

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 791 183

51 Int. Cl.:

A61K 39/395 (2006.01) A61P 35/00 (2006.01) C07K 16/22 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 20.12.2013 PCT/US2013/077139

(87) Fecha y número de publicación internacional: 26.06.2014 WO14100689

(96) Fecha de presentación y número de la solicitud europea: 20.12.2013 E 13827058 (2)

(97) Fecha y número de publicación de la concesión europea: 19.02.2020 EP 2934584

(54) Título: Anticuerpos anti-GDF15

(30) Prioridad:

21.12.2012 US 201261745508 P 24.05.2013 US 201361827325 P

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 03.11.2020

(73) Titular/es:

AVEO PHARMACEUTICALS, INC. (100.0%) One Broadway, 14th Floor Cambridge, MA 02142, US

(72) Inventor/es:

LERNER, LORENA;
ABBOTT, SANDRA;
BAI, AILIN;
CHEN, TING;
CHIU, MARIA, ISABEL;
LIU, QING;
POLING, LAURA;
TAO, NIANJUN;
WEILER, SOLLY;
WENG, ZHIGANG;
WINSTON, WILLIAM, M. y
GYURIS, JENO

(74) Agente/Representante:

TEMIÑO CENICEROS, Ignacio

DESCRIPCIÓN

Anticuerpos anti-GDF15

5 Campo de la invención

El campo de la invención es la biología molecular, la inmunología, la caquexia y los trastornos seudocaquécticos, y la oncología. Más particularmente, el campo son los anticuerpos terapéuticos.

10 Antecedentes

15

20

25

40

La pérdida involuntaria de peso puede clasificarse en tres etiologías primarias que incluyen la caquexia, la sarcopenia y la inanición. La caquexia es un síndrome metabólico debilitante asociado con numerosas enfermedades que incluyen el cáncer, el SIDA, la insuficiencia cardiaca crónica (conocida también como insuficiencia cardiaca congestiva), la enfermedad pulmonar obstructiva crónica (EPOC), la enfermedad renal crónica, la tuberculosis, el síndrome séptico y otras formas de inflamación sistémica. La caquexia varía en sus manifestaciones, pero generalmente implica una pérdida involuntaria de la masa del músculo esquelético y alguna forma de enfermedad subyacente (Evans et al. (2008) CLIN. NUTR. 27: 793-799). La caquexia es un trastorno de consunción que implica la pérdida involuntaria de peso y puede estar asociada con una inflamación sistémica y/o una respuesta inflamatoria aguda (Thomas (2007) CLIN. NUTRITION 26: 389-39). La pérdida de masa grasa, así como de masa magra, tal como la masa muscular, a menudo es una característica clínica destacada de la caquexia. En muchos, pero no en todos los casos, la caquexia progresa a través de unas fases que se han denominado precaquexia, caquexia y caquexia resistente (Fearon et al. (2011) LANCET ONC. 12: 489-495). Parece que hay dos procesos diferentes, pero en ocasiones solapantes, que dirigen el desarrollo y la progresión de la caquexia: (a) procesos metabólicos que actúan directamente sobre el músculo, reduciendo su masa y su función; y (b) una reducción en la ingesta de alimentos, que da lugar a una pérdida tanto de grasa como de músculo (Tsai et al. (2012) J. CACHEXIA SARCOPENIA MUSCLE 3: 239-243).

Aunque la caquexia es un síndrome complejo y no totalmente comprendido, es evidente que el GDF15 (también conocido como MIC-1, PLAB, PDF y NAG-1), un miembro de la superfamilia del TGF-β, es un importante mediador de la caquexia en diversas enfermedades (Tsai et al., supra). Al menos algunos tumores sobreexpresan y secretan el GDF15, y se han asociado unos niveles séricos elevados del GDF15 con diversos cánceres (Johnen et al. (2007) NAT. MED. 13: 1333-1340; Bauskin et al. (2006) CANCER RES. 66: 4983-4986). Se han reconocido los anticuerpos monoclonales contra el GDF15 como potenciales agentes terapéuticos anticaquécticos. Véase, por ejemplo, la
 Patente de los Estados Unidos n.º 8.192.735. El documento WO 2007/021293 divulga anticuerpos para modular el apetito y/o el peso corporal en un sujeto.

La pérdida de peso resultante de la caquexia está asociada con un mal pronóstico en diversas enfermedades (Evans et al., supra), y se considera que la caquexia y sus consecuencias son la causa directa de muertes en aproximadamente el 20 % de las muertes por cáncer (Tisdale (2002) NAT. REV. CANCER 2: 862-871). La caquexia es poco frecuentemente revertida mediante la intervención nutricional, y actualmente este síndrome raras veces se trata con terapia farmacológica (Evans et al., supra).

La sarcopenia es una afección clínica relacionada con la caquexia que se caracteriza por una pérdida de la masa muscular esquelética y de la fuerza muscular. La reducción en la masa muscular puede dar lugar a un deterioro importante, con pérdida de fuerza, un aumento en la probabilidad de caídas y una pérdida de autonomía. La función respiratoria también puede estar deteriorada, con una capacidad vital reducida. Durante el estrés metabólico, la proteína muscular es rápidamente movilizada con objeto de proporcionar aminoácidos al sistema inmunitario, el hígado y el intestino, particularmente glutamina. La sarcopenia es a menudo una enfermedad geriátrica; sin embargo, su desarrollo también puede estar asociado con la inactividad muscular y la malnutrición, y puede coincidir con la caquexia. La sarcopenia puede ser diagnosticada sobre la base de las observaciones funcionales, tales como un bajo peso muscular y una baja velocidad de marcha. Véase, por ejemplo, Muscaritoli et al. (2010) CLIN. NUTRITION 29: 154-159.

La inanición da normalmente como resultado una pérdida de la grasa corporal y de la masa magra debido a una inadecuada dieta y/o ingesta de nutrientes (Thomas (2007) *supra*). Los efectos de la inanición a menudo se revierten mejorando la dieta y la ingesta de nutrientes, por ejemplo, de proteínas.

Los anticuerpos naturales son proteínas multiméricas que contienen cuatro cadenas polipeptídicas (FIG. 1). Dos de las cadenas polipeptídicas se denominan cadenas pesadas (cadenas H), y dos de las cadenas polipeptídicas se denominan cadenas ligeras (cadenas L). Las cadenas pesada y ligera de las inmunoglobulinas están conectadas por un puente de disulfuro intercatenario. Las cadenas pesadas de las inmunoglobulinas están conectadas por puentes de disulfuro intercatenarios. Una cadena ligera consiste en una región variable (V_Len la FIG. 1) y una región constante (C_L en la **FIG. 1**). La cadena pesada consiste en una región variable (V_H en la **FIG. 1**) y al menos tres regiones constantes (C_{H1}, C_{H2} y C_{H3} en la **FIG. 1**). Las regiones variables determinan la especificidad del anticuerpo. Cada región variable comprende tres regiones hipervariables conocidas también como regiones determinantes de la

complementariedad (CDR) flanqueadas por cuatro regiones estructurales relativamente conservadas (FR). Las tres CDR, denominadas CDR₁, CDR₂ y CDR₃, contribuyen a la especificidad de unión al anticuerpo. Los anticuerpos naturales se han usado como material de partida para los anticuerpos genomodificados, tales como los anticuerpos quiméricos y los anticuerpos humanizados.

Existe una significativa necesidad no satisfecha de agentes terapéuticos eficaces para el tratamiento de la caquexia y de la sarcopenia, incluyendo anticuerpos monoclonales dirigidos contra el GDF15. Dichos agentes terapéuticos tienen el potencial de jugar un papel importante en el tratamiento de diversos cánceres y de otras enfermedades potencialmente mortales.

Sumario

10

15

25

40

50

65

La invención se basa, en parte, en el descubrimiento de una familia de anticuerpos que se unen especialmente al GDF15 humano (hGDF15). Los anticuerpos contienen sitios de unión al hGDF15 basados en las CDR de los anticuerpos. Los anticuerpos pueden usarse como agentes terapéuticos. Cuando se usan como agentes terapéuticos, los anticuerpos son genomodificados, por ejemplo, humanizados, para reducir o eliminar una respuesta inmunitaria cuando se administran a un paciente humano.

La presente invención proporciona un anticuerpo aislado que se une al GDF15 humano, que comprende una región variable de una cadena pesada de una inmunoglobulina y una región variable de la cadena ligera de una inmunoglobulina que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en:

- (a) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 248 (Hu01G06 IGHV1-18 F2) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 254 (Hu01G06 IGKV1-39 F2);
- (b) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 250 (Hu01G06 IGHV1-69 F1) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 F1);
- (c) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 40 (01G06, Ch01G06 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 76 (01G06, Ch01G06 quimérica);
 - (d) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 54 (Hu01G06 IGHV1-18) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01G06 IGKV1-39);
- (e) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 56 (Hu01G06 IGHV1-69) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01 G06 IGKV1-39);
 - (f) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 246 (Hu01G06 IGHV1-18 F1) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 F1);
 - (g) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 252 (Hu01G06 IGHV1-69 F2) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 F1); y
- (h) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 252 (Hu01G06 IGHV1-69 F2) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 254 (Hu01G06 IGKV1-39 F2).

En algunas realizaciones, el anticuerpo aislado que se une al GDF15 humano comprende una cadena pesada de una inmunoglobulina y una cadena ligera de una inmunoglobulina seleccionadas entre el grupo que consiste en:

- (a) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 258 (Hu01G06 IGHV1-18 F2) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 264 (Hu01G06 IGKV1-39 F2);
- (b) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 260 (Hu01G06 IGHV1-69 F1) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 208 (Hu01G06 IGKV1-39 F1);
 - (c) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 176 (Ch01G06 quimérica) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 204 (Ch01G06 quimérica);
- (d) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 178 (Hu01G06 IGHV1-18) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 206 (Hu01G06 IGKV1-39);
 - (e) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 180 (Hu01G06 IGHV1-69) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 206 (Hu01G06 IGKV1-39);
 - (f) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 256

(Hu01G06 IGHV1-18 F1) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 208 (Hu01G06 IGKV1-39 F1);

- (g) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 262 (Hu01G06 IGHV1-69 F2) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 208 (Hu01G06 IGKV1-39 F1); y
- (h) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 262 (Hu01G06 IGHV1-69 F2) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 264 (Hu01G06 IGKV1-39 F2).
- 10 La presente invención también proporciona un ácido nucleico aislado o ácidos nucleicos que comprenden una secuencia de nucleótidos que codifica una cadena pesada de una inmunoglobulina y una cadena ligera de una inmunoglobulina de la presente invención.
- La presente invención también proporciona un vector o vectores de expresión que comprenden el ácido nucleico o nucleico de la presente invención.
 - La presente invención también proporciona una célula hospedadora que comprende dicho vector o vectores de expresión.
- 20 La presente invención también proporciona un método para producir un anticuerpo que se une al GDF15 humano, o un fragmento de unión al antígeno del anticuerpo, método que comprende:
 - (a) cultivar una célula hospedadora de la presente invención en unas condiciones tales que la célula hospedadora exprese un polipéptido o polipéptidos que comprenden la cadena pesada de la inmunoglobulina y la cadena ligera de la inmunoglobulina, produciendo así el anticuerpo o el fragmento de unión al antígeno del anticuerpo; y
 - (b) el anticuerpo o el fragmento de unión al antígeno del anticuerpo.

5

25

35

- También se proporciona un anticuerpo de la presente invención, en donde el anticuerpo tiene una K_D de 300 pM o menor, de 150 pM o menor o de 100 pM o menor, medida mediante resonancia de plasmón superficial o interferometría de biocapa.
 - También se proporciona un anticuerpo de la presente invención para su uso en el tratamiento de la caquexia y/o de la sarcopenia en un mamífero.
 - En algunas realizaciones, el anticuerpo de la presente invención puede usarse en el tratamiento de la caquexia y/o de la sarcopenia en un mamífero, en donde el uso comprende adicionalmente la administración de un segundo agente al mamífero en necesidad del mismo, en donde el segundo agente se selecciona entre el grupo que consiste en un inhibidor de la Activina-A, un inhibidor del ActRIIB, un inhibidor de la IL-6, un inhibidor de la IL-6R, un inhibidor del péptido de melanocortina, un inhibidor del receptor de la melanocortina, una grelina, un mimético de la grelina, un agonista del GHS-R1a, un SARM, un inhibidor del TNFα, un inhibidor de la IL-1α, un inhibidor de la miostatina, un betabloqueante y un agente antineoplásico.
- Los anticuerpos divulgados impiden o inhiben (es decir, neutralizan) la actividad del hGDF15. Cuando se administran a un mamífero, los anticuerpos pueden inhibir la pérdida de masa muscular, por ejemplo, la pérdida de masa muscular asociada con una enfermedad subyacente. La enfermedad subyacente puede seleccionarse entre el grupo que consiste en cáncer, insuficiencia cardiaca crónica, enfermedad renal crónica, EPOC, SIDA, esclerosis múltiple, artritis reumatoide, síndrome séptico y tuberculosis. La pérdida de masa muscular puede estar acompañada por una pérdida de masa grasa. Los anticuerpos divulgados también pueden usarse para inhibir la pérdida de masa de un órgano. Además, los anticuerpos pueden usarse para el tratamiento de la caquexia y/o de la sarcopenia en un mamífero.
- Puede usarse una proteína de fusión rhGDF15-Fc de inmunoglobulina (Fc-rhGDF 15) según se describe en el presente documento para un método para el establecimiento de un nivel de estado estacionario del GDF15 humano recombinante maduro (rhGDF15) en plasma o suero en un mamífero, que comprende la administración de una proteína de fusión rhGDF15-Fc de inmunoglobulina (Fc-rhGDF15) al mamífero. La Fc-rhGDF15 puede ser un GDF15 humano recombinante maduro de la Fc de ratón (mFc-rhGDF15). El mamífero puede ser un roedor, por ejemplo, un ratón.
 - En el presente documento también se describe una Fc-rhGDF15 para su uso en el tratamiento de la obesidad en un mamífero, por ejemplo, un ser humano, que comprende administrar una cantidad terapéuticamente eficaz de una Fc-rhGDF15, por ejemplo, un GDF15 humano recombinante maduro de la Fc humana (hFc-rhGDF15), al mamífero en necesidad del mismo. También se divulgan composiciones farmacéuticas que comprenden una proteína de fusión Fc-rhGDF15 y un portador farmacéuticamente aceptable.

Estos y otros aspectos y ventajas de la invención serán evidentes a partir de la consideración de las siguientes figuras, la descripción detallada y las reivindicaciones. Como se usa en el presente documento, "incluyendo" significa sin limitación, y los ejemplos mencionados no son limitantes. Como se usa en el presente documento, "anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11" significa anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11, o variantes humanizadas de los mismos.

Descripción de los dibujos

La invención puede comprenderse más completamente con referencia a los siguientes dibujos.

10

15

- La FIG. 1 (técnica anterior) es una representación esquemática de un anticuerpo natural típico.
- La **FIG. 2** es una gráfica que representa los resultados de un experimento para medir los niveles séricos de hGDF15 en ratones sin tratamiento previo o en ratones portadores de xenoinjertos de tumores humanos (Chago, RPMI7951, PC3, TOV21G, HT-1080, K-562, LS1034), según se determina mediante un ELISA.
- La **FIG. 3** es una representación gráfica que representa los resultados de un experimento para determinar la farmacocinética en plasma (PK) del rhGDF15 escindido administrado mediante una inyección subcutánea (1 mg/g) a ratones ICR-SCID sin tratamiento previo, según se determina mediante un ELISA.

20

35

- La **FIG. 4** es una gráfica que resume los resultados de un experimento para medir la actividad caquéctica de la proteína rhGDF15 escindida (**■**) y el control negativo (PBS (•)) para inducir una pérdida de peso corporal en ratones no inmunocompetentes, ICR-SCID. Las flechas indican unas dosis subcutáneas de 1 μg/g de rhGDF15.
- Las **FIGS.** 5A y 5B son gráficas que resumen los resultados de un experimento para medir la actividad caquéctica de la mFc-rhGDF15 (una Fc de ratón fusionada con el amino terminal de un GDF15 humano recombinante maduro; ■), rFc-rmGDF15 (una Fc de conejo fusionada con el amino terminal de un GDF15 de ratón recombinante maduro; A), y el control negativo (PBS; •) para inducir una pérdida de peso corporal en ratones Balb/C inmunocompetentes (**FIG.** 5A) y en ratones CB17-SCID no inmunocompetentes (**FIG.** 5B). Las flechas indican unas dosis subcutáneas de 1 μg/g de proteína recombinante.
 - Las **FIGS.** 6A-6E son gráficas que resumen los resultados de un experimento para demostrar la actividad caquéctica de la mFc-rhGDF15 (**■**) y el control negativo (PBS; •) para inducir una pérdida de peso corporal en ratones ICR-SCID no inmunocompetentes (**FIG.** 6A; las flechas indican unas dosis subcutáneas de 1 μg/g de mFc-rhGDF15); para inducir una pérdida de tejido adiposo o de masa grasa gonadal (**FIG.** 6B); para inducir una pérdida de masa muscular del músculo gastrocnemio (**FIG.** 6C; Masa del gastroc); y para aumentar la expresión del ARNm de los marcadores moleculares de la degradación muscular (mMuRF1 (**FIG.** 6D) y mAtrogina (**FIG.** 6E)).
- 40 La FIG. 7 es una gráfica que resume los resultados de un experimento para medir la actividad caquéctica de la mFc-rhGDF15 (■) y el control negativo (PBS; •) para inducir una pérdida de peso corporal en ratones Balb/C atímicos no inmunocompetentes. Las flechas indican unas dosis subcutáneas de 1,33 μg/g de mFc-rhGDF15.
- La **FIG. 8** es una gráfica que resume los resultados de un experimento para medir los niveles séricos de la mFc-rhGDF15 en ratones a los que se les ha administrado la proteína recombinante. La presencia de la mFc-rhGDF15 se determinó mediante una inmunoelectrotransferencia. Se cuantificaron dos bandas positivas correspondientes a la mFc-rhGDF15 y al rhGDF15 (según el tamaño molecular apropiado) mediante Licor. Se calculó el porcentaje de rhGDF15 liberado con respecto a la mFc-rhGDF15.
- La **FIG. 9A** es una gráfica que resume los resultados de un experimento para medir la actividad caquéctica de la mFc-rhGDF15 (0,1 μg/g (■), 0,01 μg/g (Δ)) y el control negativo (0,1 μg/g de mlgG (•)) para inducir una pérdida de peso corporal en ratones ICR-SCID no inmunocompetentes. Las flechas indican la dosis intraperitoneal de la proteína recombinante. La **FIG. 9B** es una gráfica que representa el nivel total del rhGDF15 en el plasma de ratones a los que se les ha administrado la mFc-rhGDF15 (0,1 μg/g (□), 0,01 μg/g (■)) cinco días después de la administración, según se determina mediante un ELISA.
 - La **FIG. 10** es una alineación de la secuencia que muestra la secuencia de aminoácidos de la región variable de la cadena pesada de la inmunoglobulina completa de los anticuerpos 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 y 17B11. Las secuencias de aminoácidos de cada anticuerpo están alineadas por parejas, y las CDR₁, CDR₂ y CDR₃, están identificadas en recuadros. Las secuencias fuera de los recuadros representan las secuencias estructurales (FR). El posicionamiento de la alineación (huecos) se basa en la numeración de Kabat, en lugar de en un algoritmo de alineación tal como Clustal. La numeración anterior de las secuencias representa la numeración de Kabat.
- La **FIG. 11** es una alineación de la secuencia que muestra las secuencias CDR₁, CDR₂ y CDR₃ para cada una de las secuencias de la región variable de la cadena pesada de la inmunoglobulina de la **FIG. 10**.

- La **FIG. 12** es una alineación de la secuencia que muestra la secuencia de aminoácidos de la región variable de la cadena ligera de la inmunoglobulina completa de los anticuerpos 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 y 17B11. Las secuencias de aminoácidos de cada anticuerpo están alineadas por parejas, y las CDR₁, CDR₂ y CDR₃, están identificadas en recuadros. Las secuencias fuera de los recuadros representan las secuencias estructurales (FR). El posicionamiento de la alineación (huecos) se basa en la numeración de Kabat, en lugar de en un algoritmo de alineación tal como Clustal. La numeración anterior de las secuencias representa la numeración de Kabat.
- La **FIG. 13** es una alineación de la secuencia que muestra las secuencias CDR₁, CDR₂ y CDR₃ para cada una de las secuencias de la región variable de la cadena ligera de la inmunoglobulina de la **FIG. 12.**

5

15

- La **FIG. 14** es una gráfica que resume los resultados de un experimento para medir la actividad inhibidora caquéctica de los anticuerpos anti-GDF15 01G06 (■), 03G05 (▲), 04F08 (▼), 06C11 (♦), 14F11 (♦) y 17B11 (□), y un control de IgG murina (•; mIgG) administrados a 10 mg/kg en un modelo caquéctico de mFc-rhGDF15 en ratones ICR-SCID. La flecha indica la inyección intraperitoneal del anticuerpo.
- La **FIG. 15** es una gráfica que resume los resultados de un experimento para medir la actividad inhibidora caquéctica de los anticuerpos anti-GDF15 01G06 (♠), 03G05 (♦), 04F08 (∇), 06C11(□), 08G01 (■), 14F11 (♦) y 17B11 (★), y un control de IgG murina (•; mIgG), administrados a 10 mg/kg en un modelo de xenoinjerto tumoral de fibrosarcoma HT-1080 en ratones ICR-SCID. Las flechas indican la inyección intraperitoneal del anticuerpo cada tres días.
- Las FIGS. 16A-16E son gráficas que resumen los resultados de un experimento para demostrar la actividad anticaquéctica del anticuerpo anti-GDF15 01G06 (IIII), administrado a 10 mg/kg, en ratones no inmunocompetentes (ICR-SCID) portadores de un modelo de xenoinjerto tumoral de fibrosarcoma HT-1080. El tratamiento con el anticuerpo 01G06 revertió la pérdida de peso corporal (FIG. 16A); indujo un aumento significativo en el consumo de alimentos durante hasta tres días después de la administración (FIG. 16B); indujo una ganancia de masa grasa gonadal (FIG. 16C); indujo una ganancia de masa muscular del músculo gastrocnemio (FIG. 16D); y disminuyó la expresión del ARNm de los marcadores moleculares de degradación del músculo (mMuRF1 y mAtrogina (FIG. 16E)) en comparación con el control negativo (IgG murina (•)). En la FIG. 16A, la flecha indica la inyección intraperitoneal del anticuerpo.
- Las FIGS. 17A-17B son gráficas que resumen los resultados de un experimento para demostrar la actividad anticaquéctica del anticuerpo anti-GDF15 01G06 (**a**), administrado a 2 mg/kg, en ratones no inmunocompetentes (ICR-SCID) portadores de un modelo de xenoinjerto tumoral de fibrosarcoma HT-1080. El tratamiento con el anticuerpo 01G06 revertió la pérdida de peso corporal en comparación con la IgG murina (•) (FIG. 17A); e indujo una ganancia de masa en los órganos (hígado, corazón, bazo, riñón) e indujo una ganancia de masa tisular (gonadal y del gastrocnemio) (FIG. 17B) en comparación con el control negativo (IgG murina) y la situación inicial (día 1). Las flechas de la FIG. 17A indican la inyección intraperitoneal del anticuerpo.
 - La **FIG. 18** es una gráfica que resume los resultados de un experimento para medir la actividad inhibidora caquéctica de los anticuerpos anti-GDF15 01G06 (■), 03G05 (▲), 04F08 (X), 06C11(♦), 08G01(○), 14F11(□) y 17B11 (Δ), y un control de IgG murina (•) administrados a 10 mg/kg en un modelo de xenoinjerto de tumor de leucemia K-562 en ratones no inmunocompetentes (CB17SCRFMF). Las flechas indican la inyección intraperitoneal del anticuerpo.
- La **FIG. 19** es una alineación de la secuencia que muestra la secuencia de aminoácidos de la región variable de la cadena pesada de la inmunoglobulina completa de la región variable quimérica 01G06 indicada como Ch01G06 quimérica; las regiones variables de la cadena pesada 01G06 humanizada indicadas como Hu01G06 IGHV1-18, Hu01G06 IGHV1-69, Sh01G06 IGHV1-18 M69L, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S I69L, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1 y Hu01G06 IGHV1-69 F2; 06C11 quimérica indicada como Ch06C11 quimérica; las regiones variables de la cadena pesada 06C11 humanizada indicadas como HE LM 06C11 IGHV2-70 y Hu06C11 IGHV2-5; quimérica indicada como Ch14F11 quimérica; y las regiones variables de la cadena pesada humanizada indicadas como Sh14F11 IGHV2-5 y Sh14F11 IGHV2-70. Las secuencias de aminoácidos de cada anticuerpo están alineadas por parejas, y las CDR₁, CDR₂ y CDR₃, están identificadas en recuadros. Las secuencias fuera de los recuadros representan las secuencias estructurales (FR). El posicionamiento de la alineación (huecos) se basa en la numeración de Kabat, en lugar de en un algoritmo de alineación tal como Clustal. La numeración anterior de las secuencias representa la numeración de Kabat.
 - La **FIG. 20** es una alineación de la secuencia que muestra las secuencias CDR₁, CDR₂ y CDR₃ para cada una de las secuencias de la región variable de la cadena pesada de la inmunoglobulina de la **FIG. 19.**
- La **FIG. 21** es una alineación de la secuencia que muestra la secuencia de aminoácidos de la región variable de la cadena ligera de la inmunoglobulina completa de la región variable quimérica 01G06 indicada como Ch01G06

quimérica; las regiones variables de la cadena ligera 01G06 humanizada indicadas como Hu01G06 IGKV1-39, Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39 V48I, Hu01G06 IGKV1-39 F1 y Hu01G06 IGKV1-39 F2; 06C11 quimérica indicada como Ch06C11 quimérica; la región variable de la cadena ligera 06C11 humanizada indicada como Sh06C11 IGKV1-16; quimérica indicada como Ch14F11 quimérica; y la región variable de la cadena ligera 14F11 humanizada indicada como Hu14F11 IGKV1-16. Las secuencias de aminoácidos de cada anticuerpo están alineadas por parejas, y las CDR₁, CDR₂ y CDR₃, están identificadas en recuadros. Las secuencias fuera de los recuadros representan las secuencias estructurales (FR). El posicionamiento de la alineación (huecos) se basa en la numeración de Kabat, en lugar de en un algoritmo de alineación tal como Clustal. La numeración anterior de las secuencias representa la numeración de Kabat.

10

5

La **FIG. 22** es una alineación de la secuencia que muestra las secuencias CDR₁, CDR₂ y CDR₃ para cada una de las secuencias de la región variable de la cadena ligera de la inmunoglobulina de la **FIG. 21.**

La **FIG. 23** es una gráfica que resume los resultados de un experimento para medir la actividad inhibidora caquéctica de los anticuerpos anti-GDF15 01G06 (**a**), Hu01G06-46 (**A**) y Hu01G06-52 (*), y un control de IgG murina (•) administrada a 2 mg/kg en un modelo de xenoinjerto tumoral de fibrosarcoma HT-1080 en ratones ICR-SCID. La flecha indica la inyección intraperitoneal del anticuerpo.

- La **FIG. 24** es una gráfica que resume los resultados de un experimento para medir la actividad inhibidora caquéctica de los anticuerpos anti-GDF15 06C11 (*), Hu06C11-27 () y Hu06C11-30 (**A**), y un control de IgG murina (*) administrada a 2 mg/kg en un modelo de xenoinjerto tumoral de fibrosarcoma HT-1080 en ratones ICR-SCID. La flecha indica la inyección intraperitoneal del anticuerpo.
- La **FIG. 25** es una gráfica que resume los resultados de un experimento para medir la actividad inhibidora caquéctica de los anticuerpos anti-GDF15 (A), Hu14F11-39 (□) y Hu14F11-47 (♦), y un control de IgG murina (•) administrada a 2 mg/kg en un modelo de xenoinjerto tumoral de fibrosarcoma HT-1080 en ratones ICR-SCID. La flecha indica la inyección intraperitoneal del anticuerpo.
- La **FIG. 26** es una gráfica que resume los resultados de un experimento para medir la actividad inhibidora caquéctica de los anticuerpos anti-GDF15 Hu01G06 -122 (▼), Hu01G06-127 (□), Hu01G06-135 (◊), Hu01G06-138 (■) y Hu01G06-146 (*), y un control de IgG humana (•) administrada a 2 mg/kg en un modelo de xenoinjerto tumoral de fibrosarcoma HT-1080 en ratones ICR-SCID. La flecha indica la inyección intraperitoneal del anticuerpo.
- La **FIG. 27** es una gráfica que resume los resultados de un experimento para medir la actividad inhibidora caquéctica de los anticuerpos anti-GDF15 Hu01G06 -122 (▼), Hu01G06-127 (□), Hu01G06-135 (◊), Hu01G06 138 (■) y Hu01G06 -146 (*), y un control de IgG humana (•) administrada a 2 mg/kg en un modelo caquéctico de mFc-rhGDF15 en ratones ICR- SCID. La flecha indica la inyección intraperitoneal del anticuerpo.
- 40 La **FIG. 28** es una gráfica que resume los resultados de un experimento para medir la actividad inhibidora de la respuesta a la dosis caquéctica de los anticuerpos anti-GDF15 Hu01G06-127 administrados a 20 mg/kg (□), 2 mg/kg (Δ) y 0,2 mg/kg (V); Hu01G06-135 a 20 mg/kg (■), 2 mg/kg (A) y 0,2 mg/kg (▼), y un control de IgG humana a 20 mg/kg (•) en un modelo de xenoinjerto tumoral de fibrosarcoma HT-1080 en ratones ICR-SCID. La flecha indica la inyección intravenosa del anticuerpo.

45

50

60

65

Las FIGS. 29A-29C son gráficas que resumen los resultados de un experimento para demostrar la actividad anticaquéctica de los anticuerpos anti-GDF15 Hu01G06-127 (■), administrados a 10 mg/kg, en ratones no inmunocompetentes (ICR-SCID) portadores de un modelo de xenoinjerto tumoral de fibrosarcoma HT-1080. El tratamiento con el anticuerpo Hu01G06-127 revertió la pérdida de peso corporal (FIG. 29A); indujo una ganancia de masa grasa gonadal (FIG. 29B); e indujo una ganancia de masa muscular del músculo gastrocnemio (FIG. 29 C) en comparación con el control negativo (hIgG (•); FIG. 29A) similar a los niveles encontrados en los ratones no portadores de tumores (TESTIGO ▲ (); FIG. 29A). Las flechas de la FIG. 29A indican la inyección intraperitoneal del anticuerpo.

55 Descripción detallada

Los anticuerpos anti-GDF 15 divulgados en el presente documento se basan en los sitios de unión al antígeno de determinados anticuerpos monoclonales que se han seleccionado sobre la base de la unión y la neutralización del GDF15 humano (hGDF15). Los anticuerpos contienen secuencias de la CDR de la región variable de la inmunoglobulina que definen un sitio de unión para el hGDF15.

En virtud de la actividad neutralizante de estos anticuerpos, son útiles para el tratamiento de la caquexia y/o de la sarcopenia. Para su uso como agentes terapéuticos, los anticuerpos pueden ser genomanipulados para minimizar o eliminar una respuesta inmunitaria cuando se administran a un paciente humano. A continuación se analizan con más detalle diversas características y afectos de la invención.

Como se usa en el presente documento, "caquexia" significa un síndrome metabólico asociado con una enfermedad subyacente y que se caracteriza por la pérdida involuntaria de masa muscular. La caquexia está acompañada a menudo por una pérdida involuntaria de peso, pérdida de masa grasa, anorexia, inflamación, resistencia a la insulina, astenia, debilidad, pérdida significativa del apetito y/o aumento en la degradación de la proteína muscular. La caquexia es distinta de la inanición, la pérdida de masa muscular relacionada con la edad, la malabsorción y el hipertiroidismo. Algunas enfermedades subyacentes asociadas con la caquexia incluyen cáncer, insuficiencia cardiaca crónica, enfermedad renal crónica, EPOC, SIDA, esclerosis múltiple, artritis reumatoide, síndrome séptico y tuberculosis.

10 Como se usa en el presente documento, se entiende que la "sarcopenia" es una afección caracterizada fundamentalmente por la pérdida de masa muscular esquelética y de fuerza muscular. La sarcopenia está asociada frecuentemente con el envejecimiento. Véase, Ruegg y Glass (2011) ANNUAL REV. PHARMACOL. TOXICOL. 51: 373-395. En una estrategia, la sarcopenia puede identificarse en un sujeto si el valor de la masa muscular esquelética de las extremidades de un sujeto dividida por la altura del sujeto en metros es mayor de dos desviaciones típicas por debajo de la media normal de *young*. (Thomas (2007) *supra*; véase también Baumgartner et al. (1999) MECH. AGEING DEV. 147: 755-763).

Como se usa en el presente documento, salvo que se indique de otro modo, "anticuerpo" significa un anticuerpo intacto (por ejemplo, un anticuerpo monoclonal intacto) o un fragmento de unión al antígeno de un anticuerpo, incluyendo un anticuerpo intacto o un fragmento de unión al antígeno que ha sido modificado o genomanipulado, o que es un anticuerpo humano. Algunos ejemplos de anticuerpos que han sido modificados o genomanipulados son anticuerpos quiméricos, anticuerpos humanizados y anticuerpos multiespecíficos (por ejemplo, anticuerpos biespecíficos). Algunos ejemplos de fragmentos de unión al antígeno incluyen Fab, Fab', F(ab')₂, Fv, anticuerpos monocatenarios (por ejemplo, scFv), minicuerpos y diacuerpos.

I. Anticuerpos que se unen al GDF15

20

25

30

65

Los anticuerpos divulgados en el presente documento comprenden: (a) una región variable de la cadena pesada de una inmunoglobulina que comprende la estructura CDR_{H1}-CDR_{H2}-CDR_{H3} y (b) una región variable de la cadena ligera de una inmunoglobulina que comprende la estructura CDR_{L1}-CDR_{L2}-CDR_{L3}, en donde la región variable de la cadena pesada y la región variable de la cadena ligera definen conjuntamente un único sitio de unión para la unión de la proteína hGDF15.

Como se describe en el presente documento, el anticuerpo comprende: (a) una región variable de la cadena pesada de una inmunoglobulina que comprende la estructura CDR_{H1}-CDR_{H2}-CDR_{H3} y (b) una región variable de la cadena 35 ligera de una inmunoglobulina, en donde la región variable de la cadena pesada y la región variable de la cadena ligera definen conjuntamente un único sitio de unión para la unión del hGDF15. Una CDRH1 comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 1 (01G06, 08G01, Ch01G06 quimérica, Hu01G06 IGHV1-18, Hu01G06 IGHV1-69, Sh01G06 IGHV1-18 M69L, Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S I69L, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2), SEQ ID NO: 2 (03G05), SEQ ID NO: 3 (04F08), SEQ ID NO: 4 (06C11, Ch06C11 quimérica, HE LM 06C11 IGHV2-70, Hu06C11 IGHV2-5), SEQ ID NO: 5 (14F11, Ch14F11 quimérica, Sh14F11 IGHV2-5, Sh14F11 IGHV2-70), y SEQ ID NO: 6 (17B11); una CDR_{H2}comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 7 (01G06, Ch01G06 quimérica, Hu01G06 IGHV1-18, Hu01G06 IGHV1-69, Sh01G06 IGHV1-18 M69L, 45 Sh01G06 IGHV1-69 T30S I69L), SEQ ID NO: 8 (03G05), SEQ ID NO: 9 (04F08, 06C11, Ch06C11 quimérica, Hu06C11 IGHV2-5), SEQ ID NO: 10 (08G01), SEQ ID NO: 11 (14F11, Ch14F11 quimérica, Sh14F11 IGHV2-5, Sh14F11 IGHV2-70), SEQ ID NO: 12 (17B11), SEQ ID NO13 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L), SEQ ID NO: 236 (Hu01G06 IGHV1-18 F1), SEQ ID NO: 237 (Hu01G06 IGHV1-18 F2), SEQ ID NO: 238 (Hu01G06 IGHV1-69 F1), SEQ ID NO: 239 (Hu01G06 IGHV1-50 69 F2) y SEQ ID NO: 14 (HE LM 06C11 IGHV2-70); y una CDR_{H3} comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 15 (01G06, 08G01, Ch01G06 quimérica, Hu01G06 IGHV1-18, Hu01G06 IGHV1-69, Sh01G06 IGHV1-18 M69L, Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S I69L, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1. Hu01G06 IGHV1-18 F2. Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2), SEQ ID NO16 (03G05), SEQ ID NO: 55 17 (04F08), SEQ ID NO: 18 (06C11, Ch06C11 quimérica, HE LM 06C11 IGHV2-70, Hu06C11 IGHV2-5), SEQ ID NO: 19 (14F11, Ch14F11 quimérica, Sh14F11 IGHV2-5, Sh14F11 IGHV2-70), y SEQ ID NO: 20 (17B11). A lo largo de esta memoria descriptiva, una SEQ ID NO. en particular está seguida entre paréntesis por el anticuerpo que era el origen de esa secuencia. Por ejemplo, "SEQ ID NO: 2 (03G05)" significa que la SEQ ID NO: 2 procede del 60 anticuerpo 03G05.

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 1 (01G06, Ch01G06 quimérica, Hu01G06 IGHV1-18, Hu01G06 IGHV1-69, Sh01G06 IGHV1-69 T30S I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 7 (01G06, Ch01G06 quimérica, Hu01G06 IGHV1-18,

Hu01G06 IGHV1-69, Sh01G06 IGHV1-69 T30S I69L), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (01G06, Ch01G06 quimérica, Hu01G06 IGHV1-18, Hu01G06 IGHV1-69, Sh01G06 IGHV1-69 T30S I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2).

- 5 Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 2 (03G05), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 8 (03G05), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 16 (03G05).
- 10 Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 3 (04F08), una CDR_{H2}que comprende la secuencia de aminoácidos de SEQ ID NO: 9 (04F08) y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 17 (04F08).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 4 (06C11, Ch06C11 quimérica, Hu06C11 IGHV2-5), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 9 (06C11, Ch06C11 quimérica, Hu06C11 IGHV2-5), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 18 (06C11, Ch06C11 quimérica, Hu06C11 IGHV2-5).
 - Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 1 (08G01), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 10 (08G01), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (08G01).
 - Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 5 (14F11, Ch14F11 quimérica, Sh14F11 IGHV2-5, Sh14F11 IGHV2-70), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 11 (14F11, Ch14F11 quimérica, Sh14F11 IGHV2-5, Sh14F11 IGHV2-70) una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 19 (14F11, Ch14F11 quimérica, Sh14F11 IGHV2-5, Sh14F11 IGHV2-70).
 - Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 6 (17B11), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 12 (17B11), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 20 (17B11).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 1

 40 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 13 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 1

 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 236 (Hu01G06 IGHV1-18 F1), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2).
 - Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 1 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 237 (Hu01G06 IGHV1-18 F2), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de

9

65

60

20

25

30

una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 1 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 238 (Hu01G06 IGHV1-69 F1), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 1 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 239 (Hu01G06 IGHV1-69 F2), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2).

10

15

20

30

35

45

50

65

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende la secuencia de aminoácidos de SEQ ID NO: 4 (HE LM 06C11 IGHV2-70), una CDR_{H2} que comprende la secuencia de aminoácidos de SEQ ID NO: 14 (HE LM 06C11 IGHV2-70), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 18 (HE LM 06C11 IGHV2-70).

Preferentemente, las secuencias CDR_{H1}, CDR_{H2} y CDR_{H3} están interpuestas entre las secuencias FR de inmunoglobulinas completamente humanas o humanizadas.

Como se describe en el presente documento, el anticuerpo comprende (a) una región variable de la cadena ligera de una inmunoglobulina que comprende la estructura CDR_{L1}-CDR_{L2}-CDR_{L3}, y (b) una región variable de la cadena pesada de una inmunoglobulina, en donde la región variable de la cadena ligera de la inmunoglobulina y la región variable de la cadena pesada definen conjuntamente un único sitio de unión para la unión del hGDF15. Una CDRL1 comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 21 (01G06, Ch01G06 quimérica, Hu01G06 IGKV1-39, Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39 V48I, Hu01G06 IGKV1-39 F1, Hu01G06 IGKV1-39 F2), SEQ ID NO: 22 (03G05), SEQ ID NO: 23 (04F08, 06C11, Ch06C11 quimérica, Sh06C11 IGKV1-16, 14F11, Ch14F11 quimérica, Hu14F11 IGKV1-16), SEQ ID NO24 (08G01) y SEQ ID NO: 25 (17B11); una CDR_{L2} comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 26 (01G06, Ch01G06 quimérica, Hu01G06 IGKV1-39, Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39 V48I, Hu01G06 IGKV1-39 F1, Hu01G06 IGKV1-39 F2), SEQ ID NO: 27 (03G05), SEQ ID NO: 28 (04F08, 06C11, Ch06C11 quimérica, Sh06C11 IGKV1-16), SEQ ID NO: 29 (08G01), SEQ ID NO: 30 (14F11, Ch14F11 quimérica, Hu14F11 IGKV1-16), y SEQ ID NO: 31 (17B11); y una CDRL3 comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 32 (01G06, Ch01G06 quimérica, Hu01G06 IGKV1-39, Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39 V48I, 08G01, Hu01G06 IGKV1-39 F1), SEQ ID NO: 244 (Hu01G06 IGKV1-39 F2), SEQ ID NO: 33 (03G05), SEQ ID NO: 34 (04F08), SEQ ID NO: 35 (06C11, Ch06C11 quimérica, Sh06C11 IGKV1-16), SEQ ID NO: 36 (14F11, Ch14F11 quimérica, Hu14F11 IGKV1-16), y SEQ ID NO: 37 (17B11).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 21 (01G06, Ch01G06 quimérica, Hu01G06 IGKV1-39, Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39 V48I, Hu01G06 IGKV1-39 F1, Hu01G06 IGKV1-39 F2), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 26 (01G06, Ch01G06 quimérica, Hu01G06 IGKV1-39, Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39 V48I, Hu01G06 IGKV1-39 F1, Hu01G06 IGKV1-39 F2), y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 32 (01G06, Ch01G06 quimérica, Hu01G06 IGKV1-39, Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39 F1).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 21 (01G06, Ch01G06 quimérica, Hu01G06 IGKV1-39, Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39 V48I, Hu01G06 IGKV1-39 F1, Hu01G06 IGKV1-39 F2), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 26 (01G06, Ch01G06 quimérica, Hu01G06 IGKV1-39, Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39
 V48I, Hu01G06 IGKV1-39 F1, Hu01G06 IGKV1-39 F2), y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 244 (Hu01G06 IGKV1-39 F2).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 22 (03G05), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 27 (03G05), y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 33 (03G05).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 23 (04F08), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 28 (04F08), y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 34 (04F08).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 23 (06C11, Ch06C11 quimérica, Sh06C11 IGKV1-16), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 28 (06C11, Ch06C11 quimérica, Sh06C11 IGKV1-16), y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 35 (06C11, Ch06C11 quimérica, Sh06C11 IGKV1-16).

10

15

20

25

30

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 24 (08G01), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 29 (08G01), y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 32 (08G01).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 23 (14F11, Ch14F11 quimérica, Hu14F11 IGKV1-16), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 30 (14F11, Ch14F11 quimérica, Hu14F11 IGKV1-16), y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 36 (14F11, Ch14F11 quimérica, Hu14F11 IGKV1-16).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 25 (17B11), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 31 (17B11), y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 37 (17B11).

Preferentemente, la CDR_{L1}, las secuencias CDR_{L2} y CDR_{L3} están interpuestas entre secuencias FR de inmunoglobulinas completamente humanas o humanizadas.

Como se describe en el presente documento, el anticuerpo comprende: (a) una región variable de la cadena pesada de una inmunoglobulina que comprende la estructura CDR_{H1}-CDR_{H2}-CDR_{H3} y (b) una región variable de la cadena ligera de una inmunoglobulina que comprende la estructura CDR_{L1}-CDR_{L2}, en donde la región variable de la cadena pesada y la región variable de la cadena ligera definen conjuntamente un único sitio de unión para la unión 35 del hGDF15. La CDR_{H1} es una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 1 (01G06, 08G01, Ch01G06 guimérica, Hu01G06 IGHV1-18, Hu01G06 IGHV1-69, Sh01G06 IGHV1-18 M69L, Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S I69L, Sh01G06 IGHV1-69 T30S K64Q I69L, Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2), SEQ ID NO: 2 (03G05), SEQ ID NO: 3 (04F08), SEQ ID NO: 4 (06C11, Ch06C11 quimérica, HE LM 06C11 IGHV2-70, Hu06C11 IGHV2-5), SEQ ID NO: 5 (14F11, Ch14F11 quimérica, Sh14F11 IGHV2-5, Sh14F11 IGHV2-70), y SEQ ID NO: 6 (17B11); la CDR_{H2} es una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 7 (01G06, Ch01G06 quimérica, Hu01G06 IGHV1-18, Hu01G06 IGHV1-69, Sh01G06 IGHV1-18 M69L, Sh01G06 IGHV1-69 T30S I69L), SEQ ID NO: 8 (03G05), SEQ ID NO: 9 (04F08, 06C11, Ch06C11 quimérica, Hu06C11 IGHV2-5), SEQ ID NO: 10 (08G01), SEQ ID NO: 11 (14F11, Ch14F11 45 quimérica, Sh14F11 IGHV2-5, Sh14F11 IGHV2-70), SEQ ID NO: 12 (17B11), SEQ ID NO: 13 (Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S K64Q I69L), SEQ ID NO: 236 (Hu01G06 IGHV1-18 F1), SEQ ID NO: 237 (Hu01G06 IGHV1-18 F2), SEQ ID NO: 238 (Hu01G06 IGHV1-69 F1), SEQ ID NO: 239 (Hu01G06 IGHV1-69 F2) y SEQ ID NO: 14 (HE LM 06C11 IGHV2-70); y la CDR_{H3} es una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 15 (01G06, 08G01, Ch01G06 50 quimérica, Hu01G06 IGHV1-18, Hu01G06 IGHV1-69, Sh01G06 IGHV1-18 M69L, Sh01G06 IGHV1-18 M69L K64Q G44S, Sh01G06 IGHV1-18 M69L K64Q, Sh01G06 IGHV1-69 T30S I69L, Sh01G06 IGHV1-69 T30S K64Q I69L. Hu01G06 IGHV1-18 F1, Hu01G06 IGHV1-18 F2, Hu01G06 IGHV1-69 F1, Hu01G06 IGHV1-69 F2), SEQ ID NO: 16 (03G05), SEQ ID NO: 17 (04F08), SEQ ID NO: 18 (06C11, Ch06C11 quimérica, HE LM 06C11 IGHV2-70, Hu06C11 IGHV2-5), SEQ ID NO: 19 (14F11, Ch14F11 quimérica, Sh14F11 IGHV2-5, Sh14F11 IGHV2-70), y SEQ 55 ID NO: 20 (17B11). La CDR_{L1} es una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO21 (01G06, Ch01G06 quimérica, Hu01G06 IGKV1-39, Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39 V48I, Hu01G06 IGKV1-39 F1, Hu01G06 IGKV1-39 F2), SEQ ID NO: 22 (03G05), SEQ ID NO: 23 (04F08, 06C11, Ch06C11 quimérica, Sh06C11 IGKV1-16, 14F11, Ch14F11 quimérica, Hu14F11 IGKV1-16), SEQ ID NO24 60 (08G01) y SEQ ID NO: 25 (17B11); la CDRL2 es una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 26 (01G06, Ch01G06 quimérica, Hu01G06 IGKV1-39, Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39 V48I, Hu01G06 IGKV1-39 F1, Hu01G06 IGKV1-39 F2), SEQ ID NO: 27 (03G05), SEQ ID NO: 28 (04F08, 06C11, Ch06C11 quimérica, Sh06C11 IGKV1-16), SEQ ID NO: 29 (08G01), SEQ ID NO: 30 (14F11, Ch14F11 quimérica, Hu14F11 IGKV1-16), y SEQ ID NO: 31 (17B11); y la CDR_{L3} es una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO32 (01G06, Ch01G06 quimérica, Hu01G06 IGKV1-39, 65 Hu01G06 IGKV1-39 S43A V48I, Hu01G06 IGKV1-39 V48I, 08G01, Hu01G06 IGKV1-39 F1), SEQ ID NO: 244

(Hu01G06 IGKV1-39 F2), SEQ ID NO: 33 (03G05), SEQ ID NO: 34 (04F08), SEQ ID NO: 35 (06C11, Ch06C11 quimérica, Sh06C11 IGKV1-16), SEQ ID NO: 36 (14F11, Ch14F11 quimérica, Hu14F11 IGKV1-16), y SEQ ID NO: 37 (17B11).

- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 1 y SEQ ID NO: 38 (Hu01G06 IGHV1-18 F1), una CDR_{H2} que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 236 y SEQ ID NO: 240 (Hu01G06 IGHV1-18 F1), y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (Hu01G06 IGHV1-18 F1); y una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 21 (Hu01G06 IGKV1-39 F1), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 26 (Hu01G06 IGKV1-39 F1) y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 32 (Hu01G06 IGKV1-39 F1).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 1 y SEQ ID NO: 38 (Hu01G06 IGHV1-18 F2), una CDR_{H2} que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 237 y SEQ ID NO: 241 (Hu01G06 IGHV1-18 F2) y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (Hu01G06 IGHV1-18 F2); y una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 21 (Hu01G06 IGKV1-39 F2), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 26 (Hu01G06 IGKV1-39 F2) y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 244 (Hu01G06 IGKV1-39 F2).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 1 y SEQ ID NO: 234 (Hu01G06 IGHV1-69 F1), una CDR_{H2} que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 238 y SEQ ID NO: 241 (Hu01G06 IGHV1-69 F1) y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (Hu01G06 IGHV1-69 F1); y una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 21 (Hu01G06 IGKV1-39 F1), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 26 (Hu01G06 IGKV1-39 F1) y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 32 (Hu01G06 IGKV1-39 F1).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 1 y SEQ ID NO: 234 (Hu01G06 IGHV1-69 F2), una CDR_{H2} que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 239 y SEQ ID NO: 240 (Hu01G06 IGHV1-69 F2) y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (Hu01G06 IGHV1-69 F2); y una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 21 (Hu01G06 IGKV1-39 F1), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 26 (Hu01G06 IGKV1-39 F1) y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 32 (Hu01G06 IGKV1-39 F1).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una CDR_{H1} que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 1 y SEQ ID NO: 234 (Hu01G06 IGHV1-69 F2), una CDR_{H2} que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en SEQ ID NO: 239 y SEQ ID NO: 240 (Hu01G06 IGHV1-69 F2) y una CDR_{H3} que comprende la secuencia de aminoácidos de SEQ ID NO: 15 (Hu01G06 IGHV1-69 F2); y una región variable de la cadena ligera de una inmunoglobulina que comprende una CDR_{L1} que comprende la secuencia de aminoácidos de SEQ ID NO: 21 (Hu01G06 IGKV1-39 F2), una CDR_{L2} que comprende la secuencia de aminoácidos de SEQ ID NO: 26 (Hu01G06 IGKV1-39 F2) y una CDR_{L3} que comprende la secuencia de aminoácidos de SEQ ID NO: 244 (Hu01G06 IGKV1-39 F2).
- Los anticuerpos divulgados en el presente documento comprenden una región variable de la cadena pesada de una inmunoglobulina y una región variable de la cadena ligera de una inmunoglobulina. Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina seleccionada entre el grupo que consiste en SEQ ID NO: 40 (01G06, Ch01G06 quimérica), SEQ ID NO: 42 (03G05), SEQ ID NO: 44 (04F08), SEQ ID NO: 46 (06C11, Ch06C11 quimérica), SEQ ID NO: 48 (08G01), SEQ ID NO: 50 (14F11, Ch14F11 quimérica), SEQ ID NO: 52 (17B11), SEQ ID NO: 54 (Hu01G06 IGHV1-18), SEQ ID NO: 56 (Hu01G06 IGHV1-18), SEQ ID NO: 58 (Sh01G06 IGHV1-18 M69L), SEQ ID NO: 60 (Sh01G06 IGHV1-18 M69L K64Q G44S), SEQ ID NO: 62 (Sh01G06 IGHV1-18 M69L K64Q), SEQ ID NO: 64 (Sh01G06 IGHV1-69 T30S I69L), SEQ ID NO: 66 (Sh01G06 IGHV1-69 T30S K64Q I69L), SEQ ID NO: 246 (Hu01G06 IGHV1-18 F1), SEQ ID NO: 248 (Hu01G06 IGHV1-18 F2), SEQ ID NO: 250 (Hu01G06 IGHV1-69 F1), SEQ ID NO: 252 (Hu01G06 IGHV1-69 F2), SEQ ID NO: 68 (HE LM 06C11 IGHV2-70), SEQ ID NO: 70 (Hu06C11 IGHV2-5), SEQ ID NO: 72 (Sh14F11 IGHV2-5) y SEQ ID NO: 74 (Sh14F11 IGHV2-70); y una región variable de la cadena ligera de una inmunoglobulina.

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena ligera de una inmunoglobulina seleccionada entre el grupo que consiste en SEQ ID NO: 76 (01G06, Ch01G06 quimérica), SEQ ID NO: 78 (03G05), SEQ ID NO: 80 (04F08), SEQ ID NO: 82 (06C11, Ch06C11 quimérica), SEQ ID NO: 84 (08G01), SEQ ID NO: 86 (14F11, Ch14F11 quimérica), SEQ ID NO: 88 (17B11), SEQ ID NO: 90 (Hu01G06 IGKV1-39), SEQ ID NO: 92 (Hu01G06 IGKV1-39 S43A V48I o Hu01G06 IGKV1-39 F1), SEQ ID NO: 94 (Hu01G06 IGKV1-39 V48I), SEQ ID NO: 96 (Sh06C11 IGKV1-16), SEQ ID NO: 254 (Hu01G06 IGKV1-39 F2) y SEQ ID NO: 98 (Hu14F11 IGKV1-16), y una región variable de la cadena pesada de una inmunoglobulina.

10 Según se reivindica o se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina seleccionada entre el grupo que consiste en SEQ ID NO: 40 (01G06, Ch01G06 quimérica), SEQ ID NO: 42 (03G05), SEQ ID NO: 44 (04F08), SEQ ID NO: 46 (06C11, Ch06C11 quimérica), SEQ ID NO: 48 (08G01), SEQ ID NO: 50 (14F11, Ch14F11 quimérica), SEQ ID NO: 52 (17B11), SEQ ID NO: 54 (Hu01G06 IGHV1-18), SEQ ID NO: 56 (Hu01G06 IGHV1-69), SEQ ID NO: 58 (Sh01G06 IGHV1-18 M69L), SEQ ID NO: 60 (Sh01G06 IGHV1-18 M69L K64Q G44S), SEQ ID NO: 62 (Sh01G06 IGHV1-18 M69L 15 K64Q), SEQ ID NO: 64 (Sh01G06 IGHV1-69 T30S I69L), SEQ ID NO: 66 (Sh01G06 IGHV1-69 T30S K64Q I69L), SEQ ID NO: 246 (Hu01G06 IGHV1-18 F1), SEQ ID NO: 248 (Hu01G06 IGHV1-18 F2), SEQ ID NO: 250 (Hu01G06 IGHV1-69 F1), SÈQ ID NO: 252 (Hu01G06 IGHV1-69 F2), SÈQ ID NO: 68 (HE LM 06C11 IGHV2-70), SÈQ ID NO: 70 (Hu06C11 IGHV2-5), SEQ ID NO: 72 (Sh14F11 IGHV2-5) y SEQ ID NO: 74 (Sh14F11 IGHV2-70), y una región variable de la cadena ligera de una inmunoglobulina seleccionada entre el grupo que consiste en SEQ ID NO: 76 20 (01G06, Ch01G06 quimérica), SEQ ID NO: 78 (03G05), SEQ ID NO: 80 (04F08), SEQ ID NO: 82 (06C11, Ch06C11 quimérica), SEQ ID NO: 84 (08G01), SEQ ID NO: 86 (14F11, Ch14F11 quimérica), SEQ ID NO: 88 (17B11), SEQ ID NO: 90 (Hu01G06 IGKV1-39), SEQ ID NO: 92 (Hu01G06 IGKV1-39 S43A V48I o Hu01G06 IGKV1-39 F1), SEQ ID NO: 94 (Hu01G06 IGKV1-39 V48I), SEQ ID NO: 96 (Sh06C11 IGKV1-16), SEQ ID NO: 254 (Hu01G06 IGKV1-39 F2) y SEQ ID NO: 98 (Hu14F11 IGKV1-16). 25

En algunas realizaciones, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 40 (01G06, Ch01G06 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 76 (01G06, Ch01G06 quimérica).

30

35

40

45

50

55

60

65

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 42 (03G05) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 78 (03G05).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 44 (04F08) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 80 (04F08).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 46 (06C11) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 82 (06C11).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 48 (08G01) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 84 (08G01).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 50 (14F11) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 86 (14F11).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 52 (17B11) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 88 (17B11).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 54 (Hu01G06 IGHV1-18) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 76 (Hu01G06 quimérica).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 56 (Hu01G06 IGHV1-69) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 76 (Hu01G06 quimérica).

5

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 58 (Sh01G06 IGHV1-18 M69L) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 76 (Ch01G06 quimérica).

10

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 60 (Sh01G06 IGHV1-18 M69L K64Q G44S) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de la SEQ ID NO: 76 (Ch01G06 quimérica).

15

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 62 (Sh01G06 IGHV1-18 M69L K64Q) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 76 (Ch01G06 quimérica).

20

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 64 (Sh01G06 IGHV1-69 T30S I69L) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 76 (Ch01G06 quimérica).

25

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 66 (Sh01G06 IGHV1-69 T30S K64Q I69L) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de la SEQ ID NO: 76 (Ch01G06 quimérica).

30

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 40 (Ch01G06 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01G06 IGKV1-39).

35

En algunas realizaciones, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 54 (Hu01G06 IGHV1-18) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01G06 IGKV1-39).

40

En algunas realizaciones, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 56 (Hu01G06 IGHV1-69) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01G06 IGKV1-39).

45

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 58 (Sh01G06 IGHV1-18 M69L) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01G06 IGKV1-39).

50

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 60 (Sh01G06 IGHV1-18 M69L K64Q G44S) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01G06 IGKV1-39).

55

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 62 (Sh01G06 IGHV1-18 M69L K64Q) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01G06 IGKV1-39).

60

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 64 (Sh01G06 IGHV1-69 T30S I69L) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01G06 IGKV1-39).

65

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de

- una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 66 (Sh01G06 IGHV1-69 T30S K64Q I69L) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01G06 IGKV1-39).
- 5 Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 40 (Ch01G06 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 S43A V48I).
- 10 Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 54 (Hu01G06 IGHV1-18), y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 S43A V48I).
- 15 Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 56 (Hu01G06 IGHV1-69), y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 S43A V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 58 (Sh01G06 IGHV1-18 M69L) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 S43A V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 60 (Sh01G06 IGHV1-18 M69L K64Q G44S) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 S43A V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 62 (Sh01G06 IGHV1-18 M69L K64Q) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 S43A V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 64 (Sh01G06 IGHV1-69 T30S I69L) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 S43A V48I).
- 40 Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 66 (Sh01G06 IGHV1-69 T30S K64Q I69L) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 S43A V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 40 (Ch01G06 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 94 (Hu01G06 IGKV1-39 V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 54 (Hu01G06 IGHV1-18), y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 94 (Hu01G06 IGKV1-39 V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 56 (Hu01G06 IGHV1-69), y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 94 (Hu01G06 IGKV1-39 V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 58 (Sh01G06 IGHV1-18 M69L) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 94 (Hu01G06 IGKV1-39 V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 60 (Sh01G06 IGHV1-18 M69L

- K64Q G44S) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 94 (Hu01G06 IGKV1-39 V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 62 (Sh01G06 IGHV1-18 M69L K64Q), y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 94 (Hu01G06 IGKV1-39 V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 64 (Sh01G06 IGHV1-69 T30S I69L), y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 94 (Hu01G06 IGKV1-39 V48I).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 66 (Sh01G06 IGHV1-69 T30S K64Q I69L) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 94 (Hu01G06 IGKV1-39 V48I).
- En algunas realizaciones, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 246 (Hu01G06 IGHV1-18 F1) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 F1).
- En algunas realizaciones, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 248 (Hu01G06 IGHV1-18 F2) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 254 (Hu01G06 IGKV1-39 F2).
- En algunas realizaciones, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 250 (Hu01G06 IGHV1-69 F1) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 F1).
- En algunas realizaciones, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 252 (Hu01G06 IGHV1-69 F2) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 F1).
- En algunas realizaciones, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 252 (Hu01G06 IGHV1-69 F2) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 254 (Hu01G06 IGKV1-39 F2).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 68 (HE LM 06C11 IGHV2-70) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 82 (Ch06C11 quimérica).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 70 (Hu06C11 IGHV2-5) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 82 (Ch06C11 quimérica).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 46 (Ch06C11 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 96 (Sh06C11 IGKV1-16).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 68 (HE LM 06C11 IGHV2-70) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 96 (Sh06C11 IGKV1-16).
- Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 70 (Hu06C11 IGHV2-5) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID

NO: 96 (Sh06C11 IGKV1-16).

30

40

45

50

55

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 72 (Sh14F11 IGHV2-5) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 86 (Ch14F11 quimérica).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 74 (Sh14F11 IGHV2-70) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 86 (Ch14F11 quimérica).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 50 (Ch14F11 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 98 (Hu14F11 IGKV1-16).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 72 (Sh14F11 IGHV2-5) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 98 (Hu14F11 IGKV1-16).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 74 (Sh14F11 IGHV2-70) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 98 (Hu14F11 IGKV1-16).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 46 (Ch06C11 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 80 (04F08).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 50 (Ch14F11 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 80 (04F08).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 44 (04F08) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 82 (Ch06C11 quimérica).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 50 (Ch14F11 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 82 (Ch06C11 quimérica).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 44 (04F08) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 86 (Ch14F11 quimérica).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 46 (Ch06C11 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 86 (Ch14F11 quimérica).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 48 (08G01) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 76 (Ch01G06 quimérica).

Como se describe en el presente documento, el anticuerpo comprende una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 40 (Ch01G06 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 84 (08G01).

En ciertas realizaciones, Los anticuerpos divulgados en el presente documento comprenden una cadena pesada de una inmunoglobulina y una cadena ligera de una inmunoglobulina. Como se describe en el presente documento, el anticuerpo comprende una cadena pesada de una inmunoglobulina seleccionada entre el grupo que consiste en SEQ ID NO: 100 (01G06), SEQ ID NO: 104 (03G05), SEQ ID NO: 108 (04F08), SEQ ID NO: 112 (06C11), SEQ ID NO: 116 (08G01), SEQ ID NO: 120 (14F11), SEQ ID NO: 124 (17B11), SEQ ID NO: 176 (Ch01G06 quimérica), SEQ ID NO: 178 (Hu01G06 IGHV1-18), SEQ ID NO: 180 (Hu01G06 IGHV1-69), SEQ ID NO: 182 (Sh01G06 IGHV1-18 M69L), SEQ ID NO: 184 (Sh01G06 IGHV1-18 M69L K64Q G44S), SEQ ID NO: 186 (Sh01G06 IGHV1-18 M69L K64Q), SEQ ID NO: 188 (Sh01G06 IGHV1-69 T30S I69L), SEQ ID NO: 190 (Sh01G06 IGHV1-69 T30S K64Q I69L), SEQ ID NO: 256 (Hu01G06 IGHV1-18 F1), SEQ ID NO: 258 (Hu01G06 IGHV1-18 F2), SEQ ID NO: 260 (Hu01G06 IGHV1-69 F1), SEQ ID NO: 262 (Hu01G06 IGHV1-69 F2), SEQ ID NO: 192 (Ch06C11 quimérica), SEQ ID NO: 194 (HE LM 06C11 IGHV2-70), SEQ ID NO: 196 (Hu06C11 IGHV2-70); y una cadena ligera de una inmunoglobulina.

10

25

35

40

45

60

65

Como se describe en el presente documento, el anticuerpo comprende una cadena ligera de una inmunoglobulina seleccionada entre el grupo que consiste en SEQ ID NO: 102 (01G06), SEQ ID NO: 106 (03G05), SEQ ID NO: 110 (04F08), SEQ ID NO: 114 (06C11), SEQ ID NO: 118 (08G01), SEQ ID NO: 122 (14F11), SEQ ID NO: 126 (17B11), SEQ ID NO: 204 (Ch01G06 quimérica), SEQ ID NO: 206 (Hu01G06 IGKV1-39), SEQ ID NO: 208 (Hu01G06 IGKV1-39 S43A V48I o Hu01G06 IGKV1-39 F1), SEQ ID NO: 210 (Hu01G06 IGKV1-39 V48I), SEQ ID NO: 264 (Hu01G06 IGKV1-39 F2), SEQ ID NO: 212 (Ch06C11 quimérica), SEQ ID NO: 214 (Sh06C11 IGKV1-16), SEQ ID NO: 216 (Ch14F11 quimérica) y SEQ ID NO: 218 (Hu14F11 IGKV1-16) y una cadena pesada de una inmunoglobulina.

Según se reivindica o se describe en el presente documento, el anticuerpo comprende (i) una cadena pesada de una inmunoglobulina seleccionada entre el grupo que consiste en SEQ ID NO: 100 (01G06), SEQ ID NO: 104 (03G05), SEQ ID NO: 108 (04F08), SEQ ID NO: 112 (06C11), SEQ ID NO: 116 (08G01), SEQ ID NO: 120 (14F11), SEQ ID NO: 124 (17B11), SEQ ID NO: 176 (Ch01G06 quimérica), SEQ ID NO: 178 (Hu01G06 IGHV1-18), SEQ ID NO: 180 (Hu01G06 IGHV1-69), SEQ ID NO: 182 (Sh01G06 IGHV1-18 M69L), SEQ ID NO: 184 (Sh01G06 IGHV1-18 M69L K64Q G44S), SEQ ID NO: 186 (Sh01G06 IGHV1-18 M69L K64Q), SEQ ID NO: 188 (Sh01G06 IGHV1-69 T30S I69L), SEQ ID NO: 190 (Sh01G06 IGHV1-69 T30S K64Q I69L), SEQ ID NO: 256 (Hu01G06 IGHV1-18 F1), SEQ ID NO: 258 (Hu01G06 IGHV1-18 F2), SEQ ID NO: 260 (Hu01G06 IGHV1-69 F1), SEQ ID NO: 262 (Hu01G06 IGHV1-69 F2), SEQ ID NO: 192 (Ch06C11 quimérica), SEQ ID NO: 194 (HELM 06C11 IGHV2-70), SEQ ID NO: 196 (Hu06C11 IGHV2-5), SEQ ID NO: 198 (Ch14F11 quimérica), SEQ ID NO: 200 (Sh14F11 IGHV2-5) y SEQ ID NO: 202 (Sh14F11 IGHV2-70), y (ii) una cadena ligera de una inmunoglobulina seleccionada entre el grupo que consiste en SEQ ID NO: 102 (01G06), SEQ ID NO: 106 (03G05), SEQ ID NO: 110 (04F08), SEQ ID NO: 114 (06C11), SEQ ID NO: 118 (08G01), SEQ ID NO: 122 (14F11), SEQ ID NO: 126 (17B11), SEQ ID NO: 204 (Ch01G06 quimérica), SEQ ID NO: 206 (Hu01G06 IGKV1-39), SEQ ID NO: 208 (Hu01G06 IGKV1-39 S43A V48I o Hu01G06 IGKV1-39 F1), SEQ ID NO: 210 (Hu01G06 IGKV1-39 V48I), SEQ ID NO: 264 (Hu01G06 IGKV1-39 F2), SEQ ID NO: 212 (Ch06C11 quimérica), SEQ ID NO: 214 (Sh06C11 IGKV1-16), SEQ ID NO: 216 (Ch14F11 quimérica) y SEQ ID NO: 218 (Hu14F11 IGKV1-16).

En algunas realizaciones, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 176 (Ch01G06 quimérica) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 204 (Ch01G06 quimérica).

Como se describe en el presente documento, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 192 (Ch06C11 quimérica) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 212 (Ch06C11 quimérica).

Como se describe en el presente documento, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 198 (Ch14F11 quimérica) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 216 (Ch14F11 quimérica).

En algunas realizaciones, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 178 (Hu01G06 IGHV1-18) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 206 (Hu01G06 IGKV1-39).

En algunas realizaciones, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 180 (Hu01G06 IGHV1-69) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 206 (Hu01G06 IGKV1-39).

Como se describe en el presente documento, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 184 (Sh01G06 IGHV1-18 M69L K64Q G44S) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 210 (Hu01G06 IGKV1-39 V48I).

Como se describe en el presente documento, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 188 (Sh01G06 IGHV1-69 T30S I69L) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 210 (Hu01G06 IGKV1-39 V48I).

5

Como se describe en el presente documento, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 184 (Sh01G06 IGHV1-18 M69L K64Q G44S) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 208 (Hu01G06 IGKV1-39 S43A V48I).

10

Como se describe en el presente documento, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 188 (Sh01G06 IGHV1-69 T30S I69L) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 208 (Hu01G06 IGKV1-39 S43A V48I).

15

En algunas realizaciones, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 256 (Hu01G06 IGHV1-18 F1) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 208 (Hu01G06 IGKV1-39 F1).

En algunas realizaciones, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 258 (Hu01G06 IGHV1-18 F2) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 264 (Hu01G06 IGKV1-39 F2).

- En algunas realizaciones, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 260 (Hu01G06 IGHV1-69 F1) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 208 (Hu01G06 IGKV1-39 F1).
 - En algunas realizaciones, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 262 (Hu01G06 IGHV1-69 F2) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 208 (Hu01G06 IGKV1-39 F1).

En algunas realizaciones, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 262 (Hu01G06 IGHV1-69 F2) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 264 (Hu01G06 IGKV1-39 F2).

35

30

- Como se describe en el presente documento, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 194 (HE LM 06C11 IGHV2-70) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 214 (Sh06C11 IGKV1-16).
- Como se describe en el presente documento, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 196 (Hu06C11 IGHV2-5) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 214 (Sh06C11 IGKV1-16).
- Como se describe en el presente documento, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 200 (Sh14F11 IGHV2-5) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 218 (Hu14F11 IGKV1-16)
- Como se describe en el presente documento, el anticuerpo comprende una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 202 (Sh14F11 IGHV2-70) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 218 (Hu14F11 IGKV1-16).

Como se describe en el presente documento, un anticuerpo aislado que se une al HGDF15 comprende una región variable de la cadena pesada de una inmunoglobulina que comprende una secuencia de aminoácidos que es idéntica en al menos un 70 %, un 75 %, un 80 %, un 85 %, un 90 %, un 95 %, 98 % o un 99 % a la región variable completa o a la secuencia FR de SEQ ID NO: 40 (01G06, Ch01G06 quimérica), SEQ ID NO: 42 (03G05), SEQ ID NO: 44 (04F08), SEQ ID NO: 46 (06C11, Ch06C11 quimérica), SEQ ID NO: 48 (08G01), SEQ ID NO: 50 (14F11, Ch14F11 quimérica), SEQ ID NO: 52 (17B11), SEQ ID NO: 54 (Hu01G06 IGHV1-18), SEQ ID NO: 56 (Hu01G06 IGHV1-18), SEQ ID NO: 58 (Sh01G06 IGHV1-18 M69L), SEQ ID NO: 60 (Sh01G06 IGHV1-18 M69L K64Q G44S), SEQ ID NO: 62 (Sh01G06 IGHV1-18 M69L K64Q), SEQ ID NO: 64 (Sh01G06 IGHV1-69 T30S I69L), SEQ ID NO: 66 (Sh01G06 IGHV1-69 T30S K64Q I69L), SEQ ID NO: 246 (Hu01G06 IGHV1-18 F1), SEQ ID NO: 248 (Hu01G06 IGHV1-18 F2), SEQ ID NO: 250 (Hu01G06 IGHV1-69 F1), SEQ ID NO: 252 (Hu01G06 IGHV1-69 F2), SEQ ID NO: 68 (HE LM 06C11 IGHV2-70), SEQ ID NO: 70 (Hu06C11 IGHV2-5), SEQ ID NO: 72 (Sh14F11 IGHV2-5) y SEQ ID NO: 74 (Sh14F11 IGHV2-70).

Como se describe en el presente documento, un anticuerpo aislado que se une al HGDF15 comprende una región variable de la cadena ligera de una inmunoglobulina que comprende una secuencia de aminoácidos que es idéntica

en al menos un 70 %, un 75 %, un 80 %, un 85 %, un 90 %, un 95 %, un 98 % o un 99 % a la región variable completa o a la secuencia FR de SEQ ID NO: 76 (01G06, Ch01G06 quimérica), SEQ ID NO: 78 (03G05), SEQ ID NO: 80 (04F08), SEQ ID NO: 82 (06C11, Ch06C11 quimérica), SEQ ID NO: 84 (08G01), SEQ ID NO: 86 (14F11, Ch14F11 quimérica), SEQ ID NO: 88 (17B11), SEQ ID NO: 90 (Hu01G06 IGKV1-39), SEQ ID NO: 92 (Hu01G06 IGKV1-39 S43AV48I o Hu01G06 IGKV1-39 F1), SEQ ID NO: 94 (Hu01G06 IGKV1-39 V48I), SEQ ID NO: 254 (Hu01G06 IGKV1-39 F2), SEQ ID NO: 96 (Sh06C11 IGKV1-16) y SEQ ID NO: 98 (Hu14F11 IGKV1-16).

10

15

20

25

30

35

40

45

50

55

La identidad de la secuencia puede determinarse de diversas formas que están en la pericia de la persona experta en la materia, por ejemplo, usando programas informáticos disponibles públicamente, tales como los programas informáticos BLAST, BLAST-2, ALIGN o Megalign (DNASTAR). Los análisis BLAST (Basic Local Alignment Search Tool) que usan el algoritmo empleado por los programas blastp, blastn, blastx, tblastn y tblastx (Karlin et al., (1990) PROC. NATL. ACAD. SCI. EE.UU. 87: 2264-2268; Altschul, (1993) J. MOL. EVOL. 36: 290-300; Altschul et al., (1997) NUCLEIC ACIDS RES. 25: 3389-3402), son idóneos para la búsqueda de similitudes entre las secuencias. Para un análisis de los aspectos básicos en la búsqueda de bases de datos de secuencias, véase Altschul et al.. (1994) NATURE GENETICS 6: 119-129. Los expertos en la materia pueden determinar los parámetros apropiados para medir la alineación, incluyendo cualquier algoritmo necesario para lograr una alineación máxima a lo largo de la longitud completa de las secuencias que se estén comparando. Los parámetros de búsqueda para histogramas, descripciones, alineaciones, expectativa (es decir, el umbral de significación estadística para la notificación de coincidencias frente a las secuencias de las bases de datos), límite, matriz y filtro están en los parámetros por defecto. La matriz de puntuación por defecto usada por blastp, blastx, tblastn y tblastx es la matriz BLOSUM62 (Henikoff et al., (1992) PROC. NATL. ACAD. SCI. EE.UU. 89: 10915-10919). Pueden ajustarse cuatro parámetros de blastn como sigue: Q = 10 (penalización por creación de hueco); R = 10 (penalización por extensión de hueco); wink = 1 (genera aciertos de palabra en cada posición wink.sup.th a lo largo de la consulta); y gapw = 16 (establece el ancho de ventana dentro del cual se generan las alineaciones con huecos). Los ajustes de parámetros equivalentes de Blastp pueden ser Q = 9; R = 2; wink = 1; y gapw = 32. Las búsquedas también pueden realizarse usando el parámetro de opción avanzada del BLAST del NCBI (National Center for Biotechnology Information) (por ejemplo: -G, Coste para abrir un hueco [número entero]: por defecto = 5 para nucleótidos / 11 para proteínas; -E, Coste para extender un hueco [número entero]: por defecto = 2 para nucleótidos / 1 para proteínas; -q, Penalización por falta de coincidencia de nucleótidos [número entero]: por defecto = -3; -r, recompensa por coincidencia de nucleótidos [número entero]: por defecto = 1; -e, valor esperado [real]: por defecto = 10; -W, tamaño de palabra [número entero]: por defecto = 11 para nucleótidos / 28 para megablast / 3 para proteínas; -y, condición de parada (X) para las extensiones de blast en bits: por defecto = 20 para blastn / 7 para otros; -X, valor de la condición de parada X para la alineación con huecos (en bits): por defecto = 15 para todos los programas, no aplicable a blastn; y -Z, valor final de la condición de parada X para la alineación con huecos (en bits): 50 para blastn, 25 para otros). También puede usarse ClustalW para la alineación de proteínas por parejas (los parámetros por defecto pueden incluir, por ejemplo, matriz Blosum62 y penalización por apertura de hueco = 10 y penalización por extensión de hueco = 0,1). Una comparación Bestfit entre las secuencias, disponible en la versión del paquete GCG 10.0, usa los parámetros del ADN GAP = 50 (penalización por creación de hueco) y LEN = 3 (penalización por extensión de hueco). Los parámetros equivalentes en las comparaciones entre proteínas son GAP = 8 y LEN = 2.

Como se describe en el presente documento, en el presente documento se contempla que las secuencias de la región variable de la cadena pesada y/o las secuencias de la región variable de la cadena ligera de la inmunoglobulina que se unen conjuntamente al GDF15 humano puedan contener alteraciones de aminoácidos (por ejemplo, al menos 1, 2, 3, 4, 5 o 10 sustituciones, deleciones o adiciones de aminoácidos) en las regiones estructurales de las regiones variables de la cadena pesada y/o ligera.

Como se describe en el presente documento, el anticuerpo se une al hGDF15 con una K_D de aproximadamente 300 pM, 250 pM, 200 pM, 190 pM, 180 pM, 170 pM, 160 pM, 150 pM, 140 pM, 130 pM, 120 pM, 110 pM, 100 pM, 90 pM, 80 pM, 70 pM, 60 pM, 50 pM, 40 pM, 30 pM, 20 pM o 10 pM o menor. A menos que se especifique de otro modo, los valores de K_D se determinan mediante métodos de resonancia de plasmón superficial o de interferometría de biocapa en las condiciones descritas en los Ejemplos 8, 14 y 15.

Como se describe en el presente documento, un anticuerpo monoclonal se une al mismo epítopo del hGDF15 (por ejemplo, el hGDF15 maduro o el rhGDF15 escindido) al que se unen uno o más de los anticuerpos divulgados en el presente documento (por ejemplo, los anticuerpos 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11). Como se describe en el presente documento, un anticuerpo monoclonal compite por la unión al hGDF15 con uno o más de los anticuerpos divulgados en el presente documento (por ejemplo, el anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11).

Los ensayos de competición para determinar si un anticuerpo se une al mismo epítopo que, o compite por la unión con, un anticuerpo anti-GDF 15 divulgado en el presente documento son conocidos en la técnica. Algunos ejemplos de ensayos de competición incluyen inmunoensayos (por ejemplo, ensayos ELISA, ensayos RIA), análisis por resonancia de plasmón superficial (por ejemplo, usando un instrumento BIAcore™), interferometría de biocapa y citometría de flujo.

Normalmente, un ensayo de competición implica el uso de un antígeno (por ejemplo, una proteína hGDF15 o un

fragmento de la misma) unido a una superficie sólida o expresado en la superficie de una célula, un anticuerpo analítico de unión anti-GDF15 y un anticuerpo de referencia (por ejemplo, el anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11). El anticuerpo de referencia está marcado y el anticuerpo analítico no está marcado. La inhibición competitiva se mide determinando la cantidad de anticuerpo de referencia marcado unido a la superficie sólida o a las células en presencia del anticuerpo analítico. Habitualmente, el anticuerpo analítico está presente en exceso (por ejemplo, 1x, 5x, 10x, 20x o 100x). Los anticuerpos identificados mediante el ensayo de competición (es decir, los anticuerpos competidores) incluyen anticuerpos que se unen al mismo epítopo, o a epítopos similares (por ejemplo, solapantes), que el anticuerpo de referencia, y los anticuerpos que se unen a un epítopo adyacente suficientemente próximo al epítopo unido por el anticuerpo de referencia para que se produzca un impedimento estérico.

En un ejemplo de ensayo de competición, Se biotinila un anticuerpo de referencia anti-GDF15 (por ejemplo, un anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11) usando reactivos disponibles comercialmente. El anticuerpo de referencia biotinilado se mezcla con diluciones sucesivas del anticuerpo analítico o del anticuerpo de referencia sin marcar (control de autocompetición), dando como resultado una mezcla de diversas proporciones molares (por ejemplo, 1x, 5x, 10x, 20x o 100x) del anticuerpo analítico (o del anticuerpo de referencia sin marcar) con respecto al anticuerpo de referencia marcado. La mezcla de anticuerpos se añade a una placa de ELISA recubierta con polipéptido hGDF15. Después, la placa se lava y se añade peroxidasa de rábano picante (HRP)estrepavidina a la placa como reactivo de detección. La cantidad de anticuerpo de referencia marcado unido al antígeno objetivo se detecta tras la adición de un sustrato cromógeno (por ejemplo, TMB (3,3',5,5'tetrametilbencidina) o ABTS (2,2"-azin-di-(3-etilbenztiazolin-6-sulfonato)), que se conocen en la técnica. Las lecturas de la densidad óptica (unidades de DO) se miden usando un espectrómetro SpectraMax® M2 (Molecular Devices). Las unidades de DO correspondientes a un porcentaje de inhibición de cero se determinan a partir de los pocillos sin anticuerpo competidor. Las unidades de DO correspondientes a un 100 % de inhibición, es decir, el fondo del ensayo, se determinan a partir de los pocillos sin anticuerpo de referencia marcado ni anticuerpo analítico. El porcentaje de inhibición del anticuerpo de referencia marcado frente al GDF15 por parte del anticuerpo analítico (o el anticuerpo de referencia no marcado) en cada concentración se calcula como sigue: % de inhibición = (1-(unidades de DO - 100 % de inhibición)/(0 % de inhibición - 100 % de inhibición))*100. Las personas expertas en la materia apreciarán que el ensayo de competición puede realizarse usando diversos sistemas de detección conocidos en la técnica.

Un ensayo de competición puede realizarse en ambas direcciones para asegurar que la presencia del marcador no interfiere ni inhibe la unión de otro modo. Por ejemplo, en la primera dirección, el anticuerpo de referencia está marcado y el anticuerpo analítico no está marcado, y en la segunda dirección, el anticuerpo analítico está marcado y el anticuerpo de referencia no está marcado.

El anticuerpo analítico compite con el anticuerpo de referencia por la unión específica al antígeno o si un exceso de un anticuerpo (por ejemplo, 1x, 5x, 10x, 20x o 100x) inhibe la unión del otro anticuerpo, por ejemplo, en al menos un 50 %, un 75 %, un 90 %, un 95 % o un 99 %, según se mide en un ensayo de unión competitiva.

Dos anticuerpos se unen al mismo epítopo si esencialmente todas las mutaciones de aminoácidos del antígeno que reduce o eliminan la unión de un anticuerpo, reducen o eliminan la unión del otro. Dos anticuerpos se unen a epítopos solapantes si únicamente un subconjunto de las mutaciones de aminoácidos que reducen o eliminan la unión del anticuerpo, reducen o eliminan la unión del otro.

II. Producción de anticuerpos

10

15

20

25

30

35

40

45

50

55

60

Los métodos para producir los anticuerpos, tales como los divulgados en el presente documento, son conocidos en la técnica. Por ejemplo, las moléculas de ADN que codifican las regiones variables de la cadena ligera y/o las regiones variables de la cadena pesada pueden ser sintetizadas químicamente usando la información de la secuencia proporcionada en el presente documento. Las moléculas de ADN sintético pueden ser ligadas a otras secuencias de nucleótidos apropiadas, incluyendo, por ejemplo, las secuencias codificantes de la región constante y las secuencias de control de la expresión, para producir construcciones de expresión génica convencionales que codifican los anticuerpos deseados. La producción de construcciones génicas definidas está en la pericia rutinaria de la técnica. Como alternativa, las secuencias proporcionadas en el presente documento pueden ser clonadas fuera de hibridomas mediante técnicas de hibridación convencionales o técnicas de reacción en cadena de la polimerasa (PCR), usando sondas sintéticas de ácidos nucleicos cuyas secuencias se basan en la información de la secuencia proporcionada en el presente documento, o información de la secuencia de la técnica anterior relativa a los genes que codifican las cadenas pesada y ligera de los anticuerpos murinos en células de hibridoma.

Los ácidos nucleicos que codifican los anticuerpos deseados pueden ser incorporados (ligados) en vectores de expresión, que pueden ser introducidos en células hospedadoras a través de técnicas convencionales de transfección o de transformación. Algunos ejemplos de células hospedadoras son células de *E. coli*, células de ovario de hámster chino (CHO), células de riñón embrionario humano 293 (HEK 293), células HeLa, células de riñón de cría de hámster (BHK), células de riñón de mono (COS), células de carcinoma hepatocelular humano (por ejemplo, Hep G2) y células de mieloma que no producen de otro modo la proteína IgG. Las células hospedadoras

transformadas pueden cultivarse en unas condiciones que permitan que las células hospedadoras expresen los genes que codifican las regiones variables de la cadena ligera y/o pesada de la inmunoglobulina.

Las condiciones específicas de expresión y de purificación variarán dependiendo del sistema de expresión empleado. Por ejemplo, si un gen se va a expresar en *E. coli*, en primer lugar se clona en un vector de expresión posicionando el gen genomanipulado secuencia abajo de un promotor bacteriano adecuado, por ejemplo, Trp o Tac, y una secuencia de señal procariota. La proteína secretada expresada se acumula en cuerpos refringentes o de inclusión, y puede ser recogida después de la disrupción de las células con una prensa francesa o la aplicación de ultrasonidos. Después, los cuerpos refringentes se solubilizan y las proteínas se repliegan y se escinden mediante métodos conocidos en la técnica.

Si el gen genomanipulado va a ser expresado en células hospedadoras eucariotas, por ejemplo, células CHO, en primer lugar se inserta en un vector de expresión que contiene un promotor eucariota adecuado, una señal de secreción, una secuencia de poli A y un codón de terminación. Opcionalmente, el vector o la construcción génica pueden contener potenciadores e intrones. Este vector de expresión contiene opcionalmente secuencias que codifican toda o parte de una región constante, permitiendo que la totalidad, o una parte de, una cadena pesada o ligera sea expresada. La construcción génica puede ser introducida en células hospedadoras eucariotas usando técnicas convencionales. La célula hospedadora expresa fragmentos V_L o V_H, heterodímeros V_L-V_H, polipéptidos de cadena única V_H-V_L o V_L-V_H, cadenas pesadas o ligeras completas de inmunoglobulinas, o porciones de las mismas, cada una de las cuales puede estar unida a una fracción que tiene otra función (por ejemplo, citotoxicidad). En algunas realizaciones, una célula hospedadora es transfectada con un único vector que expresa un polipéptido que expresa la totalidad, o parte de, una cadena pesada (por ejemplo, una región variable de la cadena pesada) o una cadena ligera (por ejemplo, una región variable de la cadena ligera). En algunas realizaciones, una célula hospedadora es transfectada con un único vector que codifica (a) un polipéptido que comprende una región variable de la cadena pesada y un polipéptido que comprende una región variable de la cadena ligera, o (b) una cadena pesada completa de una inmunoglobulina y una cadena ligera completa de una inmunoglobulina. En algunas realizaciones, una célula hospedadora es cotransfectada con más de un vector de expresión (por ejemplo, un vector de expresión que expresa un polipéptido que comprende la totalidad, o parte de, una cadena pesada o una región variable de la cadena pesada, y otro vector de expresión que expresa un polipéptido que comprende la totalidad, o parte de, una cadena ligera o una región variable de la cadena ligera).

Un polipéptido que comprende una región variable de la cadena pesada o una región variable de la cadena ligera de una inmunoglobulina puede ser producido cultivando una célula hospedadora transfectada con un vector de expresión que codifica dicha región variable, en unas condiciones que permitan la expresión del polipéptido. Después de la expresión, el polipéptido puede ser recogido y purificado o aislado usando técnicas conocidas en la técnica, por ejemplo, etiquetas de afinidad tales como la glutatión-S-transferasa (GST) o etiquetas de histidina.

Un anticuerpo monoclonal que se une al hGDF15, o un fragmento de unión al antígeno del anticuerpo, puede ser producido cultivando una célula hospedadora transfectada con: (a) un vector de expresión que codifica una cadena pesada completa o parcial de una inmunoglobulina, y un vector de expresión aparte que codifica una cadena ligera completa o parcial de una inmunoglobulina; o (b) un único vector de expresión que codifica ambas cadenas (por ejemplo, la cadena pesada y ligera completa o parcial), en unas condiciones que permitan la expresión de ambas cadenas. El anticuerpo intacto (o el fragmento de unión al antígeno) puede ser recogido y purificado o aislado usando técnicas conocidas en la técnica, por ejemplo, Proteína A, Proteína G, etiquetas de afinidad tales como la glutatión-S-transferasa (GST) o etiquetas de histidina. Está en la pericia habitual de la técnica expresar la cadena pesada y la cadena ligera a partir de un único vector de expresión o a partir de dos vectores de expresión individuales.

III. Modificaciones de los anticuerpos

10

15

20

25

30

35

40

45

50

55

60

65

Los métodos para reducir o eliminar la antigenicidad de los anticuerpos y de los fragmentos de anticuerpos son conocidos en la técnica. Cuando se van a administrar los anticuerpos a un ser humano, los anticuerpos están preferentemente "humanizados" para reducir o eliminar la antigenicidad en seres humanos. Preferentemente, cada anticuerpo humanizado tiene la misma o sustancialmente la misma afinidad por el antígeno que el anticuerpo de ratón no humanizado a partir del cual deriva.

En una estrategia de humanización, se crean proteínas quiméricas en las que se sustituyen las regiones constantes de una inmunoglobulina de ratón por las regiones constantes de una inmunoglobulina humana. Véase, por ejemplo, Morrison et al.,1984, PROC. NAT. ACAD. SCI. 81: 6851-6855, Neuberger et al., 1984, NATURE 312: 604-608; las patentes de EE.UU. nº 6.893.625 (Robinson); 5.500.362 (Robinson); y 4.816.567 (Cabilly).

En una estrategia conocida como injerto de CDR, se injertan las CDR de las regiones variables de la cadena ligera y pesada en las regiones estructurales de otra especie. Por ejemplo, pueden injertarse CDR murinas en FR humanas. En algunas realizaciones, las CDR de las regiones variables de la cadena ligera y pesada de un anticuerpo anti-GDF 15 el se injertan en FR humanas o en FR consenso humanas. Para crear FR consenso humanas, se alinean FR de varias secuencias de aminoácidos de cadena pesada o de cadena ligera humana para identificar una secuencia de

aminoácidos consenso. El injerto de CDR se describe en las Patentes de los Estados Unidos n.º 7.022.500 (Queen); 6.982.321 (Winter); 6.180.370 (Queen); 6.054.297 (Carter); 5.693.762 (Queen); 5.859.205 (Adair); 5.693.761 (Queen); 5.565.332 (Hoogenboom); 5.585.089 (Queen); 5.530.101 (Queen); Jones et al. (1986) NATURE 321: 522-525; Riechmann et al. (1988) NATURE 332: 323-327; Verhoeyen et al. (1988) SCIENCE 239: 1534-1536; y Winter (1998) FEBS LETT 430: 92-94.

En una estrategia denominada "SUPERHUMANIZATIONTM", se eligen secuencias de CDR humanas a partir de genes de la estirpe germinal humana, sobre la base de la similitud estructural de las CDR humanas con aquellas del anticuerpo de ratón que se va a humanizar. Véase, por ejemplo, la Patente de los Estados Unidos n.º 6.881.557 (Foote); y Tan et al., 2002, J. IMMUNOL. 169: 1119-1125.

Otros métodos para reducir la inmunogenicidad incluyen "remodelación", "hiperquimerización", y "rebarnizado/rechapado". Véase, por ejemplo, Vaswami et al., 1998, ANNALS OF ALLERGY, ASTHMA, & IMMUNOL. 81: 105; Roguska et al., 1996, PROT. ENGINEER 9: 895-904; y la Patente de los Estados Unidos n.º 6.072.035 (Hardman). En la estrategia de rebarnizado/rechapado, los residuos de aminoácidos accesibles de la superficie del anticuerpo murino son sustituidos por residuos de aminoácidos que se encuentran más frecuentemente en las mismas posiciones en un anticuerpo humano. Este tipo de rebarnizado del anticuerpo se describe, por ejemplo, en la Patente de los Estados Unidos nº 5.639.641 (Pedersen).

Otra estrategia para convertir un anticuerpo de ratón en una forma adecuada para su uso médico en seres humanos se conoce como la tecnología ACTIVMAB™ (Vaccinex, Inc., Rochester, NY), que implica un vector basado en un virus de la variolovacuna para expresar los anticuerpos en células de mamífero. Se dice que se producen unos elevados niveles de diversidad combinatoria de las cadenas pesada y ligera de la IgG. Véanse, por ejemplo, las Patentes de los Estados Unidos n.º 6.706.477 (Zauderer); 6.800.442 (Zauderer); y 6.872.518 (Zauderer).

Otra estrategia para convertir un anticuerpo de ratón en una forma adecuada para su uso en seres humanos es la tecnología comercializada por KaloBios Pharmaceuticals, Inc. (Palo Alto, CA). Esta tecnología implica el uso de una colección patentada de "aceptores" humanos para producir una colección "orientada al epítopo" para la selección de anticuerpos.

Otra estrategia para modificar un anticuerpo de ratón en una forma adecuada para su uso médico en seres humanos es la tecnología HUMAN ENGINEERING™, que es comercializada por XOMA (US) LLC. Véanse, por ejemplo, la Publicación PCT nº WO 93/11794 y las Patentes de EE.UU. nº 5.766.886 (Studnicka); 5.770.196 (Studnicka); 5.821.123 (Studnicka); y 5.869.619 (Studnicka).

Puede usarse cualquier estrategia adecuada, incluyendo cualquiera de las estrategias anteriores, para reducir o eliminar la inmunogenicidad humana de un anticuerpo.

Además, es posible crear anticuerpos completamente humanos en ratones. Los AcMc completamente humanos que carecen de cualquier secuencia no humana pueden ser preparados a partir de ratones transgénicos con inmunoglobulinas humanas mediante las técnicas referenciadas en, por ejemplo, Lonberg et al., NATURE 368: 856-859, 1994; Fishwild et al., NATURE BIOTECHNOLOGY 14: 845-851, 1996; y Mendez et al., NATURE GENETICS 15: 146-156, 1997. Los AcMc completamente humanos también pueden ser preparados y optimizados a partir de colecciones de expresión en fagos mediante las técnicas referenciadas en, por ejemplo, Knappik et al., J. MOL. BIOL. 296: 57-86, 2000; y Krebs et al., J. Immunol. Meth. 254: 67-84 2001).

IV. Usos terapéuticos

10

15

25

30

35

60

Los anticuerpos divulgados en el presente documento pueden usarse para tratar diversos trastornos, por ejemplo, caquexia y/o sarcopenia. Los anticuerpos divulgados en el presente documento (por ejemplo, 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11) pueden usarse para inhibir la pérdida de masa muscular, por ejemplo, la pérdida de masa muscular asociada con una enfermedad subyacente. Algunas enfermedades subyacentes asociadas con la caquexia incluyen, pero no se limitan a, cáncer, insuficiencia cardiaca crónica, enfermedad renal crónica, EPOC, SIDA, esclerosis múltiple, artritis reumatoide, síndrome séptico y tuberculosis. Los anticuerpos divulgados inhiben la pérdida de masa muscular en al menos un 40 %, un 50 %, un 60 %, un 70 %, un 80 %, un 90 %, un 95 %, un 98 %, un 99 % o un 100 %.

Una pérdida de masa muscular puede estar acompañada por una pérdida de masa grasa. Los anticuerpos divulgados en el presente documento (por ejemplo, 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11) pueden inhibir la pérdida de masa grasa en al menos un 40 %, un 50 %, un 60 %, un 70 %, un 80 %, un 90 %, un 95 %, un 98 %, un 99 % o un 100 %.

Los anticuerpos divulgados en el presente documento (por ejemplo, 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11) pueden usarse para tratar una o más características que acompañan a la caquexia y/o a la sarcopenia, por ejemplo, la pérdida involuntaria de peso corporal. Los anticuerpos revierten la pérdida involuntaria de peso corporal en al menos un 2 %, un 5 %, un 10 %, un 15 %, un 20 %, un 25 %, un 30 % o un 35 %.

Los anticuerpos divulgados en el presente documento (por ejemplo, 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11) pueden usarse para inhibir la pérdida de masa de un órgano, por ejemplo, la pérdida de masa de un órgano asociada con una enfermedad subyacente. Algunas enfermedades subyacentes asociadas con la caquexia incluyen, pero no se limitan a, cáncer, insuficiencia cardiaca crónica, enfermedad renal crónica, EPOC, SIDA, esclerosis múltiple, artritis reumatoide, síndrome séptico y tuberculosis. Los anticuerpos divulgados inhiben la pérdida de masa de un órgano en al menos un 40 %, un 50 %, un 60 %, un 70 %, un 80 %, un 90 %, un 95 %, un 98 %, un 99 % o un 100 %. La pérdida de masa de un órgano se observa en corazón, hígado, riñón y/o bazo. La pérdida de masa órgano puede estar acompañada por una pérdida de masa muscular, una pérdida de masa grasa y/o una pérdida involuntaria de peso.

10

15

20

25

30

El anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11 puede usarse en terapia. Por ejemplo, el anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11 puede usarse en terapia para tratar la caquexia y/o la sarcopenia. El uso del anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11 para tratar la caquexia y/o la sarcopenia en un mamífero comprende la administración al mamífero de una cantidad terapéuticamente eficaz del anticuerpo.

La sarcopenia, los trastornos de consunción muscular y las pérdidas significativas de peso muscular pueden producirse en ausencia de caquexia, de una disminución del apetito o de una pérdida de peso corporal. En ciertas realizaciones, por lo tanto, y uno o más de los anticuerpos anti-GDF de la invención (por ejemplo, el anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11) puede usarse para tratar a un sujeto que padece, o al que se le ha diagnosticado, sarcopenia, un trastorno de consunción muscular y/o una pérdida significativa de peso muscular, tanto si el sujeto tiene, o se le ha diagnosticado, como si no, caquexia o una disminución del apetito. Dicho método comprende la administración de una cantidad terapéuticamente eficaz de uno o más anticuerpos de la invención al sujeto en necesidad de los mismos.

Las proteínas de fusión Fc-rhGDF15 divulgadas en el presente documento pueden usarse para tratar la obesidad. Las proteínas de fusión hFc-rhGDF15 divulgadas en el presente documento pueden usarse para inhibir la ganancia de peso o para reducir el peso corporal en al menos un 5 %, un 10 %, un 15 %, un 20 %, un 25 %, un 30 %, un 35 %, un 40 %, un 45 % o un 50 %. El uso de una proteína de fusión hFc-hGDF15 para tratar la obesidad en un mamífero comprende la administración al mamífero de una cantidad terapéuticamente eficaz de la proteína de fusión.

Como se usa en el presente documento, "tratar", y "tratamiento" significan el tratamiento de una enfermedad en un mamífero, por ejemplo, en un ser humano. Esto incluye: (a) la inhibición de la enfermedad, es decir, detener su desarrollo; y (b) el alivio de la enfermedad, es decir, provocar la regresión de la patología.

En general, una cantidad terapéuticamente eficaz de un componente activo (por ejemplo, un anticuerpo o una proteína de fusión), está en el intervalo de entre 0,1 mg/kg y 100 mg/kg, por ejemplo, entre 1 mg/kg y 100 mg/kg, por 40 ejemplo, entre 1 mg/kg y 10 mg/kg, por ejemplo, entre 2,0 mg/kg y 10 mg/kg. La cantidad administrada dependerá de variables tales como el tipo y la magnitud de la enfermedad o la indicación que se va a tratar, el estado de salud general del paciente, la potencia in vivo del anticuerpo o de la proteína de fusión, la formulación farmacéutica, la semivida sérica del anticuerpo o de la proteína de fusión, y de la vía de administración. La dosis inicial puede aumentarse más allá del nivel superior con objeto de conseguir rápidamente el nivel sanguíneo o tisular deseado. 45 Como alternativa, la dosis inicial puede ser menor que la óptima, y la dosis puede aumentarse progresivamente durante el transcurso del tratamiento. La dosis en seres humanos puede optimizarse, por ejemplo, en un estudio de aumento de la dosis convencional de Fase I diseñado para que varíe entre 0,5 mg/kg y 20 mg/kg. La frecuencia de la administración puede variar dependiendo de factores tales como la vía de administración, la cantidad de dosis, la semivida sérica del anticuerpo o de la proteína de fusión, y de la enfermedad que se está tratando. Algunos ejemplos 50 de frecuencias de administración son una vez al día, una vez por semana y una vez cada dos semanas. En algunas realizaciones, la administración es una vez cada dos semanas. Una vía de administración preferida es la parenteral, por ejemplo, infusión intravenosa. La formulación de fármacos basados en un anticuerpo monoclonal y de fármacos basados en una proteína de fusión está en la pericia habitual de la técnica. En algunas realizaciones, el anticuerpo o la proteína de fusión se liofiliza, y después se reconstituye en solución salina tamponada, en el momento de la 55 administración. La cantidad eficaz de un segundo agente activo, por ejemplo, un agente antineoplásico o los otros agentes analizados a continuación, también seguirá los principios analizados más arriba y se elegirá de forma que desencadene el beneficio terapéutico requerido en el paciente.

Para su uso terapéutico, un anticuerpo se combina preferentemente con un portador farmacéuticamente aceptable.

Como se usa en el presente documento, "portador farmacéuticamente aceptable" significa tampones, portadores y excipientes adecuados para su uso en contacto con los tejidos de seres humanos y de animales sin una excesiva toxicidad, irritación, respuesta alérgica u otro problema o complicación, acordes con una relación beneficio/riesgo razonable. El (los) portador(es) debe(n) ser "aceptable(s)" en el sentido de ser compatible(s) con los demás ingredientes de las formulaciones y no perjudicial(es) para el receptor. Algunos portadores farmacéuticamente aceptables incluyen tampones, disolventes, medios de dispersión, recubrimientos, agentes isotónicos y retardantes de la absorción, y similares, que son compatibles con la administración farmacéutica. El uso de dichos medios y

agentes para sustancias farmacéuticamente activas es conocido en la técnica.

Las composiciones farmacéuticas que contienen los anticuerpos o las proteínas de fusión, tales como los divulgados en el presente documento, pueden ser presentados en una forma de dosificación unitaria y pueden ser preparados mediante cualquier método adecuado. Una composición farmacéutica debe estar formulada para que sea compatible con su vía de administración prevista. Algunos ejemplos de vías de administración son intravenosa (IV), intradérmica, por inhalación, transdérmica, tópica, transmucosa y rectal. La vía de administración preferida para los anticuerpos monoclonales es la infusión IV. Las formulaciones útil es pueden prepararse mediante métodos conocidos en el arte farmacéutico. Por ejemplo, véase Remington's Pharmaceutical Sciences, 18ª ed. (Mack Publishing Company, 1990). Los componentes de la formulación adecuados para la administración parenteral incluyen un diluyente estéril tal como agua para inyección, solución salina, aceites no volátiles, polietilenglicoles, glicerina, propilenglicol u otros disolventes sintéticos; agentes antibacterianos tales como alcohol bencílico o metil parabeno; antioxidantes, tales como ácido ascórbico o bisulfito sódico; agentes quelantes tales como EDTA; tampones, tales como acetatos, citratos o fosfatos; y agentes para el ajuste de la tonicidad tales como cloruro de sodio o dextrosa.

Para la administración intravenosa, algunos vehículos adecuados incluyen suero salino fisiológico, agua bacteriostática, Cremophor ELTM (BASF, Parsippany, NJ) o suero salino tamponado con fosfato (PBS). El portador de ser estable a las condiciones de fabricación y conservación, y debe ser preservado frente a los microorganismos. El portador puede ser un disolvente o un medio de dispersión que contiene, por ejemplo, agua, etanol, poliol (por ejemplo, glicerol, propilenglicol y polietilenglicol líquido), y mezclas adecuadas de los mismos.

Las formulaciones farmacéuticas son preferentemente estériles. La esterilización puede conseguirse, por ejemplo, mediante filtración a través de membranas de filtración estériles. Cuando la composición está liofilizada, puede realizarse una esterilización por filtro antes o después de la liofilización y la reconstitución.

Además de la ruta del GDF15 (es decir, MIC-1/PLAB/PDF/NAG-1), otras citocinas implicadas en la caquexia incluyen la Activina A y la IL-6. Se ha asociado el aumento en los niveles de la activina con la caquexia asociada al cáncer y los tumores gonadales. Véase, por ejemplo, Marino et al. (2013) CYTOKINE & GROWTH FACTOR REV. 24: 477-484. La Activina A es un miembro de la familia del TGF-beta, y es un ligando del receptor de la activina de tipo 2, el ActRIIB. Véase, por ejemplo, Zhou et al. (2010) CELL 142: 531-543. No se ha demostrado que los niveles de la IL-6 en circulación estén relacionados con la pérdida de peso en los pacientes oncológicos, ni tampoco con la reducción en la supervivencia. Véase, por ejemplo, Fearon et al. (2012) CELL METABOLISM 16: 153-166.

Por consiguiente, en determinadas realizaciones de la presente invención, pueden administrarse uno o más 35 inhibidores de la Activina-A o del receptor de la Activina-A, el ActRIIB, de la IL-6 o del receptor de la IL-6 (el IL-6R) en combinación con (por ejemplo, administrados en el mismo momento que, administrados antes o administrados después), un anticuerpo de la presente invención que inhibe la actividad del DF15. Algunos ejemplos de inhibidores de la Activina-A o del ActRIIB incluyen, por ejemplo, un anticuerpo anti-Activina-A o un fragmento de unión al antígeno del mismo, un anticuerpo anti-ActRIIB o un fragmento de unión al antígeno del mismo, un inhibidor de molécula pequeña de la Activina-A, un inhibidor de molécula pequeña del ActRIIB, y un receptor 'señuelo' del ActRIIB, tal como un receptor ActRIIB soluble y una fusión del receptor ActRIIB soluble con una molécula Fc (ActRIIB-Fc). Véase, por ejemplo, Zhou et al. (2010), supra. Algunos inhibidores adecuados de la IL-6 o del IL-6R incluyen un anticuerpo anti-IL-6 o un fragmento de unión al antígeno del mismo, un anticuerpo anti-IL-6R o un fragmento de unión al antígeno del mismo, un inhibidor de molécula pequeña de la IL-6, un inhibidor de molécula 45 pequeña del IL-6R, y un receptor 'señuelo' del IL-6R, tal como un receptor IL-6 soluble y una fusión del receptor IL-6 soluble con una molécula Fc (IL6R-Fc). Véase, por ejemplo, Enomoto et al. (2004) BIOCHEM. AND BIOPHYS. RES. COMM. 323: 1096-1102; Argiles et al. (2011) ÉUR. J. PHARMACOL. 668: S81-S86; Tuca et al. (2013) ONCOLOGY/HEMATOLOGY 88: 625-636. Algunos inhibidores adecuados de la IL-6 o del IL-6R pueden incluir, por 50 ejemplo, tocilizumab (Actemra®, Hoffmann-LaRoche), un anticuerpo monoclonal anti-IL-6R humanizado aprobado para el tratamiento del artritis reumatoide, y Sarilumab/REGN88 (Regeneron), un anticuerpo anti-IL6R humanizado en desarrollo clínico para el tratamiento del artritis reumatoide; y Selumetinib/ AZD6244 (AstraZeneca), un inhibidor alostérico de la MEK, que se ha demostrado que inhibe la producción de la IL-6. Prado et al. (2012) BRITISH J. CANCER 106: 1583-1586.

55 FI TNFq v la II -1 sq

10

15

20

25

30

60

65

El TNF α y la IL-1 son citocinas que se sabe que están implicadas en la mediación de la respuesta proinflamatoria, que también están implicadas en el agotamiento muscular, la anorexia y la caquexia. Un aumento en los niveles del TNF α en circulación parece inhibir la miogénesis. El TNF α , conocido también como "caquectina", estimula la secreción de la interleucina-1 y está implicado en la inducción de la caquexia. La IL-1 es un potente desencadenante de la respuesta inflamatoria en fase aguda, y se ha demostrado que la infusión de IL-1 puede dar lugar a una notable pérdida de peso y pérdida del apetito. Se ha demostrado que la IL-1 contribuye al inicio de la caquexia cancerosa en ratones portadores de un adenocarcinoma murino de colon-26 (Strassmann et al. (1993) J. IMMUNOL. 150: 2341). Véase también, Matis y Billiau (1997) NUTRITION 13: 763-770; Fong et al. (1989) AM. J. PHYSIOL. - REGULATORY, INTEGRATIVE AND COMPARATIVE PHYSIOL., 256: R659-R665. Por lo tanto, los inhibidores del TNF α y los inhibidores de la IL-1 que se usan en el tratamiento de la artritis reumatoide también pueden ser útiles en el tratamiento de la caquexia.

Por consiguiente, en determinadas realizaciones de la presente invención, pueden administrarse uno o más inhibidores del TNFα o de la IL-1 en combinación con (por ejemplo, administrados al mismo tiempo que, administrados antes o administrados después), un anticuerpo de la presente invención que inhibe la actividad del GDF15. Algunos inhibidores adecuados del TNFα o de la IL-1 incluyen un anticuerpo anti-TNFα o un fragmento de unión al antígeno del mismo, un anticuerpo anti-IL-1 o un fragmento de unión al antígeno del mismo, un inhibidor de molécula pequeña del TNFα o de la IL-1, y un receptor 'señuelo' del TNFα o de la IL-1, tal como un receptor del TNFα o de la IL-1 soluble y una fusión de la forma soluble del TNFα o de la IL-1 con una molécula Fc. Algunos inhibidores adecuados del TNFα incluyen, por ejemplo, etanercept (Enbrel®, Pfizer/Amgen), infliximab (Remicade®, Janssen Biotech), adalimumab (Humira®, Abbvie), golimumab (Simponi®, Johnson and Johnson/Merck) y certolizumab pegol (Cimzia®, UCB). Algunos inhibidores adecuados de la IL-1 incluyen, por ejemplo, Xilonix®, un anticuerpo que se dirige a la IL-1α (XBiotech), anikinra (Kinaret®, Amgen), canakinumab (Ilaris®, Novartis) y rilonacept (Arcalyst®, Regeneron). En ciertas realizaciones, el inhibidor del TNFα o el inhibidor de la IL-1, que normalmente se administran sistémicamente para el tratamiento de la artritis reumatoide, pueden ser administrados localmente, y directamente en el sitio del tumor.

10

15

La miostatina, conocida también como GDF8, es un miembro de la familia de péptidos del TGF-8 que es un regulador negativo de la masa muscular, según demuestra el aumento en la masa muscular en los mamíferos deficientes en miostatina. La miostatina es un ligando del receptor de la activina de tipo 2, el ActRIIB. Por 20 consiguiente, en determinadas realizaciones de la presente invención, pueden administrarse uno o más inhibidores de la miostatina o de su receptor en combinación con (por ejemplo, administrados al mismo tiempo que, administrados antes o administrados después), un anticuerpo de la invención que inhibe la actividad del GDF15. Algunos inhibidores adecuados de la miostatina o del ActRIIB incluyen un anticuerpo anti-miostatina o un fragmento de unión al antígeno del mismo, un anticuerpo anti-ActRIIB o un fragmento de unión al antígeno del mismo, un 25 inhibidor de molécula pequeña de la miostatina, un inhibidor de molécula pequeña del ActRIIB, y un receptor 'señuelo' del GDF-8, tal como un ActRIIB soluble y una fusión de la forma soluble del ActRIIB con una molécula Fc. Véase, por ejemplo, Lokireddy et al. (2012) BIOCHEM. J. 446 (1): 23-26. Algunos inhibidores de la miostatina que pueden ser adecuados para la presente invención incluyen REGN1033 (Regeneron); véase Bauerlein et al. (2013) J. CACHEXIA SARCOPENIA MUSCLE: Abstracts of the 7th Cachexia Conference, Kobe/Osaka, Japón, 9-11 de diciembre de 2013, Resumen 4-06; LY2495655 (Lilly), un anticuerpo anti-miostatina humanizado en desarrollo clínico por Eli Lilly; véase también "A PHASE 2 STUDY OF LY2495655 IN PARTICIPANTS WITH PANCREATIC CANCER", 30 disponible en internet en clinicaltrials.gov/ct2/NCT01505530; identificador NML: NCT01505530; ACE-031 (Acceleron Pharma); y stamulumab (Pfizer).

Algunos agentes tales como la grelina o miméticos de la grelina, u otros secretagogos de la hormona del crecimiento (GHS) que son capaces de activar el receptor de la GHS (GHS-R1a), conocido también como receptor de la grelina, pueden ser útiles para aumentar la ingesta de alimentos y el peso corporal en seres humanos. Véase Guillory et al. (2013) en VITAMINS AND HORMONES vol. 92, cap. 3; y Steinman y DeBoer (2013) VITAMINS AND HORMONES vol. 92, Cap. 8. Algunos miméticos de la de grelina adecuados incluyen anamorelin (Helsinn, Lugano, CH); Véase Temel et al. (2013) J. CACHEXIA SARCOPENIA MUSCLE: Abstracts of the 7th Cachexia Conference, Kobe/Osaka, Japón, 9-11 de diciembre de 2013, Resumen 5-01. Otras moléculas GHS adecuadas pueden ser identificadas, por ejemplo, usando el ensayo de competición de la grelina del receptor secretagogo de la hormona del crecimiento descrito en las Publicaciones PCT nº WO2011/117254 y WO2012/113103.

45 Los agonistas del receptor de andrógenos, incluyendo moléculas pequeñas y otros moduladores selectivos del receptor de andrógenos (SARM) pueden ser útiles en el tratamiento de la caquexia y/o de la sarcopenia. Véase, por ejemplo, Mohler et al. (2009) J. MED. CHEM. 52: 3597-3617; Nagata et al. (2011) BIOORGANIC AND MED. CHEM. LETTERS 21: 1744-1747; y Chen et al. (2005) MOL. INTERV. 5: 173-188. De manera ideal, los SARM deben actuar como agonistas totales, como la testosterona, en tejidos objetivo anabólicos, tales como el músculo y el hueso, pero 50 deben mostrar únicamente unas actividades antagonistas del receptor de andrógenos parciales o puras en el tejido prostático. Véase, por ejemplo, Bovee et al. (2010) J. STEROID BIOCHEM. & MOL. BIOL. 118: 85-92. Los SARM adecuados pueden ser identificados, por ejemplo, mediante el uso de los métodos y los ensayos descritos en Zhang et al. (2006) BIOORG. MED. CHEM. LETT. 16: 5763-5766; y en Zhang et al. (2007) BIOORG. MED. CHEM. LETT. 17: 439-443. Algunos SARM adecuados incluyen, por ejemplo, GTx-024 (enobosarm, Ostarine®, GTx, Inc.), un SARM en desarrollo clínico en fase II de GTx, Inc. Véase también, Dalton et al. (2011) J. CACHEXIA SARCOPENIA 55 MUSCLE 2: 153-161. Otros SARM adecuados incluyen 2-(2,2,2)-trifluoroetil-bencimidazoles (Ng et al. (2007) BIOORG. MED. CHEM. LETT. 17: 1784-1787) y JNJ-26146900 (Allan et al. (2007) J. STEROID BIOCHEM. & MOL. BIOL. 103: 76-83).

60 Los bloqueantes del receptor β-adrenérgico, o betabloqueantes, se han estudiado por su efecto sobre el peso corporal en sujetos caquécticos, y se han asociado con una reversión parcial de la caquexia en pacientes con insuficiencia cardiaca congestiva. Véase, por ejemplo, Hryniewicz et al. (2003) J. CARDIAC FAILURE 9: 464-468. El betabloqueante MT-102 (PsiOxus Therapeutics, Ltd.) se ha evaluado en un ensayo clínico en fase 2 para sujetos con caquexia cancerosa. Véase Coats et al. (2011) J. CACHEXIA SARCOPENIA MUSCLE 2: 201-207.

Los ratones con el receptor de la melanocortina inactivado, con un defecto genético en la señalización de la

melanocortina, muestran un fenotipo opuesto al de la caquexia: un aumento del apetito, un aumento en la masa magra corporal y una disminución en el metabolismo. Por lo tanto, el antagonismo de la melanocortina ha surgido como un potencial tratamiento para la caquexia asociada con una enfermedad crónica (DeBoer y Marks (2006) TRENDS IN ENDOCRINOLOGY AND METABOLISM 17: 199-204). Por consiguiente, en determinadas realizaciones de la presente invención, pueden administrarse uno o más inhibidores de un péptido de melanocortina o de un receptor de la melanocortina en combinación (por ejemplo, administrados al mismo tiempo que, administrados antes o administrados después) con un anticuerpo de la invención que inhibe la actividad del GDF15. Algunos inhibidores adecuados de las melanocortinas o de los receptores de la melanocortina incluyen un anticuerpo anti-péptido de melanocortina o un fragmento de unión al antígeno del mismo, un anticuerpo anti-receptor de la melanocortina o un fragmento de molécula pequeña de un receptor de la melanocortina, y un receptor 'señuelo' de un receptor de la melanocortina, tal como un receptor de la melanocortina soluble y una fusión de un receptor soluble de la melanocortina con una molécula Fc. Algunos inhibidores adecuados del receptor de la melacortina incluyen, por ejemplo, el péptido antagonista del receptor de la melanocortina relacionado con agouri (AgRP(83-132)), que se ha demostrado que previene los síntomas relacionados con la caquexia en un modelo de ratón de caquexia relacionada con cáncer (Joppa et al. (2007) PEPTIDES 28: 636-642).

Algunos agentes antineoplásicos, especialmente aquellos que pueden causar caquexia y elevar los niveles del GDF15, tales como el cisplatino, pueden usarse en los métodos de la presente invención en combinación con (por ejemplo, administrados al mismo tiempo que, administrados antes o administrados después) un anticuerpo anti-GDF15 de la invención. Muchos pacientes oncológicos están debilitados por los duros tratamientos de radio- y/o quimioterapia, que puede limitar la capacidad del paciente para tolerar dichas terapias, y por lo tanto restringir el régimen de dosificación. Ciertos agentes neoplásicos, tales como fluorouracilo, adriamicina, metotrexato y cisplatino, pueden contribuir a la caquexia, por ejemplo, induciendo complicaciones gastrointestinales graves. Véase, por ejemplo, Inui (2002) CANCER J. FOR CLINICIANS 52: 72-91. Mediante los métodos de la presente invención, en los que se administra a un agente antineoplásico en combinación con un anticuerpo anti-GDF15 de la invención, es posible reducir la incidencia y/o la gravedad de la caquexia, y finalmente aumentar la dosis máxima tolerada adición dicho agente antineoplásico. Por consiguiente, la eficacia del tratamiento con agentes antineoplásicos que pueden causar caquexia puede mejorarse reduciendo la incidencia de la caquexia como un efecto adverso limitante de la dosis, y permitiendo la administración a unas dosis mayores de un agente antineoplásico dado.

Por lo tanto, la presente invención incluye composiciones farmacéuticas que comprenden un anticuerpo anti-GDF15 de la presente invención en combinación con un agente seleccionado entre el grupo que consiste en: un inhibidor de la Activina-A, un inhibidor del ActRIIB, un inhibidor de la IL-6 o un inhibidor del IL-6R, una grelina, un mimético de la grelina o un agonista del GHS-R1a, un SARM, un inhibidor del TNFα, un inhibidor de la IL-1α, un inhibidor de la miostatina, un betabloqueante, un inhibidor del péptido de melanocortina, un inhibidor del receptor de la melanocortina y un agente antineoplásico,. La presente invención también incluye un uso médico de tratamiento, prevención o minimización de la caquexia y/o de la sarcopenia en un mamífero que comprende la administración al mamífero en necesidad de las mismas de una composición o composiciones farmacéuticas que comprenden una cantidad eficaz de un anticuerpo anti-GDF15 de la invención en combinación con una cantidad eficaz de un inhibidor de la Activina-A, un inhibidor del ActRIIB, un inhibidor de la IL-6 o un inhibidor del IL-6R, una grelina, un mimético de la grelina o un agonista del GHS-R1a, un SARM, un inhibidor del TNFα, un inhibidor de la IL-1α, un inhibidor de la miostatina, un betabloqueante, un inhibidor del péptido de melanocortina o un inhibidor del receptor de la melanocortina.

Un uso médico de inhibir la pérdida de masa muscular asociada con una enfermedad subyacente que comprende la administración a un mamífero en necesidad de las mismas de una composición o composiciones farmacéuticas que comprenden una cantidad eficaz de un anticuerpo anti-GDF15 de la invención en combinación con una cantidad eficaz de un inhibidor de la Activina-A, un inhibidor del ActRIIB, un inhibidor de la IL-6 o un inhibidor del IL-6R, una grelina, un mimético de la grelina o un agonista del GHS-R1a, un SARM, un inhibidor del TNFa, un inhibidor de la IL-1a, un inhibidor de la miostatina, un betabloqueante, en el presente documento se describe un inhibidor del péptido de melanocortina o un inhibidor del receptor de la melanocortina para prevenir o reducir la pérdida de masa muscular. La enfermedad subyacente puede seleccionarse entre el grupo que consiste en cáncer, insuficiencia cardiaca crónica, enfermedad renal crónica, EPOC, SIDA, esclerosis múltiple, artritis reumatoide, síndrome séptico y tuberculosis. Adicionalmente, la pérdida de masa muscular está acompañada por una pérdida de masa grasa.

Un uso médico de inhibir o reducir la pérdida involuntaria de peso en un mamífero que comprende la administración a un mamífero en necesidad de las mismas de una composición farmacéutica o de composiciones farmacéuticas que comprenden una cantidad eficaz de un anticuerpo anti-GDF15 de la invención en combinación con una cantidad eficaz de un inhibidor de la Activina-A, un inhibidor del ActRIIB, un inhibidor de la IL-6 o un inhibidor del IL-6R, una grelina, un mimético de la grelina o un agonista del GHS-R1a, un SARM, un inhibidor del TNFa, un inhibidor de la IL-1a, un inhibidor de la miostatina, un betabloqueante, en el presente documento también se describe un inhibidor del péptido de melanocortina o un inhibidor del receptor de la melanocortina.

65 Ciertos agentes antineoplásicos, tales como el cisplatino, tienen uno o más efectos adversos indeseables que implican causar o aumentar uno o más síndromes tales como caquexia, sarcopenia, consunción muscular,

consunción ósea o pérdida involuntaria de peso corporal. Por consiguiente, la presente invención se refiere al uso médico para el tratamiento del cáncer, a la vez que previene, minimiza o reduce la aparición, la frecuencia o la gravedad de la caquexia, la sarcopenia o la consunción muscular, la consunción ósea o la pérdida involuntaria de peso corporal en un mamífero, que comprende la administración a un mamífero en necesidad de la misma de una composición farmacéutica que comprende una cantidad eficaz de un anticuerpo anti-GDF15 de la presente invención en combinación con uno o más agentes antineoplásicos. La invención se refiere al uso médico para el tratamiento del cáncer, a la vez que previene, minimiza o reduce la aparición, la frecuencia o la gravedad de la caquexia, la sarcopenia o la consunción muscular, la consunción ósea o la pérdida involuntaria de peso corporal en un mamífero, que comprende la administración a un mamífero en necesidad de la misma de una composición farmacéutica que comprende una cantidad eficaz de un anticuerpo anti-GDF15 de la invención en combinación con uno o más agentes antineoplásicos que se sabe que causan o aumentan la aparición, la frecuencia o la gravedad de la caquexia, la sarcopenia o la consunción muscular, la consunción ósea o la pérdida involuntaria de peso corporal en un mamífero.

Ejemplos

15

10

Los siguientes Ejemplos son meramente ilustrativos y no pretenden limitar el ámbito o el contenido de la invención en modo alguno.

Ejemplo 1: Niveles séricos del GDF15 humano en modelos de xenoinjerto tumoral de ratón

20

25

30

En este ejemplo, se midió la cantidad de hGDF15 en el suero de ratones portadores de diversos tumores xenoinjertados. Se recogió el suero de tres ratones para cada uno de los siguientes modelos de xenoinjerto tumoral: Chago, RPMI7951, PC3, TOV21G, HT-1080, K-562 y LS1034. También se recogió el suero de tres ratones sin tratamiento previo como control. Los niveles séricos del GDF15 humano se determinaron mediante un ELISA (R&D Systems, nº de cat. DY957E). Los ratones portadores de tumores humanos xenoinjertados que inducen caquexia tenían unos niveles séricos del hGDF15 por encima de 2 ng/ml, mientras que los ratones portadores de tumores humanos xenoiniertados que no inducen caquexia tenían unos niveles séricos del hGDF15 por debajo de 1 ng/ml (FIG. 2). Los ratones sin tratamiento previo no tenían hGDF15 detectable (control). Estos resultados indican que un nivel sérico de aproximadamente 2 ng/ml de GDF15 es un umbral para la inducción de caquexia en este modelo de ratón. También se observaron unos niveles similares de hGDF15 en plasma cuando se determinaron mediante un ELISA.

Ejemplo 2: Modelo de caquexia en ratón no portador de tumor

35

Un modelo existente de caquexia en ratón no portador de tumores se basa en la inyección de rhGDF15 maduro en un ratón (Johnen et al. (1997) NAT. MED. 13: 1333-1340). El rhGDF15 maduro se corresponde con los aminoácidos 197 hasta 308 de la proteína hGDF15. El rhGDF15 maduro puede producirse en la levadura Pichia pastoris según se describe en Fairlie et al. (2000) GENE 254: 67-76). El rhGDF15 escindido se corresponde con los aminoácidos 197 hasta 308 de la proteína hGDF15 liberada desde una proteína de fusión Fc-rhGDF15. En las FIGS. 3-4 descritas a 40 continuación, el rhGDF15 escindido se produjo mediante una digestión enzimática de la proteína de fusión mFcrhGDF15 con Factor Xa, y la posterior purificación, antes de su inyección en ratones.

45

Para investigar la semivida del rhGDF15 escindido, se recogió plasma de un grupo de tres ratones después de una única dosis del rhGDF15 escindido (1 μg/g) en diferentes puntos temporales (2, 5, 8, 11 y 23 horas). Los niveles plasmáticos del GDF15 humano se determinaron mediante un ELISA (R&D Systems, nº de cat. DY957E). Como se muestra en la Figura 3, el rhGDF15 escindido fue rápidamente eliminado del plasma después de la inyección. Once horas después de la inyección, la cantidad del rhGDF15 escindido en el plasma era inferior a 10 ng/ml, y, en 23 horas, el rhGDF15 escindido estaba casi completamente eliminado del plasma.

55

Se investigó adicionalmente la rápida eliminación del rhGDF15 escindido en ratones no portadores de tumor. Se 50 dividieron aleatoriamente ratones ICR-SCID hembra de ocho semanas de edad en dos grupos de diez ratones cada uno. A los ratones se les administró subcutáneamente en el costado cada ocho horas durante tres días (un total de nueve dosis) uno de los siguientes tratamientos: PBS (control) o rhGDF15 escindido a 1 µg/g. El peso corporal se midió diariamente. Se realizaron análisis estadísticos usando un ANOVA bifactorial.

60

Como se muestra en la FIG.4, el rhGDF15 escindido indujo una pérdida de peso corporal. Después de nueve dosis lo largo de un periodo de tres días, el porcentaje de peso corporal cayó hasta un 88 % el día 4 (p < 0,001), pero aproximadamente 24 horas después de la última dosis, los ratones comenzaron a ganar peso. El día 6, el último día del experimento, el porcentaje de peso corporal aumentó hasta un 94,8 por ciento (p < 0,001). Estos resultados indican que la pérdida de peso inducida por el rhGDF15 escindido no se sostiene durante largos periodos de tiempo. La actividad observada con el rhGDF15 escindido descrito en el presente documento era similar a la observada con el rhGDF15 maduro en el modelo de ratón existente (Johnen et al., supra).

El modelo de ratón no portador de tumor existente para la caquexia se basa en la inyección de grandes cantidades 65 de rhGDF15 maduro administrado en múltiples dosis al día para inducir la pérdida muscular y la pérdida de peso corporal (Johnen et al., supra). Resulta que si se usa el rhGDF15 maduro o el rhGDF15 escindido, los ratones la

mantienen la pérdida de peso muscular ni la pérdida de peso corporal durante largos periodos de tiempo o sin un administración continua. Esto limita la utilidad de dichos modelos. Además, las repetidas administraciones requieren la frecuente manipulación de estos ratones, lo que introduce un estrés que puede comprometer la fiabilidad de las mediciones de la pérdida de peso corporal. Por ejemplo, como se muestra en la **FIG. 4**, los ratones tratados con múltiples dosis de PBS mostraron una caída en el peso corporal debido al estrés de las repetidas administraciones y manipulaciones.

Ejemplo 3: Proteínas de fusión GDF15

30

En vista de las grandes cantidades de rhGDF 15 maduro (o de rhGDF15 escindido) y la intensidad del esfuerzo 10 requerido para inducir modelos de ratón de caquexia no portador de tumor (así como las limitaciones resultantes de estos modelos), investigamos formas alternativas del rhGDF 15 para inducir un fenotipo caquéctico en ratones. Este Ejemplo describe la construcción en la producción de dos proteínas de fusión que consisten en GDF15 y un fragmento Fc de inmunoglobulina, denominadas mFc-rhGDF15 (Fc de la laG1 de ratón fusionada con el amino terminal del GDF15 maduro humano) y rFc-rmGDF15 (Fc de la IgG1 de conejo fusionada con el amino terminal del 15 GDF15 maduro de ratón). Las proteínas de fusión GDF15 se diseñaron usando métodos conocidos en la técnica. Las secuencias de ADN de la mFc-rhGDF15 se construyeron a partir de fragmentos usando una PCR de extensión con solapamiento para incluir (en el siguiente orden): un sitio de restricción HindIII en 5', una secuencia consenso Kozak, una secuencia de señal amino terminal, una Fc de la IgG1 de ratón, un sitio de escisión del Factor Xa, un conector polipeptídico (GGGGS) (SEQ ID NO: 139), un hGDF15 maduro, un codón de terminación y un sitio de 20 restricción 3' EcoRI. Las secuencias de aminoácidos de la rFc-rmGDF15 se convirtieron en secuencias de ADN con codones optimizados y se sintetizaron para incluir (en el siguiente orden): un sitio de restricción HindIII en 5', una secuencia consenso Kozak, una secuencia de señal amino terminal, la Fc de la IgG1 de conejo, un conector polipeptídico (GGGG) (SEQ ID NO: 265), un GDF15 maduro de ratón, un codón de terminación y un sitio de restricción 3' EcoRI. 25

Las proteínas de fusión GDF15 se subclonaron en el vector de expresión de mamífero pEE14.4 (Lonza, Basilea, Suiza) a través de los sitios HindIII y EcoRI usando una clonación por PCR In-Fusion™ (Clontech, Mountain View, CA). Las proteínas de fusión GDF15 se expresaron de forma estable en células CHOK1SV usando el GS System™ (Lonza Biologics) con objeto de producir grandes cantidades de proteína purificada. Cada vector de expresión fue linealizado y transfectado en células CHOK1SV. Los clones estables fueron seleccionados en presencia de metionina sulfoximina. Las proteínas secretadas producidas por las líneas celulares CHOK1SV transfectadas de forma estable se purificaron mediante Proteína A y una cromatografía de exclusión por tamaños.

- La secuencia de ácidos nucleicos y la secuencia proteica codificada que define la proteína de fusión Fc de la IgG1 de ratón-GDF15 maduro humano (mFc-rhGDF15) se muestran a continuación. La mFc-rhGDF15 contiene la Fc de la IgG1 de ratón desde los aminoácidos 1-222, el sitio de escisión del Factor Xa desde los aminoácidos 223-228, una secuencia conectora artificial desde los aminoácidos 229-233 y el hGDF15 maduro desde los aminoácidos 234-345.
- 40 <u>Secuencia de ácidos nucleicos que codifica la proteína de fusión Fc de la IgG1 de ratón GDF15 maduro humano (mFc-rhGDF15)</u> (SEQ ID NO: 219)

```
1 gggtgtaaac cetgcatetg cacggtgeeg gaggtgteet eegtetttat etteeeteec
  61 aaacccaagg atgtgctgac aatcactttg actccaaaag tcacatgcgt agtcgtggac
 121 atctcgaaag acgacccgga agtgcagttc tcgtggtttg ttgatgatgt agaagtgcat
 181 accgctcaaa cccagccgag ggaagaacag tttaacagca cgtttaggag tgtgtcggaa
 241 ctgcccatta tgcaccagga ttggcttaat gggaaggagt tcaaatgtcg cgtgaatagt
 301 gcggcgttcc cagcccctat tgaaaagact atttccaaaa cgaagggtcg gcccaaagct
 361 ccccaagtat acacaatccc tccgccgaaa gaacaaatgg caaaagacaa agtgagtttg
 421 acgtgcatga tcacggactt tttcccggag gatatcaccg tcgaatggca atggaatggg
 481 caacctgccg aaaactacaa gaatacacaa cccattatgg ataccgatgg atcgtatttc
 541 gtctactcaa agttgaacgt acagaagtca aattgggagg cagggaatac gttcacttgc
 601 agtgttttgc acgaaggeet ccataaccac catacggaaa agtcactgtc gcacteeceg
 661 ggaaaaatcg agggcagaat ggatggtgga ggagggtcgg cgcgcaacgg ggaccactgt
 721 ccgctcgggc ccgggcgttg ctgccgtctg cacacggtcc gcgcgtcgct ggaagacctg
 781 ggctgggccg attgggtgct gtcgccacgg gaggtgcaag tgaccatgtg catcggcgcg
 841 tgcccgagcc agttccgggc ggcaaacatg cacgcgcaga tcaagacgag cctgcaccgc
 901 ctgaagcccg acacggtgcc agcgccctgc tgcgtgcccg ccagctacaa tcccatggtg
 961 ctcattcaaa agaccgacac cggggtgtcg ctccagacct atgatgactt gttagccaaa
1021 gactgccact gcata
```

45 <u>Secuencia de proteínas que define la proteína de fusión Fc de la IgG1 de ratón - GDF15 maduro humano (mFc-rhGDF15)</u> (SEQ ID NO: 220)

```
1 gckpcictvp evssvfifpp kpkdvltitl tpkvtcvvvd iskddpevqf swfvddvevh 61 taqtqpreeq fnstfrsvse lpimhqdwln gkefkcrvns aafpapiekt isktkgrpka 121 pqvytipppk eqmakdkvsl tcmitdffpe ditvewqwng qpaenykntq pimdtdgsyf 181 vysklnvqks nweagntftc svlheglhnh htekslshsp gkiegrmdgg ggsarngdhc 241 plgpgrccrl htvrasledl gwadwvlspr evqvtmciga cpsqfraanm haqiktslhr 301 lkpdtvpapc cvpasynpmv ligktdtqvs lqtyddllak dchci
```

La secuencia de ácidos nucleicos y la secuencia de proteínas codificada que define la proteína de fusión Fc de la lgG1 de conejo-GDF15 maduro de ratón (rFc-rmGDF15) se muestran a continuación. La rFc-rmGDF15 contiene la Fc de la lgG1 de conejo desde los aminoácidos 1-223, una secuencia conectora artificial desde los aminoácidos 224-227 y el GDF15 maduro de ratón desde los aminoácidos 228-342.

Secuencia de ácidos nucleicos que codifica la proteína de fusión Fc de la IgG1 de conejo - GDF15 maduro de ratón (rFc-rmGDF15) (SEQ ID NO: 221)

10

15

```
1 tegaaaceca ettgecetee teeggagetg ttgggeggae eeteegtgtt tatettteee 61 eegaageega aagataeeet tatgatetea eggaegeegg aggteaettg egtagtagtg
```

```
121 gatgtgtcgg aggatgaccc cgaagtccag ttcacctggt atatcaataa cgagcaagtg
181 aggacagega ggccccact tagggageag cagttcaact ccacaattcg ggtcgtcagc
 241 actttgccca tcgctcatga ggactggctc cgcggaaaag agttcaagtg taaggtgcat
 301 aacaaggcat tgccagcgcc tattgaaaag acaatctcga aggcgcgagg gcagccgctc
 361 gagcccaaag tgtatacgat gggacccccg agggaagaat tgtcgtcgcg ctcagtaagc
 421 cttacgtgca tgattaacgg tttctaccct agcgacatca gcgtagagtg ggaaaagaat
 481 ggaaaggcgg aggataacta caagacgact cccgcggtgc tggattcgga tgggtcgtac
 541 tttctgtata gcaaattgtc agtcccgacc tcagaatggc agaggggtga cgtgttcacg
 601 tgctccgtga tgcacgaagc acttcacaat cactacaccc agaaatcaat ctcgcggtcc
 661 ccaggcaaag gtggaggagg gtcggctcac gcccaccctc gcgattcgtg tccgctgggg
721 cctggtagat gctgtcatct cgagacagtc caggccacgc tggaggacct cgggtggtca
781 gactgggtec tgteeccaeg acaactgeag etttegatgt gegtggggga atgteegeae
841 ttgtacagat cggcgaatac ccacgctcag attaaggcac gactccatgg tttgcagcca
901 gataaagtcc ccgcaccttg ctgtgtcccc agctcatata ctcctgtcgt actcatgcat
961 cggacagaca gcggcgtgtc gcttcaaacg tatgacgacc tcgtagcgag aggatgtcat
1021 tgcgcc
```

Secuencia de proteínas que define la proteína de fusión Fc de la IgG1 de conejo - GDF15 maduro de ratón (rFc-rmGDF15) (SEQ ID NO: 222)

```
1 skptcpppel lggpsvfifp pkpkdtlmis rtpevtcvvv dvseddpevq ftwyinneqv
61 rtarpplreq qfnstirvvs tlpiahedwl rgkefkckvh nkalpapiek tiskargqpl
121 epkvytmgpp reelssrsvs ltcmingfyp sdisvewekn gkaednyktt pavldsdgsy
181 flysklsvpt sewqrgdvft csvmhealhn hytqksisrs pgkggggsah ahprdscplg
241 pgrcchletv qatledlgws dwvlsprqlq lsmcvgecph lyrsanthaq ikarlhglqp
301 dkvpapccvp ssytpvvlmh rtdsgvslqt yddlvarqch ca
```

Las siguientes secuencias representan ejemplos de secuencias de proteínas para las proteínas de fusión Fc de la IgG1 humana-GDF15 maduro humano (hFc-rhGDF15). La hFc-rhGDF15 Xa consiste en la Fc de la IgG1 humana desde los aminoácidos 1-227, el sitio de escisión del Factor Xa desde los aminoácidos 228-233, una secuencia conectora artificial desde los aminoácidos 234-238 y el hGDF15 maduro desde los aminoácidos 239-350. La hFc-rhGDF15 consiste en la Fc de la IgG1 humana desde los aminoácidos 1-227, una secuencia conectora artificial desde los aminoácidos 228-232 y el hGDF15 maduro desde los aminoácidos 233-344.

25 Secuencia de proteínas que define la proteína de fusión Fc de la IgG1 humana - GDF15 maduro humano con un sitio de escisión Xa (hFc-hGDF15 Xa) (SEQ ID NO: 223)

```
1 dkthtcppcp apellggpsv flfppkpkdt lmisrtpevt cvvvdvshed pevkfnwyvd 61 gvevhnaktk preeqynsty rvvsvltvlh qdwlngkeyk ckvsnkalpa piektiskak 121 gqprepqvyt lppsreemtk nqvsltclvk gfypsdiave wesngqpenn ykttppvlds 181 dgsfflyskl tvdksrwqqg nvfscsvmhe alhnhytqks lslspgkieg rmdggggsar 241 ngdhcplgpg rccrlhtvra sledlgwadw vlsprevqvt mcigacpsqf raanmhaqik 301 tslhrlkpdt vpapccvpas ynpmvliqkt dtgvslqtyd dllakdchci
```

Secuencia de proteínas que define la proteína de fusión Fc de la IgG1 humana - GDF15 maduro humano con thFc-hGDF15) (SEQ ID NO: 224)

```
1 dkthtcppcp apellggpsv flfppkpkdt lmisrtpevt cvvvdvshed pevkfnwyvd 61 gvevhnaktk preegynsty rvvsvltvlh qdwlngkeyk ckvsnkalpa piektiskak
```

```
121 gqprepqvyt lppsreemtk nqvsltclvk gfypsdiave wesngqpenn ykttppvlds
181 dgsfflyskl tvdksrwqqg nvfscsvmhe alhnhytqks lslspgkggg gsarngdhcp
241 lgpgrccrlh tvrasledlg wadwvlspre vqvtmcigac psqfraanmh aqiktslhrl
301 kpdtvpapcc vpasynpmvl igktdtqvsl qtyddllakd chci
```

Ejemplo 4: Modelo de caquexia inducida por Fc-rhGDF15

5

10

15

20

25

30

35

40

45

55

Este Ejemplo describe la generación de un modelo de caquexia inducida por Fc-GDF15 en ratones. Se dividieron aleatoriamente ratones inmunocompetentes (Balb/C) y no inmunocompetentes (CB17-Scid) en tres grupos de diez ratones cada uno. Cada grupo recibió uno de los siguientes tratamientos: PBS (control), mFc-rhGDF15 (como se describe en el Ejemplo 3), o rFc-rmGDF15 (como se describe en el Ejemplo 3) a 1 mg/g. A ratones hembra de ocho semanas de edad se les administró subcutáneamente en el costado durante tres días (Balb/C) o una vez (CB17-Scid). El peso corporal se midió diariamente.

Como se muestra en las **FIG. 5A** y **FIG. 5B**, la administración de la mFc-rhGDF15 o de la rFc-rmGDF15 indujo una pérdida de peso corporal en los ratones inmunocompetentes (**FIG. 5A**) y en los no inmunocompetentes (**FIG. 5B**). Estos resultados indican que se consiguió un nivel de estado estacionario del rhGDF15 activo, porque, independientemente de la dosis (una frente a tres dosis), tanto la mFc-rhGDF15 como la rFc-rmGDF15 indujeron una pérdida de peso sostenida en el periodo de tiempo medido (7 días).

Las proteínas de fusión, mFc-rhGDF15 y rFc-rmGDF15, se analizaron adicionalmente en razas de ratones inmunocompetentes (C57BL6, Swiss Webster) y no inmunocompetentes (ICR-SCID). En cada raza de ratón analizada, la administración de mFc-rhGDF15 o de rFc-rmGDF15 inducía una caquexia, medida por la pérdida de peso corporal. Se obtenían unos resultados similares independientemente de si la mFc-rhGDF15 se administraba por vía subcutánea o intraperitoneal.

También se investigó si la mFc-rhGDF15 inducía una pérdida de peso independientemente de la edad de los ratones tratados con la proteína de fusión. Se dividieron ratones hembra Swiss Webster (inmunocompetentes) de diferentes edades (7, 13 y 25 semanas de edad) en dos grupos de diez, y se trataron con tres dosis al día de mFc-rhGDF15 o de PBS (0,8 μg/g, ratones de 7 semanas de edad; 0,6 μg/g, ratones de 13 semanas de edad; o 0,4 μg/g, ratones de 25 semanas de edad). La pérdida de peso inducida por la mFc-rhGDF15 se observó en las tres poblaciones de edad de ratones. En cada población de edad, los ratones perdían aproximadamente un 10 % de su peso corporal de después del tratamiento con mFc-rhGDF15 medido diez días después del tratamiento.

En otro experimento, se investigó la inducción de caquexia de la mFc-rhGDF15 midiendo la pérdida de peso corporal, la pérdida de masa muscular, la pérdida de masa grasa y los niveles de expresión de dos marcadores moleculares indicativos de degradación muscular (es decir, mMuRF1 y mAtrogina). La MuRF1 y la Atrogina son ligasas de E3-ubquitina que están reguladas por aumento en múltiples modelos de atrofia muscular y de caquexia (Glass, D. (2010) CURR. OPIN. CLIN. NUTR. MET. CARE 13: 225-229).

Se dividieron aleatoriamente ratones ICR-SCID hembra de ocho semanas de edad en diez grupos de diez ratones cada uno. A cinco grupos (de diez de ratones cada uno) se les administró subcutáneamente en el costado PBS (control) y a cinco grupos (de diez de ratones cada uno) les administró subcutáneamente en el costado mFc-rhGDF15 a 1,6 µg/g el día uno. El peso corporal se midió diariamente durante hasta 17 días. Se sacrificó un grupo de control y un grupo de tratamiento en diferentes puntos temporales (0, 1, 3, 7 y 16 días después de la administración). Se extrajo quirúrgicamente la grasa gonadal y los músculos gastrocnemios de cada grupo de ratones en el momento de sacrificio indicado, y se pesaron. Los tejidos se congelaron instantáneamente en nitrógeno líquido y se aisló el ARN a partir de las muestras de los músculos gastrocnemios. Se midieron los niveles de ARNm de mMuRF1 y de mAtrogina mediante una qRT-PCR en las muestras correspondientes a los grupos recogidas después de 1, 7 y 16 días después de la administración. Se realizaron análisis estadísticos usando un ANOVA bifactorial.

Como se muestra en la **FIG. 6A**, la mFc-rhGDF15 indujo una pérdida de peso corporal en los ratones ICR-SCID. El porcentaje de peso corporal era del 79,4 por ciento cuando se midió después de 16 días después de una dosis de mFc-rhGDF15 (p < 0,001). La mFc-rhGDF15 también indujo una pérdida de grasa (tejido adiposo), como se observó por la pérdida de grasa gonadal (**FIG. 6B**; p < 0,01 el día 7 y p < 0,001 el día 16) y pérdida de músculo, como se observó por la pérdida del músculo gastrocnemio (**FIG. 6C**; p < 0,05 los días 1 y 3, y p < 0,0001 los días 7 y 16). La

administración de la mFc-rhGDF15 también elevó la expresión génica de dos enzimas asociadas con la degradación muscular y la caquexia, la mMuRF1 (**FIG. 6D**; 6 < 0,001 los días 1, 7 y 16) y la mAtrogina (**FIG. 6E**; p < 0,001 los días 1 y 7, y p < 0,01 el día 16).

Estos resultados indicaban que la mFc-rhGDF15 induce caquexia en ratones.

10

15

20

25

30

35

40

Ejemplo 5: La mFc-rhGDF15 induce caquexia con una semivida sérica más larga del GDF15

En este Ejemplo, se midieron los niveles séricos de la hGDF15 después de la administración de la mFc-rhGDF15, para determinar la semivida de la rhGDF15 en este modelo. Se dividieron aleatoriamente ratones Balb/C atímicos hembra de ocho semanas de edad en dos grupos de doce ratones cada uno. A los ratones se les administró subcutáneamente en el costado cada doce horas durante tres días (un total de seis dosis) uno de los siguientes tratamientos: PBS (control) o mFc-rhGDF15 a 1,33 µg/g. El peso corporal se midió diariamente. Como se muestra en la **Figura 7**, la mFc-rhGDF15 indujo una pérdida de peso corporal sostenida durante al menos una semana después de la invección inicial.

En este experimento, se midieron los niveles séricos de hGDF15 0,2, 5 y 8 días después de la última dosis de mFc-rhGDF15. Los ratones se sacrificaron en el momento indicado y se recogieron los sueros. Los niveles séricos del GDF15 humano se determinaron mediante un ELISA (R&D Systems, nº de cat. DY957E). La **Tabla 1** proporciona los niveles séricos (μg/ml) para cada ratón del estudio.

Tabla 1

		Tratamiento		
Días después de la última dosis	N.º de ratón	Agente	μg/g	GDF15 sérico (μg/ml); ELISA
0,2	1	mFc-rhGDF15	1,33	10,02
0,2	2	mFc-rhGDF15	1,33	9,54
0,2	3	mFc-rhGDF15	1,33	9,36
5	4	mFc-rhGDF15	1,33	8,24
5	5	mFc-rhGDF15	1,33	8,01
5	6	mFc-rhGDF15	1,33	6,59
8	7	mFc-rhGDF15	1,33	5,60
8	8	mFc-rhGDF15	1,33	5,52
8	9	mFc-rhGDF15	1,33	5,57

Los resultados de la **Tabla 1** revelan que hay presentes unos fuertes niveles séricos sostenidos de hGDF15 al menos ocho días después de la última dosis de mFc-rhGDF15.

También se analizaron las muestras séricas del día 0,2 y del día 5 después de la última dosis mediante una inmunoelectrotransferencia (gel reductor; membrana con anticuerpo contra el hGDF15 (R&D Systems, nº de cat. AF957)) y se cuantificó mediante Licor para determinar la estabilidad de la mFc-rhGDF15 en el suero. Inesperadamente, se observaron dos bandas. La banda superior era de aproximadamente 40 kDa y parecía ser la mFc-rhGDF15. La banda inferior era de aproximadamente 15 kDa y parecía ser el rhGDF15 maduro escindido. Esto indicaba que el rhGDF15 maduro era liberado de la mFc-rhGDF15 en el suero. La cuantificación de las dos bandas demostró que aproximadamente el 90 % del rhGDF15 presente en el suero estaba en forma de mFc-rhGDF15, estando aproximadamente un 10 % del rhGDF15 total del suero presente como la forma madura escindida (**FIG. 8**). La cuantificación mostró una ligera disminución en la mFc-rhGDF15 en las muestras séricas recogidas cinco días después de la última dosis, pero, sorprendentemente, en el suero permanecía un nivel constante del rhGDF15 maduro. La proporción entre el rhGDF15 maduro y la mFc-rhGDF15 aumentó ligeramente con el tiempo, como resultado de una disminución en mFc-rhGDF15 en el suero. Se observaron unos resultados similares cuando se inyectó la rFc-rmGDF15 en ratones.

Los resultados presentados en las **FIGS. 7-8** y en la **Tabla 1** eran inesperados. La expectativa era que muy poco, si lo hubiera, rhGDF15 maduro sería escindido (liberado) de la mFc-rhGDF15 el día 0,2, y que cualquier rhGDF15 escindido sería rápidamente eliminado del suero, como se había observado previamente. Por ejemplo, en la **FIG. 4**, se requirió una serie de nueve dosis a 1 µg/g por dosis (para un total de 9 µg/g) de rhGDF15 escindido para inducir una pérdida de peso corporal significativa en los ratones. Estos ratones ganaron peso, casi inmediatamente cuando se cesó la administración. Por el contrario, una única dosis de mFc-rhGDF15 a 0,1 mg/g era suficiente para inducir una pérdida de peso corporal significativa durante al menos ocho días (**FIG. 9A**; a diez ratones ICR-SCID se les

administraron intraperitonealmente 0,1 µg/g el día 1). Los datos de la **Tabla 1** revelaron que los niveles séricos del rhGDF15 eran estables durante al menos ocho días, cuando se administraba el rhGDF15 en forma de una proteína de fusión mFc-rhGDF15.

Para determinar la fuente de actividad que da como resultado una pérdida de peso corporal sostenida, cualquier investigamos si la actividad observada del rhGDF15 era atribuible a la proteína de fusión mFc-rhGDF15, a la forma madura liberada del rhGDF 15, o a ambos. Como se muestra en la FIG. 9A, una dosis baja de la mFc-rhGDF15 (0,1 μg/g) dio como resultado una pérdida de peso corporal que continuó durante al menos ocho días. Una dosis menor de la mFc-rhGDF15 (0,01 μg/g) también indujo una pérdida de peso corporal, pero el efecto no se sostuvo más de 3 días después de la administración.

En este experimento, se recogió el plasma de tres ratones, a cada uno de los cuales se les habían administrado 0,1 μg/g o 0,01 μg/g, 5 días después de la administración. El rhGDF15 total se midió mediante un ELISA como se describe más arriba. Los niveles plasmáticos totales de rhGDF15 en los ratones a los que se les administraron 0,1 μg/g estaban por encima de 70 ng/ml, lo que es coherente con la observación de que estos ratones tenían una pérdida de peso significativa (FIG. 9B). Los niveles plasmáticos totales de rhGDF15 en ratones a los que se les administraron 0,01 μg/g eran de aproximadamente de 3,3 ng/ml, pero se observó que estos ratones estaban ganando peso (**FIG. 9A** y **FIG. 9B**). Como se describe en la **FIG. 2**, el umbral del hGDF15 para la inducción de caquexia en ratones portadores de tumores es de aproximadamente 2 ng/ml. Por lo tanto, si ambas formas del rhGDF15 eran activas (es decir, la mFc-rhGDF15 y el rhGDF15 maduro liberado), entonces estos ratones deberían estar perdiendo peso, no ganando peso (es decir, 3,3 ng/ml de rhGDF 15 total está por encima del umbral de aproximadamente 2 ng/ml de hGDF15).

Para determinar qué forma era la forma activa (es decir, la mFc-rhGDF15 o el rhGDF15 maduro liberado), consideramos los datos de la FIG. 8 que demostraban que aproximadamente un 90 % del rhGDF15 sérico total estaba en forma de la mFc-rhGDF15 y el 10 % restante era la forma madura liberada. Sobre la base de esta extrapolación, aproximadamente 3,0 ng/ml del rhGDF 15 plasmático estaba en la forma mFc-rhGDF15 (es decir, el 90 % de 3,3 ng/ml). Una vez más, si la mFc-rhGDF15 era activa, estos ratones deberían estar perdiendo peso, no ganando peso, porque 3,3 ng/ml de la mFc-rhGDF15 está por encima del umbral de aproximadamente 2 ng/ml de hGDF15. Los ratones a los que se les administraron 0,1 µg/g de mFc-rhGDF15 sirvieron como control interno, debido a que estos ratones tenían una pérdida de peso corporal sostenida indicativa de que al menos una de las dos formas debía ser activa. Un cálculo del 10 % de 70 ng/ml de rhGDF 15 total en estos ratones es de 7 ng/ml de rhGDF15 maduro liberado. Esta cantidad es coherente con la inducción de la pérdida de peso corporal observada y con el umbral observado en la **FIG. 2**. Por lo tanto, los datos indican que la mFc-rhGDF15 no es una forma activa de la proteína, y únicamente el rhGDF 15 maduro es activo. Estos resultados fueron inesperados, debido a que: (a) no había ninguna razón para predecir que la proteína de fusión Fc (mFc-rhGDF15) sería inactiva; y (b) no había ninguna razón para predecir que la proteína de fusión Fc liberaría el rhGDF15 maduro a la velocidad observada.

Estos resultados indican que la mFc-rhGDF15 sostiene un fenotipo caquéctico al liberar lentamente el rhGDF15 maduro en el suero. Estos resultados indican además que puede conseguirse un nivel de estado estacionario del rhGDF 15 maduro en el plasma o en el suero en un ratón no portador de tumor mediante la administración de la mFc-rhGDF15 al ratón. Por lo tanto, la administración de la mFc-rhGDF15 a ratones no portadores de tumor es particularmente útil como modelo de ratón de la caquexia con una robusta y sostenida pérdida de masa muscular, pérdida de masa grasa y pérdida de peso corporal (véanse las **FIGS. 6A-C**).

Ejemplo 6: Anticuerpos anti-GDF15

15

20

25

30

35

45

50

55

60

65

Este Ejemplo describe la producción de anticuerpos monoclonales anti-GDF15. Las inmunizaciones, las fusiones y los cribados primarios se realizaron usando métodos convencionales siguiendo el protocolo de sitios múltiples de inmunización repetitiva (RIMMS). Se inmunizaron cinco ratones AJ y cinco ratones Balb/c con GDF15 humano recombinante marcado con 6XHis (SEQ ID NO: 266) (His-rhGDF15) (R&D Systems, Inc., Mineápolis, MN). Se eligieron dos ratones Balb/c con unos sueros que muestran la actividad anti-GDF15 más alta mediante un ensayo de inmunoadsorción enzimática (ELISA) para la fusión posterior. Se recolectaron los bazos y los nódulos linfáticos de los ratones apropiados. Se recolectaron los linfocitos B y se fusionaron con una línea de mieloma. Los productos de la fusión se diluyeron sucesivamente en cuarenta placas de 96 pocillos hasta casi clonalidad. Se eligieron dos ratones AJ con unos sueros que muestran la actividad anti-GDF15 más alta mediante un ELISA para la fusión posterior. Se recolectaron los bazos y los nódulos linfáticos de los ratones apropiados. Se recolectaron los linfocitos B y se fusionaron con una línea de mieloma. Los productos de la fusión se diluyeron sucesivamente en cuarenta placas de 96 pocillos hasta casi clonalidad.

Se cribaron aproximadamente 3.840 sobrenadantes de las fusiones celulares mediante un ELISA para analizar la unión al rhGDF15. Adicionalmente, se caracterizaron *in vitro* un total de 172 sobrenadantes que contienen los anticuerpos contra el GDF15. Se seleccionó un conjunto de hibridomas, se subclonó y se expandió. Los anticuerpos se expresaron y posteriormente se purificaron mediante una cromatografía de afinidad en una resina de Proteína G, en las condiciones habituales.

Ejemplo 7: Análisis de la secuencia del anticuerpo

10

40

45

50

Se determinó el isotipo de la cadena ligera y el isotipo de la cadena pesada de cada anticuerpo monoclonal del Ejemplo 6 usando el IsoStrip™ Mouse Monoclonal Antibody Isotyping Kit según las instrucciones del vendedor del kit (Roche Applied Science, Indianápolis, IN). Se averiguó que todo los anticuerpos tenían una cadena ligera kappa y una cadena pesada IgG1 o IgG2b.

Las regiones variables de la cadena pesada y ligera de los anticuerpos monoclonales de ratón se secuenciaron usando una 5' RACE (amplificación rápida de los extremos del ADNc). El ARN total se extrajo de cada línea celular de hibridoma monoclonal usando el kit RNeasy® Miniprep según las instrucciones del vendedor del kit (Qiagen, Valencia, CA). Se generó una primera hebra completa de ADNc que contiene los extremos 5' usando el SMARTer™ RACE cDNA Amplification Kit (Clontech, Mountain View, CA) según las instrucciones del vendedor del kit para la 5' RACE.

Las regiones variables de la cadena ligera (kappa) y pesada (IgG1 o IgG2b) se amplificaron mediante una PCR 15 usando el KOD Hot Start Polymerase (EMD Chemicals, Gibbstown, NJ) según las instrucciones del vendedor del kit. Para la amplificación de los extremos 5' del ADNc junto con el SMARTer™ RACE cDNA Amplification Kit, se usó el cebador Universal Primer Mix (Clontech), una mezcla de: CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT 3' (SEQ ID NO: 5' CTAATACGACTCACTATAGGGC 3' (SEQ ID NO: 225), como cebador en 5'. Las regiones variables de la cadena 20 pesada se amplificaron usando los anteriores cebadores en 5' y un cebador en 3' específico para la región constante IgG1, 5' TATGCAAGGCTTACAACCACA 3' (SEQ ID NO: 226), o un cebador en 3' específico para la región constante IgG2b, 5' AGGACAGGGGTTGATTGTTGA 3' (SEQ ID NO: 227). Las regiones variables de la cadena kappa se amplificaron en primer lugar con los anteriores cebadores en 5' y un cebador en 3' específico para la región constante de la kappa, 5' CTCATTCCTGTTGAAGCTCTTGACAAT 3' (SEQ ID NO: 228). Las cadenas ligeras se 25 sometieron a una segunda ronda anidada de PCR usando el cebador Nested Universal Primer A (Clontech) 5', 5' AAGCAGTGGTATCAACGCAGAGT 3' (SEQ ID NO: 229) y un cebador anidado en 3' específico para la región constante de la kappa, 5' CGACTGAGGCACCTCCAGATGTT 3' (SEQ ID NO: 230). Los productos individuales de la PCR se purificaron usando el kit Qiaquick® PCR Purification o se aislaron mediante una electroforesis en gel de 30 agarosa y se purificaron usando el kit Qiaquick® Gel Purification según las instrucciones del vendedor del kit (Qiagen). Los productos de la PCR se clonaron posteriormente en el que plásmido pCR®4Blunt usando el Zero Blunt® TOPO® PCR Cloning según las instrucciones del vendedor del kit (Invitrogen) y se transformaron en bacterias DH5-α (Invitrogen) a través de las técnicas habituales de biología molecular. El ADN de plásmido aislado a partir de los clones bacterianos transformados se secuenciaron usando los cebadores M13 directo (5' GTAAAACGACGGCCAGT 3') (SEQ ID NO: 231) y M13 inverso (5' CAGGAAACAGCTATGACC 3') (SEQ ID NO: 35 232) de Beckman Genomics (Danvers, MA), usando los métodos de secuenciación habituales de ADN didesoxi para identificar la secuencia de las secuencias de la región variable. Las secuencias se analizaron usando el programa informático Vector NTI (Invitrogen) y el servidor de internet IMGT/V-Quest (imgt.cines.fr) para identificar y confirmar las secuencias de la región variable.

Las secuencias de ácidos nucleicos que codifican y las secuencias de proteínas que definen las regiones variables de los anticuerpos monoclonales murinos se muestran a continuación (las secuencias del péptido de señal amino terminal no se muestran). Las secuencias de las CDR (definición de Kabat) están indicadas en negrita y subrayadas en las secuencias de aminoácidos.

Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada del anticuerpo 01G06 (SEQ ID NO: 39)

```
1 gaggteetge tgeaacagte tggaeetgag etggtgaage etggggette agtgaagata 61 ceetgeaagg ettetggata eacatteact gaetacaaca tggaetgggt gaageagage 121 catggaaaga geettgagtg gattggaeaa attaateeta acaatggtgg tattttette 181 aaceagaagt teaagggeaa ggeeacattg aetgtagaea agteeteeaa tacageette 241 atggaggtee geageetgae atetgaggae aetgeagtet attaetgtge aagagaggea 301 attaetaegg taggegetat ggaetaetgg ggteaaggaa eetcagteae egteteetea
```

Secuencia de proteínas que define región variable de la cadena pesada del anticuerpo 01G06 (SEQ ID NO: 40)

```
1 evllqqsgpe lvkpgasvki pckasgytft <u>dynmd</u>wvkqs hgkslewig<u>q</u> <u>inpnnggiff</u>
61 <u>nqkfkg</u>katl tvdkssntaf mevrsltsed tavyycar<u>ea</u> <u>ittvgamdy</u>w gqgtsvtvss
```

55 <u>Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa del anticuerpo 01G06</u> (SEQ ID NO: 75)

1 gacatccaga tgactcagtc tccagcctcc ctatctgcat ctgtgggaga aactgtcacc

```
61 atcacatgtc gaacaagtga gaatcttcac aattatttag catggtatca gcagaaacag
            121 ggaaaatctc ctcagctcct ggtctatgat gcaaaaacct tagcagatgg tgtgccatca
            181 aggttcagtg gcagtggatc aggaacacaa tattctctca agatcaacag cctgcagcct
            241 gaagattttg ggagttatta ctgtcaacat ttttggagta gtccttacac gttcggaggg
            301 gggaccaagc tggaaataaa a
    Secuencia de proteínas que define la región variable de la cadena kappa del anticuerpo 01G06 (SEQ ID NO: 76)
 5
               1 diqmtqspas lsasvgetvt itc{\tt rtsenlh} {\tt nyla}wyqqkq gkspqllvy{\tt d} {\tt aktlad}gvps
             61 rfsgsgsgtq yslkinslqp edfgsyycqh fwsspytfgg gtkleik
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada del anticuerpo 03G05 (SEQ ID
    NO: 41)
10
              1 caggtccaac tgcagcagcc tggggctgaa ctggtgaagc ctggggcttc agtgaagctg
             61 teetgeaagg ettetggeta cacetteace agetaetgga tteaetgggt gaaceagagg
            121 cctggacaag gccttgagtg gattggagac attaatccta gcaacggccg tagtaagtat
            181 aatgagaagt tcaagaacaa ggccacaatg actgcagaca aatcctccaa cacagcctac
            241 atgcaactca gcagcctgac atctgaggac tctgcggtct attactgtgc aagagaggtt
            301 ctgqatqqtq ctatqqacta ctqqqqtcaa qqaacctcaq tcaccqtctc ctca
    Secuencia de proteínas que define región variable de la cadena pesada del anticuerpo 03G05 (SEQ ID NO: 42)
             1 qvqlqqpgae lvkpgasvkl sckasgytft sywihwvnqr pgqglewigd inpsngrsky
             61 nekfknkatm tadkssntay mqlssltsed savyycarev ldgamdywgq gtsvtvss
15
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa del anticuerpo 03G05 (SEQ ID
    NO: 77)
             1 gacattgtgt tgaccaatc tccagcttct ttggctgtgt ctctagggca gagggccacc
            61 atctcctgca gagccagcga aagtgttgat aattatggca ttagttttat gaactggttc
           121 caacagaaac caggacagcc acccaaactc ctcatctatg ctgcatccaa ccaaggctcc
           181 ggggtccctg ccaggtttag tggcagtggg tctgggacag acttcagcct caacatccat
           241 cctatggagg aggatgatac tgcaatgtat ttctgtcagc aaagtaagga ggttccgtgg
           301 acgttcggtg gaggctccaa gctggaaatc aaa
20
    Secuencia de proteínas que define la región variable de la cadena kappa del anticuerpo 03G05 (SEQ ID NO: 78)
             1 divltqspas lavslgqrat iscrasesvd nygisfmnwf qqkpgqppkl liyaasnqgs
             61 gvparfsgsg sgtdfslnih pmeeddtamy fcqqskevpw tfgggsklei k
25
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada del anticuerpo 04F08 (SEQ ID
    NO: 43)
             1 caggittacte tgaaaqagte tggccetggg atattgcage ceteccagae ceteagtetg
             61 acttgttctt tctctgggtt ttcactgagc acttatggta tgggtgtgac ctggattcgt
           121 cagcetteag gaaagggtet ggagtggetg geacacattt actgggatga tgacaagege
           181 tataacccat ccctgaagag ccggctcaca atctccaagg atacctccaa caaccaggta
           241 ttcctcaaga tcaccagtgt ggacactgca gatactgcca catactactg tgctcaaacg
           301 gggtatagta acttgtttgc ttactggggc caagggactc tggtcactgt ctctgca
30
    Secuencia de proteínas que define región variable de la cadena pesada del anticuerpo 04F08 (SEQ ID NO: 44)
```

1 qvtlkesgpg ilqpsqtlsl tcsfsgfsls **tygmgvt**wir qpsgkglewl a**hiywdddkr**

```
61 ynpslksrlt iskdtsnnqv flkitsvdta dtatyycaqt gysnlfaywg qgtlvtvsa
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa del anticuerpo 04F08 (SEQ ID NO:
    79)
 5
              1 gacattgtga tgacccagtc tcaaaaattc atgtccacat cagtaggaga cagggtcagc
             61 gtcacctgca aggccagtca gaatgtgggt actaatgtag cctggtatca acagaaatta
            121 ggacaatctc ctaaaacact gatttactcg gcatcctacc ggtacagtgg agtccctgat
            181 cgcttcacag gcagtggatc tgggacagat ttcactctca ccatcagcaa tgtgcagtct
            241 gaagacttgg cagagtattt ctgtcagcaa tataacagct atccgtacac gttcggaggg
            301 gggaccaagc tggaaataaa a
    Secuencia de proteínas que define la región variable de la cadena kappa del anticuerpo 04F08 (SEQ ID NO: 80)
             1 divmtqsqkf mstsvgdrvs vtckasqnvg tnvawyqqkl gqspktliys asyrysgvpd
            61 rftgsgsgtd ftltisnvqs edlaeyfcqq ynsypytfgg gtkleik
10
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada del anticuerpo 06C11 (SEQ ID
    NO: 45)
             1 caggittacte tgaaagagte tggccetggg atattgcage ceteccagae ceteagtetg
            61 acttgttctt tctctgggtt ttcactgaac acttatggta tgggtgtgag ctggattcgt
           121 cagccttcag gaaagggtct ggagtggctg gcacacattt actgggatga tgacaagcgc
           181 tataacccat ccctgaagag ccggctcaca atctccaagg atgcctccaa caaccgggtc
           241 ttcctcaaga tcaccagtgt ggacactgca gatactgcca catactactg tgctcaaaga
           301 gqttatqatq attactqqqq ttactqqqqc caaqqqactc tqqtcactat ctctqca
15
    Secuencia de proteínas que define región variable de la cadena pesada del anticuerpo 06C11 (SEQ ID NO: 46)
              1 qvtlkesgpg ilqpsqtlsl tcsfsgfsln tygmgvswir qpsgkglewl ahiywdddkr
             61 ynpslksrlt iskdasnnrv flkitsvdta dtatyycaqr gyddywgywg qgtlvtisa
20
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa del anticuerpo 06C11 (SEQ ID
    NO: 81)
               1 gacattgtga tgacccagtc tcaaaaattc atgtccacat cagtaggaga cagggtcagc
              61 gtcacctgca aggccagtca gaatgtgggt actaatgtag cctggtttca acagaaacca
             121 ggtcaatctc ctaaagcact gatttactcg gcatcttacc ggtacagtgg agtccctgat
             181 cgcttcacag gcagtggatc tgggacagat ttcattctca ccatcagcaa tgtgcagtct
             241 gaagacctgg cagagtattt ctgtcagcaa tataacaact atcctctcac gttcggtgct
             301 gggaccaagc tggagctgaa a
25
    Secuencia de proteínas que define la región variable de la cadena kappa del anticuerpo 06C11 (SEQ ID NO: 82)
             1 divmtqsqkf mstsvgdrvs vtckasqnvg tnvawfqqkp gqspkaliys asyrysgvpd
            61 rftgsgsgtd filtisnvqs edlaeyfcqq ynnypltfga gtklelk
30
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada del anticuerpo 08G01 (SEQ ID
    NO: 47)
            1 gaggtcctgc tgcaacagtc tggacctgag gtggtgaagc ctggggcttc agtgaagata
           61 ccctgcaagg cttctggata cacattcact gactacaaca tggactgggt gaagcagagc
          121 catggaaaga gccttgagtg gattggagag attaatccta acaatggtgg tactttctac
          181 aaccagaagt tcaagggcaa ggccacattg actgtagaca agtcctccag cacagcctac
          241 atggagetee geageetgae atetgaggae aetgeagtet attactgtge aagagaggea
          301 attactacgg taggegetat ggactactgg ggtcaaggaa cctcagtcac cgtctcctca
```

Secuencia de proteínas que define región variable de la cadena pesada del anticuerpo 08G01 (SEQ ID NO: 48)

```
1 evllqqsgpe vvkpgasvki pckasgytft <u>dynmd</u>wvkqs hgkslewig<u>e</u> <u>inpnnggtfy</u>
61 nqkfkgkatl tvdkssstay melrsltsed tavyycarea ittvgamdyw gqgtsvtvss
```

Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa del anticuerpo 08G01 (SEQ ID NO: 83)

```
1 gacatccaga tgactcagtc tecagectec etatetgeat etgtgggaga aactgteace 61 atcacatgte gagcaagtgg gaatatteac aattatttag eatggtatea geagaaacag 121 ggaaaatete eteageteet ggtetataat geaaaaacet tagcagatgg tgtgeeatea 181 aggtteagtg geagtggate aggaacacaa tattetetea agateaacag ectgeageet 241 gaagattttg ggagttatta etgteaacat ttttggagtt eteettacae gtteggagg 301 gggaccaage tggaaataaa a
```

301 gggaccaagc tggaaataaa

5

Secuencia de proteínas que define la región variable de la cadena kappa del anticuerpo 08G01 (SEQ ID NO: 84)

```
1 diqmtqspas lsasvgetvt itc<u>rasgnih</u> <u>nyla</u>wyqqkq gkspqllvy<u>n</u> <u>aktlad</u>gvps
61 rfsgsgsgtq yslkinslqp edfgsyycqh fwsspytfgg gtkleik
```

15 Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada del anticuerpo 14F11 (SEQ ID NO: 49)

```
1 caggttactc tgaaagagtc tggccctgga atattgcagc cctcccagac cctcagtctg 61 acttgttctt tctctgggtt ttcactgagc acttatggta tgggtgtagg ctggattcgt 121 cagccttcag gaaagggtct agagtggctg gcagacattt ggtgggatga cgataagtac 181 tataacccat ccctgaagag ccggctcaca atctccaagg atacctccag caatgaggta 241 ttcctcaaga tcgccattgt ggacactgca gatactgcca cttactactg tgctcgaaga 301 ggtcactact ctgctatgga ctactggggt caaggaacct cagtcaccgt ctcctca
```

- 20 <u>Secuencia de proteínas que define región variable de la cadena pesada del anticuerpo 14F11</u> (SEQ ID NO: 50)
 - 1 qvtlkesgpg ilqpsqtlsl tcsfsgfsls <u>tygmgvg</u>wir qpsgkglewl a<u>diwwdddky</u> 61 <u>ympslks</u>rlt iskdtssnev flkiaivdta dtatyycar<u>r</u> <u>ghysamdy</u>wg qgtsvtvss

Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa del anticuerpo 14F11 (SEQ ID NO: 85)

```
1 gacattgtaa tgacccagtc tcaaaaattc atgtccacat cagtaggaga cagggtcagc 61 gtcacctgca aggccagtca gaatgtgggt actaatgtag cctggtatca acagaaacca 121 gggcaatctc ctaaagcact gatttactcg ccatcctacc ggtacagtgg agtccctgat 181 cgcttcacag gcagtggatc tgggacagat ttcactctca ccatcagcaa tgtgcagtct 241 gaagacttgg cagaatattt ctgtcagcaa tataacagct atcctcacac gttcggaggg 301 gggaccaagc tggaaatgaa a
```

Secuencia de proteínas que define la región variable de la cadena kappa del anticuerpo 14F11 (SEQ ID NO: 86)

```
1 divmtqsqkf mstsvgdrvs vtc<u>kasqnvg</u> <u>tnva</u>wyqqkp gqspkaliy<u>s</u> <u>psyrys</u>gvpd
61 rftgsgsgtd ftltisnvqs edlaeyfcqq ynsyphtfgg gtklemk
```

Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada del anticuerpo 17B11 (SEQ ID NO: 51)

35

```
1 caggitacte tgaaagagte tggeeetggg atattgeage ceteceagae eeteeagtetg 61 acttgitett tetetgggit tieaetgage acttetggia tgggitgag tiggatiegt 121 cageeticag gaaagggiet ggagtggetg geacacaatg actgggatga tgaeaagege 181 tataagieat eeetgaagag eeggeteaca atateeaagg ataceteeag aaaceaggia 241 tieeteaaga teaeeagtgi ggaeaetgea gataetgeea eatactaetg tgetegaaga 301 gitgggggat tagagggeta tittigatiae tggggeeaag geaeeactet eacagtetee 361 tea
```

Secuencia de proteínas que define región variable de la cadena pesada del anticuerpo 17B11 (SEQ ID NO: 52)

```
1 qvtlkesgpg ilqpsqtlsl tcsfsgfsls <u>tsqmqvs</u>wir qpsgkglewl a<u>hndwdddkr</u>
61 <u>yksslks</u>rlt iskdtsrnqv flkitsvdta dtatyycar<u>r vgglegyfdy</u> wgqgttltvs
121 s
```

Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa del anticuerpo 17B11 (SEQ ID NO: 87)

```
1 gacattgtge tgacacagte teetgettee ttagetgtat etetggggea gagggeeace 61 ateteatgea gggeeageea aagtgteagt acatetaggt ttagttatat geactggtte 121 caacagaaac caggacagge acceaaacte eteateagt atgeateeaa eetagaatet 181 ggggteeetg eeaggtteag tggeagtggg tetgggacag actteaceet caacateeat 241 cetgtggagg gggaggatae tgeaacatat taetgteage acagttggga gatteegtae 301 acgtteggag gggggaceaa getggaaata aaa
```

10

5

Secuencia de proteínas que define la región variable de la cadena kappa del anticuerpo 17B11 (SEQ ID NO: 88)

```
1 divltqspas lavslgqrat isc<u>rasqsvs</u> <u>tsrfsymh</u>wf qqkpgqapkl lik<u>yasnles</u>
61 gvparfsgsg sgtdftlnih pvegedtaty ycqhsweipy tfgggtklei k
```

15

20

25

Las secuencias de aminoácidos que definen las regiones variables de la cadena pesada de una inmunoglobulina para los anticuerpos producidos en el Ejemplo 6 están alineadas en la **FIG. 10.** Las secuencias del péptido de señal amino terminal (para la expresión/secreción) no se muestran. La CDR₁, la CDR₂ y la CDR₃ (definición de Kabat) están identificadas por recuadros. La **FIG. 11** muestra una alineación de las secuencias individuales de la CDR₁, de la CDR₂ y de la CDR₃ para cada anticuerpo.

Las secuencias de aminoácidos que definen las regiones variables de la cadena ligera de una inmunoglobulina de los anticuerpos del Ejemplo 6 están alineadas en la **FIG. 12.** Las secuencias del péptido de señal amino terminal (para la expresión/secreción) no se muestran. La CDR₁, la CDR₂ y la CDR₃ están identificadas por recuadros. La **FIG. 13** muestra una alineación de las secuencias individuales de la CDR₁, de la CDR₂ y de la CDR₃ para cada anticuerpo.

La **Tabla 2** muestra la SEQ ID NO. de cada secuencia analizada en este Ejemplo.

Tabla 2				
SEQ. ID NO.	Ácido nucleico o proteína			
39	01G06 Región variable de la cadena pesada-ácido nucleico			
40	01G06 Región variable de la cadena pesada-proteína			
75	01G06 Región variable de la cadena ligera (kappa)-ácido nucleico			
76	<u>01G06</u> Región variable de la cadena ligera (kappa)- proteína			
1	01G06 CDR1 de la cadena pesada			
7	01G06 CDR₂ de la cadena pesada			
15	01G06 CDR₃ de la cadena pesada			
21	01G06 CDR1 de la cadena ligera (kappa)			
26	01G06 CDR2 de la cadena ligera (kappa)			
32	01G06 CDR₃ de la cadena ligera (kappa)			

(continuación)

050 10 110	(continuación)
SEQ. ID NO.	Ácido nucleico o proteína
41	03G05 Región variable de la cadena pesada-ácido nucleico
42	03G05 Región variable de la cadena pesada-proteína
77	03G05 Región variable de la cadena ligera (kappa)-ácido nucleico
78	03G05 Región variable de la cadena ligera (kappa)- proteína
2	03G05 CDR1 de la cadena pesada
8	03G05 CDR2 de la cadena pesada
16	03G05 CDR₃ de la cadena pesada
22	03G05 CDR1 de la cadena ligera (kappa)
27	03G05 CDR2 de la cadena ligera (kappa)
33	03G05 CDR₃ de la cadena ligera (kappa)
43	04F08 Región variable de la cadena pesada-ácido nucleico
44	04F08 Región variable de la cadena pesada-proteína
79	04F08 Región variable de la cadena ligera (kappa)-ácido nucleico
80	04F08 Región variable de la cadena ligera (kappa)- proteína
3	04F08 CDR ₁ de la cadena pesada
9	04F08 CDR₂ de la cadena pesada
17	04F08 CDR₃ de la cadena pesada
23	04F08 CDR ₁ de la cadena ligera (kappa)
28	04F08 CDR ₂ de la cadena ligera (kappa)
34	04F08 CDR₃ de la cadena ligera (kappa)
45	06C11 Región variable de la cadena pesada-ácido nucleico
46	06C11 Región variable de la cadena pesada-proteína
81	O6C11 Región variable de la cadena ligera (kappa)-ácido nucleico
82	06C11 Región variable de la cadena ligera (kappa)- proteína
4	06C11 CDR ₁ de la cadena pesada
9	06C11 CDR ₂ de la cadena pesada
18	06C11 CDR ₃ de la cadena pesada
23	06C11 CDR ₁ de la cadena ligera (kappa)
28	06C11 CDR ₂ de la cadena ligera (kappa)
35	06C11 CDR ₃ de la cadena ligera (kappa)
47	08G01 Región variable de la cadena pesada-ácido
41	nucleico
48	08G01 Región variable de la cadena pesada-proteína
83	08G01 Región variable de la cadena ligera (kappa)-ácido nucleico
84	08G01 Región variable de la cadena ligera (kappa)- proteína
1	08G01 CDR ₁ de la cadena pesada
10	08G01 CDR ₂ de la cadena pesada
15	08G01 CDR₃ de la cadena pesada
24	08G01 CDR ₁ de la cadena ligera (kappa)
29	08G01 CDR ₂ de la cadena ligera (kappa)
32	08G01 CDR ₃ de la cadena ligera (kappa)
49	14F11 Región variable de la cadena pesada-ácido nucleico
50	14F11 Región variable de la cadena pesada-proteína
85	14F11 Región variable de la cadena ligera (kappa)-ácido
86	nucleico 14F11 Región variable de la cadena ligera (kappa)-
	proteína

(continuación)

SEQ. ID NO.	Ácido nucleico o proteína
5	14F11 CDR ₁ de la cadena pesada
11	14F11 CDR2 de la cadena pesada
19	14F11 CDR₃ de la cadena pesada
23	14F11 CDR ₁ de la cadena ligera (kappa)
30	14F11 CDR2 de la cadena ligera (kappa)
36	14F11 CDR₃ de la cadena ligera (kappa)
51	17B11 Región variable de la cadena pesada-ácido
31	nucleico
52	17B11 Región variable de la cadena pesada-proteína
87	17B11 Región variable de la cadena ligera (kappa)-ácido
	nucleico
88	17B11 Región variable de la cadena ligera (kappa)-
	proteína
6	17B11 CDR1 de la cadena pesada
12	17B11 CDR2 de la cadena pesada
20	17B11 CDR₃ de la cadena pesada
25	17B11 CDR1 de la cadena ligera (kappa)
31	17B11 CDR2 de la cadena ligera (kappa)
37	17B11 CDR₃ de la cadena ligera (kappa)

Las secuencias de las CDR de la cadena pesada del anticuerpo monoclonal de ratón (definiciones de Kabat, Chothia e IMGT) se muestran en la **Tabla 3.**

5 Tabla 3

	Kabat				
				SEQ ID NO de la	
	CDR1	CDR2	CDR3	región variable	
	DYNMD (SEQ ID NO:	QINPNNGGIFFNQKFKG (SEQ	EAITTVGAMDY (SEQ ID	40	
01G06	1)	ID NO: 7)	NO: 15)		
	SYWIH (SEQ ID NO:	DINPSNGRSKYNEKFKN (SEQ	EVLDGAMDY (SEQ ID	42	
03G05	2)	ID NO: 8)	NO: 16)		
	TYGMGVT (SEQ ID	HIYWDDDKRYNPSLKS (SEQ	TGYSNLFAY (SEQ ID NO:	44	
04F08	NO: 3)	ID NO: 9)	17)		
	TYGMGVS (SEQ ID	HIYWDDDKRYNPSLKS (SEQ	RGYDDYWGY (SEQ ID	46	
06C11	NO: 4)	ID NO: 9)	NO: 18)		
_	DYNMD (SEQ ID NO:	EINPNNGGTFYNQKFKG	EAITTVGAMDY (SEQ ID	48	
08G01	1)	(SEQ ID NO: 10)	NO: 15)		
	TYGMGVG (SEQ ID	DIWWDDDKYYNPSLKS (SEQ	RGHYSAMDY (SEQ ID	50	
14F11	NO: 5)	ID NO: 11)	NO: 19)		
	TSGMGVS (SEQ ID	HNDWDDDKRYKSSLKS (SEQ	RVGGLEGYFDY (SEQ ID	52	
17B11	NO: 6)	ID NO: 12)	NO: 20)		
		Chothia			
				SEQ ID NO de la	
	CDR1	CDR2	CDR3	región variable	
	GYTFTDY (SEO ID		EAITTVGAMDY (SEQ ID	40	
01G06	NO: 38)	NPNNGG (SEQ ID NO: 143)	NO: 15)		
	GYTFTSY (SEQ ID		EVLDGAMDY (SEQ ID	42	
03G05	NO: 128)	NPSNGR (SEQ ID NO: 144)	NO: 16)		
0.4500	GFSLSTYGM (SEO ID	\(\(\text{A} \text{IDDD} \(\text{CEC ID NIC. } \(\text{A} \text{ID} \)	TGYSNLFAY (SEQ ID NO:	44	
04F08	NO: 130)	YWDDD (SEQ ID NO: 145)	17)	40	
00044	GFSLNTYGM (SEO ID	\(\(\text{A} \text{IDDD} \(\text{CEC ID NIC. } \(\text{A} \text{ID} \)	RGYDDYWGY (SEQ ID	46	
06C11	NO: 132)	YWDDD (SEQ ID NO: 145)	NO: 18)	40	
00001	GYTFTDY (SEO ID	NIDNINGO (OEO ID NIO: 140)	EAITTVGAMDY (SEQ ID	48	
08G01	NO: 38)	NPNNGG (SEQ ID NO: 143)	NO: 15)	F0	
44544	GFSLSTYGM (SEO ID	MANDED (CEC ID NO. 146)	RGHYSAMDY (SEQ ID	50	
14F11	NO: 130)	WWDDD (SEQ ID NO: 146)	NO: 19)	50	
17011	GFSLSTSGM (SEQ ID	DWDDD (SEO ID NO. 147)	RVGGLEGYFDY (SEQ ID	52	
17B11	NO: 134)	DWDDD (SEQ ID NO: 147)	NO: 20)		

(continuación)

	IMGT				
				SEQ ID NO de la	
	CDR1	CDR2	CDR3	región variable	
	GYTFTDYN (SEO ID		AREAITTVGAMDY (SEQ	40	
01G06	NO: 136)	INPNNGGI (SEQ ID NO: 148)	ID NO: 154)		
	GYTFTSYW (SEO ID		AREVLDGAMDY (SEQ ID	42	
03G05	NO: 138)	INPSNGRS (SEQ ID NO: 149)	NO: 155)		
	GFSLSTYGMG (SEO		AQTGYSNLFAY (SEQ ID	44	
04F08	ID NO: 140)	IYWDDDK (SEQ ID NO: 150)	NO: 156)		
	GFSLNTYGMG (SEO		AQRGYDDYWGY (SEQ ID	46	
06C11	ID NO: 141)	IYWDDDK (SEQ ID NO: 150)	NO: 157)		
	GYTFTDYN (SEO ID		AREAITTVGAMDY (SEQ	48	
08G01	NO: 136)	INPNNGGT (SEQ ID NO: 151)	ID NO: 154)		
	GFSLSTYGMG (SEO		ARRGHYSAMDY (SEQ ID	50	
14F11	ID NO: 140)	IWWDDDK (SEQ ID NO: 152)	NO: 158)		
	GFSLSTSGMG (SEO		ARRVGGLEGYFDY (SEQ	52	
17B11	ID NO: 142)	NDWDDDK (SEQ ID NO: 153)	ID NO: 159)		

Las secuencias de las CDR de la cadena ligera kappa del anticuerpo monoclonal de ratón (definiciones de Kabat, Chothia e IMGT) se muestran en la **Tabla 4.**

5

10

Tabla 4

		Kabat/Chothia		
	CDR1	CDR2	CDR3	SEQ ID NO de la región variable
01G06	RTSENLHNYLA (SEQ ID NO:	DAKTLAD (SEQ ID NO: 26)	QHFWSSPYT (SEQ ID NO: 32)	76
03G05	RÁSESVDNYGISFMN (SEO ID	AASNQGS (SEQ ID NO: 27)	QQSKÉVPWT (SEQ ID NO: 33)	78
04F08	KASQNVGTNVA (SEO ID NO: 23)	SASYRYS (SEQ ID NO: 28)	QQYNSYPYT (SEQ ID NO: 34)	80
06C11	KASQNVGTNVA (SEO ID NO: 23)	SASYRYS (SEQ ID NO: 28)	QQYNNYPLT (SEQ ID NO: 35)	82
08G01	KASQNVGTNVA (SEO ID NO: 24)	NAKTLAD (SEQ ID NO: 29)	QHFWSSPYT (SEQ ID NO: 32)	84
14F11	KASQNVGTNVA (SEO ID NO: 23)	SPSYRYS (SEQ ID NO: 30)	QQYNSYPHT (SEQ ID NO: 36)	86
17B11	RASQSVSTSRFSYMH (SEO ID NO: 25)	YASNLES (SEQ ID NO: 31)	QHSWEIPYT (SEQ ID NO: 37)	88
		IMGT		
	CDR1	CDR2	CDR3	SEQ ID NO de la región variable
01G06	ENLHNY (SEQ ID NO: 160)	DAK	QHFWSSPYT (SEQ ID NO: 32)	76
03G05	ESVDNYGISF (SEQ ID NO: 161)	AAS	QQSKEVPWT (SEQ ID NO: 33)	78
04F08	QNVGTN (SEO ID NO: 162)	SAS	QQYNSYPYT (SEQ ID NO: 34)	80
06C11	QNVGTN (SEO ID NO: 162)	SAS	QQYNNYPLT (SEQ ID NO: 35)	82
08G01	GNIHNY (SEO ID NO: 163)	NAK	QHFWSSPYT (SEQ ID NO: 32)	84
14F11	(SPS	QQYNSYPHT (SEQ ID NO: 36)	86
17B11	KASQNVGTNVA (SEO ID NO: 164)	YAS	QHSWEIPYT (SEQ ID NO: 37)	88

Para crear las secuencias completas de la cadena pesada o kappa del anticuerpo, cada secuencia variable anterior se combina con su respectiva región constante. Por ejemplo, una cadena pesada completa comprende una secuencia variable pesada seguida por la secuencia constante de la cadena pesada de la IgG1 o de la IgG2b murina, y una cadena kappa completa comprende una secuencia variable kappa seguida por la secuencia constante de la cadena ligera kappa murina.

Secuencia de ácidos nucleicos que codifica la región constante de la cadena pesada de la IgG1 murina (SEQ ID NO: 165)

```
1 gccaaaacga caccccatc tgtctatcca ctggcccctg gatctgctgc ccaaactaac
    61 tecatggtga ceetgggatg cetggteaag ggetatttee etgageeagt gaeagtgaee
   121 tggaactctg gatccctgtc cagcggtgtg cacaccttcc cagctgtcct gcagtctgac
   181 ctctacactc tgagcagctc agtgactgtc ccctccagca cctggcccag cgagaccgtc
241 acctgcaacg ttgcccaccc ggccagcagc accaaggtgg acaagaaaat tgtgcccagg
301 gattgtggtt gtaagcettg catatgtaca gteecagaag tateatetgt etteatette
361 cccccaaagc ccaaggatgt gctcaccatt actctgactc ctaaggtcac gtgtgttgtg
421 gtagacatca gcaaggatga tcccgaggtc cagttcagct ggtttgtaga tgatgtggag
481 gtgcacacag ctcagacgca accccgggag gagcagttca acagcacttt ccgctcagtc
541 agtgaacttc ccatcatgca ccaggactgg ctcaatggca aggagttcaa atgcagggtc
601 aacagtgcag ctttccctgc ccccatcgag aaaaccatct ccaaaaaccaa aggcagaccg
661 aaggeteeac aggtgtacae catteeacet eecaaggage agatggeeaa ggataaagte
721 agtctgacct gcatgataac agacttcttc cctgaagaca ttactgtgga gtggcagtgg
781 aatgggcagc cagcggagaa ctacaagaac actcagccca tcatggacac agatggctct
841 tacttcgtct acagcaagct caatgtgcag aagagcaact gggaggcagg aaatactttc
901 acctgctctg tgttacatga gggcctgcac aaccaccata ctgagaagag cctctcccac
961 tctcctggta aa
```

Secuencia de proteínas que define la región constante de la cadena pesada de la IgG1 murina (SEQ ID NO: 166)

5

```
1 akttppsvyp lapgsaaqtn smvtlgclvk gyfpepvtvt wnsgslssgv htfpavlqsd 61 lytlsssvtv psstwpsetv tcnvahpass tkvdkkivpr dcgckpcict vpevssvfif 121 ppkpkdvlti tltpkvtcvv vdiskddpev qfswfvddve vhtaqtqpre eqfnstfrsv 181 selpimhqdw lngkefkcrv nsaafpapie ktisktkgrp kapqvytipp pkeqmakdkv 241 sltcmitdff peditvewqw ngqpaenykn tqpimdtdgs yfvysklnvq ksnweagntf 301 tcsvlheglh nhhtekslsh spgk
```

10 Secuencia de ácidos nucleicos que codifica la región constante de la cadena pesada de la IgG2b murina (SEQ ID NO: 167)

```
1 gccaaaacaa caccccatc agtctatcca ctggccctg ggtgtggaga tacaactggt
 61 tecteegtga etetgggatg eetggteaag ggetaettee etgagteagt gaetgtgaet
121 tggaactetg gatecetgte cagcagtgtg cacacettee cageteteet geagtetgga
181 ctctacacta tgagcagctc agtgactgtc ccctccagca cctggccaag tcagaccgtc
241 acctgcagcg ttgctcaccc agccagcagc accacggtgg acaaaaaact tgagcccagc
301 gggcccattt caacaatcaa cccctgtcct ccatgcaagg agtgtcacaa atgcccagct
361 cctaacctcq agggtggacc atccgtcttc atcttccctc caaatatcaa ggatgtactc
421 atgateteee tgacacccaa ggteaegtgt gtggtggtgg atgtgagega ggatgaccca
481 gacgtccaga tcagctggtt tgtgaacaac gtggaagtac acacagctca gacacaaacc
541 catagagagg attacaacag tactateegg gtggteagea cecteeceat eeageaceag
601 gactggatga gtggcaagga gttcaaatgc aaggtcaaca acaaagacct cccatcaccc
661 atcgagagaa ccatctcaaa aattaaaggg ctagtcagag ctccacaagt atacatcttg
721 ccgccaccag cagagcagtt gtccaggaaa gatgtcagtc tcacttgcct ggtcgtgggc
781 ttcaaccctg gagacatcag tgtggagtgg accagcaatg ggcatacaga ggagaactac
841 aaggacaccg caccagteet agactetgae ggttettaet teatatatag caageteaat
901 atgaaaacaa gcaagtggga gaaaacagat teetteteat gcaaegtgag acaegagggt
961 ctgaaaaatt actacctgaa gaagaccatc tcccggtctc cgggtaaa
```

15 Secuencia de proteínas que define la región constante de la cadena pesada de la IgG2b murina (SEQ ID NO: 168)

```
1 akttppsvyp lapgcgdttg ssvtlgclvk gyfpesvtvt wnsgslsssv htfpallqsg
61 lytmsssvtv psstwpsqtv tcsvahpass ttvdkkleps gpistinpcp pckechkcpa
121 pnleggpsvf ifppnikdvl misltpkvtc vvvdvseddp dvqiswfvnn vevhtaqtqt
181 hredynstir vvstlpiqhq dwmsgkefkc kvnnkdlpsp iertiskikg lvrapqvyil
241 pppaeqlsrk dvsltclvvg fnpgdisvew tsnghteeny kdtapvldsd gsyfiyskln
```

301 mktskwektd sfscnvrheg lknyylkkti srspgk

Secuencia de ácidos nucleicos que codifica la región constante de la cadena ligera kappa murina (SEQ ID NO: 169)

```
1 egggetgatg etgeaceaac tgtatecate tteceaceat ecagtgagea gttaacatet 61 ggaggtgeet eagtegtgt ettettgaac aacttetaec ecaaagacat eaatgteaag 121 tggaagattg atggeagtga acgacaaaat ggegteetga acagttggae tgateaggae 181 ageaaagaca geacetaeag eatgageage acceteacgt tgaceaagga egagtatgaa 241 egacataaca getataeetg tgaggeeact eacaagacat eaactteaec eattgteaag 301 agetteaaca ggaatgagtg t
```

5

Secuencia de proteínas que define la región constante de la cadena ligera kappa murina (SEQ ID NO: 170)

1 radaaptvsi fppsseqlts ggasvvcfln nfypkdinvk wkidgserqn gvlnswtdqd 61 skdstysmss tltltkdeye rhnsytceat hktstspivk sfnrnec

10

Las siguientes secuencias representan la secuencia completa real o contemplada de la cadena pesada y ligera (es decir, que contienen las secuencias de ambas regiones variable y constante) para cada anticuerpo descrito en este Ejemplo. Las secuencias de señal para la apropiada secreción de los anticuerpos (por ejemplo, las secuencias de señal en el extremo 5' de las secuencias de ADN o en el extremo amino terminal de las secuencias de la proteína) no se muestran en las secuencias completas de la cadena pesada y ligera divulgadas en el presente documento y no están incluidas en la proteína final secretada. Tampoco se muestran los codones de terminación para la terminación de la traducción requeridos en el extremo 3' de las secuencias de ADN. En la pericia habitual de la técnica está la selección de una secuencia de señal y/o de un codón de terminación para la expresión de las secuencias completas divulgadas de la cadena pesada y de la cadena ligera de la inmunoglobulina. También se contempla que las secuencias de la región variable puedan estar ligadas a otras secuencias de la región constante para producir las cadenas pesada y ligera activas completas de la inmunoglobulina.

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG1) de 01G06 (SEQ ID NO: 99)

25

```
1 gaggtcctgc tgcaacagtc tggacctgag ctggtgaagc ctggggcttc agtgaagata
    61 ccctgcaagg cttctggata cacattcact gactacaaca tggactgggt gaagcagagc
   121 catggaaaga gccttgagtg gattggacaa attaatccta acaatggtgg tattttcttc
   181 aaccagaagt tcaagggcaa ggccacattg actgtagaca agtcctccaa tacagccttc
   241 atggaggtcc gcagcctgac atctgaggac actgcagtct attactgtgc aagagaggca
   301 attactacgg taggcgctat ggactactgg ggtcaaggaa cctcagtcac cgtctcctca
   361 gccaaaacga caccccatc tgtctatcca ctggcccctg gatctgctgc ccaaactaac
   421 tecatggtga cectgggatg cetggteaag ggetatttee etgageeagt gacagtgace
   481 tggaactetg gatecetgte cageggtgtg cacacettee cagetgteet geagtetgae
   541 ctctacactc tgagcagctc agtgactgtc ccctccagca cctggcccag cgagaccgtc
   601 acctgcaacg ttgcccaccc ggccagcagc accaaggtgg acaagaaaat tgtgcccagg
 661 gattgtggtt gtaagccttg catatgtaca gtcccagaag tatcatctgt cttcatcttc
 721 cccccaaagc ccaaggatgt gctcaccatt actctgactc ctaaggtcac gtgtgttgtg
 781 gtagacatca gcaaggatga teeegaggte eagtteaget ggtttgtaga tgatgtggag
 841 gtgcacacag ctcagacgca accccgggag gagcagttca acagcacttt ccgctcagtc
 901 agtgaacttc ccatcatgca ccaggactgg ctcaatggca aggagttcaa atgcagggtc
961 aacagtgcag ctttccctgc ccccatcgag aaaaccatct ccaaaaccaa aggcagaccg
1021 aaggeteeac aggtgtacae catteeacet eecaaggage agatggeeaa ggataaagte
1081 agtctgacct gcatgataac agacttcttc cctgaagaca ttactgtgga gtggcagtgg
1141 aatgggcagc cagcggagaa ctacaagaac actcagccca tcatggacac agatggctct
1201 tacttcgtct acagcaagct caatgtgcag aagagcaact gggaggcagg aaatactttc
1261 acctgctctg tgttacatga gggcctgcac aaccaccata ctgagaagag cctctcccac
1321 tctcctggta aa
```

Secuencia de proteínas que define la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG1) de 01G06 (SEQ ID NO: 100)

5

10

15

```
1 evllqqsqpe lvkpqasvki pckasqytft dynmdwvkqs hqkslewigq inpnnggiff 61 nqkfkgkatl tvdkssntaf mevrsltsed tavyycarea ittvgamdyw gqgtsvtvss 121 akttppsvyp lapgsaaqtn smvtlgclvk gyfpepvtvt wnsgslssgv htfpavlqsd 181 lytlsssvtv psstwpsetv tcnvahpass tkvdkkivpr dcgckpcict vpevssvfif 241 ppkpkdvlti tltpkvtcvv vdiskddpev qfswfvddve vhtaqtqpre eqfnstfrsv 301 selpimhqdw lngkefkcrv nsaafpapie ktisktkgrp kapqvytipp pkeqmakdkv 361 sltcmitdff peditvewqw ngqpaenykn tqpimdtdgs yfvysklnvq ksnweagntf 421 tcsvlheqlh nhhtekslsh spgk
```

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 01G06 (SEQ ID NO: 101)

```
1 gacatccaga tgactcagtc tecagectec etatetgeat etgtgggaga aactgteace 61 atcacatgte gaacaagtga gaatetteac aattattag eatggtatea geagaaacag 121 ggaaaatete eteageteet ggtetatgat geaaaaaeet tageagatgg tgtgeeatea 181 aggtteagtg geagtggate aggaacacaa tattetetea agateaacag eetgeageet 241 gaagattttg ggagttatta etgteaacat ttttggagta gteettacae gtteggaggg 301 gggaceaage tggaaataaa aegggetgat getgeaeeaa etgtateeat etteeeacea 361 teeagtgage agttaacate tggaggtgee teagtegtg gettettgaa eaacttetae 421 eecaaagaca teaatgteaa gtggaagatt gatggeagtg aacgacaaaa tggegteetg 481 aacagttgga etgateagga eageaaagae ageaeetaea geatgageag eaceeteaeg 541 ttgaceaagg aegagtatga aegacataae ageaetaee gtgaggeeae teaeaagaca 601 teaaetteae eeattgteaa gagetteaae aggaatgagt gt
```

Secuencia de proteínas que define la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 01G06 (SEQ ID NO: 102)

```
1 diqmtqspas lsasvgetvt itcrtsenlh nylawyqqkq gkspqllvyd aktladgvps
61 rfsgsgsgtq yslkinslqp edfgsyycqh fwsspytfgg gtkleikrad aaptvsifpp
121 sseqltsgga svvcflnnfy pkdinvkwki dgserqngvl nswtdqdskd stysmsstlt
181 ltkdeyerhn sytceathkt stspivksfn rnec
```

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG1) de 03G05 (SEQ ID NO: 103)

1 caggtccaac tgcagcagcc tggggctgaa ctggtgaagc ctggggcttc agtgaagctg

```
61 teetgeaagg ettetggeta cacetteace agetaetgga tteaetgggt gaaceagagg
 121 cctggacaag gccttgagtg gattggagac attaatccta gcaacggccg tagtaagtat
 181 aatgagaagt tcaagaacaa ggccacaatg actgcagaca aatcctccaa cacagcctac
 241 atgcaactca gcagcctgac atctgaggac tctgcggtct attactgtgc aagagaggtt
 301 ctggatggtg ctatggacta ctggggtcaa ggaacctcag tcaccgtctc ctcagccaaa
 361 acgacaccc catctgtcta tccactggcc cctggatctg ctgcccaaac taactccatg
 421 gtgaccctgg gatgcctggt caagggctat ttccctgagc cagtgacagt gacctggaac
 481 totggatoco tgtocagogg tgtgcacaco ttoccagotg toctgcagto tgacototac
 541 actetgagea geteagtgae tgteceetee ageaeetgge eeagegagae egteaeetge
 601 aacgttgccc acccggccag cagcaccaag gtggacaaga aaattgtgcc cagggattgt
 661 ggttgtaage ettgcatatg tacagtecea gaagtateat etgtetteat etteececea
 721 aagcccaagg atgtgctcac cattactctg actcctaagg tcacgtgtgt tgtggtagac
 781 atcagcaagg atgatcccga ggtccagttc agctggtttg tagatgatgt ggaggtgcac
 841 acageteaga egeaaceeeg ggaggageag tteaacagea ettteegete agteagtgaa
 901 cttcccatca tgcaccagga ctggctcaat ggcaaggagt tcaaatgcag ggtcaacagt
 961 gcagctttcc ctgcccccat cgagaaaacc atctccaaaa ccaaaggcag accgaaggct
1021 ccacaggtgt acaccattcc acctcccaag gagcagatgg ccaaggataa agtcagtctg
1081 acctgcatga taacagactt cttccctgaa gacattactg tggagtggca gtggaatggg
1141 cagccagegg agaactacaa gaacactcag cccatcatgg acacagatgg ctcttacttc
1201 gtctacagca agctcaatgt gcagaagagc aactgggagg caggaaatac tttcacctgc
1261 tetgtgttac atgagggeet geacaaceae catactgaga agageetete eeacteteet
1321 ggtaaa
```

5
Secuencia de proteínas que define la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG1) de 03G05 (SEQ ID NO: 104)

```
1 qvqlqqpgae lvkpgasvkl sckasgytft sywihwvnqr pgqglewigd inpsngrsky 61 nekfknkatm tadkssntay mqlssltsed savyycarev ldgamdywgq gtsvtvssak 121 ttppsvypla pgsaaqtnsm vtlgclvkgy fpepvtvtwn sgslssgvht fpavlqsdly 181 tlsssvtvps stwpsetvtc nvahpasstk vdkkivprdc gckpcictvp evssvfifpp 241 kpkdvltitl tpkvtcvvvd iskddpevqf swfvddvevh taqtqpreeq fnstfrsvse 301 lpimhqdwln gkefkcrvns aafpapiekt isktkgrpka pqvytipppk eqmakdkvsl 361 tcmitdffpe ditvewqwng qpaenykntq pimdtdgsyf vysklnvqks nweagntftc 421 svlheglhnh htekslshsp gk
```

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 03G05 (SEQ ID NO: 105)

10

15

```
1 gacattgtgt tgacccaatc tccagcttct ttggctgtgt ctctagggca gagggccacc 61 atctcctgca gagccagcga aagtgttgat aattatggca ttagttttat gaactggttc 121 caacagaaac caggacagcc acccaaactc ctcatctatg ctgcatccaa ccaaggctcc 181 ggggtccctg ccaggtttag tggcagtggg tctgggacag acttcagcct caacatccat 241 cctatggagg aggatgatac tgcaatgtat ttctgtcagc aaagtaagga ggttccgtgg 301 acgttcggtg gaggctccaa gctggaaatc aaacgggctg atgctgcac aactgtatcc 361 atcttccac catccagtga gcagttaaca tctggaggtg cctcagtcgt gtgcttcttg 421 aacaacttct accccaaaga catcaatgtc aagtggaaga ttgatggcag tgaacgacaa 481 aatggcgtcc tgaacagttg gactgatcag gacagcaaa acagcaccta cagcatgagc 541 agcaccctca cgttgaccaa ggacgagtat gaacgacata acagctatac ctgtgaggcc 601 actcacaaga catcaacttc acccattgtc aagagcttca acaggaatga gtgt
```

Secuencia de proteínas que define la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 03G05 (SEQ ID NO: 106)

```
1 divltqspas lavslgqrat iscrasesvd nygisfmnwf qqkpgqppkl liyaasnqgs
61 gvparfsgsg sgtdfslnih pmeeddtamy fcqqskevpw tfgggsklei kradaaptvs
121 ifppsseqlt sggasvvcfl nnfypkdinv kwkidgserq ngvlnswtdq dskdstysms
181 stltltkdev erhnsytcea thktstspiv ksfnrnec
```

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG1) de 04F08 (SEQ ID NO: 107)

5

10

15

```
1 caggitactc tgaaagagtc tggccctggg atattgcagc cctcccagac cctcagtctg
 61 acttgttctt tctctgggtt ttcactgagc acttatggta tgggtgtgac ctggattcgt
121 cagcetteag gaaagggtet ggagtggetg geacacattt aetgggatga tgacaagege
 181 tataacccat ccctgaagag ccggctcaca atctccaagg atacctccaa caaccaggta
 241 ttcctcaaga tcaccagtgt ggacactgca gatactgcca catactactg tgctcaaacg
 301 gggtatagta acttgtttgc ttactggggc caagggactc tggtcactgt ctctgcagcc
 361 aaaacgacac ccccatctgt ctatccactg gcccctggat ctgctgccca aactaactcc
 421 atggtgaccc tgggatgcct ggtcaagggc tatttccctg agccagtgac agtgacctgg
 481 aactetggat ceetgteeag eggtgtgeac acetteecag etgteetgea gtetgacete
 541 tacactetga geageteagt gaetgteece teeageacet ggeecagega gaeegteace
 601 tgcaacgttg cccacccggc cagcagcacc aaggtggaca agaaaattgt gcccagggat
 661 tgtggttgta agccttgcat atgtacagtc ccagaagtat catctgtctt catcttcccc
 721 ccaaagccca aggatgtgct caccattact ctgactccta aggtcacgtg tgttgtggta
781 gacatcagca aggatgatcc cgaggtccag ttcagctggt ttgtagatga tgtggaggtg
 841 cacacagete agacgeaace eegggaggag cagtteaaca geacttteeg etcagteagt
 901 gaacttccca tcatgcacca ggactggctc aatggcaagg agttcaaatg cagggtcaac
 961 agtgcagett teeetgeece categagaaa accateteea aaaccaaagg cagacegaag
1021 gctccacagg tgtacaccat tccacctccc aaggagcaga tggccaagga taaagtcagt
1081 ctgacctgca tgataacaga cttcttccct gaagacatta ctgtggagtg gcagtggaat
1141 gggcagccag cggagaacta caagaacact cagcccatca tggacacaga tggctcttac
1201 ttcgtctaca gcaagctcaa tgtgcagaag agcaactggg aggcaggaaa tactttcacc
1261 tgctctgtgt tacatgaggg cctgcacaac caccatactg agaagagcct ctcccactct
1321 cctqqtaaa
```

Secuencia de proteínas que define la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG1) de 04F08 (SEQ ID NO: 108)

```
1 qvtlkesgpg ilqpsqtlsl tcsfsgfsls tygmgvtwir qpsgkglewl ahiywdddkr
61 ynpslksrlt iskdtsnnqv flkitsvdta dtatyycaqt gysnlfaywg qgtlvtvsaa
121 kttppsvypl apgsaaqtns mvtlgclvkg yfpepvtvtw nsgslssgvh tfpavlqsdl
181 ytlsssvtvp sstwpsetvt cnvahpasst kvdkkivprd cgckpcictv pevssvfifp
241 pkpkdvltit ltpkvtcvvv diskddpevq fswfvddvev htaqtqpree qfnstfrsvs
301 elpimhqdwl ngkefkcrvn saafpapiek tisktkgrpk apqvytippp keqmakdkvs
361 ltcmitdffp editvewqwn gqpaenyknt qpimdtdgsy fvysklnvqk snweagntft
421 csvlheqlhn hhtekslshs pgk
```

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 04F08 (SEQ ID NO: 109)

```
1 gacattgtga tgacccagtc tcaaaaattc atgtccacat cagtaggaga cagggtcagc 61 gtcacctgca aggccagtca gaatgtgggt actaatgtag cctggtatca acagaaatta 121 ggacaatctc ctaaaacact gatttactcg gcatcctacc ggtacagtgg agtccctgat 181 cgcttcacag gcagtggatc tgggacagat ttcactctca ccatcagcaa tgtgcagtct 241 gaagacttgg cagagtattt ctgtcagcaa tataacagct atccgtacac gttcggaggg 301 gggaccaagc tggaaataaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 361 tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac cccaaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg
```

```
421 cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg
481 aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg
541 ttgaccaagg acgagtatga acgacataac agctatacct gtgaggccac tcacaagaca
601 tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gt
```

Secuencia de proteínas que define la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 04F08 (SEQ ID NO: 110)

```
1 divmtqsqkf mstsvgdrvs vtckasqnvg tnvawyqqkl gqspktliys asyrysgvpd
61 rftgsgsgtd ftltisnvqs edlaeyfcqq ynsypytfgg gtkleikrad aaptvsifpp
121 sseqltsgga svvcflnnfy pkdinvkwki dgserqngvl nswtdqdskd stysmsstlt
181 ltkdeyerhn sytceathkt stspivksfn rnec
```

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena pesada ('región variable de la cadena pesada y región constante de la IgG1) de 06C11 (SEQ ID NO: 111)

```
1 caggitacte tgaaagagte tggccetggg atattgcage ceteccagae ceteagtetg
  61 acttqttctt tctctqqqtt ttcactqaac acttatqqta tqqqtqtqaq ctqqattcqt
 121 cagccttcag gaaagggtct ggagtggctg gcacacattt actgggatga tgacaagcgc
 181 tataacccat ccctgaagag ccggctcaca atctccaagg atgcctccaa caaccgggtc
 241 ttcctcaaga tcaccagtgt ggacactgca gatactgcca catactactg tgctcaaaga
 301 ggttatgatg attactgggg ttactggggc caagggactc tggtcactat ctctgcagcc
 361 aaaacqacac ccccatctqt ctatccactq qcccctqqat ctqctqccca aactaactcc
 421 atggtgaccc tgggatgcct ggtcaagggc tatttccctg agccagtgac agtgacctgg
 481 aactetggat ceetgteeag eggtgtgeac acetteecag etgteetgea gtetgacete
 541 tacactetga geageteagt gaetgteece teeageacet ggeecagega gaeegteace
 601 tgcaacgttg cccaccggc cagcagcacc aaggtggaca agaaaattgt gcccagggat
 661 tgtggttgta agcettgcat atgtacagte ceagaagtat catetgtett catetteece
 721 ccaaagccca aggatgtgct caccattact ctgactccta aggtcacgtg tgttgtggta
 781 gacatcagca aggatgatcc cgaggtccag ttcagctggt ttgtagatga tgtggaggtg
 841 cacacagete agacgeaace eegggaggag cagtteaaca geacttteeg eteagteagt
 901 gaactteeca teatgeacea ggactggete aatggeaagg agtteaaatg cagggteaae
 961 agtgcagctt tccctgcccc catcgagaaa accatctcca aaaccaaagg cagaccgaag
1021 gctccacagg tgtacaccat tccacctccc aaggagcaga tggccaagga taaagtcagt
1081 ctgacctgca tgataacaga cttcttccct gaagacatta ctgtggagtg gcagtggaat
1141 gggcagccag cggagaacta caagaacact cagcccatca tggacacaga tggctcttac
1201 ttcgtctaca gcaagctcaa tgtgcagaag agcaactggg aggcaggaaa tactttcacc
1261 tgctctgtgt tacatgaggg cctgcacaac caccatactg agaagagcct ctcccactct
1321 cctggtaaa
```

Secuencia de proteínas que define la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG1) de 06C11 (SEQ ID NO: 112)

```
1 qvtlkesgpg ilqpsqtlsl tcsfsgfsln tygmgvswir qpsgkglewl ahiywdddkr 61 ynpslksrlt iskdasnnrv flkitsvdta dtatyycaqr gyddywgywg qgtlvtisaa 121 kttppsvypl apgsaaqtns mvtlgclvkg yfpepvtvtw nsgslssgvh tfpavlqsdl 181 ytlsssvtvp sstwpsetvt cnvahpasst kvdkkivprd cgckpcictv pevssvfifp 241 pkpkdvltit ltpkvtcvvv diskddpevq fswfvddvev htaqtqpree qfnstfrsvs 301 elpimhqdwl ngkefkcrvn saafpapiek tisktkgrpk apqvytippp keqmakdkvs 361 ltcmitdffp editvewqwn gqpaenyknt qpimdtdgsy fvysklnvqk snweagntft 421 csvlheglhn hhtekslshs pgk
```

15

10

5

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 06C11 (SEQ ID NO: 113)

```
1 gacattgtga tgacccagtc tcaaaaattc atgtccacat cagtaggaga cagggtcagc 61 gtcacctgca aggccagtca gaatgtgggt actaatgtag cctggtttca acagaaacca 121 ggtcaatctc ctaaagcact gatttactcg gcatcttacc ggtacagtgg agtccctgat 181 cgcttcacag gcagtggatc tgggacagat ttcattctca ccatcagcaa tgtgcagtct 241 gaagacctgg cagagtattt ctgtcagcaa tataaacaact atcctctac gttcggtgct 301 gggaccaagc tggagctgaa acgggctgat gctgcaccaa ctgtatccat cttccacca 361 tccagtgagc agttaacatc tggaggtgcc tcagtcgtg gcttcttgaa caacttctac 421 cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 481 aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg 541 ttgaccaagg acgagtatga acgacataac agcatacct gtgaggccac tcacaagaca 601 tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gt
```

Secuencia de proteínas que define la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 06C11 (SEQ ID NO: 114)

```
1 divmtqsqkf mstsvgdrvs vtckasqnvg tnvawfqqkp gqspkaliys asyrysgvpd
61 rftgsgsgtd filtisnvqs edlaeyfcqq ynnypltfga gtklelkrad aaptvsifpp
121 sseqltsgga svvcflnnfy pkdinvkwki dgserqngvl nswtdqdskd stysmsstlt
181 ltkdeyerhn sytceathkt stspivksfn rnec
```

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena pesada tregión variable de la cadena pesada y región constante de la IgG2b! de 08G01 (SEQ ID NO: 115)

```
1 gaggtcctgc tgcaacagtc tggacctgag gtggtgaagc ctggggcttc agtgaagata
  61 ccctgcaagg cttctggata cacattcact gactacaaca tggactgggt gaagcagagc
 121 catggaaaga gccttgagtg gattggagag attaatccta acaatggtgg tactttctac
 181 aaccagaagt tcaagggcaa ggccacattg actgtagaca agtcctccag cacagcctac
 241 atggagetee geageetgae atetgaggae aetgeagtet attaetgtge aagagaggea
 301 attactacgg taggegetat ggactactgg ggtcaaggaa ceteagteae egteteetea
 361 gccaaaacaa cacccccatc agtctatcca ctggcccctg ggtgtggaga tacaactggt
 421 tecteegtga etetgggatg eetggteaag ggetaettee etgagteagt gaetgtgaet
 481 tggaactctg gatccctgtc cagcagtgtg cacaccttcc cagctctcct gcagtctgga
 541 ctctacacta tgagcagctc agtgactgtc ccctccagca cctggccaag tcagaccgtc
 601 acctgcageg ttgctcaccc agccagcagc accacggtgg acaaaaaaact tgagcccagc
 661 gggcccattt caacaatcaa ccctgtcct ccatgcaagg agtgtcacaa atgcccagct
 721 cctaacctcg agggtggacc atccgtcttc atcttccctc caaatatcaa ggatgtactc
 781 atgatetece tgacacecaa ggteaegtgt gtggtggtgg atgtgagega ggatgaecea
 841 gacqtccaga tcaqctqqtt tqtqaacaac qtqqaaqtac acacaqctca qacacaaacc
 901 catagagagg attacaacag tactateegg gtggteagea ceeteeceat ceageaceag
961 gactggatga gtggcaagga gttcaaatgc aaggtcaaca acaaagacct cccatcaccc
1021 atcgagagaa ccatctcaaa aattaaaggg ctagtcagag ctccacaagt atacatcttg
1081 ccqccaccaq caqaqcaqtt qtccaqqaaa qatqtcaqtc tcacttqcct qqtcqtqqqc
1141 ttcaacctg gagacatcag tgtggagtgg accagcaatg ggcatacaga ggagaactac
1201 aaggacaccg caccagteet agactetgae ggttettaet teatatatag caageteaat
1261 atgaaaacaa gcaagtggga gaaaacagat tccttctcat gcaacgtgag acacgagggt
1321 ctgaaaaatt actacctgaa gaagaccatc tcccggtctc cgggtaaa
```

Secuencia de proteínas que define la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG2b) de 08G01 (SEQ ID NO: 116)

```
1 evllqqsqpe vvkpgasvki pckasgytft dynmdwvkqs hgkslewige inpnnggtfy 61 nqkfkgkatl tvdkssstay melrsltsed tavyycarea ittvgamdyw gqgtsvtvss 121 akttppsvyp lapgcgdttg ssvtlgclvk gyfpesvtvt wnsgslsssv htfpallqsg 181 lytmsssvtv psstwpsqtv tcsvahpass ttvdkkleps gpistinpcp pckechkcpa 241 pnleggpsvf ifppnikdvl misltpkvtc vvvdvseddp dvqiswfvnn vevhtaqtqt 301 hredynstir vvstlpiqhq dwmsgkefkc kvnnkdlpsp iertiskikg lvrapqvyil 361 pppaeqlsrk dvsltclvvg fnpgdisvew tsnghteeny kdtapvldsd gsyfiyskln 421 mktskwektd sfscnvrheg lknyylkkti srspgk
```

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 08G01 (SEQ ID NO: 117)

20

15

5

```
1 gacatccaga tgactcagtc tccagcctcc ctatctgcat ctgtgggaga aactgtcacc 61 atcacatgtc gagcaagtgg gaatattcac aattattag catggtatca gcagaaacag 121 ggaaaatctc ctcagctcct ggtctataat gcaaaaacct tagcagatgg tgtgccatca 181 aggttcagtg gcagtggatc aggaacacaa tattctctca agatcaacag cctgcagcct 241 gaagattttg ggagttatta ctgtcaacat ttttggagtt ctccttacac gttcggaggg 301 gggaccaagc tggaaataaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 361 tccagtgagc agttaacatc tggaggtgcc tcagtcgtg gcttcttgaa caacttctac 421 cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 481 aacagttgga ctgatcagga cagcaaagac agcactaca gcatgagcag caccctcacg 541 ttgaccaagg acgagtatga acgacataac agcatacct gtgaggccac tcacaagaca 601 tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gt
```

Secuencia de proteínas que define la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 08G01 (SEQ ID NO: 118)

5

10

20

```
1 diqmtqspas lsasvgetvt itcrasgnih nylawyqqkq gkspqllvyn aktladgvps
61 rfsgsgsgtq yslkinslqp edfgsyycqh fwsspytfgg gtkleikrad aaptvsifpp
121 sseqltsgga svvcflnnfy pkdinvkwki dgserqngvl nswtdqdskd stysmsstlt
181 ltkdeyerhn sytceathkt stspivksfn rnec
```

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG1) de 14F11 (SEQ ID NO: 119)

```
1 caggitacte tgaaagagte tggceetgga atattgeage ceteceagae eetcagtetg
  61 acttgttctt tctctgggtt ttcactgagc acttatggta tgggtgtagg ctggattcgt
 121 cagccttcag gaaagggtct agagtggctg gcagacattt ggtgggatga cgataagtac
 181 tataacccat ccctgaagag ccggctcaca atctccaagg atacctccag caatgaggta
 241 ttcctcaaga tcgccattgt ggacactgca gatactgcca cttactactg tgctcgaaga
 301 ggtcactact ctgctatgga ctactggggt caaggaacct cagtcaccgt ctcctcagcc
 361 aaaacgacac ccccatctgt ctatccactg gcccctggat ctgctgccca aactaactcc
 421 atggtgaccc tgggatgcct ggtcaagggc tatttccctg agccagtgac agtgacctgg
 481 aactetggat ceetgteeag eggtgtgeac acetteecag etgteetgea gtetgacete
 541 tacactotga goagetoagt gactgtoocc tocagoacct ggoocagoga gacogtoacc
 601 tgcaacgttg cccacceggc cagcagcacc aaggtggaca agaaaattgt gcccagggat
 661 tgtggttgta agccttgcat atgtacagtc ccagaagtat catctgtctt catcttcccc
 721 ccaaagccca aggatgtgct caccattact ctgactccta aggtcacgtg tgttgtggta
 781 gacatcagca aggatgatcc cgaggtccag ttcagctggt ttgtagatga tgtggaggtg
 841 cacacagete agaegeaace eegggaggag eagtteaaca geaettteeg eteagteagt
 901 gaacttccca tcatgcacca ggactggctc aatggcaagg agttcaaatg cagggtcaac
961 agtgcagctt tccctgcccc catcgagaaa accatctcca aaaccaaagg cagaccgaag
1021 gctccacagg tgtacaccat tccacctccc aaggagcaga tggccaagga taaagtcagt
1081 ctgacctgca tgataacaga cttcttccct gaagacatta ctgtggagtg gcagtggaat
1141 gggcagccag cggagaacta caagaacact cagcccatca tggacacaga tggctcttac
1201 ttcgtctaca gcaagctcaa tgtgcagaag agcaactggg aggcaggaaa tactttcacc
1261 tgctctgtgt tacatgaggg cctgcacaac caccatactg agaagagcct ctcccactct
1321 cctggtaaa
```

Secuencia de proteínas que define la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG1) de 14F11 (SEQ ID NO: 120)

```
1 qvtlkesgpg ilqpsqtlsl tcsfsgfsls tygmgygwir qpsgkglewl adiwwdddky 61 ynpslksrlt iskdtssnev flkiaivdta dtatyycarr ghysamdywg qgtsvtvssa 121 kttppsvypl apgsaaqtns mvtlgclvkg yfpepvtvtw nsgslssgvh tfpavlqsdl 181 ytlsssvtvp sstwpsetvt cnvahpasst kvdkkivprd cgckpcictv pevssvfifp 241 pkpkdvltit ltpkvtcvvv diskddpevq fswfvddvev htaqtqpree qfnstfrsvs 301 elpimhqdwl ngkefkcrvn saafpapiek tisktkgrpk apqvytippp keqmakdkvs 361 ltcmitdffp editvewqwn gqpaenyknt qpimdtdgsy fvysklnvqk snweagntft 421 csvlheglhn hhtekslshs pgk
```

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena ligera (región variable y región

constante de la cadena kappa) de 14F11 (SEQ ID NO: 121)

```
1 gacattgtaa tgacccagtc tcaaaaattc atgtccacat cagtaggaga cagggtcagc 61 gtcacctgca aggccagtca gaatgtgggt actaatgtag cctggtatca acagaaacca 121 gggcaatctc ctaaagcact gatttactcg ccatcctacc ggtaccagtgg agtccctgat 181 cgcttcacag gcagtggatc tgggacagat ttcactctca ccatcagcaa tgtggcagtct 241 gaagacttgg cagaatattt ctgtcagcaa tataacagct atcctcacac gttcggaggg 301 gggaccaagc tggaaatgaa acgggctgat gctgcaccaa ctgtatccat cttcccacca 361 tccagtgagc agttaacatc tggaggtgcc tcagtcgtgt gcttcttgaa caacttctac 421 cccaaagaca tcaatgtcaa gtggaagatt gatggcagtg aacgacaaaa tggcgtcctg 481 aacagttgga ctgatcagga cagcaaagac agcacctaca gcatgagcag caccctcacg 541 ttgaccaagg acgagtatga acgacataac agcatacct gtgaggccac tcacaagaca 601 tcaacttcac ccattgtcaa gagcttcaac aggaatgagt gt
```

5 <u>Secuencia de proteínas que define la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 14F11</u> (SEQ ID NO: 122)

```
1 divmtqsqkf mstsvgdrvs vtckasqnvg tnvawyqqkp gqspkaliys psyrysgvpd
61 rftgsgsgtd ftltisnvqs edlaeyfcqq ynsyphtfgg gtklemkrad aaptvsifpp
121 sseqltsgga svvcflnnfy pkdinvkwki dgserqngvl nswtdqdskd stysmsstlt
181 ltkdeyerhn sytceathkt stspivksfn rnec
```

10 <u>Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG1) de 17B11 (SEQ ID NO: 123)</u>

```
1 caggitacte tgaaagagte tggceetggg atattgeage ceteceagae ceteagtetg
  61 acttgttctt tctctgggtt ttcactgagc acttctggta tgggtgtgag ttggattcgt
 121 cageetteag gaaagggtet ggagtggetg geacacaatg actgggatga tgacaagege
 181 tataaqtcat ccctqaaqaq ccqqctcaca atatccaaqq atacctccaq aaaccaqqta
 241 tteeteaaga teaceagtgt ggacaetgea gataetgeea cataetaetg tgetegaaga
 301 gttgggggat tagagggcta ttttgattac tggggccaag gcaccactct cacagtctcc
 361 tcagccaaaa cgacacccc atctgtctat ccactggccc ctggatctgc tgcccaaact
 421 aactecatgg tgaccetggg atgeetggte aagggetatt teeetgagee agtgacagtg
 481 acctggaact ctggatccct gtccagcggt gtgcacacct tcccagctgt cctgcagtct
 541 gacctctaca ctctgagcag ctcagtgact gtccctcca gcacctggcc cagcgagacc
 601 gtcacctgca acgttgccca cccggccagc agcaccaagg tggacaagaa aattgtgccc
 661 agggattgtg gttgtaagcc ttgcatatgt acagtcccag aagtatcatc tgtcttcatc
 721 ttccccccaa agcccaagga tgtgctcacc attactctga ctcctaaggt cacgtgtgtt
 781 gtggtagaca tcagcaagga tgatcccgag gtccagttca gctggtttgt agatgatgtg
 841 gaggtgcaca cagctcagac gcaaccccgg gaggagcagt tcaacagcac tttccgctca
 901 gtcagtgaac ttcccatcat gcaccaggac tggctcaatg gcaaggagtt caaatgcagg
 961 gtcaacagtg cagctttccc tgccccatc gagaaaacca tctccaaaac caaaggcaga
1021 ccgaaggctc cacaggtgta caccattcca cctcccaagg agcagatggc caaggataaa
1081 gtcagtctga cctgcatgat aacagacttc ttccctgaag acattactgt ggagtggcag
1141 tggaatgggc agccagcgga gaactacaag aacactcagc ccatcatgga cacagatggc
1201 tettaetteg tetacageaa geteaatgtg cagaagagea actgggagge aggaaataet
1261 ttcacctqct ctqtqttaca tqaqqqcctq cacaaccacc atactqaqaa qaqcctctcc
1321 cactctcctg gtaaa
```

Secuencia de proteínas que define la secuencia completa de la cadena pesada (región variable de la cadena pesada y región constante de la IgG1) de 17B11 (SEQ ID NO: 124)

```
1 qvtlkesgpg ilqpsqtlsl tcsfsgfsls tsgmgvswir qpsgkglewl ahndwdddkr 61 yksslksrlt iskdtsrnqv flkitsvdta dtatyycarr vgglegyfdy wgqgttltvs 121 sakttppsvy plapgsaaqt nsmvtlgclv kgyfpepvtv twnsgslssg vhtfpavlqs 181 dlytlsssvt vpsstwpset vtcnvahpas stkvdkkivp rdcgckpcic tvpevssvfi 241 fppkpkdvlt itltpkvtcv vvdiskddpe vqfswfvddv evhtaqtqpr eeqfnstfrs 301 vselpimhqd wlngkefkcr vnsaafpapi ektisktkgr pkapqvytip ppkeqmakdk 361 vsltcmitdf fpeditvewq wngqpaenyk ntqpimdtdg syfvysklnv qksnweagnt 421 ftcsvlheql hnhhteksls hspqk
```

20

Secuencia de ácidos nucleicos que codifica la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 17B11 (SEQ ID NO: 125)

```
1 gacattgtgc tgacacagtc tectgettec ttagetgtat etetggggca gagggecace 61 ateteatgca gggccageca aagtgteagt acatetaggt ttagttatat geactggtte 121 caacagaaac caggacaggc acceaaacte eteatgagt atgeatecaa eetagaatet 181 ggggteectg eeaggtteag tggeagtggg tetgggacag actteacect eaacatecat 241 eetgtggagg gggggatac tgeaacatat taetgteage acagttggga gatteegtac 301 acgtteggag gggggaceaa getggaaata aaacgggetg atgetgeace aactgtatec 361 atetteecae eatecagtga geagttaaca tetggaggtg eeteagtegt gtgettettg 421 aacaacttet accecaaaga eateaatgte aagtggaaga ttgatggeag tgaacgacaa 481 aatggegtee tgaacagttg gactgateag gacageaaag acageaceta eageatgage 541 ageacectea egttgaceaa ggacgagtat gaacgacata acageatata etgtgaggec 601 acteacaaga eateaactte acceattgte aagagettea acaggaatga gtgt
```

5

Secuencia de proteínas que define la secuencia completa de la cadena ligera (región variable y región constante de la cadena kappa) de 17B11 (SEP ID NO: 126)

```
1 divltqspas lavslgqrat iscrasqsvs tsrfsymhwf qqkpgqapkl likyasnles
61 gvparfsgsg sgtdftlnih pvegedtaty ycqhsweipy tfgggtklei kradaaptvs
121 ifppsseqlt sggasvvcfl nnfypkdinv kwkidgserq ngvlnswtdq dskdstysms
181 stltltkdey erhnsytcea thktstspiv ksfnrnec
```

10

La **Tabla 5** muestra la correspondencia entre las secuencias completas de los anticuerpos analizados en este Ejemplo con los presentados en la Lista de secuencias.

Tabla 5

SEQ ID NO.	Ácido nucleico o proteína
99	01G06_Variable pesada + Constante de la IgG1-ácido nucleico
100	01G06_Variable pesada + Constante de la IgG1-proteína
101	01G06_Variable kappa + Constante-ácido nucleico
102	01G06_Variable kappa + Constante-proteína
103	03G05 Variable pesada + Constante de la IgG1-ácido nucleico
104	03G05 Variable pesada + Constante de la IgG1-proteína
105	03G05 Variable kappa + Constante-ácido nucleico
106	03G05 Variable kappa + Constante-proteína
107	04F08 Variable pesada + Constante de la IgG1-ácido nucleico
108	04F08 Variable pesada + Constante de la IgG1-proteína
109	04F08 Variable kappa + Constante-ácido nucleico
110	04F08 Variable kappa + Constante-proteína
111	06C11 Variable pesada + Constante de la IgG1-ácido nucleico
112	06C11 Variable pesada + Constante de la IgG1-proteína
113	06C11 Variable kappa + Constante-ácido nucleico
114	06C11 Variable kappa + Constante-proteína
115	08G01 Variable pesada + Constante de la IgG2b-ácido nucleico
116	08G01 Variable pesada + Constante de la IgG2b-proteína
117	08G01 Variable kappa + Constante-ácido nucleico
118	08G01 Variable kappa + Constante-proteína

(continuación)

SEQ ID NO.	Ácido nucleico o proteína
119	14F11 Variable pesada + Constante de la IgG1-ácido nucleico
120	14F11 Variable pesada + Constante de la IgG1-proteína
121	14F11 Variable kappa + Constante-ácido nucleico
122	14F11 Variable kappa + Constante-proteína
123	17B11 Variable pesada + Constante de la IgG1-ácido nucleico
124	17B11 Variable pesada + Constante de la IgG1-proteína
125	17B11 Variable kappa + Constante-ácido nucleico
126	17B11 Variable kappa + Constante-proteína

Ejemplo 8: Afinidades de unión

Las afinidades de unión y las cinéticas de la unión de los anticuerpos al GDF15 humano recombinante marcado con 6X His (SEQ ID NO: 266) (His-rhGDF15 (R&D Systems, Inc.)), al GDF15 humano recombinante sin marcar (rhGDF15 (Peprotech, Rocky Hill, NJ) y al GDF15 humano recombinante producido bien como una Fc de ratón fusionada al GDF15 humano (mFc-rhGDF15) o bien como una versión en la que la Fc se eliminó enzimáticamente (rhGDF15 escindido) se midieron mediante una resonancia de plasmón superficial, usando un instrumento Biacore® T100 (GE Healthcare, Piscataway, NJ).

10

Las IgG de conejo anti-ratón (GE Healthcare) se inmovilizaron en chips sensores CM4 de dextrano carboximetilado (GE Healthcare) mediante un acoplamiento de amina, según un protocolo convencional. Los análisis se realizaron a 37 °C usando PBS que contiene tensioactivo P20 al 0,05% como tampón de ejecución. Los anticuerpos se capturaron en celdas de flujo individuales a un caudal de 10 μl/minuto. El tiempo de inyección se modificó para cada anticuerpo, para producir una Rmáx de entre 30 y 60 UR. Se inyectaron 250 μg/ml de Fc de ratón (Jackson ImmunoResearch, West Grove, PA) a 30 μl/minuto durante 120 segundos para bloquear la unión no específica de los anticuerpos de captura a la porción Fc de ratón de la proteína recombinante GDF15 cuando fue necesario. Se inyectaron secuencialmente tampón, mFc-rhGDF15, rhGDF15 escindido, His-rhGDF15 o rhGDF15 diluidos en tampón de ejecución sobre una superficie de referencia (sin anticuerpo capturado) y la superficie activa (el anticuerpo que se va a analizar) durante 240 segundos a 60 μl/minuto. La fase de disociación se monitorizó durante hasta 1.500 segundos. Después, la superficie se regeneró con dos inyecciones de 60 segundos de glicina-HCl 10 mM, a pH 1,7, a un caudal de 30 μl/minuto. El intervalo de concentración del GDF15 analizado era de entre 30 nM y 0,625 nM.

25

20

Los parámetros cinéticos se determinaron usando la función cinética del programa informático BIAevaluation (GE Healthcare) con una resta de referencia doble. Se determinaron los parámetros cinéticos de cada anticuerpo, k_a (constante de velocidad de asociación), k_d (constante de velocidad de disociación) y K_D (constante de velocidad de disociación en equilibrio). Los valores cinéticos de los anticuerpos monoclonales en mFc-rhGDF15, rhGDF15 escindido, His-rhGDF15 o rhGDF15 se resumen en las **Tablas 6, 7, 8** y **9,** respectivamente.

30

Tabla 6

i abia 6						
Unión	Unión del anticuerpo a la mFc-rhGDF15					
Anticuerpo	Anticuerpo k _a (1/Ms) k _d (1/s) K _d (M)					
01G06	5,6E+06	7,0E-04	2,1E-10	7		
03G05	1,0E+07	6,4E-04	6,9E-11	3		
04F08	3,6E+06	6,4E-04	1,9E-10	3		
06C11	4,5E+06	6,8E-04	1,7E-10	5		
08G01	6,0E+06	1,1E-03	1,9E-10	4		
14F11	1,7E+06	3,3E-04	2,2E-10	4		
17B11	3,7E+06	5,1E-04	1,4E-10	3		

Los datos de la **Tabla 6** muestran que los anticuerpos se unen a la mFc-rhGDF15 con una K_D de aproximadamente 250 pM o menos, 200 pM o menos, 150 pM o menos, 100 pM o menos, 75 pM o menos o 50 pM o menos.

35

Los valores cinéticos de los anticuerpos monoclonales en rhGDF15 escindido se resumen en la Tabla 7.

Tabla 7

Unión del anticuerpo al rhGDF15 escindido					
Anticuerpo k _a (1/Ms) k _d (1/s) K _d (M) n					
01G06	7,5E+06	8,6E-04	1,1E-10	1	
06C11	1,2E+07	2,0E-03	1,7E-10	2	
14F11	5,7E+06	6,0E-04	1,1E-10	1	

Los datos de la **Tabla 7** muestran que los anticuerpos 01G06, 06C11 y 14F11 se unen al rhGDF15 escindido con una K_D de aproximadamente 200 pM o menos, 150 pM o menos o 100 pM o menos.

Los valores cinéticos de los anticuerpos monoclonales en His-rhGDF15 se resumen en la Tabla 8.

Tabla 8

Unión del anticuerpo al His-rhGDF15					
Anticuerpo	k _a (1/Ms)	k _d (1/s)	K _d (M)	n	
01G06	1,4E+07	1,1E-03	8,1E-11	2	
06C11	2,9E+07	1,5E-03	5,1E-11	2	
14F11	4,4E+06	4,2E-04	9,6E-11	1	

Los datos de la **Tabla 8** muestran que los anticuerpos 01G06, 06C11 y 14F11 se unen al His-rhGDF15 con una K_D de aproximadamente 150 pM o menos, 100 pM o menos, 75 pM o menos o 50 pM o menos.

Los valores cinéticos de los anticuerpos monoclonales en rhGDF15 se resumen en la Tabla 9.

Tabla 9

Unión del anticuerpo al rhGDF15					
Anticuerpo	ka (1/Ms)	k _d (1/s)	K _d (M)	n	
01G06	2,1E+07	1,9E-03	9,3E-11	1	
06C11	2,2E+07	4,6E-03	2,1E-10	1	
14F11	3,1E+07	2,2E-03	7,1E-11	1	

15

25

30

40

Los datos de la **Tabla 9** muestran que los anticuerpos 01G06, 06C11 y 14F11 se unen al rhGDF15 con una K_D de aproximadamente 250 pM o menos, 200 pM o menos, 150 pM o menos, 100 pM o menos, 75 pM o menos o 50 pM o menos.

20 Ejemplo 9: Reversión de la caquexia en un modelo inducido por mFc-rhGDF15

Este Ejemplo muestra la reversión de la caquexia (indicada por la pérdida de peso corporal) por el anticuerpo 01G06, 03G05, 04F08, 06C11, 14F11 o 17B11 en un modelo inducido por mFc-rhGDF15. Se administró subcutáneamente mFc-rhGDF15 ($2\,\mu g/g$) en el costado de ratones ICR-SCID hembra de 8 semanas de edad. El peso corporal se midió diariamente. Cuando el peso corporal alcanzó el 93 %, los ratones se dividieron aleatoriamente en siete grupos de diez ratones cada uno. Cada grupo recibió uno de los siguientes tratamientos: IgG murina de control, 01G06, 03G05, 04F08, 06C11, 14F11 o 17B11 a 10 mg/kg. El tratamiento se administró una vez mediante una inyección intraperitoneal. El tratamiento con el anticuerpo 01G06, 03G05, 04F08, 06C11, 14F11 o 17B11 dio como resultado un aumento en el peso corporal con respecto al peso inicial o aproximadamente del 100 % (p < 0,001) (**FIG. 14** y **Tabla** 10).

Tabla 10

	Tratamiento			
Gr.	Agente	mg/kg	% de peso corporal	Análisis ANOVA (en comparación con la mlgG)
1	mlgG	10	77,1	ND
2	01G06	10	94,1	P < 0,001
3	03G05	10	95,1	P < 0,001
4	04F08	10	95,8	P < 0,001
5	06C11	10	93,8	P < 0,001
7	14F11	10	95,4	P < 0,001
8	17B11	10	92.8	P < 0.001

Los datos de la **FIG. 14** y de la **Tabla 10** indican que los anticuerpos anti-GDF15 divulgados pueden revertir la caquexia en un modelo de ratón inducida por mFc-rhGDF15 (es decir, un modelo de ratón no portador de tumor).

Ejemplo 10: Reversión de la caquexia en un modelo de xenoinjerto tumoral HT-1080

Este Ejemplo muestra la reversión de la caquexia (indicada por la pérdida de peso corporal) por el anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11 en un modelo de xenoinjerto de fibrosarcoma HT-1080. Se cultivaron células HT-1080 en un cultivo a 37 °C en una atmósfera que contiene un 5 % de CO₂, usando medio esencial mínimo de Eagle (ATCC, nº de catálogo 30-2003) que contiene FBS al 10 %. Las células se inocularon subcutáneamente en el costado de ratones ICR SCID hembra de 8 semanas de edad con 5 x 10⁶células por ratón en matrigel al 50 %. El peso corporal se midió diariamente. Cuando el peso corporal alcanzó el 93 %, los ratones se

dividieron aleatoriamente en ocho grupos de diez ratones cada uno. Cada grupo recibió uno de los siguientes tratamientos: IgG murina de control, 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11 a 10 mg/kg. El tratamiento se administró cada tres días mediante una inyección intraperitoneal. El tratamiento con el anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11 dio como resultado un aumento en el peso corporal con respecto al peso inicial o aproximadamente del 100 % (p < 0,001) (**FIG. 15** y **Tabla 11**).

Tabla 11

	Tratamiento		% de peso	Análisis ANOVA (en comparación con
Gr.	Agente	mg/kg	corporal	la mlgG)
1	mlgG	10	81,4	ND
2	01G06	10	103,3	P < 0,001
3	03G05	10	106,1	P < 0,001
4	04F08	10	104,3	P < 0,001
5	06C11	10	106,6	P < 0,001
6	08G01	10	105,3	P < 0,001
7	14F11	10	99,6	P < 0,001
8	17B11	10	103,7	P < 0,001

Los datos de la **FIG. 15** y de la **Tabla 11** indican que los anticuerpos anti-GDF15 divulgados pueden revertir la caquexia en un modelo de xenoinjerto de fibrosarcoma HT-1080.

Se realizaron estudios adicionales con el anticuerpo 01G06 para demostrar la reversión de la caquexia en este modelo de ratón. Se cultivaron células HT-1080 y se inocularon subcutáneamente en el costado de ratones ICR-SCID hembra de 8 semanas de edad como se describe más arriba. Cuando el peso corporal alcanzó el 93 %, los ratones se dividieron aleatoriamente en dos grupos de diez ratones cada uno. Cada grupo recibió uno de los siguientes tratamientos: IgG murina de control o 01G06 a 10 mg/kg. El tratamiento se administró una vez mediante una inyección intraperitoneal. Como se muestra en la **FIG. 16A**, el tratamiento con el anticuerpo 01G06 dio como resultado un aumento en el peso corporal con respecto al peso inicial o el 100 % (p < 0,001) (**FIG. 16A**).

15

30

45

50

- 20 El consumo de alimentos se determinó pensando la comida suministrada proporcionada diariamente a los ratones (**FIG. 16B**). Se observó un aumento significativo en el consumo de alimentos en el grupo tratado con 01G06 durante los primeros tres días después del tratamiento. Después de ese tiempo, no se observó ningún cambio significativo en comparación con el grupo de control (mlgG).
- El consumo de agua se determinó pesando el suministro de agua proporcionado diariamente a los ratones. No se observó ningún cambio significativo en el consumo de agua entre los grupos.

En este experimento, se sacrificó un grupo de diez ratones en el momento de la administración (situación inicial o 93 % de peso corporal, sin tratamiento) y al final del estudio (siete días después de la administración, con mlgG o con 01G06). La grasa gonadal y el los músculos gastrocnemios se extrajeron quirúrgicamente y se pesaron como se describe más arriba en el Ejemplo 4, y los tejidos se congelaron instantáneamente en nitrógeno líquido. Se aisló el ARN de las muestras de músculo gastrocnemio para determinar los niveles de ARNm de mMuRF1 y de mAtrogina mediante una RT-PCR, como se describe en el Ejemplo 4.

Como se muestra en la **FIG. 16C**, se observó una reducción significativa en la masa grasa gonadal siete días después de la administración de mlgG, pero no en el grupo tratado con el anticuerpo 01G06. Además, los ratones tratados con mlgG mostraron una pérdida significativa del músculo gastrocnemio en comparación con el grupo de la situación inicial, mientras que el grupo de ratones tratados con el anticuerpo 01G06, no (**FIG. 16D**). Además, los niveles de los marcadores de degradación muscular, mMuRF1 y mAtrogina, eran significativamente mayores en el grupo con mlgG en comparación con el grupo con 01G06 (**FIG. 16E**).

Estos resultados indican que los anticuerpos anti-GDF 15 divulgados pueden revertir la caquexia medida por la pérdida de masa muscular, la pérdida de grasa y la pérdida involuntaria de peso en un modelo de xenoinjerto tumoral HT-1080.

Ejemplo 11: Reversión de la caquexia en un modelo de xenoinjerto tumoral HT-1080

Este Ejemplo muestra la reversión de la caquexia (indicada por la pérdida de peso corporal) por el anticuerpo 01G06 en un modelo de xenoinjerto de fibrosarcoma HT-1080. Se cultivaron células HT-1080 en un cultivo a 37 °C en una atmósfera que contiene un 5 % de CO₂, usando medio esencial mínimo de Eagle (ATCC, nº de catálogo 30-2003) que contiene FBS al 10 %. Las células se inocularon subcutáneamente en el costado de ratones ICR SCID hembra de 8 semanas de edad con 5 x 10⁶células por ratón en matrigel al 50 %. El peso corporal se midió diariamente. Cuando el peso corporal alcanzó el 80 %, los ratones se dividieron aleatoriamente en dos grupos de cinco ratones cada uno. Cada grupo recibió uno de los siguientes tratamientos: IgG murina de control, 01G06 administrado a

2 mg/kg el día 1 y el día 7. El tratamiento se administró mediante una inyección intraperitoneal. El tratamiento con el anticuerpo 01G06 dio como resultado un aumento en el peso corporal con respecto al peso inicial o aproximadamente el 100 % (p < 0,001) (FIG. 17A y Tabla 12).

Tabla 12

	Tratan	niento	% de peso	Análisis ANOVA (en comparación con
Gr.	Agente	mg/kg	corporal	la mlgG)
1	mlgG	2	66,4	ND
2	01G06	2	97,16	P < 0,001

Los datos de las **FIGS. 17A-B** y la **Tabla 12** indican que los anticuerpos anti-GDF15 divulgados pueden revertir la caquexia en un modelo de xenoinjerto de fibrosarcoma HT-1080.

En este experimento, se sacrificó un grupo de cinco ratones en el momento de la administración (situación inicial u 80 % de peso corporal pérdida, sin tratamiento) y al final del estudio (siete días después de la administración, con mlgG o con 01G06). El hígado, el corazón, el bazo, el riñón, la grasa gonadal y los músculos gastrocnemios se extrajeron quirúrgicamente y se pesaron. Como se muestra en la **FIG. 17B**, se observó una pérdida significativa en la masa del hígado, el corazón, el bazo, el riñón, la grasa gonadal y el músculo gastrocnemio siete días después de la administración de la mlgG, pero no en el grupo tratado con el anticuerpo 01G06. Además, los ratones tratados con el anticuerpo 01G06 mostraron una ganancia significativa de músculo, hígado y gonadal en comparación con el grupo de la situación inicial (**FIG. 17B**).

Estos resultados indican que los anticuerpos anti-GDF 15 divulgados pueden revertir la caquexia medida por la pérdida de masa del órgano clave, la pérdida de masa muscular, la pérdida de grasa y la pérdida involuntaria de peso en un modelo de xenoinjerto tumoral HT-1080.

Ejemplo 12: Reversión de la caquexia en un modelo de xenoinjerto tumoral K-562

Este Ejemplo muestra la reversión de la caquexia (indicada por la pérdida de peso corporal) por el anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11 en un modelo de xenoinjerto de leucemia K-562. Se cultivaron células K-562 en un cultivo a 37 °C en una atmósfera que contiene un 5 % de CO₂, usando medio de Dulbecco modificado por Iscove (nº de catálogo de la ATCC 30-2005) que contiene FBS al 10 %. Las células se inocularon subcutáneamente en el costado de ratones CB17SCRFMF hembra de 8 semanas de edad con 2,5 x 10ºcélulas por ratón en matrigel al 50 %. El peso corporal se midió diariamente. Cuando el peso corporal alcanzó el 93 %, los ratones se distribuyeron aleatoriamente en ocho grupos de diez ratones cada uno. Cada grupo recibió uno de los siguientes tratamientos: IgG murina de control, 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11 a 10 mg/kg. El tratamiento se administró cada tres días mediante una inyección intraperitoneal. El tratamiento con el anticuerpo 01G06, 03G05, 04F08, 06C11, 08G01, 14F11 o 17B11 dio como resultado un aumento en el peso corporal con respecto al peso inicial o aproximadamente del 100 % (p < 0.001) (FIG. 18 y Tabla 13).

Tabla 13

	Tratamiento		% de peso	Análisis ANOVA (en comparación con
Gr.	Agente	mg/kg	corporal	la mlgG)
1	mlgG	10	90,4	ND
2	01G06	10	106,5	P < 0,001
3	03G05	10	109,8	P < 0,001
4	04F08	10	108,9	P < 0,001
5	06C11	10	109,5	P < 0,001
6	08G01	10	107,2	P < 0,001
7	14F11	10	107,0	P < 0,001
8	17B11	10	105,3	P < 0,001

Los datos de la **FIG. 18** y de la **Tabla 13** indican que los anticuerpos anti-GDF15 divulgados pueden revertir la caquexia en un modelo de xenoinjerto tumoral K-562.

Ejemplo 13: Modelos de xenoinjerto tumoral adicionales

El anticuerpo 01G06 se analizó en modelos adicionales de xenoinjerto tumoral que incluyen el modelo de xenoinjerto de ovario TOV-21G y el modelo de xenoinjerto de colon LS1034. En cada modelo, el anticuerpo 01G06 revertió la pérdida de peso corporal en comparación con un control de PBS (p < 0,001 para el modelo TOV-21G y p < 0,01 para el modelo LS1034).

Ejemplo 14: Humanización de los anticuerpos anti-GDF15

50

Este Ejemplo describe la humanización y la quimerización de tres anticuerpos murinos, denominados 01G06, 06C11 y 14F11, y la caracterización de los anticuerpos humanizados resultantes. Se diseñaron los anticuerpos anti-GDF15 humanizados los anticuerpos, madurados por afinidad mediante una mutagénesis dirigida de la CDR y optimizados usando métodos conocidos en la técnica. Las secuencias de aminoácidos se convirtieron en secuencias de ADN con codones optimizados y se sintetizaron para incluir (en el siguiente orden): un sitio de restricción HindIII en 5', una secuencia consenso Kozak, una secuencia de señal amino terminal, una región variable humanizada, una región constante humana de IgG1 o kappa, un codón de terminación y un sitio de restricción 3' EcoRI.

También se construyeron cadenas quiméricas (región variable murina y región constante humana) 01G06, 06C11, y 14F11 pesada (IgG1 humana) y ligera (kappa humana). Para generar los anticuerpos quiméricos, se fusionaron las regiones variables murinas con la región constante humana y se sintetizaron las secuencias de ADN con los codones optimizados, incluyendo (en el siguiente orden): un sitio de restricción HindIII en 5', una secuencia consenso Kozak, una secuencia de señal amino terminal, una región variable de ratón, una región constante humana de IgG1 o kappa, un codón de terminación y un sitio de restricción EcoRI en 3'.

Las cadenas pesadas humanizada y quimérica se subclonaron en pEE6.4 (Lonza, Basilea, Suiza) a través de los sitios HindIII y EcoRI usando una clonación por PCR In-Fusion™ (Clontech, Mountain View, CA). Las cadenas ligeras kappa humanizada y quimérica se subclonaron en pEE14.4 (Lonza) a través de los sitios HindIII y EcoRI usando una clonación por PCR In-Fusion™.

Las cadenas del anticuerpo humanizado o las cadenas del anticuerpo quimérico se transfectaron temporalmente en células 293T para producir anticuerpo. El anticuerpo bien se purificó, o bien se usó en sobrenadantes de medios de cultivo celular para el posterior análisis *in vitro*. La unión de los anticuerpos quiméricos y humanizados al GDF15 humano se midió como se describe a continuación. Los resultados se resumen en las **Tablas 24-27**.

Cada una de las posibles combinaciones de las regiones variables quiméricas o humanizadas 01G06 de la cadena pesada de la inmunoglobulina y la cadena ligera de una inmunoglobulina se establece a continuación en la **Tabla 14.**

Tabla 14

	1	
Nombre del anticuerpo	Región variable de la cadena ligera	Región variable de la cadena pesada
Hu01G06-1	Ch01G06 kappa quimérica (SEQ ID NO: 76)	Ch01G06 pesada quimérica (SEQ ID NO: 40)
Hu01G06-14	Ch01G06 kappa quimérica (SEQ ID NO: 76)	Hu01G06 IGHV1-18 pesada (SEQ ID NO: 54)
Hu01G06-15	Ch01G06 kappa quimérica (SEQ ID NO: 76)	Hu01G06 IGHV1-69 pesada (SEQ ID NO: 56)
Hu01G06-147	Ch01G06 kappa quimérica (SEQ ID NO: 76)	Sh01G06 IGHV1-18 M69L pesada (SEQ ID NO: 58)
Hu01G06-148	Ch01G06 kappa quimérica (SEQ ID NO: 76)	Sh01G06 IGHV1-18 M69L K64Q G44S pesada (SEQ ID NO: 60)
Hu01G06-149	Ch01G06 kappa quimérica (SEQ ID NO: 76)	Sh01G06 IGHV1-18 M69L K64Q pesada (SEQ ID NO: 62)
Hu01G06-150	Ch01G06 kappa quimérica (SEQ ID NO: 76)	Sh01G06 IGHV1-69 T30S I69L pesada (SEQ ID NO: 64)
Hu01G06-151	Ch01G06 kappa quimérica (SEQ ID NO: 76)	Sh01G06 IGHV1-69 T30S K64Q I69L pesada (SEQ ID NO: 66)
Hu01G06-4	Hu01G06 IGKV1-39 kappa (SEQ ID NO: 90)	Ch01G06 pesada quimérica (SEQ ID NO: 40)
Hu01G06-46	Hu01G06 IGKV1-39 kappa (SEQ ID NO: 90)	Hu01G06 IGHV1-18 pesada (SEQ ID NO: 54)
Hu01G06-52	Hu01G06 IGKV1-39 kappa (SEQ ID NO: 90)	Hu01G06 IGHV1-69 pesada (SEQ ID NO: 56)
Hu01G06-100	Hu01G06 IGKV1-39 kappa (SEQ ID NO: 90)	Sh01G06 IGHV1-18 M69L pesada (SEQ ID NO: 58)
Hu01G06-102	Hu01G06 IGKV1-39 kappa (SEQ ID NO: 90)	Sh01G06 IGHV1-18 M69L K64Q G44S pesada (SEQ ID NO: 60)
Hu01G06-101	Hu01G06 IGKV1-39 kappa (SEQ ID NO: 90)	Sh01G06 IGHV1-18 M69L K64Q pesada (SEQ ID NO: 62)
Hu01G06-103	Hu01G06 IGKV1-39 kappa (SEQ ID NO: 90)	Sh01G06 IGHV1-69 T30S I69L pesada (SEQ ID NO: 64)
Hu01G06-104	Hu01G06 IGKV1-39 kappa (SEQ ID NO: 90)	Sh01G06 IGHV1-69 T30S K64Q I69L pesada (SEQ ID NO: 66)

30

10

15

20

(continuación)

	(continuació	,
Nombre del anticuerpo	Región variable de la cadena ligera	Región variable de la cadena pesada
Hu01G06-152	Hu01G06 IGKV1-39 S43A V48I kappa	Ch01G06 pesada quimérica (SEQ ID NO: 40)
11001000-132	(SEQ ID NO: 92)	Chordoo pesada quimenca (SEQ ID NO. 40)
Hu01G06-71	Hu01G06 IGKV1-39 S43A V48I kappa	Hu01G06 IGHV1-18 pesada (SEQ ID NO: 54)
1100100071	(SEQ ID NO: 92)	The race fair is to possed (GEQ 15 No. 61)
Hu01G06-77	Hu01G06 IGKV1-39 S43A V48I kappa	Hu01G06 IGHV1-69 pesada (SEQ ID NO: 56)
	(SEQ ID NO: 92)	
Hu01G06-110	Hu01G06 IGKV1-39 S43A V48I kappa	Sh01G06 IGHV1-18 M69L pesada (SEQ ID NO:
	(SEQ ID NO: 92)	58)
Hu01G06-112	Hu01G06 IGKV1-39 S43A V48I kappa	Sh01G06 IGHV1-18 M69L K64Q G44S pesada
	(SEQ ID NO: 92)	(SEQ ID NO: 60)
Hu01G06-111	Hu01G06 IGKV1-39 S43A V48I kappa	Sh01G06 IGHV1-18 M69L K64Q pesada (SEQ ID
	(SEQ ID NO: 92)	NO: 62)
Hu01G06-113	Hu01G06 IGKV1-39 S43A V48I kappa	Sh01G06 IGHV1-69 T30S I69L pesada (SEQ ID
	(SEQ ID NO: 92)	NO: 64)
Hu01G06-114	Hu01G06 IGKV1-39 S43A V48I kappa	Sh01G06 IGHV1-69 T30S K64Q I69L pesada
	(SEQ ID NO: 92)	(SEQ ID NO: 66)
Hu01G06-122	Hu01G06 IGKV1-39 S43A V48I kappa	Hu01G06 IGHV1-18 F1 pesada (SEQ ID NO:
	(SEQ ID NO: 92)	246)
Hu01G06-119	Hu01G06 IGKV1-39 S43A V48I kappa	Hu01G06 IGHV1-18 F2 pesada (SEQ ID NO:
	(SEQ ID NO: 92)	248)
Hu01G06-135	Hu01G06 IGKV1-39 S43A V48I kappa	Hu01G06 IGHV1-69 F1 pesada (SEQ ID NO:
	(SEQ ID NO: 92)	250)
Hu01G06-138	Hu01G06 IGKV1-39 S43A V48I kappa	Hu01G06 IGHV1-69 F2 pesada (SEQ ID NO:
	(SEQ ID NO: 92)	252)
Hu01G06-153	Hu01G06 IGKV1-39 V48I kappa (SEQ ID	Ch01G06 pesada quimérica (SEQ ID NO: 40)
	NO: 94)	
Hu01G06-69	Hu01G06 IGKV1-39 V48I kappa (SEQ ID	Hu01G06 IGHV1-18 pesada (SEQ ID NO: 54)
	NO: 94)	
Hu01G06-75	Hu01G06 IGKV1-39 V48I kappa (SEQ ID	Hu01G06 IGHV1-69 pesada (SEQ ID NO: 56)
	NO: 94)	
Hu01G06-105	Hu01G06 IGKV1-39 V48I kappa (SEQ ID	Sh01G06 IGHV1-18 M69L pesada (SEQ ID NO:
11 04 000 407	NO: 94)	58)
Hu01G06-107	Hu01G06 IGKV1-39 V48I kappa (SEQ ID	Sh01G06 IGHV1-18 M69L K64Q G44S pesada
1101.000.100	NO: 94)	(SEQ ID NO: 60)
Hu01G06-106	Hu01G06 IGKV1-39 V48I kappa (SEQ ID	Sh01G06 IGHV1-18 M69L K64Q pesada (SEQ ID
Hu01G06-108	NO: 94) Hu01G06 IGKV1-39 V48I kappa (SEQ ID	NO: 62) Sh01G06 IGHV1-69 T30S I69L pesada (SEQ ID
HUU 1G06-108	NO: 94)	NO: 64)
Hu01G06-109	Hu01G06 IGKV1-39 V48I kappa (SEQ ID	Sh01G06 IGHV1-69 T30S K64Q I69L pesada
Hu01G06-109	NO: 94)	(SEQ ID NO: 66)
Hu01G06-154	Hu01G06 IGKV1-39 F2 kappa (SEQ ID	Ch01G06 pesada quimérica (SEQ ID NO: 40)
11001000-134	NO: 254)	Ono 1000 pesada quimenca (SEQ ID NO. 40)
Hu01G06-155	Hu01G06 IGKV1-39 F2 kappa (SEQ ID	Hu01G06 IGHV1-18 pesada (SEQ ID NO: 54)
11001000 100	NO: 254)	The rade fait in the pessage (OEQ 15 NO. 54)
Hu01G06-156	Hu01G06 IGKV1-39 F2 kappa (SEQ ID	Hu01G06 IGHV1-69 pesada (SEQ ID NO: 56)
1.00.000 100	NO: 254)	(SEQ 15.11. 00 poolada (SEQ 15 110.00)
Hu01G06-157	Hu01G06 IGKV1-39 F2 kappa (SEQ ID	Sh01G06 IGHV1-18 M69L pesada (SEQ ID NO:
1.20.0.00	NO: 254)	58)
Hu01G06-158	Hu01G06 IGKV1-39 F2 kappa (SEQ ID	Sh01G06 IGHV1-18 M69L K64Q G44S pesada
	NO: 254)	(SEQ ID NO: 60)
Hu01G06-159	Hu01G06 IGKV1-39 F2 kappa (SEQ ID	Sh01G06 IGHV1-18 M69L K64Q pesada (SEQ ID
	NO: 254)	NO: 62)
Hu01G06-160	Hu01G06 IGKV1-39 F2 kappa (SEQ ID	Sh01G06 IGHV1-69 T30S I69L pesada (SEQ ID
	NO: 254)	NO: 64)
Hu01G06-161	Hu01G06 IGKV1-39 F2 kappa (SEQ ID	Sh01G06 IGHV1-69 T30S K64Q I69L pesada
	NO: 254)	(SEQ ID NO: 66)
Hu01G06-130	Hu01G06 IGKV1-39 F2 kappa (SEQ ID	Hu01G06 IGHV1-18 F1 pesada (SEQ ID NO:
	NO: 254)	246)
Hu10G06-127	Hu01G06 IGKV1-39 F2 kappa (SEQ ID	Hu01G06 IGHV1-18 F2 pesada (SEQ ID NO:
	NO: 254)	248)

(continuación)

Nombre del anticuerpo	Región variable de la cadena ligera	Región variable de la cadena pesada
Hu01G06-143	Hu01G06 IGKV1-39 F2 kappa (SEQ ID NO: 254)	Hu01G06 IGHV1-69 F1 pesada (SEQ ID NO: 250)
Hu01G06-146	Hu01G06 IGKV1-39 F2 kappa (SEQ ID NO: 254)	Hu01G06 IGHV1-69 F2 pesada (SEQ ID NO: 252)

Cada una de las posibles combinaciones de las regiones variables quiméricas o humanizadas 06C11 de la cadena pesada de la inmunoglobulina y la cadena ligera de una inmunoglobulina se establece a continuación en la Tabla 15.

5

	Tabla 15	
Nombre del anticuerpo	Región variable de la cadena ligera	Región variable de la cadena pesada
Hu06C11-1	Ch06C11 kappa quimérica (SEQ ID NO: 82)	Ch06C11 pesada quimérica (SEQ ID NO: 46)
Hu06C11-7	Ch06C11 kappa quimérica (SEQ ID NO: 82)	HE LM 06C11 IGHV2-70 pesada (SEQ ID NO: 68)
Hu06C11-10	Ch06C11 kappa quimérica (SEQ ID NO: 82)	Hu06C11 IGHV2-5 pesada (SEQ ID NO: 70)
Hu06C11-12	Sh06C11 IGKV1-16 kappa (SEQ ID NO: 96)	Ch06C11 pesada quimérica (SEQ ID NO: 46)
Hu06C11-27	Sh06C11 IGKV1-16 kappa (SEQ ID NO: 96)	HE LM 06C11 IGHV2-70 pesada (SEQ ID NO: 68)
Hu06C11-30	Sh06C11 IGKV1-16 kappa (SEQ ID NO:	Hu06C11 IGHV2-5 pesada (SEQ ID NO: 70)

Cada una de las posibles combinaciones de las regiones variables quiméricas o humanizadas 14F11 de la cadena pesada de la inmunoglobulina y la cadena ligera de una inmunoglobulina se establece a continuación en la Tabla 16.

10

96)

	Tabla 16	
Nombre del anticuerpo	Región variable de la cadena ligera	Región variable de la cadena pesada
Hu14F11-1	Ch14F11 kappa quimérica (SEQ ID NO: 86)	Ch14F11 pesada quimérica (SEQ ID NO: 50)
Hu14F11-14	Ch14F11 kappa quimérica (SEQ ID NO: 86)	Sh14F11 IGHV2-5 pesada (SEQ ID NO: 72)
Hu14F11-15	Ch14F11 kappa quimérica (SEQ ID NO: 86)	Sh14F11 IGHV2-70 pesada (SEQ ID NO: 74)
Hu14F11-11	Hu14F11 IGKV1-16 kappa (SEQ ID NO: 98)	Ch14F11 pesada quimérica (SEQ ID NO: 50)
Hu14F11-39	Hu14F11 IGKV1-16 kappa (SEQ ID NO: 98	Sh14F11 IGHV2-5 pesada (SEQ ID NO: 72)
Hu14F11-47	Hu14F11 IGKV1-16 kappa (SEQ ID NO: 98)	Sh14F11 IGHV2-70 pesada (SEQ ID NO: 74)

Cada una de las posibles combinaciones de las regiones variables quiméricas 04F08, 06C11 y 14F11 de la cadena pesada de una inmunoglobulina y la cadena ligera de una inmunoglobulina se establece a continuación en la Tabla 17.

15

Tabla 17

Ιαρία 17			
Región variable de la cadena ligera	Región variable de la cadena pesada		
04F08 kappa quimérica (SEQ ID NO: 80)	Ch06C11 pesada quimérica (SEQ ID NO: 46)		
04F08 kappa quimérica (SEQ ID NO: 80)	Ch14F11 pesada quimérica (SEQ ID NO: 50)		
Ch06C11 kappa quimérica (SEQ ID NO: 82)	04F08 pesada quimérica (SEQ ID NO: 44)		
Ch06C11 kappa quimérica (SEQ ID NO: 82)	Ch14F11 pesada quimérica (SEQ ID NO: 50)		
Ch14F11 kappa quimérica (SEQ ID NO: 86)	04F08 pesada quimérica (SEQ ID NO: 44)		
Ch14F11 kappa quimérica (SEQ ID NO: 86)	Ch06C11 pesada quimérica (SEQ ID NO: 46)		

Cada una de las posibles combinaciones de las regiones variables quiméricas 01G06 y 08G01 de la cadena pesada de una inmunoglobulina y la cadena ligera de una inmunoglobulina se establece a continuación en la Tabla 18.

Tabla 18

Región variable de la cadena ligera	Región variable de la cadena pesada
Ch01G06 kappa quimérica (SEQ ID NO: 76)	08G01 pesada quimérica (SEQ ID NO: 48)
08G01 kappa quimérica (SEQ ID NO: 84)	Ch01G06 pesada quimérica (SEQ ID NO: 40)

Las secuencias de ácidos nucleicos y las secuencias de la proteína codificada que definen las regiones variables de los anticuerpos quiméricos y humanizados 01G06, 06C11 y 14F11 se resumen a continuación (las secuencias del péptido de señal amino terminal no se muestran). Las secuencias de las CDR (definición de Kabat) se muestran en negrita y están subrayadas en las secuencias de aminoácidos.

Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada quimérica Ch01G06 (SEQ ID NO: 127)

10

5

```
1 gaagtgttgt tgcagcagte agggeeggag ttggtaaaac egggagegte ggtgaaaate 61 eegtgeaaag egteggggta taegtttaeg gactataaca tggattgggt gaaacagteg 121 eatgggaaat egettgaatg gattggteag ateaateega ataatggagg aatettettt 181 aateagaagt ttaaaggaaa agegaegett acagtegata agtegtegaa eaegggtte 241 atggaagtae ggtegettae gteggaagat aeggeggtet attaetgtge gagggaggeg 301 attaegaegg tgggagegat ggaetattgg ggaeaaggga egteggteae ggtategteg
```

Secuencia de proteínas que define la región variable de la cadena pesada quimérica Ch01G06 (SEQ ID NO: 40)

```
1 evllqqsgpe lvkpgasvki pckasgytft <u>dynmd</u>wvkqs hgkslewig<u>q</u> <u>inpnnggiff</u>
61 nqkfkgkatl tvdkssntaf mevrsltsed tavyycarea ittvgamdyw gqgtsvtvss
```

Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Hu01G06 IGHV1-18 (SEQ ID NO: 53)

```
1 caagtgcaac ttgtgcagtc gggtgcggaa gtcaaaaagc cgggagcgtc ggtgaaagta 61 tcgtgtaaag cgtcgggata tacgtttacg gactataaca tggactgggt acgacaggca 121 ccggggaaat cgttggaatg gatcggacag attaatccga acaatggggg aattttcttt 181 aatcagaaat tcaaaggacg ggcgacgttg acggtcgata catcgacgaa tacggcgtat 241 atggaattga ggtcgcttcg ctcggacgat acggcggtct attactgcgc cagggaggcg 301 atcacgacgg taggggcgat ggattattgg ggacagggga cgcttgtgac ggtatcgtcg
```

20

15

Secuencia de proteínas que define la región variable de la cadena pesada Hu01G06 IGHV1-18 (SEQ ID NO: 54)

```
1 qvqlvqsgae vkkpgasvkv sckasgytft <u>dynmd</u>wvrqa pgkslewig<u>q</u> <u>inpnnggiff</u>
61 <u>nqkfkg</u>ratl tvdtstntay melrslrsdd tavyycar<u>ea</u> <u>ittvgamdy</u>w gqgtlvtvss
```

25

Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Hu01G06 IGHV1-69 (SEQ ID NO: 55)

```
1 caagtccage ttgtccagte gggageggaa gtgaagaaae eggggtegte ggtcaaagta 61 tegtgtaaag egtegggata taegtttaeg gactataaca tggattgggt aegacagget 121 eegggaaaat eattggaatg gattggacag attaateega ataatggggg tatettett 181 aateaaaagt ttaaagggag ggegaegttg aeggtggaca aategacaaa taeggegtat 241 atggaattgt egtegetteg gteggaggae aeggeggtgt attaetgege gagggaggeg 301 ateaegaegg teggggegat ggattattgg ggacagggaa egettgtgae ggtategteg
```

30

Secuencia de proteínas que define la región variable de la cadena pesada Hu01G06 IGHV1-69 (SEQ ID NO: 56)

```
1 qvqlvqsgae vkkpgssvkv sckasgytft <u>dynmd</u>wvrqa pgkslewig<u>q</u> <u>inpnnggiff</u>
61 nqkfkgratl tvdkstntay melsslrsed tavyycarea <u>ittvgamdy</u>w gqgtlvtvss
```

35 Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Sh01G06 IGHV1-18 M69L (SEQ ID NO: 57)

```
1 caggtccagc ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc
              61 tegtgeaaag egteggggta taegtttaeg gactataaca tggaetgggt gegeeaageg
             121 cctggacagg gtcttgaatg gatggggcag attaatccga ataatggagg gatcttcttt
             181 aatcagaaat tcaaaggaag ggtaacgctg acgacagaca cgtcaacatc gacggcctat
             241 atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg
             301 attacgacgg tgggagcgat ggattattgg ggacagggga cgttggtaac ggtatcgtcg
    Secuencia de proteínas que define la región variable de la cadena pesada Sh01G06 IGHV1-18 M69L (SEQ ID NO:
    58)
 5
              1 qvqlvqsgae vkkpgasvkv sckasgytft dynmdwvrqa pgqglewmgq inpnnggiff
             61 nqkfkgrvtl ttdtststay melrslrsdd tavyycar<u>ea</u> <u>ittvgamdy</u>w gqgtlvtvss
     Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Sh01G06 IGHV1-18 M69L K64Q
    G44S (SEQ ID NO: 59)
10
               1 caggtccagc ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc
              61 tcqtqcaaaq cqtcqqqqta tacqtttacq qactataaca tqqactqqqt qcqccaaqcq
            121 cctggacaga gccttgaatg gatggggcag attaatccga ataatggagg gatcttcttt
            181 aatcagaaat tccagggaag ggtaacgctg acgacagaca cgtcaacatc gacggcctat
             241 atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg
             301 attacqacqq tqqqaqcqat qqattattqq qqacaqqqqa cqttqqtaac qqtatcqtcq
     Secuencia de proteínas que define la región variable de la cadena pesada Sh01G06 IGHV1-18 M69L K64Q G44S
     (SEQ ID NO: 60)
15
              1 qvqlvqsgae vkkpgasvkv sckasgytft \underline{\text{dynmd}}wvrqa pgqslewmg\underline{\text{q}} \underline{\text{inpnnggiff}}
             61 nqkfqqrvtl ttdtststay melrslrsdd tavyycarea ittvgamdyw gqgtlvtvss
     Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Sh01G06 IGHV1-18 M69L K64Q
    (SEQ ID NO: 61)
20
               1 caggtccage ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc
              61 tcqtqcaaaq cqtcqqqqta tacqtttacq qactataaca tqqactqqqt qcqccaaqcq
             121 cctggacagg gtcttgaatg gatggggcag attaatccga ataatggagg gatcttcttt
            181 aatcagaaat tocagggaag ggtaacgctg acgacagaca cgtcaacatc gacggcctat
             241 atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg
             301 attacgacgg tgggagcgat ggattattgg ggacagggga cgttggtaac ggtatcgtcg
     Secuencia de proteínas que define la región variable de la cadena pesada Sh01G06 IGHV1-18 M69L K64Q (SEQ ID
    NO: 62)
25
             1 qvqlvqsgae vkkpgasvkv sckasgytft \underline{\text{dynmd}}wvrqa pgqglewmg\underline{\text{q}} \underline{\text{inpnnggiff}}
            61 nqkfqgrvtl ttdtststay melrslrsdd tavyycarea ittvgamdyw gqgtlvtvss
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Sh01G06 IGHV1-69 T30S I69L
    (SEQ ID NO: 63)
30
              1 caagtacage ttgtacagte gggageggaa gteaagaaac egggategte ggteaaagtg
             61 tcgtgtaaag cgtcgggata tacgtttagc gactataaca tggattgggt gcgacaagcg
            121 cctgggcagg gacttgaatg gatgggtcag atcaatccga ataatggggg aatctttttc
            181 aatcagaagt ttaaagggag ggtaacgctg acggcggata aaagcacgtc aacggcgtat
            241 atggagttgt cgtcgttgcg gtcggaggac acggcggtct attactgcgc gagggaagcg
            301 attacgacgg tgggagcgat ggattattgg gggcagggaa cgcttgtaac ggtgtcatcg
     Secuencia de proteínas que define la región variable de la cadena pesada Sh01G06 IGHV1-69 T30S I69L (SEQ ID
    NO: 64)
35
              1 qvqlvqsgae vkkpgssvkv sckasgytfs dynmdwvrqa pgqglewmgq inpnnggiff
             61 nqkfkgrvtl tadkststay melsslrsed tavyycarea ittvgamdyw gqgtlvtvss
```

Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Sh01G06 IGHV1-69 T30S K64Q I69L (SEQ ID NO: 65)

```
1 caagtacage ttgtacagte gggageggaa gteaagaaae egggategte ggteaaagtg 61 tegtgtaaag egtegggata taegtttage gactataaea tggattgggt gegacaageg 121 cetgggeagg gacttgaatg gatgggteag ateaateega ataatggggg aatetttte 181 aateagaagt tteaggggag ggtaaegetg aeggeggata aaageaegte aaeggegtat 241 atggagttgt egtegttgeg gteggaggae aeggeggtet attaetgege gagggaageg 301 attaegaegg tgggagegat ggattattgg gggeagggaa egettgtaae ggtgteateg
```

5

10

15

20

25

35

Secuencia de proteínas que define la región variable de la cadena pesada Sh01G06 IGHV1-69 T30S K64Q I69L (SEQ ID NO: 66)

```
1 qvqlvqsgae vkkpgssvkv sckasgytfs <u>dynmd</u>wvrqa pgqglewmg<u>q</u> <u>inpnnggiff</u>
61 <u>nqkfqg</u>rvtl tadkststay melsslrsed tavyycar<u>ea</u> <u>ittvgamdy</u>w gqgtlvtvss
```

<u>Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Hu01G06 IGHV1-18 F1</u> (SEQ ID NO: 245)

```
1 caggtccage ttgtgcaate gggagcggaa gtgaagaaac cgggagcgte ggtaaaagte 61 tegtgcaaag cgteggggta tacgtttacg gactataaca tggactgggt gcgccaagcg 121 cetggacaga gcettgaatg gatggggcag attaateegt acaateacet gatettett 181 aatcagaaat tecagggaag ggtaacgetg acgacagaca cgtcaacate gacggeetat 241 atggaattge ggtegttgeg atcagatgat acggeggtet actattgtge gagggaggeg 301 attacgacgg tgggagcgat ggattattgg ggacagggga egttggtaac ggtategteg
```

Secuencia de proteínas que define la región variable de la cadena pesada Hu01G06 IGHV1-18 F1 (SEQ ID NO: 246)

```
1 qvqlvqsgae vkkpgasvkv sckasgytft <u>dynmd</u>wvrqa pgqslewmg<u>q</u> <u>inpynhliff</u>
61 <u>nqkfqg</u>rvtl ttdtststay melrslrsdd tavyycar<u>ea</u> <u>ittvgamdy</u>w gqgtlvtvss
```

Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Hu01G06 IGHV1-18 F2 (SEQ ID NO: 247)

```
1 caggtccagc ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc 61 tcgtgcaaag cgtcggggta tacgtttacg gactataaca tggactgggt gcgccaagcg 121 cctggacaga gccttgaatg gatggggcag attaatccga ataatggact gatcttcttt 181 aatcagaaat tccagggaag ggtaacgctg acgacagaca cgtcaacatc gacggcctat 241 atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg 301 attacgacgg tgggagcgat ggattattgg ggacagggga cgttggtaac ggtatcgtcg
```

Secuencia de proteínas que define la región variable de la cadena pesada Hu01G06 IGHV1-18 F2 (SEQ ID NO: 248)

```
1 qvqlvqsgae vkkpgasvkv sckasgytft dynmdwvrqa pgqslewmgq inpnngliff
61 nqkfqgrvtl ttdtststay melrslrsdd tavyycarea ittvgamdyw gqgtlvtvss
```

30 <u>Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Hu01G06 IGHV1-69 FI</u> (SEQ ID NO: 249)

```
1 caagtacagc ttgtacagtc gggagcggaa gtcaagaaac cgggatcgtc ggtcaaagtg 61 tcgtgtaaag cgtcgggata tacgtttagc gactataaca tggattgggt gcgacaagcg 121 cctgggcagg gacttgaatg gatgggtcag atcaatccga ataatgggct gatcttttc 181 aatcagaagt ttaaagggag ggtaacgctg acggcggata aaagcacgtc aacggcgtat 241 atggagttgt cgtcgttgcg gtcggaggac acggcggtat attactgcgc gagggaagcg 301 attacgacgg tgggagcgat ggattattgg gggcagggaa cgcttgtaac ggtgtcatcg
```

Secuencia de proteínas que define la región variable de la cadena pesada Hu01G06 IGHV1-69 FI (SEQ ID NO: 250)

```
1 qvqlvqsgae vkkpgssvkv sckasgytfs dynmdwvrqa pgqglewmgq inpnngliff
             61 nqkfkgrvtl tadkststay melsslrsed tavyycarea ittvgamdyw gqgtlvtvss
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Hu01G06 IGHV1-69 F2 (SEQ ID
    NO: 251)
 5
             1 caagtacage ttgtacagte gggageggaa gtcaagaaac egggategte ggtcaaagtg
             61 tcgtgtaaag cgtcgggata tacgtttagc gactataaca tggattgggt gcgacaagcg
           121 cctgggcagg gacttgaatg gatgggtcag atcaatccgt acaatcacct gatctttttc
           181 aatcagaagt ttaaagggag ggtaacgctg acggcggata aaagcacgtc aacggcgtat
           241 atggagttgt cgtcgttgcg gtcggaggac acggcggtct attactgcgc gagggaagcg
           301 attacgacgg tgggagcgat ggattattgg gggcagggaa cgcttgtaac ggtgtcatcg
    Secuencia de proteínas que define la región variable de la cadena pesada Hu01G06 IGHV1-69 F2 (SEQ ID NO: 252)
              1 qvqlvqsgae vkkpgssvkv schasgytfs \underline{\textbf{dynmd}}wvrqa pgqglewmg\underline{\textbf{q}} \underline{\textbf{inpynhliff}}
             61 nqkfkqrvtl tadkststay melsslrsed tavyycarea ittvgamdyw gqgtlvtvss
10
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada quimérica Ch06C11 (SEQ ID NO:
    129)
              1 caggtgacac tcaaagaatc aggacccgga atccttcagc ccagccagac cttgtcgctg
             61 acttgttcgt tctccggttt cagcctgaat acttatggga tgggtgtgtc atggatcagg
            121 caaccgtccg ggaaaggatt ggagtggctc gcgcacatct actgggacga tgacaaacgc
            181 tacaatcctt cgctgaagag ccgattgacg atttccaagg atgcctcgaa caaccgggta
            241 tttcttaaga tcacqtcqqt cqatacqqca qacacqqcqa cctattactq cqcccaaaqa
            301 gggtacgatg actattgggg atattggggc caggggacac tcgtcacaat ttcagct
15
    Secuencia de proteínas que define la región variable de la cadena pesada quimérica Ch06C11 (SEQ ID NO: 46)
              1 qvtlkesgpg ilqpsqtlsl tcsfsgfsln tygmgvswir qpsgkglewl ahiywdddkr
             61 ynpslksrlt iskdasnnrv flkitsvdta dtatyycaqr gyddywgywg qgtlvtisa
20
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada HE LM 06C11 IGHV2-70 (SEQ
    ID NO: 67)
              1 caggtgactt tgaaagaatc cggtcccgca ttggtaaagc caacccagac acttacgctc
             61 acatgtacat tttccggatt cagcttgaac acttacggga tgggagtgtc gtggattcgg
            121 caaceteegg ggaaggetet ggagtggetg gegeacatet aetgggatga tgacaaaagg
            181 tataacccct cacttaaaac gagactgacg atctcgaagg acacaagcaa gaatcaggtc
            241 gtectcacga ttacgaatgt agacceggtg gatactgeeg tetattactg egegeaacge
            301 gggtatgatg actactgggg atattggggt cagggcaccc tcgtgaccat ctcgtca
25
    Secuencia de proteínas que define la región variable de la cadena pesada HE LM 06C11 IGHV2-70 (SEQ ID NO: 68)
              1 qvtlkesgpa lvkptqtltl tctfsgfsln tygmgvswir qppgkalewl ahiywdddkr
             61 ynpslktrlt iskdtsknav vltitnvdpv dtavyycaar gyddywgywg agtlvtiss
30
    Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Hu06C11 IGHV2-5 (SEQ ID NO:
    69)
              1 caagtaacgc tcaaggagtc cggacccacc ttggtgaagc cgacgcagac cttgactctt
             61 acgtgcactt tctcggggtt ttcactgaat acgtacggga tgggtgtctc atggatcagg
            121 caacctccgg ggaaaggatt ggaatggctg gcgcacatct actgggatga cgataagaga
            181 tataacccaa gcctcaagtc gcggctcacc attacaaaag atacatcgaa aaatcaggtc
            241 gtacttacta tcacgaacat ggaccccgtg gacacagcaa catattactg tgcccagcgc
            301 ggctatgacg attattgggg ttactgggga cagggaacac tggtcacggt gtccagc
```

Secuencia de proteínas que define la región variable de la cadena pesada Hu06C11 IGHV2-5 (SEQ ID NO: 70) 1 qvtlkesgpt lvkptqtltl tctfsgfsln tygmgvswir qppgkglewl ahiywdddkr 61 **ynpslks**rlt itkdtskngv vltitnmdpv dtatyycagr **gyddywgy**wg ggtlvtvss Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada quimérica Ch14F11 (SEQ ID NO: 1 caggicacge tgaaagagte aggiceegga atecticaae ettegeagae attgicacte 61 acatgtteet teteegggtt etegeteteg acttatggea tgggtgtagg atggattegg 121 cagcccageg ggaaggggct tgagtggttg geggatatet ggtgggacga egacaaatac 181 tacaatccga gcctgaagtc ccgcctcacc atttcgaaag atacgtcatc aaacgaagtc 241 tttttgaaga tegecategt ggacaeggeg gataeagega egtattaetg egecagaagg 301 ggacactaca gcgcaatgga ttattgggga caggggacct cggtgactgt gtcgtcc 10 Secuencia de proteínas que define la región variable de la cadena pesada quimérica Ch14F11 (SEQ ID NO: 50) 1 qvtlkesgpg ilqpsqtlsl tcsfsgfsls tygmgvgwir qpsgkglewl adiwwdddky 61 ynpslksrlt iskdtssnev flkiaivdta dtatyycarr ghysamdywg qgtsvtvss Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Sh14F11 IGHV2-5 (SEQ ID NO: 15 71) 1 cagatcactt tgaaagaaag cggaccgacc ttggtcaagc ccacacaaac cctcacgctc 61 acgtgtacat tttcggggtt ctcgctttca acttacggga tgggagtagg gtggattcgc 121 cageegeetg gtaaagegtt ggagtggett geagacatet ggtgggaega egataagtae 181 tataatccct cgctcaagtc cagactgacc atcacgaaag atacgagcaa gaaccaggtc 241 gtgctgacaa tgactaacat ggacccagtg gatacggcta catattactg cgccaggcgg 301 ggtcactact cagcgatgga ttattggggc cagggaacac tggtaacggt gtcgtcc Secuencia de proteínas que define la región variable de la cadena pesada Sh14F11 IGHV2-5 (SEQ ID NO: 72) 20 1 qitlkesgpt lvkptqtltl tctfsgfsls **tygmgvg**wir qppgkalewl a**diwwdddky** 61 **ynpslks**rlt itkdtsknqv vltmtnmdpv dtatyycar**r ghysamdy**wg qgtlvtvss Secuencia de ácidos nucleicos que codifica la región variable de la cadena pesada Sh14F11 IGHV2-70 (SEQ ID NO: 73) 25 1 caagtgacte teaaggagte eggaceegee etggteaaac caaegeagae aetgaegete 61 acatgcacct tcagcggatt ttcgttgtca acgtacggca tgggtgtggg gtggattcgc 121 cagecteegg ggaaageeet tgaatggttg geggacatet ggtgggatga tgacaagtae 181 tataatccct cacttaagtc acggttgacg atctcgaaag acaccagcaa gaaccaggta 241 gtgctgacaa tgactaacat ggacccggtc gatacagcgg tctactattg tgctagaagg 301 ggacactact ccgcaatgga ttattggggt caggggacgc tcgtaaccgt gtcgtcg Secuencia de proteínas que define la región variable de la cadena pesada Sh14F11 IGHV2-70 (SEQ ID NO: 74) 1 qvtlkesgpa lvkptqtltl tctfsgfsls **tygmgvg**wir qppgkalewl a**diwwdddky** 61 **ynpslks**rlt iskdtsknqv vltmtnmdpv dtavyycar**r ghysamdy**wg qgtlvtvss

Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa quimérica Ch01G06 (SEQ ID NO: 133)

```
1 gacatccaaa tgacccagtc acccgcgagc ctttcggcgt cggtcggaga aacggtcacg
 61 atcacgtgcc ggacatcaga gaatctccat aactacctcg cgtggtatca acagaagcag
121 gggaagtcgc cccagttgct tgtatacgat gcgaaaacgt tggcggatgg ggtgccgtcc
181 agattetegg gategggete ggggaegeag tactegetea agateaatte getgeageeg
241 gaggactttg ggtcgtacta ttgtcagcat ttttggtcat caccgtatac atttggaggt
301 ggaacgaaac ttgagattaa g
```

35

Secuencia de proteínas que define la región variable de la cadena kappa quimérica Ch01G06 (SEQ ID NO: 76)

5

10

15

20

25

35

40

```
1 diqmtqspas lsasvgetvt itc\underline{\textbf{rtsenlh}} \underline{\textbf{nyla}}wyqqkq gkspqllvy\underline{\textbf{d}} \underline{\textbf{aktlad}}gvps
```

61 rfsgsgsgtq yslkinslqp edfgsyycqh fwsspytfgg gtkleik

Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa Hu01G06 IGKV1-39 (SEQ ID NO: 89)

1 gacatccaaa tgacccagtc gccgtcgtcg ctttcagcgt cggtagggga tcgggtcaca 61 attacgtgcc gaacgtcaga gaatttgcat aactacctcg cgtggtatca gcagaagccc 121 gggaagtcac cgaaactcct tgtctacgat gcgaaaacgc tggcggatgg agtgccgtcg 181 agattctcgg gaagcggatc cggtacggac tatacgctta cgatctcatc gctccagccc 241 gaggactttg cgacgtacta ttgtcagcat ttttggtcgt cgccctacac atttgggcag 301 gggaccaagt tggaaatcaa g

Secuencia de proteínas que define la región variable de la cadena kappa Hu01G06 IGKV1-39 (SEQ ID NO: 90)

```
1 diqmtqspss lsasvgdrvt itc<u>rtsenlh</u> <u>nyla</u>wyqqkp gkspkllvy<u>d</u> <u>aktlad</u>gvps
61 rfsgsgsgtd ytltisslqp edfatyyc<u>qh</u> <u>fwsspyt</u>fgq gtkleik
```

Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa Hu01G06 IGKV1-39 S43A V48I (denominada también en el presente documento región variable de la cadena kappa Hu01G06 IGKV1-39 FI; SEQ ID NO: 91)

```
1 gacatccaaa tgacccagtc gccgtcgtcg ctttcagcgt cggtagggga tcgggtcaca 61 attacgtgcc gaacgtcaga gaatttgcat aactacctcg cgtggtatca gcagaagccc 121 gggaaggccc cgaaactcct tatctacgat gcgaaaacgc tggcggatgg agtgccgtcg 181 agattctcgg gaagcggatc cggtacggac tatacgctta cgatctcatc gctccagccc 241 gaggactttg cgacgtacta ttgtcagcat ttttggtcgt cgccctacac atttgggcag 301 gggaccaagt tggaaatcaa g
```

Secuencia de proteínas que define la región variable de la cadena kappa Hu01G06 IGKV1-39 S43A V48I (denominada también en el presente documento región variable de la cadena kappa Hu01G06 IGKV1-39 FI; SEQ ID NO: 92)

```
1 diqmtqspss lsasvgdrvt itc<u>rtsenlh</u> <u>nyla</u>wyqqkp gkapklliy<u>d</u> <u>aktlad</u>gvps
61 rfsgsgsgtd ytltisslqp edfatyycqh fwsspytfgq gtkleik
```

Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa Hu01G06 IGKV1-39 V48I (SEQ ID NO: 93)

```
1 gacatccaaa tgacccagtc gccgtcgtcg ctttcagcgt cggtagggga tcgggtcaca 61 attacgtgcc gaacgtcaga gaatttgcat aactacctcg cgtggtatca gcagaagccc 121 gggaagtcac cgaaactcct tatctacgat gcgaaaacgc tggcggatgg agtgccgtcg 181 agattctcgg gaagcggatc cggtacggac tatacgctta cgatctcatc gctccagccc 241 gaggactttg cgacgtacta ttgtcagcat ttttggtcgt cgccctacac atttgggcag 301 gggaccaagt tggaaatcaa g
```

Secuencia de proteínas que define la región variable de la cadena kappa Hu01G06 IGKV1-39 V48I (SEQ ID NO: 94)

```
1 diqmtqspss lsasvgdrvt itc<u>rtsenlh</u> <u>nyla</u>wyqqkp gkspklliy<u>d</u> <u>aktlad</u>gvps
61 rfsgsgsgtd ytltisslqp edfatyycqh fwsspytfgq gtkleik
```

Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa Hu01G06 IGKV1-39 F1 (denominada también en el presente documento región variable de la cadena kappa Hu01G06 IGKV1-39 S43A V48I; SEQ ID NO: 91)

5

10

15

20

25

30

95)

135)

```
1 gacatccaaa tgacccagtc gccgtcgtcg ctttcagcgt cggtagggga tcgggtcaca
         61 attacqtqcc qaacqtcaqa qaatttqcat aactacctcq cqtqqtatca qcaqaaqccc
        121 gggaaggccc cgaaactcct tatctacgat gcgaaaacgc tggcggatgg agtgccgtcg
        181 agattetegg gaageggate eggtaeggae tataegetta egateteate geteeageee
        241 gaggactttg cgacgtacta ttgtcagcat ttttggtcgt cgccctacac atttgggcag
        301 gggaccaagt tggaaatcaa g
Secuencia de proteínas que define la región variable de la cadena kappa Hu01G06 IGKV1-39 F1 (denominada
también en el presente documento región variable de la cadena kappa Hu01G06 IGKV1-39 S43A V48I; SEQ ID NO:
        1 digmtqspss lsasvgdrvt itcrtsenlh nylawyqqkp gkapklliyd aktladgvps
       61 rfsqsqsqtd ytltisslqp edfatyycqh fwsspytfqq qtkleik
Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa Hu01G06 IGKV1-39 F2 (SEQ ID
NO: 253)
        1 \ {\tt gacatccaaa} \ {\tt tgacccagtc} \ {\tt gccgtcgtcg} \ {\tt ctttcagcgt} \ {\tt cggtagggga} \ {\tt tcgggtcaca}
       61 attacgtgcc gaacgtcaga gaatttgcat aactacctcg cgtggtatca gcagaagccc
      121 gggaagtcac cgaaactcct tatctacgat gcgaaaacgc tggcggatgg agtgccgtcg
      181 agattctcgg gaagcggatc cggtacggac tatacgctta cgatctcatc gctccagccc
      241 gaggactttg cgacgtacta ttgtcagcat ttttggtcgg acccctacac atttgggcag
      301 gggaccaagt tggaaatcaa g
Secuencia de proteínas que define la región variable de la cadena kappa Hu01G06 IGKV1-39 F2 (SEQ ID NO: 254)
          1 diqmtqspss lsasvgdrvt itcrtsenlh nylawyqqkp gkspklliyd aktladgvps
         61 rfsgsgsgtd ytltisslqp edfatyycqh fwsdpytfgq gtkleik
Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa quimérica Ch06C11 (SEQ ID NO:
         1 gatategtea tgacceagte ecagaagtte atgteaactt eagtgggaga eagagtgtee
        61 gtcacatgta aagcctcgca aaatgtggga accaacgtag cgtggttcca gcagaaacct
       121 ggccaatcac cgaaggcact gatctactcg gccagctata ggtactcggg agtaccagat
       181 cggtttacgg ggtcggggag cgggacggac tttatcctca ctatttccaa tgtccagtcg
       241 gaggacettg eggaataett etgeeageag tataacaaet ateceeteae gtttggtget
       301 ggtacaaaat tggagttgaa g
Secuencia de proteínas que define la región variable de la cadena kappa quimérica Ch06C11 (SEQ ID NO: 82)
         1 divmtqsqkf mstsvgdrvs vtckasqnvg tnvawfqqkp gqspkaliys asyrysgvpd
        61 rftgsgsgtd filtisnvqs edlaeyfcqq ynnypltfga gtklelk
Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa Sh06C11 IGKV1-16 (SEQ ID NO:
         1 gacatecaaa tgacecaate geetteetee eteteegeat cagtagggga eegegteaca
        61 attacttgca aagcgtcgca gaacgtcgga acgaatgtgg cgtggtttca gcagaagccc
       121 ggaaaagctc cgaagagctt gatctactcg gcctcatata ggtattcggg tgtgccgagc
       181 cggtttagcg ggtcggggtc aggtactgat ttcacgctca caatttcatc gttgcagcca
```

Secuencia de proteínas que define la región variable de la cadena kappa Sh06C11 IGKV1-16 (SEQ ID NO: 96)

301 ggaaccaaac ttgagatcaa g

241 gaagatttcg ccacatatta ctgtcagcag tacaacaatt accctctgac gttcggccag

```
1 diqmtqspss lsasvgdrvt itc<u>kasqnvg tnva</u>wfqqkp gkapksliy<u>s asyrys</u>gvps
61 rfsgsgsgtd ftltisslqp edfatyycqq ynnypltfgq gtkleik
```

Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa quimérica Ch14F11 (SEQ ID NO: 137)

5

10

15

20

25

30

35

```
1 gacategtga tgacacagte acagaaatte atgtecacat eegteggtga tagagtatee 61 gteacgtgta aggeetegea aaacgtagga actaatgtgg egtggtatea acagaageea 121 ggacagteae eeaaageact eatetacage eeeteatate ggtacagegg ggtgeeggae 181 aggtteacgg gateggggag egggacegat tttacactga eeatttegaa tgtecagteg 241 gaggacettg eggaataett etgecageag tataactegt acceteacae gtttggaggt 301 ggeactaagt tggagatgaa a
```

Secuencia de proteínas que define la región variable de la cadena kappa quimérica Ch14F11 (SEQ ID NO: 86)

```
1 divmtqsqkf mstsvgdrvs vtckasqnvg tnvawyqqkp gqspkaliys psyrysgvpd
61 rftgsgsgtd ftltisnvqs edlaeyfcqq ynsyphtfgg gtklemk
```

Secuencia de ácidos nucleicos que codifica la región variable de la cadena kappa Hu14F11 IGKV1-16 (SEQ ID NO: 97)

```
1 gatatecaga tgacacagte accetegteg eteteagett eegtaggega eagggteaet 61 attacgtgta aagcateaca gaacgtegga acgaatgtgg egtggtttea geagaageee 121 gggaagage eeaaageget tatetaetee eegtegtate ggtatteegg tgtgeeaage 181 agattttegg ggteaggtte gggaactgae tttaceetga eeatetegte eeteeaaceg 241 gaagattteg eeaegtaett etgeeageag tacaacaget ateeteacae atteggaeaa 301 gggaeaaagt tggagattaa a
```

Secuencia de proteínas que define la región variable de la cadena kappa Hu14F11 IGKV1-16 (SEQ ID NO: 98)

```
1 diqmtqspss lsasvgdrvt itckasqnvg <u>tnva</u>wfqqkp gkspkaliy<u>s</u> <u>psyrys</u>gvps
61 rfsgsgsgtd ftltisslqp edfatyfcqq <u>ynsypht</u>fgq gtkleik
```

Las secuencias de aminoácidos que definen las regiones variables de la cadena pesada de una inmunoglobulina para los anticuerpos producidos en el Ejemplo 13 están alineadas en la **FIG. 19.** Las secuencias del péptido de señal amino terminal (para la apropiada expresión/secreción) no se muestran. La CDR₁, la CDR₂ y la CDR₃ (definición de Kabat) están identificadas por recuadros. La **FIG. 20** muestra una alineación de las secuencias individuales de la CDR₁, de la CDR₂ y de la CDR₃ para cada una de las secuencias de la región variable mostradas en la **FIG. 19.**

Las secuencias de aminoácidos que definen las regiones variables de la cadena ligera de una inmunoglobulina para los anticuerpos del Ejemplo 13 están alineadas en la **FIG. 21.** Las secuencias del péptido de señal amino terminal (para la apropiada expresión/secreción) no se muestran. La CDR₁, la CDR₂ y la CDR₃ están identificadas por recuadros. La **FIG. 22** muestra una alineación de las secuencias individuales de la CDR₁, de la CDR₂ y de la CDR₃ para cada una de las secuencias de la región variable mostradas en la **FIG. 21.**

La **Tabla 19** es una gráfica de concordancia que muestra la SEQ ID NO. de cada secuencia analizada en este Ejemplo.

Tabla 19

SEQ. ID NO.	Ácido nucleico o proteína		
127	Región variable de la cadena pesada Ch01G06 quimérica-ácido nucleico		
40	Región variable de la cadena pesada Ch01G06 quimérica-proteína		
1	CDR ₁ quimérica de la región variable Ch01G06		
7	CDR ₂ quimérica de la región variable Ch01G06		
15	CDR₃ quimérica de la región variable Ch01G06		
53	Región variable de la cadena pesada Hu01G06 IGHV1-18-ácido nucleico		
54	Región variable de la cadena pesada Hu01G06 IGHV1-18-proteína		
1	CDR₁ de la región variable Hu01G06 IGHV1-18		
7	CDR ₂ de la región variable Hu01G06 IGHV1-18		

(continuación)

SEQ. ID NO.	(continuación) Ácido nucleico o proteína
15	CDR ₃ de la región variable Hu01G06 IGHV1-18
55	Región variable de la cadena pesada Hu01G06 IGHV1-69-ácido nucleico
56	Región variable de la cadena pesada Hu01G06 IGHV1-69-proteína
1	CDR ₁ de la región variable Hu01G06 IGHV1-69
7	CDR ₂ de la región variable Hu01G06 IGHV1-69
15	CDR₃ de la región variable Hu01G06 IGHV1-69
57	Región variable de la cadena pesada Sh01G06 IGHV1-18 M69L-ácido nucleico
58	Región variable de la cadena pesada Sh01G06 IGHV1-18 M69L-proteína
1	CDR₁ de la región variable Sh01G06 IGHV1-18 M69L
7	CDR₂ de la región variable Sh01G06 IGHV1-18 M69L
15	CDR₃ de la región variable Sh01G06 IGHV1-18 M69L
59	Región variable de la cadena pesada Sh01G06 IGHV1-18 M69L K64Q G44S-ácido nucleico
60	Región variable de la cadena pesada Sh01G06 IGHV1-18 M69L K64Q G44S-proteína
1	CDR₁ de la región variable Sh01G06 IGHV1-18 M69L K64Q G44S
13	CDR ₂ de la región variable Sh01G06 IGHV1-18 M69L K64Q G44S
15	CDR₃ de la región variable Sh01G06 IGHV1-18 M69L K64Q G44S
61	Región variable de la cadena pesada-ácido nucleico Sh01G06 IGHV1-18 M69L K64Q
62	Región variable de la cadena pesada Sh01G06 IGHV1-18 M69L K64Q-proteína
1	CDR₁ de la región variable Sh01G06 IGHV1-18 M69L K64Q
13	CDR₂ de la región variable Sh01G06 IGHV1-18 M69L K64Q
15	CDR₃ de la región variable Sh01G06 IGHV1-18 M69L K64Q
63	Región variable de la cadena pesada-ácido nucleico Sh01G06 IGHV1-69 T30S I69L
64	Región variable de la cadena pesada Sh01G06 IGHV1-69 T30S I69L-proteína
1	CDR₁ de la región variable Sh01G06 IGHV1-69 T30S I69L
7	CDR₂ de la región variable Sh01G06 IGHV1-69 T30S I69L
15	CDR₃ de la región variable Sh01G06 IGHV1-69 T30S I69L
65	Región variable de la cadena pesada Sh01G06 IGHV1-69 T30S K64Q I69L-ácido nucleico
66	Región variable de la cadena pesada Sh01G06 IGHV1-69 T30S K64Q I69L- proteína
1	CDR₁ de la región variable Sh01G06 IGHV1-69 T30S K64Q I69L
13	CDR ₂ de la región variable Sh01G06 IGHV1-69 T30S K64Q I69L
15	CDR₃ de la región variable Sh01G06 IGHV1-69 T30S K64Q I69L
245	Región variable de la cadena pesada Hu01G06 IGHV1-18 F1-ácido nucleico
246	Región variable de la cadena pesada Hu01G06 IGHV1-18 F1-proteína
1	CDR ₁ de la región variable Hu01G06 IGHV1-18 F1
236	CDR ₂ de la región variable Hu01G06 IGHV1-18 F1
15	CDR ₃ de la región variable Hu01G06 IGHV1-18 F1
247	Región variable de la cadena pesada Hu01G06 IGHV1-18 F2-ácido nucleico
248	Región variable de la cadena pesada Hu01G06 IGHV1-18 F2-proteína
1	CDR ₁ de la región variable Hu01G06 IGHV1-18 F2
237	CDR ₂ de la región variable Hu01G06 IGHV1-18 F2
15	CDR ₃ de la región variable Hu01G06 IGHV1-16 F2
259	Región variable de la cadena pesada Hu01G06 IGHV1-69 F1-ácido nucleico
250	Región variable de la cadena pesada Hu01G06 IGHV1-69 F1-proteína
1	CDR ₁ de la región variable Hu01G06 IGHV1-69 F1
238	CDR ₁ de la region variable Hu01G06 IGHV1-69 F1
236 15	
1.0	CDR₃ de la región variable Hu01G06 IGHV1-69 F1
	I Dogión variable de la cadena necedo Huntiche ICHVI en La écido sucleiro
251	Región variable de la cadena pesada Hu01G06 IGHV1-69 F2-ácido nucleico
251 252	Región variable de la cadena pesada Hu01G06 IGHV1-69 F2-proteína
251 252 1	Región variable de la cadena pesada Hu01G06 IGHV1-69 F2-proteína CDR ₁ de la región variable Hu01G06 IGHV1-69 F2
251 252	Región variable de la cadena pesada Hu01G06 IGHV1-69 F2-proteína

(continuación)

	(continuación)
SEQ. ID NO.	Ácido nucleico o proteína
129	Región variable de la cadena pesada Ch06C11 quimérica-ácido nucleico
46	Región variable de la cadena pesada Ch06C11 quimérica-proteína
4	CDR ₁ quimérica de la región variable Ch06C11
9	CDR₂ quimérica de la región variable Ch06C11
18	CDR₃ quimérica de la región variable Ch06C11
67	Región variable de la cadena pesada HE LM 06C11 IGHV2-70-ácido nucleico
68	Región variable de la cadena pesada HE LM 06C11 IGHV2-70-proteína
4	CDR ₁ de la región variable HE LM 06C11 IGHV2-70
14	CDR₂ de la región variable HE LM 06C11 IGHV2-70
18	CDR ₃ de la región variable HE LM 06C11 IGHV2-70
69	Región variable de la cadena pesada Hu06C11 IGHV2-5-ácido nucleico
70	Región variable de la cadena pesada Hu06C11 IGHV2-5-proteína
4	CDR₁ de la región variable Hu06C11 IGHV2-5
9	CDR₂ de la región variable Hu06C11 IGHV2-5
18	CDR ₃ de la región variable Hu06C11 IGHV2-5
131	Región variable de la cadena pesada Ch14F11 quimérica-ácido nucleico
50	Región variable de la cadena pesada Ch14F11 quimérica-proteína
5	CDR ₁ quimérica de la región variable Ch 14F11
11	CDR₂ quimérica de la región variable Ch14F11
19	CDR₃ quimérica de la región variable Ch14F11
71	Región variable de la cadena pesada Sh14F11 IGHV2-5-ácido nucleico
72	Región variable de la cadena pesada Sh14F11 IGHV2-5-proteína
5	CDR₁ de la región variable Sh14F11 IGHV2-5
11	CDR₂ de la región variable Sh14F11 IGHV2-5
19	CDR₃ de la región variable Sh14F11 IGHV2-5
73	Región variable de la cadena pesada Sh14F11 IGHV2-70-ácido nucleico
74	Región variable de la cadena pesada Sh14F11 IGHV2-70-proteína
5	CDR₁ de la región variable Sh14F11 IGHV2-70
11	CDR₂ de la región variable Sh14F11 IGHV2-70
19	CDR₃ de la región variable Sh14F11 IGHV2-70
133	Región variable de la cadena ligera (kappa)quimérica Ch01G06-ácido nucleico
76	Región variable de la cadena ligera (kappa)quimérica Ch01G06-proteína
21	CDR ₁ quimérica de la cadena ligera (kappa) Ch01G06
26	CDR₂ quimérica de la cadena ligera (kappa) Ch01G06
32	CDR ₃ quimérica de la cadena ligera (kappa) Ch01G06
89	Región variable de la cadena ligera (kappa) Hu01G06 IGKV1-39-ácido nucleico
90	Región variable de la cadena ligera (kappa) Hu01G06 IGKV1-39-proteína
21	CDR ₁ de la cadena ligera (kappa) Hu01G06 IGKV1-39
26	CDR₂ de la cadena ligera (kappa) Hu01G06 IGKV1-39
32	CDR ₃ de la cadena ligera (kappa) Hu01G06 IGKV1-39
91	Región variable de la cadena ligera (kappa) Hu01G06 IGKV1-39 S43A V48I-ácido nucleico
	Región variable de la cadena ligera (kappa) Hu01G06 IGKV1-39 S43A V48I-
92	proteína
21	CDR ₁ de la cadena ligera (kappa) Hu01G06 IGKV1-39 S43A V48I
26	CDR₂ de la cadena ligera (kappa) Hu01G06 IGKV1-39 S43A V48I
32	CDR₃ de la cadena ligera (kappa) Hu01G06 IGKV1-39 S43A V48I
93	Región variable de la cadena ligera (kappa) Hu01G06 IGKV1-39 V48I-ácido nucleico
94	Región variable de la cadena ligera (kappa) Hu01G06 IGKV1-39 V48I-proteína
21	CDR ₁ de la cadena ligera (kappa) Hu01G06 IGKV1-39 V48I
26	CDR₂ de la cadena ligera (kappa) Hu01G06 IGKV1-39 V48I
32	CDR₃ de la cadena ligera (kappa) Hu01G06 IGKV1-39 V48I
91	Región variable de la cadena ligera (kappa) Hu01G06 IGKV1-39 F1-ácido nucleico
92	Región variable de la cadena ligera (kappa) Hu01G06 IGKV1-39 F1-proteína
21	CDR₁ de la cadena ligera (kappa) Hu01G06 IGKV1-39 F1

(continuación)

SEQ. ID NO.	Ácido nucleico o proteína
26	CDR ₂ de la cadena ligera (kappa) Hu01G06 IGKV1-39 F1
32	CDR₃ de la cadena ligera (kappa) Hu01G06 IGKV1-39 F1
253	Región variable de la cadena ligera (kappa) Hu01G06 IGKV1-39 F2-ácido nucleico
254	Región variable de la cadena ligera (kappa) Hu01G06 IGKV1-39 F2-proteína
21	CDR₁ de la cadena ligera (kappa) Hu01G06 IGKV1-39 F2
26	CDR ₂ de la cadena ligera (kappa) Hu01G06 IGKV1-39 F2
244	CDR₃ de la cadena ligera (kappa) Hu01G06 IGKV1-39 F2
135	Región variable de la cadena ligera (kappa)quimérica Ch06C11-ácido nucleico
82	Región variable de la cadena ligera (kappa)quimérica Ch06C11-proteína
23	CDR ₁ quimérica de la cadena ligera (kappa) Ch06C11
28	CDR ₂ quimérica de la cadena ligera (kappa) Ch06C11
35	CDR₃ quimérica de la cadena ligera (kappa) Ch06C11
95	Región variable de la cadena ligera (kappa) Sh06C11 IGKV1-16-ácido nucleico
96	Región variable de la cadena ligera (kappa) Sh06C11 IGKV1-16-proteína
23	CDR₁ de la cadena ligera (kappa) Sh06C11 IGKV1-16
28	CDR ₂ de la cadena ligera (kappa) Sh06C11 IGKV1-16
35	CDR₃ de la cadena ligera (kappa) Sh06C11 IGKV1-16
137	Región variable de la cadena ligera (kappa)quimérica Ch14F11-ácido nucleico
86	Región variable de la cadena ligera (kappa)quimérica Ch14F11-proteína
23	CDR₁ quimérica de la cadena ligera (kappa) Ch14F11
30	CDR ₂ quimérica de la cadena ligera (kappa) Ch14F11
36	CDR₃ quimérica de la cadena ligera (kappa) Ch14F11
97	Región variable de la cadena ligera (kappa) Hu14F11 IGKV1-16-ácido nucleico
98	Región variable de la cadena ligera (kappa) Hu14F11 IGKV1-16-proteína
23	CDR₁ de la cadena ligera (kappa) Hu14F11 IGKV1-16
30	CDR ₂ de la cadena ligera (kappa) Hu14F11 IGKV1-16
36	CDR₃ de la cadena ligera (kappa) Hu14F11 IGKV1-16

Las secuencias de las CDR de la cadena pesada del anticuerpo monoclonal humanizado (definiciones de Kabat, Chothia e IMGT) se muestran en la **Tabla 20.**

Tabla 20

Kabat				
				SEQ ID NO: de la región
	CDR1	CDR2	CDR3	variable
Ch01G06 quimérica,	DYNMD (SEQ ID NO: 1)	QINPNNGGIFFNQKFKG (SEQ ID NO: 7)	EAITTVGAMDY (SEQ ID NO: 15)	40
Hu01G06 IGHV1-18	DYNMD (SEQ ID NO: 1)	QINPNNGGIFFNQKFKG (SEQ ID NO: 7)	EAITTVGAMDY (SEQ ID NO: 15)	54
Hu01G06 IGHV1-69	DYNMD (SEQ ID NO: 1)	QINPNNGGIFFNQKFKG (SEQ ID NO: 7)	EAITTVGAMDY (SEQ ID NO: 15)	56
Sh01G06 IGHV1-18 M69L	DYNMD (SEQ ID NO: 1)	QINPNNGGIFFNQKFKG (SEQ ID NO: 7)	EAITTVGAMDY (SEQ ID NO: 15)	58
Sh01G06 IGHV1-18 M69L K64Q G44S	DYNMD (SEQ ID NO: 1)	QINPNNGGIFFNQKFQG (SEQ ID NO: 13)	EAITTVGAMDY (SEQ ID NO: 15)	60
Sh01G06 IGHV1-18 M69L K64Q	DYNMD (SEQ ID NO: 1)	QINPNNGGIFFNQKFQG (SEQ ID NO: 13)	EAITTVGAMDY (SEQ ID NO: 15)	62
Sh01G06 IGHV1-69 T30S I69L	DYNMD (SEQ ID NO: 1)	QINPNNGGIFFNQKFKG (SEQ ID NO: 7)	EAITTVGAMDY (SEQ ID NO: 15)	64
Sh01G06 IGHV1-69 T30S K64Q I69L	DYNMD (SEQ ID NO: 1)	QINPNNGGIFFNQKFQG (SEQ ID NO: 13)	EAITTVGAMDY (SEQ ID NO: 15)	66
Hu01G06 IGHV1-18 F1	DYNMD (SEQ ID NO: 1)	QINPYNHLIFFNQKFQG (SEQ ID NO: 236)	EAITTVGAMDY (SEQ ID NO: 15)	246
Hu01G06 IGHV1-18 F2	DYNMD (SEQ ID NO: 1)	QINPNNGLIFFNQKFQG (SEQ ID NO: 237)	EAITTVGAMDY (SEQ ID NO: 15)	248
Hu01G06 IGHV1-69 F1	DYNMD (SEQ ID NO: 1)	QINPNNGLIFFNQKFKG (SEQ ID NO: 238)	EAITTVGAMDY (SEQ ID NO: 15)	250

(continuación)

		(continuación)		
		Kabat		
				SEQ ID NO:
				de la región
	CDR1	CDR2	CDR3	variable
Hu01G06 IGHV1-69	DYNMD (SEQ ID	QINPYNHLIFFNQKFKG	EAITTVGAMDY (SEQ	252
F2	NO: 1)	(SEQ ID NO: 239)	ID NO: 15)	
Ch06C11 quimérica,	TYGMGVS (SEQ	HIYWDDDKRYNPSLKS	RGYDDYWGY (SEQ	46
direct i quintenea,	ID NO: 4)	(SEQ ID NO: 9)	ID NO: 18)	
HE LM 06C11 IGHV2-	TYGMGVS (SEQ	HIYWDDDKRYNPSLKT	RGYDDYWGY (SEQ	68
70	ID NO: 4)	(SEQ ID NO: 14)	ID NO: 18)	00
Hu06C11 IGHV2-5	TYGMGVS (SEQ	HIYWDDDKRYNPSLKS	RGYDDYWGY (SEQ	70
11000011101172-3	ID NO: 4)	(SEQ ID NO: 9)	ID NO: 18)	70
Ch14F11 guimárica	TYGMGVG (SEQ	DIWWDDDKYYNPSLKS		ΕO
Ch14F11 quimérica,			RGHYSAMDY (SEQ	50
0144544 10111/0 5	ID NO: 5)	(SEQ ID NO: 11)	ID NO: 19)	70
Sh14F11 IGHV2-5	TYGMGVG (SEQ	DIWWDDDKYYNPSLKS	RGHYSAMDY (SEQ	72
	ID NO: 5)	(SEQ ID NO: 11)	ID NO: 19)	
Sh14F11 IGHV2-70	TYGMGVG (SEQ	DIWWDDDKYYNPSLKS	RGHYSAMDY (SEQ	74
	ID NO: 5)	(SEQ ID NO: 11)	ID NO: 19)	
		Chothia		
				SEQ ID NO:
				de la región
	CDR1	CDR2	CDR3	variable
Ch01G06 quimérica,	GYTFTDY (SEQ	- -	EAITTVGAMDY (SEQ	40
onor aco quinona,	ID NO: 38)	NPNNGG (SEQ ID NO: 143)		10
Hu01G06 IGHV1-18	GYTFTDY (SEQ	111 1111000 (SEQ 1D 110: 145)	EAITTVGAMDY (SEQ	54
HUUTGUU IGHVI-18		NIDNINGG (SEO ID NO: 142)		34
11:04.000 1011)/4.00	ID NO: 38)	NPNNGG (SEQ ID NO: 143)		F0
Hu01G06 IGHV1-69	GYTFTDY (SEQ	NIDNINIOS (SES ID NIS 148)	EAITTVGAMDY (SEQ	56
01440001011144	ID NO: 38)	NPNNGG (SEQ ID NO: 143)		
SM1G06 IGHV1-18	GYTFTDY (SEQ		EAITTVGAMDY (SEQ	58
M69L	ID NO: 38)	NPNNGG (SEQ ID NO: 143)		
Sh01G06 IGHV1-18	GYTFTDY (SEQ		EAITTVGAMDY (SEQ	60
M69L K64Q G44S	ID NO: 38)	NPNNGG (SEQ ID NO: 143)	ID NO: 15)	
Sh01G06 IGHV1-18	GYTFTDY (SEQ		EAITTVGAMDY (SEQ	62
M69L K64Q	ID NO: 38)	NPNNGG (SEQ ID NO: 143)	ID NO: 15)	
Sh01G06 IGHV1-69	GYTFSDY (SEQ		EAITTVGAMDY (SEQ	64
T30S I69L	ID NO: 234)	NPNNGG (SEQ ID NO: 143)	ID NO: 15)	
Sh01G06 IGHV1-69	GYTFSDY (SEQ		EAITTVGÁMDY (SEQ	66
T30S K64Q I69L	ID NO: 234)	NPNNGG (SEQ ID NO: 143)		
Hu01G06 IGHV1-18	GYTFTDY (SEQ		EAITTVGAMDY (SEQ	246
F1	ID NO: 38)	NPYNHL (SEQ ID NO: 240)	ID NO: 15)	
Hu01G06 IGHV1-18	GYTFTDY (SEQ	THE THILL (OLG ID NO. 210)	EAITTVGAMDY (SEQ	248
F2	ID NO: 38)	NPNNGL (SEQ ID NO: 241)	ID NO: 15)	240
Hu01G06 IGHV1-69	GYTFSDY (SEQ	NI NNGE (SEQ ID NO. 241)	EAITTVGAMDY (SEQ	250
		NIDNINGL (SEC ID NO. 241)		250
F1	ID NO: 234)	NPNNGL (SEQ ID NO: 241)	ID NO: 15)	050
Hu01G06 IGHV1-69	GYTFSDY (SEQ		EAITTVGAMDY (SEQ	252
F2	ID NO: 234)	NPYNHL (SEQ ID NO: 240)	ID NO: 15)	
Ch06C11 quimérica,	GFSLNTYGM		RGYDDYWGY (SEQ	46
	(SEQ ID NO: 132)	YWDDD (SEQ ID NO: 145)	ID NO: 18)	
HE LM 06C11 IGHV2-	GFSLNTYGM		RGYDDYWGY (SEQ	68
70	(SEQ ID NO: 132)	YWDDD (SEQ ID NO: 145)	ID NO: 18)	
Hu06C11 IGHV2-5	GFSLNTYGM		RGYDDYWGY (SEQ	70
	(SEQ ID NO: 132)	YWDDD (SEQ ID NO: 145)	ID NO: 18)	
Ch14F11 quimérica,	GFSLSTYGM		RGHYSAMDY (SEQ	50
	(SEQ ID NO: 130)	WWDDD (SEQ ID NO: 146)	ID NO: 19)	
Sh14F11 IGHV2-5	GFSLSTYGM	1111222 (02.4 12.110. 140)	RGHYSAMDY (SEQ	72
GITTE IT IGITY2-3	(SEQ ID NO: 130)	WWDDD (SEQ ID NO: 146)	ID NO: 19)	12
Sh14F11 IGHV2-70	GFSLSTYGM	(OLQ ID NO. 140)	RGHYSAMDY (SEQ	74
311141 11 IGHV2-70		WWDDD (SEO ID NO. 140)		/4
	(SEQ ID NO: 130)	WWDDD (SEQ ID NO: 146)	ID NO: 19)	

(continuación)

		IMGT		
		1		SED ID NO:
				de la región
	CDR1	CDR2	CDR3	variable
Ch01G06 quimérica,	GYTFTDYN (SEQ	INPNNGGI (SEQ ID NO:	AREAITTVGAMDY	40
,	ID NO: 136)	148)	(SEQ ID NO: 154)	
Hu01G06 IGHV1-18	GYTFTDYŃ (SEQ	INPNNGGI (SEQ ID NO:	AREAITTVGAMDY	54
	ID NO: 136)	148)	(SEQ ID NO: 154)	
Hu01G06 IGHV1-69	GYTFTDYN (SEQ	INPNNGGI (SEQ ID NO:	AREAITTVGAMDY	56
	ID NO: 136)	148)	(SEQ ID NO: 154)	
Sh01G06 IGHV1-18	GYTFTDYN (SEQ	INPNNGGI (SEQ ID NO:	AREAITTVGAMDY	58
M69L	ID NO: 136)	148)	(SEQ ID NO: 154)	
Sh01G06 IGHV1-18	GYTFTDYN (SEQ	INPNNGGI (SEQ ID NO:	AREAITTVGAMDY	60
M69L K64Q G44S	ID NO: 136)	148)	(SEQ ID NO: 154)	
Sh01G06 IGHV1-18	GYTFTDYN (SEQ	INPNNGGI (SEQ ID NO:	AREAITTVGAMDY	62
M69L K64Q	ID NO: 136)	148)	(SEQ ID NO: 154)	
Sh01G06 IGHV1-69	GYTFSDYN (SEQ	INPNNGGI (SEQ ID NO:	AREAITTVGAMDY	64
T30S I69L	ID NO: 235)	148)	(SEQ ID NO: 154)	
Sh01G06 IGHV1-69	GYTFSDYN (SEQ	INPNNGGI (SEQ ID NO:	AREAITTVGAMDY	66
T30S K64Q I69L	ID NO: 235)	148)	(SEQ ID NO: 154)	
Hu01G06 IGHV1-18	GYTFTDYN (SEQ	INPYNHLI (SEQ ID NO:	AREAITTVGAMDY	246
F1	ID NO: 136)	242)	(SEQ ID NO: 154)	
Hu01G06 IGHV1-18	GYTFTDYN (SEQ	INPNNGLI (SEQ ID NO:	AREAITTVGAMDY	248
F2	ID NO: 136)	243)	(SEQ ID NO: 154)	
Hu01G06 IGHV1-69	GYTFSDYN (SEQ	INPNNGLI (SEQ ID NO:	AREAITTVGAMDY	250
F1	ID NO: 235)	243)	(SEQ ID NO: 154)	
Hu01G06 IGHV1-69	GYTFSDYN (SEQ	INPYNHLI (SEQ ID NO:	AREAITTVGAMDY	252
F2	ID NO: 235)	242)	(SEQ ID NO: 154)	
Ch06C11 quimérica,	GFSLNTYGMG	IYWDDDK (SEQ ID NO:	AQRGYDDYWGY	46
	(SEQ ID NO: 141)	150)	(SEQ ID NO: 157)	
HE LM 06C11 IGHV2-	GFSLNTYGMG	IYWDDDK (SEQ ID NO:	AQRGYDDYWGY	68
70	(SEQ ID NO: 141)	150)	(SEQ ID NO: 157)	
Hu06C11 IGHV2-5	GFSLNTYGMG	IYWDDDK (SEQ ID NO:	AQRGYDDYWGY	70
	(SEQ ID NO: 141)	150)	(SEQ ID NO: 157)	
Ch14F11 quimérica,	GFSLSTYGMG	IWWDDDK (SEQ ID NO:	ARRGHYSAMDY	50
	(SEQ ID NO: 140)	152)	(SEQ ID NO: 158)	
Sh14F11 IGHV2-5	GFSLSTYGMG	IWWDDDK (SEQ ID NO:	ARRGHYSAMDY	72
	(SEQ ID NO: 140)	152)	(SEQ ID NO: 158)	
Sh14F11 IGHV2-70	GFSLSTYGMG	IWWDDDK (SEQ ID NO:	ARRGHYSAMDY	74
	(SEQ ID NO: 140)	152)	(SEQ ID NO: 158)	

Las secuencias de las CDR de la cadena ligera kappa del anticuerpo monoclonal humanizado (definiciones de Kabat, Chothia e IMGT) se muestran en la **Tabla 21.**

Tabla 21

		apia Z i				
Kabat/Chothia						
				SEQ ID NO:		
				de la región		
	CDR1	CDR2	CDR3	variable		
	RTSENLHNYLA	DAKTLAD (SEQ	QHFWSSPYT (SEQ	76		
Ch01G06 quimérica,	(SEQ ID NO: 21)	ID NO: 26)	ID NO: 32)			
	RTSENLHNYLA	DAKTLAD (SEQ	QHFWSSPYT (SEQ	90		
Hu01G06 IGKV1-39	(SEQ ID NO: 21)	ID NO: 26)	ID NO: 32)			
Hu01G06 IGKV1-39 S43A V48I				92		
(conocida también como	RTSENLHNYLA	DAKTLAD (SEQ	QHFWSSPYT (SEQ			
Hu01G06 IGKVI-39 F1)	(SEQ ID NO: 21)	ID NO: 26)	ID NO: 32)			
	RTSENLHNYLA	DAKTLAD (SEQ	QHFWSSPYT (SEQ	94		
Hu01G06 IGKV1-39 V48I	(SEQ ID NO: 21)	ID NO: 26)	ID NO: 32)			
Hu01G06 IGKV1-39 F1				92		
(conocida también como	RTSENLHNYLA	DAKTLAD (SEQ	QHFWSSPYT (SEQ			
Hu01G06 IGKV1-39 S43A V48I)	(SEQ ID NO: 21)	ID NO: 26)	ID NO: 32)			

(continuación)

		unuacion)		
	Kaba	at/Chothia		
				SEQ ID NO:
				de la región
	CDR1	CDR2	CDR3	variable
	RTSENLHNYLA	DAKTLAD (SEQ	QHFWSDPYT (SEQ	254
Hu01G06 IGKV1-39 F2	(SEQ ID NO: 21)	ID NO: 26)	ID NO: 244)	
	KASQNVGTNVA	SASYRYS (SEQ	QQYNNYPLT (SEQ	82
Ch06C11 quimérica,	(SEQ ID NO: 23)	ID NO: 28)	ID NO: 35)	
	KASQNVGTNVA	SASYRYS (SEQ	QQYNNYPLT (SEQ	96
Sh06C11 IGKV1-16	(SEQ ID NO: 23)	ID NO: 28)	ID NO: 35)	
	KASQNVGTNVÁ	SPSYRYS (SEQ	QQYNSYPHT (SEQ	86
Ch14F11 quimérica,	(SEQ ID NO: 23)	ID NO: 30) `	ID NO: 36)	
,	KASQNVGTNVÁ	SPSYRYS (SEQ	QQYNSYPHT (SEQ	98
Hu14F11 IGKV1-16	(SEQ ID NO: 23)	ID NO: 30)	ID NO: 36)	
-		IMGT	1	
				SEQ ID NO:
				de la región
	CDR1	CDR2	CDR3	variable
	ENLHNY (SEQ ID	022	QHFWSSPYT (SEQ	76
Ch01G06 quimérica,	NO: 160)	DAK	ID NO: 32)	, ,
	ENLHNY (SEQ ID	27	QHFWSSPYT (SEQ	90
Hu01G06 IGKV1-39	NO: 160)	DAK	ID NO: 32)	
Hu01G06 IGKV1-39 S43A V48I	110.100)	37.11	15 116: 62)	92
(conocida también como	ENLHNY (SEQ ID		QHFWSSPYT (SEQ	02
Hu01G06 IGKV1-39 F1)	NO: 160)	DAK	ID NO: 32)	
11001000101(110011)	ENLHNY (SEQ ID	D/ II C	QHFWSSPYT (SEQ	94
Hu01G06 IGKV1-39 V48I	NO: 160)	DAK	ID NO: 32)	34
Hu01G06 IGKV1-39 F1	100. 100)	DAIX	10 110:02)	92
(conocida también como	ENLHNY (SEQ ID		QHFWSSPYT (SEQ	32
Hu01G06 IGKV1-39 S43A V48I)	NO: 160)	DAK	ID NO: 32)	
1101 COO COICT 1-03 0+3A V+01)	ENLHNY (SEQ ID	DAIX	QHFWSDPYT (SEQ	254
Hu01G06 IGKV1-39 F2	NO: 160)	DAK	ID NO: 244)	254
11001000101011-5912	QNVGTN (SEQ ID	DAIL	QQYNNYPLT (SEQ	82
Ch06C11 quimérica,	NO: 162)	SAS	ID NO: 35)	02
Chooci i quimenca,	QNVGTN (SEQ ID	SAS	QQYNNYPLT (SEQ	96
Sh06C11 ICKV1 16	NO: 162)	SAS	ID NO: 35)	90
Sh06C11 IGKV1-16		SAS		00
Olad AEdd andre Salar	QNVGTN (SEQ ID	ODO	QQYNSYPHT (SEQ	86
Ch14F11 quimérica,	NO: 162)	SPS	ID NO: 36)	
	QNVGTN (SEQ ID		QQYNSYPHT (SEQ	98
Hu14F11 IGKV1-16	NO: 162)	SPS	ID NO: 36)	

Para crear las secuencias completas de la cadena pesada o kappa quiméricas y humanizadas del anticuerpo, cada secuencia variable anterior se combina con su respectiva región constante humana. Por ejemplo, una cadena pesada completa comprende una secuencia variable pesada seguida por una secuencia constante de la cadena pesada de la IgG1 humana. Una cadena kappa completa comprende una secuencia variable kappa seguida por una secuencia constante de la cadena ligera kappa humana.

Secuencia de ácidos nucleicos que codifica la región constante de la cadena pesada de la IgG1 humana (SEQ ID NO: 171)

```
1 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
61 ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
121 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
181 ggcctgtact cactcagetc cgtcgtgacc gtgccatett catetetggg cactcagacc
241 tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
301 aagagctgcg acaagactca cacttgtccc ccatgccctg cccctgaact tctgggcggt
361 cccagcgtct ttttgttccc accaaagect aaagatactc tgatgataag tagaacaccc
421 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
481 tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
541 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
601 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
661 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
721 atgacaaaga accaagtete attgacetge etggtgaaag gettetaeee eagegacate
781 gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
841 ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
901 caqcaqqqta acqtcttcaq ctqttccqtq atqcacqaqq cattqcacaa ccactacacc
961 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la región constante de la cadena pesada de la IgG1 humana (SEQ ID NO: 172)

```
1 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss
61 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg
121 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn
181 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree
241 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw
301 qqgnvfscsv mhealhnhyt qkslslspgk
```

5

Secuencia de ácidos nucleicos que codifica la región constante de la cadena ligera kappa humana (SEQ ID NO: 173)

```
1 cgcacagttg ctgccccag cgtgttcatt ttcccaccta gcgatgagca gctgaaaagc 61 ggtactgcct ctgtcgtatg cttgctcaac aacttttacc cacgtgaggc taaggtgcag 121 tggaaagtgg ataatgcact tcaatctgga aacagtcaag agtccgtgac agaacaggac 181 agcaaagact caacttattc actctctcc accctgactc tgtccaaggc agactatgaa 241 aaacacaagg tatacgcctg cgaggttaca caccagggtt tgtctagtcc tgtcaccaag 301 tccttcaata ggggcgaatg t
```

10

15

25

Secuencia de proteínas que define la región constante de la cadena ligera kappa humana (SEQ ID NO: 174)

```
1 rtvaapsvfi fppsdeqlks gtasvvclln nfypreakvq wkvdnalqsg nsqesvteqd
61 skdstyslss tltlskadye khkvyacevt hqqlsspvtk sfnrgec
```

Las siguientes secuencias representan la secuencia completa real o contemplada de la cadena pesada y ligera (es decir, que contienen las secuencias de ambas regiones variable y constante) para cada anticuerpo descrito en este Ejemplo. Las secuencias de señal para la apropiada secreción de los anticuerpos (por ejemplo, las secuencias de señal en el extremo 5' de las secuencias de ADN o en el extremo amino terminal de las secuencias de la proteína) no se muestran en las secuencias completas de la cadena pesada y ligera divulgadas en el presente documento y no están incluidas en la proteína final secretada. Tampoco se muestran los codones de terminación para la terminación de la traducción requeridos en el extremo 3' de las secuencias de ADN. En la pericia habitual de la técnica está la selección de una secuencia de señal y/o de un codón de terminación para la expresión de las secuencias completas divulgadas de la cadena pesada y de la cadena ligera de la inmunoglobulina. También se contempla que las secuencias de la región variable puedan estar ligadas a otras secuencias de la región constante para producir las cadenas pesada y ligera activas completas de la inmunoglobulina.

Secuencia de ácidos nucleicos que codifica la cadena pesada quimérica Ch01G06 completa (región variable de la cadena pesada de ratón y región constante de la IgG1 humana) (SEQ ID NO: 175)

```
1 gaagtgttgt tgcagcagtc agggccggag ttggtaaaac cgggagcgtc ggtgaaaatc
 61 ccgtgcaaag cgtcggggta tacgtttacg gactataaca tggattgggt gaaacagtcg
 121 catgggaaat cgcttgaatg gattggtcag atcaatccga ataatggagg aatcttcttt
 181 aatcagaagt ttaaaggaaa agcgacgctt acagtcgata agtcgtcgaa cacggcgttc
 241 atggaagtac ggtcgcttac gtcggaagat acggcggtct attactgtgc gagggaggcg
 301 attacqacqq tqqqaqcqat qqactattqq qqacaaqqqa cqtcqqtcac qqtatcqtcq
 361 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
 421 ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
 481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
 541 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
 601 tacatctqta atqtaaacca caaqcctaqc aatactaaqq tcqataaqcq qqtqqaaccc
 661 aagagctgcg acaagactca cacttgtccc ccatgccctg cccctgaact tctgggcggt
 721 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
 781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
 841 tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
 901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
 961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
1081 atgacaaaga accaagtoto attgacotgo otggtgaaag gottotacco cagogacato
1141 gccqttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
1201 ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
1261 cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada quimérica Ch01G06 completa (región variable de la cadena pesada de ratón y región constante de la IgG1 humana) (SEQ ID NO: 176)

```
1 evllqqsqpe lvkpgasvki pckasgytft dynmdwvkqs hgkslewigq inpnnggiff
61 nqkfkgkatl tvdkssntaf mevrsltsed tavyycarea ittvgamdyw gqgtsvtvss
121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss
181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg
241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn
301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree
361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw
421 qqqnvfscsv mhealhnhyt qkslslspgk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada Hu01G06 IGHV1-18 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 177)

10

5

```
1 caagtgcaac ttgtgcagtc gggtgcggaa gtcaaaaagc cgggagcgtc ggtgaaagta
  61 tcqtqtaaaq cqtcqqqata tacqtttacq qactataaca tqqactqqqt acqacaqqca
 121 ccqqqqaaat cqttqqaatq qatcqqacaq attaatccqa acaatqqqqq aattttcttt
 181 aatcagaaat tcaaaggacg ggcgacgttg acggtcgata catcgacgaa tacggcgtat
 241 atggaattga ggtcgcttcg ctcggacgat acggcggtct attactgcgc cagggaggcg
 301 atcacqacqq taqqqqqat qqattattqq qqacaqqqqa cqcttqtqac qqtatcqtcq
 361 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
 421 ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
 481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
 541 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
 601 tacatetgta atgtaaacca caageetage aatactaagg tegataageg ggtggaacce
 661 aagagetgeg acaagactea caettgteee ceatgeeetg eeeetgaact tetgggeggt
 721 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
 781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
 841 tacqttqatq qaqtcqaaqt acataatqct aaqaccaaqc ctaqaqaqqa qcaqtataat
 901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
 961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
1081 atgacaaaga accaagtete attgacetge etggtgaaag gettetacee eagegacate
1141 gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
1201 ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
1261 cagcagggta acgtettcag etgtteegtg atgeacgagg cattgeacaa ceactacace
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada Hu01G06 IGHV1-18 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 178)

5

10

```
1 qvqlvqsqae vkkpgasvkv sckasgytft dynmdwvrqa pgkslewigq inpnnggiff 61 nqkfkgratl tvdtstntay melrslrsdd tavyycarea ittvgamdyw gqgtlvtvss 121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss 181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg 241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn 301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree 361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw 421 qqgnvfscsv mhealhnhyt qkslslspgk
```

<u>Secuencia de ácidos nucleicos que codifica la cadena pesada Hu01G06 IGHV1-69 completa (región variable de la</u> cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 179)

```
1 caagtccagc ttgtccagtc gggagcggaa gtgaagaaac cggggtcgtc ggtcaaagta
  61 tegtgtaaag egtegggata taegtttaeg gaetataaca tggattgggt aegaeagget
 121 ccgggaaaat cattggaatg gattggacag attaatccga ataatggggg tatcttcttt
 181 aatcaaaagt ttaaagggag ggcgacgttg acggtggaca aatcgacaaa tacggcgtat
 241 atggaattgt cgtcgcttcg gtcggaggac acggcggtgt attactgcgc gagggaggcg
 301 atcacgacgg teggggegat ggattattgg ggacagggaa egettgtgae ggtategteg
 361 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
 421 ggcactgcag cacteggetg cetegteaag gattatttte cagagecagt aacegtgage
 481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaaagctct
 541 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
 601 tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
 661 aagagetgeg acaagactea caettgteee ceatgeeetg eeeetgaact tetgggeggt
 721 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
 781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
 841 tacqttqatq qaqtcqaaqt acataatqct aaqaccaaqc ctaqaqaqqa qcaqtataat
 901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
 961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
1081 atgacaaaga accaagtoto attgacotgo otggtgaaag gottotacco cagogacato
1141 gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
1201 ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
1261 cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada Hu01G06 IGHV1-69 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 180)

```
1 qvqlvqsqae vkkpgssvkv sckasgytft dynmdwvrqa pgkslewigq inpnnggiff
61 nqkfkgratl tvdkstntay melsslrsed tavyycarea ittvgamdyw gqgtlvtvss
121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss
181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg
241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn
301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree
361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw
421 qqqnvfscsv mhealhnhyt qkslslspqk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada Sh01G06 IGHV1-18 M69L completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 181)

5

10

```
1 \ {\tt caggtccagc} \ {\tt ttgtgcaatc} \ {\tt gggagcggaa} \ {\tt gtgaagaaac} \ {\tt cgggagcgtc} \ {\tt ggtaaaaagtc}
  61 tcgtgcaaag cgtcggggta tacgtttacg gactataaca tggactgggt gcgccaagcg
 121 cctqqacaqq qtcttqaatq qatqqqqcaq attaatccqa ataatqqaqq qatcttcttt
 181 aatcaqaaat tcaaaqqaaq qqtaacqctq acqacaqaca cqtcaacatc qacqqcctat
 241 atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg
 301 attacqacqq tqqqaqcqat qqattattqq qqacaqqqqa cqttqqtaac qqtatcqtcq
 361 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
 421 ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
 481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
 541 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
 601 tacatetgta atgtaaacca caageetage aatactaagg tegataageg ggtggaacce
 661 aagagetgeg acaagactea caettgteee ceatgeeetg eeeetgaact tetgggeggt
 721 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
 781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
 841 tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
1081 atgacaaaga accaagtete attgacetge etggtgaaag gettetaeee eagegacate
1141 gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
1201 ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
1261 cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada Sh01G06 IGHV1-18 M69L completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 182)

```
1 qvqlvqsgae vkkpgasvkv sckasgytft dynmdwvrqa pgqglewmgq inpnnggiff
61 nqkfkgrvtl ttdtststay melrslrsdd tavyycarea ittvgamdyw gqgtlvtvss
121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss
181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg
241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn
301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree
361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw
421 qqqnvfscsv mhealhnhyt qkslslspqk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada Sh01G06 IGHV1-18 M69L K64Q G44S completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 183)

```
1 caggtccagc ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc
  61 tcgtgcaaag cgtcggggta tacgtttacg gactataaca tggactgggt gcgccaagcg
 121 cctggacaga gccttgaatg gatggggcag attaatccga ataatggagg gatcttcttt
 181 aatcagaaat tocagggaag ggtaacgctg acgacagaca cgtcaacatc gacggcctat
 241 atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg
 301 attacgacgg tgggagcgat ggattattgg ggacagggga cgttggtaac ggtatcgtcg
 361 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
 421 ggcactgcag cacteggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
 481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
 541 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
 601 tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
 661 aagagetgeg acaagactca cacttgteee ceatgeeetg eecetgaact tetgggeggt
 721 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
 781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
 841 tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
 901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
 961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
1081 atgacaaaga accaagtete attgacetge etggtgaaag gettetacee eagegacate
1141 gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
1201 ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
1261 cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada Sh01G06 IGHV1-18 M69L K64Q G44S completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 184)

```
1 qvqlvqsqae vkkpgasvkv sckasgytft dynmdwvrqa pgqslewmgq inpnnggiff
61 nqkfqgrvtl ttdtststay melrslrsdd tavyycarea ittvgamdyw gqgtlvtvss
121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss
181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg
241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn
301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree
361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw
421 qqgnvfscsv mhealhnhyt qkslslspgk
```

10 <u>Secuencia de ácidos nucleicos que codifica la cadena pesada Sh01G06 IGHV1-18 M69L K64Q completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 185)</u>

```
1 caggtccagc ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc
  61 tcgtgcaaag cgtcggggta tacgtttacg gactataaca tggactgggt gcgccaagcg
 121 cctggacagg gtcttgaatg gatggggcag attaatccga ataatggagg gatcttcttt
 181 aatcagaaat tocagggaag ggtaacgctg acgacagaca cgtcaacatc gacggcctat
 241 atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg
 301 attacqacqq tqqqaqcqat qqattattqq qqacaqqqqa cqttqqtaac qqtatcqtcq
 361 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
 421 ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
 481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
 541 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
 601 tacatctqta atqtaaacca caaqcctaqc aatactaaqq tcqataaqcq qqtqqaaccc
 661 aagagetgeg acaagactca cacttgteec ceatgeectg eeectgaact tetgggeggt
 721 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
 781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
 841 tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
 901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
 961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
1081 atgacaaaga accaagtete attgacetge etggtgaaag gettetacee eagegacate
1141 gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
1201 ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
1261 cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada Sh01G06 IGHV1-18 M69L K64Q completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 186)

```
5

61 nqkfqgrvtl ttdtststay melrslrsdd tavyycarea ittvgamdyw gqgtlvtvss
121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss
181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg
241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreegyn
301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree
361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw
421 qqqnvfscsv mhealhnhyt qkslslspgk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada Sh01G06 IGHV1-69 T30S I69L completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 187)

```
1 caagtacagc ttgtacagtc gggagcggaa gtcaagaaac cgggatcgtc ggtcaaagtg
  61 tcgtgtaaag cgtcgggata tacgtttagc gactataaca tggattgggt gcgacaagcg
 121 cctgggcagg gacttgaatg gatgggtcag atcaatccga ataatggggg aatctttttc
 181 aatcagaagt ttaaagggag ggtaacgctg acggcggata aaagcacgtc aacggcgtat
 241 atggagttgt cgtcgttgcg gtcggaggac acggcggtct attactgcgc gagggaagcg
 301 attacqacqq tqqqaqcqat qqattattqq qqqcaqqqaa cqcttqtaac qqtqtcatcq
 361 geeteaacaa aaggaccaag tgtgtteeca etegeeecta geageaagag tacateeggg
 421 ggcactgcag cacteggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
 481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
 541 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
 601 tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
 661 aagagetgeg acaagactca caettgteee ceatgeeetg ceeetgaact tetgggeggt
 721 cccaqcqtct ttttqttccc accaaaqcct aaaqatactc tqatqataaq taqaacaccc
 781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
 841 tacqttqatq qaqtcqaaqt acataatqct aaqaccaaqc ctaqaqaqqa qcaqtataat
 901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
 961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
1081 atgacaaaga accaagtete attgacetge etggtgaaag gettetacee eagegacate
1141 gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
1201 ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
1261 cagcagggta acgtettcag etgtteegtg atgeacgagg cattgeacaa ceactacace
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada Sh01G06 IGHV1-69 T30S I69L completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 188)

```
1 qvqlvqsqae vkkpgssvkv sckasgytfs dynmdwvrqa pgqglewmgq inpnnggiff 61 nqkfkgrvtl tadkststay melsslrsed tavyycarea ittvgamdyw gqgtlvtvss 121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss 181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg 241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn 301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree 361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw 421 qqgnvfscsv mhealhnhyt qkslslspgk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada Sh01G06 IGHV1-69 T30S K64Q I69L completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 189)

20

15

10

```
1 caagtacage ttgtacagte gggageggaa gtcaagaaac egggategte ggtcaaagtg
  61 tcgtgtaaag cgtcgggata tacgtttagc gactataaca tggattgggt gcgacaagcg
 121 cctgggcagg gacttgaatg gatgggtcag atcaatccga ataatggggg aatctttttc
 181 aatcagaagt ttcaggggag ggtaacgctg acggcggata aaagcacgtc aacggcgtat
 241 atggagttgt cgtcgttgcg gtcggaggac acggcggtct attactgcgc gagggaagcg
 301 attacgacgg tgggagcgat ggattattgg gggcagggaa cgcttgtaac ggtgtcatcg
 361 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
 421 ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
 481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
 541 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
 601 tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
 661 aagagetgeg acaagactca cacttgteec ceatgeeetg eeeetgaact tetgggeggt
 721 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
 781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
 841 tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
 901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
1081 atgacaaaga accaagtoto attgacotgo otggtgaaag gottotacco cagogacato
1141 gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
1201 ctgqataqtq acqqqtcttt ctttctqtac aqtaaqctqa ctqtqqacaa qtcccqctqq
1261 cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada Sh01G06 IGHV1-69 T30S K64Q I69L completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 190)

5

10

```
1 qvqlvqsqae vkkpgssvkv sckasgytfs dynmdwvrqa pgqglewmgq inpnnggiff
61 nqkfqgrvtl tadkststay melsslrsed tavyycarea ittvgamdyw gqgtlvtvss
121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss
181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg
241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn
301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree
361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw
421 qqgnvfscsv mhealhnhyt qkslslspgk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada Hu01G06 IGHV1-18 FI completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 255)

```
1 caggtccagc ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc
 61 tcgtgcaaag cgtcggggta tacgtttacg gactataaca tggactgggt gcgccaagcg
121 cctggacaga gccttgaatg gatggggcag attaatccgt acaatcacct gatcttcttt
181 aatcagaaat tocagggaag ggtaacgctg acgacagaca cgtcaacatc gacggcctat
241 atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg
301 attacgacgg tgggagcgat ggattattgg ggacagggga cgttggtaac ggtatcgtcg
361 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
421 ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
541 ggeetgtaet caeteagete egtegtgaee gtgeeatett catetetggg caeteagaee
601 tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
661 aagagetgeg acaagactea cacttgteee ceatgeeetg eeeetgaact tetgggeggt
721 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
 781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
 841 tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
 901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
 961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagecteg tgaaccacag gtgtacacte tgecacccag tagagaggaa
1081 atgacaaaga accaagtete attgacetge etggtgaaag gettetacee eagegacate
1141 gccqttqaqt qqqaqaqtaa cqqtcaqcct qaqaacaatt acaaqacaac cccccaqtq
1201 ctgqataqtq acqqqtcttt ctttctqtac aqtaaqctqa ctqtqqacaa qtcccqctqq
1261 cagcagggta acqtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada Hu01G06 IGHV1-18 FI completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 256)

```
1 qvqlvqsqae vkkpgasvkv sckasgytft dynmdwvrqa pgqslewmgq inpynhliff
61 nqkfqgrvtl ttdtststay melrslrsdd tavyycarea ittvgamdyw gqgtlvtvss
121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss
181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg
241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn
301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree
361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw
421 qqqnvfscsv mhealhnhyt qkslslspqk
```

5

10

15

<u>Secuencia de ácidos nucleicos que codifica la cadena pesada Hu01G06 IGHV1-18 F2 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana)</u> (SEQ ID NO: 257)

```
1 caggtccagc ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc
  61 tcgtgcaaag cgtcggggta tacgtttacg gactataaca tggactgggt gcgccaagcg
 121 cctggacaga gccttgaatg gatggggcag attaatccga ataatggact gatcttcttt
 181 aatcaqaaat tooaqqqaaq qqtaacqctq acqacaqaca cqtcaacatc qacqqcctat
 241 atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg
 301 attacgacgg tgggagcgat ggattattgg ggacagggga cgttggtaac ggtatcgtcg
 361 geeteaacaa aaggaccaag tgtgtteeca etegeeecta geageaagag tacateeggg
 421 ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
 481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
 541 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
 601 tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
 661 aagagetgeg acaagactea caettgteee ceatgeeetg eeeetgaact tetgggeggt
 721 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
 781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
 841 tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
 901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
1081 atgacaaaga accaagtoto attgacotgo otggtgaaag gottotacco cagogacato
1141 gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
1201 ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
1261 cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada Hu01G06 IGHV1-18 F2 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 258)

```
1 qvqlvqsgae vkkpgasvkv sckasgytft dynmdwvrqa pgqslewmgq inpnngliff
61 nqkfqgrvtl ttdtststay melrslrsdd tavyycarea ittvgamdyw gqgtlvtvss
121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss
181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg
241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn
301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree
361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw
421 qqgnvfscsv mhealhnhyt qkslslspgk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada Hu01G06 IGHV1-69 FI completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 259)

```
1 caagtacage ttgtacagte gggageggaa gteaagaaac egggategte ggteaaagtg
  61 tcgtgtaaag cgtcgggata tacgtttagc gactataaca tggattgggt gcgacaagcg
 121 cctqqqcaqq qacttqaatq qatqqqtcaq atcaatccqa ataatqqqct qatctttttc
 181 aatcagaagt ttaaagggag ggtaacgctg acggcggata aaagcacgtc aacggcgtat
241 atggagttgt cgtcgttgcg gtcggaggac acggcggtct attactgcgc gagggaagcg
 301 attacgacgg tgggagcgat ggattattgg gggcagggaa cgcttgtaac ggtgtcatcg
 361 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
 421 ggcactgcag cacteggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
 481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
 541 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
 601 tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
 661 aagagetgeg acaagactea caettgteee ceatgecetg eeeetgaact tetgggeggt
 721 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
841 tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
 901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
1081 atgacaaaga accaagtoto attgacotgo otggtgaaag gottotacco cagogacato
1141 gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
1201 ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
1261 cagcagggta acgtetteag etgtteegtg atgeacgagg cattgeacaa ceaetaeace
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada Hu01G06 IGHV1-69 FI completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 260)

```
1 qvqlvqsgae vkkpgssvkv sckasgytfs dynmdwvrqa pgqglewmgq inpnngliff
61 nqkfkgrvtl tadkststay melsslrsed tavyycarea ittvgamdyw gqgtlvtvss
121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss
181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg
241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn
301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree
```

361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw 421 qqqnvfscsv mhealhnhyt qkslslspqk

Secuencia de ácidos nucleicos que codifica la cadena pesada Hu01G06 IGHV1-69 F2 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 261)

10

5

```
1 caagtacage ttgtacagte gggageggaa gtcaagaaac egggategte ggtcaaagtg
  61 tcgtgtaaag cgtcgggata tacgtttagc gactataaca tggattgggt gcgacaagcg
 121 cctgggcagg gacttgaatg gatgggtcag atcaatccgt acaatcacct gatctttttc
 181 aatcagaagt ttaaagggag ggtaacgctg acggcggata aaagcacgtc aacggcgtat
 241 atggagttgt cgtcgttgcg gtcggaggac acggcggtct attactgcgc gagggaagcg
 301 attacgacgg tgggagcgat ggattattgg gggcagggaa cgcttgtaac ggtgtcatcg
 361 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
 421 ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
 481 tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
 541 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
 601 tacatctqta atqtaaacca caaqcctaqc aatactaaqq tcqataaqcq qqtqqaaccc
 661 aagagetgeg acaagactca cacttgteec ceatgeeetg eeeetgaact tetgggeggt
 721 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
 781 gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
 841 tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
 901 agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
961 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
1021 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
1081 atgacaaaga accaagtoto attgacotgo otggtgaaag gottotacco cagogacato
1141 gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
1201 ctgqataqtq acqqqtcttt ctttctqtac aqtaaqctqa ctqtqqacaa qtcccqctqq
1261 cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
1321 cagaagtcac tgagcctgag cccagggaag
```

Secuencia de proteínas que define la cadena pesada Hu01G06 IGHV1-69 F2 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 262)

5

10

```
1 qvqlvqsqae vkkpgssvkv sckasgytfs dynmdwvrqa pgqglewmgq inpynhliff
61 nqkfkgrvtl tadkststay melsslrsed tavyycarea ittvgamdyw gqgtlvtvss
121 astkgpsvfp lapsskstsg gtaalgclvk dyfpepvtvs wnsgaltsgv htfpavlqss
181 glyslssvvt vpssslgtqt yicnvnhkps ntkvdkrvep kscdkthtcp pcpapellgg
241 psvflfppkp kdtlmisrtp evtcvvvdvs hedpevkfnw yvdgvevhna ktkpreeqyn
301 styrvvsvlt vlhqdwlngk eykckvsnka lpapiektis kakgqprepq vytlppsree
361 mtknqvsltc lvkgfypsdi avewesngqp ennykttppv ldsdgsffly skltvdksrw
421 qqgnvfscsv mhealhnhyt qkslslspgk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada quimérica Ch06C11 completa (región variable de la cadena pesada de ratón y región constante de la IgG1 humana) (SEQ ID NO: 191)

```
1 caggtgacac tcaaagaatc aggacccgga atccttcagc ccagccagac cttgtcgctg
 61 acttgttcgt tctccggttt cagcctgaat acttatggga tgggtgtgtc atggatcagg
121 caaccgtccg ggaaaggatt ggagtggctc gcgcacatct actgggacga tgacaaacgc
181 tacaatcctt cgctgaagag ccgattgacg atttccaagg atgcctcgaa caaccgggta
241 tttcttaaga tcacqtcqqt cqatacqqca qacacqqcqa cctattactq cqcccaaaqa
301 gggtacgatg actattgggg atattggggc caggggacac tcgtcacaat ttcagctgcc
 361 tcaacaaaag gaccaagtgt gttcccactc gcccctagca gcaagagtac atccgggggc
 421 actgcagcac tcggctgcct cgtcaaggat tattttccag agccagtaac cgtgagctgg
 481 aacagtggag cactcacttc tggtgtccat acttttcctg ctgtcctgca aagctctggc
 541 ctgtactcac tcagctccgt cgtgaccgtg ccatcttcat ctctgggcac tcagacctac
 601 atctgtaatg taaaccacaa gcctagcaat actaaggtcg ataagcgggt ggaacccaag
 661 agetgegaca agacteacae ttgteececa tgeectgeec etgaaettet gggeggteec
 721 agegtetttt tgtteccace aaageetaaa gataetetga tgataagtag aacaeeegag
 781 gtgacatgtg ttgttgtaga cgtttcccac gaggacccag aggttaagtt caactggtac
 841 gttgatggag tcgaagtaca taatgctaag accaagccta gagaggagca gtataatagt
 901 acataccgtg tagtcagtgt tctcacagtg ctgcaccaag actggctcaa cggcaaagaa
 961 tacaaatgca aagtgtccaa caaagcactc ccagccccta tcgagaagac tattagtaag
1021 gcaaaggggc agcctcgtga accacaggtg tacactctgc cacccagtag agaggaaatg
1081 acaaagaacc aagteteatt gacetgeetg gtgaaagget tetaceccag egacategee
1141 gttgagtggg agagtaacgg tcagcctgag aacaattaca agacaacccc cccagtgctg
1201 gatagtgacg ggtctttctt tctgtacagt aagctgactg tggacaagtc ccgctggcag
1261 cagggtaacg tetteagetg tteegtgatg cacgaggeat tgeacaacca etacaccag
1321 aagtcactga gcctgagccc agggaag
```

Secuencia de proteínas que define la cadena pesada quimérica Ch06C11 completa (región variable de la cadena pesada de ratón y región constante de la IgG1 humana) (SEQ ID NO: 192)

```
1 qvtlkesgpg ilqpsqtlsl tcsfsgfsln tygmgvswir qpsgkglewl ahiywdddkr 61 ynpslksrlt iskdasnnrv flkitsvdta dtatyycaqr gyddywgywg qgtlvtisaa 121 stkgpsvfpl apsskstsgg taalgclvkd yfpepvtvsw nsgaltsgvh tfpavlqssg 181 lyslssvvtv pssslgtqty icnvnhkpsn tkvdkrvepk scdkthtcpp cpapellggp 241 svflfppkpk dtlmisrtpe vtcvvvdvsh edpevkfnwy vdgvevhnak tkpreeqyns 301 tyrvvsvltv lhqdwlngke ykckvsnkal papiektisk akgqprepqv ytlppsreem 361 tknqvsltcl vkgfypsdia vewesngqpe nnykttppvl dsdgsfflys kltvdksrwq 421 qgnvfscsvm healhnhytq kslslspgk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada HE LM 06C11 IGHV2-70 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 193)

```
1 caggtgactt tgaaagaatc cggtcccgca ttggtaaagc caacccagac acttacgctc
  61 acatgtacat tttccqqatt caqcttqaac acttacqqqa tqqqaqtqtc qtqqattcqq
 121 caacctccgg ggaaggctct ggagtggctg gcgcacatct actgggatga tgacaaaagg
 181 tataacccct cacttaaaac gagactgacg atctcgaagg acacaagcaa gaatcaggtc
 241 gtectcacga ttacgaatgt agacceggtg gatactgeeg tetattactg egegeaacge
 301 gggtatgatg actactgggg atattggggt cagggcaccc tcgtgaccat ctcgtcagcc
 361 tcaacaaaag gaccaagtgt gttcccactc gcccctagca gcaagagtac atccgggggc
 421 actgcagcac tcggctgcct cgtcaaggat tattttccag agccagtaac cgtgagctgg
 481 aacagtggag cactcacttc tggtgtccat acttttcctg ctgtcctgca aagctctggc
 541 ctgtactcac tcagctccgt cgtgaccgtg ccatcttcat ctctgggcac tcagacctac
 601 atctgtaatg taaaccacaa gcctagcaat actaaggtcg ataagcgggt ggaacccaag
 661 agetgegaca agacteacae ttgtccccca tgccctgccc ctgaacttct gggcggtccc
 721 agcgtctttt tgttcccacc aaagcctaaa gatactctga tgataagtag aacacccgag
 781 gtgacatgtg ttgttgtaga cgtttcccac gaggacccag aggttaagtt caactggtac
 841 gttgatggag tcgaagtaca taatgctaag accaagccta gagaggagca gtataatagt
 901 acataccgtg tagtcagtgt tctcacagtg ctgcaccaag actggctcaa cggcaaagaa
961 tacaaatgca aagtgtccaa caaagcactc ccagccccta tcgagaagac tattagtaag
1021 gcaaaggggc agcctcgtga accacaggtg tacactctgc cacccagtag agaggaaatg
1081 acaaagaacc aagteteatt gacetgeetg gtgaaagget tetaccccag cgacategee
1141 gttgagtggg agagtaacgg tcagcctgag aacaattaca agacaacccc cccagtgctg
1201 gatagtgacg ggtctttctt tctgtacagt aagctgactg tggacaagtc ccgctggcag
1261 cagggtaacg tcttcagctg ttccgtgatg cacgaggcat tgcacaacca ctacacccag
1321 aagtcactga gcctgagccc agggaag
```

Secuencia de proteínas que define la cadena pesada HE LM 06C11 IGHV2-70 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 194)

```
1 qvtlkesgpa lvkptqtltl tctfsgfsln tygmgvswir qppgkalewl ahiywdddkr
61 ynpslktrlt iskdtsknqv vltitnvdpv dtavyycaqr gyddywgywg qgtlvtissa
121 stkgpsvfpl apsskstsgg taalgclvkd yfpepvtvsw nsgaltsgvh tfpavlqssg
181 lyslssvvtv pssslgtqty icnvnhkpsn tkvdkrvepk scdkthtcpp cpapellggp
241 svflfppkpk dtlmisrtpe vtcvvvdvsh edpevkfnwy vdgvevhnak tkpreeqyns
301 tyrvvsvltv lhqdwlngke ykckvsnkal papiektisk akgqprepqv ytlppsreem
361 tknqvsltcl vkgfypsdia vewesngqpe nnykttppvl dsdgsfflys kltvdksrwq
421 qgnvfscsvm healhnhytq kslslspqk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada Hu06C11 IGHV2-5 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 195)

20

10

15

5

```
1 caaqtaacqc tcaaqqaqtc cqqacccacc ttqqtqaaqc cqacqcaqac cttqactctt
  61 acqtqcactt tctcqqqqtt ttcactqaat acqtacqqqa tqqqtqtctc atqqatcaqq
 121 caacctccgg ggaaaggatt ggaatggctg gcgcacatct actgggatga cgataagaga
 181 tataacccaa gcctcaagtc gcggctcacc attacaaaag atacatcgaa aaatcaggtc
 241 gtacttacta tcacgaacat ggaccccgtg gacacagcaa catattactg tgcccagcgc
 301 ggctatgacg attattgggg ttactgggga cagggaacac tggtcacggt gtccagcgcc
 361 tcaacaaaag gaccaagtgt gttcccactc gcccctagca gcaagagtac atccgggggc
 421 actgcagcac teggetgeet egteaaggat tatttteeag agecagtaac egtgagetgg
 481 aacagtggag cactcacttc tggtgtccat acttttcctg ctgtcctgca aagctctggc
 541 ctgtactcac tcagctccgt cgtgaccgtg ccatcttcat ctctgggcac tcagacctac
 601 atctgtaatg taaaccacaa gcctagcaat actaaggtcg ataagcgggt ggaacccaag
 661 agetgegaca agacteaeac ttgteeceea tgeectgeec etgaacttet gggeggteec
 721 agegtetttt tgtteecace aaageetaaa gataetetga tgataagtag aacaceegag
 781 gtgacatgtg ttgttgtaga cgtttcccac gaggacccag aggttaagtt caactggtac
 841 gttgatggag tcgaagtaca taatgctaag accaagccta gagaggagca gtataatagt
 901 acataccgtg tagtcagtgt tctcacagtg ctgcaccaag actggctcaa cggcaaagaa
 961 tacaaatgca aagtgtccaa caaagcactc ccagccccta tcgagaagac tattagtaag
1021 gcaaaggggc agcctcgtga accacaggtg tacactctgc cacccagtag agaggaaatg
1081 acaaagaacc aagteteatt gacetgeetg gtgaaagget tetaccecag egacategee
1141 gttgagtggg agagtaacgg tcagcctgag aacaattaca agacaacccc cccagtgctg
1201 gatagtgacg ggtctttctt tctgtacagt aagctgactg tggacaagtc ccgctggcag
1261 cagggtaacg tetteagetg tteegtgatg cacgaggeat tgeacaacca etacaccag
1321 aagtcactga gcctgagccc agggaag
```

Secuencia de proteínas que define la cadena pesada Hu06C11 IGHV2-5 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 196)

5

```
1 qvtlkesgpt lvkptqtltl tctfsgfsln tygmgvswir qppgkglewl ahiywdddkr
61 ynpslksrlt itkdtsknqv vltitnmdpv dtatyycaqr gyddywgywg qgtlvtvssa
121 stkgpsvfpl apsskstsgg taalgclvkd yfpepvtvsw nsgaltsgvh tfpavlqssg
181 lyslssvvtv pssslgtqty icnvnhkpsn tkvdkrvepk scdkthtcpp cpapellggp
241 svflfppkpk dtlmisrtpe vtcvvvdvsh edpevkfnwy vdgvevhnak tkpreeqyns
301 tyrvvsvltv lhqdwlngke ykckvsnkal papiektisk akgqprepqv ytlppsreem
361 tknqvsltcl vkgfypsdia vewesngqpe nnykttppvl dsdgsfflys kltvdksrwq
421 qgnvfscsvm healhnhytq kslslspgk
```

10 Secuencia de ácidos nucleicos que codifica la cadena pesada quimérica Ch14F11 completa (región variable de la cadena pesada de ratón y región constante de la IgG1 humana) (SEQ ID NO: 197)

```
1 caggicacge tgaaagagte aggiceegga atecticaae ettegeagae attgicaete
  61 acatetteet teteeggett etegeteteg acttatggea tgggtgtagg atggattegg
 121 cageccageg ggaagggget tgagtggttg geggatatet ggtgggaega egacaaatae
 181 tacaatccga gcctgaagtc ccgcctcacc atttcgaaag atacgtcatc aaacgaagtc
 241 tttttgaaga tcgccatcgt ggacacggcg gatacagcga cgtattactg cgccagaagg
 301 ggacactaca gcgcaatgga ttattgggga caggggacct cggtgactgt gtcgtccgcc
 361 tcaacaaaag gaccaagtgt gttcccactc gcccctagca gcaagagtac atccgggggc
 421 actgcagcac teggetgect egteaaggat tattttecag agecagtaac egtgagetgg
 481 aacagtggag cactcacttc tggtgtccat acttttcctg ctgtcctgca aagctctggc
 541 ctgtactcac tcagctccgt cgtgaccgtg ccatcttcat ctctgggcac tcagacctac
 601 atctgtaatg taaaccacaa gcctagcaat actaaggtcg ataagcgggt ggaacccaag
 721 agcgtctttt tgttcccacc aaagcctaaa gatactctga tgataagtag aacacccgag
 781 gtgacatgtg ttgttgtaga cgtttcccac gaggacccag aggttaagtt caactggtac
 841 gttgatggag tcgaagtaca taatgctaag accaagccta gagaggagca gtataatagt
 901 acataccgtg tagtcagtgt tctcacagtg ctgcaccaag actggctcaa cggcaaagaa
 961 tacaaatgca aagtgtccaa caaagcactc ccagccccta tcgagaagac tattagtaag
1021 gcaaaggggc agcctcgtga accacaggtg tacactctgc cacccagtag agaggaaatg
1081 acaaagaacc aagtotoatt gacotgootg gtgaaaggot totaccccag cgacatogoc
1141 gttgagtggg agagtaacgg tcagcctgag aacaattaca agacaacccc cccagtgctg
1201 gatagtgacg ggtctttctt tctgtacagt aagctgactg tggacaagtc ccgctggcag
1261 cagggtaacg tetteagetg tteegtgatg caegaggeat tgeacaacea etacaeecag
1321 aagtcactga gcctgagccc agggaag
```

Secuencia de proteínas que define la cadena pesada quimérica Ch14F11 completa (región variable de la cadena pesada de ratón y región constante de la IgG1 humana) (SEQ ID NO: 198)

5

10

```
1 qvtlkesgpg ilqpsqtlsl tcsfsgfsls tygmgvgwir qpsgkglewl adiwwdddky 61 ynpslksrlt iskdtssnev flkiaivdta dtatyycarr ghysamdywg qgtsvtvssa 121 stkgpsvfpl apsskstsgg taalgclvkd yfpepvtvsw nsgaltsgvh tfpavlqssg 181 lyslssvvtv pssslgtqty icnvnhkpsn tkvdkrvepk scdkthtcpp cpapellggp 241 svflfppkpk dtlmisrtpe vtcvvvdvsh edpevkfnwy vdgvevhnak tkpreegyns 301 tyrvvsvltv lhqdwlngke ykckvsnkal papiektisk akgqprepqv ytlppsreem 361 tknqvsltcl vkgfypsdia vewesngqpe nnykttppvl dsdgsfflys kltvdksrwq 421 qgnvfscsvm healhnhytq kslslspgk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada Sh14F11 IGHV2-5 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 199)

```
1 cagatcactt tgaaagaaag cggaccgacc ttggtcaagc ccacacaaac cctcacgctc 61 acgtgtacat tttcggggtt ctcgcttca acttacggga tgggagtagg gtggattcgc 121 cagccgcctg gtaaagcgtt ggagtggctt gcagacatct ggtgggacga cgataagtac 181 tataatccct cgctcaagtc cagactgacc atcacgaaag atacgagcaa gaaccaggtc 241 gtgctgacaa tgactaacat ggacccagtg gatacggcta catattactg cgccaggcgg
```

```
301 ggtcactact cagcgatgga ttattggggc cagggaacac tggtaacggt gtcgtccgcc
 361 tcaacaaaag gaccaagtgt gttcccactc gcccctagca gcaagagtac atccgggggc
 421 actgcagcac teggetgeet egteaaggat tatttteeag agecagtaac egtgagetgg
 481 aacagtggag cactcacttc tggtgtccat acttttcctg ctgtcctgca aagctctggc
 541 ctgtactcac tcagctccgt cgtgaccgtg ccatcttcat ctctgggcac tcagacctac
 601 atctgtaatg taaaccacaa gcctagcaat actaaggtcg ataagcgggt ggaacccaag
 661 agetgegaca agacteacae ttgtccccca tgccctgccc ctgaacttct gggcggtccc
 721 agegtetttt tgtteccaec aaageetaaa gataetetga tgataagtag aacaeeegag
 781 gtgacatgtg ttgttgtaga cgtttcccac gaggacccag aggttaagtt caactggtac
 841 gttgatggag tcgaagtaca taatgctaag accaagccta gagaggagca gtataatagt
 901 acataccgtg tagtcagtgt tctcacagtg ctgcaccaag actggctcaa cggcaaagaa
 961 tacaaatgca aagtgtccaa caaagcactc ccagccccta tcgagaagac tattagtaag
1021 gcaaaggggc agcctcgtga accacaggtg tacactctgc cacccagtag agaggaaatg
1081 acaaagaacc aagteteatt gacetgeetg gtgaaagget tetaceceag egacategee
1141 gttgagtggg agagtaacgg tcagcctgag aacaattaca agacaacccc cccagtgctg
1201 gatagtgacg ggtctttctt tctgtacagt aagctgactg tggacaagtc ccgctggcag
1261 cagggtaacg tetteagetg tteegtgatg caegaggeat tgeacaacea etacaeceag
1321 aagtcactga gcctgagccc agggaag
```

Secuencia de proteínas que define la cadena pesada Sh14F11 IGHV2-5 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 200)

5

10

```
1 qitlkesgpt lvkptqtltl tctfsgfsls tygmgvgwir qppgkalewl adiwwdddky 61 ynpslksrlt itkdtsknqv vltmtnmdpv dtatyycarr ghysamdywg qgtlvtvssa 121 stkgpsvfpl apsskstsgg taalgclvkd yfpepvtvsw nsgaltsgvh tfpavlqssg 181 lyslssvvtv pssslgtqty icnvnhkpsn tkvdkrvepk scdkthtcpp cpapellggp 241 svflfppkpk dtlmisrtpe vtcvvvdvsh edpevkfnwy vdgvevhnak tkpreegyns 301 tyrvvsvltv lhqdwlngke ykckvsnkal papiektisk akgqprepqv ytlppsreem 361 tknqvsltcl vkgfypsdia vewesngqpe nnykttppvl dsdgsfflys kltvdksrwq 421 qqnvfscsvm healhnhytq kslslspqk
```

Secuencia de ácidos nucleicos que codifica la cadena pesada Sh14F11 IGHV2-70 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 201)

```
1 caagtgactc tcaaggagtc cggacccgcc ctggtcaaac caacgcagac actgacgctc
  61 acatgcacct tcageggatt ttegttgtca acgtaeggca tgggtgtggg gtggattege
 121 cagcctccgg ggaaagccct tgaatggttg gcggacatct ggtgggatga tgacaagtac
 181 tataatccct cacttaagtc acggttgacg atctcgaaag acaccagcaa gaaccaggta
 241 gtgctgacaa tgactaacat ggacccggtc gatacagcgg tctactattg tgctagaagg
 301 ggacactact ccgcaatgga ttattggggt caggggacgc tcgtaaccgt gtcgtcggcc
 361 tcaacaaaag gaccaagtgt gttcccactc gcccctagca gcaagagtac atccgggggc
421 actgcagcac teggetgeet egtcaaggat tatttteeag agecagtaac egtgagetgg
481 aacagtggag cactcacttc tggtgtccat acttttcctg ctgtcctgca aagctctggc
 541 ctgtactcac tcagctccgt cgtgaccgtg ccatcttcat ctctgggcac tcagacctac
 601 atctgtaatg taaaccacaa gcctagcaat actaaggtcg ataagcgggt ggaacccaag
 661 agetgegaca agaeteacae ttgteececa tgeeetgeee etgaaettet gggeggteee
721 agcgtctttt tgttcccacc aaagcctaaa gatactctga tgataagtag aacacccgag
781 gtgacatgtg ttgttgtaga cgtttcccac gaggacccag aggttaagtt caactggtac
 841 gttgatggag tcgaagtaca taatgctaag accaagccta gagaggagca gtataatagt
901 acataccgtg tagtcagtgt tctcacagtg ctgcaccaag actggctcaa cggcaaagaa
961 tacaaatgca aagtgtccaa caaagcactc ccagccccta tcgagaagac tattagtaag
1021 gcaaaggggc agcctcgtga accacaggtg tacactctgc cacccagtag agaggaaatg
1081 acaaagaacc aagtctcatt gacctgcctg gtgaaaggct tctaccccag cgacatcgcc
1141 gttgagtggg agagtaacgg tcagcctgag aacaattaca agacaacccc cccagtgctg
1201 gatagtgacg ggtctttctt tctgtacagt aagctgactg tggacaagtc ccgctggcag
1261 cagggtaacg tetteagetg tteegtgatg caegaggeat tgeacaacea etacaeceag
1321 aagtcactga gcctgagccc agggaag
```

Secuencia de proteínas que define la cadena pesada Sh14F11 IGHV2-70 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 202)

```
1 qvtlkesgpa lvkptqtltl tctfsgfsls tygmgvgwir qppgkalewl adiwwdddky 61 ynpslksrlt iskdtsknqv vltmtnmdpv dtavyycarr ghysamdywg qgtlvtvssa 121 stkgpsvfpl apsskstsgg taalgclvkd yfpepvtvsw nsgaltsgvh tfpavlqssg 181 lyslssvvtv pssslgtqty icnvnhkpsn tkvdkrvepk scdkthtcpp cpapellggp 241 svflfppkpk dtlmisrtpe vtcvvvdvsh edpevkfnwy vdgvevhnak tkpreeqyns 301 tyrvvsvltv lhqdwlngke ykckvsnkal papiektisk akgqprepqv ytlppsreem 361 tknqvsltcl vkgfypsdia vewesngqpe nnykttppvl dsdgsfflys kltvdksrwq 421 qgnvfscsvm healhnhytg kslslspgk
```

Secuencia de ácidos nucleicos que codifica la cadena ligera quimérica Ch01G06 completa (región variable de la cadena kappa de ratón y región constante de la kappa humana) (SEQ ID NO: 203)

5

10

15

```
1 gacatccaaa tgacccagtc acccgcgagc ctttcggcgt cggtcggaga aacggtcacg 61 atcacgtgcc ggacatcaga gaatctccat aactacctcg cgtggtatca acagaagcag 121 ggggaagtcgc cccagttgct tgtatacgat gcgaaaacgt tggcggatgg ggtgccgtcc 181 agattctcgg gatcgggctc ggggacgcag tactcgctca agatcaattc gctgcagccg 241 gaggactttg ggtcgtacta ttgtcagcat ttttggtcat caccgtatac atttggaggt 301 ggaacgaaac ttgagattaa gcgcacagtt gctgcccca gcgtgttcat tttcccacct 361 agcgatgagc agctgaaaag cggtactgcc tctgtcgtat gcttgctcaa caacttttac 421 ccacgtgagg ctaaggtgca gtggaaagtg gataatgcac ttcaatctgg aaacagtcaa 481 gagtccgtga cagaacagga cagcaaagac tcaacttatt cactctctc caccctgact 541 ctgtccaagg cagactatga aaaacacaag gtatacgcct gcgaggttac acaccagggt 601 ttgtctagtc ctgtcaccaa gtccttcaat aggggcgaat gt
```

Secuencia de proteínas que define la cadena ligera quimérica Ch01G06 completa (región variable de la cadena kappa de ratón y región constante de la kappa humana) (SEQ ID NO: 204)

```
1 diqmtqspas lsasvgetvt itcrtsenlh nylawyqqkq gkspqllvyd aktladgvps
61 rfsgsgsgtq yslkinslqp edfgsyycqh fwsspytfgg gtkleikrtv aapsvfifpp
121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt
181 lskadyekhk vyacevthqg lsspvtksfn rgec
```

Secuencia de ácidos nucleicos que codifica la cadena ligera Hu01G06 IGKV1-39 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 205)

```
1 gacatccaaa tgacccagtc gccgtcgtcg ctttcagcgt cggtagggga tcgggtcaca 61 attacgtgcc gaacgtcaga gaatttgcat aactacctcg cgtggtatca gcagaagccc 121 gggaagtcac cgaaactcct tgtctacgat gcgaaaacgc tggcggatgg agtgccgtcg 181 agattctcgg gaagcggatc cggtacggac tatacgctta cgatctcatc gctccagccc 241 gaggactttg cgacgtacta ttgtcagcat ttttggtcgt cgccctacac atttgggcag 301 gggaccaagt tggaaatcaa gcgcacagtt gctgcccca gcgtgttcat tttcccacct 361 agcgatgagc agctgaaaag cggtactgcc tctgtcgtat gcttgctcaa caacttttac 421 ccacgtgagg ctaaggtgca gtggaaagtg gataatgcac ttcaatctgg aaacagtcaa 481 gagtccgtga cagaacagga cagcaaagac tcaacttatt cactctctc caccctgact 541 ctgtccaagg cagactatga aaaacacaag gtatacgcct gcgaggttac acaccagggt 601 ttgtctagtc ctgtcacaa gtccttcaat aggggcgaat gt
```

20 <u>Secuencia de proteínas que define la cadena ligera Hu01G06 IGKV1-39 completa (región variable de la cadena</u> kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 206)

```
1 diqmtqspss lsasvgdrvt itcrtsenlh nylawyqqkp gkspkllvyd aktladgvps
61 rfsgsgsgtd ytltisslqp edfatyycqh fwsspytfgq gtkleikrtv aapsvfifpp
121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt
181 lskadyekhk vyacevthqg lsspvtksfn rgec
```

25 <u>Secuencia de ácidos nucleicos que codifica la cadena ligera Hu01G06 IGKV1-39 S43A V48I completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (denominada también en el presente documento cadena ligera Hu01G06 IGFV1-39 FI completa; SEQ ID NO: 207)</u>

```
1 gacatccaaa tgacccagtc gccgtcgtcg ctttcagcgt cggtagggga tcgggtcaca 61 attacgtgcc gaacgtcaga gaatttgcat aactacctcg cgtggtatca gcagaagccc 121 gggaaggccc cgaaactcct tatctacgat gcgaaaacgc tggcggatgg agtgccgtcg 181 agattctcgg gaagggatc cggtacggac tatacgctta cgatctcatc gctccagccc 241 gaggactttg cgacgtacta ttgtcagcat ttttggtcgt cgccctacac atttgggcag 301 gggaccaagt tggaaatcaa gcgcacagtt gctgcccca gcgtgttcat tttccacct 361 agcgatgagc agctgaaaag cggtactgc tctgtcgtat gcttgctcaa caacttttac 421 ccacgtgagg ctaaggtgca gtggaaagtg gataatgcac ttcaatctgg aaacagtcaa 481 gagtccgtga cagaacagga cagcaaagac tcaacttatt cactctctc caccctgact 541 ctgtcaagg cagactatga aaaacacaag gtatacgcct gcgaggttac acaccagggt 601 ttgtctagtc ctgtcacca gtccttcaat aggggcgaat gt
```

Secuencia de proteínas que define la cadena ligera Hu01G06 IGKV1-39 S43A V48I completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (denominada también en el presente documento cadena ligera Hu01G06 IGFV1-39 FI completa; SEQ ID NO: 208)

```
1 diqmtqspss lsasvgdrvt itcrtsenlh nylawyqqkp gkapklliyd aktladgvps
61 rfsgsgsgtd ytltisslqp edfatyycqh fwsspytfgq gtkleikrtv aapsvfifpp
121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt
181 lskadyekhk vyacevthqg lsspvtksfn rgec
```

Secuencia de ácidos nucleicos que codifica la cadena ligera Hu01G06 IGKV1-39 V48I completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 209)

```
1 gacatccaaa tgacccagtc gccgtcgtcg ctttcagcgt cggtagggga tcgggtcaca 61 attacgtgcc gaacgtcaga gaatttgcat aactacctcg cgtggtatca gcagaagccc 121 gggaagtcac cgaaactcct tatctacgat gcgaaaacgc tggcggatgg agtgccgtcg 181 agattctcgg gaagcggatc cggtacggac tatacgctta cgatctcatc gctccagccc 241 gaggactttg cgacgtacta ttgtcagcat ttttggtcgt cgccctacac attgggcag 301 gggaccaagt tggaaatcaa gcgcacagtt gctgcccca gcgtgttcat tttcccacct 361 agcgatgagc agctgaaaag cggtactgcc tctgtcgtat gcttgctcaa caacttttac 421 ccacgtgagg ctaaggtgca gtggaaagtg gataatgcac ttcaatctgg aaacagtcaa 481 gagtccgtga cagaacagga cagcaaagac tcaacttatt cactctctc caccctgact 541 ctgtccaagg cagactatga aaaacacaag gtatacgcct gcgaggttac acaccagggt 601 ttgtctagtc ctgtcaccaa gtccttcaat aggggcgaat gt
```

15

10

Secuencia de proteínas que define la cadena ligera Hu01G06 IGKV1-39 V48I completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 210)

```
1 digmtqspss lsasvgdrvt itcrtsenlh nylawyqqkp gkspklliyd aktladgvps
61 rfsgsgsgtd ytltisslqp edfatyycqh fwsspytfgq gtkleikrtv aapsvfifpp
121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt
181 lskadyekhk vyacevthqg lsspvtksfn rgec
```

20

Secuencia de ácidos nucleicos que codifica la cadena ligera Hu01G06 IGKV1-39 F1 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (denominada también en el presente documento cadena ligera Hu01G06 IGKV1-39 S43A V48I completa; SEQ ID NO: 207)

```
1 gacatecaaa tgacecagte geegtegteg ettteagegt eggtagggga tegggteaca 61 attacgtgee gaacgteaga gaatttgeat aactaceteg egtggtatea geagaageee 121 gggaaggeee egaaacteet tatetaegat gegaaaaege tggegggatgg agtgeeggatg agageggate eggtaeggae tatacgetta egateteate getecageee 241 gaggaetttg egacgtaeta ttgteageat ttttggtegt egecetaeae atttggeag 301 gggaceaagt tggaaateaa gegeaeagtt getgeeeeea gegtgtteat ttteeeacet 361 agegatgage agetgaaaag eggtaetgee tetgtegtat gettgeteaa eaacttttae 421 eeacgtgagg etaaaggtea gtggaaagtg gataatgeae tteaatetgg aaacagteaa 481 gagteegtga eagaetatga aaaacacaag gtataeegee gegaggttae acaceagggt 601 ttgtetagte etgteacea gteetteaat aggggegaat gt
```

25

Secuencia de proteínas que define la cadena ligera Hu01G06 IGKV1-39 F1 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (denominada también en el presente documento cadena ligera Hu01G06 IGKV1-39 S43A V48I completa; SEQ ID NO: 208)

5

10

```
1 digmtgspss lsasvgdrvt itcrtsenlh nylawygqkp gkapklliyd aktladgvps
 61 rfsgsgsgtd ytltisslqp edfatyycqh fwsspytfgq gtkleikrtv aapsvfifpp
121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt
181 lskadyekhk vyacevthqq lsspvtksfn rgec
```

Secuencia de ácidos nucleicos que codifica la cadena ligera Hu01G06 IGKV1-39 F2 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 263)

```
1 gacatccaaa tgacccagtc gccgtcgtcg ctttcagcgt cggtagggga tcgggtcaca
  61 attacgtgcc gaacgtcaga gaatttgcat aactacctcg cgtggtatca gcagaagccc
 121 gggaagtcac cgaaactcct tatctacgat gcgaaaacgc tggcggatgg agtgccgtcg
 181 agattctcgg gaagcggatc cggtacggac tatacgctta cgatctcatc gctccagccc
241 gaggactttg cgacgtacta ttgtcagcat ttttggtcgg acccctacac atttgggcag
301 gggaccaagt tggaaatcaa gcgcacagtt gctgcccca gcgtgttcat tttcccacct
361 agegatgage agetgaaaag eggtactgee tetgtegtat gettgeteaa caacttttae
421 ccacgtgagg ctaaggtgca gtggaaagtg gataatgcac ttcaatctgg aaacagtcaa
481 gagtccgtga cagaacagga cagcaaagac tcaacttatt cactctcttc caccctgact
541 ctgtccaagg cagactatga aaaacacaag gtatacgcct gcgaggttac acaccagggt
601 ttgtctagtc ctgtcaccaa gtccttcaat aggggcgaat gt
```

- Secuencia de proteínas que define la cadena ligera Hu01G06 IGKV1-39 F2 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 264)
 - 1 digmtqspss lsasvgdrvt itcrtsenlh nylawyqqkp gkspklliyd aktladgvps 61 rfsgsgsgtd ytltisslqp edfatyycqh fwsdpytfgq gtkleikrtv aapsvfifpp 121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt 181 lskadyekhk vyacevthqq lsspvtksfn rqec
- 20 Secuencia de ácidos nucleicos que codifica la cadena ligera quimérica Ch06C11 completa (región variable de la cadena kappa de ratón y región constante de la kappa humana) (SEQ ID NO: 211)

```
1 gatatcgtca tgacccagtc ccagaagttc atgtcaactt cagtgggaga cagagtgtcc
61 gtcacatgta aagectegea aaatgtggga accaacgtag egtggtteea geagaaacet
121 ggccaatcac cgaaggcact gatctactcg gccagctata ggtactcggg agtaccagat
181 cggtttacgg ggtcggggag cgggacggac tttatcctca ctatttccaa tgtccagtcg
241 gaggacettg eggaataett etgeeageag tataacaact atceceteae gtttggtget
301 ggtacaaaat tggagttgaa gcgcacagtt gctgccccca gcgtgttcat tttcccacct
361 agcgatgagc agctgaaaag cggtactgcc tctgtcgtat gcttgctcaa caacttttac
421 ccacgtgagg ctaaggtgca gtggaaagtg gataatgcac ttcaatctgg aaacagtcaa
481 gagtccgtga cagaacagga cagcaaagac tcaacttatt cactctcttc caccctgact
541 ctgtccaagg cagactatga aaaacacaag gtatacgcct gcgaggttac acaccagggt
601 ttgtctagtc ctgtcaccaa gtccttcaat aggggcgaat gt
```

- 25 Secuencia de proteínas que define la cadena ligera quimérica Ch06C11 completa (región variable de la cadena kappa de ratón y región constante de la kappa humana) (SEQ ID NO: 212)
 - 1 divmtqsqkf mstsvqdrvs vtckasqnvq tnvawfqqkp qqspkaliys asyrysqvpd 61 rftgsgsgtd filtisnvqs edlaeyfcqq ynnypltfga gtklelkrtv aapsvfifpp 121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt
 - 181 lskadyekhk vyacevthqq lsspvtksfn rgec
- Secuencia de ácidos nucleicos que codifica la cadena ligera Sh06C11 IGKV1-16 completa (región variable de la 30 cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 213)

```
1 gacatccaaa tgacccaatc gccctcctc ctctccgcat cagtagggga ccgcgtcaca 61 attacttgca aagcgtcgca gaacgtcgga acgaatgtgg cgtggtttca gcagaagccc 121 ggaaaagctc cgaagagctt gatctactcg gcctcatata ggtattcggg tgtgccgagc 181 cggtttagcg ggtcggggtc aggtactgat ttcacgctca caatttcatc gttgcagcca 241 gaagatttcg ccacatatta ctgtcagcag tacaacaatt accctctgac gttcggccag 301 ggaaccaaac ttgagatcaa gcgcacagtt gctgcccca gcgtgttcat tttcccacct 361 agcgatgagc agctgaaaag cggtactgcc tctgtcgtat gcttgctcaa caacttttac 421 ccacgtgagg ctaaggtga gtggaaagtg gataatgcac ttcaatctgg aaacagtcaa 481 gagtccgtga cagaacagga cagcaaagac tcaacttatt cactctctc caccctgact 541 ctgtccaagg cagactatga aaaacacaag gtatacgcct gcgaggttac acaccagggt 601 ttgtctagtc ctgtcacca gtcctcaat aggggcgaat gt
```

5 Secuencia de proteínas que define la cadena ligera Sh06C11 IGKV1-16 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 214)

```
1 diqmtqspss lsasvgdrvt itckasqnvg tnvawfqqkp gkapksliys asyrysgvps
61 rfsgsgsgtd ftltisslqp edfatyycqq ynnypltfgq gtkleikrtv aapsvfifpp
121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt
181 lskadyekhk vyacevthqg lsspvtksfn rgec
```

10 <u>Secuencia de ácidos nucleicos que codifica la cadena ligera quimérica Ch14F11 completa (región variable de la cadena kappa de ratón y región constante de la kappa humana) (SEQ ID NO: 215)</u>

```
1 gacategtga tgacacagte acagaaatte atgtecacat eegteggtga tagagtatee 61 gteaegtgta aggeetegea aaacgtagga actaatgtgg egtggtatea acagaageea 121 ggacagteae eeaageaet eatetacage eecteatate ggtacagegg ggtgeeggae 181 aggtteaegg gateggggag egggacegat tttacactga eeatttegaa tgteeagtg 241 gaggacettg eggaataett etgeeageagg tataactegt acceteacae gtttggaggt 301 ggeactaagt tggagatgaa acgeacagtt getgeeeea gegtgtteat ttteeeacet 361 agegatgage agetgaaaag eggtactgee tetgtegtat gettgeteaa eaacttttae 421 eeaegtgag etaaggtga gtggaaagtg gataatgeae tteaatetgg aaacagteaa 481 gagteegtga eagacaagga eageaaagae teaaettatt eaetetete eaecetgaet 601 ttgtetagte etgteaceaa gteetteaat aggggegaat gt
```

Secuencia de proteínas que define la cadena ligera quimérica Ch14F11 completa (región variable de la cadena kappa de ratón y región constante de la kappa humana) (SEQ ID NO: 216)

```
1 divmtqsqkf mstsvgdrvs vtckasqnvg tnvawyqqkp gqspkaliys psyrysgvpd
61 rftgsgsgtd ftltisnvqs edlaeyfcqq ynsyphtfgg gtklemkrtv aapsvfifpp
121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt
181 lskadyekhk vyacevthqg lsspvtksfn rgec
```

20 <u>Secuencia de ácidos nucleicos que codifica la cadena ligera Hu14F11 IGKV1-16 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana)</u> (SEQ ID NO: 217)

```
1 gatatccaga tgacacagtc accetcgtcg ctctcagctt ccgtaggcga cagggtcact 61 attacgtgta aagcatcaca gaacgtcgga acgaatgtgg cgtggtttca gcagaagccc 121 gggaagagcc ccaaagcgct tatctactcc ccgtcgtatc ggtattccgg tgtgccaagc 181 agatttcgg ggtcaggttc gggaactgac tttaccctga ccatctcgtc cctccaaccg 241 gaagatttcg ccacgtactt ctgccagcag tacaacagct atcctcacac attcggacaa 301 gggacaaagt tggagattaa acgcacagtt gctgcccca gcgtgttcat tttcccacct 361 agcgatgac agctgaaaag cggtactgcc tctgtcgtat gcttgctcaa caacttttac 421 ccacgtgagg ctaaaggtga gtggaaagtg gataatgcac ttcaatctgg aaacagtcaa 481 gagtccgtga cagaacagga cagcaaagac tcaacttatt cactctctc caccctgact 541 ctgtccaagg cagactatga aaaacacaag gtatacgcct gcgaggttac acaccagggt 601 ttgtctagtc ctgtcacca gtccttcaat aggggcgaat gt
```

25 Secuencia de proteínas que define la cadena ligera Hu14F11 IGKV1-16 completa (región variable de la cadena

kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 218)

- $1 \ {\tt diqmtqspss} \ {\tt lsasvgdrvt} \ {\tt itckasqnvg} \ {\tt tnvawfqqkp} \ {\tt gkspkaliys} \ {\tt psyrysgvps}$
- 61 rfsgsgsgtd ftltisslqp edfatyfcqq ynsyphtfqq gtkleikrtv aapsvfifpp 121 sdeqlksgta svvcllnnfy preakvqwkv dnalqsgnsq esvteqdskd styslsstlt 181 lskadyekhk vyacevthqg lsspvtksfn rgec

- La Tabla 22 es una gráfica de concordancia que muestra la SEQ ID NO. de cada secuencia analizada en este Ejemplo.

Tabla 22

SED ID NO.	Ácido nucleico o proteína
171	constante de la IgG1 humana-ácido nucleico
172	constante de la IgG1 humana-proteína
173	constante de la kappa humana-ácido nucleico
174	constante kappa humana-proteína
175	variable humana pesada quimérica Ch01G06 humanizada + constante de la IgG1 humana-ácido nucleico
176	variable humana pesada quimérica Ch01G06 humanizada + constante de la IgG1 humana-proteína
177	variable humana pesada IGHV1-18 Hu01G06 humanizada + constante de la IgG1 humana-ácido nucleico
178	variable humana pesada Hu01G06 IGHV1-18 humanizada + constante de la IgG1 humana- proteína
179	variable humana pesada IGHV1-69 Hu01G06 humanizada + constante de la IgG1 humana-ácido nucleico
180	variable humana pesada Hu01G06 IGHV1-69 humanizada + constante de la IgG1 humana- proteína
181	variable humana pesada Sh01G06 IGHV1-18 M69L humanizada + constante de la IgG1 humana- ácido nucleico
182	variable humana pesada Sh01G06 IGHV1-18 M69L humanizada + constante de la IgG1 humana- proteína
183	variable humana pesada Sh01G06 IGHV1-18 M69L K64Q G44S humanizada + constante de la IgG1 humana-ácido nucleico
184	variable humana pesada Sh01G06 IGHV1-18 M69L K64Q G44S humanizada + constante de la IgG1 humana-proteína
185	variable humana pesada Sh01G06 IGHV1-18 M69L K64Q humanizada + constante de la IgG1 humana-ácido nucleico
186	variable humana pesada Sh01G06 IGHV1-18 M69L K64Q humanizada + constante de la IgG1 humana-proteína
187	variable humana pesada Sh01G06 IGHV1-69 T30S I69L humanizada + constante de la IgG1 humana-ácido nucleico
188	variable humana pesada Sh01G06 IGHV1-69 T30S I69L humanizada + constante de la IgG1 humana-proteína
189	variable humana pesada Sh01G06 IGHV1-69 T30S K64Q I69L humanizada + constante de la IgG1 humana-ácido nucleico
190	variable humana pesada Sh01G06 IGHV1-69 T30S K64Q I69L humanizada + constante de la IgG1 humana-proteína
255	variable humana pesada Hu01G06 IGHV1-18 F1 humanizada + constante de la lgG1 humana- ácido nucleico
256	variable humana pesada Hu01G06 IGHV1-18 F1 humanizada + constante de la lgG1 humana- proteína
257	variable humana pesada Hu01G06 IGHV1-18 F2 humanizada + constante de la IgG1 humana- ácido nucleico
258	variable humana pesada Hu01G06 IGHV1-18 F2 humanizada + constante de la IgG1 humana- proteína
259	variable humana pesada Hu01G06 IGHV1-69 F1 humanizada + constante de la IgG1 humana- ácido nucleico
260	variable humana pesada Hu01G06 IGHV1-69 F1 humanizada + constante de la IgG1 humana- proteína
261	variable humana pesada Hu01G06 IGHV1-69 F2 humanizada + constante de la IgG1 humana- ácido nucleico

(continuación)

SED ID NO.	Ácido nucleico o proteína
262	variable humana pesada Hu01G06 IGHV1-69 F2 humanizada + constante de la IgG1 humana- proteína
191	variable humana pesada quimérica Ch06C11 humanizada + constante de la IgG1 humana-ácido nucleico
192	variable humana pesada quimérica Ch06C11 humanizada + constante de la IgG1 humana-proteína
193	variable humana pesada HE LM 06C11 IGHV2-70 humanizada + constante de la IgG1 humana-
	ácido nucleico
194	variable humana pesada HE LM 06C11 IGHV2-70 humanizada + constante de la IgG1 humana- proteína
195	variable humana pesada IGHV2-5 Hu06C11 humanizada + constante de la IgG1 humana-ácido nucleico
196	variable humana pesada Hu06C11 IGHV2-5 humanizada + constante de la IgG1 humana-proteína
197	variable humana pesada quimérica Ch14F11 humanizada + constante de la IgG1 humana-ácido nucleico
198	variable humana pesada quimérica Ch14F11 humanizada + constante de la IgG1 humana-proteína
199	variable humana pesada IGHV2-5 Sh14F11 humanizada + constante de la IgG1 humana-ácido nucleico
200	variable humana pesada Sh14F11 IGHV2-5 humanizada + constante de la IgG1 humana-proteína
201	variable humana pesada Sh14F11-IGHV2-70 humanizada + constante de la IgG1 humana-ácido nucleico
202	variable humana pesada Sh14F11-IGHV2-70 humanizada + constante de la IgG1 humana-proteína
203	variable humana quimérica Ch01G06 humanizada + constante de la kappa humana-ácido nucleico
204	variable humana quimérica Ch01G06 humanizada + constante de la kappa humana-proteína
205	variable humana Hu01G06 IGKV1-39 humanizada + constante de la kappa humana-ácido nucleico
206	variable humana Hu01G06 IGKV1-39 humanizada + constante de la kappa humana-proteína
207	variable humana Hu01G06 IGKV1-39 S43A V48I humanizada + constante de la kappa humana- ácido nucleico
208	variable humana Hu01G06 IGKV1-39 S43A V48I humanizada + constante de la kappa humana- proteína
209	variable humana Hu01G06 IGKV1-39 V48I humanizada + constante de la kappa humana-ácido nucleico
210	variable humana Hu01G06 IGKV1-39 V48I humanizada + constante de la kappa humana-proteína
207	variable humana Hu01G06 IGKV1-39 F1 humanizada + constante de la kappa humana-ácido nucleico
208	variable humana Hu01G06 IGKV1-39 F1 humanizada + constante de la kappa humana-proteína
263	variable humana Hu01G06 IGKV1-39 F2 humanizada + constante de la kappa humana-ácido nucleico
264	variable humana Hu01G06 IGKV1-39 F2 humanizada + constante de la kappa humana-proteína
211	variable humana quimérica Ch06C11 humanizada + constante de la kappa humana-ácido nucleico
212	variable humana quimérica Ch06C11 humanizada + constante de la kappa humana-proteína
213	variable humana Sh06C11 IGKV1-16 humanizada + constante de la kappa humana-ácido nucleico
214	variable humana Sh06C11 IGKV1-16 humanizada + constante de la kappa humana-proteína
215	variable humana quimérica Ch14F11 humanizada + constante de la kappa humana-ácido nucleico
216	variable humana quimérica Ch14F11 humanizada + constante de la kappa humana-proteína
217	variable humana Hu14F11 IGKV1-16 humanizada + constante de la kappa humana-ácido nucleico
218	variable humana Hu14F11 IGKV1-16 humanizada + constante de la kappa humana-proteína

La siguiente **Tabla 23** muestra anticuerpos que contienen cadenas pesadas y ligeras de inmunoglobulinas quiméricas, y ejemplos de combinaciones de cadenas pesadas y ligeras completas de inmunoglobulinas quiméricas o humanizadas.

Tabla 23

Nombre del anticuerpo	Cadena ligera	Cadena pesada				
Hu01G06-1	variable humana quimérica Ch01G06 humanizada + constante de la kappa humana (SEQ ID NO: 204)	variable humana pesada quimérica Ch01G06 humanizada + constante de la IgG1 humana (SEQ ID NO: 176)				

(continuación)

Nombre del	Continuación	
anticuerpo	Cadena ligera	Cadena pesada
, -	variable humana Hu01G06 IGKV1-39	variable humana pesada Hu01G06 IGHV1-18
	humanizada + constante de la kappa humana	humanizada + constante de la IgG1 humana
Hu01G06-46	(SEQ ID NO: 206) variable humana Hu01G06 IGKV1-39	(SEQ ID NO: 178)
	variable numana Huu I Gub I GK V I - 39 humanizada + constante de la kappa humana	variable humana pesada Hu01G06 IGHV1-69 humanizada + constante de la IgG1 humana
Hu01G06-52	(SEQ ID NO: 206)	(SEQ ID NO: 180)
1100100002	variable humana Hu01G06 IGKV1-39	variable humana pesada Sh01G06 IGHV1-18
	humanizada + constante de la kappa humana	M69L humanizada + constante de la IgG1
Hu01G06-100	(SEQ ID NO: 206)	humana (SEQ ID NO: 182)
	variable humana Hu01G06 IGKV1-39	variable humana pesada Sh01G06 IGHV1-18
Hu01G06-101	humanizada + constante de la kappa humana (SEQ ID NO: 206)	M69L K64Q humanizada + constante de la IgG1 humana (SEQ ID NO: 186)
11001000 101	variable humana Hu01G06 IGKV1-39	variable humana pesada Sh01G06 IGHV1-18
	humanizada + constante de la kappa humana	M69L K64Q G44S humanizada + constante de la
Hu01G06-102	(SEQ ID NO: 206)	IgG1 humana (SEQ ID NO: 184)
	variable humana Hu01G06 IGKV1-39	variable humana pesada Sh01G06 IGHV1-69
Hu01G06-103	humanizada + constante de la kappa humana (SEQ ID NO: 206)	T30S I69L humanizada + constante de la IgG1 humana (SEQ ID NO: 188)
11001000-103	variable humana Hu01G06 IGKV1-39	variable humana pesada Sh01G06 IGHV1-69
	humanizada + constante de la kappa humana	T30S K64Q I69L humanizada + constante de la
Hu01G06-104	(SEQ ID NO: 206)	IgG1 humana (SEQ ID NO: 190)
	variable humana Hu01G06 IGKV1-39 V48I	variable humana pesada Sh01G06 IGHV1-18
Hu01G06-105	humanizada + constante de la kappa humana (SEQ ID NO: 210)	M69L humanizada + constante de la IgG1 humana (SEQ ID NO: 182)
11001000-103	variable humana Hu01G06 IGKV1-39 V48I	variable humana pesada Sh01G06 IGHV1-18
	humanizada + constante de la kappa humana	M69L K64Q humanizada + constante de la IgG1
Hu01G06-106	(SEQ ID NO: 210)	humana (SEQ ID NO: 186)
	variable humana Hu01G06 IGKV1-39 V48I	variable humana pesada Sh01G06 IGHV1-18
Hu01G06-107	humanizada + constante de la kappa humana	M69L K64Q G44S humanizada + constante de la
11001000-107	(SEQ ID NO: 210) variable humana Hu01G06 IGKV1-39 V48I	IgG1 humana (SEQ ID NO: 184) variable humana pesada Sh01G06 IGHV1-69
	humanizada + constante de la kappa humana	T30S I69L humanizada + constante de la IgG1
Hu01G06-108	(SEQ ID NO: 210)	humana (SEQ ID NO: 188)
	variable humana Hu01G06 IGKV1-39 V48I	variable humana pesada Sh01G06 IGHV1-69
Hu01G06-109	humanizada + constante de la kappa humana (SEQ ID NO: 210)	T30S K64Q I69L humanizada + constante de la IgG1 humana (SEQ ID NO: 190)
11001000-103	variable humana Hu01G06 IGKV1-39 S43A	variable humana pesada Sh01G06 IGHV1-18
	V48I humanizada + constante de la kappa	M69L humanizada + constante de la IgG1
Hu01G06-110	humana (SEQ ID NO: 208)	humana (SEQ ID NO: 182)
	variable humana Hu01G06 IGKV1-39 S43A	variable humana pesada Sh01G06 IGHV1-18
Hu01G06-111	V48I humanizada + constante de la kappa	M69L K64Q humanizada + constante de la IgG1
11001000-111	humana (SEQ ID NO: 208) variable humana Hu01G06 IGKV1-39 S43A	humana (SEQ ID NO: 186) variable humana pesada Sh01G06 IGHV1-18
	V48I humanizada + constante de la kappa	M69L K64Q G44S humanizada + constante de la
Hu01G06-112	humana (SEQ ID NO: 208)	IgG1 humana (SEQ ID NO: 184)
	variable humana Hu01G06 IGKV1-39 S43A	variable humana pesada Sh01G06 IGHV1-69
Hu01G06-113	V48I humanizada + constante de la kappa	T30S I69L humanizada + constante de la IgG1 humana (SEQ ID NO: 188)
11001000-113	humana (SEQ ID NO: 208) variable humana Hu01G06 IGKV1-39 S43A	variable humana pesada Sh01G06 IGHV1-69
	V48I humanizada + constante de la kappa	T30S K64Q I69L humanizada + constante de la
Hu01G06-114	humana (SEQ ID NO: 208)	IgG1 humana (SEQ ID NO: 190)
	variable humana Hu01G06 IGKV1-39 F1	variable humana pesada Hu01G06 IGHV1-18 F1
Huntone 100	humanizada + constante de la kappa humana	humanizada + constante de la IgG1 humana
Hu01G06-122	(SEQ ID NO: 208) variable humana Hu01G06 IGKV1-39 F2	(SEQ ID NO: 256) variable humana pesada Hu01G06 IGHV1-18 F2
	humanizada + constante de la kappa humana	humanizada + constante de la IgG1 humana
Hu01G06-127	(SEQ ID NO: 264)	(SEQ ID NO: 258)
	variable humana Hu01G06 IGKV1-39 F1	variable humana pesada Hu01G06 IGHV1-69 F1
1101.000.105	humanizada + constante de la kappa humana	humanizada + constante de la IgG1 humana
Hu01G06-135	(SEQ ID NO: 208)	(SEQ ID NO: 260)

(continuación)

	(continuación	
Nombre del anticuerpo	Cadena ligera	Cadena pesada
	variable humana Hu01G06 IGKV1-39 F1	variable humana pesada Hu01G06 IGHV1-69 F2
	humanizada + constante de la kappa humana	humanizada + constante de la IgG1 humana
Hu01G06-138		(SEQ ID NO: 262)
	variable humana Hu01G06 IGKV1-39 F2	variable humana pesada Hu01G06 IGHV1-69 F2
	humanizada + constante de la kappa humana	humanizada + constante de la IgG1 humana
Hu01G06-146	(SEQ ID NO: 264)	(SEQ ID NO: 262)
	variable humana quimérica Ch06C11	variable humana pesada quimérica Ch06C11
	humanizada + constante de la kappa humana	humanizada + constante de la IgG1 humana
Hu06C11-1	(SEQ ID NO: 212)	(SEQ ID NO: 176)
	variable humana Sh06C11 IGKV1-16	variable humana pesada HE LM 06C11 IGHV2-
	humanizada + constante de la kappa humana	70 humanizada + constante de la IgG1 humana
Hu06C11-27	(SEQ ID NO: 214)	(SEQ ID NO: 194)
	variable humana Sh06C11 IGKV1-16	variable humana pesada Hu06C11 IGHV2-5
	humanizada + constante de la kappa humana	humanizada + constante de la lgG1 humana
Hu06C11-30	(SEQ ID NO: 214)	(SEQ ID NO: 196)
	variable humana quimérica Ch14F11	variable humana pesada quimérica Ch14F11
	humanizada + constante de la kappa humana	humanizada + constante de la IgG1 humana
Hu14F11-1	(SEQ ID NO: 216)	(SEQ ID NO: 198)
	variable humana quimérica Ch14F11	variable humana pesada quimérica Ch06C11
11:44544.00	humanizada + constante de la kappa humana	humanizada + constante de la lgG1 humana
Hu14F11-23	(SEQ ID NO: 216)	(SEQ ID NO: 192)
	variable humana quimérica Ch06C11	variable humana pesada quimérica Ch14F11
 	humanizada + constante de la kappa humana (SEQ ID NO: 212)	humanizada + constante de la IgG1 humana (SEQ ID NO: 198)
Hu14F11-24	variable humana Hu14F11 IGKV1-16	(
		variable humana pesada Sh14F11 IGHV2-5
Hu14F11-39	humanizada + constante de la kappa humana (SEQ ID NO: 218)	humanizada + constante de la IgG1 humana (SEQ ID NO: 200)
HU14F11-39	variable humana Hu14F11 IGKV1-16	variable humana pesada Sh14F11-IGHV2-70
	humanizada + constante de la kappa humana	humanizada + constante de la IgG1 humana
Hu14F11-47	(SEQ ID NO: 218)	(SEQ ID NO: 202)
11014111-47	(OLG ID NO. 210)	(JLQ ID NO. 202)

Las construcciones de anticuerpos que contienen las cadenas pesada y ligera quiméricas completas se indican a continuación:

- 5 **01G06 (Hu01G06-1) quimérica** = cadena pesada quimérica Ch01G06 completa (región variable de la cadena pesada de ratón y región constante de la IgG1 humana) (SEQ ID NO: 176) más la cadena ligera quimérica Ch01G06 completa (región variable de la cadena kappa de ratón y región constante de la kappa humana) (SEQ ID NO: 204)
- 10 **06C11 (Hu06C11-1) quimérica** = cadena pesada quimérica Ch06C11 completa (región variable de la cadena pesada de ratón y región constante de la IgG1 humana) (SEQ ID NO: 192) más la cadena ligera quimérica Ch06C11 completa (región variable de la cadena kappa de ratón y región constante de la kappa humana) (SEQ ID NO: 212)
- 14F11 (Hu14F11-1) quimérica = cadena pesada quimérica Ch14F11 completa (región variable de la cadena pesada de ratón y región constante de la IgG1 humana) (SEQ ID NO: 198) más la cadena ligera quimérica Ch14F11 completa (región variable de la cadena kappa de ratón y región constante de la kappa humana) (SEQ ID NO: 216)
- 20 Quince de las posibles construcciones de anticuerpos que contienen las cadenas pesada y ligera de la inmunoglobulina completa que contienen las regiones variables humanizadas se indican a continuación:
- Hu01G06-46 = cadena pesada Hu01G06 IGHV1-18 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 178) más la cadena ligera Hu01G06 IGKV1-39 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 206)
 - **Hu01G06-52** = cadena pesada Hu01G06 IGHV1-69 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 180) más la cadena ligera Hu01G06 IGKV1-39 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 206)
 - **Hu01G06-107** = cadena pesada Sh01 G06 IGHV1-18 M69L K64Q G44S completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 184) más la cadena ligera Hu01G06

30

- IGKV1-39 V48I completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 210)
- Hu01G06-108 = cadena pesada Sh01G06 IGHV1-69 T30S I69L completa (región variable de la cadena pesada
 humanizada y región constante de la IgG1 humana) (SEQ ID NO: 188) más la cadena ligera Hu01G06 IGKV1-39
 V48I completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 210)
- Hu01G06-112 = cadena pesada Sh01 G06 IGHV1-18 M69L K64Q G44S completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 184) más la cadena ligera Hu01G06 IGKV1-39 S43A V48I completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 208)
- Hu01G06-113 = cadena pesada Sh01G06 IGHV1-69 T30S I69L completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 188) más la cadena ligera Hu01G06 IGKV1-39 S43A V48I completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 208)
- Hu01G06-122 = cadena pesada Hu01G06 IGHV1-18 F1 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 256) más la cadena ligera Hu01G06 IGKV1-39 F1 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 208)
- Hu01G06-127 = cadena pesada Hu01G06 IGHV1-18 F2 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 258) más la cadena ligera Hu01G06 IGKV1-39 F2 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 264)
- Hu01G06-135 = cadena pesada Hu01G06 IGHV1-69 F1 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 260) más la cadena ligera Hu01G06 IGKV1-39 F1 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 208)
- Hu01G06-138 = cadena pesada Hu01G06 IGHV1-69 F2 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 262) más la cadena ligera Hu01G06 IGKV1-39 F1 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 208)
- Hu01G06-146 = cadena pesada Hu01G06 IGHV1-69 F2 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 262) más la cadena ligera Hu01G06 IGKV1-39 F2 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 264)
- Hu06C11-27 = cadena pesada HE LM 06C11 IGHV2-70 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 194) más la cadena ligera Sh06C11 IGKV1-16 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 214)
- Hu06C11-30 = cadena pesada Hu06C11 IGHV2-5 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 196) más la cadena ligera Sh06C11 IGKV1-16 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 214)
- Hu14F11-39 = cadena pesada Sh14F11 IGHV2-5 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 200) más la cadena ligera Hu14F11 IGKV1-16 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 218)
 - **Hu14F11-47** = cadena pesada Sh14F11-IGHV2-70 completa (región variable de la cadena pesada humanizada y región constante de la IgG1 humana) (SEQ ID NO: 202) más la cadena ligera Hu14F11 IGKV1-16 completa (región variable de la cadena kappa humanizada y región constante de la kappa humana) (SEQ ID NO: 218)

Ejemplo 15: Afinidades de unión de los anticuerpos monoclonales anti-GDF15 humanizados y quiméricos

60

65

Las afinidades de unión y las cinéticas de la unión de los anticuerpos mFc-rhGDF15 humanizados y quiméricos se midieron mediante resonancia de plasmón superficial, usando un instrumento BIAcore® T100 (GE Healthcare, Piscataway, NJ).

Se inmovilizaron anti-IgG humanas de cabra (fragmento Fc específico, Jackson ImmunoResearch, West Grove, PA) en chips sensores CM4 de dextrano carboximetilado mediante un acoplamiento de amina, según un protocolo convencional. Los análisis se realizaron a 37 °C usando PBS que contiene tensioactivo P20 al 0,05% como tampón de ejecución. Los anticuerpos se capturaron en celdas de flujo individuales a un caudal de 10 μl/minuto. El tiempo de inyección se modificó para cada anticuerpo, para producir una Rmáx de entre 30 y 60 UR. Se inyectaron secuencialmente tampón o mFc-rhGDF15 diluidos en tampón de ejecución sobre una superficie de referencia (sin anticuerpo capturado) y la superficie activa (el anticuerpo que se va a analizar) durante 240 segundos a 60 μl/minuto. La fase de disociación se monitorizó durante hasta 1.200 segundos. Después, la superficie se regeneró con dos inyecciones de 60 segundos de glicina-HCl 10 mM, a pH 2,25, a un caudal de 30 μl/minuto. El intervalo de concentración del GDF15 analizado era de entre 20 nM y 0,625 nM.

Los parámetros cinéticos se determinaron usando la función cinética del programa informático BIAevaluation (GE Healthcare) con una resta de referencia doble. Se determinaron los parámetros cinéticos de cada anticuerpo, k_a (constante de velocidad de asociación), k_d (constante de velocidad de disociación) y K_D (constante de velocidad de disociación en equilibrio). Los valores cinéticos de los anticuerpos monoclonales purificados en mFc-rhGDF15 se resumen en la **Tabla 24**.

т	а	h	la	24

Anticuerpo	k _a (1/Ms)	k _d (1/s)	$K_{D}(M)$	n
Hu01G06-1	4,2E+06	6,4E-04	1,6E-10	8
Hu01G06-46	3,6E+06	3,8E-04	1,1E-10	11
Hu01G06-52	3,6E+06	3,6E-04	9,9E-11	10
Hu06C11-1	5,3E+06	8,4E-04	1,8E-10	2
Hu06C11-27	4,7E+06	8,2E-04	1,8E-10	2
Hu06C11-30	4,8E+06	8,7E-04	1,8E-10	2
Hu14F11-1	3,0E+06	4,6E-04	1,6E-10	2
Hu14F11-39	3,0E+06	1,9E-04	6,6E-11	2
Hu14F11-47	3,3E+06	1,8E-04	6,5E-11	2

20 Los resultados de la **Tabla 24** muestran que los anticuerpos quiméricos y cada uno de los humanizados tienen unas velocidades de asociación rápidas (ka), unas velocidades de disociación lentas (kd y unas afinidades muy altas (KD). En particular, los anticuerpos tienen unas afinidades que varían desde aproximadamente 65 pM hasta aproximadamente 200 pM.

Los valores cinéticos del 01G06 quimérico (Hu01G06-1), dos anticuerpos monoclonales inicialmente humanizados 01G06 (Hu01G06-46 y -52) y las variantes de anticuerpos monoclonales humanizados 01G06 con la secuencia optimizada Hu01G06-100 hasta -114 (en el sobrenadante) en mFc-rhGDF15, se resumen en la **Tabla 25.**

Tabla 25

Anticuerpo	ka (1/Ms)	k _d (1/s)	k _D (M)	n
Hu01G06-1	4,9E+06	7,1E-04	1,4E-10	3
Hu01G06-46	4,1E+06	4,3E-04	1,0E-10	3
Hu01G06-52	5,0E+06	4,4E-04	8,9E-11	3
Hu01G06-100	4,1E+06	6,2E-04	1,5E-10	3
Hu01G06-101	4,4E+06	6,3E-04	1,4E-10	3
Hu01G06-102	4,4E+06	4,6E-04	1,1E-10	3
Hu01G06-103	4,4E+06	4,7E-04	1,1E-10	3
Hu01G06-104	4,5E+06	5,2E-04	1,2E-10	3
Hu01G06-105	4,3E+06	5,6E-04	1,3E-10	3
Hu01G06-106	4,3E+06	7,0E-04	1,6E-10	3
Hu01G06-107	4,1E+06	4,7E-04	1,2E-10	3
Hu01G06-108	4,2E+06	4,6E-04	1,2E-10	3
Hu01G06-109	4,6E+06	5,6E-04	1,3E-10	4
Hu01G06-110	4,3E+06	5,8E-04	1,4E-10	4
Hu01G06-111	4,3E+06	6,6E-04	1,6E-10	3
Hu01G06-112	4,7E+06	5,3E-04	1,2E-10	3
Hu01G06-113	4,5E+06	4,8E-04	1,1E-10	3
Hu01G06-114	4,5E+06	5,4E-04	1,3E-10	3

30

10

15

Los resultados de la **Tabla 25** muestran que los anticuerpos con la secuencia optimizada Hu01G06-100 hasta-114 tienen unas afinidades de unión que varían desde aproximadamente 89 pM hasta aproximadamente 160 pM.

Se midieron las afinidades de unión y las cinéticas de unión de las variantes pesadas del anticuerpo monoclonal de la mFc-rhGDF15 con la 14F11 quimérica (Hu14F11-1), la ligera quimérica 14F11 con la pesada quimérica 06C11 (Hu14F11-23) y la ligera quimérica 06C11 con la pesada quimérica 14F11 (Hu14F11-24) (en el sobrenadante) usando interferometría de biocapa (BLI) en un instrumento Octet™ QK (ForteBio, Inc., Menlo Park, CA). El análisis con Octet se realizó a 30 ℃ usando Kinetics Buffer 1X (ForteBio, Inc.) como tampón de ensayo. Se usaron biosensores (AHC) de captura anti-Fc de la IgG humana (ForteBio, Inc.) para capturar los anticuerpos humanos en los sensores. Los sensores se saturaron con tampón de ensayo durante a 300 segundos antes del ensayo. Los anticuerpos se cargaron en los sensores sumergiendo los sensores en la solución del sobrenadante del anticuerpo durante 220 segundos, lo que normalmente da como resultado unos niveles de captura de 1,5-2 nm. La situación inicial se estableció sumergiendo los sensores en tampón de ensayo 1x durante 200 segundos. A continuación, la asociación se monitorizó durante 220 segundos en la proteína mFc-rhGDF15 400 nM, y la disociación se siguió durante 600 segundos solo con tampón.

Los parámetros cinéticos de Hu14F11-1, Hu14F11-23 y Hu14F11-24 se determinaron usando la función cinética del programa informático ForteBio Analysis Versión 7.0. Se determinaron los parámetros cinéticos del anticuerpo, ka, kd y Ko.

10

30

35

45

Los valores cinéticos de las variantes pesadas del anticuerpo monoclonal Hu14F11-1, Hu14F11-23 y Hu14F11-24 (en el sobrenadante) en mFc-rhGDF15 se resumen en la **Tabla 26.**

Tabla 26					
Anticuerpo	ka (1/Ms)	k _d (1/s)	KD (M)	n	
Hu14F11-1	6,3E+05	1,9E-05	3,2E-11	3	
Hu14F11-23	3,4E+05	6,2E-05	1,8E-10	1	
Hu14F11-24	7,1E+05	2,2E-04	3,1E-10	1	

Los resultados de la **Tabla 26** muestran que Hu14F11-23 y Hu14F11-24, (es decir, los anticuerpos que consisten en una cadena 06C11 quimérica (pesada o ligera) mezclada con una cadena 14F11 quimérica (pesada o ligera)), conservan la unión al GDF15. En particular, los anticuerpos tienen unas altas afinidades que varían desde aproximadamente 180 pM hasta aproximadamente 310 pM.

Ejemplo 16: Afinidades de unión de los anticuerpos monoclonales anti-GDF15 humanizados madurados por afinidad

Las afinidades de unión y las cinéticas de la unión de los anticuerpos quiméricos y humanizados a la mFc-rhGDF15, el rhGDF15 escindido, el GDF15 de ratón recombinante maduro de la Fc de conejo (rFc-rmGDF15) y el GDF15 de mono cinomolgo recombinante maduro de la Fc de ratón (mFc-rcGDF15) mediante resonancia de plasmón superficial, usando un instrumento BIAcore® T100 (GE Healthcare, Piscataway, NJ).

Se inmovilizaron anti-IgG humanas de cabra (fragmento Fc específico, Jackson ImmunoResearch, West Grove, PA) en chips sensores CM4 de dextrano carboximetilado mediante un acoplamiento de amina, según un protocolo convencional. Los análisis se realizaron a 37 °C usando PBS que contiene tensioactivo P20 al 0,05% como tampón de ejecución. Los anticuerpos se capturaron en celdas de flujo individuales a un caudal de 10 μl/minuto. El tiempo de inyección se modificó para cada anticuerpo, para producir una Rmáx de entre 30 y 60 UR. Se inyectaron secuencialmente tampón, la mFc-rhGDF15, rhGDF15 escindido, la rFc-rmGDF15 o rhGDF15 diluidos en tampón de ejecución sobre una superficie de referencia (sin anticuerpo capturado) y la superficie activa (el anticuerpo que se va a analizar) durante 240 segundos a 60 μl/minuto. La fase de disociación se monitorizó durante hasta 1.500 segundos. Después, la superficie se regeneró con dos inyecciones de 60 segundos de glicina-HCl 10 mM, a pH 2,25, a un caudal de 30 μl/minuto. El intervalo de concentración de GDF15 analizado para cada proteína GDF15 era de entre 5 nM y 0,3125 nM (diluciones dobles).

Los parámetros cinéticos se determinaron usando la función cinética del programa informático BIAevaluation (GE Healthcare) con una resta de referencia doble. Se determinaron los parámetros cinéticos de cada anticuerpo, ka (constante de velocidad de asociación), kd (constante de velocidad de disociación) y KD (constante de velocidad de disociación en equilibrio). Los valores cinéticos de los anticuerpos monoclonales purificados en mFc-rhGDF15, GDF15 maduro humano, rFc-rmGDF15 y mFc-rcGDF15 se resumen en la **Tabla 27.**

Tabla 27

Proteína	Anticuerpo	ka (1/Ms)	k _d (1/s)	K _D (M)	n
	Hu01G06-122	5,9E+06	2,1E-05	6,5E-12	5
	Hu01G06-127	4,6E+06	4,2E-05	1,8E-11	4
mFc-rhGDF15	Hu01G06-135	5,3E+06	4,4E-05	1,4E-11	5
	Hu01G06-138	5,9E+06	4,1E-05	1,1E-11	5
	Hu01G06-146	5,3E+06	2,6E-05	9,3E-12	5
	Hu01G06-122	7,9E+06	3,4E-05	7,9E-12	4
	Hu01G06-127	6,1E+06	3,6E-05	1,0E-11	4
rhGDF15 escindido	Hu01G06-135	7,3E+06	6,2E-05	1,0E-11	4
	Hu01G06-138	7,9E+06	2,5E-05	4,5E-12	4
	Hu01G06-146	6,5E+06	5,2E-05	1,1E-11	4
	Hu01G06-122	2,3E+06	2,4E-05	1,0E-11	4
	Hu01G06-127	1,8E+06	1,6E-05	9,5E-12	4
mFc-rcGDF15	Hu01G06-135	2,2E+06	7,9E-05	3,8E-11	4
	Hu01G06-138	2,3E+06	5,3E-05	2,5E-11	4
	Hu01G06-146	2,0E+06	1,5E-05	8,0E-12	4
	Hu01G06-122	2,2E+07	1,4E-03	6,3E-11	2
	Hu01G06-127	3,9E+07	2,1E-03	5,1E-11	2
rFc-rmGDF15	Hu01G06-135	3,7E+07	1,9E-03	5,5E-11	2
	Hu01G06-138	1,9E+07	8,0E-04	4,4E-11	2
	Hu01G06-146	1,1E+07	7,2E-04	6,3E-11	2

Los resultados de la **Tabla 27** muestran que los anticuerpos quiméricos y cada uno de los humanizados tienen unas velocidades de asociación rápidas (Ka), unas velocidades de disociación lentas (kd y unas afinidades muy altas (KD). En particular, los anticuerpos tienen unas afinidades que varían desde menos de 5 pM (por ejemplo, de aproximadamente 4,5 pM) hasta aproximadamente 65 pM.

Ejemplo 17: Reversión de la caquexia en un modelo de xenoinjerto de fibroscarcoma HT-1080

Este Ejemplo muestra la reversión de la caquexia (indicada por la pérdida de peso corporal) por los anticuerpos humanizados 01G06 06C11 14F11 en un modelo de xenoinjerto de fibrosarcoma HT-1080. Se cultivaron células HT-1080 un cultivo a 37 °C y se inocularon subcutáneamente en el costado de ratones ICR-SCID hembra de 8 semanas de edad como se describe más arriba en el Ejemplo 10. El peso corporal se midió diariamente. Cuando el peso corporal alcanzó el 93 %, los ratones se dividieron aleatoriamente en grupos de diez ratones cada uno. Cada grupo recibió uno de los siguientes tratamientos: IgG murina de control, 01G06, 06C11, 14F11, y sus respectivas versiones humanizadas a 2 mg/kg. El tratamiento se administró una vez al día mediante una inyección intraperitoneal. El tratamiento con anticuerpo con 01G06, Hu01G06-46 y Hu01G06-52 dio como resultado un aumento en el peso corporal hasta el peso inicial o un 100 % (p < 0,001) (FIG. 23). El análisis estadístico se realizó usando un ANOVA. Los resultados de la reversión del peso corporal en el día en el modelo HT-1080 se muestran en la FIG. 23 y en la Tabla 28, respectivamente.

Tabla 28

	Tratamiento			
Gr.	Agente	mg/kg	% de peso corporal	Análisis ANOVA (en comparación con la mlgG)
1	mlgG	2	79,5	ND
2	01G06	2	87,6	P < 0,001
3	Hu01G06-46	2	95,4	P < 0,001
4	Hu01G06-52	2	87,8	P < 0,001

Los datos de la **FIG. 23** y de la **Tabla 28** indicaban que los anticuerpos 01G06, Hu01G06-46 y Hu01G06-52 pueden revertir la caquexia en un modelo de xenoinjerto tumoral de fibrosarcoma HT-1080.

El tratamiento con anticuerpo con 06C11, Hu06C11-27 y Hu06C11-30 dio como resultado un aumento en el peso corporal con respecto al peso inicial o aproximadamente un 100 % (p < 0,001) (**FIG. 24**). El análisis estadístico se realizó usando un ANOVA. Los resultados de la reversión del peso corporal en el modelo HT-1080 se muestran en la **FIG. 24** y en la **Tabla 29**.

30

Tabla 29

	Tratamie	ento	% de peso	Análisis ANOVA (en comparación con
Gr.	Agente	mg/kg	corporal	la mlgG)
1	mlgG	2	87,7	ND
2	06C11	2	93,6	P < 0,001
3	Hu06C11-27	2	93,2	P < 0,001
4	Hu06C11-30	2	89,8	P < 0,01

Los datos de la **FIG. 24** y de la **Tabla 29** indican que los anticuerpos 06C11, Hu06C11-27 y Hu06C11-30 pueden revertir la caquexia en un modelo de xenoinjerto de fibrosarcoma HT-1080.

El tratamiento con anticuerpo con 14F11, Hu14F11-39 y Hu14F11-47 dio como resultado un aumento en el peso corporal con respecto al peso inicial o aproximadamente un 100 % (p < 0,001) (**FIG. 25**). El análisis estadístico se realizó usando un ANOVA. Los resultados de la reversión del peso corporal en el modelo HT-1080 se muestran en la **FIG. 25** y en la **Tabla 30**.

Tabla 30

10

15

20

	tratamiento		% de peso	Análisis ANOVA (en comparación con	
Gr.	Agente	mg/kg	corporal	la mlgG)	
1	mlgG	2	87,7	ND	
2	14F11	2	96,6	P < 0,001	
3	Hu14F11-39	2	90,5	P < 0,001	
4	Hu14F11-47	2	90,7	P < 0,001	

Los datos de la **FIG. 25** y de la **Tabla 30** indicaban que los anticuerpos 14F11, Hu14F11-39 y Hu14F11-47 pueden revertir la caquexia en un modelo de xenoinjerto de fibrosarcoma HT-1080.

El tratamiento con un anticuerpo con los anticuerpos 01G06 humanizados (es decir, los anticuerpos Hu01G06-122, Hu01G06-127, Hu01G06-135, Hu01G06-138 y Hu01G06-146) dio como resultado un aumento en el peso corporal con respecto al peso inicial o aproximadamente un 100 % (p < 0,001) (**FIG. 26**). El análisis estadístico se realizó usando un ANOVA. Como control se usó el tratamiento con IgG humana (hIgG). Los resultados de la reversión de los pesos corporales en el modelo HT-1080 se muestran en la **FIG. 26** y en la **Tabla 31**.

Tabla 31

	Tratamiento		% de peso	Análisis ANOVA (en comparación
Gr.	Agente	mg/kg	corporal	con la mlgG)
1	hlgG	2	84,2	ND
2	Hu01G06-122	2	96,3	P < 0,001
3	Hu01G06-127	2	96,1	P < 0,001
4	Hu01G06-135	2	93,5	P < 0,001
5	Hu01G06-138	2	91,9	P < 0,001
6	Hu01G06-146	2	92,7	P < 0,001

Los datos de la **FIG. 26** y de la **Tabla 31** indicaban que los anticuerpos anti-GDF15 humanizados Hu01G06-122, Hu01G06-127, Hu01G06-135, Hu01G06-138 y Hu01G06-146 pueden revertir la caquexia en un modelo de xenoinjerto tumoral de fibrosarcoma HT-1080.

Ejemplo 18: Reversión de la caquexia en un modelo inducido por mFc-rhGDF15

Este Ejemplo muestra la reversión de la caquexia (indicada por la pérdida de peso corporal) por los anticuerpos 01G06 humanizados (es decir, el anticuerpo Hu01G06-122, Hu01G06-127, Hu01G06-135, Hu01G06-138 o Hu01G06-146) en un modelo de caquexia inducida por mFc-rhGDF15. Se administró subcutáneamente mFc-rhGDF15 (1 μg/g) en el costado de ratones ICR-SCID hembra de 8 semanas de edad. El peso corporal se midió diariamente. Cuando el peso corporal alcanzó el 93 %, los ratones se dividieron aleatoriamente en seis grupos de diez ratones cada uno. Cada grupo recibió uno de los siguientes tratamientos: lgG humana de control (hlgG), Hu01G06-122, Hu01G06-127, Hu01G06-135, Hu01G06-138 o Hu01G06-146 a 2 mg/kg. El tratamiento se administró una vez mediante una inyección intraperitoneal. El tratamiento con el anticuerpo Hu01G06-122, Hu01G06-127, Hu01G06-138 o Hu01G06-146 dio como resultado un aumento en el peso corporal con respecto al peso inicial o aproximadamente un 100 % (p < 0,001) (FIG. 27 y Tabla 32).

Tabla 32

	Tratamiento		% de peso	Análisis ANOVA (en comparación	
Gr.	Agente	mg/kg	corporal	con la mlgG)	
1	hlgG	2	70,6	ND	
2	Hu01G06-122	2	101,7	P < 0,001	
3	Hu01G06-127	2	103,2	P < 0,001	
4	Hu01G06-135	2	102,5	P < 0,001	
5	Hu01G06-138	2	101,8	P < 0,001	
6	Hu01G06-146	2	102,5	P < 0,001	

Los datos de la **FIG. 27** y de la **Tabla 32** indican que los anticuerpos anti-GDF15 divulgados pueden revertir la caquexia en un modelo de ratón inducida por mFc-rhGDF15 (es decir, un modelo de ratón no portador de tumor).

Estos resultados indican que los anticuerpos anti-GDF 15 humanizados pueden revertir la caquexia en un modelo de caquexia inducida por mFc-rhGDF15.

Ejemplo 19: Reversión dependiente de la dosis de la caquexia en un modelo de xenoinjerto de fibrosarcoma HT-1080

Este Ejemplo muestra la reversión de la caquexia dependiente de la dosis (indicada por la pérdida de peso corporal) por los anticuerpos humanizados Hu01G06-127 y Hu01G06-135 en un modelo de xenoinjerto de fibrosarcoma HT-1080. Se cultivaron células HT-1080 un cultivo a 37 ℃ y se inocularon subcutáneamente en el costado de ratones ICR-SCID hembra de 8 semanas de edad como se describe más arriba en el Ejemplo 10. El peso corporal se midió diariamente. Cuando el peso corporal alcanzó el 93 %, los ratones se dividieron aleatoriamente en grupos de diez ratones cada uno. Cada grupo recibió uno de los siguientes tratamientos: IgG humana de control (hIgG; 20 mg/kg), Hu01G06-127 (20 mg/kg, 2 mg/kg o 0,2 mg/kg) y Hu01G06-135 (20 mg/kg, 2 mg/kg o 0,2 mg/kg). El tratamiento se administró una vez al día mediante una inyección intravenosa. El tratamiento con anticuerpo con Hu01G06-127 y Hu01G06-135 a 20 mg/kg dio como resultado un aumento en el peso corporal por encima del peso inicial o del 108 % (p < 0,001) (**FIG. 28**). El tratamiento con anticuerpo con Hu01G06-127 y Hu01G06-135 a 2 mg/kg dio como resultado una reducción limitada en el peso corporal en comparación con el control (hIgG) desde el peso inicial o del 88-85 % (p < 0,001) (**FIG. 28**). El análisis estadístico se realizó usando un ANOVA. Los resultados de los cambios en el peso corporal al final del estudio en el modelo HT-1080 se muestran en la **FIG. 28** y en la **Tabla 33**.

25

30

35

45

5

10

15

20

Tabla 33

	Tratamiento		% de peso	Análisis ANOVA (en comparación	
Gr.	Agente	mg/kg	corporal	con la mlgG)	
1	hlgG	20	75,2	ND	
2	Hu01G06-127	20	108,9	P < 0,001	
3	Hu01G06-127	2,0	88,1	P < 0,001	
4	Hu01G06-127	0,2	80,0	NS	
5	Hu01G06-135	20	108,6	P < 0,001	
6	Hu01G06-135	2,0	85,2	P < 0,01	
7	Hu01G06-135	0,2	77,3	NS	

Los datos de la **FIG. 28** y de la **Tabla 33** indicaban que los anticuerpos Hu01G06-127 y Hu01G06-135 pueden revertir la caquexia en un modelo de xenoinjerto de fibrosarcoma HT-1080 de una forma dependiente de la dosis.

Ejemplo 20: Reversión de la pérdida de músculo y de grasa en un modelo de xenoinjerto tumoral HT-1080

Este Ejemplo muestra la reversión de la caquexia (indicada por la pérdida de peso corporal, la pérdida de masa muscular y la pérdida de masa grasa) por el anticuerpo 01G06 en un modelo de xenoinjerto de fibrosarcoma HT-1080. Se cultivaron células HT-1080 en un cultivo a 37 °C en una atmósfera que contiene un 5 % de CO₂, usando medio esencial mínimo de Eagle (ATCC, nº de catálogo 30-2003) que contiene FBS al 10 %. Las células se inocularon subcutáneamente en el costado de ratones ICR SCID hembra de 8 semanas de edad con 5 x 10⁶células por ratón en matrigel al 50 %. Se seleccionó un grupo de diez ratones hembra ICR-SCID de 8 semanas de edad con el mismo peso corporal para la inoculación subcutánea en el costado de matrigel, como un grupo de control tumor (TESTIGO). El peso corporal se midió diariamente. Cuando el peso corporal alcanzó el 91 % en los ratones portadores de un tumor, los ratones se dividieron aleatoriamente en dos grupos de diez ratones cada uno. Cada grupo recibió uno de los siguientes tratamientos: IgG humana de control (hIgG) o Hu01G06-127 a 10 mg/kg el día 1, el día 3 y el día 6. El tratamiento se administró mediante una inyección intraperitoneal. El tratamiento con el anticuerpo Hu01G06-127 dio como resultado un aumento del peso corporal hasta el 105 % del peso inicial en comparación con los ratones de control no portadores de tumor (TESTIGO; p < 0,001) (**FIG. 29A y Tabla 34**).

Tabla 34

Gr.	Tratamiento		% de peso	Análisis ANOVA (en comparación
	Agente mg/kg		corporal	con la mlgG)
1	hlgG	10	84,3	ND
2	Hu01G06-127	10	105,4	P < 0,001
2	TESTIGO de control sin tumor	ningun o	101,9	p < 0,001

Los datos de la **FIG. 29A** y de la **Tabla 34** indican que el anticuerpo anti-GDF15 divulgado puede revertir completamente la caquexia en un modelo de xenoinjerto de fibrosarcoma HT-1080.

En este experimento, se sacrificó un grupo de diez ratones en el momento de la administración (situación inicial o 91 % de pérdida de peso corporal, sin tratamiento) y al final del estudio (ocho días después de la administración, bien de hlgG o bien de Hu01G06-127, así como ratones TESTIGO de control de sin tumor). La grasa gonadal y los músculos gastrocnemios se extrajeron quirúrgicamente y se pesaron. Como se muestra en la **FIG. 29B**, se observó una pérdida significativa de masa grasa gonadal siete días después de la administración de la hlgG, pero no en el grupo tratado con el anticuerpo Hu01G06-127 en comparación con el control en la situación inicial (91 % de pérdida de peso corporal). Además, el tratamiento con Hu01G06-127 no solo impidió la pérdida adicional de grasa (en comparación con el grupo la situación inicial), sino que también fue capaz de restaurar los niveles normales de grasa gonadal (en comparación con el TESTIGO de control sin tumor) (**FIG. 29B**). Además, se observó una pérdida significativa de masa del músculo gastrocnemio siete días después de la administración de la hlgG, pero no en el grupo tratado con el anticuerpo Hu01G06-127 en comparación con el control en la situación inicial (91 % de pérdida de peso corporal) (**FIG. 29C**). El tratamiento con Hu01G06-127 no solo impidió la pérdida adicional músculo en comparación con el grupo en la situación inicial), sino que también fue capaz de restaurar los niveles normales de músculo gastrocnemio (en comparación con el TESTIGO de control sin tumor) (**FIG. 29C**).

Estos resultados indican que los anticuerpos anti-GDF15 divulgados pueden revertir completamente la caquexia medida por la pérdida de masa muscular, la pérdida de grasa y la pérdida involuntaria de peso en un modelo de xenoinjerto tumoral HT-1080.

25 LISTADO DE SECUENCIAS

```
<110> AVEO PHARMACEUTICALS, INC.
```

<120> ANTICUERPOS ANTI-GDF15

30 <130> AVO-029PC

<140>

<141>

35

5

15

20

<150> 61/827.325 <151> 2013-05-24

<150> 61/745.508

40 <151> 21/12/2012

<160> 266

<170> PatentIn versión 3.5

<210> 1

45

<211>5

<212> PRT

<213> Secuencia artificial

50 <220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: péptido sintético"

55 <400> 1

Asp Tyr Asn Met Asp 5

```
<210> 2
        <211>5
        <212> PRT
        <213> Secuencia artificial
 5
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
10
        <400>2
                                             Ser Tyr Trp Ile His
                                                                   5
        <210>3
15
        <211>7
        <212> PRT
        <213> Secuencia artificial
        <220>
20
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400>3
                                        Thr Tyr Gly Met Gly Val Thr
                                               1
                                                                     5
25
        <210>4
        <211>7
        <212> PRT
30
        <213> Secuencia artificial
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
35
        <400> 4
                                      Thr Tyr Gly Met Gly Val Ser
                                                           5
40
        <210>5
        <211>7
        <212> PRT
        <213> Secuencia artificial
        <220>
45
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 5
50
                                       Thr Tyr Gly Met Gly Val Gly
                                                            5
        <210>6
        <211>7
        <212> PRT
55
```

```
<213> Secuencia artificial
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400>6
                                    Thr Ser Gly Met Gly Val Ser
                                                        5
10
        <210>7
        <211>17
        <212> PRT
        <213> Secuencia artificial
15
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
20
        <400> 7
             Gln Ile Asn Pro Asn Asn Gly Gly Ile Phe Phe Asn Gln Lys Phe Lys
                                  5
                                                            10
                                                                                      15
                                                    Gly
        <210>8
25
        <211>17
        <212> PRT
        <213> Secuencia artificial
        <220>
30
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400>8
               Asp Ile Asn Pro Ser Asn Gly Arg Ser Lys Tyr Asn Glu Lys Phe Lys
               1
                                   5
                                                             10
35
               Asn
        <210>9
        <211>16
        <212> PRT
40
        <213> Secuencia artificial
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
45
        <400>9
                His Ile Tyr Trp Asp Asp Lys Arg Tyr Asn Pro Ser Leu Lys Ser
                                     5
                                                               10
50
        <210> 10
        <211> 17
        <212> PRT
        <213> Secuencia artificial
```

```
<220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
 5
        <400> 10
               Glu Ile Asn Pro Asn Asn Gly Gly Thr Phe Tyr Asn Gln Lys Phe Lys
               Gly
10
        <210>11
        <211>16
        <212> PRT
        <213> Secuencia artificial
15
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 11
20
             Asp Ile Trp Trp Asp Asp Lys Tyr Tyr Asn Pro Ser Leu Lys Ser
                                                           10
        <210> 12
        <211>16
        <212> PRT
25
        <213> Secuencia artificial
        <220>
        <221> fuente
30
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 12
                His Asn Asp Trp Asp Asp Lys Arg Tyr Lys Ser Ser Leu Lys Ser
                                    5
                                                              10
35
        <210> 13
        <211> 17
        <212> PRT
        <213> Secuencia artificial
40
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
45
        <400> 13
             Gln Ile Asn Pro Asn Asn Gly Gly Ile Phe Phe Asn Gln Lys Phe Gln
             Gly
        <210> 14
50
        <211>16
        <212> PRT
        <213> Secuencia artificial
```

```
<220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
 5
        <400> 14
              His Ile Tyr Trp Asp Asp Asp Lys Arg Tyr Asn Pro Ser Leu Lys Thr
                                                               10
10
        <210> 15
        <211>11
        <212> PRT
        <213> Secuencia artificial
15
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 15
20
                           Glu Ala Ile Thr Thr Val Gly Ala Met Asp Tyr
                                                 5
                                                                            10
        <210> 16
        <211>9
        <212> PRT
25
        <213> Secuencia artificial
        <220>
        <221> fuente
30
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 16
                                  Glu Val Leu Asp Gly Ala Met Asp Tyr
                                                       5
35
        <210> 17
        <211>9
        <212> PRT
        <213> Secuencia artificial
40
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
45
        <400> 17
                                  Thr Gly Tyr Ser Asn Leu Phe Ala Tyr
                                                       5
        <210> 18
50
        <211>9
        <212> PRT
        <213> Secuencia artificial
        <220>
55
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 18
```

```
Arg Gly Tyr Asp Asp Tyr Trp Gly Tyr
                                                      5
        <210>19
        <211>9
        <212> PRT
5
        <213> Secuencia artificial
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
10
        <400> 19
                                 Arg Gly His Tyr Ser Ala Met Asp Tyr
15
        <210> 20
        <211>11
        <212> PRT
        <213> Secuencia artificial
20
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 20
25
                            Arg Val Gly Gly Leu Glu Gly Tyr Phe Asp Tyr
                                                 5
                                                                           10
        <210> 21
        <211>11
30
        <212> PRT
        <213> Secuencia artificial
        <220>
35
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 21
                            Arg Thr Ser Glu Asn Leu His Asn Tyr Leu Ala
                                                 5
40
        <210> 22
        <211>15
        <212> PRT
        <213> Secuencia artificial
45
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
50
        <400> 22
                 Arg Ala Ser Glu Ser Val Asp Asn Tyr Gly Ile Ser Phe Met Asn
                                      5
                                                                 10
                                                                                           15
55
        <210>23
        <211>11
        <212> PRT
        <213> Secuencia artificial
60
        <220>
        <221> fuente
```

```
<223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 23
                            Lys Ala Ser Gln Asn Val Gly Thr Asn Val Ala
 5
        <210> 24
        <211>11
        <212> PRT
10
        <213> Secuencia artificial
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
15
        <400> 24
                            Arg Ala Ser Gly Asn Ile His Asn Tyr Leu Ala
                                                 5
                                                                            10
20
        <210> 25
        <211>15
        <212> PRT
        <213> Secuencia artificial
25
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 25
30
                 Arg Ala Ser Gln Ser Val Ser Thr Ser Arg Phe Ser Tyr Met His
                                       5
                                                                  10
                                                                                             15
        <210> 26
        <211>7
        <212> PRT
35
        <213> Secuencia artificial
        <220>
        <221> fuente
40
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 26
                                    Asp Ala Lys Thr Leu Ala Asp
                                                          5
45
        <210> 27
        <211>7
        <212> PRT
        <213> Secuencia artificial
50
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
55
        <400> 27
```

Ala Ala Ser Asn Gln Gly Ser

<210> 28 <211>7 <212> PRT 5 <213> Secuencia artificial <221> fuente 10 <223> /nota="Descripción de la secuencia artificial: péptido sintético" <400> 28 Ser Ala Ser Tyr Arg Tyr Ser 5 15 <210> 29 <211>7 <212> PRT <213> Secuencia artificial 20 <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético" 25 <400> 29 Asn Ala Lys Thr Leu Ala Asp <210> 30 30 <211>7 <212> PRT <213> Secuencia artificial <220> <221> fuente 35 <223> /nota="Descripción de la secuencia artificial: péptido sintético" <400>30 Ser Pro Ser Tyr Arg Tyr Ser 5 40 <210>31 <211>7 <212> PRT 45 <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético" 50 <400> 31 Tyr Ala Ser Asn Leu Glu Ser 5 55 <210>32 <211>9 <212> PRT <213> Secuencia artificial <220> 60

```
<221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 32
 5
                                  Gln His Phe Trp Ser Ser Pro Tyr Thr
                                                       5
        <210>33
        <211>9
        <212> PRT
10
        <213> Secuencia artificial
        <220>
        <221> fuente
15
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 33
                                  Gln Gln Ser Lys Glu Val Pro Trp Thr
                                                       5
20
        <210>34
        <211>9
        <212> PRT
        <213> Secuencia artificial
25
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
30
        <400> 34
                                  Gln Gln Tyr Asn Ser Tyr Pro Tyr Thr
        <210>35
35
        <211>9
        <212> PRT
        <213> Secuencia artificial
        <220>
40
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400>35
                                  Gln Gln Tyr Asn Asn Tyr Pro Leu Thr
                                                       5
45
        <210>36
        <211>9
        <212> PRT
50
        <213> Secuencia artificial
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
55
        <400>36
                               Gln Gln Tyr Asn Ser Tyr Pro His Thr
60
        <210>37
```

```
<211>9
       <212> PRT
       <213> Secuencia artificial
 5
       <220>
       <221> fuente
       <223> /nota="Descripción de la secuencia artificial: péptido sintético"
       <400>37
10
                              Gln His Ser Trp Glu Ile Pro Tyr Thr
                                                  5
       <210>38
       <211>7
15
       <212> PRT
       <213> Secuencia artificial
       <220>
20
       <223> /nota="Descripción de la secuencia artificial: péptido sintético"
       <400>38
                                  Gly Tyr Thr Phe Thr Asp Tyr
                                                      5
25
       <210>39
       <211>360
       <212> ADN
       <213> Secuencia artificial
30
       <220>
       <221> fuente
       <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"
       <400>39
35
                                                                                              60
       gaggtcctgc tgcaacagtc tggacctgag ctggtgaagc ctggggcttc agtgaagata
                                                                                             120
       ccctgcaagg cttctggata cacattcact gactacaaca tggactgggt gaagcagagc
       catggaaaga gccttgagtg gattggacaa attaatccta acaatggtgg tattttcttc
                                                                                             180
       aaccagaagt tcaagggcaa ggccacattg actgtagaca agtcctccaa tacagccttc
                                                                                             240
       atggaggtcc gcagcctgac atctgaggac actgcagtct attactgtgc aagagaggca
                                                                                             300
       attactacgg taggcgctat ggactactgg ggtcaaggaa cctcagtcac cgtctcctca
                                                                                             360
       <210> 40
40
       <211> 120
       <212> PRT
       <213> Secuencia artificial
       <220>
45
       <221> fuente
       <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"
       <400>40
```

Glu 1	Val	Leu	Leu	Gln 5	Gln	Ser	Gly	Pro	Glu 10	Leu	Val	Lys	Pro	Gly 15	Ala	
Ser	Val	Lys	Ile 20	Pro	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr	
Asn	Met	Asp 35	Trp	Val	Lys	Gln	Ser 40	His	Gly	Lys	Ser	Leu 45	Glu	Trp	Ile	
Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe	
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Val	Asp	Lys	Ser 75	Ser	Asn	Thr	Ala	Phe 80	
Met	Glu	Val	Arg	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln	
Gly	Thr	Ser 115	Val	Thr	Val	Ser	Ser 120									
<210> 41 <211> 354 <212> ADN <213> Secu		artificia	al													
<220> <221> fuent <223> /nota		cripció	n de la	a secu	encia	artifici	al: pol	inucle	ótido s	sintétic	:o"					
<400> 41																
caggtcca	ac to	gcago	agco	: tgg	ggct	gaa	ctgg	tgaa	.gc c	tggg	gctt	c ag	ıtgaa	gctg	Г	60
tcctgcaa	gg ct	tctg	gcta	cac	cttc	acc	agct	actg	ga t	tcac	tggg	rt ga	acca	gagg	Г	120
cctggaca	ag go	ccttg	ragto	gat	tgga	gac	atta	atco	ta g	gcaac	ggcc	g ta	ıgtaa	gtat		180
aatgagaa	gt to	caaga	acaa	ggc	caca	atg	actg	caga	.ca a	atco	tcca	a ca	cago	ctac	!	240
atgcaact	ca go	cagco	tgac	ato	tgag	gac	tctg	cggt	ct a	ttac	tgtg	rc aa	ıgaga	.ggtt		300
ctggatgg	tg ct	atgg	racta	ctg	gggt	caa	ggaa	cctc	ag t	cacc	gtct	.c ct	ca			354
<210> 42 <211> 118 <212> PRT <213> Secu	iencia	artificia	al													
<220>																

<221> fuente

	<223	> /nota	="Des	cripcio	ón de l	la seci	uencia	artific	ial: po	lipépti	do sin	tético'	•					
5	<400	> 42																
		Gln 1	Val	Gln	Leu	Gln 5	Gln	Pro	Gly	Ala	Glu 10	Leu	Val	Lys	Pro	Gly 15	Ala	
		Ser	Val	Lys	Leu 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Ser	Tyr	
		Trp	Ile	His 35	Trp	Val	Asn	Gln	Arg 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Ile	
		Gly	Asp 50	Ile	Asn	Pro	Ser	Asn 55	Gly	Arg	Ser	Lys	Tyr 60	Asn	Glu	Lys	Phe	
		Lys 65	Asn	Lys	Ala	Thr	Met 70	Thr	Ala	Asp	Lys	Ser 75	Ser	Asn	Thr	Ala	Tyr 80	
		Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Tyr 95	Cys	
		Ala	Arg	Glu	Val 100	Leu	Asp	Gly	Ala	Met 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr	
		Ser	Val	Thr 115	Val	Ser	Ser											
10				artifici	ial													
15		> > fuent > /nota		cripcio	ón de l	la seci	uencia	artific	sial: po	olinucle	eótido	sintéti	co"					
	<400>	> 43																
	cago	gttac	tc t	gaaa	ıgagt	c to	gccc	tggg	, ata	ttgc	agc	ccto	ccaç	rac c	ctca	igtct	g	60
20	actt	gttc	tt t	ctct	gggt	t tt	cact	gago	act	tato	gta	tggg	tgtg	ac c	etgga	ttcg	ŗt	120
20	cagc	cttc	ag g	aaag	ggtc	t gg	agtg	gctg	gca	caca	ttt	actg	ggat	ga t	gaca	agcg	C	180
	tata	accc	at c	cctg	aaga	g cc	ggct	caca	atc	tcca	agg	atac	ctcc	aa c	aacc	aggt	a	240
	ttcc	tcaa	ga t	cacc	agtg	t gg	acac	tgca	gat	actg	cca	cata	ctac	tg t	gctc	aaac	g	300
	gggt	atag	ta a	cttg	tttg	c tt	actg	gggc	caa	ggga	ctc	tggt	cact	gt c	tctg	ca		357
	<210: <211:																	

		> PR	Γ uencia	a artific	cial												
5		> fuer	nte a="De	scripc	ión de	la sed	cuenci	a artifi	cial: p	olipép	tido si	ntético)"				
	<400	> 44															
		Gln 1	Val	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Ile	Leu	Gln	Pro	Ser 15	Gln
		Thr	Leu	Ser	Leu 20	Thr	Cys	Ser	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Tyr
		Gly	Met	Gly 35	Val	Thr	Trp	Ile	Arg 40	Gln	Pro	Ser	Gly	Lys 45	Gly	Leu	Glu
		Trp	Leu 50	Ala	His	Ile	Tyr	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Asn	Pro	Ser
		Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Asn	Asn	Gln	Val 80
		Phe	Leu	Lys	Ile	Thr 85	Ser	Val	Asp	Thr	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
		Cys	Ala	Gln	Thr 100	Gly	Tyr	Ser	Asn	Leu 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
10		Thr	Leu	Val 115	Thr	Val	Ser	Ala									
15	<212	> 357 !> ADI		a artific	cial												
	<220 <221	> > fuer				la sed	cuenci	a artifi	cial: p	olinuc	leótido	sinté	tico"				
20	<400	> 45															

caggttactc	tgaaagag	gtc tggco	ctggg at	attgcagc	cctcccagac	cctcagtctg								
acttgttctt	tctctggg	gtt ttcac	tgaac ac	cttatggta	tgggtgtgag	ctggattcgt								
cagccttcag	gaaagggt	ct ggagt	ggctg go	cacacattt	actgggatga	tgacaagcgc								
tataacccat	ccctgaag	gag ccggc	tcaca at	ctccaagg	atgcctccaa	caaccgggtc								
ttcctcaaga	tcaccagt	gt ggaca	ictgca ga	atactgcca	catactactg	tgctcaaaga								
ggttatgatg	attactgo	ggg ttact	ggggc ca	agggactc	tggtcactat	ctctgca								
<210> 46 <211> 119 <212> PRT <213> Secuence <220>	cia artificial													
<221> fuente <223> /nota="[escripción c	le la secuen	cia artificial:	polipéptido s	intético"									
<pre><400> 46 Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln</pre>														
Gln Val 1	. Thr Leu	ı Lys Glu 5	ı Ser Gly	Pro Gly 10	Ile Leu Gli	n Pro Ser Gln 15								
Thr Leu	ser Leu 20	ı Thr Cys	Ser Phe	e Ser Gly 25	Phe Ser Le	Asn Thr Tyr 30								
Gly Met	: Gly Val 35	. Ser Trp	o Ile Arg 40	g Gln Pro	Ser Gly Lys	s Gly Leu Glu								
Trp Leu 50	ı Ala His	: Ile Tyr	Trp Asp	Asp Asp	Lys Arg Tyr 60	r Asn Pro Ser								
Leu Lys 65	s Ser Arg	J Leu Thr 70	: Ile Ser	Lys Asp	Ala Ser Ası 75	n Asn Arg Val 80								
Phe Leu	ı Lys Ile	Thr Ser	Val Asp	Thr Ala 90	Asp Thr Ala	a Thr Tyr Tyr 95								
Cys Ala	Gln Arg		Asp Asp	Tyr Trp	Gly Tyr Trp	Gly Gln Gly 110								
Thr Let	Val Thr	: Ile Ser	· Ala											
<210> 47 <211> 360 <212> ADN <213> Secuence	cia artificial													
<220>														

<221> fuente

	<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"	
	<400> 47	
	gaggtcctgc tgcaacagtc tggacctgag gtggtgaagc ctggggcttc agtgaagata	60
	ccctgcaagg cttctggata cacattcact gactacaaca tggactgggt gaagcagagc	120
	catggaaaga gccttgagtg gattggagag attaatccta acaatggtgg tactttctac	180
	aaccagaagt tcaagggcaa ggccacattg actgtagaca agtcctccag cacagcctac	240
	atggagetee geageetgae atetgaggae actgeagtet attactgtge aagagaggea	300
5	attactacgg taggcgctat ggactactgg ggtcaaggaa cctcagtcac cgtctcctca	360
10	<210> 48 <211> 120 <212> PRT <213> Secuencia artificial	
15	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"	
13	<400> 48	
	Glu Val Leu Leu Gln Gln Ser Gly Pro Glu Val Val Lys Pro Gly Ala 1 5 10 15	
	Ser Val Lys Ile Pro Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30	
	Asn Met Asp Trp Val Lys Gln Ser His Gly Lys Ser Leu Glu Trp Ile 35 40 45	
	Gly Glu Ile Asn Pro Asn Asn Gly Gly Thr Phe Tyr Asn Gln Lys Phe 50 55 60	
	Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80	
	Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95	
	Ala Arg Glu Ala Ile Thr Thr Val Gly Ala Met Asp Tyr Trp Gly Gln 100 105 110	
	Gly Thr Ser Val Thr Val Ser Ser 115 120	
20	<210> 49 <211> 357 <212> ADN <213> Secuencia artificial	

	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"	
5	<400>49	
	caggttactc tgaaagagtc tggccctgga atattgcagc cctcccagac cctcagtctg	60
	acttgttctt tctctgggtt ttcactgagc acttatggta tgggtgtagg ctggattcgt	120
	cagcetteag gaaagggtet agagtggetg geagacattt ggtgggatga egataagtae	180
	tataacccat ccctgaagag ccggctcaca atctccaagg atacctccag caatgaggta	240
	ttcctcaaga tcgccattgt ggacactgca gatactgcca cttactactg tgctcgaaga	300
	ggtcactact ctgctatgga ctactggggt caaggaacct cagtcaccgt ctcctca	357
10	<210> 50 <211> 119 <212> PRT <213> Secuencia artificial	
15	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"	
	<400> 50	
	Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln 1 5 10 15	
	Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Tyr 20 25 30	
	Gly Met Gly Val Gly Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu 35 40 45	
	Trp Leu Ala Asp Ile Trp Trp Asp Asp Asp Lys Tyr Tyr Asn Pro Ser 50 55 60	
	Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Ser Asn Glu Val 65 70 75 80	
	Phe Leu Lys Ile Ala Ile Val Asp Thr Ala Asp Thr Ala Thr Tyr Tyr 85 90 95	
	Cys Ala Arg Arg Gly His Tyr Ser Ala Met Asp Tyr Trp Gly Gln Gly 100 105 110	
20	Thr Ser Val Thr Val Ser Ser 115	
	<210>51 <211>363	

	<212> ADN <213> Secue	ncia artificial					
5	<220> <221> fuente <223> /nota='	'Descripción de la	a secuencia artifi	cial: polinucleótic	do sintético"		
	<400> 51						
	caggttactc	tgaaagagtc	tggccctggg	atattgcagc	cctcccagac	cctcagtctg	60
	acttgttctt	tctctgggtt	ttcactgagc	acttctggta	tgggtgtgag	ttggattcgt	120
	cagccttcag	gaaagggtct	ggagtggctg	gcacacaatg	actgggatga	tgacaagcgc	180
	tataagtcat	ccctgaagag	ccggctcaca	atatccaagg	atacctccag	aaaccaggta	240
	ttcctcaaga	tcaccagtgt	ggacactgca	gatactgcca	catactactg	tgctcgaaga	300
	gttgggggat	tagagggcta	ttttgattac	tggggccaag	gcaccactct	cacagtctcc	360
10	tca						363
	<210> 52 <211> 121 <212> PRT						
15	<213> Secue	ncia artificial					
20	<220> <221> fuente <223> /nota='	'Descripción de la	a secuencia artifi	cial: polipéptido s	sintético"		
20	<400> 52						

Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln 1 5 10 15

		Thr	T. 0 11	Ser	T. e 11	Thr	Cvs	Ser	Phe	Ser	Gl v	Phe	Ser	T. 0 11	Ser	Thr	Ser	
			200	501	20		0,0	501		25	011		502	200	30		501	
		Gly	Met	Gly 35	Val	Ser	Trp	Ile	Arg 40	Gln	Pro	Ser	Gly	Lys 45	Gly	Leu	Glu	
		Trp	Leu 50	Ala	His	Asn	Asp	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Lys	Ser	Ser	
		Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Arg	Asn	Gln	Val 80	
		Phe	Leu	Lys	Ile	Thr 85	Ser	Val	Asp	Thr	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr	
		Cys	Ala	Arg	Arg	Val	Gly	Gly	Leu	Glu	Gly	Tyr	Phe	Asp	Tyr	Trp	Gly	
						100					105					110		
			Gln	Gly	Thr 115	Thr	Leu	Thr	Val	Ser 120	Ser							
5	<210> <211> <212> <213>	360 ADN	encia a	artificia	al													
10	<220> <221> <223>			cripció	n de la	a secu	encia	artifici	al: pol	inucle	ótido s	sintétic	o"					
	<400>	53																
	caagtg	caac	ttg	tgca	gtc	gggt	gcgg	aa g	tcaa	aaag	c cg	ggag	cgtc	ggt	gaaa	gta		60
	tcgtgt	aaag	cgt	cggg	rata	tacg	ttta	cg g	acta	taac	a tg	gact	gggt	acg	acag	gca		120
	ccgggg	aaat	cgt	tgga	atg	gatc	ggac	ag a	ttaa	tccg	a ac	aatg	aaaa	aat	tttc	ttt		180
	aatcag	aaat	tca	.aagg	acg	ggcg	acgt	tg a	cggt	cgat	a ca	tcga	cgaa	tac	ggcg	tat		240
	atggaa	ttga	ggt	cgct	tcg	ctcg	gacg	at a	.cggc	ggtc	t at	tact	gcgc	cag	ggag	gcg		300
15	atcacg	acgg	tag	gggc	gat	ggat	tatt	gg g	gaca	gggg	a cg	cttg	tgac	ggt	atcg	tcg		360
15	<210><211><211><212><213>	120 PRT	encia a	artificia	al													
20	<220> <221>	fuente)															

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

	<400> 54																
	Glr 1	n Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala	
	Ser	· Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr	
	Asr	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Ser	Leu 45	Glu	Trp	Ile	
	Gly	7 Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe	
	Lys 65	s Gly	Arg	Ala	Thr	Leu 70	Thr	Val	Asp	Thr	Ser 75	Thr	Asn	Thr	Ala	Tyr 80	
5	Met	: Glu	Leu	Arg	Ser	Leu	Arg	Ser	Asp	Asp	Thr	Ala	Val	Tyr	Tyr	Cys	
· ·				8	35				9	90					95		
10 15		iencia :	Leu N 115 artificia	IOO Val 1	Chr V	/al s	Ser :	Ser 120	105				_	Trp	Gly	Gln	
	caagtcca	gc tt	gtcc	agtc	ggg	agcg	gaa	gtga	agaa	ac c	gggg	rtcgt	c gg	rtcaa	agta	<u>l</u>	60
	tcgtgtaa	ag co	ıtcgg	gata	tac	gttt	acg	gact	ataa	ca t	ggat	tggg	rt ac	gaca	ıggct	:	120
	ccgggaaa	at ca	ıttgg	aatg	gat	tgga	cag	atta	atcc	ga a	taat	gggg	g ta	tctt	cttt	:	180
	aatcaaaa	gt tt	aaag	ggag	ggc	gacg	ttg	acgg	tgga	ca a	atcg	racaa	a ta	cggc	gtat		240
	atggaatt	gt cg	rtcgc	ttcg	gtc	ggag	gac	acgg	cggt	gt a	ttac	tgcg	c ga	ıggga	ıggcg	Г	300
20	atcacgac	gg to	gggg	cgat	gga	ttat	tgg	ggac	aggg	aa c	gctt	gtga	.c gg	rtato	gtcg	Г	360
25	<210> 56 <211> 120 <212> PRT <213> Secu		artificia	al													

<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

	<400>	56																
		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser	
		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr	
		Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Ser	Leu 45	Glu	Trp	Ile	
		Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe	
		Lys	Gly	Arg	Ala	Thr	Leu	Thr	Val	Asp	Lys	Ser	Thr	Asn	Thr	Ala	Tyr	
		65					70					75					80	
		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
		Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln	
		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120									
10	<210><211><212><213>	360 ADN	encia a	artificia	al													
15	<220> <221> <223>	fuente		cripció	n de la	a secu	encia	artifici	al: pol	inucle	ótido s	sintétic	o"					
	<400>	57																
20	caggt	ccag	c tt	gtgc	aatc	ggg	agcg	gaa	gtga	agaa	ac c	ggga	gcgt	c gg	taaa	agto		60
	tcgtg	caaa	g cg	tcgg	ggta	tac	gttt	acg	gact	ataa	ca t	ggac	tggg	rt go	gcca	agcg	ſ	120
	cctgg	acag	g gt	cttg	aatg	gat	gggg	cag	atta	atcc	ga a	taat	ggag	g ga	tctt	cttt		180
	aatca	gaaa	t tc	aaag	gaag	ggt	aacg	ctg	acga	.caga	ca c	gtca	acat	c ga	cggc	ctat		240
	atgga	attg	c gg	tcgt	tgcg	atc	agat	gat	acgg	cggt	ct a	.ctat	tgtg	c ga	ggga	ggcg	ī	300
	attac	gacg	g tg	ggag	cgat	gga	ttat	tgg	ggac	aggg	ga c	gttg	gtaa	.c gg	tato	gtcg	Ī	360

5	<210><211><211><212><213>	120 PRT	encia a	artificia	al												
10	<220> <221> <223>	fuente		cripció	n de la	a secu	encia	artifici	al: poli	ipéptic	do sint	ético"					
10	<400>	58															
		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr
		Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
		Gly	Gln	Ile	Asn	Pro	Asn	Asn	Gly	Gly	Ile	Phe	Phe	Asn	Gln	Lys	Phe
			50					55					60				
		Lys 65	Gly	Arg	Val	Thr	Leu 70	Thr	Thr	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
		Met	Glu	Leu	Arg	Ser 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
		Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
15	<210><211><212><213>	360 ADN	encia a	artificia	al												
20	<220> <221> <223>	fuente		cripció	n de la	a secu	encia	artifici	al: poli	inucle	ótido s	sintétic	:o"				
25	<400>	59															

caggto	cago	c tto	gtgca	aatc	ggg	agcg	gaa q	gtgaa	agaaa	ac co	ggga	gcgt	c ggt	caaaa	agtc	
tcgtgc	aaaq	g cgt	tagg	ggta	tac	gttta	acg q	gacta	ataad	ca to	ggact	tgggl	t gc	gccaa	agcg	
cctgga	caga	a gc	cttga	aatg	gate	gggg	cag a	attaa	atcc	ga at	taat	ggag	g gat	ctto	cttt	
aatcag	raaat	to	cagg	gaag	ggta	aacgo	ctg a	acgad	cagao	ca co	gtcaa	acato	c gad	cggc	ctat	
atggaa	ttg	ggt	tcgt1	gcg	atca	agato	gat a	acggo	cggto	ct a	ctati	tgtg	c gaq	ggga	ggcg	
attacg	acg	g tg	ggago	cgat	gga	tati	tgg (ggaca	aggg	ga co	gttg	gtaad	c ggt	catco	gtcg	
<210> (<211>)<211>)<213> (120 PRT	encia a	artificia	al												
<220> <221> f <223> /			cripció	n de la	a secu	encia	artifici	al: pol	ipéptic	do sint	ético"					
<400> 6	60															
	Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
	Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr
	Asn	Met	Asp	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Ser	Leu	Glu	Trp	Met
			35					40					45			
	Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
	Gln 65	Gly	Arg	Val	Thr	Leu 70	Thr	Thr	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
	Met	Glu	Leu	Arg	Ser 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
	Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
	Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
<210> 6 <211> 3 <212> 7 <213> 3	360 ADN	encia a	artificia	al												
<220> <221> f	fuente)														

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 61

	caggt	ccag	c tt	gtgc	aatc	ggg	agcg	gaa	gtga	agaa	ac c	ggga	gcgt	c gg	taaa	agtc		60
	tcgto	gcaaa	g cg	tcgg	ggta	tac	gttt	acg	gact	ataa	ca t	ggac	tggg	t gc	gcca	agcg		120
	cctg	gacag	g gt	cttg	aatg	gat	gggg	cag	atta	atcc	ga a	taat	ggag	g ga	tctt	cttt		180
	aatca	agaaa	t tc	cagg	gaag	ggt	aacg	ctg	acga	caga	ca c	gtca	acat	c ga	cggc	ctat		240
	atgga	attg	c gg	tcgt	tgcg	atc	agat	gat	acgg	cggt	ct a	ctat	tgtg	c ga	ggga	ggcg		300
5	attac	gacg	g tg	ggag	cgat	gga	ttat	tgg	ggac	aggg	ga c	gttg	gtaa	c gg	tatc	gtcg		360
10	<210><211><211><212><213>	120	encia a	artificia	ıl													
15		· fuente · /nota=		ripció	n de la	secu	encia :	artifici	al: poli	péptid	o sinte	ético"						
13	<400>	62																
		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala	
		Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	Thr	Asp	Tyr	
					20					25					30			
		Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met	
		Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe	
		Gln 65	Gly	Arg	Val	Thr	Leu 70	Thr	Thr	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Tyr 80	
		Met	Glu	Leu	Arg	Ser 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
		Ala	. Arg	Glu	Ala 100		Thr	Thr	Val	Gly 105		Met	Asp	Tyr	Trp 110	Gly	Gln	
20		Gly	Thr	Leu 115		Thr	Val	Ser	Ser 120									
	<210> <211> <212>	360																

	<213> Secuenc	cia artificial					
5	<220> <221> fuente <223> /nota="[Descripción de la	secuencia artific	ial: polinucleótido	o sintético"		
	<400> 63						
	caagtacagc	ttgtacagtc	gggagcggaa	gtcaagaaac	cgggatcgtc	ggtcaaagtg	60
	tcgtgtaaag	cgtcgggata	tacgtttagc	gactataaca	tggattgggt	gcgacaagcg	120
	cctgggcagg	gacttgaatg	gatgggtcag	atcaatccga	ataatggggg	aatcttttc	180
	aatcagaagt	ttaaagggag	ggtaacgctg	acggcggata	aaagcacgtc	aacggcgtat	240
	atggagttgt	cgtcgttgcg	gtcggaggac	acggcggtct	attactgcgc	gagggaagcg	300
10	attacgacgg	tgggagcgat	ggattattgg	gggcagggaa	cgcttgtaac	ggtgtcatcg	360
10 15	<210> 64 <211> 120 <212> PRT <213> Secuence	cia artificial					
	<220> <221> fuente <223> /nota="[Descripción de la	secuencia artific	ial: polipéptido si	ntético"		
20	<400> 64						

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser

		1				5					10					15		
		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Ser 30	Asp	Tyr	
		Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met	
		Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe	
		Lys 65	Gly	Arg	Val	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Thr	Ser	Thr	Ala	Tyr 80	
		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
		Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln	
		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120									
5	<210><211><212><213>	360 ADN	encia a	artificia	ıl													
10	<220> <221> <223>			cripció	n de la	ı secu	encia	artifici	al: poli	nucled	ótido s	sintétic	o"					
	<400>	65																
	caagt	acag	c tt	gtac	agtc	ggg	agcg	gaa	gtca	agaa	ac c	ggga	tcgt	c gg	tcaa	.agtg		60
	tcgtg	taaa	g cg	tcgg	gata	tac	gttt	agc	gact	ataa	ca t	ggat	tggg	t go	gaca	.agcg		120
	cctgg	gcag	g ga	cttg	aatg	gat	gggt	cag	atca	atcc	ga a	taat	gggg	g aa	tctt	tttc		180
	aatca	gaag	t tt	cagg	ggag	ggt	aacg	ctg	acgg	cgga	ta a	.aagc	acgt	c aa	.cggc	gtat		240
	atgga	gttg	t cg	tcgt	tgcg	gtc	ggag	gac	acgg	cggt	ct a	ttac	tgcg	c ga	.ggga	.agcg		300
15	attac	gacg	g tg	ggag	cgat	gga	ttat	tgg	gggc	aggg	aa c	gctt	gtaa	c gg	tgtc	atcg		360
20	<210><211><211><212><213>	120 PRT Secue		artificia	ıl													
	<221>	tuente)															

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

	<400>	66																
		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser	
		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Ser 30	Asp	Tyr	
		Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met	
		Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe	
		Gln 65	Gly	Arg	Val	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Thr	Ser	Thr	Ala	Tyr 80	
		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
		Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln	
5		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120									
10	<210><211><211><212><213>	357 ADN	encia	artifici	al													
15	<220> <221> <223>	fuent		cripcić	on de l	a secu	ıencia	artific	ial: po	linucle	ótido	sintétio	co"					
15	<400>	67																
	caggt	tgact	tt to	gaaa	gaat	c cg	gtcc	cgca	ttg	gtaaa	agc (caaco	ccaga	ac ac	cttad	cgcto	3	60
	acat	gtaca	at t	ttcc	ggati	caq	gctt	gaac	acti	tacg	gga 1	tggga	agtgi	tc gt	tggat	tcgg	J	120
	caaco	ctcc	gg g	gaag	gata	gga	agtg	gctg	gcg	cacat	cct a	actg	ggat	ga to	gacaa	aaagg	J	180
	tataa	accc	ct c	actt	aaaa	c gaq	gacto	gacg	atc	tcgaa	agg a	acaca	aagca	aa ga	aatca	aggto	3	240
	gtccl	tcac	ga t	tacg	aatgi	aga	accc	ggtg	gata	actgo	ccg 1	tctat	ttact	tg c	gcgca	aacgo	3	300
	gggta	atgai	tg a	ctact	tggg	g ata	attg	gggt	cag	ggca	ccc 1	tcgt	gacca	at ct	tcgt	ca		357
20	<210><211><211><212><213>	119 PRT	encia	artifici	al													

Gln Val Thr Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln 1 5 10 15

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<220>

<400> 68

5

	Th	r L	eu	Thr	Leu 20	Thr	Cys	Thr	Phe	Ser 25	Gly	Phe	Ser	Leu	Asn 30	Thr	Tyr	
	G1	у М		Gly 35	Val	Ser	Trp	Ile	Arg 40	Gln	Pro	Pro	Gly	Lys 45	Ala	Leu	Glu	
	Tr	р L 5		Ala	His	Ile	Tyr	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Asn	Pro	Ser	
	Le 65		ys	Thr	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Gln	Val 80	
	Va	l L	eu	Thr	Ile	Thr 85	Asn	Val	Asp	Pro	Val 90	Asp	Thr	Ala	Val	Tyr 95	Tyr	
	Су	s A	la	Gln	Arg 100	Gly	Tyr	Asp	Asp	Tyr 105	Trp	Gly	Tyr	Trp	Gly 110	Gln	Gly	
	Th	r L		Val 115	Thr	Ile	Ser	Ser										
10	<210> 69 <211> 35 <212> AI <213> Se	57 DN	ncia	artific	ial													
15	<220> <221> fu <223> /n		Des	cripci	ón de	la sec	uencia	a artific	cial: po	olinucl	eótido	sintét	ico"					
	<400> 69)																
	caagta	acgo	e to	caag	gagt	c cg	gacc	cacc	ttg	gtga	.agc	cgac	gcag	ac c	ttga	ctct	t	60
	acgtgc	actt	: to	ctcg	gggt	t tt	cact	gaat	acg	tacg	gga	tggg	tgtc	tc a	tgga	tcag	g	120
	caacct	ccg	gg	gaaa	ggat	t gg	aatg	gctg	gcg	caca	tct	actg	ggat	ga c	gata	agag	a	180
	tataac	ccaa	a go	cctc	aagt	c go	ggct	cacc	att	acaa	aag	atac	atcg	aa a	aatc	aggt	С	240
	gtactt	acta	a to	cacg	aaca	t gg	accc	cgtg	gac	acag	caa	cata	ttac	tg t	gccc	agcg	C	300
20	ggctat	gaco	y at	ttat	tggg	g tt	actg	ggga	. cag	ggaa	cac	tggt	cacg	gt g	tcca	.gc		357
	<210> 70)																

<211> 119 <212> PRT

<213> Secuencia artificial

```
5
       <220>
       <221> fuente
       <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"
       <400> 70
10
              Gln Val Thr Leu Lys Glu Ser Gly Pro Thr Leu Val Lys Pro Thr Gln
                                5
                                                      10
              Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Asn Thr Tyr
                           20
                                                  25
                                                                         30
             Gly Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu
                       35
                                             40
                                                                    45
              Trp Leu Ala His Ile Tyr Trp Asp Asp Lys Arg Tyr Asn Pro Ser
                  50
                                         55
                                                                60
             Leu Lys Ser Arg Leu Thr Ile Thr Lys Asp Thr Ser Lys Asn Gln Val
                                    70
                                                                                  80
             Val Leu Thr Ile Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr
                                85
                                                      90
                                                                             95
             Cys Ala Gln Arg Gly Tyr Asp Asp Tyr Trp Gly Tyr Trp Gly Gln Gly
                                                  105
             Thr Leu Val Thr Val Ser Ser
                       115
       <210>71
       <211>357
       <212> ADN
15
       <213> Secuencia artificial
       <220>
       <221> fuente
20
       <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"
       <400> 71
```

cagatca	ctt	tga	aaga	aag	cgga	.ccga	.cc t	tggt	caag	c cc	acac	aaac	cct	cacg	ctc		60
acgtgta	cat	ttt	cggg	gtt	ctcg	cttt	ca a	ctta	cggg	a tg	ggag	tagg	gtg	gatt	cgc		120
cagccgc	ctg	gta	aagc	gtt	ggag	tggc	tt g	rcaga	cato	t gg	tggg	acga	cga	taag	tac		180
tataatc	cct	cgc	tcaa	gtc	caga	ctga	.cc a	tcac	gaaa	g at	acga	gcaa	gaa	ccag	gtc		240
gtgctga	caa	tga	ctaa	cat	ggac	ccag	tg g	ratac	ggct	a ca	tatt	actg	cgc	cagg	cgg		300
ggtcact	act	cag	cgat	gga	ttat	tggg	gc c	aggg	raaca	c tg	gtaa	.cggt	gto	gtcc			357
<210> 72 <211> 11 <212> PI <213> Se	19 RT	ncia a	ırtificia	ıl													
<220> <221> fu <223> /n			ripció	n de la	a secu	encia	artifici	al: pol	ipéptic	do sint	ético"						
<400> 72	2																
G 1		Ile	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Thr 10	Leu	Val	Lys	Pro	Thr 15	Gln	
Т	hr	Leu	Thr	Leu 20	Thr	Cys	Thr	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Tyr	
G	Sly	Met	Gly 35	Val	Gly	Trp	Ile	Arg 40	Gln	Pro	Pro	Gly	Lys 45	Ala	Leu	Glu	
Т	rp.	Leu 50	Ala	Asp	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser	
	Leu 55	Lys	Ser	Arg	Leu	Thr 70	Ile	Thr	Lys	Asp	Thr 75	Ser	Lys	Asn	Gln	Val 80	
v	/al	Leu	Thr	Met	Thr 85	Asn	Met	Asp	Pro	Val 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr	
C	Cys	Ala	Arg	Arg 100	Gly	His	Tyr	Ser	Ala 105	Met	Asp	Tyr	Trp	Gly 110	Gln	Gly	
T	hr	Leu	Val 115	Thr	Val	Ser	Ser										
<210> 73 <211> 35 <212> Al <213> Se	57 DN	ncia a	urtificia	ıl													
<220> <221> fu	iente																

60

120

180

240

300

357

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 73 caaqtqactc tcaaqqaqtc cqqacccqcc ctqqtcaaac caacqcaqac actqacqctc acatgcacct tcagcggatt ttcgttgtca acgtacggca tgggtgtggg gtggattcgc cagcctccgg ggaaagccct tgaatggttg gcggacatct ggtgggatga tgacaagtac tataatccct cacttaagtc acggttgacg atctcgaaag acaccagcaa gaaccaggta gtgctgacaa tgactaacat ggacccggtc gatacagcgg tctactattg tgctagaagg ggacactact ccgcaatgga ttattggggt caggggacgc tcgtaaccgt gtcgtcg 5 <210> 74 <211>119 <212> PRT 10 <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polipéptido sintético" 15 <400> 74 Gln Val Thr Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Tyr Gly Met Gly Val Gly Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu Trp Leu Ala Asp Ile Trp Trp Asp Asp Asp Lys Tyr Tyr Asn Pro Ser Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val 70 Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Val Tyr Tyr 85 90 Cys Ala Arg Arg Gly His Tyr Ser Ala Met Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 20 <210>75 <211>321 <212> ADN <213> Secuencia artificial

5	<220> <221> <223> <400>	/nota=		cripció	n de la	a secu	encia	artifici	al: pol	inucle	ótido s	sintétic	:o"					
	gacato	caga	ı tga	ctca	igtc	tcca	ıgcct	ac c	tato	tgca	t ct	gtgg	gaga	aac	tgtc	acc		60
	atcac	atgt	c ga	acaa	.gtga	gaa	tctt	cac	aatt	attt	ag c	atgg	tato	a go	agaa	acag	ī	120
	ggaaa	atct	c ct	cagc	tcct	ggt	ctat	gat	gcaa	aaac	ct t	agca	.gatg	ıg tg	rtgcc	atca	ı	180
	aggtt	cagt	g ga	agtg	gatc	agg	aaca	.caa	tatt	ctct	ca a	gato	aaca	ig co	tgca	gcct	:	240
	gaaga	tttt	g gg	agtt	atta	ctg	tcaa	.cat	tttt	ggag	ta g	tcct	taca	ıc gt	tcgg	aggg	I	300
10	gggac	caag	c tg	gaaa	taaa	a												321
15	<210> <211> <212> <213>	107 PRT	encia a	artificia	al													
20	<220> <221> <223>			cripció	n de la	a secu	encia	artifici	al: pol	ipéptic	lo sint	ético"						
20	<400>	76																
		Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
		Glu	Thr	Val	Thr 20	Ile	Thr	Cys	Arg	Thr 25	Ser	Glu	Asn	Leu	His 30	Asn	Tyr	
		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Gln 40	Gly	Lys	Ser	Pro	Gln 45	Leu	Leu	Val	
		Tyr	Asp 50	Ala	Lys	Thr	Leu	Ala 55	Asp	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
		Ser 65	Gly	Ser	Gly	Thr	Gln 70	Tyr	Ser	Leu	Lys	Ile 75	Asn	Ser	Leu	Gln	Pro 80	
		Glu	Asp	Phe	Gly	Ser 85	Tyr	Tyr	Cys	Gln	His 90	Phe	Trp	Ser	Ser	Pro 95	Tyr	
		Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys						
25	<210> <211> <212> <213>	333 ADN	encia a	artificia	al													
30	<220> <221>)															

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

	<400> 7	77																
	gacat	tgtg	t tg	acco	aatc	tcc	agct	tct	ttgg	ctgt	gt c	tcta	gggc	a ga	.gggc	cacc		60
	atctc	ctgc	a ga	gcca	gcga	aag	tgtt	gat	aatt	atgg	ca t	tagt	ttta	t ga	actg	gttc		120
	caaca	gaaa	с са	ggac	agcc	acc	caaa	ctc	ctca	tcta	tg c	tgca	tcca	a cc	aagg	ctcc		180
	ggggt	ccct	g cc	aggt	ttag	tgg	cagt	ggg	tctg	ggac	ag a	ctto	agco	t ca	acat	ccat		240
	cctate	ggag	g ag	gatg	atac	tgc	aatg	tat	ttct	gtca	gc a	aagt	aagg	a gg	ttcc	gtgg		300
5	acgtt	cggt	g ga	.ggct	ccaa	gct	ggaa	atc.	aaa									333
10	<210> 7 <211> 1 <212> F <213> 5	l11 PRT	ncia a	ırtificia	ıl													
	<220> <221> f <223> /			ripció	n de la	secu	encia :	artifici	al: poli	péptid	o sint	ético"						
15	<400> 7	78																
		Asp 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly	
		Gln	Arg	Ala	Thr 20	Ile	Ser	Cys	Arg	Ala 25	Ser	Glu	Ser	Val	Asp 30	Asn	Tyr	
		Gly	Ile	Ser 35	Phe	Met	Asn	Trp	Phe 40	Gln	Gln	Lys	Pro	Gly 45	Gln	Pro	Pro	
		Lys	Leu 50	Leu	Ile	Tyr	Ala	Ala 55	Ser	Asn	Gln	Gly	Ser 60	Gly	Val	Pro	Ala	
		Arg 65	Phe	Ser	Gly	Ser	Gly 70	Ser	Gly	Thr	Asp	Phe 75	Ser	Leu	Asn	Ile	His 80	
		Pro	Met	Glu	Glu	Asp 85	Asp	Thr	Ala	Met	Tyr 90	Phe	Cys	Gln	Gln	Ser 95	Lys	
		Glu	Val	Pro	Trp 100	Thr	Phe	Gly	Gly	Gly 105	Ser	Lys	Leu	Glu	Ile 110	Lys		
20	<210> 7 <211> 3 <212> 7 <213> 8	321 ADN	ncia a	ırtificia	ıl													
25	<220> <221> f	uente																

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

	<400> 7	9																
	gacat	tgtg	ra to	gacco	cagto	c tca	aaaa	attc	atgt	cca	cat (cagta	agga	ga ca	agggt	tcago	3	60
	gtcac	ctgc	a aç	ggcca	agtca	a gaa	atgt	gggt	acta	aatgt	ag (cctg	gtato	ca a	cagaa	aatta	a	120
	ggaca	atct	.c ct	taaaa	acact	gat	tta	ctcg	gcat	ccta	acc (ggtad	cagt	gg a	gtcc	ctgat	=	180
	cgctt	caca	ıg go	cagt	ggato	tg	ggac	agat	ttca	actct	ca (ccato	cagca	aa to	gtgca	agtct	=	240
	gaaga	cttg	ig ca	agagt	tattt	cto	gtca	gcaa	tata	aacaq	gat a	atcc	gtaca	ac gi	ttcg	gaggg	3	300
5	gggac	caag	rc to	ggaaa	ataaa	a a												321
10	<210> 8 <211> 1 <212> F <213> S	07 PRT	ncia a	artificia	ıl													
15	<220> <221> ft <223> /r			cripció	n de la	secu	encia	artifici	al: poli	ipéptic	lo sint	ético"						
.0	<400> 8	0																
		Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Gln	Lys	Phe 10	Met	Ser	Thr	Ser	Val 15	Gly	
	:	Asp	Arg	Val	Ser 20	Val	Thr	Cys	Lys	Ala 25	Ser	Gln	Asn	Val	Gly 30	Thr	Asn	
	,	Val	Ala	Trp 35	Tyr	Gln	Gln	Lys	Leu 40	Gly	Gln	Ser	Pro	Lys 45	Thr	Leu	Ile	
	ı	Tyr	Ser 50	Ala	Ser	Tyr	Arg	Tyr 55		_		Pro		_	Phe	Thr	Gly	
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Asn	Val	Gln	Ser 80	
	,	Glu	Asp	Leu	Ala	Glu 85	Tyr	Phe	Cys	Gln	Gln 90	Tyr	Asn	Ser	Tyr	Pro 95	Tyr	
	!	Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys						
20	<210> 8 <211> 3 <212> A <213> S	21 NDN	ncia a	artificia	ıl													
25	<220>																	

	<221> fuento <223> /nota		cripció	n de la	secue	encia a	artificia	al: poli	nucleá	tido s	intétic	0"					
_	<400> 81																
5	gacattgtg	a tg	accc	agtc	tcaa	aaaat	ttc a	atgto	ccaca	at ca	agta	ggag	a ca	gggt	cagc		60
	gtcacctgo	a ag	gcca	gtca	gaat	gtg	ggt a	acta	atgta	ag c	ctgg [.]	tttc	a ac	agaa	acca		120
	ggtcaatct	c ct	aaag	cact	gatt	tact	tag (gcato	ctta	cc g	gtac	agtg	g ag	taca	tgat		180
	cgcttcaca	g gc	agtg	gatc	tgg	gaca	gat f	ttcat	ttct	ca c	catc	agca	a tg	tgca	gtct		240
	gaagacctg	g ca	gagt	attt	ctgt	cago	caa 1	tataa	acaa	ct a	tcct	ctca	c gt	tcgg	tgct		300
	gggaccaag	c tg	gagc	tgaa	a												321
10	<210> 82 <211> 107 <212> PRT <213> Secu	encia a	artificia	ıl													
15	<220> <221> fuento <223> /nota:		cripció	n de la	ı secue	encia a	artificia	al: poli	péptid	o sinté	ético"						
	<400> 82																
	Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Gln	Lys	Phe 10	Met	Ser	Thr	Ser	Val 15	Gly	
	Asp	Arg	Val	Ser 20	Val	Thr	Cys	Lys	Ala 25	Ser	Gln	Asn	Val	Gly 30	Thr	Asn	
	Val	Ala	Trp 35	Phe	Gln	Gln	Lys	Pro 40	Gly	Gln	Ser	Pro	Lys 45	Ala	Leu	Ile	
	Туг	Ser 50	Ala	Ser	Tyr	Arg	Tyr 55	Ser	Gly	Val	Pro	Asp 60	Arg	Phe	Thr	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Ile	Leu	Thr	Ile 75	Ser	Asn	Val	Gln	Ser 80	
	Glu	Asp	Leu	Ala	Glu 85	Tyr	Phe	Cys	Gln	Gln 90	Tyr	Asn	Asn	Tyr	Pro 95	Leu	
20	Thr	Phe	Gly	Ala 100	Gly	Thr	Lys	Leu	Glu 105	Leu	Lys						
-	<210> 83 <211> 321 <212> ADN <213> Secu	encia (artificia	.1													
25	<220>	onora a	ai tiiiGld														

	<221> <223>			cripció	ón de la	a secı	uencia	artific	ial: po	linucle	ótido	sintéti	co"					
	<400>	83																
5	gacat	tcca	ga to	gact	cagto	c to	cagc	ctcc	cta	tctg	cat	ctgt	ggga	ga a	actg	tcac	С	60
	atca	catgi	tc g	agca	agtg	g ga	atat [.]	tcac	aat [.]	tatt [.]	tag	catg	gtat	ca g	caga	aaca	g	120
	ggaa	aatci	tc c	tcag	ctcct	gg.	tcta [.]	taat	gca	aaaa	cct	tagc	agat	gg t	gtgc	catc	a	180
	aggti	tcagt	tg g	cagt	ggato	c ag	gaac	acaa	tat	tctc	tca	agat	caac	ag c	ctgc	agcc	t	240
	gaaga	attti	tg g	gagt	tatta	a ct	gtca	acat	ttt	tgga	gtt	ctcc	ttac	ac g	ttcg	gagg	g	300
	ggga	ccaa	gc t	ggaa	ataaa	a a												321
10	<210><211><211><212><213>	107 PRT	encia	artifici	al													
15	<220> <221> <223>	fuent	-	cripció	ón de l	a secı	uencia	artific	ial: po	lipépti	do sin	tético"	ı					
	<400>	84																
		Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
		Glu	Thr	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gly	Asn	Ile	His 30	Asn	Tyr	
		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Gln 40	Gly	Lys	Ser	Pro	Gln 45	Leu	Leu	Val	
		Tyr	Asn 50	Ala	Lys	Thr	Leu	Ala 55	Asp	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
		Ser 65	Gly	Ser	Gly	Thr	Gln 70	Tyr	Ser	Leu	Lys	Ile 75	Asn	Ser	Leu	Gln	Pro 80	
		Glu	Asp	Phe	Gly	Ser 85	Tyr	Tyr	Cys	Gln	His 90	Phe	Trp	Ser	Ser	Pro 95	Tyr	
20		Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys						
25	<210><211><211><212><213>	321 ADN	encia	artifici	al													
25	<220>																	

<221> fuente

	<223>	/nota=	"Desc	ripció	n de la	secu	encia	artifici	al: pol	inucle	ótido s	sintétic	o"					
F	<400>	85																
5	gacati	tgtaa	a tga	accc	agtc	tca	aaaa	ttc	atgt	ccac	at c	agta	ggag	a ca	.gggt	cago	!	60
	gtcac	ctgca	a age	gcca	gtca	gaa	tgtg	ggt	acta	atgt	ag c	ctgg	tatc	a ac	agaa	.acca	L	120
	gggca	atcto	c ct	aaag	cact	gat	ttac	tcg	ccat	ccta	cc g	gtac	agtg	g ag	tccc	tgat		180
	cgctt	cacaç	g gc	agtg	gatc	tgg	gaca	gat	ttca	ctct	ca c	catc	agca	a tg	tgca	.gtct	•	240
	gaaga	cttg	g ca	gaat	attt	ctg	tcag	caa	tata	acag	ct a	tcct	caca	c gt	tcgg	aggg	ī	300
	gggac	caago	c tg	gaaa	tgaa	a												321
10	<210> <211> <212> <213>	107 PRT	encia a	artificia	ıl													
15	<220> <221> <223>			ripció	n de la	ı secu	encia	artifici	al: pol	ipéptic	lo sint	ético"						
	<400>	86																
		Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Gln	Lys	Phe 10	Met	Ser	Thr	Ser	Val 15	Gly	
		Asp	Arg	Val	Ser 20	Val	Thr	Cys	Lys	Ala 25	Ser	Gln	Asn	Val	Gly 30	Thr	Asn	
		Val	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ser	Pro	Lys 45	Ala	Leu	Ile	
		Tyr	Ser 50	Pro	Ser	Tyr	Arg	Tyr 55	Ser	Gly	Val	Pro	Asp 60	Arg	Phe	Thr	Gly	
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Asn	Val	Gln	Ser 80	
		Glu	Asp	Leu	Ala	Glu 85	Tyr	Phe	Cys	Gln	Gln 90	Tyr	Asn	Ser	Tyr	Pro 95	His	
20		Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Met	Lys						
	<210><211><211><212><213>	333 ADN	encia a	artificia	ıl													
25	<220> <221>																	

	<223>	/nota=	="Desc	cripció	n de la	a secu	encia	artifici	al: pol	inucle	ótido s	sintétic	o"					
	<400>	87																
	gacat	tgtg	c tg	acac	agtc	tcc	tgct	tcc	ttag	ctgt	at c	tctg	gggc	a ga	.gggc	cacc		60
	atctc	atgo	a gg	gcca	gcca	aag	tgtc	agt	acat	ctag	gt t	tagt	tata	t go	actg	gttc		120
	caaca	gaaa	.с са	ggac	aggc	acc	caaa	.ctc	ctca	tcaa	gt a	tgca	tcca	a cc	taga	atct		180
	ggggt	ccct	g cc	aggt	tcag	tgg	cagt	ggg	tctg	ggac	ag a	cttc	acco	t ca	acat	ccat		240
	cctgt	ggag	g gg	gagg	atac	tgc	aaca	tat	tact	gtca	gc a	cagt	tggg	a ga	ttcc	gtac		300
5	acgtt	cgga	g gg	ggga	ccaa	. gct	ggaa	ata.	aaa									333
10	<210><211><211><212><213>	111 PRT	encia a	artificia	ıl													
15	<220> <221> <223>	fuente /nota=		cripció	n de la	a secu	encia	artifici	al: pol	ipéptic	lo sint	ético"						
	<400>	88																
		Asp 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly	
		Gln	Arg	Ala	Thr 20	Ile	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Thr	Ser	
		Arg	Phe	Ser 35	Tyr	Met	His	Trp	Phe 40	Gln	Gln	Lys	Pro	Gly 45	Gln	Ala	Pro	
		Lys	Leu 50	Leu	Ile	Lys	Tyr	Ala 55	Ser	Asn	Leu	Glu	Ser 60	Gly	Val	Pro	Ala	
		Arg 65	Phe	Ser	Gly	Ser	Gly 70	Ser	Gly	Thr	Asp	Phe 75	Thr	Leu	Asn	Ile	His 80	
		Pro	Val	Glu	Gly	Glu 85	Asp	Thr	Ala	Thr	Tyr 90	Tyr	Cys	Gln	His	Ser 95	Trp	
		Glu	Ile	Pro	Tyr 100	Thr	Phe	Gly	Gly	Gly 105	Thr	Lys	Leu	Glu	Ile 110	Lys		
20	<210> <211> <212> <213>	321 ADN	encia a	artificia	ıl													
25	<220> <221>)															

	<223>	/nota=	:"Desc	cripció	n de la	a secu	encia	artifici	al: pol	inucle	otido s	sintétic	o"					
	<400>	89																
	gacato	ccaaa	ı tga	accca	agtc	gaag	gtcgt	cg (ctttc	cagco	jt c	ggtag	gggg	a to	gggt	caca		60
	attac	gtgcc	gaa	acgto	caga	gaat	ttg	cat a	aacta	accto	eg eg	gtggt	atca	a gca	agaaq	gccc		120
	gggaag	gtcac	cga	aact	cct	tgto	ctacç	gat q	gcgaa	aaaco	gc to	ggcgg	gatg	g agt	gcc	gtcg		180
	agatto	ctcgg	gaa	agcgg	gatc	cggt	acg	gac t	tatad	cgctt	a c	gatct	cato	c gct	cca	gccc		240
	gagga	ctttg	r cga	acgta	acta	ttgt	cago	cat t	ttttç	gtc	gt c	gacat	acad	ati	tgg	gcag		300
5	gggac	caagt	. tgg	gaaat	caa	g												321
10	<210> <211> <212> <213>	107 PRT	encia a	artificia	al													
45	<220> <221> <223>	fuente		cripció	n de la	a secu	encia	artifici	al: pol	ipéptic	lo sint	ético"						
15	<400>	90																
		Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
		Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Thr 25	Ser	Glu	Asn	Leu	His 30	Asn	Tyr	
		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ser	Pro	Lys 45	Leu	Leu	Val	
		Tyr	Asp 50	Ala	Lys	Thr	Leu	Ala 55	Asp	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Tyr	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
		Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	His 90	Phe	Trp	Ser	Ser	Pro 95	Tyr	
		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys						
20	<210> <211> <212> <213>	321 ADN	encia a	artificia	al													
25	<220> <221> <223>	fuente		cripció	n de la	a secu	encia	artifici	al: pol	inucle	ótido s	sintétic	co"					

<400> 91												
gacatccaaa tgacccagtc gccgtcgtcg ctttcagcgt cggtagggga tcgggtcaca												
attacgtgcc gaacgtcaga gaatttgcat aactacctcg cgtggtatca gcagaagccc												
gggaaggccc cgaaactcct tatctacgat gcgaaaacgc tggcggatgg agtgccgtcg												
agattetegg gaageggate eggtaeggae tataegetta egateteate geteeageee												
gaggactttg cgacgtacta ttgtcagcat ttttggtcgt cgccctacac atttgggcag												
gggaccaagt tggaaatcaa g												
<210> 92 <211> 107 <212> PRT <213> Secuencia artificial												
<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"												
<400> 92												
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15												
Asp Arg Val Thr Ile Thr Cys Arg Thr Ser Glu Asn Leu His Asn Tyr 20 25 30												
Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45												
Tyr Asp Ala Lys Thr Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly 50 55 60												
Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80												
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Phe Trp Ser Ser Pro Tyr 85 90 95												
Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105												
<210> 93 <211> 321 <212> ADN <213> Secuencia artificial												
<220>												

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 9	93																
gacatco	caaa	tga	ccca	gtc	gccg	tcgt	cg c	tttc	agcg	rt co	gtag	ggga	tco	ggto	caca		60
attacgt	tgcc	gaa	cgtc	aga	gaat	ttgc	at a	acta	acto	g cg	ıtggt	atca	gca	ıgaaç	gada		120
gggaagt	cac	cga	aact	cct	tatc	tacg	at g	rcgaa	aacg	rc to	ıgcgg	atgg	agt	gccg	gtcg		180
agattct	agattctcgg gaagcggatc cggtacggac tatacgctta cgatctcatc gctccagccc 240														240		
gaggact															300		
gggacca	aagt	tgg	aaat	caa	g												321
<210> 9 <211> 1 <212> F <213> 9	107 PRT	encia a	artificia	ıl													
<220> <221> f <223> /			cripció	n de la	a secu	encia	artifici	al: pol	ipéptic	do sint	ético"						
<400> 9	94																
	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Thr 25	Ser	Glu	Asn	Leu	His 30	Asn	Tyr	
	Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ser	Pro	Lys 45	Leu	Leu	Ile	
	Tyr	Asp 50	Ala	Lys	Thr	Leu	Ala 55	Asp	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
	Ser 65	Gly	Ser	Gly	Thr	Asp 70	Tyr	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
	Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	His 90	Phe	Trp	Ser	Ser	Pro 95	Tyr	
	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys						
<210> 9 <211> 3 <212> 7 <213> 9	321 ADN	encia a	artificia	ıl													
<220> <221> f <223> /			cripció	n de la	a secu	encia	artifici	al: pol	inucle	ótido s	sintétic	:o"					

<400> 95

gacatccaaa tgacccaatc gccctcctcc ctctccgcat cagtagggga ccgcgtcaca	60
attacttgca aagcgtcgca gaacgtcgga acgaatgtgg cgtggtttca gcagaagccc	120
ggaaaagctc cgaagagctt gatctactcg gcctcatata ggtattcggg tgtgccgagc	180
cggtttagcg ggtcggggtc aggtactgat ttcacgctca caatttcatc gttgcagcca	240
gaagatttcg ccacatatta ctgtcagcag tacaacaatt accctctgac gttcggccag	300
ggaaccaaac ttgagatcaa g	321
<210> 96 <211> 107 <212> PRT <213> Secuencia artificial	
<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"	
<400> 96	
Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val G 1 5 10 15	ly
Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asn Val Gly Thr As	sn
Val Ala Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Ser Leu I 35 40 45	le
Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Ser Arg Phe Ser G 50 55 60	ly
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pr 65 70 75 80	
Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Asn Tyr Pro Lo	eu
Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100 105	
<210> 97 <211> 321 <212> ADN <213> Secuencia artificial	
<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"	
<400> 97	

gatat	сса	ıga t	gac	acag	tc a	ccct	cgtc	g ct	ctca	gctt	ccg	tagg	cga	cagg	gtca	ct	60
attac	gtg	rta a	aagc	atca	ca g	aacg	tcgg	a ac	gaat	gtgg	cgt	ggtt [.]	tca	gcag	aagc	cc	120
gggaa	gag	rcc (ccaa	agcg	ct ta	atct	actc	c cc	gtcg	tatc	ggt	attc	cgg	tgtg	ccaa	gc	180
agatt	tto	gg q	ggtc	aggti	tc g	ggaa	ctga	c tt	tacc	ctga	cca	tata	gtc	cctc	caac	cg	240
gaaga	ttt	.cg (ccac	gtac	tt c	tgcc	agca	g ta	caac	agct	atc	ctca	cac	attc	ggac	aa	300
gggac	aaa	igt t	gga	gatt	aa a												321
<210> 98 <211> 107 <212> PRT <213> Secuencia artificial																	
<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"																	
<400> 9	98																
A: 1	_	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
A	sp	Arg	Val	Thr 20	Ile	Thr	Cys	Lys	Ala 25	Ser	Gln	Asn	Val	Gly 30	Thr	Asn	
V	al	Ala	Trp 35	Phe	Gln	Gln	Lys	Pro 40	Gly	Lys	Ser	Pro	Lys 45	Ala	Leu	Ile	
T	yr	Ser 50	Pro	Ser	Tyr	Arg	Tyr 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
Se 6:		Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
G:	lu	Asp	Phe	Ala	Thr 85	Tyr	Phe	Cys	Gln	Gln 90	Tyr	Asn	Ser	Tyr	Pro 95	His	
T	hr	Phe	Gly	Gln 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys						
<210> 99 <211> 1332 <212> ADN <213> Sequencia artificial																	
<220> <221> f	<213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"																
<400>	99																

gaggteetge	tgcaacagtc	tggacctgag	ctggtgaagc	ctggggcttc	agtgaagata	60
ccctgcaagg	cttctggata	cacattcact	gactacaaca	tggactgggt	gaagcagagc	120
catggaaaga	gccttgagtg	gattggacaa	attaatccta	acaatggtgg	tattttcttc	180
aaccagaagt	tcaagggcaa	ggccacattg	actgtagaca	agtcctccaa	tacagccttc	240
atggaggtcc	gcagcctgac	atctgaggac	actgcagtct	attactgtgc	aagagaggca	300
attactacgg	taggcgctat	ggactactgg	ggtcaaggaa	cctcagtcac	cgtctcctca	360
gccaaaacga	cacccccatc	tgtctatcca	ctggcccctg	gatctgctgc	ccaaactaac	420
tccatggtga	ccctgggatg	cctggtcaag	ggctatttcc	ctgagccagt	gacagtgacc	480
tggaactctg	gatccctgtc	cagcggtgtg	cacaccttcc	cagctgtcct	gcagtctgac	540
ctctacactc	tgagcagctc	agtgactgtc	ccctccagca	cctggcccag	cgagaccgtc	600
acctgcaacg	ttgcccaccc	ggccagcagc	accaaggtgg	acaagaaaat	tgtgcccagg	660
gattgtggtt	gtaagccttg	catatgtaca	gtcccagaag	tatcatctgt	cttcatcttc	720
ccccaaagc	ccaaggatgt	gctcaccatt	actctgactc	ctaaggtcac	gtgtgttgtg	780
gtagacatca	gcaaggatga	tcccgaggtc	cagttcagct	ggtttgtaga	tgatgtggag	840
gtgcacacag	ctcagacgca	accccgggag	gagcagttca	acagcacttt	ccgctcagtc	900
agtgaacttc	ccatcatgca	ccaggactgg	ctcaatggca	aggagttcaa	atgcagggtc	960
aacagtgcag	ctttccctgc	ccccatcgag	aaaaccatct	ccaaaaccaa	aggcagaccg	1020
aaggctccac	aggtgtacac	cattccacct	cccaaggagc	agatggccaa	ggataaagtc	1080
agtctgacct	gcatgataac	agacttcttc	cctgaagaca	ttactgtgga	gtggcagtgg	1140
aatgggcagc	cagcggagaa	ctacaagaac	actcagccca	tcatggacac	agatggctct	1200
tacttcgtct	acagcaagct	caatgtgcag	aagagcaact	gggaggcagg	aaatactttc	1260
acctgctctg	tgttacatga	gggcctgcac	aaccaccata	ctgagaagag	cctctcccac	1320
tctcctggta	aa					1332

<210> 100 <211> 444

<212> PRT

<213> Secuencia artificial

<220>

<221> fuente

¹⁰ <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 100

Glu Val Leu Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Ile Pro Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30

Asn	Met	Asp 35	Trp	Val	Lys	Gln	Ser 40	His	Gly	Lys	Ser	Leu 45	Glu	Trp	Ile
Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Val	Asp	Lys	Ser 75	Ser	Asn	Thr	Ala	Phe 80
Met	Glu	Val	Arg	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Ser 115	Val	Thr	Val	Ser	Ser 120	Ala	Lys	Thr	Thr	Pro 125	Pro	Ser	Val
Tyr	Pro 130	Leu	Ala	Pro	Gly	Ser 135	Ala	Ala	Gln	Thr	Asn 140	Ser	Met	Val	Thr
Leu 145	Gly	Cys	Leu	Val	Lys 150	Gly	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Thr 160
Trp	Asn	Ser	Gly	Ser 165	Leu	Ser	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Asp 180	Leu	Tyr	Thr	Leu	Ser 185	Ser	Ser	Val	Thr	Val 190	Pro	Ser
Ser	Thr	Trp 195	Pro	Ser	Glu	Thr		Thr	_	Asn	Val	Ala 205	His	Pro	Ala
Ser	Ser 210	Thr	Lys	Val	Asp	Lys 215	Lys	Ile	Val	Pro	Arg 220	Asp	Cys	Gly	Cys
Lys 225	Pro	Cys	Ile	Cys	Thr 230	Val	Pro	Glu	Val	Ser 235	Ser	Val	Phe	Ile	Phe 240
Pro	Pro	Lys	Pro	Lys 245	Asp	Val	Leu	Thr	Ile 250	Thr	Leu	Thr	Pro	Lys 255	Val
Thr	Cys	Val	Val 260	Val	Asp	Ile	Ser	Lys 265	Asp	Asp	Pro	Glu	Val 270	Gln	Phe
Ser	Trp	Phe	Val	Asp	Asp	Val	Glu	Val	His	Thr	Ala	Gln	Thr	Gln	Pro

			275					280					285			
	Arg	Glu 290	Glu	Gln	Phe	Asn	Ser 295	Thr	Phe	Arg	Ser	Val 300	Ser	Glu	Leu	Pro
	Ile 305	Met	His	Gln	Asp	Trp 310	Leu	Asn	Gly	Lys	Glu 315	Phe	Lys	Cys	Arg	Val 320
	Asn	Ser	Ala	Ala	Phe 325	Pro	Ala	Pro	Ile	Glu 330	Lys	Thr	Ile	Ser	Lys 335	Thr
	Lys	Gly	Arg	Pro 340	Lys	Ala	Pro	Gln	Val 345	Tyr	Thr	Ile	Pro	Pro 350	Pro	Lys
	Glu	Gln	Met 355	Ala	Lys	Asp	Lys	Val 360	Ser	Leu	Thr	Cys	Met 365	Ile	Thr	Asp
	Phe	Phe 370	Pro	Glu	Asp	Ile	Thr 375	Val	Glu	Trp	Gln	Trp 380	Asn	Gly	Gln	Pro
	Ala 385	Glu	Asn	Tyr	Lys	Asn 390	Thr	Gln	Pro	Ile	Met 395	Asp	Thr	Asp	Gly	Ser 400
	Tyr	Phe	Val	Tyr	Ser 405	Lys	Leu	Asn	Val	Gln 410	Lys	Ser	Asn	Trp	Glu 415	Ala
	Gly	Asn	Thr	Phe 420	Thr	Cys	Ser	Val	Leu 425	His	Glu	Gly	Leu	His 430	Asn	His
	His	Thr	Glu 435	Lys	Ser	Leu	Ser	His 440	Ser	Pro	Gly	Lys				
<210> <211> <212> <213>	642 ADN	encia a	artificia	ıl												
<220> <221> <223>			cripció	n de la	a secu	encia :	artifici	al: poli	inucle	ótido s	sintétic	:o"				
<400>	101															

gacatccaga	tgactcagtc	tccagcctcc	ctatctgcat	ctgtgggaga	aactgtcacc	60
atcacatgtc	gaacaagtga	gaatcttcac	aattatttag	catggtatca	gcagaaacag	120
ggaaaatctc	ctcagctcct	ggtctatgat	gcaaaaacct	tagcagatgg	tgtgccatca	180
aggttcagtg	gcagtggatc	aggaacacaa	tattctctca	agatcaacag	cctgcagcct	240
gaagattttg	ggagttatta	ctgtcaacat	ttttggagta	gtccttacac	gttcggaggg	300
gggaccaagc	tggaaataaa	acgggctgat	gctgcaccaa	ctgtatccat	cttcccacca	360
		tggaggtgcc				420
		gtggaagatt				480
		cagcaaagac				540
ttgaccaagg	acgagtatga	acgacataac	agctatacct	gtgaggccac	tcacaagaca	600
tcaacttcac	ccattgtcaa	gagcttcaac	aggaatgagt	gt		642

<210> 102

<211> 214 <212> PRT

5

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Ala Ser Val Gly 10 Glu Thr Val Thr Ile Thr Cys Arg Thr Ser Glu Asn Leu His Asn Tyr 25 Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro Gln Leu Leu Val Tyr Asp Ala Lys Thr Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Tyr Ser Leu Lys Ile Asn Ser Leu Gln Pro 75 Glu Asp Phe Gly Ser Tyr Tyr Cys Gln His Phe Trp Ser Ser Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala 105 Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu 145 150 Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr

Phe Asn Arg Asn Glu Cys 210

<210> 103

<211> 1326

<212> ADN

<213> Secuencia artificial

<220>

<221> fuente

185

Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser 195 200 205

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 103

caggtccaac	tgcagcagcc	tggggctgaa	ctggtgaagc	ctggggcttc	agtgaagctg	60
tcctgcaagg	cttctggcta	caccttcacc	agctactgga	ttcactgggt	gaaccagagg	120
cctggacaag	gccttgagtg	gattggagac	attaatccta	gcaacggccg	tagtaagtat	180
aatgagaagt	tcaagaacaa	ggccacaatg	actgcagaca	aatcctccaa	cacagcctac	240
atgcaactca	gcagcctgac	atctgaggac	tctgcggtct	attactgtgc	aagagaggtt	300
ctggatggtg	ctatggacta	ctggggtcaa	ggaacctcag	tcaccgtctc	ctcagccaaa	360
acgacacccc	catctgtcta	tccactggcc	cctggatctg	ctgcccaaac	taactccatg	420
gtgaccctgg	gatgcctggt	caagggctat	ttccctgagc	cagtgacagt	gacctggaac	480
tctggatccc	tgtccagcgg	tgtgcacacc	ttcccagctg	tcctgcagtc	tgacctctac	540
actctgagca	gctcagtgac	tgtcccctcc	agcacctggc	ccagcgagac	cgtcacctgc	600
aacgttgccc	acccggccag	cagcaccaag	gtggacaaga	aaattgtgcc	cagggattgt	660
ggttgtaagc	cttgcatatg	tacagtccca	gaagtatcat	ctgtcttcat	cttcccccca	720
aagcccaagg	atgtgctcac	cattactctg	actcctaagg	tcacgtgtgt	tgtggtagac	780
atcagcaagg	atgatcccga	ggtccagttc	agctggtttg	tagatgatgt	ggaggtgcac	840
acagctcaga	cgcaaccccg	ggaggagcag	ttcaacagca	ctttccgctc	agtcagtgaa	900
cttcccatca	tgcaccagga	ctggctcaat	ggcaaggagt	tcaaatgcag	ggtcaacagt	960
gcagctttcc	ctgcccccat	cgagaaaacc	atctccaaaa	ccaaaggcag	accgaaggct	1020
ccacaggtgt	acaccattcc	acctcccaag	gagcagatgg	ccaaggataa	agtcagtctg	1080
acctgcatga	taacagactt	cttccctgaa	gacattactg	tggagtggca	gtggaatggg	1140
cagccagcgg	agaactacaa	gaacactcag	cccatcatgg	acacagatgg	ctcttacttc	1200
gtctacagca	agctcaatgt	gcagaagagc	aactgggagg	caggaaatac	tttcacctgc	1260
tctgtgttac	atgagggcct	gcacaaccac	catactgaga	agagcctctc	ccactctcct	1320
ggtaaa						1326

5

<210> 104

<211> 442

<212> PRT

10 <213> Secuencia artificial

<220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

15

Gln 1	Val	Gln	Leu	Gln 5	Gln	Pro	Gly	Ala	Glu 10	Leu	Val	Lys	Pro	Gly 15	Ala
Ser	Val	Lys	Leu 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Ser	Tyr
Trp	Ile	His 35	Trp	Val	Asn	Gln	Arg 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Ile
Gly	Asp 50	Ile	Asn	Pro	Ser	Asn 55	Gly	Arg	Ser	Lys	Tyr 60	Asn	Glu	Lys	Phe
Lys 65	Asn	Lys	Ala	Thr	Met 70	Thr	Ala	Asp	Lys	Ser 75	Ser	Asn	Thr	Ala	Tyr 80
Met	Gln	Leu	Ser	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Ser	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Val 100	Leu	Asp	Gly	Ala	Met 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
Ser	Val	Thr 115	Val	Ser	Ser	Ala	Lys 120	Thr	Thr	Pro	Pro	Ser 125	Val	Tyr	Pro
Leu	Ala 130	Pro	Gly	Ser	Ala	Ala 135	Gln	Thr	Asn	Ser	Met 140	Val	Thr	Leu	Gly
Cys 145	Leu	Val	Lys	Gly	Tyr 150	Phe	Pro	Glu	Pro	Val 155	Thr	Val	Thr	Trp	Asn 160

Ser	Gly	Ser	Leu	Ser 165	Ser	Gly	Val	His	Thr 170	Phe	Pro	Ala	Val	Leu 175	Gln
Ser	Asp	Leu	Tyr 180	Thr	Leu	Ser	Ser	Ser 185	Val	Thr	Val	Pro	Ser 190	Ser	Thr
Trp	Pro	Ser 195	Glu	Thr	Val	Thr	Cys 200	Asn	Val	Ala	His	Pro 205	Ala	Ser	Ser
Thr	Lys 210	Val	Asp	Lys	Lys	Ile 215	Val	Pro	Arg	Asp	Cys 220	Gly	Cys	Lys	Pro
Cys 225	Ile	Cys	Thr	Val	Pro 230	Glu	Val	Ser	Ser	Val 235	Phe	Ile	Phe	Pro	Pro 240
Lys	Pro	Lys	Asp	Val 245	Leu	Thr	Ile	Thr	Leu 250	Thr	Pro	Lys	Val	Thr 255	Cys
Val	Val	Val	Asp 260	Ile	Ser	Lys	Asp	Asp 265	Pro	Glu	Val	Gln	Phe 270	Ser	Trp
Phe	Val	Asp 275	Asp	Val	Glu	Val	His 280	Thr	Ala	Gln	Thr	Gln 285	Pro	Arg	Glu
Glu	Gln 290	Phe	Asn	Ser	Thr	Phe 295	Arg	Ser	Val	Ser	Glu 300	Leu	Pro	Ile	Met
His 305	Gln	Asp	Trp	Leu	Asn 310	Gly	Lys	Glu	Phe	Lys 315	Cys	Arg	Val	Asn	Ser 320
Ala	Ala	Phe	Pro	Ala 325	Pro	Ile	Glu	Lys	Thr 330	Ile	Ser	Lys	Thr	Lys 335	Gly
Arg	Pro	Lys	Ala 340	Pro	Gln	Val	Tyr	Thr 345	Ile	Pro	Pro	Pro	Lys 350	Glu	Gln
Met	Ala	Lys 355	Asp	Lys	Val	Ser	Leu 360	Thr	Cys	Met	Ile	Thr 365	Asp	Phe	Phe
Pro	Glu 370	Asp	Ile	Thr	Val	Glu 375	Trp	Gln	Trp	Asn	Gly 380	Gln	Pro	Ala	Glu
Asn 385	Tyr	Lys	Asn	Thr	Gln 390	Pro	Ile	Met	Asp	Thr 395	Asp	Gly	Ser	Tyr	Phe 400
Val	Tyr	Ser	Lys	Leu 405	Asn	Val	Gln	Lys	Ser 410	Asn	Trp	Glu	Ala	Gly 415	Asn

Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His His Thr 420 425 430

Glu Lys Ser Leu Ser His Ser Pro Gly Lys

5	<210> 105 <211> 654 <212> ADN <213> Secuence	cia artificial					
10	<220> <221> fuente <223> /nota="E	Descripción de la	secuencia artific	ial: polinucleótido	o sintético"		
	<400> 105						
	gacattgtgt	tgacccaatc	tccagcttct	ttggctgtgt	ctctagggca	gagggccacc	60
	atctcctgca	gagccagcga	aagtgttgat	aattatggca	ttagttttat	gaactggttc	120
	caacagaaac	caggacagcc	acccaaactc	ctcatctatg	ctgcatccaa	ccaaggctcc	180
	ggggtccctg	ccaggtttag	tggcagtggg	tctgggacag	acttcagcct	caacatccat	240
	cctatggagg	aggatgatac	tgcaatgtat	ttctgtcagc	aaagtaagga	ggttccgtgg	300
	acgttcggtg	gaggctccaa	gctggaaatc	aaacgggctg	atgctgcacc	aactgtatcc	360
	atcttcccac	catccagtga	gcagttaaca	tctggaggtg	cctcagtcgt	gtgcttcttg	420
	aacaacttct	accccaaaga	catcaatgtc	aagtggaaga	ttgatggcag	tgaacgacaa	480
	aatggcgtcc	tgaacagttg	gactgatcag	gacagcaaag	acagcaccta	cagcatgagc	540
	agcaccctca	cgttgaccaa	ggacgagtat	gaacgacata	acagctatac	ctgtgaggcc	600
	actcacaaga	catcaacttc	acccattgtc	aagagcttca	acaggaatga	gtgt	654
15	.010 100						

<210> 106 <211>218 <212> PRT

<213> Secuencia artificial

20

<220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

25 <400> 106

> Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly 1 5 10 15

> Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Asp Asn Tyr 20 25 30

	Gly	Ile	Ser 35	Phe	Met	Asn	Trp	Phe 40	Gln	Gln	Lys	Pro	Gly 45	Gln	Pro	Pro
	Lys	Leu 50	Leu	Ile	Tyr	Ala	Ala 55	Ser	Asn	Gln	Gly	Ser 60	Gly	Val	Pro	Ala
	Arg 65	Phe	Ser	Gly	Ser	Gly 70	Ser	Gly	Thr	Asp	Phe 75	Ser	Leu	Asn	Ile	His 80
	Pro	Met	Glu	Glu	Asp 85	Asp	Thr	Ala	Met	Tyr 90	Phe	Cys	Gln	Gln	Ser 95	Lys
	Glu	Val	Pro	Trp 100	Thr	Phe	Gly	Gly	Gly 105	Ser	Lys	Leu	Glu	Ile 110	Lys	Arg
			115					120					125	Ser		
		130					135					140		Asn		
	145	_				150					155			Glu		160
					165					170	_		_	Asp	175	
	_			180					185					Tyr 190		
			195	-		-		200			Lys	Thr	Ser 205	Thr	Ser	Pro
>	Ile 107	Val 210	Lys	Ser	Phe	Asn	Arg 215	Asn	Glu	Cys						
	1329															

<210>

<211> 1329 <212> ADN

<213> Secuencia artificial

<220>

5

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético" 10

caggttactc	tgaaagagtc	tggccctggg	atattgcagc	cctcccagac	cctcagtctg	60
acttgttctt	tctctgggtt	ttcactgagc	acttatggta	tgggtgtgac	ctggattcgt	120
cagccttcag	gaaagggtct	ggagtggctg	gcacacattt	actgggatga	tgacaagcgc	180
tataacccat	ccctgaagag	ccggctcaca	atctccaagg	atacctccaa	caaccaggta	240
ttcctcaaga	tcaccagtgt	ggacactgca	gatactgcca	catactactg	tgctcaaacg	300
gggtatagta	acttgtttgc	ttactggggc	caagggactc	tggtcactgt	ctctgcagcc	360
aaaacgacac	ccccatctgt	ctatccactg	gcccctggat	ctgctgccca	aactaactcc	420
atggtgaccc	tgggatgcct	ggtcaagggc	tatttccctg	agccagtgac	agtgacctgg	480
aactctggat	ccctgtccag	cggtgtgcac	accttcccag	ctgtcctgca	gtctgacctc	540
tacactctga	gcagctcagt	gactgtcccc	tccagcacct	ggcccagcga	gaccgtcacc	600
tgcaacgttg	cccacccggc	cagcagcacc	aaggtggaca	agaaaattgt	gcccagggat	660
tgtggttgta	agccttgcat	atgtacagtc	ccagaagtat	catctgtctt	catcttcccc	720
ccaaagccca	aggatgtgct	caccattact	ctgactccta	aggtcacgtg	tgttgtggta	780
gacatcagca	aggatgatcc	cgaggtccag	ttcagctggt	ttgtagatga	tgtggaggtg	840
cacacagctc	agacgcaacc	ccgggaggag	cagttcaaca	gcactttccg	ctcagtcagt	900
gaacttccca	tcatgcacca	ggactggctc	aatggcaagg	agttcaaatg	cagggtcaac	960
agtgcagctt	tccctgcccc	catcgagaaa	accatctcca	aaaccaaagg	cagaccgaag	1020
gctccacagg	tgtacaccat	tccacctccc	aaggagcaga	tggccaagga	taaagtcagt	1080
ctgacctgca	tgataacaga	cttcttccct	gaagacatta	ctgtggagtg	gcagtggaat	1140
gggcagccag	cggagaacta	caagaacact	cagcccatca	tggacacaga	tggctcttac	1200
ttcgtctaca	gcaagctcaa	tgtgcagaag	agcaactggg	aggcaggaaa	tactttcacc	1260
tgctctgtgt	tacatgaggg	cctgcacaac	caccatactg	agaagagcct	ctcccactct	1320
cctggtaaa						1329

5

<210> 108 <211> 443 <212> PRT

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln 1 5 10 15

Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Tyr 20 25 30

Gly Met Gly Val Thr Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu

		35					40					45			
Trp	Leu 50	Ala	His	Ile	Tyr	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Asn	Pro	Sei
Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Asn	Asn	Gln	Va] 80
Phe	Leu	Lys	Ile	Thr 85	Ser	Val	Asp	Thr	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Туі
Cys	Ala	Gln	Thr 100	Gly	Tyr	Ser	Asn	Leu 105	Phe	Ala	Tyr	Trp	Gly 110	Gln	Gly
Thr	Leu	Val 115	Thr	Val	Ser	Ala	Ala 120	Lys	Thr	Thr	Pro	Pro 125	Ser	Val	Туі
Pro	Leu 130	Ala	Pro	Gly	Ser	Ala 135	Ala	Gln	Thr	Asn	Ser 140	Met	Val	Thr	Let
Gly 145	Cys	Leu	Val	Lys	Gly 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Thr	Tr <u>r</u> 160
Asn	Ser	Gly	Ser	Leu 165	Ser	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
Gln	Ser	Asp	Leu 180	Tyr	Thr	Leu	Ser	Ser 185	Ser	Val	Thr	Val	Pro 190	Ser	Sei
Thr	Trp	Pro 195	Ser	Glu	Thr	Val	Thr 200	Cys	Asn	Val	Ala	His 205	Pro	Ala	Sei
Ser	Thr 210	Lys	Val	Asp	Lys	Lys 215	Ile	Val	Pro	Arg	Asp 220	Cys	Gly	Cys	Lys
Pro 225	Cys	Ile	Cys	Thr	Val 230	Pro	Glu	Val	Ser	Ser 235	Val	Phe	Ile	Phe	Pro 240
Pro	Lys	Pro	Lys	Asp 245	Val	Leu	Thr	Ile	Thr 250	Leu	Thr	Pro	Lys	Val 255	Thi
Cys	Val	Val	Val 260	Asp	Ile	Ser	Lys	Asp 265	Asp	Pro	Glu	Val	Gln 270	Phe	Sei
Trp	Phe	Val 275	Asp	Asp	Val	Glu	Val 280	His	Thr	Ala	Gln	Thr 285	Gln	Pro	Arg

Glu	Glu 290	Gln	Phe	Asn	Ser	Thr 295	Phe	Arg	Ser	Val	Ser 300	Glu	Leu	Pro	Ile
Met 305	His	Gln	Asp	Trp	Leu 310	Asn	Gly	Lys	Glu	Phe 315	Lys	Cys	Arg	Val	Asn 320
Ser	Ala	Ala	Phe	Pro 325	Ala	Pro	Ile	Glu	Lys 330	Thr	Ile	Ser	Lys	Thr 335	Lys
Gly	Arg	Pro	Lys 340	Ala	Pro	Gln	Val	Tyr 345	Thr	Ile	Pro	Pro	Pro 350	Lys	Glu
Gln	Met	Ala 355	Lys	Asp	Lys	Val	Ser 360	Leu	Thr	Cys	Met	Ile 365	Thr	Asp	Phe
Phe	Pro 370	Glu	Asp	Ile	Thr	Val 375	Glu	Trp	Gln	Trp	Asn 380	Gly	Gln	Pro	Ala
Glu 385	Asn	Tyr	Lys	Asn	Thr 390	Gln	Pro	Ile	Met	Asp 395	Thr	Asp	Gly	Ser	Tyr 400
Phe	Val	Tyr	Ser	Lys 405	Leu	Asn	Val	Gln	Lys 410	Ser	Asn	Trp	Glu	Ala 415	Gly
Asn	Thr	Phe	Thr 420	Cys	Ser	Val	Leu	His 425	Glu	Gly	Leu	His	Asn 430	His	His
Thr	Glu	Lys 435	Ser	Leu	Ser	His	Ser 440	Pro	Gly	Lys					

<210> 109 <211> 642 <212> ADN

<213> Secuencia artificial

<220>

5

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

gacattgtga	tgacccagtc	tcaaaaattc	atgtccacat	cagtaggaga	cagggtcagc	60
gtcacctgca	aggccagtca	gaatgtgggt	actaatgtag	cctggtatca	acagaaatta	120
ggacaatctc	ctaaaacact	gatttactcg	gcatcctacc	ggtacagtgg	agtccctgat	180
cgcttcacag	gcagtggatc	tgggacagat	ttcactctca	ccatcagcaa	tgtgcagtct	240
gaagacttgg	cagagtattt	ctgtcagcaa	tataacagct	atccgtacac	gttcggaggg	300
gggaccaagc	tggaaataaa	acgggctgat	gctgcaccaa	ctgtatccat	cttcccacca	360
tccagtgagc	agttaacatc	tggaggtgcc	tcagtcgtgt	gcttcttgaa	caacttctac	420
cccaaagaca	tcaatgtcaa	gtggaagatt	gatggcagtg	aacgacaaaa	tggcgtcctg	480
aacagttgga	ctgatcagga	cagcaaagac	agcacctaca	gcatgagcag	caccctcacg	540
ttgaccaagg	acgagtatga	acgacataac	agctatacct	gtgaggccac	tcacaagaca	600
tcaacttcac	ccattgtcaa	gagcttcaac	aggaatgagt	gt		642

<210> 110

<211> 214

5 <212> PRT

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Gln	Lys	Phe 10	Met	Ser	Thr	Ser	Val 15	Gly
Asp	Arg	Val	Ser 20	Val	Thr	Cys	Lys	Ala 25	Ser	Gln	Asn	Val	Gly 30	Thr	Asr
Val	Ala	Trp 35	Tyr	Gln	Gln	Lys	Leu 40	Gly	Gln	Ser	Pro	Lys 45	Thr	Leu	Ile
Tyr	Ser 50	Ala	Ser	Tyr	Arg	Tyr 55	Ser	Gly	Val	Pro	Asp 60	Arg	Phe	Thr	Gly
Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Asn	Val	Gln	Ser 80
Glu	Asp	Leu	Ala	Glu 85	Tyr	Phe	Cys	Gln	Gln 90	Tyr	Asn	Ser	Tyr	Pro 95	Туг
Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys	Arg	Ala	Asp 110	Ala	Ala
Pro	Thr	Val 115	Ser	Ile	Phe	Pro	Pro 120	Ser	Ser	Glu	Gln	Leu 125	Thr	Ser	Gly
Gly	Ala 130	Ser	Val	Val	Cys	Phe 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Lys	Asp	Ile
Asn 145	Val	Lys	Trp	Lys	Ile 150	Asp	Gly	Ser	Glu	A rg 155	Gln	Asn	Gly	Val	Let
Asn	Ser	Trp	Thr	Asp	Gln	Asp	Ser	Lys	Asp	Ser	Thr	Tyr	Ser	Met	Ser
				165					170					175	
Ser	Thr	Leu	Thr 180	Leu	Thr	Lys	Asp	Glu 185	Tyr	Glu	Arg	His	Asn 190	Ser	Туг
Thr	Cys	Glu 195	Ala	Thr	His	Lys	Thr 200	Ser	Thr	Ser	Pro	Ile 205	Val	Lys	Ser
Phe	Asn 210	Arg	Asn	Glu	Cys										

<210> 111 <211> 1329 <212> ADN

<213> Secuencia artificial

<220>

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

5

caggttactc tgaaagagtc	tggccctggg	atattgcagc	cctcccagac	cctcagtctg	60
acttgttctt tctctgggtt	ttcactgaac	acttatggta	tgggtgtgag	ctggattcgt	120
cagcetteag gaaagggtet	ggagtggctg	gcacacattt	actgggatga	tgacaagcgc	180
tataacccat ccctgaagag	ccggctcaca	atctccaagg	atgcctccaa	caaccgggtc	240
ttcctcaaga tcaccagtgt	ggacactgca	gatactgcca	catactactg	tgctcaaaga	300
ggttatgatg attactgggg	ttactggggc	caagggactc	tggtcactat	ctctgcagcc	360
aaaacgacac ccccatctgt	ctatccactg	gcccctggat	ctgctgccca	aactaactcc	420
atggtgaccc tgggatgcct	ggtcaagggc	tatttccctg	agccagtgac	agtgacctgg	480
aactctggat ccctgtccag	cggtgtgcac	accttcccag	ctgtcctgca	gtctgacctc	540
tacactctga gcagctcagt	gactgtcccc	tccagcacct	ggcccagcga	gaccgtcacc	600
tgcaacgttg cccacccggc	cagcagcacc	aaggtggaca	agaaaattgt	gcccagggat	660
tgtggttgta agccttgcat	atgtacagtc	ccagaagtat	catctgtctt	catcttcccc	720
ccaaagccca aggatgtgct	caccattact	ctgactccta	aggtcacgtg	tgttgtggta	780
gacatcagca aggatgatcc	cgaggtccag	ttcagctggt	ttgtagatga	tgtggaggtg	840
cacacagete agaegeaace	ccgggaggag	cagttcaaca	gcactttccg	ctcagtcagt	900
gaacttccca tcatgcacca	ggactggctc	aatggcaagg	agttcaaatg	cagggtcaac	960
agtgcagctt tccctgcccc	catcgagaaa	accatctcca	aaaccaaagg	cagaccgaag	1020
gctccacagg tgtacaccat	tccacctccc	aaggagcaga	tggccaagga	taaagtcagt	1080
ctgacctgca tgataacaga	cttcttccct	gaagacatta	ctgtggagtg	gcagtggaat	1140
gggcagccag cggagaacta	caagaacact	cagcccatca	tggacacaga	tggctcttac	1200
ttcgtctaca gcaagctcaa	tgtgcagaag	agcaactggg	aggcaggaaa	tactttcacc	1260
tgctctgtgt tacatgaggg	cctgcacaac	caccatactg	agaagagcct	ctcccactct	1320
cctggtaaa					1329

<210> 112 10

<211>443

<212> PRT

<213> Secuencia artificial

<220>

15

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Gln 1	Val	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Ile	Leu	Gln	Pro	Ser 15	Gln
Thr	Leu	Ser	Leu 20	Thr	Cys	Ser	Phe	Ser 25	Gly	Phe	Ser	Leu	Asn 30	Thr	Tyr
Gly	Met	Gly 35	Val	Ser	Trp	Ile	Arg 40	Gln	Pro	Ser	Gly	Lys 45	Gly	Leu	Glu
Trp	Leu 50	Ala	His	Ile	Tyr	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Asn	Pro	Ser
Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Ala 75	Ser	Asn	Asn	Arg	Val 80
Phe	Leu	Lys	Ile	Thr 85	Ser	Val	Asp	Thr	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
Cys	Ala	Gln	Arg 100	Gly	Tyr	Asp	Asp	Tyr 105	Trp	Gly	Tyr	Trp	Gly 110	Gln	Gly
Thr	Leu	Val 115	Thr	Ile	Ser	Ala	Ala 120	Lys	Thr	Thr	Pro	Pro 125	Ser	Val	Tyr
Pro	Leu 130	Ala	Pro	Gly	Ser	Ala 135	Ala	Gln	Thr	Asn	Ser 140	Met	Val	Thr	Leu
Gly 145	Cys	Leu	Val	Lys	Gly 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Thr	Trp 160
Asn	Ser	Gly	Ser	Leu 165	Ser	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu

Gln	Ser	Asp	Leu 180	Tyr	Thr	Leu	Ser	Ser 185	Ser	Val	Thr	Val	Pro 190	Ser	Ser
Thr	Trp	Pro 195	Ser	Glu	Thr	Val	Thr 200	Cys	Asn	Val	Ala	His 205	Pro	Ala	Ser
Ser	Thr 210	Lys	Val	Asp	Lys	Lys 215	Ile	Val	Pro	Arg	Asp 220	Cys	Gly	Cys	Lys
Pro 225	Cys	Ile	Суз	Thr	Val 230	Pro	Glu	Val	Ser	Ser 235	Val	Phe	Ile	Phe	Pro 240
Pro	Lys	Pro	Lys	Asp 245	Val	Leu	Thr	Ile	Thr 250	Leu	Thr	Pro	Lys	Val 255	Thr
Cys	Val	Val	Val 260	Asp	Ile	Ser	Lys	Asp 265	Asp	Pro	Glu	Val	Gln 270	Phe	Ser
Trp	Phe	Val 275	Asp	Asp	Val	Glu	Val 280	His	Thr	Ala	Gln	Thr 285	Gln	Pro	Arg
Glu	Glu 290	Gln	Phe	Asn	Ser	Thr 295	Phe	Arg	Ser	Val	Ser 300	Glu	Leu	Pro	Ile
Met 305	His	Gln	Asp	Trp	Leu 310	Asn	Gly	Lys	Glu	Phe 315	Lys	Cys	Arg	Val	Asn 320
Ser	Ala	Ala	Phe	Pro 325	Ala	Pro	Ile	Glu	Lys 330	Thr	Ile	Ser	Lys	Thr 335	Lys
Gly	Arg	Pro	Lys 340	Ala	Pro	Gln	Val	Tyr 345	Thr	Ile	Pro	Pro	Pro 350	Lys	Glu
Gln	Met	Ala 355	Lys	Asp	Lys	Val	Ser 360	Leu	Thr	Cys	Met	Ile 365	Thr	Asp	Phe
Phe	Pro 370	Glu	Asp	Ile	Thr	Val 375	Glu	Trp	Gln	Trp	Asn 380	Gly	Gln	Pro	Ala
Glu 385	Asn	Tyr	Lys	Asn	Thr 390	Gln	Pro	Ile	Met	Asp 395	Thr	Asp	Gly	Ser	Tyr 400
Phe	Val	Tyr	Ser	Lys 405	Leu	Asn	Val	Gln	Lys 410	Ser	Asn	Trp	Glu	Ala 415	Gly
Agn	Thr	Phe	Thr	Cvs	Ser	Va 1	Leu	His	Gl 11	Glv	Leu	His	Asn	His	Hie

425

430

420

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<220> <221> fuente

25

		Thr Glu	Lys Ser 435	Leu Se	er His Ser I 440	Pro Gly Lys		
5	<210> 113 <211> 642 <212> ADN <213> Secuence	cia artificial						
10	<220> <221> fuente <223> /nota="[Descripción c	le la secue	encia artific	ial: polinucleótid	o sintético"		
	<400> 113							
	gacattgtga	tgacccag	tc tca	aaaattc	atgtccacat	cagtaggaga	cagggtcagc	60
	gtcacctgca	aggccagt	ca gaat	gtgggt	actaatgtag	cctggtttca	acagaaacca	120
	ggtcaatctc	ctaaagca	ct gati	tactcg	gcatcttacc	ggtacagtgg	agtccctgat	180
	cgcttcacag	gcagtgga	tc tgg	gacagat	ttcattctca	ccatcagcaa	tgtgcagtct	240
	gaagacctgg	cagagtat	tt ctg	cagcaa	tataacaact	atcctctcac	gttcggtgct	300
	gggaccaagc	tggagcto	gaa acg	ggctgat	gctgcaccaa	ctgtatccat	cttcccacca	360
	tccagtgagc	agttaaca	ıtc tgga	aggtgcc	tcagtcgtgt	gcttcttgaa	caacttctac	420
	cccaaagaca	tcaatgto	aa gtg	gaagatt	gatggcagtg	aacgacaaaa	tggcgtcctg	480
	aacagttgga	ctgatcag	ga cago	caaagac	agcacctaca	gcatgagcag	caccctcacg	540
	ttgaccaagg	acgagtat	ga acga	acataac	agctatacct	gtgaggccac	tcacaagaca	600
	tcaacttcac	ccattgto	aa gago	cttcaac	aggaatgagt	gt		642
15 20	<210> 114 <211> 214 <212> PRT <213> Secuence	cia artificial						

Asp Ile Val Met Thr Gln Ser Gln Lys Phe Met Ser Thr Ser Val Gly Asp Arg Val Ser Val Thr Cys Lys Ala Ser Gln Asn Val Gly Thr Asn Val Ala Trp Phe Gln Gln Lys Pro Gly Gln Ser Pro Lys Ala Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Ile Leu Thr Ile Ser Asn Val Gln Ser Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln Tyr Asn Asn Tyr Pro Leu 85 Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly 120 Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile 130 135 Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu 145 Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser 200 Phe Asn Arg Asn Glu Cys

<210> 115 <211> 1368 <212> ADN

<213> Secuencia artificial

210

<220> <221> fuente

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 115

60 gaggtcctgc tgcaacagtc tggacctgag gtggtgaagc ctggggcttc agtgaagata 120 ccctgcaagg cttctggata cacattcact gactacaaca tggactgggt gaagcagagc catggaaaga gccttgagtg gattggagag attaatccta acaatggtgg tactttctac 180 aaccagaagt tcaagggcaa ggccacattg actgtagaca agtcctccag cacagcctac 240 300 atggagetee geageetgae atetgaggae aetgeagtet attactgtge aagagaggea attactacgg taggcgctat ggactactgg ggtcaaggaa cctcagtcac cgtctcctca 360 420 gccaaaacaa cacccccatc agtctatcca ctggcccctg ggtgtggaga tacaactggt tcctccgtga ctctgggatg cctggtcaag ggctacttcc ctgagtcagt gactgtgact 480 540 tggaactctg gatccctgtc cagcagtgtg cacaccttcc cagctctcct gcagtctgga 600 ctctacacta tgagcagete agtgactgte ccctccagca cctggccaag tcagaccgte 660 acctgcagcg ttgctcaccc agccagcagc accacggtgg acaaaaaact tgagcccagc 720 gggcccattt caacaatcaa cccctgtcct ccatgcaagg agtgtcacaa atgcccagct cctaacctcg agggtggacc atccgtcttc atcttccctc caaatatcaa ggatgtactc 780 atgatetece tgacacecaa ggteacgtgt gtggtggtgg atgtgagega ggatgaceca 840 gacgtccaga tcagctggtt tgtgaacaac gtggaagtac acacagctca gacacaaacc 900 catagagagg attacaacag tactatccgg gtggtcagca ccctccccat ccagcaccag 960 gactggatga gtggcaagga gttcaaatgc aaggtcaaca acaaagacct cccatcaccc 1020 atcgagagaa ccatctcaaa aattaaaggg ctagtcagag ctccacaagt atacatcttg 1080 1140 ccgccaccag cagagcagtt gtccaggaaa gatgtcagtc tcacttgcct ggtcgtgggc 1200 ttcaaccctg gagacatcag tgtggagtgg accagcaatg ggcatacaga ggagaactac aaggacaccg caccagtcct agactctgac ggttcttact tcatatatag caagctcaat 1260 1320 atgaaaacaa gcaagtggga gaaaacagat tccttctcat gcaacgtgag acacgagggt ctgaaaaatt actacctgaa gaagaccatc tcccggtctc cgggtaaa 1368

5

<210> 116 <211> 456 <212> PRT

10 <213> Secuencia artificial

<220> <221> fue

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Glu Val Leu Leu Gln Gln Ser Gly Pro Glu Val Val Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Ile Pro Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30

Asn Met Asp Trp Val Lys Gln Ser His Gly Lys Ser Leu Glu Trp Ile 35 40 45

Gly	Glu 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Thr	Phe	Tyr 60	Asn	Gln	Lys	Phe
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Val	Asp	Lys	Ser 75	Ser	Ser	Thr	Ala	Tyr 80
Met	Glu	Leu	Arg	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Ser 115	Val	Thr	Val	Ser	Ser 120	Ala	Lys	Thr	Thr	Pro 125	Pro	Ser	Val
Tyr	Pro 130	Leu	Ala	Pro	Gly	Cys 135	Gly	Asp	Thr	Thr	Gly 140	Ser	Ser	Val	Thr
Leu 145	Gly	Cys	Leu	Val	Lys 150	Gly	Tyr	Phe	Pro	Glu 155	Ser	Val	Thr	Val	Thr 160
Trp	Asn	Ser	Gly	Ser 165	Leu	Ser	Ser	Ser	Val 170	His	Thr	Phe	Pro	Ala 175	Leu
Leu	Gln	Ser	Gly 180	Leu	Tyr	Thr	Met	Ser 185	Ser	Ser	Val	Thr	Val 190	Pro	Ser
Ser	Thr	Trp 195	Pro	Ser	Gln	Thr	Val 200	Thr	Cys	Ser	Val	Ala 205	His	Pro	Ala
Ser	Ser 210	Thr	Thr	Val	Asp	Lys 215	Lys	Leu	Glu	Pro	Ser 220	Gly	Pro	Ile	Ser
Thr 225	Ile	Asn	Pro	Cys	Pro 230	Pro	Cys	Lys	Glu	Cys 235	His	Lys	Cys	Pro	Ala 240
Pro	Asn	Leu	Glu	Gly 245	Gly	Pro	Ser	Val	Phe 250	Ile	Phe	Pro	Pro	Asn 255	Ile
Lys	Asp	Val	Leu 260	Met	Ile	Ser	Leu	Thr 265	Pro	Lys	Val	Thr	Cys 270	Val	Val
Val	Asp	Val 275	Ser	Glu	Asp	Asp	Pro 280	Asp	Val	Gln	Ile	Ser 285	Trp	Phe	Val
Asn	Asn 290	Val	Glu	Val	His	Thr 295	Ala	Gln	Thr	Gln	Thr	His	Arg	Glu	Asp

Tyr 305	Asn	Ser	Thr	Ile	Arg 310	Val	Val	Ser	Thr	Leu 315	Pro	Ile	Gln	His	Gln 320
Asp	Trp	Met	Ser	Gly 325	Lys	Glu	Phe	Lys	Cys 330	Lys	Val	Asn	Asn	Lys 335	Asp
Leu	Pro	Ser	Pro 340	Ile	Glu	Arg	Thr	Ile 345	Ser	Lys	Ile	Lys	Gly 350	Leu	Val
Arg	Ala	Pro 355	Gln	Val	Tyr	Ile	Leu 360	Pro	Pro	Pro	Ala	Glu 365	Gln	Leu	Ser
Arg	Lys 370	Asp	Val	Ser	Leu	Thr 375	Cys	Leu	Val	Val	Gly 380	Phe	Asn	Pro	Gly
Asp 385	Ile	Ser	Val	Glu	Trp 390	Thr	Ser	Asn	Gly	His 395	Thr	Glu	Glu	Asn	Tyr 400
Lys	Asp	Thr	Ala	Pro 405	Val	Leu	Asp	Ser	Asp 410	Gly	Ser	Tyr	Phe	Ile 415	Tyr
Ser	Lys	Leu	Asn 420	Met	Lys	Thr	Ser	Lys 425	Trp	Glu	Lys	Thr	Asp 430	Ser	Phe
Ser	Cys	Asn 435	Val	Arg	His	Glu	Gly 440	Leu	Lys	Asn	Tyr	Tyr 445	Leu	Lys	Lys
Thr	Ile 450	Ser	Arg	Ser	Pro	Gly 455	Lys								

<210> 117

<211>642

5 <212> ADN

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

gacatccaga	tgactcagtc	tccagcctcc	ctatctgcat	ctgtgggaga	aactgtcacc	60
atcacatgtc	gagcaagtgg	gaatattcac	aattatttag	catggtatca	gcagaaacag	120
ggaaaatctc	ctcagctcct	ggtctataat	gcaaaaacct	tagcagatgg	tgtgccatca	180
aggttcagtg	gcagtggatc	aggaacacaa	tattctctca	agatcaacag	cctgcagcct	240
gaagattttg	ggagttatta	ctgtcaacat	ttttggagtt	ctccttacac	gttcggaggg	300
gggaccaagc	tggaaataaa	acgggctgat	gctgcaccaa	ctgtatccat	cttcccacca	360
tccagtgagc	agttaacatc	tggaggtgcc	tcagtcgtgt	gcttcttgaa	caacttctac	420
cccaaagaca	tcaatgtcaa	gtggaagatt	gatggcagtg	aacgacaaaa	tggcgtcctg	480
aacagttgga	ctgatcagga	cagcaaagac	agcacctaca	gcatgagcag	caccctcacg	540
ttgaccaagg	acgagtatga	acgacataac	agctatacct	gtgaggccac	tcacaagaca	600
tcaacttcac	ccattgtcaa	gagcttcaac	aggaatgagt	gt		642

<210> 118

<211> 214 <212> PRT 5

<213> Secuencia artificial

<220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético" 10

Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Ala Ser Val Gly 10 Glu Thr Val Thr Ile Thr Cys Arg Ala Ser Gly Asn Ile His Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro Gln Leu Leu Val Tyr Asn Ala Lys Thr Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Gln Tyr Ser Leu Lys Ile Asn Ser Leu Gln Pro 75 Glu Asp Phe Gly Ser Tyr Tyr Cys Gln His Phe Trp Ser Ser Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Ala Asp Ala Ala 105 Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile 130 135 Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu 145 Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys 210

<210> 119

<211> 1329

<212> ADN

5

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 119

caggttactc	tgaaagagtc	tggccctgga	atattgcagc	cctcccagac	cctcagtctg	60
acttgttctt	tctctgggtt	ttcactgagc	acttatggta	tgggtgtagg	ctggattcgt	120
cagccttcag	gaaagggtct	agagtggctg	gcagacattt	ggtgggatga	cgataagtac	180
tataacccat	ccctgaagag	ccggctcaca	atctccaagg	atacctccag	caatgaggta	240
ttcctcaaga	tcgccattgt	ggacactgca	gatactgcca	cttactactg	tgctcgaaga	300
ggtcactact	ctgctatgga	ctactggggt	caaggaacct	cagtcaccgt	ctcctcagcc	360
aaaacgacac	ccccatctgt	ctatccactg	gcccctggat	ctgctgccca	aactaactcc	420
atggtgaccc	tgggatgcct	ggtcaagggc	tatttccctg	agccagtgac	agtgacctgg	480
aactctggat	ccctgtccag	cggtgtgcac	accttcccag	ctgtcctgca	gtctgacctc	540
tacactctga	gcagctcagt	gactgtcccc	tccagcacct	ggcccagcga	gaccgtcacc	600
tgcaacgttg	cccacccggc	cagcagcacc	aaggtggaca	agaaaattgt	gcccagggat	660
tgtggttgta	agccttgcat	atgtacagtc	ccagaagtat	catctgtctt	catcttcccc	720
ccaaagccca	aggatgtgct	caccattact	ctgactccta	aggtcacgtg	tgttgtggta	780
gacatcagca	aggatgatcc	cgaggtccag	ttcagctggt	ttgtagatga	tgtggaggtg	840
cacacagctc	agacgcaacc	ccgggaggag	cagttcaaca	gcactttccg	ctcagtcagt	900
gaacttccca	tcatgcacca	ggactggctc	aatggcaagg	agttcaaatg	cagggtcaac	960
agtgcagctt	tccctgcccc	catcgagaaa	accatctcca	aaaccaaagg	cagaccgaag	1020
gctccacagg	tgtacaccat	tccacctccc	aaggagcaga	tggccaagga	taaagtcagt	1080
ctgacctgca	tgataacaga	cttcttccct	gaagacatta	ctgtggagtg	gcagtggaat	1140
gggcagccag	cggagaacta	caagaacact	cagcccatca	tggacacaga	tggctcttac	1200
ttcgtctaca	gcaagctcaa	tgtgcagaag	agcaactggg	aggcaggaaa	tactttcacc	1260
tgctctgtgt	tacatgaggg	cctgcacaac	caccatactg	agaagagcct	ctcccactct	1320
cctggtaaa						1329

5

<210> 120

<211> 443 <212> PRT

<213> Secuencia artificial

10

<220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Gln 1	Val	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Ile	Leu	Gln	Pro	Ser 15	Glr
Thr	Leu	Ser	Leu 20	Thr	Cys	Ser	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Туг
Gly	Met	Gly 35	Val	Gly	Trp	Ile	Arg 40	Gln	Pro	Ser	Gly	Lys 45	Gly	Leu	Glu
Trp	Leu 50	Ala	Asp	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Ser	Asn	Glu	Val 80
Phe	Leu	Lys	Ile	Ala 85	Ile	Val	Asp	Thr	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
Cys	Ala	Arg	Arg 100	Gly	His	Tyr	Ser	Ala 105	Met	Asp	Tyr	Trp	Gly 110	Gln	Gly
Thr	Ser	Val 115	Thr	Val	Ser	Ser	Ala 120	Lys	Thr	Thr	Pro	Pro 125	Ser	Val	Tyr
Pro	Leu 130	Ala	Pro	Gly	Ser	Ala 135	Ala	Gln	Thr	Asn	Ser 140	Met	Val	Thr	Leu
Gly 145	Cys	Leu	Val	Lys	Gly 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Thr	Trp
Acn	802	G1 **	805	T 011	802	802	G1 **	17a 1	uic	Thr	Dho	Drc	7.1.5	17 a 1	T 01

				165					170					175	
Gln	Ser	Asp	Leu 180	Tyr	Thr	Leu	Ser	Ser 185	Ser	Val	Thr	Val	Pro 190	Ser	Ser
Thr	Trp	Pro 195	Ser	Glu	Thr	Val	Thr 200	Cys	Asn	Val	Ala	His 205	Pro	Ala	Ser
Ser	Thr 210	Lys	Val	Asp	Lys	Lys 215	Ile	Val	Pro	Arg	Asp 220	Cys	Gly	Cys	Lys
Pro 225	Cys	Ile	Cys	Thr	Val 230	Pro	Glu	Val	Ser	Ser 235	Val	Phe	Ile	Phe	Pro 240
Pro	Lys	Pro	Lys	Asp 245	Val	Leu	Thr	Ile	Thr 250	Leu	Thr	Pro	Lys	Val 255	Thr
Cys	Val	Val	Val 260	Asp	Ile	Ser	Lys	Asp 265	Asp	Pro	Glu	Val	Gln 270	Phe	Ser
Trp	Phe	Val 275	Asp	Asp	Val	Glu	Val 280	His	Thr	Ala	Gln	Thr 285	Gln	Pro	Arg
Glu	Glu 290	Gln	Phe	Asn	Ser	Thr 295	Phe	Arg	Ser	Val	Ser 300	Glu	Leu	Pro	Ile
Met 305	His	Gln	Asp	Trp	Leu 310	Asn	Gly	Lys	Glu	Phe 315	Lys	Cys	Arg	Val	Asn 320
Ser	Ala	Ala	Phe	Pro 325	Ala	Pro	Ile	Glu	Lys 330	Thr	Ile	Ser	Lys	Thr 335	Lys
Gly	Arg	Pro	Lys 340	Ala	Pro	Gln	Val	Tyr 345	Thr	Ile	Pro	Pro	Pro 350	Lys	Glu
Gln	Met	Ala 355	Lys	Asp	Lys	Val	Ser 360	Leu	Thr	Cys	Met	Ile 365	Thr	Asp	Phe
Phe	Pro 370	Glu	Asp	Ile	Thr	Val 375	Glu	Trp	Gln	Trp	Asn 380	Gly	Gln	Pro	Ala
Glu 385	Asn	Tyr	Lys	Asn	Thr 390	Gln	Pro	Ile	Met	Asp 395	Thr	Asp	Gly	Ser	Tyr 400
Phe	Val	Tyr	Ser	Lys	Leu	Asn	Val	Gln	Lys	Ser	Asn	Trp	Glu	Ala 415	Gly

Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His His 420 425 430

Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys 435 440

5	<210> 121 <211> 642 <212> ADN <213> Secuence	sia artificial					
10	<220> <221> fuente <223> /nota="D	escripción de la	secuencia artifici	al: polinucleótido	sintético"		
	<400> 121						
	gacattgtaa	tgacccagtc	tcaaaaattc	atgtccacat	cagtaggaga	cagggtcagc	60
	gtcacctgca	aggccagtca	gaatgtgggt	actaatgtag	cctggtatca	acagaaacca	120
	gggcaatctc	ctaaagcact	gatttactcg	ccatcctacc	ggtacagtgg	agtccctgat	180
	cgcttcacag	gcagtggatc	tgggacagat	ttcactctca	ccatcagcaa	tgtgcagtct	240
	gaagacttgg	cagaatattt	ctgtcagcaa	tataacagct	atcctcacac	gttcggaggg	300
	gggaccaagc	tggaaatgaa	acgggctgat	gctgcaccaa	ctgtatccat	cttcccacca	360
	tccagtgagc	agttaacatc	tggaggtgcc	tcagtcgtgt	gcttcttgaa	caacttctac	420
	cccaaagaca	tcaatgtcaa	gtggaagatt	gatggcagtg	aacgacaaaa	tggcgtcctg	480
	aacagttgga	ctgatcagga	cagcaaagac	agcacctaca	gcatgagcag	caccctcacg	540
	ttgaccaagg	acgagtatga	acgacataac	agctatacct	gtgaggccac	tcacaagaca	600
	tcaacttcac	ccattgtcaa	gagcttcaac	aggaatgagt	gt		642
15 20	<210> 122 <211> 214 <212> PRT <213> Secuence	sia artificial					
2 U	<220> <221> fuente						

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Asp Ile Val Met Thr Gln Ser Gln Lys Phe Met Ser Thr Ser Val Gly
1 10 15

Asp Arg Val Ser Val Thr Cys Lys Ala Ser Gln Asn Val Gly Thr Asn 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Ala Leu Ile 35 40 45

Tyr Ser Pro Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Thr Gly 50 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Val Gln Ser 65 70 75 80

Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln Tyr Asn Ser Tyr Pro His 85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Met Lys Arg Ala Asp Ala Ala 100 105 110

Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly 115 120 125

Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile 130 135 140

Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu 145 150 155 160

Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser 165 170 175

Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr 180 185 190

Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser 195 200 205

Phe Asn Arg Asn Glu Cys 210

<210> 123

<211> 1335

<212> ADN

<213> Secuencia artificial

<220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético" <400> 123

caggttactc	tgaaagagtc	tggccctggg	atattgcagc	cctcccagac	cctcagtctg	60
acttgttctt	tctctgggtt	ttcactgagc	acttctggta	tgggtgtgag	ttggattcgt	120
cagccttcag	gaaagggtct	ggagtggctg	gcacacaatg	actgggatga	tgacaagcgc	180
tataagtcat	ccctgaagag	ccggctcaca	atatccaagg	atacctccag	aaaccaggta	240
ttcctcaaga	tcaccagtgt	ggacactgca	gatactgcca	catactactg	tgctcgaaga	300
gttgggggat	tagagggcta	ttttgattac	tggggccaag	gcaccactct	cacagtctcc	360
tcagccaaaa	cgacaccccc	atctgtctat	ccactggccc	ctggatctgc	tgcccaaact	420
aactccatgg	tgaccctggg	atgcctggtc	aagggctatt	tccctgagcc	agtgacagtg	480
acctggaact	ctggatccct	gtccagcggt	gtgcacacct	tcccagctgt	cctgcagtct	540
gacctctaca	ctctgagcag	ctcagtgact	gtcccctcca	gcacctggcc	cagcgagacc	600
gtcacctgca	acgttgccca	cccggccagc	agcaccaagg	tggacaagaa	aattgtgccc	660
agggattgtg	gttgtaagcc	ttgcatatgt	acagtcccag	aagtatcatc	tgtcttcatc	720
ttccccccaa	agcccaagga	tgtgctcacc	attactctga	ctcctaaggt	cacgtgtgtt	780
gtggtagaca	tcagcaagga	tgatcccgag	gtccagttca	gctggtttgt	agatgatgtg	840
gaggtgcaca	cagctcagac	gcaaccccgg	gaggagcagt	tcaacagcac	tttccgctca	900
gtcagtgaac	ttcccatcat	gcaccaggac	tggctcaatg	gcaaggagtt	caaatgcagg	960
gtcaacagtg	cagctttccc	tgcccccatc	gagaaaacca	tctccaaaac	caaaggcaga	1020
ccgaaggctc	cacaggtgta	caccattcca	cctcccaagg	agcagatggc	caaggataaa	1080
gtcagtctga	cctgcatgat	aacagacttc	ttccctgaag	acattactgt	ggagtggcag	1140
tggaatgggc	agccagcgga	gaactacaag	aacactcagc	ccatcatgga	cacagatggc	1200
tcttacttcg	tctacagcaa	gctcaatgtg	cagaagagca	actgggaggc	aggaaatact	1260
ttcacctgct	ctgtgttaca	tgagggcctg	cacaaccacc	atactgagaa	gagcctctcc	1320
cactctcctg	gtaaa					1335

5

<210> 124 <211> 445

<212> PRT

10 <213> Secuencia artificial

<220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

15

Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Gln Pro Ser Gln 1 5 10 15

Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser Thr Ser 20 25 30

Gly Met Gly Val Ser Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu 35 40 45

Trp	Leu 50	Ala	His	Asn	Asp	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Lys	Ser	Ser
Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Arg	Asn	Gln	Val 80
Phe	Leu	Lys	Ile	Thr 85	Ser	Val	Asp	Thr	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
Cys	Ala	Arg	Arg 100	Val	Gly	Gly	Leu	Glu 105	Gly	Tyr	Phe	Asp	Туг 110	Trp	Gly
Gln	Gly	Thr 115	Thr	Leu	Thr	Val	Ser 120	Ser	Ala	Lys	Thr	Thr 125	Pro	Pro	Ser
Val	Tyr 130	Pro	Leu	Ala	Pro	Gly 135	Ser	Ala	Ala	Gln	Thr 140	Asn	Ser	Met	Val
Thr 145	Leu	Gly	Cys	Leu	Val 150	Lys	Gly	Tyr	Phe	Pro 155	Glu	Pro	Val	Thr	Val 160
Thr	Trp	Asn	Ser	Gly 165	Ser	Leu	Ser	Ser	Gly 170	Val	His	Thr	Phe	Pro 175	Ala
Val	Leu	Gln	Ser 180	Asp	Leu	Tyr	Thr	Leu 185	Ser	Ser	Ser	Val	Thr 190	Val	Pro
Ser	Ser	Thr 195	Trp	Pro	Ser	Glu	Thr 200	Val	Thr	Cys	Asn	Val 205	Ala	His	Pro
Ala	Ser 210	Ser	Thr	Lys	Val	Asp 215	Lys	Lys	Ile	Val	Pro 220	Arg	Asp	Cys	Gly
Cys 225	Lys	Pro	Cys	Ile	Cys 230	Thr	Val	Pro	Glu	Val 235	Ser	Ser	Val	Phe	Ile 240
Phe	Pro	Pro	Lys	Pro 245	Lys	Asp	Val	Leu	Thr 250	Ile	Thr	Leu	Thr	Pro 255	Lys
Val	Thr	Cys	Val 260	Val	Val	Asp	Ile	Ser 265	Lys	Asp	Asp	Pro	Glu 270	Val	Gln
Phe	Ser	Trp 275	Phe	Val	Asp	Asp	Val 280	Glu	Val	His	Thr	Ala 285	Gln	Thr	Gln
Pro	Arg 290	Glu	Glu	Gln	Phe	Asn 295	Ser	Thr	Phe	Arg	Ser 300	Val	Ser	Glu	Leu

Pr 30	o Ile 5	Met	His	Gln	Asp 310	Trp	Leu	Asn	Gly	Lys 315	Glu	Phe	Lys	Cys	Arg 320	
Va	l Asn	Ser	Ala	Ala 325	Phe	Pro	Ala	Pro	Ile 330	Glu	Lys	Thr	Ile	Ser 335	Lys	
Th	r Lys	Gly	Arg 340	Pro	Lys	Ala	Pro	Gln 3 4 5	Val	Tyr	Thr	Ile	Pro 350	Pro	Pro	
Ly	s Glu	Gln 355	Met	Ala	Lys	Asp	Lys 360	Val	Ser	Leu	Thr	Cys 365	Met	Ile	Thr	
As	p Phe 370	Phe	Pro	Glu	Asp	Ile 375	Thr	Val	Glu	Trp	Gln 380	Trp	Asn	Gly	Gln	
Pr 38	o Ala 5	Glu	Asn	Tyr	Lys 390	Asn	Thr	Gln	Pro	Ile 395	Met	Asp	Thr	Asp	Gly 400	
Se	r Tyr	Phe	Val	Tyr 405	Ser	Lys	Leu	Asn	Val 410	Gln	Lys	Ser	Asn	Trp 415	Glu	
Al	a Gly	Asn	Thr 420	Phe	Thr	Cys	Ser	Val 425	Leu	His	Glu	Gly	Leu 430	His	Asn	
Hi	s His	Thr 435	Glu	Lys	Ser	Leu	Ser 440	His	Ser	Pro	Gly	Lys 445				
<210> 125 <211> 654 <212> ADN <213> Sec	١	artificia	ıl													
<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"																
<400> 125																
gacattgt	gc tg	acac	agtc	tcc	tgct	tcc	ttag	ctgt	at c	tctg	igggc	a ga	aggg	ccaco	2	60
atctcato	ca gg	gcca	gcca	aag	tgtc	agt	acat	ctag	gt t	tagt	tata	it go	cacto	gtto	3	120
caacagaa	ac ca	.ggac	aggc	acc	caaa	ctc	ctca	tcaa	.gt a	tgca	tcca	a co	etaga	atct		180
ggggtccc	tg co	aggt	tcag	tgg	cagt	ggg	tctg	ggac	ag a	ctto	acco	t ca	acat	ccat	5	240
cctgtgga	.gg gg	gagg	atac	tgc	aaca	tat	tact	gtca	.gc a	cagt	tggg	ra ga	ttco	cgtac	2	300
acgttcgg																360
atcttccc	ac ca	tcca.	gtga	gca	gtta	aca	tctg	gagg	rtg c	ctca	igtco	rt gt	gctt	ctto	J	420

	aacaacttct	accccaaaga	catcaatgtc	aagtggaaga	ttgatggcag	tgaacgacaa	480				
	aatggcgtcc	tgaacagttg	gactgatcag	gacagcaaag	acagcaccta	cagcatgagc	540				
	agcaccctca	cgttgaccaa	ggacgagtat	gaacgacata	acagctatac	ctgtgaggcc	600				
	actcacaaga	catcaacttc	acccattgtc	aagagcttca	acaggaatga	gtgt	654				
	<210> 126 <211> 218 <212> PRT <213> Secuence	cia artificial									
<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"											
	<400> 126										

Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Gln Ser Val Ser Thr Ser Arg Phe Ser Tyr Met His Trp Phe Gln Gln Lys Pro Gly Gln Ala Pro Lys Leu Leu Ile Lys Tyr Ala Ser Asn Leu Glu Ser Gly Val Pro Ala 50 55 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Asn Ile His 70 75 Pro Val Glu Gly Glu Asp Thr Ala Thr Tyr Tyr Cys Gln His Ser Trp 90 Glu Ile Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg 100 105 Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln 120 Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr 130 Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln 145 150 160 Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr 165 Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg 180 185 His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro

<210> 127

<211> 360

<212> ADN

<213> Secuencia artificial

210

<220>

5

<221> fuente

Ile Val Lys Ser Phe Asn Arg Asn Glu Cys

215

	<223> /nota="[Descripción de la	secuencia artific	ial: polinucleótid	o sintético"		
	<400> 127						
	gaagtgttgt	tgcagcagtc	agggccggag	ttggtaaaac	cgggagcgtc	ggtgaaaatc	60
	ccgtgcaaag	cgtcggggta	tacgtttacg	gactataaca	tggattgggt	gaaacagtcg	120
	catgggaaat	cgcttgaatg	gattggtcag	atcaatccga	ataatggagg	aatcttcttt	180
	aatcagaagt	ttaaaggaaa	agcgacgctt	acagtcgata	agtcgtcgaa	cacggcgttc	240
	atggaagtac	ggtcgcttac	gtcggaagat	acggcggtct	attactgtgc	gagggaggcg	300
5	attacgacgg	tgggagcgat	ggactattgg	ggacaaggga	cgtcggtcac	ggtatcgtcg	360
10	<210> 128 <211> 7 <212> PRT <213> Secuen	cia artificial					
4.5	<220> <221> fuente <223> /nota="[Descripción de la	secuencia artific	ial: péptido sinté	tico"		
15	<400> 128						
			Gly Tyr Th 1	r Phe Thr S	Ger Tyr		
20	<210> 129 <211> 357 <212> ADN <213> Secuen	cia artificial					
25	<220> <221> fuente <223> /nota="[Descripción de la	secuencia artific	ial: polinucleótid	o sintético"		
30	<400> 129						
30	caggtgacac	tcaaagaatc	aggacccgga	atccttcagc	ccagccagac	cttgtcgctg	60
	acttgttcgt	tctccggttt	cagcctgaat	acttatggga	tgggtgtgtc	atggatcagg	120
	caaccgtccg	ggaaaggatt	ggagtggctc	gcgcacatct	actgggacga	tgacaaacgc	180
	tacaatcctt	cgctgaagag	ccgattgacg	atttccaagg	atgcctcgaa	caaccgggta	240
	tttcttaaga	tcacgtcggt	cgatacggca	gacacggcga	cctattactg	cgcccaaaga	300
	gggtacgatg	actattgggg	atattggggc	caggggacac	tcgtcacaat	ttcagct	357
35	<210> 130 <211> 9 <212> PRT <213> Secuen	cia artificial					
40	<220> <221> fuente <223> /nota="[Descripción de la	secuencia artific	ial: péptido sinté	tico"		

<400> 130 Gly Phe Ser Leu Ser Thr Tyr Gly Met 5 <210> 131 <211> 357 <212> ADN <213> Secuencia artificial 10 <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético" <400> 131 15 caggtcacgc tgaaagagtc aggtcccgga atccttcaac cttcgcagac attgtcactc 60 acatgttcct tctccgggtt ctcgctctcg acttatggca tgggtgtagg atggattcgg 120 cagcccagcg ggaaggggct tgagtggttg gcggatatct ggtgggacga cgacaaatac 180 240 tacaatccga gcctgaagtc ccgcctcacc atttcgaaag atacgtcatc aaacgaagtc 300 tttttgaaga tcgccatcgt ggacacggcg gatacagcga cgtattactg cgccagaagg 357 ggacactaca gcgcaatgga ttattgggga caggggacct cggtgactgt gtcgtcc <210> 132 <211>9 <212> PRT 20 <213> Secuencia artificial <220> <221> fuente 25 <223> /nota="Descripción de la secuencia artificial: péptido sintético" <400> 132 Gly Phe Ser Leu Asn Thr Tyr Gly Met 5 30 <210> 133 <211> 321 <212> ADN <213> Secuencia artificial 35 <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético" 40 <400> 133 gacatccaaa tgacccagtc acccgcgagc ctttcggcgt cggtcggaga aacggtcacg 60 atcacgtgcc ggacatcaga gaatctccat aactacctcg cgtggtatca acagaagcag 120 gggaagtcgc cccagttgct tgtatacgat gcgaaaacgt tggcggatgg ggtgccgtcc 180

agattctcgg gatcgggctc ggggacgcag tactcgctca agatcaattc gctgcagccg

gaggactttg ggtcgtacta ttgtcagcat ttttggtcat caccgtatac atttggaggt

ggaacgaaac ttgagattaa g

240

300

321

	<210> 134 <211> 9 <212> PRT	
5	<213> Secuencia artificial	
	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético"	
10	<400> 134	
	Gly Phe Ser Leu Ser Thr Ser Gly Met 1 5	
15	<210> 135 <211> 321 <212> ADN <213> Secuencia artificial	
20	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"	
25	<400> 135	
	gatatcgtca tgacccagtc ccagaagttc atgtcaactt cagtgggaga cagagtgtcc	60
	gtcacatgta aagcctcgca aaatgtggga accaacgtag cgtggttcca gcagaaacct	120
	ggccaatcac cgaaggcact gatctactcg gccagctata ggtactcggg agtaccagat	180
	cggtttacgg ggtcggggag cgggacggac tttatcctca ctatttccaa tgtccagtcg	240
	gaggacettg eggaataett etgeeageag tataacaaet ateceeteae gtttggtget	300
	ggtacaaaat tggagttgaa g	321
30	<210> 136 <211> 8 <212> PRT <213> Secuencia artificial	
35	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético"	
	<400> 136	
	Gly Tyr Thr Phe Thr Asp Tyr Asn 1 5	
40	<210> 137 <211> 321 <212> ADN <213> Secuencia artificial	
45	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"	

	<400> 137			
	gacatcgtga tgacacagtc acagaaattc atgtccacat ccgtcg	gtga	tagagtatc	c 60
	gtcacgtgta aggcctcgca aaacgtagga actaatgtgg cgtggt	atca	acagaagcc	a 120
	ggacagtcac ccaaagcact catctacagc ccctcatatc ggtaca	gcgg	ggtgccgga	c 180
	aggttcacgg gatcggggag cgggaccgat tttacactga ccattt	cgaa	tgtccagtc	g 240
	gaggaccttg cggaatactt ctgccagcag tataactcgt accctc	acac	gtttggagg	t 300
	ggcactaagt tggagatgaa a			321
5	<210> 138 <211> 8 <212> PRT <213> Secuencia artificial			
10	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético"			
15	<400> 138			
13	Gly Tyr Thr Phe Thr Ser Tyr T 1 5	ľrp		
20	<210> 139 <211> 5 <212> PRT <213> Secuencia artificial			
25	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético"			
	<400> 139			
	Gly Gly Gly Ser 1 5			
30 35	<210> 140 <211> 10 <212> PRT <213> Secuencia artificial			
,55	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético"			
10	<400> 140			
	Gly Phe Ser Leu Ser Thr Tyr Gly M 1 5		:1y .0	
1 5	<210> 141 <211> 10 <212> PRT <213> Secuencia artificial			
50	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético"			

```
<400> 141
                               Gly Phe Ser Leu Asn Thr Tyr Gly Met Gly
                                                                                10
                                                     5
 5
        <210> 142
        <211> 10
        <212> PRT
        <213> Secuencia artificial
        <220>
10
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 142
15
                               Gly Phe Ser Leu Ser Thr Ser Gly Met Gly
                                                                                10
        <210> 143
        <211>6
20
        <212> PRT
        <213> Secuencia artificial
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
25
        <400> 143
                                          Asn Pro Asn Asn Gly Gly
                                                                5
30
        <210> 144
        <211>6
        <212> PRT
        <213> Secuencia artificial
35
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
40
        <400> 144
                                          Asn Pro Ser Asn Gly Arg
                                                                5
        <210> 145
45
        <211>5
        <212> PRT
        <213> Secuencia artificial
        <220>
50
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 145
                                             Tyr Trp Asp Asp Asp
                                                                  5
55
        <210> 146
        <211>5
        <212> PRT
60
        <213> Secuencia artificial
```

```
<220>
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
 5
        <400> 146
                                             Trp Trp Asp Asp Asp
                                                                    5
         <210> 147
10
         <211>5
         <212> PRT
         <213> Secuencia artificial
        <220>
15
         <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
         <400> 147
                                             Asp Trp Asp Asp Asp
                                                                    5
20
         <210> 148
         <211>8
         <212> PRT
25
        <213> Secuencia artificial
         <220>
        <221> fuente
         <223> /nota="Descripción de la secuencia artificial: péptido sintético"
30
         <400> 148
                                     Ile Asn Pro Asn Asn Gly Gly Ile
                                                           5
35
        <210> 149
        <211>8
         <212> PRT
         <213> Secuencia artificial
40
        <220>
         <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
         <400> 149
45
                                     Ile Asn Pro Ser Asn Gly Arg Ser
         <210> 150
         <211>7
50
         <212> PRT
         <213> Secuencia artificial
         <220>
         <221> fuente
55
         <223> /nota="Descripción de la secuencia artificial: péptido sintético"
         <400> 150
                                        Ile Tyr Trp Asp Asp Asp Lys
                                                              5
60
         <210> 151
```

```
<211>8
        <212> PRT
        <213> Secuencia artificial
 5
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 151
10
                                     Ile Asn Pro Asn Asn Gly Gly Thr
        <210> 152
        <211>7
        <212> PRT
15
        <213> Secuencia artificial
        <220>
        <221> fuente
20
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 152
                                      Ile Trp Trp Asp Asp Asp Lys
                                                             5
25
        <210> 153
        <211>7
        <212> PRT
        <213> Secuencia artificial
30
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
35
        <400> 153
                                        Asn Asp Trp Asp Asp Asp Lys
                                                              5
        <210> 154
40
        <211> 13
        <212> PRT
        <213> Secuencia artificial
        <220>
45
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 154
                       Ala Arg Glu Ala Ile Thr Thr Val Gly Ala Met Asp Tyr
                       1
                                             5
                                                                         10
50
        <210> 155
        <211>11
        <212> PRT
55
        <213> Secuencia artificial
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
```

<400> 155 Ala Arg Glu Val Leu Asp Gly Ala Met Asp Tyr 5 5 <210> 156 <211>11 <212> PRT <213> Secuencia artificial 10 <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético" 15 <400> 156 Ala Gln Thr Gly Tyr Ser Asn Leu Phe Ala Tyr 5 <210> 157 20 <211>11 <212> PRT <213> Secuencia artificial <220> 25 <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético" <400> 157 Ala Gln Arg Gly Tyr Asp Asp Tyr Trp Gly Tyr 10 30 <210> 158 <211> 11 <212> PRT 35 <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético" 40 <400> 158 Ala Arg Arg Gly His Tyr Ser Ala Met Asp Tyr 5 45 <210> 159 <211>13 <212> PRT <213> Secuencia artificial <220> 50 <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético" <400> 159 55 Ala Arg Arg Val Gly Gly Leu Glu Gly Tyr Phe Asp Tyr 5 10 <210> 160 <211>6 <212> PRT 60

```
<213> Secuencia artificial
        <220>
        <221> fuente
 5
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 160
                                           Glu Asn Leu His Asn Tyr
                                                                5
10
        <210> 161
        <211>10
        <212> PRT
        <213> Secuencia artificial
15
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
20
        <400> 161
                                Glu Ser Val Asp Asn Tyr Gly Ile Ser Phe
                                                      5
                                                                                 10
        <210> 162
25
        <211>6
        <212> PRT
        <213> Secuencia artificial
        <220>
30
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 162
                                           Gln Asn Val Gly Thr Asn
35
        <210> 163
        <211>6
        <212> PRT
40
        <213> Secuencia artificial
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
45
        <400> 163
                                           Gly Asn Ile His Asn Tyr
                                           1
                                                                5
50
        <210> 164
        <211>10
        <212> PRT
        <213> Secuencia artificial
        <220>
55
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 164
60
                               Gln Ser Val Ser Thr Ser Arg Phe Ser Tyr
                                1
                                                      5
                                                                                 10
```

<210> 165 <211> 972 <212> ADN 5 <213> Mus sp.

<400> 165

60 gccaaaacga caccccatc tgtctatcca ctggcccctg gatctgctgc ccaaactaac 120 tccatggtga ccctgggatg cctggtcaag ggctatttcc ctgagccagt gacagtgacc 180 tggaactctg gatccctgtc cagcggtgtg cacaccttcc cagctgtcct gcagtctgac 240 ctctacactc tgagcagctc agtgactgtc ccctccagca cctggcccag cgagaccgtc 300 acctgcaacg ttgcccaccc ggccagcagc accaaggtgg acaagaaaat tgtgcccagg gattgtggtt gtaagccttg catatgtaca gtcccagaag tatcatctgt cttcatcttc 360 420 cccccaaagc ccaaggatgt gctcaccatt actctgactc ctaaggtcac gtgtgttgtg 480 gtagacatca gcaaggatga tcccgaggtc cagttcagct ggtttgtaga tgatgtggag gtgcacacag ctcagacgca accccgggag gagcagttca acagcacttt ccgctcagtc 540 600 agtgaacttc ccatcatgca ccaggactgg ctcaatggca aggagttcaa atgcagggtc aacagtgcag ctttccctgc ccccatcgag aaaaccatct ccaaaaccaa aggcagaccg 660 aaggetecae aggtgtacae cattecaeet eecaaggage agatggeeaa ggataaagte 720 agtctgacct gcatgataac agacttcttc cctgaagaca ttactgtgga gtggcagtgg 780 aatgggcagc cagcggagaa ctacaagaac actcagccca tcatggacac agatggctct 840 tacttcgtct acagcaagct caatgtgcag aagagcaact gggaggcagg aaatactttc 900 960 acctgctctg tgttacatga gggcctgcac aaccaccata ctgagaagag cctctcccac 972 tctcctggta aa

10

<210> 166

<211>324 <212> PRT

<213> Mus sp.

15

<400> 166

Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala

Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser

		35					40					45			
Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Asp 60	Leu	Tyr	Thr	Let
Ser 65	Ser	Ser	Val	Thr	Val 70	Pro	Ser	Ser	Thr	Trp 75	Pro	Ser	Glu	Thr	Va] 80
Thr	Cys	Asn	Val	A la 85	His	Pro	Ala	Ser	Ser 90	Thr	Lys	Val	Asp	Lys 95	Lys
Ile	Val	Pro	Arg 100	Asp	Cys	Gly	Cys	Lys 105	Pro	Cys	Ile	Cys	Thr 110	Val	Pro
Glu	Val	Ser 115	Ser	Val	Phe	Ile	Phe 120	Pro	Pro	Lys	Pro	Lys 125	Asp	Val	Let
Thr	Ile 130	Thr	Leu	Thr	Pro	Lys 135	Val	Thr	Cys	Val	Val 140	Val	Asp	Ile	Sei
Lys 145	Asp	Asp	Pro	Glu	Val 150	Gln	Phe	Ser	Trp	Phe 155	Val	Asp	Asp	Val	Glu 160
Val	His	Thr	Ala	Gln 165	Thr	Gln	Pro	Arg	Glu 170	Glu	Gln	Phe	Asn	Ser 175	Thi
Phe	Arg	Ser	Val 180	Ser	Glu	Leu	Pro	Ile 185	Met	His	Gln	Asp	Trp 190	Leu	Ası
Gly	Lys	Glu 195	Phe	Lys	Cys	Arg	Val 200	Asn	Ser	Ala	Ala	Phe 205	Pro	Ala	Pro
Ile	Glu 210	Lys	Thr	Ile	Ser	Lys 215	Thr	Lys	Gly	Arg	Pro 220	Lys	Ala	Pro	Glr
Val 225	Tyr	Thr	Ile	Pro	Pro 230	Pro	Lys	Glu	Gln	Met 235	Ala	Lys	Asp	Lys	Va]
Ser	Leu	Thr	Cys	Met 245	Ile	Thr	Asp	Phe	Phe 250	Pro	Glu	Asp	Ile	Thr 255	Val
Glu	Trp	Gln	Trp 260	Asn	Gly	Gln	Pro	Ala 265	Glu	Asn	Tyr	Lys	Asn 270	Thr	Glr
Pro	Ile	Met 275	Asp	Thr	Asp	Gly	Ser	Tyr	Phe	Val	Tyr	Ser	Lys	Leu	Asr

Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser Val 290 295 300

Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His 305 310 315 320

Ser Pro Gly Lys

<210> 167
<211> 1008
5 <212> ADN
<213> Mus sp.

<400> 167

60 gccaaaacaa caccccatc agtctatcca ctggcccctg ggtgtggaga tacaactggt tcctccgtga ctctgggatg cctggtcaag ggctacttcc ctgagtcagt gactgtgact 120 tggaactctg gatccctgtc cagcagtgtg cacaccttcc cagctctcct gcagtctgga 180 240 ctctacacta tgagcagctc agtgactgtc ccctccagca cctggccaag tcagaccgtc acctgcagcg ttgctcaccc agccagcagc accacggtgg acaaaaaaact tgagcccagc 300 gggcccattt caacaatcaa ccctqtcct ccatqcaagg agtqtcacaa atgcccagct 360 cctaacctcg agggtggacc atccgtcttc atcttccctc caaatatcaa ggatgtactc 420 atgatctccc tgacacccaa ggtcacgtgt gtggtggtgg atgtgagcga ggatgaccca 480 gacgtccaga tcagctggtt tgtgaacaac gtggaagtac acacagctca gacacaaacc 540 600 catagagagg attacaacag tactatccgg gtggtcagca ccctccccat ccagcaccag 660 gactggatga gtggcaagga gttcaaatgc aaggtcaaca acaaagacct cccatcaccc atcgagagaa ccatctcaaa aattaaaggg ctagtcagag ctccacaagt atacatcttg 720 780 ccgccaccag cagagcagtt gtccaggaaa gatgtcagtc tcacttgcct ggtcgtgggc ttcaaccctg gagacatcag tgtggagtgg accagcaatg ggcatacaga ggagaactac 840 aaggacaccg caccagtcct agactctgac ggttcttact tcatatatag caagctcaat 900 960 atgaaaacaa gcaagtggga gaaaacagat tccttctcat gcaacgtgag acacgagggt 1008 ctgaaaaatt actacctgaa gaagaccatc tcccggtctc cgggtaaa

10

15

<210> 168 <211> 336 <212> PRT <213> Mus *sp*.

<400> 168

Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Cys Gly 1 5 10 15

Asp	Thr	Thr	Gly 20	Ser	Ser	Val	Thr	Leu 25	Gly	Cys	Leu	Val	Lys 30	Gly	Tyr
Phe	Pro	Glu 35	Ser	Val	Thr	Val	Thr 40	Trp	Asn	Ser	Gly	Ser 45	Leu	Ser	Ser
Ser	Val 50	His	Thr	Phe	Pro	Ala 55	Leu	Leu	Gln	Ser	Gly 60	Leu	Tyr	Thr	Met
Ser 65	Ser	Ser	Val	Thr	Val 70	Pro	Ser	Ser	Thr	Trp 75	Pro	Ser	Gln	Thr	Val 80
Thr	Cys	Ser	Val	Ala 85	His	Pro	Ala	Ser	Ser 90	Thr	Thr	Val	Asp	Lys 95	Lys
Leu	Glu	Pro	Ser 100	Gly	Pro	Ile	Ser	Thr 105	Ile	Asn	Pro	Cys	Pro 110	Pro	Cys
Lys	Glu	Cys 115	His	Lys	Cys	Pro	Ala 120	Pro	Asn	Leu	Glu	Gly 125	Gly	Pro	Ser
Val	Phe 130	Ile	Phe	Pro	Pro	Asn 135	Ile	Lys	Asp	Val	Leu 140	Met	Ile	Ser	Leu
Thr 145	Pro	Lys	Val	Thr	Cys 150	Val	Val	Val	Asp	Val 155	Ser	Glu	Asp	Asp	Pro 160
Asp	Val	Gln	Ile	Ser 165	Trp	Phe	Val	Asn	Asn 170	Val	Glu	Val	His	Thr 175	Ala
Gln	Thr	Gln	Thr 180	His	Arg	Glu	_	Tyr 185	Asn	Ser	Thr	Ile	Arg 190	Val	Val
Ser	Thr	Leu 195	Pro	Ile	Gln	His	Gln 200	Asp	Trp	Met	Ser	Gly 205	Lys	Glu	Phe
Lys	Cys 210	Lys	Val	Asn	Asn	Lys 215	Asp	Leu	Pro	Ser	Pro 220	Ile	Glu	Arg	Thr
Ile 225	Ser	Lys	Ile	Lys	Gly 230	Leu	Val	Arg	Ala	Pro 235	Gln	Val	Tyr	Ile	Leu 240
Pro	Pro	Pro	Ala	Glu 245	Gln	Leu	Ser	Arg	Lys 250	Asp	Val	Ser	Leu	Thr 255	Cys
Leu	Val	Val	Gly 260	Phe	Asn	Pro	Gly	Asp 265	Ile	Ser	Val	Glu	Trp 270	Thr	Ser

	As	sn Gly	His 275	Thr	Glu	Glu	Asn	Tyr 280	Lys	Asp	Thr	Ala	Pro 285	Val	Leu	Asp	
	Se	er Asp 290	_	Ser	Tyr	Phe	Ile 295	Tyr	Ser	Lys	Leu	Asn 300	Met	Lys	Thr	Ser	
	L у 30	s Trp)5	Glu	Lys	Thr	Asp 310	Ser	Phe	Ser	Cys	Asn 315	Val	Arg	His	Glu	Gly 320	
	Le	eu Lys	Asn	Tyr	Tyr 325	Leu	Lys	Lys	Thr	Ile 330	Ser	Arg	Ser	Pro	Gly 335	Lys	
5	<210> 169 <211> 321 <212> ADI <213> Mus	N															
	<400> 169)															
	cgggctga	atg ct	gcac	caac	tgt	atcc	atc	ttcc	cacc	at c	cagt	gago	a gt	taac	atct		60
	ggaggtgd	cct ca	gtcg	tgtg	ctt	cttg	aac	aact	tcta	.cc c	caaa	.gaca	ıt ca	atgt	caag	Г	120
	tggaagat	ttg at	.ggca	gtga	acg	acaa	aat	ggcg	tcct	ga a	cagt	tgga	c to	gatca	ıggac	!	180
	agcaaaga	aca go	acct	acag	cat	gagc	agc	accc	tcac	gt t	gaco	aagg	ra co	gagta	itgaa	L	240
	cgacataa	aca go	tata	cctg	tga	ggcc	act	caca	agac	at c	aact	tcac	c ca	ttgt	caag	ī	300
10	agcttcaa	aca gg	aatg	agtg	t												321
15	<210> 170 <211> 107 <212> PR <213> Mus	, T															
	<400> 170)															

Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu 1 5 10 15

Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe 20 25 30

Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg 35 40 45

Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser 50 55 60

Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu 65 70 75 80

Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser

90 95

Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys 100 105

<210> 171

<211>990

<212> ADN

<213> Homo sapiens

gcctcaacaa	aaggaccaag	tgtgttccca	ctcgccccta	gcagcaagag	tacatccggg	60
ggcactgcag	cactcggctg	cctcgtcaag	gattattttc	cagagccagt	aaccgtgagc	120
tggaacagtg	gagcactcac	ttctggtgtc	catacttttc	ctgctgtcct	gcaaagctct	180
ggcctgtact	cactcagctc	cgtcgtgacc	gtgccatctt	catctctggg	cactcagacc	240
tacatctgta	atgtaaacca	caagcctagc	aatactaagg	tcgataagcg	ggtggaaccc	300
aagagctgcg	acaagactca	cacttgtccc	ccatgccctg	cccctgaact	tctgggcggt	360
cccagcgtct	ttttgttccc	accaaagcct	aaagatactc	tgatgataag	tagaacaccc	420
gaggtgacat	gtgttgttgt	agacgtttcc	cacgaggacc	cagaggttaa	gttcaactgg	480
tacgttgatg	gagtcgaagt	acataatgct	aagaccaagc	ctagagagga	gcagtataat	540
agtacatacc	gtgtagtcag	tgttctcaca	gtgctgcacc	aagactggct	caacggcaaa	600
gaatacaaat	gcaaagtgtc	caacaaagca	ctcccagccc	ctatcgagaa	gactattagt	660
aaggcaaagg	ggcagcctcg	tgaaccacag	gtgtacactc	tgccacccag	tagagaggaa	720
atgacaaaga	accaagtctc	attgacctgc	ctggtgaaag	gcttctaccc	cagcgacatc	780
gccgttgagt	gggagagtaa	cggtcagcct	gagaacaatt	acaagacaac	cccccagtg	840
ctggatagtg	acgggtcttt	ctttctgtac	agtaagctga	ctgtggacaa	gtcccgctgg	900
cagcagggta	acgtcttcag	ctgttccgtg	atgcacgagg	cattgcacaa	ccactacacc	960
cagaagtcac	tgagcctgag	cccagggaag				990

<210> 172

<211>330

<212> PRT

<213> Homo sapiens

<400> 172

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys 1 10 15

Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser

10

5

		35					40					45			
Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Sei
Leu 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thi
Tyr	Ile	Cys	Asn	Val 85	Asn	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
Arg	Val	Glu	Pro 100	Lys	Ser	Cys	Asp	Lys 105	Thr	His	Thr	Cys	Pro 110	Pro	Суя
Pro	Ala	Pro 115	Glu	Leu	Leu	Gly	Gly 120	Pro	Ser	Val	Phe	Leu 125	Phe	Pro	Pro
Lys	Pro 130	Lys	Asp	Thr	Leu	Met 135	Ile	Ser	Arg	Thr	Pro 140	Glu	Val	Thr	Суя
Val 145	Val	Val	Asp	Val	Ser 150	His	Glu	Asp	Pro	Glu 155	Val	Lys	Phe	Asn	Tr <u>r</u> 160
Tyr	Val	Asp	Gly	Val 165	Glu	Val	His	Asn	A la 170	Lys	Thr	Lys	Pro	Arg 175	Glu
Glu	Gln	Tyr	Asn 180	Ser	Thr	Tyr	Arg	Val 185	Val	Ser	Val	Leu	Thr 190	Val	Let
His	Gln	Asp 195	Trp	Leu	Asn	Gly	Lys 200	Glu	Tyr	Lys	Cys	Lys 205	Val	Ser	Asr
Lys	Ala 210	Leu	Pro	Ala	Pro	Ile 215	Glu	Lys	Thr	Ile	Ser 220	Lys	Ala	Lys	Gly
Gln 225	Pro	Arg	Glu	Pro	Gln 230	Val	Tyr	Thr	Leu	Pro 235	Pro	Ser	Arg	Glu	Glu 240
Met	Thr	Lys	Asn	Gln 245	Val	Ser	Leu	Thr	Cys 250	Leu	Val	Lys	Gly	Phe 255	Туі
Pro	Ser	Asp	Ile 260	Ala	Val	Glu	Trp	Glu 265	Ser	Asn	Gly	Gln	Pro 270	Glu	Ası
Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val 280	Leu	Asp	Ser	Asp	Gly 285	Ser	Phe	Phe

	Leu	1 Tyi 29(r Ser	Lys	Leu	Thr	Val 295	Asp	Lys	Ser	Arg	Trp 300	Gln	Gln	Gly	Asn	
	Val 305		e Ser	Cys	Ser	Val 310	Met	His	Glu	Ala	Leu 315	His	Asn	His	Tyr	Thr 320	
	Gln	Lys	s Ser	Leu	Ser 325	Leu	Ser	Pro	Gly	Lys 330							
5	<210> 173 <211> 321 <212> ADI <213> <i>Hor</i> <400> 173	N mo sa	piens														
	cgcacagt	tg c	tgcco	ccag	cgt	gtto	att	ttcc	cacc	ta g	cgat	gagc	a gc	tgaa	aagc		60
	ggtactgc	ct c	tgtc	gtatg	ctt	gata	aac	aact	ttta	cc c	acgt	gagg	c ta	aggt	gcag		120
	tggaaagt	gg a	ıtaatç	gcact	tca	atct	gga	aaca	gtca	ag a	.gtcc	gtga	c ag	aaca	ggac		180
	agcaaaga	ct c	aactt	atto	act	ctct	tcc	accc	tgac	tc t	gtcc	aagg	c ag	acta [.]	tgaa		240
	aaacacaa	gg t	ataco	gcctg	cga	.ggtt	aca	cacc	aggg	tt t	gtct	agtc	c tg	tcac	caag		300
10	tccttcaa	ta g	ıgggc	gaatg	t												321
15	<210> 174 <211> 107 <212> PR <213> Hor	, T	piens														
	<400> 174		, -														

Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 1 5 10 15

Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 20 25 30

Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln 35 40 45

Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser 50 60

Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu 65 70 75 80

Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser 85 90 95

Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 100 105

<210> 175

<211> 1350

5 <212> ADN

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

```
gaagtgttgt tgcagcagtc agggccggag ttggtaaaac cgggagcgtc ggtgaaaatc
                                                                        60
                                                                       120
ccgtgcaaag cgtcggggta tacgtttacg gactataaca tggattgggt gaaacagtcg
                                                                       180
catgggaaat cgcttgaatg gattggtcag atcaatccga ataatggagg aatcttcttt
                                                                       240
aatcagaagt ttaaaggaaa agcgacgctt acagtcgata agtcgtcgaa cacggcgttc
                                                                       300
atggaagtac ggtcgcttac gtcggaagat acggcggtct attactgtgc gagggaggcg
attacgacgg tgggagcgat ggactattgg ggacaaggga cgtcggtcac ggtatcgtcg
                                                                       360
gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
                                                                       420
                                                                       480
ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
                                                                       540
tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
                                                                       600
ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
tacatctqta atqtaaacca caaqcctaqc aatactaaqq tcqataaqcq qqtqqaaccc
                                                                       660
                                                                       720
aagagctgcg acaagactca cacttgtccc ccatgccctg cccctgaact tctgggcggt
cccaqcqtct ttttqttccc accaaaqcct aaaqatactc tqatqataaq taqaacaccc
                                                                       780
                                                                       840
gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
                                                                       900
tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
                                                                       960
agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
                                                                      1020
aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
                                                                      1080
                                                                      1140
atgacaaaga accaagtete attgacetge etggtgaaag gettetacee eagegacate
gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
                                                                      1200
                                                                      1260
ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
                                                                      1320
                                                                      1350
cagaagtcac tgagcctgag cccagggaag
```

<210> 176

<211> 450

<212> PRT

<213> Secuencia artificial

<220>

5

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Glu 1	Val	Leu	Leu	Gln 5	Gln	Ser	Gly	Pro	Glu 10	Leu	Val	Lys	Pro	Gly 15	Ala
Ser	Val	Lys	Ile 20	Pro	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr
Asn	Met	Asp 35	Trp	Val	Lys	Gln	Ser 40	His	Gly	Lys	Ser	Leu 45	Glu	Trp	Ile
Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
Lys 65	Gly	Lys	Ala	Thr	Leu 70	Thr	Val	Asp	Lys	Ser 75	Ser	Asn	Thr	Ala	Phe 80
Met	Glu	Val	Arg	Ser 85	Leu	Thr	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Ser 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Arg	Val	Glu	Pro 220	Lys	Ser	Cys	Asp

Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 250 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 280 Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 305 310 315 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 345 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 385 390 395 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 440

<210> 177

<211> 1350 <212> ADN

Gly Lys 450

5

<213> Secuencia artificial

<220>

5

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 177

caagtgcaac ttgtgcagtc	gggtgcggaa	gtcaaaaagc	cgggagcgtc	ggtgaaagta	60
tcgtgtaaag cgtcgggata	tacgtttacg	gactataaca	tggactgggt	acgacaggca	120
ccggggaaat cgttggaatg	gatcggacag	attaatccga	acaatggggg	aattttcttt	180
aatcagaaat tcaaaggacg	ggcgacgttg	acggtcgata	catcgacgaa	tacggcgtat	240
atggaattga ggtcgcttcg	ctcggacgat	acggcggtct	attactgcgc	cagggaggcg	300
atcacgacgg taggggcgat	ggattattgg	ggacagggga	cgcttgtgac	ggtatcgtcg	360
gcctcaacaa aaggaccaag	tgtgttccca	ctcgccccta	gcagcaagag	tacatccggg	420
ggcactgcag cactcggctg	cctcgtcaag	gattatttc	cagagccagt	aaccgtgagc	480
tggaacagtg gagcactcac	ttctggtgtc	catacttttc	ctgctgtcct	gcaaagctct	540
ggcctgtact cactcagctc	cgtcgtgacc	gtgccatctt	catctctggg	cactcagacc	600
tacatctgta atgtaaacca	caagcctagc	aatactaagg	tcgataagcg	ggtggaaccc	660
aagagctgcg acaagactca	cacttgtccc	ccatgccctg	cccctgaact	tctgggcggt	720
cccagcgtct ttttgttccc	accaaagcct	aaagatactc	tgatgataag	tagaacaccc	780
gaggtgacat gtgttgttgt	agacgtttcc	cacgaggacc	cagaggttaa	gttcaactgg	840
tacgttgatg gagtcgaagt	acataatgct	aagaccaagc	ctagagagga	gcagtataat	900
agtacatacc gtgtagtcag	tgttctcaca	gtgctgcacc	aagactggct	caacggcaaa	960
gaatacaaat gcaaagtgtc	caacaaagca	ctcccagccc	ctatcgagaa	gactattagt	1020
aaggcaaagg ggcagcctcg	tgaaccacag	gtgtacactc	tgccacccag	tagagaggaa	1080
atgacaaaga accaagtctc	attgacctgc	ctggtgaaag	gcttctaccc	cagcgacatc	1140
gccgttgagt gggagagtaa	cggtcagcct	gagaacaatt	acaagacaac	cccccagtg	1200
ctggatagtg acgggtcttt	ctttctgtac	agtaagctga	ctgtggacaa	gtcccgctgg	1260
cagcagggta acgtcttcag	ctgttccgtg	atgcacgagg	cattgcacaa	ccactacacc	1320
cagaagtcac tgagcctgag	cccagggaag				1350

10

<210> 178

<211> 450 <212> PRT

<213> Secuencia artificial

15

<220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

-1	0	n	· -	1 -	78
<4	U	u	-	Ι,	<i>i</i> o

Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Туг
Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Ser	Leu 45	Glu	Trp	Ile
Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Ph€
Lys 65	Gly	Arg	Ala	Thr	Leu 70	Thr	Val	Asp	Thr	Ser 75	Thr	Asn	Thr	Ala	Ту1 80
Met	Glu	Leu	Arg	Ser 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Суз
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Glr
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Arg	Val	Glu	Pro 220	Lys	Ser	Cys	Asp
Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gl <u>y</u> 240

Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 250 Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 305 310 315 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 345 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 360 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440

Gly Lys 450

<210> 179 <211> 1350 5 <212> ADN <213> Secuencia artificial

> <220> <221> fuente

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 179

caagtccagc ttgtccagtc gggagcggaa gtgaagaaac cggggtcgtc ggtcaaagta 60 120 tcgtgtaaag cgtcgggata tacgtttacg gactataaca tggattgggt acgacaggct 180 ccgggaaaat cattggaatg gattggacag attaatccga ataatggggg tatcttcttt aatcaaaagt ttaaagggag ggcgacgttg acggtggaca aatcgacaaa tacggcgtat 240 300 atggaattgt cgtcgcttcg gtcggaggac acggcggtgt attactgcgc gagggaggcg atcacgacgg tcggggcgat ggattattgg ggacagggaa cgcttgtgac ggtatcgtcg 360 gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg 420 480 ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct 540 600 ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc 660 aagagctgcg acaagactca cacttgtccc ccatgccctg cccctgaact tctgggcggt 720 780 cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg 840 900 tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa 960 gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt 1020 1080 aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa 1140 atgacaaaga accaagtctc attgacctgc ctggtgaaag gcttctaccc cagcgacatc gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg 1200 ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg 1260 1320 cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc cagaagtcac tgagcctgag cccagggaag 1350

<210> 180

5

<211> 450

<212> PRT

10 <213> Secuencia artificial

<220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr
Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Ser	Leu 45	Glu	Trp	Ile
Gly	Gln 50	Ile	Asn	Pro	Asn	As n 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
Lys 65	Gly	Arg	Ala	Thr	Leu 70	Thr	Val	Asp	Lys	Ser 75	Thr	Asn	Thr	Ala	Tyr 80
Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Arg	Val	Glu	Pro 220	Lys	Ser	Cys	Asp
Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gly 240
Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met 255	Ile

Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 385 395 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 Gly Lys 450 <210> 181 <211> 1350 <212> ADN <213> Secuencia artificial

<220>

5

10

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

```
caggtccagc ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc
                                                                        60
tcgtgcaaag cgtcggggta tacgtttacg gactataaca tggactgggt gcgccaagcg
                                                                       120
                                                                       180
cctggacagg gtcttgaatg gatggggcag attaatccga ataatggagg gatcttcttt
                                                                       240
aatcagaaat tcaaaggaag ggtaacgctg acgacagaca cgtcaacatc gacggcctat
                                                                       300
atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg
attacgacgg tgggagcgat ggattattgg ggacagggga cgttggtaac ggtatcgtcg
                                                                       360
gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
                                                                       420
                                                                       480
ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
                                                                       540
tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
                                                                       600
ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
tacatctqta atqtaaacca caaqcctaqc aatactaaqq tcqataaqcq qqtqqaaccc
                                                                       660
aaqaqctqcq acaaqactca cacttqtccc ccatqccctq cccctqaact tctqqqcqqt
                                                                       720
cccaqcqtct ttttqttccc accaaaqcct aaaqatactc tqatqataaq taqaacaccc
                                                                       780
                                                                       840
gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
                                                                       900
tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
                                                                       960
agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
                                                                      1020
aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
                                                                      1080
                                                                      1140
atgacaaaga accaagtete attgacetge etggtgaaag gettetacee eagegacate
gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
                                                                      1200
                                                                      1260
ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
                                                                      1320
                                                                      1350
cagaagtcac tgagcctgag cccagggaag
```

```
<210> 182
```

```
Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala
1 5 10 15
```

15

5

10

<211> 450

<212> PRT

<213> Secuencia artificial

<220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 182

Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr
Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
Lys 65	Gly	Arg	Val	Thr	Leu 70	Thr	Thr	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met	Glu	Leu	Arg	Ser 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln		Ser 180	_	Leu	Tyr		Leu 185		Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Arg	Val	Glu	Pro 220	Lys	Ser	Cys	Asp
Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gly 240
Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	His	Glu

Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 295 Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 305 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445 Gly Lys 450

<210> 183

<211> 1350

<212> ADN

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

```
caggtccagc ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc
                                                                        60
tcgtgcaaag cgtcggggta tacgtttacg gactataaca tggactgggt gcgccaagcg
                                                                       120
                                                                       180
cctggacaga gccttgaatg gatggggcag attaatccga ataatggagg gatcttcttt
aatcagaaat tccagggaag ggtaacgctg acgacagaca cgtcaacatc gacggcctat
                                                                       240
atggaattqc qqtcqttqcq atcaqatqat acqqcqqtct actattqtqc qaqqqqqq
                                                                       300
                                                                       360
attacgacgg tgggagcgat ggattattgg ggacagggga cgttggtaac ggtatcgtcg
                                                                       420
gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
                                                                       480
ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
                                                                       540
ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
                                                                       600
tacatctqta atqtaaacca caaqcctaqc aatactaaqq tcqataaqcq qqtqqaaccc
                                                                       660
                                                                       720
aagagctgcg acaagactca cacttgtccc ccatgccctg cccctgaact tctgggcggt
                                                                       780
cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
                                                                       840
gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
                                                                       900
                                                                       960
agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
                                                                      1020
qaatacaaat qcaaaqtqtc caacaaaqca ctcccaqccc ctatcqaqaa qactattaqt
aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
                                                                      1080
atgacaaaga accaagtete attgacetge etggtgaaag gettetacee eagegacate
                                                                      1140
                                                                      1200
gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac ccccccagtg
                                                                      1260
ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
                                                                      1320
cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
                                                                      1350
cagaagtcac tgagcctgag cccagggaag
```

<210> 184

<211> 450

<212> PRT

<213> Secuencia artificial

<220>

5

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30

Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Ser	Leu 45	Glu	Trp	Met
Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
Gln 65	Gly	Arg	Val	Thr	Leu 70	Thr	Thr	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met	Glu	Leu	Arg	Ser 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Arg	Val	Glu	Pro 220	Lys	Ser	Cys	Asp
Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gly 240
Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	His	Glu
Asp	Pro	Glu 275	Val	Lys	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His

Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 310 315 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 330 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 395 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445 Gly Lys 450

<210> 185

<210> 105

<212> ADN

<213> Secuencia artificial

<220>

5

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

```
caggtccagc ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc
                                                                        60
                                                                       120
tcgtgcaaag cgtcggggta tacgtttacg gactataaca tggactgggt gcgccaagcg
                                                                       180
cctggacagg gtcttgaatg gatggggcag attaatccga ataatggagg gatcttcttt
aatcagaaat tccagggaag ggtaacgctg acgacagaca cgtcaacatc gacggcctat
                                                                       240
                                                                       300
atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg
                                                                       360
attacgacgg tgggagcgat ggattattgg ggacagggga cgttggtaac ggtatcgtcg
gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
                                                                       420
                                                                       480
ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
                                                                       540
                                                                       600
ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
                                                                       660
aagagetgeg acaagactea caettgteee ceatgeeetg eeeetgaaet tetgggeggt
                                                                       720
cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
                                                                       780
gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
                                                                       840
                                                                       900
tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
                                                                       960
gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
                                                                      1020
                                                                      1080
aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagagaa
atgacaaaga accaagtete attgacetge etggtgaaag gettetaece eagegacate
                                                                      1140
gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
                                                                      1200
ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
                                                                      1260
cagcagggta acqtcttcag ctqttccqtq atqcacqagq cattqcacaa ccactacacc
                                                                      1320
                                                                      1350
cagaagtcac tgagcctgag cccagggaag
```

```
<210> 186
```

<211> 450

<212> PRT

<213> Secuencia artificial

<220>

<221> fuente

^{10 &}lt;223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 186

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30

Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Gl	n Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
Gln Gl	y Arg	Val	Thr	Leu 70	Thr	Thr	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met Gl	u Leu	Arg	Ser 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala Ar	g Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly Th	r Leu 115		Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe Pr		Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu Gl 145	y Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp As	n Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu Gl	n Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser Se	r Ser 195		Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro Se 21		Thr	Lys		Asp 215	Lys	Arg	Val		Pro 220	Lys	Ser	Cys	Asp
Lys Th 225	r His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gly 240
Pro Se	r Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
Ser Ar	g Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	His	Glu
Asp Pr	o Glu 275		Lys	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
Asn Al 29	_	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	Asn 300	Ser	Thr	Tyr	Arg

Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 375 370 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 385 390 395 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 450

<210> 187

<211> 1350

<212> ADN

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 187

caagtacagc ttgtacagtc	gggagcggaa	gtcaagaaac	cgggatcgtc	ggtcaaagtg	60
tcgtgtaaag cgtcgggata	tacgtttagc	gactataaca	tggattgggt	gcgacaagcg	120
cctgggcagg gacttgaatg	gatgggtcag	atcaatccga	ataatggggg	aatcttttc	180
aatcagaagt ttaaagggag	ggtaacgctg	acggcggata	aaagcacgtc	aacggcgtat	240
atggagttgt cgtcgttgcg	gtcggaggac	acggcggtct	attactgcgc	gagggaagcg	300
attacgacgg tgggagcgat	ggattattgg	gggcagggaa	cgcttgtaac	ggtgtcatcg	360
gcctcaacaa aaggaccaag	tgtgttccca	ctcgccccta	gcagcaagag	tacatccggg	420
ggcactgcag cactcggctg	cctcgtcaag	gattattttc	cagagccagt	aaccgtgagc	480
tggaacagtg gagcactcac	ttctggtgtc	catacttttc	ctgctgtcct	gcaaagctct	540
ggcctgtact cactcagctc	cgtcgtgacc	gtgccatctt	catctctggg	cactcagacc	600
tacatctgta atgtaaacca	caagcctagc	aatactaagg	tcgataagcg	ggtggaaccc	660
aagagctgcg acaagactca	cacttgtccc	ccatgccctg	cccctgaact	tctgggcggt	720
cccagcgtct ttttgttccc	accaaagcct	aaagatactc	tgatgataag	tagaacaccc	780
gaggtgacat gtgttgttgt	agacgtttcc	cacgaggacc	cagaggttaa	gttcaactgg	840
tacgttgatg gagtcgaagt	acataatgct	aagaccaagc	ctagagagga	gcagtataat	900
agtacatacc gtgtagtcag	tgttctcaca	gtgctgcacc	aagactggct	caacggcaaa	960
gaatacaaat gcaaagtgtc	caacaaagca	ctcccagccc	ctatcgagaa	gactattagt	1020
aaggcaaagg ggcagcctcg	tgaaccacag	gtgtacactc	tgccacccag	tagagaggaa	1080
atgacaaaga accaagtctc	attgacctgc	ctggtgaaag	gcttctaccc	cagcgacatc	1140
gccgttgagt gggagagtaa	cggtcagcct	gagaacaatt	acaagacaac	cccccagtg	1200
ctggatagtg acgggtcttt	ctttctgtac	agtaagctga	ctgtggacaa	gtcccgctgg	1260
cagcagggta acgtcttcag	ctgttccgtg	atgcacgagg	cattgcacaa	ccactacacc	1320
cagaagtcac tgagcctgag	cccagggaag				1350

<210> 188 <211> 450

<212> PRT

<213> Secuencia artificial

<220>

5

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 188

- Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15
- Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ser Asp Tyr 20 25 30
- Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45
- Gly Gln Ile Asn Pro Asn Asn Gly Gly Ile Phe Phe Asn Gln Lys Phe 50 60

Lys 65	Gly	Arg	Val	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Arg	Val	Glu	Pro 220	Lys	Ser	Cys	Asp
Lys 225	Thr	His	Thr		Pro 230		Cys	Pro		Pro 235	Glu	Leu	Leu	Gly	Gly 240
Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	His	Glu
Asp	Pro	Glu 275	Val	Lys	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
Asn	Ala 290	Lys	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	Asn 300	Ser	Thr	Tyr	Arg
Val 305	Val	Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320

Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335

Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350

Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365

Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380

Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 385 390 395

Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415

Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430

Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445

Gly Lys 450

<210> 189

<211> 1350

5 <212> ADN

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 189

```
60
caagtacagc ttgtacagtc gggagcggaa gtcaagaaac cgggatcgtc ggtcaaagtg
tcgtgtaaag cgtcgggata tacgtttagc gactataaca tggattgggt gcgacaagcg
                                                                        120
                                                                        180
cctgggcagg gacttgaatg gatgggtcag atcaatccga ataatggggg aatctttttc
aatcagaagt ttcaggggag ggtaacgctg acggcggata aaagcacgtc aacggcgtat
                                                                        240
                                                                        300
atggagttgt cgtcgttgcg gtcggaggac acggcggtct attactgcgc gagggaagcg
                                                                        360
attacgacgg tgggagcgat ggattattgg gggcagggaa cgcttgtaac ggtgtcatcg
gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
                                                                        420
ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
                                                                        480
tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
                                                                        540
ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
                                                                        600
tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
                                                                        660
aagagetgeg acaagactea caettgteee ceatgeeetg eeeetgaaet tetgggeggt
                                                                        720
                                                                        780
cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
                                                                        840
gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
                                                                        900
tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
                                                                        960
gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
                                                                       1020
aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
                                                                       1080
atgacaaaga accaagtete attgacetge etggtgaaag gettetacee cagegacate
                                                                       1140
gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac ccccccagtg
                                                                      1200
ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
                                                                      1260
cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
                                                                      1320
cagaagtcac tgagcctgag cccagggaag
                                                                      1350
```

```
<210> 190 <211> 450
```

<212> PRT

<213> Secuencia artificial

<220>

<221> fuente

^{10 &}lt;223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 190

Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Ser 30	Asp	Tyr
Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Gly	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
Gln 65	Gly	Arg	Val	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Thr	Ser	Thr	Ala	Tyr 80

Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
_															
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Arg	Val	Glu	Pro 220	Lys	Ser	Cys	Asp
	210					215	_				220			_	Asp Gly 240
Lys 225	210 Thr	His	Thr	Cys	Pro 230	215 Pro	Cys	Pro	Ala	Pro 235	220 Glu	Leu	Leu	Gly	Gly
Lys 225 Pro	210 Thr	His Val	Thr	Cys Leu 245	Pro 230 Phe	215 Pro	C ys Pro	Pro Lys	Ala Pro 250	Pro 235 Lys	Glu Asp	Leu Thr	Leu Leu	Gly Met 255	Gly 240
Lys 225 Pro	210 Thr Ser	His Val	Thr Phe Pro	Cys Leu 245 Glu	Pro 230 Phe Val	215 Pro Pro	Cys Pro Cys	Pro Lys Val 265	Ala Pro 250 Val	Pro 235 Lys Val	Glu Asp	Leu Thr	Leu Leu Ser 270	Gly Met 255	Gly 240 Ile
Lys 225 Pro Ser	210 Thr Ser Arg	His Val Thr Glu 275	Thr Phe Pro 260 Val	Cys Leu 245 Glu	Pro 230 Phe Val	215 Pro Pro Thr	Cys Pro Cys Trp 280	Pro Lys Val 265	Ala Pro 250 Val	Pro 235 Lys Val	Glu Asp Asp	Leu Thr Val Val 285	Leu Leu Ser 270	Gly Met 255 His	Gly 240 Ile
Lys 225 Pro Ser Asp	Thr Ser Arg Pro	His Val Thr Glu 275 Lys	Thr Phe Pro 260 Val	Cys Leu 245 Glu Lys	Pro 230 Phe Val Phe	Pro Pro Thr Asn Arg 295	Cys Pro Cys Trp 280	Pro Lys Val 265 Tyr	Ala Pro 250 Val Val	Pro 235 Lys Val Asp	Glu Asp Asp Gly Asn 300	Leu Thr Val Val 285 Ser	Leu Leu Ser 270 Glu	Gly Met 255 His Val	Gly 240 Ile Glu His

Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 360 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 385 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445

Gly Lys 450

<210> 191

<211> 1347

5 <212> ADN

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 191

caggtgacac	tcaaagaatc	aggacccgga	atccttcagc	ccagccagac	cttgtcgctg	60
acttgttcgt	tctccggttt	cagcctgaat	acttatggga	tgggtgtgtc	atggatcagg	120
caaccgtccg	ggaaaggatt	ggagtggctc	gcgcacatct	actgggacga	tgacaaacgc	180
tacaatcctt	cgctgaagag	ccgattgacg	atttccaagg	atgcctcgaa	caaccgggta	240
tttcttaaga	tcacgtcggt	cgatacggca	gacacggcga	cctattactg	cgcccaaaga	300
gggtacgatg	actattgggg	atattggggc	caggggacac	tcgtcacaat	ttcagctgcc	360
tcaacaaaag	gaccaagtgt	gttcccactc	gcccctagca	gcaagagtac	atccgggggc	420
actgcagcac	tcggctgcct	cgtcaaggat	tattttccag	agccagtaac	cgtgagctgg	480
aacagtggag	cactcacttc	tggtgtccat	acttttcctg	ctgtcctgca	aagctctggc	540
ctgtactcac	tcagctccgt	cgtgaccgtg	ccatcttcat	ctctgggcac	tcagacctac	600
atctgtaatg	taaaccacaa	gcctagcaat	actaaggtcg	ataagcgggt	ggaacccaag	660
agctgcgaca	agactcacac	ttgtccccca	tgccctgccc	ctgaacttct	gggcggtccc	720
agcgtctttt	tgttcccacc	aaagcctaaa	gatactctga	tgataagtag	aacacccgag	780
gtgacatgtg	ttgttgtaga	cgtttcccac	gaggacccag	aggttaagtt	caactggtac	840
gttgatggag	tcgaagtaca	taatgctaag	accaagccta	gagaggagca	gtataatagt	900
acataccgtg	tagtcagtgt	tctcacagtg	ctgcaccaag	actggctcaa	cggcaaagaa	960
tacaaatgca	aagtgtccaa	caaagcactc	ccagccccta	tcgagaagac	tattagtaag	1020
gcaaaggggc	agcctcgtga	accacaggtg	tacactctgc	cacccagtag	agaggaaatg	1080
acaaagaacc	aagtctcatt	gacctgcctg	gtgaaaggct	tctaccccag	cgacatcgcc	1140
gttgagtggg	agagtaacgg	tcagcctgag	aacaattaca	agacaacccc	cccagtgctg	1200
gatagtgacg	ggtctttctt	tctgtacagt	aagctgactg	tggacaagtc	ccgctggcag	1260
cagggtaacg	tcttcagctg	ttccgtgatg	cacgaggcat	tgcacaacca	ctacacccag	1320
aagtcactga	gcctgagccc	agggaag				1347

<210> 192

<211> 449 <212> PRT

<213> Secuencia artificial

<220>

<221> fuente

¹⁰ <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 192

Gln	Val	Thr	Leu	Lys	Glu	Ser	Gly	\mathtt{Pro}	Gly	Ile	Leu	Gln	Pro	Ser	Gln
1				5					10					15	

Thr Leu Ser Leu Thr Cys Ser Phe Ser Gly Phe Ser Leu Asn Thr Tyr 20 25 30

Gly Met Gly Val Ser Trp Ile Arg Gln Pro Ser Gly Lys Gly Leu Glu 35 40 45

Trp Leu Ala His Ile Tyr Trp Asp Asp Lys Arg Tyr Asn Pro Ser 50 60

Leu Lys Ser Arg Leu Thr Ile Ser Lys Asp Ala Ser Asn Asn Arg Val 65 70 75 80

Phe Leu Lys Ile Thr Ser Val Asp Thr Ala Asp Thr Ala Thr Tyr Tyr 85 90 95

Cys Ala		rg Gly 00	Tyr	Asp	Asp	Tyr 105	Trp	Gly	Tyr	Trp	Gly 110	Gln	Gly
Thr Leu	Val Th	hr Ile	Ser	Ala	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
Pro Leu 130	Ala Pı	ro Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu
Gly Cys 145	Leu Va	al Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
Asn Ser	Gly A	la Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
Gln Ser		ly Leu 80	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
Ser Ser	Leu G: 195	ly Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
Ser Asn 210	Thr Ly	ys Val	Asp	Lys 215	Arg	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
Thr His 225	Thr Cy	ys Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Leu	Leu	Gly	Gly	Pro 240
Ser Val	Phe Le	eu Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
Arg Thr	Pro G		Thr	Cys		Val 265		Asp	Val	Ser	His 270	Glu	Asp
Pro Glu	Val Ly 275	ys Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
Ala Lys 290	Thr Ly	ys Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
Val Ser 305	Val Le	eu Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
Tyr Lys	Cys Ly	ys Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
Thr Ile		ys Ala 40	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr

	Leu	Pro	Pro 355	Ser	Arg	Glu	Glu	Met 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr	
	Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu	
	Ser 385	Asn	Gly	Gln	Pro	Glu 390	Asn	Asn	Tyr	Lys	Thr 395	Thr	Pro	Pro	Val	Leu 400	
	Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	Tyr	Ser 410	Lys	Leu	Thr	Val	Asp 415	Lys	
	Ser	Arg	Trp	Gln 420	Gln	Gly	Asn	Val	Phe 425	Ser	Cys	Ser	Val	Met 430	His	Glu	
	Ala	Leu	His 435	Asn	His	Tyr	Thr	Gln 440	Lys	Ser	Leu	Ser	Leu 445	Ser	Pro	Gly	
	Lys																
<210> <211> <212> <213>	1347 ADN	encia a	artificia	al													
<220> <221> <223>			cripció	n de la	ı secu	encia	artifici	al: poli	inucle	ótido s	sintétic	:o"					
<400>	193																
caggt	gact	t tg	raaag	aatc	cgg	tccc	gca	ttgg	taaa	.gc c	aacc	caga	c ac	ttac	gctc		60
acatg	taca	t tt	tccg	gatt	cag	cttg	aac	actt	acgg	ga t	ggga	.gtgt	c gt	ggat	tcgg	•	120
caacc	tccg	ig gg	aagg	ctct	gga	.gtgg	ctg	gcgc	acat	ct a	ctgg	gatg	a tg	acaa	aagg	•	180
tataa	cccc	t ca	ctta	.aaac	gag	actg	acg	atct	cgaa	.gg a	caca	.agca	a ga	atca	ggtc		240
gtcct	cacg	a tt	acga	atgt	aga	.cccg	gtg	gata	ctgc	cg t	ctat	tact	g cg	cgca	acgc		300
gggta	tgat	g ac	tact	gggg	ata	ttgg	ggt	cagg	gcac	cc t	cgtg	acca	t ct	cgtc	agco		360
tcaac	aaaa	.g ga	ccaa	.gtgt	gtt	ссса	.ctc	gccc	ctag	ca g	rcaag	agta	c at	.ccgg	gggc		420
actgc	agca	c to	ggct	gcct	cgt	caag	gat	tatt	ttcc	ag a	igcca	.gtaa	.c cg	rtgag	ctgg		480
aacag	tgga	g ca	ctca	.cttc	tgg	tgtc	cat	actt	ttcc	tg c	tgtc	ctgo	a aa	gcto	tggc		540
ctgta	ctca	c to	agct	ccgt	cgt	gaco	gtg	ccat	cttc	at c	tctg	ggca	c to	agac	ctac		600
atctg	taat	g ta	aacc	acaa	gcc	tago	aat	acta	aggt	.cg a	taag	cggg	rt gg	aacc	caag	•	660
agctg	cgac	a ag	racto	acac	ttg	tccc	cca	tgcc	ctgc	cc c	tgaa	.cttc	t gg	gcgg	rtccc		720

agcgtctttt	tgttcccacc	aaagcctaaa	gatactctga	tgataagtag	aacacccgag	780
gtgacatgtg	ttgttgtaga	cgtttcccac	gaggacccag	aggttaagtt	caactggtac	840
gttgatggag	tcgaagtaca	taatgctaag	accaagccta	gagaggagca	gtataatagt	900
acataccgtg	tagtcagtgt	tctcacagtg	ctgcaccaag	actggctcaa	cggcaaagaa	960
tacaaatgca	aagtgtccaa	caaagcactc	ccagccccta	tcgagaagac	tattagtaag	1020
gcaaaggggc	agcctcgtga	accacaggtg	tacactctgc	cacccagtag	agaggaaatg	1080
acaaagaacc	aagtctcatt	gacctgcctg	gtgaaaggct	tctaccccag	cgacatcgcc	1140
gttgagtggg	agagtaacgg	tcagcctgag	aacaattaca	agacaacccc	cccagtgctg	1200
gatagtgacg	ggtctttctt	tctgtacagt	aagctgactg	tggacaagtc	ccgctggcag	1260
cagggtaacg	tcttcagctg	ttccgtgatg	cacgaggcat	tgcacaacca	ctacacccag	1320
aagtcactga	gcctgagccc	agggaag				1347

<210> 194

<211> 449

<212> PRT

5

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 194

Gln Val Thr Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln 1 5 10 15

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Asn Thr Tyr 20 25 30

Gly Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Ala Leu Glu 35 40 45

Trp Leu Ala His Ile Tyr Trp Asp Asp Lys Arg Tyr Asn Pro Ser 50 55 60

Leu Lys Thr Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val 65 70 75 80

Val Leu Thr Ile Thr Asn Val Asp Pro Val Asp Thr Ala Val Tyr Tyr 85 90 95

Cys Ala Gln Arg Gly Tyr Asp Asp Tyr Trp Gly Tyr Trp Gly Gln Gly 100 105 110

Thr	Leu	Val 115	Thr	Ile	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
Pro	Leu 130	Ala	Pro	Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu
Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
Ser	Ser	Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Arg	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Leu	Leu	Gly	Gly	Pro 240
Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp
Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr
Leu	Pro	Pro 355	Ser	Arg	Glu	Glu	Met 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr

Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 380

Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 385 390 395 400

Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405 410 415

Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 435 440 445

Lys

<210> 195

<211> 1347

<212> ADN

<213> Secuencia artificial

<220>

5

10

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 195

60 caagtaacgc tcaaggagtc cggacccacc ttggtgaagc cgacgcagac cttgactctt acgtgcactt tctcggggtt ttcactgaat acgtacggga tgggtgtctc atggatcagg 120 180 caacctccgg ggaaaggatt ggaatggctg gcgcacatct actgggatga cgataagaga 240 tataacccaa gcctcaagtc gcggctcacc attacaaaag atacatcgaa aaatcaggtc gtacttacta tcacqaacat ggaccccgtg gacacagcaa catattactg tgcccagcgc 300 ggctatgacg attattgggg ttactgggga cagggaacac tggtcacggt gtccagcgcc 360 tcaacaaaag gaccaagtgt gttcccactc gcccctagca gcaagagtac atccgggggc 420 actgcagcac tcggctgcct cgtcaaggat tattttccag agccagtaac cgtgagctgg 480 aacagtggag cactcacttc tggtgtccat acttttcctg ctgtcctgca aagctctggc 540 ctgtactcac tcagctccgt cgtgaccgtg ccatcttcat ctctgggcac tcagacctac 600 atctgtaatg taaaccacaa gcctagcaat actaaggtcg ataagcgggt ggaacccaag 660 agetgegaca agacteacae ttgteeceea tgeectgeee etgaaettet gggeggteee 720 agcgtctttt tgttcccacc aaagcctaaa gatactctga tgataagtag aacacccgag 780 gtgacatgtg ttgttgtaga cgtttcccac gaggacccag aggttaagtt caactggtac 840

gttgatggag tcgaagtaca	taatgctaag	accaagccta	gagaggagca	gtataatagt	900
acataccgtg tagtcagtgt	tctcacagtg	ctgcaccaag	actggctcaa	cggcaaagaa	960
tacaaatgca aagtgtccaa	caaagcactc	ccagccccta	tcgagaagac	tattagtaag	1020
gcaaaggggc agcctcgtga	accacaggtg	tacactctgc	cacccagtag	agaggaaatg	1080
acaaagaacc aagtctcatt	gacctgcctg	gtgaaaggct	tctaccccag	cgacatcgcc	1140
gttgagtggg agagtaacgg	tcagcctgag	aacaattaca	agacaacccc	cccagtgctg	1200
gatagtgacg ggtctttctt	tctgtacagt	aagctgactg	tggacaagtc	ccgctggcag	1260
cagggtaacg tcttcagctg	ttccgtgatg	cacgaggcat	tgcacaacca	ctacacccag	1320
aagtcactga gcctgagccc	agggaag				1347

<210> 196

<211> 449

<212> PRT

<213> Secuencia artificial

<220>

5

10

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 196

Gln Val Thr Leu Lys Glu Ser Gly Pro Thr Leu Val Lys Pro Thr Gln $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Asn Thr Tyr 20 25 30

Gly Met Gly Val Ser Trp Ile Arg Gln Pro Pro Gly Lys Gly Leu Glu 35 40 45

Trp Leu Ala His Ile Tyr Trp Asp Asp Asp Lys Arg Tyr Asn Pro Ser 50 60

Leu Lys Ser Arg Leu Thr Ile Thr Lys Asp Thr Ser Lys Asn Gln Val 65 70 75 80

Val Leu Thr Ile Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr 85 90 95

Cys Ala Gln Arg Gly Tyr Asp Asp Tyr Trp Gly Tyr Trp Gly Gln Gly 100 105 110

Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125

Pro	Leu 130	Ala	Pro	Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu
Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
Ser	Ser	Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Arg	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Leu	Leu	Gly	Gly	Pro 240
Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp
Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr
Leu	Pro	Pro 355	Ser	Arg	Glu	Glu	Met 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr
Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu

Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu 385 390 395 Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405 410 Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 435 440 445 Lys <210> 197 <211> 1347 <212> ADN <213> Secuencia artificial <220>

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

5

10

<400> 197

caggtcacgc	tgaaagagtc	aggtcccgga	atccttcaac	cttcgcagac	attgtcactc	60
acatgttcct	tctccgggtt	ctcgctctcg	acttatggca	tgggtgtagg	atggattcgg	120
cagcccagcg	ggaaggggct	tgagtggttg	gcggatatct	ggtgggacga	cgacaaatac	180
tacaatccga	gcctgaagtc	ccgcctcacc	atttcgaaag	atacgtcatc	aaacgaagtc	240
tttttgaaga	tcgccatcgt	ggacacggcg	gatacagcga	cgtattactg	cgccagaagg	300
ggacactaca	gcgcaatgga	ttattgggga	caggggacct	cggtgactgt	gtcgtccgcc	360
tcaacaaaag	gaccaagtgt	gttcccactc	gcccctagca	gcaagagtac	atccgggggc	420
actgcagcac	tcggctgcct	cgtcaaggat	tattttccag	agccagtaac	cgtgagctgg	480
aacagtggag	cactcacttc	tggtgtccat	acttttcctg	ctgtcctgca	aagctctggc	540
ctgtactcac	tcagctccgt	cgtgaccgtg	ccatcttcat	ctctgggcac	tcagacctac	600
atctgtaatg	taaaccacaa	gcctagcaat	actaaggtcg	ataagcgggt	ggaacccaag	660
agctgcgaca	agactcacac	ttgtccccca	tgccctgccc	ctgaacttct	gggcggtccc	720
agcgtctttt	tgttcccacc	aaagcctaaa	gatactctga	tgataagtag	aacacccgag	780
gtgacatgtg	ttgttgtaga	cgtttcccac	gaggacccag	aggttaagtt	caactggtac	840
gttgatggag	tcgaagtaca	taatgctaag	accaagccta	gagaggagca	gtataatagt	900
acataccgtg	tagtcagtgt	tctcacagtg	ctgcaccaag	actggctcaa	cggcaaagaa	960
tacaaatoca	aagtgtggaa	caaagcactc	ccagccccta	tcgagaagac	tattagtaag	1020
_		accacaggtg	_			1080
		gacctgcctg				1140
					cccagtgctg	1200
						1260
		tctgtacagt				1320
		ttccgtgatg	Cacyaggeat	tycacaacca	GLAGACCCAG	
aagtcactga	gcctgagccc	ayggaag				1347

<210> 198

<211> 449

<212> PRT

<213> Secuencia artificial

<220>

5

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 198

Gln 1	Val	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Gly 10	Ile	Leu	Gln	Pro	Ser 15	Gln
Thr	Leu	Ser	Leu 20	Thr	Cys	Ser	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Tyr
Gly	Met	Gly 35	Val	Gly	Trp	Ile	Arg 40	Gln	Pro	Ser	Gly	Lys 45	Gly	Leu	Glu
Trp	Leu 50	Ala	Asp	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Ser	Asn	Glu	Val 80
Phe	Leu	Lys	Ile	Ala 85	Ile	Val	Asp	Thr	Ala 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
Cys	Ala	Arg	Arg 100	Gly	His	Tyr	Ser	Ala 105	Met	Asp	Tyr	Trp	Gly 110	Gln	Gly
Thr	Ser	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
Pro	Leu 130	Ala	Pro	Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu

Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
Ser	Ser	Leu 195	Gly	Thr	Gln	Thr	Туг 200	Ile	Cys	Asn	Val	As n 205	His	Lys	Pro
Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Arg	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Leu	Leu	Gly	Gly	Pro 240
Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp
Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr
Leu	Pro	Pro 355	Ser	Arg	Glu	Glu	Met 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr
_					Dh.	П	Pro	Ser	Asn	Tle	Δla	Va 1	G111	_	C1
Cys	Leu 370	Val	Lys	Gly	Pne	375		-	пор	110	380	Vai	oru	Trp	GIU

Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys 405 410 415

Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 435 440 445

Lys

<210> 199

<211> 1347

5 <212> ADN

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 199

cagatcactt tgaaagaaag cggaccgacc ttggtcaagc ccacacaaac cctcacgctc 60 acgtgtacat tttcggggtt ctcgctttca acttacggga tgggagtagg gtggattcgc 120 cagccgcctg gtaaagcgtt ggagtggctt gcagacatct ggtgggacga cgataagtac 180 tataatccct cgctcaagtc cagactgacc atcacgaaag atacgagcaa gaaccaggtc 240 gtgctgacaa tgactaacat ggacccagtg gatacggcta catattactg cgccaggcgg 300 360 ggtcactact cagcgatgga ttattggggc cagggaacac tggtaacggt gtcgtccgcc tcaacaaaag gaccaagtgt gttcccactc gcccctagca gcaagagtac atccgggggc 420 actgcagcac tcggctgcct cgtcaaggat tattttccag agccagtaac cgtgagctgg 480 540 aacagtggag cactcacttc tggtgtccat acttttcctg ctgtcctgca aagctctggc ctgtactcac tcagctccgt cgtgaccgtg ccatcttcat ctctgggcac tcagacctac 600 660 atctgtaatg taaaccacaa gcctagcaat actaaggtcg ataagcgggt ggaacccaag 720 agetgegaca agaeteacae ttgteeceea tgeeetgeee etgaacttet gggeggteee agcgtctttt tgttcccacc aaagcctaaa gatactctga tgataagtag aacacccgag 780 gtgacatgtg ttgttgtaga cgtttcccac gaggacccag aggttaagtt caactggtac 840 900 gttgatggag tcgaagtaca taatgctaag accaagccta gagaggagca gtataatagt acataccgtg tagtcagtgt tctcacagtg ctgcaccaag actggctcaa cggcaaagaa 960 tacaaatgca aagtgtccaa caaagcactc ccagccccta tcgagaagac tattagtaag 1020 gcaaaggggc agcctcgtga accacaggtg tacactctgc cacccagtag agaggaaatg 1080

acaaa	gaac	c aa	gtct	catt	gac	ctgc	ctg	gtga	aagg	ct t	ctac	ccca	ıg cg	racat	cgcc	!
gttga	gtgg	g ag	agta	acgg	tca	gcct	gag	aaca	atta	.ca a	agaca	accc.	c cc	cagt	gctg	Г
gatag	tgac	g gg	tctt	tctt	tct	gtac	agt	aagc	tgac	tg t	ggac	aagt	.c cc	gctg	gcag	Г
caggg	taac	g tc	ttca	gctg	ttc	cgtg	atg	cacg	aggo	at t	gcac	aacc	a ct	acac	ccag	Г
aagtc	actg	a gc	ctga	gccc	agg	gaag										
<210> <211> <212> <213>	449 PRT	encia a	artificia	ıl												
<220> <221> <223>			ripció	n de la	ı secu	encia	artifici	al: pol	ipéptic	lo sin	tético"					
<400>	200															
	Gln 1	Ile	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Thr 10	Leu	Val	Lys	Pro	Thr 15	Gln
	Thr	Leu	Thr	Leu 20	Thr	Cys	Thr	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Tyr
	Gly	Met	Gly 35	Val	Gly	Trp	Ile	Arg 40	Gln	Pro	Pro	Gly	Lys 45	Ala	Leu	Glu
	Trp	Leu 50	Ala	Asp	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Thr	Lys	Asp	Thr 75	Ser	Lys	Asn	Gln	Val 80
	Val	Leu	Thr	Met	Thr 85	Asn	Met	Asp	Pro	Val 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
	Cys	Ala	Arg	Arg 100	Gly	His	Tyr	Ser	Ala 105	Met	Asp	Tyr	Trp	Gly 110	Gln	Gly
	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
	Pro	Leu 130	Ala	Pro	Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu
	Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160

Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
Ser	Ser	Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Arg	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Leu	Leu	Gly	Gly	Pro 240
Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp
Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr
Leu	Pro	Pro 355	Ser	Arg	Glu	Glu	Met 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr
Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu
Ser 385	Asn	Gly	Gln	Pro	Glu 390	Asn	Asn	Tyr	Lys	Thr 395	Thr	Pro	Pro	Val	Leu 400
Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	Tyr	Ser 410	Lys	Leu	Thr	Val	Asp 415	Lys

Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu 420 425 430

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 435 440 445

Lys

<210> 201

<211> 1347

5 <212> ADN

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 201

caagtgactc tcaaggagtc cggacccgcc ctggtcaaac caacgcagac actgacgctc 60 acatgcacct tcagcggatt ttcgttgtca acgtacggca tgggtgtggg gtggattcgc 120 cagcctccgg ggaaagccct tgaatggttg gcggacatct ggtgggatga tgacaagtac 180 tataatccct cacttaagtc acggttgacg atctcgaaag acaccagcaa gaaccaggta 240 gtgctgacaa tgactaacat ggacccggtc gatacagcgg tctactattg tgctagaagg 300 ggacactact ccgcaatgga ttattggggt caggggacgc tcgtaaccgt gtcgtcggcc 360 tcaacaaaag gaccaagtgt gttcccactc gcccctagca gcaagagtac atccgggggc 420 actgcagcac tcggctgcct cgtcaaggat tattttccag agccagtaac cgtgagctgg 480 aacagtggag cactcacttc tggtgtccat acttttcctg ctgtcctgca aagctctggc 540 ctgtactcac tcagctccgt cgtgaccgtg ccatcttcat ctctgggcac tcagacctac 600 atctgtaatg taaaccacaa gcctagcaat actaaggtcg ataagcgggt ggaacccaag 660 agetgegaca agacteacae ttgtccccca tgccctgccc ctgaacttct gggcggtccc 720 agcgtctttt tgttcccacc aaagcctaaa gatactctga tgataagtag aacacccgag 780 840 gtgacatgtg ttgttgtaga cgtttcccac gaggacccag aggttaagtt caactggtac gttgatggag tcgaagtaca taatgctaag accaagccta gagaggagca gtataatagt 900 960 acataccgtg tagtcagtgt tctcacagtg ctgcaccaag actggctcaa cggcaaagaa tacaaatgca aagtgtccaa caaagcactc ccagccccta tcgagaagac tattagtaag 1020 gcaaaggggc agcctcgtga accacaggtg tacactctgc cacccagtag agaggaaatg 1080 acaaagaacc aagteteatt gacetgeetg gtgaaagget tetaccccag egacategee 1140 1200 gttgagtggg agagtaacgg tcagcctgag aacaattaca agacaacccc cccagtgctg

gatag	tgac	g gg	tctt	tctt	te	tgta	cagt	aag	ctga	.ctg	tgga	caa	gtc	ccgc	tggc	ag
caggg	taac	g to	ettca	agcto	g tt	ccgt	gatg	cac	gagg	cat	tgca	acaa	cca	ctac	accc	ag
aagto	actg	ra go	ctga	agcc	c age	ggaa	g									
<210> <211> <212> <213>	449 PRT	ıencia	artific	ial												
<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"																
<400>	202															
	Gln 1	Val	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Ala 10	Leu	Val	Lys	Pro	Thr 15	Gln
	Thr	Leu	Thr	Leu 20	Thr	Cys	Thr	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Tyr
	Gly	Met	Gly 35	Val	Gly	Trp	Ile	Arg 40	Gln	Pro	Pro	Gly	Lys 45	Ala	Leu	Glu
	Trp	Leu 50	Ala	Asp	Ile	Trp	Trp 55	Asp	Asp	Asp	Lys	Tyr 60	Tyr	Asn	Pro	Ser
	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Ser	Lys	Asp	Thr 75	Ser	Lys	Asn	Gln	Val 80
	Val	Leu	Thr	Met	Thr 85	Asn	Met	Asp	Pro	Val 90	Asp	Thr	Ala	Val	Tyr 95	Tyr
	Cys	Ala	Arg	Arg 100	Gly	His	Tyr	Ser	Ala 105	Met	Asp	Tyr	Trp	Gly 110	Gln	Gly
	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
	Pro	Leu 130	Ala	Pro	Ser	Ser	Lys 135	Ser	Thr	Ser	Gly	Gly 140	Thr	Ala	Ala	Leu
	Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
	Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu

Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
Ser	Ser	Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Arg	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Leu	Leu	Gly	Gly	Pro 240
Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp
Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr
Leu	Pro	Pro 355	Ser	Arg	Glu	Glu	Met 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr
Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu
Ser 385	Asn	Gly	Gln	Pro	Glu 390	Asn	Asn	Tyr	Lys	Thr 395	Thr	Pro	Pro	Val	Leu 400
Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	Tyr	Ser 410	Lys	Leu	Thr	Val	Asp 415	Lys
Ser	Arg	Trp	Gln 420	Gln	Gly	Asn	Val	Phe 425	Ser	Cys	Ser	Val	Met 430	His	Glu

Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 435 440 445

т	. 37	0
_	ıУ	3

5	<210> 203 <211> 642 <212> ADN <213> Secuencia artificial
	~22 0 ~

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 203

<221> fuente

60 gacatccaaa tgacccagtc acccgcgagc ctttcggcgt cggtcggaga aacggtcacg atcacqtqcc qqacatcaqa qaatctccat aactacctcq cqtqqtatca acaqaaqcaq 120 gggaagtcgc cccagttgct tgtatacgat gcgaaaacgt tggcggatgg ggtgccgtcc 180 agattctcgg gatcgggctc ggggacgcag tactcgctca agatcaattc gctgcagccg 240 gaggactttg ggtcgtacta ttgtcagcat ttttggtcat caccgtatac atttggaggt 300 360 ggaacgaaac ttgagattaa gcgcacagtt gctgcccca gcgtgttcat tttcccacct 420 agcgatgagc agctgaaaag cggtactgcc tctgtcgtat gcttgctcaa caacttttac 480 ccacgtgagg ctaaggtgca gtggaaagtg gataatgcac ttcaatctgg aaacagtcaa gagtccgtga cagaacagga cagcaaagac tcaacttatt cactctcttc caccctgact 540 ctgtccaagg cagactatga aaaacacaag gtatacgcct gcgaggttac acaccagggt 600 642 ttgtctagtc ctgtcaccaa gtccttcaat aggggcgaat gt

15

<210> 204 <211> 214 <212> PRT

<213> Secuencia artificial

20

<220> <221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

25 <400> 204

Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Leu Ser Ala Ser Val Gly 1 5 10 15

Glu Thr Val Thr Ile Thr Cys Arg Thr Ser Glu Asn Leu His Asn Tyr
20 25 30

Leu Ala Trp Tyr Gln Gln Lys Gln Gly Lys Ser Pro Gln Leu Leu Val

			35					40					4 5			
	Tyr	Asp 50	Ala	Lys	Thr	Leu	Ala 55	Asp	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
	Ser 65	Gly	Ser	Gly	Thr	Gln 70	Tyr	Ser	Leu	Lys	Ile 75	Asn	Ser	Leu	Gln	Pro 80
	Glu	Asp	Phe	Gly	Ser 85	Tyr	Tyr	Cys	Gln	His 90	Phe	Trp	Ser	Ser	Pro 95	Tyr
	Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala
	Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly
	Thr	Ala 130	Ser	Val	Val	Cys	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala
	Lys 145	Val	Gln	Trp	Lys	Val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160
	Glu	Ser	Val	Thr	Glu 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser
	Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185	Tyr	Glu	Lys	His	Lys 190	Val	Tyr
	Ala	_	Glu 195		Thr		Gln	_		Ser	Ser	Pro	Val 205		Lys	Ser
	Phe	Asn 210	Arg	Gly	Glu	Cys										
<210> <211> <212> <213>	642 ADN	encia a	artificia	ıl												
<220> <221> <223>			cripció	n de la	ı secu	encia	artifici	al: poli	inucle	ótido s	sintétic	:o"				
<400>	205															

gacatccaaa	tgacccagtc	gccgtcgtcg	ctttcagcgt	cggtagggga	tcgggtcaca	60
attacgtgcc	gaacgtcaga	gaatttgcat	aactacctcg	cgtggtatca	gcagaagccc	120
gggaagtcac	cgaaactcct	tgtctacgat	gcgaaaacgc	tggcggatgg	agtgccgtcg	180
agattctcgg	gaagcggatc	cggtacggac	tatacgctta	cgatctcatc	gctccagccc	240
gaggactttg	cgacgtacta	ttgtcagcat	ttttggtcgt	cgccctacac	atttgggcag	300
gggaccaagt	tggaaatcaa	gcgcacagtt	gctgccccca	gcgtgttcat	tttcccacct	360
agcgatgagc	agctgaaaag	cggtactgcc	tctgtcgtat	gcttgctcaa	caacttttac	420
ccacgtgagg	ctaaggtgca	gtggaaagtg	gataatgcac	ttcaatctgg	aaacagtcaa	480
gagtccgtga	cagaacagga	cagcaaagac	tcaacttatt	cactctcttc	caccctgact	540
ctgtccaagg	cagactatga	aaaacacaag	gtatacgcct	gcgaggttac	acaccagggt	600
ttgtctagtc	ctgtcaccaa	gtccttcaat	aggggcgaat	gt		642

<210> 206

<211> 214

5 <212> PRT

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 206

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 5 10 15 Asp Arg Val Thr Ile Thr Cys Arg Thr Ser Glu Asn Leu His Asn Tyr 20 25 Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ser Pro Lys Leu Leu Val 45 Tyr Asp Ala Lys Thr Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly 50 Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 70 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Phe Trp Ser Ser Pro Tyr Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 150 155 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 170 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205 Phe Asn Arg Gly Glu Cys

<210> 207

<211>642

<212> ADN

5

<213> Secuencia artificial

210

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

	<400> 207						
	gacatccaaa	tgacccagtc	gccgtcgtcg	ctttcagcgt	cggtagggga	tcgggtcaca	60
	attacgtgcc	gaacgtcaga	gaatttgcat	aactacctcg	cgtggtatca	gcagaagccc	120
	gggaaggccc	cgaaactcct	tatctacgat	gcgaaaacgc	tggcggatgg	agtgccgtcg	180
	agattctcgg	gaagcggatc	cggtacggac	tatacgctta	cgatctcatc	gctccagccc	240
	gaggactttg	cgacgtacta	ttgtcagcat	ttttggtcgt	cgccctacac	atttgggcag	300
	gggaccaagt	tggaaatcaa	gcgcacagtt	gctgccccca	gcgtgttcat	tttcccacct	360
	agcgatgagc	agctgaaaag	cggtactgcc	tctgtcgtat	gcttgctcaa	caacttttac	420
	ccacgtgagg	ctaaggtgca	gtggaaagtg	gataatgcac	ttcaatctgg	aaacagtcaa	480
	gagtccgtga	cagaacagga	cagcaaagac	tcaacttatt	cactctcttc	caccctgact	540
	ctgtccaagg	cagactatga	aaaacacaag	gtatacgcct	gcgaggttac	acaccagggt	600
	ttgtctagtc	ctgtcaccaa	gtccttcaat	aggggcgaat	gt		642
	<210> 208 <211> 214 <212> PRT <213> Secuence	cia artificial					
<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"							
	<400> 208						

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Thr Ser Glu Asn Leu His Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 40 45 Tyr Asp Ala Lys Thr Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly 50 55 Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 70 75 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Phe Trp Ser Ser Pro Tyr 90 85 95 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 105 110 100 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser

Phe Asn Arg Gly Glu Cys 210

195

<210> 209 <211> 642 <212> ADN <213> Secuencia artificial

<220>

5

200

205

	<221> fuer <223> /not		cripció	n de l	a secu	encia	artifici	al: pol	inucled	ótido s	sintétic	0"					
	<400> 209																
5	gacatccaa	a tga	ccca	gtc	gccg	tcgt	cg c	tttc	agcgl	t cg	gtag	ggga	tcg	ggtc	aca		60
	attacgtgc	c gaa	cgtc	aga	gaati	ttgc	at a	acta	cctc	g cg	tggt	atca	gca	gaag	ccc		120
	gggaagtca	c cga	aact	cct	tatc	tacga	at g	cgaa	aacgo	c tg	gcgg	atgg	agt	gccg	tcg		180
	agattctcg	g gaa	gcgg	atc	cggta	acgga	ac t	atac	gctta	a cg	atct	catc	gct	ccag	ccc		240
	gaggacttt	g cga	cgta	cta	ttgt	cagc	at t	tttg	gtcgl	t cg	ccct	acac	att	tggg	cag		300
	gggaccaag	t tgg	aaat	caa	gcgc	acag	tt g	ctgc	aaaa	a gc	gtgt [.]	tcat	ttt	ccca	aat		360
	agcgatgag	c agc	tgaa	aag	cggta	actgo	cc t	ctgt	cgtai	t ga	ttgc	tcaa	caa	cttt [.]	tac		420
	ccacgtgag	g cta	aggt	gca	gtgga	aaag	tg g	ataa	tgca	e tt	caat	ctgg	aaa	cagt	caa		480
	gagtccgtg	a cag	aaca	gga	cagca	aaag	ac t	caac	ttati	t ca	ctct	cttc	cac	cctg	act		540
	ctgtccaag	g cag	acta	tga	aaaa	caca	ag g	tata	cgcct	t gc	gagg [.]	ttac	aca	ccag	ggt		600
	ttgtctagt	c ctg	tcac	caa	gtcc	ttca	at a	gggg	cgaat	t gt							642
10	<210> 210 <211> 214 <212> PRT <213> Sec		artificia	al													
15	<220> <221> fuer <223> /not		cripció	n de l	a secu	encia	artifici	al: pol	ipéptid	lo sint	ético"						
	<400> 210																
	As _]	o Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly	
	As _j	o Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Thr 25	Ser	Glu	Asn	Leu	His 30	Asn	Tyr	
	Le	ı Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ser	Pro	Lys 45	Leu	Leu	Ile	
	Тy	r Asp 50	Ala	Lys	Thr	Leu	Ala 55	Asp	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly	
	Se: 65	r Gly	Ser	Gly	Thr	Asp 70	Tyr	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80	
	Glı	ı Asp	Phe	Ala	Thr	Tyr	Tyr	Cys	Gln	His	Phe	Trp	Ser	Ser	Pro	Tyr	

					85					90					95	
i	Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Leu	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala
:	Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly
	Thr	Ala 130	Ser	Val	Val	Cys	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala
	Lys 145	Val	Gln	Trp	Lys	Val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160
(Glu	Ser	Val	Thr	Glu 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser
i	Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185	Tyr	Glu	Lys	His	Lys 190	Val	Tyr
;	Ala	Cys	Glu 195	Val	Thr	His	Gln	Gly 200	Leu	Ser	Ser	Pro	Val 205	Thr	Lys	Ser
1	Phe	Asn 210	Arg	Gly	Glu	Cys										
<210> 211 <211> 642 <212> ADN <213> Secuencia artificial																
<220> <221> ft <223> /r			ripció	n de la	a secu	encia	artifici	al: poli	inucle	ótido s	intétic	:o"				

5

10

gatatcgtca	tgacccagtc	ccagaagttc	atgtcaactt	cagtgggaga	cagagtgtcc	60
gtcacatgta	aagcctcgca	aaatgtggga	accaacgtag	cgtggttcca	gcagaaacct	120
ggccaatcac	cgaaggcact	gatctactcg	gccagctata	ggtactcggg	agtaccagat	180
cggtttacgg	ggtcggggag	cgggacggac	tttatcctca	ctatttccaa	tgtccagtcg	240
gaggaccttg	cggaatactt	ctgccagcag	tataacaact	atcccctcac	gtttggtgct	300
ggtacaaaat	tggagttgaa	gcgcacagtt	gctgccccca	gcgtgttcat	tttcccacct	360
agcgatgagc	agctgaaaag	cggtactgcc	tctgtcgtat	gcttgctcaa	caacttttac	420
ccacgtgagg	ctaaggtgca	gtggaaagtg	gataatgcac	ttcaatctgg	aaacagtcaa	480
gagtccgtga	cagaacagga	cagcaaagac	tcaacttatt	cactctcttc	caccctgact	540
ctgtccaagg	cagactatga	aaaacacaag	gtatacgcct	gcgaggttac	acaccagggt	600
ttgtctagtc	ctgtcaccaa	gtccttcaat	aggggcgaat	gt		642

<210> 212

<211> 214 <212> PRT

5

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Asp Ile Val Met Thr Gln Ser Gln Lys Phe Met Ser Thr Ser Val Gly Asp Arg Val Ser Val Thr Cys Lys Ala Ser Gln Asn Val Gly Thr Asn Val Ala Trp Phe Gln Gln Lys Pro Gly Gln Ser Pro Lys Ala Leu Ile 40 Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Thr Gly 55 Ser Gly Ser Gly Thr Asp Phe Ile Leu Thr Ile Ser Asn Val Gln Ser 70 65 Glu Asp Leu Ala Glu Tyr Phe Cys Gln Gln Tyr Asn Asn Tyr Pro Leu Thr Phe Gly Ala Gly Thr Lys Leu Glu Leu Lys Arg Thr Val Ala Ala 100 105 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 200 Phe Asn Arg Gly Glu Cys

<210> 213

<211>642

<212> ADN

5

<213> Secuencia artificial

210

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 213															
gacatccaa	a to	gaccc	aatc	gcc	ctcct	cc	ctct	ccgca	cag	gtagggg	ja co	cgcgt	caca		60
attacttgo	a a	agcgt	cgca	gaa	cgtcg	ıga	acga	atgtg	g cgt	ggtttc	a go	cagaa	gccc		120
ggaaaagct	.c c	gaaga	gctt	gat	ctact	cg	gcct	catat	a ggt	attcgg	gg to	gtgcc	gagc		180
cggtttagc	g g	gtcgg	ggtc	agg	tactg	rat	ttca	cgctc	a caa	atttcat	c gt	tgca	igcca		240
gaagattto	g c	cacat	atta	ctg	tcago	ag	taca	acaat [.]	acc	cctctga	ıc gt	tcgg	ccag		300
ggaaccaaa	c t	tgaga	tcaa	gcg	cacag	rtt	gctg	cccc	a gcc	gtgttca	t tt	tccc	acct		360
agcgatgag	c a	gctga	aaag	cgg	tactg	ıcc	tctg	tcgta [.]	gct	tgctca	a ca	actt	ttac		420
ccacgtgag	g c	taagg	tgca	gtg	gaaag	rtg	gata	atgca	c ttc	caatcto	g aa	acag	rtcaa		480
gagtccgto	a c	agaac	agga	cag	caaag	rac	tcaa	cttat	cac	ctctctt	c ca	accct	gact		540
ctgtccaaq	g c	agact	atga	aaa	acaca	ag	gtat	acgcc	gcg	gaggtta	ac ac	cacca	ıgggt		600
ttgtctagt	c c	tgtca	ccaa	gtc	cttca	at	aggg	gcgaa [.]	gt						642
<210> 214 <211> 214 <212> PRT <213> Secu	encia	artificia	ıl												
<220> <221> fuent <223> /nota	-	scripció	n de la	secu	encia a	rtifici	ial: poli	péptido	sintétic	co"					
<400> 214															
Asp 1	Ile	Gln	Met	Thr 5	Gln :	Ser	Pro		er L	eu Ser	Ala	Ser	Val 15	Gly	

Val Ala Trp Phe Gln Gln Lys Pro Gly Lys Ala Pro Lys Ser Leu Ile 35 Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly 55 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Tyr Asn Asn Tyr Pro Leu 85 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 135 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 170 165 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 Phe Asn Arg Gly Glu Cys

210

<210> 215

<211>642

5 <212> ADN

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

gacatcgtga	tgacacagtc	acagaaattc	atgtccacat	ccgtcggtga	tagagtatcc	60
gtcacgtgta	aggcctcgca	aaacgtagga	actaatgtgg	cgtggtatca	acagaagcca	120
ggacagtcac	ccaaagcact	catctacagc	ccctcatatc	ggtacagcgg	ggtgccggac	180
aggttcacgg	gatcggggag	cgggaccgat	tttacactga	ccatttcgaa	tgtccagtcg	240
gaggaccttg	cggaatactt	ctgccagcag	tataactcgt	accctcacac	gtttggaggt	300
ggcactaagt	tggagatgaa	acgcacagtt	gctgccccca	gcgtgttcat	tttcccacct	360
agcgatgagc	agctgaaaag	cggtactgcc	tctgtcgtat	gcttgctcaa	caacttttac	420
ccacgtgagg	ctaaggtgca	gtggaaagtg	gataatgcac	ttcaatctgg	aaacagtcaa	480
gagtccgtga	cagaacagga	cagcaaagac	tcaacttatt	cactctcttc	caccctgact	540
ctgtccaagg	cagactatga	aaaacacaag	gtatacgcct	gcgaggttac	acaccagggt	600
ttgtctagtc	ctgtcaccaa	gtccttcaat	aggggcgaat	gt		642

<210> 216

<211> 214 <212> PRT 5

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Gln	Lys	Phe 10	Met	Ser	Thr	Ser	Val 15	Gly
Asp	Arg	Val	Ser 20	Val	Thr	Cys	Lys	Ala 25	Ser	Gln	Asn	Val	Gly 30	Thr	Asn
Val	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ser	Pro	Lys 45	Ala	Leu	Ile
Tyr	Ser 50	Pro	Ser	Tyr	Arg	Tyr 55	Ser	Gly	Val	Pro	Asp 60	Arg	Phe	Thr	Gly
Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Asn	Val	Gln	Ser 80
Glu	Asp	Leu	Ala	Glu 85	Tyr	Phe	Cys	Gln	Gln 90	Tyr	Asn	Ser	Tyr	Pro 95	His
Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Leu	Glu 105	Met	Lys	Arg	Thr	Val 110	Ala	Ala
Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly
Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	Phe	Tyr	Pro	Arg	Glu	Ala
	130					135					140				
Lys 145	Val	Gln	Trp	Lys	Val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160
Glu	Ser	Val	Thr	Glu 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser
Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185	Tyr	Glu	Lys	His	Lys 190	Val	Tyr
Ala	Cys	Glu 195	Val	Thr	His	Gln	Gly 200	Leu	Ser	Ser	Pro	Val 205	Thr	Lys	Ser

<210> 217 <211> 642 <212> ADN

<213> Secuencia artificial

210

Phe Asn Arg Gly Glu Cys

<220>

5	<221> fuente <223> /nota="[Descripción de la	secuencia artific	ial: polinucleótido	o sintético"		
	<400> 217						
	gatatccaga	tgacacagtc	accctcgtcg	ctctcagctt	ccgtaggcga	cagggtcact	60
	attacgtgta	aagcatcaca	gaacgtcgga	acgaatgtgg	cgtggtttca	gcagaagccc	120
	gggaagagcc	ccaaagcgct	tatctactcc	ccgtcgtatc	ggtattccgg	tgtgccaagc	180
	agattttcgg	ggtcaggttc	gggaactgac	tttaccctga	ccatctcgtc	cctccaaccg	240
	gaagatttcg	ccacgtactt	ctgccagcag	tacaacagct	atcctcacac	attcggacaa	300
	gggacaaagt	tggagattaa	acgcacagtt	gctgccccca	gcgtgttcat	tttcccacct	360
	agcgatgagc	agctgaaaag	cggtactgcc	tctgtcgtat	gcttgctcaa	caacttttac	420
	ccacgtgagg	ctaaggtgca	gtggaaagtg	gataatgcac	ttcaatctgg	aaacagtcaa	480
	gagtccgtga	cagaacagga	cagcaaagac	tcaacttatt	cactctcttc	caccctgact	540
	ctgtccaagg	cagactatga	aaaacacaag	gtatacgcct	gcgaggttac	acaccagggt	600
	ttgtctagtc	ctgtcaccaa	gtccttcaat	aggggcgaat	gt		642
10	<210> 218 <211> 214 <212> PRT <213> Secuence	cia artificial					
15	<220> <221> fuente <223> /nota="E	Descripción de la	secuencia artific	ial: polipéptido si	ntético"		
20	<400> 218						

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 10 Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asn Val Gly Thr Asn 25 Val Ala Trp Phe Gln Gln Lys Pro Gly Lys Ser Pro Lys Ala Leu Ile Tyr Ser Pro Ser Tyr Arg Tyr Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 75 Glu Asp Phe Ala Thr Tyr Phe Cys Gln Gln Tyr Asn Ser Tyr Pro His 85 90 Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 135 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 170 Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 200 195

210

Phe Asn Arg Gly Glu Cys

<210> 219 <211> 1035 <212> ADN <213> Secuencia artificial

> <220> <221> fuente

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético" <400> 219

gggtgtaaac cctgcatct	g cacggtgccg	gaggtgtcct	ccgtctttat	cttccctccc	60
aaacccaagg atgtgctgad	aatcactttg	actccaaaag	tcacatgcgt	agtcgtggac	120
atctcgaaag acgacccgga	agtgcagttc	tcgtggtttg	ttgatgatgt	agaagtgcat	180
accgctcaaa cccagccgag	ggaagaacag	tttaacagca	cgtttaggag	tgtgtcggaa	240
ctgcccatta tgcaccagga	ttggcttaat	gggaaggagt	tcaaatgtcg	cgtgaatagt	300
gcggcgttcc cagcccctat	tgaaaagact	atttccaaaa	cgaagggtcg	gcccaaagct	360
ccccaagtat acacaatcc	teegeegaaa	gaacaaatgg	caaaagacaa	agtgagtttg	420
acgtgcatga tcacggactt	tttcccggag	gatatcaccg	tcgaatggca	atggaatggg	480
caacctgccg aaaactacaa	gaatacacaa	cccattatgg	ataccgatgg	atcgtatttc	540
gtctactcaa agttgaacgt	acagaagtca	aattgggagg	cagggaatac	gttcacttgc	600
agtgttttgc acgaaggcct	ccataaccac	catacggaaa	agtcactgtc	gcactccccg	660
ggaaaaatcg agggcagaat	ggatggtgga	ggagggtcgg	cgcgcaacgg	ggaccactgt	720
ccgctcgggc ccgggcgttq	g ctgccgtctg	cacacggtcc	gcgcgtcgct	ggaagacctg	780
ggctgggccg attgggtgct	gtcgccacgg	gaggtgcaag	tgaccatgtg	catcggcgcg	840
tgcccgagcc agttccgggd	ggcaaacatg	cacgcgcaga	tcaagacgag	cctgcaccgc	900
ctgaagcccg acacggtgc	agcgccctgc	tgcgtgcccg	ccagctacaa	tcccatggtg	960
ctcattcaaa agaccgacad	cggggtgtcg	ctccagacct	atgatgactt	gttagccaaa	1020
gactgccact gcata					1035

<210> 220

<211>345

<212> PRT

10 <213> Secuencia artificial

<220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

15

5

<400> 220

Ile Phe Pro Pro Lys Pro Lys Asp Val Leu Thr Ile Thr Leu Thr Pro 20 25 30

Lys Val Thr Cys Val Val Val Asp Ile Ser Lys Asp Asp Pro Glu Val Gln Phe Ser Trp Phe Val Asp Asp Val Glu Val His Thr Ala Gln Thr 55 Gln Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Ser Val Ser Glu Leu Pro Ile Met His Gln Asp Trp Leu Asn Gly Lys Glu Phe Lys Cys Arg Val Asn Ser Ala Ala Phe Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Arg Pro Lys Ala Pro Gln Val Tyr Thr Ile Pro Pro Pro Lys Glu Gln Met Ala Lys Asp Lys Val Ser Leu Thr Cys Met Ile 130 135 Thr Asp Phe Phe Pro Glu Asp Ile Thr Val Glu Trp Gln Trp Asn Gly 145 Gln Pro Ala Glu Asn Tyr Lys Asn Thr Gln Pro Ile Met Asp Thr Asp 165 170 Gly Ser Tyr Phe Val Tyr Ser Lys Leu Asn Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser Val Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His Ser Pro Gly Lys Ile Glu Gly Arg Met Asp Gly Gly Gly Ser Ala Arg Asn Gly Asp His Cys 230 235 Pro Leu Gly Pro Gly Arg Cys Cys Arg Leu His Thr Val Arg Ala Ser 245 250 Leu Glu Asp Leu Gly Trp Ala Asp Trp Val Leu Ser Pro Arg Glu Val 260 265 Gln Val Thr Met Cys Ile Gly Ala Cys Pro Ser Gln Phe Arg Ala Ala

275 280 285

Asn Met His Ala Gln Ile Lys Thr Ser Leu His Arg Leu Lys Pro Asp 290 295 300

Thr Val Pro Ala Pro Cys Cys Val Pro Ala Ser Tyr Asn Pro Met Val 305 310 315 320

Leu Ile Gln Lys Thr Asp Thr Gly Val Ser Leu Gln Thr Tyr Asp Asp 325 330 335

Leu Leu Ala Lys Asp Cys His Cys Ile 340 345

<210> 221

<211> 1026

5 <212> ADN

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

60	tatctttccc	cctccgtgtt	ttgggcggac	tccggagctg	cttgccctcc	tcgaaaccca
120	cgtagtagtg	aggtcacttg	cggacgccgg	tatgatctca	aagataccct	ccgaagccga
180	cgagcaagtg	atatcaataa	ttcacctggt	cgaagtccag	aggatgaccc	gatgtgtcgg
240	ggtcgtcagc	ccacaattcg	cagttcaact	tagggagcag	ggcccccact	aggacagcga
300	taaggtgcat	agttcaagtg	cgcggaaaag	ggactggctc	tcgctcatga	actttgccca
360	gcagccgctc	aggcgcgagg	acaatctcga	tattgaaaag	tgccagcgcc	aacaaggcat
420	ctcagtaagc	tgtcgtcgcg	agggaagaat	gggacccccg	tgtatacgat	gagcccaaag
480	ggaaaagaat	gcgtagagtg	agcgacatca	tttctaccct	tgattaacgg	cttacgtgca
540	tgggtcgtac	tggattcgga	cccgcggtgc	caagacgact	aggataacta	ggaaaggcgg
600	cgtgttcacg	agaggggtga	tcagaatggc	agtcccgacc	gcaaattgtc	tttctgtata
660	ctcgcggtcc	agaaatcaat	cactacaccc	acttcacaat	tgcacgaagc	tgctccgtga
720	tccgctgggg	gcgattcgtg	gcccaccctc	gtcggctcac	gtggaggagg	ccaggcaaag
780	cgggtggtca	tggaggacct	caggccacgc	cgagacagtc	gctgtcatct	cctggtagat
840	atgtccgcac	gcgtggggga	ctttcgatgt	acaactgcag	tgtccccacg	gactgggtcc
900	tttgcagcca	gactccatgg	attaaggcac	ccacgctcag	cggcgaatac	ttgtacagat
960	actcatgcat	ctcctgtcgt	agctcatata	ctgtgtcccc	ccgcaccttg	gataaagtcc
1020	aggatgtcat	tcgtagcgag	tatgacgacc	gcttcaaacg	gcggcgtgtc	cggacagaca

1026

<210> 222

<211> 342 <212> PRT

5

tgcgcc

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Ser 1	Lys	Pro	Thr	Cys 5	Pro	Pro	Pro	Glu	Leu 10	Leu	Gly	Gly	Pro	Ser 15	Val
Phe	Ile	Phe	Pro 20	Pro	Lys	Pro	Lys	Asp 25	Thr	Leu	Met	Ile	Ser 30	Arg	Thr
Pro	Glu	Val 35	Thr	Cys	Val	Val	Val 40	Asp	Val	Ser	Glu	Asp 45	Asp	Pro	Glu
Val	Gln 50	Phe	Thr	Trp	Tyr	Ile 55	Asn	Asn	Glu	Gln	Val 60	Arg	Thr	Ala	Arg
Pro 65	Pro	Leu	Arg	Glu	Gln 70	Gln	Phe	Asn	Ser	Thr 75	Ile	Arg	Val	Val	Ser 80
Thr	Leu	Pro	Ile	Ala 85	His	Glu	Asp	Trp	Leu 90	Arg	Gly	Lys	Glu	Phe 95	Lys
Cys	Lys	Val	His 100	Asn	Lys	Ala	Leu	Pro 105	Ala	Pro	Ile	Glu	Lys 110	Thr	Ile
Ser	Lys	Ala 115	Arg	Gly	Gln	Pro	Leu 120	Glu	Pro	Lys	Val	Tyr 125	Thr	Met	Gly
Pro	Pro 130	Arg	Glu	Glu	Leu	Ser 135	Ser	Arg	Ser	Val	Ser 140	Leu	Thr	Cys	Met
Ile 145	Asn	Gly	Phe	Tyr	Pro 150	Ser	Asp	Ile	Ser	Val 155	Glu	Trp	Glu	Lys	Asn 160
Gly	Lys	Ala	Glu	Asp 165	Asn	Tyr	Lys	Thr	Thr 170	Pro	Ala	Val	Leu	Asp 175	Ser
Asp	Gly	Ser	Tyr 180	Phe	Leu	Tyr	Ser	Lys 185	Leu	Ser	Val	Pro	Thr 190	Ser	Glu

	Trp	Gln	Arg 195	Gly	Asp	Val	Phe	Thr 200	Cys	Ser	Val	Met	His 205	Glu	Ala	Leu
	His	Asn 210	His	Tyr	Thr	Gln	Lys 215	Ser	Ile	Ser	Arg	Ser 220	Pro	Gly	Lys	Gly
	Gly 225	Gly	Gly	Ser	Ala	His 230	Ala	His	Pro	Arg	Asp 235	Ser	Cys	Pro	Leu	Gly 240
	Pro	Gly	Arg	Cys	Cys 245	His	Leu	Glu	Thr	Val 250	Gln	Ala	Thr	Leu	Glu 255	Asp
	Leu	Gly	Trp	Ser 260	Asp	Trp	Val	Leu	Ser 265	Pro	Arg	Gln	Leu	Gln 270	Leu	Ser
	Met	Cys	Val 275	Gly	Glu	Cys	Pro	His 280	Leu	Tyr	Arg	Ser	Ala 285	Asn	Thr	His
	Ala	Gln 290	Ile	Lys	Ala	Arg	Leu 295	His	Gly	Leu	Gln	Pro 300	Asp	Lys	Val	Pro
	Ala 305	Pro	Cys	Cys	Val	Pro 310	Ser	Ser	Tyr	Thr	Pro 315	Val	Val	Leu	Met	His 320
	Arg	Thr	Asp	Ser	Gly 325	Val	Ser	Leu	Gln	Thr 330	Tyr	Asp	Asp	Leu	Val 335	Ala
	Arg	Gly	Cys	His 340	Cys	Ala										
<210><211><211><212><213>	350 PRT	encia	artifici	al												
<220><221><223>	fuent		cripcio	ón de l	la seci	uencia	artific	cial: po	olipépt	ido sin	ıtético'					
<400>	223															
	Asp 1	Lys	Thr	His	Thr 5	Cys	Pro	Pro	Cys	Pro 10	Ala	Pro	Glu	Leu	Leu 15	Gly
	Gly	Pro	Ser	Val 20	Phe	Leu	Phe	Pro	Pro 25	Lys	Pro	Lys	Asp	Thr 30	Leu	Met
	Ile	Ser	Arg 35	Thr	Pro	Glu	Val	Thr 40	Cys	Val	Val	Val	Asp 45	Val	Ser	His

Glu	Asp 50	Pro	Glu	Val	Lys	Phe 55	Asn	Trp	Tyr	Val	Asp 60	Gly	Val	Glu	Val
His 65	Asn	Ala	Lys	Thr	Lys 70	Pro	Arg	Glu	Glu	Gln 75	Tyr	Asn	Ser	Thr	Tyr 80
Arg	Val	Val	Ser	Val 85	Leu	Thr	Val	Leu	His 90	Gln	Asp	Trp	Leu	Asn 95	Gly
Lys	Glu	Tyr	Lys 100	Cys	Lys	Val	Ser	Asn 105	Lys	Ala	Leu	Pro	Ala 110	Pro	Ile
Glu	Lys	Thr 115	Ile	Ser	Lys	Ala	Lys 120	Gly	Gln	Pro	Arg	Glu 125	Pro	Gln	Val
Tyr	Thr 130	Leu	Pro	Pro	Ser	Arg 135	Glu	Glu	Met	Thr	Lys 140	Asn	Gln	Val	Ser
Leu 145	Thr	Cys	Leu	Val	Lys 150	Gly	Phe	Tyr	Pro	Ser 155	Asp	Ile	Ala	Val	Glu 160
Trp	Glu	Ser	Asn	Gly 165	Gln	Pro	Glu	Asn	Asn 170	Tyr	Lys	Thr	Thr	Pro 175	Pro
Val	Leu	Asp	Ser 180	Asp	Gly	Ser	Phe	Phe 185	Leu	Tyr	Ser	Lys	Leu 190	Thr	Val
Asp	Lys	Ser 195	Arg	Trp	Gln	Gln	Gly 200	Asn	Val	Phe	Ser	Cys 205	Ser	Val	Met
His	Glu 210	Ala	Leu	His	Asn	His 215	Tyr	Thr	Gln	Lys	Ser 220	Leu	Ser	Leu	Ser
Pro 225	Gly	Lys	Ile	Glu	Gly 230	Arg	Met	Asp	Gly	Gly 235	Gly	Gly	Ser	Ala	Arg 240
Asn	Gly	Asp	His	Cys 245	Pro	Leu	Gly	Pro	Gly 250	Arg	Cys	Cys	Arg	Leu 255	His
Thr	Val	Arg	Ala 260	Ser	Leu	Glu	Asp	Leu 265	Gly	Trp	Ala	Asp	Trp 270	Val	Leu
Ser	Pro	A rg 275	Glu	Val	Gln	Val	Thr 280	Met	Cys	Ile	Gly	Ala 285	Cys	Pro	Ser
Gln	Phe 290	Arg	Ala	Ala	Asn	Met 295	His	Ala	Gln	Ile	Lys 300	Thr	Ser	Leu	His

Arg Leu Lys Pro Asp Thr Val Pro Ala Pro Cys Cys Val Pro Ala Ser

315

310

305

Tyr Asn Pro Met Val Leu Ile Gln Lys Thr Asp Thr Gly Val Ser Leu 325 330 Gln Thr Tyr Asp Asp Leu Leu Ala Lys Asp Cys His Cys Ile <210> 224 <211>344 <212> PRT 5 <213> Secuencia artificial <220> <221> fuente 10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético" <400> 224 Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly 10 Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 70 Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 100 105 Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 125 120 Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser 130 135 140 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 150 155 15

	Trp	Glu	Ser	Asn	Gly 165	Gln	Pro	Glu	Asn	Asn 170	Tyr	Lys	Thr	Thr	Pro 175	Pro
	Val	Leu	Asp	Ser 180	Asp	Gly	Ser	Phe	Phe 185	Leu	Tyr	Ser	Lys	Leu 190	Thr	Val
	Asp	Lys	Ser 195	Arg	Trp	Gln	Gln	Gly 200	Asn	Val	Phe	Ser	Cys 205	Ser	Val	Met
	His	Glu 210	Ala	Leu	His	Asn	His 215	Tyr	Thr	Gln	Lys	Ser 220	Leu	Ser	Leu	Ser
	Pro 225	Gly	Lys	Gly	Gly	Gly 230	Gly	Ser	Ala	Arg	Asn 235	Gly	Asp	His	Cys	Pro 240
	Leu	Gly	Pro	Gly	Arg 245	Cys	Cys	Arg	Leu	His 250	Thr	Val	Arg	Ala	Ser 255	Leu
	Glu	Asp	Leu	Gly 260	Trp	Ala	Asp	Trp	Val 265	Leu	Ser	Pro	Arg	Glu 270	Val	Gln
	Val	Thr	Met 275	Cys	Ile	Gly	Ala	Cys 280	Pro	Ser	Gln	Phe	Arg 285	Ala	Ala	Asn
	Met	His 290	Ala	Gln	Ile	Lys	Thr 295	Ser	Leu	His	Arg	Leu 300	Lys	Pro	Asp	Thr
	Val 305	Pro	Ala	Pro	Cys	Cys 310	Val	Pro	Ala	Ser	Tyr 315	Asn	Pro	Met	Val	Leu 320
	Ile	Gln	Lys	Thr	Asp 325	Thr	Gly	Val	Ser	Leu 330	Gln	Thr	Tyr	Asp	Asp 335	Leu
	Leu	Ala	Lys	Asp 340	Cys	His	Cys	Ile								
<210> 211> 2211> 2212> 2213> 2	22 ADN	encia a	artificia	al												
<220> <221> 1 <223> 1			cripció	n de la	a secu	encia	artifici	al: cet	oador :	sintétio	co"					
<400> a		actata	agg gc	;							22					
<210> 2 <211> 2 <212> 2	21															

	<213> Secuencia artificial
5	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: cebador sintético"
	<400> 226 tatgcaaggc ttacaaccac a 2°
10	<210> 227 <211> 21 <212> ADN <213> Secuencia artificial
15	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: cebador sintético"
20	<400> 227 aggacagggg ttgattgttg a 2
25	<210> 228 <211> 27 <212> ADN <213> Secuencia artificial
	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: cebador sintético"
30	<400> 228 ctcattcctg ttgaagctct tgacaat 27
35	<210> 229 <211> 23 <212> ADN <213> Secuencia artificial
40	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: cebador sintético"
45	<400> 229 aagcagtggt atcaacgcag agt
45	<210> 230 <211> 23 <212> ADN <213> Secuencia artificial
50	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: cebador sintético"
55	<400> 230 cgactgaggc acctccagat gtt 23
60	<210> 231 <211> 17 <212> ADN <213> Secuencia artificial
65	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: cebador sintético"

	<400> 231 gtaaaacgac ggccagt 17
5	<210> 232 <211> 18 <212> ADN <213> Secuencia artificial
10	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: cebador sintético"
15	<400> 232 caggaaacag ctatgacc 18
	<210> 233 <211> 45 <212> ADN <213> Secuencia artificial
20	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: cebador sintético"
25	<400> 233 ctaatacgac tcactatagg gcaagcagtg gtatcaacgc agagt 45
30	<210> 234 <211> 7 <212> PRT <213> Secuencia artificial
35	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético"
	<400> 234
	Gly Tyr Thr Phe Ser Asp Tyr 1 5
40	<210> 235 <211> 8 <212> PRT <213> Secuencia artificial
45	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial: péptido sintético"
50	<400> 235
	Gly Tyr Thr Phe Ser Asp Tyr Asr 1 5
55	<210> 236 <211> 17 <212> PRT <213> Secuencia artificial
60	<220> <221> fuente <223> /nota="Descripción de la secuencia artificial; péptido sintético"

```
<400> 236
              Gln Ile Asn Pro Tyr Asn His Leu Ile Phe Phe Asn Gln Lys Phe Gln
              Gly
5
        <210> 237
        <211> 17
<212> PRT
        <213> Secuencia artificial
10
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 237
15
              Gln Ile Asn Pro Asn Asn Gly Leu Ile Phe Phe Asn Gln Lys Phe Gln
              Gly
        <210> 238
        <211> 17
20
        <212> PRT
        <213> Secuencia artificial
        <220>
        <221> fuente
25
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 238
              Gln Ile Asn Pro Asn Asn Gly Leu Ile Phe Phe Asn Gln Lys Phe Lys
              Gly
30
        <210> 239
        <211>17
        <212> PRT
        <213> Secuencia artificial
35
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
40
        <400> 239
              Gln Ile Asn Pro Tyr Asn His Leu Ile Phe Phe Asn Gln Lys Phe Lys
                                                            10
              Gly
        <210> 240
45
        <211>6
        <212> PRT
        <213> Secuencia artificial
```

```
<220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
 5
        <400> 240
                                           Asn Pro Tyr Asn His Leu
                                                                 5
10
        <210> 241
        <211>6
        <212> PRT
        <213> Secuencia artificial
        <220>
15
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 241
20
                                           Asn Pro Asn Asn Gly Leu
                                                                 5
        <210> 242
        <211>8
25
        <212> PRT
        <213> Secuencia artificial
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
30
        <400> 242
                                      Ile Asn Pro Tyr Asn His Leu Ile
                                                           5
35
        <210> 243
        <211>8
        <212> PRT
        <213> Secuencia artificial
40
        <220>
        <221> fuente
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
45
        <400> 243
                                      Ile Asn Pro Asn Asn Gly Leu Ile
        <210> 244
50
        <211>9
        <212> PRT
        <213> Secuencia artificial
        <220>
        <221> fuente
55
        <223> /nota="Descripción de la secuencia artificial: péptido sintético"
        <400> 244
```

Gln His Phe Trp Ser Asp Pro Tyr Thr 1 5

5	<210> 245 <211> 360 <212> ADN <213> Secue	ncia artificial					
10	<220> <221> fuente <223> /nota= <400> 245		la secuencia artii	ficial: polinucleóti	ido sintético"		
	caggtccagc	ttgtgcaatc	gggagcggaa	gtgaagaaac	cgggagcgtc	ggtaaaagtc	60
	tcgtgcaaag	cgtcggggta	tacgtttacg	gactataaca	tggactgggt	gcgccaagcg	120
	cctggacaga	gccttgaatg	gatggggcag	attaatccgt	acaatcacct	gatcttcttt	180
	aatcagaaat	tccagggaag	ggtaacgctg	acgacagaca	cgtcaacatc	gacggcctat	240
	atggaattgc	ggtcgttgcg	atcagatgat	acggcggtct	actattgtgc	gagggaggcg	300
	attacgacgg	tgggagcgat	ggattattgg	ggacagggga	cgttggtaac	ggtatcgtcg	360
15	<210> 246 <211> 120 <212> PRT <213> Secue	noin artificial					
20	<220> <221> fuente		la secuencia artil	ficial: polipéptido	sintético"		
25	<400> 246						

	Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala	
	Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr	
	Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Ser	Leu 45	Glu	Trp	Met	
	Gly	Gln 50	Ile	Asn	Pro	Tyr	Asn 55	His	Leu	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe	
	Gln 65	Gly	Arg	Val	Thr	Leu 70	Thr	Thr	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Tyr 80	
	Met	Glu	Leu	Arg	Ser 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys	
	Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln	
	Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120									
<210> 2 <211> 3 <212> 2 <213> 3	360 ADN	encia a	artificia	ıl													
<220> <221>1 <223>			cripció	n de la	ı secu	encia	artifici	al: pol	inucle	ótido s	sintétic	:o"					
<400> 2	247																
caggt	tcca	gc t	tgtgc	caato	ggg	agcg	gaa (gtgaa	agaaa	c cg	ggag	cgtc	ggta	aaaag	rtc		60
tcgt	gcaa	ag c	gtcgc	ggta	tac	gttt	acg (gacta	ataac	a tg	gact	gggt	gcgc	ccaag	rcg		120
cctg	gaca	ga g	cctto	gaatg	gat	gggg	cag a	attaa	atccg	ra at	aatg	gact	gato	ettet	tt		180
aatca	agaa	at t	ccago	gaag	ggt	aacg	ctg a	acgao	cagac	a cg	tcaa	catc	gaco	ggcct	at		240
atgga	aatt	gc g	gtcgt	tgcg	atc	agat	gat a	acggo	eggte	t ac	tatt	gtgc	gago	gagg	cg		300
attad	cgac	gg to	gggaç	gcgat	gga	ttati	tgg (ggaca	agggg	a cg	ttgg	taac	ggta	tcgt	.cg		360
<210> 2 <211> 3 <212> 3 <213> 3	120 PRT	encia a	artificia	ıl													
<220> <221>1	fuente)															

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético" <400> 248 Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 10 Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 25 Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Ser Leu Glu Trp Met 40 Gly Gln Ile Asn Pro Asn Asn Gly Leu Ile Phe Phe Asn Gln Lys Phe 55 Gln Gly Arg Val Thr Leu Thr Thr Asp Thr Ser Thr Ser Thr Ala Tyr 70 Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 Ala Arg Glu Ala Ile Thr Thr Val Gly Ala Met Asp Tyr Trp Gly Gln 105 Gly Thr Leu Val Thr Val Ser Ser 115 <210> 249 <211>360 <212> ADN <213> Secuencia artificial <220> <221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético" <400> 249 60 caagtacagc ttgtacagtc gggagcggaa gtcaagaaac cgggatcgtc ggtcaaagtg tcgtgtaaag cgtcgggata tacgtttagc gactataaca tggattgggt gcgacaagcg 120 cctgggcagg gacttgaatg gatgggtcag atcaatccga ataatgggct gatctttttc 180 aatcagaagt ttaaagggag ggtaacgctg acggcggata aaagcacgtc aacggcgtat 240 atggagttgt cgtcgttgcg gtcggaggac acggcggtct attactgcgc gagggaagcg 300 360 attacgacgg tgggagcgat ggattattgg gggcagggaa cgcttgtaac ggtgtcatcg <210> 250

5

10

15

20

<211> 120

	<212> PRT <213> Secuencia artificial																
5	<220> <221> <223>			cripció	n de la	ı secu	encia :	artificia	al: poli	péptid	o sinte	ético"					
	<400>	250															
		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Ser 30	Asp	Tyr
		Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
		Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Leu	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
		Lys 65	Gly	Arg	Val	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
		Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
10		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
15	<210><211><211><212><213>	360 ADN	encia a	artificia	ıl												
	<220> <221> <223>	fuente)			ı secu	encia :	artificia	al: poli	nucled	ótido s	intétic	o"				
20	<400>	251															

caag	rtaca	.gc t	tgta	cagt	c gg	gagc	ggaa	gtca	aagaa	ac o	eggga	tcgt	c gg	tcaa	agtg	
tcgt	gtaa	ag c	gtcg	ggat	a ta	cgtt	tagc	gact	ataa	aca t	ggat	tggg	t ga	gaca	agcg	
cctg	ggca	gg g	actt	gaat	g ga	tggg	tcag	atca	aatco	gt a	caat	cacc	t ga	tctt	tttc	
aato	agaa	.gt t	taaa	ggga	g gg	taac	gctg	acg	gcgga	ata a	aago	acgt	c aa	.cggc	gtat	
atgg	agtt	gt c	gtcg	ttgc	g gt	cgga	ggac	acg	gcggt	ct a	attac	tgcg	c ga	.ggga	agcg	
atta	cgac	gg t	ggga	gcga [.]	t gg	atta	ttgg	ggg	caggo	gaa c	egctt	gtaa	.c gg	tgtc	atcg	
<210><211><211><212><213>	120 PRT	encia	artifici	al												
<220> <221> <223>	fuent		cripcić	on de la	a secı	ıencia	artific	ial: po	lipépti	do sin	tético"					
<400>	252															
	Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
	Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Ser 30	Asp	Tyr
	Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
	Gly	Gln 50	Ile	Asn	Pro	Tyr	Asn 55	His	Leu	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
	Lys 65	Gly	Arg	Val	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
	Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
	Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
	Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
<210><211><211><212><213>	321 ADN	encia	artifici	al												

<220>

<221> fuente <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 253

gacatccaaa	tgacccagtc	gccgtcgtcg	ctttcagcgt	cggtagggga	tcgggtcaca	60
attacgtgcc	gaacgtcaga	gaatttgcat	aactacctcg	cgtggtatca	gcagaagccc	120
gggaagtcac	cgaaactcct	tatctacgat	gcgaaaacgc	tggcggatgg	agtgccgtcg	180
agattctcgg	gaagcggatc	cggtacggac	tatacgctta	cgatctcatc	gctccagccc	240
gaggactttg	cgacgtacta	ttgtcagcat	ttttggtcgg	acccctacac	atttgggcag	300
gggaccaagt	tggaaatcaa	g				321

5

<210> 254

<211> 107

<212> PRT

<213> Secuencia artificial

10

<220>

<221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

15 <400> 254

> Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 5 10

> Asp Arg Val Thr Ile Thr Cys Arg Thr Ser Glu Asn Leu His Asn Tyr 20 25

> Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ser Pro Lys Leu Leu Ile 35 40 45

> Tyr Asp Ala Lys Thr Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly 50 55

> Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 80

> Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Phe Trp Ser Asp Pro Tyr 85 95

Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys 100

<210> 255 20

<211> 1350

<212> ADN

<213> Secuencia artificial

<220>

25 <221> fuente

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 255

caggtccagc	ttgtgcaatc	gggagcggaa	gtgaagaaac	cgggagcgtc	ggtaaaagtc	60
tcgtgcaaag	cgtcggggta	tacgtttacg	gactataaca	tggactgggt	gcgccaagcg	120
cctggacaga	gccttgaatg	gatggggcag	attaatccgt	acaatcacct	gatcttcttt	180
aatcagaaat	tccagggaag	ggtaacgctg	acgacagaca	cgtcaacatc	gacggcctat	240
atggaattgc	ggtcgttgcg	atcagatgat	acggcggtct	actattgtgc	gagggaggcg	300
attacgacgg	tgggagcgat	ggattattgg	ggacagggga	cgttggtaac	ggtatcgtcg	360
gcctcaacaa	aaggaccaag	tgtgttccca	ctcgccccta	gcagcaagag	tacatccggg	420
ggcactgcag	cactcggctg	cctcgtcaag	gattatttc	cagagccagt	aaccgtgagc	480
tggaacagtg	gagcactcac	ttctggtgtc	catacttttc	ctgctgtcct	gcaaagctct	540
ggcctgtact	cactcagctc	cgtcgtgacc	gtgccatctt	catctctggg	cactcagacc	600
tacatctgta	atgtaaacca	caagcctagc	aatactaagg	tcgataagcg	ggtggaaccc	660
aagagctgcg	acaagactca	cacttgtccc	ccatgccctg	cccctgaact	tctgggcggt	720
cccagcgtct	ttttgttccc	accaaagcct	aaagatactc	tgatgataag	tagaacaccc	780
gaggtgacat	gtgttgttgt	agacgtttcc	cacgaggacc	cagaggttaa	gttcaactgg	840
tacgttgatg	gagtcgaagt	acataatgct	aagaccaagc	ctagagagga	gcagtataat	900
agtacatacc	gtgtagtcag	tgttctcaca	gtgctgcacc	aagactggct	caacggcaaa	960
gaatacaaat	gcaaagtgtc	caacaaagca	ctcccagccc	ctatcgagaa	gactattagt	1020
aaggcaaagg	ggcagcctcg	tgaaccacag	gtgtacactc	tgccacccag	tagagaggaa	1080
atgacaaaga	accaagtctc	attgacctgc	ctggtgaaag	gcttctaccc	cagcgacatc	1140
gccgttgagt	gggagagtaa	cggtcagcct	gagaacaatt	acaagacaac	cccccagtg	1200
ctggatagtg	acgggtcttt	ctttctgtac	agtaagctga	ctgtggacaa	gtcccgctgg	1260
cagcagggta	acgtcttcag	ctgttccgtg	atgcacgagg	cattgcacaa	ccactacacc	1320
cagaagtcac	tgagcctgag	cccagggaag				1350

5

<210> 256

<211> 450 <212> PRT

<213> Secuencia artificial

10

<220>

<221> fuente <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr
Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Ser	Leu 45	Glu	Trp	Met
Gly	Gln 50	Ile	Asn	Pro	Tyr	Asn 55	His	Leu	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
Gln 65	Gly	Arg	Val	Thr	Leu 70	Thr	Thr	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met	Glu	Leu	Arg	Ser 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Arg	Val	Glu	Pro 220	Lys	Ser	Cys	Asp
Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gly 240
Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile

Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 305 310 315 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 390 395 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 440 Gly Lys 450

<210> 257

<211> 1350

<212> ADN

<213> Secuencia artificial

<220>

10 <221> fuente

<223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

```
60
caggtccagc ttgtgcaatc gggagcggaa gtgaagaaac cgggagcgtc ggtaaaagtc
                                                                        120
tcgtgcaaag cgtcggggta tacgtttacg gactataaca tggactgggt gcgccaagcg
                                                                        180
cctggacaga gccttgaatg gatggggcag attaatccga ataatggact gatcttcttt
aatcagaaat tccagggaag ggtaacgctg acgacagaca cgtcaacatc gacggcctat
                                                                        240
atggaattgc ggtcgttgcg atcagatgat acggcggtct actattgtgc gagggaggcg
                                                                        300
attacgacgg tgggagcgat ggattattgg ggacagggga cgttggtaac ggtatcgtcg
                                                                        360
                                                                        420
gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
                                                                        480
ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
                                                                        540
                                                                        600
ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
                                                                        660
aagagctgcg acaagactca cacttgtccc ccatgccctg cccctgaact tctgggcggt
                                                                        720
                                                                        780
cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
                                                                        840
gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
                                                                        900
tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
                                                                        960
agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
                                                                       1020
                                                                       1080
aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
                                                                       1140
atgacaaaga accaagtete attgacetge etggtgaaag gettetacee eagegacate
                                                                       1200
gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac cccccagtg
                                                                       1260
ctgqatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
cagcagggta acqtcttcag ctqttccqtq atqcacqagg cattqcacaa ccactacacc
                                                                       1320
                                                                       1350
cagaagtcac tgagcctgag cccagggaag
```

```
<210> 258
5
```

<400> 258

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 10

15

<211> 450

<212> PRT

<213> Secuencia artificial

<220>

¹⁰ <221> fuente

<223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Tyr
Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Ser	Leu 45	Glu	Trp	Met
Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Leu	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
Gln 65	Gly	Arg	Val	Thr	Leu 70	Thr	Thr	Asp	Thr	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met	Glu	Leu	Arg	Ser 85	Leu	Arg	Ser	Asp	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Arg	Val	Glu	Pro 220	Lys	Ser	Cys	Asp
Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gly 240
Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	His	Glu

Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 295 Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 315 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 385 390 395 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 430 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445 Gly Lys 450

<210> 259 <211> 1350

<212> ADN

<213> Secuencia artificial

<220>

5

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

```
60
caagtacagc ttgtacagtc gggagcggaa gtcaagaaac cgggatcgtc ggtcaaagtg
                                                                        120
tcgtgtaaag cgtcgggata tacgtttagc gactataaca tggattgggt gcgacaagcg
cctgggcagg gacttgaatg gatgggtcag atcaatccga ataatgggct gatctttttc
                                                                        180
aatcagaagt ttaaagggag ggtaacgctg acggcggata aaagcacgtc aacggcgtat
                                                                        240
                                                                        300
atggagttgt cgtcgttgcg gtcggaggac acggcggtct attactgcgc gagggaagcg
                                                                        360
attacgacgg tgggagcgat ggattattgg gggcagggaa cgcttgtaac ggtgtcatcg
gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
                                                                        420
ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
                                                                        480
                                                                        540
tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
                                                                        600
ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
                                                                        660
aagagctgcg acaagactca cacttgtccc ccatgccctg cccctgaact tctgggcggt
                                                                        720
                                                                        780
cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
qaqqtqacat qtqttqttqt agacqtttcc cacqaqqacc caqaqqttaa gttcaactqq
                                                                        840
                                                                        900
tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
                                                                        960
agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
                                                                       1020
                                                                       1080
aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
                                                                       1140
atgacaaaga accaagtoto attgacotgo otggtgaaag gottotacoo cagogacato
gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac ccccccagtg
                                                                       1200
ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
                                                                       1260
cagcagggta acgtcttcag ctgttccgtg atgcacgagg cattgcacaa ccactacacc
                                                                       1320
cagaagtcac tgagcctgag cccagggaag
                                                                       1350
```

```
<210> 260
```

5

<211> 450

<212> PRT

<213> Secuencia artificial

<220>

<221> fuente

^{10 &}lt;223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 260

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ser Asp Tyr 20 25 30

Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
Gly	Gln 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Leu	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
Lys 65	Gly	Arg	Val	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Arg	Val	Glu	Pro 220	Lys	Ser	Cys	Asp
Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gly 240
Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	His	Glu
Asp	Pro	Glu 275	Val	Lys	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His

Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 295 Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 310 315 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 345 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 395 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 Gly Lys 450

<210> 261

<211> 1350

<212> ADN

<213> Secuencia artificial

<220>

5

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 261

```
caagtacagc ttgtacagtc gggagcggaa gtcaagaaac cgggatcgtc ggtcaaagtg
                                                                        60
tcgtgtaaag cgtcgggata tacgtttagc gactataaca tggattgggt gcgacaagcg
                                                                       120
                                                                       180
cctgggcagg gacttgaatg gatgggtcag atcaatccgt acaatcacct gatctttttc
                                                                       240
aatcagaagt ttaaagggag ggtaacgctg acggcggata aaagcacgtc aacggcgtat
                                                                       300
atggagttgt cgtcgttgcg gtcggaggac acggcggtct attactgcgc gagggaagcg
                                                                       360
attacgacgg tgggagcgat ggattattgg gggcagggaa cgcttgtaac ggtgtcatcg
gcctcaacaa aaggaccaag tgtgttccca ctcgccccta gcagcaagag tacatccggg
                                                                       420
ggcactgcag cactcggctg cctcgtcaag gattattttc cagagccagt aaccgtgagc
                                                                       480
tggaacagtg gagcactcac ttctggtgtc catacttttc ctgctgtcct gcaaagctct
                                                                       540
                                                                       600
ggcctgtact cactcagctc cgtcgtgacc gtgccatctt catctctggg cactcagacc
                                                                       660
tacatctgta atgtaaacca caagcctagc aatactaagg tcgataagcg ggtggaaccc
aagagetgeg acaagactca caettgteee ceatgeeetg eeeetgaact tetgggeggt
                                                                       720
                                                                       780
cccagcgtct ttttgttccc accaaagcct aaagatactc tgatgataag tagaacaccc
gaggtgacat gtgttgttgt agacgtttcc cacgaggacc cagaggttaa gttcaactgg
                                                                       840
tacgttgatg gagtcgaagt acataatgct aagaccaagc ctagagagga gcagtataat
                                                                       900
agtacatacc gtgtagtcag tgttctcaca gtgctgcacc aagactggct caacggcaaa
                                                                       960
                                                                      1020
gaatacaaat gcaaagtgtc caacaaagca ctcccagccc ctatcgagaa gactattagt
                                                                      1080
aaggcaaagg ggcagcctcg tgaaccacag gtgtacactc tgccacccag tagagaggaa
                                                                      1140
atgacaaaga accaagtctc attgacctgc ctggtgaaag gcttctaccc cagcgacatc
                                                                      1200
gccgttgagt gggagagtaa cggtcagcct gagaacaatt acaagacaac ccccccagtg
ctggatagtg acgggtcttt ctttctgtac agtaagctga ctgtggacaa gtcccgctgg
                                                                      1260
cagcagggta acqtcttcag ctqttccqtq atqcacqagq cattqcacaa ccactacacc
                                                                      1320
                                                                      1350
cagaagtcac tgagcctgag cccagggaag
```

5

<210> 262

<211> 450

<212> PRT

<213> Secuencia artificial

<220>

<221> fuente

^{10 &}lt;223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 262

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Ser Asp Tyr 20 25 30

Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly	Gln 50	Ile	Asn	Pro	Tyr	Asn 55	His	Leu	Ile	Phe	Phe 60	Asn	Gln	Lys	Phe
Lys 65	Gly	Arg	Val	Thr	Leu 70	Thr	Ala	Asp	Lys	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
Ala	Arg	Glu	Ala 100	Ile	Thr	Thr	Val	Gly 105	Ala	Met	Asp	Tyr	Trp 110	Gly	Gln
Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
Leu 145	Gly	Суѕ	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
Pro	Ser 210		Thr	Lys		Asp 215			Val	Glu	Pro 220	_	Ser	Cys	Asp
Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Leu	Leu	Gly	Gly 240
Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	His	Glu
Asp	Pro	Glu 275	Val	Lys	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
Asn	Ala 290	Lys	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	Asn 300	Ser	Thr	Tyr	Arg

Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 310 315 Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 385 390 395 Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 Gly Lys 450

<210> 263

<211>642

5 <212> ADN

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polinucleótido sintético"

<400> 263

gacatccaaa	tgacccagtc	gccgtcgtcg	ctttcagcgt	cggtagggga	tcgggtcaca	60
attacgtgcc	gaacgtcaga	gaatttgcat	aactacctcg	cgtggtatca	gcagaagccc	120
gggaagtcac	cgaaactcct	tatctacgat	gcgaaaacgc	tggcggatgg	agtgccgtcg	180
agattctcgg	gaagcggatc	cggtacggac	tatacgctta	cgatctcatc	gctccagccc	240
gaggactttg	cgacgtacta	ttgtcagcat	ttttggtcgg	acccctacac	atttgggcag	300
gggaccaagt	tggaaatcaa	gcgcacagtt	gctgccccca	gcgtgttcat	tttcccacct	360
agcgatgagc	agctgaaaag	cggtactgcc	tctgtcgtat	gcttgctcaa	caacttttac	420
ccacgtgagg	ctaaggtgca	gtggaaagtg	gataatgcac	ttcaatctgg	aaacagtcaa	480
gagtccgtga	cagaacagga	cagcaaagac	tcaacttatt	cactctcttc	caccctgact	540
ctgtccaagg	cagactatga	aaaacacaag	gtatacgcct	gcgaggttac	acaccagggt	600
ttgtctagtc	ctgtcaccaa	gtccttcaat	aggggcgaat	gt		642

<210> 264 <211> 214 <212> PRT 5

<213> Secuencia artificial

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: polipéptido sintético"

<400> 264

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Thr Ser Glu Asn Leu His Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ser Pro Lys Leu Leu Ile Tyr Asp Ala Lys Thr Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Thr Leu Thr Ile Ser Ser Leu Gln Pro 75 Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Phe Trp Ser Asp Pro Tyr Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 105 Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 185 Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 200 Phe Asn Arg Gly Glu Cys

<210> 265

<211>4

5 <212> PRT

<213> Secuencia artificial

210

<220>

<221> fuente

10 <223> /nota="Descripción de la secuencia artificial: péptido sintético"

<400> 265

Gly Gly Gly Gly

1

5

<210> 266
<211> 6
<212> PRT
<213> Secuencia artificial

10

<220>
<221> fuente
<223> /nota="Descripción de la secuencia artificial: Marcador 6xHis sintético"

15 <400> 266

His His His His His His 5

REIVINDICACIONES

- 1. Un anticuerpo aislado que se une al GDF15 humano, que comprende una región variable de una cadena pesada de una inmunoglobulina y una región variable de la cadena ligera de una inmunoglobulina que comprende una secuencia de aminoácidos seleccionada entre el grupo que consiste en:
 - (a) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 248 (Hu01G06 IGHV1-18 F2) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 254 (Hu01 G06 IGKV1-39 F2);
- 10 (b) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 250 (Hu01G06 IGHV1-69 F1) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01G06 IGKV1-39 F1);

15

30

40

55

65

- (c) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 40 (01G06, Ch01G06 quimérica) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 76 (01G06, Ch01G06 quimérica);
- (d) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 54 (Hu01G06 IGHV1-18) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01G06 IGKV1-39);
- (e) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 56 (Hu01G06 IGHV1-69) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 90 (Hu01 G06 IGKV1-39);
 - (f) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 246 (Hu01G06 IGHV1-18 F1) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01 G06 IGKV1-39 F1);
- 25 (g) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 252 (Hu01G06 IGHV1-69 F2) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 92 (Hu01 G06 IGKV1-39 F1); y (h) una región variable de la cadena pesada de una inmunoglobulina que comprende la secuencia de
 - aminoácidos de SEQ ID NO: 252 (Hu01G06 IGHV1-69 F2) y una región variable de la cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 254 (Hu01G06 IGKV1-39 F2).
 - 2. El anticuerpo aislado de la reivindicación 1 que comprende una cadena pesada de una inmunoglobulina y una cadena ligera de una inmunoglobulina seleccionada entre el grupo que consiste en:
- (a) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 258 (Hu01G06 IGHV1-18 F2) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 264 (Hu01G06 IGKV1-39 F2);
 - (b) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 260 (Hu01G06 IGHV1-69 F1) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 208 (Hu01G06 IGKV1-39 F1);
 - (c) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 176 (Ch01G06 quimérica) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 204 (Ch01G06 quimérica);
- (d) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO:
 45 (Hu01G06 IGHV1-18) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 206 (Hu01G06 IGKV1-39);
 - (e) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 180 (Hu01G06 IGHV1-69) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 206 (Hu01G06 IGKV1-39);
- (f) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 256 (Hu01G06 IGHV1-18 F1) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 208 (Hu01G06 IGKV1-39 F1);
 - (g) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 262 (Hu01G06 IGHV1-69 F2) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 208 (Hu01G06 IGKV1-39 F1); y
 - (h) una cadena pesada de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 262 (Hu01G06 IGHV1-69 F2) y una cadena ligera de una inmunoglobulina que comprende la secuencia de aminoácidos de SEQ ID NO: 264 (Hu01G06 IGKV1-39 F2).
- 3. Un ácido nucleico aislado o ácidos nucleicos que comprenden una secuencia de nucleótidos que codifica una cadena pesada de una inmunoglobulina de la reivindicación 1 o 2 y una secuencia de nucleótidos que codifica una cadena ligera de una inmunoglobulina de la reivindicación 1 o 2.
 - 4. Un vector o vectores de expresión que comprenden el ácido nucleico o los ácidos nucleicos de la reivindicación 3.
 - 5. Una célula hospedadora que comprende el vector o los vectores de expresión de la reivindicación 4.

- 6. Un método para producir un anticuerpo que se une al GDF15 humano según la reivindicación 1 o 2 o un fragmento de unión al antígeno del anticuerpo, método que comprende:
- (a) cultivar la célula hospedadora de la reivindicación 5 en unas condiciones tales que la célula hospedadora exprese un polipéptido o polipéptidos que comprenden la cadena pesada de la inmunoglobulina y la cadena ligera de la inmunoglobulina, produciendo así el anticuerpo o el fragmento de unión al antígeno del anticuerpo; y (b) el anticuerpo o el fragmento de unión al antígeno del anticuerpo.
- 10 7. El anticuerpo de la reivindicación 1 o 2, en donde el anticuerpo tiene una KD de 300 pM o menor, de 150 pM o menor o de 100 pM o menor, medida mediante resonancia de plasmón superficial o interferometría de biocapa.
 - 8. Un anticuerpo de una cualquiera de las reivindicaciones 1, 2 o 7 para su uso en el tratamiento de la caquexia y/o de la sarcopenia en un mamífero.
- 9. El anticuerpo para el uso según la reivindicación 8, en donde el uso comprende adicionalmente la administración de un segundo agente al mamífero en necesidad del mismo, en donde el segundo agente se selecciona entre el grupo que consiste en un inhibidor de la Activina-A, un inhibidor del ActRIIB, un inhibidor de la IL-6, un inhibidor de la IL-6R, un inhibidor del péptido de melanocortina, un inhibidor del receptor de la melanocortina, una grelina, un mimético de la grelina, un agonista del GHS-R1a, un SARM, un inhibidor del TNFα, un inhibidor de la IL-1α, un inhibidor de la miostatina, un betabloqueante y un agente antineoplásico.

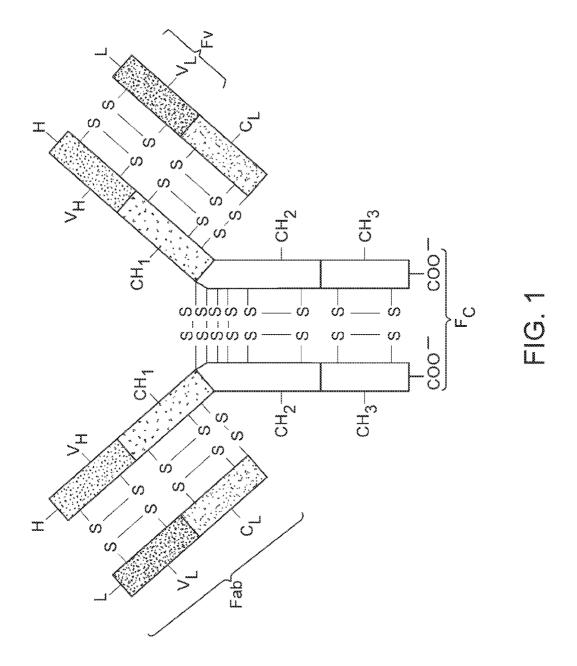


FIG. 2

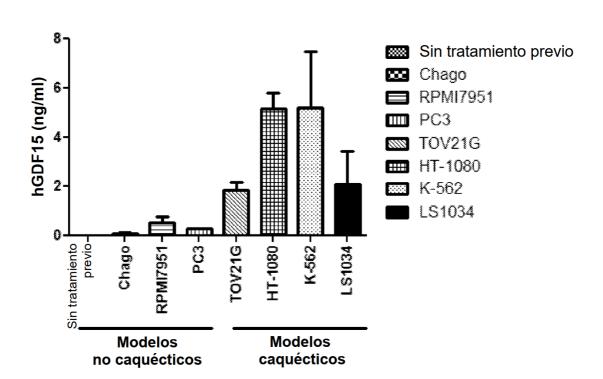


FIG. 3

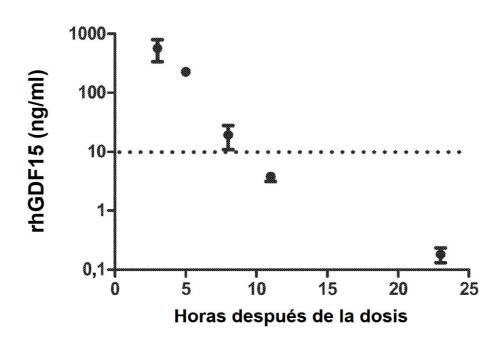


FIG. 4

FIG. 5A

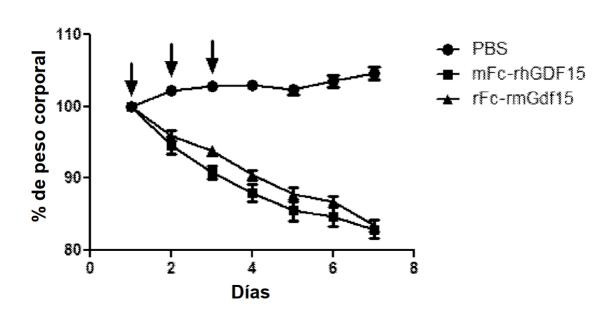


FIG. 5B

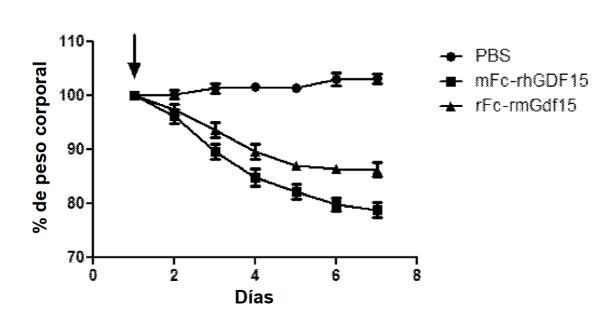


FIG. 6A

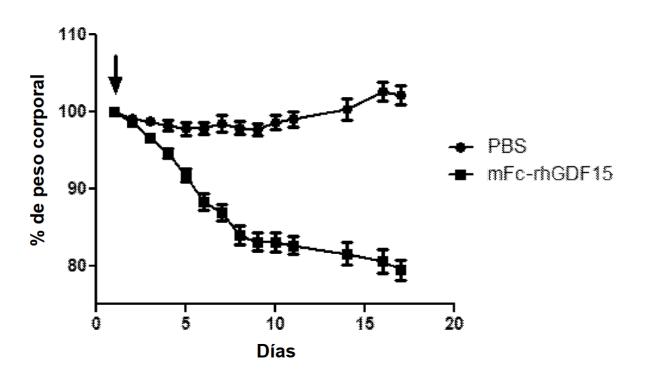


FIG. 6B

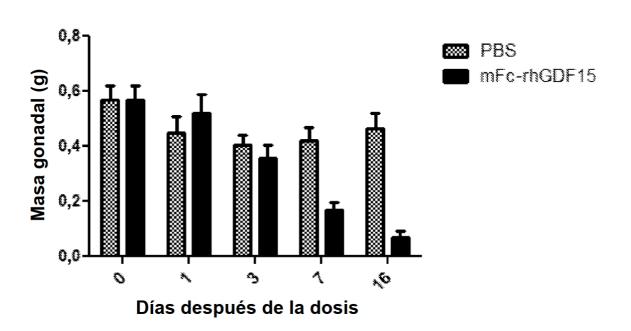


FIG. 6C

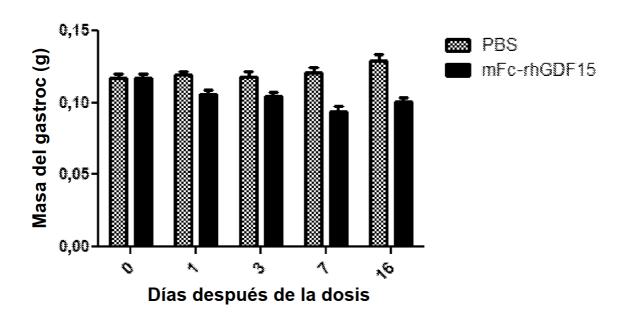
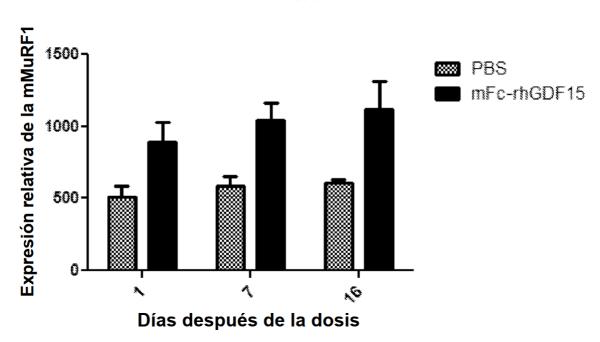



FIG. 6D

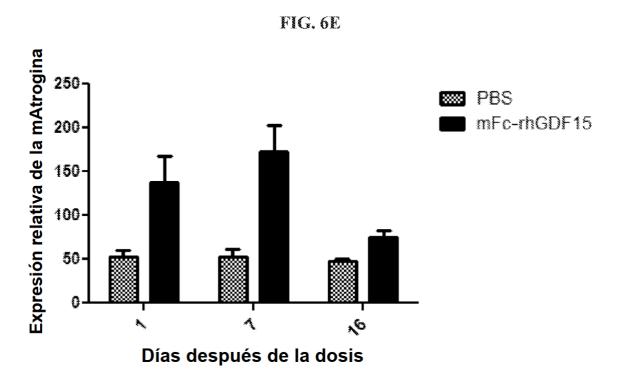


FIG. 7

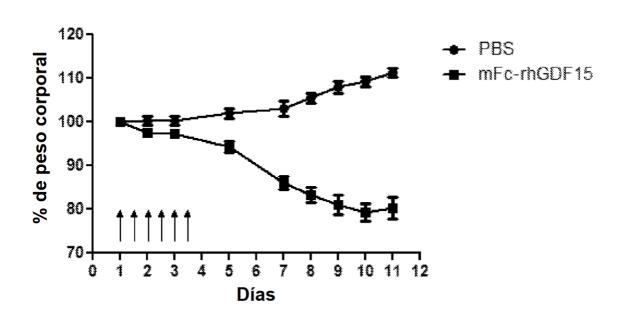


FIG. 8

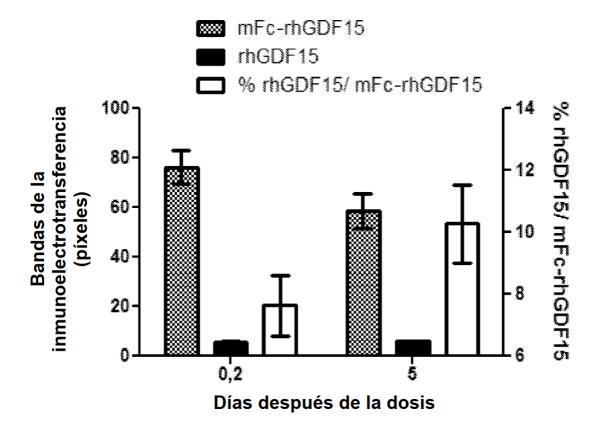


FIG. 9A

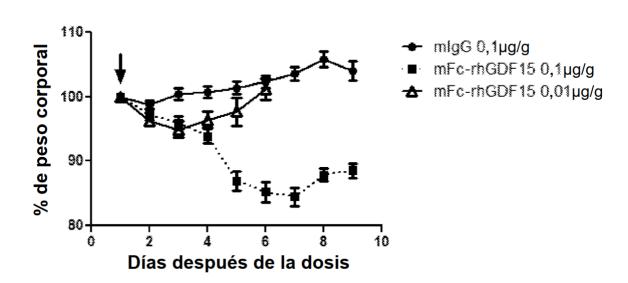
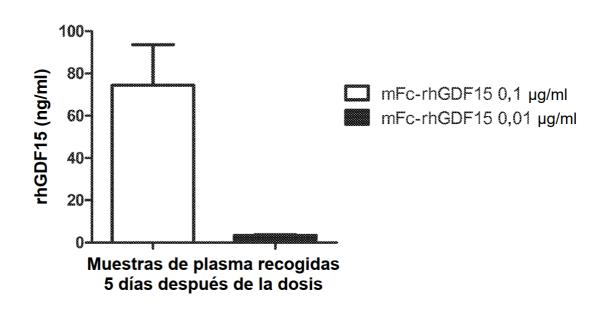



FIG. 9B

Alineaciones de los aminoácidos de la región variable de la cadena pesada de ratón completa

Variable pesada 1 01606 EVLLQ 03605 QVQLQ 04F08 QVTLK	pesada 1 0 EVLLQQSGPELVKPGASV QVQLQQPGAELVKPGASV QVTLKESGPGILQPSQTL	1 0 GPELV GRELV	KPGASVI KPGASVI QPSQTLK	CDR1 2 3 333 4 5 55 6 7 0 555 0 0 22 0 0 0 KIPCKASGYTFTDYNMDWVKQSHGKSLEWIGQINPNNGGIFFNQKFKGKATLT KLSCKASGYTFTSYWIHWVNQRPGQGLEWIGDINPSNGRSKYNEKFKNKATMT SLTCSFSGFSLSTYGMGVTWIRQPSGKGLEWIAHIY-WDDDKRYNPSIKSRITIS	COR 3 3 3 0 5 TETIDYNMD TETISYWIH SELSTYGMG	333 555 555 AB 1DWVKQ 1GVTWIRQ	DR1 333 4 5 55 333 4 5 55 555 0 0 22 AB NMDWVKQSHGKSLEWIGQINPNNGG WIHWVNQRPGQGLEWIGDINPSNGR GMGVTWIRQPSGKGLEWIAHIY-WDDD	5 55 0 22 0 22 GOINPN GOINPE AHIY-M	CI INGG1	CDR2 333 4 5 5 6 7 555 0 0 22 0 0 AB A A A A DYNMD	7 0 0 ATLT ATLT ATMT
08G01 14F11 17B11	EVILQQSGPEVVKPGASV QVTLKESGPGILQPSQTL QVTLKESGPGILQPSQTL 7 8 888 1 0 222	GPGIL GPGIL GPGIL 8		KIPCKASGYTFT DYNMDWVKQSHGKSLEWIGEINPNNGGTFYNQKFKGKATL SLTCSFSGFSLS TYGMGVGWIRQPSGKGLEWLADIW-WDDDKYYNPSLKSRLTI SLTCSFSGFSLS TSGMGVSWIRQPSGKGLEWLAHND-WDDDKRYKSSLKSRLTI CDR3 9 1111 1 1 0 0000 0 1 ABC	TETDYNMD SLSTYGMG SLSTYGMG 1111 1111 000	GMGVSW1RC GMGVSW1RC GMGVSW1RC 1111 00000	SHGKSLEWL SHGKSLEWL PSGKGLEWL 1	ADIW-PA		ETDYNMDWVKQSHGKSLEWIGEINPUNGGTFYNQKFKGKATL LSTYGMGVGWIRQPSGKGLEWLADIW-WDDDKYYNPSLKSRLTI LSTYGMGVSWIRQPSGKGLEWLAHND-WDDDKRYKSSLKSRLTI LSTSGMGVSWIRQPSGKGLEWLAHND-WDDDKRYKSSLKSRLTI CDR3 1111 0000 ABC ABC	S I I I I I I I I I I I I I I I I I I I
01G06 03G05 04F08 06C11 08G01 14F11	VDKSSNTAFMEVRSLTSE ADKSSNTAYMQLSSLTSE KDTSNNQVFLKITSVDTA KDASNNRVFLKITSVDTA VDKSSSTAYMELRSLTSE KDTSSNEVFLKIAIVDTA KDTSRNQVFLKITSVDTA	AFMEV AYMQL VFLKI VFLKI AYMEL VFLKI		DTAVYYCAREALTTVGAMDYWGQGTSVTVSS DSAVYYCAREVLDGAMDYWGQGTSVTVSS DTATYYCAQTGYSNLFAYWGQGTLVTUSA DTATYYCAQRGYDDYWGYWGQGTLVTISA DTAVYYCAREALTTVGAMDYWGQGTSVTVSS DTATYYCARRGHYSAMDYWGQGTSVTVSS DTATYYCARRGHYSAMDYWGQGTSVTVSS	ATTTVG 7LDGAM SYSNLE SYDDYM ATTTVG SHYSAM	VGAMDYWGC LFAYWGC YWGYWGC VGAMDYWGC AMDYWGC EGYFDYWGC	GTSVTVSS JGTSVTVSS JGTLVTISA JGTSVTVSS JGTSVTVSS	(SEQ (SEQ (SEQ (SEQ (SEQ (SEQ (SEQ		NO:40) NO:42) NO:46) NO:50) NO:52)	

Alineaciones de los aminoácidos de la CDR de la cadena pesada de ratón

Variable pesada	CDRI				CDR2			
01606	DYNMD	(SEO	HD	NO:1)	QINPNNGGIFFNQKFKG	(SEQ		NO:7)
03G05	HIMIS	(SEQ	TD	NO:2)	DINPSNGRSKYNEKFKN	OES)		NO:8)
04F08	TYGMGVT	(SEQ	TD	NO:3)	HIY-WDDDKRYNPSLKS	(SEQ		NO:9)
06C11	TYGMGVS	(SEQ		NO:4)	HIY-WDDDKRYNPSLKS	(SEQ		NO:9)
08G01	DYNMD	(SEO	HD	NO:1)	EINPNNGGTFYNOKFKG	(SEQ		NO:10)
14F11	TYGMGVG	(SEQ	TD	NO:5)	DIW-WDDDKYYNPSLKS	(SEQ		NO:11)
17B11	TSGMGVS	(SEO	TD	NO:6)	HND-WDDDKRYKSSLKS	(SEQ	П	NO:12)
Variable pesada	CDR3							
01606	EAITTVGAMDY		(SEO	O ID NO:15	_			
03G05	EVLDGAMDY	-DY	(SEQ	OID NO:16				
04F08	TGYSNLFAY	-AY	(SEQ	O ID NO:17	(
06C11	RGYDDYWGY		(SEO	O ID NO:18				
08G01	EAITTVGAMDY	MDY	(SEO	O ID NO:15	_			
14F11	RGHYSAMDY		(SEQ	OID NO:19	_			
17B11	RVGGLEGYFDY	FDY	(SEQ) ID NO:20				

Alineaciones de los aminoácidos de la región variable de la cadena ligera (kappa) de ratón completa

7 0	SGSGSGTQ SGSGSGTD TGSGSGTD SGSGSGTQ TGSGSGTD	
90	DAKTLADGVPSRFSGSGSGTC AASNQGSGVPARFSGSGSGTD SASYRYSGVPDRFTGSGSGTD SASYRYSGVPDRFTGSGSGTC NAKTLADGVPSRFSGSGSGTC SPSYRYSGVPDRFTGSGSGTC YASNLESGVPARFSGSGSGTD	
G 82	YDAKTLAD YSASYRYS YSASYRYS YNAKTLAD YSPSYRYS	
0 0	ENIHNYLAWYQQKQGKSPQLLVYDAKTLADGVPSRFSGSGSGTQ ESVDNYGISFMNWFQQKFGQPPKLLIYAASNQGSGVPARFSGSGTD QNVGTNVAWYQQKLGQSPKTLIYSASYRYSGVPDRFTGSGSGTD QNVGTNVAWFQQKPGQSPKALIYSASYRYSGVPDRFTGSGSGTD GNVGTNVAWYQQKQGKSPQLLVYNAKTLADGVPSRFSGSGTQ QNVGTNVAWYQQKPGQSPKALIYSPSYRYSGVPDRFTGSGSGTD QSVSTSRFSYMHWFQQKPGQAPKLIIKYASNLESGVPARFSGSGSGTD	(SEQ ID NO:76) (SEQ ID NO:78) (SEQ ID NO:80) (SEQ ID NO:84) (SEQ ID NO:84) (SEQ ID NO:86) (SEQ ID NO:86)
CDR1 22222 3 77777 0 ABCD	TITCRASESVDNYGISFMNWFQQRQGRSPQLLVYDARTLADGVPSRFSGSGGTC SVTCKASQNVGTNVAWYQQRLGQSPRTLIYSASYRYSGVPDRFTGSGSGTD SVTCKASQNVGTNVAWYQQRLGQSPRTLIYSASYRYSGVPDRFTGSGSGTD TITCRASGNIHNYLAWYQQRQGRSPQLLVYNAKTLADGVPSRFSGSGTC SVTCKASQNVGTNVAWYQQRQGRSPQLLVYNAKTLADGVPSRFSGSGGTC SVTCKASQNVGTNVAWYQQRPGQSPRALIYSPSYRYSGVPDRFTGSGSGTC TISCRASQSVSTSRFSYMHWFQQRPGQAPKLLIKYASNLESGVPARFSGSGGTC	CDK3 9 1 0 0 HFWSSPYT FGGGTKLEIK QYNSYPYT FGGGTKLEIK QYNNYPLT FGGGTKLEIK QYNSYPYT FGGGTKLEIK HFWSSPYT FGGGTKLEIK HFWSSPYT FGGGTKLEIK HFWSSPYT FGGGTKLEIK
0 0	GETVTITCRTS GORATISCRAS GDRVSVTCKAS GDRVSVTCRAS GETVTITCRAS GDRVSVTCKAS	PYCQHFWS YYCQHFWS YYCQQYNS YYCQHFWS YYCQQYNS YYCQHFWS YYCQCYNS
Variable ligera (kappa) 1 0	DIQMTQSPASLSASVGETV' DIVLTQSPASLAVSLGQRA' DIVMTQSQKFMSTSVGDRV' DIQMTQSQKFMSTSVGDRV' DIQMTQSPASLSASVGETV' DIVMTQSQKFMSTSVGDRV' DIVMTQSQKFMSTSVGDRV' DIVMTQSPASLAVSLGQRA'	CDR3 7 8 9 1 1 0 0 0 YSLKINSLQPEDFGSYYCQHFWSSPYT FGGGTKLEIK FILTISNVQSEDLAEYFCQQYNSYPYT FGGGTKLEIK FILTISNVQSEDLAEYFCQQYNNYPLT FGGGTKLEIK YSLKINSLQPEDFGSYYCQHFWSSPYT FGGGTKLEIK YSLKINSLQPEDFGSYYCQHFWSSPYT FGGGTKLEIK FTLTISNVQSEDLAEYFCQQYNSYPHT FGGGTKLEIK FTLTISNVQSEDLAEYFCQQYNSYPHT FGGGTKLEIK FTLTISNVQSEDLAEYFCQQYNSYPHT FGGGTKLEIK
Variable	01G06 03G05 04F08 06C11 08G01 14F11	01G06 03G05 04F08 06C11 08G01 14F11

Alineaciones de los aminoácidos de la CDR de la cadena ligera (kappa) de ratón

Variable ligera (kappa)	CDR1		CDR2	
01606	RTSENLHNYLA	(SEQ ID NO:21)	DAKTLAD	(SEQ ID NO:26)
03G05	RASESVDNYGISFMN	(SEQ ID NO:22)	AASNQGS	(SEQ ID NO:27)
04F08	KASQNVGINVA	(SEQ ID NO:23)	SASYRYS	(SEQ ID NO:28)
06C11	KASQNVGTNVA	(SEQ ID NO:23)	SASYRYS	(SEQ ID NO:28)
08G01	RASGNIHNYLA	(SEQ ID NO:24)	NAKTLAD	(SEQ ID NO:29)
14F11	KASQNVGTNVA	(SEQ ID NO:23)	SPSYRYS	(SEQ ID NO:30)
17B11	RASQSVSTSRFSYMH	(SEQ ID NO:25)	YASNLES	(SEQ ID NO:31)
Variable ligera (kappa)	CDR3			
01G06	QHFWSSPYT (SEQ ID	O NO:32)		
03G05	QOSKEVPWT (SEQ ID	O NO:33)		
04F08	QQYNSYPYT (SEQ II	D NO:34)		
06C11	QQYNNYPLT (SEQ II	D NO:35)		
08G01	QHFWSSPYT (SEQ II	D NO:32)		
14F11	QQYNSYPHT (SEQ ID	0 NO:36)		
17B11	QHSWEIPYT (SEQ II	D NO:37)		

FIG. 14

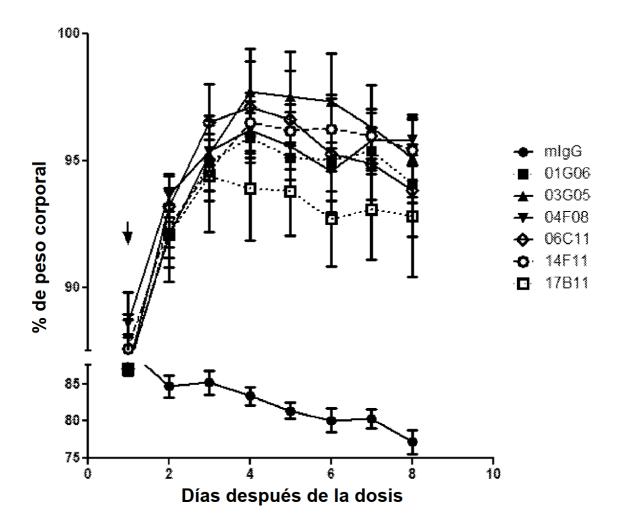


FIG. 15

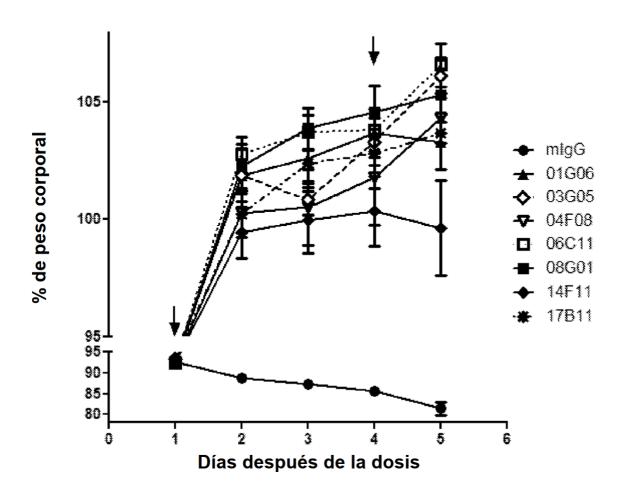


FIG. 16A

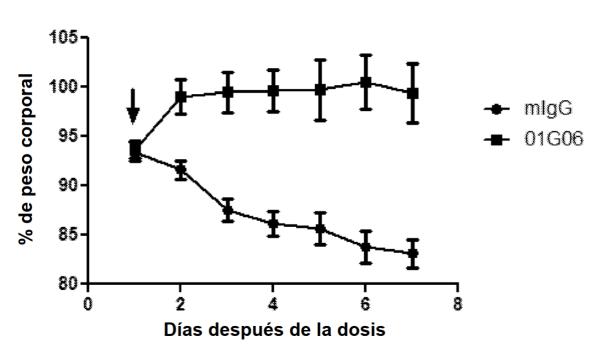


FIG. 16B

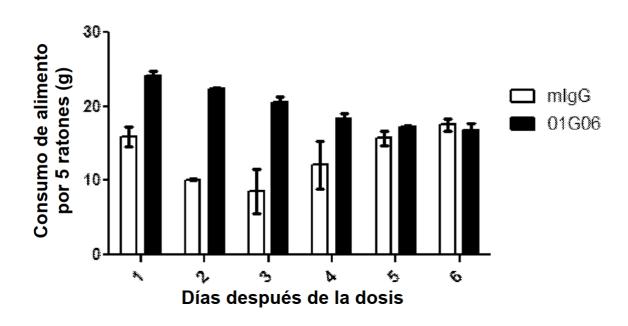


FIG. 16C

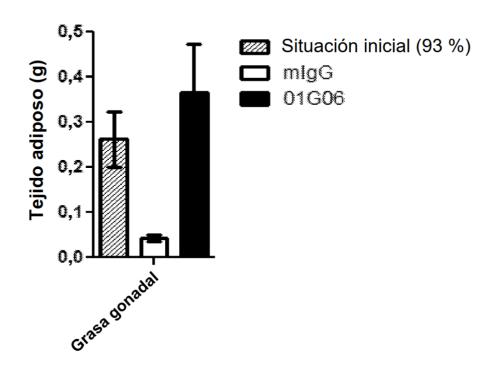


FIG. 16D

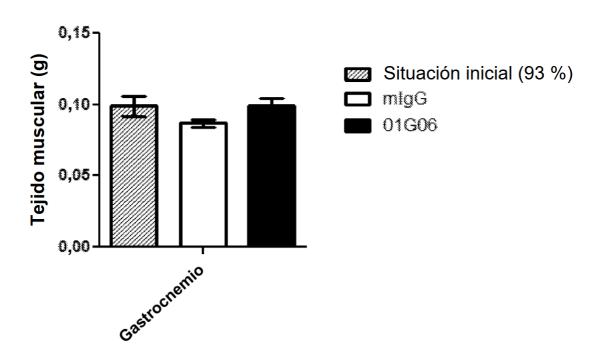


FIG. 16E

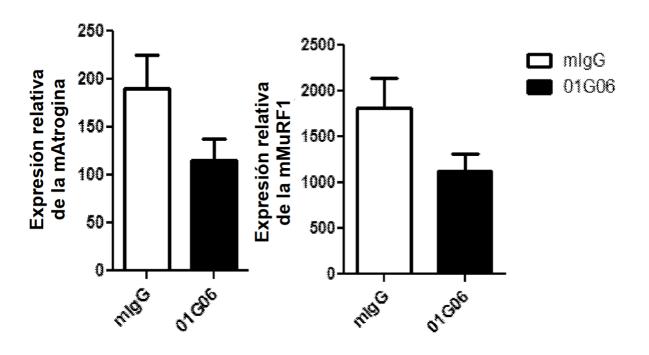
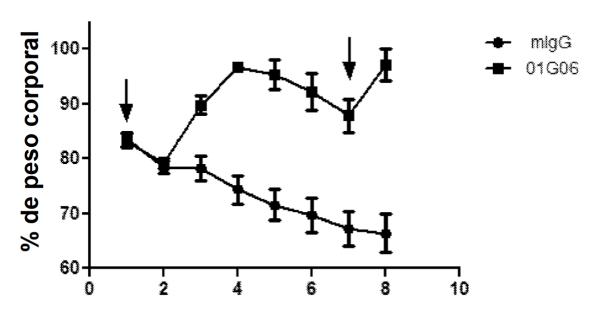



FIG. 17A

Días después de la dosis

FIG. 17B

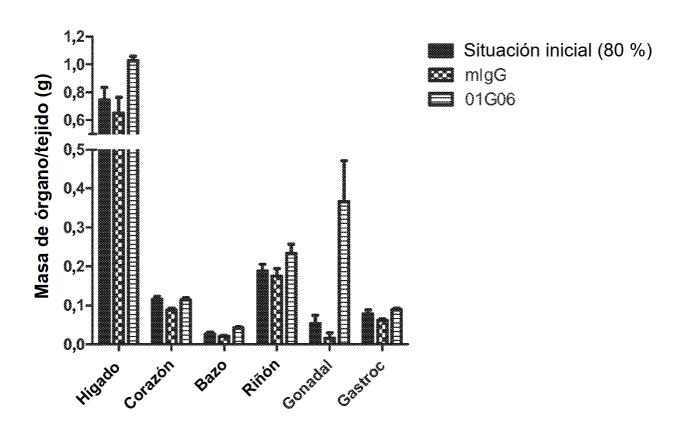
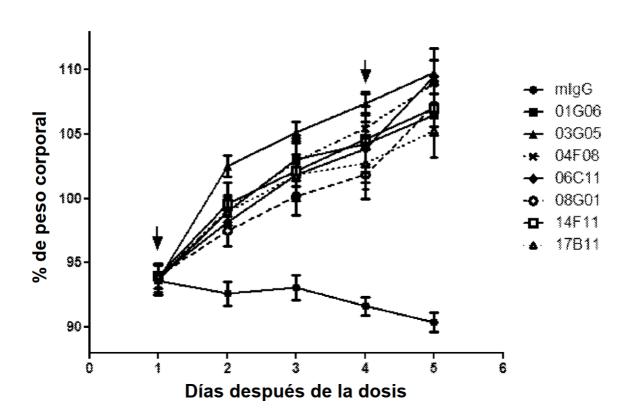



FIG. 18

Alineaciones de los aminoácidos de la región variable de la cadena pesada humanizada completa

Variable pesada				CDR1		CDR2	R2	
•	П	1	2 3	333	7	5 55	9	7
		0	0 0	555	0	0 22	0	0
				AB		A		
Ch01G06 quimérica	EVLLQQS	GPELVKPGASV	KIPCKASGYTFT	DYNMD	eviloosgpelvkpgasvkipckasgytft <mark>dpynmd</mark> wvkoshgkslewig <u>oinpnnggiffnokfkg</u> katlt	GOINPNNGGI	FFNOKFKGKAT	LI
Hu01G06 IGHV1-18	SOVIOVO	GAEVKKPGASV	KVSCKASGYTFT	DYNMDV	QVQLVQSGAEVKKPGASVKVSCKASGYTFT <mark>DYNMD</mark> WVRQAPGKSLEWIG <u>QINPNNGGIFFNQKFKG</u> RATLT	GOINPNNGGI	FFNQKFKGRAT	LI
Hu01G06 IGHV1-69	SOVIDVO	GAEVKKPGSSV	KVSCKASGYTFT	DYNMDV	QVQLVQSGAEVKKPGSSVKVSCKASGYTFT <mark>DYNMD</mark> WVRQAPGKSLEWIG <mark>QINPNNGGIFFNQKFKG</mark> RATLT	GOINPNNGGI	FFNOKFKGRAT	드
Sh01G06 IGHV1-18 M69L	SOVIOVO	GAEVKKPGASV	KVSCKASGYTFT	DYNMDV	QVQIVQSGAEVKKPGASVKVSCKASGYTFT DYNMD WVRQAPGQGLEWMG\QINPNNGGIFFNQKFKGRVTLT	GOINPNNGGI	FFNQKFKGRVT	ΕI
Sh01G06 IGHV1-18 M69L K64Q G44S	QVQLVQS	GAEVKKPGASV	KVSCKASGYTFT	DYNMD	QVQLVQSGAEVKKPGASVKVSCKASGYTFT <mark>DYNMD</mark> WVRQAPGQSLEWMG <u>QINPNNGGIFFNQKFQG</u> RVTLT	GOINPNNGGI	FFNOKFOGRVT	LI
Sh01G06 IGHV1-18 M69L K64Q	QVQLVQS	GAEVKKPGASV	KVSCKASGYTFT	DYNMDV	QVQLVQSGAEVKKPGASVKVSCKASGYTFT <mark>DYNMD</mark> WVRQAPGQGLEWMG <u>QINPNNGGIFFNQKFQG</u> RVTLT	GOINPNNGGI	FFNQKFQGRVT	LI
Sh01G06 IGHV1-69 T30S 169L	SOVITOR	GAEVKKPGSSV	KVSCKASGYTFS	DYNMDh	QVQIVQSGAEVKKPGSSVKVSCKASGYTFS DYNMD WVRQAPGQGLEWMG QINPNNGGIFFNQKFKG RVTLT	GOINPNNGGI	FFNQKFKGRVT	LI
Sh01G06 IGHV1-69 T30S K64Q 169L	SÕATÕAÕ	GAEVKKPGSSV	KVSCKASGYTFS	DYNMD	QVQIJVQSGAEVKKPGSSVKVSCKASGYTFS <mark>DYNMD</mark> WVRQAPGQGLEWMG <mark>QINPNNGGIFFNQKFQG</mark> RVTLT	GOINPNNGGI	FFNQKFQGRVT	H
Hu01G06 IGHV1-18 F1	QVQLVQS	GAEVKKPGASV	KVSCKASGYTFT	DYNWD	QVQIJVQSGAEVKKPGASVKVSCKASGYTFT <mark>DYNMD</mark> WVRQAPGQSLEWMG <mark>QINPYNHLIFFNQKFQG</mark> RVTLT	GOINPYNHLI	FFNQKFQGRVT	LI
Hu01G06 IGHV1-18 F2	OVQLVQS	GAEVKKPGASV	KVSCKASGYTFT	DYNMD	QVQLVQSGAEVKKPGASVKVSCKASGYTFT DYNMDWVRQAPGQSLEWMG\QINPNNGLIFFNQKFQGRVTLT	GOINPNNGLI	FFNOKFOGRVT	LI
Hu01G06 IGHV1-69 F1	OVQLVQS	GAEVKKPGSSV	KVSCKASGYTFS	DYNMD	QVQ1.VQSGAEVKKPGSSVKVSCKASGYTFS <mark>DYNMD</mark> WVRQAPGQGLEWMG <mark>QINPNNGLIFFNQKFKG</mark> RVTLT	GOINPNNGLI	FFNQKFKGRVT	E I
Hu01G06 IGHV1-69 F2	SOATOAO	GAEVKKPGSSV	KVSCKASGYTFS	DYNMD	QVQLVQSGAEVKKPGSSVKVSCKASGYTFS <mark>DYNMD</mark> WVRQAPGQGLEWMC <mark>QINPYNHLIFFNQKFKG</mark> RVTLT	GOINPYNHLI	FFNQKFKGRVT	LI
Ch06C11 quimérica	QVTLKES	GPGILQPSQTL	SLICSFSGFSLN	TYGMGVS	QVTLKESGPGILQPSQTLSLTCSFSGFSLN <mark>TYGMGVS</mark> WIRQPSGKGLEWLAHIY-WDDDKRYNPSLKSRLTIS	AHIY-WDDDKI	RYNPSLKSRLT	SI
HE LM 06C11 IGHV2-70	QVTLKES	GPALVKPTQTL	TLICIFSGESIN	TYGMGVS	QVTLKESGPALVKPTQTLTLTCTFSGFSLM <mark>TYGMGVS</mark> WIRQPPGKALEWLAHIY-WDDDKRYNPSLKTRLTIS	AHIY-WDDDKI	RYNPSLKTRLT	SH
Hu06C11 IGHV2-5	QVTLKES	GPTLVKPTQTL	TLICIFSGESIN	TYGMGVS	QVTLKESGPTLVKPTQTLTLTCTFSGFSLN <mark>TYGMGVS</mark> WIRQPPGKGLEWLAHIY-WDDDKRYNPSLKS <mark>R</mark> LTIT	AHIY-WDDDKI	RYNPSLKSRLT	EI
Ch14F11 quimérica		GPGILQPSQTL	SITCSFSGFSIS	TYGMGVGV	QVTLKESGPGILQPSQTLSLTCSFSGFSLS <mark>TYGMGVG</mark> WIRQPSGKGLEWLADIW-WDDDKYYNPSLKS <mark>R</mark> LTIS	ADIW-WDDDK	YYNPSLKSRLT	SH
Sh14F11 IGHV2-5		GPTLVKPTQTL	TITCIESGESIS	TYGMGVG	QITLKESGPTLVKPTQTLTLTCTFSGFSLS <mark>TYGMGVG</mark> WIRQPPGKALEWLA <mark>DIW-WDDDKYYNPSLKS</mark> RLTIT	ADIW-WDDDK	YYNPSLKSRLT	E
Sh14F11 IGHV2-70	QVTLKES	GPALVKPTQTL	TLTCTFSGFSLS	TYGMGVGV	QVTLKESGPALVKPTQTLTLTCTFSGFSLS <mark>TYGMGVG</mark> WIRQPPGKALEWLA <mark>DIW-WDDDKYYNPSLKS</mark> RLTIS	ADIW-WDDDK	YYNPSLKSRLT	SH

Alineaciones de los aminoácidos de la región variable de la cadena pesada humanizada completa

Variable pesada				CDR3			
	7 8	888	S	1111	Н		
	1 0	222	0	0000	Н		
		ABC		0000	0		
				ABC			
Ch01G06 quimérica	VDKSSNTAFM	VDKSSNTAFMEVRSLTSEDTAVYYCAREAITTVGAMDYWGQGTSVTVS	AVYYCAREA	ITTVGAMDY	NGQGTSVTVSS	(SEQ ID NO:40	()
Hu01G06 IGHV1-18	VDTSTNTAYM	VDTSTNTAYMELRSLRSDDTAVYYCAREALTTVGAMDYWGQGTLVTVS	AVYYCAREA	ITTVGAMDY	REQUILVIVES	(SEQ ID NO:54	(t
Hu01G06 IGHV1-69	VDKSTNTAYM	VDKSTNTAYMELSSLRSEDTAVYYCAREAITTVGAMDYWGQGTLVTVS	AVYYCAREA	ITTVGAMDY	NGQGTLVTVSS	(SEQ ID NO:56	()
Sh01G06 IGHV1-18 M69L	TDTSTSTAYM	TDISISTAYMELRSLRSDDIAVYYCAREAITIVGAMDYWGQGTLVTVS	AVYYCAREA	ITTVGAMDY	VGQGTLVTVSS	(SEQ ID NO:58	<u>@</u>
Sh01G06 IGHV1-18 M69L K64Q G44S	TDTSTSTAYM	TDTSTSTAYMELRSLRSDDTAVYYCAREAITTVGAMDYWGQGTLVTVS	AVYYCAREA	ITTVGAMDY	NGQGTLVTVSS	(SEQ ID NO:60	()
Sh01G06 IGHV1-18 M69L K64Q	TDTSTSTAYM	ELRSLRSDDT	AVYYCAREA	ITTVGAMDY	TDTSTSTAYMELRSLRSDDTAVYYCARBAITTVGAMDYWGQGTLVTVSS	(SEQ ID NO:62	$\widehat{\mathcal{O}}$
Sh01G06 IGHV1-69 T30S 169L	ADKSTSTAYM	ELSSLRSEDT	AVYYCAREA	ITTVGAMDY	adkststaymelsslrsedtavyycar <mark>balttvgamdy</mark> wgogtlvtvss	(SEQ ID NO:64	1)
Sh01G06 IGHV1-69 T30S K64Q 169L	ADKSTSTAYM	ELSSLRSEDT	AVYYCAREA	ITTVGAMDY	adkststaymelsslrsedtavyycar <mark>ealttvgamdy</mark> wgggtlvtvss	(SEQ ID NO:66	<u>()</u>
Hu01G06 IGHV1-18 F1	TDTSTSTAYM	ELRSLRSDDT	AVYYCAREA	ITTVGAMDY	tdtststaymelrslrsddtavyycar <mark>balttvgamdy</mark> wgqgtlvtvss	(SEQ ID NO:24	16)
Hu01G06 IGHV1-18 F2	TDTSTSTAYM	TDTSTSTAYMELRSLRSDDTAVYYCAREAITTVGAMDYWGQGTLVTVS	AVYYCAREA	ITTVGAMDY	NGQGTLVTVSS	(SEQ ID NO:248	48)
Hu01G06 IGHV1-69 F1	ADKSTSTAYM	ELSSLRSEDT	AVYYCAREA	ITTVGAMDY	adkststaymelsslrsedtavyycar <mark>balttvgamdy</mark> wgqgtlvtvss	(SEQ ID NO:250	20)
Hu01G06 IGHV1-69 F2	ADKSTSTAYM	ELSSLRSEDT	AVYYCAREA	ITTVGAMDY	adkststaymelsslrsedtavyycar <mark>ealttvgamdy</mark> wgogtlvtvss	(SEQ ID NO:252	52)
Ch06C11 quimérica	KDASNNRVFL	KITSVDTADT	ATYYCAORG	YDDYWGY	kdasnnrvflkitsvdtadtatyycao <mark>rgyddywgy</mark> wgogtlvtisa	(SEQ ID NO:46	0
HE LM 06C11 IGHV2-70	KDTSKNQVVI	TUVPOPUT	AVYYCAORG	YDDYWGY	kdtsknovvltitnvdpvdtavyycao <mark>rgyddywgy</mark> mgogtlvtiss	(SEQ ID NO:68	(S)
Hu06C11 IGHV2-5	KDTSKNQVVL	KDTSKNQVVLTITNMDPVDTATYYCAQRGYDDYWGYMGQGTLVTVS	ATYYCAORG	YDDYWGY	WGQGTLVTVSS	(SEQ ID NO:70	()
Ch14F11 quimérica	KDTSSNEVFL	KIAIVDTADT	ATYYCARRG	HYSAMDY	KDTSSNEVFLKIAIVDTADTATYYCAR <mark>RGHYSAMDY</mark> WGQGTSVTVSS	(SEQ ID NO:50	()
Sh14F11 IGHV2-5	KDTSKNQVVL	TUVQOMNTMT.	ATYYCARRG	HYSAMDY	KDTSKNQVVLTMTNMDPVDTATYYCAR <mark>RGHYSAMDY</mark> WGQGTLVTVSS	(SEQ ID NO:72	2)
Sh14F11 IGHV2-70	KDTSKNQVVI	TUVEUMUEWE	AVYYCARRG	HYSAMDY	KDTSKNQVVLTMTNMDPVDTAVYYCARRGHYSAMDYMGQGTLVTVSS	(SEQ ID NO:74	(t

FIG. 19 Continuación

Alineaciones de los aminoácidos de la CDR de la cadena pesada humanizada

Variable pesada	COR		CDR2	
Ch01G06 quimérica	DYNMD	(SEQ ID NO:1)	QINPNNGGIFFNQKFKG	(SEQ ID NO:7)
Hu01G06 IGHV1-18	DYNMD	(SEQ ID NO:1)	QINPNNGGIFFNQKFKG	(SEQ ID NO:7)
Hu01G06 IGHV1-69	DYNMD	(SEQ ID NO:1)	QINPNNGGIFFNQKFKG	(SEQ ID NO:7)
Sh01G06 IGHV1-18 M69L	DYNMD	(SEQ ID NO:1)	QINPNNGGIFFNQKFKG	(SEQ ID NO:7)
Sh01G06 IGHV1-18 M69L K64Q G44S	DYNMD	(SEQ ID NO:1)	QINPNNGGIFFNQKFQG	(SEQ ID NO:13)
Sh01G06 IGHV1-18 M69L K64Q	DYNMD	(SEQ ID NO:1)	QINPNNGGIFFNQKFQG	(SEQ ID NO:13)
Sh01G06 IGHV1-69 T30S 169L	DYNMD	(SEQ ID NO:1)	QINPNNGGIFFNQKFKG	(SEQ ID NO:7)
Sh01G06 IGHV1-69 T30S K64Q 169L	DYNMD	(SEQ ID NO:1)	QINPNNGGIFFNQKFQG	(SEQ ID NO:13)
Hu01G06 IGHV1-18 F1	DYNMD	(SEQ ID NO:1)	OINPYNHLIFFNOKFOG	(SEQ ID NO:236)
Hu01G06 IGHV1-18 F2	DYNMD	(SEQ ID NO:1)	OINPNNGLIFFNOKFQG	(SEQ ID NO:237)
Hu01G06 IGHV1-69 F1	DYNMD	(SEQ ID NO:1)	QINPNNGLIFFNQKFKG	(SEQ ID NO:238)
Hu01G06 IGHV1-69 F2	DYNMD	(SEQ ID NO:1)	QINPYNHLIFFNQKFKG	(SEQ ID NO:239)
Ch06C11 quimérica	TYGMGVS	(SEQ ID NO:4)	HIY-WDDDKRYNPSLKS	(SEQ ID NO:9)
HE LM 06C11 IGHV2-70	TYGMGVS	(SEQ ID NO:4)	HIY-WDDDKRYNPSLKT	(SEQ ID NO:14)
Hu06C11 IGHV2-5	TYGMGVS	(SEQ ID NO:4)	HIY-WDDDKRYNPSLKS	(SEQ ID NO:9)
Ch14F11 quimérica	TYGMGVG	(SEQ ID NO:5)	DIW-WDDDKYYNPSLKS	(SEQ ID NO:11)
Sh14F11 IGHV2-5	TYGMGVG	(SEQ ID NO:5)	DIW-WDDDKYYNPSLKS	(SEQ ID NO:11)
Sh14F11 IGHV2-70	TYGMGVG	(SEQ ID NO:5)	DIW-WDDDKYYNPSLKS	(SEQ ID NO:11)

Alineaciones de los aminoácidos de la CDR de la cadena pesada humanizada

Variable pesada Ch01G06 quimér	pesada quimérica				CDR3 EAITTVGAMDY	(SEQ	9 5	NO:15)
Hu01G06					EAITTVGAMDY		H	J J
sh01G06 sh01G06	IGHV1-18 IGHV1-18	M69L M69L	K640	G44S	EAITTVGAMDY EAITTVGAMDY	(SEQ (SEQ		NO:15)
Sh01G06	IGHV1-18	M69L	0		EAITTVGAMDY			
Sh01G06 Sh01G06	IGHV1-69 IGHV1-69	T30S T30S	169L K64Q	1691	EAITTVGAMDY EAITTVGAMDY	(SEQ		NO:15)
Hu01G06	IGHV1-18	ξ=4 [=4			EAITTVGAMDY	(SEQ	TD	NO:15)
Hu01G06	IGHV1-18	72			EAITTVGAMDY	(SEO	Q.	NO:15)
Hu01G06	IGHV1-69	(i			EAITTVGAMDY	(SEQ	TD	No:15)
Hu01G06		22			EAITTVGAMDY	(SEQ	Q I	NO:15)
Ch06C11	quimérica				RGYDDYWGY	(SEO	TD	NO:18)
HE LM O	LM 06C11 IGHV2-70	-70			RGYDDYWGY	(SEQ		NO:18)
Hu06C11	IGHV2-5				RGYDDYWGY	(SEO	TD	NO:18)
Ch14F11	quimérica				RGHYSAMDY	(SEO	ID	NO:19)
Sh14F11	IGHV2-5				RGHYSAMDY	(SEO	ID	NO:19)
Sh14F11	IGHV2-70				RGHYSAMDY	(SEO	ID	NO:19)

Alineaciones de los aminoácidos de la región variable de la cadena ligera (kappa) humanizada completa

CDR2	RTSENLHNYLAWYQQKGKSPQLLVYDAKTLAD GVPSRFSGSGSGTQ RTSENLHNYLAWYQQKPGKSPQLLVYDAKTLADGVPSRFSGSGSGTQ RTSENLHNYLAWYQQKPGKSPKLLIVYDAKTLADGVPSRFSGSGSGTD RTSENLHNYLAWYQQKPGKSPKLLIYDAKTLADGVPSRFSGSGSGTD RTSENLHNYLAWYQQKPGKSPKLLIYDAKTLADGVPSRFSGSGSGTD RTSENLHNYLAWYQQKPGKSPKLLIYDAKTLADGVPSRFSGSGSGTD RTSENLHNYLAWYQQKPGKSPKLLIYDAKTLADGVPSRFSGSGSGTD KASQNVGTNVAWFQQKPGKSPKLLIYSASYRYSGVPDRFTGSGSGTD KASQNVGTNVAWFQQKPGKSPKALIYSASYRYSGVPSRFSGSGSGTD KASQNVGTNVAWFQQKPGCSPKALIYSPSYRYSGVPSRFSGSGSGTD	ID NO:76) ID NO:90) ID NO:92) ID NO:94) ID NO:92) ID NO:82) ID NO:86) ID NO:96)
4	O WOGKSP KPGKSP KPGKAP KPGKAP KPGKAP KPGKAP KPGKAP KPGQSP	(SEQ (SEQ (SEQ (SEQ (SEQ (SEQ (SEQ (SEQ
CD	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 8 9 1 1 0 0 0 2YSLKINSLQPEDFGSYYCQHFWSSPYTFGGGTKLEIK YTLTISSLQPEDFATYYCQHFWSSPYTFGGGTKLEIK YTLTISSLQPEDFATYYCQHFWSSPYTFGGGTKLEIK YTLTISSLQPEDFATYYCQHFWSSPYTFGGGTKLEIK YTLTISSLQPEDFATYYCQHFWSSPYTFGGGTKLEIK YTLTISSLQPEDFATYYCQHFWSSPYTFGGGTKLEIK FTLTISSLQPEDFATYYCQHFWSSPYTFGGGTKLEIK FTLTISSLQPEDFATYYCQUYNNYPLTFGGGTKLEIK FTLTISSLQPEDFATYYCQQYNNYPLTFGGGTKLEIK FTLTISSLQPEDFATYYCQQYNNYPLTFGGGTKLEIK FTLTISSLQPEDFATYYCQQYNNYPLTFGGGTKLEIK FTLTISSLQPEDFATYYCQQYNNYPLTFGGGTKLEIK
Variable ligera (kappa)	Ch01G06 quimérica Hu01G06 IGKV1-39 S43A V48I Hu01G06 IGKV1-39 V48I Hu01G06 IGKV1-39 V48I Hu01G06 IGKV1-39 F2 Ch06C11 quimérica Sh06C11 IGKV1-16 Ch14F11 quimérica	Variable ligera (kappa) Ch01G06 quimérica Hu01G06 IGKV1-39 Hu01G06 IGKV1-39 V48I Hu01G06 IGKV1-39 F1 Hu01G06 IGKV1-39 F2 Ch06C11 quimérica Sh06C11 IGKV1-16 Ch14F11 quimérica

0

Alineaciones de los aminoácidos de la CDR de la cadena ligera (kappa) humanizada

CDR2	SEQ ID NO:21) DAKTLAD (SEQ ID NO:	SEQ ID NO:21) DAKTLAD (SEQ ID NO:	SEQ ID NO:21) DAKTLAD (SEQ ID NO	SEQ ID NO:21) DAKTLAD (SEQ ID NO:	SEQ ID NO:21) DAKTLAD (SEQ ID NO:	SEQ ID NO:21) DAKTLAD (SEQ ID NO:	SEQ ID NO:23) SASYRYS (SEQ ID NO:	SEQ ID NO:23) SASYRYS (SEQ ID NO:	SEQ ID NO:23) SPSYRYS (SEQ ID NO:	SEQ ID NO:23) SPSYRYS (SEQ ID NO:) ID NO:32)) ID NO:32)) ID NO:32)) ID NO:32)) ID NO:32)) ID NO:244)) ID NO:35)) ID NO:35)) ID NO:36)) ID NO:36)
CDRI	RTSENLHNYLA (S	RTSENLHNYLA (S	RTSENLHNYLA (RTSENLHNYLA (S	RTSENLHNYLA (S	RTSENLHNYLA (S	KASQNVGTNVA (S	KASQNVGINVA (S	KASQNVGTNVA (S	KASQNVGTNVA (S	CDR3	QHFWSSPYT (SEQ	QHFWSSPYT (SEQ	QHFWSSPYT (SEQ	QHFWSSPYT (SEQ	QHFWSSPYT (SEQ	QHFWSDPYT (SEQ	QQYNNYPLT (SEQ	QQYNNYPLT (SEQ	QQYNSYPHT (SEQ	QQYNSYPHT (SEQ
Variable ligera (kappa)	Ch01G06 quimérica	Hu01G06 IGKV1-39	Hu01G06 IGKV1-39 S43A V48I	Hu01G06 IGKV1-39 V48I	Hu01G06 IGKV1-39 F1	Hu01G06 IGKV1-39 F2	Ch06C11 quimérica	Sh06C11 IGKV1-16	Ch14F11 quimérica	Hu14F11 IGKV1-16	Variable ligera (kappa)	Ch01G06 quimérica	Hu01G06 IGKV1-39	Hu01G06 IGKV1-39 S43A V48I	Hu01G06 IGKV1-39 V48I	Hu01G06 IGKV1-39 F1	Hu01G06 IGKV1-39 F2	Ch06C11 quimérica	Sh06C11 IGKV1-16	Ch14F11 quimérica	Hul4Fll IGKV1-16

FIG. 23

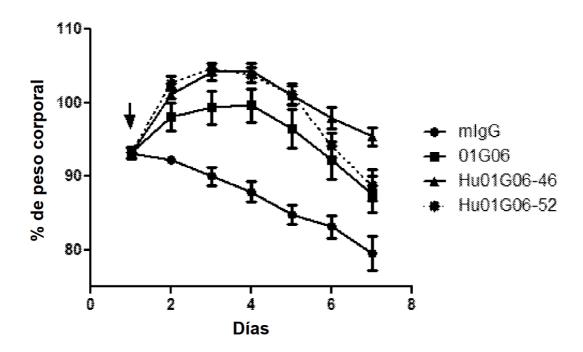


FIG. 24

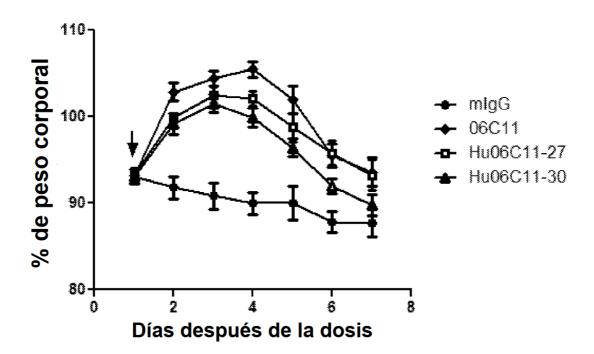


FIG. 25

FIG. 26

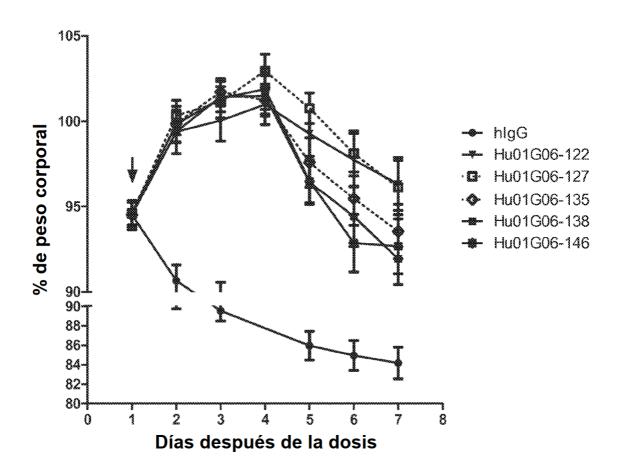


FIG. 27

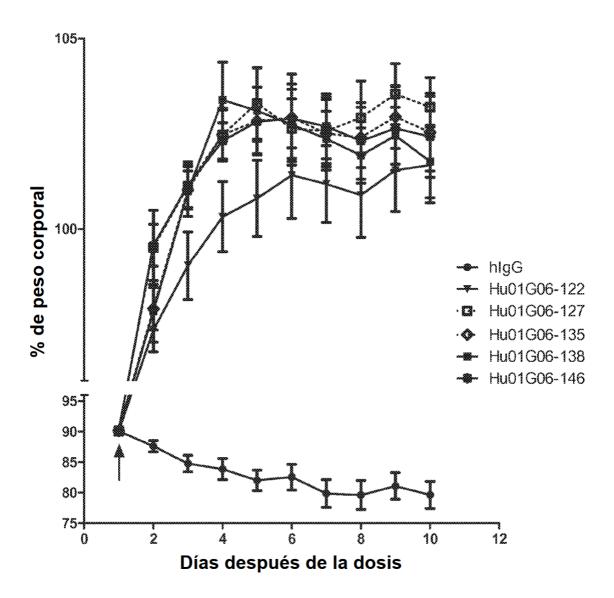


FIG. 28

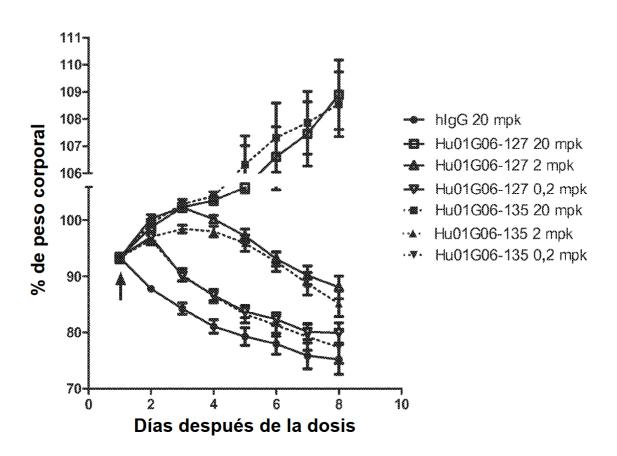


FIG. 29A

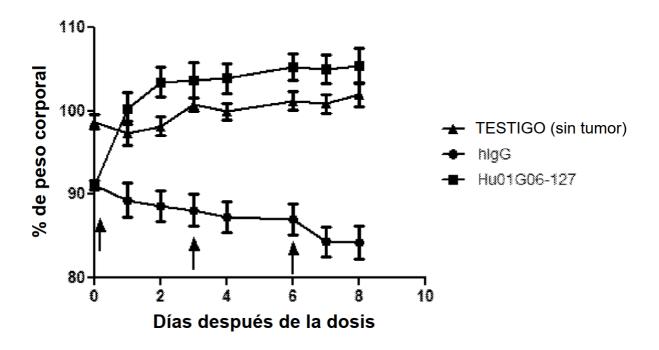


FIG. 29B

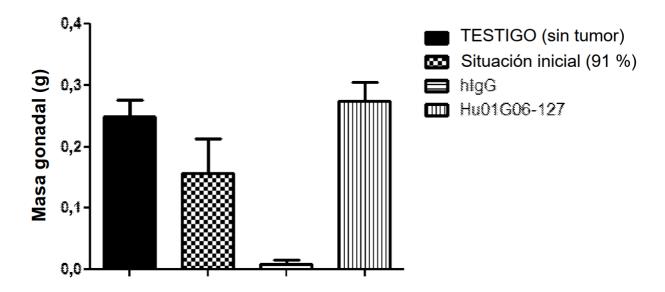
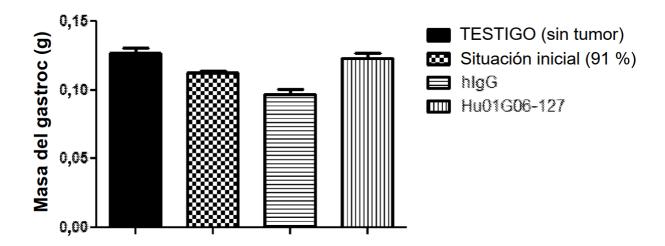



FIG. 29C

