

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

①Número de publicación: 2 788 128

51 Int. Cl.:

C07K 14/415 (2006.01) C12N 15/82 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 27.02.2013 PCT/EP2013/053845

(87) Fecha y número de publicación internacional: 06.09.2013 WO13127809

96 Fecha de presentación y número de la solicitud europea: 27.02.2013 E 13708382 (0)

(97) Fecha y número de publicación de la concesión europea: 19.02.2020 EP 2820037

54) Título: Modulación del vigor de las semillas

(30) Prioridad:

29.02.2012 EP 12157514

Fecha de publicación y mención en BOPI de la traducción de la patente: **20.10.2020**

(73) Titular/es:

SYNGENTA PARTICIPATIONS AG (100.0%) Rosentalstrasse 67 4058 Basel, CH

(72) Inventor/es:

FINCH-SAVAGE, WILLIAM, EDWARD; MORRIS, KARL; BARKER, GUY, CAMERON; BRUGGINK, TONKO, GERHARD y VAN DEN WIJNGAARD, PAUL

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Modulación del vigor de las semillas

5 CAMPO DE LA INVENCIÓN

10

15

20

25

30

35

40

45

50

55

60

65

La presente invención se refiere en general a un polinucleótido que posibilita la modulación del vigor de las semillas, particularmente potencia el vigor de las semillas, y más particularmente posibilita la modificación de la velocidad de germinación. La invención también se refiere a una semilla de una planta que comprende dicho polinucleótido. Además, también se proporcionan dentro de la presente invención un método transgénico de producción de la semilla de la planta para mejorar la germinación y el vigor de la semilla de la planta, la planta transgénica y el uso del polinucleótido de la invención para producir plantas que generan semillas con germinación y características de vigor mejoradas. Las plantas de la presente invención se refieren particularmente a *Brassica*, más particularmente a *Brassica* oleracea.

ANTECEDENTES DE LA INVENCIÓN

La calidad de las semillas, que se define por el número de plantas útiles uniformes que se obtienen de un lote de semillas, está llegando a ser un rasgo cada vez más importante en los mercados de horticultura desarrollados. El desarrollo de plantas jóvenes es una actividad altamente tecnológica en estos mercados y las demandas con respecto a la calidad de las semillas, por lo tanto, son altas. Se requiere una calidad de las semillas fiable y constantemente alta para esto. Además, la germinación en condiciones adversas es un rasgo de calidad importante de las semillas. Esto significa que un requisito para el éxito comercial de variedades de semillas es una calidad constante y robusta de las semillas. Actualmente, sin embargo, la calidad de las semillas de variedades comerciales no siempre es estable y predecible.

Los parámetros de calidad de las semillas se ven muy influidos por las condiciones ambientales maternas durante el desarrollo de las semillas. Dados los volúmenes de semillas necesarios y la viabilidad comercial, son posibles únicamente controles limitados de estas condiciones. Por lo tanto, la constancia de la calidad de las semillas está limitada por la susceptibilidad a las condiciones maternas. Las investigaciones han mostrado que el entorno materno puede afectar potencialmente a todos los parámetros de calidad de las semillas, incluyendo la uniformidad y la germinación en condiciones adversas. Por lo tanto, disminuir la influencia de las condiciones maternas daría lugar a una calidad más constante y robusta de las semillas, lo que proporciona ventajas en los mercados tanto desarrollados como en desarrollo.

El establecimiento de plántulas predecibles y uniformes es esencial para la producción de cultivos que sean tanto sostenibles como provechosos. Un contribuyente clave a esta previsibilidad es el rendimiento de germinación de las semillas, que se ve influido directamente por el letargo y el vigor de las semillas. El letargo per se (ausencia de germinación en condiciones en general permisibles) no se considera un problema práctico con muchas especies de cultivo, pero el bajo vigor de las semillas (poco rendimiento de las semillas en la práctica) influye enormemente no solo en el número de plántulas que brotan, sino también en la cronología y uniformidad del brote de las plántulas en todos los cultivos. Los efectos de esto tienen un impacto principal sobre muchos aspectos de producción de cultivos que determinan la rentabilidad y las inversiones requeridas, y también hay influencias directas específicas de cultivo sobre la producción comercializable (Finch-Savage, 1995). El bajo vigor de las semillas puede ser el resultado de deterioro o daño de muchos tipos en las semillas y esto tiene gran importancia comercial. Sin embargo, también hay diferencias inherentes en el vigor inicial de las semillas antes de que empiecen a deteriorarse, pero la base genética, molecular y fisiológica de esto sigue estando poco comprendido.

Se han identificado mutaciones en muchos genes que muestran fenotipos con rendimiento alterado de la germinación de las semillas y estas han sido decisivas en el desarrollo de nuestra comprensión actual del control de la germinación (revisado por Finch-Savage y Leubner-Metzger, 2006; Holdsworth *et al.*, 2008a y 2008b). Sin embargo, el impacto relativo de estos genes en semillas de tipo silvestre o de cultivo está poco comprendido y no se han revelado candidatos claros que formen la base de un ensayo discriminador para el vigor de las semillas. Una fuente alternativa de variación genética para mutaciones inducidas en laboratorio está disponible en poblaciones naturales y genotipos de cultivo. Usar esta variación para identificar QTL asociados con el vigor de las semillas y después genes candidatos que influyan en estos rasgos puede proporcionar una ruta para identificar genes esencialmente importantes.

Se ha explotado la variación tanto de plantas naturales como de plantas de cultivo en análisis genéticos cuantitativos de una serie de rasgos de vigor de las semillas en tomate (Foolad *et al.*, 1999), *Brassica oleracea* (Bettey *et al.*, 2000, Finch-Savage *et al.*, 2005) y *Arabidopsis* (Groot *et al.*, 2000, Clerkx *et al.*, 2004). La velocidad de QTL de germinación de las semillas se ha identificado en las tres especies.

La distinción entre el letargo y el bajo vigor de las semillas en semillas sanas no envejecidas en términos de velocidad de germinación, si existe alguna, no se comprende y puede tener la misma base (Hilhorst y Toorop, 1997). En la mayoría de situaciones, por ejemplo, en *Arabidopsis*, el letargo fisiológico no es absoluto, pero las semillas son condicionalmente letárgicas, es decir, la germinación tiene a ser lenta y es posible únicamente en una serie limitada

de entornos. Como el letargo se pierde progresivamente, la germinación tiende a acelerarse y llega ser posible en una serie más amplia de entornos y, por lo tanto, puede aparecer como un aumento en el vigor.

- Entre los factores que explican el establecimiento de la germinación de las semillas y la regulación del letargo de las semillas, el ácido abscísico (ABA), una hormona vegetal bien conocida, desempeña una función importante. El ABA es en particular esencial para la germinación de las semillas y los procesos de maduración de las semillas (para una revisión, véase Finkelstein *et al.* 2002), ya que es responsable del establecimiento de un periodo de letargo de las semillas. En cuanto a las yemas, es importante que las semillas no germinan prematuramente, por ejemplo, durante condiciones inoportunamente suaves antes del comienzo del invierno o una estación seca. El ABA en la semilla impone este letargo. El letargo se suprime únicamente si la semilla se ha expuesto a un episodio de frío prolongado y/u otra señal ambiental apropiada y si hay suficiente agua para mantener la germinación. Además de su función en el vigor de las semillas, el ABA también regula muchos aspectos importantes de la vida de la planta, incluyendo las respuestas fisiológicas a amenazas bióticas y agresiones abióticas como sequía y desecación.
- Por tanto, hay una necesidad permanente de semillas con un vigor más fiable y constante de las semillas; especialmente con una velocidad oportuna y uniforme de germinación, para proporcionar semillas que germinen a una tasa más constante, independientemente de las condiciones maternas y sean cuales sean las condiciones ambientales externas. Dicho vigor aumentado de las semillas sería de particular interés en casos donde la semilla se recubre con una preparación dada (química, biológica), ya que habitualmente se observa un retardo en la germinación de las semillas. En consecuencia, las semillas que comprenden secuencias que potencian el vigor de las semillas, más particularmente potencian la velocidad y la uniformidad de la germinación de las semillas, serían de importancia fundamental para contrarrestar el efecto del tratamiento de recubrimiento, mientras aún se aplican insecticidas y fungicidas.
- Además, aunque en muchos aspectos, aumentar el vigor de las semillas sería un rasgo muy útil y deseado, parece que, en algunos casos, disminuir el vigor de las semillas sería de gran interés. En particular en semillas vivíparas, disminuir el vigor de las semillas podría ser beneficioso. La viviparidad se define como la germinación de la semilla mientras aún está en la planta madre o antes de secarse y puede producirse tanto en semillas inmaduras como en semillas completamente maduras. La viviparidad se ha observado en muchas especies de cultivo diferentes incluyendo cultivos de *Brassica* (Ruan *et al.* 2000). Las semillas que comprenden secuencias que pueden disminuir el vigor de las semillas, por tanto, pueden retardar, si no eliminar, el fenotipo de viviparidad no deseado.

SUMARIO DE LA INVENCIÓN

50

35 Por lo tanto, es mérito de los autores de la invención, en dicho estado de la técnica, haber identificado una planta de una población que contenía una pequeña región de introgresión que abarca SOG1 (Speed Of Germination 1 velocidad de germinación 1), un QTL de velocidad de germinación de las semillas identificado en B. oleracea por Bettey et al. (2000) y particularmente haber demostrado e identificado los genes correspondientes que están implicados en la modulación del vigor de las semillas, en particular implicados en la regulación de la velocidad de 40 germinación de las semillas. En particular se demuestra que estos genes, y sus secuencias correspondientes, pueden usarse como herramientas posibilitadoras para obtener semillas transgénicas (o plantas transgénicas que suministran semillas) que muestran un fenotipo de vigor modificado de las semillas. En particular, pueden introducirse secuencias génicas mediante técnicas de transformación de plantas en un nuevo fondo para modular el vigor de las semillas. Más particularmente, pueden usarse secuencias génicas para genomanipular una planta novedosa, cuyas semillas 45 brotarán más pronto, más uniformemente, independientemente de las condiciones ambientales externas, y con independencia de las condiciones maternas. Además, dichas secuencias génicas pueden usarse como herramientas para modificar el contenido de ABA en la semilla y/o la respuesta de la semilla a ABA, influyendo de ese modo al comportamiento de la semilla con respecto al letargo de la semilla y la síntesis de proteínas y lípidos de almacenamiento en la semilla.

Por lo tanto, una realización de la invención es proporcionar un polinucleótido, particularmente un polinucleótido aislado, que comprende una molécula de ácido nucleico seleccionada del grupo que consiste en

- a. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 3 (GD33 versión de BolC.VG1.a);
- 55 b. una molécula de ácido nucleico que comprende una secuencia de nucleótidos cuya hebra complementaria hibrida con la molécula de ácido nucleico de a);
 - c. una molécula de ácido nucleico que comprende una secuencia de nucleótidos que se desvía de la secuencia de nucleótidos definida en a) o b) por la degeneración del código genético;
- en el que dicha molécula de ácido nucleico como se define en cualquiera de a) c), tras la expresión en una planta de *Brassica* o parte de la planta, da lugar a un vigor aumentado de las semillas en comparación con una planta de *Brassica* o parte de la planta que no comprende dicha molécula de ácido nucleico.

ASPECTOS DE LA DIVULGACIÓN

En un 1.er aspecto, la presente divulgación proporciona un polinucleótido, particularmente un polinucleótido aislado, que comprende una molécula de ácido nucleico seleccionada del grupo que consiste en

5

- a. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 1 (A12 versión de BolC.VG1.a);
- b. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 2 (A12 versión de BolC.VG2.a);
- 10 c. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 3 (GD33 versión de BolC.VG1.a);
 - d. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 4 (GD33 versión de BolC.VG2.a);
 - e. una molécula de ácido nucleico que comprende una secuencia de nucleótidos cuya hebra complementaria hibrida con la molécula de ácido nucleico de cualquiera de a) d);
 - f. una molécula de ácido nucleico que comprende una secuencia de nucleótidos que se desvía de la secuencia de nucleótidos definida en cualquiera de a) e) por la degeneración del código genético;
 - en el que dicha molécula de ácido nucleico como se define en cualquiera de a) f), tras la expresión en una planta o parte de la planta, da lugar a un vigor modificado de las semillas.

20

45

- En un 2.º aspecto, la presente divulgación proporciona un polinucleótido, particularmente un polinucleótido aislado, de acuerdo con el aspecto 1, que comprende una molécula de ácido nucleico seleccionada del grupo que consiste además en
- a. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 5 (alelo A12 truncado de BolC.VG2.b);
 - b. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 6 (alelo GD33 truncado de BolC.VG2.b);
 - c. una molécula de ácido nucleico que comprende una secuencia de nucleótidos cuya hebra complementaria hibrida con la molécula de ácido nucleico de cualquiera de a) b);
- d. una molécula de ácido nucleico que comprende una secuencia de nucleótidos que se desvía de la secuencia de nucleótidos definida en cualquiera de a) c) por la degeneración del código genético;
 - en el que dicha molécula de ácido nucleico como se define en cualquiera de a) d), tras la expresión en una planta o parte de la planta, da lugar a un vigor modificado de las semillas.
- En un 3. er aspecto, la presente divulgación proporciona un polinucleótido, particularmente un polinucleótido aislado, que comprende una molécula de ácido nucleico seleccionada del grupo que consiste en
 - a. molécula de ácido nucleico que comprende una secuencia de nucleótidos que tiene al menos un 90 % de identidad de secuencia con cualquiera de las secuencias representadas en el grupo que comprende: SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 y SEQ ID NO:6;
- 40 b. molécula de ácido nucleico que comprende una secuencia de nucleótidos que tiene al menos un 95 % de identidad de secuencia con cualquiera de las secuencias representadas en el grupo que comprende: SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 y SEQ ID NO:6;
 - c. molécula de ácido nucleico que comprende una secuencia de nucleótidos que tiene al menos un 98 % de identidad de secuencia con cualquiera de las secuencias representadas en el grupo que comprende: SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5 y SEQ ID NO:6;
 - d. molécula de ácido nucleico que comprende una secuencia de nucleótidos cuya hebra complementaria hibrida con la molécula de ácido nucleico de cualquiera de a) c);
 - e. molécula de ácido nucleico que comprende una secuencia de nucleótidos que se desvía de la secuencia de nucleótidos definida en cualquiera de a) d) por la degeneración del código genético;
- 50 en el que dicha molécula de ácido nucleico como se define en cualquiera de a) − e), tras la expresión en una planta o parte de la planta, da lugar a un vigor modificado de las semillas.

En un 4.º aspecto, la presente divulgación se refiere a un polinucleótido de acuerdo con el primer, segundo o tercer aspecto, en el que el fenotipo de vigor modificado de las semillas se caracteriza por un fenotipo adicional seleccionado del grupo que comprende: velocidad modificada de germinación, velocidad modificada de brote de plántulas, uniformidad modificada de germinación de las semillas, uniformidad modificada de brote de plántulas, porcentaje modificado de germinación de las semillas, tolerancia modificada de la semilla frente al entorno externo y/o condiciones maternas, sensibilidad modificada a ABA o contenido modificado de ABA.

En un 5.º aspecto, la presente divulgación se refiere a un polinucleótido, particularmente un polinucleótido aislado, que comprende una molécula de ácido nucleico seleccionada del grupo que comprende:

- a. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 3;
 - b. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 4:
- c. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 6;
 - d. una molécula de ácido nucleico que comprende una secuencia de nucleótidos cuya hebra complementaria hibrida con la molécula de ácido nucleico de cualquiera de a) c);
 - e. una molécula de ácido nucleico que comprende una secuencia de nucleótidos que se desvía de la secuencia de nucleótidos definida en cualquiera de a) d) por la degeneración del código genético;
- en el que dicha molécula de ácido nucleico como se define en cualquiera de a) e), tras la expresión en una planta o parte de la planta, da lugar a un vigor aumentado de las semillas.

En el contexto de la presente invención, la expresión "vigor aumentado de las semillas" significa que la velocidad de germinación de la semilla puede modificarse en el sentido de que la semilla germina más rápido y, por tanto, es más vigorosa. En un aspecto particular, la velocidad de germinación se aumenta permitiendo que se obtengan semillas que germinan más rápido gracias a la presencia de un polinucleótido de acuerdo con los presentes aspectos en su genoma en comparación con una semilla que no comprende dicho polinucleótido. Dicha velocidad aumentada de germinación provoca un brote de plántulas anterior significativo y, por tanto, proporciona a las semillas una flexibilidad potenciada y una mejor adaptación a diversos entornos. Se descubrió que los 2 genes que se identificaron tenían un fenotipo de germinación significativo, lo que indica que estos genes son reguladores de la germinación en diferente grado. El alelo correspondiente al polinucleótido de la SEQ ID NO: 3 (alelo GD33 del gen) de acuerdo con la presente invención se ha demostrado que corresponde al fenotipo de vigor aumentado de las semillas y, por tanto, permite modificar la velocidad de germinación de las semillas de la planta en que se introduce hacia una velocidad aumentada de germinación.

35

40

25

30

En un 6.º aspecto, la presente divulgación se refiere a un polinucleótido de acuerdo con el aspecto 5, en el que el fenotipo de vigor aumentado de las semillas se caracteriza por un fenotipo adicional seleccionado del grupo que comprende: velocidad aumentada de germinación, velocidad aumentada de brote de plántulas, uniformidad aumentada de germinación de las semillas, uniformidad aumentada de brote de plántulas, porcentaje aumentado de germinación de las semillas, tolerancia aumentada de la semillas frente al entorno externo y/o condiciones maternas, sensibilidad disminuida a ABA o contenido disminuido de ABA.

En un 7.º aspecto, la presente divulgación se refiere a un polinucleótido, particularmente un polinucleótido aislado, que comprende una molécula de ácido nucleico seleccionada del grupo que comprende:

- a. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 1;
 - b. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 2;
- c. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 5;
 - d. una molécula de ácido nucleico que comprende una secuencia de nucleótidos cuya hebra complementaria hibrida con la molécula de ácido nucleico de cualquiera de a) a c);
 - e. una molécula de ácido nucleico que comprende una secuencia de nucleótidos que se desvía de la secuencia de nucleótidos definida en cualquiera de a) d) por la degeneración del código genético;
- en el que dicha molécula de ácido nucleico como se define en cualquiera de a) e), tras la expresión en una planta o parte de la planta, da lugar a un vigor disminuido de las semillas.

- En un 8.º aspecto, la presente divulgación proporciona un casete de expresión que comprende un polinucleótido de cualquiera de los aspectos precedentes.
- 5 En un 9.º aspecto, la presente divulgación proporciona una molécula de vector que comprende el casete de expresión de acuerdo con el 8.º aspecto.

10

- En un 10.º aspecto, la presente divulgación se refiere al uso de un polinucleótido de acuerdo con los aspectos 1 a 3 para modificar el vigor de las semillas.
- En un 11.º aspecto, la presente divulgación se refiere a un método para modificar el vigor de las semillas, que comprende introgresión a través de cruce o por técnicas de transformación de plantas para ello y expresar en una planta o parte de la planta un polinucleótido, un casete de expresión o una molécula de vector de cualquiera de los aspectos 1 a 10.
- En un 12.º aspecto, la presente divulgación se refiere a un método para producir semillas con vigor modificado de las semillas, que comprende:
- a. obtener una primera planta que se ha verificado que contiene el polinucleótido de cualquiera de los aspectos
 1 a 7;
- b. cruzar dicha primera planta con una segunda planta que se ha verificado que carece de dicho polinucleótido;
 y
 - c. identificar una semilla de la planta resultante del cruce, que muestra un vigor modificado de las semillas en comparación con semillas suministradas por la segunda planta.
- En un 13. er aspecto, la presente divulgación se refiere a una planta o parte de la planta que contiene dentro de su genoma una introgresión que comprende el polinucleótido, el casete de expresión o la molécula de vector de cualquiera de los aspectos 1 a 9 y muestra una modificación del vigor de las semillas en comparación con una planta o parte de la planta que no comprende dicho polinucleótido, casete de expresión o molécula de vector.
- En un 14.º aspecto, la presente divulgación se refiere a una planta o parte de la planta que contiene dentro de su genoma una introgresión que comprende un polinucleótido de acuerdo con el aspecto 5 y muestra un vigor aumentado de las semillas en comparación con una semilla suministrada por una planta o parte de la planta que no comprende dicho polinucleótido.
- En un 15.º aspecto, la presente divulgación se refiere a una planta o parte de la planta que contiene dentro de su genoma una introgresión que comprende un polinucleótido de acuerdo con el aspecto 7 y muestra un vigor disminuido de las semillas en comparación con una semilla suministrada por una planta o parte de la planta que no comprende dicho polinucleótido.
- En un 16.º aspecto, la divulgación proporciona un método para seleccionar una planta o parte de la planta con vigor modificado de las semillas, que comprende la detección en la planta o parte de la planta a ensayar de la presencia o ausencia de un polinucleótido de acuerdo con cualquiera de los aspectos 1 a 7.
- En un 17.º aspecto, la divulgación proporciona un método para seleccionar una planta o parte de la planta con vigor modificado de las semillas, que comprende poner en contacto una planta candidata o parte de la planta con una herramienta de selección seleccionada del grupo que comprende los polinucleótidos de cualquiera de los aspectos 1 a 7.
- En un 18.º aspecto, la presente divulgación se refiere una planta o parte de la planta de acuerdo con cualquiera de los aspectos precedentes que es una planta cultivada o parte de la planta cultivada y se seleccionada del grupo que comprende Brassica oleracea, Brassica napus, Brassica rapa, Brassica campestris, Brassica juncea, Brassica nigra, Brassica pekinensis, Brassica chinensis, Brassica rosularis, Eruca vesicaria, Eruca sativa, Raphanus sativus, Lepidium sativum, Nasturtium officinale, Wasabia japonica.
- En un 19.º aspecto, la divulgación proporciona un método no biológico para obtener una planta o parte de la planta con vigor modificado de las semillas, que comprende introducir un polinucleótido de acuerdo con cualquiera de los aspectos 1 a 7 en el genoma de dicha planta o parte de la planta.
- En un aspecto 20, la divulgación se refiere al método de acuerdo con el aspecto n.º 16, que comprende (a) obtener una primera planta que se ha verificado que contiene el polinucleótido de cualquiera de los aspectos 1 a 7; (b) cruzar dicha primera planta con una segunda planta que se ha verificado que carece de dicho polinucleótido; y (c) identificar una planta resultante del cruce, que muestra vigor modificado de las semillas, y que contiene dicho polinucleótido.

En un aspecto 21, la divulgación se refiere al método de acuerdo con el aspecto 20, en el que la presencia del polinucleótido se verifica mediante el uso de un marcador molecular, particularmente mediante un marcador molecular físicamente localizado en una posición que está dentro o fuera del locus genético que contiene el polinucleótido.

- 5 En un aspecto 22, la divulgación se refiere al método de acuerdo con el aspecto 20, en el que la presencia del polinucleótido se verifica mediante el uso de al menos dos marcadores moleculares, particularmente mediante al menos dos marcadores moleculares físicamente localizados en una posición que está flanqueando el locus genético que contiene el polinucleótido.
- En un aspecto 23, la divulgación se refiere a una semilla que comprende un polinucleótido de acuerdo con los aspectos 1 a 7, en la que dicha semilla está recubierta con cualquier tipo de recubrimiento.

En un aspecto 24, la divulgación se refiere a una planta o parte de la planta de acuerdo con los aspectos 13 a 18, en la que la planta es una planta híbrida.

En un aspecto 25, la divulgación se refiere a una planta o parte de la planta de acuerdo con el aspecto 24 que se puede obtener de la semilla depositada en el NCIMB con el número de depósito NCIMB 41951, o la descendencia de la misma.

20 <u>DESCRIPCIÓN DETALLADA DE LA INVENCIÓN</u>

15

25

30

45

60

65

Las secuencias polinucleotídicas de acuerdo con la realización previa se han identificado en y aislado de una planta de *Brassica oleracea* con diferentes fenotipos de vigor de las semillas. Los alelos con las secuencias polinucleotídicas de acuerdo con la presente invención se sometieron a introgresión en una planta con diferente calidad de las semillas y diferente vigor de las semillas. Gracias a la introgresión de cualquiera de las secuencias polinucleotídicas de acuerdo con la presente invención, el vigor de las semillas se modifica significativamente y, por consiguiente, la calidad de la planta o parte de la planta, particularmente la calidad de las semillas de la planta se modificó significativamente, particularmente el vigor de las semillas, que destaca por la velocidad de germinación. En una realización, la semilla podía germinar mejor y más rápido, particularmente en condiciones frías, lo que muestra una calidad de las semillas más robusta. La introgresión de una secuencia polinucleotídica de acuerdo con el aspecto 5 permite obtener una calidad de las semillas de la planta menos susceptible al entorno de producción de las semillas. Esto significa que la introgresión de las secuencias polinucleotídicas de acuerdo con la presente divulgación posibilita el suministro de una calidad constante de las semillas a partir de producción convencional de semillas.

- La introducción de las secuencias polinucleotídicas de acuerdo con la presente invención en plantas comerciales cultivadas, particularmente plantas de *Brassica* cultivadas, más particularmente plantas de *Brassica* cultivadas, garantizará una producción más fiable de semillas con suficiente calidad de las semillas. Esto aumenta significativamente la flexibilidad operativa.
- Las semillas híbridas que comprenden cualquiera de las secuencias polinucleotídicas de acuerdo con la presente invención muestran un establecimiento de la población más uniforme, especialmente en condiciones adversas. Esto definitivamente aumentará el valor del producto comercial de semillas.

Detalles del depósito de semillas

Las siguientes muestras de semillas se depositaron en NCIMB, Ferguson Building, Craibstone Estate, Bucksburn, Aberdeen AB21 9YA, Escocia, R.U., el 4 de abril de 2012, según las disposiciones del Tratado de Budapest en nombre de Syngenta Participations AG:

NCIMB 41950 Brassica oleracea A12

50 NCIMB 41951 Brassica oleracea SL101

Definiciones

A las expresiones y términos técnicos usados dentro del alcance de esta solicitud en general se les da el significado habitualmente aplicado a los mismos en la técnica relevante de ingeniería genética en plantas, mejoramiento y cultivo de plantas si no se indica lo contrario en este documento a continuación.

Como se usa en esta memoria descriptiva y las reivindicaciones adjuntas, las formas en singular "un/o", "una" y "el/la" incluyen sus plurales salvo que el contexto indique claramente lo contrario. Por tanto, por ejemplo, la referencia a "una planta" incluye una o más plantas y la referencia a "una célula" incluye mezclas de células, tejidos y similares.

Se entiende, dentro del alcance de la invención, que una "planta cultivada", particularmente "planta de *Brassica* cultivada", más particularmente "planta de *Brassica oleracea* cultivada" se refiere a una planta que ya no está en estado natural, sino que se ha desarrollado mediante cuidados humanos y para uso en seres humanos y/o con propósitos de cultivos y/o para consumo. Se entiende, además, que "planta cultivada", particularmente "planta de *Brassica* cultivada", más particularmente "planta de *Brassica* oleracea cultivada" excluyen aquellas especies de tipo

silvestre que comprenden el rasgo que es objeto de esta invención como un rasgo natural y/o parte de su genética natural.

Se entiende, dentro del alcance de la invención, que un "alelo" se refiere a formas alternativas o variantes de diversas unidades genéticas idénticas o asociadas con diferentes formas de un gen o de cualquier tipo de elemento genético identificable, que son alternativas en herencia porque están situadas en el mismo locus en cromosomas homólogos Dichas formas alternativas o variantes pueden ser el resultado de polimorfismos, inserciones, inversiones, translocaciones o eliminaciones de un solo nucleótido, o la consecuencia de la regulación génica provocada, por ejemplo, por modificación química o estructural, regulación de la transcripción o modificación/regulación postraduccional. En una célula u organismo diploide, los dos alelos de un gen o elemento genético dado típicamente ocupan los locus correspondientes en un par de cromosomas homólogos.

5

10

15

20

30

35

40

45

50

55

60

65

Se entiende, dentro la presente invención, que un alelo "truncado" de un gen representa un alelo de un gen que ha perdido una sola secuencia de nucleótidos parcial o múltiples, en comparación con su alelo equivalente del gen de longitud completa.

Un alelo asociado con un rasgo cualitativo puede comprender formas alternativas o variantes de diversas unidades genéticas, incluyendo las que son idénticas o están asociadas con un solo gen o múltiples genes o sus productos, o incluso un gen alterado o controlado por un factor genético que contribuye al fenotipo representado por el locus.

Como se usa en este documento, la expresión "alelo marcador" se refiere a una forma alternativa o variante de una unidad genética como se define en este documento anteriormente, cuando se usa como un marcador para ubicar locus genéticos que contienen alelos en un cromosoma que contribuyen a la variabilidad de los rasgos fenotípicos.

Como se usa en este documento, el término "reproducción", y variantes gramaticales del mismo, se refieren a cualquier proceso que genere un individuo de la descendencia. Las reproducciones pueden ser sexuales o asexuales, o cualquier combinación de las mismas. Tipos no limitantes ejemplares de reproducción incluyen cruces, autopolinización, generación de derivados haploides duplicados y combinaciones de los mismos, que son todos técnicas conocidas por los expertos en la materia.

Se entiende, dentro del alcance de la invención, que "retrocruzamiento" se refiere a un proceso en que una descendencia híbrida se retrocruza repetidamente de nuevo con uno de los progenitores. Se pueden usar diferentes progenitores recurrentes en retrocruzamientos posteriores. Pueden producirse líneas recombinantes autopolinizando los descendientes resultantes del retrocruzamiento.

Se entiende, dentro del alcance de la invención, que "locus" se refiere a una región en un cromosoma, que comprende un gen o cualquier otro elemento genético o factor que contribuye a un rasgo.

Se entiende, dentro del alcance de la presente invención, que "introgresión" (o sometido a introgresión) se refiere a un movimiento de uno o más genes o segmentos de ácido nucleico desde una especie a la combinación de genes de otra especie, o desde una línea a la combinación de genes de otra línea dentro de la misma especie. La introgresión puede conseguirse por cruce sexual, hibridación sexual o por transformación genética.

Como se usa en este documento, "locus marcador" se refiere a una región en un cromosoma, que comprende un nucleótido o una secuencia polinucleotídica que está presente en el genoma de un individuo y que está asociada con uno o más locus de interés, que pueden comprender un gen o cualquier otro elemento o factor genético que contribuya a un rasgo. "Locus marcador" también se refiere a una región en un cromosoma, que comprende una secuencia polinucleotídica complementaria a una secuencia genómica, tal como una secuencia de un ácido nucleico usado como sondas.

Para los fines de la presente invención, el término "segregación" o "cosegregación" se refiere al hecho de que el alelo para el rasgo y el alelo o los alelos para el marcador o los marcadores tienden a transmitirse juntos porque están físicamente muy juntos en el mismo cromosoma (recombinación reducida entre ellos a causa de su proximidad física), lo que provoca una asociación no aleatoria de sus alelos como resultado de su proximidad en el mismo cromosoma. La "cosegregación" también se refiere a la presencia de dos o más rasgos dentro de una única planta, de los que se sabe que al menos uno es genético y que no puede explicarse fácilmente por casualidad.

Como se usa en este documento, la expresión "marcador genético" o "marcador" se refiere a una característica del genoma de un individuo (por ejemplo, un nucleótido o una secuencia polinucleotídica que está presente en el genoma de un individuo) que está asociada a uno o más locus de interés. En algunas realizaciones, un marcador genético es polimórfico en una población de interés, o el locus ocupado por el polimorfismo, dependiendo del contexto. Los marcadores genéticos incluyen, por ejemplo, polimorfismos mononucleotídicos (SNP), indels (es decir, inserciones/eliminaciones), repeticiones de secuencia simple (SSR), polimorfismos de longitud de fragmentos de restricción (RFLP), ADN polimórficos amplificados aleatoriamente (RAPD), marcadores de secuencia polimórfica amplificada y escindida (CAPS), marcadores de tecnología de matrices de diversidad (DArT) y polimorfismos de longitud de fragmentos amplificados (AFLP), entre muchos otros ejemplos. Los marcadores genéticos pueden usarse,

por ejemplo, para localizar locus genéticos que contienen alelos en un cromosoma que contribuye a variabilidad de rasgos fenotípicos. La expresión "marcador genético" o "marcador" también puede referirse a una secuencia polinucleotídica complementaria a una secuencia genómica, tal como una secuencia de un ácido nucleico usado como sondas.

5

10

Un "marcador genético" o "marcador" puede estar físicamente localizado en una posición en un cromosoma que está dentro o fuera del locus genético con el que está asociado (es decir, es intragénico o extragénico, respectivamente). Indicado de otra manera, mientras los "marcadores genéticos" o "marcadores" típicamente se emplean cuando la ubicación en un cromosoma del gen o de una mutación funcional, por ejemplo, dentro de un elemento de control fuera de un gen que corresponde al locus de interés, no se ha identificado y hay una tasa de recombinación que no es cero entre el "marcador genético" o "marcador" y el locus de interés, la materia en cuestión divulgada en la presente también puede emplear "marcadores genéticos" o "marcadores" que están físicamente dentro de los límites de un locus genético (por ejemplo, dentro de una secuencia genómica que corresponde a un gen tal como, aunque sin limitación, un polimorfismo dentro de un intrón o un exón de un gen). En algunas realizaciones de la materia en cuestión divulgada en la presente, el uno o más "marcadores genéticos" o "marcadores" comprenden entre uno y diez marcadores, y en algunas realizaciones el uno o más marcadores genéticos comprenden más de diez marcadores genéticos.

15

20

Como se usa en este documento, el término "genotipo" se refiere a la constitución genética de una célula u organismo. El "genotipo para un conjunto de marcadores genéticos" de un individuo incluye los alelos específicos para uno o más locus marcadores genéticos, presentes en el haplotipo de un individuo. Como se sabe en la técnica, un genotipo puede estar relacionado con un único locus o con múltiples locus, pudiendo estar los locus relacionados o no relacionados y/o ligados o no ligados. En algunas realizaciones, el genotipo de un individuo se refiere a uno o más genes que están relacionados en el sentido de que uno o más de los genes están implicados en la expresión de un fenotipo de interés. Por tanto, en algunas realizaciones, un genotipo comprende un sumario de uno o más alelos presentes dentro de un individuo en uno o más locus genéticos de un rasgo cuantitativo. En algunas realizaciones, un genotipo se expresa en función de un haplotipo.

25

30

Como se usa en este documento, el término "ligamiento" y variantes gramaticales del mismo, se refiere a la tendencia de alelos en diferentes locus en el mismo cromosoma de segregar juntos más a menudo que lo que se esperaría por probabilidad si su transmisión fuera independiente, en algunas realizaciones como una consecuencia de su proximidad física

35

40

45

Por ejemplo, "secuencia polinucleotídica", como se usa en este documento, se refiere a todas las formas de tipos de ácidos nucleicos y/o secuencias de nucleótidos de origen natural o generados de forma recombinante, así como a ácidos nucleicos/secuencias de nucleótidos sintetizados químicamente. Esta expresión también abarca análisis de ácido nucleico y derivados de ácido nucleico, tales como, por ejemplo, ADN bloqueado, ARN, ADNc, APN, oligonucleótidos tiofosfato y ribooligonucleótidos sustituidos. Además, la expresión "secuencia polinucleotídica" también se refiere a cualquier molécula que comprende nucleótidos o análogos nucleotídicos. La expresión "ácido nucleico" o "polinucleótido" se refiere a cualquier cadena física de unidades monoméricas que puede corresponder a una cadena de nucleótidos, incluyendo un polímero de nucleótidos (por ejemplo, un ADN típico, ADNc o polímero de ARN), que opcionalmente contiene bases nucleotídicas sintéticas, no naturales o alteradas que tienen capacidad de incorporación en polímeros de ADN o ARN, oligonucleótidos modificados (por ejemplo, oligonucleótidos que comprenden bases que no son típicas de ARN o ADN biológico, tales como oligonucleótidos 2'-O-metilados), y similares. Se entiende en este documento que el término "polinucleótido" se refiere a una molécula polimérica de alto peso molecular, que puede ser monocatenaria o bicatenaria, multicatenaria o combinaciones de las mismas, compuesta de monómeros (nucleótidos) que contienen un glúcido, fosfato y una base que es una purina o una pirimidina. A menos que se indique lo contrario, una secuencia particular de ácido nucleico de la materia en cuestión divulgada en la presente comprende o codifica opcionalmente secuencias complementarias, además de cualquier secuencia explícitamente indicada.

50

55

60

65

Preferiblemente, la expresión "secuencia polinucleotídica" se refiere a una molécula de ácido nucleico, es decir, ácido desoxirribonucleico (ADN) y/o ácido ribonucleico (ARN). La "secuencia polinucleotídica" en el contexto de la presente invención puede prepararse por metodología química sintética conocida por los expertos en la materia, o mediante el uso de tecnología recombinante, o puede aislarse de fuentes naturales, o mediante una combinación de los mismos. El ADN y el ARN pueden comprender opcionalmente nucleótidos no naturales y pueden ser monocatenarios o bicatenarios. "Secuencia polinucleotídica" también se refiere a ADN y ARN de sentido y de antisentido, es decir, una secuencia polinucleotídica que es complementaria a una secuencia específica de nucleótidos en ADN y/o ARN. Además, la expresión "secuencia polinucleotídica" puede referirse a ADN o ARN o híbridos de los mismos o cualquier modificación de los mismos, que son conocidos en el estado de la técnica (véanse, por ejemplo, los documentos US 5525711, US 4711955, US 5792608 o EP 302175 para ejemplos de modificaciones). La secuencia polinucleotídica puede ser monocatenaria o bicatenaria, lineal o circular, natural o sintética, y sin ninguna limitación de tamaño. Por ejemplo, la secuencia polinucleotídica puede ser ADN genómico, ADNc, ARNm, ARN de antisentido, ribozima o un ADN que codifica dichos ARN o quimeroplastos (Gamper, Nucleic Acids Research, 2000, 28, 4332 - 4339). Dicha secuencia polinucleotídica puede estar en forma de un plásmido o de ADN o ARN vírico. "Secuencia polinucleotídica" también puede referirse a uno o más oligonucleótidos, en los que se incluyen cualquiera de las modificaciones del estado de la técnica tales como fosfotioatos o ácidos peptidonucleicos (APN).

Un "fragmento polinucleotídico" es una fracción de una molécula polinucleotídica dada o de una "secuencia polinucleotídica". En plantas superiores, el ácido desoxirribonucleico (ADN) es el material genético, mientras que el ácido ribonucleico (ARN) está implicado en la transferencia de la información contenida dentro del ADN en proteínas. Un "genoma" es el cuerpo completo de material genético contenido en cada célula de un organismo.

A menos que se indique lo contrario, una secuencia de ácido nucleico particular de esta invención también abarca de forma implícita variantes modificadas de forma conservadora de la misma (por ejemplo, sustituciones de codones degenerados) y secuencias complementarias y también la secuencia indicada explícitamente. Específicamente, las sustituciones de codones degenerados pueden conseguirse generando secuencias en que la tercera posición de uno o más codones seleccionados (o todos) se sustituye con residuos de base mixta y/o de desoxiinosina (Batzer et al., 1991; Ohtsuka et al., 1985; Rossolini et al., 1994). La expresión polinucleótido se usa indistintamente con ácido nucleico, secuencia de nucleótidos y pueden incluir genes, ADNc y ARNm codificados por un gen, etc.

10

25

30

35

40

50

55

60

Se entiende que el polinucleótido de la invención se proporciona en forma aislada. El término "aislado" significa que el polinucleótido divulgado y reivindicado en este documento no es un polinucleótido que se produce en su contexto natural, si acaso es que tiene un equivalente de origen natural. Por consiguiente, los otros compuestos de la invención descritos adicionalmente a continuación se entiende que están aislados. Si se reivindica en el contexto de un genoma vegetal, el polinucleótido de la invención se distingue sobre los equivalentes de origen natural por el sitio de inserción en el genoma y las secuencias flanqueantes en el sitio de inserción.

Como se usa en este documento, el término "gen" se refiere a cualquier segmento de ácido nucleico asociado con una función biológica. Por tanto, los genes incluyen secuencias codificantes y/o las secuencias reguladoras requeridas para su expresión. Por ejemplo, gen se refiere a un fragmento de ácido nucleico que expresa ARNm o ARN funcional, o codifica una proteína específica, y que incluye secuencias reguladoras. Los genes también incluyen segmentos de ADN no expresados que, por ejemplo, forman secuencias de reconocimiento para otras proteínas. Los genes pueden obtenerse de una diversidad de fuentes, incluyendo clonación desde una fuente de interés o síntesis a partir de información de secuencia conocida o predicha, y pueden incluir secuencias diseñadas para que tengan parámetros deseados.

Se entiende, dentro del alcance de la invención, que "selección basada en marcadores" se refiere, por ejemplo, al uso de marcadores genéticos para detectar uno o más ácidos nucleicos de la planta, donde el ácido nucleico está asociado con un rasgo deseado para identificar plantas que portan genes para rasgos deseables (o indeseables), de modo que esas plantas puedan usarse (o evitarse) en un programa de mejoramiento selectivo. Un "gen marcador" codifica un rasgo de selección o cribado.

Los marcadores adecuados usados dentro de la invención pueden seleccionarse, por ejemplo, del grupo que consiste en marcadores de polimorfismo mononucleotídico (SNP), marcadores de indel (es decir, inserciones/eliminaciones), marcadores de repetición de secuencia (SSR), marcadores de polimorfismo de longitud de fragmentos de restricción (RFLP), marcadores de ADN polimórfico amplificado aleatoriamente (RAPD), marcadores de secuencia polimórfica ampliada y escindida (CAPS), marcadores de tecnología de matrices de diversidad (DArT) y marcadores de polimorfismos de longitud de fragmentos amplificados (AFLP).

Por ejemplo, el RFLP implica el uso de enzimas de restricción para cortar el ADN cromosómico en sitios de restricción cortos y específicos, los polimorfismos se producen por duplicaciones o eliminaciones entre los sitios o mutaciones en los sitios de restricción.

La RAPD utiliza la amplificación por reacción en cadena de la polimerasa (PCR) de baja rigurosidad con cebadores únicos de secuencia arbitraria para generar matrices específicas de cepa de fragmentos de ADN anónimos. El método requiere solamente pequeñas muestras de ADN y analiza un gran número de locus polimórficos.

El AFLP requiere la digestión de ADN celular con una o más enzimas de restricción antes de usar la PCR y los nucleótidos selectivos en los cebadores para amplificar fragmentos específicos. Con este método, usando técnicas de electroforesis para visualizar los fragmentos obtenidos, se pueden medir hasta 100 locus polimórficos por combinación de cebador y solamente se requiere una pequeña muestra de ADN para cada uno de los ensayos.

El análisis por SSR se basa en secuencias de microsatélites de ADN (repetición corta) que están muy dispersas por todo el genoma de los eucariotas, que se amplifican de forma selectiva para detectar variaciones en repeticiones de secuencias simples. Solamente se requieren pequeñas muestras de ADN para un análisis por SSR. Los SNP usan ensayos de extensión por PCR que detectan de manera eficaz las mutaciones puntuales. El procedimiento requiere poco ADN por muestra. Uno o dos de los métodos anteriores se pueden usar en un programa típico de mejoramiento por selección basado en marcadores.

El método más preferido de conseguir amplificación de fragmentos de nucleótidos que abarcan una región polimórfica del genoma vegetal emplea la reacción en cadena de la polimerasa ("PCR") (Mullis *et al.*, Cold Spring Harbor Symp. Quant. Biol. 51: 263 273 (1986)), usando pares de cebadores que implican un cebador directo y un cebador inverso

que pueden hibridar con las secuencias proximales que definen un polimorfismo en su forma bicatenaria. Como se divulga en este documento, dichos cebadores pueden usarse para un cartografiado preciso, clonación basada en cartografiado y para análisis de expresión.

- Se entiende, dentro del alcance de la invención, que "microsatélite o marcador de SSR (repeticiones de secuencia simples)" se refiere a un tipo de marcador genético que consiste en numerosas repeticiones de secuencias cortas de bases de ADN, que se encuentran en locus por todo el genoma de la planta y tiene una probabilidad de ser altamente polimórfico.
- 10 Se entiende, dentro del alcance de la invención, que "PCR (reacción en cadena de la polimerasa)" se refiere a un método de producción de cantidades relativamente grandes de regiones específicas de ADN o uno o más subconjuntos del genoma, haciendo posible de ese modo diversos análisis que se basan en esas regiones.
- Se entiende, dentro del alcance de la invención, que "cebador de PCR" se refiere a fragmentos relativamente cortos de ADN monocatenario usados en la amplificación por PCR de regiones específicas de ADN.
 - Se entiende, dentro del alcance de la invención, que "fenotipo" se refiere a una o más características distinguibles de un rasgo genéticamente controlado.
- Como se usa en este documento, la frase "rasgo fenotípico" se refiere a la apariencia u otra característica detectable de un individuo, que resulta de la interacción de su genoma, proteoma y/o metaboloma con el entorno.

25

30

35

40

55

- Se entiende, dentro del alcance de la invención, que "polimorfismo" se refiere a la presencia en una población de dos o más formas diferentes de un gen, marcador genético o rasgo hereditario o un producto génico obtenible, por ejemplo, a través de corte y empalme alternativo, metilación del ADN, etc.
- "Sonda", como se usa en este documento, se refiere a un grupo de átomos o moléculas que puede reconocer y unirse a una molécula o estructura celular diana específica y, por tanto, permitir la detección de la molécula o estructura diana. Particularmente, "sonda" se refiere a una secuencia de ADN o ARN marcada que puede usarse para detectar la presencia de y para cuantificar una secuencia complementaria por hibridación molecular.
- Dichas secuencias polinucleotídicas que pueden hibridar pueden identificarse y aislarse usando las secuencias polinucleotídicas descritas en este documento o partes o complementos inversos de las mismas, por ejemplo, por hibridación de acuerdo con métodos convencionales (véase, por ejemplo, Sambrook y Russell (2001), Molecular Cloning: A Laboratory Manual, CSH Press, Cold Spring Harbor, NY, EE. UU.). Secuencias de nucleótidos que comprenden las mismas o sustancialmente las mismas secuencias de nucleótidos que las indicadas en las SEQ ID NO: 1, 2 o 3 enumeradas, o partes/fragmentos de las mismas, pueden usarse, por ejemplo, como sondas de hibridación. Los fragmentos usados como sondas de hibridación también pueden ser fragmentos sintéticos que se preparan por técnicas habituales de síntesis, cuya secuencia es sustancialmente idéntica a la de una secuencia de nucleótidos de acuerdo con la invención.
- El término "hibridar", como se usa en este documento, se refiere a condiciones convencionales de hibridación, preferiblemente a condiciones de hibridación en que se usa SSPE 5x, SDS al 1 %, solución de Denhardt 1x como una solución y/o las temperaturas de hibridación están entre 35 °C y 70 °C, preferiblemente 65 °C. Después de la hibridación, el lavado se realiza preferiblemente, en primer lugar, con SSC 2x, SDS al 1 % y posteriormente con SSC 0,2x a temperaturas entre 35 °C y 75 °C, particularmente entre 45 °C y 65 °C, pero especialmente a 59 °C (con respecto a la definición de SSPE, SSC y solución de Denhardt, véase Sambrook *et al. loc. cit.*). Las condiciones de hibridación de alta rigurosidad, como se describen, por ejemplo, en Sambrook *et al., supra*, son particularmente preferidas. Condiciones de hibridación rigurosas particularmente preferidas están presentes, por ejemplo, si la hibridación y el lavado se producen a 65 °C, como se indica anteriormente. Condiciones de hibridación no rigurosas, por ejemplo, con hibridación y lavado realizados a 45 °C, son menos preferidas y a 35 °C incluso menos.
 - "Homología de secuencia" o "identidad de secuencia" se usa en este documento indistintamente. Los términos "idéntica" o porcentaje de "identidad", en el contexto de dos o más secuencias de ácido nucleico o proteínicas, se refieren a dos o más secuencias o subsecuencias que son iguales o tienen un porcentaje especificado de residuos aminoacídicos o nucleótidos que son iguales, cuando se comparan y alinean para una máxima correspondencia, medida usando uno de los siguientes algoritmos de comparación de secuencias o por inspección visual. Por ejemplo, este término se usa en este documento en el contexto de una secuencia de nucleótidos que tiene una homología, es decir, una identidad de secuencia, de al menos un 50 %, 55 %, 60 %, preferiblemente de al menos un 70 %, 75 %, más preferiblemente de al menos un 80 %, 85 %, 86 %, 87 %, 88 %, 89 %, 90 %, 91 %, 92 %, 93 %, 94 %, 95 %, 96 %, 97 %, 98 %, e incluso mucho más preferiblemente de al menos un 99 % con otra secuencia de nucleótidos, preferiblemente completa.
- Si las dos secuencias que deben compararse entre sí difieren en longitud, la identidad de secuencia se refiere preferiblemente al porcentaje de los residuos nucleotídicos de la secuencia más corta que son idénticos a los residuos de nucleotídicos de la secuencia más larga. Como se usa en este documento, el porcentaje de identidad/homología

entre dos secuencias es una función del número de posiciones idénticas compartidas por las secuencias (es decir. % de identidad = n.º de posiciones idénticas/número total de posiciones x 100), teniendo en cuenta el número de huecos y la longitud de cada uno de los huecos, que deben introducirse para una alineación óptima de las dos secuencias. La comparación de secuencias y la determinación del porcentaje de identidad entre dos secuencias se puede lograr usando un algoritmo matemático, como se describe a continuación en este documento. Por ejemplo, la identidad de secuencia se puede determinar convencionalmente con el uso de programas informáticos, tal como el programa Bestfit (Wisconsin Sequence Analysis Package, Versión 8 para Unix, Genetics Computer Group, University Research Park, 575 Science Drive Madison, WI 53711). Bestfit utiliza el algoritmo de homología local de Smith y Waterman, Advances in Applied Mathematics 2 (1981), 482-489, para encontrar el segmento con la mayor identidad de secuencia entre dos secuencias. Cuando se usa Bestfit u otro programa de alineación de secuencias para determinar si una secuencia particular tiene, por ejemplo, una identidad de un 95 % con una secuencia de referencia de la presente invención, los parámetros se ajustan preferiblemente de modo que el porcentaje de identidad se calcule en toda la longitud de la secuencia de referencia y que se permitan brechas de homología de hasta un 5 % del número total de nucleótidos en la secuencia de referencia. Cuando se usa Bestfit, los denominados parámetros opcionales se dejan preferiblemente en sus valores predeterminados ("por defecto"). Las desviaciones que aparecen en la comparación entre una secuencia dada y las secuencias de la invención descritas anteriormente pueden estar provocadas, por ejemplo, por adición, eliminación, sustitución, inserción o recombinación. Dicha comparación de secuencias también se puede realizar preferiblemente con el programa "fasta20u66" (versión 2.0u66, septiembre de 1998 por William R. Pearson y la Universidad de Virginia; véase también W.R. Pearson (1990), Methods in Enzymology 183, 63-98, ejemplos adjuntos y http://workbench.sdsc.edu/). Para este fin, pueden usarse los ajustes de parámetros "por defecto".

5

10

15

20

25

40

45

50

55

60

Otra indicación de que dos secuencias de ácido nucleico son sustancialmente idénticas es que las dos moléculas hibridan entre sí en condiciones rigurosas. La frase: "hibridación específicamente con" se refiere a la unión, duplicación o hibridación de una molécula solamente con una secuencia de nucleótidos particular en condiciones rigurosas cuando esa secuencia está presente en una mezcla compleja de ADN o ARN (por ejemplo, celular total). "Se une(n) sustancialmente" se refiere a la hibridación complementaria entre un ácido nucleico sonda y un ácido nucleico diana y abarca desajustes menores que pueden acomodarse reduciendo la rigurosidad de los medios de hibridación para lograr la detección deseada de la secuencia de ácido nucleico diana.

Las "condiciones de hibridación rigurosas" y "condiciones de lavado de hibridación rigurosas", en el contexto de los experimentos de hibridación de ácidos nucleicos, tales como las hibridaciones de Southern y Northern, dependen de la secuencia y son diferentes para parámetros ambientales distintos. Las secuencias más largas hibridan específicamente a temperaturas más elevadas. Una guía extensa para la hibridación de ácidos nucleicos se encuentra en Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular Biology-Hybridization with Nucleic Acid Probes parte I capítulo 2 "Overview of principles of hybridization and the strategy of nucleic acid probe assays" Elsevier, Nueva York. En general, las condiciones de hibridación y lavado altamente rigurosas se seleccionan para que sean aproximadamente 5 °C más bajas que el punto de fusión térmico para la secuencia específica a una fuerza iónica y pH definidos. Típicamente, en "condiciones rigurosas" hibridará una sonda con su subsecuencia diana, pero no con otras secuencias.

El punto de fusión térmico es la temperatura (a una fuerza iónica y pH definidos) a la que el 50 % de la secuencia diana hibrida con una sonda perfectamente emparejada. Las condiciones muy rigurosas se seleccionan para que sean iguales a la temperatura de fusión (Tm) para una sonda particular. Un ejemplo de condiciones de hibridación rigurosas para la hibridación de ácidos nucleicos complementarios que tienen más de 100 residuos complementarios en un filtro en una transferencia de Southern o Northern son formamida al 50 % con 1 mg de heparina a 42 °C, realizándose la hibridación durante la noche. Un ejemplo de condiciones de lavado altamente rigurosas es NaCl 0.15 M a 72 °C durante aproximadamente 15 minutos. Un ejemplo de condiciones de lavado rigurosas es un lavado con SSC 0,2x a 65 °C durante 15 minutos (véase, Sambrook, infra, para una descripción del tampón SSC). A menudo, un lavado de rigurosidad alta va precedido por un lavado de rigurosidad baja para eliminar la señal de fondo de la sonda. Un ejemplo de lavado de rigurosidad media para una estructura bicatenaria de, por ejemplo, más de 100 nucleótidos, es SSC 1x a 45 °C durante 15 minutos. Un ejemplo de lavado de rigurosidad baja para una estructura bicatenaria de, por ejemplo, más de 100 nucleótidos, es SSC 4-6x a 40 °C durante 15 minutos. Para sondas cortas (por ejemplo, de aproximadamente 10 a 50 nucleótidos), las condiciones rigurosas implican típicamente concentraciones de sal de menos de aproximadamente 1,0 M de ion Na, típicamente de aproximadamente 0,01 a 1,0 M de ion Na (u otras sales) a pH 7.0 a 8,3, y la temperatura es típicamente de al menos aproximadamente 30 °C. También se pueden lograr condiciones rigurosas con la adición de agentes desestabilizantes tales como formamida. En general, una relación de señal a ruido de 2 veces (o mayor) que la observada para una sonda no relacionada en el ensayo de hibridación particular indica detección de una hibridación específica. Los ácidos nucleicos que no hibridan entre sí en condiciones rigurosas siguen siendo sustancialmente idénticos si las proteínas que codifican son sustancialmente idénticas. Esto ocurre, por ejemplo, cuando se crea una copia de un ácido nucleico usando la máxima degeneración de codones permitida por el código genético.

Una "planta" es cualquier planta en cualquier estado de desarrollo, particularmente una planta de semilla.

Una "parte de la planta", como se usa en este documento, se refiere a subunidades estructurales y/o funcionales de una planta incluyendo, aunque sin limitación, células vegetal, tejidos vegetales, material vegetal, órganos vegetales, partes recolectables de la planta, etc., como se define a continuación en este documento.

- Una "parte recolectable de la planta" es una parte de una planta que se refiere a esas partes de la planta que se recolectan en cualquier momento adecuado y pueden procesarse además para uso industrial o consumo, incluyendo flores, frutos, hojas, semillas, fibras, etc.
- Una "célula vegetal" es una unidad estructural y fisiológica de una planta, que comprende un protoplasto y una pared celular. La célula vegetal puede estar en forma de una única célula aislada o de una célula cultivada, o como parte de 10 una unidad con una organización superior tal como, por ejemplo, un tejido vegetal, un órgano vegetal o una planta entera.
- El "cultivo de células vegetales" significa cultivos de unidades vegetales tales como, por ejemplo, protoplastos, células 15 de cultivo celular, células en tejidos vegetales, polen, tubos polínicos, óvulos, sacos embrionarios, cigotos y embriones en diferentes estados de desarrollo.
- "Material vegetal" o "material vegetal que se obtiene de una planta" se refiere a hojas, tallos, raíces, flores o partes de flores, frutos, polen, óvulos, cigotos, semillas, esquejes, cultivos celulares o de tejidos, o cualquier otra parte o producto 20 de una planta.
 - Un "órgano de una planta" es una parte distinta y visiblemente estructurada y diferenciada de una planta, tal como una raíz, un tallo, una hoja, una yema floral o un embrión.
- 25 "Tejido vegetal", como se usa en este documento, se refiere a un grupo de células vegetales organizadas en una unidad estructural y funcional. Se incluye cualquier tejido de una planta en la planta o en cultivo. Esta expresión incluye, aunque sin limitación, plantas enteras, órganos vegetales, semillas de plantas, cultivo tisular y cualquier grupo de células vegetales organizadas en unidades estructurales y/o funcionales. El uso de esta expresión junto con, o en ausencia de, cualquier tipo específico de tejido vegetal, como los enumerados anteriormente o que esté contemplado 30 de otra manera por esta definición, no pretende ser exclusivo de ningún otro tipo de tejido vegetal.
 - Como se usa en este documento, el término "población" significa un conjunto genéticamente heterogéneo de plantas que comparten una derivación genética común.
- 35 Como se usa en este documento, el término "variedad" o "cultivar" significa un grupo de plantas similares que, por sus características estructurales y su rendimiento, pueden identificarse a partir de otras variedades dentro de la misma especie.
- Como se usa en este documento, la expresión "técnicas de transformación de plantas" se refiere a la introducción de 40 un transgén, que confiere un rasgo específico, en la planta hospedadora. El transgén se incorpora en el genoma de la planta hospedadora y se hereda de forma estable a través de futuras generaciones. Se añaden las secuencias reguladoras correctas al gen de interés, es decir, promotores y terminadores, después el ADN se transfiere al cultivo de células vegetales usando un vector apropiado. En algunas realizaciones, el gen se fija a un marcador de selección que permite la selección por la presencia del transgén como se describe en este documento anteriormente. Una vez 45 se ha transformado el tejido vegetal, las células que contienen el transgén se seleccionan y se realiza la regeneración de nuevo en plantas completas.
 - La transformación de las plantas puede realizarse de varias maneras diferentes para generar hospedadores vegetales con funciones delegadas requeridas que hacen que el hospedador vegetal sea competente para la expresión de la secuencia de interés, dependiendo de la especie de la planta en cuestión. Por ejemplo, puede usarse transformación mediada por Agrobacterium para transformar plantas de acuerdo con la invención. Dentro de este método de transformación, se corta la planta o el tejido vegetal (por ejemplo, hojas) en pequeños trozos, por ejemplo, de 10 x 10 mm, y se remojan durante 10 minutos en un líquido que contiene Agrobacterium suspendida que contiene un vector de plásmido Ti portado por Agrobacterium (documentos US 5591616; US 4940838; US 5464763). Colocadas en un medio de enraizamiento y despunte de selección, las plantas volverán a crecer.

50

55

60

Las técnicas que no se basan en Agrobacterium implican la captación de material genético exógeno directamente por los protoplastos o las células. Estas técnicas incluyen, aunque sin limitación, captación mediada por PEG o electroporación, suministro mediado por bombardeo de partículas y microinyección. Ejemplos de estas técnicas se describen en Paszkowski et al., EMBO J 3, 2717-2722 (1984), Potrykus et al., Mol. Gen. Genet. 199,169-177 (1985), Reich et al., Biotechnology 4:1001-1004 (1986) y Klein et al., Nature 327,70-73 (1987). En cada caso, las células transformadas se regeneran en plantas completas usando técnicas convencionales. Por ejemplo, en el bombardeo de partículas, se recubren partículas de oro o tungsteno con ADN y después se disparan en células vegetales jóvenes o embriones vegetales (documentos US 05100792; EP 00444882B1; EP 00434616B1). Algo de material genético quedará en las células y las transformará. Este método también puede usarse para transformar plástidos vegetales. 65 Además, puede usarse la técnica de electroporación para transformar plantas de acuerdo con la invención. Durante

la electroporación, se preparan orificios transitorios en las membranas celulares usando choque eléctrico que permite que el ADN entre en la célula. Otra técnica de transformación dentro de la invención puede ser transformación vírica (transducción). Aquí, el material genético deseado se empaqueta en un virus de plantas adecuado y se permite que este virus modificado infecte la planta. Si el material genético es ADN, puede recombinarse con los cromosomas para producir células transformadas. Sin embargo, los genomas de la mayoría de virus de plantas consisten en ARN monocatenario que se replica en el citoplasma de la célula infectada.

5

10

25

30

45

50

55

60

65

La transformación o genomanipulación de la planta o célula vegetal con una secuencia de nucleótidos o el vector de acuerdo con la invención puede realizarse por métodos convencionales, como se describe, por ejemplo, en Sambrook y Russell (2001), Molecular Cloning: A Laboratory Manual, CSH Press, Cold Spring Harbor, NY, EE. UU. Además, la célula vegetal transgénica de la presente invención se cultiva en medio nutritivo que cumple los requisitos de la célula particular usada, en particular con respecto al valor de pH, la temperatura, la concentración salina, la aireación, los antibióticos, las vitaminas, los oligoelementos, etc.

La expresión "vector" o "molécula de vector", como se usa en este documento, puede comprender un casete de expresión que puede comprender secuencias de control de la expresión unidas de forma funcional a dicho polinucleótido. El vector o vectores pueden estar en forma de un plásmido, y pueden usarse en solitario o en combinación con otros plásmidos, para proporcionar plantas transformadas, usando métodos de transformación como se describe a continuación para incorporar transgenes en el material genético de la planta o las plantas. Vectores adicionales pueden comprender cósmidos, virus, bacteriófagos y otros vectores habitualmente usados en ingeniería genética.

Un "transgén" se refiere a un gen que se ha introducido en el genoma por transformación y se mantiene de forma estable. Los transgenes pueden incluir, por ejemplo, genes que son heterólogos u homólogos a los genes de una planta particular a transformar. Además, los transgenes pueden comprender genes naturales insertados en un organismo no natural, o genes quiméricos.

"Secuencia codificante" se refiere a una secuencia de ADN o ARN que codifica una secuencia de aminoácidos específica y excluye las secuencias no codificantes. Puede constituir una "secuencia codificante ininterrumpida", es decir, que carece de un intrón, tal como en un ADNc o puede incluir uno o más intrones unidos mediante uniones de corte y empalme apropiadas. Un "intrón" es una secuencia de ARN que está contenida en el transcrito primario, pero que se retira a través de escisión y religamientro del ARN dentro de la célula para crear el ARNm maduro que puede traducirse en una proteína.

La expresión "casete de expresión", como se usa en este documento, puede estar compuesto de una o más secuencias de nucleótidos de la presente invención en unión funcional con secuencias de nucleótidos reguladoras que controlan su expresión. Como se sabe en la técnica, un casete de expresión puede consistir en una secuencia promotora (promotor), un marco abierto de lectura o una parte funcional del mismo, una región no traducida 3' y una secuencia terminadora (terminador). El casete puede ser parte de una molécula de vector como se describe en este documento anteriormente. Diferentes casetes de expresión pueden transformarse en plantas o células vegetales siempre que se usen las secuencias reguladoras correctas.

Como se usa en este documento, el término "promotor" se refiere a una secuencia de nucleótidos, habitualmente anterior (5') a su secuencia codificante, que controla la expresión de la secuencia codificante proporcionando el reconocimiento para la ARN-polimerasa y otros factores necesarios para una transcripción apropiada. Un "promotor" incluye un promotor mínimo que es una secuencia corta de ADN compuesta de un dominio TATA y otras secuencias que sirven para especificar el sitio de inicio de la transcripción, al que se añaden elementos reguladores para el control de la expresión. Además, un "promotor" también se refiere a una secuencia de nucleótidos que incluye un promotor mínimo más elementos reguladores, que puede controlar la expresión de una secuencia codificante o ARN funcional. Este tipo de secuencia promotora consiste en elementos anteriores proximales y más distales, denominándose los últimos elementos a menudo potenciadores. Por consiguiente, un "potenciador" es una secuencia de ADN que puede estimular la actividad promotora y puede ser un elemento innato del promotor o un elemento heterólogo insertado para potenciar el nivel o especificidad de tejido de un promotor. Puede funcionar en ambas orientaciones (normal o invertido), y puede funcionar incluso cuando se mueve en dirección 5' o 3' desde el promotor. Tanto los potenciadores como otros elementos promotores en dirección 5' se unen a proteínas de unión a ADN específicas de secuencia que median sus efectos. Los promotores pueden derivar en su totalidad de un gen natural, o pueden estar compuestos de diferentes elementos derivados de diferentes promotores encontrados en la naturaleza, o incluso pueden comprenden segmentos de ADN sintético. Un promotor también puede contener secuencias de ADN que están implicadas en la unión de factores proteínicos que controlan la eficacia del inicio de la transcripción en respuesta a condiciones fisiológicas o del desarrollo.

El "sitio de inicio" es la posición que rodea el primer nucleótido que es parte de la secuencia transcrita, que también se define como la posición +1. Con respecto a este sitio, se numeran todas las demás secuencias del gen y sus regiones de control. Las secuencias posteriores (es decir, secuencias adicionales que codifican proteína en la dirección 3') se denominan positivas, mientras que las secuencias anteriores (principalmente las regiones de control en la dirección 5') se denominan negativas.

Los elementos promotores, particularmente un elemento TATA, que son inactivos o que tienen actividad promotora enormemente reducida en ausencia de activación en dirección 5' se denominan "promotores mínimos o centrales". En presencia de un factor de transcripción adecuado, el promotor mínimo funciona permitiendo la transcripción. Un "promotor mínimo o central", por tanto, consiste únicamente en todos los elementos básicos necesarios para el inicio de la transcripción, por ejemplo, un dominio TATA y/o un iniciador.

De acuerdo con la invención, el término "promotor" es una región reguladora de ácido nucleico (por ejemplo, ADN) que dirige la transcripción de un gen. Los promotores están ubicados típicamente cerca de los genes que regulan, en la misma hebra y anteriores (hacia la región 5' de la hebra de sentido). Varios tipos de promotores son bien conocidos en las técnicas de transformación, así como otros elementos reguladores que pueden usarse en solitario o en combinación con otros promotores. Un "promotor vegetal" es un promotor que puede iniciar la transcripción en células vegetales. Ejemplos de promotores bajo control por el desarrollo incluyen "promotores específicos de tejidos" que se refieren a promotores regulados que no se expresan en todas las células vegetales, sino solamente en uno o más tipos celulares en órganos específicos (tal como hojas o semillas), tejidos específicos (tal como embrión o cotiledón), o tipos celulares específicos (tal como parénquima de las hojas o células de almacenamiento de las semillas). Estos también incluyen promotores que se regulan temporalmente, tal como en embriogénesis temprana o tardía, durante la maduración de los frutos en semillas o frutos en desarrollo, en hojas completamente diferenciadas, o en el inicio de la senescencia.

20

30

35

40

5

10

15

Un promotor específico de "tipo celular" o también llamado "promotor inducible" principalmente dirige la expresión en determinados tipos celulares en uno o más órganos, por ejemplo, células vasculares en raíces u hojas mediante un estímulo externo, tal como un agente químico, luz, hormona, agresión o un patógeno.

"Expresión constitutiva" se refiere a la expresión usando un promotor constitutivo o regulado. "Expresión regulada" o "condicionada" se refiere a la expresión controlada por un promotor regulado.

"Promotor constitutivo" se refiere a un promotor que puede expresar el marco abierto de lectura (ORF) que predomina en todos o casi todos los tejidos vegetales durante todos o casi todos los estados de desarrollo de la planta. Cada uno de los elementos activadores de la transcripción no muestra una especificidad de tejido absoluta, sino que media la activación transcripcional en la mayoría de partes de la planta a un nivel de ≥1 % del nivel alcanzado en la parte de la planta en que la transcripción es más activa.

"Promotor regulado" se refiere a promotores que no dirigen la expresión génica de forma constitutiva, sino de un modo regulado temporal y/o espacialmente, e incluyen tanto promotores específicos de tejido como inducibles. Incluye secuencias naturales y sintéticas, así como secuencias que pueden ser una combinación de secuencias sintéticas y naturales. Diferentes promotores pueden dirigir la expresión de un gen en diferentes tejidos o tipos celulares, o en diferentes estados de desarrollo, o en respuesta a diferentes condiciones ambientales. Constantemente se están descubriendo nuevos promotores de diversos tipos útiles en células vegetales, numerosos ejemplos pueden encontrarse en la compilación de Okamuro et al. (1989). Los promotores regulados típicos útiles en plantas incluyen, aunque sin limitación, promotores inducibles por protectores, promotores derivados del sistema inducibles por tetraciclina, promotores derivados de sistemas inducibles por glucocorticoesteroides, promotores derivados de sistemas inducibles por patógenos y promotores derivados de sistemas inducibles por ecdisona.

45

50

60

65

"Unido de forma funcional" se refiere a la asociación de secuencias de ácido nucleico en un solo fragmento de ácido nucleico de modo que la función de uno se vea afectada por el otro. Por ejemplo, una secuencia de ADN reguladora se dice que está "unida de forma funcional a" o "asociada con" una secuencia de ADN que codifica un ARN o un polipéptido si las dos secuencias están situadas de modo que la secuencia de ADN reguladora afecta a la expresión de la secuencia de ADN codificante (es decir, que la secuencia codificante o ARN funcional está bajo el control transcripcional del promotor). Las secuencias codificantes pueden unirse de forma funcional a secuencias reguladoras en orientación de sentido o de antisentido.

En el contexto anterior, el término "terminador" se refiere a una región reguladora de una secuencia de ADN que marca el final de un gen en ADN genómico para la transcripción y, por tanto, inicia la terminación de la transcripción del gen respectivo.

"Expresión", como se usa en este documento, se refiere a la transcripción y/o traducción de un gen endógeno, ORF o parte del mismo, o un transgén en plantas. Por ejemplo, en el caso de construcciones de antisentido, la expresión puede referirse a la transcripción del ADN de antisentido solamente. Además, expresión se refiere a la transcripción y acumulación estable de ARN de sentido (ARNm) o funcional. Expresión también puede referirse a la producción de proteína.

"Sobreexpresión" se refiere al nivel de expresión en células u organismos transgénicos que excede los niveles de expresión en células u organismos normales o no transformados (no transgénicos).

"Inhibición antisentido" se refiere a la producción de transcritos de ARN de antisentido que pueden suprimir la expresión de la proteína desde un gen endógeno o un transgén.

- "Silenciamiento génico" se refiere a supresión dependiente de homología de genes víricos, transgenes o genes nucleares endógenos. El silenciamiento génico puede ser transcripcional, cuando la supresión se debe a transcripción disminuida de los genes afectados, o postranscripcional, cuando la supresión de debe a recambio (degradación) aumentado de especies de ARN homólogas a los genes afectados (English *et al.*, 1996). El silenciamiento génico incluye silenciamiento génico inducido por virus (Ruiz *et al.*, 1998).
- Como se usa en este documento, el término "BAC" significa cromosoma artificial bacteriano y define una construcción de ADN, basada en un plásmido de fertilidad funcional usado para transformación y clonación en bacterias, tales como *E. coli.* Los BAC pueden usarse para secuenciar el genoma de organismos tales como plantas. Un corto trozo del ADN del organismo se amplifica como un inserto en BAC, y después se secuencia. Finalmente, las partes secuenciadas se reordenan *in silico*, produciendo la secuencia genómica del organismo.

Como se usa en este documento, "vigor aumentado de las semillas" se refiere a la capacidad de una semilla de germinar rápidamente, de una manera uniforme, y de conseguir un alto porcentaje de germinación; de producir plántulas que brotan rápidamente del suelo y tienen un alto porcentaje de brote; de producir plántulas que crecen rápidamente y demuestran tolerancia superior a diversas agresiones incluyendo, aunque sin limitación, frío. El vigor de las semillas es la cuantificación de cualquiera de los parámetros mencionados anteriormente y cualquier combinación de estos.

"Germinación de las semillas" se define como el brote de la radícula desde el tegumento.

"Velocidad de germinación", a partir de ahora en este documento, se refiere al promedio de tiempo observado entre la imbibición de la semilla y el brote de la radícula desde el tegumento.

A lo largo de la aplicación, la velocidad de germinación puede medirse finalmente calculando el periodo de tiempo que se necesita para observar un 50 % de germinación de las semillas (resultados expresados como una medición T50).

Debe entenderse "velocidad aumentada de germinación" como una diferencia observable significativa entre la germinación de la semilla que comprende un polinucleótido de acuerdo con la realización 5 frente a una semilla que no comprende uno de dichos polinucleótidos. Típicamente, una velocidad aumentada de germinación significa que la semilla que comprende un polinucleótido de acuerdo con la realización 5 germina antes que una semilla que no comprende la SEQ ID NO 3, SEQ ID NO: 4 o SEQ ID NO: 6.

Debe entenderse "velocidad modificada de germinación" como una diferencia observable significativa entre la germinación de la semilla que comprende un polinucleótido de acuerdo con las realizaciones 1 a 7 frente a una semilla que no comprende uno de dichos polinucleótidos. Típicamente, una velocidad modificada de germinación significa que la semilla que comprende un polinucleótido de acuerdo con las realizaciones 1 a 7 germina de forma diferente a la semilla que no comprende la SEQ ID NO 1, 2, 3, 4, 5 o 6.

Como se usa en este documento, la uniformidad de la germinación de las semillas puede expresarse como el tiempo entre un 10 % de germinación y un 90 % de germinación. Cuanto más corto sea este periodo, mejor será la uniformidad de la germinación de las semillas.

Las "condiciones ambientales externas adversas" son condiciones que inhiben o posponen la germinación de la semilla o el brote de la plántula. En el contexto de la presente invención, el frío es un factor, entre otros, que puede considerarse adverso respecto a las condiciones de germinación normales.

Se entiende que "brote (de una plántula)" se refiere al crecimiento de la planta que es observable.

Debe entenderse "brote aumentado de plántulas" como una diferencia observable significativa entre el brote de una plántula desde una semilla que comprende un polinucleótido de acuerdo con la realización 5 frente a una semilla que no comprende la SEQ ID NO 3, 4 o 6.

La invención será más evidente a partir de los siguientes ejemplos no limitantes junto con la lista de secuencias que se describe a continuación:

SEQ ID NO 1: Secuencia polinucleotídica correspondiente al alelo A12DHd del gen *BolC.VG1.a* (ortólogo de *Brassica oleracea* del gen *At3g01060*).

SEQ ID NO 2: Secuencia polinucleotídica correspondiente al alelo A12DHd del gen *BolC.VG2.a* (ortólogo de *Brassica oleracea* del gen *At3g01150*).

SEQ ID NO 3: Secuencia polinucleotídica correspondiente al alelo GD33DHd del gen *BolC.VG1.a* (ortólogo de *Brassica oleracea* del gen *At3g01060*).

16

45

5

20

30

35

40

50

55

- SEQ ID NO 4: Secuencia polinucleotídica correspondiente al alelo GD33DHd del gen *BolC.VG2.a* (ortólogo de *Brassica oleracea* del gen *At3g01150*).
- SEQ ID NO 5: Secuencia polinucleotídica correspondiente al alelo A12DHd truncado del gen *BolC.VG2.b* (ortólogo de *Brassica oleracea* del gen *At3q01150*).
- 5 SEQ ID NO 6: Secuencia polinucleotídica correspondiente al alelo GD33DHd truncado del gen *BolC.VG2.b* (ortólogo de *Brassica oleracea* del gen *At3g01150*).

Breve descripción de las figuras

- 10 La figura 1 es una representación gráfica de las curvas de germinación acumulativa de semillas de la línea de sustitución SL101 (○) y líneas progenitoras (A12DHd (■) y GDDH33 (●)) a 15 °C en agua. Las líneas verticales son los errores típicos.
- La figura 2 es una representación gráfica de las curvas de germinación acumulativa de SL101 (⋄) y el progenitor recurrente A12DHd (■) y líneas de retrocruzamiento F₁ recíprocas (A12DHd x SL101 (ρ) y SL101 x A12DHd (⋄). Las líneas verticales son los errores típicos.
 - La figura 3 es una representación gráfica del brote de plántulas acumulativo en el terreno a partir de semillas de la línea de sustitución SL101 (▲) y líneas progenitoras A12DHd (●) y GDD33H (■).
 - La figura 4 es un diagrama que ilustra las concentraciones endógenas de ABA durante la germinación en semillas de la línea de sustitución SL101 (columna blanca) y líneas progenitoras, GDDH33 (columna negra) y A12DHd (columna gris).
- La figura 5 es un diagrama que ilustra la velocidad de germinación de las semillas en 3, para el gen *At3g01060* (columnas negras), y 2, para el gen *At3g01150* (columnas grises), líneas KO. La línea de control de tipo silvestre (columna blanca) es colo.
- La figura 6 es un diagrama que ilustra la velocidad de germinación de las semillas en líneas KO 102 (línea gris claro) y 18 (línea gris medio bajo) (para el gen *At3g01060*) y en líneas KO 15 (líneas gris medio alto) y 3 (línea gris oscuro) (para el gen *Atg01150*) en comparación con la línea de control de tipo silvestre Col0 (línea negra), después de la producción de semillas en el invernadero (condiciones más agresivas).

Ejemplo 1

35

20

Material y métodos

Producción de semillas y comparación de líneas

- 40 Se obtuvieron muestras de semillas de la Universidad de Birmingham, R.U., para una serie de líneas de sustitución cromosómica de Brassica oleracea derivadas de las líneas progenitoras doble haploides A12DHd (var. alboglabra) y GDDH33 (var. italica; Rae et al., 1999). Entonces se produjeron semillas en masa y se recogieron de 10 plantas replicadas individuales de las líneas de sustitución y el progenitor GDDH33 y 20 plantas del progenitor recurrente A12DHd como líneas de sustitución se comparan con la última en experimentos de germinación. Las plantas se 45 disponen en un bloque aleatorizado con 10 réplica en un invernadero a 16-18 °C durante las 16 h del día y a 10-15 °C en la noche, como se describe por Bettey et al. (2000). Se aportaba iluminación complementaria (lámparas de sodio de alta presión de 400 W; Osram Ltd, St Helens, R.U.) cuando la intensidad de la luz caía por debajo de 300 w m² durante las 16 h del día. Las plantas se autopolinizaron encerrando las inflorescencias en bolsas de polietileno perforadas que contenían moscardones antes de que las flores se abrieran. Se permitió que las vainas de la semilla 50 se secaran completamente sobre la planta dentro de las bolsas circundantes antes de la recolección. Las semillas se limpiaron, se equilibraron a un 15 % de HR y 15 °C, y después se almacenaron a -20 °C antes de que se realizaran los experimentos de germinación. La germinación acumulativa en papel de filtro húmedo se registró a 15 °C en 4 réplicas de 15 semillas recogidas de cada una de las 10 plantas replicadas (o 20, A12DHd) descritas anteriormente. Trabaios previos habían demostrado que estas son suficientes semillas (Bettev et al., 2000). Se hicieron recuentos 55 frecuentes para permitir un cálculo preciso del tiempo hasta un 50 % de germinación a partir de estas mediciones. El porcentaje de germinación fue elevado en todos los lotes de semillas.
- En los últimos experimentos, se produjeron semillas F1 de retrocruzamientos recíprocos de la misma manera que se describe anteriormente. La polinización de yemas se realizó para hacer el cruce que produce F1. Las semillas de las líneas progenitoras se produjeron al mismo tiempo para hacer comparaciones para minimizar la influencia de las diferencias ambientales durante la producción de semillas. Además, en varias ocasiones en diferentes momentos del año, se produjeron semillas de plantas replicadas tanto del progenitor A12DHd como de la línea de sustitución SL101

en invernaderos como se describe anteriormente. Aunque los ajustes de calentamiento, ventilación e iluminación del invernadero permanecieron igual que los descritos anteriormente, la temperatura ambiente difería y se registró.

Ensayos de germinación

5

Tres réplicas biológicas de 50 semillas de líneas de Brassica oleracea de sustitución y progenitoras o de 3 a 15 réplicas biológicas de 50 semillas de líneas de tipo silvestre y mutantes de Arabidopsis se colocaron para que germinaran en 2 capas de papel de filtro (Whatman International Ltd., R.U.) que mantuvieron húmedas durante todo el tratamiento con agua.

10

En todos los experimentos de germinación, las semillas en el papel de filtro se mantuvieron en cajas de poliestireno transparentes dispuestas en bloques aleatorizados y se mantuvieron en la oscuridad. No se observaron evidencias de infección fúngica y, por tanto, las semillas no se esterilizaron para evitar influir en su germinación. La germinación (brote de la radícula) se registró a intervalos para construir curvas de germinación acumulativa.

15

Brote en el terreno

20

Como parte de una comparación no publicada más grande del brote de plántulas a partir de genotipos de B. oleracea, se sembraron 100 semillas de las líneas progenitoras GDDH33, A12DHd y la línea de sustitución SL101 el 31 de mayo, en 4 filas de 1 m replicadas dispuestas en un bloque aleatorizado. Las semillas se sembraron a mano en un surco de 15 mm de profundidad, se cubrieron con suelo tamizado (tamaño de orificio del tamiz < 4 mm) y a la superficie se le pasó rodillo una vez con una rueda de prensa taladradora de semillas Stanhay. El suelo era un suelo franco arenoso y se aplicó irrigación para mantener la humedad del suelo durante toda la germinación de las semillas y el brote de plántulas. Lo último se registró a intervalos regulares hasta que no brotaron más plántulas.

25

Análisis de hormonas

30

Se tomaron muestras de semillas de líneas de sustitución y progenitoras como semillas secas no embebidas y semillas embebidas durante 24 y 48 horas a 15 °C en papel de filtro húmedo. Cada muestra contenía 1 g de semillas secas medido antes de la imbibición. Las muestras se colocaron inmediatamente en nitrógeno líquido, se liofilizaron y después se colocaron en un congelador doméstico a -20 °C hasta la extracción. Las muestras estaban en 10 ml de metanol al 80 % (que contenía 20 mg l-l de BHT) frío (4 °C), después se añadieron 500 ng de ABA y 100 ng de cada uno de los patrones de GA. Las muestras se agitaron durante una noche en una vitrina fría y después se centrifugaron. El sobrenadante se decantó y el sedimento se resuspendió en 10 ml adicionales de metanol al 80 %. Las muestras se agitaron durante 4 h, se centrifugaron y los sobrenadantes se combinaron. Los sobrenadantes se evaporaron a acuosidad (aprox. 3-4 ml) y se anadieron 10 ml de tampón fosfato 0,5 M pH 8,2, las muestras se repartieron con 2 x 15 ml de diclorometano, y el diclorometano se descartó. La fracción acuosa se ajustó hasta pH 3 con ácido fosfórico 1 M repartido con 3 x 15 ml de acetato de etilo.

40

50

60

35

Las fracciones de acetato de etilo combinadas se lavaron con 2 x 3,5 ml de agua pH 3,0 y se evaporaron a sequedad, se volvieron a disolver en 5 ml de agua y el pH se ajustó hasta 8. La solución entonces se cargó en cartuchos QMA que se lavaron posteriormente con 5 ml de metanol al 15 % pH 8,0. Los GA y ABA se eluyeron de los cartuchos QMA directamente en cartuchos C18 21 con ácido fórmico 0,2 M en metanol al 5 %. Los cartuchos C18 entonces se lavaron con 5 ml de metanol al 20 % y las muestras se recuperaron en 5 ml de metanol al 80 % y se evaporaron a sequedad. Las muestras entonces se disolvieron en metanol y se metilaron con exceso de diazometano etéreo. Después de la

45 evaporación a seguedad. las muestras se volvieron a disolver en acetato de etilo seco y se pasaron a través de cartuchos de amino. Las muestras resultantes se analizaron directamente para el contenido de ABA mediante CG-EM, después se evaporaron a sequedad y se volvieron a disolver en BSTFA antes del análisis para el contenido de

GA por CG-EM.

Análisis de marcadores

Se diseñaron pares de cebadores para 30 modelos de genes de Arabidopsis que se propagaron a intervalos por la 55

región SOG1 usando el programa informático Primer 3 (http://gene.pbi.nrc.ca/cgibin/primer/primer3_www.cgi) y los datos de genes de Tair (http://www.arabidopsis.org/) para dar productos de PCR de 200 a 700 pb. La mezcla de PCR usada era convencional, pero se usó un programa de rampa descendente. Esta consistía en los parámetros de ciclado siguientes: 94 °C durante 5 min; después hibridación a 65 °C hasta 55 °C durante 10 ciclos bajando un grado en cada ciclo con 30 s de extensión a 72 °C y 30 s de desnaturalización a 94 °C durante los 10 ciclos; seguidos de 30 ciclos de 94 °C de 30 s, 55 °C de 30 s, 72 °C de 45 s; y una extensión final a 72 °C durante 15 min. Las secuencias de los cebadores para los modelos de genes que dieron resultados polimórficos se seleccionaron como marcadores (tabla

Análisis de los datos

65

Todos los análisis se realizaron usando el paquete estadístico Genstat 5 (Payne et al. 1993), y cuando era apropiado, los datos se sometieron a análisis de la varianza.

Resultados

5

10

15

20

25

35

40

45

50

55

60

65

El QTL para la velocidad de germinación (SOG1) en el grupo de ligamiento C1 se confirmó y se cartografió de forma precisa

El análisis de la varianza de los datos de germinación que compara las líneas de sustitución y progenitoras mostró que el progenitor GDDH33 germinaba significativamente (P < 0,001) más rápido que el progenitor A12DHd, lo que confirma que los alelos positivos de la velocidad de germinación se proporcionan por GDDH33, como se muestra por Bettey *et al.* (2000) (figura 1). Había 4 líneas de sustitución que abarcaban el QTL *SOG1* (SL101, SL111, SL118, SL119) y todas estas tenían una germinación significativamente (P < 0,005) más rápida que el progenitor A12DHd. La línea de sustitución SL101 tenía la región de introgresión más pequeña (1-9 cM; Rae *et al.*, 1999) que potenciaba la velocidad de germinación en comparación con A12DHd y explicaba gran parte de la diferencia en la velocidad de germinación entre las líneas progenitoras (figura 1) y, por lo tanto, se seleccionó para estudio adicional de *SOG1*.

El fenotipo de germinación rápida SOG1 no se ve influido por el genotipo materno

La velocidad de germinación se determina por el embrión, pero también puede verse influido significativamente por los tejidos que lo rodean que son de origen materno. Se realizaron retrocruzamientos recíprocos entre SL101 y A12DHd y entre GDDH33 y A12DHd para determinar los componentes genéticos meternos y cigóticos en el locus SOG1. La germinación se registró a partir de las semillas F1 de cada cruce y a partir de las semillas de las líneas progenitoras autopolinizadas producidas al mismo tiempo. No hubo diferencias significativas en la velocidad de germinación de SL101 y la F1 de los retrocruzamientos recíprocos con A12DHd (SL101 como planta madre y polen de A12DHd y viceversa), pero la germinación de las semillas de las tres fue significativamente (P < 0,01) más rápida que la de semillas de A12DHd (figura 2). Esto muestra que el alelo GDDH33 de germinación más rápida es dominante sin influencia materna genética sobre la herencia del rasgo, que confirma que se basa en el embrión.

Diferencias en la velocidad de germinación da lugar a diferencias en la cronología del brote de plántulas en el terreno

Los datos anteriores muestran que la velocidad de germinación de semillas GDDH33 y SL101 era significativamente mayor que la de A12DHd en condiciones de temperatura constante. En el terreno esto provocó brote de plántulas significativamente más pronto de GDDH33 y SL101 que de A12DHd (figura 3).

La concentración de ABA endógeno difiere entre genotipos en la madurez

La concentración endógena de ABA en semillas secas y de imbibición de los tres genotipos se midió usando CGEM. No hubo diferencias significativas en la concentración endógena de ABA en la semilla seca de SL101 y GD33 o durante la imbibición hasta 48 horas justo antes del brote de la radícula. La concentración de ABA en estos dos lotes de semillas permaneció igual durante las primeras 24 horas y después disminuyó hasta la mitad en 48 horas. Por el contrario, la concentración endógena de ABA en semillas de A12DHd inicialmente fie tres veces mayor que en SL101 y GDDH33 y después disminuyó progresivamente durante el periodo de 48 horas de imbibición, pero permaneció significativamente por encima de la de los otros dos lotes de semillas (figura 4). De forma interesante, si ABA sigue disminuyendo a la misma velocidad en A12DHd alcanzaría el mismo nivel después de 72 horas, el punto de germinación, que se observa en las otras dos líneas inmediatamente antes de su germinación.

Los resultados para las líneas GDDH33, SL101 y A12DHD presentados aquí muestran una clara relación determinada genéticamente entre el mayor contenido de ABA endógeno y la menor velocidad de germinación y viceversa.

Se ha realizado un análisis genético cuantitativo del rasgo de velocidad de germinación en Brassica oleracea.

Mediante cartografiado preciso del QTL con la línea de sustitución descrita previamente SL101, finalmente se identificaron dos genes subyacentes del QTL (*Speed Of Germination* (*SOG1*) - velocidad de germinación). Este línea SL101 tiene una corta introgresión en el extremo telomérico de C1 del progenitor de terminación rápida (GD33, brécol) en el fondo del progenitor de germinación lenta (A12, col rizada) en *Brassica oleracea*. Usando marcadores en toda esta región de introgresión de SL101, se identificaron 30 recombinaciones a lo largo de esta zona dentro de 1300 líneas, gracias a una estrategia de solapamiento de BAC. Esta estrategia permite reunir la líneas en 5 grupos distintos y las 2 líneas progenitoras. Entonces se evaluó la germinación de las semillas en la totalidad de estos 7 grupos y el análisis estadístico reveló que la germinación más rápida estaba asociada con 2 marcadores en el extremo telomérico de C1. La colocalización de estos marcadores con un solo BAC en el extremo telomérico de C1 se evaluó adicionalmente por hibridación de fluorescencia *in situ* (Fluorescence In-Situ Hybridization - FISH). El BAC se secuenció y se encontraron 12 genes de longitud completa presentes dentro del mismo.

Se han identificado supuestos ortólogos de estos genes de *Brassica* en *Arabidopsis*, en el brazo superior del cromosoma 3, donde se ha localizado un QTL *SOG1* (Clerkx *et al.* 2004). Basándonos en la buena colinealidad genética entre el extremo telomérico de C1 en *Brassica oleracea* y el brazo superior del cromosoma 3 en *Arabidopsis* (véase anteriormente y a continuación), es razonable creer que los genes que se identificaron en *Brassica* y en

Arabidopsis comparten una función común en la germinación de las semillas. Para reforzar nuestra hipótesis, hemos identificado líneas mutantes de inactivación (KO) de Arabidopsis en supuestos genes ortólogos de los que se han descubierto en Brassica. Se descubrió que dos de estas líneas KO tenían un fenotipo de germinación significativo (germinación más rápida en comparación con la línea de control Col0), lo que sugiere que estos genes actúan como reguladores negativos de la germinación (figura 5). Es interesante observar que al menos dos líneas KO diferentes se usaron para evaluar el fenotipo de germinación y que estas distintas líneas KO mostraron resultados similares con respecto a la velocidad de germinación. Cuando se evalúan después de la producción de las semillas en condiciones más agresivas (figura 6), los resultados son muy comparables.

Este estudio funcional, por tanto, ha confirmado la función de los genes *Atg01060* y *Atg01150* en la regulación del vigor de las semillas, en particular en la regulación de la velocidad de germinación. Los ortólogos de *Brassica* de estos genes, *BolC.VG1.a* y *BolC.VG1.b*, que se han identificado dentro del QTL *SOG1* en *Brassica oleracea*, por lo tanto, pueden considerarse, de hecho, herramientas que permiten la modulación del vigor de las semillas, más particularmente la modulación de la velocidad de la germinación de las semillas en *Brassicaceae*.

El ligamiento entre el grupo de ligamiento C1 de B. oleracea y el brazo superior del cromosoma tres de Arabidopsis se confirma

Estudios sobre SL101 anteriores han mostrado que una sola región sometida a introgresión en el extremo telomérico del grupo de ligamiento C1 (LGC1) contiene el QTL para *SOG1*. En el trabajo actual, tenemos como objetico establecer la colinealidad entre esta región en *B. oleracea* y el genoma de *Arabidopsis* para posibilitar la comparación con el análisis exhaustivo de QTL realizado en esta especie modelo. Previamente se han mostrado varios ligamientos entre el genoma de *Brassica* y *Arabidopsis* (Cogan *et al.*, 2004; Parkin *et al.*, 2005).

En particular, el ligamiento entre el LGC1 y *Arabidopsis* (Cogan *et al.*, 2004) se utilizó para ayudar en el desarrollo de marcadores informativos adicionales. Usando esta estrategia, se diseñaron pares de cebadores para 30 modelos de genes de *Arabidopsis*, que se propagaron por esta región. Estos cebadores se ensayaron para determinar si amplificaban un producto de *B. oleracea* y después si había algún polimorfismo entre SL101 y las líneas progenitoras A12DHd y GD33DHd (tabla 1). Un patrón de bandas que es igual en SL101 y GD33DHd, pero diferente del de A12DHd indica su presencia en este locus y, por lo tanto, su utilidad como marcador para *SOG1*. Se identificaron cebadores para tres modelos de genes como marcadores informativos (*At3g01190*, *At3g07130*, *At3g02420*, tabla 1) que anclaron el ligamiento entre el brazo superior del cromosoma tres de *Arabidopsis* y la región *SOG1* de LGC1 de *B. oleracea*. Esta confirmación de colinealidad justifica la comparación de *SOG1* con QTL para el rendimiento de las semillas ubicado en esta región del genoma de *Arabidopsis*.

 Modelo de gen
 Cebadores

 At3g01190
 F: TTCTTCCACGACTGCTTCG

 R: CTAACAAAACTGATCCGTCAC
 F: GTTGCGTTGCCATCTGCAG

 R: CAGGCTGAGATAGCCATTGG
 R: CAGGCTGAGATAGCCATTGG

 At3g07130
 F: CTACTAACCATGGAGTTACC

 R: AACGCTGGTGGGATTCAC
 R: AACGCTGGTGGGATTCAC

Tabla 1 Cebadores para marcadores seleccionados usados para anclar la introgresión SL101 en Arabidopsis

Conjuntamente, estos resultados abren la posibilidad de usar los alelos *BolC.VG1.a* A12/GD33 o los alelos *BolC.VG2.a* A12/GD33 o los alelos *BolC.VG2.b* A12/GD33 de acuerdo con cualquiera de los aspectos 1 a 23, en particular para genomanipular plantas en que se ha modulado el vigor de las semillas, más particularmente plantas en que se ha modulado la velocidad de germinación.

Ejemplo 2. Experimentos que resaltan fenotipos adicionales ligados al vigor de las semillas.

Estos experimentos subrayan las diferencias en las características de germinación entre semillas con (SL101) o sin (A12) el alelo GD33.

Las semillas de las líneas A12 y SL101 se originaron en R.U. y se replicaron en 2009 en Sudáfrica mediante un productor de semillas comerciales. La determinación de las características de germinación de las semillas tuvo lugar a primeros de 2010 en Enkhuizen, Países Bajos.

Rendimiento de las semillas en condiciones comerciales convencionales

55

35

40

45

Se sembraron dos réplicas de 100 semillas en bandejas convencionales rellenas de suelo como en una práctica comercial normal. Las bandejas se colocaron en una cámara de germinación a 18 °C en la oscuridad durante tres días. Las bandejas entonces se transfirieron a un invernadero con un promedio de temperatura de 20 °C. A los 10 días después de la siembra, se contó el número de plántulas desarrolladas normalmente y el número de semillas que no habían brotado.

El rendimiento de SL101 en estas condiciones fue considerablemente mejor que para A12 (tabla 2).

	plántulas normales	semillas no germinadas
A12	19	80
SL101	91	7

Tabla 2 Porcentaje de plántulas normales y porcentaje de semillas que no han germinado, medidos en condiciones prácticas de producción de plántulas

Sensibilidad a la temperatura de la germinación sobre papel

- Se sembraron dos réplicas de 100 semillas de cada uno de A12 y SL101 para cada combinación de condiciones sobre papel de filtro húmedo en cajas de germinación de plástico transparentes a temperaturas de 10, 20 o 30 °C. Las cajas se mantuvieron en la oscuridad a las temperaturas mencionadas o se colocaron bajo luz fluorescente.
- La germinación, medida como prominencia radical, se contó diariamente. La germinación se contó hasta 10 días después del inicio de la medición cuando no se observó germinación adicional.

Los datos muestran que, en cada condición, el porcentaje de germinación era mayor para SL101 en comparación con A12 (tabla 3).

		temperatura		
		10	20	30
luz	A12	47	94	59
	SL101	94	100	99
oscuridad	A12	65	24	2
	SL 101	95	78	50

Tabla 3 Porcentaje de germinación final de A12 y SL101 a diferentes temperaturas en luz o en oscuridad

Velocidad de germinación sobre papel

- La velocidad de germinación se determinó en condiciones de 20 °C en luz, una condición donde ambas líneas tenían su germinación máxima. Se colocaron dos réplicas de 50 semillas por línea sobre papel en cajas de germinación de plástico en las condiciones mencionadas. Se determinó el t50 (tiempo hasta que el 50 % de las semillas en germinación han germinado) (tabla 4).
- 35 Como se muestra en la tabla, tiempo hasta el 50 % de germinación fue considerablemente más corto para SL101 en comparación con A12.

línea	t50 (h)
A12	59,0
SL101	47,5

Tabla 4 Tiempo hasta el 50 % de germinación a 20 °C en luz para A12 y SL101

Sensibilidad a bajas temperaturas durante la germinación sobre papel

Se incubaron dos réplicas de 50 semillas por tratamiento a 5 °C o 10 °C en luz como se describe anteriormente para un ensayo de germinación sobre papel. La incubación fue en agua o en una solución 1 mM de GA3. Después de 10 días, se retiraron las semillas que habían germinado. Las cajas con las semillas no germinadas restantes se colocaron entonces a 20 °C en la luz. Después de 5 días más, se contó el número de semillas germinadas. Como comparación, se germinaron semillas de A12 y SL101 a 20 °C en luz sin un pretratamiento. El porcentaje de germinación de estas semillas se contó después de 10 días.

Especialmente a 5 °C, había una gran diferencia entre las dos líneas (tabla 5). El pretratamiento en agua evitó en gran medida la germinación de A12 a 20 °C en luz más tarde. Este no fue el caso para el pretratamiento en GA3 1 mM. SL101 mostró solamente una reducción mínima en la germinación después del pretratamiento a 5 °C en agua.

21

25

40

45

	A12	SL101
sin pretratamiento	99	100
10 días 5 ºC en agua	15	84
10 días 5 ºC en GA3 1 mM	100	100
10 días 10 ºC en agua	82	99
10 días 10 ºC en GA3 1 mM	100	100

Tabla 5 Porcentaje de germinación de semillas de A12 y SL101 con o sin un pretratamiento a 5 o 10 °C en luz con un medio de incubación de agua o una solución acuosa 1 mM de GA3

5 Ejemplo 3 Efecto del genotipo sobre el rendimiento de semillas híbridas

Se produjeron semillas híbridas en condiciones de producción de semillas comerciales en Sudáfrica polinizando flores de dos líneas estériles macho con polen de otras 7 líneas.

10 La línea 1 hembra contenía el alelo GD33, la línea 2 hembra contenía el alelo A12.

Se ensayo la sensibilidad a baja temperatura durante la germinación para estas semillas. Las semillas se incubaron sobre papel de filtro humedecido a 5 °C en luz fluorescente blanca durante 10 días. El porcentaje de germinación se registró después de 10 días y las semillas no germinadas se transfirieron a 20 °C en luz. Después de cinco días, se registró el porcentaje de semillas germinadas.

Las semillas producidas en la línea hembra que contenían el alelo GD33 mostraron germinación considerablemente mayor a 5 °C y germinaron más de un 90 % después de transferencia a 20 °C. Las semillas producidas en la hembra sin el alelo GD33 mostraron solamente porcentajes de germinación bajos y no se recuperaron después de transferencia a 20 °C.

	hembra 1 (GD33)		
	10 días 5 ºC	+5 días 20 ºC	
macho 1	35	96	
macho 2	28	96	
macho 3	72	94	
macho 4	9	96	
macho 5	43	100	
macho 6	28	99	
macho 7	69	97	
promedio	41	97	

hembra 2 (A12)	
10 días 5 ºC	+5 días 20 ºC
0	6
0	10
19	44
0	4
0	8
0	4
35	58
8	19

Tabla 6 Porcentaje de germinación de semillas híbridas producidas usando una línea hembra GD33 o A12 con un pretratamiento durante 10 días a 5 °C en luz seguido de incubación de semillas no germinadas durante 5 días a 20 °C.

Se ensayaron semillas de los mismos lotes de semillas híbridas en un ensayo de germinación sobre papel a 25 °C en luz fluorescente blanca. De los recuentos diarios de germinación, se calculó el tiempo hasta el 50 % de germinación (t50). El porcentaje de germinación final se determinó después de 5 días. Todos los híbridos tenían al menos un 85 % de germinación, la mayoría más de un 95 %. Las semillas producidas en la línea hembra con el alelo GD33 mostraron una germinación de promedio aproximadamente un 25 % más rápida, mostrada por el mejor t50 de 1,33 días frente a 1,80 días para semillas producidas en la hembra con el alelo A12.

	hembra 1 (GD33)		
	% de germ.	t50 (d)	
macho 1	100	1,08	
macho 2	97	1,95	
macho 3	98	1,85	
macho 4	100	1,15	
macho 5	99	1,07	
macho 6	99	1,14	
macho 7	95	1,05	
promedio	98	1.33	

hembra 2 (A12)				
% de germ.	t50 (d)			
99	1,73			
98	1,85			
100	1,90			
95	1,84			
98	1,68			
85	1,84			
98	1,79			
96	1.80			

Tabla 7 Porcentaje de germinación y tiempo que se tarda hasta el 50 % de germinación (t50) de las semillas híbridas producidas usando una línea hembra GD33 o A12 en luz a 25 °C.

35

15

20

25

Referencias

- Bettey M., Finch-Savage W.E., King G.J., Lynn J.R. 2000. Quantitative genetic analysis of seed vigour and preemergence seedling growth traits in *Brassica oleracea* L. New Phytol 148: 277-286.
- Clercks E.J.M., El-Lithy M.E., Vierling E., Ruys G.J., Blankestijn-De Vries H., Groot S.P.C., Vreugdenhil D., Koornneef M. 2004. Analysis of natural allelic variation of *Arabidopsis* seed germination and seed longevity traits between the accessions Landsberg errecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135: 432-443.
- 10 Finch-Savage W.E. 1995. Influence of seed quality on crop establishment, growth and yield. En AS Basra, ed. Seed quality: Basic mechanisms and agricultural implications. Haworth Press, Inc, Nueva York, pág. 361-384.
- Finch-Savage W.E., Côme D., Ly J.R., Corbineau F. 2005. Sensitivity of *Brassica oleracea* seed germination to hypoxia: a QTL analysis. Plant Sci 169: 753-759.
 - Finch-Savage W.E, y Leubner-Metzger G. 2006. Seed dormancy and the control of germination. New Phytol. 171: 501-523
- Finkelstein R.R., Gampala S.S., y Rock C.D. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell 14, S15-45.
 - Foolad M.R., Lin G.Y., Chen F.Q. 1999. Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118: 167-173.
- Groot S.P.C., van der Geest A.H.M., Tesnier K.J.Y., Alonso-Blanco C., Bentsink L., Donkers H., Koornneef M., Vreugdenhil D., Bino R.J. 2000. Molecular genetic analysis of *Arabidopsis* seed quality. En M Black, J Vasquez-Ramos, eds, Seed Biology: Advances and applications, CAB International., Londres, pág. 123-132.
- Hilhorst H.W.M. y Toorop P.E. 1997. Review on dormancy, germinability and germination in crop and weed seeds. Advances Agron 61: 115-165.
 - Holdsworth M.J., Bentsink L., Soppe W.J.J. 2008a. Molecular networks regulating *Arabidopsis* seed maturation, afterripening, dormancy and germination. New Phytol 179: 33-54.
- 35
 Holdsworth M.J., Finch-Savage W.E., Grappin P., Job J. 2008b. Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13: 7-13.
- Ruan S.L., Duan X.M. y Hu W.M. 2000. Occurrence of seed vivipary in hybrid rape (*Brassica napus* L.) and its effect on seed quality. Journal of Zhejiang University (Agriculture and Life Sciences) 2000 Vol. 26 n.º 5 pág. 573-578.

LISTA DE SECUENCIAS

<110> Syngenta Participations AG <120> Modulación del vigor de las semillas <130> PROXXXX <160> 18 <170> PatentIn versión 3.5 <210> 1 <211> 3061 <212> ADN <213> Brassica oleracea						
<400> 1 aaaaagcagg	ctaagagtgt	aagcgaccca	tttcacatcg	gatctaaaaa	tcatataatc	60
tagagtctga	caagaatcaa	cgttgataga	gagtgcgaga	gaatagtaca	gagccagtcg	120
tcgaggtaga	aatgtttgtc	ctgagcccaa	atggtatagt	tgatattggg	attccagaac	180
ttgttatcac	ccactatcca	tctcttagcg	gccacctcag	tcaccggagc	tgccgcaaga	240
aaagccagaa	ccattgccgc	agccatcaac	gcaagtctag	ccatagatca	ctctagaaag	300
aaaaagaagc	tcagtgctta	atgactctta	gtcttatctc	tcaagaaata	gcagttttat	360
gaatgaatgt	atatgagcga	gtggggctgt	ttccaagtca	aatcagacat	acaaatttct	420
cgttttacgg	ggaaaagatc	tctcaagatc	cgtaatttct	tcaactaacg	tttggaattt	480
tattactact	ttaatcaacc	tcgatgttga	cgatgaagta	cacgttaatt	aaaggtacgc	540
gttatatagt	taaaggagta	attagatttt	aattgctggc	attattatta	tttttctctg	600
gtatattttt	aaaggaatat	tttctcacct	tttaggcggg	aatttatttc	cattttcttc	660
tttcaagggt	tcagagattc	aattccttta	ttaacatacg	aaatgagtat	atagtatctt	720
ttgaatattt	aaataattaa	aataaaaata	aattaccata	acagtgatac	atatcaaaat	780
ttccaaaact	aatgtgagta	cttatattag	ttgtacttct	tagtaaaata	acgagatatg	840
ttatggctcg	tcgcatacaa	caaagcagag	catatgttcc	cgcaataaca	tgcacacgca	900
actgatagca	cgtcgtaacc	atttccgcga	accaaccaat	ggatattgta	attcgataag	960
acgacgtcgt	gttgttgacc	acgaatattt	cttaaatttc	cttttatctt	ttgtttttga	1020
cgtcatcaca	ttggtttatg	tccacacgat	atcagtcata	aaatccacgt	agggaacgac	1080
tatccattac	acccatccac	gtgttctcat	aacagcttct	agttccatta	gctgaacgaa	1140
caatagaaac	agagcatcga	actgagaaag	aagaagaaga	agggaagcaa	gagaaatggc	1200
ggcagcggcc	atggccgttc	atctcccgaa	acattcatcg	tttcttccta	atcccaagct	1260
tccattgaat	caaaactcta	acttcctcgg	tgtgtccttg	aagatcggtc	gacccatgtc	1320
cgttaaccgg	aaaatgaaag	gtccggttac	ggtttcagct	gcttcgaccg	tcgaaggcga	1380

tcgaagcaaa	cagttttaca	taaacttcac	tggattccca	tttcctcttg	gtcctttcct	1440
taaccggcgc	accatcagaa	ccgaggttag	gctttctcca	tccctcttga	gttttgattt	1500
gaactcgttg	agaatcccat	atggatgtta	tgcaggcggt	taaaggaagc	atatggatgt	1560
ttgaacaaga	acaagcttta	ggtttcagca	gtgtctctac	caatataaga	atgactgtca	1620
tcagactcaa	atccggtggc	ttatgggttc	atgcccctat	tgctcccacc	aaagagtgta	1680
ttcaggttcc	ccctttttat	tcattatcct	tgataaagta	tcatcctttc	ttatcatttg	1740
ataataacca	atgtctaaac	tcttttttgg	gttgttttgc	aaacttttc	tttgaggcag	1800
cttattgagg	agttgggagc	tccggttgag	tacattgtcc	tgccaacttt	tgcttacgag	1860
cacaagatct	tcgtcggtcc	cttctctaga	aagttcccca	aggctcaagt	atgggtggcg	1920
ccaagacaat	ggagctggcc	actgaactta	ccactcgagt	ttttcggtat	ctttcgcgct	1980
aaaaccatta	aagacggaga	cttatctacc	ccgtgggctg	atgagatcga	gcagaaagtc	2040
ttaagctctc	ctgaagtcgg	tacgttcctt	cactttctca	atcttgttgg	ccctccttag	2100
ccaagcctca	gtgaaacatt	cgcctaaacc	cgcactctcc	tcctcttccc	tccaaaatat	2160
ttgaaaagag	ttatatatac	atagcctccc	aagttattaa	aaaaaacgtt	ttgtctccca	2220
aactattgaa	atctttatca	aattgtctat	agcctccaaa	atccgagggt	cggtcctgta	2280
cttatgaaat	aataatatac	aggaatagga	ccgtatgtgg	aagtagcgtt	ctaccataag	2340
cgttcaagaa	ctctattagt	cactgatgct	gtgatcttcg	tcccacggaa	gccgccatcg	2400
agtatcagca	gcgagtcctt	gctggcctct	gctaagaacg	gactggctgt	gaagatactt	2460
agcaaaggca	aacaagtacc	tgatgaccct	gtcgttgata	ccccaaacac	ccgccaaaaa	2520
ggtcagccat	cagcttcttg	aaattcaaat	tcatcaaaca	aaagatctcg	atgggtgtct	2580
tttaacgtgc	aggatgggaa	agaatggtgc	tgcaaatcct	gtttcttggt	ccgtctaatc	2640
tcttggagcc	aaacgcgagc	ttcgcacaaa	tgtcacagaa	gctgatcgtt	tctcccattg	2700
tcaagactct	ggtctttagc	aaagtccctg	agaaggtgag	ggactggatc	gatgagatag	2760
cgagtgactg	gagattcaag	aggataatcc	cagctcattt	cgaggctccg	gtaaacgcag	2820
ggaggtcaga	atttctagct	gcgtttgggt	ttcttgatga	tcttctaggg	gaaagatatg	2880
tgaaccgtcc	teettegete	tctgttctct	tcacttcgct	gatgggtaaa	gcagcgagct	2940
attttcctcc	ggatgatatg	aggactctct	cttctcttga	tcagttctta	gtctctgttg	3000
gtgctgttaa	gaagaccgtc	tctggtagaa	aacgaagatg	acggaacaaa	cccagctttc	3060
t <210>2						3061

<210> 2 <211> 5108

<212> ADN <213> Brassica oleracea <400> 2

gtaggccaag	ccaagcatat	ggatcactta	gttgagagaa	gttatggcaa	gaaataagcc	60
atgcagatta	gaaaaagagt	gcaacaaact	aagtacagta	ctaaaagact	aagttaataa	120
tacaattaaa	ccaaaattaa	tggatgagta	ccttcacaaa	acattagtga	attttcagac	180
cctctggacc	aatacaagac	taaggatgtg	agacttaact	gacagttagt	tcatgtaggg	240
ccaataaaca	gctcaaattc	gttagctttc	aagttccaat	tttctgcgtt	gtgttttgct	300
ttttgagggt	tgatttggaa	tttctccaaa	gaggtcacat	aatttaaaag	aaattgatca	360
aaattatatt	ggacaaggca	agcaaatcca	ttaagaagat	cacaacaaaa	gaaaaattaa	420
aaaccaacaa	aagaaatttc	ccatttgacg	aaggtgatga	acaagatcag	tacgtatact	480
ccaccaatgc	atgacactac	tgaaaacata	gacaaacaag	gtcgtgatag	ttgtgaccac	540
ctcacacatg	aaaaaactcc	atgaatgtca	aaagtttgca	cgattatgta	aacacttaat	600
cacttattca	ttgaaggata	atgttggaca	gaatattatc	attgtttcta	atggtaagca	660
taagcaaaca	ttgtaaaaag	aagtcatgat	catgctatat	cttataggag	tttaatttat	720
tccaagttca	catttagtga	tgctctaatc	ttcaacaata	aaacataacc	aactgatagt	780
cagagtaacc	aattgaatgc	cagttttcaa	aagaaataat	acatatctaa	ctgatagtca	840
gtcaaatcaa	ccaaataagt	agaaagaacc	aaacaaacac	aactaggggt	ggacacttcg	900
attattttgt	aggttcggtt	tggattcggt	tcggtttggt	taatttattc	tagaattttt	960
taaactgaag	taaaccataa	gtttcagtct	gatttgtatt	cggcatggtt	tgtgtttcag	1020
ttcagtttaa	tcggattccc	ttaatttaat	tcttttaaga	aaaatcatgt	tttaaaacac	1080
ggtcatgaaa	tcatcatgtt	ggtgactatg	aaaaaataaa	ttatataatt	aaatctaata	1140
tataactgaa	acaaaaatcc	taaaaaacca	caaaaaaatt	tataagaaca	caatcaaacc	1200
aaagttaact	aaagtaaata	gaaaattaaa	aaaaaaacaa	tgtcaataaa	gttaatactg	1260
actttagtgt	taggatttag	tataaaaatg	tttaattcaa	ataataacaa	agacacattg	1320
gtttttcggt	gcaatttgat	tcggttcgat	tcggttcggt	ctgattttt	tgcttgtctg	1380
aacacaacga	cggccgacag	ataacttttt	aaacgttacg	tgaaaatgta	ttggactatt	1440
gggccttagt	aaaggctaat	gaacagatta	aatgggctta	tagacgcaat	tgcatggtat	1500
ctatcgggaa	gcataaatcg	tcaagtaatt	caatttaggg	gactcatttg	caatttgtgc	1560
aaagatttta	gctgtacaga	gtagggctga	acataaaatc	cgtaacccga	aatccgaacc	1620
gaaccgaaaa	acccgatccg	tacccgatcc	aaaatgtaaa	aaatacctca	atgaatattg	1680
tagggtgtta	taaaatatat	ctgaacccga	agtgttatta	accgaacccg	aacggataat	1740
ccgaaaaccc	gaaaaaccaa	aaaattcgaa	aaaatatccg	aaaaaactga	tccgaatgcg	1800

taaattaata taaaatataa atatttgaaa catacattgg ata	atgatatc taacaataag 1860
tatttaaaat ttaaataaat actttaaata ctccattata ta	caaagaag tatatatttt 1920
ttatgtttta cttttgaatt ttagatttta ctatggatat at	ccgagccg atccgataca 1980
atccgaatcc gaatgttata tggctacttt ggatatatct ga	accgatcc gaaaccgaag 2040
ttgttatatc cgaatctcat ccgtacttgt aaatttacta gaa	atgagaca taggggatga 2100
tacaaaatag aaccgaaatc cgaaaaaacc gatccgaacc cga	aacgccga ggcctagtac 2160
agagttccga tcagagatag agagaatcct ttgagcgtcg gcc	cttgcttt gtgcgtaggg 2220
atcatctccg actaattgtt gtaattataa agggcggccg cg	ccttttta gcggagagat 2280
ggcgagctca cagttcaggt atacgcagac gccgtcgaag gt	ggtgcacc tgaggaatct 2340
gccgtgggaa tgcgtggaag aggagctcat cgacctatgc aa	acgattcg gcaagatcgt 2400
caatacgaag accaatgtcg gcgccaatcg caaccaagcc tt	tgtcgaat tcgtaacaac 2460
tttttattct cttggatcat cagattgttt ctttttttgg ta	tctcgttg ttgttttggt 2520
attgttgttt tgaagatgaa actgtatact ttgattcata tt	cgcagggt gacgtgaatc 2580
aggcaatatc aatggtttct tactatgctt cgtcttcaga gcc	cggctcag attcgaggga 2640
agactgttta tattcagtac tctaatcgcc atgagattgt ca	acaatcag agtcctggag 2700
aggtccctgg caatgtcctc ttggtcacct ttgaaggagt cc	aatctcac catgtctgca 2760
tcgatgtcat ccatctggta tgtgaatatt cagcttacct tcc	cactattg tttcttgtta 2820
tgttaagtga tttttttcgt ttcttcgagt agattctaat ct	atgaaaat atttcaactt 2880
gttgttatta ggcaaacttc ttttgagtgt attttttcc act	ttattgtt agacatacag 2940
tatgtcacat actattgtaa attacagtat atctgacgtt aa	tgaaaatg ctcgaatcac 3000
agatgttgat gcctctttat tataatcttt ctggagagag tt	tggaaaat agtttcatgt 3060
tegteattet catggacagg tgteactetg caettateta gte	cattetet tttttagtet 3120
cctaatttga gtttatttcg attgatttgc ttcccttagt ta	ttatcaat ttactccact 3180
gtattatatg gacatgactc atatctagtc caaacttttg tt	tcaggtgt tttctgctta 3240
tggcttcgtg cacaaaattg ccacttttga gaaagctgct gg	tttccagg ttagagatat 3300
cgagttttgt tttcaaggtc ttgcataaat ctaatgatgt tt	aaactcat cgtctgccgt 3360
cataacctgc tcaggcactt gttcagttta ctgatgtgga ca	ctgcctta gcggcaagga 3420
ctgcgctgga tggtagaagt atacccaagt atgctcaaat cc	ttcattca tgcttttgac 3480
cataagataa agctctgttg atggtttctt ccttttcttt tgg	gtaaattc agatatctgc 3540
ttccagaaca tgtaggctca tgcaatttgc gaatgtctta ct	cagctcat actgatctaa 3600
atatcaaatt tcagtcccac cgcagcaggt agagttttga gt	cctcgcaa atgtgcctct 3660
ccattgttat actgctctta ctgttggaag ccttatggtt ga	atagttac ttcatgtgtt 3720

taattctctt	acgcactcag	ggactacaca	aatccatacc	ttccggtgaa	tcaaaccgct	3780
atggacggtt	ctatgcaggt	atattttcc	tttgatctaa	tcttatctcc	aacagcttat	3840
attattctta	cactgaatgc	gtttgtatta	cgttactgat	cgtctttgtc	catcactgcg	3900
ttcagcctgc	tttgggtgct	gatggaaaga	gggttgaaac	tcagagcaac	gtcctgcttg	3960
ctttgattga	gaatatgcag	tacgctgtca	ccgtggatgt	tcttcacacg	gtgaggaaca	4020
acaatatgcc	tgtttcttca	tctcatcatg	ctttcatatc	tcaaaattaa	ctattccttt	4080
gcttctcata	ggtgttttcc	gcttatggaa	ctgtgcagaa	gattgcaata	tttgagaaaa	4140
atggttcaac	gcaagcctta	attcaatact	ctggtacatg	accttgataa	tctgaataca	4200
tatatgattc	tactatactt	cttttggtta	tatggtgaat	cttcttatgt	gtatgcaaag	4260
agaagagcct	aagaatttga	atatagtcat	cgtttgcttc	atgttccgtt	ttattgattc	4320
ttctgtagac	atttcaacgg	cgacgatggc	gaaagaagca	ctggagggac	actgcatata	4380
tgacggaggc	tactgtaagc	ttcgactaac	ttactctcgg	catactgatc	tcaatgtaaa	4440
ggtacataag	atcagttgct	ttatgtaccc	aaacaaaaag	tgcagttaaa	gagaataaga	4500
agtgatttct	gcaagaaccg	catgcttttt	tctcatcaac	aattgagtga	aatctgaatt	4560
cgacattcta	gttgattcaa	ctaatgattt	tcgtcttctt	tcttcaggca	tttagcgaca	4620
aaagcagaga	ctacacactg	cctgatctaa	gccaactggt	gggccaaaag	gttccaggag	4680
tggctgcagc	tagtgggcca	acagatggtt	ggcccaatgg	gcaggtgcag	actcaataca	4740
tgggaagttc	gtatatgtac	ccaccagctg	atcccacagg	agcttcacct	tcttctggtc	4800
atcctcctta	ttatggttga	tccatgtact	gttttctact	ttatataaat	ttcggattat	4860
gttgaagact	agtttccatg	ttataggttt	caggtaaaag	tgtgttgttc	ttttatttgg	4920
ttaaataaac	atgggaaaac	caataatatt	atgtagtata	atttataaac	attgtgtatt	4980
tgtttctatt	tgactttgtt	atggagcttc	cgaagtgtta	gagcttcttt	ttctcgtact	5040
ttaaactgtt	tcattcctgg	atttgtttga	agatctgcag	acttacactt	tagtgacttt	5100
tggtatcc <210>3 <211>3025 <212> ADN <213> Brassica	a oleracea					5108
<400>3 aaaaagcagg		aagcgaccca	tttcacatto	gatctaaaaa	tcaaataatc	60
tagagtgtga						120
tcgaggtaga						180
ttgttatcac	CCACTATCCA	cetettageg	gecaectcag	ccaceggage	Lyccycaaga	240

aaagccagaa	ccactgccgc	agccatcaac	gcaagtctag	ccatagatca	ctctagaaag	300
aaaaagaagc	tcagtgcttg	atgactctta	gtcttatctc	tcaagaaata	gcagttttat	360
gagtgagtgg	ggctgtttcc	aagtcaaatc	agacatacaa	atttctcgtt	ttacggggaa	420
aagatctctc	aagatccgta	atttcttcaa	ctaacgtttg	gaatcttatt	actactttaa	480
tcaacctcga	tgttgacgat	gacgtacacg	ttaattaaag	gtacgcgtta	tatagttaag	540
ggagtaatta	gattttaact	gctggcatta	ttattatttt	tctctggtta	ttacattatt	600
ctgttttgta	gtaatatttt	ctcacctttt	aggcgggaat	ttatttccat	tttcttcttt	660
caagggttca	gagattcaat	tcctttatta	acatacgaaa	tgagtatata	gtatctttta	720
aatatttaaa	taattaaaat	aaaaataaat	tactataaca	gtgatacata	tcaaaatttc	780
caaaactaat	gtgagtactt	atattagttg	tacttcttag	taaaataacg	agatatgtta	840
tggctcgtcg	catacagcaa	agcagagcat	atgttcccgc	aataacatgc	acacgcaact	900
gatagcacgt	cgtaaccatt	tccgcgaacc	aaccaatgga	tattgtaatt	cgataagacg	960
acgtcgtgtt	gttgaccacg	aatatttctt	aaatttcctt	ttatcttttg	tttttgacgt	1020
catgacattg	gtttatgtcc	acacgatatc	agtcataaaa	tccacgtagg	aacgactatc	1080
cattacaccc	atccacgtgt	tctcataaca	gcttctagtt	ccattagctg	aacgaacaat	1140
agaaacagag	catcgaactg	agaaagaaga	agaagaaggg	aagcaagaga	aatggcggca	1200
gcggccatgg	ccgttcatct	cccgaaacat	tcatcgtttc	ttacgaaacc	caagcatcca	1260
tccgatcaaa	actctaactt	tctcggtggg	tccttaaagt	tcggtcgatc	catgtctcta	1320
aaccggaaaa	ctaaaggtcc	agttatggtt	tcagctgctt	cgaccgtcga	aggcgatcga	1380
agcaaacagt	tttacataaa	cttcactgga	ttcccatttc	ctcttggtcc	tttccttaac	1440
cggcgcacca	tcagaaccga	ggttaggctt	tctccatccc	tcttgagttt	tgatttgaac	1500
tcgttgagaa	tcccatatgg	ataatgttat	gcaggcggtt	aaaggaagca	tatggatgtt	1560
tgaacaagaa	caagctttag	gtttcagcag	tgtctcaacg	aatataagaa	tgactgtcat	1620
caaactcaaa	tccggtggct	tatgggttca	tgcccctatt	gctcccacca	aagagtgtat	1680
tcaggttccc	tcttttattc	attatcagta	tcatcctttc	ttatcatttg	ataaattaac	1740
caatgtctaa	actctatttt	gggttgtttt	gcttactttt	tctttggggc	agcttattga	1800
ggagttggga	gctccggttg	agtacatcgt	cctaccaacc	ttcgcttacg	agcacaagat	1860
cttcgtcggt	cccttctcta	gaaagttccc	caaggctcaa	gtatgggtgg	cgccaagaca	1920
atggagctgg	ccactgaact	taccactcga	gtttttcggt	atctttcgcg	ctaaaaccat	1980
taaagacggt	gacttgtcta	ccccgtgggc	tgatgagatc	gagcagaaag	tcttaagctc	2040
tcctgaagtc	ggtacgttcc	ttcactttct	caatcttgtt	ggccctcctt	agccaagcct	2100

cataaaacat	tcgcttcaac	ccctcacccc	acccaaattt	tttgaaaaaa	gttacatata	2160
catagcccca	aatttattaa	aaaaatctat	tgaaatcttt	attaaattat	ctacgtcccc	2220
tagaatctga	gggtcggccc	tgtacttatg	gaataaataa	tatacaggaa	ttggaccgta	2280
tgtggaagta	gcgttctacc	ataagcgttc	aagaactcta	ttagtcaccg	acgctgtgat	2340
cttcgtccca	aagaagccgc	catcgagtat	cagcagcgag	tctttgctgg	cttctgctaa	2400
gaacggactg	gctgtgaaga	tacttagcaa	aggcaaacaa	gtacctaatg	accctgtcgt	2460
tgatacccca	aacacccgcc	aaaaaggtca	gccatcagct	tcttgaaatt	caaattcatc	2520
aaacaaagat	ctcaatgggt	gtcttttaac	gtgcaggatg	ggaaagaatg	gtgctgcaaa	2580
tcctgtttct	cggcccatct	aatctcttgg	agccaaacgc	gagctttgcg	caaatgtcac	2640
agaagctgat	agtttctccc	attgtcaaga	ctctggtctt	tagcaaagtc	cctgagaagg	2700
tgagggactg	gatcgatgag	atagcgagtg	actggaggtt	caagaggata	atcccagctc	2760
atttcgaggc	tccgataaac	gcggggaggt	cagagtttct	agctgcgttc	gggtttcttg	2820
atgatcttct	aggggaaaga	tatgtgaacc	gtcctccttc	gctctctgtt	ctctttactt	2880
cgctgatggg	taaagctgcc	agctattttc	ctccggatga	tatgagaact	ctctcttctc	2940
ttgatcagtt	cttagtctct	gttggtgctg	ttaagaagac	cgtctctggt	agaaaacgaa	3000
<210> 4 <211> 4992 <212> ADN <213> Brassio	caaacccagc	tttct				3025
<210> 4 <211> 4992 <212> ADN <213> Brassic <400> 4	ca oleracea	tttct ggatcactta	gttgagagaa	gttatggcaa	gaaataagcc	3025 60
<210> 4 <211> 4992 <212> ADN <213> Brassic <400> 4 gtaggccaag	ca oleracea ccaagcatat					
<210> 4 <211> 4992 <211> ADN <213> Brassic <400> 4 gtaggccaag atgcagatta	ca oleracea ccaagcatat gaaaaagagt	ggatcactta	aagtacagta	ctaaaagact	aagttaataa	60
<210> 4 <211> 4992 <211> ADN <213> Brassic <400> 4 gtaggccaag atgcagatta tacaattaaa	ca oleracea ccaagcatat gaaaaagagt ccaaaattaa	ggatcactta gcaacaaact	aagtacagta ccttcacaaa	ctaaaagact acattagtga	aagttaataa attttcagac	60 120
<210> 4 <211> 4992 <211> ADN <213> Brassic <400> 4 gtaggccaag atgcagatta tacaattaaa cctctggacc	ca oleracea ccaagcatat gaaaaagagt ccaaaattaa aatacaagac	ggatcactta gcaacaaact tggatgagta	aagtacagta ccttcacaaa agacttaact	ctaaaagact acattagtga gacagttagt	aagttaataa attttcagac tcatgtaggg	60 120 180
<210> 4 <211> 4992 <211> ADN <213> Brassic <400> 4 gtaggccaag atgcagatta tacaattaaa cctctggacc ccaataaaca	ca oleracea ccaagcatat gaaaaagagt ccaaaattaa aatacaagac gctcaaattc	ggatcactta gcaacaaact tggatgagta taaggatgtg	aagtacagta ccttcacaaa agacttaact aagttccaat	ctaaaagact acattagtga gacagttagt tttctgcgtt	aagttaataa attttcagac tcatgtaggg gtgttttgct	60 120 180 240
<210> 4 <211> 4992 <211> ADN <213> Brassic <400> 4 gtaggccaag atgcagatta tacaattaaa cctctggacc ccaataaaca ttttgagggt	ca oleracea ccaagcatat gaaaaagagt ccaaaattaa aatacaagac gctcaaattc tgatttggaa	ggatcactta gcaacaaact tggatgagta taaggatgtg gttagctttc	aagtacagta ccttcacaaa agacttaact aagttccaat gaggtcacat	ctaaaagact acattagtga gacagttagt tttctgcgtt aatttaaaag	aagttaataa attttcagac tcatgtaggg gtgttttgct aaattgatca	60 120 180 240 300
<210> 4 <211> 4992 <211> ADN <213> Brassic <400> 4 gtaggccaag atgcagatta tacaattaaa cctctggacc ccaataaaca ttttgagggt aaattatat	ca oleracea ccaagcatat gaaaaagagt ccaaaattaa aatacaagac gctcaaattc tgatttggaa ggacaaggca	ggatcactta gcaacaaact tggatgagta taaggatgtg gttagctttc tttctccaaa	aagtacagta ccttcacaaa agacttaact aagttccaat gaggtcacat ttaagaagat	ctaaaagact acattagtga gacagttagt tttctgcgtt aatttaaaag cacaacaaaa	aagttaataa attttcagac tcatgtaggg gtgttttgct aaattgatca gaaaaataaa	60 120 180 240 300 360
<210> 4 <211> 4992 <211> ADN <213> Brassic <400> 4 gtaggccaag atgcagatta tacaattaaa cctctggacc ccaataaaca ttttgagggt aaattatatt aaaccaacaa	ca oleracea ccaagcatat gaaaaagagt ccaaaattaa aatacaagac gctcaaattc tgatttggaa ggacaaggca aagaaatttc	ggatcactta gcaacaaact tggatgagta taaggatgtg gttagctttc tttctccaaa agcaaatcca	aagtacagta ccttcacaaa agacttaact aagttccaat gaggtcacat ttaagaagat aaggtgatga	ctaaaagact acattagtga gacagttagt tttctgcgtt aatttaaaag cacaacaaaa acaagatcag	aagttaataa attttcagac tcatgtaggg gtgttttgct aaattgatca gaaaaataaa tacgtatact	60 120 180 240 300 360 420
<210> 4 <211> 4992 <211> 4992 <212> ADN <213> Brassic <400> 4 gtaggccaag atgcagatta tacaattaaa cctctggacc ccaataaaca ttttgagggt aaattatatt aaaccaacaa ccaccaatgc	ca oleracea ccaagcatat gaaaaagagt ccaaaattaa aatacaagac gctcaaattc tgatttggaa ggacaaggca aagaaatttc atgacactac	ggatcactta gcaacaaact tggatgagta taaggatgtg gttagctttc tttctccaaa agcaaatcca ccatttgacg	aagtacagta ccttcacaaa agacttaact aagttccaat gaggtcacat ttaagaagat aaggtgatga gacaaacaag	ctaaaagact acattagtga gacagttagt tttctgcgtt aatttaaaag cacaacaaaa acaagatcag gtcgtgatag	aagttaataa attttcagac tcatgtaggg gtgttttgct aaattgatca gaaaaataaa tacgtatact ttgtgaccac	60 120 180 240 300 360 420 480
<210> 4 <211> 4992 <211> 4DN <213> Brassic <400> 4 gtaggccaag atgcagatta tacaattaaa cctctggacc ccaataaaca ttttgagggt aaattatatt aaaccaacaa ccaccaatgc ctcacacatg	ca oleracea ccaagcatat gaaaaagagt ccaaaattaa aatacaagac gctcaaattc tgatttggaa ggacaaggca aagaaatttc atgacactac aaaaaactcc	ggatcactta gcaacaaact tggatgagta taaggatgtg gttagctttc tttctccaaa agcaaatcca ccatttgacg tgaaaacata	aagtacagta ccttcacaaa agacttaact aagttccaat gaggtcacat ttaagaagat aaggtgatga gacaaacaag aaagtttgca	ctaaaagact acattagtga gacagttagt tttctgcgtt aatttaaaag cacaacaaaa acaagatcag gtcgtgatag cgattatgta	aagttaataa attttcagac tcatgtaggg gtgttttgct aaattgatca gaaaaataaa tacgtatact ttgtgaccac aacacttaat	60 120 180 240 300 360 420 480 540

tccaagttca	catttagtga	tgctctaatc	ttcaacaata	aaacataacc	aactgatagt	780
cagagtaacc	aattgaatgc	cagttttcaa	aagaaataat	acatatctaa	ctgatagtca	840
gtcaaatcaa	ccaaataagt	agaaagaacc	aaacaaacac	aactagggtg	gacacttcga	900
ttattttgta	ggttcggttt	ggattcggtt	cggtttggtt	aatttattct	agaattttt	960
taactgaagt	aaaccataag	tttcagtctg	atttgtattc	ggcatggttt	gtgtttcagt	1020
tcagtttaat	cggattccct	taatttaatt	cttttaagaa	aaatcatgtt	ttaaaacatg	1080
gtcatgaaat	catcatgttg	gttactatga	aaaaataaat	tatataatta	aatctaatat	1140
ataactgaaa	caaaaatcct	aaaaaaccac	aaaaaatttt	ataagaacac	aatcaaacca	1200
aagttaacta	aagtaaatag	aaaattaaaa	aaaaaaacaa	tgtcaataaa	gttaatactg	1260
actttagtgt	taggatttag	tataaaaatg	tttaattcaa	ataataacaa	aaacacattg	1320
gtttttcggt	gcaatttgtt	cggtttgatt	cggttcggtc	tgatttttt	gcttctctga	1380
acacaacgac	ggccgacaga	taacttttta	aacgttacgt	gaaaatgtat	tggactattg	1440
ggccttagta	aaggctaatg	aacagattaa	atgggcttat	agacgcaatt	gcatggtatc	1500
tatcgggaag	cataaatcgt	caagtaattc	aatttagggg	actcatttgc	aatttgtgca	1560
aagattttag	ctgtacagag	tagggctggg	cataaaatcc	gtaacccgaa	atccgaaccg	1620
aaccgaaaaa	cccgatccgt	acccgatcca	aaatgtaaaa	aatacctcaa	tggatattgt	1680
agggtgttat	aaaatatatc	tgaacccgaa	gtgttattaa	ccgaacccga	acggataatc	1740
cgaaaacccg	aaaaaccaaa	aaactcgaaa	aaatatccga	aaaaactgat	ccgaatgcgt	1800
aaattaatat	aaaatataaa	tatttgaaac	atacattgga	tatgatatct	aacaataagt	1860
atttaaaatt	taaataagta	ctttaaatac	tctattatat	acaaagaagt	atatatttt	1920
tatgttttac	ttttgaattt	tagattttac	tatgtatata	tccgagccga	tccgatacaa	1980
tccgaatccg	aatgttatat	ggctattttg	gatatatctg	aaccgatccg	aaaccgaagt	2040
tgttatatcc	gaatctcatc	cgtactggta	aatttactag	aatgagacac	gggggatgat	2100
acaaaataga	accgaaatcc	gaaaaaaccg	atccgaaccg	aacgcccagg	cctagtacag	2160
agttccgatc	agagatagag	agaatccttt	gagcgtcggc	cttgctttgt	gcgtagggat	2220
catctccgac	taattgttgt	aattataaag	ggcggccgcg	cctttttagc	ggagagatgg	2280
cgagctcaca	gttcaggtat	acgcagacgc	cgtcgaaggt	ggtgcacctg	aggaatctgc	2340
cgtgggaatg	cgtggaagag	gagctcatcg	acctatgcaa	acgattcggc	aagatcgtca	2400
atacgaagac	caatgtcggc	gccaatcgca	accaagcctt	tgtcgaattc	gtaacaactt	2460
tttattctct	tcgatcatca	gattgtttct	gaagctttgt	gatttctatg	atgaactctt	2520
tttttttgg	tatctcgttg	ttgttttggt	attgttgttt	tgaagatgaa	actgtatact	2580
ttgattcata	ttcgcagggt	gacgtgaatc	aggcaatatc	aatggtttct	tattatgctt	2640

cgtcttcaga	gccggctcag	attcgaggga	agactgttta	tattcagtac	tctaatcggc	2700
atgagattgt	caacaatcag	agtcctggag	aggtccctgg	caatgtcctc	ttggtcacct	2760
ttgaaggagt	ccaatctcac	catgtctgca	tcgatgtcat	ccatctggta	tgtgaatatt	2820
cagcttacct	tccactattg	tttcttgtta	tgttaagtga	ttttttcgt	ttcttcgagt	2880
agattctaat	ctatgaaaat	atttcaactt	gttgttatta	ggcaaacttc	ttttgagtgt	2940
attttttcc	agttattgtt	agacatacag	tatgtcacat	actattgtaa	attacagtat	3000
atctgacgtt	aatgaaaatg	ctcgaatcac	agatgttgat	gcctctttat	tataatcttt	3060
ctggagagag	tttggaaaat	agtttcatgt	tcgtcattct	catggacagg	tgtcactctg	3120
cacttatcta	gtcattctct	tttttagtct	cctaacccgg	caacatttga	gtttatttcg	3180
attgatttgc	ttcccttagt	tattatcaat	ttactccact	gtattatatg	gacatggctc	3240
atatctagtc	caaacttttg	tttcaggtgt	tttctgctta	tggcttcgtg	cacaaaattg	3300
ccacttttga	gaaagctgct	ggtttccagg	ttagagatat	cgagttttgt	tttcaaggtc	3360
ttgcctaaat	ctaatgatgt	ttaaactcat	cgtctgccgt	cataacctgc	tcaggcactt	3420
gttcagttta	ctgatgtgga	cactgcctta	gcggcaagga	ctgcgctgga	tggtagaagt	3480
atacccaagt	atgctcaaat	ccttcattca	tgcttttgac	cataagataa	agctctgttg	3540
atggtttctt	ccttttcttt	tggtaaattc	agatatctgc	ttccagaaca	tgtaggctca	3600
tgcaatttgc	gaatgtctta	ctcagctcat	actgatctaa	atatcaaatt	tcagtcccac	3660
cgcagcaggt	agagttttga	gtcctcgcaa	atgtgcctct	ccattgttat	actgctctta	3720
ctgttggaag	ccttatggtt	gaatagttac	ttcatgtgtt	taattctctt	acgcactcag	3780
ggactacaca	aatccatacc	ttccggtgaa	tcaaaccgct	atggacggtt	ctatgcaggt	3840
atattttcc	tttgatctaa	tcttatctcc	aacagcttat	attattctta	cactgaatgc	3900
gtttgtatta	cgttactgat	cgtctttgtc	catcactgcg	ttcagcctgc	tttgggtgct	3960
gatggaaaga	gggttgaaac	tcagagcaac	gtcctgcttg	ctttgattga	gaatatgcag	4020
tacgctgtca	ccgtggatgt	tcttcacacg	gtgaggaaca	acaatatgcc	tgtttcttca	4080
tctcatcatg	ctttcatatc	tcaaaattaa	ctattccttt	gcttctcata	ggtgttttcc	4140
gcttatggaa	ctgtgcagaa	gattgcaata	tttgagaaaa	atggttcaac	gcaagcctta	4200
attcaatact	ctggtacatg	accttgataa	tctgaataca	tatatgattc	tactatactt	4260
cttttggtta	tatggtgaat	cttcttatgt	gtatgcaaag	agaagagcct	aagaatttga	4320
atatagtcat	cgtttgcttc	atgttccgtt	ttattgattc	ttctgtagac	atttcaacgg	4380
cgacgatggc	gaaagaagca	ctggagggac	actgcatata	tgacggaggc	tactgtaagc	4440
ttcgactaac	ttactctcgg	catactgatc	tcaatgtaaa	ggtacataag	atcagttgct	4500

ttatgtaccc	aaacaaaaag	tgcagtcaaa	gagaataata	agtgatgtct	gcaagaaccg	4560
catgcttttt	tctcatcaac	aattgagtga	aatctgaatt	cgacattcta	gttgattcaa	4620
ctaatgattt	tcgtcttctt	tcttcaggca	tttagcgaca	aaagcagaga	ctacacactg	4680
cctgatctaa	gccaactggt	gggccaaaag	gttccaggag	tggctgcagc	tagtgggcca	4740
acagatggtt	ggcccaatgg	gcaggtgcag	actcaataca	tgggaagttc	gtatatgtac	4800
ccaccagctg	atcccacagg	agcttcacct	tcttctggtc	atcctcctta	ttatggttga	4860
tccatgtact	gttttctact	ttatataaat	ttcggattat	gttgaagact	agtttccatg	4920
ttataggttt	caggtaaaag	tgtgttgttc	ttttatttgg	ttaaataaac	atgggaaaac	4980
caataatatt <210> 5 <211> 4993 <212> ADN <213> Brassio						4992
<400> 5 acgtctatga	ccggagtagt	ctccttcgtg	aagaccggtc	actgaaacgc	gaatgatgtt	60
cgccataatc	tcccatttct	ttgaaggtat	ttgaacggtt	tggtgggttg	attgaggcgg	120
atcttaagca	gctcgagtgg	atctaatcag	ctgagagaat	cggggagacg	attagatcat	180
gcggtgacag	attcgagagg	aaaccctaat	cgccatcgcc	gccagagagt	ctcatgtgca	240
gtgtgattca	tatgcaaatc	tcgtggattt	ggttgtttt	ttcttttca	ggtttgattt	300
ggaatttctc	taaagaggtc	acattaatta	aaataaacta	gacccttatc	cgcgcgccag	360
cgcagatatg	aatttttagt	ttttaattat	ttattttatt	caatgatgta	tttgtaatat	420
tcgttcatat	tatattcgtt	aagtaaatat	ttttttgtat	cttaaactat	ctatttttt	480
acgaatgtgt	gatatcatat	aaaaatatta	aaaaatgagt	atagagttaa	taagataatt	540
ttaaaaacag	aaattttct	ttcgtgtgcg	atatcatata	aataatgatc	cgcccagtta	600
acaaaaatca	tgattatttt	atgtgtaatt	ttctttattt	tgactatttc	cttaaaacta	660
tattaaattt	tacatatttt	aattagaata	tttttaatat	ctttaccttt	ttatttgaaa	720
tgcaactcaa	tattttttt	taacaattat	aacaaaatat	ttaaaaaata	tttttagaat	780
ttgtttgaaa	aatatgaaaa	ttacatttta	aattaaaatt	atcctaaaat	atgataagtt	840
ttgatgtaaa	cgaaaactca	aattatgtca	aaaataatga	tattcaatga	taataacaat	900
tttaattgat	tatttttaa	aaaatacatt	tacaaaaata	ttgtttgaaa	gaaaattcat	960
ttatctttca	aatataaaat	gaaaatatta	taattaaata	ataaaaaata	taaataaaaa	1020
ccataaattt	agcaaatgac	aactgagtta	tattatgcta	aaaaaaatt	tctaacaaaa	1080
tatcaaatca	caaatgagtt	atgagtaaat	aataccatat	aattttaaa	aacatacca	1140

ttcttaaata ttttttgaat aaataattat tttaaattta atcaactaaa aataata	atct 1200
gtacaattgt gtgagtcaaa ttctagtttt attgatgcat gttatatatt agtgct	gcat 1260
gttttaggta acattttaat gatgcacgtt ttcaaaaatc tccattatta aaatta	tgca 1320
cgtaatgata actcatgagt tttttttgtt gattaaatga cattatgtcc aaattt	attt 1380
aaggatattt cattaaggta agtgaaaaag acaaacaata aaataggaag tttaaa	atca 1440
tttaagcata tttcattaat gtaactgaaa agacaagtaa taaattaggc agtttt	attc 1500
gttttatgat atttcataaa tgcaactgga aaagacaaac aaaaaaaaat agggag	tt ta 1560
attaatgaaa taagaacatt ttcaaatgag tacttctctt ttaataatat agattt	catt 1620
aatgtaactg aaaagacaag taataaatta ggcagtttta ttcgttttag tatatt	tcat 1680
aaatgcaact gaaaaagaca agaaaaaaa ataaagaatt taattaatga agtaaga	aata 1740
ttttcaaatg agtatttctc ttttaataat atagattgat caaaaattat attgga	taag 1800
gcaagcaaaa tccattgaga agatcacaac aacaaaagaa aggaacaaac acacaa	ccac 1860
ggcgacagat aactaaaatg tactggacta ttgggccctt aatataggct aatgaa	caga 1920
ttaaatgggc taattataga cgtcattgca tggtatccat ctatctggaa gcatag	taat 1980
ttgttttagg ggactggttt gcaattttta cagatatttt agctgtacag tacagag	gaga 2040
gaatcetttg agegtegteg geettgettt gtgtgtaggg ateteegaet gaetaa	ttgt 2100
tgtaactaca aaagggcgcc ccccgcgcct ttttactaga tggcgagctc atcaca	gttt 2160
aggtataccc agacgccgtc gaaggtggtg cacctgagga atctgccgtg ggaatg	egtg 2220
gaagaggagc tcatcgacct atgcaaacga ttcggcaaga tcgtcaatac gaagac	caat 2280
gtcggcgcca atcgcaacca agcctttgtc gaattcgtaa gaacttttta ttctct	tgga 2340
tcatcagatt gttgcttccc ccccaatgga tttggttaga aattgaataa aaaaagg	gact 2400
cgaactcttt ttttggtatc tcgttgttgt tttgaagatg aaactgtata ctttga	ttca 2460
tattcgcagg gtgacgtgaa tcaggcaata tcaatggttt cttactatgc ttcgtc	ttca 2520
gageeggete agattegagg gaagaetgtt tatatteagt actetaateg ceatgag	gatt 2580
gtcaacaatc agagtcctgg agaggtccct ggcaatgtcc tattggtcac ctttga	agga 2640
gtccaatctc accatgtctg catcgatgtc atccatctgg tatgtgaata ttcagc	ttac 2700
cttccactat tgtttcttgt tatagtgatt tttttcgttt cttcgagtag attcta	atct 2760
atgaaaatat ttcaacttgt tgttattagg caaacttctt ttgagtgtat tttttt	ccag 2820
ttattgttag acatacagta tgtcacatac tattgtaaat tacagtatat ctgacg	ttaa 2880
tgaaaatgct cgaatcacag atgttgatgc ctctttatta taatctttct ggagaga	agtt 2940

ttatcaattt	actccactgt	attatatgga	catgactcat	atctagtcca	aacttttgtt	3120
tcaggtgttt	tctgcttatg	gcttcgtgca	caaaattgcc	acttttgaga	aagctgctgg	3180
tttccaggtt	agagatatcg	agttttgttt	tcaaggtctt	gcctttttca	taaaatctaa	3240
tgatgtttaa	actcatcatc	tgccgtcata	acctgctcag	gcacttgttc	agtttactga	3300
tgtggacact	gccttagcgg	caaggactgc	gctggatggt	agaagtatac	ccacgtatgc	3360
tcaaatcctt	cattcatgct	tttgaccata	agataaagct	ctgttgatgg	tttcttcctt	3420
ttcttttggt	aaattcagat	atctgcttcc	agaacatgta	ggctcatgca	atttgcgaat	3480
gtcttactca	gcccacactg	atctaaatat	caaatttcag	tcccaccgca	gcaggtagag	3540
ttttgagtcc	tcgcaaatgt	gccattccat	tgttttactg	ctcctactgt	tggaagcctt	3600
atggttgaat	agttgattca	tgtgttttga	ttttctgacg	tactcaggga	ctacacaaat	3660
ccatatcttc	cggtgaatca	aactgctatg	gatggttcta	tgcaggtaaa	tatttcctct	3720
ttctagtcta	tctccaacag	cttagacaat	tcttacattg	aatgcgttac	tgattgtctt	3780
tgacgtcatt	gcattcagcc	tgctttgggt	gctgatggaa	agagggtaga	aactcagagc	3840
aacgtcctac	ttgctttgat	tgagaatatg	caatacgctg	tcacacggtg	aggaacacca	3900
ttatgcacgt	ttctgcatct	cagcatcctt	tcatttctca	aaattaatta	tttcctttgc	3960
ttgtcatagg	tgttttccgc	ttatgggact	gtgcagaaga	ttgcaatatt	tgagaaaaat	4020
ggttcaacgc	aagccttaat	tcaatactct	ggtacatgac	cttgatgatc	tgaatacata	4080
tattattata	ctatacttct	ttcggttata	tggcgaatca	tcttatgtgt	atgctaagaa	4140
tttgaatagt	catcatttgc	ttcatgttcc	gttttcttga	ttcttctgta	gacataccaa	4200
cggcgacaat	agcgaaagaa	gcattggagg	gacactgcat	atatgacggg	aggctactgt	4260
aagcttcgac	taacatactc	gtcatactga	tctcaatgta	aaggtacgta	agatcagttg	4320
ctttcttgat	ttgtgcaccc	aaacaaaaa	gcttggggaa	agagaataat	aacttatgtc	4380
tgcaagaacc	atatgctatt	ttttttctct	tcaacaattg	tatgaaatct	gaattcgact	4440
ttctagttta	ttcaactagt	gatttttcgt	cttctttctt	caggcattta	gtgacaaaag	4500
cggagactac	acactgcctg	atctaagcca	actggtgggc	caaaaggttc	caggagtggc	4560
cgctgctagt	gggccaacag	attgttggca	caatgggcag	gtgcagactc	aatacacaag	4620
aagttcatat	atgtacccac	tgtaagcaaa	ggtactagat	tttgataaag	cgcgagttta	4680
tttttaaatt	tttttcaatt	gacaaatatt	tagtaaatgt	catattttca	tatatttgtg	4740
ttttatttta	taaaagactt	aaactttta	tctttattta	tcgtatttta	ttttaaatga	4800
ctatttatgt	ttaaaaaatt	aaactttatt	tctttaatga	attaagttga	tataactctg	4860
ataaattaat	tttattatgt	ggttaatatt	ttaattaaaa	aaaattatat	acttttaata	4920
aagatttgta	tttttcaatg	aaaaaattca	attttttta	tgaatgctta	a aattatatta	4980
agaaaagaaa <210> 6 <211> 4992	aga					4993

<211> 4992

<212> ADN

<213> Brassica oleracea

<400> 6

60	gaatgatgtt	actgaaacgc	aagaccggtc	ctccttcgtg	ccggagtagt	acgtctatga
120	attgaggcgg	tggtgggttg	ttgaacggtt	ttgaaggtat	tcccatttct	cgccataatc
180	attagatcat	cggggagacg	ctgagagaat	atctaatcag	gctcgagtgg	atcttaagca
240	ctcatgtgca	gccagagagt	cgccatcgcc	aaaccctaat	attcgagagg	gcggtgacag
300	ggtttgattt	ttcttttca	ggttgttttt	tcgtggattt	tatgcaaatc	gtgtgattca
360	cgcgcgccag	gacccttatc	aaataaacta	acattaatta	taaagaggtc	ggaatttctc
420	tttgtaatat	caatgatgta	ttattttatt	ttttaattat	aatttttagt	cgcagatatg
480	ctatttttt	cttaaactat	ttttttgtat	aagtaaatat	tatattcgtt	tcgttcatat
540	taagataatt	atagagttaa	aaaaatgagt	aaaaatatta	gatatcatat	acgaatgtgt
600	cgcccagtta	aataatgatc	atatcatata	ttcgtgtgcg	aaatttttct	ttaaaaacag
660	cttaaaacta	tgactatttc	ttctttattt	atgtgtaatt	tgattatttt	acaaaaatca
720	ttatttgaaa	ctttaccttt	tttttaatat	aattagaata	tacatatttt	tattaaattt
780	ttttagaatt	taaaaaatat	acaaaatatt	aacaattata	tattttttt	tgcaactcaa
840	tgataagttt	tcctaaaata	attaaaatta	tacattttaa	atatgaaaat	tgtttgaaaa
900	aataacaatt	attcaatgat	aaataatgat	attatgtcaa	gaaaactcaa	tgatgtaaac
960	aaaattcatt	tgtttgaaag	acaaaaatat	aaatacattt	atttttaaa	ttaattgatt
1020	aaataaaaac	taaaaaatat	aattaaataa	aaaatattat	atataaaatg	tatctttcaa
1080	ctaacaaaat	aaaaaaattt	attatgctaa	actgagttat	gcaaatgaca	cataaattta
1140	acatagccat	atttttaaaa	ataccatata	tgagtaaata	aaatgagtta	atcaaatgac
1200	ataatatctg	tcaactaaaa	ttaaatttaa	aataattatt	tttttgaata	tcttaaatat
1260	gtgctgcatg	ttatatatta	ttgatgcatg	tctagtttta	tgagtcaaat	tacaattgtg
1320	aattatgcac	ccattattaa	tcaaaaatct	atgcacgttt	cattttaatg	ttttaggtaa
1380	aatttattta	attatgtcca	attaaatgac	ttttttgttg	ctcatgagtt	gtaatgataa
1440	ttaaaatcat	aataggaagt	caaacaataa	gtgaaaaaga	attaaggtaa	aggatatttc
1500	gttttattcg	aaattaggca	gacaagtaat	taactgaaaa	ttcattaatg	ttaagcatat
1560	aaaaatttaa	aaaaaaaa+ =	aadadaaada	gcaactggaa	tttcataaat	ttttatgata

ttaatgaaat aagaacattt	tcaaatgagt	acttctcttt	taataatata	gatttcatta	1620
atgtaactga aaagacaagt	aataaattag	gcagttttat	tcgttttagg	atatttcata	1680
aatgcaactg aaaaagacaa	gaaaaaaaaa	taaagaattt	aattaatgaa	gtaagaatat	1740
tttcaaatga gtacttctct	tttaataata	tagattgatc	aaaaattata	ttggataagg	1800
caagcaaaat ccattgagaa	gatcacaaca	acaaaagaaa	ggaacaaaca	cacaaccacg	1860
gcgacagata actaaaatgt	actggactat	tgggccctta	atataggcta	atgaacagat	1920
taaatgggct aattatagac	gtcattgcat	ggtatccatc	tatctggaag	catagtaatt	1980
tgttttaggg gactggtttg	caatttttac	agatatttta	gctgtacagt	acagagagag	2040
aatcctttga gcgtcgtcgg	ccttgctttg	tgtgtaggga	tctccgactg	actaattgtt	2100
gtaactacaa aagggcgccc	cccgcgcctt	tttactagat	ggcgagctca	tcacagttta	2160
ggtataccca gacgccgtcg	aaggtggtgc	acctgaggaa	tctgccgtgg	gaatgcgtgg	2220
aagaggagct catcgaccta	tgcaaacgat	tcggcaagat	cgtcaatacg	aagaccaatg	2280
teggegecaa tegeaaceaa	gcctttgtcg	aattcgtaac	aactttttat	tctcttggat	2340
catcagattg ttgcttcccc	cccaatggat	ttggttagaa	attgaataaa	aaaaggactc	2400
gaactctttt tttggtatct	cgttgttgtt	ttgaagatga	aactgtatac	tttgattcat	2460
attcgcaggg tgacgtgaat	caggcaatat	caatggtttc	ttactatgct	tcgtcttcag	2520
agccggctca gattcgaggg	aagactgttt	atattcagta	ctctaatcgc	catgagattg	2580
+					
tcaacaatca gagtcctgga	gaggtccctg	gcaatgtcct	attggtcacc	tttgaaggag	2640
tccaatctca ccatgtctgc					2640 2700
	atcgatgtca	tccatctggt	atgtgaatat	tcagcttacc	
tccaatctca ccatgtctgc	atcgatgtca atagtgattt	tccatctggt	atgtgaatat ttcgagtaga	tcagcttacc ttctaatcta	2700
tccaatctca ccatgtctgc	atcgatgtca atagtgattt gttattaggc	tccatctggt ttttcgtttc aaacttcttt	atgtgaatat ttcgagtaga tgagtgtatt	tcagcttacc ttctaatcta tttttccagt	2700 2760
tccaatctca ccatgtctgc ttccactatt gtttcttgtt tgaaaatatt tcaacttgtt	atcgatgtca atagtgattt gttattaggc gtcacatact	tccatctggt ttttcgtttc aaacttcttt attgtaaatt	atgtgaatat ttcgagtaga tgagtgtatt acagtatatc	tcagcttacc ttctaatcta tttttccagt tgacgttaat	2700 2760 2820
tccaatctca ccatgtctgc ttccactatt gtttcttgtt tgaaaatatt tcaacttgtt tattgttaga catacagtat	atcgatgtca atagtgattt gttattaggc gtcacatact tgttgatgcc	tccatctggt ttttcgtttc aaacttcttt attgtaaatt tctttattat	atgtgaatat ttcgagtaga tgagtgtatt acagtatatc aatctttctg	tcagcttacc ttctaatcta tttttccagt tgacgttaat gagagagttt	2700 2760 2820 2880
tccaatctca ccatgtctgc ttccactatt gtttcttgtt tgaaaatatt tcaacttgtt tattgttaga catacagtat gaaaatgctc gaatcacaga	atcgatgtca atagtgattt gttattaggc gtcacatact tgttgatgcc tctttctcat	tccatctggt ttttcgtttc aaacttcttt attgtaaatt tctttattat ggacaggtgt	atgtgaatat ttcgagtaga tgagtgtatt acagtatatc aatctttctg cactctgcac	tcagcttacc ttctaatcta tttttccagt tgacgttaat gagagagttt ttatctagtc	2700 2760 2820 2880 2940
tccaatctca ccatgtctgc ttccactatt gtttcttgtt tgaaaatatt tcaacttgtt tattgttaga catacagtat gaaaatgctc gaatcacaga ggaaaatagt ttcatgttcg	atcgatgtca atagtgattt gttattaggc gtcacatact tgttgatgcc tctttctcat aatttgagtt	tccatctggt ttttcgtttc aaacttcttt attgtaaatt tctttattat ggacaggtgt tatttcgatt	atgtgaatat ttcgagtaga tgagtgtatt acagtatatc aatctttctg cactctgcac gatttgcttc	tcagcttacc ttctaatcta tttttccagt tgacgttaat gagagagttt ttatctagtc ccttagttat	2700 2760 2820 2880 2940 3000
tccaatctca ccatgtctgc ttccactatt gtttcttgtt tgaaaatatt tcaacttgtt tattgttaga catacagtat gaaaatgctc gaatcacaga ggaaaatagt ttcatgttcg attctctttt ttagtctcct	atcgatgtca atagtgattt gttattaggc gtcacatact tgttgatgcc tctttctcat aatttgagtt ttatatggac	tccatctggt ttttcgtttc aaacttcttt attgtaaatt tctttattat ggacaggtgt tatttcgatt atgactcata	atgtgaatat ttcgagtaga tgagtgtatt acagtatatc aatctttctg cactctgcac gatttgcttc tctagtccaa	tcagcttacc ttctaatcta tttttccagt tgacgttaat gagagagttt ttatctagtc ccttagttat acttttgttt	2700 2760 2820 2880 2940 3000 3060
tccaatctca ccatgtctgc ttccactatt gtttcttgtt tgaaaatatt tcaacttgtt tattgttaga catacagtat gaaaatgctc gaatcacaga ggaaaatagt ttcatgttcg attctctttt ttagtctcct tatcaattta ctccactgta	atcgatgtca atagtgattt gttattaggc gtcacatact tgttgatgcc tctttctcat aatttgagtt ttatatggac cttcgtgcac	tccatctggt ttttcgtttc aaacttcttt attgtaaatt tctttattat ggacaggtgt tatttcgatt atgactcata aaaattgcca	atgtgaatat ttcgagtaga tgagtgtatt acagtatatc aatctttctg cactctgcac gatttgcttc tctagtccaa cttttgagaa	tcagcttacc ttctaatcta tttttccagt tgacgttaat gagagagttt ttatctagtc ccttagttat acttttgttt agctgctggt	2700 2760 2820 2880 2940 3000 3060 3120
tccaatctca ccatgtctgc ttccactatt gtttcttgtt tgaaaatatt tcaacttgtt tattgttaga catacagtat gaaaatgctc gaatcacaga ggaaaatagt ttcatgttcg attctcttt ttagtctcct tatcaattta ctccactgta caggtgtttt ctgcttatgg	atcgatgtca atagtgattt gttattaggc gtcacatact tgttgatgcc tctttctcat aatttgagtt ttatatggac cttcgtgcac gttttgttt	tccatctggt ttttcgtttc aaacttcttt attgtaaatt tctttattat ggacaggtgt tatttcgatt atgactcata aaaattgcca caaggtcttg	atgtgaatat ttcgagtaga tgagtgtatt acagtatatc aatctttctg cactctgcac gatttgcttc tctagtccaa cttttgagaa ccttttcat	tcagcttacc ttctaatcta tttttccagt tgacgttaat gagagagttt ttatctagtc ccttagttat acttttgttt agctgctggt aaaatctaat	2700 2760 2820 2880 2940 3000 3060 3120 3180
tccaatctca ccatgtctgc ttccactatt gtttcttgtt tgaaaatatt tcaacttgtt tattgttaga catacagtat gaaaatgctc gaatcacaga ggaaaatagt ttcatgttcg attctcttt ttagtctcct tatcaattta ctccactgta caggtgtttt ctgcttatgg ttccaggtta gagatatcga	atcgatgtca atagtgattt gttattaggc gtcacatact tgttgatgcc tctttctcat aatttgagtt ttatatggac cttcgtgcac gttttgtttt	tccatctggt ttttcgtttc aaacttcttt attgtaaatt tctttattat ggacaggtgt tatttcgatt atgactcata aaaattgcca caaggtcttg cctgctcagg	atgtgaatat ttcgagtaga tgagtgtatt acagtatatc aatctttctg cactctgcac gatttgcttc tctagtccaa cttttgagaa ccttttcat cacttgttca	tcagcttacc ttctaatcta tttttccagt tgacgttaat gagagagttt ttatctagtc ccttagttat acttttgttt agctgctggt aaaatctaat gtttactgat	2700 2760 2820 2880 2940 3000 3120 3180 3240
tccaatctca ccatgtctgc ttccactatt gtttcttgtt tgaaaatatt tcaacttgtt tattgttaga catacagtat gaaaatgctc gaatcacaga ggaaaatagt ttcatgttcg attctctttt ttagtctcct tatcaattta ctccactgta caggtgtttt ctgcttatgg ttccaggtta gagatatcga gatgtttaaa ctcatcatct	atcgatgtca atagtgattt gttattaggc gtcacatact tgttgatgcc tctttctcat aatttgagtt ttatatggac cttcgtgcac gttttgttt gccgtcataa aaggactgcg	tccatctggt ttttcgtttc aaacttcttt attgtaaatt tctttattat ggacaggtgt tatttcgatt atgactcata aaaattgcca caaggtcttg cctgctcagg ctggatggta	atgtgaatat ttcgagtaga tgagtgtatt acagtatatc aatctttctg cactctgcac gatttgcttc tctagtccaa cttttgagaa cctttttcat cacttgttca gaagtatacc	tcagcttacc ttctaatcta tttttccagt tgacgttaat gagagagttt ttatctagtc ccttagttat acttttgttt agctgctggt aaaatctaat gtttactgat cacgtatgct	2700 2760 2820 2880 2940 3000 3120 3180 3240 3300

tcttactcag (ccacactga	tctaaatatc	aaatttcagt	cccaccgcag	caggtagagt	3540
tttgagtcct (egcaaatgtg	ccattccatt	gttttactgc	tcctactgtt	ggaagcctta	3600
tggttgaata g	gttgattcat	gtgttttgat	tttctgacgt	actcagggac	tacacaaatc	3660
catatcttcc q	ggtgaatcaa	actgctatgg	atggttctat	gcaggtaaat	atttcctctt	3720
tctagtctat o	ctccaacagc	ttagacaatt	cttacattga	atgcgttact	gattgtcttt	3780
gacgtcattg (cattcagcct	gctttgggtg	ctgatggaaa	gagggtagaa	actcagagca	3840
acgtcctact t	gctttgatt	gagaatatgc	aatacgctgt	cacacggtga	ggaacaccat	3900
tatgcacgtt t	ctgcatctc	agcatccttt	catttctcaa	aattaattat	ttcctttgct	3960
tgtcataggt g	gttttccgct	tatgggactg	tgcagaagat	tgcaatattt	gagaaaaatg	4020
gttcaacgca a	agccttaatt	caatactctg	gtacatgacc	ttgatgatct	gaatacatat	4080
attattatac t	atacttctt	tcggttatat	ggcgaatcat	cttatgtgta	tgctaagaat	4140
ttgaatagtc a	atcatttgct	tcatgttccg	ttttcttgat	tcttctgtag	acataccaac	4200
ggcgacaata g	gcgaaagaag	cattggaggg	acactgcata	tatgacggga	ggctactgta	4260
agcttcgact a	aacatactcg	tcatactgat	ctcaatgtaa	aggtacgtaa	gatcagttgc	4320
tttcttgatt t	gtgcaccca	aacaaaaag	cttggggaaa	gagaataata	acttatgtct	4380
gcaagaacca t	atgctattt	tttttctctt	caacaattgt	atgaaatctg	aattcgactt	4440
tctagtttat t	caactagtg	atttttcgtc	ttctttcttc	aggcatttag	cgacaaaagc	4500
ggagactaca d	cactgcctga	tctaagccaa	ctggtgggcc	aaaaggttcc	aggagtggcc	4560
gctgctagtg (ggccaacaga	ttgttggcac	aatgggcagg	tgcagactca	atacacaaga	4620
agttcatata t	gtacccact	gtaagcaaag	gtactagatt	ttgataaagc	gcgagtttat	4680
ttttaatttt t	tttcaattg	acaaatattt	agtaaatgtc	atattttcat	atatttgtgt	4740
tttattttat a	aaaagactta	aacttttat	ctttatttat	cgtattttat	tttaaatgac	4800
tatttatgtt t	aaaaaatta	aactttattt	ctttaatgaa	ttaagttgat	ataactctga	4860
taaattaatt t	tattatgtg	gttaatattt	taattaaaaa	aaattatata	cttttaataa	4920
agatttgtat t	tttcaatga	aaaaattcaa	tttttttat	gaatgcttaa	attatattaa	4980
gaaaagaaaa (<210> 7 <211> 448 <212> PRT <213> Brassica <400> 7 Met Ala Ala 1	oleracea	et Ala Val I	His Leu Pro 10	Lys His Se	r Ser Phe 15	4992

Leu	Pro	Asn	Pro 20	Lys	Leu	Pro	Leu	Asn 25	Gln	Asn	Ser	Asn	Phe 30	Leu	Gly
Val	Ser	Leu 35	Lys	Ile	Gly	Arg	Pro 40	Met	Ser	Val	Asn	Arg 45	Lys	Met	Lys
Gly	Pro 50	Val	Thr	Val	Ser	Ala 55	Ala	Ser	Thr	Val	Glu 60	Gly	Asp	Arg	Ser
Lys 65	Gln	Phe	Tyr	Ile	Asn 70	Phe	Thr	Gly	Phe	Pro 75	Phe	Pro	Leu	Gly	Pro 80
Phe	Leu	Asn	Arg	Arg 85	Thr	Ile	Arg	Thr	Glu 90	Ala	Val	Lys	Gly	Ser 95	Ile
Trp	Met	Phe	Glu 100	Gln	Glu	Gln	Ala	Leu 105	Gly	Phe	Ser	Ser	Val 110	Ser	Thr
Asn	Ile	Arg 115	Met	Thr	Val	Ile	Arg 120	Leu	Lys	Ser	Gly	Gly 125	Leu	Trp	Val
His	Ala 130	Pro	Ile	Ala	Pro	Thr 135	Lys	Glu	Cys	Ile	Gln 140	Leu	Ile	Glu	Glu
Leu 145	Gly	Ala	Pro	Val	Glu 150	Tyr	Ile	Val	Leu	Pro 155	Thr	Phe	Ala	Tyr	Glu 160
	-		Phe	165	_				170				-	175	
			A la 180					185					190		
		195	Gly				200					205			
	210		Trp			215					220				
225			Ile		230					235					240
			Leu	245					250					255	
Pro	Pro	Ser	Ser	Ile	Ser	Ser	Glu	Ser	Leu	Leu	Ala	Ser	Ala	Lys	Asn

			260					265					270		
Gly	Leu	Ala 275	Val	Lys	Ile	Leu	Ser 280	Lys	Gly	Lys	Gln	Val 285	Pro	Asp	Asp
Pro	Val 290	Val	Asp	Thr	Pro	Asn 295	Thr	Arg	Gln	Lys	Gly 300	Trp	Glu	Arg	Met
Val 305	Leu	Gln	Ile	Leu	Phe 310	Leu	Gly	Pro	Ser	Asn 315	Leu	Leu	Glu	Pro	Asn 320
Ala	Ser	Phe	Ala	Gln 325	Met	Ser	Gln	Lys	Leu 330	Ile	Val	Ser	Pro	Ile 335	Val
Lys	Thr	Leu	Val 340	Phe	Ser	Lys	Val	Pro 345	Glu	Lys	Val	Arg	Asp 350	Trp	Ile
Asp	Glu	Ile 355	Ala	Ser	Asp	Trp	Arg 360	Phe	Lys	Arg	Ile	Ile 365	Pro	Ala	His
Phe	Glu 370	Ala	Pro	Val	Asn	Ala 375	Gly	Arg	Ser	Glu	Phe 380	Leu	Ala	Ala	Phe
Gly 385	Phe	Leu	Asp	Asp	Leu 390	Leu	Gly	Glu	Arg	Tyr 395	Val	Asn	Arg	Pro	Pro 400
Ser	Leu	Ser	Val	Leu 405	Phe	Thr	Ser	Leu	Met 410	Gly	Lys	Ala	Ala	Ser 415	Tyr
Phe	Pro	Pro	Asp 420	Asp	Met	Arg	Thr	Leu 425	Ser	Ser	Leu	Asp	Gln 430	Phe	Leu
Val <210 <211 <212 <213	> 8 > 395 > PR	435 5 T			Val	Lys	Lys 440	Thr	Val	Ser	Gly	Arg 445	Lys	Arg	Arg
<400 Me t 1	_	Ser	Ser	Gln 5	Phe	Arg	Tyr	Thr	Gln 10	Thr	Pro	Ser	Lys	Val 15	Val
His	Leu	Arg	Asn 20	Leu	Pro	Trp	Glu	Cys 25	Val	Glu	Glu	Glu	Leu 30	Ile	Asp
Leu	Cys	Lys	Arg	Phe	Gly	Lys	Ile	Val	Asn	Thr	Lys	Thr	Asn	Val	Gly

		35					40					45			
Ala	Asn 50	Arg	Asn	Gln	Ala	Phe 55	Val	Glu	Phe	Gly	Asp 60	Val	Asn	Gln	Ala
Ile 65	Ser	Met	Val	Ser	Tyr 70	Tyr	Ala	Ser	Ser	Ser 75	Glu	Pro	Ala	Gln	Ile 80
Arg	Gly	Lys	Thr	Val 85	Tyr	Ile	Gln	Tyr	Ser 90	Asn	Arg	His	Glu	Ile 95	Val
Asn	Asn	Gln	Ser 100	Pro	Gly	Glu	Val	Pro 105	Gly	Asn	Val	Leu	Leu 110	Val	Thr
Phe	Glu	Gly 115	Val	Gln	Ser	His	His 120	Val	Cys	Ile	Asp	Val 125	Ile	His	Leu
Val	Phe 130	Ser	Ala	Tyr	Gly	Phe 135	Val	His	Lys	Ile	Ala 140	Thr	Phe	Glu	Lys
Ala 145	Ala	Gly	Phe	Gln	A la 150	Leu	Val	Gln	Phe	Thr 155	Asp	Val	Asp	Thr	Ala 160
Leu	Ala	Ala	Arg	Thr 165	Ala	Leu	Asp	Gly	Arg 170	Ser	Ile	Pro	Lys	Tyr 175	Leu
Leu	Pro	Glu	His 180	Val	Gly	Ser	Cys	As n 185	Leu	Arg	Met	Ser	Tyr 190	Ser	Ala
His	Thr	Asp 195	Leu	Asn	Ile	Lys	Phe 200	Gln	Ser	His	Arg	Ser 205	Arg	Asp	Tyr
Thr	Asn 210	Pro	Tyr	Leu	Pro	Val 215	Asn	Gln	Thr	Ala	Met 220	Asp	Gly	Ser	Met
Gln 225	Pro	Ala	Leu	Gly	Ala 230	Asp	Gly	Lys	Arg	Val 235	Glu	Thr	Gln	Ser	Asn 240
Val	Leu	Leu	Ala	Leu 245	Ile	Glu	Asn	Met	Gln 250	Tyr	Ala	Val	Thr	Val 255	Asp
Val	Leu	His	Thr 260	Val	Phe	Ser	Ala	Tyr 265	Gly	Thr	Val	Gln	Lys 270	Ile	Ala
Ile	Phe	Glu 275	Lys	Asn	Gly	Ser	Thr 280	Gln	Ala	Leu	Ile	Gln 285	Tyr	Ser	Asp

Ile Ser Thr Ala Thr Met Ala Lys Glu Ala Leu Glu Gly His Cys Ile Tyr Asp Gly Gly Tyr Cys Lys Leu Arg Leu Thr Tyr Ser Arg His Thr Asp Leu Asn Val Lys Ala Phe Ser Asp Lys Ser Arg Asp Tyr Thr Leu 330 325 Pro Asp Leu Ser Gln Leu Val Gly Gln Lys Val Pro Gly Val Ala Ala Ala Ser Gly Pro Thr Asp Gly Trp Pro Asn Gly Gln Val Gln Thr Gln Tyr Met Gly Ser Ser Tyr Met Tyr Pro Pro Ala Asp Pro Thr Gly Ala Ser Pro Ser Ser Gly His Pro Pro Tyr Tyr Gly 390 <211> 448 <212> PRT <213> Brassica oleracea <400> 9 Met Ala Ala Ala Met Ala Val His Leu Pro Lys His Ser Ser Phe Leu Thr Lys Pro Lys His Pro Ser Asp Gln Asn Ser Asn Phe Leu Gly Gly Ser Leu Lys Phe Gly Arg Ser Met Ser Leu Asn Arg Lys Thr Lys 40 Gly Pro Val Met Val Ser Ala Ala Ser Thr Val Glu Gly Asp Arg Ser Lys Gln Phe Tyr Ile Asn Phe Thr Gly Phe Pro Phe Pro Leu Gly Pro 70 Phe Leu Asn Arg Arg Thr Ile Arg Thr Glu Ala Val Lys Gly Ser Ile Trp Met Phe Glu Gln Glu Gln Ala Leu Gly Phe Ser Ser Val Ser Thr

Asn	Ile	Arg 115	Met	Thr	Val	Ile	Lys 120	Leu	Lys	Ser	Gly	Gly 125	Leu	Trp	Val
His	Ala 130	Pro	Ile	Ala	Pro	Thr 135	Lys	Glu	Cys	Ile	Gln 140	Leu	Ile	Glu	Glu
Leu 145	Gly	Ala	Pro	Val	Glu 150	Tyr	Ile	Val	Leu	Pro 155	Thr	Phe	Ala	Tyr	Glu 160
His	Lys	Ile	Phe	Val 165	Gly	Pro	Phe	Ser	Arg 170	Lys	Phe	Pro	Lys	Ala 175	Gln
Val	Trp	Val	Ala 180	Pro	Arg	Gln	Trp	Ser 185	Trp	Pro	Leu	Asn	Leu 190	Pro	Leu
Glu	Phe	Phe 195	Gly	Ile	Phe	Arg	Ala 200	Lys	Thr	Ile	Lys	Asp 205	Gly	Asp	Leu
Ser	Thr 210	Pro	Trp	Ala	Asp	Glu 215	Ile	Glu	Gln	Lys	Val 220	Leu	Ser	Ser	Pro
Glu 225	Val	Gly	Ile	Gly	Pro 230	Tyr	Val	Glu	Val	Ala 235	Phe	Tyr	His	Lys	Arg 240
Ser	Arg	Thr	Leu	Leu 245	Val	Thr	Asp	Ala	Val 250	Ile	Phe	Val	Pro	Lys 255	Lys
Pro	Pro	Ser	Ser 260	Ile	Ser	Ser	Glu	Ser 265	Leu	Leu	Ala	Ser	Ala 270	Lys	Asn
Gly	Leu	Ala 275	Val	Lys	Ile	Leu	Ser 280	Lys	Gly	Lys	Gln	Val 285	Pro	Asn	Asp
Pro	Val 290	Val	Asp	Thr	Pro	Asn 295	Thr	Arg	Gln	Lys	Gly 300	Trp	Glu	Arg	Met
Val 305	Leu	Gln	Ile	Leu	Phe 310	Leu	Gly	Pro	Ser	Asn 315	Leu	Leu	Glu	Pro	Asn 320
Ala	Ser	Phe	Ala	Gln 325	Met	Ser	Gln	Lys	Leu 330	Ile	Val	Ser	Pro	Ile 335	Val
Lys	Thr	Leu	Val 340	Phe	Ser	Lys	Val	Pro 345	Glu	Lys	Val	Arg	Asp 350	Trp	Ile
Asp	Glu	Ile 355	Ala	Ser	Asp	Trp	Arg 360	Phe	Lys	Arg	Ile	Ile 365	Pro	Ala	His

Phe Glu Ala Pro Ile Asn Ala Gly Arg Ser Glu Phe Leu Ala Ala Phe 370 380

Gly Phe Leu Asp Asp Leu Leu Gly Glu Arg Tyr Val Asn Arg Pro Pro 385 390 395 400

Ser Leu Ser Val Leu Phe Thr Ser Leu Met Gly Lys Ala Ala Ser Tyr 405 410 415

Phe Pro Pro Asp Asp Met Arg Thr Leu Ser Ser Leu Asp Gln Phe Leu 420 425

Val Ser Val Gly Ala Val Lys Lys Thr Val Ser Gly Arg Lys Arg Arg 435 440 445

<210> 10

<211>395

<212> PRT

<213> Brassica oleracea

<400> 10

Met Ala Ser Ser Gln Phe Arg Tyr Thr Gln Thr Pro Ser Lys Val Val 1 5 5 10 10

His Leu Arg Asn Leu Pro Trp Glu Cys Val Glu Glu Glu Leu Ile Asp 20 25 30

Leu Cys Lys Arg Phe Gly Lys Ile Val Asn Thr Lys Thr Asn Val Gly 35 40

Ala Asn Arg Asn Gln Ala Phe Val Glu Phe Gly Asp Val Asn Gln Ala 50 60

Ile Ser Met Val Ser Tyr Tyr Ala Ser Ser Ser Glu Pro Ala Gln Ile 65 70 75 80

Arg Gly Lys Thr Val Tyr Ile Gln Tyr Ser Asn Arg His Glu Ile Val 85 90 95

Asn Asn Gln Ser Pro Gly Glu Val Pro Gly Asn Val Leu Leu Val Thr 100 105 110

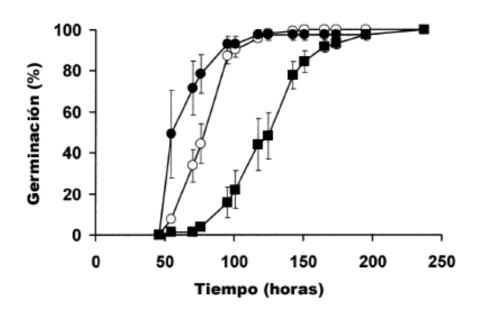
Phe Glu Gly Val Gln Ser His His Val Cys Ile Asp Val Ile His Leu 115 120 125

Val Phe Ser Ala Tyr Gly Phe Val His Lys Ile Ala Thr Phe Glu Lys 130 135 140

Ala 145	Ala	Gly	Phe	Gln	Ala 150	Leu	Val	Gln	Phe	Thr 155	Asp	Val	Asp	Thr	Ala 160
Leu	Ala	Ala	Arg	Thr 165	Ala	Leu	Asp	Gly	Arg 170	Ser	Ile	Pro	Lys	Tyr 175	Leu
Leu	Pro	Glu	His 180	Val	Gly	Ser	Сув	Asn 185	Leu	Arg	Met	Ser	Tyr 190	Ser	Ala
His	Thr	Asp 195	Leu	Asn	Ile	Lys	Phe 200	Gln	Ser	His	Arg	Ser 205	Arg	Asp	Tyr
Thr	Asn 210	Pro	Tyr	Leu	Pro	Val 215	Asn	Gln	Thr	Ala	Met 220	Asp	Gly	Ser	Met
Gln 225	Pro	Ala	Leu	Gly	Ala 230	Asp	Gly	Lys	Arg	Val 235	Glu	Thr	Gln	Ser	Asn 240
Val	Leu	Leu	Ala	Leu 245	Ile	Glu	Asn	Met	Gln 250	Tyr	Ala	Val	Thr	Val 255	Asp
Val	Leu	His	Thr 260	Val	Phe	Ser	Ala	Tyr 265	Gly	Thr	Val	Gln	Lys 270	Ile	Ala
Ile	Phe	Glu 275	Lys	Asn	Gly	Ser	Thr 280	Gln	Ala	Leu	Ile	Gln 285	Tyr	Ser	Asp
Ile	Ser 290	Thr	Ala	Thr	Met	Ala 295	Lys	Glu	Ala	Leu	Glu 300	Gly	His	Cys	Ile
Tyr 305	Asp	Gly	Gly	Tyr	Cys 310	Lys	Leu	Arg	Leu	Thr 315	Tyr	Ser	Arg	His	Thr 320
Asp	Leu	Asn	Val	Lys 325	Ala	Phe	Ser	Asp	Lys 330	Ser	Arg	Asp	Tyr	Thr 335	Leu
Pro	Asp	Leu	Ser 340	Gln	Leu	Val	Gly	Gln 345	Lys	Val	Pro	Gly	Val 350	Ala	Ala
Ala	Ser	Gly 355	Pro	Thr	Asp	Gly	Trp 360	Pro	Asn	Gly	Gln	Val 365	Gln	Thr	Gln
Tyr	Met 370	Gly	Ser	Ser	Tyr	Met 375	Tyr	Pro	Pro	Ala	Asp 380	Pro	Thr	Gly	Ala
Ser 385 <210 <211 <212 <213 <400	> 11 > 326 > PR > Bra	6 T			His 390	Pro	Pro	Tyr	Tyr	Gly 395					

Met 1	Ala	Ser	Ser	Ser 5	Gln	Phe	Arg	Tyr	Thr 10	Gln	Thr	Pro	Ser	Lys 15	Val
Val	His	Leu	Arg 20	Asn	Leu	Pro	Trp	Glu 25	Cys	Val	Glu	Glu	Glu 30	Leu	Ile
Asp	Leu	Cys 35	Lys	Arg	Phe	Gly	Lys 40	Ile	Val	Asn	Thr	Lys 45	Thr	Asn	Val
Gly	Ala 50	Asn	Arg	Asn	Gln	Ala 55	Phe	Val	Glu	Phe	Gly 60	Asp	Val	Asn	Gln
Ala 65	Ile	Ser	Met	Val	Ser 70	Tyr	Tyr	Ala	Ser	Ser 75	Ser	Glu	Pro	Ala	Gln 80
Ile	Arg	Gly	Lys	Thr 85	Val	Tyr	Ile	Gln	Tyr 90	Ser	Asn	Arg	His	Glu 95	Ile
Val	Asn	Asn	Gln 100	Ser	Pro	Gly	Glu	Val 105	Pro	Gly	Asn	Val	Leu 110	Leu	Val
Thr	Phe	Glu 115	Gly	Val	Gln	Ser	His 120	His	Val	Cys	Ile	Asp 125	Val	Ile	His
Leu	Val 130	Phe	Ser	Ala	Tyr	Gly 135	Phe	Val	His	Lys	Ile 140	Ala	Thr	Phe	Glu
Lys 145	Ala	Ala	Gly	Phe	Gln 150	Ala	Leu	Val	Gln	Phe 155	Thr	Asp	Val	Asp	Thr 160
Ala	Leu	Ala	Ala	Arg 165	Thr	Ala	Leu	Asp	Gly 170	Arg	Ser	Ile	Pro	Thr 175	Tyr
Leu	Leu	Pro	Glu 180	His	Val	Gly	Ser	Cys 185	Asn	Leu	Arg	Met	Ser 190	Tyr	Ser
Ala	His	Thr 195	Asp	Leu	Asn	Ile	Lys 200	Phe	Gln	Ser	His	Arg 205	Ser	Arg	Asp
Tyr	Thr		Pro	Tyr	Leu	Pro		Asn	Gln	Thr	Ala		Asp	Gly	Ser

Met 225	Gln	Val	Phe	Ser	Ala 230	Tyr	Gly	Thr	Val	Gln 235	Lys	Ile	Ala	Ile	Phe 240
Glu	Lys	Asn	Gly	Ser 245	Thr	Gln	Ala	Leu	Ile 250	Gln	Tyr	Ser	Asp	Ile 255	Pro
Thr	Ala	Thr	Ile 260	Ala	Lys	Glu	Ala	Leu 265	Glu	Gly	His	Cys	Ile 270	Tyr	Asp
Gly	Arg	Leu 275	Leu	Asp	Lys	Ser	Gly 280	Asp	Tyr	Thr	Leu	Pro 285	Asp	Leu	Ser
Gln	Leu 290	Val	Gly	Gln	Lys	Val 295	Pro	Gly	Val	Ala	Ala 300	Ala	Ser	Gly	Pro
Thr 305	Asp	Cys	Trp	His	Asn 310	Gly	Gln	Val	Gln	Thr 315	Gln	Tyr	Thr	Arg	Ser 320
<210 <211 <212 <213	> 326 > PR > Bra	S T	-	325	Leu										
<400 Met 1	> 12 Ala	Ser	Ser	Ser 5	Gln	Phe	Arg	Tyr	Thr 10	Gln	Thr	Pro	Ser	Lys 15	Val
Val	His	Leu	Arg 20	Asn	Leu	Pro	Trp	Glu 25	Cys	Val	Glu	Glu	Glu 30	Leu	Ile
Asp	Leu	Cys 35	Lys	Arg	Phe	Gly	Lys 40	Ile	Val	Asn	Thr	Lys 45	Thr	Asn	Val
Gly	Ala 50	Asn	Arg	Asn	Gln	Ala 55	Phe	Val	Glu	Phe	Gly 60	Asp	Val	Asn	Gln
Ala 65	Ile	Ser	Met	Val	Ser 70	Tyr	Tyr	Ala	Ser	Ser 75	Ser	Glu	Pro	Ala	Gln 80
Ile	Arg	Gly	Lys	Thr 85	Val	Tyr	Ile	Gln	Tyr 90	Ser	Asn	Arg	His	Glu 95	Ile


Thr Phe Glu Gly Val Gln Ser His His Val Cys Ile Asp Val Ile His Leu Val Phe Ser Ala Tyr Gly Phe Val His Lys Ile Ala Thr Phe Glu 135 Lys Ala Ala Gly Phe Gln Ala Leu Val Gln Phe Thr Asp Val Asp Thr 150 155 Ala Leu Ala Ala Arg Thr Ala Leu Asp Gly Arg Ser Ile Pro Thr Tyr 165 Leu Leu Pro Glu His Val Gly Ser Cys Asn Leu Arg Met Ser Tyr Ser Ala His Thr Asp Leu Asn Ile Lys Phe Gln Ser His Arg Ser Arg Asp 195 200 Tyr Thr Asn Pro Tyr Leu Pro Val Asn Gln Thr Ala Met Asp Gly Ser 215 Met Gln Val Phe Ser Ala Tyr Gly Thr Val Gln Lys Ile Ala Ile Phe 230 Glu Lys Asn Gly Ser Thr Gln Ala Leu Ile Gln Tyr Ser Asp Ile Pro Thr Ala Thr Ile Ala Lys Glu Ala Leu Glu Gly His Cys Ile Tyr Asp 260 265 Gly Arg Leu Leu Asp Lys Ser Gly Asp Tyr Thr Leu Pro Asp Leu Ser Gln Leu Val Gly Gln Lys Val Pro Gly Val Ala Ala Ala Ser Gly Pro Thr Asp Cys Trp His Asn Gly Gln Val Gln Thr Gln Tyr Thr Arg Ser Ser Tyr Met Tyr Pro Leu 325 <210> 13 <211> 19 <212> ADN <213> Secuencia artificial <220> <223> cebador directo de At3g01190 <400> 13 ttcttccacg actgcttcg <210> 14 <211>21 <212> ADN <213> Secuencia artificial <220> <223> cebador inverso de At3g01190 <400> 14 ctaacaaaac tgatccgtca c 21

<210> 15

0
20
^
0
0
0
0
0
0
0
30

REIVINDICACIONES

- 1. Un polinucleótido, particularmente un polinucleótido aislado, que comprende una molécula de ácido nucleico seleccionada del grupo que consiste en
- 5 a. una molécula de ácido nucleico que comprende una secuencia de nucleótidos como se representa en la SEQ ID NO: 3 (GD33 versión de BolC.VG1.a);
 - b. una molécula de ácido nucleico que comprende una secuencia de nucleótidos cuya hebra complementaria hibrida con la molécula de ácido nucleico de a);
- c. una molécula de ácido nucleico que comprende una secuencia de nucleótidos que se desvía de la secuencia de nucleótidos definida en a) o b) por la degeneración del código genético;
 - en el que dicha molécula de ácido nucleico como se define en cualquiera de a) c), tras la expresión en una planta de *Brassica* o parte de la planta, da lugar a un vigor aumentado de las semillas en comparación con una planta de *Brassica* o parte de la planta que no comprende dicha molécula de ácido nucleico.
- 2. Un polinucleótido, particularmente un polinucleótido aislado, que comprende una molécula de ácido nucleico seleccionada del grupo que consiste en
 - a. molécula de ácido nucleico que comprende una secuencia de nucleótidos que tiene al menos un 90 % de identidad de secuencia con la SEQ ID NO:3:
 - b. molécula de ácido nucleico que comprende una secuencia de nucleótidos que tiene al menos un 95 % de identidad de secuencia con la SEQ ID NO:3;
- 20 c. molécula de ácido nucleico que comprende una secuencia de nucleótidos que tiene al menos un 98 % de identidad de secuencia con la SEQ ID NO:3;
 - d. molécula de ácido nucleico que comprende una secuencia de nucleótidos cuya hebra complementaria hibrida con la molécula de ácido nucleico de cualquiera de a) c);
- e. molécula de ácido nucleico que comprende una secuencia de nucleótidos que se desvía de la secuencia de nucleótidos definida en cualquiera de a) d) por la degeneración del código genético;
 - en el que dicha molécula de ácido nucleico como se define en cualquiera de a) e), tras la expresión en una planta de *Brassica* o parte de la planta, da lugar a un vigor aumentado de las semillas en comparación con una planta de *Brassica* o parte de la planta que no comprende dicha molécula de ácido nucleico.
- 3. Un polinucleótido de acuerdo con las reivindicaciones 1 a 2, en el que el fenotipo de vigor aumentado de las semillas se caracteriza por un fenotipo adicional seleccionado del grupo que comprende: velocidad aumentada de germinación, velocidad aumentada de brote de plántulas, uniformidad aumentada de germinación de las semillas, uniformidad aumentada de brote de plántulas, porcentaje aumentado de germinación de las semillas, tolerancia aumentada de la semillas frente al entorno externo y/o condiciones maternas, sensibilidad aumentada a ABA o contenido modificado de ABA.
- 4. Un método para aumentar el vigor de las semillas, que comprende introducir, mediante técnicas de transformación de plantas en una planta de *Brassica* o parte de la planta, un polinucleótido de cualquiera de las reivindicaciones 1 a 3, en el que dicha planta de *Brassica* tiene vigor aumentado de las semillas en comparación con una planta de *Brassica* o parte de la planta que no comprende dicho polinucleótido.
- 5. Un método para seleccionar una planta de *Brassica* o parte de la planta con vigor aumentado de las semillas, que comprende la detección, en la planta de *Brassica* o parte de la planta a ensayar, de la presencia o ausencia de un polinucleótido de acuerdo con cualquiera de las reivindicaciones 1 a 3, en el que la presencia de dicho polinucleótido indica que la planta de *Brassica* o parte de la planta tiene vigor aumentado de las semillas en comparación con una planta de *Brassica* o parte de la planta en que dicho polinucleótido está ausente.
- 6. Uso del polinucleótido de cualquiera de las reivindicaciones 1 a 3 para modificar el vigor de las semillas de una planta de *Brassica*.

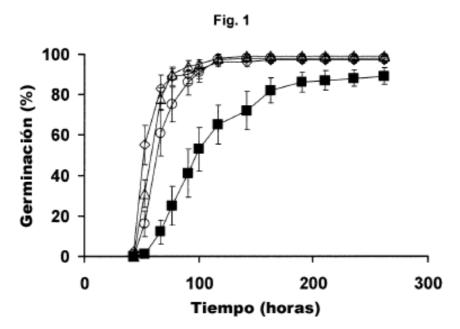


Fig. 2

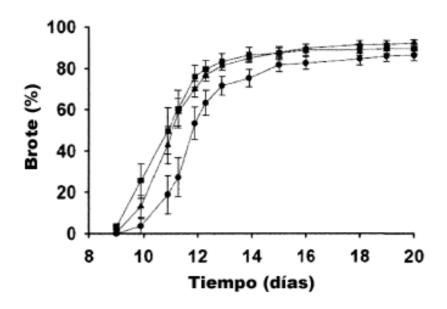


Fig. 3

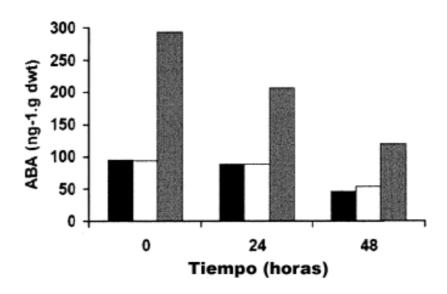


Fig. 4

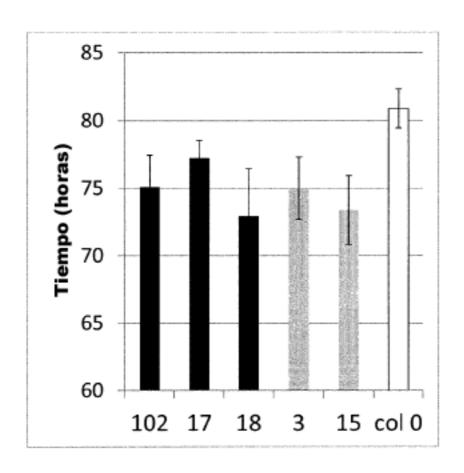


Fig. 5

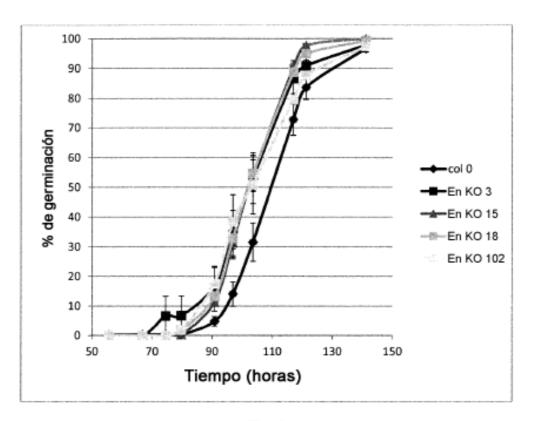


Fig. 6