

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 797 547

51 Int. CI.:

A23L 27/00 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

86 Fecha de presentación y número de la solicitud internacional: 06.03.2014 PCT/US2014/021110

(87) Fecha y número de publicación internacional: 25.09.2014 WO14149829

(96) Fecha de presentación y número de la solicitud europea: 06.03.2014 E 14714028 (9)

(97) Fecha y número de publicación de la concesión europea: 22.04.2020 EP 2983507

(54) Título: Receptores del sabor amargo felino y métodos

(30) Prioridad:

15.03.2013 US 201361788528 P 27.02.2014 US 201461945500 P

Fecha de publicación y mención en BOPI de la traducción de la patente: **02.12.2020**

(73) Titular/es:

APPLIED FOOD BIOTECHNOLOGY, INC. (100.0%) 3 Research Park Drive St. Charles, MO 63304, US

(72) Inventor/es:

SANDAU, MICHELLE M. y RAWSON, NANCY E.

(74) Agente/Representante:

LEHMANN NOVO, María Isabel

DESCRIPCIÓN

Receptores del sabor amargo felino y métodos

Antecedentes

25

35

40

45

50

55

El sistema del gusto proporciona información sensorial sobre la composición química del mundo exterior. Se cree que los mamíferos tienen por lo menos cinco modalidades básicas del sabor: dulce, amargo, ácido, salado y umami. Se cree que cada modalidad del sabor está medida por uno o más receptores de proteínas distintos que se expresan en las células receptoras del gusto que se encuentran en la superficie de la lengua. Los receptores del gusto que reconocen los estímulos de los sabores amargo, dulce y umami pertenecen a la superfamilia de receptores acoplados a la proteína G (GPCR). Las diferencias sutiles en un receptor pueden alterar qué ligandos se unen y que señal se genera una vez que el receptor es estimulado.

Varios miembros de la superfamilia de GPCR median muchas otras funciones fisiológicas, como la función endocrina, función exocrina, frecuencia cardíaca, lipólisis y metabolismo de carbohidratos. El análisis bioquímico y la clonación molecular de un número de dichos receptores han revelado muchos principios básicos con respecto a la estructura del dominio y la función de estos receptores.

Se cree que la capacidad de los mamíferos de notar las cinco modalidades es muy similar, no obstante, debido a las diferencias ambientales en las dietas, los receptores del gusto han evolucionado de manera un poco distinta entre las especies mamíferas. Por ejemplo, el gen que codifica el Receptor del gusto, proteína de tipo 1, miembro 2, TAS1R2, un componente del receptor para compuestos dulces, ha mutado a un pseudogén no funcional en felinos y varios otros carnívoros obligados, mientras que los mamíferos acuáticos como el delfín han perdido la mayoría de los receptores del gusto funcionales.

La modalidad del sabor amargo usualmente se describe como desagradable. Muchas toxinas naturales y sintéticas se han caracterizado como sustancias estimuladoras del sabor amargo. En consecuencia, se plantea la hipótesis de que la percepción del sabor amargo ha evolucionado como medio para desalentar el consumo de compuestos tóxicos que a menudo se encuentran en las plantas. Se estima que hay decenas de miles de compuestos con sabor amargo. También se han identificado compuestos que bloquean la percepción del sabor amargo, por ejemplo ácido p-(dipropilsulfamoil)benzoico (probenecid) que actúa como un subconjunto del Receptor del gusto, proteínas Tipo 2 ("TAS2R"), una familia de receptores acoplados a la proteína G monomérica, embebida en la superficie de las células qustativas.

Las investigaciones han demostrado que la diversidad molecular en los TAS2R de seres humanos y otros primates conduce a diferencias funcionales en la percepción del sabor amargo de los individuos (Imai et al., 2012, Biol Lett. 8(4): 652-656; Li et al., 2011, Human Biology 83: 363-377). Se cree que la exposición a la flora específica de una región geográfica es una fuerza motora importante de selección en los TAS2R.

Los seres humanos codifican aproximadamente 26 TAS2R funcionales, lo que permite la detección de una enorme cantidad de compuestos. Hasta la fecha se han identificado aproximadamente 550 compuestos como sustancias que estimulan el sabor amargo para seres humanos. Actualmente, se cree que un subconjunto de TAS2R humanos (hTAS2R) son promiscuos, p. ej., activados por múltiples ligandos que pertenecen a varias clases químicas, mientras que otros hTAS2R se unen a ligandos de clases químicas solamente particulares. Además, varios hTAS2R son receptores huérfanos, aún sin compuestos identificados que los estimulen.

La transducción de señales de estímulos amargos se logra mediante la α-subunidad de gustducina. Esta subunidad de proteína G activa una fosfodiesterasa del gusto y reduce los niveles de nucleótidos cíclicos. Otras etapas en la vía de la transducción todavía se desconocen. La subunidad βγ de gustducina también media el gusto activando IP3 (inositol trifosfato) y DAG (diglicérido). Estos segundos mensajeros pueden abrir canales de iones regulados o pueden causar la liberación del calcio interno. Si bien todos los TAS2R se localizan en las células que contienen gustducina, la inactivación de gustducina no suprime por completo la sensibilidad a los compuestos amargos, lo que sugiere un mecanismo redundante para el sabor amargo.

hTAS2R38 es el receptor del sabor amargo más ampliamente estudiado. A principios del siglo XX se observó una dicotomía en la percepción de feniltiocarbamida (PTC), un compuesto de sabor amargo, en una muestra de gente. La mayoría de la gente podía sentir el gusto de la PTC, pero aproximadamente el 25% no. Los investigadores notaron que el fenotipo de catador/no catador tenía un grado de heredabilidad. Posteriormente se determinó que la diferencia en fenotipo entre los dos grupos podía atribuirse a una diferencia en genotipo, más específicamente polimorfismos de un solo nucleótido (SNP) en tres posiciones dentro del ADN de hTAS2R38.

Otras especies exhiben un repertorio de TAS2R muy diferente de aquel de los seres humanos. Por ejemplo, el ratón tiene 34 TAS2R de longitud total en su genoma, mientras que el pollo tiene solamente 3 (Go et al., Genetics. mayo de 2005; 170(1):313-26). Si bien algunos compuestos pueden ser detectados por múltiples TAS2R es casi seguro que las diferencias en el repertorio de TAS2R entre las especies resultan en diferencias en la percepción del sabor amargo.

La percepción del sabor amargo es mediada por los receptores acoplados a la proteína G (GPCR) de la familia de los receptores del gusto 2 (TAS2R). Los genes de TAS2R codifican una familia de siete receptores relacionados acoplados a la proteína G transmembrana implicados en la transducción del gusto, que interactúa con una proteína G para mediar en la transducción de señales del gusto. En particular, TAS2Rs interactúa en un modo específico del ligando con la proteína G Gustducina.

5

10

35

40

45

Hasta la fecha, se ha hecho mucho trabajo por caracterizar los TAS2R humanos (hTAS2R). El genoma humano codifica aproximadamente 26 TAS2R funcionales que son glicoproteínas. Todos los hTAS2R comparten un sito conservado para glicosilación enlazada a Asn dentro del centro del segundo bucle extracelular. Los hTAS2R también tienen la capacidad de formar homo- y hetero-oligómeros con otros GPCR cuando se expresan *in vitro*, no obstante, al presente no existe evidencia de que la oligomerización de los receptores TAS2R tenga implicancias funcionales.

Las células receptoras del sabor amargo representan una subpoblación distinta de células quimiosensoriales caracterizadas por la expresión de genes de TAS2R y son completamente segregadas desde aquellas células receptoras dedicadas a la detección de otros estímulos del gusto. Cada célula del receptor del sabor amargo expresa múltiples receptores del sabor amargo, aunque el grado de co-expresión es aún una cuestión de debate.

Además de su expresión en el sistema gustativo, los TAS2R se encuentran en tejidos no gustativos. Entre estos sitios extra-orales se encuentran los epitelios respiratorios, los tejidos gastrointestinales, los órganos reproductores y el cerebro. Los receptores del sabor amargo están implicados en la diferenciación o maduración de esperma en ratones. Se sabe que la expresión no gustativa de los TAS2R se utiliza para regular la digestión y la respiración.

La activación de los receptores TAS2R en una línea celular enteroendocrina (células STC-1) resulta en la liberación 20 de la hormona del péptido colecistocinina (CCK), que puede reducir la movilidad del intestino. En consecuencia, la ingesta de una toxina potencial que activa la vía de TAS2R puede disminuir la velocidad a la cual pasa por el estómago y reducir el impulso de ingesta continua. La liberación de CCK también excita los procesos neuronales sensoriales del nervio vago para transportar la señal al cerebro, lo que sugiere que la regulación de la ingesta de alimentos implica tanto controles periféricos como centrales. La activación de la red de señalización de TAS2R puede también o 25 alternativamente aumentar de manera indirecta la eliminación de toxinas absorbidas del epitelio intestinal antes de que las toxinas puedan ingresar en la circulación, ya que algunos datos indican que las células enteroendocrinas que segregan CCK están implicadas en un sistema de señalización paracrino que reduce la transferencia de sustancias tóxicas del intestino a la circulación. En la parte inferior del intestino, la activación de los receptores de TAS2R tiene un efecto diferente. Cuando algunos ligandos de sabor amargo se aplican al epitelio colónico, inducen la segregación 30 de aniones, lo cual lleva a la segregación de fluido por el epitelio que puede eliminar cualquier irritante perjudicial del colon.

Las células quimiosensoriales solitarias (SCC) están también presentes en todo el aparato respiratorio superior y expresan todo el conjunto de moléculas de señalización relacionadas con el gusto, incluidos los receptores TAS2R, PLCβ2, gustducina y el canal de transducción TrpM5. Las SCC hacen sinapsis hacia las fibras synapse de dolor polimodales del nervio trigeminal. La inhalación de una toxina que activa los receptores TAS2R de las SCC será irritante y evocará cambios reflejos mediados a nivel trigeminal en la respiración. Además, las fibras del nervio activadas liberan moduladores de péptido que resultan en inflamación neurogénica local del epitelio respiratorio, activando el sistema inmune en respuesta a la presencia de las toxinas.

Los receptores humanos del sabor amargo, hTAS2R2, hTAS2R41, hTAS2R42, hTAS2R45, hTAS2R48 y hTAS2R60 todavía se consideran GPCR huérfanos, ya que aún no se han identificado ligandos para estos receptores.

Hasta hace poco, hTAS2R2 se consideraba un pseudogén debido a una eliminación de dos bases en el códón 160 que se hallaba en secuencias recogidas de 10 poblaciones humanas (indios Karitiana, Surui, Waorani de Sudamérica, rusos de Europa del Este, drusos del Medio Oriente, atayal, chinos, japoneses de Asia Oriental, y jemeres y melanesios del Sudeste Asiático) y de recursos de GenBank. Se ha descubierto que hTAS2R2 es polimórfico con respecto a esa eliminación, con el gen intacto hallado en los adigueses (Europa del Este), Mbuti (Pigmeos africanos), y Biaka (Pigmeos africanos) (Go Y et al., Genetics 1 de mayo, 2005, 170 (1): 313-326).

El documento WO 2011/012298 A1 describe métodos para identificar agonistas y antagonistas del TAS2R49 humano. El documento WO 2006/053771 A2 describe métodos de cribado para identificar agonistas y antagonistas para TAS2R1, TAS2R3, TAS2R7 y TAS2R40 humanos.

El genoma felino se ha secuenciado con cobertura mínima (Mullikin et al. BMC Genomics 2010 11: 406; Pontius et al., Genome Research 2007 17: 1675-1689). Como consecuencia, existen vacíos importantes en la secuencia del genoma felino y solamente apenas más de 2000 genes felinos han sido considerados hasta la fecha. Como comparación, el genoma humano posee aproximadamente 25.000 genes registrados. Las secuencias anteriores a un vacío en el ensamblaje genómico son de mala calidad, entonces además de información faltante, una gran parte de los datos presentes es de mala calidad. En consecuencia, hay mucho por descubrir dentro del genoma felino y en la determinación de la base molecular de la percepción del gusto felino. Ningún TAS2R felino (fTAS2R) ha sido considerado en el genoma felino ni investigado desde el punto de vista bioquímico hasta el momento. Además, con

muchas razas de felinos que se originan en una región geográfica particular y por lo tanto expuestas a una flora única, pueden existir diferencias de TAS2R específicas de la raza.

La identificación y caracterización de los receptores amargos de TAS2R felino es útil para poder comprender el perfil del gusto de los felinos y su modulación.

5 Compendio

10

15

20

25

30

35

40

45

Se describe un polipéptido del receptor TAS2R (fTAS2R) felino aislado que comprende un dominio extracelular de un receptor TAS2R felino; una región transmembrana de un receptor TAS2R felino o un dominio intracelular de un receptor TAS2R felino, en donde el receptor fTAS2R comprende una secuencia seleccionada entre SEQ ID NO:18, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 y SEQ ID NO:26, en donde el polipéptido del receptor fTAS2R aislado no consiste en la secuencia de aminoácidos de SEQ ID NO: 2, 4, 6 o 10.

Se describe que el polipéptido del receptor fTAS2R aislado comprende un dominio extracelular de un polipéptido del receptor TAS2R felino que comprende los aminoácidos 1, 68-84; 146-179; o 249-257 de la SEQ ID NO:2; aminoácidos 1-10, 73-88; 151-186; o 256-264 de la SEQ ID NO;4; aminoácidos 1-8; 72-88; 150-186; o 256-265 de la SEQ ID NO;6; aminoácidos 1-2; 69-87; 151-183; o 253-261 de la SEQ ID NO:8; aminoácidos 1-8; 72-88; 150-187; o 257-265 de la SEQ ID NO:10; aminoácidos 1-6; 72-88; 150-183; o 253-262 de la SEQ ID NO:12; aminoácidos 1; 69-87; 150-181; o 251-260 de la SEQ ID NO:14; aminoácidos 1-8; 69-88; 150-185; o 252-261 de la SEQ ID NO:16; aminoácidos 1-17: 83-98; 161-198; o 268-277 de la SEQ ID NO:18; aminoácidos 1; 69-88; 150-185; o 255-264 de la SEQ ID NO:20; aminoácidos 1-2; 69-87; 149-181; o 251-260 de la SEQ ID NO:22; aminoácidos 1-2; 69-87; 149-181; o 251-259 de la SEQ ID NO:24; o aminoácidos 1-8; 72-88; 150-185; o 254-263 de la SEQ ID NO:26; una región transmembrana del polipéptido del receptor TAS2R felino que comprende los aminoácidos 2-22, 47-67, 85-105, 125-145, 180-200, 228-248 o 258-278 de la SEQ ID NO:2; aminoácidos 11-31, 52-72, 89-109, 130-150, 187-207, 235-255 o 265-285 de la SEQ ID NO:4; aminoácidos 9-29, 51-71, 89-109, 129-149, 187-207, 235-255 o 266-286 de la SEQ ID NO:6; aminoácidos 3-23, 48-68, 88-108, 130-150, 184-204, 232-252 o 262-282 de la SEQ ID NO:8; aminoácidos 9-29, 51-71, 89-109, 129-149, 188-208, 236-256 o 266-286 de la SEQ ID NO:10; aminoácidos 7-27, 51-71, 89-109, 129-149, 184-204, 232-252 o 263-283 de la SEQ ID NO:12; aminoácidos 2-22, 2. 48-68, 88-108, 129-149, 182-202, 230-250 o 261-281 de la SEQ ID NO:14; aminoácidos 9-29, 48-68, 89-109, 129-149, 186-206, 231-251 o 262-282 de la SEQ ID NO:16; aminoácidos 18-38, 62-82, 99-119, 140-160, 199-219, 247-267 o 278-298 de la SEQ ID NO:18; aminoácidos 2-22, 48-68, 89-109, 129-149, 186-206, 234-254 o 265-285 de la SEQ ID NO:20; aminoácidos 3-23, 48-68, 88-108, 128-148, 182-202, 230-250 o 261-281 de la SEQ ID NO:22; aminoácidos 3-23, 48-68, 88-108, 128-148, 182-202, 230-250 o 260-280 de la SEQ ID NO:24; o aminoácidos 9-29, 51-71, 89-109, 129-149, 186-206, 233-253 o 264-284 de la SEQ ID NO:26, o un dominio intracelular que comprende: aminoácidos 23-46; 106-124; 201-227; o 279-298 de la SEQ ID NO:2: aminoácidos 32-51: 110-129: 208-234: o 286-304 de la SEQ ID NO:4: aminoácidos 30-50: 110-128: 208-234: o 287-316 de la SEQ ID NO:6; aminoácidos 24-47; 109-129; 205-231; o 283-306 de la SEQ ID NO:8; aminoácidos 30-50; 110-128; 209-235; o 287-311 de la SEQ ID NO:10; aminoácidos 28-50; 110-128; 205-231; o 284-337 de la SEQ ID NO:12; aminoácidos 23-48; 109-128; 203-229; o 282-300 de la SEQ ID NO:14; aminoácidos 30-47; 110-128; 207-230; o 283-309 de la SEQ ID NO:16; aminoácidos 39-61; 120-139; 220-246; o 299-334 de la SEQ ID NO:18; aminoácidos 23-47; 110-128; 207-233; o 286-322 de la SEQ ID NO:20; aminoácidos 24-47; 109-127; 203-229; o 282-299 de la SEQ ID NO:22; aminoácidos 24-47; 109-127; 203-229; o 281-308 de la SEQ ID NO:24; o aminoácidos 30-50; 110-128; 207-232; o 285-312 de la SEQ ID NO:26.

También se describe un polinucleótido que codifica el nuevo receptor TAS2R felino, o su fragmento.

Se describe que el polinucleótido comprende una secuencia de nucleótidos seleccionada entre: la secuencia de nucleótidos de la SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 o SEQ ID NO: 25; una secuencia de nucleótidos que codifica la secuencia de aminoácidos de la SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 o SEQ ID NO: 26; una secuencia de nucleótidos que se hibrida al complemento del polinucleótido que tiene la SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 o SEQ ID NO: 25 bajo condiciones de gran rigurosidad, y el complemento de las secuencias de nucleótidos mencionado anteriormente.

50 Se describen también vectores de expresión y células hospedantes que comprenden polinucleótidos, además de oligonucleótidos.

También se describen anticuerpos y kits para detectar el receptor fTAS2R.

También se describen en este documento métodos para identificar compuestos que interactúan con o modulan la actividad de un polipéptido del receptor fTAS2R.

En una realización, el método comprende poner en contacto un polipéptido del receptor TAS2R de este documento con un compuesto de ensayo, y detectar la interacción entre el polipéptido del receptor y el compuesto de ensayo.

En una realización, el método comprende poner en contacto un polipéptido del receptor TAS2R como se define en las reivindicaciones 1-3 descritas en este documento con un ligando del receptor en presencia o ausencia de un compuesto de ensayo, y determinar si el compuesto de ensayo modula la unión del ligando al receptor o la activación del receptor por parte del ligando.

5 También se describen métodos adicionales.

En una realización, un método para preparar composiciones comestibles comprende poner en contacto una composición comestible o un componente de esta con un polipéptido del receptor TAS2R felino como se define en las reivindicaciones 1-3 por un tiempo suficiente para reducir la cantidad de un compuesto amargo de la composición comestible o un componente de esta.

- 10 En una realización, un método para preparar composiciones comestibles para controlar la palatabilidad para un animal comprende añadir un compuesto a una composición comestible para reducir la palatabilidad de la composición comestible para un animal, en donde el compuesto es un agonista de un modulador positivo de un polipéptido del receptor TAS2R felino, como se define en las reivindicaciones 1-3.
- Se describe también un método para formular una composición comestible con mejor palatabilidad que comprende determinar la presencia de un compuesto que es un agonista, antagonista o modulador de un polipéptido del receptor TAS2R felino en una composición comestible, y potenciar la palatabilidad de la composición comestible: si el compuesto es un agonista o un modulador positivo, aumentar la cantidad de un antagonista para el receptor en la composición comestible o reducir la cantidad del compuesto en la composición comestible, o si el compuesto es un antagonista o un modulador negativo, aumentar la cantidad del compuesto en la composición comestible.
- Se describe también un método para administrar un compuesto amargo a un animal que lo necesita, que comprende administrar una composición comestible a un animal, en donde la composición comestible comprende un compuesto amargo y un compuesto antagonista o modulador de un polipéptido del receptor TAS2R felino que altera la aceptación de la composición comestible por parte del animal en comparación con la aceptación de la composición comestible sin el compuesto. El compuesto amargo puede comprender una composición farmacéutica, un material para el cuidado oral, un suplemento nutricional o un repelente.

Se describen también composiciones saporíferas para recubrir o incorporar en una composición comestible para administrar a un animal y métodos para su fabricación.

En una realización, la composición saporífera comprende un agonista o un antagonista de un polipéptido del receptor TAS2R felino, en donde el agonista es denatonio, aloína o PTC, y el antagonista es probenecid; opcionalmente, un potenciador de la palatabildad; opcionalmente, un compuesto para ayudar a adherir la composición saporífera a la composición comestible; y opcionalmente, un compuesto para aportar color o aroma; en donde la composición saporífera es una formulación líquida, sólida, en polvo, pasta, gel, untable, en gránulos o pulverizable.

Se describe que el método para elaborar la composición saporífera comprende mezclar un agonista o un antagonista de un receptor TAS2R felino, en donde el agonista es denatonio, aloína o PTC, y el antagonista es probenecid; opcionalmente un potenciador de palatabilidad; opcionalmente un compuesto para ayudar a adherir la composición saporífera a la composición comestible, y opcionalmente un compuesto para aportar color o aroma con un ingrediente seleccionado del grupo que consiste en productos de carne, derivados de la carne, productos de pescado, derivados de pescado, lácteos, derivados de lácteos, fuentes de proteínas microbianas, proteínas vegetales, carbohidratos y aminoácidos para obtener una composición saporífera, en donde la composición saporífera es una formulación líquida, sólida, en polvo, pasta, gel, untable, en gránulos o pulverizable.

Estas y otras ventajas, además de las características inventivas, serán obvias a partir de los siguientes dibujos, descripción detallada, ejemplos y reivindicaciones.

Breve descripción de los dibujos

30

35

40

- La Fig. 1 es una alineación de secuencias que exhibe la 3ª a la 7ª regiones transmembrana (TM) (las regiones transmembrana están en gris) de varios receptores amargos humanos y felinos: TAS2R16 humano (SEQ ID NO:30), TAS2R4 (SEQ ID NO:27), TAS2R9 (SEQ ID NO:28). TAS2R10 (SEQ ID NO:29) ADN TAS2R38 (SEQ ID NO:31); y receptores amargos felinos, TAS2R4 (SEQ ID NO:8), 9 (SEQ ID NO:12), 10 (SEQ ID NO:14), 12 (SEQ ID NO:16) y 38 (SEQ ID NO:18).
- La Fig. 2 muestra una alineación de secuencia para el polipéptido TAS2R38 humano (SEQ ID NO:31) y el polipéptido TAS2R38 felino (SEQ ID NO:18) determinada a partir de la secuenciación de ADN genómico de cinco gatos individuales.

Descripción detallada

Se describe en este documento una familia de nuevos receptores felinos del sabor amargo, TAS2R felino (fTAS2R). Estos receptores acoplados a la proteína G (GPCR) son componentes de la vía de transducción del gusto felino,

específicamente, parte de la vía de transducción del sabor amargo, y están implicados en la detección del gusto felino de sustancias amargas tales como 6-n-propiltiouracil, sacarosa octaacetato, rafinosa undecaacetato, cicloheximida, denatonio, glicinato de cobre y quinina. También se describen polinucleótidos que codifican los receptores del sabor amargo, como vectores de expresión y células hospedantes para la expresión de nuevos receptores felinos del sabor amargo. También se describen métodos para expresar y aislar ácidos nucleicos y polipéptidos codificados.

5

10

15

20

25

30

35

40

45

60

Los ácidos nucleicos proporcionan sondas para identificación de células en donde se expresan los ácidos nucleicos, p. ej., células gustativas. Por ejemplo, las sondas para expresión de polipéptidos de TAS2R se pueden usar para identificar células gustativas presentes en foliato, circumvalato y papilas fungiformes. En particular, las sondas de TAS2R son útiles para identificar células sensibles al sabor amargo y pueden servir como herramientas para la generación de mapas anatómicos que esclarecen la relación entre las células sensibles al sabor amargo y sus proyecciones hacia el sistema nervioso. Se describen métodos para identificar compuestos que se unen a nuevos receptores felinos del sabor amargo y modular su actividad. En los métodos, los miembros de la familia fTAS2R actúan como moléculas indicadoras directas o indirectas para identificar moduladores del receptor del gusto que expresan actividad celular. Dichos compuestos son útiles para modulación de la actividad del receptor felino del sabor amargo. Modular la actividad de los receptores felinos del sabor amargo se puede lograr con agonistas, antagonistas, inhibidores y/o potenciadores. Estos compuestos moduladores se pueden usar en las industrias de alimentos y productos farmacéuticos para personalizar alimentos o fármacos, por ejemplo, para reducir el sabor amargo de alimentos o fármacos. Por tanto, los métodos descritos en este documento son útiles para diseñar o formular alimentos, mejoradores de la palatabilidad de los alimentos y dulces, y medicamentos en los que los compuestos aversivos se evitan o bloquean, particularmente para felinos.

Un "agonista" o "agonista del receptor" tal como se emplea en este documento, se refiere a una molécula que posee afinidad hacia y estimula la actividad funcional de un receptor celular. El nivel de estimulación de la actividad funcional en el receptor puede ser, p. ej., por lo menos 5%, por lo menos 10%, por lo menos 30%, por lo menos 50%, por lo menos 50%, por lo menos 50%, por lo menos 500%, por lo menos 500%, por lo menos 10.00%, por lo menos 10.000%, por lo menos 10.000% frente a la situación inicial.

El término "aminoácido" se refiere a aminoácidos naturales o sintéticos, así como también a análogos de aminoácidos y miméticos de aminoácidos que funcionan en un modo similar a los aminoácidos naturales. Los aminoácidos naturales son aquellos codificados por el código genético, además de aquellos aminoácidos que son modificados posteriormente, p. ej., hidroxiprolina, gama-carboxiglutamato y O-fosfoserina. Análogos de aminoácidos se refiere a compuestos que tienen la misma estructura química básica que un aminoácido natural, es decir, un carbono unido a un hidrógeno, un grupo carboxilo, un grupo amino y un grupo R, p. ej., homoserina, norleucina, sulfóxido de metionina, metionina metil sulfonio. Dichos análogos tienen grupos R modificados (p. ej., norleucina) o esqueletos de péptidos modificados, pero retienen la misma estructura química básica que un aminoácido natural. Miméticos de aminoácidos significa compuestos químicos que tienen una estructura que es diferente de la estructura química general de un aminoácido, pero que funcionan en un modo similar a un aminoácido natural. Se puede hacer referencia en este documento a los aminoácidos o bien por sus símbolos de tres letras comúnmente conocidos o por los símbolos de una letra recomendados por la Comisión de Nomenclatura Bioquímica (Biochemical Nomenclature Commission) IUPAC-IUB.

Un "antagonista" del receptor, tal como se emplea en este documento, se refiere a un tipo de ligando del receptor que se une al receptor en el mismo sitio que un agonista, pero no activa la respuesta funcional iniciada por la forma activa del receptor. Una vez unido, un antagonista bloquea la unión del agonista inhibiendo así la respuesta funcional producida por la unión del agonista. Ya que los agonistas y antagonistas "compiten" por el mismo sitio de unión en el receptor, el nivel de actividad del receptor será determinado por la afinidad relativa de cada molécula hacia el sitio y sus concentraciones respectivas. La inhibición de la respuesta funcional producida por un agonista o por un antagonista aplicada antes, en forma concomitante o después de la aplicación del agonista puede ser, p. ej., por lo menos 10%, por lo menos 15%; por lo menos 20%; por lo menos 30%; por lo menos 40%; por lo menos 50%; por lo menos 95%; por lo menos 95%; por lo menos 98%; por lo menos 98%; por lo menos 99%; por lo menos 99.5%; o por lo menos 100%. En determinadas realizaciones, el antagonista y el agonista se aplican en la misma concentración molar.

"Anticuerpo" se refiere a un polipéptido que se une específicamente y reconoce un antígeno. El término "anticuerpo" o "inmunoglobulina", tal como se emplea de manera intercambiable en este documento, incluye anticuerpos enteros y cualquier fragmento de unión al antígeno (porción de unión al antígeno) o sus análogos de cadena sencilla. Los anticuerpos pueden ser policionales o monocionales. La expresión "anticuerpo monocional" significa un anticuerpo obtenido de una población de anticuerpos sustancialmente homogéneos, es decir, los anticuerpos individuales que comprenden la población son idénticos excepto por posibles mutaciones naturales que pueden estar presentes en cantidades menores. En algunas realizaciones, la expresión "anticuerpo monocional" se refiere a un anticuerpo derivado de un clon unicelular.

Un "anticuerpo" comprende por lo menos una cadena pesada (H) y una cadena ligera (L). En IgG naturales, por ejemplo, estas cadenas pesada y ligera están interconectadas por enlaces disulfuro y hay dos pares de cadenas pesadas y ligeras; estos dos están también interconectados por enlaces disulfuro. Cada cadena pesada está comprendida por una región variable de la cadena pesada (abreviada en este documento como VH) y una región

constante de la cadena pesada. La región constante de la cadena pesada está comprendida por tres dominios, CH1, CH2 y CH3. Cada cadena ligera está comprendida por una región variable de la cadena ligera (abreviada en este documento como VL) y una región constante de la cadena ligera. La región constante de la cadena ligera está comprendida por un dominio, CL. Las regiones VH y VL pueden además subdividirse en regiones de hipervariabilidad, denominadas regiones determinantes de complementaridad (CDR), intercaladas con regiones más conservadas, denominadas regiones marco (FR) o regiones de unión (J) (JH o JL en las cadenas pesada y ligera, respectivamente). Cada VH y VL está compuesta por tres CDR, tres FR y un dominio J, dispuesto entre el término amino y el término carboxi en el siguiente orden: FR1, CDR1, FR2, CDR2, FR3, CDR3, J. Las regiones variables de las cadenas pesada y ligera se unen con un antígeno. Las regiones constantes de los anticuerpos pueden mediar la unión de la inmunoglobulina a los tejidos hospedantes o factores, incluidas varias células del sistema inmune (p. ej., células efectoras) o factores humorales tales como el primer componente (Clq) del sistema de complemento clásico.

10

15

20

25

30

35

40

45

50

55

60

La expresión "porción de unión al antígeno" o "fragmento de unión al antígeno" de un anticuerpo, tal como se emplea en este documento, se refiere a uno o más fragmentos de un anticuerpo que retienen la capacidad de un unirse específicamente a un antígeno. Se ha demostrado que ciertos fragmentos de un anticuerpo de longitud total pueden desempeñar la función de unión al antígeno de un anticuerpo. Los ejemplos de fragmentos de unión ilustrados como una porción o fragmento de unión al antígeno de un anticuerpo incluyen (i) un fragmento Fab, un fragmento monovalente que consiste en los dominios VL, VH, CL y CH1; (ii) un fragmento F(ab')2, un fragmento bivalente que comprende dos fragmentos Fab enlazados por un puente disulfuro a la región bisagra; (iii) un fragmento Fd que consiste en los dominios VH y CH1; (iv) un fragmento Fv que consiste en los dominios VL y VH de un grupo individual de un anticuerpo, (v) un dAb que incluye los dominios VH y VL; (vi) un fragmento dAb (Ward et al. (1989) Nature 341, 544-546), que consiste en un dominio VH; (vii) un dAb que consiste en un dominio VH o VL; y (viii) una región determinante de complementaridad aislada (CDR) o (ix) una combinación de dos o más CDR aisladas que pueden opcionalmente unirse mediante un enlazador sintético. Asimismo, si bien los dos dominios del fragmento Fv, VL y VH, están codificados por genes separados, pueden unirse, usando métodos recombinantes, con un enlazador sintético que les permite elaborarse como una cadena de proteína sencilla en donde las regiones VL y VH se unen para formar moléculas monovalentes (como un análogo de cadena sencilla de un fragmento de inmunoglobulina se conoce como Fv de cadena sencilla (scFv)). Dichos anticuerpos de cadena sencilla también se abarcan dentro de la expresión "fragmento de anticuerpo". Los fragmentos de anticuerpos se obtienen usando técnicas convencionales conocidas en el campo, y se estudia la utilidad de los fragmentos en el mismo modo general que los anticuerpos intactos. Los fragmentos de unión al antígeno se pueden producir por técnicas de ADN recombinantes, o por escisión enzimática o química de inmunoglobulinas intactas.

Un anticuerpo "anti-TAS2R" o "TAS2R" es un anticuerpo o fragmento de anticuerpo que se une específicamente a un polipéptido codificado por un gen TAS2R, ADNc o su secuencia.

La expresión "polipéptido quimérico" se refiere a una molécula, que no ocurre en la naturaleza, en donde todo o una porción de una secuencia de polipéptidos fTAS2R es parte de una secuencia de polipéptidos quimérica lineal. La porción de una secuencia de polipéptido fTAS2R puede ser la secuencia de aminoácidos de uno o más dominios del polipéptido de fTAS2R completo. Por ejemplo, la porción puede ser un dominio extracelular de un polipéptido de fTAS2R. El polipéptido quimérico puede ser elaborado por cualquier método conocido en la técnica. Por ejemplo, el polipéptido quimérico puede ser elaborado por un sistema de expresión recombinante o se puede sintetizar.

"Optimización de codones" describe un método aplicado a secuencias de nucleótidos que codifican un polipéptido para modificar la secuencia de nucleótidos para expresión potenciada del polipéptido en las células de un organismo no felino de interés, p. ej., Drosophila melanogaster o Saccharomyces cerevisae, reemplazando por lo menos uno, más de uno o todos los codones de la secuencia felina nativa con codones más frecuentemente o lo más frecuentemente utilizados en los genes del organismo de expresión sin cambiar los aminoácidos del polipéptido expresado. En realizaciones preferidas, todos los codones del ácido nucleico que codifican una secuencia de polipéptidos, o su fragmento, son optimizados con codones. Muchos organismos exhiben un sesgo para uso de codones particulares para codificar la inserción de un aminoácido particular en una cadena de péptidos en desarrollo. Las diferencias en el uso de codones, algunas veces denominadas sesgo o preferencia de codones, entre los organismos son proporcionadas por la degeneración del código genético, y están documentadas entre muchos organismos. El sesgo de codones a menudo se correlaciona con la eficiencia de traducción del ARN mensajero (ARNm), que a su vez se cree que depende de, entre otros, las propiedades de los codones que están siendo traducidos y la disponibilidad de las moléculas de ARN de transferencia (ARNt) particulares. La predominancia de los ARNt seleccionados en una célula es en general un reflejo de los codones utilizados más frecuentemente en la síntesis de péptidos. Por consiguiente, los genes se pueden personalizar para expresión génica óptima en un organismo determinado en base a la optimización de codones. Los métodos de optimización de codones se conocen en la técnica, por ejemplo, el programa de acceso gratuito en internet JCat (Grote A, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 1 de julio de 2005;33(edición web):W526-31.) o la metodología descrita en los documentos US20130017217 o WO2004058166.

"Variantes modificadas de manera conservadora" se aplica tanto a aminoácidos como a secuencias de ácido nucleico. Con respecto a secuencias de ácido nucleico particulares, variantes modificadas de manera conservadora hace referencia a aquellos ácidos nucleicos que codifican secuencias de aminoácidos idénticas o esencialmente idénticas, o donde el ácido nucleico no codifica una secuencia de aminoácidos, a secuencias esencialmente idénticas. Debido a

la degeneración del código genético, una gran cantidad de ácidos nucleicos funcionalmente idénticos codifican cualquier proteína determinada. Por ejemplo, los codones GCA, GCC, GCG y GCU codifican todo el aminoácido alanina. Por tanto, en cada posición en la que se especifique una alanina mediante un codón, el codón puede alterarse a cualquiera de los codones correspondientes descritos sin alterar el polipéptido codificado. Dichas variaciones del ácido nucleico son "variaciones silenciosas", que son una especie de variaciones modificadas de manera conservadora. Cada secuencia de ácido nucleico de este documento que codifica un polipéptido también describe cada variación silenciosa posible del ácido nucleico. El experto en la técnica reconocerá que cada codón en un ácido nucleico (excepto AUG, que es comúnmente el único codón para metionina, y TGG, que es comúnmente el único codón para triptófano) se puede modificar para producir una molécula funcionalmente idéntica. Por consiguiente, cada variación silenciosa de un ácido nucleico que codifica un polipéptido está implícita en cada secuencia descrita. El experto en la técnica reconocerá además que sustitución, eliminación o adición individual a un ácido nucleico, péptido, polipéptido o secuencia de proteína que altere, añada o elimine un aminoácido individual o un pequeño porcentaje de aminoácidos en la secuencia codificada es una "variante modificada de manera conservadora" en donde la alteración produce la sustitución de un aminoácido con un aminoácido químicamente similar. Las tablas de sustituciones conservadoras que proporcionan aminoácidos funcionalmente similares se conocen en la técnica. Dichas variantes modificadas de manera conservadora se suman a, y no excluyen, las variantes polimorfas, los homólogos interespecies y los alelos de la invención.

5

10

15

55

"Dominio C terminal" se refiere a la región que abarca el final del último dominio transmembrana y el término C de la proteína, y que normalmente está localizada dentro del citoplasma.

"Dominios citoplásmicos" o "dominios intracelulares" se refiere a los dominios de proteínas de TAS2R que miran hacia el interior de la célula, p. ej., el "dominio C terminal" y los bucles intracelulares del dominio transmembrana, p. ej., los bucles intracelulares entre las regiones transmembrana 1 y 2, los bucles intracelulares entre las regiones transmembrana 3 y 4, y los bucles intracelulares entre las regiones transmembrana 5 y 6.

La expresión "dominios extracelulares" se refiere a los dominios de polipéptidos de TAS2R que sobresalen de la membrana celular y están expuestos a la cara extracelular de la célula. Dichos dominios incluyen el "dominio N terminal" que está expuesto a la cara extracelular de la célula, así como también a los bucles extracelulares del dominio transmembrana que están expuestos a la cara extracelular de la célula, es decir, los bucles entre las regiones transmembrana 2 y 3, y entre las regiones transmembrana 4 y 5. La región del "dominio N terminal" comienza en el término N y se extiende a una región cercana al comienzo del dominio transmembrana. Estos dominios extracelulares son útiles para ensayos de unión al ligando *in vitro*, tanto en fase soluble como sólida.

El término "felino" se refiere en este documento a cualquier miembro de la familia *Felidae*, incluidos gatos domésticos y gatos no domésticos. En algunas realizaciones, felinos puede incluir gatos salvajes o cautivos, incluidos gatos salvajes y exóticos, como pumas, guepardos, linces, ocelotes, leones, tigres, yaguares, panteras y leopardos.

Tal como se emplea en este documento, "heterólogo" significa que la secuencia o célula se origina a partir de una especie exógena, o si es de la misma especie, se modifica sustancialmente de su forma nativa en composición y/o locus genómico por intervención intencional humana, o que la secuencia está diseñada *de novo* sin referencia a ninguna secuencia natural. Por ejemplo, un promotor operativamente unido a un polinucleótido heterólogo parte de una especie diferente de la especie de la cual deriva el polinucleótido, o, si es de la misma especie o de una especie análoga, uno o más se modifican sustancialmente de la forma original y/o del locus genómico, o el promotor no es el promotor nativo para el polinucleótido operativamente unido. "Secuencias heterólogas" son aquellas que no están operativamente unidas o no son contiguas unas con otras por naturaleza. Un "polipéptido heterólogo", tal como se emplea en este documento, se refiere a un polipéptido que no está naturalmente incluido en la secuencia de polipéptidos del polipéptido del receptor fTAS2R. Una "célula heteróloga" para expresión de un polipéptido o ácido nucleico se refiere a una célula que normalmente no expresa ese polipéptido o ácido nucleico.

"Homología" se refiere al porcentaje de identidad entre las moléculas de polinucleótido y polipéptido. Dos ADN, o dos secuencias de polipéptidos son "sustancialmente homólogas" unas con otras cuando las secuencias exhiben por lo menos aproximadamente 50%, específicamente por lo menos aproximadamente 75%, más específicamente por lo menos aproximadamente 80%-85%, por lo menos aproximadamente 90%, y lo más específicamente por lo menos aproximadamente 95%-98% identidad de secuencia en una longitud definida de las moléculas. Tal como se emplea en este documento, sustancialmente homólogas se refiere a secuencias que muestran identidad completa con la secuencia de polipéptido o ADN identificada.

En general, "identidad" se refiere a una correspondencia exacta de nucleótido a nucleótido o aminoácido de dos secuencias de polinucleótidos o polipéptidos, respectivamente.

El término "inmunoensayo" es un ensayo que usa un anticuerpo para unirse específicamente a un antígeno. El inmunoensayo se caracteriza por el uso de propiedades de unión específicas de un anticuerpo particular para aislar, dirigir y/o cuantificar el antígeno.

Tal como se emplea en este documento, "inhibición" o "bloqueo" de la actividad de un receptor TAS2R, o su fragmento de unión al ligando, significa que la respuesta funcional de un receptor TAS2R, o fragmento, a un agonista se reduce

o previene en presencia del inhibidor, por ejemplo, el receptor TAS2R interactúa con una vía de señalización intracelular para producir una respuesta funcional más pequeña, p. ej., el receptor TAS2R interactúa con una proteína G para promover la transducción de señales que produce un incremento más pequeño en el Ca2+ intracelular que el producido por el agonista en ausencia de inhibición.

5 La "interacción" de un compuesto con un receptor TAS2R puede significar la unión del compuesto al receptor o la modulación de una respuesta funcional del receptor por el compuesto.

10

15

20

25

30

Los términos "aislado" o "purificado", utilizados de manera intercambiable en este documento, se refieren a un ácido nucleico, un polipéptido u otro resto biológico que se elimina de los componentes con los cuales se asocia naturalmente. El término "aislado" puede hacer referencia a un polipéptido que se separa y es discreto del organismo entero con el cual se encuentra la molécula en la naturaleza o está presente en ausencia sustancial de otras macromoléculas del mismo tipo. El término "aislado" con respecto a un polinucleótido puede hacer referencia a una molécula de ácido nucleico desprovista, total o parcialmente, de secuencias normalmente asociadas en la naturaleza; o una secuencia, ya que existe en la naturaleza, pero que tiene secuencias heterólogas en asociación con esto; o una molécula disasociada del cromosoma. La pureza y la homogeneidad típicamente se determinan usando técnicas químicas analíticas, por ejemplo electroforesis de gel poliacrilamida o cromatografía de líquidos de alto rendimiento. Una proteína que es la especie predominante en una preparación se purifica sustancialmente. En particular, se separa un ácido nucleico de TAS2R aislado de marcos de lectura abierta que flanquean el gen TAS2R y codifican las proteínas distintas de TAS2R. En algunas realizaciones, el término "purificado" significa que el ácido nucleico o la proteína es por lo menos 85% puro, específicamente por lo menos 90% puro, más específicamente por lo menos 95% puro, o incluso más específicamente por lo menos 99% puro.

Un "ligando", tal como se emplea en la presente memoria, se refiere a una molécula que se une a una macromolécula, tal como un receptor TAS2R. El ligando puede ser una molécula pequeña, o un resto biológico, tal como una proteína, un azúcar, ácido nucleico o lípido. El ligando puede ser una molécula que modula la actividad del receptor TAS2R. Una molécula que modula la actividad de un receptor puede ser un agonista, un antagonista o un modulador como se define en este documento.

Los ligandos para diversos receptores TAS2R se conocen en la técnica. Por ejemplo, los ligandos de un TAS2R1 mamífero pueden incluir adhumulona, adlupulona, amarogentin, arborescin, cascarillin, cloranfenicol, cisisocohumulona, cis-isoloadhumulona, cohumulona, colupulona, dextrometorfan, difenidol (difeniltiourea, sulfocarbanilida, sim-difeniltiourea o tiocarbanilida), humulon (humulona), isoxantohumol, lupulon, lupulona, partenolida, picrotoxinin, ciclamato sódico, tiocianato sódico, tiamina, trans-isoadhumulona, trans-isocohumulona, trans-isohumulona, xantohumol y yohimbina. El TAS2R1 mamífero puede ser humano, roedor, canino o felino. En una realización, el TAS2R1 mamífero es un TAS2R1 felino.

Los ligandos de un TAS2R3 mamífero pueden incluir cloroquina. El TAS2R3 mamífero puede ser humano, roedor, canino o felino. En una realización, TAS2R3 es TAS2R3 felino.

Los ligandos de un TAS2R4 mamífero pueden incluir amarogentin, arborescin, artemorin, azatioprina, brucina, alcanfor, clorfeniramina, colquicina, dapsona, benzoato de denatonio, difenidol, partenolida, cuasina, quinina y yohimbina. El TAS2R4 mamífero puede ser de un ser humano, roedor, canino o felino. En una realización, el TAS2R4 mamífero es TAS2R4 felino.

Los ligandos de un TAS2R7 mamífero pueden incluir cafeína, clorfeniramina, cromolina, difenidol, papaverina y quinina. El TAS2R7 mamífero puede provenir de un ser humano, roedor, canino o felino. En una realización, el TAS2R7 mamífero es TAS2R7 felino.

Los ligandos de un TAS2R9 mamífero pueden incluir ofloxacina, pirenzapina y procainamid. El TAS2R9 mamífero puede provenir de un ser humano, roedor, canino o felino. En una realización, el TAS2R9 mamífero es TAS2R9 felino.

Los ligandos de un TAS2R10 mamífero pueden incluir (-)-alfa tujona, absintina, arborescin, arglabin, artemorin, azatioprina, benzoína, cafeína, alcanfor, cascarillin, clorafenicol, cloroquina, clorfeniramina, cumarina, cucurbitacina b, cucurbitacina e, cucurbitacinas, cicloheximid, cicloheximida, dapsona, benzoato de denatonio, dextrometorfán, difenidol, eritromicina, famotidina, haloperidol, papaverina, partenólido, picrotoxinin, cuasina, quinina, etricnina y yohimbina. El TAS2R10 mamífero puede provenir de un ser humano, roedor, canino o felino. En una realización, el TAS2R10 mamífero es un TAS2R10 felino.

Los ligandos de TAS2R38 mamífero pueden incluir 6-metil-2-tiouracilo, acetiltiourea, alil isotiocianato, caprolactama, clorfeniramina, dimetiltioformamida, difenidol, (difeniltiourea, sulfocarbanilida, sim-difeniltiourea, tiocarbanilida), etileno tiourea, n,n-etileno tiourea, etilpirazina, limonina, metimazol, n-etiltiourea, n-metiltiourea, fenetil isotiocianato, feniltiocarbamida (ptc), probenecid, propiltiouracilo, sinigrin, ciclamato de sodio, tiocianato de sodio y yohimbina. El TAS2R38 mamífero puede provenir de un ser humano, roedor, canino o felino. En una realización, el TAS2R38 mamífero es TAS2R38 felino.

Los ligandos de TAS2R43 mamífero pueden incluir acesulfamo K, aloína, amarogentina, arborescin, arglabin, ácido aristológuico, cafeína, cloranfenicol, cromolina, benzoato de denatonio, difenidol, falcarindiol, grosheimina

(grossheimin), helicina, probenecid, quinina y sacarina. El TAS2R43 mamífero puede provenir de un ser humano, roedor, canino o felino. En una realización, el TAS2R43 mamífero es un TAS2R43 felino.

Los ligandos de TAS2R44 mamífero pueden incluir acesulfamo K, aloína, ácido aristolóquico, difenol, famotidina, partenólido, quinina y sacarina. El TAS2R44 mamífero puede provenir de un ser humano, roedor, canino o felino. En una realización, el TAS2R44 mamífero es TAS2R44 felino.

5

20

25

30

35

40

45

50

55

La expresión "fragmento de unión al ligando" de un receptor TAS2R, tal como se emplea en este documento, se refiere a uno o más fragmentos del receptor TAS2R que retienen la capacidad de unirse específicamente a un ligando del receptor TAS2R.

Un "modulador" es una molécula que modula la respuesta funcional de un receptor uniéndose al sitio de unión que es distinto del sitio de unión al agonista. Un modulador positivo o "potenciador" potencia la respuesta funcional de un receptor, mientras que un modulador negativo o "inhibidor" inhibe la respuesta funcional de un receptor. Un "modulador alostérico" induce un cambio en la conformación del receptor, que altera la afinidad del receptor hacia los ligandos, particularmente en el sitio de unión al agonista. Los moduladores alostéricos positivos incrementan la afinidad hacia los ligandos en el sito de unión al agonista y/o potencian la actividad funcional de un receptor, mientras que los moduladores alostéricos negativos reducen la afinidad hacia los ligandos en el sitio de unión al agonista y/o inhiben la actividad funcional de un receptor. Los moduladores pueden incluir moléculas no peptídicas tales como miméticos no peptídicos, efectores alostéricos no peptídicos y péptidos.

La actividad "moduladora" o "modificadora" de un receptor TAS2R en este documento puede hacer referencia a cualquier cambio en el receptor TAS2R que ocurre en respuesta a la unión de un agonista, antagonista o modulador al receptor TAS2R o su fragmento de unión al ligando, es decir la alteración puede estimular, antagonizar o modular la respuesta funcional del receptor.

"No natural" en referencia a un polinucleótido significa que la secuencia de polinucleótidos no ocurre por naturaleza en el ADN genómico de un organismo.

La expresión "ácido nucleico", "polinucleótido" u "oligonucleótido" incluye moléculas de ADN y moléculas de ARN. Un polinucleótido puede ser monocatenario o bicatenario. Los polinucleótidos pueden contener análogos de nucleótidos conocidos o residuos o enlaces de esqueleto modificado que son sintéticos, naturales y no naturales, que tienen propiedades de unión similares al ácido nucleico de referencia. Los ejemplos de dichos análogos incluyen, sin limitación, fosforotioatos, fosforoamidatos, metil fosfonatos, metil fosfonatos quirales, 2-O-metil ribonucleótidos, péptido-ácidos nucleicos (PNA). Un polinucleótido se puede obtener por cualquier método adecuado conocido en la técnica, incluido aislamiento de fuentes naturales, síntesis química o síntesis enzimática. Se puede hacer referencia a los nucleótidos por sus códigos de una sola letra comúnmente aceptados.

La expresión "operativamente unido" se refiere a una secuencia de ácido nucleico dispuesta en una relación funcional con otra secuencia de ácido nucleico. Por ejemplo, el ADN para una pre-secuencia o líder segregador está operativamente unido al ADN para un polipéptido si se expresa como una pre-proteína que participa en la segregación del polipéptido; un promotor o potenciador está operativamente unido a una secuencia codificante si afecta la transcripción de la secuencia; o un sitio de unión al ribosoma está operativamente unido a una secuencia codificante si está posicionado como para facilitar la traducción. En general, "operativamente unido" significa que las secuencias de ADN que se están enlazando son contiguas, y, en caso de un líder segregador, contiguo en una fase de lectura. No obstante, los potenciadores no tienen que ser contiguos. La unión se logra por ligadura en los sitios de restricción convenientes. Si dichos sitios no existen, se usan adaptadores o enlazadores de oligonucleótidos sintéticos de conformidad con la práctica convencional. Un ácido nucleico está "operativamente unido" cuando se dispone en una relación funcional con otra secuencia de ácido nucleico. Por ejemplo, un promotor o potenciador está operativamente unido a una secuencia codificante si afecta la transcripción de la secuencia. Con respecto a las secuencias reguladoras de la transcripción, operativamente unido significa que las secuencias de ADN que se están enlazando son contiguas y, si es necesario se unen dos regiones codificantes de proteínas, contiguas y en marco de lectura.

Un "potenciador de la palatabilidad " o "mejorador de la palatabilidad" para una composición comestible animal, p. ej., un alimento, es un aditivo que proporciona un aroma, sabor, gusto después de ingerir, sensación en la boca, textura y/o sensación organoléptica que es atractivo para el animal diana.

Los términos "polipéptido", "péptido" y "proteína" se usan de manera intercambiable en este documento para hacer referencia a una molécula formada a partir de la unión, en un orden definido, de por lo menos dos aminoácidos. La unión entre un residuo de aminoácido y el siguiente es un enlace amida y algunas veces se denomina enlace peptídico. Un polipéptido se puede obtener por un método adecuado conocido en la técnica, incluido el aislamiento de fuentes naturales, expresión en un sistema de expresión recombinante, síntesis química o síntesis enzimática. Los términos también se aplican a polímeros de aminoácidos en los que uno o más residuos de aminoácidos son un mimético químico artificial de un aminoácido natural correspondiente, así como también polímeros de aminoácidos naturales y polímeros de aminoácidos no naturales.

Las estructuras macromoleculares de los polipéptidos se pueden describir en términos de distintos niveles de organización. "Estructura primaria" se refiere a la secuencia de aminoácidos de un péptido particular. "Estructura

secundaria" se refiere a estructuras tridimensionales localmente ordenadas, estructuras tridimensionales dentro de un polipéptido. Estas estructuras comúnmente se conocen como dominios. Los dominios son porciones de un polipéptido que forman una unidad compacta del polipéptido y habitualmente tienen 50 a 350 aminoácidos de longitud. Los dominios típicos están conformados por secciones de organización menor tales como tramos de láminas beta y hélices alfa. "Estructura terciaria" se refiere a la estructura tridimensional completa de un monómero de polipéptido. "Estructura cuaternaria" se refiere a la estructura tridimensional formada por la asociación no covalente de unidades terciarias independientes.

El término "cebador" hace referencia a un oligonucleótido monocatenario aislado de entre aproximadamente 10 y 50 nucleótidos de longitud, preferiblemente entre aproximadamente 15 y 50, más preferiblemente 15 y 30 nucleótidos de longitud y lo más preferiblemente entre aproximadamente 18 y 28 nucleótidos de longitud, que forma un dúplex con una secuencia de ácido nucleico monocatenaria de interés, y que es capaz de actuar como punto de partida de la síntesis de ácido nucleico para permitir la polimerización de una hebra complementaria usando una polimerasa bajo condiciones apropiadas (es decir, en presencia de nucleótidos y de un agente inductor tal como ADN polimerasa y a una temperatura y pH adecuados). El cebador debe ser lo suficientemente largo como para cebar la síntesis de productos de extensión en presencia del agente inductor. Las longitudes exactas de los cebadores dependerán de muchos factores, incluida la temperatura, fuente del cebador y uso del método. Preferiblemente, el cebador es un oligodesoxirribonucleótido. Con el fin de facilitar la clonación subsiguiente de secuencias ampliadas, los cebadores pueden tener secuencias del sitio de enzimas de restricción anexadas a sus extremos 5'. Dichas enzimas y sitios se conocen en la técnica. Los cebadores por sí mismos se pueden sintetizar usando técnicas conocidas en el campo. En general, los cebadores se pueden fabricar usando máquinas de síntesis de oligonucleótidos comercialmente disponibles. Un "par cebador" es un par de secuencias de cebadores seleccionado para ampliar una secuencia diana de ADN particular por PCR. Un cebador del par es complementario al extremo 3' de la hebra "sentido" del ADN diana, p. ej., ADNc, y el otro es complementario al extremo 3' de la hebra "anti-sentido" del ADN diana.

10

15

20

25

30

35

40

45

50

55

60

Tal como se emplea en este documento, la expresión "sonda" se refiere a un oligonucleótido que es capaz de hibridarse a otro ácido nucleico de interés. Una sonda puede ser monocatenaria o bicatenaria, Una sonda de la presente invención es un oligonucleótido de entre aproximadamente 10 y 100 nucleótidos de longitud, preferiblemente entre aproximadamente 15 y 80, más preferiblemente 20 y 50 nucleótidos de longitud. Las sondas son útiles en la detección, identificación y aislamiento de secuencias de ácidos nucleicos particulares, por ejemplo mediante hibridación Southern u otros métodos conocidos en la técnica. Se contempla que cualquier sonda utilizada en la presente invención será etiquetada con cualquier "molécula indicadora", de manera tal que sea detectable en cualquier sistema de detección como, entre otros, sistemas enzimáticos (p. ej., ELISA, además de ensayos histoquímicos basados en enzimas), fluorescentes, radiactivos y luminiscentes. La presente invención no está destinada a estar limitada a ningún sistema de detección o etiqueta particular.

El término "recombinante" se puede usar para describir una molécula de ácido nucleico y se refiere a un polinucleótido de origen genómico, ARN, ADN, ADNc, vírico, semisintético o sintético, que en virtud de su origen o manipulación no se asocia con todo o parte del polinucleótido al cual se asocia en la naturaleza. El término "recombinante" tal como se utiliza con respecto a una proteína o polipéptido puede hacer referencia a un polipéptido producido por expresión de un polinucleótido recombinante. En general, el gen de interés se clona y luego expresa en organismos transformados, por un método conocido en la técnica. El organismo hospedante expresa el gen exógeno para producir la proteína bajo condiciones de expresión.

La expresión "soporte sólido" se refiere a un material o grupo de materiales que tienen una superficie o superficies rígidas o semi-rígidas. Los ejemplos de materiales incluyen plásticos (p. ej., policarbonato) carbohidratos complejos (p. ej., agarosa y sefarosa), resinas acrílicas (p. ej., policarilamida y perlas de látex), nitrocelulosa, vidrio, obleas de silicio y nylon positivamente cargadas. En algunos aspectos, por lo menos una superficie del soporte sólido puede ser prácticamente plana, aunque en algunos aspectos puede ser conveniente separar físicamente regiones de diferentes moléculas, por ejemplo, con pozos, regiones elevadas, pernos, superficies grabadas o similares. En ciertos aspectos, el soporte(s) sólido adoptará la forma de perlas, resinas, geles, microesferas u otras configuraciones geométricas.

La frase "se une específicamente (o selectivamente)" a un anticuerpo o "inmunorreactivo específicamente (o selectivamente) con" cuando hace referencia a una proteína o péptido, se refiere a una reacción de unión que es determinante de la presencia de la proteína en una población heterogénea de proteínas y otros compuestos biológicos. Por lo tanto, bajo condiciones de inmunoensayo designadas, los anticuerpos especificados se unen a una proteína particular por lo menos dos veces el fondo y prácticamente no se unen en una cantidad importante a otras proteínas presentes en la muestra. La unión específica a un anticuerpo bajo dichas condiciones puede requerir que se seleccione un anticuerpo por su especificidad hacia una proteína particular. Por ejemplo, los anticuerpos policlonales contra un fTAS2R se pueden seleccionar para obtener solamente aquellos anticuerpos policlonales que son específicamente inmunorreactivos con la proteína de fTAS2R o su porción inmunogénica y no con otras proteínas, excepto por ortólogos o variantes polimórficas y alelos de la proteína de TAS2R. Esta selección se puede lograr sustrayendo anticuerpos que reaccionan en forma cruzada con las moléculas de TAS2R de otras especies u otras moléculas de TAS2R. Pueden también seleccionarse anticuerpos que reconocen solamente miembros de la familia fTAS2R GPCR pero no otros GPCR. Se puede emplear una variedad de formatos de inmunoensayo para seleccionar anticuerpos específicamente inmunorreactivos con una proteína particular. Por ejemplo, los inmunoensayos ELISA de fase sólida se usan habitualmente para seleccionar anticuerpos específicamente inmunorreactivos con una proteína (véase, p. ej., Harlow

& Lane, Antibodies, A Laboratory Manual (1988), para una descripción de formatos de inmunoensayos y condiciones que se pueden usar para determinar inmunorreactividad específica). Típicamente, una reacción específica o selectiva será por lo menos dos veces la señal o ruido de fondo y más típicamente más de 10 a 100 veces el fondo.

Con respecto a receptores, las expresiones "unión específica", "que se une específicamente", "unión selectiva" y "que se une selectivamente" significan que un receptor, tal como un receptor TAS2R, exhibe afinidad apreciable hacia un ligando particular. Afinidad de unión "apreciable" incluye la unión con una afinidad de por lo menos 10⁴ M⁻¹, por lo menos 10⁵ M⁻¹, específicamente por lo menos 10⁶ M⁻¹, más específicamente por lo menos 10⁷ M⁻¹, incluso más específicamente por lo menos 10⁸ M⁻¹, o incluso más específicamente por lo menos 10⁹ M⁻¹. Una afinidad de unión puede también indicarse como un intervalo de afinidades, por ejemplo, 10⁴ M⁻¹ a 10¹⁰ M⁻¹, específicamente 10⁵ M⁻¹ a 10¹⁰ M⁻¹. La unión específica se puede determinar de acuerdo con cualquier método conocido en la técnica para determinar dicha unión. En algunas realizaciones, la unión específica se determina de acuerdo con el análisis de Scatchard y/o ensayos de unión competitivos.

Tal como se emplean en este documento, "estimulación" o "activación" de un receptor TAS2R, o su fragmento de unión al ligando, significa que el receptor TAS2R, o el fragmento, se dispone en un estado en el que produce una respuesta funcional, por ejemplo, el receptor TAS2R interactúa con una vía de señalización intracelular para producir la respuesta funcional, p, ej., el receptor TAS2R interactúa con una proteína G para promover la transducción de señales que produce aumento de Ca2+ intracelular.

15

20

30

45

50

55

"Sustancialmente la misma" actividad biológica se refiere a un fragmento de polipéptido, derivado, homólogo, análogo o variante que retiene por lo menos aproximadamente 50%, 55%, 60%, 65%, 70%, preferiblemente por lo menos aproximadamente 75%, 80%, 85%, 90%, más preferiblemente por lo menos aproximadamente 91%, 92%, 93%, 94%, 95%, y lo más preferiblemente por lo menos aproximadamente 96%, 97%, 98%, 99% o más actividad biológica del polipéptido madre. El grado al cual el fragmento de polipéptido, derivado, homólogo, análogo o variante retiene la actividad biológica del polipéptido madre se puede evaluar por cualquier medio disponible en la técnica que incluye, aunque sin limitarse a ello, los ensavos enumerados o descritos en este documento.

Una "pareja de unión a TAS2R" es un compuesto que se une directa o indirectamente a un polipéptido TAS2R descrito en este documento.

Un "polipéptido del receptor TAS2R" (o receptor TAS2R o TAS2R) para uso en ensayos descritos en la presente invención para medir la unión al ligando o la actividad del receptor puede comprender un receptor TAS2R; un dominio de un receptor TAS2R, tal como un dominio extracelular, región transmembrana, dominio transmembrana, dominio citoplásmico, un fragmento de unión al ligando, dominio de asociación de subunidad, sitio activo y similares; o una proteína quimérica en donde o bien un receptor TAS2R o su dominio está covalentemente enlazado a una proteína heteróloga.

En este documento, una "sustancia que estimula el sentido del gusto" significa un ligando que se une a un receptor TAS2R específico o conjunto de receptores TAS2R.

La expresión "percepción del sabor", tal como se usa en la presente invención, se refiere a una respuesta (p. ej., bioquímica, conductual) o sensibilidad de un receptor TAS2R a un estímulo gustativo. La modificación de la percepción del sabor incluye una alteración (potenciación, reducción o cambio) de una respuesta bioquímica, una respuesta a la ingesta, una preferencia del sabor, una respuesta metabólica o una conducta general de un mamífero en respuesta a una sustancia que estimula el gusto. "Percepción del sabor" no requiere, aunque puede incluir, transmisión de una señal neuronal que resulta en la sensación *in vivo* del sabor por un mamífero.

El "dominio transmembrana", que comprende las siete regiones transmembrana, se refiere al dominio de polipéptidos de TAS2R que yace dentro de la membrana plasmática, y puede incluir los correspondientes bucles citoplásmicos (intracelulares) y extracelulares, que también se denomina "regiones" de dominio transmembrana. Las regiones transmembrana pueden también unirse a ligando o bien en combinación con el dominio extracelular o solo, y por lo tanto son también útiles para ensayos de unión al ligando *in vitro*.

La expresión "región transmembrana", tal como se emplea en este documento, ilustra una estructura de proteína tridimensional en forma termodinámicamente estable en una membrana, p. ej., una hélice alfa de una sola transmembrana o un cilindro beta transmembrana.

El término "vector" significa una secuencia de ácido nucleico para expresar un gen diana en una célula hospedante. Los ejemplos incluyen un vector de plásmido, un vector de cósmido, un vector de bacteriófago y un vector vírico. Los ejemplos de vectores víricos incluyen un vector de bacteriófago, un vector de adenovirus, un vector de retrovirus y un vector de virus adeno-asociado. Por ejemplo, el vector puede ser un vector de expresión que incluye una secuencia diana membrana o una secuencia de señalización de segregación o una secuencia líder, además de un elemento de control de expresión tal como un promotor, operador, codón de inicio, codón de terminación, señal de poliadenilación y potenciador. El vector se puede fabricar de varias formas conocidas en la técnica dependiendo del propósito. Un vector de expresión puede incluir un marcador de selección para seleccionar una célula hospedante que contiene el vector. Además, un vector de expresión replicable puede incluir un origen de replicación. La expresión "vector recombinante" o "vector de expresión" significa un vector operativamente unido a una secuencia de nucleótidos

heteróloga para el propósito de expresión, producción y aislamiento de la secuencia de nucleótidos heteróloga. La secuencia de nucleótidos heteróloga puede ser una secuencia de nucleótidos que codifica todo o parte de un receptor fTAS2R o un polipéptido quimérico descrito en este documento.

El gen de TAS2R (hTAS2R) y las secuencias de nucleótidos de pseudogenes se usaron como referencias para identificar, mediante un planteamiento de bioinformática, genes de TAS2R felinos (fTAS2R) previamente desconocidos. Posteriormente, el ADN genómico felino aislado se usó para clonar los genes de fTAS2R. La secuencia de nucleótidos de los genes de fTAS2R clonados de varios felinos luego se determinó por secuenciación, p. ej., secuenciación de Sanger, y se usó para establecer una secuencia de nucleótidos de consenso para el gen, y para identificar cualquier sitio de variante en la secuencia.

5

50

10 Se describen polinucleótidos que codifican un receptor fTAS2R. En una realización, se aíslan los polinucleótidos. El polinucleótido puede comprender una secuencia de nucleótidos seleccionada entre la secuencia de nucleótidos de la SEQ ID NO:1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 o SEQ ID NO: 25; una secuencia de nucleótidos que codifica la secuencia de aminoácidos de la SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO: 15 8, SEQ ID NO:10, SEQ ID NO: 12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 o SEQ ID NO: 26; una secuencia de nucleótidos que codifica un fTAS2R que tiene una secuencia de aminoácidos que tiene por lo menos 70% de homología a la secuencia de aminoácidos de la SEQ ID NO:2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO:10, SEQ ID NO: 12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 o SEQ ID NO: 26; una secuencia de nucleótidos que codifica un 20 fTAS2R y que tiene por lo menos 70% de homología a la secuencia de nucleótidos de la SEQ ID NO:1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 o SEQ ID NO: 25; una secuencia de nucleótidos que se hibrida al complemento del polinucleótido que tiene SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 o SEQ ID NO: 25 bajo condiciones de gran rigurosidad; una secuencia de nucleótidos que comprende por lo menos 15 25 nucleótidos contiguos de la secuencia de nucleótidos de una cualquiera de las secuencias de nucleótidos anteriores; y el complemento de una cualquiera de las secuencias de nucleótidos anteriores. En una realización, el porcentaie de homología es por lo menos 90%. En una realización, el porcentaje de homología es por lo menos 95%, preferiblemente por lo menos 98%, más preferiblemente por lo menos 99%. En una realización, el polinucleótido comprende una 30 secuencia de nucleótidos seleccionada entre: la secuencia de nucleótidos de la SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 o SEQ ID NO: 25; una secuencia de nucleótidos que codifica la secuencia de aminoácidos de la SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 o SEQ ID NO: 26; una secuencia de nucleótidos que se hibrida al complemento del polinucleótido que tiene la SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 35 23 o SEQ ID NO: 25 bajo condiciones de gran rigurosidad; y el complemento de las secuencias de nucleótidos anteriores. En una realización, el polinucleótido comprende una secuencia de nucleótidos seleccionada entre: la secuencia de nucleótidos de la SEQ ID NO: 17; una secuencia de nucleótidos que codifica la secuencia de aminoácidos de la SEQ ID NO: 18; una secuencia de nucleótidos que se hibrida al complemento del polinucleótido que tiene la SEQ ID NO: 17 bajo condiciones de gran rigurosidad; y el complemento de las secuencias de nucleótidos 40 anteriores. En una realización, la secuencia de nucleótidos es optimizada por codones para expresión en una célula no felina. En una realización, la célula no felina es Escherichia coli, una célula de Saccharomyces cerevisae, una célula de Drosophila melanogaster, una célula de Caenorhabditis elegans o una célula mamífera. En una realización, la célula mamífera es una célula humana o murina. Los ejemplos de secuencias optimizadas por codones para expresión de los nuevos polipéptidos del receptor fTAS2R en células de Escherichia coli, Saccharomyces cerevisae, 45 Drosophila melanogaster, Caenorhabditis elegans, células humanas o murinas se describen en las SEQ ID NO: 58-

Se describen también polinucleótidos que comprenden una secuencia que tiene por lo menos 60%, por lo menos 70%, por lo menos 80%, por lo menos 90%, por lo menos 95%, por lo menos 97%, por lo menos 98%, por lo menos 99% homología con las SEQ ID NO 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, o el complemento de las SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 o 25.

Se describen también composiciones que comprenden por lo menos dos polinucleótidos descritos en este documento. En una realización, cada polinucleótido codifica una porción de un receptor fTAS2R distinto. En una realización, la composición comprende por lo menos 3, 4 o 5 de los polinucleótidos descritos en este documento.

Se describe que la composición comprende por lo menos 6, 7, 8, 9, 10, 11, 12 o 13 de los polinucleótidos descritos en este documento. En una realización, cada polinucleótido de la composición codifica un receptor fTAS2R diferente, o su fragmento. En una realización, la composición comprende un polinucleótido que comprende la SEQ ID NO: 17 y/o la SEQ ID NO: 21. La composición comprende un par cebador para ampliar una porción de un ácido nucleico que codifica un polipéptido de TAS2R felino. En una realización, los pares de cebadores se seleccionan entre los pares de cebadores de la Tabla 5. Los pares de cebadores descritos en este documento son útiles para determinación de la secuencia de nucleótidos de un polinucleótido de TAS2R particular, o su fragmento, usando PCR. Los pares de cebadores de ADN monocatenario se pueden anelar a secuencias dentro o que rodean el gen de fTAS2R con el fin

de cebar ampliando la síntesis de ADN del gen de fTAS2R propiamente dicho. También se pueden emplear cebadores específicos de alelos. Dichos cebadores se anelan solamente a alelos mutantes de fTAS2R particulares, y por lo tanto solamente ampliarán un producto en presencia del alelo mutante como molde.

Se identificó un polimorfismo de un solo nucleótido en la secuencia de ácido nucleico que codifica fTAS2R38 en el nucleótido 220 de la secuencia de ADNc (SEQ ID NO:17) a partir de la secuenciación de ADN genómico felino ampliado de múltiples sujetos. Los dos alelos observados en el nucleótido 220 fueron G y A. La variación del ácido nucleico G220A corresponde a una variación del aminoácido D74N en la secuencia de proteínas de fTAS2R38 (SEQ ID NO:18). En una realización, un polinucleótido descrito comprende una secuencia de nucleótidos de por lo menos 15 nucleótidos contiguos de la SEQ ID NO:17 que contiene el nucleótido 220, en donde una A está presente en el nucleótido 220; o el complemento de la secuencia de nucleótidos. En una realización, el polinucleótido comprende por lo menos 20 nucleótidos contiguos de la SEQ ID NO:17 que contiene el nucleótido 220, en donde una A está presente en el nucleótido 220; o el complemente de la secuencia de nucleótidos. En una realización, un polipéptido de fTAS2R38 descrito comprende la SEQ ID NO:18 con N presente en el residuo 74 de la secuencia, o su fragmento que comprende el residuo N74.

15 En otro aspecto, se describen polipéptidos del receptor fTAS2R aislados.

5

10

20

25

30

En una realización, el polipéptido de fTAS2R aislado es codificado por un polinucleótido descrito en este documento.

En una realización, el polipéptido de fTAS2R aislado puede comprender la secuencia de aminoácidos de la SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 o SEQ ID NO:26; o una secuencia de aminoácidos que tiene por lo menos 70%, por lo menos 80%, por lo menos 90%, por lo menos 95%, por lo menos 97%, por lo menos 98%, por lo menos 99% de homología con la secuencia de aminoácidos de la SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 o SEQ ID NO:26. En una realización, el polipéptido de fTAS2R aislado comprende la secuencia de aminoácidos de la SEQ ID NO:24 o SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 o SEQ ID NO:26; o una secuencia de aminoácidos que tiene por lo menos 70%, por lo menos 80%, por lo menos 90%, por lo menos 95%, por lo menos 97%, por lo menos 98%, por lo menos 99% de homología con una de las secuencias de aminoácidos anteriores. En una realización, el polipéptido de fTAS2R aislado comprende la secuencia de aminoácidos de la SEQ ID NO:18 o SEQ ID NO:22.

Los GPCR sensoriales, como los receptores del sabor amargo TAS2R, tienen una estructura de dominio que incluye un dominio N-terminal; dominios extracelulares; un dominio transmembrana que comprende siete regiones transmembrana, bucles citoplásmicos y extracelulares; dominios citoplásmicos; y un dominio C-terminal. Estos dominios se pueden identificar estructuralmente usando métodos conocidos en la técnica, como programas de análisis de secuencias que identifican dominios hidrófobos e hidrófilos. Dichos dominios son útiles para elaborar proteínas quiméricas y para los ensayos *in vitro* descritos en este documento, p. ej., ensayos de unión al ligando.

Las siete regiones transmembrana y bucles extracelulares y citoplásmicos se pueden identificar usando métodos convencionales conocidos en la técnica. Por ejemplo, las regiones transmembrana de las proteínas de fTAS2R se pueden identificar usando software, TOPCONS, disponible en la internet de Stockholm Bioinformatics Center, Stockholm University (Andreas Bernsel, et al. (2009) Nucleic Acids Research 37 (edición web), W465-8). Las siete regiones transmembrana y los bucles extracelulares y citoplásmicos del fTAS2R que se identifican con TOPCONS se muestran en la siguiente tabla:

Tabla 1. Predicción de TOPCONS de siete regiones transmembrana, bucles extracelulares y bucles intracelulares

fTAS2R1 (SEQ ID NO:2)
Dominios transmembrana: 1: 2-22, 2: 47-67, 3: 85-105, 4: 125-145, 5: 180-200, 6: 228-248, 7. 258-278
Dominio extracelular: 1, 68-84; 146-179; 249-257.
Dominio intracelular: 23-46; 106-124; 201-227; 279-298
fTAS2R2 (SEQ ID NO:4)
Dominios transmembrana: 1: 11-31, 2: 52-72, 3: 89-109, 4: 130-150, 5: 187-207, 6: 235-255, 7: 265-285
Dominio extracelular: 1-10, 73-88; 151-186; 256-264
Dominio intracelular: 32-51; 110-129; 208-234; 286-304
Dominio intraccidiar. 02 01, 110 120, 200 204, 200 004

fTAS2R3 (SEQ ID NO:6)

Dominios transmembrana: 1: 9-29, 2: 51-71, 3: 89-109, 4: 129-149, 5: 187-207, 6: 235-255, 7: 266-286

Dominio extracelular: 1-8; 72-88; 150-186; 256-265

Dominio intracelular: 30-50; 110-128; 208-234; 287-316

fTAS2R4 (SEQ ID NO:8)

Dominios transmembrana: 1: 3-23, 2: 48-68, 3: 88-108, 4: 130-150, 5: 184-204, 6: 232-252, 7: 262-282

Dominio extracelular: 1-2; 69-87; 151-183; 253-261

Dominio intracelular: 24-47; 109-129; 205-231; 283-306

fTAS2R7 (SEQ ID NO:10)

Dominios transmembrana: 1: 9-29, 2: 51-71, 3: 89-109, 4: 129-149, 5: 188-208, 6: 236-256, 7: 266-286

Dominio extracelular: 1-8; 72-88; 150-187; 257-265

Dominio intracelular: 30-50; 110-128; 209-235; 287-311

fTAS2R9(SEQ ID NO:12)

Dominios transmembrana: 1: 7-27, 2: 51-71, 3: 89-109, 4: 129-149, 5: 184-204, 6: 232-252, 7: 263-283

Dominio extracelular: 1-6; 72-88; 150-183; 253-262

Dominio intracelular: 28-50; 110-128; 205-231; 284-337

fTAS2R10 (SEQ ID NO:14)

Dominios transmembrana: 1: 2-22, 2. 48-68, 3: 88-108, 4: 129-149, 5: 182-202, 6: 230-250, 7: 261-281

Dominio extracelular: 1; 69-87; 150-181; 251-260

Dominio intracelular: 23-48; 109-128; 203-229; 282-300

fTAS2R12 (SEQ ID NO:16)

Dominios transmembrana: 1: 9-29, 2: 48-68, 3: 89-109, 4: 129-149, 5: 186-206, 6: 231-251, 7: 262-282

Dominio extracelular: 1-8; 69-88; 150-185; 252-261

Dominio intracelular: 30-47; 110-128; 207-230; 283-309

fTAS2R38 (SEQ ID NO:18)

Dominios transmembrana: 1: 18-38, 2: 62-82, 3: 99-119, 4: 140-160, 5: 199-219, 6: 247-267, 7: 278-298

Dominio extracelular: 1-17: 83-98; 161-198; 268-277

Dominio intracelular: 39-61; 120-139; 220-246; 299-334

fTAS2R42 (SEQ ID NO:20)

Dominios transmembrana: 1: 2-22, 2: 48-68, 3: 89-109, 4: 129-149, 5: 186-206, 6: 234-254, 7: 265-285

Dominio extracelular: 1; 69-88; 150-185; 255-264

Dominio intracelular: 23-47; 110-128; 207-233; 286-322

Dominios transmembrana: 1: 3-23, 2: 48-68, 3: 88-108, 4: 128-148, 5: 182-202, 6: 230-250, 7: 261-281

Dominio extracelular: 1-2; 69-87; 149-181; 251-260

Dominio intracelular: 24-47; 109-127; 203-229; 282-299

fTAS2R44 (SEQ ID NO:24)

Dominios transmembrana: 1: 3-23, 2: 48-68, 3: 88-108, 4: 128-148, 5: 182-202, 6: 230-250, 7: 260-280

Dominio extracelular: 1-2; 69-87; 149-181; 251-259

Dominio intracelular: 24-47; 109-127; 203-229; 281-308

fTAS2R67 (SEQ ID NO:26)

5

10

15

20

25

30

35

40

45

Dominios transmembrana: 1: 9-29, 2: 51-71, 3: 89-109, 4: 129-149, 5: 186-206, 6: 233-253, 7: 264-284

Dominio extracelular: 1-8; 72-88; 150-185; 254-263

Dominio intracelular: 30-50; 110-128; 207-232; 285-312

Se pueden generar predicciones alternativas de las regiones transmembrana y bucles extracelulares y citoplásmicos de las proteínas de fTAS2R usando un software distinto también disponible en internet de Stockholm Bioinformatics Center, como SCAMPI (Andreas Bernsel, et al. (2008) Proc. Natl. Acad. Sci. USA. 105, 7177-7181.); PRODIV (Håkan Viklund y Arne Elofsson (2004) Protein Science 13, 1908-1917) y OCTAPUS (Håkan Viklund y Arne Elofsson (2008) Bioinformatics. 24, 1662-1668.) Otros métodos conocidos en la técnica para pronosticar las regiones estructurales incluyen métodos de predicción de hidropatía de Goldman-Engleman-Steitz, o Kyte-Doolittle (J. Mol. Biol. 157: 105-132 (1982), o Hopp-Woods. Los métodos de predicción de estructura secundaria incluyen Garnier-Robson, o Deléage & Roux o Chou-Fasman. Como se conoce en la técnica, los distintos algoritmos disponibles pueden pronosticar límites ligeramente diferentes para regiones transmembrana basadas en la secuencia de aminoácidos.

En una realización, el polipéptido del receptor TAS2R aislado puede comprender por lo menos un dominio extracelular de un receptor TAS2R felino; por lo menos un dominio transmembrana de un receptor TAS2R felino; o por lo menos un dominio intracelular de un receptor TAS2R felino, en donde el receptor TAS2R felino comprende la secuencia de aminoácidos de la SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:24, SEQ ID NO:24, SEQ ID NO:26; en donde el polipéptido del receptor TAS2R aislado no consiste en la secuencia de aminoácidos de las SEQ ID NO: 2, 4, 6 o 10.

Se describe que el dominio extracelular del polipéptido de fTAS2R puede comprender los aminoácidos 1, 68-84; 146-179; o 249-257 de la SEQ ID NO:2; aminoácidos 1-10, 73-88; 151-186; o 256-264 de la SEQ ID NO:4; aminoácidos 1-8; 72-88; 150-186; o 256-265 de la SEQ ID NO:6; aminoácidos 1-2; 69-87; 151-183; o 253-261 de la SEQ ID NO:8; aminoácidos 1-8; 72-88; 150-187; o 257-265 de la SEQ ID NO:10; aminoácidos 1-6; 72-88; 150-183; o 253-262 de la SEQ ID NO:12; aminoácidos 1; 69-87; 150-181; o 251-260 de la SEQ ID NO:14; aminoácidos 1-8; 69-88; 150-185; o 252-261 de la SEQ ID NO:16; aminoácidos 1-17: 83-98; 161-198; o 268-277 de la SEQ ID NO:18; aminoácidos 1; 69-88; 150-185; o 255-264 de la SEQ ID NO:20; aminoácidos 1-2; 69-87; 149-181; o 251-260 de la SEQ ID NO:22; aminoácidos 1-2; 69-87; 149-181; o 251-259 de la SEQ ID NO:24; o aminoácidos 1-8; 72-88; 150-185; o 254-263de la SEQ ID NO:26.

Se describe que el dominio transmembrana del polipéptido de fTAS2R puede comprender los aminoácidos 2-22, 47-67, 85-105, 125-145, 180-200, 228-248, o 258-278 de la SEQ ID NO:2; aminoácidos 11-31, 52-72, 89-109, 130-150, 187-207, 235-255, o 265-285 de la SEQ ID NO:4; aminoácidos 9-29, 51-71, 89-109, 129-149, 187-207, 235-255, o 266-286 de la SEQ ID NO:6; aminoácidos 3-23, 48-68, 88-108, 130-150, 184-204, 232-252, o 262-282 de la SEQ ID NO:8; aminoácidos 9-29, 51-71, 89-109, 129-149, 188-208, 236-256, o 266-286 de la SEQ ID NO:10; aminoácidos 7-27, 51-71, 89-109, 129-149, 184-204, 232-252, o 263-283 de la SEQ ID NO:12; aminoácidos 2-22, 2. 48-68, 88-108, 129-149, 182-202, 230-250, o 261-281 de la SEQ ID NO:14; aminoácidos 9-29, 48-68, 89-109, 129-149, 186-206, 231-251 o 262-282 de la SEQ ID NO:16; aminoácidos 18-38, 62-82, 99-119, 140-160, 199-219, 247-267, o 278-298de la SEQ ID NO:18; aminoácidos 2-22, 48-68, 89-109, 129-149, 186-206, 234-254 o 265-285 de la SEQ ID NO:20; aminoácidos 3-23, 48-68, 88-108, 128-148, 182-202, 230-250 o 261-281 de la SEQ ID NO:22; aminoácidos 3-23, 48-68, 88-108, 128-148, 182-202, 230-250 o 261-281 de la SEQ ID NO:22; aminoácidos 3-23, 48-68, 88-108, 128-148, 182-202, 230-250 o 261-281 de la SEQ ID NO:22; aminoácidos 3-23, 48-68, 88-108, 128-148, 182-202, 230-250 o 260-280 de la SEQ ID NO:24; o aminoácidos 9-29, 51-71, 89-109, 129-149, 186-206, 233-253 o 264-284de la SEQ ID NO:26.

Se describe que el dominio intracelular del polipéptido de fTAS2R puede comprender los aminoácidos 23-46; 106-124; 201-227; o 279-298 de la SEQ ID NO:2; aminoácidos 32-51; 110-129; 208-234; o 286-304 de la SEQ ID NO:4; aminoácidos 30-50; 110-128; 208-234; o 287-316 de la SEQ ID NO:6; aminoácidos 24-47; 109-129; 205-231; o 283-306 de la SEQ ID NO:8; aminoácidos 30-50; 110-128; 209-235; o 287-311 de la SEQ ID NO:10; aminoácidos 28-50; 110-128; 205-231; o 284-337 de la SEQ ID NO:12; aminoácidos 23-48; 109-128; 203-229; o 282-300 de la SEQ ID NO:14; aminoácidos 30-47; 110-128; 207-230; o 283-309 de la SEQ ID NO:16; aminoácidos 39-61; 120-139; 220-246; o 299-334 de la SEQ ID NO:18; aminoácidos 23-47; 110-128; 207-233; o 286-322 de la SEQ ID NO:20; aminoácidos 24-47; 109-127; 203-229; o 282-299 de la SEQ ID NO:22; aminoácidos 24-47; 109-127; 203-229; o 281-308 de la SEQ ID NO:24; o aminoácidos 30-50; 110-128; 207-232; o 285-312 de la SEQ ID NO:26.

Se describe que el polipéptido del receptor fTAS2R comprende una región transmembrana 2, una región transmembrana 3, una región transmembrana 4, una región transmembrana 5, una región transmembrana 6 y una región transmembrana 7, en donde cada región transmembrana comprende por lo menos 20 aminoácidos consecutivos de la secuencia de la región transmembrana correspondiente seleccionadas en forma independiente entre SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 y SEQ ID NO:26; o una región transmembrana 3, una región transmembrana 6 y una región transmembrana 7, en donde cada región transmembrana comprende por lo menos 20 aminoácidos consecutivos de la secuencia de la región transmembrana correspondiente seleccionadas en forma independiente entre SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 y SEQ ID NO:26; un dominio extracelular 3 que comprende por lo menos 15 aminoácidos consecutivos seleccionados entre los aminoácidos 146-179 de la SEQ ID NO:2; aminoácidos 151-186 de la SEQ ID NO:4; aminoácidos 150-186 de la SEQ ID NO:6; aminoácidos 151-183 de la SEQ ID NO:8; aminoácidos 150-187 de la SEQ ID NO:10; aminoácidos 150-183 de la SEQ ID NO:12: aminoácidos 150-181 de la SEQ ID NO:14: aminoácidos 150-185 de la SEQ ID NO:16: aminoácidos 161-198 de la SEQ ID NO:18; aminoácidos 150-185 de la SEQ ID NO:20; aminoácidos 149-181 de la SEQ ID NO:22; aminoácidos 149-181 de la SEQ ID NO:24; y aminoácidos 150-185 de la SEQ ID NO:26; y un dominio extracelular 4 que comprende por lo menos 8 aminoácidos consecutivos seleccionados entre los aminoácidos 249-257de la SEQ ID NO:2; aminoácidos 256-264 de la SEQ ID NO:4; aminoácidos 256-265 de la SEQ ID NO:6; aminoácidos 253-261 de la SEQ ID NO:8; aminoácidos 257-265 de la SEQ ID NO:10; aminoácidos 253-262 de la SEQ ID NO:12; aminoácidos 251-260 de la SEQ ID NO:14; aminoácidos 252-261 de la SEQ ID NO:16; aminoácidos 268-277 de la SEQ ID NO:18; aminoácidos 255-264 de la SEQ ID NO:20; aminoácidos 251-260 de la SEQ ID NO:22; aminoácidos 251-259 de la SEQ ID NO:24; y aminoácidos 254-263 de la SEQ ID NO:26.

Se describen también polinucleótidos que codifican el polipéptido que comprende por lo menos un dominio extracelular de un receptor TAS2R felino; por lo menos un dominio transmembrana de un receptor TAS2R felino; o por lo menos un dominio intracelular de un receptor TAS2R felino.

En otro aspecto, se describen polipéptidos quiméricos que comprenden un dominio extracelular, un dominio intracelular o una región transmembrana de un polipéptido del receptor TAS2R felino, y que además comprenden un polipéptido heterólogo. El dominio intracelular, dominio extracelular o la región transmembrana del polipéptido del receptor TAS2R felino puede ser cualquiera de aquellos descritos en este documento.

El polipéptido heterólogo puede ser cualquier polipéptido adecuado conocido en la técnica, o una porción de dicho 30 polipéptido que pueda ser útil en este documento. El polipéptido heterólogo puede ser, por ejemplo, una secuencia para determinar la localización y expresión celular, para permitir el correcto pliegue del polipéptido quimérico en un sistema de expresión y/o para facilitar el aislamiento del polipéptido quimérico. El polipéptido heterólogo puede enlazarse a cualquier porción del polipéptido quimérico, por ejemplo al extremo amino terminal o al extremo carboxi 35 terminal de la secuencia fTAS2R. Por ejemplo, el polipéptido heterólogo puede ser los primeros 45 aminoácidos de somatostatina de rata, la marca FLAG®, una marca 6x histidina (his), MYC, una marca de proteína fluorescente, V5 y/o glutatión S-transferasa (GST). Cuando el polipéptido heterólogo consiste en los primeros 45 aminoácidos de somatostatina de rata, típicamente se dispone en el extremo amino terminal del polipéptido quimérico para permitir el direccionamiento de la membrana. Cuando el polipéptido heterólogo es una marca, para permitir que el aislamiento 40 del polipéptido quimérico sea más fácil, p. ej., una marca 6x histidina, se puede disponer en el término amino del polipéptido quimérico. El experto en la técnica puede tomar la determinación de una localización adecuada para el polipéptido heterólogo en el polipéptido quimérico en relación al extremo amino o al extremo carboxi de la secuencia fTAS2R para obtener un aspecto funcional particular del polipéptido heterólogo en el polipéptido quimérico.

Se describen también polinucleótidos que codifican polipéptidos quiméricos.

5

10

15

20

25

55

60

Se describe también una composición que comprende por lo menos dos polipéptidos de fTAS2R descritos en este documento. En una realización, la composición comprende por lo menos 3, 4 o 5 polipéptidos descritos en este documento. En una realización, la composición comprende por lo menos 6, 7, 8, 9, 10, 11, 12 o 13 polipéptidos descritos en este documento. En una realización, cada polipéptido en la composición es un receptor fTAS2R diferente. En una realización, la composición comprende un polipéptido que comprende la SEQ ID NO:18 y un polipéptido que comprende la SEQ ID NO:22.

A menos que se indique otra cosa, una secuencia de polipéptidos particular también abarca implícitamente sus variantes modificadas en forma conservadora. Una sustitución de aminoácido conservadora en una secuencia de polipéptidos incluye la sustitución de un aminoácido en una clase por un aminoácido de la misma clase, en donde una clase se define mediante propiedades físico-químicas comunes de la cadena lateral del aminoácido y altas frecuencias de sustitución en proteínas homólogas que se hallan en la naturaleza, según lo determinado, por ejemplo, por la matriz de intercambio de frecuencias Dayhoff o la matriz BLOSUM. Se han categorizado seis clases generales de cadenas laterales de aminoácidos e incluyen: Clase I (Cys); Clase II (Ser, Thr, Pro, Ala, Gly); Clase III (Asn, Asp, Gln, Glu); Clase IV (His, Arg, Lys); Clase V (Ile, Leu, Val, Met); y Clase VI (Phe, Tyr, Trp). Por ejemplo, la sustitución de un Asp por otro residuo de clase III tal como Asn, Gln o Glu, es una sustitución conservadora. El experto en la técnica puede determinar fácilmente las regiones de la molécula de interés que pueden tolerar el cambio por referencia a Hopp/Woods y Kyte- Doolittle plots.

A menos que se indique otra cosa, una secuencia de ácido nucleico particular también abarca explícitamente sus variantes modificadas de manera conservadora (p. ej., sustituciones de codones degeneradas) y secuencias complementarias, además de la secuencia que se indica explícitamente. Concretamente, las sustituciones de codones degeneradas se pueden lograr generando secuencias en las que la tercera posición de uno o más (o todos) de los codones seleccionados se sustituye con residuos de base mixta y/o desoxivinosina (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)).

5

10

15

20

25

30

35

40

45

50

55

60

El porcentaje de identidad (homología) se puede determinar por comparación directa de la información de la secuencia entre dos moléculas, alineando las secuencias, contando el número exacto de correspondencias entre las dos secuencias alineadas, dividiendo la longitud de la secuencia más corta y multiplicando el resultado por 100. Se pueden usar programas de ordenador fácilmente disponibles para ayudar en el análisis, como ALIGN (Dayhoff, M.O. en Atlas of Protein Sequence and Structure M.O. Dayhoff ed., 5 Supl. 3:353-358, National Biomedical Research Foundation, Washington, DC), que adapta el algoritmo de homología local de Smith y Waterman 1981 Advances in Appl Math 2:482-489, para análisis de péptidos. Los programas para determinar la identidad de secuencias de nucleótidos están disponibles en Wisconsin Sequence Analysis Package, Versión 8 (disponible de Genetics Computer Group, Madison, WI) por ejemplo, los programas BESTFIT, FASTA y GAP, que solamente dependen del algoritmo Smith y Waterman. Estos programas se utilizan fácilmente con los parámetros por defecto recomendados por el fabricante y descritos en Wisconsin Sequence Analysis Package anteriormente mencionado. Por ejemplo, el porcentaje de identidad de una secuencia de nucleótidos particular a una secuencia de referencia se puede determinar usando el algoritmo de homología de Smith y Waterman con una tabla de puntuación por defecto y una penalización de espacio de seis posiciones de nucleótidos.

Alternativamente, la homología de los nucleótidos se puede determinar por hibridación bajo condiciones que forman dúplex estables entre regiones homólogas, seguida de digestión con nucleasa(s) específicas monocatenarias y determinación del tamaño de los fragmentos digeridos. Las secuencias de ADN que son sustancialmente homólogas se pueden identificar en un experimento de hibridación Southern, por ejemplo, bajo condiciones rigurosas, como se define para ese sistema particular. Definir las condiciones de hibridación apropiadas está dentro del campo técnico. Véanse, p. ej., Sambrook et al. Molecular Cloning: A Laboratory Manual (2ª ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y. (1989) o Current Protocols in Molecular Biology, John Wiley & Sons, N.Y., 6.3.1-6.3.6, 1991. En una realización, las condiciones de gran rigurosidad son 6X SSC (IX SSC = cloruro de sodio 0,15 M, citrato de sodio 0,015 M, pH 7) a 45° C., seguido de un lavado en 0,2X SSC, 0,1% SDS a 65° C o equivalente. Las condiciones de hibridación moderadas se definen como el equivalente a la hibridación en 2X cloruro de sodio/citrato de sodio (SSC) a 30° C., seguido de un lavado en 1X SSC, 0,1% SDS a 50° C. Las condiciones de gran rigurosidad se conocen en la técnica, y para los fines de la presente invención, incluyen condiciones equivalentes a la hibridación en 6X cloruro de sodio/citrato de sodio (SSC) a 45° C., seguido de un lavado en 0,2X SSC, 0,1% SDS a 65° C.

Se describe en este documento un vector de expresión que comprende un polinucleótido que codifica un polipéptido de TAS2R felino descrito en este documento, o su fragmento. En una realización, el vector recombinante comprende un polinucleótido que consiste en la SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, o 25; un polinucleótido que consiste en el complemento de la SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 o 25; o un polinucleótido que consiste en una secuencia que tiene por lo menos 90%, por lo menos 95%, por lo menos 97%, por lo menos 98%, por lo menos 99% homología con SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, o el complemento de la SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 o 25. En una realización, el vector recombinante comprende un polinucleótido que comprende una secuencia de nucleótidos seleccionada entre: la secuencia de nucleótidos de la SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 o SEQ ID NO: 25; una secuencia de nucleótidos que codifica la secuencia de aminoácidos de la SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, o SEQ ID NO: 26; una secuencia de nucleótidos que se hibrida al complemento del polinucleótido que tiene SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 o SEQ ID NO: 25 bajo condiciones de gran rigurosidad; y el complemento de las secuencias de nucleótidos anteriores. En una realización, el vector comprende una secuencia de polinucleótidos de la SEQ ID NO:17 o la SEQ ID NO:21. También se describe un vector de expresión que comprende un polinucleótido que codifica un polipéptido quimérico descrito en este documento.

El vector recombinante se puede construir para uso en células hospedantes procariotas o eucariotas. Por ejemplo, cuando una célula procariota se usa como célula hospedante, el vector de expresión utilizado en general incluye un promotor fuerte capaz de iniciar la transcripción (por ejemplo, un promotor pLλ, promotor *trp*, promotor *lac*, promotor *tac*, promotor T7), un sitio de unión al ribosoma para iniciar la traducción, y una secuencia de finalización de la transcripción/traducción. Cuando se usa una célula eucariota como célula hospedante, el vector utilizado en general incluye el origen de replicación que actúa en la célula eucariota, por ejemplo el origen de replicación f1, el origen de replicación SV40, el origen de replicación pMB1, el origen de replicación adeno, el origen de replicación AAV o el origen de replicación BBV, aunque sin limitarse a estos. Un promotor que es un vector de expresión para una célula hospedante eucariota puede ser un promotor derivado de los genomas de células mamíferas (por ejemplo, un promotor de metalotioneína o un promotor de EF-1 alfa) o un promotor derivado de virus mamíferos (por ejemplo, un promotor tardío de adenovirus, un promotor del virus *Vaccinia* 7,5K, un promotor Sindbis, un promotor SV40, un promotor de

cytomegalovirus y un promotor *tk* de HSV). Una secuencia de terminación de la transcripción en un vector de expresión para una célula hospedante eucariota puede ser, en general, una secuencia de poliadenilación.

Se describe también una célula hospedante que comprende un vector de expresión o un polinucleótido descrito en este documento. Una célula hospedante adecuada se puede transformar con por lo menos uno de ejemplo de un polinucleótido descrito en este documento, por ejemplo un polinucleótido que consiste en la SEQ ID NO:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 o 25.

5

10

15

20

25

30

35

40

45

55

La célula hospedante del vector puede ser cualquier célula que pueda ser utilizada en términos prácticos por el vector de expresión. Por ejemplo, la célula hospedante puede ser una célula eucariota superior, como una célula mamífera, o una célula eucariota inferior, como una célula de levadura. Además, la célula hospedante puede ser una célula procariota, como una célula bacteriana. Una célula hospedante procariota puede ser una bacteria del género *Bacillus*, como *E. coli* JM109, *E. coli* BL21, *E. coli* RR1, *E. coli* LE392, *E. coli* B, *E. coli* X 1776, *E. coli* W3110, *Bacillus subtilis* y *Bacillus thuringiensis*; o una bacteria intestinal, como *Salmonella typhimurium, Serratia marcescens* y varias especies de *Pseudomonas*. Una célula eucariota puede ser una levadura (p. ej., *Saccharomyces cerevisiae*), una célula de insecto, una célula vegetal o una célula animal, por ejemplo, Sp2/0 de ratón, CHO (ovario de hámster chino) K1, CHO DG44, PER.C6, W138, BHK, COS-7, 293, HepG2, Huh7, 3T3, RIN, HeLa, HEK-293, o una línea celular de MDCK. En algunas realizaciones, son útiles en este documento las células de peces.

El polinucleótido o vector recombinante, incluido el polinucleótido, se puede transferir a una célula hospedante usando un método conocido en la técnica. Por ejemplo, cuando se usa una célula procariota como la célula hospedante, la transferencia se puede realizar usando un método CaCl₂ o un método de electroporación, y cuando se usa una célula eucariota como la célula hospedante, la transferencia se puede llevar a cabo por microinyección, precipitación de fosfato de calcio, electroporación, transfección mediada por liposomas, transfección LIPOFECTAMINE® (Life Technologies Corporation) o bombardeo de genes, aunque sin limitarse a esto.

Después de introducir el vector de expresión en las células, las células transfectadas se pueden cultivar bajo condiciones que favorecen la expresión de fTAS2R. fTAS2R se puede recubrir del cultivo usando técnicas convencionales conocidas en el campo.

Los vectores de expresión descritos en este documento son particularmente útiles para ensayos a fin de identificar y caracterizar sustancias que estimulan el sentido del gusto. Los medios para introducir/expresar los ácidos nucleicos y vectores, o bien individualmente o como bibliotecas, se conocen en la técnica. Se puede medir una diversidad de parámetros individuales de células, órganos o animales completos mediante una diversidad de métodos. Las secuencias de fTAS2R descritas se pueden expresar, por ejemplo, en tejidos de gusto animal por administración con un agente transmisible, p. ej., vector de expresión de adenovirus.

Los ensayos de ácido nucleico para presencia de ADN y ARN para un miembro de la familia de TAS2R en una muestra incluyen numerosas técnicas conocidas por los expertos en la materia, como análisis Southern, análisis Northern y dot blots, protección de RNasa, análisis S1, técnicas de ampliación como reacción en cadena de la polimerasa (PCR) y reacción en cadena de la ligasa (LCR), e hibridación *in situ*. A su vez, una proteína de TAS2R se puede detectar con diversas técnicas de inmunoensayo conocidas en el campo. La muestra de ensayo típicamente se compara tanto con un control positivo (p. ej., una muestra que expresa una proteína TAS2R recombinante) como con un control negativo.

La información de la secuencia de aminoácidos y ácido nucleico descrita en este documento hace posible la identificación de los compuestos que son parejas de unión con los que interactuará un polinucleótido o polipéptido de TAS2R. Los métodos para identificar los compuestos que son parejas de unión incluyen ensayos de disolución, ensayos *in vitro* en los que se inmovilizan polipéptidos TAS2R, y ensayos basados en células.

Las moléculas de unión específicas, incluidos ligandos naturales y compuestos sintéticos, se pueden identificar o desarrollar usando productos TAS2R aislados o recombinantes, variantes de TAS2R, o células que expresan dichos productos. Las parejas de unión son útiles para purificar productos TAS2R y detectar o cuantificar productos TAS2R en muestras de fluido y tejido usando procedimientos inmunológicos conocidos. Las moléculas de unión son también útiles para modular (es decir, bloquear, inhibir o estimular) las actividades biológicas de TAS2R, especialmente aquellas actividades implicadas en la transducción de señales. Las moléculas de unión son también útiles para pronosticar la percepción del gusto de un organismo tal como un mamífero, detectando un polipéptido de TAS2R en una muestra biológica de un felino.

50 Se describen métodos para identificar compuestos que se unen y/o modulan los receptores fTAS2R.

En una realización, el método comprende poner en contacto el receptor TAS2R definido en las reivindicaciones 1-3 con un compuesto de ensayo que se sospecha que se une al receptor TAS2R; y detectar la unión entre el compuesto y el receptor TAS2R. La unión se puede determinar con cualquier ensayo de unión conocido por el experto en la técnica, incluidos ensayos de desplazamiento de gel, Western blot, ensayos de competición radiomarcados, expresión basada en fagos, clonación de expresión basada en fagos, co-fraccionamiento por cromatografía, co-precipitación, reticulación, análisis de interacción de atrapamiento/doble híbrido, análisis southwestern y ELISA. Los métodos pueden también emplear ligandos que se unen a una etiqueta, como una radioetiqueta (p. ej., 125 l, 35 S, 32 P, 33 P, 3 H), una etiqueta de fluorescencia, una etiqueta quimioluminiscente, una etiqueta enzimática y una etiqueta inmunogénica.

En una variación, se usa en el método una composición que comprende una célula que expresa el receptor TAS2R en su superficie. En otra variación, se emplea el receptor TAS2R aislado o las membranas celulares que comprenden el receptor TAS2R. La unión se puede medir directamente, p. ej., usando un compuesto etiquetado, o se puede medir en forma indirecta. Los compuestos identificados por unir un receptor TAS2R se pueden ensayar también en otros ensayos, incluida la actividad de TAS2R y/o modelos *in vivo*, con el fin de confirmar o cuantificar su actividad.

5

10

15

20

25

40

45

50

55

La unión del ligando a una proteína TAS2R, un dominio o una proteína quimérica se puede ensayar en disolución, en una membrana bicapa, adjunta a una fase sólida, en una monocapa de lípido, o en vesículas. La unión del ligando a un receptor TAS2R se puede ensayar usando, p. ej., cambios en las características espectroscópicas (p. ej., fluorescencia, absorbancia, índice de refracción), o en las propiedades hidrodinámicas (p. ej., forma), cromatográficas o de solubilidad.

El polipéptido o polinucleótido de TAS2R empleado en dicha prueba puede o bien estar libre en la disolución, unido a un soporte sólido, transportado en una superficie celular, localizado en forma intracelular, o asociado con una porción de una célula. El experto en la técnica puede, por ejemplo, medir la formación de complejos entre un polinucleótido o receptor TAS2R y el compuesto que se está ensayando. De manera alternativa, el experto en la técnica puede examinar la disminución en la formación de complejo entre un polinucleótido o receptor TAS2R y su sustrato causado por el compuesto que se está ensayando. En algunas realizaciones, los sitios de reconocimiento del polinucleótido o receptor TAS2R se acoplan con un sistema de monitoreo, o bien eléctrico u óptico. Un estímulo químico apropiado puede unirse al dominio de unión al ligando del receptor, cambiando la conformación del receptor hasta un grado en que los electrónicos acoplados o los cambios ópticos puedan observarse en una lectura. En una realización, el soporte sólido se formula en la lengua o biosensor electrónico específico de un felino.

En una realización de un ensayo de disolución, los métodos pueden comprender las etapas de poner en contacto un receptor TAS2R definido en las reivindicaciones 1-3 con uno o más compuestos de ensayo e identificar los compuestos que se unen al receptor TAS2R. La identificación de los compuestos que se unen al receptor TAS2R se puede lograr aislando el complejo de polipéptido TAS2R/pareja de unión, y separando el compuesto pareja de unión del polipéptido TAS2R. En un aspecto, el complejo de polipéptido TAS2R/pareja de unión se aísla usando un anticuerpo inmunoespecífico o bien para el receptor TAS2R o el compuesto de ensayo. Incluso en otras realizaciones, el receptor TAS2R o el compuesto de ensayo comprende una etiqueta o marca que facilita su aislamiento, y métodos para identificar los compuestos que son parejas de unión incluyen la etapa de aislar el complejo de polipéptido TAS2R/pareja de unión a través de la interacción con la etiqueta o marca.

En una variación de un ensayo *in vitro*, el método comprende las etapas de poner en contacto un receptor TAS2R inmovilizado con un compuesto de ensayo y detectar la unión del compuesto de ensayo al receptor TAS2R. En una realización alternativa, el compuesto de ensayo se inmoviliza y se detecta la unión del receptor TAS2R. La inmovilización se logra usando cualquiera de los métodos conocidos en la técnica, incluido el enlace a un soporte, una esfera o una resina cromatográfica, además de interacciones no covalentes de gran afinidad, como unión a anticuerpos, o uso de unión de estreptavidina/biotina en donde el compuesto inmovilizado incluye un resto biotina. El soporte se puede formular, por ejemplo, en una lengua o biosensor electrónico específico de un felino.

Se describe que los ensayos basados en células se usan para identificar compuestos que son parejas de unión de un receptor TAS2R. En una realización, el método comprende las etapas de poner en contacto un receptor TAS2R expresado en la superficie de una célula con un compuesto de ensayo y detectar la unión del compuesto de ensayo al receptor TAS2R. En algunas realizaciones, la detección comprende detectar un evento fisiológico en la célula causado por la unión de la molécula.

Se describe que se emplea selección de alto rendimiento (HTS) para compuestos que tienen afinidad de unión adecuada a un receptor TAS2R. En síntesis, se sintetizan grandes compuestos de ensayo distintos en un sustrato sólido. Los compuestos de ensayo se ponen en contacto con un receptor TAS2R y se lavan. El receptor TAS2R unido luego se detecta por métodos conocidos en la técnica. Los polipéptidos purificados de la invención pueden también recubrirse directamente en placas para uso en las técnicas de evaluación de fármacos anteriormente mencionadas. Además, los anticuerpos no neutralizantes se pueden usar para capturar la proteína e inmovilizarla sobre el soporte sólido.

En general, el receptor TAS2R expresado se puede usar para ensayos de unión HTS junto con un ligando, tal como un aminoácido o carbohidrato. El ligando identificado se etiqueta con un radioisotopo adecuado, incluidos ¹²¹I, ³H, ³⁵S o ³²P, por métodos conocidos por el experto en la técnica. Alternativamente, los ligandos se pueden etiquetar por métodos conocidos con un derivado fluorescente adecuado (Baindur et al., Drug Dev. Res., 1994, 33, 373-398; Rogers, Drug Discovery Today, 1997,2, 156-160). El ligando radiactivo específicamente unido al receptor en las preparaciones de membranas elaborado a partir de la línea celular que expresa la proteína recombinante se puede detectar en ensayos HTS en una de varias formas convencionales, incluida la filtración del complejo receptor-ligando para separar el ligando unido del ligando no unido. Los métodos alternativos incluyen un ensayo de proximidad de centelleo (SPA) o un formato FlashPlate en el que dicha separación es innecesaria. La unión de ligandos fluorescentes se puede detectar de diversas formas, incluida la transferencia de energía de fluorescencia (FRET), análisis espectrofotofluorométrico directo de ligando unido o polarización con fluorescencia.

Se describe que o bien el receptor TAS2R o el compuesto de ensayo comprende una etiqueta o una marca que facilita su aislamiento, y los métodos para identificar compuestos de ensayo incluyen una etapa de aislar el complejo de polipéptido TAS2R/compuesto de ensayo a través de la interacción con la etiqueta o marca. Una marca ilustrativa de este tipo es una secuencia de poli-histidina, en general aproximadamente seis residuos histidina, que permite el aislamiento de un compuesto así etiquetado usando quelación con níquel. Otras etiquetas y marcas, como la etiqueta FLAG (Eastman Kodak, Rochester, NY), se conocen y utilizan habitualmente en la técnica.

5

10

15

20

35

40

45

50

55

60

La detección de la unión se puede lograr usando una etiqueta radiactiva en el compuesto no inmovilizado, usando una etiqueta fluorescente en el compuesto no inmovilizado, usando un anticuerpo inmunoespecífico para el compuesto no inmovilizado, usando una etiqueta en el compuesto no inmovilizado que excita un soporte fluorescente al que se une el compuesto inmovilizado, además de otras técnicas conocidas y que se ponen en práctica habitualmente en la técnica

Se pueden usar otros ensayos para identificar ligandos específicos de un receptor TAS2R, incluidos ensayos que identifican ligandos de la proteína diana a través de medir la unión directa de ligandos de ensayo a la diana, además de ensayos que identifican ligandos de proteínas diana a través de ultrafiltración de afinidad con métodos de espectroscopia de masas por pulverización HPLC u otros métodos físicos y analíticos. Alternativamente, dichas interacciones de unión se evalúan indirectamente usando el sistema de dos híbridos de levadura, un ensayo genético para detectar interacciones entre dos proteínas o polipéptidos.

En cualquiera de los métodos descritos en este documento, para que sea considerado un ligando del polipéptido del receptor TAS2R, el compuesto de ensayo debe alterar la interacción medida por una cantidad suficiente para lograr una diferencia estadísticamente significativa entre las respuestas en la presencia frente a la ausencia del compuesto de ensayo. La significación estadística se puede determinar mediante cualquier prueba estadística adecuada conocida en la técnica, como una prueba de la t. Por ejemplo, para que sea de significación estadística, el valor p es por lo menos 0,05, por lo menos 0,01 o por lo menos 0,001.

Se describen también métodos para identificar compuestos que modulan (es decir aumentan o reducen) la actividad del receptor TAS2R que comprenden poner en contacto un receptor TAS2R con un compuesto, y determinar si el compuesto modifica la actividad del receptor TAS2R. En otra realización, el método comprende poner en contacto un receptor TAS2R con un ligando del receptor TAS2R conocido en presencia o ausencia de un compuesto de ensayo. La actividad en presencia del compuesto de ensayo se compara con la actividad en ausencia del compuesto de ensayo. Si la actividad de la muestra que contiene el compuesto de ensayo es mayor que la actividad de la muestra que carece del compuesto de ensayo, el compuesto es un agonista. De modo similar, si la actividad de la muestra que contiene el compuesto de ensayo es inferior a la actividad en la muestra que carece del compuesto de ensayo, el compuesto es un antagonista.

En una realización, la proteína TAS2R se mide expresando un gen de TAS2R en una célula heteróloga con una proteína G promiscua que enlaza el receptor a una vía de transducción de señales C de fosfolipasa (véase Offermanns & Simon, J. Biol. Chem. 270:15175-15180 (1995)). Opcionalmente, la línea celular eucariota no expresa naturalmente los genes de TAS2R (p. ej.,. Life Technologies Cat# R700-07) y la proteína G promiscua es Gα15 (Offermanns & Simon, *supra*).

En una realización, un polipéptido de TAS2R se expresa en una célula eucariota como receptor quimérico con una secuencia chaperona heteróloga que facilita su maduración, dirigiéndose a través de la vía segregadora o localización de la membrana. En una realización preferida, la secuencia heteróloga es una secuencia de rodopsina, como un fragmento N-terminal de una rodopsina. Dichos receptores TAS2R quiméricos se pueden expresar en cualquier célula eucariota, como las células Life Technologies Cat# R700-07. Preferiblemente, las células comprenden una proteína G funcional, p. ej., Gα15, que es capaz de acoplar el receptor a una vía de señalización intracelular o a una proteína de señalización tal como fosfolipasa Cβ. La activación de dichos receptores expresados en dichas células se puede detectar usando cualquier método convencional, como detectando cambios en el calcio intracelular detectando fluorescencia dependiente del calcio FURA-2 en la célula.

En otra realización, los niveles de transcripción se pueden medir para evaluar los efectos de un compuesto de ensayo sobre la transducción de señales. Una célula hospedante que contiene una proteína TAS2R de interés se pone en contacto con un compuesto de ensayo durante un tiempo suficiente para efectuar cualquier interacción, y luego se mide el nivel de expresión génica. La cantidad de tiempo para efectuar dichas interacciones se puede determinar en forma empírica, como dejando transcurrir un curso de tiempo y midiendo el nivel de transcripción en función del tiempo. La cantidad de transcripción se puede medir usando cualquier método conocido por los expertos en la técnica como adecuados. Por ejemplo, la expresión de ARNm de la proteína de interés se puede detectar usando Northern blots o se pueden identificar sus productos de polipéptidos usando inmunoensayos. Alternativamente, los ensayos basados en transcripción que usan un gen indicador se pueden usar como se describe en la patente de EE. UU. 5.436.128. Los genes indicadores pueden ser, p. ej., cloranfenicol acetiltransferasa, luciferasa, [beta]-galactosidasa y fosfatasa alcalina. Asimismo, la proteína de interés se puede usar como un gen indicador indirecto mediante la sujeción a un segundo indicador, como proteína fluorescente verde (véase, p. ej., Mistili & Spector, Nature Biotechnology 15:961-964 (1997)). La cantidad de transcripción se compara luego con la cantidad de transcripción en una célula en ausencia del compuesto de ensayo, o se puede comparar con la cantidad de transcripción en una célula

prácticamente idéntica que carece de la proteína de interés. Una célula prácticamente idéntica puede derivar de las mismas células de las cuales se preparó la célula recombinante pero que no había sido modificada por introducción de ADN heterólogo. Cualquier diferencia en la cantidad de transcripción indica que el compuesto de ensayo tiene en algún modo alterada la actividad de la proteína de interés.

- 5 Se describe un método para identificar un agonista del receptor TAS2R felino que comprende poner en contacto un polipéptido del receptor Tas2R felino descrito en este documento con un compuesto de ensayo, y detectar un incremento en la actividad biológica del receptor en presencia del compuesto en relación con la actividad biológica del polipéptido en ausencia del compuesto.
- Se describe un método para identificar un antagonista de un receptor Tas2R felino que comprende poner en contacto un polipéptido del receptor Tas2R felino descrito en este documento con un compuesto de ensayo; y detectar una reducción en la actividad biológica del receptor en presencia del compuesto en relación con la actividad biológica del polipéptido en ausencia del compuesto.
- Las interacciones entre el receptor y la proteína G pueden también examinarse. Por ejemplo, se puede examinar la unión de la proteína G con el receptor o su liberación del receptor. Por ejemplo, en ausencia de GTP, un agonista conducirá a la formación de un complejo estrecho de una proteína G (las tres subunidades) con el receptor. Este complejo se puede detectar en una diversidad de formas, como se observó anteriormente. Dicho ensayo se puede modificar para buscar antagonistas, p. ej., añadiendo un agonista al receptor y la proteína G en ausencia de GTP, que forma un complejo estrecho, y la evaluación para antagonistas mirando la disociación del complejo del receptor y la proteína G. En presencia de GTP, la liberación de la subunidad alfa de la proteína G de las otras dos subunidades de proteína G sirve como criterio de activación.
 - En algunos casos, las interacciones TAS2R-Gustducina se monitorean en función de la activación del receptor TAS2R. El acoplamiento dependiente del ligando de los receptores TAS2R con Gustducina se pueden usar como un marcador para identificar modificadores de cualquier miembro de la familia TAS2R.
- Una proteína G activada o inhibida alterará a su vez las propiedades de las enzimas diana, canales y otras proteínas efectoras. Los ejemplos clásicos son la activación de cGMP fosfodiesterasa por transducina en el sistema visual, adenilato ciclasa por la proteína G estimuladora, fosfolipasa C por Gq y otras proteínas G análogas, y modulación de diversos canales por Gi y otras proteínas G. También se pueden examinar secuencias en dirección 3' como la generación de diacil glicerol e IP3 por fosfolipasa C, y a su vez, para inmovilización de calcio por IP3.
- La activación del receptor típicamente inicia eventos intracelulares subsiguientes, p. ej., aumentos en los segundos 30 mensajeros tal como IP3, que libera depósitos intracelulares de iones de calcio. La activación de algunos receptores acoplados a la proteína G estimula la formación de inositol trifosfato (IP3) a través de hidrólisis de fosfatidilinositol mediada por fosfolipasa C (Berridge & Irvine, Nature 312:315-21 (1984)). IP3 a su vez estimula la liberación de depósitos de iones de calcio intracelular. Por lo tanto, un cambio en los niveles de iones de calcio citoplásmico, o un cambio en los niveles de segundos mensajeros tal como IP3 se pueden usar para evaluar la función del receptor acoplado a la proteína G. Las células que expresan dichos receptores acoplados a la proteína G pueden exhibir 35 aumento en los niveles de calcio citoplásmico como resultado de la contribución de ambos depósitos intracelulares y mediante la activación de los canales de calcio, en cuyo caso puede ser conveniente aunque no necesario llevar a cabo dichos ensayos en tampón libre de calcio, opcionalmente complementado con un agente quelante tal como EGTA, para distinguir la respuesta de fluorescencia que resulta de la liberación del calcio de los depósitos internos. 40 La generación de IP3 se puede medir usando diversos kits comercialmente disponibles. Algunos kits ilustrativos para detectar la generación de IP3 usan anticuerpos específicos para IP3 que pueden detectar IP3 en un lisado celular en un ensayo western blot o ELISA; alternativamente los anticuerpos se etiquetan fluorescentemente y se detectan usando una lectora de placas.
- La modulación de la actividad del receptor (transducción del gusto) se puede ensayar midiendo cambios en los niveles de Ca2+ intracelular, en donde el cambio en respuesta a la modulación de la vía de transducción de señales de TAS2R mediante la administración de una molécula se asocia con una proteína TAS2R. Los cambios en los niveles de Ca2+ opcionalmente se miden usando tintes indicadores de Ca2+ fluorescentes e imágenes fluorométricas.

50

55

Se describen ensayos para receptores acoplados a proteína G incluidas células que se cargan con tintes sensibles a iones o voltaje para indicar la actividad del receptor. Los ensayos para determinar la actividad de dichos receptores pueden también usar agonistas y antagonistas conocidos para otros receptores acoplados a la proteína G como controles positivos o negativos para evaluar la actividad de los compuestos ensayados. En ensayos para identificar compuestos moduladores (p. ej., agonistas, antagonistas, moduladores), cambios en el nivel de iones en el citoplasma o el voltaje de membrana se vigilarán usando un indicador fluorescente de voltaje de membrana sensible a iones, respectivamente. Los indicadores sensibles a iones y las sondas de voltaje que se pueden emplear son comercializados por una variedad de fuentes. Para receptores acoplados a la proteína G, las proteínas G promiscuas tales como Gα15 y Gα16 se pueden usar en el ensayo de elección. Dichas proteínas G promiscuas permiten acoplar una amplia gama de receptores.

Las proteínas GPCR activadas se convierten en sustratos para cinasas que fosforilan el extremo C-terminal del receptor (y posiblemente otros sitios también). Por tanto, los agonistas promoverán la transferencia de ³²P de GTP etiquetado con gama al receptor, que se puede ensayar con un recuento de centelleos. La fosforilación del extremo C-terminal promoverá la unión de proteínas de tipo arrestina e interferirá con la unión de proteínas G. La vía de cinasa/arrestina cumple una función clave en la desensibilización de muchas proteínas GPCR. Por ejemplo, los compuestos que modulan la duración en que un receptor del gusto permanece activo serían útiles para prolongar un sabor deseado o reducir uno desagradable.

5

10

15

20

25

30

45

Los cambios en el flujo de iones se pueden evaluar determinados cambios en la polarización (es decir, potencial eléctrico) de la célula o membrana que expresa una proteína TAS2R. Un medio para determinar cambios en la polarización celular consiste en medir cambios en la corriente (midiendo así cambios en la polarización) con técnicas de pinza de voltaje y fijación de membranas, p. ej., el modo "sujetado a la célula", el modo de adentro hacia afuera" y el modo "célula completa". Las corrientes de la célula completa se determinan convenientemente usando metodología convencional conocida en la técnica. Otros ensayos conocidos incluyen: ensayos de flujo de iones radiomarcados y ensayos de fluorescencia que usan tintes sensibles al voltaje. En general, los compuestos que se han de ensayar están presentes en el intervalo de 1 pM a 100 mM.

Otros ensayos pueden implicar determinar la actividad de los receptores que, cuando se activan, resulta en un cambio en el nivel de nucleótidos cíclicos intracelulares, p. ej., cAMP o cGMP, activando o inhibiendo enzimas tales como adenilato ciclasa. Existen canales iónicos dependientes de nucleótidos cíclicos, p. ej., canales celulares de fotorrceptores bastón y canales neuronales olfativos que son permeables a los cationes tras la activación mediante la unión de cAMP o cGMP (véanse, p. ej., Altenhofen et al., Proc. Natl. Acad. Sci. EE. UU. 88:9868-9872 (1991) y Dhallan et al., Nature 347:184-187 (1990)). En casos en los que la activación del receptor resulta en una disminución de los niveles de nucleótidos cíclicos, puede ser preferible exponer las células a agentes que incrementan los niveles de nucleótidos cíclicos intracelulares, p. ej., forskolina, antes de añadir un compuesto activador del receptor a las células en el ensayo. Las células para este tipo de ensayo se pueden preparar por co-transfección de una célula hospedante con ADN que codifica un canal iónico empaquetado en el nucleótido cíclico, GPCR fosfatasa y ADN que codifica un receptor (p. ej., ciertos receptores de glutamato, receptores de acetilcolina muscarínica, receptores de dopamina, receptores de serotonina y similares), que, cuando se activa, causa un cambio en los niveles de nucleótido cíclico en el citoplasma.

Los cambios en cAMP o cGMP intracelular se pueden medir empleando inmunoensayos. El método descrito en Offermanns & Simon, J. Biol. Chem. 270:15175-15180 (1995) se puede usar para determinar el nivel de cAMP. Además, el método descrito en Felley-Bosco et al., Am. J. Resp. Cell and Mol, Biol. 11:159-164 (1994) se puede usar para determinar el nivel de cGMP. Asimismo, un kit de ensayo para medir cAMP y/o cGMP se describe en la patente de EE. UU. núm. 4.115.538.

La hidrólisis de fosfatidil inositol (PI) se puede analizar de acuerdo con la patente de EE. UU. núm. 5.436.128. En síntesis, el ensayo implica etiquetar las células con 3H-mioinositol durante 48 o más. Las células etiquetadas se tratan con un compuesto de ensayo durante una hora. Las células tratadas se lisan y extraen en cloroformo-metanol-agua después de lo cual se separan los inositol fosfatos por cromatografía de intercambio iónico y se cuantifican por recuento de centelleos. Se determinan las veces de estimulación calculando la relación de recuentos por minuto (cpm) en presencia de agonista a cpm en presencia de tampón control. Asimismo, las veces de inhibición se determinan calculado la relación de cpm en presencia de antagonista a cpm en presencia de tampón control (que puede o no contener un agonista).

Los efectos de los compuestos de ensayo tras la función de los polipéptidos se pueden medir examinando cualquiera de los parámetros anteriormente descritos. Se puede usar cualquier cambio fisiológico adecuado que afecte la actividad de GPCR para evaluar la influencia de un compuesto de ensayo en los polipéptidos descritos en este documento. Cuando las consecuencias funcionales se determinan usando células intactas, los animales o la conducta animal, uno puede también medir una diversidad de efectos tales como liberación de neurotransmisores, liberación de hormonas, cambios en la transcripción para ambos marcadores genéticos conocidos y no caracterizados (p. ej., Northern blots), cambios en el metabolismo celular tal como crecimiento celular o cambios en el pH, y cambios en los segundos mensajeros intracelulares como Ca²⁺, IP3, cGMP o cAMP.

Las muestras o ensayos que se tratan con un compuesto de ensayo que es un agonista de TAS2R potencial se comparan con las muestras control sin el compuesto de ensayo, para examinar el grado de modulación. La activación de una proteína TAS2R se logra cuando el valor de la actividad de TAS2R relativo al control es 110%, opcionalmente 150%, 200-500% o 1000-2000%.

Las muestras o ensayos que se tratan con un agonista conocido y un compuesto de ensayo que es un antagonista de TAS2R potencial se comparan con muestras control tratadas con el agonista conocido sin el compuesto de ensayo, para examinar el grado de modulación. Las muestras control se asignan a un valor relativo de 100%. La inhibición de una proteína TAS2R se logra cuando el valor de la actividad de TAS2R relativo al control es aproximadamente 90%, opcionalmente 50%, opcionalmente 25-0%.

Los agentes que modulan la actividad o la expresión del receptor TAS2R también se pueden identificar, por ejemplo, incubando un modulador putativo con una célula que contiene un polipéptido o polinucleótido de TAS2R y determinando el efecto del modulador putativo sobre la actividad o expresión del receptor TAS2R. En una realización, para que se considere un modulador, el modulador putativo debe alterar la interacción medida por una cantidad suficiente para lograr una diferencia estadísticamente significativa entre las respuestas en presencia frente a ausencia del modulador putativo. La significación estadística se puede determinar por cualquier prueba adecuada conocida en la técnica, como la prueba de la t. Por ejemplo, para que sea de significación estadística, el valor p es por lo menos 0,05, por lo menos 0,01 o por lo menos 0,001. La selectividad de un compuesto que modula la actividad del receptor TAS2R se puede evaluar comparando sus efectos sobre el receptor TAS2R con su efecto sobre otros receptores TAS2R. Los moduladores selectivos pueden incluir, por ejemplo, anticuerpos y otras proteínas, péptidos o moléculas orgánicas que se unen específicamente a un polipéptido de TAS2R o a un ácido nucleico que codifica el receptor TAS2R. Los compuestos identificados como moduladores de la actividad del receptor TAS2R pueden además ensayarse en otros ensayos que incluyen modelos *in vivo*, con el fin de confirmar o cuantificar su actividad.

Los polinucleótidos y polipéptidos de TAS2R, y sus homólogos, son herramientas útiles para identificar células que expresan los receptores del gusto, para percepción del sabor y para examinar la transducción del gusto. Los reactivos específicos de miembros de la familia TAS2R que se hibridan específicamente a ácidos nucleicos de TAS2R, como sondas y cebadores de TAS2R, y reactivos específicos de TAS2R que se unen específicamente a una proteína TAS2R, p. ej., los anticuerpos de TAS2R, se utilizan para examinar la expresión de células del gusto y la regulación de la transducción del gusto. Por ejemplo, un anticuerpo de TAS2R se puede usar para identificar y/o aislar células del sabor felinas que expresan el TAS2R particular de una población de células felinas mixta. Por ejemplo, las sondas de polinucleótidos descritas en este documento se pueden usar en estudios de distribución de tejido y ensayos diagnósticos.

También se proveen kits para evaluar moduladores de los miembros de la familia de TAS2R. Dichos kits se pueden preparar con cualquier material y reactivo fácilmente disponible. Por ejemplo, dichos kits pueden comprender uno cualquiera de los siguientes materiales: ácidos nucleicos o proteínas TAS2R, tubos de reacción e instrucción para ensayar la actividad de TAS2R. Opcionalmente, el kit contiene un receptor de TAS2R biológicamente activo. Se puede preparar una amplia variedad de kits y componentes, dependiendo del usuario final del kit y de las necesidades particulares del usuario.

También se describen los anticuerpos a los receptores de fTAS2R y los polipéptidos quiméricos.

10

25

Para preparar anticuerpos anti-fTAS2R monoclonales o policionales, se puede emplear cualquier técnica conocida. Las técnicas para la producción de anticuerpos monocatenarios (patente de EE. UU. núm. 4.946.778) se pueden adaptar para producir anticuerpos a los polipéptidos descritos en este documento. Además, los ratones transgénicos u otros organismos tales como otros mamíferos, se pueden usar para expresar anticuerpos humanizados. Alternativamente, se puede usar tecnología de exhibición de fagos para identificar anticuerpos y fragmentos de Fab heteroméricos que se unen específicamente a antígenos seleccionados. En una realización, secuencias de ADN aisladas que codifican un anticuerpo monoclonal o su fragmento de unión se obtienen detectando una biblioteca de ADN de células B humanas de acuerdo con el protocolo general señalado por Huse et al., Science 246:1275-1281 (1989).

Los sueros de anticuerpos monoclonales y policionales se pueden recoger y titular contra el inmunógeno de proteína en un inmunoensayo, por ejemplo, un inmunoensayo de fase sólida con el inmunógeno inmovilizado en un soporte sólido. Típicamente, los antisueros policionales con una titulación de 10⁴ o más se seleccionan y ensayan para su reactividad cruzada contra proteínas no TAS2R, o incluso otros miembros de la familia TAS2R u otras proteínas relacionadas de otros organismos, usando un inmunoensayo de unión competitiva. Los antisueros policionales específicos y anticuerpos monoclonales usualmente se unirán con K_d de por lo menos aproximadamente 0,1 μM, más usualmente por lo menos aproximadamente 1 μM, específicamente por lo menos aproximadamente 0,1 μM o mejor, y más específicamente 0.01 μM o mejor.

Los inmunoensayos también se pueden usar para detectar, cualitativa o cuantitativamente, un fTAS2R, p. ej., para identificar células receptoras del gusto, especialmente células receptoras del sabor amargo, y variantes de miembros de la familia TAS2R.

Los anticuerpos anti-fTAS2R también se pueden utilizar para aislar células gustativas felinas de una población mixta de células obtenidas de un felino. En una realización, el aislamiento de células gustativas felinas unidas al anticuerpo anti-fTAS2R se puede obtener por citometría de flujo. También se pueden emplear otros métodos conocidos en la técnica.

Como se conoce en el campo, la conducta del gusto se puede determinar en un ensayo de tiempo corto que mide directamente las preferencias del gusto contando las respuestas de lamedura de un animal, p. ej., un ratón, usando un gustómetro de múltiples canales (p. ej., el gustómetro Davis MS160-Mouse, DiLog instruments, Tallahassee, FL). La tasa media a la que un ratón lamerá una sustancia que estimula el sentido del gusto en relación a su muestreo de un control apropiado (relación definida como la tasa de lamedura en relación al control) indica si el estímulo es apetitivo,

neutro o aversivo. A su vez, el cambio en la ingesta de estímulos sabrosos se puede evaluar en presencia de estímulos de prueba para determinar la potenciación o supresión del estímulo sabroso.

Se puede entrenar a los animales para que discriminen estímulos cualitativamente distintos usando métodos de prueba conocidos en la técnica. Estos animales pueden luego utilizarse para determinar similitud cualitativa entre dos estímulos, más allá de la palatabilidad o preferencia.

5

20

25

30

35

40

45

50

55

Para determinar si los receptores fTAS2R activan áreas del cerebro que se describe están implicadas en respuestas del gusto apetitivas o aversivas, se pueden conectar electrodos a estas áreas del cerebro y ensayar a los animales despiertos o anestesiados.

Alternativamente, se pueden emplear otros métodos no invasivos para vigilar la actividad neuronal, como tomografía por emisión de positrones (PET) o electroencefalografía para vigilar la actividad neuronal asociada con respuestas del gusto apetitivas o aversivas. Dichos métodos pueden también utilizarse para evaluar el impacto de diversos factores como la edad, experiencia o estado nutricional sobre la actividad neuronal producida por los estímulos identificados en los experimentos basados en células a fin de modificar la función de los receptores.

Se describen también kits que comprenden por lo menos una composición, polipéptido o ácido nucleico descritos en este documento, opcionalmente contenidos en un solo envase. Los kits pueden opcionalmente incluir, p. ej., instrucciones de uso de los componentes del kit para detectar un receptor fTAS2R o un polinucleótido que codifica un receptor fTAS2R, o compuestos que alteran la actividad de un receptor TAS2R.

El kit puede comprender por lo menos un anticuerpo anti-TAS2R descrito en este documento y reactivos para detectar un complejo entre el anticuerpo y el antígeno de TAS2R. Por ejemplo, el kit puede incluir un tampón que permite la reacción de unión entre el anticuerpo y el antígeno de TAS2R en una muestra biológica, o componentes para producir el tampón.

La actividad de los polipéptidos de TAS2R se puede evaluar usando una diversidad de ensayos *in vitro* e *in vivo* para determinar los efectos funcionales, químicos y físicos, p. ej., medir la unión al ligando (p. ej., unión al ligando radiactivo), segundos mensajeros (p. ej., cAMP, cGMP, IP3, DAG o Ca²⁺), flujo iónico, niveles de fosforilación, niveles de transcripción, niveles de neurotransmisores y similares. Asimismo, dichos ensayos se pueden utilizar para ensayar inhibidores y activadores de miembros de la familia TAS2R. Dichos moduladores de la actividad de transducción del gusto son útiles para personalizar la percepción del gusto, por ejemplo para modificar la detección de sabores amargos.

La proteína TAS2R del ensayo típicamente se seleccionará de un polipéptido que tiene una secuencia de la SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 o SEQ ID NO:26; una variante modificada en forma conservadora de la SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 o SEQ ID NO:26; o una secuencia que es por lo menos 70%, por lo menos 80%, por lo menos 90%, por lo menos 95%, por lo menos 97%, por lo menos 98%, por lo menos 99% idéntica a SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:22, SEQ ID NO:22, SEQ ID NO:22, SEQ ID NO:22.

Se describe que el polipéptido de los ensayos comprenderá un dominio de una proteína TAS2R, como un dominio extracelular, región transmembrana, dominio transmembrana, dominio citoplásmico, dominio de unión al ligando, dominio de asociación de subunidades, sitio activo y similares. O bien la proteína TAS2R o su dominio se pueden enlazar covalentemente a una proteína heteróloga para crear una proteína quimérica utilizada en los ensayos descritos en este documento. En una realización, el polipéptido tiene un dominio de SEQ ID NO:18 o SEQ ID NO:22.

Los moduladores de la actividad de un receptor TAS2R se ensayan usando polipéptidos de TAS2R como se describió anteriormente, o bien recombinantes o naturales. La proteína se puede aislar, expresar en una célula, expresar en una membrana derivada de una célula, expresada en tejido o en un animal, o bien recombinante o natural. Por ejemplo, se pueden utilizar secciones o células disociadas de un tejido que expresa TAS2R, células transformadas o membranas. También se pueden preparar ensayos usando polipéptidos de TAS2R en sistemas de membranas artificiales / sintéticas. La modulación se ensaya usando cualquiera de los ensayos *in vitro* o *in vivo* descritos en este documento. La transducción del gusto puede también examinarse *in vitro* con reacciones de estado soluble o sólido, usando un TAS2R-GPCR de longitud total o una molécula quimérica tal como un dominio extracelular o una región transmembrana, o una combinación de estos, de un receptor TAS2R covalentemente enlazado a un dominio de transducción de señales heterólogas, o un dominio extracelular heterólogo y/o región transmembrana covalentemente enlazada al dominio transmembrana y/o citoplásmico de un receptor TAS2R. Asimismo, los dominios de unión al ligando de la proteína de interés se pueden usar *in vitro* en reacciones en estado soluble o sólido para ensayar la unión al ligando. En diversas realizaciones, se formulará un receptor quimérico que comprende todo o parte de un polipéptido TAS2R además de una secuencia adicional que facilita la localización del TAS2R a la membrana, como rodopsina, p. ej., un fragmento N-terminal de una proteína de rodopsina.

Los compuestos ensayados como moduladores o ligandos de un miembro de la familia TAS2R pueden ser cualquier compuesto, incluidas moléculas pequeñas, o moléculas más complejas como moléculas biológicas, por ejemplo, una proteína, azúcar, ácido nucleico o lípido. Alternativamente, los moduladores pueden ser versiones genéticamente modificadas de un gen de TAS2R. Se puede usar esencialmente cualquier compuesto químico como modulador potencial o ligando en los ensayos y métodos descritos en este documento. En determinadas realizaciones útiles, los compuestos se pueden disolver en disoluciones acuosas u orgánicas (por ejemplo, disoluciones DMSO). Los ensayos están diseñados para detectar bibliotecas de compuestos químicos, incluidas bibliotecas grandes, automatizando las etapas del ensayo y proporcionando compuestos provenientes de cualquier fuente conveniente para los ensayos, que se realizan en paralelo (p. ej., en formatos de microtitulación en placas de microtitulación en ensayos robóticos).

El conocimiento de la estructura de dos o más agonistas para un solo receptor permite que el experto en la técnica diseñe racionalmente otras bibliotecas de compuestos para detectar la interacción con el receptor. El modelado por ordenador de dichos compuestos también se facilita. La detección de las bibliotecas de compuestos permite el desarrollo de composiciones para suprimir o eliminar componentes del sabor amargo en alimentos particulares, nutrientes y suplementos dietarios para animales, y en preparaciones farmacéuticas u homeopáticas que contienen dichas sustancias fitoquímicas. De manera alternativa, la detección posibilita la identificación de agonistas estructuralmente relacionados para potenciar la respuesta amarga en la producción de supresores del apetito, repelentes animales y similares.

Se describen en este documento composiciones saporíferas, composiciones comestibles y métodos para fabricar las composiciones comestibles y las composiciones saporíferas descritas en la presente memoria.

- Una composición saporífera es una composición que se puede añadir a una composición comestible para un animal a fin de mejorar la aceptación de la composición comestible para consumo por parte del animal. Los ejemplos de las composiciones comestibles incluyen alimentos, dulces, suplementos nutricionales, productos farmacéuticos, material para el cuidado oral como productos dentales, productos masticables, productos bebibles y similares. La composición comestible puede estar en la forma de un comprimido, cápsula, película comestible, alimento húmedo, dulce o pienso.
- En un aspecto, una composición saporífera comprende un compuesto que es un agonista, antagonista o modulador de un receptor TAS2R felino. En una realización; la composición saporífera comprende un potenciador de la palatabilidad; opcionalmente un compuesto adhesivo para ayudar a adherir la composición saporífera a la composición comestible; y opcionalmente un compuesto para aportar color o aroma para un ser humano, en donde la composición saporífera es una formulación sólida, líquida, en polvo, pasta, gel o untable. En una realización, la composición saporífera es una composición de recubrimiento y comprende además el compuesto adhesivo. La alteración o enmascaramiento del amargor percibido de una composición comestible se puede ensayar usando cualquiera de los ensayos conductuales de palatabilidad descritos en este documento, como una comparación convencional de dos platos.
- "Composición alimentaria basal", tal como se emplea en este documento, se refiere a un alimento animal combinable con la composición saporífera. En una realización, el alimento animal se formula para felinos e incluye alimento deshidratado, alimento enlatado, alimento semi-deshidratado, dulces comestibles y similares, y combinaciones que comprenden uno o más de los alimentos anteriormente mencionados. Se pueden emplear varios tamaños y formas de la composición alimentaria basal siempre y cuando el alimento sea aceptablemente consumible por un receptor (como un animal, particularmente un felino) en una cantidad como para que el animal reciba una ración diaria normal que proporcione los nutrientes esenciales conocidos. Una composición alimentaria basal puede no estar recubierta, o puede estar recubierta, por ejemplo, con un recubrimiento que comprenda lípidos. Si se desea, la alimentación se puede llevar a cabo alimentando al animal una o más veces por día.
 - Se describe que la composición saporífera se combina con una composición comestible, por ejemplo, una composición basal (p. ej., para un felino), en una cantidad eficaz para impartir mayor palatabilidad de la composición comestible al animal. El experto en la técnica puede determinar fácilmente las cantidades eficaces de dichas composiciones saporíferas sin experimentación indebida, particularmente en vista de la guía general provista a continuación.

45

50

55

La composición saporífera se puede combinar con una composición alimentaria basal en un modo tal que la composición saporífera se incorpore a la composición alimentaria basal. Por incorporada se entiende que la composición saporífera está íntimamente asociada con la composición comestible y prácticamente no se disocian, por ejemplo, durante las condiciones de almacenamiento normales. En una realización, la composición saporífera se dispersa prácticamente en forma uniforme por la composición comestible. En otras realizaciones, la distribución de la composición saporífera puede intencionalmente no ser uniforme. En dichas realizaciones, la composición saporífera puede proporcionar pequeños trozos o porciones que se mezclen con el alimento basal. En diversas realizaciones, la composición saporífera se puede depositar en la composición comestible en una cantidad eficaz para proporcionar aproximadamente 0,5 % en peso a aproximadamente 3 % en peso, específicamente aproximadamente 0,8 % en peso a aproximadamente 2,5 % en peso, y más específicamente aproximadamente 1 % en peso a aproximadamente 2 % en peso del peso seco de la composición comestible.

La composición saporífera se deposita en la superficie de la composición comestible, por ejemplo en la forma de un recubrimiento. Recubrir la composición comestible incluye la deposición tópica de la composición saporífera en la

superficie de la composición comestible, como pulverizando, espolvoreando y similar. El recubrimiento que comprende la composición saporífera puede comprender una o más grasas para ayudar a adherir la composición saporífera a la superficie. Puede asimismo o alternativamente comprender otros componentes útiles para facilitar la adhesión de la composición saporífera a la superficie de la composición comestible. Es posible, aunque no necesario, que la composición saporífera se recubra en la composición comestible de manera uniforme, o que se obtenga la distribución uniforme de la composición saporífera, por ejemplo, volteando repetidamente el alimento recubierto. Se pueden aplicar uno o más recubrimientos. La composición saporífera se puede depositar en la superficie de la composición comestible en una cantidad eficaz para proporcionar aproximadamente 0,5 % en peso a aproximadamente 3 % en peso, específicamente aproximadamente 0,8 % en peso a aproximadamente 2,5 % en peso, y más específicamente aproximadamente 1 % en peso a aproximadamente 2 % en peso del peso seco de la composición de alimento animal basal.

10

15

20

25

30

35

50

55

La composición saporífera puede estar tanto dispersada como recubierta en la composición comestible, tal como una composición para alimento animal deshidratada. En una realización, el producto para alimento animal terminado se envasa para la venta y en última instancia se administra al animal. En otras realizaciones, la composición saporífera se puede envasar para combinación con un alimento antes de servir. En algunas realizaciones, el animal es un felino.

La composición saporífera puede además comprender un potenciador de la palatabilidad adicional tal como un saborizante. Los saborizantes adecuados incluyen, por ejemplo, un saborizante vegetal, un saborizante de carne (p. ej., saborizante de hígado), un saborizante de queso, levadura, pirofosfato sódico, una grasa, un fosfato ácido, una sal de fosfato y/u otros ingredientes saborizantes o de alimentos utilizados por la industria de saborizantes para mejorar la palatabilidad. Los saborizantes de carne adecuados incluyen, por ejemplo, saborizantes derivados de la carne (p. ej., saborizantes de carne vacuna, cerdo, tocino, cordero, jamón, pescado, pollo, pavo y/u otras aves).

La palatabilidad o aceptación de un alimento hace referencia al deseo total de un animal, como un felino, de comer un alimento determinado. El desarrollo de saborizantes y potenciadores de la palatabilidad preferidos para animales como mascotas es subjetivo. Los saborizantes que funcionan para seres humanos no siempre lo hacen con felinos. De manera similar, un saborizante que es eficaz con una especie animal puede no funcionar tan bien con una especie animal distinta. El experto en la técnica apreciará las pruebas de palatabilidad utilizadas habitualmente para determinar preferencias para animales con respecto a alimentos y saborizantes. Para los fines de la presente invención, dichas pruebas de palatabilidad serán eficaces y fáciles de implementar para ensayar preferencias de saporíferos para cualquier animal, incluidos felinos. Los métodos tradicionales para desarrollar composiciones saporíferas para incrementar la palatabilidad emplean una diversidad de saborizantes candidatos seleccionados en forma empírica, en base al conocimiento de cómo estos ingredientes son percibidos por los seres humanos, y se utiliza un planteamiento de "ensayo y error" para ensayar empíricamente cada candidato en relación a un producto diana conocido o para identificar más los mejoradores de la palatabilidad preferidos. Los polipéptidos del receptor TAS2R felino descritos permiten el diseño intencional de potenciadores de la palatabilidad basados en receptores del gusto para las especies diana, y mejoran y acortan sustancialmente el proceso de desarrollo de mejoradores de la palatabilidad.

La composición saporífera puede ser un mejorador de la palatabilidad para un alimento felino, y la composición saporífera exhibe mejor palatabilidad para el felino en comparación con el alimento felino sin la composición saporífera, según lo medido por el mejor consumo del alimento felino que comprende el mejorador de palatabilidad en comparación con el alimento animal en ausencia del mejorador de palatabilidad.

La composición saporífera se puede usar como un saborizante líquido o bien en forma concentrada o no concentrada. Si la composición saporífera va a ser una composición saporífera seca, la composición saporífera se puede secar en una secadora adecuada tal como, por ejemplo, una secadora por pulverización o una estufa. La composición saporífera puede comprender una variedad de otros componentes útiles, por ejemplo, maltodextrano, goma o una combinación que puede ser útil para aportar a la composición una o más funcionalidades preferidas tales como la capacidad de unirse a un alimento o de retener una textura, viscosidad, fluidez, color o aroma deseado, o similares. El científico en alimentos experimentado entenderá fácilmente dichos componentes y sus usos.

Las pruebas de palatabilidad se pueden realizar mediante una comparación convencional de dos platos. En este ensayo, se le presentan dos platos de alimento a cada animal, en donde cada uno contiene una cantidad medida de una ración control o una ración de prueba. Las raciones control y de prueba contienen las mismas composiciones basales. Se deja que el animal seleccione el alimento que prefiere. Se mide la cantidad de alimento ingerida de cada plato. Una comparación directa de la cantidad ingerida de las dos raciones proporciona una indicación fiable de la palatabilidad relativa.

Por ejemplo, se le pueden ofrecer dos platos a un felino con cantidades iguales de alimento, uno que contenga la composición saporífera a ensayar y el otro sin la composición saporífera. La cantidad de alimento en los dos platos se pesa antes de dárselos al felino. Durante los ensayos, se deben tomar medidas para asegurar que el felino no finalice un plato y siga con el siguiente porque todavía está hambriento. Esto se puede lograr, por ejemplo, limitando el tiempo del felino con los dos platos o proporcionando alimento suficiente para satisfacer por completo al felino.

Al final del ensayo, se pesan los dos platos nuevamente para determinar la cantidad de alimento ingerido de cada plato. Si se ingiere más alimento del plato con la composición saporífera de ensayo (plato A), la relación de la ingesta

se registra como valor positivo para indicar que la composición saporífera tuvo un efecto positivo en la preferencia del animal. Si se ingiere más alimento del plato con el alimento control (plato B), la relación se registra como valor negativo para indicar que la composición saporífera no se desempeñó tan bien como el alimento control.

Por ejemplo, las composiciones saporíferas se aplican a una composición alimentaria basal seca, y se alimentan múltiples felinos, p. ej., diez, durante un periodo de tiempo (p. ej., dos días). La posición del plato se cambia diariamente para eliminar sesgo si los animales exhiben una preferencia por la disposición derecha o izquierda de los platos. La preferencia de cada animal por cada plato se puede calcular como una relación de ingesta (IR) para ese animal particular, por ejemplo la IR para el animal 1 = (gramos consumidos del plato A)/(gramos totales consumidos del plato A + plato B). La preferencia promedio se calcula como el valor promedio de cada día por la duración del periodo de ensayo. Por lo tanto, un valor IR cercano a 0,5 indica una preferencia equivalente. Los valores IR superiores a 0,5 y típicamente encima de 0,55 indican preferencia. El grado de estimación de la preferencia basado en puntuaciones de IR se puede determinar con el número de animales utilizados y el análisis estadístico de los datos.

Se describe un método para preparar la composición saporífera para recubrimiento o para incorporar una composición comestible que se ha de administrar a un animal.

- El método comprende mezclar un agonista, un antagonista o un modulador de un polipéptido del receptor TAS2R felino; opcionalmente un potenciador de la palatabilidad; opcionalmente un compuesto para ayudar a adherir la composición saporífera a la composición comestible; y opcionalmente un compuesto para proporcionar color o aroma con un ingrediente seleccionado del grupo que consiste en productos de carne, derivados de carne, productos de pescado, derivados de pescado, lácteos, derivados de lácteos, fuentes de proteínas microbianas, proteínas vegetales, carbohidratos y aminoácidos para obtener una composición saporífera, en donde la composición saporífera es una formulación líquida, sólida, en polvo, pasta, gel, untable, en gránulos o pulverizable. En una realización, un agonista o un antagonista del polipéptido del receptor TAS2R felino se mezcla en la composición. En una realización, el agonista es denatonio, aloína o PTC, y el antagonista es probenecid.
- Para formular una composición saporífera líquida, por ejemplo, se combinan ingredientes líquidos comerciales en una mezcladora con un agonista, un antagonista o un modulador de un polipéptido del receptor TAS2R felino. Se trituran o emulsionan los ingredientes húmedos hasta una suspensión y se combinan con los ingredientes líquidos. Se puede añadir una proteasa comercialmente disponible a la suspensión para hidrolizar las proteínas, y luego se inactiva con calor, ácido u otro método. Se pueden añadir también conservantes tales como ácido sórbico. Se añade agua para ajustar la viscosidad y el contenido de sólido de la suspensión para facilitar la aplicación de pulverización.
- 30 Se puede preparar una formulación seca de la composición saporífera combinando ingredientes secos disponibles comercialmente, incluidos aminoácidos, sales inorgánicas y materiales orgánicos con un agonista, un antagonista o un modulador de un polipéptido del receptor TAS2R felino en las proporciones deseadas en una mezcladora de lotes y mezclando hasta homogeneidad antes de secar.
- De acuerdo con otra formulación seca, se combinan ingredientes húmedos y secos mezclando los ingredientes húmedos con todos o algunos de los ingredientes secos en una mezcladora hasta que se forma una mezcla homogénea. La mezcla se seca por evaporación o liofilización, por ejemplo, para formar un producto seco o en polvo que luego se mezcla con cualquier ingrediente seco remanente en un tambor hasta formar una mezcla homogénea.

Se describen métodos para preparar una composición comestible para un animal.

55

- En una realización, el método comprende poner en contacto una composición comestible o su componente con un polipéptido del receptor fTAS2R descrito en este documento por un periodo de tiempo suficiente para reducir la cantidad de un compuesto amargo de la composición comestible o su componente. Un experto en la técnica puede determinar el tiempo para reducir la cantidad del compuesto amargo. El contacto puede ocurrir en un proceso continuo, semi-continuo o por lotes. En una realización, la composición comestible es para un felino.
- El método comprende añadir un compuesto a una composición comestible para reducir la palatabilidad de la composición comestible a un animal, en donde el compuesto es un agonista o un modulador positivo de un receptor del sabor amargo felino. En una realización, la palatabilidad se reduce hasta un grado en que el felino consume 10 a 30% menos de la composición comestible con el compuesto añadido que la composición comestible sin el compuesto añadido. En una realización, la reducción de la palatabilidad se mide como la reducción en las calorías de la composición comestible consumida, el peso de la composición comestible consumida o el volumen de la composición comestible consumida.

Se describe un método para formular una composición comestible con mejor palatabilidad para un animal.

El método comprende determinar la presencia de un compuesto que es un agonista, antagonista o modulador de un polipéptido del receptor TAS2R felino en una composición comestible; y potenciar la palatabilidad de la composición comestible si el compuesto es un agonista o un modulador positivo, aumentar la cantidad de un agonista del receptor en la composición comestible o reducir la cantidad del compuesto en la composición comestible, o si el compuesto es un antagonista o un modulador negativo, aumentar la cantidad del compuesto en la composición comestible. La cantidad del compuesto se puede aumentar aplicando una composición saporífera que comprende el compuesto a la

composición comestible de modo tal que la composición comestible se incorpore o recubra al menos parcialmente la composición comestible.

Se describen también métodos para administrar un compuesto amargo a un animal (p. ej., un felino) que lo necesita. El experto en la materia apreciará que en algunos casos un ser humano o animal puede necesitar un compuesto amargo (p. ej., una composición farmacéutica, un nutriente o similar) y que puede ser problemático administrar el compuesto al animal.

El método puede comprender administrar una composición comestible felina a un felino, en donde la composición comestible comprende un compuesto amargo felino y un compuesto que altera el amargor percibido de la composición comestible, enmascara el compuesto amargo en la composición comestible, o actúa como agonista, antagonista o modulador de un receptor TAS2R felino en el felino para alterar la percepción del sabor amargo por parte del felino. En una realización, el compuesto amargo comprende un producto terapéutico, un suplemento nutricional o un producto para el cuidado oral. Un suplemento nutricional se refiere a un suplemento destinado a proporcionar nutrientes que de otra forma no serían consumidos en cantidades suficientes e incluye vitaminas, minerales, fibra, probióticos, ácidos grasos y aminoácidos. Un producto terapéutico o farmacéutico se refiere a un compuesto, elemento o mezcla que cuando se administra a un sujeto, solo o combinado con otro compuesto, elemento o mezcla, confiere, directa o indirectamente, un efecto fisiológico en el sujeto. Un producto para el cuidado oral se refiere a un producto utilizado para promover dientes y encías sanos, refrescar el aliento o prevenir o tratar enfermedades bucales.

Se describen además métodos para fabricar composiciones comestibles felinas.

En una realización, el método comprende poner en contacto una composición de alimento felino o un componente de esta con un polipéptido del receptor TAS2R de la presente invención por un periodo de tiempo suficiente para eliminar el compuesto amargo del producto o componente alimentario. En una realización, el receptor TAS2R se une a un soporte sólido que se pueda separar de la composición alimentaria. En una realización, el contacto es una operación continua. En una realización, la composición alimentaria se pone en contacto con una pluralidad de polipéptidos del receptor TAS2R.

25 El método puede comprender determinar la presencia de uno o más compuestos amargos en una composición comestible; determinar un perfil de amargor de la composición comestible en base a uno o más compuestos amargos que se determina que están presentes; y añadir un compuesto o eliminar un compuesto de la composición comestible para potenciar la palatabilidad de la composición comestible, en donde el compuesto altera el perfil de amargor de la composición comestible, enmascara uno o más de los compuestos amargos presentes en la composición comestible 30 o actúa como agonista, antagonista o modulador de un receptor del sabor amargo felino. En una realización, añadir el compuesto a la composición comestible comprende aplicar una disolución de recubrimiento a la composición comestible que comprende el compuesto, tal como un recubrimiento que rodea por lo menos parcialmente la composición comestible felina. En una realización, la composición comestible es un alimento basal, una composición saporífera, un dulce, un producto terapéutico o un suplemento nutricional. La presencia de un compuesto amargo en 35 una composición comestible se puede determinar por un método descrito en este documento, o por cualquier otro método conocido en la técnica. Un perfil de amargor de una composición comestible se refiere a una enumeración de compuestos amargos que se determina que están presentes en la composición comestible, y opcionalmente también incluye la cantidad de un compuesto amargo determinado en la composición comestible. En una realización, la composición comestible es para un felino.

40 Se describen también composiciones repelentes. En una realización, la composición repelente puede comprender un agonista del receptor TAS2R felino o un modulador positivo en una cantidad suficiente para producir rechazo, por ejemplo por lo menos 0,05% a aproximadamente 30% en peso, y opcionalmente sustancias aromáticas o perfumes como aceite de romero, aceite de menta, aceite de canela, limoneno o eugenol, y uno o más ingredientes inertes tales como diluyentes líquidos, vehículos, espesantes, agentes activos de superficie, conservantes, compuestos aromáticos, desodorizantes, antibacterianos, antifúngicos, antimicrobianos, biocidas, y uno o más de varios tipos de 45 advuvantes incluidos, entre otros, humectantes, dispersantes, adherentes, retardantes de espuma, tampones y acidificantes. Los diluyentes líquidos adecuados incluyen agua, destilados de petróleo u otros vehículos líquidos con o sin agentes activos de superficie. Los ejemplos de vehículos incluyen bentonita, tierra de Fuller, arcillas adicionales, talco, tiza, cuarzo, atapulgita, montmorilonita o tierra diatomácea, vermiculita, ácido silícico altamente dispersado, alúmina y silicatos, calcita, mármol, piedra pómez, sepiolita y dolomita, metales inorgánicos y orgánicos, aserrín, 50 cáscara de coco, mazorca de maíz y tabaco. En una realización, la composición repelente comprende además un gas propulsor para dispensar un aerosol, como Figen 11/12 o propano/butano, p. ej., en una relación de 15:85. En una realización, el agonista de fTAS2R es denatonio, aloína o PTC.

Otras realizaciones de la presente invención se describen en los siguientes Ejemplos no limitativos.

55 **Ejemplos**

5

10

15

Ejemplo 1. Determinación del receptor del gen y de las secuencias de polipéptidos del sabor amargo felino (TAS2R)

En este ejemplo, se identificaron genes de TAS2R felino, consultando la base de datos de cóntigos de secuenciación *shotgun* del genoma completo *Felis catus* de NCBI con secuencias de genes del receptor amargo humano. Las secuencias de genes humanos utilizadas se identifican con las ID de genes de NCBI en la Tabla 2.

Tabla 2. ID de genes de NCBI para todos los genes funcionales y pseudogenes de hTAS2R utilizados para identificar genes amargos felinos

0 (: 1
Genes funcionales

Gen receptor del sabor amargo	ID del gen
TAS2R1 (TAS2R1; TRB7)	50834
TAS2R3 (TAS2R3)	50831
TAS2R4 (TAS2R4)	50832
TAS2R5 (TAS2R5)	54429
TAS2R7 (TAS2R7; TRB4)	50837
TAS2R8 (TAS2R8; TRB5)	50836
TAS2R9 (TAS2R9; TRB6)	50835
TAS2R10 (TRB2; TAS2R10)	50839
TAS2R13 (TRB3; TAS2R13)	50838
TAS2R14 (TRB1; TAS2R14)	50840
TAS2R16 (TAS2R16)	50833
TAS2R19 (TAS2R19; TAS2R23; TAS2R48; MSTP058; TAS2R23; TAS2R48)	259294
TAS2R20 (TAS2R20; TAS2R49; TAS2R56; TAS2R49)	259295
TAS2R30 (TAS2R30; TAS2R47; TAS2R47)	259293
TAS2R31 (TAS2R31; TAS2R44; TAS2R53; TAS2R44)	259290
TAS2R38 (PTC; TAS2R38; TAS2R61)	5726
TAS2R39 (TAS2R39; TAS2R57)	259285
TAS2R40 (GPR60; TAS2R40; TAS2R58)	259286
TAS2R41 (TAS2R41; TAS2R59)	259287
TAS2R42 (TAS2R24; TAS2R55; hTAS2R55; TAS2R55)	353164
TAS2R43 (TAS2R43; TAS2R52)	259289
TAS2R45 (GPR59; TAS2R45; ZG24P)	259291
TAS2R46 (TAS2R46; TAS2R54)	259292
TAS2R50 (TAS2R50; TAS2R51; TAS2R51)	259296
TAS2R60 (TAS2R56; TAS2R60)	338398

Pseudogenes			
Gen receptor del sabor amargo humano	ID del gen		
TAS2R2P (PS9; TAS2R2; TAS2R02; TAS2R2)	338396		
TAS2R12P (PS10; TAS2R12; TAS2R12; TAS2R26)	266656		
TAS2R15P (PS8; TAS2R15)	266657		
TAS2R18 (PS4; TAS2R18; TAS2R65; TAS2R65; TAS2R65P)	338414		
TAS2R62P (PS1; TAS2R62; TAS2R62)	338399		
TAS2R63P (PS6; TAS2R63)	338413		
TAS2R64P (PS2; TAS2R64; TAS2R64P)	338412		
TAS2R67P (PS5)	448991		
TAS2R68P (PS7; TAS2R68P)	100653053		

5

Se descargaron cóntigos individuales entre los hits para identificación manual de los codones de inicio (ATG) y finalización (TAA, TGA, o TAG) y para determinar si el gen es probablemente de longitud total. Una vez que se obtuvieron las secuencias de ambos ensamblajes felinos, se compararon.

Se identificaron los genes funcionales pronosticados en base a un conjunto de reglas seleccionadas para incluir una proteína que tiene aproximadamente 300 aminoácidos de longitud, el sitio de inicio y el sitio de finalización se encuentran en ubicaciones similares que la proteína humana cuando se alinean las secuencias Blast, luego la secuencia se comparó con la secuencia del gen amargo canino ortólogo para verificar que la similitud fuese razonable. La Tabla 3 identifica las secuencias de genes amargos caninos utilizados.

Tabla 3. ID de genes NCBI para todos los genes y pseudogenes funcionales TAS2Rs utilizados

	Genes funcionales	
	Gen del receptor amargo canino	ID del gen
1	TAS2R1 (CAFA-TAS2R1)	100271742
2	Cafa-TAS2R2	100271741
3	TAS2R3 (CAFA-TAS2R3)	100271736
4	TAS2R4	100688996
5	TAS2R5 (CAFA-TAS2R5)	100271743
6	TAS2R7 (CAFA-TAS2R7)	100271739
7	TAS2R10 (CAFA-TAS2R10)	100271734
8	Cafa-TAS2R12	100271738
9	TAS2R38 (CAFA-TAS2R38)	100271737
10	TAS2R39 (CAFA-TAS2R39)	100271735
11	TAS2R40	608842
12	TAS2R41	482734
13	TAS2R42 (CAFA-TAS2R55)	100271731

5

14	Cafa-TAS2R43	100271744
15	TAS2R62-like	608741
16	Cafa-TAS2R67	100271740

10

	Pseudogenes	
	Gen del receptor amargo canino	ID del gen
1	TAS2R8P	100682910
2	TAS2R9P	100686911
3	Cafa-TAS2R44P	GenBank: AB249699.1
4	Tipo TAS2R46	100682759
5	Tipo TAS2R60	100856773
6	Tipo TAS2R104	100682833

La siguiente Tabla 4 resume los genes felinos de longitud total identificados. El % de similitud de la proteína entre el gen felino y el homólogo humano más próximo se presenta en la tabla.

Tabla 4. Genes del receptor amargo felino de longitud total identificados

Gen felino pronosticado	Homólogo humano pronosticado	El mejor % de similitud a la secuencia humana
TAS2R1	sí	60,5%
TAS2R2	NO	74,8%
TAS2R3	SÍ	74,4%
TAS2R4	sí	71,9%
TAS2R7	sí	74,4%
TAS2R9	sí	68,3%
TAS2R10	sí	67,8%
TAS2R12	NO	51,0%
TAS2R38	sí	67,6%
TAS2R42	NO	56,1%
TAS2R43	sí	59,0%
TAS2R44	sí	59,9%
TAS2R67	NO	47,6%

La clonación de cada uno de los genes amargos felinos para confirmar la secuencia de ADN se efectuó después de ampliar el gen deseado por la reacción en cadena de la polimerasa (PCR) usando el ADN genómico de un solo gato. Se diseñaron cebadores potenciales para ampliar cada gen felino usando un software comercial. Se seleccionaron conjuntos de cebadores entre aquellos diseñados basados en la temperatura de anelación pronosticada, fidelidad, potencial de dimerización y cebado defectuoso, y localización de la secuencia deseada con el fin de ampliar la secuencia de genes felinos y determinar la secuencia de ADN del ADN genómico felino aislado. Se usaron pares de cebadores para ampliar cada gen y se exponen en la Tabla 5.

Tabla 5. Cebadores para ampliación genómica

Nombre del gen	F/R	SEQ ID NO	Secuencia	Longitud
fTAS2R1	F	32	TCATGGTGGAGGTGAAGGATTG	22
fTAS2R1	R	33	AGGTATGGCAGGCATCGTCAGC	22
fTAS2R2	F	34	CAGGAATTGGCAGAAGGTCAGAT	23
fTAS2R2	R	35	GGAGAAGGAAATTGCCAGAAAGAG	24
fTAS2R3	F	36	AAATTGGGCAGAGACAAGAGACAGG	25
fTAS2R3	R	37	CGGCACCGGAACCACAAGAG	20
fTAS2R4	F	38	GGGGACAATTGGAAAAGGAAACG	23
fTAS2R4	R	39	CTCAAAGGCCCACGAAGTCAGAT	23
fTAS2R7	F	40	AGGATCATGAAAGGGAACGGGTCT	24
fTAS2R7	R	41	GACAAAGAGAAAAGAGGCAAAATCG	24
fTAS2R9	F	42	CCGACAAAGAGGGCAGAAAAAGAC	24
fTAS2R9	R	43	GACCTCCTCCGGCTCAGAAGAAGT	24
fTAS2R10	F	44	GATATACGTTGGGCGCTCCTACT	23
fTAS2R10	R	45	AGTGAAACCCTTACAGTGAATAG	23
fTAS2R12	F	46	CAAGCAGTGTGACAGCAGCAGGTA	24
fTAS2R12	R	47	GGAGAGGAAGGAAACGCACA	24
fTAS2R38	F	48	GAAGTCCTGGCTTGTAATGTA	21
fTAS2R38	R	49	CAAAACAAACTTGGGGAACTT	21
fTAS2R42	F	50	ACACTGGAATCGCAAAGAAACACG	24
fTAS2R42	R	51	GATCCTCAAAGACTCCTCAATAAG	24
fTAS2R43	F	52	GCACAACCAGCGACATCAGACATT	24
fTAS2R43	R	53	CCCAGGCGCCCCAAAAGA	18
fTAS2R44	F	54	GCACAACCAGCGACATCAGACATT	24
fTAS2R44	R	55	CCGGTGAGGGTAGATTATTTCCA	23
fTAS2R67	F	56	ACCCAGGCGCCCCAGTATCT	20
fTAS2R67	R	57	GCTTCCGGCATTTTTATTCC	20

10

El proceso de ampliación y clonación de un gen representativo, TAS2R38, se describe sintéticamente. La secuencia de fTAS2R38 se amplió mediante PCR usando Easy A High Fidelity PCR Cloning Enzyme (Agilent, Santa Clara CA), cebadores habituales y ADN genómico como molde.

El producto PCR resultante se ligó al vector pGEM-T Easy Vector (Promega, Madison WI). Se transformaron células bacterianas DH5-α (Life Technologies; Carlsbad, CA) con el vector. Se purificó plásmido de cultivos de las células DH5-alfa transformadas usando el kit Plasmid Miniprep Kit (Omega BioTec, Norcross, GA). La secuenciación del gen usando el ADN de plásmido purificado se efectuó en la Instalación de Secuenciación Core ADN Sequencing Facility en la Universidad de Illinois, Champaign-Urbana. Los datos de la secuenciación se analizaron con SeqMan Pro (DNAStar, Madison WI) para determinar la calidad de los datos y para editarlos.

La secuencia génica determinada a partir de la secuenciación de ADN genómico felino aislado se comparó contra las secuencias obtenidas de los cóntigos shotgun del genoma completo y se analizó para identificar diferencias de nucleótidos específicos y estructura de la proteína. Las secuencias descritas en el listado de secuencias para cada uno los ADNc y polipéptidos de genes del receptor del sabor amargo felino se identifican con las SEQ ID NO que se indican en la Tabla 6.

Tabla 6. SEQ ID NO de ADNc y polipéptido del gen receptor del sabor amargo felino

SEQ ID NO.	Secuencia de TAS2R felino	
1	R1 ADNc	
2	R1 polipéptido	
3	R2 ADNc	
4	R2 polipéptido	
5	R3 ADNc	
6	R3 polipéptido	
7	R4 ADNc	
8	R4 polipéptido	
9	R7 ADNc	
10	R7 polipéptido	
11	R9 ADNc	
12	R9 polipéptido	
13	R10 ADNc	
14	R10 polipéptido	
15	R12 ADNc	
16	R12 polipéptido	
17	R38 ADNc	
18	R38 polipéptido	
19	R42 ADNc	
20	R42 polipéptido	
21	R43 ADNc	
22	R43 polipéptido	
23	R44 ADNc	
24	R44 polipéptido	
25	R67 ADNc	
26	R67 polipéptido	

En general, el gen felino se nombra después de su contrapartida humana homóloga, como se muestra en la Tabla 7. No obstante, para un gen felino similar a muchos genes humanos, tal como fTAS2R43, el gen felino se nombra como su contrapartida canina homóloga.

33

10

5

Tabla 7. Genes correspondientes en felinos, caninos y seres humanos

Gen felino pronosticado	Gen canino pronosticado	Gen humano
TAS2R1	TAS2R1	TASIR1
TAS2R2	CAFA-T2R2	TAS2R2P
TAS2R3	TAS2R3	TAS2R3
TAS2R4	TAS2R4	TAS2R4
TAS2RSP	TAS2R5	TAS2R5
TAS2R7	TAS2R7	TAS2R7
TAS2R8P	TASZR8P	TAS2R8
TAS2R9	TAS2R9P	TAS2R9
TAS2R10	TAS2R10	TAS2R10
TAS2R12	TAS2R12	TAS2R12P
TAS2R16P	N/A	TA52R16
TAS2R38	TAS2R38	TAS2R38
TASZR39P	TAS2R39	TAS2R39
TAS2R40P	TAS2R40	TAS2R40
TASZRA1P	TAS2R41	TAS2R41
TAS2R42	TAS2R42	htas2R42, 18P, 67P
TAS2R43	TAS2R43	hTAS2R13, 14, 19, 20, 30, 31, 43, 45, 46, 50, 13P, 63P, 64P, 68P
TAS2R44	CAFA-T2R44P	hTAS2R13, 14, 19, 20, 30, 31, 43, 45, 46, 50, 15P, 63P, 64P, 66P
TAS2R67	CAFA-T2R67	hTAS2R42, 18P, 67P
TAS2R60P	Tipo Tas 2860P	TAS2R60
TASZR62P	Tipo TAS2R62	TA52862F

Una alineación de secuencias de la 3ª a la 7ª regiones transmembrana (TM) de varios receptores amargos humanos y felinos se muestra en la Fig. 1. La alineación de las secuencias ilustra el grado sustancia de homología de esta región en los receptores del sabor amargo de las dos especies.

- 5 Una alineación de secuencias del polipéptido de TAS2R38 humano (SEQ ID NO:31) y del polipéptido de TAS2R38 felino (SEQ ID NO:18) determinada a partir de secuenciación de ADN genómico de cinco gatos individuales se muestra en la Fig. 2. Los aminoácidos en hTAS2R38 que difieren de aquellos en fTAS2R38 se recuadran en la Fig. 2. Las posiciones de los polimorfismos humanos conocidos por afectar la percepción del gusto de 6-n-propiltiouracil (PROP), A49P, V262A, I293V (en donde AVI no es un degustador y PAV es un degustador) están sombreadas en gris en la Fig. 2. Los residuos conocidos por ser importantes para la unión de feniltiocarbamida (PTC) al receptor TAS2R38 humano se ilustran en la Fig. 2 con un recuadro negro (residuos 99-100, 103, 255 y 259) Estos aminoácidos o bien se unen directamente a PTC, contribuyen al saco de unión o están implicados en la activación de los receptores asociándolos con otros aminoácidos.
- Se usó TOPCONS para identificar las siete regiones transmembrana y los bucles extracelulares y citoplásmicos de cada polipéptido de fTAS2R. Los resultados de este análisis se presentan en la Tabla 1.

Ejemplo 2. Sistemas de expresión para TAS2R felino

A. Generación de vectores de expresión para TAS2R felino

Este ejemplo describe la generación de un vector de expresión para un receptor amargo felino representativo, TAS2R38. Se lleva a cabo un proceso análogo para cada uno de los receptores TAS2R.

El gen de longitud total de TAS2R38 felino se amplió por reacción en cadena de la polimerasa (PCR) usando cebadores específicos de genes que abarcan toda la región codificante.

Se subclonó ADNc TAS2R38 en un cassette de expresión basado en el plásmido/vector de expresión pcDNA3.1D-V5His (Life Technologies, Carlsbad, Calif., EE. UU.), que contiene dentro de sus múltiples sitios de clonación la secuencia de nucleótidos que codifica el epítopo FLAG a fin de permitir la detección superficial del receptor, luego los primeros 45 aminoácidos del receptor de somatostatina de rata, subtipo 3 (marca RSS) para facilitar la focalización de la superficie celular del transgén, y la secuencia de nucleótidos que codifica el epítopo de la glucoproteína D (epítopo VHS) del virus del herpes simple (VHS) para facilitar la detección inmunocitoquímica (marca VHS) en el término carboxi.

Las secuencias de ácido nucleico que codifican la marca FLAG, marca RSS, TAS2R38, y la marca HSV se condensaron, en ese orden, en marco para crear un constructo que permitiera la traducción a la proteína del receptor. El ADNc del receptor resultante en el vector de expresión codifica las secuencias de aminoácidos unidas de TAS2R38 precedidas por la marca RSS y seguidas por la marca VHS.

El vector de expresión que incluye el constructo se denomina pcDNA3.11D-FLAGV5His-TAS2R38 y permite la expresión de la proteína TAS2R38 (SEQ ID NO:18).

La generación de un vector de expresión para cada uno de los otros fTAS2R descritos en este documento se efectuó por etapas análogas.

20 B. Generación de líneas celulares que expresan transitoriamente fTAS2R

15

Se generaron líneas celulares que expresan transitoriamente un TAS2R deseado, transfectando un vector de expresión apropiado, p. ej., pcDNA3.1D-FLAGV5His-TAS2R38, construido como se describió anteriormente en el Ej. 2A en células de una línea celular eucariota (Life Technologies, Cat# R700-07).

El día 0, se dispusieron 60-000 células por pocillo en placas negras de 96 pocillos con fondo claro recubiertas con polilisina (Costar). Al día siguiente, las células se transfectaron con 150 ng del vector de expresión TAS2R38, p. ej., pcDNA3.1D-FLAGV5His (Invitrogen) junto con 45ng de la quimera Ga16 que contenía los últimos 44 aminoácidos de gustducina de rata (Gα16gust44) con 0,5 ul Lipofectamina 2000 (Invitrogen) por pocillo. Las células luego se incubaron 22-44 horas a 37°C 5% CO₂.

La expresión de fTAS2R38 se evaluó ensayando la presencia de una respuesta funcional a un ligando hTAS2R38 conocido (p. ej., PTC), determinada mediante imágenes automáticas del calcio usando un ensayo de calcio Fluo-4AM (Life Technologies Corporation). Fluo-4AM es un indicador fluorescente de la dinámica de calcio intracelular (cambio en concentración) y en respuesta a la activación del receptor que ocurre después de la exposición del agonista.

La generación de líneas celulares que expresan transitoriamente los otros fTAS2R descritos en este documento fue análoga.

La expresión de los fTAS2R en las diversas líneas celulares generadas se evaluó por citometría de flujo. La marca FLAG extracelular se detectó con un anticuerpo específico de FLAG conjugado a fluoresceína isotiocianato (FITC). El porcentaje de células que expresan un fTAS2R determinado se determinó por el porcentaje de células positivas para la señal de FITC. El nivel de expresión de fTAS2R se determinó con la media geométrica de la intensidad de fluorescencia medida. Los resultados para cada uno de los fTAS2R expresados se muestran en la Tabla 8.

40 Tabla 8. Resultados de citometría de flujo para líneas celulares que expresan transitoriamente los fTAS2R

fTAS2R	% de células que expresan fTAS2R	Nivel de expresión de fTAS2R relativo (Media geométrica de intensidad de fluorescencia)
Células no	0	8.929
TAS2R1	38	231.625
TAS2R2	37	295.625
TAS2R3	24	201.000
TAS2R4	36	331.125
TAS2R7	27	144.375
TAS2R9	24	113.250

fTAS2R	% de células que expresan fTAS2R	Nivel de expresión de fTAS2R relativo (Media geométrica de intensidad de fluorescencia)
TAS2R10	30	298.500
TAS2R12	32	258.625
TAS2R38	31	268.750
TAS2R42	25	133.375
TAS2R43	24	246.375
TAS2R44	9	125.750
TAS2R67	12	118.000

C. Detección de líneas celulares transfectadas transitoriamente

5

30

35

Las pruebas para una respuesta funcional de fTAS2R38 a los ligandos de hTAS2R38 conocidos, PTC y PROP, y de fTAS2R43 a los ligandos de hTAS2R43 conocidos, aloína, denatonio y sacarina) se determinaron mediante imágenes automáticas del calcio usando el ensayo de calcio Fluo-4AM (Life Technologies Corporation).

Se activó fTAS2R38 81% frente a la situación inicial con 100 μ M PTC, pero no se estimuló con 30 μ M PROP. Se activó fTAS2R43 45% frente a la situación inicial con 300 μ M aloína, y 17% frente a la situación inicial con 1 mM denatonio, pero no se estimuló con sacarina 6,7 mM. Asimismo, las respuestas a PTC, denatonio y aloína se inhibieron con 1 mM probenecid.

- Las pruebas para una respuesta funcional de cada uno de los otros fTAS2R descritos en este documento se pueden efectuar por métodos análogos, usando ligandos conocidos a un homólogo correspondiente de cada fTAS2R.
 - D. Generación de líneas celulares que expresan establemente fTAS2R

También se obtienen líneas celulares que expresan establemente fTAS2R.

- Para estos experimentos, el ADNc de fTAS2R38 se subclona en un cassette de expresión basado en el plásmido/vector de expresión pcDNA3.1Zeo (Life Technologies, Carlsbad, Calif., EE. UU.), que contiene dentro de sus múltiples sitios de clonación la secuencia de nucleótidos que codifica los primeros 45 aminoácidos del receptor de somatostatina de rata, subtipo 3 (marca RSS) para facilitar la focalización de la superficie celular del transgén, y la secuencia de nucleótidos que codifica el epítopo de la glucoproteína D del virus del herpes simple (VHS) (epítopo VHS) para facilitar la detección inmunocitoquímica (marca VHS).
- Las secuencias de ácido nucleico que codifican la marca RSS, marca VHS y fTAS2R38 se condensaron, en ese orden, en marco para crear un constructo que permita la traducción a la proteína del receptor. El ADNc del receptor resultante en el vector de expresión codifica las secuencias de aminoácido unidas de fTAS2R38 precedidas por la marca RSS y la marca VHS.
- El vector de expresión que incluye el constructo se denomina pcDNA3.1Zeo-TAS2R38 y permite la expresión de la proteína fTAS2R38 (SEQ ID:18).

La generación de un vector de expresión para los otros fTAS2R descritos en este documento es análoga. Las enzimas de restricción utilizadas se adaptan de manera acorde.

Se generan líneas celulares que expresan establemente un fTAS2R deseado, transfectando el vector de expresión apropiado, p. ej., pcDNA3.1Zeo-TAS2R38, construido como se describió anteriormente en el Ej. 2A en una línea de células hospedantes eucariotas (Life Technologies Cat# R700-07) transformada con la quimera Gα16 que contiene los últimos 44 aminoácidos de gustducina de rata (células G[alfa] 16-gustducina 44) como se describe en el documento WO2004/055048 (US7919236).

El día 0, las células G[alfa] 16-gustducina 44 se disponen en una placa de 6 pocillos a una densidad de 900.000 células por pocillo y se desarrollan durante la noche en un medio de desarrollo selectivo (DMEM con 10% (v/v) suero bovino fetal inactivado por calor, 2 mM L-glutamina, 100 unidades/ml penicilina, 100 µg/ml estreptomicina).

El día 1, el medio se intercambia con 2 ml de medio de desarrollo libre de antibiótico y libre de suero. Se disuelven 10 µl Lipofectamine 2000 (Life Technologies Corporation) en 250 µl DMEM, y se incuba durante 5 minutos a temperatura ambiente. En paralelo, se disuelven 4 µg pcDNA3.1Zeo-TAS2R38 ADN en 250 µl DMEM. Estas dos disoluciones resultantes se mezclan e incuban durante 20 minutos a temperatura ambiente, y se añaden a las células en el medio

de cultivo. Después de 4 horas, el medio se reemplaza con medio de desarrollo libre de antibiótico que contiene suero. Las células se incuban en atmósfera humidificada (37 C., 5% CO2).

Después de 24 horas, las células se vuelven a disponer en placas en medio de desarrollo selectivo (DMEM con 10% (v/v) suero bovino fetal inactivado por calor, 2 mM L-glutamina, 100 unidades/ml penicilina, 100 μg/ml estreptomicina, 200 μg/ml G418 y 200 μg/ml zeocina) y se incuban en una atmósfera humidificada (37 C, 5% CO2).

Después de 2 a 4 semanas de cultivo (reemplazando el medio según sea necesario), se seleccionan y expanden colonias resistentes a la zeocina.

La expresión de fTAS2R38 se evalúa ensayando la presencia de una respuesta funcional a un ligando de hTAS2R38 conocido (p. ej., PTC y PROP), determinada por imágenes automáticas de calcio usando el ensayo de calcio Fluo-4AM (Life Technologies Corporation). Fluo-4AM es un indicador fluorescente de la dinámica del calcio intracelular (cambio en la concentración) y permite controlar los cambios en la concentración del calcio, particularmente un incremento en respuesta a la activación de un receptor que ocurre después de la exposición al agonista. Se selecciona un clon que resulta en la línea celular G[alfa] 16-gustducina 44/TAS2R38. La línea celular G[alfa] 16-gustducina 44/TAS2R38 se estimuló 90% frente a la situación inicial en presencia de 100 μM PTC pero no se estimuló con 30 μm PROP.

La generación de líneas celulares que expresan establemente los otros fTAS2R descritos en este documento es análoga.

Ejemplo 3. Detección basada en células para ligandos y efectores de TAS2R felinos

La identificación de agonistas, antagonistas y moduladores del receptor TAS2R38 felino se lleva a cabo en un ensayo de detección basado en células en el que el efecto de un compuesto de ensayo sobre las células transfectadas con TAS2R38 felino y Gα16gust44 se compara con el efecto del compuesto de ensayo sobre células no transfectadas.

Antes del ensayo de detección, las células se cargan con el tinte sensible al calcio Fluo-AM (Life Technologies) durante una hora a 37 °C como se describe en el Ejemplo 2B. El tinte se elimina, y las células se ensayan en disolución salina equilibrada de Hank (HBSS; Life Technologies) que contiene HEPES 20mM en un Flexstation II (Molecular Devices). Se usan diluciones en serie de 10 veces 0,01mM - 1mM de los compuestos de ensayo para estimular las células. PTC, un agonista de TAS2R38 humano conocido, está entre los compuestos de ensayo

Los estímulos se inyectan y vigilan durante 100-180 segundos. Los datos se analizan y grafican como un porcentaje frente a la señal inicial, que es la lectura anterior a la estimulación. La estimulación de la línea celular que expresa fTAS2R38 con un compuesto de ensayo particular se considera que ocurre cuando la señal es mayor que la señal del tampón sola en la línea celular que expresa el receptor y la señal de la muestra de la línea celular no transfectada a la que se le inyecta el compuesto de ensayo.

La detección basada en células para agonistas, antagonistas y moduladores de los otros fTAS2R descritos en este documento es análoga.

Ejemplo 4. Composiciones saporíferas y repelentes

Las composiciones saporíferas secas ilustrativas para un animal que comprenden un agonista, un antagonista o un modulador de un receptor TAS2R felino descrito en este documento se preparan en general de conformidad con la siguiente formulación.

Tabla 9. Composición saporífera seca

5

25

Componente	% en peso
agonista, antagonista o modulador identificado de un receptor TAS2R felino	0,01%-5%
comida basada en granos o harina, como maíz, trigo, cebada o arroz;	0%-50%
comida de origen animal, como ave o cerdo;	0%-50%
destilados o levaduras de destilación;	0%-50%
sales de fosfato;	0%-50%
proteína animal fresca, como proteína de ave o cerdo;	0%-50%
proteína a base de mariscos;	0%-50%
azúcares o almidones;	0%-20%
ingredientes lácteos;	0%-10%
grasa animal;	0%-5%

Componente	% en peso
ingredientes de aminoácidos;	0%-5%
ácido fosfórico y/o hidróxido sódico;	0%-5%
ácido cítrico;	0%-5%
aderezos naturales especiales	0%-5%
	·
pH final de 4,0 - 8,0	
Humedad final de 1,0 – 5,0%	

El agonista identificado en la composición saporífera seca es denatonio, aloína o PTC, o el antagonista identificado es probenecid.

Las composiciones saporíferas líquidas ilustrativas para un animal que comprende un agonista, un antagonista o un modulador de un receptor TAS2R felino se preparan en general de acuerdo con la siguiente formulación.

Tabla 10. Composición saporífera líquida

5

20

Componente	% en peso
agonista, antagonista o modulador identificado de un receptor TAS2R felino	0,01%-5%
proteína animal, como proteína de ave o cerdo;	0%-40%
comida de origen animal, como ave o cerdo;	0%-40%
proteína a base de mariscos;	0%-40%
comida a base de granos o harina, como maíz, trigo, cebada o arroz;	0%-30%
destilados o levaduras de destilación;	0%-30%
sales de fosfato;	0%-10%
azúcares o almidones;	0%-10%
ingredientes lácteos;	0%-10%
ácido fosfórico y/o hidróxido sódico;	0%-10%
grasa animal;	0%-5%
ingredientes de aminoácidos	0%-5%
ácido cítrico	0%-5%
aderezos naturales especiales	0%-5%
pH final de 2,7 - 3,1	
Humedad final de 60,0 – 80,0%	

El agonista identificado en la composición saporífera líquida es denatonio, aloína o PTC, o el antagonista identificado es probenecid.

Una composición repelente ilustrativa en la forma de un aerosol para pulverizar en un objeto a fin de impedir que un gato de compañía mastique o ingiera el objeto se prepara formulando 50% disolución de ingrediente activo, en donde el ingrediente activo es un agonista de TAS2R felino o un modulador positivo, en donde 50% es un gas propulsor tal como Frigen 11/12 (un hidrocarburo halogenado) o propano/butano (p. ej., en una relación 15:85) en un recipiente en aerosol. La disolución de ingrediente activo consiste en aproximadamente 0,5% a aproximadamente 30 % en peso de un agonista TAS2R felino o modulador positivo disuelto en un diluyente líquido, p. ej., agua, opcionalmente 0,5 – 1,5% de una sustancia aromática o un perfume, y hasta 29,5% isopropanol. El agonista de TAS2R felino es denatonio, aloína o PTC.

Realización 1. Un polipéptido del receptor TAS2R felino (fTAS2R) aislado que comprende un dominio extracelular de un receptor TAS2R felino; una región transmembrana de un receptor TAS2R felino, o un dominio intracelular de un receptor TAS2R felino, en donde el receptor fTAS2R comprende una secuencia seleccionada entre SEQ ID NO:18,

SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 y SEQ ID NO:26, en donde el polipéptido del receptor felino TAS2R (fTAS2R) aislado no consiste en las secuencias de aminoácidos SEQ ID NO: 2, 4, 6, o 10.

5

10

15

20

25

30

35

40

45

50

Realización 2. El polipéptido de la realización 1 en donde: el dominio extracelular del polipéptido del receptor TAS2R felino comprende: aminoácidos 1, 68-84; 146-179; o 249-257 de la SEQ ID NO:2; aminoácidos 1-10, 73-88; 151-186; o 256-264 de la SEQ ID NO:4; aminoácidos 1-8; 72-88; 150-186; o 256-265 de la SEQ ID NO:6; aminoácidos 1-2; 69-87; 151-183; o 253-261 de la SEQ ID NO:8; aminoácidos 1-8; 72-88; 150-187; o 257-265 de la SEQ ID NO:10; aminoácidos 1-6; 72-88; 150-183; o 253-262 de la SEQ ID NO:12; aminoácidos 1; 69-87; 150-181; o 251-260 de la SEQ ID NO:14; aminoácidos 1-8; 69-88; 150-185; o 252-261 de la SEQ ID NO:16; aminoácidos 1-17: 83-98; 161-198; o 268-277 de la SEQ ID NO:18; aminoácidos 1; 69-88; 150-185; o 255-264 de la SEQ ID NO:20; aminoácidos 1-2; 69-87: 149-181: o 251-260 de la SEQ ID NO:22: aminoácidos 1-2: 69-87: 149-181: o 251-259 de la SEQ ID NO:24: o aminoácidos 1-8; 72-88; 150-185; o 254-263 de la SEQ ID NO:26; la región transmembrana del polipéptido del receptor TAS2R felino comprende: aminoácidos 2-22, 47-67, 85-105, 125-145, 180-200, 228-248, o 258-278 de la SEQ ID NO:2; aminoácidos 11-31, 52-72, 89-109, 130-150, 187-207, 235-255 o 265-285 de la SEQ ID NO:4; aminoácidos 9-29, 51-71, 89-109, 129-149, 187-207, 235-255, o 266-286 de la SEQ ID NO:6; aminoácidos 3-23, 48-68, 88-108, 130-150, 184-204, 232-252, o 262-282 de la SEQ ID NO:8; aminoácidos 9-29, 51-71, 89-109, 129-149, 188-208, 236-256, o 266-286 de la SEQ ID NO:10; aminoácidos 7-27, 51-71, 89-109, 129-149, 184-204, 232-252, o 263-283 de la SEQ ID NO:12; aminoácidos 2-22, 48-68, 88-108, 129-149, 182-202, 230-250, o 261-281 de la SEQ ID NO:14; aminoácidos 9-29, 48-68, 89-109, 129-149, 186-206, 231-251, o 262-282 de la SEQ ID NO:16; aminoácidos 18-38, 62-82, 99-119, 140-160, 199-219, 247-267, o 278-298 de la SEQ ID NO:18; aminoácidos 2-22, 48-68, 89-109, 129-149, 186-206, 234-254, o 265-285 de la SEQ ID NO:20; aminoácidos 3-23, 48-68, 88-108, 128-148, 182-202, 230-250, o 261-281 de la SEQ ID NO:22; aminoácidos 3-23, 48-68, 88-108, 128-148, 182-202, 230-250, o 260-280 de la SEQ ID NO:24; o aminoácidos 9-29, 51-71, 89-109, 129-149, 186-206, 233-253, o 264-284 de la SEQ ID NO:26; y el dominio intracelular comprende: aminoácidos 23-46; 106-124; 201-227; o 279-298 de la SEQ ID NO:2; aminoácidos 32-51; 110-129; 208-234; o 286-304 de la SEQ ID NO:4; aminoácidos 30-50; 110-128; 208-234; o 287-316 de la SEQ ID NO:6; aminoácidos 24-47; 109-129; 205-231; o 283-306 de la SEQ ID NO:8; aminoácidos 30-50; 110-128; 209-235; o 287-311 de la SEQ ID NO:10; aminoácidos 28-50; 110-128; 205-231; o 284-337 de la SEQ ID NO:12; aminoácidos 23-48; 109-128; 203-229; o 282-300 de la SEQ ID NO:14; aminoácidos 30-47; 110-128; 207-230; o 283-309 de la SEQ ID NO:16; aminoácidos 39-61; 120-139; 220-246; o 299-334 de la SEQ ID NO:18; aminoácidos 23-47; 110-128; 207-233; o 286-322 de la SEQ ID NO:20: aminoácidos 24-47: 109-127: 203-229: o 282-299 de la SEQ ID NO:22: aminoácidos 24-47: 109-127; 203-229; o 281-308 de la SEQ ID NO:24; o aminoácidos 30-50; 110-128; 207-232; o 285-312 de la SEQ ID NO:26.

Realización 3. El polipéptido de la realización 1 o 2 que comprende una región transmembrana 2, una región transmembrana 3, una región transmembrana 4, una región transmembrana 5, una región transmembrana 6 y una región transmembrana 7, en donde cada región transmembrana comprende por lo menos 20 aminoácidos consecutivos de la correspondiente secuencia de región transmembrana seleccionada en forma independiente entre SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 y SEQ ID NO:26; o una región transmembrana 3, una región transmembrana 6 y una región transmembrana 7, en donde cada región transmembrana comprende por lo menos 20 aminoácidos consecutivos de la correspondiente secuencia de región transmembrana seleccionada en forma independiente entre SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 y SEQ ID NO:26; un dominio extracelular 3 que comprende por lo menos 15 aminoácidos consecutivos seleccionados entre aminoácidos 146-179 de la SEQ ID NO:2; aminoácidos 151-186 de la SEQ ID NO:4; aminoácidos 150-186 de la SEQ ID NO:6; aminoácidos 151-183 de la SEQ ID NO:8; aminoácidos 150-187 de la SEQ ID NO:10; aminoácidos 150-183 de la SEQ ID NO:12; aminoácidos 150-181 de la SEQ ID NO:14; aminoácidos 150-185 de la SEQ ID NO:16; aminoácidos 161-198 de la SEQ ID NO:18; aminoácidos 150-185 de la SEQ ID NO:20; aminoácidos 149-181 de la SEQ ID NO:22; aminoácidos 149-181 de la SEQ ID NO:24; y aminoácidos 150-185 de la SEQ ID NO:26; y un dominio extracelular 4 que comprende por lo menos 8 aminoácidos consecutivos seleccionados entre aminoácidos 249-257 de la SEQ ID NO:2; aminoácidos 256-264 de la SEQ ID NO:4; aminoácidos 256-265 de la SEQ ID NO:6; aminoácidos 253-261 de la SEQ ID NO:8; aminoácidos 257-265 de la SEQ ID NO:10; aminoácidos 253-262 de la SEQ ID NO:12; aminoácidos 251-260 de la SEQ ID NO:14; aminoácidos 252-261 de la SEQ ID NO:16; aminoácidos 268-277 de la SEQ ID NO:18; aminoácidos 255-264 de la SEQ ID NO:20; aminoácidos 251-260 de la SEQ ID NO:22; aminoácidos 251-259 de la SEQ ID NO:24; y aminoácidos 254-263 de la SEQ ID NO:26.

Fealización 4. El polipéptido según una cualquiera del as realizaciones 1-3, que además comprende un polipéptido heterólogo.

Realización 5. El polipéptido de la realización 4, en donde el polipéptido heterólogo está enlazado al término amino o al término carboxi de un polipéptido del receptor TAS2R felino.

Realización 6. El polipéptido según una cualquiera de las realizaciones 1-5 que comprende la secuencia de aminoácidos de la SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 o SEQ ID NO:26.

- Realización 7. El polipéptido según una cualquiera de las realizaciones 1-6 que consiste en la secuencia de aminoácidos de la SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 o SEQ ID NO:26.
- Realización 8. El polipéptido según una cualquiera de las realizaciones 1-7 que no ocurre naturalmente.
- 5 Realización 9. El polipéptido según una cualquiera de las realizaciones 1-8 que tiene actividad del receptor fTAS2R o unión a un ligando de un receptor fTAS2R.
 - Realización 10. El polipéptido según una cualquiera de las realizaciones 1-9, en donde la secuencia es SEQ ID NO:18.
 - Realización 11. El polipéptido según una cualquiera de las realizaciones 1-10, en donde el fTAS2R es fTAS2R38 y el aminoácido 74 de la SEQ ID NO:18 es N.
- 10 Realización 12. El polipéptido según una cualquiera de las realizaciones 1-11, en donde el dominio extracelular comprende una secuencia de por lo menos 15 aminoácidos consecutivos del dominio extracelular 2 o 3 o de por lo menos 8 aminoácidos consecutivos de dominio extracelular 4 de una secuencia del receptor fTAS2R; la región transmembrana comprende una secuencia de por lo menos 20 aminoácidos consecutivos de una región transmembrana de la secuencia del receptor fTAS2R, y el dominio intracelular comprende una secuencia de por lo menos 17 aminoácidos consecutivos de un dominio intracelular de la secuencia del receptor fTAS2R.
 - Realización 13. Una composición que comprende por lo menos dos polipéptidos según una cualquiera de las realizaciones 1-12
 - Realización 14. Un polinucleótido aislado que codifica el polipéptido según una cualquiera de las realizaciones 1-12.
- Realización 15. Un polinucleótido aislado que codifica un polipéptido del receptor TAS2R (fTAS2R) felino, o su fragmento que comprende una secuencia de nucleótidos seleccionada entre: la secuencia de nucleótidos de la SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 o SEQ ID NO: 25; una secuencia de nucleótidos que codifica la secuencia de aminoácidos de la SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 o SEQ ID NO: 26; una secuencia de nucleótidos que se hibrida al complemento del polinucleótido que tiene la SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 o SEQ ID NO: 25 bajo condiciones de gran rigurosidad; y el complemento de las secuencias de nucleótidos anteriores.
 - Realización 16. Un polinucleótido que comprende por lo menos 15 nucleótidos contiguos de la SEQ ID NO:17, en donde los nucleótidos contiguos contienen el nucleótido 220 y está presente una A en el nucleótido 220; o el complemento de la secuencia de nucleótidos.
 - Realización 17. El polinucleótido de la realización 16, que comprende por lo menos 20 nucleótidos contiguos.

- Realización 18. El polinucleótido de la realización 16 o 17, que comprende por lo menos 25 nucleótidos contiguos.
- Realización 19. El polinucleótido según una cualquiera de las realizaciones 14-18, en donde la secuencia de nucleótidos está optimizada por codones para expresión en una célula no felina.
- Realización 20. El polinucleótido de la realización 19, en donde la célula no felina es *Escherichia coli.*, una célula de *Saccharomyces cerevisae*, *un*a célula de *Drosophila melanogaster*, una célula de *Caenorhabditis elegans* o una célula mamífera.
 - Realización 21 El polinucleótido de la realización 20, en donde la célula mamífera es una célula murina o humana.
 - Realización 22. El polinucleótido según una cualquiera de las realizaciones 14-21 que no ocurre naturalmente.
- 40 Realización 23. Una composición que comprende por lo menos dos polinucleótidos según una cualquiera de las realizaciones 14-22.
 - Realización 24. Un par cebador para ampliar por lo menos una porción de un ácido nucleico que codifica un polipéptido de TAS2R felino.
- Realización 25. La composición de la realización 24 que comprende un par cebador seleccionado entre los pares de cebadores de la Tabla 5.
 - Realización 26. Un polipéptido del receptor TAS2R felino codificado por el polinucleótido de una cualquiera de las realizaciones 14-22.
 - Realización 27. Un vector de expresión que comprende el polinucleótido según una cualquiera de las realizaciones 14-22.

Realización 28. Una célula hospedante que comprende el vector de expresión de la realización 27.

5

25

35

40

50

Realización 29. La célula hospedante de la realización 28 en donde la célula es una célula mamífera, una célula de pez, una célula de levadura, una célula bacteriana o una célula de insecto.

Realización 30. La célula hospedante de las realizaciones 28 o 29 en donde la célula es una célula humana, murina o felina.

Realización 31. La célula hospedante de la realización 28 o 29 en donde la célula es una célula bacteriana, de insecto o levadura.

Realización 32. Un cultivo celular que comprende por lo menos una célula según una cualquiera de las realizaciones 28-31.

10 Realización 33. Un oligonucleótido que comprende una secuencia de nucleótidos de por lo menos 15 y hasta 100 nucleótidos contiguos de la SEQ ID NO: 7, SEQ ID NO:9, SEQ ID NO: 11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, o SEQ ID NO: 25; o el complemento de la secuencia de nucleótidos.

Realización 34. El oligonucleótido según la realización 33, que comprende por lo menos 18 y hasta 50 nucleótidos contiguos.

Realización 35. El oligonuclóetido según la realización 33 o 34, que comprende por lo menos 18 y hasta 30 nucleótidos contiguos.

Realización 36. Un anticuerpo aislado o su fragmento, que se une específicamente a un epítopo del receptor fTAS2R del polipéptido de cualquiera de las realizaciones 1-12 y 26.

Realización 37. Un método para identificar un compuesto que interactúa con un polipéptido del receptor TAS2R felino que comprende: poner en contacto un polipéptido según una cualquiera de las realizaciones 1-12 y 26 con un compuesto de ensayo, y detectar la interacción entre el polipéptido y el compuesto del ensayo.

Realización 38. El método de la realización 37, en donde detectar la interacción entre el polipéptido y el compuesto de ensayo comprende medir una propiedad eléctrica, medir un cambio en una concentración iónica, medir un cambio en la conformación de la proteína, medir la unión del compuesto de ensayo al polipéptido, medir un cambio en el nivel de fosforilación, medir un cambio en el nivel de transcripción, medir un cambio en el nivel de un segundo mensajero, medir un cambio en el nivel del neurotransmisor, medir un cambio en una característica espectroscópica, medir un cambio en una propiedad hidrodinámica (p. ej., forma), medir un cambio en una propiedad cromatográfica, o medir un cambio en solubilidad.

Realización 39. El método de la realización 37 o 38, que además comprende identificar el compuesto de ensayo como un compuesto que interactúa con el receptor.

Realización 40. Un método para identificar un compuesto que modula un polipéptido del receptor TAS2R felino, que comprende: poner en contacto el polipéptido según una cualquiera de las realizaciones 1 a 12 y 24 con un ligando del receptor TAS2R tanto en presencia como en ausencia de un compuesto de ensayo en ensayos separados, y determinar si el compuesto de ensayo modula la unión del ligando al polipéptido del receptor o la activación del polipéptido del receptor por el ligando.

Realización 41. El método según la realización 40, en donde determinar si el compuesto de ensayo modula la unión del ligando al receptor o la activación del receptor por el ligando comprende medir una propiedad eléctrica, medir una concentración iónica, medir un cambio en la conformación de la proteína, medir una unión del compuesto de ensayo al polipéptido, medir un cambio en el nivel de fosforilación, medir un cambio en el nivel de transcripción, medir un cambio en el nivel del segundo mensajero o medir un cambio en el nivel de neurotransmisor.

Realización 42. El método de la realización 40 o 41 que además comprende identificar el compuesto de ensayo como un modulador.

Realización 43. El método según una cualquiera de las realizaciones 37 a 42, en donde el polipéptido se une a un soporte sólido, expresado en una célula hospedante, en una membrana bicapa, en una monocapa de lípido o en una vesícula.

Realización 44. Un método para preparar una composición comestible que comprende poner en contacto una composición comestible o su componente con un polipéptido según una cualquiera de las realizaciones 1 a 12 y 26 por un tiempo suficiente para reducir la cantidad de un compuesto amargo de la composición comestible o su componente.

Realización 45. El método de la realización 44 en donde el polipéptido se une a un soporte sólido que se puede separar de la composición comestible.

Realización 46. El método de la realización 44 o 45 en donde poner en contacto es una operación continua, una operación semi-continua o una operación por lotes.

Realización 47. El método según una cualquiera de las realizaciones 44-46, en donde la composición comestible es una composición alimentaria felina, y la composición o un componente de esta se pone en contacto con una pluralidad de polipéptidos diferentes.

5

10

15

25

35

40

55

Realización 48. Un método para formular una composición comestible con palatabilidad potenciada que comprende determinar la presencia de un compuesto que es un agonista, antagonista o modulador de un polipéptido del receptor TAS2R felino según una cualquiera de las realizaciones 1 a 12 y 26 en una composición comestible; y potenciar la palatabilidad de la composición comestible si el compuesto es un agonista o un modulador positivo, incrementar la cantidad de un antagonista hacia el receptor en la composición comestible o reducir la cantidad del compuesto en la composición comestible, o si el compuesto es un antagonista o un modulador negativo, aumentar la cantidad del compuesto en la composición comestible.

Realización 49. El método de la realización 48 en donde aumentar la cantidad del compuesto comprende aplicar una composición saporífera que comprende el compuesto a la composición comestible de modo tal que la composición saporífera se incorpore en o por lo menos recubra parcialmente la composición comestible.

Realización 50. El método de la realización 48 o 49, en donde la composición comestible comprende un alimento, una composición saporífera, un dulce, un producto farmacéutico, un material para el cuidado oral, un suplemento nutricional, un producto masticable o un producto bebible.

Realización 51. Un método para administrar un compuesto amargo a un animal que lo necesita, que comprende administrar una composición comestible a un animal, en donde la composición comestible comprende un compuesto amargo y un compuesto que es un agonista, antagonista o modulador de un polipéptido del receptor TAS2R felino según una cualquiera de las realizaciones 1 a 12 y 26 que altera la aceptación de la composición comestible por el animal en comparación con la aceptación de la composición comestible sin el compuesto.

Realización 52. El método de la realización 51, en donde el compuesto amargo comprende una sustancia farmacéutica, material para cuidado oral, un repelente o un suplemento nutricional.

Realización 53. Un método para preparar una composición comestible para controlar la palatabilidad de la composición comestible en un animal, que comprende añadir un compuesto a una composición comestible para reducir la palatabilidad de la composición comestible para un animal, en donde el compuesto es un agonista de un modulador positivo de un polipéptido del receptor TAS2R felino según una cualquiera de las realizaciones 1 a 12 y 26.

Realización 54. El método de la realización 53, en donde la palatabilidad se reduce a un grado tal que un animal al que se le administra la composición comestible consume 10 a 30% menos de la composición comestible con el compuesto que de la composición comestible sin el compuesto añadido.

Realización 55. El método de la realización 53 o 54, en donde la reducción se mide en calorías de la composición comestible consumida, peso de la composición comestible consumida o volumen de la composición comestible consumida.

Realización 56. Un método para elaborar una composición saporífera para recubrir o incorporar en una composición comestible que se ha de administrar a un animal, que comprende: mezclar un agonista o un antagonista de un polipéptido del receptor TAS2R felino según una cualquiera de las realizaciones 1 a 12 y 26, en donde el agonista es denatonio, aloína o PTC, y el antagonista es probenecid con un vehículo para obtener una composición saporífera; opcionalmente, mezclar en la composición saporífera un potenciador de palatabilidad, un compuesto para ayudar a adherir la composición saporífera a la composición comestible o un compuesto para proporcionar color o aroma; en donde la composición saporífera es una formulación líquida, sólida, en polvo, pasta, gel, untable, en gránulos o pulverizable.

Realización 57. Una composición saporífera para recubrir o incorporar a una composición comestible que se ha de administrar a un animal, que comprende un agonista o un antagonista de un polipéptido del receptor TAS2R felino según una cualquiera de las realizaciones 1 a 12 y 26, en donde el agonista es denatonio, aloína o PTC, y el antagonista es probenecid; opcionalmente, un potenciador de palatabilidad; opcionalmente, un compuesto para ayudar a adherir la composición saporífera a la composición comestible; y opcionalmente un compuesto para aportar color o aroma; en donde la composición saporífera es una formulación líquida, sólida, en polvo, pasta, gel, untable o pulverizable.

Realización 58. La composición saporífera de la realización 57 o el método según una cualquiera de las realizaciones 53-56, en donde la composición comestible es un alimento, dulce, suplemento nutricional, sustancia farmacéutica, material para el cuidado oral, producto masticable, repelente o producto bebible.

Realización 59. La composición saporífera de la realización 57 o 58 o el método según una cualquiera de las realizaciones 53-56, en donde la composición comestible es un alimento seco, un alimento blando, un alimento semi-

blando, un líquido, un comprimido, una cápsula, un comprimido oblongo, gránulo, pasta, mezcla coloidal, dispersión o gel.

Realización 60. El método según una cualquiera de las realizaciones 48 a 56 o la composición saporífera según una cualquiera de las realizaciones 57 a 58, en donde la composición comestible es para administrar a un felino.

5 Realización 61: El polipéptido según una cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R receptor comprende un dominio de fTAS2R38. Realización 62: El polipéptido según una cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R comprende un dominio de fTAS2R42. Realización 63: El polipéptido según una cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R comprende un dominio de fTAS2R43. Realización 64. El polipéptido según una cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R 10 comprende un dominio de fTAS2R44. Realización 65: El polipéptido según una cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R comprende un dominio de fTAS2R67. Realización 66: El polipéptido según una cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R comprende un dominio de fTAS2R12. Realización 67: El polipéptido según una cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R comprende un dominio de fTAS2R10. Realización 68: El polipéptido según una cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R comprende un dominio de fTAS2R9. Realización 69: El polipéptido según una 15 cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R comprende un dominio de fTAS2R7. Realización 70: El polipéptido según una cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R comprende un dominio de fTAS2R4. Realización 71: El polipéptido según una cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R comprende un dominio de fTAS2R3. Realización 72: El polipéptido según una 20 cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R comprende un dominio de fTAS2R2. Realización 73: El polipéptido según una cualquiera de las realizaciones 1-12 y 26, en donde el receptor fTAS2R comprende un dominio de fTAS2R1.

Tal como se emplean en este documento, los términos "uno" y "una" no definen una limitación de cantidad, sino que describen la presencia de por lo menos uno de los puntos a los que se hace referencia. El término "o" significa "y/o". Los términos "que comprende", "que tiene", "que incluye" y "que contiene" se interpretarán como términos con final abierto (es decir, significa "que incluye pero no se limita a"). El modificador "aproximadamente" utilizado en conexión con una cantidad es inclusivo del valor definido y tiene el significado expresado por el contexto (p. ej., incluye el grado de error asociado con la medición de la cantidad particular).

La enumeración de intervalos de valores tiene como fin exclusivamente servir como un método abreviado para hacer referencia individualmente a cada valor separado que yace dentro del intervalo, a menos que en este documento se indique otra cosa, y cada valor separado se incorpora a la memoria como si se enumerara individualmente en este documento. Los criterios de valoración de todos los intervalos se incluyen dentro del alcance y son independientemente combinables.

A menos que se defina otra cosa, los términos técnico-científicos utilizados en la presente invención tienen el mismo significado que entiende comúnmente el experto en la técnica a la cual pertenece la invención.

Las realizaciones de la presente invención se describen en este documento, incluido el mejor modo de llevar a la práctica la invención. Las variaciones de estas realizaciones pueden ser obvias para los expertos en la materia tras leer la descripción anterior. Los inventores esperan que los expertos en la técnica empleen dichas variaciones según sea apropiado, y los inventores tienen como objetivo que la invención se ponga en práctica en modos distintos a los descritos específicamente en este documento. Por consiguiente, la presente invención incluye todas las modificaciones y equivalentes del tema en cuestión mencionados en las reivindicaciones anejas a este documento como permitidos por las leyes aplicables. Asimismo, cualquier combinación de los elementos anteriormente descritos en todas sus variaciones posibles se abarca en la invención, a menos que se indique otra cosa en este documento o el contexto indique claramente lo contrario.

45 Lista de secuencias

25

35

- <110> AFB International Rawson, Nancy Sandau, Michelle
- <120> Receptores felinos del sabor amargo y métodos
- <130> AFB0197PCT
- <150> 61/788528
- 50 < 151> 2013-03-15
 - <150> 61/945500
 - < 151> 2014-02-27
 - <160> 135

<170> PatentIn versión 3.5
<210> 1
< 211> 897
< 212> ADN
< 213> Felis catus

<400> 1

5

atgctagact tttacctcat tatccatttt cttcttccag tgatacaatg tctcatcgga 60 gttttagcaa atggcatcat tgtgatcgtg aatggcactg agttgatcaa gcagagaaag 120 atggttccgt tggatctcct tctttcctgc ctggcgattt ccaggatttg tctgcagtca 180 tttatcttct acattaatct ggttattctc tccttgatcg acttccttcc acttgttaag 240 aattttgcgg ttttcatgtt tgtaaatgaa acgggacttt ggctggccac atggctcggc 300 360 gttttctact gcgccaagat ctcccccatc gctcacccac tcttcttctg gttgaagagg aggatatcca agttggtgcc atggctgatc atcgggtctc tgctttttgc ctccatccct 420 ttggttttct acagcaagca tacgtgggtt ctttcccaag aagtcttgtt gagacttttc 480 540 tccccaaatg caacaactca aatcaaagaa acatctgctt tacagattgt ctttcttgct 600 aggttttcac cgccgttcat tatcttcctc acttctactc tgctcctggt gttttctctg gggagacata cgtggcagat gagaaacaca gcgacgggca ccagggacgg tagcacaggt 660 gtccatgtga gtgcgcttct gtccattctg tccttcttgg tcctctatct ctcccactac 720 atgacagetg ctttgctctc ttctcacatt tttgagetca gaagettcat gtttctgttc 780 tgtatcttgg tgttcgggtc ctacccttcg ggacactcta ttatcttaat ttcgggaaat 840 cgtaaactga aacaaaatgc aaagaagttc ctcctccatg ggcagtgctg ccagtga 897

<210> 2

< 211> 298

10 < 212> PRT

< 213> Felis catus

<400> 2

Met 1	Leu	Asp	Phe	Tyr 5	Leu	Ile	Ile	His	Phe 10	Leu	Leu	Pro	Val	Ile 15	Gln
Cys	Leu	Ile	Gly 20	Val	Leu	Ala	Asn	Gly 25	Ile	Ile	Val	Ile	Val 30	Asn	Gly
Thr	Glu	Leu 35	Ile	Lys	Gln	Arg	Lys 40	Met	Val	Pro	Leu	Asp 45	Leu	Leu	Leu
Ser	Cys 50	Leu	Ala	Ile	Ser	Arg 55	Ile	Cys	Leu	Gln	Ser 60	Phe	Ile	Phe	Tyr
11 e 65	Asn	Leu	Val	Ile	Leu 70	Ser	Leu	Ile	Asp	Phe 75	Leu	Pro	Leu	Val	Lys 80
Asn	Phe	Ala	Val	Phe 85	Met	Phe	Val	Asn	Glu 90	Thr	Gly	Leu	Trp	Leu 95	Ala
Thr	Trp	Leu	Gly 100	V al	Phe	Tyr	Cys	Ala 105	Lys	Ile	Ser	Pro	Ile 110	Ala	His
Pro	Leu	Phe 115	Phe	Trp	Leu	Lys	Arg 120	Arg	Ile	Ser	Lys	Leu 125	Val	Pro	Trp
Leu	Ile 130	Ile	Gly	Ser	Leu	Leu 135	Phe	Ala	Ser	Ile	Pro 140	Leu	Val	Phe	Tyr
Ser 145	Lys	His	Thr	Trp	Val 150	Leu	Ser	Gln	Glu	Val 155	Leu	Leu	Arg	Leu	Phe 160
Ser	Pro	Asn	Ala	Thr 165	Thr	Gln	Ile	Lys	Glu 170	Thr	Ser	Ala	Leu	Gln 175	Ile
Val	Phe	Leu	Ala 180	Arg	Phe	Ser	Pro	Pro 185	Phe	Ile	Ile	Phe	Leu 190	Thr	Ser
Thr	Leu	Leu 195	Leu	Val	Phe	Ser	Leu 200	Gly	Arg	His	Thr	Trp 205	Gln	Met	Arg
Asn	Thr 210	Ala	Thr	Gly	Thr	Arg 215	Asp	Gly	Ser	Thr	Gly 220	Val	His	Val	Ser
Ala 225	Leu	Leu	Ser	Ile	Leu 230	Ser	Phe	Leu	Val	Leu 235	Tyr	Leu	Ser	His	Tyr 240
Met	Thr	Ala	Ala	Leu 245	Leu	Ser	Ser	His	11e 250	Phe	Glu	Leu	Arg	Ser 255	Phe
Met	Phe	Leu	Phe 260	_	Ile	Leu	ı Val	Phe 265	_	y Se	r Ty	r Pr	o Se 27		y His

Ser Ile Ile Leu Ile Ser Gly Asn Arg Lys Leu Lys Gln Asn Ala Lys 275 280 280 285

Lys Phe Leu Leu His Gly Gln Cys Cys Gln 290

< 211> 915						
< 212> ADN						
< 213> Felis c	atus					
<400> 3						
atggcctcct	ctttgtcagc	gattcctcac	cttatcatca	tgtcagcaga	atttatcaca	60
gggattacag	taaatggatt	tcttgtaatc	atcaacggta	aagaattgat	caaaagcaga	120
aagctaacac	caatgcaact	cctttgcata	tgtataggga	tatcgagatt	tggtttgttg	180
atggtgttaa	tggtacaaag	tttttctct	gtgttctttc	cactctttta	tagggtaaaa	240
atttatggtg	catcaatgtt	gttcttttgg	atgttttta	gctctgtcag	tctttggttt	300
gccacctgcc	tttctgtgtt	ttactgcctc	aagatatcag	gcttcactca	atcctatttt	360
ctttggctga	aattcaggat	ctcaaagtta	atgccttggc	tgcttctggg	aagcctgctg	420
gcctccatga	gcattgccgc	tgtgtctttg	gatgtaggtt	accctaaaaa	catgaacaat	480
aatgatttcc	tcaagaatgc	cacgctgaag	aagactgaac	tcaagatagg	gccaattaat	540
ggagtgcttc	ttgtcaactt	ggcattgcta	tttccactag	ccatatttgt	gatgtgtact	600
tttatgttat	tcatttctct	ctataggcac	actcatcgga	tgcaaaacag	atctcatggt	660
gttagaaatg	ccagcacaga	agcccatata	aatgcattaa	aaacagtgat	aacattcttt	720
tgcttcttta	tttcttattt	tgctgccttc	atggccaata	tgacattcag	tattccttac	780
ggaagtcagt	gcttctttgt	ggtaaaggac	ataatggcag	catttccctc	tggacattca	840
gttataatca	tattgaataa	ttctaaattc	caacaaccat	tcaggagact	tctctgcctc	900
aaaaagaatc	aatga					915
<210> 4						
< 211> 304						
< 212> PRT						
< 213> Felis c	atus					
<400> 4						
Met Ala Ser	r Ser Leu Se 5	er Ala Ile I	Pro His Leu 10	Ile Ile Me	Ser Ala 15	

<210>3

5

Glu	Phe	Ile	Thr 20	Gly	Ile	Thr	Val	Asn 25	Gly	Phe	Leu	Val	Ile 30	Ile	Asn
Gly	Lys	Glu 35	Leu	Ile	Lys	Ser	Arg 40	Lys	Leu	Thr	Pro	Met 45	Gln	Leu	Leu
Cys	Ile 50	Cys	Ile	Gly	Ile	Ser 55	Arg	Phe	Gly	Leu	Leu 60	Met	Val	Leu	Met
Val 65	Gln	Ser	Phe	Phe	Ser 70	Val	Phe	Phe	Pro	Leu 75	Phe	Tyr	Arg	Val	Lys 80
Ile	Tyr	Gly	Ala	Ser 85	Met	Leu	Phe	Phe	Trp 90	Met	Phe	Phe	Ser	Ser 95	Val
Ser	Leu	Trp	Phe 100	Ala	Thr	Cys	Leu	Ser 105	Val	Phe	Tyr	Cys	Leu 110	Lys	Ile
Ser	Gly	Phe 115	Thr	Gln	Ser	Tyr	Phe 120	Leu	Trp	Leu	Lys	Phe 125	Arg	Ile	Ser
Lys	Leu 130	Met	Pro	Trp	Leu	Le u 135	Leu	Gly	Ser	Leu	Leu 140	Ala	Ser	Met	Ser
Ile 145	Ala	Ala	Val	Ser	Leu 150	Asp	Val	Gly	Tyr	Pro 155	Lys	Asn	Met	Asn	A sn 160
Asn	Asp	Phe	Leu	Lys 165	Asn	Ala	Thr	Leu	Lys 170	Lys	Thr	Glu	Leu	Lys 175	Ile
Gly	Pro	Ile	Asn 180	Gly	Val	Leu	Leu	Val 185	Asn	Leu	Ala	Leu	Leu 190	Phe	Pro
Leu	Ala	Ile 195	Phe	Val	Met	Cys	Thr 200	Phe	Met	Leu	Phe	Ile 205	Ser	Leu	Tyr
Arg	His 210	Thr	His	Arg	Met	Gln 215	Asn	Arg	Ser	His	Gly 220	Val	Arg	Asn	Ala
Ser 225	Thr	Glu	Ala	His	Ile 230	Asn	Ala	Leu	Lys	Thr 235	Val	Ile	Thr	Phe	Phe 240
Cys	Phe	Phe	Ile	Ser 245	Tyr	Phe	Ala	Ala	Phe 250	Met	Ala	Asn	Met	Thr 255	Phe
Ser	Ile	Pro	Tyr 260	G1y	Ser	Gln	Cys	Phe 265	Phe	Val	Val	Lys	Asp 270	Ile	Met
Ala	Ala	Phe 275	Pro	Ser	Gly	His	Ser 280		l Ile	e Il	e Il	e Le 28	_	n As	n Ser
Lys	Phe 290	Gln	Gln	Pro	Phe	Arg 295		, Le	ı Leı	и Су	s Le 30	_	s Ly	s As	n Gln
<210	> 5														
< 21	l> 95	1													

< 212> ADN

5

< 213> Felis	catus					
<400> 5						
atgtcagggc	tccacaagtg	ggtgtttctg	gttctgtctg	ccactcagtt	cattctgggg	60
atgctgggga	atggtttcat	agtgttggtc	agtggcagca	gttggtttaa	gaataagaca	120
atctctttgt	ctgacttcat	catcgctaac	ctggctctct	ccaggatcgt	tctgctgtgg	180
attctcttgg	ttgatggtgt	tttaattgtg	ttctcttcca	aagtgcatga	tgaagggata	240
ataatgcaaa	ttattgatat	tttctggaca	tttacaaacc	acctgagcat	ttggcttgcc	300
acctgtctca	gtgtcctcta	ctgcctgaaa	attgccagtt	tctctcaccc	tacattcctc	360
tggctcaagt	ggagagtttc	caggatggtc	gtacagatga	tcttgggtgc	gctggtctta	420
tcgtgtgcca	gtgccctgtc	tctgatccat	gaatttaaga	tgtattctat	tctcggtggg	480
atcgatggca	cagggaatgt	gactgagcac	tttagaaaga	aaagaaatga	atataaattg	540
atccatgttc	ttgggactct	gtggaacctg	cctcctctga	ttgtgtctct	ggcctcctac	600
tttctgctca	tegtetetet	ggggaggcac	acgcagcgga	tggagcaaag	cggcaccagc	660
tccggagatc	caagcgctga	ggcccacaag	agggccatca	aaatcatcct	ctccttcctc	720
cttctcttcc	tgctttactt	tcttgccttt	ttaattacat	catccagtta	tttcatacca	780
ggaactgaga	tggtgaagat	aattggagaa	ctcattacca	tgttttatcc	tgctagccac	840
tcattcattc	tcattctggg	aaacagcaag	ctgaagcata	tgtttgtggg	gatgctgcgg	900
tgtgagtctg	gtcatctgaa	gcctggatcc	aaaggacctg	tttccctgta	g	951
<210> 6						
< 211> 316						
< 212> PRT						
< 213> Felis	catus					
<400> 6						
Met Ser Gl 1	y Leu His L 5	ys Trp Val	Phe Leu Val 10	Leu Ser Ala	a Thr Gln 15	
Phe Ile Le	u Gly Met L 20	eu Gly Asn	Gly Phe Ile 25	Val Leu Val	l Ser Gly	

Ser	Ser	Trp 35	Phe	Lys	Asn	Lys	Thr 40	Ile	Ser	Leu	Ser	Asp 45	Phe	Ile	Ile
Ala	Asn 50	Leu	Ala	Leu	Ser	Arg 55	Ile	Val	Leu	Leu	Trp 60	Ile	Leu	Leu	Val
Asp 65	Gly	Val	Leu	Ile	Val 70	Phe	Ser	Ser	Lys	Val 75	His	Asp	Glu	Gly	Ile 80
Ile	Met	Gln	Ile	I1e 85	Asp	Ile	Phe	Trp	Thr 90	Phe	Thr	Asn	His	Leu 95	Ser
Ile	Trp	Leu	Ala 100	Thr	Cys	Leu	Ser	Val 105	Leu	Tyr	Суѕ	Leu	Lys 110	Ile	Ala
Ser	Phe	Ser 115	His	Pro	Thr	Phe	Leu 120	Trp	Leu	Lys	Trp	Arg 125	Val	Ser	Arg
Met	Val 130	Val	Gln	Met	Ile	Leu 135	Gly	Ala	Leu	Val	Leu 140	Ser	Cys	Ala	Ser
Ala 145	Leu	Ser	Leu	Ile	His 150	Glu	Phe	Lys	Met	Tyr 155	Ser	Ile	Leu	Gly	Gly 160
Ile	Asp	Gly	Thr	Gly 165	Asn	Val	Thr	Glu	His 170	Phe	Arg	Lys	Lys	A rg 175	Asn
Glu	Tyr	Lys	Leu 180	Ile	His	Val	Leu	Gly 185	Thr	Leu	Trp	Asn	Leu 190	Pro	Pro
Leu	Ile	Val 195	Ser	Leu	Ala	Ser	Tyr 200	Phe	Leu	Leu	Ile	Val 205	Ser	Leu	Gly
Arg	His 210	Thr	Gln	Arg	Met	Glu 215	Gln	Ser	Gly	Thr	Ser 220	Ser	Gly	Asp	Pro
Ser 225	Ala	Glu	Ala	His	Lys 230	Arg	Ala	Ile	Lys	Ile 235	Ile	Leu	Ser	Phe	Leu 240
Leu	Leu	Phe	Leu	Leu 245	Tyr	Phe	Leu	Ala	Phe 250	Leu	Ile	Thr	Ser	Ser 255	Ser
Tyr	Phe	Ile	Pro 260	Gly	Thr	Glu	Met	Val 265	Lys	Ile	Ile	Gly	Glu 270	Leu	Ile
Thr	Met	Phe 275	Tyr	Pro	Ala	Ser	His 280	Ser	Phe	Ile	Leu	Ile 285	Leu	Gly	Asn
Ser	Lys 290	Leu	Lys	His	Met	Phe 295		. Gly	y Met	t Le	u Ar 30		s Gl	u Se	r Gly
His 305	Leu	Lys	Pro	Gly	Ser 310	_	Gly	Pro	Val	l Se:		u			
<210	> 7														
< 21	1> 92	1													

< 212> ADN

5

< 213> Felis catus	
<400> 7	
atgcatcaga tactettett atetgetett	t actgtctcag caattttgaa ttttgtagga 60
ctcgttgtaa atctgtttat cgtagtggtc	c aactacagga cttgggtcca aagccacaga 120
ateteetett etaataggat eetgtteage	c ttgggcgtca ccagatttat tatgctagga 180
ctgtttctcc tgaacattat ctacctgttc	c acctctccac atgtcgaaag gtcagtccac 240
ctatccactt ttttcctgtt gtgttggatç	g tttttggagt ctactagtct ctggcttgta 300
accttgctca atgccttgta ctgcgtgaaq	g attactgact tocaacactc agtattectc 360
ctgctgaaac gaaagctgtc cccaaagatc	c cccaggctgc tgctggcctg cgtgctgatc 420
tetgeettet ceaeteteet gtatgttgte	g ctcacacaaa catcaccctt tcctgagctt 480
ctgactggga gcaatggtac agtatgtgac	c atcaataaga gcatcttgtc tttggtgacc 540
teettggtee tgageteett tetecagtte	c atcatgaatg tgacttccgc ttccttgtta 600
atacattcct tgaggagaca tatacagaag	g atgcagaaaa acgccactga tttttggaat 660
ccccagactg aagctcatat gggtgctate	g aagctaatga tctatttcct catcctctac 720
attccatatt cacttgctac cctqctacac	g tatctccctt ccgtacggat ggatttggga 780
-	c ttttatcctc caggacattc tgttctcatt 840
	a qcaaaqaaqa ttctttqttt caacatatqq 900
tggaatttca gtagtaaata g	921
<210>8	•
< 211> 306	
< 212> PRT<	
213> Felis catus	
<400> 8	
Met His Gln Ile Leu Phe Leu Ser 1 5	Ala Leu Thr Val Ser Ala Ile Leu 10 15
Asn Phe Val Gly Leu Val Val Asn 20	Leu Phe Ile Val Val Asn Tyr 25 30

Arg	Thr	Trp 35	Val	Gln	Ser	His	Arg 40	Ile	Ser	Ser	Ser	Asn 45	Arg	Ile	Leu
Phe	Ser 50	Leu	Gly	Val	Thr	Arg 55	Phe	Ile	Met	Leu	Gly 60	Leu	Phe	Leu	Leu
Asn 65	Ile	Ile	Tyr	Leu	Phe 70	Thr	Ser	Pro	His	Val 75	Glu	Arg	Ser	Val	His 80
Leu	Ser	Thr	Phe	Phe 85	Leu	Leu	Cys	Trp	Met 90	Phe	Leu	Glu	Ser	Thr 95	Ser
Leu	Trp	Leu	Val 100	Thr	Leu	Leu	Asn	Ala 105	Leu	Tyr	Cys	Val	Lys 110	Ile	Thr
Asp	Phe	Gln 115	His	Ser	Val	Phe	Leu 120	Leu	Leu	Lys	Arg	Lys 125	Leu	Ser	Pro
Lys	Ile 130	Pro	Arg	Leu	Leu	Leu 135	Ala	Cys	Val	Leu	Ile 140	Ser	Ala	Phe	Ser
Thr 145	Leu	Leu	Tyr	Val	Val 150	Leu	Thr	Gln	Thr	Ser 155	Pro	Phe	Pro	Glu	Leu 160
Leu	Thr	Gly	Ser	A sn 165	Gly	Thr	Val	Суз	Asp 170	Ile	Asn	Lys	Ser	Ile 175	Leu
Ser	Leu	Val	Thr 180	Ser	Leu	Val	Leu	Ser 185	Ser	Phe	Leu	Gln	Phe 190	Ile	Met
Asn	Val	Thr 195	Ser	Ala	Ser	Leu	Leu 200	Ile	His	Ser	Leu	Arg 205	Arg	His	Ile
Gln	Lys 210	Met	Gln	Lys	Asn	Ala 215	Thr	Asp	Phe	Trp	Asn 220	Pro	Gln	Thr	Glu
Ala 225	His	Met	Gly	Ala	Met 230	Lys	Leu	Met	Ile	Tyr 235	Phe	Leu	Ile	Leu	Tyr 240
Ile	Pro	Tyr	Ser	Leu 245	Ala	Thr	Leu	Leu	Gln 250	Tyr	Leu	Pro	Ser	Val 255	Arg
Met	Asp	Leu	Gly 260	Ala	Thr	Ser	Ile	Cys 265	Met	Ile	Ile	Ser	Thr 270	Phe	Tyr
Pro	Pro	Gly 275	His	Ser	Val	Leu	11e 280	Ile	Leu	Thr	His	Pro 285	Lys	Leu	Lys
Thr	Lys 290	Ala	Lys	Lys	Ile	Leu 295	_	Phe	Asn	Il€	300	_	Ası	n Pho	e Ser
Se r 305	Lys														
<210	> 9														

5

< 211> 936

< 212> ADN	
< 213> Felis catus	
<400> 9	
atgctggata aagtggagag caccttgatg ctcatagcag ctggagaatt tgcaatgggg	60
attttaggga atgcattcat tggattggta aactgcatga actggatcaa gaataggaag	120
attgcctcca ttgacttaat cctcacaagt ctggccatat ccagaatttg tctattatgt	180
atcatactat tagactattt tatactgggg ctgtatccag atgtctatac taccggtaaa	240
aaaatgagaa tcattgactt cttctggacg ctcaccaacc acctaaatgt ctggtttgcc	300
acctgcctca gcgtcttcta tttcctcaag atcgcgaatt tcttccatcc ccttttcctc	360
tggatgaagt ggaaaattga cagtgcgatt cctaggatcc tgctgggatg cttggccttc	420
tetgtgttca ttageettgt tgtetetgag aatetgaaeg atgattteag gtettgtgtt	480
aaggtaaaga agaaaacaaa cataactgtg aaatgcagag taaataaagc ccaatatgct	540
tctgtcaaga tttgcctcaa cctgttgacg ctattcccct tttccgtgtc cgtgatctca	600
tttctcctct tgctcctctc cctgtggaga cataccaggc agatgaagat cagtgccacg	660
gggtgcaggg accccagcat agaagcccat gtgggagcca tgaaagctgt catctccttc	720
ctcctccttt tcattgctta ctatttggct tttctcgtag ccacctccag ctactttatg	780
ccagagactg aactagctgt gatgattggt gagttgatag ctctcatcta tccaagccat	840
tcattgattc taattctggg gaacaataaa ttacggcagg cgtctctaag ggtgctgtgg	900
aaagtaaagt gtatcctaaa aagaagaaat cactaa	936
<210> 10	
< 211> 311	
< 212> PRT	
< 213> Felis catus	
<400> 10	
Met Leu Asp Lys Val Glu Ser Thr Leu Met Leu Ile Ala Ala Gly Glu 1 5 10 15	
Phe Ala Met Gly Ile Leu Gly Asn Ala Phe Ile Gly Leu Val Asn Cys 20 25 30	

Met	Asn	Trp 35	Ile	Lys	Asn	Arg	Lys 40	Ile	Ala	Ser	Ile	Asp 45	Leu	Ile	Leu
Thr	Ser 50	Leu	Ala	Ile	Ser	Arg 55	Ile	Cys	Leu	Leu	Cys 60	Ile	Ile	Leu	Leu
Asp 65	Tyr	Phe	Ile	Leu	Gl y 70	Leu	Tyr	Pro	Asp	V al 75	Tyr	Thr	Thr	Gly	Lys 80
Lys	Met	Arg	Ile	Ile 85	Asp	Phe	Phe	Trp	Thr 90	Leu	Thr	Asn	His	Leu 95	Asn
Val	Trp	Phe	Ala 100	Thr	Cys	Leu	Ser	Val 105	Phe	Tyr	Phe	Leu	Lys 110	Ile	Ala
Asn	Phe	Phe 115	His	Pro	Leu	Phe	Leu 120	Trp	Met	Lys	Trp	Lys 125	Ile	Asp	Ser
Ala	Ile 130	Pro	Arg	Ile	Leu	Leu 135	Gly	Cys	Leu	Ala	Phe 140	Ser	Val	Phe	Ile
Ser 145	Leu	Val	Val	Ser	Glu 150	Asn	Leu	Asn	Asp	Asp 155	Phe	Arg	Ser	Cys	Val 160
Lys	Val	Lys	Lys	Lys 165	Thr	Asn	Ile	Thr	Val 170	Lys	Суз	Arg	Val	A sn 175	Lys
Ala	Gln	Туг	Ala 180	Ser	Val	Lys	Ile	Cys 185	Leu	Asn	Leu	Leu	Thr 190	Leu	Phe
Pro	Phe	Ser 195	Val	Ser	Val	Ile	Ser 200	Phe	Leu	Leu	Leu	Leu 205	Leu	Ser	Leu
Trp	Arg 210	His	Thr	Arg	Gln	Met 215	Lys	Ile	Ser	Ala	Thr 220	Gly	Cys	Arg	Asp
Pro 225	Ser	Ile	Glu	Ala	His 230	Val	Gly	Ala	Met	Lys 235	Ala	Val	Ile	Ser	Phe 240
Leu	Leu	Leu	Phe	Ile 245	Ala	Tyr	Tyr	Leu	Ala 250	Phe	Leu	Val	Ala	Thr 255	Ser
Ser	Tyr	Phe	Met 260	Pro	Glu	Thr	Glu	Leu 265	Ala	Val	Met	Ile	Gly 270	Gl u	Leu
Ile	Ala	Leu 275	Ile	Tyr	Pro	Ser	His 280	Ser	Leu	Ile	Leu	11e 285	Leu	Gly	Asn
Asn	Lys 290	Leu	Arg	Gln	Ala	Ser 295		Arq	y Val	l Le	u Tr 30		s Va	l Ly	s Cys
Ile 305	Leu	Lys	Arg	Arg	Asn 310		:								

<210> 11 < 211> 1014

< 212> ADN	
< 213> Felis catus	
<400> 11	
atgccaagtg cagtggaggt aatatatatg gtcttgattg ctggtgaatt gactatagga	60
atctggggaa atggatttat tgtactggtt aactgcactg gttggctcca aaggcgagat	120
ageteegtga ttgacateat eetggtgagt ttggeeatet eeagaatetg tgtgttgtgt	180
gtggtatctg cagaaggctt tgttctgctg ctctctccac atgcgtatgc tcaaaatgag	240
acaataaaca ccttggatgc tttctggaca ctgagcaacc attcaagtgt ctggttcact	300
gcttgcctca gcattttcta cttactgaag atagccaaca tatcccaccc ggtgttcctc	360
tggctgaage taaacgttac cagagtcgtc ctggggcttt ttctggcgtc cttcctcacc	420
tccataatta ttagtgtctt tttgaaagag ggatcctggg gtcacgtcga agtcaatcac	480
gaggaaaaca taacttggga attcagagtg agtaaagccc caagcgcttt caaactgatt	540
atcctgaacc tgggggctct agttcccttt gctctgtgcc taatctcctt tgtcttgtta	600
cttttctccc tctttagaca cgctaagcag atgcaacttt acgccaccgg gtccagggac	660
tgtagcacag aggcacacat gagggccata aaggcagtga ccatctttct gcttttcttc	720
atcatgtact atgcagtctt tcttgtagtc acttctagct tcctgattcc tcaaggacgg	780
ttagtgctga tgtttggtgg catagtcact gtcattttcc catcaagcca ttcgttcatc	840
ctgatcatgg gcaacagcaa gctgagggag gcctttctga aggtgctaag gtgtgtgaag	900
ggcttccaca aaagaaggaa acctcttgtt ccgcagagaa tcctgaatac ggggagaaag	960
aaatcaacaa aagactgtct cccttctccc cgggggttac attcatttgc ttaa	1014
<210> 12	
< 211> 337	
< 212> PRT	
< 213> Felis catus	
<400> 12	
Met Pro Ser Ala Val Glu Val Ile Tyr Met Val Leu Ile Ala Gly Glu 1 5 10 15	

10 Leu Thr Ile Gly Ile Trp Gly Asn Gly Phe Ile Val Leu Val Asn Cys

			20					25					30		
Thr	Gly	Trp 35	Leu	Gln	Arg	Arg	Asp 40	Ser	Ser	Val	Ile	Asp 45	Ile	Ile	Leu
Val	Ser 50	Leu	Ala	Ile	Ser	Arg 55	Ile	Cys	Val	Leu	Cys 60	Val	Val	Ser	Ala
Glu 65	Gly	Phe	Val	Leu	Leu 70	Leu	Ser	Pro	His	Ala 75	Tyr	Ala	Gln	Asn	Glu 80
Thr	Ile	Asn	Thr	Leu 85	Asp	Ala	Phe	Trp	Thr 90	Leu	Ser	Asn	His	Ser 95	Ser
Val	Trp	Phe	Thr 100	Ala	Cys	Leu	Ser	Ile 105	Phe	Tyr	Leu	Leu	Lys 110	Ile	Ala
Asn	Ile	Ser 115	His	Pro	Val	Phe	Leu 120	Trp	Leu	Lys	Leu	As n 125	Val	Thr	Arg
Val	Val 130	Leu	Gly	Leu	Phe	Leu 135	Ala	Ser	Phe	Leu	Thr 140	Ser	Ile	Ile	Ile
Ser 145	Val	Phe	Leu	Lys	Glu 150	Gly	Ser	Trp	Gly	His 155	Val	Glu	Val	Asn	His 160
Glu	Glu	Asn	Ile	Thr 165	Trp	Glu	Phe	Arg	Val 170	Ser	Lys	Ala	Pro	Ser 175	Ala
Phe	Lys	Leu	Ile 180	Ile	Leu	Asn	Leu	Gly 185	Ala	Leu	Val	Pro	Phe 190	Ala	Leu
Cys	Leu	Ile 195	Ser	Phe	Val	Leu	Leu 200	Leu	Phe	Ser	Leu	Phe 205	Arg	His	Ala
Lys	Gln 210	Met	Gln	Leu	Tyr	Ala 215	Thr	Gly	Ser	Arg	Asp 220	Cys	Ser	Thr	Glu
Ala 225	His	Met	Arg	Ala	Ile 230	Lys	Ala	Val	Thr	Ile 235	Phe	Leu	Leu	Phe	Phe 240
Ile	Met	Tyr	Tyr	Ala 245	Val	Phe	Leu	Val	Val 250	Thr	Ser	Ser	Phe	Leu 255	Ile
Pro	Gln	Gly	Arg 260	Val	Val	Leu	Met	Phe 265	Gly	Gly	Ile	Val	Thr 270	Val	Ile

Phe Pro Ser Ser His Ser Phe Ile Leu Ile Met Gly Asn Ser Lys Leu 275 280 285

Arg Glu Ala Phe Leu Lys Val Leu Arg Cys Val Lys Gly Phe His Lys 290 295 300

Arg Arg Lys Pro Leu Val Pro Gln Arg Ile Leu Asn Thr Gly Arg Lys 305 310 315

Lys Ser Thr Lys Asp Cys Leu Pro Ser Pro Arg Gly Leu His Ser Phe 325 330 335

Ala

<210> 13

< 211> 903

< 212> ADN

5 < 213> Felis catus

<400> 13

atgttaagca tagtggaagg ccttctcatt tttatagcag ttagtgaatc agtactgggg 60 gttttaggga atggatttat tggacttgta aactgtatgg actgtgtgaa gaacaaaaag 120 ttttctatga ttggcttcat cttcaccggc ttagctactt ccagaatttg tctgatattg 180 240 atagtaatgg cagatggatt tataaagata ttctctccag atatgtactc ttctggtcac ctaattgatt atattagtta cttatggata attatcaatc aatcaaacat ctggtttgcc 300 accagoctca gcacottcta ottoctgaag atagcaaatt tttoccacca catgtttoto 360 tggttgaagg gtagaatcaa ttgggttctt ccccttctga tgggatcctt gtttatttca 420 tggctcttta cgttccctca aattgtgaag attcttagcg acagtaaagt ggggaatgga 480 aacgcaacct ggcagctcaa catgccgaag agtgagttct taactaagca gattttggtc 540 600 aacataggag teetteteet etteaegeta tteetgatta eatgttteet gttaateatt 660 tecetttgga gacacageag geggatgeaa ttgaatgtea etggatteea agaceceagt acagaagcgc atatgaaagc catgaaagtt ttgatatctt tcatcatcct ctttatcttg 720 cattttatag gcctggccat agaaatagca tgcttcacaa tgccagaaaa aaaattgctg 780 tttatttttg gtatgacgac cacagtcttg tacccctggg gtcactcatt tatcctcatt 840 900 ctcggaaaca gcaagctaaa gcaagcctct ctgagagcac tgcagcaggt caagtgctgt taa 903

<210> 14

< 211> 300

10 < 212> PRT

< 213> Felis catus

<400> 14

1	теп	Ser	116	5	GIU	GIY	пец	Teu	10	rne	116	ALG	vai	15	GIU
Ser	Val	Leu	Gly 20	Val	Leu	Gly	Asn	Gly 25	Phe	Ile	Gly	Leu	Val 30	Asn	Cys
Met	Asp	Cys 35	Val	Lys	Asn	Lys	Lys 40	Phe	Ser	Met	Ile	Gly 4 5	Phe	Ile	Phe
Thr	Gly 50	Leu	Ala	Thr	Ser	Arg 55	Ile	Cys	Leu	Ile	Leu 60	Ile	Val	Met	Ala
Asp 65	Gly	Phe	Ile	Lys	Ile 70	Phe	Ser	Pro	Asp	M et 75	Tyr	Ser	Ser	Gly	His 80
Leu	Ile	Asp	Tyr	Ile 85	Ser	Tyr	Leu	Trp	Ile 90	Ile	Ile	Asn	Gln	Ser 95	Asn
Ile	Trp	Phe	Ala 100	Thr	Ser	Leu	Ser	Thr 105	Phe	Tyr	Phe	Leu	Lys 110	Ile	Ala
Asn	Phe	Ser 115	His	His	Met	Phe	Leu 120	Trp	Leu	Lys	Gly	Arg 125	Ile	Asn	Trp
Val	Leu 130	Pro	Leu	Leu	Met	Gly 135	Ser	Leu	Phe	Ile	Ser 140	Trp	Leu	Phe	Thr
Phe 145	Pro	Gln	Ile	Val	Lys 150	Ile	Leu	Ser	Asp	Ser 155	Lys	Val	Gly	Asn	Gly 160
Asn	Ala	Thr	Trp	Gln 165	Leu	Asn	Met	Pro	Lys 170	Ser	Glu	Phe	Leu	Thr 175	Lys
Gln	Ile	Leu	Val 180	Asn	Ile	Gly	Val	Leu 185	Leu	Leu	Phe	Thr	Leu 190	Phe	Leu
Ile	Thr	Cys 195	Phe	Leu	Leu	Ile	Ile 200	Ser	Leu	Trp	Arg	His 205	Ser	Arg	Arg
Met	Gln 210	Leu	Asn	Val	Thr	Gly 215	Phe	Gln	Asp	Pro	Ser 220	Thr	Glu	Ala	His
Met 225	Lys	Ala	Met	Lys	Val 230	Leu	Ile	Ser	Phe	Ile 235	Ile	Leu	Phe	Ile	Leu 240

His Phe Ile Gly Leu Ala Ile Glu Ile Ala Cys Phe Thr Met Pro Glu 245 250 255

Lys Lys Leu Leu Phe Ile Phe Gly Met Thr Thr Thr Val Leu Tyr Pro 260 265 270

Trp Gly His Ser Phe Ile Leu Ile Leu Gly Asn Ser Lys Leu Lys Gln 275 280 285

Ala Ser Leu Arg Ala Leu Gln Gln Val Lys Cys Cys 290 295 300

<210> 15

< 211> 930

< 212> ADN

5 < 213> Felis catus

<400> 15 atggcaagcg tattgaagaa tgtatttatg atactgtttg ctggagaatt cataatgggg 60 attttgggaa atggattcat tatattggtt aactgtattg actggatcag gaactggaaa 120 ttcttcgtaa ttgactttat tattacctgc ctagctattt ccagaatagt tctgttgtgc 180 ataataattt taggcatagg tttagatgta ccttgtgaag aaatatggaa caagaataat 240 300 caactaataa ggtttgaaat cctctggaca ggatccaatt atttctgcat aacctgtacc acctgectea gtgtetteta tttetteaag atageeaact ttteeaacee tetttteete 360 tggataaaat ggagaattca caaagtgctt ctcacgattg tactggccgc agtcttctct 420 ttctgcttgt ctcttccctt taaggataca gtgttcacga gtctgatcaa aaacaaggta 480 540 aacgcggaaa gaaattggac agtgagtttc acaacgagaa catatgagtt atttttgtct catatgctcc tgaacataat gttcatcatc ccctttgcag tgtctctggc ttcctttgtc 600 cttttgatct gttccttatg gagccacacc aggcagatga agggcagagg tggggatcct 660 accacaaaag ttcacgtgag agccatgaag gctatgattt cattcctact cttcttcttt 720 780 atgtactatt tgagcactat tatgatgaat ttggcctacg tcatcctaga tagtttggtg gcaaagattt ttgctaatac actagtattt ttatatccat ctggccatac atttcttctg 840 attttatgga ccagcaaatt gaaacagget tetetetgtg teetgaagaa getgaagtge 900 ctgcatctaa ggaaacccac acgcccataa 930

<210> 16

< 211> 309

< 212> PRT

10 < 213> Felis catus

<400> 16

Met Ala Ser Val Leu Lys Asn Val Phe Met Ile Leu Phe Ala Gly Glu

1				5					10					15	
Phe	Ile	Met	Gly 20	Ile	Leu	Gly	Asn	Gly 25	Phe	Ile	Ile	Leu	Val 30	Asn	Суз
Ile	Asp	Trp 35	Ile	Arg	Asn	Trp	Lys 40	Phe	Phe	Val	Ile	Asp 45	Phe	Ile	Ile
Thr	Cys 50	Leu	Ala	Ile	Ser	Arg 55	Ile	Val	Leu	Leu	Cys 60	Ile	Ile	Ile	Leu
Gly 65	Ile	G1y	Leu	Asp	Val 70	Pro	Cys	Glu	Glu	Ile 75	Trp	Asn	Lys	Asn	Asn 80
Gln	Leu	Ile	Arg	Phe 85	Glu	Ile	Leu	Trp	Thr 90	Gly	Ser	Asn	Tyr	Phe 95	Cys
Ile	Thr	Cys	Thr 100	Thr	Cys	Leu	Ser	Val 105	Phe	Tyr	Phe	Phe	Lys 110	Ile	Ala
Asn	Phe	Ser 115	Asn	Pro	Leu	Phe	Leu 120	Trp	Ile	Lys	Trp	Arg 125	Ile	His	Lys
Val	Leu 130	Leu	Thr	Ile	Val	Le u 1 35	Ala	Ala	Val	Phe	Ser 140	Phe	Cys	Leu	Ser
Leu 145	Pro	Phe	Lys	Asp	Thr 150	Val	Phe	Thr	Ser	Leu 155	Ile	Lys	Asn	Lys	Val 160
Asn	Ala	Glu	Arg	Asn 165	Trp	Thr	Val	Ser	Phe 170	Thr	Thr	Arg	Thr	Tyr 175	Glu
Leu	Phe	Leu	Ser 180	His	Met	Leu	Leu	Asn 185	Ile	Met	Phe	Ile	11 e 190	Pro	Phe
Ala	Val	Ser 195	Leu	Ala	Ser	Phe	Val 200	Leu	Leu	Ile	Cys	Ser 205	Leu	Trp	Ser
His	Thr 210	Arg	Gln	Met	Lys	Gly 215	Arg	Gly	Gly	Asp	Pro 220	Thr	Thr	Lys	Val
His 225	Val	Arg	Ala	Met	Lys 230	Ala	Met	Ile	Ser	Phe 235	Leu	Leu	Phe	Phe	Phe 240
Met	Tyr	Tyr	Leu	Ser 245	Thr	Ile	Met	Met	Asn 250	Leu	Ala	Tyr	Val	Ile 255	Leu

Asp Ser Leu Val Ala Lys Ile Phe Ala Asn Thr Leu Val Phe Leu Tyr 260

Pro Ser Gly His Thr Phe Leu Leu Ile Leu Trp Thr Ser Lys Leu Lys

Gln Ala Ser Leu Cys Val Leu Lys Lys Leu Lys Cys Leu His Leu Arg 290 295 300

Lys Pro Thr Arg Pro 305

<210> 17

< 211> 1005

< 212> ADN

< 213> Felis catus

<400> 17

atgttggete tgacteetgt cataactgtg teetatgaag teaagagtge atttetatte 60 120 ctttcaatcc tggaatttac agtgggggtc ctggccaatg ccttcatttt cctggtgaat 180 ttttgggacg tggtgaggaa gcagccactg agcaactgtg atcttattct tctgagtctc agecteacce ggetttteet geaegggetg etgtttetgr atgeceteea gettacatae 240 ttccagagga tgaaagatcc gctgagcctc agctaccaga ccatcatcat gctctggatg 300 atcacaaacc aagttgggct gtggctcacc acctgcctca gtcttctcta ctgctccaag 360 attgcccgtt tctctcacac cctcctgcac tgtgtggcaa gctgggtctc ccggaaggtc 420 ccccagatgc tectgggtgc aatgetttte tettgtatet geacegecat etgtttgggg 480 gactttttta gtagatctgg cttcacattc acaactatgc tattcgtgaa taatacagaa 540 600 ttcaatttgc aaattgcaaa actcagtttc tatcactcct tcatcttctg cacactggcg tccatcccgt cgttgttatt ttttctgatt tcttctgggg tgctgattgt ctccctgggg 660 aggcacatga ggacaatgag ggccaaaacc aaagactccc acgaccccag cctggaagcc 720 780 catatcaaag ccctccgatc tcttqtctcc tttctctqcc tctatqtqqt qtcattctqt gctgccctcg tttcagtgcc tttactgatg ctgtggcaca acaagatcgg ggtaatgatc 840 tgtgtgggga tcctagcagc ttgtccctcg atacatgcag caatcctgat ctcaggcaat 900 960 gccaagctga ggagagctgt ggagaccatt ctactctggg ttcagaacag cctaaagata 1005 ggggcagacc acaaggcaga tgccaggact ccaggcctat gttga

<210> 18

< 211> 334

10 < 212> PR

< 213> Felis catus

<220>

< 221> VARIANTE

< 222> (74)..(74)

<	223>	X=D	0	N

<4	n	0>	18

Met Leu Ala Leu Thr Pro Val Ile Thr Val Ser Tyr Glu Val Lys Ser 1 $$ 5 $$ 10 $$ 15

Ala Phe Leu Phe Leu Ser Ile Leu Glu Phe Thr Val Gly Val Leu Ala 20 25 30

Asn Ala Phe Ile Phe Leu Val Asn Phe Trp Asp Val Val Arg Lys Gln 35 40 45

Pro Leu Ser Asn Cys Asp Leu Ile Leu Leu Ser Leu Ser Leu Thr Arg 50 55 60

Leu Phe Leu His Gly Leu Leu Phe Leu Xaa Ala Leu Gln Leu Thr Tyr 65 70 75 80

Phe Gln Arg Met Lys Asp Pro Leu Ser Leu Ser Tyr Gln Thr Ile Ile 85 90 95

Met Leu Trp Met Ile Thr Asn Gln Val Gly Leu Trp Leu Thr Thr Cys 100 105 110

Leu Ser Leu Leu Tyr Cys Ser Lys Ile Ala Arg Phe Ser His Thr Leu 115 120 125

Leu His Cys Val Ala Ser Trp Val Ser Arg Lys Val Pro Gln Met Leu 130 135 140

Leu Gly Ala Met Leu Phe Ser Cys Ile Cys Thr Ala Ile Cys Leu Gly 145 150 155 160

Asp Phe Phe Ser Arg Ser Gly Phe Thr Phe Thr Thr Met Leu Phe Val 165 170 175

Asn Asn Thr Glu Phe Asn Leu Gln Ile Ala Lys Leu Ser Phe Tyr His 180 185 190

Ser Phe Ile Phe Cys Thr Leu Ala Ser Ile Pro Ser Leu Leu Phe Phe 195 200 205

Leu Ile Ser Ser Gly Val Leu Ile Val Ser Leu Gly Arg His Met Arg 210 215 220

Thr Met Arg Ala Lys Thr Lys Asp Ser His Asp Pro Ser Leu Glu Ala 225 230 235 240

His Ile Lys Ala Leu Arg Ser Leu Val Ser Phe Leu Cys Leu Tyr Val 245 250 255

Val Ser Phe Cys Ala Ala Leu Val Ser Val Pro Leu Leu Met Leu Trp 260 265 270

His Asn Lys Ile Gly Val Met Ile Cys Val Gly Ile Leu Ala Ala Cys 275 280 285

Pro Ser Ile His Ala Ala Ile Leu Ile Ser Gly Asn Ala Lys Leu Arg 290 295 300

Arg Ala Val Glu Thr Ile Leu Leu Trp Val Gln Asn Ser Leu Lys Ile 305 310 315 320

Gly Ala Asp His Lys Ala Asp Ala Arg Thr Pro Gly Leu Cys 325 330

<210> 19

< 211> 969

< 212> ADN

5 < 213> Felis catus

<400> 19

60 atgttagecg gactggataa aatetttett aegetgteaa eggeagaatt egtaattgga atgtcgggga atgtgttcgt tggactggtg aactgctctg aatggatcaa gaaccaaaaa 120 atctcttttg ttgacttcat cctcacctgc ttggctctct cccqaatcac tcagctgctg 180 gtgtcactgt ggcaatcatt cgtaatgaca ctatctccgc ctttctattc cacttggaaa 240 300 tcagcaaaac ttattacttt gctttggaga ataacgaatc actggactac ctggtttacc 360 acctgcctga gcattttcta cctccttaaa atagctcact tctcccactc tttcttcctc tggctgaagt ggagaacgaa cagagtggtt cttgccattc ttgtcctttc tttgcccttt 420 ctgctgtttg acttcctggt gctagaatca ttgaatgatt tcttcttaaa cgtctatgtg 480 atggatgaaa gtaatctgac attacataca aatgactgta aaagccttta tattaaaacc 540 600 ctgattcttc ttagtttttc ctataccatt cctattgttc tgtccctgac ctcactggtc 660 ctattgtttc tgtccttggt aagacacatc agaaatttgc agctcaacgt catgggctcc ggggacgcca gcacacaggc ccataagggg gccattaaaa tggttatgtc tttcctcctc 720 780 ctcttcacgg ttcattttt ttccatccaa ttgacaaact ggatgctttt gatattttgg aacaacaagt tcacaaagtt tatcatgttg gccatatatg tcttcccctc aggccactcg 840 900 ttaattttga ttctgggaaa cagcaaactg agacagacag ccttgaaggt actgcggcat cttaaaagca ccttgaaaag agaaaaaaca gtttcgtctt tacagataga cgttccaggg 960 969 tctttctaa

<210> 20

< 211	1> 32	2													
< 212	2> PF	RT													
< 213	3> Fe	lis ca	tus												
<400	> 20														
Met 1	Leu	Ala	Gly	Leu 5	Asp	Lys	Ile	Phe	Leu 10	Thr	Leu	Ser	Thr	Ala 15	Glu
Phe	Val	Ile	Gly 20	Met	Ser	Gly	Asn	Val 25	Phe	Val	Gly	Leu	Val 30	Asn	Суз
Ser	Glu	Trp 35	Ile	Lys	Asn	Gln	Lys 40	Ile	Ser	Phe	Val	Asp 45	Phe	Ile	Leu
Thr	Cys 50	Leu	Ala	Leu	Ser	Arg 55	Ile	Thr	Gln	Leu	Leu 60	Val	Ser	Leu	Trp
Gln 65	Ser	Phe	Val	Met	Thr 70	Leu	Ser	Pro	Pro	Phe 75	Tyr	Ser	Thr	Trp	Lys 80
Ser	Ala	Lys	Leu	Ile 85	Thr	Leu	Leu	Trp	Arg 90	Ile	Thr	Asn	His	Trp 95	Thr
Thr	Trp	Phe	Thr 100	Thr	Cys	Leu	Ser	Ile 105	Phe	Tyr	Leu	Leu	Lys 110	Ile	Ala
His	Phe	Ser 115	His	Ser	Phe	Phe	Leu 120	Trp	Leu	Lys	Trp	Arg 125	Thr	Asn	Arg
Val	Val 130	Leu	Ala	Ile	Leu	Val 135	Leu	Ser	Leu	Pro	Phe 140	Leu	Leu	Phe	Asp
Phe 145	Leu	Val	Leu	Glu	Ser 150	Leu	Asn	Asp	Phe	Phe 155	Leu	Asn	Val	Tyr	Val 160
Met	Asp	Glu	Ser	Asn 165	Leu	Thr	Leu	His	Thr 170	Asn	Asp	Cys	Lys	Ser 175	Leu
Tyr	Ile	Lys	Thr 180	Leu	Ile	Leu	Leu	Ser 185	Phe	Ser	Tyr	Thr	Ile 190	Pro	Ile
Val	Leu	Ser 195	Leu	Thr	Ser	Leu	Val 200	Leu	Leu	Phe	Leu	Ser 205	Leu	Val	Arg

His Ile Arg Asn Leu Gln Leu Asn Val Met Gly Ser Gly Asp Ala Ser 210 215 220

Thr Gln Ala His Lys Gly Ala Ile Lys Met Val Met Ser Phe Leu Leu 225 230 235 240

Leu Phe Thr Val His Phe Phe Ser Ile Gln Leu Thr Asn Trp Met Leu 245 250 255

Leu Ile Phe Trp Asn Asn Lys Phe Thr Lys Phe Ile Met Leu Ala Ile 260 265 270

Tyr Val Phe Pro Ser Gly His Ser Leu Ile Leu Ile Leu Gly Asn Ser 275 280 285

Lys Leu Arg Gln Thr Ala Leu Lys Val Leu Arg His Leu Lys Ser Thr 290 295 300

Leu Lys Arg Glu Lys Thr Val Ser Ser Leu Gln Ile Asp Val Pro Gly 305 310 315

Ser Phe

<210> 21

< 211> 900

< 212> ADN

5 < 213> Felis catus

<400> 21

atggtaaccg cgctaccgag catttttcc atcgtggtaa taatagaatt tctcctagga 60 aattttgcca atggcttcat agcactggtg aacttcattg actggaccaa gagacaaaag 120 atctcctcag ttgatcacat tctcactgct ctggctgtct ccagaattgg tttgctctgg 180 gtaatattaa taaattggta tgcaactttg ttcagtccag atttctatag cttagaagta 240 300 agaattattt ttcaaactgc ctggacagta agcaatcatt ttagcatctg gctggctact agcctcagca tattttattt gttcaaaata gccaacttct ccagccttat ttttcttcgc 360 ctcaagtgga gagttaaaag catagttctt gtgattctgt tggggtcctt gttctttttg 420 gtttgtcatg ttgtggcggt gagcgtatgt gagaaagtgc agactgacgt atatgaagga 480 aacqqcacta qqaaqaccaa attqaqqqac attttacaqc tttcaaatat qactatattc 540 acactagcaa acttcatacc ctttggtatg teeetgaegt cttttgtget gttgatettt 600 tecetetgga aacateteaa gaggatgeag etetgtgata agggatetea agateeeage 660 accaaggtcc acataagagc catgcagacc gtggtctcct ttctcttgtt ctttgccggt 720 tacttettta etetgaegat eacaatttgg agttetaatt ggeegeagaa egagttegge 780 ttcctccttt gccaggttat tggaatccta tatccttcaa tccactcgtt gatgctgatt 840 cggggaaaca agaagctaag acaggccttt ctgtcatttc tgtggcagct gaagtgctga 900 <210> 22

< 211	1> 29	9													
< 212	2> PF	RT													
< 213	3> Fe	lis ca	tus												
<400	> 22														
Met 1	Val	Thr	Ala	Leu 5	Pro	Ser	Ile	Phe	Ser 10	Ile	Val	Val	Ile	Ile 15	Glu
Phe	Leu	Leu	Gly 20	Asn	Phe	Ala	Asn	Gly 25	Phe	Ile	Ala	Leu	Val 30	Asn	Phe
Ile	Asp	Trp 35	Thr	Lys	Arg	Gln	Lys 40	Ile	Ser	Ser	Val	Asp 45	His	Ile	Leu
Thr	Ala 50	Leu	Ala	Val	Ser	Arg 55	Ile	Gly	Leu	Leu	Trp 60	Val	Ile	Leu	Ile
Asn 65	Trp	Tyr	Ala	Thr	Leu 70	Phe	Ser	Pro	Asp	Phe 75	Tyr	Ser	Leu	Gl u	Val 80
Arg	Ile	Ile	Phe	Gln 85	Thr	Ala	Trp	Thr	Val 90	Ser	Asn	His	Phe	Ser 95	Ile
Trp	Leu	Ala	Thr 100	Ser	Leu	Ser	Ile	Phe 105	Tyr	Leu	Phe	Lys	Ile 110	Ala	Asn
Phe	Ser	Ser 115	Leu	Ile	Phe	Leu	Arg 120	Leu	Lys	Trp	Arg	Val 125	Lys	Ser	Ile
Val	Leu 130	Val	Ile	Leu	Leu	Gly 135	Ser	Leu	Phe	Phe	Le u 140	Val	Cys	His	Val
Val 145	Ala	Val	Ser	Val	Cys 150	Glu	Lys	Val	Gln	Thr 155	Asp	Val	Tyr	Glu	Gly 160
Asn	Gly	Thr	Arg	Lys 165	Thr	Lys	Leu	Arg	Asp 170	Ile	Leu	Gln	Leu	Ser 175	Asn
Met	Thr	Ile	Phe	Thr	Leu	Ala	Asn	Phe	Ile	Pro	Phe	Gly	Met	Ser	Leu

Thr Ser Phe Val Leu Leu Ile Phe Ser Leu Trp Lys His Leu Lys Arg 195 200 205

Met Gln Leu Cys Asp Lys Gly Ser Gln Asp Pro Ser Thr Lys Val His 210 215 220

Ile Arg Ala Met Gln Thr Val Val Ser Phe Leu Leu Phe Phe Ala Gly 225 230 235 240

Tyr Phe Phe Thr Leu Thr Ile Thr Ile Trp Ser Ser Asn Trp Pro Gln
245 250 255

Asn Glu Phe Gly Phe Leu Leu Cys Gln Val Ile Gly Ile Leu Tyr Pro 260 265 270

Ser Ile His Ser Leu Met Leu Ile Arg Gly Asn Lys Lys Leu Arg Gln 275 280 285

Ala Phe Leu Ser Phe Leu Trp Gln Leu Lys Cys 290 295

<210> 23

< 211> 927

< 212> ADN

5 < 213> Felis catus

<400> 23

atggtaagcg cgctaccaag catttttcc attgcggtaa taatagaatt tctcctagga 60 120 aattttgcca atggcttcat agcactggtg aacttcattg actggaccaa gagacaaaag 180 atctcctcag ttgatcacat tctcgctgct ctggctgtct ccagaattgg tttgctctgg gtaatgataa taaattggta tgcaacttgg ttcagtccag atttcaagag cttagaagta 240 agaattattt ttcaaactgc ctggacagta agcaatcatt ttagcatctg gctggctact 300 agectcagea tattttattt gttcaaaata gecaacttet ecagecttat ttteettege 360 ctcaagtgga gagttaaaag cgtcgtgctt gtgatgctgc tggggtcttt gttcttattg 420 ttttctcatg tggcggcagt gagcatatat gagaaagtgc agactaaggc atatgaaggg 480 540 aatgtcactt ggaggaccaa atggacgggc atggcacacc tctcaaatat gactgtattc acactagcaa acttcatacc ctttgctacg tccctgacgt cttttgtgct gttgatcttt 600 tecetetgga gacateteaa geggatgeag etetgtggea agggateeea agateeeage 660 accaaggtcc acataagagc catgcagacg gtggtctcct ttctcttgtt ctttgccggt 720 tacgttctga atctaattgt tacagtttgg agttttaacg ggctgcagaa ggaactgttc 780 atgttttgcc aggtacttgc cttcgtgtat ccttcgatcc actcgctgat gttgatttgg 840 ggaaacaaga agctaaaaca ggcctttctg tctgttttat accaggagaa gtactggctg 900 927 aaagaacaga aacactcaac tccatag

<210> 24

10 < 211> 308

< 212	2> PF	RT													
< 213	3> Fe	lis ca	tus												
<400	> 24														
Met 1	Val	Ser	Ala	Leu 5	Pro	Ser	Ile	Phe	Ser 10	Ile	Ala	Val	Ile	Ile 15	Glu
Phe	Leu	Leu	Gly 20	Asn	Phe	Ala	Asn	Gly 25	Phe	Ile	Ala	Leu	Val 30	Asn	Phe
Ile	Asp	Trp 35	Thr	Lys	Arg	Gln	Lys 40	Ile	Ser	Ser	Val	Asp 45	His	Ile	Leu
Ala	Ala 50	Leu	Ala	Val	Ser	Arg 55	Ile	Gly	Leu	Leu	Trp 60	Val	Met	Ile	Ile
Asn 65	Trp	Tyr	Ala	Thr	Trp 70	Phe	Ser	Pro	Asp	Phe 75	Lys	Ser	Leu	Glu	Val 80
Arg	Ile	Ile	Phe	G1n 85	Thr	Ala	Trp	Thr	Val 90	Ser	Asn	His	Phe	Ser 95	Ile
Trp	Leu	Ala	Thr 100	Ser	Leu	Ser	Ile	Phe 105	Tyr	Leu	Phe	Lys	Ile 110	Ala	Asn
Phe	Ser	Ser 115	Leu	Ile	Phe	Leu	Arg 120	Leu	Lys	Trp	Arg	Val 125	Lys	Ser	Val
Val	Leu 130	Val	Met	Leu	Leu	Gly 135	Ser	Leu	Phe	Leu	Leu 140	Phe	Ser	His	Val
Ala 145	Ala	Val	Ser	Ile	Tyr 150	Glu	Lys	Val	Gln	Thr 155	Lys	Ala	Tyr	Glu	Gly 160
Asn	Val	Thr	Trp	Arg 165	Thr	Lys	Trp	Thr	Gly 170	Met	Ala	His	Leu	Ser 175	Asn
Met	Thr	Val	Phe 180	Thr	Leu	Ala	Asn	Phe 185	Ile	Pro	Phe	Ala	Thr 190	Ser	Leu

Thr Ser Phe Val Leu Leu Ile Phe Ser Leu Trp Arg His Leu Lys Arg 195 200 205

Met Gln Leu Cys Gly Lys Gly Ser Gln Asp Pro Ser Thr Lys Val His 210 215 220

Ile Arg Ala Met Gln Thr Val Val Ser Phe Leu Leu Phe Phe Ala Gly 225 230 235 240

Tyr Val Leu Asn Leu Ile Val Thr Val Trp Ser Phe Asn Gly Leu Gln 245 250 255

Lys Glu Leu Phe Met Phe Cys Gln Val Leu Ala Phe Val Tyr Pro Ser 260 265 270

Ile His Ser Leu Met Leu Ile Trp Gly Asn Lys Lys Leu Lys Gln Ala 275 280 285

Phe Leu Ser Val Leu Tyr Gln Glu Lys Tyr Trp Leu Lys Glu Gln Lys 290 295 300

His Ser Thr Pro 305

<210> 25

< 211> 939

< 212> ADN

5 < 213> Felis catus

<400> 25

60 atgccatctg gaatcgaaaa tacttttctg acagccgcgg taggaacatt catgattgga atgttgggga atggtttcat cgcactcgtc aactgcattg actgggtgaa gcatcgaaag 120 ctctcqccaq ctqactqcat cctcaccaqc ctqqctqtct ccaqaatcat tcttctttqq 180 atgatactat tcgatttgct tgtaatggtg ttttggccac atctatataa cattgagaaa 240 ctagctaccg ctgttaatat ctgttggaca ctgaccaatc acctagctac ctggtttgcc 300 acctgcctga gtgttttcta tttctttagg atagccaatt tctcccaccg ctatttcacc 360 tggctgaggc ggagaattag cagggtgctc cctgtgcttc ctctggggtc tttattctta 420 ctggttttca actacaaatt attagttgga ttttctgatc tctgggctac catctaccac 480 aactatgaaa gaaactcaac tcggccccta gatgtaagta aaactgggta tcttaacagc 540 600 ttggttatte teagttteat etaettaate eeetteette tgteeetgae eteaetgete 660 cttttatttc tctccttgat gagacatacc aggaacgtgc aactgaactc tagctcgagg gacttcagca cggaggccca taaaagggcc atgaaaatgg tgatatcttt cctcctcctc 720 780 tccacggttc atttttttc catccagtta acaggttgga ttttcctttt actgaagaaa catcatgcca acttgacggt gacgttgaca teggetettt tteetteagg ceacteattt 840 atecteattt ttggaaacag caagetgaga caaactgett taggactact gtggcatete 900 939 aattgccacc tgaaaatggt gaaaccttta gcttcatag

<210> 26

10 < 211> 312

< 212	2> PF	₹T													
< 213	3> Fe	lis ca	tus												
<400	> 26														
Met 1	Pro	Ser	Gly	Ile 5	Glu	Asn	Thr	Phe	Leu 10	Thr	Ala	Ala	Val	Gly 15	Thr
Phe	Met	Ile	Gly 20	Met	Leu	Gly	Asn	Gly 25	Phe	Ile	Ala	Leu	Val 30	Asn	Cys
Ile	Asp	Trp 35	Val	Lys	His	Arg	Lys 40	Leu	Ser	Pro	Ala	Asp 45	Суз	Ile	Leu
Thr	Ser 50	Leu	Ala	Val	Ser	Arg 55	Ile	Ile	Leu	Leu	Trp 60	Met	Ile	Leu	Phe
Asp 65	Leu	Leu	Val	Met	Val 70	Phe	Trp	Pro	His	Leu 75	Tyr	Asn	Ile	Glu	Lys 80
Leu	Ala	Thr	Ala	Val 85	Asn	Ile	Cys	Trp	Thr 90	Leu	Thr	Asn	His	Leu 95	Ala
Thr	Trp	Phe	Ala 100	Thr	Cys	Leu	Ser	Val 105	Phe	Tyr	Phe	Phe	Arg 110	Ile	Ala
Asn	Phe	Ser 115	His	Arg	Tyr	Phe	Thr 120	Trp	Leu	Arg	Arg	Arg 125	Ile	Ser	Arg
Val	Leu 130	Pro	Val	Leu	Pro	Leu 135	Gly	Ser	Leu	Phe	Leu 140	Leu	Val	Phe	Asn
Tyr 145	Lys	Leu	Leu	Val	Gl y 150	Phe	Ser	Asp	Leu	Trp 155	Ala	Thr	Ile	Tyr	His 160
Asn	Tyr	Glu	Arg	Asn 165	Ser	Thr	Arg	Pro	Leu 170	Asp	Val	Ser	Lys	Thr 175	Gly
Tyr	Leu	Asn	Ser 180	Leu	Val	Ile	Leu	Ser 185	Phe	Ile	Tyr	Leu	Ile 190	Pro	Phe

Leu Leu Ser Leu Thr Ser Leu Leu Leu Leu Phe Leu Ser Leu Met Arg 195 $$

His Thr Arg Asn Val Gln Leu Asn Ser Ser Ser Arg Asp Phe Ser Thr Glu Ala His Lys Arg Ala Met Lys Met Val Ile Ser Phe Leu Leu 230 235 Ser Thr Val His Phe Phe Ser Ile Gln Leu Thr Gly Trp Ile Phe Leu 250 Leu Leu Lys Lys His His Ala Asn Leu Thr Val Thr Leu Thr Ser Ala Leu Phe Pro Ser Gly His Ser Phe Ile Leu Ile Phe Gly Asn Ser Lys Leu Arg Gln Thr Ala Leu Gly Leu Leu Trp His Leu Asn Cys His Leu Lys Met Val Lys Pro Leu Ala Ser 305 310 <210> 27 < 211> 299 < 212> PRT < 213> Homo sapiens <400> 27 Met Leu Arg Leu Phe Tyr Phe Ser Ala Ile Ile Ala Ser Val Ile Leu Asn Phe Val Gly Ile Ile Met Asn Leu Phe Ile Thr Val Val Asn Cys 20 25 Lys Thr Trp Val Lys Ser His Arg Ile Ser Ser Ser Asp Arg Ile Leu Phe Ser Leu Gly Ile Thr Arg Phe Leu Met Leu Gly Leu Phe Leu Val Asn Thr Ile Tyr Phe Val Ser Ser Asn Thr Glu Arg Ser Val Tyr Leu 70 Ser Ala Phe Phe Val Leu Cys Phe Met Phe Leu Asp Ser Ser Ser Val

Trp Phe Val Thr Leu Leu Asn Ile Leu Tyr Cys Val Lys Ile Thr Asn

105

Phe Gl	n His	Ser	Val	Phe	Leu	Leu	Leu	Lys	Arg	Asn	Ile	Ser	Pro	Lys
	115					120					125			

Ile Pro Arg Leu Leu Leu Ala Cys Val Leu Ile Ser Ala Phe Thr Thr 130 135 140

Cys Leu Tyr Ile Thr Leu Ser Gln Ala Ser Pro Phe Pro Glu Leu Val 145 150 155 160

Thr Thr Arg Asn Asn Thr Ser Phe Asn Ile Ser Glu Gly Ile Leu Ser 165 170 175

Leu Val Val Ser Leu Val Leu Ser Ser Ser Leu Gln Phe Ile Ile Asn 180 185 190

Val Thr Ser Ala Ser Leu Leu Ile His Ser Leu Arg Arg His Ile Gln 195 200 205

Lys Met Gln Lys Asn Ala Thr Gly Phe Trp Asn Pro Gln Thr Glu Ala 210 215 220

His Val Gly Ala Met Lys Leu Met Val Tyr Phe Leu Ile Leu Tyr Ile 225 235 240

Pro Tyr Ser Val Ala Thr Leu Val Gln Tyr Leu Pro Phe Tyr Ala Gly 245 250 255

Met Asp Met Gly Thr Lys Ser Ile Cys Leu Ile Phe Ala Thr Leu Tyr 260 265 270

Ser Pro Gly His Ser Val Leu Ile Ile Ile Thr His Pro Lys Leu Lys 275 280 285

Thr Thr Ala Lys Lys Ile Leu Cys Phe Lys Lys 290 295

<210> 28

< 211> 312

< 212> PRT

5 < 213> Homo sapiens

<400> 28

Met Pro Ser Ala Ile Glu Ala Ile Tyr Ile Ile Leu Ile Ala Gly Glu 1 5 10 10

Leu Thr Ile Gly Ile Trp Gly Asn Gly Phe Ile Val Leu Val Asn Cys 20 25 30

Ile	Asp	Trp 35	Leu	Lys	Arg	Arg	Asp 40	Ile	Ser	Leu	Ile	Asp 45	Ile	Ile	Leu
Ile	Ser 50	Leu	Ala	Ile	Ser	Arg 55	Ile	Cys	Leu	Leu	Cys 60	Val	Ile	Ser	Leu
Asp 65	Gly	Phe	Phe	Met	Leu 70	Leu	Phe	Pro	Gly	Thr 75	Tyr	Gly	Asn	Ser	Val 80
Leu	Val	Ser	Ile	Val 85	Asn	Val	Val	Trp	Thr 90	Phe	Ala	Asn	Asn	Ser 95	Ser
Leu	Trp	Phe	Thr 100	Ser	Суѕ	Leu	Ser	11e 105	Phe	Tyr	Leu	Leu	Lys 110	Ile	Ala
Asn	Ile	Ser 115	His	Pro	Phe	Phe	Phe 120	Trp	Leu	Lys	Leu	Lys 125	Ile	Asn	Lys
Val	Met 130	Leu	Ala	Ile	Leu	Leu 135	Gly	Ser	Phe	Leu	Ile 140	Ser	Leu	Ile	Ile
Ser 145	Val	Pro	Lys	Asn	Asp 150	Asp	Met	Trp	Tyr	His 155	Leu	Phe	Lys	Val	Ser 160
His	Glu	Glu	Asn	Ile 165	Thr	Trp	Lys	Phe	Lys 170	Val	Ser	Lys	Ile	Pro 175	Gly
Thr	Phe	Lys	Gln 180	Leu	Thr	Leu	Asn	Leu 185	Gly	Val	Met	Val	Pro 190	Phe	Ile
Leu	Cys	Leu 195	Ile	Ser	Phe	Phe	Leu 200	Leu	Leu	Phe	Ser	Leu 205	Val	Arg	His
Thr	Lys 210	Gln	Ile	Arg	Leu	His 215	Ala	Thr	Gly	Phe	Arg 220	Asp	Pro	Ser	Thr
Glu 225	Ala	His	Met	Arg	Ala 230	Ile	Lys	Ala	Val	Ile 235	Ile	Phe	Leu	Leu	Leu 240
Leu	Ile	Val	Tyr	Tyr 245	Pro	Val	Phe	Leu	Val 250	Met	Thr	Ser	Ser	Ala 255	Leu
Ile	Pro	Gln	Gly 260	Lys	Leu	Val	Leu	Met 265	Ile	Gly	Asp	Ile	Val 270	Thr	Val
		275		Ser			280					285			Lys ie Lei
	290					295				<i>y</i> - •••	30	_	1	**	
Arg 305	Arg	Arg	Lys	Pro	Phe 310		. Pro)							

<210> 29 < 211> 307

< 212> PRT															
< 213> Homo sapiens															
<400> 29															
Met 1	Leu	Arg	Val	Val 5	Glu	Gly	Ile	Phe	Ile 10	Phe	Val	Val	Val	Ser 15	Glu
Ser	Val	Phe	Gly 20	Val	Leu	Gly	Asn	Gly 25	Phe	Ile	Gly	Leu	Val 30	Asn	Cys
Ile	Asp	Cys 35	Ala	Lys	Asn	Lys	Leu 40	Ser	Thr	Ile	Gly	Phe 45	Ile	Leu	Thr
Gly	Leu 50	Ala	Ile	Ser	Arg	Ile 55	Phe	Leu	Ile	Trp	Ile 60	Ile	Ile	Thr	Asp
Gly 65	Phe	Ile	Gln	Ile	Phe 70	Ser	Pro	Asn	Ile	Tyr 75	Ala	Ser	Gly	Asn	Le u 80
Ile	Glu	Tyr	Ile	Ser 85	Tyr	Phe	Trp	Val	Ile 90	Gly	Asn	Gln	Ser	Ser 95	Met
Trp	Phe	Ala	Thr 100	Ser	Leu	Ser	Ile	Phe 105	Tyr	Phe	Leu	Lys	Ile 110	Ala	Asn
Phe	Ser	Asn 115	Tyr	Ile	Phe	Leu	Trp 120	Leu	Lys	Ser	Arg	Thr 125	Asn	Met	Val
Leu	Pro 130	Phe	Met	Ile	Val	Phe 135	Leu	Leu	Ile	Ser	Ser 140	Leu	Leu	Asn	Phe
Ala 145	Tyr	Ile	Ala	Lys	Ile 150	Leu	Asn	Asp	Tyr	Lys 155	Thr	Lys	Asn	Asp	Thr 160
Val	Trp	Asp	Leu	Asn 165	Met	Tyr	Lys	Ser	Glu 170	Tyr	Phe	Ile	Lys	Gln 175	Ile
Leu	Leu	Asn	Leu 180	Gly	Val	Ile	Phe	Phe 185	Phe	Thr	Leu	Ser	Leu 190	Ile	Thr

Cys	Ile	Phe 195	Leu	Ile	Ile	Ser	Leu 200	Trp	Arg	His	Asn	Arg 205	Gln	Met	Glr
Ser	Asn 210	Val	Thr	Gly	Leu	Arg 215	Asp	Ser	Asn	Thr	Glu 220	Ala	His	Val	Lys
Ala 225	Met	Lys	Val	Leu	Ile 230	Ser	Phe	Ile	Ile	Leu 235	Phe	Ile	Leu	Tyr	Phe 240
Ile	Gly	Met	Ala	Ile 245	Glu	Ile	Ser	Cys	Phe 250	Thr	Val	Arg	Glu	Asn 255	Lys
Leu	Leu	Leu	Met 260	Phe	Gly	Met	Thr	Thr 265	Thr	Ala	Ile	Tyr	Pro 270	Trp	Gly
His	Ser	Phe 275	Ile	Leu	Ile	Leu	Gly 280	Asn	Ser	Lys	Leu	Lys 285	Gln	Ala	Ser
Leu	Arg 290	Val	Leu	Gln	Gln	Leu 295	Lys	Cys	Cys	Glu	Lys 300	Arg	Lys	Asn	Leu
Arg 305	Val	Thr													
<210)> 30														
< 21	1> 29	1													
< 21	2> PF	RT													
< 21	3> Hc	mo s	apien	ıs											
<400)> 30														
Met 1	Ile	Pro	Ile	Gln 5	Leu	Thr	Val	Phe	Phe 10	Met	Ile	Ile	Tyr	Val 15	Leu
Glu	Ser	Leu	Thr 20	Ile	Ile	Val	Gln	Ser 25	Ser	Leu	Ile	Val	Ala 30	Val	Leu
Gly	Arg	Glu 35	Trp	Leu	Gln	Val	Arg 40	Arg	Leu	Met	Pro	Val 45	Asp	Met	Ile
Leu	Ile 50	Ser	Leu	Gly	Ile	Ser 55	Arg	Phe	Cys	Leu	Gln 60	Trp	Ala	Ser	Met
Leu 65	Asn	Asn	Phe	Cys	Ser 70	Tyr	Phe	Asn	Leu	Asn 75	Tyr	Val	Leu	Cys	Asr 80

Leu Thr Ile Thr Trp Glu Phe Phe Asn Ile Leu Thr Phe Trp Leu Asn 85

Met 1	Leu	Thr	Leu	Thr 5	Arg	Ile	Arg	Thr	Val 10	Ser	Tyr	Glu	Val	Arg 15	Ser
<400	> 31														
< 213	3> Ho	mo s	apien	s											
< 212	2> PR	RT													
< 211	> 33	3													
<210	> 31														
Gly	Lys 290	Cys													
Ser	Thr	Ser 275	Leu	Met	Leu	Ser	Ser 280	Pro	Thr	Leu	Lys	Arg 285	Ile	Leu	Lys
Trp	Leu	Trp	Val 260	Trp	Glu	Ala	Phe	Val 265	Tyr	Ala	Phe	Ile	Leu 270	Met	His
Leu	Thr	Ile	Leu	Ile 245	Thr	Ile	Ile	Gly	Thr 250	Leu	Phe	Asp	Lys	Arg 255	Cys
Ala 225	Leu	Arg	Ser	Leu	Ala 230	Val	Leu	Phe	Ile	Val 235	Phe	Thr	Ser	Tyr	Phe 240
His	His 210	Ser	Thr	Gly	His	Cys 215	Asn	Pro	Ser	Met	Lys 220	Ala	Arg	Phe	Thr
Leu	Ala	Ser 195	Thr	Ile	Phe	Leu	Met 200	Ala	Ser	Leu	Thr	Lys 205	Gln	Ile	Gln
Gln	Phe	Gln	Ala 180	His	Thr	Val	Ala	Leu 185	Val	Ile	Pro	Phe	Ile 190	Leu	Phe
Pro	Arg	Asn	Ser	Thr 165	Val	Thr	Asp	Lys	Leu 170	Glu	Asn	Phe	His	Gln 175	Tyr
Ala 145	Ile	Gly	Asn	Tyr	Ile 150	Gln	Ile	Gln	Leu	Leu 155	Thr	Met	Glu	His	Leu 160
Ile	Leu 130	Leu	Gly	Ser	Leu	Met 135	Ile	Thr	Cys	Val	Thr 140	Ile	Ile	Pro	Ser
His	Ile	Phe 115	Leu	Trp	Leu	Arg	Trp 120	Arg	Ile	Leu	Arg	Leu 125	Phe	Pro	Trp
ser	теп	теп	100	Val	rne	ıyı	Суз	105	пуъ	vai	ser	ser	110	1111	птэ

T	'hr	Phe	Leu	Phe 20	Ile	Ser	Val	Leu	Glu 25	Phe	Ala	Val	Gly	Phe 30	Leu	Thr
A	sn	Ala	Phe 35	Val	Phe	Leu	Val	Asn 40	Phe	Trp	Asp	Val	Val 45	Lys	Arg	Gln
A	la	Leu 50	Ser	Asn	Ser	Asp	С у в 55	Val	Leu	Leu	Cys	Leu 60	Ser	Ile	Ser	Arg
	eu 55	Phe	Leu	His	Gly	Leu 70	Leu	Phe	Leu	Ser	Al a 75	Ile	Gln	Leu	Thr	His 80
P	he	Gln	Lys	Leu	Ser 85	Glu	Pro	Leu	Asn	His 90	Ser	туг	Gln	Ala	11e 95	Ile
M	let	Leu	Trp	Met 100	Ile	Ala	Asn	Gln	Ala 105	Asn	Leu	Trp	Leu	Ala 110	Ala	Cys
I	eu	Ser	Leu 115	Leu	Tyr	Cys	Ser	Lys 120	Leu	Ile	Arg	Phe	Ser 125	His	Thr	Phe
I	eu	Ile 130	Cys	Leu	Ala	Ser	Trp 135	Val	Ser	Arg	Lys	Ile 140	Ser	Gln	Met	Leu
	eu 45	Gly	Ile	Ile	Leu	C ys 150	Ser	Суз	Ile	Суз	Thr 155	Val	Leu	Суз	Val	Trp 160
С	ys	Phe	Phe	Ser	Arg 165	Pro	His	Phe	Thr	Val 170	Thr	Thr	Val	Leu	Phe 175	Met
A	sn	Asn	Asn	Thr 180	Arg	Leu	Asn	Trp	Gln 185	Ile	Lys	Asp	Leu	Asn 190	Leu	Phe
T	'yr	Ser	Phe 195	Leu	Phe	Cys	Tyr	Leu 200	Trp	Ser	Val	Pro	Pro 205	Phe	Leu	Leu
P	he	Leu 210	Val	Ser	Ser	Gly	Met 215	Leu	Thr	Val	Ser	Leu 220	Gly	Arg	His	Met
	rg 25	Thr	Met	Lys	Val	Tyr 230	Thr	Arg	Asn	Ser	Arg 235	Asp	Pro	Ser	Leu	Glu 240
A	la	His	Ile	Lys	Ala 245	Leu	Lys	Ser	Leu	Val 250	Ser	Phe	Phe	Cys	Phe 255	Phe

	Trp Arg Asp Lys Ile Gly Val Met Val Cys Val Gly Ile Met Ala Ala 275 280 285
	Cys Pro Ser Gly His Ala Ala Ile Leu Ile Ser Gly Asn Ala Lys Leu 290 295 300
	Arg Arg Ala Val Met Thr Ile Leu Leu Trp Ala Gln Ser Ser Leu Lys 305 310 315 320
	Val Arg Ala Asp His Lys Ala Asp Ser Arg Thr Leu Cys 325 330
	<210> 32
	< 211> 22
	< 212> ADN
5	< 213> Felis catus
	<400> 32
	tcatggtgga ggtgaaggat tg
	<210> 33
	< 211> 22
10	< 212> ADN
	< 213> Felis catus
	<400> 33
	aggtatggca ggcatcgtca gc
	<210> 34
15	< 211> 23
	< 212> ADN
	< 213> Felis catus
	<400> 34
	caggaattgg cagaaggtca gat
20	<210> 35
	< 211> 24
	< 212> ADN
	< 213> Felis catus
25	<400> 35
25	ggagaaggaa attgccagaa agag <210> 36
	<210> 36 <211> 25
	< 211> 25 < 212> ADN
	< 213> Felis catus
30	<0.05 Tells Calus

	aaattgggca gagacaagag acagg	25
	<210> 37	
	< 211> 20	
	< 212> ADN	
5	< 213> Felis catus	
	<400> 37	
	cggcaccgga accacaagag	20
	<210> 38	
	< 211> 23	
10	< 212> ADN	
	< 213> Felis catus	
	<400> 38	
	ggggacaatt ggaaaaggaa acg	23
	<210> 39	
15	< 211> 23	
	< 212> ADN	
	< 213> Felis catus	
	<400> 39	
	ctcaaaggcc cacgaagtca gat	23
20	<210> 40	
	< 211> 24	
	< 212> ADN	
	< 213> Felis catus	
	<400> 40	
25	aggatcatga aagggaacgg gtct	24
	<210> 41	
	< 211> 24	
	< 212> ADN	
	< 213> Felis catus	
30	<400> 41	
	gacaaagaga aagaggcaaa atcg	24
	<210> 42	
	< 211> 24	
	< 212> ADN	
35	< 213> Felis catus	
	<400 \ 42	

	ccgacaaaga gggcagaaaa agac	24
	<210> 43	
	< 211> 24	
	< 212> ADN	
5	< 213> Felis catus	
	<400> 43	
	gacetectee ggeteagaag aagt	24
	<210> 44	
	< 211> 23	
10	< 212> ADN	
	< 213> Felis catus	
	<400> 44	
	gatatacgtt gggcgctcct act	23
	<210> 45	
15	< 211> 23	
	< 212> ADN	
	< 213> Felis catus	
	<400> 45	
	agtgaaaccc ttacagtgaa tag	23
20	<210> 46	
	< 211> 24	
	< 212> ADN	
	< 213> Felis catus	
	<400> 46	
25	caagcagtgt gacagcagca ggta	24
	<210> 47	
	< 211> 24	
	< 212> ADN	
	< 213> Felis catus	
30	<400> 47	
	ggagaggaag gaaagaaacg caca	24
	<210> 48	
	< 211> 21	
	< 212> ADN	
35	< 213> Felis catus	
	<400 > 48	

	gaagtcctgg cttgtaatgt a	21
	<210> 49	
	< 211> 21	
	< 212> ADN	
5	< 213> Felis catus	
	<400> 49	
	caaaacaaac ttggggaact t	21
	<210> 50	
	< 211> 24	
10	< 212> ADN	
	< 213> Felis catus	
	<400> 50	
	acactggaat cgcaaagaaa cacg	24
	<210> 51	
15	< 211> 24	
	< 212> ADN	
	< 213> Felis catus	
	<400> 51	
	gatceteaaa gaeteeteaa taag	24
20	<210> 52	
	< 211> 24	
	< 212> ADN	
	< 213> Felis catus	
	<400> 52	
25	gcacaaccag cgacatcaga catt	24
	<210> 53	
	< 211> 18	
	< 212> ADN	
	< 213> Felis catus	
30	<400> 53	
	cccaggcgcc ccaaaaga	18
	<210> 54< 211> 24	
	< 212> ADN	
	< 213> Felis catus	
35	<400> 54	
	gcacaaccag cgacatcaga catt	24

	<210> 55	
	< 211> 23	
	< 212> ADN	
	< 213> Felis catus	
5	<400> 55	
	ccggtgaggg tagattattt cca	23
	<210> 56	
	< 211> 20	
	< 212> ADN	
10	< 213> Felis catus	
	<400> 56	
	acccaggege eccagtatet	20
	<210> 57	
	< 211> 20	
15	< 212> ADN	
	< 213> Felis catus	
	<400> 57	
	gcttccggca tttttattcc	20
	<210> 58	
20	< 211> 897	
	< 212> ADN	
	< 213> Secuencia artificial	
	<220> < 223> constructo artificial R1 optimizado con codones para C elegans	
25	<400> 58	

atgcttgatt	tctatcttat	tattcatttc	cttcttccag	ttattcaatg	tcttattgga	60
gttcttgcta	atggaattat	tgttattgtt	aatggaactg	aacttattaa	acaaagaaaa	120
atggttccac	ttgatcttct	tctttcttgt	cttgctattt	ctagaatttg	tcttcaatct	180
ttcattttct	atattaatct	tgttattctt	tctcttattg	atttccttcc	acttgttaaa	240
aatttcgctg	ttttcatgtt	cgttaatgaa	actggacttt	ggcttgctac	ttggcttgga	300
gttttctatt	gtgctaaaat	ttctccaatt	gctcatccac	ttttcttctg	gcttaaaaga	360
agaatttcta	aacttgttcc	atggcttatt	attggatctc	ttcttttcgc	ttctattcca	420
cttgttttct	attctaaaca	tacttgggtt	ctttctcaag	aagttcttct	tagacttttc	480
tctccaaatg	ctactactca	aattaaagaa	acttctgctc	ttcaaattgt	tttccttgct	540
agattctctc	caccattcat	tattttcctt	acttctactc	ttcttcttgt	tttctctctt	600
ggaagacata	cttggcaaat	gagaaatact	gctactggaa	ctagagatgg	atctactgga	660
gttcatgttt	ctgctcttct	ttctattctt	tctttccttg	ttctttatct	ttctcattat	720
atgactgctg	ctcttcttc	ttctcatatt	ttcgaactta	gatctttcat	gttccttttc	780
tgtattcttg	ttttcggatc	ttatccatct	ggacattcta	ttattcttat	ttctggaaat	840
agaaaactta	aacaaaatgc	taaaaaattc	cttcttcatg	gacaatgttg	tcaataa	897
<210> 59						
< 211> 897						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial -	optimizado cor	n codón R1 pa	ra Drosophila		
<400> 59						
atgctggact	tctacctgat	catccacttc	ctgctgcccg	tgatccagtg	cctgatcggc	60
gtgctggcca	acggcatcat	cgtgatcgtg	aacggcaccg	agctgatcaa	gcagcgcaag	120

atggtgcccc tggacctgct gctgtcctgc ctggccatct cccgcatctg cctgcagtcc

ttcatcttct acatcaacct ggtgatcctg tccctgatcg acttcctgcc cctggtgaag

aacttegeeg tgtteatgtt egtgaaegag aeeggeetgt ggetggeeae etggetggge

gtgttctact gcgccaagat ctcccccatc gcccaccccc tgttcttctg gctgaagcgc

cgcatctcca agctggtgcc ctggctgatc atcggctccc tgctgttcgc ctccatcccc

5

180

240

300

ctggtgttct	actccaagca	cacctgggtg	ctgtcccagg	aggtgctgct	gcgcctgttc	480				
tcccccaacg	ccaccaccca	gatcaaggag	acctccgccc	tgcagatcgt	gttcctggcc	540				
cgcttctccc	ccccttcat	catcttcctg	acctccaccc	tgctgctggt	gttctccctg	600				
ggccgccaca	cctggcagat	gcgcaacacc	gccaccggca	cccgcgacgg	ctccaccggc	660				
gtgcacgtgt	ccgccctgct	gtccatcctg	tccttcctgg	tgctgtacct	gtcccactac	720				
atgaccgccg	ccctgctgtc	ctcccacatc	ttcgagctgc	gctccttcat	gttcctgttc	780				
tgcatcctgg	tgttcggctc	ctacccctcc	ggccactcca	tcatcctgat	ctccggcaac	840				
cgcaagctga	agcagaacgc	caagaagttc	ctgctgcacg	gccagtgctg	ccagtaa	897				
<210> 60										
< 211> 897										
< 212> ADN										
< 213> Secue	ncia artificial									
<220>										
< 223> constr	ucto de secuer	ncia constructo	optimizado co	on codón R1 pa	ara célula humana					
<400> 60										
atgctggact	tctacctgat	catccacttc	ctgctgcccg	tgatccagtg	cctgatcggc	60				
gtgctggcca	acggcatcat	cgtgatcgtg	aacggcaccg	agctgatcaa	gcagcgcaag	120				
atggtgcccc	tggacctgct	gctgagctgc	ctggccatca	gccgcatctg	cctgcagagc	180				
ttcatcttct	acatcaacct	ggtgatcctg	agcctgatcg	acttcctgcc	cctggtgaag	240				
aacttcgccg	tgttcatgtt	cgtgaacgag	accggcctgt	ggctggccac	ctggctgggc	300				
gtgttctact	gcgccaagat	cagccccatc	gcccaccccc	tgttcttctg	gctgaagcgc	360				
cgcatcagca	agctggtgcc	ctggctgatc	atcggcagcc	tgctgttcgc	cagcatecee	420				
ctggtgttct	acagcaagca	cacctgggtg	ctgagccagg	aggtgctgct	gcgcctgttc	480				
agccccaacg	ccaccaccca	gatcaaggag	accagogoco	tgcagatcgt	gttcctggcc	540				
cgcttcagcc	ccccttcat	catcttcctg	accagcaccc	tgctgctggt	gttcagcctg	600				
ggccgccaca	cctggcagat	gcgcaacacc	gccaccggca	cccgcgacgg	cagcaccggc	660				
gtgcacgtga	gegeeetget	gagcatcctg	agcttcctgg	tgctgtacct	gagccactac	720				
atgaccgccg	ccctgctgag	cagccacatc	ttcgagctgc	gcagcttcat	gttcctgttc	780				
tgcatcctgg	tgttcggcag	ctaccccagc	ggccacagca	tcatcctgat	cageggeaae	840				
cgcaagctga	agcagaacgc	caagaagttc	ctgctgcacg	gccagtgctg	ccagtaa	897				
<210> 61										
< 211> 897										
< 212> ADN										
< 213> Secue	ncia artificial									
<220>										
< 223> constr	: 223> constructo artificial optimizado con codón R1 para ratón									

<400> 61						
atgctggact	tctacctgat	catccacttc	ctgctgcccg	tgatccagtg	cctgatcggc	60
gtgctggcca	acggcatcat	cgtgatcgtg	aacggcaccg	agctgatcaa	gcagaggaag	120
atggtgcccc	tggacctgct	gctgagctgc	ctggccatca	gcaggatctg	cctgcagagc	180
ttcatcttct	acatcaacct	ggtgatcctg	agcctgatcg	acttcctgcc	cctggtgaag	240
aacttcgccg	tgttcatgtt	cgtgaacgag	accggcctgt	ggctggccac	ctggctgggc	300
gtgttctact	gcgccaagat	cagccccatc	gcccaccccc	tgttcttctg	gctgaagagg	360
aggatcagca	agctggtgcc	ctggctgatc	atcggcagcc	tgctgttcgc	cagcatecee	420
ctggtgttct	acagcaagca	cacctgggtg	ctgagccagg	aggtgctgct	gaggctgttc	480
agccccaacg	ccaccaccca	gatcaaggag	accagogoco	tgcagatcgt	gttcctggcc	540
aggttcagcc	ccccttcat	catcttcctg	accagcaccc	tgctgctggt	gttcagcctg	600
ggcaggcaca	cctggcagat	gaggaacacc	gccaccggca	ccagggacgg	cagcaccggc	660
gtgcacgtga	gcgccctgct	gagcatcctg	agcttcctgg	tgctgtacct	gagccactac	720
atgaccgccg	ccctgctgag	cagccacatc	ttcgagctga	ggagcttcat	gttcctgttc	780
tgcatectgg	tgttcggcag	ctaccccagc	ggccacagca	tcatcctgat	cagcggcaac	840
aggaagctga	agcagaacgc	caagaagttc	ctgctgcacg	gccagtgctg	ccagtaa	897
<210> 62						
< 211> 897						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R1 para	a S. cervisiae		
<400> 62						
atgttggact	tctacttgat	catccacttc	ttgttgccag	ttatccaatg	tttgatcggt	60
gttttggcta	acggtatcat	cgttatcgtt	aacggtactg	aattgatcaa	gcaaagaaag	120
atggttccat	tggacttgtt	gttgtcttgt	ttggctatct	ctagaatctg	tttgcaatct	180
ttcatcttct	acatcaactt	ggttatcttg	tctttgatcg	acttcttgcc	attggttaag	240
aacttcgctg	ttttcatgtt	cgttaacgaa	actggtttgt	ggttggctac	ttggttgggt	300
gttttctact	gtgctaagat	ctctccaatc	gctcacccat	tgttcttctg	gttgaagaga	360
agaatctcta	agttggttcc	atggttgatc	atcggttctt	tgttgttcgc	ttctatccca	420
ttggttttct	actctaagca	cacttgggtt	ttgtctcaag	aagttttgtt	gagattgttc	480
tctccaaacg	ctactactca	aatcaaggaa	acttctgctt	tgcaaatcgt	tttcttggct	540
202+40+6+6	aaaaa++aa+	aatattatta	2011012011	+ ~+ + ~+ + ~~+	+++-+-	600

ggtagacaca cttggcaaat gagaaacact gctactggta ctagagacgg ttctactggt

gttcacgttt	ctgctttgtt	gtctatcttg	tctttcttgg	ttttgtactt	gtctcactac	720
atgactgctg	ctttgttgtc	ttctcacatc	ttcgaattga	gatctttcat	gttcttgttc	780
tgtatcttgg	ttttcggttc	ttacccatct	ggtcactcta	tcatcttgat	ctctggtaac	840
agaaagttga	agcaaaacgc	taagaagttc	ttgttgcacg	gtcaatgttg	tcaataa	897
<210> 63						
< 211> 897						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constru	ucto artificial-o	ptimizado con	codón R1 para	a E. coli		
<400> 63						
atgctggact	tctacctgat	catccacttc	ctgctgccgg	ttatccagtg	cctgatcggt	60
gttctggcta	acggtatcat	cgttatcgtt	aacggtaccg	aactgatcaa	acagcgtaaa	120
atggttccgc	tggacctgct	gctgtcttgc	ctggctatct	ctcgtatctg	cctgcagtct	180
ttcatcttct	acatcaacct	ggttatcctg	tctctgatcg	acttcctgcc	gctggttaaa	240
aacttcgctg	ttttcatgtt	cgttaacgaa	accggtctgt	ggctggctac	ctggctgggt	300
gttttctact	gcgctaaaat	ctctccgatc	gctcacccgc	tgttcttctg	gctgaaacgt	360
cgtatctcta	aactggttcc	gtggctgatc	atcggttctc	tgctgttcgc	ttctatcccg	420
ctggttttct	actctaaaca	cacctgggtt	ctgtctcagg	aagttctgct	gcgtctgttc	480
tctccgaacg	ctaccaccca	gatcaaagaa	acctctgctc	tgcagatcgt	tttcctggct	540
cgtttctctc	cgccgttcat	catcttcctg	acctctaccc	tgctgctggt	tttctctctg	600
ggtcgtcaca	cctggcagat	gcgtaacacc	gctaccggta	cccgtgacgg	ttctaccggt	660
gttcacgttt	ctgctctgct	gtctatcctg	tettteetgg	ttctgtacct	gtctcactac	720
atgaccgctg	ctctgctgtc	ttctcacatc	ttcgaactgc	gttctttcat	gttcctgttc	780
tgcatcctgg	ttttcggttc	ttacccgtct	ggtcactcta	tcatcctgat	ctctggtaac	840
cgtaaactga	aacagaacgc	taaaaaattc	ctgctgcacg	gtcagtgctg	ccagtaa	897
<210> 64						
< 211> 915						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constru	ucto artificial-o	ptimizado con	codón R2 para	a C elegans		
<400> 64						
atggcttctt	ctctttctgc	tattccacat	cttattatta	tgtctgctga	attcattact	60
ggaattactg	ttaatggatt	ccttgttatt	attaatggaa	aagaacttat	taaatctaga	120

aaacttactc	caatgcaact	tctttgtatt	tgtattggaa	tttctagatt	cggacttctt	180
atggttctta	tggttcaatc	tttcttctct	gttttcttcc	cacttttcta	tagagttaaa	240
atttatggag	cttctatgct	tttcttctgg	atgttcttct	cttctgtttc	tctttggttc	300
gctacttgtc	tttctgtttt	ctattgtctt	aaaatttctg	gattcactca	atcttatttc	360
ctttggctta	aattcagaat	ttctaaactt	atgccatggc	ttcttcttgg	atctcttctt	420
gcttctatgt	ctattgctgc	tgtttctctt	gatgttggat	atccaaaaaa	tatgaataat	480
aatgatttcc	ttaaaaatgc	tactcttaaa	aaaactgaac	ttaaaattgg	accaattaat	540
ggagttcttc	ttgttaatct	tgctcttctt	ttcccacttg	ctattttcgt	tatgtgtact	600
ttcatgcttt	tcatttctct	ttatagacat	actcatagaa	tgcaaaatag	atctcatgga	660
gttagaaatg	cttctactga	agctcatatt	aatgctctta	aaactgttat	tactttcttc	720
tgtttcttca	tttcttattt	cgctgctttc	atggctaata	tgactttctc	tattccatat	780
ggatctcaat	gtttcttcgt	tgttaaagat	attatggctg	ctttcccatc	tggacattct	840
gttattatta	ttcttaataa	ttctaaattc	caacaaccat	tcagaagact	tctttgtctt	900
aaaaaaaatc	aataa					915

<210>65

< 211> 915

< 212> ADN

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón R2 para Drosophila

<400> 65

atggcetect ecetgteege catececcae etgateatea tgteegeega gtteateace 60 120 ggcatcaccg tgaacggctt cctggtgatc atcaacggca aggagctgat caagtcccgc aagetgacce ceatgeaget getgtgeate tgeateggea tetecegett eggeetgetg 180 atggtgctga tggtgcagtc cttcttctcc gtgttcttcc ccctgttcta ccgcgtgaag 240 atctacggcg cctccatgct gttcttctgg atgttcttct cctccgtgtc cctgtggttc 300 360 gccacctgcc tgtccgtgtt ctactgcctg aagatctccg gcttcaccca gtcctacttc 420 ctgtggctga agttccgcat ctccaagctg atgccctggc tgctgctggg ctccctgctg 480 gcctccatgt ccatcgccgc cgtgtccctg gacgtgggct accccaagaa catgaacaac 540 aacgacttcc tgaagaacgc caccctgaag aagaccgagc tgaagatcgg ccccatcaac ggcgtgctgc tggtgaacct ggccctgctg ttccccctgg ccatcttcgt gatgtgcacc 600 ttcatgctgt tcatctccct gtaccgccac acccaccgca tgcagaaccg ctcccacggc 660 720 gtgcgcaacg cctccaccga ggcccacatc aacgccctga agaccgtgat caccttcttc

tgcttcttca	tctcctactt	cgccgccttc	atggccaaca	tgaccttctc	catcccctac	780
ggctcccagt	gcttcttcgt	ggtgaaggac	atcatggccg	ccttcccctc	cggccactcc	840
gtgatcatca	tcctgaacaa	ctccaagttc	cagcagccct	tccgccgcct	gctgtgcctg	900
aagaagaacc	agtaa					915
<210> 66						
< 211> 915						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R2 para	a ser humano		
<400> 66						
atggccagca	gcctgagcgc	catececcae	ctgatcatca	tgagcgccga	gttcatcacc	60
ggcatcaccg	tgaacggctt	cctggtgatc	atcaacggca	aggagctgat	caagagccgc	120
aagctgaccc	ccatgcagct	gctgtgcatc	tgcatcggca	tcagccgctt	cggcctgctg	180
atggtgctga	tggtgcagag	cttcttcagc	gtgttcttcc	ccctgttcta	ccgcgtgaag	240
atctacggcg	ccagcatgct	gttcttctgg	atgttcttca	gcagcgtgag	cctgtggttc	300
gccacctgcc	tgagcgtgtt	ctactgcctg	aagatcagcg	gcttcaccca	gagctacttc	360
ctgtggctga	agttccgcat	cagcaagctg	atgccctggc	tgctgctggg	cagcctgctg	420
gccagcatga	gcatcgccgc	cgtgagcctg	gacgtgggct	accccaagaa	catgaacaac	480
aacgacttcc	tgaagaacgc	caccctgaag	aagaccgagc	tgaagatcgg	ccccatcaac	540
ggcgtgctgc	tggtgaacct	ggccctgctg	ttccccctgg	ccatcttcgt	gatgtgcacc	600
ttcatgctgt	tcatcagcct	gtaccgccac	acccaccgca	tgcagaaccg	cagccacggc	660
gtgcgcaacg	ccagcaccga	ggcccacatc	aacgccctga	agaccgtgat	caccttcttc	720
tgcttcttca	tcagctactt	cgccgccttc	atggccaaca	tgaccttcag	catcccctac	780
ggcagccagt	gcttcttcgt	ggtgaaggac	atcatggccg	ccttccccag	cggccacagc	840
gtgatcatca	tcctgaacaa	cagcaagttc	cagcagccct	taagaagaat	gctgtgcctg	900
aagaagaacc	agtaa					915
<210> 67						
< 211> 915						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial –	optimizado cor	n codón R2 pai	ra ratón		
<400> 67						
atggccagca	gcctgagcgc	catcccccac	ctgatcatca	tgagcgccga	gttcatcacc	60
ggcatcaccg	tgaacggctt	cctggtgatc	atcaacggca	aggagctgat	caagagcagg	120

aagctgaccc	ccatgcagct	gctgtgcatc	tgcatcggca	tcagcaggtt	cggcctgctg	180
atggtgctga	tggtgcagag	cttcttcagc	gtgttcttcc	ccctgttcta	cagggtgaag	240
atctacggcg	ccagcatgct	gttcttctgg	atgttcttca	gcagcgtgag	cctgtggttc	300
gccacctgcc	tgagcgtgtt	ctactgcctg	aagatcagcg	gcttcaccca	gagctacttc	360
ctgtggctga	agttcaggat	cagcaagctg	atgccctggc	tgctgctggg	cagcctgctg	420
gccagcatga	gcatcgccgc	cgtgagcctg	gacgtgggct	accccaagaa	catgaacaac	480
aacgacttcc	tgaagaacgc	caccctgaag	aagaccgagc	tgaagatcgg	ccccatcaac	540
ggcgtgctgc	tggtgaacct	ggccctgctg	ttccccctgg	ccatcttcgt	gatgtgcacc	600
ttcatgctgt	tcatcagcct	gtacaggcac	acccacagga	tgcagaacag	gagccacggc	660
gtgaggaacg	ccagcaccga	ggcccacatc	aacgccctga	agaccgtgat	caccttcttc	720
tgcttcttca	tcagctactt	cgccgccttc	atggccaaca	tgaccttcag	catcccctac	780
ggcagccagt	gcttcttcgt	ggtgaaggac	atcatggccg	ccttccccag	cggccacagc	840
gtgatcatca	tcctgaacaa	cagcaagttc	cagcagccct	tcaggaggct	gctgtgcctg	900
aagaagaacc	agtaa					915

<210> 68

< 211> 915

< 212> ADN

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial –optimizado con codón R2 para S cerevisiae

<400> 68

atggettett etttgtetge tateceacae ttgateatea tgtetgetga atteateaet 60 120 ggtatcactg ttaacggttt cttggttatc atcaacggta aggaattgat caagtctaga aagttgactc caatgcaatt gttgtgtatc tgtatcggta tctctagatt cggtttgttg 180 atggttttga tggttcaatc tttcttctct gttttcttcc cattgttcta cagagttaag 240 atctacggtg cttctatgtt gttcttctgg atgttcttct cttctgtttc tttgtggttc 300 360 gctacttgtt tgtctgtttt ctactgtttg aagatctctg gtttcactca atcttacttc 420 ttgtggttga agttcagaat ctctaagttg atgccatggt tgttgttggg ttctttgttg gcttctatgt ctatcgctgc tgtttctttg gacgttggtt acccaaagaa catgaacaac 480 aacgacttct tgaagaacgc tactttgaag aagactgaat tgaagatcgg tccaatcaac 540 ggtgttttgt tggttaactt ggctttgttg ttcccattgg ctatcttcgt tatgtgtact 600 ttcatgttgt tcatctcttt gtacagacac actcacagaa tgcaaaacag atctcacggt 660 720 gttagaaacg cttctactga agctcacatc aacgctttga agactgttat cactttcttc

tgtttcttca	tctcttactt	cgctgctttc	atggctaaca	tgactttctc	tatcccatac	780
ggttctcaat	gtttcttcgt	tgttaaggac	atcatggctg	ctttcccatc	tggtcactct	840
gttatcatca	tcttgaacaa	ctctaagttc	caacaaccat	tcagaagatt	gttgtgtttg	900
aagaagaacc	aataa					915
<210> 69						
< 211> 915						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R2 para	a E coli		
<400> 69						
atggcttctt	ctctgtctgc	tatcccgcac	ctgatcatca	tgtctgctga	attcatcacc	60
ggtatcaccg	ttaacggttt	cctggttatc	atcaacggta	aagaactgat	caaatctcgt	120
aaactgaccc	cgatgcagct	gctgtgcatc	tgcatcggta	tctctcgttt	cggtctgctg	180
atggttctga	tggttcagtc	tttcttctct	gttttcttcc	cgctgttcta	ccgtgttaaa	240
atctacggtg	cttctatgct	gttcttctgg	atgttcttct	cttctgtttc	tctgtggttc	300
gctacctgcc	tgtctgtttt	ctactgcctg	aaaatctctg	gtttcaccca	gtcttacttc	360
ctgtggctga	aattccgtat	ctctaaactg	atgccgtggc	tgctgctggg	ttctctgctg	420
gcttctatgt	ctatcgctgc	tgtttctctg	gacgttggtt	acccgaaaaa	catgaacaac	480
aacgacttcc	tgaaaaacgc	taccctgaaa	aaaaccgaac	tgaaaatcgg	tccgatcaac	540
ggtgttctgc	tggttaacct	ggctctgctg	ttcccgctgg	ctatcttcgt	tatgtgcacc	600
ttcatgctgt	tcatctctct	gtaccgtcac	acccaccgta	tgcagaaccg	ttctcacggt	660
gttcgtaacg	cttctaccga	agctcacatc	aacgctctga	aaaccgttat	caccttcttc	720
tgcttcttca	tctcttactt	cgctgctttc	atggctaaca	tgaccttctc	tatcccgtac	780
ggttctcagt	gcttcttcgt	tgttaaagac	atcatggctg	ctttcccgtc	tggtcactct	840
gttatcatca	tcctgaacaa	ctctaaattc	cagcagccgt	tccgtcgtct	gctgtgcctg	900
aaaaaaaacc	agtaa					915
<210> 70						
< 211> 951						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R3 para	a C elegans		
<400> 70						
atgtctggac	ttcataaatg	ggttttcctt	gttctttctg	ctactcaatt	cattcttgga	60
atgcttggaa	atggattcat	tgttcttgtt	tctggatctt	cttggttcaa	aaataaaact	120

atttctcttt	ctgatttcat	tattgctaat	cttgctcttt	ctagaattgt	tettetttgg	180
attettettg	ttgatggagt	tcttattgtt	ttctcttcta	aagttcatga	tgaaggaatt	240
attatgcaaa	ttattgatat	tttctggact	ttcactaatc	atctttctat	ttggcttgct	300
acttgtcttt	ctgttcttta	ttgtcttaaa	attgcttctt	teteteatee	aactttcctt	360
tggcttaaat	ggagagtttc	tagaatggtt	gttcaaatga	ttcttggagc	tettgttett	420
tettgtgett	ctgctctttc	tcttattcat	gaattcaaaa	tgtattctat	tcttggagga	480
attgatggaa	ctggaaatgt	tactgaacat	ttcagaaaaa	aaagaaatga	atataaactt	540
attcatgttc	ttggaactct	ttggaatctt	ccaccactta	ttgtttctct	tgcttcttat	600
ttccttctta	ttgtttctct	tggaagacat	actcaaagaa	tggaacaatc	tggaacttct	660
tctggagatc	catctgctga	agctcataaa	agagctatta	aaattattct	ttctttcctt	720
cttcttttcc	ttctttattt	ccttgctttc	cttattactt	cttcttctta	tttcattcca	780
ggaactgaaa	tggttaaaat	tattggagaa	cttattacta	tgttctatcc	agetteteat	840
tctttcattc	ttattcttgg	aaattctaaa	cttaaacata	tgttcgttgg	aatgcttaga	900
tgtgaatctg	gacatcttaa	accaggatct	aaaggaccag	tttctcttta	a	951
<210> 71						
< 211> 951						
. 010. ADN						

< 212> ADN

5 < 213> Secuencia artificial

< 223> constructo artificial-optimizado con codón R3 para Drosophila

<400> 71

atgtccggcc tgcacaagtg ggtgttcctg gtgctgtccg ccacccagtt catcctgggc 60 120 atgctgggca acggcttcat cgtgctggtg tccggctcct cctggttcaa gaacaagacc atctccctgt ccgacttcat catcgccaac ctggccctgt cccgcatcgt gctgctgtgg 180 atcctqctqq tqqacqqcqt qctqatcqtq ttctcctcca aqqtqcacqa cqaqqqcatc 240 300 atcatgcaga tcatcgacat cttctggacc ttcaccaacc acctgtccat ctggctggcc 360 acctgectgt eegtgetgta etgeetgaag ategeeteet teteceaece eacetteetg 420 tggctgaagt ggcgcgtgtc ccgcatggtg gtgcagatga tcctgggcgc cctggtgctg tectgegeet eegecetgte eetgateeae gagtteaaga tgtacteeat eetgggegge 480 atcgacggca ccggcaacgt gaccgagcac ttccgcaaga agcgcaacga gtacaagctg 540 atccacgtgc tgggcaccct gtggaacctg cccccctga tcgtgtccct ggcctcctac 600 660 ttectgetga tegtgteeet gggeegeeae acceagegea tggageagte eggeaeetee 720 teeggegace ceteegeega ggeecacaag egegecatea agateateet gteetteetg

ctgctgttcc	tgctgtactt	cctggccttc	ctgatcacct	cctcctccta	cttcatcccc	780
ggcaccgaga	tggtgaagat	catcggcgag	ctgatcacca	tgttctaccc	cgcctcccac	840
tccttcatcc	tgatcctggg	caactccaag	ctgaagcaca	tgttcgtggg	catgctgcgc	900
tgcgagtccg	gccacctgaa	gcccggctcc	aagggccccg	tgtccctgta	a	951
<210> 72						
< 211> 951						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R3 para	a ser humano		
<400> 72						
atgagcggcc	tgcacaagtg	ggtgttcctg	gtgctgagcg	ccacccagtt	catcctgggc	60
atgctgggca	acggcttcat	cgtgctggtg	agcggcagca	gctggttcaa	gaacaagacc	120
atcagcctga	gcgacttcat	catcgccaac	ctggccctga	gccgcatcgt	gctgctgtgg	180
atcctgctgg	tggacggcgt	gctgatcgtg	ttcagcagca	aggtgcacga	cgagggcatc	240
atcatgcaga	tcatcgacat	cttctggacc	ttcaccaacc	acctgagcat	ctggctggcc	300
acctgcctga	gcgtgctgta	ctgcctgaag	atcgccagct	tcagccaccc	caccttcctg	360
tggctgaagt	ggcgcgtgag	ccgcatggtg	gtgcagatga	teetgggege	cctggtgctg	420
agctgcgcca	gcgccctgag	cctgatccac	gagttcaaga	tgtacagcat	cctgggcggc	480
atcgacggca	ccggcaacgt	gaccgagcac	ttccgcaaga	agcgcaacga	gtacaagctg	540
atccacgtgc	tgggcaccct	gtggaacctg	cccccctga	togtgagcct	ggccagctac	600
ttcctgctga	tcgtgagcct	gggccgccac	acccagcgca	tggagcagag	cggcaccagc	660
ageggegaee	ccagcgccga	ggcccacaag	cgcgccatca	agatcatcct	gagcttcctg	720
ctgctgttcc	tgctgtactt	cctggccttc	ctgatcacca	gcagcagcta	cttcatcccc	780
ggcaccgaga	tggtgaagat	catcggcgag	ctgatcacca	tgttctaccc	cgccagccac	840
agcttcatcc	tgatcctggg	caacagcaag	ctgaagcaca	tgttcgtggg	catgctgcgc	900
tgcgagagcg	gccacctgaa	gcccggcagc	aagggccccg	tgagcctgta	a	951
<210> 73						
< 211> 951						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R3 para	a ratón		
<400> 73						
atgagcggcc	tgcacaagtg	ggtgttcctg	gtgctgagcg	ccacccagtt	catcctgggc	60
atgctgggca	acggcttcat	cgtgctggtg	agcggcagca	gctggttcaa	gaacaagacc	120

atcagcctga	gcgacttcat	catcgccaac	ctggccctga	gcaggatcgt	gctgctgtgg	180
atcctgctgg	tggacggcgt	gctgatcgtg	ttcagcagca	aggtgcacga	cgagggcatc	240
atcatgcaga	tcatcgacat	cttctggacc	ttcaccaacc	acctgagcat	ctggctggcc	300
acctgcctga	gcgtgctgta	ctgcctgaag	atcgccagct	tcagccaccc	caccttcctg	360
tggctgaagt	ggagggtgag	caggatggtg	gtgcagatga	tcctgggcgc	cctggtgctg	420
agctgcgcca	gcgccctgag	cctgatccac	gagttcaaga	tgtacagcat	cctgggcggc	480
atcgacggca	ccggcaacgt	gaccgagcac	ttcaggaaga	agaggaacga	gtacaagctg	540
atccacgtgc	tgggcaccct	gtggaacctg	cccccctga	tcgtgagcct	ggccagctac	600
ttcctgctga	tcgtgagcct	gggcaggcac	acccagagga	tggagcagag	cggcaccagc	660
agcggcgacc	ccagcgccga	ggcccacaag	agggccatca	agatcatcct	gagetteetg	720
ctgctgttcc	tgctgtactt	cctggccttc	ctgatcacca	gcagcagcta	cttcatcccc	780
ggcaccgaga	tggtgaagat	catcggcgag	ctgatcacca	tgttctaccc	cgccagccac	840
agcttcatcc	tgatcctggg	caacagcaag	ctgaagcaca	tgttcgtggg	catgctgagg	900
tgcgagagcg	gccacctgaa	gcccggcagc	aagggccccg	tgagcctgta	a	951
<210> 74						
< 211> 951						

< 211> 951

< 212> ADN

5 < 213> Secuencia artificial

< 223> constructo artificial-optimizado con codón R3 para S cerevisiae

<400> 74

atgtctggtt tgcacaagtg ggttttcttg gttttgtctg ctactcaatt catcttgggt 60 120 atgttgggta acggtttcat cgttttggtt tctggttctt cttggttcaa gaacaagact atctctttgt ctgacttcat catcgctaac ttggctttgt ctagaatcgt tttgttgtgg 180 atcttqttqq ttqacqqtqt tttqatcqtt ttctcttcta aqqttcacqa cqaaqqtatc 240 300 atcatgcaaa tcatcgacat cttctggact ttcactaacc acttgtctat ctggttggct 360 acttgtttgt ctgttttgta ctgtttgaag atcgcttctt tctctcaccc aactttcttg 420 tggttgaagt ggagagtttc tagaatggtt gttcaaatga tcttgggtgc tttggttttg tcttgtgctt ctgctttgtc tttgatccac gaattcaaga tgtactctat cttgggtggt 480 atcgacggta ctggtaacgt tactgaacac ttcagaaaga agagaaacga atacaagttg 540 atccacgttt tgggtacttt gtggaacttg ccaccattga tcgtttcttt ggcttcttac 600 ttettgttga tegtttettt gggtagacae acteaaagaa tggaacaate tggtaettet 660 720 tctggtgacc catctgctga agctcacaag agagctatca agatcatctt gtctttcttg

ttgttgttct	tgttgtactt	cttggctttc	ttgatcactt	cttcttctta	cttcatccca	780
ggtactgaaa	tggttaagat	catcggtgaa	ttgatcacta	tgttctaccc	agcttctcac	840
tctttcatct	tgatcttggg	taactctaag	ttgaagcaca	tgttcgttgg	tatgttgaga	900
tgtgaatctg	gtcacttgaa	gccaggttct	aagggtccag	tttctttgta	a	951
<210> 75						
< 211> 951						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R3 para	a E. coli		
<400> 75						
atgtctggtc	tgcacaaatg	ggttttcctg	gttctgtctg	ctacccagtt	catcctgggt	60
atgctgggta	acggtttcat	cgttctggtt	tctggttctt	cttggttcaa	aaacaaaacc	120
atctctctgt	ctgacttcat	catcgctaac	ctggctctgt	ctcgtatcgt	tctgctgtgg	180
atcctgctgg	ttgacggtgt	tctgatcgtt	ttctcttcta	aagttcacga	cgaaggtatc	240
atcatgcaga	tcatcgacat	cttctggacc	ttcaccaacc	acctgtctat	ctggctggct	300
acctgcctgt	ctgttctgta	ctgcctgaaa	atcgcttctt	tctctcaccc	gaccttcctg	360
tggctgaaat	ggcgtgtttc	tcgtatggtt	gttcagatga	teetgggtge	tctggttctg	420
tcttgcgctt	ctgctctgtc	tctgatccac	gaattcaaaa	tgtactctat	cctgggtggt	480
atcgacggta	ccggtaacgt	taccgaacac	ttccgtaaaa	aacgtaacga	atacaaactg	540
atccacgttc	tgggtaccct	gtggaacctg	ccgccgctga	togtttotot	ggcttcttac	600
ttcctgctga	tegtttetet	gggtcgtcac	acccagcgta	tggaacagtc	tggtacctct	660
tctggtgacc	cgtctgctga	agctcacaaa	cgtgctatca	aaatcatcct	gtctttcctg	720
ctgctgttcc	tgctgtactt	cctggctttc	ctgatcacct	cttcttctta	cttcatcccg	780
ggtaccgaaa	tggttaaaat	catcggtgaa	ctgatcacca	tgttctaccc	ggcttctcac	840
tctttcatcc	tgatcctggg	taactctaaa	ctgaaacaca	tgttcgttgg	tatgctgcgt	900
tgcgaatctg	gtcacctgaa	accgggttct	aaaggtccgg	tttctctgta	a	951
<210> 76						
< 211> 921						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial –	optimizado cor	n codón R4 pai	ra C elegans		

<400> 76

atgcatcaaa	ttctttcct	ttatgatatt	actgtttctg	ctattcttaa	tttcgttgga	60
cttgttgtta	atcttttcat	tgttgttgtt	aattatagaa	cttgggttca	atctcataga	120
atttcttctt	ctaatagaat	tcttttctct	cttggagtta	ctagattcat	tatgcttgga	180
cttttccttc	ttaatattat	ttatctttc	acttctccac	atgttgaaag	atctgttcat	240
ctttctactt	tetteettet	ttgttggatg	ttccttgaat	ctacttctct	ttggcttgtt	300
actcttctta	atgctcttta	ttgtgttaaa	attactgatt	tccaacattc	tgttttcctt	360
cttcttaaaa	gaaaactttc	tccaaaaatt	ccaagacttc	ttcttgcttg	tgttcttatt	420
tctgctttct	ctactcttct	ttatgttgtt	cttactcaaa	cttctccatt	cccagaactt	480
cttactggat	ctaatggaac	tgtttgtgat	attaataaat	ctattctttc	tcttgttact	540
tctcttgttc	tttcttcttt	ccttcaattc	attatgaatg	ttacttctgc	ttctcttctt	600
attcattctc	ttagaagaca	tattcaaaaa	atgcaaaaaa	atgctactga	tttctggaat	660
ccacaaactg	aagctcatat	gggagctatg	aaacttatga	tttatttcct	tattctttat	720
attccatatt	ctcttgctac	tcttcttcaa	tatcttccat	ctgttagaat	ggatcttgga	780
gctacttcta	tttgtatgat	tatttctact	ttctatccac	caggacattc	tgttcttatt	840
attcttactc	atccaaaact	taaaactaaa	gctaaaaaaa	ttctttgttt	caatatttgg	900
tggaatttct	cttctaaata	a				921

<210> 77

< 211> 921

5 < 212> ADN

< 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón R4 para Drosophila

<400> 77

tgcacca	ga	tectgtteet	gtccgccctg	accgtgtccg	ccatcctgaa	cttcgtgggc	60
tggtggt	ga	acctgttcat	cgtggtggtg	aactaccgca	cctgggtgca	gtcccaccgc	120
tctcctc	ct	ccaaccgcat	cctgttctcc	ctgggcgtga	cccgcttcat	catgctgggc	180
tgttcct	gc	tgaacatcat	ctacctgttc	acctccccc	acgtggagcg	ctccgtgcac	240
tgtccac	ct	tcttcctgct	gtgctggatg	ttcctggagt	ccacctccct	gtggctggtg	300
ccctgct	ga	acgccctgta	ctgcgtgaag	atcaccgact	tccagcactc	cgtgttcctg	360
tgctgaa	gc	gcaagctgtc	ccccaagatc	ccccgcctgc	tgctggcctg	cgtgctgatc	420
ccgcctt	ct	ccaccctgct	gtacgtggtg	ctgacccaga	cctccccctt	ccccgagetg	480
tgaccgg	ct	ccaacggcac	cgtgtgcgac	atcaacaagt	ccatcctgtc	cctggtgacc	540
ccctggt	gc	tgtcctcctt	cctgcagttc	atcatgaacg	tgacctccgc	ctccctgctg	600
tccactc	cc	tgcgccgcca	catccagaag	atgcagaaga	acgccaccga	cttctggaac	660
cccagac	cg	aggcccacat	gggcgccatg	aagctgatga	tctacttcct	gatcctgtac	720
tccccta	ct	ccctggccac	cctgctgcag	tacctgccct	ccgtgcgcat	ggacctgggc	780
ccacctc	ca	tctgcatgat	catctccacc	ttctaccccc	ccggccactc	cgtgctgatc	840
tcctgac	cc	accccaagct	gaagaccaag	gccaagaaga	tcctgtgctt	caacatctgg	900
ggaactt	ct	cctccaagta	a				921

<210> 78

- 5 < 211> 921
 - < 212> ADN
 - < 213> Secuencia artificial
 - <220>
 - < 223> constructo artificial –optimizado con codón R4 para ser humano
- 10 <400> 78

atgcaccaga	tcctgttcct	gagcgccctg	accgtgagcg	ccatcctgaa	cttcgtgggc	60
ctggtggtga	acctgttcat	cgtggtggtg	aactaccgca	cctgggtgca	gagccaccgc	120
atcagcagca	gcaaccgcat	cctgttcagc	ctgggcgtga	cccgcttcat	catgctgggc	180
ctgttcctgc	tgaacatcat	ctacctgttc	accagecece	acgtggagcg	cagcgtgcac	240
ctgagcacct	tetteetget	gtgctggatg	ttcctggaga	gcaccagcct	gtggctggtg	300
accctgctga	acgccctgta	ctgcgtgaag	atcaccgact	tccagcacag	cgtgttcctg	360
ctgctgaagc	gcaagctgag	ccccaagatc	ccccgcctgc	tgctggcctg	cgtgctgatc	420
agcgccttca	gcaccctgct	gtacgtggtg	ctgacccaga	ccagcccctt	ccccgagctg	480
ctgaccggca	gcaacggcac	cgtgtgcgac	atcaacaaga	gcatcctgag	cctggtgacc	540
agcctggtgc	tgagcagctt	cctgcagttc	atcatgaacg	tgaccagcgc	cagcctgctg	600
atccacagcc	tgcgccgcca	catccagaag	atgcagaaga	acgccaccga	cttctggaac	660
ccccagaccg	aggcccacat	gggcgccatg	aagctgatga	tctacttcct	gatcctgtac	720
atcccctaca	gcctggccac	cctgctgcag	tacctgccca	gcgtgcgcat	ggacctgggc	780
gccaccagca	tctgcatgat	catcagcacc	ttctaccccc	ccggccacag	cgtgctgatc	840
atcctgaccc	accccaagct	gaagaccaag	gccaagaaga	tcctgtgctt	caacatctgg	900
tggaacttca	gcagcaagta	a				921
<210> 79						
< 211> 921						
< 212> ADN						

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón R4 para ratón

<400> 79

atgcaccaga tcctgttcct gagcgccctg accgtgagcg ccatcctgaa cttcgtgggc 60 120 ctggtggtga acctgttcat cgtggtggtg aactacagga cctgggtgca gagccacagg

atcagcagca	gcaacaggat	cctgttcagc	ctgggcgtga	ccaggttcat	catgctgggc	180
ctgttcctgc	tgaacatcat	ctacctgttc	accagccccc	acgtggagag	gagcgtgcac	240
ctgagcacct	tcttcctgct	gtgctggatg	ttcctggaga	gcaccagcct	gtggctggtg	300
accctgctga	acgccctgta	ctgcgtgaag	atcaccgact	tccagcacag	cgtgttcctg	360
ctgctgaaga	ggaagctgag	ccccaagatc	cccaggctgc	tgctggcctg	cgtgctgatc	420
agcgccttca	gcaccctgct	gtacgtggtg	ctgacccaga	ccagcccctt	ccccgagctg	480
ctgaccggca	gcaacggcac	cgtgtgcgac	atcaacaaga	gcatcctgag	cctggtgacc	540
agcctggtgc	tgagcagctt	cctgcagttc	atcatgaacg	tgaccagcgc	cagcctgctg	600
atccacagcc	tgaggaggca	catccagaag	atgcagaaga	acgccaccga	cttctggaac	660
ccccagaccg	aggcccacat	gggcgccatg	aagctgatga	tctacttcct	gatcctgtac	720
atcccctaca	gcctggccac	cctgctgcag	tacctgccca	gcgtgaggat	ggacctgggc	780
gccaccagca	tctgcatgat	catcagcacc	ttctaccccc	ccggccacag	cgtgctgatc	840
atcctgaccc	accccaaget	gaagaccaag	gccaagaaga	tcctgtgctt	caacatctgg	900
tggaacttca	gcagcaagta	a				921

<210> 80

< 211> 921

< 212> ADN

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón R4 para S cerevisiae

<400>80

60 atgcaccaaa tcttgttctt gtctgctttg actgtttctg ctatcttgaa cttcgttggt ttggttgtta acttgttcat cgttgttgtt aactacagaa cttgggttca atctcacaga 120 atctcttctt ctaacagaat cttgttctct ttgggtgtta ctagattcat catgttgggt 180 ttgttcttgt tgaacatcat ctacttgttc acttctccac acgttgaaag atctgttcac 240 300 ttgtctactt tcttcttgtt gtgttggatg ttcttggaat ctacttcttt gtggttggtt 360 actttgttga acgctttgta ctgtgttaag atcactgact tccaacactc tgttttcttg 420 ttgttgaaga gaaagttgtc tccaaagatc ccaagattgt tgttggcttg tgttttgatc tetgetttet etaetttgtt gtaegttgtt ttgaetcaaa ettetecatt eccagaattg 480 ttgactggtt ctaacggtac tgtttgtgac atcaacaagt ctatcttgtc tttggttact 540 tetttggttt tgtettettt ettgeaatte ateatgaacg ttaettetge ttetttgttg 600 atccactctt tgagaagaca catccaaaag atgcaaaaga acgctactga cttctggaac 660 720 ccacaaactg aagctcacat gggtgctatg aagttgatga tctacttctt gatcttgtac

atcccatact ctttggctac tttgttgcaa tacttgccat ctgttagaat ggacttgggt	780
gctacttcta tctgtatgat catctctact ttctacccac caggtcactc tgttttgatc	840
atcttgactc acccaaagtt gaagactaag gctaagaaga tcttgtgttt caacatctgg	900
tggaacttct cttctaagta a	921
<210> 81	
< 211> 921	
< 212> ADN	
< 213> Secuencia artificial	
<220>	
< 223> constructo artificial-optimizado con codón R4 para E. coli	
<400> 81	
atgeaceaga teetgtteet gtetgetetg accepttetg etateetgaa ettegttegt	60
ctggttgtta acctgttcat cgttgttgtt aactaccgta cctgggttca gtctcaccgt	120
atctcttctt ctaaccgtat cctgttctct ctgggtgtta cccgtttcat catgctgggt	180
ctgttcctgc tgaacatcat ctacctgttc acctctccgc acgttgaacg ttctgttcac	240
ctgtctacct tettectget gtgctggatg tteetggaat etacetetet gtggctggtt	300
accetgetga acgetetgta etgegttaaa atcacegaet tecageaete tgtttteetg	360
ctgctgaaac gtaaactgtc tccgaaaatc ccgcgtctgc tgctggcttg cgttctgatc	420
totgotttot otaccotgot gtacgttgtt otgaccoaga cototoogtt ocoggaactg	480
ctgaccggtt ctaacggtac cgtttgcgac atcaacaaat ctatcctgtc tctggttacc	540
tetetggtte tgtettettt cetgeagtte atcatgaacg ttacetetge ttetetgetg	600
atccactctc tgcgtcgtca catccagaaa atgcagaaaa acgctaccga cttctggaac	660
ccgcagaccg aagctcacat gggtgctatg aaactgatga tctacttcct gatcctgtac	720
atcccgtact ctctggctac cctgctgcag tacctgccgt ctgttcgtat ggacctgggt	780
gctacctcta tctgcatgat catctctacc ttctacccgc cgggtcactc tgttctgatc	840
atectgacec accegaaact gaaaaccaaa getaaaaaaa teetgtgett caacatetgg	900
tggaacttct cttctaaata a	921
<210> 82	
< 211> 936	
< 212> ADN	
< 213> Secuencia artificial	
<220>	
< 223> constructo artificial-optimizado con codón R7 para C elegans	
<400> 82	
atgettgata aagttgaate tactettatg ettattgetg etggagaatt egetatggga	60
attettggaa atgettteat tggaettgtt aattgtatga attggattaa aaatagaaaa	120

attettggaa atgettteat tggaettgtt aattgtatga attggattaa aaatagaaaa

attgcttcta	ttgatcttat	tcttacttct	cttgctattt	ctagaatttg	tettetttgt	180
attattcttc	ttgattattt	cattcttgga	ctttatccag	atgtttatac	tactggaaaa	240
aaaatgagaa	ttattgattt	cttctggact	cttactaatc	atcttaatgt	ttggttcgct	300
acttgtcttt	ctgttttcta	tttccttaaa	attgctaatt	tcttccatcc	acttttcctt	360
tggatgaaat	ggaaaattga	ttctgctatt	ccaagaattc	ttcttggatg	tettgettte	420
tctgttttca	tttctcttgt	tgtttctgaa	aatcttaatg	atgatttcag	atcttgtgtt	480
aaagttaaaa	aaaaaactaa	tattactgtt	aaatgtagag	ttaataaagc	tcaatatgct	540
tctgttaaaa	tttgtcttaa	tcttcttact	cttttcccat	tctctgtttc	tgttatttct	600
ttccttcttc	ttcttcttc	tctttggaga	catactagac	aaatgaaaat	ttctgctact	660
ggatgtagag	atccatctat	tgaagctcat	gttggagcta	tgaaagctgt	tatttctttc	720
cttcttcttt	tcattgctta	ttatcttgct	ttccttgttg	ctacttcttc	ttatttcatg	780
ccagaaactg	aacttgctgt	tatgattgga	gaacttattg	ctcttattta	tccatctcat	840
tctcttattc	ttattcttgg	aaataataaa	cttagacaag	cttctcttag	agttctttgg	900
aaagttaaat	gtattcttaa	aagaagaaat	cattaa			936
<210> 83						

< 211> 936

< 212> ADN

< 213> Secuencia artificial 5

< 223> constructo artificial-optimizado con codón R7 para Drosophila

<400>83

60 atgctggaca aggtggagtc caccctgatg ctgatcgccg ccggcgagtt cgccatgggc atcctgggca acgccttcat cggcctggtg aactgcatga actggatcaa gaaccgcaag 120 atcgcctcca tcgacctgat cctgacctcc ctggccatct cccgcatctg cctgctgtgc 180 240 atcatectge tggactactt catectggge etgtaceceg aegtgtacae caeeggeaag aagatgegea teategaett ettetggaee etgaeeaaee aeetgaaegt gtggttegee 300 acctgcctgt ccgtgttcta cttcctgaag atcgccaact tcttccaccc cctgttcctg 360 420 tggatgaagt ggaagatcga ctccgccatc ccccgcatcc tgctgggctg cctggccttc 480 tecgtgttea tetecetggt ggtgteegag aacetgaacg acgaetteeg etectgegtg aaggtgaaga agaagaccaa catcaccgtg aagtgccgcg tgaacaaggc ccagtacgcc 540 teegtgaaga tetgeetgaa cetgetgace etgtteeeet teteegtgte egtgatetee 600 ttcctgctgc tgctgctgtc cctgtggcgc cacacccgcc agatgaagat ctccgccacc 660 720 ggctgccgcg acccctccat cgaggcccac gtgggcgcca tgaaggccgt gatctccttc

ctgctgctgt	tcatcgccta	ctacctggcc	ttcctggtgg	ccacctcctc	ctacttcatg	780
cccgagaccg	agctggccgt	gatgatcggc	gagctgatcg	ccctgatcta	cccctcccac	840
tccctgatcc	tgatcctggg	caacaacaag	ctgcgccagg	cctccctgcg	cgtgctgtgg	900
aaggtgaagt	gcatcctgaa	gcgccgcaac	cactaa			936
<210> 84						
< 211> 936						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constru	ucto artificial-o _l	otimizado con	codón R7 para	a ser humano		
<400> 84						
atgctggaca	aggtggagag	caccctgatg	ctgatcgccg	ccggcgagtt	cgccatgggc	60
atcctgggca	acgccttcat	cggcctggtg	aactgcatga	actggatcaa	gaaccgcaag	120
atcgccagca	tcgacctgat	cctgaccagc	ctggccatca	gccgcatctg	cctgctgtgc	180
atcatcctgc	tggactactt	catcctgggc	ctgtaccccg	acgtgtacac	caccggcaag	240
aagatgcgca	tcatcgactt	cttctggacc	ctgaccaacc	acctgaacgt	gtggttcgcc	300
acctgcctga	gcgtgttcta	cttcctgaag	atcgccaact	tcttccaccc	cctgttcctg	360
tggatgaagt	ggaagatcga	cagegeeate	ccccgcatcc	tgctgggctg	cctggccttc	420
agcgtgttca	tcagcctggt	ggtgagcgag	aacctgaacg	acgacttccg	cagctgcgtg	480
aaggtgaaga	agaagaccaa	catcaccgtg	aagtgccgcg	tgaacaaggc	ccagtacgcc	540
agcgtgaaga	tctgcctgaa	cctgctgacc	ctgttcccct	tcagcgtgag	cgtgatcagc	600
ttcctgctgc	tgctgctgag	cctgtggcgc	cacacccgcc	agatgaagat	cagcgccacc	660
ggctgccgcg	accccagcat	cgaggcccac	gtgggcgcca	tgaaggccgt	gatcagcttc	720
ctgctgctgt	tcatcgccta	ctacctggcc	ttcctggtgg	ccaccagcag	ctacttcatg	780
cccgagaccg	agctggccgt	gatgatcggc	gagctgatcg	ccctgatcta	ccccagccac	840
agcctgatcc	tgatcctggg	caacaacaag	ctgcgccagg	ccagcctgcg	cgtgctgtgg	900
aaggtgaagt	gcatcctgaa	gcgccgcaac	cactaa			936
<210> 85						
< 211> 936						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constru	ucto artificial-o _l	otimizado con	codón R7 para	a ratón		
<400> 85						
atgctggaca	aggtggagag	caccctgatg	ctgatcgccg	ccggcgagtt	cgccatgggc	60
atcctgggca	acgccttcat	cggcctggtg	aactgcatga	actggatcaa	gaacaggaag	120

atcctgggca acgccttcat cggcctggtg aactgcatga actggatcaa gaacaggaag

atcgccagca	tcgacctgat	cctgaccagc	ctggccatca	gcaggatctg	cctgctgtgc	180
atcatcctgc	tggactactt	catcctgggc	ctgtaccccg	acgtgtacac	caccggcaag	240
aagatgagga	tcatcgactt	cttctggacc	ctgaccaacc	acctgaacgt	gtggttcgcc	300
acctgcctga	gcgtgttcta	cttcctgaag	ategecaact	tcttccaccc	cctgttcctg	360
tggatgaagt	ggaagatcga	cagcgccatc	cccaggatcc	tgctgggctg	cctggccttc	420
agcgtgttca	tcagcctggt	ggtgagcgag	aacctgaacg	acgacttcag	gagctgcgtg	480
aaggtgaaga	agaagaccaa	catcaccgtg	aagtgcaggg	tgaacaaggc	ccagtacgcc	540
agcgtgaaga	tctgcctgaa	cctgctgacc	ctgttcccct	tcagcgtgag	cgtgatcagc	600
ttectgctgc	tgctgctgag	cctgtggagg	cacaccaggc	agatgaagat	cagegeeace	660
ggctgcaggg	accccagcat	cgaggcccac	gtgggcgcca	tgaaggccgt	gatcagcttc	720
ctgctgctgt	tcatcgccta	ctacctggcc	ttcctggtgg	ccaccagcag	ctacttcatg	780
cccgagaccg	agctggccgt	gatgatcggc	gagctgatcg	ccctgatcta	ccccagccac	840
agcctgatcc	tgatcctggg	caacaacaag	ctgaggcagg	ccagcctgag	ggtgctgtgg	900
aaggtgaagt	gcatcctgaa	gaggaggaac	cactaa			936

<210>86

< 211> 936

< 212> ADN

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón R7 para S cerevisiae

<400>86

atgttggaca aggttgaatc tactttgatg ttgatcgctg ctggtgaatt cgctatgggt 60 120 atcttgggta acgctttcat cggtttggtt aactgtatga actggatcaa gaacagaaag ategetteta tegaettgat ettgaettet ttggetatet etagaatetg tttgttgtgt 180 atcatcttqt tqqactactt catcttqqqt ttqtacccaq acqtttacac tactqqtaaq 240 300 aagatgagaa tcatcgactt cttctggact ttgactaacc acttgaacgt ttggttcgct 360 acttgtttgt ctgttttcta cttcttgaag atcgctaact tcttccaccc attgttcttg 420 tggatgaagt ggaagatcga ctctgctatc ccaagaatct tgttgggttg tttggctttc tetgttttea tetetttggt tgtttetgaa aacttgaacg acgaetteag atettgtgtt 480 aaggttaaga agaagactaa catcactgtt aagtgtagag ttaacaaggc tcaatacgct 540 totgttaaga totgtttgaa ottgttgact ttgttcccat totctgtttc tgttatctct 600 ttcttgttgt tgttgttgtc tttgtggaga cacactagac aaatgaagat ctctgctact 660 720 ggttgtagag acccatctat cgaagctcac gttggtgcta tgaaggctgt tatctctttc

ttgttgttgt	tcatcgctta	ctacttggct	ttcttggttg	ctacttcttc	ttacttcatg	780
ccagaaactg	aattggctgt	tatgatcggt	gaattgatcg	ctttgatcta	cccatctcac	840
tctttgatct	tgatcttggg	taacaacaag	ttgagacaag	cttctttgag	agttttgtgg	900
aaggttaagt	gtatcttgaa	gagaagaaac	cactaa			936
<210> 87						
< 211> 936						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R7 para	a E coli		
<400> 87						
atgctggaca	aagttgaatc	taccctgatg	ctgatcgctg	ctggtgaatt	cgctatgggt	60
atcctgggta	acgctttcat	cggtctggtt	aactgcatga	actggatcaa	aaaccgtaaa	120
atcgcttcta	tcgacctgat	cctgacctct	ctggctatct	ctcgtatctg	cctgctgtgc	180
atcatcctgc	tggactactt	catcctgggt	ctgtacccgg	acgtttacac	caccggtaaa	240
aaaatgcgta	tcatcgactt	cttctggacc	ctgaccaacc	acctgaacgt	ttggttcgct	300
acctgcctgt	ctgttttcta	cttcctgaaa	atcgctaact	tcttccaccc	gctgttcctg	360
tggatgaaat	ggaaaatcga	ctctgctatc	ccgcgtatcc	tgctgggttg	cctggctttc	420
tctgttttca	tctctctggt	tgtttctgaa	aacctgaacg	acgacttccg	ttcttgcgtt	480
aaagttaaaa	aaaaaaccaa	catcaccgtt	aaatgccgtg	ttaacaaagc	tcagtacgct	540
tctgttaaaa	tctgcctgaa	cctgctgacc	ctgttcccgt	tctctgtttc	tgttatctct	600
ttcctgctgc	tgctgctgtc	tctgtggcgt	cacacccgtc	agatgaaaat	ctctgctacc	660
ggttgccgtg	acccgtctat	cgaagctcac	gttggtgcta	tgaaagctgt	tatctctttc	720
ctgctgctgt	tcatcgctta	ctacctggct	ttcctggttg	ctacctcttc	ttacttcatg	780
ccggaaaccg	aactggctgt	tatgatcggt	gaactgatcg	ctctgatcta	cccgtctcac	840
tctctgatcc	tgatcctggg	taacaacaaa	ctgcgtcagg	cttctctgcg	tgttctgtgg	900
aaagttaaat	gcatcctgaa	acgtcgtaac	cactaa			936
<210> 88						
< 211> 1014						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R9 para	a C elegans		
<400> 88						
atgccatctg	ctgttgaagt	tatttatatg	gttcttattg	ctggagaact	tactattgga	60
atttggggaa	atggattcat	tgttcttgtt	aattgtactg	gatggcttca	aagaagagat	120

tcttctgtta	ttgatattat	tcttgtttct	cttgctattt	ctagaatttg	tgttctttgt	180
gttgtttctg	ctgaaggatt	cgttcttctt	ctttctccac	atgcttatgc	tcaaaatgaa	240
actattaata	ctcttgatgc	tttctggact	ctttctaatc	attcttctgt	ttggttcact	300
gcttgtcttt	ctattttcta	tcttcttaaa	attgctaata	tttctcatcc	agttttcctt	360
tggcttaaac	ttaatgttac	tagagttgtt	cttggacttt	tccttgcttc	tttccttact	420
tctattatta	tttctgtttt	ccttaaagaa	ggatcttggg	gacatgttga	agttaatcat	480
gaagaaaata	ttacttggga	attcagagtt	tctaaagctc	catctgcttt	caaacttatt	540
attcttaatc	ttggagctct	tgttccattc	gctctttgtc	ttatttcttt	cgttcttctt	600
cttttctctc	ttttcagaca	tgctaaacaa	atgcaacttt	atgctactgg	atctagagat	660
tgttctactg	aagctcatat	gagagctatt	aaagctgtta	ctattttcct	tcttttcttc	720
attatgtatt	atgctgtttt	ccttgttgtt	acttcttctt	tccttattcc	acaaggaaga	780
cttgttctta	tgttcggagg	aattgttact	gttattttcc	catcttctca	ttctttcatt	840
cttattatgg	gaaattctaa	acttagagaa	gctttcctta	aagttcttag	atgtgttaaa	900
ggattccata	aaagaagaaa	accacttgtt	ccacaaagaa	ttcttaatac	tggaagaaaa	960
aaatctacta	aagattgtct	tccatctcca	agaggacttc	attctttcgc	ttaa	1014

<210> 89

< 211> 1014

< 212> ADN

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón 9 para Drosophila

<400>89

60 atgeceteeg cegtggaggt gatetacatg gtgetgateg ceggegaget gaceategge 120 atctggggca acggcttcat cgtgctggtg aactgcaccg gctggctgca gcgccgcgac tecteegtga tegacateat cetggtgtee etggeeatet eeegeatetg egtgetgtge 180 gtggtgtccg ccgagggett cgtgctgctg ctgtccccc acgcctacgc ccagaacgag 240 300 accatcaaca ccctggacgc cttctggacc ctgtccaacc actcctccgt gtggttcacc 360 gcctgcctgt ccatcttcta cctgctgaag atcgccaaca tctcccaccc cgtgttcctg 420 tggctgaagc tgaacgtgac ccgcgtggtg ctgggcctgt tcctggcctc cttcctgacc 480 tocatcatca totocgtgtt cotgaaggag ggotoctggg gccacgtgga ggtgaaccac gaggagaaca tcacctggga gttccgcgtg tccaaggccc cctccgcctt caagctgatc 540 atcctgaacc tgggcgccct ggtgcccttc gccctgtgcc tgatctcctt cgtgctgctg 600 660 ctgttctccc tgttccgcca cgccaagcag atgcagctgt acgccaccgg ctcccgcgac

tgctccaccg	aggcccacat	gcgcgccatc	aaggccgtga	ccatcttcct	gctgttcttc	720
atcatgtact	acgccgtgtt	cctggtggtg	acctcctcct	tcctgatccc	ccagggccgc	780
ctggtgctga	tgttcggcgg	catcgtgacc	gtgatcttcc	cctcctccca	ctccttcatc	840
ctgatcatgg	gcaactccaa	gctgcgcgag	gccttcctga	aggtgctgcg	ctgcgtgaag	900
ggcttccaca	agcgccgcaa	gcccctggtg	ccccagcgca	tcctgaacac	cggccgcaag	960
aagtccacca	aggactgcct	gccctccccc	cgcggcctgc	actccttcgc	ctaa	1014
<210> 90						
< 211> 1014						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón 9 para s	ser humano		
<400> 90						
atgcccagcg	ccgtggaggt	gatctacatg	gtgctgatcg	ccggcgagct	gaccatcggc	60
atctggggca	acggcttcat	cgtgctggtg	aactgcaccg	gctggctgca	gcgccgcgac	120
agcagcgtga	tcgacatcat	cctggtgagc	ctggccatca	gccgcatctg	cgtgctgtgc	180
gtggtgagcg	ccgagggctt	cgtgctgctg	ctgagccccc	acgcctacgc	ccagaacgag	240
accatcaaca	ccctggacgc	cttctggacc	ctgagcaacc	acagcagcgt	gtggttcacc	300
gcctgcctga	gcatcttcta	cctgctgaag	atcgccaaca	tcagccaccc	cgtgttcctg	360
tggctgaagc	tgaacgtgac	ccgcgtggtg	ctgggcctgt	tcctggccag	cttcctgacc	420
agcatcatca	tcagcgtgtt	cctgaaggag	ggcagctggg	gccacgtgga	ggtgaaccac	480
gaggagaaca	tcacctggga	gttccgcgtg	agcaaggccc	ccagcgcctt	caagctgatc	540
atcctgaacc	tgggcgccct	ggtgcccttc	gccctgtgcc	tgatcagctt	cgtgctgctg	600
ctgttcagcc	tgttccgcca	cgccaagcag	atgcagctgt	acgccaccgg	cagccgcgac	660
tgcagcaccg	aggcccacat	gegegeeate	aaggccgtga	ccatcttcct	gctgttcttc	720
atcatgtact	acgccgtgtt	cctggtggtg	accagcagct	tcctgatccc	ccagggccgc	780
ctggtgctga	tgttcggcgg	catcgtgacc	gtgatcttcc	ccagcagcca	cagcttcatc	840
ctgatcatgg	gcaacagcaa	gctgcgcgag	gccttcctga	aggtgctgcg	ctgcgtgaag	900
ggcttccaca	agcgccgcaa	gcccctggtg	ccccagcgca	tcctgaacac	cggccgcaag	960
aagagcacca	aggactgcct	gcccagcccc	cgcggcctgc	acagettege	ctaa	1014
<210> 91						
< 211> 1014						
< 212> ADN						

15 < 223> constructo artificial-optimizado con codón 9 para ratón

< 213> Secuencia artificial

<220>

5

<400> 91

5

atgcccagcg	ccgtggaggt	gatctacatg	gtgctgatcg	ccggcgagct	gaccatcggc	60
atctggggca	acggcttcat	cgtgctggtg	aactgcaccg	gctggctgca	gaggagggac	120
agcagcgtga	tcgacatcat	cctggtgagc	ctggccatca	gcaggatctg	cgtgctgtgc	180
gtggtgagcg	ccgagggctt	cgtgctgctg	ctgagccccc	acgcctacgc	ccagaacgag	240
accatcaaca	ccctggacgc	cttctggacc	ctgagcaacc	acagcagcgt	gtggttcacc	300
gcctgcctga	gcatcttcta	cctgctgaag	atcgccaaca	tcagccaccc	cgtgttcctg	360
tggctgaagc	tgaacgtgac	cagggtggtg	ctgggcctgt	tcctggccag	cttcctgacc	420
agcatcatca	tcagcgtgtt	cctgaaggag	ggcagctggg	gccacgtgga	ggtgaaccac	480
gaggagaaca	tcacctggga	gttcagggtg	agcaaggccc	ccagcgcctt	caagctgatc	540
atcctgaacc	tgggcgccct	ggtgcccttc	gccctgtgcc	tgatcagctt	cgtgctgctg	600
ctgttcagcc	tgttcaggca	cgccaagcag	atgcagctgt	acgccaccgg	cagcagggac	660
tgcagcaccg	aggcccacat	gagggccatc	aaggccgtga	ccatcttcct	gctgttcttc	720
atcatgtact	acgccgtgtt	cctggtggtg	accagcagct	tcctgatccc	ccagggcagg	780
ctggtgctga	tgttcggcgg	catcgtgacc	gtgatcttcc	ccagcagcca	cagcttcatc	840
ctgatcatgg	gcaacagcaa	gctgagggag	gccttcctga	aggtgctgag	gtgcgtgaag	900
ggcttccaca	agaggaggaa	gcccctggtg	ccccagagga	teetgaacae	cggcaggaag	960
aagagcacca	aggactgcct	gcccagcccc	aggggcctgc	acagettege	ctaa	1014
<210> 92						
< 211> 1014						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón 9 para S	S cerevisiae		
<400> 92						
atgccatctg	ctgttgaagt	tatctacatg	gttttgatcg	ctggtgaatt	gactatcggt	60
atctggggta	acggtttcat	cgttttggtt	aactgtactg	gttggttgca	aagaagagac	120
tcttctgtta	tcgacatcat	cttggtttct	ttggctatct	ctagaatctg	tgttttgtgt	180
gttgtttctg	ctgaaggttt	cgttttgttg	ttgtctccac	acgettaege	tcaaaacgaa	240
actatcaaca	ctttggacgc	tttctggact	ttgtctaacc	actcttctgt	ttggttcact	300
gcttgtttgt	ctatcttcta	cttgttgaag	atcgctaaca	tctctcaccc	agttttcttg	360
tggttgaagt	tgaacgttac	tagagttgtt	ttgggtttgt	tcttggcttc	tttcttgact	420
tctatcatca	tctctgtttt	cttgaaggaa	ggttcttggg	gtcacgttga	agttaaccac	480

gaagaaaaca tcacttggga attcagagtt tctaaggctc catctgcttt caagttgatc 540 atcttgaact tgggtgcttt ggttccattc gctttgtgtt tgatctcttt cgttttgttg 600 ttgttctctt tgttcagaca cgctaagcaa atgcaattgt acgctactgg ttctagagac 660 tgttctactg aagctcacat gagagctatc aaggctgtta ctatcttctt gttgttcttc 720 atcatgtact acgctgtttt cttggttgtt acttcttctt tcttgatccc acaaggtaga 780 ttggttttga tgttcggtgg tatcgttact gttatcttcc catcttctca ctctttcatc 840 900 ttgatcatgg gtaactctaa gttgagagaa gctttcttga aggttttgag atgtgttaag ggtttccaca agagaagaaa gccattggtt ccacaaagaa tcttgaacac tggtagaaag 960 aagtctacta aggactgttt gccatctcca agaggtttgc actctttcgc ttaa 1014

<210> 93

< 211> 1014

< 212> ADN

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón 9 para E coli

<400> 93

atgccgtctg ctgttgaagt tatctacatg gttctgatcg ctggtgaact gaccatcggt 60 atctggggta acggtttcat cgttctggtt aactgcaccg gttggctgca gcgtcgtgac 120 180 tettetgtta tegacateat cetggtttet etggetatet etegtatetg egttetgtge gttgtttctg ctgaaggttt cgttctgctg ctgtctccgc acgcttacgc tcagaacgaa 240 300 accatcaaca ccctggacgc tttctggacc ctgtctaacc actcttctgt ttggttcacc 360 gettgeetgt etatetteta eetgetgaaa ategetaaca teteteacee ggtttteetg tggctgaaac tgaacgttac ccgtgttgtt ctgggtctgt tcctggcttc tttcctgacc 420 totatcatca tototgtttt cotgaaagaa ggttottggg gtoacgttga agttaaccac 480 gaagaaaaca tcacctggga attccgtgtt tctaaagctc cgtctgcttt caaactgatc 540 600 atcctgaacc tgggtgctct ggttccgttc gctctgtgcc tgatctcttt cgttctgctg 660 ctgttctctc tgttccgtca cgctaaacag atgcagctgt acgctaccgg ttctcgtgac 720 tgctctaccg aagctcacat gcgtgctatc aaagctgtta ccatcttcct gctgttcttc atcatgtact acgctgtttt cctggttgtt acctcttctt tcctgatccc gcagggtcgt 780 840 ctggttctga tgttcggtgg tatcgttacc gttatcttcc cgtcttctca ctctttcatc 900 ctgatcatgg gtaactctaa actgcgtgaa gctttcctga aagttctgcg ttgcgttaaa ggtttccaca aacgtcgtaa accgctggtt ccgcagcgta tcctgaacac cggtcgtaaa 960 1014 aaatctacca aagactgcct gccgtctccg cgtggtctgc actctttcgc ttaa

10 <210> 94

< 211> 903

< 212> ADN

< 213> Secuencia artificial	
<220>	
< 223> constructo artificial-optimizado con codón RIO para C elegans	
<400> 94	
atgettteta ttgttgaagg acttettatt tteattgetg tttetgaate tgttettgga	60
gttcttggaa atggattcat tggacttgtt aattgtatgg attgtgttaa aaataaaaaa	120
ttctctatga ttggattcat tttcactgga cttgctactt ctagaatttg tcttattctt	180
attgttatgg ctgatggatt cattaaaatt ttctctccag atatgtattc ttctggacat	240
cttattgatt atatttctta tctttggatt attattaatc aatctaatat ttggttcgct	300
acttotottt otaotttota tttoottaaa attgotaatt tototoatoa tatgttoott	360
tggcttaaag gaagaattaa ttgggttctt ccacttctta tgggatctct tttcatttct	420
tggcttttca ctttcccaca aattgttaaa attctttctg attctaaagt tggaaatgga	480
aatgctactt ggcaacttaa tatgccaaaa tctgaattcc ttactaaaca aattcttgtt	540
aatattggag ttcttcttct tttcactctt ttccttatta cttgtttcct tcttattatt	600
tototttgga gacattotag aagaatgcaa ottaatgtta otggattoca agatocatot	660
actgaagctc atatgaaagc tatgaaagtt cttatttctt tcattattct tttcattctt	720
catttcattg gacttgctat tgaaattgct tgtttcacta tgccagaaaa aaaacttctt	780
ttcattttcg gaatgactac tactgttctt tatccatggg gacattcttt cattcttatt	840
cttggaaatt ctaaacttaa acaagcttct cttagagctc ttcaacaagt taaatgttgt	900
taa	903
<210> 95	
< 211> 903	
< 212> ADN	
< 213> Secuencia artificial	
<220>	
< 223> constructo artificial-optimizado con codón RIO para Drosophila	
<400> 95	
atgctgtcca tcgtggaggg cctgctgatc ttcatcgccg tgtccgagtc cgtgctgggc	60
gtgctgggca acggcttcat cggcctggtg aactgcatgg actgcgtgaa gaacaagaag	120
ttetecatga teggetteat etteaeegge etggeeaeet eeegeatetg eetgateetg	180
ategtgatgg ccgacggett cateaagate ttetececeg acatgtacte eteeggeeae	240
ctgatcgact acatctccta cctgtggatc atcatcaacc agtccaacat ctggttcgcc	300
acctccctgt ccaccttcta cttcctgaag atcgccaact tctcccacca catgttcctg	360

tggctgaagg	gccgcatcaa	ctgggtgctg	cccctgctga	tgggctccct	gttcatctcc	420
tggctgttca	ccttccccca	gatcgtgaag	atcctgtccg	actccaaggt	gggcaacggc	480
aacgccacct	ggcagctgaa	catgcccaag	tccgagttcc	tgaccaagca	gatcctggtg	540
aacatcggcg	tgctgctgct	gttcaccctg	ttcctgatca	cctgcttcct	gctgatcatc	600
tccctgtggc	gccactcccg	ccgcatgcag	ctgaacgtga	ccggcttcca	ggacccctcc	660
accgaggccc	acatgaaggc	catgaaggtg	ctgatctcct	tcatcatcct	gttcatcctg	720
cacttcatcg	gcctggccat	cgagatcgcc	tgcttcacca	tgcccgagaa	gaagctgctg	780
ttcatcttcg	gcatgaccac	caccgtgctg	tacccctggg	gccactcctt	catcctgatc	840
ctgggcaact	ccaagctgaa	gcaggcctcc	ctgcgcgccc	tgcagcaggt	gaagtgctgc	900
taa						903
<210> 96						
< 211> 903						
< 212> ADN						
< 213> Secue	encia artificial					
<220>						
< 223> constr	ucto artificial o	ptimizado con	codón RIO par	a ser humano		
<400> 96						
atgctgagca	tcgtggaggg	cctgctgatc	ttcatcgccg	tgagcgagag	cgtgctgggc	60
gtgctgggca	acggcttcat	cggcctggtg	aactgcatgg	actgcgtgaa	gaacaagaag	120
ttcagcatga	tcggcttcat	cttcaccggc	ctggccacca	gccgcatctg	cctgatcctg	180
atcgtgatgg	ccgacggctt	catcaagatc	ttcagccccg	acatgtacag	cageggeeae	240
ctgatcgact	acatcagcta	cctgtggatc	atcatcaacc	agagcaacat	ctggttcgcc	300
accagectga	gcaccttcta	cttcctgaag	atcgccaact	tcagccacca	catgttcctg	360
tggctgaagg	gccgcatcaa	ctgggtgctg	cccctgctga	tgggcagcct	gttcatcagc	420
tggctgttca	ccttccccca	gatcgtgaag	atcctgagcg	acagcaaggt	gggcaacggc	480
aacgccacct	ggcagctgaa	catgcccaag	agcgagttcc	tgaccaagca	gatcctggtg	540
aacatcggcg	tgctgctgct	gttcaccctg	ttcctgatca	cctgcttcct	gctgatcatc	600
agcctgtggc	gccacagccg	ccgcatgcag	ctgaacgtga	ccggcttcca	ggaccccagc	660
accgaggccc	acatgaaggc	catgaaggtg	ctgatcagct	tcatcatcct	gttcatcctg	720
cacttcatcg	gcctggccat	cgagatcgcc	tgcttcacca	tgcccgagaa	gaagctgctg	780
ttcatcttcg	gcatgaccac	caccgtgctg	tacccctggg	gccacagctt	catcctgatc	840
ctgggcaaca	gcaagctgaa	gcaggccagc	ctgcgcgccc	tgcagcaggt	gaagtgctgc	900
taa						903

5

10

< 211> 903 < 212> ADN

< 213> Secuencia artificial							
<220> < 223> constructo artificial-optimizado con codón RIO para ratón							
<400> 97							
atgctgagca tcgtggaggg cctgctgatc ttcatcgccg tgagcgagag cgtgctgggc	60						
gtgctgggca acggcttcat cggcctggtg aactgcatgg actgcgtgaa gaacaagaag	120						
ttcagcatga tcggcttcat cttcaccggc ctggccacca gcaggatctg cctgatcctg	180						
atcgtgatgg ccgacggctt catcaagatc ttcagccccg acatgtacag cagcggccac	240						
ctgatcgact acatcagcta cctgtggatc atcatcaacc agagcaacat ctggttcgcc	300						
accagectga geacetteta etteetgaag ategecaaet teagecacea catgiteetg	360						
tggctgaagg gcaggatcaa ctgggtgctg cccctgctga tgggcagcct gttcatcagc	420						
tggctgttca ccttccccca gatcgtgaag atcctgagcg acagcaaggt gggcaacggc	480						
aacgccacct ggcagctgaa catgcccaag agcgagttcc tgaccaagca gatcctggtg	540						
aacatcggcg tgctgctgct gttcaccctg ttcctgatca cctgcttcct gctgatcatc	600						
agectgtgga ggcacagcag gaggatgcag etgaacgtga eeggetteea ggaceecage	660						
accgaggccc acatgaaggc catgaaggtg ctgatcagct tcatcatcct gttcatcctg	720						
cactteateg geetggeeat egagategee tgetteacea tgeeegagaa gaagetgetg	780						
tteatetteg geatgaceae cacegtgetg tacecetggg gecacagett catectgate	840						
ctgggcaaca gcaagctgaa gcaggccagc ctgagggccc tgcagcaggt gaagtgctgc	900						
taa	903						
<210> 98							
< 211> 903							
< 212> ADN							
< 213> Secuencia artificial							
<220>							
< 223> constructo artificial-optimizado con codón RIO para S cerevisiae							
<400> 98							
atgttgtcta tcgttgaagg tttgttgatc ttcatcgctg tttctgaatc tgttttgggt	60						
gttttgggta acggtttcat cggtttggtt aactgtatgg actgtgttaa gaacaagaag	120						
ttctctatga tcggtttcat cttcactggt ttggctactt ctagaatctg tttgatcttg	180						
atcgttatgg ctgacggttt catcaagate ttetetecag acatgtacte ttetggtcae	240						
ttgatcgact acatctctta cttgtggatc atcatcaacc aatctaacat ctggttcgct	300						
acttetttgt etaettteta ettettgaag ategetaaet teteteacea eatgttettg	360						

	gtagaatcaa	ctgggttttg	ccattgttga	tgggttcttt	gttcatctct	420
tggttgttca	ctttcccaca	aatcgttaag	atcttgtctg	actctaaggt	tggtaacggt	480
aacgctactt	ggcaattgaa	catgccaaag	tctgaattct	tgactaagca	aatcttggtt	540
aacatcggtg	ttttgttgtt	gttcactttg	ttcttgatca	cttgtttctt	gttgatcatc	600
tctttgtgga	gacactctag	aagaatgcaa	ttgaacgtta	ctggtttcca	agacccatct	660
actgaagctc	acatgaaggc	tatgaaggtt	ttgatctctt	tcatcatctt	gttcatcttg	720
cacttcatcg	gtttggctat	cgaaatcgct	tgtttcacta	tgccagaaaa	gaagttgttg	780
ttcatcttcg	gtatgactac	tactgttttg	tacccatggg	gtcactcttt	catcttgatc	840
ttgggtaact	ctaagttgaa	gcaagcttct	ttgagagctt	tgcaacaagt	taagtgttgt	900
taa						903
<210> 99						
< 211> 903						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón RIO par	a E coli		
<400> 99						
atgctgtcta	tcgttgaagg	tctgctgatc	ttcatcgctg	tttctgaatc	tgttctgggt	60
att at aaat a						
gittetgggta	acggtttcat	cggtctggtt	aactgcatgg	actgcgttaa	aaacaaaaaa	120
	acggtttcat tcggtttcat					120 180
ttctctatga		cttcaccggt	ctggctacct	ctcgtatctg	cctgatcctg	
ttctctatga atcgttatgg	tcggtttcat	cttcaccggt catcaaaatc	ctggctacct	ctcgtatctg	cctgatcctg	180
ttctctatga atcgttatgg ctgatcgact	tcggtttcat	cttcaccggt catcaaaatc cctgtggatc	ctggctacct ttctctccgg atcatcaacc	ctegtatetg acatgtacte agtetaacat	cctgatcctg ttctggtcac ctggttcgct	180 240
ttctctatga atcgttatgg ctgatcgact acctctctgt	teggttteat etgaeggttt acatetetta	cttcaccggt catcaaaatc cctgtggatc cttcctgaaa	ctggctacct ttctctccgg atcatcaacc atcgctaact	ctegtatetg acatgtacte agtetaacat teteteacea	cctgatcctg ttctggtcac ctggttcgct catgttcctg	180 240 300
ttctctatga atcgttatgg ctgatcgact acctctctgt tggctgaaag	teggttteat etgaeggttt acatetetta etaeetteta	cttcaccggt catcaaaatc cctgtggatc cttcctgaaa ctgggttctg	ctggctacct ttctctccgg atcatcaacc atcgctaact ccgctgctga	ctcgtatctg acatgtactc agtctaacat tctctcacca tgggttctct	cctgatcctg ttctggtcac ctggttcgct catgttcctg gttcatctct	180 240 300 360
ttetetatga ategttatgg etgategaet acetetetgt tggetgaaag tggetgttea	teggttteat etgaeggttt acatetetta etacetteta gtegtateaa	cttcaccggt catcaaaatc cctgtggatc cttcctgaaa ctgggttctg gatcgttaaa	ctggctacct ttctctccgg atcatcaacc atcgctaact ccgctgctga atcctgtctg	ctcgtatctg acatgtactc agtctaacat tctctcacca tgggttctct actctaaagt	cctgatcctg ttctggtcac ctggttcgct catgttcctg gttcatctct tggtaacggt	180 240 300 360 420
ttetetatga ategttatgg etgategaet acetetetgt tggetgaaag tggetgttea aaegetaeet	teggttteat ctgaeggttt acatetetta ctacetteta gtegtateaa cetteegga	cttcaccggt catcaaaatc cctgtggatc cttcctgaaa ctgggttctg gatcgttaaa catgccgaaa	ctggctacct ttctctccgg atcatcaacc atcgctaact ccgctgctga atcctgtctg tctgaattcc	ctcgtatctg acatgtactc agtctaacat tctctcacca tgggttctct actctaaagt tgaccaaaca	cctgatcctg ttctggtcac ctggttcgct catgttcctg gttcatctct tggtaacggt gatcctggtt	180 240 300 360 420 480
ttetetatga ategttatgg etgategaet acetetetgt tggetgaaag tggetgttea aaegetaeet aaeateggtg	teggttteat ctgaeggttt acatetetta ctaeetteta gtegtateaa cetteeegea ggeagetgaa	cttcaccggt catcaaaatc cctgtggatc cttcctgaaa ctgggttctg gatcgttaaa catgccgaaa gttcaccctg	ctggctacct ttctctccgg atcatcaacc atcgctaact ccgctgctga atcctgtctg tctgaattcc ttcctgatca	ctcgtatctg acatgtactc agtctaacat tctctcacca tgggttctct actctaaagt tgaccaaaca cctgcttcct	cctgatcctg ttctggtcac ctggttcgct catgttcctg gttcatctct tggtaacggt gatcctggtt gctgatcatc	180 240 300 360 420 480 540
ttetetatga ategttatgg etgategaet acetetetgt tggetgaaag tggetgttea aaegetaeet aaeateggtg tetetgtgge	teggttteat etgaeggttt acatetetta etaectteta gtegtateaa ectteegea ggeagetgaa ttetgetget	cttcaccggt catcaaaatc cctgtggatc cttcctgaaa ctgggttctg gatcgttaaa catgccgaaa gttcaccctg tcgtatgcag	ctggctacct ttctctccgg atcatcaacc atcgctaact ccgctgctga atcctgtctg tctgaattcc ttcctgatca ctgaacgtta	ctcgtatctg acatgtactc agtctaacat tctctcacca tgggttctct actctaaagt tgaccaaaca cctgcttcct ccggtttcca	cctgatcctg ttctggtcac ctggttcgct catgttcctg gttcatctct tggtaacggt gatcctggtt gctgatcatc ggacccgtct	180 240 300 360 420 480 540
ttetetatga ategttatgg etgategaet acetetetgt tggetgaaag tggetgttea aaegetaeet aaeateggtg tetetgtgge acegaagete	teggttteat etgaeggttt acatetetta etacetteta gtegtateaa eetteeegea ggeagetgaa ttetgetget gteacteteg	cttcaccggt catcaaaatc cctgtggatc cttcctgaaa ctgggttctg gatcgttaaa catgccgaaa gttcaccctg tcgtatgcag tatgaaagtt	ctggctacct ttctctccgg atcatcaacc atcgctaact ccgctgctga atcctgtctg tctgaattcc ttcctgatca ctgaacgtta ctgatctctt	ctegtatetg acatgtacte agtetaacat teteteacea tgggttetet actetaaagt tgaccaaaca cetgetteet ceggttteea teatcatect	cctgatcctg ttctggtcac ctggttcgct catgttcctg gttcatctct tggtaacggt gatcctggtt gctgatcatc ggacccgtct gttcatcctg	180 240 300 360 420 480 540 600
ttetetatga ategttatgg ctgategaet acetetetgt tggetgaaag tggetgttea aaegetaeet aaeateggtg tetetgtgge acegaagete caetteateg	teggttteat etgaeggttt acatetetta etacetteta gtegtateaa eetteegea ggeagetgaa ttetgetget gteacteteg acatgaaage	cttcaccggt catcaaaatc cctgtggatc cttcctgaaa ctgggttctg gatcgttaaa catgccgaaa gttcaccctg tcgtatgcag tatgaaagtt cgaaatcgct	ctggctacct ttctctccgg atcatcaacc atcgctaact ccgctgctga atcctgtctg tctgaattcc ttcctgatca ctgaacgtta ctgatctctt tgcttcacca	ctcgtatctg acatgtactc agtctaacat tctctcacca tgggttctct actctaaagt tgaccaaaca cctgcttcct ccggtttcca tcatcatcct	cctgatcctg ttctggtcac ctggttcgct catgttcctg gttcatctct tggtaacggt gatcctggtt gctgatcatc ggacccgtct gttcatcctg aaaactgctg	180 240 300 360 420 480 540 600 660 720
ttetetatga ategttatgg ctgategact acctetetgt tggetgaaag tggetgttea aacgetacet aacateggtg tetetgtgge accgaagete cactteateg tteatetteg	teggttteat ctgaeggttt acatetetta ctacetteta gtegtateaa cetteegea ggeagetgaa ttetgetget gteacteteg acatgaaage gtetggetat	cttcaccggt catcaaaatc cctgtggatc cttcctgaaa ctgggttctg gatcgttaaa catgccgaaa gttcaccctg tcgtatgcag tatgaaagtt cgaaatcgct caccgttctg	ctggctacct ttctctccgg atcatcaacc atcgctaact ccgctgctga atcctgtctg tctgaattcc ttcctgatca ctgaacgtta ctgatctctt tgcttcacca tacccgtggg	ctcgtatctg acatgtactc agtctaacat tctctcacca tgggttctct actctaaagt tgaccaaaca cctgcttcct ccggtttcca tcatcatcct tgccggaaaa gtcactcttt	cctgatcctg ttctggtcac ctggttcgct catgttcctg gttcatctct tggtaacggt gatcctggtt gctgatcatc ggacccgtct gttcatcctg aaaactgctg catcctgatc	180 240 300 360 420 480 540 600 720 780
ttetetatga ategttatgg ctgategact acctetetgt tggetgaaag tggetgttea aacgetacet aacateggtg tetetgtgge accgaagete cactteateg tteatetteg	teggttteat ctgaeggttt acatetetta ctacetteta gtegtateaa cetteegea ggeagetgaa ttetgetget gteaeteteg acatgaaage gtetggetat gtatgaea	cttcaccggt catcaaaatc cctgtggatc cttcctgaaa ctgggttctg gatcgttaaa catgccgaaa gttcaccctg tcgtatgcag tatgaaagtt cgaaatcgct caccgttctg	ctggctacct ttctctccgg atcatcaacc atcgctaact ccgctgctga atcctgtctg tctgaattcc ttcctgatca ctgaacgtta ctgatctctt tgcttcacca tacccgtggg	ctcgtatctg acatgtactc agtctaacat tctctcacca tgggttctct actctaaagt tgaccaaaca cctgcttcct ccggtttcca tcatcatcct tgccggaaaa gtcactcttt	cctgatcctg ttctggtcac ctggttcgct catgttcctg gttcatctct tggtaacggt gatcctggtt gctgatcatc ggacccgtct gttcatcctg aaaactgctg catcctgatc	180 240 300 360 420 480 540 600 720 780 840

5

10

< 211> 930 < 212> ADN < 213> Secuencia artificial

5

10

<220> < 223> constructo artificial-optimizado con codón R12 para C elegans <400> 100 atggcttctg ttcttaaaaa tgttttcatg attcttttcg ctggagaatt cattatggga 60 attcttggaa atggattcat tattcttgtt aattgtattg attggattag aaattggaaa 120 ttcttcgtta ttgatttcat tattacttgt cttgctattt ctagaattgt tcttctttgt 180 attattattc ttggaattgg acttgatgtt ccatgtgaag aaatttggaa taaaaataat 240 caacttatta gattegaaat tetttggaet ggatetaatt atttetgtat taettgtaet 300 acttgtcttt ctgttttcta tttcttcaaa attgctaatt tctctaatcc acttttcctt 360 tggattaaat ggagaattca taaagttctt cttactattg ttcttgctgc tgttttctct 420 ttetgtettt etetteeatt eaaagataet gtttteaett etettattaa aaataaagtt 480 540 aatgctgaaa gaaattggac tgtttctttc actactagaa cttatgaact tttcctttct 600 catatgcttc ttaatattat gttcattatt ccattcgctg tttctcttgc ttctttcgtt 660 cttcttattt gttctctttg gtctcatact agacaaatga aaggaagagg aggagatcca 720 actactaaag ttcatgttag agctatgaaa gctatgattt ctttccttct tttcttctc atgtattatc tttctactat tatgatgaat cttgcttatg ttattcttga ttctcttgtt 780 gctaaaattt tcgctaatac tcttgttttc ctttatccat ctggacatac tttccttctt 840 900 attetttgga ettetaaaet taaacaaget tetetttgtg ttettaaaaa aettaaatgt 930 cttcatctta gaaaaccaac tagaccataa <210> 101 < 211> 930 < 212> ADN < 213> Secuencia artificial <220> < 223> constructo artificial-optimizado con codón R12 para Drosophila <400> 101 atggcctccg tgctgaagaa cgtgttcatg atcctgttcg ccggcgagtt catcatgggc 60 120 atcctgggca acggettcat catcctggtg aactgcatcg actggatccg caactggaag ttcttcgtga tcgacttcat catcacctgc ctggccatct cccgcatcgt gctgctgtgc 180 atcatcatcc tgggcatcgg cctggacgtg ccctgcgagg agatctggaa caagaacaac 240 cagctgatcc gcttcgagat cctgtggacc ggctccaact acttctgcat cacctgcacc 300 acctgcctgt ccgtgttcta cttcttcaag atcgccaact tctccaaccc cctgttcctg 360

tggatcaagt	ggcgcatcca	caaggtgctg	ctgaccatcg	tgctggccgc	cgtgttctcc	420
ttctgcctgt	ccctgccctt	caaggacacc	gtgttcacct	ccctgatcaa	gaacaaggtg	480
aacgccgagc	gcaactggac	cgtgtccttc	accacccgca	cctacgagct	gttcctgtcc	540
cacatgctgc	tgaacatcat	gttcatcatc	cccttcgccg	tgtccctggc	ctccttcgtg	600
ctgctgatct	gctccctgtg	gtcccacacc	cgccagatga	agggccgcgg	cggcgacccc	660
accaccaagg	tgcacgtgcg	cgccatgaag	gccatgatct	ccttcctgct	gttcttcttc	720
atgtactacc	tgtccaccat	catgatgaac	ctggcctacg	tgatcctgga	ctccctggtg	780
gccaagatct	togocaacac	cctggtgttc	ctgtacccct	ccggccacac	cttcctgctg	840
atcctgtgga	cctccaagct	gaagcaggcc	tccctgtgcg	tgctgaagaa	gctgaagtgc	900
ctgcacctgc	gcaagcccac	ccgcccctaa				930
<210> 102						
< 211> 930						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R12 pa	ra ser humano		
<400> 102						
atggccagcg	tgctgaagaa	cgtgttcatg	atcctgttcg	ccggcgagtt	catcatgggc	60
atcctgggca	acggcttcat	catcctggtg	aactgcatcg	actggatccg	caactggaag	120
ttcttcgtga	tcgacttcat	catcacctgc	ctggccatca	gccgcatcgt	gctgctgtgc	180
atcatcatcc	tgggcatcgg	cctggacgtg	ccctgcgagg	agatctggaa	caagaacaac	240
cagctgatcc	gcttcgagat	cctgtggacc	ggcagcaact	acttctgcat	cacctgcacc	300
acctgcctga	gcgtgttcta	cttcttcaag	atcgccaact	tcagcaaccc	cctgttcctg	360
tggatcaagt	ggcgcatcca	caaggtgctg	ctgaccatcg	tgctggccgc	cgtgttcagc	420
ttctgcctga	gcctgccctt	caaggacacc	gtgttcacca	gcctgatcaa	gaacaaggtg	480
aacgccgagc	gcaactggac	cgtgagcttc	accacccgca	cctacgagct	gttcctgagc	540
cacatgctgc	tgaacatcat	gttcatcatc	cccttcgccg	tgagcctggc	cagcttcgtg	600

ctgctgatct gcagcctgtg gagccacacc cgccagatga agggccgcgg cggcgacccc accaccaagg tgcacgtgcg cgccatgaag gccatgatca gcttcctgct gttcttcttc

atgtactacc tgagcaccat catgatgaac ctggcctacg tgatcctgga cagcctggtg

gccaagatct tegecaacae cetggtgtte etgtaceeca geggecacae etteetgetg

atcctgtgga ccagcaagct gaagcaggcc agcctgtgcg tgctgaagaa gctgaagtgc

10 <210> 103

5

< 211> 930

ctgcacctgc gcaagcccac ccgcccctaa

< 212> ADN

660

720 780

840

900

< 213> Secuencia artificial

5

10

<220> < 223> constructo artificial-optimizado con codón R12 para ratón <400> 103 atggccagcg tgctgaagaa cgtgttcatg atcctgttcg ccggcgagtt catcatgggc 60 120 atcctgggca acggcttcat catcctggtg aactgcatcg actggatcag gaactggaag 180 ttettegtga tegaetteat cateacetge etggecatea geaggategt getgetgtge atcatcatcc tgggcatcgg cctggacgtg ccctgcgagg agatctggaa caagaacaac 240 cagctgatca ggttcgagat cctgtggacc ggcagcaact acttctgcat cacctgcacc 300 acctgcctga gcgtgttcta cttcttcaag atcgccaact tcagcaaccc cctgttcctg 360 tggatcaagt ggaggatcca caaggtgctg ctgaccatcg tgctggccgc cgtgttcagc 420 480 ttctgcctga gcctgccctt caaggacacc gtgttcacca gcctgatcaa gaacaaggtg 540 aacgccgaga ggaactggac cgtgagcttc accaccagga cctacgagct gttcctgagc cacatgctgc tgaacatcat gttcatcatc cccttcgccg tgagcctggc cagcttcgtg 600 ctgctgatct gcagcctgtg gagccacacc aggcagatga agggcagggg cggcgacccc 660 720 accaccaagg tgcacgtgag ggccatgaag gccatgatca gcttcctgct gttcttcttc atgtactacc tgagcaccat catgatgaac ctggcctacg tgatcctgga cagcctggtg 780 840 gecaagatet tegecaacae cetggtgtte etgtacecea geggecacae etteetgetg atcctgtgga ccagcaagct gaagcaggcc agcctgtgcg tgctgaagaa gctgaagtgc 900 930 ctgcacctga ggaagcccac caggccctaa <210> 104 < 211> 930 < 212> ADN < 213> Secuencia artificial <220> < 223> constructo artificial-optimizado con codón R12 para S cerevisiae <400> 104 atggcttctg ttttgaagaa cgttttcatg atcttgttcg ctggtgaatt catcatgggt 60 atcttgggta acggtttcat catcttggtt aactgtatcg actggatcag aaactggaag 120 180 ttcttcgtta tcgacttcat catcacttgt ttggctatct ctagaatcgt tttgttgtgt 240 atcatcatct tgggtatcgg tttggacgtt ccatgtgaag aaatctggaa caagaacaac caattgatca gattcgaaat cttgtggact ggttctaact acttctgtat cacttgtact 300 acttgtttgt ctgttttcta cttcttcaag atcgctaact tctctaaccc attgttcttg 360

tggatcaagt	ggagaatcca	caaggttttg	ttgactatcg	ttttggctgc	tgttttctct	420
ttctgtttgt	ctttgccatt	caaggacact	gttttcactt	ctttgatcaa	gaacaaggtt	480
aacgctgaaa	gaaactggac	tgtttctttc	actactagaa	cttacgaatt	gttcttgtct	540
cacatgttgt	tgaacatcat	gttcatcatc	ccattcgctg	tttctttggc	ttctttcgtt	600
ttgttgatct	gttctttgtg	gtctcacact	agacaaatga	agggtagagg	tggtgaccca	660
actactaagg	ttcacgttag	agctatgaag	gctatgatct	ctttcttgtt	gttcttcttc	720
atgtactact	tgtctactat	catgatgaac	ttggcttacg	ttatcttgga	ctctttggtt	780
gctaagatct	tcgctaacac	tttggttttc	ttgtacccat	ctggtcacac	tttcttgttg	840
atcttgtgga	cttctaagtt	gaagcaagct	tctttgtgtg	ttttgaagaa	gttgaagtgt	900
ttgcacttga	gaaagccaac	tagaccataa				930
<210> 105						
< 211> 930						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constru	ucto artificial-o	ptimizado con	codón R12 pa	ra E coli		
<400> 105						
atggcttctg	ttctgaaaaa	cgttttcatg	atcctgttcg	ctggtgaatt	catcatgggt	60
atcctgggta	acggtttcat	catcctggtt	aactgcatcg	actggatccg	taactggaaa	120
ttcttcgtta	tcgacttcat	catcacctgc	ctggctatct	ctcgtatcgt	tctgctgtgc	180
atcatcatcc	tgggtatcgg	tctggacgtt	ccgtgcgaag	aaatctggaa	caaaaacaac	240
cagctgatcc	gtttcgaaat	cctgtggacc	ggttctaact	acttctgcat	cacctgcacc	300
acctgcctgt	ctgttttcta	cttcttcaaa	atcgctaact	tctctaaccc	gctgttcctg	360
tggatcaaat	ggcgtatcca	caaagttctg	ctgaccatcg	ttetggetge	tgttttctct	420
ttctgcctgt	ctctgccgtt	caaagacacc	gttttcacct	ctctgatcaa	aaacaaagtt	480
aacgctgaac	gtaactggac	cgtttctttc	accacccgta	cctacgaact	gttcctgtct	540
cacatgctgc	tgaacatcat	gttcatcatc	ccgttcgctg	tttctctggc	ttctttcgtt	600

ctgctgatct gctctctgtg gtctcacacc cgtcagatga aaggtcgtgg tggtgacccg

accaccaaag ttcacgttcg tgctatgaaa gctatgatct ctttcctgct gttcttcttc

atgtactacc tgtctaccat catgatgaac ctggcttacg ttatcctgga ctctctggtt

gctaaaatct tcgctaacac cctggttttc ctgtacccgt ctggtcacac cttcctgctg

atcctgtgga cctctaaact gaaacaggct tctctgtgcg ttctgaaaaa actgaaatgc

10 <210> 106

5

< 211> 1005

ctgcacctgc gtaaaccgac ccgtccgtaa

< 212> ADN

660

720

780

900

< 213> Secuencia artificial <220> < 223> constructo artificial-optimizado con codón R38 para C elegans <400> 106 atgettgete ttactecagt tattactgtt tettatgaag ttaaatetge ttteetttte 60 120 ctttctattc ttgaattcac tgttggagtt cttgctaatg ctttcatttt ccttgttaat ttctgggatg ttgttagaaa acaaccactt tctaattgtg atcttattct tctttctctt 180 tetettacta gaetttteet teatggaett etttteettg atgetettea aettaettat 240 ttccaaagaa tgaaagatcc actttctctt tcttatcaaa ctattattat gctttggatg 300 360 attactaatc aagttggact ttggcttact acttgtcttt ctcttcttta ttgttctaaa 420 attgctagat tctctcatac tcttcttcat tgtgttgctt cttgggtttc tagaaaagtt ccacaaatgc ttcttggagc tatgcttttc tcttgtattt gtactgctat ttgtcttgga 480 gatttcttct ctagatctgg attcactttc actactatgc ttttcgttaa taatactgaa 540 ttcaatcttc aaattgctaa actttctttc tatcattctt tcattttctg tactcttgct 600 660 tctattccat ctcttcttt cttccttatt tcttctggag ttcttattgt ttctcttgga agacatatga gaactatgag agctaaaact aaagattctc atgatccatc tcttgaagct 720 catattaaag ctcttagatc tcttgtttct ttcctttgtc tttatgttgt ttctttctgt 780 gctgctcttg tttctgttcc acttcttatg ctttggcata ataaaattgg agttatgatt 840 tgtgttggaa ttcttgctgc ttgtccatct attcatgctg ctattcttat ttctggaaat 900 gctaaactta gaagagctgt tgaaactatt cttctttggg ttcaaaattc tcttaaaatt 960 1005 ggagctgatc ataaagctga tgctagaact ccaggacttt gttaa <210> 107 < 211> 1005 < 212> ADN < 213> Secuencia artificial <220> < 223> constructo artificial-optimizado con codón R38 para Drosophila <400> 107 60 atgctggccc tgacccccgt gatcaccgtg tcctacgagg tgaagtccgc cttcctgttc ctgtccatcc tggagttcac cgtgggcgtg ctggccaacg ccttcatctt cctggtgaac 120 ttctgggacg tggtgcgcaa gcagcccctg tccaactgcg acctgatect gctgtccctg 180 tecetgacee geetgtteet geacggeetg etgtteetgg acgeeetgea getgacetae 240 ttccagcgca tgaaggaccc cctgtccctg tcctaccaga ccatcatcat gctgtggatg 300

5

atcaccaacc	aggtgggcct	gtggctgacc	acctgcctgt	ccctgctgta	ctgctccaag	360
atcgcccgct	tctcccacac	cctgctgcac	tgcgtggcct	cctgggtgtc	ccgcaaggtg	420
ccccagatgc	tgctgggcgc	catgctgttc	tcctgcatct	gcaccgccat	ctgcctgggc	480
gacttcttct	cccgctccgg	cttcaccttc	accaccatge	tgttcgtgaa	caacaccgag	540
ttcaacctgc	agatcgccaa	gctgtccttc	taccactcct	tcatcttctg	caccctggcc	600
tccatcccct	ccctgctgtt	cttcctgatc	tcctccggcg	tgctgatcgt	gtccctgggc	660
cgccacatgc	gcaccatgcg	cgccaagacc	aaggactccc	acgacccctc	cctggaggcc	720
cacatcaagg	ccctgcgctc	cctggtgtcc	tteetgtgee	tgtacgtggt	gtccttctgc	780
gccgccctgg	tgtccgtgcc	cctgctgatg	ctgtggcaca	acaagatcgg	cgtgatgatc	840
tgcgtgggca	tectggeege	ctgcccctcc	atccacgccg	ccatcctgat	ctccggcaac	900
gccaagctgc	gccgcgccgt	ggagaccatc	ctgctgtggg	tgcagaactc	cctgaagatc	960
ggcgccgacc	acaaggccga	cgcccgcacc	cccggcctgt	gctaa		1005
<210> 108						
< 211> 1005						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constri	ucto artificial-o	ptimizado con	codón R38 pa	ra ser humano	l	

5

10

<400> 108

atgctggccc tgacccccgt gatcaccgtg agctacgagg tgaagagcgc cttcctgttc 60 120 ctgagcatcc tggagttcac cgtgggcgtg ctggccaacg ccttcatctt cctggtgaac ttctgggacg tggtgcgcaa gcagcccctg agcaactgcg acctgatcct gctgagcctg 180 agectgacce geetgtteet geaeggeetg etgtteetgg aegecetgea getgacetae 240 300 ttccagcgca tgaaggaccc cctgagcctg agctaccaga ccatcatcat gctgtggatg 360 atcaccaacc aggtgggcct gtggctgacc acctgcctga gcctgctgta ctgcagcaag 420 ategeceget teagecacae cetgetgeae tgegtggeca getgggtgag eegeaaggtg 480 ccccagatge tgctgggcgc catgctgttc agctgcatct gcaccgccat ctgcctgggc gacttettea geogeagegg etteacette accaccatge tgttegtgaa caacaccgag 540 600 ttcaacctgc agatcgccaa gctgagcttc taccacagct tcatcttctg caccctggcc agcatececa geetgetgtt etteetgate ageageggeg tgetgategt gageetggge 660 cgccacatgc gcaccatgcg cgccaagacc aaggacagcc acgaccccag cctggaggcc 720 cacatcaagg ccctgcgcag cctggtgagc ttcctgtgcc tgtacgtggt gagcttctgc 780 geogeoctgg tgagegtgec cetgetgatg etgtggeaca acaagategg egtgatgate 840 900 tgcgtgggca tcctggccgc ctgccccagc atccacgccg ccatcctgat cagcggcaac gccaagctgc gccgcgccgt ggagaccatc ctgctgtggg tgcagaacag cctgaagatc 960 ggegeegaee acaaggeega egeeegeaee eeeggeetgt getaa 1005

<210> 109

< 211> 1005						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R38 pa	ra ratón		
<400> 109						
atgctggccc	tgacccccgt	gatcaccgtg	agctacgagg	tgaagagcgc	cttcctgttc	60
ctgagcatcc	tggagttcac	cgtgggcgtg	ctggccaacg	ccttcatctt	cctggtgaac	120
ttctgggacg	tggtgaggaa	gcagcccctg	agcaactgcg	acctgatcct	gctgagcctg	180
agcctgacca	ggctgttcct	gcacggcctg	ctgttcctgg	acgccctgca	gctgacctac	240
ttccagagga	tgaaggaccc	cctgagcctg	agctaccaga	ccatcatcat	gctgtggatg	300
atcaccaacc	aggtgggcct	gtggctgacc	acctgcctga	gcctgctgta	ctgcagcaag	360
atcgccaggt	tcagccacac	cctgctgcac	tgcgtggcca	gctgggtgag	caggaaggtg	420
ccccagatgc	tgctgggcgc	catgctgttc	agctgcatct	gcaccgccat	ctgcctgggc	480
gacttcttca	gcaggagcgg	cttcaccttc	accaccatgc	tgttcgtgaa	caacaccgag	540
ttcaacctgc	agatcgccaa	gctgagcttc	taccacagct	tcatcttctg	caccctggcc	600
agcatcccca	gcctgctgtt	cttcctgatc	agcagcggcg	tgctgatcgt	gagcctgggc	660
aggcacatga	ggaccatgag	ggccaagacc	aaggacagcc	acgaccccag	cctggaggcc	720
cacatcaagg	ccctgaggag	cctggtgagc	ttcctgtgcc	tgtacgtggt	gagcttctgc	780
gccgccctgg	tgagcgtgcc	cctgctgatg	ctgtggcaca	acaagatcgg	cgtgatgatc	840
tgcgtgggca	tectggeege	ctgccccagc	atccacgccg	ccatcctgat	cagcggcaac	900
gccaagctga	ggagggccgt	ggagaccatc	ctgctgtggg	tgcagaacag	cctgaagatc	960
ggcgccgacc	acaaggccga	cgccaggacc	cccggcctgt	gctaa		1005
<210> 110						
< 211> 1005						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R38 pa	ra S cerevisiae)	
<400> 110						
atgttggctt	tgactccagt	tatcactgtt	tcttacgaag	ttaagtctgc	tttcttgttc	60
ttgtctatct	tggaattcac	tgttggtgtt	ttggctaacg	ctttcatctt	cttggttaac	120

ttctgggacg ttgttag	gaaa gcaaccattg	tctaactgtg	acttgatctt	gttgtctttg	180
tctttgacta gattgtt	ctt gcacggtttg	ttgttcttgg	acgctttgca	attgacttac	240
ttccaaagaa tgaagga	ccc attgtctttg	tcttaccaaa	ctatcatcat	gttgtggatg	300
atcactaacc aagttgg	ttt gtggttgact	acttgtttgt	ctttgttgta	ctgttctaag	360
atcgctagat tctctca	cac tttgttgcac	tgtgttgctt	cttgggtttc	tagaaaggtt	420
ccacaaatgt tgttggg	tgc tatgttgttc	tcttgtatct	gtactgctat	ctgtttgggt	480
gacttcttct ctagato	tgg tttcactttc	actactatgt	tgttcgttaa	caacactgaa	540
ttcaacttgc aaatcgc	taa gttgtctttc	taccactctt	tcatcttctg	tactttggct	600
tctatcccat ctttgtt	gtt cttcttgatc	tcttctggtg	ttttgatcgt	ttctttgggt	660
agacacatga gaactat	gag agctaagact	aaggactctc	acgacccatc	tttggaagct	720
cacatcaagg ctttgag	atc tttggtttct	ttcttgtgtt	tgtacgttgt	ttctttctgt	780
gctgctttgg tttctgt	tcc attgttgatg	ttgtggcaca	acaagatcgg	tgttatgatc	840
tgtgttggta tcttggc	tgc ttgtccatct	atccacgctg	ctatcttgat	ctctggtaac	900
gctaagttga gaagagc	tgt tgaaactatc	ttgttgtggg	ttcaaaactc	tttgaagatc	960
ggtgctgacc acaaggo	tga cgctagaact	ccaggtttgt	gttaa		1005

<210> 111

< 211> 1005

< 212> ADN

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón R38 para E coli

<400> 111

60 atgctggctc tgaccccggt tatcaccgtt tcttacgaag ttaaatctgc tttcctgttc ctgtctatcc tggaattcac cgttggtgtt ctggctaacg ctttcatctt cctggttaac 120 ttctgggacg ttgttcgtaa acagccgctg tctaactgcg acctgatcct gctgtctctg 180 tetetgacce gtetgtteet geaeggtetg etgtteetgg aegetetgea getgacetae 240 ttccagcgta tgaaagaccc gctgtctctg tcttaccaga ccatcatcat gctgtggatg 300 360 atcaccaacc aggttggtct gtggctgacc acctgcctgt ctctgctgta ctgctctaaa 420 ategetegtt teteteacae cetgetgeae tgegttgett ettgggttte tegtaaagtt 480 ccgcagatgc tgctgggtgc tatgctgttc tcttgcatct gcaccgctat ctgcctgggt gacttettet etegttetgg ttteacette accaccatge tgttegttaa caacaccgaa 540 ttcaacctgc agategetaa actgtctttc taccactctt tcatcttctg caccctggct 600 totatecegt etetgetgtt etteetgate tettetggtg ttetgategt ttetetgggt 660 720 cgtcacatgc gtaccatgcg tgctaaaacc aaagactctc acgacccgtc tctggaagct

cacatcaaag	ctctgcgttc	tctggtttct	ttcctgtgcc	tgtacgttgt	ttctttctgc	780
gctgctctgg	tttctgttcc	gctgctgatg	ctgtggcaca	acaaaatcgg	tgttatgatc	840
tgcgttggta	tectggetge	ttgcccgtct	atccacgctg	ctatcctgat	ctctggtaac	900
gctaaactgc	gtcgtgctgt	tgaaaccatc	ctgctgtggg	ttcagaactc	tctgaaaatc	960
ggtgctgacc	acaaagctga	cgctcgtacc	ccgggtctgt	gctaa		1005
<210> 112						
< 211> 969						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R42 pa	ra C elegans		
<400> 112						
atgcttgctg	gacttgataa	aattttcctt	actctttcta	ctgctgaatt	cgttattgga	60
atgtctggaa	atgttttcgt	tggacttgtt	aattgttctg	aatggattaa	aaatcaaaaa	120
atttctttcg	ttgatttcat	tcttacttgt	cttgctcttt	ctagaattac	tcaacttctt	180
gtttctcttt	ggcaatcttt	cgttatgact	ctttctccac	cattctattc	tacttggaaa	240
tctgctaaac	ttattactct	tctttggaga	attactaatc	attggactac	ttggttcact	300
acttgtcttt	ctattttcta	tcttcttaaa	attgctcatt	tctctcattc	tttcttcctt	360
tggcttaaat	ggagaactaa	tagagttgtt	cttgctattc	ttgttctttc	tcttccattc	420
cttcttttcg	atttccttgt	tcttgaatct	cttaatgatt	tcttccttaa	tgtttatgtt	480
atggatgaat	ctaatcttac	tcttcatact	aatgattgta	aatctcttta	tattaaaact	540
cttattcttc	tttctttctc	ttatactatt	ccaattgttc	tttctcttac	ttctcttgtt	600
cttcttttcc	tttctcttgt	tagacatatt	agaaatcttc	aacttaatgt	tatgggatct	660
ggagatgctt	ctactcaagc	tcataaagga	gctattaaaa	tggttatgtc	tttccttctt	720
cttttcactg	ttcatttctt	ctctattcaa	cttactaatt	ggatgcttct	tattttctgg	780
aataataaat	tcactaaatt	cattatgctt	gctatttatg	ttttcccatc	tggacattct	840
cttattctta	ttcttggaaa	ttctaaactt	agacaaactg	ctcttaaagt	tcttagacat	900
cttaaatcta	ctcttaaaag	agaaaaaact	gtttcttctc	ttcaaattga	tgttccagga	960
tctttctaa						969
<210> 113						
< 211> 969						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R42 pa	ra Drosophila		

<400> 113

atgctggccg	gcctggacaa	gatcttcctg	accctgtcca	ccgccgagtt	cgtgatcggc	60
atgtccggca	acgtgttcgt	gggcctggtg	aactgctccg	agtggatcaa	gaaccagaag	120
atctccttcg	tggacttcat	cctgacctgc	ctggccctgt	cccgcatcac	ccagctgctg	180
gtgtccctgt	ggcagtcctt	cgtgatgacc	ctgtcccccc	ccttctactc	cacctggaag	240
tccgccaagc	tgatcaccct	gctgtggcgc	atcaccaacc	actggaccac	ctggttcacc	300
acctgcctgt	ccatcttcta	cctgctgaag	atcgcccact	tctcccactc	cttcttcctg	360
tggctgaagt	ggcgcaccaa	ccgcgtggtg	ctggccatcc	tggtgctgtc	cctgcccttc	420
ctgctgttcg	acttcctggt	gctggagtcc	ctgaacgact	tcttcctgaa	cgtgtacgtg	480
atggacgagt	ccaacctgac	cctgcacacc	aacgactgca	agtccctgta	catcaagacc	540
ctgatectge	tgtccttctc	ctacaccatc	cccatcgtgc	tgtccctgac	ctccctggtg	600
ctgctgttcc	tgtccctggt	gcgccacatc	cgcaacctgc	agctgaacgt	gatgggctcc	660
ggcgacgcct	ccacccaggc	ccacaagggc	gccatcaaga	tggtgatgtc	cttcctgctg	720
ctgttcaccg	tgcacttctt	ctccatccag	ctgaccaact	ggatgctgct	gatcttctgg	780
aacaacaagt	tcaccaagtt	catcatgctg	gccatctacg	tgttcccctc	cggccactcc	840
ctgatcctga	tcctgggcaa	ctccaagctg	cgccagaccg	ccctgaaggt	gctgcgccac	900
ctgaagtcca	ccctgaagcg	cgagaagacc	gtgtcctccc	tgcagatcga	cgtgcccggc	960
tccttctaa						969
<210> 114						
< 211> 969						
< 212> ADN						

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón R42 para ser humano

<400> 114

atgctggccg gcctggacaa gatcttcctg accctgagca ccgccgagtt cgtgatcggc 60 120 atgagcggca acgtgttcgt gggcctggtg aactgcagcg agtggatcaa gaaccagaag 180 atcagetteg tggaetteat cetgaeetge etggeeetga geegeateae eeagetgetg gtgagcctgt ggcagagctt cgtgatgacc ctgagccccc ccttctacag cacctggaag 240 300 agegecaage tgateacect getgtggege ateaceaace actggaceae etggtteace 360 acctgcctga gcatcttcta cctgctgaag atcgcccact tcagccacag cttcttcctg 420 tggctgaagt ggcgcaccaa ccgcgtggtg ctggccatcc tggtgctgag cctgcccttc 480 ctgctgttcg acttcctggt gctggagagc ctgaacgact tcttcctgaa cgtgtacgtg atggacgaga gcaacctgac cctgcacacc aacgactgca agagcctgta catcaagacc 540

ctgatcctgc	tgagcttcag	ctacaccatc	cccatcgtgc	tgagcctgac	cagcctggtg	600
ctgctgttcc	tgagcctggt	gegecacate	cgcaacetgc	agctgaacgt	gatgggcagc	660
ggcgacgcca	gcacccaggc	ccacaagggc	gccatcaaga	tggtgatgag	cttcctgctg	720
ctgttcaccg	tgcacttctt	cagcatccag	ctgaccaact	ggatgctgct	gatcttctgg	780
aacaacaagt	tcaccaagtt	catcatgctg	gccatctacg	tgttccccag	cggccacagc	840
ctgatcctga	tcctgggcaa	cagcaagctg	cgccagaccg	ccctgaaggt	gctgcgccac	900
ctgaagagca	ccctgaagcg	cgagaagacc	gtgagcagcc	tgcagatcga	cgtgcccggc	960
agcttctaa						969
<210> 115						
< 211> 969						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constru	ucto artificial-o	ptimizado con	codón R42 pa	ra ratón		
<400> 115						
atgctggccg	gcctggacaa	gatetteetg	accctgagca	ccgccgagtt	cgtgatcggc	60
atgagcggca	acgtgttcgt	gggcctggtg	aactgcagcg	agtggatcaa	gaaccagaag	120
atcagetteg	tggacttcat	cctgacctgc	ctggccctga	gcaggatcac	ccagctgctg	180
gtgagcctgt	ggcagagctt	cgtgatgacc	ctgagccccc	ccttctacag	cacctggaag	240
agegeeaage	tgatcaccct	gctgtggagg	atcaccaacc	actggaccac	ctggttcacc	300
acctgcctga	gcatcttcta	cctgctgaag	atcgcccact	tcagccacag	cttcttcctg	360
tggctgaagt	ggaggaccaa	cagggtggtg	ctggccatcc	tggtgctgag	cctgcccttc	420
ctgctgttcg	acttcctggt	gctggagagc	ctgaacgact	tcttcctgaa	cgtgtacgtg	480
atggacgaga	gcaacctgac	cctgcacacc	aacgactgca	agagcctgta	catcaagacc	540
ctgatcctgc	tgagcttcag	ctacaccatc	cccatcgtgc	tgagcctgac	cagectggtg	600
ctgctgttcc	tgagcctggt	gaggcacatc	aggaacctgc	agctgaacgt	gatgggcagc	660
ggcgacgcca	gcacccaggc	ccacaagggc	gccatcaaga	tggtgatgag	cttcctgctg	720
ctgttcaccg	tgcacttctt	cagcatccag	ctgaccaact	ggatgctgct	gatcttctgg	780
aacaacaagt	tcaccaagtt	catcatgctg	gccatctacg	tgttccccag	cggccacagc	840
ctgatcctga	tcctgggcaa	cagcaagctg	aggcagaccg	ccctgaaggt	gctgaggcac	900
ctgaagagca	ccctgaagag	ggagaagacc	gtgagcagcc	tgcagatcga	cgtgcccggc	960
agcttctaa						969
<210> 116						

< 213> Secuencia artificial

< 211> 969 < 212> ADN

5

<220> < 223> constructo artificial-optimizado con codón R42 para S cerevisiae <400> 116 atgttggctg gtttggacaa gatcttcttg actttgtcta ctgctgaatt cgttatcggt 60 atgtctggta acgttttcgt tggtttggtt aactgttctg aatggatcaa gaaccaaaag 120 180 atctctttcg ttgacttcat cttgacttgt ttggctttgt ctagaatcac tcaattgttg 240 gtttctttgt ggcaatcttt cgttatgact ttgtctccac cattctactc tacttggaag tctgctaagt tgatcacttt gttgtggaga atcactaacc actggactac ttggttcact 300 acttgtttgt ctatcttcta cttgttgaag atcgctcact tctctcactc tttcttcttg 360 tggttgaagt ggagaactaa cagagttgtt ttggctatct tggttttgtc tttgccattc 420 ttgttgttcg acttcttggt tttggaatct ttgaacgact tcttcttgaa cgtttacgtt 480 atggacgaat ctaacttgac tttgcacact aacgactgta agtctttgta catcaagact 540 600 ttgatettgt tgtetttete ttacactate ecaategttt tgtetttgae ttetttggtt 660 ttgttgttct tgtctttggt tagacacatc agaaacttgc aattgaacgt tatgggttct 720 ggtgacgctt ctactcaagc tcacaagggt gctatcaaga tggttatgtc tttcttgttg 780 ttgttcactg ttcacttctt ctctatccaa ttgactaact ggatgttgtt gatcttctgg aacaacaagt tcactaagtt catcatgttg gctatctacg ttttcccatc tggtcactct 840 900 ttgatcttga tcttgggtaa ctctaagttg agacaaactg ctttgaaggt tttgagacac 960 ttgaagtcta ctttgaagag agaaaagact gtttcttctt tgcaaatcga cgttccaggt 969 tetttetaa <210> 117 < 211> 969 < 212> ADN < 213> Secuencia artificial < 223> constructo artificial-optimizado con codón R42 para E coli <400> 117 60 atgctggctg gtctggacaa aatcttectg accetgteta eegetgaatt egttateggt atgtctggta acgttttcgt tggtctggtt aactgctctg aatggatcaa aaaccagaaa 120 atctctttcg ttgacttcat cctgacctgc ctggctctgt ctcgtatcac ccagctgctg 180 240 gtttctctgt ggcagtcttt cgttatgacc ctgtctccgc cgttctactc tacctggaaa 300 tetgetaaac tgateaceet getgtggegt ateaceaace actggaceae etggtteace acctgcctgt ctatcttcta cctgctgaaa atcgctcact tctctcactc tttcttcctg 360

5

tggctgaaat						
	ggcgtaccaa	ccgtgttgtt	ctggctatcc	tggttctgtc	tctgccgttc	420
ctgctgttcg	acttcctggt	tctggaatct	ctgaacgact	tcttcctgaa	cgtttacgtt	480
atggacgaat	ctaacctgac	cctgcacacc	aacgactgca	aatctctgta	catcaaaacc	540
ctgatcctgc	tgtctttctc	ttacaccatc	ccgatcgttc	tgtctctgac	ctctctggtt	600
ctgctgttcc	tgtctctggt	tegteacate	cgtaacctgc	agctgaacgt	tatgggttct	660
ggtgacgctt	ctacccaggc	tcacaaaggt	gctatcaaaa	tggttatgtc	tttcctgctg	720
ctgttcaccg	ttcacttctt	ctctatccag	ctgaccaact	ggatgctgct	gatcttctgg	780
aacaacaaat	tcaccaaatt	catcatgctg	gctatctacg	ttttcccgtc	tggtcactct	840
ctgatcctga	tcctgggtaa	ctctaaactg	cgtcagaccg	ctctgaaagt	tctgcgtcac	900
ctgaaatcta	ccctgaaacg	tgaaaaaacc	gtttcttctc	tgcagatcga	cgttccgggt	960
tctttctaa						969
<210> 118						
< 211> 900						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constr	ucto artificial-o	ptimizado con	codón R43 pa	ra C elegans		
<400> 118						
	ctcttccatc	tattttctct	attgttgtta	ttattgaatt	ccttcttgga	60
atggttactg	ctcttccatc			_		60 120
atggttactg aatttcgcta		tgctcttgtt	aatttcattg	attggactaa	aagacaaaaa	
atggttactg aatttcgcta atttcttctg	atggattcat	tgctcttgtt tcttactgct	aatttcattg cttgctgttt	attggactaa ctagaattgg	aagacaaaaa	120
atggttactg aatttcgcta atttcttctg gttattctta	atggattcat ttgatcatat	tgctcttgtt tcttactgct tgctactctt	aatttcattg cttgctgttt ttctctccag	attggactaa ctagaattgg atttctattc	aagacaaaaa acttctttgg tcttgaagtt	120 180
atggttactg aatttcgcta atttcttctg gttattctta agaattattt	atggattcat ttgatcatat ttaattggta	tgctcttgtt tcttactgct tgctactctt ttggactgtt	aatttcattg cttgctgttt ttctctccag tctaatcatt	attggactaa ctagaattgg atttctattc tctctatttg	aagacaaaaa acttctttgg tcttgaagtt gcttgctact	120 180 240
atggttactg aatttcgcta atttcttctg gttattctta agaattattt tctctttcta	atggattcat ttgatcatat ttaattggta tccaaactgc	tgctcttgtt tcttactgct tgctactctt ttggactgtt tttcaaaatt	aatttcattg cttgctgttt ttctctccag tctaatcatt gctaatttct	attggactaa ctagaattgg atttctattc tctctatttg cttctcttat	aagacaaaaa acttctttgg tcttgaagtt gcttgctact tttccttaga	120 180 240 300
atggttactg aatttcgcta atttcttctg gttattctta agaattattt tctctttcta cttaaatgga	atggattcat ttgatcatat ttaattggta tccaaactgc ttttctatct	tgctcttgtt tcttactgct tgctactctt ttggactgtt tttcaaaatt tattgttctt	aatttcattg cttgctgttt ttctctccag tctaatcatt gctaatttct gttattcttc	attggactaa ctagaattgg atttctattc tctctatttg cttctcttat ttggatctct	aagacaaaaa acttctttgg tcttgaagtt gcttgctact tttccttaga tttcttcctt	120 180 240 300 360
atggttactg aatttcgcta atttcttctg gttattctta agaattattt tctctttcta cttaaatgga gtttgtcatg	atggattcat ttgatcatat ttaattggta tccaaactgc ttttctatct gagttaaatc	tgctcttgtt tcttactgct tgctactctt ttggactgtt tttcaaaatt tattgttctt ttctgtttgt	aatttcattg cttgctgttt ttctctccag tctaatcatt gctaatttct gttattcttc gaaaaagttc	attggactaa ctagaattgg atttctattc tctctatttg cttctcttat ttggatctct aaactgatgt	aagacaaaaa acttctttgg tcttgaagtt gcttgctact tttccttaga tttcttcctt ttatgaagga	120 180 240 300 360 420
atggttactg aatttcgcta atttcttctg gttattctta agaattattt tctctttcta cttaaatgga gtttgtcatg aatggaacta	atggattcat ttgatcatat ttaattggta tccaaactgc ttttctatct gagttaaatc ttgttgctgt	tgctcttgtt tcttactgct tgctactctt ttggactgtt tttcaaaatt tattgttctt ttctgtttgt acttagagat	aatttcattg cttgctgttt ttctctccag tctaatcatt gctaatttct gttattcttc gaaaaagttc attcttcaac	attggactaa ctagaattgg atttctattc tctctatttg cttctcttat ttggatctct aaactgatgt tttctaatat	aagacaaaaa acttctttgg tcttgaagtt gcttgctact tttccttaga tttcttcctt ttatgaagga gactattttc	120 180 240 300 360 420 480
atggttactg aatttcgcta atttcttctg gttattctta agaattattt tctctttcta cttaaatgga gtttgtcatg aatggaacta actcttgcta	atggattcat ttgatcatat ttaattggta tccaaactgc ttttctatct gagttaaatc ttgttgctgt gaaaaactaa	tgctcttgtt tcttactgct tgctactctt ttggactgtt tttcaaaatt tattgttctt ttctgtttgt acttagagat attcggaatg	aatttcattg cttgctgttt ttctctccag tctaatcatt gctaatttct gttattcttc gaaaaagttc attcttcaac tctcttactt	attggactaa ctagaattgg atttctattc tctctatttg cttctcttat ttggatctct aaactgatgt tttctaatat ctttcgttct	aagacaaaaa acttctttgg tcttgaagtt gcttgctact tttccttaga tttcttcctt ttatgaagga gactattttc	120 180 240 300 360 420 480 540
atggttactg aatttcgcta atttcttctg gttattctta agaattattt tctctttcta cttaaatgga gtttgtcatg aatggaacta actcttgcta tctctttgga	atggattcat ttgatcatat ttaattggta tccaaactgc ttttctatct gagttaaatc ttgttgctgt gaaaaactaa atttcattcc	tgctcttgtt tcttactgct tgctactctt ttggactgtt tttcaaaatt tattgttctt ttctgtttgt acttagagat attcggaatg aagaatgcaa	aatttcattg cttgctgttt ttctctccag tctaatcatt gctaatttct gttattctc gaaaaagttc attcttcaac tctcttactt ctttgtgata	attggactaa ctagaattgg atttctattc tctctatttg cttctcttat ttggatctct aaactgatgt tttctaatat ctttcgttct aaggatctca	aagacaaaaa acttctttgg tcttgaagtt gcttgctact tttccttaga tttcttcctt ttatgaagga gactattttc tcttattttc	120 180 240 300 360 420 480 540
atggttactg aatttcgcta atttcttctg gttattctta agaattattt tctctttcta cttaaatgga gtttgtcatg aatggaacta actcttgcta tctctttgga actaaagttc	atggattcat ttgatcatat ttaattggta tccaaactgc ttttctatct gagttaaatc ttgttgctgt gaaaaactaa atttcattcc aacatcttaa	tgctcttgtt tcttactgct tgctactctt ttggactgtt tttcaaaatt tattgttctt ttctgtttgt acttagagat attcggaatg aagaatgcaa tatgcaaact	aatttcattg cttgctgttt ttctctccag tctaatcatt gctaatttct gttattcttc gaaaaagttc attcttcaac tctcttactt ctttgtgata gttgtttctt	attggactaa ctagaattgg atttctattc tctctatttg cttctcttat ttggatctct aaactgatgt tttctaatat ctttcgttct aaggatctca tccttctttt	aagacaaaaa acttctttgg tcttgaagtt gcttgctact tttccttaga tttcttcctt ttatgaagga gactatttc tcttatttc agatccatct cttcgctgga	120 180 240 300 360 420 480 540 600 660
atggttactg aatttcgcta atttcttctg gttattctta agaattattt tctctttcta cttaaatgga gtttgtcatg aatggaacta actcttgcta tctctttgga actaaagttc tatttcttca	atggattcat ttgatcatat ttaattggta tccaaactgc ttttctatct gagttaaatc ttgttgctgt gaaaaactaa atttcattcc aacatcttaa atattagagc	tgctcttgtt tcttactgct tgctactctt ttggactgtt tttcaaaatt tattgttctt ttctgtttgt acttagagat attcggaatg aagaatgcaa tatgcaaact tactatttgg	aatttcattg cttgctgttt ttctctccag tctaatcatt gctaatttct gttattcttc gaaaaagttc attcttcaac tctcttactt ctttgtgata gttgtttctt	attggactaa ctagaattgg atttctattc tctctatttg cttctcttat ttggatctct aaactgatgt tttctaatat ctttcgttct aaggatctca tccttctttt ggccacaaaa	aagacaaaaa acttctttgg tcttgaagtt gcttgctact tttccttaga tttcttcctt ttatgaagga gactattttc tcttatttc agatccatct cttcgctgga tgaattcgga	120 180 240 300 360 420 480 540 600 660 720
atggttactg aatttcgcta atttcttctg gttattctta agaattattt tctctttcta cttaaatgga gtttgtcatg aatggaacta actcttgcta tctctttgga actaaagttc tatttcttca	atggattcat ttgatcatat ttaattggta tccaaactgc ttttctatct gagttaaatc ttgttgctgt gaaaaactaa atttcattcc aacatcttaa atattagagc ctcttactat	tgctcttgtt tcttactgct tgctactctt ttggactgtt tttcaaaatt tattgttctt ttctgtttgt acttagagat attcggaatg aagaatgcaa tatgcaaact tactatttgg tggaattctt	aatttcattg cttgctgttt ttctctccag tctaatcatt gctaatttct gttattcttc gaaaaagttc attcttcaac tctcttactt ctttgtgata gttgtttctt tcttctaatt tatccatcta	attggactaa ctagaattgg atttctattc tctctatttg cttctcttat ttggatctct aaactgatgt tttctaatat ctttcgttct aaggatctca tccttctttt ggccacaaaa ttcattctct	aagacaaaaa acttctttgg tcttgaagtt gcttgctact tttccttaga tttcttcctt ttatgaagga gactatttc tcttatttc agatccatct cttcgctgga tgaattcgga tatgcttatt	120 180 240 300 360 420 480 540 600 660 720 780

5

10

< 211> 900 < 212> ADN < 213> Secuencia artificial

5

10

<220> < 223> constructo artificial-optimizado con codón R43 para Drosophila <400> 119 atggtgaccg ccctgccctc catcttctcc atcgtggtga tcatcgagtt cctgctgggc 60 120 aacttcgcca acggettcat cgccctggtg aacttcatcg actggaccaa gcgccagaag 180 atctcctccg tggaccacat cctgaccgcc ctggccgtgt cccgcatcgg cctgctgtgg gtgatcctga tcaactggta cgccaccctg ttctcccccg acttctactc cctggaggtg 240 300 cgcatcatct tccagaccgc ctggaccgtg tccaaccact tctccatctg gctggccacc tecetgteca tettetacet gtteaagate geeaacttet eeteeetgat etteetgege 360 ctgaagtggc gcgtgaagtc catcgtgctg gtgatcctgc tgggctccct gttcttcctg 420 gtgtgccacg tggtggccgt gtccgtgtgc gagaaggtgc agaccgacgt gtacgagggc 480 540 aacggcaccc gcaagaccaa gctgcgcgac atcctgcagc tgtccaacat gaccatcttc 600 accetggeca actteatece etteggeatg teeetgacet eettegtget getgatette 660 tecetgtgga ageacetgaa gegeatgeag etgtgegaea agggeteeea ggaeceetee 720 accaaggtgc acateegegc catgeagace gtggtgteet teetgetgtt ettegeegge tacttettea ecctgaceat caccatetgg tectecaact ggccccagaa egagttegge 780 tteetgetgt geeaggtgat eggeateetg taeceeteea teeacteeet gatgetgate 840 900 cgcggcaaca agaagctgcg ccaggccttc ctgtccttcc tgtggcagct gaagtgctaa <210> 120 < 211> 900 < 212> ADN < 213> Secuencia artificial <220> < 223> constructo artificial-optimizado con codón R43 para ser humano atggtgaccg ccctgcccag catcttcagc atcgtggtga tcatcgagtt cctgctgggc 60 aacttegeca aeggetteat egecetggtg aactteateg aetggaceaa gegeeagaag 120 atcagcagcg tggaccacat cctgaccgcc ctggccgtga gccgcatcgg cctgctgtgg 180 240 gtgatectga teaactggta egecacectg tteageceeg acttetacag eetggaggtg cgcatcatct tccagaccgc ctggaccgtg agcaaccact tcagcatctg gctggccacc 300 agcctgagca tcttctacct gttcaagatc gccaacttca gcagcctgat cttcctgcgc 360 ctgaagtggc gcgtgaagag catcgtgctg gtgatcctgc tgggcagcct gttcttcctg 420

gtgtgccacg	tggtggccgt	gagcgtgtgc	gagaaggtgc	agaccgacgt	gtacgagggc	480
aacggcaccc	gcaagaccaa	gctgcgcgac	atcctgcagc	tgagcaacat	gaccatcttc	540
accctggcca	acttcatccc	cttcggcatg	agcctgacca	gcttcgtgct	gctgatcttc	600
agcctgtgga	agcacctgaa	gcgcatgcag	ctgtgcgaca	agggcagcca	ggaccccagc	660
accaaggtgc	acatccgcgc	catgcagacc	gtggtgagct	tcctgctgtt	cttcgccggc	720
tacttcttca	ccctgaccat	caccatctgg	agcagcaact	ggccccagaa	cgagttcggc	780
ttcctgctgt	gccaggtgat	cggcatcctg	taccccagca	tccacagcct	gatgctgatc	840
cgcggcaaca	agaagctgcg	ccaggccttc	ctgagcttcc	tgtggcagct	gaagtgctaa	900
<210> 121						
< 211> 900						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constru	ucto artificial-o	ptimizado con	codón R43 pa	ra ratón		
<400> 121						
atggtgaccg	ccctgcccag	catcttcagc	atcgtggtga	tcatcgagtt	cctgctgggc	60
aacttcgcca	acggcttcat	cgccctggtg	aacttcatcg	actggaccaa	gaggcagaag	120
atcagcagcg	tggaccacat	cctgaccgcc	ctggccgtga	gcaggatcgg	cctgctgtgg	180
gtgatcctga	tcaactggta	cgccaccctg	ttcagccccg	acttctacag	cctggaggtg	240
aggatcatct	tccagaccgc	ctggaccgtg	agcaaccact	tcagcatctg	gctggccacc	300
agcctgagca	tcttctacct	gttcaagatc	gccaacttca	gcagcctgat	cttcctgagg	360
ctgaagtgga	gggtgaagag	catcgtgctg	gtgatcctgc	tgggcagcct	gttcttcctg	420
gtgtgccacg	tggtggccgt	gagcgtgtgc	gagaaggtgc	agaccgacgt	gtacgagggc	480
aacggcacca	ggaagaccaa	gctgagggac	atcctgcagc	tgagcaacat	gaccatcttc	540
accctggcca	acttcatccc	cttcggcatg	agcctgacca	gcttcgtgct	gctgatcttc	600
agcctgtgga	agcacctgaa	gaggatgcag	ctgtgcgaca	agggcagcca	ggaccccagc	660
accaaggtgc	acatcagggc	catgcagacc	gtggtgagct	tcctgctgtt	cttcgccggc	720
tacttcttca	ccctgaccat	caccatctgg	agcagcaact	ggccccagaa	cgagttcggc	780
ttcctgctgt	gccaggtgat	cggcatcctg	taccccagca	tccacagcct	gatgctgatc	840
aggggcaaca	agaagctgag	gcaggccttc	ctgagcttcc	tgtggcagct	gaagtgctaa	900
<210> 122						
< 211> 900						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						

< 223> constructo artificial-optimizado con codón R43 para S cerevisiae

<400> 122						
atggttactg	ctttgccatc	tatcttctct	atcgttgtta	tcatcgaatt	cttgttgggt	60
aacttcgcta	acggtttcat	cgctttggtt	aacttcatcg	actggactaa	gagacaaaag	120
atctcttctg	ttgaccacat	cttgactgct	ttggctgttt	ctagaatcgg	tttgttgtgg	180
gttatcttga	tcaactggta	cgctactttg	ttctctccag	acttctactc	tttggaagtt	240
agaatcatct	tccaaactgc	ttggactgtt	tctaaccact	tctctatctg	gttggctact	300
tctttgtcta	tcttctactt	gttcaagatc	gctaacttct	cttctttgat	cttcttgaga	360
ttgaagtgga	gagttaagtc	tatcgttttg	gttatcttgt	tgggttcttt	gttcttcttg	420
gtttgtcacg	ttgttgctgt	ttctgtttgt	gaaaaggttc	aaactgacgt	ttacgaaggt	480
aacggtacta	gaaagactaa	gttgagagac	atcttgcaat	tgtctaacat	gactatcttc	540
actttggcta	acttcatccc	attcggtatg	tctttgactt	ctttcgtttt	gttgatcttc	600
tctttgtgga	agcacttgaa	gagaatgcaa	ttgtgtgaca	agggttctca	agacccatct	660
actaaggttc	acatcagagc	tatgcaaact	gttgtttctt	tcttgttgtt	cttcgctggt	720
tacttcttca	ctttgactat	cactatctgg	tcttctaact	ggccacaaaa	cgaattcggt	780
ttcttgttgt	gtcaagttat	cggtatcttg	tacccatcta	tccactcttt	gatgttgatc	840
agaggtaaca	agaagttgag	acaagctttc	ttgtctttct	tgtggcaatt	gaagtgttaa	900
<210> 123						
< 211> 900						
< 212> ADN						
< 213> Secue	ncia artificial					
<220>						
< 223> constru	ucto artificial-o	ptimizado con	codón R43 pa	ra E coli		
<400> 123						
atggttaccg	ctctgccgtc	tatcttctct	atcgttgtta	tcatcgaatt	cctgctgggt	60
aacttcgcta	acggtttcat	cgctctggtt	aacttcatcg	actggaccaa	acgtcagaaa	120
atctcttctg	ttgaccacat	cctgaccgct	ctggctgttt	ctcgtatcgg	tctgctgtgg	180
gttatcctga	tcaactggta	cgctaccctg	ttctctccgg	acttctactc	tctggaagtt	240
cgtatcatct	tccagaccgc	ttggaccgtt	tctaaccact	tctctatctg	gctggctacc	300
tctctgtcta	tcttctacct	gttcaaaatc	gctaacttct	cttctctgat	cttcctgcgt	360
ctgaaatggc	gtgttaaatc	tatcgttctg	gttatcctgc	tgggttctct	gttcttcctg	420
gtttgccacg	ttgttgctgt	ttctgtttgc	gaaaaagttc	agaccgacgt	ttacgaaggt	480
aacggtaccc	gtaaaaccaa	actgcgtgac	atcctgcagc	tgtctaacat	gaccatcttc	540
accctggcta	acttcatccc	gttcggtatg	tctctgacct	ctttcgttct	gctgatcttc	600

tctctgtgga	aacacctgaa	acgtatgcag	ctgtgcgaca	aaggttctca	ggacccgtct	660					
accaaagttc	acatccgtgc	tatgcagacc	gttgtttctt	tcctgctgtt	cttcgctggt	720					
tacttcttca	ccctgaccat	caccatctgg	tcttctaact	ggccgcagaa	cgaattcggt	780					
ttcctgctgt	gccaggttat	cggtatcctg	tacccgtcta	tccactctct	gatgctgatc	840					
cgtggtaaca	aaaaactgcg	tcaggctttc	ctgtctttcc	tgtggcagct	gaaatgctaa	900					
<210> 124											
< 211> 927											
< 212> ADN											
< 213> Secuencia artificial											
<220>											
< 223> constr	ucto artificial-o	ptimizado con	codón R44 pa	ra C elegans							
<400> 124											
atggtttctg	ctcttccatc	tattttctct	attgctgtta	ttattgaatt	ccttcttgga	60					
aatttcgcta	atggattcat	tgctcttgtt	aatttcattg	attggactaa	aagacaaaaa	120					
atttcttctg	ttgatcatat	tattgatgat	cttgctgttt	ctagaattgg	acttctttgg	180					
gttatgatta	ttaattggta	tgctacttgg	ttctctccag	atttcaaatc	tcttgaagtt	240					
agaattattt	tccaaactgc	ttggactgtt	tctaatcatt	tctctatttg	gcttgctact	300					
tctctttcta	ttttctatct	tttcaaaatt	gctaatttct	cttctcttat	tttccttaga	360					
cttaaatgga	gagttaaatc	tgttgttctt	gttatgcttc	ttggatctct	tttccttctt	420					
ttctctcatg	ttgctgctgt	ttctatttat	gaaaaagttc	aaactaaagc	ttatgaagga	480					
aatgttactt	ggagaactaa	atggactgga	atggctcatc	tttctaatat	gactgttttc	540					
actcttgcta	atttcattcc	attcgctact	tctcttactt	ctttcgttct	tcttattttc	600					
tctctttgga	gacatcttaa	aagaatgcaa	ctttgtggaa	aaggatctca	agatccatct	660					
actaaagttc	atattagagc	tatgcaaact	gttgtttctt	tccttcttt	cttcgctgga	720					
tatgttctta	atcttattgt	tactgtttgg	tctttcaatg	gacttcaaaa	agaacttttc	780					
atgttctgtc	aagttcttgc	tttcgtttat	ccatctattc	attctcttat	gcttatttgg	840					
ggaaataaaa	aacttaaaca	agctttcctt	tctgttcttt	atcaagaaaa	atattggctt	900					
aaagaacaaa	aacattctac	tccataa				927					
<210> 125											
< 211> 927											
< 212> ADN											
< 213> Secue	ncia artificial										
<220>											
< 223> constructo artificial-optimizado con codón R44 para Drosophila											

<400> 125

atggtgtccg	ccctgccctc	catcttctcc	atcgccgtga	tcatcgagtt	cctgctgggc	60
aacttcgcca	acggcttcat	cgccctggtg	aacttcatcg	actggaccaa	gcgccagaag	120
atctcctccg	tggaccacat	cctggccgcc	ctggccgtgt	cccgcatcgg	cctgctgtgg	180
gtgatgatca	tcaactggta	cgccacctgg	ttctcccccg	acttcaagtc	cctggaggtg	240
cgcatcatct	tccagaccgc	ctggaccgtg	tccaaccact	tctccatctg	gctggccacc	300
tccctgtcca	tcttctacct	gttcaagatc	gccaacttct	cctccctgat	cttcctgcgc	360
ctgaagtggc	gcgtgaagtc	cgtggtgctg	gtgatgctgc	tgggctccct	gttcctgctg	420
ttctcccacg	tggccgccgt	gtccatctac	gagaaggtgc	agaccaaggc	ctacgagggc	480
aacgtgacct	ggcgcaccaa	gtggaccggc	atggcccacc	tgtccaacat	gaccgtgttc	540
accctggcca	acttcatccc	cttcgccacc	tccctgacct	ccttcgtgct	gctgatcttc	600
tccctgtggc	gccacctgaa	gcgcatgcag	ctgtgcggca	agggctccca	ggacccctcc	660
accaaggtgc	acatccgcgc	catgcagacc	gtggtgtcct	tcctgctgtt	cttcgccggc	720
tacgtgctga	acctgatcgt	gaccgtgtgg	tccttcaacg	gcctgcagaa	ggagctgttc	780
atgttctgcc	aggtgctggc	cttcgtgtac	ccctccatcc	actccctgat	gctgatctgg	840
ggcaacaaga	agctgaagca	ggccttcctg	tccgtgctgt	accaggagaa	gtactggctg	900
aaggagcaga	agcactccac	cccctaa				927

<210> 126

< 211> 927

< 212> ADN

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón R44 para ser humano

<400> 126

atggtgageg ccctgcccag catcttcagc atcgccgtga tcatcgagtt cctgctgggc 60 120 aacttegeea aeggetteat egeeetggtg aactteateg aetggaceaa gegeeagaag 180 atcagcagcg tggaccacat cctggccgcc ctggccgtga gccgcatcgg cctgctgtgg gtgatgatca tcaactggta cgccacctgg ttcagccccg acttcaagag cctggaggtg 240 cgcatcatct tccagaccgc ctggaccgtg agcaaccact tcagcatctg gctggccacc 300 agectgagea tettetacet gtteaagate geeaacttea geagectgat etteetgege 360 ctgaagtggc gcgtgaagag cgtggtgctg gtgatgctgc tgggcagcct gttcctgctg 420 ttcagccacg tggccgccgt gagcatctac gagaaggtgc agaccaaggc ctacgagggc 480 540 aacgtgacct ggcgcaccaa gtggaccggc atggcccacc tgagcaacat gaccgtgttc accetggeea actteateee ettegeeace ageetgacea gettegtget getgatette 600 agectgtgge gecaectgaa gegeatgeag etgtgeggea agggeageea ggaeceeage 660

accaaggtgc	acateegege	catgcagacc	gtggtgagct	tcctgctgtt	cttcgccggc	720						
tacgtgctga	acctgatcgt	gaccgtgtgg	agcttcaacg	gcctgcagaa	ggagctgttc	780						
atgttctgcc	aggtgctggc	cttcgtgtac	cccagcatcc	acagcctgat	gctgatctgg	840						
ggcaacaaga	agctgaagca	ggccttcctg	agcgtgctgt	accaggagaa	gtactggctg	900						
aaggagcaga	agcacagcac	cccctaa				927						
<210> 127												
< 211> 927												
< 212> ADN												
< 213> Secuencia artificial												
<220>												
< 223> constr	ucto artificial-o	ptimizado con	codón R44 pa	ra ratón								
<400> 127												
atggtgagcg	ccctgcccag	catcttcagc	atcgccgtga	tcatcgagtt	cctgctgggc	60						
aacttcgcca	acggcttcat	cgccctggtg	aacttcatcg	actggaccaa	gaggcagaag	120						
atcagcagcg	tggaccacat	cctggccgcc	ctggccgtga	gcaggatcgg	cctgctgtgg	180						
gtgatgatca	tcaactggta	cgccacctgg	ttcagccccg	acttcaagag	cctggaggtg	240						
aggatcatct	tecagacege	ctggaccgtg	agcaaccact	tcagcatctg	gctggccacc	300						
agcctgagca	tcttctacct	gttcaagatc	gccaacttca	gcagcctgat	cttcctgagg	360						
ctgaagtgga	gggtgaagag	cgtggtgctg	gtgatgctgc	tgggcagcct	gttcctgctg	420						
ttcagccacg	tggccgccgt	gagcatctac	gagaaggtgc	agaccaaggc	ctacgagggc	480						
aacgtgacct	ggaggaccaa	gtggaccggc	atggcccacc	tgagcaacat	gaccgtgttc	540						
accctggcca	acttcatccc	cttcgccacc	agcctgacca	gcttcgtgct	gctgatcttc	600						
agcctgtgga	ggcacctgaa	gaggatgcag	ctgtgcggca	agggcagcca	ggaccccagc	660						
accaaggtgc	acatcagggc	catgcagacc	gtggtgagct	tcctgctgtt	cttcgccggc	720						
tacgtgctga	acctgatcgt	gaccgtgtgg	agcttcaacg	gcctgcagaa	ggagctgttc	780						
atgttctgcc	aggtgctggc	cttcgtgtac	cccagcatcc	acagcctgat	gctgatctgg	840						
ggcaacaaga	agctgaagca	ggccttcctg	agcgtgctgt	accaggagaa	gtactggctg	900						
aaggagcaga	agcacagcac	cccctaa				927						
<210> 128												
< 211> 927												
< 212> ADN												
< 213> Secue	ncia artificial											
<220>	<220>											
< 223> constr	< 223> constructo artificial-optimizado con codón R44 para S cerevisiae											
<400> 128												

atggtttctg	ctttgccatc	tatcttctct	atcgctgtta	tcatcgaatt	cttgttgggt	60
aacttcgcta	acggtttcat	cgctttggtt	aacttcatcg	actggactaa	gagacaaaag	120
atctcttctg	ttgaccacat	cttggctgct	ttggctgttt	ctagaatcgg	tttgttgtgg	180
gttatgatca	tcaactggta	cgctacttgg	ttctctccag	acttcaagtc	tttggaagtt	240
agaatcatct	tccaaactgc	ttggactgtt	tctaaccact	tctctatctg	gttggctact	300
tctttgtcta	tcttctactt	gttcaagatc	gctaacttct	cttctttgat	cttcttgaga	360
ttgaagtgga	gagttaagtc	tgttgttttg	gttatgttgt	tgggttcttt	gttcttgttg	420
ttctctcacg	ttgctgctgt	ttctatctac	gaaaaggttc	aaactaaggc	ttacgaaggt	480
aacgttactt	ggagaactaa	gtggactggt	atggctcact	tgtctaacat	gactgttttc	540
actttggcta	acttcatccc	attcgctact	tctttgactt	ctttcgtttt	gttgatcttc	600
tctttgtgga	gacacttgaa	gagaatgcaa	ttgtgtggta	agggttctca	agacccatct	660
actaaggttc	acatcagagc	tatgcaaact	gttgtttctt	tcttgttgtt	cttcgctggt	720
tacgttttga	acttgatcgt	tactgtttgg	tctttcaacg	gtttgcaaaa	ggaattgttc	780
atgttctgtc	aagttttggc	tttcgtttac	ccatctatcc	actctttgat	gttgatctgg	840
ggtaacaaga	agttgaagca	agctttcttg	tctgttttgt	accaagaaaa	gtactggttg	900
aaggaacaaa	agcactctac	tccataa				927

<210> 129

< 211> 927

< 212> ADN

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón R44 para E coli

<400> 129

atggtttetg etetgeegte tatettetet ategetgtta teategaatt eetgetgggt 60 120 aacttegeta aeggttteat egetetggtt aactteateg aetggaceaa aegteagaaa atctcttctg ttgaccacat cctggctgct ctggctgttt ctcgtatcgg tctgctgtgg 180 gttatgatca tcaactggta cgctacctgg ttctctccgg acttcaaatc tctggaagtt 240 cgtatcatct tccagaccgc ttggaccgtt tctaaccact tctctatctg gctggctacc 300 tototgtota tottotacet gttcaaaatc gctaacttct cttctctgat cttcctgcgt 360 ctgaaatggc gtgttaaatc tgttgttctg gttatgctgc tgggttctct gttcctgctg 420 ttctctcacg ttgctgctgt ttctatctac gaaaaagttc agaccaaagc ttacgaaggt 480 540 aacgttacct ggcgtaccaa atggaccggt atggctcacc tgtctaacat gaccgttttc accetggeta actteatece gttegetace tetetgacet etttegttet getgatette 600 tctctgtggc gtcacctgaa acgtatgcag ctgtgcggta aaggttctca ggacccgtct 660

accaaagttc	acatccgtgc	tatgcagacc	gttgtttctt	tcctgctgtt	cttcgctggt	720					
tacgttctga	acctgatcgt	taccgtttgg	tctttcaacg	gtctgcagaa	agaactgttc	780					
atgttctgcc	aggttctggc	tttcgtttac	ccgtctatcc	actctctgat	gctgatctgg	840					
ggtaacaaaa	aactgaaaca	ggctttcctg	tctgttctgt	accaggaaaa	atactggctg	900					
aaagaacaga	aacactctac	cccgtaa				927					
<210> 130											
< 211> 939											
< 212> ADN											
< 213> Secuencia artificial											
<220>											
< 223> constr	ucto artificial-o	ptimizado con	codón R67 pa	ra C elegans							
<400> 130											
atgccatctg	gaattgaaaa	tactttcctt	actgctgctg	ttggaacttt	catgattgga	60					
atgcttggaa	atggattcat	tgctcttgtt	aattgtattg	attgggttaa	acatagaaaa	120					
ctttctccag	ctgattgtat	tcttacttct	cttgctgttt	ctagaattat	tcttctttgg	180					
atgattcttt	tcgatcttct	tgttatggtt	ttctggccac	atctttataa	tattgaaaaa	240					
cttgctactg	ctgttaatat	ttgttggact	cttactaatc	atcttgctac	ttggttcgct	300					
acttgtcttt	ctgttttcta	tttcttcaga	attgctaatt	tctctcatag	atatttcact	360					
tggcttagaa	gaagaatttc	tagagttctt	ccagttcttc	cacttggatc	tcttttcctt	420					
cttgttttca	attataaact	tcttgttgga	ttctctgatc	tttgggctac	tatttatcat	480					
aattatgaaa	gaaattctac	tagaccactt	gatgtttcta	aaactggata	tcttaattct	540					
cttgttattc	tttctttcat	ttatcttatt	ccattccttc	tttctcttac	ttctcttctt	600					
cttcttttcc	tttctcttat	gagacatact	agaaatgttc	aacttaattc	ttcttctaga	660					
gatttctcta	ctgaagctca	taaaagagct	atgaaaatgg	ttatttcttt	ccttcttctt	720					
tctactgttc	atttcttctc	tattcaactt	actggatgga	ttttccttct	tcttaaaaaa	780					
catcatgcta	atcttactgt	tactcttact	tctgctcttt	tcccatctgg	acattcttc	840					
attcttattt	tcggaaattc	taaacttaga	caaactgctc	ttggacttct	ttggcatctt	900					
aattgtcatc	ttaaaatggt	taaaccactt	gcttcttaa			939					
<210> 131											
< 211> 939											
< 212> ADN											
< 213> Secue	< 213> Secuencia artificial										
<220>	<220>										
< 223> constructo artificial-optimizado con codón R67 para Drosophila											

<400> 131

atgccctccg	gcatcgagaa	caccttcctg	accgccgccg	tgggcacctt	catgatcggc	60
atgctgggca	acggcttcat	cgccctggtg	aactgcatcg	actgggtgaa	gcaccgcaag	120
ctgtcccccg	ccgactgcat	cctgacctcc	ctggccgtgt	cccgcatcat	cctgctgtgg	180
atgatectgt	tcgacctgct	ggtgatggtg	ttctggcccc	acctgtacaa	catcgagaag	240
ctggccaccg	ccgtgaacat	ctgctggacc	ctgaccaacc	acctggccac	ctggttcgcc	300
acctgcctgt	ccgtgttcta	cttcttccgc	atcgccaact	tctcccaccg	ctacttcacc	360
tggctgcgcc	gccgcatctc	ccgcgtgctg	cccgtgctgc	ccctgggctc	cctgttcctg	420
ctggtgttca	actacaagct	gctggtgggc	ttctccgacc	tgtgggccac	catctaccac	480
aactacgagc	gcaactccac	ccgccccctg	gacgtgtcca	agaccggcta	cctgaactcc	540
ctggtgatcc	tgtccttcat	ctacctgatc	cccttcctgc	tgtccctgac	ctccctgctg	600
ctgctgttcc	tgtccctgat	gegecacace	cgcaacgtgc	agctgaactc	ctcctcccgc	660
gacttctcca	ccgaggccca	caagcgcgcc	atgaagatgg	tgatctcctt	cctgctgctg	720
tccaccgtgc	acttcttctc	catccagctg	accggctgga	tcttcctgct	gctgaagaag	780
caccacgcca	acctgaccgt	gaccctgacc	tccgccctgt	teceeteegg	ccactccttc	840
atcctgatct	tcggcaactc	caagctgcgc	cagaccgccc	tgggcctgct	gtggcacctg	900
aactgccacc	tgaagatggt	gaagcccctg	gcctcctaa			939

<210> 132

< 211> 939

< 212> ADN

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón R67 para ser humano

<400> 132

atgcccageg gcategagaa cacetteetg acegeegeeg tgggcacett catgategge 120 atgctgggca acggcttcat cgccctggtg aactgcatcg actgggtgaa gcaccgcaag 180 ctgagccccg ccgactgcat cctgaccagc ctggccgtga gccgcatcat cctgctgtgg 240 atgatcctgt tcgacctgct ggtgatggtg ttctggcccc acctgtacaa catcgagaag ctggccaccg ccgtgaacat ctgctggacc ctgaccaacc acctggccac ctggttcgcc 300 360 acctgcctga gcgtgttcta cttcttccgc atcgccaact tcagccaccg ctacttcacc 420 tggctgcgcc gccgcatcag ccgcgtgctg cccgtgctgc ccctgggcag cctgttcctg 480 ctggtgttca actacaagct gctggtgggc ttcagcgacc tgtgggccac catctaccac aactacgagc gcaacagcac ccgcccctg gacgtgagca agaccggcta cctgaacagc 540 ctggtgatcc tgagcttcat ctacctgatc cccttcctgc tgagcctgac cagcctgctg 600 ctgctgttcc tgagcctgat gcgccacacc cgcaacgtgc agctgaacag cagcagccgc 660

gacttcagca	ccgaggccca	caagegegee	atgaagatgg	tgatcagctt	cctgctgctg	720					
agcaccgtgc	acttcttcag	catccagctg	accggctgga	tetteetget	gctgaagaag	780					
caccacgcca	acctgaccgt	gaccctgacc	agcgccctgt	tccccagcgg	ccacagette	840					
atcctgatct	tcggcaacag	caagctgcgc	cagaccgccc	tgggcctgct	gtggcacctg	900					
aactgccacc	tgaagatggt	gaagcccctg	gccagctaa			939					
<210> 133											
< 211> 939											
< 212> ADN											
< 213> Secuencia artificial											
<220>											
< 223> constr	ucto artificial-o	ptimizado con	codón R67 pa	ra ratón							
<400> 133											
atgcccagcg	gcatcgagaa	caccttcctg	accgccgccg	tgggcacctt	catgategge	60					
atgctgggca	acggcttcat	cgccctggtg	aactgcatcg	actgggtgaa	gcacaggaag	120					
ctgagecccg	ccgactgcat	cctgaccagc	ctggccgtga	gcaggatcat	cctgctgtgg	180					
atgatcctgt	tcgacctgct	ggtgatggtg	ttctggcccc	acctgtacaa	catcgagaag	240					
ctggccaccg	ccgtgaacat	ctgctggacc	ctgaccaacc	acctggccac	ctggttcgcc	300					
acctgcctga	gcgtgttcta	cttcttcagg	atcgccaact	tcagccacag	gtacttcacc	360					
tggctgagga	ggaggatcag	cagggtgctg	cccgtgctgc	ccctgggcag	cctgttcctg	420					
ctggtgttca	actacaagct	gctggtgggc	ttcagcgacc	tgtgggccac	catctaccac	480					
aactacgaga	ggaacagcac	caggcccctg	gacgtgagca	agaccggcta	cctgaacagc	540					
ctggtgatcc	tgagcttcat	ctacctgatc	cccttcctgc	tgagcctgac	cagcctgctg	600					
ctgctgttcc	tgagcctgat	gaggcacacc	aggaacgtgc	agctgaacag	cagcagcagg	660					
gacttcagca	ccgaggccca	caagagggcc	atgaagatgg	tgatcagctt	cctgctgctg	720					
agcaccgtgc	acttcttcag	catccagctg	accggctgga	tcttcctgct	gctgaagaag	780					
caccacgcca	acctgaccgt	gaccctgacc	agcgccctgt	tccccagcgg	ccacagette	840					
atcctgatct	tcggcaacag	caagctgagg	cagaccgccc	tgggcctgct	gtggcacctg	900					
aactgccacc	tgaagatggt	gaagcccctg	gccagctaa			939					
<210> 134											
< 211> 939											
< 212> ADN											
< 213> Secue	ncia artificial										
<220>											
< 223> constructo artificial-optimizado con codón R67 para S cerevisiae											

<400> 134

atgccatctg	gtatcgaaaa	cactttcttg	actgctgctg	ttggtacttt	catgatcggt	60
atgttgggta	acggtttcat	cgctttggtt	aactgtatcg	actgggttaa	gcacagaaag	120
ttgtctccag	ctgactgtat	cttgacttct	ttggctgttt	ctagaatcat	cttgttgtgg	180
atgatcttgt	tcgacttgtt	ggttatggtt	ttctggccac	acttgtacaa	catcgaaaag	240
ttggctactg	ctgttaacat	ctgttggact	ttgactaacc	acttggctac	ttggttcgct	300
acttgtttgt	ctgttttcta	cttcttcaga	atcgctaact	tctctcacag	atacttcact	360
tggttgagaa	gaagaatctc	tagagttttg	ccagttttgc	cattgggttc	tttgttcttg	420
ttggttttca	actacaagtt	gttggttggt	ttctctgact	tgtgggctac	tatctaccac	480
aactacgaaa	gaaactctac	tagaccattg	gacgtttcta	agactggtta	cttgaactct	540
ttggttatct	tgtctttcat	ctacttgatc	ccattcttgt	tgtctttgac	ttctttgttg	600
ttgttgttct	tgtctttgat	gagacacact	agaaacgttc	aattgaactc	ttcttctaga	660
gacttctcta	ctgaagctca	caagagagct	atgaagatgg	ttatctcttt	cttgttgttg	720
tctactgttc	acttcttctc	tatccaattg	actggttgga	tcttcttgtt	gttgaagaag	780
caccacgcta	acttgactgt	tactttgact	tctgctttgt	tcccatctgg	tcactctttc	840
atcttgatct	tcggtaactc	taagttgaga	caaactgctt	tgggtttgtt	gtggcacttg	900
aactgtcact	tgaagatggt	taagccattg	gcttcttaa			939

<210> 135

< 211> 939

< 212> ADN

5 < 213> Secuencia artificial

<220>

< 223> constructo artificial-optimizado con codón R67 para E coli

<400> 135

60 atgccgtctg gtatcgaaaa caccttcctg accgctgctg ttggtacctt catgatcggt atgctgggta acggtttcat cgctctggtt aactgcatcg actgggttaa acaccgtaaa 120 ctgtctccgg ctgactgcat cctgacctct ctggctgttt ctcgtatcat cctgctgtgg 180 atgatectgt tegacetget ggttatggtt ttetggeege acetgtacaa categaaaaa 240 ctggctaccg ctgttaacat ctgctggacc ctgaccaacc acctggctac ctggttcgct 300 acctgcctgt ctgttttcta cttcttccgt atcgctaact tctctcaccg ttacttcacc 360 tggctgcgtc gtcgtatctc tcgtgttctg ccggttctgc cgctgggttc tctgttcctg 420 ctggttttca actacaaact gctggttggt ttctctgacc tgtgggctac catctaccac 480 aactacgaac gtaactctac ccgtccgctg gacgtttcta aaaccggtta cctgaactct 540 600 ctggttatcc tgtctttcat ctacctgatc ccgttcctgc tgtctctgac ctctctgctg ctgctgttcc tgtctctgat gcgtcacacc cgtaacgttc agctgaactc ttcttctcgt 660

gacttctcta	ccgaagctca	caaacgtgct	atgaaaatgg	ttatctcttt	cctgctgctg	720
tctaccgttc	acttcttctc	tatccagctg	accggttgga	tetteetget	gctgaaaaaa	780
caccacgcta	acctgaccgt	taccctgacc	tctgctctgt	tcccgtctgg	tcactctttc	840
atcctgatct	tcggtaactc	taaactgcgt	cagaccgctc	tgggtctgct	gtggcacctg	900
aactgccacc	tgaaaatggt	taaaccgctg	gcttcttaa			939

REIVINDICACIONES

- 1. Un polipéptido del receptor TAS2R felino (fTAS2R) que comprende una secuencia seleccionada entre las SEQ ID NO:18, SEQ ID NO:8, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24 y SEQ ID NO:26,
- 5 preferiblemente en donde fTAS2R es fTAS2R38 y el aminoácido 74 de la SEQ ID NO:18 es N.
 - 2. El polipéptido según la reivindicación 1 que además comprende un polipéptido heterólogo.
 - 3. El polipéptido según la reivindicación 2, en donde el polipéptido heterólogo está enlazado al término amino o al término carboxi del polipéptido del receptor TAS2R felino.
 - 4. Un polinucleótido aislado seleccionado entre
- 10 (a) un polinucleótido que codifica el polipéptido según una cualquiera de las reivindicaciones 1-3, y
 - (b) un polinucleótido que codifica un polipéptido del receptor TAS2R felino (fTAS2R), que comprende una secuencia de nucleótidos seleccionada entre:
 - la secuencia de nucleótidos de la SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23 o SEQ ID NO: 25;
- una secuencia de nucleótidos que codifica la secuencia de aminoácidos de la SEQ ID NO: 18, SEQ ID NO: 8, SEQ ID NO: 12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24 o SEQ ID NO: 26; y
 - el complemento de las secuencias de nucleótidos anteriores.
 - 5. Una composición que comprende por lo menos
 - (a) dos polipéptidos según una cualquiera de las reivindicaciones 1-3, o
- 20 (b) dos polinucleótidos según la reivindicación 4.

- 6. Un vector de expresión que comprende el polinucleótido según la reivindicación 4.
- 7. Una célula hospedante que comprende el vector de expresión según la reivindicación 6, preferiblemente en donde la célula es una célula mamífera, una célula de pez, una célula humana, una célula murina, una célula felina, una célula de levadura, una célula bacteriana o una célula de insecto.
- 8. Un anticuerpo aislado o su fragmento, que se une específicamente a un epítopo del receptor fTAS2R del polipéptido según una cualquiera de las reivindicaciones 1-3.
 - 9. Un método para identificar un compuesto que interactúa con un polipéptido del receptor TAS2R felino, que comprende:
 - poner en contacto un polipéptido según una cualquiera de las reivindicaciones 1-3 con un compuesto de ensayo, y
- 30 detectar la interacción entre el polipéptido y el compuesto de ensayo.
 - 10. Un método para identificar un compuesto que modula un polipéptido del receptor TAS2R felino, que comprende:
 - poner en contacto el polipéptido según una cualquiera de las reivindicaciones 1 a 3 con un ligando del receptor TAS2R tanto en presencia como en ausencia de un compuesto de ensayo en ensayos separados, y
- determinar si el compuesto de ensayo modula la unión del ligando al polipéptido del receptor o la activación del polipéptido del receptor por parte del ligando.
 - 11. Un método para preparar una composición comestible que comprende poner en contacto una composición comestible o un componente de esta con un polipéptido según una cualquiera de las reivindicaciones 1 a 3 por un tiempo suficiente para reducir la cantidad de un compuesto amargo de la composición comestible o su componente, preferiblemente en donde la composición comestible es una composición alimentaria para un felino, y la composición o su componente se pone en contacto con una pluralidad de polipéptidos diferentes.
 - 136

FIG. 1

Tas2R16 humano Tas2R4 humano Tas2R4 felino Tas2R9 humano Tas2R9 felino Tas2R10 humano Tas2R10 felino Tas2R12 felino Tas2R38 humano Tas2R38 felino

TM 3 110 120 130 140 150 WEREN LIEWLNS LIVEYOFKVSSFTHHIFLWLRWRILRLEPWILLGS L 134 FMFLDSSSVWFVTLLNI LYCVKI TNFQHSVFLLLKRNI SPKI PRLLLACV 137 WMFLESTSLWLVTLLNALYCVKI TDFQHSVFLLLKRKLSPKI PRLLLACV WTFANNSSLWFTSCLSI FYLLKI ANI SHPFFFWLKLKI NKVMLAI LLGSF 138 WTLSNHSSVWFTACLSI FYLLKI ANI SHPVFLWLKLNVTRVVLGLFLASF 138 WI GNQSSMWFATSLSI FYFLKI ANFSNYI FLWLKSRTNMV-LPFMI VFL WILLNQSNI WFATSLSTFYFLKI ANFSHHMFLWLKGRI NWV-LPLLMGSL WTGSNYFCI TCTTCLSVFYFFKI ANFSNPLFLWI KWRI HKVLLTI VLAAV 138 WMI ANQANLWLAACLSLLYCSKLIRFSHTFLICLASWSRKISQMLLGII 148 MMI TNQVGLWLTTCLSLLYCSKI ARFSHTLLHCVASWSRKVPQMLLGAM 148

Tas2R16 humano Tas2R4 humano Tas2R4 felino Tas2R9 humano Tas2R9 felino Tas2R10 humano Tas2R10 felino Tas2R12 felino Tas2R38 humano Tas2R38 felino

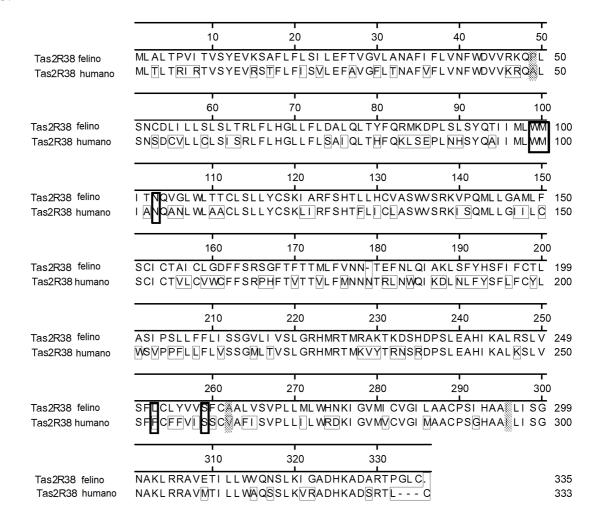
170 180 190 200 160 TM 4 🗱 TOXTE PSAIGNYI QI QLLTMEHLPRNSTVTDKLENFHQYQFQAHT--182 LISAFTTCLYITLSOASP---FPELVTTRNNTSFNISEGILSLVVSLV--182 LI SAFSTLLYVVLTQTSP- - - FPELLTGSNGTVCDI NKSI LSLVTSLV- -LI SLI I SVPKNDDMWYHL - - - FKVSHEENI TWKFKVSKI PG- - TFKQLTL 183 LTSIII SVFLKEGSWGHV---- EVNHEENI TWEFRVSKAPS-- AFKLIIL 182 LI SSLLNFAYI AKI LND- - - - YKT- KNDTV- WDLNMYKSEY- - FI KQI LL FI SWLFTFPQI VKI LSD- - - - SKVGNGNAT- WQLNMPKSEF- - LTKQI LV F-SFCLSLPFKDTVFTSL---I KNKVNAERNWTVSFTTRTYELFLSHMLL 184 L CSCI CTVL CVWCFFSRPHFTVTTVL FMNNNTRL NWQI KDL NL FYSFL FC 198 LFSCI CTAI CLGDFFSRSGFTFTTMLFVNN-TEFNLQI AKLSFYHSFI FC 197

Tas2R16 humano Tas2R4 humano felino Tas2R4 Tas2R9 humano Tas2R9 felino Tas2R10 humano Tas2R10 felino Tas2R12 felino Tas2R38 humano Tas2R38 felino

TM 5 210 220 230 240 250 - VALVO FOR LELASTIFL MASL - - - TKQI QHHSTGHCNPSMKARFTALRS 228 - LSSSLQFII NVTSASLLI HSLRRHI QKMQKNATGFWNPQTEAHVGAMKL 231 - LSSFLQFI MNVTSASLLI HSLRRHI QKMQKNATDFWNPQTEAHMGAMKL NLGVMVPFI LCLI SFFLLLFSLVRHTKQI RLHATGFRDPSTEAHMRAI KA 233 NL GAL VPFAL CLI SFVLLL FSL FRHAKQMQL YAT GSRDCSTEAHMRAI KA 232 NLGVI FFFTLSLI TCI FLI I SLWRHNRQMQSNVTGLRDSNTEAHVKAMKV NI GVLLLFTLFLI TCFLLI I SLWRHSRRMQLNVTGFQDPSTEAHMKAMKV 230 NI MELI PEAVSI ASEVI LI CSI WSHTROMKGRGG- - - DPTTKVHVRAMKA 231 YLWSVPPFLLFLVSSGMLTVSLGRHMRTMKVYTRNSRDPSLEAHIKALKS TLASI PSLLFFLI SSGVLI VSLGRHMRTMRAKTKDSHDPSLEAHI KALRS 247

Tas2R16 humano Tas2R4 humano Tas2R4 felino Tas2R9 humano Tas2R9 felino Tas2R10 humano Tas2R10 felino Tas2R12 felino Tas2R38 humano Tas2R38 felino

TM TM 6 LAVLE VETSYELT LITE GTLF-DKRCWLWW&AFVYAFILMHSTSLM 277 MVYFLILYI PYSVATLVQYLPFYAGMDMGTKSI CLI FATLYSPGHSVLI I MI YFLI LYI PYSLATLL QYLPS- VRMDLGATSI CMI I STFYPPGHSVLI I 281 VIII FLLLLI VYYPVFLVMTSSALI PQGKLVLMI GDI VTVI FPSSHSFI LI 283 VTI FLLFFI MYYAVFLVVTSSFLI PQGRVVLMFGGI VTVI FPSSHSFI LI 282 LI SFI I LFI LYFI GMAI EI SCFTVRENKLLLMFGMTTTAI YPWGHSFI LI LI SFI I LFI LHFI GLAI EI ACFTMPEKKLLFI FGMTTTVLYPWGHSFI LI 280 MI SFLLFFFMYYLSTI MMNLAYVI LDSLVAKI FANTLVFLYPSGHTFLLI 281 LVSFFCFFVI SSCVAFI SVPLLI LWRDKI GVMVCVGI MAACPSGHAAI LI 298 LVSFLCLYVVSFCAALVSVPLLMLWHNKI GVMI CVGI LAACPSI HAAI LI 297


280

290

270

300

FIG. 2

