

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 787 600

51 Int. Cl.:

C12N 15/11 (2006.01) A61K 38/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 01.07.2014 PCT/US2014/045088

(87) Fecha y número de publicación internacional: 08.01.2015 WO15002971

96 Fecha de presentación y número de la solicitud europea: 01.07.2014 E 14819490 (5)

(97) Fecha y número de publicación de la concesión europea: 26.02.2020 EP 3017044

(54) Título: Moduladores del receptor de la hormona del crecimiento

(30) Prioridad:

02.07.2013 US 201361842302 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **16.10.2020**

(73) Titular/es:

IONIS PHARMACEUTICALS, INC. (100.0%) 2855 Gazelle Court Carlsbad, CA 92010, US

(72) Inventor/es:

BHANOT, SANJAY; FREIER, SUSAN, M. y BUI, HUYNH-HOA

(74) Agente/Representante:

IZQUIERDO BLANCO, María Alicia

Observaciones:

Véase nota informativa (Remarks, Remarques o Bemerkungen) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Moduladores del receptor de la hormona del crecimiento

5 Campo

10

15

20

25

30

35

40

50

60

65

Las presentes realizaciones proporcionan métodos, compuestos y composiciones para tratar, prevenir o mejorar una enfermedad asociada con un exceso de hormona de crecimiento usando compuestos antisentido u oligonucleótidos dirigidos al receptor de la hormona de crecimiento (GHR).

Antecedentes

La hormona del crecimiento se produce en la hipófisis y se secreta en el torrente sanguíneo, donde se une al receptor de la hormona del crecimiento (GHR) en muchos tipos de células, provocando la producción del factor de crecimiento similar a la insulina-1 (IGF-1). El IGF-1 se produce principalmente en el hígado, pero también en el tejido adiposo y el riñón, y se secreta al torrente sanguíneo. Varios trastornos, como la acromegalia y el gigantismo, están asociados con niveles elevados de hormona del crecimiento y/o niveles elevados de IGF-l en plasma y/o tejidos.

La producción excesiva de hormona del crecimiento puede llevar a enfermedades como la acromegalia o el gigantismo. La acromegalia y el gigantismo están asociados con un exceso de hormona del crecimiento, a menudo provocado por un tumor hipofisario, y afecta a 40-50 por millón de personas en todo el mundo, con aproximadamente 15.000 pacientes en cada uno de los Estados Unidos y Europa y una incidencia anual de aproximadamente 4-5 por millón de personas. La acromegalia y el gigantismo se caracterizan inicialmente por el crecimiento anormal de las manos y los pies y cambios óseos en las características faciales. Muchos de los resultados relacionados con el crecimiento están mediados por niveles elevados de IGF-1 en suero.

La WO 2004/078922 describe compuestos, composiciones y métodos para modular la expresión del receptor de la hormona del crecimiento y/o el factor de crecimiento similar a la insulina-I (IGF-I).

Pellegrini et al. (J Neurosci. 1996 Dic. 15;16(24):8140-8) investigan la implicación de los receptores de hormona de crecimiento de rata expresados centralmente (rGH-R) en el ritmo ultradiano de la secreción de GH de la hipófisis.

Tachas et al. (J Endocrinol. 2006 Abr.; 189(1):147-54) investigan la capacidad de un oligodesoxinucleótido modificado para suprimir el ARNm del receptor de GH *in vitro*.

Wilkinson-Berka et al. (Mol Vis. 2007 Ago. 29;13:1529-38) investigan si un oligonucleótido antisentido administrado sistémicamente podría inhibir la neovascularización en ratones con retinopatía inducida por oxígeno (OIR).

Ran et al. (Yao Xue Bao. 2013 Mar.; 48(3):435-40) investigan el efecto de la hormona de crecimiento humana recombinante (rhGH) sobre la vía JAK2-STAT3 y el crecimiento de líneas celulares de cáncer gástrico en diferentes estados de expresión de GHR.

45 <u>Sumario</u>

La invención proporciona un compuesto que comprende un oligonucleótido modificado que consiste de 18 a 30 nucleósidos enlazados de longitud, en donde el oligonucleótido modificado tiene una secuencia de nucleobases que comprende una porción de por lo menos 18 nucleobases contiguas 100% complementaria con una porción de igual longitud de las nucleobases 153921-153940 de un ácido nucleico del receptor de la hormona de crecimiento que tiene la secuencia de nucleobases de la SEQ ID NO: 2, en donde la secuencia de nucleobases del oligonucleótido modificado es por lo menos un 90% complementaria a la SEQ ID NO: 2, en donde el compuesto reduce la cantidad de actividad del ácido nucleico del receptor de la hormona de crecimiento.

La invención proporciona además una composición que comprende el compuesto de la invención o una sal del mismo y por lo menos uno de un portador o un diluyente farmacéuticamente aceptable.

Las realizaciones proporcionadas en la presente se refieren a métodos, compuestos y composiciones para tratar, prevenir o mejorar una enfermedad asociada con un exceso de hormona de crecimiento. Varias realizaciones proporcionadas en la presente están dirigidas a compuestos antisentido u oligonucleótidos dirigidos al receptor de la hormona del crecimiento (GHR). Varias realizaciones están dirigidas al tratamiento, prevención o mejora de la acromegalia con compuestos antisentido u oligonucleótidos dirigidos al receptor de la hormona del crecimiento (GHR).

Descripción detallada

Debe entenderse que tanto la descripción general anterior como la siguiente descripción detallada son solo ejemplares y explicativas y no son restrictivas de la invención, como se reivindica. En la presente, el uso del singula incluye el plural a menos que se indique específicamente lo contrario. Como se usa en la presente, el uso de "o significa "y/o" a menos que se indique lo contrario. Además, el uso del término "incluyendo", así como otras formas como "incluye" e "incluido", no es limitativa. Además, términos como "elemento" o "componente" abarcan tanto elementos como componentes que comprenden una unidad y elementos y componentes que comprenden más de una subunidad, a menos que se indique específicamente lo contrario.
Los encabezados de sección usados en la presente son solo con propósitos organizativos y no deber interpretarse como limitativos de la materia descrita.
A menos que se indique lo contrario, los siguientes términos tienen los siguientes significados:
"2'-O-metoxietilo" (también 2'-MOE y 2'-O(CH_2) ₂ -OCH ₃) se refiere a una modificación de O-metoxi-etilo en la posición 2' de un anillo de furanosa. Un azúcar modificado con 2'-O-metoxietilo es un azúcar modificado.
"Nucleósido 2'-MOE" (también nucleósido 2'-O-metoxietilo) significa un nucleósido que comprende una fracción de azúcar modificado 2'-MOE.
"Nucleósido 2' sustituido" significa un nucleósido que comprende un sustituyente en la posición 2' del anillo de furanosilo distinto de H u OH. En ciertas realizaciones, los nucleósidos 2' sustituidos en incluyen nucleósidos con modificaciones de azúcar bicíclicas.
"Sitio objetivo 3' " se refiere al nucleótido de un ácido nucleico objetivo que es complementario al nucleótido más 3' de un compuesto antisentido particular.
"Sitio objetivo 5' " se refiere al nucleótido de un ácido nucleico objetivo que es complementario al nucleótido más 5' de un compuesto antisentido particular.
"5-metilcitosina" significa una citosina modificada con un grupo metilo unido a la posición 5. Una 5 metilcitosina es una nucleobase modificada.
"Aproximadamente" significa dentro del ±10% de un valor. Por ejemplo, si se afirma que "los compuestos efectuaron por lo menos aproximadamente un 70% de inhibición de GHR", se implica que los niveles de GHF se inhiben dentro de un intervalo del 60% al 80%.
"Administración" o "administrar" se refiere a vías para introducir un compuesto antisentido proporcionado er la presente a un sujeto para realizar su función pretendida. Un ejemplo de una vía de administración que puede usarse incluye, pero no está limitada a, la administración parenteral, como inyección o infusiór subcutánea, intravenosa o intramuscular.
"Mejora" se refiere a una disminución de por lo menos un indicador, signo o síntoma de una enfermedad trastorno o afección asociados. En ciertas realizaciones, la mejora incluye un retraso o desaceleración en la progresión de uno o más indicadores de una afección o enfermedad. La gravedad de los indicadores puede determinarse mediante medidas subjetivas u objetivas, que son conocidas por los expertos en la técnica.
"Animal" se refiere a un animal humano o no humano incluyendo, pero no limitado a, ratones, ratas, conejos perros, gatos, cerdos y primates no humanos incluyendo, pero no limitados a, monos y chimpancés.
"Actividad antisentido" significa cualquier actividad detectable o medible atribuible a la hibridación de ur compuesto antisentido con su ácido nucleico objetivo. En ciertas realizaciones, la actividad antisentido es una disminución en la cantidad o expresión de un ácido nucleico o proteína objetivo codificados por dicho ácido nucleico objetivo.
"Compuesto antisentido" significa un compuesto oligomérico que es capaz de experimentar hibridación cor un ácido nucleico objetivo a través de enlaces de hidrógeno. Los ejemplos de compuestos antisentido incluyen compuestos de cadena sencilla y de cadena doble como oligonucleótidos antisentido, ARNip ARNhc, ARNmc y compuestos basados en la ocupación.

nucleico objetivo en ausencia del compuesto antisentido.

"Inhibición antisentido" significa la reducción de los niveles de ácido nucleico objetivo en presencia de un compuesto antisentido complementario a un ácido nucleico objetivo en comparación con los niveles de ácido

"Oligonucleótido antisentido" significa un oligonucleótido de cadena sencilla que tiene una secuencia de

nucleobases que permite la hibridación con una región o segmento correspondiente de un ácido nucleico objetivo.

"Complementariedad de bases" se refiere a la capacidad para el emparejamiento de bases preciso de nucleobases de un oligonucleótido antisentido con las nucleobases correspondientes en un ácido nucleico objetivo (es decir, hibridación), y está mediada por la unión de hidrógeno de Watson-Crick, de Hoogsteen o de Hoogsteen invertida entre nucleobases correspondientes.

"Fracción de azúcar bicíclico" significa una fracción de azúcar modificado que comprende un anillo de 4 a 7 miembros (incluyendo, pero no limitado a, un furanosilo) que comprende un puente que conecta dos átomos del anillo de 4 a 7 miembros para formar un segundo anillo, dando como resultado una estructura bicíclica. En ciertas realizaciones, el anillo de 4 a 7 miembros es un anillo de azúcar. En ciertas realizaciones, el anillo de 4 a 7 miembros es un furanosilo. En ciertas de tales realizaciones, el puente conecta el carbono 2' y el carbono 4' del furanosilo.

"Ácido nucleico bicíclico" o "BNA" o "nucleósidos de BNA" significa monómeros de ácidos nucleicos que tienen un puente que conecta dos átomos de carbono entre la posición 4' y 2' de la unidad de azúcar de nucleósido, formando de este modo un azúcar bicíclico. Los ejemplos de dicho azúcar bicíclico incluyen, pero no están limitados a A) α-L-Metileneoxi (4'-CH₂-O-2') LNA, (B) β-D-Metileneoxi (4'-CH₂-O-2') LNA, (C) Etileneoxi (4'-(CH₂)₂-O-2') LNA, (D) Aminooxi (4'-CH₂-O-N(R)-2') LNA y (E) Oxiamino (4'-CH₂-N(R)-O-2') LNA, como se representa a continuación.

"cEt" o "etilo restringido" significa una fracción de azúcar bicíclico que comprende un puente que conecta el carbono 4' y el carbono 2', en donde el puente tiene la fórmula: 4'-CH(CH₃)-O-2'.

"Nucleósido de etilo restringido" (también nucleósido cEt) significa un nucleósido que comprende una fracción de azúcar bicíclico que comprende un puente 4'-CH(CH₃)-O-2'.

"Región químicamente distinta" se refiere a una región de un compuesto antisentido que es de alguna manera químicamente diferente que otra región del mismo compuesto antisentido. Por ejemplo, una región que tiene nucleótidos 2'-O-metoxietilo es químicamente distinta de una región que tiene nucleótidos sin modificaciones 2'-O-metoxietilo.

"Complementariedad" significa la capacidad de emparejamiento entre nucleobases de un primer ácido nucleico y un segundo ácido nucleico.

"Comprender", "comprende" y "que comprende" se entenderá que implica la inclusión de un paso o elemento o grupo de pasos o elementos establecidos, pero no la exclusión de cualquier otro paso o elemento o grupo de pasos o elementos.

"Nucleobases contiguas" significa nucleobases inmediatamente adyacentes entre sí.

"Desoxirribonucleótido" significa un nucleótido que tiene un hidrógeno en la posición 2' de la porción de azúcar del nucleótido. Los desoxirribonucleótidos pueden modificarse con cualquiera de una variedad de sustituyentes.

"Diseño" o "Diseñado para" se refiere al proceso de diseño de un compuesto oligomérico que hibrida específicamente con una molécula de ácido nucleico seleccionada.

"Cantidad eficaz" significa la cantidad de agente farmacéutico activo suficiente para efectuar un resultado fisiológico deseado en un individuo con necesidad del agente. La cantidad eficaz puede variar entre individuos dependiendo de la salud y la condición física del individuo a tratar, el grupo taxonómico de los individuos a tratar, la formulación de la composición, la evaluación de la condición médica del individuo y otros factores relevantes.

65

5

10

15

20

25

30

35

40

45

50

55

	"Eficacia" significa la capacidad de producir un efecto deseado.
5	"Expresión" incluye todas las funciones por las cuales la información codificada de un gen se convierte en estructuras presentes y operativas en una célula. Tales estructuras incluyen, pero no están limitadas a, los productos de transcripción y traducción.
10	"Completamente complementario" o "100% complementario" significa que cada nucleobase de un primer ácido nucleico tiene una nucleobase complementaria en un segundo ácido nucleico. En ciertas realizaciones, un primer ácido nucleico es un compuesto antisentido y un ácido nucleico objetivo es un segundo ácido nucleico.
15	"Gapmer" significa un compuesto antisentido quimérico en el que una región interna que tiene una pluralidad de nucleósidos que soportan la escisión de RNasa H se coloca entre regiones externas que tienen uno o más nucleósidos, en donde los nucleósidos que comprenden la región interna son químicamente distintos del nucleósido o nucleósidos que comprenden las regiones externas. La región interna puede denominarse "separación" y las regiones externas pueden denominarse "alas".
20	"Receptor de la hormona de crecimiento (GHR)" significa cualquier ácido nucleico o proteína de GHR. "Ácido nucleico GHR" significa cualquier ácido nucleico que codifica GHR. Por ejemplo, en ciertas realizaciones, un ácido nucleico de GHR incluye una secuencia de ADN que codifica GHR, una secuencia de ARN transcrita a partir de ADN que codifica GHR (incluyendo ADN genómico que comprende intrones y exones), incluyendo una secuencia de ARN que no codifica proteínas (es decir, no codificante), y una secuencia de ARNm que codifica GHR. "ARNm de GHR" significa un ARNm que codifica una proteína GHR.
25	"Inhibidor específico de GHR" se refiere a cualquier agente capaz de inhibir específicamente la expresión o actividad de ARN de GHR y/o proteína de GHR a nivel molecular. Por ejemplo, los inhibidores específicos de GHR incluyen ácidos nucleicos (incluyendo compuestos antisentido), péptidos, anticuerpos, moléculas pequeñas y otros agentes capaces de inhibir la expresión de ARN de GHR y/o proteína de GHR.
30	"Hibridación" significa el apareamiento de moléculas de ácido nucleico complementarias. En ciertas realizaciones, las moléculas de ácido nucleico complementarias incluyen, pero no se limitan a, un compuesto antisentido y un objetivo de ácido nucleico. En ciertas realizaciones, las moléculas de ácido nucleico complementarias incluyen, pero no están limitadas a, un oligonucleótido antisentido y un objetivo de ácido nucleico.
35 40	"Identificar un animal que tiene, o está en riesgo de tener, una enfermedad, trastorno y/o afección" significa identificar a un animal al que se le ha diagnosticado la enfermedad, trastorno y/o afección o identificar un animal predispuesto a desarrollar la enfermedad, trastorno y/o afección. Dicha identificación puede lograrse mediante cualquier método, incluyendo la evaluación del historial médico de un individuo y pruebas o evaluaciones clínicas estándar.
	"Inmediatamente adyacente" significa que no hay elementos intermedios entre los elementos inmediatamente adyacentes.
1 5	"Individuo" significa un animal humano o no humano seleccionado para tratamiento o terapia.
	"Inhibir la expresión o actividad" se refiere a una reducción, bloqueo de la expresión o actividad y no indica necesariamente una eliminación total de la expresión o actividad.
50	"Enlace internucleosídico" se refiere al enlace químico entre nucleósidos.
	"Desoxinucleósido enlazado" significa una base de ácido nucleico (A, G, C, T, U) sustituida por desoxirribosa enlazada por un éster de fosfato para formar un nucleótido.
55	"Nucleósidos enlazados" significa nucleósidos adyacentes enlazados entre sí por un enlace internucleosídico.
30	"Malapareamiento" o "nucleobase no complementaria" se refiere al caso en el que una nucleobase de un primer ácido nucleico no es capaz de emparejarse con la nucleobase correspondiente de un segundo ácido nucleico u objetivo.
50	"Enlace internucleosídico modificado" se refiere a una sustitución o cualquier cambio de un enlace internucleósido de origen natural (es decir, un enlace internucleósido fosfodiéster).
S5	"Nucleobase modificada" significa cualquier nucleobase distinta de adenina, citosina, guanina, timidina o uracilo. Una "nucleobase no modificada" significa las bases de purina adenina (A) y guanina (G), y las bases

de pirimidina timina (T), citosina (C) y uracilo (U).

5	"Nucleósido modificado" significa un nucleósido que tiene, independientemente, una fracción de azúca modificado y/o una nucleobase modificada.											
5	"Nucleótido modificado" significa un nucleótido que tiene, independientemente, una fracción de azúca modificado, enlace internucleósido modificado o nucleobase modificada.											
10	"Oligonucleótido modificado" significa un oligonucleótido que comprende por lo menos un enlace internucleosídico modificado, un azúcar modificado y/o una nucleobase modificada.											
	"Azúcar modificado" significa la sustitución y/o cualquier cambio de una fracción de azúcar natural.											
15	"Modular" se refiere a cambiar o ajustar una característica en una célula, tejido, órgano u organismo. Por ejemplo, modular el ARNm de GHR puede significar aumentar o disminuir el nivel de ARNm de GHR y/o proteína de GHR en una célula, tejido, órgano u organismo. Un "modulador" efectúa el cambio en la célula tejido, órgano u organismo. Por ejemplo, un compuesto antisentido de GHR puede ser un modulador que disminuye la cantidad de ARNm de GHR y/o proteína de GHR en una célula, tejido, órgano u organismo.											
20	"Monómero" se refiere a una unidad individual de un oligómero. Los monómeros incluyen, pero no estár limitados a, nucleósidos y nucleótidos, ya sean de origen natural o modificados.											
	"Motivo" significa el patrón de nucleósidos no modificados y modificados en un compuesto antisentido.											
25	"Fracción de azúcar natural" significa una fracción de azúcar que se encuentra en el ADN (2'-H) o ARN (2'-OH).											
	"Enlace internucleosídico de origen natural" significa un enlace fosfodiéster de 3' a 5'.											
30	"Nucleobase no complementaria" se refiere a un par de nucleobases que no forman enlaces de hidrógeno entre sí o que de otro modo soportan la hibridación.											
35	"Ácido nucleico" se refiere a moléculas compuestas de nucleótidos monoméricos. Un ácido nucleico incluye pero no está limitado a, ácidos ribonucleicos (ARN), ácidos desoxirribonucleicos (ADN), ácidos nucleicos de cadena sencilla y ácidos nucleicos de cadena doble.											
	"Nucleobase" significa una fracción heterocíclica capaz de emparejarse con una base de otro ácido nucleico.											
40	"Complementariedad de nucleobase" se refiere a una nucleobase que es capaz de emparejar bases con otra nucleobase. Por ejemplo, en el ADN, la adenina (A) es complementaria a la timina (T). Por ejemplo, en el ARN, la adenina (A) es complementaria al uracilo (U). En ciertas realizaciones, nucleobase complementaria se refiere a una nucleobase de un compuesto antisentado que es capaz de emparejar bases con una											
45	nucleobase de su ácido nucleico objetivo. Por ejemplo, si una nucleobase en una determinada posición de ur compuesto antisentido es capaz de formar enlaces de hidrógeno con una nucleobase en una determinada posición de un ácido nucleico objetivo, entonces se considera que la posición del enlace de hidrógeno entre el oligonucleótido y el ácido nucleico objetivo es complementario en ese par de nucleobases.											
50	"Secuencia de nucleobases" significa el orden de nucleobases contiguas independientes de cualquie modificación de azúcar, enlace y/o nucleobase.											
50	"Nucleósido" significa una nucleobase enlazada a un azúcar.											
55	"Nucleótido" significa un nucleósido que tiene un grupo fosfato enlazado covalentemente a la porción d azúcar del nucleósido.											
3 3	"Compuesto oligomérico" significa un polímero de subunidades monoméricas enlazadas que es capaz de hibridar con por lo menos una región de una molécula de ácido nucleico.											
60	"Oligonucleósido" significa un oligonucleótido en el que los enlaces internucleósidos no contienen un átomo de fósforo.											
	"Oligonucleótido" significa un polímero de nucleósidos enlazados, cada uno de los cuales puede modificarse o no modificarse, independientemente unos de los otros.											
65	"Administración parenteral" significa la administración mediante inyección o infusión. La administración											

	parenteral incluye administración subcutánea, administración intravenosa, administración intramuscular, administración intraarterial, administración intraperitoneal o administración intracraneal, por ejemplo, administración intratecal o intracerebroventricular.											
5	"Composición farmacéutica" significa una mezcla de sustancias adecuadas para administrar a un individuo. Por ejemplo, una composición farmacéutica puede comprender uno o más agentes farmacéuticos activos y una solución acuosa estéril.											
10	"Sales farmacéuticamente aceptables" significa sales fisiológica y farmacéuticamente aceptables de compuestos antisentido, es decir, sales que retienen la actividad biológica deseada del oligonucleótido original y no imparten efectos toxicológicos no deseados a los mismos.											
15	"Enlace fosforotioato" significa un enlace entre nucleósidos en donde el enlace fosfodiéster se modifica reemplazando uno de los átomos de oxígeno que no forman puentes con un átomo de azufre. Un enlace fosforotioato es un enlace internucleósido modificado.											
20	"Porción" significa un número definido de nucleobases contiguas (es decir, enlazadas) de un ácido nucleico. En ciertas realizaciones, una porción es un número definido de nucleobases contiguas de un ácido nucleico objetivo. En ciertas realizaciones, una porción es un número definido de nucleobases contiguas de un compuesto antisentido											
25	"Prevenir" se refiere a retrasar o anticiparse al inicio, desarrollo o progresión de una enfermedad, trastorno o afección durante un período de tiempo de minutos a indefinidamente. Prevenir también significa reducir el riesgo de desarrollar una enfermedad, trastorno o afección.											
20	"Cantidad profilácticamente eficaz" se refiere a una cantidad de un agente farmacéutico que proporciona un beneficio profiláctico o preventivo a un animal.											
30	"Región" se define como una parte del ácido nucleico objetivo que tiene por lo menos una estructura, función o característica identificable.											
	"Ribonucleótido" significa un nucleótido que tiene un hidroxi en la posición 2' de la porción de azúcar del nucleótido. Los ribonucleótidos pueden modificarse con cualquiera de una variedad de sustituyentes.											
35	"Segmentos" se definen como porciones más pequeñas o sub-porciones de regiones dentro de un ácido nucleico objetivo.											
40	"Efectos secundarios" significa enfermedad y/o afecciones fisiológicas atribuibles a un tratamiento distintos de los efectos deseados. En ciertas realizaciones, los efectos secundarios incluyen reacciones en el lugar de inyección, anomalías en las pruebas de función hepática, anomalías en la función renal, toxicidad hepática, toxicidad renal, anomalías en el sistema nervioso central, miopatías y malestar general. Por ejemplo, los niveles de aminotransferasa en suero aumentados puede indicar toxicidad hepática o anomalía de la función hepática. Por ejemplo, una bilirrubina aumentada puede indicar toxicidad hepática o anomalía de la función hepática.											
45	"Sitios", como se usan en la presente, se definen como posiciones de nucleobase únicas dentro de un ácido nucleico objetivo.											
50	"Retrasa la progresión" significa disminución en el desarrollo de dicha enfermedad.											
55	"Específicamente hibridable" se refiere a un compuesto antisentido que tiene un grado suficiente de complementariedad entre un oligonucleótido antisentido y un ácido nucleico objetivo para inducir un efecto deseado, a la vez que muestra efectos mínimos o nulos sobre los ácidos nucleicos no objetivo en condiciones en las que se desea una unión específica, es decir, en condiciones fisiológicas en el caso de ensayos <i>in vivo</i> y tratamientos terapéuticos. "Condiciones de hibridación rigurosas" o "condiciones rigurosas" se refieren a condiciones bajo las cuales un compuesto oligomérico se hibridará con su secuencia objetivo, pero con un número mínimo de otras secuencias.											
60	"Sujeto" significa un animal humano o no humano seleccionado para tratamiento o terapia.											
ύU	"Objetivo" se refiere a una proteína, de la que se desea la modulación.											

"Dirigir" significa el proceso de diseño y selección de un compuesto antisentido que hibridará específicamente

"Gen objetivo" se refiere a un gen que codifica un objetivo.

con un ácido nucleico objetivo e inducirá un efecto deseado.

"Ácido nucleico objetivo", "ARN objetivo", "transcrito de ARN objetivo" y "objetivo de ácido nucleico" significan todos un ácido nucleico capaz de ser el objetivo de compuestos antisentido.

"Región objetivo" significa una porción de un ácido nucleico objetivo al que se dirige uno o más compuestos antisentido.

"Segmento objetivo" significa la secuencia de nucleótidos de un ácido nucleico objetivo al que se dirige un compuesto antisentido. "Sitio objetivo 5' " se refiere al nucleótido más 5' de un segmento objetivo. "Sitio objetivo 3' " se refiere al nucleótido más 3' de un segmento objetivo.

"Cantidad terapéuticamente eficaz" significa una cantidad de un agente farmacéutico que proporciona un beneficio terapéutico a un individuo.

15

10

5

"Tratar" se refiere a administrar una composición farmacéutica a un animal para realizar una alteración o mejora de una enfermedad, trastorno o afección en el animal. En ciertas realizaciones, pueden administrarse una o más composiciones farmacéuticas al animal.

20

Nucleobases "no modificadas" significan las bases de purina adenina (A) y guanina (G), y las bases de pirimidina timina (T), citosina (C) y uracilo (U).

25

30

35

40

45

50

55

60

65

"Nucleótido no modificado" significa un nucleótido compuesto de nucleobases, fracciones de azúcar y enlaces internucleosídicos de origen natural. En ciertos aspectos de la divulgación, un nucleótido no modificado es un nucleótido de ARN (es decir, β -D-ribonucleósidos) o un nucleótido de ADN (es decir, β -D-desoxirribonucleósido).

Ciertas realizaciones y aspectos de la divulgación

Ciertos aspectos de la divulgación proporcionan métodos, compuestos y composiciones para inhibir la expresión del receptor de la hormona del crecimiento (GHR).

Ciertas realizaciones proporcionan compuestos antisentido dirigidos a un ácido nucleico de GHR. En ciertos aspectos, el ácido nucleico de GHR tiene la secuencia expuesta en Nº de registro GENBANK NM 000163.4 (incorporada en la presente como SEQ ID NO: 1), Nº de registro GENBANK NT 006576.16 truncada de los nucleótidos 42411001 a 42714000 (incorporada en la presente como SEQ ID NO: 2), Nº de registro GENBANK X06562.1 (incorporada en la presente como SEQ ID NO: 3), Nº de registro GENBANK DR006395.1 (incorporada en la presente como SEQ ID NO: 4), Nº de registro GENBANK DB052048.1 (incorporada en la presente como SEQ ID NO: 5), Nº de registro GENBANK AF230800.1 (incorporada en la presente como SEQ ID NO: 6), el complemento del Nº de registro GENBANK AA398260.1 (incorporada en la presente como SEQ ID NO: 7), № de registro GENBANK BC136496.1 (incorporada en la presente como SEQ ID NO: 8), Nº de registro GENBANK NM_001242399.2 (incorporada en la presente como SEQ ID NO: 9), Nº de registro GENBANK NM_001242400.2 (incorporada en la presente como SEQ ID NO: 10), Nº de registro GENBANK NM 001242401.3 (incorporada en la presente como SEQ ID NO: 11), No de registro GENBANK NM 001242402.2 (incorporada en la presente como SEQ ID NO: 12), No de registro GÉNBANK NM 001242403.2 (incorporada en la presente como SEQ ID NO: 13), Nº de registro GENBANK NM 001242404.2 (incorporada en la presente como SEQ ID NO: 14), Nº de registro GENBANK NM 001242405.2 (incorporada en la presente como SEQ ID NO: 15), Nº de registro GENBANK NM 001242406.2 (incorporada en la presente como SEQ ID NO: 16), № de registro GENBANK NM 001242460.1 (incorporada en la presente como SEQ ID NO: 17), N° de registro GENBANK NM_001242461.1 (incorporada en la presente como SEQ ID NO: 18), o N° de registro GENBANK NM 001242462.1 (incorporada en la presente como SEQ ID NO: 19).

Ciertos aspectos de la divulgación proporcionan un compuesto que comprende un oligonucleótido modificado que consiste de 10 a 30 nucleósidos enlazados y que tiene una secuencia de nucleobases que comprende por lo menos 8 nucleobases contiguas de cualquiera de las secuencias de nucleobases de las SEQ ID NO: 20-2295.

Ciertos aspectos de la divulgación proporcionan un compuesto que comprende un oligonucleótido modificado que consiste de 10 a 30 nucleósidos enlazados complementarios dentro de los nucleótidos. Ciertos aspectos de la divulgación proporcionan un compuesto que comprende un oligonucleótido modificado que consiste de 10 a 30 nucleósidos enlazados complementarios dentro de los nucleótidos 153831-154112 de la SEQ ID NO: 2, en donde dicho oligonucleótido modificado es por lo menos un 90% complementario a la SEQ ID NO: 2.

Ciertos aspectos de la divulgación proporcionan un compuesto que comprende un oligonucleótido modificado que consiste de 10 a 30 nucleósidos enlazados que tienen una secuencia de nucleobases que comprende una porción de por lo menos 8 nucleobases contiguas 100% complementarias a una porción de igual

longitud de las nucleobases 153831-154112 de la SEQ ID NO: 2, en donde la secuencia de nucleobases del oligonucleótido modificado es complementaria a la SEQ ID NO: 2 153831-154112.

En ciertas realizaciones, un compuesto u oligonucleótido antisentido dirigido a un ácido nucleico del receptor de la hormona del crecimiento se dirige a las siguientes regiones de nucleótidos de la SEQ ID NO: 2: 153831-154112.

En ciertas realizaciones, los compuestos u oligonucleótidos antisentido se dirigen a una región de un ácido nucleico del receptor de la hormona del crecimiento. En ciertos aspectos de la divulgación, tales compuestos u oligonucleótidos dirigidos a una región de un ácido nucleico de GHR tienen una porción de nucleobase contigua que es complementaria a una porción de nucleobase de igual longitud de la región. Por ejemplo, la porción puede ser por lo menos una porción de 8, 9, 10, 11, 12, 13, 14, 15 o 16 nucleobases contiguas complementaria a una porción de igual longitud de una región mencionada en la presente. En ciertas realizaciones, tales compuestos u oligonucleótidos se dirigen a las siguientes regiones de nucleótidos de la SEQ ID NO: 2: 153831-154112.

15

5

10

En ciertas realizaciones, cualquiera de los compuestos u oligonucleótidos anteriores comprende por lo menos un azúcar modificado. En ciertos aspectos, por lo menos un azúcar modificado comprende un grupo 2'-Ometoxietilo. En ciertos aspectos, por lo menos un azúcar modificado es un azúcar bicíclico, como un grupo 4'-CH (CH3)-O-2', un grupo 4'-CH2-O-2' o un grupo 4'-(CH2)2-O-2'. En ciertos aspectos, el oligonucleótido modificado comprende por lo menos un enlace internucleosídico modificado, como un enlace internucleósido de fosforotioato.

20

En ciertas realizaciones, cualquiera de los compuestos u oligonucleótidos anteriores comprende por lo menos una nucleobase modificada, como 5-metilcitosina.

25

En ciertas realizaciones, cualquiera de los compuestos u oligonucleótidos anteriores comprende:

un segmento de separación que consiste de desoxinucleósidos enlazados; un segmento de ala 5' que consiste de nucleósidos enlazados; y un segmento de ala 3 'que consiste de nucleósidos enlazados;

30

en donde el segmento de separación está colocado entre el segmento de ala 5' y el segmento de ala 3' y en donde cada nucleósido de cada segmento de ala comprende un azúcar modificado.

35

Ciertos aspectos de la divulgación proporcionan un compuesto que comprende un oligonucleótido modificado que consiste de 10 a 30 nucleósidos enlazados que tiene una secuencia de nucleobases que comprende la secuencia enumerada en la SEQ ID NO: 918, 479, 703, 1800, 1904, 2122, 2127 o 2194.

40

En ciertos aspectos, el oligonucleótido modificado tiene una secuencia de nucleobases que comprende la secuencia enumerada en las SEQ ID NO: 918, 479 o 703, en donde el oligonucleótido modificado comprende un segmento de separación que consiste de diez desoxinucleósidos enlazados;

un segmento de ala 5' que consiste de cinco nucleósidos enlazados; y

un segmento de ala 3' que consiste de cinco nucleósidos enlazados;

en donde el segmento de separación está colocado entre el segmento de ala 5' y el segmento de ala 3', en donde cada nucleósido de cada segmento de ala comprende un azúcar 2'-O-metoxietilo; en donde cada enlace internucleosídico es un enlace fosforotioato y en donde cada citosina es una 5-metilcitosina.

45

En ciertos aspectos, el oligonucleótido modificado tiene una secuencia de nucleobases que comprende la secuencia enumerada en las SEQ ID NO: 1800, 1904, 2122, 2127 o 2194, en donde el oligonucleótido modificado comprende:

50

un segmento de separación que consiste de diez desoxinucleósidos enlazados; un segmento de ala 5' que consiste de 3 nucleósidos enlazados; y

un segmento de ala 3' que consiste de 3 nucleósidos enlazados;

55

en donde el segmento de separación está colocado entre el segmento de ala 5' y el segmento de ala 3', en donde cada nucleósido de cada segmento de ala comprende un azúcar 2'-O-metoxietilo o un azúcar de etilo restringido; y en donde cada enlace internucleosídico es un enlace fosforotioato.

Ciertas realizaciones proporcionan un compuesto que comprende un oligonucleótido modificado que

60

consiste de 20 nucleósidos enlazados que tienen una secuencia de nucleobases que consiste de la secuencia enumerada en la SEQ ID NO: 703. En ciertos aspectos, el oligonucleótido modificado comprende por lo menos un azúcar modificado. En ciertos aspectos, el por lo menos un azúcar modificado comprende un grupo 2'-O-metoxietilo. En ciertos aspectos, el por lo menos un azúcar modificado es un azúcar bicíclico, como un grupo 4'-CH(CH3)-O-2', un grupo 4'-CH2-O-2' o un grupo 4'-(CH2)2-O-2'. En ciertos aspectos, el oligonucleótido modificado comprende por lo menos un enlace internucleosídico modificado, como un enlace internucleósido de fosforotioato. En ciertos

aspectos, el oligonucleótido modificado comprende por lo menos una nucleobase modificada, como una 5-metilcitosina. En ciertos aspectos, el oligonucleótido modificado comprende:

un segmento de separación que consiste de desoxinucleósidos enlazados;

un segmento de ala 5' que consiste de nucleósidos enlazados; y

5

15

20

25

30

35

40

45

50

55

60

65

un segmento de ala 3 'que consiste de nucleósidos enlazados;

en donde el segmento de separación se coloca entre el segmento de ala 5' y el segmento de ala 3' y en donde cada nucleósido de cada segmento de ala comprende un azúcar modificado.

Ciertas realizaciones proporcionan un compuesto que comprende un oligonucleótido modificado que consiste de 20 nucleósidos enlazados que tienen una secuencia de nucleobases que consiste de la secuencia enumerada en la SEQ ID NO: 703, en donde el oligonucleótido modificado comprende:

un segmento de separación que consiste de diez desoxinucleósidos enlazados;

un segmento de ala 5' que consiste de cinco nucleósidos enlazados; y un segmento de ala 3' que consiste de cinco nucleósidos enlazados;

en donde el segmento de separación está colocado entre el segmento de ala 5' y el segmento de ala 3'; en donde cada nucleósido de cada segmento de ala comprende un azúcar 2'-O-metoxietilo; en donde cada enlace internucleosídico es un enlace fosforotioato; y en donde cada citosina es una 5-metilcitosina.

En cualquiera de las realizaciones anteriores, el compuesto u oligonucleótido puede ser por lo menos un 85%, por lo menos un 90%, por lo menos un 95%, por lo menos un 98%, por lo menos un 99% o un 100% complementario a un ácido nucleico que codifica el receptor de la hormona de crecimiento.

En cualquiera de las realizaciones anteriores, el ácido nucleico que codifica el receptor de la hormona de crecimiento puede comprender la secuencia de nucleótidos de cualquiera de las SEQ ID NO: 1-19.

En cualquiera de las realizaciones anteriores, el compuesto u oligonucleótido puede ser de cadena sencilla.

Ciertas realizaciones proporcionan una composición que comprende el compuesto de cualquiera de las realizaciones mencionadas anteriormente o una sal del mismo y por lo menos uno de un portador o diluyente farmacéuticamente aceptable. En ciertos aspectos, la composición tiene una viscosidad menor de aproximadamente 40 centipose (cP), menor de aproximadamente 30 centipose (cP), menor de aproximadamente 20 centipose (cP), menor de aproximadamente 15 centipose (cP) o menor de aproximadamente 10 centipose (cP). En ciertos aspectos, la composición que tiene cualquiera de las viscosidades anteriormente mencionadas comprende un compuesto proporcionado en la presente a una concentración de aproximadamente 100 mg/ml, aproximadamente 125 mg/ml, aproximadamente 150 mg/ml, aproximadamente 275 mg/ml, aproximadamente 200 mg/ml, aproximadamente 250 mg/ml, aproximadamente 275 mg/ml o aproximadamente 300 mg/ml. En ciertos aspectos, la composición que tiene cualquiera de las viscosidades y/o concentraciones de compuesto anteriormente mencionadas tiene una temperatura de temperatura ambiente o aproximadamente 20° C, aproximadamente 21° C, aproximadamente 22° C, aproximadamente 23° C, aproximadamente 24° C, aproximadamente 25° C, aproximadamente 26° C, aproximadamente 27° C, aproximadamente 28° C, aproximadamente 29° C o aproximadamente 30° C.

Ciertos aspectos de la divulgación proporcionan un método para tratar una enfermedad asociada con un exceso de hormona de crecimiento en un humano que comprende administrar al humano una cantidad terapéuticamente eficaz del compuesto o composición de cualquiera de las realizaciones anteriormente mencionadas, tratando de este modo la enfermedad asociada con un exceso de la hormona de crecimiento. En ciertos aspectos, la enfermedad asociada con el exceso de la hormona del crecimiento es la acromegalia. En ciertos aspectos, el tratamiento reduce los niveles de IGF-1.

Ciertos aspectos de la divulgación proporcionan un método para prevenir una enfermedad asociada con un exceso de hormona de crecimiento en un humano que comprende administrar al humano una cantidad terapéuticamente eficaz de un compuesto o composición de cualquiera de las realizaciones mencionadas anteriormente, evitando de este modo la enfermedad asociada con un exceso de hormona de crecimiento. En ciertos aspectos de la divulgación, la enfermedad asociada con el exceso de hormona del crecimiento es la acromegalia.

Ciertos aspectos de la divulgación proporcionan un método para reducir los niveles del receptor de la hormona del crecimiento (GHR) en un humano que comprende administrar al humano una cantidad terapéuticamente eficaz del compuesto o composición de cualquiera de las realizaciones mencionadas

anteriormente, reduciendo de este modo los niveles de GHR en el humano. En ciertos aspectos, el humano tiene una enfermedad asociada con un exceso de hormona de crecimiento. En ciertos aspectos, la enfermedad asociada con el exceso de hormona del crecimiento es la acromegalia.

En ciertos aspectos, los métodos anteriores comprenden coadministrar el compuesto o composición y un segundo agente. En ciertos aspectos, el compuesto o composición y el segundo agente se administran concomitantemente.

Compuestos antisentido

10

5

Los compuestos oligoméricos incluyen, pero no están limitados a, oligonucleótidos, oligonucleósidos, análogos de oligonucleótidos, miméticos de oligonucleótidos, compuestos antisentido, oligonucleótidos antisentido y ARNip. Un compuesto oligomérico puede ser "antisentido" para un ácido nucleico objetivo, lo que significa que es capaz de experimentar hibridación con un ácido nucleico objetivo a través de enlaces de hidrógeno.

15

En ciertas realizaciones, un compuesto antisentido tiene una secuencia de nucleobases que, cuando se escribe en la dirección 5' a 3', comprende el complemento inverso del segmento objetivo de un ácido nucleico objetivo al que está dirigido. En ciertas de tales realizaciones, un oligonucleótido antisentido tiene una secuencia de nucleobases que, cuando se escribe en la dirección 5' a 3', comprende el complemento inverso del segmento objetivo de un ácido nucleico objetivo al que está dirigido.

20

25

30

35

40

45

50

En ciertos aspectos de la divulgación, un compuesto antisentido tiene una longitud de 10 a 30 subunidades. En ciertos aspectos de la divulgación, un compuesto antisentido tiene una longitud de 12 a 30 subunidades. En ciertos aspectos de la divulgación, un compuesto antisentido tiene una longitud de 12 a 22 subunidades. En ciertos aspectos de la divulgación, un compuesto antisentido tiene una longitud de 14 a 30 subunidades. En ciertos aspectos de la divulgación, un compuesto antisentido tiene una longitud de 14 a 20 subunidades. En ciertos aspectos de la divulgación, un compuesto antisentido tiene una longitud de 15 a 30 subunidades. En ciertos aspectos de la divulgación, un compuesto antisentido tiene una longitud de 15 a 20 subunidades. En ciertos aspectos de la divulgación, un compuesto antisentido tiene una longitud de 16 a 30 subunidades. En ciertos aspectos de la divulgación, un compuesto antisentido tiene una longitud de 16 a 20 subunidades. En ciertas realizaciones, un compuesto antisentido tiene una longitud de 17 a 30 subunidades. En ciertas realizaciones, un compuesto antisentido tiene una longitud de 17 a 20 subunidades. En ciertas realizaciones, un compuesto antisentido tiene una longitud de 18 a 30 subunidades. En ciertas realizaciones, un compuesto antisentido tiene una longitud de 18 a 21 subunidades. En ciertas realizaciones, un compuesto antisentido tiene una longitud de 18 a 20 subunidades. En ciertas realizaciones, un compuesto antisentido tiene una longitud de 20 a 30 subunidades. En otras palabras, tales compuestos antisentido tienen de 12 a 30 subunidades enlazadas, 14 a 30 subunidades enlazadas, 14 a 20 subunidades, 15 a 30 subunidades, 15 a 20 subunidades, 16 a 30 subunidades, 16 a 20 subunidades, 17 a 30 subunidades, 17 a 20 subunidades, 18 a 30 subunidades, 18 a 20 subunidades, 18 a 21 subunidades, 20 a 30 subunidades o 12 a 22 subunidades enlazadas, respectivamente. En ciertos aspectos de la divulgación, un compuesto antisentido tiene una longitud de 14 subunidades. En ciertos aspectos de la divulgación, un compuesto antisentido tiene una longitud de 16 subunidades. En ciertas realizaciones, un compuesto antisentido tiene una longitud de 17 subunidades. En ciertas realizaciones, un compuesto antisentido tiene una longitud de 18 subunidades. En ciertas realizaciones, un compuesto antisentido tiene una longitud de 19. En ciertas realizaciones, un compuesto antisentido tiene una longitud de 20 subunidades. En otros aspectos de la divulgación, el compuesto antisentido tiene de 8 a 80, 12 a 50, 13 a 30, 13 a 50, 14 a 30, 14 a 50, 15 a 30, 15 a 50, 16 a 30, 16 a 50, 17 a 30, 17 a 50, 18 a 22, 18 a 24, 18 a 30, 18 a 50, 19 a 22, 19 a 30, 19 a 50, o 20 a 30 subunidades enlazadas. En ciertos aspectos de la divulgación, los compuestos antisentido tienen una longitud de 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, u 80 subunidades enlazadas, o un intervalo definido por dos cualquiera de los valores anteriores. En algunas realizaciones, el compuesto antisentido es un oligonucleótido antisentido, y las subunidades enlazadas son nucleótidos.

55

En ciertas realizaciones, los oligonucleótidos antisentido pueden acortarse o truncarse. Por ejemplo, una única subunidad puede eliminarse del extremo 5' (truncamiento 5'), o alternativamente del extremo 3' (truncamiento 3'). Un compuesto antisentido acortado o truncado dirigido a un ácido nucleico de GHR puede tener dos subunidades eliminadas del extremo 5', o alternativamente puede tener dos subunidades eliminadas del extremo 3' del compuesto antisentido. Alternativamente, los nucleósidos eliminados pueden dispersarse por todo el compuesto antisentido, por ejemplo, en un compuesto antisentido que tiene un nucleósido eliminado del extremo 5' y un nucleósido eliminado del extremo 3'.

60

65

Cuando hay una sola subunidad adicional en un compuesto antisentido alargado, la subunidad adicional puede estar localizada en el extremo 5' o 3' del compuesto antisentido. Cuando hay dos o más subunidades adicionales, las subunidades añadidas pueden estar adyacentes entre sí, por ejemplo, en un compuesto antisentido que tiene dos subunidades añadidas al extremo 5' (adición 5'), o alternativamente al extremo 3' (adición 3'), del

compuesto antisentido. Alternativamente, las subunidades añadidas pueden dispersarse por todo el compuesto antisentido, por ejemplo, en un compuesto antisentido que tiene una subunidad añadida al extremo 5' y una subunidad añadida al extremo 3'.

Es posible aumentar o disminuir la longitud de un compuesto antisentido, como un oligonucleótido antisentido, y/o introducir bases malapareadas sin eliminar la actividad. Por ejemplo, en Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992), se probaron una serie de oligonucleótidos antisentido de 13-25 nucleobases de longitud para determinar su capacidad para inducir la escisión de un ARN objetivo en un modelo de inyección de ovocitos. Los oligonucleótidos antisentido de 25 nucleobases de longitud con 8 u 11 bases malapareadas cerca de los extremos de los oligonucleótidos antisentido pudieron dirigir la escisión específica del ARNm objetivo, aunque en menor medida que los oligonucleótidos antisentido que no contenían malapareamientos. De manera similar, se logró la escisión específica del objetivo usando oligonucleótidos antisentido de 13 nucleobases, incluyendo aquellos con 1 o 3 malapareamientos.

Gautschi et al. (J. Natl. Cancer Inst. 93:463-471, marzo de 2001) demostraron la capacidad de un oligonucleótido que tiene un 100% de complementariedad con el ARNm de bcl-2 y que tiene 3 malapareamientos con el ARNm de bcl-xL para reducir la expresión de tanto bcl-2 como bcl-xL *in vitro* e *in vivo*. Además, este oligonucleótido demostró una potente actividad antitumoral *in vivo*.

Maher y Dolnick (Nuc. Acid. Res. 16: 3341-3358,1988) probaron una serie de oligonucleótidos antisentido en tándem de 14 nucleobases, y oligonucleótidos antisentido de 28 y 42 nucleobases compuestos de la secuencia de dos o tres de los oligonucleótidos antisentido en tándem, respectivamente, para determinar su capacidad para detener la traducción de DHFR humano en un ensayo de reticulocitos de conejo. Cada uno de los tres oligonucleótidos antisentido de 14 nucleobases solo fue capaz de inhibir la traducción, aunque a un nivel más modesto que los oligonucleótidos antisentido de 28 o 42 nucleobases.

Ciertos motivos y mecanismos de compuestos antisentido

5

10

15

20

25

35

40

45

50

55

60

65

En ciertas realizaciones, los compuestos antisentido tienen subunidades modificadas químicamente dispuestas en patrones, o motivos, para conferir a los compuestos antisentido propiedades tales como actividad inhibidora mejorada, afinidad de unión aumentada para un ácido nucleico objetivo, o resistencia a la degradación por nucleasas *in vivo*.

Los compuestos antisentido quiméricos contienen típicamente por lo menos una región modificada para conferir una resistencia a la degradación de nucleasas aumentada, una captación celular aumentada, una afinidad de unión aumentada para el ácido nucleico objetivo y/o una actividad inhibidora aumentada. Una segunda región de un compuesto antisentido quimérico puede conferir otra propiedad deseada, por ejemplo, servir como sustrato para la RNasa H de endonucleasa celular, que escinde la cadena de ARN de un dúplex de ARN:ADN.

La actividad antisentido puede ser el resultado de cualquier mecanismo que implique la hibridación del compuesto antisentido (por ejemplo, oligonucleótido) con un ácido nucleico objetivo, en donde la hibridación finalmente da como resultado un efecto biológico. En ciertas realizaciones, se modula la cantidad y/o actividad del ácido nucleico objetivo. En ciertas realizaciones, la hibridación del compuesto antisentido con el ácido nucleico objetivo da como resultado en última instancia la degradación del ácido nucleico objetivo. En ciertas realizaciones, la hibridación del compuesto antisentido con el ácido nucleico objetivo no da como resultado la degradación del ácido nucleico objetivo. En ciertas de tales realizaciones, la presencia del compuesto antisentido hibridado con el ácido nucleico objetivo (ocupación) da como resultado una modulación de la actividad antisentido. En ciertas realizaciones, los compuestos antisentido que tienen un motivo químico particular o patrón de modificaciones químicas son particularmente adecuados para explotar uno o más mecanismos. En ciertas realizaciones, los compuestos antisentido funcionan mediante más de un mecanismo y/o mediante mecanismos que no se han dilucidado. Por consiguiente, los compuestos antisentido descritos en la presente no están limitados por un mecanismo particular.

Los mecanismos antisentido incluyen, sin limitación, antisentido mediado por RNasa H; mecanismos de ARNi, que utilizan la vía RISC e incluyen, sin limitación, mecanismos de ARNip, ARNmc y microARN; y mecanismos basados en la ocupación. Ciertos compuestos antisentido pueden actuar a través de más de uno de estos mecanismos y/o mediante mecanismos adicionales.

Antisentido mediado por RNasa H

En ciertas realizaciones, la actividad antisentido es el resultado por lo menos en parte de la degradación del ARN objetivo por la ARNasa H. La ARNasa H es una endonucleasa celular que escinde la cadena de ARN de un dúplex ARN:ADN. Se sabe en la técnica que los compuestos antisentido de cadena sencilla que son "similares a ADN" provocan actividad de RNasa H en células de mamífero. Por consiguiente, los compuestos antisentido que comprenden por lo menos una porción de ADN o nucleósidos similares a ADN pueden activar la RNasa H, dando

como resultado la escisión del ácido nucleico objetivo. En ciertas realizaciones, los compuestos antisentido que utilizan RNasa H comprenden uno o más nucleósidos modificados. En ciertas realizaciones, tales compuestos antisentido comprenden por lo menos un bloque de 1-8 nucleósidos modificados. En ciertas de tales realizaciones, los nucleósidos modificados no soportan la actividad de RNasa H. En ciertas realizaciones, tales compuestos antisentido son gapmers, como se describe en la presente. En ciertas de tales realizaciones, la separación del gapmer comprende nucleósidos de ADN. En ciertas de tales realizaciones, la separación del gapmer comprende nucleósidos de ADN. En ciertas de tales realizaciones, la separación del gapmer comprende nucleósidos de ADN y nucleósidos similares a ADN.

Ciertos compuestos antisentido que tienen un motivo gapmer se consideran compuestos antisentido quiméricos. En un gapmer, una región interna que tiene una pluralidad de nucleótidos que soporta la escisión de RNasaH se coloca entre regiones externas que tienen una pluralidad de nucleótidos que son químicamente distintos de los nucleósidos de la región interna. En el caso de un oligonucleótido antisentido que tiene un motivo gapmer, el segmento de separación generalmente sirve como sustrato para la escisión de la endonucleasa, mientras que los segmentos de ala comprenden nucleósidos modificados. En ciertas realizaciones, las regiones de un gapmer se diferencian por los tipos de fracciones de azúcar que comprenden cada región distinta. Los tipos de fracciones de azúcar que se usan para diferenciar las regiones de un gapmer pueden incluir en algunas realizaciones β-D-ribonucleósidos, β-D-desoxirribonucleósidos, nucleósidos 2' modificados (tales nucleósidos 2' modificados pueden incluir 2'-MOE y 2'-O-CH₃, entre otros), y nucleósidos modificados en el azúcar bicíclicos (tales nucleósidos modificados en el azúcar bicíclicos pueden incluir varias fracciones de azúcar modificado incluyendo, por ejemplo, 2'-MOE y fracciones de azúcar modificado y no modificado. En ciertas realizaciones, las alas pueden incluir varias combinaciones de nucleósidos 2'-MOE, fracciones de azúcar bicíclico como nucleósidos de etilo restringidos o nucleósidos de LNA y 2'-desoxinucleósidos.

Cada región distinta puede comprender fracciones de azúcar uniformes, variantes, o fracciones de azúcar alternas. El motivo ala-separación-ala se describe con frecuencia como "X-Y-Z", donde "X" representa la longitud del ala 5', "Y" representa la longitud de la separación, y "Z" representa la longitud del ala 3'. "X" y "Z" pueden comprender fracciones de azúcar uniformes, variantes o alternativas. En ciertas realizaciones, "X" e "Y" pueden incluir uno o más 2'-desoxinucleosidos. "Y" puede comprender 2'-desoxinucleosidos. Como se usa en la presente, un separador descrito como "X-Y-Z" tiene una configuración tal que la separación está colocada inmediatamente adyacente a cada una de las alas 5' y 3'. Por tanto, no hay nucleótidos intermedios entre el ala 5' y la separación, o la separación y el ala 3'. Cualquiera de los compuestos antisentido descritos en la presente puede tener un motivo gapmer. En ciertas realizaciones, "X" y "Z" son iguales; en otras realizaciones son diferentes. En ciertas realizaciones, "Y" tiene entre 8 y 15 nucleósidos. X, Y o Z pueden tener cualquiera de 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30 o más nucleósidos.

En ciertas realizaciones, el compuesto antisentido dirigido a un ácido nucleico de GHR tiene un motivo gapmer en el que la separación consiste de 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 o 16 nucleósidos enlazados.

En ciertas realizaciones, el oligonucleótido antisentido tiene un motivo de azúcar descrito por la Fórmula A como sigue: $(J)_{m^-}(B)_{r^-}(A)_{r^-}(A)_{r^-}(B)_{w^-}(J)_{x^-}(B)_{y^-}(J)_{z^-}(B)_{y^-}(J)_{z^-}(B)_{y^-}(J)_{z^-}(B)_{y^-}(J)_{z^-}(B)_{y^-}(J)_{z^-}(D)_{z$

45 cada A es independientemente un nucleósido 2' sustituido;

cada B es independientemente un nucleósido bicíclico;

cada J es independientemente un nucleósido 2' sustituido o un 2'-desoxinucleósido;

cada D es un 2'-desoxinucleósido;

m es 0-4; n es 0-2; p es 0-2; r es 0-2; t es 0-2; v es 0-2; w es 0-4; x es 0-2; y es 0-2; z es 0-4; g es 6-14;

55 siempre que:

5

10

15

20

25

30

35

50

60

por lo menos uno de m, n y r sea distinto de 0;

por lo menos uno de w e y sea distinto de 0;

la suma de m, n, p, r y t sea de 2 a 5; y

la suma de v, w, x, y y z sea de 2 a 5.

65 Compuestos de ARNi

En ciertas realizaciones, los compuestos antisentido son compuestos de ARN interferente (ARNi), que incluyen compuestos de ARN de cadena doble (también denominados ARN de interferencia corta o ARNip) y compuestos de ARNi de cadena sencilla (o ARNmc). Tales compuestos funcionan por lo menos en parte a través de la vía RISC para degradar y/o secuestrar un ácido nucleico objetivo (por tanto, incluyen compuestos de microARN/que imitan microARN). En ciertas realizaciones, los compuestos antisentido comprenden modificaciones que los hacen particularmente adecuados para tales mecanismos.

i. compuestos de ARNmc

5

10

15

20

25

30

35

40

55

60

En ciertas realizaciones, los compuestos antisentido que incluyen aquellos particularmente adecuados para su uso como compuestos de ARNi de cadena sencilla (ARNmc) comprenden un extremo terminal 5' modificado. En ciertas de tales realizaciones, el extremo terminal 5' comprende una fracción de fosfato modificado. En ciertas realizaciones, dicho fosfato modificado se estabiliza (por ejemplo, resistente a la degradación/escisión en comparación con el 5'-fosfato no modificado). En ciertas realizaciones, dichos nucleósidos 5'-terminales estabilizan la fracción de 5'-fósforo. Ciertos nucleósidos 5'-terminales modificados pueden encontrarse en la técnica, por ejemplo en la WO/2011/139702.

En ciertas realizaciones, el nucleósido 5' de un compuesto de ARNmc tiene la Fórmula IIc:

en donde:

T₁ es una fracción de fósforo opcionalmente protegida;

T₂ es un grupo de enlace internucleosídico que enlaza el compuesto de Fórmula IIc con el compuesto oligomérico:

IIc

A tiene una de las fórmulas:

Q₁ y Q₂ son cada uno, independientemente, H, halógeno, alquilo C₁-C₆, alquilo C₁-C₆ sustituido, alcoxi C₁-C₆, alquenilo C₂-C₆, alquenilo

50 $Q_3 \text{ es } O, S, N(R_5) \text{ o } C(R_6)(R_7);$

cada R₃, R₄ R₅, R₆ y R₇ es, independientemente, H, alquilo C₁-C₆, alquilo C₁-C₆ sustituido o alcoxi C₁-C₆;

 M_3 es O, S, NR_{14} , $C(R_{15})(R_{16})$, $C(R_{15})(R_{16})C(R_{17})(R_{18})$, $C(R_{15})=C(R_{17})$, $OC(R_{15})(R_{16})$ u $OC(R_{15})(BX_2)$;

 R_{14} es H, alquilo C_1 - C_6 , alquilo C_1 - C_6 sustituido, alcoxi C_1 - C_6 , alcoxi C_1 - C_6 sustituido, alquinilo C_2 - C_6 sustituido; alquinilo C_2 - C_6 sustituido;

 R_{15} , R_{16} , R_{17} y R_{18} son cada uno, independientemente, H, halógeno, alquilo C_1 - C_6 , alquilo C_1 - C_6 sustituido, alcoxi C_1 - C_6 , alcoxi C_1 - C_6 sustituido, alquenilo C_2 - C_6 , alquenilo C_2 - C_6 sustituido; alquinilo C_2 - C_6 sustituido;

Bx₁ es una fracción de base heterocíclica;

o si Bx₂ está presente, entonces Bx₂ es una fracción de base heterocíclica y Bx₁ es H, halógeno, alquilo C₁-C₆,

alquilo C_1 - C_6 sustituido, alcoxi C_1 - C_6 , alcoxi C_1 - C_6 sustituido, alquenilo C_2 - C_6 , alquenilo C_2 - C_6 sustituido, alquinilo C_2 - C_6 o alquinilo C_2 - C_6 sustituido;

- J₄, J₅, J₆ y J₇ son cada uno, independientemente, H, halógeno, alquilo C₁-C₆, alquilo C₁-C₆ sustituido, alcoxi C₁-C₆, alcoxi C₁-C₆ sustituido, alquenilo C₂-C₆, alquenilo C₂-C₆ sustituido, alquinilo C₂-C₆ o alquinilo C₂-C₆ sustituido;
- o J_4 forma un puente con uno de J_5 o J_7 en donde dicho puente comprende de 1 a 3 grupos birradicales enlazados seleccionados de O, S, NR₁₉, C(R₂₀)(R₂₁), C(R₂₀)=C(R₂₁), C[=C(R₂₀)(R₂₁)] y C(=O) y los otros dos de J_5 , J_6 y J_7 son cada uno, independientemente, H, halógeno, alquilo C_1 - C_6 , alquilo C_1 - C_6 sustituido, alquenilo C_2 - C_6 , alquenilo C_2 - C_6 sustituido, alquenilo C_2 - C_6 sustituido;
- cada R_{19} , R_{20} y R_{21} es, independientemente, H, alquilo C_1 - C_6 , alquilo C_1 - C_6 sustituido, alcoxi C_1 - C_6 , alcoxi C_1 - C_6 sustituido, alquenilo C_2 - C_6 , alquenilo C_2 - C_6 sustituido;

G es H, OH, halógeno u O- $[C(R_8)(R_9)]_n$ - $[(C=O)_m$ - $X_1]_i$ -Z;

cada R₈ y R₉ es, independientemente, H, halógeno, alquilo C₁-C₆ o alquilo C₁-C₆ sustituido;

20 $X_1 \text{ es } O, S \text{ o } N(E_1);$

Z es H, halógeno, alquilo C_1 - C_6 , alquilo C_1 - C_6 sustituido, alquenilo C_2 - C_6 , alquenilo C_2 - C_6 sustituido o $N(E_2)(E_3)$;

E₁, E₂y E₃ son cada uno, independientemente, H, alquilo C₁-C₆ o alquilo C₁-C₆ sustituido;

n es de 1 a aproximadamente 6;

30 m es 0 o 1;

25

j es 0 o 1;

cada grupo sustituido comprende uno o más grupos sustituyentes opcionalmente protegidos seleccionados independientemente de halógeno, DO₁, N(J₁)(J₂), =NJ₁, SJ₁, N₃, CN, OC(= X_2)J₁, OC(= X_2)N(J₁)(J₂) y C(= X_2)N(J₁)(J₂);

 X_2 es O, S o NJ_3 ;

40 cada J₁, J₂ y J₃ es, independientemente, H o alquilo C₁-C₆;

cuando j es 1, entonces Z es distinto de halógeno o N(E2)(E3); y

en donde dicho compuesto oligomérico comprende de 8 a 40 subunidades monoméricas y puede hibridar con por lo menos una porción de un ácido nucleico objetivo.

En ciertas realizaciones, M₃ es O, CH = CH, OCH₂ u OC(H)(Bx₂). En ciertas realizaciones, M₃ es O.

En ciertas realizaciones, J_4 , J_5 , J_6 y J_7 son cada uno H. En ciertas realizaciones, J_4 forma un puente con uno de J_5 o J_7 .

En ciertas realizaciones, A tiene una de las fórmulas:

$$Q_1 \longrightarrow Q_2 \qquad Q_1 \longrightarrow Q_2$$

en donde:

 Q_1 y Q_2 son cada uno, independientemente, H, halógeno, alquilo C_1 - C_6 , alquilo C_1 - C_6 sustituido, alcoxi C_1 - C_6 o alcoxi C_1 - C_6 sustituido. En ciertas realizaciones, Q_1 y Q_2 son cada uno H. En ciertas realizaciones, Q_1 y Q_2 son cada uno, independientemente, H o halógeno. En ciertas realizaciones, Q_1 y Q_2 es H y el otro de Q_1 y Q_2 es F, C_3 u C_3 .

En ciertas realizaciones, T₁ tiene la fórmula:

$$R_{b} = P - \xi$$

$$R_{c}$$

5

15

20

25

30

35

45

50

55

60

65

en donde:

 R_a y R_c son cada uno, independientemente hidroxilo, protegido, protegido tiol, alquilo C_1 - C_6 , alquilo C_1 - C_6 , alquilo C_1 - C_6 , alcoxi C_1 - C_1

 R_b es O o S. En ciertas realizaciones, R_b es O y R_a y R_c son cada uno, independientemente, OCH₃, OCH₂CH₃ o CH(CH₃)₂.

En ciertas realizaciones, G es halógeno, OCH3, OCH2F, OCH5, OCH3, OCH2CH3, O(CH2)2F, OCH2CH5, OCH2CH5, OCH2CF3, OCH2-CH=CH2, O(CH2)2-OCH3, O(CH2)2-SCH3, O(CH2)2-OCF3, O(CH2)3-N(R10)(R11), O(CH2)2-ON(R10)(R11), O(CH2)2-N(R10)(R11), OCH2C(=O)-N(R10)(R11), OCH2C(=O)-N(R12)-(CH2)2-N(R10)(R11) o O(CH2)2-N(R12)-C(=NR13)[N(R10)(R11)] en donde R10, R11, R12 y R13 son cada uno, independientemente, H o alquilo C1-C6. En ciertas realizaciones, G es halógeno, OCH3, OCF3, OCH2CH3, OCH2CF3, OCH2-CH=CH2, O(CH2)2-OCH3, O(CH2)2-O(CH2)2-N(CH3)2, OCH2C(=O)-N(H)CH3, OCH2C(=O)-N(H)-(CH2)2-N(CH3)2 o OCH2-N(H)-C(=NH)NH2. En ciertas realizaciones, G es F, OCH3 u O (CH2)2-OCH3. En ciertas realizaciones, G es O(CH2)2-OCH3.

En ciertas realizaciones, el nucleósido 5'-terminal tiene la Fórmula IIe:

IIe

En ciertas realizaciones, los compuestos antisentido, incluyendo los particularmente adecuados para ARNmc, comprenden uno o más tipos de fracciones de azúcar modificado y/o fracciones de azúcar de origen natural dispuestos a lo largo de un oligonucleótido o región del mismo en un patrón definido o motivo de modificación de azúcar. Tales motivos pueden incluir cualquiera de las modificaciones de azúcar analizadas en la presente y/u otras modificaciones de azúcar conocidas.

En ciertas realizaciones, los oligonucleótidos comprenden o consisten de una región que tiene modificaciones de azúcar uniformes. En ciertas de tales realizaciones, cada nucleósido de la región comprende la misma modificación de azúcar tipo ARN. En ciertas realizaciones, cada nucleósido de la región es un nucleósido 2'-F. En ciertas realizaciones, cada nucleósido de la región es un nucleósido cEt. En ciertas realizaciones, cada nucleósido de la región es un nucleósido LNA. En ciertas realizaciones, la región uniforme constituye todo o esencialmente todo el oligonucleótido. En ciertas realizaciones, la región constituye el oligonucleótido completo, excepto los nucleósidos terminales 1-4.

En ciertas realizaciones, los oligonucleótidos comprenden una o más regiones de modificaciones de azúcar alternas, en donde los nucleósidos alternan entre nucleótidos que tienen una modificación de azúcar de un primer tipo y nucleótidos que tienen una modificación de azúcar de un segundo tipo. En ciertas realizaciones, los nucleósidos de ambos tipos son nucleósidos de tipo ARN. En ciertas realizaciones, los nucleósidos alternos se seleccionan de: 2'-OMe, 2'-F, 2'-MOE, LNA y cEt. En ciertas realizaciones, las modificaciones alternas son 2'-F y 2'-OMe. Dichas regiones pueden ser contiguas o pueden estar interrumpidas por nucleósidos modificados de manera diferente o nucleósidos conjugados.

En ciertas realizaciones, la región alterna de modificaciones alternas consiste cada una de un único nucleósido (es decir, el patrón es $(AB)_xA_y$ donde A es un nucleósido que tiene una modificación de azúcar de un primer tipo y B es un nucleósido que tiene una modificación de azúcar de un segundo tipo; x es 1-20 e y es 0 o 1). En ciertas realizaciones, una o más regiones alternas en un motivo alterno incluyen más de un nucleósido de un tipo.

Por ejemplo, los oligonucleótidos pueden incluir una o más regiones de cualquiera de los siguientes motivos de nucleósidos:

AABBAA;

5 ABBABB;

AABAAB;

ABBABAABB;

ABABAA;

AABABAB;

10 ABABAA;

15

ABBAABBABABAA;

BABBAABBABABAA; o

ABABBAABBABABA;

en donde A es un nucleósido de un primer tipo y B es un nucleósido de un segundo tipo. En ciertas realizaciones, A y B se seleccionan cada uno de 2'-F, 2'-OMe, BNA y MOE.

En ciertas realizaciones, los oligonucleótidos que tienen dicho motivo alterno también comprenden un nucleósido 5' terminal modificado, como los de fórmula IIc o IIe.

20 En ciertas realizaciones, los oligonucleótidos comprenden una región que tiene un motivo 2-2-3. Dichas regiones comprenden el siguiente motivo:

$$-(A)_2-(B)_x-(A)_2-(C)_y-(A)_3-$$

25 en donde: A es un primer tipo de nucleósido modificado;

> B y C son nucleósidos que se modifican de manera diferente que A, sin embargo, B y C pueden tener las mismas o diferentes modificaciones entre sí;

30 x e y son de 1 a 15.

> En ciertas realizaciones, A es un nucleósido modificado 2'-OMe. En ciertas realizaciones, B y C son ambos nucleósidos modificados 2'-F. En ciertas realizaciones, A es un nucleósido modificado 2'-OMe y B y C son ambos nucleósidos modificados 2'-F.

En ciertas realizaciones, los oligonucleósidos tienen el siguiente motivo de azúcar:

$$5'-(Q)-(AB)_xA_y-(D)_z$$

40 en donde:

35

Q es un nucleósido que comprende una fracción de fosfato estabilizado. En ciertas realizaciones, Q es un nucleósido que tiene la Fórmula IIc o IIe;

45 A es un primer tipo de nucleósido modificado;

B es un segundo tipo de nucleósido modificado;

D es un nucleósido modificado que comprende una modificación diferente del nucleósido adyacente a él. Por 50 tanto, si y es 0, entonces D debe modificarse de manera diferente que B y si y es 1, entonces D debe modificarse de manera diferente que A. En ciertas realizaciones, D difiere de A y B.

X es 5-15:

55 Y es 0 o 1:

Z es 0-4.

En ciertas realizaciones, los oligonucleósidos tienen el siguiente motivo de azúcar:

60 $5'-(Q)-(A)_x-(D)_z$

en donde:

65 Q es un nucleósido que comprende una fracción de fosfato estabilizado. En ciertas realizaciones, Q es un nucleósido que tiene la Fórmula IIc o IIe;

A es un primer tipo de nucleósido modificado;

D es un nucleósido modificado que comprende una modificación diferente de A.

X es 11-30;

Z es 0-4.

10

15

20

25

5

En ciertas realizaciones, A, B, C y D en los motivos anteriores se seleccionan de: 2'-OMe, 2'-F, 2'-MOE, LNA y cEt. En ciertas realizaciones, D representa nucleósidos terminales. En ciertas realizaciones, tales nucleósidos terminales no están diseñados para hibridar con el ácido nucleico objetivo (aunque uno o más podrían hibridar por casualidad). En ciertas realizaciones, la nucleobase de cada nucleósido D es adenina, independientemente de la identidad de la nucleobase en la posición correspondiente del ácido nucleico objetivo. En ciertas realizaciones, la nucleobase de cada nucleósido D es timina.

En ciertas realizaciones, los compuestos antisentido, incluyendo los particularmente adecuados para su uso como ARNmc, comprenden enlaces internucleosídicos modificados dispuestos a lo largo del oligonucleótido o región del mismo en un patrón definido o motivo de enlace internucleósido modificado. En ciertas realizaciones, los oligonucleótidos comprenden una región que tiene un motivo de enlace internucleósido alterno. En ciertas realizaciones, los oligonucleótidos comprenden una región de enlaces internucleósidos modificados uniformemente. En ciertas de tales realizaciones, el oligonucleótido comprende una región que está enlazada uniformemente por enlaces internucleósidos de fosforotioato. En ciertas realizaciones, el oligonucleótido está enlazado uniformemente por enlaces internucleosídicos de fosforotioato. En ciertas realizaciones, cada enlace internucleosídico del oligonucleótido se selecciona de fosfodiéster y fosforotioato. En ciertas realizaciones, cada enlace internucleosídico del oligonucleótido se selecciona de fosfodiéster y fosforotioato y por lo menos un enlace internucleósido es fosforotioato.

30

35

En ciertas realizaciones, el oligonucleótido comprende por lo menos 6 enlaces internucleosídicos de fosforotioato. En ciertas realizaciones, el oligonucleótido comprende por lo menos 8 enlaces internucleosídicos de fosforotioato. En ciertas realizaciones, el oligonucleótido comprende por lo menos 10 enlaces internucleosídicos de fosforotioato. En ciertas realizaciones, el oligonucleótido comprende por lo menos un bloque de por lo menos 6 enlaces internucleósidos de fosforotioato consecutivos. En ciertas realizaciones, el oligonucleótido comprende por lo menos un bloque de por lo menos 8 enlaces internucleosídicos de fosforotioato consecutivos. En ciertas realizaciones, el oligonucleótido comprende por lo menos 10 enlaces internucleósidos de fosforotioato consecutivos. En ciertas realizaciones, el oligonucleótido comprende por lo menos un bloque de por lo menos 12 enlaces internucleósidos de fosforotioato consecutivos. En ciertas de tales realizaciones, por lo menos uno de dichos bloques está localizado en el extremo 3' del oligonucleótido. En ciertas de tales realizaciones, por lo menos uno de tales bloques está localizado dentro de 3 nucleósidos del extremo 3' del oligonucleótido.

40

Los oligonucleótidos que tienen cualquiera de los varios motivos de azúcar descritos en la presente, pueden tener cualquier motivo de enlace. Por ejemplo, los oligonucleótidos, que incluyen pero no se limitan a los descritos anteriormente, pueden tener un motivo de enlace seleccionado de la tabla no limitativa siguiente:

45

50

enlace más 5'	Región central	Región 3'				
PS	PO/PS alterno	6 PS				
PS	PO/PS alterno	7 PS				
PS	PO/PS alterno	8 PS				

55

ii. compuestos de ARNip

60

En ciertas realizaciones, los compuestos antisentido son compuestos de ARNi de cadena doble (ARNip). En tales realizaciones, una o ambas cadenas pueden comprender cualquier motivo de modificación descrito anteriormente para ARNmc. En ciertas realizaciones, los compuestos de ARNmc pueden ser ARN no modificado. En ciertas realizaciones, los compuestos de ARNip pueden comprender nucleósidos de ARN no modificados, pero enlaces internucleósidos modificados.

Varias realizaciones se refieren a composiciones de cadena doble en las que cada cadena comprende un motivo definido por la localización de uno o más nucleósidos modificados o no modificados. En ciertas realizaciones,

se proporcionan composiciones que comprenden un primer y un segundo compuestos oligoméricos que hibridan total o por lo menos parcialmente para formar una región dúplex y que además comprenden una región que es complementaria e hibrida con un objetivo de ácido nucleico. Es adecuado que dicha composición comprenda un primer compuesto oligomérico que es una cadena antisentido que tiene complementariedad total o parcial con un objetivo de ácido nucleico y un segundo compuesto oligomérico que es una cadena de sentido que tiene una o más regiones de complementariedad y que forma por lo menos una región dúplex con el primer compuesto oligomérico.

5

10

15

20

25

30

35

40

45

50

55

60

65

Las composiciones de varias realizaciones modulan la expresión génica hibridando con un objetivo de ácido nucleico que da como resultado la pérdida de su función normal. En algunas realizaciones, el ácido nucleico objetivo es GHR. En cierta realización, la degradación del GHR objetivo se ve facilitada por un complejo RISC activado que se forma con las composiciones de la invención.

Varias realizaciones están dirigidas a composiciones de cadena doble en las que una de las cadenas es útil, por ejemplo, para influir en la carga preferencial de la cadena opuesta en el complejo RISC (o escisión). Las composiciones son útiles para dirigir moléculas de ácidos nucleicos seleccionadas y modular la expresión de uno o más genes. En algunas realizaciones, las composiciones de la presente invención hibridan con una porción de un ARN objetivo dando como resultado la pérdida de la función normal del ARN objetivo.

Ciertas realizaciones se dirigen a composiciones de cadena doble en las que ambas cadenas comprenden un motivo de hemímero, un motivo completamente modificado, un motivo modificado posicionalmente o un motivo alterno. Cada cadena de las composiciones de la presente invención puede modificarse para cumplir una función particular en, por ejemplo, la vía de ARNip. Usar un motivo diferente en cada cadena o el mismo motivo con diferentes modificaciones químicas en cada cadena permite dirigir la cadena antisentido para el complejo RISC a la vez que inhibe la incorporación de la cadena de sentido. Dentro de este modelo, cada hebra puede modificarse independientemente de modo que se mejore para su función particular. La cadena antisentido puede modificarse en el extremo 5 'para mejorar su papel en una región del RISC, mientras que el extremo 3' puede modificarse diferencialmente para mejorar su papel en una región diferente del RISC.

Las moléculas de oligonucleótidos de cadena doble pueden ser una molécula de polinucleótido de cadena doble que comprende regiones sentido y antisentido autocomplementarias, en donde la región antisentido comprende una secuencia de nucleótidos que es complementaria a la secuencia de nucleótidos en una molécula de ácido nucleico objetivo o una porción de la misma y la región de sentido tiene una secuencia de nucleótidos correspondiente a la secuencia de ácido nucleico objetivo o una porción de la misma. Las moléculas de oligonucleótidos de cadena doble pueden ensamblarse a partir de dos oligonucleótidos separados, donde una cadena es la cadena sentido y la otra es la cadena antisentido, en donde las cadenas antisentido y sentido son autocomplementarias (es decir, cada cadena comprende una secuencia de nucleótidos que es complementaria a la secuencia de nucleótidos en la otra cadena; como donde la cadena antisentido y la cadena sentido forman una estructura dúplex o de cadena doble, por ejemplo en donde la región de cadena doble es de aproximadamente 15 a aproximadamente 30, por ejemplo, aproximadamente 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 o 30 pares de bases; la cadena antisentido comprende una secuencia de nucleótidos que es complementaria a la secuencia de nucleótidos en una molécula de ácido nucleico objetivo o una porción de la misma y la cadena de sentido comprende la secuencia de nucleótidos correspondiente a la secuencia de ácido nucleico objetivo o una porción de la misma (por ejemplo, de aproximadamente 15 a aproximadamente 25 o más nucleótidos de la molécula de oligonucleótidos de cadena doble son complementarios al ácido nucleico objetivo o una porción del mismo). Alternativamente, el oligonucleótido de cadena doble se ensambla a partir de un único oligonucleótido, donde las regiones sentido y antisentido autocomplementarias del ARNip están unidas por medio de un conector(es) a base de ácido nucleico o a base de ácido no nucleico.

El oligonucleótido de cadena doble puede ser un polinucleótido con una estructura secundaria dúplex, dúplex asimétrico, horquilla u horquilla asimétrica, que tiene regiones sentido y antisentido autocomplementarias, en donde la región antisentido comprende una secuencia de nucleótidos que es complementaria a la secuencia de nucleótidos en una molécula de ácido nucleico objetivo separada o una porción de la misma y la región de sentido tiene una secuencia de nucleótidos correspondiente a la secuencia de ácido nucleico objetivo o una porción de la misma. El oligonucleótido de cadena doble puede ser un polinucleótido circular de cadena sencilla que tiene dos o más estructuras de giro y un tallo que comprende regiones sentido y antisentido autocomplementarias, en donde la región antisentido comprende una secuencia de nucleótidos que es complementaria a la secuencia de nucleótidos en una molécula de ácido nucleico objetivo o una porción de la misma y la región de sentido tiene una secuencia de nucleótidos correspondiente a la secuencia de ácido nucleico objetivo o una porción de la misma, y en donde el polinucleótido circular puede procesarse in vivo o in vitro para generar una molécula de ARNip activa capaz de mediar ARNi.

En ciertas realizaciones, el oligonucleótido de cadena doble comprende secuencias o regiones de sentido y antisentido separadas, en donde las regiones de sentido y antisentido están enlazadas covalentemente mediante moléculas conectoras nucleotídicas o no nucleotídicas como se conoce en la técnica, o están enlazadas alternativamente de manera no covalente mediante interacciones iónicas, enlaces de hidrógeno, interacciones de

van der waals, interacciones hidrófobas y/o interacciones de apilamiento. En ciertas realizaciones, el oligonucleótido de cadena doble comprende una secuencia de nucleótidos que es complementaria a la secuencia de nucleótidos de un gen objetivo. En otra realización, el oligonucleótido de cadena doble interactúa con la secuencia de nucleótidos de un gen objetivo de una manera que provoca la inhibición de la expresión del gen objetivo.

5

10

15

20

25

Como se usa en la presente, los oligonucleótidos de cadena doble no necesitan estar limitados a aquellas moléculas que contienen solo ARN, sino que además comprenden nucleótidos y no nucleótidos modificados químicamente. En ciertas realizaciones, las moléculas de ácido nucleico interferente cortas carecen de nucleótidos que contienen 2'-hidroxi (2'-OH). En ciertas realizaciones, los ácidos nucleicos interferentes cortos opcionalmente no incluyen ningún ribonucleótido (por ejemplo, nucleótidos que tienen un grupo 2'-OH). Sin embargo, tales oligonucleótidos de cadena doble que no requieren la presencia de ribonucleótidos dentro de la molécula para soportar ARNi pueden tener un conector o conectores unidos u otros grupos, fracciones o cadenas unidos o asociados que contienen uno o más nucleótidos con grupos 2'-OH. Opcionalmente, los oligonucleótidos de cadena doble pueden comprender ribonucleótidos en aproximadamente un 5, 10, 20, 30, 40 o 50% de las posiciones de nucleótidos. Como se usa en la presente, se pretende que el término ARNip sea equivalente a otros términos usados para describir moléculas de ácido nucleico que son capaces de mediar la secuencia de ARNi específica, por ejemplo ARN interferente corto (ARNip), ARN de cadena doble (ARNdc), micro-RNA (ARNmi), ARN de horquilla corta (ARNhc), oligonucleótido de interferencia corta, ácido nucleico de interferencia corta, oligonucleótido modificado de interferencia corta, ARNip modificado químicamente, ARN de silenciamiento génico postranscripcional (ARNptgs) y otros. Además, como se usa en la presente, se pretende que el término ARNi sea equivalente a otros términos usados para describir la interferencia de ARN específica de la secuencia, como el silenciamiento génico postranscripcional, la inhibición traduccional o la epigenética. Por ejemplo, los oligonucleótidos de cadena doble pueden usarse para silenciar epigenéticamente genes tanto a nivel postranscripcional como a nivel pretranscripcional. En un ejemplo no limitativo, la regulación epigenética de la expresión génica por las moléculas de ARNip de la invención puede resultar de la modificación mediada por ARNip de la estructura de la cromatina o el patrón de metilación para alterar la expresión génica (ver, por ejemplo, Verdel et al., 2004, Science, 303, 672-676; Pal-Bhadra et al., 2004, Science, 303, 669-672; Allshire, 2002, Science, 297, 1818-1819; Volpe et al., 2002, Science, 297, 1833-1837; Jenuwein, 2002, Science, 297, 2215-2218; y Hall et al., 2002, Science, 297, 2232-2237).

30

35

40

Se contempla que los compuestos y las composiciones de varias realizaciones proporcionadas en la presente pueden dirigirse a GHR mediante un silenciamiento génico mediado por ARNdc o un mecanismo de ARNi, incluyendo, por ejemplo, moléculas efectoras de ARN de cadena doble en forma de "horquilla" o giro de tallo en las que una única cadena de ARN con las secuencias autocomplementarias pueden asumir una conformación de cadena doble o moléculas efectoras de ARNdc dúplex que comprenden dos cadenas separadas de ARN. En diversas realizaciones, el ARNdc consiste completamente de ribonucleótidos o consiste de una mezcla de ribonucleótidos y desoxinucleótidos, como los híbridos de ARN/ADN divulgados, por ejemplo, por la WO 00/63364, presentada el 19 de abril de 2000, o la Nº de Serie de Estados Unidos 60/130.377, presentada el 21 de abril de 1999. El ARNdc o la molécula efectora de ARNdc puede ser una sola molécula con una región de autocomplementariedad de tal manera que los nucleótidos en un segmento de la base de la molécula se emparejen con los nucleótidos en otro segmento de la molécula. En diversas realizaciones, un ARNdc que consiste de una única molécula consiste completamente de ribonucleótidos o incluye una región de ribonucleótidos que es complementaria a una región de desoxirribonucleótidos. Alternativamente, el ARNdc puede incluir dos cadenas diferentes que tienen una región de complementariedad entre ellas.

45

50

55

En varias realizaciones, ambas cadenas consisten completamente de ribonucleótidos, una cadena consiste completamente de ribonucleótidos y una cadena consiste completamente de desoxirribonucleótidos, o una o ambas cadenas contienen una mezcla de ribonucleótidos y desoxirribonucleótidos. En ciertas realizaciones, las regiones de complementariedad son por lo menos un 70, 80, 90, 95, 98 o 100% complementarias entre sí y con una secuencia de ácido nucleico objetivo. En ciertas realizaciones, la región del ARNdc que está presente en una conformación de cadena doble incluye por lo menos 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 50, 75,100, 200, 500, 1000, 2000 o 5000 nucleótidos o incluye todos los nucleótidos en un ADNc u otra secuencia de ácido nucleico objetivo que se representa en el ARNdc. En algunas realizaciones, el ARNdc no contiene ninguna región de cadena sencilla, como los extremos de cadena sencilla, o el ARNdc es una horquilla. En otras realizaciones, el ARNdc tiene una o más regiones o salientes de cadena sencilla. En ciertas realizaciones, los híbridos de ARN/ADN incluyen una cadena o región de ADN que es una cadena o región antisentido (por ejemplo, tiene por lo menos un 70, 80, 90, 95, 98 o 100% de complementariedad con un ácido nucleico objetivo) y un ARN cadena o región que es una cadena o región sentido (por ejemplo, tiene por lo menos un 70, 80, 90, 95, 98 o 100% de identidad con un ácido nucleico objetivo), y viceversa.

60

65

En varias realizaciones, el híbrido de ARN/ADN se elabora in vitro usando métodos sintéticos químicos o enzimáticos como los descritos en la presente o los descritos en la WO 00/63364, presentada el 19 de abril de 2000, o en el Nº de Serie de Estados Unidos 60/130,377, presentada el 21 de abril de 1999. En otras realizaciones, una cadena de ADN sintetizada in vitro se compleja con una cadena de ARN elaborada in vivo o in vitro antes, después o concurrentemente con la transformación de la cadena de ADN en la célula. En otras realizaciones más, el ARNdc es un ácido nucleico circular único que contiene una región sentido y antisentido, o el ARNdc incluye un ácido nucleico

circular y un segundo ácido nucleico circular o un ácido nucleico lineal (ver, por ejemplo, WO 00/63364, presentada el 19 de abril de 2000, o la Nº de Serie de Estados Unidos 60/130.377, presentada el 21 de abril de 1999). Los ácidos nucleicos circulares ejemplares incluyen estructuras lariat en las que el grupo 5' fosforilo libre de un nucleótido se enlaza al grupo 2' hidroxilo de otro nucleótido de una manera de giro hacia atrás.

5

10

En otras realizaciones, el ARNdc incluye uno o más nucleótidos modificados en los que la posición 2' en el azúcar contiene un halógeno (como un grupo flúor) o contiene un grupo alcoxi (como un grupo metoxi) que aumenta la vida media del ARNdc in vitro o in vivo en comparación con el ARNdc correspondiente en el que la posición 2' correspondiente contiene un hidrógeno o un grupo hidroxilo. En otras realizaciones más, el ARNdc incluye uno o más enlaces entre nucleótidos adyacentes distintos de un enlace fosfodiéster natural. Los ejemplos de tales enlaces incluyen enlaces de fosforamida, fosforotioato y fosforoditioato. Los ARNdc también pueden ser moléculas de ácido nucleico químicamente modificadas como se enseña en la Patente de Estados Unidos Nº 6.673.661. En otras realizaciones, el ARNdc contiene una o dos cadenas tapadas, como se divulga, por ejemplo, en la WO 00/63364, presentada el 19 de abril de 2000, o la Nº de Serie de Estados Unidos 60/130.377, presentada el 21 de abril de 1999.

15

20

En otras realizaciones, el ARNdc puede ser cualquiera de las moléculas de ARNdc por lo menos parcialmente divulgadas en la WO 00/63364, así como cualquiera de las moléculas de ARNdc descritas en la solicitud Provisional de Estados Unidos 60/399,998; y la Solicitud Provisional de Estados Unidos 60/419,532, y el PCT/US2003/033466. Cualquiera de los ARNdc puede expresarse in vitro o in vivo usando los métodos descritos en la presente o métodos estándar, como los descritos en la WO 00/63364.

Ocupación

25

30

En ciertas realizaciones, no se espera que los compuestos antisentido den lugar a la escisión o al ácido nucleico objetivo a través de RNasa H o que den como resultado la escisión o secuestro a través de la vía RISC. En ciertas de tales realizaciones, la actividad antisentido puede ser el resultado de la ocupación, en donde la presencia del compuesto antisentido hibridado interrumpe la actividad del ácido nucleico objetivo. En ciertas de tales realizaciones, el compuesto antisentido puede modificarse uniformemente o puede comprender una mezcla de modificaciones y/o nucleósidos modificados y no modificados.

Las secuencias de nucleótidos que codifican el receptor de la hormona del crecimiento (GHR) al que se

Ácidos nucleicos objetivo, regiones objetivo y secuencias de nucleótidos

40

35

pueden dirigir los compuestos proporcionados en la presente incluyen, sin limitación, las siguientes: Nº de registro GENBANK NM_000163.4 (incorporada en la presente como SEQ ID NO: 1), Nº de registro GENBANK NT 006576.16 truncada de los nucleótidos 42411001 a 42714000 (incorporada en la presente como SEQ ID NO: 2), N° de registro GENBANK X06562.1 (incorporada en la presente como SEQ ID NO: 3), № de registro GENBANK DR006395.1 (incorporada en la presente como SEQ ID NO: 4), Nº de registro GENBANK DB052048.1 (incorporada en la presente como SEQ ID NO: 5), Nº de registro GENBANK AF230800.1 (incorporada en la presente como SEQ ID NO: 6), el complemento del Nº de registro GENBANK AA398260.1 (incorporada en la presente como SEQ ID NO: 7), Nº de registro GENBANK BC136496.1 (incorporada en la presente como SEQ ID NO: 8), Nº de registro GENBANK NM_001242399.2 (incorporada en la presente como SEQ ID NO: 9), Nº de registro GENBANK NM_001242400.2 (incorporada en la presente como SEQ ID NO: 10), Nº de registro GENBANK NM_001242401.3 (incorporada en la presente como SEQ ID NO: 11), Nº de registro GENBANK NM 001242402.2 (incorporada en la presente como SEQ ID NO: 12), № de registro GENBANK NM 001242403.2 (incorporada en la presente como SEQ ID NO: 13), No de registro GENBANK NM 001242404.2 (incorporada en la presente como SEQ ID NO: 14), No de

50

45

registro GENBANK NM_001242405.2 (incorporada en la presente como SEQ ID NO: 15), Nº de registro GENBANK NM_001242406.2 (incorporada en la presente como SEQ ID NO: 16), Nº de registro GENBANK NM_001242460.1 (incorporada en la presente como SEQ ID NO: 17), No de registro GENBANK NM 001242461.1 (incorporada en la presente como SEQ ID NO: 18), Nº de registro GENBANK NM_001242462.1 (incorporada en la presente como SEQ ID NO: 19), o No de registro GENBANK NW 001120958.1 truncada de los nucleótidos 4410000 a 4720000 (incorporada en la presente como SEQ ID NO: 2296).

55 Hibridación

En algunas realizaciones, la hibridación se produce entre un compuesto antisentido divulgado en la presente y un ácido nucleico de GHR. El mecanismo más común de hibridación implica el enlace de hidrógeno (por ejemplo, enlace de hidrógeno de Watson-Crick, Hoogsteen o Hoogsteen invertido) entre las nucleobases complementarias de las moléculas de ácido nucleico.

60

La hibridación puede producirse en condiciones variables. Las condiciones estrictas dependen de la secuencia y están determinadas por la naturaleza y la composición de las moléculas de ácidos nucleicos que se hibridarán.

Los métodos para determinar si una secuencia puede hibridar específicamente con un ácido nucleico objetivo son bien conocidos en la técnica. En ciertas realizaciones, los compuestos antisentido proporcionados en la presente pueden hibridar específicamente con un ácido nucleico de GHR.

Complementariedad

5

10

15

20

25

30

35

40

45

50

55

60

65

Un compuesto antisentido y un ácido nucleico objetivo son complementarios entre sí cuando un número suficiente de nucleobases del compuesto antisentido puede enlazarse por hidrógeno con las nucleobases correspondientes del ácido nucleico objetivo, de tal manera que se produzca un efecto deseado (por ejemplo, inhibición antisentido de un ácido nucleico objetivo, como un ácido nucleico de GHR).

Las nucleobases no complementarias entre un compuesto antisentido y un ácido nucleico de GHR pueden tolerarse siempre que el compuesto antisentido siga siendo capaz de hibridar específicamente con un ácido nucleico objetivo. Además, un compuesto antisentido puede hibridar sobre uno o más segmentos de un ácido nucleico de GHR de tal manera que los segmentos intermedios o adyacentes no estén involucrados en el evento de hibridación (por ejemplo, una estructura de giro, malapareamiento o estructura de horquilla).

En ciertos aspectos de la divulgación, los compuestos antisentido proporcionados en la presente, o una porción especificada de los mismos, son, o son por lo menos, un 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% o 100% complementarios con un ácido nucleico de GHR, una región objetivo, un segmento objetivo o una porción específica del mismo. El porcentaje de complementariedad de un compuesto antisentido con un ácido nucleico objetivo puede determinarse usando métodos rutinarios.

Por ejemplo, un compuesto antisentido en el que 18 de las 20 nucleobases del compuesto antisentido son complementarias con una región objetivo y, por lo tanto, se hibridarían específicamente, representarían un 90 por ciento de complementariedad. En este ejemplo, las nucleobases no complementarias restantes pueden estar agrupadas o intercaladas con nucleobases complementarias y no necesitan ser contiguas entre sí o con las nucleobases complementarias. Como tal, un compuesto antisentido que tiene 18 nucleobases de longitud que tiene cuatro nucleobases no complementarias que están flanqueadas por dos regiones de complementariedad completa con el ácido nucleico objetivo tendría un 77,8% de complementariedad global con el ácido nucleico objetivo. El porcentaje de complementariedad de un compuesto antisentido con una región de un ácido nucleico objetivo puede determinarse rutinariamente usando programas BLAST (herramientas básicas de búsqueda de alineación local) y programas PowerBLAST conocidos en la técnica (Altschul et al., J. Mol. Biol., 1990, 215, 403 410; Zhang y Madden, Genome Res., 1997, 7, 649 656). El porcentaje de homología, identidad de secuencia o complementariedad puede determinarse, por ejemplo, mediante el programa Gap (Wisconsin Sequence Analysis Package, Versión 8 para Unix, Genetics Computer Group, University Research Park, Madison Wis.), usando la configuración predeterminada, que usa algoritmo de Smith y Waterman (Adv. Appl. Math., 1981, 2, 482 489).

En ciertas realizaciones, los compuestos antisentido proporcionados en la presente, o porciones especificadas de los mismos, son completamente complementarios (es decir, 100% complementarios) con un ácido nucleico objetivo, o una porción especificada del mismo. Por ejemplo, un compuesto antisentido puede ser completamente complementario a un ácido nucleico de GHR, o una región objetivo, o un segmento objetivo o secuencia objetivo del mismo. Como se usa en la presente, "completamente complementario" significa que cada nucleobase de un compuesto antisentido es capaz de emparejar bases precisas con las nucleobases correspondientes de un ácido nucleico objetivo. Por ejemplo, un compuesto antisentido de 20 nucleobases es completamente complementario con una secuencia objetivo que tiene una longitud de 400 nucleobases, siempre que haya una porción correspondiente de 20 nucleobase del ácido nucleico objetivo que sea completamente complementaria con el compuesto antisentido. Completamente complementario también puede usarse en referencia a una porción especificada del primer y/o el segundo ácido nucleico. Por ejemplo, una porción de 20 nucleobases de un compuesto antisentido de 30 nucleobase puede ser "completamente complementaria" con una secuencia objetivo que tiene una longitud de 400 nucleobases. La porción de 20 nucleobases del oligonucleótido de 30 nucleobase es completamente complementaria con la secuencia obietivo si la secuencia obietivo tiene una porción correspondiente de 20 nucleobase en donde cada nucleobase es complementaria con la porción de 20 nucleobase del compuesto antisentido. Al mismo tiempo, el compuesto antisentido de 30 nucleobases completo puede o no ser completamente complementario con la secuencia objetivo, dependiendo de si las 10 nucleobases restantes del compuesto antisentido también son complementarias con la secuencia objetivo.

La localización de una nucleobase no complementaria puede estar en el extremo 5' o el extremo 3' del compuesto antisentido. Alternativamente, la nucleobase o nucleobases no complementarias pueden estar en una posición interna del compuesto antisentido. Cuando están presentes dos o más nucleobases no complementarias, pueden ser contiguas (es decir, estar enlazadas) o no contiguas. En una realización, una nucleobase no complementaria está localizada en el segmento del ala de un oligonucleótido antisentido gapmer.

En ciertos aspectos de la divulgación, los compuestos antisentido que tienen, o tienen hasta 11, 12, 13, 14, 15, 16, 17, 18, 19 o 20 nucleobases de longitud no comprenden más de 4, no más de 3, no más de 2, o no más de 1

nucleobases no complementarias con respecto a un ácido nucleico objetivo, como un ácido nucleico de GHR, o una porción especificada del mismo.

En ciertos aspectos de la divulgación, los compuestos antisentido que tienen, o tienen hasta 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 o 30 nucleobases de longitud comprenden no más de 6, no más de 5, no más de 4, no más de 3, no más de 2 o no más de 1 nucleobases no complementarias con respecto a un ácido nucleico objetivo, como un ácido nucleico de GHR, o una porción especificada del mismo.

Los compuestos antisentido proporcionados también incluyen aquellos que son complementarios a una porción de un ácido nucleico objetivo. Como se usa en la presente, "porción" se refiere a un número definido de nucleobases contiguas (es decir, enlazadas) dentro de una región o segmento de un ácido nucleico objetivo. Una "porción" también puede referirse a un número definido de nucleobases contiguas de un compuesto antisentido. En ciertos aspectos de la divulgación, los compuestos antisentido son complementarios con por lo menos una porción de 8 nucleobases de un segmento objetivo. En ciertos aspectos de la divulgación, los compuestos antisentido son complementarios con por lo menos una porción de 9 nucleobases de un segmento objetivo. En ciertos aspectos de la divulgación, los compuestos antisentido son complementarios con por lo menos una porción de 10 nucleobases de un segmento objetivo. En ciertos aspectos de la divulgación, los compuestos antisentido son complementarios con por lo menos una porción de 11 nucleobases de un segmento objetivo. En ciertos aspectos de la divulgación, los compuestos antisentido son complementarios con por lo menos una porción de 12 nucleobases de un segmento objetivo. En ciertos aspectos de la divulgación, los compuestos antisentido son complementarios con por lo menos una porción de 13 nucleobases de un segmento objetivo. En ciertos aspectos de la divulgación, los compuestos antisentido son complementarios con por lo menos una porción de 14 nucleobases de un segmento objetivo. En ciertos aspectos de la divulgación, los compuestos antisentido son complementarios con por lo menos una porción de 15 nucleobases de un segmento objetivo. También se contemplan compuestos antisentido que son complementarios con por lo menos 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 o más porciones de nucleobase de un segmento objetivo, o un intervalo definido por dos cualquiera de estos valores.

Identidad

5

10

15

20

25

30

35

40

45

50

55

60

Los compuestos antisentido proporcionados en la presente también pueden tener un porcentaje de identidad definido para una secuencia de nucleótidos particular, SEQ ID NO, o compuesto representado por un número Isis específico, o una porción del mismo. Como se usa en la presente, un compuesto antisentido es idéntico a la secuencia divulgada en la presente si tiene la misma capacidad de emparejamiento de nucleobases. Por ejemplo, un ARN que contiene uracilo en lugar de timidina en una secuencia de ADN divulgada se consideraría idéntico a la secuencia de ADN ya que tanto el uracilo como la timidina se emparejan con la adenina. También se contemplan versiones acortadas y alargadas de los compuestos antisentido descritos en la presente, así como los compuestos que tienen bases no idénticas con respecto a los compuestos antisentido proporcionados en la presente. Las bases no idénticas pueden ser adyacentes entre sí o estar dispersas por todo el compuesto antisentido. El porcentaje de identidad de un compuesto antisentido se calcula de acuerdo con el número de bases que tienen un emparejamiento de bases idéntico con respecto a la secuencia con la que se compara.

En ciertos aspectos de la divulgación, los compuestos antisentido, o porciones de los mismos, son, o son por lo menos, un 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99 % o 100% idénticos a uno o más de los compuestos antisentido o SEQ ID NO, o una porción de los mismos, divulgados en la presente.

En ciertas realizaciones, se compara una porción del compuesto antisentido con una porción de igual longitud del ácido nucleico objetivo. En ciertos aspectos de la divulgación, se compara una porción de 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 o 25 nucleobases con una porción de igual longitud del ácido nucleico objetivo.

En ciertas realizaciones, se compara una porción del oligonucleótido antisentido con una porción de igual longitud del ácido nucleico objetivo. En ciertos aspectos de la divulgación, se compara una porción de 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 o 25 nucleobases con una porción de igual longitud del ácido nucleico objetivo.

Modificaciones

Un nucleósido es una combinación de azúcar-base. La porción de nucleobase (también conocida como base) del nucleósido es normalmente una fracción de base heterocíclica. Los nucleótidos son nucleósidos que además incluyen un grupo fosfato enlazado covalentemente con la porción de azúcar del nucleósido. Para aquellos nucleósidos que incluyen un azúcar pentofuranosilo, el grupo fosfato puede unirse a la fracción hidroxilo 2', 3' o 5 'del azúcar. Los oligonucleótidos se forman a través del enlace covalente de nucleósidos adyacentes entre sí, para formar un oligonucleótido polimérico lineal. Dentro de la estructura del oligonucleótido, los grupos fosfato son referidos comúnmente como formadores de los enlaces internucleosídicos del oligonucleótido.

Las modificaciones a los compuestos antisentido abarcan sustituciones o cambios en los enlaces internucleosídicos, fracciones de azúcar o nucleobases. A menudo se prefieren los compuestos antisentido modificados a las formas nativas debido a propiedades deseables como, por ejemplo, captación celular mejorada, afinidad mejorada para el objetivo de ácido nucleico, estabilidad aumentada en presencia de nucleasas o actividad inhibidora mejorada.

Los nucleósidos modificados químicamente también pueden emplearse para aumentar la afinidad de unión de un oligonucleótido antisentido acortado o truncado para su ácido nucleico objetivo. En consecuencia, a menudo pueden obtenerse resultados comparables con compuestos antisentido más cortos que tienen tales nucleósidos modificados químicamente.

Enlaces internucleosídicos modificados

5

10

15

20

25

30

35

40

45

50

55

60

65

El enlace internucleósido de origen natural del ARN y el ADN es un enlace fosfodiéster de 3' a 5'. A menudo se seleccionan compuestos antisentido que tienen uno o más enlaces internucleosídicos modificados, es decir, de origen no natural, sobre los compuestos antisentido que tienen enlaces internucleosídicos de origen natural debido a propiedades deseables como, por ejemplo, captación celular mejorada, afinidad mejorada para los ácidos nucleicos objetivo y estabilidad aumentada en presencia de nucleasas.

Los oligonucleótidos que tienen enlaces internucleosídicos modificados incluyen enlaces internucleosídicos que retienen un átomo de fósforo, así como enlaces internucleosídicos que no tienen un átomo de fósforo. Los enlaces internucleosídicos que contienen fósforo representativos incluyen, pero no están limitados a, fosfodiésteres, fosfotriésteres, metilfosfonatos, fosforamidato y fosforotioatos. Los métodos de preparación de enlaces que contienen fósforo y que no tienen fósforo son bien conocidos.

En ciertas realizaciones, los compuestos antisentido dirigidos a un ácido nucleico de GHR comprenden uno o más enlaces internucleosídicos modificados. En ciertas realizaciones, los enlaces internucleosídicos modificados son enlaces de fosforotioato. En ciertas realizaciones, cada enlace internucleosídico de un compuesto antisentido es un enlace internucleósido de fosforotioato.

Fracciones de azúcar modificado

Los compuestos antisentido pueden contener opcionalmente uno o más nucleósidos en los que el grupo azúcar se ha modificado. Tales nucleósidos modificados en el azúcar pueden impartir una estabilidad de nucleasas mejorada, afinidad de unión aumentada o alguna otra propiedad biológica beneficiosa a los compuestos antisentido. En ciertas realizaciones, los nucleósidos comprenden fracciones de anillo de ribofuranosa químicamente modificado. Los ejemplos de anillos de ribofuranosa químicamente modificados incluyen, sin limitación, la adición de grupos sustituyentes (incluyendo grupos sustituyentes 5' y 2', formación de puentes de átomos de anillo no geminal para formar ácidos nucleicos bicíclicos (BNA), reemplazo del átomo de oxígeno del anillo de ribosilo con S, N(R) o C(R₁)(R₂) (R, R₁ y R₂ son cada uno independientemente H, alquilo C₁-C₁₂ o un grupo protector) y combinaciones de los mismos. Ejemplos de azúcares químicamente modificados incluyen nucleósido sustituido con 2'-F-5'-metilo (ver la Solicitud Internacional PCT WO 2008/101157 publicada el 21/08/08 para otros nucleósidos 5',2'-bis sustituidos descritos) o el reemplazo del átomo de oxígeno del anillo de ribosilo con S con sustitución adicional en la posición 2' (ver la Solicitud de Patente de Estados Unidos publicada US2005-0130923, publicada el 16 de junio de 2005) o, alternativamente, sustitución 5' de un BNA (ver la Solicitud Internacional PCT WO 2007/134181 publicada el 22/11/07 en donde LNA está sustituido con, por ejemplo, un grupo 5'-metilo o 5'-vinilo).

Los ejemplos de nucleósidos que tienen fracciones de azúcar modificado incluyen, sin limitación, nucleósidos que comprenden grupos sustituyentes de 5'-vinilo, 5'-metilo (R o S), 4'-S, 2'-F, 2'-OCH $_3$, 2'-OCH $_2$ CH $_3$, 2'-OCH $_2$ CH $_2$ F y 2 'O-(CH $_2$) $_2$ OCH $_3$. El sustituyente en la posición 2' también puede seleccionarse de alilo, amino, azido, tio, O-alilo, O-alquilo C $_1$ -C $_1$ 0, OCF $_3$, OCH $_3$ F, O(CH $_2$) $_2$ SCH $_3$, O(CH $_3$) $_2$ O-N(R $_n$)(R $_n$), O-CH $_3$ C(=O)-N(R $_n$)(R $_n$), donde cada R $_1$, R $_n$ y R $_n$ es, independientemente, H o alquilo C $_1$ -C $_1$ 0 sustituido o no sustituido.

Como se usa en la presente, "nucleósidos bicíclicos" se refiere a nucleósidos modificados que comprenden una fracción de azúcar bicíclico. Los ejemplos de nucleósidos bicíclicos incluyen, sin limitación, nucleósidos que comprenden un puente entre los átomos del anillo de ribosilo 4' y 2'. En ciertas realizaciones, los compuestos antisentido proporcionados en la presente incluyen uno o más nucleósidos bicíclicos que comprenden un puente de 4' a 2'. Los ejemplos de tales nucleósidos bicíclicos con puente de 4' a 2' incluyen, pero no están limitados a, una de las fórmulas: 4'-(CH₂)-O-2' (LNA); 4'-(CH₂)-S-2'; 4'-(CH₂)₂-O-2' (ENA); 4'-CH(CH3)-O-2' (también referido como etilo restringido o cEt) y 4'-CH(CH₂OCH₃)-O-2' (y análogos de los mismos, ver la Patente de Estados Unidos 7.399.845, concedida el 15 de julio de 2008); 4'-C(CH₃)(CH₃)-O-2' (y análogos del mismo ver la Solicitud Internacional publicada WO/2009/006478, publicada el 8 de enero de, 2009); 4'-CH₂-N(OCH₃)-2' (y análogos del mismo ver la Solicitud Internacional publicada WO/2008/150729, publicada el 11 de diciembre de, 2008); 4'-CH₂-ON(CH₃)-2' (ver la Solicitud de Patente de Estados Unidos publicada US2004-0171570, publicada el 2 de septiembre de, 2004); 4'-CH₂

N(R)-O-2', en donde R es H, alquilo C_1 - C_{12} , o un grupo protector (ver la Patente de Estados Unidos 7.427.672, concedida el 23 de septiembre, 2008); 4'- CH_2 - $C(H)(CH_3)$ -2' (ver Chattopadhyaya et al, J. Org Chem, 2009, 74, 118-134...); y 4' CH_2 - $C(=CH_2)$ -2' (y análogos del mismo ver la Solicitud Internacional publicada WO 2008/154401, publicada el 8 de diciembre de 2008).

5

10

15

Informes adicionales relacionados con nucleósidos bicíclicos también pueden encontrarse en la bibliografía publicada (ver, por ejemplo: Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 5633-5638; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J. Am. Chem. Soc., 2007,129(26) 8362-8379; Elayadi et al., Curr. Opinion Invest. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8, 1-7; and Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; Patentes de Estados Unidos N° 6.268.490.; 6.525.191; 6.670.461; 6.770.748; 6.794.499; 7.034.133; 7.053.207; 7.399.845; 7.547.684; y 7.696.345; Publicación de Patente de Estados Unidos N° US2008-0039618; US2009-0012281; Patentes de Estados Unidos N° de serie 60/989.574.; 61/026.995; 61/026,998; 61/056,564; 61/086,231; 61/097,787; y 61/099,844; Solicitudes Internacionales de PCT publicadas WO 1994/014226; WO 2004/1063 56; WO 2005/021570; WO 2007/134181; WO 2008/150729; WO 2008/154401; y WO 2009/006478. Cada uno de los nucleósidos bicíclicos anteriores puede prepararse con una o más configuraciones de azúcar estereoquímicas que incluyen, por ejemplo, α-L-ribofuranosa y β-D-ribofuranosa (ver la Solicitud Internacional de PCT PCT/DK98/00393, publicada el 25 de marzo de 1999 como WO 99/14226).

20

25

En ciertas realizaciones, los fracciones de azúcar bicíclico de los nucleósidos de BNA incluyen, pero no están limitadas a, compuestos que tienen por lo menos un puente entre la posición 4' y 2' de la fracción de azúcar de pentofuranosilo en donde dichos puentes comprenden independientemente 1 o de 2 a 4 grupos enlazados seleccionados independientemente de $-[C(R_a)(R_b)]_{n^-}$, $-C(R_a)=C(R_b)$, $-C(R_a)=N$, -C(=O), $-C(=NR_a)$, -C(=S), -O, $-Si(R_a)$ -, -S(=O)x-, -S(O)x-, -S(O)x-,

en donde:

x es 0, 1 o 2;

30

n es 1, 2, 3 o 4;

35

cada R_a y R_b es, independientemente, H, un grupo protector, hidroxilo, alquilo C_1 - C_{12} , alquilo C_1 - C_{12} sustituido, alquenilo C_2 - C_{12} , alquenilo C_2 - C_{12} sustituido, alquinilo C_2 - C_{12} , alquinilo C_2 - C_{12} sustituido, arilo C_5 - C_{20} sustituido, radical heterociclo, radical heterociclo sustituido, heteroarilo, heteroarilo sustituido, radical alicíclico C_5 - C_7 , radical alicíclico C_5 - C_7 sustituido, halógeno, OJ_1 , NJ_1J_2 , SJ_1 , N_3 , $COOJ_1$, acilo (C(=O)-H), acilo sustituido, CN, sulfonilo ($S(=O)_2$ - J_1), o sulfoxilo (S(=O)- J_1); y

40

cada J_1 y J_2 es, independientemente, H, alquilo C_1 - C_{12} , alquilo C_1 - C_{12} sustituido, alquenilo C_2 - C_{12} , alquenilo C_2 - C_{12} , alquinilo C_2 - C_{12} , alquinilo C_2 - C_{12} , alquinilo C_2 - C_{12} , austituido, arilo C_5 - C_{20} , arilo C_5 - C_{20} sustituido, acilo (C_7 - C_7), acilo sustituido, un radical heterociclo, un radical heterociclo sustituido, aminoalquilo C_7 - C_7 0 sustituido o un grupo protector.

45

En ciertas realizaciones, el puente de una fracción de azúcar bicíclico es $[C(R_a)(R_b)]_{n^-}$, $-[C(R_a)(R_b)]_{n^-}$, -[

50

En ciertas realizaciones, los nucleósidos bicíclicos se definen adicionalmente por configuración isomérica. Por ejemplo, un nucleósido que comprende un puente 4'-2 'metileno-oxi, puede estar en la configuración α -L o en la configuración β -D. Anteriormente, las BNA α -L-metilenoxi (4'-CH₂-O-2') se han incorporado en oligonucleótidos antisentido que mostraban actividad antisentido (Frieden et al., NucleiCAcids Research, 2003, 21, 6365-6372).

55

En ciertas realizaciones, los nucleósidos bicíclicos incluyen, pero no están limitados a, (A) α-L-metileneoxi (4'-CH₂-O-2') BNA, (B) β-D-metileneoxi (4'-CH₂-O-2') BNA, (C) etilenoxi (4'-(CH₂)₂-O-2') BNA, (D) aminooxi (4'-CH₂-ON(R)-2') BNA, (E) oxiamino (4'-CH₂-N(R)-O-2') BNA y (F) metil(metileneoxi) (4'-CH(CH₃)-O-2') BNA, (G) metilen-tio (4'-CH₂-S-2') BNA, (H) metilen-amino (4'-CH₂-N(R)-2') BNA, (I) metil carbocíclico (4'-CH₂-CH(CH₃)-2') BNA, (J) propileno carbocíclico (4'-(CH₂)₃-2 ') BNA y (K) vinil BNA como se representa a continuación:

60

en donde Bx es la fracción de base y R es independientemente H, un grupo protector, alquilo C1-C12 o alcoxi C1-C12.

En ciertas realizaciones, se proporcionan nucleósidos bicíclicos que tienen la Fórmula I:

40 en donde:

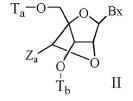
30

35

45

50

55


60

Bx es una fracción de base heterocíclica;

R_c es alquilo C₁-C₁₂ o un grupo protector de amino; y

 T_a y T_b son cada uno, independientemente H, un grupo protector de hidroxilo, un grupo conjugado, un grupo de fósforo reactivo, una fracción de fósforo o una unión covalente a un medio de soporte.

En ciertas realizaciones, se proporcionan nucleósidos bicíclicos que tienen la Fórmula II:

en donde:

Bx es una fracción de base heterocíclica;

T_a y T_b son cada uno, independientemente H, un grupo protector de hidroxilo, un grupo conjugado, un grupo

de fósforo reactivo, una fracción de fósforo o una unión covalente a un medio de soporte;

 Z_a es alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_2 - C_6 , alquinilo C_1 - C_6 sustituido, alquenilo C_2 - C_6 sustituido, acilo, acilo, acilo sustituido, amida sustituida, tiol o tio sustituido.

5

En una realización, cada uno de los grupos sustituidos está, independientemente, mono o poli sustituido con grupos sustituyentes seleccionados independientemente de halógeno, oxo, hidroxilo, OJ_c , NJ_cJ_d , SJ_c , N_3 , $OC(=X)J_c$, and $NJ_cC(=X)NJ_cJ_d$, en donde cada J_c , J_d y J_e es, independientemente, H, alquilo C_1 - C_6 , o alquilo C_1 - C_6 sustituido y X es O o NJ_c .

10

En ciertas realizaciones, se proporcionan nucleósidos bicíclicos que tienen la Fórmula III:

15

20

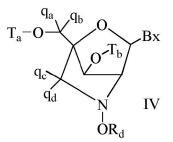
en donde:

25

Bx es una fracción de base heterocíclica;

 T_a y T_b son cada uno, independientemente H, un grupo protector de hidroxilo, un grupo conjugado, un grupo de fósforo reactivo, una fracción de fósforo o una unión covalente a un medio de soporte;

30


 Z_b es alquilo C_1 - C_6 , alquenilo C_2 - C_6 , alquinilo C_2 - C_6 , alquilo C_1 - C_6 sustituido, alquenilo C_2 - C_6 sustituido o acilo sustituido (C(=O)-).

35

En ciertas realizaciones, se proporcionan nucleósidos bicíclicos que tienen la Fórmula IV:

-

40

45

en donde:

50

Bx es una fracción de base heterocíclica;

 T_a y T_b son cada uno, independientemente H, un grupo protector de hidroxilo, un grupo conjugado, un grupo de fósforo reactivo, una fracción de fósforo o una unión covalente a un medio de soporte;

55

 R_d es alquilo C_1 - C_6 , alquilo C_1 - C_6 sustituido, alquenilo C_2 - C_6 , alquenilo C_2 - C_6 sustituido, alquinilo C_2 - C_6 sustituido;

cada q_a , q_b , q_e y q_d es, independientemente, H, halógeno, alquilo C_1 - C_6 , alquilo C_1 - C_6 sustituido, alquenilo C_2 - C_6 , alquenilo C_2 - C_6 sustituido, acilo sustituido, aminoalquilo C_1 - C_6 o aminoalquilo C_1 - C_6 sustituido, acilo sustituido, aminoalquilo C_1 - C_6 o aminoalquilo C_1 - C_6 sustituido C_1 - C_6 sustituido, acilo sustituido, aminoalquilo C_1 - C_6 o aminoalquilo C_1 - C_6 sustituido C_1 - C_6 sustituido, acilo s

60

En ciertas realizaciones, se proporcionan nucleósidos bicíclicos que tienen la Fórmula V:

$$T_a$$
-O Q_a Q_b $Q_$

10

5

en donde:

Bx es una fracción de base heterocíclica;

15

Ta y Tb son cada uno, independientemente H, un grupo protector de hidroxilo, un grupo conjugado, un grupo de fósforo reactivo, una fracción de fósforo o una unión covalente a un medio de soporte;

20

qa, qb, qe y qf son cada uno, independientemente, hidrógeno, halógeno, alquilo C₁-C₁₂, alquilo C₁-C₁₂ sustituido, alquenilo C₂-C₁₂, alquenilo C₂-C₁₂ sustituido, alquinilo C₂-C₁₂, alquinilo C₂-C₁₂ sustituido, alcoxi C₁-C₁₂, alcoxi $C_1 - C_{12} \ \ \text{sustituido}, \ \ OJ_i, \ \ SJ_i, \ \ SO_J_i, \ \ SO_2J_i, \ \ NJ_iJ_k, \ \ N_3, \ \ CN, \ \ C(=O)OJ_i, \ \ C(=O)NJ_iJ_k, \ \ C(=O)J_i, \ \ O-C(=O)NJ_iJ_k, \ \ C(=O)NJ_iJ_k, \ \ C(=O)NJ_iJ_k$ $N(H)C(=NH)NJ_iJ_k$, $N(H)C(=O)NJ_iJ_k$ o $N(H)C(=S)NJ_iJ_k$;

o $q_e y q_f juntos son = C(q_q)(q_h);$

25

q_q y q_h son cada uno, independientemente, H, halógeno, alquilo C₁-C₁₂ o alquilo C₁-C₁₂ sustituido.

30

Se ha descrito la síntesis y preparación de los monómeros de metileneoxi (4'-CH₂-O-2') BNA adenina, citosina, guanina, 5-metil-citosina, timina y uracilo, junto con su oligomerización y propiedades de reconocimiento de ácidos nucleicos (Koshkin et al., Tetrahedron, 1998, 54, 3607-3630). Los BNA y la preparación de los mismos también se describen en las WO 98/39352 y WO 99/14226.

35

También se han preparado análogos de metilenoxi (4'-CH₂-O-2') BNA y 2'-tio-BNA, (Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222) También se ha descrito la preparación de análogos de nucleósidos bloqueados que comprenden dúplex de oligodesoxirribonucleótidos como sustratos para polimerasas de ácido nucleico (Wengel et al., WO 99/14226). Además, se ha descrito en la técnica la síntesis de 2'-amino-BNA. un novedoso análogo de oligonucleótidos de alta afinidad restringido conformacionalmente (Singh et al., J. Org. Chem., 1998, 63, 10035-10039). Además, se han preparado 2'-amino- y 2'-metilamino-BNA y se ha informado anteriormente sobre la estabilidad térmica de sus dúplex con cadenas complementarias de ARN y ADN.

40

En ciertas realizaciones, se proporcionan nucleósidos bicíclicos que tienen la Fórmula VI:

45

$$\Gamma_a - O \qquad O \qquad Bx$$
 $q_i \qquad Q - T_b \qquad VI$
 $q_i \qquad q_l \qquad VI$

50

en donde:

55

Bx es una fracción de base heterocíclica;

Ta y Tb son cada uno, independientemente H, un grupo protector de hidroxilo, un grupo conjugado, un grupo de fósforo reactivo, una fracción de fósforo o una unión covalente a un medio de soporte;

60

cada qi, qi, qk y ql es, independientemente, H, halógeno, alquilo C1-C12, alquilo C1-C12 sustituido, alquenilo C2- C_{12} , alquenilo C_2 - C_{12} sustituido, alquinilo C_2 - C_{12} , alquinilo C_2 - C_{12} sustituido, alcoxilo C_1 - C_{12} , alcoxilo C_1 - C_{12} sustituido, OJ_j , SJ_j , SOJ_j , SO_2J_j , NJ_jJ_k , N_3 , CN, $C(=O)OJ_j$, $C(=O)NJ_jJ_k$

 q_i y q_j o q_l y q_k juntos son =C(q_g)(q_h), en donde q_g y q_h son cada uno, independientemente, H, halógeno, alquilo C_1 - C_{12} o alquilo C_1 - C_{12} sustituido.

Se ha descrito un nucleósido bicíclico carbocíclico que tiene un puente 4'-(CH₂)₃-2' y el puente análogo de alquenilo 4'-CH=CH-CH₂- '(Freier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443 y Albaek et al., J. Org. Chem., 2006, 71, 7731-7740). También se ha descrito la síntesis y preparación de nucleósidos bicíclicos carbocíclicos junto con su oligomerización y estudios bioquímicos (Srivastava et al., J. Am. Chem. Soc., 2007,129(26), 8362-8379).

Como se usa en la presente, "nucleósido bicíclico 4'-2' " o "nucleósido bicíclico 4' a 2' " se refiere a un nucleósido bicíclico que comprende un anillo de furanosa que comprende un puente que conecta dos átomos de carbono del anillo de furanosa que conecta el átomo de carbono 2' y el átomo de carbono 4' del anillo de azúcar.

Como se usa en la presente, "nucleósidos monocíclicos" se refiere a nucleósidos que comprenden fracciones de azúcar modificado que no son fracciones de azúcar bicíclico. En ciertas realizaciones, la fracción de azúcar, o análogo de fracción de azúcar, de un nucleósido puede modificarse o sustituirse en cualquier posición.

Como se usa en la presente, "azúcar 2' modificado" significa un azúcar de furanosilo modificado en la posición 2'. En ciertas realizaciones, tales modificaciones incluyen sustituyentes seleccionados de: un haluro, que incluye, pero no está limitado a, alcoxi sustituido y no sustituido, tioalquilo sustituido y no sustituido, aminoalquilo sustituido y no sustituido, alquilo sustituido y no sustituido, alilo sustituido y no sustituido, y alquinilo sustituido y no sustituido En ciertas realizaciones, las modificaciones 2' se seleccionan de sustituyentes que incluyen, pero no están limitadas a: $O[(CH_2)_nO]_mCH_3$, $O(CH_2)_nNH_2$, $O(CH_2)_nCH_3$, $O(CH_2)_nF$, $O(CH_2)_nONH_2$, $O(CH_2)_nONH_2$, $O(CH_2)_nCH_3$, O(CHpueden seleccionarse de: alquilo C₁-C₁₂, alquilo sustituido, alquenilo, alquinilo, alcarilo, aralquilo, O-alcarilo u Oaralquilo, SH, SCH₃, OCN, Cl, Br, CN, F, CF₃, OCF₃, SOCH₃, SO₂CH₃, ONO₂, NO₂, N₃, NH₂, heterocicloalquilo, heterocicloalcarilo, aminoalquilamino, polialquilamino, sililo sustituido, un grupo de escisión de ARN, un grupo informador, un intercalador, un grupo para mejorar las propiedades farmacocinéticas, o un grupo para mejorar las propiedades farmacodinámicas de un compuesto antisentido y otros sustituyentes que tengan propiedades similares. En ciertas realizaciones, los nucleósidos modificados comprenden una cadena lateral 2'-MOE (Baker et al., J. Biol. Chem., 1997, 272, 11944-12000). Se ha descrito que dicha sustitución 2'-MOE tiene una afinidad de unión mejorada en comparación con los nucleósidos no modificados y con otros nucleósidos modificados, como 2'-O- metilo, Opropilo y O-aminopropilo. También se ha demostrado que los oligonucleótidos que tienen el sustituyente 2'-MOE son inhibidores antisentido de la expresión génica con características prometedoras para su uso in vivo (Martin, Helv. Chim. Acta, 1995, 78, 486-504; Altmann et al., Chimia, 1996, 50, 168-176; Altmann et al., Biochem. Soc. Trans., 1996, 24, 630-637; y Altmann et al., Nucleosides Nucleotides, 1997, 16, 917-926).

Como se usa en la presente, un "nucleósido de tetrahidropirano modificado" o "nucleósido de THP modificado" significa un nucleósido que tiene un "azúcar" de tetrahidropirano de seis miembros sustituido por el residuo de pentofuranosilo en nucleósidos normales (un sustituto de azúcar). Los nucleósidos de THP modificados incluyen, pero no están limitados a, lo que es referido en la técnica como ácido nucleico de hexitol (HNA), ácido nucleico de anitol (ANA), ácido nucleico de manitol (MNA) (ver Leumann, Bioorg. Med. Chem., 2002, 10, 841-854) o fluoro HNA (F-HNA) que tiene un sistema de anillo de tetrahidropirano como se ilustra a continuación:

HO
$$Bx$$
 HO Bx HO Bx HO Bx HO Bx

En ciertas realizaciones, los sustitutos de azúcar se seleccionan con la Fórmula VII:

55
$$T_{a} = O \qquad Q_{1} \qquad Q_{2} \qquad Q_{3} \qquad Q_{4} \qquad Q_{4} \qquad Q_{5} \qquad Q_{5}$$

5

15

20

25

30

35

40

65

VII

en donde independientemente para cada uno de dicho por lo menos un análogo de nucleósido de tetrahidropirano

de Fórmula VII:

5

10

15

20

25

30

35

40

45

50

55

Bx es una fracción de base heterocíclica;

 T_a y T_b son cada uno, independientemente, un grupo de enlace internucleósido que enlaza el análogo de nucleósido de tetrahidropirano con el compuesto antisentido o uno de T_a y T_b es un grupo de enlace internucleósido que enlaza el análogo de nucleósido de tetrahidropirano con el compuesto antisentido y el otro de T_a y T_b es H, un grupo protector de hidroxilo, un grupo conjugado unido o un grupo 5' o 3'-terminal;

 q_1 , q_2 , q_3 , q_4 , q_5 , q_6 y q_7 son cada uno independientemente, H, alquilo C_1 . C_6 , alquilo C_1 . C_6 sustituido, alquenilo C_2 . C_6 , alquenilo C_2 . C_6 sustituido, alquinilo C_2 . C_6 sustituido; y cada uno de R_1 y R_2 se selecciona de hidrógeno, hidroxilo, halógeno, alcoxi sustituido o no sustituido, NJ_1J_2 , SJ_1 , N_3 , $OC(=X)J_1$, $OC(=X)NJ_1J_2$, $NJ_3C(=X)NJ_1J_2$ y CN, en donde C0, C1, C3, C4, C5, C7, C8, independientemente, H o alquilo C_1 . C_6 8.

En ciertas realizaciones, se proporcionan los nucleósidos de THP modificados de Fórmula VII en donde q_1 , q_2 , q_3 , q_4 , q_5 , q_6 y q_7 son cada uno H. En ciertas realizaciones, por lo menos uno de q_1 , q_2 , q_3 , q_4 , q_5 , q_6 y q_7 es diferente de H. En ciertas realizaciones, por lo menos uno de q_1 , q_2 , q_3 , q_4 , q_5 , q_6 y q_7 es metilo. En ciertas realizaciones, se proporcionan los nucleósidos de THP de fórmula VII en donde uno de R_1 y R_2 es fluoro. En ciertas realizaciones, R_1 es fluoro y R_2 es H; R_1 es metoxi y R_2 es H, y R_1 es metoxietoxi y R_2 es H.

En ciertas realizaciones, los sustitutos del azúcar comprenden anillos que tienen más de 5 átomos y más de un heteroátomo. Por ejemplo, se ha informado de nucleósidos que comprenden fracciones de azúcar de morfolino y su uso en compuestos oligoméricos (ver, por ejemplo: Braasch et al., Biochemistry, 2002, 41, 4503-4510; y las Patentes de Estados Unidos 5.698.685; 5.166.315; 5.185.444; y 5.034.506). Como se usa en la presente, el término "morfolino" significa un sustituto del azúcar que tiene la fórmula siguiente:

En ciertas realizaciones, los morfolinos pueden modificarse, por ejemplo, añadiendo o alterando varios grupos sustituyentes de la estructura morfolino anterior. Tales sustitutos del azúcar son referidos en la presente como "morfolinos modificados".

También se proporcionan combinaciones de modificaciones sin limitación, como nucleósidos sustituidos con 2'-F-5'-metilo (ver la Solicitud Internacional PCT WO 2008/101157 publicada el 21/08/08 para otros nucleósidos 5',2'-bis sustituidos divulgados) y el reemplazo del átomo de oxígeno del anillo de ribosilo con S y la sustitución adicional en la posición 2' (ver la Solicitud de Patente de Estados Unidos publicada US2005-0130923, publicada el 16 de junio de 2005) o alternativamente la sustitución 5' de un ácido nucleico bicíclico (ver la Solicitud Internacional de PCT WO 2007/134181, publicada el 22/11/07 en donde un nucleósido bicíclico 4'-CH2-O-2' se sustituye adicionalmente en la posición 5' con un grupo 5'-metilo o 5'-vinilo). También se han descrito la síntesis y la preparación de nucleósidos bicíclicos carbocíclicos junto con su oligomerización y estudios bioquímicos (ver, por ejemplo, Srivastava et al., J. Am. Chem. Soc. 2007, 129 (26), 8362-8379).

En ciertas realizaciones, los compuestos antisentido comprenden uno o más nucleósidos de ciclohexenilo modificados, que es un nucleósido que tiene un ciclohexenilo de seis miembros en lugar del residuo de pentofuranosilo en nucleósidos de origen natural. Los nucleósidos de ciclohexenilo modificados incluyen, pero no están limitados a, los descritos en la técnica (ver, por ejemplo, la solicitud de PCT publicada de propiedad compartida WO 2010/036696, publicada el 10 de abril de 2010, Robeyns et al., J. Am. Chem. Soc., 2008, 130(6), 1979-1984; Horváth et al., Tetrahedron Letters, 2007, 48, 3621-3623; Nauwelaerts et al., J. Am. Chem. Soc., 2007, 129(30), 9340-9348; Gu et al., Nucleosides, Nucleotides & Nucleic Acids, 2005, 24(5-7), 993-998; Nauwelaerts et al., Nucleic Acids Research, 2005, 33(8), 2452-2463; Robeyns et al., Acta Crystallographica, Section F: Structural Biology and Crystallization Communications, 2005, F61(6), 585-586; Gu et al., Tetrahedron, 2004, 60(9), 2111-2123; Gu et al., Oligonucleotides, 2003, 13(6), 479-489; Wang et al., J. Org. Chem., 2003, 68, 4499-4505; Verbeure et al., Nucleic Acids Research, 2001, 29(24), 4941-4947; Wang et al., J. Org. Chem., 2001, 66, 8478-82; Wang et al., Nucleosides, Nucleotides & Nucleic Acids, 2001, 20(4-7), 785-788; Wang et al., J. Am. Chem., 2000, 122, 8595-8602; Solicitud de PCT publicada, WO 06/047842; y Solicitud de PCT publicada WO 01/049687). Ciertos nucleósidos de ciclohexenilo modificados tienen Fórmula X.

$$T_3$$
-O $\xrightarrow{q_1}$ q_2 q_3 q_4 q_8 q_5 q_5 q_5 q_5 q_4 q_5 q_5

en donde independientemente para cada uno de dicho por lo menos un análogo de nucleósido de ciclohexenilo de Fórmula X:

Bx es una fracción de base heterocíclica:

 T_3 y T_4 son cada uno, independientemente, un grupo de enlace internucleosídico que enlaza el análogo de nucleósido de ciclohexenilo con un compuesto antisentido o uno de T_3 y T_4 es un grupo de enlace internucleósido que enlaza el análogo de nucleósido de tetrahidropirano con un compuesto antisentido y el otro de T_3 y T_4 es H, un grupo protector de hidroxilo, un grupo conjugado enlazado, o un grupo 5'- o 3'-terminal; y

 q_1 , q_2 , q_3 , q_4 , q_5 , q_6 , q_7 , q_8 y q_9 son cada uno, independientemente, H, alquilo C_1 . C_6 , alquilo C_1 . C_6 sustituido, alquinilo C_2 . C_6 , alquinilo C_2 . C_6 , alquinilo C_2 . C_6 sustituido u otro grupo sustituyente de azúcar.

Como se usa en la presente, "2' modificado" o "2' sustituido" se refiere a un nucleósido que comprende un azúcar que comprende un sustituyente en la posición 2' diferente de H u OH. Los nucleósidos 2' modificados, incluyen, pero no están limitados a, nucleósidos bicíclicos en los que el puente que conecta dos átomos de carbono del anillo de azúcar conecta el carbono 2' y otro carbono del anillo de azúcar; y nucleósidos con sustituyentes 2' que no forman puentes, como alilo, amino, azido, tio, O-alquilo C_1 - C_{10} , -OCF3, O-(CH2)2-O-CH3, 2'-O(CH2)2SCH3, O-(CH2)2-O-N(R_m)(R_n), o O-CH2-C(=O)-N(R_m)(R_n), donde cada R_m y R_n es, independientemente, H o alquilo C_1 - C_{10} sustituido o no sustituido. Los nucleósidos 2' modificados pueden comprender además otras modificaciones, por ejemplo en otras posiciones del azúcar y/o en la nucleobase.

Como se usa en la presente, "2'-F" se refiere a un nucleósido que comprende un azúcar que comprende un grupo fluoro en la posición 2' del anillo de azúcar.

Como se usa en la presente, "2'-OMe" o "2'-OCH₃" o "2'-O-metilo" se refieren cada uno a un nucleósido que comprende un azúcar que comprende un grupo -OCH₃ en la posición 2' del anillo de azúcar.

Como se usa en la presente, "MOE" o "2'-MOE" o "2'-OCH₂CH₂OCH₃" o "2'-O-metoxietilo" se refieren cada uno a un nucleósido que comprende un azúcar que comprende grupo un -OCH₂CH₂OCH₃ en la posición 2' del anillo de azúcar.

Como se usa en la presente, "oligonucleótido" se refiere a un compuesto que comprende una pluralidad de nucleósidos enlazados. En ciertas realizaciones, se modifica uno o más de la pluralidad de nucleósidos. En ciertas realizaciones, un oligonucleótido comprende uno o más ribonucleósidos (ARN) y/o desoxirribonucleósidos (ADN).

En la técnica también se conocen muchos otros sistemas de anillos sustitutos de azúcar biciclo y triciclo que pueden usarse para modificar nucleósidos para su incorporación en compuestos antisentido (ver, por ejemplo, el artículo de revisión: Leumann, Bioorg. Med. Chem., 2002, 10, 841-854). Tales sistemas de anillo pueden someterse a varias sustituciones adicionales para mejorar la actividad.

Los métodos para la preparación de azúcares modificados son bien conocidos por los expertos en la técnica. Algunas patentes representativas de Estados Unidos que enseñan la preparación de dichos azúcares modificados incluyen, si limitación las U.S.: 4.981.957; 5.118.800; 5.319.080; 5.359.044; 5.393.878; 5.446.137; 5.466.786; 5.514.785; 5.519.134; 5.567.811; 5.576.427; 5.591.722; 5.597.909; 5.610.300; 5.627.053; 5.639.873; 5.646.265; 5.670.633; 5.700.920; 5.792.847 y 6.600.032 y la Solicitud Internacional PCT/US2005/019219, presentada el 2 de junio de 2005 y publicada como WO 2005/121371 el 22 de diciembre de 2005.

En los nucleótidos que tienen fracciones de azúcar modificado, las fracciones de nucleobases (naturales, modificadas o una combinación de los mismos) se mantienen para la hibridación con un objetivo de ácido nucleico apropiado.

65

5

10

15

20

25

30

35

40

45

50

55

En ciertas realizaciones, los compuestos antisentido comprenden uno o más nucleósidos que tienen fracciones de azúcar modificado. En ciertas realizaciones, la fracción de azúcar modificado es 2'-MOE. En ciertas realizaciones, los nucleósidos modificados con 2'-MOE están dispuestos en un motivo gapmer. En ciertas realizaciones, la fracción de azúcar modificado es un nucleósido bicíclico que tiene un (4'-CH(CH₃)-O-2'). En ciertas realizaciones, los nucleósidos modificados con (4'-CH(CH₃)-O-2') están dispuestos a lo largo de las alas de un motivo gapmer.

Nucleobases modificadas

10

15

5

Las modificaciones o sustituciones de nucleobases (o bases) son estructuralmente distinguibles de, pero funcionalmente intercambiables con nucleobases no modificadas de origen natural o sintéticas. Tanto las nucleobases naturales como las modificadas son capaces de participar en enlaces de hidrógeno. Tales modificaciones de nucleobase pueden impartir estabilidad de nucleasas, afinidad de unión o alguna otra propiedad biológica beneficiosa a los compuestos antisentido. Las nucleobases modificadas incluyen nucleobases sintéticas y naturales como, por ejemplo, 5-metilcitosina (5-me-C). Ciertas sustituciones de nucleobases, incluyendo las sustituciones de 5-metilcitosina, son particularmente útiles para aumentar la afinidad de unión de un compuesto antisentido para un ácido nucleico objetivo. Por ejemplo, se ha demostrado que las sustituciones de 5-metilcitosina aumentan la estabilidad dúplex de ácido nucleico en 0.6-1.2° C (Sanghvi, Y.S., Crooke, S.T. y Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278).

20

25

Nucleobases modificadas adicionales incluyen 5-hidroximetil citosina, xantina, hipoxantina, 2-aminoadenina, 6-metilo y otros derivados de alquilo de adenina y guanina, 2-propilo y otros derivados de alquilo de adenina y guanina, 2-tiouracilo, 2-tiotina y 2-tiocitosina, 5-halouracilo y citosina, 5-propinil (-C≡C-CH3) uracilo y citosina y otros derivados de alquinilo de bases de pirimidina, 6-azo uracilo, citosina y timina, 5-uracilo (pseudouracilo), 4-tiouracilo, 8-halo, 8-amino, 8-tiol, 8-tioalquilo, 8-hidroxilo y otras adeninas y guaninas 8-sustituidas, 5-halo particularmente 5-bromo, 5-trifluorometilo y otros uracilos y citosinas 5-sustituidos, 7-metilguanina y 7-metiladenina, 2-F-adenina, 2-amino-adenina, 8-azaguanina y 8-azaguanina, 7-deazaguanina y 7-deazaguanina y 3-deazaguanina y 3-deazaguanina.

30

Las fracciones de bases heterocíclicas también pueden incluir aquellas en las que la base de purina o pirimidina se reemplaza con otros heterociclos, por ejemplo 7-deaza-adenina, 7-deazaguanosina, 2-aminopiridina y 2-piridona. Las nucleobases que son particularmente útiles para aumentar la afinidad de unión de los compuestos antisentido incluyen pirimidinas 5-sustituidas, 6-azapirimidinas y purinas N-2, N-6 y O-6 sustituidas, que incluyen 2 aminopropiladenina, 5-propiniluracilo y 5-propinilocitosina.

35

40

En ciertas realizaciones, los compuestos antisentido dirigidos a un ácido nucleico de GHR comprenden una o más nucleobases modificadas. En ciertas realizaciones, los oligonucleótidos antisentido acortados o ensanchados en la separación dirigidos a un ácido nucleico de GHR comprenden una o más nucleobases modificadas. En ciertas realizaciones, la nucleobase modificada es 5-metilcitosina. En ciertas realizaciones, cada citosina es una 5-metilcitosina.

Compuestos antisentido conjugados

50

45

Los compuestos antisentido pueden enlazarse covalentemente con una o más fracciones o conjugados que mejoran la actividad, la distribución celular o la captación celular de los oligonucleótidos antisentido resultantes. Los grupos conjugados típicos incluyen fracciones de colesterol y fracciones de lípidos. Los grupos conjugados adicionales incluyen carbohidratos, fosfolípidos, biotina, fenazina, folato, fenantridina, antraquinona, acridina, fluoresceínas, rodaminas, cumarinas y colorantes.

55

Los compuestos antisentido también pueden modificarse para tener uno o más grupos estabilizadores que están generalmente unidos a uno o ambos extremos terminales de compuestos antisentido para mejorar propiedades como, por ejemplo, la estabilidad de la nucleasa. En los grupos estabilizadores se incluyen las estructuras de tapa. Estas modificaciones terminales protegen al compuesto antisentido que tiene ácido nucleico terminal de la degradación de exonucleasas, y pueden ayudar en la administración y/o localización dentro de una célula. La tapa puede estar presente en el extremo terminal 5' (tapa 5'), o en el extremo terminal 3' (tapa 3'), o puede estar presente en ambos extremos terminales. Las estructuras de tapa son bien conocidas en la técnica e incluyen, por ejemplo, tapas desoxi abásicas invertidas. Grupos estabilizadores adicionales 3' y 5' que pueden usarse para tapar uno o ambos extremos de un compuesto antisentido para impartir estabilidad de nucleasas incluyen los divulgados en la WO 03/004602 publicada el 16 de enero de 2003.

60

En ciertas realizaciones, los compuestos antisentido, incluyendo, pero no limitados a aquellos particularmente adecuados para su uso como ARNmc, se modifican mediante la unión de uno o más grupos conjugados. En general, los grupos conjugados modifican una o más propiedades del oligonucleótido unido, incluyendo pero no limitadas a, farmacodinámica, farmacocinética, estabilidad, unión, absorción, distribución celular, captación celular, carga y depuración. Los grupos conjugados se usan rutinariamente en las técnicas químicas y se

enlazan directamente o mediante una fracción de enlace conjugado opcional o un grupo de enlace conjugado a un compuesto original como un oligonucleótido. Los grupos conjugados incluyen, sin limitación, intercaladores, moléculas informadoras, poliaminas, poliamidas, polietilenglicoles, tioéteres, poliéteres, colesteroles, tiocolesteroles, fracciones de ácido cólico, folato, lípidos, fosfolípidos, biotina, fenazina, fenantridina, antraquinona, adamantano, acridina, fluoresceínas, rodaminas, cumarinas y colorantes. Ciertos grupos conjugados se han descrito anteriormente, por ejemplo: fracción de colesterol (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989, 86, 6553-6556), ácido cólico (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), un tioéter, por ejemplo, hexil-S-tritiltiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem. Let., 1993, 3, 2765-2770), un tiocolesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), una cadena alifática, por ejemplo, do-decan-diol o residuos de undecilo (Saison-Behmoaras et al., EMBO J., 1991,10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al., Biochimie, 1993, 75, 49-54), un fosfolípido, por ejemplo, dihexadecil-rac-glicerol o 1,2-di-O-hexadecil-rac-glicero-3-H-fosfonato de trietilamonio (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl. Acids Res., 1990, 18, 3777-3783), una cadena de poliamina o polietilenglicol (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), o ácido acético de adamantano (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), una fracción palmitilo (Mishra et al., Biochim. Biophys Acta, 1995, 1264, 229-237), o una fracción de octadecilamina o hexilamino-carbonil-oxicocolesterol (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937).

Para conjugados adicionales incluyendo aquellos útiles para ARNmc y su colocación dentro de compuestos antisentido, ver, por ejemplo, la Solicitud de Estados Unidos Nº 61/583.963.

Pruebas in vitro de oligonucleótidos antisentido

5

10

15

20

25

30

35

40

50

55

65

En la presente se describen métodos para el tratamiento de células con oligonucleótidos antisentido, que pueden modificarse apropiadamente para el tratamiento con otros compuestos antisentido.

Las células pueden tratarse con oligonucleótidos antisentido cuando las células alcanzan aproximadamente un 60-80% de confluencia en cultivo.

Un reactivo usado comúnmente para introducir oligonucleótidos antisentido en células cultivadas incluye el reactivo de transfección de lípidos catiónicos LIPOFECTIN (Invitrogen, Carlsbad, CA). Los oligonucleótidos antisentido pueden mezclarse con LIPOFECTINA en OPTI-MEM 1 (Invitrogen, Carlsbad, CA) para lograr la concentración final deseada de oligonucleótido antisentido y una concentración de LIPOFECTINA que puede variar de 2 a 12 ug/ml por oligonucleótido antisentido 100 nM.

Otro reactivo usado para introducir oligonucleótidos antisentido en células cultivadas incluye LIPOFECTAMINA (Invitrogen, Carlsbad, CA). El oligonucleótido antisentido se mezcla con LIPOFECTAMINA en medio sérico reducido OPTI-MEM 1 (Invitrogen, Carlsbad, CA) para lograr la concentración deseada de oligonucleótido antisentido y una concentración de LIPOFECTAMINA que puede variar de 2 a 12 ug/ml por oligonucleótido antisentido 100 nM.

Otra técnica usada para introducir oligonucleótidos antisentido en células cultivadas incluye la electroporación.

45 Otra técnica más, usada para introducir oligonucleótidos antisentido en células cultivadas, incluye la captación libre de los oligonucleótidos por las células.

Las células se tratan con oligonucleótidos antisentido mediante métodos rutinarios. Las células pueden recogerse 16-24 horas después del tratamiento con oligonucleótidos antisentido, momento en el cual los niveles de ARN o proteína de los ácidos nucleicos objetivo se miden mediante métodos conocidos en la técnica y descritos en la presente. En general, cuando los tratamientos se realizan en múltiples repeticiones, los datos se presentan como la media de los tratamientos replicados.

La concentración de oligonucleótido antisentido usado varía de una línea celular a otra. Los métodos para determinar la concentración óptima de oligonucleótidos antisentido para una línea celular particular son bien conocidos en la técnica. Los oligonucleótidos antisentido se usan típicamente en concentraciones que varían de 1 nM a 300 nM cuando se transfectan con LIPOFECTAMINA. Los oligonucleótidos antisentido se usan en concentraciones más altas que varían de 625 a 20.000 nM cuando se transfectan mediante electroporación.

60 Aislamiento de ARN

El análisis de ARN puede realizarse en ARN celular total o poli(A)+ ARNm. Los métodos de aislamiento de ARN son bien conocidos en la técnica. El ARN se prepara usando métodos bien conocidos en la técnica, por ejemplo, usando el reactivo TRIZOL (Invitrogen, Carlsbad, CA) de acuerdo con los protocolos recomendados por el fabricante.

Ciertas indicaciones

5

10

15

20

25

30

35

40

45

50

55

60

65

Ciertas realizaciones proporcionadas en la presente se refieren a métodos para tratar, prevenir o mejorar una enfermedad asociada con un exceso de hormona de crecimiento en un sujeto mediante la administración de un inhibidor específico de GHR, como un compuesto antisentido u oligonucleótido dirigido a GHR. En ciertos aspectos, la enfermedad asociada con el exceso de hormona del crecimiento es la acromegalia. En ciertos aspectos, la enfermedad asociada con el exceso de hormona del crecimiento es el gigantismo.

Ciertas realizaciones proporcionan un método para tratar, prevenir o mejorar la acromegalia en un sujeto mediante la administración de un inhibidor específico de GHR, como un compuesto antisentido u oligonucleótido dirigido a GHR. La acromegalia es una enfermedad asociada con el exceso de hormona del crecimiento (GH). En más del 90 por ciento de los pacientes con acromegalia, la sobreproducción de hormonas de crecimiento está provocada por un tumor benigno de la glándula pituitaria, llamado adenoma, que produce un exceso de hormona de crecimiento y comprime los tejidos del cerebro circundantes. La expansión del adenoma puede provocar dolores de cabeza y discapacidad visual que a menudo acompañan a la acromegalia. En algunos casos, la acromegalia está provocada por tumores del páncreas, los pulmones o las glándulas suprarrenales que llevan a un exceso de GH, ya sea produciendo GH o produciendo la hormona liberadora de la hormona de crecimiento (GHRH), la hormona que estimula la hipófisis para producir GH.

La acromegalia afecta más comúnmente a adultos de edad media y puede provocar desfiguración grave, condiciones de complicaciones y muerte prematura. Debido a su patogénesis y progresión lenta, la acromegalia a menudo no se diagnostica hasta que se las características externas se vuelven perceptibles, como cambios en la cara. La acromegalia a menudo se asocia con gigantismo.

Las características de la acromegalia incluyen hinchazón de los tejidos blandos que da como resultado un agrandamiento de las manos, pies, nariz, labios y orejas, y un engrosamiento general de la piel; hinchazón de los tejidos blandos de los órganos internos, como el corazón y los riñones; hinchazón de las cuerdas vocales que da como resultado una voz baja y habla lenta; expansión del cráneo; protuberancia de las cejas pronunciada, a menudo con distensión ocular; protrusión de la mandíbula inferior pronunciada y agrandamiento de la lengua; espacios entre los dientes; y síndrome del túnel carpiano. En ciertas realizaciones, puede tratarse, prevenirse o mejorarse cualquiera o una combinación de estas características de la acromegalia mediante la administración de un compuesto o composición dirigida a GHR proporcionada en la presente.

EJEMPLOS

Divulgación no limitativa

Aunque ciertos compuestos, composiciones y métodos descritos en la presente se han descrito con especificidad de acuerdo con ciertas realizaciones, los siguientes ejemplos sirven solo para ilustrar los compuestos descritos en la presente y no se pretende que los limiten.

Ejemplo 1: inhibición antisentido del receptor de la hormona del crecimiento humano en células Hep3B por gapmers MOE

Los oligonucleótidos antisentido se diseñaron dirigidos a un ácido nucleico del receptor de la hormona del crecimiento (GHR) y se evaluaron sus efectos sobre el ARNm de GHR in vitro. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas que se muestran a continuación. Se transfectaron células Hep3B cultivadas a una densidad de 20.000 células por pocillo usando electroporación con oligonucleótido antisentido 4.500 nM. Después de un período de tratamiento de aproximadamente 24 horas, se aisló ARN de las células y se midieron los niveles de ARNm de GHR por PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda humano RTS3437_MGB (secuencia directa CGAGTTCAGTGAGGTGCTCTATGT, designada en la presente como SEQ ID NO: 2297; secuencia inversa AAGAGCCATGGAAAGTAGAAATCTTC, designada en la presente como SEQ ID NO: 2298; secuencia de sonda TTCCTCAGATGAGCCAATT, designada en la presente como SEQ ID NO: 2299) para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

Los oligonucleótidos antisentido quiméricos recién diseñados en las Tablas siguientes se diseñaron como gapmers 5-10-5 MOE o 3-10-4 MOE. Los gapmers MOE 5-10-5 tienen 20 nucleósidos de longitud, en donde el segmento de separación central comprende diez 2'-desoxinucleósidos y está flanqueado por segmentos de ala en la dirección 5' y la dirección 3' que comprenden cinco nucleósidos cada una. Los gapmers MOE 3-10-4 tienen 17 nucleósidos de longitud, en donde el segmento de separación central comprende diez 2'-desoxinucleósidos y está flanqueado por segmentos de ala en la dirección 5' y la dirección 3' que comprenden tres y cuatro nucleósidos

respectivamente. Cada nucleósido en el segmento del ala 5' y cada nucleósido en el segmento del ala 3' tiene una modificación 2'-MOE. Los enlaces internucleosídicos a lo largo de cada gapmer son enlaces de fosforotioato (P=S). Todos los residuos de citosina en cada gapmer son 5-metilcitosinas. El "sitio de inicio" indica el nucleósido más 5' al que se dirige el gapmer en la secuencia del gen humano. El "sitio de detención" indica el nucleósido más 3' al que se dirige el gapmer es la secuencia del gen humano. Cada gapmer enumerado en las Tablas siguientes está dirigido al ARNm de GHR humana, designado en la presente como SEQ ID NO: 1 (Nº de registro GENBANK NM_000163.4) o la secuencia genómica de GHR humana, designada en la presente como SEQ ID NO: 2 (Nº de registro GENBANK NT_006576.16 truncado de los nucleótidos 42411001 a 42714000). 'n/a' indica que el oligonucleótido antisentido no se dirige a esa secuencia génica particular con un 100% de complementariedad. En caso de que no se muestre la alineación de secuencia para un gen objetivo en una tabla particular, se entiende que ninguno de los oligonucleótidos presentados en esa tabla se alinea con un 100% de complementariedad con ese gen objetivo.

Tabla 1

	SEQ ID NO	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
y 2	SEQ IDNO: 2 Sitio de parada	3059	n/a	n/a	145009	145016	145023	145030	145037	145044	268043	268050	268057	268064	n/a	278945	278960	278967	278988	278995	279049	279056	279063
de las SEQ ID NO: 1	SEQIDNO: 2 Sitio de inicio	3040	n/a	n/a	144990	144997	145004	145011	145018	145025	268024	268031	268038	268045	n/a	278926	278941	278948	278969	278976	279030	279037	279044
ones exónicas	% de inhibición	64	31	37	80	53	49	29	0	-	48	15	14	4	96	28	26	0	19	68	34	31	44
Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones exónicas de las SEQ ID NO: 1 y 2	Secuencia	ACCTCCGAGCTTCGCCTCTG	CTGTAGGACCTCCGAGCTTC	TCCATACCTGTAGGACCTCC	TGCCAAGGTCAACAGCAGCT	CTGCCAGTGCCAAGGTCAAC	CTTGATCCTGCCAGTGCCAA	AGCATCACTTGATCCTGCCA	CAGAAAAAGCATCACTTGAT	TCACTTCCAGAAAAAGCATC	GTCTCGCTCAGGTGAACG	TGAAAAGTCTCTCGCTCAG	AGTGGCATGAAAAAGTCTCT	TCTGTCCAGTGGCATGAAAA	GGATCTGGTTGCACTATTTC	AATGGGTGGATCTGGTTGCA	AGTCCAGTTGAGGGCAATGG	TCAGTAAAGTCCAGTTGAGG	GAATCCCAGTTAAACTGACG	тстесателатсссаеттал	ATCCATCCTTTCTGAATATC	CAGAACCATCCATCCTTTCT	CATACTCCAGAACCATCCAT
ARNm de GHR por g	Región objetivo	Exón 1	Unión Exón-exón	Unión Exón-exón	Exón 2	Exón 4	Exón 4	Exón 4	Exón 4	Exón 6	Exón 6	Exón 6	Exón 6	Exón 6	Exón 6	Exón 6	Exón 6	Exón 6					
Inhibición de	SEQ ID NO: 1 Sitio de parada	183	190	197	225	232	239	246	253	260	380	387	394	401	644	651	999	673	694	701	755	762	692
	SEQ ID NO: 1 Sitio de inicio	164	171	178	206	213	220	227	234	241	361	368	375	382	625	632	647	654	675	682	736	743	750
	SISI ₉ N	523266	523267	523268	523271	523272	523273	523274	523275	523276	523284	523285	523286	523287	523301	523302	523303	523304	523305	523306	523309	523310	523311

	SEQ ID NO	42	43	44	45	46	47	48	49	20	51	52	53	54	55	99
y 2	SEQ ID NO:2 Sitio de parada	079072	279077	279084	279091	279098	n/a	580379	290386	290443	290450	290474	u/a	e/u	292551	292558
de las SEQ ID NO: 1	SEQIDNO:2 Sitio de inicio	279051	279058	279065	279072	279079	n/a	290360	290367	290424	290431	290455	n/a	n/a	292532	292539
ones exónicas	% de inhibición	23	9	0	8	0	19	63	80	56	53	32	4	6	46	0
Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones exónicas de las SEQ ID NO: 1 y 2	Secuencia	TGAAGTTCATACTCCAGAAC	TTTGTATTGAAGTTCATACT	TTACTTCTTTGTATTGAAGT	GTTTCATTTACTTCTTTGTA	ССАТТТАGTTTCATTTACTT	TCATTTTCCATTTAGTTTCA	ACACGCACTTCATATTCCTT	GGATCTCACACGCACTTCAT	AAGTGTTACATAGAGCACCT	TCTGAGGAAGTGTTACATAG	CTTCTTCACATGTAAATTGG	TAGAAATCTTCTTCACATGT	TGGAAAGTAGAAATCTTCTT	AGAGCCATGGAAAGTAGAAA	ATAATTAAGAGCCATGGAAA
e ARNm de GHR por g	Región objetivo	Exón 6	Exón 6	Exón 6	Exón 6	Exón 6	Unión exón 4-exón 5	Exón 7	Unión exón 5-exón 6	Unión exón 5-exón 6	Exón 8	Exón 8				
Inhibición d	SEQ ID NO: 1 Sitio de parada	977	783	790	797	804	811	881	888	945	952	926	983	066	266	1004
	SEQ ID NO: 1 Sitio de inicio	757	764	77.1	778	785	792	862	869	926	933	957	964	971	876	985
	SISI ₈ N	523312	523313	523314	523315	523316	523317	523323	523324	523328	523329	523330	523331	523332	523333	523334

Tabla₂

	SEQ ID	22	28	69	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	75	9/	77	78	62	80
IO: 1 y 2	SEQ ID NO: 2 Sitio de parada	298508	145010	145011	145028	145029	145031	145032	290384	290385	290387	290388	297796	297797	297799	297800	297961	297962	297964	297965	297966	298180	298181	298183	298184
icas de las SEQ ID N	SEQ ID NO: 2 Sitio de inicio	298489	144991	144992	145009	145010	145012	145013	290365	290366	290368	290369	297777	297778	297780	297781	297942	297943	297945	297946	297947	298161	298162	298164	298165
egiones exón	% de inhibición	92	63	62	53	80	75	61	35	47	98	70	69	74	45	51	14	46	55	47	25	47	09	65	47
Im de GHR por gapmers 5-10-5 MOE dirigidos a regiones exónicas de las SEQ ID NO: 1 y 2	Secuencia	CAGTTGGTCTGTGCTCACAT	GTGCCAAGGTCAACAGCAGC	AGTGCCAAGGTCAACAGCAG	CATCACTTGATCCTGCCAGT	GCATCACTTGATCCTGCCAG	AAGCATCACTTGATCCTGCC	AAAGCATCACTTGATCCTGC	ATCTCACACGCACTTCATAT	GATCTCACGCGCACTTCATA	TGGATCTCACACGCACTTCA	TTGGATCTCACACGCACTTC	TCCAGAATGTCAGGTTCACA	CTCCAGAATGTCAGGTTCAC	GTCTCCAGAATGTCAGGTTC	AGTCTCCAGAATGTCAGGTT	GCTTGGATAACACTGGGCTG	TGCTTGGATAACACTGGGCT	TCTGCTTGGATAACACTGGG	CTCTGCTTGGATAACACTGG	TCTCTGCTTGGATAACACTG	CAGAGTGAGACCATTTCCGG	GCAGAGTGAGACCATTTCCG	TGGCAGAGTGAGACCATTTC	TTGGCAGAGTGAGACCATTT
Nm de GHR p	Región objetivo	exón 10	exón 2	exón 7	exón 7	exón 7	exón 7	exón 10																	
Inhibición de ARN	SEQ ID NO: 1 Sitio de parada	2091	226	227	244	245	247	248	988	887	688	890	1379	1380	1382	1383	1544	1545	1547	1548	1549	1763	1764	1766	1767
	SEQ ID NO: 1 Sitio de inicio	2072	207	208	225	226	228	229	867	868	870	871	1360	1361	1363	1364	1525	1526	1528	1529	1530	1744	1745	1747	1748
	SISI ºN	523421	533002	533003	533004	533005	533006	533007	533019	533020	533021	533022	533037	533038	533039	533040	533042	533043	533044	533045	533046	533047	533048	533049	533050

	SEQ ID NO	81	82	83	84	85	98	87	88	68	06
J: 1 y 2	SEQ ID NO: 2 Sitio de parada	298185	299121	299122	299124	299125	299126	299641	299642	299644	299645
icas de las SEQ ID N	SEQ ID NO: 2 Sitio de inicio	298166	299102	299103	299105	299106	299107	299622	299623	299625	299626
regiones exór	% de inhibición	30	53	89	62	55	50	89	61	09	46
Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones exónicas de las SEQ ID NO: 1 y 2	Secuencia	CTTGGCAGAGTGAGACCATT	CAGTGTGTAGTGTAATATAA	ACAGTGTGTAGTGTAATATA	ACACAGTGTGTAGTGTAATA	TACACAGTGTGTAGTGTAAT	GTACACAGTGTGTAGTGTAA	тетассттаттсссттсств	ТЕТАССТТАТТСССТТССТ	тсттетассттаттсссттс	TTCTTGTACCTTATTCCCTT
Nm de GHR p	Región objetivo	exón 10	exón 10	exón 10	exón 10						
Inhibición de AR	SEQ ID NO: 1 Sitio de parada	1768	2704	2705	2707	2708	2709	3224	3225	3227	3228
	SEQ ID NO: 1 Sitio de inicio	1749	2685	2686	2688	2689	2690	3205	3206	3208	3209
	SISI ₅ N	533051	533066	533067	533068	533069	533070	533071	533072	533073	533074

	SEQ ID	91	92	93	94	95	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114
	S -										,-	,-	-	,-	,-	\	,-			\	,-		,-	,-	·-
D NO: 1 v 2	SEQ ID NO: 2 Sitio de parada	18750	299646	299648	299649	299651	299652	299653	299954	299955	299957	299958	299959	300477	300478	300479	300481	300482	300484	300485	300486	12796	12797	12798	12800
xónicas de las SE(SEQ NO: 2 Sitio	18731	299627	299629	299630	299632	299633	299634	299935	299936	299938	299939	299940	300458	300459	300460	300462	300463	300465	300466	300467	12777	12778	12779	12781
intrónicas v e	% de inhibición	37	72	77	63	29	20	44	29	47	63	51	×	36	52	41	40	39	34	35	15	63	78	71	99
Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidis a regiones intrónicas y exónicas de las SEQ ID NO: 1 v 2	Secuencia	ACATGTACCCAAACCAACAC	CTTCTTGTACCTTATTCCCT	TGCTTCTTGTACCTTATTCC	АТВСТТСТТВТАССТТАТТС	AAATGCTTCTTGTACCTTAT	AAAATGCTTCTTGTACCTTA	CAAAATGCTTCTTGTACCTT	СТСТСВААТССТТССТТСВА	тсттствалесттвсттв	ттстствалествест	TITICITICIGAAIGCTIGCT	тттстствамтествс	TGCGATAAATGGGAAATACT	CTGCGATAAATGGGAAATAC	TCTGCGATAAATGGGAAATA	GGTCTGCGATAAATGGGAAA	AGGTCTGCGATAAATGGGAA	AAAGGTCTGCGATAAATGGG	AAAAGGTCTGCGATAAATGG	AAAAAGGTCTGCGATAAATG	CATGAAGGCCACTCTTCCAA	CCATGAAGGCCACTCTTCCA	CCCATGAAGGCCACTCTTCC	TGCCCATGAAGGCCACTCTT
HR por gapm	Región	Intrón 1	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Intrón 1	Intrón 1	Intrón 1	Intrón 1						
libición de ARNm de G	SEQ IDNO: 1 Sitio de parada	n/a	3229	3231	3232	3234	3235	3236	3537	3538	3540	3541	3542	4060	4061	4062	4064	4065	4067	4068	4069	n/a	n/a	n/a	n/a
hul	SEQ ID NO: 1	n/a	3210	3212	3213	3215	3216	3217	3518	3519	3521	3522	3523	4041	4042	4043	4045	4046	4048	4049	4050	n/a	n/a	n/a	n/a
	SISI aN	532174	533086	533087	533088	533089	533090	533091	533092	533093	533094	533095	533096	533097	533098	533099	533100	533101	533102	533103	533104	533115	533116	533117	533118

	Ī	nibición de ARNm de G	HR por gapm	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidis a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	intrónicas y e	xónicas de las SEC	2 ID NO: 1 y 2	
SISI ₉ N	SEQ ID NO: 1 Sitio de inicio	SEQ ID NO: 1 Sitio de parada	Región objetivo	Secuencia	% de inhibición	SEQNO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID
533119	e/u	n/a	Intrón 1	TTGCCCATGAAGGCCACTCT	09	12782	12801	115
533120	n/a	n/a	Intrón 1	GTTGCCCATGAAGGCCACTC	74	12783	12802	116
533121	n/a	n/a	Intrón 1	GGTCTTTCATGAATCAAGCT	79	17927	17946	117
533122	n/a	n/a	Intrón 1	TGGTCTTTCATGAATCAAGC	83	17928	17947	118
533123	n/a	n/a	Intrón 1	ATGGTCTTTCATGAATCAAG	83	17929	17948	119
533124	n/a	n/a	Intrón 1	TGATGGTCTTTCATGAATCA	78	17931	17950	120
533125	n/a	n/a	Intrón 1	CTGATGGTCTTTCATGAATC	82	17932	17951	121
533126	n/a	n/a	Intrón 1	GCTGATGGTCTTTCATGAAT	74	17933	17952	122
533127	n/a	n/a	Intrón 1	GTACCCAAACCAACACTAAT	22	18727	18746	123
533128	n/a	n/a	Intrón 1	TGTACCCAAACCAACACTAA	65	18728	18747	124
533129	n/a	n/a	Intrón 1	ATGTACCCAAACCAACACTA	29	18729	18748	125
533130	n/a	n/a	Intrón 1	GACATGTACCCAAACCAACA	63	18732	18751	126
533131	n/a	n/a	Intrón 1	AGACATGTACCCAAACCAAC	81	18733	18752	127
533132	e/u	n/a	Intrón 1	AGGAATGGAAAACCAAATAT	49	26494	26513	128
500100	Ç	,	4	K + * * * * * * * * * * * * * * * * * *	7.7	26495	26514	000
223	II/d	11/4	i ilitioni i	CAGGAA GGAAAACCAAA A	, 4	121986	122005	671
533134	eju	6/4	Intrán 1	TAAAAAAAAAAATAAAAAT	73	26496	26515	130
500	ווים	11/4	100111		67	121987	122006	200
			,			26498	26517	
533135	n/a	n/a	Intrón 1	ACTCAGGAATGGAAAACCAA	77	113032	113051	131
						121989	122008	

ón de ARNm SEQ ID NO:	m de GHR por gapmers	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidis a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	intrónicas y e»	xónicas de las SEC	SEQ ID NO: 2	SEQID
Sitio de parada	objetivo	Secuencia	% de inhibición	de inicio	Sitio de parada	NO
				26499	26518	
n/a	Intrón 1	AACTCAGGAATGGAAAACCA	62	113033	113052	132
				121990	122009	
				26500	26519	
n/a	Intrón 1	TAACTCAGGAATGGAAAACC	29	113034	113053	133
	•			121991	122010	
n/a	Intrón 1	CAAAATTACTGCAGTCACAG	29	39716	39735	134
n/a	Intrón 1	ACAAAATTACTGCAGTCACA	81	39717	39736	135
n/a	Intrón 1	TACAAAATTACTGCAGTCAC	81	39718	39737	136
n/a	Intrón 1	CATACAAAATTACTGCAGTC	29	39720	39739	137
n/a	Intrón 1	ACATACAAAATTACTGCAGT	48	39721	39740	138
n/a	Intrón 1	AACATACAAAATTACTGCAG	53	39722	39741	139
n/a	Intrón 1	TTTTAGTATGAACCTTAAAA	0	42139	42158	140
n/a	Intrón 1	CTTTTAGTATGAACCTTAAA	38	42140	42159	141
n/a	Intrón 1	TCTTTTAGTATGAACCTTAA	22	42141	42160	142
n/a	Intrón 1	AATCTTTTAGTATGAACCTT	09	42143	42162	143
n/a	Intrón 1	CAATCTTTTAGTATGAACCT	70	42144	42163	144
n/a	Intrón 1	ACAATCTTTTAGTATGAACC	09	42145	42164	145
n/a	Intrón 1	AAGTTATGTGACTCTGAGCA	29	43174	43193	146
n/a	Intrón 1	CAAGTTATGTGACTCTGAGC	29	43175	43194	147
n/a	Intrón 1	TCAAGTTATGTGACTCTGAG	63	43176	43195	148
n/a		АСТТСТССАТТАGGGTTСTG	83	50948	50967	149
n/a	Intrón 1					

	SEQ ID NO	151	152	153	154	155	156	157
Q ID NO: 1 y 2	SEQ ID NO: 2 Sitio de parada	69609	53486	53487	53488	64901	64902	64903
exónicas de las SE	SEQ NO: 2 Sitio de inicio	20950	53467	53468	53469	64882	64883	64884
intrónicas y	% de inhibición	51	62	09	29	61	83	81
Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	Secuencia	АТАСТСТССАТТАGGGTTC	AAGCAGGTTGGCAGACAGAC	GAAGCAGGTTGGCAGACAGA	GGAAGCAGGTTGGCAGACAG	тсттсттвтвавствесттс	GTCTTCTTGTGAGCTGGCTT	AGTCTTCTTGTGAGCTGGCT
HR por gapme	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1
ibición de ARNm de G	SEQ ID NO: 1 Sitio de parada	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Inh	SEQ ID NO:1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	SISI ₀ N	533155	533156	533157	533158	533159	533160	533161

y 2	SEQ ID NO: 2 SEQ ID Sitio de parada NO	98645 178	98647 179	98648 180	98649 181	99497 182	99498 183	99499 184	99501 185	99502 186	99503 187	101097 188	101098 189	101099 190	101101 191	101102 192	101103 193	103585 194	103586 195	103587 196	103589 197	103590 198	103591 199	106982 200
xónicas de las SEQ ID NO: 1	SEQ ID NO: 2 SEQ Sitio de inicio	98626 8	98628	98629	3 08986	99478	99479	99480	99482 6	99483 6	99484 6	101078	101079	101080	101082	101083	101084	103566 1	103567	103568	103570	103571	103572	106963
es intrónicas y e	% de inhibición	72	33	27	38	37	41	30	54	64	61	0	28	52	09	34	36	41	54	29	73	73	41	36
HR por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	Secuencia	TGCAGAATCTTCTCTTTGGC	TTTGCAGAATCTTCTTTG	ATTTGCAGAATCTTCTCTTT	AATTTGCAGAATCTTCTCTT	ATAAAGCTATGCCATAAAGC	CATAAAGCTATGCCATAAAG	CCATAAAGCTATGCCATAAA	GACCATAAAGCTATGCCATA	TGACCATAAAGCTATGCCAT	CTGACCATAAAGCTATGCCA	CAAAAAGTTGAGCTGAGAAA	CCAAAAAGTTGAGCTGAGAA	CCCAAAAGTTGAGCTGAGA	CACCCAAAAAGTTGAGCTGA	ACACCCAAAAAGTTGAGCTG	TACACCCAAAAAGTTGAGCT	CTTTTAATGGCACCCAAGCA	GCTTTTAATGGCACCCAAGC	TGCTTTTAATGGCACCCAAG	AATGCTTTTAATGGCACCCA	AAATGCTTTTAATGGCACCC	GAAATGCTTTTAATGGCACC	TAATTOTAAGGGCCTCTG
GHR por gap	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1
Inhibición de ARNm de Gl	SEQ ID NO: 1 Sitio de parada	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	e/u
=	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	e/u	e/u	e/u	e/u	n/a	e/u
	SISI ₈ N	533194	533195	533196	533197	533198	533199	533200	533201	533202	533203	533204	533205	533206	533207	533208	533209	533210	533211	533212	533213	533214	533215	533216

	띡	hibición de ARNm de	GHR por gap	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	es intrónicas y	exónicas de las SEQ I	D NO: 1 y 2	
SISI _o N	SEQ ID NO: 1 Sitio de inicio	SEQ ID NO: 1 Sitio de parada	Región objetivo	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
533217	n/a	n/a	Intrón 1	ATAATTCTTAAGGGCCCTCT	45	106964	106983	201
533218	n/a	n/a	Intrón 1	CATAATTCTTAAGGGCCCTC	20	106965	106984	202
533219	n/a	n/a	Intrón 1	AGCATAATTCTTAAGGGCCC	48	106967	106986	203
533220	n/a	n/a	Intrón 1	TAGCATAATTCTTAAGGGCC	52	106968	106987	204
533221	n/a	n/a	Intrón 1	TTAGCATAATTCTTAAGGGC	28	106969	106988	205
533222	n/a	n/a	Intrón 1	AGGAATGGAAAACCAAACAT	13	113028	113047	907
533223	n/a	n/a	Intrón 1	CAGGAATGGAAAACCAAACA	64	113029	113048	207
533224	n/a	n/a	Intrón 1	TCAGGAATGGAAAACCAAAC	61	113030	113049	208
533225	n/a	n/a	Intrón 1	AGGAATGGAAAACCAAATAC	18	121985	122004	209
533226	n/a	n/a	Intrón 1	CATGACTATGTTCTGGCAAG	37	125591	125610	210
533227	n/a	n/a	Intrón 1	ACATGACTATGTTCTGGCAA	4	125592	125611	211
533228	n/a	n/a	Intrón 1	CACATGACTATGTTCTGGCA	63	125593	125612	212
533229	n/a	n/a	Intrón 1	GTCACATGACTATGTTCTGG	47	125595	125614	213
533230	n/a	n/a	Intrón 1	GGTCACATGACTATGTTCTG	49	125596	125615	214
533231	n/a	n/a	Intrón 1	TGGTCACATGACTATGTTCT	30	125597	125616	215
533232	n/a	n/a	Intrón 2	CTGAATTCTGAGCTCTGGAA	73	145428	145447	216
533233	n/a	n/a	Intrón 2	CCTGAATTCTGAGCTCTGGA	88	145429	145448	217
533234	n/a	n/a	Intrón 2	GCCTGAATTCTGAGCTCTGG	92	145430	145449	218
533235	n/a	n/a	Intrón 2	AAGCCTGAATTCTGAGCTCT	83	145432	145451	219
533236	n/a	n/a	Intrón 2	CAAGCCTGAATTCTGAGCTC	89	145433	145452	220
533237	n/a	n/a	Intrón 2	ACAAGCCTGAATTCTGAGCT	81	145434	145453	221
533238	n/a	n/a	Intrón 2	GGATCTCAGCTGCAATTCTT	72	146235	146254	222
533239	n/a	n/a	Intrón 2	AGGATCTCAGCTGCAATTCT	53	146236	146255	223

	ı	nhibición de ARNm de	GHR por gap	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	es intrónicas y	exónicas de las SEQ I	DNO: 1 y 2	
SISI ₉ N	SEQ ID NO: 1 Sitio de inicio	SEQ ID NO: 1 Sitio de parada	Región objetivo	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
533240	n/a	n/a	Intrón 2	GAGGATCTCAGCTGCAATTC	69	146237	146256	224
533241	n/a	n/a	Intrón 2	CAGAGGATCTCAGCTGCAAT	69	146239	146258	225
533242	n/a	n/a	Intrón 2	GCAGAGGATCTCAGCTGCAA	92	146240	146259	226
533243	230	249	Exón 2	AAAAGCATCACTTGATCCTG	23	145014	145033	227

	Inhibición	de ARNm (de GHR no	r 3-10-4 MC	I abla 5 DE gapmers dirigidos a regiones i	intrónicas v ex	ónicas de la	s SEQ ID N	O: 1 v 2
5	Nº ISIS	SEQ ID NO: 1 Sitio de inicio	SEQ ID NO: 1 Sitio de parada	Región objetivo	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
10	539284	206	222	Exón 2	CAAGGTCAACAGCAGCT	62	144990	145006	228
	539285	207	223	Exón 2	CCAAGGTCAACAGCAGC	74	144991	145007	229
	539286	208	224	Exón 2	GCCAAGGTCAACAGCAG	73	144992	145008	230
15	539290	869	885	Exón 7	TCTCACACGCACTTCAT	29	290367	290383	231
	539291	870	886	Exón 7	ATCTCACACGCACTTCA	51	290368	290384	232
	539292	871	887	Exón 7	GATCTCACACGCACTTC	56	290369	290385	233
20	539299	n/a	n/a	Intrón 1	CTTTCATGAATCAAGCT	63	17927	17943	234
	539300	n/a	n/a	Intrón 1	TCTTTCATGAATCAAGC	49	17928	17944	235
	539301	n/a	n/a	Intrón 1	GTCTTTCATGAATCAAG	61	17929	17945	236
25	539302	n/a	n/a	Intrón 1	GGTCTTTCATGAATCAA	93	17930	17946	237
	539303	n/a	n/a	Intrón 1	ATGGTCTTTCATGAATC	74	17932	17948	238
	539304	n/a	n/a	Intrón 1	GATGGTCTTTCATGAAT	56	17933	17949	239
30	539305	n/a	n/a	Intrón 1	TATATCAATATTCTCCC	42	21820	21836	240
	539306	n/a	n/a	Intrón 1	TTATATCAATATTCTCC	33	21821	21837	241
	539307	n/a	n/a	Intrón 1	GTTATATCAATATTCTC	12	21822	21838	242
35	539308	n/a	n/a	Intrón 1	TTTCTTTAGCAATAGTT	21	22518	22534	243
	539309	n/a	n/a	Intrón 1	CTTTCTTTAGCAATAGT	38	22519	22535	244
	539310	n/a	n/a	Intrón 1	GCTTTCTTTAGCAATAG	39	22520	22536	245
40							26497	26513	
	539311	n/a	n/a	Intrón 1	AGGAATGGAAAACCAAA	18	113031	113047	246
							121988	122004	
45							26498	26514	
	539312	n/a	n/a	Intrón 1	CAGGAATGGAAAACCAA	40	113032	113048	247
							121989	122005	
50							26499	26515	
	539313	n/a	n/a	Intrón 1	TCAGGAATGGAAAACCA	49	113033	113049	248
							121990	122006	
55	539314	n/a	n/a	Intrón 1	TCTCCATTAGGGTTCTG	87	50948	50964	249
00	539315	n/a	n/a	Intrón 1	TTCTCCATTAGGGTTCT	57	50949	50965	250
	539316	n/a	n/a	Intrón 1	GTTCTCCATTAGGGTTC	73	50950	50966	251
60	539317	n/a	n/a	Intrón 1	AGGTTGGCAGACAGACA	73	53466	53482	252
00	539318	n/a	n/a	Intrón 1	CAGGTTGGCAGACAGAC	84	53467	53483	253
	539319	n/a	n/a	Intrón 1	GCAGGTTGGCAGACAGA	85	53468	53484	254
65	539320	n/a	n/a	Intrón 1	CTTCTTGTGAGCTGGCT	87	64884	64900	255

	Inhibición de ARNm de GHR por 3-10-4 MOE gapmers dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2								O: 1 y 2
5	Nº ISIS	SEQ ID NO: 1 Sitio de inicio	SEQ ID NO: 1 Sitio de parada	Región objetivo	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
	539321	n/a	n/a	Intrón 1	TCTTCTTGTGAGCTGGC	89	64885	64901	256
10	539322	n/a	n/a	Intrón 1	GTCTTCTTGTGAGCTGG	87	64886	64902	257
	539323	n/a	n/a	Intrón 1	AGTCTTCTTGTGAGCTG	70	64887	64903	258
	539324	n/a	n/a	Intrón 1	TCTTCCACTCACATCCA	65	65990	66006	259
15	539325	n/a	n/a	Intrón 1	CTCTTCCACTCACATCC	78	65991	66007	260
	539326	n/a	n/a	Intrón 1	TCTCTTCCACTCACATC	68	65992	66008	261
	539327	n/a	n/a	Intrón 1	GTCTCTTCCACTCACAT	74	65993	66009	262
20	539328	n/a	n/a	Intrón 1	ATAGATTTTGACTTCCC	57	72107	72123	263
	539329	n/a	n/a	Intrón 1	CATAGATTTTGACTTCC	35	72108	72124	264
	539330	n/a	n/a	Intrón 1	GCATAGATTTTGACTTC	53	72109	72125	265
25	539331	n/a	n/a	Intrón 1	AAAATGTCAACAGTGCA	86	80639	80655	266
	539332	n/a	n/a	Intrón 1	CAAAATGTCAACAGTGC	73	80640	80656	267
	539333	n/a	n/a	Intrón 1	CCAAAATGTCAACAGTG	34	80641	80657	268
30	539334	n/a	n/a	Intrón 1	CCCAAAATGTCAACAGT	66	80642	80658	269
	539335	n/a	n/a	Intrón 1	CATGACTATGTTCTGGC	67	125594	125610	270
	539336	n/a	n/a	Intrón 1	ACATGACTATGTTCTGG	42	125595	125611	271
35	539337	n/a	n/a	Intrón 1	CACATGACTATGTTCTG	29	125596	125612	272
	539338	n/a	n/a	Intrón 2	GAATTCTGAGCTCTGGA	77	145429	145445	273
	539339	n/a	n/a	Intrón 2	TGAATTCTGAGCTCTGG	84	145430	145446	274
40	539340	n/a	n/a	Intrón 2	CTGAATTCTGAGCTCTG	80	145431	145447	275
	539341	n/a	n/a	Intrón 2	CCTGAATTCTGAGCTCT	84	145432	145448	276
	539342	n/a	n/a	Intrón 2	GCCTGAATTCTGAGCTC	84	145433	145449	277
45	539343	n/a	n/a	Intrón 2	AGCCTGAATTCTGAGCT	80	145434	145450	278
	539344	n/a	n/a	Intrón 2	ATATTGTAATTCTTGGT	0	148059	148075	279
	539345	n/a	n/a	Intrón 2	GATATTGTAATTCTTGG	20	148060	148076	280
50	539346	n/a	n/a	Intrón 2	TGATATTGTAATTCTTG	13	148061	148077	281
	539347	n/a	n/a	Intrón 2	CTGATATTGTAATTCTT	8	148062	148078	282
	539348	n/a	n/a	Intrón 2	CCTGATATTGTAATTCT	67	148063	148079	283
55	539349	n/a	n/a	Intrón 2	GCCTGATATTGTAATTC	73	148064	148080	284
	539350	n/a	n/a	Intrón 2	TGCCTGATATTGTAATT	32	148065	148081	285
	539351	n/a	n/a	Intrón 2	AATTATGTGCTTTGCCT	58	148907	148923	286
60	539352	n/a	n/a	Intrón 2	CAATTATGTGCTTTGCC	82	148908	148924	287
	539353	n/a	n/a	Intrón 2	TCAATTATGTGCTTTGC	68	148909	148925	288
	539354	n/a	n/a	Intrón 2	GTCAATTATGTGCTTTG	80	148910	148926	289
65	539355	n/a	n/a	Intrón 2	GCCATCACCAAACACCA	94	150972	150988	290

	Inhibición o	nhibición de ARNm de GHR por 3-10-4 MOE gapmers dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2										
5	Nº ISIS	SEQ ID NO: 1 Sitio de inicio	SEQ ID NO: 1 Sitio de parada	Región objetivo	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO			
10	539356	n/a	n/a	Intrón 2	TGCCATCACCAAACACC	84	150973	150989	291			
	539357	n/a	n/a	Intrón 2	TTGCCATCACCAAACAC	74	150974	150990	292			
	539358	n/a	n/a	Intrón 2	TGGTGACTCTGCCTGAT	85	151387	151403	293			
15	539359	n/a	n/a	Intrón 2	CTGGTGACTCTGCCTGA	86	151388	151404	294			

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 1 de la SEQ ID NO: 2							
20		Inhibición de ARNM de GHR po): 2		
20	Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO		
	523561	TATTTCAGAAAGACTTTCTG	11	10373	10392	295		
25	523562	AGGAAAAAATCAAGGAGTTA	8	11173	11192	296		
	523563	TATTTACTGAACACCTATTC	12	11973	11992	297		
	523564	GCCCATGAAGGCCACTCTTC	70	12780	12799	298		
30	523565	ACCTATAAATAAAGTGAGGA	0	13581	13600	299		
	523566	GTTTCATAACCTGCTAATAA	40	14451	14470	300		
	523567	ATGTGCCTTACAGTTATCAG	36	15251	15270	301		
35	523568	TTCTGAATTTAGAATTATAG	0	16051	16070	302		
	523569	GTTTATAATCTAGCAGTTAC	26	17130	17149	303		
	523570	GATGGTCTTTCATGAATCAA	62	17930	17949	304		
40	523571	CATGTACCCAAACCAACACT	65	18730	18749	305		
	523572	TAAAATACAGCCTACATCAT	0	19637	19656	306		
	523573	CCATCACTACAACAAACTCA	39	20451	20470	307		
45	523574	ATCTGAAATGATCCCCTTTC	33	21283	21302	308		
	523575	TGTTGCCCCTCCAAAAAGAC	12	22144	22163	309		
	523576	ATTAAAATTTTAAATGATGT	0	22944	22963	310		
50				26497	26516			
	523577	CTCAGGAATGGAAAACCAAA	71	113031	113050	311		
				121988	122007			
55	523578	AAAATTCTAGAAGATAACAT	0	27838	27857	312		
	523579	CTAGAAGTCCTAGCCAGAGT	2	28748	28767	313		
	523580	AACCGATATCACAGAAATAC	0	29548	29567	314		
60	523581	AAGATAGACAGTAACATAAT	0	30348	30367	315		
	523582	GCACTACAAGAACTGCTTAA	40	31172	31191	316		
	523583	TTTCCAGACAAAGAATTCAG	6	31978	31997	317		
65	523584	GTAGACAGCCTTTCTGGAAC	20	32827	32846	318		

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 1 de la SEQ ID NO: 2							
5	Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO		
	523585	CATCCTACATAGTGGCTGTG	47	33635	33654	319		
	523586	CAGAACAGTGTGTGGAGACT	8	34452	34471	320		
10	523587	AGCTTTAAAAATACCTCTGC	52	35466	35485	321		
	523588	CCCAGGTACTTGCTCTCAGA	22	36266	36285	322		
	523589	TTACACCTGATTCTAGAAAT	30	37066	37085	323		
15	523590	CTTTTCTCTACAACCTCACA	34	38094	38113	324		
	523591	TAGTAGTTTGAATTTCAAAG	1	38909	38928	325		
	523592	ATACAAAATTACTGCAGTCA	60	39719	39738	326		
20	523593	GCCACTGCCAAAAAGGAGGA	30	40519	40538	327		
	523594	TGACAGAAACAGAGCTATGA	33	41342	41361	328		
	523595	ATCTTTTAGTATGAACCTTA	65	42142	42161	329		
25	523596	AGTTATGTGACTCTGAGCAC	63	43173	43192	330		
	523597	ACTATGCCCTAGTTACTTCT	29	43973	43992	331		
	523598	TATAGTGGAAGTGATAGATC	0	44812	44831	332		
30	523599	TGTTTTCTGAAATGGAATGT	0	45733	45752	333		
	523600	GCTGTAAATGTAATGAGTGT	34	46553	46572	334		
	523601	GAGAGAAGCCATGGCCCTAG	20	47392	47411	335		
35	523602	CTCTCTTTCCCAGAACAAGA	32	48210	48229	336		
	523603	TCCAAAATGTCCAGTATAAT	33	50072	50091	337		
	523604	GTTCTCCATTAGGGTTCTGG	74	50947	50966	338		
40	523605	TTAGTCACCCATCCACCACT	41	51747	51766	339		
	523606	CATGAATTCACCGAGTTAGG	51	52573	52592	340		
	523607	AGCAGGTTGGCAGACAGACA	62	53466	53485	341		
45	523608	GAAAGACTTAAATTTTCACA	0	54306	54325	342		
	523609	TAGTAGAGGAAAAGGAGAAT	0	55730	55749	343		
	523610	AAACAGGGTCTGGAGTGGAC	3	61243	61262	344		
50	523611	CAAGCTGATAATTAAAAAGA	0	62462	62481	345		
	523612	ATAAAGATACATTTTCTGGG	8	63277	63296	346		
	523613	CAGGATTCTTCCTGCCTGGC	47	64085	64104	347		
55	523614	AAGTCTTCTTGTGAGCTGGC	71	64885	64904	348		
	523615	CTCTTCCACTCACATCCATT	63	65988	66007	349		
	523616	CCTATATCAGAAGACAAATG	5	66806	66825	350		
60	523617	TCAAAACCCTGCCAAGGTAC	44	67662	67681	351		
	523618	TCATATTCTACTTCTGTTTA	11	68462	68481	352		
	523619	CATTCCAGTGTTTCAGTAAG	13	69262	69281	353		
65	523620	GGCCTGGAATTAATCCTCAG	49	70114	70133	354		

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 1 de la SEQ ID NO: 2									
Nº ISIS	Secuencia	% de inhibición		SEQ ID NO: 2 Sitio de parada	SEQID NO					
523621	AATGCCCTCTCCCTGTGCCT	48	70925	70944	355					
523622	TTTATAATCAACCTTTGCTA	9	71741	71760	356					
523623	ATATAACTACTTAAAATAAT	0	72541	72560	357					
523624	TTAGCCAGGATATGGTTGCC	50	73350	73369	358					
523625	CTACCTCCATCAAAGAAAAT	0	74190	74209	359					
523626	GCATGCATAGATAAGTTTGA	20	74990	75009	360					
523627	ATGAGAGTAAATGGATTTTC	10	75790	75809	361					
523628	TTGGCAATCCTTGCTTAAAA	34	76598	76617	362					
523629	GAATTAAGCCAGACTTATTT	3	77398	77417	363					
523630	GGCTAAGTATTTGTAGCAGT	55	78198	78217	364					
523631	TTGCCTGTGTGCAACTGGCG	0	79005	79024	365					
523632	GTGGCCTTAGTAGGCCAGCT	0	79827	79846	366					
523633	CCCAAAATGTCAACAGTGCA	70	80639	80658	367					
523634	TTAAGCCTTCAATTTGAAAA	0	81455	81474	368					
523635	TGCTCAGAAGGTTGAGCATA	0	82261	82280	369					
523636	TTAATGCTTTCCCAAAGCTC	35	83061	83080	370					
523637	AAAAGACTTCATACCTTTAC	52	83884	83903	371					

		Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 1 de la SEQ ID NO: 2									
40	Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO					
	532146	GGCCCCTGGCACAACAGGA	60	3097	3116	372					
45	532147	TCTAGGGTGATTCAGGTGGA	62	4537	4556	373					
	532148	CTTAGATTAATGCAAAACAA	25	4875	4894	374					
	532149	AGGCAGAGGAGGGTGGAACC	34	6246	6265	375					
50	532150	AGTCTAATGAGATCTGATGG	76	6499	6518	376					
	532151	GCTGAAATGAGTTAAGACTT	89	6737	6756	377					
	532152	ACTTTGGACTGTGGATTTTT	78	6765	6784	378					
55	532153	GCATATTTACACAATGCCTG	84	6871	6890	379					
	532154	GGAAATGCCTGGATGTCCAG	27	7241	7260	380					
	532155	CTGCTGATTTTGGAATGGAG	68	10660	10679	381					
60	532156	ACTGAACACCTATTCTATGG	51	11968	11987	382					
00	532157	TTTACTGAACACCTATTCTA	23	11971	11990	383					
	532158	CCCTCAAATTATCCACAAAC	89	12053	12072	384					
65	532159	CTTCTAAATGTTTCCAAGGC	63	12186	12205	385					

		Inhibición de ARNm de GHR por	or gapmers 5-10-5 MOE dirigidos a intrón 1 de la SEQ ID NO: 2					
5	Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO		
	532160	TTACATCCTGTAGGCTAATT	82	12469	12488	386		
	532161	CCACTAGCCTGGCCAGACTT	73	12487	12506	387		
10	532162	CTGGTAGATGATCTCAAGTT	84	13351	13370	388		
	532163	AAAGAATTGAGTTATAAATC	23	13670	13689	389		
	532164	AACTCATCTCTGGCCAGCAG	89	14361	14380	390		
15	532165	CAACATCATTGTATTTTCTG	33	14965	14984	391		
	532166	TCTTAGCTTACCAATGAGGA	81	15085	15104	392		
	532167	TTCCCAGAGCCAAAGCTCAA	77	15982	16001	393		
20	532168	TTTGGCCAATCCCAGCTTAT	59	16253	16272	394		
	532169	GTTTGCAAATCTTCATTCAC	71	16447	16466	395		
	532170	CAATAGTCCCTGAGGCTTGG	74	16476	16495	396		
25	532171	TTTCCCCAGATTAAATGCCC	85	17650	17669	397		
	532172	TTCAATAATGCAGTTATTAT	0	18308	18327	398		
	532173	AAATTCTTGGGCTTAAGCAC	69	18638	18657	399		
30	532174	ACATGTACCCAAACCAACAC	71	18731	18750	91		
	532175	TGATCCAAATTCAGTACCTA	82	18752	18771	400		
	532176	GATGATCCAAATTCAGTACC	54	18754	18773	401		
35	532177	CAATATTCATCTTTATATTC	25	19106	19125	402		
	532178	ATTGCTCTTAAGATAAGTAA	41	19661	19680	403		
	532179	CAGCTCCCTGAATATCTCTT	74	19783	19802	404		
40	532180	ACTTCACAAATATATTATAA	0	19885	19904	405		
	532181	GTACAGTCAACTTTACTTCA	89	19899	19918	406		
	532182	CAATTCCCACTCTTGTCAAC	55	20288	20307	407		
45	532183	TCAACTGCTTTCTGGAGCAG	66	21215	21234	408		
	532184	ACTGCTGAGCACCTCCAAAA	73	21454	21473	409		
	532185	CTTAGATTCCTGGTTTATCA	78	21587	21606	410		
50	532186	AGTTATATCAATATTCTCCC	88	21820	21839	411		
	532187	TATACCATCTTCCCCATAAA	32	22038	22057	412		
	532188	GGCTTTCTTTAGCAATAGTT	86	22518	22537	413		
55	532189	TACCAGGGATGTAGGTTTAC	82	29050	29069	414		
	532190	TCACAGCTGAATTCTATCTG	80	29323	29342	415		
	532191	GGAGATGGACAAATTCCTGC	77	29470	29489	416		
60	532192	CTAGACATGTCATCAAGACA	19	30294	30313	417		
	532193	CAAATTAATAAAACAATTAC	10	30385	30404	418		
	532194	TATTCTTATATCAGACAAAA	30	30532	30551	419		
65	532195	TCAAGGGATCCCTGCCATTC	32	32361	32380	420		

		Inhibición de ARNm de GHR po	r gapmers 5-10-5 MOE dirigidos a intrón 1 de la SEQ ID NO: 2						
5	Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO			
	532196	CGTCAAGGGATCCCTGCCAT	47	32363	32382	421			
	532197	GGCACTCCCAGTCTCCAGCT	83	34138	34157	422			
10	532198	TTTCTCCAGCAGAAGTGTCA	60	34845	34864	423			
	532199	AAGTCCTCTTCCGCCTCCCT	82	36023	36042	424			
	532200	GGAATTTACCAAAAACAGTT	63	36721	36740	425			
15	532201	AGTTAGGTATTGTCCATTTT	74	37032	37051	426			
	532202	ACATGGGTATCTTCTAGGAA	77	37111	37130	427			
	532203	TCAGTTTCAGAGAGACAAAA	41	37276	37295	428			
20	532204	TTTGCCAGGTCCTATGTCGA	69	37656	37675	429			
	532205	ATTCCCTTTTCTCTACAACC	70	38099	38118	430			
	532206	ATGATAAGAGCCAAGATTTG	13	38994	39013	431			
25	532207	GAAAAAAGGTCCACTGTGGT	49	40356	40375	432			
	532208	CCTGTCCTGGAATAGTTTCA	49	41164	41183	433			
	532209	TAGAAAAGTAAATAAGGAAT	15	41501	41520	434			
30	532210	TTATAAAACTATGCAATAGG	0	41889	41908	435			
	532211	TTATTTCATATTTCCAGAAA	0	42675	42694	436			
	532212	CATGAATTACAGCTAAAGAT	20	42741	42760	437			
35	532213	TTGCATGTATGTGTTTCTGA	62	43518	43537	438			
	532214	TCAATCTCTTTATACCCTTA	75	43765	43784	439			
	532215	TCTTCAATCTCTTTATACCC	58	43768	43787	440			
40	532216	CTATGCCCTAGTTACTTCTA	47	43972	43991	441			
	532217	AAAGAGAATCTCTTCCTTTT	27	44070	44089	442			
	532218	TCATTAAAGATTATTATAAC	0	44222	44241	443			
45	532219	TTTGGATGAGTGGAAGGCTA	0	44528	44547	444			
-	532220	GGAAATGGCCTTTTTCCTTA	72	45400	45419	445			
	532221	GGAGAAGCCCTCTGCCTGTA	60	46477	46496	446			
50	532222	AAACCATATTGTCCACCAGA	84	46510	46529	447			
		l .		II.	l l				

Tabla 8

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 1 de la SEQ ID NO: 2								
Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO				
532223	CTCAAACCATATTGTCCACC	90	46513	46532	448				
532224	GTGTAAATAGTGACTTGTAC	76	50123	50142	449				
532225	TGAGGCACAGGAAAGTTAAC	52	50719	50738	450				
532226	AGCTATAGTTCTCCATTAGG	74	50954	50973	451				

65

55

60

Inhibicion de ARRIM de GHR por gapmers 5-10-5 MOE dirigidos à introl 1 de la SEG ID NC 2 Sitio de SEG ID NC 2				(continua	,	/ / I I 050 ID NO	
No. Secure Secu			Inhibición de ARNm de GHR po	or gapmers 5-1			
10	5	Nº ISIS	Secuencia				SEQID NO
10 532229 GACTATTTGTATATATAC 33 51491 51510 532230 ATGACTATTTGTATATATAT 11 51493 51512 532231 ACTCTTCCTTATATTTGCTC 76 51778 51797 15 532232 ATACACTGACTTTTACATT 67 52039 52058 532233 CTTAGAAACAGTAGTTTCAT 42 52124 52143 532234 CTGAGCTTTGCCTTAGAAT 79 52633 52652 20 532236 CACCAGACAGCAGGAGGAAA 43 55926 55945 532235 CACCAGACAGGAGGAAA 43 55926 55945 532236 GAGATGGAGTAGAAGCAAA 43 55926 55945 532237 TAGGAAAGGAAGAATACACT 33 63881 63900 25 532238 TAGACCAGGAAGGCTAGCA 27 64376 64395 532240 AAAGTTGGACTGGCATGCA 70 64575 64594 30 532241 CCATAACTCTTCAACTGGG 84 64643 64662 532242 <td< td=""><td></td><td>532227</td><td>TTACTTGCTGACTAAGCCAT</td><td>69</td><td>51071</td><td>51090</td><td>452</td></td<>		532227	TTACTTGCTGACTAAGCCAT	69	51071	51090	452
S32229 GACHATHGATATATAC 33 51491 51510	40	532228	GTTTGTCAACTCAACATCAA	73	51215	51234	453
532231 ACTCTTCCTTATATTTGCTC 76 51778 51797	10	532229	GACTATTTGTATATATATAC	33	51491	51510	454
15 532232 ATACACTGACTTITAACATT 67 52039 52058 532233 CTTAGAAACAGTAGTTTCAT 42 52124 52143 532234 CTGAGCTTTGCCTTAAGAAT 79 52633 52652 20 532235 CACCAGACAGCAGGTAGAGC 81 53540 53559 532236 GAGATGGAGTAGAAGCAAA 43 55926 55945 532237 TAGGAAAGGAAGAATACACT 33 63881 63900 25 532238 TAGACCAGGAAGGTGAGAG 27 64376 64395 532239 AAGTTGGATCTGGCATGCAT 64 64574 64593 532240 AAAGTTGGATCTGGCATGCA 70 64575 64594 30 532241 CCATAACTCTTCACTGGG 84 64643 64662 532242 ATATTAAAGTTTGAGAACTA 37 65080 65099 532243 CTTAACTACAAAATGCTGGA 71 66164 66183 35 532244 TGACCACCATTCCATAAA 73 69203 69222 40 <t< td=""><td></td><td>532230</td><td>ATGACTATTTGTATATATAT</td><td>11</td><td>51493</td><td>51512</td><td>455</td></t<>		532230	ATGACTATTTGTATATATAT	11	51493	51512	455
S32232		532231	ACTCTTCCTTATATTTGCTC	76	51778	51797	456
S32234 CTGAGCTTTGCCTTAAGAAT 79 52633 52652	15	532232	ATACACTGACTTTTAACATT	67	52039	52058	457
20 532235 CACCAGACAGCAGGTAGAGC 81 53540 53559 532236 GAGATGGAGTAGAAGGCAAA 43 55926 55945 532237 TAGGAAAGGAAGAATACACT 33 63881 63900 25 532238 TAGACCAGGAAGGGTGAGAG 27 64376 64395 532239 AAGTTGGATCTGGCATGCAT 64 64574 64593 532240 AAAGTTGGATCTGCATGCA 70 64575 64594 30 532241 CCATAACTCTTCTAACTGGG 84 64643 64662 532242 ATATTAAAGTTTGAGAACTA 37 65080 65099 532243 CTTAACTACAAAATGCTGGA 71 66164 66183 35 532244 TGAGCAGCTGTCCTCAGTTC 43 67061 67080 532245 GAGTTCATAAAAGTTTACT 26 67251 67270 532246 CTATCCACACCATTCCATAA 73 69203 69222 40 532247 AACATCTAAGTATACAAAC 58 69223 69242 532248		532233	CTTAGAAACAGTAGTTTCAT	42	52124	52143	458
S32236 CACCAGACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG		532234	CTGAGCTTTGCCTTAAGAAT	79	52633	52652	459
532237 TAGGAAAGGAAGAATACACT 33 63881 63900 532238 TAGACCAGGAAGGGTGAGAG 27 64376 64395 532239 AAGTTGGATCTGGCATGCAT 64 64574 64593 532240 AAAGTTGGATCTGGCATGCA 70 64575 64594 30 532241 CCATAACTCTTCTAACTGGG 84 64643 64662 532242 ATATTAAAGTTTGAGAACTA 37 65080 65099 532243 CTTAACTACAAAATGCTGGA 71 66164 66183 35 532244 TGAGCAGCTGTCCTCAGTTC 43 67061 67080 532245 GAGTTCATAAAAAGTTTTACT 26 67251 67270 532246 CTATCCACACCATTCCATAA 73 69203 69222 40 532247 AACATCTAAGTATGCAAAC 58 69223 69242 532248 TTTGCATTACAAGCCCTGGG 91 69565 69584 532249 TCCATATTATAGGCTATGAT 73 69889 69908 45 532250 ATTTTATG	20	532235	CACCAGACAGCAGGTAGAGC	81	53540	53559	460
25 532238 TAGACCAGGAAGGGTGAGAG 27 64376 64395 532239 AAGTTGGATCTGGCATGCAT 64 64574 64593 30 532240 AAAGTTGGATCTGGCATGCA 70 64575 64594 30 532241 CCATAACTCTTCTAACTGGG 84 64643 64662 532242 ATATTAAAGTTTGAGAACTA 37 65080 65099 532243 CTTAACTACAAAATGCTGGA 71 66164 66183 35 532244 TGAGCAGCTGTCCTCAGTTC 43 67061 67080 532245 GAGTTCATAAAAGTTTTACT 26 67251 67270 532246 CTATCCACACCATTCCATAA 73 69203 69222 40 532247 AACATCTAAGTAATGCAAAC 58 69223 69242 532248 TTTGCATTCAAAGCCCTGGG 91 69565 69584 532249 TCCATATTATGGCTAGAT 73 69889 69908 45 532250 ATTTTATGATTACATAGAAC 27 69942 69961		532236	GAGATGGAGTAGAAGGCAAA	43	55926	55945	461
S32239 AAGTTGGATCTGCATGCAT 64 64574 64593		532237	TAGGAAAGGAAGAATACACT	33	63881	63900	462
532240 AAAGTTGGATCTGGCATGCA 70 64575 64594	25	532238	TAGACCAGGAAGGGTGAGAG	27	64376	64395	463
30 532241 CCATAACTCTTCTAACTGGG 84 64643 64662 532242 ATATTAAAGTTTGAGAACTA 37 65080 65099 532243 CTTAACTACAAAATGCTGGA 71 66164 66183 35 532244 TGAGCAGCTGTCCTCAGTTC 43 67061 67080 532245 GAGTTCATAAAAGTTTTACT 26 67251 67270 532246 CTATCCACACCATTCCATAA 73 69203 69222 40 532247 AACATCTAAGTAATGCAAAC 58 69223 69242 532248 TTTGCATTCAAAGCCCTGGG 91 69565 69584 532249 TCCATATTATAGGCTATGAT 73 69889 69908 45 532250 ATTTTATGATAATGTAAAAC 27 69942 69961 532251 GAGATCACATTTTCTGAGTA 50 70352 70371 532252 ACCTCCCTAGGATTACCTCA 56 71617 71636 50 532253 AAAATCTGATTTATAACACA 40 71750 71769 532254		532239	AAGTTGGATCTGGCATGCAT	64	64574	64593	464
S32242 ATATTAAAGTTTGAGAACTA 37 65080 65099		532240	AAAGTTGGATCTGGCATGCA	70	64575	64594	465
532243 CTTAACTACAAAATGCTGGA 71 66164 66183 35 532244 TGAGCAGCTGTCCTCAGTTC 43 67061 67080 532245 GAGTTCATAAAAGTTTTACT 26 67251 67270 532246 CTATCCACACCATTCCATAA 73 69203 69222 40 532247 AACATCTAAGTAATGCAAAC 58 69223 69242 532248 TTTGCATTCAAAGCCCTGGG 91 69565 69584 532249 TCCATATTATAGGCTATGAT 73 69889 69908 45 532250 ATTITATGATAATGTAAAAC 27 69942 69961 532251 GAGATCACATTTTCTGAGTA 50 70352 70371 532252 ACCTCCCTAGGATTACCTCA 56 71617 71636 50 532253 AAAATCTGATTTAAATCAA 40 71750 71769 532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 532257 CAACATGGA	30	532241	CCATAACTCTTCTAACTGGG	84	64643	64662	466
35 532244 TGAGCAGCTGTCCTCAGTTC 43 67061 67080 532245 GAGTTCATAAAAGTTTTACT 26 67251 67270 532246 CTATCCACACCATTCCATAA 73 69203 69222 40 532247 AACATCTAAGTAATGCAAAC 58 69223 69242 532248 TTTGCATTCAAAGCCCTGGG 91 69565 69584 532249 TCCATATTATAGGCTATGAT 73 69889 69908 45 532250 ATTITATGATAATGTAAAAC 27 69942 69961 532251 GAGATCACATTTTCTGAGTA 50 70352 70371 532252 ACCTCCCTAGGATTACCTCA 56 71617 71636 50 532253 AAAATCTGATTTATAATCAA 40 71750 71769 532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532258		532242	ATATTAAAGTTTGAGAACTA	37	65080	65099	467
532245 GAGTTCATAAAAGTTTTACT 26 67251 67270 532246 CTATCCACACCATTCCATAA 73 69203 69222 40 532247 AACATCTAAGTAATGCAAAC 58 69223 69242 532248 TTTGCATTCAAAGCCCTGGG 91 69565 69584 532249 TCCATATTATAGGCTATGAT 73 69889 69908 45 532250 ATTTTATGATAATGTAAAAC 27 69942 69961 532251 GAGATCACATTTTCTGAGTA 50 70352 70371 532252 ACCTCCCTAGGATTACCTCA 56 71617 71636 50 532253 AAAATCTGATTATAACAA 40 71750 71769 532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGCTAACGTG		532243	CTTAACTACAAAATGCTGGA	71	66164	66183	468
40 532246 CTATCCACACCATTCCATAA 73 69203 69222 40 532247 AACATCTAAGTAATGCAAAC 58 69223 69242 532248 TTTGCATTCAAAGCCCTGGG 91 69565 69584 532249 TCCATATTATAGGCTATGAT 73 69889 69908 45 532250 ATTTATGATAATGTAAAAC 27 69942 69961 532251 GAGATCACATTTTCTGAGTA 50 70352 70371 532252 ACCTCCCTAGGATTACCTCA 56 71617 71636 50 532253 AAAATCTGATTTATAATCAA 40 71750 71769 532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAACTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437	35	532244	TGAGCAGCTGTCCTCAGTTC	43	67061	67080	469
40 532247 AACATCTAAGTAATGCAAAC 58 69223 69242 532248 TTTGCATTCAAAGCCCTGGG 91 69565 69584 532249 TCCATATTATAGGCTATGAT 73 69889 69908 45 532250 ATTTTATGATAATGTAAAAC 27 69942 69961 532251 GAGATCACATTTTCTGAGTA 50 70352 70371 532252 ACCTCCCTAGGATTACCTCA 56 71617 71636 50 532253 AAAATCTGATTTAAATCAA 40 71750 71769 532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530		532245	GAGTTCATAAAAGTTTTACT	26	67251	67270	470
532248 TTTGCATTCAAAGCCCTGGG 91 69565 69584 532249 TCCATATTATAGGCTATGAT 73 69889 69908 45 532250 ATTTTATGATAATGTAAAAC 27 69942 69961 532251 GAGATCACATTTTCTGAGTA 50 70352 70371 532252 ACCTCCCTAGGATTACCTCA 56 71617 71636 50 532253 AAAATCTGATTTATAATCAA 40 71750 71769 532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530		532246	CTATCCACACCATTCCATAA	73	69203	69222	471
532249 TCCATATTATAGGCTATGAT 73 69889 69908 45 532250 ATTTATGATAATGTAAAAC 27 69942 69961 532251 GAGATCACATTTCTGAGTA 50 70352 70371 532252 ACCTCCCTAGGATTACCTCA 56 71617 71636 50 532253 AAAATCTGATTTATAATCAA 40 71750 71769 532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTCTTGTGTTTTATCA 9 75511 75530	40	532247	AACATCTAAGTAATGCAAAC	58	69223	69242	472
45 532250 ATTTTATGATAATGTAAAAC 27 69942 69961 532251 GAGATCACATTTCTGAGTA 50 70352 70371 532252 ACCTCCCTAGGATTACCTCA 56 71617 71636 50 532253 AAAATCTGATTTATAATCAA 40 71750 71769 532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530		532248	TTTGCATTCAAAGCCCTGGG	91	69565	69584	473
532251 GAGATCACATTTTCTGAGTA 50 70352 70371 532252 ACCTCCCTAGGATTACCTCA 56 71617 71636 50 532253 AAAATCTGATTTATAATCAA 40 71750 71769 532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530		532249	TCCATATTATAGGCTATGAT	73	69889	69908	474
532252 ACCTCCCTAGGATTACCTCA 56 71617 71636 50 532253 AAAATCTGATTTATAATCAA 40 71750 71769 532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530	45	532250	ATTTTATGATAATGTAAAAC	27	69942	69961	475
50 532253 AAAATCTGATTTATAATCAA 40 71750 71769 532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530		532251	GAGATCACATTTTCTGAGTA	50	70352	70371	476
532254 AGCATAGATTTTGACTTCCC 92 72107 72126 532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530		532252	ACCTCCCTAGGATTACCTCA	56	71617	71636	477
532255 AAAGTCATATACACAGGTCT 53 72584 72603 55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530	50	532253	AAAATCTGATTTATAATCAA	40	71750	71769	478
55 532256 CTCATAGCAAATTCCCAGAA 66 73689 73708 532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530		532254	AGCATAGATTTTGACTTCCC	92	72107	72126	479
532257 CAACATGGAGGCTAGCATGT 55 74112 74131 532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530		532255	AAAGTCATATACACAGGTCT	53	72584	72603	480
532258 AGACTAAGTGGCCTGAATGT 52 74317 74336 60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530	55	532256	CTCATAGCAAATTCCCAGAA	66	73689	73708	481
60 532259 ACCTACCATGTCACTCTCAA 61 74418 74437 532260 AACTTTCTTGTGTTTTATCA 9 75511 75530		532257	CAACATGGAGGCTAGCATGT	55	74112	74131	482
532260 AACTTTCTTGTGTTTTATCA 9 75511 75530		532258	AGACTAAGTGGCCTGAATGT	52	74317	74336	483
	60	532259	ACCTACCATGTCACTCTCAA	61	74418	74437	484
522261 TTTCCAACACAAATCA 24 75045 75004		532260	AACTTTCTTGTGTTTTATCA	9	75511	75530	485
002201 1116CAAGACAAAGAA1GA 31 75915 75934		532261	TTTGCAAGACAAAGAAATGA	31	75915	75934	486
65 532262 CATGCAAAGTGTTCCTCTTC 63 76024 76043	65	532262	CATGCAAAGTGTTCCTCTTC	63	76024	76043	487

R por gapmers 5-1	10-5 MOE dirigidos a in		
% de	SEQ ID NO: 2 Sitio de	SEU ID NO: 2 S	a = - :-
	inicio	parada	SEQ ID NO
Г 79	76047	76066	488
A 44	76555	76574	489
A 34	76643	76662	490
A 57	76703	76722	491
A 60	76752	76771	492
G 24	76753	76772	493
41	76896	76915	494
G 59	77044	77063	495
A 37	77076	77095	496
T 62	77638	77657	497
G 42	77841	77860	498
Г 77	78122	78141	499
C 40	79478	79497	500
0	79664	79683	501
0	79959	79978	502
G 67	80756	80775	503
T 74	80900	80919	504
36	80920	80939	505
A 42	81524	81543	506
Г 33	82835	82854	507
13	82839	82858	508
A 38	82959	82978	509
T 72	83179	83198	510
T 72	83330	83349	511
C 78	83897	83916	512
C 69	84026	84045	513
A 72	84381	84400	514
T 49	85713	85732	515
A 50	85945	85964	516
A 44	86554	86573	517
T 15	86629	86648	518
T 62	86901	86920	519
A 60	89940	89959	520
T 36	91930	91949	521
G 37	93332	93351	522
A 52	94839	94858	523
	A 44 A 34 A 57 A 60 G 24 A 41 G 59 A 37 T 62 G 42 T 77 C 40 A 0 C 40 C 36 A 22 T 74 C 36 A 42 T 74 C 36 A 42 T 72 T 72 C 78 C 69 C 78	A 44 76555 A 34 76643 A 57 76703 A 60 76752 G 24 76753 A 41 76896 G 59 77044 A 37 77076 T 62 77638 G 42 77841 T 77 78122 C 40 79478 A 0 79664 C 0 79959 G 67 80756 T 74 80900 C 36 80920 A 42 81524 T 33 82835 C 13 82835 C 13 82835 C 13 82835 C 13 82839 T 72 83179 T 72 83330 C 78 83897 C 69 84026 G 72 84381 C 73 85945 C 44 86554 T 15 86629 T 62 86901 C 76 993332	A 44 76555 76574 A 34 76643 76662 A 57 76703 76722 A 60 76752 76771 G 24 76753 76772 A 11 76896 76915 G 59 77044 77063 A 37 77076 77095 T 62 77638 77657 G 42 77841 77860 T 77 78122 78141 C 40 79478 79497 A 0 79664 79683 C 0 79959 79978 G 67 80756 80775 T 74 80900 80919 C 36 80920 80939 A 42 81524 81543 T 33 82835 82854 C 13 82839 82858 A 38 82959 82978 T 72 83179 83198 T 72 83330 83349 C 78 83897 83916 C 69 84026 84045 A 72 84381 84400 C 78 83897 83916 C 69 84026 84045 C 78 85945 85964 C 78 85945 85964 C 78 85945 85964 C 78 86629 86648 T 62 86901 86920 C 78 86920 C 78 85945 85964 C 78 85940 89959 C 78 85940 89959 C 78 86629 86648 C 78 869940 89959 C 78 869940 89959 C 78 869940 89959

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 1 de la SEQ ID NO: 2								
Nº I	ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO			
532	2299	TGGCTAATTAATGGGCAATT	63	95292	95311	524			

10

5

		Inhibición de ARNm de GHR po	or gapmers 5-10)-5 MOE dirigidos a intr	ón 1 de la SEQ ID NO:	2
15	Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQIDNO:2Sitio de parada	SEQID NO
	532300	CTGTGCCATATTGCCTCTAA	87	95471	95490	525
	532301	GATTTCAACCAGCTCACCTG	48	95510	95529	526
20	532302	GCAAAAGGGAACCCTGAAGC	71	95564	95583	527
	532303	CTAAGTGTTATAACAAACAC	43	96137	96156	528
	532304	GTCCATTGGTATAAAACTCA	84	96282	96301	529
25	532305	TTTCAATACAATAAGATTTA	34	96793	96812	530
	532306	GTCCTTAGACCCCTCAATGG	62	96987	97006	531
	532307	GAGGATTTATTCATCTAGGC	68	97806	97825	532
30	532308	CAGTGGGAGGATCAGATATC	46	97870	97889	533
	532309	ATCCCATCCAGCAGCTGGAC	67	98132	98151	534
	532310	AACTTGGGATGAGTTACTGA	56	98653	98672	535
35	532311	GAAGGCTACCTAAAAGAAAT	43	98810	98829	536
	532312	AAAGAAATATTCACAACATT	39	99096	99115	537
	532313	ATGCTTATACTGCTGCTGTA	69	99791	99810	538
40	532314	TCCTCACTTCAATCACCTTT	70	99819	99838	539
	532315	CTCTTTCTTCATAAATAAGT	33	100809	100828	540
	532316	TGGTAATCTGTGTCCCTTTA	96	101242	101261	541
45	532317	TAATAAAAAAGTTTGAAACA	41	102549	102568	542
	532318	GGTGGTGGCAAGAGAAAAAT	56	103015	103034	543
	532319	CAAAAGGCCCTTTTTACATG	28	103034	103053	544
50	532320	ACTCTACTGGTACCAATTTA	31	103173	103192	545
	532321	TCTGAACTTTTATGCTCTGT	76	103606	103625	546
	532322	AACTTTTGCCTGGGCATCCA	16	104067	104086	547
55	532323	TGACTCCATGTCTCACATCC	66	104392	104411	548
	532324	TTACTTCCTAGATACAACAG	53	104541	104560	549
	532325	CTGGCCCCCATGATTCAATT	44	104835	104854	550
60	532326	AAGACTGGCCCCCATGATTC	49	104839	104858	551
	532327	TGTCACTGGTCTGTGTATTT	60	106233	106252	552
	532328	ACAGAGTAGATTTAGCATAA	23	106980	106999	553
65	532329	TAAACAGGTGTACTATTACA	27	107030	107049	554
			•	•		

		Inhibición de ARNm de GHR po	r gapmers 5-10	0-5 MOE dirigidos a intr	ón 1 de la SEQ ID NO	: 2
5	Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQIDNO:2Sitio de parada	SEQID NO
	532330	GCTTTATCAACTAAGTTTAT	22	107716	107735	555
	532331	CAGAACTTCTTTTAAAATTG	8	107763	107782	556
10	532332	GAATACAGACATACCTTGAA	25	108514	108533	557
	532333	CCATGACAACAATTTCAGAG	58	109486	109505	558
	532334	ACAAATAGCAATGAATGGGT	45	110878	110897	559
15	532335	CAACAAATAGCAATGAATGG	47	110880	110899	560
	532336	GTACACAAATCAGTAGCTCT	72	115087	115106	561
	532337	CTATGTCAAAAAGACTGAAA	4	116370	116389	562
20	532338	ATATACAGAACATTTCATCC	13	116743	116762	563
	532339	AGAATAGATAAGAACTCACC	32	117195	117214	564
	532340	AGGAAAGATACAGTCATTTT	5	117507	117526	565
25	532341	GCACAAAGAACACCTGGGAA	43	117781	117800	566
	532342	CAAGAAGTCTGGGATTATGT	0	117938	117957	567
	532343	GTTAGTTATTAAGCTAATCA	48	118245	118264	568
30	532344	AACCATTATTTATAGGCTAA	14	119127	119146	569
	532345	CCAGAATGCGATCACTTCTT	76	120826	120845	570
	532346	CCAGAAATTATCCTCCTCTC	70	121209	121228	571
35	532347	AGGGAAATGCAAATTAAAAC	20	122479	122498	572
	532348	GCATCAAGATACAGAAAAAT	24	122751	122770	573
	532349	GAATGTTTATGAGATTTTTC	0	123571	123590	574
40	532350	GCCAATTATATTGCCACATT	23	124413	124432	575
	532351	ATACTTGCTTATGTAGAAAT	45	124589	124608	576
	532352	TAATACTTGCTTATGTAGAA	3	124591	124610	577
45	532353	GAACACATGGCATTCTGATA	36	125178	125197	578
	532354	CAGAATTTGCAGTATAAATC	0	126051	126070	579
	532355	TATGTTTTGAAATCTTATTT	0	126157	126176	580
50	532356	ACTCACTGCTACCTCATTAA	11	126998	127017	581
	532357	AAGCAGTGATAGGGTATCTG	59	127080	127099	582
	532358	ATGAGGCCTATTACAATGGA	14	127170	127189	583
55	532359	CTGGAGTCTCATGAGGCCTA	53	127180	127199	584
	532360	TGACTATCAGCCTTTTAATC	45	127663	127682	585
	532361	TTCAGAGAACAACCTTTGAA	0	127959	127978	586
60	532362	AGCCATGTGTGATCTGATGT	53	128813	128832	587
	532363	GAAATTTACTCCAAACTAGC	17	128992	129011	588
	532364	AACATCCAGACCACCATCTA	35	130094	130113	589
65	532365	GTACCAAACCATTCATGCTC	56	131036	131055	590

(continuación)

Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 1 de la SEQ ID NO: 2 SEQ ID NO: 2 Sitio de SEQ ID NO: 2 SITIO D													
Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQIDNO: 2 Sitio de parada	SEQIC NO								
532366	AGTACCAAACCATTCATGCT	24	131037	131056	591								
532367	TTATAGAGCTTGAGATTGAC	7	132165	132184	592								
532368	AGTCCATTATAGAGCTTGAG	58	132171	132190	593								
532369	AACCATGAGATGCAATGCAG	40	132498	132517	594								
532370	AGGATTGAGAATCGCTGATT	42	133168	133187	595								
532371	TCTAAAGCATGGCCAGGATT	48	133182	133201	596								
532372	GGGACTGAGTATTGATACTT	44	133222	133241	597								
532373	AGAAGTAGGGTGTTCCAGAT	29	133523	133542	598								
532374	AGAAATAGTCTTCCTACTAA	0	133547	133566	599								
532375	GCCTCCTTTAAGCTTCTATG	22	134240	134259	600								
532376	GGCCTGCCTTTACTTTCCCA	36	134598	134617	601								

		Inhibición de A	ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 2 de la SEQ ID NO: 2	MOE dirigido	s a intrones 1	y 2 de la SEQ ID NO): 2	
SISI ∘N	SEQ ID NO: 1 Sitio de inicio	SEQ ID NO: 1 Sitio de parada	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
523638	n/a	n/a	ACCTCAGTGGACTCTTTCCA	Intrón 1	4	84684	84703	602
523639	n/a	n/a	CAAACCTAAGTTCAAGTCCT	Intrón 1	62	85523	85542	603
523640	n/a	n/a	AGTITCACTICTIGAATCAA	Intrón 1	38	86373	86392	604
523641	n/a	n/a	AAGATCAAATGAGGTCAAGG	Intrón 1	30	87181	87200	909
523642	n/a	n/a	TAGATACAAATTTCATCACA	Intrón 1	23	88063	88082	909
523643	n/a	n/a	ATTCCTAAAATAGGAGCAGG	Intrón 1	45	88870	88889	209
523644	n/a	n/a	TTTTATGTTGTATAAGATA	Intrón 1	0	89670	89689	809
523645	n/a	n/a	GTTCAGCCAATACATGAGTA	Intrón 1	48	90473	90492	609
523646	n/a	n/a	CCAGAGGGAGTTCATTACCA	Intrón 1	62	91273	91292	610
523647	n/a	n/a	TCTCTCTAATTCAACCTTAT	Intrón 1	4	92107	92126	611
523648	n/a	n/a	ATAATCCTCAGACCTCTTTA	Intrón 1	59	92925	92944	612
523649	n/a	n/a	CACTGTGGCAGAATTCCAAG	Intrón 1	28	93762	93781	613
523650	n/a	n/a	ACACCTTGGTGCCTAGAAGC	Intrón 1	25	94581	94600	614
523651	n/a	n/a	GTAGCAATGACACCTAAGAA	Intrón 1	28	95394	95413	615
523652	n/a	n/a	TTTAAAATAATAAATGCTTA	Intrón 1	0	96194	96213	616
523653	n/a	n/a	TCATTTGGTCCTTAGACCCC	Intrón 1	27	96994	97013	617
523654	n/a	n/a	TTATTCATCTAGGCCGAGTG	Intrón 1	22	97800	97819	618
523655	n/a	n/a	ТТССАСААТСТТСТСТТСС	Intrón 1	92	98627	98646	619
523656	n/a	n/a	ACCATAAAGCTATGCCATAA	Intrón 1	63	99481	00966	620
523657	n/a	n/a	GGCAAGGAGCACAATAGGAC	Intrón 1	20	100281	100300	621
523658	e/u	n/a	ACCCAAAAAGTTGAGCTGAG	Intrón 1	99	101081	101100	622
523659	е/и	n/a	TAGATTTTCAGACTCTTTCT	Intrón 1	46	101887	101906	623
523660	e/u	n/a	AATTTCAATATTGTTGTT	Intrón 1	0	102760	102779	624
523661	n/a	n/a	ATGCTTTTAATGGCACCCAA	Intrón 1	69	103569	103588	625

	SEQ ID NO	626	627	628	629	630	631	632	633	634	635	969	289	829	629	640	149	642	643	644	645	949	647	648
2	SEQ ID NO: 2 Sitio de parada	104405	105274	106166	106985	107785	108585	109401	110422	111222	112049	112861	113665	114465	115469	116380	117187	118018	118840	119678	120497	121398	122199	123050
y 2 de la SEQ ID NO:	SEQ ID NO: 2 Sitio de inicio	104386	105255	106147	106966	107766	108566	109382	110403	111203	112030	112842	113646	114446	115450	116361	117168	117999	118821	119659	120478	121379	122180	123031
s a intrones 1	% de inhibición	37	45	14	71	27	25	90	4	41	12	31	28	13	0	0	0	0	25	31	37	0	56	34
MOE dirigido	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1
Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 2 de la SEQ ID NO: 2	Secuencia	CATGTCTCACATCCAGGTCA	TTCACTGGAGTAGACTTTTA	CTTATAAGGGAGGTCTGGTA	GCATAATTCTTAAGGGCCCT	CCACAGAACTTCTTTAAAA	GGTGACCATGATTTTAACAA	AACAGCTGCATGACAATTTT	AGAAACAGAATCAGTGACTT	CAGATTCCAGAGAAAGCCA	TGTGAGAAGAACTCTATCAC	CTCACAAATCACCACTAAAG	CAACGAGTGGATAAAGAAAC	ATAAAACTGGATCCTCATCT	ATTAAAACTCTCAGCAAAAT	AAAGACTGAAAGAACACAAA	TATCTGCTGCCTTCAGGAGA	TTTGAATTAACCCAATTCAA	TCTTAATTTACAACAGAGGA	AGAAAAGTGACAGGCTTCCC	ATGTTCCTTGAAGATCCCAA	ATGAATAACACTTGCCACAA	GTATGTTTATCACAGCACAG	AAACACTGCAATATTAGGTT
Inhibición de A	SEQ ID NO: 1 Sitio de parada	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	SISI aN	523662	523663	523664	523665	523666	523667	523668	523669	523670	523671	523672	523673	523674	523675	523676	523677	523678	523679	523680	523681	523682	523683	523684

	SEQID	649	059	651	652	653	654	929	959	657	859	629	099	199	662	663	664	999	999	299	899	699	670	671
2	SEQ ID NO: 2 Sitio de parada	123955	124783	125613	126434	127236	128073	128873	129673	130505	131305	132105	132972	133877	134697	135519	136325	137152	138054	138876	139790	140612	141431	142248
y 2 de la SEQ ID NO:	SEQ ID NO: 2 Sitio de inicio	123936	124764	125594	126415	127217	128054	128854	129654	130486	131286	132086	132953	133858	134678	135500	136306	137133	138035	138857	139771	140593	141412	142229
s a intrones 1	% de inhibición	39	o	72	9	17	12	21	18	0	5	0	0	34	0	14	-	28	0	0	0	0	0	42
MOE dirigido	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1																
Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 2 de la SEQ ID NO: 2	Secuencia	GATTGGTGCTTTTCAAACTG	ATTTGTAAGACAAACATGAA	TCACATGACTATGTTCTGGC	AGTCCTGTCCACACTATTAA	CTGGGCTCTGCCTGCTGAAC	AAAACCCTTAAGTATTTCCT	CTCTGTTTCAAACCCCCCAG	GGACAGAACACCAATCACAA	ACCTACCCTTCAAAGTCACG	TTCAGTTCCCAGGAGGCTTA	TTTTGCAATGTCTAGCAATT	ATTAAGATCAGAAAATATTA	TTAATGAGATATTTTGCACC	GAGAGGTTAAGTAAATCTCC	CAGACTCAAATTTGAAAATT	GATAAGGCAATAATACAGCC	ATCATTTGCCAATTTCTGTG	CAAGAAGAAAGATGCAAAA	AATTTATTTCCTTCCTATGA	TTTTGGAAATGTGAGAAACG	AAACACATGAGAAAAGATGA	TGTTGGCTCAGTGGGAATGA	TGAACAGGTTTGCATTTCTC
Inhibición de A	SEQ ID NO: 1 Sitio de parada	n/a	n/a	n/a	n/a	n/a	n/a	n/a																
	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a																
	SISI _ō N	523685	523686	523687	523688	523689	523690	523691	523692	523693	523694	523695	523696	523697	523698	523699	523700	523701	523702	523703	523704	523705	523706	523707

	SEQ ID NO	672	673	674	675	929	229	678
2	SEQ ID NO: 2 Sitio de parada	143048	143848	144650	145450	146257	147281	148081
y 2 de la SEQ ID NO:	SEQ ID NO: 2 Sitio de inicio	143029	143829	144631	145431	146238	147262	148062
s a intrones 1	% de inhibición	38	0	12	88	7.1	29	06
MOE dirigido	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 2	Intrón 2	Intrón 2	Intrón 2
Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 2 de la SEQ ID NO: 2	Secuencia	TCCTAGGTGAACAGGCTATG	CCCTAATCAGGCTGAAATAA	AGGGCCAGTAAGGTTTGCTT	AGCCTGAATTCTGAGCTCTG	AGAGGATCTCAGCTGCAATT	GAAAATCCCTGCTCAAGTGC	TGCCTGATATTGTAATTCTT
Inhibición de A	SEQ ID NO: 1 Sitio de parada	n/a						
	SEQ ID NO: 1 Sitio de inicio	n/a						
	SISI ₉ N	523708	523709	523710	523711	523712	523713	523714

Tabla 11

		Inhibición de ARNm de GHR por ga	pmers 5-10	0-5 MOE dirig	idos a intrones 1 y 2	2 de la SEQ ID NO:	2
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
	532377	CTCATACAGTGAAGTCTTCA	Intrón 1	73	135431	135450	679
10	532378	CTCACTAAGCTTGATTCACT	Intrón 1	67	135818	135837	680
	532379	GATACAGAAATCCCAGTGAC	Intrón 1	46	136111	136130	681
	532380	TGTGCTTGGGTGTACAGGCA	Intrón 1	71	136282	136301	682
15	532381	TCAAGCACTTACATCATATG	Intrón 1	42	136377	136396	683
	532382	AGGGTTAGTTATTACACTTA	Intrón 1	60	136576	136595	684
	532383	AGGCTTCATGTGAGGTAACA	Intrón 1	58	136996	137015	685
20	532384	TGAAAGCTTAGTACAAGAAG	Intrón 1	51	138048	138067	686
	532385	CTCTCCTCTTGGAGATCCAG	Intrón 1	58	138782	138801	687
	532386	GCTGAGATTTCTCTCCTCTT	Intrón 1	78	138792	138811	688
25	532387	CTTTTGCTGAGATTTCTCTC	Intrón 1	58	138797	138816	689
	532388	GAACATATGTCCATAGAATG	Intrón 1	57	141700	141719	690
	532389	GAACAGGCTATGTAATCAAA	Intrón 1	68	143021	143040	691
30	532390	TTTTTATTACTGTGCAAACC	Intrón 1	41	143878	143897	692
	532391	ACTGAGGGTGGAAATGGAAA	Intrón 2	23	145059	145078	693
	532392	ATGCCATACTTTTCATTTCA	Intrón 2	87	146351	146370	694
35	532393	TCTTTAAAGATTTCCTATGC	Intrón 2	66	146367	146386	695
	532394	TCACAATTAAATTATGTTTA	Intrón 2	47	149858	149877	696
	532395	TTTGCCATCACCAAACACCA	Intrón 2	94	150972	150991	697
40	532396	TCAGAATGCTGAAGGATGGG	Intrón 2	70	152208	152227	698
	532397	ACAATTGCAGGAGAGAACTG	Intrón 2	57	152296	152315	699
	532398	GTTCAGTCACCTGGAAAGAG	Intrón 2	62	152549	152568	700
45	532399	CGGAGTTCAGTCACCTGGAA	Intrón 2	77	152553	152572	701
	532400	AATCTAAAGTTCAATGTCCA	Intrón 2	77	152752	152771	702
	532401	CCACCTTTGGGTGAATAGCA	Intrón 2	95	153921	153940	703
50	532402	CAACATCAAAAGTTTCCACC	Intrón 2	81	153936	153955	704
	532403	AAGCTTCTATCAACCAACTG	Intrón 2	87	154093	154112	705
	532404	ACCATTTTCTAATAATTCAC	Intrón 2	46	154502	154521	706
55	532405	ACCTGCACTTGGACAACTGA	Intrón 2	60	154727	154746	707
	532406	GTCAGTGCTTTGGTGATGTA	Intrón 2	11	155283	155302	708
	532407	TAGAAGCACAGGAACTAGAG	Intrón 2	68	155889	155908	709
60	532408	TTTAATTTTATTAGAAGCAC	Intrón 2	14	155900	155919	710
	532409	GAGCAAGAATTAAGAAAATC	Intrón 2	29	155973	155992	711
	532410	CTCTGCAGTCATGTACACAA	Intrón 2	93	156594	156613	712
65	532411	GCTTGGTTTGTCAATCCTTT	Intrón 2	95	156889	156908	713

		Inhibición de ARNm de GHR por ga	•	0-5 MOE dirig	idos a intrones 1 y 2	2 de la SEQ ID NO:	2
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
	532412	GTTCTCAAGCAGGAGCCATT	Intrón 2	70	157330	157349	714
10	532413	AGGGTGATCTTCCAAAACAA	Intrón 2	87	158612	158631	715
	532414	TCTCCTATGCTTCCTTTAAT	Intrón 2	25	158813	158832	716
	532415	GACATAAATATGTTCACTGA	Intrón 2	81	159216	159235	717
15	532416	TTACTGAGTGACAGTACAGT	Intrón 2	65	161588	161607	718
	532417	CCAGGCACCAGCACAGGCAC	Intrón 2	47	161950	161969	719
	532418	TTAATGTCAGTAGAAAGCTG	Intrón 2	0	162349	162368	720
20	532419	GCAGGTGGAAAGAAGATGTC	Intrón 2	50	162531	162550	721
	532420	GCCAGGGTCTTTACAAAGTT	Intrón 2	93	162751	162770	722
	532421	CATTACCTTTGTACATGTAC	Intrón 2	83	164839	164858	723
25	532422	GAAGCAACTTCTCTGAGGTC	Intrón 2	68	165040	165059	724
	532423	GCCTGGCAAGAAGGGCCCTT	Intrón 2	56	165856	165875	725
	532424	ACACATGTTTTTAAATTTAT	Intrón 2	21	166241	166260	726
30	532425	TCACAATGCACTAAAAGAAA	Intrón 2	53	168760	168779	727
	532426	TCCCAATGACTTACTGTAGA	Intrón 2	78	169073	169092	728
	532427	TAAGCATTTATGGAGGAATG	Intrón 2	46	169134	169153	729
35	532428	TGAGGTGGGTGGCCAACAGG	Intrón 2	66	170081	170100	730
	532429	GTTTTTCATTTTGATTGCAG	Intrón 2	88	170158	170177	731
	532430	AGCTCAAGTGTTTTTCATTT	Intrón 2	64	170167	170186	732
40	532431	CAATGTCACAGCTGTTTCCT	Intrón 2	62	170272	170291	733
	532432	GAACTTTGGAGGCTTTTAGA	Intrón 2	55	170703	170722	734
	532433	TGTATGCCCCAAACTCCCAT	Intrón 2	83	171431	171450	735
45	532434	ACACAAATAAGGGAATAATA	Intrón 2	24	171549	171568	736
	532435	TAGTTCAGCCACTATGGAAA	Intrón 2	47	171926	171945	737
	532436	CTCCAAATTCCAGTCCTAGG	Intrón 2	93	172746	172765	738
50	532437	AGTTGGCACTGCTATATCAG	Intrón 2	66	173668	173687	739
	532438	GGCCTTAGATTGTAAGTTTT	Intrón 2	69	174122	174141	740
	532439	TTTTAGTATTATTGTAGGAA	Intrón 2	16	174188	174207	741
55	532440	TTTCATTAATGAAACCTGAT	Intrón 2	39	174812	174831	742
	532441	CCCTCAGCTGCCTCTTCAAT	Intrón 2	51	175014	175033	743
	532442	TATTGTATCCTGGCCCCTAA	Intrón 2	68	175689	175708	744
60	532443	AGAACAAGAGCCTAGAAGTA	Intrón 2	35	176592	176611	745
	532444	GTGACTATGTCACTGAATTT	Intrón 2	14	176918	176937	746
	532445	GCCCTACCCAGCAGCCTGTG	Intrón 2	79	177540	177559	747
65	532446	CAAACATAAAGAGAGTTCCA	Intrón 2	79	177811	177830	748

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 2 de la SEQ ID NO: 2												
	Inhibición de ARNm de GHR por ga	pmers 5-10	0-5 MOE dirig	idos a intrones 1 y 2	2 de la SEQ ID NO	: 2							
Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO							
532447	CTTTAAATGAAGTAGAGCTC	Intrón 2	0	178090	178109	749							
532448	CTGTTCAAAGAATGCAGGCC	Intrón 2	70	178905	178924	750							
532449	GTCTAGCCTAACAGAGATAT	Intrón 2	47	179137	179156	751							
532450	AAAGAGTGATGTCTAGCCTA	Intrón 2	55	179147	179166	752							
532451	CACTTCTTACTCCTTTGAGG	Intrón 2	50	179631	179650	753							
532452	TTCCACAAGAAACTCAGTTT	Intrón 2	56	181514	181533	754							
532453	AGAAATGCCAAAGATAGCTC	Intrón 2	56	182105	182124	755							

		Inhibición de ARNm de GHR po	or gapmers 5-	10-5 MOE dirigidos a ir	ntrón 2 de la SEQ ID NO	: 2
25	Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO
	533249	AGCAGAGGATCTCAGCTGCA	84	146241	146260	756
30	533250	AATCCCTGCTCAAGTGCTAC	75	147259	147278	757
	533251	AAATCCCTGCTCAAGTGCTA	71	147260	147279	758
	533252	AAAATCCCTGCTCAAGTGCT	73	147261	147280	759
35	533253	AGAAAATCCCTGCTCAAGTG	56	147263	147282	760
	533254	AAGAAAATCCCTGCTCAAGT	58	147264	147283	761
	533255	CAAGAAAATCCCTGCTCAAG	46	147265	147284	762
40	533256	CTGATATTGTAATTCTTGGT	91	148059	148078	763
	533257	CCTGATATTGTAATTCTTGG	90	148060	148079	764
	533258	GCCTGATATTGTAATTCTTG	94	148061	148080	765
45	533259	ATGCCTGATATTGTAATTCT	91	148063	148082	766
	533260	AATGCCTGATATTGTAATTC	74	148064	148083	767
	533261	CAATGCCTGATATTGTAATT	76	148065	148084	768
50	533262	AATTATGTGCTTTGCCTGCA	92	148904	148923	769
	533263	CAATTATGTGCTTTGCCTGC	83	148905	148924	770
	533264	TCAATTATGTGCTTTGCCTG	83	148906	148925	771
55	533265	TGTCAATTATGTGCTTTGCC	91	148908	148927	772
	533266	ATGTCAATTATGTGCTTTGC	83	148909	148928	773
	533267	GATGTCAATTATGTGCTTTG	74	148910	148929	774
60	533268	CTGGTGACTCTGCCTGATGA	77	151385	151404	775
	533269	GCTGGTGACTCTGCCTGATG	87	151386	151405	776
	533270	TGCTGGTGACTCTGCCTGAT	89	151387	151406	777
65	533271	GCTGCTGGTGACTCTGCCTG	94	151389	151408	778

		Inhibición de ARNm de GHR po	or gapmers 5-	-10-5 MOE dirigidos a ir	ntrón 2 de la SEQ ID NO	: 2
5	Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO
	533272	GGCTGCTGGTGACTCTGCCT	77	151390	151409	779
	533273	TGGCTGCTGGTGACTCTGCC	82	151391	151410	780
10	533274	GCTGAAGGATGGGCATCCAG	85	152201	152220	781
	533275	TGCTGAAGGATGGGCATCCA	85	152202	152221	782
	533276	ATGCTGAAGGATGGGCATCC	78	152203	152222	783
15	533277	GAATGCTGAAGGATGGGCAT	66	152205	152224	784
	533278	AGAATGCTGAAGGATGGGCA	81	152206	152225	785
	533279	CAGAATGCTGAAGGATGGGC	85	152207	152226	786
20	533280	TCCAGTAGTCAATATTATTT	87	153001	153020	787
	533281	ATCCAGTAGTCAATATTATT	85	153002	153021	788
	533282	TATCCAGTAGTCAATATTAT	69	153003	153022	789
25	533283	GTTATCCAGTAGTCAATATT	77	153005	153024	790
	533284	GGTTATCCAGTAGTCAATAT	85	153006	153025	791
	533285	TGGTTATCCAGTAGTCAATA	86	153007	153026	792
30	533286	CAACTTGAGGACAATAAGAG	35	155591	155610	793
	533287	TCAACTTGAGGACAATAAGA	62	155592	155611	794
	533288	CTCAACTTGAGGACAATAAG	86	155593	155612	795
35	533289	AACTCAACTTGAGGACAATA	82	155595	155614	796
	533290	TAACTCAACTTGAGGACAAT	66	155596	155615	797
	533291	ATAACTCAACTTGAGGACAA	87	155597	155616	798
40	533292	CAGGAAGAAAGGAACCTTAG	77	156391	156410	799
	533293	CCAGGAAGAAAGGAACCTTA	84	156392	156411	800
	533294	ACCAGGAAGAAAGGAACCTT	86	156393	156412	801
45	533295	AGACCAGGAAGAAAGGAACC	74	156395	156414	802
	533296	TAGACCAGGAAGAAAGGAAC	59	156396	156415	803
	533297	ATAGACCAGGAAGAAAGGAA	65	156397	156416	804
50	533298	TACAATGCACAGGACACGCC	73	157198	157217	805
	533299	CTACAATGCACAGGACACGC	85	157199	157218	806
	533300	GCTACAATGCACAGGACACG	83	157200	157219	807
55	533301	ATGCTACAATGCACAGGACA	89	157202	157221	808
	533302	TATGCTACAATGCACAGGAC	82	157203	157222	809
	533303	ATATGCTACAATGCACAGGA	84	157204	157223	810
60	533304	CTGATATTTATTGCTGTACG	76	158006	158025	811
	533305	CTCTGATATTTATTGCTGTA	80	158008	158027	812
	533306	TCTCTGATATTTATTGCTGT	86	158009	158028	813
65	533307	GTCTCTGATATTTATTGCTG	80	158010	158029	814

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 2 de la SEQ ID NO: 2									
5	Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO				
	533308	CCAGAAGAATTACCCATGCA	85	165550	165569	815				
	533309	TCCAGAAGAATTACCCATGC	84	165551	165570	816				
10	533310	TTCCAGAAGAATTACCCATG	81	165552	165571	817				
	533311	TCTTCCAGAAGAATTACCCA	58	165554	165573	818				
	533312	ATCTTCCAGAAGAATTACCC	64	165555	165574	819				
15	533313	CATCTTCCAGAAGAATTACC	58	165556	165575	820				
	533314	TTTCTGCAGTATCCTAGCCT	78	166350	166369	821				
	533315	GTTTCTGCAGTATCCTAGCC	88	166351	166370	822				
20	533316	AGTTTCTGCAGTATCCTAGC	86	166352	166371	823				
	533317	TCAGTTTCTGCAGTATCCTA	88	166354	166373	824				
	533318	TTCAGTTTCTGCAGTATCCT	87	166355	166374	825				
25	533319	TTTCAGTTTCTGCAGTATCC	80	166356	166375	826				
	533320	GTTTCCATTTTCTTGATTCC	70	169601	169620	827				
	533321	TGTTTCCATTTTCTTGATTC	54	169602	169621	828				
30	533322	GTGTTTCCATTTTCTTGATT	55	169603	169622	829				
	533323	TGGTGTTTCCATTTTCTTGA	73	169605	169624	830				
	533324	ATGGTGTTTCCATTTTCTTG	76	169606	169625	831				
35	533325	AATGGTGTTTCCATTTTCTT	78	169607	169626	832				

Tabla 13

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE targeting intrones 2 y 3 de la SEQ ID NO: 2									
Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO				
533326	AACCCATTTCATCCATTTAA	Intrón 2	93	175369	175388	833				
533327	GAACCCATTTCATCCATTTA	Intrón 2	83	175370	175389	834				
533328	GGAACCCATTTCATCCATTT	Intrón 2	92	175371	175390	835				
533329	TAGGAACCCATTTCATCCAT	Intrón 2	91	175373	175392	836				
533330	GTAGGAACCCATTTCATCCA	Intrón 2	95	175374	175393	837				
533331	GGTAGGAACCCATTTCATCC	Intrón 2	92	175375	175394	838				
533332	TGAGGGATTGCCTCAGTAGC	Intrón 2	66	179616	179635	839				

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE targeting intrones 2 y 3 de la SEQ ID NO: 2							
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO	
	533333	TTGAGGGATTGCCTCAGTAG	Intrón 2	72	179617	179636	840	
10	533334	TTTGAGGGATTGCCTCAGTA	Intrón 2	67	179618	179637	841	
15	533335	CCTTTGAGGGATTGCCTCAG	Intrón 2	74	179620	179639	842	
10	533336	TCCTTTGAGGGATTGCCTCA	Intrón 2	66	179621	179640	843	
20	533337	CTCCTTTGAGGGATTGCCTC	Intrón 2	76	179622	179641	844	
	533338	AACTTAGGACTTGGGACATT	Intrón 2	64	184575	184594	845	
25	533339	TAACTTAGGACTTGGGACAT	Intrón 2	54	184576	184595	846	
	533340	CTAACTTAGGACTTGGGACA	Intrón 2	63	184577	184596	847	
30	533341	CACTAACTTAGGACTTGGGA	Intrón 2	82	184579	184598	848	
	533342	TCACTAACTTAGGACTTGGG	Intrón 2	77	184580	184599	849	
35	533343	GTCACTAACTTAGGACTTGG	Intrón 2	83	184581	184600	850	
40	533344	TGGGCTAGATCAGGATTGGT	Intrón 2	81	188617	188636	851	
	533345	ATGGGCTAGATCAGGATTGG	Intrón 2	70	188618	188637	852	
45	533346	CATGGGCTAGATCAGGATTG	Intrón 2	64	188619	188638	853	
	533347	ACCATGGGCTAGATCAGGAT	Intrón 2	82	188621	188640	854	
50	533348	TACCATGGGCTAGATCAGGA	Intrón 2	88	188622	188641	855	
	533349	CTACCATGGGCTAGATCAGG	Intrón 2	87	188623	188642	856	
55	533350	ATGAGCTTAGCAGTCACTTA	Intrón 2	83	189482	189501	857	
	533351	CATGAGCTTAGCAGTCACTT	Intrón 2	87	189483	189502	858	
60	533352	CCATGAGCTTAGCAGTCACT	Intrón 2	92	189484	189503	859	
65	533353	GTCTCAGCAAACCTGGGATA	Intrón 2	84	190283	190302	860	

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE targeting intrones 2 y 3 de la SEQ ID NO: 2								
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO		
	533354	TGTCTCAGCAAACCTGGGAT	Intrón 2	82	190284	190303	861		
10	533355	ATGTCTCAGCAAACCTGGGA	Intrón 2	81	190285	190304	862		
15	533356	GAATGTCTCAGCAAACCTGG	Intrón 2	76	190287	190306	863		
	533357	GGAATGTCTCAGCAAACCTG	Intrón 2	82	190288	190307	864		
20	533358	AGGAATGTCTCAGCAAACCT	Intrón 2	85	190289	190308	865		
	533359	TACAGACATAGCTCTAACCT	Intrón 2	79	191139	191158	866		
25	533360	ATACAGACATAGCTCTAACC	Intrón 2	79	191140	191159	867		
	533361	GATACAGACATAGCTCTAAC	Intrón 2	71	191141	191160	868		
30	533362	TGGATACAGACATAGCTCTA	Intrón 2	79	191143	191162	869		
25	533363	CTGGATACAGACATAGCTCT	Intrón 2	82	191144	191163	870		
35	533364	GCTGGATACAGACATAGCTC	Intrón 2	95	191145	191164	871		
40	533365	ACACTGTTTGTGAGGGTCAA	Intrón 2	87	191939	191958	872		
	533366	AACACTGTTTGTGAGGGTCA	Intrón 2	81	191940	191959	873		
45	533367	CAACACTGTTTGTGAGGGTC	Intrón 2	85	191941	191960	874		
	533368	AACAACACTGTTTGTGAGGG	Intrón 2	65	191943	191962	875		
50	533369	AAACAACACTGTTTGTGAGG	Intrón 2	76	191944	191963	876		
	533370	CAAACAACACTGTTTGTGAG	Intrón 2	67	191945	191964	877		
55	533371	TTCAAGTTTAGGATCTGCAG	Intrón 2	73	196536	196555	878		
60	533372	CTTCAAGTTTAGGATCTGCA	Intrón 2	88	196537	196556	879		
60	533373	GCTTCAAGTTTAGGATCTGC	Intrón 2	86	196538	196557	880		
65	533374	GGGCTTCAAGTTTAGGATCT	Intrón 2	67	196540	196559	881		

Inhibición de ARNm de GHR por gapmers 5-10-5 MOE targeting intrones 2 y 3 de la SEQ ID NO: 2								
Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO		
533375	AGGGCTTCAAGTTTAGGATC	Intrón 2	66	196541	196560	882		
533376	CAGGGCTTCAAGTTTAGGAT	Intrón 2	74	196542	196561	883		
533377	TGTGGCTTTAATTCACTAAT	Intrón 2	84	198145	198164	884		
533378	ATGTGGCTTTAATTCACTAA	Intrón 2	86	198146	198165	885		
533379	TATGTGGCTTTAATTCACTA	Intrón 2	79	198147	198166	886		
533380	GGTATGTGGCTTTAATTCAC	Intrón 2	83	198149	198168	887		
533381	TGGTATGTGGCTTTAATTCA	Intrón 2	81	198150	198169	888		
533382	GTGGTATGTGGCTTTAATTC	Intrón 2	86	198151	198170	889		
533383	TCTGTGTTCAGTTGCATCAC	Intrón 2	75	199817	199836	890		
533384	TTCTGTGTTCAGTTGCATCA	Intrón 2	82	199818	199837	891		
533385	GTTCTGTGTTCAGTTGCATC	Intrón 2	86	199819	199838	892		
533386	GTACTCATGAGGAGGCACTT	Intrón 2	81	201413	201432	893		
533387	GGTACTCATGAGGAGGCACT	Intrón 2	82	201414	201433	894		
533388	TGGTACTCATGAGGAGGCAC	Intrón 2	78	201415	201434	895		
533389	ATTGGTACTCATGAGGAGGC	Intrón 2	64	201417	201436	896		
533390	AATTGGTACTCATGAGGAGG	Intrón 2	47	201418	201437	897		
533391	CAATTGGTACTCATGAGGAG	Intrón 2	54	201419	201438	898		
533392	AAACTCTGCAACTCCAACCC	Intrón 2	69	205549	205568	899		
533393	GAAACTCTGCAACTCCAACC	Intrón 2	64	205550	205569	900		
533394	GGAAACTCTGCAACTCCAAC	Intrón 2	83	205551	205570	901		
533395	ATGGAAACTCTGCAACTCCA	Intrón 2	88	205553	205572	902		
	533375 533376 533377 533378 533380 533381 533384 533385 533386 533387 533388 533389 533390 533391 533392 533393	№ ISIS Secuencia 533375 AGGGCTTCAAGTTTAGGATC 533376 CAGGGCTTCAAGTTTAGGAT 533377 TGTGGCTTTAATTCACTAAT 533378 ATGTGGCTTTAATTCACTA 533379 TATGTGGCTTTAATTCACTA 533380 GGTATGTGGCTTTAATTCAC 533381 TGGTATGTGGCTTTAATTCA 533382 GTGGTATGTGGCTTTAATTC 533383 TCTGTGTTCAGTTGCATCAC 533384 TTCTGTGTTCAGTTGCATCA 533385 GTTCTGTGTTCAGTTGCATC 533386 GTACTCATGAGGAGGCACT 533387 GGTACTCATGAGGAGGCACT 533388 TGGTACTCATGAGGAGGC 533399 AATTGGTACTCATGAGGAGG 533391 CAATTGGTACTCATGAGGAGG 533392 AAACTCTGCAACTCCAACCC 533393 GAAACTCTGCAACTCCAACC 533394 GGAAACTCTGCAACTCCAACC 533394 GGAAACTCTGCAACTCCAACC	№ ISIS Secuencia Región objetivo 533375 AGGGCTTCAAGTTTAGGATC Intrón 2 533376 CAGGGCTTCAAGTTTAGGAT Intrón 2 533377 TGTGGCTTTAATTCACTAAT Intrón 2 533378 ATGTGGCTTTAATTCACTAA Intrón 2 533379 TATGTGGCTTTAATTCACTAA Intrón 2 533380 GGTATGTGGCTTTAATTCAC Intrón 2 533381 TGGTATGTGGCTTTAATTCA Intrón 2 533382 GTGGTATGTGGCTTTAATTCAC Intrón 2 533383 TCTGTGTTCAGTTGCATCAC Intrón 2 533384 TTCTGTGTTCAGTTGCATCAC Intrón 2 533385 GTACTCATGAGGAGGCACTT Intrón 2 533386 GTACTCATGAGGAGGCACTT Intrón 2 533387 GGTACTCATGAGGAGGCACT Intrón 2 533388 TGGTACTCATGAGGAGGCAC Intrón 2 533399 AATTGGTACTCATGAGGAGG Intrón 2 533390 AATTGGTACTCATGAGGAGG Intrón 2 533391 CAATTGGTACTCATGAGGAG Intrón 2 533392 AAACTCTGCAACTCCAACCC Intrón 2	№ ISIS Secuencia Región objetivo objetivo de inhibición % de inhibición 533375 AGGGCTTCAAGTTTAGGATC 2 66 533376 CAGGGCTTCAAGTTTAGGAT 2 74 533377 TGTGGCTTTAATTCACTAAT 2 84 533378 ATGTGGCTTTAATTCACTAA 2 Intrón 2 86 533379 TATGTGGCTTTAATTCACTA 2 Intrón 2 83 533380 GGTATGTGGCTTTAATTCAC 2 Intrón 2 83 533381 TGGTATGTGGCTTTAATTCA 2 Intrón 2 86 533382 GTGGTATGTGGCTTTAATTCA 2 1ntrón 2 86 533384 TTCTGTGTTCAGTTGCATCA 2 1ntrón 2 82 533385 GTTCTGTGTTCAGTTGCATCA 2 82 82 533386 GTACTCATGAGGAGGCACTT 2 81 81 533387 GGTACTCATGAGGAGGCACTT 2 82 82 533388 TGGTACTCATGAGGAGGCACT 2 82 82 533389 ATTGGTACTCATGAGGAGGC 2 Intrón 2 64 533390 AATTGGTACTCATGAGGAGG 2 Intrón 2 54 533391 CA	Nº ISIS Secuencia Región objetivo objetivo objetivo de inhibición SEQ ID NO: 2 Sitio de inicio 533375 AGGGCTTCAAGTTTAGGATC 2 66 196541 533376 CAGGGCTTCAAGTTTAGGAT 2 66 196542 533377 TGTGGCTTTAATTCACTAAT 2 84 198145 533378 ATGTGGCTTTAATTCACTAA 2 101 101 101 2 79 198146 533379 TATGTGGCTTTAATTCACTAA 2 101 101 101 2 79 198147 533380 GGTATGTGGCTTTAATTCAC 2 83 198149 198150 533381 TGGTATGTGGCTTTAATTCA 2 101 101 101 2 86 198151 198150 533382 GTGGTATGTGGATTGATTCA 2 101 101 101 2 86 198151 198151 533383 TCTGTGTTCAGTTGCATCA 2 101 101 101 2 82 199818 199817 533384 TTCTGTGTTCAGTTGCATCA 2 101 101 101 2 82 199818 199819 533385 GTACTCATGAGGAGGCACTT 2 82 201413 101 101 101 101 101 101 101 101 101 101	Nº ISIS Secuencia Región objetivo de inhibición SEQ ID NO: 2 Sitio de inicio SEQ ID NO: 2 Sitio de inicio 533375 AGGGCTTCAAGTTTAGGATC Intrón 2 66 196541 196560 533376 CAGGGCTTCAAGTTTAGGAT Intrón 2 74 196542 196561 533377 TGTGGCTTTAATTCACTAAT 2 1ntrón 2 86 198145 198164 533378 ATGTGGCTTTAATTCACTAA 2 1ntrón 2 86 198146 198165 533380 GGTATGTGGCTTTAATTCACTA 2 1ntrón 2 81 198149 198168 533381 TGGTATGTGGCTTTAATTCAC 2 1ntrón 2 81 198150 198169 533382 GTGGTATGTGGCTTTAATTCAC 2 1ntrón 2 81 86 198151 198170 533383 TCTGTGTTCAGTTGCATCAC 2 1ntrón 2 82 199818 199836 533384 TCTGTGTTCAGTTGCATCAC 2 1ntrón 2 82 199818 199837 533385 GTACTCATGAGGAGGCACTT 2 82 199818 199838 533386 GTACTCATGAGGAGGCACTT 3 81 201413 201432 533387 GTACTCATGAGGAGGCACT 3 82 201414 201433 533388 TGGACTCATGAGGAGGCACT 3 82 20		

Inhibición de ARNm de GHR por gapmers 5-10-5 MOE targeting intrones 2 y 3 de la SEQ ID NO: 2									
Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO			
533396	CATGGAAACTCTGCAACTCC	Intrón 2	70	205554	205573	903			
533397	TCATGGAAACTCTGCAACTC	Intrón 2	69	205555	205574	904			
533398	ACATCTGGATGTGAGGCTCG	Intrón 3	64	210559	210578	905			
533399	CACATCTGGATGTGAGGCTC	Intrón 3	84	210560	210579	906			
533400	GTCACATCTGGATGTGAGGC	Intrón 3	75	210562	210581	907			
533401	TGTCACATCTGGATGTGAGG	Intrón 3	51	210563	210582	908			
533402	CTGTCACATCTGGATGTGAG	Intrón 3	30	210564	210583	909			

30 Tabla

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2								
Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO			
523715	GTCAATTATGTGCTTTGCCT	Intrón 2	91	148907	148926	910			
523716	ACATTCAAAATTCTTCCTTG	Intrón 2	50	149787	149806	911			
523717	ATCCTGCATATATTTTATTG	Intrón 2	20	150588	150607	912			
523718	CTGCTGGTGACTCTGCCTGA	Intrón 2	77	151388	151407	913			
523719	AATGCTGAAGGATGGGCATC	Intrón 2	66	152204	152223	914			
523720	TTATCCAGTAGTCAATATTA	Intrón 2	71	153004	153023	915			
523721	TCTCATGTTAAAGTTCTTAA	Intrón 2	48	153831	153850	916			
523722	TGCACTTGGACAACTGATAG	Intrón 2	29	154724	154743	917			
523723	ACTCAACTTGAGGACAATAA	Intrón 2	88	155594	155613	918			
523724	GACCAGGAAGAAAGGAACCT	Intrón 2	72	156394	156413	919			

		Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2										
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO					
	523725	TGCTACAATGCACAGGACAC	Intrón 2	80	157201	157220	920					
10	523726	TCTGATATTTATTGCTGTAC	Intrón 2	73	158007	158026	921					
15	523727	ATGCTTCCTTTAATAAATGT	Intrón 2	0	158807	158826	922					
10	523728	AACATTTAGAACCTAGGAGA	Intrón 2	20	159610	159629	923					
20	523729	CAAGCTTGCAAGTAGGAAAA	Intrón 2	51	160410	160429	924					
	523730	CCAGGCTGTTCATGCCAAGG	Intrón 2	26	161248	161267	925					
25	523731	CCTGCCAAGGGCAAGCCAGG	Intrón 2	17	162064	162083	926					
	523732	TTTCACCTGGTGACTGGAAG	Intrón 2	51	163019	163038	927					
30	523733	ATTTTCTACCATCAAAGAGA	Intrón 2	4	163943	163962	928					
	523734	GATTAAGTTTTCTTTAAAAA	Intrón 2	0	164746	164765	929					
35	523735	CTTCCAGAAGAATTACCCAT	Intrón 2	56	165553	165572	930					
40	523736	CAGTTTCTGCAGTATCCTAG	Intrón 2	77	166353	166372	931					
. •	523737	TATTTTGAAAATGAGATTCA	Intrón 2	0	167195	167214	932					
45	523738	GTGGCCCGAGTAAAGATAAA	Intrón 2	21	167995	168014	933					
	523739	CCTGTCAATCCTCTTATATG	Intrón 2	37	168804	168823	934					
50	523740	GGTGTTTCCATTTTCTTGAT	Intrón 2	65	169604	169623	935					
	523741	ACAGGGTCAAAAGTTCACTT	Intrón 2	44	170407	170426	936					
55	523742	TAGGAAAGCTGAGAGAATCC	Intrón 2	35	171207	171226	937					
	523743	AGCATATGAAAAAATACTCA	Intrón 2	0	172101	172120	938					
60	523744	CTTCAGAAATCAGCATCTGA	Intrón 2	45	172937	172956	939					
65	523745	TTACAAGTGACAGTGTTTGT	Intrón 2	28	173737	173756	940					

		Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2										
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO					
	523746	ATCAGACCCTGAAGAATTTA	Intrón 2	29	174560	174579	941					
10	523747	AGGAACCCATTTCATCCATT	Intrón 2	83	175372	175391	942					
15	523748	CACATTGGTAACTTAAAGTT	Intrón 2	18	176263	176282	943					
.0	523749	TATTATCTGACTCATTTCTG	Intrón 2	16	177072	177091	944					
20	523750	AAATAAGACAAAGAAAATTC	Intrón 2	0	177872	177891	945					
	523751	TTTTAAAAATAACCAATTCA	Intrón 2	0	178788	178807	946					
25	523752	CTTTGAGGGATTGCCTCAGT	Intrón 2	66	179619	179638	947					
	523753	ACAGTCCTCATGAACAGATT	Intrón 2	37	180513	180532	948					
30	523754	ACTATCATTAATAATATTGT	Intrón 2	0	181323	181342	949					
0.5	523755	ATCTAGATTTGCCTTATAAG	Intrón 2	27	182123	182142	950					
35	523756	TGGTTGAGGAAGACAGTCTC	Intrón 2	16	182962	182981	951					
40	523757	TGGCTCATAACTTCCTTAGC	Intrón 2	43	183762	183781	952					
	523758	ACTAACTTAGGACTTGGGAC	Intrón 2	72	184578	184597	953					
45	523759	CTTATAGCATTACTAAGTGG	Intrón 2	49	185403	185422	954					
	523760	TGGTGGCAGGAGAGAGGGAA	Intrón 2	48	186203	186222	955					
50	523761	TTTGCCAGGAAATCTTGAAA	Intrón 2	35	187003	187022	956					
	523762	ATAACTTTTCTCTGAAATTT	Intrón 2	8	187803	187822	957					
55	523763	CCATGGGCTAGATCAGGATT	Intrón 2	59	188620	188639	958					
	523764	TGAGCTTAGCAGTCACTTAG	Intrón 2	62	189481	189500	959					
60	523765	AATGTCTCAGCAAACCTGGG	Intrón 2	62	190286	190305	960					
65	523766	GGATACAGACATAGCTCTAA	Intrón 2	75	191142	191161	961					

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2										
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO				
	523767	ACAACACTGTTTGTGAGGGT	Intrón 2	66	191942	191961	962				
10	523768	TCTATTTTCTAATAGCTGTT	Intrón 2	49	192742	192761	963				
15	523769	GGCCCACCTCTGACCTTCA	Intrón 2	7	193542	193561	964				
.0	523770	TGGTAAAGCTAGAAAAAAAA	Intrón 2	0	194346	194365	965				
20	523771	AAGTGGTAAATATGATCACA	Intrón 2	23	195159	195178	966				
	523772	GGCTTCAAGTTTAGGATCTG	Intrón 2	52	196539	196558	967				
25	523773	TTGTTGACACTCTCTTTTGG	Intrón 2	18	197348	197367	968				
	523774	GTATGTGGCTTTAATTCACT	Intrón 2	71	198148	198167	969				
30	523775	AATTAGTTGTTTTGGCAAAT	Intrón 2	14	198988	199007	970				
05	523776	CTGTGTTCAGTTGCATCACG	Intrón 2	75	199816	199835	971				
35	523777	AATGTGGAAGTTTCCTAACA	Intrón 2	15	200616	200635	972				
40	523778	TTGGTACTCATGAGGAGGCA	Intrón 2	58	201416	201435	973				
	523779	TTTCTCTGTGTTTAAAATTG	Intrón 2	13	202308	202327	974				
45	523780	GTAAAGCACAATGAACAAAA	Intrón 2	21	203115	203134	975				
	523781	ATCACAGATCTTTGCTACAA	Intrón 2	51	203915	203934	976				
50	523782	TCCTGCCTTTCTGAACCAAA	Intrón 2	50	204721	204740	977				
	523783	TGGAAACTCTGCAACTCCAA	Intrón 2	58	205552	205571	978				
55	523784	ACACAGTAGGGAACAATTTT	Intrón 2	8	206412	206431	979				
00	523785	AGACAGATGGTGAAATGATG	Intrón 2	0	207219	207238	980				
60	523786	AAACAGAAAGAGAAGAAAAC	Intrón 2	0	208117	208136	981				
65	523787	CTTAGATAAATACTTCAAGA	Intrón 3	0	208938	208957	982				

			(0011111	iddololi)							
5		Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2									
	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO				
10	523788	AGCCACTTCTTTTACAACCT	Intrón 3	0	209742	209761	983				
15	523789	TCACATCTGGATGTGAGGCT	Intrón 3	80	210561	210580	984				
15	523790	GACTGAAACTTAAAGGTGGG	Intrón 3	7	211399	211418	985				
20	523791	AAAGATGTGCAATCATCTAA	Intrón 3	44	212204	212223	986				

Tabla 15

		Inhibición de ARNm de GHR por gapmers 3-10-4 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2										
25	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQIDNO:2 Sitio de inicio	SEQIDNO:2 Sitio de parada	SEQ ID NO					
	539360	GCTGGTGACTCTGCCTG	Intrón 2	95	151389	151405	987					
30	539361	TGCTGGTGACTCTGCCT	Intrón 2	95	151390	151406	988					
	539362	CTGCTGGTGACTCTGCC	Intrón 2	93	151391	151407	989					
	539363	AGTAGTCAATATTATTT	Intrón 2	31	153001	153017	990					
35	539364	CAGTAGTCAATATTATT	Intrón 2	13	153002	153018	991					
	539365	CCAGTAGTCAATATTAT	Intrón 2	34	153003	153019	992					
	539366	CCTTTGGGTGAATAGCA	Intrón 2	64	153921	153937	993					
40	539367	ACCTTTGGGTGAATAGC	Intrón 2	78	153922	153938	994					
	539368	CACCTTTGGGTGAATAG	Intrón 2	40	153923	153939	995					
	539369	CAACTTGAGGACAATAA	Intrón 2	38	155594	155610	996					
45	539370	TCAACTTGAGGACAATA	Intrón 2	63	155595	155611	997					
	539371	CTCAACTTGAGGACAAT	Intrón 2	81	155596	155612	998					
	539372	CAGGAAGAAAGGAACCT	Intrón 2	70	156394	156410	999					
50	539373	CCAGGAAGAAAGGAACC	Intrón 2	59	156395	156411	1000					
	539374	ACCAGGAAGAAAGGAAC	Intrón 2	43	156396	156412	1001					
	539375	TGCAGTCATGTACACAA	Intrón 2	93	156594	156610	1002					
55	539376	CTGCAGTCATGTACACA	Intrón 2	91	156595	156611	1003					
	539377	TCTGCAGTCATGTACAC	Intrón 2	87	156596	156612	1004					
	539378	TGGTTTGTCAATCCTTT	Intrón 2	95	156889	156905	1005					
60	539379	TTGGTTTGTCAATCCTT	Intrón 2	97	156890	156906	1006					
	539380	CTTGGTTTGTCAATCCT	Intrón 2	97	156891	156907	1007					
	539381	TACAATGCACAGGACAC	Intrón 2	65	157201	157217	1008					
65	539382	CTACAATGCACAGGACA	Intrón 2	85	157202	157218	1009					
			•									

	Inhibición de ARNm de GHR por gapmers 3-10-4 MOE dirigidos a intrones 2 y 3 de la SEQ ID NO: 2									
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQIDNO:2 Sitio de inicio	SEQIDNO:2 Sitio de parada	SEQ ID NO			
	539383	GCTACAATGCACAGGAC	Intrón 2	96	157203	157219	1010			
10	539384	GATATTTATTGCTGTAC	Intrón 2	43	158007	158023	1011			
	539385	TGATATTTATTGCTGTA	Intrón 2	35	158008	158024	1012			
	539386	CTGATATTTATTGCTGT	Intrón 2	38	158009	158025	1013			
15	539387	AGGGTCTTTACAAAGTT	Intrón 2	61	162751	162767	1014			
	539388	CAGGGTCTTTACAAAGT	Intrón 2	65	162752	162768	1015			
	539389	CCAGGGTCTTTACAAAG	Intrón 2	88	162753	162769	1016			
20	539390	TTCTGCAGTATCCTAGC	Intrón 2	72	166352	166368	1017			
	539391	TTTCTGCAGTATCCTAG	Intrón 2	53	166353	166369	1018			
	539392	GTTTCTGCAGTATCCTA	Intrón 2	84	166354	166370	1019			
25	539393	AGTTTCTGCAGTATCCT	Intrón 2	78	166355	166371	1020			
	539394	CAGTTTCTGCAGTATCC	Intrón 2	77	166356	166372	1021			
	539395	CAAATTCCAGTCCTAGG	Intrón 2	60	172746	172762	1022			
30	539396	CCAAATTCCAGTCCTAG	Intrón 2	75	172747	172763	1023			
	539397	TCCAAATTCCAGTCCTA	Intrón 2	62	172748	172764	1024			
	539398	AACCCATTTCATCCATT	Intrón 2	82	175372	175388	1025			
35	539399	GAACCCATTTCATCCAT	Intrón 2	86	175373	175389	1026			
	539400	GGAACCCATTTCATCCA	Intrón 2	84	175374	175390	1027			
	539401	GCTTCATGTCTTTCTAG	Intrón 2	88	189119	189135	1028			
40	539402	TGCTTCATGTCTTTCTA	Intrón 2	77	189120	189136	1029			
	539403	GTGCTTCATGTCTTTCT	Intrón 2	95	189121	189137	1030			
	539404	TGAGCTTAGCAGTCACT	Intrón 2	92	189484	189500	1031			
45	539405	CATGAGCTTAGCAGTCA	Intrón 2	82	189486	189502	1032			
	539406	TACAGACATAGCTCTAA	Intrón 2	45	191142	191158	1033			
	539407	ATACAGACATAGCTCTA	Intrón 2	53	191143	191159	1034			
50	539408	GATACAGACATAGCTCT	Intrón 2	67	191144	191160	1035			
	539409	TGTGGCTTTAATTCACT	Intrón 2	70	198148	198164	1036			
	539410	ATGTGGCTTTAATTCAC	Intrón 2	40	198149	198165	1037			
55	539411	TATGTGGCTTTAATTCA	Intrón 2	35	198150	198166	1038			
	539412	TGTTCAGTTGCATCACG	Intrón 2	84	199816	199832	1039			
	539413	GTGTTCAGTTGCATCAC	Intrón 2	80	199817	199833	1040			
60	539414	TGTGTTCAGTTGCATCA	Intrón 2	74	199818	199834	1041			
00	539415	CATCTGGATGTGAGGCT	Intrón 3	82	210561	210577	1042			
	539416	ACATCTGGATGTGAGGC	Intrón 3	86	210562	210578	1043			
65	539417	CACATCTGGATGTGAGG	Intrón 3	55	210563	210579	1044			

	Inhibición de ARNm de GHR	por gapme	rs 3-10-4 MO	E dirigidos a intrones 2	2 y 3 de la SEQ ID NO	: 2
Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQIDNO: 2 Sitio de inicio	SEQIDNO:2 Sitio de parada	SEQ ID NO
539418	TCAGGTAATTTCTGGAA	Intrón 3	35	219019	219035	1045
539419	CTCAGGTAATTTCTGGA	Intrón 3	44	219020	219036	1046
539420	TCTCAGGTAATTTCTGG	Intrón 3	31	219021	219037	1047
539421	TTGCTTATTTACCTGGG	Intrón 3	0	225568	225584	1048
539422	TTTGCTTATTTACCTGG	Intrón 3	38	225569	225585	1049
539423	TTTTGCTTATTTACCTG	Intrón 3	33	225570	225586	1050
539424	ATGATGTTACTACTACT	Intrón 3	29	229618	229634	1051
539425	AATGATGTTACTACTAC	Intrón 3	10	229619	229635	1052
539426	CAATGATGTTACTACTA	Intrón 3	0	229620	229636	1053
539427	CCCCTAGAGCAATGGTC	Intrón 3	67	232826	232842	1054
539428	CCCCCTAGAGCAATGGT	Intrón 3	65	232827	232843	1055
539429	TCCCCCTAGAGCAATGG	Intrón 3	45	232828	232844	1056
539430	TCAATTGCAGATGCTCT	Intrón 3	78	237675	237691	1057
539431	CTCAATTGCAGATGCTC	Intrón 3	82	237676	237692	1058
539432	GCTCAATTGCAGATGCT	Intrón 3	92	237677	237693	1059
539433	AGCTCAATTGCAGATGC	Intrón 3	85	237678	237694	1060
539434	GTATATTCAGTCCAAGG	Intrón 3	73	248231	248247	1061
539435	AGTATATTCAGTCCAAG	Intrón 3	70	248232	248248	1062
539436	CAGTATATTCAGTCCAA	Intrón 3	40	248233	248249	1063

Tabla 16

	Inhibición de ARNm de GHR por o	gapmers 5-	10-5 MOE diri	igidos a intrones 1 y	/ 3 de la SEQ ID NO): 2
Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
532502	GAGTATTTCAGGCTGGAAAA	Intrón 3	43	214623	214642	1064
				26501	26520	
533404	GTAACTCAGGAATGGAAAAC	Intrón 1	56	113035	113054	1065
		'		121992	122011	
	AGTAACTCAGGAATGGAAAA	Intrón 1		26502	26521	
533405			41	113036	113055	1066
		'		121993	122012	
				26503	26522	
533406	AAGTAACTCAGGAATGGAAA	Intrón 1	43	113037	113056	1067
		'		121994	122013	1

_		Inhibición de ARNm de GHR por g		tinuación) ·10-5 MOE diri	igidos a intrones 1 v	/ 3 de la SEQ ID NC): 2
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
10					143207	143226	
				-	143235	143254	
				-	143263	143282	
15					143291	143310	
	533407	GAGATTTCAAATAAATCTCA	Intrón	0	143319	143338	1068
	333407	GAGATITOAAATAAATOTOA	1	U	143347	143366	1000
20					143375	143394	
			143403	143422			
					143431	143450	
25					143459	143478	
					143208	143227	
					143236	143255	
30	533408	TGAGATTTCAAATAAATCTC	Intrón 1		143264	143283	1069
					143292	143311	
				11	143320	143339	
35	333400			1	143348	143367	
					143376	143395	
					143404	143423	
40					143432	143451	
					143460	143479	
					143209	143228	
45					143237	143256	
					143265	143284	
					143293	143312	
50	533409	GTGAGATTTCAAATAAATCT	Intrón	0	143321	143340	1070
	333409	GIGAGATITOAAATAAATOT	1		143349	143368	1070
					143377	143396	
55					143405	143424	
					143433	143452	
					143461	143480	

60

_		Inhibición de ARNm de GHR por g		tinuación) 10-5 MOF dir	igidos a intrones 1 y	v 3 de la SEO ID NO)· 2
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
10					143210	143229	
					143238	143257	
					143266	143285	
15					143294	143313	
	522440		Intrón		143322	143341	1071
	533410	TGTGAGATTTCAAATAAATC	1	0	143350	143369	1071
20					143378	143397	
					143406	143425	
					143434	143453	
25					143462	143481	
					143183	143202	
					143211	143230	
30					143239	143258	
		TTGTGAGATTTCAAATAAAT	Intrón 1		143267	143286	
					143295	143314	
35	533411			10	143323	143342	1072
			'	-	143351	143370	
				-	143379	143398	
40					143407	143426	
					143435	143454	
					143463	143482	
45					143184	143203	
					143212	143231	
					143240	143259	
50	522442		Intrón		143296	143315	1072
	533412	TTTGTGAGATTTCAAATAAA	1	0	143324	143343	1073
					143352	143371	1
55				143380	143399	1	
					143464	143483	

60

5	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 3 de la SEQ ID NO: 2								
	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO		
10					143185	143204			
					143213	143232			
					143241	143260			
15	533413	CTTTGTGAGATTTCAAATAA	Intrón	20	143297	143316	1074		
	333413	CITIGIGAGATITOAAATAA	1	20	143325	143344	1074		
					143353	143372			
20					143381	143400			
					143465	143484			
					143186	143205			
25					143214	143233			
					143242	143261			
	533414	ACTTTGTGAGATTTCAAATA	Intrón	57	143298	143317	1075		
30	533414	ACTITIGIGAGATITICAAATA	1	57	143326	143345	1075		
					143354	143373			
					143382	143401			
35					143466	143485			
					143187	143206			
					143215	143234			
40					143243	143262			
	533415	CACTTTGTGAGATTTCAAAT	Intrón	69	143299	143318	1076		
	533415	CACTITGTGAGATTTCAAAT	1	09	143327	143346	1076		
45					143355	143374			
					143383	143402			
					143467	143486			
50	533895	AGTATTTCAGGCTGGAAAAA	Intrón 3	35	214622	214641	1077		
	533896	TGAGTATTTCAGGCTGGAAA	Intrón 3	55	214624	214643	1078		
55	533897	TCTGAGTATTTCAGGCTGGA	Intrón 3	71	214626	214645	1079		
60	533898	ATCTGAGTATTTCAGGCTGG	Intrón 3	77	214627	214646	1080		
60	533899	TATCTGAGTATTTCAGGCTG	Intrón 3	58	214628	214647	1081		
65	533900	TTTTGTGTTATGCCTTGAGG	Intrón 3	51	221483	221502	1082		

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 1 y 3 de la SEQ ID NO: 2										
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO				
	533901	TTTTTGTGTTATGCCTTGAG	Intrón 3	55	221484	221503	1083				
10	533902	ATTTTTGTGTTATGCCTTGA	Intrón 3	57	221485	221504	1084				
15	533903	ATATTTTTGTGTTATGCCTT	Intrón 3	56	221487	221506	1085				
.0	533904	AATATTTTTGTGTTATGCCT	Intrón 3	61	221488	221507	1086				
20	533905	AAATATTTTTGTGTTATGCC	Intrón 3	18	221489	221508	1087				
	533906	TTGCTTATTTACCTGGGTAA	Intrón 3	58	225565	225584	1088				
25	533907	TTTGCTTATTTACCTGGGTA	Intrón 3	64	225566	225585	1089				
	533908	TTTTGCTTATTTACCTGGGT	Intrón 3	77	225567	225586	1090				
30	533909	CCTTTTGCTTATTTACCTGG	Intrón 3	69	225569	225588	1091				
0-	533910	GCCTTTTGCTTATTTACCTG	Intrón 3	69	225570	225589	1092				
35	533911	TGCCTTTTGCTTATTTACCT	Intrón 3	55	225571	225590	1093				
40	533912	ATGATGTTACTACTCAA	Intrón 3	60	229615	229634	1094				
	533913	AATGATGTTACTACTACTCA	Intrón 3	48	229616	229635	1095				
45	533914	CAATGATGTTACTACTC	Intrón 3	57	229617	229636	1096				
	533915	TCCAATGATGTTACTACTAC	Intrón 3	69	229619	229638	1097				
50	533916	TTCCAATGATGTTACTACTA	Intrón 3	74	229620	229639	1098				
	533917	ATTCCAATGATGTTACTACT	Intrón 3	74	229621	229640	1099				
55	533918	CCCCTAGAGCAATGGTCTAG	Intrón 3	71	232823	232842	1100				
	533919	CCCCCTAGAGCAATGGTCTA	Intrón 3	44	232824	232843	1101				
60	533920	TCCCCCTAGAGCAATGGTCT	Intrón 3	54	232825	232844	1102				
65	533921	TATCCCCCTAGAGCAATGGT	Intrón 3	62	232827	232846	1103				

		Inhibición de ARNm de GHR por g	apmers 5-	10-5 MOE dir	igidos a intrones 1 y	/ 3 de la SEQ ID NC): 2
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
	533922	ATATCCCCCTAGAGCAATGG	Intrón 3	50	232828	232847	1104
10	533923	AATATCCCCCTAGAGCAATG	Intrón 3	61	232829	232848	1105
15	533924	GCTCACATTTGGAAGACAGT	Intrón 3	68	233623	233642	1106
15	533925	GGCTCACATTTGGAAGACAG	Intrón 3	74	233624	233643	1107
20	533926	AGGCTCACATTTGGAAGACA	Intrón 3	56	233625	233644	1108
	533927	AGAGGCTCACATTTGGAAGA	Intrón 3	34	233627	233646	1109
25	533928	TAGAGGCTCACATTTGGAAG	Intrón 3	18	233628	233647	1110
	533929	TTAGAGGCTCACATTTGGAA	Intrón 3	19	233629	233648	1111
30	533930	CTCAATTGCAGATGCTCTGA	Intrón 3	66	237673	237692	1112
	533931	GCTCAATTGCAGATGCTCTG	Intrón 3	72	237674	237693	1113
35	533932	AGCTCAATTGCAGATGCTCT	Intrón 3	74	237675	237694	1114
40	533933	AAAGCTCAATTGCAGATGCT	Intrón 3	66	237677	237696	1115
10	533934	TAAAGCTCAATTGCAGATGC	Intrón 3	59	237678	237697	1116
45	533935	ATAAAGCTCAATTGCAGATG	Intrón 3	23	237679	237698	1117
	533936	GTGAGTCCATTAAACCTCTT	Intrón 3	73	244873	244892	1118
50	533937	TGTGAGTCCATTAAACCTCT	Intrón 3	73	244874	244893	1119
	533938	ACTGTGAGTCCATTAAACCT	Intrón 3	17	244876	244895	1120
55	533939	AACTGTGAGTCCATTAAACC	Intrón 3	19	244877	244896	1121
	533940	GAACTGTGAGTCCATTAAAC	Intrón 3	28	244878	244897	1122
60	533941	ATATTGAAAGGCCCATCAAA	Intrón 3	13	246498	246517	1123
65	533942	AATATTGAAAGGCCCATCAA	Intrón 3	31	246499	246518	1124

		Inhibición de ARNm de GHR por g	apmers 5-	10-5 MOE dir	igidos a intrones 1 y	/ 3 de la SEQ ID NC): 2
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
40	533943	AAATATTGAAAGGCCCATCA	Intrón 3	51	246500	246519	1125
10	533944	GAAAATATTGAAAGGCCCAT	Intrón 3	22	246502	246521	1126
15	533945	GGAAAATATTGAAAGGCCCA	Intrón 3	42	246503	246522	1127
	533946	AGGAAAATATTGAAAGGCCC	Intrón 3	28	246504	246523	1128
20	533947	GTATATTCAGTCCAAGGATC	Intrón 3	65	248228	248247	1129
	533948	AGTATATTCAGTCCAAGGAT	Intrón 3	63	248229	248248	1130
25	533949	CAGTATATTCAGTCCAAGGA	Intrón 3	67	248230	248249	1131
	533950	AACAGTATATTCAGTCCAAG	Intrón 3	56	248232	248251	1132
30	533951	AAACAGTATATTCAGTCCAA	Intrón 3	60	248233	248252	1133
35	533952	AAAACAGTATATTCAGTCCA	Intrón 3	59	248234	248253	1134
33	533953	TCTATTGTTGCCACCTTTAT	Intrón 3	45	252838	252857	1135
40	533954	TTCTATTGTTGCCACCTTTA	Intrón 3	52	252839	252858	1136
	533955	TTTCTATTGTTGCCACCTTT	Intrón 3	46	252840	252859	1137
45	533956	AGTTTCTATTGTTGCCACCT	Intrón 3	59	252842	252861	1138
	533957	CAGTTTCTATTGTTGCCACC	Intrón 3	41	252843	252862	1139
50	533958	CCAGTTTCTATTGTTGCCAC	Intrón 3	48	252844	252863	1140

55

60

Tabla 17

	Inhibición de ARNm de GHR po	or gapmers 5-	10-5 MOE dirigidos a ir	itrón 3 de la SEQ ID NO	: 2		
Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO		
532454	GCAGAACTGATTGCTTACTT	78	182862	182881	1141		
532455	AGGTCATAAGATTTTCATTT	48	183533	183552	1142		
532456	GCCTCTGGCCATAAAGAAAT	54	183578	183597	1143		

	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 3 de la SEQ ID NO: 2								
5	Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO			
	532457	AAAGTTTAAGAGGCACCCCA	31	184508	184527	1144			
	532458	GAATAAGCACAAAAGTTTAA	28	184519	184538	1145			
10	532459	GAACCAAATAAACCTCTCTT	52	185452	185471	1146			
	532460	ATGTTGAAATTTGATCCCCA	79	185763	185782	1147			
	532461	TGTGAGAGCTCACTCACTAT	42	186134	186153	1148			
15	532462	CTTGTGAGAGCTCACTCACT	72	186136	186155	1149			
	532463	ACATGGTGGCAGGAGAGAG	42	186206	186225	1150			
	532464	CTAGAAAGAAACTACCTGAG	12	186341	186360	1151			
20	532465	AACTTCAGTTGTAAAATAAT	27	187044	187063	1152			
	532466	GAAAAGGATTTTGAGATTTC	43	188897	188916	1153			
	532467	CTTAGCTGTCAAGGCCCTTT	80	189084	189103	1154			
25	532468	TGTGCTTCATGTCTTTCTAG	88	189119	189138	1155			
	532469	CCCTTGAACATGCTATCCTT	85	189256	189275	1156			
	532470	CTTGCAGGGATGCATCTCAG	87	189625	189644	1157			
30	532471	TCTCTTGCACATCTAATTTC	82	189656	189675	1158			
	532472	CTTCCAGCACAACCCATCAC	77	190109	190128	1159			
	532473	GTAACTACATTCCCTTTATC	52	190860	190879	1160			
35	532474	AGTAACTACATTCCCTTTAT	58	190861	190880	1161			
	532475	CAGATAGCACAGGGCTAAAA	84	190979	190998	1162			
	532476	AGAATCAGGAATGTTTGCCT	86	192904	192923	1163			
40	532477	TGACTCAATCATTTAGACTT	45	192990	193009	1164			
	532478	TCAACAGTCAATGGACTTGT	71	193042	193061	1165			
	532479	AATTTCTACTGCTATGATGC	75	194806	194825	1166			
45	532480	ATGGTTCCAAATTTCTATCT	86	195704	195723	1167			
	532481	CTGTATGGCTTTAAGTATTC	63	196756	196775	1168			
	532482	AACTTATGAACTGTTCACCA	86	198307	198326	1169			
50	532483	AATAAGCTTGAAGTCTGAAG	63	199520	199539	1170			
	532484	TAGTTATCTAACTGCCCAAT	77	199544	199563	1171			
	532485	TTCTGCAAAGCTTCCCAGTA	72	200314	200333	1172			
55	532486	ACAACTTCAAGCTTCACATA	65	200599	200618	1173			
	532487	GAATCAATGTTCTGGCAAGA	52	201842	201861	1174			
	532488	CAGCCTTTCAGCTGTGAAAG	52	204181	204200	1175			
60	532489	AACAATGCCAAGAAATCTAT	74	204369	204388	1176			
	532490	CCCACAGTAACAATGCCAAG	90	204377	204396	1177			
	532491	TTTTACCTCCCAGTGAAACT	34	205896	205915	1178			
65	532492	TAATTGTTGATCCATGATGT	5	208856	208875	1179			

		Inhibición de ARNm de GHR po	r gapmers 5-	apmers 5-10-5 MOE dirigidos a intrón 3 de la SEQ ID NO: 2					
5	Nº ISIS	Secuencia	% de inhibición		SEQ ID NO: 2 Sitio de parada	SEQID NO			
	532493	GTTGGAGAGACAAGTTTAAC	29	208975	208994	1180			
	532494	AGTCATAAAATTCAAATTAT	39	209537	209556	1181			
10	532495	GGCCTTGGGCACACTTTCTC	82	207510	207529	1182			
	002400	0000110000//0//0111010	UZ.	210189	210208	1102			
	532496	AAGTTTTTATTGAAGTTAAT	0	212551	212570	1183			
15	532497	AAGAAAATTAGGAAGCTAG	31	212649	212668	1184			
	532498	CAGGGAGATAAGTTTATTCA	61	212797	212816	1185			
	532499	ATTTAATACACATTGGAATA	15	213390	213409	1186			
20	532500	GTAGGACTATTTATGATTCC	86	213914	213933	1187			
	532501	CACTCTCTTGGGCTGTTAAG	82	214479	214498	1188			
	532502	GAGTATTTCAGGCTGGAAAA	66	214623	214642	1064			
25	532503	TTGTTTGAGTTCCAAAAGAA	39	214932	214951	1189			
	532504	TTTGCCATGAGACACACAAT	77	215932	215951	1190			
	532505	CACCAAACCTCAGAGACATG	80	216468	216487	1191			
30	532506	CCACTGTTAAGTGATGCATG	83	217480	217499	1192			
	532507	CTCTCAGGTAATTTCTGGAA	86	219019	219038	1193			
	532508	GCTCCTCACAATGACCCTTT	84	219452	219471	1194			
35	532509	GGGACTGGCACTGGTAATTT	56	220062	220081	1195			
	532510	CTAACCATTAGTTACTGTAT	69	220558	220577	1196			
	532511	GGATTTTAGGTTCTTGCTGT	51	221588	221607	1197			
40	532512	TGAATCATATACTGATATCA	63	222914	222933	1198			
	532513	TTGAGGTATTAAATTTTAAA	0	223001	223020	1199			
	532514	AGTTTGTAATGTAGTGATTT	19	223156	223175	1200			
45	532515	AAATATTTGATAGCTCACAT	18	224409	224428	1201			
	532516	AGAAATATTTGATAGCTCAC	57	224411	224430	1202			
	532517	CCACATTTCAAATGTTCTCT	80	224717	224736	1203			
50	532518	GCAGGAAGAGTGGCATGGAC	59	224750	224769	1204			
	532519	CACTTATCCAAATGCAGAGA	82	225742	225761	1205			
	532520	CAAGGTAATGGGAGGCTAGC	47	225903	225922	1206			
55	532521	ATAGTCAAAGCTAAGGATAT	4	226177	226196	1207			
	532522	GTAATTTCATTCATGCTTCC	67	226804	226823	1208			
	532523	GTCCACATTCAGCTGTGTGT	72	231912	231931	1209			
60	532524	TCATTCAGGAAATTCTGCTA	62	232286	232305	1210			
	532525	AACATGTCTCATTCAGGAAA	71	232294	232313	1211			
	532526	TAACATGTCTCATTCAGGAA	85	232295	232314	1212			
65	532527	AGATTCCTCAAATTCAGTGA	66	232389	232408	1213			

	(==:::::)									
	Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrón 3 de la SEQ ID NO: 2									
Nº ISIS	Secuencia	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQID NO					
532528	TAAGCGGAAAAGGAGAAAAG	0	233684	233703	1214					
532529	AAAGCAAGAGAATTCCTAAA	32	234203	234222	1215					
532530	AATGAACCTTTAACTTAGTA	40	234876	234895	1216					

5

10

Tabla 18

15	Tabla 18 Inhibición de ARNm de GHR por gapmers 5-10-5 MOE dirigidos a intrones 3-8 ay regiones intrónica-exónica de la SEQ ID NO: 2									
	Inhibición d	e ARNm de GHR por gapmers 5-10-5 M	OE dirigidos a inti T	rones 3-8 ay reg	giones intrónica-ex	kónica de la SEQ	ı			
20	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO			
	523792	AAAGCTTTGTGGATAAAGTT	Intrón 3	44	213025	213044	1217			
	523793	GAAGGAAAGGTTCTGTGGAA	Intrón 3	38	213825	213844	1218			
25	523794	CTGAGTATTTCAGGCTGGAA	Intrón 3	84	214625	214644	1219			
	523795	TTGAATTATCCCTTTAAAAA	Intrón 3	38	215446	215465	1220			
	523796	TTTAGAATGGTTTGGCATAC	Intrón 3	66	216365	216384	1221			
30	523797	GATATGTCCACATTGATTAG	Intrón 3	65	218132	218151	1222			
50	523798	ATTATTTAAGCTTCTACTTT	Intrón 3	44	218973	218992	1223			
	523799	ATACATGGCAATTAAAAGAT	Intrón 3	26	219886	219905	1224			
35	523800	TGAGATAGTGTGGGAAATAT	Intrón 3	18	220686	220705	1225			
33	523801	TATTTTTGTGTTATGCCTTG	Intrón 3	73	221486	221505	1226			
	523802	TTATTAACTAGAATATGCCT	Intrón 3	16	223110	223129	1227			
40	523803	GATTATTCTATTTTATTTT	Intrón 3	33	223948	223967	1228			
40	523804	AGGAAGAGTGGCATGGACAT	Intrón 3	43	224748	224767	1229			
	523805	CTTTTGCTTATTTACCTGGG	Intrón 3	84	225568	225587	1230			
45	523806	TTTATATTATTAATATCATT	Intrón 3	31	226371	226390	1231			
45	523807	GGTACATGGCTTTTAAGTGG	Intrón 3	53	227218	227237	1232			
	523808	AATATTGGTCAGGTTTAAGA	Intrón 3	28	228018	228037	1233			
50	523809	ATTTCATCTCTTTCTTAGTT	Intrón 3	45	228818	228837	1234			
50	523810	CCAATGATGTTACTACTACT	Intrón 3	89	229618	229637	1235			
	523811	GTTCCCCCAACCCCTTGGAA	Intrón 3	28	230418	230437	1236			
	523812	TATAGGAAGTGAGATGTATG	Intrón 3	46	231218	231237	1237			
55	523813	ATTATTCTAGAAGAAGATTT	Intrón 3	12	232018	232037	1238			
	523814	ATCCCCCTAGAGCAATGGTC	Intrón 3	79	232826	232845	1239			
	523815	GAGGCTCACATTTGGAAGAC	Intrón 3	69	233626	233645	1240			
60	523816	TACACAAATCCAAGGCAGAG	Intrón 3	57	234447	234466	1241			
	523817	AGGAAGAGTGGGAGTGTTAC	Intrón 3	35	235258	235277	1242			
	523818	GTCCCTGACTAGGCATTTTG	Intrón 3	43	236071	236090	1243			
65		1								

	Inhibición o	de ARNm de GHR por gapmers 5-10-5 N	IOE dirigidos a int	rones 3-8 y reg	jiones intrónica-ex	ónica de la SEQ I	D NO: 2
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
	523819	AAGCTCAATTGCAGATGCTC	Intrón 3	80	237676	237695	1244
10	523820	CTGTGAGTCCATTAAACCTC	Intrón 3	81	244875	244894	1245
	523821	TGAAATGTGGCTAGTGTGAC	Intrón 3	51	245701	245720	1246
	523822	AAAATATTGAAAGGCCCATC	Intrón 3	68	246501	246520	1247
15	523823	AATGTCAATAGTGCCCTATT	Intrón 3	48	247431	247450	1248
	523824	ACAGTATATTCAGTCCAAGG	Intrón 3	82	248231	248250	1249
	523825	TGTCTATTTAAGTTTGTTGC	Intrón 3	45	250001	250020	1250
20	523826	TTCAAGTACTGTCATGAATA	Intrón 3	47	251214	251233	1251
	523827	TTTCTTTTCTTAAACTAAG	Intrón 3	11	252041	252060	1252
	523828	GTTTCTATTGTTGCCACCTT	Intrón 3	70	252841	252860	1253
25	523829	AAGGCCACATATTATAGTAT	Intrón 3	29	253698	253717	1254
	523830	ACCTGAACTATTAATTTCTT	Intrón 3	19	255397	255416	1255
	523831	GAATGGGCTGAGTAGTTGAA	Intrón 3	47	256197	256216	1256
30	523832	TGATGAACATTGCTAATTTG	Intrón 3	26	257018	257037	1257
	523833	ATCTTGCCTCGATGAAAGTT	Intrón 3	17	257818	257837	1258
	523834	TTAAGTGGCACAGCCATGAT	Intrón 3	9	258774	258793	1259
35	523835	AATGAGTTAAGTTGGAACAC	Intrón 3	25	261294	261313	1260
00	523836	TCCTTAGTAGAATGCCTGGA	Intrón 3	57	263338	263357	1261
	523837	TATGTAGAAAAATAAGCTGG	Intrón 3	0	266514	266533	1262
40	523838	GCCGAGGCAGGCACCTGAGT	Intrón 3	43	267375	267394	1263
40	523839	TGGTACCTATATTGAGAGGT	Intrón 4	46	269052	269071	1264
	523840	TTAAGGAAAAATATAGTATA	Intrón 4	7	269854	269873	1265
45	523841	TTATTTATGTGTCAGGGATG	Intrón 4	28	270668	270687	1266
40	523842	CAAAAGTTAAGTGCTTTAGG	Intrón 4	10	271468	271487	1267
	523843	TTCATAGATGTCTAAGGAAT	Intrón 4	32	273341	273360	1268
50	523844	ACCTGTGATTTACCTATTTC	Unión exón 5-intrón 5	18	274185	274204	1269
	523845	TGCCTAGAAAACCACATAAA	Intrón 5	38	274985	275004	1270
	523846	AAACATCCTCAAAGGTACCT	Intrón 5	64	275808	275827	1271
55	523847	CTTCCCTGAGACACACACAT	Intrón 5	35	276617	276636	1272
	523848	CTTCTTCAATCTTCTCATAC	Intrón 5	33	278288	278307	1273
60	523849	TACCATTTTCCATTTAGTTT	Unión exón 6-intrón 6	7	279088	279107	1274
	523850	ATTGGCATCTTTTTCAGTGG	Intrón 6	34	279902	279921	1275
	523851	TCAAGCTCACGGTTGGAGAC	Intrón 6	36	280799	280818	1276
65	523852	AAATGAAATCAGTATGTTGA	Intrón 6	0	281622	281641	1277

Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEC ID NO
523853	TGATTTATCACAAAGGTGCT	Intrón 6	29	282437	282456	127
523854	AAAACAGTAGAAAAGATTAA	Intrón 6	14	284073	284092	127
523855	CTACATCACAGCAGTCAGAA	Intrón 6	23	285187	285206	128
500050	A A A A C A T C T A A C T C T C A C A T	1.1.4.0	00	286349	286368	400
523856	AAAAGATGTAAGTGTGACAT	Intrón 6	28	286919	286938	128
523857	TTACAAGAACTGCTAAAGGG	Intrón 6	15	287151	287170	128
523858	ATAAAGAAAAGTTAACTGA	Intrón 6	9	287982	288001	128
523859	AGATAATATACTTCTTCTAT	Intrón 6	4	288809	288828	128
523860	CCTTCTTCACATGTAAATTG	Unión exón 7-intrón 7	19	290456	290475	128
523861	TTTCTATGTAGCTTGTGGTT	Intrón 7	30	291258	291277	128
523862	AGGCAGAGTTTTTATTGATA	Intrón 7	19	292058	292077	128
523863	ATAGTCACCAGCCTAAGCCT	Intrón 8	28	292858	292877	128
523864	AGACTTTTAGCATGCTTGAC	Intrón 8	56	293658	293677	128
523865	TTTACAGCCCTACAGTTCTA	Intrón 8	7	294464	294483	129
523866	CCAGAGAACCTGACTCCAAA	Intrón 8	6	295330	295349	129
523867	CAGAAGAAAATATTAGACAG	Intrón 8	10	296993	297012	129

Tabla 19

	Inhibición de ARNm de GHR por	gapmers 5	5-10-5 MOE d	irigidos a intrones 3	3-8 de la SEQ ID NO): 2
Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
532531	TATTATACTTCTAAATTCCC	Intrón 3	70	236716	236735	1293
532532	TAAAAGCAAGAAAAAGGAAC	Intrón 3	52	236889	236908	1294
532533	CCTAATTTATATGAACAAAC	Intrón 3	56	237177	237196	1295
532534	TGCAATGCCTTAGCCTAAAA	Intrón 3	86	238087	238106	1296
532535	CACCACCATTATTACACTAC	Intrón 3	75	238186	238205	1297
532536	AAATAAATCAGATTATTATA	Intrón 3	52	238242	238261	1298
532537	CTTAGATCTGTGCTGTCCAA	Intrón 3	81	245758	245777	1299
532538	GTTAGTGTTAGATTCTTTGA	Intrón 3	67	246152	246171	1300
532539	CATGCTCACGGCTGTGTTAC	Intrón 3	66	246248	246267	1301
532540	CCCATCAAATACTGAGTTCT	Intrón 3	86	246487	246506	1302
532541	GAAAGTAGTGATTAATGAGA	Intrón 3	38	247012	247031	1303
532542	ATTAATCAACAAGTGGCATT	Intrón 3	72	247203	247222	1304
532543	TTTAATTTTAGGGTTTAGAG	Intrón 3	48	248344	248363	1305

	(continuación)										
		Inhibición de ARNm de GHR por	gapmers (5-10-5 MOE d	irigidos a intrones 3	3-8 de la SEQ ID NO): 2				
5	Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO				
	532544	CTTGCTACCACTAGAGCCTT	Intrón 3	69	248694	248713	1306				
10	532545	ACCACTGACTTATATCATTT	Intrón 3	58	248743	248762	1307				
	532546	TTCCCCATTGCTAATTTTGT	Intrón 3	48	251601	251620	1308				
	532547	TCCTGAAACTTAGTAGCTGG	Intrón 3	83	253147	253166	1309				
15	532548	TGTCTTAAAAAGGAATAAAA	Intrón 3	52	253785	253804	1310				
	532549	CCTATAATAAAGTATTGTCT	Intrón 3	70	253800	253819	1311				
	532550	ATGTAAAATGGTATAGCTAC	Intrón 3	50	254040	254059	1312				
20	532551	AACCCTCACACACTTCTGTT	Intrón 3	71	254064	254083	1313				
	532552	ATTCTGCATAAGCAGTGTTT	Intrón 3	53	254246	254265	1314				
	532553	TTACTACCCTGAAGAAGAAC	Intrón 3	35	254314	254333	1315				
25	532554	AAGACCTATAACTTACTACC	Intrón 3	49	254326	254345	1316				
	532555	TTTCACAAGATTTACTTGGT	Intrón 3	77	254641	254660	1317				
	532556	CAGTTGTGATTGTCAACCTA	Intrón 3	77	257073	257092	1318				
30	532557	AATCTTGCCTCGATGAAAGT	Intrón 3	57	257819	257838	1319				
	532558	TGGCCTAAATGTATCAGTTA	Intrón 3	66	259157	259176	1320				
	532559	AGGCTTTGGGTAAAATCTTT	Intrón 3	67	259184	259203	1321				
35	532560	TATGATTTTTAAAGATTAAA	Intrón 3	20	261419	261438	1322				
	532561	GTACAGTGAAAAAGATGTGT	Intrón 3	56	263666	263685	1323				
	532562	GACAGGTATGAAGCAAAACA	Intrón 3	64	267033	267052	1324				
40	532563	TGAGCTGAGGGTCTTTGCCG	Intrón 3	61	267391	267410	1325				
	532564	AGGCTGAGTTGTACACAAAC	Intrón 4	52	269422	269441	1326				
	532565	ATGAGGAGGCTGAGTTGTAC	Intrón 4	43	269428	269447	1327				
45	532566	TCATAAAGTGGGCCCAGCTT	Intrón 4	70	270044	270063	1328				
10	532567	ACTCCTAATCCCTCAGTTTT	Intrón 4	62	270492	270511	1329				
	532568	TTTACATGCAAGGAGCTGAG	Intrón 4	61	271047	271066	1330				
50	532569	TAATGCCCTTTCTCCCTACT	Intrón 4	60	271215	271234	1331				
00	532570	CCTGTTTAGATTATCCCAAA	Intrón 4	62	271763	271782	1332				
	532571	CATGATTCACAGAATTTCTC	Intrón 4	56	271831	271850	1333				
55	532572	AGTTAGAAAACTCAAAGTAT	Intrón 4	2	271915	271934	1334				
55	532573	TCAAATGTACTTAGCATAAG	Intrón 4	9	271947	271966	1335				
	532574	ATATCAAATGTACTTAGCAT	Intrón 4	59	271950	271969	1336				
60	532575	AAAGTTCAGAAGAGGGAATG	Intrón 4	51	273233	273252	1337				
60	532576	AATTCCCATCTGAGTAGTTT	Intrón 4	56	273440	273459	1338				
	532577	GTCCCCTAATTTCAGGCTAA	Intrón 4	31	273471	273490	1339				
65	532578	CTATGTCAAATGAAACAAAA	Intrón 5	38	274205	274224	1340				
50				·			_				

	Inhibición de ARNm de GHR por	gapmers 5	5-10-5 MOE d	irigidos a intrones 3	3-8 de la SEQ ID NO): 2
Nº ISIS	Secuencia	Región objetivo	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	SEQ ID NO
532579	TGATTATGCTTTGTGATAAA	Intrón 5	42	274624	274643	1341
532580	TCCAGCTGACTAGGAGGGCT	Intrón 5	7	275732	275751	1342
532581	CATACCAGTCTCCTCGCTCA	Intrón 5	0	276738	276757	1343
532582	ATATAACAGAATCCAACCAT	Intrón 5	47	277045	277064	1344
302302	KIKIMONOMITOOMOOM	introl 5		278361	278380	1044
532583	TGCAAAATGGCCAAACTACA	Intrón 5	56	277577	277596	1345
532584	TCTTCCTAGCCACATGTGAT	Intrón 5	32	278227	278246	1346
532585	TACCATGCTCTCTAATTGCC	Intrón 6	47	279624	279643	1347
532586	AGTGATCTGTGCCAGGCTGC	Intrón 6	65	279848	279867	1348
532587	AAGTTACAGAACAGATATCT	Intrón 6	61	280012	280031	1349
532588	GTATTGTGAAAATAGTACTG	Intrón 6	45	280226	280245	1350
532589	AAACACTATCAAGCTCACGG	Intrón 6	54	280807	280826	1351
532590	TTCAAGAAAAGTCTTCAAAT	Intrón 6	24	280831	280850	1352
532591	GGATCATTTCCCCATGCATG	Intrón 6	52	280982	281001	1353
532592	ATATTATATTAAGAAAAATG	Intrón 6	4	281422	281441	1354
532593	CTCCCATGTTCATTACTTAT	Intrón 6	49	281587	281606	1355
532594	CATGACATTGGTTTGGGCAA	Intrón 6	43	282229	282248	1356
532595	AATGTTGTTGGGAAAATTGG	Intrón 6	42	282383	282402	1357
532596	AGCTGCAGGATACAAAGTCA	Intrón 6	49	282986	283005	1358
532597	ATATCCTTTCATGATAAAAA	Intrón 6	31	283354	283373	1359
532598	ATGGGCTAATATCTCTGATA	Intrón 6	50	283590	283609	1360
532599	ACATTACTAATAATTAGAGA	Intrón 6	0	285236	285255	1361
532600	ATAAAAACATATGAAAGTAT	Intrón 6	12	287093	287112	1362
532601	TTCTGAATTAAATCTATTAG	Intrón 6	16	287408	287427	1363
532602	TTACATTTTTGCAAATTTAT	Intrón 6	31	287472	287491	1364
532603	TGAACAGTTGATTAACAAAG	Intrón 6	15	287887	287906	1365
532604	AAGTTATTGGTTTACTAGAT	Intrón 6	0	288598	288617	1366
532605	TTGGAAAAGGTCCTAGAAAA	Intrón 6	24	289808	289827	1367
532606	CATGACAGAAACTTCTTAGA	Intrón 7	25	292035	292054	1368
532607	CCATACTTGCTGACAAATAT	Intrón 8	39	294389	294408	1369

Ejemplo 2: inhibición antisentido dependiente de la dosis de GHR humana en células Hep3B por gapmers MOE

Los gapmers del Ejemplo 1 que mostraron una inhibición *in vitro* significativa del ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas que se muestran a continuación. Las células se colocaron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de 0,625 µM, 1,25 µM, 2,50 µM,

5,00 µM y 10,00 µM de oligonucleótido antisentido, como se especifica en las Tablas siguientes. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima (IC₅₀) media de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

т-	_	_	$\Delta \Delta$
ıа	n	ıa	711

			i abia 20			
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
523271	41	61	73	86	92	0.8
523274	20	36	64	80	92	1.8
523324	35	45	68	91	90	1.2

Tabla 21

			I ubiu z i			
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
523604	21	42	68	58	86	2.0
523577	6	22	56	66	91	2.7
523614	14	44	61	84	87	1.9
523564	4	26	48	67	86	2.8
523633	30	43	71	82	84	1.4
523571	2	9	38	55	82	3.9

Tabla 22

I apia ZZ							
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)	
523570	25	50	64	77	88	1.5	
523592	27	42	59	79	88	1.7	
523595	21	50	62	76	90	1.6	
523596	36	47	62	75	77	1.4	
523607	49	62	71	82	84	0.5	
523615	20	49	63	83	91	1.6	
523630	4	28	54	79	78	2.6	
523661	4	34	48	73	79	2.7	
523665	4	28	54	73	79	2.7	
523687	30	56	61	78	81	1.4	
523711	42	66	78	94	95	0.7	
523712	6	37	60	72	89	2.3	
523713	4	32	55	72	85	2.5	
523714	59	75	88	95	97	0.2	
	•	•	•	•		•	

Тэ	h	ı	21

Tabla 23							
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)	
523655	26	33	60	67	78	2.1	
523656	19	33	45	69	87	2.4	
523658	0	42	62	67	79	3.1	
523715	78	90	92	93	95	<0.6	
523718	30	46	67	84	92	1.4	
523723	56	69	83	92	94	0.3	
523725	45	64	79	89	95	0.6	
523726	32	48	77	88	89	1.2	
523736	0	64	75	90	96	1.5	
523747	48	64	80	91	92	0.6	
523758	25	39	61	74	84	1.9	
523766	7	37	66	81	93	2.0	
523776	26	54	72	78	83	1.3	
523789	62	68	81	85	90	0.2	

Tabla 24

l abla 24							
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)	
523719	24	46	65	84	93	1.5	
523720	18	49	72	85	93	1.5	
523724	43	61	77	91	91	0.7	
523735	8	42	63	81	93	2.0	
523740	37	58	72	83	88	1.0	
523752	9	29	52	72	86	2.5	
523763	8	32	57	70	80	2.6	
523764	43	52	67	77	79	0.9	
523765	24	48	62	88	4	1.5	
523767	49	62	67	72	82	0.6	
523772	29	39	54	62	61	2.7	
523774	28	59	63	88	91	1.2	
523778	25	32	63	78	84	1.9	
523783	0	22	53	72	88	2.8	

Tabla 25

Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
532151	57	69	76	85	88	<0.6
532153	23	43	54	80	86	1.8
532158	46	58	81	87	87	0.6

(00	ntini	uaci.	ń'n۱

			(continuació	n)		
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
532160	17	26	55	76	92	2.2
532162	14	46	71	83	93	1.7
532164	37	76	82	90	93	0.6
532171	41	81	67	81	83	<0.6
532181	56	81	84	89	93	0.2
532186	26	65	75	83	91	1.1
532188	51	68	80	89	93	<0.6
532189	24	31	52	75	86	2.1
532197	0	40	66	85	93	2.1
532199	24	37	50	73	87	2.1
532222	12	41	67	84	94	1.8

Tabla 26

Tabla 26							
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)	
532175	41	54	76	84	89	0.9	
532223	53	69	75	88	94	<0.6	
532235	43	58	67	77	82	0.8	
532241	39	53	62	73	87	1.2	
532248	49	65	72	85	93	0.6	
532254	52	62	85	87	92	<0.6	
532300	20	29	49	66	78	2.7	
532304	26	39	66	78	90	1.7	
532316	41	66	76	86	94	0.7	
532395	32	56	84	93	97	1.0	
532401	47	80	92	96	98	<0.6	
532411	73	90	94	97	98	<0.6	
532420	38	49	82	85	97	1.0	
532436	37	58	75	90	96	0.9	

Tabla 27

			1 4314 =1			
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
532410	66	83	92	94	97	<0.6
532468	45	68	78	93	94	0.6
532469	0	17	56	76	92	2.8
532470	10	34	62	84	94	2.0
532475	13	36	52	64	87	2.5
532476	34	64	73	79	93	0.9

				(continuació	n)		
	Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
5	532480	28	54	67	78	87	1.4
	532482	21	39	69	83	92	1.7
	532490	42	60	68	84	93	0.9
10	532500	37	50	63	81	87	1.2
	532506	13	41	66	75	89	1.9
	532507	47	59	71	86	89	0.7
15	532508	0	31	73	83	89	2.2
	532526	31	56	78	79	88	1.1
20				Tabla 28			
	Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
	532495	59	74	81	87	95	<0.6
25	532501	49	53	71	83	84	0.7
	532534	53	75	85	91	97	<0.6
	532535	0	34	61	84	92	2.6
30	532537	49	67	80	90	94	<0.6
	532540	59	70	87	93	95	<0.6
	532547	57	71	81	91	92	<0.6
35	532555	48	36	61	72	85	1.3
	532556	33	57	67	86	90	1.1
40				Tabla 29			
	Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
	523421	32	57	81	82	88	1.0
45	533006	46	43	69	83	91	1.0
	533121	53	75	75	88	93	<0.6
	533122	65	77	82	90	93	<0.6
50	533123	39	71	84	91	95	0.6
	533125	49	61	81	85	91	0.6
	533131	3	57	59	82	90	1.9
55	533136	32	65	62	81	88	1.1
	533139	13	51	72	90	94	1.5
	533140	36	66	39	87	92	1.2
60	533153	50	65	83	89	90	<0.6
	533156	43	64	74	85	90	0.7

<0.6

<0.6

Ta	h	ı	31

Tabla 30						
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
533234	50	70	86	93	95	<0.6
533237	5	45	63	84	93	1.9
533233	43	55	76	90	95	0.8
533179	31	63	75	87	87	1.0
533178	53	67	76	89	94	<0.6
533187	5	15	53	79	86	2.7
533188	49	68	83	89	94	<0.6
533271	45	66	85	92	94	0.6
533134	22	45	64	81	89	1.6
533258	52	72	88	93	95	<0.6
533235	50	54	75	82	90	0.7
533262	23	54	78	91	96	1.2
533189	48	66	78	82	88	<0.6
533193	38	53	72	77	91	1.0

Tabla 31

			i abia s i			
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
533259	63	78	84	90	92	<0.6
533291	25	57	75	86	96	1.2
533256	67	76	90	95	95	<0.6
533269	42	75	82	94	97	0.6
533265	67	78	91	95	97	<0.6
533318	16	45	77	87	95	1.5
533257	55	84	91	96	96	<0.6
533280	34	62	80	91	91	0.9
533301	52	77	84	93	96	<0.6
533316	41	50	79	93	94	0.9
533270	62	71	88	94	97	<0.6
533330	46	76	93	97	98	<0.6
533317	55	60	82	87	96	<0.6
533315	39	56	82	87	93	0.9

Tabla 32

Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
533364	71	77	92	90	94	<0.6
533925	26	55	61	85	91	1.4
533326	54	77	80	93	95	<0.6

	,		
- 1	-con	tiniic	ición)
I.	COL	แบน	

Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
533916	18	62	69	83	93	1.4
533328	52	68	89	94	98	<0.6
533932	42	49	80	86	92	0.9
533352	42	82	88	93	94	<0.6
533917	20	37	57	78	84	2.0
533331	54	83	89	93	96	<0.6
533936	21	46	73	84	88	1.5
533329	56	73	84	92	98	<0.6
533937	26	32	79	86	94	1.5
533908	58	66	81	88	94	<0.6
533898	61	64	84	90	92	<0.6

Tabla 33

			l abla 33			
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
539371	32	41	82	92	98	1.2
539382	18	58	74	91	97	1.3
539392	34	59	79	94	96	0.9
539398	31	53	89	94	98	1.0
539399	31	72	87	95	97	0.8
539400	36	60	79	93	97	0.9
539405	33	58	74	91	94	1.0
539412	23	61	80	93	95	1.1
539413	53	75	86	92	96	<0.6
539415	47	62	84	91	96	0.6
539416	61	85	94	97	96	<0.6
539430	24	48	68	80	93	1.5
539431	14	40	71	89	95	1.7
539433	46	67	74	92	95	0.6

Ejemplo 3: inhibición antisentido dependiente de la dosis de GHR humana en células Hep3B por los gapmers MOE

Los gapmers de los estudios descritos anteriormente que mostraron una inhibición significativa *in vitro* del ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas mostradas a continuación. Las células se sembraron a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de 0,3125 μΜ, 0,625 μΜ, 1,25 μΜ, 2,50 μΜ, 5,00 μΜ y 10,00 μΜ de oligonucleótido antisentido, como se especifica en las Tablas siguientes. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima (IC_{50}) media de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

1	0

2	0

n	\sim	
4		

_			_
ı a	b	ıa	34

	I abia 54										
Nº ISIS	0.3125 μΜ	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)				
523814	0	24	48	52	68	82	2.2				
523805	13	29	55	0	79	85	1.5				
523822	0	19	26	41	65	85	2.8				
523820	0	19	29	58	74	86	2.3				
523815	3	6	19	37	45	71	4.8				
523828	12	19	32	51	64	74	2.7				
523801	3	9	31	43	59	76	3.3				
523824	12	28	44	63	77	85	1.7				
523794	13	21	30	51	66	78	2.5				
523810	15	34	55	72	78	86	1.3				
523819	0	24	40	60	66	75	2.4				

Tabla 35

Nº ISIS	0.3125 μΜ	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
539302	31	56	80	92	97	98	0.5
539314	16	28	49	69	85	95	1.3
539319	8	30	45	71	90	94	1.4
539320	11	42	64	83	92	95	1.0
539321	25	48	64	82	95	97	0.8
539322	19	34	58	72	90	96	1.1
539331	7	14	46	69	88	96	1.6
539355	28	35	67	89	96	98	0.8
539358	12	39	56	80	93	98	1.1
539359	15	23	58	77	93	98	1.2

Tabla 36

l abia 36											
Nº ISIS	0.3125 μΜ	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)				
539318	23	21	56	73	88	94	1.2				
539325	14	26	38	74	92	98	1.4				
539339	18	23	58	83	92	98	1.1				
539341	17	29	62	84	94	95	1.0				
539342	20	31	43	71	90	95	1.2				
539352	15	23	41	61	89	95	1.5				
539356	24	46	62	83	90	97	0.8				
539361	37	42	73	88	96	98	0.6				
539379	53	66	83	96	96	98	0.2				

Nº ISIS	0.3125 μΜ	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
539380	52	77	91	97	97	99	0.1
539383	34	61	71	89	98	98	0.5

Tabla 37

	Tabla 37											
Nº ISIS	0.3125 μΜ	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)					
539360	45	60	81	94	97	98	0.3					
539362	21	36	72	90	98	99	0.8					
539375	23	36	66	85	95	99	0.9					
539376	26	35	58	82	95	99	0.9					
539377	29	31	43	64	85	89	1.3					
539378	37	59	81	93	97	98	0.4					
539389	34	61	61	87	95	97	0.5					
539401	34	52	63	84	92	95	0.6					
539403	52	73	83	94	97	98	0.1					
539404	22	55	74	88	94	96	0.6					
539432	32	50	75	86	94	96	0.6					

Ejemplo 4: inhibición antisentido dependiente de la dosis de GHR humana en células Hep3B por gapmers MOE

Los gapmers de los estudios descritos anteriormente que mostraron una inhibición *in vitro* significativa del ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas mostradas a continuación. Las células se sembraron a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de 0,625 µM, 1,25 µM, 2,50 µM, 5,00 µM y 10,00 µM de oligonucleótido antisentido, como se especifica en las Tablas siguientes. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima (IC₅₀) media de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

l abia 38									
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)			
523271	26	41	80	89	94	1.4			
523274	13	35	63	85	95	1.9			
523324	26	40	64	88	95	1.6			
523577	27	50	72	87	95	1.3			
523604	49	66	74	81	87	0.5			
523614	43	54	82	92	89	0.8			

			Tabla 39			
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
523564	16	48	69	75	91	1.7
523570	24	52	65	71	88	1.6
523592	6	31	52	65	81	2.8
523595	13	49	60	79	92	1.8
523596	20	49	62	71	75	1.9
523607	38	63	66	74	76	0.8
523615	17	48	60	80	92	1.8
523630	19	42	42	67	80	2.5
523633	41	69	78	79	80	0.6
523665	16	45	56	71	80	2.1
523687	37	59	73	75	78	0.9

0.9

2.1

<0.6

Tabla 40										
Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)				
523655	28	42	57	74	76	1.9				
523656	33	43	53	74	88	1.7				
523661	29	29	66	79	82	1.9				
523713	35	45	64	83	87	1.3				
523715	83	86	92	93	94	<0.6				
523718	27	52	69	84	95	1.3				
523723	65	74	86	85	94	<0.6				
523725	37	63	78	78	92	0.8				
523726	43	57	72	86	89	0.8				
523736	39	65	80	88	95	0.8				
523747	51	71	83	86	93	<0.6				
523766	30	50	70	82	89	1.3				
523776	45	59	67	79	84	0.7				
523789	63	75	76	83	83	<0.6				

l abla 41									
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)			
523719	18	40	56	73	83	2.1			
523720	36	46	59	64	89	1.5			
523724	44	60	75	81	87	0.7			

			(continuació	n)		
_	Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
5	523735	11	40	60	78	84	2.1
	523740	17	47	61	80	81	1.8
40	523752	25	31	38	70	84	2.5
10	523758	23	48	58	72	80	1.8
	523763	2	24	48	64	75	3.3
	523764	22	49	45	73	75	2.1
15	523765	42	40	57	79	87	1.4
	523767	43	53	56	69	79	1.2
	523774	36	52	71	81	89	1.1
20	523778	15	45	59	75	79	2.0
	523783	5	30	48	66	83	2.9
25				Tabla 42			
20	Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
	532151	40	45	64	71	82	1.3
30	532158	28	47	63	70	87	1.6
00	532164	36	47	64	75	89	1.3
	532171	35	47	50	69	89	1.6
35	532175	27	38	43	75	87	2.1
33	532181	21	56	63	69	80	1.7
	532186	28	49	62	73	91	1.5
40	532188	40	52	73	75	90	1.0
40	532223	22	34	53	71	90	2.2
	532235	35	31	48	68	73	2.3
45	532241	6	24	29	51	72	4.5
45	532248	19	37	47	73	84	2.3
	532254	56	56	72	85	90	0.5
50	532316	32	55	50	78	90	1.5
30				Tabla 43			
	Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
55	532304	44	57	68	78	73	0.7
	532395	47	62	82	91	96	0.6
	532401	70	83	91	94	96	<0.6
60	532410	56	71	85	90	96	<0.6
	532411	88	93	96	97	98	<0.6

<0.6

			(continuació	n)		
5	Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
5	532436	48	49	77	90	97	0.8
	532468	42	67	82	89	94	0.6
10	532476	32	58	75	84	90	1.1
10	532482	5	26	56	71	87	2.6
	532490	18	47	55	69	86	2.0
4.5	532501	4	22	43	59	77	3.5
15	532507	39	63	66	83	89	0.9
	532526	30	48	67	82	88	1.4
20				Tabla 44			
20	Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
	533121	59	67	78	83	87	0.2
25	533122	48	73	78	84	90	0.4
25	533125	47	61	74	89	89	0.6
	533136	5	25	58	79	90	2.4
20	533156	37	48	69	77	87	1.2
30	533161	28	67	77	89	90	1.0
	533178	30	60	72	90	92	1.1
25	533179	37	66	76	76	87	0.8
35	533188	32	64	74	80	90	1.0
	533189	49	66	77	81	81	0.4
40	533193	26	48	69	75	85	1.5
40	533233	39	60	59	84	93	1.0
	533234	45	69	84	91	94	0.5
4-	533235	28	49	69	82	90	1.4
45				Tabla 45			
	Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
50	533256	47	72	86	90	94	<0.6
30	533257	63	77	88	91	96	<0.6
	533258	66	81	88	95	95	<0.6
55	533259	48	70	84	90	93	<0.6
55	533262	44	66	79	90	96	0.7
	533265	59	74	85	93	96	<0.6
60	533269	25	55	74	86	87	1.2
60	533270	34	59	73	86	95	1.0
	533271	63	82	88	92	92	<0.6

	,		., .	
- (്റ	ntın	uación)	١

Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
533291	14	46	64	84	89	1.8
533301	49	61	75	83	91	0.6
533315	22	39	73	76	91	1.7
533317	26	53	68	85	94	1.3
533318	29	40	46	77	91	1.9

Tabla 46

1 abia 40							
	Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
	533280	58	64	77	82	87	0.3
	533316	35	55	68	87	91	1.1
	533326	34	68	76	89	96	0.8
	533328	54	55	79	83	92	0.5
	533329	46	62	72	83	95	0.7
	533330	56	75	83	91	94	0.3
	533331	54	61	80	86	89	0.4
	533352	54	62	79	83	89	0.4
	533364	52	73	83	91	94	0.4
	533898	17	47	63	78	87	1.8
	533908	35	58	74	82	87	1
	533916	22	46	72	78	88	1.6
	533932	51	62	70	79	80	0.5
	533937	20	40	61	79	85	1.9

40 Ejemplo 5: inhibición antisentido dependiente de la dosis de GHR humana en células Hep3B por gapmers MOE

Los gapmers de los estudios descritos anteriormente que mostraron una inhibición *in vitro* significativa del ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas que se muestran a continuación. Las células se sembraron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de 0,3125 µM, 0,625 µM, 1,25 µM, 2,50 µM, 5,00 µM y 10,00 µM de oligonucleótido antisentido, como se específica en las Tablas siguientes. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima (IC₅₀) media de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

Tabla	47
-------	----

Nº ISIS	0.3125 μΜ	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
523577	0	16	33	59	72	94	2.2
523633	15	33	66	73	82	86	1.1
523764	11	33	50	68	78	83	1.5

_	
5	

	(continuación)									
Nº ISIS	0.3125 μΜ	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)			
523794	12	30	33	56	76	82	1.9			
523805	21	48	66	78	85	92	0.8			
523810	18	36	61	80	89	90	1.0			
523814	13	35	52	67	81	88	1.3			
523819	11	30	57	72	81	89	1.3			
523820	0	15	43	61	84	92	1.8			
523824	21	27	59	72	84	90	1.2			

Tabla 48

Table 40									
Nº ISIS	0.3125 μΜ	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)		
539302	34	41	56	83	83	96	0.8		
539321	30	32	76	73	80	94	0.8		
539322	22	36	57	72	78	94	1.1		
539355	23	42	48	72	71	88	1.2		
539359	21	38	48	73	78	92	1.2		
539320	14	32	53	72	82	91	1.3		
539341	3	19	35	56	78	89	2.0		
539342	6	18	33	51	70	83	2.3		
539356	0	0	21	45	73	94	2.7		
539358	0	15	23	50	52	91	2.9		

Tabla 49

Nº ISIS	0.3125 μΜ	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
539339	22	37	52	77	90	92	1.0
539360	28	49	72	82	95	97	0.7
539361	36	56	75	86	95	98	0.5
539362	24	26	63	77	91	97	1.0
539375	21	29	39	63	77	91	1.5
539378	8	42	64	85	92	97	1.0
539379	43	59	80	89	96	98	0.3
539380	61	73	90	95	98	98	0.1
539383	30	49	75	87	97	98	0.6
539403	48	55	75	85	94	96	0.3
539432	36	42	69	79	88	95	0.7

Nº ISIS	0.3125 μΜ	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
539376	34	46	62	82	94	98	0.7
539389	53	58	78	86	94	97	0.2
539392	1	19	26	68	81	94	1.9
539399	27	52	65	78	92	98	0.7
539400	7	26	43	59	88	95	1.6
539401	32	39	77	90	92	95	0.6
539404	22	59	77	87	93	95	0.6
539413	16	33	53	82	86	96	1.1
539415	4	44	56	74	81	94	1.2
539416	37	61	70	85	92	95	0.4
539433	31	52	70	85	87	94	0.6

Ejemplo 6: inhibición antisentido del receptor de la hormona del crecimiento humano en células Hep3B por gapmers desoxi, MOE y cEt

Se diseñaron oligonucleótidos antisentido adicionales dirigidos a un ácido nucleico del receptor de la hormona del crecimiento (GHR) y se analizaron sus efectos sobre el ARNm de GHR in vitro. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas que se muestran a continuación. Se transfectaron células Hep3B cultivadas a una densidad de 20.000 células por pocillo usando electroporación con oligonucleótido antisentido 5.000 nM. Después de un período de tratamiento de aproximadamente 24 horas, se aisló ARN de las células y se midieron los niveles de ARNm de GHR por PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

Los oligonucleótidos antisentido quiméricos de nuevo diseño en las Tablas a continuación se diseñaron como gapmers de desoxi, MOE y cEt. Los oligonucleótidos desoxi, MOE y cEt tienen una longitud de 16 nucleósidos en donde el nucleósido tiene o una modificación de azúcar MOE, una modificación de azúcar cEt o una modificación desoxi. La columna 'Química' describe las modificaciones de azúcar de cada oligonucleótido. 'k' indica una modificación de azúcar cEt; 'd' indica desoxirribosa; y 'e' indica una modificación MOE. Los enlaces internucleosídicos a lo largo de cada gapmer son enlaces de fosforotioato (P=S). Todos los residuos de citosina en cada gapmer son 5-metilcitosinas. El "sitio de inicio" indica el nucleósido más 5' al que se dirige el gapmer en la secuencia del gen humano. El "sitio de detención" indica el nucleósido más 3' al que se dirige el gapmer en la secuencia del gen humano. Cada gapmer enumerado en las tablas siguientes está dirigido al ARNm de GHR humana, designado en la presente como SEQ ID NO: 1 (Nº de registro GENBANK NM 000163.4) o la secuencia genómica de GHR humana, designada en la presente como SEQ ID NO: 2 (Nº de registro GENBANK NT_006576.16 truncado de los nucleótidos 42411001 a 42714000). 'n/a' indica que el oligonucleótido antisentido no se dirige a esa secuencia génica particular con un 100% de complementariedad. En caso de que no se muestre la alineación de secuencia para un gen objetivo en una tabla particular, se entiende que ninguno de los oligonucleótidos presentados en esa tabla se alinea con una complementariedad del 100% con ese gen objetivo.

Tabla 51

	Inhibición	Inhibición de ARNm de GHR por gapmers desoxi. MOE v cEt dirigidos a regiones intrónicas v exónicas de las SEQ ID NO: 1 v 2	s desoxi. MOE v cEt diriaidos	a regiones intrónicas v	exónicas de las	SEQ ID NO: 1 v 2	
SISI ₉ N	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekddddddddkke	84	156891	1370
541263	164	Intrón 1	CCGAGCTTCGCCTCTG	eekddddddddkke	88	3040	1371
541264	167	Intrón 1	CCTCCGAGCTTCGCCT	eekddddddddkke	06	3043	1372
541265	170	Unión abarca dos exones	GGACCTCCGAGCTTCG	eekddddddddkke	68	e/u	1373
541266	176	Unión abarca dos exones	CCTGTAGGACCTCCGA	eekddddddddkke	83	n/a	1374
541268	214	Exón 2	CCAGTGCCAAGGTCAA	eekddddddddkke	87	144998	1375
541269	226	Exón 2	САСТТВАТССТВССАВ	eekddddddddkke	29	145010	1376
541270	244	Exón 2	CACTTCCAGAAAAAGC	eekddddddddkke	34	145028	1377
541278	365	Exón 4/Intrón 3	GTCTCTCGCTCAGGTG	eekddddddddkke	22	268028	1378
541279	368	Exón 4/Intrón 3	AAAGTCTCTCGCTCAG	eekddddddddkke	92	268031	1379
541280	373	Exón 4/Intrón 3	ATGAAAAGTCTCTCG	eekddddddddkke	99	568036	1380
541283	445	Unión exón 2-exón 3	тссттстветатаваа	eekddddddddkke	37	e/u	1381
541288	554	Exón 5	CAATAAGGTATCCAGA	eekddddddddkke	49	274114	1382
541289	561	Exón 5	CTTGATACAATAAGGT	eekddddddddkke	99	274121	1383
541290	699	Exón 5	СТАВТТАВСТТВАТАС	eekddddddddkke	61	274129	1384
541293	628	Unión exón 3-exón 4	GATCTGGTTGCACTAT	eekddddddddkke	22	e/u	1385
541294	629	Exón 6	GGCAATGGGTGGATCT	eekddddddddkke	38	278933	1386
541295	648	Exón 6	CCAGTTGAGGGCAATG	eekddddddddkke	29	278942	1387
541296	654	Exón 6	TAAAGTCCAGTTGAGG	eekddddddddkke	43	278948	1388
541301	924	Exón 7	TACATAGAGCACCTCA	eekddddddddkke	98	290422	1389
541302	927	Exón 7	TGTTACATAGAGCACC	eekddddddddkke	78	290425	1390
541303	930	Exón 7	AAGTGTTACATAGAGC	eekddddddddkke	69	290428	1391
541304	958	Exón 7	CTTCACATGTAAATTG	eekddddddddkke	26	290456	1392
541305	981	Exón 8	GAGCCATGGAAAGTAG	eekddddddddkke	99	292535	1393

Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	SEQ ID NO	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408
	SEQ ID NO: 2 Sitio de inicio	n/a	297734	297739	297743	297748	297837	297851	297909	297943	297949	298014	298018	298024	298028	298031
	% de inhibición	26	38	81	42	64	42	29	16	30	63	33	34	39	42	73
	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke
	Secuencia	CCTTCCTTGAGGAGAT	СТТСАССССТАВВТТА	CCATCCTTCACCCCTA	GTCGCCATCCTTCACC	CCAGAGTCGCCATCCT	GTGGCTGAGCAACCTC	CCCTTTTAACCTCTGT	CATCATGATAAGGTGA	TGGATAACACTGGGCT	TCTGCTTGGATAACAC	GAATATGGGCAGCTTG	AGCTGAATATGGGCAG	TTGCTTAGCTGAATAT	TGGATTGCTTAGCTGA	АСТТВСАТТВСТТАВС
	Región objetivo	Unión exón 7-exón 8	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10	Exón 10
	SEQ ID NO: 1 Sitio de inicio	1127	1317	1322	1326	1331	1420	1434	1492	1526	1532	1597	1601	1607	1611	1614
	SISI ₉ N	541310	541320	541321	541322	541323	541325	541326	541331	541332	541333	541335	541336	541337	541338	541339

Ejemplo 7: inhibición antisentido del receptor de la hormona del crecimiento humano en células Hep3B por gapmers desoxi, MOE y cEt

Se diseñaron oligonucleótidos antisentido adicionales dirigidos a un ácido nucleico del receptor de la hormona del crecimiento (GHR) y se analizaron sus efectos sobre el ARNm de GHR in vitro. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas que se muestran a continuación. Se transfectaron células Hep3B cultivadas a una densidad de 20.000 células por pocillo usando electroporación con oligonucleótido antisentido 4.500 nM. Después de un período de tratamiento de aproximadamente 24 horas, se aisló ARN de las células y se midieron los niveles de ARNm de GHR por PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

5

10

15

20

25

30

Los oligonucleótidos antisentido quiméricos de nuevo diseño en las Tablas a continuación se diseñaron como gapmers de desoxi, MOE y cEt. Los oligonucleótidos desoxi, MOE y cEt tienen una longitud de 16 nucleósidos en donde el nucleósido tiene una modificación de azúcar MOE, una modificación de azúcar cEt o una modificación desoxi. La columna 'Química' describe las modificaciones de azúcar de cada oligonucleótido. 'k' indica una modificación de azúcar cEt; 'd' indica desoxirribosa; y 'e' indica una modificación MOE. Los enlaces internucleosídicos a lo largo de cada gapmer son enlaces de fosforotioato (P=S). Todos los residuos de citosina en cada gapmer son 5-metilicitosinas. El "sitio de inicio" indica el nucleósido más 5' al que se dirige el gapmer en la secuencia del gen humano. El "sitio de detención" indica el nucleósido más 3'al que se dirige el gapmer en la secuencia del gen humano. Cada gapmer enumerado en las tablas siguientes está dirigido al ARNm de GHR humana, designado en la presente como SEQ ID NO: 1 (Nº de registro GENBANK NM 000163.4) o la secuencia genómica de GHR humana, designada en la presente como SEQ ID NO: 2 (Nº de registro GENBANK NT_006576.16 truncado de los nucleótidos 42411001 a 42714000). 'n/a' indica que el oligonucleótido antisentido no se dirige a esa secuencia génica particular con un 100% de complementariedad. En caso de que no se muestre la alineación de secuencia para un gen objetivo en una tabla particular, se entiende que ninguno de los oligonucleótidos presentados en esa tabla se alinea con una complementariedad del 100% con ese gen objetivo. Los oligonucleótidos de la Tabla 54 no se dirigen a las SEQ ID NO: 1 o 2, sino que se dirigen a las secuencias de genes variantes de la SEQ ID NO: 4 (Nº de Registro GENBANK DR006395.1) o la SEQ ID NO: 7 (el complemento de Nº de registro GENBANK AA398260.1).

Tabla 52

35	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2											
40	Nº ISIS	SEQ IDNO: Región 1 Sitio objetivo de inicio		Secuencia	Química	% de inhibición	SEQID NO: 2 Sitio de inicio	SEQ ID NO				
	541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	86	156891	1370				
45	541340	1619	Exón 10	AGTGAACTTGGATTGC	eekddddddddddkke	73	298036	1409				
	541341	1641	Exón 10	GGCATAAAAGTCGATG	eekdddddddddkke	41	298058	1410				
50	541342	1644	Exón 10	CTGGGCATAAAAGTCG	eekdddddddddkke	33	298061	1411				
	541343	1683	Exón 10	GGAAAGGACCACACTA	eekdddddddddkke	34	298100	1412				
55	541344	1746	Exón 10	GAGTGAGACCATTTCC	eekdddddddddkke	65	298163	1413				
	541345	1827	Exón 10	GATGTGAGGAGCCACA	eekdddddddddkke	54	298244	1414				
60	541346	1830	Exón 10	CTTGATGTGAGGAGCC	eekdddddddddkke	70	298247	1415				
65	541347	1835	Exón 10	TCAACCTTGATGTGAG	eekddddddddddkke	38	298252	1416				
00												

ES 2 787 600 T3

	Inhibición o	de ARNm c	le GHR por g	apmers desoxi, MOE y cEt dirigio	,	y exónicas de la	as SEQ ID N	O: 1 y 2
5	Nº ISIS	SEQ IDNO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQID NO: 2 Sitio de inicio	SEQ ID NO
10	541348	1839	Exón 10	TGATTCAACCTTGATG	eekdddddddddkke	39	298256	1417
15	541349	1842	Exón 10	GTGTGATTCAACCTTG	eekdddddddddkke	74	298259	1418
13	541350	1845	Exón 10	TATGTGTGATTCAACC	eekdddddddddkke	58	298262	1419
20	541351	1949	Exón 10	GGCATCTCAGAACCTG	eekdddddddddkke	41	298366	1420
	541352	1965	Exón 10	GGTATAGTCTGGGACA	eekdddddddddkke	18	298382	1421
25	541353	1969	Exón 10	TGGAGGTATAGTCTGG	eekdddddddddkke	17	298386	1422
	541354	1972	Exón 10	GAATGGAGGTATAGTC	eekdddddddddkke	0	298389	1423
30	541355	1975	Exón 10	TATGAATGGAGGTATA	eekdddddddddkke	0	298392	1424
	541356	1978	Exón 10	CTATATGAATGGAGGT	eekdddddddddkke	30	298395	1425
35	541357	1981	Exón 10	GTACTATATGAATGGA	eekdddddddddkke	43	298398	1426
40	541358	1987	Exón 10	GGGACTGTACTATATG	eekdddddddddkke	12	298404	1427
	541369	2306	Exón 10	TTACATTGCACAATAG	eekdddddddddkke	21	298723	1428
45	541373	2667	Exón 10	TAGCCATGCTTGAAGT	eekdddddddddkke	34	299084	1429
	541374	2686	Exón 10	TGTGTAGTGTAATATA	eekdddddddddkke	10	299103	1430
50	541375	2690	Exón 10	ACAGTGTGTAGTGTAA	eekdddddddddkke	82	299107	1431
	541376	2697	Exón 10	GCAGTACACAGTGTGT	eekdddddddddkke	46	299114	1432
55	541377	2700	Exón 10	ACTGCAGTACACAGTG	eekddddddddddkke	32	299117	1433
0.5	541378	2740	Exón 10	TTAGACTGTAGTTGCT	eekdddddddddkke	25	299157	1434
60	541379	2746	Exón 10	CCAGCTTTAGACTGTA	eekdddddddddkke	69	299163	1435
65	541380	2750	Exón 10	TAAACCAGCTTTAGAC	eekdddddddddkke	20	299167	1436

	Inhibición c	le ARNm d	le GHR por g	continuac) gapmers desoxi, MOE y cEt dirigio	•	exónicas de la	as SEQ ID N	O: 1 y 2
5	Nº ISIS	SEQ IDNO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQID NO: 2 Sitio de inicio	SEQ ID NO
10	541381	2755	Exón 10	AACATTAAACCAGCTT	eekdddddddddkke	64	299172	1437
15	541382	2849	Exón 10	ACTACAATCATTTTAG	eekddddddddddkke	0	299266	1438
	541383	2853	Exón 10	GATTACTACAATCATT	eekdddddddddkke	0	299270	1439
20	541384	2859	Exón 10	AATGCAGATTACTACA	eekdddddddddkke	46	299276	1440
	541385	2865	Exón 10	TCCAATAATGCAGATT	eekdddddddddkke	52	299282	1441
25	541386	2941	Exón 10	GTTGATCTGTGCAAAC	eekddddddddddkke	74	299358	1442
	541389	3037	Exón 10	TCTACTTCTCTTAGCA	eekdddddddddkke	50	299454	1443
30	541393	3215	Exón 10	GCTTCTTGTACCTTAT	eekdddddddddkke	84	299632	1444
25	541394	3237	Exón 10	GATTTGCTTCAACTTA	eekdddddddddkke	47	299654	1445
35	541395	3305	Exón 10	GGTTATAGGCTGTGAA	eekdddddddddkke	0	299722	1446
40	541396	3308	Exón 10	TCTGGTTATAGGCTGT	eekdddddddddkke	88	299725	1447
	541397	3311	Exón 10	GTGTCTGGTTATAGGC	eekdddddddddkke	56	299728	1448
45	541398	3316	Exón 10	AGTATGTGTCTGGTTA	eekdddddddddkke	76	299733	1449
	541399	3371	Exón 10	GGGACTGAAAACCTTG	eekdddddddddkke	50	299788	1450
50	541400	3975	Exón 10	AGTATTCTTCACTGAG	eekdddddddddkke	36	300392	1451
	541401	4044	Exón 10	GCGATAAATGGGAAAT	eekddddddddddkke	36	300461	1452
55	541402	4048	Exón 10	GTCTGCGATAAATGGG	eekddddddddddkke	52	300465	1453
60	541403	4058	Exón 10	CCTAAAAAAGGTCTGC	eekddddddddddkke	51	300475	1454
60	541404	4072	Exón 10	CATTAAGCTTGCTTCC	eekdddddddddkke	53	300489	1455

65

Tabla 53

	Inhibición	Inhibición de ARNm de GHR por gapme	por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	a regiones intrónicas y e	xónicas de las	SEQ ID NO: 1 y 2	
SISI ₉ N	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ IDNO: 2 Sitio de inicio	SEQIDNO
541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	85	156891	1370
541421	4418	Exón 10	CACAACTAGTCATACT	eekdddddddddkke	42	300835	1456
541422	4428	Exón 10	AACTGCCAGACACAC	eekddddddddkke	89	300845	1457
541423	4431	Exón 10	ATAAACTGCCAGACAC	eekddddddddkke	98	300848	1458
541424	4503	Exón 10	TATCAGGAATCCAAGA	eekdddddddddkke	11	300920	1459
541425	4521	Exón 10	TTGATAACAGAAGCAC	eekddddddddkke	16	300938	1460
541426	4528	Exón 10	TTGGTGTTTGATAACA	eekdddddddddkke	31	300945	1461
541427	4531	Exón 10	ATGTTGGTGTTTGATA	eekddddddddkke	32	300948	1462
541429	30	Exón 1	CCGCCACTGTAGCAGC	eekdddddddddkke	77	2906	1463
541430	35	Exón 1	CGCCACCGCCACTGTA	eekddddddddkke	88	2911	1464
541431	63	Exón 1	оссессевестся в с	eekddddddddkke	98	2939	1465
541432	29	Exón 1	сессессессевест	eekddddddddkke	61	2943	1466
541433	144	Exón 1	GAGAGCGCGGGTTCGC	eekddddddddkke	22	3020	1467
541434	n/a	Exón 1/Intrón 1	СТАСТВАССССАВТТС	eekddddddddkke	80	3655	1468
541435	n/a	Exón 1/Intrón 1	TCACTCTACTGACCCC	eekddddddddkke	06	3660	1469
541436	n/a	Exón 1/Intrón 1	TCATGCGGACTGGTGG	eekddddddddkke	99	3679	1470
541437	n/a	Exón 3/Intrón 3	ATGTGAGCATGGACCC	eekddddddddkke	82	225438	1471
541438	n/a	Exón 3/Intrón 3	TCTTGATATGTGAGCA	eekddddddddkke	66	225445	1472
541439	n/a	Exón 3/Intrón 3	TTCAAGTTGGTGAGCT	eekddddddddkke	72	226788	1473
541440	n/a	Exón 3/Intrón 3	тесттссттсяметте	eekddddddddkke	89	226795	1474
541441	n/a	Exón 3/Intrón 3	TGTAATTTCATTCATG	eekddddddddkke	62	226809	1475
541442	n/a	Exón 3/Intrón 3	сстттвссадавса	eekddddddddkke	85	226876	1476
541443	n/a	Exón 3/Intrón 3	GATCCTTTTGCCAAGA	eekddddddddkke	77	226879	1477
541444	n/a	Exón 3/Intrón 3	GCTAGTAATGTTACAT	eekddddddddkke	89	238331	1478

	Inhibiaión	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	rs desoxi, MOE y cEt dirigidos	a regiones intrónicas y e	xónicas de las	SEQ ID NO: 1 y 2	
Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQIDNO
541445	n/a	Exón 3/Intrón 3	GCAACTTGCTAGTAAT	eekddddddddkke	65	238338	1479
541446	n/a	Exón 3/Intrón 3	TGTGCAACTTGCTAGT	eekddddddddkke	44	238341	1480
541447	n/a	Exón 3/Intrón 3	GGATTTCAGTTTGAAT	eekddddddddkke	0	238363	1481
541448	n/a	Exón 3/Intrón 3	CTCAGAGCCTTGGTAG	eekddddddddkke	65	238428	1482
541449	n/a	Exón 1/Intrón 1	CAAACGCGCAAAAGAC	eekddddddddkke	1	8098	1483
541450	n/a	Exón 1/Intrón 1	GCCCGCACAACGCGC	eekddddddddkke	11	3615	1484
541451	n/a	Exón 1/Intrón 1	GGTTAAAGAAGTTGCT	eekddddddddkke	09	93190	1485
541452	n/a	Exón 1/Intrón 1	CCCAGTGAATTCAGCA	eekddddddddkke	85	93245	1486
541453	n/a	Exón 1/Intrón 1	GCGCCCAGTGAATTCA	eekddddddddkke	74	93248	1487
541454	n/a	Exón 1/Intrón 1	AAGATGCGCCCAGTGA	eekddddddddkke	7.1	93253	1488
541455	n/a	Exón 1/Intrón 1	TGTAAGATGCGCCCAG	eekddddddddkke	75	93256	1489
541456	n/a	Exón 1/Intrón 1	AATTACTTGTAAGATG	eekddddddddkke	15	93263	1490
541457	n/a	Exón 1/Intrón 1	CCCAGAAGGCACTTGT	eekddddddddkke	61	93302	1491
541458	n/a	Exón 1/Intrón 1	TTGCAGAACAAATCTT	eekddddddddkke	က	63333	1492
541459	n/a	Exón 1/Intrón 1	CATGGAAGATTTGCAG	eekddddddddkke	17	93343	1493
541460	n/a	Exón 1/Intrón 1	GGTCATGGAAGATTTG	eekddddddddkke	22	93346	1494
541461	n/a	Exón 1/Intrón 1	GACCTTGGTCATGGAA	eekddddddddkke	51	23226	1495
541462	n/a	Exón 1/Intrón 1	TGCCAATCCAAAGAGG	eekddddddddkke	34	69886	1496
541463	n/a	Exón 1/Intrón 1	GGGTCTGCCAATCCAA	eekddddddddkke	67	93374	1497
541464	n/a	Exón 1/Intrón 1	TCCCTGGGTCTGCCAA	eekddddddddkke	82	62886	1498
541465	n/a	Exón 1/Intrón 1	AAGTGTGAATTTATCT	eekddddddddkke	16	93408	1499
541466	n/a	Exón 1/Intrón 1	GGAGATCTCAACAAGG	eekddddddddkke	38	93428	1500
541468	n/a	Exón 1/Intrón 1	TCGCCCATCACTCTTC	eekddddddddkke	43	68686	1501
541469	n/a	Exón 1/Intrón 1	CCTGTCGCCCATCACT	eekddddddddkke	61	86686	1502

	SEQIDNO	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519	1520	1521	1522	1523	1524	1525
SEQ ID NO: 1 y 2	SEQ IDNO: 2 Sitio de inicio	93396	63666	94002	94011	94023	94096	198766	198780	198810	198813	198837	198874	2571	2867	3341	4024	4446	4721	5392	5802	6128	6543	9829
exónicas de las	% de inhibición	02	68	72	42	0	32	82	25	09	49	52	09	32	73	37	8	98	39	54	9/	91	98	42
a regiones intrónicas y e	Química	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke
s desoxi, MOE y cEt dirigidos	Secuencia	тсасствтсвсссатс	CCATCACCTGTCGCCC	TCACCATCACCTGTCG	TAATAGTTGTCACCAT	TTCAGATCTTATTAAT	TTGCAAATTCAGTCTG	ССТТСТСТТССААСТА	TCTTGAATAAATTTCG	AAGCTCACTCTTCAAT	TCCAAGCTCACTCTTC	GCTCCTGCCACTCTGT	ATGGGCAAAGGCATCT	AGTCTTCCCGGCGAGG	CCGCCGCTCCCTAGCC	GCCCGCAACTCCCTGC	CGCCTCCCCAGGCGCA	GAGTGTCTTCCCAGGC	CTGAAGACTCCTTGAA	GGCTAGCCAAGTTGGA	TGACTCCAGTCTTACC	АТТСАТТӨТӨӨТСАӨС	GAAGTGGGTTTTTCCC	GCCTTGGTTCAGGTGA
Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	Región objetivo	Exón 1/Intrón 1	Exón 2/Intrón 2	Exón 2/Intrón 2	5'UTR	5' y superpuesto con exón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1									
Inhibición	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a										
	SISI ₈ N	541470	541471	541472	541473	541474	541475	541477	541478	541479	541480	541481	541482	541483	541484	541485	541486	541487	541488	541489	541490	541491	541492	541493

Tabla 54

			T UDIU OT			
	Inhibición	de ARNm de GHR	por gapmers desoxi, MOE y o	Et dirigidos a las SEQ I	D NO: 3 y 4	
Nº ISIS	Sitio de inicio de objetivo	SEQ ID NO de objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541428	66	3	CCACTGTAGCAGCCGC	eekdddddddddkke	92	1526
541476	263	4	TAGGTATTTCAGAGCC	eekdddddddddkke	80	1527

Tabla 55

	SEQ ID NO	1370	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550
D NO: 2	% de inhibición	80	30	19	71	81	29	83	75	71	8	93	71	26	49	92	09	06	29	89	49	85	88	92	70
es intrónicas de la SEQ II	Química	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke
Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	Secuencia	TTGGTTTGTCAATCCT	GTCCAGGCAGAGTTGT	AGCCAAATGTTGGTCA	GAGGCGAGTTTTCC	GTGGCATTGGCAAGCC	ACCCCACTGCACCAAG	TCCAAGTACTTGCCAA	AGTGCCTGGCCTAAGG	GCGCTTCTTCCCTAGG	CATCTTGCCCAGGGAT	CCATCTTGCTCCAAGT	CTTACATCCTGTAGGC	сесстсстветсстся	CCCTATGCACTACCTA	GAGGGACTGTGGTGCT	GCCCAATATGTGCCAG	ССТСТСАТСССТВ	CTCAAGGCTATGTGCC	TCCACATCCCTCATGT	AGGACTGAAGGCCCAT	GTGCGACTTACCAGCT	TCGCTAAAGCCACACA	<u>встствестватветс</u>	TTCCCATGAGGATTTC
or gapmers desoxi,	Región objetivo	Intrón 2	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1
oición de ARNm de GHR po	SEQ ID NO: 2 Sitio de inicio	541277	541509	541510	541511	541512	541513	541514	541515	541516	541517	541518	541519	541520	541521	541522	541523	541524	541525	541526	541527	541528	541529	541530	541531
Inhik	SEQ NO: 1 Sitio de inicio	156891	7231	7570	8395	9153	9554	9931	10549	11020	11793	12214	12474	12905	13400	13717	14149	14540	15264	15849	16530	17377	17581	17943	18353
	SISI _© N	541262	541494	541495	541496	541497	541498	541499	541500	541501	541502	541503	541504	541505	541506	541507	541508	541509	541510	541511	541512	541513	541514	541515	541516

	SEQ ID NO	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	
ID NO: 2	% de inhibición	7.1	71	64	93	99	96	83	70	74	09	13	20	55	47	34	62	56	39	37	10	62	75	93	
es intrónicas de la SEQ	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke								
Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	Secuencia	TTGGGCTTAAGCACTA	GCTAGCACCTAGTCCA	CCTCTGGCCTACAACA	ACCCCTCATCAGCACC	GGCCACCCTGATCCT	GAAGCTCCCTTGCCCA	AGTGTTGCCCCTCCAA	GGGTCTCCAACCTACT	GGGATGTAGGTTTACC	GCAACCGATATCACAG	TGCCCTGGAACAATT	AGTCTAGGAGTAGCTA	GCTGTTGTCAAGAGAC	CACCTAGACACTCAGT	GTCAAGGGATCCCTGC	тссссстввсястсся	GCCTGGTAACTCCATT	GGGCTCACCAACTGTG	CCACAGGATCATATCA	CTCCAGCAGAAGTGTC	AGCCCAACTGTTGCCT	ТӨССАGGCAGTTGCCA	GCCAGTAAGCACCTTG	
or gapmers desoxi,	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	
vición de ARNm de GHR po	SEQ ID NO: 2 Sitio de inicio	541532	541533	541534	541535	541536	541537	541538	541539	541540	541541	541542	541543	541544	541545	541546	541547	541548	541549	541550	541551	541552	541553	541554	
Inhik	SEQ NO: 1 Sitio de inicio	18636	19256	19814	20365	20979	21566	22150	22803	29049	29554	30245	30550	30915	31468	32366	32897	33187	33780	34407	34846	69958	36312	36812	
	Nº ISIS	541517	541518	541519	541520	541521	541522	541523	541524	541525	541526	541527	541528	541529	541530	541531	541532	541533	541534	541535	541536	541537	541538	541539	

	Inhik	oición de ARNm de GHR po	or gapmers desoxi,	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	es intrónicas de la SEQ I	D NO: 2	
Nº ISIS	SEQ NO: 1 Sitio de inicio	SEQ ID NO: 2 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541541	38841	541556	Intrón 1	TCAAGCCCAGCTAGCA	eekdddddddddkke	39	1575
541542	39108	541557	Intrón 1	CCTCACAGGCCCTAAT	eekdddddddddkke	4	1576
541543	39408	541558	Intrón 1	ACCTGCTTACATGGTA	eekdddddddddkke	21	1577
541544	40250	541559	Intrón 1	CCTTTGCTAGGACCCA	eekdddddddddkke	52	1578
541545	40706	541560	Intrón 1	GGGACTGCCACCAAGG	eekddddddddkke	27	1579
541546	40922	541561	Intrón 1	GCTAGATGTTCAGGCC	eekdddddddddkke	34	1580
541547	41424	541562	Intrón 1	CCTATGGCCATGCTGA	eekdddddddddkke	32	1581
541548	41999	541563	Intrón 1	GTATGCTAGTTCCCAT	eekddddddddkke	83	1582
541549	42481	541564	Intrón 1	CCCTCATAATCTTGGG	eekddddddddkke	13	1583
541550	42700	541565	Intrón 1	GTCCAACCACTACCAC	eekddddddddkke	74	1584
541551	43291	541566	Intrón 1	ACTTGCAGATAGCTGA	eekdddddddddkke	23	1585
541552	43500	541567	Intrón 1	GCATGACCCCACTGCC	eekdddddddddkke	72	1586
541553	43947	541568	Intrón 1	GAGGGTCACATTCCCT	eekddddddddkke	23	1587
541554	44448	541569	Intrón 1	TCTCTTACTGGTGGGT	eekddddddddkke	06	1588
541555	45162	541570	Intrón 1	GCCCCCTTCCTGGATA	eekddddddddkke	28	1589
541556	46010	541571	Intrón 1	CCTCATGCGACACCAC	eekddddddddkke	1.4	1590
541557	46476	541572	Intrón 1	АGCCCTCTGCCTGTAA	eekddddddddkke	29	1591
541558	47447	541573	Intrón 1	CTCCCAGCTATAGGCG	eekddddddddkke	38	1592
541559	47752	541574	Intrón 1	GCTAGCTGCGCAAGGA	eekddddddddkke	5	1593
541560	48001	541575	Intrón 1	GCGCAGCCCGCTGCAA	eekddddddddkke	18	1594
541561	48423	541576	Intrón 1	твсатватссассса	eekddddddddkke	59	1595
541562	50195	541577	Intrón 1	GCTTAGTGCTGGCCCA	eekddddddddkke	72	1596
541563	50470	541578	Intrón 1	CCTTCCAGTCCTCATA	eekdddddddddkke	81	1597
541564	51104	541579	Intrón 1	ATAGTGTCAAGGCCCA	eekddddddddkke	91	1598

	SEQ ID NO	1599	1600	1601	1602	1603	1604
	SEQ	15	16	16	16	16	16
ID NO: 2	% de inhibición	88	11	99	29	47	92
es intrónicas de la SEQ	Química	eekddddddddkke	өөкдддддддддкө	eekddddddddkke	eekddddddddkke	өөкддддддддккө	eekddddddddkke
Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	Secuencia	AGGCCTTAGTCACCCA	TAACCAACCTAAGGGA	АТТСТВВТВСССТ	GTGTTCACTGCCATGA	GGTAGAGCACACTGCC	CCACTTTAATGCCACC
or gapmers desoxi,	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1
vición de ARNm de GHR po	SEQ ID NO: 2 Sitio de inicio	541580	541581	541582	541583	541584	541585
Inhik	SEQ NO: 1 Sitio de inicio	51756	52015	52230	52588	53532	54645
	SISI ₀ N	541565	541566	541567	541568	541569	541570

abla 56

	Inhibi	ición de ARNm de GHR por	gapmers desoxi, N	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	intrónicas de la SEQ ID	NO: 2	
Nº ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541262	156891	156906	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	88	1370
541571	54886	54901	Intrón 1	GTCAAATGCTGTTGGG	eekdddddddddkke	91	1605
541572	55900	55915	Intrón 1	CATCCCCTATCAGGGT	eekdddddddddkke	53	1606
541573	62266	62281	Intrón 1	CTCGAATCCCTTGAGC	eekdddddddddkke	73	1607
541574	62733	62748	Intrón 1	GATTCCCTCCCCTAAC	eekddddddddkke	27	1608
541575	63173	63188	Intrón 1	ATCCATCCATGTGCTG	eekddddddddkke	92	1609
541576	63751	63766	Intrón 1	GAGCATGCCTCAGTGG	eekddddddddkke	81	1610
541577	63964	63979	Intrón 1	CAGAAGGACTGCCTCT	eekddddddddkke	90	1611
541578	64213	64228	Intrón 1	ACAATGCTCAACAGCC	eekdddddddddkke	22	1612
541579	64576	64591	Intrón 1	GTTGGATCTGGCATGC	eekddddddddkke	80	1613
541580	65027	65042	Intrón 1	CGGCTGAGAGCAAGGG	eekddddddddkke	88	1614
541581	65363	65378	Intrón 1	GAGAGGGTTCAGCCTG	eekdddddddddkke	62	1615
541582	00959	65615	Intrón 1	АСТТАВТССТАВССА	eekdddddddddkke	91	1616
541583	66087	66102	Intrón 1	GTGAACCAGATGTGCT	eekdddddddddkke	98	1617
541584	99299	66581	Intrón 1	GGAGTGACAGCTAAGT	eekddddddddkke	86	1618
541585	66978	66993	Intrón 1	AAGTGTTCAGAGCCAC	eekdddddddddkke	26	1619
541586	67662	67677	Intrón 1	AACCCTGCCAAGGTAC	eekdddddddddkke	45	1620
541587	67914	67929	Intrón 1	GATGGTGAGCACTACC	eekddddddddkke	28	1621
541588	68278	68293	Intrón 1	GGCAGGATAGGACAGA	eekddddddddkke	11	1622
541589	68727	68742	Intrón 1	GCAAAGTGATGAGCCT	eekdddddddddke	81	1623
541590	69207	69222	Intrón 1	CTATCCACACCATTCC	eekdddddddddkke	63	1624
541591	69605	69620	Intrón 1	GGATCATGGGCCCCTA	eekdddddddddkke	02	1625
541592	70130	70145	Intrón 1	GTGAATTTGCTGGGCC	eekddddddddkke	94	1626
541593	70569	70584	Intrón 1	GTGATGGGCCCAAGGC	eekddddddddkke	67	1627

	SEQ ID NO	1628	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651
NO: 2	% de inhibición	69	93	42	79	26	83	8	19	8	34	85	51	98	87	31	41	63	27	62	89	85	93	0	77
intrónicas de la SEQ ID	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke																			
Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	Secuencia	TCCTCAGTCGGCTTGC	CAGCCTTTTGCCAGAT	CCTCCCTAGGATTACC	ACGCCCCAATCACTCA	GCATGACCCATTATGT	TCCCTCCAAGAGCTCA	GATGCCTGTGGCTGAC	GGCTAGCATGTTGCCT	TAACCCACTAGGCTGG	TGGCCCAAAACTAATC	GGAGCAGTCTGGCACC	TATTCTGTGGGACAAG	GTGTCTAGTTCCAGCC	TACTATCATGTAGCGC	TGCCCTTGTAGTGAGA	TCCCCAACCTACAAGC	GCTCTAGGCATATGAA	TACCTCCCTTGTAGGG	GGTTCCCTTGCAGAGA	GTGCCCTCTTCATGCC	CCTGTGTGCAACTGGC	СТВАВТСАТТТВССТВ	GGCCTTAGTAGGCCAG	GTCCTTGCAGTCAACC
gapmers desoxi, l	Región objetivo	Intrón 1	Intrón 1	Intrón 1	Intrón 1	Intrón 1																			
ción de ARNm de GHR por	SEQ ID NO: 2 Sitio de parada	71071	71329	71635	72241	72670	73076	73723	74122	74557	74962	75207	75714	75994	76425	76716	76995	77307	77570	77869	78326	79021	79505	79844	80292
idihili	SEQ ID NO: 2 Sitio de inicio	71056	71314	71620	72226	72655	73061	73708	74107	74542	74947	75192	75699	75979	76410	76701	76980	77292	77555	77854	78311	2006	79490	79829	80277
	SISI ₉ N	541594	541595	541596	541597	541598	541599	541600	541601	541602	541603	541604	541605	541606	541607	541608	541609	541610	541611	541612	541613	541614	541615	541616	541617

	idihni	ición de ARNm de GHR pol	gapmers desoxi, N	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	intrónicas de la SEQ ID	NO: 2	
SISI ₉ N	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541618	80575	80590	Intrón 1	GCTGGGCCAAGTCCAT	eekddddddddkke	77	1652
541619	80895	80910	Intrón 1	TAGGGCACTTTTGCC	eekdddddddddkke	31	1653
541620	81207	81222	Intrón 1	GCTGAGGTCCCTCTCT	eekdddddddddkke	34	1654
541621	81761	81776	Intrón 1	CTTTGGTCCCATTGCC	eekdddddddddkke	83	1655
541622	82233	82248	Intrón 1	GGAACATGCCAAGGGC	eekdddddddddkke	91	1656
541623	82738	82753	Intrón 1	АGGTGGTCTCCCTTCA	eekdddddddddkke	74	1657
541624	83056	83071	Intrón 1	TCCCAAAGCTCCCCTC	eekddddddddkke	53	1658
541625	83401	83416	Intrón 1	CCTGGCCTAGCAAGCT	eekdddddddddkke	47	1659
541626	84048	84063	Intrón 1	тсттавссствевста	eekdddddddddkke	12	1660
541627	84388	84403	Intrón 1	GACTTGGACTGGGCTC	eekdddddddddkke	81	1661
541628	85261	85276	Intrón 1	GGCCTAGGATCTAGGA	eekdddddddddkke	0	1662
541629	85714	85729	Intrón 1	GTCAGGCTAGAGGGAC	eekdddddddddkke	41	1663
541630	86220	86235	Intrón 1	GGAAGTTCTCCCAGCC	eekdddddddddkke	47	1664
541631	86640	86655	Intrón 1	CCTGACTGATGTACAC	eekdddddddddkke	35	1665
541632	86903	86918	Intrón 1	CTCTGGCCTAGCCTAT	eekdddddddddkke	54	1666
541633	87247	87262	Intrón 1	GGCTGCTGTCAGATGC	eekdddddddddkke	42	1667
541634	88293	88308	Intrón 1	TCTCAGGTGTAGGCAG	eekddddddddkke	59	1668
541635	88605	88620	Intrón 1	GGTCACTGAGACTGGG	eekddddddddkke	88	1669
541636	88952	88967	Intrón 1	ACCCACTAGCAGCTAG	eekddddddddkke	61	1670
541637	89160	89175	Intrón 1	CGGATGAGGCAGTTAG	eekdddddddddkke	42	1671
541638	89855	89870	Intrón 1	TGGTAGGCCCTCTGGC	eekdddddddddkke	28	1672
541639	90240	90255	Intrón 1	GTCACAAGGTGGGTGC	eekdddddddddkke	28	1673
541640	90513	90528	Intrón 1	GTCTTGCCCTCACGGA	eekddddddddkke	73	1674
541641	91073	91088	Intrón 1	GCAGTCTGTGGACTTA	eekddddddddkke	93	1675

: 2	de SEO ID NO	ción					
intrónicas de la SEQ ID NO:	Química % de inhibi		eekddddddddkke	eekdddddddddkke eekddddddddkke			
de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	Secuencia		тестстевтсясас	TGCTCTCTGGTCACAC TATCCCCCAGAGCCAT	TGCTCTCTGGTCACAC TATCCCCCAGAGCCAT AAGGTGAGAGGGCACT	TGCTCTCTGGTCACAC TATCCCCCAGAGCCAT AAGGTGAGAGGCACT GTTTTAACCTCACCCT	TGCTCTCTGGTCACAC TATCCCCCAGAGCCAT AAGGTGAGAGGGCACT GTTTTAACCTCACCCT CCTTCCACTGACCTTC
r gapmers desoxi, M	Región objetivo		Intrón 1	Intrón 1 Intrón 1			
IIIIIIDICIOII de ARMIII de GUA	SEQ ID NO: 2 Sitio de parada	00010	91662	91662	91662 92084 92371	91662 92084 92371 92919	92084 92371 92919 93861
אמווחחו	SEQ ID NO: 2 Sitio de inicio	91647	:	92069	92069	92069 92356 92904	92069 92356 92904 93846
	SISI ₉ N	541642		541643	541643	541643 541644 541645	541643 541644 541645 541646

Tabla 57

			Тар	Tabla 57			
	Inhibi	ición de ARNm de GHR pol	gapmers desoxi,	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	s intrónicas de la SEQ II	D NO: 2	
SISI ₀ N	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541262	156891	156906	Intrón 2	ттевттетсаатсст	eekddddddddkke	94	1370
541648	94638	94653	Intrón 1	GGTTAGCCCTCAGCCT	өүүрррррррррүөө	19	1682
541649	94839	94854	Intrón 1	TATGAAGGTTGGACCA	eekddddddddke	69	1683
541650	60556	95524	Intrón 1	CAACCAGCTCACCTGA	eekddddddddke	37	1684
541651	95829	95844	Intrón 1	GGGCTCCAAGGCTCTC	екрадарара	52	1685
541652	96158	96173	Intrón 1	AGCTGTTACATGCCAA	екдардрардра	63	1686
541653	96488	96503	Intrón 1	GGCCCAGAGGTTATAG	екрадарара	30	1687
541654	96991	90026	Intrón 1	GTCCTTAGACCCCTCA	екдардрардра	0.2	1688
541655	97539	97554	Intrón 1	GCCCTGGCTAGAGACA	eekddddddddkke	39	1689
541656	98132	98147	Intrón 1	CATCCAGCAGCTGGAC	eekddddddddkke	35	1690
541657	98833	98848	Intrón 1	GACTGAGGTCATCACA	eekddddddddkke	09	1691
541658	99258	99273	Intrón 1	GGCCAGGCACATCATG	eekddddddddkke	45	1692
541659	99843	99858	Intrón 1	GGAGCTCATTGAGCCA	eekddddddddkke	36	1693
541660	100406	100421	Intrón 1	GTGCCCATTGCTGTGT	екдададада	0.2	1694
541661	100742	100757	Intrón 1	ссадететевсттсав	eekddddddddkke	54	1695
541662	101305	101320	Intrón 1	CCACCCTTTATACGCA	екдардрардра	28	1696
541663	101788	101803	Intrón 1	CAGTAACCCCAAGGGA	екдардрардра	12	1697
541664	102649	102664	Intrón 1	CCCCACCTTATATGGG	eekddddddddkke	6	1698
541665	103034	103049	Intrón 1	AGGCCCTTTTTACATG	eekddddddddkke	6	1699
541666	103316	103331	Intrón 1	TCAATAAGTCCCTAGG	eekddddddddke	20	1700
541667	104277	104292	Intrón 1	GGCATTGAGTGACTGC	eekddddddddke	51	1701
541668	104679	104694	Intrón 1	ATAATGCCTTCTCAGC	eekddddddddke	62	1702
541669	106349	106364	Intrón 1	GTGAGGCATTTAGCCC	eekddddddddke	35	1703
541670	106632	106647	Intrón 1	GCTCTTGTGTTGGGTA	eekddddddddkke	89	1704

	Inhibid	Inhibición de ARNm de GHR por	gapmers desoxi, l	m de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	s intrónicas de la SEQ II	D NO: 2	
Nº ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541671	107084	107099	Intrón 1	TGTGCAGGAGGTCTCA	eekddddddddkke	09	1705
541672	107949	107964	Intrón 1	TGGAGAGTCTTGTCTC	eekddddddddkke	17	1706
541673	108773	108788	Intrón 1	GTGACCCACCCAAGAG	eekddddddddkke	34	1707
541674	109336	109351	Intrón 1	GTTGTAGCTAGTGTTC	eekddddddddkke	74	1708
541675	109849	109864	Intrón 1	GCCTTAGTTTGTGCCA	eekddddddddkke	78	1709
541676	110427	110442	Intrón 1	GCCCCAGCTGAGAATT	eekddddddddkke	29	1710
541677	110701	110716	Intrón 1	ACAACAATCCAGGGTG	eekddddddddkke	61	1711
541678	110959	110974	Intrón 1	CTCCCCTGGAAGTCAC	eekddddddddkke	69	1712
541679	111307	111322	Intrón 1	GCCCTCATGGCTCAAG	eekdddddddddkke	09	1713
541680	112499	112514	Intrón 1	TCAGCAGATAGGGAGC	eekddddddddkke	61	1714
541681	113896	113911	Intrón 1	GAATGCGGTGATCAGG	eekddddddddkke	58	1715
541682	117477	117492	Intrón 1	CTGAGAGAATTGGCCC	eekddddddddkke	5	1716
541683	117740	117755	Intrón 1	AGGCACATTGTTACCA	eekdddddddddkke	26	1717
541684	118229	118244	Intrón 1	GGGAGGCACTAGAGAA	eekddddddddkke	13	1718
541685	119269	119284	Intrón 1	TACAGTAACACATCCC	eekdddddddddkke	78	1719
541686	119688	119703	Intrón 1	GAAGCTCAGCCTGATC	eekddddddddkke	45	1720
541687	120376	120391	Intrón 1	CTTGCCTGACAACCTA	eekddddddddkke	23	1721
541688	120738	120753	Intrón 1	GCCTACCTGCTTTTGC	eekddddddddke	10	1722
541689	121242	121257	Intrón 1	TTTCCCAACCACTTAG	eekddddddddkke	7	1723
541690	121615	121630	Intrón 1	TCTCCTATTTCAGTTA	eekddddddddkke	23	1724
541691	121823	121838	Intrón 1	GGGTGATGGATGAACT	eekddddddddkke	40	1725
541692	122345	122360	Intrón 1	ACACTGCTGGTAGTGA	eekddddddddkke	0	1726
541693	122588	122603	Intrón 1	ACCCAACTAGCCTGTC	eekddddddddkke	35	1727
541694	123152	123167	Intrón 1	GAGACCTGCTGCTGA	eekddddddddkke	80	1728

	Inhibic	ción de ARNm de GHR por	gapmers desoxi, l	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas de la SEQ ID NO: 2	s intrónicas de la SEQ II	D NO: 2	
Nº ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541695	123671	123686	Intrón 1	ACATCTCTTGGGAGGT	eekddddddddkke	78	1729
541696	124040	124055	Intrón 1	ACATAGTACCCCTCCA	eekdddddddddkke	35	1730
541697	124430	124445	Intrón 1	CTCTCAAGTACCTGCC	eekddddddddkke	72	1731
541698	124824	124839	Intrón 1	TTTGTACCCAACCCCC	eekddddddddkke	15	1732
541699	125032	125047	Intrón 1	AGGCCCACATAAATGC	eekddddddddkke	21	1733
541700	125533	125548	Intrón 1	GAGCATCCCCTACACT	eekddddddddkke	12	1734
541701	126357	126372	Intrón 1	GCTGGGCCTTTAGCTG	eekddddddddkke	99	1735
541702	126736	126751	Intrón 1	TTGGTCAATTGGGCAG	eekddddddddkke	42	1736
541703	127179	127194	Intrón 1	GTCTCATGAGGCCTAT	eekddddddddkke	09	1737
541704	127454	127469	Intrón 1	GGAGGTGGGATCCCAC	eekddddddddkke	35	1738
541705	128467	128482	Intrón 1	GCCCACTACCTAGCAC	eekddddddddke	30	1739
541706	129096	129111	Intrón 1	сссавствестветсв	eekddddddddkke	20	1740
541707	129312	129327	Intrón 1	GCACCAGGTCTCCTGT	eekdddddddddkke	7	1741
541708	129516	129531	Intrón 1	GTCTAGAAGCCTAGGG	eekddddddddke	23	1742
541709	129976	129991	Intrón 1	GCCGGGTGTTGGTGCA	eekddddddddkke	50	1743
541710	130308	130323	Intrón 1	ттевтесстететтес	eekddddddddkke	49	1744
541711	130767	130782	Intrón 1	TGCTTCTGATCCCTAC	eekddddddddkke	18	1745
541712	131286	131301	Intrón 1	GTTCCCAGGAGGCTTA	eekddddddddkke	56	1746
541713	131676	131691	Intrón 1	AGGCCCCTAGAGTCTA	eekddddddddkke	41	1747
541714	132292	132307	Intrón 1	TGGTGTGCCCAGACTT	eekddddddddkke	60	1748
541715	132730	132745	Intrón 1	GATGGCTAACCCACTG	eekddddddddkke	14	1749
541716	133101	133116	Intrón 1	CCCCCAAAGTTGCCC	eekddddddddkke	12	1750
541717	133522	133537	Intrón 1	TAGGGTGTTCCAGATC	eekddddddddkke	44	1751
541718	133724	133739	Intrón 1	GTACCATGAAGCTCTG	eekddddddddkke	29	1752

Fabla 58

	Inhibi	ición de ARNm de GHR por	gapmers desoxi,	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 1 y 2 de la SEQ ID NO: 2	1 y 2 de la SEQ ID NO:	. 2	
SISI ōN	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541262	156891	156906	Intrón 2	ТТВВТТВТСААТССТ	eekddddddddkke	95	1370
541725	137372	137387	Intrón 1	TGTAAAAGGTCCTCCC	eekddddddddkke	53	1759
541726	137750	137765	Intrón 1	GACCTGTGCAGCAGGT	eekddddddddkke	32	1760
541727	138783	138798	Intrón 1	TCCTCTTGGAGATCCA	eekddddddddkke	44	1761
541728	139825	139840	Intrón 1	AGGTCATAGGACTGCT	eekddddddddkke	73	1762
541729	140343	140358	Intrón 1	GAAGGTCAGACTAGGG	eekddddddddkke	53	1763
541730	140686	140701	Intrón 1	TCTGTAGACTGCCCAG	өкдрррррррррр	87	1764
541731	141116	141131	Intrón 1	GTCCCTCTATTCCCCT	eekddddddddke	22	1765
541732	141591	141606	Intrón 1	AATTGCCATGCTCCCA	eekddddddddkke	56	1766
541733	142113	142128	Intrón 1	GATGACCTTCCTCCAA	eekddddddddkke	15	1767
541734	142327	142342	Intrón 1	GTTTCCAGTAGCACCT	eekddddddddkke	82	1768
541735	143118	143133	Intrón 1	GGCCTTGAGCTGATGG	eekddddddddkke	11	1769
541736	143836	143851	Intrón 1	TATCCCTAATCAGGCT	eekddddddddkke	40	1770
541737	144094	144109	Intrón 1	GGTGTCCACATCCCGG	eekddddddddkke	58	1771
541738	144558	144573	Intrón 1	AGCTGGACAGGCCATA	eekddddddddkke	27	1772
541740	145510	145525	Intrón 2	GGTAATCACCCAGAGA	eekddddddddkke	90	1773
541741	145937	145952	Intrón 2	GCGCTAAGTCTGCTGT	eekddddddddkke	92	1774
541742	146320	146335	Intrón 2	CCTCAAATCTTGCCCA	eekddddddddkke	96	1775
541743	147028	147043	Intrón 2	ATCCAGACCTGGCAGA	eekddddddddkke	84	1776
541744	147262	147277	Intrón 2	ATCCCTGCTCAAGTGC	eekddddddddkke	89	1777
541745	147671	147686	Intrón 2	CAGGCACTCCTTGGAA	eekddddddddkke	93	1778
541746	148139	148154	Intrón 2	AGCTGAGGTATCCCTC	eekddddddddkke	94	1779
541747	148564	148579	Intrón 2	GGGCCCAGCAAGTCTT	eekddddddddkke	33	1780
541748	149069	149084	Intrón 2	GTTTTGTCAGTGTGCA	eekddddddddkke	86	1781

SEQ ID NO: 2 Sitio de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 1 y 2 de la SEQ ID NO: 2 Sitio de Parada Región objetivo Secuencia Química inicio 149491 GEQ ID NO: 2 Sitio de Parada Intrón 2 GEGACCTGCTGAACTC eekddddddddkke 150236 Intrón 2 GGGTGAACTGTGCACC eekdddddddddkke 150763 Intrón 2 GGGTGGTCCCACTCCT eekdddddddddkke 151124 Intrón 2 GAGGAATCCTGGGCCC eekddddddddkke
151388
15238 Intrón 2 152632 Intrón 2
153364 Intrón 2 153933 Intrón 2
154186 Intrón 2 154828 Intrón 2
155304 Intrón 2 156248 Intrón 2
156862 Intrón 2 157567 Intrón 2
157942 Intrón 2
158557 Intrón 2
159554 Intrón 2 159793 Intrón 2
160827
161476

	Inhibi	ción de ARNm de GHR por	gapmers desoxi, I	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 1 y 2 de la SEQ ID NO: 2	1 y 2 de la SEQ ID NO:	: 2	
Nº ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541773	161821	161836	Intrón 2	AACCGCAGAGCCCCCA	eekddddddddkke	9/	1806
541774	162132	162147	Intrón 2	GGGCTTGTTCTGCCAA	eekddddddddkke	33	1807
541775	162639	162654	Intrón 2	GGGACCTGCGCTGACT	eekddddddddkke	98	1808
541776	163024	163039	Intrón 2	CTTTCACCTGGTGACT	eekddddddddkke	83	1809
541777	163542	163557	Intrón 2	AGCTTGAGGGAGTATA	eekddddddddkke	52	1810
541778	164144	164159	Intrón 2	GCCTGCTCAATTGAGG	eekddddddddkke	32	1811
541779	164570	164585	Intrón 2	ATAGCAGCTGGCTGCC	eekddddddddkke	24	1812
541780	165419	165434	Intrón 2	AAAAGCTTGGCACCCC	eekddddddddkke	91	1813
541781	165859	165874	Intrón 2	CCTGGCAAGAAGGGCC	eekddddddddkke	92	1814
541782	166435	166450	Intrón 2	TTAGCCCATCTATCCC	eekddddddddkke	82	1815
541783	166837	166852	Intrón 2	втевтстссствтесс	eekddddddddkke	06	1816
541784	167107	167122	Intrón 2	AGCCCTCTCTGGCAAA	eekddddddddkke	38	1817
541785	168004	168019	Intrón 2	TTACTGTGGCCCGAGT	eekddddddddkke	94	1818
541786	169062	169077	Intrón 2	GTAGACTCCTAGGGTC	eekddddddddkke	06	1819
541787	169696	169711	Intrón 2	сстссавттавтетес	eekddddddddkke	91	1820
541788	170081	170096	Intrón 2	<u>втве</u> втвессмасме	eekddddddddkke	91	1821
541789	170799	170814	Intrón 2	GGGATTCCCTGGTAGC	eekddddddddkke	2.2	1822
541790	171021	171036	Intrón 2	ет ста ва сс сс сс ст те	eekddddddddkke	23	1823
541791	171530	171545	Intrón 2	ACTGGCACCCACTTGG	eekddddddddkke	22	1824
541792	172447	172462	Intrón 2	ATTGGCCTAATGCCCC	eekddddddddkke	9/	1825
541793	172733	172748	Intrón 2	AGGCTATACATTCCAG	eekddddddddkke	94	1826
541794	173045	173060	Intrón 2	<u>ветевсавставетве</u>	eekddddddddkke	80	1827
541795	173677	173692	Intrón 2	TCCACAGTTGGCACTG	eekddddddddkke	22	1828
541796	174128	174143	Intrón 2	ТӨӨӨССТТАӨАТТӨТА	eekddddddddkke	69	1829

	SEQ ID NO	1830	1831	1832	1833	1834
	SE					
: 2	% de inhibición	26	68	92	80	99
s 1 y 2 de la SEQ ID NO	Química	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke
Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 1 y 2 de la SEQ ID NO: 2	Secuencia	тетсттсстветвесс	CCCGCCTCTCCAGCAA	GCAGCAGCCAATAAGT	TTGTATCCTGGCCCCT	GCCTCATGGGCCTTAC
r gapmers desoxi,	Región objetivo	Intrón 2				
ición de ARNm de GHR po	SEQ ID NO: 2 Sitio de parada	174536	174885	175290	175706	176053
Inhibi	SEQ ID NO: 2 Sitio de inicio	174521	174870	175275	175691	176038
	Nº ISIS	541797	541798	541799	541800	541801

Fabla 59

	Inhibi	ición de ARNm de GHR por	gapmers desoxi,	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 2 y 3 de la SEQ ID NO: 2	2 y 3 de la SEQ ID NO:	2	
Nº ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541262	156891	156906	Intrón 2	ТТВВТТВТСААТССТ	eekdddddddddkke	26	1370
541802	176619	176634	Intrón 2	GGATGCCAGTCTTGGC	eekdddddddddkke	48	1835
541803	176835	176850	Intrón 2	ствстстсавтасстс	eekdddddddddkke	87	1836
541804	177300	177315	Intrón 2	ACCCAAGAAGTCACCT	eekdddddddddkke	93	1837
541805	177551	177566	Intrón 2	GCCTCAAGCCCTACCC	eekdddddddddkke	73	1838
541806	178066	178081	Intrón 2	AGCTCCAGCCTATAGA	eekddddddddkke	81	1839
541807	178361	178376	Intrón 2	GGTCCACATGGCCCTA	eekdddddddddkke	06	1840
541808	178895	178910	Intrón 2	CAGGCCCAGGATTGTC	eekdddddddddkke	81	1841
541809	179444	179459	Intrón 2	GGGCCTGCTTTGCAGC	eekdddddddddkke	81	1842
541810	179863	179878	Intrón 2	ACTCCTCTTTAGGC	eekdddddddddkke	87	1843
541811	180524	180539	Intrón 2	CTGGGTAACAGTCCTC	eekdddddddddkke	86	1844
541812	181528	181543	Intrón 2	ACTGTATGGTTTCCAC	eekddddddddke	83	1845
541813	182103	182118	Intrón 2	GCCAAAGATAGCTCTT	eekdddddddddke	94	1846
541814	182978	182993	Intrón 2	GGCATTGGAAGTTGGT	eekdddddddddkke	87	1847
541815	183193	183208	Intrón 2	сссттсствассттас	eekddddddddkke	55	1848
541816	183658	183673	Intrón 2	TTACCCTCTATTCACC	eekdddddddddkke	65	1849
541818	184501	184516	Intrón 2	GGCACCCCAGGCCGGG	eekdddddddddkke	25	1850
541819	185080	185095	Intrón 2	CAGCAGCTAGTTCCCC	eekdddddddddke	96	1851
541820	185327	185342	Intrón 2	GTGGGCACTAGTGT	eekddddddddkke	75	1852
541821	185682	185697	Intrón 2	TGCCCTTGTCAGGGCA	eekddddddddkke	20	1853
541822	186025	186040	Intrón 2	GCAGATAGGCTCAGCA	eekddddddddkke	98	1854
541823	186570	186585	Intrón 2	CCCTAGCCCTTAGCAC	eekddddddddkke	44	1855
541824	186841	186856	Intrón 2	ACTGGAATGGCCCTCT	eekddddddddkke	86	1856
541825	187176	187191	Intrón 2	TTTGCTCATGCTCACA	eekddddddddkke	96	1857

	Inhibi	ición de ARNm de GHR por	r gapmers desoxi,	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 2 y 3 de la SEQ ID NO: 2	3 2 y 3 de la SEQ ID NO:	. 2	
SISI _ō N	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541826	187629	187644	Intrón 2	GCCTTTGTGTGTCACT	eekddddddddkke	66	1858
541827	187857	187872	Intrón 2	TATGTGGTAGCATGTC	eekddddddddkke	96	1859
541828	188442	188457	Intrón 2	ссссаввантвесс	eekddddddddkke	89	1860
541829	189086	189101	Intrón 2	TAGCTGTCAAGGCCCT	eekdddddddddkke	06	1861
541830	189534	189549	Intrón 2	CCTAGTCAGCCACTAG	eekddddddddkke	20	1862
541831	189889	189904	Intrón 2	AGACTCCCCATCAGCC	eekddddddddkke	74	1863
541832	190172	190187	Intrón 2	GTGAAGGGCCTTCATC	eekddddddddkke	89	1864
541833	190961	190976	Intrón 2	GGTTGAGAGTCCAATG	eekddddddddkke	96	1865
541834	191404	191419	Intrón 2	CAGCTAATTCCCTCAT	eekddddddddkke	62	1866
541835	191614	191629	Intrón 2	TTGTGTCTCAACCCAC	eekddddddddkke	92	1867
541836	191999	192014	Intrón 2	GGCTATGCTGCATGCT	eekddddddddkke	91	1868
541837	192860	192875	Intrón 2	CCCCATACCCAGTGGA	eekdddddddddke	71	1869
541838	193460	193475	Intrón 2	GGTGGTTTTCCTCCCT	eekddddddddkke	96	1870
541839	194144	194159	Intrón 2	GAGCCTGCCCAACTTT	eekddddddddkke	06	1871
541840	194425	194440	Intrón 2	TGATGCCCAAGAGTGA	eekddddddddkke	85	1872
541841	194953	194968	Intrón 2	TTCCCTCTGCGAACAT	eekddddddddkke	96	1873
541842	195428	195443	Intrón 2	GTTCCATCTCAATCCA	өңдрррррррррр	94	1874
541843	196858	196873	Intrón 2	ACGGCCACTCCACTGG	eekddddddddkke	44	1875
541844	197326	197341	Intrón 2	TGGAAGTGGTTCCAGA	өкддддддддкө	06	1876
541845	197946	197961	Intrón 2	TTGCCCCAGACCAACA	eekddddddddkke	47	1877
541846	198366	198381	Intrón 2	GAGGTTGTGGAGGTGC	eekddddddddkke	26	1878
541847	198715	198730	Intrón 2	GAGTTGCTGTGTGA	eekddddddddkke	83	1879
541848	198939	198954	Intrón 2	CATGTCAGAGGTGTCC	eekddddddddkke	93	1880
541849	199506	199521	Intrón 2	AGGTAAGGATCATGGC	eekddddddddkke	87	1881

	SEQ ID NO	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	200	1094	1895	1896	1007	601	1898	1899	1900	1901	1902	1903
2	% de inhibición	06	89	98	94	53	83	59	88	70	92	70	42	90	06	15	58		- 0	80	26	89	92	26	7
2 y 3 de la SEQ ID NO:	Química	өүүрррррррррр	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekdddddddddkke	e de la	eekadadadadakke	eekddddddddkke	eekddddddddkke		eevaaaaaaaaaaeee	eekdddddddddkke	eekddddddddkke	еекадарарара	ekqqqqqqqqqkke	eekdddddddddkke	eekddddddddkke
Nm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 2 y 3 de la SEQ ID NO: 2	Secuencia	GTTCAGTTGCATCACG	GCCCAGCTAGCCACCC	CCTTAGCAGCCAGGCC	GCACTTAGGGTTTTGC	GTTGAACTTTCCCTAC	TGACTCCTTGAGACAG	TGCGCTGGCTTAGCAA	GGCCTAACATCAGCAG	ACTCCTCCCAGTTAGC	ACCAGTGGCCAATGTC	GCCTAGACACAGTAGG	TATTCTCCCCCTAGGG	*O*OOOT	K)K)555 I D)55045	GCAGGCTGTATTAGCA	ACCCCCTATCCTGCAC	OACATOOATAOOTOOT	500000000000000000000000000000000000000	GATAGGTGCCCACTGT	GTCAGTTCTGGCTAGG	GCCTGAACTTACAAGC	ACCCTGGGCTGACCTT	GGACCTGGACAAGCAA	CTCCTTGCGAGAGAGG
gapmers desoxi,	Región objetivo	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	0 177	z nomu	Intrón 3	Intrón 3	0 0 0 0 0 0 0 0 0	c nomin	Intrón 3					
Inhibición de ARNm de GHR pol	SEQ ID NO: 2 Sitio de parada	199831	200264	201273	202094	202397	202717	203113	203479	204227	205645	206437	206764	207532	210211	208674	210014	210296	211048	210517	210935	211284	211851	212621	213114
dihnl	SEQ ID NO: 2 Sitio de inicio	199816	200249	201258	202079	202382	202702	203098	203464	204212	205630	206422	206749	207517	210196	208659	209999	210281	211033	210502	210920	211269	211836	212606	213099
	SISI ₉ N	541850	541851	541852	541853	541854	541855	541856	541857	541858	541859	541861	541862	744060	24 1003	541865	541867	644060	04 1000	541869	541870	541871	541872	541873	541874

	Inhibi	ición de ARNm de GHR por	r gapmers desoxi,	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 2 y 3 de la SEQ ID NO: 2	2 y 3 de la SEQ ID NO:	. 2	
SISI ₉ N	Nº ISIS SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541875	213425	213440	Intrón 3	AGAGTTGACATGGGCA eekdddddddddke	eekddddddddkke	96	1904
541876	213846	213861	Intrón 3	CACTAGGTCCCTGACC eekddddddddddke	eekddddddddkke	37	1905
541877	214483	214498	Intrón 3	САСТСТСТТ GGGCTGT	eekddddddddkke	94	1906
541878	214884	214899	Intrón 3	AGGGACCTGCATTCCA	eekddddddddkke	72	1907

Tabla 60

	Inhibi	Inhibición de ARNm de GHR por	gapmers desoxi, N	Nm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 2 y 3 de la SEQ ID NO:	s 2 y 3 de la SEQ ID NO	: 2	
SISI ₀ N	SEQ ID NO: 2 Sitio de inicio	SEQ IDNO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
541262	156891	156906	Intrón 2	TTGGTTTGTCAATCCT	eekddddddddkke	91	1370
541879	215493	215508	Intrón 3	TTCACCACCCATTGGG	eekddddddddkke	63	1908
541880	216192	216207	Intrón 3	ATCTGGTCTGAGGGCC	eekddddddddkke	92	1909
541881	216458	216473	Intrón 3	GACATGCAATTGACCC	eekddddddddkke	86	1910
541882	217580	217595	Intrón 3	GTGTGCAGCAGACTGT	eekddddddddkke	92	1911
541883	218233	218248	Intrón 3	GACAGTCCAGCTGCAA	eekddddddddkke	2	1912
541884	218526	218541	Intrón 3	CCTGCGGCAGTGAAGA	eekddddddddkke	85	1913
541885	218734	218749	Intrón 3	CTCTGAGGATAACCCT	eekddddddddkke	9/	1914
541886	219342	219357	Intrón 3	GTTCCCAGCTCCCCAA	eekdddddddddkke	89	1915
541887	219618	219633	Intrón 3	TAGGGTCAGTGTCCCA	eekddddddddkke	62	1916
541888	220039	220054	Intrón 3	GGCGAGCCTCTCAGCC	eekddddddddkke	52	1917
541889	220393	220408	Intrón 3	GACTCATCCAGGCAGT	еекададададке	91	1918
541890	220665	220680	Intrón 3	TCCCTCCCTTAGGCAC	eekdddddddddke	71	1919
541891	221044	221059	Intrón 3	GAGGAGCCAGGCATAT	eekddddddddkke	80	1920
541892	221562	221577	Intrón 3	CACCAACGAAGTCCCC	eekddddddddkke	88	1921
541893	221947	221962	Intrón 3	GCTGGCAGTCACCAAA	eekddddddddkke	06	1922
541894	222569	222584	Intrón 3	GCCCACACCATTGAGC	өүүрррррррррүөө	02	1923
541895	222983	222998	Intrón 3	AGTGAGATGCCCTGGT	өүүррррррррр	85	1924
541896	223436	223451	Intrón 3	CACTGGCAGTTAGACC	eekddddddddkke	88	1925
541897	224107	224122	Intrón 3	ACTCTGGCCACTAGTA	өүүрррррррррүөө	80	1926
541898	224731	224746	Intrón 3	GGTAGGGTGGCCACAT	eekddddddddkke	28	1927
541899	225133	225148	Intrón 3	GAGCCATGTCTAGGCA	eekddddddddkke	18	1928
541900	225465	225480	Intrón 3	CAGACTGAAACCCACC	eekdddddddddkke	98	1929
541901	225671	225686	Intrón 3	TATGGTCCAGCCACCA	eekddddddddkke	92	1930

	SEQ ID NO	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954
2	% de inhibición	36	92	91	73	09	95	44	96	78	75	80	29	92	51	75	65	59	59	15	65	45	54	59	77
2 y 3 de la SEQ ID NO:	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke
Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 2 y 3 de la SEQ ID NO: 2	Secuencia	тасстстствет	ACACCTCAGTCATGAT	AACAGGCTTCAAGAGG	GTACTGGCCATGT	CTGCAGGCGGTTGCTA	GTCTGTTGCCAAGAGC	CCCTGGGTCACTTAAG	сствтссттвствся	GCCCAGCTTATCCTAA	AGTAGAGCCTTTGCCT	CTGTCTTGGCCCAT	GGCCCAAATCTTGAGT	GCTTGTTACAGCACTA	ACTTTGGCCCAGAGAT	GCAGTCAGGTCAGCTG	GCCTTGTCCTACTACC	GGCTCTGCTATTGGCC	CTTATAGAGCCTTGCC	GGAAGGCCCAAATAT	GATCTACTCCTACTGC	<u>втсавсствтетства</u>	AGCTTCCTCCTTACAC	CTGCTAAGCCCCTACC	AGAGGTCAGGTGCATA
gapmers desoxi, l	Región objetivo	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3	Intrón 3
aión de ARNm de GHR por	SEQ IDNO: 2 Sitio de parada	226125	227040	227251	227500	227929	228733	229189	229438	230057	230328	230595	231345	231832	232103	232899	233225	233672	234013	234311	234918	235328	235785	236213	236699
Inhibi	SEQ ID NO: 2 Sitio de inicio	226110	227025	227236	227485	227914	228718	229174	229423	230042	230313	230580	231330	231817	232088	232884	233210	233657	233998	234296	234903	235313	235770	236198	236684
	SISI ₉ N	541902	541903	541904	541905	541906	541907	541908	541909	541910	541911	541912	541913	541914	541915	541916	541917	541918	541919	541920	541921	541922	541923	541924	541925

Nº ISIS SEOID NO. 2 Sitio de parada Region objetivo Secuencia Secuencia Outmica Imbición % de probada introladada de la columbica del columbica del columbica del columbica del color del color del ded ded ded ded ded ded ded ded ded		Inhibi	ición de ARNm de GHR por	gapmers desoxi, l	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 2 y 3 de la SEQ ID NO: 2	s 2 y 3 de la SEQ ID NO:	: 2	
237055 Litrôn 3 ITCAGCCTGGTTGGGA ekéddddddddkke 237586 237600 Intrôn 3 GATTGATTGAGCTCCT ekéddddddddkke 237584 237694 Intrôn 3 GATTGATTGAGCTCCT ekéddddddddkke 237649 237694 Intrôn 3 ATGGACTCCCTAGGCT ekéddddddddkke 245719 24534 Intrôn 3 TACTCAAGGCCCCTC ekéddddddddkke 245765 245780 Intrôn 3 GACATAGTTGCTG ekéddddddddkke 246576 10000 246578 Intrôn 3 TACTCAAGCTCTGTG ekéddddddddkke 246576 10000 246578 Intrôn 3 ATGATCACTGTTG ekéddddddddkke 246576 10000 246578 Intrôn 3 ATGATCACTGTTG ekéddddddddkke 246576 10000 10000 10000 10000 10000 10000 246273 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 <td>Nº ISIS</td> <td>SEQ ID NO: 2 Sitio de inicio</td> <td>SEQ ID NO: 2 Sitio de parada</td> <td>Región objetivo</td> <td>Secuencia</td> <td>Química</td> <td>% de inhibición</td> <td>SEQ ID NO</td>	Nº ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
237585 237600 Intrân 3 GATTGATTGAGCTCCT ekdddddddddkke 237949 237964 Intrân 3 ATGGACTCCCTAGGCT ekdddddddddkke 238542 238557 Intrân 3 TACTCAAGGGCCCTC ekdddddddddkke 245319 245384 Intrân 3 GGCATATGTAGCTGC ekdddddddddkke 245780 Intrân 3 GGCATATGTAGCTGC ekdddddddddkke 246515 24626 Intrân 3 GGCATATGTAGCTGG ekdddddddddkke 246500 246215 Intrân 3 ATGCACAGCTGTG ekddddddddkke 246500 246815 Intrân 3 ATGACCAGCTGTG ekddddddddkke 247226 247240 Intrân 3 GCACCAGTTGCCG ekddddddddkke 247227 247240 Intrân 3 GCTGCTGCACTAGGC ekddddddddkke 248223 1ntrân 3 GCTGCACTAGAGC ekdddddddddkke 248289 1ntrân 3 GCTACCACTAGAGAGTC ekddddddddkke 256683 1ntrân 3 GTCACACTAGAGAGTC ekddddddddkke 251850 1ntrân 3 TCCAAGGTGAGAGTC	541926	237055	237070	Intrón 3	TTCAGCCTGGTTGGGA	eekddddddddkke	71	1955
237949 237964 Intrán 3 ATGGACTCCCTAGGCT eekdddddddddkke 238542 238557 Intrán 3 TACTCAAGGCCCCTC eekddddddddkke 245319 245334 Intrán 3 GCGATATGTAGCTTGC eekddddddddkke 245765 245780 Intrán 3 GAGCTTAGATCTGTGC eekddddddddkke 246500 246515 Intrán 3 ATGCTCACGCTGTGT eekddddddddkke 246500 246516 Intrán 3 ATGCTCACGCTTGC eekddddddddkke 246500 246516 Intrán 3 ATGCTCACGCTTGTG eekddddddddkke 247225 247240 Intrán 3 ATGCTCACGTTTGCCG eekddddddddkke 248236 Intrán 3 GAGCTATTCCCTGTT eekddddddddkke 248695 248710 Intrán 3 GTCACACACTAGGC eekddddddddkke 248695 248710 Intrán 3 GTCACACACTAGGC eekddddddddkke 250693 250708 Intrán 3 TCCAACACTAGGC eekddddddddkke 251650 25165 Intrán 3 TCCAACAGCACTAGGC eekddddddddkke	541927	237585	237600	Intrón 3	GATTGATTGAGCTCCT	eekddddddddkke	98	1956
238542 10100 TACTCAAGGGCCCCTC eekddddddddkke 245319 245334 Intrón 3 GGCATATGTAGCTTGC eekddddddddkke 245785 245780 Intrón 3 GGCATATGTAGCTTGC eekddddddddkke 246261 246286 Intrón 3 ATGCTCACGGCTGTGT eekddddddddkke 248200 248215 Intrón 3 ATGCTCACGGCTGTT eekddddddddkke 247226 247240 Intrón 3 ATGCTCACGCTGTT eekddddddddkke 247240 Intrón 3 AACCCAGTTTGCCG eekddddddddkke 247644 247659 Intrón 3 GCTGTGTCACACTTC eekddddddddkke 248059 1ntrón 3 GCTGTGTCACACTTC eekdddddddddkke 24809 1ntrón 3 GCTGACGCTATTGA eekdddddddddkke 24809 1ntrón 3 GTCCAAGGCTATTGA eekdddddddddkke 25008 1ntrón 3 GTCCAAGGCTATTGA eekdddddddddkke 251622 251637 Intrón 3 TCCAAGGCTATTGA eekddddddddkke 251866 251655 1ntrón 3 TCCAAGGCTATTGA eekdddddd	541928	237949	237964	Intrón 3	ATGGACTCCCTAGGCT	eekddddddddkke	61	1957
245319 245334 Intrón 3 GGCATATGTAGCTTGC eekddddddddkke 245765 245780 Intrón 3 GAGCTTAGATCTGTGC eekddddddddkke 246251 246286 Intrón 3 ATGCTCACGGCTGTGT eekddddddddkke 248500 248515 Intrón 3 ATGCTCACGGCTGTGT eekddddddddkke 247246 Intrón 3 ATGCTCACGGCTGTT eekdddddddddkke 247249 247240 Intrón 3 CAGCTATTCCCTGTT eekddddddddkke 247249 247249 Intrón 3 GCTGTGTCACACTTC eekddddddddkke 248223 248238 Intrón 3 GCTGAGGATCACTG eekddddddddkke 248299 248299 Intrón 3 GCTCCAAGGATCACTG eekddddddddkke 248299 1ntrón 3 GCTACCACTAGAGCT eekdddddddddkke 248299 1ntrón 3 GCTACCACTAGAGCT eekdddddddddkke 251622 251637 Intrón 3 TCCAAGGCTATTGA eekddddddddkke 251826 1ntrón 3 TCCAAGGCTATTGA eekdddddddddkke 252866 1ntrón 3 TCCAAGGCT	541929	238542	238557	Intrón 3	TACTCAAGGGCCCCTC	eekddddddddkke	29	1958
45765 245780 Intrón 3 GAGCTTAGATCTGGC eekdddddddddke 246261 Intrón 3 ATGCTCACGGCTGTGT eekdddddddddke 246500 246515 Intrón 3 ATGCTCACGGCTGTGT eekddddddddke 246936 246951 Intrón 3 CAACCCAGTTTGCCGG eekddddddddke 247225 247240 Intrón 3 CAACCCAGTTTGCCGG eekddddddddke 247644 247659 Intrón 3 CAGCTATTCCCGTTT eekddddddddke 248223 248710 Intrón 3 GCTGTGTCACACTTC eekddddddddke 248695 248710 Intrón 3 GCTGCACTAGACCTC eekddddddddke 248494 24870 Intrón 3 GCTACCACTAGACCTC eekddddddddke 256083 250708 Intrón 3 TCCCACACTAGACCTC eekddddddddke 251850 251855 Intrón 3 TCCAAGGCTGATGC eekddddddddke 252865 252866 Intrón 3 TCCAAGGCTGATGC eekddddddddke 253594 253609 Intrón 3 TGGTGACTACTGGG eekddddddddke 254	541930	245319	245334	Intrón 3	GGCATATGTAGCTTGC	eekddddddddkke	91	1959
246261 Late266 Intrón 3 ATGCTCACGGCTGTGT eekddddddddkke 246500 246515 Intrón 3 ATTGAAAGGCCCATCA eekddddddddkke 246836 246951 Intrón 3 CAACCCAGTTTGCCGG eekddddddddkke 247225 247240 Intrón 3 CAGCTATTCCCTGTTT eekddddddddkke 247624 247659 Intrón 3 GCTGTGTCACACTTC eekddddddddkke 248695 248710 Intrón 3 GCTGTGTCACACTTC eekddddddddkke 248695 248710 Intrón 3 GCTACCACTACACTC eekddddddddkke 250693 250708 Intrón 3 GTTCCACACTACACTC eekddddddddkke 251622 251837 Intrón 3 TCCCACACTATGTC eekddddddddkke 251950 251865 Intrón 3 TCCACACACTATGTC eekddddddddkke 252866 252880 Intrón 3 TCCACAGCACTATGTC eekddddddddkke 253594 253809 Intrón 3 TCGGGAGTGCACACTA eekddddddddkke 254051 Intrón 3 TGGGAGTGCGGACTACTGG eekddddddddkke	541931	245765	245780	Intrón 3	GAGCTTAGATCTGTGC	eekddddddddkke	73	1960
246500 246515 Intrón 3 ATTGAAAGGCCCATCA eekddddddddkke 246936 246951 Intrón 3 CAACCCAGTTTGCCGG eekddddddddkke 247225 247240 Intrón 3 CAGCTATTCCCTGTTT eekddddddddkke 247644 247659 Intrón 3 GCTGTGCACACTTC eekddddddddkke 248223 Intrón 3 GCTGTGCACACTTC eekddddddddkke 248695 248710 Intrón 3 GCTGCACACTTC eekddddddddkke 249494 249509 Intrón 3 GCTACCACTAGGCT eekddddddddkke 250693 250708 Intrón 3 TCCCACACCTATTGAA eekddddddddkke 251622 251637 Intrón 3 TCCCACACCTATTGAA eekddddddddkke 251656 251656 Intrón 3 TCCCACACTAGGAGTC eekddddddddkke 253166 Intrón 3 TCCCACACTAGAGGTC eekddddddddkke 253166 Intrón 3 TCGCACGCAGAGG eekddddddddkke 253167 Intrón 3 TCGCACGCAGAGG eekddddddddkke 254036 Intrón 3 TGGGATTGGCAGGG <td>541932</td> <td>246251</td> <td>246266</td> <td>Intrón 3</td> <td>ATGCTCACGGCTGTGT</td> <td>eekddddddddkke</td> <td>81</td> <td>1961</td>	541932	246251	246266	Intrón 3	ATGCTCACGGCTGTGT	eekddddddddkke	81	1961
246936 246951 Intrón 3 CAACCCAGTTTGCCGG eekddddddddkke 24725 24726 Intrón 3 CAGCTATTCCCTGTT eekddddddddkke 247644 247659 Intrón 3 GCTGTGTCACACTTCC eekddddddddkke 248223 248710 Intrón 3 GCTGTGCACACTTCC eekddddddddkke 248956 248710 Intrón 3 GCTACCACTAGAGCCT eekddddddddkke 250693 250708 Intrón 3 GTTCCACCACTAGAGCCT eekddddddddkke 251622 251637 Intrón 3 TCCCACACTATTGA eekddddddddkke 251629 251665 Intrón 3 TCCAAGGCTATTGA eekddddddddkke 251620 1ntrón 3 TCCAAGGCTGATGTC eekddddddddkke 253140 252860 Intrón 3 TCCAAGGTGACACT eekddddddddkke 254905 1ntrón 3 TGGTATAGCAGAG eekdddddddddkke 254905 1ntrón 3 TGGTATAGCAGAG eekdddddddddkke 254905 1ntrón 3 TGGTATAGCAGAG eekddddddddkke 255405 1ntrón 3 TGGTGGTTGGCAGAG <td>541933</td> <td>246500</td> <td>246515</td> <td>Intrón 3</td> <td>ATTGAAAGGCCCATCA</td> <td>eekddddddddkke</td> <td>45</td> <td>1962</td>	541933	246500	246515	Intrón 3	ATTGAAAGGCCCATCA	eekddddddddkke	45	1962
247225 247240 Intrón 3 CAGCTATTCCCTGTTT eekddddddddke 247644 247659 Intrón 3 GCTGTGTCACACTTCC eekddddddddke 248625 248238 Intrón 3 GCTCAAGGATCACACG eekddddddddke 248695 248710 Intrón 3 GCTACCACTAGAGCT eekddddddddke 249494 249509 Intrón 3 GTTCCACACTAGAGCT eekddddddddke 250693 250708 Intrón 3 TCCCACACCTATGA eekddddddddke 251622 251637 Intrón 3 TCCCACACTAGAGATC eekddddddddke 251950 251965 Intrón 3 TCCCACACTAGAGATC eekddddddddke 252065 252680 Intrón 3 TCCCACACTAGAGATC eekddddddddke 253140 253155 Intrón 3 TCGCAGGAGAGG eekddddddddke 253894 253099 Intrón 3 TGGGAGTGACTACT eekdddddddddke 254005 254905 Intrón 3 TGGGAGTGACTACT eekddddddddke 255400 1ntrón 3 TGGGGAGTGACTGGG eekddddddddke 2556	541934	246936	246951	Intrón 3	CAACCCAGTTTGCCGG	eekddddddddkke	7.1	1963
247644 247659 Intrón 3 GCTGTGTCACACTTCC eekddddddddke 248223 248238 Intrón 3 GTCCAAGGATCACAGC eekddddddddke 248895 248710 Intrón 3 GCTACCACTAGAGCT eekddddddddke 250693 250708 Intrón 3 GTTCCACACTATGA eekddddddddke 251622 251637 Intrón 3 TCCCACACTATTGAA eekddddddddke 251950 251965 Intrón 3 TCCAAGGCTGATGTC eekddddddddke 252665 251965 Intrón 3 TCCAAGGCTGATGTC eekddddddddke 253140 253155 Intrón 3 TCCAAGGCTGATGTC eekddddddddke 253594 253609 Intrón 3 TGGGAGTGACTAT eekddddddddke 254036 254051 Intrón 3 TGGTATAGCTACTA eekddddddddke 255405 Intrón 3 TGTGGTTTG	541935	247225	247240	Intrón 3	CAGCTATTCCCTGTTT	eekddddddddkke	53	1964
248233 Intrón 3 GTCCAAGGATCACAGC eekddddddddke 248695 248710 Intrón 3 GCTACCACTAGAGCT eekddddddddke 249494 249509 Intrón 3 GTTCAGGGCTTATGT eekddddddddke 250693 250708 Intrón 3 TCCCACACCTATTGAA eekddddddddke 251622 251637 Intrón 3 TCCAAGGCTATTGAA eekddddddddke 251950 251965 Intrón 3 TCCAAGGCTGATCTC eekddddddddke 252665 252680 Intrón 3 TCCAAGGCTGATCTC eekddddddddke 253140 253155 Intrón 3 TCCCATGGTGACATC eekddddddddke 253594 253609 Intrón 3 TGGGAGTGACTACTA eekddddddddke 254905 254920 Intrón 3 TGGTATAGCTACTGGA eekddddddddke 255407 255632 Intrón 3 GTTCTCACCTGAACTA eekddddddddke 255618 1ntrón 3 GTTCTCACTGAACTA eekddddddddke	541936	247644	247659	Intrón 3	GCTGTGTCACACTTCC	eekddddddddke	86	1965
248695 248710 Intrón 3 GCTACCACTAGAGCCT eekddddddddke 249494 249509 Intrón 3 GTTTCAGGCCTTATGT eekddddddddke 250693 250708 Intrón 3 TCCCACACCTATTGAA eekddddddddke 251622 251637 Intrón 3 TCCCACACCTATTGAA eekddddddddke 251656 1ntrón 3 TCCCACAGCTGATGTC eekddddddddke 252665 252680 Intrón 3 TCCCATGGTGGACATG eekddddddddke 253140 253155 Intrón 3 TCCCATGGTGCACAG eekddddddddke 253694 253609 Intrón 3 TGGTATAGCTACTA eekddddddddke 254036 1ntrón 3 TGGTATAGCTACTGG eekddddddddke 254051 Intrón 3 TGGTATAGCTACTGG eekddddddddke 255407 255422 Intrón 3 GTGTGGTTGGC eekddddddddke 2555618 1ntrón 3 GTGTGGCACGGG eekddddddddke eekdddddddke	541937	248223	248238	Intrón 3	GTCCAAGGATCACAGC	eekddddddddkke	98	1966
249494 249609 Intrón 3 GTTTCAGGGCTTATGT eekdddddddke 250693 250708 Intrón 3 TCCCACACCTATTGAA eekddddddddke 251622 251637 Intrón 3 TCCCACACCTATTGAA eekddddddddke 251950 251965 Intrón 3 TCCAAGGCTGATGTC eekddddddddke 252150 1ntrón 3 TCCCATGGTGACATG eekddddddddke 253140 253156 Intrón 3 TGCTAGCTGACATG eekddddddddke 254036 1ntrón 3 TGGTATAGCTACTA eekddddddddke 254036 254051 Intrón 3 TGGTATAGCTACTA eekddddddddke 255407 255422 Intrón 3 GTTCTCACTGGAGT eekddddddddke 255618 1ntrón 3 GTTCTCACTGGAGT eekddddddddke	541938	248695	248710	Intrón 3	GCTACCACTAGAGCCT	eekddddddddkke	81	1967
250693 250708 Intrón 3 TCCCACACCTATTGAA eekddddddddke 251622 251637 Intrón 3 ACTGACTAGAGAGTCC eekddddddddke 251950 251965 Intrón 3 TCCAAGGCTGATGTCC eekddddddddke 252665 252680 Intrón 3 TCCAAGGCTGATGTC eekddddddddke 253140 253155 Intrón 3 CTGGGAGTGACATG eekddddddddke 253594 253609 Intrón 3 CTGGGAGTGACTACT eekdddddddddke 254905 1ntrón 3 CTGTATAGCTACTGG eekdddddddddkke 254905 1ntrón 3 CTGTGTTTGCAGGT eekdddddddddkke 255405 1ntrón 3 CTGTGTTTGCAGGT eekddddddddddkke 255405 1ntrón 3 GTGTGTTTGCAGGT eekdddddddddkke 255618 255422 Intrón 3 GTGTGTTCGCAGGT eekdddddddddkke	541939	249494	249509	Intrón 3	GTTTCAGGGCTTATGT	eekddddddddke	63	1968
251622 251637 Intrón 3 ACTGACTAGAGAGTCC eekdddddddkke 251950 251965 Intrón 3 TCCAAGGCTGATGTC eekdddddddkke 252665 252680 Intrón 3 TCCCATGGTGGACATG eekddddddddkke 253140 253155 Intrón 3 AGTAGCTGGCAGAAG eekddddddddkke 253594 253609 Intrón 3 CTGGGAGTGACTACT eekddddddddkke 254036 254051 Intrón 3 TGGTATAGCTACTGG eekddddddddkke 255407 255422 Intrón 3 GTGTGCTACTGACTG eekddddddddkke 255618 255633 Intrón 3 ATAGGCTACTGGCAGG eekddddddddkke	541940	250693	250708	Intrón 3	TCCCACACCTATTGAA	eekddddddddkke	51	1969
251950 251965 Intrón 3 TCCAAGGCTGATGTCC eekddddddddke 252665 252680 Intrón 3 TCCCATGGTGGACATG eekddddddddke 253140 253155 Intrón 3 AGTAGCTGGCAGAAGG eekddddddddke 253594 253609 Intrón 3 CTGGGAGTGACTACTA eekddddddddke 254036 254051 Intrón 3 TGGTATAGCTACTGG eekddddddddke 254905 254920 Intrón 3 CTGTGGTTTGGCAGT eekddddddddke 255407 255422 Intrón 3 GTTCTCACCTGAACTA eekddddddddke 255618 255633 Intrón 3 ATAGGCTACTGGCAGG eekddddddddke	541941	251622	251637	Intrón 3	ACTGACTAGAGAGTCC	eekddddddddkke	81	1970
252665 252680 Intrón 3 TCCCATGGTGGACATG eekddddddddke 253140 253155 Intrón 3 AGTAGCTGGCAGAAGG eekddddddddke 253594 253609 Intrón 3 CTGGGAGTGACTACTA eekddddddddke 254036 254051 Intrón 3 TGGTATAGCTACTGG eekddddddddke 254905 254920 Intrón 3 CTGTGGTTTGGCAGGT eekddddddddke 255407 255422 Intrón 3 GTTCTCACCTGAACTA eekddddddddke 255618 255633 Intrón 3 ATAGGCTACTGGCAGG eekddddddddke	541942	251950	251965	Intrón 3	TCCAAGGCTGATGTCC	eekddddddddkke	85	1971
253140 253155 Intrón 3 AGTAGCTGGCAGAAGG eekdddddddkke 253594 253609 Intrón 3 CTGGGAGTGACTACTA eekdddddddkke 254036 254051 Intrón 3 TGGTATAGCTACTGGG eekddddddddkke 254905 255420 Intrón 3 CTGTGGTTTGGCAGGT eekddddddddkke 255407 255422 Intrón 3 GTTCTCACCTGAACTA eekddddddddkke 255618 255633 Intrón 3 ATAGGCTACTGGCAGG eekddddddddkke	541943	252665	252680	Intrón 3	TCCCATGGTGGACATG	eekddddddddke	68	1972
253594 253609 Intrón 3 CTGGGAGTGACTACTA eekddddddddkke 254036 254051 Intrón 3 TGGTATAGCTACTGGG eekddddddddkke 254905 254920 Intrón 3 CTGTGGTTTGGCAGGT eekddddddddkke 255407 255422 Intrón 3 GTTCTCACCTGAACTA eekddddddddkke 255618 255633 Intrón 3 ATAGGCTACTGGCAGG eekddddddddkke	541944	253140	253155	Intrón 3	AGTAGCTGGCAGAAGG	өүүрррррррррр	98	1973
254036 254051 Intrón 3 TGGTATAGCTACTGGG eekddddddddkke 254905 254920 Intrón 3 CTGTGGTTTGGCAGGT eekddddddddkke 255407 255422 Intrón 3 GTTCTCACCTGAACTA eekddddddddkke 255618 255633 Intrón 3 ATAGGCTACTGGCAGG eekddddddddkke	541945	253594	253609	Intrón 3	CTGGGAGTGACTACTA	eekddddddddkke	77	1974
254905 Lintrón 3 CTGTGGTTTGGCAGGT eekddddddddkke 255407 255422 Intrón 3 GTTCTCACCTGAACTA eekddddddddkke 255618 1ntrón 3 ATAGGCTACTGGCAGG eekddddddddkke	541946	254036	254051	Intrón 3	TGGTATAGCTACTGGG	eekddddddddkke	84	1975
255407 255422 Intrón 3 GTTCTCACCTGAACTA eekdddddddddkke 255618 255633 Intrón 3 ATAGGCTACTGGCAGG eekdddddddddkke	541947	254905	254920	Intrón 3	CTGTGGTTTGGCAGGT	eekddddddddkke	90	1976
255618 255633 Intrón 3 ATAGGCTACTGGCAGG eekdddddddddddkke	541948	255407	255422	Intrón 3	GTTCTCACCTGAACTA	eekddddddddkke	65	1977
	541949	255618	255633	Intrón 3	ATAGGCTACTGGCAGG	eekddddddddkke	88	1978

_		_	_	_	_	_	_
	SEQ ID NO	1979	1980	1981	1982	1983	1984
): 2	% de inhibición	20	61	94	92	52	31
ss 2 and 3 of SEQ ID NC	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke
Inhibición de ARNm de GHR por desoxi, MOE and cEt gapmers targeting intrones 2 and 3 of SEQ ID NO: 2	Secuencia	CCCAGCTAGCTGGAGT	GGCTGGCTCTCAAAGG	TGGTGATACTGTGGCA	GCTGATTTTGGTGCCA	GCTAATCTTGCCTCGA	CACTGGTGGCTTTCAA
desoxi, MOE and	Región objetivo	Intrón 3					
ción de ARNm de GHR por	SEQ ID NO: 2 Sitio de parada	256007	256443	256704	257332	257841	258422
Inhibid	SEQ ID NO: 2 Sitio de inicio	255992	256428	256689	257317	257826	258407
	SISI _® N	541950	541951	541952	541953	541954	541955

Tabla 61

	SEQ ID NO	1370	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
IS SEQ ID NO: 1 y 2	SEQ ID NO: 2 Sitio de inicio	156891	258980	259290	259500	261641	262021	262453	262764	263342	263913	266503	266861	267116	267380	267865	268366	268786	269252	270038	270501	270817	271216	271812	272631
exónicas de la	% de inhibición	93	56	53	72	9/	77	23	71	82	78	71	75	87	33	84	31	62	06	59	20	82	87	75	44
s a regiones intrónicas y	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke												
Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	Secuencia	TTGGTTTGTCAATCCT	GTCCCCTTCTTAAGCA	GCCAGGCCAACTGTGG	GGCCCGTTATGGTGGA	CCTAAAGTCCAACTCC	ссстатссавссттса	AAGCATGGCCTCTGGC	TACCCTGCACCCTCCT	TCCTTAGTAGAATGCC	TTAGCCCTGGGAGCAC	GCTGGGTCAGGTAGCG	GGGAGGCTCTCAATCT	GTAAGTGCAGAATGCC	TGCCGAGGCAGCACC	TCCGTGTCTAGGAGGT	GTCTCCCTGCATTGGA	CCATATCACTCTCCTC	CGAACACCTTGAGCCA	GGCCCAGCTTAAGAGG	CTGATACTCCTAATCC	GCCTGTAGGGCTGTGC	тесссттстссстас	AGTGCATGTCAGTACC	TGCTCCTCAGCTGTTG
ARNm de GHR por gapm	Región objetivo	Intrón 2	Intrón 3	Intrón 3	Intrón 3	Intrón 4	Intrón 4	Intrón 4	Intrón 4	Intrón 4	Intrón 4	Intrón 4	Intrón 4	Intrón 4											
Inhibiaión de	SEQ ID NO: 1 Sitio de inicio	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a												
	SISI ₉ N	541262	541956	541957	541958	541959	541960	541961	541962	541963	541964	541965	541966	541967	541968	541969	541970	541971	541972	541973	541974	541975	541976	541977	541978

	Inhibiaión de	Inhibición de ARNm de GHR por gapn	por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	s a regiones intrónicas y	/ exónicas de la	s SEQ ID NO: 1 y 2	
SISI ₀ N	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQIDNO
541979	n/a	Intrón 4	GTTTGGGACCATCCCT	eekddddddddkke	41	272834	2008
541980	n/a	Intrón 4	AGTGCTCTCTAGGGTC	eekddddddddkke	87	273257	2009
541981	n/a	Intrón 4	TACAGAGAATCACCCC	eekddddddddkke	82	273651	2010
541982	n/a	Intrón 4	GTCCAAGTAAGGTGCT	eekddddddddkke	22	273947	2011
541983	n/a	Intrón 5	GACCTTGCAGGCTTCC	eekddddddddkke	87	274244	2012
541984	n/a	Intrón 5	GGGCAAAGGATCCTCT	eekddddddddkke	71	274758	2013
541985	n/a	Intrón 5	CCCATTCTGCTATCCC	eekddddddddkke	92	275198	2014
541986	n/a	Intrón 5	GCTGACTAGGAGGGCT	eekddddddddkke	62	275732	2015
541987	n/a	Intrón 5	CCTGTGAGGTAGTACC	eekddddddddkke	83	276309	2016
541988	n/a	Intrón 5	GTCCCCCTCCAGTCTA	eekddddddddkke	90	276932	2017
541989	n/a	Intrón 5	GAGGACTCAATTCCTC	eekddddddddkke	0	277149	2018
541990	n/a	Intrón 5	GACAAGGTCCTTTTGG	eekddddddddkke	43	277391	2019
541991	n/a	Intrón 5	встсттвтвтвс ассс	eekddddddddkke	06	277730	2020
541992	n/a	Intrón 5	тсассвествесассае	eekddddddddkke	22	278342	2021
541993	n/a	Intrón 5	GGTTGCACTGTGCAAT	eekddddddddkke	26	278917	2022
541994	n/a	Intrón 6	TTCCACAGGCCTCCAT	eekddddddddkke	64	279303	2023
541995	n/a	Intrón 6	GCTGAGTTCCATATGC	eekddddddddkke	72	279679	2024
541996	n/a	Intrón 6	GAACCGCCACCTCAGG	eekddddddddkke	38	280157	2025
541997	n/a	Intrón 6	GCTCACGGTTGGAGAC	eekddddddddkke	42	280799	2026
541998	n/a	Intrón 6	TGGGCTCCCATGTTCA	eekddddddddkke	45	281595	2027
541999	n/a	Intrón 6	TCACTCTACCAACCTC	eekddddddddkke	33	282572	2028
542000	n/a	Intrón 6	TCCTTGCTTACAGATG	eekddddddddkke	33	283079	2029
542001	n/a	Intrón 6	TGATGCTAGCATTACC	eekddddddddkke	28	283653	2030
542002	n/a	Intrón 6	TGGGTAACTGGCTAGT	eekdddddddddkke	47	285711	2031

	Inhibiaión d	le ARNm de GHR por gapm	Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	s a regiones intrónicas y	exónicas de la	IS SEQ ID NO: 1 y 2	
SISI ₀ N	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
542003	n/a	Intrón 6	AACCATTCCTCACCAA	eekddddddddkke	53	287181	2032
542004	n/a	Intrón 6	GCCCTGAACAGTTGAT	eekddddddddkke	37	287895	2033
542005	n/a	Intrón 6	GGCTCCTATCATACCT	eekddddddddkke	38	288943	2034
542006	n/a	Intrón 6	TAGGTCTCACAACCCT	eekddddddddkke	10	289638	2035
542007	n/a	Intrón 6	GTGCATTAGTCTTCCA	eekddddddddkke	74	290035	2036
542008	n/a	Intrón 7	CAAAAGCCAGGTTAGC	eekddddddddkke	13	290503	2037
542009	n/a	Intrón 7	CTGCTGTTGACTACCT	eekddddddddkke	20	290924	2038
542010	n/a	Intrón 7	GTACCTGCCAGCTACT	eekddddddddkke	35	291807	2039
542011	n/a	Unión exón 8-intrón 8	CCTACCTTTGCTGTTT	eekddddddddkke	12	292611	2040
542012	n/a	Intrón 8	AGTCACCAGCCTAAGC	ekddddddddkke	47	292860	2041
542013	n/a	Intrón 8	AGGCAACCTGGGAGTG	eekddddddddkke	52	293377	2042
542014	n/a	Intrón 8	TGGCCTTCACAATGGC	eekddddddddkke	33	294052	2043
542015	n/a	Intrón 8	С СТСААСТСССТТССА	өүүрррррррррр	27	294536	2044
542016	n/a	Intrón 8	встветтетстестес	eekddddddddkke	09	294931	2045
542017	n/a	Intrón 8	AGTTTGTGACCCCTGC	eekddddddddkke	81	295475	2046
542018	n/a	Intrón 8	CCACTCAGTGTGAATG	өкүрррррррррр	85	295955	2047
542019	n/a	Intrón 8	CTGGCCTCAGGGCAAT	eekddddddddkke	51	296186	2048
542020	n/a	Intrón 8	GTAGACTTGGGTAGGT	eekddddddddkke	53	296680	2049
542022	n/a	3'UTR	TGGTGCTAAGCTCTCC	eekddddddddkke	29	301009	2050
542023	n/a	3'UTR	CATGCTCAAGCTGGAA	eekddddddddkke	47	301280	2051
542024	206	Exón 2	AAGGTCAACAGCAGCT	eekddddddddkke	93	144990	2052
542025	207	Exón 2	CAAGGTCAACAGCAGC	eekddddddddkke	85	144991	2053
542026	208	Exón 2	CCAAGGTCAACAGCAG	eekddddddddkke	82	144992	2054
542027	209	Exón 2	GCCAAGGTCAACAGCA	eekddddddddkke	84	144993	2055

Tabla 62

	Inhibición o	de ARNm d	le GHR por	gapmers desoxi, MOE y cEt dirigi	dos a regiones intrónicas	y exónicas de l	as SEQ ID N	IO: 1 y 2
5	Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ NO: 2 Sitio de inicio	SEQ ID NO
10	541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	86	156891	1370
	542034	870	Exón 7	TCTCACACGCACTTCA	eekdddddddddkke	49	290368	2056
	542035	871	Exón 7	ATCTCACACGCACTTC	eekdddddddddkke	39	290369	2057
15	542036	872	Exón 7	GATCTCACACGCACTT	eekdddddddddkke	50	290370	2058
	542049	n/a	Intrón 1	CTTTCATGAATCAAGC	eekdddddddddkke	85	17928	2059
	542050	n/a	Intrón 1	TCTTTCATGAATCAAG	eekdddddddddkke	54	17929	2060
20	542051	n/a	Intrón 1	GTCTTTCATGAATCAA	eekdddddddddkke	96	17930	2061
	542052	n/a	Intrón 1	GGTCTTTCATGAATCA	eekdddddddddkke	98	17931	2062
	542053	n/a	Intrón 1	ATGGTCTTTCATGAAT	eekdddddddddkke	94	17933	2063
25	542054	n/a	Intrón 1	GATGGTCTTTCATGAA	eekdddddddddkke	73	17934	2064
	542055	n/a	Intrón 1	TGATGGTCTTTCATGA	eekdddddddddkke	83	17935	2065
	542056	n/a	Intrón 1	TATATCAATATTCTCC	eekdddddddddkke	75	21821	2066
30	542057	n/a	Intrón 1	TTATATCAATATTCTC	eekdddddddddkke	23	21822	2067
	542058	n/a	Intrón 1	GTTATATCAATATTCT	eekdddddddddkke	87	21823	2068
	542059	n/a	Intrón 1	TTTCTTTAGCAATAGT	eekdddddddddkke	85	22519	2069
35	542060	n/a	Intrón 1	CTTTCTTTAGCAATAG	eekdddddddddkke	81	22520	2070
	542061	n/a	Intrón 1	GCTTTCTTTAGCAATA	eekdddddddddkke	68	22521	2071
	542062	n/a	Intrón 1	CTCCATTAGGGTTCTG	eekdddddddddkke	91	50948	2072
40	542063	n/a	Intrón 1	TCTCCATTAGGGTTCT	eekdddddddddkke	88	50949	2073
	542064	n/a	Intrón 1	TTCTCCATTAGGGTTC	eekdddddddddkke	85	50950	2074
	542065	n/a	Intrón 1	GTTCTCCATTAGGGTT	eekdddddddddkke	84	50951	2075
45	542066	n/a	Intrón 1	AGGTTGGCAGACAGAC	eekdddddddddkke	92	53467	2076
	542067	n/a	Intrón 1	CAGGTTGGCAGACAGA	eekdddddddddkke	93	53468	2077
	542068	n/a	Intrón 1	GCAGGTTGGCAGACAG	eekdddddddddkke	91	53469	2078
50	542069	n/a	Intrón 1	CTTCTTGTGAGCTGGC	eekdddddddddkke	95	64885	2079
	542070	n/a	Intrón 1	TCTTCTTGTGAGCTGG	eekdddddddddkke	89	64886	2080
	542071	n/a	Intrón 1	GTCTTCTTGTGAGCTG	eekdddddddddkke	96	64887	2081
55	542072	n/a	Intrón 1	AGTCTTCTTGTGAGCT	eekdddddddddkke	81	64888	2082
	542073	n/a	Intrón 1	TCTTCCACTCACATCC	eekdddddddddkke	89	65991	2083
	542074	n/a	Intrón 1	CTCTTCCACTCACATC	eekdddddddddkke	79	65992	2084
60	542075	n/a	Intrón 1	TCTCTTCCACTCACAT	eekdddddddddkke	86	65993	2085
	542076	n/a	Intrón 1	GTCTCTTCCACTCACA	eekdddddddddkke	92	65994	2086
	542077	n/a	Intrón 1	ATAGATTTTGACTTCC	eekdddddddddkke	86	72108	2087
65	542078	n/a	Intrón 1	CATAGATTTTGACTTC	eekdddddddddkke	42	72109	2088

ES 2 787 600 T3

_	Inhibición d	de ARNm d	le GHR por (gapmers desoxi, MOE y cEt dirigi		y exónicas de l	as SEQ ID N	IO: 1 y 2
5 10	Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ NO: 2 Sitio de inicio	SEQ ID NO
	542079	n/a	Intrón 1	GCATAGATTTTGACTT	eekdddddddddkke	66	72110	2089
	542080	n/a	Intrón 1	AAATGTCAACAGTGCA	eekdddddddddkke	97	80639	2090
15	542081	n/a	Intrón 1	CATGACTATGTTCTGG	eekdddddddddkke	68	125595	2091
	542082	n/a	Intrón 1	ACATGACTATGTTCTG	eekdddddddddkke	66	125596	2092
	542083	n/a	Intrón 1	CACATGACTATGTTCT	eekdddddddddkke	74	125597	2093
20	542084	n/a	Intrón 2	GAATTCTGAGCTCTGG	eekdddddddddkke	91	145430	2094
	542085	n/a	Intrón 2	TGAATTCTGAGCTCTG	eekdddddddddkke	94	145431	2095
	542086	n/a	Intrón 2	CTGAATTCTGAGCTCT	eekdddddddddkke	94	145432	2096
25	542087	n/a	Intrón 2	CCTGAATTCTGAGCTC	eekdddddddddkke	93	145433	2097
	542088	n/a	Intrón 2	GCCTGAATTCTGAGCT	eekdddddddddkke	87	145434	2098
	542089	n/a	Intrón 2	AGCCTGAATTCTGAGC	eekdddddddddkke	84	145435	2099
30	542090	n/a	Intrón 2	ATATTGTAATTCTTGG	eekdddddddddkke	47	148060	2100
	542091	n/a	Intrón 2	GATATTGTAATTCTTG	eekdddddddddkke	61	148061	2101
	542092	n/a	Intrón 2	TGATATTGTAATTCTT	eekdddddddddkke	0	148062	2102
35	542093	n/a	Intrón 2	CTGATATTGTAATTCT	eekdddddddddkke	58	148063	2103
	542094	n/a	Intrón 2	CCTGATATTGTAATTC	eekdddddddddkke	95	148064	2104
	542095	n/a	Intrón 2	GCCTGATATTGTAATT	eekdddddddddkke	85	148065	2105
40	542096	n/a	Intrón 2	TGCCTGATATTGTAAT	eekdddddddddkke	86	148066	2106
	542097	n/a	Intrón 2	ATTATGTGCTTTGCCT	eekdddddddddkke	86	148907	2107
	542098	n/a	Intrón 2	AATTATGTGCTTTGCC	eekdddddddddkke	75	148908	2108
45	542099	n/a	Intrón 2	CAATTATGTGCTTTGC	eekdddddddddkke	88	148909	2109
	542100	n/a	Intrón 2	TCAATTATGTGCTTTG	eekdddddddddkke	78	148910	2110
	542101	n/a	Intrón 2	GTCAATTATGTGCTTT	eekdddddddddkke	97	148911	2111
50	542102	n/a	Intrón 2	GCCATCACCAAACACC	eekdddddddddkke	97	150973	2112
	542103	n/a	Intrón 2	TGCCATCACCAAACAC	eekdddddddddkke	90	150974	2113
	542104	n/a	Intrón 2	TTGCCATCACCAAACA	eekdddddddddkke	89	150975	2114
55	542105	n/a	Intrón 2	TGGTGACTCTGCCTGA	eekdddddddddkke	98	151388	2115
	542106	n/a	Intrón 2	CTGGTGACTCTGCCTG	eekdddddddddkke	96	151389	2116
	542107	n/a	Intrón 2	GCTGGTGACTCTGCCT	eekdddddddddkke	98	151390	2117
60	542108	n/a	Intrón 2	TGCTGGTGACTCTGCC	eekdddddddddkke	97	151391	2118
	542109	n/a	Intrón 2	CTGCTGGTGACTCTGC	eekdddddddddkke	93	151392	2119

Fabla 63

	SEQ ID NO	1370	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142
2	% de inhibición	92	74	55	97	06	71	78	68	86	92	83	06	97	06	81	97	66	86	86	61	41	98	69	71
s 2 y 3 de la SEQ ID NO:	Química	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekdddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke
Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 2 y 3 de la SEQ ID NO: 2	Secuencia	TTGGTTTGTCAATCCT	AGTAGTCAATATTATT	CAGTAGTCAATATTAT	CCAGTAGTCAATATTA	CCTTTGGGTGAATAGC	ACCTTTGGGTGAATAG	CACCTTTGGGTGAATA	CAACTTGAGGACAATA	CTCAACTTGAGGACAA	CAGGAAGAAAGGAACC	CCAGGAAGAAAGGAAC	ACCAGGAAGAAAGGAA	TGCAGTCATGTACACA	CTGCAGTCATGTACAC	TCTGCAGTCATGTACA	TGGTTTGTCAATCCTT	сттветтетсматсс	GCTACAATGCACAGGA	TGCTACAATGCACAGG	GATATTTATTGCTGTA	тдататтаттдстд	CTGATATTTATTGCTG	AGGGTCTTTACAAAGT	CAGGGTCTTTACAAAG
gapmers desoxi,	Región objetivo	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2															
ción de ARNm de GHR por	SEQ ID NO: 2 Sitio de parada	156906	153017	153018	153019	153937	153938	153939	155610	155612	156410	156411	156412	156610	156611	156612	156905	156907	157219	157220	158023	158024	158025	162767	162768
Inhibi	SEQ ID NO: 2 Sitio de inicio	156891	153002	153003	153004	153922	153923	153924	155595	155597	156395	156396	156397	156595	156596	156597	156890	156892	157204	157205	158008	158009	158010	162752	162753
	SISI ₉ N	541262	542110	542111	542112	542113	542114	542115	542116	542118	542119	542120	542121	542122	542123	542124	542125	542126	542127	542128	542129	542130	542131	542132	542133

	SEQ ID NO	2143	2144	2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166
. 2	% de inhibición	93	84	88	92	92	93	73	91	06	94	93	6	96	89	06	96	62	92	92	95	91	74	91	94
2 y 3 de la SEQ ID NO:	Química	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekdddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke													
Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 2 y 3 de la SEQ ID NO: 2	Secuencia	CCAGGGTCTTTACAAA	TTCTGCAGTATCCTAG	TTTCTGCAGTATCCTA	GTTTCTGCAGTATCCT	AGTTTCTGCAGTATCC	CAGTTTCTGCAGTATC	CAAATTCCAGTCCTAG	ссадаттссавтсста	TCCAAATTCCAGTCCT	ACCCATTTCATCCATT	AACCCATTTCATCCAT	GAACCCATTTCATCCA	GGAACCCATTTCATCC	AGGAACCCATTTCATC	GCTTCATGTCTTTCTA	твсттсатвтсттст	GTGCTTCATGTCTTTC	TGAGCTTAGCAGTCAC	ATGAGCTTAGCAGTCA	CATGAGCTTAGCAGTC	TACAGACATAGCTCTA	ATACAGACATAGCTCT	GATACAGACATAGCTC	GGATACAGACATAGCT
gapmers desoxi, I	Región objetivo	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2	Intrón 2														
ción de ARNm de GHR por	SEQ ID NO: 2 Sitio de parada	162769	166368	166369	166370	166371	166372	172762	172763	172764	175387	175388	175389	175390	175391	189135	189136	189137	189500	189501	189502	191158	191159	191160	191161
Inhibic	SEQ ID NO: 2 Sitio de inicio	162754	166353	166354	166355	166356	166357	172747	172748	172749	175372	175373	175374	175375	175376	189120	189121	189122	189485	189486	189487	191143	191144	191145	191146
	Nº ISIS	542134	542135	542136	542137	542138	542139	542140	542141	542142	542143	542144	542145	542146	542147	542148	542149	542150	542151	542152	542153	542154	542155	542156	542157

	SEQ ID NO	2167	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190
2	% de inhibición	71	81	78	91	88	06	06	78	55	82	73	40	06	06	62	32	63	53	12	92	83	49	88	06
s 2 y 3 de la SEQ ID NO:	Química	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddkke	eekddddddddke	eekddddddddkke							
inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 2 y 3 de la SEQ ID NO: 2	Secuencia	TGTGGCTTTAATTCAC	ATGTGGCTTTAATTCA	TATGTGGCTTTAATTC	TGTTCAGTTGCATCAC	GTGTTCAGTTGCATCA	ТСТСТСАСТТССАТС	CATCTGGATGTGAGGC	ACATCTGGATGTGAGG	CACATCTGGATGTGAG	TCAGGTAATTTCTGGA	CTCAGGTAATTTCTGG	TCTCAGGTAATTTCTG	TGCTTATTTACCTGGG	TTGCTTATTTACCTGG	TITGCTTATTTACCTG	TITIGCTTATTTACCT	ATGATGTTACTACTAC	AATGATGTTACTACTA	CAATGATGTTACTACT	CCCCTAGAGCAATGGT	CCCCCTAGAGCAATGG	TCCCCCTAGAGCAATG	TCAATTGCAGATGCTC	CTCAATTGCAGATGCT
gapmers desoxi, A	Región objetivo	Intrón 2	Intrón 2	Intrón 3																					
ción de ARNm de GHR por	SEQ ID NO: 2 Sitio de parada	198164	198165	198166	199832	199833	199834	210577	210578	210579	219035	219036	219037	225583	225584	225585	225586	229634	229635	229636	232842	232843	232844	237691	237692
Inhibi	SEQ ID NO: 2 Sitio de inicio	198149	198150	198151	199817	199818	199819	210562	210563	210564	219020	219021	219022	225568	225569	225570	225571	229619	229620	229621	232827	232828	232829	237676	237677
	SISI _® N	542158	542159	542160	542161	542162	542163	542164	542165	542166	542167	542168	542169	542170	542171	542172	542173	542174	542175	542176	542177	542178	542179	542180	542181

	lnhibi	Inhibición de ARNm de GHR por	gapmers desoxi,	de GHR por gapmers desoxi, MOE y cEt dirigidos a intrones 2 y 3 de la SEQ ID NO: 2	s 2 y 3 de la SEQ ID NO	. 2	
Nº ISIS	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO: 2 Sitio de parada	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO
542182	237678	237693	Intrón 3	GCTCAATTGCAGATGC	өүүрррррррррүөө	81	2191
542183	237679	237694	Intrón 3	AGCTCAATTGCAGATG	өекдддддддддкө	98	2192
542184	248232	248247	Intrón 3	GTATATTCAGTCCAAG	eekddddddddkke	06	2193
542185	248233	248248	Intrón 3	AGTATATTCAGTCCAA	eekdddddddddkke	94	2194
542186	248234	248249	Intrón 3	CAGTATATTCAGTCCA	eekddddddddkke	26	2195

Tabla 64

	Inhibición de	ARNm de	e GHR por ga	pmers desoxi, MOE and cEt dirig	jidos a regiones intrónicas	y exónicas de	las SEQ ID	NO: 1 y 2
5 10	Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
.0	541262	n/a	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	93	156891	1370
15	545316	168	Unión exón 1 - intrón 1	ACCTCCGAGCTTCGCC	eekdddddddddkke	80	3044	2196
00	545317	173	Unión exón- exón	GTAGGACCTCCGAGCT	eekdddddddddkke	74	n/a	2197
20	545318	177	Unión exón- exón	ACCTGTAGGACCTCCG	eekdddddddddkke	70	n/a	2198
25	545321	213	Exón 2	CAGTGCCAAGGTCAAC	eekdddddddddkke	77	144997	2199
	545322	225	Exón 2	ACTTGATCCTGCCAGT	eekdddddddddkke	36	145009	2200
00	545332	361	Exón 4/ Intrón 3	CTCGCTCAGGTGAACG	eekdddddddddkke	57	268024	2201
30	545333	366	Exón 4/ Intrón 3	AGTCTCTCGCTCAGGT	eekdddddddddkke	88	268029	2202
35	545337	444	Unión exón 4- intrón 4	CCTTCTGGTATAGAAC	eekdddddddddkke	21	268107	2203
	545340	570	Exón 5	GCTAGTTAGCTTGATA	eekdddddddddkke	39	274130	2204
40	545343	626	Unión exón 3- exón 4	TCTGGTTGCACTATTT	eekddddddddddkke	34	n/a	2205
45	545344	629	Unión exón 3- exón 4	GGATCTGGTTGCACTA	eekdddddddddkke	30	n/a	2206
	545345	632	Exón 6	GGTGGATCTGGTTGCA	eekdddddddddkke	18	278926	2207
	545346	638	Exón 6	GCAATGGGTGGATCTG	eekdddddddddkke	50	278932	2208
50	545347	647	Exón 6	CAGTTGAGGGCAATGG	eekdddddddddkke	71	278941	2209
	545348	651	Exón 6	AGTCCAGTTGAGGGCA	eekdddddddddkke	58	278945	2210
	545349	655	Exón 6	GTAAAGTCCAGTTGAG	eekdddddddddkke	34	278949	2211
55	545350	660	Exón 6	GTTCAGTAAAGTCCAG	eekdddddddddkke	52	278954	2212
	545351	685	Exón 6	CTGCATGAATCCCAGT	eekdddddddddkke	77	278979	2213
	545355	923	Exón 7	ACATAGAGCACCTCAC	eekdddddddddkke	38	290421	2214
60	545356	926	Exón 7	GTTACATAGAGCACCT	eekdddddddddkke	79	290424	2215
	545357	929	Exón 7	AGTGTTACATAGAGCA	eekdddddddddkke	70	290427	2216

ES 2 787 600 T3

(continuación)

5	Inhibición de	ARNm de	e GHR por ga	pmers desoxi, MOE and cEt dirig		y exónicas de	las SEQ ID	NO: 1 y 2
10	Nº ISIS	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
15	545362	1124	Unión exón 7- exón 8	TCCTTGAGGAGATCTG	eekdddddddddkke	3	n/a	2217
	545363	1170	Exón 10	GCTATCATGAATGGCT	eekdddddddddkke	69	297587	2218
	545364	1180	Exón 10	CGGGTTTATAGCTATC	eekdddddddddkke	58	297597	2219
20	545369	1320	Exón 10	ATCCTTCACCCCTAGG	eekdddddddddkke	46	297737	2220
	545370	1328	Exón 10	GAGTCGCCATCCTTCA	eekdddddddddkke	60	297745	2221
	545371	1332	Exón 10	TCCAGAGTCGCCATCC	eekdddddddddkke	51	297749	2222
25	545373	1418	Exón 10	GGCTGAGCAACCTCTG	eekdddddddddkke	80	297835	2223
	545374	1422	Exón 10	CTGTGGCTGAGCAACC	eekdddddddddkke	63	297839	2224
	545380	1524	Exón 10	GATAACACTGGGCTGC	eekdddddddddkke	60	297941	2225
30	545381	1530	Exón 10	TGCTTGGATAACACTG	eekdddddddddkke	76	297947	2226
	545382	1533	Exón 10	CTCTGCTTGGATAACA	eekddddddddddkke	60	297950	2227
	545386	1600	Exón 10	GCTGAATATGGGCAGC	eekdddddddddkke	29	298017	2228
35	545387	1613	Exón 10	CTTGGATTGCTTAGCT	eekdddddddddkke	59	298030	2229
50	545388	1645	Exón 10	CCTGGGCATAAAAGTC	eekdddddddddkke	47	298062	2230
	545392	1832	Exón 10	ACCTTGATGTGAGGAG	eekdddddddddkke	44	298249	2231

abla 65

SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
n/a	Intrón 2	TTGGTTTGTCAATCCT	eekdddddddddkke	68	156891	1370
1838	Exón 10	GATTCAACCTTGATGT	eekddddddddkke	40	298255	2232
1844	Exón 10	ATGTGTGATTCAACCT	eekddddddddkke	80	298261	2233
1956	Exón 10	TGGGACAGGCATCTCA	eekddddddddkke	58	298373	2234
1961	Exón 10	TAGTCTGGGACAGGCA	eekddddddddkke	48	298378	2235
1968	Exón 10	GGAGGTATAGTCTGGG	eekddddddddkke	61	298385	2236
1986	Exón 10	GGACTGTACTATATGA	eekddddddddkke	48	298403	2237
2077	Exón 10	TCAGTTGGTCTGTGCT	eekdddddddddkke	09	298494	2238
2095	Exón 10	GCTAAGGCATGATTTT	eekddddddddkke	53	298512	2239
2665	Exón 10	GCCATGCTTGAAGTCT	eekddddddddkke	87	299082	2240
2668	Exón 10	ATAGCCATGCTTGAAG	eekdddddddddkke	70	299085	2241
2692	Exón 10	ACACAGTGTGTAGTGT	eekddddddddkke	09	299109	2242
2699	Exón 10	CTGCAGTACACAGTGT	eekddddddddkke	31	299116	2243
2704	Exón 10	ACCAACTGCAGTACAC	eekddddddddkke	25	299121	2244
2739	Exón 10	TAGACTGTAGTTGCTA	eekddddddddkke	53	299156	2245
2747	Exón 10	ACCAGCTTTAGACTGT	eekddddddddkke	99	299164	2246
2945	Exón 10	GTAAGTTGATCTGTGC	eekdddddddddkke	62	299362	2247
2963	Exón 10	ТАСТТСТТТТВВТВСС	eekddddddddkke	82	299380	2248
3212	Exón 10	тсттетассттаттсс	eekddddddddkke	73	299629	2249
3306	Exón 10	TGGTTATAGGCTGTGA	eekddddddddkke	06	299723	2250
3309	Exón 10	GTCTGGTTATAGGCTG	eekddddddddkke	88	299726	2251
3313	Exón 10	ATGTGTCTGGTTATAG	eekddddddddkke	89	299730	2252
3317	Exón 10	GAGTATGTGTCTGGTT	eekddddddddkke	2	299734	2253
4040	Evén 10	GGTCTGCGATAAATGG		80	000000	7300

	Inhibición de A	Inhibición de ARNm de GHR por ç	por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	igidos a regiones intrónic	as y exónicas d	e las SEQ ID NO: 1 y 2	
SISI ₉ N	SEQ ID NO: 1 Sitio de inicio	Región objetivo	Secuencia	Química	% de inhibición	SEQ ID NO: 2 Sitio de inicio	SEQ ID NO
545429	4424	Exón 10	GCCAGACACAACTAGT	eekddddddddkke	69	300841	2255
545430	31	Exón 1	ACCGCCACTGTAGCAG	eekddddddddkke	9/	2907	2256
545431	36	Exón 1	CCGCCACCGCCACTGT	eekddddddddkke	26	2912	2257
545432	103	Exón 1	вевсстссвесссвсв	eekddddddddkke	22	2979	2258
545433	143	Exón 1	AGAGCGCGGGTTCGCG	eekddddddddkke	61	3019	2259
545434	n/a	Intrón 1/Exón 1	TACTGACCCCAGTTCC	eekddddddddkke	89	3654	2260
545435	n/a	Intrón 1/Exón 1	ACTCTACTGACCCCAG	eekddddddddke	20	8998	2261
545436	n/a	Intrón 1/Exón 1	GTCACTCTACTGACCC	eekddddddddkke	83	3661	2262
545437	n/a	Intrón 1/Exón 1	TTCATGCGGACTGGTG	eekddddddddkke	89	089£	2263
545438	n/a	Intrón 3/Exón 3	GTGAGCATGGACCCCA	eekddddddddkke	98	225436	2264
545439	n/a	Intrón 3/Exón 3	TGATATGTGAGCATGG	eekddddddddkke	88	225442	2265
545440	n/a	Intrón 3/Exón 3	AAGTTGGTGAGCTTCT	eekddddddddke	85	226785	2266
545441	n/a	Intrón 3/Exón 3	ссттсаавттветвав	eekddddddddkke	88	226790	2267
545442	n/a	Intrón 3/Exón 3	GTAAGATCCTTTTGCC	eekddddddddkke	70	226883	2268
545443	n/a	Intrón 3/Exón 3	CAGCTGTGCAACTTGC	eekddddddddkke	50	238345	2269
545444	n/a	Intrón 3/Exón 3	GCCTTGGTAGGTAGGG	eekddddddddkke	68	238422	2270
545445	n/a	Intrón 3/Exón 3	AGAGCCTTGGTAGGTA	eekdddddddddkke	85	238425	2271
545446	n/a	Intrón 1/Exón 1	CCCGCACAACGCGCA	eekddddddddkke	10	3614	2272
545447	n/a	Intrón 1/Exón 1	GTCTTCAAGGTCAGTT	eekddddddddkke	92	83208	2273
545448	n/a	Intrón 1/Exón 1	GCCCAGTGAATTCAGC	eekddddddddkke	92	93246	2274
545449	n/a	Intrón 1/Exón 1	AGATGCGCCCAGTGAA	eekddddddddkke	09	63252	2275
545450	n/a	Intrón 1/Exón 1	GTAAGATGCGCCCAGT	eekddddddddkke	78	93255	2276
545451	n/a	Intrón 1/Exón 1	ССАВААВВСАСТТВТА	eekddddddddkke	42	93301	2277
545452	n/a	Intrón 1/Exón 1	GGAAGATTTGCAGAAC	eekddddddddkke	15	93340	2278

		_				_		-							_	_		-
	SEQ ID NO	2279	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295
e las SEQ ID NO: 1 y 2	SEQ ID NO: 2 Sitio de inicio	93350	93353	93357	93364	93368	93373	93378	93427	93988	93662	93668	94001	94010	94048	198762	198765	198854
as y exónicas d	% de inhibición	35	55	70	41	56	79	89	52	89	29	78	74	92	58	88	80	89
gidos a regiones intrónic	Química	eekddddddddkke	eekdddddddddkke	eekddddddddkke														
Inhibición de ARNm de GHR por gapmers desoxi, MOE y cEt dirigidos a regiones intrónicas y exónicas de las SEQ ID NO: 1 y 2	Secuencia	CCTTGGTCATGGAAGA	TGACCTTGGTCATGGA	GAGGTGACCTTGGTCA	ATCCAAAGAGGTGACC	GCCAATCCAAAGAGGT	GGTCTGCCAATCCAAA	CCCTGGGTCTGCCAAT	GAGATCTCAACAAGGG	CGCCCATCACTCTTCC	CACCTGTCGCCCATCA	CATCACCTGTCGCCCA	CACCATCACCTGTCGC	AATAGTTGTCACCATC	GCCACCTTTCATGAGA	CTCTTGGAAGTAGGTA	GTTCTCTTGGAAGTAG	TAAACAGGTTGGTCTG
RNm de GHR por g	Región objetivo	Intrón 1/Exón 1	Intrón 2/Exón 2	Intrón 2/Exón 2	Intrón 2/Exón 2													
Inhibición de A	SEQ ID NO: 1 Sitio de inicio	n/a																
	Nº ISIS	545453	545454	545455	545456	545457	545458	545459	545460	545461	545462	545463	545464	545465	545466	545467	545468	545469

Ejemplo 8: inhibición antisentido dependiente de la dosis de GHR humana en células Hep3B por gapmers de desoxi, MOE y cEt

Los gapmers de los estudios descritos anteriormente que mostraron una inhibición *in vitro* significativa del ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas que se muestran a continuación. Las células se sembraron a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,625 µM, 1,25 µM, 2,50 µM, 5,00 µM y 10,00 µM. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima (IC₅₀) media de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

			Tabla 66			
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
541396	30	51	68	74	67	1.4
541262	55	87	90	94	97	0.2
541393	30	38	52	66	81	2.1
541375	41	45	54	64	79	1.6
541438	44	49	75	80	91	0.9
541428	35	32	56	78	88	1.8
541491	13	46	67	55	95	2.0
541435	21	46	55	72	94	1.9
541471	11	49	50	77	89	2.0
541430	24	44	56	57	79	2.2
541492	32	40	65	80	85	1.5
541431	22	46	73	84	92	1.5

			Tabla 67			
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
541487	36	46	66	85	92	1.3
541423	33	55	64	80	93	1.2
541452	37	60	79	87	94	0.9
541505	51	75	86	92	97	0.4
541522	54	76	81	90	95	0.3
541539	65	76	85	94	98	0.2
541503	54	65	80	93	97	0.5
541520	43	61	86	94	96	0.7
541515	57	72	85	92	94	0.3
541564	57	72	88	90	97	0.3
541554	43	65	81	89	93	0.7
541509	11	8	19	6	8	>10
541584	59	65	84	91	96	0.3

			((continuació	n)		
5	Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
	541585	70	80	93	92	98	0.1
				Tabla 68			
10	Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
	541598	26	43	75	80	76	1.5
	541592	35	48	67	85	95	1.2
15	541641	22	63	70	91	93	1.2
	541590	27	59	70	94	95	1.2
	541615	40	65	84	88	94	0.7
20	541595	35	57	73	84	95	1.0
	541575	49	60	79	84	95	0.6
	541571	41	50	76	80	94	1.0
25	541582	0	10	25	50	82	4.4
	541262	66	79	93	94	99	<0.6
	541652	1	44	80	82	87	1.9
30	541670	29	40	63	79	89	1.6
	541662	17	13	45	62	84	3.1
	541724	37	47	72	85	95	1.2
35							
				Tabla 69			
	Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
40	541748	86	94	96	98	98	<0.6
	541767	83	91	95	96	98	<0.6
	541797	78	89	93	97	99	<0.6
45	541766	59	82	92	97	99	<0.6
	541742	65	87	93	95	99	<0.6
	541750	80	86	96	96	99	<0.6
50	541262	79	88	93	97	97	<0.6
	541749	71	84	93	95	98	<0.6
	541793	71	88	94	97	98	<0.6
55	541785	56	79	89	93	98	<0.6
55	541746	34	61	85	94	97	0.9
	541752	49	72	88	93	93	<0.6
60	541826	86	94	95	99	98	<0.6

<0.6

Tabla 70	
5 № ISIS 0.625 µM 1.250 µM 2.50 µM 5.00 µМ 10.00 µМ	IC ₅₀ (μM)
541822 83 88 95 96 96	<0.6
541870 77 87 95 97 98	<0.6
10 541262 85 93 96 97 98	<0.6
541873 32 77 93 94 97	0.7
541819 60 91 97 97 99	<0.6
541841 86 91 95 96 97	<0.6
541825 78 88 95 98 98	<0.6
541863 63 77 87 93 97	<0.6
20 541827 42 80 87 94 97	<0.6
541875 77 84 93 96 97	<0.6
541835 56 73 90 95 98	<0.6
25 541838 72 90 93 98 97	<0.6
541833 52 69 83 92 97	<0.6
541813 47 75 86 95 97	<0.6
30 Tabla 71	
Nº ISIS 0.625 μM 1.250 μM 2.50 μM 5.00 μM 10.00 μM	IC ₅₀ (μM)
541853 74 79 88 93 91	<0.6
35 541842 69 85 91 97 99	<0.6
541877 79 91 93 98 97	<0.6
541848 58 90 96 98 98	0.7
	0.7
40 541804 23 81 89 95 95	0.8
40 541804 23 81 89 95 95 541881 87 94 98 98 99	
40	0.8
541881 87 94 98 98 99 541936 91 96 98 99 98 541909 56 80 89 95 97	0.8
541881 87 94 98 98 99 541936 91 96 98 99 98	0.8 <0.6 <0.6
541881 87 94 98 98 99 541936 91 96 98 99 98 541909 56 80 89 95 97	0.8 <0.6 <0.6 <0.6
40 541881 87 94 98 98 99 541936 91 96 98 99 98 541909 56 80 89 95 97 541907 75 91 95 97 98 541952 68 81 93 97 98 541953 68 80 94 97 98	0.8 <0.6 <0.6 <0.6 <0.6
45	0.8 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6
541881 87 94 98 98 99 541936 91 96 98 99 98 541909 56 80 89 95 97 541907 75 91 95 97 98 541952 68 81 93 97 98 541953 68 80 94 97 98	0.8 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6
541881 87 94 98 98 99 541936 91 96 98 99 98 541909 56 80 89 95 97 541907 75 91 95 97 98 541952 68 81 93 97 98 541953 68 80 94 97 98 541914 60 78 94 97 97 541880 56 74 89 94 95 541903 37 74 87 96 98	0.8 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6
541881 87 94 98 98 99 541936 91 96 98 99 98 541909 56 80 89 95 97 541907 75 91 95 97 98 541952 68 81 93 97 98 541953 68 80 94 97 98 541914 60 78 94 97 97 541880 56 74 89 94 95 541903 37 74 87 96 98	0.8 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6
541881 87 94 98 98 99 541936 91 96 98 99 98 541909 56 80 89 95 97 541907 75 91 95 97 98 541952 68 81 93 97 98 541953 68 80 94 97 98 541914 60 78 94 97 97 541880 56 74 89 94 95 541903 37 74 87 96 98	0.8 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6
541881 87 94 98 98 99 541936 91 96 98 99 98 541909 56 80 89 95 97 541907 75 91 95 97 98 541952 68 81 93 97 98 541953 68 80 94 97 98 541914 60 78 94 97 97 541880 56 74 89 94 95 541903 37 74 87 96 98	0.8 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6

<0.6

				(continuació	n)
F	Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5
5	541904	26	78	23	
	545418	0	81	91	
40	541930	58	71	82	
10	545439	67	87	93	
	542024	15	58	78	
	541985	59	81	88	
15	541972	47	58	83	
	541991	57	64	88	
	541980	33	50	76	
20	<u> </u>			Tabla 73	
	Nº ISIS	0.625 μΜ	1.250 μM	2.50 μM	5
05	541264	26	44	64	
25	541265	29	32	62	
	541263	25	40	62	
30	541268	57	73	85	
30	541266	15	33	46	
	542107	93	97	98	
0.5	542052	93	96	97	
35	542105	80	92	96	
	542102	94	96	96	
40	542108	90	92	94	
40	542080	87	93	95	
	·			Tabla 74	
45	Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5
43	542101	90	97	97	
	542051	89	96	95	
50	542106	83	93	96	
30	542071	84	91	94	
	542094	85	92	94	
55	542069	89	94	97	
55	542086	83	94	96	
				1	

(continuación)									
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)			
541904	26	78	23	89	93	1.4			
545418	0	81	91	94	95	1.7			
541930	58	71	82	88	92	<0.6			
545439	67	87	93	96	98	<0.6			
542024	15	58	78	87	90	1.4			
541985	59	81	88	93	97	<0.6			
541972	47	58	83	90	92	0.6			
541991	57	64	88	92	83	<0.6			
541980	33	50	76	72	93	1.2			

Tabla 73									
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)			
541264	26	44	64	79	89	1.6			
541265	29	32	62	79	91	1.8			
541263	25	40	62	78	93	1.7			
541268	57	73	85	90	95	0.3			
541266	15	33	46	66	90	2.5			
542107	93	97	98	98	98	<0.6			
542052	93	96	97	96	98	<0.6			
542105	80	92	96	98	97	<0.6			
542102	94	96	96	97	98	<0.6			
542108	90	92	94	97	99	<0.6			
542080	87	93	95	95	97	<0.6			

Tabla 74									
Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)			
542101	90	97	97	97	95	<0.6			
542051	89	96	95	98	97	<0.6			
542106	83	93	96	96	98	<0.6			
542071	84	91	94	97	97	<0.6			
542094	85	92	94	97	98	<0.6			
542069	89	94	97	95	98	<0.6			
542086	83	94	96	97	98	<0.6			
542085	85	92	96	97	97	<0.6			
542053	64	83	94	98	97	<0.6			
542087	69	84	99	95	98	<0.6			
542109	87	94	96	98	98	<0.6			
				•					

			((continuació	n)		
5	Nº ISIS	0.625 μΜ	1.250 μM	2.50 μΜ	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
	542126	96	98	99	98	98	<0.6
	542127	94	96	97	98	97	<0.6
10	542128	90	96	98	98	97	<0.6
							1
	Nº ISIS	0.625 μM	1.250 μM	Tabla 75 2.50 μM	5.00 μM	10.00 μΜ	IC ₅₀ (μM)
15	542118	97	97	98	95	43	<0.6
	542186	93	96	98	99	98	<0.6
	542150	95	97	98	99	99	<0.6
20	542122	90	94	98	98	99	<0.6
	542125	88	97	98	98	99	<0.6
	542145	90	96	98	99	99	<0.6
25	542112	86	94	99	99	99	<0.6
	542149	88	93	99	98	99	<0.6
30	542146	79	93	96	97	98	<0.6
30	542153	87	94	97	98	99	<0.6
	542119	64	84	93	97	98	<0.6
	542137	76	91	97	97	98	<0.6
35	542152	84	94	96	96	97	<0.6
	542157	83	95	98	99	98	<0.6
40				Tabla 76			
40	Nº ISIS	0.625 μΜ	1.250 μΜ	2.50 μΜ	5.00 μΜ	10.00 μΜ	IC ₅₀ (μM)
	542185	82	93	96	96	94	<0.6
	542143	81	91	96	98	98	<0.6
45	542144	77	93	95	96	99	<0.6
	542139	87	93	98	98	98	<0.6
	542134	83	90	90	95	96	<0.6
50	545333	68	85	91	96	98	<0.6
	545373	57	73	86	92	97	<0.6
	545438	84	96	98	97	99	<0.6
55	545431	77	91	93	97	98	<0.6
	545447	70	85	96	96	97	<0.6
	545417	62	82	90	93	95	<0.6
60	545467	77	88	91	94	95	<0.6

<0.6

Ejemplo 9: inhibición antisentido dependiente de la dosis de GHR humana en células Hep3B por gapmers de desoxi, MOE y cEt

Los gapmers de los estudios descritos anteriormente que mostraron una inhibición *in vitro* significativa del ARNm de GHR se seleccionaron y probaron a varias dosis en células Hep3B. Los oligonucleótidos antisentido se probaron en una serie de experimentos que tenían condiciones de cultivo similares. Los resultados para cada experimento se presentan en tablas separadas que se muestran a continuación. Las células se sembraron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,04 µM, 0,11 µM, 0,33 µM, 1,00 µM y 3,00 µM. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima (IC₅₀) media de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

Tabla 77									
Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μΜ	IC ₅₀ (μM)			
539380	11	16	57	93	98	0.2			
541724	0	27	71	66	83	0.3			
541748	28	40	71	90	97	0.1			
541767	19	38	54	87	98	0.2			
541797	23	46	70	88	97	0.1			
541766	15	26	49	82	96	0.3			
541742	17	28	41	80	95	0.3			
541750	33	27	60	89	98	0.2			
541749	27	16	62	84	82	0.2			
541793	0	14	44	77	96	0.4			
541785	4	11	39	75	95	0.4			
541752	14	6	45	70	94	0.4			
541826	8	34	74	94	99	0.2			
541811	6	4	45	79	97	0.4			
541822	9	29	67	89	97	0.2			

Tabla 78									
Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μΜ	IC ₅₀ (μM)			
539380	0	16	47	82	98	0.4			
541819	3	12	50	76	94	0.3			
541841	0	19	47	80	95	0.3			
541825	0	6	40	74	96	0.4			
541827	5	26	48	76	95	0.3			
541835	7	11	33	74	93	0.4			
541838	21	26	61	90	97	0.2			
541833	0	9	41	63	89	0.5			
541813	0	17	28	65	92	0.5			
541842	5	15	30	72	90	0.4			

				(continuació	n)		
_	Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μM	3.00 μΜ	IC ₅₀ (μM)
5	541804	0	12	3	49	79	1.1
	542024	0	0	26	54	76	1.0
	542107	15	45	78	92	99	0.1
10	542105	2	14	55	88	98	0.3
	542102	10	16	73	88	98	0.2
45				Tabla 79			
15	Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μΜ	IC ₅₀ (μM)
	539380	4	18	50	86	95	0.3
20	542108	15	13	65	86	97	0.2
20	542101	17	40	68	92	98	0.2
	542106	4	23	56	88	98	0.3
25	542094	0	30	51	86	96	0.3
	542086	13	38	50	84	97	0.2
	542085	0	27	57	90	98	0.3
30	542087	7	3	49	80	92	0.4
	542109	17	10	56	88	98	0.3
	542126	40	63	91	96	99	<0.03
0.5	542127	27	47	69	93	97	0.1
35	542128	11	30	66	90	98	0.2
	542118	14	42	77	95	98	0.1
40	542150	31	46	72	94	98	0.1
40	542122	13	14	59	90	97	0.3
				Tabla 80			
45	Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μΜ	IC ₅₀ (μM)
45	539380	0	2	50	86	97	0.4
	542125	31	32	69	89	96	0.1
50	542145	15	29	64	91	97	0.2
30	542112	14	38	61	87	96	0.2
	542149	9	37	63	90	97	0.2
55	542146	13	33	59	82	95	0.2
55	542153	22	26	63	86	96	0.2
	542119	10	20	34	70	87	0.4
60	542137	3	19	47	77	95	0.3
60	542152	0	9	47	82	96	0.4

0.3

				(continuació	ón)		
_	Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μM	3.00 μΜ	IC ₅₀ (μM)
5	542143	8	12	44	81	95	0.3
	542144	0	21	42	75	95	0.4
40	542139	0	14	46	82	97	0.4
10	542134	3	23	43	72	92	0.4
				Tabla 81			
15	Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μΜ	IC ₅₀ (μM)
13	539380	0	9	64	85	97	0.3
	541870	7	15	48	80	92	0.3
20	541262	0	29	63	90	98	0.2
20	541863	0	26	40	82	93	0.4
	541875	6	30	71	84	91	0.2
25	541853	0	13	39	67	91	0.5
23	541877	0	26	41	79	94	0.4
	541881	0	30	54	87	94	0.3
30	541936	1936 20 41 73 93	98	0.1			
30	541909	0	16	34	64	90	0.5
	541907	6	31	59	84	96	0.2
25	541952	0	0	50	72	92	0.5
35	541953	0	22	50	80	92	0.4
	541914	0	0	46	76	93	0.4
40	541880	0	13	48	79	89	0.4
40				Tabla 82			
	Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μΜ	IC ₅₀ (μM)
45	539380	0	5	53	78	94	0.4
43	541903	12	20	26	62	88	0.5
	541895	3	12	29	66	92	0.5
50	541882	2	0	27	65	86	0.7
50	541889	12	12	47	68	87	0.4
	541930	0	6	40	59	85	0.6
55	541985	0	16	41	66	93	0.4
55	542031	1	0	22	55	80	0.8
	541972	0	1	23	46	83	0.9
60	541991	4	35	42	67	89	0.4

0.2

0.3

(continuaciór	

Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μΜ	IC ₅₀ (μM)
542051	0	18	52	86	97	0.3
542071	5	3	51	74	95	0.4
542069	0	7	56	85	94	0.3

Tabla 83

l abia 83									
Nº ISIS	0.04 μΜ	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μΜ	IC ₅₀ (μM)			
539380	11	20	54	89	92	0.3			
542053	6	14	38	69	74	0.6			
542186	14	43	70	90	98	0.2			
542185	0	26	48	80	96	0.3			
545333	0	4	27	65	90	0.6			
545336	0	15	24	43	79	0.9			
545373	0	2	9	42	86	1.0			
545438	0	24	56	81	92	0.3			
545431	0	18	50	73	91	0.4			
545447	0	15	34	78	93	0.4			
545417	0	11	39	66	87	0.5			
545467	12	16	37	76	93	0.4			
545441	21	15	20	60	87	0.6			
545439	17	24	49	82	91	0.3			

Ejemplo 10: inhibición antisentido dependiente de la dosis de GHR de mono rhesus en células LLC-MK2

Los gapmers de los estudios descritos anteriormente que mostraron una inhibición in vitro significativa del ARNm de GHR se seleccionaron y probaron su potencia para el ARNm de GHR rhesus en células LLC-MK2. Las células se sembraron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,12 μM, 0,37 μM, 1,11 μM, 3,33 μM y 10,00 μΜ. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda RTS3437MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima (IC₅₀) media de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

i abia 04

	Tabla 84										
Nº ISIS	Química	0.12 μΜ	0.37 μΜ	1.11 μΜ	3.33 μΜ	10.00 μΜ	IC ₅₀ (μM)				
541262	Desoxi, MOE y cEt	9	25	42	85	91	1.1				
541742	Desoxi, MOE y cEt	0	24	19	58	77	3.2				
541767	Desoxi, MOE y cEt	6	10	30	68	88	2.0				
541875	Desoxi, MOE y cEt	7	19	64	84	96	0.9				
541881	Desoxi, MOE y cEt	6	24	59	79	91	1.0				
542101	Desoxi, MOE y cEt	0	5	38	71	81	2.0				

5

10

15

20

25

30

35

40

45

50

55

		., \
- 1	(continu	I acion
	COLITICIO	iacioi i j

Nº ISIS	Química	0.12 μΜ	0.37 μΜ	1.11 μΜ	3.33 μΜ	10.00 μΜ	IC ₅₀ (μM)
542112	Desoxi, MOE y cEt	5	17	33	67	76	2.0
542118	Desoxi, MOE y cEt	1	6	35	68	86	2.0
542125	Desoxi, MOE y cEt	0	12	57	83	93	1.0
542127	Desoxi, MOE y cEt	1	0	30	68	84	2.4
542128	Desoxi, MOE y cEt	12	0	26	58	83	2.7
542153	Desoxi, MOE y cEt	4	0	0	36	59	6.6
542185	Desoxi, MOE y cEt	4	0	25	56	87	2.5
542186	Desoxi, MOE y cEt	15	23	51	73	90	1.1
542051	Desoxi, MOE y cEt	5	19	40	81	94	1.2

Tabla 85									
Nº ISIS	Química	0.12 μΜ	0.37 μΜ	1.11 μΜ	3.33 μΜ	10.00 μΜ	IC ₅₀ (μM)		
523723	5-10-5 MOE	23	14	31	43	71	3.5		
532254	5-10-5 MOE	29	35	42	69	87	0.8		
532401	5-10-5 MOE	27	28	46	73	88	1.2		
533932	5-10-5 MOE	10	24	48	70	92	1.2		
539376	3-10-4 MOE	21	8	8	35	81	4.3		
539399	3-10-4 MOE	2	10	14	18	57	8.3		
539404	3-10-4 MOE	39	12	25	27	57	7.7		
539416	3-10-4 MOE	24	35	44	79	89	1.0		
539432	3-10-4 MOE	9	29	42	73	89	1.2		
541262	Desoxi, MOE y cEt	0	43	63	88	94	0.8		
541742	Desoxi, MOE y cEt	3	19	35	56	85	1.9		
541767	Desoxi, MOE y cEt	3	24	39	64	86	1.6		
545439	Desoxi, MOE y cEt	19	15	43	74	80	1.7		
545447	Desoxi, MOE y cEt	25	34	58	80	90	0.6		

Ejemplo 11: inhibición antisentido dependiente de la dosis de GHR en hepatocitos primarios de cynomolgus

Los gapmers de los estudios descritos anteriormente que mostraron una inhibición in vitro significativa del ARNm de GHR fueron seleccionados y probados para determinar su potencia para el ARNm de GHR en hepatocitos primarios de mono cynomolgus. Las células se sembraron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,12 µM, 0,37 µM, 1,11 µM, 3,33 µM y 10,00 µM. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda RTS3437MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima (IC₅₀) media de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

65

5

10

15

20

25

30

35

40

45

50

55

Та	h	_	0	~

Nº ISIS	Química	0.12 μΜ	0.37 μΜ	1.11 μΜ	3.33 μΜ	10.00 μΜ	IC ₅₀ (μM)
541262	Desoxi, MOE y cEt	40	52	75	92	98	0.3
541742	Desoxi, MOE y cEt	40	57	51	91	96	0.2
541767	Desoxi, MOE y cEt	36	59	60	78	91	0.4
541875	Desoxi, MOE y cEt	54	76	88	95	95	<0.1
541881	Desoxi, MOE y cEt	53	75	85	98	98	<0.1
542101	Desoxi, MOE y cEt	38	55	78	89	97	0.2
542112	Desoxi, MOE y cEt	28	50	74	89	96	0.4
542118	Desoxi, MOE y cEt	20	45	69	84	91	0.5
542125	Desoxi, MOE y cEt	33	62	77	92	97	0.3
542127	Desoxi, MOE y cEt	30	50	65	86	92	0.4
542128	Desoxi, MOE y cEt	25	40	52	80	93	0.7
542153	Desoxi, MOE y cEt	10	31	51	73	85	1.0
542185	Desoxi, MOE y cEt	12	45	65	85	93	0.6
542186	Desoxi, MOE y cEt	36	54	74	90	96	0.3
542051	Desoxi, MOE y cEt	9	29	32	32	42	>10

Tabla 87

Tabla 87									
Nº ISIS	Química	0.12 μΜ	0.37 μΜ	1.11 μΜ	3.33 μΜ	10.00 μΜ	IC ₅₀ (μM)		
523435	5-10-5 MOE	35	47	61	74	85	0.5		
523723	5-10-5 MOE	4	16	40	66	86	1.8		
532254	5-10-5 MOE	14	15	24	16	9	>10		
532401	5-10-5 MOE	37	54	73	88	94	0.3		
533932	5-10-5 MOE	23	40	69	78	86	0.6		
539376	3-10-4 MOE	3	0	44	65	91	2.0		
539399	3-10-4 MOE	0	0	9	42	67	5.0		
539404	3-10-4 MOE	0	0	26	52	71	3.5		
539416	3-10-4 MOE	8	29	62	89	93	0.7		
539432	3-10-4 MOE	0	24	55	85	93	0.9		
541262	Desoxi, MOE y cEt	23	52	73	92	96	0.4		
541742	Desoxi, MOE y cEt	15	51	73	86	97	0.5		
541767	Desoxi, MOE y cEt	19	20	39	68	81	1.8		
545439	Desoxi, MOE y cEt	0	0	30	61	90	2.4		
545447	Desoxi, MOE y cEt	0	17	17	19	27	>10		

Ejemplo 12: inhibición antisentido dependiente de la dosis de GHR en células Hep3B

Los gapmers de los estudios descritos anteriormente que mostraron una inhibición *in vitro* significativa del ARNm de GHR fueron seleccionados y probados para determinar su potencia para el ARNm de GHR a varias dosis en células Hep3B. Las células se sembraron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,12 µM, 0,37 µM, 1,11 µM, 3,33 µM y 10,00 µM. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto

de cebador sonda humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima (IC_{50}) media de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

	88	

l abia 88								
Nº ISIS	0.12 μΜ	0.37 μΜ	1.11 μΜ	3.33 μΜ	10.00 μΜ	IC ₅₀ (μM)		
541262	25	43	76	85	94	0.5		
541742	32	55	76	88	97	0.3		
541767	29	56	83	89	97	0.3		
541875	38	68	84	93	94	0.1		
541881	32	57	81	94	97	0.3		
542051	34	66	83	95	98	0.2		
542101	25	55	85	95	98	0.3		
542112	18	56	83	95	98	0.4		
542118	42	61	88	95	97	0.1		
542125	30	63	87	95	98	0.2		
542127	50	70	91	91	98	0.1		
542128	38	63	88	96	98	0.2		
542153	37	59	85	94	97	0.2		
542185	44	51	76	89	96	0.2		
542186	46	59	84	95	97	0.1		

Tabla 89

			i abia oc	<u>, </u>		
Nº ISIS	0.12 μΜ	0.37 μΜ	1.11 μΜ	3.33 μΜ	10.00 μΜ	IC ₅₀ (μM)
523435	9	26	49	78	93	1.0
523723	7	16	39	72	90	1.4
532254	36	46	69	86	94	0.4
532401	25	54	71	86	91	0.4
533932	8	47	69	80	94	0.7
539376	26	31	54	73	86	0.8
539399	23	43	72	89	94	0.5
539404	30	60	88	95	98	0.2
539416	30	59	84	93	98	0.3
539432	35	62	88	95	98	0.2
541262	43	60	84	89	98	0.2
541742	23	53	73	84	97	0.4
541767	22	49	74	85	92	0.4
545439	41	69	88	95	96	0.1
545447	31	47	63	74	82	0.5

Ejemplo 13: inhibición antisentido dependiente de la dosis de GHR en hepatocitos primarios de cynomolgus

Los gapmers de los estudios descritos anteriormente que mostraron una inhibición *in vitro* significativa del ARNm de GHR se seleccionaron y probaron a varias dosis en hepatocitos primarios de monos cynomolgus. Las células se sembraron en placas a una densidad de 35.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,04 µM, 0,12 µM, 0,37 µM, 1,1 µM, 3,33 µM y 10,00 µM. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima (IC₅₀) media de cada oligonucleótido. Los niveles de ARNm de GHR se redujeron significativamente de una manera dependiente de la dosis en células tratadas con oligonucleótidos antisentido.

	Tabla 90									
Nº ISIS	0.04 μΜ	0.12 μΜ	0.37 μΜ	1.11 μΜ	3.33 μΜ	10.00 μΜ	IC ₅₀ (μM)			
541767	8	17	29	48	59	58	0.4			
541875	20	39	48	51	55	58	0.2			
541881	23	36	49	60	56	58	0.1			
542112	23	21	35	42	54	68	0.5			
542118	19	14	26	38	54	59	0.8			
542153	17	20	27	39	46	52	2.2			
542185	20	23	27	46	39	56	2.0			
532254	1	20	23	11	1	23	>10			
532401	0	15	24	39	47	55	1.6			
523723	0	0	7	24	49	54	2.0			

Ejemplo 14: Análisis comparativo de la inhibición antisentido dependiente de la dosis de GHR en células Hep3B

Se comparó ISIS 532401 con oligonucleótidos antisentido específicos divulgados en la US 2006/0178325 probando a varias dosis en células Hep3B. Los oligonucleótidos se seleccionaron en base a la potencia demostrada en los estudios descritos en la solicitud. Las células se colocaron en placas a una densidad de 20.000 células por pocillo y se transfectaron usando electroporación con concentraciones de oligonucleótido antisentido de 0,11 μM, 0,33 μM, 1,00 μM, 1,11 μM, 3,00 μM y 9,00 μM. Después de un período de tratamiento de aproximadamente 16 horas, se aisló el ARN de las células y se midieron los niveles de ARNm de GHR mediante PCR cuantitativa en tiempo real. Se usó el conjunto de cebador sonda humano RTS3437_MGB para medir los niveles de ARNm. Los niveles de ARNm de GHR se ajustaron de acuerdo con el contenido total de ARN, medido por RIBOGREEN®. Los resultados se presentan como porcentaje de inhibición de GHR, con respecto a las células de control no tratadas.

También se presenta la concentración inhibidora máxima (IC_{50}) media de cada oligonucleótido. Los resultados indican que ISIS 532401 era marcadamente más potente que los oligonucleótidos más potentes de la US 2006/0178325.

Tabla 91								
Nº ISIS	0.11 μΜ	0.33 μΜ	1.00 μΜ	3.00 μΜ	9.00 μΜ	IC ₅₀ (μM)		
227452	11	12	46	73	92	1.4		
227488	26	25	39	76	88	1.2		
272309	16	14	39	66	91	1.6		
272322	13	20	44	70	86	1.4		
272328	22	20	24	43	56	5.7		
272338	22	24	52	71	85	1.1		
532401	34	53	72	87	94	0.3		

Ejemplo 15: tolerabilidad de gapmers 5-10-5 MOE dirigidos a GHR humana en ratones CD1

Los ratones CD1® (Charles River, MA) son un modelo de ratones multipropósito, frecuentemente usado para pruebas de seguridad y eficacia. Los ratones fueron tratados con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y se evaluaron para detectar cambios en los niveles de varios marcadores de química del plasma.

Tratamiento

5

10

15

20

25

30

35

40

45

50

55

60

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les inyectaron por vía subcutánea dos veces por semana durante 6 semanas 50 mg/kg de oligonucleótidos ISIS (dosis de 100 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones se sacrificaron 48 horas después de la última dosis, y los órganos y el plasma se recogieron para su análisis posterior.

Marcadores de química de plasma

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 92. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de la función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 92

Tabla 92								
	Marcadores de química de plasma en plasma de ratones CD1 en la semana 6							
	ALT (IU/L)	AST (IU/L)	Bilirrubina (mg/dl)	Creatinina (mg/dl)	BUN (mg/dl)			
PBS	31	50	0.28	0.15	28			
ISIS 523271	366	285	0.18	0.11	29			
ISIS 523324	222	139	0.19	0.10	31			
ISIS 523604	2106	1157	0.41	0.06	48			
ISIS 532254	66	84	0.11	0.10	27			
ISIS 533121	176	155	0.19	0.09	27			
ISIS 533161	1094	904	0.23	0.07	29			
ISIS 533178	78	83	0.18	0.08	28			
ISIS 533234	164	147	0.21	0.09	26			

Ensayos hematológicos

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y plaquetas, y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 93. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores hematológicos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 93

Marcadores hematológicos en plasma de ratones CD1 en la semana 6							
	HCT (%)	Hemoglobina (g/dl)	RBC (10 ⁶ /μl)	WBC (10 ³ /μl)	Plaquetas (10 ³ /μl)		
PBS	45	13	8.2	4.1	689		
ISIS 523271	42	12	7.9	4.5	1181		
ISIS 523324	39	11	7.5	7.9	980		
ISIS 523604	33	10	6.9	14.1	507		
ISIS 532254	35	10	6.9	7.2	861		

5

10

15

Marcadores hematológicos en plasma de ratones CD1 en la semana 6 RBC (10⁶/μl) WBC $(10^{3}/\mu l)$ Plaquetas (10³/μl) HCT (%) Hemoglobina (g/dl) ISIS 533121 39 12 7.9 8.4 853 607 ISIS 533161 49 14 9.3 9.0 ISIS 533178 44 13 8.5 6.9 765 ISIS 533234 42 12 7.8 9.2 1045

Ejemplo 16: tolerabilidad de gapmers 5-10-5 MOE dirigidos a GHR humana en ratones CD1

Los ratones CD1® se trataron con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y se evaluaron los cambios en los niveles de varios marcadores químicos en plasma.

Tratamiento

20

25

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les inyectó por vía subcutánea dos veces por semana durante 6 semanas 50 mg/kg de oligonucleótido ISIS (dosis de 100 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones se sacrificaron 48 horas después de la última dosis, y los órganos y el plasma se recogieron para su análisis posterior.

Marcadores de química de plasma

30

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 94. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de la función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

35

Tahla 94

40	
45	
50	
55	

	Tabla 94							
	Marcadores de química de plasma en plasma de ratones CD1 en la semana 6							
	ALT (IU/I)	AST (IU/I)	Bilirrubina (mg/dl)	Creatinina (mg/dl)	BUN (mg/dl)			
PBS	30	59	0.26	0.14	20			
ISIS 523715	636	505	0.24	0.14	22			
ISIS 523723	57	80	0.20	0.16	23			
ISIS 523726	165	167	0.18	0.15	23			
ISIS 523736	140	177	0.20	0.15	23			
ISIS 523747	96	108	0.17	0.14	23			
ISIS 523789	45	74	0.20	0.15	22			
ISIS 532395	64	111	0.23	0.12	21			
ISIS 532401	47	88	0.21	0.17	22			
ISIS 532411	225	426	0.17	0.16	22			
ISIS 532420	60	99	0.21	0.12	25			
ISIS 532468	319	273	0.15	0.14	21			
ISIS 533932	62	81	0.18	0.14	21			

Ensayos hematológicos

65

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WB), RBC y plaquetas, y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 95. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores hematológicos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 95

l abia 33									
	Marcadores hematológicos en plasma de ratones CD1 en la semana 6								
	HCT (%)	Hemoglobina (g/dl)	RBC (10 ⁶ /μl)	WBC (10 ³ /μl)	Plaquetas (10 ³ /μl)				
PBS	43	13	8.1	3.3	1047				
ISIS 523715	40	12	8.1	4.2	1153				
ISIS 523723	35	11	6.8	2.9	1154				
ISIS 523726	32	10	6.8	5.8	1056				
ISIS 523736	35	11	7.1	3.6	1019				
ISIS 523747	37	11	7.7	2.8	1146				
ISIS 523789	37	11	7.3	2.5	1033				
ISIS 532395	37	11	7.4	4.5	890				
ISIS 532401	36	11	7.1	3.7	1175				
ISIS 532411	27	8	5.3	3.2	641				
ISIS 532420	35	11	7.0	3.3	1101				
ISIS 532468	36	11	7.4	4.0	1043				
ISIS 533932	36	11	7.2	3.8	981				

Ejemplo 17: tolerabilidad de gapmers 3-10-4 MOE dirigidos a GHR humana en ratones CD1

Los ratones CD1® se trataron con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y se evaluaron para cambios en los niveles de varios marcadores químicos en plasma.

Tratamiento

5

10

15

20

25

30

35

40

45

50

55

60

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les inyectó por vía subcutánea dos veces por semana durante 6 semanas 50 mg/kg de oligonucleótido ISIS (dosis de 100 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones se sacrificaron 48 horas después de la última dosis, y los órganos y el plasma se recogieron para su análisis posterior.

Marcadores de química de plasma

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 96. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 96

Marcadores de química de plasma en plasma de ratones CD1 en la semana 6						
	ALT (IU/I)	AST (IU/I)	Bilirrubina (mg/dl)	Creatinina (mg/dl)	BUN (mg/dl)	
PBS	48	63	0.20	0.13	28	
ISIS 539302	204	192	0.15	0.15	24	

	(continuación)							
	Marcadores de química de plasma en plasma de ratones CD1 en la semana 6							
	ALT (IU/I)	AST (IU/I)	Bilirrubina (mg/dl)	Creatinina (mg/dl)	BUN (mg/dl)			
ISIS 539321	726	455	0.17	0.12	27			
ISIS 539360	3287	2495	0.58	0.13	22			
ISIS 539361	310	226	0.17	0.11	21			
ISIS 539376	77	75	0.14	0.12	27			
ISIS 539379	134	136	0.16	0.13	24			
ISIS 539380	180	188	0.14	0.12	23			
ISIS 539383	80	81	0.15	0.12	25			
ISIS 539399	119	127	0.13	0.12	24			
ISIS 539401	1435	1172	0.24	0.11	24			
ISIS 539403	1543	883	0.18	0.12	26			
ISIS 539404	75	109	0.16	0.13	23			
ISIS 539416	100	107	0.19	0.15	26			
ISIS 539432	55	64	0.20	0.14	22			
ISIS 539433	86	91	0.12	0.13	22			

Ensayos hematológicos

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y plaquetas, y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 97. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores hematológicos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 97

			abia 31				
Marcadores hematológicos en plasma de ratones CD1 en la semana 6							
	HCT (%)	Hemoglobina (g/dl)	RBC (10 ⁶ /μl)	WBC (10 ³ /μl)	Plaquetas (10 ³ /μl)		
PBS	46	13	8.5	6	954		
ISIS 539302	40	11	8.1	13	830		
ISIS 539321	39	11	7.8	16	723		
ISIS 539360	49	14	9.0	14	671		
ISIS 539361	45	13	8.5	9	893		
ISIS 539376	42	12	7.7	6	988		
ISIS 539379	42	12	8.1	7	795		
ISIS 539380	38	10	7.7	8	950		
ISIS 539383	45	12	8.4	8	795		
ISIS 539399	41	12	8.0	10	895		
ISIS 539401	41	11	8.2	9	897		
ISIS 539403	33	9	6.2	13	1104		
ISIS 539404	42	12	8.4	7	641		
ISIS 539416	41	11	7.5	5	686		

920

987

Marcadores hematológicos en plasma de ratones CD1 en la semana 6 WBC (103/µl) RBC (106/μl) Plaquetas (10³/µl) HCT (%) Hemoglobina (g/dl) 44 12 ISIS 539432 8.0 6 ISIS 539433 40 11 7.4 6

10

15

20

5

Ejemplo 18: tolerabilidad de gapmers de desoxi, MOE y cEt dirigidos a GHR humana en ratones CD1

Los ratones CD1® se trataron con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y se evaluaron los cambios en los niveles de varios marcadores químicos en plasma.

Tratamiento

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les invectaron por vía subcutánea dos veces por semana durante 6 semanas 25 mg/kg de oligonucleótido ISIS (dosis de 50 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones se sacrificaron 48 horas después de la última dosis, y los órganos y el plasma se recogieron para su análisis posterior.

Marcadores de química de plasma

25

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 98. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

35

30

40

45

50

55

60

	Tabla 98							
Ма	Marcadores de química de plasma en plasma de ratones CD1 en la semana 6							
	ALT (IU/I)	AST (IU/I)	Bilirrubina (mg/dl)	Creatinina (mg/dl)	BUN (mg/dl)			
PBS	36	71	0.22	0.18	22			
ISIS 541262	115	133	0.21	0.18	21			
ISIS 541724	543	531	0.34	0.17	21			
ISIS 541742	44	71	0.18	0.16	21			
ISIS 541748	269	582	0.16	0.15	22			
ISIS 541749	626	491	0.20	0.20	22			
ISIS 541750	1531	670	0.20	0.18	23			
ISIS 541766	2107	1139	0.21	0.21	23			
ISIS 541767	42	62	0.21	0.17	20			
ISIS 541822	493	202	0.13	0.16	22			
ISIS 541826	889	398	0.21	0.14	17			
ISIS 541838	266	172	0.16	0.15	20			
ISIS 541870	445	272	0.23	0.16	23			
ISIS 541875	103	114	0.20	0.15	20			
ISIS 541907	940	725	0.16	0.19	35			
ISIS 541991	1690	1733	0.31	0.20	23			

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y plaquetas, y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 99. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores hematológicos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 99

l abia 99							
Marcadores hematológicos en plasma de ratones CD1 en la semana 6							
	HCT (%)	Hemoglobina (g/dl)	RBC (10 ⁶ /μl)	WBC (10 ³ /μl)	Plaquetas (10 ³ /μl)		
PBS	37	11	7	3	1083		
ISIS 541262	38	11	7	6	1010		
ISIS 541724	52	16	10	9	940		
ISIS 541742	47	14	9	6	1134		
ISIS 541748	41	12	8	7	941		
ISIS 541749	41	12	8	5	1142		
ISIS 541750	42	12	8	4	1409		
ISIS 541766	39	11	7	7	989		
ISIS 541767	46	14	9	2	994		
ISIS 541822	42	12	8	3	1190		
ISIS 541826	41	12	8	10	1069		
ISIS 541838	44	13	8	6	1005		
ISIS 541870	38	11	7	8	1020		
ISIS 541875	44	13	8	6	1104		
ISIS 541907	40	11	8	9	1271		
ISIS 541991	34	10	6	6	1274		

Ejemplo 19: tolerabilidad de separadores de desoxi, MOE y cEt dirigidos a GHR humana en ratones CD1

Los ratones CD1® se trataron con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y se evaluaron para cambios en los niveles de varios marcadores químicos en plasma. El 3-10-4 MOE gapmer ISIS 539376 también se incluyó en el estudio.

45 Tratamiento

5

10

15

20

25

30

35

40

50

55

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les inyectaron por vía subcutánea dos veces por semana durante 6 semanas 25 mg/kg de oligonucleótido ISIS (dosis de 50 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones se sacrificaron 48 horas después de la última dosis, y los órganos y el plasma se recogieron para su análisis posterior.

Marcadores de química de plasma

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 100. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de la función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

65

Tabla 100

Tabla 100					
Marcadores de química de plasma en plasma de ratones CD1 en la semana 6					
	ALT (IU/I)	AST (IU/I)	Bilirrubina (mg/dl)	Creatinina (mg/dl)	BUN (mg/dl)
PBS	43	66	0.21	0.11	20
ISIS 541881	63	109	0.28	0.13	23
ISIS 541936	3260	2108	0.40	0.13	24
ISIS 542051	97	119	0.23	0.12	23
ISIS 542052	454	236	0.23	0.12	25
ISIS 542069	293	211	0.23	0.13	27
ISIS 542085	91	87	0.18	0.10	21
ISIS 542086	137	133	0.24	0.10	23
ISIS 542094	86	143	0.23	0.13	21
ISIS 542101	46	74	0.19	0.10	21
ISIS 542102	4920	2432	2.30	0.15	29
ISIS 542105	1255	575	0.35	0.13	21
ISIS 542106	3082	2295	3.42	0.17	23
ISIS 542107	4049	3092	0.50	0.14	20
ISIS 542108	1835	859	0.32	0.11	21
ISIS 539376	40	79	0.27	0.08	22

Ensayos hematológicos

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 101. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores hematológicos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 101

		i abia 101			
Marcadores hematológicos en plasma de ratones CD1 en la semana 6					
	HCT (%)	Hemoglobina (g/dl)	RBC (10 ⁶ /μl)	WBC (10 ³ /μl)	
PBS	46	13	8	6	
ISIS 541881	53	15	10	7	
ISIS 541936	41	11	8	18	
ISIS 542051	49	14	9	8	
ISIS 542052	46	13	9	9	
ISIS 542069	43	13	8	7	
ISIS 542085	38	11	7	5	
ISIS 542086	49	14	9	9	
ISIS 542094	36	10	6	5	
ISIS 542101	44	13	9	5	
ISIS 542102	27	7	5	25	
ISIS 542105	42	12	8	7	

5

10

15

Marcadores hematológicos en plasma de ratones CD1 en la semana 6 RBC (106/µl) WBC (103/µl) Hemoglobina (g/dl) HCT (%) ISIS 542106 37 7 14 10 ISIS 542107 7 41 12 17 ISIS 542108 51 14 8 10 5 ISIS 539376 49 14 10

Ejemplo 20: tolerabilidad de gapmers de desoxi, MOE y cEt dirigidos a GHR humana en ratones CD1

Los ratones CD1® se trataron con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos anteriormente y se evaluaron para cambios en los niveles de varios marcadores químicos en plasma.

Tratamiento

20

A grupos de ratones CD1 macho de ocho a diez semanas de edad se les inyectaron por vía subcutánea dos veces por semana durante 6 semanas 25 mg/kg de oligonucleótido ISIS (dosis de 50 mg/kg/semana). A un grupo de ratones CD1 macho se le inyectó por vía subcutánea dos veces por semana durante 6 semanas PBS. Los ratones se sacrificaron 48 horas después de la última dosis, y los órganos y el plasma se recogieron para su análisis posterior.

Marcadores de química de plasma

30

25

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática y renal, se midieron los niveles en plasma de transaminasas, bilirrubina, creatinina y BUN usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 102. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de la función hepática o renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

35

Tabla 102

40	
45	
50	
55	

			Tabla 102			
Marca	Marcadores de química de plasma en plasma de ratones CD1 en la semana 6					
	ALT (IU/L)	AST (IU/L)	Bilirrubina (mg/dl)	Creatinina (mg/dl)	BUN (mg/dl)	
PBS	51	63	0.3	0.14	27	
ISIS 542109	3695	2391	0.8	0.19	24	
ISIS 542112	119	104	0.3	0.16	28	
ISIS 542118	66	86	0.3	0.15	26	
ISIS 542122	1112	350	0.3	0.16	27	
ISIS 542125	79	92	0.2	0.13	26	
ISIS 542126	381	398	0.5	0.14	23	
ISIS 542127	54	85	0.3	0.16	26	
ISIS 542128	55	89	0.2	0.12	24	
ISIS 542145	834	671	0.3	0.11	24	
ISIS 542146	163	107	0.2	0.14	30	
ISIS 542149	974	752	0.3	0.12	26	
ISIS 542150	2840	2126	2.4	0.17	23	
ISIS 542153	53	75	0.2	0.14	28	
ISIS 542157	137	122	0.3	0.13	25	

65

5

15

20

Marcadores de química de plasma en plasma de ratones CD1 en la semana 6						
	ALT (IU/L) AST (IU/L) Bilirrubina (mg/dl) Creatinina (mg/dl) BUN (mg/dl)					
ISIS 542185	57	72	0.2	0.11	23	
ISIS 542186	62	84	0.2	0.12	24	
ISIS 545431	2622	1375	3.0	0.15	28	
ISIS 545438	1710	1000	0.3	0.14	26	
ISIS 545439	70	117	0.2	0.12	28	
ISIS 545447	141	108	0.3	0.13	26	

Ensayos hematológicos

La sangre obtenida de todos los grupos de ratones se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 103. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores hematológicos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

25

Tabla 103

30	
35	
40	
45	
50	
55	
60	

F	Tabla 103						
	Marcadores hematológicos en plasma de ratones CD1 en la semana 6						
	HCT (%)	Hemoglobina (g/dl)	RBC (10 ⁶ /μl)	WBC (10 ³ /μl)	Plaquetas (10 ³ /μl)		
PBS	40	12	7	6	1210		
ISIS 542109	47	13	9	16	1244		
ISIS 542112	50	13	8	7	1065		
ISIS 542118	42	12	8	8	1120		
ISIS 542122	37	11	7	7	1064		
ISIS 542125	42	13	8	7	1063		
ISIS 542126	34	10	7	9	1477		
ISIS 542127	41	12	7	7	1144		
ISIS 542128	40	12	7	6	1196		
ISIS 542145	42	12	8	8	1305		
ISIS 542146	45	13	8	7	1310		
ISIS 542149	33	10	6	12	903		
ISIS 542150	27	7	5	18	1202		
ISIS 542153	46	13	8	5	1130		
ISIS 542157	44	12	9	6	791		
ISIS 542185	45	13	8	3	1031		
ISIS 542186	44	12	8	6	985		
ISIS 545431	28	7	6	13	2609		
ISIS 545438	40	11	8	8	1302		
ISIS 545439	48	13	9	4	857		
ISIS 545447	45	13	9	9	964		

Ejemplo 21: Tolerabilidad de los gapmers MOE dirigidos a GHR humana en ratas Sprague-Dawley

Las ratas Sprague-Dawley son un modelo multipropósito usado para evaluaciones de seguridad y eficacia. Las ratas se trataron con oligonucleótidos antisentido ISIS de los estudios descritos en los ejemplos anteriores y se evaluaron para cambios en los niveles de varios marcadores de química del plasma.

Tratamiento

Se mantuvieron ratas Sprague-Dawley macho en un ciclo de luz/oscuridad de 12 horas y se alimentaron ad libitum con comida para ratas normal de Purina, dieta 5001. A grupos de 4 ratas Sprague-Dawley se les inyectaron por vía subcutánea dos veces por semana durante 6 semanas 50 mg/kg de oligonucleótido ISIS (dosis semanal de 100 mg/kg). Cuarenta y ocho horas después de la última dosis, se sacrificaron ratas y se extrajeron órganos y plasma para su análisis posterior.

Función hepática

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática, se midieron los niveles en plasma de transaminasas usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Se midieron los niveles en plasma de ALT (alanina transaminasa) y AST (aspartato transaminasa) y los resultados se presentan en la Tabla 104 expresada en Ul/l. También se midieron los niveles en plasma de bilirrubina usando el mismo analizador químico clínico y los resultados también se presentan en la Tabla 104 expresada en mg/dl. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquier marcador de la función hepática fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

7	٦,	h	la	1	n	Δ

Marcadores de la función hepática en ratas Sprague-Dawley					
	ALT (IU/I)	AST (IU/I)	Bilirrubina (mg/dl)		
PBS	69	90	0.15		
ISIS 523723	79	123	0.12		
ISIS 523789	71	105	0.15		
ISIS 532254	67	97	0.14		
ISIS 532401	61	77	0.12		
ISIS 532420	102	127	0.17		
ISIS 533178	157	219	0.34		
ISIS 533234	71	90	0.11		
ISIS 533932	58	81	0.12		
ISIS 539376	75	101	0.14		
ISIS 539380	86	128	0.16		
ISIS 539383	64	94	0.14		
ISIS 539399	52	95	0.14		
ISIS 539404	88	118	0.13		
ISIS 539416	63	104	0.14		
ISIS 539432	63	90	0.13		
ISIS 539433	69	92	0.13		

Función renal

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función renal, se midieron los niveles en plasma de nitrógeno ureico en sangre (BUN) y creatinina usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 105, expresada en mg/dl. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de función renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 105

Marcadores de la función renal (mg/dl) en ratas Sprague-Dawley					
	BUN	Creatinina			
PBS	24	0.32			
ISIS 523723	20	0.39			
ISIS 523789	19	0.37			
ISIS 532254	21	0.43			
ISIS 532401	17	0.36			
ISIS 532420	20	0.31			
ISIS 533178	20	0.43			
ISIS 533234	22	0.41			
ISIS 533932	19	0.43			
ISIS 539376	19	0.36			
ISIS 539380	18	0.35			
ISIS 539383	19	0.35			
ISIS 539399	18	0.39			
ISIS 539404	23	0.39			
ISIS 539416	17	0.39			
ISIS 539432	20	0.39			
ISIS 539433	20	0.34			

Ensayos hematológicos

La sangre obtenida de todos los grupos de ratas se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 106. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores hematológicos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

	Tabla 106						
	Marcadores hematológicos en ratas Sprague-Dawley						
	HCT (%)	Hemoglobina (g/dl)	RBC (10 ⁶ /μl)	WBC (10 ³ /μl)	Plaquetas (10 ³ /μl)		
PBS	46	15	8	11	1078		
ISIS 523723	38	12	7	19	626		
ISIS 523789	38	12	8	12	702		
ISIS 532254	36	12	7	11	547		
ISIS 532401	42	14	8	12	858		
ISIS 532420	37	12	7	17	542		
ISIS 533178	37	12	7	15	1117		
ISIS 533234	38	12	7	8	657		
ISIS 533932	40	13	7	9	999		
ISIS 539376	43	14	9	8	910		
ISIS 539380	33	11	5	6	330		

Plaquetas (10³/μl)

Marcadores hematológicos en ratas Sprague-Dawley RBC $(10^6/\mu l)$ WBC $(10^{3}/\mu l)$ HCT (%) Hemoglobina (g/dl) ISIS 539383 ISIS 539399 ISIS 539404 ISIS 539416 ISIS 539432 ISIS 539433

Pesos de órganos

Se midieron los pesos del hígado, el corazón, el bazo y los riñones al final del estudio, y se presentan en la Tabla 107. Los oligonucleótidos ISIS que provocaron cualquier cambio en el peso de los órganos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron de otros estudios.

Tabla 107

Pesos de los órganos (g)						
	Corazón	Hígado	Bazo	Riñón		
PBS	0.35	3.6	0.2	0.8		
ISIS 523723	0.31	4.9	0.7	0.8		
ISIS 523789	0.34	4.8	0.6	0.8		
ISIS 532254	0.32	5.0	0.6	1.0		
ISIS 532401	0.32	3.8	0.4	0.8		
ISIS 532420	0.29	4.6	0.7	1.0		
ISIS 533178	0.34	5.2	0.7	0.9		
ISIS 533234	0.30	4.4	0.6	1.0		
ISIS 533932	0.31	3.9	0.5	0.9		
ISIS 539376	0.29	4.4	0.4	0.8		
ISIS 539380	0.31	6.3	1.6	1.2		
ISIS 539383	0.31	4.5	0.6	1.0		
ISIS 539399	0.31	4.5	0.8	1.0		
ISIS 539404	0.34	4.9	0.6	1.0		
ISIS 539416	0.32	4.7	0.7	0.9		
ISIS 539432	0.30	3.8	0.4	0.8		
ISIS 539433	0.28	4.1	0.7	1.0		

Ejemplo 22: tolerabilidad de gapmers de desoxi, MOE y cEt dirigidos a GHR humana en ratas Sprague-Dawley

Se trataron ratas Sprague-Dawley con oligonucleótidos antisentido ISIS de los estudios descritos en los Ejemplos anteriores y se evaluaron para cambios en los niveles de varios marcadores de química del plasma.

Tratamiento

Se mantuvieron ratas Sprague-Dawley macho en un ciclo de luz/oscuridad de 12 horas y se alimentaron ad libitum con comida para ratas normal de Purina, dieta 5001. A grupos de 4 ratas Sprague-Dawley se les inyectaron por vía subcutánea una vez por semana durante 6 semanas 50 mg/kg de oligonucleótido ISIS (dosis semanal de 50

mg/kg). A dos grupos de ratas se les inyectó por vía subcutánea una vez a la semana durante 6 semanas PBS. Cuarenta y ocho horas después de la última dosis, se sacrificaron ratas y se extrajeron órganos y plasma para su análisis posterior.

5 Función hepática

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática, se midieron los niveles en plasma de transaminasas usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Se midieron los niveles en plasma de ALT y AST y los resultados se presentan en la Tabla 108 expresada en UI/I. Los niveles en plasma de bilirrubina también se midieron usando el mismo analizador químico clínico y los resultados también se presentan en la Tabla 108 expresada en mg/dl. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquier marcador de la función hepática fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Ta	h	_	4	n	0
Ta	U	a	П	0	0

Marcadores de la función hepática en ratas Sprague-Dawley				
	ALT (IU/L)	AST (IU/L)	Bilirrubina (mg/dl)	
Grupo PBS 1	34	56	0.08	
Grupo PBS 2	37	54	0.09	
ISIS 541881	53	77	0.12	
ISIS 542051	61	96	0.09	
ISIS 542101	64	214	0.10	
ISIS 542112	46	72	0.10	
ISIS 542118	42	60	0.08	
ISIS 542125	39	67	0.10	
ISIS 542127	56	75	0.12	
ISIS 542128	45	71	0.12	
ISIS 542153	44	69	0.11	
ISIS 542185	44	93	0.09	
ISIS 542186	51	107	0.12	
ISIS 545439	41	73	0.10	
ISIS 545447	103	114	0.10	
ISIS 541262	106	133	0.12	
ISIS 541742	56	102	0.11	
ISIS 541767	53	69	0.09	
ISIS 541875	70	133	0.08	

Función renal

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función renal, se midieron los niveles en plasma de nitrógeno ureico en sangre (BUN) y creatinina usando un analizador químico clínico automatizado (Hitachi Olympus AU400e, Melville, NY). Los resultados se presentan en la Tabla 109, expresada en mg/dl. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores de función renal fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 109

	1 4014 100	
Marcadores de la fu	ınción renal (mg/dl) en ra	tas Sprague-Dawle
	BUN	Creatinina
Grupo PBS 1	16	0.2
Grupo PBS 2	15	0.2
ISIS 541881	22	0.3
ISIS 542051	18	0.2
ISIS 542101	22	0.3
ISIS 542112	18	0.2
ISIS 542118	18	0.3
ISIS 542125	18	0.3
ISIS 542127	19	0.3
ISIS 542128	18	0.3
ISIS 542153	17	0.3
ISIS 542185	19	0.3
ISIS 542186	19	0.3
ISIS 545439	16	0.2
ISIS 545447	16	0.2
ISIS 541262	21	0.4
ISIS 541742	19	0.2
ISIS 541767	15	0.2
ISIS 541875	16	0.2

Ensayos hematológicos

La sangre obtenida de todos los grupos de ratas se envió a Antech Diagnostics para realizar mediciones y análisis de hematocrito (HCT), así como mediciones de las varias células sanguíneas, como WBC, RBC y el contenido total de hemoglobina. Los resultados se presentan en la Tabla 110. Los oligonucleótidos ISIS que provocaron cambios en los niveles de cualquiera de los marcadores hematológicos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron en estudios posteriores.

Tabla 110

	Tabla 110					
	Marcadores hematológicos en ratas Sprague-Dawley					
	HCT (%)	Hemoglobina (g/dl)	RBC (10 ⁶ /μl)	WBC (10 ³ /μl)	Plaquetas (10 ³ /μl)	
Grupo PBS 1	43	14	7	7	775	
Grupo PBS 2	49	15	8	8	1065	
ISIS 541881	41	13	8	6	553	
ISIS 542051	39	13	7	9	564	
ISIS 542101	37	12	7	15	603	
ISIS 542112	45	14	8	10	587	
ISIS 542118	47	15	8	7	817	
ISIS 542125	41	13	7	7	909	
ISIS 542127	44	14	8	10	872	

65

40

45

50

55

	(continuación)				
	Marcadores hematológicos en ratas Sprague-Dawley				
	HCT (%)	Hemoglobina (g/dl)	RBC (10 ⁶ /μl)	WBC (10 ³ /μl)	Plaquetas (10 ³ /μl)
ISIS 542128	44	14	8	7	679
ISIS 542153	48	15	8	7	519
ISIS 542185	44	14	8	9	453
ISIS 542186	44	14	8	12	433
ISIS 545439	40	12	7	11	733
ISIS 545447	43	13	8	9	843
ISIS 541262	46	14	8	17	881
ISIS 541742	47	15	8	10	813
ISIS 541767	53	16	9	9	860
ISIS 541875	42	13	7	9	840

Pesos de órganos

Al final del estudio se midieron los pesos del hígado, el corazón, el bazo y los riñones, y se presentan en la Tabla 111. Los oligonucleótidos ISIS que provocaron cualquier cambio en el peso de los órganos fuera del intervalo esperado para los oligonucleótidos antisentido se excluyeron de otros estudios.

Tabla 111

Pesos de los órganos (g)					
	Corazón	Hígado	Bazo	Riñón	
Grupo PBS 1	0.4	3.7	0.2	0.9	
Grupo PBS 2	0.3	3.2	0.2	0.7	
ISIS 541881	0.4	3.4	0.4	0.9	
ISIS 542051	0.4	3.8	0.4	1.0	
ISIS 542101	0.3	4.2	0.6	1.1	
ISIS 542112	0.3	3.7	0.4	0.8	
ISIS 542118	0.4	3.6	0.2	8.0	
ISIS 542125	0.4	3.7	0.3	1.1	
ISIS 542127	0.3	4.2	0.3	0.8	
ISIS 542128	0.3	3.5	0.3	8.0	
ISIS 542153	0.3	3.5	0.3	0.8	
ISIS 542185	0.4	3.8	0.4	0.9	
ISIS 542186	0.3	3.8	0.6	0.9	
ISIS 545439	0.4	4.1	0.3	0.9	
ISIS 545447	0.4	3.4	0.3	1.1	
ISIS 541262	0.3	3.4	0.3	2.0	
ISIS 541742	0.3	3.8	0.3	0.8	
ISIS 541767	0.3	3.4	0.2	0.8	
ISIS 541875	0.3	5.2	0.4	1.0	

Ejemplo 23: Efecto de oligonucleótidos antisentido ISIS dirigidos a GHR humana en monos cynomolgus

Los monos cynomolgus fueron tratados con oligonucleótidos antisentido ISIS seleccionados de los estudios descritos en los ejemplos anteriores. Se evaluaron la eficacia y tolerabilidad de los oligonucleótidos antisentido, así como su perfil farmacocinético en el hígado y los riñones.

En el momento en que se acometió este estudio, la secuencia genómica del mono cynomolgus no estaba disponible en la base de datos del Centro Nacional de Información Biotecnológica (NCBI); por lo tanto, no se pudo confirmar la reactividad cruzada con la secuencia del gen del mono cynomolgus. En cambio, las secuencias de los oligonucleótidos antisentido ISIS usados en los monos cynomolgus se compararon con una secuencia de mono rhesus por homología. Se espera que los oligonucleótidos ISIS con homología con la secuencia del mono rhesus sean también completamente reactivos con la secuencia del mono cynomolgus. Los oligonucleótidos antisentido humanos probados tienen reactividad cruzada con la secuencia genómica de rhesus (Nº de registro GENBANK NW_001120958.1 truncado de los nucleótidos 4410000 a 4720000, designada en la presente como SEQ ID NO: 2296). Cuanto mayor sea la complementariedad entre el oligonucleótido humano y la secuencia del mono rhesus, más probable será que el oligonucleótido humano pueda reaccionar de forma cruzada con la secuencia del mono rhesus. Los sitios de inicio y parada de cada oligonucleótido para la SEQ ID NO: 2296 se presentan en la Tabla 112. El "sitio de inicio" indica el nucleótido más 5' al que se dirige el gapmer en la secuencia del gen del mono rhesus.

Tabla 112

1 4014 112								
20	Oligonucleótidos antisentido complementarios con la secuencia genómica de GHR de mono rhesus (SEQ ID NO: 2296)							
	Nº ISIS	Sitio de inicio objetivo	Sitio de parada objetivo	Química	SEQ ID NO			
	523723	149071	149090	5-10-5 MOE	918			
25	532254	64701	64720	5-10-5 MOE	479			
	532401	147560	147579	5-10-5 MOE	703			
	541767	152700	152715	Desoxi, MOE y cEt	1800			
30	541875	210099	210114	Desoxi, MOE y cEt	1904			
	542112	146650	146665	Desoxi, MOE y cEt	2122			
	542118	149074	149089	Desoxi, MOE y cEt	2127			
35	542185	245782	245797	Desoxi, MOE y cEt	2194			

Estudio 1

40

45

50

55

60

65

5

10

15

Antes del estudio, los monos se mantuvieron en cuarentena durante la cual los animales se observaron diariamente para la salud general. Los monos tenían 2-4 años y pesaban entre 2 y 4 kg. Se inyecto a cada uno de nueve grupos de 5 monos cynomolgus macho asignados aleatoriamente, por vía subcutánea oligonucleótido ISIS o PBS usando una aguja de dosificación de acero inoxidable y una jeringuilla de tamaño apropiado en la región intracapsular y el muslo externo de los monos. Los monos fueron dosificados tres veces (días 1, 4 y 7) durante la primera semana, y luego una vez por semana durante 12 semanas con 40 mg/kg de oligonucleótido ISIS. A un grupo de control de 5 monos cynomolgus se le inyectó PBS de manera similar y sirvió como grupo de control.

Durante el período de estudio, los monos fueron observados dos veces al día en busca de signos de enfermedad o angustia. Cualquier animal que experimentó más que dolor o angustia momentánea o leve debido al tratamiento, lesión o enfermedad fue tratado por el personal veterinario con analgésicos o agentes aprobados para aliviar el dolor después de consultar con el Director del Estudio. Se identificó cualquier animal con mala salud o en una posible condición moribunda para una monitorización adicional y posible eutanasia. La eutanasia programada de los animales se realizó el día 86 por desangrado después de anestesia inducida por ketamina/xilazina y la administración de pentobarbital de sodio. Los protocolos descritos en el Ejemplo fueron aprobados por el Comité Institucional de Cuidado y Uso de Animales (IACUC).

Reducción del Objetivo

Análisis de ARN

En el día 86, se extrajo ARN del hígado, tejido adiposo blanco (WAT) y riñón para el análisis por PCR en tiempo real de la medición de la expresión de ARNm de GHR. Los resultados se presentan como porcentaje de inhibición del ARNm, con respecto al control de PBS, normalizado con RIBOGREEN®. 'n.d.' indica que no se midieron los datos para ese oligonucleótido particular. Como se muestra en la Tabla 113, el tratamiento con oligonucleótidos antisentido ISIS dio como resultado una reducción significativa del ARNm de GHR en comparación

con el control PBS. Específicamente, el tratamiento con ISIS 532401 dio como resultado una reducción significativa de la expresión de ARNm en todos los tejidos.

La expresión del gen sensible a la hormona del crecimiento, ALS, también se midió en hígado, riñón y tejido adiposo. El tratamiento con ISIS 532401 dio como resultado una reducción de la expresión de ARN de ALS en el hígado en un 44 ± 9%, correlacionando con los niveles de GHR. No se observó reducción en el tejido adiposo. También se midió la expresión de IGF1 en el hígado. El tratamiento con ISIS 532401 dio como resultado una reducción de la expresión de ARN de IGF1 en el hígado en un 71 ± 10%, correlacionando con los niveles de GHR.

Tabla 113

Porcentaje de inhibición	Porcentaje de inhibición de ARNm de GHR en el hígado de mono cynomolgus con respecto al control de PBS					
Nº ISIS	Hígado	Riñón	WAT			
532401	60	47	59			
532254	63	65	n.d.			
523723	38	0	n.d.			
542112	61	60	36			
542118	0	22	27			
542185	66	53	n.d.			
541767	0	14	n.d.			
541875	34	77	n.d.			

Análisis de proteínas

Se recogió aproximadamente 1 ml de sangre de todos los animales disponibles en el día 85 y se colocó en tubos que contenían la sal de potasio de EDTA. Los tubos se centrifugaron (3000 rpm durante 10 minutos a temperatura ambiente) para obtener plasma. Se midieron los niveles en plasma de IGF-1 y GH en el plasma. Los resultados se presentan en la Tabla 114. Los resultados indican que el tratamiento con oligonucleótidos ISIS dio como resultado niveles reducidos de proteína IGF-1.

También se presentan en la Tabla 115 los niveles en plasma de IGF1 después del tratamiento con ISIS 532401 y demuestran el efecto de la inhibición antisentido de GHR en la reducción de los niveles de IGF1 en el día 7 y el día 85.

Tabla 114

Niveles de proteína en plasma en mono cynomolgus				
	IGF-1 (% de valor de referencia)	GH (ng/ml)		
PBS	121	19		
532401	57	39		
532254	51	26		
523723	77	16		
542112	46	48		
542118	97	6		
542185	59	32		
541767	101	22		
541875	45	47		

Tabla 115

 Niveles de IGF1 en plasma IGF1 en mono cynomolgus

 Día 7
 Día 85

 PBS
 458
 643

 ISIS 532401
 326
 263

10 Estudios de tolerabilidad

5

15

20

25

30

35

40

Mediciones de peso corporal y de órganos

Para evaluar el efecto de los oligonucleótidos ISIS sobre la salud general de los animales, se midieron los pesos corporales y de los órganos. Los pesos corporales se midieron el día 84 y se presentan en la Tabla 115. Los pesos de los órganos se midieron el día 86 y los datos también se presentan en la Tabla 115. Los resultados indican que el efecto del tratamiento con oligonucleótidos antisentido sobre el peso corporal y de los órganos estuvo dentro del intervalo esperado para oligonucleótidos antisentido. Específicamente, el tratamiento con ISIS 532401 fue bien tolerado en términos del peso corporal y de los órganos de los monos.

Tabla 115

	Tabla 115					
	Pesos del cuerpo y de los órganos finales en mono cynomolgus					
		Peso corporal (kg)	Bazo (g)	Riñón (g)	Hígado (g)	
	PBS	2.7	2.8	12.3	56.7	
	532401	2.6	4.0	11.5	58.5	
ĺ	532254	2.6	4.8	15.4	69.5	
	523723	2.8	3.1	14.8	69.4	
	542112	2.6	3.5	13.6	60.0	
	542118	2.7	2.7	11.9	58.6	
	542185	2.6	5.5	17.2	68.5	
	541767	2.8	5.1	11.7	65.1	
ĺ	541875	2.8	5.5	13.2	55.0	

Función hepática

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función hepática, se recogieron muestras de sangre de todos los grupos de estudio. Las muestras de sangre se recogieron mediante venopunción femoral, 48 horas después de la dosificación. Los monos se mantuvieron en ayunas durante la noche antes de la extracción de sangre. La sangre se recogió en tubos que contenían anticoagulante K₂-EDTA, que se centrifugaron para obtener plasma. Se midieron los niveles de varios marcadores de la función hepática usando un analizador químico Toshiba 200FR NEO (Toshiba Co., Japón). Se midieron los niveles en plasma de ALT y AST y bilirrubina. Las siguientes tablas presentan los resultados para los niveles de ALT y AST en varios puntos temporales. Los resultados indican que los oligonucleótidos antisentido no tuvieron efecto sobre la función hepática fuera del intervalo esperado para los oligonucleótidos antisentido. Específicamente, el tratamiento con ISIS 532401 fue bien tolerado en términos de la función hepática en monos.

Tabla 116

Niveles de ALT (IU/I) en mono cynomolgus						
Día 16 Día 44 Día 86						
PBS	46	37	40			
ISIS 532401	63	59	88			
ISIS 532254	62	46	56			
ISIS 523723	50	77	86			

65

55

(continuación)					
Niveles de ALT (IU/I) en mono cynomolgus					
	Día 16	Día 44	Día 86		
ISIS 542112	53	54	60		
ISIS 542118	38	41	52		
ISIS 542185	58	59	91		
ISIS 541767	56	45	46		
ISIS 541875	70	54	71		

Tabla 117

Tabla 117					
Niveles de /	Niveles de AST (IU/I) en mono cynomolgus				
Día 16 Día 44 Día 86					
PBS	58	40	45		
ISIS 532401	47	48	61		
ISIS 532254	71	81	98		
ISIS 523723	56	61	73		
ISIS 542112	58	65	89		
ISIS 542118	41	40	46		
ISIS 542185	61	63	98		
ISIS 541767	52	39	63		
ISIS 541875	70	50	70		

Función renal

Para evaluar el efecto de los oligonucleótidos ISIS sobre la función renal, se recogieron muestras de sangre de todos los grupos de estudio. Las muestras de sangre se recogieron mediante venopunción femoral, 48 horas después de la dosificación. Los monos se mantuvieron en ayunas durante la noche antes de la extracción de sangre. La sangre se recogió en tubos que contenían anticoagulante K₂-EDTA, que se centrifugaron para obtener plasma. Los niveles de BUN y creatinina se midieron usando un analizador químico Toshiba 200FR NEO (Toshiba Co., Japón). Las siguientes tablas presentan los resultados de los niveles de BUN y creatinina en varios puntos temporales.

Los datos de la química del plasma indican que la mayoría de los oligonucleótidos ISIS no tuvieron ningún efecto sobre la función renal fuera del intervalo esperado para los oligonucleótidos antisentido. Específicamente, el tratamiento con ISIS 532401 fue bien tolerado en términos de la función renal de los monos.

Tabla 118

	Tabla TTO				
Niveles de BUN (mg/dl) en mono cynomolgus					
	Día 16 Día 44 Día 8				
PBS	29	26	26		
ISIS 532401	27	27	27		
ISIS 532254	21	22	25		
ISIS 523723	25	24	22		
ISIS 542112	26	24	24		
ISIS 542118	29	27	29		
ISIS 542185	22	21	22		
L					

)

	(,		
Niveles de BUN (mg/dl) en mono cynomolgus				
Día 16 Día 44 Día 86				
ISIS 541767	29	24	24	
ISIS 541875 29 24 21				

Tabla 119

	Tabla 119				
Niveles de cre	Niveles de creatinina (mg/dl) en mono cynomolgus				
	Día 16 Día 44 Día 86				
PBS	0.9	0.8	0.9		
ISIS 532401	1.1	1.0	1.1		
ISIS 532254	1.0	1.0	1.0		
ISIS 523723	1.0	1.0	1.0		
ISIS 542112	1.0	0.9	1.0		
ISIS 542118	0.9	0.9	0.9		
ISIS 542185	1.0	0.9	0.9		
ISIS 541767	1.1	0.9	0.9		
ISIS 541875	1.2	1.1	1.1		

Hematología

Para evaluar cualquier efecto de los oligonucleótidos ISIS en monos cynomolgus sobre los parámetros hematológicos, se recogieron muestras de sangre de aproximadamente 1,3 ml de sangre de cada uno de los animales de estudio disponibles en tubos que contenían K₂-EDTA. Las muestras se analizaron para el recuento de glóbulos rojos (RBC), recuento de glóbulos blancos (WBC), recuentos de glóbulos blancos individuales, como de monocitos, neutrófilos, linfocitos, así como para recuento de plaquetas, contenido de hemoglobina y hematocrito, usando un analizador de hematología ADVIA120 (Bayer, USA.). La siguiente tabla presenta los resultados para el recuento de plaquetas en varios puntos temporales, 'n/a' indica que los datos para ese punto temporal no están disponibles.

Los datos indican que los oligonucleótidos no provocaron ningún cambio en los parámetros hematológicos fuera del intervalo esperado para los oligonucleótidos antisentido a esta dosis. Específicamente, el tratamiento con ISIS 532401 fue bien tolerado en términos de los parámetros hematológicos de los monos.

Tabla 120

	Tabla 120				
Recuento de p	Recuento de plaquetas (x 10³/μl) en monos cynomolgus				
	Día 30 Día 58 Día 86				
PBS	538	464	403		
ISIS 532401	493	465	395		
ISIS 532254	334	328	306		
ISIS 523723	352	304	268		
ISIS 542112	454	430	368		
ISIS 542118	418	379	377		
ISIS 542185	370	303	296		
ISIS 541767	435	326	325		
ISIS 541875	437	359	n/a		

Análisis de la proteína C reactiva y del nivel de complemento C3

Para evaluar cualquier efecto inflamatorio de los oligonucleótidos ISIS en monos cynomolgus, se tomaron muestras de sangre para análisis. Los monos se mantuvieron en ayunas durante la noche antes de la extracción de sangre. Se recogieron aproximadamente 1,5 ml de sangre de cada animal y se colocaron en tubos sin anticoagulante para la separación del suero. Los tubos se mantuvieron a temperatura ambiente durante un mínimo de 90 minutos y luego se centrifugaron a 3.000 rpm durante 10 minutos a temperatura ambiente para obtener suero. La proteína C reactiva (PCR), que se sintetiza en el hígado y que sirve como marcador de inflamación, se midió utilizando un analizador químico Toshiba 200FR NEO (Toshiba Co., Japón). Las tablas siguientes presentan los resultados para los niveles de CRP y C3 en varios puntos temporales. Los resultados indican que el tratamiento con ISIS 532401 no provocó inflamación en los monos.

Tabla 121

Tabla 121					
CRP (mg/l) in mono cynomolgus					
Día 16 Día 44 Día 86					
PBS	3.8	2.0	2.0		
ISIS 532401	2.3	1.7	1.9		
ISIS 532254	2.1	3.2	5.9		
ISIS 523723	6.1	4.5	4.4		
ISIS 542112	2.5	2.7	2.7		
ISIS 542118	2.2	2.8	2.1		
ISIS 542185	2.3	11.9	9.3		
ISIS 541767	1.9	1.5	6.7		
ISIS 541875	4.9	3.5	8.4		

Tabla 122

Tabla 122		
C3 (mg/dl) en día 85 (24 horas después de dosificación) en monos cynomolgus		
C3		
PBS	114	
ISIS 532401	96	
ISIS 532254	100	
ISIS 523723	87	
ISIS 542112	100	
ISIS 542118	110	
ISIS 542185	98	
ISIS 541767	99	
ISIS 541875	81	

Medición de la concentración de oligonucleótidos.

Se midió la concentración del oligonucleótido de longitud completa en el hígado y el riñón de los monos. El método usado es una modificación de los métodos publicados anteriormente (Leeds et al., 1996; Geary et al., 1999) que consisten de una extracción con fenol-cloroformo (líquido-líquido) seguida de una extracción en fase sólida. Antes de la extracción se añadió un estándar interno (ISIS 355868, un oligonucleótido de fosforotioato modificado con 2'-O-metoxietilo de 27 mer, GCGTTTGCTCTTCTTCTTGCGTTTTTT, designado en la presente como SEQ ID NO: 2300). Las concentraciones de muestras de tejidos se calcularon usando curvas de calibración, con un límite inferior de cuantificación (LLOQ) de aproximadamente 1,14 µg/g. Las vidas medias se calcularon usando el software WinNonlin (PHARSIGHT).

Los resultados se presentan en la Tabla 123, expresados como µg/g de tejido, así como la proporción de

concentración en riñón frente al hígado.

Tabla 123

Concentración de oligonucleótidos en el hígado y el riñón de mono cynomolgus				
	Química	Hígado	Riñón	proporción
ISIS 532401	5-10-5 MOE	725	2154	3.0
ISIS 532254	5-10-5 MOE	911	4467	4.9
ISIS 523723	5-10-5 MOE	657	3093	4.7
ISIS 542112	3-10-3 cEt/MOE	491	2863	5.8
ISIS 542118	3-10-3 cEt/MOE	429	1222	2.8
ISIS 542185	3-10-3 cEt/MOE	432	3126	7.2
ISIS 541767	3-10-3 cEt/MOE	280	994	3.5
ISIS 541875	3-10-3 cEt/MOE	766	3892	5.1

Estudio 2

5

10

15

20

25

30

40

45

50

55

Se inyectó a un grupo de 5 monos cynomolgus macho asignados al azar por vía subcutánea ISIS 532401 o PBS usando una aguja de dosificación de acero inoxidable y una jeringuilla de tamaño apropiado en la región intracapsular y el muslo externo de los monos. Los monos recibieron una dosis de carga por semana (días 1, 3, 5 y 7) durante la primera semana, y luego una vez por semana (días 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84 y 91) con 40 mg/kg de ISIS 532401. A un grupo de control de 5 monos cynomolgus se le inyectó PBS de manera similar y sirvió como grupo de control.

Reducción de objetivo

Análisis de ARN

En el día 93, se extrajo ARN del hígado, tejido adiposo blanco (WAT) y músculo para el análisis por PCR en tiempo real de la medición de la expresión de ARNm de GHR. El tratamiento con ISIS 532401 dio como resultado una reducción significativa del ARNm de GHR en el hígado y el tejido adiposo blanco.

También se midió en el hígado la expresión del gen sensible a la hormona del crecimiento, ALS. El tratamiento con ISIS 532401 dio como resultado una reducción de la expresión de ARN de ALS en el hígado en un 38%, correlacionando con los niveles de GHR. 'n.d.' indica que los niveles no se comprobaron en ese tejido en particular. También se midió la expresión de IGF1 en el hígado, los músculos y los tejidos grasos. El tratamiento con ISIS 532401 dio como resultado una reducción de la expresión de ARN IGF1 en el hígado y en el WAT, correlacionando con los niveles de GHR.

Tabla 124

1 4014 12 1				
Efecto del tratamiento con ISIS 532401 sobre niveles de ARNm (% de inhibición en comparación con el control de PBS) en el mono cynomolgus				
Hígado WAT Músculo				
GHR	64	75	21	
ALS	38	n.d.	n.d.	
IGF1	73	56	35	

Análisis de proteínas

Se midieron los niveles en plasma de IGF-1 y GH en el plasma. Los resultados se presentan en la tabla siguiente. Los resultados indican que el tratamiento con ISIS 532401 dio como resultado niveles reducidos de proteína IGF-1. No hubo aumento en los niveles de la hormona del crecimiento en plasma.

65

Tabla 125

Niveles de IGF1 en plasma (ng/ml) en el mono cynomolgus					
	Día 7 Día 49 Día 91				
PBS	625	776	850		
ISIS 532401 378 455 363					

Tabla 126

Niveles de hormona de crecimiento en plasma (ng/ml) en el mono cynomolgus				
Día 7 Día 49 Día 91				
PBS	25	27	33	
ISIS 532401 16 13 17				

Ejemplo 24: Medición de la viscosidad de oligonucleótidos antisentido ISIS dirigidos a GHR humana

La viscosidad de oligonucleótidos antisentido seleccionados del estudio descrito en los ejemplos anteriores se midió con el objetivo de detectar oligonucleótidos antisentido que tienen una viscosidad de más de 40 cP. Los oligonucleótidos que tienen una viscosidad mayor que 40 cP serían demasiado viscosos para administrarse a cualquier sujeto.

Se pesaron oligonucleótidos ISIS (32-35 mg) en un vial de vidrio, se añadieron 120 µl de agua y el oligonucleótido antisentido se disolvió en solución calentando el vial a 50° C. Parte de la muestra precalentada (75 µl) se pipeteó a un micro-viscosímetro (Cambridge). La temperatura del micro-viscosímetro se ajustó a 25° C y se midió la viscosidad de la muestra. Otra parte de la muestra precalentada (20 µl) se pipeteó en 10 ml de agua para lectura UV a 260 nM a 85° C (instrumento Cary UV). Los resultados se presentan en la Tabla 127 e indican que todas las soluciones de oligonucleótidos antisentido son óptimas en su viscosidad bajo el criterio establecido anteriormente.

Tahla 127

Tabla 127			
Viscosidad de oligonucleótido antisentido of ISIS dirigido a GHR humana			
Nº ISIS.	Química	Viscosidad (cP)	
523723	5-10-5 MOE	8	
532254	5-10-5 MOE	22	
532401	5-10-5 MOE	12	
541767	Desoxi, MOE y cEt	13	
541875	Desoxi, MOE y cEt	33	
542112	Desoxi, MOE y cEt	10	
542118	Desoxi, MOE y cEt	14	
542185	Desoxi, MOE y cEt	17	

Ejemplo 25: efecto de la inhibición antisentido de GHR en ratones

Para confirmar el efecto de la inhibición antisentido de GHR en el modelo de primates, se empleó un oligonucleótido ISIS dirigido a GHR murina para replicar el resultado en un modelo de ratón.

El ISIS 563223 (GAGACTTTTCCTTGTACACA, designado en la presente como SEQ ID NO: 2301) es un oligonucleótido murino antisentido gapmer 5-10-5 MOE dirigido a GHR murino (Nº de registro GENBANK; NM_010284.2, designado en la presente como SEQ ID NO: 2302) al sitio de inicio objetivo 3230. Se inyectó a un grupo de ratones CD1 macho y hembra una dosis de carga (los días 1, 3, 5 y 7) en la primera semana y posteriormente una dosis semanal (los días 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84 y 91) con 40 mg/kg de ISIS 563223. A un grupo de ratones CD1 se le inyectó de manera similar PBS. Los ratones se sacrificaron 48 horas después de la última dosis, y los órganos y el plasma se recogieron para su análisis posterior.

5

10

15

20

25

35

30

40

45

50

55

60

Expresión de ARNm

Se midió la expresión de ARNm de hígado de GHR, GHBP, IGF1 y ALS. Los resultados se presentan en la Tabla 128. La inhibición antisentido de GHR dio como resultado la inhibición de los niveles de expresión de genes GHBP, IGF1 y ALS.

% (en ratones macho)

98

74

60

84

GHR

GHBP

IGF1

ALS

Tabla 128

Expresión de ARNm (% de inhibición) en higado de ratones CD1

% (en ratones hembra)

96

66

48

74

10

15

20

Expresión de proteínas

Se midieron los niveles en plasma de IGF1 y la hormona del crecimiento. Los resultados se presentan en la Tabla 129. La inhibición antisentido de GHR dio como resultado una disminución en los niveles de IGF1 y no tuvo ningún efecto sobre los niveles de la hormona del crecimiento.

Tabla 129

30

25

) E

35

40

45

50

55

60

65

Tabla 123				
Niveles de proteína de IGF1 (ng/ml) in hígado de ratones CD1				
	en ratones macho	en ratones hembra		
PBS	949	1002		
ISIS 563223	439	740		

Tabla 130

Niveles de proteína de hormona de crecimiento (ng/ml) en hígado de ratones				
	en ratones macho	en ratones hembra		
PBS	3.3 ± 2.2	2.2 ± 1.3		
ISIS 563223	5.6 ± 6.7	2.9 ± 1.7		

REIVINDICACIONES

1. Un compuesto que comprende un oligonucleótido modificado que consiste de 18 a 30 nucleósidos enlazados de longitud, en donde el oligonucleótido modificado tiene una secuencia de nucleobases que comprende una porción de por lo menos 18 nucleobases contiguas 100% complementarias con una porción de igual longitud de las nucleobases 153921-153940 de un ácido nucleico del receptor de la hormona de crecimiento que tiene la secuencia de nucleobases de la SEQ ID NO: 2, en donde la secuencia de nucleobases del oligonucleótido modificado es por lo menos un 90% complementaria a la SEQ ID NO: 2, en donde el compuesto reduce la cantidad o actividad del ácido nucleico del receptor de la hormona de crecimiento.

5

10

30

35

50

- 2. El compuesto de la reivindicación 1, en donde el oligonucleótido modificado es un 100% complementario a la SEQ ID NO: 2.
- 3. El compuesto de cualquier reivindicación anterior, en donde el oligonucleótido modificado tiene una secuencia de nucleobases que comprende la secuencia enumerada en la SEQ ID NO: 703, opcionalmente en donde el oligonucleótido modificado consiste de 20 nucleósidos enlazados y tiene una secuencia de nucleobases que consiste de la secuencia enumerada en la SEQ ID NO: 703.
- 4. El compuesto de cualquiera de las reivindicaciones 1-3, en donde el oligonucleótido modificado comprende por lo menos un azúcar modificado y en donde el por lo menos un azúcar modificado comprende opcionalmente un grupo 2'-O-metoxietilo o es un azúcar bicíclico, como un azúcar bicíclico que comprende un grupo 4'-CH(CH3)-O-2' o un azúcar bicíclico que comprende un grupo 4'-CH2-O-2' o 4'-(CH2)2-O-2'.
- 5. El compuesto de cualquiera de las reivindicaciones 1-4, en donde el oligonucleótido modificado comprende por lo menos un enlace internucleosídico modificado y en donde el enlace internucleósido modificado es opcionalmente un enlace internucleósido de fosforotioato.
 - **6.** El compuesto de cualquiera de las reivindicaciones 1-5, en donde el oligonucleótido modificado comprende por lo menos una nucleobase modificada y en donde la nucleobase modificada es opcionalmente 5-metilcitosina.
 - 7. El compuesto de una cualquiera de las reivindicaciones 1-6, en donde el oligonucleótido modificado comprende:

un segmento de separación que consiste de desoxinucleósidos enlazados; un segmento de ala 5' que consiste de nucleósidos enlazados; y un segmento de ala 3' que consiste de nucleósidos enlazados;

en donde el segmento de separación está colocado entre el segmento de ala 5' y el segmento de ala 3' y en donde cada nucleósido de cada segmento de ala comprende un azúcar modificado.

- **8.** El compuesto de cualquier reivindicación anterior, en donde el oligonucleótido modificado consiste de 20 nucleósidos enlazados que tienen una secuencia de nucleobases que consiste de la secuencia enumerada en la SEQ ID NO: 703, y en donde el oligonucleótido modificado comprende:
- un segmento de separación que consiste de diez desoxinucleósidos enlazados;
 un segmento de ala 5' que consiste de cinco nucleósidos enlazados; y
 un segmento de ala 3' que consiste de cinco nucleósidos enlazados;
 en donde el segmento de separación está colocado entre el segmento de ala 5' y el segmento de ala 3'; en
 - donde cada nucleósido de cada segmento de ala comprende un azúcar 2'-O-metoxietilo; en donde por lo menos un enlace internucleosídico es un enlace de fosforotioato; y en donde cada citosina es una 5-metilcitosina.
 - 9. El compuesto de cualquiera de las reivindicaciones 1-8, en donde el compuesto es de cadena sencilla.
- **10.** Una composición que comprende el compuesto de cualquiera de las reivindicaciones 1-9 o sal del mismo y por lo menos uno de un portador o diluyente farmacéuticamente aceptable.
 - **11.** El compuesto de cualquiera de las reivindicaciones 1-9, o la composición de la reivindicación 10, para su uso en terapia.
- **12.** El compuesto o composición para el uso de la reivindicación 11, para su uso en el tratamiento o prevención de una enfermedad asociada con un exceso de hormona de crecimiento en un humano, en donde la enfermedad asociada con un exceso de hormona de crecimiento es opcionalmente acromegalia.
- **13.** El compuesto o composición para el uso de acuerdo con la reivindicación 12, en donde el tratamiento de la acromegalia reduce los niveles de IGF-1.

ES 2 787 600 T3

5	los niveles del receptor de la hormona del crecimiento (GHR) en un humano, dicho método comprendiendo administrar al humano una cantidad terapéuticamente eficaz del compuesto o composición, reduciendo de este modo los niveles de GHR en el humano, opcionalmente en donde el humano tiene una enfermedad asociada con un exceso de hormona del crecimiento, como la acromegalia.
10	
15	
20	
25	
30	
35	
40	
45	
50	
55 60	
00	