 185 caggatccca gaagtcaatg ttg	2	3	
10	<210> 186 <211> 24 <212> ADN <213> Secuencia artificial			
15	<220> <223> PCR cebador-sonda <400> 186			
	tegecagtet eccaactate gegt	2	24	
20	<210> 187 <211> 28 <212> ADN <213> Secuencia artificial			
25	<220> <223> PCR cebador-sonda			
	<400> 187 ggctactctg atctatgttg ataaggaa	a	28	}
30	<210> 188 <211> 20 <212> ADN <213> Secuencia artificial			
35	<220> <223> PCR cebador-sonda			
	<400> 188 gcttcagccc atccttagca 2	0		
40				
	<210> 189			
	<211> 22			
	<212> ADN <213> Secuencia artificial			
45	-2 10° Occupitola artificial			
-	<220>			
	<223> PCR cebador-sonda			

	<400> 189 cacacgggtg cetggttete ca	22
5	<210> 190 <211> 24 <212> ADN <213> Secuencia artificial	
10	<220> <223> PCR cebador-sonda	
	<400> 190 ccattctatc atcaacgggt acaa	24
15	<210> 191 <211> 23 <212> ADN <213> Secuencia artificial	
20	<220> <223> PCR cebador-sonda	
25	<400> 191 tcagcaagtg ggaaggtgta atc	23
	<210> 192 <211> 25 <212> ADN <213> Secuencia artificial	
30	<220> <223> PCR cebador-sonda	
35	<400> 192 tctccacaga caaggccagg actog	25
40	<210> 193 <211> 20 <212> ADN <213> Secuencia artificial	
	<220> <223> PCR cebador-sonda	
45	<400> 193 ggctggtcgg cagagagtag	20
	<210> 194	

	<211>21 <212> ADN <213> Secuencia artificial	
5	<220> <223> PCR cebador-sonda	
	<400> 194	
	tgaggaaagg tttgggattg a 21	
10		
	<210> 195	
	<211> 29	
	<212> ADN <213> Secuencia artificial	
15	1213/ Secuencia artificial	
.0	<220>	
	<223> PCR cebador-sonda	
	<400> 195	
20	aaactcatgt aaaccacggc cgaatgttg	29
	<210> 196	
	<211> 20	
	<212> ADN	
25	<213> Secuencia artificial	
	<220>	
	<223> PCR cebador-sonda	
30	<400> 196	
	cctgaacatg aaggagctga 20	
	<210> 197	
	<211> 19	
35	<212> ADN	
	<213> Secuencia artificial	
	<220>	
4.0	<223> PCR cebador-sonda	
40	<400> 197	
	catcacgtct ccgaactcc 19	
	<210> 198	
45	<211>21	
	<212> ADN	
	<213> Secuencia artificial	

	<220> <223> PCR cebador-sonda		
5	<400> 198 tcccgatggt ctgcagcagc t	21	
10	<210> 199 <211> 20 <212> ADN <213> Secuencia artificial		
	<220> <223> PCR cebador-sonda		
15	<400> 199 catcttccag gaggaccact	20	
20	<210> 200 <211> 20 <212> ADN <213> Secuencia artificial		
25	<220> <223> PCR cebador-sonda <400> 200 tccgaccttc aatcatttca	20	
30	<210> 201 <211> 24 <212> ADN <213> Secuencia artificial		
35	<220> <223> PCR cebador-sonda <400> 201		
40	<210>202 <211> 20 <212> ADN <213> Secuencia artificial		24
45	<220> <223> PCR cebador-sonda		
	<400> 202		

	cctggaggct gcaacatacc	20
5	<210> 203 <211> 23 <212> ADN <213> Secuencia artificial	
10	<220> <223> PCR cebador-sonda <400> 203	22
15	<pre><anterior <210="" gca="" tacaatggct="" ttggaggata=""> 204 <211> 25 <212> ADN <213> Secuencia artificial</anterior></pre>	23
20	<220> <223> PCR cebador-sonda	
	<400> 204 atectectga agecetttte geage	25
25	<210> 205 <211> 20 <212> ADN <213> Secuencia artificial	
30	<220> <223> PCR cebador-sonda	
35	<400> 205 tgttttgatt cccgggctta 20	
	<210> 206 <211> 24 <212> ADN	
40	<213> Secuencia artificial <220> <223> PCR cebador-sonda	
45	<400> 206 caaagetgte agetetagea aaag	24
	<210> 207 <211> 28	

	<212> ADN <213> Secuencia artificial
5	<220> <223> PCR cebador-sonda
	<400> 207 tgccttcttc ctccctcact tctcacct 28
10	<210> 208 <211> 20 <212> ADN <213> Secuencia artificial
15	<220> <223> PCR cebador-sonda
	<400> 208 gccaactgct ttcatttgtg 20
20	<210> 209 <211> 20 <212> ADN
25	<213> Secuencia artificial <220> <223> PCR cebador-sonda
30	<400> 209 actcaggccc atttccttta 20
35	<210>210 <211> 28 <212> ADN <213> Secuencia artificial
	<220> <223> PCR cebador-sonda
40	<400> 210 agggatetga accaatacag agcagaca 28
45	<210> 211 <211> 20 <212> ADN 10 <213> Secuencia artificial
	<220>

	<223> PCR cebador-sonda
_	<400> 211 aatccaaggg ggagagtgat 20
5	<210> 212 <211> 20 <212> ADN
10	<213> Secuencia artificial
10	<220> <223> PCR cebador-sonda
	<400>212
15	gtacagattt tgcccgagga 20
	<210> 213 <211> 26
	<212> ADN
20	<213> Secuencia artificial
	<220>
	<223> PCR cebador-sonda
25	<400>213
	catatggact ttgactcagc tgtggc 26
	<210> 214
	<211> 18
30	<212> ADN
	<213> Secuencia artificial
	<220>
35	<223> PCR cebador-sonda
	<400> 214
	gcctcggtgt gcctttca 18
	<210> 215
40	<211> 19
	<212> ADN
	<213> Secuencia artificial
	<220>
45	<223> PCR cebador-sonda
	<400> 215
	cgtgatgtgc gcaatcatg 19

<210> 216	
<211> 22	
<212> ADN	
<213> Secuencia artificial	
<220>	
<223> PCR cebador-sonda	
<400> 216	
categecage taegecetge te	22
	<212> ADN <213> Secuencia artificial <220> <223> PCR cebador-sonda <400> 216

REIVINDICACIONES

- Un método para predecir la probabilidad de supervivencia libre de enfermedad de una paciente con cáncer de mama con nódulo negativo, ER positivo, invasivo ductal, comprendiendo la determinación del nivel de expresión de la transcripción de ARN de MELK en una célula o una muestra de tejido de cáncer de mama, obtenido de la paciente, normalizado contra el nivel de expresión de una serie de referencia de transcripciones de ARN, comparando el nivel de expresión normalizado de MELK de la paciente, con un nivel de expresión normalizado de MELK en un conjunto de referencia de tejido de cáncer de mama, comprendiendo pacientes que estaban (a) vivas sin recurrencia de cáncer de mama local, regional o distante, (b) vivas con recurrencia contralateral de cáncer de mama, donde un nivel aumentado de expresión normalizado de MELK en la paciente indica una menor probabilidad de supervivencia libre de enfermedad.
 - 2. Un método como se reivindica en la reivindicación 1, donde dicho ARN comprende ARN intrónico.
- 15 3. Un método como se reivindica en la reivindicación 1 o 2, donde dicho ARN es aislado de una muestra de tejido de cáncer de mama embebido en cera y fijado, de dicha paciente.
 - 4. Un método como se reivindica en la reivindicación 1, 2 o 3, donde dicho ARN es aislado de tejido de biopsia de aguja gruesa.
- 5. Un método como se reivindica en cualquier reivindicación precedente, donde dicho ARN es aislado de células de aspirado de aguja fina.
 - 6. Un método como se reivindica en cualquier reivindicación precedente, donde el nivel de expresión de dicha transcripción de ARN se determina utilizando un array que comprende un polinucleótido hibridando en el gen inmovilizado sobre una superficie sólida.
- 7. Un método como se reivindica en cualquier reivindicación precedente, donde el nivel de expresión de dicha transcripción de ARN se determina por reacción de la cadena de polimerasa de transcripción inversa (RT-PCR).
 - 8. Un método como se reivindica en cualquier reivindicación precedente, donde el ARN está fragmentado.