

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

① Número de publicación: 2 788 129

61 Int. Cl.:

A61K 39/00 (2006.01) A61P 35/00 (2006.01) A61K 38/08 (2009.01) A61K 38/16 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

Fecha de presentación y número de la solicitud europea: 28.09.2009 E 16179214 (8)
Fecha y número de publicación de la concesión europea: 29.04.2020 EP 3124043

(54) Título: Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales

(30) Prioridad:

01.10.2008 EP 08017305 13.10.2008 EP 08017921 16.10.2008 US 105928 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 20.10.2020

(73) Titular/es:

IMMATICS BIOTECHNOLOGIES GMBH (100.0%) Paul-Ehrlich-Str. 15 72076 Tübingen, DE

(72) Inventor/es:

SCHOOR, OLIVER; HILF, NORBERT; WEINSCHENK, TONI; TRAUTWEIN, CLAUDIA; WALTER, STEFFEN y SINGH, HARPREET

74) Agente/Representante:

SÁEZ MAESO, Ana

DESCRIPCIÓN

Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales

La presente invención se refiere a un péptido, ácidos nucleicos y células destinados a la utilización en métodos inmunoterapéuticos. En particular, la presente invención se refiere a la inmunoterapia contra el cáncer. La presente invención se refiere asimismo a un epítopo peptídico para linfocitos T citotóxicos (CTL) asociado a tumores, solo o en combinación con otros péptidos asociados a tumores que pueden servir como principios activos farmacéuticos en composiciones vacunales destinadas a estimular respuestas inmunitarias antitumorales.

Antecedentes de la invención

5

- Los gliomas son tumores cerebrales originados en las células gliales del sistema nervioso. Las células gliales, llamadas 10 por lo común neuroglía o simplemente glía, son células no neuronales que proporcionan soporte y nutrición, mantienen la homeostasia, forman la mielina e intervienen en la transmisión de señales en el sistema nervioso. Los dos tipos más importantes de glioma son el astrocitoma y el oligodendroglioma, llamados así por el tipo de célula glial que los origina, esto es, astrocitos y oligodendrocitos. En el grupo de los astrocitomas se encuentra el glioblastoma multiforme (denominado en lo sucesivo glioblastoma) que es el tumor cerebral maligno más frecuente en adultos, pues supone 15 alrededor del 40% de los tumores cerebrales malignos y alrededor del 50% de los gliomas. El glioblastoma invade con agresividad el sistema nervioso central y entre todos los gliomas es el que ostenta el nivel más alto de malignidad (grado IV). Pese a los avances en el tratamiento logrados merced a mejoras en las técnicas de neuroimagen, la microcirugía y las opciones terapéuticas como la temozolomida o la radiación, el glioblastoma sigue siendo incurable. La tasa de letalidad de este tumor cerebral es muy alta: la esperanza de vida media varía entre 9 y 12 meses desde el diagnóstico. La 20 supervivencia a 5 años durante el período de observación comprendido entre 1986 y 1990 fue del 8,0%. Hasta la fecha, la supervivencia a cinco años después del tratamiento agresivo que incluye la resección macroscópica del tumor sigue siendo inferior al 10%. A tenor de lo anterior, queda patente la necesidad de nuevos métodos terapéuticos eficaces.
- El grado de indiferenciación de las células tumorales del glioblastoma es el más elevado de todos los tumores cerebrales, lo que explica su alto potencial de migración y proliferación y su elevada invasividad y, por ende, su pronóstico funesto.

 Los glioblastomas provocan la muerte por el crecimiento rápido, agresivo e infiltrante que demuestran en el cerebro. El crecimiento infiltrante es el responsable del carácter inoperable de estos tumores. Los glioblastomas también son relativamente resistentes a la radioterapia y la quimioterapia, por lo que la recurrencia postratamiento es elevada. Además, la respuesta inmunitaria contra las células neoplásicas resulta claramente ineficaz a la hora de lograr su erradicación total después de la resección y la radioterapia.
- El glioblastoma se clasifica en primario (*de novo*) y secundario dependiendo de las diferencias en el mecanismo génico de la transformación maligna que experimentan los astrocitos indiferenciados o las células precursoras gliales. El glioblastoma secundario afecta a personas jóvenes menores de 45 años. A lo largo de 4 o 5 años, en promedio, el glioblastoma secundario evoluciona de un astrocitoma de bajo grado a un astrocitoma indiferenciado. Por el contrario, el glioblastoma primario afecta sobre todo a personas más mayores, con una media de edad de 55 años. Por norma general, el glioblastoma primario aparece como un glioblastoma fulminante caracterizado por la progresión del tumor en 3 meses desde el estado sin anomalías clínicas ni patológicas (Pathology and Genetics of the Nervous Systems, 29-39 (IARC Press, Lyon, Francia, 2000)).
- El glioblastoma migra a lo largo de los nervios mielinizados y se disemina ampliamente por el sistema nervioso central. En la mayoría de casos, el tratamiento quirúrgico solo consigue un limitado efecto terapéutico sostenible. Las células del glioma maligno eluden la detección por el sistema inmunitario del anfitrión mediante la producción de agentes inmunodepresores que alteran la proliferación de los linfocitos T y la producción por parte de estos de la citocina inmunoestimulante IL-2.
- Las neoplasias intracraneales pueden surgir en cualquiera de las estructuras o tipos celulares del SNC: encéfalo, meninges, glándula pituitaria, cráneo, e incluso tejido embrionario residual. La incidencia anual total de tumores cerebrales primarios en Estados Unidos es de 14 casos por 100. 000. Los tumores cerebrales primarios más frecuentes son los meningiomas, que representan el 27% de los tumores cerebrales primarios, y los glioblastomas, que suponen otro 23% (los glioblastomas suponen el 40% de los tumores cerebrales malignos en los adultos). Muchos de esos tumores son agresivos y presentan un alto grado. En la población pediátrica los tumores cerebrales primarios son los tumores sólidos más frecuentes y la segunda causa de muerte por cáncer después de la leucemia.
- A día de hoy prosigue la búsqueda de un tratamiento eficaz contra el glioblastoma. Para combatir tales células neoplásicas se está estudiando la inmunoterapia, o el tratamiento basado en el reclutamiento del sistema inmunitario. Los primeros resultados alentadores en el tratamiento con inmunoterapia de los pacientes aquejados por el glioblastoma los obtuvo Northwest Biotherapeutics con «DCVax Brain», una vacuna celular que emplea células dendríticas procedentes del paciente cargadas con lisados de células tumorales autólogas, y con Celldex, a base de un péptido del EGFRvIII destinado

a estimular respuestas de CTL específicos de antígeno; con ambos se apreció una mediana del tiempo de supervivencia más prolongada que las medianas de supervivencia obtenidas con el tratamiento convencional (Heimberger et al., 2006).

Carcinoma colorrectal

- Según la Sociedad Americana contra el Cáncer (*American Cancer Society*), el cáncer colorrectal (CCR) es el tercer tipo de cáncer más habitual en Estados Unidos puesto que afecta a más de 175. 000 nuevos pacientes cada año. En Estados Unidos, Japón, Francia, Alemania, Italia, España y Reino Unido el número de pacientes afectados supera los 480. 000. Ello lo convierte en una de las principales causas de muerte por cáncer en los países industrializados. La supervivencia relativa a 1 y 5 años de los enfermos de cáncer colorrectal asciende al 84% y el 64%. Pasados los cinco años, la supervivencia sigue descendiendo hasta el 57% al cabo de diez años del diagnóstico. Cuando el cáncer colorrectal se detecta en un estadio inicial y localizado la supervivencia a 5 años es del 90%, pero sólo el 39% de los casos se detectan en ese estadio, principalmente por el escaso alcance de los programas de detección sistemática. Cuando el cáncer alcanza dimensiones regionales y afecta ya a órganos adyacentes o ganglios linfáticos la supervivencia a 5 años disminuye hasta el 68%. Y en el caso de las personas con metástasis a distancia la supervivencia a 5 años vista se reduce al 10%.
- Las investigaciones sugieren que el cáncer colorrectal tiene su origen en la interacción entre factores hereditarios y ambientales. En la mayor parte de los casos los pólipos adenomatosos parecen ser los precursores de los tumores colorrectales, aunque el proceso de transición puede durar muchos años. El principal factor de riesgo del cáncer colorrectal es la edad, ya que el 90% de los casos se diagnostican a partir de los 50 años. Otros factores de riesgo referidos por la *American Cancer Society* son el consumo de alcohol, la alimentación rica en grasas o carnes rojas y una ingesta insuficiente de frutas y verduras. La incidencia sigue aumentando especialmente en zonas como Japón, donde como posibles causas se barajan la adopción de la alimentación de estilo occidental, con la ingesta excesiva de grasas y carne y la reducción del consumo de fibra. Con todo, la incidencia no aumenta al mismo ritmo que en el pasado, lo cual se atribuye al aumento de las exploraciones preventivas y a la extirpación de los pólipos, que de lo contrario se habrían convertido en tumores malignos.
- A semejanza de la mayoría de los tumores sólidos el tratamiento de primera línea consiste en cirugía, aunque sus ventajas siguen estando limitadas a los pacientes en fase inicial y una parte importante de los casos se diagnostica cuando la enfermedad ya se encuentra en fases avanzadas. El tratamiento de referencia contra el cáncer colorrectal avanzado consiste en regímenes de quimioterapia basados en el fluorouracilo. Los protocolos denominados FOLFOX (leucovorina/5-FU más oxaliplatino en infusión) y FOLFIRI (irinotecán y leucovorina en bolo y 5-FU en infusión continua) constituyen la mayor parte de tales regímenes.
 - La introducción de los citotóxicos de tercera generación como el irinotecán y el oxaliplatino ha renovado las esperanzas de lograr mayor eficacia, pero el pronóstico sigue siendo relativamente malo y el índice de supervivencia suele rondar generalmente los 20 meses cuando la enfermedad es metastásica. Por tanto, sigue existiendo una importante necesidad de mejorar los resultados contra la enfermedad.
- Recientemente ha aparecido una nueva generación de medicamentos, agentes dirigidos contra moléculas, como, por ejemplo, Avastin® (bevacizumab) y Erbitux® (cetuximab), y cerca de 40 compuestos contra diferentes estadios del cáncer colorrectal se hallan en las últimas etapas de desarrollo clínico. Las combinaciones de varios de estos compuestos aumentan las posibles opciones de tratamiento que cabe esperar en el futuro. La gran mayoría de las sustancias se encuentra en la fase II de desarrollo clínico, siendo el receptor del factor de crecimiento epidérmico (EGFR) la diana de la mayor parte de ellos, puesto que alrededor del 80% de los pacientes afectados por el cáncer colorrectal presentan regulada al alza la expresión de dicho receptor.
 - En la actualidad se están efectuando ensayos clínicos con pacientes en estadio II que combinan la quimioterapia con los anticuerpos monoclonales (AcM) recientemente autorizados (cetuximab + irinotecán o FOLFOX4; bevacizumab en monoterapia o con FOLFOX4). Se prevén períodos de observación de tres o cuatro años para disponer de resultados estadísticamente significativos de dichos ensayos.
 - Los anticuerpos monoclonales (AcM) que actualmente se utilizan en oncología ofrecen en general buenas garantías de no interferir con la inmunoterapia activa. De hecho, existen datos preclínicos (GABRILOVICH 1999) y clínicos que apuntan a que la eliminación del VEGF (mediante el bevacizumab) contribuye de modo positivo a la activación de los linfocitos T por medio de las células dendríticas (Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, Clay T, Morse MA. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother. 2008 Jan 10).

Carcinoma de próstata y otros tumores

45

50

Con una cifra estimada de 27.050 fallecimientos en 2007, el cáncer de próstata es la principal causa de muerte por cáncer en varones. Aunque los índices de deceso se han reducido entre la población blanca y afroamericana desde principios de

los 90, el nivel registrado entre los varones afroamericanos duplica con creces el de los hombres de raza blanca. El cáncer de próstata es el más diagnosticado en los varones. Por motivos que siguen sin estar claros, la incidencia es significativamente mayor entre los varones afroamericanos que entre los de raza blanca. La incidencia del cáncer de próstata ha cambiado notablemente durante los últimos 20 años: experimentó un rápido incremento entre 1988 y 1992 para reducirse drásticamente entre 1992 y 1995 y volvió a repuntar ligeramente desde 1995. Estas tendencias reflejan en gran parte el aumento de los programas de detección del cáncer de próstata mediante el análisis sanguíneo del antígeno específico de la próstata (PSA). El moderado incremento de la incidencia acaecido durante la última década probablemente pueda atribuirse a la generalización del reconocimiento preventivo del PSA entre los varones menores de 65 años. La incidencia del cáncer de próstata se ha estabilizado entre los mayores de 65 años. Los índices marcaron su máximo entre los hombres de raza blanca en 1992 (237,6 por cada 100.000 varones) y en 1993 entre los varones afroamericanos (342,8 por cada 100.000 varones).

El tratamiento del cáncer de próstata puede implicar la espera en observación, cirugía, radioterapia, ultrasonidos focalizados de alta intensidad (HIFU), quimioterapia, hormonoterapia o cierta combinación de los anteriores. La mejor opción depende de la fase de la enfermedad, de la escala Gleason y del nivel de PSA. Otros factores importantes incluyen la edad del varón, el estado general de salud y su actitud frente a los posibles tratamientos y los posibles efectos secundarios. Puesto que todos los tratamientos pueden provocar importantes efectos secundarios, como, por ejemplo, disfunción eréctil e incontinencia urinaria, los debates sobre dichos tratamientos suelen centrarse en equilibrar los objetivos de la terapia y las posibles alteraciones en el estilo de vida.

Cuando el cáncer se ha extendido fuera de la glándula prostática, las opciones de tratamiento cambian significativamente, por lo que la mayor parte de los médicos que tratan el cáncer de próstata utiliza una serie de nomogramas para pronosticar la probabilidad de la propagación. Los tratamientos consistentes en la espera en observación, HIFU, radioterapia, criocirugía y cirugía suelen ofrecerse a los varones cuyo cáncer permanece confinado en la próstata. La terapia hormonal y la quimioterapia suelen reservarse para los casos en que la enfermedad se ha extendido fuera de la próstata, aunque hay excepciones: la radioterapia puede utilizarse para algunos tumores avanzados y la terapia hormonal se emplea para algunos tumores en fase inicial. La crioterapia, la terapia hormonal y la quimioterapia también pueden ofrecerse si el tratamiento inicial falla y el cáncer avanza.

En un número importante de pacientes con carcinoma de próstata que son sometidos a prostatectomía radical por la sospecha clínica de que el crecimiento sigue limitado al órgano, el análisis histológico confirmatorio de la preparación quirúrgica revela que el tumor está extendido a nivel local y se propaga fuera de los límites del órgano. Estos pacientes presentan un elevado riesgo de recidiva local precoz, normalmente detectable por un incremento de los niveles de PSA que se traduce en una recaída bioquímica. Las opciones terapéuticas en esta situación incluyen la radioterapia externa y la ablación hormonal. No obstante, el valor de estos enfoques terapéuticos, especialmente en lo que concierne a prolongar la supervivencia del paciente a largo plazo, no deben considerarse como probados. Además, deben tenerse en cuenta posibles complicaciones asociadas con el tratamiento, como, por ejemplo, el desarrollo de estenosis uretral (radioterapia), la pérdida de libido y la impotencia, el riesgo de reducción de las sales cálcicas del esqueleto que puede acarrear o agravar la osteoporosis y el notable incremento del riesgo de fracturas óseas patológicas (ablación hormonal).

Más del 90% de los casos de cáncer de próstata se descubren en los estadios local y regional. El índice de supervivencia relativa a 5 años de los pacientes diagnosticados en dichos estadios se aproxima al 100%. Durante los últimos 25 años, el índice de supervivencia a 5 años de todos los estadios combinados ha pasado del 69% a casi el 90%. Según los datos más recientes, la supervivencia relativa a 10 años es del 93%, mientras que a los 15 años es del 77%. Las espectaculares mejoras de la supervivencia, especialmente a 5 años, son atribuibles en parte a la mayor precocidad de los diagnósticos y a las mejoras del tratamiento. Con todo, la supervivencia desciende notablemente cuando el cáncer se ha extendido a otros tejidos y órganos.

Cáncer de pulmón

5

10

15

30

35

40

- Se calcula que en 2007 se diagnosticarán 210.000 nuevos casos en Estados Unidos, cifra que supone en torno al 15% de los diagnósticos de cáncer. La incidencia está cayendo notablemente entre los hombres, desde un máximo de 102 casos por cada 100.000 varones en 1984 hasta 78,5 en 2003. En las mujeres está estabilizándose tras un largo período de incremento. Clínicamente el cáncer de pulmón se divide, a efectos de tratamiento, en dos grupos: el carcinoma microcítico de pulmón (13%) y el no microcítico (87%).
- El cáncer de pulmón aúna la mayor parte de fallecimientos relacionados con el cáncer, tanto en hombres como en mujeres. Las previsiones para 2007 cifraban el número de fallecimientos en 160. 390, lo cual supone en torno al 29% de todas las muertes causadas por el cáncer.
- Desde 1987 mueren cada año más mujeres por el cáncer de pulmón que por el cáncer de mama. La tasa de mortalidad en la población masculina ha seguido cayendo notablemente entre 1991 y 2003, a un ritmo aproximado del 1,9% por año.

 La mortalidad por cáncer de pulmón entre las mujeres está estabilizándose, tras haber experimentado un aumento

incesante durante varias décadas. Estas tendencias en la mortalidad por cáncer de pulmón reflejan el descenso del tabaquismo durante los últimos 30 años.

Las opciones de tratamiento vienen determinadas por el tipo (microcítico o no) y la fase del cáncer, e incluyen cirugía, radioterapia, quimioterapia y terapias biológicas dirigidas, como bevacizumab (Avastin®) y erlotinib (Tarceva®). La cirugía suele ser el tratamiento de elección para los cánceres localizados. Algunos estudios recientes indican que la tasa de supervivencia del cáncer de pulmón no microcítico en fase inicial mejora si se aplica quimioterapia tras la cirugía. Como la enfermedad acostumbra a estar extendida cuando se descubre, suele recurrirse a la radioterapia y la quimioterapia, a veces en combinación con la cirugía. La quimioterapia sola o combinada con radiación es el tratamiento elegido habitualmente para el carcinoma microcítico de pulmón. Con este régimen un alto porcentaje de pacientes experimentan remisión, que en algunos casos es duradera.

El índice de supervivencia relativa para el cáncer de pulmón después de 1 año se ha incrementado ligeramente desde el 37% en 1975-1979 hasta el 42% en 2002, en gran medida gracias a las mejoras en las técnicas quirúrgicas y las terapias combinadas. No obstante, el índice combinado de supervivencia a 5 años para todos los estadios es tan solo del 16%. El índice de supervivencia es del 49% en los casos que son detectados cuando la enfermedad aún está localizada. Pero solo el 16% de los cánceres de pulmón se diagnostica en este estadio inicial.

EP 1 760 089 Al da a conocer péptidos asociados a tumores que se unen a moléculas del MHC I o del MHC II y su uso en una vacuna contra el cáncer. El objeto de la presente reivindicación 1 difiere en que se reivindica un péptido que comprende el péptido con la SEQ ID N.º 1 y que posee una longitud total de entre 9 y 16 aminoácidos.

Así pues, sigue existiendo la necesidad de nuevas opciones terapéuticas eficaces y seguras para el glioblastoma, el tumor de próstata, cáncer de mama, cáncer de esófago, cáncer colorrectal, carcinoma de células renales claras, cáncer de pulmón, del SNC, cáncer de ovario, melanoma, cáncer de páncreas, carcinoma epidermoide, leucemia y meduloblastoma, así como para otros tumores que muestran una sobreexpresión de survivina y/o de las otras proteínas de la presente invención, de forma que se mejore el bienestar de los pacientes sin utilizar quimioterapia u otros fármacos que puedan provocar efectos secundarios graves.

25 Resumen de la invención

5

10

15

En un primer aspecto de la misma, la presente invención se refiere a un péptido que comprende una secuencia de aminoácidos acorde con la SEQ ID N.º 1, en que dicho péptido tiene una longitud total de entre 9 y 16 aminoácidos. Preferentemente, dicho péptido consta de la secuencias de aminoácidos acorde con la SEQ ID N.º 1.

En un segundo aspecto de la misma, la presente invención se refiere a un ácido nucleico, que codifica un péptido conforme a la presente invención o un vector de expresión capaz de expresar dicho ácido nucleico.

En un tercer aspecto de la misma, la presente invención se refiere a una célula hospedadora que comprende el ácido nucleico o el vector de expresión acorde con la presente invención, en que dicha célula hospedadora es preferiblemente una célula presentadora de antígeno, en particular una célula dendrítica o célula presentadora de antígeno.

- En un cuarto aspecto de la misma, la presente invención se refiere a un método *in vitro* para producir linfocitos T citotóxicos (CTL) activados, el cual comprende la puesta en contacto en condiciones *in vitro* de CTL con moléculas MHC de clase I o II humanas cargadas con antígeno expresadas en la superficie de una célula presentadora de antígeno o un constructo artificial que imite a una célula presentadora de antígeno durante un período de tiempo suficiente para activar dichos CTL de una manera específica de antígeno, siendo dicho antígeno un péptido conforme a la presente invención.
- En un quinto aspecto de la misma, la presente invención se refiere al uso de un péptido acorde con la presente invención, la célula acorde con la presente invención, o un linfocito T citotóxico activado producido conforme a la presente invención para el uso en el tratamiento del cáncer, en que dicho medicamento es preferentemente una vacuna. Preferentemente, dicho cáncer es seleccionado del grupo consistente en astrocitoma, astrocitoma pilocítico, tumor neuroepitelial disembrioplástico, oligodendrogliomas, ependimoma, glioblastoma multiforme, gliomas mixtos, oligoastrocitomas, meduloblastoma, retinoblastoma, neuroblastoma, germinoma, teratoma, gangliogliomas, gangliocitoma, gangliocitoma central, tumores neuroectodérmicos primitivos (PNET, p. ej. meduloblastoma, meduloepitelioma, neuroblastoma, retinoblastoma, ependimoblastoma), tumores del parénquima pineal (p. ej. pineocitoma, pineoblastoma), tumores de células ependimarias, tumores del plexo coroideo, tumores neuroepiteliales de origen incierto (p. ej. gliomatosis cerebral, astroblastoma), glioblastoma, tumor de próstata, cáncer de mama, cáncer de esófago, cáncer de colon, cáncer colorrectal, carcinoma de células renales, carcinoma de células renales claras, cáncer de pulmón, del SNC, ovario, melanoma, cáncer de páncreas, carcinoma epidermoide, leucemia y meduloblastoma.

Un sexto aspecto de la presente invención se refiere a un equipo, que comprende: (a) un envase que contiene una composición farmacéutica que contiene el péptido conforme a la presente invención, o la célula conforme a la presente

invención, o el linfocito T citotóxico activado conforme a la presente invención; (b) un segundo envase que contiene un diluyente o solución de reconstitución para la formulación liofilizada; y (c) instrucciones para (I) el uso de la solución o (II) la reconstitución y/o el uso de la formulación liofilizada.

Se da a conocer un método para producir un anticuerpo recombinante que se une específicamente a un complejo mayor de histocompatibilidad humano (MHC) de clase I que está formando un complejo con un antígeno restringido por HLA, comprendiendo dicho método: La inmunización de un mamífero no humano genéticamente modificado que comprenda células que expresen dicho complejo mayor de histocompatibilidad humano (MHC) de clase con una forma soluble de una molécula MHC de clase I unida a dicho antígeno restringido por HLA; el aislamiento de moléculas de ARNm a partir de células productoras de anticuerpos de dicho mamífero no humano; la producción de una fagoteca que contenga moléculas proteicas codificadas por dichas moléculas de ARNm; y el aislamiento de al menos un fago de dicha fagoteca, en que al menos ese fago contenga dicho anticuerpo capaz de unirse específicamente al citado complejo mayor de histocompatibilidad humano (MHC) de clase I unido con dicho antígeno restringido por HLA.

En un octavo aspecto de la misma, la presente invención se refiere a un anticuerpo que es específico contra el complejo MHC/Péptido del MHC con un péptido consistente en la SEQ ID N.º 1, en que el anticuerpo es preferiblemente un anticuerpo policional, un anticuerpo monoclonal y/o un anticuerpo quimérico.

Resumen de la invención

15

25

30

35

Breve descripción de las figuras

La Figura 1 muestra los espectros de masas obtenidos en tándem con la cromatografía de líquidos—ESI que identifican a los péptidos asociados a tumor (TUMAP) IGF2BP3-001 de la muestra de glioblastoma GB6010 que fueron presentados por una molécula MHC de clase I de manera restringida.

La Figura 2 muestra el perfil de expresión de los ARNm de los genes de interés dados a conocer que aparecen fuertemente sobreexpresados en muestras de glioblastoma. La expresión de estes genes es nula o ínfima en los tejidos normales, pero es muy elevada en muestras de glioblastoma. Se exponen las expresiones relativas del ARNm en varios tejidos normales y en muestras individuales de glioblastoma multiforme (GBM) medidas con un análisis con micromatrices de ADN («chips génicos»). Los valores son relativos con respecto a los niveles de expresión en el riñón normal (valores siempre ajustados arbitrariamente a 1,0). Los valores correspondientes a los tejidos normales se obtuvieron con conjuntos de ARNm comerciales. Las letras entre corchetes son los «indicadores de detección» dados por el software de análisis. El «indicador de detección» señala si un transcrito se ha detectado específicamente en la muestra o si no se ha podido observar ninguna detección significativa. Puede tener los valores «P» (presente), «A» (ausente) o «M» (detección marginal).

La Figura 3 expone el análisis de los tetrámeros resultantes de la proliferación estimulada con microesferas de linfocitos CD8+ específicos de CSP-001 y de NLGN4X-001 obtenidos de la sangre periférica de un donante sano. 1 x 10⁶ células mononucleares de sangre periférica (PBMC) enriquecidas con CD8+ por pocillo se estimularon semanalmente con microesferas acopladas con anti-CD28 más antígeno tumoral A*0201/CSP-001 en alta densidad (panel izquierdo) o anti-CD28 más antígeno tumoral A*0201/NLGN4X-001 en alta densidad (panel derecho). Después de tres estimulaciones *in vitro*, todas las células se tiñeron con anticuerpo CD8 FITC, y con tetrámeros de A*0201/CSP-001 y A*0201/NLGN4X-001 marcados por fluorescencia. Las células se seleccionan entre los linfocitos CD8+; las cifras representan el porcentaje de células hallado en el cuadrante indicado entre los linfocitos CD8+.

La Figura 4 muestra la afinidad de los péptidos de HLA de clase I dados a conocer hacia la molécula del MHC codificada por el alelo HLA-A*0201. Las constantes de disociación (K_D) de los TUMAP de HLA de clase I de la invención y del péptido de control HBV-001 (con potente afinidad hacia el alelo A*02) se midieron con un ensayo de replegamiento del MHC basado en un ELISA.

Descripción detallada de la invención

En la presente memoria todos los términos corresponden a la definición indicada a continuación, salvo en los casos en que se indique otra cosa.

El término «péptido» designa aquí una serie de residuos de aminoácidos conectados entre sí típicamente mediante enlaces peptídicos entre los grupos aminoalfa y carbonilo de los aminoácidos adyacentes. Los péptidos tienen normalmente 9 aminoácidos de longitud, pero pueden tener solo 8 aminoácidos de longitud o hasta 16, o bien 10, 11, 12, 13, 14 o 15 aminoácidos de largo.

50 El término «oligopéptido» designa aquí una serie de residuos de aminoácidos conectados entre sí típicamente mediante enlaces peptídicos entre los grupos aminoalfa y carbonilo de los aminoácidos adyacentes. La longitud del oligopéptido no

es crucial en la invención, siempre que se mantenga el epítopo o epítopos adecuados. Los oligopéptidos suelen tener una longitud inferior a unos 30 aminoácidos y mayor de 14, aproximadamente.

El término «polipéptido» designa una serie de residuos de aminoácidos conectados entre sí típicamente por enlaces peptídicos entre los grupos aminoalfa y carbonilo de los aminoácidos adyacentes. La longitud del polipéptido no es crucial para la invención, siempre que se mantengan los epítopos correctos. En contraste con los términos «péptido» y «oligopéptido», el término «polipéptido» se refiere a las moléculas de más de unos 30 residuos de aminoácidos de longitud.

5

Un péptido, oligopéptido, proteína o polinucleótido que codifica dicha molécula es «inmunogénico» (y, por lo tanto, un «inmunógeno» en la presente invención), si es capaz de inducir una respuesta inmunitaria. En el caso de la presente invención, la inmunogenicidad se define más específicamente como la capacidad para desatar una respuesta por parte de los linfocitos T. Por lo tanto, un «inmunógeno» sería una molécula que es capaz de inducir una respuesta inmunitaria y, en el caso de la presente invención, una molécula capaz de inducir una respuesta de los linfocitos T.

Un «epítopo» de un linfocito T requiere un péptido corto que esté unido a un receptor MHC de clase I o clase II, formando un complejo ternario (cadena alfa de MHC de clase I, beta-2-microglobulina y péptido) que puede ser reconocido por un linfocito T que lleve un receptor de linfocito T que coincida y que se una al complejo MHC/péptido con la afinidad adecuada. 15 Los péptidos que se unen a moléculas MHC de clase I suelen tener una longitud de entre 8 y 14 aminoácidos, y más habitualmente de 9 aminoácidos. Los epítopos de linfocitos T que se unen a moléculas MHC de clase II suelen tener una longitud de entre 12 y 30 aminoácidos. En el caso de los péptidos que se unen a moléculas MHC de clase II, el mismo péptido y el epítopo del linfocito T correspondiente pueden compartir un segmento central común pero en cambio diferir 20 en la longitud total como consecuencia de secuencias de flanqueo de diferentes longitudes en dirección ascendente del extremo amino de la secuencia central y descendente con respecto a su terminal carboxílico, respectivamente. Los receptores MHC de clase II presentan una conformación más abierta; de la misma manera, los péptidos unidos a receptores MHC de clase II no se enclavan completamente en la estructura de la hendidura de unión al péptido de la molécula MHC de clase II, como ocurre con la hendidura de unión del péptido de la molécula MHC de clase I. Es de notar 25 que éste no es el caso para el péptido con arreglo a la SEQ ID N.º 1, puesto que pequeñas variaciones en la longitud del péptido ocasionan un gran descenso de la actividad (véase más abajo).

En el ser humano hay tres *locus* genéticos diferentes que codifican las moléculas MHC de clase I (las moléculas MHC del ser humano también se denominan antígenos leucocitarios humanos [HLA]): HLA-A, HLA-B y HLA-C. HLA-A*01, HLA-A*02 y HLA-A*11 son ejemplos de distintos alelos MHC de clase I que se pueden expresar a partir de estos *locus*.

- Tres locus diferentes del genoma humano albergan los genes MHC de clase II: HLA-DR, HLA-DQ y HLA-DP. Los receptores MHC de clase II son heterodímeros que constan de una cadena alfa y una beta, las cuales se enclavan en la membrana celular a través de una región transmembrana. HLA-DRB1*04 y HLA-DRB1*07 son dos ejemplos de diferentes alelos beta MHC de clase II que se sabe que están codificados en estos *locus*. Los alelos de clase II son muy polimorfos: por ejemplo, se han descrito varios cientos de alelos HLA-DRB1 distintos. Por tanto, a efectos terapéuticos y de diagnóstico sería muy deseable contar con un péptido que se uniese, con la afinidad adecuada, a varios receptores HLA de clase II distintos. Un péptido que se une a varias moléculas HLA de clase II distintas recibe el nombre de ligando promiscuo.
- En la presente memoria, la referencia a una secuencia de ADN incluye tanto ADN monocatenario como bicatenario. Por lo tanto, la secuencia específica, a menos que el contexto indique otra cosa, se refiere al ADN monocatenario de dicha secuencia, a la doble cadena formada por dicha secuencia con su complementaria (ADN bicatenario) y a la cadena complementaria de dicha secuencia. El término «región codificante» hace referencia a la porción de un gen que, o bien de forma natural o normal, codifica el producto de expresión de dicho gen en su ambiente genómico natural, por ejemplo, la región que codifica *in vivo* el producto de expresión natural del gen.
- La región codificante puede formar parte de un gen normal, mutado o alterado, o incluso puede provenir de una secuencia de ADN, o gen, sintetizada íntegramente en el laboratorio con métodos bien conocidos para los expertos en la síntesis de ADN.

El término «secuencia nucleotídica» hace referencia a un heteropolímero de desoxirribonucleótidos.

La secuencia nucleotídica que codifica un péptido, oligopéptido o polipéptido en particular puede ser natural o estar construida de forma sintética. Generalmente los segmentos de ADN que codifican los péptidos, polipéptidos y proteínas de esta invención se ensamblan con fragmentos de ADNc y oligonucleótidos cortos de enlace, o con una serie de oligonucleótidos, quedan como resultado un gen sintético capaz de expresarse en una unidad transcripcional recombinante que comprende elementos reguladores procedentes de un operón microbiano o vírico.

El término «producto de expresión» define el polipéptido o la proteína que es el producto natural de la traducción del gen y cualquier secuencia de ácidos nucleicos que codifiquen los equivalentes resultantes de la degeneración del código genético y, por tanto, que codifican el mismo aminoácido o aminoácidos.

El término «fragmento», cuando se refiere a una secuencia de codificación, define una porción de ADN que no comprende la región codificante completa, cuyo producto de expresión retiene esencialmente la misma actividad o función biológica que el producto de expresión de la región codificante completa.

El término «segmento de ADN» hace referencia a un polímero de ADN, en forma de un fragmento separado o como componente de un constructo de ADN mayor, que deriva de ADN aislado por lo menos una vez en una forma sustancialmente pura, es decir, exento de materiales endógenos contaminantes, y en una cantidad o concentración que permite la identificación, la manipulación y la recuperación del segmento y de sus secuencias nucleotídicas constituyentes mediante métodos bioquímicos estándar como, por ejemplo, mediante un vector de clonación. Dichos segmentos se suministran en forma de un marco de lectura abierto sin interrupciones por secuencias internas no traducidas, o intrones, que suelen estar presentes en los genes eucariotas. Las secuencias de ADN no traducidas pueden estar presentes corriente abajo (downstream) desde el marco de lectura abierto, donde no interfieren con la manipulación o la expresión de las regiones codificantes.

El término «cebador» define una secuencia corta de ácido nucleico que puede aparearse con una cadena de ADN y que proporciona un extremo 3'OH libre en el que una polimerasa de ADN puede comenzar la síntesis de una cadena de desoxirribonucleótidos.

El término «promotor» define una región de ADN implicada en la unión de la polimerasa de ARN para iniciar la transcripción.

El término «marco de lectura abierto (ORF)» designa una serie de tripletes que codifican aminoácidos sin ningún codón de terminación y que forman una secuencia (potencialmente) traducible en proteína.

El término «aislado» define el material que se extrae de su entorno original (por ejemplo, el entorno natural si ocurre de forma natural). Por ejemplo, un polinucleótido o un polipéptido natural presente en un animal vivo no está aislado, pero ese mismo polinucleótido o polipéptido lo estará si es separado de parte o de todos los materiales coexistentes en el sistema natural. Tales polinucleótidos podrán formar parte de un vector y/o tales polinucleótidos o polipéptidos podrán formar parte de una composición, y seguir estando aislados en dicho vector o composición puesto que estos no forman parte de su entorno natural.

Los polinucleótidos y los polipéptidos recombinantes o inmunógenos descritos de acuerdo con la presente invención también pueden presentarse en forma «purificada». El término «purificado» no implica pureza absoluta; más bien, se utiliza como definición relativa y puede incluir preparaciones altamente purificadas o preparaciones tan sólo parcialmente purificadas, tal y como los expertos en la materia entienden dichos términos. Por ejemplo, los clones individuales aislados de una genoteca de ADNc se han purificado de manera convencional hasta obtener una homogeneidad electroforética. Se contempla expresamente la purificación del material de inicio o del material natural hasta, al menos, un orden de magnitud; preferiblemente, dos o tres órdenes de magnitud; y, con mayor preferencia, cuatro o cinco órdenes de magnitud. Además, se contempla expresamente el polipéptido reivindicado que tiene una pureza de, preferiblemente, el 99,999%, o, al menos, del 99,99% o el 99,9%; e incluso convenientemente, del 99% por peso o mayor.

Los productos de expresión de los polipéptidos y los ácidos nucleicos descritos conforme a la presente invención, así como los vectores de expresión que contienen dichos ácidos nucleicos y/o dichos polipéptidos, pueden utilizarse en "forma enriquecida". Tal y como se usa aquí, el término «enriquecido» significa que la concentración del material es, al menos, unas 2, 5, 10, 100 o 1000 veces su concentración natural (por ejemplo), más ventajosamente del 0,01% en peso, y preferiblemente de al menos 0,1% aproximadamente en peso. También se contemplan preparaciones enriquecidas de alrededor del 0,5%, 1%, 5%, 10% y 20% en peso. Las secuencias, constructos, vectores, clones y otros materiales que comprenden la presente invención pueden utilizarse, según convenga, en su forma enriquecida o aislada.

El término «fragmento activo» define un fragmento que genera una respuesta inmunitaria(es decir, que posee actividad inmunógena) cuando se administra –solo u, opcionalmente, con un adyuvante adecuado– a un animal, que puede ser un mamífero como, por ejemplo, un conejo o un ratón, sin excluir a un ser humano; dicha respuesta inmunitaria adopta la forma de estimulación de una respuesta de linfocitos T en el animal receptor como, por ejemplo, el ser humano. De forma alternativa, el «fragmento activo» también se puede usar para inducir una respuesta de linfocitos T *in vitro*.

Tal y como se usan en la presente memoria, los términos «porción», «segmento» y «fragmento», cuando se utilizan en relación con los polipéptidos, hacen referencia a una secuencia continua de residuos, como residuos de aminoácidos, secuencia que es un subconjunto de una secuencia mayor. Por ejemplo, si un polipéptido se somete a un tratamiento con cualquiera de las endopeptidasas habituales, como la tripsina o la quimotripsina, los oligopéptidos resultantes de dicho tratamiento representarán porciones, segmentos o fragmentos del polipéptido inicial. Esto significa que cualquiera de esos

fragmentos, necesariamente y como parte de su secuencia de aminoácidos, va a contener un segmento, fragmento o porción que es sustancialmente idéntico, si no lo es exactamente, a una secuencia de las SEQ ID N.º 1 a 30, que corresponde a la estructura natural, o a las proteínas «precursoras» de las SEQ ID N.º 1 a 30. Utilizados en relación con los polinucleótidos, dichos términos se refieren a los productos generados por el tratamiento de dichos polinucleótidos con cualquiera de las endonucleasas habituales.

Conforme a la presente invención, el término «identidad porcentual» o «porcentaje idéntico», al referirse a una secuencia, significa que una secuencia se compara con una secuencia reivindicada o descrita después de alinear la secuencia que se va a comparar (la «secuencia comparada») con la secuencia descrita o reivindicada (la «secuencia de referencia»). La identidad porcentual se determina entonces con la siguiente fórmula:

10 Identidad porcentual = 100 [I -(C/R)]

5

15

25

30

donde C es el número de diferencias entre la secuencia de referencia y la secuencia comparada presentes en el tramo de alineación entre la secuencia de referencia y la secuencia comparada, donde:

- (I) cada base o aminoácido de la secuencia de referencia que no tiene una base o aminoácido alineados en la secuencia comparada y
 - (II) cada hueco (gap) de la secuencia de referencia y
- (III) cada base o aminoácido alineado de la secuencia de referencia que difiere de una base o aminoácido alineado de la secuencia comparada, constituye una diferencia;
- y R es el número de bases o aminoácidos de la secuencia de referencia presentes en el tramo de alineación con la secuencia comparada, y cualquier hueco creado en la secuencia de referencia también se contabiliza como una base o un aminoácido.
 - Si existe una alineación entre la secuencia comparada y la secuencia de referencia para la que la identidad porcentual, calculada como se ha especificado arriba, es aproximadamente igual o mayor que una identidad porcentual mínima especificada, entonces la secuencia comparada guarda la identidad porcentual mínima especificada con la secuencia de referencia, aunque puedan existir alineaciones en las que la identidad porcentual calculada arriba resulte menor que la identidad porcentual especificada.
 - El término «respuesta de linfocitos T» define la proliferación y la activación específicas de las funciones efectoras inducidas por un péptido *in vitro* o *in vivo*. En el caso de los linfocitos T citotóxicos (CTL) restringidos a MHC de clase I, las funciones efectoras pueden consistir en la lisis de células diana presentadoras naturales de péptido o bien sensibilizadas de manera repetida con un péptido o con un precursor del mismo; la secreción de citocinas, preferiblemente de interferón gamma, TNF-alfa o IL-2 inducida por péptido; la secreción de moléculas efectoras, preferiblemente granzimas o perforinas inducidas por péptido; o la desgranulación. En lo que respecta a los linfocitos T cooperadores restringidos a las MHC de clase II, las funciones efectoras pueden consistir en la secreción inducida por el péptido de citocinas, preferiblemente de IFN-gamma, TNF-alfa, IL-4, IL-5, IL-10 o IL-2, o la desgranulación inducida por el péptido. Las posibles funciones efectoras de los CTL y de los linfocitos T cooperadores no se limitan a esta lista.
- La estimulación de una respuesta inmunitaria depende de la presencia de antígenos que sean reconocidos como extraños por el sistema inmunitario del hospedador. El descubrimiento de la existencia de antígenos asociados a tumores ha abierto la posibilidad de utilizar el sistema inmunitario del hospedador para desencadenar una respuesta inmunitaria que es específica contra los antígenos expresados en la superficie de células tumorales y que a través de este mecanismo de acción sea capaz de inducir la regresión, paralice o frene el crecimiento del tumor. Actualmente se están explorando diversos mecanismos para aprovechar las defensas humorales y celulares del sistema inmunitario en la inmunoterapia contra el cáncer.
- Ciertos elementos de la respuesta inmunitaria celular son capaces de reconocer específicamente y de destruir las células tumorales. El aislamiento de linfocitos T citotóxicos (CTL) entre las células infiltradas en los tumores o en la sangre periférica hace pensar en que tales células desempeñan un papel importante en las defensas inmunitarias naturales contra el cáncer (Cheever et al., 1993; Zeh, III et al., 1999). A partir del análisis de 415 especímenes de pacientes aquejados de cáncer colorrectal, Galon et al. fueron capaces de demostrar que el tipo, la densidad y la localización de las células inmunitarias en el tejido tumoral son realmente mejores predictores de la supervivencia del paciente que la ampliamente utilizada estadificación TNM de los tumores (Galon et al., 2006).
- Las moléculas MHC de clase I presentan péptidos procedentes de la proteólisis de proteínas endógenas, DRiP y péptidos grandes. Las moléculas de MHC de clase II, presentes mayoritariamente en las células presentadoras de antígeno (APC) especializadas, presentan predominantemente péptidos de proteínas exógenas o transmembrana que son captadas por

las APC mediante endocitosis y después son procesadas por las mismas (Cresswell, 1994). Los complejos constituidos por péptidos y moléculas MHC de clase I son reconocidos por los linfocitos T CD8-positivos portadores del receptor de linfocito T (TCR) adecuado, mientras que los complejos formados por péptidos y moléculas MHC de clase II son reconocidos por los linfocitos T colaboradores CD4-positivos portadores del TCR apropiado. Es bien sabido que el TCR, el péptido y el MHC están presentes en una relación estequiométrica de 1:1:1.

5

40

Los linfocitos T cooperadores CD4-positivos desempeñan un papel importante en la inducción y el mantenimiento de respuestas eficaces por parte de los linfocitos T citotóxicos CD8-positivos (Wang and Livingstone, 2003; Sun and Bevan, 2003; Shedlock and Shen, 2003). Inicialmente, la sensibilización y la expansión de los CTL en los ganglios linfáticos está sustentada por los linfocitos T CD4+ (Schoenberger et al., 1998). Así pues, un mecanismo podría ser el direccionamiento de los linfocitos CD8+ vírgenes hacia el lugar donde tiene lugar la interacción funcional entre los linfocitos T CD4+ y las APC (Castellino et al., 2006). Por último, la generación de los linfocitos CD8+ de memoria funcionales depende casi siempre de la asistencia de los linfocitos T CD4+ (Sun and Bevan, 2003; Janssen et al., 2003). Por todas esas razones, la identificación de epítopos derivados de antígenos asociados a tumor (TAA) que sean reconocidos por los linfocitos T CD4-positivos reviste suma importancia para el desarrollo de medicamentos que estimulen una respuesta inmunitaria antitumoral (Kobayashi et al., 2002; Qin et al., 2003; Gnjatic et al., 2003). Los linfocitos T cooperadores generan en el seno del tumor un entorno de citocinas que es propicio para los CTL (Qin and Blankenstein, 2000; Mortara et al., 2006) y que atrae a las células efectoras, como, por ejemplo, los propios CTL, células NK, macrófagos y granulocitos (Marzo et al., 2000; Hwang et al., 2007).

- En ausencia de inflamación, la expresión de las moléculas MHC de clase II se circunscribe principalmente a las células del sistema inmunitario, en concreto a las células presentadoras de antígeno (APC) especializadas, como, por ejemplo, monocitos, células derivadas de monocitos, macrófagos y células dendríticas. En pacientes con cáncer se ha descubierto con sorpresa que las células tumorales expresan moléculas MHC de clase II (Dengjel et al., 2006).
- En modelos de mamífero como el ratón se ha demostrado que los linfocitos T CD4-positivos pueden inhibir la manifestación de los tumores sin el concurso de las células efectoras CTL (los linfocitos T CD8-positivos) a través de la inhibición de la angiogenia mediante la secreción de interferón gamma (IFN-γ) (Qin and Blankenstein, 2000). También ha sido propuesta la destrucción directa de las células tumorales por los linfocitos T CD4+ citotóxicos a través de linfotoxinas y granzima B (Penna et al., 1992; Littaua et al., 1992).
- Además, se ha demostrado que los linfocitos T CD4-positivos pueden contrarrestar la progresión tumoral mediante la inducción de respuestas de anticuerpos al reconocer péptidos de antígenos asociados a tumor presentados por moléculas 30 HLA de clase II (Kennedy et al., 2003).

A diferencia de lo que sucede con los péptidos asociados a tumor reconocidos por moléculas HLA de clase I, hasta la fecha el número descrito de ligandos de clase II derivados de antígenos asociados a tumor (TAA) es pequeño.

Dado que la expresión constitutiva de las moléculas HLA de clase II suele ser exclusiva de las células del sistema inmunitario (Mach et al., 1996), la posibilidad de aislar péptidos de clase II directamente de tumores primarios no se consideraba factible. Pero Dengjel et al. descubrieron varios epítopos de MHC de clase II en tumores (WO 2007/028574, EP 1 760 088 B1; (Dengjel et al., 2006).

Los antígenos que son reconocidos por los linfocitos T citotóxicos específicos del tumor, esto es, los epítopos, pueden ser moléculas derivadas de todo tipo de proteínas, tales como enzimas, receptores, factores de transcripción, etc. que son expresados y que, en comparación con células inalteradas del mismo origen, están regulados al alza en las células del tumor correspondiente.

La clasificación actual de los antígenos asociados a tumores (TAA) comprende los siguientes grupos principales (Novellino et al., 2005):

- 1. Antígenos cáncer-testículo: Los primeros TAA descubiertos que pueden ser reconocidos por linfocitos T pertenecen a esta clase (van der Bruggen et al., 1991), que inicialmente se denominó antígenos cáncer-testículo (CT) porque sus miembros se expresan en tumores humanos histológicamente diferentes y en los tejidos normales solo se encuentran en los espermatocitos/espermatogonias del testículo y ocasionalmente en la placenta. Como las células del testículo no expresan moléculas HLA de clase I y II, estos antígenos no pueden ser reconocidos por los linfocitos T de los tejidos normales y, por tanto, se consideran como específicos de tumor desde el punto de vista inmunológico. Ejemplos conocidos de antígenos CT son los miembros de la familia MAGE y el NY-ESO-1.
- 2. Antígenos de diferenciación: Estos TAA están presentes tanto en los tumores como en el tejido normal del que deriva el tumor; la mayoría se encuentran en melanomas y en melanocitos normales. Muchas de esas proteínas relacionadas con el linaje melanocítico participan en la biosíntesis de la melanina y no son específicas de tumor, lo que no impide que sean muy utilizadas en la inmunoterapia contra el cáncer. Algunos ejemplos son la tirosinasa y Melan-A/MART-1 en el melanoma y el PSA en el cáncer de próstata.

3. TAA sobreexpresados: Se han detectado genes que codifican TAA de amplia expresión en tumores histológicamente distintos y en numerosos tejidos normales, en general con niveles de expresión más bajos. Es posible que muchos de los epítopos procesados y posiblemente presentados por los tejidos normales lo sean por debajo del límite necesario para ser reconocidos por los linfocitos T, pero que la sobreexpresión por parte de las células tumorales rompa la tolerancia vigente hasta ese momento y desencadene la respuesta antitumoral. Ejemplos destacados de esta clase de TAA son Her-2/neu, survivina, telomerasa o WT1.

5

10

55

- 4. Antígenos específicos de tumor: Estos TAA únicos son fruto de mutaciones de genes normales (como β-catenina, CDK4, etc.). Algunos de esos cambios moleculares están relacionados con la transformación neoplásica y/o su progresión. Los antígenos específicos de tumor generalmente son capaces de inducir potentes respuestas inmunitarias sin riesgo de reacciones autoinmunitarias contra los tejidos normales. Por otro lado, casi siempre estos TAA solo son relevantes para el mismo tumor exacto en el que fueron identificados y normalmente no se encuentran en muchos otros tumores de su tipo.
- 5. TAA resultantes de modificaciones postraduccionales anormales: Estos TAA pueden surgir a partir de proteínas que no son específicas ni se sobreexpresan en los tumores, pese a lo cual aparecen asociados a tumores por procesos postraduccionales que se activan principalmente en los tumores. Ejemplos de este tipo surgen a raíz de patrones de glucosilación alterados que generan epítopos nuevos en tumores como MUC1 o fenómenos como el ayuste de proteínas durante la degradación, que en algunos casos pueden ser específicos de tumor (Hanada et al., 2004; Vigneron et al., 2004).
- 6. Proteínas de oncovirus: Estos TAA son proteínas virales que podrían desempeñar un papel crítico en el proceso oncogénico y que, como extrañas a causa de su origen no humano, pueden desencadenar una respuesta de los linfocitos T. Ejemplos de tales proteínas son las proteínas E6 y E7 del virus del papiloma humano de tipo 16, que se expresan en el carcinoma de cuello uterino.
- Para que las proteínas sean reconocidas por los linfocitos T citotóxicos como antígenos específicos o asociados a tumor y puedan ser empleadas como parte de un tratamiento, deben cumplir ciertos prerrequisitos. El antígeno debe ser 25 expresado principalmente por células tumorales y no por tejidos sanos normales o, de hacerlo, debe serlo en cantidades comparativamente pequeñas. Y no sólo es conveniente que el antígeno de interés esté presente únicamente en un tipo de tumor, sino que lo esté también en altas concentraciones (número de copias del péptido por célula). Los antígenos específicos de tumor y asociados a tumor proceden a menudo de proteínas que intervienen directamente en la transformación de una célula normal en una tumoral a causa de su función, por ejemplo, porque intervienen en el control 30 del ciclo celular o en la supresión de la apoptosis. Además, también las dianas ulteriores de las proteínas que son las causantes directas de la transformación pueden estar reguladas al alza y, por tanto, estar asociadas indirectamente al tumor. Tales antígenos asociados indirectamente a los tumores también pueden ser las dianas para una estrategia de vacunación (Singh-Jasuja et al., 2004). En ambos casos es esencial que la secuencia de aminoácidos del antígeno contenga epítopos, puesto que el péptido («péptido inmunogénico») derivado de un antígeno asociado a tumor debe 35 desencadenar una respuesta de los linfocitos T en condiciones in vitro o in vivo.

Básicamente, cualquier péptido capaz de unirse a una molécula de MHC puede actuar como un epítopo de linfocito T. Un prerrequisito para la inducción de una respuesta de linfocitos T *in vitro* o *in vivo* es la presencia de un linfocito T dotado del correspondiente TCR y la ausencia de tolerancia inmunitaria hacia ese epítopo en particular.

- Por consiguiente, los TAA son el punto de partida para el desarrollo de una vacuna antitumoral. Los métodos para identificar y caracterizar los TAA están basados, entre otros, en el uso de CTL que pueden aislarse de pacientes o de individuos sanos, o en la generación de perfiles de transcripción diferenciales o patrones de expresión peptídica diferenciales entre los tumores y los tejidos normales (Lemmel et al., 2004; Weinschenk et al., 2002).
- No obstante, la identificación de genes sobreexpresados o expresados selectivamente en tejidos tumorales o en estirpes de células tumorales humanas no aporta información precisa acerca del uso de los antígenos transcritos de esos genes en la inmunoterapia. Ello se explica porque solo una subpoblación individual de epítopos de esos antígenos resulta adecuada para aplicaciones de ese tipo, puesto que ha de haber un linfocito T con el TCR correspondiente y la inmunotolerancia hacia ese epítopo concreto ha de ser mínima o nula. Por tanto, es importante seleccionar sólo aquellos péptidos derivados de proteínas sobreexpresadas o selectivamente expresadas que sean presentados ligados a moléculas de MHC y que sean diana de linfocitos T funcionales. Un linfocito T funcional se define como un linfocito T que tras la estimulación con un antígeno específico puede sufrir una expansión clonal y ser capaz de ejecutar funciones efectoras («linfocito T efector»).
 - Los linfocitos T cooperadores desempeñan un papel importante en la coordinación de la función efectora de los CTL en la inmunidad antitumoral. Los epítopos reconocidos por los linfocitos T cooperadores que desencadenan una respuesta de los linfocitos T cooperadores del tipo T_{H1} apoyan las funciones efectoras de los linfocitos T citotóxicos CD8-positivos, que incluyen funciones citotóxicas dirigidas contra las células tumorales que muestran en su superficie complejos de MHC/péptido asociado a tumor. De esta forma, los epítopos de los péptidos asociados a tumores que son reconocidos

por los linfocitos T cooperadores, solos o en combinación con otros péptidos asociados a tumores, pueden servir como principios activos farmacéuticos en composiciones vacunales destinadas a estimular respuestas inmunitarias antitumorales.

- Dado que ambos tipos de respuesta, la dependiente de CD8 y la de CD4, contribuyen conjunta y sinérgicamente al efecto antitumoral, la identificación y caracterización de los antígenos asociados a tumor reconocidos por los CTL CD8+ (ligando: moléculas de MHC de clase I + epítopo peptídico) o por los linfocitos T cooperadores CD4-positivos (ligando: moléculas de MHC de clase II + epítopo peptídico) es importante para el desarrollo de vacunas antitumorales.
- A la luz de los efectos secundarios graves y los gastos que supone el tratamiento contra el cáncer es evidente la urgente necesidad de mejora de los métodos pronósticos y diagnósticos. Así pues, existe la necesidad de descubrir otros factores que puedan servir como biomarcadores para el cáncer en general y el glioblastoma en particular. Existe igualmente la necesidad de identificar factores que puedan ser utilizados en el tratamiento contra el cáncer en general y contra el glioblastoma en particular.
- Y es más, no existe ninguna pauta terapéutica pensada para los pacientes con cáncer de próstata que presentan recidiva bioquímica después de la prostatectomía radical, normalmente causada por tumor residual *in situ* que no ha sido extirpado en presencia de crecimiento localmente avanzado del tumor. Sería deseable contar con nuevas estrategias terapéuticas de menor morbilidad y similar eficacia terapéutica a las estrategias terapéuticas disponibles en estos momentos.
- La presente invención proporciona un péptido que es útil para el tratamiento del glioblastoma, del cáncer de próstata y de otros tumores. Este péptido fue directamente mostrado con técnicas de espectrometría de masas, que son presentados de forma natural por moléculas HLA en muestras de glioblastoma humano primario (véanse el ejemplo 1 y la figura 1), o en el caso de la SEQ ID N.º 26 predicha conforme al algoritmo de predicción SYFPEITHI (Rammensee et al., 1995) son ligandos promiscuos de los alelos HLA-DR HLA-DRB1*01, DRB1*03, DRB1*04, DRB1*11 y DRB1*15. A tenor de los datos anteriores y de las frecuencias de dichos alelos DRB1 frecuentes, se puede suponer que el 92% de las personas de raza blanca A*02-positivas expresan como mínimo un alelo DRB1 que se une al péptido acorde con la SEQ ID N.º 26.
- Se ha demostrado que el gen originario del cual derivan las SEQ ID N.º 26 a 30 el de la survivina aparece altamente sobreexpresado en el glioblastoma, el tumor de próstata, cáncer de mama, cáncer de esófago, cáncer colorrectal, carcinoma de células renales claras, cáncer de pulmón, del SNC, de ovario, melanoma (Tamm et al. 1998), cáncer de páncreas, carcinoma epidermoide, leucemia y meduloblastoma en comparación con los tejidos normales (véanse el ejemplo 2 y la figura 2) demostrando un alto grado de asociación del péptido con el tumor, es decir, que dichos péptidos aparecen claramente en el tejido tumoral pero no en los tejidos normales. El documento WO 2004/067023 describe péptidos restringidos a MHC de clase I derivados del antígeno asociado a tumores survivina, que son capaces de unirse a moléculas HLA de clase I con una alta afinidad.
- Los péptidos unidos a HLA pueden ser reconocidos por el sistema inmunitario, específicamente por los linfocitos T. Los linfocitos T pueden destruir las células que presentan el complejo HLA/péptido reconocido, p. ej., células tumorales de glioblastoma que presenten los péptidos derivados. Los linfocitos T colaboradores activados por los péptidos derivados de la survivina pueden inhibir la vascularización del tumor, pueden atraer a las células efectoras del sistema inmunitario y facilitar la sensibilización y la proliferación de los CTL, así como la respuesta sostenida de los linfocitos TCD8+.
- Todos los péptidos dados a conocer han demostrado ser capaces de estimular las respuestas de los linfocitos T (véanse el ejemplo 3 y la figura 3). Así pues, los péptidos son útiles para generar en un paciente una respuesta inmunitaria con la que destruir células tumorales. La respuesta inmunitaria se puede inducir en el paciente con la administración directa de los péptidos descritos o de sustancias precursoras adecuadas (p. ej., péptidos alargados, proteínas o ácidos nucleicos que codifiquen dichos péptidos), idealmente en combinación con un agente que potencie la inmunogenicidad (un adyuvante). Cabe esperar que la respuesta inmunitaria generada por esa vacunación terapéutica sea muy específica contra las células tumorales porque los tejidos normales no contienen los péptidos diana dados a conocer en un número comparable de copias, lo cual evita el riesgo de reacciones autoinmunitarias perjudiciales contra las células normales del paciente.

Las composiciones farmacéuticas pueden comprender los péptidos en forma libre o en forma de una sal farmacéuticamente aceptable.

Tal y como se utiliza en la presente memoria, «sal farmacéuticamente aceptable» se refiere a un derivado de los péptidos descritos en el que el péptido es modificado para obtener sales ácidas o básicas del agente. Por ejemplo, las sales ácidas se preparan a partir de la base libre (normalmente la forma neutra del fármaco posee un grupo –NH2 neutro) haciéndola reaccionar con un ácido adecuado. Ácidos adecuados para la preparación de sales ácidas incluyen tanto ácidos orgánicos, p. ej., ácido acético, ácido propiónico, ácido glicólico, ácido pirúvico, ácido oxálico, ácido málico, ácido malónico, ácido succínico, ácido maleico, ácido fumárico, ácido tartárico, ácido cítrico, ácido benzoico, ácido cinámico, ácido mandélico, ácido metanosulfónico, ácido etanosulfónico, ácido p-toluensulfónico, ácido salicílico y similares, como ácidos inorgánicos, como p. ej., ácido clorhídrico, ácido bromhídrico, ácido sulfúrico, ácido nítrico, ácido fosfórico y similares. A la inversa, la

preparación de sales básicas a partir de grupos ácidos que pueden estar presentes en un péptido se realiza empleando una base farmacéuticamente aceptable como hidróxido de sodio, hidróxido de potasio, hidróxido de amonio, hidróxido de calcio, trimetilamina o similares.

En una forma de realización especialmente preferida, las composiciones farmacéuticas comprenden los péptidos en forma de sales de ácido acético (acetatos) o ácido clorhídrico (cloruros).

Los péptidos pueden ser utilizados para generar y desarrollar anticuerpos específicos contra complejos MHC/péptido. Estos pueden ser usados como tratamiento, dirigir toxinas o sustancias radioactivas al tejido enfermo. Otro uso de estos anticuerpos puede ser el de dirigir radionúclidos contra el tejido enfermo con fines de diagnóstico de imagen como en la TEP. Este uso puede ayudar a detectar metástasis pequeñas o determinar el tamaño y la localización precisa de los tejidos enfermos.

La Tabla 1 muestra los péptidos dados a conocer, sus respectivas SEQ ID N.º, los alelos HLA a los que se unen cada uno de ellos y las proteínas originarias de las que pueden surgir tales péptidos. Reviste especial interés que el péptido conforme a la SEQ ID N.º 1 se una tanto a HLA-DR como a HLA-A*02, con lo que puede desencadenar dos respuestas distintas.

15 Tabla 1: Péptidos dados a conocer correspondientes a la SEQ ID N.º 1 de la presente invención

10

SEQ ID N.º	Código del péptido	Secuencia	Alelos HLA	Proteína(s) originaria(s)
1	NLGN4X-001	NLDTLMTYV	HLA-A*02	NLGN4X
2	SLCO1C1-001	YLIAGIISL	HLA-A*02	SLCO1C1
3	ACS-001	KIMERIQEV	HLA-A*02	ACSBG1
4	BCA-001	FLGDPPEKL	HLA-A*02	BCAN
5	BCA-002	ALWAWPSEL	HLA-A*02	BCAN
6	CHI3L1-010	TLYGMLNTL	HLA-A*02	CHI3L1
7	CLIP2-001	SLNELRVLL	HLA-A*02	CLIP2
8	DTNA-001	KLQDEAYQV	HLA-A*02	DTNA
9	EGFR-007	ALAVLSNYDA	HLA-A*02	EGFR
10	FABP7-001	LTFGDVVAV	HLA-A*02	FABP7
11	GFAP-001	NLAQDLATV	HLA-A*02	GFAP
12	GPR56-002	FLLSEPVAL	HLA-A*02	GPR56
13	GRI-001	NILEQIVSV	HLA-A*02	GRIA4
14	IGF2BP3-001	KIQEILTQV	HLA-A*02	IGF2BP3
15	MLC-001	SVVEVIAGI	HLA-A*02	MLC1
16	NES-001	GLQSQIAQV	HLA-A*02	NES
17	NES-002	SLQENLESL	HLA-A*02	NES
18	NES-003	FLFPGTENQEL	HLA-A*02	NES

19	NES-004	NLAEELEGV	HLA-A*02	NES
20	NR2E1-001	KIISEIQAL	HLA-A*02	NR2E1
21	NRCAM-001	GLWHHQTEV	HLA-A*02	NRCAM
22	PDPN-001	TLVGIIVGV	HLA-A*02	PDPN
23	TNC-001	AMTQLLAGV	HLA-A*02	TNC
24	TNC-002	QLLAGVFLA	HLA-A*02	TNC
25	CSP-001	TMLARLASA	HLA-A*02	CSPG4
26	BIR-002	TLGEFLKLDRERAKN	HLA-DR y	BIRC5/Survivina
			HLA-A*02	
27	BIR-002a	TLGEFLKLDRERAKD	HLA-DR	BIRC5/Survivina
28	BIR-002b	FTELTLGEF	HLA-A1	BIRC5/Survivina
29	BIR-002c	LMLGEFLKL	HLA-A2	BIRC5/Survivina
30	BIR-002d	EPDLAQCFY	HLA-B35	BIRC5/Survivina

Los anticuerpos de la presente invención pueden ser anticuerpos policionales, anticuerpos monocionales y/o anticuerpos quiméricos. También forman parte de la presente invención estirpes de células inmortales que producen un anticuerpo monocional.

5 Existe otro aspecto más de la presente invención que se refiere a un anticuerpo que se une específicamente a un complejo mayor de histocompatibilidad humano (MHC) de clase I que forma un compleio con un antígeno restringido por HLA (en lo sucesivo también denominado «anticuerpo específico de complejo») consistente en la SEQ ID N.º 1. Se da a conocer un método para producir un anticuerpo recombinante que se une específicamente a un complejo mayor de histocompatibilidad humano (MHC) de clase I que está formando un complejo con un antígeno restringido por HLA, 10 comprendiendo dicho método: La inmunización de un mamífero no humano genéticamente modificado que comprenda células que expresen dicho complejo mayor de histocompatibilidad humano (MHC) de clase I con una forma soluble de una molécula MHC de clase I unida a dicho antígeno restringido por HLA; el aislamiento de moléculas de ARNm a partir de células productoras de anticuerpos de dicho mamífero no humano; la producción de una fagoteca que contenga moléculas proteicas codificadas por dichas moléculas de ARNm; y el aislamiento de al menos un fago de dicha fagoteca, 15 en que al menos ese fago presente dicho anticuerpo capaz de unirse específicamente al citado complejo mayor de histocompatibilidad humano (MHC) de clase I o II unido con dicho antígeno restringido por HLA. Métodos pertinentes para la producción de tales anticuerpos y de complejos mayores de histocompatibilidad de clase I monocatenarios, así como de otras herramientas para la producción estos anticuerpos se revelan en WO 03/068201, WO 2004/084798, WO 01/72768, WO 03/070752, y en Cohen CJ, Denkberg G, Lev A, Epel M, Reiter Y. Recombinant antibodies with MHC-20 restricted, peptide-specific, T-cell receptor-like specificity: new tools to study antigen presentation and TCR-peptide-MHC interactions. J Mol Recognit. 2003 Sep-Oct;16(5):324-32.; Denkberg G, Lev A, Eisenbach L, Benhar I, Reiter Y. Selective targeting of melanoma and APCs using a recombinant antibody with TCR-like specificity directed toward a melanoma differentiation antigen. J Immunol. 2003 Sep 1;171(5):2197-207; y en Cohen CJ, Sarig O, Yamano Y, Tomaru U, Jacobson S, Reiter Y. Direct phenotypic analysis of human MHC class I antigen presentation: visualization, quantitation, and in situ 25 detection of human viral epitopes using peptide-specific, MHC-restricted human recombinant antibodies. J Immunol. 2003 Apr 15; 170(8):4349-61.

Preferiblemente el anticuerpo se une al complejo con una afinidad de unión inferior a 20 nanomolar, preferentemente a 10 nanomolar, lo cual se considera «específico» en el contexto de la presente invención.

El término «anticuerpo» se utiliza en la presente memoria en sentido amplio e incluye tanto anticuerpos policionales como monocionales. Además de las moléculas de inmunoglobulina intactas, el término «anticuerpos» también incluye fragmentos o polímeros de esas moléculas de inmunoglobulina y versiones humanizadas de moléculas de inmunoglobulina, siempre que posean alguna de las propiedades deseadas (p. ej., ser un anticuerpo específico de

complejo como el susodicho, administración de una toxina contra una célula cancerosa que exprese un gen marcador de glioblastoma con un nivel elevado, y/o inhibición de la actividad de un polipéptido marcador del cáncer, como la survivina) descritas en la presente memoria.

Los anticuerpos de la invención también se pueden fabricar con métodos consabidos. La persona versada en la técnica entiende que para generar los anticuerpos de la invención se pueden emplear tanto los polipéptidos marcadores del glioblastoma enteros como fragmentos de los mismos. El polipéptido necesario para generar un anticuerpo de la invención se puede purificar parcial o completamente de una fuente natural o se puede producir con técnicas de ADN recombinante.

Una persona versada en la técnica sabrá que la generación de dos o más conjuntos diferentes de anticuerpos monoclonales o policionales maximiza la probabilidad de obtener un anticuerpo dotado de la especificidad y la afinidad necesarias para el uso previsto (p. ej., ELISA, inmunohistoquímica, técnicas de imagen *in vivo*, tratamiento con inmunotoxinas). Los anticuerpos son analizados para buscar la actividad deseada con métodos conocidos, de acuerdo con el fin previsto para los anticuerpos (p. ej., ELISA, inmunohistoquímica, inmunoterapia, etc.; para más detalles sobre la generación y el análisis de anticuerpos, véase por ejemplo, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., 1988). Por ejemplo, los anticuerpos pueden ser analizados con pruebas ELISA, inmunotransferencia (*Western blot*), tinción inmunohistoquímica de cortes de tejido de glioblastoma congelados o fijados en formol. Después de la caracterización inicial *in vitro*, los anticuerpos destinados a uso terapéutico o diagnóstico *in vivo* se analizan con métodos de ensayo clínicos conocidos.

El término «anticuerpo monoclonal» tal y como se utiliza en la presente memoria se refiere a un anticuerpo obtenido a partir de una población notablemente homogénea de anticuerpos, es decir, los anticuerpos individuales que comprenden la población son idénticos excepto por mutaciones posiblemente naturales que pueden estar presentes en pequeño número. Los anticuerpos monoclonales de la presente memoria incluyen específicamente anticuerpos «quiméricos» en los que una parte de la cadena pesada y/o ligera es idéntica u homóloga a secuencias correspondientes en anticuerpos derivados de una especie concreta o pertenecientes a una clase o subclase concreta de anticuerpos, mientras que el resto de la cadena o cadenas es idéntica u homóloga a secuencias correspondientes en anticuerpos derivados de otras especies o pertenecientes a otra clase o subclase de anticuerpos, así como a fragmentos de tales anticuerpos, en tanto que exhiban la actividad antagonista deseada (N.º pat. de EE. UU. 4. 816. 567).

Los anticuerpos monoclonales de la invención se pueden preparar con métodos basados en hibridomas. En el método del hibridoma, un ratón u otro animal hospedador adecuado es vacunado con un agente inmunizante que estimula a los linfocitos para que produzcan o sean capaces de producir anticuerpos que se unan específicamente al agente inmunizante. Otra alternativa consiste en inmunizar los linfocitos *in vitro*.

30

55

Los anticuerpos monoclonales también se pueden fabricar con métodos de ADN recombinante, como los descritos en la Pat. de EE. UU. N.º 4. 816. 567. El ADN que codifica los anticuerpos monoclonales de la invención puede ser fácilmente aislado y secuenciado con procedimientos convencionales (p. ej., con sondas oligonucleotídicas capaces de unirse específicamente a los genes que codifican las cadenas pesadas y ligeras de anticuerpos de ratón).

Los métodos *in vitro* también son adecuados para la preparación de anticuerpos monovalentes. La digestión de anticuerpos para producir fragmentos de los mismos, en particular fragmentos Fab, se puede llevar a cabo con técnicas ordinarias conocidas por los expertos en la materia. Por ejemplo, la digestión se puede realizar con papaína. Ejemplos de la digestión con papaína aparecen descritos en WO 94/29348, publicada el 22. 12. 1994 y en la Pat. de EE. UU. N.º 4. 342. 566. La digestión de anticuerpos con papaína normalmente produce dos fragmentos de unión a antígeno idénticos llamados fragmentos Fab, cada uno dotado de un sitio de unión al antígeno, así como un fragmento residual Fc. El tratamiento con pepsina da como resultado un fragmento que tiene dos sitios de combinación con antígenos y todavía es capaz de reconocer antígenos de reactividad cruzada.

Los fragmentos de anticuerpo, estén unidos a otras secuencias o no, también pueden incluir inserciones, eliminaciones, sustituciones y otras modificaciones seleccionadas de regiones concretas o de residuos de aminoácidos específicos, siempre que la actividad de los fragmentos no se vea significativamente alterada o afectada respecto al anticuerpo o al fragmento de anticuerpo sin modificar. Estas modificaciones pueden ofrecer alguna propiedad adicional, como eliminar o añadir aminoácidos capaces de establecer puentes disulfuro para aumentar la biolongevidad, alterar las características de secreción, etc. En cualquier caso el fragmento de anticuerpo debe poseer una propiedad bioactiva, como actividad de unión, regulación de unión al dominio de unión, etc. Las regiones activas o funcionales del anticuerpo pueden ser identificadas por mutagénesis de una región específica de la proteína, seguida por la expresión y el análisis del polipéptido expresado. Tales métodos son obvios para toda persona versada en la técnica, y pueden incluir la mutagénesis dirigida del ácido nucleico que codifica el fragmento de anticuerpo.

Los anticuerpos de la invención también pueden comprender anticuerpos humanizados o anticuerpos humanos. Las formas humanizadas de anticuerpos no humanos (p. ej., de ratón) son inmunoglobulinas quiméricas, cadenas de inmunoglobulina o fragmentos quiméricos de las mismas (como Fv, Fab, Fab' u otras secuencias de unión a antígeno de los anticuerpos) que contienen una pequeña secuencia derivada de inmunoglobulinas no humanas. Los anticuerpos

humanizados incluyen inmunoglobulinas humanas (anticuerpo receptor) en las que los residuos de una región determinante de complementariedad (CDR) del receptor son sustituidos por residuos de una CDR de una especie no humana (anticuerpo donante) como ratón, rata o conejo que está dotada de la especificidad, la afinidad y la capacidad deseadas. En algunos casos, los residuos estructurales (FR) del fragmento Fv de la inmunoglobulina humana son sustituidos por residuos no humanos correspondientes. Los anticuerpos humanizados también pueden comprender residuos que no están presentes ni en el anticuerpo receptor ni en el CDR importado o en las secuencias estructurales. En general, el anticuerpo humanizado comprenderá casi la totalidad de al menos uno, y normalmente de dos dominios variables, en los que todas o casi todas las regiones CDR corresponderán a las de la inmunoglobulina no humana y todas o casi todas las regiones FR serán las de una secuencia consenso de la inmunoglobulina humana. El anticuerpo humanizado idealmente también comprenderá al menos una porción de una región constante de la inmunoglobulina (Fc), normalmente de una inmunoglobulina humana.

5

10

15

20

25

40

45

50

Los métodos para humanizar anticuerpos no humanos son bien conocidos en la técnica. En general, a un anticuerpo humanizado se le introducen uno o varios residuos de aminoácidos de origen no humano. Estos residuos de aminoácidos no humanos con frecuencia son denominados residuos «importados», que normalmente se extraen del dominio variable «importado». La humanización se puede llevar a cabo básicamente sustituyendo la o las secuencias CDR de roedor por las secuencias correspondientes de un anticuerpo humano. Por tanto, tales anticuerpos «humanizados» son anticuerpos quiméricos (Pat. EE. UU. N.º 4. 816. 567), en los que una parte notablemente más pequeña que un dominio variable humano intacto ha sido sustituida por la secuencia correspondiente de una especie no humana. En la práctica, los anticuerpos humanizados normalmente son anticuerpos humanos en los que se han sustituido algunos residuos CDR y posiblemente algunos residuos FR por residuos de sitios análogos de anticuerpos de roedor.

Se pueden emplear animales transgénicos (p. ej., ratones) que tras la inmunización sean capaces de producir un repertorio completo de anticuerpos humanos sin producir inmunoglobulinas endógenas. Por ejemplo, se ha descrito que la eliminación homocigota del gen de la región de unión de la cadena pesada del anticuerpo en ratones quiméricos y mutantes germinales provoca la inhibición completa de la producción endógena de anticuerpos. La transferencia de la matriz génica de la inmunoglobulina de la línea germinal humana a dichos ratones mutantes de la línea germinal dará como resultado la producción de anticuerpos humanos tras la exposición al antígeno. También se pueden producir anticuerpos humanos en fagotecas.

Los anticuerpos de la invención se administran preferiblemente a un sujeto incorporándolos en un vehículo farmacéuticamente aceptable. Normalmente a la formulación se le añade una cantidad apropiada de una sal farmacéuticamente aceptable para que sea isotónica. Ejemplos de vehículos farmacéuticamente aceptables son solución salina, solución de Ringer y solución de dextrosa. Es preferible que el pH de la solución esté aproximadamente entre 5 y 8, y más preferiblemente entre 7 y 7,5 aproximadamente. Otros vehículos incluyen preparaciones de liberación prolongada como matrices semipermeables de polímeros hidrofóbicos sólidos que contengan el anticuerpo, en matrices con forma modelada, p. ej., películas, liposomas o micropartículas. Para las personas versadas en la técnica será evidente que son preferibles ciertos vehículos dependiendo, por ejemplo, de la vía de administración y de la concentración del anticuerpo que se va a administrar.

Los anticuerpos se pueden administrar al sujeto, al paciente o a las células mediante inyección (intravenosa, intraperitoneal, subcutánea, intramuscular, etc.), o con otros métodos como la infusión que aseguren su liberación efectiva en el torrente sanguíneo. Los anticuerpos también se pueden administrar por vía intratumoral o peritumoral para ejercer un efecto terapéutico a la par sistémico y local. Se prefiere la inyección local o intravenosa.

Las dosis y pautas de administración más adecuadas se pueden determinar empíricamente; la toma de decisiones a este respecto forma parte de los conocimientos de la materia. Las personas versadas en la materia saben que la dosis de anticuerpos a administrar depende, por ejemplo, del sujeto que va a recibir al anticuerpo, la vía de administración, el tipo concreto de anticuerpo y de otros medicamentos que se le estén administrando. Antibodies in Human Diagnosis and Therapy, Haber et al., eds. Raven Press, Nueva York (1977) págs. 365-389. La dosis diaria típica de anticuerpo cuando se utiliza solo puede oscilar entre 1 µg/kg y 100 mg/kg de peso corporal o más por día, dependiendo de los susodichos factores. Tras la administración del anticuerpo como tratamiento contra el glioblastoma, su eficacia se puede evaluar de varios modos bien conocidos por el médico especialista. Por ejemplo, se puede controlar el tamaño, el número y/o la distribución del glioblastoma en el sujeto receptor del tratamiento utilizando técnicas de imagen oncológicas estándar. Todo anticuerpo administrado con fines terapéuticos que detenga el crecimiento del tumor, reduzca su extensión y/o impida la aparición de nuevos tumores en contraste con la evolución de la enfermedad si no se produjera la administración del anticuerpo, es un anticuerpo eficaz para el tratamiento del glioblastoma.

Los anticuerpos también se pueden utilizar para ensayos diagnósticos *in vivo*. En general, el anticuerpo se marca con un radionúclido (como ¹¹¹In, ⁹⁹Tc, ¹⁴C, ¹³¹I, ³P o ³⁵S) de modo que el tumor puede ser localizado con inmunogammagrafía.
En una forma de realización, anticuerpos o fragmentos de los mismos se unen a los dominios extracelulares de dos o más dianas BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN y el valor de afinidad (K_d) es inferior a 1x10 μM.

Los anticuerpos para el uso diagnóstico pueden ser marcados con sondas adecuadas para la detección a través de diversos métodos de imagen. Los métodos para la detección de sondas incluyen, entre otros, microscopía electrónica, confocal u óptica; resonancia magnética y espectroscopía; fluoroscopía, tomografía computadorizada y tomografía por emisión de positrones. Las sondas adecuadas incluyen, entre otras, de fluoresceína, rodamina, eosina y otros fluoróforos, radioisótopos, oro, gadolinio y otros lantánidos, hierro paramagnético, fluor-18 y otros radionúclidos emisores de positrones. Además, las sondas pueden ser bi o multifuncionales y ser detectables con más de uno de los métodos indicados. Estos anticuerpos pueden ser marcados directa o indirectamente con dichas sondas. La fijación de las sondas a los anticuerpos incluye el enlace covalente de la sonda, la incorporación de la sonda en el anticuerpo, y el enlace covalente de un compuesto quelante para la unión de la sonda, entre otros métodos consabidos en la disciplina. Para las técnicas de inmunohistoquímica, la muestra de tejido patológico puede ser reciente o congelada o puede estar incluida en parafina y fijada con un conservante como el formol.

5

10

50

La presente invención proporciona un péptido que comprende una secuencia de aminoácidos acorde con la SEQ ID N.º 1, en que dicho péptido tiene una longitud total de entre 9 y 16 aminoácidos. En una forma de realización preferida el péptido consiste en la secuencia de aminoácidos acorde con la SEQ ID N.º 1.

- El péptido de la invención tiene la capacidad de unirse a una molécula del complejo mayor de histocompatibilidad humano (MHC) de clase I.
- En la presente invención el término «homólogo» se refiere al grado de identidad entre las secuencias de dos secuencias de aminoácidos, es decir secuencias peptídicas o polipeptídicas. La susodicha «homología» se determina comparando las dos secuencias alineadas en condiciones óptimas con las secuencias a comparar. Las secuencias que se comparan en la presente memoria pueden tener una adición o eliminación (por ejemplo, un hueco o similar) en la alineación óptima de las dos secuencias. La homología de secuencia se puede calcular creando una alineación con el algoritmo ClustalW, por ejemplo, (Nucleic Acid Res., 22(22): 4673 4680 (1994). Bases de datos públicas proporcionan software para el análisis de secuencias, en concreto, Vector NTI, GENETYX y otras herramientas de análisis.
- También es posible que los epítopos de MHC de clase I, aunque suelen tener entre 8 y 10 aminoácidos de longitud, sean generados por el procesamiento de péptidos o proteínas más largos que incluyen el epítopo real. Se prefiere que los residuos que flanquean el epítopo de interés sean residuos que no afecten sustancialmente a la digestión proteolítica necesaria para exponer el epítopo durante el procesamiento.
- Se prefieren péptidos dotados de una secuencia central seleccionada del grupo consistente en la SEQ ID N.º 1 con extensiones de 1 a 4 aminoácidos, e incluso más preferentemente de 1 o 2 aminoácidos, en que los aminoácidos flanqueantes se pueden distribuir en cualquier proporción entre los extremos C-terminal y N-terminal (por ejemplo, se pueden añadir todos los aminoácidos flanqueantes a uno solo de los extremos, o se pueden repartir por igual entre ambos extremos o en cualquier otra proporción), siempre que el péptido siga siendo capaz de unirse a una molécula de HLA del mismo modo en que el citado péptido conforme a cualquiera de las SEQ ID N.º 1.
- Los aminoácidos flanqueantes también pueden reducir la velocidad de degradación del péptido in vivo de modo que la cantidad real de péptido disponible para los CTL sea superior en comparación con el péptido carente de aminoácidos flanqueantes, actuando así como un profármaco.
 - En consecuencia, la presente invención también proporciona péptidos en los que el péptido tiene una longitud total de entre 8 y 16 aminoácidos, esto es, 8, 9, 10, 11, 12, 13, 14, 15 o 16 aminoácidos.
- Por supuesto, el péptido conforme a la presente invención tendrá la capacidad para unirse a una molécula del complejo mayor de histocompatibilidad humano (MHC) de clase I. La unión de un péptido a un complejo MHC puede ser analizada mediante métodos conocidos en la técnica, como, por ejemplo, los descritos en la bibliografía para diferentes alelos de MHC de clase II (p. ej. (Vogt et al., 1994; Malcherek et al., 1994; Manici et al., 1999; Hammer et al., 1995; Tompkins et al., 1993; Boyton et al., 1998)).
- En una forma de realización particularmente preferida de la invención el péptido consiste en una secuencia de 45 aminoácidos conforme a la SEQ ID N.º 1.
 - No obstante, dichos segmentos pueden ser importantes para facilitar la introducción eficaz del péptido conforme a la presente invención en las células. En una forma de realización de la presente invención, el péptido es parte de una proteína de fusión que comprende los 80 aminoácidos N-terminales de la cadena invariable asociada al antígeno HLA-DR (p33, en lo sucesivo "li") tal y como aparece en el NCBI, número de acceso de GenBank X00497 (Strubin, M. et al 1984).

Además, el péptido o variante pueden ser modificados para mejorar la estabilidad y/o la unión a moléculas del MHC con el fin de desencadenar una respuesta inmunitaria más potente.

Enlaces no peptídicos son, por ejemplo: $-CH_2-NH$, $-CH_2S-$, $-CH_2CH_2-$, -CH=CH-, $-COCH_2-$, $-CH(OH)CH_2-$ y $-CH_2SO-$. La patente de Estados Unidos 4. 897. 445 proporciona un método para la síntesis en fase sólida de enlaces no peptídicos ($-CH_2-NH$) en cadenas polipeptídicas que implica la obtención de polipéptidos con procedimientos estándar y la síntesis del enlace no peptídico mediante la reacción de un aminoaldehído y un aminoácido en presencia de NaCNBH₃.

- 5 Un péptido que incluye enlaces no peptídicos es una forma de realización preferida de la invención. En general, los péptidos (al menos aquellos que contienen enlaces peptídicos entre los residuos de aminoácidos) pueden ser sintetizados utilizando la síntesis de péptidos en fase sólida por el método de Fmoc-poliamida, como muestra Lu et al. (1981) y las referencias que aparecen en el mismo. La protección provisional del grupo N-amino se consigue con el grupo 9fluorenilmetiloxicarbonilo (Fmoc). La escisión repetida de este grupo protector muy sensible al pH básico se lleva a cabo 10 con piperidina al 20% en N,N-dimetilformamida. Los grupos funcionales de las cadenas laterales se podrían proteger si se transformaran en éteres de butilo (en el caso de la serina, treonina y tirosina), ésteres de butilo (en el caso del ácido glutámico y aspártico), derivados butiloxicarbonílicos (en el caso de la lisina y la histidina), derivados tritilados (en el de la cisteína) y derivados 4-metoxi-2,3,6-trimetilbencenosulfonílicos (en el de la arginina). Cuando los residuos C-terminales son glutamina o asparragina se utiliza el grupo 4,4'-dimetoxibencidrilo para proteger los grupos funcionales amido de la 15 cadena lateral. El soporte en fase sólida se basa en un polímero de polidimetil-acrilamida constituido por los tres monómeros dimetilacrilamida (monómero estructural), bisacriloiletilendiamina (entrelazante) y acriloilsarcosina metiléster (funcionalizador). El agente escindible que mantiene unido el péptido a la resina es un derivado del ácido 4hidroximetilfenoxiacético, sensible a pH ácido. Todos los derivados de aminoácidos se añaden en forma de derivados anhídridos simétricos preformados, salvo la asparragina y la glutamina, que se añaden utilizando un procedimiento de 20 acoplamiento inverso con N, N-diciclohexil-carbodiimida/1-hidroxibenzotriazol. Todas las reacciones de acoplamiento y desprotección se controlan con procedimientos de ensayo con ninhidrina, ácido trinitrobencenosulfónico o isotina. Una vez completada la síntesis, los péptidos se separan del soporte de resina y al mismo tiempo se eliminan los grupos protectores de las cadenas laterales mediante el tratamiento con ácido trifluoroacético al 95% con una mezcla de capturadores (scavengers) al 50%. Los capturadores utilizados normalmente son etanditiol, fenol, anisol y agua, 25 dependiendo de la elección exacta de los aminoácidos constituyentes del péptido que se está sintetizando. La síntesis de péptidos también es posible combinando metodologías de fase sólida y de fase en solución (véase, por ejemplo, Bruckdorfer et al., 2004, y las referencias citadas en la misma).
- El ácido trifluoroacético se elimina por evaporación en vacío y se procede a la trituración con dietiléter para obtener el péptido bruto. Todos los capturadores (*scavengers*) se eliminan con un procedimiento de extracción simple que con la liofilización de la fase acuosa proporciona el péptido bruto exento de ellos. Los reactivos para la síntesis de péptidos se pueden conseguir en general, por ejemplo, de Calbiochem-Novabiochem (UK) Ltd, Nottingham NG7 2QJ, Reino Unido.
 - La purificación puede llevarse a cabo mediante una sola o una combinación de técnicas como la recristalización, cromatografía por exclusión de tamaño, cromatografía de intercambio iónico, cromatografía por interacción hidrofóbica, y (normalmente) cromatografía de líquidos de alto rendimiento con fase inversa utilizando, p. ej., la separación con gradiente de acetonitrilo/agua.
 - El análisis de los péptidos puede efectuarse utilizando cromatografía en capa fina, electroforesis, en particular electroforesis capilar, extracción en fase sólida (CSPE), cromatografía de líquidos de alto rendimiento con fase inversa, análisis de aminoácidos tras hidrólisis ácida y análisis con espectrometría de masas por bombardeo con átomos rápidos (FAB), así como análisis con espectrometría de masas MALDI y ESI-Q-TOF.
- 40 Otro aspecto de la invención proporciona un ácido nucleico (por ejemplo, un polinucleótido) que codifica un péptido de la invención. El polinucleótido puede ser, por ejemplo, ADN, ADNc, APN, ARN o combinaciones de los mismos, monocatenarios y/o bicatenarios, o formas nativas o estabilizadas de polinucleótidos, como por ejemplo, polinucleótidos con un esqueleto de fosforotioato, y que puede contener intrones siempre que codifique el péptido. Por supuesto, sólo los péptidos que contengan residuos de aminoácidos naturales unidos por enlaces peptídicos naturales pueden ser codificados por un polinucleótido. Otro aspecto más de la invención proporciona un vector de expresión capaz de expresar un polipéptido conforme a la invención.
 - Se han desarrollado diversos métodos para unir polinucleótidos, especialmente ADN, a vectores, por ejemplo, a través de extremos cohesivos complementarios. Por ejemplo, al segmento de ADN se le pueden añadir prolongaciones de homopolímeros complementarios para insertarlo en el vector de ADN. El vector y el segmento de ADN se unen a continuación por medio de puentes de hidrógeno entre las colas homopoliméricas complementarias para formar moléculas de ADN recombinante.

Otro método alternativo para unir el segmento de ADN a los vectores son los ligadores sintéticos que contienen uno o más sitios de restricción. Existen ligadores sintéticos comerciales que contienen diversas dianas para las endonucleasas de restricción que facilitan varios proveedores como International Biotechnologies Inc. New Haven, Connecticut, EE. UU.

50

35

Un método deseable para modificar el ADN que codifica el polipéptido de la invención emplea la reacción en cadena de la polimerasa tal y como exponen Saiki et al., (1988). Este método puede ser utilizado para introducir el ADN en un vector adecuado, por ejemplo, diseñando las dianas de restricción adecuadas, o puede ser empleado para modificar el ADN de otros modos útiles conocidos en la técnica. Si se opta por vectores virales, son preferibles los vectores poxvíricos o adenovíricos.

5

10

15

20

El ADN (o ARN en el caso de los vectores retrovíricos) se puede expresar en un hospedador adecuado para producir un polipéptido que comprenda el péptido o variante de la invención. Así pues, el ADN que codifica el péptido puede ser utilizado conforme a técnicas conocidas, modificado adecuadamente siguiendo las enseñanzas contenidas en la presente memoria para construir un vector de expresión que se emplee para transformar una célula hospedadora a fin de que exprese y produzca el polipéptido de la invención. Tales técnicas incluyen las descritas en las patentes de EE. UU. N.º 4.440.859, 4.530.901, 4.582.800, 4.677.063, 4.678.751, 4.704.362, 4.710.463, 4.757.006, 4.766.075 y 4.810.648.

El ADN (o ARN en el caso de los vectores retrovíricos) que codifica el polipéptido que constituye el compuesto de la invención se puede unir con una amplia variedad de secuencias de ADN distintas para introducirlo en un hospedador adecuado. El ADN acompañante dependerá de la naturaleza del hospedador, el modo de introducir el ADN en su interior y de si se pretende que se integre o que se mantenga como un episoma.

En general, el ADN se inserta en un vector de expresión, como un plásmido, con la orientación apropiada y el marco de lectura correcto para asegurar la expresión. Si es necesario, el ADN se puede enlazar con secuencias nucleotídicas de control que regulan la transcripción o la traducción y que son reconocidas por el hospedador deseado, aunque en general tales controles ya suelen estar incluidos en el propio vector de expresión. A continuación, el vector se introduce en el hospedador mediante técnicas estándar. En general, el vector no consigue transformar todos los hospedadores, lo que hará necesario seleccionar las células hospedadoras que hayan quedado transformadas. Una técnica de selección consiste en incorporar en el vector de expresión una secuencia de ADN con los elementos de control necesarios que codifique un rasgo seleccionable en la célula transformada, como, por ejemplo, de resistencia a antibióticos.

Otra alternativa consiste en incorporar el gen de ese rasgo seleccionable en otro vector con el que se cotransforma la célula hospedadora.

Las células hospedadoras que hayan sido transformadas con el ADN recombinante de la invención se cultivarán durante el tiempo suficiente y en las condiciones apropiadas que las personas versadas en la técnica conocen a la vista de las enseñanzas reveladas en la presente memoria para que el polipéptido pueda expresarse y, finalmente, ser recuperado.

Son muchos los sistemas de expresión conocidos, como bacterias (*E. coli, Bacillus subtilis*, etc.), levaduras (*Saccharomyces cerevisiae*, etc.), hongos filamentosos (género *Aspergillus*, etc.), células vegetales, animales o de insectos. Preferiblemente el sistema consistirá en células de mamífero, como las células CHO disponibles de la ATCC Cell Biology Collection.

Un típico vector plasmídico de expresión constitutiva para células de mamífero comprende el promotor del CMV o del SV40 con una cola poli-A adecuada y un marcador de resistencia como la neomicina. Un ejemplo es el pSVL que ofrece Pharmacia, Piscataway, NJ, EE. UU. Un ejemplo de vector de expresión inducible para mamífero es el pMSG, también suministrado por Pharmacia. Otros vectores plasmídicos de levadura son pRS403-406 y pRS413-416, en general proveídos por Stratagene Cloning Systems, La Jolla, CA 92037, EE. UU. Los plásmidos pRS403, pRS404, pRS405 y pRS406 son plásmidos integrativos de levadura (YIp) que incorporan los marcadores seleccionables de levadura HIS3, TRP1, LEU2 y URA3. Los plásmidos pRS413-416 son plásmidos centroméricos de levadura (Ycp). Los vectores dotados del promotor del CMV (por ejemplo, de Sigma-Aldrich) proporcionan una expresión transitoria o estable, expresión en el citoplasma o secreción, y marcaje de los extremos N-terminal o C-terminal en varias combinaciones de FLAG, 3xFLAG, c-myc o MAT. Estas proteínas de fusión permiten la detección, la purificación y el análisis de la proteína recombinante. Las fusiones con doble etiqueta aportan flexibilidad a la detección.

La potente región reguladora del promotor del citomegalovirus (CMV) humano ofrece niveles de expresión constitutiva de la proteína muy elevados, de hasta 1 mg/l en células COS. En estirpes celulares menos potentes los niveles de proteínas suelen rondar ~0,1 mg/l. La presencia del origen de replicación del SV40 genera niveles elevados de replicación del ADN en células COS que toleran la replicación del SV40. Los vectores de CMV, por ejemplo, pueden contener el origen pMB1 (derivado del pBR322) para la replicación en células bacterianas, el gen de la b-lactamasa para la selección por resistencia a la ampicilina, hGH poliA, y el origen f1. Los vectores que contienen la secuencia líder de la preprotripsina (PPT) pueden canalizar la secreción de las proteínas de fusión FLAG hacia el medio de cultivo, donde se pueden purificar por medio de anticuerpos ANTI-FLAG, resinas y placas. En la técnica se conocen otros vectores y sistemas de expresión aptos para el uso con una variedad de células hospedadoras.

La presente invención también se refiere a una célula hospedadora transformada con un vector polinucleotídico de la presente invención. La célula hospedadora puede ser procariota o eucariota. Las células bacterianas pueden ser las células hospedadoras procariotas más adecuadas en determinadas circunstancias; normalmente son cepas de E. coli, como, por ejemplo, las cepas DH5 disponibles de Bethesda Research Laboratories Inc., Bethesda, Maryland, EE. UU., y 5 RR1 disponibles de la American Type Culture Collection (ATCC) de Rockville, Maryland, EE. UU. (N.º ATCC 31343). Las células hospedadoras eucariotas preferidas son células de levadura, de insecto y de mamífero, preferiblemente células de vertebrado como estirpes celulares de colon y de fibroblastos de ratón, rata, mono o ser humano. Las células hospedadoras de levadura incluyen YPH499, YPH500 y YPH501, que en general están disponibles de Stratagene Cloning Systems, La Jolla, CA 92037, EE. UU. Las células hospedadoras de mamífero preferidas incluyen las células de ovario 10 de hámster chino (CHO) disponibles de la ATCC como CCL61, las células embrionarias de ratón suizo NIH/3T3 disponibles de la ATCC como CRL 1658, las células COS-1 de riñón de mono disponibles de la ATCC como CRL 1650 y las células 293, que son células renales embrionarias humanas. Las células de insecto preferidas son las células Sf9 que se pueden transfectar con vectores de expresión baculovíricos. Se puede encontrar una revisión general referente a la elección de las células hospedadoras más adecuadas, por ejemplo, en el manual de Paulina Balbás y Argelia Lorence 15 "Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols" Part One, Second Edition, ISBN 978-1-58829-262-9, y otra bibliografía conocida por las personas versadas en la materia.

La transformación de las células hospedadoras adecuadas con el constructo de ADN de la presente invención se consuma con métodos consabidos que normalmente dependen del tipo de vector utilizado. En lo referente a la transformación de células hospedadoras procariotas, véanse, por ejemplo, Cohen et al. (1972) Proc. Natl. Acad. Sci. USA 69, 2110, y Sambrook et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, EE. UU. La transformación de células de levadura aparece descrita en Sherman et al. (1986) Methods In Yeast Genetics, A Laboratory Manual, Cold Spring Harbor, NY, EE. UU. El método de Beggs (1978) Nature 275,104-109 también resulta útil. En lo que concierne a los reactivos adecuados para transfectar las células de vertebrados, por ejemplo, el fosfato de calcio y el DEAE-dextrano o las formulaciones con liposomas, se pueden adquirir de Stratagene Cloning Systems, o Life Technologies Inc., Gaithersburg, MD 20877, EE. UU. La electroporación también es útil para la transformación y/o la transfección de las células y es perfectamente conocida su aplicación en la transformación de células de levadura, bacteria, insecto y vertebrado.

Las células transformadas con éxito, es decir, las que contengan un constructo de ADN de la presente invención, se pueden identificar con técnicas bien conocidas como la PCR. Otra alternativa consiste en detectar la presencia de la proteína en el sobrenadante por medio de anticuerpos.

Se apreciará que ciertas células hospedadoras de la invención son útiles para la preparación de los péptidos de la invención, por ejemplo, las células bacterianas, de levadura e insecto. Con todo, para ciertos métodos terapéuticos pueden ser útiles otras células hospedadoras. Por ejemplo, se pueden utilizar células presentadoras de antígeno como las células dendríticas para expresar los péptidos de la invención de tal forma que puedan ser cargados en las moléculas MHC oportunas. Así pues, la presente invención proporciona una célula hospedadora que comprende un ácido nucleico o un vector de expresión conforme a la invención.

35

40

En una forma de realización preferida la célula hospedadora es una célula presentadora de antígeno, en particular una célula dendrítica o célula presentadora de antígeno. Las APC cargadas con una proteína de fusión recombinante que contiene fosfatasa ácida prostática (PAP) son en la actualidad objeto de investigación como tratamiento contra el cáncer de próstata (Sipuleucel–T) (Small EJ et al. 2006; Rini et al. 2006).

Otro aspecto de la invención proporciona un método para la producción de un péptido, comprendiendo dicho método el cultivo de una célula hospedadora y el aislamiento del péptido a partir de dicha célula o de su medio de cultivo.

El péptido puede ser preparado para la inyección por vía intravenosa (i. v.), subcutánea (s. c.), intradérmica (i. d.), intraperitoneal (i. p.) o intramuscular (i. m.). Los métodos preferidos para la inyección del péptido incluyen s. c., i. d., i. p., i. m. e i. v. Los métodos preferidos para la inyección del ADN incluyen i. d., i. m., s. c., i. p. e i. v. Según el péptido o ADN de que se trate se pueden administrar dosis de, por ejemplo, entre 50 μg y 1,5 mg, preferiblemente de 125 μg a 500 μg de péptido o ADN. Dosis en esos intervalos se han empleado en ensayos anteriores (Brunsvig et al. 2006; Staehler et al. 2007).

Otro aspecto de la presente invención incluye un método *in vitro* para producir linfocitos T activados, comprendiendo dicho método la puesta en contacto en condiciones *in vitro* de linfocitos T con moléculas MHC humanas de clase I cargadas con antígeno expresadas en la superficie de una célula presentadora de antígeno adecuada por tiempo suficiente para activar los linfocitos T de una manera específica de antígeno, siendo el antígeno un péptido conforme a la invención. Preferentemente se emplea una cantidad suficiente del antígeno con una célula presentadora de antígeno.

Preferiblemente, la célula de mamífero carece del transportador de péptidos TAP o bien este se presenta en un nivel reducido o funciona defectuosamente. Las células adecuadas que carecen del transportador de péptidos TAP incluyen las células T2, RMA-S y de *Drosophila*. TAP es el transportador relacionado con el procesamiento de los antígenos.

La estirpe celular humana deficiente en carga de péptidos T2 está disponible en la American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, EE. UU. con el N.º de catálogo CRL 1992; la estirpe de células de *Drosophila* "Schneider line 2" está disponible en la ATCC con el N.º de catálogo CRL 19863; la estirpe de células de ratón RMA-S está descrita en Karre et al. 1985.

Preferentemente, la célula hospedadora no expresa sustancialmente moléculas MHC de clase I antes de la transfección. También es preferible que la célula estimuladora exprese una molécula importante que proporcione una señal coestimuladora para los linfocitos T, como B7. 1, B7. 2, ICAM-1 y LFA 3. Las secuencias de ácidos nucleicos de numerosas moléculas MHC de clase I y de las moléculas co-estimuladoras están disponibles públicamente en las bases de datos GenBank y EMBL.

De forma similar, si se utiliza como antígeno un epítopo de MHC de clase I, los linfocitos T serán CTL CD8-positivos.

Si una célula presentadora de antígeno es transfectada para expresar un epítopo de ese tipo, la célula comprenderá preferentemente un vector de expresión capaz de expresar un péptido que contenga la SEQ ID N.º 1.

20

25

30

35

Existen otros métodos para generar CTL *in vitro*. Por ejemplo, los métodos descritos en Peoples et al. (1995) y Kawakami et al. (1992) emplean linfocitos autólogos infiltrados en el tumor para generar los CTL. Plebanski et al. (1995) recurren a linfocitos autólogos de sangre periférica (PLB) para la preparación de los CTL. Jochmus et al. (1997) describen la producción de CTL autólogos estimulando células dendríticas con el péptido o el polipéptido, o a través de la infección con virus recombinantes. Hill et al. (1995) y Jerome et al. (1993) emplean linfocitos B para la producción de CTL autólogos. Asimismo, para la preparación de CTL autólogos se pueden usar macrófagos estimulados con péptido o polipéptido o infectados con virus recombinantes. S. Walter et al. 2003 describen la sensibilización *in vitro* de linfocitos T mediante células presentadoras de antígeno artificiales (aAPC), que es otro modo adecuado para generar linfocitos T contra el péptido de elección. En este estudio, las aAPC se generaron adhiriendo complejos MHC:péptido preformados a la superficie de partículas de poliestireno (microperlas) mediante técnicas con biotina:estreptavidina. Este sistema permite controlar con exactitud la densidad de MHC en las aAPC, lo que permite desencadenar respuestas de linfocitos T específicas de antígeno con una avidez alta o baja a partir de muestras de sangre de una forma selectiva y altamente eficaz. Además de los complejos MHC:péptido, las aAPC deben incorporar acopladas en su superficie otras proteínas con actividad co-estimuladora como anticuerpos anti-CD28. Tales sistemas de aAPC también precisan a menudo el concurso de factores solubles adecuados, por ejemplo, citocinas como la interleucina-12.

Para la preparación de linfocitos T también se pueden utilizar células alogénicas; en WO 97/26328 se describe detalladamente un método. Por ejemplo, además de células de *Drosophila* y células T2, para presentar antígenos se pueden usar otras células tales como células CHO, células de insecto infectadas con baculovirus, bacterias, levaduras, células diana infectadas con virus vacunal. Asimismo, se pueden utilizar virus vegetales (véase, por ejemplo, Porta et al. (1994), que describen el desarrollo del virus del mosaico del chícharo como sistema de alto rendimiento para la presentación de péptidos extraños).

Los linfocitos T activados que están dirigidos contra el péptido de la invención son útiles como tratamiento. Así pues, otro aspecto de la invención proporciona linfocitos T activados que se pueden obtener con los susodichos métodos de la invención.

40 Los linfocitos T activados producidos con el susodicho método reconocerán selectivamente una célula que expresa de forma aberrante un polipéptido que comprende una secuencia de aminoácidos de la SEQ ID N.º 1.

Preferiblemente el linfocito T reconoce la célula interaccionando a través de su TCR con el complejo HLA/péptido, por ejemplo, uniéndosele. Los linfocitos T son útiles en un método para destruir células diana en un paciente cuyas células diana expresen de forma aberrante un polipéptido que comprenda una secuencia de aminoácidos de la invención y al cual se le administre un número eficaz de linfocitos T activados. Los linfocitos T que se le administren pueden proceder del mismo paciente y ser activados del modo antes descrito, es decir, ser linfocitos T autólogos. Otra alternativa consiste en que los linfocitos T no sean del paciente y procedan de otro individuo. Por supuesto, es preferible que dicho individuo esté sano. Por «individuo sano» los inventores entienden un individuo que goce de buen estado de salud general, preferentemente con un sistema inmunitario competente y, más preferentemente, no sufra ninguna enfermedad que analizada se le detecte.

En condiciones *in vivo*, las células diana de los linfocitos T CD4-positivos conformes con la presente invención pueden ser células del tumor (que a veces expresan MHC de clase II) y/o células estromales circundantes al tumor (células tumorales) (que en ocasiones también expresan MHC de clase II (Dengjel et al., 2006)).

Los linfocitos T de la presente invención se pueden usar como principios activos de una composición terapéutica. Por tanto, la invención también proporciona un método para destruir células diana en un paciente cuyas células diana expresan de forma aberrante un polipéptido que comprende una secuencia de aminoácidos de la invención, comprendiendo dicho método la administración al paciente de un número eficaz de linfocitos T como los definidos arriba.

Por «expresado de forma aberrante» los inventores también quieren decir que el polipéptido está sobreexpresado en comparación con los niveles normales de expresión o que el gen está reprimido en el tejido del que deriva el tumor pero en cambio se expresa en éste. Por «sobreexpresado» los inventores quieren decir que el nivel del polipéptido es como mínimo 1,2 veces mayor que el nivel en el tejido normal; preferiblemente como mínimo 2 veces mayor, y más preferiblemente como mínimo 5 o 10 veces mayor que el del tejido normal.

Los linfocitos T se pueden obtener por métodos conocidos en la materia, como, por ejemplo, los antes descritos.

Los protocolos para la llamada transferencia de linfocitos T a un receptor son perfectamente conocidos en la materia y se pueden encontrar, por ejemplo, en (Rosenberg et al., 1987; Rosenberg et al., 1988; Dudley et al., 2002; Yee et al., 2002; Dudley et al., 2005); revisados en (Gattinoni et al., 2006) y (Morgan et al., 2006).

20

25

30

35

40

45

50

Cualquier molécula de la invención, ya sea péptido, célula o CTL activado es útil para el tratamiento de trastornos caracterizados por células que eluden la respuesta inmunitaria. Por consiguiente, cualquier molécula de la presente invención puede ser utilizada como medicamento o en la fabricación de un medicamento. La molécula puede ser usada sola o combinada con otra molécula o moléculas de la invención o con cualquier o cualesquier moléculas conocidas.

Preferiblemente, el medicamento para el uso acorde con la presente invención es una vacuna. La vacuna puede administrarse directamente al paciente, en el órgano afectado o por vía sistémica de forma i.d., i.m, s.c., i.p. e i.v., o aplicarse ex vivo a células derivadas del paciente o a una línea celular humana que después se administra al paciente, o utilizarse in vitro para seleccionar una subpoblación de células inmunitarias derivadas del paciente que después se le vuelven a administrar. Si el ácido nucleico se administra a células in vitro, puede ser útil que estas células sean transfectadas para que expresen simultáneamente citocinas inmunoestimuladoras, como la interleucina-2. El péptido puede ser sustancialmente puro, o combinarse con un adyuvante inmunoestimulador (véase abajo) o utilizarse en combinación con citocinas inmunoestimuladoras, o bien administrarse mediante otro sistema de liberación adecuado, como, por ejemplo, liposomas. El péptido también se puede conjugar con un portador adecuado como la hemocianina de lapa californiana (KLH) o el manano (véanse WO 95/18145 y Longenecker et al. (1993)). El péptido también se puede etiquetar, o puede ser una proteína de fusión, o ser una molécula híbrida. Se espera que los péptidos cuya secuencia se da a conocer estimulen a los linfocitos T CD8 o CD4. No obstante, la estimulación de los CTL CD8 es más eficiente si cuentan con la ayuda de los linfocitos T cooperadores CD4. Así pues, los epítopos de MHC de clase I que estimulan a los CTL CD8, el compañero de fusión o las secciones de una molécula híbrida adecuada proporcionan epítopos que estimulan a los linfocitos T CD4-positivos. Los epítopos estimuladores de los CD4 y los CD8 son bien conocidos en la técnica e incluyen los identificados como los dados a conocer.

En un aspecto, la vacuna comprende al menos un péptido dotado de la secuencia de aminoácidos expuesta en la SEQ ID N.º 1 y al menos otro péptido adicional, preferiblemente dos a 50, más preferiblemente dos a 25, incluso más preferiblemente dos a 15 y lo más preferiblemente dos, tres, cuatro, cinco, seis, siete, ocho, nueve, diez, once, doce o trece péptidos. Los péptidos pueden derivar de uno o más TAA específicos y se pueden unir a moléculas MHC de clase I y/o II.

El polinucleótido puede ser sustancialmente puro, o estar contenido en un vector o en un sistema de liberación adecuado. El ácido nucleico puede ser ADN, ADNc, APN, ARN o una combinación de los mismos. Los métodos para diseñar e introducir ese ácido nucleico son bien conocidos por los expertos en la materia. Se puede consultar una revisión general, por ejemplo, en Pascolo S. 2006; Stan R. 2006, o A Mahdavi 2006. Las vacunas polinucleotídicas son fáciles de preparar, pero el mecanismo por el cual tales vectores inducen la respuesta inmunitaria no se conoce con exactitud. Los vectores y sistemas de liberación adecuados incluyen los de ADN y/o ARN viral, como los sistemas basados en adenovirus, virus vacunal, retrovirus, herpesvirus, virus adeno-asociados o híbridos que contienen elementos de varios virus. Los sistemas de liberación no virales incluyen lípidos catiónicos y polímeros catiónicos que son bien conocidos como técnicas para la introducción de ADN. Los métodos de introducción físicos, como la «pistola génica», también pueden utilizarse. El péptido o péptidos codificados por el ácido nucleico pueden ser una proteína de fusión, por ejemplo, con un epítopo que estimule los linfocitos T para el respectivo CDR opuesto tal y como se ha indicado antes.

El medicamento destinado al uso de la invención también puede incluir uno o varios adyuvantes. Los adyuvantes son sustancias que potencian o estimulan de forma inespecífica la respuesta inmunitaria (p. ej., respuestas inmunitarias mediadas por CTL y linfocitos T cooperadores (TH) contra un antígeno, y podrían ser considerados útiles en el medicamento destinado al uso de la presente invención. Entre los adyuvantes adecuados se incluyen, entre otros: 1018 5 ISS, sales de aluminio, Amplivax, AS15, BCG, CP-870,893, CpG7909, CyaA, dSLIM, ligandos de flagelina o TLR5 derivados de flagelina, ligando de FLT3, GM-CSF, IC30, IC31, imiquimod (ALDARA), resiquimod, ImuFact IMP321, interleucinas como IL-2, IL-13, IL-21, interferón alfa o beta o derivados pegilados de los mismos, IS Patch, ISS, ISCOMATRIX, ISCOMs, JuvImmune, LipoVac, MALP2, MF59, Iípido monofosforilo A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, emulsiones de agua en aceite y de aceite en agua, OK-432, OM-174, 10 OM-197-MP-EC, ONTAK, OspA, sistema de vectores PepTel®, micropartículas de dextrano y PLG, resiquimod, SRL172, virosomas y otras partículas similares a virus, YF-17D, VEGF trap, R848, beta-glucano, Pam3Cys, estimulón QS21 de Aquila, que deriva de la saponina, extractos de micobacterias y miméticos sintéticos de la pared bacteriana, y otros adyuvantes patentados como Detox de Ribi, Quil o Superfos. Se prefieren los adyuvantes como el adyuvante de Freund o el GM-CSF. Con anterioridad se han descrito varios adyuvantes inmunológicos (p. ej., MF59) específicos para las células 15 dendríticas, así como la preparación de los mismos (Dupuis M et al. 1998; Allison 1998). También se pueden usar citocinas. A varias citocinas se las ha atribuido una influencia directa en la migración de las células dendríticas hacia los tejidos linfoides (p. ej., el TNF-α), como parte de un proceso que acelera su maduración hasta convertirlas en células presentadoras de antígeno para los linfocitos T (p. ei., GM-CSF, IL-1 e IL-4) (Patente de EE. UU. N.º 5. 849. 589) y en el que actúan como inmunoadyuvantes (p. ej., la IL-12, IL-15, IL-23, IL-7, IFN-alfa, IFN-beta) (Gabrilovich et al. 1996).

20 También se ha descrito que los oligonucleótidos de CpG inmunoestimuladores potencian los efectos de los adyuvantes en las vacunas. Sin limitarse a la teoría, los oligonucleótidos de CpG actúan activando el sistema inmunitario innato (no adaptativo) a través de los receptores de tipo Toll (TLR), principalmente el TLR9. La activación del TLR9 desencadenada por los CpG potencia las respuestas humorales y celulares específicas de antígeno contra una amplia gama de antígenos, incluidos antígenos peptídicos o proteicos, virus vivos o muertos, vacunas de células dendríticas, vacunas de células 25 autólogas y conjugados de polisacáridos, tanto en vacunas profilácticas como terapéuticas. Más importante aún, potencian la maduración y la diferenciación de las células dendríticas, lo cual resulta en una mayor activación de los linfocitos T_{H1} y una generación más potente de linfocitos T citotóxicos (CTL), incluso sin la ayuda de los linfocitos T CD4. La tendencia hacia la respuesta T_{H1} provocada por la estimulación del TLR9 se mantiene incluso en presencia de adyuvantes vacunales como el aluminio o el adyuvante de Freund incompleto (IFA) que normalmente promueven un sesgo hacia la respuesta 30 T_{H2}. Los oligonucleótidos de CpG muestran incluso una mayor actividad adyuvante cuando se formulan o administran conjuntamente con otros adyuvantes o en formulaciones como micropartículas, nanopartículas, emulsiones de lípidos o formulaciones similares, que son especialmente necesarias para inducir una respuesta potente cuando el antígeno es relativamente débil. También aceleran la respuesta inmunitaria y permiten reducir las dosis de antígeno aproximadamente en dos órdenes de magnitud, habiéndose obtenido en algunos experimentos respuestas de anticuerpos comparables a 35 las conseguidas con la dosis completa de vacuna sin CpG (Krieg et al. 2006). La patente de EE. UU. N.º 6. 406. 705 B1 describe el uso combinado de oligonucleótidos de CpG, adyuvantes sin ácidos nucleicos y un antígeno para inducir una respuesta inmunitaria específica de antígeno. Un componente preferido de la composición farmacéutica destinada al uso de la presente invención es un antagonista CpG del TLR9 conocido como dSLIM (inmunomodulador en horquilla doble). fabricado por Mologen (Berlín, Alemania). También se pueden utilizar otras moléculas que se unen a los TLR como ARN 40 que se unen a TLR 7, TLR 8 y/o TLR 9.

Entre los ejemplos de adyuvantes útiles también se incluyen CpG modificados químicamente (p. ej., CpR, Idera), análogos de ARNdc como poli(I:C) y AmpliGen, ARN o ADN bacteriano sin CpG, así como anticuerpos y moléculas pequeñas inmunoactivas como ciclofosfamida, sunitinib, bevacizumab, celebrex, NCX-4016, sildenafilo, tadalafilo, vardenafilo, sorafenib, temozolomida, temsirolimús, XL-999, CP-547632, pazopanib, VEGF Trap, ZD2171, AZD2171, anti-CTLA4 y SC58175, que pueden actuar de forma terapéutica y/o como adyuvantes. Las cantidades y concentraciones de adyuvantes y de aditivos útiles en el contexto de la presente invención pueden ser determinadas fácilmente por las personas versadas en la técnica sin demasiada experimentación. Los adyuvantes preferidos son dSLIM, interferones alfa o beta, CpG7909, IC31, imiguimod, PeviTer, ARN, tadalafilo, temozolomida y JuvImmune.

Los adyuvantes preferidos son dSLIM, BCG, OK432, imiquimod, resiquimod, GM-CSF, interferón alfa, PeviTer y JuvImmune o combinaciones de los anteriores.

45

En una forma de realización preferida de la composición farmacéutica para el uso acorde con la invención, el adyuvante se selecciona del grupo consistente en factores estimuladores de colonias, como el factor estimulador de colonias de granulocitos y macrófagos (GM-CSF, sargramostim), imiquimod, resiquimod e interferón alfa.

En otra forma de realización más preferida de la composición farmacéutica para el uso acorde con la invención, el adyuvante es imiquimod o resiquimod. En otra forma de realización aún más preferida de la composición farmacéutica para el uso acorde con la invención, el adyuvante es la combinación de GM-CSF e imiquimod.

Esta composición está destinada a la administración parenteral, como por vía subcutánea, intradérmica o intramuscular, o bien para la administración oral. Para ello, los péptidos y opcionalmente otras moléculas se disuelven o se suspenden

en un vehículo farmacéuticamente aceptable, preferiblemente acuoso. Además, la composición puede contener excipientes, tales como tampones, aglutinantes, disgregantes, diluyentes, saborizantes, lubricantes, etc. Los péptidos también se pueden administrar junto con sustancias inmunoestimuladoras, como citocinas. En una composición tal se puede usar una amplia lista de excipientes, como, por ejemplo, los tomados de A. Kibbe, Handbook of Pharmaceutical Excipients, 3th Ed., 2000, American Pharmaceutical Association y Pharmaceutical Press. La composición se puede utilizar para la prevención, profilaxis y/o tratamiento de enfermedades adenomatosas o cancerosas.

La presente invención proporciona un medicamento que es útil para el tratamiento del cáncer, en particular del glioma y del cáncer cerebral, cáncer de mama, cáncer de próstata, cáncer de esófago, cáncer colorrectal, cáncer renal, cáncer de páncreas, carcinomas espinocelulares y neoplasias queratinocíticas de la piel, leucemia, cáncer de pulmón, cáncer de ovario y melanoma.

La presente invención incluye un equipo, que comprende:

5

10

- (a) un envase que contiene una composición farmacéutica como la descrita antes, en forma de solución o liofilizado; (b) un segundo envase que contiene un diluyente o una solución de reconstitución para la formulación liofilizada; y (c) instrucciones para (I) el uso de la solución, o (II) la reconstitución y/o el uso de la formulación liofilizada.
- El equipo puede comprender, además, uno o más de los siguientes componentes: (III) un tampón, (IV) un diluyente, (V) un filtro, (VI) una aguja, o (V) una jeringa. El envase es preferiblemente un frasco, un vial, una jeringa o un tubo de ensayo; puede ser un envase multiusos. Se prefiere que la composición farmacéutica esté liofilizada.
- Los equipos de la presente invención comprenden, preferiblemente, una formulación liofilizada de la presente invención en un envase adecuado e instrucciones para su reconstitución y/o uso. Los envases adecuados incluyen, por ejemplo, frascos, viales (p. ej., viales con doble cámara), jeringas (como jeringas con doble cámara) y tubos de ensayo. El envase puede estar formado por materiales diversos como vidrio o plástico. Preferiblemente el kit y/o envase contienen o van acompañados de instrucciones de reconstitución y/o uso. Por ejemplo, el prospecto puede indicar que la formulación liofilizada debe reconstituirse para obtener ciertas concentraciones de péptidos como las descritas en páginas precedentes. La etiqueta puede indicar, además, que la formulación puede administrarse o está destinada a la administración subcutánea.
 - El envase que contiene la formulación puede ser un vial multiuso que permita varias administraciones (p. ej., de 2 a 6 administraciones) de la formulación reconstituida. El equipo puede comprender, además, un segundo envase que contenga un diluyente adecuado (p. ej., una solución de bicarbonato sódico).
- Después de mezclar el diluyente y la formulación liofilizada, la concentración final del péptido en la formulación reconstituida es preferiblemente como mínimo de 0,15 mg/ml/péptido (=75 μg) y preferiblemente como máximo de 3 mg/ml/péptido (=1500 μg). El equipo puede incluir, además, otros materiales deseables desde el punto de vista comercial y del usuario, tales como otros tampones, diluyentes, filtros, agujas, jeringas y prospectos con instrucciones de uso.
- Los equipos de la presente invención pueden tener un solo envase que contenga la formulación de las composiciones farmacéuticas para el uso acorde con la presente invención, acompañado o no de otros componentes (p. ej., otros compuestos o composiciones farmacéuticas de estos otros compuestos) o pueden contar con un envase distinto para cada componente.
- Preferiblemente, los equipos de la invención incluyen una formulación destinada al uso de la invención acondicionada para ser utilizada y administrada conjuntamente con un segundo compuesto (como adyuvantes (p. ej., GM-CSF), un agente de quimioterapia, un producto natural, una hormona o un antagonista, un inhibidor o agente anti-angiogenia, un inductor de la apoptosis o un quelante) o una composición farmacéutica de los mismos. Los componentes del equipo pueden estar preagrupados o cada componente puede estar en un envase separado antes de la administración al paciente. Los componentes del equipo pueden proporcionarse en una o varias soluciones líquidas, preferiblemente en una solución acuosa y, con mayor preferencia, en una solución acuosa estéril. Los componentes del equipo también pueden facilitarse en forma de sólidos, y pueden convertirse en líquidos añadiendo los disolventes adecuados, que preferiblemente se proporcionan en otro envase distinto.
- El envase de un equipo terapéutico puede ser un vial, tubo de ensayo, matraz, frasco, jeringa, o cualquier otro medio para contener un sólido o líquido. Si hay más de un componente, normalmente el equipo contendrá un segundo vial u otro envase para permitir la dosificación por separado. El equipo también puede contener otro envase para un líquido farmacéuticamente aceptable. Preferiblemente el equipo terapéutico contendrá un aparato (p. ej., una o varias agujas, jeringas, cuentagotas, pipeta, etc.) para permitir la administración de los agentes de la invención que son componentes del presente equipo.

La presente formulación puede ser toda aquella que sea adecuada para la administración de los péptidos a través de cualquier vía aceptable como la oral (entérica), nasal, oftálmica, subcutánea, intradérmica, intramuscular, intravenosa o transdérmica. Se prefiere la administración subcutánea y, con mayor preferencia, la intradérmica. Se puede utilizar una bomba de infusión para la administración.

- A continuación, se describirá la presente invención con los ejemplos y figuras siguientes que muestran las formas de realización preferidas de la misma a título ilustrativo, sin que con ello se pretenda limitar la invención.
- Figura 1: Ejemplo de espectro de masas de IGF2BP3-001 que demuestra su presentación en la muestra GB6010 de tumor primario. Se llevó a cabo una cromatografía de líquidos acoplada a espectrometría de masas nanoESI con una mezcla de péptidos eluida de la muestra de glioblastoma GB6010. El cromatograma de masas de m/z 536,3238 ± 0,001

 Da, z = 2 muestra un pico de péptido en el tiempo de retención 49,89 min. B). El pico detectado en el cromatograma de masa a los 48,76 min reveló una señal de m/z 536,3239 en el espectro de EM. C) El espectro de masas resultante de la desintegración inducida por colisiones del precursor seleccionado m/z 536,3239 registrado en el experimento de CL-EM nanoESI en el tiempo de retención indicado confirmó la presencia de IGF2BP3-001 en la muestra tumoral GB6010. D) Para verificar la secuencia se registró el patrón de fragmentación del péptido de referencia sintético IGF2BP3-001 y se comparó con el patrón de fragmentación generado por el TUMAP natural mostrado en C.

La Figura 2a muestra los perfiles de expresión de ARNm de proteínas seleccionadas en muestras de tejidos normales y en 19 muestras de glioblastoma.

La Figura 2b muestra los perfiles de expresión de ARNm de proteínas seleccionadas en muestras de tejidos normales y en 19 muestras de glioblastoma.

20 La Figura 3 expone la inmunogenicidad *in vitro* de ejemplo de los TUMAP de clase I de IMA950

La Figura 4 muestra a título de ejemplo las afinidades de péptidos de HLA de clase I dados a conocer hacia el HLA-A*02.

Las SEQ ID N.º 1 a 24 muestran las secuencias de los péptidos asociados a tumor preferidos dados a conocer.

EJEMPLOS

Los péptidos FTELTLGEF (HLA-A1; PolyPeptide Laboratories, Wolfenbüttel, Alemania), LMLGEFLKL (HLA-A2; Clinalfa, Sissach, Suiza), y EPDLAQCFY (HLA-B35; PolyPeptide Laboratories) se obtuvieron todos con calidad farmacéutica.

EJEMPLO 1:

Identificación de los péptidos asociados a tumor presentados en la superficie celular

Muestras de tejido

Las muestras de tejido tumoral de pacientes fueron facilitadas por el Hôpital Cantonal Universitaire de Genève (Oncología Médica, Laboratorio de inmunología tumoral) y la Neurochirurgische Universitäts-Klinik de Heidelberg (Laboratorio de biología molecular). Los pacientes otorgaron su consentimiento informado por escrito antes de la intervención quirúrgica. Los tejidos se criogenizaron en nitrógeno líquido inmediatamente después de la operación y permanecieron a -80 °C hasta el aislamiento de los TUMAP.

Aislamiento de los péptidos HLA de las muestras de tejido

Las mezclas de péptidos HLA de las muestras de tejido criogenizadas se obtuvieron por inmunoprecipitación de los tejidos sólidos siguiendo un protocolo ligeramente modificado (Falk, K., 1991; Seeger, F. H. T., 1999) con el anticuerpo específico de HLA-A*02 BB7. 2, el anticuerpo específico de HLA-A, B y C W6/32, sefarosa activada con CNBr, tratamiento con ácido y ultrafiltración.

Métodos:

Las mezclas de péptidos HLA se separaron en función de su hidrofobicidad con cromatografía en fase inversa (sistema Acquity UPLC, Waters) y los péptidos eluidos se analizaron con un espectrómetro de masas híbrido LTQ-Orbitrap (ThermoElectron) equipado con una fuente de ESI. Las mezclas de péptidos se cargaron directamente en una columna microcapilar de sílice fundido (75 μm de d. i. x 250 mm) rellena con material de fase inversa C18 de 1,7 μm (Waters) aplicando un caudal de 400 nl por minuto. Posteriormente los péptidos se separaron con un gradiente binario de 180 minutos en dos fases con 10% al 33% de B con un caudal de 300 nl por minuto. El gradiente estaba compuesto por

solvente A (ácido fórmico al 0,1% en agua) y solvente B (ácido fórmico al 0,1% en acetonitrilo). Para la introducción en la fuente micro-ESI se empleó un capilar de vidrio recubierto de oro (PicoTip, New Objective). El espectrómetro de masas LTQ-Orbitrap se hizo operar en el modo dependiente de datos con el método TOP5. En resumen, se inició un ciclo de barrido con un barrido completo de alta precisión de masa en el orbitrap (R = 30 000), al que siguieron barridos EM/EM también en el orbitrap (R = 7500) con los 5 iones precursores más abundantes y exclusión dinámica de los iones preseleccionados. Los espectros de masas en tándem se interpretaron con SEQUEST y control manual adicional. La secuencia peptídica identificada se confirmó comparando el patrón de fragmentación generado por el péptido natural con el patrón de fragmentación de un péptido de referencia sintético de idéntica secuencia. La Fig. 1 muestra un ejemplo de espectro obtenido de tejido tumoral correspondiente al péptido asociado a MHC de clase I IGF2BP3-001 y su perfil de elución en el sistema de UPLC.

EJEMPLO 2

5

10

Perfiles de expresión de los genes que codifican los péptidos dados a conocer

- No todos los péptidos identificados como presentes en la superficie de las células tumorales a través de las moléculas MHC son adecuados para la inmunoterapia, porque la mayoría de ellos proceden de proteínas celulares normales que se expresan en multitud de tipos de células. Muy pocos de esos péptidos están asociados a tumores y probablemente sean capaces de estimular los linfocitos T con una alta especificidad de reconocimiento contra el tumor del cual derivan. A fin de descubrirlos y de minimizar el riesgo de que la vacuna genere autoinmunidad los inventores se centraron en los péptidos derivados de proteínas que aparecen sobreexpresadas en las células tumorales en comparación con la mayoría de los tejidos normales.
- 20 El péptido ideal sería el derivado de una proteína que sea exclusiva del tumor y no esté presente en ningún otro tejido. Para identificar los péptidos que derivaban de genes dotados con un perfil de expresión similar al ideal los péptidos identificados se asignaron a las proteínas y después a los genes originarios y se generaron los perfiles de expresión de dichos genes.

Fuentes de ARN y preparación

Las muestras de tejido extirpado fueron facilitadas por dos centros clínicos (véase Ejemplo 1); todos los pacientes otorgaron su consentimiento informado por escrito. Las muestras de tejido tumoral se congelaron rápidamente en nitrógeno líquido inmediatamente después de la operación y se homogeneizaron a mano en un mortero con nitrógeno líquido. El ARN total se preparó a partir de estas muestras con TRIzol (Invitrogen, Karlsruhe, Alemania) y después se purificó con RNeasy (QIAGEN, Hilden, Alemania); ambos métodos se efectuaron siguiendo las instrucciones del fabricante.

El ARN total procedente de tejidos humanos sanos se obtuvo por canales comerciales (Ambion, Huntingdon, Reino Unido; Clontech, Heidelberg, Alemania; Stratagene, Ámsterdam, Holanda; BioChain, Hayward, California, EE. UU.). El ARN de varios individuos (de 2 a 123 individuos) se mezcló de tal modo que el ARN de cada uno de ellos estuviera representado en la misma proporción. Cuatro voluntarios sanos donaron sangre de la que se extrajeron los leucocitos.

La calidad y la cantidad de las muestras de ARN se valoraron con un Agilent 2100 Bioanalyzer (Agilent, Waldbronn, Alemania) y con el RNA6000 Pico Lab Chip Kit (Agilent)

Experimentos con micromatrices

El análisis de la expresión génica de todas las muestras de ARN de tejido tumoral y normal se efectuó con micromatrices oligonucleotídicas Affymetrix Human Genome (HG) U133A o HG-U133 Plus 2.0 (Áffymetrix, Santa Clara, California, EE. 40 UU.). Todos los pasos se llevaron a cabo siguiendo el manual de Affymetrix. En resumen, a partir de 5-8 µg de ARN total se sintetizó ADNc bicatenario con SuperScript RTII (Invitrogen) y el cebador oligo-dT-T7 (MWG Biotech, Ebersberg, Alemania) siguiendo las indicaciones del manual. La transcripción in vitro se llevó a cabo con el BioArray High Yield RNA Transcript Labelling Kit (ENZO Diagnostics, Inc., Farmingdale, NY, EE. UU.) en el caso de las matrices U133A, y con el GeneChip IVT Labelling Kit (Affymetrix) en el de las matrices U133 Plus 2.0, y después se procedió a la fragmentación 45 del ARNc, a su hibridación y tinción con estreptavidina-ficoeritrina y un anticuerpo anti-estreptavidina biotinilado (Molecular Probes, Leiden, Holanda). Las imágenes se analizaron con el Agilent 2500A GeneArray Scanner (U133A) o con el Affymetrix Gene-Chip Scanner 3000 (U133 Plus 2.0), y los datos se analizaron con el software GCOS (Affymetrix), aplicando los ajustes preprogramados en todos los parámetros. Para la normalización se utilizaron 100 genes constitutivos (housekeeping) suministrados por Affymetrix. Los valores de expresión relativa se calcularon a partir de los ratios 50 logarítmicos de señal dados por el software y la muestra normal de riñón se ajustó de forma arbitraria en 1,0.

Los perfiles de expresión de los genes originarios dados a conocer que aparecen altamente sobreexpresados en el glioblastoma de la presente invención se muestran en la Fig. 2.

EJEMPLO 3:

5

15

20

25

30

35

40

45

Inmunogenicidad in vitro de los péptidos presentados por MHC de clase I de IMA950

Para obtener información relativa a la inmunogenicidad de los TUMAP dados a conocer, llevamos a cabo análisis con una conocida plataforma de estimulación *in vitro* descrita por (Walter S., Herrgen L., Schoor O., Jung G., Wernet D., Buhring H. J., Rammensee H. G., and Stevanovic S.; 2003, Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28-coated microspheres, J. Immunol., 171, 4974-4978). De este modo pudimos descubrir la inmunogenicidad notablemente elevada de 13 TUMAP restringidos por HLA-A*201 de la invención (detección en ≥ 50% de los CTL específicos de TUMAP de donantes analizados), lo cual demuestra que dichos péptidos son epítopos de linfocitos T contra los que existen linfocitos T precursores CD8+ en el ser humano (Tabla 3).

10 Sensibilización in vitro de linfocitos T CD8+

Para llevar a cabo las estimulaciones in vitro con células presentadoras de antígeno artificiales (aAPC) cargadas con un complejo péptido-MHC (pMHC) y anticuerpo anti-CD28, primero aislamos células mononucleares de sangre periférica (PBMC) de capas leucocíticas HLA-A*02+ frescas empleando un medio de separación en gradiente de densidad ordinario (PAA, Cölbe, Alemania). Las capas leucocíticas procedían del banco de sangre de Tubinga y del Katharinenhospital de Stuttgart. Las PBMC aisladas se incubaron hasta el día siguiente con medio para linfocitos T (TCM) para la sensibilización humana in vitro. El medio consistía en RPMI-Glutamax (Invitrogen, Karlsruhe, Alemania) suplementado con suero AB humano termoinactivado al 10% (PAA, Cölbe, Alemania), penicilina 100 U/ml, estreptomicina 100 µg/ml (Cambrex, Verviers, Bélgica), piruvato sódico 1 mM (CC Pro, Neustadt, Alemania) y gentamicina 20 µg/ml (Cambrex). Los linfocitos CD8+ se aislaron con un kit de selección positiva MACS para CD8+ (Miltenyi, Bergisch Gladbach, Alemania) siguiendo las instrucciones del fabricante. Los linfocitos T CD8+ obtenidos se incubaron hasta su uso en TCM suplementado con IL-7 2,5 ng/ml (PromoCell, Heidelberg, Alemania) e IL-2 10 U/ml (Chiron, Munich, Alemania). La fabricación de las microperlas recubiertas de pMHC/anti-CD28, las estimulaciones de los linfocitos T y las lecturas se llevaron a cabo del modo descrito por otros (Walter et al., 2003) con pequeñas modificaciones. En suma, con el método descrito por (Altman et al., 1996) se sintetizaron moléculas recombinantes y biotiniladas de HLA-A*0201 desprovistas del dominio transmembrana y biotiniladas en el extremo carboxi de la cadena pesada. El anticuerpo coestimulador purificado Ab 9.3, una IgG2a de ratón anti-CD28 humano (Jung et al., 1987) se biotiniló químicamente con sulfo-N-hidroxisuccinimidobiotina siguiendo las recomendaciones del fabricante (Perbio, Bonn, Alemania). Las microperlas utilizadas consistían en partículas de poliestireno de 5,60 µm recubiertas de estreptavidina (Bangs Laboratories, Illinois, EE. UU.). Los complejos pMHC usados como controles positivo y negativo fueron A*0201/MLA-001 (péptido ELAGIGILTV de Melan-A modificado/MART-1) y A*0201/DDX5-001 (YLLPAÏVHI de DDX5) o A*0201/HBV-001 (FLPSDFFPSV), respectivamente.

Se tapizaron placas de 96 pocillos con 800. 000 microperlas/200 µl en presencia de 600 ng de anti-CD28 biotinilado más 200 ng del pMHC-biotina relevante (microperlas de alta densidad) o de 2 ng del relevante más 200 ng de MHC irrelevante (biblioteca de pMHC) (microperlas de baja densidad). Las estimulaciones se iniciaron en placas de 96 pocillos en las que se incubaron simultáneamente 1x106 linfocitos T CD8+ con 2x105 microperlas recubiertas y lavadas en 200 µl de TCM suplementado con IL-12 5 ng/ml (PromoCell) durante 3 o 4 días a 37 °C. La mitad del medio se renovó con TCM fresco suplementado con IL-2 80 U/ml y la incubación continuó otros 3 o 4 días a 37 °C. Este ciclo de estimulación se efectuó en total tres veces. Por último, se llevarán a cabo análisis tetraméricos de los tetrámeros de MHC fluorescentes (producidos del modo descrito por (Altman et al., 1996) más anticuerpo CD8-FITC del clon SK1 (BD, Heidelberg, Alemania) en un citómetro FACSCalibur de cuatro colores (BD). Las células específicas de péptido se calcularon en forma de porcentaje respecto al total de linfocitos T CD8+. La evaluación del análisis tetramérico se hizo con el programa FCS Express (De Novo Software). La sensibilización in vitro de los linfocitos CD8+ tetrámero+ específicos se detectó aplicando el acotamiento de subpoblaciones (gating) adecuado y comparando los resultados con las estimulaciones del control negativo. La inmunogenicidad para un antígeno dado quedaba confirmada si por lo menos un pocillo estimulado in vitro y evaluable de un donante sano contenía una estirpe de linfocitos T CD8+ específica después de la estimulación (esto es. el pocillo contenía al menos un 1% de tetrámero+ específico entre los linfocitos T CD8+ y el porcentaje de células tetrámero+ específicas era al menos 10x de la mediana de las estimulaciones del control negativo).

Inmunogenicidad in vitro de los péptidos de IMA950

En el caso de los péptidos de HLA de clase I analizados, la inmunogenicidad *in vitro* se puede demostrar con la generación de líneas de linfocitos T específicos de ese péptido. En la Figura 3 se muestran a modo de ejemplo los resultados de la citometría de flujo de dos péptidos de la invención tras la tinción de multímeros específicos de TUMAP. Los resultados de 13 péptidos dados a conocer se resumen en la Tabla 3.

Tabla 3: Inmunogenicidad in vitro de péptidos de HLA de clase I altamente inmunogénicos dados a conocer

Antígeno	Donantes positivos / donantes analizados	Pocillos positivos / pocillos analizados	
BCA-001	60%	5%	
BCA-002	75%	35%	
CLIP2-001	75%	6%	
CSP-001	100%	57%	
FABP7-001	100%	27%	
IGF2BP3-001	50%	21%	
NES-001	75%	38%	
NLGN4X-001	100%	62%	
NRCAM-001	86%	39%	
PDPN-001	60%	11%	
SLCO1C1-001	60%	7%	
TNC-001	60%	30%	
TNC-002	50%	14%	

Además de esos resultados obtenidos de donantes de sangre sanos, los péptidos BCA-002, CHI3L1-001 y NLGN4X-001 también se analizaron en un pequeño número de pacientes con glioblastoma. Todos los péptidos resultaron ser inmunogénicos en una magnitud similar a los de los donantes sanos, lo cual demuestra la existencia de linfocitos T precursores en una población destinataria de la vacuna.

EJEMPLO 4

5

20

Unión de los péptidos restringidos a HLA de clase I de la invención a HLA-A*0201

Objetivo y resumen

El objetivo del análisis consistía en evaluar la afinidad de los péptidos de HLA de clase I por la molécula de MHC codificada por el alelo HLA-A*0201 ya que este es un importante parámetro del mecanismo de acción de los péptidos como parte de la inmunoterapia contra el cáncer. Las afinidades hacia el HLA-A*0201 variaron entre medias y altas en todos los péptidos 0 restringidos a HLA de clase I analizados y dados a conocer; las constantes de disociación resultaron del orden de las del péptido usado como control positivo HBV-001, un derivado del antígeno central del virus de la hepatitis B que posee una fuerte afinidad de unión por el alelo A*02. Estos resultados confirman la potente afinidad de unión de todos los péptidos de HLA de clase I dados a conocer.

Principio de la prueba

Los complejos estables de HLA/péptido constan de tres moléculas: cadena pesada de HLA, beta-2 microglobulina (b2m) y el ligando peptídico. La actividad de las moléculas de cadena pesada recombinantes y desnaturalizadas del HLA-A*0201 solas se puede conservar convirtiéndolas en equivalentes funcionales de «moléculas HLA-A*0201 vacías». Cuando se diluyen en un tampón acuoso que contiene b2m y un péptido adecuado, estas moléculas se pliegan con rapidez y con eficacia de un modo que depende totalmente del péptido. La disponibilidad de estas moléculas se utiliza en un ensayo ELISA para medir la afinidad de la interacción entre el péptido y la molécula HLA de clase I (Sylvester-Hvid et al., 2002).

Moléculas recombinantes y purificadas de HLA-A*0201 se incubaron con b2m y dosis escalonadas del péptido de interés. La cantidad de complejos de HLA plegados de novo/péptido se determinó con un ELISA cuantitativo. Las constantes de

disociación (valores KD) se calcularon con una curva patrón trazada con disoluciones de un complejo HLA/péptido de calibración.

Resultados

Los resultados se muestran en la Figura 4. Cuanto más bajo es el valor de KD mayor es la afinidad hacia el HLA-A*0201. Todos los péptidos de la invención analizados mostraron afinidades potentes hacia el HLA-A*0201, que rondaron el valor de la KD del péptido de control positivo HBV-001, poseedor de una potente afinidad de unión para con el alelo A*02. Por tanto, todos los TUMAP de clase I de la invención tienen una afinidad de unión alta por las moléculas del MHC A*02.

Referencias

- About I, Laurent-Maquin D, Lendahl U, Mitsiadis TA (2000). Nestin expression in embryonic and adult human teeth under normal and pathological conditions. Am J Pathol. *157*, 287-295.
 - Aghi M, Gaviani P, Henson JW, Batchelor TT, Louis DN, Barker FG (2005). Magnetic resonance imaging characteristics predict epidermal growth factor receptor amplification status in glioblastoma. Clin Cancer Res. *11*, 8600-8605.
- Agosti RM, Leuthold M, Gullick WJ, Yasargil MG, Wiestler OD (1992). Expression of the epidermal growth factor receptor in astrocytic tumours is specifically associated with glioblastoma multiforme. Virchows Arch. A Pathol. Anat. Histopathol. 420, 321-325.
 - Al-Joudi FS, Iskandar ZA, Imran AK (2007). Survivin expression correlates with unfavourable prognoses in invasive ductal carcinoma of the breast. Med J Malaysia 62, 6-8.
 - Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol.
- Altman JD, Moss PA, Goulder PJ, Barouch DH, Heyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996). Phenotypic analysis of antigen-specific T lymphocytes. Science *274*, 94-96.
 - Amoh Y, Yang M, Li L, Reynoso J, Bouvet M, Moossa AR, Katsuoka K, Hoffman RM (2005). Nestin-linked green fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res. 65, 5352-5357.
- Angileri FF, Aguennouz M, Conti A, La TD, Cardali S, Crupi R, Tomasello C, Germano A, Vita G, Tomasello F (2008).

 Nuclear factor-kappaB activation and differential expression of survivin and Bcl-2 in human grade 2-4 astrocytomas. Cancer.
 - Appay V, Speiser DE, Rufer N, Reynard S, Barbey C, Cerottini JC, Leyvraz S, Pinilla C, Romero P (2006). Decreased specific CD8+ T cell cross-reactivity of antigen recognition following vaccination with Melan-A peptide. Eur. J Immunol. 36, 1805-1814.
- Arnold SE, Trojanowski JQ (1996). Human fetal hippocampal development: II. The neuronal cytoskeleton. J Comp Neurol. 367, 293-307.
 - ARONSON SM, ARONSON BE (1965). CENTRAL NERVOUS SYSTEM IN DIABETES MELLITUS: LOWERED FREQUENCY OF CERTAIN INTRACRANIAL NEOPLASMS. Arch. Neurol. 12, 390-398.
- Asheuer M, Bieche I, Laurendeau I, Moser A, Hainque B, Vidaud M, Aubourg P (2005). Decreased expression of ABCD4 and BG1 genes early in the pathogenesis of X-linked adrenoleukodystrophy. Hum. Mol. Genet. *14*, 1293-1303.
 - Asklund T, Appelskog IB, Ammerpohl O, Ekstrom TJ, Almqvist PM (2004). Histone deacetylase inhibitor 4-phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur. J Cancer 40, 1073-1081.
- Barker FG, Simmons ML, Chang SM, Prados MD, Larson DA, Sneed PK, Wara WM, Berger MS, Chen P, Israel MA, Aldape KD (2001). EGFR overexpression and radiation response in glioblastoma multiforme. Int. J Radiat. Oncol Biol. Phys. *51*, 410-418.
 - Bertelli E, Regoli M, Fonzi L, Occhini R, Mannucci S, Ermini L, Toti P (2007). Nestin expression in adult and developing human kidney. J Histochem. Cytochem. 55, 411-421.

- Blum R, Jacob-Hirsch J, Rechavi G, Kloog Y (2006). Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis. Mol. Cancer Ther. *5*, 2337-2347.
- Bourdon MA, Wikstrand CJ, Furthmayr H, Matthews TJ, Bigner DD (1983). Human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody. Cancer Res. 43, 2796-2805.
- 5 Bowen AR, Hanks AN, Murphy KJ, Florell SR, Grossman D (2004). Proliferation, apoptosis, and survivin expression in keratinocytic neoplasms and hyperplasias. Am J Dermatopathol. *26*, 177-181.
 - Boyton RJ, Lohmann T, Londei M, Kalbacher H, Halder T, Frater AJ, Douek DC, Leslie DG, Flavell RA, Altmann DM (1998). Glutamic acid decarboxylase T lymphocyte responses associated with susceptibility or resistance to type I diabetes: analysis in disease discordant human twins, non-obese diabetic mice and HLA-DQ transgenic mice. Int. Immunol. 10, 1765-1776.

10

- Brekke C, Lundervold A, Enger PO, Brekken C, Stalsett E, Pedersen TB, Haraldseth O, Kruger PG, Bjerkvig R, Chekenya M (2006). NG2 expression regulates vascular morphology and function in human brain tumours. Neuroimage. 29, 965-976.
- Brenner AV, Linet MS, Fine HA, Shapiro WR, Selker RG, Black PM, Inskip PD (2002). History of allergies and autoimmune diseases and risk of brain tumors in adults. Int. J Cancer 99, 252-259.
 - Brommeland T, Rosengren L, Fridlund S, Hennig R, Isaksen V (2007). Serum levels of glial fibrillary acidic protein correlate to tumour volume of high-grade gliomas. Acta Neurol. Scand. *116*, 380-384.
- Bronger H, Konig J, Kopplow K, Steiner HH, Ahmadi R, Herold-Mende C, Keppler D, Nies AT (2005). ABCC drug efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res. *65*, 11419-11428.
 - Brychtova S, Fiuraskova M, Hlobilkova A, Brychta T, Hirnak J (2007). Nestin expression in cutaneous melanomas and melanocytic nevi. J Cutan. Pathol. *34*, 370-375.
 - Buchner A, Castro M, Hennig A, Popp T, Assmann G, Hofstetter A, Stief C, Zimmermann W (2007). [Transcriptome analyses in renal cell carcinoma. Combination of laser microdissection and microarrays]. Urologe A 46, 1170-1175.
- Calvo A, Catena R, Noble MS, Carbott D, Gil-Bazo I, Gonzalez-Moreno O, Huh JI, Sharp R, Qiu TH, Anver MR, Merlino G, Dickson RB, Johnson MD, Green JE (2008). Identification of VEGF-regulated genes associated with increased lung metastatic potential: functional involvement of tenascin-C in tumor growth and lung metastasis. Oncogene.
- Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S (2004). Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit Rev. Immunol. *24*, 267-296.
 - Carnemolla B, Castellani P, Ponassi M, Borsi L, Urbini S, Nicolo G, Dorcaratto A, Viale G, Winter G, Neri D, Zardi L (1999). Identification of a glioblastoma-associated tenascin-C isoform by a high affinity recombinant antibody. Am J Pathol. *154*, 1345-1352.
- Carriere C, Seeley ES, Goetze T, Longnecker DS, Korc M (2007). The Nestin progenitor lineage is the compartment of origin for pancreatic intraepithelial neoplasia. Proc Natl. Acad. Sci. U. S. A *104*, 4437-4442.
 - Casati C, Dalerba P, Rivoltini L, Gallino G, Deho P, Rini F, Belli F, Mezzanzanica D, Costa A, Andreola S, Leo E, Parmiani G, Castelli C (2003). The apoptosis inhibitor protein survivin induces tumor-specific CD8+ and CD4+ T cells in colorectal cancer patients. Cancer Res. 63, 4507-4515.
- Castellino F, Huang AY, tan-Bonnet G, Stoll S, Scheinecker C, Germain RN (2006). Chemokines enhance immunity by 40 quiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature *440*, 890-895.
 - Chakravarti A, Noll E, Black PM, Finkelstein DF, Finkelstein DM, Dyson NJ, Loeffler JS (2002). Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol *20*, 1063-1068.
 - Cheever MA, Chen W, Disis ML, Takahashi M, Peace DJ (1993). T-cell immunity to oncogenic proteins including mutated ras and chimeric bcr-abl. Ann N. Y. Acad. Sci. 690, 101-112.

- Chekenya M, Enger PO, Thorsen F, Tysnes BB, Al-Sarraj S, Read TA, Furmanek T, Mahesparan R, Levine JM, Butt AM, Pilkington GJ, Bjerkvig R (2002a). The glial precursor proteoglycan, NG2, is expressed on tumour neovasculature by vascular pericytes in human malignant brain tumours. Neuropathol. Appl. Neurobiol. 28, 367-380.
- Chekenya M, Hjelstuen M, Enger PO, Thorsen F, Jacob AL, Probst B, Haraldseth O, Pilkington G, Butt A, Levine JM, Bjerkvig R (2002b). NG2 proteoglycan promotes angiogenesis-dependent tumor growth in CNS by sequestering angiostatin. FASEB J *16*, 586-588.
 - Chekenya M, Immervoll H (2007). NG2/HMP proteoglycan as a cancer therapeutic target. Methods Mol. Biol. 361, 93-117.
- Chekenya M, Krakstad C, Svendsen A, Netland IA, Staalesen V, Tysnes BB, Selheim F, Wang J, Sakariassen PO, Sandal T, Lonning PE, Flatmark T, Enger PO, Bjerkvig R, Sioud M, Stallcup WB (2008). The progenitor cell marker NG2/MPG promotes chemoresistance by activation of integrin-dependent Pl3K/Akt signaling. Oncogene.
 - Chekenya M, Pilkington GJ (2002). NG2 precursor cells in neoplasia: functional, histogenesis and therapeutic implications for malignant brain tumours. J Neurocytol. 31, 507-521.
 - Chekenya M, Rooprai HK, Davies D, Levine JM, Butt AM, Pilkington GJ (1999). The NG2 chondroitin sulfate proteoglycan: role in malignant progression of human brain tumours. Int J Dev. Neurosci. *17*, 421-435.
- 15 Chiquet-Ehrismann R, Tucker RP (2004). Connective tissues: signalling by tenascins. Int. J Biochem. Cell Biol. 36, 1085-1089.
 - Chu C, Li JY, Boado RJ, Pardridge WM (2008). Blood-brain barrier genomics and cloning of a novel organic anion transporter. J Cereb. Blood Flow Metab 28, 291-301.
- Colin C, Baeza N, Bartoli C, Fina F, Eudes N, Nanni I, Martin PM, Ouafik L, Figarella-Branger D (2006). Identification of genes differentially expressed in glioblastoma versus pilocytic astrocytoma using Suppression Subtractive Hybridization. Oncogene 25, 2818-2826.
 - Colombetti S, Basso V, Mueller DL, Mondino A (2006). Prolonged TCR/CD28 engagement drives IL-2-independent T cell clonal expansion through signaling mediated by the mammalian target of rapamycin. J Immunol. *176*, 2730-2738.
- Conacci-Sorrell M, Kaplan A, Raveh S, Gavert N, Sakurai T, Ben-Ze'ev A (2005). The shed ectodomain of Nr-CAM stimulates cell proliferation and motility, and confers cell transformation. Cancer Res. *65*, 11605-11612.
 - Conacci-Sorrell ME, Ben-Yedidia T, Shtutman M, Feinstein E, Einat P, Ben-Ze'ev A (2002). Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev. 16, 2058-2072.
- Coskun U, Yamac D, Gulbahar O, Sancak B, Karaman N, Ozkan S (2007). Locally advanced breast carcinoma treated with neoadjuvant chemotherapy: are the changes in serum levels of YKL-40, MMP-2 and MMP-9 correlated with tumor response? Neoplasma *54*, 348-352.
 - Cresswell P (1994). Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 12, 259-293.
 - Dahlstrand J, Collins VP, Lendahl U (1992). Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 52, 5334-5341.
- Dengjel J, Nastke MD, Gouttefangeas C, Gitsioudis G, Schoor O, Altenberend F, Muller M, Kramer B, Missiou A, Sauter M, Hennenlotter J, Wernet D, Stenzl A, Rammensee HG, Klingel K, Stevanovic S (2006). Unexpected Abundance of HLA Class II Presented Peptides in Primary Renal Cell Carcinomas. Clin Cancer Res. 12, 4163-4170.
- Dixon DN, Izon DJ, Dagger S, Callow MJ, Taplin RH, Kees UR, Greene WK (2007). TLX1/HOX11 transcription factor inhibits differentiation and promotes a non-haemopoietic phenotype in murine bone marrow cells. Br. J Haematol. *138*, 54-67.
 - Domoto T, Miyama Y, Suzuki H, Teratani T, Arai K, Sugiyama T, Takayama T, Mugiya S, Ozono S, Nozawa R (2007). Evaluation of S100A10, annexin II and B-FABP expression as markers for renal cell carcinoma. Cancer Sci. 98, 77-82.
 - Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE,

- Rosenberg SA (2002). Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850-854.
- Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL, Restifo NP, Royal RE, Kammula U, White DE, Mavroukakis SA, Rogers LJ, Gracia GJ, Jones SA, Mangiameli DP, Pelletier MM, Gea-Banacloche J, Robinson MR, Berman DM, Filie AC, Abati A, Rosenberg SA (2005). Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346-2357.
 - Eppenberger U, Mueller H (1994). Growth factor receptors and their ligands. J Neurooncol. 22, 249-254.
- Erfurt C, Sun Z, Haendle I, Schuler-Thurner B, Heirman C, Thielemans K, van der BP, Schuler G, Schultz ES (2007). Tumor-reactive CD4+ T cell responses to the melanoma-associated chondroitin sulphate proteoglycan in melanoma patients and healthy individuals in the absence of autoimmunity. J Immunol. *178*, 7703-7709.
 - Florenes VA, Holm R, Myklebost O, Lendahl U, Fodstad O (1994). Expression of the neuroectodermal intermediate filament nestin in human melanomas. Cancer Res. *54*, 354-356.
 - Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG (2001). Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl. Acad. Sci. U. S. A 98, 8809-8814.
- Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De VS, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. *64*, 7011-7021.
 - Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science *313*, 1960-1964.
- Garcion E, Halilagic A, Faissner A, ffrench-Constant C (2004). Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development *131*, 3423-3432.
 - Gary SC, Kelly GM, Hockfield S (1998). BEHAB/brevican: a brain-specific lectican implicated in gliomas and glial cell motility. Curr. Opin. Neurobiol. 8, 576-581.
- Gary SC, Zerillo CA, Chiang VL, Gaw JU, Gray G, Hockfield S (2000). cDNA cloning, chromosomal localization, and expression analysis of human BEHAB/brevican, a brain specific proteoglycan regulated during cortical development and in glioma. Gene *256*, 139-147.
 - Gattinoni L, Powell DJ, Jr., Rosenberg SA, Restifo NP (2006). Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6, 383-393.
 - Ghosh JC, Dohi T, Kang BH, Altieri DC (2008). Hsp60 regulation of tumor cell apoptosis. J Biol. Chem. 283, 5188-5194.
- 30 Gipp J, Gu G, Crylen C, Kasper S, Bushman W (2007). Hedgehog pathway activity in the LADY prostate tumor model. Mol. Cancer 6, 19.
 - Gleiberman AS, Michurina T, Encinas JM, Roig JL, Krasnov P, Balordi F, Fishell G, Rosenfeld MG, Enikolopov G (2008). Genetic approaches identify adult pituitary stem cells. Proc Natl. Acad. Sci. U. S. A 105, 6332-6337.
- Gnjatic S, Atanackovic D, Jager E, Matsuo M, Selvakumar A, Altorki NK, Maki RG, Dupont B, Ritter G, Chen YT, Knuth A, Old LJ (2003). Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: correlation with antibody responses. Proc Natl. Acad. Sci. U. S. A *100*, 8862-8867.
 - Godbout R, Bisgrove DA, Shkolny D, Day RS, III (1998). Correlation of B-FABP and GFAP expression in malignant glioma. Oncogene *16*, 1955-1962.
- Gorka B, Skubis-Zegadlo J, Mikula M, Bardadin K, Paliczka E, Czarnocka B (2007). NrCAM, a neuronal system cell-40 adhesion molecule, is induced in papillary thyroid carcinomas. Br. J Cancer 97, 531-538.
 - Goto Y, Matsuzaki Y, Kurihara S, Shimizu A, Okada T, Yamamoto K, Murata H, Takata M, Aburatani H, Hoon DS, Saida T, Kawakami Y (2006). A new melanoma antigen fatty acid-binding protein 7, involved in proliferation and invasion, is a potential target for immunotherapy and molecular target therapy. Cancer Res. *66*, 4443-4449.

- Grunda JM, Nabors LB, Palmer CA, Chhieng DC, Steg A, Mikkelsen T, Diasio RB, Zhang K, Allison D, Grizzle WE, Wang W, Gillespie GY, Johnson MR (2006). Increased expression of thymidylate synthetase (TS), ubiquitin specific protease 10 (USP10) and survivin is associated with poor survival in glioblastoma multiforme (GBM). J Neurooncol. 80, 261-274.
- Gu G, Yuan J, Wills M, Kasper S (2007). Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res. *67*, 4807-4815.
 - Gunther HS, Schmidt NO, Phillips HS, Kemming D, Kharbanda S, Soriano R, Modrusan Z, Meissner H, Westphal M, Lamszus K (2008). Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene *27*, 2897-2909.
- Hammer J, Gallazzi F, Bono E, Karr RW, Guenot J, Valsasnini P, Nagy ZA, Sinigaglia F (1995). Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J Exp. Med *181*, 1847-1855.
 - Hanada K, Yewdell JW, Yang JC (2004). Immune recognition of a human renal cancer antigen through post-translational protein splicing. Nature 427, 252-256.
- Hau P, Kunz-Schughart LA, Rummele P, Arslan F, Dorfelt A, Koch H, Lohmeier A, Hirschmann B, Muller A, Bogdahn U, Bosserhoff AK (2006). Tenascin-C protein is induced by transforming growth factor-beta1 but does not correlate with time to tumor progression in high-grade gliomas. J Neurooncol. 77, 1-7.
 - Heimberger AB, Hussain SF, Aldape K, Sawaya R, Archer GA, Friedman H, Reardon D, Friedman A, Bigner DD, Sampson JH. Tumor-specific peptide vaccination in newly-diagnosed patients with GBM. Journal of Clinical Oncology, 2006 ASCO Annual Meeting Proceedings Part I Vol 24, No. 18S (June 20 Supplement), 2006: 2529. 6-20-2006.
- Herold-Mende C, Mueller MM, Bonsanto MM, Schmitt HP, Kunze S, Steiner HH (2002). Clinical impact and functional aspects of tenascin-C expression during glioma progression. Int. J Cancer 98, 362-369.
 - Herrera MB, Bruno S, Buttiglieri S, Tetta C, Gatti S, Deregibus MC, Bussolati B, Camussi G (2006). Isolation and characterization of a stem cell population from adult human liver. Stem Cells *24*, 2840-2850.
- Hoffmann NE, Sheinin Y, Lohse CM, Parker AS, Leibovich BC, Jiang Z, Kwon ED (2008). External validation of IMP3 expression as an independent prognostic marker for metastatic progression and death for patients with clear cell renal cell carcinoma. Cancer *112*, 1471-1479.
 - Hormigo A, Gu B, Karimi S, Riedel E, Panageas KS, Edgar MA, Tanwar MK, Rao JS, Fleisher M, DeAngelis LM, Holland EC (2006). YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with high-grade gliomas. Clin Cancer Res. *12*, 5698-5704.
- Huang J, Hu J, Bian X, Chen K, Gong W, Dunlop NM, Howard OM, Wang JM (2007). Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res. 67, 5906-5913.
 - Huang Y, Fan J, Yang J, Zhu GZ (2008). Characterization of GPR56 protein and its suppressed expression in human pancreatic cancer cells. Mol. Cell Biochem. 308, 133-139.
- Huncharek M, Kupelnick B (2000). Epidermal growth factor receptor gene amplification as a prognostic marker in glioblastoma multiforme: results of a meta-analysis. Oncol Res. 12, 107-112.
 - Hwang ML, Lukens JR, Bullock TN (2007). Cognate memory CD4+ T cells generated with dendritic cell priming influence the expansion, trafficking, and differentiation of secondary CD8+ T cells and enhance tumor control. J Immunol. *179*, 5829-5838.
- Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H (2008). Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a Galpha 12/13 and Rho pathway. J Biol. Chem.
 - Ilja Boor PK, de GK, Mejaski-Bosnjak V, Brenner C, van der Knaap MS, Scheper GC, Pronk JC (2006). Megalencephalic leukoencephalopathy with subcortical cysts: an update and extended mutation analysis of MLC1. Hum. Mutat. 27, 505-512.

- Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, Sasaki T, Ozawa S (2002). Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat. Med *8*, 971-978.
- Ishizaki M, Ishiwata T, Adachi A, Tamura N, Ghazizadeh M, Kitamura H, Sugisaki Y, Yamanaka N, Naito Z, Fukuda Y (2006). Expression of nestin in rat and human glomerular podocytes. J Submicrosc. Cytol. Pathol. *38*, 193-200.
 - Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003). CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852-856.
 - Jaworski DM, Kelly GM, Piepmeier JM, Hockfield S (1996). BEHAB (brain enriched hyaluronan binding) is expressed in surgical samples of glioma and in intracranial grafts of invasive glioma cell lines. Cancer Res. *56*, 2293-2298.
- Jiang Z, Chu PG, Woda BA, Rock KL, Liu Q, Hsieh CC, Li C, Chen W, Duan HO, McDougal S, Wu CL (2006). Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: a retrospective study. Lancet Oncol 7, 556-564.
 - Jiang Z, Lohse CM, Chu PG, Wu CL, Woda BA, Rock KL, Kwon ED (2008). Oncofetal protein IMP3: a novel molecular marker that predicts metastasis of papillary and chromophobe renal cell carcinomas. Cancer *112*, 2676-2682.
- Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA (2006). Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol. Biomarkers Prev. 15, 194-202.
 - Johansen JS, Jensen BV, Roslind A, Price PA (2007). Is YKL-40 a new therapeutic target in cancer? Expert. Opin. Ther. Targets. 11, 219-234.
- Jung CS, Foerch C, Schanzer A, Heck A, Plate KH, Seifert V, Steinmetz H, Raabe A, Sitzer M (2007). Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain *130*, 3336-3341.
 - Jung G, Ledbetter JA, Muller-Eberhard HJ (1987). Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heteroconjugates. Proc Natl Acad Sci U S A 84, 4611-4615.
 - Junker N, Johansen JS, Hansen LT, Lund EL, Kristjansen PE (2005). Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells. Cancer Sci. 96, 183-190.
- Kajiwara Y, Yamasaki F, Hama S, Yahara K, Yoshioka H, Sugiyama K, Arita K, Kurisu K (2003). Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer *97*, 1077-1083.
 - Kaloshi G, Mokhtari K, Carpentier C, Taillibert S, Lejeune J, Marie Y, Delattre JY, Godbout R, Sanson M (2007). FABP7 expression in glioblastomas: relation to prognosis, invasion and EGFR status. J Neurooncol. *84*, 245-248.
- Kato Y, Fujita N, Kunita A, Sato S, Kaneko M, Osawa M, Tsuruo T (2003). Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol. Chem. *278*, 51599-51605.
 - Kato Y, Kaneko MK, Kunita A, Ito H, Kameyama A, Ogasawara S, Matsuura N, Hasegawa Y, Suzuki-Inoue K, Inoue O, Ozaki Y, Narimatsu H (2008). Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci. 99, 54-61.
- Kato Y, Kaneko MK, Kuno A, Uchiyama N, Amano K, Chiba Y, Hasegawa Y, Hirabayashi J, Narimatsu H, Mishima K, Osawa M (2006). Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem. Biophys. Res. Commun. *349*, 1301-1307.
 - Ke N, Sundaram R, Liu G, Chionis J, Fan W, Rogers C, Awad T, Grifman M, Yu D, Wong-Staal F, Li QX (2007). Orphan G protein-coupled receptor GPR56 plays a role in cell transformation and tumorigenesis involving the cell adhesion pathway. Mol. Cancer Ther. 6, 1840-1850.
- Kennedy RC, Shearer MH, Watts AM, Bright RK (2003). CD4+ T lymphocytes play a critical role in antibody production and tumor immunity against simian virus 40 large tumor antigen. Cancer Res. 63, 1040-1045.
 - Kim CH, Bak KH, Kim YS, Kim JM, Ko Y, Oh SJ, Kim KM, Hong EK (2000). Expression of tenascin-C in astrocytic tumors: its relevance to proliferation and angiogenesis. Surg Neurol. *54*, 235-240.

- Kim SH, Das K, Noreen S, Coffman F, Hameed M (2007). Prognostic implications of immunohistochemically detected YKL-40 expression in breast cancer. World J Surg Oncol 5, 17.
- Kleeberger W, Bova GS, Nielsen ME, Herawi M, Chuang AY, Epstein JI, Berman DM (2007). Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer Res. 67, 9199-9206.
- 5 Klein T, Ling Z, Heimberg H, Madsen OD, Heller RS, Serup P (2003). Nestin is expressed in vascular endothelial cells in the adult human pancreas. J Histochem. Cytochem. *51*, 697-706.
 - Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR (2007). Increased expression of stem cell markers in malignant melanoma. Mod. Pathol. 20, 102-107.
- Kobayashi H, Omiya R, Ruiz M, Huarte E, Sarobe P, Lasarte JJ, Herraiz M, Sangro B, Prieto J, Borras-Cuesta F, Celis E (2002). Identification of an antigenic epitope for helper T lymphocytes from carcinoembryonic antigen. Clin Cancer Res. 8, 3219-3225.
 - Kono T, Shimoda M, Takahashi M, Matsumoto K, Yoshimoto T, Mizutani M, Tabata C, Okoshi K, Wada H, Kubo H (2007). Immunohistochemical detection of the lymphatic marker podoplanin in diverse types of human cancer cells using a novel antibody. Int J Oncol *31*, 501-508.
- 15 Kosari F, Parker AS, Kube DM, Lohse CM, Leibovich BC, Blute ML, Cheville JC, Vasmatzis G (2005). Clear cell renal cell carcinoma: gene expression analyses identify a potential signature for tumor aggressiveness. Clin Cancer Res. 11, 5128-5139.
 - Kroes RA, Dawson G, Moskal JR (2007). Focused microarray analysis of glyco-gene expression in human glioblastomas. J Neurochem. *103 Suppl 1*, 14-24.
- 20 Krona A, Aman P, Orndal C, Josefsson A (2007). Oncostatin M-induced genes in human astrocytomas. Int. J Oncol 31, 1457-1463.
 - Kucharczak J, Pannequin J, Camby I, Decaestecker C, Kiss R, Martinez J (2001). Gastrin induces over-expression of genes involved in human U373 glioblastoma cell migration. Oncogene 20, 7021-7028.
- Kucur M, Isman FK, Balci C, Onal B, Hacibekiroglu M, Ozkan F, Ozkan A (2008). Serum YKL-40 levels and chitotriosidase activity as potential biomarkers in primary prostate cancer and benign prostatic hyperplasia. Urol. Oncol *26*, 47-52.
 - Kurihara H, Zama A, Tamura M, Takeda J, Sasaki T, Takeuchi T (2000). Glioma/glioblastoma-specific adenoviral gene expression using the nestin gene regulator. Gene Ther. 7, 686-693.
 - Lal A, Peters H, St CB, Haroon ZA, Dewhirst MW, Strausberg RL, Kaanders JH, van der Kogel AJ, Riggins GJ (2001). Transcriptional response to hypoxia in human tumors. J Natl. Cancer Inst. 93, 1337-1343.
- Lemmel C, Weik S, Eberle U, Dengjel J, Kratt T, Becker HD, Rammensee HG, Stevanovic S (2004). Differential quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Nat. Biotechnol. 22, 450-454.
 - Lendahl U, Zimmerman LB, McKay RD (1990). CNS stem cells express a new class of intermediate filament protein. Cell 60, 585-595.
- Li JY, Wang H, May S, Song X, Fueyo J, Fuller GN, Wang H (2008a). Constitutive activation of c-Jun N-terminal kinase correlates with histologic grade and EGFR expression in diffuse gliomas. J Neurooncol. *88*, 11-17.
 - Li L, Xu H, Spaulding BO, Cheng L, Simon R, Yao JL, di Sant'agnese PA, Bourne PA, Huang J (2008b). Expression of RNA-binding protein IMP3 (KOC) in benign urothelium and urothelial tumors. Hum. Pathol.
 - Liang ML, Ma J, Ho M, Solomon L, Bouffet E, Rutka JT, Hawkins C (2008). Tyrosine kinase expression in pediatric high grade astrocytoma. J Neurooncol. *87*, 247-253.
- Liang Y, Bollen AW, Aldape KD, Gupta N (2006). Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma. BMC. Cancer *6*, 97.

- Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein D, Brown PO, Israel MA (2005). Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc. Natl. Acad. Sci. U. S. A *102*, 5814-5819.
- Liao B, Hu Y, Herrick DJ, Brewer G (2005). The RNA-binding protein IMP-3 is a translational activator of insulin-like growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol. Chem. *280*, 18517-18524.
 - Littaua RA, Takeda A, Cruz J, Ennis FA (1992). Vaccinia virus-specific human CD4+ cytotoxic T-lymphocyte clones. J Virol. 66, 2274-2280.
 - Liu M, Parker RM, Darby K, Eyre HJ, Copeland NG, Crawford J, Gilbert DJ, Sutherland GR, Jenkins NA, Herzog H (1999). GPR56, a novel secretin-like human G-protein-coupled receptor gene. Genomics *55*, 296-305.
- Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wicha MS (2008). BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl. Acad. Sci. U. S. A *105*, 1680-1685.
 - Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, de St Groth BF, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006a). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4(+) T reg cells. J Exp. Med 203, 1701-1711.
- Liu X, Chen N, Wang X, He Y, Chen X, Huang Y, Yin W, Zhou Q (2006b). Apoptosis and proliferation markers in diffusely infiltrating astrocytomas: profiling of 17 molecules. J Neuropathol. Exp. Neurol. *65*, 905-913.
 - Lo ML, Staibano S, Pannone G, Mignogna MD, Mariggio A, Salvatore G, Chieffi P, Tramontano D, De RG, Altieri DC (2001). Expression of the apoptosis inhibitor survivin in aggressive squamous cell carcinoma. Exp. Mol. Pathol. 70, 249-254.
- 20 Lubensky IA, Vortmeyer AO, Kim S, Lonser RR, Park DM, Ikejiri B, Li J, Okamoto H, Walbridge S, Ryschkewitsch C, Major E, Oldfield EH, Zhuang Z (2006). Identification of tumor precursor cells in the brains of primates with radiation-induced de novo glioblastoma multiforme. Cell Cycle 5, 452-456.
 - Mach B, Steimle V, Martinez-Soria E, Reith W (1996). Regulation of MHC class II genes: lessons from a disease. Annu. Rev. Immunol. *14*, 301-331.
- Maderna E, Salmaggi A, Calatozzolo C, Limido L, Pollo B (2007). Nestin, PDGFRbeta, CXCL12 and VEGF in Glioma Patients: Different Profiles of (Pro-Angiogenic) Molecule Expression Are Related with Tumor Grade and May Provide Prognostic Information. Cancer Biol. Ther. 6.
 - Mahlamaki EH, Barlund M, Tanner M, Gorunova L, Hoglund M, Karhu R, Kallioniemi A (2002). Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Genes Chromosomes. Cancer *35*, 353-358.
- 30 Malcherek G, Gnau V, Stevanovic S, Rammensee HG, Jung G, Melms A (1994). Analysis of allele-specific contact sites of natural HLA-DR17 ligands. J Immunol. *153*, 1141-1149.
 - Manici S, Sturniolo T, Imro MA, Hammer J, Sinigaglia F, Noppen C, Spagnoli G, Mazzi B, Bellone M, Dellabona P, Protti MP (1999). Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. J Exp. Med *189*, 871-876.
- 35 Mao Y, Zhou L, Zhu W, Wang X, Yang G, Xie L, Mao X, Jin K (2007). Proliferative status of tumor stem cells may be correlated with malignancy grade of human astrocytomas. Front Biosci. *12*, 2252-2259.
 - Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW, Scott B (2000). Tumor-specific CD4+ T cells have a major "post-licensing" role in CTL mediated anti-tumor immunity. J Immunol. *165*, 6047-6055.
- Mellai M, Caldera V, Patrucco A, Annovazzi L, Schiffer D (2008). Survivin expression in glioblastomas correlates with 40 proliferation, but not with apoptosis. Anticancer Res. 28, 109-118.
 - Mishima K, Kato Y, Kaneko MK, Nishikawa R, Hirose T, Matsutani M (2006). Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol. *111*, 483-488.
 - Mita R, Coles JE, Glubrecht DD, Sung R, Sun X, Godbout R (2007). B-FABP-expressing radial glial cells: the malignant glioma cell of origin? Neoplasia. 9, 734-744.

- Miyawaki T, Uemura A, Dezawa M, Yu RT, Ide C, Nishikawa S, Honda Y, Tanabe Y, Tanabe T (2004). Tlx, an orphan nuclear receptor, regulates cell numbers and astrocyte development in the developing retina. J Neurosci. 24, 8124-8134.
- Mizukami Y, Kono K, Daigo Y, Takano A, Tsunoda T, Kawaguchi Y, Nakamura Y, Fujii H (2008). Detection of novel cancertestis antigen-specific T-cell responses in TIL, regional lymph nodes, and PBL in patients with esophageal squamous cell carcinoma. Cancer Sci.
 - Mokhtari K, Paris S, guirre-Cruz L, Privat N, Criniere E, Marie Y, Hauw JJ, Kujas M, Rowitch D, Hoang-Xuan K, Delattre JY, Sanson M (2005). Olig2 expression, GFAP, p53 and 1p loss analysis contribute to glioma subclassification. Neuropathol. Appl. Neurobiol. *31*, 62-69.
- Mokry J, Cizkova D, Filip S, Ehrmann J, Osterreicher J, Kolar Z, English D (2004). Nestin expression by newly formed human blood vessels. Stem Cells Dev. *13*, 658-664.
 - Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006). Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes. Science.
- Mortara L, Castellani P, Meazza R, Tosi G, De Lerma BA, Procopio FA, Comes A, Zardi L, Ferrini S, Accolla RS (2006).

 CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a Th1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clin Cancer Res. 12, 3435-3443.
 - Novellino L, Castelli C, Parmiani G (2005). A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol. Immunother. *54*, 187-207.
- Nutt CL, Betensky RA, Brower MA, Batchelor TT, Louis DN, Stemmer-Rachamimov AO (2005). YKL-40 is a differential diagnostic marker for histologic subtypes of high-grade gliomas. Clin Cancer Res. *11*, 2258-2264.
 - Nutt CL, Matthews RT, Hockfield S (2001). Glial tumor invasion: a role for the upregulation and cleavage of BEHAB/brevican. Neuroscientist. 7, 113-122.
 - O'Driscoll L, Linehan R, Clynes M (2003). Survivin: role in normal cells and in pathological conditions. Curr. Cancer Drug Targets. 3, 131-152.
- Ohike N, Sato M, Hisayuki T, Imataka H, Sato S, Wada Y, Saito K, Takahashi M, Tajiri T, Kunimura T, Morohoshi T (2007). Immunohistochemical analysis of nestin and c-kit and their significance in pancreatic tumors. Pathol. Int. *57*, 589-593.
 - Okada Y, Ohno C, Ueki K, Ogino M, Kawamoto S, Kim P (2007). Comparison of numerical change of epidermal growth factor receptor gene among pre- and postradiation glioma, and gliosis, and its clinical use. Brain Tumor Pathol. 24, 15-18.
- Ozerdem U (2006). Targeting of pericytes diminishes neovascularization and lymphangiogenesis in prostate cancer. Prostate 66, 294-304.
 - Pei Z, Oey NA, Zuidervaart MM, Jia Z, Li Y, Steinberg SJ, Smith KD, Watkins PA (2003). The acyl-CoA synthetase "bubblegum" (lipidosin): further characterization and role in neuronal fatty acid beta-oxidation. J Biol. Chem. 278, 47070-47078.
- Pelloski CE, Lin E, Zhang L, Yung WK, Colman H, Liu JL, Woo SY, Heimberger AB, Suki D, Prados M, Chang S, Barker FG, III, Fuller GN, Aldape KD (2006). Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin Cancer Res. *12*, 3935-3941.
 - Pelloski CE, Mahajan A, Maor M, Chang EL, Woo S, Gilbert M, Colman H, Yang H, Ledoux A, Blair H, Passe S, Jenkins RB, Aldape KD (2005). YKL-40 expression is associated with poorer response to radiation and shorter overall survival in glioblastoma. Clin Cancer Res. 11, 3326-3334.
- 40 Penar PL, Khoshyomn S, Bhushan A, Tritton TR (1997). Inhibition of epidermal growth factor receptor-associated tyrosine kinase blocks glioblastoma invasion of the brain. Neurosurgery *40*, 141-151.
 - Penna A, Fowler P, Bertoletti A, Guilhot S, Moss B, Margolskee RF, Cavalli A, Valli A, Fiaccadori F, Chisari FV, . (1992). Hepatitis B virus (HBV)-specific cytotoxic T-cell (CTL) response in humans: characterization of HLA class II-restricted CTLs that recognize endogenously synthesized HBV envelope antigens. J Virol. *66*, 1193-1198.

- Peris L, Thery M, Faure J, Saoudi Y, Lafanechere L, Chilton JK, Gordon-Weeks P, Galjart N, Bornens M, Wordeman L, Wehland J, Andrieux A, Job D (2006). Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J Cell Biol. *174*, 839-849.
- Perry J, Ho M, Viero S, Zheng K, Jacobs R, Thorner PS (2007). The intermediate filament nestin is highly expressed in normal human podocytes and podocytes in glomerular disease. Pediatr. Dev. Pathol. *10*, 369-382.
 - Piesche M, Hildebrandt Y, Zettl F, Chapuy B, Schmitz M, Wulf G, Trumper L, Schroers R (2007). Identification of a promiscuous HLA DR-restricted T-cell epitope derived from the inhibitor of apoptosis protein survivin. Hum. Immunol. *68*, 572-576.
- Pizzagalli F, Hagenbuch B, Stieger B, Klenk U, Folkers G, Meier PJ (2002). Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol. Endocrinol. *16*, 2283-2296.
 - Pryor JG, Bourne PA, Yang Q, Spaulding BO, Scott GA, Xu H (2008). IMP-3 is a novel progression marker in malignant melanoma. Mod. Pathol. 21, 431-437.
 - Purow B, Sundaresan TK, Burdick MJ, Kefas B, Comeau L, Hawkinson M, Su Q, Kotliarov Y, Lee J, Zhang W, Fine HA (2008). Notch-1 Regulates Transcription of the Epidermal Growth Factor Receptor Through p53. Carcinogenesis.
- Qin Z, Blankenstein T (2000). CD4+ T cell--mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity. 12, 677-686.
 - Qin Z, Schwartzkopff J, Pradera F, Kammertoens T, Seliger B, Pircher H, Blankenstein T (2003). A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res. 63, 4095-4100.
- Quaranta M, Divella R, Daniele A, Di TS, Venneri MT, Lolli I, Troccoli G (2007). Epidermal growth factor receptor serum levels and prognostic value in malignant gliomas. Tumori 93, 275-280.
 - Rammensee HG, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999). SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics *50*, 213-219.
 - Rammensee, H.G., Bachmann, J., and Stevanovic, S. (1997). MHC Ligands and Peptide Motifs. Springer-Verlag, Heidelberg, Germany).
- Rammensee HG, Friede T, Stevanoviic S (1995). MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178-228.
 - Reyaz N, Tayyab M, Khan SA, Siddique T (2005). Correlation of glial fibrillary acidic protein (GFAP) with grading of the neuroglial tumours. J Coll. Physicians Surg. Pak. 15, 472-475.
- Ringsholt M, Hogdall EV, Johansen JS, Price PA, Christensen LH (2007). YKL-40 protein expression in normal adult human tissues--an immunohistochemical study. J Mol. Histol. *38*, 33-43.
 - Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT, . (1987). A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. *316*, 889-897.
- Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, . (1988). Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J Med *319*, 1676-1680.
 - Roslind A, Johansen JS, Christensen IJ, Kiss K, Balslev E, Nielsen DL, Bentzen J, Price PA, Andersen E (2008). High serum levels of YKL-40 in patients with squamous cell carcinoma of the head and neck are associated with short survival. Int. J Cancer *122*, 857-863.
- Ruiz C, Huang W, Hegi ME, Lange K, Hamou MF, Fluri E, Oakeley EJ, Chiquet-Ehrismann R, Orend G (2004). Growth promoting signaling by tenascin-C [corrected]. Cancer Res. *64*, 7377-7385.
 - Sabatini F, Petecchia L, Tavian M, Jodon dV, V, Rossi GA, Brouty-Boye D (2005). Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Invest *85*, 962-971.

- Saidi A, Javerzat S, Bellahcene A, De VJ, Bello L, Castronovo V, Deprez M, Loiseau H, Bikfalvi A, Hagedorn M (2007). Experimental anti-angiogenesis causes upregulation of genes associated with poor survival in glioblastoma. Int. J Cancer.
- Saito T, Arifin MT, Hama S, Kajiwara Y, Sugiyama K, Yamasaki F, Hidaka T, Arita K, Kurisu K (2007). Survivin subcellular localization in high-grade astrocytomas: simultaneous expression in both nucleus and cytoplasm is negative prognostic marker. J Neurooncol. *82*, 193-198.
 - Sakurada K, Saino M, Mouri W, Sato A, Kitanaka C, Kayama T (2007). Nestin expression in central nervous system germ cell tumors. Neurosurg. Rev.
 - Sarlomo-Rikala M, Tsujimura T, Lendahl U, Miettinen M (2002). Patterns of nestin and other intermediate filament expression distinguish between gastrointestinal stromal tumors, leiomyomas and schwannomas. APMIS 110, 499-507.
- Sasaki T, Lopes MB, Hankins GR, Helm GA (2002). Expression of survivin, an inhibitor of apoptosis protein, in tumors of the nervous system. Acta Neuropathol. *104*, 105-109.
 - Sato F, Abraham JM, Yin J, Kan T, Ito T, Mori Y, Hamilton JP, Jin Z, Cheng Y, Paun B, Berki AT, Wang S, Shimada Y, Meltzer SJ (2006). Polo-like kinase and survivin are esophageal tumor-specific promoters. Biochem. Biophys. Res. Commun. 342, 465-471.
- Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M (2005). Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol. 166, 913-921.
 - Schiffer D, Manazza A, Tamagno I (2006). Nestin expression in neuroepithelial tumors. Neurosci. Lett. 400, 80-85.
- Schlegel J, Merdes A, Stumm G, Albert FK, Forsting M, Hynes N, Kiessling M (1994). Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int. J Cancer *56*, 72-77.
 - Schlehofer B, Blettner M, Preston-Martin S, Niehoff D, Wahrendorf J, Arslan A, Ahlbom A, Choi WN, Giles GG, Howe GR, Little J, Menegoz F, Ryan P (1999). Role of medical history in brain tumour development. Results from the international adult brain tumour study. Int. J Cancer 82, 155-160.
- Schmitt A, Gofferje V, Weber M, Meyer J, Mossner R, Lesch KP (2003). The brain-specific protein MLC1 implicated in megalencephalic leukoencephalopathy with subcortical cysts is expressed in glial cells in the murine brain. Glia *44*, 283-295.
 - Schoenberger SP, Toes RE, van d, V, Offringa R, Melief CJ (1998). T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480-483.
- Schwartzbaum J, Jonsson F, Ahlbom A, Preston-Martin S, Lonn S, Soderberg KC, Feychting M (2003). Cohort studies of association between self-reported allergic conditions, immune-related diagnoses and glioma and meningioma risk. Int. J Cancer 106, 423-428.
 - Schwartzbaum J, Jonsson F, Ahlbom A, Preston-Martin S, Malmer B, Lonn S, Soderberg K, Feychting M (2005). Prior hospitalization for epilepsy, diabetes, and stroke and subsequent glioma and meningioma risk. Cancer Epidemiol. Biomarkers Prev. 14, 643-650.
- 35 Schwechheimer K, Huang S, Cavenee WK (1995). EGFR gene amplification--rearrangement in human glioblastomas. Int. J Cancer 62, 145-148.

40

- Scrideli CA, Carlotti CG, Jr., Okamoto OK, Andrade VS, Cortez MA, Motta FJ, Lucio-Eterovic AK, Neder L, Rosemberg S, Oba-Shinjo SM, Marie SK, Tone LG (2008). Gene expression profile analysis of primary glioblastomas and non-neoplastic brain tissue: identification of potential target genes by oligonucleotide microarray and real-time quantitative PCR. J Neurooncol.
 - Sehgal A, Boynton AL, Young RF, Vermeulen SS, Yonemura KS, Kohler EP, Aldape HC, Simrell CR, Murphy GP (1998). Cell adhesion molecule Nr-CAM is over-expressed in human brain tumors. Int J Cancer 76, 451-458.
 - Sehgal A, Ricks S, Warrick J, Boynton AL, Murphy GP (1999). Antisense human neuroglia related cell adhesion molecule hNr-CAM, reduces the tumorigenic properties of human glioblastoma cells. Anticancer Res. 19, 4947-4953.

- Shashidhar S, Lorente G, Nagavarapu U, Nelson A, Kuo J, Cummins J, Nikolich K, Urfer R, Foehr ED (2005). GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene *24*, 1673-1682.
- Shedlock DJ, Shen H (2003). Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337-339.
- 5 Shibahara J, Kashima T, Kikuchi Y, Kunita A, Fukayama M (2006). Podoplanin is expressed in subsets of tumors of the central nervous system. Virchows Arch. *448*, 493-499.
 - Shih AH, Holland EC (2006). Notch signaling enhances nestin expression in gliomas. Neoplasia. 8, 1072-1082.
- Shiras A, Chettiar ST, Shepal V, Rajendran G, Prasad GR, Shastry P (2007). Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 25, 1478-1489.
 - Shostak K, Labunskyy V, Dmitrenko V, Malisheva T, Shamayev M, Rozumenko V, Zozulya Y, Zehetner G, Kavsan V (2003). HC gp-39 gene is upregulated in glioblastomas. Cancer Lett. 198, 203-210.
 - Singh SK, Clarke ID, Hide T, Dirks PB (2004a). Cancer stem cells in nervous system tumors. Oncogene 23, 7267-7273.
- Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res. *63*, 5821-5828.
 - Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004b). Identification of human brain tumour initiating cells. Nature *432*, 396-401.
 - Singh-Jasuja H, Emmerich NP, Rammensee HG (2004). The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol. Immunother. *53*, 187-195.
- Sitnikova L, Mendese G, Liu Q, Woda BA, Lu D, Dresser K, Mohanty S, Rock KL, Jiang Z (2008). IMP3 predicts aggressive superficial urothelial carcinoma of the bladder. Clin Cancer Res. 14, 1701-1706.
 - Sjo A, Magnusson KE, Peterson KH (2005). Association of alpha-dystrobrevin with reorganizing tight junctions. J Membr. Biol. 203, 21-30.
- Span PN, Sweep FC, Wiegerinck ET, Tjan-Heijnen VC, Manders P, Beex LV, de Kok JB (2004). Survivin is an independent prognostic marker for risk stratification of breast cancer patients. Clin Chem. *50*, 1986-1993.
 - Standifer NE, Ouyang Q, Panagiotopoulos C, Verchere CB, Tan R, Greenbaum CJ, Pihoker C, Nepom GT (2006). Identification of Novel HLA-A*0201-Restricted Epitopes in Recent-Onset Type 1 Diabetic Subjects and Antibody-Positive Relatives. Diabetes *55*, 3061-3067.
- Strojnik T, Rosland GV, Sakariassen PO, Kavalar R, Lah T (2007). Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surg Neurol. *68*, 133-143.
 - Su W, Chen J, Yang H, You L, Xu L, Wang X, Li R, Gao L, Gu Y, Lin S, Xu H, Breyer MD, Hao CM (2007). Expression of nestin in the podocytes of normal and diseased human kidneys. Am J Physiol Regul. Integr. Comp Physiol 292, R1761-R1767.
- Sugawara K, Kurihara H, Negishi M, Saito N, Nakazato Y, Sasaki T, Takeuchi T (2002). Nestin as a marker for proliferative endothelium in gliomas. Lab Invest *82*, 345-351.
 - Sun G, Yu RT, Evans RM, Shi Y (2007). Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl. Acad. Sci. U. S. A *104*, 15282-15287.
 - Sun JC, Bevan MJ (2003). Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339-342.
- 40 Suzuki H, Kato Y, Kaneko MK, Okita Y, Narimatsu H, Kato M (2008). Induction of podoplanin by transforming growth factor-beta in human fibrosarcoma. FEBS Lett. *582*, 341-345.

- Suzuki T, Maruno M, Wada K, Kagawa N, Fujimoto Y, Hashimoto N, Izumoto S, Yoshimine T (2004). Genetic analysis of human glioblastomas using a genomic microarray system. Brain Tumor Pathol. 21, 27-34.
- Takano T, Becker LE (1997). Developmental change of the nestin-immunoreactive midline raphe glial structure in human brainstem and spinal cord. Dev. Neurosci. 19, 202-209.
- 5 Tan HY, Liu J, Wu SM, Luo HS (2005). Expression of a novel apoptosis inhibitor-survivin in colorectal carcinoma. World J Gastroenterol. 11, 4689-4692.
 - Tanwar MK, Gilbert MR, Holland EC (2002). Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res. *62*, 4364-4368.
- Teranishi N, Naito Z, Ishiwata T, Tanaka N, Furukawa K, Seya T, Shinji S, Tajiri T (2007). Identification of neovasculature using nestin in colorectal cancer. Int. J Oncol *30*, 593-603.
 - Teratani T, Domoto T, Kuriki K, Kageyama T, Takayama T, Ishikawa A, Ozono S, Nozawa R (2007). Detection of transcript for brain-type fatty Acid-binding protein in tumor and urine of patients with renal cell carcinoma. Urology 69, 236-240.
 - Thompson DM, Gill GN (1985). The EGF receptor: structure, regulation and potential role in malignancy. Cancer Surv. 4, 767-788.
- Tohyama T, Lee VM, Rorke LB, Marvin M, McKay RD, Trojanowski JQ (1992). Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest *66*, 303-313.
 - Tompkins SM, Rota PA, Moore JC, Jensen PE (1993). A europium fluoroimmunoassay for measuring binding of antigen to class II MHC glycoproteins. J Immunol. Methods *163*, 209-216.
- Toti P, Regoli M, Nesi G, Occhini R, Bartolommei S, Fonzi L, Bertelli E (2005). Nestin expression in normal adrenal gland and adrenocortical tumors. Histol. Histopathol. *20*, 1115-1120.
 - Tsujimura T, Makiishi-Shimobayashi C, Lundkvist J, Lendahl U, Nakasho K, Sugihara A, Iwasaki T, Mano M, Yamada N, Yamashita K, Toyosaka A, Terada N (2001). Expression of the intermediate filament nestin in gastrointestinal stromal tumors and interstitial cells of Cajal. Am J Pathol. *158*, 817-823.
- Uematsu M, Ohsawa I, Aokage T, Nishimaki K, Matsumoto K, Takahashi H, Asoh S, Teramoto A, Ohta S (2005). Prognostic significance of the immunohistochemical index of survivin in glioma: a comparative study with the MIB-1 index. J Neurooncol. 72, 231-238.
 - van Bilsen JH, van DH, Lard LR, van d, V, Elferink DG, Bakker AM, Miltenburg AM, Huizinga TW, de Vries RR, Toes RE (2004). Functional regulatory immune responses against human cartilage glycoprotein-39 in health vs. proinflammatory responses in rheumatoid arthritis. Proc. Natl. Acad. Sci. U. S. A *101*, 17180-17185.
- 30 van der Bruggen P, Traversari C, Chomez P, Lurquin C, De PE, Van den EB, Knuth A, Boon T (1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science *254*, 1643-1647.
 - Vanderwinden JM, Gillard K, De Laet MH, Messam CA, Schiffmann SN (2002). Distribution of the intermediate filament nestin in the muscularis propria of the human gastrointestinal tract. Cell Tissue Res. *309*, 261-268.
 - Veerkamp JH, Zimmerman AW (2001). Fatty acid-binding proteins of nervous tissue. J Mol. Neurosci. 16, 133-142.
- Veselska R, Kuglik P, Cejpek P, Svachova H, Neradil J, Loja T, Relichova J (2006). Nestin expression in the cell lines derived from glioblastoma multiforme. BMC. Cancer 6, 32.
 - Viapiano MS, Bi WL, Piepmeier J, Hockfield S, Matthews RT (2005). Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas. Cancer Res. *65*, 6726-6733.
- Viapiano MS, Hockfield S, Matthews RT (2008). BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion. J Neurooncol.
 - Vigneron N, Stroobant V, Chapiro J, Ooms A, Degiovanni G, Morel S, van der BP, Boon T, Van Den Eynde BJ (2004). An antigenic peptide produced by peptide splicing in the proteasome. Science *304*, 587-590.

- Vogt AB, Kropshofer H, Kalbacher H, Kalbus M, Rammensee HG, Coligan JE, Martin R (1994). Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol. *153*, 1665-1673.
- Walter S, Herrgen L, Schoor O, Jung G, Wernet D, Buhring HJ, Rammensee HG, Stevanovic S (2003). Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28-coated microspheres. J. Immunol. 171, 4974-4978.
 - Wang JC, Livingstone AM (2003). Cutting edge: CD4+ T cell help can be essential for primary CD8+ T cell responses in vivo. J Immunol. 171, 6339-6343.
 - Wei LC, Shi M, Cao R, Chen LW, Chan YS (2008). Nestin small interfering RNA (siRNA) reduces cell growth in cultured astrocytoma cells. Brain Res. *1196*, 103-112.
- Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, Kurek R, Loeser W, Bichler KH, Wernet D, Stevanovic S, Rammensee HG (2002). Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res. 62, 5818-5827.
 - Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G (2006). Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9, 261-272.
- Winer S, Tsui H, Lau A, Song A, Li X, Cheung RK, Sampson A, Afifiyan F, Elford A, Jackowski G, Becker DJ, Santamaria P, Ohashi P, Dosch HM (2003). Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat. Med 9, 198-205.
 - Wiranowska M, Ladd S, Smith SR, Gottschall PE (2006). CD44 adhesion molecule and neuro-glial proteoglycan NG2 as invasive markers of glioma. Brain Cell Biol. *35*, 159-172.
- 20 Xie D, Zeng YX, Wang HJ, Wen JM, Tao Y, Sham JS, Guan XY (2006). Expression of cytoplasmic and nuclear Survivin in primary and secondary human glioblastoma. Br. J Cancer 94, 108-114.
 - Xu L, Begum S, Hearn JD, Hynes RO (2006). GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl. Acad. Sci. U. S. A 103, 9023-9028.
- 25 Xu L, Hynes RO (2007). GPR56 and TG2: possible roles in suppression of tumor growth by the microenvironment. Cell Cycle 6, 160-165.
 - Yamashita S, Masuda Y, Kurizaki T, Haga Y, Murayama T, Ikei S, Kamei M, Takeno S, Kawahara K (2007). Survivin expression predicts early recurrence in early-stage breast cancer. Anticancer Res. 27, 2803-2808.
- Yang J, Price MA, Neudauer CL, Wilson C, Ferrone S, Xia H, Iida J, Simpson MA, McCarthy JB (2004). Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J Cell Biol. *165*, 881-891.
 - Yantiss RK, Cosar E, Fischer AH (2008). Use of IMP3 in identification of carcinoma in fine needle aspiration biopsies of pancreas. Acta Cytol. *52*, 133-138.
- Yantiss RK, Woda BA, Fanger GR, Kalos M, Whalen GF, Tada H, Andersen DK, Rock KL, Dresser K (2005). KOC (K homology domain containing protein overexpressed in cancer): a novel molecular marker that distinguishes between benign and malignant lesions of the pancreas. Am J Surg Pathol. 29, 188-195.
 - Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002). Adoptive T cell therapy using antigenspecific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. U. S. A 99, 16168-16173.
- yuso-Sacido A, Graham C, Greenfield JP, Boockvar JA (2006). The duality of epidermal growth factor receptor (EGFR) signaling and neural stem cell phenotype: cell enhancer or cell transformer? Curr. Stem Cell Res. Ther. *1*, 387-394.
 - Zangen I, Kneitz S, Monoranu CM, Rutkowski S, Hinkes B, Vince GH, Huang B, Roggendorf W (2007). Ependymoma gene expression profiles associated with histological subtype, proliferation, and patient survival. Acta Neuropathol. *113*, 325-337.

- Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J (1997). Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res. *57*, 4570-4577.
- Zawrocki A, Biernat W (2005). Epidermal growth factor receptor in glioblastoma. Folia Neuropathol. 43, 123-132.
- Zeh HJ, III, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC (1999). High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol. *162*, 989-994.
 - Zhen HN, Zhang X, Hu PZ, Yang TT, Fei Z, Zhang JN, Fu LA, He XS, Ma FC, Wang XL (2005). Survivin expression and its relation with proliferation, apoptosis, and angiogenesis in brain gliomas. Cancer 104, 2775-2783.
 - Zheng W, Yi X, Fadare O, Liang SX, Martel M, Schwartz PE, Jiang Z (2008). The oncofetal protein IMP3: a novel biomarker for endometrial serous carcinoma. Am J Surg Pathol. 32, 304-315.
- Zhou R, Skalli O (2000). TGF-alpha differentially regulates GFAP, vimentin, and nestin gene expression in U-373 MG glioblastoma cells: correlation with cell shape and motility. Exp. Cell Res. *254*, 269-278.
 - Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B, Mann J, Vassileva G, McMahon A (1994). Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron *12*, 11-24.
- Ziu M, Schmidt NO, Cargioli TG, Aboody KS, Black PM, Carroll RS (2006). Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol. 79, 125-133.
 - Zukiel R, Nowak S, Wyszko E, Rolle K, Gawronska I, Barciszewska MZ, Barciszewski J (2006). Suppression of human brain tumor with interference RNA specific for tenascin-C. Cancer Biol. Ther. *5*, 1002-1007.
- Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, Vallejo M, Thomas MK, Habener JF (2001).

 Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes *50*, 521-533.

LISTADO DE SECUENCIAS <110> Immatics Biotechnologies GmbH 5 <120> Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales <130> FB24422-A-E 10 <150> EP08017305.7 <151> 2008-10-01 <150> EP08017921.1 <151> 2008-10-13 15 <150> US61/105,928 <151> 2008-10-16 <160> 30 20 <170> PatentIn version 3.4 <210> 1 <211> 9 <212> PRT 25 <213> Homo sapiens <400> 1 30 Asn Leu Asp Thr Leu Met Thr Tyr Val <210> 2 35 <211> 9 <212> PRT <213> Homo sapiens <400> 2 40 Tyr Leu Ile Ala Gly Ile Ile Ser Leu 45 <210> 3 <211> 9 <212> PRT <213> Homo sapiens 50 <400> 3 Lys lle Met Glu Arg lle Gln Glu Val 5 55 <210> 4 <211> 9 <212> PRT <213> Homo sapiens 60 <400> 4 Phe Leu Gly Asp Pro Pro Glu Lys Leu

5

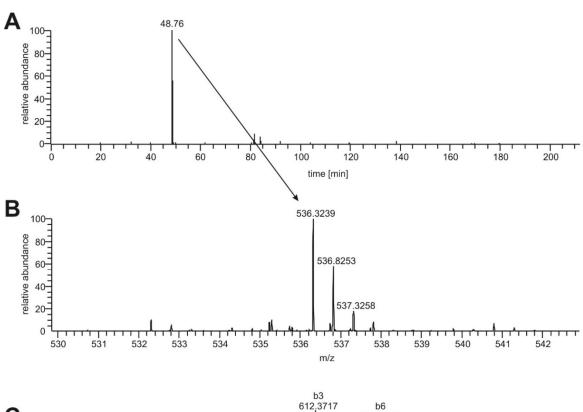
65

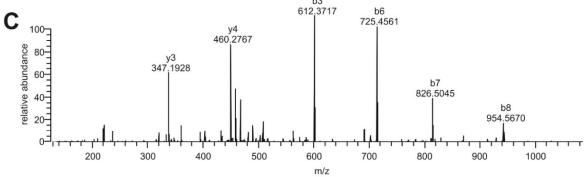
```
<210> 5
      <211> 9
      <212> PRT
 5
      <213> Homo sapiens
      <400> 5
      Ala Leu Trp Ala Trp Pro Ser Glu Leu 1 5
10
      <210> 6
      <211> 9
15
      <212> PRT
      <213> Homo sapiens
      <400> 6
20
      Thr Leu Tyr Gly Met Leu Asn Thr Leu
      <210> 7
25
      <211> 9
      <212> PRT
      <213> Homo sapiens
      <400> 7
30
      Ser Leu Asn Glu Leu Arg Val Leu Leu
35
      <210> 8
      <211> 9
      <212> PRT
      <213> Homo sapiens
40
      <400> 8
      Lys Leu Gln Asp Glu Ala Tyr Gln Val
45
      <210> 9
      <211> 10
      <212> PRT
      <213> Homo sapiens
50
      <400> 9
      Ala Leu Ala Val Leu Ser Asn Tyr Asp Ala
1 5 10
55
      <210> 10
      <211> 9
      <212> PRT
60
      <213> Homo sapiens
      <400> 10
      Leu Thr Phe Gly Asp Val Val Ala Val
65
      1 5
```

```
<210> 11
      <211> 9
 5
      <212> PRT
      <213> Homo sapiens
      <400> 11
10
      Asn Leu Ala Gln Asp Leu Ala Thr Val
      <210> 12
15
      <211> 9
      <212> PRT
      <213> Homo sapiens
      <400> 12
20
      Phe Leu Leu Ser Glu Pro Val Ala Leu
      1 5
25
      <210> 13
      <211> 9
      <212> PRT
      <213> Homo sapiens
30
      <400> 13
      Asn Ile Leu Glu Gln Ile Val Ser Val
      1 5
35
      <210> 14
      <211> 9
      <212> PRT
      <213> Homo sapiens
40
      <400> 14
      Lys Ile Gln Glu Ile Leu Thr Gln Val
45
      <210> 15
      <211> 9
      <212> PRT
50
      <213> Homo sapiens
      <400> 15
      Ser Val Val Glu Val Ile Ala Gly Ile
55
      <210> 16
      <211> 9
60
      <212> PRT
      <213> Homo sapiens
      <400> 16
65
      Gly Leu Gln Ser Gln Ile Ala Gln Val
```

```
1 5
      <210> 17
 5
      <211> 9
      <212> PRT
      <213> Homo sapiens
      <400> 17
10
      Ser Leu Gln Glu Asn Leu Glu Ser Leu
15
      <210> 18
      <211> 11
      <212> PRT
      <213> Homo sapiens
20
      <400> 18
      Phe Leu Phe Pro Gly Thr Glu Asn Gln Glu Leu
                     10
25
      <210> 19
      <211> 9
      <212> PRT
      <213> Homo sapiens
30
      <400> 19
      Asn Leu Ala Glu Glu Leu Glu Gly Val
35
      <210> 20
      <211> 9
      <212> PRT
40
      <213> Homo sapiens
      <400> 20
      Lys Ile Ile Ser Glu Ile Gln Ala Leu
45
      1 5
      <210> 21
      <211> 9
<212> PRT
50
      <213> Homo sapiens
      <400> 21
      Gly Leu Trp His His Gln Thr Glu Val 1 5
55
      <210> 22
60
      <211> 9
      <212> PRT
      <213> Homo sapiens
      <400> 22
```

65


```
Thr Leu Val Gly Ile Ile Val Gly Val
 5
      <210> 23
      <211> 9
      <212> PRT
      <213> Homo sapiens
10
      <400> 23
      Ala Met Thr Gln Leu Leu Ala Gly Val
      1 5
15
      <210> 24
      <211> 9
      <212> PRT
      <213> Homo sapiens
20
      <400> 24
      Gln Leu Leu Ala Gly Val Phe Leu Ala
      1 5
25
      <210> 25
      <211> 9
      <212> PRT
30
      <213> Homo sapiens
      <400> 25
      Thr Met Leu Ala Arg Leu Ala Ser Ala
35
      <210> 26
      <211> 15
40
      <212> PRT
      <213> Homo sapiens
      <400> 26
45
      Thr Leu Gly Glu Phe Leu Lys Leu Asp Arg Glu Arg Ala Lys Asn
                  10
      <210> 27
50
      <211> 15
      <212> PRT
      <213> Homo sapiens
      <400> 27
55
      Thr Leu Gly Glu Phe Leu Lys Leu Asp Arg Glu Arg Ala Lys Asp
                   10
60
      <210> 28
      <211> 9
      <212> PRT
      <213> Homo sapiens
65
      <400> 28
```


```
Phe Thr Glu Leu Thr Leu Gly Glu Phe 1 5
 5
       <210> 29
       <211> 9
       <212> PRT
       <213> Homo sapiens
10
       <400> 29
       Leu Met Leu Gly Glu Phe Leu Lys Leu 1 5
15
      <210> 30
<211> 9
<212> PRT
20
       <213> Homo sapiens
       <400> 30
       Glu Pro Asp Leu Ala Gln Cys Phe Tyr 1 5
25
```

REIVINDICACIONES

- 1. Péptido consistente en la secuencia de aminoácidos conforme a la SEQ ID N.º 1.
- 2. El péptido conforme a la reivindicación 1, en que dicho péptido incluye enlaces no peptídicos.
- 3. El péptido conforme a la reivindicación 1 o 2, en que dicho péptido forma parte de una proteína de fusión.
- 5 4. El péptido conforme a la reivindicación 3, en que dicha proteína de fusión comprende los aminoácidos N-terminales de la cadena invariable asociada a antígeno HLA-DR (Ii).
 - 5. Ácido nucleico, que codifica un péptido acorde con cualquiera de las reivindicaciones 1, 3 o 4, o un vector de expresión capaz de expresar dicho ácido nucleico.
 - 6. El péptido conforme a cualquiera de las reivindicaciones 1 a 4 para el uso en medicina.
- 7. Célula hospedadora que comprende el ácido nucleico o el vector de expresión acordes con la reivindicación 5, en que dicha célula hospedadora es preferentemente una célula presentadora de antígeno, por ejemplo una célula dendrítica, y en que dicha célula hospedadora no es un citoblasto embrionario humano.
- 8. Método para producir un péptido acorde con cualquiera de las reivindicaciones 1 a 4, comprendiendo el método el cultivo de la célula hospedadora acorde con la reivindicación 7 que expresa el ácido nucleico o el vector de expresión de conformidad con la reivindicación 5, y el aislamiento del péptido a partir de la célula hospedadora o de su medio de cultivo.
- 9. Método *in vitro* para producir linfocitos T citotóxicos (CTL) activados, comprendiendo la puesta en contacto en condiciones *in vitro* de CTL con moléculas MHC de clase I o II humanas cargadas con antígeno expresadas en la superficie de una célula presentadora de antígeno o un constructo artificial que imite a una célula presentadora de antígeno durante un período de tiempo suficiente para activar dichos CTL de una manera específica de antígeno, siendo dicho antígeno un péptido conforme a cualquiera de las reivindicaciones 1, 3 o 4.
 - 10. Linfocito T citotóxico (CTL) activado, producido con el método acorde con la reivindicación 9, que reconoce selectivamente una célula que expresa de forma aberrante un polipéptido que comprende una secuencia de aminoácidos dada en la reivindicación 1.
- 25 11. Péptido conforme con cualquiera de las reivindicaciones 1 a 4, la célula conforme con la reivindicación 7, o un linfocito T citotóxico activado conforme con la reivindicación 10 para el uso en el tratamiento del cáncer.
 - 12. El péptido conforme con cualquiera de las reivindicaciones 1 a 4, la célula conforme con la reivindicación 7, o un linfocito T citotóxico activado conforme con la reivindicación 10 para el uso conforme con la reivindicación 11 en la forma de una vacuna contra el cáncer.
- 30 13. Un anticuerpo que es específico contra el complejo MHC/péptido formado por el MHC con un péptido consistente en la SEQ ID N.º 1.
 - 14. Un equipo que comprende:
- (a) un envase que contiene una composición farmacéutica que contiene el péptido acorde con cualquiera de las reivindicaciones 1 a 4, la célula acorde con la reivindicación 7, o el linfocito T citotóxico activado acorde con la reivindicación 10, en solución o en forma liofilizada;
 - (b) un segundo envase que contiene un diluyente o solución de reconstitución para la formulación liofilizada; y
 - (c) opcionalmente, instrucciones para el (l) uso de la solución o (II) la reconstitución y/o el uso de la formulación liofilizada.

Figura 1

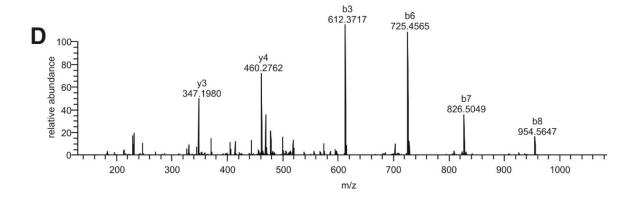
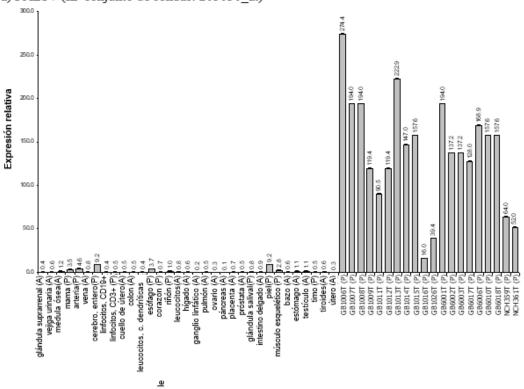



Figura 2a

b) NR2E1 (ID conjunto de sondas: 207443_at)

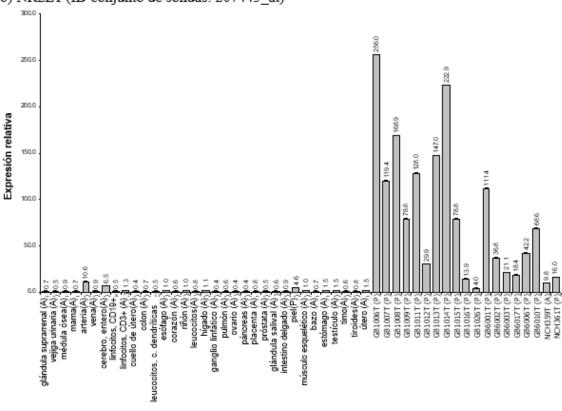
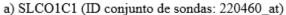
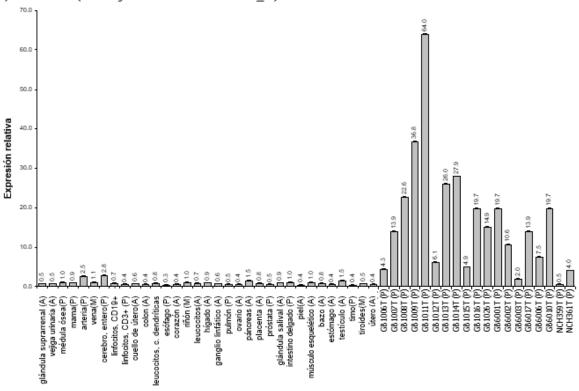




Figura 2b

b) IGF2BP3 (ID conjunto de sondas: 216493_s_at)

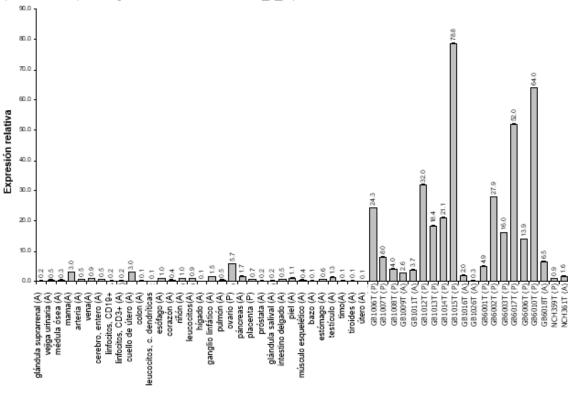


Figura 3

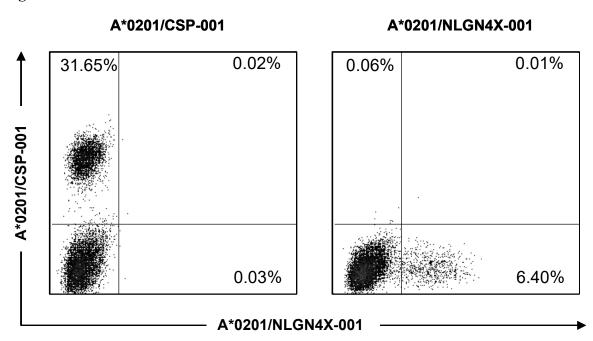
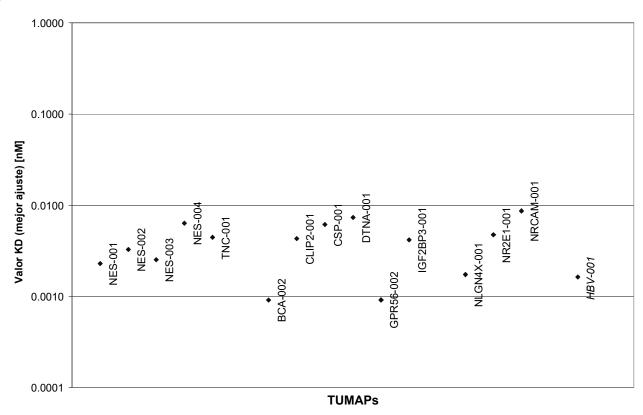



Figura 4

